Merge ktlim@zizzer:/bk/m5
[gem5.git] / arch / isa_parser.py
1 #! /usr/bin/env python
2
3 # Copyright (c) 2003-2005 The Regents of The University of Michigan
4 # All rights reserved.
5 #
6 # Redistribution and use in source and binary forms, with or without
7 # modification, are permitted provided that the following conditions are
8 # met: redistributions of source code must retain the above copyright
9 # notice, this list of conditions and the following disclaimer;
10 # redistributions in binary form must reproduce the above copyright
11 # notice, this list of conditions and the following disclaimer in the
12 # documentation and/or other materials provided with the distribution;
13 # neither the name of the copyright holders nor the names of its
14 # contributors may be used to endorse or promote products derived from
15 # this software without specific prior written permission.
16 #
17 # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18 # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19 # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
20 # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
21 # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
22 # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
23 # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28
29 import os
30 import sys
31 import re
32 import string
33 import traceback
34 # get type names
35 from types import *
36
37 # Prepend the directory where the PLY lex & yacc modules are found
38 # to the search path. Assumes we're compiling in a subdirectory
39 # of 'build' in the current tree.
40 sys.path[0:0] = [os.environ['M5_EXT'] + '/ply']
41
42 import lex
43 import yacc
44
45 #####################################################################
46 #
47 # Lexer
48 #
49 # The PLY lexer module takes two things as input:
50 # - A list of token names (the string list 'tokens')
51 # - A regular expression describing a match for each token. The
52 # regexp for token FOO can be provided in two ways:
53 # - as a string variable named t_FOO
54 # - as the doc string for a function named t_FOO. In this case,
55 # the function is also executed, allowing an action to be
56 # associated with each token match.
57 #
58 #####################################################################
59
60 # Reserved words. These are listed separately as they are matched
61 # using the same regexp as generic IDs, but distinguished in the
62 # t_ID() function. The PLY documentation suggests this approach.
63 reserved = (
64 'BITFIELD', 'DECODE', 'DECODER', 'DEFAULT', 'DEF', 'EXEC', 'FORMAT',
65 'HEADER', 'LET', 'NAMESPACE', 'OPERAND_TYPES', 'OPERANDS',
66 'OUTPUT', 'SIGNED', 'TEMPLATE'
67 )
68
69 # List of tokens. The lex module requires this.
70 tokens = reserved + (
71 # identifier
72 'ID',
73
74 # integer literal
75 'INTLIT',
76
77 # string literal
78 'STRLIT',
79
80 # code literal
81 'CODELIT',
82
83 # ( ) [ ] { } < > , ; : :: *
84 'LPAREN', 'RPAREN',
85 'LBRACKET', 'RBRACKET',
86 'LBRACE', 'RBRACE',
87 'LESS', 'GREATER', 'EQUALS',
88 'COMMA', 'SEMI', 'COLON', 'DBLCOLON',
89 'ASTERISK',
90
91 # C preprocessor directives
92 'CPPDIRECTIVE'
93
94 # The following are matched but never returned. commented out to
95 # suppress PLY warning
96 # newfile directive
97 # 'NEWFILE',
98
99 # endfile directive
100 # 'ENDFILE'
101 )
102
103 # Regular expressions for token matching
104 t_LPAREN = r'\('
105 t_RPAREN = r'\)'
106 t_LBRACKET = r'\['
107 t_RBRACKET = r'\]'
108 t_LBRACE = r'\{'
109 t_RBRACE = r'\}'
110 t_LESS = r'\<'
111 t_GREATER = r'\>'
112 t_EQUALS = r'='
113 t_COMMA = r','
114 t_SEMI = r';'
115 t_COLON = r':'
116 t_DBLCOLON = r'::'
117 t_ASTERISK = r'\*'
118
119 # Identifiers and reserved words
120 reserved_map = { }
121 for r in reserved:
122 reserved_map[r.lower()] = r
123
124 def t_ID(t):
125 r'[A-Za-z_]\w*'
126 t.type = reserved_map.get(t.value,'ID')
127 return t
128
129 # Integer literal
130 def t_INTLIT(t):
131 r'(0x[\da-fA-F]+)|\d+'
132 try:
133 t.value = int(t.value,0)
134 except ValueError:
135 error(t.lineno, 'Integer value "%s" too large' % t.value)
136 t.value = 0
137 return t
138
139 # String literal. Note that these use only single quotes, and
140 # can span multiple lines.
141 def t_STRLIT(t):
142 r"(?m)'([^'])+'"
143 # strip off quotes
144 t.value = t.value[1:-1]
145 t.lineno += t.value.count('\n')
146 return t
147
148
149 # "Code literal"... like a string literal, but delimiters are
150 # '{{' and '}}' so they get formatted nicely under emacs c-mode
151 def t_CODELIT(t):
152 r"(?m)\{\{([^\}]|}(?!\}))+\}\}"
153 # strip off {{ & }}
154 t.value = t.value[2:-2]
155 t.lineno += t.value.count('\n')
156 return t
157
158 def t_CPPDIRECTIVE(t):
159 r'^\#[^\#].*\n'
160 t.lineno += t.value.count('\n')
161 return t
162
163 def t_NEWFILE(t):
164 r'^\#\#newfile\s+"[\w/.-]*"'
165 global fileNameStack
166 fileNameStack.append((t.value[11:-1], t.lineno))
167 t.lineno = 0
168
169 def t_ENDFILE(t):
170 r'^\#\#endfile'
171 (filename, t.lineno) = fileNameStack.pop()
172
173 #
174 # The functions t_NEWLINE, t_ignore, and t_error are
175 # special for the lex module.
176 #
177
178 # Newlines
179 def t_NEWLINE(t):
180 r'\n+'
181 t.lineno += t.value.count('\n')
182
183 # Comments
184 def t_comment(t):
185 r'//.*'
186
187 # Completely ignored characters
188 t_ignore = ' \t\x0c'
189
190 # Error handler
191 def t_error(t):
192 error(t.lineno, "illegal character '%s'" % t.value[0])
193 t.skip(1)
194
195 # Build the lexer
196 lex.lex()
197
198 #####################################################################
199 #
200 # Parser
201 #
202 # Every function whose name starts with 'p_' defines a grammar rule.
203 # The rule is encoded in the function's doc string, while the
204 # function body provides the action taken when the rule is matched.
205 # The argument to each function is a list of the values of the
206 # rule's symbols: t[0] for the LHS, and t[1..n] for the symbols
207 # on the RHS. For tokens, the value is copied from the t.value
208 # attribute provided by the lexer. For non-terminals, the value
209 # is assigned by the producing rule; i.e., the job of the grammar
210 # rule function is to set the value for the non-terminal on the LHS
211 # (by assigning to t[0]).
212 #####################################################################
213
214 # The LHS of the first grammar rule is used as the start symbol
215 # (in this case, 'specification'). Note that this rule enforces
216 # that there will be exactly one namespace declaration, with 0 or more
217 # global defs/decls before and after it. The defs & decls before
218 # the namespace decl will be outside the namespace; those after
219 # will be inside. The decoder function is always inside the namespace.
220 def p_specification(t):
221 'specification : opt_defs_and_outputs name_decl opt_defs_and_outputs decode_block'
222 global_code = t[1]
223 isa_name = t[2]
224 namespace = isa_name + "Inst"
225 # wrap the decode block as a function definition
226 t[4].wrap_decode_block('''
227 StaticInstPtr
228 %(isa_name)s::decodeInst(%(isa_name)s::MachInst machInst)
229 {
230 using namespace %(namespace)s;
231 ''' % vars(), '}')
232 # both the latter output blocks and the decode block are in the namespace
233 namespace_code = t[3] + t[4]
234 # pass it all back to the caller of yacc.parse()
235 t[0] = (isa_name, namespace, global_code, namespace_code)
236
237 # ISA name declaration looks like "namespace <foo>;"
238 def p_name_decl(t):
239 'name_decl : NAMESPACE ID SEMI'
240 t[0] = t[2]
241
242 # 'opt_defs_and_outputs' is a possibly empty sequence of
243 # def and/or output statements.
244 def p_opt_defs_and_outputs_0(t):
245 'opt_defs_and_outputs : empty'
246 t[0] = GenCode()
247
248 def p_opt_defs_and_outputs_1(t):
249 'opt_defs_and_outputs : defs_and_outputs'
250 t[0] = t[1]
251
252 def p_defs_and_outputs_0(t):
253 'defs_and_outputs : def_or_output'
254 t[0] = t[1]
255
256 def p_defs_and_outputs_1(t):
257 'defs_and_outputs : defs_and_outputs def_or_output'
258 t[0] = t[1] + t[2]
259
260 # The list of possible definition/output statements.
261 def p_def_or_output(t):
262 '''def_or_output : def_format
263 | def_bitfield
264 | def_template
265 | def_operand_types
266 | def_operands
267 | output_header
268 | output_decoder
269 | output_exec
270 | global_let'''
271 t[0] = t[1]
272
273 # Output blocks 'output <foo> {{...}}' (C++ code blocks) are copied
274 # directly to the appropriate output section.
275
276
277 # Protect any non-dict-substitution '%'s in a format string
278 # (i.e. those not followed by '(')
279 def protect_non_subst_percents(s):
280 return re.sub(r'%(?!\()', '%%', s)
281
282 # Massage output block by substituting in template definitions and bit
283 # operators. We handle '%'s embedded in the string that don't
284 # indicate template substitutions (or CPU-specific symbols, which get
285 # handled in GenCode) by doubling them first so that the format
286 # operation will reduce them back to single '%'s.
287 def process_output(s):
288 s = protect_non_subst_percents(s)
289 # protects cpu-specific symbols too
290 s = protect_cpu_symbols(s)
291 return substBitOps(s % templateMap)
292
293 def p_output_header(t):
294 'output_header : OUTPUT HEADER CODELIT SEMI'
295 t[0] = GenCode(header_output = process_output(t[3]))
296
297 def p_output_decoder(t):
298 'output_decoder : OUTPUT DECODER CODELIT SEMI'
299 t[0] = GenCode(decoder_output = process_output(t[3]))
300
301 def p_output_exec(t):
302 'output_exec : OUTPUT EXEC CODELIT SEMI'
303 t[0] = GenCode(exec_output = process_output(t[3]))
304
305 # global let blocks 'let {{...}}' (Python code blocks) are executed
306 # directly when seen. Note that these execute in a special variable
307 # context 'exportContext' to prevent the code from polluting this
308 # script's namespace.
309 def p_global_let(t):
310 'global_let : LET CODELIT SEMI'
311 updateExportContext()
312 try:
313 exec fixPythonIndentation(t[2]) in exportContext
314 except Exception, exc:
315 error(t.lineno(1),
316 'error: %s in global let block "%s".' % (exc, t[2]))
317 t[0] = GenCode() # contributes nothing to the output C++ file
318
319 # Define the mapping from operand type extensions to C++ types and bit
320 # widths (stored in operandTypeMap).
321 def p_def_operand_types(t):
322 'def_operand_types : DEF OPERAND_TYPES CODELIT SEMI'
323 try:
324 userDict = eval('{' + t[3] + '}')
325 except Exception, exc:
326 error(t.lineno(1),
327 'error: %s in def operand_types block "%s".' % (exc, t[3]))
328 buildOperandTypeMap(userDict, t.lineno(1))
329 t[0] = GenCode() # contributes nothing to the output C++ file
330
331 # Define the mapping from operand names to operand classes and other
332 # traits. Stored in operandNameMap.
333 def p_def_operands(t):
334 'def_operands : DEF OPERANDS CODELIT SEMI'
335 if not globals().has_key('operandTypeMap'):
336 error(t.lineno(1),
337 'error: operand types must be defined before operands')
338 try:
339 userDict = eval('{' + t[3] + '}')
340 except Exception, exc:
341 error(t.lineno(1),
342 'error: %s in def operands block "%s".' % (exc, t[3]))
343 buildOperandNameMap(userDict, t.lineno(1))
344 t[0] = GenCode() # contributes nothing to the output C++ file
345
346 # A bitfield definition looks like:
347 # 'def [signed] bitfield <ID> [<first>:<last>]'
348 # This generates a preprocessor macro in the output file.
349 def p_def_bitfield_0(t):
350 'def_bitfield : DEF opt_signed BITFIELD ID LESS INTLIT COLON INTLIT GREATER SEMI'
351 expr = 'bits(machInst, %2d, %2d)' % (t[6], t[8])
352 if (t[2] == 'signed'):
353 expr = 'sext<%d>(%s)' % (t[6] - t[8] + 1, expr)
354 hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
355 t[0] = GenCode(header_output = hash_define)
356
357 # alternate form for single bit: 'def [signed] bitfield <ID> [<bit>]'
358 def p_def_bitfield_1(t):
359 'def_bitfield : DEF opt_signed BITFIELD ID LESS INTLIT GREATER SEMI'
360 expr = 'bits(machInst, %2d, %2d)' % (t[6], t[6])
361 if (t[2] == 'signed'):
362 expr = 'sext<%d>(%s)' % (1, expr)
363 hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
364 t[0] = GenCode(header_output = hash_define)
365
366 def p_opt_signed_0(t):
367 'opt_signed : SIGNED'
368 t[0] = t[1]
369
370 def p_opt_signed_1(t):
371 'opt_signed : empty'
372 t[0] = ''
373
374 # Global map variable to hold templates
375 templateMap = {}
376
377 def p_def_template(t):
378 'def_template : DEF TEMPLATE ID CODELIT SEMI'
379 templateMap[t[3]] = Template(t[4])
380 t[0] = GenCode()
381
382 # An instruction format definition looks like
383 # "def format <fmt>(<params>) {{...}};"
384 def p_def_format(t):
385 'def_format : DEF FORMAT ID LPAREN param_list RPAREN CODELIT SEMI'
386 (id, params, code) = (t[3], t[5], t[7])
387 defFormat(id, params, code, t.lineno(1))
388 t[0] = GenCode()
389
390 # The formal parameter list for an instruction format is a possibly
391 # empty list of comma-separated parameters. Positional (standard,
392 # non-keyword) parameters must come first, followed by keyword
393 # parameters, followed by a '*foo' parameter that gets excess
394 # positional arguments (as in Python). Each of these three parameter
395 # categories is optional.
396 #
397 # Note that we do not support the '**foo' parameter for collecting
398 # otherwise undefined keyword args. Otherwise the parameter list is
399 # (I believe) identical to what is supported in Python.
400 #
401 # The param list generates a tuple, where the first element is a list of
402 # the positional params and the second element is a dict containing the
403 # keyword params.
404 def p_param_list_0(t):
405 'param_list : positional_param_list COMMA nonpositional_param_list'
406 t[0] = t[1] + t[3]
407
408 def p_param_list_1(t):
409 '''param_list : positional_param_list
410 | nonpositional_param_list'''
411 t[0] = t[1]
412
413 def p_positional_param_list_0(t):
414 'positional_param_list : empty'
415 t[0] = []
416
417 def p_positional_param_list_1(t):
418 'positional_param_list : ID'
419 t[0] = [t[1]]
420
421 def p_positional_param_list_2(t):
422 'positional_param_list : positional_param_list COMMA ID'
423 t[0] = t[1] + [t[3]]
424
425 def p_nonpositional_param_list_0(t):
426 'nonpositional_param_list : keyword_param_list COMMA excess_args_param'
427 t[0] = t[1] + t[3]
428
429 def p_nonpositional_param_list_1(t):
430 '''nonpositional_param_list : keyword_param_list
431 | excess_args_param'''
432 t[0] = t[1]
433
434 def p_keyword_param_list_0(t):
435 'keyword_param_list : keyword_param'
436 t[0] = [t[1]]
437
438 def p_keyword_param_list_1(t):
439 'keyword_param_list : keyword_param_list COMMA keyword_param'
440 t[0] = t[1] + [t[3]]
441
442 def p_keyword_param(t):
443 'keyword_param : ID EQUALS expr'
444 t[0] = t[1] + ' = ' + t[3].__repr__()
445
446 def p_excess_args_param(t):
447 'excess_args_param : ASTERISK ID'
448 # Just concatenate them: '*ID'. Wrap in list to be consistent
449 # with positional_param_list and keyword_param_list.
450 t[0] = [t[1] + t[2]]
451
452 # End of format definition-related rules.
453 ##############
454
455 #
456 # A decode block looks like:
457 # decode <field1> [, <field2>]* [default <inst>] { ... }
458 #
459 def p_decode_block(t):
460 'decode_block : DECODE ID opt_default LBRACE decode_stmt_list RBRACE'
461 default_defaults = defaultStack.pop()
462 codeObj = t[5]
463 # use the "default defaults" only if there was no explicit
464 # default statement in decode_stmt_list
465 if not codeObj.has_decode_default:
466 codeObj += default_defaults
467 codeObj.wrap_decode_block('switch (%s) {\n' % t[2], '}\n')
468 t[0] = codeObj
469
470 # The opt_default statement serves only to push the "default defaults"
471 # onto defaultStack. This value will be used by nested decode blocks,
472 # and used and popped off when the current decode_block is processed
473 # (in p_decode_block() above).
474 def p_opt_default_0(t):
475 'opt_default : empty'
476 # no default specified: reuse the one currently at the top of the stack
477 defaultStack.push(defaultStack.top())
478 # no meaningful value returned
479 t[0] = None
480
481 def p_opt_default_1(t):
482 'opt_default : DEFAULT inst'
483 # push the new default
484 codeObj = t[2]
485 codeObj.wrap_decode_block('\ndefault:\n', 'break;\n')
486 defaultStack.push(codeObj)
487 # no meaningful value returned
488 t[0] = None
489
490 def p_decode_stmt_list_0(t):
491 'decode_stmt_list : decode_stmt'
492 t[0] = t[1]
493
494 def p_decode_stmt_list_1(t):
495 'decode_stmt_list : decode_stmt decode_stmt_list'
496 if (t[1].has_decode_default and t[2].has_decode_default):
497 error(t.lineno(1), 'Two default cases in decode block')
498 t[0] = t[1] + t[2]
499
500 #
501 # Decode statement rules
502 #
503 # There are four types of statements allowed in a decode block:
504 # 1. Format blocks 'format <foo> { ... }'
505 # 2. Nested decode blocks
506 # 3. Instruction definitions.
507 # 4. C preprocessor directives.
508
509
510 # Preprocessor directives found in a decode statement list are passed
511 # through to the output, replicated to all of the output code
512 # streams. This works well for ifdefs, so we can ifdef out both the
513 # declarations and the decode cases generated by an instruction
514 # definition. Handling them as part of the grammar makes it easy to
515 # keep them in the right place with respect to the code generated by
516 # the other statements.
517 def p_decode_stmt_cpp(t):
518 'decode_stmt : CPPDIRECTIVE'
519 t[0] = GenCode(t[1], t[1], t[1], t[1])
520
521 # A format block 'format <foo> { ... }' sets the default instruction
522 # format used to handle instruction definitions inside the block.
523 # This format can be overridden by using an explicit format on the
524 # instruction definition or with a nested format block.
525 def p_decode_stmt_format(t):
526 'decode_stmt : FORMAT push_format_id LBRACE decode_stmt_list RBRACE'
527 # The format will be pushed on the stack when 'push_format_id' is
528 # processed (see below). Once the parser has recognized the full
529 # production (though the right brace), we're done with the format,
530 # so now we can pop it.
531 formatStack.pop()
532 t[0] = t[4]
533
534 # This rule exists so we can set the current format (& push the stack)
535 # when we recognize the format name part of the format block.
536 def p_push_format_id(t):
537 'push_format_id : ID'
538 try:
539 formatStack.push(formatMap[t[1]])
540 t[0] = ('', '// format %s' % t[1])
541 except KeyError:
542 error(t.lineno(1), 'instruction format "%s" not defined.' % t[1])
543
544 # Nested decode block: if the value of the current field matches the
545 # specified constant, do a nested decode on some other field.
546 def p_decode_stmt_decode(t):
547 'decode_stmt : case_label COLON decode_block'
548 label = t[1]
549 codeObj = t[3]
550 # just wrap the decoding code from the block as a case in the
551 # outer switch statement.
552 codeObj.wrap_decode_block('\n%s:\n' % label)
553 codeObj.has_decode_default = (label == 'default')
554 t[0] = codeObj
555
556 # Instruction definition (finally!).
557 def p_decode_stmt_inst(t):
558 'decode_stmt : case_label COLON inst SEMI'
559 label = t[1]
560 codeObj = t[3]
561 codeObj.wrap_decode_block('\n%s:' % label, 'break;\n')
562 codeObj.has_decode_default = (label == 'default')
563 t[0] = codeObj
564
565 # The case label is either a list of one or more constants or 'default'
566 def p_case_label_0(t):
567 'case_label : intlit_list'
568 t[0] = ': '.join(map(lambda a: 'case %#x' % a, t[1]))
569
570 def p_case_label_1(t):
571 'case_label : DEFAULT'
572 t[0] = 'default'
573
574 #
575 # The constant list for a decode case label must be non-empty, but may have
576 # one or more comma-separated integer literals in it.
577 #
578 def p_intlit_list_0(t):
579 'intlit_list : INTLIT'
580 t[0] = [t[1]]
581
582 def p_intlit_list_1(t):
583 'intlit_list : intlit_list COMMA INTLIT'
584 t[0] = t[1]
585 t[0].append(t[3])
586
587 # Define an instruction using the current instruction format (specified
588 # by an enclosing format block).
589 # "<mnemonic>(<args>)"
590 def p_inst_0(t):
591 'inst : ID LPAREN arg_list RPAREN'
592 # Pass the ID and arg list to the current format class to deal with.
593 currentFormat = formatStack.top()
594 codeObj = currentFormat.defineInst(t[1], t[3], t.lineno(1))
595 args = ','.join(map(str, t[3]))
596 args = re.sub('(?m)^', '//', args)
597 args = re.sub('^//', '', args)
598 comment = '\n// %s::%s(%s)\n' % (currentFormat.id, t[1], args)
599 codeObj.prepend_all(comment)
600 t[0] = codeObj
601
602 # Define an instruction using an explicitly specified format:
603 # "<fmt>::<mnemonic>(<args>)"
604 def p_inst_1(t):
605 'inst : ID DBLCOLON ID LPAREN arg_list RPAREN'
606 try:
607 format = formatMap[t[1]]
608 except KeyError:
609 error(t.lineno(1), 'instruction format "%s" not defined.' % t[1])
610 codeObj = format.defineInst(t[3], t[5], t.lineno(1))
611 comment = '\n// %s::%s(%s)\n' % (t[1], t[3], t[5])
612 codeObj.prepend_all(comment)
613 t[0] = codeObj
614
615 # The arg list generates a tuple, where the first element is a list of
616 # the positional args and the second element is a dict containing the
617 # keyword args.
618 def p_arg_list_0(t):
619 'arg_list : positional_arg_list COMMA keyword_arg_list'
620 t[0] = ( t[1], t[3] )
621
622 def p_arg_list_1(t):
623 'arg_list : positional_arg_list'
624 t[0] = ( t[1], {} )
625
626 def p_arg_list_2(t):
627 'arg_list : keyword_arg_list'
628 t[0] = ( [], t[1] )
629
630 def p_positional_arg_list_0(t):
631 'positional_arg_list : empty'
632 t[0] = []
633
634 def p_positional_arg_list_1(t):
635 'positional_arg_list : expr'
636 t[0] = [t[1]]
637
638 def p_positional_arg_list_2(t):
639 'positional_arg_list : positional_arg_list COMMA expr'
640 t[0] = t[1] + [t[3]]
641
642 def p_keyword_arg_list_0(t):
643 'keyword_arg_list : keyword_arg'
644 t[0] = t[1]
645
646 def p_keyword_arg_list_1(t):
647 'keyword_arg_list : keyword_arg_list COMMA keyword_arg'
648 t[0] = t[1]
649 t[0].update(t[3])
650
651 def p_keyword_arg(t):
652 'keyword_arg : ID EQUALS expr'
653 t[0] = { t[1] : t[3] }
654
655 #
656 # Basic expressions. These constitute the argument values of
657 # "function calls" (i.e. instruction definitions in the decode block)
658 # and default values for formal parameters of format functions.
659 #
660 # Right now, these are either strings, integers, or (recursively)
661 # lists of exprs (using Python square-bracket list syntax). Note that
662 # bare identifiers are trated as string constants here (since there
663 # isn't really a variable namespace to refer to).
664 #
665 def p_expr_0(t):
666 '''expr : ID
667 | INTLIT
668 | STRLIT
669 | CODELIT'''
670 t[0] = t[1]
671
672 def p_expr_1(t):
673 '''expr : LBRACKET list_expr RBRACKET'''
674 t[0] = t[2]
675
676 def p_list_expr_0(t):
677 'list_expr : expr'
678 t[0] = [t[1]]
679
680 def p_list_expr_1(t):
681 'list_expr : list_expr COMMA expr'
682 t[0] = t[1] + [t[3]]
683
684 def p_list_expr_2(t):
685 'list_expr : empty'
686 t[0] = []
687
688 #
689 # Empty production... use in other rules for readability.
690 #
691 def p_empty(t):
692 'empty :'
693 pass
694
695 # Parse error handler. Note that the argument here is the offending
696 # *token*, not a grammar symbol (hence the need to use t.value)
697 def p_error(t):
698 if t:
699 error(t.lineno, "syntax error at '%s'" % t.value)
700 else:
701 error_bt(0, "unknown syntax error")
702
703 # END OF GRAMMAR RULES
704 #
705 # Now build the parser.
706 yacc.yacc()
707
708
709 #####################################################################
710 #
711 # Support Classes
712 #
713 #####################################################################
714
715 # Expand template with CPU-specific references into a dictionary with
716 # an entry for each CPU model name. The entry key is the model name
717 # and the corresponding value is the template with the CPU-specific
718 # refs substituted for that model.
719 def expand_cpu_symbols_to_dict(template):
720 # Protect '%'s that don't go with CPU-specific terms
721 t = re.sub(r'%(?!\(CPU_)', '%%', template)
722 result = {}
723 for cpu in cpu_models:
724 result[cpu.name] = t % cpu.strings
725 return result
726
727 # *If* the template has CPU-specific references, return a single
728 # string containing a copy of the template for each CPU model with the
729 # corresponding values substituted in. If the template has no
730 # CPU-specific references, it is returned unmodified.
731 def expand_cpu_symbols_to_string(template):
732 if template.find('%(CPU_') != -1:
733 return reduce(lambda x,y: x+y,
734 expand_cpu_symbols_to_dict(template).values())
735 else:
736 return template
737
738 # Protect CPU-specific references by doubling the corresponding '%'s
739 # (in preparation for substituting a different set of references into
740 # the template).
741 def protect_cpu_symbols(template):
742 return re.sub(r'%(?=\(CPU_)', '%%', template)
743
744 ###############
745 # GenCode class
746 #
747 # The GenCode class encapsulates generated code destined for various
748 # output files. The header_output and decoder_output attributes are
749 # strings containing code destined for decoder.hh and decoder.cc
750 # respectively. The decode_block attribute contains code to be
751 # incorporated in the decode function itself (that will also end up in
752 # decoder.cc). The exec_output attribute is a dictionary with a key
753 # for each CPU model name; the value associated with a particular key
754 # is the string of code for that CPU model's exec.cc file. The
755 # has_decode_default attribute is used in the decode block to allow
756 # explicit default clauses to override default default clauses.
757
758 class GenCode:
759 # Constructor. At this point we substitute out all CPU-specific
760 # symbols. For the exec output, these go into the per-model
761 # dictionary. For all other output types they get collapsed into
762 # a single string.
763 def __init__(self,
764 header_output = '', decoder_output = '', exec_output = '',
765 decode_block = '', has_decode_default = False):
766 self.header_output = expand_cpu_symbols_to_string(header_output)
767 self.decoder_output = expand_cpu_symbols_to_string(decoder_output)
768 if isinstance(exec_output, dict):
769 self.exec_output = exec_output
770 elif isinstance(exec_output, str):
771 # If the exec_output arg is a single string, we replicate
772 # it for each of the CPU models, substituting and
773 # %(CPU_foo)s params appropriately.
774 self.exec_output = expand_cpu_symbols_to_dict(exec_output)
775 self.decode_block = expand_cpu_symbols_to_string(decode_block)
776 self.has_decode_default = has_decode_default
777
778 # Override '+' operator: generate a new GenCode object that
779 # concatenates all the individual strings in the operands.
780 def __add__(self, other):
781 exec_output = {}
782 for cpu in cpu_models:
783 n = cpu.name
784 exec_output[n] = self.exec_output[n] + other.exec_output[n]
785 return GenCode(self.header_output + other.header_output,
786 self.decoder_output + other.decoder_output,
787 exec_output,
788 self.decode_block + other.decode_block,
789 self.has_decode_default or other.has_decode_default)
790
791 # Prepend a string (typically a comment) to all the strings.
792 def prepend_all(self, pre):
793 self.header_output = pre + self.header_output
794 self.decoder_output = pre + self.decoder_output
795 self.decode_block = pre + self.decode_block
796 for cpu in cpu_models:
797 self.exec_output[cpu.name] = pre + self.exec_output[cpu.name]
798
799 # Wrap the decode block in a pair of strings (e.g., 'case foo:'
800 # and 'break;'). Used to build the big nested switch statement.
801 def wrap_decode_block(self, pre, post = ''):
802 self.decode_block = pre + indent(self.decode_block) + post
803
804 ################
805 # Format object.
806 #
807 # A format object encapsulates an instruction format. It must provide
808 # a defineInst() method that generates the code for an instruction
809 # definition.
810
811 exportContextSymbols = ('InstObjParams', 'CodeBlock',
812 'makeList', 're', 'string')
813
814 exportContext = {}
815
816 def updateExportContext():
817 exportContext.update(exportDict(*exportContextSymbols))
818 exportContext.update(templateMap)
819
820 def exportDict(*symNames):
821 return dict([(s, eval(s)) for s in symNames])
822
823
824 class Format:
825 def __init__(self, id, params, code):
826 # constructor: just save away arguments
827 self.id = id
828 self.params = params
829 label = 'def format ' + id
830 self.user_code = compile(fixPythonIndentation(code), label, 'exec')
831 param_list = string.join(params, ", ")
832 f = '''def defInst(_code, _context, %s):
833 my_locals = vars().copy()
834 exec _code in _context, my_locals
835 return my_locals\n''' % param_list
836 c = compile(f, label + ' wrapper', 'exec')
837 exec c
838 self.func = defInst
839
840 def defineInst(self, name, args, lineno):
841 context = {}
842 updateExportContext()
843 context.update(exportContext)
844 context.update({ 'name': name, 'Name': string.capitalize(name) })
845 try:
846 vars = self.func(self.user_code, context, *args[0], **args[1])
847 except Exception, exc:
848 error(lineno, 'error defining "%s": %s.' % (name, exc))
849 for k in vars.keys():
850 if k not in ('header_output', 'decoder_output',
851 'exec_output', 'decode_block'):
852 del vars[k]
853 return GenCode(**vars)
854
855 # Special null format to catch an implicit-format instruction
856 # definition outside of any format block.
857 class NoFormat:
858 def __init__(self):
859 self.defaultInst = ''
860
861 def defineInst(self, name, args, lineno):
862 error(lineno,
863 'instruction definition "%s" with no active format!' % name)
864
865 # This dictionary maps format name strings to Format objects.
866 formatMap = {}
867
868 # Define a new format
869 def defFormat(id, params, code, lineno):
870 # make sure we haven't already defined this one
871 if formatMap.get(id, None) != None:
872 error(lineno, 'format %s redefined.' % id)
873 # create new object and store in global map
874 formatMap[id] = Format(id, params, code)
875
876
877 ##############
878 # Stack: a simple stack object. Used for both formats (formatStack)
879 # and default cases (defaultStack). Simply wraps a list to give more
880 # stack-like syntax and enable initialization with an argument list
881 # (as opposed to an argument that's a list).
882
883 class Stack(list):
884 def __init__(self, *items):
885 list.__init__(self, items)
886
887 def push(self, item):
888 self.append(item);
889
890 def top(self):
891 return self[-1]
892
893 # The global format stack.
894 formatStack = Stack(NoFormat())
895
896 # The global default case stack.
897 defaultStack = Stack( None )
898
899 ###################
900 # Utility functions
901
902 #
903 # Indent every line in string 's' by two spaces
904 # (except preprocessor directives).
905 # Used to make nested code blocks look pretty.
906 #
907 def indent(s):
908 return re.sub(r'(?m)^(?!#)', ' ', s)
909
910 #
911 # Munge a somewhat arbitrarily formatted piece of Python code
912 # (e.g. from a format 'let' block) into something whose indentation
913 # will get by the Python parser.
914 #
915 # The two keys here are that Python will give a syntax error if
916 # there's any whitespace at the beginning of the first line, and that
917 # all lines at the same lexical nesting level must have identical
918 # indentation. Unfortunately the way code literals work, an entire
919 # let block tends to have some initial indentation. Rather than
920 # trying to figure out what that is and strip it off, we prepend 'if
921 # 1:' to make the let code the nested block inside the if (and have
922 # the parser automatically deal with the indentation for us).
923 #
924 # We don't want to do this if (1) the code block is empty or (2) the
925 # first line of the block doesn't have any whitespace at the front.
926
927 def fixPythonIndentation(s):
928 # get rid of blank lines first
929 s = re.sub(r'(?m)^\s*\n', '', s);
930 if (s != '' and re.match(r'[ \t]', s[0])):
931 s = 'if 1:\n' + s
932 return s
933
934 # Error handler. Just call exit. Output formatted to work under
935 # Emacs compile-mode. This function should be called when errors due
936 # to user input are detected (as opposed to parser bugs).
937 def error(lineno, string):
938 spaces = ""
939 for (filename, line) in fileNameStack[0:-1]:
940 print spaces + "In file included from " + filename
941 spaces += " "
942 # Uncomment the following line to get a Python stack backtrace for
943 # these errors too. Can be handy when trying to debug the parser.
944 # traceback.print_exc()
945 sys.exit(spaces + "%s:%d: %s" % (fileNameStack[-1][0], lineno, string))
946
947 # Like error(), but include a Python stack backtrace (for processing
948 # Python exceptions). This function should be called for errors that
949 # appear to be bugs in the parser itself.
950 def error_bt(lineno, string):
951 traceback.print_exc()
952 print >> sys.stderr, "%s:%d: %s" % (input_filename, lineno, string)
953 sys.exit(1)
954
955
956 #####################################################################
957 #
958 # Bitfield Operator Support
959 #
960 #####################################################################
961
962 bitOp1ArgRE = re.compile(r'<\s*(\w+)\s*:\s*>')
963
964 bitOpWordRE = re.compile(r'(?<![\w\.])([\w\.]+)<\s*(\w+)\s*:\s*(\w+)\s*>')
965 bitOpExprRE = re.compile(r'\)<\s*(\w+)\s*:\s*(\w+)\s*>')
966
967 def substBitOps(code):
968 # first convert single-bit selectors to two-index form
969 # i.e., <n> --> <n:n>
970 code = bitOp1ArgRE.sub(r'<\1:\1>', code)
971 # simple case: selector applied to ID (name)
972 # i.e., foo<a:b> --> bits(foo, a, b)
973 code = bitOpWordRE.sub(r'bits(\1, \2, \3)', code)
974 # if selector is applied to expression (ending in ')'),
975 # we need to search backward for matching '('
976 match = bitOpExprRE.search(code)
977 while match:
978 exprEnd = match.start()
979 here = exprEnd - 1
980 nestLevel = 1
981 while nestLevel > 0:
982 if code[here] == '(':
983 nestLevel -= 1
984 elif code[here] == ')':
985 nestLevel += 1
986 here -= 1
987 if here < 0:
988 sys.exit("Didn't find '('!")
989 exprStart = here+1
990 newExpr = r'bits(%s, %s, %s)' % (code[exprStart:exprEnd+1],
991 match.group(1), match.group(2))
992 code = code[:exprStart] + newExpr + code[match.end():]
993 match = bitOpExprRE.search(code)
994 return code
995
996
997 ####################
998 # Template objects.
999 #
1000 # Template objects are format strings that allow substitution from
1001 # the attribute spaces of other objects (e.g. InstObjParams instances).
1002
1003 class Template:
1004 def __init__(self, t):
1005 self.template = t
1006
1007 def subst(self, d):
1008 # Start with the template namespace. Make a copy since we're
1009 # going to modify it.
1010 myDict = templateMap.copy()
1011 # if the argument is a dictionary, we just use it.
1012 if isinstance(d, dict):
1013 myDict.update(d)
1014 # if the argument is an object, we use its attribute map.
1015 elif hasattr(d, '__dict__'):
1016 myDict.update(d.__dict__)
1017 else:
1018 raise TypeError, "Template.subst() arg must be or have dictionary"
1019 # Protect non-Python-dict substitutions (e.g. if there's a printf
1020 # in the templated C++ code)
1021 template = protect_non_subst_percents(self.template)
1022 # CPU-model-specific substitutions are handled later (in GenCode).
1023 template = protect_cpu_symbols(template)
1024 return template % myDict
1025
1026 # Convert to string. This handles the case when a template with a
1027 # CPU-specific term gets interpolated into another template or into
1028 # an output block.
1029 def __str__(self):
1030 return expand_cpu_symbols_to_string(self.template)
1031
1032 #####################################################################
1033 #
1034 # Code Parser
1035 #
1036 # The remaining code is the support for automatically extracting
1037 # instruction characteristics from pseudocode.
1038 #
1039 #####################################################################
1040
1041 # Force the argument to be a list. Useful for flags, where a caller
1042 # can specify a singleton flag or a list of flags. Also usful for
1043 # converting tuples to lists so they can be modified.
1044 def makeList(arg):
1045 if isinstance(arg, list):
1046 return arg
1047 elif isinstance(arg, tuple):
1048 return list(arg)
1049 elif not arg:
1050 return []
1051 else:
1052 return [ arg ]
1053
1054 # Generate operandTypeMap from the user's 'def operand_types'
1055 # statement.
1056 def buildOperandTypeMap(userDict, lineno):
1057 global operandTypeMap
1058 operandTypeMap = {}
1059 for (ext, (desc, size)) in userDict.iteritems():
1060 if desc == 'signed int':
1061 ctype = 'int%d_t' % size
1062 is_signed = 1
1063 elif desc == 'unsigned int':
1064 ctype = 'uint%d_t' % size
1065 is_signed = 0
1066 elif desc == 'float':
1067 is_signed = 1 # shouldn't really matter
1068 if size == 32:
1069 ctype = 'float'
1070 elif size == 64:
1071 ctype = 'double'
1072 if ctype == '':
1073 error(0, 'Unrecognized type description "%s" in userDict')
1074 operandTypeMap[ext] = (size, ctype, is_signed)
1075
1076 #
1077 #
1078 #
1079 # Base class for operand descriptors. An instance of this class (or
1080 # actually a class derived from this one) represents a specific
1081 # operand for a code block (e.g, "Rc.sq" as a dest). Intermediate
1082 # derived classes encapsulates the traits of a particular operand type
1083 # (e.g., "32-bit integer register").
1084 #
1085 class Operand(object):
1086 def __init__(self, full_name, ext, is_src, is_dest):
1087 self.full_name = full_name
1088 self.ext = ext
1089 self.is_src = is_src
1090 self.is_dest = is_dest
1091 # The 'effective extension' (eff_ext) is either the actual
1092 # extension, if one was explicitly provided, or the default.
1093 if ext:
1094 self.eff_ext = ext
1095 else:
1096 self.eff_ext = self.dflt_ext
1097
1098 (self.size, self.ctype, self.is_signed) = operandTypeMap[self.eff_ext]
1099
1100 # note that mem_acc_size is undefined for non-mem operands...
1101 # template must be careful not to use it if it doesn't apply.
1102 if self.isMem():
1103 self.mem_acc_size = self.makeAccSize()
1104 self.mem_acc_type = self.ctype
1105
1106 # Finalize additional fields (primarily code fields). This step
1107 # is done separately since some of these fields may depend on the
1108 # register index enumeration that hasn't been performed yet at the
1109 # time of __init__().
1110 def finalize(self):
1111 self.flags = self.getFlags()
1112 self.constructor = self.makeConstructor()
1113 self.op_decl = self.makeDecl()
1114
1115 if self.is_src:
1116 self.op_rd = self.makeRead()
1117 self.op_src_decl = self.makeDecl()
1118 else:
1119 self.op_rd = ''
1120 self.op_src_decl = ''
1121
1122 if self.is_dest:
1123 self.op_wb = self.makeWrite()
1124 self.op_dest_decl = self.makeDecl()
1125 else:
1126 self.op_wb = ''
1127 self.op_dest_decl = ''
1128
1129 def isMem(self):
1130 return 0
1131
1132 def isReg(self):
1133 return 0
1134
1135 def isFloatReg(self):
1136 return 0
1137
1138 def isIntReg(self):
1139 return 0
1140
1141 def isControlReg(self):
1142 return 0
1143
1144 def getFlags(self):
1145 # note the empty slice '[:]' gives us a copy of self.flags[0]
1146 # instead of a reference to it
1147 my_flags = self.flags[0][:]
1148 if self.is_src:
1149 my_flags += self.flags[1]
1150 if self.is_dest:
1151 my_flags += self.flags[2]
1152 return my_flags
1153
1154 def makeDecl(self):
1155 # Note that initializations in the declarations are solely
1156 # to avoid 'uninitialized variable' errors from the compiler.
1157 return self.ctype + ' ' + self.base_name + ' = 0;\n';
1158
1159 class IntRegOperand(Operand):
1160 def isReg(self):
1161 return 1
1162
1163 def isIntReg(self):
1164 return 1
1165
1166 def makeConstructor(self):
1167 c = ''
1168 if self.is_src:
1169 c += '\n\t_srcRegIdx[%d] = %s;' % \
1170 (self.src_reg_idx, self.reg_spec)
1171 if self.is_dest:
1172 c += '\n\t_destRegIdx[%d] = %s;' % \
1173 (self.dest_reg_idx, self.reg_spec)
1174 return c
1175
1176 def makeRead(self):
1177 if (self.ctype == 'float' or self.ctype == 'double'):
1178 error(0, 'Attempt to read integer register as FP')
1179 if (self.size == self.dflt_size):
1180 return '%s = xc->readIntReg(this, %d);\n' % \
1181 (self.base_name, self.src_reg_idx)
1182 else:
1183 return '%s = bits(xc->readIntReg(this, %d), %d, 0);\n' % \
1184 (self.base_name, self.src_reg_idx, self.size-1)
1185
1186 def makeWrite(self):
1187 if (self.ctype == 'float' or self.ctype == 'double'):
1188 error(0, 'Attempt to write integer register as FP')
1189 if (self.size != self.dflt_size and self.is_signed):
1190 final_val = 'sext<%d>(%s)' % (self.size, self.base_name)
1191 else:
1192 final_val = self.base_name
1193 wb = '''
1194 {
1195 %s final_val = %s;
1196 xc->setIntReg(this, %d, final_val);\n
1197 if (traceData) { traceData->setData(final_val); }
1198 }''' % (self.dflt_ctype, final_val, self.dest_reg_idx)
1199 return wb
1200
1201 class FloatRegOperand(Operand):
1202 def isReg(self):
1203 return 1
1204
1205 def isFloatReg(self):
1206 return 1
1207
1208 def makeConstructor(self):
1209 c = ''
1210 if self.is_src:
1211 c += '\n\t_srcRegIdx[%d] = %s + FP_Base_DepTag;' % \
1212 (self.src_reg_idx, self.reg_spec)
1213 if self.is_dest:
1214 c += '\n\t_destRegIdx[%d] = %s + FP_Base_DepTag;' % \
1215 (self.dest_reg_idx, self.reg_spec)
1216 return c
1217
1218 def makeRead(self):
1219 bit_select = 0
1220 if (self.ctype == 'float'):
1221 func = 'readFloatRegSingle'
1222 elif (self.ctype == 'double'):
1223 func = 'readFloatRegDouble'
1224 else:
1225 func = 'readFloatRegInt'
1226 if (self.size != self.dflt_size):
1227 bit_select = 1
1228 base = 'xc->%s(this, %d)' % \
1229 (func, self.src_reg_idx)
1230 if bit_select:
1231 return '%s = bits(%s, %d, 0);\n' % \
1232 (self.base_name, base, self.size-1)
1233 else:
1234 return '%s = %s;\n' % (self.base_name, base)
1235
1236 def makeWrite(self):
1237 final_val = self.base_name
1238 final_ctype = self.ctype
1239 if (self.ctype == 'float'):
1240 func = 'setFloatRegSingle'
1241 elif (self.ctype == 'double'):
1242 func = 'setFloatRegDouble'
1243 else:
1244 func = 'setFloatRegInt'
1245 final_ctype = 'uint%d_t' % self.dflt_size
1246 if (self.size != self.dflt_size and self.is_signed):
1247 final_val = 'sext<%d>(%s)' % (self.size, self.base_name)
1248 wb = '''
1249 {
1250 %s final_val = %s;
1251 xc->%s(this, %d, final_val);\n
1252 if (traceData) { traceData->setData(final_val); }
1253 }''' % (final_ctype, final_val, func, self.dest_reg_idx)
1254 return wb
1255
1256 class ControlRegOperand(Operand):
1257 def isReg(self):
1258 return 1
1259
1260 def isControlReg(self):
1261 return 1
1262
1263 def makeConstructor(self):
1264 c = ''
1265 if self.is_src:
1266 c += '\n\t_srcRegIdx[%d] = %s;' % \
1267 (self.src_reg_idx, self.reg_spec)
1268 if self.is_dest:
1269 c += '\n\t_destRegIdx[%d] = %s;' % \
1270 (self.dest_reg_idx, self.reg_spec)
1271 return c
1272
1273 def makeRead(self):
1274 bit_select = 0
1275 if (self.ctype == 'float' or self.ctype == 'double'):
1276 error(0, 'Attempt to read control register as FP')
1277 base = 'xc->readMiscReg(%s)' % self.reg_spec
1278 if self.size == self.dflt_size:
1279 return '%s = %s;\n' % (self.base_name, base)
1280 else:
1281 return '%s = bits(%s, %d, 0);\n' % \
1282 (self.base_name, base, self.size-1)
1283
1284 def makeWrite(self):
1285 if (self.ctype == 'float' or self.ctype == 'double'):
1286 error(0, 'Attempt to write control register as FP')
1287 wb = 'xc->setMiscReg(%s, %s);\n' % (self.reg_spec, self.base_name)
1288 wb += 'if (traceData) { traceData->setData(%s); }' % \
1289 self.base_name
1290 return wb
1291
1292 class MemOperand(Operand):
1293 def isMem(self):
1294 return 1
1295
1296 def makeConstructor(self):
1297 return ''
1298
1299 def makeDecl(self):
1300 # Note that initializations in the declarations are solely
1301 # to avoid 'uninitialized variable' errors from the compiler.
1302 # Declare memory data variable.
1303 c = '%s %s = 0;\n' % (self.ctype, self.base_name)
1304 return c
1305
1306 def makeRead(self):
1307 return ''
1308
1309 def makeWrite(self):
1310 return ''
1311
1312 # Return the memory access size *in bits*, suitable for
1313 # forming a type via "uint%d_t". Divide by 8 if you want bytes.
1314 def makeAccSize(self):
1315 return self.size
1316
1317
1318 class NPCOperand(Operand):
1319 def makeConstructor(self):
1320 return ''
1321
1322 def makeRead(self):
1323 return '%s = xc->readPC() + 4;\n' % self.base_name
1324
1325 def makeWrite(self):
1326 return 'xc->setNextPC(%s);\n' % self.base_name
1327
1328 class NNPCOperand(Operand):
1329 def makeConstructor(self):
1330 return ''
1331
1332 def makeRead(self):
1333 return '%s = xc->readPC() + 8;\n' % self.base_name
1334
1335 def makeWrite(self):
1336 return 'xc->setNextNPC(%s);\n' % self.base_name
1337
1338 def buildOperandNameMap(userDict, lineno):
1339 global operandNameMap
1340 operandNameMap = {}
1341 for (op_name, val) in userDict.iteritems():
1342 (base_cls_name, dflt_ext, reg_spec, flags, sort_pri) = val
1343 (dflt_size, dflt_ctype, dflt_is_signed) = operandTypeMap[dflt_ext]
1344 # Canonical flag structure is a triple of lists, where each list
1345 # indicates the set of flags implied by this operand always, when
1346 # used as a source, and when used as a dest, respectively.
1347 # For simplicity this can be initialized using a variety of fairly
1348 # obvious shortcuts; we convert these to canonical form here.
1349 if not flags:
1350 # no flags specified (e.g., 'None')
1351 flags = ( [], [], [] )
1352 elif isinstance(flags, str):
1353 # a single flag: assumed to be unconditional
1354 flags = ( [ flags ], [], [] )
1355 elif isinstance(flags, list):
1356 # a list of flags: also assumed to be unconditional
1357 flags = ( flags, [], [] )
1358 elif isinstance(flags, tuple):
1359 # it's a tuple: it should be a triple,
1360 # but each item could be a single string or a list
1361 (uncond_flags, src_flags, dest_flags) = flags
1362 flags = (makeList(uncond_flags),
1363 makeList(src_flags), makeList(dest_flags))
1364 # Accumulate attributes of new operand class in tmp_dict
1365 tmp_dict = {}
1366 for attr in ('dflt_ext', 'reg_spec', 'flags', 'sort_pri',
1367 'dflt_size', 'dflt_ctype', 'dflt_is_signed'):
1368 tmp_dict[attr] = eval(attr)
1369 tmp_dict['base_name'] = op_name
1370 # New class name will be e.g. "IntReg_Ra"
1371 cls_name = base_cls_name + '_' + op_name
1372 # Evaluate string arg to get class object. Note that the
1373 # actual base class for "IntReg" is "IntRegOperand", i.e. we
1374 # have to append "Operand".
1375 try:
1376 base_cls = eval(base_cls_name + 'Operand')
1377 except NameError:
1378 error(lineno,
1379 'error: unknown operand base class "%s"' % base_cls_name)
1380 # The following statement creates a new class called
1381 # <cls_name> as a subclass of <base_cls> with the attributes
1382 # in tmp_dict, just as if we evaluated a class declaration.
1383 operandNameMap[op_name] = type(cls_name, (base_cls,), tmp_dict)
1384
1385 # Define operand variables.
1386 operands = userDict.keys()
1387
1388 operandsREString = (r'''
1389 (?<![\w\.]) # neg. lookbehind assertion: prevent partial matches
1390 ((%s)(?:\.(\w+))?) # match: operand with optional '.' then suffix
1391 (?![\w\.]) # neg. lookahead assertion: prevent partial matches
1392 '''
1393 % string.join(operands, '|'))
1394
1395 global operandsRE
1396 operandsRE = re.compile(operandsREString, re.MULTILINE|re.VERBOSE)
1397
1398 # Same as operandsREString, but extension is mandatory, and only two
1399 # groups are returned (base and ext, not full name as above).
1400 # Used for subtituting '_' for '.' to make C++ identifiers.
1401 operandsWithExtREString = (r'(?<![\w\.])(%s)\.(\w+)(?![\w\.])'
1402 % string.join(operands, '|'))
1403
1404 global operandsWithExtRE
1405 operandsWithExtRE = re.compile(operandsWithExtREString, re.MULTILINE)
1406
1407
1408 class OperandList:
1409
1410 # Find all the operands in the given code block. Returns an operand
1411 # descriptor list (instance of class OperandList).
1412 def __init__(self, code):
1413 self.items = []
1414 self.bases = {}
1415 # delete comments so we don't match on reg specifiers inside
1416 code = commentRE.sub('', code)
1417 # search for operands
1418 next_pos = 0
1419 while 1:
1420 match = operandsRE.search(code, next_pos)
1421 if not match:
1422 # no more matches: we're done
1423 break
1424 op = match.groups()
1425 # regexp groups are operand full name, base, and extension
1426 (op_full, op_base, op_ext) = op
1427 # if the token following the operand is an assignment, this is
1428 # a destination (LHS), else it's a source (RHS)
1429 is_dest = (assignRE.match(code, match.end()) != None)
1430 is_src = not is_dest
1431 # see if we've already seen this one
1432 op_desc = self.find_base(op_base)
1433 if op_desc:
1434 if op_desc.ext != op_ext:
1435 error(0, 'Inconsistent extensions for operand %s' % \
1436 op_base)
1437 op_desc.is_src = op_desc.is_src or is_src
1438 op_desc.is_dest = op_desc.is_dest or is_dest
1439 else:
1440 # new operand: create new descriptor
1441 op_desc = operandNameMap[op_base](op_full, op_ext,
1442 is_src, is_dest)
1443 self.append(op_desc)
1444 # start next search after end of current match
1445 next_pos = match.end()
1446 self.sort()
1447 # enumerate source & dest register operands... used in building
1448 # constructor later
1449 self.numSrcRegs = 0
1450 self.numDestRegs = 0
1451 self.numFPDestRegs = 0
1452 self.numIntDestRegs = 0
1453 self.memOperand = None
1454 for op_desc in self.items:
1455 if op_desc.isReg():
1456 if op_desc.is_src:
1457 op_desc.src_reg_idx = self.numSrcRegs
1458 self.numSrcRegs += 1
1459 if op_desc.is_dest:
1460 op_desc.dest_reg_idx = self.numDestRegs
1461 self.numDestRegs += 1
1462 if op_desc.isFloatReg():
1463 self.numFPDestRegs += 1
1464 elif op_desc.isIntReg():
1465 self.numIntDestRegs += 1
1466 elif op_desc.isMem():
1467 if self.memOperand:
1468 error(0, "Code block has more than one memory operand.")
1469 self.memOperand = op_desc
1470 # now make a final pass to finalize op_desc fields that may depend
1471 # on the register enumeration
1472 for op_desc in self.items:
1473 op_desc.finalize()
1474
1475 def __len__(self):
1476 return len(self.items)
1477
1478 def __getitem__(self, index):
1479 return self.items[index]
1480
1481 def append(self, op_desc):
1482 self.items.append(op_desc)
1483 self.bases[op_desc.base_name] = op_desc
1484
1485 def find_base(self, base_name):
1486 # like self.bases[base_name], but returns None if not found
1487 # (rather than raising exception)
1488 return self.bases.get(base_name)
1489
1490 # internal helper function for concat[Some]Attr{Strings|Lists}
1491 def __internalConcatAttrs(self, attr_name, filter, result):
1492 for op_desc in self.items:
1493 if filter(op_desc):
1494 result += getattr(op_desc, attr_name)
1495 return result
1496
1497 # return a single string that is the concatenation of the (string)
1498 # values of the specified attribute for all operands
1499 def concatAttrStrings(self, attr_name):
1500 return self.__internalConcatAttrs(attr_name, lambda x: 1, '')
1501
1502 # like concatAttrStrings, but only include the values for the operands
1503 # for which the provided filter function returns true
1504 def concatSomeAttrStrings(self, filter, attr_name):
1505 return self.__internalConcatAttrs(attr_name, filter, '')
1506
1507 # return a single list that is the concatenation of the (list)
1508 # values of the specified attribute for all operands
1509 def concatAttrLists(self, attr_name):
1510 return self.__internalConcatAttrs(attr_name, lambda x: 1, [])
1511
1512 # like concatAttrLists, but only include the values for the operands
1513 # for which the provided filter function returns true
1514 def concatSomeAttrLists(self, filter, attr_name):
1515 return self.__internalConcatAttrs(attr_name, filter, [])
1516
1517 def sort(self):
1518 self.items.sort(lambda a, b: a.sort_pri - b.sort_pri)
1519
1520 # Regular expression object to match C++ comments
1521 # (used in findOperands())
1522 commentRE = re.compile(r'//.*\n')
1523
1524 # Regular expression object to match assignment statements
1525 # (used in findOperands())
1526 assignRE = re.compile(r'\s*=(?!=)', re.MULTILINE)
1527
1528 # Munge operand names in code string to make legal C++ variable names.
1529 # This means getting rid of the type extension if any.
1530 # (Will match base_name attribute of Operand object.)
1531 def substMungedOpNames(code):
1532 return operandsWithExtRE.sub(r'\1', code)
1533
1534 def joinLists(t):
1535 return map(string.join, t)
1536
1537 def makeFlagConstructor(flag_list):
1538 if len(flag_list) == 0:
1539 return ''
1540 # filter out repeated flags
1541 flag_list.sort()
1542 i = 1
1543 while i < len(flag_list):
1544 if flag_list[i] == flag_list[i-1]:
1545 del flag_list[i]
1546 else:
1547 i += 1
1548 pre = '\n\tflags['
1549 post = '] = true;'
1550 code = pre + string.join(flag_list, post + pre) + post
1551 return code
1552
1553 class CodeBlock:
1554 def __init__(self, code):
1555 self.orig_code = code
1556 self.operands = OperandList(code)
1557 self.code = substMungedOpNames(substBitOps(code))
1558 self.constructor = self.operands.concatAttrStrings('constructor')
1559 self.constructor += \
1560 '\n\t_numSrcRegs = %d;' % self.operands.numSrcRegs
1561 self.constructor += \
1562 '\n\t_numDestRegs = %d;' % self.operands.numDestRegs
1563 self.constructor += \
1564 '\n\t_numFPDestRegs = %d;' % self.operands.numFPDestRegs
1565 self.constructor += \
1566 '\n\t_numIntDestRegs = %d;' % self.operands.numIntDestRegs
1567
1568 self.op_decl = self.operands.concatAttrStrings('op_decl')
1569
1570 is_src = lambda op: op.is_src
1571 is_dest = lambda op: op.is_dest
1572
1573 self.op_src_decl = \
1574 self.operands.concatSomeAttrStrings(is_src, 'op_src_decl')
1575 self.op_dest_decl = \
1576 self.operands.concatSomeAttrStrings(is_dest, 'op_dest_decl')
1577
1578 self.op_rd = self.operands.concatAttrStrings('op_rd')
1579 self.op_wb = self.operands.concatAttrStrings('op_wb')
1580
1581 self.flags = self.operands.concatAttrLists('flags')
1582
1583 if self.operands.memOperand:
1584 self.mem_acc_size = self.operands.memOperand.mem_acc_size
1585 self.mem_acc_type = self.operands.memOperand.mem_acc_type
1586
1587 # Make a basic guess on the operand class (function unit type).
1588 # These are good enough for most cases, and will be overridden
1589 # later otherwise.
1590 if 'IsStore' in self.flags:
1591 self.op_class = 'MemWriteOp'
1592 elif 'IsLoad' in self.flags or 'IsPrefetch' in self.flags:
1593 self.op_class = 'MemReadOp'
1594 elif 'IsFloating' in self.flags:
1595 self.op_class = 'FloatAddOp'
1596 else:
1597 self.op_class = 'IntAluOp'
1598
1599 # Assume all instruction flags are of the form 'IsFoo'
1600 instFlagRE = re.compile(r'Is.*')
1601
1602 # OpClass constants end in 'Op' except No_OpClass
1603 opClassRE = re.compile(r'.*Op|No_OpClass')
1604
1605 class InstObjParams:
1606 def __init__(self, mnem, class_name, base_class = '',
1607 code_block = None, opt_args = []):
1608 self.mnemonic = mnem
1609 self.class_name = class_name
1610 self.base_class = base_class
1611 if code_block:
1612 for code_attr in code_block.__dict__.keys():
1613 setattr(self, code_attr, getattr(code_block, code_attr))
1614 else:
1615 self.constructor = ''
1616 self.flags = []
1617 # Optional arguments are assumed to be either StaticInst flags
1618 # or an OpClass value. To avoid having to import a complete
1619 # list of these values to match against, we do it ad-hoc
1620 # with regexps.
1621 for oa in opt_args:
1622 if instFlagRE.match(oa):
1623 self.flags.append(oa)
1624 elif opClassRE.match(oa):
1625 self.op_class = oa
1626 else:
1627 error(0, 'InstObjParams: optional arg "%s" not recognized '
1628 'as StaticInst::Flag or OpClass.' % oa)
1629
1630 # add flag initialization to contructor here to include
1631 # any flags added via opt_args
1632 self.constructor += makeFlagConstructor(self.flags)
1633
1634 # if 'IsFloating' is set, add call to the FP enable check
1635 # function (which should be provided by isa_desc via a declare)
1636 if 'IsFloating' in self.flags:
1637 self.fp_enable_check = 'fault = checkFpEnableFault(xc);'
1638 else:
1639 self.fp_enable_check = ''
1640
1641 #######################
1642 #
1643 # Output file template
1644 #
1645
1646 file_template = '''
1647 /*
1648 * DO NOT EDIT THIS FILE!!!
1649 *
1650 * It was automatically generated from the ISA description in %(filename)s
1651 */
1652
1653 %(includes)s
1654
1655 %(global_output)s
1656
1657 namespace %(namespace)s {
1658
1659 %(namespace_output)s
1660
1661 } // namespace %(namespace)s
1662
1663 %(decode_function)s
1664 '''
1665
1666
1667 # Update the output file only if the new contents are different from
1668 # the current contents. Minimizes the files that need to be rebuilt
1669 # after minor changes.
1670 def update_if_needed(file, contents):
1671 update = False
1672 if os.access(file, os.R_OK):
1673 f = open(file, 'r')
1674 old_contents = f.read()
1675 f.close()
1676 if contents != old_contents:
1677 print 'Updating', file
1678 os.remove(file) # in case it's write-protected
1679 update = True
1680 else:
1681 print 'File', file, 'is unchanged'
1682 else:
1683 print 'Generating', file
1684 update = True
1685 if update:
1686 f = open(file, 'w')
1687 f.write(contents)
1688 f.close()
1689
1690 # This regular expression matches include directives
1691 includeRE = re.compile(r'^\s*##include\s+"(?P<filename>[\w/.-]*)".*$',
1692 re.MULTILINE)
1693
1694 def preprocess_isa_desc(isa_desc):
1695 # Find any includes and include them
1696 pos = 0
1697 while 1:
1698 m = includeRE.search(isa_desc, pos)
1699 if not m:
1700 break
1701 filename = m.group('filename')
1702 print 'Including file "%s"' % filename
1703 try:
1704 isa_desc = isa_desc[:m.start()] + \
1705 '##newfile "' + filename + '"\n' + \
1706 open(filename).read() + \
1707 '##endfile\n' + \
1708 isa_desc[m.end():]
1709 except IOError:
1710 error(0, 'Error including file "%s"' % (filename))
1711 pos = m.start()
1712 return isa_desc
1713
1714 #
1715 # Read in and parse the ISA description.
1716 #
1717 def parse_isa_desc(isa_desc_file, output_dir):
1718 # set a global var for the input filename... used in error messages
1719 global input_filename
1720 input_filename = isa_desc_file
1721 global fileNameStack
1722 fileNameStack = [(input_filename, 1)]
1723
1724 # Suck the ISA description file in.
1725 input = open(isa_desc_file)
1726 isa_desc = input.read()
1727 input.close()
1728
1729 # Perform Preprocessing
1730 isa_desc = preprocess_isa_desc(isa_desc)
1731
1732 # Parse it.
1733 (isa_name, namespace, global_code, namespace_code) = yacc.parse(isa_desc)
1734
1735 # grab the last three path components of isa_desc_file to put in
1736 # the output
1737 filename = '/'.join(isa_desc_file.split('/')[-3:])
1738
1739 # generate decoder.hh
1740 includes = '#include "base/bitfield.hh" // for bitfield support'
1741 global_output = global_code.header_output
1742 namespace_output = namespace_code.header_output
1743 decode_function = ''
1744 update_if_needed(output_dir + '/decoder.hh', file_template % vars())
1745
1746 # generate decoder.cc
1747 includes = '#include "decoder.hh"'
1748 global_output = global_code.decoder_output
1749 namespace_output = namespace_code.decoder_output
1750 # namespace_output += namespace_code.decode_block
1751 decode_function = namespace_code.decode_block
1752 update_if_needed(output_dir + '/decoder.cc', file_template % vars())
1753
1754 # generate per-cpu exec files
1755 for cpu in cpu_models:
1756 includes = '#include "decoder.hh"\n'
1757 includes += cpu.includes
1758 global_output = global_code.exec_output[cpu.name]
1759 namespace_output = namespace_code.exec_output[cpu.name]
1760 decode_function = ''
1761 update_if_needed(output_dir + '/' + cpu.filename,
1762 file_template % vars())
1763
1764 # global list of CpuModel objects (see cpu_models.py)
1765 cpu_models = []
1766
1767 # Called as script: get args from command line.
1768 # Args are: <path to cpu_models.py> <isa desc file> <output dir> <cpu models>
1769 if __name__ == '__main__':
1770 execfile(sys.argv[1]) # read in CpuModel definitions
1771 cpu_models = [CpuModel.dict[cpu] for cpu in sys.argv[4:]]
1772 parse_isa_desc(sys.argv[2], sys.argv[3])