Merge zizzer.eecs.umich.edu:/bk/m5/
[gem5.git] / arch / alpha / alpha_memory.cc
1 /*
2 * Copyright (c) 2001-2004 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 #include <sstream>
30 #include <string>
31 #include <vector>
32
33 #include "arch/alpha/alpha_memory.hh"
34 #include "base/inifile.hh"
35 #include "base/str.hh"
36 #include "base/trace.hh"
37 #include "cpu/exec_context.hh"
38 #include "sim/builder.hh"
39
40 using namespace std;
41 using namespace EV5;
42
43 ///////////////////////////////////////////////////////////////////////
44 //
45 // Alpha TLB
46 //
47 #ifdef DEBUG
48 bool uncacheBit39 = false;
49 bool uncacheBit40 = false;
50 #endif
51
52 #define MODE2MASK(X) (1 << (X))
53
54 AlphaTLB::AlphaTLB(const string &name, int s)
55 : SimObject(name), size(s), nlu(0)
56 {
57 table = new AlphaISA::PTE[size];
58 memset(table, 0, sizeof(AlphaISA::PTE[size]));
59 }
60
61 AlphaTLB::~AlphaTLB()
62 {
63 if (table)
64 delete [] table;
65 }
66
67 // look up an entry in the TLB
68 AlphaISA::PTE *
69 AlphaTLB::lookup(Addr vpn, uint8_t asn) const
70 {
71 DPRINTF(TLB, "lookup %#x, asn %#x\n", vpn, (int)asn);
72
73 PageTable::const_iterator i = lookupTable.find(vpn);
74 if (i == lookupTable.end())
75 return NULL;
76
77 while (i->first == vpn) {
78 int index = i->second;
79 AlphaISA::PTE *pte = &table[index];
80 assert(pte->valid);
81 if (vpn == pte->tag && (pte->asma || pte->asn == asn))
82 return pte;
83
84 ++i;
85 }
86
87 // not found...
88 return NULL;
89 }
90
91
92 void
93 AlphaTLB::checkCacheability(MemReqPtr &req)
94 {
95 // in Alpha, cacheability is controlled by upper-level bits of the
96 // physical address
97
98 /*
99 * We support having the uncacheable bit in either bit 39 or bit 40.
100 * The Turbolaser platform (and EV5) support having the bit in 39, but
101 * Tsunami (which Linux assumes uses an EV6) generates accesses with
102 * the bit in 40. So we must check for both, but we have debug flags
103 * to catch a weird case where both are used, which shouldn't happen.
104 */
105
106
107 #ifdef ALPHA_TLASER
108 if (req->paddr & PAddrUncachedBit39) {
109 #else
110 if (req->paddr & PAddrUncachedBit43) {
111 #endif
112 // IPR memory space not implemented
113 if (PAddrIprSpace(req->paddr)) {
114 if (!req->xc->misspeculating()) {
115 switch (req->paddr) {
116 case ULL(0xFFFFF00188):
117 req->data = 0;
118 break;
119
120 default:
121 panic("IPR memory space not implemented! PA=%x\n",
122 req->paddr);
123 }
124 }
125 } else {
126 // mark request as uncacheable
127 req->flags |= UNCACHEABLE;
128
129 #ifndef ALPHA_TLASER
130 // Clear bits 42:35 of the physical address (10-2 in Tsunami manual)
131 req->paddr &= PAddrUncachedMask;
132 #endif
133 }
134 }
135 }
136
137
138 // insert a new TLB entry
139 void
140 AlphaTLB::insert(Addr addr, AlphaISA::PTE &pte)
141 {
142 AlphaISA::VAddr vaddr = addr;
143 if (table[nlu].valid) {
144 Addr oldvpn = table[nlu].tag;
145 PageTable::iterator i = lookupTable.find(oldvpn);
146
147 if (i == lookupTable.end())
148 panic("TLB entry not found in lookupTable");
149
150 int index;
151 while ((index = i->second) != nlu) {
152 if (table[index].tag != oldvpn)
153 panic("TLB entry not found in lookupTable");
154
155 ++i;
156 }
157
158 DPRINTF(TLB, "remove @%d: %#x -> %#x\n", nlu, oldvpn, table[nlu].ppn);
159
160 lookupTable.erase(i);
161 }
162
163 DPRINTF(TLB, "insert @%d: %#x -> %#x\n", nlu, vaddr.vpn(), pte.ppn);
164
165 table[nlu] = pte;
166 table[nlu].tag = vaddr.vpn();
167 table[nlu].valid = true;
168
169 lookupTable.insert(make_pair(vaddr.vpn(), nlu));
170 nextnlu();
171 }
172
173 void
174 AlphaTLB::flushAll()
175 {
176 memset(table, 0, sizeof(AlphaISA::PTE[size]));
177 lookupTable.clear();
178 nlu = 0;
179 }
180
181 void
182 AlphaTLB::flushProcesses()
183 {
184 PageTable::iterator i = lookupTable.begin();
185 PageTable::iterator end = lookupTable.end();
186 while (i != end) {
187 int index = i->second;
188 AlphaISA::PTE *pte = &table[index];
189 assert(pte->valid);
190
191 if (!pte->asma) {
192 DPRINTF(TLB, "flush @%d: %#x -> %#x\n", index, pte->tag, pte->ppn);
193 pte->valid = false;
194 lookupTable.erase(i);
195 }
196
197 ++i;
198 }
199 }
200
201 void
202 AlphaTLB::flushAddr(Addr addr, uint8_t asn)
203 {
204 AlphaISA::VAddr vaddr = addr;
205
206 PageTable::iterator i = lookupTable.find(vaddr.vpn());
207 if (i == lookupTable.end())
208 return;
209
210 while (i->first == vaddr.vpn()) {
211 int index = i->second;
212 AlphaISA::PTE *pte = &table[index];
213 assert(pte->valid);
214
215 if (vaddr.vpn() == pte->tag && (pte->asma || pte->asn == asn)) {
216 DPRINTF(TLB, "flushaddr @%d: %#x -> %#x\n", index, vaddr.vpn(),
217 pte->ppn);
218
219 // invalidate this entry
220 pte->valid = false;
221
222 lookupTable.erase(i);
223 }
224
225 ++i;
226 }
227 }
228
229
230 void
231 AlphaTLB::serialize(ostream &os)
232 {
233 SERIALIZE_SCALAR(size);
234 SERIALIZE_SCALAR(nlu);
235
236 for (int i = 0; i < size; i++) {
237 nameOut(os, csprintf("%s.PTE%d", name(), i));
238 table[i].serialize(os);
239 }
240 }
241
242 void
243 AlphaTLB::unserialize(Checkpoint *cp, const string &section)
244 {
245 UNSERIALIZE_SCALAR(size);
246 UNSERIALIZE_SCALAR(nlu);
247
248 for (int i = 0; i < size; i++) {
249 table[i].unserialize(cp, csprintf("%s.PTE%d", section, i));
250 if (table[i].valid) {
251 lookupTable.insert(make_pair(table[i].tag, i));
252 }
253 }
254 }
255
256
257 ///////////////////////////////////////////////////////////////////////
258 //
259 // Alpha ITB
260 //
261 AlphaITB::AlphaITB(const std::string &name, int size)
262 : AlphaTLB(name, size)
263 {}
264
265
266 void
267 AlphaITB::regStats()
268 {
269 hits
270 .name(name() + ".hits")
271 .desc("ITB hits");
272 misses
273 .name(name() + ".misses")
274 .desc("ITB misses");
275 acv
276 .name(name() + ".acv")
277 .desc("ITB acv");
278 accesses
279 .name(name() + ".accesses")
280 .desc("ITB accesses");
281
282 accesses = hits + misses;
283 }
284
285 void
286 AlphaITB::fault(Addr pc, ExecContext *xc) const
287 {
288 uint64_t *ipr = xc->regs.ipr;
289
290 if (!xc->misspeculating()) {
291 ipr[AlphaISA::IPR_ITB_TAG] = pc;
292 ipr[AlphaISA::IPR_IFAULT_VA_FORM] =
293 ipr[AlphaISA::IPR_IVPTBR] | (AlphaISA::VAddr(pc).vpn() << 3);
294 }
295 }
296
297
298 Fault
299 AlphaITB::translate(MemReqPtr &req) const
300 {
301 InternalProcReg *ipr = req->xc->regs.ipr;
302
303 if (AlphaISA::PcPAL(req->vaddr)) {
304 // strip off PAL PC marker (lsb is 1)
305 req->paddr = (req->vaddr & ~3) & PAddrImplMask;
306 hits++;
307 return No_Fault;
308 }
309
310 if (req->flags & PHYSICAL) {
311 req->paddr = req->vaddr;
312 } else {
313 // verify that this is a good virtual address
314 if (!validVirtualAddress(req->vaddr)) {
315 fault(req->vaddr, req->xc);
316 acv++;
317 return ITB_Acv_Fault;
318 }
319
320
321 // VA<42:41> == 2, VA<39:13> maps directly to PA<39:13> for EV5
322 // VA<47:41> == 0x7e, VA<40:13> maps directly to PA<40:13> for EV6
323 #ifdef ALPHA_TLASER
324 if ((MCSR_SP(ipr[AlphaISA::IPR_MCSR]) & 2) &&
325 VAddrSpaceEV5(req->vaddr) == 2) {
326 #else
327 if (VAddrSpaceEV6(req->vaddr) == 0x7e) {
328 #endif
329 // only valid in kernel mode
330 if (ICM_CM(ipr[AlphaISA::IPR_ICM]) !=
331 AlphaISA::mode_kernel) {
332 fault(req->vaddr, req->xc);
333 acv++;
334 return ITB_Acv_Fault;
335 }
336
337 req->paddr = req->vaddr & PAddrImplMask;
338
339 #ifndef ALPHA_TLASER
340 // sign extend the physical address properly
341 if (req->paddr & PAddrUncachedBit40)
342 req->paddr |= ULL(0xf0000000000);
343 else
344 req->paddr &= ULL(0xffffffffff);
345 #endif
346
347 } else {
348 // not a physical address: need to look up pte
349 AlphaISA::PTE *pte = lookup(AlphaISA::VAddr(req->vaddr).vpn(),
350 DTB_ASN_ASN(ipr[AlphaISA::IPR_DTB_ASN]));
351
352 if (!pte) {
353 fault(req->vaddr, req->xc);
354 misses++;
355 return ITB_Fault_Fault;
356 }
357
358 req->paddr = (pte->ppn << AlphaISA::PageShift) +
359 (AlphaISA::VAddr(req->vaddr).offset() & ~3);
360
361 // check permissions for this access
362 if (!(pte->xre & (1 << ICM_CM(ipr[AlphaISA::IPR_ICM])))) {
363 // instruction access fault
364 fault(req->vaddr, req->xc);
365 acv++;
366 return ITB_Acv_Fault;
367 }
368
369 hits++;
370 }
371 }
372
373 // check that the physical address is ok (catch bad physical addresses)
374 if (req->paddr & ~PAddrImplMask)
375 return Machine_Check_Fault;
376
377 checkCacheability(req);
378
379 return No_Fault;
380 }
381
382 ///////////////////////////////////////////////////////////////////////
383 //
384 // Alpha DTB
385 //
386 AlphaDTB::AlphaDTB(const std::string &name, int size)
387 : AlphaTLB(name, size)
388 {}
389
390 void
391 AlphaDTB::regStats()
392 {
393 read_hits
394 .name(name() + ".read_hits")
395 .desc("DTB read hits")
396 ;
397
398 read_misses
399 .name(name() + ".read_misses")
400 .desc("DTB read misses")
401 ;
402
403 read_acv
404 .name(name() + ".read_acv")
405 .desc("DTB read access violations")
406 ;
407
408 read_accesses
409 .name(name() + ".read_accesses")
410 .desc("DTB read accesses")
411 ;
412
413 write_hits
414 .name(name() + ".write_hits")
415 .desc("DTB write hits")
416 ;
417
418 write_misses
419 .name(name() + ".write_misses")
420 .desc("DTB write misses")
421 ;
422
423 write_acv
424 .name(name() + ".write_acv")
425 .desc("DTB write access violations")
426 ;
427
428 write_accesses
429 .name(name() + ".write_accesses")
430 .desc("DTB write accesses")
431 ;
432
433 hits
434 .name(name() + ".hits")
435 .desc("DTB hits")
436 ;
437
438 misses
439 .name(name() + ".misses")
440 .desc("DTB misses")
441 ;
442
443 acv
444 .name(name() + ".acv")
445 .desc("DTB access violations")
446 ;
447
448 accesses
449 .name(name() + ".accesses")
450 .desc("DTB accesses")
451 ;
452
453 hits = read_hits + write_hits;
454 misses = read_misses + write_misses;
455 acv = read_acv + write_acv;
456 accesses = read_accesses + write_accesses;
457 }
458
459 void
460 AlphaDTB::fault(MemReqPtr &req, uint64_t flags) const
461 {
462 ExecContext *xc = req->xc;
463 AlphaISA::VAddr vaddr = req->vaddr;
464 uint64_t *ipr = xc->regs.ipr;
465
466 // Set fault address and flags. Even though we're modeling an
467 // EV5, we use the EV6 technique of not latching fault registers
468 // on VPTE loads (instead of locking the registers until IPR_VA is
469 // read, like the EV5). The EV6 approach is cleaner and seems to
470 // work with EV5 PAL code, but not the other way around.
471 if (!xc->misspeculating()
472 && !(req->flags & VPTE) && !(req->flags & NO_FAULT)) {
473 // set VA register with faulting address
474 ipr[AlphaISA::IPR_VA] = req->vaddr;
475
476 // set MM_STAT register flags
477 ipr[AlphaISA::IPR_MM_STAT] =
478 (((Opcode(xc->getInst()) & 0x3f) << 11)
479 | ((Ra(xc->getInst()) & 0x1f) << 6)
480 | (flags & 0x3f));
481
482 // set VA_FORM register with faulting formatted address
483 ipr[AlphaISA::IPR_VA_FORM] =
484 ipr[AlphaISA::IPR_MVPTBR] | (vaddr.vpn() << 3);
485 }
486 }
487
488 Fault
489 AlphaDTB::translate(MemReqPtr &req, bool write) const
490 {
491 RegFile *regs = &req->xc->regs;
492 Addr pc = regs->pc;
493 InternalProcReg *ipr = regs->ipr;
494
495 AlphaISA::mode_type mode =
496 (AlphaISA::mode_type)DTB_CM_CM(ipr[AlphaISA::IPR_DTB_CM]);
497
498
499 /**
500 * Check for alignment faults
501 */
502 if (req->vaddr & (req->size - 1)) {
503 fault(req, write ? MM_STAT_WR_MASK : 0);
504 return Alignment_Fault;
505 }
506
507 if (pc & 0x1) {
508 mode = (req->flags & ALTMODE) ?
509 (AlphaISA::mode_type)ALT_MODE_AM(ipr[AlphaISA::IPR_ALT_MODE])
510 : AlphaISA::mode_kernel;
511 }
512
513 if (req->flags & PHYSICAL) {
514 req->paddr = req->vaddr;
515 } else {
516 // verify that this is a good virtual address
517 if (!validVirtualAddress(req->vaddr)) {
518 fault(req, (write ? MM_STAT_WR_MASK : 0) |
519 MM_STAT_BAD_VA_MASK |
520 MM_STAT_ACV_MASK);
521
522 if (write) { write_acv++; } else { read_acv++; }
523 return DTB_Fault_Fault;
524 }
525
526 // Check for "superpage" mapping
527 #ifdef ALPHA_TLASER
528 if ((MCSR_SP(ipr[AlphaISA::IPR_MCSR]) & 2) &&
529 VAddrSpaceEV5(req->vaddr) == 2) {
530 #else
531 if (VAddrSpaceEV6(req->vaddr) == 0x7e) {
532 #endif
533
534 // only valid in kernel mode
535 if (DTB_CM_CM(ipr[AlphaISA::IPR_DTB_CM]) !=
536 AlphaISA::mode_kernel) {
537 fault(req, ((write ? MM_STAT_WR_MASK : 0) |
538 MM_STAT_ACV_MASK));
539 if (write) { write_acv++; } else { read_acv++; }
540 return DTB_Acv_Fault;
541 }
542
543 req->paddr = req->vaddr & PAddrImplMask;
544
545 #ifndef ALPHA_TLASER
546 // sign extend the physical address properly
547 if (req->paddr & PAddrUncachedBit40)
548 req->paddr |= ULL(0xf0000000000);
549 else
550 req->paddr &= ULL(0xffffffffff);
551 #endif
552
553 } else {
554 if (write)
555 write_accesses++;
556 else
557 read_accesses++;
558
559 // not a physical address: need to look up pte
560 AlphaISA::PTE *pte = lookup(AlphaISA::VAddr(req->vaddr).vpn(),
561 DTB_ASN_ASN(ipr[AlphaISA::IPR_DTB_ASN]));
562
563 if (!pte) {
564 // page fault
565 fault(req, (write ? MM_STAT_WR_MASK : 0) |
566 MM_STAT_DTB_MISS_MASK);
567 if (write) { write_misses++; } else { read_misses++; }
568 return (req->flags & VPTE) ? Pdtb_Miss_Fault : Ndtb_Miss_Fault;
569 }
570
571 req->paddr = (pte->ppn << AlphaISA::PageShift) +
572 AlphaISA::VAddr(req->vaddr).offset();
573
574 if (write) {
575 if (!(pte->xwe & MODE2MASK(mode))) {
576 // declare the instruction access fault
577 fault(req, MM_STAT_WR_MASK |
578 MM_STAT_ACV_MASK |
579 (pte->fonw ? MM_STAT_FONW_MASK : 0));
580 write_acv++;
581 return DTB_Fault_Fault;
582 }
583 if (pte->fonw) {
584 fault(req, MM_STAT_WR_MASK |
585 MM_STAT_FONW_MASK);
586 write_acv++;
587 return DTB_Fault_Fault;
588 }
589 } else {
590 if (!(pte->xre & MODE2MASK(mode))) {
591 fault(req, MM_STAT_ACV_MASK |
592 (pte->fonr ? MM_STAT_FONR_MASK : 0));
593 read_acv++;
594 return DTB_Acv_Fault;
595 }
596 if (pte->fonr) {
597 fault(req, MM_STAT_FONR_MASK);
598 read_acv++;
599 return DTB_Fault_Fault;
600 }
601 }
602 }
603
604 if (write)
605 write_hits++;
606 else
607 read_hits++;
608 }
609
610 // check that the physical address is ok (catch bad physical addresses)
611 if (req->paddr & ~PAddrImplMask)
612 return Machine_Check_Fault;
613
614 checkCacheability(req);
615
616 return No_Fault;
617 }
618
619 AlphaISA::PTE &
620 AlphaTLB::index(bool advance)
621 {
622 AlphaISA::PTE *pte = &table[nlu];
623
624 if (advance)
625 nextnlu();
626
627 return *pte;
628 }
629
630 DEFINE_SIM_OBJECT_CLASS_NAME("AlphaTLB", AlphaTLB)
631
632 BEGIN_DECLARE_SIM_OBJECT_PARAMS(AlphaITB)
633
634 Param<int> size;
635
636 END_DECLARE_SIM_OBJECT_PARAMS(AlphaITB)
637
638 BEGIN_INIT_SIM_OBJECT_PARAMS(AlphaITB)
639
640 INIT_PARAM_DFLT(size, "TLB size", 48)
641
642 END_INIT_SIM_OBJECT_PARAMS(AlphaITB)
643
644
645 CREATE_SIM_OBJECT(AlphaITB)
646 {
647 return new AlphaITB(getInstanceName(), size);
648 }
649
650 REGISTER_SIM_OBJECT("AlphaITB", AlphaITB)
651
652 BEGIN_DECLARE_SIM_OBJECT_PARAMS(AlphaDTB)
653
654 Param<int> size;
655
656 END_DECLARE_SIM_OBJECT_PARAMS(AlphaDTB)
657
658 BEGIN_INIT_SIM_OBJECT_PARAMS(AlphaDTB)
659
660 INIT_PARAM_DFLT(size, "TLB size", 64)
661
662 END_INIT_SIM_OBJECT_PARAMS(AlphaDTB)
663
664
665 CREATE_SIM_OBJECT(AlphaDTB)
666 {
667 return new AlphaDTB(getInstanceName(), size);
668 }
669
670 REGISTER_SIM_OBJECT("AlphaDTB", AlphaDTB)
671