Make ir_function::signatures private
[mesa.git] / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51 #include <stdio.h>
52 #include "main/imports.h"
53 #include "glsl_symbol_table.h"
54 #include "glsl_parser_extras.h"
55 #include "ast.h"
56 #include "glsl_types.h"
57 #include "ir.h"
58
59 void
60 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
61 {
62 struct simple_node *ptr;
63
64 _mesa_glsl_initialize_variables(instructions, state);
65 _mesa_glsl_initialize_constructors(instructions, state);
66 _mesa_glsl_initialize_functions(instructions, state);
67
68 state->current_function = NULL;
69
70 foreach (ptr, & state->translation_unit) {
71 ((ast_node *)ptr)->hir(instructions, state);
72 }
73 }
74
75
76 /**
77 * If a conversion is available, convert one operand to a different type
78 *
79 * The \c from \c ir_rvalue is converted "in place".
80 *
81 * \param to Type that the operand it to be converted to
82 * \param from Operand that is being converted
83 * \param state GLSL compiler state
84 *
85 * \return
86 * If a conversion is possible (or unnecessary), \c true is returned.
87 * Otherwise \c false is returned.
88 */
89 static bool
90 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
91 struct _mesa_glsl_parse_state *state)
92 {
93 if (to->base_type == from->type->base_type)
94 return true;
95
96 /* This conversion was added in GLSL 1.20. If the compilation mode is
97 * GLSL 1.10, the conversion is skipped.
98 */
99 if (state->language_version < 120)
100 return false;
101
102 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
103 *
104 * "There are no implicit array or structure conversions. For
105 * example, an array of int cannot be implicitly converted to an
106 * array of float. There are no implicit conversions between
107 * signed and unsigned integers."
108 */
109 /* FINISHME: The above comment is partially a lie. There is int/uint
110 * FINISHME: conversion for immediate constants.
111 */
112 if (!to->is_float() || !from->type->is_numeric())
113 return false;
114
115 switch (from->type->base_type) {
116 case GLSL_TYPE_INT:
117 from = new ir_expression(ir_unop_i2f, to, from, NULL);
118 break;
119 case GLSL_TYPE_UINT:
120 from = new ir_expression(ir_unop_u2f, to, from, NULL);
121 break;
122 case GLSL_TYPE_BOOL:
123 assert(!"FINISHME: Convert bool to float.");
124 default:
125 assert(0);
126 }
127
128 return true;
129 }
130
131
132 static const struct glsl_type *
133 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
134 bool multiply,
135 struct _mesa_glsl_parse_state *state)
136 {
137 const glsl_type *const type_a = value_a->type;
138 const glsl_type *const type_b = value_b->type;
139
140 /* From GLSL 1.50 spec, page 56:
141 *
142 * "The arithmetic binary operators add (+), subtract (-),
143 * multiply (*), and divide (/) operate on integer and
144 * floating-point scalars, vectors, and matrices."
145 */
146 if (!type_a->is_numeric() || !type_b->is_numeric()) {
147 return glsl_type::error_type;
148 }
149
150
151 /* "If one operand is floating-point based and the other is
152 * not, then the conversions from Section 4.1.10 "Implicit
153 * Conversions" are applied to the non-floating-point-based operand."
154 */
155 if (!apply_implicit_conversion(type_a, value_b, state)
156 && !apply_implicit_conversion(type_b, value_a, state)) {
157 return glsl_type::error_type;
158 }
159
160 /* "If the operands are integer types, they must both be signed or
161 * both be unsigned."
162 *
163 * From this rule and the preceeding conversion it can be inferred that
164 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
165 * The is_numeric check above already filtered out the case where either
166 * type is not one of these, so now the base types need only be tested for
167 * equality.
168 */
169 if (type_a->base_type != type_b->base_type) {
170 return glsl_type::error_type;
171 }
172
173 /* "All arithmetic binary operators result in the same fundamental type
174 * (signed integer, unsigned integer, or floating-point) as the
175 * operands they operate on, after operand type conversion. After
176 * conversion, the following cases are valid
177 *
178 * * The two operands are scalars. In this case the operation is
179 * applied, resulting in a scalar."
180 */
181 if (type_a->is_scalar() && type_b->is_scalar())
182 return type_a;
183
184 /* "* One operand is a scalar, and the other is a vector or matrix.
185 * In this case, the scalar operation is applied independently to each
186 * component of the vector or matrix, resulting in the same size
187 * vector or matrix."
188 */
189 if (type_a->is_scalar()) {
190 if (!type_b->is_scalar())
191 return type_b;
192 } else if (type_b->is_scalar()) {
193 return type_a;
194 }
195
196 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
197 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
198 * handled.
199 */
200 assert(!type_a->is_scalar());
201 assert(!type_b->is_scalar());
202
203 /* "* The two operands are vectors of the same size. In this case, the
204 * operation is done component-wise resulting in the same size
205 * vector."
206 */
207 if (type_a->is_vector() && type_b->is_vector()) {
208 return (type_a == type_b) ? type_a : glsl_type::error_type;
209 }
210
211 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
212 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
213 * <vector, vector> have been handled. At least one of the operands must
214 * be matrix. Further, since there are no integer matrix types, the base
215 * type of both operands must be float.
216 */
217 assert(type_a->is_matrix() || type_b->is_matrix());
218 assert(type_a->base_type == GLSL_TYPE_FLOAT);
219 assert(type_b->base_type == GLSL_TYPE_FLOAT);
220
221 /* "* The operator is add (+), subtract (-), or divide (/), and the
222 * operands are matrices with the same number of rows and the same
223 * number of columns. In this case, the operation is done component-
224 * wise resulting in the same size matrix."
225 * * The operator is multiply (*), where both operands are matrices or
226 * one operand is a vector and the other a matrix. A right vector
227 * operand is treated as a column vector and a left vector operand as a
228 * row vector. In all these cases, it is required that the number of
229 * columns of the left operand is equal to the number of rows of the
230 * right operand. Then, the multiply (*) operation does a linear
231 * algebraic multiply, yielding an object that has the same number of
232 * rows as the left operand and the same number of columns as the right
233 * operand. Section 5.10 "Vector and Matrix Operations" explains in
234 * more detail how vectors and matrices are operated on."
235 */
236 if (! multiply) {
237 return (type_a == type_b) ? type_a : glsl_type::error_type;
238 } else {
239 if (type_a->is_matrix() && type_b->is_matrix()) {
240 /* Matrix multiply. The columns of A must match the rows of B. Given
241 * the other previously tested constraints, this means the vector type
242 * of a row from A must be the same as the vector type of a column from
243 * B.
244 */
245 if (type_a->row_type() == type_b->column_type()) {
246 /* The resulting matrix has the number of columns of matrix B and
247 * the number of rows of matrix A. We get the row count of A by
248 * looking at the size of a vector that makes up a column. The
249 * transpose (size of a row) is done for B.
250 */
251 return
252 glsl_type::get_instance(type_a->base_type,
253 type_a->column_type()->vector_elements,
254 type_b->row_type()->vector_elements);
255 }
256 } else if (type_a->is_matrix()) {
257 /* A is a matrix and B is a column vector. Columns of A must match
258 * rows of B. Given the other previously tested constraints, this
259 * means the vector type of a row from A must be the same as the
260 * vector the type of B.
261 */
262 if (type_a->row_type() == type_b)
263 return type_b;
264 } else {
265 assert(type_b->is_matrix());
266
267 /* A is a row vector and B is a matrix. Columns of A must match rows
268 * of B. Given the other previously tested constraints, this means
269 * the type of A must be the same as the vector type of a column from
270 * B.
271 */
272 if (type_a == type_b->column_type())
273 return type_a;
274 }
275 }
276
277
278 /* "All other cases are illegal."
279 */
280 return glsl_type::error_type;
281 }
282
283
284 static const struct glsl_type *
285 unary_arithmetic_result_type(const struct glsl_type *type)
286 {
287 /* From GLSL 1.50 spec, page 57:
288 *
289 * "The arithmetic unary operators negate (-), post- and pre-increment
290 * and decrement (-- and ++) operate on integer or floating-point
291 * values (including vectors and matrices). All unary operators work
292 * component-wise on their operands. These result with the same type
293 * they operated on."
294 */
295 if (!type->is_numeric())
296 return glsl_type::error_type;
297
298 return type;
299 }
300
301
302 static const struct glsl_type *
303 modulus_result_type(const struct glsl_type *type_a,
304 const struct glsl_type *type_b)
305 {
306 /* From GLSL 1.50 spec, page 56:
307 * "The operator modulus (%) operates on signed or unsigned integers or
308 * integer vectors. The operand types must both be signed or both be
309 * unsigned."
310 */
311 if (!type_a->is_integer() || !type_b->is_integer()
312 || (type_a->base_type != type_b->base_type)) {
313 return glsl_type::error_type;
314 }
315
316 /* "The operands cannot be vectors of differing size. If one operand is
317 * a scalar and the other vector, then the scalar is applied component-
318 * wise to the vector, resulting in the same type as the vector. If both
319 * are vectors of the same size, the result is computed component-wise."
320 */
321 if (type_a->is_vector()) {
322 if (!type_b->is_vector()
323 || (type_a->vector_elements == type_b->vector_elements))
324 return type_a;
325 } else
326 return type_b;
327
328 /* "The operator modulus (%) is not defined for any other data types
329 * (non-integer types)."
330 */
331 return glsl_type::error_type;
332 }
333
334
335 static const struct glsl_type *
336 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
337 struct _mesa_glsl_parse_state *state)
338 {
339 const glsl_type *const type_a = value_a->type;
340 const glsl_type *const type_b = value_b->type;
341
342 /* From GLSL 1.50 spec, page 56:
343 * "The relational operators greater than (>), less than (<), greater
344 * than or equal (>=), and less than or equal (<=) operate only on
345 * scalar integer and scalar floating-point expressions."
346 */
347 if (!type_a->is_numeric()
348 || !type_b->is_numeric()
349 || !type_a->is_scalar()
350 || !type_b->is_scalar())
351 return glsl_type::error_type;
352
353 /* "Either the operands' types must match, or the conversions from
354 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
355 * operand, after which the types must match."
356 */
357 if (!apply_implicit_conversion(type_a, value_b, state)
358 && !apply_implicit_conversion(type_b, value_a, state)) {
359 return glsl_type::error_type;
360 }
361
362 if (type_a->base_type != type_b->base_type)
363 return glsl_type::error_type;
364
365 /* "The result is scalar Boolean."
366 */
367 return glsl_type::bool_type;
368 }
369
370
371 /**
372 * Validates that a value can be assigned to a location with a specified type
373 *
374 * Validates that \c rhs can be assigned to some location. If the types are
375 * not an exact match but an automatic conversion is possible, \c rhs will be
376 * converted.
377 *
378 * \return
379 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
380 * Otherwise the actual RHS to be assigned will be returned. This may be
381 * \c rhs, or it may be \c rhs after some type conversion.
382 *
383 * \note
384 * In addition to being used for assignments, this function is used to
385 * type-check return values.
386 */
387 ir_rvalue *
388 validate_assignment(const glsl_type *lhs_type, ir_rvalue *rhs)
389 {
390 const glsl_type *const rhs_type = rhs->type;
391
392 /* If there is already some error in the RHS, just return it. Anything
393 * else will lead to an avalanche of error message back to the user.
394 */
395 if (rhs_type->is_error())
396 return rhs;
397
398 /* FINISHME: For GLSL 1.10, check that the types are not arrays. */
399
400 /* If the types are identical, the assignment can trivially proceed.
401 */
402 if (rhs_type == lhs_type)
403 return rhs;
404
405 /* FINISHME: Check for and apply automatic conversions. */
406 return NULL;
407 }
408
409 ir_rvalue *
410 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
411 ir_rvalue *lhs, ir_rvalue *rhs,
412 YYLTYPE lhs_loc)
413 {
414 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
415
416 if (!error_emitted) {
417 /* FINISHME: This does not handle 'foo.bar.a.b.c[5].d = 5' */
418 if (!lhs->is_lvalue()) {
419 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
420 error_emitted = true;
421 }
422 }
423
424 ir_rvalue *new_rhs = validate_assignment(lhs->type, rhs);
425 if (new_rhs == NULL) {
426 _mesa_glsl_error(& lhs_loc, state, "type mismatch");
427 } else {
428 rhs = new_rhs;
429 }
430
431 ir_instruction *tmp = new ir_assignment(lhs, rhs, NULL);
432 instructions->push_tail(tmp);
433
434 return rhs;
435 }
436
437
438 /**
439 * Generate a new temporary and add its declaration to the instruction stream
440 */
441 static ir_variable *
442 generate_temporary(const glsl_type *type, exec_list *instructions,
443 struct _mesa_glsl_parse_state *state)
444 {
445 char *name = (char *) malloc(sizeof(char) * 13);
446
447 snprintf(name, 13, "tmp_%08X", state->temp_index);
448 state->temp_index++;
449
450 ir_variable *const var = new ir_variable(type, name);
451 instructions->push_tail(var);
452
453 return var;
454 }
455
456
457 static ir_rvalue *
458 get_lvalue_copy(exec_list *instructions, struct _mesa_glsl_parse_state *state,
459 ir_rvalue *lvalue, YYLTYPE loc)
460 {
461 ir_variable *var;
462 ir_rvalue *var_deref;
463
464 /* FINISHME: Give unique names to the temporaries. */
465 var = new ir_variable(lvalue->type, "_internal_tmp");
466 var->mode = ir_var_auto;
467
468 var_deref = new ir_dereference(var);
469 do_assignment(instructions, state, var_deref, lvalue, loc);
470
471 /* Once we've created this temporary, mark it read only so it's no
472 * longer considered an lvalue.
473 */
474 var->read_only = true;
475
476 return var_deref;
477 }
478
479
480 ir_rvalue *
481 ast_node::hir(exec_list *instructions,
482 struct _mesa_glsl_parse_state *state)
483 {
484 (void) instructions;
485 (void) state;
486
487 return NULL;
488 }
489
490
491 ir_rvalue *
492 ast_expression::hir(exec_list *instructions,
493 struct _mesa_glsl_parse_state *state)
494 {
495 static const int operations[AST_NUM_OPERATORS] = {
496 -1, /* ast_assign doesn't convert to ir_expression. */
497 -1, /* ast_plus doesn't convert to ir_expression. */
498 ir_unop_neg,
499 ir_binop_add,
500 ir_binop_sub,
501 ir_binop_mul,
502 ir_binop_div,
503 ir_binop_mod,
504 ir_binop_lshift,
505 ir_binop_rshift,
506 ir_binop_less,
507 ir_binop_greater,
508 ir_binop_lequal,
509 ir_binop_gequal,
510 ir_binop_equal,
511 ir_binop_nequal,
512 ir_binop_bit_and,
513 ir_binop_bit_xor,
514 ir_binop_bit_or,
515 ir_unop_bit_not,
516 ir_binop_logic_and,
517 ir_binop_logic_xor,
518 ir_binop_logic_or,
519 ir_unop_logic_not,
520
521 /* Note: The following block of expression types actually convert
522 * to multiple IR instructions.
523 */
524 ir_binop_mul, /* ast_mul_assign */
525 ir_binop_div, /* ast_div_assign */
526 ir_binop_mod, /* ast_mod_assign */
527 ir_binop_add, /* ast_add_assign */
528 ir_binop_sub, /* ast_sub_assign */
529 ir_binop_lshift, /* ast_ls_assign */
530 ir_binop_rshift, /* ast_rs_assign */
531 ir_binop_bit_and, /* ast_and_assign */
532 ir_binop_bit_xor, /* ast_xor_assign */
533 ir_binop_bit_or, /* ast_or_assign */
534
535 -1, /* ast_conditional doesn't convert to ir_expression. */
536 ir_binop_add, /* ast_pre_inc. */
537 ir_binop_sub, /* ast_pre_dec. */
538 ir_binop_add, /* ast_post_inc. */
539 ir_binop_sub, /* ast_post_dec. */
540 -1, /* ast_field_selection doesn't conv to ir_expression. */
541 -1, /* ast_array_index doesn't convert to ir_expression. */
542 -1, /* ast_function_call doesn't conv to ir_expression. */
543 -1, /* ast_identifier doesn't convert to ir_expression. */
544 -1, /* ast_int_constant doesn't convert to ir_expression. */
545 -1, /* ast_uint_constant doesn't conv to ir_expression. */
546 -1, /* ast_float_constant doesn't conv to ir_expression. */
547 -1, /* ast_bool_constant doesn't conv to ir_expression. */
548 -1, /* ast_sequence doesn't convert to ir_expression. */
549 };
550 ir_rvalue *result = NULL;
551 ir_rvalue *op[2];
552 struct simple_node op_list;
553 const struct glsl_type *type = glsl_type::error_type;
554 bool error_emitted = false;
555 YYLTYPE loc;
556
557 loc = this->get_location();
558 make_empty_list(& op_list);
559
560 switch (this->oper) {
561 case ast_assign: {
562 op[0] = this->subexpressions[0]->hir(instructions, state);
563 op[1] = this->subexpressions[1]->hir(instructions, state);
564
565 result = do_assignment(instructions, state, op[0], op[1],
566 this->subexpressions[0]->get_location());
567 error_emitted = result->type->is_error();
568 type = result->type;
569 break;
570 }
571
572 case ast_plus:
573 op[0] = this->subexpressions[0]->hir(instructions, state);
574
575 error_emitted = op[0]->type->is_error();
576 if (type->is_error())
577 op[0]->type = type;
578
579 result = op[0];
580 break;
581
582 case ast_neg:
583 op[0] = this->subexpressions[0]->hir(instructions, state);
584
585 type = unary_arithmetic_result_type(op[0]->type);
586
587 error_emitted = op[0]->type->is_error();
588
589 result = new ir_expression(operations[this->oper], type,
590 op[0], NULL);
591 break;
592
593 case ast_add:
594 case ast_sub:
595 case ast_mul:
596 case ast_div:
597 op[0] = this->subexpressions[0]->hir(instructions, state);
598 op[1] = this->subexpressions[1]->hir(instructions, state);
599
600 type = arithmetic_result_type(op[0], op[1],
601 (this->oper == ast_mul),
602 state);
603
604 result = new ir_expression(operations[this->oper], type,
605 op[0], op[1]);
606 break;
607
608 case ast_mod:
609 op[0] = this->subexpressions[0]->hir(instructions, state);
610 op[1] = this->subexpressions[1]->hir(instructions, state);
611
612 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
613
614 type = modulus_result_type(op[0]->type, op[1]->type);
615
616 assert(operations[this->oper] == ir_binop_mod);
617
618 result = new ir_expression(operations[this->oper], type,
619 op[0], op[1]);
620 break;
621
622 case ast_lshift:
623 case ast_rshift:
624 /* FINISHME: Implement bit-shift operators. */
625 break;
626
627 case ast_less:
628 case ast_greater:
629 case ast_lequal:
630 case ast_gequal:
631 op[0] = this->subexpressions[0]->hir(instructions, state);
632 op[1] = this->subexpressions[1]->hir(instructions, state);
633
634 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
635
636 type = relational_result_type(op[0], op[1], state);
637
638 /* The relational operators must either generate an error or result
639 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
640 */
641 assert(type->is_error()
642 || ((type->base_type == GLSL_TYPE_BOOL)
643 && type->is_scalar()));
644
645 result = new ir_expression(operations[this->oper], type,
646 op[0], op[1]);
647 break;
648
649 case ast_nequal:
650 case ast_equal:
651 op[0] = this->subexpressions[0]->hir(instructions, state);
652 op[1] = this->subexpressions[1]->hir(instructions, state);
653
654 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
655 *
656 * "The equality operators equal (==), and not equal (!=)
657 * operate on all types. They result in a scalar Boolean. If
658 * the operand types do not match, then there must be a
659 * conversion from Section 4.1.10 "Implicit Conversions"
660 * applied to one operand that can make them match, in which
661 * case this conversion is done."
662 */
663 if ((!apply_implicit_conversion(op[0]->type, op[1], state)
664 && !apply_implicit_conversion(op[1]->type, op[0], state))
665 || (op[0]->type != op[1]->type)) {
666 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
667 "type", (this->oper == ast_equal) ? "==" : "!=");
668 error_emitted = true;
669 } else if ((state->language_version <= 110)
670 && (op[0]->type->is_array() || op[1]->type->is_array())) {
671 _mesa_glsl_error(& loc, state, "array comparisons forbidden in "
672 "GLSL 1.10");
673 error_emitted = true;
674 }
675
676 result = new ir_expression(operations[this->oper], glsl_type::bool_type,
677 op[0], op[1]);
678 type = glsl_type::bool_type;
679
680 assert(result->type == glsl_type::bool_type);
681 break;
682
683 case ast_bit_and:
684 case ast_bit_xor:
685 case ast_bit_or:
686 case ast_bit_not:
687 /* FINISHME: Implement bit-wise operators. */
688 break;
689
690 case ast_logic_and:
691 case ast_logic_xor:
692 case ast_logic_or:
693 case ast_logic_not:
694 op[0] = this->subexpressions[0]->hir(instructions, state);
695 op[1] = this->subexpressions[1]->hir(instructions, state);
696
697 if (!op[0]->type->is_boolean() || !op[0]->type->is_scalar()) {
698 YYLTYPE loc = this->subexpressions[0]->get_location();
699
700 _mesa_glsl_error(& loc, state, "LHS of `%s' must be scalar boolean",
701 operator_string(this->oper));
702 }
703
704 if (!op[1]->type->is_boolean() || !op[1]->type->is_scalar()) {
705 YYLTYPE loc = this->subexpressions[1]->get_location();
706
707 _mesa_glsl_error(& loc, state, "RHS of `%s' must be scalar boolean",
708 operator_string(this->oper));
709 }
710
711 result = new ir_expression(operations[this->oper], glsl_type::bool_type,
712 op[0], op[1]);
713 break;
714
715 case ast_mul_assign:
716 case ast_div_assign:
717 case ast_add_assign:
718 case ast_sub_assign: {
719 op[0] = this->subexpressions[0]->hir(instructions, state);
720 op[1] = this->subexpressions[1]->hir(instructions, state);
721
722 type = arithmetic_result_type(op[0], op[1],
723 (this->oper == ast_mul_assign),
724 state);
725
726 ir_rvalue *temp_rhs = new ir_expression(operations[this->oper], type,
727 op[0], op[1]);
728
729 result = do_assignment(instructions, state, op[0], temp_rhs,
730 this->subexpressions[0]->get_location());
731 type = result->type;
732 error_emitted = (op[0]->type->is_error());
733
734 /* GLSL 1.10 does not allow array assignment. However, we don't have to
735 * explicitly test for this because none of the binary expression
736 * operators allow array operands either.
737 */
738
739 break;
740 }
741
742 case ast_mod_assign: {
743 op[0] = this->subexpressions[0]->hir(instructions, state);
744 op[1] = this->subexpressions[1]->hir(instructions, state);
745
746 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
747
748 type = modulus_result_type(op[0]->type, op[1]->type);
749
750 assert(operations[this->oper] == ir_binop_mod);
751
752 struct ir_rvalue *temp_rhs;
753 temp_rhs = new ir_expression(operations[this->oper], type,
754 op[0], op[1]);
755
756 result = do_assignment(instructions, state, op[0], temp_rhs,
757 this->subexpressions[0]->get_location());
758 type = result->type;
759 error_emitted = op[0]->type->is_error();
760 break;
761 }
762
763 case ast_ls_assign:
764 case ast_rs_assign:
765 break;
766
767 case ast_and_assign:
768 case ast_xor_assign:
769 case ast_or_assign:
770 break;
771
772 case ast_conditional: {
773 op[0] = this->subexpressions[0]->hir(instructions, state);
774
775 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
776 *
777 * "The ternary selection operator (?:). It operates on three
778 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
779 * first expression, which must result in a scalar Boolean."
780 */
781 if (!op[0]->type->is_boolean() || !op[0]->type->is_scalar()) {
782 YYLTYPE loc = this->subexpressions[0]->get_location();
783
784 _mesa_glsl_error(& loc, state, "?: condition must be scalar boolean");
785 error_emitted = true;
786 }
787
788 /* The :? operator is implemented by generating an anonymous temporary
789 * followed by an if-statement. The last instruction in each branch of
790 * the if-statement assigns a value to the anonymous temporary. This
791 * temporary is the r-value of the expression.
792 */
793 ir_variable *const tmp = generate_temporary(glsl_type::error_type,
794 instructions, state);
795
796 ir_if *const stmt = new ir_if(op[0]);
797 instructions->push_tail(stmt);
798
799 op[1] = this->subexpressions[1]->hir(& stmt->then_instructions, state);
800 ir_dereference *const then_deref = new ir_dereference(tmp);
801 ir_assignment *const then_assign =
802 new ir_assignment(then_deref, op[1], NULL);
803 stmt->then_instructions.push_tail(then_assign);
804
805 op[2] = this->subexpressions[2]->hir(& stmt->else_instructions, state);
806 ir_dereference *const else_deref = new ir_dereference(tmp);
807 ir_assignment *const else_assign =
808 new ir_assignment(else_deref, op[2], NULL);
809 stmt->else_instructions.push_tail(else_assign);
810
811 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
812 *
813 * "The second and third expressions can be any type, as
814 * long their types match, or there is a conversion in
815 * Section 4.1.10 "Implicit Conversions" that can be applied
816 * to one of the expressions to make their types match. This
817 * resulting matching type is the type of the entire
818 * expression."
819 */
820 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
821 && !apply_implicit_conversion(op[2]->type, op[1], state))
822 || (op[1]->type != op[2]->type)) {
823 YYLTYPE loc = this->subexpressions[1]->get_location();
824
825 _mesa_glsl_error(& loc, state, "Second and third operands of ?: "
826 "operator must have matching types.");
827 error_emitted = true;
828 } else {
829 tmp->type = op[1]->type;
830 }
831
832 result = new ir_dereference(tmp);
833 type = tmp->type;
834 break;
835 }
836
837 case ast_pre_inc:
838 case ast_pre_dec: {
839 op[0] = this->subexpressions[0]->hir(instructions, state);
840 if (op[0]->type->base_type == GLSL_TYPE_FLOAT)
841 op[1] = new ir_constant(1.0f);
842 else
843 op[1] = new ir_constant(1);
844
845 type = arithmetic_result_type(op[0], op[1], false, state);
846
847 struct ir_rvalue *temp_rhs;
848 temp_rhs = new ir_expression(operations[this->oper], type,
849 op[0], op[1]);
850
851 result = do_assignment(instructions, state, op[0], temp_rhs,
852 this->subexpressions[0]->get_location());
853 type = result->type;
854 error_emitted = op[0]->type->is_error();
855 break;
856 }
857
858 case ast_post_inc:
859 case ast_post_dec: {
860 op[0] = this->subexpressions[0]->hir(instructions, state);
861 if (op[0]->type->base_type == GLSL_TYPE_FLOAT)
862 op[1] = new ir_constant(1.0f);
863 else
864 op[1] = new ir_constant(1);
865
866 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
867
868 type = arithmetic_result_type(op[0], op[1], false, state);
869
870 struct ir_rvalue *temp_rhs;
871 temp_rhs = new ir_expression(operations[this->oper], type,
872 op[0], op[1]);
873
874 /* Get a temporary of a copy of the lvalue before it's modified.
875 * This may get thrown away later.
876 */
877 result = get_lvalue_copy(instructions, state, op[0],
878 this->subexpressions[0]->get_location());
879
880 (void)do_assignment(instructions, state, op[0], temp_rhs,
881 this->subexpressions[0]->get_location());
882
883 type = result->type;
884 error_emitted = op[0]->type->is_error();
885 break;
886 }
887
888 case ast_field_selection:
889 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
890 type = result->type;
891 break;
892
893 case ast_array_index:
894 break;
895
896 case ast_function_call:
897 /* Should *NEVER* get here. ast_function_call should always be handled
898 * by ast_function_expression::hir.
899 */
900 assert(0);
901 break;
902
903 case ast_identifier: {
904 /* ast_identifier can appear several places in a full abstract syntax
905 * tree. This particular use must be at location specified in the grammar
906 * as 'variable_identifier'.
907 */
908 ir_variable *var =
909 state->symbols->get_variable(this->primary_expression.identifier);
910
911 result = new ir_dereference(var);
912
913 if (var != NULL) {
914 type = result->type;
915 } else {
916 _mesa_glsl_error(& loc, state, "`%s' undeclared",
917 this->primary_expression.identifier);
918
919 error_emitted = true;
920 }
921 break;
922 }
923
924 case ast_int_constant:
925 type = glsl_type::int_type;
926 result = new ir_constant(type, & this->primary_expression);
927 break;
928
929 case ast_uint_constant:
930 type = glsl_type::uint_type;
931 result = new ir_constant(type, & this->primary_expression);
932 break;
933
934 case ast_float_constant:
935 type = glsl_type::float_type;
936 result = new ir_constant(type, & this->primary_expression);
937 break;
938
939 case ast_bool_constant:
940 type = glsl_type::bool_type;
941 result = new ir_constant(type, & this->primary_expression);
942 break;
943
944 case ast_sequence: {
945 struct simple_node *ptr;
946
947 /* It should not be possible to generate a sequence in the AST without
948 * any expressions in it.
949 */
950 assert(!is_empty_list(&this->expressions));
951
952 /* The r-value of a sequence is the last expression in the sequence. If
953 * the other expressions in the sequence do not have side-effects (and
954 * therefore add instructions to the instruction list), they get dropped
955 * on the floor.
956 */
957 foreach (ptr, &this->expressions)
958 result = ((ast_node *)ptr)->hir(instructions, state);
959
960 type = result->type;
961
962 /* Any errors should have already been emitted in the loop above.
963 */
964 error_emitted = true;
965 break;
966 }
967 }
968
969 if (type->is_error() && !error_emitted)
970 _mesa_glsl_error(& loc, state, "type mismatch");
971
972 return result;
973 }
974
975
976 ir_rvalue *
977 ast_expression_statement::hir(exec_list *instructions,
978 struct _mesa_glsl_parse_state *state)
979 {
980 /* It is possible to have expression statements that don't have an
981 * expression. This is the solitary semicolon:
982 *
983 * for (i = 0; i < 5; i++)
984 * ;
985 *
986 * In this case the expression will be NULL. Test for NULL and don't do
987 * anything in that case.
988 */
989 if (expression != NULL)
990 expression->hir(instructions, state);
991
992 /* Statements do not have r-values.
993 */
994 return NULL;
995 }
996
997
998 ir_rvalue *
999 ast_compound_statement::hir(exec_list *instructions,
1000 struct _mesa_glsl_parse_state *state)
1001 {
1002 struct simple_node *ptr;
1003
1004
1005 if (new_scope)
1006 state->symbols->push_scope();
1007
1008 foreach (ptr, &statements)
1009 ((ast_node *)ptr)->hir(instructions, state);
1010
1011 if (new_scope)
1012 state->symbols->pop_scope();
1013
1014 /* Compound statements do not have r-values.
1015 */
1016 return NULL;
1017 }
1018
1019
1020 static const glsl_type *
1021 process_array_type(const glsl_type *base, ast_node *array_size,
1022 struct _mesa_glsl_parse_state *state)
1023 {
1024 unsigned length = 0;
1025
1026 /* FINISHME: Reject delcarations of multidimensional arrays. */
1027
1028 if (array_size != NULL) {
1029 exec_list dummy_instructions;
1030 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
1031 YYLTYPE loc = array_size->get_location();
1032
1033 /* FINISHME: Verify that the grammar forbids side-effects in array
1034 * FINISHME: sizes. i.e., 'vec4 [x = 12] data'
1035 */
1036 assert(dummy_instructions.is_empty());
1037
1038 if (ir != NULL) {
1039 if (!ir->type->is_integer()) {
1040 _mesa_glsl_error(& loc, state, "array size must be integer type");
1041 } else if (!ir->type->is_scalar()) {
1042 _mesa_glsl_error(& loc, state, "array size must be scalar type");
1043 } else {
1044 ir_constant *const size = ir->constant_expression_value();
1045
1046 if (size == NULL) {
1047 _mesa_glsl_error(& loc, state, "array size must be a "
1048 "constant valued expression");
1049 } else if (size->value.i[0] <= 0) {
1050 _mesa_glsl_error(& loc, state, "array size must be > 0");
1051 } else {
1052 assert(size->type == ir->type);
1053 length = size->value.u[0];
1054 }
1055 }
1056 }
1057 }
1058
1059 return glsl_type::get_array_instance(base, length);
1060 }
1061
1062
1063 const glsl_type *
1064 ast_type_specifier::glsl_type(const char **name,
1065 struct _mesa_glsl_parse_state *state) const
1066 {
1067 const struct glsl_type *type;
1068
1069 if (this->type_specifier == ast_struct) {
1070 /* FINISHME: Handle annonymous structures. */
1071 type = NULL;
1072 } else {
1073 type = state->symbols->get_type(this->type_name);
1074 *name = this->type_name;
1075
1076 if (this->is_array) {
1077 type = process_array_type(type, this->array_size, state);
1078 }
1079 }
1080
1081 return type;
1082 }
1083
1084
1085 static void
1086 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
1087 struct ir_variable *var,
1088 struct _mesa_glsl_parse_state *state,
1089 YYLTYPE *loc)
1090 {
1091 if (qual->invariant)
1092 var->invariant = 1;
1093
1094 /* FINISHME: Mark 'in' variables at global scope as read-only. */
1095 if (qual->constant || qual->attribute || qual->uniform
1096 || (qual->varying && (state->target == fragment_shader)))
1097 var->read_only = 1;
1098
1099 if (qual->centroid)
1100 var->centroid = 1;
1101
1102 if (qual->attribute && state->target == fragment_shader) {
1103 var->type = glsl_type::error_type;
1104 _mesa_glsl_error(loc, state,
1105 "`attribute' variables may not be declared in the "
1106 "fragment shader");
1107 }
1108
1109 if (qual->in && qual->out)
1110 var->mode = ir_var_inout;
1111 else if (qual->attribute || qual->in
1112 || (qual->varying && (state->target == fragment_shader)))
1113 var->mode = ir_var_in;
1114 else if (qual->out || (qual->varying && (state->target == vertex_shader)))
1115 var->mode = ir_var_out;
1116 else if (qual->uniform)
1117 var->mode = ir_var_uniform;
1118 else
1119 var->mode = ir_var_auto;
1120
1121 if (qual->flat)
1122 var->interpolation = ir_var_flat;
1123 else if (qual->noperspective)
1124 var->interpolation = ir_var_noperspective;
1125 else
1126 var->interpolation = ir_var_smooth;
1127 }
1128
1129
1130 ir_rvalue *
1131 ast_declarator_list::hir(exec_list *instructions,
1132 struct _mesa_glsl_parse_state *state)
1133 {
1134 struct simple_node *ptr;
1135 const struct glsl_type *decl_type;
1136 const char *type_name = NULL;
1137
1138
1139 /* FINISHME: Handle vertex shader "invariant" declarations that do not
1140 * FINISHME: include a type. These re-declare built-in variables to be
1141 * FINISHME: invariant.
1142 */
1143
1144 decl_type = this->type->specifier->glsl_type(& type_name, state);
1145
1146 foreach (ptr, &this->declarations) {
1147 struct ast_declaration *const decl = (struct ast_declaration * )ptr;
1148 const struct glsl_type *var_type;
1149 struct ir_variable *var;
1150 YYLTYPE loc = this->get_location();
1151
1152 /* FINISHME: Emit a warning if a variable declaration shadows a
1153 * FINISHME: declaration at a higher scope.
1154 */
1155
1156 if ((decl_type == NULL) || decl_type->is_void()) {
1157 if (type_name != NULL) {
1158 _mesa_glsl_error(& loc, state,
1159 "invalid type `%s' in declaration of `%s'",
1160 type_name, decl->identifier);
1161 } else {
1162 _mesa_glsl_error(& loc, state,
1163 "invalid type in declaration of `%s'",
1164 decl->identifier);
1165 }
1166 continue;
1167 }
1168
1169 if (decl->is_array) {
1170 var_type = process_array_type(decl_type, decl->array_size, state);
1171 } else {
1172 var_type = decl_type;
1173 }
1174
1175 var = new ir_variable(var_type, decl->identifier);
1176
1177 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
1178 & loc);
1179
1180 /* Attempt to add the variable to the symbol table. If this fails, it
1181 * means the variable has already been declared at this scope.
1182 */
1183 if (state->symbols->name_declared_this_scope(decl->identifier)) {
1184 YYLTYPE loc = this->get_location();
1185
1186 _mesa_glsl_error(& loc, state, "`%s' redeclared",
1187 decl->identifier);
1188 continue;
1189 }
1190
1191 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
1192 *
1193 * "Identifiers starting with "gl_" are reserved for use by
1194 * OpenGL, and may not be declared in a shader as either a
1195 * variable or a function."
1196 */
1197 if (strncmp(decl->identifier, "gl_", 3) == 0) {
1198 /* FINISHME: This should only trigger if we're not redefining
1199 * FINISHME: a builtin (to add a qualifier, for example).
1200 */
1201 _mesa_glsl_error(& loc, state,
1202 "identifier `%s' uses reserved `gl_' prefix",
1203 decl->identifier);
1204 }
1205
1206 instructions->push_tail(var);
1207
1208 if (state->current_function != NULL) {
1209 const char *mode = NULL;
1210 const char *extra = "";
1211
1212 /* There is no need to check for 'inout' here because the parser will
1213 * only allow that in function parameter lists.
1214 */
1215 if (this->type->qualifier.attribute) {
1216 mode = "attribute";
1217 } else if (this->type->qualifier.uniform) {
1218 mode = "uniform";
1219 } else if (this->type->qualifier.varying) {
1220 mode = "varying";
1221 } else if (this->type->qualifier.in) {
1222 mode = "in";
1223 extra = " or in function parameter list";
1224 } else if (this->type->qualifier.out) {
1225 mode = "out";
1226 extra = " or in function parameter list";
1227 }
1228
1229 if (mode) {
1230 _mesa_glsl_error(& loc, state,
1231 "%s variable `%s' must be declared at "
1232 "global scope%s",
1233 mode, var->name, extra);
1234 }
1235 } else if (var->mode == ir_var_in) {
1236 if (state->target == vertex_shader) {
1237 bool error_emitted = false;
1238
1239 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
1240 *
1241 * "Vertex shader inputs can only be float, floating-point
1242 * vectors, matrices, signed and unsigned integers and integer
1243 * vectors. Vertex shader inputs can also form arrays of these
1244 * types, but not structures."
1245 *
1246 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
1247 *
1248 * "Vertex shader inputs can only be float, floating-point
1249 * vectors, matrices, signed and unsigned integers and integer
1250 * vectors. They cannot be arrays or structures."
1251 *
1252 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
1253 *
1254 * "The attribute qualifier can be used only with float,
1255 * floating-point vectors, and matrices. Attribute variables
1256 * cannot be declared as arrays or structures."
1257 */
1258 const glsl_type *check_type = var->type->is_array()
1259 ? var->type->fields.array : var->type;
1260
1261 switch (check_type->base_type) {
1262 case GLSL_TYPE_FLOAT:
1263 break;
1264 case GLSL_TYPE_UINT:
1265 case GLSL_TYPE_INT:
1266 if (state->language_version > 120)
1267 break;
1268 /* FALLTHROUGH */
1269 default:
1270 _mesa_glsl_error(& loc, state,
1271 "vertex shader input / attribute cannot have "
1272 "type %s`%s'",
1273 var->type->is_array() ? "array of " : "",
1274 check_type->name);
1275 error_emitted = true;
1276 }
1277
1278 if (!error_emitted && (state->language_version <= 130)
1279 && var->type->is_array()) {
1280 _mesa_glsl_error(& loc, state,
1281 "vertex shader input / attribute cannot have "
1282 "array type");
1283 error_emitted = true;
1284 }
1285 }
1286 }
1287
1288 if (decl->initializer != NULL) {
1289 YYLTYPE initializer_loc = decl->initializer->get_location();
1290
1291 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
1292 *
1293 * "All uniform variables are read-only and are initialized either
1294 * directly by an application via API commands, or indirectly by
1295 * OpenGL."
1296 */
1297 if ((state->language_version <= 110)
1298 && (var->mode == ir_var_uniform)) {
1299 _mesa_glsl_error(& initializer_loc, state,
1300 "cannot initialize uniforms in GLSL 1.10");
1301 }
1302
1303 if (var->type->is_sampler()) {
1304 _mesa_glsl_error(& initializer_loc, state,
1305 "cannot initialize samplers");
1306 }
1307
1308 if ((var->mode == ir_var_in) && (state->current_function == NULL)) {
1309 _mesa_glsl_error(& initializer_loc, state,
1310 "cannot initialize %s shader input / %s",
1311 (state->target == vertex_shader)
1312 ? "vertex" : "fragment",
1313 (state->target == vertex_shader)
1314 ? "attribute" : "varying");
1315 }
1316
1317 ir_dereference *const lhs = new ir_dereference(var);
1318 ir_rvalue *const rhs = decl->initializer->hir(instructions, state);
1319
1320 /* FINISHME: If the declaration is either 'const' or 'uniform', the
1321 * FINISHME: initializer (rhs) must be a constant expression.
1322 */
1323
1324 if (!rhs->type->is_error()) {
1325 (void) do_assignment(instructions, state, lhs, rhs,
1326 this->get_location());
1327 }
1328 }
1329
1330 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
1331 *
1332 * "It is an error to write to a const variable outside of
1333 * its declaration, so they must be initialized when
1334 * declared."
1335 */
1336 if (this->type->qualifier.constant && decl->initializer == NULL) {
1337 _mesa_glsl_error(& loc, state,
1338 "const declaration of `%s' must be initialized");
1339 }
1340
1341 /* Add the vairable to the symbol table after processing the initializer.
1342 * This differs from most C-like languages, but it follows the GLSL
1343 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
1344 * spec:
1345 *
1346 * "Within a declaration, the scope of a name starts immediately
1347 * after the initializer if present or immediately after the name
1348 * being declared if not."
1349 */
1350 const bool added_variable =
1351 state->symbols->add_variable(decl->identifier, var);
1352 assert(added_variable);
1353 }
1354
1355 /* Variable declarations do not have r-values.
1356 */
1357 return NULL;
1358 }
1359
1360
1361 ir_rvalue *
1362 ast_parameter_declarator::hir(exec_list *instructions,
1363 struct _mesa_glsl_parse_state *state)
1364 {
1365 const struct glsl_type *type;
1366 const char *name = NULL;
1367 YYLTYPE loc = this->get_location();
1368
1369 type = this->type->specifier->glsl_type(& name, state);
1370
1371 if (type == NULL) {
1372 if (name != NULL) {
1373 _mesa_glsl_error(& loc, state,
1374 "invalid type `%s' in declaration of `%s'",
1375 name, this->identifier);
1376 } else {
1377 _mesa_glsl_error(& loc, state,
1378 "invalid type in declaration of `%s'",
1379 this->identifier);
1380 }
1381
1382 type = glsl_type::error_type;
1383 }
1384
1385 ir_variable *var = new ir_variable(type, this->identifier);
1386
1387 /* FINISHME: Handle array declarations. Note that this requires
1388 * FINISHME: complete handling of constant expressions.
1389 */
1390
1391 /* Apply any specified qualifiers to the parameter declaration. Note that
1392 * for function parameters the default mode is 'in'.
1393 */
1394 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc);
1395 if (var->mode == ir_var_auto)
1396 var->mode = ir_var_in;
1397
1398 instructions->push_tail(var);
1399
1400 /* Parameter declarations do not have r-values.
1401 */
1402 return NULL;
1403 }
1404
1405
1406 static void
1407 ast_function_parameters_to_hir(struct simple_node *ast_parameters,
1408 exec_list *ir_parameters,
1409 struct _mesa_glsl_parse_state *state)
1410 {
1411 struct simple_node *ptr;
1412
1413 foreach (ptr, ast_parameters) {
1414 ((ast_node *)ptr)->hir(ir_parameters, state);
1415 }
1416 }
1417
1418
1419 static bool
1420 parameter_lists_match(exec_list *list_a, exec_list *list_b)
1421 {
1422 exec_list_iterator iter_a = list_a->iterator();
1423 exec_list_iterator iter_b = list_b->iterator();
1424
1425 while (iter_a.has_next()) {
1426 /* If all of the parameters from the other parameter list have been
1427 * exhausted, the lists have different length and, by definition,
1428 * do not match.
1429 */
1430 if (!iter_b.has_next())
1431 return false;
1432
1433 /* If the types of the parameters do not match, the parameters lists
1434 * are different.
1435 */
1436 /* FINISHME */
1437
1438
1439 iter_a.next();
1440 iter_b.next();
1441 }
1442
1443 return true;
1444 }
1445
1446
1447 ir_rvalue *
1448 ast_function_definition::hir(exec_list *instructions,
1449 struct _mesa_glsl_parse_state *state)
1450 {
1451 ir_label *label;
1452 ir_function_signature *signature = NULL;
1453 ir_function *f = NULL;
1454 exec_list parameters;
1455
1456
1457 /* Convert the list of function parameters to HIR now so that they can be
1458 * used below to compare this function's signature with previously seen
1459 * signatures for functions with the same name.
1460 */
1461 ast_function_parameters_to_hir(& this->prototype->parameters, & parameters,
1462 state);
1463
1464 const char *return_type_name;
1465 const glsl_type *return_type =
1466 this->prototype->return_type->specifier->glsl_type(& return_type_name,
1467 state);
1468
1469 assert(return_type != NULL);
1470
1471 /* Verify that this function's signature either doesn't match a previously
1472 * seen signature for a function with the same name, or, if a match is found,
1473 * that the previously seen signature does not have an associated definition.
1474 */
1475 const char *const name = this->prototype->identifier;
1476 f = state->symbols->get_function(name);
1477 if (f != NULL) {
1478 foreach_iter(exec_list_iterator, iter, *f) {
1479 signature = (struct ir_function_signature *) iter.get();
1480
1481 /* Compare the parameter list of the function being defined to the
1482 * existing function. If the parameter lists match, then the return
1483 * type must also match and the existing function must not have a
1484 * definition.
1485 */
1486 if (parameter_lists_match(& parameters, & signature->parameters)) {
1487 /* FINISHME: Compare return types. */
1488
1489 if (signature->definition != NULL) {
1490 YYLTYPE loc = this->get_location();
1491
1492 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
1493 signature = NULL;
1494 break;
1495 }
1496 }
1497
1498 signature = NULL;
1499 }
1500
1501 } else if (state->symbols->name_declared_this_scope(name)) {
1502 /* This function name shadows a non-function use of the same name.
1503 */
1504 YYLTYPE loc = this->get_location();
1505
1506 _mesa_glsl_error(& loc, state, "function name `%s' conflicts with "
1507 "non-function", name);
1508 signature = NULL;
1509 } else {
1510 f = new ir_function(name);
1511 state->symbols->add_function(f->name, f);
1512 }
1513
1514 /* Verify the return type of main() */
1515 if (strcmp(name, "main") == 0) {
1516 if (return_type != glsl_type::get_instance(GLSL_TYPE_VOID, 0, 0)) {
1517 YYLTYPE loc = this->get_location();
1518
1519 _mesa_glsl_error(& loc, state, "main() must return void");
1520 }
1521
1522 if (!parameters.is_empty()) {
1523 YYLTYPE loc = this->get_location();
1524
1525 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
1526 }
1527 }
1528
1529 /* Finish storing the information about this new function in its signature.
1530 */
1531 if (signature == NULL) {
1532 signature = new ir_function_signature(return_type);
1533 f->add_signature(signature);
1534 } else {
1535 /* Destroy all of the previous parameter information. The previous
1536 * parameter information comes from the function prototype, and it can
1537 * either include invalid parameter names or may not have names at all.
1538 */
1539 foreach_iter(exec_list_iterator, iter, signature->parameters) {
1540 assert(((ir_instruction *) iter.get())->as_variable() != NULL);
1541
1542 iter.remove();
1543 delete iter.get();
1544 }
1545 }
1546
1547
1548 assert(state->current_function == NULL);
1549 state->current_function = signature;
1550
1551 ast_function_parameters_to_hir(& this->prototype->parameters,
1552 & signature->parameters,
1553 state);
1554 /* FINISHME: Set signature->return_type */
1555
1556 label = new ir_label(name);
1557 if (signature->definition == NULL) {
1558 signature->definition = label;
1559 }
1560 instructions->push_tail(label);
1561
1562 /* Add the function parameters to the symbol table. During this step the
1563 * parameter declarations are also moved from the temporary "parameters" list
1564 * to the instruction list. There are other more efficient ways to do this,
1565 * but they involve ugly linked-list gymnastics.
1566 */
1567 state->symbols->push_scope();
1568 foreach_iter(exec_list_iterator, iter, parameters) {
1569 ir_variable *const var = (ir_variable *) iter.get();
1570
1571 assert(((ir_instruction *) var)->as_variable() != NULL);
1572
1573 iter.remove();
1574 instructions->push_tail(var);
1575
1576 /* The only way a parameter would "exist" is if two parameters have
1577 * the same name.
1578 */
1579 if (state->symbols->name_declared_this_scope(var->name)) {
1580 YYLTYPE loc = this->get_location();
1581
1582 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
1583 } else {
1584 state->symbols->add_variable(var->name, var);
1585 }
1586 }
1587
1588 /* Convert the body of the function to HIR, and append the resulting
1589 * instructions to the list that currently consists of the function label
1590 * and the function parameters.
1591 */
1592 this->body->hir(instructions, state);
1593
1594 state->symbols->pop_scope();
1595
1596 assert(state->current_function == signature);
1597 state->current_function = NULL;
1598
1599 /* Function definitions do not have r-values.
1600 */
1601 return NULL;
1602 }
1603
1604
1605 ir_rvalue *
1606 ast_jump_statement::hir(exec_list *instructions,
1607 struct _mesa_glsl_parse_state *state)
1608 {
1609
1610 if (mode == ast_return) {
1611 ir_return *inst;
1612 assert(state->current_function);
1613
1614 if (opt_return_value) {
1615 if (state->current_function->return_type->base_type ==
1616 GLSL_TYPE_VOID) {
1617 YYLTYPE loc = this->get_location();
1618
1619 _mesa_glsl_error(& loc, state,
1620 "`return` with a value, in function `%s' "
1621 "returning void",
1622 state->current_function->definition->label);
1623 }
1624
1625 ir_expression *const ret = (ir_expression *)
1626 opt_return_value->hir(instructions, state);
1627 assert(ret != NULL);
1628
1629 /* FINISHME: Make sure the type of the return value matches the return
1630 * FINISHME: type of the enclosing function.
1631 */
1632
1633 inst = new ir_return(ret);
1634 } else {
1635 if (state->current_function->return_type->base_type !=
1636 GLSL_TYPE_VOID) {
1637 YYLTYPE loc = this->get_location();
1638
1639 _mesa_glsl_error(& loc, state,
1640 "`return' with no value, in function %s returning "
1641 "non-void",
1642 state->current_function->definition->label);
1643 }
1644 inst = new ir_return;
1645 }
1646
1647 instructions->push_tail(inst);
1648 }
1649
1650 if (mode == ast_discard) {
1651 /* FINISHME: discard support */
1652 if (state->target != fragment_shader) {
1653 YYLTYPE loc = this->get_location();
1654
1655 _mesa_glsl_error(& loc, state,
1656 "`discard' may only appear in a fragment shader");
1657 }
1658 }
1659
1660 /* Jump instructions do not have r-values.
1661 */
1662 return NULL;
1663 }
1664
1665
1666 ir_rvalue *
1667 ast_selection_statement::hir(exec_list *instructions,
1668 struct _mesa_glsl_parse_state *state)
1669 {
1670 ir_rvalue *const condition = this->condition->hir(instructions, state);
1671
1672 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
1673 *
1674 * "Any expression whose type evaluates to a Boolean can be used as the
1675 * conditional expression bool-expression. Vector types are not accepted
1676 * as the expression to if."
1677 *
1678 * The checks are separated so that higher quality diagnostics can be
1679 * generated for cases where both rules are violated.
1680 */
1681 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
1682 YYLTYPE loc = this->condition->get_location();
1683
1684 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
1685 "boolean");
1686 }
1687
1688 ir_if *const stmt = new ir_if(condition);
1689
1690 if (then_statement != NULL) {
1691 ast_node *node = (ast_node *) then_statement;
1692 do {
1693 node->hir(& stmt->then_instructions, state);
1694 node = (ast_node *) node->next;
1695 } while (node != then_statement);
1696 }
1697
1698 if (else_statement != NULL) {
1699 ast_node *node = (ast_node *) else_statement;
1700 do {
1701 node->hir(& stmt->else_instructions, state);
1702 node = (ast_node *) node->next;
1703 } while (node != else_statement);
1704 }
1705
1706 instructions->push_tail(stmt);
1707
1708 /* if-statements do not have r-values.
1709 */
1710 return NULL;
1711 }