Merge zizzer.eecs.umich.edu:/m5/Bitkeeper/m5
[gem5.git] / arch / alpha / isa_desc
1 // -*- mode:c++ -*-
2 //
3 // Alpha ISA description file.
4 //
5
6 let {{
7 global rcs_id
8 rcs_id = "$Id$"
9 }};
10
11
12 #include <sstream>
13 #include <iostream>
14 #include <iomanip>
15
16 #include <math.h>
17 #if defined(linux)
18 #include <fenv.h>
19 #endif
20
21 #include "base/cprintf.hh"
22 #include "base/misc.hh"
23 #include "cpu/exec_context.hh"
24 #include "cpu/exetrace.hh"
25 #include "cpu/full_cpu/full_cpu.hh"
26 #include "cpu/full_cpu/op_class.hh"
27 #include "cpu/full_cpu/spec_state.hh"
28 #include "cpu/simple_cpu/simple_cpu.hh"
29 #include "cpu/static_inst.hh"
30 #include "sim/annotation.hh"
31 #include "sim/sim_exit.hh"
32
33 #ifdef FULL_SYSTEM
34 #include "arch/alpha/ev5.hh"
35 #include "arch/alpha/pseudo_inst.hh"
36 #endif
37
38 namespace AlphaISA;
39
40 // Universal (format-independent) fields
41 def bitfield OPCODE <31:26>;
42 def bitfield RA <25:21>;
43 def bitfield RB <20:16>;
44
45 // Memory format
46 def signed bitfield MEMDISP <15: 0>; // displacement
47 def bitfield MEMFUNC <15: 0>; // function code (same field, unsigned)
48
49 // Memory-format jumps
50 def bitfield JMPFUNC <15:14>; // function code (disp<15:14>)
51 def bitfield JMPHINT <13: 0>; // tgt Icache idx hint (disp<13:0>)
52
53 // Branch format
54 def signed bitfield BRDISP <20: 0>; // displacement
55
56 // Integer operate format(s>;
57 def bitfield INTIMM <20:13>; // integer immediate (literal)
58 def bitfield IMM <12:12>; // immediate flag
59 def bitfield INTFUNC <11: 5>; // function code
60 def bitfield RC < 4: 0>; // dest reg
61
62 // Floating-point operate format
63 def bitfield FA <25:21>;
64 def bitfield FB <20:16>;
65 def bitfield FP_FULLFUNC <15: 5>; // complete function code
66 def bitfield FP_TRAPMODE <15:13>; // trapping mode
67 def bitfield FP_ROUNDMODE <12:11>; // rounding mode
68 def bitfield FP_TYPEFUNC <10: 5>; // type+func: handiest for decoding
69 def bitfield FP_SRCTYPE <10: 9>; // source reg type
70 def bitfield FP_SHORTFUNC < 8: 5>; // short function code
71 def bitfield FP_SHORTFUNC_TOP2 <8:7>; // top 2 bits of short func code
72 def bitfield FC < 4: 0>; // dest reg
73
74 // PALcode format
75 def bitfield PALFUNC <25: 0>; // function code
76
77 // EV5 PAL instructions:
78 // HW_LD/HW_ST
79 def bitfield HW_LDST_PHYS <15>; // address is physical
80 def bitfield HW_LDST_ALT <14>; // use ALT_MODE IPR
81 def bitfield HW_LDST_WRTCK <13>; // HW_LD only: fault if no write acc
82 def bitfield HW_LDST_QUAD <12>; // size: 0=32b, 1=64b
83 def bitfield HW_LDST_VPTE <11>; // HW_LD only: is PTE fetch
84 def bitfield HW_LDST_LOCK <10>; // HW_LD only: is load locked
85 def bitfield HW_LDST_COND <10>; // HW_ST only: is store conditional
86 def signed bitfield HW_LDST_DISP <9:0>; // signed displacement
87
88 // HW_REI
89 def bitfield HW_REI_TYP <15:14>; // type: stalling vs. non-stallingk
90 def bitfield HW_REI_MBZ <13: 0>; // must be zero
91
92 // HW_MTPR/MW_MFPR
93 def bitfield HW_IPR_IDX <15:0>; // IPR index
94
95 // M5 instructions
96 def bitfield M5FUNC <7:0>;
97
98 let {{
99 global operandTypeMap
100 operandTypeMap = {
101 'sb' : ('signed int', 8),
102 'ub' : ('unsigned int', 8),
103 'sw' : ('signed int', 16),
104 'uw' : ('unsigned int', 16),
105 'sl' : ('signed int', 32),
106 'ul' : ('unsigned int', 32),
107 'sq' : ('signed int', 64),
108 'uq' : ('unsigned int', 64),
109 'sf' : ('float', 32),
110 'df' : ('float', 64)
111 }
112
113 global operandTraitsMap
114 operandTraitsMap = {
115 # Int regs default to unsigned, but code should not count on this.
116 # For clarity, descriptions that depend on unsigned behavior should
117 # explicitly specify '.uq'.
118 'Ra': IntRegOperandTraits('uq', 'RA', 'IsInteger', 1),
119 'Rb': IntRegOperandTraits('uq', 'RB', 'IsInteger', 2),
120 'Rc': IntRegOperandTraits('uq', 'RC', 'IsInteger', 3),
121 'Fa': FloatRegOperandTraits('df', 'FA', 'IsFloating', 1),
122 'Fb': FloatRegOperandTraits('df', 'FB', 'IsFloating', 2),
123 'Fc': FloatRegOperandTraits('df', 'FC', 'IsFloating', 3),
124 'Mem': MemOperandTraits('uq', None,
125 ('IsMemRef', 'IsLoad', 'IsStore'), 4),
126 'NPC': NPCOperandTraits('uq', None, ( None, None, 'IsControl' ), 4),
127 'Runiq': ControlRegOperandTraits('uq', 'Uniq', None, 1),
128 'FPCR': ControlRegOperandTraits('uq', 'Fpcr', None, 1),
129 # The next two are hacks for non-full-system call-pal emulation
130 'R0': IntRegOperandTraits('uq', '0', None, 1),
131 'R16': IntRegOperandTraits('uq', '16', None, 1),
132 }
133
134 defineDerivedOperandVars()
135 }};
136
137 declare {{
138 // just temporary, while comparing with old code for debugging
139 // #define SS_COMPATIBLE_DISASSEMBLY
140
141 /// Check "FP enabled" machine status bit. Called when executing any FP
142 /// instruction in full-system mode.
143 /// @retval Full-system mode: No_Fault if FP is enabled, Fen_Fault
144 /// if not. Non-full-system mode: always returns No_Fault.
145 #ifdef FULL_SYSTEM
146 inline Fault checkFpEnableFault(ExecContext *xc)
147 {
148 Fault fault = No_Fault; // dummy... this ipr access should not fault
149 if (!ICSR_FPE(xc->readIpr(AlphaISA::IPR_ICSR, fault))) {
150 fault = Fen_Fault;
151 }
152 return fault;
153 }
154 #else
155 inline Fault checkFpEnableFault(ExecContext *xc)
156 {
157 return No_Fault;
158 }
159 #endif
160
161 /**
162 * Base class for all Alpha static instructions.
163 */
164 class AlphaStaticInst : public StaticInst<AlphaISA>
165 {
166 protected:
167
168 /// Make AlphaISA register dependence tags directly visible in
169 /// this class and derived classes. Maybe these should really
170 /// live here and not in the AlphaISA namespace.
171 enum DependenceTags {
172 FP_Base_DepTag = AlphaISA::FP_Base_DepTag,
173 Fpcr_DepTag = AlphaISA::Fpcr_DepTag,
174 Uniq_DepTag = AlphaISA::Uniq_DepTag,
175 IPR_Base_DepTag = AlphaISA::IPR_Base_DepTag
176 };
177
178 /// Constructor.
179 AlphaStaticInst(const char *mnem, MachInst _machInst,
180 OpClass __opClass)
181 : StaticInst<AlphaISA>(mnem, _machInst, __opClass)
182 {
183 }
184
185 /// Print a register name for disassembly given the unique
186 /// dependence tag number (FP or int).
187 void printReg(std::ostream &os, int reg)
188 {
189 if (reg < FP_Base_DepTag) {
190 ccprintf(os, "r%d", reg);
191 }
192 else {
193 ccprintf(os, "f%d", reg - FP_Base_DepTag);
194 }
195 }
196
197 std::string generateDisassembly(Addr pc, const SymbolTable *symtab)
198 {
199 std::stringstream ss;
200
201 ccprintf(ss, "%-10s ", mnemonic);
202
203 // just print the first two source regs... if there's
204 // a third one, it's a read-modify-write dest (Rc),
205 // e.g. for CMOVxx
206 if (_numSrcRegs > 0) {
207 printReg(ss, _srcRegIdx[0]);
208 }
209 if (_numSrcRegs > 1) {
210 ss << ",";
211 printReg(ss, _srcRegIdx[1]);
212 }
213
214 // just print the first dest... if there's a second one,
215 // it's generally implicit
216 if (_numDestRegs > 0) {
217 if (_numSrcRegs > 0)
218 ss << ",";
219 printReg(ss, _destRegIdx[0]);
220 }
221
222 return ss.str();
223 }
224 };
225 }};
226
227
228 def template BasicDeclare {{
229 /**
230 * Static instruction class for "%(mnemonic)s".
231 */
232 class %(class_name)s : public %(base_class)s
233 {
234 public:
235 /// Constructor.
236 %(class_name)s(MachInst machInst)
237 : %(base_class)s("%(mnemonic)s", machInst, %(op_class)s)
238 {
239 %(constructor)s;
240 }
241
242 Fault execute(SimpleCPU *cpu, ExecContext *xc,
243 Trace::InstRecord *traceData)
244 {
245 SimpleCPU *memAccessObj __attribute__((unused)) = cpu;
246 Fault fault = No_Fault;
247
248 %(fp_enable_check)s;
249 %(exec_decl)s;
250 %(simple_rd)s;
251 %(code)s;
252
253 if (fault == No_Fault) {
254 %(simple_wb)s;
255 }
256
257 return fault;
258 }
259
260 Fault execute(FullCPU *cpu, SpecExecContext *xc, DynInst *dynInst,
261 Trace::InstRecord *traceData)
262 {
263 DynInst *memAccessObj __attribute__((unused)) = dynInst;
264 Fault fault = No_Fault;
265
266 %(fp_enable_check)s;
267 %(exec_decl)s;
268 %(dtld_rd)s;
269 %(code)s;
270
271 if (fault == No_Fault) {
272 %(dtld_wb)s;
273 }
274
275 return fault;
276 }
277 };
278 }};
279
280 def template BasicDecode {{
281 return new %(class_name)s(machInst);
282 }};
283
284 def template BasicDecodeWithMnemonic {{
285 return new %(class_name)s("%(mnemonic)s", machInst);
286 }};
287
288 // The most basic instruction format... used only for a few misc. insts
289 def format BasicOperate(code, *flags) {{
290 iop = InstObjParams(name, Name, 'AlphaStaticInst', CodeBlock(code), flags)
291 return iop.subst('BasicDeclare', 'BasicDecode')
292 }};
293
294
295
296 ////////////////////////////////////////////////////////////////////
297
298 declare {{
299 /**
300 * Static instruction class for no-ops. This is a leaf class.
301 */
302 class Nop : public AlphaStaticInst
303 {
304 /// Disassembly of original instruction.
305 const std::string originalDisassembly;
306
307 public:
308 /// Constructor
309 Nop(const std::string _originalDisassembly, MachInst _machInst)
310 : AlphaStaticInst("nop", _machInst, No_OpClass),
311 originalDisassembly(_originalDisassembly)
312 {
313 flags[IsNop] = true;
314 }
315
316 ~Nop() { }
317
318 Fault execute(SimpleCPU *cpu, ExecContext *xc,
319 Trace::InstRecord *traceData)
320 {
321 return No_Fault;
322 }
323
324 Fault execute(FullCPU *cpu, SpecExecContext *xc, DynInst *dynInst,
325 Trace::InstRecord *traceData)
326 {
327 return No_Fault;
328 }
329
330 std::string generateDisassembly(Addr pc, const SymbolTable *symtab)
331 {
332 #ifdef SS_COMPATIBLE_DISASSEMBLY
333 return originalDisassembly;
334 #else
335 return csprintf("%-10s (%s)", "nop", originalDisassembly);
336 #endif
337 }
338 };
339
340 /// Helper function for decoding nops. Substitute Nop object
341 /// for original inst passed in as arg (and delete latter).
342 inline
343 AlphaStaticInst *
344 makeNop(AlphaStaticInst *inst)
345 {
346 AlphaStaticInst *nop = new Nop(inst->disassemble(0), inst->machInst);
347 delete inst;
348 return nop;
349 }
350 }};
351
352 def format Nop() {{
353 return ('', 'return new Nop("%s", machInst);\n' % name)
354 }};
355
356
357 // integer & FP operate instructions use Rc as dest, so check for
358 // Rc == 31 to detect nops
359 def template OperateNopCheckDecode {{
360 {
361 AlphaStaticInst *i = new %(class_name)s(machInst);
362 if (RC == 31) {
363 i = makeNop(i);
364 }
365 return i;
366 }
367 }};
368
369 // Like BasicOperate format, but generates NOP if RC/FC == 31
370 def format BasicOperateWithNopCheck(code, *opt_args) {{
371 iop = InstObjParams(name, Name, 'AlphaStaticInst', CodeBlock(code),
372 opt_args)
373 return iop.subst('BasicDeclare', 'OperateNopCheckDecode')
374 }};
375
376
377 ////////////////////////////////////////////////////////////////////
378 //
379 // Integer operate instructions
380 //
381
382 declare {{
383 /**
384 * Base class for integer immediate instructions.
385 */
386 class IntegerImm : public AlphaStaticInst
387 {
388 protected:
389 /// Immediate operand value (unsigned 8-bit int).
390 uint8_t imm;
391
392 /// Constructor
393 IntegerImm(const char *mnem, MachInst _machInst, OpClass __opClass)
394 : AlphaStaticInst(mnem, _machInst, __opClass), imm(INTIMM)
395 {
396 }
397
398 std::string generateDisassembly(Addr pc, const SymbolTable *symtab)
399 {
400 std::stringstream ss;
401
402 ccprintf(ss, "%-10s ", mnemonic);
403
404 // just print the first source reg... if there's
405 // a second one, it's a read-modify-write dest (Rc),
406 // e.g. for CMOVxx
407 if (_numSrcRegs > 0) {
408 printReg(ss, _srcRegIdx[0]);
409 ss << ",";
410 }
411
412 ss << (int)imm;
413
414 if (_numDestRegs > 0) {
415 ss << ",";
416 printReg(ss, _destRegIdx[0]);
417 }
418
419 return ss.str();
420 }
421 };
422 }};
423
424 def template RegOrImmDecode {{
425 {
426 AlphaStaticInst *i =
427 (IMM) ? (AlphaStaticInst *)new %(class_name)sImm(machInst)
428 : (AlphaStaticInst *)new %(class_name)s(machInst);
429 if (RC == 31) {
430 i = makeNop(i);
431 }
432 return i;
433 }
434 }};
435
436 // Primary format for integer operate instructions:
437 // - Generates both reg-reg and reg-imm versions if Rb_or_imm is used.
438 // - Generates NOP if RC == 31.
439 def format IntegerOperate(code, *opt_flags) {{
440 # If the code block contains 'Rb_or_imm', we define two instructions,
441 # one using 'Rb' and one using 'imm', and have the decoder select
442 # the right one.
443 uses_imm = (code.find('Rb_or_imm') != -1)
444 if uses_imm:
445 orig_code = code
446 # base code is reg version:
447 # rewrite by substituting 'Rb' for 'Rb_or_imm'
448 code = re.sub(r'Rb_or_imm', 'Rb', orig_code)
449 # generate immediate version by substituting 'imm'
450 # note that imm takes no extenstion, so we extend
451 # the regexp to replace any extension as well
452 imm_code = re.sub(r'Rb_or_imm(\.\w+)?', 'imm', orig_code)
453
454 # generate declaration for register version
455 cblk = CodeBlock(code)
456 iop = InstObjParams(name, Name, 'AlphaStaticInst', cblk, opt_flags)
457 decls = iop.subst('BasicDeclare')
458
459 if uses_imm:
460 # append declaration for imm version
461 imm_cblk = CodeBlock(imm_code)
462 imm_iop = InstObjParams(name, Name + 'Imm', 'IntegerImm', imm_cblk,
463 opt_flags)
464 decls += imm_iop.subst('BasicDeclare')
465 # decode checks IMM bit to pick correct version
466 decode = iop.subst('RegOrImmDecode')
467 else:
468 # no imm version: just check for nop
469 decode = iop.subst('OperateNopCheckDecode')
470
471 return (decls, decode)
472 }};
473
474
475 ////////////////////////////////////////////////////////////////////
476 //
477 // Floating-point instructions
478 //
479 // Note that many FP-type instructions which do not support all the
480 // various rounding & trapping modes use the simpler format
481 // BasicOperateWithNopCheck.
482 //
483
484 declare {{
485 /**
486 * Base class for general floating-point instructions. Includes
487 * support for various Alpha rounding and trapping modes. Only FP
488 * instructions that require this support are derived from this
489 * class; the rest derive directly from AlphaStaticInst.
490 */
491 class AlphaFP : public AlphaStaticInst
492 {
493 public:
494 /// Alpha FP rounding modes.
495 enum RoundingMode {
496 Chopped = 0, ///< round toward zero
497 Minus_Infinity = 1, ///< round toward minus infinity
498 Normal = 2, ///< round to nearest (default)
499 Dynamic = 3, ///< use FPCR setting (in instruction)
500 Plus_Infinity = 3 ///< round to plus inifinity (in FPCR)
501 };
502
503 /// Alpha FP trapping modes.
504 /// For instructions that produce integer results, the
505 /// "Underflow Enable" modes really mean "Overflow Enable", and
506 /// the assembly modifier is V rather than U.
507 enum TrappingMode {
508 /// default: nothing enabled
509 Imprecise = 0, ///< no modifier
510 /// underflow/overflow traps enabled, inexact disabled
511 Underflow_Imprecise = 1, ///< /U or /V
512 Underflow_Precise = 5, ///< /SU or /SV
513 /// underflow/overflow and inexact traps enabled
514 Underflow_Inexact_Precise = 7 ///< /SUI or /SVI
515 };
516
517 protected:
518 #if defined(linux)
519 static const int alphaToC99RoundingMode[];
520 #endif
521
522 /// Map enum RoundingMode values to disassembly suffixes.
523 static const char *roundingModeSuffix[];
524 /// Map enum TrappingMode values to FP disassembly suffixes.
525 static const char *fpTrappingModeSuffix[];
526 /// Map enum TrappingMode values to integer disassembly suffixes.
527 static const char *intTrappingModeSuffix[];
528
529 /// This instruction's rounding mode.
530 RoundingMode roundingMode;
531 /// This instruction's trapping mode.
532 TrappingMode trappingMode;
533
534 /// Constructor
535 AlphaFP(const char *mnem, MachInst _machInst, OpClass __opClass)
536 : AlphaStaticInst(mnem, _machInst, __opClass),
537 roundingMode((enum RoundingMode)FP_ROUNDMODE),
538 trappingMode((enum TrappingMode)FP_TRAPMODE)
539 {
540 if (trappingMode != Imprecise) {
541 warn("precise FP traps unimplemented\n");
542 }
543 }
544
545 #if defined(linux)
546 int
547 getC99RoundingMode(ExecContext *xc)
548 {
549 if (roundingMode == Dynamic) {
550 return alphaToC99RoundingMode[bits(xc->readFpcr(), 59, 58)];
551 }
552 else {
553 return alphaToC99RoundingMode[roundingMode];
554 }
555 }
556 #endif
557
558 // This differs from the AlphaStaticInst version only in
559 // printing suffixes for non-default rounding & trapping modes.
560 std::string generateDisassembly(Addr pc, const SymbolTable *symtab)
561 {
562 std::string mnem_str(mnemonic);
563
564 #ifndef SS_COMPATIBLE_DISASSEMBLY
565 std::string suffix("");
566 suffix += ((_destRegIdx[0] >= FP_Base_DepTag)
567 ? fpTrappingModeSuffix[trappingMode]
568 : intTrappingModeSuffix[trappingMode]);
569 suffix += roundingModeSuffix[roundingMode];
570
571 if (suffix != "") {
572 mnem_str = csprintf("%s/%s", mnemonic, suffix);
573 }
574 #endif
575
576 std::stringstream ss;
577 ccprintf(ss, "%-10s ", mnem_str.c_str());
578
579 // just print the first two source regs... if there's
580 // a third one, it's a read-modify-write dest (Rc),
581 // e.g. for CMOVxx
582 if (_numSrcRegs > 0) {
583 printReg(ss, _srcRegIdx[0]);
584 }
585 if (_numSrcRegs > 1) {
586 ss << ",";
587 printReg(ss, _srcRegIdx[1]);
588 }
589
590 // just print the first dest... if there's a second one,
591 // it's generally implicit
592 if (_numDestRegs > 0) {
593 if (_numSrcRegs > 0)
594 ss << ",";
595 printReg(ss, _destRegIdx[0]);
596 }
597
598 return ss.str();
599 }
600 };
601
602 #if defined(linux)
603 const int AlphaFP::alphaToC99RoundingMode[] = {
604 FE_TOWARDZERO, // Chopped
605 FE_DOWNWARD, // Minus_Infinity
606 FE_TONEAREST, // Normal
607 FE_UPWARD // Dynamic in inst, Plus_Infinity in FPCR
608 };
609 #endif
610
611 const char *AlphaFP::roundingModeSuffix[] = { "c", "m", "", "d" };
612 // mark invalid trapping modes, but don't fail on them, because
613 // you could decode anything on a misspeculated path
614 const char *AlphaFP::fpTrappingModeSuffix[] =
615 { "", "u", "INVTM2", "INVTM3", "INVTM4", "su", "INVTM6", "sui" };
616 const char *AlphaFP::intTrappingModeSuffix[] =
617 { "", "v", "INVTM2", "INVTM3", "INVTM4", "sv", "INVTM6", "svi" };
618 }};
619
620
621 def template FloatingPointDeclare {{
622 /**
623 * "Fast" static instruction class for "%(mnemonic)s" (imprecise
624 * trapping mode, normal rounding mode).
625 */
626 class %(class_name)sFast : public %(base_class)s
627 {
628 public:
629 /// Constructor.
630 %(class_name)sFast(MachInst machInst)
631 : %(base_class)s("%(mnemonic)s", machInst, %(op_class)s)
632 {
633 %(constructor)s;
634 }
635
636 Fault execute(SimpleCPU *cpu, ExecContext *xc,
637 Trace::InstRecord *traceData)
638 {
639 Fault fault = No_Fault;
640
641 %(fp_enable_check)s;
642 %(exec_decl)s;
643 %(simple_rd)s;
644 %(code)s;
645
646 if (fault == No_Fault) {
647 %(simple_wb)s;
648 }
649
650 return fault;
651 }
652
653 Fault execute(FullCPU *cpu, SpecExecContext *xc, DynInst *dynInst,
654 Trace::InstRecord *traceData)
655 {
656 Fault fault = No_Fault;
657
658 %(fp_enable_check)s;
659 %(exec_decl)s;
660 %(dtld_rd)s;
661 %(code)s;
662
663 if (fault == No_Fault) {
664 %(dtld_wb)s;
665 }
666
667 return fault;
668 }
669 };
670
671 /**
672 * General static instruction class for "%(mnemonic)s". Supports
673 * all the various rounding and trapping modes.
674 */
675 class %(class_name)sGeneral : public %(base_class)s
676 {
677 public:
678 /// Constructor.
679 %(class_name)sGeneral(MachInst machInst)
680 : %(base_class)s("%(mnemonic)s", machInst, %(op_class)s)
681 {
682 %(constructor)s;
683 }
684
685 Fault execute(SimpleCPU *cpu, ExecContext *xc,
686 Trace::InstRecord *traceData)
687 {
688 Fault fault = No_Fault;
689
690 %(fp_enable_check)s;
691 %(exec_decl)s;
692 %(simple_rd)s;
693
694 #if defined(linux)
695 fesetround(getC99RoundingMode(xc));
696 #endif
697
698 %(code)s;
699
700 #if defined(linux)
701 fesetround(FE_TONEAREST);
702 #endif
703
704 if (fault == No_Fault) {
705 %(simple_wb)s;
706 }
707
708 return fault;
709 }
710
711 Fault execute(FullCPU *cpu, SpecExecContext *xc, DynInst *dynInst,
712 Trace::InstRecord *traceData)
713 {
714 Fault fault = No_Fault;
715
716 %(fp_enable_check)s;
717 %(exec_decl)s;
718 %(dtld_rd)s;
719
720 #if defined(linux)
721 fesetround(getC99RoundingMode(xc));
722 #endif
723
724 %(code)s;
725
726 #if defined(linux)
727 fesetround(FE_TONEAREST);
728 #endif
729
730 if (fault == No_Fault) {
731 %(dtld_wb)s;
732 }
733
734 return fault;
735 }
736 };
737 }};
738
739 def template FloatingPointDecode {{
740 {
741 bool fast = (FP_TRAPMODE == AlphaFP::Imprecise
742 && FP_ROUNDMODE == AlphaFP::Normal);
743 AlphaStaticInst *i =
744 fast ? (AlphaStaticInst *)new %(class_name)sFast(machInst) :
745 (AlphaStaticInst *)new %(class_name)sGeneral(machInst);
746
747 if (FC == 31) {
748 i = makeNop(i);
749 }
750
751 return i;
752 }
753 }};
754
755
756 // General format for floating-point operate instructions:
757 // - Checks trapping and rounding mode flags. Trapping modes
758 // currently unimplemented (will fail).
759 // - Generates NOP if FC == 31.
760 def format FloatingPointOperate(code, *opt_args) {{
761 iop = InstObjParams(name, Name, 'AlphaFP', CodeBlock(code),
762 opt_args)
763 return iop.subst('FloatingPointDeclare', 'FloatingPointDecode')
764 }};
765
766
767 ////////////////////////////////////////////////////////////////////
768 //
769 // Memory-format instructions: LoadAddress, Load, Store
770 //
771
772 declare {{
773 /**
774 * Base class for general Alpha memory-format instructions.
775 */
776 class Memory : public AlphaStaticInst
777 {
778 protected:
779
780 /// Displacement for EA calculation (signed).
781 int32_t disp;
782 /// Memory request flags. See mem_req_base.hh.
783 unsigned memAccessFlags;
784
785 /// Constructor
786 Memory(const char *mnem, MachInst _machInst, OpClass __opClass)
787 : AlphaStaticInst(mnem, _machInst, __opClass),
788 disp(MEMDISP), memAccessFlags(0)
789 {
790 }
791
792 std::string generateDisassembly(Addr pc, const SymbolTable *symtab)
793 {
794 return csprintf("%-10s %c%d,%d(r%d)", mnemonic,
795 flags[IsFloating] ? 'f' : 'r', RA, MEMDISP, RB);
796 }
797 };
798
799 /**
800 * Base class for a few miscellaneous memory-format insts
801 * that don't interpret the disp field: wh64, fetch, fetch_m, ecb.
802 * None of these instructions has a destination register either.
803 */
804 class MemoryNoDisp : public AlphaStaticInst
805 {
806 protected:
807 /// Memory request flags. See mem_req_base.hh.
808 unsigned memAccessFlags;
809
810 /// Constructor
811 MemoryNoDisp(const char *mnem, MachInst _machInst, OpClass __opClass)
812 : AlphaStaticInst(mnem, _machInst, __opClass),
813 memAccessFlags(0)
814 {
815 }
816
817 std::string generateDisassembly(Addr pc, const SymbolTable *symtab)
818 {
819 return csprintf("%-10s (r%d)", mnemonic, RB);
820 }
821 };
822
823 /**
824 * Base class for "fake" effective-address computation
825 * instructions returnded by eaCompInst().
826 */
827 class EACompBase : public AlphaStaticInst
828 {
829 public:
830 /// Constructor
831 EACompBase(MachInst machInst)
832 : AlphaStaticInst("(eacomp)", machInst, IntALU)
833 {
834 }
835
836 Fault execute(SimpleCPU *cpu, ExecContext *xc,
837 Trace::InstRecord *traceData)
838 { panic("attempt to execute eacomp"); }
839
840 Fault execute(FullCPU *cpu, SpecExecContext *xc, DynInst *dynInst,
841 Trace::InstRecord *traceData)
842 { panic("attempt to execute eacomp"); }
843 };
844
845 /**
846 * Base class for "fake" memory-access instructions returnded by
847 * memAccInst().
848 */
849 class MemAccBase : public AlphaStaticInst
850 {
851 public:
852 /// Constructor
853 MemAccBase(MachInst machInst, OpClass __opClass)
854 : AlphaStaticInst("(memacc)", machInst, __opClass)
855 {
856 }
857
858 Fault execute(SimpleCPU *cpu, ExecContext *xc,
859 Trace::InstRecord *traceData)
860 { panic("attempt to execute memacc"); }
861
862 Fault execute(FullCPU *cpu, SpecExecContext *xc, DynInst *dynInst,
863 Trace::InstRecord *traceData)
864 { panic("attempt to execute memacc"); }
865 };
866
867 }};
868
869
870 def format LoadAddress(code) {{
871 iop = InstObjParams(name, Name, 'Memory', CodeBlock(code))
872 return iop.subst('BasicDeclare', 'BasicDecode')
873 }};
874
875
876 def template LoadStoreDeclare {{
877 /**
878 * Static instruction class for "%(mnemonic)s".
879 */
880 class %(class_name)s : public %(base_class)s
881 {
882 protected:
883
884 /**
885 * "Fake" effective address computation class for "%(mnemonic)s".
886 */
887 class EAComp : public EACompBase
888 {
889 public:
890 /// Constructor
891 EAComp(MachInst machInst)
892 : EACompBase(machInst)
893 {
894 %(ea_constructor)s;
895 }
896 };
897
898 /**
899 * "Fake" memory access instruction class for "%(mnemonic)s".
900 */
901 class MemAcc : public MemAccBase
902 {
903 public:
904 /// Constructor
905 MemAcc(MachInst machInst)
906 : MemAccBase(machInst, %(op_class)s)
907 {
908 %(memacc_constructor)s;
909 }
910 };
911
912 /// Pointer to EAComp object.
913 StaticInstPtr<AlphaISA> eaCompPtr;
914 /// Pointer to MemAcc object.
915 StaticInstPtr<AlphaISA> memAccPtr;
916
917 public:
918
919 StaticInstPtr<AlphaISA> eaCompInst() { return eaCompPtr; }
920 StaticInstPtr<AlphaISA> memAccInst() { return memAccPtr; }
921
922 /// Constructor.
923 %(class_name)s(MachInst machInst)
924 : %(base_class)s("%(mnemonic)s", machInst, %(op_class)s),
925 eaCompPtr(new EAComp(machInst)), memAccPtr(new MemAcc(machInst))
926 {
927 %(constructor)s;
928 }
929
930 Fault execute(SimpleCPU *cpu, ExecContext *xc,
931 Trace::InstRecord *traceData)
932 {
933 SimpleCPU *memAccessObj = cpu;
934 Addr EA;
935 Fault fault = No_Fault;
936
937 %(fp_enable_check)s;
938 %(exec_decl)s;
939 %(simple_nonmem_rd)s;
940 %(ea_code)s;
941
942 if (fault == No_Fault) {
943 %(simple_mem_rd)s;
944 %(memacc_code)s;
945 }
946
947 if (fault == No_Fault) {
948 %(simple_mem_wb)s;
949 }
950
951 if (fault == No_Fault) {
952 %(postacc_code)s;
953 }
954
955 if (fault == No_Fault) {
956 %(simple_nonmem_wb)s;
957 }
958
959 return fault;
960 }
961
962 Fault execute(FullCPU *cpu, SpecExecContext *xc, DynInst *dynInst,
963 Trace::InstRecord *traceData)
964 {
965 DynInst *memAccessObj = dynInst;
966 Addr EA;
967 Fault fault = No_Fault;
968
969 %(fp_enable_check)s;
970 %(exec_decl)s;
971 %(dtld_nonmem_rd)s;
972 %(ea_code)s;
973
974 if (fault == No_Fault) {
975 %(dtld_mem_rd)s;
976 %(memacc_code)s;
977 }
978
979 if (fault == No_Fault) {
980 %(dtld_mem_wb)s;
981 }
982
983 if (fault == No_Fault) {
984 %(postacc_code)s;
985 }
986
987 if (fault == No_Fault) {
988 %(dtld_nonmem_wb)s;
989 }
990
991 return fault;
992 }
993 };
994 }};
995
996
997 def template PrefetchDeclare {{
998 /**
999 * Static instruction class for "%(mnemonic)s".
1000 */
1001 class %(class_name)s : public %(base_class)s
1002 {
1003 public:
1004 /// Constructor
1005 %(class_name)s(MachInst machInst)
1006 : %(base_class)s("%(mnemonic)s", machInst, %(op_class)s)
1007 {
1008 %(constructor)s;
1009 }
1010
1011 Fault execute(SimpleCPU *cpu, ExecContext *xc,
1012 Trace::InstRecord *traceData)
1013 {
1014 Addr EA;
1015 Fault fault = No_Fault;
1016
1017 %(fp_enable_check)s;
1018 %(exec_decl)s;
1019 %(simple_nonmem_rd)s;
1020 %(ea_code)s;
1021
1022 if (fault == No_Fault) {
1023 cpu->prefetch(EA, memAccessFlags);
1024 }
1025
1026 return No_Fault;
1027 }
1028
1029 Fault execute(FullCPU *cpu, SpecExecContext *xc, DynInst *dynInst,
1030 Trace::InstRecord *traceData)
1031 {
1032 Addr EA;
1033 Fault fault = No_Fault;
1034
1035 %(fp_enable_check)s;
1036 %(exec_decl)s;
1037 %(dtld_nonmem_rd)s;
1038 %(ea_code)s;
1039
1040 if (fault == No_Fault) {
1041 dynInst->prefetch(EA, memAccessFlags);
1042 }
1043
1044 return No_Fault;
1045 }
1046 };
1047 }};
1048
1049
1050 // load instructions use Ra as dest, so check for
1051 // Ra == 31 to detect nops
1052 def template LoadNopCheckDecode {{
1053 {
1054 AlphaStaticInst *i = new %(class_name)s(machInst);
1055 if (RA == 31) {
1056 i = makeNop(i);
1057 }
1058 return i;
1059 }
1060 }};
1061
1062
1063 // for some load instructions, Ra == 31 indicates a prefetch (not a nop)
1064 def template LoadPrefetchCheckDecode {{
1065 {
1066 if (RA != 31) {
1067 return new %(class_name)s(machInst);
1068 }
1069 else {
1070 return new %(class_name)sPrefetch(machInst);
1071 }
1072 }
1073 }};
1074
1075
1076 let {{
1077 global LoadStoreBase
1078 def LoadStoreBase(name, Name, ea_code, memacc_code, postacc_code = '',
1079 base_class = 'Memory', flags = [],
1080 declare_template = 'LoadStoreDeclare',
1081 decode_template = 'BasicDecode'):
1082 # Segregate flags into instruction flags (handled by InstObjParams)
1083 # and memory access flags (handled here).
1084
1085 # Would be nice to autogenerate this list, but oh well.
1086 valid_mem_flags = ['LOCKED', 'EVICT_NEXT', 'PF_EXCLUSIVE']
1087 inst_flags = []
1088 mem_flags = []
1089 for f in flags:
1090 if f in valid_mem_flags:
1091 mem_flags.append(f)
1092 else:
1093 inst_flags.append(f)
1094
1095 ea_cblk = CodeBlock(ea_code)
1096 memacc_cblk = CodeBlock(memacc_code)
1097 postacc_cblk = CodeBlock(postacc_code)
1098
1099 cblk = CodeBlock(ea_code + memacc_code + postacc_code)
1100 iop = InstObjParams(name, Name, base_class, cblk, inst_flags)
1101
1102 iop.ea_constructor = ea_cblk.constructor
1103 iop.ea_code = ea_cblk.code
1104 iop.memacc_constructor = memacc_cblk.constructor
1105 iop.memacc_code = memacc_cblk.code
1106 iop.postacc_code = postacc_cblk.code
1107
1108 mem_flags = string.join(mem_flags, '|')
1109 if mem_flags != '':
1110 iop.constructor += '\n\tmemAccessFlags = ' + mem_flags + ';'
1111
1112 return iop.subst(declare_template, decode_template)
1113 }};
1114
1115
1116 def format LoadOrNop(ea_code, memacc_code, *flags) {{
1117 return LoadStoreBase(name, Name, ea_code, memacc_code,
1118 flags = flags,
1119 decode_template = 'LoadNopCheckDecode')
1120 }};
1121
1122
1123 // Note that the flags passed in apply only to the prefetch version
1124 def format LoadOrPrefetch(ea_code, memacc_code, *pf_flags) {{
1125 # declare the load instruction object and generate the decode block
1126 (decls, decode) = \
1127 LoadStoreBase(name, Name, ea_code, memacc_code,
1128 decode_template = 'LoadPrefetchCheckDecode')
1129
1130 # Declare the prefetch instruction object.
1131
1132 # convert flags from tuple to list to make them mutable
1133 pf_flags = list(pf_flags) + ['IsMemRef', 'IsLoad', 'IsDataPrefetch', 'RdPort']
1134
1135 (pfdecls, pfdecode) = \
1136 LoadStoreBase(name, Name + 'Prefetch', ea_code, '',
1137 flags = pf_flags,
1138 declare_template = 'PrefetchDeclare')
1139
1140 return (decls + pfdecls, decode)
1141 }};
1142
1143
1144 def format Store(ea_code, memacc_code, *flags) {{
1145 return LoadStoreBase(name, Name, ea_code, memacc_code,
1146 flags = flags)
1147 }};
1148
1149
1150 def format StoreCond(ea_code, memacc_code, postacc_code, *flags) {{
1151 return LoadStoreBase(name, Name, ea_code, memacc_code, postacc_code,
1152 flags = flags)
1153 }};
1154
1155
1156 // Use 'MemoryNoDisp' as base: for wh64, fetch, ecb
1157 def format MiscPrefetch(ea_code, memacc_code, *flags) {{
1158 return LoadStoreBase(name, Name, ea_code, memacc_code,
1159 flags = flags, base_class = 'MemoryNoDisp')
1160 }};
1161
1162
1163 ////////////////////////////////////////////////////////////////////
1164
1165
1166 declare {{
1167
1168 /**
1169 * Base class for instructions whose disassembly is not purely a
1170 * function of the machine instruction (i.e., it depends on the
1171 * PC). This class overrides the disassemble() method to check
1172 * the PC and symbol table values before re-using a cached
1173 * disassembly string. This is necessary for branches and jumps,
1174 * where the disassembly string includes the target address (which
1175 * may depend on the PC and/or symbol table).
1176 */
1177 class PCDependentDisassembly : public AlphaStaticInst
1178 {
1179 protected:
1180 /// Cached program counter from last disassembly
1181 Addr cachedPC;
1182 /// Cached symbol table pointer from last disassembly
1183 const SymbolTable *cachedSymtab;
1184
1185 /// Constructor
1186 PCDependentDisassembly(const char *mnem, MachInst _machInst,
1187 OpClass __opClass)
1188 : AlphaStaticInst(mnem, _machInst, __opClass),
1189 cachedPC(0), cachedSymtab(0)
1190 {
1191 }
1192
1193 const std::string &disassemble(Addr pc, const SymbolTable *symtab)
1194 {
1195 if (!cachedDisassembly ||
1196 pc != cachedPC || symtab != cachedSymtab)
1197 {
1198 if (cachedDisassembly)
1199 delete cachedDisassembly;
1200
1201 cachedDisassembly =
1202 new std::string(generateDisassembly(pc, symtab));
1203 cachedPC = pc;
1204 cachedSymtab = symtab;
1205 }
1206
1207 return *cachedDisassembly;
1208 }
1209 };
1210
1211 /**
1212 * Base class for branches (PC-relative control transfers),
1213 * conditional or unconditional.
1214 */
1215 class Branch : public PCDependentDisassembly
1216 {
1217 protected:
1218 /// Displacement to target address (signed).
1219 int32_t disp;
1220
1221 /// Constructor.
1222 Branch(const char *mnem, MachInst _machInst, OpClass __opClass)
1223 : PCDependentDisassembly(mnem, _machInst, __opClass),
1224 disp(BRDISP << 2)
1225 {
1226 }
1227
1228 Addr branchTarget(Addr branchPC) const
1229 {
1230 return branchPC + 4 + disp;
1231 }
1232
1233 std::string generateDisassembly(Addr pc, const SymbolTable *symtab)
1234 {
1235 std::stringstream ss;
1236
1237 ccprintf(ss, "%-10s ", mnemonic);
1238
1239 // There's only one register arg (RA), but it could be
1240 // either a source (the condition for conditional
1241 // branches) or a destination (the link reg for
1242 // unconditional branches)
1243 if (_numSrcRegs > 0) {
1244 printReg(ss, _srcRegIdx[0]);
1245 ss << ",";
1246 }
1247 else if (_numDestRegs > 0) {
1248 printReg(ss, _destRegIdx[0]);
1249 ss << ",";
1250 }
1251
1252 #ifdef SS_COMPATIBLE_DISASSEMBLY
1253 if (_numSrcRegs == 0 && _numDestRegs == 0) {
1254 printReg(ss, 31);
1255 ss << ",";
1256 }
1257 #endif
1258
1259 Addr target = pc + 4 + disp;
1260
1261 std::string str;
1262 if (symtab && symtab->findSymbol(target, str))
1263 ss << str;
1264 else
1265 ccprintf(ss, "0x%x", target);
1266
1267 return ss.str();
1268 }
1269 };
1270
1271 /**
1272 * Base class for jumps (register-indirect control transfers). In
1273 * the Alpha ISA, these are always unconditional.
1274 */
1275 class Jump : public PCDependentDisassembly
1276 {
1277 protected:
1278
1279 /// Displacement to target address (signed).
1280 int32_t disp;
1281
1282 public:
1283 /// Constructor
1284 Jump(const char *mnem, MachInst _machInst, OpClass __opClass)
1285 : PCDependentDisassembly(mnem, _machInst, __opClass),
1286 disp(BRDISP)
1287 {
1288 }
1289
1290 Addr branchTarget(ExecContext *xc) const
1291 {
1292 Addr NPC = xc->readPC() + 4;
1293 uint64_t Rb = xc->readIntReg(_srcRegIdx[0]);
1294 return (Rb & ~3) | (NPC & 1);
1295 }
1296
1297 std::string generateDisassembly(Addr pc, const SymbolTable *symtab)
1298 {
1299 std::stringstream ss;
1300
1301 ccprintf(ss, "%-10s ", mnemonic);
1302
1303 #ifdef SS_COMPATIBLE_DISASSEMBLY
1304 if (_numDestRegs == 0) {
1305 printReg(ss, 31);
1306 ss << ",";
1307 }
1308 #endif
1309
1310 if (_numDestRegs > 0) {
1311 printReg(ss, _destRegIdx[0]);
1312 ss << ",";
1313 }
1314
1315 ccprintf(ss, "(r%d)", RB);
1316
1317 return ss.str();
1318 }
1319 };
1320 }};
1321
1322 def template JumpOrBranchDecode {{
1323 return (RA == 31)
1324 ? (StaticInst<AlphaISA> *)new %(class_name)s(machInst)
1325 : (StaticInst<AlphaISA> *)new %(class_name)sAndLink(machInst);
1326 }};
1327
1328 def format CondBranch(code) {{
1329 code = 'bool cond;\n' + code + '\nif (cond) NPC = NPC + disp;\n';
1330 iop = InstObjParams(name, Name, 'Branch', CodeBlock(code),
1331 ('IsDirectControl', 'IsCondControl'))
1332 return iop.subst('BasicDeclare', 'BasicDecode')
1333 }};
1334
1335 let {{
1336 global UncondCtrlBase
1337 def UncondCtrlBase(name, Name, base_class, npc_expr, flags):
1338 # Declare basic control transfer w/o link (i.e. link reg is R31)
1339 nolink_code = 'NPC = %s;\n' % npc_expr
1340 nolink_iop = InstObjParams(name, Name, base_class,
1341 CodeBlock(nolink_code), flags)
1342 decls = nolink_iop.subst('BasicDeclare')
1343
1344 # Generate declaration of '*AndLink' version, append to decls
1345 link_code = 'Ra = NPC & ~3;\n' + nolink_code
1346 link_iop = InstObjParams(name, Name + 'AndLink', base_class,
1347 CodeBlock(link_code), flags)
1348 decls += link_iop.subst('BasicDeclare')
1349
1350 # need to use link_iop for the decode template since it is expecting
1351 # the shorter version of class_name (w/o "AndLink")
1352 return (decls, nolink_iop.subst('JumpOrBranchDecode'))
1353 }};
1354
1355 def format UncondBranch(*flags) {{
1356 flags += ('IsUncondControl', 'IsDirectControl')
1357 return UncondCtrlBase(name, Name, 'Branch', 'NPC + disp', flags)
1358 }};
1359
1360 def format Jump(*flags) {{
1361 flags += ('IsUncondControl', 'IsIndirectControl')
1362 return UncondCtrlBase(name, Name, 'Jump', '(Rb & ~3) | (NPC & 1)', flags)
1363 }};
1364
1365
1366 declare {{
1367 /**
1368 * Base class for emulated call_pal calls (used only in
1369 * non-full-system mode).
1370 */
1371 class EmulatedCallPal : public AlphaStaticInst
1372 {
1373 protected:
1374
1375 /// Constructor.
1376 EmulatedCallPal(const char *mnem, MachInst _machInst,
1377 OpClass __opClass)
1378 : AlphaStaticInst(mnem, _machInst, __opClass)
1379 {
1380 }
1381
1382 std::string generateDisassembly(Addr pc, const SymbolTable *symtab)
1383 {
1384 #ifdef SS_COMPATIBLE_DISASSEMBLY
1385 return csprintf("%s %s", "call_pal", mnemonic);
1386 #else
1387 return csprintf("%-10s %s", "call_pal", mnemonic);
1388 #endif
1389 }
1390 };
1391 }};
1392
1393 def format EmulatedCallPal(code) {{
1394 iop = InstObjParams(name, Name, 'EmulatedCallPal', CodeBlock(code))
1395 return iop.subst('BasicDeclare', 'BasicDecode')
1396 }};
1397
1398 declare {{
1399 /**
1400 * Base class for full-system-mode call_pal instructions.
1401 * Probably could turn this into a leaf class and get rid of the
1402 * parser template.
1403 */
1404 class CallPalBase : public AlphaStaticInst
1405 {
1406 protected:
1407 int palFunc; ///< Function code part of instruction
1408 int palOffset; ///< Target PC, offset from IPR_PAL_BASE
1409 bool palValid; ///< is the function code valid?
1410 bool palPriv; ///< is this call privileged?
1411
1412 /// Constructor.
1413 CallPalBase(const char *mnem, MachInst _machInst,
1414 OpClass __opClass)
1415 : AlphaStaticInst(mnem, _machInst, __opClass),
1416 palFunc(PALFUNC)
1417 {
1418 // From the 21164 HRM (paraphrased):
1419 // Bit 7 of the function code (mask 0x80) indicates
1420 // whether the call is privileged (bit 7 == 0) or
1421 // unprivileged (bit 7 == 1). The privileged call table
1422 // starts at 0x2000, the unprivielged call table starts at
1423 // 0x3000. Bits 5-0 (mask 0x3f) are used to calculate the
1424 // offset.
1425 const int palPrivMask = 0x80;
1426 const int palOffsetMask = 0x3f;
1427
1428 // Pal call is invalid unless all other bits are 0
1429 palValid = ((machInst & ~(palPrivMask | palOffsetMask)) == 0);
1430 palPriv = ((machInst & palPrivMask) == 0);
1431 int shortPalFunc = (machInst & palOffsetMask);
1432 // Add 1 to base to set pal-mode bit
1433 palOffset = (palPriv ? 0x2001 : 0x3001) + (shortPalFunc << 6);
1434 }
1435
1436 std::string generateDisassembly(Addr pc, const SymbolTable *symtab)
1437 {
1438 return csprintf("%-10s %#x", "call_pal", palFunc);
1439 }
1440 };
1441 }};
1442
1443
1444 def format CallPal(code) {{
1445 iop = InstObjParams(name, Name, 'CallPalBase', CodeBlock(code))
1446 return iop.subst('BasicDeclare', 'BasicDecode')
1447 }};
1448
1449 //
1450 // hw_ld, hw_st
1451 //
1452 declare {{
1453 /**
1454 * Base class for hw_ld and hw_st.
1455 */
1456 class HwLoadStore : public AlphaStaticInst
1457 {
1458 protected:
1459
1460 /// Displacement for EA calculation (signed).
1461 int16_t disp;
1462 /// Memory request flags. See mem_req_base.hh.
1463 unsigned memAccessFlags;
1464
1465 /// Constructor
1466 HwLoadStore(const char *mnem, MachInst _machInst, OpClass __opClass)
1467 : AlphaStaticInst(mnem, _machInst, __opClass), disp(HW_LDST_DISP)
1468 {
1469 memAccessFlags = 0;
1470 if (HW_LDST_PHYS) memAccessFlags |= PHYSICAL;
1471 if (HW_LDST_ALT) memAccessFlags |= ALTMODE;
1472 if (HW_LDST_VPTE) memAccessFlags |= VPTE;
1473 if (HW_LDST_LOCK) memAccessFlags |= LOCKED;
1474 }
1475
1476 std::string generateDisassembly(Addr pc, const SymbolTable *symtab)
1477 {
1478 #ifdef SS_COMPATIBLE_DISASSEMBLY
1479 return csprintf("%-10s r%d,%d(r%d)", mnemonic, RA, disp, RB);
1480 #else
1481 // HW_LDST_LOCK and HW_LDST_COND are the same bit.
1482 const char *lock_str =
1483 (HW_LDST_LOCK) ? (flags[IsLoad] ? ",LOCK" : ",COND") : "";
1484
1485 return csprintf("%-10s r%d,%d(r%d)%s%s%s%s%s",
1486 mnemonic, RA, disp, RB,
1487 HW_LDST_PHYS ? ",PHYS" : "",
1488 HW_LDST_ALT ? ",ALT" : "",
1489 HW_LDST_QUAD ? ",QUAD" : "",
1490 HW_LDST_VPTE ? ",VPTE" : "",
1491 lock_str);
1492 #endif
1493 }
1494 };
1495 }};
1496
1497
1498 def format HwLoadStore(ea_code, memacc_code, class_ext, *flags) {{
1499 return LoadStoreBase(name, Name + class_ext, ea_code, memacc_code,
1500 flags = flags,
1501 base_class = 'HwLoadStore')
1502 }};
1503
1504
1505 def format HwStoreCond(ea_code, memacc_code, postacc_code, class_ext, *flags) {{
1506 return LoadStoreBase(name, Name + class_ext,
1507 ea_code, memacc_code, postacc_code,
1508 flags = flags,
1509 base_class = 'HwLoadStore')
1510 }};
1511
1512
1513 declare {{
1514 /**
1515 * Base class for hw_mfpr and hw_mtpr.
1516 */
1517 class HwMoveIPR : public AlphaStaticInst
1518 {
1519 protected:
1520 /// Index of internal processor register.
1521 int ipr_index;
1522
1523 /// Constructor
1524 HwMoveIPR(const char *mnem, MachInst _machInst, OpClass __opClass)
1525 : AlphaStaticInst(mnem, _machInst, __opClass),
1526 ipr_index(HW_IPR_IDX)
1527 {
1528 }
1529
1530 std::string generateDisassembly(Addr pc, const SymbolTable *symtab)
1531 {
1532 if (_numSrcRegs > 0) {
1533 // must be mtpr
1534 return csprintf("%-10s r%d,IPR(%#x)",
1535 mnemonic, RA, ipr_index);
1536 }
1537 else {
1538 // must be mfpr
1539 return csprintf("%-10s IPR(%#x),r%d",
1540 mnemonic, ipr_index, RA);
1541 }
1542 }
1543 };
1544 }};
1545
1546 def format HwMoveIPR(code) {{
1547 iop = InstObjParams(name, Name, 'HwMoveIPR', CodeBlock(code))
1548 return iop.subst('BasicDeclare', 'BasicDecode')
1549 }};
1550
1551 declare {{
1552 /**
1553 * Static instruction class for unimplemented instructions that
1554 * cause simulator termination. Note that these are recognized
1555 * (legal) instructions that the simulator does not support; the
1556 * 'Unknown' class is used for unrecognized/illegal instructions.
1557 * This is a leaf class.
1558 */
1559 class FailUnimplemented : public AlphaStaticInst
1560 {
1561 public:
1562 /// Constructor
1563 FailUnimplemented(const char *_mnemonic, MachInst _machInst)
1564 : AlphaStaticInst(_mnemonic, _machInst, No_OpClass)
1565 {
1566 }
1567
1568 Fault execute(SimpleCPU *cpu, ExecContext *xc,
1569 Trace::InstRecord *traceData)
1570 {
1571 panic("attempt to execute unimplemented instruction '%s' "
1572 "(inst 0x%08x, opcode 0x%x)", mnemonic, machInst, OPCODE);
1573 return Unimplemented_Opcode_Fault;
1574 }
1575
1576 Fault execute(FullCPU *cpu, SpecExecContext *xc, DynInst *dynInst,
1577 Trace::InstRecord *traceData)
1578 {
1579 // don't panic if this is a misspeculated instruction
1580 if (!xc->spec_mode)
1581 panic("attempt to execute unimplemented instruction '%s' "
1582 "(inst 0x%08x, opcode 0x%x)",
1583 mnemonic, machInst, OPCODE);
1584 return Unimplemented_Opcode_Fault;
1585 }
1586
1587 std::string generateDisassembly(Addr pc, const SymbolTable *symtab)
1588 {
1589 return csprintf("%-10s (unimplemented)", mnemonic);
1590 }
1591 };
1592
1593 /**
1594 * Base class for unimplemented instructions that cause a warning
1595 * to be printed (but do not terminate simulation). This
1596 * implementation is a little screwy in that it will print a
1597 * warning for each instance of a particular unimplemented machine
1598 * instruction, not just for each unimplemented opcode. Should
1599 * probably make the 'warned' flag a static member of the derived
1600 * class.
1601 */
1602 class WarnUnimplemented : public AlphaStaticInst
1603 {
1604 private:
1605 /// Have we warned on this instruction yet?
1606 bool warned;
1607
1608 public:
1609 /// Constructor
1610 WarnUnimplemented(const char *_mnemonic, MachInst _machInst)
1611 : AlphaStaticInst(_mnemonic, _machInst, No_OpClass), warned(false)
1612 {
1613 }
1614
1615 Fault execute(SimpleCPU *cpu, ExecContext *xc,
1616 Trace::InstRecord *traceData)
1617 {
1618 if (!warned) {
1619 warn("instruction '%s' unimplemented\n", mnemonic);
1620 warned = true;
1621 }
1622
1623 return No_Fault;
1624 }
1625
1626 Fault execute(FullCPU *cpu, SpecExecContext *xc, DynInst *dynInst,
1627 Trace::InstRecord *traceData)
1628 {
1629 if (!xc->spec_mode && !warned) {
1630 warn("instruction '%s' unimplemented\n", mnemonic);
1631 warned = true;
1632 }
1633
1634 return No_Fault;
1635 }
1636
1637 std::string generateDisassembly(Addr pc, const SymbolTable *symtab)
1638 {
1639 #ifdef SS_COMPATIBLE_DISASSEMBLY
1640 return csprintf("%-10s", mnemonic);
1641 #else
1642 return csprintf("%-10s (unimplemented)", mnemonic);
1643 #endif
1644 }
1645 };
1646 }};
1647
1648 def template WarnUnimplDeclare {{
1649 /**
1650 * Static instruction class for "%(mnemonic)s".
1651 */
1652 class %(class_name)s : public %(base_class)s
1653 {
1654 public:
1655 /// Constructor
1656 %(class_name)s(MachInst machInst)
1657 : %(base_class)s("%(mnemonic)s", machInst)
1658 {
1659 }
1660 };
1661 }};
1662
1663
1664 def format FailUnimpl() {{
1665 iop = InstObjParams(name, 'FailUnimplemented')
1666 return ('', iop.subst('BasicDecodeWithMnemonic'))
1667 }};
1668
1669 def format WarnUnimpl() {{
1670 iop = InstObjParams(name, Name, 'WarnUnimplemented')
1671 return iop.subst('WarnUnimplDeclare', 'BasicDecode')
1672 }};
1673
1674 declare {{
1675 /**
1676 * Static instruction class for unknown (illegal) instructions.
1677 * These cause simulator termination if they are executed in a
1678 * non-speculative mode. This is a leaf class.
1679 */
1680 class Unknown : public AlphaStaticInst
1681 {
1682 public:
1683 /// Constructor
1684 Unknown(MachInst _machInst)
1685 : AlphaStaticInst("unknown", _machInst, No_OpClass)
1686 {
1687 }
1688
1689 Fault execute(SimpleCPU *cpu, ExecContext *xc,
1690 Trace::InstRecord *traceData)
1691 {
1692 panic("attempt to execute unknown instruction "
1693 "(inst 0x%08x, opcode 0x%x)", machInst, OPCODE);
1694 return Unimplemented_Opcode_Fault;
1695 }
1696
1697 Fault execute(FullCPU *cpu, SpecExecContext *xc, DynInst *dynInst,
1698 Trace::InstRecord *traceData)
1699 {
1700 // don't panic if this is a misspeculated instruction
1701 if (!xc->spec_mode)
1702 panic("attempt to execute unknown instruction "
1703 "(inst 0x%08x, opcode 0x%x)", machInst, OPCODE);
1704 return Unimplemented_Opcode_Fault;
1705 }
1706
1707 std::string generateDisassembly(Addr pc, const SymbolTable *symtab)
1708 {
1709 return csprintf("%-10s (inst 0x%x, opcode 0x%x)",
1710 "unknown", machInst, OPCODE);
1711 }
1712 };
1713 }};
1714
1715 def format Unknown() {{
1716 return ('', 'return new Unknown(machInst);\n')
1717 }};
1718
1719 declare {{
1720
1721 /// Return opa + opb, summing carry into third arg.
1722 inline uint64_t
1723 addc(uint64_t opa, uint64_t opb, int &carry)
1724 {
1725 uint64_t res = opa + opb;
1726 if (res < opa || res < opb)
1727 ++carry;
1728 return res;
1729 }
1730
1731 /// Multiply two 64-bit values (opa * opb), returning the 128-bit
1732 /// product in res_hi and res_lo.
1733 void
1734 mul128(uint64_t opa, uint64_t opb, uint64_t &res_hi, uint64_t &res_lo)
1735 {
1736 // do a 64x64 --> 128 multiply using four 32x32 --> 64 multiplies
1737 uint64_t opa_hi = opa<63:32>;
1738 uint64_t opa_lo = opa<31:0>;
1739 uint64_t opb_hi = opb<63:32>;
1740 uint64_t opb_lo = opb<31:0>;
1741
1742 res_lo = opa_lo * opb_lo;
1743
1744 // The middle partial products logically belong in bit
1745 // positions 95 to 32. Thus the lower 32 bits of each product
1746 // sum into the upper 32 bits of the low result, while the
1747 // upper 32 sum into the low 32 bits of the upper result.
1748 uint64_t partial1 = opa_hi * opb_lo;
1749 uint64_t partial2 = opa_lo * opb_hi;
1750
1751 uint64_t partial1_lo = partial1<31:0> << 32;
1752 uint64_t partial1_hi = partial1<63:32>;
1753 uint64_t partial2_lo = partial2<31:0> << 32;
1754 uint64_t partial2_hi = partial2<63:32>;
1755
1756 // Add partial1_lo and partial2_lo to res_lo, keeping track
1757 // of any carries out
1758 int carry_out = 0;
1759 res_lo = addc(partial1_lo, res_lo, carry_out);
1760 res_lo = addc(partial2_lo, res_lo, carry_out);
1761
1762 // Now calculate the high 64 bits...
1763 res_hi = (opa_hi * opb_hi) + partial1_hi + partial2_hi + carry_out;
1764 }
1765
1766 /// Map 8-bit S-floating exponent to 11-bit T-floating exponent.
1767 /// See Table 2-2 of Alpha AHB.
1768 inline int
1769 map_s(int old_exp)
1770 {
1771 int hibit = old_exp<7:>;
1772 int lobits = old_exp<6:0>;
1773
1774 if (hibit == 1) {
1775 return (lobits == 0x7f) ? 0x7ff : (0x400 | lobits);
1776 }
1777 else {
1778 return (lobits == 0) ? 0 : (0x380 | lobits);
1779 }
1780 }
1781
1782 /// Convert a 32-bit S-floating value to the equivalent 64-bit
1783 /// representation to be stored in an FP reg.
1784 inline uint64_t
1785 s_to_t(uint32_t s_val)
1786 {
1787 uint64_t tmp = s_val;
1788 return (tmp<31:> << 63 // sign bit
1789 | (uint64_t)map_s(tmp<30:23>) << 52 // exponent
1790 | tmp<22:0> << 29); // fraction
1791 }
1792
1793 /// Convert a 64-bit T-floating value to the equivalent 32-bit
1794 /// S-floating representation to be stored in memory.
1795 inline int32_t
1796 t_to_s(uint64_t t_val)
1797 {
1798 return (t_val<63:62> << 30 // sign bit & hi exp bit
1799 | t_val<58:29>); // rest of exp & fraction
1800 }
1801 }};
1802
1803 decode OPCODE default Unknown::unknown() {
1804
1805 format LoadAddress {
1806 0x08: lda({{ Ra = Rb + disp; }});
1807 0x09: ldah({{ Ra = Rb + (disp << 16); }});
1808 }
1809
1810 format LoadOrNop {
1811 0x0a: ldbu({{ EA = Rb + disp; }}, {{ Ra.uq = Mem.ub; }});
1812 0x0c: ldwu({{ EA = Rb + disp; }}, {{ Ra.uq = Mem.uw; }});
1813 0x0b: ldq_u({{ EA = (Rb + disp) & ~7; }}, {{ Ra = Mem.uq; }});
1814 0x23: ldt({{ EA = Rb + disp; }}, {{ Fa = Mem.df; }});
1815 0x2a: ldl_l({{ EA = Rb + disp; }}, {{ Ra.sl = Mem.sl; }}, LOCKED);
1816 0x2b: ldq_l({{ EA = Rb + disp; }}, {{ Ra.uq = Mem.uq; }}, LOCKED);
1817 }
1818
1819 format LoadOrPrefetch {
1820 0x28: ldl({{ EA = Rb + disp; }}, {{ Ra.sl = Mem.sl; }});
1821 0x29: ldq({{ EA = Rb + disp; }}, {{ Ra.uq = Mem.uq; }}, EVICT_NEXT);
1822 // IsFloating flag on lds gets the prefetch to disassemble
1823 // using f31 instead of r31... funcitonally it's unnecessary
1824 0x22: lds({{ EA = Rb + disp; }}, {{ Fa.uq = s_to_t(Mem.ul); }},
1825 PF_EXCLUSIVE, IsFloating);
1826 }
1827
1828 format Store {
1829 0x0e: stb({{ EA = Rb + disp; }}, {{ Mem.ub = Ra<7:0>; }});
1830 0x0d: stw({{ EA = Rb + disp; }}, {{ Mem.uw = Ra<15:0>; }});
1831 0x2c: stl({{ EA = Rb + disp; }}, {{ Mem.ul = Ra<31:0>; }});
1832 0x2d: stq({{ EA = Rb + disp; }}, {{ Mem.uq = Ra.uq; }});
1833 0x0f: stq_u({{ EA = (Rb + disp) & ~7; }}, {{ Mem.uq = Ra.uq; }});
1834 0x26: sts({{ EA = Rb + disp; }}, {{ Mem.ul = t_to_s(Fa.uq); }});
1835 0x27: stt({{ EA = Rb + disp; }}, {{ Mem.df = Fa; }});
1836 }
1837
1838 format StoreCond {
1839 0x2e: stl_c({{ EA = Rb + disp; }}, {{ Mem.ul = Ra<31:0>; }},
1840 {{
1841 uint64_t tmp = Mem_write_result;
1842 // see stq_c
1843 Ra = (tmp == 0 || tmp == 1) ? tmp : Ra;
1844 }}, LOCKED);
1845 0x2f: stq_c({{ EA = Rb + disp; }}, {{ Mem.uq = Ra; }},
1846 {{
1847 uint64_t tmp = Mem_write_result;
1848 // If the write operation returns 0 or 1, then
1849 // this was a conventional store conditional,
1850 // and the value indicates the success/failure
1851 // of the operation. If another value is
1852 // returned, then this was a Turbolaser
1853 // mailbox access, and we don't update the
1854 // result register at all.
1855 Ra = (tmp == 0 || tmp == 1) ? tmp : Ra;
1856 }}, LOCKED);
1857 }
1858
1859 format IntegerOperate {
1860
1861 0x10: decode INTFUNC { // integer arithmetic operations
1862
1863 0x00: addl({{ Rc.sl = Ra.sl + Rb_or_imm.sl; }});
1864 0x40: addlv({{
1865 uint32_t tmp = Ra.sl + Rb_or_imm.sl;
1866 // signed overflow occurs when operands have same sign
1867 // and sign of result does not match.
1868 if (Ra.sl<31:> == Rb_or_imm.sl<31:> && tmp<31:> != Ra.sl<31:>)
1869 fault = Integer_Overflow_Fault;
1870 Rc.sl = tmp;
1871 }});
1872 0x02: s4addl({{ Rc.sl = (Ra.sl << 2) + Rb_or_imm.sl; }});
1873 0x12: s8addl({{ Rc.sl = (Ra.sl << 3) + Rb_or_imm.sl; }});
1874
1875 0x20: addq({{ Rc = Ra + Rb_or_imm; }});
1876 0x60: addqv({{
1877 uint64_t tmp = Ra + Rb_or_imm;
1878 // signed overflow occurs when operands have same sign
1879 // and sign of result does not match.
1880 if (Ra<63:> == Rb_or_imm<63:> && tmp<63:> != Ra<63:>)
1881 fault = Integer_Overflow_Fault;
1882 Rc = tmp;
1883 }});
1884 0x22: s4addq({{ Rc = (Ra << 2) + Rb_or_imm; }});
1885 0x32: s8addq({{ Rc = (Ra << 3) + Rb_or_imm; }});
1886
1887 0x09: subl({{ Rc.sl = Ra.sl - Rb_or_imm.sl; }});
1888 0x49: sublv({{
1889 uint32_t tmp = Ra.sl - Rb_or_imm.sl;
1890 // signed overflow detection is same as for add,
1891 // except we need to look at the *complemented*
1892 // sign bit of the subtrahend (Rb), i.e., if the initial
1893 // signs are the *same* then no overflow can occur
1894 if (Ra.sl<31:> != Rb_or_imm.sl<31:> && tmp<31:> != Ra.sl<31:>)
1895 fault = Integer_Overflow_Fault;
1896 Rc.sl = tmp;
1897 }});
1898 0x0b: s4subl({{ Rc.sl = (Ra.sl << 2) - Rb_or_imm.sl; }});
1899 0x1b: s8subl({{ Rc.sl = (Ra.sl << 3) - Rb_or_imm.sl; }});
1900
1901 0x29: subq({{ Rc = Ra - Rb_or_imm; }});
1902 0x69: subqv({{
1903 uint64_t tmp = Ra - Rb_or_imm;
1904 // signed overflow detection is same as for add,
1905 // except we need to look at the *complemented*
1906 // sign bit of the subtrahend (Rb), i.e., if the initial
1907 // signs are the *same* then no overflow can occur
1908 if (Ra<63:> != Rb_or_imm<63:> && tmp<63:> != Ra<63:>)
1909 fault = Integer_Overflow_Fault;
1910 Rc = tmp;
1911 }});
1912 0x2b: s4subq({{ Rc = (Ra << 2) - Rb_or_imm; }});
1913 0x3b: s8subq({{ Rc = (Ra << 3) - Rb_or_imm; }});
1914
1915 0x2d: cmpeq({{ Rc = (Ra == Rb_or_imm); }});
1916 0x6d: cmple({{ Rc = (Ra.sq <= Rb_or_imm.sq); }});
1917 0x4d: cmplt({{ Rc = (Ra.sq < Rb_or_imm.sq); }});
1918 0x3d: cmpule({{ Rc = (Ra.uq <= Rb_or_imm.uq); }});
1919 0x1d: cmpult({{ Rc = (Ra.uq < Rb_or_imm.uq); }});
1920
1921 0x0f: cmpbge({{
1922 int hi = 7;
1923 int lo = 0;
1924 uint64_t tmp = 0;
1925 for (int i = 0; i < 8; ++i) {
1926 tmp |= (Ra.uq<hi:lo> >= Rb_or_imm.uq<hi:lo>) << i;
1927 hi += 8;
1928 lo += 8;
1929 }
1930 Rc = tmp;
1931 }});
1932 }
1933
1934 0x11: decode INTFUNC { // integer logical operations
1935
1936 0x00: and({{ Rc = Ra & Rb_or_imm; }});
1937 0x08: bic({{ Rc = Ra & ~Rb_or_imm; }});
1938 0x20: bis({{ Rc = Ra | Rb_or_imm; }});
1939 0x28: ornot({{ Rc = Ra | ~Rb_or_imm; }});
1940 0x40: xor({{ Rc = Ra ^ Rb_or_imm; }});
1941 0x48: eqv({{ Rc = Ra ^ ~Rb_or_imm; }});
1942
1943 // conditional moves
1944 0x14: cmovlbs({{ Rc = ((Ra & 1) == 1) ? Rb_or_imm : Rc; }});
1945 0x16: cmovlbc({{ Rc = ((Ra & 1) == 0) ? Rb_or_imm : Rc; }});
1946 0x24: cmoveq({{ Rc = (Ra == 0) ? Rb_or_imm : Rc; }});
1947 0x26: cmovne({{ Rc = (Ra != 0) ? Rb_or_imm : Rc; }});
1948 0x44: cmovlt({{ Rc = (Ra.sq < 0) ? Rb_or_imm : Rc; }});
1949 0x46: cmovge({{ Rc = (Ra.sq >= 0) ? Rb_or_imm : Rc; }});
1950 0x64: cmovle({{ Rc = (Ra.sq <= 0) ? Rb_or_imm : Rc; }});
1951 0x66: cmovgt({{ Rc = (Ra.sq > 0) ? Rb_or_imm : Rc; }});
1952
1953 // For AMASK, RA must be R31.
1954 0x61: decode RA {
1955 31: amask({{ Rc = Rb_or_imm & ~ULL(0x17); }});
1956 }
1957
1958 // For IMPLVER, RA must be R31 and the B operand
1959 // must be the immediate value 1.
1960 0x6c: decode RA {
1961 31: decode IMM {
1962 1: decode INTIMM {
1963 // return EV5 for FULL_SYSTEM and EV6 otherwise
1964 1: implver({{
1965 #ifdef FULL_SYSTEM
1966 Rc = 1;
1967 #else
1968 Rc = 2;
1969 #endif
1970 }});
1971 }
1972 }
1973 }
1974
1975 #ifdef FULL_SYSTEM
1976 // The mysterious 11.25...
1977 0x25: WarnUnimpl::eleven25();
1978 #endif
1979 }
1980
1981 0x12: decode INTFUNC {
1982 0x39: sll({{ Rc = Ra << Rb_or_imm<5:0>; }});
1983 0x34: srl({{ Rc = Ra.uq >> Rb_or_imm<5:0>; }});
1984 0x3c: sra({{ Rc = Ra.sq >> Rb_or_imm<5:0>; }});
1985
1986 0x02: mskbl({{ Rc = Ra & ~(mask( 8) << (Rb_or_imm<2:0> * 8)); }});
1987 0x12: mskwl({{ Rc = Ra & ~(mask(16) << (Rb_or_imm<2:0> * 8)); }});
1988 0x22: mskll({{ Rc = Ra & ~(mask(32) << (Rb_or_imm<2:0> * 8)); }});
1989 0x32: mskql({{ Rc = Ra & ~(mask(64) << (Rb_or_imm<2:0> * 8)); }});
1990
1991 0x52: mskwh({{
1992 int bv = Rb_or_imm<2:0>;
1993 Rc = bv ? (Ra & ~(mask(16) >> (64 - 8 * bv))) : Ra;
1994 }});
1995 0x62: msklh({{
1996 int bv = Rb_or_imm<2:0>;
1997 Rc = bv ? (Ra & ~(mask(32) >> (64 - 8 * bv))) : Ra;
1998 }});
1999 0x72: mskqh({{
2000 int bv = Rb_or_imm<2:0>;
2001 Rc = bv ? (Ra & ~(mask(64) >> (64 - 8 * bv))) : Ra;
2002 }});
2003
2004 0x06: extbl({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8))< 7:0>; }});
2005 0x16: extwl({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8))<15:0>; }});
2006 0x26: extll({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8))<31:0>; }});
2007 0x36: extql({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8)); }});
2008
2009 0x5a: extwh({{
2010 Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>)<15:0>; }});
2011 0x6a: extlh({{
2012 Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>)<31:0>; }});
2013 0x7a: extqh({{
2014 Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>); }});
2015
2016 0x0b: insbl({{ Rc = Ra< 7:0> << (Rb_or_imm<2:0> * 8); }});
2017 0x1b: inswl({{ Rc = Ra<15:0> << (Rb_or_imm<2:0> * 8); }});
2018 0x2b: insll({{ Rc = Ra<31:0> << (Rb_or_imm<2:0> * 8); }});
2019 0x3b: insql({{ Rc = Ra << (Rb_or_imm<2:0> * 8); }});
2020
2021 0x57: inswh({{
2022 int bv = Rb_or_imm<2:0>;
2023 Rc = bv ? (Ra.uq<15:0> >> (64 - 8 * bv)) : 0;
2024 }});
2025 0x67: inslh({{
2026 int bv = Rb_or_imm<2:0>;
2027 Rc = bv ? (Ra.uq<31:0> >> (64 - 8 * bv)) : 0;
2028 }});
2029 0x77: insqh({{
2030 int bv = Rb_or_imm<2:0>;
2031 Rc = bv ? (Ra.uq >> (64 - 8 * bv)) : 0;
2032 }});
2033
2034 0x30: zap({{
2035 uint64_t zapmask = 0;
2036 for (int i = 0; i < 8; ++i) {
2037 if (Rb_or_imm<i:>)
2038 zapmask |= (mask(8) << (i * 8));
2039 }
2040 Rc = Ra & ~zapmask;
2041 }});
2042 0x31: zapnot({{
2043 uint64_t zapmask = 0;
2044 for (int i = 0; i < 8; ++i) {
2045 if (!Rb_or_imm<i:>)
2046 zapmask |= (mask(8) << (i * 8));
2047 }
2048 Rc = Ra & ~zapmask;
2049 }});
2050 }
2051
2052 0x13: decode INTFUNC { // integer multiplies
2053 0x00: mull({{ Rc.sl = Ra.sl * Rb_or_imm.sl; }}, IntMULT);
2054 0x20: mulq({{ Rc = Ra * Rb_or_imm; }}, IntMULT);
2055 0x30: umulh({{
2056 uint64_t hi, lo;
2057 mul128(Ra, Rb_or_imm, hi, lo);
2058 Rc = hi;
2059 }}, IntMULT);
2060 0x40: mullv({{
2061 // 32-bit multiply with trap on overflow
2062 int64_t Rax = Ra.sl; // sign extended version of Ra.sl
2063 int64_t Rbx = Rb_or_imm.sl;
2064 int64_t tmp = Rax * Rbx;
2065 // To avoid overflow, all the upper 32 bits must match
2066 // the sign bit of the lower 32. We code this as
2067 // checking the upper 33 bits for all 0s or all 1s.
2068 uint64_t sign_bits = tmp<63:31>;
2069 if (sign_bits != 0 && sign_bits != mask(33))
2070 fault = Integer_Overflow_Fault;
2071 Rc.sl = tmp<31:0>;
2072 }}, IntMULT);
2073 0x60: mulqv({{
2074 // 64-bit multiply with trap on overflow
2075 uint64_t hi, lo;
2076 mul128(Ra, Rb_or_imm, hi, lo);
2077 // all the upper 64 bits must match the sign bit of
2078 // the lower 64
2079 if (!((hi == 0 && lo<63:> == 0) ||
2080 (hi == mask(64) && lo<63:> == 1)))
2081 fault = Integer_Overflow_Fault;
2082 Rc = lo;
2083 }}, IntMULT);
2084 }
2085
2086 0x1c: decode INTFUNC {
2087 0x00: decode RA { 31: sextb({{ Rc.sb = Rb_or_imm< 7:0>; }}); }
2088 0x01: decode RA { 31: sextw({{ Rc.sw = Rb_or_imm<15:0>; }}); }
2089
2090 format FailUnimpl {
2091 0x30: ctpop();
2092 0x31: perr();
2093 0x32: ctlz();
2094 0x33: cttz();
2095 0x34: unpkbw();
2096 0x35: unpkbl();
2097 0x36: pkwb();
2098 0x37: pklb();
2099 0x38: minsb8();
2100 0x39: minsw4();
2101 0x3a: minub8();
2102 0x3b: minuw4();
2103 0x3c: maxub8();
2104 0x3d: maxuw4();
2105 0x3e: maxsb8();
2106 0x3f: maxsw4();
2107 }
2108
2109 format BasicOperateWithNopCheck {
2110 0x70: decode RB {
2111 31: ftoit({{ Rc = Fa.uq; }}, FloatCVT);
2112 }
2113 0x78: decode RB {
2114 31: ftois({{ Rc.sl = t_to_s(Fa.uq); }},
2115 FloatCVT);
2116 }
2117 }
2118 }
2119 }
2120
2121 // Conditional branches.
2122 format CondBranch {
2123 0x39: beq({{ cond = (Ra == 0); }});
2124 0x3d: bne({{ cond = (Ra != 0); }});
2125 0x3e: bge({{ cond = (Ra.sq >= 0); }});
2126 0x3f: bgt({{ cond = (Ra.sq > 0); }});
2127 0x3b: ble({{ cond = (Ra.sq <= 0); }});
2128 0x3a: blt({{ cond = (Ra.sq < 0); }});
2129 0x38: blbc({{ cond = ((Ra & 1) == 0); }});
2130 0x3c: blbs({{ cond = ((Ra & 1) == 1); }});
2131
2132 0x31: fbeq({{ cond = (Fa == 0); }});
2133 0x35: fbne({{ cond = (Fa != 0); }});
2134 0x36: fbge({{ cond = (Fa >= 0); }});
2135 0x37: fbgt({{ cond = (Fa > 0); }});
2136 0x33: fble({{ cond = (Fa <= 0); }});
2137 0x32: fblt({{ cond = (Fa < 0); }});
2138 }
2139
2140 // unconditional branches
2141 format UncondBranch {
2142 0x30: br();
2143 0x34: bsr(IsCall);
2144 }
2145
2146 // indirect branches
2147 0x1a: decode JMPFUNC {
2148 format Jump {
2149 0: jmp();
2150 1: jsr(IsCall);
2151 2: ret(IsReturn);
2152 3: jsr_coroutine(IsCall, IsReturn);
2153 }
2154 }
2155
2156 // IEEE floating point
2157 0x14: decode FP_SHORTFUNC {
2158 // Integer to FP register moves must have RB == 31
2159 0x4: decode RB {
2160 31: decode FP_FULLFUNC {
2161 format BasicOperateWithNopCheck {
2162 0x004: itofs({{ Fc.uq = s_to_t(Ra.ul); }}, FloatCVT);
2163 0x024: itoft({{ Fc.uq = Ra.uq; }}, FloatCVT);
2164 0x014: FailUnimpl::itoff(); // VAX-format conversion
2165 }
2166 }
2167 }
2168
2169 // Square root instructions must have FA == 31
2170 0xb: decode FA {
2171 31: decode FP_TYPEFUNC {
2172 format FloatingPointOperate {
2173 #ifdef SS_COMPATIBLE_FP
2174 0x0b: sqrts({{
2175 if (Fb < 0.0)
2176 fault = Arithmetic_Fault;
2177 Fc = sqrt(Fb);
2178 }}, FloatSQRT);
2179 #else
2180 0x0b: sqrts({{
2181 if (Fb.sf < 0.0)
2182 fault = Arithmetic_Fault;
2183 Fc.sf = sqrt(Fb.sf);
2184 }}, FloatSQRT);
2185 #endif
2186 0x2b: sqrtt({{
2187 if (Fb < 0.0)
2188 fault = Arithmetic_Fault;
2189 Fc = sqrt(Fb);
2190 }}, FloatSQRT);
2191 }
2192 }
2193 }
2194
2195 // VAX-format sqrtf and sqrtg are not implemented
2196 0xa: FailUnimpl::sqrtfg();
2197 }
2198
2199 // IEEE floating point
2200 0x16: decode FP_SHORTFUNC_TOP2 {
2201 // The top two bits of the short function code break this space
2202 // into four groups: binary ops, compares, reserved, and conversions.
2203 // See Table 4-12 of AHB.
2204 // Most of these instructions may have various trapping and
2205 // rounding mode flags set; these are decoded in the
2206 // FloatingPointDecode template used by the
2207 // FloatingPointOperate format.
2208
2209 // add/sub/mul/div: just decode on the short function code
2210 // and source type.
2211 0: decode FP_TYPEFUNC {
2212 format FloatingPointOperate {
2213 #ifdef SS_COMPATIBLE_FP
2214 0x00: adds({{ Fc = Fa + Fb; }});
2215 0x01: subs({{ Fc = Fa - Fb; }});
2216 0x02: muls({{ Fc = Fa * Fb; }}, FloatMULT);
2217 0x03: divs({{ Fc = Fa / Fb; }}, FloatDIV);
2218 #else
2219 0x00: adds({{ Fc.sf = Fa.sf + Fb.sf; }});
2220 0x01: subs({{ Fc.sf = Fa.sf - Fb.sf; }});
2221 0x02: muls({{ Fc.sf = Fa.sf * Fb.sf; }}, FloatMULT);
2222 0x03: divs({{ Fc.sf = Fa.sf / Fb.sf; }}, FloatDIV);
2223 #endif
2224
2225 0x20: addt({{ Fc = Fa + Fb; }});
2226 0x21: subt({{ Fc = Fa - Fb; }});
2227 0x22: mult({{ Fc = Fa * Fb; }}, FloatMULT);
2228 0x23: divt({{ Fc = Fa / Fb; }}, FloatDIV);
2229 }
2230 }
2231
2232 // Floating-point compare instructions must have the default
2233 // rounding mode, and may use the default trapping mode or
2234 // /SU. Both trapping modes are treated the same by M5; the
2235 // only difference on the real hardware (as far a I can tell)
2236 // is that without /SU you'd get an imprecise trap if you
2237 // tried to compare a NaN with something else (instead of an
2238 // "unordered" result).
2239 1: decode FP_FULLFUNC {
2240 format BasicOperateWithNopCheck {
2241 0x0a5, 0x5a5: cmpteq({{ Fc = (Fa == Fb) ? 2.0 : 0.0; }},
2242 FloatCMP);
2243 0x0a7, 0x5a7: cmptle({{ Fc = (Fa <= Fb) ? 2.0 : 0.0; }},
2244 FloatCMP);
2245 0x0a6, 0x5a6: cmptlt({{ Fc = (Fa < Fb) ? 2.0 : 0.0; }},
2246 FloatCMP);
2247 0x0a4, 0x5a4: cmptun({{ // unordered
2248 Fc = (!(Fa < Fb) && !(Fa == Fb) && !(Fa > Fb)) ? 2.0 : 0.0;
2249 }}, FloatCMP);
2250 }
2251 }
2252
2253 // The FP-to-integer and integer-to-FP conversion insts
2254 // require that FA be 31.
2255 3: decode FA {
2256 31: decode FP_TYPEFUNC {
2257 format FloatingPointOperate {
2258 0x2f: cvttq({{ Fc.sq = (int64_t)rint(Fb); }});
2259
2260 // The cvtts opcode is overloaded to be cvtst if the trap
2261 // mode is 2 or 6 (which are not valid otherwise)
2262 0x2c: decode FP_FULLFUNC {
2263 format BasicOperateWithNopCheck {
2264 // trap on denorm version "cvtst/s" is
2265 // simulated same as cvtst
2266 0x2ac, 0x6ac: cvtst({{ Fc = Fb.sf; }});
2267 }
2268 default: cvtts({{ Fc.sf = Fb; }});
2269 }
2270
2271 // The trapping mode for integer-to-FP conversions
2272 // must be /SUI or nothing; /U and /SU are not
2273 // allowed. The full set of rounding modes are
2274 // supported though.
2275 0x3c: decode FP_TRAPMODE {
2276 0,7: cvtqs({{ Fc.sf = Fb.sq; }});
2277 }
2278 0x3e: decode FP_TRAPMODE {
2279 0,7: cvtqt({{ Fc = Fb.sq; }});
2280 }
2281 }
2282 }
2283 }
2284 }
2285
2286 // misc FP operate
2287 0x17: decode FP_FULLFUNC {
2288 format BasicOperateWithNopCheck {
2289 0x010: cvtlq({{
2290 Fc.sl = (Fb.uq<63:62> << 30) | Fb.uq<58:29>;
2291 }});
2292 0x030: cvtql({{
2293 Fc.uq = (Fb.uq<31:30> << 62) | (Fb.uq<29:0> << 29);
2294 }});
2295
2296 // We treat the precise & imprecise trapping versions of
2297 // cvtql identically.
2298 0x130, 0x530: cvtqlv({{
2299 // To avoid overflow, all the upper 32 bits must match
2300 // the sign bit of the lower 32. We code this as
2301 // checking the upper 33 bits for all 0s or all 1s.
2302 uint64_t sign_bits = Fb.uq<63:31>;
2303 if (sign_bits != 0 && sign_bits != mask(33))
2304 fault = Integer_Overflow_Fault;
2305 Fc.uq = (Fb.uq<31:30> << 62) | (Fb.uq<29:0> << 29);
2306 }});
2307
2308 0x020: cpys({{ // copy sign
2309 Fc.uq = (Fa.uq<63:> << 63) | Fb.uq<62:0>;
2310 }});
2311 0x021: cpysn({{ // copy sign negated
2312 Fc.uq = (~Fa.uq<63:> << 63) | Fb.uq<62:0>;
2313 }});
2314 0x022: cpyse({{ // copy sign and exponent
2315 Fc.uq = (Fa.uq<63:52> << 52) | Fb.uq<51:0>;
2316 }});
2317
2318 0x02a: fcmoveq({{ Fc = (Fa == 0) ? Fb : Fc; }});
2319 0x02b: fcmovne({{ Fc = (Fa != 0) ? Fb : Fc; }});
2320 0x02c: fcmovlt({{ Fc = (Fa < 0) ? Fb : Fc; }});
2321 0x02d: fcmovge({{ Fc = (Fa >= 0) ? Fb : Fc; }});
2322 0x02e: fcmovle({{ Fc = (Fa <= 0) ? Fb : Fc; }});
2323 0x02f: fcmovgt({{ Fc = (Fa > 0) ? Fb : Fc; }});
2324
2325 0x024: mt_fpcr({{ FPCR = Fa.uq; }});
2326 0x025: mf_fpcr({{ Fa.uq = FPCR; }});
2327 }
2328 }
2329
2330 // miscellaneous mem-format ops
2331 0x18: decode MEMFUNC {
2332 format WarnUnimpl {
2333 0x8000: fetch();
2334 0xa000: fetch_m();
2335 0xe800: ecb();
2336 }
2337
2338 format MiscPrefetch {
2339 0xf800: wh64({{ EA = Rb; }},
2340 {{ memAccessObj->writeHint(EA, 64); }},
2341 IsMemRef, IsStore, WrPort);
2342 }
2343
2344 format BasicOperate {
2345 0xc000: rpcc({{ Ra = curTick; }});
2346
2347 // All of the barrier instructions below do nothing in
2348 // their execute() methods (hence the empty code blocks).
2349 // All of their functionality is hard-coded in the
2350 // pipeline based on the flags IsSerializing,
2351 // IsMemBarrier, and IsWriteBarrier. In the current
2352 // detailed CPU model, the execute() function only gets
2353 // called at fetch, so there's no way to generate pipeline
2354 // behavior at any other stage. Once we go to an
2355 // exec-in-exec CPU model we should be able to get rid of
2356 // these flags and implement this behavior via the
2357 // execute() methods.
2358
2359 // trapb is just a barrier on integer traps, where excb is
2360 // a barrier on integer and FP traps. "EXCB is thus a
2361 // superset of TRAPB." (Alpha ARM, Sec 4.11.4) We treat
2362 // them the same though.
2363 0x0000: trapb({{ }}, IsSerializing, No_OpClass);
2364 0x0400: excb({{ }}, IsSerializing, No_OpClass);
2365 0x4000: mb({{ }}, IsMemBarrier, RdPort);
2366 0x4400: wmb({{ }}, IsWriteBarrier, WrPort);
2367 }
2368
2369 #ifdef FULL_SYSTEM
2370 format BasicOperate {
2371 0xe000: rc({{
2372 Ra = xc->regs.intrflag;
2373 if (!xc->misspeculating()) {
2374 xc->regs.intrflag = 0;
2375 }
2376 }});
2377 0xf000: rs({{
2378 Ra = xc->regs.intrflag;
2379 if (!xc->misspeculating()) {
2380 xc->regs.intrflag = 1;
2381 }
2382 }});
2383 }
2384 #else
2385 format FailUnimpl {
2386 0xe000: rc();
2387 0xf000: rs();
2388 }
2389 #endif
2390 }
2391
2392 #ifdef FULL_SYSTEM
2393 0x00: CallPal::call_pal({{
2394 if (!palValid ||
2395 (palPriv
2396 && xc->readIpr(AlphaISA::IPR_ICM, fault) != AlphaISA::mode_kernel)) {
2397 // invalid pal function code, or attempt to do privileged
2398 // PAL call in non-kernel mode
2399 fault = Unimplemented_Opcode_Fault;
2400 }
2401 else {
2402 bool dopal = true;
2403
2404 if (!xc->misspeculating()) {
2405 // check to see if simulator wants to do something special
2406 // on this PAL call (including maybe suppress it)
2407 dopal = xc->simPalCheck(palFunc);
2408
2409 Annotate::Callpal(xc, palFunc);
2410
2411 if (dopal) {
2412 AlphaISA::swap_palshadow(&xc->regs, true);
2413 xc->setIpr(AlphaISA::IPR_EXC_ADDR, NPC);
2414 }
2415 }
2416
2417 // if we're misspeculating, it's still safe (if
2418 // unrealistic) to set NPC, as the control-flow change
2419 // won't get committed.
2420 if (dopal) {
2421 NPC = xc->readIpr(AlphaISA::IPR_PAL_BASE, fault) + palOffset;
2422 }
2423 }
2424 }});
2425 #else
2426 0x00: decode PALFUNC {
2427 format EmulatedCallPal {
2428 0x00: halt ({{
2429 if (!xc->misspeculating())
2430 SimExit(curTick, "halt instruction encountered");
2431 }});
2432 0x83: callsys({{
2433 if (!xc->misspeculating())
2434 xc->syscall();
2435 }});
2436 // Read uniq reg into ABI return value register (r0)
2437 0x9e: rduniq({{ R0 = Runiq; }});
2438 // Write uniq reg with value from ABI arg register (r16)
2439 0x9f: wruniq({{ Runiq = R16; }});
2440 }
2441 }
2442 #endif
2443
2444 #ifdef FULL_SYSTEM
2445 format HwLoadStore {
2446 0x1b: decode HW_LDST_QUAD {
2447 0: hw_ld({{ EA = (Rb + disp) & ~3; }}, {{ Ra = Mem.ul; }}, L);
2448 1: hw_ld({{ EA = (Rb + disp) & ~7; }}, {{ Ra = Mem.uq; }}, Q);
2449 }
2450
2451 0x1f: decode HW_LDST_COND {
2452 0: decode HW_LDST_QUAD {
2453 0: hw_st({{ EA = (Rb + disp) & ~3; }},
2454 {{ Mem.ul = Ra<31:0>; }}, L);
2455 1: hw_st({{ EA = (Rb + disp) & ~7; }},
2456 {{ Mem.uq = Ra.uq; }}, Q);
2457 }
2458
2459 1: FailUnimpl::hw_st_cond();
2460 }
2461 }
2462
2463 format BasicOperate {
2464 0x1e: hw_rei({{ xc->hwrei(); }});
2465
2466 // M5 special opcodes use the reserved 0x01 opcode space
2467 0x01: decode M5FUNC {
2468 0x00: arm({{
2469 if (!xc->misspeculating()) {
2470 Annotate::ARM(xc);
2471 xc->kernelStats.arm();
2472 }
2473 }});
2474 0x01: quiesce({{
2475 if (!xc->misspeculating())
2476 AlphaPseudo::quiesce(xc);
2477 }});
2478 0x10: ivlb({{
2479 if (!xc->misspeculating()) {
2480 Annotate::BeginInterval(xc);
2481 xc->kernelStats.ivlb();
2482 }
2483 }}, No_OpClass);
2484 0x11: ivle({{
2485 if (!xc->misspeculating())
2486 Annotate::EndInterval(xc);
2487 }}, No_OpClass);
2488 0x20: m5exit_old({{
2489 if (!xc->misspeculating())
2490 AlphaPseudo::m5exit_old(xc);
2491 }}, No_OpClass);
2492 0x21: m5exit({{
2493 if (!xc->misspeculating())
2494 AlphaPseudo::m5exit(xc);
2495 }}, No_OpClass);
2496 0x30: initparam({{ Ra = cpu->system->init_param; }});
2497 0x40: resetstats({{
2498 if (!xc->misspeculating())
2499 AlphaPseudo::resetstats(xc);
2500 }});
2501 0x41: dumpstats({{
2502 if (!xc->misspeculating())
2503 AlphaPseudo::dumpstats(xc);
2504 }});
2505 0x42: dumpresetstats({{
2506 if (!xc->misspeculating())
2507 AlphaPseudo::dumpresetstats(xc);
2508 }});
2509 0x43: m5checkpoint({{
2510 if (!xc->misspeculating())
2511 AlphaPseudo::m5checkpoint(xc);
2512 }});
2513 }
2514 }
2515
2516 format HwMoveIPR {
2517 0x19: hw_mfpr({{
2518 // this instruction is only valid in PAL mode
2519 if (!PC_PAL(xc->regs.pc)) {
2520 fault = Unimplemented_Opcode_Fault;
2521 }
2522 else {
2523 Ra = xc->readIpr(ipr_index, fault);
2524 }
2525 }});
2526 0x1d: hw_mtpr({{
2527 // this instruction is only valid in PAL mode
2528 if (!PC_PAL(xc->regs.pc)) {
2529 fault = Unimplemented_Opcode_Fault;
2530 }
2531 else {
2532 xc->setIpr(ipr_index, Ra);
2533 if (traceData) { traceData->setData(Ra); }
2534 }
2535 }});
2536 }
2537 #endif
2538 }