first pass at merging m5 with linux
[gem5.git] / arch / alpha / ev5.cc
1 /* $Id$ */
2
3 #include "targetarch/alpha_memory.hh"
4 #include "sim/annotation.hh"
5 #ifdef DEBUG
6 #include "sim/debug.hh"
7 #endif
8 #include "cpu/exec_context.hh"
9 #include "sim/sim_events.hh"
10 #include "targetarch/isa_traits.hh"
11 #include "base/remote_gdb.hh"
12 #include "base/kgdb.h" // for ALPHA_KENTRY_IF
13 #include "targetarch/osfpal.hh"
14
15 #ifdef FULL_SYSTEM
16
17 #ifndef SYSTEM_EV5
18 #error This code is only valid for EV5 systems
19 #endif
20
21 ////////////////////////////////////////////////////////////////////////
22 //
23 //
24 //
25 void
26 AlphaISA::swap_palshadow(RegFile *regs, bool use_shadow)
27 {
28 if (regs->pal_shadow == use_shadow)
29 panic("swap_palshadow: wrong PAL shadow state");
30
31 regs->pal_shadow = use_shadow;
32
33 for (int i = 0; i < NumIntRegs; i++) {
34 if (reg_redir[i]) {
35 IntReg temp = regs->intRegFile[i];
36 regs->intRegFile[i] = regs->palregs[i];
37 regs->palregs[i] = temp;
38 }
39 }
40 }
41
42 ////////////////////////////////////////////////////////////////////////
43 //
44 // Machine dependent functions
45 //
46 void
47 AlphaISA::initCPU(RegFile *regs)
48 {
49 initIPRs(regs);
50 // CPU comes up with PAL regs enabled
51 swap_palshadow(regs, true);
52
53 regs->pc = regs->ipr[IPR_PAL_BASE] + fault_addr[Reset_Fault];
54 regs->npc = regs->pc + sizeof(MachInst);
55 }
56
57 ////////////////////////////////////////////////////////////////////////
58 //
59 // alpha exceptions - value equals trap address, update with MD_FAULT_TYPE
60 //
61 Addr
62 AlphaISA::fault_addr[Num_Faults] = {
63 0x0000, /* No_Fault */
64 0x0001, /* Reset_Fault */
65 0x0401, /* Machine_Check_Fault */
66 0x0501, /* Arithmetic_Fault */
67 0x0101, /* Interrupt_Fault */
68 0x0201, /* Ndtb_Miss_Fault */
69 0x0281, /* Pdtb_Miss_Fault */
70 0x0301, /* Alignment_Fault */
71 0x0381, /* DTB_Fault_Fault */
72 0x0381, /* DTB_Acv_Fault */
73 0x0181, /* ITB_Miss_Fault */
74 0x0181, /* ITB_Fault_Fault */
75 0x0081, /* ITB_Acv_Fault */
76 0x0481, /* Unimplemented_Opcode_Fault */
77 0x0581, /* Fen_Fault */
78 0x2001, /* Pal_Fault */
79 0x0501, /* Integer_Overflow_Fault: maps to Arithmetic_Fault */
80 };
81
82 const int AlphaISA::reg_redir[AlphaISA::NumIntRegs] = {
83 /* 0 */ 0, 0, 0, 0, 0, 0, 0, 0,
84 /* 8 */ 1, 1, 1, 1, 1, 1, 1, 0,
85 /* 16 */ 0, 0, 0, 0, 0, 0, 0, 0,
86 /* 24 */ 0, 1, 0, 0, 0, 0, 0, 0 };
87
88 ////////////////////////////////////////////////////////////////////////
89 //
90 //
91 //
92 void
93 AlphaISA::initIPRs(RegFile *regs)
94 {
95 uint64_t *ipr = regs->ipr;
96
97 bzero((char *)ipr, NumInternalProcRegs * sizeof(InternalProcReg));
98 ipr[IPR_PAL_BASE] = PAL_BASE;
99 ipr[IPR_MCSR] = 0x6;
100 }
101
102
103 void
104 ExecContext::ev5_trap(Fault fault)
105 {
106 assert(!misspeculating());
107 kernelStats.fault(fault);
108
109 if (fault == Arithmetic_Fault)
110 panic("Arithmetic traps are unimplemented!");
111
112 AlphaISA::InternalProcReg *ipr = regs.ipr;
113
114 // exception restart address
115 if (fault != Interrupt_Fault || !PC_PAL(regs.pc))
116 ipr[AlphaISA::IPR_EXC_ADDR] = regs.pc;
117
118 if (fault == Pal_Fault || fault == Arithmetic_Fault /* ||
119 fault == Interrupt_Fault && !PC_PAL(regs.pc) */) {
120 // traps... skip faulting instruction
121 ipr[AlphaISA::IPR_EXC_ADDR] += 4;
122 }
123
124 if (!PC_PAL(regs.pc))
125 AlphaISA::swap_palshadow(&regs, true);
126
127 regs.pc = ipr[AlphaISA::IPR_PAL_BASE] + AlphaISA::fault_addr[fault];
128 regs.npc = regs.pc + sizeof(MachInst);
129
130 Annotate::Ev5Trap(this, fault);
131 }
132
133
134 void
135 AlphaISA::intr_post(RegFile *regs, Fault fault, Addr pc)
136 {
137 InternalProcReg *ipr = regs->ipr;
138 bool use_pc = (fault == No_Fault);
139
140 if (fault == Arithmetic_Fault)
141 panic("arithmetic faults NYI...");
142
143 // compute exception restart address
144 if (use_pc || fault == Pal_Fault || fault == Arithmetic_Fault) {
145 // traps... skip faulting instruction
146 ipr[IPR_EXC_ADDR] = regs->pc + 4;
147 } else {
148 // fault, post fault at excepting instruction
149 ipr[IPR_EXC_ADDR] = regs->pc;
150 }
151
152 // jump to expection address (PAL PC bit set here as well...)
153 if (!use_pc)
154 regs->npc = ipr[IPR_PAL_BASE] + fault_addr[fault];
155 else
156 regs->npc = ipr[IPR_PAL_BASE] + pc;
157
158 // that's it! (orders of magnitude less painful than x86)
159 }
160
161 bool AlphaISA::check_interrupts = false;
162
163 Fault
164 ExecContext::hwrei()
165 {
166 uint64_t *ipr = regs.ipr;
167
168 if (!PC_PAL(regs.pc))
169 return Unimplemented_Opcode_Fault;
170
171 setNextPC(ipr[AlphaISA::IPR_EXC_ADDR]);
172
173 if (!misspeculating()) {
174 kernelStats.hwrei();
175
176 if ((ipr[AlphaISA::IPR_EXC_ADDR] & 1) == 0)
177 AlphaISA::swap_palshadow(&regs, false);
178
179 AlphaISA::check_interrupts = true;
180 }
181
182 // FIXME: XXX check for interrupts? XXX
183 return No_Fault;
184 }
185
186 uint64_t
187 ExecContext::readIpr(int idx, Fault &fault)
188 {
189 uint64_t *ipr = regs.ipr;
190 uint64_t retval = 0; // return value, default 0
191
192 switch (idx) {
193 case AlphaISA::IPR_PALtemp0:
194 case AlphaISA::IPR_PALtemp1:
195 case AlphaISA::IPR_PALtemp2:
196 case AlphaISA::IPR_PALtemp3:
197 case AlphaISA::IPR_PALtemp4:
198 case AlphaISA::IPR_PALtemp5:
199 case AlphaISA::IPR_PALtemp6:
200 case AlphaISA::IPR_PALtemp7:
201 case AlphaISA::IPR_PALtemp8:
202 case AlphaISA::IPR_PALtemp9:
203 case AlphaISA::IPR_PALtemp10:
204 case AlphaISA::IPR_PALtemp11:
205 case AlphaISA::IPR_PALtemp12:
206 case AlphaISA::IPR_PALtemp13:
207 case AlphaISA::IPR_PALtemp14:
208 case AlphaISA::IPR_PALtemp15:
209 case AlphaISA::IPR_PALtemp16:
210 case AlphaISA::IPR_PALtemp17:
211 case AlphaISA::IPR_PALtemp18:
212 case AlphaISA::IPR_PALtemp19:
213 case AlphaISA::IPR_PALtemp20:
214 case AlphaISA::IPR_PALtemp21:
215 case AlphaISA::IPR_PALtemp22:
216 case AlphaISA::IPR_PALtemp23:
217 case AlphaISA::IPR_PAL_BASE:
218
219 case AlphaISA::IPR_IVPTBR:
220 case AlphaISA::IPR_DC_MODE:
221 case AlphaISA::IPR_MAF_MODE:
222 case AlphaISA::IPR_ISR:
223 case AlphaISA::IPR_EXC_ADDR:
224 case AlphaISA::IPR_IC_PERR_STAT:
225 case AlphaISA::IPR_DC_PERR_STAT:
226 case AlphaISA::IPR_MCSR:
227 case AlphaISA::IPR_ASTRR:
228 case AlphaISA::IPR_ASTER:
229 case AlphaISA::IPR_SIRR:
230 case AlphaISA::IPR_ICSR:
231 case AlphaISA::IPR_ICM:
232 case AlphaISA::IPR_DTB_CM:
233 case AlphaISA::IPR_IPLR:
234 case AlphaISA::IPR_INTID:
235 case AlphaISA::IPR_PMCTR:
236 // no side-effect
237 retval = ipr[idx];
238 break;
239
240 case AlphaISA::IPR_CC:
241 retval |= ipr[idx] & ULL(0xffffffff00000000);
242 retval |= curTick & ULL(0x00000000ffffffff);
243 break;
244
245 case AlphaISA::IPR_VA:
246 // SFX: unlocks interrupt status registers
247 retval = ipr[idx];
248
249 if (!misspeculating())
250 regs.intrlock = false;
251 break;
252
253 case AlphaISA::IPR_VA_FORM:
254 case AlphaISA::IPR_MM_STAT:
255 case AlphaISA::IPR_IFAULT_VA_FORM:
256 case AlphaISA::IPR_EXC_MASK:
257 case AlphaISA::IPR_EXC_SUM:
258 retval = ipr[idx];
259 break;
260
261 case AlphaISA::IPR_DTB_PTE:
262 {
263 AlphaISA::PTE &pte = dtb->index(!misspeculating());
264
265 retval |= ((u_int64_t)pte.ppn & ULL(0x7ffffff)) << 32;
266 retval |= ((u_int64_t)pte.xre & ULL(0xf)) << 8;
267 retval |= ((u_int64_t)pte.xwe & ULL(0xf)) << 12;
268 retval |= ((u_int64_t)pte.fonr & ULL(0x1)) << 1;
269 retval |= ((u_int64_t)pte.fonw & ULL(0x1))<< 2;
270 retval |= ((u_int64_t)pte.asma & ULL(0x1)) << 4;
271 retval |= ((u_int64_t)pte.asn & ULL(0x7f)) << 57;
272 }
273 break;
274
275 // write only registers
276 case AlphaISA::IPR_HWINT_CLR:
277 case AlphaISA::IPR_SL_XMIT:
278 case AlphaISA::IPR_DC_FLUSH:
279 case AlphaISA::IPR_IC_FLUSH:
280 case AlphaISA::IPR_ALT_MODE:
281 case AlphaISA::IPR_DTB_IA:
282 case AlphaISA::IPR_DTB_IAP:
283 case AlphaISA::IPR_ITB_IA:
284 case AlphaISA::IPR_ITB_IAP:
285 fault = Unimplemented_Opcode_Fault;
286 break;
287
288 default:
289 // invalid IPR
290 fault = Unimplemented_Opcode_Fault;
291 break;
292 }
293
294 return retval;
295 }
296
297 #ifdef DEBUG
298 // Cause the simulator to break when changing to the following IPL
299 int break_ipl = -1;
300 #endif
301
302 Fault
303 ExecContext::setIpr(int idx, uint64_t val)
304 {
305 uint64_t *ipr = regs.ipr;
306
307 if (misspeculating())
308 return No_Fault;
309
310 switch (idx) {
311 case AlphaISA::IPR_PALtemp0:
312 case AlphaISA::IPR_PALtemp1:
313 case AlphaISA::IPR_PALtemp2:
314 case AlphaISA::IPR_PALtemp3:
315 case AlphaISA::IPR_PALtemp4:
316 case AlphaISA::IPR_PALtemp5:
317 case AlphaISA::IPR_PALtemp6:
318 case AlphaISA::IPR_PALtemp7:
319 case AlphaISA::IPR_PALtemp8:
320 case AlphaISA::IPR_PALtemp9:
321 case AlphaISA::IPR_PALtemp10:
322 case AlphaISA::IPR_PALtemp11:
323 case AlphaISA::IPR_PALtemp12:
324 case AlphaISA::IPR_PALtemp13:
325 case AlphaISA::IPR_PALtemp14:
326 case AlphaISA::IPR_PALtemp15:
327 case AlphaISA::IPR_PALtemp16:
328 case AlphaISA::IPR_PALtemp17:
329 case AlphaISA::IPR_PALtemp18:
330 case AlphaISA::IPR_PALtemp19:
331 case AlphaISA::IPR_PALtemp20:
332 case AlphaISA::IPR_PALtemp21:
333 case AlphaISA::IPR_PALtemp22:
334 case AlphaISA::IPR_PAL_BASE:
335 case AlphaISA::IPR_IC_PERR_STAT:
336 case AlphaISA::IPR_DC_PERR_STAT:
337 case AlphaISA::IPR_PMCTR:
338 // write entire quad w/ no side-effect
339 ipr[idx] = val;
340 break;
341
342 case AlphaISA::IPR_CC_CTL:
343 // This IPR resets the cycle counter. We assume this only
344 // happens once... let's verify that.
345 assert(ipr[idx] == 0);
346 ipr[idx] = 1;
347 break;
348
349 case AlphaISA::IPR_CC:
350 // This IPR only writes the upper 64 bits. It's ok to write
351 // all 64 here since we mask out the lower 32 in rpcc (see
352 // isa_desc).
353 ipr[idx] = val;
354 break;
355
356 case AlphaISA::IPR_PALtemp23:
357 // write entire quad w/ no side-effect
358 ipr[idx] = val;
359 kernelStats.context(ipr[idx]);
360 Annotate::Context(this);
361 break;
362
363 case AlphaISA::IPR_DTB_PTE:
364 // write entire quad w/ no side-effect, tag is forthcoming
365 ipr[idx] = val;
366 break;
367
368 case AlphaISA::IPR_EXC_ADDR:
369 // second least significant bit in PC is always zero
370 ipr[idx] = val & ~2;
371 break;
372
373 case AlphaISA::IPR_ASTRR:
374 case AlphaISA::IPR_ASTER:
375 // only write least significant four bits - privilege mask
376 ipr[idx] = val & 0xf;
377 break;
378
379 case AlphaISA::IPR_IPLR:
380 #ifdef DEBUG
381 if (break_ipl != -1 && break_ipl == (val & 0x1f))
382 debug_break();
383 #endif
384
385 // only write least significant five bits - interrupt level
386 ipr[idx] = val & 0x1f;
387 kernelStats.swpipl(ipr[idx]);
388 Annotate::IPL(this, val & 0x1f);
389 break;
390
391 case AlphaISA::IPR_DTB_CM:
392 Annotate::ChangeMode(this, (val & 0x18) != 0);
393 kernelStats.mode((val & 0x18) != 0);
394
395 case AlphaISA::IPR_ICM:
396 // only write two mode bits - processor mode
397 ipr[idx] = val & 0x18;
398 break;
399
400 case AlphaISA::IPR_ALT_MODE:
401 // only write two mode bits - processor mode
402 ipr[idx] = val & 0x18;
403 break;
404
405 case AlphaISA::IPR_MCSR:
406 // more here after optimization...
407 ipr[idx] = val;
408 break;
409
410 case AlphaISA::IPR_SIRR:
411 // only write software interrupt mask
412 ipr[idx] = val & 0x7fff0;
413 break;
414
415 case AlphaISA::IPR_ICSR:
416 ipr[idx] = val & ULL(0xffffff0300);
417 break;
418
419 case AlphaISA::IPR_IVPTBR:
420 case AlphaISA::IPR_MVPTBR:
421 ipr[idx] = val & ULL(0xffffffffc0000000);
422 break;
423
424 case AlphaISA::IPR_DC_TEST_CTL:
425 ipr[idx] = val & 0x1ffb;
426 break;
427
428 case AlphaISA::IPR_DC_MODE:
429 case AlphaISA::IPR_MAF_MODE:
430 ipr[idx] = val & 0x3f;
431 break;
432
433 case AlphaISA::IPR_ITB_ASN:
434 ipr[idx] = val & 0x7f0;
435 break;
436
437 case AlphaISA::IPR_DTB_ASN:
438 ipr[idx] = val & ULL(0xfe00000000000000);
439 break;
440
441 case AlphaISA::IPR_EXC_SUM:
442 case AlphaISA::IPR_EXC_MASK:
443 // any write to this register clears it
444 ipr[idx] = 0;
445 break;
446
447 case AlphaISA::IPR_INTID:
448 case AlphaISA::IPR_SL_RCV:
449 case AlphaISA::IPR_MM_STAT:
450 case AlphaISA::IPR_ITB_PTE_TEMP:
451 case AlphaISA::IPR_DTB_PTE_TEMP:
452 // read-only registers
453 return Unimplemented_Opcode_Fault;
454
455 case AlphaISA::IPR_HWINT_CLR:
456 case AlphaISA::IPR_SL_XMIT:
457 case AlphaISA::IPR_DC_FLUSH:
458 case AlphaISA::IPR_IC_FLUSH:
459 // the following are write only
460 ipr[idx] = val;
461 break;
462
463 case AlphaISA::IPR_DTB_IA:
464 // really a control write
465 ipr[idx] = 0;
466
467 dtb->flushAll();
468 break;
469
470 case AlphaISA::IPR_DTB_IAP:
471 // really a control write
472 ipr[idx] = 0;
473
474 dtb->flushProcesses();
475 break;
476
477 case AlphaISA::IPR_DTB_IS:
478 // really a control write
479 ipr[idx] = val;
480
481 dtb->flushAddr(val, DTB_ASN_ASN(ipr[AlphaISA::IPR_DTB_ASN]));
482 break;
483
484 case AlphaISA::IPR_DTB_TAG: {
485 struct AlphaISA::PTE pte;
486
487 // FIXME: granularity hints NYI...
488 if (DTB_PTE_GH(ipr[AlphaISA::IPR_DTB_PTE]) != 0)
489 panic("PTE GH field != 0");
490
491 // write entire quad
492 ipr[idx] = val;
493
494 // construct PTE for new entry
495 pte.ppn = DTB_PTE_PPN(ipr[AlphaISA::IPR_DTB_PTE]);
496 pte.xre = DTB_PTE_XRE(ipr[AlphaISA::IPR_DTB_PTE]);
497 pte.xwe = DTB_PTE_XWE(ipr[AlphaISA::IPR_DTB_PTE]);
498 pte.fonr = DTB_PTE_FONR(ipr[AlphaISA::IPR_DTB_PTE]);
499 pte.fonw = DTB_PTE_FONW(ipr[AlphaISA::IPR_DTB_PTE]);
500 pte.asma = DTB_PTE_ASMA(ipr[AlphaISA::IPR_DTB_PTE]);
501 pte.asn = DTB_ASN_ASN(ipr[AlphaISA::IPR_DTB_ASN]);
502
503 // insert new TAG/PTE value into data TLB
504 dtb->insert(val, pte);
505 }
506 break;
507
508 case AlphaISA::IPR_ITB_PTE: {
509 struct AlphaISA::PTE pte;
510
511 // FIXME: granularity hints NYI...
512 if (ITB_PTE_GH(val) != 0)
513 panic("PTE GH field != 0");
514
515 // write entire quad
516 ipr[idx] = val;
517
518 // construct PTE for new entry
519 pte.ppn = ITB_PTE_PPN(val);
520 pte.xre = ITB_PTE_XRE(val);
521 pte.xwe = 0;
522 pte.fonr = ITB_PTE_FONR(val);
523 pte.fonw = ITB_PTE_FONW(val);
524 pte.asma = ITB_PTE_ASMA(val);
525 pte.asn = ITB_ASN_ASN(ipr[AlphaISA::IPR_ITB_ASN]);
526
527 // insert new TAG/PTE value into data TLB
528 itb->insert(ipr[AlphaISA::IPR_ITB_TAG], pte);
529 }
530 break;
531
532 case AlphaISA::IPR_ITB_IA:
533 // really a control write
534 ipr[idx] = 0;
535
536 itb->flushAll();
537 break;
538
539 case AlphaISA::IPR_ITB_IAP:
540 // really a control write
541 ipr[idx] = 0;
542
543 itb->flushProcesses();
544 break;
545
546 case AlphaISA::IPR_ITB_IS:
547 // really a control write
548 ipr[idx] = val;
549
550 itb->flushAddr(val, ITB_ASN_ASN(ipr[AlphaISA::IPR_ITB_ASN]));
551 break;
552
553 default:
554 // invalid IPR
555 return Unimplemented_Opcode_Fault;
556 }
557
558 // no error...
559 return No_Fault;
560 }
561
562 /**
563 * Check for special simulator handling of specific PAL calls.
564 * If return value is false, actual PAL call will be suppressed.
565 */
566 bool
567 ExecContext::simPalCheck(int palFunc)
568 {
569 kernelStats.callpal(palFunc);
570
571 switch (palFunc) {
572 case PAL::halt:
573 halt();
574 if (--System::numSystemsRunning == 0)
575 new SimExitEvent("all cpus halted");
576 break;
577
578 case PAL::bpt:
579 case PAL::bugchk:
580 if (system->breakpoint())
581 return false;
582 break;
583 }
584
585 return true;
586 }
587
588 #endif // FULL_SYSTEM