isa_parser.py:
[gem5.git] / arch / isa_parser.py
1 #! /usr/bin/env python
2
3 # $Id$
4
5 # Copyright (c) 2003 The Regents of The University of Michigan
6 # All rights reserved.
7 #
8 # Redistribution and use in source and binary forms, with or without
9 # modification, are permitted provided that the following conditions are
10 # met: redistributions of source code must retain the above copyright
11 # notice, this list of conditions and the following disclaimer;
12 # redistributions in binary form must reproduce the above copyright
13 # notice, this list of conditions and the following disclaimer in the
14 # documentation and/or other materials provided with the distribution;
15 # neither the name of the copyright holders nor the names of its
16 # contributors may be used to endorse or promote products derived from
17 # this software without specific prior written permission.
18 #
19 # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31 import os
32 import sys
33 import re
34 import string
35 # get type names
36 from types import *
37
38 # Check arguments. Right now there are only two: the name of the ISA
39 # description (input) file and the name of the C++ decoder (output) file.
40 isa_desc_filename = sys.argv[1]
41 decoder_filename = sys.argv[2]
42
43 # Might as well suck the file in while we're here. This way if it's a
44 # bad filename we don't waste a lot of time building the parser :-).
45 input = open(isa_desc_filename)
46 isa_desc = input.read()
47 input.close()
48
49 # Prepend the directory where the PLY lex & yacc modules are found
50 # to the search path. Assumes we're compiling in a subdirectory
51 # of 'build' in the current tree.
52 sys.path[0:0] = [os.environ['M5_EXT'] + '/ply']
53
54 import lex
55 import yacc
56
57 #####################################################################
58 #
59 # Lexer
60 #
61 # The PLY lexer module takes two things as input:
62 # - A list of token names (the string list 'tokens')
63 # - A regular expression describing a match for each token. The
64 # regexp for token FOO can be provided in two ways:
65 # - as a string variable named t_FOO
66 # - as the doc string for a function named t_FOO. In this case,
67 # the function is also executed, allowing an action to be
68 # associated with each token match.
69 #
70 #####################################################################
71
72 # Reserved words. These are listed separately as they are matched
73 # using the same regexp as generic IDs, but distinguished in the
74 # t_ID() function. The PLY documentation suggests this approach.
75 reserved = (
76 'BITFIELD', 'DECLARE', 'DECODE', 'DEFAULT', 'DEF', 'FORMAT',
77 'LET', 'NAMESPACE', 'SIGNED', 'TEMPLATE'
78 )
79
80 # List of tokens. The lex module requires this.
81 tokens = reserved + (
82 # identifier
83 'ID',
84
85 # integer literal
86 'INTLIT',
87
88 # string literal
89 'STRLIT',
90
91 # code literal
92 'CODELIT',
93
94 # ( ) [ ] { } < > , ; : :: *
95 'LPAREN', 'RPAREN',
96 # not used any more... commented out to suppress PLY warning
97 # 'LBRACKET', 'RBRACKET',
98 'LBRACE', 'RBRACE',
99 'LESS', 'GREATER',
100 'COMMA', 'SEMI', 'COLON', 'DBLCOLON',
101 'ASTERISK',
102
103 # C preprocessor directives
104 'CPPDIRECTIVE'
105 )
106
107 # Regular expressions for token matching
108 t_LPAREN = r'\('
109 t_RPAREN = r'\)'
110 # not used any more... commented out to suppress PLY warning
111 # t_LBRACKET = r'\['
112 # t_RBRACKET = r'\]'
113 t_LBRACE = r'\{'
114 t_RBRACE = r'\}'
115 t_LESS = r'\<'
116 t_GREATER = r'\>'
117 t_COMMA = r','
118 t_SEMI = r';'
119 t_COLON = r':'
120 t_DBLCOLON = r'::'
121 t_ASTERISK = r'\*'
122
123 # Identifiers and reserved words
124 reserved_map = { }
125 for r in reserved:
126 reserved_map[r.lower()] = r
127
128 def t_ID(t):
129 r'[A-Za-z_]\w*'
130 t.type = reserved_map.get(t.value,'ID')
131 return t
132
133 # Integer literal
134 def t_INTLIT(t):
135 r'(0x[\da-fA-F]+)|\d+'
136 try:
137 t.value = int(t.value,0)
138 except ValueError:
139 error(t.lineno, 'Integer value "%s" too large' % t.value)
140 t.value = 0
141 return t
142
143 # String literal. Note that these use only single quotes, and
144 # can span multiple lines.
145 def t_STRLIT(t):
146 r"(?m)'([^'])+'"
147 # strip off quotes
148 t.value = t.value[1:-1]
149 t.lineno += t.value.count('\n')
150 return t
151
152
153 # "Code literal"... like a string literal, but delimiters are
154 # '{{' and '}}' so they get formatted nicely under emacs c-mode
155 def t_CODELIT(t):
156 r"(?m)\{\{([^\}]|}(?!\}))+\}\}"
157 # strip off {{ & }}
158 t.value = t.value[2:-2]
159 t.lineno += t.value.count('\n')
160 return t
161
162 def t_CPPDIRECTIVE(t):
163 r'^\#.*\n'
164 t.lineno += t.value.count('\n')
165 return t
166
167 #
168 # The functions t_NEWLINE, t_ignore, and t_error are
169 # special for the lex module.
170 #
171
172 # Newlines
173 def t_NEWLINE(t):
174 r'\n+'
175 t.lineno += t.value.count('\n')
176
177 # Comments
178 def t_comment(t):
179 r'//.*'
180
181 # Completely ignored characters
182 t_ignore = ' \t\x0c'
183
184 # Error handler
185 def t_error(t):
186 error(t.lineno, "illegal character '%s'" % t.value[0])
187 t.skip(1)
188
189 # Build the lexer
190 lex.lex()
191
192 #####################################################################
193 #
194 # Parser
195 #
196 # Every function whose name starts with 'p_' defines a grammar rule.
197 # The rule is encoded in the function's doc string, while the
198 # function body provides the action taken when the rule is matched.
199 # The argument to each function is a list of the values of the
200 # rule's symbols: t[0] for the LHS, and t[1..n] for the symbols
201 # on the RHS. For tokens, the value is copied from the t.value
202 # attribute provided by the lexer. For non-terminals, the value
203 # is assigned by the producing rule; i.e., the job of the grammar
204 # rule function is to set the value for the non-terminal on the LHS
205 # (by assigning to t[0]).
206 #####################################################################
207
208 # Not sure why, but we get a handful of shift/reduce conflicts on DECLARE.
209 # By default these get resolved as shifts, which is correct, but
210 # warnings are printed. Explicitly marking DECLARE as right-associative
211 # suppresses the warnings.
212 precedence = (
213 ('right', 'DECLARE'),
214 )
215
216 # The LHS of the first grammar rule is used as the start symbol
217 # (in this case, 'specification'). Note that this rule enforces
218 # that there will be exactly one namespace declaration, with 0 or more
219 # global defs/decls before and after it. The defs & decls before
220 # the namespace decl will be outside the namespace; those after
221 # will be inside. The decoder function is always inside the namespace.
222 def p_specification(t):
223 'specification : opt_defs_and_declares name_decl opt_defs_and_declares decode_block'
224 global_decls1 = t[1]
225 isa_name = t[2]
226 namespace = isa_name + "Inst"
227 global_decls2 = t[3]
228 (inst_decls, code) = t[4]
229 code = indent(code)
230 # grab the last three path components of isa_desc_filename
231 filename = '/'.join(isa_desc_filename.split('/')[-3:])
232 # if the isa_desc file defines a 'rcs_id' string,
233 # echo that into the output too
234 try:
235 local_rcs_id = rcs_id
236 # strip $s out of ID so it doesn't get re-substituted
237 local_rcs_id = re.sub(r'\$', '', local_rcs_id)
238 except NameError:
239 local_rcs_id = 'Id: no RCS id found'
240 output = open(decoder_filename, 'w')
241 # split string to keep rcs from substituting this file's RCS id in
242 print >> output, '/* $Id' + '''$ */
243
244 /*
245 * Copyright (c) 2003
246 * The Regents of The University of Michigan
247 * All Rights Reserved
248 *
249 * Permission is granted to use, copy, create derivative works and
250 * redistribute this software and such derivative works for any
251 * purpose, so long as the copyright notice above, this grant of
252 * permission, and the disclaimer below appear in all copies made; and
253 * so long as the name of The University of Michigan is not used in
254 * any advertising or publicity pertaining to the use or distribution
255 * of this software without specific, written prior authorization.
256 *
257 * THIS SOFTWARE IS PROVIDED AS IS, WITHOUT REPRESENTATION FROM THE
258 * UNIVERSITY OF MICHIGAN AS TO ITS FITNESS FOR ANY PURPOSE, AND
259 * WITHOUT WARRANTY BY THE UNIVERSITY OF MICHIGAN OF ANY KIND, EITHER
260 * EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION THE IMPLIED
261 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
262 * PURPOSE. THE REGENTS OF THE UNIVERSITY OF MICHIGAN SHALL NOT BE
263 * LIABLE FOR ANY DAMAGES, INCLUDING DIRECT, SPECIAL, INDIRECT,
264 * INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WITH RESPECT TO ANY CLAIM
265 * ARISING OUT OF OR IN CONNECTION WITH THE USE OF THE SOFTWARE, EVEN
266 * IF IT HAS BEEN OR IS HEREAFTER ADVISED OF THE POSSIBILITY OF SUCH
267 * DAMAGES.
268 */
269
270 /*
271 * DO NOT EDIT THIS FILE!!!
272 *
273 * It was automatically generated from this ISA description:
274 * Filename: %(filename)s
275 * RCS %(local_rcs_id)s
276 */
277
278 #include "bitfield.hh" // required for bitfield support
279
280
281 /////////////////////////////////////
282 // Global defs (outside namespace) //
283 /////////////////////////////////////
284
285 %(global_decls1)s
286
287 /**
288 * Namespace for %(isa_name)s static instruction objects.
289 */
290 namespace %(namespace)s
291 {
292
293 /////////////////////////////////////
294 // Global defs (within namespace) //
295 /////////////////////////////////////
296
297 %(global_decls2)s
298
299 ////////////////////////////////////
300 // Declares from inst definitions //
301 ////////////////////////////////////
302
303 %(inst_decls)s
304
305 } // namespace %(namespace)s
306
307 //////////////////////
308 // Decoder function //
309 //////////////////////
310
311 StaticInstPtr<%(isa_name)s>
312 %(isa_name)s::decodeInst(%(isa_name)s::MachInst machInst)
313 {
314 using namespace %(namespace)s;
315 %(code)s
316 } // decodeInst
317 ''' % vars()
318 output.close()
319
320 # ISA name declaration looks like "namespace <foo>;"
321 def p_name_decl(t):
322 'name_decl : NAMESPACE ID SEMI'
323 t[0] = t[2]
324
325 # 'opt_defs_and_declares' is a possibly empty sequence of
326 # defs and/or declares.
327 def p_opt_defs_and_declares_0(t):
328 'opt_defs_and_declares : empty'
329 t[0] = ''
330
331 def p_opt_defs_and_declares_1(t):
332 'opt_defs_and_declares : defs_and_declares'
333 t[0] = t[1]
334
335 def p_defs_and_declares_0(t):
336 'defs_and_declares : def_or_declare'
337 t[0] = t[1]
338
339 def p_defs_and_declares_1(t):
340 'defs_and_declares : defs_and_declares def_or_declare'
341 t[0] = t[1] + t[2]
342
343 # The list of possible definition/declaration statements.
344 def p_def_or_declare(t):
345 '''def_or_declare : def_format
346 | def_bitfield
347 | def_template
348 | global_declare
349 | global_let
350 | cpp_directive'''
351 t[0] = t[1]
352
353 # preprocessor directives are copied directly to the output.
354 def p_cpp_directive(t):
355 '''cpp_directive : CPPDIRECTIVE'''
356 t[0] = t[1]
357
358 # Global declares 'declare {{...}}' (C++ code blocks) are copied
359 # directly to the output.
360 def p_global_declare(t):
361 'global_declare : DECLARE CODELIT SEMI'
362 t[0] = substBitOps(t[2])
363
364 # global let blocks 'let {{...}}' (Python code blocks) are executed
365 # directly when seen. These are typically used to initialize global
366 # Python variables used in later format definitions.
367 def p_global_let(t):
368 'global_let : LET CODELIT SEMI'
369 try:
370 exec(fixPythonIndentation(t[2]))
371 except:
372 error_bt(t.lineno(1), 'error in global let block "%s".' % t[2])
373 t[0] = '' # contributes nothing to the output C++ file
374
375 # A bitfield definition looks like:
376 # 'def [signed] bitfield <ID> [<first>:<last>]'
377 # This generates a preprocessor macro in the output file.
378 def p_def_bitfield_0(t):
379 'def_bitfield : DEF opt_signed BITFIELD ID LESS INTLIT COLON INTLIT GREATER SEMI'
380 expr = 'bits(machInst, %2d, %2d)' % (t[6], t[8])
381 if (t[2] == 'signed'):
382 expr = 'sext<%d>(%s)' % (t[6] - t[8] + 1, expr)
383 t[0] = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
384
385 # alternate form for single bit: 'def [signed] bitfield <ID> [<bit>]'
386 def p_def_bitfield_1(t):
387 'def_bitfield : DEF opt_signed BITFIELD ID LESS INTLIT GREATER SEMI'
388 expr = 'bits(machInst, %2d, %2d)' % (t[6], t[6])
389 if (t[2] == 'signed'):
390 expr = 'sext<%d>(%s)' % (1, expr)
391 t[0] = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
392
393 def p_opt_signed_0(t):
394 'opt_signed : SIGNED'
395 t[0] = t[1]
396
397 def p_opt_signed_1(t):
398 'opt_signed : empty'
399 t[0] = ''
400
401 # Global map variable to hold templates
402 templateMap = {}
403
404 def p_def_template(t):
405 'def_template : DEF TEMPLATE ID CODELIT SEMI'
406 templateMap[t[3]] = t[4]
407 t[0] = ''
408
409 # An instruction format definition looks like
410 # "def format <fmt>(<params>) {{...}};"
411 def p_def_format(t):
412 'def_format : DEF FORMAT ID LPAREN param_list RPAREN CODELIT SEMI'
413 (id, params, code) = (t[3], t[5], t[7])
414 defFormat(id, params, code, t.lineno(1))
415 # insert a comment into the output to note that the def was processed
416 t[0] = '''
417 //
418 // parser: format %s defined
419 //
420 ''' % id
421
422 # The formal parameter list for an instruction format is a possibly
423 # empty list of comma-separated parameters.
424 def p_param_list_0(t):
425 'param_list : empty'
426 t[0] = [ ]
427
428 def p_param_list_1(t):
429 'param_list : param'
430 t[0] = [t[1]]
431
432 def p_param_list_2(t):
433 'param_list : param_list COMMA param'
434 t[0] = t[1]
435 t[0].append(t[3])
436
437 # Each formal parameter is either an identifier or an identifier
438 # preceded by an asterisk. As in Python, the latter (if present) gets
439 # a tuple containing all the excess positional arguments, allowing
440 # varargs functions.
441 def p_param_0(t):
442 'param : ID'
443 t[0] = t[1]
444
445 def p_param_1(t):
446 'param : ASTERISK ID'
447 # just concatenate them: '*ID'
448 t[0] = t[1] + t[2]
449
450 # End of format definition-related rules.
451 ##############
452
453 #
454 # A decode block looks like:
455 # decode <field1> [, <field2>]* [default <inst>] { ... }
456 #
457 def p_decode_block(t):
458 'decode_block : DECODE ID opt_default LBRACE decode_stmt_list RBRACE'
459 default_defaults = defaultStack.pop()
460 (decls, code, has_default) = t[5]
461 # use the "default defaults" only if there was no explicit
462 # default statement in decode_stmt_list
463 if not has_default:
464 (default_decls, default_code) = default_defaults
465 decls += default_decls
466 code += default_code
467 t[0] = (decls, '''
468 switch (%s) {
469 %s
470 }
471 ''' % (t[2], indent(code)))
472
473 # The opt_default statement serves only to push the "default defaults"
474 # onto defaultStack. This value will be used by nested decode blocks,
475 # and used and popped off when the current decode_block is processed
476 # (in p_decode_block() above).
477 def p_opt_default_0(t):
478 'opt_default : empty'
479 # no default specified: reuse the one currently at the top of the stack
480 defaultStack.push(defaultStack.top())
481 # no meaningful value returned
482 t[0] = None
483
484 def p_opt_default_1(t):
485 'opt_default : DEFAULT inst'
486 # push the new default
487 (decls, code) = t[2]
488 defaultStack.push((decls, '\ndefault:\n%sbreak;' % code))
489 # no meaningful value returned
490 t[0] = None
491
492 def p_decode_stmt_list_0(t):
493 'decode_stmt_list : decode_stmt'
494 t[0] = t[1]
495
496 def p_decode_stmt_list_1(t):
497 'decode_stmt_list : decode_stmt decode_stmt_list'
498 (decls1, code1, has_default1) = t[1]
499 (decls2, code2, has_default2) = t[2]
500 if (has_default1 and has_default2):
501 error(t.lineno(1), 'Two default cases in decode block')
502 t[0] = (decls1 + '\n' + decls2, code1 + '\n' + code2,
503 has_default1 or has_default2)
504
505 #
506 # Decode statement rules
507 #
508 # There are four types of statements allowed in a decode block:
509 # 1. Format blocks 'format <foo> { ... }'
510 # 2. Nested decode blocks
511 # 3. Instruction definitions.
512 # 4. C preprocessor directives.
513
514
515 # Preprocessor directives found in a decode statement list are passed
516 # through to the output, replicated to both the declaration and decode
517 # streams. This works well for ifdefs, so we can ifdef out both the
518 # declarations and the decode cases generated by an instruction
519 # definition. Handling them as part of the grammar makes it easy to
520 # keep them in the right place with respect to the code generated by
521 # the other statements.
522 def p_decode_stmt_cpp(t):
523 'decode_stmt : CPPDIRECTIVE'
524 t[0] = (t[1], t[1], 0)
525
526 # A format block 'format <foo> { ... }' sets the default instruction
527 # format used to handle instruction definitions inside the block.
528 # This format can be overridden by using an explicit format on the
529 # instruction definition or with a nested format block.
530 def p_decode_stmt_format(t):
531 'decode_stmt : FORMAT push_format_id LBRACE decode_stmt_list RBRACE'
532 # The format will be pushed on the stack when 'push_format_id' is
533 # processed (see below). Once the parser has recognized the full
534 # production (though the right brace), we're done with the format,
535 # so now we can pop it.
536 formatStack.pop()
537 t[0] = t[4]
538
539 # This rule exists so we can set the current format (& push the stack)
540 # when we recognize the format name part of the format block.
541 def p_push_format_id(t):
542 'push_format_id : ID'
543 try:
544 formatStack.push(formatMap[t[1]])
545 t[0] = ('', '// format %s' % t[1])
546 except KeyError:
547 error(t.lineno(1), 'instruction format "%s" not defined.' % t[1])
548
549 # Nested decode block: if the value of the current field matches the
550 # specified constant, do a nested decode on some other field.
551 def p_decode_stmt_decode(t):
552 'decode_stmt : case_label COLON decode_block'
553 (label, is_default) = t[1]
554 (decls, code) = t[3]
555 # just wrap the decoding code from the block as a case in the
556 # outer switch statement.
557 t[0] = (decls, '\n%s:\n%s' % (label, indent(code)), is_default)
558
559 # Instruction definition (finally!).
560 def p_decode_stmt_inst(t):
561 'decode_stmt : case_label COLON inst SEMI'
562 (label, is_default) = t[1]
563 (decls, code) = t[3]
564 t[0] = (decls, '\n%s:%sbreak;' % (label, indent(code)), is_default)
565
566 # The case label is either a list of one or more constants or 'default'
567 def p_case_label_0(t):
568 'case_label : intlit_list'
569 t[0] = (': '.join(map(lambda a: 'case %#x' % a, t[1])), 0)
570
571 def p_case_label_1(t):
572 'case_label : DEFAULT'
573 t[0] = ('default', 1)
574
575 #
576 # The constant list for a decode case label must be non-empty, but may have
577 # one or more comma-separated integer literals in it.
578 #
579 def p_intlit_list_0(t):
580 'intlit_list : INTLIT'
581 t[0] = [t[1]]
582
583 def p_intlit_list_1(t):
584 'intlit_list : intlit_list COMMA INTLIT'
585 t[0] = t[1]
586 t[0].append(t[3])
587
588 # Define an instruction using the current instruction format (specified
589 # by an enclosing format block).
590 # "<mnemonic>(<args>)"
591 def p_inst_0(t):
592 'inst : ID LPAREN arg_list RPAREN'
593 # Pass the ID and arg list to the current format class to deal with.
594 currentFormat = formatStack.top()
595 (decls, code) = currentFormat.defineInst(t[1], t[3], t.lineno(1))
596 args = ','.join(map(str, t[3]))
597 args = re.sub('(?m)^', '//', args)
598 args = re.sub('^//', '', args)
599 comment = '// %s::%s(%s)\n' % (currentFormat.id, t[1], args)
600 t[0] = (comment + decls, comment + code)
601
602 # Define an instruction using an explicitly specified format:
603 # "<fmt>::<mnemonic>(<args>)"
604 def p_inst_1(t):
605 'inst : ID DBLCOLON ID LPAREN arg_list RPAREN'
606 try:
607 format = formatMap[t[1]]
608 except KeyError:
609 error(t.lineno(1), 'instruction format "%s" not defined.' % t[1])
610 (decls, code) = format.defineInst(t[3], t[5], t.lineno(1))
611 comment = '// %s::%s(%s)\n' % (t[1], t[3], t[5])
612 t[0] = (comment + decls, comment + code)
613
614 def p_arg_list_0(t):
615 'arg_list : empty'
616 t[0] = [ ]
617
618 def p_arg_list_1(t):
619 'arg_list : arg'
620 t[0] = [t[1]]
621
622 def p_arg_list_2(t):
623 'arg_list : arg_list COMMA arg'
624 t[0] = t[1]
625 t[0].append(t[3])
626
627 def p_arg(t):
628 '''arg : ID
629 | INTLIT
630 | STRLIT
631 | CODELIT'''
632 t[0] = t[1]
633
634 #
635 # Empty production... use in other rules for readability.
636 #
637 def p_empty(t):
638 'empty :'
639 pass
640
641 # Parse error handler. Note that the argument here is the offending
642 # *token*, not a grammar symbol (hence the need to use t.value)
643 def p_error(t):
644 if t:
645 error(t.lineno, "syntax error at '%s'" % t.value)
646 else:
647 error_bt(0, "unknown syntax error")
648
649 # END OF GRAMMAR RULES
650 #
651 # Now build the parser.
652 yacc.yacc()
653
654 ################
655 # Format object.
656 #
657 # A format object encapsulates an instruction format. It must provide
658 # a defineInst() method that generates the code for an instruction
659 # definition.
660
661 class Format:
662 def __init__(self, id, params, code):
663 # constructor: just save away arguments
664 self.id = id
665 self.params = params
666 # strip blank lines from code (ones at the end are troublesome)
667 code = re.sub(r'(?m)^\s*$', '', code);
668 if code == '':
669 code = ' pass\n'
670 param_list = string.join(params, ", ")
671 f = 'def defInst(name, Name, ' + param_list + '):\n' + code
672 exec(f)
673 self.func = defInst
674
675 def defineInst(self, name, args, lineno):
676 # automatically provide a capitalized version of mnemonic
677 Name = string.capitalize(name)
678 try:
679 retval = self.func(name, Name, *args)
680 except:
681 error_bt(lineno, 'error defining "%s".' % name)
682 return retval
683
684 # Special null format to catch an implicit-format instruction
685 # definition outside of any format block.
686 class NoFormat:
687 def __init__(self):
688 self.defaultInst = ''
689
690 def defineInst(self, name, args, lineno):
691 error(lineno,
692 'instruction definition "%s" with no active format!' % name)
693
694 # This dictionary maps format name strings to Format objects.
695 formatMap = {}
696
697 # Define a new format
698 def defFormat(id, params, code, lineno):
699 # make sure we haven't already defined this one
700 if formatMap.get(id, None) != None:
701 error(lineno, 'format %s redefined.' % id)
702 # create new object and store in global map
703 formatMap[id] = Format(id, params, code)
704
705
706 ##############
707 # Stack: a simple stack object. Used for both formats (formatStack)
708 # and default cases (defaultStack).
709
710 class Stack:
711 def __init__(self, initItem):
712 self.stack = [ initItem ]
713
714 def push(self, item):
715 self.stack.append(item);
716
717 def pop(self):
718 return self.stack.pop()
719
720 def top(self):
721 return self.stack[-1]
722
723 # The global format stack.
724 formatStack = Stack(NoFormat())
725
726 # The global default case stack.
727 defaultStack = Stack( None )
728
729 ###################
730 # Utility functions
731
732 #
733 # Indent every line in string 's' by two spaces
734 # (except preprocessor directives).
735 # Used to make nested code blocks look pretty.
736 #
737 def indent(s):
738 return re.sub(r'(?m)^(?!\#)', ' ', s)
739
740 #
741 # Munge a somewhat arbitrarily formatted piece of Python code
742 # (e.g. from a format 'let' block) into something whose indentation
743 # will get by the Python parser.
744 #
745 # The two keys here are that Python will give a syntax error if
746 # there's any whitespace at the beginning of the first line, and that
747 # all lines at the same lexical nesting level must have identical
748 # indentation. Unfortunately the way code literals work, an entire
749 # let block tends to have some initial indentation. Rather than
750 # trying to figure out what that is and strip it off, we prepend 'if
751 # 1:' to make the let code the nested block inside the if (and have
752 # the parser automatically deal with the indentation for us).
753 #
754 # We don't want to do this if (1) the code block is empty or (2) the
755 # first line of the block doesn't have any whitespace at the front.
756
757 def fixPythonIndentation(s):
758 # get rid of blank lines first
759 s = re.sub(r'(?m)^\s*\n', '', s);
760 if (s != '' and re.match(r'[ \t]', s[0])):
761 s = 'if 1:\n' + s
762 return s
763
764 # Error handler. Just call exit. Output formatted to work under
765 # Emacs compile-mode.
766 def error(lineno, string):
767 sys.exit("%s:%d: %s" % (isa_desc_filename, lineno, string))
768
769 # Like error(), but include a Python stack backtrace (for processing
770 # Python exceptions).
771 def error_bt(lineno, string):
772 print >> sys.stderr, "%s:%d: %s" % (isa_desc_filename, lineno, string)
773 raise
774
775
776 #####################################################################
777 #
778 # Bitfield Operator Support
779 #
780 #####################################################################
781
782 bitOp1ArgRE = re.compile(r'<\s*(\w+)\s*:\s*>')
783
784 bitOpWordRE = re.compile(r'(?<![\w\.])([\w\.]+)<\s*(\w+)\s*:\s*(\w+)\s*>')
785 bitOpExprRE = re.compile(r'\)<\s*(\w+)\s*:\s*(\w+)\s*>')
786
787 def substBitOps(code):
788 # first convert single-bit selectors to two-index form
789 # i.e., <n> --> <n:n>
790 code = bitOp1ArgRE.sub(r'<\1:\1>', code)
791 # simple case: selector applied to ID (name)
792 # i.e., foo<a:b> --> bits(foo, a, b)
793 code = bitOpWordRE.sub(r'bits(\1, \2, \3)', code)
794 # if selector is applied to expression (ending in ')'),
795 # we need to search backward for matching '('
796 match = bitOpExprRE.search(code)
797 while match:
798 exprEnd = match.start()
799 here = exprEnd - 1
800 nestLevel = 1
801 while nestLevel > 0:
802 if code[here] == '(':
803 nestLevel -= 1
804 elif code[here] == ')':
805 nestLevel += 1
806 here -= 1
807 if here < 0:
808 sys.exit("Didn't find '('!")
809 exprStart = here+1
810 newExpr = r'bits(%s, %s, %s)' % (code[exprStart:exprEnd+1],
811 match.group(1), match.group(2))
812 code = code[:exprStart] + newExpr + code[match.end():]
813 match = bitOpExprRE.search(code)
814 return code
815
816
817 #####################################################################
818 #
819 # Code Parser
820 #
821 # The remaining code is the support for automatically extracting
822 # instruction characteristics from pseudocode.
823 #
824 #####################################################################
825
826 # Force the argument to be a list
827 def makeList(list_or_item):
828 if not list_or_item:
829 return []
830 elif type(list_or_item) == ListType:
831 return list_or_item
832 else:
833 return [ list_or_item ]
834
835 # generate operandSizeMap based on provided operandTypeMap:
836 # basically generate equiv. C++ type and make is_signed flag
837 def buildOperandSizeMap():
838 global operandSizeMap
839 operandSizeMap = {}
840 for ext in operandTypeMap.keys():
841 (desc, size) = operandTypeMap[ext]
842 if desc == 'signed int':
843 type = 'int%d_t' % size
844 is_signed = 1
845 elif desc == 'unsigned int':
846 type = 'uint%d_t' % size
847 is_signed = 0
848 elif desc == 'float':
849 is_signed = 1 # shouldn't really matter
850 if size == 32:
851 type = 'float'
852 elif size == 64:
853 type = 'double'
854 if type == '':
855 error(0, 'Unrecognized type description "%s" in operandTypeMap')
856 operandSizeMap[ext] = (size, type, is_signed)
857
858 #
859 # Base class for operand traits. An instance of this class (or actually
860 # a class derived from this one) encapsulates the traits of a particular
861 # operand type (e.g., "32-bit integer register").
862 #
863 class OperandTraits:
864 def __init__(self, dflt_ext, reg_spec, flags, sort_pri):
865 # Force construction of operandSizeMap from operandTypeMap
866 # if it hasn't happened yet
867 if not globals().has_key('operandSizeMap'):
868 buildOperandSizeMap()
869 self.dflt_ext = dflt_ext
870 (self.dflt_size, self.dflt_type, self.dflt_is_signed) = \
871 operandSizeMap[dflt_ext]
872 self.reg_spec = reg_spec
873 # Canonical flag structure is a triple of lists, where each list
874 # indicates the set of flags implied by this operand always, when
875 # used as a source, and when used as a dest, respectively.
876 # For simplicity this can be initialized using a variety of fairly
877 # obvious shortcuts; we convert these to canonical form here.
878 if not flags:
879 # no flags specified (e.g., 'None')
880 self.flags = ( [], [], [] )
881 elif type(flags) == StringType:
882 # a single flag: assumed to be unconditional
883 self.flags = ( [ flags ], [], [] )
884 elif type(flags) == ListType:
885 # a list of flags: also assumed to be unconditional
886 self.flags = ( flags, [], [] )
887 elif type(flags) == TupleType:
888 # it's a tuple: it should be a triple,
889 # but each item could be a single string or a list
890 (uncond_flags, src_flags, dest_flags) = flags
891 self.flags = (makeList(uncond_flags),
892 makeList(src_flags), makeList(dest_flags))
893 self.sort_pri = sort_pri
894
895 def isMem(self):
896 return 0
897
898 def isReg(self):
899 return 0
900
901 def isFloatReg(self):
902 return 0
903
904 def isIntReg(self):
905 return 0
906
907 def isControlReg(self):
908 return 0
909
910 def getFlags(self, op_desc):
911 # note the empty slice '[:]' gives us a copy of self.flags[0]
912 # instead of a reference to it
913 my_flags = self.flags[0][:]
914 if op_desc.is_src:
915 my_flags += self.flags[1]
916 if op_desc.is_dest:
917 my_flags += self.flags[2]
918 return my_flags
919
920 def makeDecl(self, op_desc):
921 (size, type, is_signed) = operandSizeMap[op_desc.eff_ext]
922 # Note that initializations in the declarations are solely
923 # to avoid 'uninitialized variable' errors from the compiler.
924 return type + ' ' + op_desc.munged_name + ' = 0;\n';
925
926 class IntRegOperandTraits(OperandTraits):
927 def isReg(self):
928 return 1
929
930 def isIntReg(self):
931 return 1
932
933 def makeConstructor(self, op_desc):
934 c = ''
935 if op_desc.is_src:
936 c += '\n\t_srcRegIdx[%d] = %s;' % \
937 (op_desc.src_reg_idx, self.reg_spec)
938 if op_desc.is_dest:
939 c += '\n\t_destRegIdx[%d] = %s;' % \
940 (op_desc.dest_reg_idx, self.reg_spec)
941 return c
942
943 def makeRead(self, op_desc, cpu_model):
944 (size, type, is_signed) = operandSizeMap[op_desc.eff_ext]
945 if (type == 'float' or type == 'double'):
946 error(0, 'Attempt to read integer register as FP')
947 if (size == self.dflt_size):
948 return '%s = xc->readIntReg(_srcRegIdx[%d]);\n' % \
949 (op_desc.munged_name, op_desc.src_reg_idx)
950 else:
951 return '%s = bits(xc->readIntReg(_srcRegIdx[%d]), %d, 0);\n' % \
952 (op_desc.munged_name, op_desc.src_reg_idx, size-1)
953
954 def makeWrite(self, op_desc, cpu_model):
955 (size, type, is_signed) = operandSizeMap[op_desc.eff_ext]
956 if (type == 'float' or type == 'double'):
957 error(0, 'Attempt to write integer register as FP')
958 if (size != self.dflt_size and is_signed):
959 final_val = 'sext<%d>(%s)' % (size, op_desc.munged_name)
960 else:
961 final_val = op_desc.munged_name
962 wb = '''
963 {
964 %s final_val = %s;
965 xc->setIntReg(_destRegIdx[%d], final_val);\n
966 if (traceData) { traceData->setData(final_val); }
967 }''' % (self.dflt_type, final_val, op_desc.dest_reg_idx)
968 return wb
969
970 class FloatRegOperandTraits(OperandTraits):
971 def isReg(self):
972 return 1
973
974 def isFloatReg(self):
975 return 1
976
977 def makeConstructor(self, op_desc):
978 c = ''
979 if op_desc.is_src:
980 c += '\n\t_srcRegIdx[%d] = %s + FP_Base_DepTag;' % \
981 (op_desc.src_reg_idx, self.reg_spec)
982 if op_desc.is_dest:
983 c += '\n\t_destRegIdx[%d] = %s + FP_Base_DepTag;' % \
984 (op_desc.dest_reg_idx, self.reg_spec)
985 return c
986
987 def makeRead(self, op_desc, cpu_model):
988 (size, type, is_signed) = operandSizeMap[op_desc.eff_ext]
989 bit_select = 0
990 if (type == 'float'):
991 func = 'readFloatRegSingle'
992 elif (type == 'double'):
993 func = 'readFloatRegDouble'
994 else:
995 func = 'readFloatRegInt'
996 if (size != self.dflt_size):
997 bit_select = 1
998 base = 'xc->%s(_srcRegIdx[%d] - FP_Base_DepTag)' % \
999 (func, op_desc.src_reg_idx)
1000 if bit_select:
1001 return '%s = bits(%s, %d, 0);\n' % \
1002 (op_desc.munged_name, base, size-1)
1003 else:
1004 return '%s = %s;\n' % (op_desc.munged_name, base)
1005
1006 def makeWrite(self, op_desc, cpu_model):
1007 (size, type, is_signed) = operandSizeMap[op_desc.eff_ext]
1008 final_val = op_desc.munged_name
1009 if (type == 'float'):
1010 func = 'setFloatRegSingle'
1011 elif (type == 'double'):
1012 func = 'setFloatRegDouble'
1013 else:
1014 func = 'setFloatRegInt'
1015 type = 'uint%d_t' % self.dflt_size
1016 if (size != self.dflt_size and is_signed):
1017 final_val = 'sext<%d>(%s)' % (size, op_desc.munged_name)
1018 wb = '''
1019 {
1020 %s final_val = %s;
1021 xc->%s(_destRegIdx[%d] - FP_Base_DepTag, final_val);\n
1022 if (traceData) { traceData->setData(final_val); }
1023 }''' % (type, final_val, func, op_desc.dest_reg_idx)
1024 return wb
1025
1026 class ControlRegOperandTraits(OperandTraits):
1027 def isReg(self):
1028 return 1
1029
1030 def isControlReg(self):
1031 return 1
1032
1033 def makeConstructor(self, op_desc):
1034 c = ''
1035 if op_desc.is_src:
1036 c += '\n\t_srcRegIdx[%d] = %s_DepTag;' % \
1037 (op_desc.src_reg_idx, self.reg_spec)
1038 if op_desc.is_dest:
1039 c += '\n\t_destRegIdx[%d] = %s_DepTag;' % \
1040 (op_desc.dest_reg_idx, self.reg_spec)
1041 return c
1042
1043 def makeRead(self, op_desc, cpu_model):
1044 (size, type, is_signed) = operandSizeMap[op_desc.eff_ext]
1045 bit_select = 0
1046 if (type == 'float' or type == 'double'):
1047 error(0, 'Attempt to read control register as FP')
1048 base = 'xc->read%s()' % self.reg_spec
1049 if size == self.dflt_size:
1050 return '%s = %s;\n' % (op_desc.munged_name, base)
1051 else:
1052 return '%s = bits(%s, %d, 0);\n' % \
1053 (op_desc.munged_name, base, size-1)
1054
1055 def makeWrite(self, op_desc, cpu_model):
1056 (size, type, is_signed) = operandSizeMap[op_desc.eff_ext]
1057 if (type == 'float' or type == 'double'):
1058 error(0, 'Attempt to write control register as FP')
1059 wb = 'xc->set%s(%s);\n' % (self.reg_spec, op_desc.munged_name)
1060 wb += 'if (traceData) { traceData->setData(%s); }' % \
1061 op_desc.munged_name
1062 return wb
1063
1064 class MemOperandTraits(OperandTraits):
1065 def isMem(self):
1066 return 1
1067
1068 def makeConstructor(self, op_desc):
1069 return ''
1070
1071 def makeDecl(self, op_desc):
1072 (size, type, is_signed) = operandSizeMap[op_desc.eff_ext]
1073 # Note that initializations in the declarations are solely
1074 # to avoid 'uninitialized variable' errors from the compiler.
1075 # Declare memory data variable.
1076 c = '%s %s = 0;\n' % (type, op_desc.munged_name)
1077 # Declare var to hold memory access flags.
1078 c += 'unsigned %s_flags = memAccessFlags;\n' % op_desc.base_name
1079 # If this operand is a dest (i.e., it's a store operation),
1080 # then we need to declare a variable for the write result code
1081 # as well.
1082 if op_desc.is_dest:
1083 c += 'uint64_t %s_write_result = 0;\n' % op_desc.base_name
1084 return c
1085
1086 def makeRead(self, op_desc, cpu_model):
1087 (size, type, is_signed) = operandSizeMap[op_desc.eff_ext]
1088 eff_type = 'uint%d_t' % size
1089 return 'fault = memAccessObj->read(EA, (%s&)%s, %s_flags);\n' \
1090 % (eff_type, op_desc.munged_name, op_desc.base_name)
1091
1092 def makeWrite(self, op_desc, cpu_model):
1093 (size, type, is_signed) = operandSizeMap[op_desc.eff_ext]
1094 eff_type = 'uint%d_t' % size
1095 return 'fault = memAccessObj->write((%s&)%s, EA, %s_flags,' \
1096 ' &%s_write_result);\n' \
1097 % (eff_type, op_desc.munged_name, op_desc.base_name,
1098 op_desc.base_name)
1099
1100 class NPCOperandTraits(OperandTraits):
1101 def makeConstructor(self, op_desc):
1102 return ''
1103
1104 def makeRead(self, op_desc, cpu_model):
1105 return '%s = xc->readPC() + 4;\n' % op_desc.munged_name
1106
1107 def makeWrite(self, op_desc, cpu_model):
1108 return 'xc->setNextPC(%s);\n' % op_desc.munged_name
1109
1110
1111 #
1112 # Define operand variables that get derived from the basic declaration
1113 # of ISA-specific operands in operandTraitsMap. This function must be
1114 # called by the ISA description file explicitly after defining
1115 # operandTraitsMap (in a 'let' block).
1116 #
1117 def defineDerivedOperandVars():
1118 global operands
1119 operands = operandTraitsMap.keys()
1120
1121 operandsREString = (r'''
1122 (?<![\w\.]) # neg. lookbehind assertion: prevent partial matches
1123 ((%s)(?:\.(\w+))?) # match: operand with optional '.' then suffix
1124 (?![\w\.]) # neg. lookahead assertion: prevent partial matches
1125 '''
1126 % string.join(operands, '|'))
1127
1128 global operandsRE
1129 operandsRE = re.compile(operandsREString, re.MULTILINE|re.VERBOSE)
1130
1131 # Same as operandsREString, but extension is mandatory, and only two
1132 # groups are returned (base and ext, not full name as above).
1133 # Used for subtituting '_' for '.' to make C++ identifiers.
1134 operandsWithExtREString = (r'(?<![\w\.])(%s)\.(\w+)(?![\w\.])'
1135 % string.join(operands, '|'))
1136
1137 global operandsWithExtRE
1138 operandsWithExtRE = re.compile(operandsWithExtREString, re.MULTILINE)
1139
1140
1141 #
1142 # Operand descriptor class. An instance of this class represents
1143 # a specific operand for a code block.
1144 #
1145 class OperandDescriptor:
1146 def __init__(self, full_name, base_name, ext, is_src, is_dest):
1147 self.full_name = full_name
1148 self.base_name = base_name
1149 self.ext = ext
1150 self.is_src = is_src
1151 self.is_dest = is_dest
1152 self.traits = operandTraitsMap[base_name]
1153 # The 'effective extension' (eff_ext) is either the actual
1154 # extension, if one was explicitly provided, or the default.
1155 # The 'munged name' replaces the '.' between the base and
1156 # extension (if any) with a '_' to make a legal C++ variable name.
1157 if ext:
1158 self.eff_ext = ext
1159 self.munged_name = base_name + '_' + ext
1160 else:
1161 self.eff_ext = self.traits.dflt_ext
1162 self.munged_name = base_name
1163
1164 # Finalize additional fields (primarily code fields). This step
1165 # is done separately since some of these fields may depend on the
1166 # register index enumeration that hasn't been performed yet at the
1167 # time of __init__().
1168 def finalize(self):
1169 self.flags = self.traits.getFlags(self)
1170 self.constructor = self.traits.makeConstructor(self)
1171 self.exec_decl = self.traits.makeDecl(self)
1172
1173 if self.is_src:
1174 self.simple_rd = self.traits.makeRead(self, 'simple')
1175 self.dtld_rd = self.traits.makeRead(self, 'dtld')
1176 else:
1177 self.simple_rd = ''
1178 self.dtld_rd = ''
1179
1180 if self.is_dest:
1181 self.simple_wb = self.traits.makeWrite(self, 'simple')
1182 self.dtld_wb = self.traits.makeWrite(self, 'dtld')
1183 else:
1184 self.simple_wb = ''
1185 self.dtld_wb = ''
1186
1187 class OperandDescriptorList:
1188 def __init__(self):
1189 self.items = []
1190 self.bases = {}
1191
1192 def __len__(self):
1193 return len(self.items)
1194
1195 def __getitem__(self, index):
1196 return self.items[index]
1197
1198 def append(self, op_desc):
1199 self.items.append(op_desc)
1200 self.bases[op_desc.base_name] = op_desc
1201
1202 def find_base(self, base_name):
1203 # like self.bases[base_name], but returns None if not found
1204 # (rather than raising exception)
1205 return self.bases.get(base_name)
1206
1207 # internal helper function for concat[Some]Attr{Strings|Lists}
1208 def __internalConcatAttrs(self, attr_name, filter, result):
1209 for op_desc in self.items:
1210 if filter(op_desc):
1211 result += getattr(op_desc, attr_name)
1212 return result
1213
1214 # return a single string that is the concatenation of the (string)
1215 # values of the specified attribute for all operands
1216 def concatAttrStrings(self, attr_name):
1217 return self.__internalConcatAttrs(attr_name, lambda x: 1, '')
1218
1219 # like concatAttrStrings, but only include the values for the operands
1220 # for which the provided filter function returns true
1221 def concatSomeAttrStrings(self, filter, attr_name):
1222 return self.__internalConcatAttrs(attr_name, filter, '')
1223
1224 # return a single list that is the concatenation of the (list)
1225 # values of the specified attribute for all operands
1226 def concatAttrLists(self, attr_name):
1227 return self.__internalConcatAttrs(attr_name, lambda x: 1, [])
1228
1229 # like concatAttrLists, but only include the values for the operands
1230 # for which the provided filter function returns true
1231 def concatSomeAttrLists(self, filter, attr_name):
1232 return self.__internalConcatAttrs(attr_name, filter, [])
1233
1234 def sort(self):
1235 self.items.sort(lambda a, b: a.traits.sort_pri - b.traits.sort_pri)
1236
1237 # Regular expression object to match C++ comments
1238 # (used in findOperands())
1239 commentRE = re.compile(r'//.*\n')
1240
1241 # Regular expression object to match assignment statements
1242 # (used in findOperands())
1243 assignRE = re.compile(r'\s*=(?!=)', re.MULTILINE)
1244
1245 #
1246 # Find all the operands in the given code block. Returns an operand
1247 # descriptor list (instance of class OperandDescriptorList).
1248 #
1249 def findOperands(code):
1250 operands = OperandDescriptorList()
1251 # delete comments so we don't accidentally match on reg specifiers inside
1252 code = commentRE.sub('', code)
1253 # search for operands
1254 next_pos = 0
1255 while 1:
1256 match = operandsRE.search(code, next_pos)
1257 if not match:
1258 # no more matches: we're done
1259 break
1260 op = match.groups()
1261 # regexp groups are operand full name, base, and extension
1262 (op_full, op_base, op_ext) = op
1263 # if the token following the operand is an assignment, this is
1264 # a destination (LHS), else it's a source (RHS)
1265 is_dest = (assignRE.match(code, match.end()) != None)
1266 is_src = not is_dest
1267 # see if we've already seen this one
1268 op_desc = operands.find_base(op_base)
1269 if op_desc:
1270 if op_desc.ext != op_ext:
1271 error(0, 'Inconsistent extensions for operand %s' % op_base)
1272 op_desc.is_src = op_desc.is_src or is_src
1273 op_desc.is_dest = op_desc.is_dest or is_dest
1274 else:
1275 # new operand: create new descriptor
1276 op_desc = OperandDescriptor(op_full, op_base, op_ext,
1277 is_src, is_dest)
1278 operands.append(op_desc)
1279 # start next search after end of current match
1280 next_pos = match.end()
1281 operands.sort()
1282 # enumerate source & dest register operands... used in building
1283 # constructor later
1284 srcRegs = 0
1285 destRegs = 0
1286 operands.numFPDestRegs = 0
1287 operands.numIntDestRegs = 0
1288 for op_desc in operands:
1289 if op_desc.traits.isReg():
1290 if op_desc.is_src:
1291 op_desc.src_reg_idx = srcRegs
1292 srcRegs += 1
1293 if op_desc.is_dest:
1294 op_desc.dest_reg_idx = destRegs
1295 destRegs += 1
1296 if op_desc.traits.isFloatReg():
1297 operands.numFPDestRegs += 1
1298 elif op_desc.traits.isIntReg():
1299 operands.numIntDestRegs += 1
1300 operands.numSrcRegs = srcRegs
1301 operands.numDestRegs = destRegs
1302 # now make a final pass to finalize op_desc fields that may depend
1303 # on the register enumeration
1304 for op_desc in operands:
1305 op_desc.finalize()
1306 return operands
1307
1308 # Munge operand names in code string to make legal C++ variable names.
1309 # (Will match munged_name attribute of OperandDescriptor object.)
1310 def substMungedOpNames(code):
1311 return operandsWithExtRE.sub(r'\1_\2', code)
1312
1313 def joinLists(t):
1314 return map(string.join, t)
1315
1316 def makeFlagConstructor(flag_list):
1317 if len(flag_list) == 0:
1318 return ''
1319 # filter out repeated flags
1320 flag_list.sort()
1321 i = 1
1322 while i < len(flag_list):
1323 if flag_list[i] == flag_list[i-1]:
1324 del flag_list[i]
1325 else:
1326 i += 1
1327 pre = '\n\tflags['
1328 post = '] = true;'
1329 code = pre + string.join(flag_list, post + pre) + post
1330 return code
1331
1332 class CodeBlock:
1333 def __init__(self, code):
1334 self.orig_code = code
1335 self.operands = findOperands(code)
1336 self.code = substMungedOpNames(substBitOps(code))
1337 self.constructor = self.operands.concatAttrStrings('constructor')
1338 self.constructor += \
1339 '\n\t_numSrcRegs = %d;' % self.operands.numSrcRegs
1340 self.constructor += \
1341 '\n\t_numDestRegs = %d;' % self.operands.numDestRegs
1342 self.constructor += \
1343 '\n\t_numFPDestRegs = %d;' % self.operands.numFPDestRegs
1344 self.constructor += \
1345 '\n\t_numIntDestRegs = %d;' % self.operands.numIntDestRegs
1346
1347 self.exec_decl = self.operands.concatAttrStrings('exec_decl')
1348
1349 is_mem = lambda op: op.traits.isMem()
1350 not_mem = lambda op: not op.traits.isMem()
1351
1352 self.simple_rd = self.operands.concatAttrStrings('simple_rd')
1353 self.simple_wb = self.operands.concatAttrStrings('simple_wb')
1354 self.simple_mem_rd = \
1355 self.operands.concatSomeAttrStrings(is_mem, 'simple_rd')
1356 self.simple_mem_wb = \
1357 self.operands.concatSomeAttrStrings(is_mem, 'simple_wb')
1358 self.simple_nonmem_rd = \
1359 self.operands.concatSomeAttrStrings(not_mem, 'simple_rd')
1360 self.simple_nonmem_wb = \
1361 self.operands.concatSomeAttrStrings(not_mem, 'simple_wb')
1362
1363 self.dtld_rd = self.operands.concatAttrStrings('dtld_rd')
1364 self.dtld_wb = self.operands.concatAttrStrings('dtld_wb')
1365 self.dtld_mem_rd = \
1366 self.operands.concatSomeAttrStrings(is_mem, 'dtld_rd')
1367 self.dtld_mem_wb = \
1368 self.operands.concatSomeAttrStrings(is_mem, 'dtld_wb')
1369 self.dtld_nonmem_rd = \
1370 self.operands.concatSomeAttrStrings(not_mem, 'dtld_rd')
1371 self.dtld_nonmem_wb = \
1372 self.operands.concatSomeAttrStrings(not_mem, 'dtld_wb')
1373
1374 self.flags = self.operands.concatAttrLists('flags')
1375
1376 # Make a basic guess on the operand class (function unit type).
1377 # These are good enough for most cases, and will be overridden
1378 # later otherwise.
1379 if 'IsStore' in self.flags:
1380 self.op_class = 'WrPort'
1381 elif 'IsLoad' in self.flags or 'IsPrefetch' in self.flags:
1382 self.op_class = 'RdPort'
1383 elif 'IsFloating' in self.flags:
1384 self.op_class = 'FloatADD'
1385 else:
1386 self.op_class = 'IntALU'
1387
1388 # Assume all instruction flags are of the form 'IsFoo'
1389 instFlagRE = re.compile(r'Is.*')
1390
1391 # OpClass constants are just a little more complicated
1392 opClassRE = re.compile(r'Int.*|Float.*|.*Port|No_OpClass')
1393
1394 class InstObjParams:
1395 def __init__(self, mnem, class_name, base_class = '',
1396 code_block = None, opt_args = []):
1397 self.mnemonic = mnem
1398 self.class_name = class_name
1399 self.base_class = base_class
1400 if code_block:
1401 for code_attr in code_block.__dict__.keys():
1402 setattr(self, code_attr, getattr(code_block, code_attr))
1403 else:
1404 self.constructor = ''
1405 self.flags = []
1406 # Optional arguments are assumed to be either StaticInst flags
1407 # or an OpClass value. To avoid having to import a complete
1408 # list of these values to match against, we do it ad-hoc
1409 # with regexps.
1410 for oa in opt_args:
1411 if instFlagRE.match(oa):
1412 self.flags.append(oa)
1413 elif opClassRE.match(oa):
1414 self.op_class = oa
1415 else:
1416 error(0, 'InstObjParams: optional arg "%s" not recognized '
1417 'as StaticInst::Flag or OpClass.' % oa)
1418
1419 # add flag initialization to contructor here to include
1420 # any flags added via opt_args
1421 self.constructor += makeFlagConstructor(self.flags)
1422
1423 # if 'IsFloating' is set, add call to the FP enable check
1424 # function (which should be provided by isa_desc via a declare)
1425 if 'IsFloating' in self.flags:
1426 self.fp_enable_check = 'fault = checkFpEnableFault(xc);'
1427 else:
1428 self.fp_enable_check = ''
1429
1430 def subst(self, *args):
1431 result = []
1432 for t in args:
1433 if not templateMap.has_key(t):
1434 error(0, 'InstObjParams::subst: undefined template "%s"' % t)
1435 try:
1436 result.append(templateMap[t] % self.__dict__)
1437 except KeyError, key:
1438 error(0, 'InstObjParams::subst: no definition for "%s"' % key)
1439 if len(args) == 1:
1440 result = result[0]
1441 return result
1442
1443 #
1444 # All set... read in and parse the ISA description.
1445 #
1446 yacc.parse(isa_desc)