de3ce902e0d6821e83fab228d88a73e0b6dfe7fc
[mesa.git] / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "main/core.h" /* for struct gl_extensions */
53 #include "glsl_symbol_table.h"
54 #include "glsl_parser_extras.h"
55 #include "ast.h"
56 #include "glsl_types.h"
57 #include "program/hash_table.h"
58 #include "ir.h"
59
60 static void
61 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
62 exec_list *instructions);
63
64 void
65 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
66 {
67 _mesa_glsl_initialize_variables(instructions, state);
68
69 state->symbols->separate_function_namespace = state->language_version == 110;
70
71 state->current_function = NULL;
72
73 state->toplevel_ir = instructions;
74
75 /* Section 4.2 of the GLSL 1.20 specification states:
76 * "The built-in functions are scoped in a scope outside the global scope
77 * users declare global variables in. That is, a shader's global scope,
78 * available for user-defined functions and global variables, is nested
79 * inside the scope containing the built-in functions."
80 *
81 * Since built-in functions like ftransform() access built-in variables,
82 * it follows that those must be in the outer scope as well.
83 *
84 * We push scope here to create this nesting effect...but don't pop.
85 * This way, a shader's globals are still in the symbol table for use
86 * by the linker.
87 */
88 state->symbols->push_scope();
89
90 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
91 ast->hir(instructions, state);
92
93 detect_recursion_unlinked(state, instructions);
94 detect_conflicting_assignments(state, instructions);
95
96 state->toplevel_ir = NULL;
97 }
98
99
100 /**
101 * If a conversion is available, convert one operand to a different type
102 *
103 * The \c from \c ir_rvalue is converted "in place".
104 *
105 * \param to Type that the operand it to be converted to
106 * \param from Operand that is being converted
107 * \param state GLSL compiler state
108 *
109 * \return
110 * If a conversion is possible (or unnecessary), \c true is returned.
111 * Otherwise \c false is returned.
112 */
113 bool
114 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
115 struct _mesa_glsl_parse_state *state)
116 {
117 void *ctx = state;
118 if (to->base_type == from->type->base_type)
119 return true;
120
121 /* This conversion was added in GLSL 1.20. If the compilation mode is
122 * GLSL 1.10, the conversion is skipped.
123 */
124 if (!state->is_version(120, 0))
125 return false;
126
127 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
128 *
129 * "There are no implicit array or structure conversions. For
130 * example, an array of int cannot be implicitly converted to an
131 * array of float. There are no implicit conversions between
132 * signed and unsigned integers."
133 */
134 /* FINISHME: The above comment is partially a lie. There is int/uint
135 * FINISHME: conversion for immediate constants.
136 */
137 if (!to->is_float() || !from->type->is_numeric())
138 return false;
139
140 /* Convert to a floating point type with the same number of components
141 * as the original type - i.e. int to float, not int to vec4.
142 */
143 to = glsl_type::get_instance(GLSL_TYPE_FLOAT, from->type->vector_elements,
144 from->type->matrix_columns);
145
146 switch (from->type->base_type) {
147 case GLSL_TYPE_INT:
148 from = new(ctx) ir_expression(ir_unop_i2f, to, from, NULL);
149 break;
150 case GLSL_TYPE_UINT:
151 from = new(ctx) ir_expression(ir_unop_u2f, to, from, NULL);
152 break;
153 case GLSL_TYPE_BOOL:
154 from = new(ctx) ir_expression(ir_unop_b2f, to, from, NULL);
155 break;
156 default:
157 assert(0);
158 }
159
160 return true;
161 }
162
163
164 static const struct glsl_type *
165 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
166 bool multiply,
167 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
168 {
169 const glsl_type *type_a = value_a->type;
170 const glsl_type *type_b = value_b->type;
171
172 /* From GLSL 1.50 spec, page 56:
173 *
174 * "The arithmetic binary operators add (+), subtract (-),
175 * multiply (*), and divide (/) operate on integer and
176 * floating-point scalars, vectors, and matrices."
177 */
178 if (!type_a->is_numeric() || !type_b->is_numeric()) {
179 _mesa_glsl_error(loc, state,
180 "Operands to arithmetic operators must be numeric");
181 return glsl_type::error_type;
182 }
183
184
185 /* "If one operand is floating-point based and the other is
186 * not, then the conversions from Section 4.1.10 "Implicit
187 * Conversions" are applied to the non-floating-point-based operand."
188 */
189 if (!apply_implicit_conversion(type_a, value_b, state)
190 && !apply_implicit_conversion(type_b, value_a, state)) {
191 _mesa_glsl_error(loc, state,
192 "Could not implicitly convert operands to "
193 "arithmetic operator");
194 return glsl_type::error_type;
195 }
196 type_a = value_a->type;
197 type_b = value_b->type;
198
199 /* "If the operands are integer types, they must both be signed or
200 * both be unsigned."
201 *
202 * From this rule and the preceeding conversion it can be inferred that
203 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
204 * The is_numeric check above already filtered out the case where either
205 * type is not one of these, so now the base types need only be tested for
206 * equality.
207 */
208 if (type_a->base_type != type_b->base_type) {
209 _mesa_glsl_error(loc, state,
210 "base type mismatch for arithmetic operator");
211 return glsl_type::error_type;
212 }
213
214 /* "All arithmetic binary operators result in the same fundamental type
215 * (signed integer, unsigned integer, or floating-point) as the
216 * operands they operate on, after operand type conversion. After
217 * conversion, the following cases are valid
218 *
219 * * The two operands are scalars. In this case the operation is
220 * applied, resulting in a scalar."
221 */
222 if (type_a->is_scalar() && type_b->is_scalar())
223 return type_a;
224
225 /* "* One operand is a scalar, and the other is a vector or matrix.
226 * In this case, the scalar operation is applied independently to each
227 * component of the vector or matrix, resulting in the same size
228 * vector or matrix."
229 */
230 if (type_a->is_scalar()) {
231 if (!type_b->is_scalar())
232 return type_b;
233 } else if (type_b->is_scalar()) {
234 return type_a;
235 }
236
237 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
238 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
239 * handled.
240 */
241 assert(!type_a->is_scalar());
242 assert(!type_b->is_scalar());
243
244 /* "* The two operands are vectors of the same size. In this case, the
245 * operation is done component-wise resulting in the same size
246 * vector."
247 */
248 if (type_a->is_vector() && type_b->is_vector()) {
249 if (type_a == type_b) {
250 return type_a;
251 } else {
252 _mesa_glsl_error(loc, state,
253 "vector size mismatch for arithmetic operator");
254 return glsl_type::error_type;
255 }
256 }
257
258 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
259 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
260 * <vector, vector> have been handled. At least one of the operands must
261 * be matrix. Further, since there are no integer matrix types, the base
262 * type of both operands must be float.
263 */
264 assert(type_a->is_matrix() || type_b->is_matrix());
265 assert(type_a->base_type == GLSL_TYPE_FLOAT);
266 assert(type_b->base_type == GLSL_TYPE_FLOAT);
267
268 /* "* The operator is add (+), subtract (-), or divide (/), and the
269 * operands are matrices with the same number of rows and the same
270 * number of columns. In this case, the operation is done component-
271 * wise resulting in the same size matrix."
272 * * The operator is multiply (*), where both operands are matrices or
273 * one operand is a vector and the other a matrix. A right vector
274 * operand is treated as a column vector and a left vector operand as a
275 * row vector. In all these cases, it is required that the number of
276 * columns of the left operand is equal to the number of rows of the
277 * right operand. Then, the multiply (*) operation does a linear
278 * algebraic multiply, yielding an object that has the same number of
279 * rows as the left operand and the same number of columns as the right
280 * operand. Section 5.10 "Vector and Matrix Operations" explains in
281 * more detail how vectors and matrices are operated on."
282 */
283 if (! multiply) {
284 if (type_a == type_b)
285 return type_a;
286 } else {
287 if (type_a->is_matrix() && type_b->is_matrix()) {
288 /* Matrix multiply. The columns of A must match the rows of B. Given
289 * the other previously tested constraints, this means the vector type
290 * of a row from A must be the same as the vector type of a column from
291 * B.
292 */
293 if (type_a->row_type() == type_b->column_type()) {
294 /* The resulting matrix has the number of columns of matrix B and
295 * the number of rows of matrix A. We get the row count of A by
296 * looking at the size of a vector that makes up a column. The
297 * transpose (size of a row) is done for B.
298 */
299 const glsl_type *const type =
300 glsl_type::get_instance(type_a->base_type,
301 type_a->column_type()->vector_elements,
302 type_b->row_type()->vector_elements);
303 assert(type != glsl_type::error_type);
304
305 return type;
306 }
307 } else if (type_a->is_matrix()) {
308 /* A is a matrix and B is a column vector. Columns of A must match
309 * rows of B. Given the other previously tested constraints, this
310 * means the vector type of a row from A must be the same as the
311 * vector the type of B.
312 */
313 if (type_a->row_type() == type_b) {
314 /* The resulting vector has a number of elements equal to
315 * the number of rows of matrix A. */
316 const glsl_type *const type =
317 glsl_type::get_instance(type_a->base_type,
318 type_a->column_type()->vector_elements,
319 1);
320 assert(type != glsl_type::error_type);
321
322 return type;
323 }
324 } else {
325 assert(type_b->is_matrix());
326
327 /* A is a row vector and B is a matrix. Columns of A must match rows
328 * of B. Given the other previously tested constraints, this means
329 * the type of A must be the same as the vector type of a column from
330 * B.
331 */
332 if (type_a == type_b->column_type()) {
333 /* The resulting vector has a number of elements equal to
334 * the number of columns of matrix B. */
335 const glsl_type *const type =
336 glsl_type::get_instance(type_a->base_type,
337 type_b->row_type()->vector_elements,
338 1);
339 assert(type != glsl_type::error_type);
340
341 return type;
342 }
343 }
344
345 _mesa_glsl_error(loc, state, "size mismatch for matrix multiplication");
346 return glsl_type::error_type;
347 }
348
349
350 /* "All other cases are illegal."
351 */
352 _mesa_glsl_error(loc, state, "type mismatch");
353 return glsl_type::error_type;
354 }
355
356
357 static const struct glsl_type *
358 unary_arithmetic_result_type(const struct glsl_type *type,
359 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
360 {
361 /* From GLSL 1.50 spec, page 57:
362 *
363 * "The arithmetic unary operators negate (-), post- and pre-increment
364 * and decrement (-- and ++) operate on integer or floating-point
365 * values (including vectors and matrices). All unary operators work
366 * component-wise on their operands. These result with the same type
367 * they operated on."
368 */
369 if (!type->is_numeric()) {
370 _mesa_glsl_error(loc, state,
371 "Operands to arithmetic operators must be numeric");
372 return glsl_type::error_type;
373 }
374
375 return type;
376 }
377
378 /**
379 * \brief Return the result type of a bit-logic operation.
380 *
381 * If the given types to the bit-logic operator are invalid, return
382 * glsl_type::error_type.
383 *
384 * \param type_a Type of LHS of bit-logic op
385 * \param type_b Type of RHS of bit-logic op
386 */
387 static const struct glsl_type *
388 bit_logic_result_type(const struct glsl_type *type_a,
389 const struct glsl_type *type_b,
390 ast_operators op,
391 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
392 {
393 if (!state->check_bitwise_operations_allowed(loc)) {
394 return glsl_type::error_type;
395 }
396
397 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
398 *
399 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
400 * (|). The operands must be of type signed or unsigned integers or
401 * integer vectors."
402 */
403 if (!type_a->is_integer()) {
404 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
405 ast_expression::operator_string(op));
406 return glsl_type::error_type;
407 }
408 if (!type_b->is_integer()) {
409 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
410 ast_expression::operator_string(op));
411 return glsl_type::error_type;
412 }
413
414 /* "The fundamental types of the operands (signed or unsigned) must
415 * match,"
416 */
417 if (type_a->base_type != type_b->base_type) {
418 _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
419 "base type", ast_expression::operator_string(op));
420 return glsl_type::error_type;
421 }
422
423 /* "The operands cannot be vectors of differing size." */
424 if (type_a->is_vector() &&
425 type_b->is_vector() &&
426 type_a->vector_elements != type_b->vector_elements) {
427 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
428 "different sizes", ast_expression::operator_string(op));
429 return glsl_type::error_type;
430 }
431
432 /* "If one operand is a scalar and the other a vector, the scalar is
433 * applied component-wise to the vector, resulting in the same type as
434 * the vector. The fundamental types of the operands [...] will be the
435 * resulting fundamental type."
436 */
437 if (type_a->is_scalar())
438 return type_b;
439 else
440 return type_a;
441 }
442
443 static const struct glsl_type *
444 modulus_result_type(const struct glsl_type *type_a,
445 const struct glsl_type *type_b,
446 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
447 {
448 if (!state->check_version(130, 300, loc, "operator '%%' is reserved")) {
449 return glsl_type::error_type;
450 }
451
452 /* From GLSL 1.50 spec, page 56:
453 * "The operator modulus (%) operates on signed or unsigned integers or
454 * integer vectors. The operand types must both be signed or both be
455 * unsigned."
456 */
457 if (!type_a->is_integer()) {
458 _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer.");
459 return glsl_type::error_type;
460 }
461 if (!type_b->is_integer()) {
462 _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer.");
463 return glsl_type::error_type;
464 }
465 if (type_a->base_type != type_b->base_type) {
466 _mesa_glsl_error(loc, state,
467 "operands of %% must have the same base type");
468 return glsl_type::error_type;
469 }
470
471 /* "The operands cannot be vectors of differing size. If one operand is
472 * a scalar and the other vector, then the scalar is applied component-
473 * wise to the vector, resulting in the same type as the vector. If both
474 * are vectors of the same size, the result is computed component-wise."
475 */
476 if (type_a->is_vector()) {
477 if (!type_b->is_vector()
478 || (type_a->vector_elements == type_b->vector_elements))
479 return type_a;
480 } else
481 return type_b;
482
483 /* "The operator modulus (%) is not defined for any other data types
484 * (non-integer types)."
485 */
486 _mesa_glsl_error(loc, state, "type mismatch");
487 return glsl_type::error_type;
488 }
489
490
491 static const struct glsl_type *
492 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
493 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
494 {
495 const glsl_type *type_a = value_a->type;
496 const glsl_type *type_b = value_b->type;
497
498 /* From GLSL 1.50 spec, page 56:
499 * "The relational operators greater than (>), less than (<), greater
500 * than or equal (>=), and less than or equal (<=) operate only on
501 * scalar integer and scalar floating-point expressions."
502 */
503 if (!type_a->is_numeric()
504 || !type_b->is_numeric()
505 || !type_a->is_scalar()
506 || !type_b->is_scalar()) {
507 _mesa_glsl_error(loc, state,
508 "Operands to relational operators must be scalar and "
509 "numeric");
510 return glsl_type::error_type;
511 }
512
513 /* "Either the operands' types must match, or the conversions from
514 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
515 * operand, after which the types must match."
516 */
517 if (!apply_implicit_conversion(type_a, value_b, state)
518 && !apply_implicit_conversion(type_b, value_a, state)) {
519 _mesa_glsl_error(loc, state,
520 "Could not implicitly convert operands to "
521 "relational operator");
522 return glsl_type::error_type;
523 }
524 type_a = value_a->type;
525 type_b = value_b->type;
526
527 if (type_a->base_type != type_b->base_type) {
528 _mesa_glsl_error(loc, state, "base type mismatch");
529 return glsl_type::error_type;
530 }
531
532 /* "The result is scalar Boolean."
533 */
534 return glsl_type::bool_type;
535 }
536
537 /**
538 * \brief Return the result type of a bit-shift operation.
539 *
540 * If the given types to the bit-shift operator are invalid, return
541 * glsl_type::error_type.
542 *
543 * \param type_a Type of LHS of bit-shift op
544 * \param type_b Type of RHS of bit-shift op
545 */
546 static const struct glsl_type *
547 shift_result_type(const struct glsl_type *type_a,
548 const struct glsl_type *type_b,
549 ast_operators op,
550 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
551 {
552 if (!state->check_bitwise_operations_allowed(loc)) {
553 return glsl_type::error_type;
554 }
555
556 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
557 *
558 * "The shift operators (<<) and (>>). For both operators, the operands
559 * must be signed or unsigned integers or integer vectors. One operand
560 * can be signed while the other is unsigned."
561 */
562 if (!type_a->is_integer()) {
563 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
564 "integer vector", ast_expression::operator_string(op));
565 return glsl_type::error_type;
566
567 }
568 if (!type_b->is_integer()) {
569 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
570 "integer vector", ast_expression::operator_string(op));
571 return glsl_type::error_type;
572 }
573
574 /* "If the first operand is a scalar, the second operand has to be
575 * a scalar as well."
576 */
577 if (type_a->is_scalar() && !type_b->is_scalar()) {
578 _mesa_glsl_error(loc, state, "If the first operand of %s is scalar, the "
579 "second must be scalar as well",
580 ast_expression::operator_string(op));
581 return glsl_type::error_type;
582 }
583
584 /* If both operands are vectors, check that they have same number of
585 * elements.
586 */
587 if (type_a->is_vector() &&
588 type_b->is_vector() &&
589 type_a->vector_elements != type_b->vector_elements) {
590 _mesa_glsl_error(loc, state, "Vector operands to operator %s must "
591 "have same number of elements",
592 ast_expression::operator_string(op));
593 return glsl_type::error_type;
594 }
595
596 /* "In all cases, the resulting type will be the same type as the left
597 * operand."
598 */
599 return type_a;
600 }
601
602 /**
603 * Validates that a value can be assigned to a location with a specified type
604 *
605 * Validates that \c rhs can be assigned to some location. If the types are
606 * not an exact match but an automatic conversion is possible, \c rhs will be
607 * converted.
608 *
609 * \return
610 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
611 * Otherwise the actual RHS to be assigned will be returned. This may be
612 * \c rhs, or it may be \c rhs after some type conversion.
613 *
614 * \note
615 * In addition to being used for assignments, this function is used to
616 * type-check return values.
617 */
618 ir_rvalue *
619 validate_assignment(struct _mesa_glsl_parse_state *state,
620 const glsl_type *lhs_type, ir_rvalue *rhs,
621 bool is_initializer)
622 {
623 /* If there is already some error in the RHS, just return it. Anything
624 * else will lead to an avalanche of error message back to the user.
625 */
626 if (rhs->type->is_error())
627 return rhs;
628
629 /* If the types are identical, the assignment can trivially proceed.
630 */
631 if (rhs->type == lhs_type)
632 return rhs;
633
634 /* If the array element types are the same and the size of the LHS is zero,
635 * the assignment is okay for initializers embedded in variable
636 * declarations.
637 *
638 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
639 * is handled by ir_dereference::is_lvalue.
640 */
641 if (is_initializer && lhs_type->is_array() && rhs->type->is_array()
642 && (lhs_type->element_type() == rhs->type->element_type())
643 && (lhs_type->array_size() == 0)) {
644 return rhs;
645 }
646
647 /* Check for implicit conversion in GLSL 1.20 */
648 if (apply_implicit_conversion(lhs_type, rhs, state)) {
649 if (rhs->type == lhs_type)
650 return rhs;
651 }
652
653 return NULL;
654 }
655
656 static void
657 mark_whole_array_access(ir_rvalue *access)
658 {
659 ir_dereference_variable *deref = access->as_dereference_variable();
660
661 if (deref && deref->var) {
662 deref->var->max_array_access = deref->type->length - 1;
663 }
664 }
665
666 ir_rvalue *
667 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
668 const char *non_lvalue_description,
669 ir_rvalue *lhs, ir_rvalue *rhs, bool is_initializer,
670 YYLTYPE lhs_loc)
671 {
672 void *ctx = state;
673 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
674
675 ir_variable *lhs_var = lhs->variable_referenced();
676 if (lhs_var)
677 lhs_var->assigned = true;
678
679 if (!error_emitted) {
680 if (non_lvalue_description != NULL) {
681 _mesa_glsl_error(&lhs_loc, state,
682 "assignment to %s",
683 non_lvalue_description);
684 error_emitted = true;
685 } else if (lhs->variable_referenced() != NULL
686 && lhs->variable_referenced()->read_only) {
687 _mesa_glsl_error(&lhs_loc, state,
688 "assignment to read-only variable '%s'",
689 lhs->variable_referenced()->name);
690 error_emitted = true;
691
692 } else if (lhs->type->is_array() &&
693 !state->check_version(120, 300, &lhs_loc,
694 "whole array assignment forbidden")) {
695 /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
696 *
697 * "Other binary or unary expressions, non-dereferenced
698 * arrays, function names, swizzles with repeated fields,
699 * and constants cannot be l-values."
700 *
701 * The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00.
702 */
703 error_emitted = true;
704 } else if (!lhs->is_lvalue()) {
705 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
706 error_emitted = true;
707 }
708 }
709
710 ir_rvalue *new_rhs =
711 validate_assignment(state, lhs->type, rhs, is_initializer);
712 if (new_rhs == NULL) {
713 _mesa_glsl_error(& lhs_loc, state, "type mismatch");
714 } else {
715 rhs = new_rhs;
716
717 /* If the LHS array was not declared with a size, it takes it size from
718 * the RHS. If the LHS is an l-value and a whole array, it must be a
719 * dereference of a variable. Any other case would require that the LHS
720 * is either not an l-value or not a whole array.
721 */
722 if (lhs->type->array_size() == 0) {
723 ir_dereference *const d = lhs->as_dereference();
724
725 assert(d != NULL);
726
727 ir_variable *const var = d->variable_referenced();
728
729 assert(var != NULL);
730
731 if (var->max_array_access >= unsigned(rhs->type->array_size())) {
732 /* FINISHME: This should actually log the location of the RHS. */
733 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
734 "previous access",
735 var->max_array_access);
736 }
737
738 var->type = glsl_type::get_array_instance(lhs->type->element_type(),
739 rhs->type->array_size());
740 d->type = var->type;
741 }
742 mark_whole_array_access(rhs);
743 mark_whole_array_access(lhs);
744 }
745
746 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
747 * but not post_inc) need the converted assigned value as an rvalue
748 * to handle things like:
749 *
750 * i = j += 1;
751 *
752 * So we always just store the computed value being assigned to a
753 * temporary and return a deref of that temporary. If the rvalue
754 * ends up not being used, the temp will get copy-propagated out.
755 */
756 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
757 ir_var_temporary);
758 ir_dereference_variable *deref_var = new(ctx) ir_dereference_variable(var);
759 instructions->push_tail(var);
760 instructions->push_tail(new(ctx) ir_assignment(deref_var, rhs));
761 deref_var = new(ctx) ir_dereference_variable(var);
762
763 if (!error_emitted)
764 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var));
765
766 return new(ctx) ir_dereference_variable(var);
767 }
768
769 static ir_rvalue *
770 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
771 {
772 void *ctx = ralloc_parent(lvalue);
773 ir_variable *var;
774
775 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
776 ir_var_temporary);
777 instructions->push_tail(var);
778 var->mode = ir_var_auto;
779
780 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
781 lvalue));
782
783 return new(ctx) ir_dereference_variable(var);
784 }
785
786
787 ir_rvalue *
788 ast_node::hir(exec_list *instructions,
789 struct _mesa_glsl_parse_state *state)
790 {
791 (void) instructions;
792 (void) state;
793
794 return NULL;
795 }
796
797 static ir_rvalue *
798 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
799 {
800 int join_op;
801 ir_rvalue *cmp = NULL;
802
803 if (operation == ir_binop_all_equal)
804 join_op = ir_binop_logic_and;
805 else
806 join_op = ir_binop_logic_or;
807
808 switch (op0->type->base_type) {
809 case GLSL_TYPE_FLOAT:
810 case GLSL_TYPE_UINT:
811 case GLSL_TYPE_INT:
812 case GLSL_TYPE_BOOL:
813 return new(mem_ctx) ir_expression(operation, op0, op1);
814
815 case GLSL_TYPE_ARRAY: {
816 for (unsigned int i = 0; i < op0->type->length; i++) {
817 ir_rvalue *e0, *e1, *result;
818
819 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
820 new(mem_ctx) ir_constant(i));
821 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
822 new(mem_ctx) ir_constant(i));
823 result = do_comparison(mem_ctx, operation, e0, e1);
824
825 if (cmp) {
826 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
827 } else {
828 cmp = result;
829 }
830 }
831
832 mark_whole_array_access(op0);
833 mark_whole_array_access(op1);
834 break;
835 }
836
837 case GLSL_TYPE_STRUCT: {
838 for (unsigned int i = 0; i < op0->type->length; i++) {
839 ir_rvalue *e0, *e1, *result;
840 const char *field_name = op0->type->fields.structure[i].name;
841
842 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
843 field_name);
844 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
845 field_name);
846 result = do_comparison(mem_ctx, operation, e0, e1);
847
848 if (cmp) {
849 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
850 } else {
851 cmp = result;
852 }
853 }
854 break;
855 }
856
857 case GLSL_TYPE_ERROR:
858 case GLSL_TYPE_VOID:
859 case GLSL_TYPE_SAMPLER:
860 /* I assume a comparison of a struct containing a sampler just
861 * ignores the sampler present in the type.
862 */
863 break;
864
865 default:
866 assert(!"Should not get here.");
867 break;
868 }
869
870 if (cmp == NULL)
871 cmp = new(mem_ctx) ir_constant(true);
872
873 return cmp;
874 }
875
876 /* For logical operations, we want to ensure that the operands are
877 * scalar booleans. If it isn't, emit an error and return a constant
878 * boolean to avoid triggering cascading error messages.
879 */
880 ir_rvalue *
881 get_scalar_boolean_operand(exec_list *instructions,
882 struct _mesa_glsl_parse_state *state,
883 ast_expression *parent_expr,
884 int operand,
885 const char *operand_name,
886 bool *error_emitted)
887 {
888 ast_expression *expr = parent_expr->subexpressions[operand];
889 void *ctx = state;
890 ir_rvalue *val = expr->hir(instructions, state);
891
892 if (val->type->is_boolean() && val->type->is_scalar())
893 return val;
894
895 if (!*error_emitted) {
896 YYLTYPE loc = expr->get_location();
897 _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
898 operand_name,
899 parent_expr->operator_string(parent_expr->oper));
900 *error_emitted = true;
901 }
902
903 return new(ctx) ir_constant(true);
904 }
905
906 /**
907 * If name refers to a builtin array whose maximum allowed size is less than
908 * size, report an error and return true. Otherwise return false.
909 */
910 static bool
911 check_builtin_array_max_size(const char *name, unsigned size,
912 YYLTYPE loc, struct _mesa_glsl_parse_state *state)
913 {
914 if ((strcmp("gl_TexCoord", name) == 0)
915 && (size > state->Const.MaxTextureCoords)) {
916 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
917 *
918 * "The size [of gl_TexCoord] can be at most
919 * gl_MaxTextureCoords."
920 */
921 _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
922 "be larger than gl_MaxTextureCoords (%u)\n",
923 state->Const.MaxTextureCoords);
924 return true;
925 } else if (strcmp("gl_ClipDistance", name) == 0
926 && size > state->Const.MaxClipPlanes) {
927 /* From section 7.1 (Vertex Shader Special Variables) of the
928 * GLSL 1.30 spec:
929 *
930 * "The gl_ClipDistance array is predeclared as unsized and
931 * must be sized by the shader either redeclaring it with a
932 * size or indexing it only with integral constant
933 * expressions. ... The size can be at most
934 * gl_MaxClipDistances."
935 */
936 _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
937 "be larger than gl_MaxClipDistances (%u)\n",
938 state->Const.MaxClipPlanes);
939 return true;
940 }
941 return false;
942 }
943
944 /**
945 * Create the constant 1, of a which is appropriate for incrementing and
946 * decrementing values of the given GLSL type. For example, if type is vec4,
947 * this creates a constant value of 1.0 having type float.
948 *
949 * If the given type is invalid for increment and decrement operators, return
950 * a floating point 1--the error will be detected later.
951 */
952 static ir_rvalue *
953 constant_one_for_inc_dec(void *ctx, const glsl_type *type)
954 {
955 switch (type->base_type) {
956 case GLSL_TYPE_UINT:
957 return new(ctx) ir_constant((unsigned) 1);
958 case GLSL_TYPE_INT:
959 return new(ctx) ir_constant(1);
960 default:
961 case GLSL_TYPE_FLOAT:
962 return new(ctx) ir_constant(1.0f);
963 }
964 }
965
966 ir_rvalue *
967 ast_expression::hir(exec_list *instructions,
968 struct _mesa_glsl_parse_state *state)
969 {
970 void *ctx = state;
971 static const int operations[AST_NUM_OPERATORS] = {
972 -1, /* ast_assign doesn't convert to ir_expression. */
973 -1, /* ast_plus doesn't convert to ir_expression. */
974 ir_unop_neg,
975 ir_binop_add,
976 ir_binop_sub,
977 ir_binop_mul,
978 ir_binop_div,
979 ir_binop_mod,
980 ir_binop_lshift,
981 ir_binop_rshift,
982 ir_binop_less,
983 ir_binop_greater,
984 ir_binop_lequal,
985 ir_binop_gequal,
986 ir_binop_all_equal,
987 ir_binop_any_nequal,
988 ir_binop_bit_and,
989 ir_binop_bit_xor,
990 ir_binop_bit_or,
991 ir_unop_bit_not,
992 ir_binop_logic_and,
993 ir_binop_logic_xor,
994 ir_binop_logic_or,
995 ir_unop_logic_not,
996
997 /* Note: The following block of expression types actually convert
998 * to multiple IR instructions.
999 */
1000 ir_binop_mul, /* ast_mul_assign */
1001 ir_binop_div, /* ast_div_assign */
1002 ir_binop_mod, /* ast_mod_assign */
1003 ir_binop_add, /* ast_add_assign */
1004 ir_binop_sub, /* ast_sub_assign */
1005 ir_binop_lshift, /* ast_ls_assign */
1006 ir_binop_rshift, /* ast_rs_assign */
1007 ir_binop_bit_and, /* ast_and_assign */
1008 ir_binop_bit_xor, /* ast_xor_assign */
1009 ir_binop_bit_or, /* ast_or_assign */
1010
1011 -1, /* ast_conditional doesn't convert to ir_expression. */
1012 ir_binop_add, /* ast_pre_inc. */
1013 ir_binop_sub, /* ast_pre_dec. */
1014 ir_binop_add, /* ast_post_inc. */
1015 ir_binop_sub, /* ast_post_dec. */
1016 -1, /* ast_field_selection doesn't conv to ir_expression. */
1017 -1, /* ast_array_index doesn't convert to ir_expression. */
1018 -1, /* ast_function_call doesn't conv to ir_expression. */
1019 -1, /* ast_identifier doesn't convert to ir_expression. */
1020 -1, /* ast_int_constant doesn't convert to ir_expression. */
1021 -1, /* ast_uint_constant doesn't conv to ir_expression. */
1022 -1, /* ast_float_constant doesn't conv to ir_expression. */
1023 -1, /* ast_bool_constant doesn't conv to ir_expression. */
1024 -1, /* ast_sequence doesn't convert to ir_expression. */
1025 };
1026 ir_rvalue *result = NULL;
1027 ir_rvalue *op[3];
1028 const struct glsl_type *type; /* a temporary variable for switch cases */
1029 bool error_emitted = false;
1030 YYLTYPE loc;
1031
1032 loc = this->get_location();
1033
1034 switch (this->oper) {
1035 case ast_assign: {
1036 op[0] = this->subexpressions[0]->hir(instructions, state);
1037 op[1] = this->subexpressions[1]->hir(instructions, state);
1038
1039 result = do_assignment(instructions, state,
1040 this->subexpressions[0]->non_lvalue_description,
1041 op[0], op[1], false,
1042 this->subexpressions[0]->get_location());
1043 error_emitted = result->type->is_error();
1044 break;
1045 }
1046
1047 case ast_plus:
1048 op[0] = this->subexpressions[0]->hir(instructions, state);
1049
1050 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1051
1052 error_emitted = type->is_error();
1053
1054 result = op[0];
1055 break;
1056
1057 case ast_neg:
1058 op[0] = this->subexpressions[0]->hir(instructions, state);
1059
1060 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1061
1062 error_emitted = type->is_error();
1063
1064 result = new(ctx) ir_expression(operations[this->oper], type,
1065 op[0], NULL);
1066 break;
1067
1068 case ast_add:
1069 case ast_sub:
1070 case ast_mul:
1071 case ast_div:
1072 op[0] = this->subexpressions[0]->hir(instructions, state);
1073 op[1] = this->subexpressions[1]->hir(instructions, state);
1074
1075 type = arithmetic_result_type(op[0], op[1],
1076 (this->oper == ast_mul),
1077 state, & loc);
1078 error_emitted = type->is_error();
1079
1080 result = new(ctx) ir_expression(operations[this->oper], type,
1081 op[0], op[1]);
1082 break;
1083
1084 case ast_mod:
1085 op[0] = this->subexpressions[0]->hir(instructions, state);
1086 op[1] = this->subexpressions[1]->hir(instructions, state);
1087
1088 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
1089
1090 assert(operations[this->oper] == ir_binop_mod);
1091
1092 result = new(ctx) ir_expression(operations[this->oper], type,
1093 op[0], op[1]);
1094 error_emitted = type->is_error();
1095 break;
1096
1097 case ast_lshift:
1098 case ast_rshift:
1099 if (!state->check_bitwise_operations_allowed(&loc)) {
1100 error_emitted = true;
1101 }
1102
1103 op[0] = this->subexpressions[0]->hir(instructions, state);
1104 op[1] = this->subexpressions[1]->hir(instructions, state);
1105 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1106 &loc);
1107 result = new(ctx) ir_expression(operations[this->oper], type,
1108 op[0], op[1]);
1109 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1110 break;
1111
1112 case ast_less:
1113 case ast_greater:
1114 case ast_lequal:
1115 case ast_gequal:
1116 op[0] = this->subexpressions[0]->hir(instructions, state);
1117 op[1] = this->subexpressions[1]->hir(instructions, state);
1118
1119 type = relational_result_type(op[0], op[1], state, & loc);
1120
1121 /* The relational operators must either generate an error or result
1122 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
1123 */
1124 assert(type->is_error()
1125 || ((type->base_type == GLSL_TYPE_BOOL)
1126 && type->is_scalar()));
1127
1128 result = new(ctx) ir_expression(operations[this->oper], type,
1129 op[0], op[1]);
1130 error_emitted = type->is_error();
1131 break;
1132
1133 case ast_nequal:
1134 case ast_equal:
1135 op[0] = this->subexpressions[0]->hir(instructions, state);
1136 op[1] = this->subexpressions[1]->hir(instructions, state);
1137
1138 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1139 *
1140 * "The equality operators equal (==), and not equal (!=)
1141 * operate on all types. They result in a scalar Boolean. If
1142 * the operand types do not match, then there must be a
1143 * conversion from Section 4.1.10 "Implicit Conversions"
1144 * applied to one operand that can make them match, in which
1145 * case this conversion is done."
1146 */
1147 if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1148 && !apply_implicit_conversion(op[1]->type, op[0], state))
1149 || (op[0]->type != op[1]->type)) {
1150 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1151 "type", (this->oper == ast_equal) ? "==" : "!=");
1152 error_emitted = true;
1153 } else if ((op[0]->type->is_array() || op[1]->type->is_array()) &&
1154 !state->check_version(120, 300, &loc,
1155 "array comparisons forbidden")) {
1156 error_emitted = true;
1157 }
1158
1159 if (error_emitted) {
1160 result = new(ctx) ir_constant(false);
1161 } else {
1162 result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1163 assert(result->type == glsl_type::bool_type);
1164 }
1165 break;
1166
1167 case ast_bit_and:
1168 case ast_bit_xor:
1169 case ast_bit_or:
1170 op[0] = this->subexpressions[0]->hir(instructions, state);
1171 op[1] = this->subexpressions[1]->hir(instructions, state);
1172 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1173 state, &loc);
1174 result = new(ctx) ir_expression(operations[this->oper], type,
1175 op[0], op[1]);
1176 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1177 break;
1178
1179 case ast_bit_not:
1180 op[0] = this->subexpressions[0]->hir(instructions, state);
1181
1182 if (!state->check_bitwise_operations_allowed(&loc)) {
1183 error_emitted = true;
1184 }
1185
1186 if (!op[0]->type->is_integer()) {
1187 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1188 error_emitted = true;
1189 }
1190
1191 type = error_emitted ? glsl_type::error_type : op[0]->type;
1192 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1193 break;
1194
1195 case ast_logic_and: {
1196 exec_list rhs_instructions;
1197 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1198 "LHS", &error_emitted);
1199 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1200 "RHS", &error_emitted);
1201
1202 if (rhs_instructions.is_empty()) {
1203 result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]);
1204 type = result->type;
1205 } else {
1206 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1207 "and_tmp",
1208 ir_var_temporary);
1209 instructions->push_tail(tmp);
1210
1211 ir_if *const stmt = new(ctx) ir_if(op[0]);
1212 instructions->push_tail(stmt);
1213
1214 stmt->then_instructions.append_list(&rhs_instructions);
1215 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1216 ir_assignment *const then_assign =
1217 new(ctx) ir_assignment(then_deref, op[1]);
1218 stmt->then_instructions.push_tail(then_assign);
1219
1220 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1221 ir_assignment *const else_assign =
1222 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false));
1223 stmt->else_instructions.push_tail(else_assign);
1224
1225 result = new(ctx) ir_dereference_variable(tmp);
1226 type = tmp->type;
1227 }
1228 break;
1229 }
1230
1231 case ast_logic_or: {
1232 exec_list rhs_instructions;
1233 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1234 "LHS", &error_emitted);
1235 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1236 "RHS", &error_emitted);
1237
1238 if (rhs_instructions.is_empty()) {
1239 result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]);
1240 type = result->type;
1241 } else {
1242 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1243 "or_tmp",
1244 ir_var_temporary);
1245 instructions->push_tail(tmp);
1246
1247 ir_if *const stmt = new(ctx) ir_if(op[0]);
1248 instructions->push_tail(stmt);
1249
1250 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1251 ir_assignment *const then_assign =
1252 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true));
1253 stmt->then_instructions.push_tail(then_assign);
1254
1255 stmt->else_instructions.append_list(&rhs_instructions);
1256 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1257 ir_assignment *const else_assign =
1258 new(ctx) ir_assignment(else_deref, op[1]);
1259 stmt->else_instructions.push_tail(else_assign);
1260
1261 result = new(ctx) ir_dereference_variable(tmp);
1262 type = tmp->type;
1263 }
1264 break;
1265 }
1266
1267 case ast_logic_xor:
1268 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1269 *
1270 * "The logical binary operators and (&&), or ( | | ), and
1271 * exclusive or (^^). They operate only on two Boolean
1272 * expressions and result in a Boolean expression."
1273 */
1274 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1275 &error_emitted);
1276 op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1277 &error_emitted);
1278
1279 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1280 op[0], op[1]);
1281 break;
1282
1283 case ast_logic_not:
1284 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1285 "operand", &error_emitted);
1286
1287 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1288 op[0], NULL);
1289 break;
1290
1291 case ast_mul_assign:
1292 case ast_div_assign:
1293 case ast_add_assign:
1294 case ast_sub_assign: {
1295 op[0] = this->subexpressions[0]->hir(instructions, state);
1296 op[1] = this->subexpressions[1]->hir(instructions, state);
1297
1298 type = arithmetic_result_type(op[0], op[1],
1299 (this->oper == ast_mul_assign),
1300 state, & loc);
1301
1302 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1303 op[0], op[1]);
1304
1305 result = do_assignment(instructions, state,
1306 this->subexpressions[0]->non_lvalue_description,
1307 op[0]->clone(ctx, NULL), temp_rhs, false,
1308 this->subexpressions[0]->get_location());
1309 error_emitted = (op[0]->type->is_error());
1310
1311 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1312 * explicitly test for this because none of the binary expression
1313 * operators allow array operands either.
1314 */
1315
1316 break;
1317 }
1318
1319 case ast_mod_assign: {
1320 op[0] = this->subexpressions[0]->hir(instructions, state);
1321 op[1] = this->subexpressions[1]->hir(instructions, state);
1322
1323 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
1324
1325 assert(operations[this->oper] == ir_binop_mod);
1326
1327 ir_rvalue *temp_rhs;
1328 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1329 op[0], op[1]);
1330
1331 result = do_assignment(instructions, state,
1332 this->subexpressions[0]->non_lvalue_description,
1333 op[0]->clone(ctx, NULL), temp_rhs, false,
1334 this->subexpressions[0]->get_location());
1335 error_emitted = type->is_error();
1336 break;
1337 }
1338
1339 case ast_ls_assign:
1340 case ast_rs_assign: {
1341 op[0] = this->subexpressions[0]->hir(instructions, state);
1342 op[1] = this->subexpressions[1]->hir(instructions, state);
1343 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1344 &loc);
1345 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1346 type, op[0], op[1]);
1347 result = do_assignment(instructions, state,
1348 this->subexpressions[0]->non_lvalue_description,
1349 op[0]->clone(ctx, NULL), temp_rhs, false,
1350 this->subexpressions[0]->get_location());
1351 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1352 break;
1353 }
1354
1355 case ast_and_assign:
1356 case ast_xor_assign:
1357 case ast_or_assign: {
1358 op[0] = this->subexpressions[0]->hir(instructions, state);
1359 op[1] = this->subexpressions[1]->hir(instructions, state);
1360 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1361 state, &loc);
1362 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1363 type, op[0], op[1]);
1364 result = do_assignment(instructions, state,
1365 this->subexpressions[0]->non_lvalue_description,
1366 op[0]->clone(ctx, NULL), temp_rhs, false,
1367 this->subexpressions[0]->get_location());
1368 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1369 break;
1370 }
1371
1372 case ast_conditional: {
1373 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1374 *
1375 * "The ternary selection operator (?:). It operates on three
1376 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1377 * first expression, which must result in a scalar Boolean."
1378 */
1379 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1380 "condition", &error_emitted);
1381
1382 /* The :? operator is implemented by generating an anonymous temporary
1383 * followed by an if-statement. The last instruction in each branch of
1384 * the if-statement assigns a value to the anonymous temporary. This
1385 * temporary is the r-value of the expression.
1386 */
1387 exec_list then_instructions;
1388 exec_list else_instructions;
1389
1390 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1391 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1392
1393 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1394 *
1395 * "The second and third expressions can be any type, as
1396 * long their types match, or there is a conversion in
1397 * Section 4.1.10 "Implicit Conversions" that can be applied
1398 * to one of the expressions to make their types match. This
1399 * resulting matching type is the type of the entire
1400 * expression."
1401 */
1402 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1403 && !apply_implicit_conversion(op[2]->type, op[1], state))
1404 || (op[1]->type != op[2]->type)) {
1405 YYLTYPE loc = this->subexpressions[1]->get_location();
1406
1407 _mesa_glsl_error(& loc, state, "Second and third operands of ?: "
1408 "operator must have matching types.");
1409 error_emitted = true;
1410 type = glsl_type::error_type;
1411 } else {
1412 type = op[1]->type;
1413 }
1414
1415 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1416 *
1417 * "The second and third expressions must be the same type, but can
1418 * be of any type other than an array."
1419 */
1420 if (type->is_array() &&
1421 !state->check_version(120, 300, &loc,
1422 "Second and third operands of ?: operator "
1423 "cannot be arrays")) {
1424 error_emitted = true;
1425 }
1426
1427 ir_constant *cond_val = op[0]->constant_expression_value();
1428 ir_constant *then_val = op[1]->constant_expression_value();
1429 ir_constant *else_val = op[2]->constant_expression_value();
1430
1431 if (then_instructions.is_empty()
1432 && else_instructions.is_empty()
1433 && (cond_val != NULL) && (then_val != NULL) && (else_val != NULL)) {
1434 result = (cond_val->value.b[0]) ? then_val : else_val;
1435 } else {
1436 ir_variable *const tmp =
1437 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1438 instructions->push_tail(tmp);
1439
1440 ir_if *const stmt = new(ctx) ir_if(op[0]);
1441 instructions->push_tail(stmt);
1442
1443 then_instructions.move_nodes_to(& stmt->then_instructions);
1444 ir_dereference *const then_deref =
1445 new(ctx) ir_dereference_variable(tmp);
1446 ir_assignment *const then_assign =
1447 new(ctx) ir_assignment(then_deref, op[1]);
1448 stmt->then_instructions.push_tail(then_assign);
1449
1450 else_instructions.move_nodes_to(& stmt->else_instructions);
1451 ir_dereference *const else_deref =
1452 new(ctx) ir_dereference_variable(tmp);
1453 ir_assignment *const else_assign =
1454 new(ctx) ir_assignment(else_deref, op[2]);
1455 stmt->else_instructions.push_tail(else_assign);
1456
1457 result = new(ctx) ir_dereference_variable(tmp);
1458 }
1459 break;
1460 }
1461
1462 case ast_pre_inc:
1463 case ast_pre_dec: {
1464 this->non_lvalue_description = (this->oper == ast_pre_inc)
1465 ? "pre-increment operation" : "pre-decrement operation";
1466
1467 op[0] = this->subexpressions[0]->hir(instructions, state);
1468 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1469
1470 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1471
1472 ir_rvalue *temp_rhs;
1473 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1474 op[0], op[1]);
1475
1476 result = do_assignment(instructions, state,
1477 this->subexpressions[0]->non_lvalue_description,
1478 op[0]->clone(ctx, NULL), temp_rhs, false,
1479 this->subexpressions[0]->get_location());
1480 error_emitted = op[0]->type->is_error();
1481 break;
1482 }
1483
1484 case ast_post_inc:
1485 case ast_post_dec: {
1486 this->non_lvalue_description = (this->oper == ast_post_inc)
1487 ? "post-increment operation" : "post-decrement operation";
1488 op[0] = this->subexpressions[0]->hir(instructions, state);
1489 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1490
1491 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1492
1493 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1494
1495 ir_rvalue *temp_rhs;
1496 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1497 op[0], op[1]);
1498
1499 /* Get a temporary of a copy of the lvalue before it's modified.
1500 * This may get thrown away later.
1501 */
1502 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1503
1504 (void)do_assignment(instructions, state,
1505 this->subexpressions[0]->non_lvalue_description,
1506 op[0]->clone(ctx, NULL), temp_rhs, false,
1507 this->subexpressions[0]->get_location());
1508
1509 error_emitted = op[0]->type->is_error();
1510 break;
1511 }
1512
1513 case ast_field_selection:
1514 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1515 break;
1516
1517 case ast_array_index: {
1518 YYLTYPE index_loc = subexpressions[1]->get_location();
1519
1520 op[0] = subexpressions[0]->hir(instructions, state);
1521 op[1] = subexpressions[1]->hir(instructions, state);
1522
1523 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1524
1525 ir_rvalue *const array = op[0];
1526
1527 result = new(ctx) ir_dereference_array(op[0], op[1]);
1528
1529 /* Do not use op[0] after this point. Use array.
1530 */
1531 op[0] = NULL;
1532
1533
1534 if (error_emitted)
1535 break;
1536
1537 if (!array->type->is_array()
1538 && !array->type->is_matrix()
1539 && !array->type->is_vector()) {
1540 _mesa_glsl_error(& index_loc, state,
1541 "cannot dereference non-array / non-matrix / "
1542 "non-vector");
1543 error_emitted = true;
1544 }
1545
1546 if (!op[1]->type->is_integer()) {
1547 _mesa_glsl_error(& index_loc, state,
1548 "array index must be integer type");
1549 error_emitted = true;
1550 } else if (!op[1]->type->is_scalar()) {
1551 _mesa_glsl_error(& index_loc, state,
1552 "array index must be scalar");
1553 error_emitted = true;
1554 }
1555
1556 /* If the array index is a constant expression and the array has a
1557 * declared size, ensure that the access is in-bounds. If the array
1558 * index is not a constant expression, ensure that the array has a
1559 * declared size.
1560 */
1561 ir_constant *const const_index = op[1]->constant_expression_value();
1562 if (const_index != NULL) {
1563 const int idx = const_index->value.i[0];
1564 const char *type_name;
1565 unsigned bound = 0;
1566
1567 if (array->type->is_matrix()) {
1568 type_name = "matrix";
1569 } else if (array->type->is_vector()) {
1570 type_name = "vector";
1571 } else {
1572 type_name = "array";
1573 }
1574
1575 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec:
1576 *
1577 * "It is illegal to declare an array with a size, and then
1578 * later (in the same shader) index the same array with an
1579 * integral constant expression greater than or equal to the
1580 * declared size. It is also illegal to index an array with a
1581 * negative constant expression."
1582 */
1583 if (array->type->is_matrix()) {
1584 if (array->type->row_type()->vector_elements <= idx) {
1585 bound = array->type->row_type()->vector_elements;
1586 }
1587 } else if (array->type->is_vector()) {
1588 if (array->type->vector_elements <= idx) {
1589 bound = array->type->vector_elements;
1590 }
1591 } else {
1592 if ((array->type->array_size() > 0)
1593 && (array->type->array_size() <= idx)) {
1594 bound = array->type->array_size();
1595 }
1596 }
1597
1598 if (bound > 0) {
1599 _mesa_glsl_error(& loc, state, "%s index must be < %u",
1600 type_name, bound);
1601 error_emitted = true;
1602 } else if (idx < 0) {
1603 _mesa_glsl_error(& loc, state, "%s index must be >= 0",
1604 type_name);
1605 error_emitted = true;
1606 }
1607
1608 if (array->type->is_array()) {
1609 /* If the array is a variable dereference, it dereferences the
1610 * whole array, by definition. Use this to get the variable.
1611 *
1612 * FINISHME: Should some methods for getting / setting / testing
1613 * FINISHME: array access limits be added to ir_dereference?
1614 */
1615 ir_variable *const v = array->whole_variable_referenced();
1616 if ((v != NULL) && (unsigned(idx) > v->max_array_access)) {
1617 v->max_array_access = idx;
1618
1619 /* Check whether this access will, as a side effect, implicitly
1620 * cause the size of a built-in array to be too large.
1621 */
1622 if (check_builtin_array_max_size(v->name, idx+1, loc, state))
1623 error_emitted = true;
1624 }
1625 }
1626 } else if (array->type->array_size() == 0) {
1627 _mesa_glsl_error(&loc, state, "unsized array index must be constant");
1628 } else {
1629 if (array->type->is_array()) {
1630 /* whole_variable_referenced can return NULL if the array is a
1631 * member of a structure. In this case it is safe to not update
1632 * the max_array_access field because it is never used for fields
1633 * of structures.
1634 */
1635 ir_variable *v = array->whole_variable_referenced();
1636 if (v != NULL)
1637 v->max_array_access = array->type->array_size() - 1;
1638 }
1639 }
1640
1641 /* From page 23 (29 of the PDF) of the GLSL 1.30 spec:
1642 *
1643 * "Samplers aggregated into arrays within a shader (using square
1644 * brackets [ ]) can only be indexed with integral constant
1645 * expressions [...]."
1646 *
1647 * This restriction was added in GLSL 1.30. Shaders using earlier version
1648 * of the language should not be rejected by the compiler front-end for
1649 * using this construct. This allows useful things such as using a loop
1650 * counter as the index to an array of samplers. If the loop in unrolled,
1651 * the code should compile correctly. Instead, emit a warning.
1652 */
1653 if (array->type->is_array() &&
1654 array->type->element_type()->is_sampler() &&
1655 const_index == NULL) {
1656
1657 if (!state->is_version(130, 100)) {
1658 if (state->es_shader) {
1659 _mesa_glsl_warning(&loc, state,
1660 "sampler arrays indexed with non-constant "
1661 "expressions is optional in %s",
1662 state->get_version_string());
1663 } else {
1664 _mesa_glsl_warning(&loc, state,
1665 "sampler arrays indexed with non-constant "
1666 "expressions will be forbidden in GLSL 1.30 and "
1667 "later");
1668 }
1669 } else {
1670 _mesa_glsl_error(&loc, state,
1671 "sampler arrays indexed with non-constant "
1672 "expressions is forbidden in GLSL 1.30 and "
1673 "later");
1674 error_emitted = true;
1675 }
1676 }
1677
1678 if (error_emitted)
1679 result->type = glsl_type::error_type;
1680
1681 break;
1682 }
1683
1684 case ast_function_call:
1685 /* Should *NEVER* get here. ast_function_call should always be handled
1686 * by ast_function_expression::hir.
1687 */
1688 assert(0);
1689 break;
1690
1691 case ast_identifier: {
1692 /* ast_identifier can appear several places in a full abstract syntax
1693 * tree. This particular use must be at location specified in the grammar
1694 * as 'variable_identifier'.
1695 */
1696 ir_variable *var =
1697 state->symbols->get_variable(this->primary_expression.identifier);
1698
1699 if (var != NULL) {
1700 var->used = true;
1701 result = new(ctx) ir_dereference_variable(var);
1702 } else {
1703 _mesa_glsl_error(& loc, state, "`%s' undeclared",
1704 this->primary_expression.identifier);
1705
1706 result = ir_rvalue::error_value(ctx);
1707 error_emitted = true;
1708 }
1709 break;
1710 }
1711
1712 case ast_int_constant:
1713 result = new(ctx) ir_constant(this->primary_expression.int_constant);
1714 break;
1715
1716 case ast_uint_constant:
1717 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
1718 break;
1719
1720 case ast_float_constant:
1721 result = new(ctx) ir_constant(this->primary_expression.float_constant);
1722 break;
1723
1724 case ast_bool_constant:
1725 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
1726 break;
1727
1728 case ast_sequence: {
1729 /* It should not be possible to generate a sequence in the AST without
1730 * any expressions in it.
1731 */
1732 assert(!this->expressions.is_empty());
1733
1734 /* The r-value of a sequence is the last expression in the sequence. If
1735 * the other expressions in the sequence do not have side-effects (and
1736 * therefore add instructions to the instruction list), they get dropped
1737 * on the floor.
1738 */
1739 exec_node *previous_tail_pred = NULL;
1740 YYLTYPE previous_operand_loc = loc;
1741
1742 foreach_list_typed (ast_node, ast, link, &this->expressions) {
1743 /* If one of the operands of comma operator does not generate any
1744 * code, we want to emit a warning. At each pass through the loop
1745 * previous_tail_pred will point to the last instruction in the
1746 * stream *before* processing the previous operand. Naturally,
1747 * instructions->tail_pred will point to the last instruction in the
1748 * stream *after* processing the previous operand. If the two
1749 * pointers match, then the previous operand had no effect.
1750 *
1751 * The warning behavior here differs slightly from GCC. GCC will
1752 * only emit a warning if none of the left-hand operands have an
1753 * effect. However, it will emit a warning for each. I believe that
1754 * there are some cases in C (especially with GCC extensions) where
1755 * it is useful to have an intermediate step in a sequence have no
1756 * effect, but I don't think these cases exist in GLSL. Either way,
1757 * it would be a giant hassle to replicate that behavior.
1758 */
1759 if (previous_tail_pred == instructions->tail_pred) {
1760 _mesa_glsl_warning(&previous_operand_loc, state,
1761 "left-hand operand of comma expression has "
1762 "no effect");
1763 }
1764
1765 /* tail_pred is directly accessed instead of using the get_tail()
1766 * method for performance reasons. get_tail() has extra code to
1767 * return NULL when the list is empty. We don't care about that
1768 * here, so using tail_pred directly is fine.
1769 */
1770 previous_tail_pred = instructions->tail_pred;
1771 previous_operand_loc = ast->get_location();
1772
1773 result = ast->hir(instructions, state);
1774 }
1775
1776 /* Any errors should have already been emitted in the loop above.
1777 */
1778 error_emitted = true;
1779 break;
1780 }
1781 }
1782 type = NULL; /* use result->type, not type. */
1783 assert(result != NULL);
1784
1785 if (result->type->is_error() && !error_emitted)
1786 _mesa_glsl_error(& loc, state, "type mismatch");
1787
1788 return result;
1789 }
1790
1791
1792 ir_rvalue *
1793 ast_expression_statement::hir(exec_list *instructions,
1794 struct _mesa_glsl_parse_state *state)
1795 {
1796 /* It is possible to have expression statements that don't have an
1797 * expression. This is the solitary semicolon:
1798 *
1799 * for (i = 0; i < 5; i++)
1800 * ;
1801 *
1802 * In this case the expression will be NULL. Test for NULL and don't do
1803 * anything in that case.
1804 */
1805 if (expression != NULL)
1806 expression->hir(instructions, state);
1807
1808 /* Statements do not have r-values.
1809 */
1810 return NULL;
1811 }
1812
1813
1814 ir_rvalue *
1815 ast_compound_statement::hir(exec_list *instructions,
1816 struct _mesa_glsl_parse_state *state)
1817 {
1818 if (new_scope)
1819 state->symbols->push_scope();
1820
1821 foreach_list_typed (ast_node, ast, link, &this->statements)
1822 ast->hir(instructions, state);
1823
1824 if (new_scope)
1825 state->symbols->pop_scope();
1826
1827 /* Compound statements do not have r-values.
1828 */
1829 return NULL;
1830 }
1831
1832
1833 static const glsl_type *
1834 process_array_type(YYLTYPE *loc, const glsl_type *base, ast_node *array_size,
1835 struct _mesa_glsl_parse_state *state)
1836 {
1837 unsigned length = 0;
1838
1839 /* From page 19 (page 25) of the GLSL 1.20 spec:
1840 *
1841 * "Only one-dimensional arrays may be declared."
1842 */
1843 if (base->is_array()) {
1844 _mesa_glsl_error(loc, state,
1845 "invalid array of `%s' (only one-dimensional arrays "
1846 "may be declared)",
1847 base->name);
1848 return glsl_type::error_type;
1849 }
1850
1851 if (array_size != NULL) {
1852 exec_list dummy_instructions;
1853 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
1854 YYLTYPE loc = array_size->get_location();
1855
1856 if (ir != NULL) {
1857 if (!ir->type->is_integer()) {
1858 _mesa_glsl_error(& loc, state, "array size must be integer type");
1859 } else if (!ir->type->is_scalar()) {
1860 _mesa_glsl_error(& loc, state, "array size must be scalar type");
1861 } else {
1862 ir_constant *const size = ir->constant_expression_value();
1863
1864 if (size == NULL) {
1865 _mesa_glsl_error(& loc, state, "array size must be a "
1866 "constant valued expression");
1867 } else if (size->value.i[0] <= 0) {
1868 _mesa_glsl_error(& loc, state, "array size must be > 0");
1869 } else {
1870 assert(size->type == ir->type);
1871 length = size->value.u[0];
1872
1873 /* If the array size is const (and we've verified that
1874 * it is) then no instructions should have been emitted
1875 * when we converted it to HIR. If they were emitted,
1876 * then either the array size isn't const after all, or
1877 * we are emitting unnecessary instructions.
1878 */
1879 assert(dummy_instructions.is_empty());
1880 }
1881 }
1882 }
1883 } else if (state->es_shader) {
1884 /* Section 10.17 of the GLSL ES 1.00 specification states that unsized
1885 * array declarations have been removed from the language.
1886 */
1887 _mesa_glsl_error(loc, state, "unsized array declarations are not "
1888 "allowed in GLSL ES 1.00.");
1889 }
1890
1891 return glsl_type::get_array_instance(base, length);
1892 }
1893
1894
1895 const glsl_type *
1896 ast_type_specifier::glsl_type(const char **name,
1897 struct _mesa_glsl_parse_state *state) const
1898 {
1899 const struct glsl_type *type;
1900
1901 type = state->symbols->get_type(this->type_name);
1902 *name = this->type_name;
1903
1904 if (this->is_array) {
1905 YYLTYPE loc = this->get_location();
1906 type = process_array_type(&loc, type, this->array_size, state);
1907 }
1908
1909 return type;
1910 }
1911
1912
1913 /**
1914 * Determine whether a toplevel variable declaration declares a varying. This
1915 * function operates by examining the variable's mode and the shader target,
1916 * so it correctly identifies linkage variables regardless of whether they are
1917 * declared using the deprecated "varying" syntax or the new "in/out" syntax.
1918 *
1919 * Passing a non-toplevel variable declaration (e.g. a function parameter) to
1920 * this function will produce undefined results.
1921 */
1922 static bool
1923 is_varying_var(ir_variable *var, _mesa_glsl_parser_targets target)
1924 {
1925 switch (target) {
1926 case vertex_shader:
1927 return var->mode == ir_var_out;
1928 case fragment_shader:
1929 return var->mode == ir_var_in;
1930 default:
1931 return var->mode == ir_var_out || var->mode == ir_var_in;
1932 }
1933 }
1934
1935
1936 /**
1937 * Matrix layout qualifiers are only allowed on certain types
1938 */
1939 static void
1940 validate_matrix_layout_for_type(struct _mesa_glsl_parse_state *state,
1941 YYLTYPE *loc,
1942 const glsl_type *type)
1943 {
1944 if (!type->is_matrix() && !type->is_record()) {
1945 _mesa_glsl_error(loc, state,
1946 "uniform block layout qualifiers row_major and "
1947 "column_major can only be applied to matrix and "
1948 "structure types");
1949 } else if (type->is_record()) {
1950 /* We allow 'layout(row_major)' on structure types because it's the only
1951 * way to get row-major layouts on matrices contained in structures.
1952 */
1953 _mesa_glsl_warning(loc, state,
1954 "uniform block layout qualifiers row_major and "
1955 "column_major applied to structure types is not "
1956 "strictly conformant and my be rejected by other "
1957 "compilers");
1958 }
1959 }
1960
1961 static void
1962 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
1963 ir_variable *var,
1964 struct _mesa_glsl_parse_state *state,
1965 YYLTYPE *loc,
1966 bool ubo_qualifiers_valid,
1967 bool is_parameter)
1968 {
1969 if (qual->flags.q.invariant) {
1970 if (var->used) {
1971 _mesa_glsl_error(loc, state,
1972 "variable `%s' may not be redeclared "
1973 "`invariant' after being used",
1974 var->name);
1975 } else {
1976 var->invariant = 1;
1977 }
1978 }
1979
1980 if (qual->flags.q.constant || qual->flags.q.attribute
1981 || qual->flags.q.uniform
1982 || (qual->flags.q.varying && (state->target == fragment_shader)))
1983 var->read_only = 1;
1984
1985 if (qual->flags.q.centroid)
1986 var->centroid = 1;
1987
1988 if (qual->flags.q.attribute && state->target != vertex_shader) {
1989 var->type = glsl_type::error_type;
1990 _mesa_glsl_error(loc, state,
1991 "`attribute' variables may not be declared in the "
1992 "%s shader",
1993 _mesa_glsl_shader_target_name(state->target));
1994 }
1995
1996 /* If there is no qualifier that changes the mode of the variable, leave
1997 * the setting alone.
1998 */
1999 if (qual->flags.q.in && qual->flags.q.out)
2000 var->mode = ir_var_inout;
2001 else if (qual->flags.q.attribute || qual->flags.q.in
2002 || (qual->flags.q.varying && (state->target == fragment_shader)))
2003 var->mode = ir_var_in;
2004 else if (qual->flags.q.out
2005 || (qual->flags.q.varying && (state->target == vertex_shader)))
2006 var->mode = ir_var_out;
2007 else if (qual->flags.q.uniform)
2008 var->mode = ir_var_uniform;
2009
2010 if (!is_parameter && is_varying_var(var, state->target)) {
2011 /* This variable is being used to link data between shader stages (in
2012 * pre-glsl-1.30 parlance, it's a "varying"). Check that it has a type
2013 * that is allowed for such purposes.
2014 *
2015 * From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
2016 *
2017 * "The varying qualifier can be used only with the data types
2018 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
2019 * these."
2020 *
2021 * This was relaxed in GLSL version 1.30 and GLSL ES version 3.00. From
2022 * page 31 (page 37 of the PDF) of the GLSL 1.30 spec:
2023 *
2024 * "Fragment inputs can only be signed and unsigned integers and
2025 * integer vectors, float, floating-point vectors, matrices, or
2026 * arrays of these. Structures cannot be input.
2027 *
2028 * Similar text exists in the section on vertex shader outputs.
2029 *
2030 * Similar text exists in the GLSL ES 3.00 spec, except that the GLSL ES
2031 * 3.00 spec claims to allow structs as well. However, this is likely
2032 * an error, since section 11 of the spec ("Counting of Inputs and
2033 * Outputs") enumerates all possible types of interstage linkage
2034 * variables, and it does not mention structs.
2035 */
2036 switch (var->type->get_scalar_type()->base_type) {
2037 case GLSL_TYPE_FLOAT:
2038 /* Ok in all GLSL versions */
2039 break;
2040 case GLSL_TYPE_UINT:
2041 case GLSL_TYPE_INT:
2042 if (state->is_version(130, 300))
2043 break;
2044 _mesa_glsl_error(loc, state,
2045 "varying variables must be of base type float in %s",
2046 state->get_version_string());
2047 break;
2048 case GLSL_TYPE_STRUCT:
2049 _mesa_glsl_error(loc, state,
2050 "varying variables may not be of type struct");
2051 break;
2052 default:
2053 _mesa_glsl_error(loc, state, "illegal type for a varying variable");
2054 break;
2055 }
2056 }
2057
2058 if (state->all_invariant && (state->current_function == NULL)) {
2059 switch (state->target) {
2060 case vertex_shader:
2061 if (var->mode == ir_var_out)
2062 var->invariant = true;
2063 break;
2064 case geometry_shader:
2065 if ((var->mode == ir_var_in) || (var->mode == ir_var_out))
2066 var->invariant = true;
2067 break;
2068 case fragment_shader:
2069 if (var->mode == ir_var_in)
2070 var->invariant = true;
2071 break;
2072 }
2073 }
2074
2075 if (qual->flags.q.flat)
2076 var->interpolation = INTERP_QUALIFIER_FLAT;
2077 else if (qual->flags.q.noperspective)
2078 var->interpolation = INTERP_QUALIFIER_NOPERSPECTIVE;
2079 else if (qual->flags.q.smooth)
2080 var->interpolation = INTERP_QUALIFIER_SMOOTH;
2081 else
2082 var->interpolation = INTERP_QUALIFIER_NONE;
2083
2084 if (var->interpolation != INTERP_QUALIFIER_NONE &&
2085 !(state->target == vertex_shader && var->mode == ir_var_out) &&
2086 !(state->target == fragment_shader && var->mode == ir_var_in)) {
2087 _mesa_glsl_error(loc, state,
2088 "interpolation qualifier `%s' can only be applied to "
2089 "vertex shader outputs and fragment shader inputs.",
2090 var->interpolation_string());
2091 }
2092
2093 var->pixel_center_integer = qual->flags.q.pixel_center_integer;
2094 var->origin_upper_left = qual->flags.q.origin_upper_left;
2095 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
2096 && (strcmp(var->name, "gl_FragCoord") != 0)) {
2097 const char *const qual_string = (qual->flags.q.origin_upper_left)
2098 ? "origin_upper_left" : "pixel_center_integer";
2099
2100 _mesa_glsl_error(loc, state,
2101 "layout qualifier `%s' can only be applied to "
2102 "fragment shader input `gl_FragCoord'",
2103 qual_string);
2104 }
2105
2106 if (qual->flags.q.explicit_location) {
2107 const bool global_scope = (state->current_function == NULL);
2108 bool fail = false;
2109 const char *string = "";
2110
2111 /* In the vertex shader only shader inputs can be given explicit
2112 * locations.
2113 *
2114 * In the fragment shader only shader outputs can be given explicit
2115 * locations.
2116 */
2117 switch (state->target) {
2118 case vertex_shader:
2119 if (!global_scope || (var->mode != ir_var_in)) {
2120 fail = true;
2121 string = "input";
2122 }
2123 break;
2124
2125 case geometry_shader:
2126 _mesa_glsl_error(loc, state,
2127 "geometry shader variables cannot be given "
2128 "explicit locations\n");
2129 break;
2130
2131 case fragment_shader:
2132 if (!global_scope || (var->mode != ir_var_out)) {
2133 fail = true;
2134 string = "output";
2135 }
2136 break;
2137 };
2138
2139 if (fail) {
2140 _mesa_glsl_error(loc, state,
2141 "only %s shader %s variables can be given an "
2142 "explicit location\n",
2143 _mesa_glsl_shader_target_name(state->target),
2144 string);
2145 } else {
2146 var->explicit_location = true;
2147
2148 /* This bit of silliness is needed because invalid explicit locations
2149 * are supposed to be flagged during linking. Small negative values
2150 * biased by VERT_ATTRIB_GENERIC0 or FRAG_RESULT_DATA0 could alias
2151 * built-in values (e.g., -16+VERT_ATTRIB_GENERIC0 = VERT_ATTRIB_POS).
2152 * The linker needs to be able to differentiate these cases. This
2153 * ensures that negative values stay negative.
2154 */
2155 if (qual->location >= 0) {
2156 var->location = (state->target == vertex_shader)
2157 ? (qual->location + VERT_ATTRIB_GENERIC0)
2158 : (qual->location + FRAG_RESULT_DATA0);
2159 } else {
2160 var->location = qual->location;
2161 }
2162
2163 if (qual->flags.q.explicit_index) {
2164 /* From the GLSL 4.30 specification, section 4.4.2 (Output
2165 * Layout Qualifiers):
2166 *
2167 * "It is also a compile-time error if a fragment shader
2168 * sets a layout index to less than 0 or greater than 1."
2169 *
2170 * Older specifications don't mandate a behavior; we take
2171 * this as a clarification and always generate the error.
2172 */
2173 if (qual->index < 0 || qual->index > 1) {
2174 _mesa_glsl_error(loc, state,
2175 "explicit index may only be 0 or 1\n");
2176 } else {
2177 var->explicit_index = true;
2178 var->index = qual->index;
2179 }
2180 }
2181 }
2182 } else if (qual->flags.q.explicit_index) {
2183 _mesa_glsl_error(loc, state,
2184 "explicit index requires explicit location\n");
2185 }
2186
2187 /* Does the declaration use the 'layout' keyword?
2188 */
2189 const bool uses_layout = qual->flags.q.pixel_center_integer
2190 || qual->flags.q.origin_upper_left
2191 || qual->flags.q.explicit_location; /* no need for index since it relies on location */
2192
2193 /* Does the declaration use the deprecated 'attribute' or 'varying'
2194 * keywords?
2195 */
2196 const bool uses_deprecated_qualifier = qual->flags.q.attribute
2197 || qual->flags.q.varying;
2198
2199 /* Is the 'layout' keyword used with parameters that allow relaxed checking.
2200 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
2201 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
2202 * allowed the layout qualifier to be used with 'varying' and 'attribute'.
2203 * These extensions and all following extensions that add the 'layout'
2204 * keyword have been modified to require the use of 'in' or 'out'.
2205 *
2206 * The following extension do not allow the deprecated keywords:
2207 *
2208 * GL_AMD_conservative_depth
2209 * GL_ARB_conservative_depth
2210 * GL_ARB_gpu_shader5
2211 * GL_ARB_separate_shader_objects
2212 * GL_ARB_tesselation_shader
2213 * GL_ARB_transform_feedback3
2214 * GL_ARB_uniform_buffer_object
2215 *
2216 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
2217 * allow layout with the deprecated keywords.
2218 */
2219 const bool relaxed_layout_qualifier_checking =
2220 state->ARB_fragment_coord_conventions_enable;
2221
2222 if (uses_layout && uses_deprecated_qualifier) {
2223 if (relaxed_layout_qualifier_checking) {
2224 _mesa_glsl_warning(loc, state,
2225 "`layout' qualifier may not be used with "
2226 "`attribute' or `varying'");
2227 } else {
2228 _mesa_glsl_error(loc, state,
2229 "`layout' qualifier may not be used with "
2230 "`attribute' or `varying'");
2231 }
2232 }
2233
2234 /* Layout qualifiers for gl_FragDepth, which are enabled by extension
2235 * AMD_conservative_depth.
2236 */
2237 int depth_layout_count = qual->flags.q.depth_any
2238 + qual->flags.q.depth_greater
2239 + qual->flags.q.depth_less
2240 + qual->flags.q.depth_unchanged;
2241 if (depth_layout_count > 0
2242 && !state->AMD_conservative_depth_enable
2243 && !state->ARB_conservative_depth_enable) {
2244 _mesa_glsl_error(loc, state,
2245 "extension GL_AMD_conservative_depth or "
2246 "GL_ARB_conservative_depth must be enabled "
2247 "to use depth layout qualifiers");
2248 } else if (depth_layout_count > 0
2249 && strcmp(var->name, "gl_FragDepth") != 0) {
2250 _mesa_glsl_error(loc, state,
2251 "depth layout qualifiers can be applied only to "
2252 "gl_FragDepth");
2253 } else if (depth_layout_count > 1
2254 && strcmp(var->name, "gl_FragDepth") == 0) {
2255 _mesa_glsl_error(loc, state,
2256 "at most one depth layout qualifier can be applied to "
2257 "gl_FragDepth");
2258 }
2259 if (qual->flags.q.depth_any)
2260 var->depth_layout = ir_depth_layout_any;
2261 else if (qual->flags.q.depth_greater)
2262 var->depth_layout = ir_depth_layout_greater;
2263 else if (qual->flags.q.depth_less)
2264 var->depth_layout = ir_depth_layout_less;
2265 else if (qual->flags.q.depth_unchanged)
2266 var->depth_layout = ir_depth_layout_unchanged;
2267 else
2268 var->depth_layout = ir_depth_layout_none;
2269
2270 if (qual->flags.q.std140 ||
2271 qual->flags.q.packed ||
2272 qual->flags.q.shared) {
2273 _mesa_glsl_error(loc, state,
2274 "uniform block layout qualifiers std140, packed, and "
2275 "shared can only be applied to uniform blocks, not "
2276 "members");
2277 }
2278
2279 if (qual->flags.q.row_major || qual->flags.q.column_major) {
2280 if (!ubo_qualifiers_valid) {
2281 _mesa_glsl_error(loc, state,
2282 "uniform block layout qualifiers row_major and "
2283 "column_major can only be applied to uniform block "
2284 "members");
2285 } else
2286 validate_matrix_layout_for_type(state, loc, var->type);
2287 }
2288 }
2289
2290 /**
2291 * Get the variable that is being redeclared by this declaration
2292 *
2293 * Semantic checks to verify the validity of the redeclaration are also
2294 * performed. If semantic checks fail, compilation error will be emitted via
2295 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
2296 *
2297 * \returns
2298 * A pointer to an existing variable in the current scope if the declaration
2299 * is a redeclaration, \c NULL otherwise.
2300 */
2301 ir_variable *
2302 get_variable_being_redeclared(ir_variable *var, ast_declaration *decl,
2303 struct _mesa_glsl_parse_state *state)
2304 {
2305 /* Check if this declaration is actually a re-declaration, either to
2306 * resize an array or add qualifiers to an existing variable.
2307 *
2308 * This is allowed for variables in the current scope, or when at
2309 * global scope (for built-ins in the implicit outer scope).
2310 */
2311 ir_variable *earlier = state->symbols->get_variable(decl->identifier);
2312 if (earlier == NULL ||
2313 (state->current_function != NULL &&
2314 !state->symbols->name_declared_this_scope(decl->identifier))) {
2315 return NULL;
2316 }
2317
2318
2319 YYLTYPE loc = decl->get_location();
2320
2321 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
2322 *
2323 * "It is legal to declare an array without a size and then
2324 * later re-declare the same name as an array of the same
2325 * type and specify a size."
2326 */
2327 if ((earlier->type->array_size() == 0)
2328 && var->type->is_array()
2329 && (var->type->element_type() == earlier->type->element_type())) {
2330 /* FINISHME: This doesn't match the qualifiers on the two
2331 * FINISHME: declarations. It's not 100% clear whether this is
2332 * FINISHME: required or not.
2333 */
2334
2335 const unsigned size = unsigned(var->type->array_size());
2336 check_builtin_array_max_size(var->name, size, loc, state);
2337 if ((size > 0) && (size <= earlier->max_array_access)) {
2338 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
2339 "previous access",
2340 earlier->max_array_access);
2341 }
2342
2343 earlier->type = var->type;
2344 delete var;
2345 var = NULL;
2346 } else if (state->ARB_fragment_coord_conventions_enable
2347 && strcmp(var->name, "gl_FragCoord") == 0
2348 && earlier->type == var->type
2349 && earlier->mode == var->mode) {
2350 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
2351 * qualifiers.
2352 */
2353 earlier->origin_upper_left = var->origin_upper_left;
2354 earlier->pixel_center_integer = var->pixel_center_integer;
2355
2356 /* According to section 4.3.7 of the GLSL 1.30 spec,
2357 * the following built-in varaibles can be redeclared with an
2358 * interpolation qualifier:
2359 * * gl_FrontColor
2360 * * gl_BackColor
2361 * * gl_FrontSecondaryColor
2362 * * gl_BackSecondaryColor
2363 * * gl_Color
2364 * * gl_SecondaryColor
2365 */
2366 } else if (state->is_version(130, 0)
2367 && (strcmp(var->name, "gl_FrontColor") == 0
2368 || strcmp(var->name, "gl_BackColor") == 0
2369 || strcmp(var->name, "gl_FrontSecondaryColor") == 0
2370 || strcmp(var->name, "gl_BackSecondaryColor") == 0
2371 || strcmp(var->name, "gl_Color") == 0
2372 || strcmp(var->name, "gl_SecondaryColor") == 0)
2373 && earlier->type == var->type
2374 && earlier->mode == var->mode) {
2375 earlier->interpolation = var->interpolation;
2376
2377 /* Layout qualifiers for gl_FragDepth. */
2378 } else if ((state->AMD_conservative_depth_enable ||
2379 state->ARB_conservative_depth_enable)
2380 && strcmp(var->name, "gl_FragDepth") == 0
2381 && earlier->type == var->type
2382 && earlier->mode == var->mode) {
2383
2384 /** From the AMD_conservative_depth spec:
2385 * Within any shader, the first redeclarations of gl_FragDepth
2386 * must appear before any use of gl_FragDepth.
2387 */
2388 if (earlier->used) {
2389 _mesa_glsl_error(&loc, state,
2390 "the first redeclaration of gl_FragDepth "
2391 "must appear before any use of gl_FragDepth");
2392 }
2393
2394 /* Prevent inconsistent redeclaration of depth layout qualifier. */
2395 if (earlier->depth_layout != ir_depth_layout_none
2396 && earlier->depth_layout != var->depth_layout) {
2397 _mesa_glsl_error(&loc, state,
2398 "gl_FragDepth: depth layout is declared here "
2399 "as '%s, but it was previously declared as "
2400 "'%s'",
2401 depth_layout_string(var->depth_layout),
2402 depth_layout_string(earlier->depth_layout));
2403 }
2404
2405 earlier->depth_layout = var->depth_layout;
2406
2407 } else {
2408 _mesa_glsl_error(&loc, state, "`%s' redeclared", decl->identifier);
2409 }
2410
2411 return earlier;
2412 }
2413
2414 /**
2415 * Generate the IR for an initializer in a variable declaration
2416 */
2417 ir_rvalue *
2418 process_initializer(ir_variable *var, ast_declaration *decl,
2419 ast_fully_specified_type *type,
2420 exec_list *initializer_instructions,
2421 struct _mesa_glsl_parse_state *state)
2422 {
2423 ir_rvalue *result = NULL;
2424
2425 YYLTYPE initializer_loc = decl->initializer->get_location();
2426
2427 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
2428 *
2429 * "All uniform variables are read-only and are initialized either
2430 * directly by an application via API commands, or indirectly by
2431 * OpenGL."
2432 */
2433 if (var->mode == ir_var_uniform) {
2434 state->check_version(120, 0, &initializer_loc,
2435 "cannot initialize uniforms");
2436 }
2437
2438 if (var->type->is_sampler()) {
2439 _mesa_glsl_error(& initializer_loc, state,
2440 "cannot initialize samplers");
2441 }
2442
2443 if ((var->mode == ir_var_in) && (state->current_function == NULL)) {
2444 _mesa_glsl_error(& initializer_loc, state,
2445 "cannot initialize %s shader input / %s",
2446 _mesa_glsl_shader_target_name(state->target),
2447 (state->target == vertex_shader)
2448 ? "attribute" : "varying");
2449 }
2450
2451 ir_dereference *const lhs = new(state) ir_dereference_variable(var);
2452 ir_rvalue *rhs = decl->initializer->hir(initializer_instructions,
2453 state);
2454
2455 /* Calculate the constant value if this is a const or uniform
2456 * declaration.
2457 */
2458 if (type->qualifier.flags.q.constant
2459 || type->qualifier.flags.q.uniform) {
2460 ir_rvalue *new_rhs = validate_assignment(state, var->type, rhs, true);
2461 if (new_rhs != NULL) {
2462 rhs = new_rhs;
2463
2464 ir_constant *constant_value = rhs->constant_expression_value();
2465 if (!constant_value) {
2466 _mesa_glsl_error(& initializer_loc, state,
2467 "initializer of %s variable `%s' must be a "
2468 "constant expression",
2469 (type->qualifier.flags.q.constant)
2470 ? "const" : "uniform",
2471 decl->identifier);
2472 if (var->type->is_numeric()) {
2473 /* Reduce cascading errors. */
2474 var->constant_value = ir_constant::zero(state, var->type);
2475 }
2476 } else {
2477 rhs = constant_value;
2478 var->constant_value = constant_value;
2479 }
2480 } else {
2481 _mesa_glsl_error(&initializer_loc, state,
2482 "initializer of type %s cannot be assigned to "
2483 "variable of type %s",
2484 rhs->type->name, var->type->name);
2485 if (var->type->is_numeric()) {
2486 /* Reduce cascading errors. */
2487 var->constant_value = ir_constant::zero(state, var->type);
2488 }
2489 }
2490 }
2491
2492 if (rhs && !rhs->type->is_error()) {
2493 bool temp = var->read_only;
2494 if (type->qualifier.flags.q.constant)
2495 var->read_only = false;
2496
2497 /* Never emit code to initialize a uniform.
2498 */
2499 const glsl_type *initializer_type;
2500 if (!type->qualifier.flags.q.uniform) {
2501 result = do_assignment(initializer_instructions, state,
2502 NULL,
2503 lhs, rhs, true,
2504 type->get_location());
2505 initializer_type = result->type;
2506 } else
2507 initializer_type = rhs->type;
2508
2509 var->constant_initializer = rhs->constant_expression_value();
2510 var->has_initializer = true;
2511
2512 /* If the declared variable is an unsized array, it must inherrit
2513 * its full type from the initializer. A declaration such as
2514 *
2515 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
2516 *
2517 * becomes
2518 *
2519 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
2520 *
2521 * The assignment generated in the if-statement (below) will also
2522 * automatically handle this case for non-uniforms.
2523 *
2524 * If the declared variable is not an array, the types must
2525 * already match exactly. As a result, the type assignment
2526 * here can be done unconditionally. For non-uniforms the call
2527 * to do_assignment can change the type of the initializer (via
2528 * the implicit conversion rules). For uniforms the initializer
2529 * must be a constant expression, and the type of that expression
2530 * was validated above.
2531 */
2532 var->type = initializer_type;
2533
2534 var->read_only = temp;
2535 }
2536
2537 return result;
2538 }
2539
2540 ir_rvalue *
2541 ast_declarator_list::hir(exec_list *instructions,
2542 struct _mesa_glsl_parse_state *state)
2543 {
2544 void *ctx = state;
2545 const struct glsl_type *decl_type;
2546 const char *type_name = NULL;
2547 ir_rvalue *result = NULL;
2548 YYLTYPE loc = this->get_location();
2549
2550 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
2551 *
2552 * "To ensure that a particular output variable is invariant, it is
2553 * necessary to use the invariant qualifier. It can either be used to
2554 * qualify a previously declared variable as being invariant
2555 *
2556 * invariant gl_Position; // make existing gl_Position be invariant"
2557 *
2558 * In these cases the parser will set the 'invariant' flag in the declarator
2559 * list, and the type will be NULL.
2560 */
2561 if (this->invariant) {
2562 assert(this->type == NULL);
2563
2564 if (state->current_function != NULL) {
2565 _mesa_glsl_error(& loc, state,
2566 "All uses of `invariant' keyword must be at global "
2567 "scope\n");
2568 }
2569
2570 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
2571 assert(!decl->is_array);
2572 assert(decl->array_size == NULL);
2573 assert(decl->initializer == NULL);
2574
2575 ir_variable *const earlier =
2576 state->symbols->get_variable(decl->identifier);
2577 if (earlier == NULL) {
2578 _mesa_glsl_error(& loc, state,
2579 "Undeclared variable `%s' cannot be marked "
2580 "invariant\n", decl->identifier);
2581 } else if ((state->target == vertex_shader)
2582 && (earlier->mode != ir_var_out)) {
2583 _mesa_glsl_error(& loc, state,
2584 "`%s' cannot be marked invariant, vertex shader "
2585 "outputs only\n", decl->identifier);
2586 } else if ((state->target == fragment_shader)
2587 && (earlier->mode != ir_var_in)) {
2588 _mesa_glsl_error(& loc, state,
2589 "`%s' cannot be marked invariant, fragment shader "
2590 "inputs only\n", decl->identifier);
2591 } else if (earlier->used) {
2592 _mesa_glsl_error(& loc, state,
2593 "variable `%s' may not be redeclared "
2594 "`invariant' after being used",
2595 earlier->name);
2596 } else {
2597 earlier->invariant = true;
2598 }
2599 }
2600
2601 /* Invariant redeclarations do not have r-values.
2602 */
2603 return NULL;
2604 }
2605
2606 assert(this->type != NULL);
2607 assert(!this->invariant);
2608
2609 /* The type specifier may contain a structure definition. Process that
2610 * before any of the variable declarations.
2611 */
2612 (void) this->type->specifier->hir(instructions, state);
2613
2614 decl_type = this->type->specifier->glsl_type(& type_name, state);
2615 if (this->declarations.is_empty()) {
2616 /* If there is no structure involved in the program text, there are two
2617 * possible scenarios:
2618 *
2619 * - The program text contained something like 'vec4;'. This is an
2620 * empty declaration. It is valid but weird. Emit a warning.
2621 *
2622 * - The program text contained something like 'S;' and 'S' is not the
2623 * name of a known structure type. This is both invalid and weird.
2624 * Emit an error.
2625 *
2626 * Note that if decl_type is NULL and there is a structure involved,
2627 * there must have been some sort of error with the structure. In this
2628 * case we assume that an error was already generated on this line of
2629 * code for the structure. There is no need to generate an additional,
2630 * confusing error.
2631 */
2632 assert(this->type->specifier->structure == NULL || decl_type != NULL
2633 || state->error);
2634 if (this->type->specifier->structure == NULL) {
2635 if (decl_type != NULL) {
2636 _mesa_glsl_warning(&loc, state, "empty declaration");
2637 } else {
2638 _mesa_glsl_error(&loc, state,
2639 "invalid type `%s' in empty declaration",
2640 type_name);
2641 }
2642 }
2643 }
2644
2645 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
2646 const struct glsl_type *var_type;
2647 ir_variable *var;
2648
2649 /* FINISHME: Emit a warning if a variable declaration shadows a
2650 * FINISHME: declaration at a higher scope.
2651 */
2652
2653 if ((decl_type == NULL) || decl_type->is_void()) {
2654 if (type_name != NULL) {
2655 _mesa_glsl_error(& loc, state,
2656 "invalid type `%s' in declaration of `%s'",
2657 type_name, decl->identifier);
2658 } else {
2659 _mesa_glsl_error(& loc, state,
2660 "invalid type in declaration of `%s'",
2661 decl->identifier);
2662 }
2663 continue;
2664 }
2665
2666 if (decl->is_array) {
2667 var_type = process_array_type(&loc, decl_type, decl->array_size,
2668 state);
2669 if (var_type->is_error())
2670 continue;
2671 } else {
2672 var_type = decl_type;
2673 }
2674
2675 var = new(ctx) ir_variable(var_type, decl->identifier, ir_var_auto);
2676
2677 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
2678 *
2679 * "Global variables can only use the qualifiers const,
2680 * attribute, uni form, or varying. Only one may be
2681 * specified.
2682 *
2683 * Local variables can only use the qualifier const."
2684 *
2685 * This is relaxed in GLSL 1.30 and GLSL ES 3.00. It is also relaxed by
2686 * any extension that adds the 'layout' keyword.
2687 */
2688 if (!state->is_version(130, 300)
2689 && !state->ARB_explicit_attrib_location_enable
2690 && !state->ARB_fragment_coord_conventions_enable) {
2691 if (this->type->qualifier.flags.q.out) {
2692 _mesa_glsl_error(& loc, state,
2693 "`out' qualifier in declaration of `%s' "
2694 "only valid for function parameters in %s.",
2695 decl->identifier, state->get_version_string());
2696 }
2697 if (this->type->qualifier.flags.q.in) {
2698 _mesa_glsl_error(& loc, state,
2699 "`in' qualifier in declaration of `%s' "
2700 "only valid for function parameters in %s.",
2701 decl->identifier, state->get_version_string());
2702 }
2703 /* FINISHME: Test for other invalid qualifiers. */
2704 }
2705
2706 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
2707 & loc, this->ubo_qualifiers_valid, false);
2708
2709 if (this->type->qualifier.flags.q.invariant) {
2710 if ((state->target == vertex_shader) && !(var->mode == ir_var_out ||
2711 var->mode == ir_var_inout)) {
2712 /* FINISHME: Note that this doesn't work for invariant on
2713 * a function signature outval
2714 */
2715 _mesa_glsl_error(& loc, state,
2716 "`%s' cannot be marked invariant, vertex shader "
2717 "outputs only\n", var->name);
2718 } else if ((state->target == fragment_shader) &&
2719 !(var->mode == ir_var_in || var->mode == ir_var_inout)) {
2720 /* FINISHME: Note that this doesn't work for invariant on
2721 * a function signature inval
2722 */
2723 _mesa_glsl_error(& loc, state,
2724 "`%s' cannot be marked invariant, fragment shader "
2725 "inputs only\n", var->name);
2726 }
2727 }
2728
2729 if (state->current_function != NULL) {
2730 const char *mode = NULL;
2731 const char *extra = "";
2732
2733 /* There is no need to check for 'inout' here because the parser will
2734 * only allow that in function parameter lists.
2735 */
2736 if (this->type->qualifier.flags.q.attribute) {
2737 mode = "attribute";
2738 } else if (this->type->qualifier.flags.q.uniform) {
2739 mode = "uniform";
2740 } else if (this->type->qualifier.flags.q.varying) {
2741 mode = "varying";
2742 } else if (this->type->qualifier.flags.q.in) {
2743 mode = "in";
2744 extra = " or in function parameter list";
2745 } else if (this->type->qualifier.flags.q.out) {
2746 mode = "out";
2747 extra = " or in function parameter list";
2748 }
2749
2750 if (mode) {
2751 _mesa_glsl_error(& loc, state,
2752 "%s variable `%s' must be declared at "
2753 "global scope%s",
2754 mode, var->name, extra);
2755 }
2756 } else if (var->mode == ir_var_in) {
2757 var->read_only = true;
2758
2759 if (state->target == vertex_shader) {
2760 bool error_emitted = false;
2761
2762 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
2763 *
2764 * "Vertex shader inputs can only be float, floating-point
2765 * vectors, matrices, signed and unsigned integers and integer
2766 * vectors. Vertex shader inputs can also form arrays of these
2767 * types, but not structures."
2768 *
2769 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
2770 *
2771 * "Vertex shader inputs can only be float, floating-point
2772 * vectors, matrices, signed and unsigned integers and integer
2773 * vectors. They cannot be arrays or structures."
2774 *
2775 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
2776 *
2777 * "The attribute qualifier can be used only with float,
2778 * floating-point vectors, and matrices. Attribute variables
2779 * cannot be declared as arrays or structures."
2780 *
2781 * From page 33 (page 39 of the PDF) of the GLSL ES 3.00 spec:
2782 *
2783 * "Vertex shader inputs can only be float, floating-point
2784 * vectors, matrices, signed and unsigned integers and integer
2785 * vectors. Vertex shader inputs cannot be arrays or
2786 * structures."
2787 */
2788 const glsl_type *check_type = var->type->is_array()
2789 ? var->type->fields.array : var->type;
2790
2791 switch (check_type->base_type) {
2792 case GLSL_TYPE_FLOAT:
2793 break;
2794 case GLSL_TYPE_UINT:
2795 case GLSL_TYPE_INT:
2796 if (state->is_version(120, 300))
2797 break;
2798 /* FALLTHROUGH */
2799 default:
2800 _mesa_glsl_error(& loc, state,
2801 "vertex shader input / attribute cannot have "
2802 "type %s`%s'",
2803 var->type->is_array() ? "array of " : "",
2804 check_type->name);
2805 error_emitted = true;
2806 }
2807
2808 if (!error_emitted && var->type->is_array() &&
2809 !state->check_version(140, 0, &loc,
2810 "vertex shader input / attribute "
2811 "cannot have array type")) {
2812 error_emitted = true;
2813 }
2814 }
2815 }
2816
2817 /* Integer vertex outputs must be qualified with 'flat'.
2818 *
2819 * From section 4.3.6 of the GLSL 1.30 spec:
2820 * "If a vertex output is a signed or unsigned integer or integer
2821 * vector, then it must be qualified with the interpolation qualifier
2822 * flat."
2823 *
2824 * From section 4.3.4 of the GLSL 3.00 ES spec:
2825 * "Fragment shader inputs that are signed or unsigned integers or
2826 * integer vectors must be qualified with the interpolation qualifier
2827 * flat."
2828 *
2829 * Since vertex outputs and fragment inputs must have matching
2830 * qualifiers, these two requirements are equivalent.
2831 */
2832 if (state->is_version(130, 300)
2833 && state->target == vertex_shader
2834 && state->current_function == NULL
2835 && var->type->is_integer()
2836 && var->mode == ir_var_out
2837 && var->interpolation != INTERP_QUALIFIER_FLAT) {
2838
2839 _mesa_glsl_error(&loc, state, "If a vertex output is an integer, "
2840 "then it must be qualified with 'flat'");
2841 }
2842
2843
2844 /* Interpolation qualifiers cannot be applied to 'centroid' and
2845 * 'centroid varying'.
2846 *
2847 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
2848 * "interpolation qualifiers may only precede the qualifiers in,
2849 * centroid in, out, or centroid out in a declaration. They do not apply
2850 * to the deprecated storage qualifiers varying or centroid varying."
2851 *
2852 * These deprecated storage qualifiers do not exist in GLSL ES 3.00.
2853 */
2854 if (state->is_version(130, 0)
2855 && this->type->qualifier.has_interpolation()
2856 && this->type->qualifier.flags.q.varying) {
2857
2858 const char *i = this->type->qualifier.interpolation_string();
2859 assert(i != NULL);
2860 const char *s;
2861 if (this->type->qualifier.flags.q.centroid)
2862 s = "centroid varying";
2863 else
2864 s = "varying";
2865
2866 _mesa_glsl_error(&loc, state,
2867 "qualifier '%s' cannot be applied to the "
2868 "deprecated storage qualifier '%s'", i, s);
2869 }
2870
2871
2872 /* Interpolation qualifiers can only apply to vertex shader outputs and
2873 * fragment shader inputs.
2874 *
2875 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
2876 * "Outputs from a vertex shader (out) and inputs to a fragment
2877 * shader (in) can be further qualified with one or more of these
2878 * interpolation qualifiers"
2879 *
2880 * From page 31 (page 37 of the PDF) of the GLSL ES 3.00 spec:
2881 * "These interpolation qualifiers may only precede the qualifiers
2882 * in, centroid in, out, or centroid out in a declaration. They do
2883 * not apply to inputs into a vertex shader or outputs from a
2884 * fragment shader."
2885 */
2886 if (state->is_version(130, 300)
2887 && this->type->qualifier.has_interpolation()) {
2888
2889 const char *i = this->type->qualifier.interpolation_string();
2890 assert(i != NULL);
2891
2892 switch (state->target) {
2893 case vertex_shader:
2894 if (this->type->qualifier.flags.q.in) {
2895 _mesa_glsl_error(&loc, state,
2896 "qualifier '%s' cannot be applied to vertex "
2897 "shader inputs", i);
2898 }
2899 break;
2900 case fragment_shader:
2901 if (this->type->qualifier.flags.q.out) {
2902 _mesa_glsl_error(&loc, state,
2903 "qualifier '%s' cannot be applied to fragment "
2904 "shader outputs", i);
2905 }
2906 break;
2907 default:
2908 assert(0);
2909 }
2910 }
2911
2912
2913 /* From section 4.3.4 of the GLSL 1.30 spec:
2914 * "It is an error to use centroid in in a vertex shader."
2915 *
2916 * From section 4.3.4 of the GLSL ES 3.00 spec:
2917 * "It is an error to use centroid in or interpolation qualifiers in
2918 * a vertex shader input."
2919 */
2920 if (state->is_version(130, 300)
2921 && this->type->qualifier.flags.q.centroid
2922 && this->type->qualifier.flags.q.in
2923 && state->target == vertex_shader) {
2924
2925 _mesa_glsl_error(&loc, state,
2926 "'centroid in' cannot be used in a vertex shader");
2927 }
2928
2929
2930 /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
2931 */
2932 if (this->type->specifier->precision != ast_precision_none) {
2933 state->check_precision_qualifiers_allowed(&loc);
2934 }
2935
2936
2937 /* Precision qualifiers only apply to floating point and integer types.
2938 *
2939 * From section 4.5.2 of the GLSL 1.30 spec:
2940 * "Any floating point or any integer declaration can have the type
2941 * preceded by one of these precision qualifiers [...] Literal
2942 * constants do not have precision qualifiers. Neither do Boolean
2943 * variables.
2944 *
2945 * In GLSL ES, sampler types are also allowed.
2946 *
2947 * From page 87 of the GLSL ES spec:
2948 * "RESOLUTION: Allow sampler types to take a precision qualifier."
2949 */
2950 if (this->type->specifier->precision != ast_precision_none
2951 && !var->type->is_float()
2952 && !var->type->is_integer()
2953 && !(var->type->is_sampler() && state->es_shader)
2954 && !(var->type->is_array()
2955 && (var->type->fields.array->is_float()
2956 || var->type->fields.array->is_integer()))) {
2957
2958 _mesa_glsl_error(&loc, state,
2959 "precision qualifiers apply only to floating point"
2960 "%s types", state->es_shader ? ", integer, and sampler"
2961 : "and integer");
2962 }
2963
2964 /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
2965 *
2966 * "[Sampler types] can only be declared as function
2967 * parameters or uniform variables (see Section 4.3.5
2968 * "Uniform")".
2969 */
2970 if (var_type->contains_sampler() &&
2971 !this->type->qualifier.flags.q.uniform) {
2972 _mesa_glsl_error(&loc, state, "samplers must be declared uniform");
2973 }
2974
2975 /* Process the initializer and add its instructions to a temporary
2976 * list. This list will be added to the instruction stream (below) after
2977 * the declaration is added. This is done because in some cases (such as
2978 * redeclarations) the declaration may not actually be added to the
2979 * instruction stream.
2980 */
2981 exec_list initializer_instructions;
2982 ir_variable *earlier = get_variable_being_redeclared(var, decl, state);
2983
2984 if (decl->initializer != NULL) {
2985 result = process_initializer((earlier == NULL) ? var : earlier,
2986 decl, this->type,
2987 &initializer_instructions, state);
2988 }
2989
2990 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
2991 *
2992 * "It is an error to write to a const variable outside of
2993 * its declaration, so they must be initialized when
2994 * declared."
2995 */
2996 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
2997 _mesa_glsl_error(& loc, state,
2998 "const declaration of `%s' must be initialized",
2999 decl->identifier);
3000 }
3001
3002 /* If the declaration is not a redeclaration, there are a few additional
3003 * semantic checks that must be applied. In addition, variable that was
3004 * created for the declaration should be added to the IR stream.
3005 */
3006 if (earlier == NULL) {
3007 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
3008 *
3009 * "Identifiers starting with "gl_" are reserved for use by
3010 * OpenGL, and may not be declared in a shader as either a
3011 * variable or a function."
3012 */
3013 if (strncmp(decl->identifier, "gl_", 3) == 0)
3014 _mesa_glsl_error(& loc, state,
3015 "identifier `%s' uses reserved `gl_' prefix",
3016 decl->identifier);
3017 else if (strstr(decl->identifier, "__")) {
3018 /* From page 14 (page 20 of the PDF) of the GLSL 1.10
3019 * spec:
3020 *
3021 * "In addition, all identifiers containing two
3022 * consecutive underscores (__) are reserved as
3023 * possible future keywords."
3024 */
3025 _mesa_glsl_error(& loc, state,
3026 "identifier `%s' uses reserved `__' string",
3027 decl->identifier);
3028 }
3029
3030 /* Add the variable to the symbol table. Note that the initializer's
3031 * IR was already processed earlier (though it hasn't been emitted
3032 * yet), without the variable in scope.
3033 *
3034 * This differs from most C-like languages, but it follows the GLSL
3035 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
3036 * spec:
3037 *
3038 * "Within a declaration, the scope of a name starts immediately
3039 * after the initializer if present or immediately after the name
3040 * being declared if not."
3041 */
3042 if (!state->symbols->add_variable(var)) {
3043 YYLTYPE loc = this->get_location();
3044 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
3045 "current scope", decl->identifier);
3046 continue;
3047 }
3048
3049 /* Push the variable declaration to the top. It means that all the
3050 * variable declarations will appear in a funny last-to-first order,
3051 * but otherwise we run into trouble if a function is prototyped, a
3052 * global var is decled, then the function is defined with usage of
3053 * the global var. See glslparsertest's CorrectModule.frag.
3054 */
3055 instructions->push_head(var);
3056 }
3057
3058 instructions->append_list(&initializer_instructions);
3059 }
3060
3061
3062 /* Generally, variable declarations do not have r-values. However,
3063 * one is used for the declaration in
3064 *
3065 * while (bool b = some_condition()) {
3066 * ...
3067 * }
3068 *
3069 * so we return the rvalue from the last seen declaration here.
3070 */
3071 return result;
3072 }
3073
3074
3075 ir_rvalue *
3076 ast_parameter_declarator::hir(exec_list *instructions,
3077 struct _mesa_glsl_parse_state *state)
3078 {
3079 void *ctx = state;
3080 const struct glsl_type *type;
3081 const char *name = NULL;
3082 YYLTYPE loc = this->get_location();
3083
3084 type = this->type->specifier->glsl_type(& name, state);
3085
3086 if (type == NULL) {
3087 if (name != NULL) {
3088 _mesa_glsl_error(& loc, state,
3089 "invalid type `%s' in declaration of `%s'",
3090 name, this->identifier);
3091 } else {
3092 _mesa_glsl_error(& loc, state,
3093 "invalid type in declaration of `%s'",
3094 this->identifier);
3095 }
3096
3097 type = glsl_type::error_type;
3098 }
3099
3100 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
3101 *
3102 * "Functions that accept no input arguments need not use void in the
3103 * argument list because prototypes (or definitions) are required and
3104 * therefore there is no ambiguity when an empty argument list "( )" is
3105 * declared. The idiom "(void)" as a parameter list is provided for
3106 * convenience."
3107 *
3108 * Placing this check here prevents a void parameter being set up
3109 * for a function, which avoids tripping up checks for main taking
3110 * parameters and lookups of an unnamed symbol.
3111 */
3112 if (type->is_void()) {
3113 if (this->identifier != NULL)
3114 _mesa_glsl_error(& loc, state,
3115 "named parameter cannot have type `void'");
3116
3117 is_void = true;
3118 return NULL;
3119 }
3120
3121 if (formal_parameter && (this->identifier == NULL)) {
3122 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
3123 return NULL;
3124 }
3125
3126 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
3127 * call already handled the "vec4[..] foo" case.
3128 */
3129 if (this->is_array) {
3130 type = process_array_type(&loc, type, this->array_size, state);
3131 }
3132
3133 if (!type->is_error() && type->array_size() == 0) {
3134 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
3135 "a declared size.");
3136 type = glsl_type::error_type;
3137 }
3138
3139 is_void = false;
3140 ir_variable *var = new(ctx) ir_variable(type, this->identifier, ir_var_in);
3141
3142 /* Apply any specified qualifiers to the parameter declaration. Note that
3143 * for function parameters the default mode is 'in'.
3144 */
3145 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc,
3146 false, true);
3147
3148 /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
3149 *
3150 * "Samplers cannot be treated as l-values; hence cannot be used
3151 * as out or inout function parameters, nor can they be assigned
3152 * into."
3153 */
3154 if ((var->mode == ir_var_inout || var->mode == ir_var_out)
3155 && type->contains_sampler()) {
3156 _mesa_glsl_error(&loc, state, "out and inout parameters cannot contain samplers");
3157 type = glsl_type::error_type;
3158 }
3159
3160 /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
3161 *
3162 * "When calling a function, expressions that do not evaluate to
3163 * l-values cannot be passed to parameters declared as out or inout."
3164 *
3165 * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
3166 *
3167 * "Other binary or unary expressions, non-dereferenced arrays,
3168 * function names, swizzles with repeated fields, and constants
3169 * cannot be l-values."
3170 *
3171 * So for GLSL 1.10, passing an array as an out or inout parameter is not
3172 * allowed. This restriction is removed in GLSL 1.20, and in GLSL ES.
3173 */
3174 if ((var->mode == ir_var_inout || var->mode == ir_var_out)
3175 && type->is_array()
3176 && !state->check_version(120, 100, &loc,
3177 "Arrays cannot be out or inout parameters")) {
3178 type = glsl_type::error_type;
3179 }
3180
3181 instructions->push_tail(var);
3182
3183 /* Parameter declarations do not have r-values.
3184 */
3185 return NULL;
3186 }
3187
3188
3189 void
3190 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
3191 bool formal,
3192 exec_list *ir_parameters,
3193 _mesa_glsl_parse_state *state)
3194 {
3195 ast_parameter_declarator *void_param = NULL;
3196 unsigned count = 0;
3197
3198 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
3199 param->formal_parameter = formal;
3200 param->hir(ir_parameters, state);
3201
3202 if (param->is_void)
3203 void_param = param;
3204
3205 count++;
3206 }
3207
3208 if ((void_param != NULL) && (count > 1)) {
3209 YYLTYPE loc = void_param->get_location();
3210
3211 _mesa_glsl_error(& loc, state,
3212 "`void' parameter must be only parameter");
3213 }
3214 }
3215
3216
3217 void
3218 emit_function(_mesa_glsl_parse_state *state, ir_function *f)
3219 {
3220 /* IR invariants disallow function declarations or definitions
3221 * nested within other function definitions. But there is no
3222 * requirement about the relative order of function declarations
3223 * and definitions with respect to one another. So simply insert
3224 * the new ir_function block at the end of the toplevel instruction
3225 * list.
3226 */
3227 state->toplevel_ir->push_tail(f);
3228 }
3229
3230
3231 ir_rvalue *
3232 ast_function::hir(exec_list *instructions,
3233 struct _mesa_glsl_parse_state *state)
3234 {
3235 void *ctx = state;
3236 ir_function *f = NULL;
3237 ir_function_signature *sig = NULL;
3238 exec_list hir_parameters;
3239
3240 const char *const name = identifier;
3241
3242 /* New functions are always added to the top-level IR instruction stream,
3243 * so this instruction list pointer is ignored. See also emit_function
3244 * (called below).
3245 */
3246 (void) instructions;
3247
3248 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
3249 *
3250 * "Function declarations (prototypes) cannot occur inside of functions;
3251 * they must be at global scope, or for the built-in functions, outside
3252 * the global scope."
3253 *
3254 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
3255 *
3256 * "User defined functions may only be defined within the global scope."
3257 *
3258 * Note that this language does not appear in GLSL 1.10.
3259 */
3260 if ((state->current_function != NULL) &&
3261 state->is_version(120, 100)) {
3262 YYLTYPE loc = this->get_location();
3263 _mesa_glsl_error(&loc, state,
3264 "declaration of function `%s' not allowed within "
3265 "function body", name);
3266 }
3267
3268 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
3269 *
3270 * "Identifiers starting with "gl_" are reserved for use by
3271 * OpenGL, and may not be declared in a shader as either a
3272 * variable or a function."
3273 */
3274 if (strncmp(name, "gl_", 3) == 0) {
3275 YYLTYPE loc = this->get_location();
3276 _mesa_glsl_error(&loc, state,
3277 "identifier `%s' uses reserved `gl_' prefix", name);
3278 }
3279
3280 /* Convert the list of function parameters to HIR now so that they can be
3281 * used below to compare this function's signature with previously seen
3282 * signatures for functions with the same name.
3283 */
3284 ast_parameter_declarator::parameters_to_hir(& this->parameters,
3285 is_definition,
3286 & hir_parameters, state);
3287
3288 const char *return_type_name;
3289 const glsl_type *return_type =
3290 this->return_type->specifier->glsl_type(& return_type_name, state);
3291
3292 if (!return_type) {
3293 YYLTYPE loc = this->get_location();
3294 _mesa_glsl_error(&loc, state,
3295 "function `%s' has undeclared return type `%s'",
3296 name, return_type_name);
3297 return_type = glsl_type::error_type;
3298 }
3299
3300 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
3301 * "No qualifier is allowed on the return type of a function."
3302 */
3303 if (this->return_type->has_qualifiers()) {
3304 YYLTYPE loc = this->get_location();
3305 _mesa_glsl_error(& loc, state,
3306 "function `%s' return type has qualifiers", name);
3307 }
3308
3309 /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
3310 *
3311 * "[Sampler types] can only be declared as function parameters
3312 * or uniform variables (see Section 4.3.5 "Uniform")".
3313 */
3314 if (return_type->contains_sampler()) {
3315 YYLTYPE loc = this->get_location();
3316 _mesa_glsl_error(&loc, state,
3317 "function `%s' return type can't contain a sampler",
3318 name);
3319 }
3320
3321 /* Verify that this function's signature either doesn't match a previously
3322 * seen signature for a function with the same name, or, if a match is found,
3323 * that the previously seen signature does not have an associated definition.
3324 */
3325 f = state->symbols->get_function(name);
3326 if (f != NULL && (state->es_shader || f->has_user_signature())) {
3327 sig = f->exact_matching_signature(&hir_parameters);
3328 if (sig != NULL) {
3329 const char *badvar = sig->qualifiers_match(&hir_parameters);
3330 if (badvar != NULL) {
3331 YYLTYPE loc = this->get_location();
3332
3333 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
3334 "qualifiers don't match prototype", name, badvar);
3335 }
3336
3337 if (sig->return_type != return_type) {
3338 YYLTYPE loc = this->get_location();
3339
3340 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
3341 "match prototype", name);
3342 }
3343
3344 if (is_definition && sig->is_defined) {
3345 YYLTYPE loc = this->get_location();
3346
3347 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
3348 }
3349 }
3350 } else {
3351 f = new(ctx) ir_function(name);
3352 if (!state->symbols->add_function(f)) {
3353 /* This function name shadows a non-function use of the same name. */
3354 YYLTYPE loc = this->get_location();
3355
3356 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
3357 "non-function", name);
3358 return NULL;
3359 }
3360
3361 emit_function(state, f);
3362 }
3363
3364 /* Verify the return type of main() */
3365 if (strcmp(name, "main") == 0) {
3366 if (! return_type->is_void()) {
3367 YYLTYPE loc = this->get_location();
3368
3369 _mesa_glsl_error(& loc, state, "main() must return void");
3370 }
3371
3372 if (!hir_parameters.is_empty()) {
3373 YYLTYPE loc = this->get_location();
3374
3375 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
3376 }
3377 }
3378
3379 /* Finish storing the information about this new function in its signature.
3380 */
3381 if (sig == NULL) {
3382 sig = new(ctx) ir_function_signature(return_type);
3383 f->add_signature(sig);
3384 }
3385
3386 sig->replace_parameters(&hir_parameters);
3387 signature = sig;
3388
3389 /* Function declarations (prototypes) do not have r-values.
3390 */
3391 return NULL;
3392 }
3393
3394
3395 ir_rvalue *
3396 ast_function_definition::hir(exec_list *instructions,
3397 struct _mesa_glsl_parse_state *state)
3398 {
3399 prototype->is_definition = true;
3400 prototype->hir(instructions, state);
3401
3402 ir_function_signature *signature = prototype->signature;
3403 if (signature == NULL)
3404 return NULL;
3405
3406 assert(state->current_function == NULL);
3407 state->current_function = signature;
3408 state->found_return = false;
3409
3410 /* Duplicate parameters declared in the prototype as concrete variables.
3411 * Add these to the symbol table.
3412 */
3413 state->symbols->push_scope();
3414 foreach_iter(exec_list_iterator, iter, signature->parameters) {
3415 ir_variable *const var = ((ir_instruction *) iter.get())->as_variable();
3416
3417 assert(var != NULL);
3418
3419 /* The only way a parameter would "exist" is if two parameters have
3420 * the same name.
3421 */
3422 if (state->symbols->name_declared_this_scope(var->name)) {
3423 YYLTYPE loc = this->get_location();
3424
3425 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
3426 } else {
3427 state->symbols->add_variable(var);
3428 }
3429 }
3430
3431 /* Convert the body of the function to HIR. */
3432 this->body->hir(&signature->body, state);
3433 signature->is_defined = true;
3434
3435 state->symbols->pop_scope();
3436
3437 assert(state->current_function == signature);
3438 state->current_function = NULL;
3439
3440 if (!signature->return_type->is_void() && !state->found_return) {
3441 YYLTYPE loc = this->get_location();
3442 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
3443 "%s, but no return statement",
3444 signature->function_name(),
3445 signature->return_type->name);
3446 }
3447
3448 /* Function definitions do not have r-values.
3449 */
3450 return NULL;
3451 }
3452
3453
3454 ir_rvalue *
3455 ast_jump_statement::hir(exec_list *instructions,
3456 struct _mesa_glsl_parse_state *state)
3457 {
3458 void *ctx = state;
3459
3460 switch (mode) {
3461 case ast_return: {
3462 ir_return *inst;
3463 assert(state->current_function);
3464
3465 if (opt_return_value) {
3466 ir_rvalue *const ret = opt_return_value->hir(instructions, state);
3467
3468 /* The value of the return type can be NULL if the shader says
3469 * 'return foo();' and foo() is a function that returns void.
3470 *
3471 * NOTE: The GLSL spec doesn't say that this is an error. The type
3472 * of the return value is void. If the return type of the function is
3473 * also void, then this should compile without error. Seriously.
3474 */
3475 const glsl_type *const ret_type =
3476 (ret == NULL) ? glsl_type::void_type : ret->type;
3477
3478 /* Implicit conversions are not allowed for return values. */
3479 if (state->current_function->return_type != ret_type) {
3480 YYLTYPE loc = this->get_location();
3481
3482 _mesa_glsl_error(& loc, state,
3483 "`return' with wrong type %s, in function `%s' "
3484 "returning %s",
3485 ret_type->name,
3486 state->current_function->function_name(),
3487 state->current_function->return_type->name);
3488 }
3489
3490 inst = new(ctx) ir_return(ret);
3491 } else {
3492 if (state->current_function->return_type->base_type !=
3493 GLSL_TYPE_VOID) {
3494 YYLTYPE loc = this->get_location();
3495
3496 _mesa_glsl_error(& loc, state,
3497 "`return' with no value, in function %s returning "
3498 "non-void",
3499 state->current_function->function_name());
3500 }
3501 inst = new(ctx) ir_return;
3502 }
3503
3504 state->found_return = true;
3505 instructions->push_tail(inst);
3506 break;
3507 }
3508
3509 case ast_discard:
3510 if (state->target != fragment_shader) {
3511 YYLTYPE loc = this->get_location();
3512
3513 _mesa_glsl_error(& loc, state,
3514 "`discard' may only appear in a fragment shader");
3515 }
3516 instructions->push_tail(new(ctx) ir_discard);
3517 break;
3518
3519 case ast_break:
3520 case ast_continue:
3521 if (mode == ast_continue &&
3522 state->loop_nesting_ast == NULL) {
3523 YYLTYPE loc = this->get_location();
3524
3525 _mesa_glsl_error(& loc, state,
3526 "continue may only appear in a loop");
3527 } else if (mode == ast_break &&
3528 state->loop_nesting_ast == NULL &&
3529 state->switch_state.switch_nesting_ast == NULL) {
3530 YYLTYPE loc = this->get_location();
3531
3532 _mesa_glsl_error(& loc, state,
3533 "break may only appear in a loop or a switch");
3534 } else {
3535 /* For a loop, inline the for loop expression again,
3536 * since we don't know where near the end of
3537 * the loop body the normal copy of it
3538 * is going to be placed.
3539 */
3540 if (state->loop_nesting_ast != NULL &&
3541 mode == ast_continue &&
3542 state->loop_nesting_ast->rest_expression) {
3543 state->loop_nesting_ast->rest_expression->hir(instructions,
3544 state);
3545 }
3546
3547 if (state->switch_state.is_switch_innermost &&
3548 mode == ast_break) {
3549 /* Force break out of switch by setting is_break switch state.
3550 */
3551 ir_variable *const is_break_var = state->switch_state.is_break_var;
3552 ir_dereference_variable *const deref_is_break_var =
3553 new(ctx) ir_dereference_variable(is_break_var);
3554 ir_constant *const true_val = new(ctx) ir_constant(true);
3555 ir_assignment *const set_break_var =
3556 new(ctx) ir_assignment(deref_is_break_var, true_val);
3557
3558 instructions->push_tail(set_break_var);
3559 }
3560 else {
3561 ir_loop_jump *const jump =
3562 new(ctx) ir_loop_jump((mode == ast_break)
3563 ? ir_loop_jump::jump_break
3564 : ir_loop_jump::jump_continue);
3565 instructions->push_tail(jump);
3566 }
3567 }
3568
3569 break;
3570 }
3571
3572 /* Jump instructions do not have r-values.
3573 */
3574 return NULL;
3575 }
3576
3577
3578 ir_rvalue *
3579 ast_selection_statement::hir(exec_list *instructions,
3580 struct _mesa_glsl_parse_state *state)
3581 {
3582 void *ctx = state;
3583
3584 ir_rvalue *const condition = this->condition->hir(instructions, state);
3585
3586 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
3587 *
3588 * "Any expression whose type evaluates to a Boolean can be used as the
3589 * conditional expression bool-expression. Vector types are not accepted
3590 * as the expression to if."
3591 *
3592 * The checks are separated so that higher quality diagnostics can be
3593 * generated for cases where both rules are violated.
3594 */
3595 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
3596 YYLTYPE loc = this->condition->get_location();
3597
3598 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
3599 "boolean");
3600 }
3601
3602 ir_if *const stmt = new(ctx) ir_if(condition);
3603
3604 if (then_statement != NULL) {
3605 state->symbols->push_scope();
3606 then_statement->hir(& stmt->then_instructions, state);
3607 state->symbols->pop_scope();
3608 }
3609
3610 if (else_statement != NULL) {
3611 state->symbols->push_scope();
3612 else_statement->hir(& stmt->else_instructions, state);
3613 state->symbols->pop_scope();
3614 }
3615
3616 instructions->push_tail(stmt);
3617
3618 /* if-statements do not have r-values.
3619 */
3620 return NULL;
3621 }
3622
3623
3624 ir_rvalue *
3625 ast_switch_statement::hir(exec_list *instructions,
3626 struct _mesa_glsl_parse_state *state)
3627 {
3628 void *ctx = state;
3629
3630 ir_rvalue *const test_expression =
3631 this->test_expression->hir(instructions, state);
3632
3633 /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
3634 *
3635 * "The type of init-expression in a switch statement must be a
3636 * scalar integer."
3637 */
3638 if (!test_expression->type->is_scalar() ||
3639 !test_expression->type->is_integer()) {
3640 YYLTYPE loc = this->test_expression->get_location();
3641
3642 _mesa_glsl_error(& loc,
3643 state,
3644 "switch-statement expression must be scalar "
3645 "integer");
3646 }
3647
3648 /* Track the switch-statement nesting in a stack-like manner.
3649 */
3650 struct glsl_switch_state saved = state->switch_state;
3651
3652 state->switch_state.is_switch_innermost = true;
3653 state->switch_state.switch_nesting_ast = this;
3654 state->switch_state.labels_ht = hash_table_ctor(0, hash_table_pointer_hash,
3655 hash_table_pointer_compare);
3656 state->switch_state.previous_default = NULL;
3657
3658 /* Initalize is_fallthru state to false.
3659 */
3660 ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false);
3661 state->switch_state.is_fallthru_var =
3662 new(ctx) ir_variable(glsl_type::bool_type,
3663 "switch_is_fallthru_tmp",
3664 ir_var_temporary);
3665 instructions->push_tail(state->switch_state.is_fallthru_var);
3666
3667 ir_dereference_variable *deref_is_fallthru_var =
3668 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
3669 instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var,
3670 is_fallthru_val));
3671
3672 /* Initalize is_break state to false.
3673 */
3674 ir_rvalue *const is_break_val = new (ctx) ir_constant(false);
3675 state->switch_state.is_break_var = new(ctx) ir_variable(glsl_type::bool_type,
3676 "switch_is_break_tmp",
3677 ir_var_temporary);
3678 instructions->push_tail(state->switch_state.is_break_var);
3679
3680 ir_dereference_variable *deref_is_break_var =
3681 new(ctx) ir_dereference_variable(state->switch_state.is_break_var);
3682 instructions->push_tail(new(ctx) ir_assignment(deref_is_break_var,
3683 is_break_val));
3684
3685 /* Cache test expression.
3686 */
3687 test_to_hir(instructions, state);
3688
3689 /* Emit code for body of switch stmt.
3690 */
3691 body->hir(instructions, state);
3692
3693 hash_table_dtor(state->switch_state.labels_ht);
3694
3695 state->switch_state = saved;
3696
3697 /* Switch statements do not have r-values. */
3698 return NULL;
3699 }
3700
3701
3702 void
3703 ast_switch_statement::test_to_hir(exec_list *instructions,
3704 struct _mesa_glsl_parse_state *state)
3705 {
3706 void *ctx = state;
3707
3708 /* Cache value of test expression. */
3709 ir_rvalue *const test_val =
3710 test_expression->hir(instructions,
3711 state);
3712
3713 state->switch_state.test_var = new(ctx) ir_variable(test_val->type,
3714 "switch_test_tmp",
3715 ir_var_temporary);
3716 ir_dereference_variable *deref_test_var =
3717 new(ctx) ir_dereference_variable(state->switch_state.test_var);
3718
3719 instructions->push_tail(state->switch_state.test_var);
3720 instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val));
3721 }
3722
3723
3724 ir_rvalue *
3725 ast_switch_body::hir(exec_list *instructions,
3726 struct _mesa_glsl_parse_state *state)
3727 {
3728 if (stmts != NULL)
3729 stmts->hir(instructions, state);
3730
3731 /* Switch bodies do not have r-values. */
3732 return NULL;
3733 }
3734
3735 ir_rvalue *
3736 ast_case_statement_list::hir(exec_list *instructions,
3737 struct _mesa_glsl_parse_state *state)
3738 {
3739 foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases)
3740 case_stmt->hir(instructions, state);
3741
3742 /* Case statements do not have r-values. */
3743 return NULL;
3744 }
3745
3746 ir_rvalue *
3747 ast_case_statement::hir(exec_list *instructions,
3748 struct _mesa_glsl_parse_state *state)
3749 {
3750 labels->hir(instructions, state);
3751
3752 /* Conditionally set fallthru state based on break state. */
3753 ir_constant *const false_val = new(state) ir_constant(false);
3754 ir_dereference_variable *const deref_is_fallthru_var =
3755 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
3756 ir_dereference_variable *const deref_is_break_var =
3757 new(state) ir_dereference_variable(state->switch_state.is_break_var);
3758 ir_assignment *const reset_fallthru_on_break =
3759 new(state) ir_assignment(deref_is_fallthru_var,
3760 false_val,
3761 deref_is_break_var);
3762 instructions->push_tail(reset_fallthru_on_break);
3763
3764 /* Guard case statements depending on fallthru state. */
3765 ir_dereference_variable *const deref_fallthru_guard =
3766 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
3767 ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard);
3768
3769 foreach_list_typed (ast_node, stmt, link, & this->stmts)
3770 stmt->hir(& test_fallthru->then_instructions, state);
3771
3772 instructions->push_tail(test_fallthru);
3773
3774 /* Case statements do not have r-values. */
3775 return NULL;
3776 }
3777
3778
3779 ir_rvalue *
3780 ast_case_label_list::hir(exec_list *instructions,
3781 struct _mesa_glsl_parse_state *state)
3782 {
3783 foreach_list_typed (ast_case_label, label, link, & this->labels)
3784 label->hir(instructions, state);
3785
3786 /* Case labels do not have r-values. */
3787 return NULL;
3788 }
3789
3790 ir_rvalue *
3791 ast_case_label::hir(exec_list *instructions,
3792 struct _mesa_glsl_parse_state *state)
3793 {
3794 void *ctx = state;
3795
3796 ir_dereference_variable *deref_fallthru_var =
3797 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
3798
3799 ir_rvalue *const true_val = new(ctx) ir_constant(true);
3800
3801 /* If not default case, ... */
3802 if (this->test_value != NULL) {
3803 /* Conditionally set fallthru state based on
3804 * comparison of cached test expression value to case label.
3805 */
3806 ir_rvalue *const label_rval = this->test_value->hir(instructions, state);
3807 ir_constant *label_const = label_rval->constant_expression_value();
3808
3809 if (!label_const) {
3810 YYLTYPE loc = this->test_value->get_location();
3811
3812 _mesa_glsl_error(& loc, state,
3813 "switch statement case label must be a "
3814 "constant expression");
3815
3816 /* Stuff a dummy value in to allow processing to continue. */
3817 label_const = new(ctx) ir_constant(0);
3818 } else {
3819 ast_expression *previous_label = (ast_expression *)
3820 hash_table_find(state->switch_state.labels_ht,
3821 (void *)(uintptr_t)label_const->value.u[0]);
3822
3823 if (previous_label) {
3824 YYLTYPE loc = this->test_value->get_location();
3825 _mesa_glsl_error(& loc, state,
3826 "duplicate case value");
3827
3828 loc = previous_label->get_location();
3829 _mesa_glsl_error(& loc, state,
3830 "this is the previous case label");
3831 } else {
3832 hash_table_insert(state->switch_state.labels_ht,
3833 this->test_value,
3834 (void *)(uintptr_t)label_const->value.u[0]);
3835 }
3836 }
3837
3838 ir_dereference_variable *deref_test_var =
3839 new(ctx) ir_dereference_variable(state->switch_state.test_var);
3840
3841 ir_rvalue *const test_cond = new(ctx) ir_expression(ir_binop_all_equal,
3842 label_const,
3843 deref_test_var);
3844
3845 ir_assignment *set_fallthru_on_test =
3846 new(ctx) ir_assignment(deref_fallthru_var,
3847 true_val,
3848 test_cond);
3849
3850 instructions->push_tail(set_fallthru_on_test);
3851 } else { /* default case */
3852 if (state->switch_state.previous_default) {
3853 YYLTYPE loc = this->get_location();
3854 _mesa_glsl_error(& loc, state,
3855 "multiple default labels in one switch");
3856
3857 loc = state->switch_state.previous_default->get_location();
3858 _mesa_glsl_error(& loc, state,
3859 "this is the first default label");
3860 }
3861 state->switch_state.previous_default = this;
3862
3863 /* Set falltrhu state. */
3864 ir_assignment *set_fallthru =
3865 new(ctx) ir_assignment(deref_fallthru_var, true_val);
3866
3867 instructions->push_tail(set_fallthru);
3868 }
3869
3870 /* Case statements do not have r-values. */
3871 return NULL;
3872 }
3873
3874 void
3875 ast_iteration_statement::condition_to_hir(ir_loop *stmt,
3876 struct _mesa_glsl_parse_state *state)
3877 {
3878 void *ctx = state;
3879
3880 if (condition != NULL) {
3881 ir_rvalue *const cond =
3882 condition->hir(& stmt->body_instructions, state);
3883
3884 if ((cond == NULL)
3885 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
3886 YYLTYPE loc = condition->get_location();
3887
3888 _mesa_glsl_error(& loc, state,
3889 "loop condition must be scalar boolean");
3890 } else {
3891 /* As the first code in the loop body, generate a block that looks
3892 * like 'if (!condition) break;' as the loop termination condition.
3893 */
3894 ir_rvalue *const not_cond =
3895 new(ctx) ir_expression(ir_unop_logic_not, cond);
3896
3897 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
3898
3899 ir_jump *const break_stmt =
3900 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
3901
3902 if_stmt->then_instructions.push_tail(break_stmt);
3903 stmt->body_instructions.push_tail(if_stmt);
3904 }
3905 }
3906 }
3907
3908
3909 ir_rvalue *
3910 ast_iteration_statement::hir(exec_list *instructions,
3911 struct _mesa_glsl_parse_state *state)
3912 {
3913 void *ctx = state;
3914
3915 /* For-loops and while-loops start a new scope, but do-while loops do not.
3916 */
3917 if (mode != ast_do_while)
3918 state->symbols->push_scope();
3919
3920 if (init_statement != NULL)
3921 init_statement->hir(instructions, state);
3922
3923 ir_loop *const stmt = new(ctx) ir_loop();
3924 instructions->push_tail(stmt);
3925
3926 /* Track the current loop nesting. */
3927 ast_iteration_statement *nesting_ast = state->loop_nesting_ast;
3928
3929 state->loop_nesting_ast = this;
3930
3931 /* Likewise, indicate that following code is closest to a loop,
3932 * NOT closest to a switch.
3933 */
3934 bool saved_is_switch_innermost = state->switch_state.is_switch_innermost;
3935 state->switch_state.is_switch_innermost = false;
3936
3937 if (mode != ast_do_while)
3938 condition_to_hir(stmt, state);
3939
3940 if (body != NULL)
3941 body->hir(& stmt->body_instructions, state);
3942
3943 if (rest_expression != NULL)
3944 rest_expression->hir(& stmt->body_instructions, state);
3945
3946 if (mode == ast_do_while)
3947 condition_to_hir(stmt, state);
3948
3949 if (mode != ast_do_while)
3950 state->symbols->pop_scope();
3951
3952 /* Restore previous nesting before returning. */
3953 state->loop_nesting_ast = nesting_ast;
3954 state->switch_state.is_switch_innermost = saved_is_switch_innermost;
3955
3956 /* Loops do not have r-values.
3957 */
3958 return NULL;
3959 }
3960
3961
3962 ir_rvalue *
3963 ast_type_specifier::hir(exec_list *instructions,
3964 struct _mesa_glsl_parse_state *state)
3965 {
3966 if (!this->is_precision_statement && this->structure == NULL)
3967 return NULL;
3968
3969 YYLTYPE loc = this->get_location();
3970
3971 if (this->precision != ast_precision_none
3972 && !state->check_precision_qualifiers_allowed(&loc)) {
3973 return NULL;
3974 }
3975 if (this->precision != ast_precision_none
3976 && this->structure != NULL) {
3977 _mesa_glsl_error(&loc, state,
3978 "precision qualifiers do not apply to structures");
3979 return NULL;
3980 }
3981
3982 /* If this is a precision statement, check that the type to which it is
3983 * applied is either float or int.
3984 *
3985 * From section 4.5.3 of the GLSL 1.30 spec:
3986 * "The precision statement
3987 * precision precision-qualifier type;
3988 * can be used to establish a default precision qualifier. The type
3989 * field can be either int or float [...]. Any other types or
3990 * qualifiers will result in an error.
3991 */
3992 if (this->is_precision_statement) {
3993 assert(this->precision != ast_precision_none);
3994 assert(this->structure == NULL); /* The check for structures was
3995 * performed above. */
3996 if (this->is_array) {
3997 _mesa_glsl_error(&loc, state,
3998 "default precision statements do not apply to "
3999 "arrays");
4000 return NULL;
4001 }
4002 if (strcmp(this->type_name, "float") != 0 &&
4003 strcmp(this->type_name, "int") != 0) {
4004 _mesa_glsl_error(&loc, state,
4005 "default precision statements apply only to types "
4006 "float and int");
4007 return NULL;
4008 }
4009
4010 /* FINISHME: Translate precision statements into IR. */
4011 return NULL;
4012 }
4013
4014 if (this->structure != NULL)
4015 return this->structure->hir(instructions, state);
4016
4017 return NULL;
4018 }
4019
4020
4021 ir_rvalue *
4022 ast_struct_specifier::hir(exec_list *instructions,
4023 struct _mesa_glsl_parse_state *state)
4024 {
4025 unsigned decl_count = 0;
4026
4027 /* Make an initial pass over the list of structure fields to determine how
4028 * many there are. Each element in this list is an ast_declarator_list.
4029 * This means that we actually need to count the number of elements in the
4030 * 'declarations' list in each of the elements.
4031 */
4032 foreach_list_typed (ast_declarator_list, decl_list, link,
4033 &this->declarations) {
4034 foreach_list_const (decl_ptr, & decl_list->declarations) {
4035 decl_count++;
4036 }
4037 }
4038
4039 /* Allocate storage for the structure fields and process the field
4040 * declarations. As the declarations are processed, try to also convert
4041 * the types to HIR. This ensures that structure definitions embedded in
4042 * other structure definitions are processed.
4043 */
4044 glsl_struct_field *const fields = ralloc_array(state, glsl_struct_field,
4045 decl_count);
4046
4047 unsigned i = 0;
4048 foreach_list_typed (ast_declarator_list, decl_list, link,
4049 &this->declarations) {
4050 const char *type_name;
4051
4052 decl_list->type->specifier->hir(instructions, state);
4053
4054 /* Section 10.9 of the GLSL ES 1.00 specification states that
4055 * embedded structure definitions have been removed from the language.
4056 */
4057 if (state->es_shader && decl_list->type->specifier->structure != NULL) {
4058 YYLTYPE loc = this->get_location();
4059 _mesa_glsl_error(&loc, state, "Embedded structure definitions are "
4060 "not allowed in GLSL ES 1.00.");
4061 }
4062
4063 const glsl_type *decl_type =
4064 decl_list->type->specifier->glsl_type(& type_name, state);
4065
4066 foreach_list_typed (ast_declaration, decl, link,
4067 &decl_list->declarations) {
4068 const struct glsl_type *field_type = decl_type;
4069 if (decl->is_array) {
4070 YYLTYPE loc = decl->get_location();
4071 field_type = process_array_type(&loc, decl_type, decl->array_size,
4072 state);
4073 }
4074 fields[i].type = (field_type != NULL)
4075 ? field_type : glsl_type::error_type;
4076 fields[i].name = decl->identifier;
4077 i++;
4078 }
4079 }
4080
4081 assert(i == decl_count);
4082
4083 const glsl_type *t =
4084 glsl_type::get_record_instance(fields, decl_count, this->name);
4085
4086 YYLTYPE loc = this->get_location();
4087 if (!state->symbols->add_type(name, t)) {
4088 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
4089 } else {
4090 const glsl_type **s = reralloc(state, state->user_structures,
4091 const glsl_type *,
4092 state->num_user_structures + 1);
4093 if (s != NULL) {
4094 s[state->num_user_structures] = t;
4095 state->user_structures = s;
4096 state->num_user_structures++;
4097 }
4098 }
4099
4100 /* Structure type definitions do not have r-values.
4101 */
4102 return NULL;
4103 }
4104
4105 static struct gl_uniform_block *
4106 get_next_uniform_block(struct _mesa_glsl_parse_state *state)
4107 {
4108 if (state->num_uniform_blocks >= state->uniform_block_array_size) {
4109 state->uniform_block_array_size *= 2;
4110 if (state->uniform_block_array_size <= 4)
4111 state->uniform_block_array_size = 4;
4112
4113 state->uniform_blocks = reralloc(state,
4114 state->uniform_blocks,
4115 struct gl_uniform_block,
4116 state->uniform_block_array_size);
4117 }
4118
4119 memset(&state->uniform_blocks[state->num_uniform_blocks],
4120 0, sizeof(*state->uniform_blocks));
4121 return &state->uniform_blocks[state->num_uniform_blocks++];
4122 }
4123
4124 ir_rvalue *
4125 ast_uniform_block::hir(exec_list *instructions,
4126 struct _mesa_glsl_parse_state *state)
4127 {
4128 /* The ast_uniform_block has a list of ast_declarator_lists. We
4129 * need to turn those into ir_variables with an association
4130 * with this uniform block.
4131 */
4132 struct gl_uniform_block *ubo = get_next_uniform_block(state);
4133 ubo->Name = ralloc_strdup(state->uniform_blocks, this->block_name);
4134
4135 if (!state->symbols->add_uniform_block(ubo)) {
4136 YYLTYPE loc = this->get_location();
4137 _mesa_glsl_error(&loc, state, "Uniform block name `%s' already taken in "
4138 "the current scope.\n", ubo->Name);
4139 }
4140
4141 unsigned int num_variables = 0;
4142 foreach_list_typed(ast_declarator_list, decl_list, link, &declarations) {
4143 foreach_list_const(node, &decl_list->declarations) {
4144 num_variables++;
4145 }
4146 }
4147
4148 bool block_row_major = this->layout.flags.q.row_major;
4149
4150 ubo->Uniforms = rzalloc_array(state->uniform_blocks,
4151 struct gl_uniform_buffer_variable,
4152 num_variables);
4153
4154 foreach_list_typed(ast_declarator_list, decl_list, link, &declarations) {
4155 exec_list declared_variables;
4156
4157 decl_list->hir(&declared_variables, state);
4158
4159 foreach_list_const(node, &declared_variables) {
4160 ir_variable *var = (ir_variable *)node;
4161
4162 struct gl_uniform_buffer_variable *ubo_var =
4163 &ubo->Uniforms[ubo->NumUniforms++];
4164
4165 var->uniform_block = ubo - state->uniform_blocks;
4166
4167 ubo_var->Name = ralloc_strdup(state->uniform_blocks, var->name);
4168 ubo_var->Type = var->type;
4169 ubo_var->Offset = 0; /* Assigned at link time. */
4170
4171 if (var->type->is_matrix() ||
4172 (var->type->is_array() && var->type->fields.array->is_matrix())) {
4173 ubo_var->RowMajor = block_row_major;
4174 if (decl_list->type->qualifier.flags.q.row_major)
4175 ubo_var->RowMajor = true;
4176 else if (decl_list->type->qualifier.flags.q.column_major)
4177 ubo_var->RowMajor = false;
4178 }
4179
4180 /* From the GL_ARB_uniform_buffer_object spec:
4181 *
4182 * "Sampler types are not allowed inside of uniform
4183 * blocks. All other types, arrays, and structures
4184 * allowed for uniforms are allowed within a uniform
4185 * block."
4186 */
4187 if (var->type->contains_sampler()) {
4188 YYLTYPE loc = decl_list->get_location();
4189 _mesa_glsl_error(&loc, state,
4190 "Uniform in non-default uniform block contains sampler\n");
4191 }
4192 }
4193
4194 instructions->append_list(&declared_variables);
4195 }
4196
4197 return NULL;
4198 }
4199
4200 static void
4201 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
4202 exec_list *instructions)
4203 {
4204 bool gl_FragColor_assigned = false;
4205 bool gl_FragData_assigned = false;
4206 bool user_defined_fs_output_assigned = false;
4207 ir_variable *user_defined_fs_output = NULL;
4208
4209 /* It would be nice to have proper location information. */
4210 YYLTYPE loc;
4211 memset(&loc, 0, sizeof(loc));
4212
4213 foreach_list(node, instructions) {
4214 ir_variable *var = ((ir_instruction *)node)->as_variable();
4215
4216 if (!var || !var->assigned)
4217 continue;
4218
4219 if (strcmp(var->name, "gl_FragColor") == 0)
4220 gl_FragColor_assigned = true;
4221 else if (strcmp(var->name, "gl_FragData") == 0)
4222 gl_FragData_assigned = true;
4223 else if (strncmp(var->name, "gl_", 3) != 0) {
4224 if (state->target == fragment_shader &&
4225 (var->mode == ir_var_out || var->mode == ir_var_inout)) {
4226 user_defined_fs_output_assigned = true;
4227 user_defined_fs_output = var;
4228 }
4229 }
4230 }
4231
4232 /* From the GLSL 1.30 spec:
4233 *
4234 * "If a shader statically assigns a value to gl_FragColor, it
4235 * may not assign a value to any element of gl_FragData. If a
4236 * shader statically writes a value to any element of
4237 * gl_FragData, it may not assign a value to
4238 * gl_FragColor. That is, a shader may assign values to either
4239 * gl_FragColor or gl_FragData, but not both. Multiple shaders
4240 * linked together must also consistently write just one of
4241 * these variables. Similarly, if user declared output
4242 * variables are in use (statically assigned to), then the
4243 * built-in variables gl_FragColor and gl_FragData may not be
4244 * assigned to. These incorrect usages all generate compile
4245 * time errors."
4246 */
4247 if (gl_FragColor_assigned && gl_FragData_assigned) {
4248 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
4249 "`gl_FragColor' and `gl_FragData'\n");
4250 } else if (gl_FragColor_assigned && user_defined_fs_output_assigned) {
4251 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
4252 "`gl_FragColor' and `%s'\n",
4253 user_defined_fs_output->name);
4254 } else if (gl_FragData_assigned && user_defined_fs_output_assigned) {
4255 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
4256 "`gl_FragData' and `%s'\n",
4257 user_defined_fs_output->name);
4258 }
4259 }