Merge zizzer:/bk/m5
[gem5.git] / arch / isa_parser.py
1 #! /usr/bin/env python
2
3 # Copyright (c) 2003-2005 The Regents of The University of Michigan
4 # All rights reserved.
5 #
6 # Redistribution and use in source and binary forms, with or without
7 # modification, are permitted provided that the following conditions are
8 # met: redistributions of source code must retain the above copyright
9 # notice, this list of conditions and the following disclaimer;
10 # redistributions in binary form must reproduce the above copyright
11 # notice, this list of conditions and the following disclaimer in the
12 # documentation and/or other materials provided with the distribution;
13 # neither the name of the copyright holders nor the names of its
14 # contributors may be used to endorse or promote products derived from
15 # this software without specific prior written permission.
16 #
17 # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18 # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19 # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
20 # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
21 # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
22 # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
23 # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28
29 import os
30 import sys
31 import re
32 import string
33 import traceback
34 # get type names
35 from types import *
36
37 # Prepend the directory where the PLY lex & yacc modules are found
38 # to the search path. Assumes we're compiling in a subdirectory
39 # of 'build' in the current tree.
40 sys.path[0:0] = [os.environ['M5_EXT'] + '/ply']
41
42 import lex
43 import yacc
44
45 #####################################################################
46 #
47 # Lexer
48 #
49 # The PLY lexer module takes two things as input:
50 # - A list of token names (the string list 'tokens')
51 # - A regular expression describing a match for each token. The
52 # regexp for token FOO can be provided in two ways:
53 # - as a string variable named t_FOO
54 # - as the doc string for a function named t_FOO. In this case,
55 # the function is also executed, allowing an action to be
56 # associated with each token match.
57 #
58 #####################################################################
59
60 # Reserved words. These are listed separately as they are matched
61 # using the same regexp as generic IDs, but distinguished in the
62 # t_ID() function. The PLY documentation suggests this approach.
63 reserved = (
64 'BITFIELD', 'DECODE', 'DECODER', 'DEFAULT', 'DEF', 'EXEC', 'FORMAT',
65 'HEADER', 'LET', 'NAMESPACE', 'OPERAND_TYPES', 'OPERANDS',
66 'OUTPUT', 'SIGNED', 'TEMPLATE'
67 )
68
69 # List of tokens. The lex module requires this.
70 tokens = reserved + (
71 # identifier
72 'ID',
73
74 # integer literal
75 'INTLIT',
76
77 # string literal
78 'STRLIT',
79
80 # code literal
81 'CODELIT',
82
83 # ( ) [ ] { } < > , ; : :: *
84 'LPAREN', 'RPAREN',
85 # not used any more... commented out to suppress PLY warning
86 # 'LBRACKET', 'RBRACKET',
87 'LBRACE', 'RBRACE',
88 'LESS', 'GREATER',
89 'COMMA', 'SEMI', 'COLON', 'DBLCOLON',
90 'ASTERISK',
91
92 # C preprocessor directives
93 'CPPDIRECTIVE'
94 )
95
96 # Regular expressions for token matching
97 t_LPAREN = r'\('
98 t_RPAREN = r'\)'
99 # not used any more... commented out to suppress PLY warning
100 # t_LBRACKET = r'\['
101 # t_RBRACKET = r'\]'
102 t_LBRACE = r'\{'
103 t_RBRACE = r'\}'
104 t_LESS = r'\<'
105 t_GREATER = r'\>'
106 t_COMMA = r','
107 t_SEMI = r';'
108 t_COLON = r':'
109 t_DBLCOLON = r'::'
110 t_ASTERISK = r'\*'
111
112 # Identifiers and reserved words
113 reserved_map = { }
114 for r in reserved:
115 reserved_map[r.lower()] = r
116
117 def t_ID(t):
118 r'[A-Za-z_]\w*'
119 t.type = reserved_map.get(t.value,'ID')
120 return t
121
122 # Integer literal
123 def t_INTLIT(t):
124 r'(0x[\da-fA-F]+)|\d+'
125 try:
126 t.value = int(t.value,0)
127 except ValueError:
128 error(t.lineno, 'Integer value "%s" too large' % t.value)
129 t.value = 0
130 return t
131
132 # String literal. Note that these use only single quotes, and
133 # can span multiple lines.
134 def t_STRLIT(t):
135 r"(?m)'([^'])+'"
136 # strip off quotes
137 t.value = t.value[1:-1]
138 t.lineno += t.value.count('\n')
139 return t
140
141
142 # "Code literal"... like a string literal, but delimiters are
143 # '{{' and '}}' so they get formatted nicely under emacs c-mode
144 def t_CODELIT(t):
145 r"(?m)\{\{([^\}]|}(?!\}))+\}\}"
146 # strip off {{ & }}
147 t.value = t.value[2:-2]
148 t.lineno += t.value.count('\n')
149 return t
150
151 def t_CPPDIRECTIVE(t):
152 r'^\#.*\n'
153 t.lineno += t.value.count('\n')
154 return t
155
156 #
157 # The functions t_NEWLINE, t_ignore, and t_error are
158 # special for the lex module.
159 #
160
161 # Newlines
162 def t_NEWLINE(t):
163 r'\n+'
164 t.lineno += t.value.count('\n')
165
166 # Comments
167 def t_comment(t):
168 r'//.*'
169
170 # Completely ignored characters
171 t_ignore = ' \t\x0c'
172
173 # Error handler
174 def t_error(t):
175 error(t.lineno, "illegal character '%s'" % t.value[0])
176 t.skip(1)
177
178 # Build the lexer
179 lex.lex()
180
181 #####################################################################
182 #
183 # Parser
184 #
185 # Every function whose name starts with 'p_' defines a grammar rule.
186 # The rule is encoded in the function's doc string, while the
187 # function body provides the action taken when the rule is matched.
188 # The argument to each function is a list of the values of the
189 # rule's symbols: t[0] for the LHS, and t[1..n] for the symbols
190 # on the RHS. For tokens, the value is copied from the t.value
191 # attribute provided by the lexer. For non-terminals, the value
192 # is assigned by the producing rule; i.e., the job of the grammar
193 # rule function is to set the value for the non-terminal on the LHS
194 # (by assigning to t[0]).
195 #####################################################################
196
197 # The LHS of the first grammar rule is used as the start symbol
198 # (in this case, 'specification'). Note that this rule enforces
199 # that there will be exactly one namespace declaration, with 0 or more
200 # global defs/decls before and after it. The defs & decls before
201 # the namespace decl will be outside the namespace; those after
202 # will be inside. The decoder function is always inside the namespace.
203 def p_specification(t):
204 'specification : opt_defs_and_outputs name_decl opt_defs_and_outputs decode_block'
205 global_code = t[1]
206 isa_name = t[2]
207 namespace = isa_name + "Inst"
208 # wrap the decode block as a function definition
209 t[4].wrap_decode_block('''
210 StaticInstPtr<%(isa_name)s>
211 %(isa_name)s::decodeInst(%(isa_name)s::MachInst machInst)
212 {
213 using namespace %(namespace)s;
214 ''' % vars(), '}')
215 # both the latter output blocks and the decode block are in the namespace
216 namespace_code = t[3] + t[4]
217 # pass it all back to the caller of yacc.parse()
218 t[0] = (isa_name, namespace, global_code, namespace_code)
219
220 # ISA name declaration looks like "namespace <foo>;"
221 def p_name_decl(t):
222 'name_decl : NAMESPACE ID SEMI'
223 t[0] = t[2]
224
225 # 'opt_defs_and_outputs' is a possibly empty sequence of
226 # def and/or output statements.
227 def p_opt_defs_and_outputs_0(t):
228 'opt_defs_and_outputs : empty'
229 t[0] = GenCode()
230
231 def p_opt_defs_and_outputs_1(t):
232 'opt_defs_and_outputs : defs_and_outputs'
233 t[0] = t[1]
234
235 def p_defs_and_outputs_0(t):
236 'defs_and_outputs : def_or_output'
237 t[0] = t[1]
238
239 def p_defs_and_outputs_1(t):
240 'defs_and_outputs : defs_and_outputs def_or_output'
241 t[0] = t[1] + t[2]
242
243 # The list of possible definition/output statements.
244 def p_def_or_output(t):
245 '''def_or_output : def_format
246 | def_bitfield
247 | def_template
248 | def_operand_types
249 | def_operands
250 | output_header
251 | output_decoder
252 | output_exec
253 | global_let'''
254 t[0] = t[1]
255
256 # Output blocks 'output <foo> {{...}}' (C++ code blocks) are copied
257 # directly to the appropriate output section.
258
259
260 # Protect any non-dict-substitution '%'s in a format string
261 # (i.e. those not followed by '(')
262 def protect_non_subst_percents(s):
263 return re.sub(r'%(?!\()', '%%', s)
264
265 # Massage output block by substituting in template definitions and bit
266 # operators. We handle '%'s embedded in the string that don't
267 # indicate template substitutions (or CPU-specific symbols, which get
268 # handled in GenCode) by doubling them first so that the format
269 # operation will reduce them back to single '%'s.
270 def process_output(s):
271 s = protect_non_subst_percents(s)
272 # protects cpu-specific symbols too
273 s = protect_cpu_symbols(s)
274 return substBitOps(s % templateMap)
275
276 def p_output_header(t):
277 'output_header : OUTPUT HEADER CODELIT SEMI'
278 t[0] = GenCode(header_output = process_output(t[3]))
279
280 def p_output_decoder(t):
281 'output_decoder : OUTPUT DECODER CODELIT SEMI'
282 t[0] = GenCode(decoder_output = process_output(t[3]))
283
284 def p_output_exec(t):
285 'output_exec : OUTPUT EXEC CODELIT SEMI'
286 t[0] = GenCode(exec_output = process_output(t[3]))
287
288 # global let blocks 'let {{...}}' (Python code blocks) are executed
289 # directly when seen. Note that these execute in a special variable
290 # context 'exportContext' to prevent the code from polluting this
291 # script's namespace.
292 def p_global_let(t):
293 'global_let : LET CODELIT SEMI'
294 updateExportContext()
295 try:
296 exec fixPythonIndentation(t[2]) in exportContext
297 except Exception, exc:
298 error(t.lineno(1),
299 'error: %s in global let block "%s".' % (exc, t[2]))
300 t[0] = GenCode() # contributes nothing to the output C++ file
301
302 # Define the mapping from operand type extensions to C++ types and bit
303 # widths (stored in operandTypeMap).
304 def p_def_operand_types(t):
305 'def_operand_types : DEF OPERAND_TYPES CODELIT SEMI'
306 s = 'global operandTypeMap; operandTypeMap = {' + t[3] + '}'
307 try:
308 exec s
309 except Exception, exc:
310 error(t.lineno(1),
311 'error: %s in def operand_types block "%s".' % (exc, t[3]))
312 t[0] = GenCode() # contributes nothing to the output C++ file
313
314 # Define the mapping from operand names to operand classes and other
315 # traits. Stored in operandTraitsMap.
316 def p_def_operands(t):
317 'def_operands : DEF OPERANDS CODELIT SEMI'
318 s = 'global operandTraitsMap; operandTraitsMap = {' + t[3] + '}'
319 try:
320 exec s
321 except Exception, exc:
322 error(t.lineno(1),
323 'error: %s in def operands block "%s".' % (exc, t[3]))
324 defineDerivedOperandVars()
325 t[0] = GenCode() # contributes nothing to the output C++ file
326
327 # A bitfield definition looks like:
328 # 'def [signed] bitfield <ID> [<first>:<last>]'
329 # This generates a preprocessor macro in the output file.
330 def p_def_bitfield_0(t):
331 'def_bitfield : DEF opt_signed BITFIELD ID LESS INTLIT COLON INTLIT GREATER SEMI'
332 expr = 'bits(machInst, %2d, %2d)' % (t[6], t[8])
333 if (t[2] == 'signed'):
334 expr = 'sext<%d>(%s)' % (t[6] - t[8] + 1, expr)
335 hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
336 t[0] = GenCode(header_output = hash_define)
337
338 # alternate form for single bit: 'def [signed] bitfield <ID> [<bit>]'
339 def p_def_bitfield_1(t):
340 'def_bitfield : DEF opt_signed BITFIELD ID LESS INTLIT GREATER SEMI'
341 expr = 'bits(machInst, %2d, %2d)' % (t[6], t[6])
342 if (t[2] == 'signed'):
343 expr = 'sext<%d>(%s)' % (1, expr)
344 hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
345 t[0] = GenCode(header_output = hash_define)
346
347 def p_opt_signed_0(t):
348 'opt_signed : SIGNED'
349 t[0] = t[1]
350
351 def p_opt_signed_1(t):
352 'opt_signed : empty'
353 t[0] = ''
354
355 # Global map variable to hold templates
356 templateMap = {}
357
358 def p_def_template(t):
359 'def_template : DEF TEMPLATE ID CODELIT SEMI'
360 templateMap[t[3]] = Template(t[4])
361 t[0] = GenCode()
362
363 # An instruction format definition looks like
364 # "def format <fmt>(<params>) {{...}};"
365 def p_def_format(t):
366 'def_format : DEF FORMAT ID LPAREN param_list RPAREN CODELIT SEMI'
367 (id, params, code) = (t[3], t[5], t[7])
368 defFormat(id, params, code, t.lineno(1))
369 t[0] = GenCode()
370
371 # The formal parameter list for an instruction format is a possibly
372 # empty list of comma-separated parameters.
373 def p_param_list_0(t):
374 'param_list : empty'
375 t[0] = [ ]
376
377 def p_param_list_1(t):
378 'param_list : param'
379 t[0] = [t[1]]
380
381 def p_param_list_2(t):
382 'param_list : param_list COMMA param'
383 t[0] = t[1]
384 t[0].append(t[3])
385
386 # Each formal parameter is either an identifier or an identifier
387 # preceded by an asterisk. As in Python, the latter (if present) gets
388 # a tuple containing all the excess positional arguments, allowing
389 # varargs functions.
390 def p_param_0(t):
391 'param : ID'
392 t[0] = t[1]
393
394 def p_param_1(t):
395 'param : ASTERISK ID'
396 # just concatenate them: '*ID'
397 t[0] = t[1] + t[2]
398
399 # End of format definition-related rules.
400 ##############
401
402 #
403 # A decode block looks like:
404 # decode <field1> [, <field2>]* [default <inst>] { ... }
405 #
406 def p_decode_block(t):
407 'decode_block : DECODE ID opt_default LBRACE decode_stmt_list RBRACE'
408 default_defaults = defaultStack.pop()
409 codeObj = t[5]
410 # use the "default defaults" only if there was no explicit
411 # default statement in decode_stmt_list
412 if not codeObj.has_decode_default:
413 codeObj += default_defaults
414 codeObj.wrap_decode_block('switch (%s) {\n' % t[2], '}\n')
415 t[0] = codeObj
416
417 # The opt_default statement serves only to push the "default defaults"
418 # onto defaultStack. This value will be used by nested decode blocks,
419 # and used and popped off when the current decode_block is processed
420 # (in p_decode_block() above).
421 def p_opt_default_0(t):
422 'opt_default : empty'
423 # no default specified: reuse the one currently at the top of the stack
424 defaultStack.push(defaultStack.top())
425 # no meaningful value returned
426 t[0] = None
427
428 def p_opt_default_1(t):
429 'opt_default : DEFAULT inst'
430 # push the new default
431 codeObj = t[2]
432 codeObj.wrap_decode_block('\ndefault:\n', 'break;\n')
433 defaultStack.push(codeObj)
434 # no meaningful value returned
435 t[0] = None
436
437 def p_decode_stmt_list_0(t):
438 'decode_stmt_list : decode_stmt'
439 t[0] = t[1]
440
441 def p_decode_stmt_list_1(t):
442 'decode_stmt_list : decode_stmt decode_stmt_list'
443 if (t[1].has_decode_default and t[2].has_decode_default):
444 error(t.lineno(1), 'Two default cases in decode block')
445 t[0] = t[1] + t[2]
446
447 #
448 # Decode statement rules
449 #
450 # There are four types of statements allowed in a decode block:
451 # 1. Format blocks 'format <foo> { ... }'
452 # 2. Nested decode blocks
453 # 3. Instruction definitions.
454 # 4. C preprocessor directives.
455
456
457 # Preprocessor directives found in a decode statement list are passed
458 # through to the output, replicated to all of the output code
459 # streams. This works well for ifdefs, so we can ifdef out both the
460 # declarations and the decode cases generated by an instruction
461 # definition. Handling them as part of the grammar makes it easy to
462 # keep them in the right place with respect to the code generated by
463 # the other statements.
464 def p_decode_stmt_cpp(t):
465 'decode_stmt : CPPDIRECTIVE'
466 t[0] = GenCode(t[1], t[1], t[1], t[1])
467
468 # A format block 'format <foo> { ... }' sets the default instruction
469 # format used to handle instruction definitions inside the block.
470 # This format can be overridden by using an explicit format on the
471 # instruction definition or with a nested format block.
472 def p_decode_stmt_format(t):
473 'decode_stmt : FORMAT push_format_id LBRACE decode_stmt_list RBRACE'
474 # The format will be pushed on the stack when 'push_format_id' is
475 # processed (see below). Once the parser has recognized the full
476 # production (though the right brace), we're done with the format,
477 # so now we can pop it.
478 formatStack.pop()
479 t[0] = t[4]
480
481 # This rule exists so we can set the current format (& push the stack)
482 # when we recognize the format name part of the format block.
483 def p_push_format_id(t):
484 'push_format_id : ID'
485 try:
486 formatStack.push(formatMap[t[1]])
487 t[0] = ('', '// format %s' % t[1])
488 except KeyError:
489 error(t.lineno(1), 'instruction format "%s" not defined.' % t[1])
490
491 # Nested decode block: if the value of the current field matches the
492 # specified constant, do a nested decode on some other field.
493 def p_decode_stmt_decode(t):
494 'decode_stmt : case_label COLON decode_block'
495 label = t[1]
496 codeObj = t[3]
497 # just wrap the decoding code from the block as a case in the
498 # outer switch statement.
499 codeObj.wrap_decode_block('\n%s:\n' % label)
500 codeObj.has_decode_default = (label == 'default')
501 t[0] = codeObj
502
503 # Instruction definition (finally!).
504 def p_decode_stmt_inst(t):
505 'decode_stmt : case_label COLON inst SEMI'
506 label = t[1]
507 codeObj = t[3]
508 codeObj.wrap_decode_block('\n%s:' % label, 'break;\n')
509 codeObj.has_decode_default = (label == 'default')
510 t[0] = codeObj
511
512 # The case label is either a list of one or more constants or 'default'
513 def p_case_label_0(t):
514 'case_label : intlit_list'
515 t[0] = ': '.join(map(lambda a: 'case %#x' % a, t[1]))
516
517 def p_case_label_1(t):
518 'case_label : DEFAULT'
519 t[0] = 'default'
520
521 #
522 # The constant list for a decode case label must be non-empty, but may have
523 # one or more comma-separated integer literals in it.
524 #
525 def p_intlit_list_0(t):
526 'intlit_list : INTLIT'
527 t[0] = [t[1]]
528
529 def p_intlit_list_1(t):
530 'intlit_list : intlit_list COMMA INTLIT'
531 t[0] = t[1]
532 t[0].append(t[3])
533
534 # Define an instruction using the current instruction format (specified
535 # by an enclosing format block).
536 # "<mnemonic>(<args>)"
537 def p_inst_0(t):
538 'inst : ID LPAREN arg_list RPAREN'
539 # Pass the ID and arg list to the current format class to deal with.
540 currentFormat = formatStack.top()
541 codeObj = currentFormat.defineInst(t[1], t[3], t.lineno(1))
542 args = ','.join(map(str, t[3]))
543 args = re.sub('(?m)^', '//', args)
544 args = re.sub('^//', '', args)
545 comment = '\n// %s::%s(%s)\n' % (currentFormat.id, t[1], args)
546 codeObj.prepend_all(comment)
547 t[0] = codeObj
548
549 # Define an instruction using an explicitly specified format:
550 # "<fmt>::<mnemonic>(<args>)"
551 def p_inst_1(t):
552 'inst : ID DBLCOLON ID LPAREN arg_list RPAREN'
553 try:
554 format = formatMap[t[1]]
555 except KeyError:
556 error(t.lineno(1), 'instruction format "%s" not defined.' % t[1])
557 codeObj = format.defineInst(t[3], t[5], t.lineno(1))
558 comment = '\n// %s::%s(%s)\n' % (t[1], t[3], t[5])
559 codeObj.prepend_all(comment)
560 t[0] = codeObj
561
562 def p_arg_list_0(t):
563 'arg_list : empty'
564 t[0] = [ ]
565
566 def p_arg_list_1(t):
567 'arg_list : arg'
568 t[0] = [t[1]]
569
570 def p_arg_list_2(t):
571 'arg_list : arg_list COMMA arg'
572 t[0] = t[1]
573 t[0].append(t[3])
574
575 def p_arg(t):
576 '''arg : ID
577 | INTLIT
578 | STRLIT
579 | CODELIT'''
580 t[0] = t[1]
581
582 #
583 # Empty production... use in other rules for readability.
584 #
585 def p_empty(t):
586 'empty :'
587 pass
588
589 # Parse error handler. Note that the argument here is the offending
590 # *token*, not a grammar symbol (hence the need to use t.value)
591 def p_error(t):
592 if t:
593 error(t.lineno, "syntax error at '%s'" % t.value)
594 else:
595 error_bt(0, "unknown syntax error")
596
597 # END OF GRAMMAR RULES
598 #
599 # Now build the parser.
600 yacc.yacc()
601
602
603 #####################################################################
604 #
605 # Support Classes
606 #
607 #####################################################################
608
609 ################
610 # CpuModel class
611 #
612 # The CpuModel class encapsulates everything we need to know about a
613 # particular CPU model.
614
615 class CpuModel:
616 # List of all CPU models. Accessible as CpuModel.list.
617 list = []
618
619 # Constructor. Automatically adds models to CpuModel.list.
620 def __init__(self, name, filename, includes, strings):
621 self.name = name
622 self.filename = filename # filename for output exec code
623 self.includes = includes # include files needed in exec file
624 # The 'strings' dict holds all the per-CPU symbols we can
625 # substitute into templates etc.
626 self.strings = strings
627 # Add self to list.
628 CpuModel.list.append(self)
629
630 # Define CPU models. The following lines should contain the only
631 # CPU-model-specific information in this file. Note that the ISA
632 # description itself should have *no* CPU-model-specific content.
633 CpuModel('SimpleCPU', 'simple_cpu_exec.cc',
634 '#include "cpu/simple/cpu.hh"',
635 { 'CPU_exec_context': 'SimpleCPU' })
636 CpuModel('FastCPU', 'fast_cpu_exec.cc',
637 '#include "cpu/fast/cpu.hh"',
638 { 'CPU_exec_context': 'FastCPU' })
639 CpuModel('FullCPU', 'full_cpu_exec.cc',
640 '#include "encumbered/cpu/full/dyn_inst.hh"',
641 { 'CPU_exec_context': 'DynInst' })
642 CpuModel('AlphaFullCPU', 'alpha_o3_exec.cc',
643 '#include "cpu/o3/alpha_dyn_inst.hh"',
644 { 'CPU_exec_context': 'AlphaDynInst<AlphaSimpleImpl>' })
645
646 # Expand template with CPU-specific references into a dictionary with
647 # an entry for each CPU model name. The entry key is the model name
648 # and the corresponding value is the template with the CPU-specific
649 # refs substituted for that model.
650 def expand_cpu_symbols_to_dict(template):
651 # Protect '%'s that don't go with CPU-specific terms
652 t = re.sub(r'%(?!\(CPU_)', '%%', template)
653 result = {}
654 for cpu in CpuModel.list:
655 result[cpu.name] = t % cpu.strings
656 return result
657
658 # *If* the template has CPU-specific references, return a single
659 # string containing a copy of the template for each CPU model with the
660 # corresponding values substituted in. If the template has no
661 # CPU-specific references, it is returned unmodified.
662 def expand_cpu_symbols_to_string(template):
663 if template.find('%(CPU_') != -1:
664 return reduce(lambda x,y: x+y,
665 expand_cpu_symbols_to_dict(template).values())
666 else:
667 return template
668
669 # Protect CPU-specific references by doubling the corresponding '%'s
670 # (in preparation for substituting a different set of references into
671 # the template).
672 def protect_cpu_symbols(template):
673 return re.sub(r'%(?=\(CPU_)', '%%', template)
674
675 ###############
676 # GenCode class
677 #
678 # The GenCode class encapsulates generated code destined for various
679 # output files. The header_output and decoder_output attributes are
680 # strings containing code destined for decoder.hh and decoder.cc
681 # respectively. The decode_block attribute contains code to be
682 # incorporated in the decode function itself (that will also end up in
683 # decoder.cc). The exec_output attribute is a dictionary with a key
684 # for each CPU model name; the value associated with a particular key
685 # is the string of code for that CPU model's exec.cc file. The
686 # has_decode_default attribute is used in the decode block to allow
687 # explicit default clauses to override default default clauses.
688
689 class GenCode:
690 # Constructor. At this point we substitute out all CPU-specific
691 # symbols. For the exec output, these go into the per-model
692 # dictionary. For all other output types they get collapsed into
693 # a single string.
694 def __init__(self,
695 header_output = '', decoder_output = '', exec_output = '',
696 decode_block = '', has_decode_default = False):
697 self.header_output = expand_cpu_symbols_to_string(header_output)
698 self.decoder_output = expand_cpu_symbols_to_string(decoder_output)
699 if isinstance(exec_output, dict):
700 self.exec_output = exec_output
701 elif isinstance(exec_output, str):
702 # If the exec_output arg is a single string, we replicate
703 # it for each of the CPU models, substituting and
704 # %(CPU_foo)s params appropriately.
705 self.exec_output = expand_cpu_symbols_to_dict(exec_output)
706 self.decode_block = expand_cpu_symbols_to_string(decode_block)
707 self.has_decode_default = has_decode_default
708
709 # Override '+' operator: generate a new GenCode object that
710 # concatenates all the individual strings in the operands.
711 def __add__(self, other):
712 exec_output = {}
713 for cpu in CpuModel.list:
714 n = cpu.name
715 exec_output[n] = self.exec_output[n] + other.exec_output[n]
716 return GenCode(self.header_output + other.header_output,
717 self.decoder_output + other.decoder_output,
718 exec_output,
719 self.decode_block + other.decode_block,
720 self.has_decode_default or other.has_decode_default)
721
722 # Prepend a string (typically a comment) to all the strings.
723 def prepend_all(self, pre):
724 self.header_output = pre + self.header_output
725 self.decoder_output = pre + self.decoder_output
726 self.decode_block = pre + self.decode_block
727 for cpu in CpuModel.list:
728 self.exec_output[cpu.name] = pre + self.exec_output[cpu.name]
729
730 # Wrap the decode block in a pair of strings (e.g., 'case foo:'
731 # and 'break;'). Used to build the big nested switch statement.
732 def wrap_decode_block(self, pre, post = ''):
733 self.decode_block = pre + indent(self.decode_block) + post
734
735 ################
736 # Format object.
737 #
738 # A format object encapsulates an instruction format. It must provide
739 # a defineInst() method that generates the code for an instruction
740 # definition.
741
742 class Format:
743 def __init__(self, id, params, code):
744 # constructor: just save away arguments
745 self.id = id
746 self.params = params
747 label = 'def format ' + id
748 self.user_code = compile(fixPythonIndentation(code), label, 'exec')
749 param_list = string.join(params, ", ")
750 f = '''def defInst(_code, _context, %s):
751 my_locals = vars().copy()
752 exec _code in _context, my_locals
753 return my_locals\n''' % param_list
754 c = compile(f, label + ' wrapper', 'exec')
755 exec c
756 self.func = defInst
757
758 def defineInst(self, name, args, lineno):
759 context = {}
760 updateExportContext()
761 context.update(exportContext)
762 context.update({ 'name': name, 'Name': string.capitalize(name) })
763 try:
764 vars = self.func(self.user_code, context, *args)
765 except Exception, exc:
766 error(lineno, 'error defining "%s": %s.' % (name, exc))
767 for k in vars.keys():
768 if k not in ('header_output', 'decoder_output',
769 'exec_output', 'decode_block'):
770 del vars[k]
771 return GenCode(**vars)
772
773 # Special null format to catch an implicit-format instruction
774 # definition outside of any format block.
775 class NoFormat:
776 def __init__(self):
777 self.defaultInst = ''
778
779 def defineInst(self, name, args, lineno):
780 error(lineno,
781 'instruction definition "%s" with no active format!' % name)
782
783 # This dictionary maps format name strings to Format objects.
784 formatMap = {}
785
786 # Define a new format
787 def defFormat(id, params, code, lineno):
788 # make sure we haven't already defined this one
789 if formatMap.get(id, None) != None:
790 error(lineno, 'format %s redefined.' % id)
791 # create new object and store in global map
792 formatMap[id] = Format(id, params, code)
793
794
795 ##############
796 # Stack: a simple stack object. Used for both formats (formatStack)
797 # and default cases (defaultStack). Simply wraps a list to give more
798 # stack-like syntax and enable initialization with an argument list
799 # (as opposed to an argument that's a list).
800
801 class Stack(list):
802 def __init__(self, *items):
803 list.__init__(self, items)
804
805 def push(self, item):
806 self.append(item);
807
808 def top(self):
809 return self[-1]
810
811 # The global format stack.
812 formatStack = Stack(NoFormat())
813
814 # The global default case stack.
815 defaultStack = Stack( None )
816
817 ###################
818 # Utility functions
819
820 #
821 # Indent every line in string 's' by two spaces
822 # (except preprocessor directives).
823 # Used to make nested code blocks look pretty.
824 #
825 def indent(s):
826 return re.sub(r'(?m)^(?!\#)', ' ', s)
827
828 #
829 # Munge a somewhat arbitrarily formatted piece of Python code
830 # (e.g. from a format 'let' block) into something whose indentation
831 # will get by the Python parser.
832 #
833 # The two keys here are that Python will give a syntax error if
834 # there's any whitespace at the beginning of the first line, and that
835 # all lines at the same lexical nesting level must have identical
836 # indentation. Unfortunately the way code literals work, an entire
837 # let block tends to have some initial indentation. Rather than
838 # trying to figure out what that is and strip it off, we prepend 'if
839 # 1:' to make the let code the nested block inside the if (and have
840 # the parser automatically deal with the indentation for us).
841 #
842 # We don't want to do this if (1) the code block is empty or (2) the
843 # first line of the block doesn't have any whitespace at the front.
844
845 def fixPythonIndentation(s):
846 # get rid of blank lines first
847 s = re.sub(r'(?m)^\s*\n', '', s);
848 if (s != '' and re.match(r'[ \t]', s[0])):
849 s = 'if 1:\n' + s
850 return s
851
852 # Error handler. Just call exit. Output formatted to work under
853 # Emacs compile-mode.
854 def error(lineno, string):
855 sys.exit("%s:%d: %s" % (input_filename, lineno, string))
856
857 # Like error(), but include a Python stack backtrace (for processing
858 # Python exceptions).
859 def error_bt(lineno, string):
860 traceback.print_exc()
861 print >> sys.stderr, "%s:%d: %s" % (input_filename, lineno, string)
862 sys.exit(1)
863
864
865 #####################################################################
866 #
867 # Bitfield Operator Support
868 #
869 #####################################################################
870
871 bitOp1ArgRE = re.compile(r'<\s*(\w+)\s*:\s*>')
872
873 bitOpWordRE = re.compile(r'(?<![\w\.])([\w\.]+)<\s*(\w+)\s*:\s*(\w+)\s*>')
874 bitOpExprRE = re.compile(r'\)<\s*(\w+)\s*:\s*(\w+)\s*>')
875
876 def substBitOps(code):
877 # first convert single-bit selectors to two-index form
878 # i.e., <n> --> <n:n>
879 code = bitOp1ArgRE.sub(r'<\1:\1>', code)
880 # simple case: selector applied to ID (name)
881 # i.e., foo<a:b> --> bits(foo, a, b)
882 code = bitOpWordRE.sub(r'bits(\1, \2, \3)', code)
883 # if selector is applied to expression (ending in ')'),
884 # we need to search backward for matching '('
885 match = bitOpExprRE.search(code)
886 while match:
887 exprEnd = match.start()
888 here = exprEnd - 1
889 nestLevel = 1
890 while nestLevel > 0:
891 if code[here] == '(':
892 nestLevel -= 1
893 elif code[here] == ')':
894 nestLevel += 1
895 here -= 1
896 if here < 0:
897 sys.exit("Didn't find '('!")
898 exprStart = here+1
899 newExpr = r'bits(%s, %s, %s)' % (code[exprStart:exprEnd+1],
900 match.group(1), match.group(2))
901 code = code[:exprStart] + newExpr + code[match.end():]
902 match = bitOpExprRE.search(code)
903 return code
904
905
906 ####################
907 # Template objects.
908 #
909 # Template objects are format strings that allow substitution from
910 # the attribute spaces of other objects (e.g. InstObjParams instances).
911
912 class Template:
913 def __init__(self, t):
914 self.template = t
915
916 def subst(self, d):
917 # Start with the template namespace. Make a copy since we're
918 # going to modify it.
919 myDict = templateMap.copy()
920 # if the argument is a dictionary, we just use it.
921 if isinstance(d, dict):
922 myDict.update(d)
923 # if the argument is an object, we use its attribute map.
924 elif hasattr(d, '__dict__'):
925 myDict.update(d.__dict__)
926 else:
927 raise TypeError, "Template.subst() arg must be or have dictionary"
928 # Protect non-Python-dict substitutions (e.g. if there's a printf
929 # in the templated C++ code)
930 template = protect_non_subst_percents(self.template)
931 # CPU-model-specific substitutions are handled later (in GenCode).
932 template = protect_cpu_symbols(template)
933 return template % myDict
934
935 # Convert to string. This handles the case when a template with a
936 # CPU-specific term gets interpolated into another template or into
937 # an output block.
938 def __str__(self):
939 return expand_cpu_symbols_to_string(self.template)
940
941 #####################################################################
942 #
943 # Code Parser
944 #
945 # The remaining code is the support for automatically extracting
946 # instruction characteristics from pseudocode.
947 #
948 #####################################################################
949
950 # Force the argument to be a list
951 def makeList(list_or_item):
952 if not list_or_item:
953 return []
954 elif type(list_or_item) == ListType:
955 return list_or_item
956 else:
957 return [ list_or_item ]
958
959 # generate operandSizeMap based on provided operandTypeMap:
960 # basically generate equiv. C++ type and make is_signed flag
961 def buildOperandSizeMap():
962 global operandSizeMap
963 operandSizeMap = {}
964 for ext in operandTypeMap.keys():
965 (desc, size) = operandTypeMap[ext]
966 if desc == 'signed int':
967 type = 'int%d_t' % size
968 is_signed = 1
969 elif desc == 'unsigned int':
970 type = 'uint%d_t' % size
971 is_signed = 0
972 elif desc == 'float':
973 is_signed = 1 # shouldn't really matter
974 if size == 32:
975 type = 'float'
976 elif size == 64:
977 type = 'double'
978 if type == '':
979 error(0, 'Unrecognized type description "%s" in operandTypeMap')
980 operandSizeMap[ext] = (size, type, is_signed)
981
982 #
983 # Base class for operand traits. An instance of this class (or actually
984 # a class derived from this one) encapsulates the traits of a particular
985 # operand type (e.g., "32-bit integer register").
986 #
987 class OperandTraits:
988 def __init__(self, dflt_ext, reg_spec, flags, sort_pri):
989 # Force construction of operandSizeMap from operandTypeMap
990 # if it hasn't happened yet
991 if not globals().has_key('operandSizeMap'):
992 buildOperandSizeMap()
993 self.dflt_ext = dflt_ext
994 (self.dflt_size, self.dflt_type, self.dflt_is_signed) = \
995 operandSizeMap[dflt_ext]
996 self.reg_spec = reg_spec
997 # Canonical flag structure is a triple of lists, where each list
998 # indicates the set of flags implied by this operand always, when
999 # used as a source, and when used as a dest, respectively.
1000 # For simplicity this can be initialized using a variety of fairly
1001 # obvious shortcuts; we convert these to canonical form here.
1002 if not flags:
1003 # no flags specified (e.g., 'None')
1004 self.flags = ( [], [], [] )
1005 elif type(flags) == StringType:
1006 # a single flag: assumed to be unconditional
1007 self.flags = ( [ flags ], [], [] )
1008 elif type(flags) == ListType:
1009 # a list of flags: also assumed to be unconditional
1010 self.flags = ( flags, [], [] )
1011 elif type(flags) == TupleType:
1012 # it's a tuple: it should be a triple,
1013 # but each item could be a single string or a list
1014 (uncond_flags, src_flags, dest_flags) = flags
1015 self.flags = (makeList(uncond_flags),
1016 makeList(src_flags), makeList(dest_flags))
1017 self.sort_pri = sort_pri
1018
1019 def isMem(self):
1020 return 0
1021
1022 def isReg(self):
1023 return 0
1024
1025 def isFloatReg(self):
1026 return 0
1027
1028 def isIntReg(self):
1029 return 0
1030
1031 def isControlReg(self):
1032 return 0
1033
1034 def getFlags(self, op_desc):
1035 # note the empty slice '[:]' gives us a copy of self.flags[0]
1036 # instead of a reference to it
1037 my_flags = self.flags[0][:]
1038 if op_desc.is_src:
1039 my_flags += self.flags[1]
1040 if op_desc.is_dest:
1041 my_flags += self.flags[2]
1042 return my_flags
1043
1044 def makeDecl(self, op_desc):
1045 (size, type, is_signed) = operandSizeMap[op_desc.eff_ext]
1046 # Note that initializations in the declarations are solely
1047 # to avoid 'uninitialized variable' errors from the compiler.
1048 return type + ' ' + op_desc.munged_name + ' = 0;\n';
1049
1050 class IntRegOperandTraits(OperandTraits):
1051 def isReg(self):
1052 return 1
1053
1054 def isIntReg(self):
1055 return 1
1056
1057 def makeConstructor(self, op_desc):
1058 c = ''
1059 if op_desc.is_src:
1060 c += '\n\t_srcRegIdx[%d] = %s;' % \
1061 (op_desc.src_reg_idx, self.reg_spec)
1062 if op_desc.is_dest:
1063 c += '\n\t_destRegIdx[%d] = %s;' % \
1064 (op_desc.dest_reg_idx, self.reg_spec)
1065 return c
1066
1067 def makeRead(self, op_desc):
1068 (size, type, is_signed) = operandSizeMap[op_desc.eff_ext]
1069 if (type == 'float' or type == 'double'):
1070 error(0, 'Attempt to read integer register as FP')
1071 if (size == self.dflt_size):
1072 return '%s = xc->readIntReg(this, %d);\n' % \
1073 (op_desc.munged_name, op_desc.src_reg_idx)
1074 else:
1075 return '%s = bits(xc->readIntReg(this, %d), %d, 0);\n' % \
1076 (op_desc.munged_name, op_desc.src_reg_idx, size-1)
1077
1078 def makeWrite(self, op_desc):
1079 (size, type, is_signed) = operandSizeMap[op_desc.eff_ext]
1080 if (type == 'float' or type == 'double'):
1081 error(0, 'Attempt to write integer register as FP')
1082 if (size != self.dflt_size and is_signed):
1083 final_val = 'sext<%d>(%s)' % (size, op_desc.munged_name)
1084 else:
1085 final_val = op_desc.munged_name
1086 wb = '''
1087 {
1088 %s final_val = %s;
1089 xc->setIntReg(this, %d, final_val);\n
1090 if (traceData) { traceData->setData(final_val); }
1091 }''' % (self.dflt_type, final_val, op_desc.dest_reg_idx)
1092 return wb
1093
1094 class FloatRegOperandTraits(OperandTraits):
1095 def isReg(self):
1096 return 1
1097
1098 def isFloatReg(self):
1099 return 1
1100
1101 def makeConstructor(self, op_desc):
1102 c = ''
1103 if op_desc.is_src:
1104 c += '\n\t_srcRegIdx[%d] = %s + FP_Base_DepTag;' % \
1105 (op_desc.src_reg_idx, self.reg_spec)
1106 if op_desc.is_dest:
1107 c += '\n\t_destRegIdx[%d] = %s + FP_Base_DepTag;' % \
1108 (op_desc.dest_reg_idx, self.reg_spec)
1109 return c
1110
1111 def makeRead(self, op_desc):
1112 (size, type, is_signed) = operandSizeMap[op_desc.eff_ext]
1113 bit_select = 0
1114 if (type == 'float'):
1115 func = 'readFloatRegSingle'
1116 elif (type == 'double'):
1117 func = 'readFloatRegDouble'
1118 else:
1119 func = 'readFloatRegInt'
1120 if (size != self.dflt_size):
1121 bit_select = 1
1122 base = 'xc->%s(this, %d)' % \
1123 (func, op_desc.src_reg_idx)
1124 if bit_select:
1125 return '%s = bits(%s, %d, 0);\n' % \
1126 (op_desc.munged_name, base, size-1)
1127 else:
1128 return '%s = %s;\n' % (op_desc.munged_name, base)
1129
1130 def makeWrite(self, op_desc):
1131 (size, type, is_signed) = operandSizeMap[op_desc.eff_ext]
1132 final_val = op_desc.munged_name
1133 if (type == 'float'):
1134 func = 'setFloatRegSingle'
1135 elif (type == 'double'):
1136 func = 'setFloatRegDouble'
1137 else:
1138 func = 'setFloatRegInt'
1139 type = 'uint%d_t' % self.dflt_size
1140 if (size != self.dflt_size and is_signed):
1141 final_val = 'sext<%d>(%s)' % (size, op_desc.munged_name)
1142 wb = '''
1143 {
1144 %s final_val = %s;
1145 xc->%s(this, %d, final_val);\n
1146 if (traceData) { traceData->setData(final_val); }
1147 }''' % (type, final_val, func, op_desc.dest_reg_idx)
1148 return wb
1149
1150 class ControlRegOperandTraits(OperandTraits):
1151 def isReg(self):
1152 return 1
1153
1154 def isControlReg(self):
1155 return 1
1156
1157 def makeConstructor(self, op_desc):
1158 c = ''
1159 if op_desc.is_src:
1160 c += '\n\t_srcRegIdx[%d] = %s_DepTag;' % \
1161 (op_desc.src_reg_idx, self.reg_spec)
1162 if op_desc.is_dest:
1163 c += '\n\t_destRegIdx[%d] = %s_DepTag;' % \
1164 (op_desc.dest_reg_idx, self.reg_spec)
1165 return c
1166
1167 def makeRead(self, op_desc):
1168 (size, type, is_signed) = operandSizeMap[op_desc.eff_ext]
1169 bit_select = 0
1170 if (type == 'float' or type == 'double'):
1171 error(0, 'Attempt to read control register as FP')
1172 base = 'xc->read%s()' % self.reg_spec
1173 if size == self.dflt_size:
1174 return '%s = %s;\n' % (op_desc.munged_name, base)
1175 else:
1176 return '%s = bits(%s, %d, 0);\n' % \
1177 (op_desc.munged_name, base, size-1)
1178
1179 def makeWrite(self, op_desc):
1180 (size, type, is_signed) = operandSizeMap[op_desc.eff_ext]
1181 if (type == 'float' or type == 'double'):
1182 error(0, 'Attempt to write control register as FP')
1183 wb = 'xc->set%s(%s);\n' % (self.reg_spec, op_desc.munged_name)
1184 wb += 'if (traceData) { traceData->setData(%s); }' % \
1185 op_desc.munged_name
1186 return wb
1187
1188 class MemOperandTraits(OperandTraits):
1189 def isMem(self):
1190 return 1
1191
1192 def makeConstructor(self, op_desc):
1193 return ''
1194
1195 def makeDecl(self, op_desc):
1196 (size, type, is_signed) = operandSizeMap[op_desc.eff_ext]
1197 # Note that initializations in the declarations are solely
1198 # to avoid 'uninitialized variable' errors from the compiler.
1199 # Declare memory data variable.
1200 c = '%s %s = 0;\n' % (type, op_desc.munged_name)
1201 # Declare var to hold memory access flags.
1202 c += 'unsigned %s_flags = memAccessFlags;\n' % op_desc.base_name
1203 # If this operand is a dest (i.e., it's a store operation),
1204 # then we need to declare a variable for the write result code
1205 # as well.
1206 if op_desc.is_dest:
1207 c += 'uint64_t %s_write_result = 0;\n' % op_desc.base_name
1208 return c
1209
1210 def makeRead(self, op_desc):
1211 (size, type, is_signed) = operandSizeMap[op_desc.eff_ext]
1212 eff_type = 'uint%d_t' % size
1213 return 'fault = xc->read(EA, (%s&)%s, %s_flags);\n' \
1214 % (eff_type, op_desc.munged_name, op_desc.base_name)
1215
1216 def makeWrite(self, op_desc):
1217 (size, type, is_signed) = operandSizeMap[op_desc.eff_ext]
1218 eff_type = 'uint%d_t' % size
1219 wb = 'fault = xc->write((%s&)%s, EA, %s_flags, &%s_write_result);\n' \
1220 % (eff_type, op_desc.munged_name, op_desc.base_name,
1221 op_desc.base_name)
1222 wb += 'if (traceData) { traceData->setData(%s); }' % \
1223 op_desc.munged_name
1224 return wb
1225
1226 class NPCOperandTraits(OperandTraits):
1227 def makeConstructor(self, op_desc):
1228 return ''
1229
1230 def makeRead(self, op_desc):
1231 return '%s = xc->readPC() + 4;\n' % op_desc.munged_name
1232
1233 def makeWrite(self, op_desc):
1234 return 'xc->setNextPC(%s);\n' % op_desc.munged_name
1235
1236
1237 exportContextSymbols = ('IntRegOperandTraits', 'FloatRegOperandTraits',
1238 'ControlRegOperandTraits', 'MemOperandTraits',
1239 'NPCOperandTraits', 'InstObjParams', 'CodeBlock',
1240 're', 'string')
1241
1242 exportContext = {}
1243
1244 def updateExportContext():
1245 exportContext.update(exportDict(*exportContextSymbols))
1246 exportContext.update(templateMap)
1247
1248
1249 def exportDict(*symNames):
1250 return dict([(s, eval(s)) for s in symNames])
1251
1252
1253 #
1254 # Define operand variables that get derived from the basic declaration
1255 # of ISA-specific operands in operandTraitsMap. This function must be
1256 # called by the ISA description file explicitly after defining
1257 # operandTraitsMap (in a 'let' block).
1258 #
1259 def defineDerivedOperandVars():
1260 global operands
1261 operands = operandTraitsMap.keys()
1262
1263 operandsREString = (r'''
1264 (?<![\w\.]) # neg. lookbehind assertion: prevent partial matches
1265 ((%s)(?:\.(\w+))?) # match: operand with optional '.' then suffix
1266 (?![\w\.]) # neg. lookahead assertion: prevent partial matches
1267 '''
1268 % string.join(operands, '|'))
1269
1270 global operandsRE
1271 operandsRE = re.compile(operandsREString, re.MULTILINE|re.VERBOSE)
1272
1273 # Same as operandsREString, but extension is mandatory, and only two
1274 # groups are returned (base and ext, not full name as above).
1275 # Used for subtituting '_' for '.' to make C++ identifiers.
1276 operandsWithExtREString = (r'(?<![\w\.])(%s)\.(\w+)(?![\w\.])'
1277 % string.join(operands, '|'))
1278
1279 global operandsWithExtRE
1280 operandsWithExtRE = re.compile(operandsWithExtREString, re.MULTILINE)
1281
1282
1283 #
1284 # Operand descriptor class. An instance of this class represents
1285 # a specific operand for a code block.
1286 #
1287 class OperandDescriptor:
1288 def __init__(self, full_name, base_name, ext, is_src, is_dest):
1289 self.full_name = full_name
1290 self.base_name = base_name
1291 self.ext = ext
1292 self.is_src = is_src
1293 self.is_dest = is_dest
1294 self.traits = operandTraitsMap[base_name]
1295 # The 'effective extension' (eff_ext) is either the actual
1296 # extension, if one was explicitly provided, or the default.
1297 # The 'munged name' replaces the '.' between the base and
1298 # extension (if any) with a '_' to make a legal C++ variable name.
1299 if ext:
1300 self.eff_ext = ext
1301 self.munged_name = base_name + '_' + ext
1302 else:
1303 self.eff_ext = self.traits.dflt_ext
1304 self.munged_name = base_name
1305
1306 # Finalize additional fields (primarily code fields). This step
1307 # is done separately since some of these fields may depend on the
1308 # register index enumeration that hasn't been performed yet at the
1309 # time of __init__().
1310 def finalize(self):
1311 self.flags = self.traits.getFlags(self)
1312 self.constructor = self.traits.makeConstructor(self)
1313 self.op_decl = self.traits.makeDecl(self)
1314
1315 if self.is_src:
1316 self.op_rd = self.traits.makeRead(self)
1317 else:
1318 self.op_rd = ''
1319
1320 if self.is_dest:
1321 self.op_wb = self.traits.makeWrite(self)
1322 else:
1323 self.op_wb = ''
1324
1325 class OperandDescriptorList:
1326 def __init__(self):
1327 self.items = []
1328 self.bases = {}
1329
1330 def __len__(self):
1331 return len(self.items)
1332
1333 def __getitem__(self, index):
1334 return self.items[index]
1335
1336 def append(self, op_desc):
1337 self.items.append(op_desc)
1338 self.bases[op_desc.base_name] = op_desc
1339
1340 def find_base(self, base_name):
1341 # like self.bases[base_name], but returns None if not found
1342 # (rather than raising exception)
1343 return self.bases.get(base_name)
1344
1345 # internal helper function for concat[Some]Attr{Strings|Lists}
1346 def __internalConcatAttrs(self, attr_name, filter, result):
1347 for op_desc in self.items:
1348 if filter(op_desc):
1349 result += getattr(op_desc, attr_name)
1350 return result
1351
1352 # return a single string that is the concatenation of the (string)
1353 # values of the specified attribute for all operands
1354 def concatAttrStrings(self, attr_name):
1355 return self.__internalConcatAttrs(attr_name, lambda x: 1, '')
1356
1357 # like concatAttrStrings, but only include the values for the operands
1358 # for which the provided filter function returns true
1359 def concatSomeAttrStrings(self, filter, attr_name):
1360 return self.__internalConcatAttrs(attr_name, filter, '')
1361
1362 # return a single list that is the concatenation of the (list)
1363 # values of the specified attribute for all operands
1364 def concatAttrLists(self, attr_name):
1365 return self.__internalConcatAttrs(attr_name, lambda x: 1, [])
1366
1367 # like concatAttrLists, but only include the values for the operands
1368 # for which the provided filter function returns true
1369 def concatSomeAttrLists(self, filter, attr_name):
1370 return self.__internalConcatAttrs(attr_name, filter, [])
1371
1372 def sort(self):
1373 self.items.sort(lambda a, b: a.traits.sort_pri - b.traits.sort_pri)
1374
1375 # Regular expression object to match C++ comments
1376 # (used in findOperands())
1377 commentRE = re.compile(r'//.*\n')
1378
1379 # Regular expression object to match assignment statements
1380 # (used in findOperands())
1381 assignRE = re.compile(r'\s*=(?!=)', re.MULTILINE)
1382
1383 #
1384 # Find all the operands in the given code block. Returns an operand
1385 # descriptor list (instance of class OperandDescriptorList).
1386 #
1387 def findOperands(code):
1388 operands = OperandDescriptorList()
1389 # delete comments so we don't accidentally match on reg specifiers inside
1390 code = commentRE.sub('', code)
1391 # search for operands
1392 next_pos = 0
1393 while 1:
1394 match = operandsRE.search(code, next_pos)
1395 if not match:
1396 # no more matches: we're done
1397 break
1398 op = match.groups()
1399 # regexp groups are operand full name, base, and extension
1400 (op_full, op_base, op_ext) = op
1401 # if the token following the operand is an assignment, this is
1402 # a destination (LHS), else it's a source (RHS)
1403 is_dest = (assignRE.match(code, match.end()) != None)
1404 is_src = not is_dest
1405 # see if we've already seen this one
1406 op_desc = operands.find_base(op_base)
1407 if op_desc:
1408 if op_desc.ext != op_ext:
1409 error(0, 'Inconsistent extensions for operand %s' % op_base)
1410 op_desc.is_src = op_desc.is_src or is_src
1411 op_desc.is_dest = op_desc.is_dest or is_dest
1412 else:
1413 # new operand: create new descriptor
1414 op_desc = OperandDescriptor(op_full, op_base, op_ext,
1415 is_src, is_dest)
1416 operands.append(op_desc)
1417 # start next search after end of current match
1418 next_pos = match.end()
1419 operands.sort()
1420 # enumerate source & dest register operands... used in building
1421 # constructor later
1422 srcRegs = 0
1423 destRegs = 0
1424 operands.numFPDestRegs = 0
1425 operands.numIntDestRegs = 0
1426 for op_desc in operands:
1427 if op_desc.traits.isReg():
1428 if op_desc.is_src:
1429 op_desc.src_reg_idx = srcRegs
1430 srcRegs += 1
1431 if op_desc.is_dest:
1432 op_desc.dest_reg_idx = destRegs
1433 destRegs += 1
1434 if op_desc.traits.isFloatReg():
1435 operands.numFPDestRegs += 1
1436 elif op_desc.traits.isIntReg():
1437 operands.numIntDestRegs += 1
1438 operands.numSrcRegs = srcRegs
1439 operands.numDestRegs = destRegs
1440 # now make a final pass to finalize op_desc fields that may depend
1441 # on the register enumeration
1442 for op_desc in operands:
1443 op_desc.finalize()
1444 return operands
1445
1446 # Munge operand names in code string to make legal C++ variable names.
1447 # (Will match munged_name attribute of OperandDescriptor object.)
1448 def substMungedOpNames(code):
1449 return operandsWithExtRE.sub(r'\1_\2', code)
1450
1451 def joinLists(t):
1452 return map(string.join, t)
1453
1454 def makeFlagConstructor(flag_list):
1455 if len(flag_list) == 0:
1456 return ''
1457 # filter out repeated flags
1458 flag_list.sort()
1459 i = 1
1460 while i < len(flag_list):
1461 if flag_list[i] == flag_list[i-1]:
1462 del flag_list[i]
1463 else:
1464 i += 1
1465 pre = '\n\tflags['
1466 post = '] = true;'
1467 code = pre + string.join(flag_list, post + pre) + post
1468 return code
1469
1470 class CodeBlock:
1471 def __init__(self, code):
1472 self.orig_code = code
1473 self.operands = findOperands(code)
1474 self.code = substMungedOpNames(substBitOps(code))
1475 self.constructor = self.operands.concatAttrStrings('constructor')
1476 self.constructor += \
1477 '\n\t_numSrcRegs = %d;' % self.operands.numSrcRegs
1478 self.constructor += \
1479 '\n\t_numDestRegs = %d;' % self.operands.numDestRegs
1480 self.constructor += \
1481 '\n\t_numFPDestRegs = %d;' % self.operands.numFPDestRegs
1482 self.constructor += \
1483 '\n\t_numIntDestRegs = %d;' % self.operands.numIntDestRegs
1484
1485 self.op_decl = self.operands.concatAttrStrings('op_decl')
1486
1487 is_mem = lambda op: op.traits.isMem()
1488 not_mem = lambda op: not op.traits.isMem()
1489
1490 self.op_rd = self.operands.concatAttrStrings('op_rd')
1491 self.op_wb = self.operands.concatAttrStrings('op_wb')
1492 self.op_mem_rd = \
1493 self.operands.concatSomeAttrStrings(is_mem, 'op_rd')
1494 self.op_mem_wb = \
1495 self.operands.concatSomeAttrStrings(is_mem, 'op_wb')
1496 self.op_nonmem_rd = \
1497 self.operands.concatSomeAttrStrings(not_mem, 'op_rd')
1498 self.op_nonmem_wb = \
1499 self.operands.concatSomeAttrStrings(not_mem, 'op_wb')
1500
1501 self.flags = self.operands.concatAttrLists('flags')
1502
1503 # Make a basic guess on the operand class (function unit type).
1504 # These are good enough for most cases, and will be overridden
1505 # later otherwise.
1506 if 'IsStore' in self.flags:
1507 self.op_class = 'MemWriteOp'
1508 elif 'IsLoad' in self.flags or 'IsPrefetch' in self.flags:
1509 self.op_class = 'MemReadOp'
1510 elif 'IsFloating' in self.flags:
1511 self.op_class = 'FloatAddOp'
1512 else:
1513 self.op_class = 'IntAluOp'
1514
1515 # Assume all instruction flags are of the form 'IsFoo'
1516 instFlagRE = re.compile(r'Is.*')
1517
1518 # OpClass constants end in 'Op' except No_OpClass
1519 opClassRE = re.compile(r'.*Op|No_OpClass')
1520
1521 class InstObjParams:
1522 def __init__(self, mnem, class_name, base_class = '',
1523 code_block = None, opt_args = []):
1524 self.mnemonic = mnem
1525 self.class_name = class_name
1526 self.base_class = base_class
1527 if code_block:
1528 for code_attr in code_block.__dict__.keys():
1529 setattr(self, code_attr, getattr(code_block, code_attr))
1530 else:
1531 self.constructor = ''
1532 self.flags = []
1533 # Optional arguments are assumed to be either StaticInst flags
1534 # or an OpClass value. To avoid having to import a complete
1535 # list of these values to match against, we do it ad-hoc
1536 # with regexps.
1537 for oa in opt_args:
1538 if instFlagRE.match(oa):
1539 self.flags.append(oa)
1540 elif opClassRE.match(oa):
1541 self.op_class = oa
1542 else:
1543 error(0, 'InstObjParams: optional arg "%s" not recognized '
1544 'as StaticInst::Flag or OpClass.' % oa)
1545
1546 # add flag initialization to contructor here to include
1547 # any flags added via opt_args
1548 self.constructor += makeFlagConstructor(self.flags)
1549
1550 # if 'IsFloating' is set, add call to the FP enable check
1551 # function (which should be provided by isa_desc via a declare)
1552 if 'IsFloating' in self.flags:
1553 self.fp_enable_check = 'fault = checkFpEnableFault(xc);'
1554 else:
1555 self.fp_enable_check = ''
1556
1557 #######################
1558 #
1559 # Output file template
1560 #
1561
1562 file_template = '''
1563 /*
1564 * DO NOT EDIT THIS FILE!!!
1565 *
1566 * It was automatically generated from the ISA description in %(filename)s
1567 */
1568
1569 %(includes)s
1570
1571 %(global_output)s
1572
1573 namespace %(namespace)s {
1574
1575 %(namespace_output)s
1576
1577 } // namespace %(namespace)s
1578 '''
1579
1580
1581 # Update the output file only if the new contents are different from
1582 # the current contents. Minimizes the files that need to be rebuilt
1583 # after minor changes.
1584 def update_if_needed(file, contents):
1585 update = False
1586 if os.access(file, os.R_OK):
1587 f = open(file, 'r')
1588 old_contents = f.read()
1589 f.close()
1590 if contents != old_contents:
1591 print 'Updating', file
1592 os.remove(file) # in case it's write-protected
1593 update = True
1594 else:
1595 print 'File', file, 'is unchanged'
1596 else:
1597 print 'Generating', file
1598 update = True
1599 if update:
1600 f = open(file, 'w')
1601 f.write(contents)
1602 f.close()
1603
1604 #
1605 # Read in and parse the ISA description.
1606 #
1607 def parse_isa_desc(isa_desc_file, output_dir, include_path):
1608 # set a global var for the input filename... used in error messages
1609 global input_filename
1610 input_filename = isa_desc_file
1611
1612 # Suck the ISA description file in.
1613 input = open(isa_desc_file)
1614 isa_desc = input.read()
1615 input.close()
1616
1617 # Parse it.
1618 (isa_name, namespace, global_code, namespace_code) = yacc.parse(isa_desc)
1619
1620 # grab the last three path components of isa_desc_file to put in
1621 # the output
1622 filename = '/'.join(isa_desc_file.split('/')[-3:])
1623
1624 # generate decoder.hh
1625 includes = '#include "base/bitfield.hh" // for bitfield support'
1626 global_output = global_code.header_output
1627 namespace_output = namespace_code.header_output
1628 update_if_needed(output_dir + '/decoder.hh', file_template % vars())
1629
1630 # generate decoder.cc
1631 includes = '#include "%s/decoder.hh"' % include_path
1632 global_output = global_code.decoder_output
1633 namespace_output = namespace_code.decoder_output
1634 namespace_output += namespace_code.decode_block
1635 update_if_needed(output_dir + '/decoder.cc', file_template % vars())
1636
1637 # generate per-cpu exec files
1638 for cpu in CpuModel.list:
1639 includes = '#include "%s/decoder.hh"\n' % include_path
1640 includes += cpu.includes
1641 global_output = global_code.exec_output[cpu.name]
1642 namespace_output = namespace_code.exec_output[cpu.name]
1643 update_if_needed(output_dir + '/' + cpu.filename,
1644 file_template % vars())
1645
1646 # Called as script: get args from command line.
1647 if __name__ == '__main__':
1648 parse_isa_desc(sys.argv[1], sys.argv[2], sys.argv[3])