Merge zizzer:/bk/m5
[gem5.git] / arch / isa_parser.py
1 #! /usr/bin/env python
2
3 # Copyright (c) 2003-2005 The Regents of The University of Michigan
4 # All rights reserved.
5 #
6 # Redistribution and use in source and binary forms, with or without
7 # modification, are permitted provided that the following conditions are
8 # met: redistributions of source code must retain the above copyright
9 # notice, this list of conditions and the following disclaimer;
10 # redistributions in binary form must reproduce the above copyright
11 # notice, this list of conditions and the following disclaimer in the
12 # documentation and/or other materials provided with the distribution;
13 # neither the name of the copyright holders nor the names of its
14 # contributors may be used to endorse or promote products derived from
15 # this software without specific prior written permission.
16 #
17 # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18 # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19 # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
20 # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
21 # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
22 # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
23 # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28
29 import os
30 import sys
31 import re
32 import string
33 import traceback
34 # get type names
35 from types import *
36
37 # Prepend the directory where the PLY lex & yacc modules are found
38 # to the search path. Assumes we're compiling in a subdirectory
39 # of 'build' in the current tree.
40 sys.path[0:0] = [os.environ['M5_EXT'] + '/ply']
41
42 import lex
43 import yacc
44
45 #####################################################################
46 #
47 # Lexer
48 #
49 # The PLY lexer module takes two things as input:
50 # - A list of token names (the string list 'tokens')
51 # - A regular expression describing a match for each token. The
52 # regexp for token FOO can be provided in two ways:
53 # - as a string variable named t_FOO
54 # - as the doc string for a function named t_FOO. In this case,
55 # the function is also executed, allowing an action to be
56 # associated with each token match.
57 #
58 #####################################################################
59
60 # Reserved words. These are listed separately as they are matched
61 # using the same regexp as generic IDs, but distinguished in the
62 # t_ID() function. The PLY documentation suggests this approach.
63 reserved = (
64 'BITFIELD', 'DECODE', 'DECODER', 'DEFAULT', 'DEF', 'EXEC', 'FORMAT',
65 'HEADER', 'LET', 'NAMESPACE', 'OPERAND_TYPES', 'OPERANDS',
66 'OUTPUT', 'SIGNED', 'TEMPLATE'
67 )
68
69 # List of tokens. The lex module requires this.
70 tokens = reserved + (
71 # identifier
72 'ID',
73
74 # integer literal
75 'INTLIT',
76
77 # string literal
78 'STRLIT',
79
80 # code literal
81 'CODELIT',
82
83 # ( ) [ ] { } < > , ; : :: *
84 'LPAREN', 'RPAREN',
85 'LBRACKET', 'RBRACKET',
86 'LBRACE', 'RBRACE',
87 'LESS', 'GREATER', 'EQUALS',
88 'COMMA', 'SEMI', 'COLON', 'DBLCOLON',
89 'ASTERISK',
90
91 # C preprocessor directives
92 'CPPDIRECTIVE'
93
94 # The following are matched but never returned. commented out to
95 # suppress PLY warning
96 # newfile directive
97 # 'NEWFILE',
98
99 # endfile directive
100 # 'ENDFILE'
101 )
102
103 # Regular expressions for token matching
104 t_LPAREN = r'\('
105 t_RPAREN = r'\)'
106 t_LBRACKET = r'\['
107 t_RBRACKET = r'\]'
108 t_LBRACE = r'\{'
109 t_RBRACE = r'\}'
110 t_LESS = r'\<'
111 t_GREATER = r'\>'
112 t_EQUALS = r'='
113 t_COMMA = r','
114 t_SEMI = r';'
115 t_COLON = r':'
116 t_DBLCOLON = r'::'
117 t_ASTERISK = r'\*'
118
119 # Identifiers and reserved words
120 reserved_map = { }
121 for r in reserved:
122 reserved_map[r.lower()] = r
123
124 def t_ID(t):
125 r'[A-Za-z_]\w*'
126 t.type = reserved_map.get(t.value,'ID')
127 return t
128
129 # Integer literal
130 def t_INTLIT(t):
131 r'(0x[\da-fA-F]+)|\d+'
132 try:
133 t.value = int(t.value,0)
134 except ValueError:
135 error(t.lineno, 'Integer value "%s" too large' % t.value)
136 t.value = 0
137 return t
138
139 # String literal. Note that these use only single quotes, and
140 # can span multiple lines.
141 def t_STRLIT(t):
142 r"(?m)'([^'])+'"
143 # strip off quotes
144 t.value = t.value[1:-1]
145 t.lineno += t.value.count('\n')
146 return t
147
148
149 # "Code literal"... like a string literal, but delimiters are
150 # '{{' and '}}' so they get formatted nicely under emacs c-mode
151 def t_CODELIT(t):
152 r"(?m)\{\{([^\}]|}(?!\}))+\}\}"
153 # strip off {{ & }}
154 t.value = t.value[2:-2]
155 t.lineno += t.value.count('\n')
156 return t
157
158 def t_CPPDIRECTIVE(t):
159 r'^\#[^\#].*\n'
160 t.lineno += t.value.count('\n')
161 return t
162
163 def t_NEWFILE(t):
164 r'^\#\#newfile\s+"[\w/.-]*"'
165 global fileNameStack
166 fileNameStack.append((t.value[11:-1], t.lineno))
167 t.lineno = 0
168
169 def t_ENDFILE(t):
170 r'^\#\#endfile'
171 (filename, t.lineno) = fileNameStack.pop()
172
173 #
174 # The functions t_NEWLINE, t_ignore, and t_error are
175 # special for the lex module.
176 #
177
178 # Newlines
179 def t_NEWLINE(t):
180 r'\n+'
181 t.lineno += t.value.count('\n')
182
183 # Comments
184 def t_comment(t):
185 r'//.*'
186
187 # Completely ignored characters
188 t_ignore = ' \t\x0c'
189
190 # Error handler
191 def t_error(t):
192 error(t.lineno, "illegal character '%s'" % t.value[0])
193 t.skip(1)
194
195 # Build the lexer
196 lex.lex()
197
198 #####################################################################
199 #
200 # Parser
201 #
202 # Every function whose name starts with 'p_' defines a grammar rule.
203 # The rule is encoded in the function's doc string, while the
204 # function body provides the action taken when the rule is matched.
205 # The argument to each function is a list of the values of the
206 # rule's symbols: t[0] for the LHS, and t[1..n] for the symbols
207 # on the RHS. For tokens, the value is copied from the t.value
208 # attribute provided by the lexer. For non-terminals, the value
209 # is assigned by the producing rule; i.e., the job of the grammar
210 # rule function is to set the value for the non-terminal on the LHS
211 # (by assigning to t[0]).
212 #####################################################################
213
214 # The LHS of the first grammar rule is used as the start symbol
215 # (in this case, 'specification'). Note that this rule enforces
216 # that there will be exactly one namespace declaration, with 0 or more
217 # global defs/decls before and after it. The defs & decls before
218 # the namespace decl will be outside the namespace; those after
219 # will be inside. The decoder function is always inside the namespace.
220 def p_specification(t):
221 'specification : opt_defs_and_outputs name_decl opt_defs_and_outputs decode_block'
222 global_code = t[1]
223 isa_name = t[2]
224 namespace = isa_name + "Inst"
225 # wrap the decode block as a function definition
226 t[4].wrap_decode_block('''
227 StaticInstPtr<%(isa_name)s>
228 %(isa_name)s::decodeInst(%(isa_name)s::MachInst machInst)
229 {
230 using namespace %(namespace)s;
231 ''' % vars(), '}')
232 # both the latter output blocks and the decode block are in the namespace
233 namespace_code = t[3] + t[4]
234 # pass it all back to the caller of yacc.parse()
235 t[0] = (isa_name, namespace, global_code, namespace_code)
236
237 # ISA name declaration looks like "namespace <foo>;"
238 def p_name_decl(t):
239 'name_decl : NAMESPACE ID SEMI'
240 t[0] = t[2]
241
242 # 'opt_defs_and_outputs' is a possibly empty sequence of
243 # def and/or output statements.
244 def p_opt_defs_and_outputs_0(t):
245 'opt_defs_and_outputs : empty'
246 t[0] = GenCode()
247
248 def p_opt_defs_and_outputs_1(t):
249 'opt_defs_and_outputs : defs_and_outputs'
250 t[0] = t[1]
251
252 def p_defs_and_outputs_0(t):
253 'defs_and_outputs : def_or_output'
254 t[0] = t[1]
255
256 def p_defs_and_outputs_1(t):
257 'defs_and_outputs : defs_and_outputs def_or_output'
258 t[0] = t[1] + t[2]
259
260 # The list of possible definition/output statements.
261 def p_def_or_output(t):
262 '''def_or_output : def_format
263 | def_bitfield
264 | def_template
265 | def_operand_types
266 | def_operands
267 | output_header
268 | output_decoder
269 | output_exec
270 | global_let'''
271 t[0] = t[1]
272
273 # Output blocks 'output <foo> {{...}}' (C++ code blocks) are copied
274 # directly to the appropriate output section.
275
276
277 # Protect any non-dict-substitution '%'s in a format string
278 # (i.e. those not followed by '(')
279 def protect_non_subst_percents(s):
280 return re.sub(r'%(?!\()', '%%', s)
281
282 # Massage output block by substituting in template definitions and bit
283 # operators. We handle '%'s embedded in the string that don't
284 # indicate template substitutions (or CPU-specific symbols, which get
285 # handled in GenCode) by doubling them first so that the format
286 # operation will reduce them back to single '%'s.
287 def process_output(s):
288 s = protect_non_subst_percents(s)
289 # protects cpu-specific symbols too
290 s = protect_cpu_symbols(s)
291 return substBitOps(s % templateMap)
292
293 def p_output_header(t):
294 'output_header : OUTPUT HEADER CODELIT SEMI'
295 t[0] = GenCode(header_output = process_output(t[3]))
296
297 def p_output_decoder(t):
298 'output_decoder : OUTPUT DECODER CODELIT SEMI'
299 t[0] = GenCode(decoder_output = process_output(t[3]))
300
301 def p_output_exec(t):
302 'output_exec : OUTPUT EXEC CODELIT SEMI'
303 t[0] = GenCode(exec_output = process_output(t[3]))
304
305 # global let blocks 'let {{...}}' (Python code blocks) are executed
306 # directly when seen. Note that these execute in a special variable
307 # context 'exportContext' to prevent the code from polluting this
308 # script's namespace.
309 def p_global_let(t):
310 'global_let : LET CODELIT SEMI'
311 updateExportContext()
312 try:
313 exec fixPythonIndentation(t[2]) in exportContext
314 except Exception, exc:
315 error(t.lineno(1),
316 'error: %s in global let block "%s".' % (exc, t[2]))
317 t[0] = GenCode() # contributes nothing to the output C++ file
318
319 # Define the mapping from operand type extensions to C++ types and bit
320 # widths (stored in operandTypeMap).
321 def p_def_operand_types(t):
322 'def_operand_types : DEF OPERAND_TYPES CODELIT SEMI'
323 try:
324 userDict = eval('{' + t[3] + '}')
325 except Exception, exc:
326 error(t.lineno(1),
327 'error: %s in def operand_types block "%s".' % (exc, t[3]))
328 buildOperandTypeMap(userDict, t.lineno(1))
329 t[0] = GenCode() # contributes nothing to the output C++ file
330
331 # Define the mapping from operand names to operand classes and other
332 # traits. Stored in operandNameMap.
333 def p_def_operands(t):
334 'def_operands : DEF OPERANDS CODELIT SEMI'
335 if not globals().has_key('operandTypeMap'):
336 error(t.lineno(1),
337 'error: operand types must be defined before operands')
338 try:
339 userDict = eval('{' + t[3] + '}')
340 except Exception, exc:
341 error(t.lineno(1),
342 'error: %s in def operands block "%s".' % (exc, t[3]))
343 buildOperandNameMap(userDict, t.lineno(1))
344 t[0] = GenCode() # contributes nothing to the output C++ file
345
346 # A bitfield definition looks like:
347 # 'def [signed] bitfield <ID> [<first>:<last>]'
348 # This generates a preprocessor macro in the output file.
349 def p_def_bitfield_0(t):
350 'def_bitfield : DEF opt_signed BITFIELD ID LESS INTLIT COLON INTLIT GREATER SEMI'
351 expr = 'bits(machInst, %2d, %2d)' % (t[6], t[8])
352 if (t[2] == 'signed'):
353 expr = 'sext<%d>(%s)' % (t[6] - t[8] + 1, expr)
354 hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
355 t[0] = GenCode(header_output = hash_define)
356
357 # alternate form for single bit: 'def [signed] bitfield <ID> [<bit>]'
358 def p_def_bitfield_1(t):
359 'def_bitfield : DEF opt_signed BITFIELD ID LESS INTLIT GREATER SEMI'
360 expr = 'bits(machInst, %2d, %2d)' % (t[6], t[6])
361 if (t[2] == 'signed'):
362 expr = 'sext<%d>(%s)' % (1, expr)
363 hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
364 t[0] = GenCode(header_output = hash_define)
365
366 def p_opt_signed_0(t):
367 'opt_signed : SIGNED'
368 t[0] = t[1]
369
370 def p_opt_signed_1(t):
371 'opt_signed : empty'
372 t[0] = ''
373
374 # Global map variable to hold templates
375 templateMap = {}
376
377 def p_def_template(t):
378 'def_template : DEF TEMPLATE ID CODELIT SEMI'
379 templateMap[t[3]] = Template(t[4])
380 t[0] = GenCode()
381
382 # An instruction format definition looks like
383 # "def format <fmt>(<params>) {{...}};"
384 def p_def_format(t):
385 'def_format : DEF FORMAT ID LPAREN param_list RPAREN CODELIT SEMI'
386 (id, params, code) = (t[3], t[5], t[7])
387 defFormat(id, params, code, t.lineno(1))
388 t[0] = GenCode()
389
390 # The formal parameter list for an instruction format is a possibly
391 # empty list of comma-separated parameters. Positional (standard,
392 # non-keyword) parameters must come first, followed by keyword
393 # parameters, followed by a '*foo' parameter that gets excess
394 # positional arguments (as in Python). Each of these three parameter
395 # categories is optional.
396 #
397 # Note that we do not support the '**foo' parameter for collecting
398 # otherwise undefined keyword args. Otherwise the parameter list is
399 # (I believe) identical to what is supported in Python.
400 #
401 # The param list generates a tuple, where the first element is a list of
402 # the positional params and the second element is a dict containing the
403 # keyword params.
404 def p_param_list_0(t):
405 'param_list : positional_param_list COMMA nonpositional_param_list'
406 t[0] = t[1] + t[3]
407
408 def p_param_list_1(t):
409 '''param_list : positional_param_list
410 | nonpositional_param_list'''
411 t[0] = t[1]
412
413 def p_positional_param_list_0(t):
414 'positional_param_list : empty'
415 t[0] = []
416
417 def p_positional_param_list_1(t):
418 'positional_param_list : ID'
419 t[0] = [t[1]]
420
421 def p_positional_param_list_2(t):
422 'positional_param_list : positional_param_list COMMA ID'
423 t[0] = t[1] + [t[3]]
424
425 def p_nonpositional_param_list_0(t):
426 'nonpositional_param_list : keyword_param_list COMMA excess_args_param'
427 t[0] = t[1] + t[3]
428
429 def p_nonpositional_param_list_1(t):
430 '''nonpositional_param_list : keyword_param_list
431 | excess_args_param'''
432 t[0] = t[1]
433
434 def p_keyword_param_list_0(t):
435 'keyword_param_list : keyword_param'
436 t[0] = [t[1]]
437
438 def p_keyword_param_list_1(t):
439 'keyword_param_list : keyword_param_list COMMA keyword_param'
440 t[0] = t[1] + [t[3]]
441
442 def p_keyword_param(t):
443 'keyword_param : ID EQUALS expr'
444 t[0] = t[1] + ' = ' + t[3].__repr__()
445
446 def p_excess_args_param(t):
447 'excess_args_param : ASTERISK ID'
448 # Just concatenate them: '*ID'. Wrap in list to be consistent
449 # with positional_param_list and keyword_param_list.
450 t[0] = [t[1] + t[2]]
451
452 # End of format definition-related rules.
453 ##############
454
455 #
456 # A decode block looks like:
457 # decode <field1> [, <field2>]* [default <inst>] { ... }
458 #
459 def p_decode_block(t):
460 'decode_block : DECODE ID opt_default LBRACE decode_stmt_list RBRACE'
461 default_defaults = defaultStack.pop()
462 codeObj = t[5]
463 # use the "default defaults" only if there was no explicit
464 # default statement in decode_stmt_list
465 if not codeObj.has_decode_default:
466 codeObj += default_defaults
467 codeObj.wrap_decode_block('switch (%s) {\n' % t[2], '}\n')
468 t[0] = codeObj
469
470 # The opt_default statement serves only to push the "default defaults"
471 # onto defaultStack. This value will be used by nested decode blocks,
472 # and used and popped off when the current decode_block is processed
473 # (in p_decode_block() above).
474 def p_opt_default_0(t):
475 'opt_default : empty'
476 # no default specified: reuse the one currently at the top of the stack
477 defaultStack.push(defaultStack.top())
478 # no meaningful value returned
479 t[0] = None
480
481 def p_opt_default_1(t):
482 'opt_default : DEFAULT inst'
483 # push the new default
484 codeObj = t[2]
485 codeObj.wrap_decode_block('\ndefault:\n', 'break;\n')
486 defaultStack.push(codeObj)
487 # no meaningful value returned
488 t[0] = None
489
490 def p_decode_stmt_list_0(t):
491 'decode_stmt_list : decode_stmt'
492 t[0] = t[1]
493
494 def p_decode_stmt_list_1(t):
495 'decode_stmt_list : decode_stmt decode_stmt_list'
496 if (t[1].has_decode_default and t[2].has_decode_default):
497 error(t.lineno(1), 'Two default cases in decode block')
498 t[0] = t[1] + t[2]
499
500 #
501 # Decode statement rules
502 #
503 # There are four types of statements allowed in a decode block:
504 # 1. Format blocks 'format <foo> { ... }'
505 # 2. Nested decode blocks
506 # 3. Instruction definitions.
507 # 4. C preprocessor directives.
508
509
510 # Preprocessor directives found in a decode statement list are passed
511 # through to the output, replicated to all of the output code
512 # streams. This works well for ifdefs, so we can ifdef out both the
513 # declarations and the decode cases generated by an instruction
514 # definition. Handling them as part of the grammar makes it easy to
515 # keep them in the right place with respect to the code generated by
516 # the other statements.
517 def p_decode_stmt_cpp(t):
518 'decode_stmt : CPPDIRECTIVE'
519 t[0] = GenCode(t[1], t[1], t[1], t[1])
520
521 # A format block 'format <foo> { ... }' sets the default instruction
522 # format used to handle instruction definitions inside the block.
523 # This format can be overridden by using an explicit format on the
524 # instruction definition or with a nested format block.
525 def p_decode_stmt_format(t):
526 'decode_stmt : FORMAT push_format_id LBRACE decode_stmt_list RBRACE'
527 # The format will be pushed on the stack when 'push_format_id' is
528 # processed (see below). Once the parser has recognized the full
529 # production (though the right brace), we're done with the format,
530 # so now we can pop it.
531 formatStack.pop()
532 t[0] = t[4]
533
534 # This rule exists so we can set the current format (& push the stack)
535 # when we recognize the format name part of the format block.
536 def p_push_format_id(t):
537 'push_format_id : ID'
538 try:
539 formatStack.push(formatMap[t[1]])
540 t[0] = ('', '// format %s' % t[1])
541 except KeyError:
542 error(t.lineno(1), 'instruction format "%s" not defined.' % t[1])
543
544 # Nested decode block: if the value of the current field matches the
545 # specified constant, do a nested decode on some other field.
546 def p_decode_stmt_decode(t):
547 'decode_stmt : case_label COLON decode_block'
548 label = t[1]
549 codeObj = t[3]
550 # just wrap the decoding code from the block as a case in the
551 # outer switch statement.
552 codeObj.wrap_decode_block('\n%s:\n' % label)
553 codeObj.has_decode_default = (label == 'default')
554 t[0] = codeObj
555
556 # Instruction definition (finally!).
557 def p_decode_stmt_inst(t):
558 'decode_stmt : case_label COLON inst SEMI'
559 label = t[1]
560 codeObj = t[3]
561 codeObj.wrap_decode_block('\n%s:' % label, 'break;\n')
562 codeObj.has_decode_default = (label == 'default')
563 t[0] = codeObj
564
565 # The case label is either a list of one or more constants or 'default'
566 def p_case_label_0(t):
567 'case_label : intlit_list'
568 t[0] = ': '.join(map(lambda a: 'case %#x' % a, t[1]))
569
570 def p_case_label_1(t):
571 'case_label : DEFAULT'
572 t[0] = 'default'
573
574 #
575 # The constant list for a decode case label must be non-empty, but may have
576 # one or more comma-separated integer literals in it.
577 #
578 def p_intlit_list_0(t):
579 'intlit_list : INTLIT'
580 t[0] = [t[1]]
581
582 def p_intlit_list_1(t):
583 'intlit_list : intlit_list COMMA INTLIT'
584 t[0] = t[1]
585 t[0].append(t[3])
586
587 # Define an instruction using the current instruction format (specified
588 # by an enclosing format block).
589 # "<mnemonic>(<args>)"
590 def p_inst_0(t):
591 'inst : ID LPAREN arg_list RPAREN'
592 # Pass the ID and arg list to the current format class to deal with.
593 currentFormat = formatStack.top()
594 codeObj = currentFormat.defineInst(t[1], t[3], t.lineno(1))
595 args = ','.join(map(str, t[3]))
596 args = re.sub('(?m)^', '//', args)
597 args = re.sub('^//', '', args)
598 comment = '\n// %s::%s(%s)\n' % (currentFormat.id, t[1], args)
599 codeObj.prepend_all(comment)
600 t[0] = codeObj
601
602 # Define an instruction using an explicitly specified format:
603 # "<fmt>::<mnemonic>(<args>)"
604 def p_inst_1(t):
605 'inst : ID DBLCOLON ID LPAREN arg_list RPAREN'
606 try:
607 format = formatMap[t[1]]
608 except KeyError:
609 error(t.lineno(1), 'instruction format "%s" not defined.' % t[1])
610 codeObj = format.defineInst(t[3], t[5], t.lineno(1))
611 comment = '\n// %s::%s(%s)\n' % (t[1], t[3], t[5])
612 codeObj.prepend_all(comment)
613 t[0] = codeObj
614
615 # The arg list generates a tuple, where the first element is a list of
616 # the positional args and the second element is a dict containing the
617 # keyword args.
618 def p_arg_list_0(t):
619 'arg_list : positional_arg_list COMMA keyword_arg_list'
620 t[0] = ( t[1], t[3] )
621
622 def p_arg_list_1(t):
623 'arg_list : positional_arg_list'
624 t[0] = ( t[1], {} )
625
626 def p_arg_list_2(t):
627 'arg_list : keyword_arg_list'
628 t[0] = ( [], t[1] )
629
630 def p_positional_arg_list_0(t):
631 'positional_arg_list : empty'
632 t[0] = []
633
634 def p_positional_arg_list_1(t):
635 'positional_arg_list : expr'
636 t[0] = [t[1]]
637
638 def p_positional_arg_list_2(t):
639 'positional_arg_list : positional_arg_list COMMA expr'
640 t[0] = t[1] + [t[3]]
641
642 def p_keyword_arg_list_0(t):
643 'keyword_arg_list : keyword_arg'
644 t[0] = t[1]
645
646 def p_keyword_arg_list_1(t):
647 'keyword_arg_list : keyword_arg_list COMMA keyword_arg'
648 t[0] = t[1]
649 t[0].update(t[3])
650
651 def p_keyword_arg(t):
652 'keyword_arg : ID EQUALS expr'
653 t[0] = { t[1] : t[3] }
654
655 #
656 # Basic expressions. These constitute the argument values of
657 # "function calls" (i.e. instruction definitions in the decode block)
658 # and default values for formal parameters of format functions.
659 #
660 # Right now, these are either strings, integers, or (recursively)
661 # lists of exprs (using Python square-bracket list syntax). Note that
662 # bare identifiers are trated as string constants here (since there
663 # isn't really a variable namespace to refer to).
664 #
665 def p_expr_0(t):
666 '''expr : ID
667 | INTLIT
668 | STRLIT
669 | CODELIT'''
670 t[0] = t[1]
671
672 def p_expr_1(t):
673 '''expr : LBRACKET list_expr RBRACKET'''
674 t[0] = t[2]
675
676 def p_list_expr_0(t):
677 'list_expr : expr'
678 t[0] = [t[1]]
679
680 def p_list_expr_1(t):
681 'list_expr : list_expr COMMA expr'
682 t[0] = t[1] + [t[3]]
683
684 def p_list_expr_2(t):
685 'list_expr : empty'
686 t[0] = []
687
688 #
689 # Empty production... use in other rules for readability.
690 #
691 def p_empty(t):
692 'empty :'
693 pass
694
695 # Parse error handler. Note that the argument here is the offending
696 # *token*, not a grammar symbol (hence the need to use t.value)
697 def p_error(t):
698 if t:
699 error(t.lineno, "syntax error at '%s'" % t.value)
700 else:
701 error_bt(0, "unknown syntax error")
702
703 # END OF GRAMMAR RULES
704 #
705 # Now build the parser.
706 yacc.yacc()
707
708
709 #####################################################################
710 #
711 # Support Classes
712 #
713 #####################################################################
714
715 ################
716 # CpuModel class
717 #
718 # The CpuModel class encapsulates everything we need to know about a
719 # particular CPU model.
720
721 class CpuModel:
722 # List of all CPU models. Accessible as CpuModel.list.
723 list = []
724
725 # Constructor. Automatically adds models to CpuModel.list.
726 def __init__(self, name, filename, includes, strings):
727 self.name = name
728 self.filename = filename # filename for output exec code
729 self.includes = includes # include files needed in exec file
730 # The 'strings' dict holds all the per-CPU symbols we can
731 # substitute into templates etc.
732 self.strings = strings
733 # Add self to list.
734 CpuModel.list.append(self)
735
736 # Define CPU models. The following lines should contain the only
737 # CPU-model-specific information in this file. Note that the ISA
738 # description itself should have *no* CPU-model-specific content.
739 CpuModel('SimpleCPU', 'simple_cpu_exec.cc',
740 '#include "cpu/simple/cpu.hh"',
741 { 'CPU_exec_context': 'SimpleCPU' })
742 CpuModel('FastCPU', 'fast_cpu_exec.cc',
743 '#include "cpu/fast/cpu.hh"',
744 { 'CPU_exec_context': 'FastCPU' })
745 CpuModel('FullCPU', 'full_cpu_exec.cc',
746 '#include "encumbered/cpu/full/dyn_inst.hh"',
747 { 'CPU_exec_context': 'DynInst' })
748 CpuModel('AlphaFullCPU', 'alpha_o3_exec.cc',
749 '#include "cpu/o3/alpha_dyn_inst.hh"',
750 { 'CPU_exec_context': 'AlphaDynInst<AlphaSimpleImpl>' })
751
752 # Expand template with CPU-specific references into a dictionary with
753 # an entry for each CPU model name. The entry key is the model name
754 # and the corresponding value is the template with the CPU-specific
755 # refs substituted for that model.
756 def expand_cpu_symbols_to_dict(template):
757 # Protect '%'s that don't go with CPU-specific terms
758 t = re.sub(r'%(?!\(CPU_)', '%%', template)
759 result = {}
760 for cpu in CpuModel.list:
761 result[cpu.name] = t % cpu.strings
762 return result
763
764 # *If* the template has CPU-specific references, return a single
765 # string containing a copy of the template for each CPU model with the
766 # corresponding values substituted in. If the template has no
767 # CPU-specific references, it is returned unmodified.
768 def expand_cpu_symbols_to_string(template):
769 if template.find('%(CPU_') != -1:
770 return reduce(lambda x,y: x+y,
771 expand_cpu_symbols_to_dict(template).values())
772 else:
773 return template
774
775 # Protect CPU-specific references by doubling the corresponding '%'s
776 # (in preparation for substituting a different set of references into
777 # the template).
778 def protect_cpu_symbols(template):
779 return re.sub(r'%(?=\(CPU_)', '%%', template)
780
781 ###############
782 # GenCode class
783 #
784 # The GenCode class encapsulates generated code destined for various
785 # output files. The header_output and decoder_output attributes are
786 # strings containing code destined for decoder.hh and decoder.cc
787 # respectively. The decode_block attribute contains code to be
788 # incorporated in the decode function itself (that will also end up in
789 # decoder.cc). The exec_output attribute is a dictionary with a key
790 # for each CPU model name; the value associated with a particular key
791 # is the string of code for that CPU model's exec.cc file. The
792 # has_decode_default attribute is used in the decode block to allow
793 # explicit default clauses to override default default clauses.
794
795 class GenCode:
796 # Constructor. At this point we substitute out all CPU-specific
797 # symbols. For the exec output, these go into the per-model
798 # dictionary. For all other output types they get collapsed into
799 # a single string.
800 def __init__(self,
801 header_output = '', decoder_output = '', exec_output = '',
802 decode_block = '', has_decode_default = False):
803 self.header_output = expand_cpu_symbols_to_string(header_output)
804 self.decoder_output = expand_cpu_symbols_to_string(decoder_output)
805 if isinstance(exec_output, dict):
806 self.exec_output = exec_output
807 elif isinstance(exec_output, str):
808 # If the exec_output arg is a single string, we replicate
809 # it for each of the CPU models, substituting and
810 # %(CPU_foo)s params appropriately.
811 self.exec_output = expand_cpu_symbols_to_dict(exec_output)
812 self.decode_block = expand_cpu_symbols_to_string(decode_block)
813 self.has_decode_default = has_decode_default
814
815 # Override '+' operator: generate a new GenCode object that
816 # concatenates all the individual strings in the operands.
817 def __add__(self, other):
818 exec_output = {}
819 for cpu in CpuModel.list:
820 n = cpu.name
821 exec_output[n] = self.exec_output[n] + other.exec_output[n]
822 return GenCode(self.header_output + other.header_output,
823 self.decoder_output + other.decoder_output,
824 exec_output,
825 self.decode_block + other.decode_block,
826 self.has_decode_default or other.has_decode_default)
827
828 # Prepend a string (typically a comment) to all the strings.
829 def prepend_all(self, pre):
830 self.header_output = pre + self.header_output
831 self.decoder_output = pre + self.decoder_output
832 self.decode_block = pre + self.decode_block
833 for cpu in CpuModel.list:
834 self.exec_output[cpu.name] = pre + self.exec_output[cpu.name]
835
836 # Wrap the decode block in a pair of strings (e.g., 'case foo:'
837 # and 'break;'). Used to build the big nested switch statement.
838 def wrap_decode_block(self, pre, post = ''):
839 self.decode_block = pre + indent(self.decode_block) + post
840
841 ################
842 # Format object.
843 #
844 # A format object encapsulates an instruction format. It must provide
845 # a defineInst() method that generates the code for an instruction
846 # definition.
847
848 exportContextSymbols = ('InstObjParams', 'CodeBlock',
849 'makeList', 're', 'string')
850
851 exportContext = {}
852
853 def updateExportContext():
854 exportContext.update(exportDict(*exportContextSymbols))
855 exportContext.update(templateMap)
856
857 def exportDict(*symNames):
858 return dict([(s, eval(s)) for s in symNames])
859
860
861 class Format:
862 def __init__(self, id, params, code):
863 # constructor: just save away arguments
864 self.id = id
865 self.params = params
866 label = 'def format ' + id
867 self.user_code = compile(fixPythonIndentation(code), label, 'exec')
868 param_list = string.join(params, ", ")
869 f = '''def defInst(_code, _context, %s):
870 my_locals = vars().copy()
871 exec _code in _context, my_locals
872 return my_locals\n''' % param_list
873 c = compile(f, label + ' wrapper', 'exec')
874 exec c
875 self.func = defInst
876
877 def defineInst(self, name, args, lineno):
878 context = {}
879 updateExportContext()
880 context.update(exportContext)
881 context.update({ 'name': name, 'Name': string.capitalize(name) })
882 try:
883 vars = self.func(self.user_code, context, *args[0], **args[1])
884 except Exception, exc:
885 error(lineno, 'error defining "%s": %s.' % (name, exc))
886 for k in vars.keys():
887 if k not in ('header_output', 'decoder_output',
888 'exec_output', 'decode_block'):
889 del vars[k]
890 return GenCode(**vars)
891
892 # Special null format to catch an implicit-format instruction
893 # definition outside of any format block.
894 class NoFormat:
895 def __init__(self):
896 self.defaultInst = ''
897
898 def defineInst(self, name, args, lineno):
899 error(lineno,
900 'instruction definition "%s" with no active format!' % name)
901
902 # This dictionary maps format name strings to Format objects.
903 formatMap = {}
904
905 # Define a new format
906 def defFormat(id, params, code, lineno):
907 # make sure we haven't already defined this one
908 if formatMap.get(id, None) != None:
909 error(lineno, 'format %s redefined.' % id)
910 # create new object and store in global map
911 formatMap[id] = Format(id, params, code)
912
913
914 ##############
915 # Stack: a simple stack object. Used for both formats (formatStack)
916 # and default cases (defaultStack). Simply wraps a list to give more
917 # stack-like syntax and enable initialization with an argument list
918 # (as opposed to an argument that's a list).
919
920 class Stack(list):
921 def __init__(self, *items):
922 list.__init__(self, items)
923
924 def push(self, item):
925 self.append(item);
926
927 def top(self):
928 return self[-1]
929
930 # The global format stack.
931 formatStack = Stack(NoFormat())
932
933 # The global default case stack.
934 defaultStack = Stack( None )
935
936 ###################
937 # Utility functions
938
939 #
940 # Indent every line in string 's' by two spaces
941 # (except preprocessor directives).
942 # Used to make nested code blocks look pretty.
943 #
944 def indent(s):
945 return re.sub(r'(?m)^(?!#)', ' ', s)
946
947 #
948 # Munge a somewhat arbitrarily formatted piece of Python code
949 # (e.g. from a format 'let' block) into something whose indentation
950 # will get by the Python parser.
951 #
952 # The two keys here are that Python will give a syntax error if
953 # there's any whitespace at the beginning of the first line, and that
954 # all lines at the same lexical nesting level must have identical
955 # indentation. Unfortunately the way code literals work, an entire
956 # let block tends to have some initial indentation. Rather than
957 # trying to figure out what that is and strip it off, we prepend 'if
958 # 1:' to make the let code the nested block inside the if (and have
959 # the parser automatically deal with the indentation for us).
960 #
961 # We don't want to do this if (1) the code block is empty or (2) the
962 # first line of the block doesn't have any whitespace at the front.
963
964 def fixPythonIndentation(s):
965 # get rid of blank lines first
966 s = re.sub(r'(?m)^\s*\n', '', s);
967 if (s != '' and re.match(r'[ \t]', s[0])):
968 s = 'if 1:\n' + s
969 return s
970
971 # Error handler. Just call exit. Output formatted to work under
972 # Emacs compile-mode. This function should be called when errors due
973 # to user input are detected (as opposed to parser bugs).
974 def error(lineno, string):
975 spaces = ""
976 for (filename, line) in fileNameStack[0:-1]:
977 print spaces + "In file included from " + filename
978 spaces += " "
979 # Uncomment the following line to get a Python stack backtrace for
980 # these errors too. Can be handy when trying to debug the parser.
981 # traceback.print_exc()
982 sys.exit(spaces + "%s:%d: %s" % (fileNameStack[-1][0], lineno, string))
983
984 # Like error(), but include a Python stack backtrace (for processing
985 # Python exceptions). This function should be called for errors that
986 # appear to be bugs in the parser itself.
987 def error_bt(lineno, string):
988 traceback.print_exc()
989 print >> sys.stderr, "%s:%d: %s" % (input_filename, lineno, string)
990 sys.exit(1)
991
992
993 #####################################################################
994 #
995 # Bitfield Operator Support
996 #
997 #####################################################################
998
999 bitOp1ArgRE = re.compile(r'<\s*(\w+)\s*:\s*>')
1000
1001 bitOpWordRE = re.compile(r'(?<![\w\.])([\w\.]+)<\s*(\w+)\s*:\s*(\w+)\s*>')
1002 bitOpExprRE = re.compile(r'\)<\s*(\w+)\s*:\s*(\w+)\s*>')
1003
1004 def substBitOps(code):
1005 # first convert single-bit selectors to two-index form
1006 # i.e., <n> --> <n:n>
1007 code = bitOp1ArgRE.sub(r'<\1:\1>', code)
1008 # simple case: selector applied to ID (name)
1009 # i.e., foo<a:b> --> bits(foo, a, b)
1010 code = bitOpWordRE.sub(r'bits(\1, \2, \3)', code)
1011 # if selector is applied to expression (ending in ')'),
1012 # we need to search backward for matching '('
1013 match = bitOpExprRE.search(code)
1014 while match:
1015 exprEnd = match.start()
1016 here = exprEnd - 1
1017 nestLevel = 1
1018 while nestLevel > 0:
1019 if code[here] == '(':
1020 nestLevel -= 1
1021 elif code[here] == ')':
1022 nestLevel += 1
1023 here -= 1
1024 if here < 0:
1025 sys.exit("Didn't find '('!")
1026 exprStart = here+1
1027 newExpr = r'bits(%s, %s, %s)' % (code[exprStart:exprEnd+1],
1028 match.group(1), match.group(2))
1029 code = code[:exprStart] + newExpr + code[match.end():]
1030 match = bitOpExprRE.search(code)
1031 return code
1032
1033
1034 ####################
1035 # Template objects.
1036 #
1037 # Template objects are format strings that allow substitution from
1038 # the attribute spaces of other objects (e.g. InstObjParams instances).
1039
1040 class Template:
1041 def __init__(self, t):
1042 self.template = t
1043
1044 def subst(self, d):
1045 # Start with the template namespace. Make a copy since we're
1046 # going to modify it.
1047 myDict = templateMap.copy()
1048 # if the argument is a dictionary, we just use it.
1049 if isinstance(d, dict):
1050 myDict.update(d)
1051 # if the argument is an object, we use its attribute map.
1052 elif hasattr(d, '__dict__'):
1053 myDict.update(d.__dict__)
1054 else:
1055 raise TypeError, "Template.subst() arg must be or have dictionary"
1056 # Protect non-Python-dict substitutions (e.g. if there's a printf
1057 # in the templated C++ code)
1058 template = protect_non_subst_percents(self.template)
1059 # CPU-model-specific substitutions are handled later (in GenCode).
1060 template = protect_cpu_symbols(template)
1061 return template % myDict
1062
1063 # Convert to string. This handles the case when a template with a
1064 # CPU-specific term gets interpolated into another template or into
1065 # an output block.
1066 def __str__(self):
1067 return expand_cpu_symbols_to_string(self.template)
1068
1069 #####################################################################
1070 #
1071 # Code Parser
1072 #
1073 # The remaining code is the support for automatically extracting
1074 # instruction characteristics from pseudocode.
1075 #
1076 #####################################################################
1077
1078 # Force the argument to be a list. Useful for flags, where a caller
1079 # can specify a singleton flag or a list of flags. Also usful for
1080 # converting tuples to lists so they can be modified.
1081 def makeList(arg):
1082 if isinstance(arg, list):
1083 return arg
1084 elif isinstance(arg, tuple):
1085 return list(arg)
1086 elif not arg:
1087 return []
1088 else:
1089 return [ arg ]
1090
1091 # Generate operandTypeMap from the user's 'def operand_types'
1092 # statement.
1093 def buildOperandTypeMap(userDict, lineno):
1094 global operandTypeMap
1095 operandTypeMap = {}
1096 for (ext, (desc, size)) in userDict.iteritems():
1097 if desc == 'signed int':
1098 ctype = 'int%d_t' % size
1099 is_signed = 1
1100 elif desc == 'unsigned int':
1101 ctype = 'uint%d_t' % size
1102 is_signed = 0
1103 elif desc == 'float':
1104 is_signed = 1 # shouldn't really matter
1105 if size == 32:
1106 ctype = 'float'
1107 elif size == 64:
1108 ctype = 'double'
1109 if ctype == '':
1110 error(0, 'Unrecognized type description "%s" in userDict')
1111 operandTypeMap[ext] = (size, ctype, is_signed)
1112
1113 #
1114 #
1115 #
1116 # Base class for operand descriptors. An instance of this class (or
1117 # actually a class derived from this one) represents a specific
1118 # operand for a code block (e.g, "Rc.sq" as a dest). Intermediate
1119 # derived classes encapsulates the traits of a particular operand type
1120 # (e.g., "32-bit integer register").
1121 #
1122 class Operand(object):
1123 def __init__(self, full_name, ext, is_src, is_dest):
1124 self.full_name = full_name
1125 self.ext = ext
1126 self.is_src = is_src
1127 self.is_dest = is_dest
1128 # The 'effective extension' (eff_ext) is either the actual
1129 # extension, if one was explicitly provided, or the default.
1130 if ext:
1131 self.eff_ext = ext
1132 else:
1133 self.eff_ext = self.dflt_ext
1134
1135 (self.size, self.ctype, self.is_signed) = operandTypeMap[self.eff_ext]
1136
1137 # note that mem_acc_size is undefined for non-mem operands...
1138 # template must be careful not to use it if it doesn't apply.
1139 if self.isMem():
1140 self.mem_acc_size = self.makeAccSize()
1141 self.mem_acc_type = self.ctype
1142
1143 # Finalize additional fields (primarily code fields). This step
1144 # is done separately since some of these fields may depend on the
1145 # register index enumeration that hasn't been performed yet at the
1146 # time of __init__().
1147 def finalize(self):
1148 self.flags = self.getFlags()
1149 self.constructor = self.makeConstructor()
1150 self.op_decl = self.makeDecl()
1151
1152 if self.is_src:
1153 self.op_rd = self.makeRead()
1154 self.op_src_decl = self.makeDecl()
1155 else:
1156 self.op_rd = ''
1157 self.op_src_decl = ''
1158
1159 if self.is_dest:
1160 self.op_wb = self.makeWrite()
1161 self.op_dest_decl = self.makeDecl()
1162 else:
1163 self.op_wb = ''
1164 self.op_dest_decl = ''
1165
1166 def isMem(self):
1167 return 0
1168
1169 def isReg(self):
1170 return 0
1171
1172 def isFloatReg(self):
1173 return 0
1174
1175 def isIntReg(self):
1176 return 0
1177
1178 def isControlReg(self):
1179 return 0
1180
1181 def getFlags(self):
1182 # note the empty slice '[:]' gives us a copy of self.flags[0]
1183 # instead of a reference to it
1184 my_flags = self.flags[0][:]
1185 if self.is_src:
1186 my_flags += self.flags[1]
1187 if self.is_dest:
1188 my_flags += self.flags[2]
1189 return my_flags
1190
1191 def makeDecl(self):
1192 # Note that initializations in the declarations are solely
1193 # to avoid 'uninitialized variable' errors from the compiler.
1194 return self.ctype + ' ' + self.base_name + ' = 0;\n';
1195
1196 class IntRegOperand(Operand):
1197 def isReg(self):
1198 return 1
1199
1200 def isIntReg(self):
1201 return 1
1202
1203 def makeConstructor(self):
1204 c = ''
1205 if self.is_src:
1206 c += '\n\t_srcRegIdx[%d] = %s;' % \
1207 (self.src_reg_idx, self.reg_spec)
1208 if self.is_dest:
1209 c += '\n\t_destRegIdx[%d] = %s;' % \
1210 (self.dest_reg_idx, self.reg_spec)
1211 return c
1212
1213 def makeRead(self):
1214 if (self.ctype == 'float' or self.ctype == 'double'):
1215 error(0, 'Attempt to read integer register as FP')
1216 if (self.size == self.dflt_size):
1217 return '%s = xc->readIntReg(this, %d);\n' % \
1218 (self.base_name, self.src_reg_idx)
1219 else:
1220 return '%s = bits(xc->readIntReg(this, %d), %d, 0);\n' % \
1221 (self.base_name, self.src_reg_idx, self.size-1)
1222
1223 def makeWrite(self):
1224 if (self.ctype == 'float' or self.ctype == 'double'):
1225 error(0, 'Attempt to write integer register as FP')
1226 if (self.size != self.dflt_size and self.is_signed):
1227 final_val = 'sext<%d>(%s)' % (self.size, self.base_name)
1228 else:
1229 final_val = self.base_name
1230 wb = '''
1231 {
1232 %s final_val = %s;
1233 xc->setIntReg(this, %d, final_val);\n
1234 if (traceData) { traceData->setData(final_val); }
1235 }''' % (self.dflt_ctype, final_val, self.dest_reg_idx)
1236 return wb
1237
1238 class FloatRegOperand(Operand):
1239 def isReg(self):
1240 return 1
1241
1242 def isFloatReg(self):
1243 return 1
1244
1245 def makeConstructor(self):
1246 c = ''
1247 if self.is_src:
1248 c += '\n\t_srcRegIdx[%d] = %s + FP_Base_DepTag;' % \
1249 (self.src_reg_idx, self.reg_spec)
1250 if self.is_dest:
1251 c += '\n\t_destRegIdx[%d] = %s + FP_Base_DepTag;' % \
1252 (self.dest_reg_idx, self.reg_spec)
1253 return c
1254
1255 def makeRead(self):
1256 bit_select = 0
1257 if (self.ctype == 'float'):
1258 func = 'readFloatRegSingle'
1259 elif (self.ctype == 'double'):
1260 func = 'readFloatRegDouble'
1261 else:
1262 func = 'readFloatRegInt'
1263 if (self.size != self.dflt_size):
1264 bit_select = 1
1265 base = 'xc->%s(this, %d)' % \
1266 (func, self.src_reg_idx)
1267 if bit_select:
1268 return '%s = bits(%s, %d, 0);\n' % \
1269 (self.base_name, base, self.size-1)
1270 else:
1271 return '%s = %s;\n' % (self.base_name, base)
1272
1273 def makeWrite(self):
1274 final_val = self.base_name
1275 final_ctype = self.ctype
1276 if (self.ctype == 'float'):
1277 func = 'setFloatRegSingle'
1278 elif (self.ctype == 'double'):
1279 func = 'setFloatRegDouble'
1280 else:
1281 func = 'setFloatRegInt'
1282 final_ctype = 'uint%d_t' % self.dflt_size
1283 if (self.size != self.dflt_size and self.is_signed):
1284 final_val = 'sext<%d>(%s)' % (self.size, self.base_name)
1285 wb = '''
1286 {
1287 %s final_val = %s;
1288 xc->%s(this, %d, final_val);\n
1289 if (traceData) { traceData->setData(final_val); }
1290 }''' % (final_ctype, final_val, func, self.dest_reg_idx)
1291 return wb
1292
1293 class ControlRegOperand(Operand):
1294 def isReg(self):
1295 return 1
1296
1297 def isControlReg(self):
1298 return 1
1299
1300 def makeConstructor(self):
1301 c = ''
1302 if self.is_src:
1303 c += '\n\t_srcRegIdx[%d] = %s_DepTag;' % \
1304 (self.src_reg_idx, self.reg_spec)
1305 if self.is_dest:
1306 c += '\n\t_destRegIdx[%d] = %s_DepTag;' % \
1307 (self.dest_reg_idx, self.reg_spec)
1308 return c
1309
1310 def makeRead(self):
1311 bit_select = 0
1312 if (self.ctype == 'float' or self.ctype == 'double'):
1313 error(0, 'Attempt to read control register as FP')
1314 base = 'xc->read%s()' % self.reg_spec
1315 if self.size == self.dflt_size:
1316 return '%s = %s;\n' % (self.base_name, base)
1317 else:
1318 return '%s = bits(%s, %d, 0);\n' % \
1319 (self.base_name, base, self.size-1)
1320
1321 def makeWrite(self):
1322 if (self.ctype == 'float' or self.ctype == 'double'):
1323 error(0, 'Attempt to write control register as FP')
1324 wb = 'xc->set%s(%s);\n' % (self.reg_spec, self.base_name)
1325 wb += 'if (traceData) { traceData->setData(%s); }' % \
1326 self.base_name
1327 return wb
1328
1329 class MemOperand(Operand):
1330 def isMem(self):
1331 return 1
1332
1333 def makeConstructor(self):
1334 return ''
1335
1336 def makeDecl(self):
1337 # Note that initializations in the declarations are solely
1338 # to avoid 'uninitialized variable' errors from the compiler.
1339 # Declare memory data variable.
1340 c = '%s %s = 0;\n' % (self.ctype, self.base_name)
1341 return c
1342
1343 def makeRead(self):
1344 return ''
1345
1346 def makeWrite(self):
1347 return ''
1348
1349 # Return the memory access size *in bits*, suitable for
1350 # forming a type via "uint%d_t". Divide by 8 if you want bytes.
1351 def makeAccSize(self):
1352 return self.size
1353
1354 class NPCOperand(Operand):
1355 def makeConstructor(self):
1356 return ''
1357
1358 def makeRead(self):
1359 return '%s = xc->readPC() + 4;\n' % self.base_name
1360
1361 def makeWrite(self):
1362 return 'xc->setNextPC(%s);\n' % self.base_name
1363
1364
1365 def buildOperandNameMap(userDict, lineno):
1366 global operandNameMap
1367 operandNameMap = {}
1368 for (op_name, val) in userDict.iteritems():
1369 (base_cls_name, dflt_ext, reg_spec, flags, sort_pri) = val
1370 (dflt_size, dflt_ctype, dflt_is_signed) = operandTypeMap[dflt_ext]
1371 # Canonical flag structure is a triple of lists, where each list
1372 # indicates the set of flags implied by this operand always, when
1373 # used as a source, and when used as a dest, respectively.
1374 # For simplicity this can be initialized using a variety of fairly
1375 # obvious shortcuts; we convert these to canonical form here.
1376 if not flags:
1377 # no flags specified (e.g., 'None')
1378 flags = ( [], [], [] )
1379 elif isinstance(flags, str):
1380 # a single flag: assumed to be unconditional
1381 flags = ( [ flags ], [], [] )
1382 elif isinstance(flags, list):
1383 # a list of flags: also assumed to be unconditional
1384 flags = ( flags, [], [] )
1385 elif isinstance(flags, tuple):
1386 # it's a tuple: it should be a triple,
1387 # but each item could be a single string or a list
1388 (uncond_flags, src_flags, dest_flags) = flags
1389 flags = (makeList(uncond_flags),
1390 makeList(src_flags), makeList(dest_flags))
1391 # Accumulate attributes of new operand class in tmp_dict
1392 tmp_dict = {}
1393 for attr in ('dflt_ext', 'reg_spec', 'flags', 'sort_pri',
1394 'dflt_size', 'dflt_ctype', 'dflt_is_signed'):
1395 tmp_dict[attr] = eval(attr)
1396 tmp_dict['base_name'] = op_name
1397 # New class name will be e.g. "IntReg_Ra"
1398 cls_name = base_cls_name + '_' + op_name
1399 # Evaluate string arg to get class object. Note that the
1400 # actual base class for "IntReg" is "IntRegOperand", i.e. we
1401 # have to append "Operand".
1402 try:
1403 base_cls = eval(base_cls_name + 'Operand')
1404 except NameError:
1405 error(lineno,
1406 'error: unknown operand base class "%s"' % base_cls_name)
1407 # The following statement creates a new class called
1408 # <cls_name> as a subclass of <base_cls> with the attributes
1409 # in tmp_dict, just as if we evaluated a class declaration.
1410 operandNameMap[op_name] = type(cls_name, (base_cls,), tmp_dict)
1411
1412 # Define operand variables.
1413 operands = userDict.keys()
1414
1415 operandsREString = (r'''
1416 (?<![\w\.]) # neg. lookbehind assertion: prevent partial matches
1417 ((%s)(?:\.(\w+))?) # match: operand with optional '.' then suffix
1418 (?![\w\.]) # neg. lookahead assertion: prevent partial matches
1419 '''
1420 % string.join(operands, '|'))
1421
1422 global operandsRE
1423 operandsRE = re.compile(operandsREString, re.MULTILINE|re.VERBOSE)
1424
1425 # Same as operandsREString, but extension is mandatory, and only two
1426 # groups are returned (base and ext, not full name as above).
1427 # Used for subtituting '_' for '.' to make C++ identifiers.
1428 operandsWithExtREString = (r'(?<![\w\.])(%s)\.(\w+)(?![\w\.])'
1429 % string.join(operands, '|'))
1430
1431 global operandsWithExtRE
1432 operandsWithExtRE = re.compile(operandsWithExtREString, re.MULTILINE)
1433
1434
1435 class OperandList:
1436
1437 # Find all the operands in the given code block. Returns an operand
1438 # descriptor list (instance of class OperandList).
1439 def __init__(self, code):
1440 self.items = []
1441 self.bases = {}
1442 # delete comments so we don't match on reg specifiers inside
1443 code = commentRE.sub('', code)
1444 # search for operands
1445 next_pos = 0
1446 while 1:
1447 match = operandsRE.search(code, next_pos)
1448 if not match:
1449 # no more matches: we're done
1450 break
1451 op = match.groups()
1452 # regexp groups are operand full name, base, and extension
1453 (op_full, op_base, op_ext) = op
1454 # if the token following the operand is an assignment, this is
1455 # a destination (LHS), else it's a source (RHS)
1456 is_dest = (assignRE.match(code, match.end()) != None)
1457 is_src = not is_dest
1458 # see if we've already seen this one
1459 op_desc = self.find_base(op_base)
1460 if op_desc:
1461 if op_desc.ext != op_ext:
1462 error(0, 'Inconsistent extensions for operand %s' % \
1463 op_base)
1464 op_desc.is_src = op_desc.is_src or is_src
1465 op_desc.is_dest = op_desc.is_dest or is_dest
1466 else:
1467 # new operand: create new descriptor
1468 op_desc = operandNameMap[op_base](op_full, op_ext,
1469 is_src, is_dest)
1470 self.append(op_desc)
1471 # start next search after end of current match
1472 next_pos = match.end()
1473 self.sort()
1474 # enumerate source & dest register operands... used in building
1475 # constructor later
1476 self.numSrcRegs = 0
1477 self.numDestRegs = 0
1478 self.numFPDestRegs = 0
1479 self.numIntDestRegs = 0
1480 self.memOperand = None
1481 for op_desc in self.items:
1482 if op_desc.isReg():
1483 if op_desc.is_src:
1484 op_desc.src_reg_idx = self.numSrcRegs
1485 self.numSrcRegs += 1
1486 if op_desc.is_dest:
1487 op_desc.dest_reg_idx = self.numDestRegs
1488 self.numDestRegs += 1
1489 if op_desc.isFloatReg():
1490 self.numFPDestRegs += 1
1491 elif op_desc.isIntReg():
1492 self.numIntDestRegs += 1
1493 elif op_desc.isMem():
1494 if self.memOperand:
1495 error(0, "Code block has more than one memory operand.")
1496 self.memOperand = op_desc
1497 # now make a final pass to finalize op_desc fields that may depend
1498 # on the register enumeration
1499 for op_desc in self.items:
1500 op_desc.finalize()
1501
1502 def __len__(self):
1503 return len(self.items)
1504
1505 def __getitem__(self, index):
1506 return self.items[index]
1507
1508 def append(self, op_desc):
1509 self.items.append(op_desc)
1510 self.bases[op_desc.base_name] = op_desc
1511
1512 def find_base(self, base_name):
1513 # like self.bases[base_name], but returns None if not found
1514 # (rather than raising exception)
1515 return self.bases.get(base_name)
1516
1517 # internal helper function for concat[Some]Attr{Strings|Lists}
1518 def __internalConcatAttrs(self, attr_name, filter, result):
1519 for op_desc in self.items:
1520 if filter(op_desc):
1521 result += getattr(op_desc, attr_name)
1522 return result
1523
1524 # return a single string that is the concatenation of the (string)
1525 # values of the specified attribute for all operands
1526 def concatAttrStrings(self, attr_name):
1527 return self.__internalConcatAttrs(attr_name, lambda x: 1, '')
1528
1529 # like concatAttrStrings, but only include the values for the operands
1530 # for which the provided filter function returns true
1531 def concatSomeAttrStrings(self, filter, attr_name):
1532 return self.__internalConcatAttrs(attr_name, filter, '')
1533
1534 # return a single list that is the concatenation of the (list)
1535 # values of the specified attribute for all operands
1536 def concatAttrLists(self, attr_name):
1537 return self.__internalConcatAttrs(attr_name, lambda x: 1, [])
1538
1539 # like concatAttrLists, but only include the values for the operands
1540 # for which the provided filter function returns true
1541 def concatSomeAttrLists(self, filter, attr_name):
1542 return self.__internalConcatAttrs(attr_name, filter, [])
1543
1544 def sort(self):
1545 self.items.sort(lambda a, b: a.sort_pri - b.sort_pri)
1546
1547 # Regular expression object to match C++ comments
1548 # (used in findOperands())
1549 commentRE = re.compile(r'//.*\n')
1550
1551 # Regular expression object to match assignment statements
1552 # (used in findOperands())
1553 assignRE = re.compile(r'\s*=(?!=)', re.MULTILINE)
1554
1555 # Munge operand names in code string to make legal C++ variable names.
1556 # This means getting rid of the type extension if any.
1557 # (Will match base_name attribute of Operand object.)
1558 def substMungedOpNames(code):
1559 return operandsWithExtRE.sub(r'\1', code)
1560
1561 def joinLists(t):
1562 return map(string.join, t)
1563
1564 def makeFlagConstructor(flag_list):
1565 if len(flag_list) == 0:
1566 return ''
1567 # filter out repeated flags
1568 flag_list.sort()
1569 i = 1
1570 while i < len(flag_list):
1571 if flag_list[i] == flag_list[i-1]:
1572 del flag_list[i]
1573 else:
1574 i += 1
1575 pre = '\n\tflags['
1576 post = '] = true;'
1577 code = pre + string.join(flag_list, post + pre) + post
1578 return code
1579
1580 class CodeBlock:
1581 def __init__(self, code):
1582 self.orig_code = code
1583 self.operands = OperandList(code)
1584 self.code = substMungedOpNames(substBitOps(code))
1585 self.constructor = self.operands.concatAttrStrings('constructor')
1586 self.constructor += \
1587 '\n\t_numSrcRegs = %d;' % self.operands.numSrcRegs
1588 self.constructor += \
1589 '\n\t_numDestRegs = %d;' % self.operands.numDestRegs
1590 self.constructor += \
1591 '\n\t_numFPDestRegs = %d;' % self.operands.numFPDestRegs
1592 self.constructor += \
1593 '\n\t_numIntDestRegs = %d;' % self.operands.numIntDestRegs
1594
1595 self.op_decl = self.operands.concatAttrStrings('op_decl')
1596
1597 is_src = lambda op: op.is_src
1598 is_dest = lambda op: op.is_dest
1599
1600 self.op_src_decl = \
1601 self.operands.concatSomeAttrStrings(is_src, 'op_src_decl')
1602 self.op_dest_decl = \
1603 self.operands.concatSomeAttrStrings(is_dest, 'op_dest_decl')
1604
1605 self.op_rd = self.operands.concatAttrStrings('op_rd')
1606 self.op_wb = self.operands.concatAttrStrings('op_wb')
1607
1608 self.flags = self.operands.concatAttrLists('flags')
1609
1610 if self.operands.memOperand:
1611 self.mem_acc_size = self.operands.memOperand.mem_acc_size
1612 self.mem_acc_type = self.operands.memOperand.mem_acc_type
1613
1614 # Make a basic guess on the operand class (function unit type).
1615 # These are good enough for most cases, and will be overridden
1616 # later otherwise.
1617 if 'IsStore' in self.flags:
1618 self.op_class = 'MemWriteOp'
1619 elif 'IsLoad' in self.flags or 'IsPrefetch' in self.flags:
1620 self.op_class = 'MemReadOp'
1621 elif 'IsFloating' in self.flags:
1622 self.op_class = 'FloatAddOp'
1623 else:
1624 self.op_class = 'IntAluOp'
1625
1626 # Assume all instruction flags are of the form 'IsFoo'
1627 instFlagRE = re.compile(r'Is.*')
1628
1629 # OpClass constants end in 'Op' except No_OpClass
1630 opClassRE = re.compile(r'.*Op|No_OpClass')
1631
1632 class InstObjParams:
1633 def __init__(self, mnem, class_name, base_class = '',
1634 code_block = None, opt_args = []):
1635 self.mnemonic = mnem
1636 self.class_name = class_name
1637 self.base_class = base_class
1638 if code_block:
1639 for code_attr in code_block.__dict__.keys():
1640 setattr(self, code_attr, getattr(code_block, code_attr))
1641 else:
1642 self.constructor = ''
1643 self.flags = []
1644 # Optional arguments are assumed to be either StaticInst flags
1645 # or an OpClass value. To avoid having to import a complete
1646 # list of these values to match against, we do it ad-hoc
1647 # with regexps.
1648 for oa in opt_args:
1649 if instFlagRE.match(oa):
1650 self.flags.append(oa)
1651 elif opClassRE.match(oa):
1652 self.op_class = oa
1653 else:
1654 error(0, 'InstObjParams: optional arg "%s" not recognized '
1655 'as StaticInst::Flag or OpClass.' % oa)
1656
1657 # add flag initialization to contructor here to include
1658 # any flags added via opt_args
1659 self.constructor += makeFlagConstructor(self.flags)
1660
1661 # if 'IsFloating' is set, add call to the FP enable check
1662 # function (which should be provided by isa_desc via a declare)
1663 if 'IsFloating' in self.flags:
1664 self.fp_enable_check = 'fault = checkFpEnableFault(xc);'
1665 else:
1666 self.fp_enable_check = ''
1667
1668 #######################
1669 #
1670 # Output file template
1671 #
1672
1673 file_template = '''
1674 /*
1675 * DO NOT EDIT THIS FILE!!!
1676 *
1677 * It was automatically generated from the ISA description in %(filename)s
1678 */
1679
1680 %(includes)s
1681
1682 %(global_output)s
1683
1684 namespace %(namespace)s {
1685
1686 %(namespace_output)s
1687
1688 } // namespace %(namespace)s
1689 '''
1690
1691
1692 # Update the output file only if the new contents are different from
1693 # the current contents. Minimizes the files that need to be rebuilt
1694 # after minor changes.
1695 def update_if_needed(file, contents):
1696 update = False
1697 if os.access(file, os.R_OK):
1698 f = open(file, 'r')
1699 old_contents = f.read()
1700 f.close()
1701 if contents != old_contents:
1702 print 'Updating', file
1703 os.remove(file) # in case it's write-protected
1704 update = True
1705 else:
1706 print 'File', file, 'is unchanged'
1707 else:
1708 print 'Generating', file
1709 update = True
1710 if update:
1711 f = open(file, 'w')
1712 f.write(contents)
1713 f.close()
1714
1715 # This regular expression matches include directives
1716 includeRE = re.compile(r'^\s*##include\s+"(?P<filename>[\w/.-]*)".*$',
1717 re.MULTILINE)
1718
1719 def preprocess_isa_desc(isa_desc):
1720 # Find any includes and include them
1721 pos = 0
1722 while 1:
1723 m = includeRE.search(isa_desc, pos)
1724 if not m:
1725 break
1726 filename = m.group('filename')
1727 print 'Including file "%s"' % filename
1728 try:
1729 isa_desc = isa_desc[:m.start()] + \
1730 '##newfile "' + filename + '"\n' + \
1731 open(filename).read() + \
1732 '##endfile\n' + \
1733 isa_desc[m.end():]
1734 except IOError:
1735 error(0, 'Error including file "%s"' % (filename))
1736 pos = m.start()
1737 return isa_desc
1738
1739 #
1740 # Read in and parse the ISA description.
1741 #
1742 def parse_isa_desc(isa_desc_file, output_dir, include_path):
1743 # set a global var for the input filename... used in error messages
1744 global input_filename
1745 input_filename = isa_desc_file
1746 global fileNameStack
1747 fileNameStack = [(input_filename, 1)]
1748
1749 # Suck the ISA description file in.
1750 input = open(isa_desc_file)
1751 isa_desc = input.read()
1752 input.close()
1753
1754 # Perform Preprocessing
1755 isa_desc = preprocess_isa_desc(isa_desc)
1756
1757 # Parse it.
1758 (isa_name, namespace, global_code, namespace_code) = yacc.parse(isa_desc)
1759
1760 # grab the last three path components of isa_desc_file to put in
1761 # the output
1762 filename = '/'.join(isa_desc_file.split('/')[-3:])
1763
1764 # generate decoder.hh
1765 includes = '#include "base/bitfield.hh" // for bitfield support'
1766 global_output = global_code.header_output
1767 namespace_output = namespace_code.header_output
1768 update_if_needed(output_dir + '/decoder.hh', file_template % vars())
1769
1770 # generate decoder.cc
1771 includes = '#include "%s/decoder.hh"' % include_path
1772 global_output = global_code.decoder_output
1773 namespace_output = namespace_code.decoder_output
1774 namespace_output += namespace_code.decode_block
1775 update_if_needed(output_dir + '/decoder.cc', file_template % vars())
1776
1777 # generate per-cpu exec files
1778 for cpu in CpuModel.list:
1779 includes = '#include "%s/decoder.hh"\n' % include_path
1780 includes += cpu.includes
1781 global_output = global_code.exec_output[cpu.name]
1782 namespace_output = namespace_code.exec_output[cpu.name]
1783 update_if_needed(output_dir + '/' + cpu.filename,
1784 file_template % vars())
1785
1786 # Called as script: get args from command line.
1787 if __name__ == '__main__':
1788 parse_isa_desc(sys.argv[1], sys.argv[2], sys.argv[3])