Test that a non-void function returns a value.
[mesa.git] / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51 #include <stdio.h>
52 #include "main/imports.h"
53 #include "glsl_symbol_table.h"
54 #include "glsl_parser_extras.h"
55 #include "ast.h"
56 #include "glsl_types.h"
57 #include "ir.h"
58
59 void
60 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
61 {
62 struct simple_node *ptr;
63
64 _mesa_glsl_initialize_variables(instructions, state);
65 _mesa_glsl_initialize_constructors(instructions, state);
66 _mesa_glsl_initialize_functions(instructions, state);
67
68 state->current_function = NULL;
69
70 foreach (ptr, & state->translation_unit) {
71 ((ast_node *)ptr)->hir(instructions, state);
72 }
73 }
74
75
76 /**
77 * If a conversion is available, convert one operand to a different type
78 *
79 * The \c from \c ir_rvalue is converted "in place".
80 *
81 * \param to Type that the operand it to be converted to
82 * \param from Operand that is being converted
83 * \param state GLSL compiler state
84 *
85 * \return
86 * If a conversion is possible (or unnecessary), \c true is returned.
87 * Otherwise \c false is returned.
88 */
89 static bool
90 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
91 struct _mesa_glsl_parse_state *state)
92 {
93 if (to->base_type == from->type->base_type)
94 return true;
95
96 /* This conversion was added in GLSL 1.20. If the compilation mode is
97 * GLSL 1.10, the conversion is skipped.
98 */
99 if (state->language_version < 120)
100 return false;
101
102 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
103 *
104 * "There are no implicit array or structure conversions. For
105 * example, an array of int cannot be implicitly converted to an
106 * array of float. There are no implicit conversions between
107 * signed and unsigned integers."
108 */
109 /* FINISHME: The above comment is partially a lie. There is int/uint
110 * FINISHME: conversion for immediate constants.
111 */
112 if (!to->is_float() || !from->type->is_numeric())
113 return false;
114
115 switch (from->type->base_type) {
116 case GLSL_TYPE_INT:
117 from = new ir_expression(ir_unop_i2f, to, from, NULL);
118 break;
119 case GLSL_TYPE_UINT:
120 from = new ir_expression(ir_unop_u2f, to, from, NULL);
121 break;
122 case GLSL_TYPE_BOOL:
123 assert(!"FINISHME: Convert bool to float.");
124 default:
125 assert(0);
126 }
127
128 return true;
129 }
130
131
132 static const struct glsl_type *
133 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
134 bool multiply,
135 struct _mesa_glsl_parse_state *state)
136 {
137 const glsl_type *const type_a = value_a->type;
138 const glsl_type *const type_b = value_b->type;
139
140 /* From GLSL 1.50 spec, page 56:
141 *
142 * "The arithmetic binary operators add (+), subtract (-),
143 * multiply (*), and divide (/) operate on integer and
144 * floating-point scalars, vectors, and matrices."
145 */
146 if (!type_a->is_numeric() || !type_b->is_numeric()) {
147 return glsl_type::error_type;
148 }
149
150
151 /* "If one operand is floating-point based and the other is
152 * not, then the conversions from Section 4.1.10 "Implicit
153 * Conversions" are applied to the non-floating-point-based operand."
154 */
155 if (!apply_implicit_conversion(type_a, value_b, state)
156 && !apply_implicit_conversion(type_b, value_a, state)) {
157 return glsl_type::error_type;
158 }
159
160 /* "If the operands are integer types, they must both be signed or
161 * both be unsigned."
162 *
163 * From this rule and the preceeding conversion it can be inferred that
164 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
165 * The is_numeric check above already filtered out the case where either
166 * type is not one of these, so now the base types need only be tested for
167 * equality.
168 */
169 if (type_a->base_type != type_b->base_type) {
170 return glsl_type::error_type;
171 }
172
173 /* "All arithmetic binary operators result in the same fundamental type
174 * (signed integer, unsigned integer, or floating-point) as the
175 * operands they operate on, after operand type conversion. After
176 * conversion, the following cases are valid
177 *
178 * * The two operands are scalars. In this case the operation is
179 * applied, resulting in a scalar."
180 */
181 if (type_a->is_scalar() && type_b->is_scalar())
182 return type_a;
183
184 /* "* One operand is a scalar, and the other is a vector or matrix.
185 * In this case, the scalar operation is applied independently to each
186 * component of the vector or matrix, resulting in the same size
187 * vector or matrix."
188 */
189 if (type_a->is_scalar()) {
190 if (!type_b->is_scalar())
191 return type_b;
192 } else if (type_b->is_scalar()) {
193 return type_a;
194 }
195
196 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
197 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
198 * handled.
199 */
200 assert(!type_a->is_scalar());
201 assert(!type_b->is_scalar());
202
203 /* "* The two operands are vectors of the same size. In this case, the
204 * operation is done component-wise resulting in the same size
205 * vector."
206 */
207 if (type_a->is_vector() && type_b->is_vector()) {
208 return (type_a == type_b) ? type_a : glsl_type::error_type;
209 }
210
211 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
212 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
213 * <vector, vector> have been handled. At least one of the operands must
214 * be matrix. Further, since there are no integer matrix types, the base
215 * type of both operands must be float.
216 */
217 assert(type_a->is_matrix() || type_b->is_matrix());
218 assert(type_a->base_type == GLSL_TYPE_FLOAT);
219 assert(type_b->base_type == GLSL_TYPE_FLOAT);
220
221 /* "* The operator is add (+), subtract (-), or divide (/), and the
222 * operands are matrices with the same number of rows and the same
223 * number of columns. In this case, the operation is done component-
224 * wise resulting in the same size matrix."
225 * * The operator is multiply (*), where both operands are matrices or
226 * one operand is a vector and the other a matrix. A right vector
227 * operand is treated as a column vector and a left vector operand as a
228 * row vector. In all these cases, it is required that the number of
229 * columns of the left operand is equal to the number of rows of the
230 * right operand. Then, the multiply (*) operation does a linear
231 * algebraic multiply, yielding an object that has the same number of
232 * rows as the left operand and the same number of columns as the right
233 * operand. Section 5.10 "Vector and Matrix Operations" explains in
234 * more detail how vectors and matrices are operated on."
235 */
236 if (! multiply) {
237 return (type_a == type_b) ? type_a : glsl_type::error_type;
238 } else {
239 if (type_a->is_matrix() && type_b->is_matrix()) {
240 /* Matrix multiply. The columns of A must match the rows of B. Given
241 * the other previously tested constraints, this means the vector type
242 * of a row from A must be the same as the vector type of a column from
243 * B.
244 */
245 if (type_a->row_type() == type_b->column_type()) {
246 /* The resulting matrix has the number of columns of matrix B and
247 * the number of rows of matrix A. We get the row count of A by
248 * looking at the size of a vector that makes up a column. The
249 * transpose (size of a row) is done for B.
250 */
251 return
252 glsl_type::get_instance(type_a->base_type,
253 type_a->column_type()->vector_elements,
254 type_b->row_type()->vector_elements);
255 }
256 } else if (type_a->is_matrix()) {
257 /* A is a matrix and B is a column vector. Columns of A must match
258 * rows of B. Given the other previously tested constraints, this
259 * means the vector type of a row from A must be the same as the
260 * vector the type of B.
261 */
262 if (type_a->row_type() == type_b)
263 return type_b;
264 } else {
265 assert(type_b->is_matrix());
266
267 /* A is a row vector and B is a matrix. Columns of A must match rows
268 * of B. Given the other previously tested constraints, this means
269 * the type of A must be the same as the vector type of a column from
270 * B.
271 */
272 if (type_a == type_b->column_type())
273 return type_a;
274 }
275 }
276
277
278 /* "All other cases are illegal."
279 */
280 return glsl_type::error_type;
281 }
282
283
284 static const struct glsl_type *
285 unary_arithmetic_result_type(const struct glsl_type *type)
286 {
287 /* From GLSL 1.50 spec, page 57:
288 *
289 * "The arithmetic unary operators negate (-), post- and pre-increment
290 * and decrement (-- and ++) operate on integer or floating-point
291 * values (including vectors and matrices). All unary operators work
292 * component-wise on their operands. These result with the same type
293 * they operated on."
294 */
295 if (!type->is_numeric())
296 return glsl_type::error_type;
297
298 return type;
299 }
300
301
302 static const struct glsl_type *
303 modulus_result_type(const struct glsl_type *type_a,
304 const struct glsl_type *type_b)
305 {
306 /* From GLSL 1.50 spec, page 56:
307 * "The operator modulus (%) operates on signed or unsigned integers or
308 * integer vectors. The operand types must both be signed or both be
309 * unsigned."
310 */
311 if (!type_a->is_integer() || !type_b->is_integer()
312 || (type_a->base_type != type_b->base_type)) {
313 return glsl_type::error_type;
314 }
315
316 /* "The operands cannot be vectors of differing size. If one operand is
317 * a scalar and the other vector, then the scalar is applied component-
318 * wise to the vector, resulting in the same type as the vector. If both
319 * are vectors of the same size, the result is computed component-wise."
320 */
321 if (type_a->is_vector()) {
322 if (!type_b->is_vector()
323 || (type_a->vector_elements == type_b->vector_elements))
324 return type_a;
325 } else
326 return type_b;
327
328 /* "The operator modulus (%) is not defined for any other data types
329 * (non-integer types)."
330 */
331 return glsl_type::error_type;
332 }
333
334
335 static const struct glsl_type *
336 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
337 struct _mesa_glsl_parse_state *state)
338 {
339 const glsl_type *const type_a = value_a->type;
340 const glsl_type *const type_b = value_b->type;
341
342 /* From GLSL 1.50 spec, page 56:
343 * "The relational operators greater than (>), less than (<), greater
344 * than or equal (>=), and less than or equal (<=) operate only on
345 * scalar integer and scalar floating-point expressions."
346 */
347 if (!type_a->is_numeric()
348 || !type_b->is_numeric()
349 || !type_a->is_scalar()
350 || !type_b->is_scalar())
351 return glsl_type::error_type;
352
353 /* "Either the operands' types must match, or the conversions from
354 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
355 * operand, after which the types must match."
356 */
357 if (!apply_implicit_conversion(type_a, value_b, state)
358 && !apply_implicit_conversion(type_b, value_a, state)) {
359 return glsl_type::error_type;
360 }
361
362 if (type_a->base_type != type_b->base_type)
363 return glsl_type::error_type;
364
365 /* "The result is scalar Boolean."
366 */
367 return glsl_type::bool_type;
368 }
369
370
371 /**
372 * Validates that a value can be assigned to a location with a specified type
373 *
374 * Validates that \c rhs can be assigned to some location. If the types are
375 * not an exact match but an automatic conversion is possible, \c rhs will be
376 * converted.
377 *
378 * \return
379 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
380 * Otherwise the actual RHS to be assigned will be returned. This may be
381 * \c rhs, or it may be \c rhs after some type conversion.
382 *
383 * \note
384 * In addition to being used for assignments, this function is used to
385 * type-check return values.
386 */
387 ir_rvalue *
388 validate_assignment(const glsl_type *lhs_type, ir_rvalue *rhs)
389 {
390 const glsl_type *const rhs_type = rhs->type;
391
392 /* If there is already some error in the RHS, just return it. Anything
393 * else will lead to an avalanche of error message back to the user.
394 */
395 if (rhs_type->is_error())
396 return rhs;
397
398 /* FINISHME: For GLSL 1.10, check that the types are not arrays. */
399
400 /* If the types are identical, the assignment can trivially proceed.
401 */
402 if (rhs_type == lhs_type)
403 return rhs;
404
405 /* FINISHME: Check for and apply automatic conversions. */
406 return NULL;
407 }
408
409 ir_rvalue *
410 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
411 ir_rvalue *lhs, ir_rvalue *rhs,
412 YYLTYPE lhs_loc)
413 {
414 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
415
416 if (!error_emitted) {
417 /* FINISHME: This does not handle 'foo.bar.a.b.c[5].d = 5' */
418 if (!lhs->is_lvalue()) {
419 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
420 error_emitted = true;
421 }
422 }
423
424 ir_rvalue *new_rhs = validate_assignment(lhs->type, rhs);
425 if (new_rhs == NULL) {
426 _mesa_glsl_error(& lhs_loc, state, "type mismatch");
427 } else {
428 rhs = new_rhs;
429 }
430
431 ir_instruction *tmp = new ir_assignment(lhs, rhs, NULL);
432 instructions->push_tail(tmp);
433
434 return rhs;
435 }
436
437
438 /**
439 * Generate a new temporary and add its declaration to the instruction stream
440 */
441 static ir_variable *
442 generate_temporary(const glsl_type *type, exec_list *instructions,
443 struct _mesa_glsl_parse_state *state)
444 {
445 char *name = (char *) malloc(sizeof(char) * 13);
446
447 snprintf(name, 13, "tmp_%08X", state->temp_index);
448 state->temp_index++;
449
450 ir_variable *const var = new ir_variable(type, name);
451 instructions->push_tail(var);
452
453 return var;
454 }
455
456
457 static ir_rvalue *
458 get_lvalue_copy(exec_list *instructions, struct _mesa_glsl_parse_state *state,
459 ir_rvalue *lvalue, YYLTYPE loc)
460 {
461 ir_variable *var;
462 ir_rvalue *var_deref;
463
464 /* FINISHME: Give unique names to the temporaries. */
465 var = new ir_variable(lvalue->type, "_internal_tmp");
466 var->mode = ir_var_auto;
467
468 var_deref = new ir_dereference(var);
469 do_assignment(instructions, state, var_deref, lvalue, loc);
470
471 /* Once we've created this temporary, mark it read only so it's no
472 * longer considered an lvalue.
473 */
474 var->read_only = true;
475
476 return var_deref;
477 }
478
479
480 ir_rvalue *
481 ast_node::hir(exec_list *instructions,
482 struct _mesa_glsl_parse_state *state)
483 {
484 (void) instructions;
485 (void) state;
486
487 return NULL;
488 }
489
490
491 ir_rvalue *
492 ast_expression::hir(exec_list *instructions,
493 struct _mesa_glsl_parse_state *state)
494 {
495 static const int operations[AST_NUM_OPERATORS] = {
496 -1, /* ast_assign doesn't convert to ir_expression. */
497 -1, /* ast_plus doesn't convert to ir_expression. */
498 ir_unop_neg,
499 ir_binop_add,
500 ir_binop_sub,
501 ir_binop_mul,
502 ir_binop_div,
503 ir_binop_mod,
504 ir_binop_lshift,
505 ir_binop_rshift,
506 ir_binop_less,
507 ir_binop_greater,
508 ir_binop_lequal,
509 ir_binop_gequal,
510 ir_binop_equal,
511 ir_binop_nequal,
512 ir_binop_bit_and,
513 ir_binop_bit_xor,
514 ir_binop_bit_or,
515 ir_unop_bit_not,
516 ir_binop_logic_and,
517 ir_binop_logic_xor,
518 ir_binop_logic_or,
519 ir_unop_logic_not,
520
521 /* Note: The following block of expression types actually convert
522 * to multiple IR instructions.
523 */
524 ir_binop_mul, /* ast_mul_assign */
525 ir_binop_div, /* ast_div_assign */
526 ir_binop_mod, /* ast_mod_assign */
527 ir_binop_add, /* ast_add_assign */
528 ir_binop_sub, /* ast_sub_assign */
529 ir_binop_lshift, /* ast_ls_assign */
530 ir_binop_rshift, /* ast_rs_assign */
531 ir_binop_bit_and, /* ast_and_assign */
532 ir_binop_bit_xor, /* ast_xor_assign */
533 ir_binop_bit_or, /* ast_or_assign */
534
535 -1, /* ast_conditional doesn't convert to ir_expression. */
536 ir_binop_add, /* ast_pre_inc. */
537 ir_binop_sub, /* ast_pre_dec. */
538 ir_binop_add, /* ast_post_inc. */
539 ir_binop_sub, /* ast_post_dec. */
540 -1, /* ast_field_selection doesn't conv to ir_expression. */
541 -1, /* ast_array_index doesn't convert to ir_expression. */
542 -1, /* ast_function_call doesn't conv to ir_expression. */
543 -1, /* ast_identifier doesn't convert to ir_expression. */
544 -1, /* ast_int_constant doesn't convert to ir_expression. */
545 -1, /* ast_uint_constant doesn't conv to ir_expression. */
546 -1, /* ast_float_constant doesn't conv to ir_expression. */
547 -1, /* ast_bool_constant doesn't conv to ir_expression. */
548 -1, /* ast_sequence doesn't convert to ir_expression. */
549 };
550 ir_rvalue *result = NULL;
551 ir_rvalue *op[2];
552 struct simple_node op_list;
553 const struct glsl_type *type = glsl_type::error_type;
554 bool error_emitted = false;
555 YYLTYPE loc;
556
557 loc = this->get_location();
558 make_empty_list(& op_list);
559
560 switch (this->oper) {
561 case ast_assign: {
562 op[0] = this->subexpressions[0]->hir(instructions, state);
563 op[1] = this->subexpressions[1]->hir(instructions, state);
564
565 result = do_assignment(instructions, state, op[0], op[1],
566 this->subexpressions[0]->get_location());
567 error_emitted = result->type->is_error();
568 type = result->type;
569 break;
570 }
571
572 case ast_plus:
573 op[0] = this->subexpressions[0]->hir(instructions, state);
574
575 error_emitted = op[0]->type->is_error();
576 if (type->is_error())
577 op[0]->type = type;
578
579 result = op[0];
580 break;
581
582 case ast_neg:
583 op[0] = this->subexpressions[0]->hir(instructions, state);
584
585 type = unary_arithmetic_result_type(op[0]->type);
586
587 error_emitted = op[0]->type->is_error();
588
589 result = new ir_expression(operations[this->oper], type,
590 op[0], NULL);
591 break;
592
593 case ast_add:
594 case ast_sub:
595 case ast_mul:
596 case ast_div:
597 op[0] = this->subexpressions[0]->hir(instructions, state);
598 op[1] = this->subexpressions[1]->hir(instructions, state);
599
600 type = arithmetic_result_type(op[0], op[1],
601 (this->oper == ast_mul),
602 state);
603
604 result = new ir_expression(operations[this->oper], type,
605 op[0], op[1]);
606 break;
607
608 case ast_mod:
609 op[0] = this->subexpressions[0]->hir(instructions, state);
610 op[1] = this->subexpressions[1]->hir(instructions, state);
611
612 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
613
614 type = modulus_result_type(op[0]->type, op[1]->type);
615
616 assert(operations[this->oper] == ir_binop_mod);
617
618 result = new ir_expression(operations[this->oper], type,
619 op[0], op[1]);
620 break;
621
622 case ast_lshift:
623 case ast_rshift:
624 /* FINISHME: Implement bit-shift operators. */
625 break;
626
627 case ast_less:
628 case ast_greater:
629 case ast_lequal:
630 case ast_gequal:
631 op[0] = this->subexpressions[0]->hir(instructions, state);
632 op[1] = this->subexpressions[1]->hir(instructions, state);
633
634 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
635
636 type = relational_result_type(op[0], op[1], state);
637
638 /* The relational operators must either generate an error or result
639 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
640 */
641 assert(type->is_error()
642 || ((type->base_type == GLSL_TYPE_BOOL)
643 && type->is_scalar()));
644
645 result = new ir_expression(operations[this->oper], type,
646 op[0], op[1]);
647 break;
648
649 case ast_nequal:
650 case ast_equal:
651 op[0] = this->subexpressions[0]->hir(instructions, state);
652 op[1] = this->subexpressions[1]->hir(instructions, state);
653
654 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
655 *
656 * "The equality operators equal (==), and not equal (!=)
657 * operate on all types. They result in a scalar Boolean. If
658 * the operand types do not match, then there must be a
659 * conversion from Section 4.1.10 "Implicit Conversions"
660 * applied to one operand that can make them match, in which
661 * case this conversion is done."
662 */
663 if ((!apply_implicit_conversion(op[0]->type, op[1], state)
664 && !apply_implicit_conversion(op[1]->type, op[0], state))
665 || (op[0]->type != op[1]->type)) {
666 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
667 "type", (this->oper == ast_equal) ? "==" : "!=");
668 error_emitted = true;
669 } else if ((state->language_version <= 110)
670 && (op[0]->type->is_array() || op[1]->type->is_array())) {
671 _mesa_glsl_error(& loc, state, "array comparisons forbidden in "
672 "GLSL 1.10");
673 error_emitted = true;
674 }
675
676 result = new ir_expression(operations[this->oper], glsl_type::bool_type,
677 op[0], op[1]);
678 type = glsl_type::bool_type;
679
680 assert(result->type == glsl_type::bool_type);
681 break;
682
683 case ast_bit_and:
684 case ast_bit_xor:
685 case ast_bit_or:
686 case ast_bit_not:
687 /* FINISHME: Implement bit-wise operators. */
688 break;
689
690 case ast_logic_and:
691 case ast_logic_xor:
692 case ast_logic_or:
693 case ast_logic_not:
694 /* FINISHME: Implement logical operators. */
695 break;
696
697 case ast_mul_assign:
698 case ast_div_assign:
699 case ast_add_assign:
700 case ast_sub_assign: {
701 op[0] = this->subexpressions[0]->hir(instructions, state);
702 op[1] = this->subexpressions[1]->hir(instructions, state);
703
704 type = arithmetic_result_type(op[0], op[1],
705 (this->oper == ast_mul_assign),
706 state);
707
708 ir_rvalue *temp_rhs = new ir_expression(operations[this->oper], type,
709 op[0], op[1]);
710
711 result = do_assignment(instructions, state, op[0], temp_rhs,
712 this->subexpressions[0]->get_location());
713 type = result->type;
714 error_emitted = (op[0]->type->is_error());
715
716 /* GLSL 1.10 does not allow array assignment. However, we don't have to
717 * explicitly test for this because none of the binary expression
718 * operators allow array operands either.
719 */
720
721 break;
722 }
723
724 case ast_mod_assign: {
725 op[0] = this->subexpressions[0]->hir(instructions, state);
726 op[1] = this->subexpressions[1]->hir(instructions, state);
727
728 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
729
730 type = modulus_result_type(op[0]->type, op[1]->type);
731
732 assert(operations[this->oper] == ir_binop_mod);
733
734 struct ir_rvalue *temp_rhs;
735 temp_rhs = new ir_expression(operations[this->oper], type,
736 op[0], op[1]);
737
738 result = do_assignment(instructions, state, op[0], temp_rhs,
739 this->subexpressions[0]->get_location());
740 type = result->type;
741 error_emitted = op[0]->type->is_error();
742 break;
743 }
744
745 case ast_ls_assign:
746 case ast_rs_assign:
747 break;
748
749 case ast_and_assign:
750 case ast_xor_assign:
751 case ast_or_assign:
752 break;
753
754 case ast_conditional: {
755 op[0] = this->subexpressions[0]->hir(instructions, state);
756
757 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
758 *
759 * "The ternary selection operator (?:). It operates on three
760 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
761 * first expression, which must result in a scalar Boolean."
762 */
763 if (!op[0]->type->is_boolean() || !op[0]->type->is_scalar()) {
764 YYLTYPE loc = this->subexpressions[0]->get_location();
765
766 _mesa_glsl_error(& loc, state, "?: condition must be scalar boolean");
767 error_emitted = true;
768 }
769
770 /* The :? operator is implemented by generating an anonymous temporary
771 * followed by an if-statement. The last instruction in each branch of
772 * the if-statement assigns a value to the anonymous temporary. This
773 * temporary is the r-value of the expression.
774 */
775 ir_variable *const tmp = generate_temporary(glsl_type::error_type,
776 instructions, state);
777
778 ir_if *const stmt = new ir_if(op[0]);
779 instructions->push_tail(stmt);
780
781 op[1] = this->subexpressions[1]->hir(& stmt->then_instructions, state);
782 ir_dereference *const then_deref = new ir_dereference(tmp);
783 ir_assignment *const then_assign =
784 new ir_assignment(then_deref, op[1], NULL);
785 stmt->then_instructions.push_tail(then_assign);
786
787 op[2] = this->subexpressions[2]->hir(& stmt->else_instructions, state);
788 ir_dereference *const else_deref = new ir_dereference(tmp);
789 ir_assignment *const else_assign =
790 new ir_assignment(else_deref, op[2], NULL);
791 stmt->else_instructions.push_tail(else_assign);
792
793 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
794 *
795 * "The second and third expressions can be any type, as
796 * long their types match, or there is a conversion in
797 * Section 4.1.10 "Implicit Conversions" that can be applied
798 * to one of the expressions to make their types match. This
799 * resulting matching type is the type of the entire
800 * expression."
801 */
802 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
803 && !apply_implicit_conversion(op[2]->type, op[1], state))
804 || (op[1]->type != op[2]->type)) {
805 YYLTYPE loc = this->subexpressions[1]->get_location();
806
807 _mesa_glsl_error(& loc, state, "Second and third operands of ?: "
808 "operator must have matching types.");
809 error_emitted = true;
810 } else {
811 tmp->type = op[1]->type;
812 }
813
814 result = new ir_dereference(tmp);
815 type = tmp->type;
816 break;
817 }
818
819 case ast_pre_inc:
820 case ast_pre_dec: {
821 op[0] = this->subexpressions[0]->hir(instructions, state);
822 if (op[0]->type->base_type == GLSL_TYPE_FLOAT)
823 op[1] = new ir_constant(1.0f);
824 else
825 op[1] = new ir_constant(1);
826
827 type = arithmetic_result_type(op[0], op[1], false, state);
828
829 struct ir_rvalue *temp_rhs;
830 temp_rhs = new ir_expression(operations[this->oper], type,
831 op[0], op[1]);
832
833 result = do_assignment(instructions, state, op[0], temp_rhs,
834 this->subexpressions[0]->get_location());
835 type = result->type;
836 error_emitted = op[0]->type->is_error();
837 break;
838 }
839
840 case ast_post_inc:
841 case ast_post_dec: {
842 op[0] = this->subexpressions[0]->hir(instructions, state);
843 if (op[0]->type->base_type == GLSL_TYPE_FLOAT)
844 op[1] = new ir_constant(1.0f);
845 else
846 op[1] = new ir_constant(1);
847
848 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
849
850 type = arithmetic_result_type(op[0], op[1], false, state);
851
852 struct ir_rvalue *temp_rhs;
853 temp_rhs = new ir_expression(operations[this->oper], type,
854 op[0], op[1]);
855
856 /* Get a temporary of a copy of the lvalue before it's modified.
857 * This may get thrown away later.
858 */
859 result = get_lvalue_copy(instructions, state, op[0],
860 this->subexpressions[0]->get_location());
861
862 (void)do_assignment(instructions, state, op[0], temp_rhs,
863 this->subexpressions[0]->get_location());
864
865 type = result->type;
866 error_emitted = op[0]->type->is_error();
867 break;
868 }
869
870 case ast_field_selection:
871 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
872 type = result->type;
873 break;
874
875 case ast_array_index:
876 break;
877
878 case ast_function_call:
879 /* Should *NEVER* get here. ast_function_call should always be handled
880 * by ast_function_expression::hir.
881 */
882 assert(0);
883 break;
884
885 case ast_identifier: {
886 /* ast_identifier can appear several places in a full abstract syntax
887 * tree. This particular use must be at location specified in the grammar
888 * as 'variable_identifier'.
889 */
890 ir_variable *var =
891 state->symbols->get_variable(this->primary_expression.identifier);
892
893 result = new ir_dereference(var);
894
895 if (var != NULL) {
896 type = result->type;
897 } else {
898 _mesa_glsl_error(& loc, state, "`%s' undeclared",
899 this->primary_expression.identifier);
900
901 error_emitted = true;
902 }
903 break;
904 }
905
906 case ast_int_constant:
907 type = glsl_type::int_type;
908 result = new ir_constant(type, & this->primary_expression);
909 break;
910
911 case ast_uint_constant:
912 type = glsl_type::uint_type;
913 result = new ir_constant(type, & this->primary_expression);
914 break;
915
916 case ast_float_constant:
917 type = glsl_type::float_type;
918 result = new ir_constant(type, & this->primary_expression);
919 break;
920
921 case ast_bool_constant:
922 type = glsl_type::bool_type;
923 result = new ir_constant(type, & this->primary_expression);
924 break;
925
926 case ast_sequence: {
927 struct simple_node *ptr;
928
929 /* It should not be possible to generate a sequence in the AST without
930 * any expressions in it.
931 */
932 assert(!is_empty_list(&this->expressions));
933
934 /* The r-value of a sequence is the last expression in the sequence. If
935 * the other expressions in the sequence do not have side-effects (and
936 * therefore add instructions to the instruction list), they get dropped
937 * on the floor.
938 */
939 foreach (ptr, &this->expressions)
940 result = ((ast_node *)ptr)->hir(instructions, state);
941
942 type = result->type;
943
944 /* Any errors should have already been emitted in the loop above.
945 */
946 error_emitted = true;
947 break;
948 }
949 }
950
951 if (type->is_error() && !error_emitted)
952 _mesa_glsl_error(& loc, state, "type mismatch");
953
954 return result;
955 }
956
957
958 ir_rvalue *
959 ast_expression_statement::hir(exec_list *instructions,
960 struct _mesa_glsl_parse_state *state)
961 {
962 /* It is possible to have expression statements that don't have an
963 * expression. This is the solitary semicolon:
964 *
965 * for (i = 0; i < 5; i++)
966 * ;
967 *
968 * In this case the expression will be NULL. Test for NULL and don't do
969 * anything in that case.
970 */
971 if (expression != NULL)
972 expression->hir(instructions, state);
973
974 /* Statements do not have r-values.
975 */
976 return NULL;
977 }
978
979
980 ir_rvalue *
981 ast_compound_statement::hir(exec_list *instructions,
982 struct _mesa_glsl_parse_state *state)
983 {
984 struct simple_node *ptr;
985
986
987 if (new_scope)
988 state->symbols->push_scope();
989
990 foreach (ptr, &statements)
991 ((ast_node *)ptr)->hir(instructions, state);
992
993 if (new_scope)
994 state->symbols->pop_scope();
995
996 /* Compound statements do not have r-values.
997 */
998 return NULL;
999 }
1000
1001
1002 static const glsl_type *
1003 process_array_type(const glsl_type *base, ast_node *array_size,
1004 struct _mesa_glsl_parse_state *state)
1005 {
1006 unsigned length = 0;
1007
1008 /* FINISHME: Reject delcarations of multidimensional arrays. */
1009
1010 if (array_size != NULL) {
1011 exec_list dummy_instructions;
1012 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
1013 YYLTYPE loc = array_size->get_location();
1014
1015 /* FINISHME: Verify that the grammar forbids side-effects in array
1016 * FINISHME: sizes. i.e., 'vec4 [x = 12] data'
1017 */
1018 assert(dummy_instructions.is_empty());
1019
1020 if (ir != NULL) {
1021 if (!ir->type->is_integer()) {
1022 _mesa_glsl_error(& loc, state, "array size must be integer type");
1023 } else if (!ir->type->is_scalar()) {
1024 _mesa_glsl_error(& loc, state, "array size must be scalar type");
1025 } else {
1026 ir_constant *const size = ir->constant_expression_value();
1027
1028 if (size == NULL) {
1029 _mesa_glsl_error(& loc, state, "array size must be a "
1030 "constant valued expression");
1031 } else if (size->value.i[0] <= 0) {
1032 _mesa_glsl_error(& loc, state, "array size must be > 0");
1033 } else {
1034 assert(size->type == ir->type);
1035 length = size->value.u[0];
1036 }
1037 }
1038 }
1039 }
1040
1041 return glsl_type::get_array_instance(base, length);
1042 }
1043
1044
1045 static const struct glsl_type *
1046 type_specifier_to_glsl_type(const struct ast_type_specifier *spec,
1047 const char **name,
1048 struct _mesa_glsl_parse_state *state)
1049 {
1050 const glsl_type *type;
1051
1052 if (spec->type_specifier == ast_struct) {
1053 /* FINISHME: Handle annonymous structures. */
1054 type = NULL;
1055 } else {
1056 type = state->symbols->get_type(spec->type_name);
1057 *name = spec->type_name;
1058
1059 if (spec->is_array) {
1060 type = process_array_type(type, spec->array_size, state);
1061 }
1062 }
1063
1064 return type;
1065 }
1066
1067
1068 static void
1069 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
1070 struct ir_variable *var,
1071 struct _mesa_glsl_parse_state *state,
1072 YYLTYPE *loc)
1073 {
1074 if (qual->invariant)
1075 var->invariant = 1;
1076
1077 /* FINISHME: Mark 'in' variables at global scope as read-only. */
1078 if (qual->constant || qual->attribute || qual->uniform
1079 || (qual->varying && (state->target == fragment_shader)))
1080 var->read_only = 1;
1081
1082 if (qual->centroid)
1083 var->centroid = 1;
1084
1085 if (qual->attribute && state->target == fragment_shader) {
1086 var->type = glsl_type::error_type;
1087 _mesa_glsl_error(loc, state,
1088 "`attribute' variables may not be declared in the "
1089 "fragment shader");
1090 }
1091
1092 if (qual->in && qual->out)
1093 var->mode = ir_var_inout;
1094 else if (qual->attribute || qual->in
1095 || (qual->varying && (state->target == fragment_shader)))
1096 var->mode = ir_var_in;
1097 else if (qual->out || (qual->varying && (state->target == vertex_shader)))
1098 var->mode = ir_var_out;
1099 else if (qual->uniform)
1100 var->mode = ir_var_uniform;
1101 else
1102 var->mode = ir_var_auto;
1103
1104 if (qual->flat)
1105 var->interpolation = ir_var_flat;
1106 else if (qual->noperspective)
1107 var->interpolation = ir_var_noperspective;
1108 else
1109 var->interpolation = ir_var_smooth;
1110 }
1111
1112
1113 ir_rvalue *
1114 ast_declarator_list::hir(exec_list *instructions,
1115 struct _mesa_glsl_parse_state *state)
1116 {
1117 struct simple_node *ptr;
1118 const struct glsl_type *decl_type;
1119 const char *type_name = NULL;
1120
1121
1122 /* FINISHME: Handle vertex shader "invariant" declarations that do not
1123 * FINISHME: include a type. These re-declare built-in variables to be
1124 * FINISHME: invariant.
1125 */
1126
1127 decl_type = type_specifier_to_glsl_type(this->type->specifier,
1128 & type_name, state);
1129
1130 foreach (ptr, &this->declarations) {
1131 struct ast_declaration *const decl = (struct ast_declaration * )ptr;
1132 const struct glsl_type *var_type;
1133 struct ir_variable *var;
1134 YYLTYPE loc = this->get_location();
1135
1136 /* FINISHME: Emit a warning if a variable declaration shadows a
1137 * FINISHME: declaration at a higher scope.
1138 */
1139
1140 if ((decl_type == NULL) || decl_type->is_void()) {
1141 if (type_name != NULL) {
1142 _mesa_glsl_error(& loc, state,
1143 "invalid type `%s' in declaration of `%s'",
1144 type_name, decl->identifier);
1145 } else {
1146 _mesa_glsl_error(& loc, state,
1147 "invalid type in declaration of `%s'",
1148 decl->identifier);
1149 }
1150 continue;
1151 }
1152
1153 if (decl->is_array) {
1154 var_type = process_array_type(decl_type, decl->array_size, state);
1155 } else {
1156 var_type = decl_type;
1157 }
1158
1159 var = new ir_variable(var_type, decl->identifier);
1160
1161 /* FINISHME: Variables that are attribute, uniform, varying, in, or
1162 * FINISHME: out varibles must be declared either at global scope or
1163 * FINISHME: in a parameter list (in and out only).
1164 */
1165
1166 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
1167 & loc);
1168
1169 /* Attempt to add the variable to the symbol table. If this fails, it
1170 * means the variable has already been declared at this scope.
1171 */
1172 if (state->symbols->name_declared_this_scope(decl->identifier)) {
1173 YYLTYPE loc = this->get_location();
1174
1175 _mesa_glsl_error(& loc, state, "`%s' redeclared",
1176 decl->identifier);
1177 continue;
1178 }
1179
1180 instructions->push_tail(var);
1181
1182 if (this->type->qualifier.attribute
1183 && (state->current_function != NULL)) {
1184 _mesa_glsl_error(& loc, state,
1185 "attribute variable `%s' must be declared at global "
1186 "scope",
1187 var->name);
1188 }
1189
1190 if ((var->mode == ir_var_in) && (state->current_function == NULL)) {
1191 if (state->target == vertex_shader) {
1192 bool error_emitted = false;
1193
1194 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
1195 *
1196 * "Vertex shader inputs can only be float, floating-point
1197 * vectors, matrices, signed and unsigned integers and integer
1198 * vectors. Vertex shader inputs can also form arrays of these
1199 * types, but not structures."
1200 *
1201 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
1202 *
1203 * "Vertex shader inputs can only be float, floating-point
1204 * vectors, matrices, signed and unsigned integers and integer
1205 * vectors. They cannot be arrays or structures."
1206 *
1207 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
1208 *
1209 * "The attribute qualifier can be used only with float,
1210 * floating-point vectors, and matrices. Attribute variables
1211 * cannot be declared as arrays or structures."
1212 */
1213 const glsl_type *check_type = var->type->is_array()
1214 ? var->type->fields.array : var->type;
1215
1216 switch (check_type->base_type) {
1217 case GLSL_TYPE_FLOAT:
1218 break;
1219 case GLSL_TYPE_UINT:
1220 case GLSL_TYPE_INT:
1221 if (state->language_version > 120)
1222 break;
1223 /* FALLTHROUGH */
1224 default:
1225 _mesa_glsl_error(& loc, state,
1226 "vertex shader input / attribute cannot have "
1227 "type %s`%s'",
1228 var->type->is_array() ? "array of " : "",
1229 check_type->name);
1230 error_emitted = true;
1231 }
1232
1233 if (!error_emitted && (state->language_version <= 130)
1234 && var->type->is_array()) {
1235 _mesa_glsl_error(& loc, state,
1236 "vertex shader input / attribute cannot have "
1237 "array type");
1238 error_emitted = true;
1239 }
1240 }
1241 }
1242
1243 if (decl->initializer != NULL) {
1244 YYLTYPE initializer_loc = decl->initializer->get_location();
1245
1246 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
1247 *
1248 * "All uniform variables are read-only and are initialized either
1249 * directly by an application via API commands, or indirectly by
1250 * OpenGL."
1251 */
1252 if ((state->language_version <= 110)
1253 && (var->mode == ir_var_uniform)) {
1254 _mesa_glsl_error(& initializer_loc, state,
1255 "cannot initialize uniforms in GLSL 1.10");
1256 }
1257
1258 if (var->type->is_sampler()) {
1259 _mesa_glsl_error(& initializer_loc, state,
1260 "cannot initialize samplers");
1261 }
1262
1263 if ((var->mode == ir_var_in) && (state->current_function == NULL)) {
1264 _mesa_glsl_error(& initializer_loc, state,
1265 "cannot initialize %s shader input / %s",
1266 (state->target == vertex_shader)
1267 ? "vertex" : "fragment",
1268 (state->target == vertex_shader)
1269 ? "attribute" : "varying");
1270 }
1271
1272 ir_dereference *const lhs = new ir_dereference(var);
1273 ir_rvalue *const rhs = decl->initializer->hir(instructions, state);
1274
1275 /* FINISHME: If the declaration is either 'const' or 'uniform', the
1276 * FINISHME: initializer (rhs) must be a constant expression.
1277 */
1278
1279 if (!rhs->type->is_error()) {
1280 (void) do_assignment(instructions, state, lhs, rhs,
1281 this->get_location());
1282 }
1283 }
1284
1285 /* Add the vairable to the symbol table after processing the initializer.
1286 * This differs from most C-like languages, but it follows the GLSL
1287 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
1288 * spec:
1289 *
1290 * "Within a declaration, the scope of a name starts immediately
1291 * after the initializer if present or immediately after the name
1292 * being declared if not."
1293 */
1294 const bool added_variable =
1295 state->symbols->add_variable(decl->identifier, var);
1296 assert(added_variable);
1297 }
1298
1299 /* Variable declarations do not have r-values.
1300 */
1301 return NULL;
1302 }
1303
1304
1305 ir_rvalue *
1306 ast_parameter_declarator::hir(exec_list *instructions,
1307 struct _mesa_glsl_parse_state *state)
1308 {
1309 const struct glsl_type *type;
1310 const char *name = NULL;
1311 YYLTYPE loc = this->get_location();
1312
1313 type = type_specifier_to_glsl_type(this->type->specifier, & name, state);
1314
1315 if (type == NULL) {
1316 if (name != NULL) {
1317 _mesa_glsl_error(& loc, state,
1318 "invalid type `%s' in declaration of `%s'",
1319 name, this->identifier);
1320 } else {
1321 _mesa_glsl_error(& loc, state,
1322 "invalid type in declaration of `%s'",
1323 this->identifier);
1324 }
1325
1326 type = glsl_type::error_type;
1327 }
1328
1329 ir_variable *var = new ir_variable(type, this->identifier);
1330
1331 /* FINISHME: Handle array declarations. Note that this requires
1332 * FINISHME: complete handling of constant expressions.
1333 */
1334
1335 /* Apply any specified qualifiers to the parameter declaration. Note that
1336 * for function parameters the default mode is 'in'.
1337 */
1338 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc);
1339 if (var->mode == ir_var_auto)
1340 var->mode = ir_var_in;
1341
1342 instructions->push_tail(var);
1343
1344 /* Parameter declarations do not have r-values.
1345 */
1346 return NULL;
1347 }
1348
1349
1350 static void
1351 ast_function_parameters_to_hir(struct simple_node *ast_parameters,
1352 exec_list *ir_parameters,
1353 struct _mesa_glsl_parse_state *state)
1354 {
1355 struct simple_node *ptr;
1356
1357 foreach (ptr, ast_parameters) {
1358 ((ast_node *)ptr)->hir(ir_parameters, state);
1359 }
1360 }
1361
1362
1363 static bool
1364 parameter_lists_match(exec_list *list_a, exec_list *list_b)
1365 {
1366 exec_list_iterator iter_a = list_a->iterator();
1367 exec_list_iterator iter_b = list_b->iterator();
1368
1369 while (iter_a.has_next()) {
1370 /* If all of the parameters from the other parameter list have been
1371 * exhausted, the lists have different length and, by definition,
1372 * do not match.
1373 */
1374 if (!iter_b.has_next())
1375 return false;
1376
1377 /* If the types of the parameters do not match, the parameters lists
1378 * are different.
1379 */
1380 /* FINISHME */
1381
1382
1383 iter_a.next();
1384 iter_b.next();
1385 }
1386
1387 return true;
1388 }
1389
1390
1391 ir_rvalue *
1392 ast_function_definition::hir(exec_list *instructions,
1393 struct _mesa_glsl_parse_state *state)
1394 {
1395 ir_label *label;
1396 ir_function_signature *signature = NULL;
1397 ir_function *f = NULL;
1398 exec_list parameters;
1399
1400
1401 /* Convert the list of function parameters to HIR now so that they can be
1402 * used below to compare this function's signature with previously seen
1403 * signatures for functions with the same name.
1404 */
1405 ast_function_parameters_to_hir(& this->prototype->parameters, & parameters,
1406 state);
1407
1408 const char *return_type_name;
1409 const glsl_type *return_type =
1410 type_specifier_to_glsl_type(this->prototype->return_type->specifier,
1411 & return_type_name, state);
1412
1413 assert(return_type != NULL);
1414
1415 /* Verify that this function's signature either doesn't match a previously
1416 * seen signature for a function with the same name, or, if a match is found,
1417 * that the previously seen signature does not have an associated definition.
1418 */
1419 const char *const name = this->prototype->identifier;
1420 f = state->symbols->get_function(name);
1421 if (f != NULL) {
1422 foreach_iter(exec_list_iterator, iter, f->signatures) {
1423 signature = (struct ir_function_signature *) iter.get();
1424
1425 /* Compare the parameter list of the function being defined to the
1426 * existing function. If the parameter lists match, then the return
1427 * type must also match and the existing function must not have a
1428 * definition.
1429 */
1430 if (parameter_lists_match(& parameters, & signature->parameters)) {
1431 /* FINISHME: Compare return types. */
1432
1433 if (signature->definition != NULL) {
1434 YYLTYPE loc = this->get_location();
1435
1436 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
1437 signature = NULL;
1438 break;
1439 }
1440 }
1441
1442 signature = NULL;
1443 }
1444
1445 } else if (state->symbols->name_declared_this_scope(name)) {
1446 /* This function name shadows a non-function use of the same name.
1447 */
1448 YYLTYPE loc = this->get_location();
1449
1450 _mesa_glsl_error(& loc, state, "function name `%s' conflicts with "
1451 "non-function", name);
1452 signature = NULL;
1453 } else {
1454 f = new ir_function(name);
1455 state->symbols->add_function(f->name, f);
1456 }
1457
1458 /* Verify the return type of main() */
1459 if (strcmp(name, "main") == 0) {
1460 if (return_type != glsl_type::get_instance(GLSL_TYPE_VOID, 0, 0)) {
1461 YYLTYPE loc = this->get_location();
1462
1463 _mesa_glsl_error(& loc, state, "main() must return void");
1464 }
1465 }
1466
1467 /* Finish storing the information about this new function in its signature.
1468 */
1469 if (signature == NULL) {
1470 signature = new ir_function_signature(return_type);
1471 f->signatures.push_tail(signature);
1472 } else {
1473 /* Destroy all of the previous parameter information. The previous
1474 * parameter information comes from the function prototype, and it can
1475 * either include invalid parameter names or may not have names at all.
1476 */
1477 foreach_iter(exec_list_iterator, iter, signature->parameters) {
1478 assert(((ir_instruction *) iter.get())->as_variable() != NULL);
1479
1480 iter.remove();
1481 delete iter.get();
1482 }
1483 }
1484
1485
1486 assert(state->current_function == NULL);
1487 state->current_function = signature;
1488
1489 ast_function_parameters_to_hir(& this->prototype->parameters,
1490 & signature->parameters,
1491 state);
1492 /* FINISHME: Set signature->return_type */
1493
1494 label = new ir_label(name);
1495 if (signature->definition == NULL) {
1496 signature->definition = label;
1497 }
1498 instructions->push_tail(label);
1499
1500 /* Add the function parameters to the symbol table. During this step the
1501 * parameter declarations are also moved from the temporary "parameters" list
1502 * to the instruction list. There are other more efficient ways to do this,
1503 * but they involve ugly linked-list gymnastics.
1504 */
1505 state->symbols->push_scope();
1506 foreach_iter(exec_list_iterator, iter, parameters) {
1507 ir_variable *const var = (ir_variable *) iter.get();
1508
1509 assert(((ir_instruction *) var)->as_variable() != NULL);
1510
1511 iter.remove();
1512 instructions->push_tail(var);
1513
1514 /* The only way a parameter would "exist" is if two parameters have
1515 * the same name.
1516 */
1517 if (state->symbols->name_declared_this_scope(var->name)) {
1518 YYLTYPE loc = this->get_location();
1519
1520 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
1521 } else {
1522 state->symbols->add_variable(var->name, var);
1523 }
1524 }
1525
1526 /* Convert the body of the function to HIR, and append the resulting
1527 * instructions to the list that currently consists of the function label
1528 * and the function parameters.
1529 */
1530 this->body->hir(instructions, state);
1531
1532 state->symbols->pop_scope();
1533
1534 assert(state->current_function == signature);
1535 state->current_function = NULL;
1536
1537 /* Function definitions do not have r-values.
1538 */
1539 return NULL;
1540 }
1541
1542
1543 ir_rvalue *
1544 ast_jump_statement::hir(exec_list *instructions,
1545 struct _mesa_glsl_parse_state *state)
1546 {
1547
1548 if (mode == ast_return) {
1549 ir_return *inst;
1550 assert(state->current_function);
1551
1552 if (opt_return_value) {
1553 if (state->current_function->return_type->base_type ==
1554 GLSL_TYPE_VOID) {
1555 YYLTYPE loc = this->get_location();
1556
1557 _mesa_glsl_error(& loc, state,
1558 "`return` with a value, in function `%s' "
1559 "returning void",
1560 state->current_function->definition->label);
1561 }
1562
1563 ir_expression *const ret = (ir_expression *)
1564 opt_return_value->hir(instructions, state);
1565 assert(ret != NULL);
1566
1567 /* FINISHME: Make sure the type of the return value matches the return
1568 * FINISHME: type of the enclosing function.
1569 */
1570
1571 inst = new ir_return(ret);
1572 } else {
1573 if (state->current_function->return_type->base_type !=
1574 GLSL_TYPE_VOID) {
1575 YYLTYPE loc = this->get_location();
1576
1577 _mesa_glsl_error(& loc, state,
1578 "`return' with no value, in function %s returning "
1579 "non-void",
1580 state->current_function->definition->label);
1581 }
1582 inst = new ir_return;
1583 }
1584
1585 instructions->push_tail(inst);
1586 }
1587
1588 /* Jump instructions do not have r-values.
1589 */
1590 return NULL;
1591 }
1592
1593
1594 ir_rvalue *
1595 ast_selection_statement::hir(exec_list *instructions,
1596 struct _mesa_glsl_parse_state *state)
1597 {
1598 ir_rvalue *const condition = this->condition->hir(instructions, state);
1599
1600 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
1601 *
1602 * "Any expression whose type evaluates to a Boolean can be used as the
1603 * conditional expression bool-expression. Vector types are not accepted
1604 * as the expression to if."
1605 *
1606 * The checks are separated so that higher quality diagnostics can be
1607 * generated for cases where both rules are violated.
1608 */
1609 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
1610 YYLTYPE loc = this->condition->get_location();
1611
1612 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
1613 "boolean");
1614 }
1615
1616 ir_if *const stmt = new ir_if(condition);
1617
1618 if (then_statement != NULL) {
1619 ast_node *node = (ast_node *) then_statement;
1620 do {
1621 node->hir(& stmt->then_instructions, state);
1622 node = (ast_node *) node->next;
1623 } while (node != then_statement);
1624 }
1625
1626 if (else_statement != NULL) {
1627 ast_node *node = (ast_node *) else_statement;
1628 do {
1629 node->hir(& stmt->else_instructions, state);
1630 node = (ast_node *) node->next;
1631 } while (node != else_statement);
1632 }
1633
1634 instructions->push_tail(stmt);
1635
1636 /* if-statements do not have r-values.
1637 */
1638 return NULL;
1639 }