ff9cbb09d976663e6f403866279c2a9a5e0993b8
[mesa.git] / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51 #include <stdio.h>
52 #include "main/imports.h"
53 #include "glsl_symbol_table.h"
54 #include "glsl_parser_extras.h"
55 #include "ast.h"
56 #include "glsl_types.h"
57 #include "ir.h"
58
59 void
60 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
61 {
62 struct simple_node *ptr;
63
64 _mesa_glsl_initialize_variables(instructions, state);
65 _mesa_glsl_initialize_constructors(instructions, state);
66 _mesa_glsl_initialize_functions(instructions, state);
67
68 state->current_function = NULL;
69
70 foreach (ptr, & state->translation_unit) {
71 ((ast_node *)ptr)->hir(instructions, state);
72 }
73 }
74
75
76 /**
77 * If a conversion is available, convert one operand to a different type
78 *
79 * The \c from \c ir_rvalue is converted "in place".
80 *
81 * \param to Type that the operand it to be converted to
82 * \param from Operand that is being converted
83 * \param state GLSL compiler state
84 *
85 * \return
86 * If a conversion is possible (or unnecessary), \c true is returned.
87 * Otherwise \c false is returned.
88 */
89 static bool
90 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
91 struct _mesa_glsl_parse_state *state)
92 {
93 if (to->base_type == from->type->base_type)
94 return true;
95
96 /* This conversion was added in GLSL 1.20. If the compilation mode is
97 * GLSL 1.10, the conversion is skipped.
98 */
99 if (state->language_version < 120)
100 return false;
101
102 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
103 *
104 * "There are no implicit array or structure conversions. For
105 * example, an array of int cannot be implicitly converted to an
106 * array of float. There are no implicit conversions between
107 * signed and unsigned integers."
108 */
109 /* FINISHME: The above comment is partially a lie. There is int/uint
110 * FINISHME: conversion for immediate constants.
111 */
112 if (!to->is_float() || !from->type->is_numeric())
113 return false;
114
115 switch (from->type->base_type) {
116 case GLSL_TYPE_INT:
117 from = new ir_expression(ir_unop_i2f, to, from, NULL);
118 break;
119 case GLSL_TYPE_UINT:
120 from = new ir_expression(ir_unop_u2f, to, from, NULL);
121 break;
122 case GLSL_TYPE_BOOL:
123 assert(!"FINISHME: Convert bool to float.");
124 default:
125 assert(0);
126 }
127
128 return true;
129 }
130
131
132 static const struct glsl_type *
133 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
134 bool multiply,
135 struct _mesa_glsl_parse_state *state)
136 {
137 const glsl_type *const type_a = value_a->type;
138 const glsl_type *const type_b = value_b->type;
139
140 /* From GLSL 1.50 spec, page 56:
141 *
142 * "The arithmetic binary operators add (+), subtract (-),
143 * multiply (*), and divide (/) operate on integer and
144 * floating-point scalars, vectors, and matrices."
145 */
146 if (!type_a->is_numeric() || !type_b->is_numeric()) {
147 return glsl_type::error_type;
148 }
149
150
151 /* "If one operand is floating-point based and the other is
152 * not, then the conversions from Section 4.1.10 "Implicit
153 * Conversions" are applied to the non-floating-point-based operand."
154 */
155 if (!apply_implicit_conversion(type_a, value_b, state)
156 && !apply_implicit_conversion(type_b, value_a, state)) {
157 return glsl_type::error_type;
158 }
159
160 /* "If the operands are integer types, they must both be signed or
161 * both be unsigned."
162 *
163 * From this rule and the preceeding conversion it can be inferred that
164 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
165 * The is_numeric check above already filtered out the case where either
166 * type is not one of these, so now the base types need only be tested for
167 * equality.
168 */
169 if (type_a->base_type != type_b->base_type) {
170 return glsl_type::error_type;
171 }
172
173 /* "All arithmetic binary operators result in the same fundamental type
174 * (signed integer, unsigned integer, or floating-point) as the
175 * operands they operate on, after operand type conversion. After
176 * conversion, the following cases are valid
177 *
178 * * The two operands are scalars. In this case the operation is
179 * applied, resulting in a scalar."
180 */
181 if (type_a->is_scalar() && type_b->is_scalar())
182 return type_a;
183
184 /* "* One operand is a scalar, and the other is a vector or matrix.
185 * In this case, the scalar operation is applied independently to each
186 * component of the vector or matrix, resulting in the same size
187 * vector or matrix."
188 */
189 if (type_a->is_scalar()) {
190 if (!type_b->is_scalar())
191 return type_b;
192 } else if (type_b->is_scalar()) {
193 return type_a;
194 }
195
196 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
197 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
198 * handled.
199 */
200 assert(!type_a->is_scalar());
201 assert(!type_b->is_scalar());
202
203 /* "* The two operands are vectors of the same size. In this case, the
204 * operation is done component-wise resulting in the same size
205 * vector."
206 */
207 if (type_a->is_vector() && type_b->is_vector()) {
208 return (type_a == type_b) ? type_a : glsl_type::error_type;
209 }
210
211 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
212 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
213 * <vector, vector> have been handled. At least one of the operands must
214 * be matrix. Further, since there are no integer matrix types, the base
215 * type of both operands must be float.
216 */
217 assert(type_a->is_matrix() || type_b->is_matrix());
218 assert(type_a->base_type == GLSL_TYPE_FLOAT);
219 assert(type_b->base_type == GLSL_TYPE_FLOAT);
220
221 /* "* The operator is add (+), subtract (-), or divide (/), and the
222 * operands are matrices with the same number of rows and the same
223 * number of columns. In this case, the operation is done component-
224 * wise resulting in the same size matrix."
225 * * The operator is multiply (*), where both operands are matrices or
226 * one operand is a vector and the other a matrix. A right vector
227 * operand is treated as a column vector and a left vector operand as a
228 * row vector. In all these cases, it is required that the number of
229 * columns of the left operand is equal to the number of rows of the
230 * right operand. Then, the multiply (*) operation does a linear
231 * algebraic multiply, yielding an object that has the same number of
232 * rows as the left operand and the same number of columns as the right
233 * operand. Section 5.10 "Vector and Matrix Operations" explains in
234 * more detail how vectors and matrices are operated on."
235 */
236 if (! multiply) {
237 return (type_a == type_b) ? type_a : glsl_type::error_type;
238 } else {
239 if (type_a->is_matrix() && type_b->is_matrix()) {
240 /* Matrix multiply. The columns of A must match the rows of B. Given
241 * the other previously tested constraints, this means the vector type
242 * of a row from A must be the same as the vector type of a column from
243 * B.
244 */
245 if (type_a->row_type() == type_b->column_type()) {
246 /* The resulting matrix has the number of columns of matrix B and
247 * the number of rows of matrix A. We get the row count of A by
248 * looking at the size of a vector that makes up a column. The
249 * transpose (size of a row) is done for B.
250 */
251 return
252 glsl_type::get_instance(type_a->base_type,
253 type_a->column_type()->vector_elements,
254 type_b->row_type()->vector_elements);
255 }
256 } else if (type_a->is_matrix()) {
257 /* A is a matrix and B is a column vector. Columns of A must match
258 * rows of B. Given the other previously tested constraints, this
259 * means the vector type of a row from A must be the same as the
260 * vector the type of B.
261 */
262 if (type_a->row_type() == type_b)
263 return type_b;
264 } else {
265 assert(type_b->is_matrix());
266
267 /* A is a row vector and B is a matrix. Columns of A must match rows
268 * of B. Given the other previously tested constraints, this means
269 * the type of A must be the same as the vector type of a column from
270 * B.
271 */
272 if (type_a == type_b->column_type())
273 return type_a;
274 }
275 }
276
277
278 /* "All other cases are illegal."
279 */
280 return glsl_type::error_type;
281 }
282
283
284 static const struct glsl_type *
285 unary_arithmetic_result_type(const struct glsl_type *type)
286 {
287 /* From GLSL 1.50 spec, page 57:
288 *
289 * "The arithmetic unary operators negate (-), post- and pre-increment
290 * and decrement (-- and ++) operate on integer or floating-point
291 * values (including vectors and matrices). All unary operators work
292 * component-wise on their operands. These result with the same type
293 * they operated on."
294 */
295 if (!type->is_numeric())
296 return glsl_type::error_type;
297
298 return type;
299 }
300
301
302 static const struct glsl_type *
303 modulus_result_type(const struct glsl_type *type_a,
304 const struct glsl_type *type_b)
305 {
306 /* From GLSL 1.50 spec, page 56:
307 * "The operator modulus (%) operates on signed or unsigned integers or
308 * integer vectors. The operand types must both be signed or both be
309 * unsigned."
310 */
311 if (!type_a->is_integer() || !type_b->is_integer()
312 || (type_a->base_type != type_b->base_type)) {
313 return glsl_type::error_type;
314 }
315
316 /* "The operands cannot be vectors of differing size. If one operand is
317 * a scalar and the other vector, then the scalar is applied component-
318 * wise to the vector, resulting in the same type as the vector. If both
319 * are vectors of the same size, the result is computed component-wise."
320 */
321 if (type_a->is_vector()) {
322 if (!type_b->is_vector()
323 || (type_a->vector_elements == type_b->vector_elements))
324 return type_a;
325 } else
326 return type_b;
327
328 /* "The operator modulus (%) is not defined for any other data types
329 * (non-integer types)."
330 */
331 return glsl_type::error_type;
332 }
333
334
335 static const struct glsl_type *
336 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
337 struct _mesa_glsl_parse_state *state)
338 {
339 const glsl_type *const type_a = value_a->type;
340 const glsl_type *const type_b = value_b->type;
341
342 /* From GLSL 1.50 spec, page 56:
343 * "The relational operators greater than (>), less than (<), greater
344 * than or equal (>=), and less than or equal (<=) operate only on
345 * scalar integer and scalar floating-point expressions."
346 */
347 if (!type_a->is_numeric()
348 || !type_b->is_numeric()
349 || !type_a->is_scalar()
350 || !type_b->is_scalar())
351 return glsl_type::error_type;
352
353 /* "Either the operands' types must match, or the conversions from
354 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
355 * operand, after which the types must match."
356 */
357 if (!apply_implicit_conversion(type_a, value_b, state)
358 && !apply_implicit_conversion(type_b, value_a, state)) {
359 return glsl_type::error_type;
360 }
361
362 if (type_a->base_type != type_b->base_type)
363 return glsl_type::error_type;
364
365 /* "The result is scalar Boolean."
366 */
367 return glsl_type::bool_type;
368 }
369
370
371 /**
372 * Validates that a value can be assigned to a location with a specified type
373 *
374 * Validates that \c rhs can be assigned to some location. If the types are
375 * not an exact match but an automatic conversion is possible, \c rhs will be
376 * converted.
377 *
378 * \return
379 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
380 * Otherwise the actual RHS to be assigned will be returned. This may be
381 * \c rhs, or it may be \c rhs after some type conversion.
382 *
383 * \note
384 * In addition to being used for assignments, this function is used to
385 * type-check return values.
386 */
387 ir_rvalue *
388 validate_assignment(const glsl_type *lhs_type, ir_rvalue *rhs)
389 {
390 const glsl_type *const rhs_type = rhs->type;
391
392 /* If there is already some error in the RHS, just return it. Anything
393 * else will lead to an avalanche of error message back to the user.
394 */
395 if (rhs_type->is_error())
396 return rhs;
397
398 /* FINISHME: For GLSL 1.10, check that the types are not arrays. */
399
400 /* If the types are identical, the assignment can trivially proceed.
401 */
402 if (rhs_type == lhs_type)
403 return rhs;
404
405 /* FINISHME: Check for and apply automatic conversions. */
406 return NULL;
407 }
408
409 ir_rvalue *
410 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
411 ir_rvalue *lhs, ir_rvalue *rhs,
412 YYLTYPE lhs_loc)
413 {
414 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
415
416 if (!error_emitted) {
417 /* FINISHME: This does not handle 'foo.bar.a.b.c[5].d = 5' */
418 if (!lhs->is_lvalue()) {
419 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
420 error_emitted = true;
421 }
422 }
423
424 ir_rvalue *new_rhs = validate_assignment(lhs->type, rhs);
425 if (new_rhs == NULL) {
426 _mesa_glsl_error(& lhs_loc, state, "type mismatch");
427 } else {
428 rhs = new_rhs;
429 }
430
431 ir_instruction *tmp = new ir_assignment(lhs, rhs, NULL);
432 instructions->push_tail(tmp);
433
434 return rhs;
435 }
436
437
438 /**
439 * Generate a new temporary and add its declaration to the instruction stream
440 */
441 static ir_variable *
442 generate_temporary(const glsl_type *type, exec_list *instructions,
443 struct _mesa_glsl_parse_state *state)
444 {
445 char *name = (char *) malloc(sizeof(char) * 13);
446
447 snprintf(name, 13, "tmp_%08X", state->temp_index);
448 state->temp_index++;
449
450 ir_variable *const var = new ir_variable(type, name);
451 instructions->push_tail(var);
452
453 return var;
454 }
455
456
457 static ir_rvalue *
458 get_lvalue_copy(exec_list *instructions, struct _mesa_glsl_parse_state *state,
459 ir_rvalue *lvalue, YYLTYPE loc)
460 {
461 ir_variable *var;
462 ir_rvalue *var_deref;
463
464 /* FINISHME: Give unique names to the temporaries. */
465 var = new ir_variable(lvalue->type, "_internal_tmp");
466 var->mode = ir_var_auto;
467
468 var_deref = new ir_dereference(var);
469 do_assignment(instructions, state, var_deref, lvalue, loc);
470
471 /* Once we've created this temporary, mark it read only so it's no
472 * longer considered an lvalue.
473 */
474 var->read_only = true;
475
476 return var_deref;
477 }
478
479
480 ir_rvalue *
481 ast_node::hir(exec_list *instructions,
482 struct _mesa_glsl_parse_state *state)
483 {
484 (void) instructions;
485 (void) state;
486
487 return NULL;
488 }
489
490
491 ir_rvalue *
492 ast_expression::hir(exec_list *instructions,
493 struct _mesa_glsl_parse_state *state)
494 {
495 static const int operations[AST_NUM_OPERATORS] = {
496 -1, /* ast_assign doesn't convert to ir_expression. */
497 -1, /* ast_plus doesn't convert to ir_expression. */
498 ir_unop_neg,
499 ir_binop_add,
500 ir_binop_sub,
501 ir_binop_mul,
502 ir_binop_div,
503 ir_binop_mod,
504 ir_binop_lshift,
505 ir_binop_rshift,
506 ir_binop_less,
507 ir_binop_greater,
508 ir_binop_lequal,
509 ir_binop_gequal,
510 ir_binop_equal,
511 ir_binop_nequal,
512 ir_binop_bit_and,
513 ir_binop_bit_xor,
514 ir_binop_bit_or,
515 ir_unop_bit_not,
516 ir_binop_logic_and,
517 ir_binop_logic_xor,
518 ir_binop_logic_or,
519 ir_unop_logic_not,
520
521 /* Note: The following block of expression types actually convert
522 * to multiple IR instructions.
523 */
524 ir_binop_mul, /* ast_mul_assign */
525 ir_binop_div, /* ast_div_assign */
526 ir_binop_mod, /* ast_mod_assign */
527 ir_binop_add, /* ast_add_assign */
528 ir_binop_sub, /* ast_sub_assign */
529 ir_binop_lshift, /* ast_ls_assign */
530 ir_binop_rshift, /* ast_rs_assign */
531 ir_binop_bit_and, /* ast_and_assign */
532 ir_binop_bit_xor, /* ast_xor_assign */
533 ir_binop_bit_or, /* ast_or_assign */
534
535 -1, /* ast_conditional doesn't convert to ir_expression. */
536 ir_binop_add, /* ast_pre_inc. */
537 ir_binop_sub, /* ast_pre_dec. */
538 ir_binop_add, /* ast_post_inc. */
539 ir_binop_sub, /* ast_post_dec. */
540 -1, /* ast_field_selection doesn't conv to ir_expression. */
541 -1, /* ast_array_index doesn't convert to ir_expression. */
542 -1, /* ast_function_call doesn't conv to ir_expression. */
543 -1, /* ast_identifier doesn't convert to ir_expression. */
544 -1, /* ast_int_constant doesn't convert to ir_expression. */
545 -1, /* ast_uint_constant doesn't conv to ir_expression. */
546 -1, /* ast_float_constant doesn't conv to ir_expression. */
547 -1, /* ast_bool_constant doesn't conv to ir_expression. */
548 -1, /* ast_sequence doesn't convert to ir_expression. */
549 };
550 ir_rvalue *result = NULL;
551 ir_rvalue *op[2];
552 struct simple_node op_list;
553 const struct glsl_type *type = glsl_type::error_type;
554 bool error_emitted = false;
555 YYLTYPE loc;
556
557 loc = this->get_location();
558 make_empty_list(& op_list);
559
560 switch (this->oper) {
561 case ast_assign: {
562 op[0] = this->subexpressions[0]->hir(instructions, state);
563 op[1] = this->subexpressions[1]->hir(instructions, state);
564
565 result = do_assignment(instructions, state, op[0], op[1],
566 this->subexpressions[0]->get_location());
567 error_emitted = result->type->is_error();
568 type = result->type;
569 break;
570 }
571
572 case ast_plus:
573 op[0] = this->subexpressions[0]->hir(instructions, state);
574
575 error_emitted = op[0]->type->is_error();
576 if (type->is_error())
577 op[0]->type = type;
578
579 result = op[0];
580 break;
581
582 case ast_neg:
583 op[0] = this->subexpressions[0]->hir(instructions, state);
584
585 type = unary_arithmetic_result_type(op[0]->type);
586
587 error_emitted = op[0]->type->is_error();
588
589 result = new ir_expression(operations[this->oper], type,
590 op[0], NULL);
591 break;
592
593 case ast_add:
594 case ast_sub:
595 case ast_mul:
596 case ast_div:
597 op[0] = this->subexpressions[0]->hir(instructions, state);
598 op[1] = this->subexpressions[1]->hir(instructions, state);
599
600 type = arithmetic_result_type(op[0], op[1],
601 (this->oper == ast_mul),
602 state);
603
604 result = new ir_expression(operations[this->oper], type,
605 op[0], op[1]);
606 break;
607
608 case ast_mod:
609 op[0] = this->subexpressions[0]->hir(instructions, state);
610 op[1] = this->subexpressions[1]->hir(instructions, state);
611
612 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
613
614 type = modulus_result_type(op[0]->type, op[1]->type);
615
616 assert(operations[this->oper] == ir_binop_mod);
617
618 result = new ir_expression(operations[this->oper], type,
619 op[0], op[1]);
620 break;
621
622 case ast_lshift:
623 case ast_rshift:
624 /* FINISHME: Implement bit-shift operators. */
625 break;
626
627 case ast_less:
628 case ast_greater:
629 case ast_lequal:
630 case ast_gequal:
631 op[0] = this->subexpressions[0]->hir(instructions, state);
632 op[1] = this->subexpressions[1]->hir(instructions, state);
633
634 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
635
636 type = relational_result_type(op[0], op[1], state);
637
638 /* The relational operators must either generate an error or result
639 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
640 */
641 assert(type->is_error()
642 || ((type->base_type == GLSL_TYPE_BOOL)
643 && type->is_scalar()));
644
645 result = new ir_expression(operations[this->oper], type,
646 op[0], op[1]);
647 break;
648
649 case ast_nequal:
650 case ast_equal:
651 op[0] = this->subexpressions[0]->hir(instructions, state);
652 op[1] = this->subexpressions[1]->hir(instructions, state);
653
654 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
655 *
656 * "The equality operators equal (==), and not equal (!=)
657 * operate on all types. They result in a scalar Boolean. If
658 * the operand types do not match, then there must be a
659 * conversion from Section 4.1.10 "Implicit Conversions"
660 * applied to one operand that can make them match, in which
661 * case this conversion is done."
662 */
663 if ((!apply_implicit_conversion(op[0]->type, op[1], state)
664 && !apply_implicit_conversion(op[1]->type, op[0], state))
665 || (op[0]->type != op[1]->type)) {
666 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
667 "type", (this->oper == ast_equal) ? "==" : "!=");
668 error_emitted = true;
669 } else if ((state->language_version <= 110)
670 && (op[0]->type->is_array() || op[1]->type->is_array())) {
671 _mesa_glsl_error(& loc, state, "array comparisons forbidden in "
672 "GLSL 1.10");
673 error_emitted = true;
674 }
675
676 result = new ir_expression(operations[this->oper], glsl_type::bool_type,
677 op[0], op[1]);
678 type = glsl_type::bool_type;
679
680 assert(result->type == glsl_type::bool_type);
681 break;
682
683 case ast_bit_and:
684 case ast_bit_xor:
685 case ast_bit_or:
686 case ast_bit_not:
687 /* FINISHME: Implement bit-wise operators. */
688 break;
689
690 case ast_logic_and:
691 case ast_logic_xor:
692 case ast_logic_or:
693 case ast_logic_not:
694 op[0] = this->subexpressions[0]->hir(instructions, state);
695 op[1] = this->subexpressions[1]->hir(instructions, state);
696
697 if (!op[0]->type->is_boolean() || !op[0]->type->is_scalar()) {
698 YYLTYPE loc = this->subexpressions[0]->get_location();
699
700 _mesa_glsl_error(& loc, state, "LHS of `%s' must be scalar boolean",
701 operator_string(this->oper));
702 }
703
704 if (!op[1]->type->is_boolean() || !op[1]->type->is_scalar()) {
705 YYLTYPE loc = this->subexpressions[1]->get_location();
706
707 _mesa_glsl_error(& loc, state, "RHS of `%s' must be scalar boolean",
708 operator_string(this->oper));
709 }
710
711 result = new ir_expression(operations[this->oper], glsl_type::bool_type,
712 op[0], op[1]);
713 break;
714
715 case ast_mul_assign:
716 case ast_div_assign:
717 case ast_add_assign:
718 case ast_sub_assign: {
719 op[0] = this->subexpressions[0]->hir(instructions, state);
720 op[1] = this->subexpressions[1]->hir(instructions, state);
721
722 type = arithmetic_result_type(op[0], op[1],
723 (this->oper == ast_mul_assign),
724 state);
725
726 ir_rvalue *temp_rhs = new ir_expression(operations[this->oper], type,
727 op[0], op[1]);
728
729 result = do_assignment(instructions, state, op[0], temp_rhs,
730 this->subexpressions[0]->get_location());
731 type = result->type;
732 error_emitted = (op[0]->type->is_error());
733
734 /* GLSL 1.10 does not allow array assignment. However, we don't have to
735 * explicitly test for this because none of the binary expression
736 * operators allow array operands either.
737 */
738
739 break;
740 }
741
742 case ast_mod_assign: {
743 op[0] = this->subexpressions[0]->hir(instructions, state);
744 op[1] = this->subexpressions[1]->hir(instructions, state);
745
746 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
747
748 type = modulus_result_type(op[0]->type, op[1]->type);
749
750 assert(operations[this->oper] == ir_binop_mod);
751
752 struct ir_rvalue *temp_rhs;
753 temp_rhs = new ir_expression(operations[this->oper], type,
754 op[0], op[1]);
755
756 result = do_assignment(instructions, state, op[0], temp_rhs,
757 this->subexpressions[0]->get_location());
758 type = result->type;
759 error_emitted = op[0]->type->is_error();
760 break;
761 }
762
763 case ast_ls_assign:
764 case ast_rs_assign:
765 break;
766
767 case ast_and_assign:
768 case ast_xor_assign:
769 case ast_or_assign:
770 break;
771
772 case ast_conditional: {
773 op[0] = this->subexpressions[0]->hir(instructions, state);
774
775 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
776 *
777 * "The ternary selection operator (?:). It operates on three
778 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
779 * first expression, which must result in a scalar Boolean."
780 */
781 if (!op[0]->type->is_boolean() || !op[0]->type->is_scalar()) {
782 YYLTYPE loc = this->subexpressions[0]->get_location();
783
784 _mesa_glsl_error(& loc, state, "?: condition must be scalar boolean");
785 error_emitted = true;
786 }
787
788 /* The :? operator is implemented by generating an anonymous temporary
789 * followed by an if-statement. The last instruction in each branch of
790 * the if-statement assigns a value to the anonymous temporary. This
791 * temporary is the r-value of the expression.
792 */
793 ir_variable *const tmp = generate_temporary(glsl_type::error_type,
794 instructions, state);
795
796 ir_if *const stmt = new ir_if(op[0]);
797 instructions->push_tail(stmt);
798
799 op[1] = this->subexpressions[1]->hir(& stmt->then_instructions, state);
800 ir_dereference *const then_deref = new ir_dereference(tmp);
801 ir_assignment *const then_assign =
802 new ir_assignment(then_deref, op[1], NULL);
803 stmt->then_instructions.push_tail(then_assign);
804
805 op[2] = this->subexpressions[2]->hir(& stmt->else_instructions, state);
806 ir_dereference *const else_deref = new ir_dereference(tmp);
807 ir_assignment *const else_assign =
808 new ir_assignment(else_deref, op[2], NULL);
809 stmt->else_instructions.push_tail(else_assign);
810
811 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
812 *
813 * "The second and third expressions can be any type, as
814 * long their types match, or there is a conversion in
815 * Section 4.1.10 "Implicit Conversions" that can be applied
816 * to one of the expressions to make their types match. This
817 * resulting matching type is the type of the entire
818 * expression."
819 */
820 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
821 && !apply_implicit_conversion(op[2]->type, op[1], state))
822 || (op[1]->type != op[2]->type)) {
823 YYLTYPE loc = this->subexpressions[1]->get_location();
824
825 _mesa_glsl_error(& loc, state, "Second and third operands of ?: "
826 "operator must have matching types.");
827 error_emitted = true;
828 } else {
829 tmp->type = op[1]->type;
830 }
831
832 result = new ir_dereference(tmp);
833 type = tmp->type;
834 break;
835 }
836
837 case ast_pre_inc:
838 case ast_pre_dec: {
839 op[0] = this->subexpressions[0]->hir(instructions, state);
840 if (op[0]->type->base_type == GLSL_TYPE_FLOAT)
841 op[1] = new ir_constant(1.0f);
842 else
843 op[1] = new ir_constant(1);
844
845 type = arithmetic_result_type(op[0], op[1], false, state);
846
847 struct ir_rvalue *temp_rhs;
848 temp_rhs = new ir_expression(operations[this->oper], type,
849 op[0], op[1]);
850
851 result = do_assignment(instructions, state, op[0], temp_rhs,
852 this->subexpressions[0]->get_location());
853 type = result->type;
854 error_emitted = op[0]->type->is_error();
855 break;
856 }
857
858 case ast_post_inc:
859 case ast_post_dec: {
860 op[0] = this->subexpressions[0]->hir(instructions, state);
861 if (op[0]->type->base_type == GLSL_TYPE_FLOAT)
862 op[1] = new ir_constant(1.0f);
863 else
864 op[1] = new ir_constant(1);
865
866 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
867
868 type = arithmetic_result_type(op[0], op[1], false, state);
869
870 struct ir_rvalue *temp_rhs;
871 temp_rhs = new ir_expression(operations[this->oper], type,
872 op[0], op[1]);
873
874 /* Get a temporary of a copy of the lvalue before it's modified.
875 * This may get thrown away later.
876 */
877 result = get_lvalue_copy(instructions, state, op[0],
878 this->subexpressions[0]->get_location());
879
880 (void)do_assignment(instructions, state, op[0], temp_rhs,
881 this->subexpressions[0]->get_location());
882
883 type = result->type;
884 error_emitted = op[0]->type->is_error();
885 break;
886 }
887
888 case ast_field_selection:
889 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
890 type = result->type;
891 break;
892
893 case ast_array_index: {
894 YYLTYPE index_loc = subexpressions[1]->get_location();
895
896 op[0] = subexpressions[0]->hir(instructions, state);
897 op[1] = subexpressions[1]->hir(instructions, state);
898
899 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
900
901 result = new ir_dereference(op[0], op[1]);
902
903 if (error_emitted)
904 break;
905
906 /* FINISHME: Handle vectors and matrices accessed with []. */
907 if (!op[0]->type->is_array()) {
908 _mesa_glsl_error(& index_loc, state,
909 "cannot dereference non-array");
910 error_emitted = true;
911 }
912
913 if (!op[1]->type->is_integer()) {
914 _mesa_glsl_error(& index_loc, state,
915 "array index must be integer type");
916 error_emitted = true;
917 } else if (!op[1]->type->is_scalar()) {
918 _mesa_glsl_error(& index_loc, state,
919 "array index must be scalar");
920 error_emitted = true;
921 }
922
923 /* If the array index is a constant expression and the array has a
924 * declared size, ensure that the access is in-bounds. If the array
925 * index is not a constant expression, ensure that the array has a
926 * declared size.
927 */
928 ir_constant *const const_index = op[1]->constant_expression_value();
929 if (const_index != NULL) {
930 const int idx = const_index->value.i[0];
931
932 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec:
933 *
934 * "It is illegal to declare an array with a size, and then
935 * later (in the same shader) index the same array with an
936 * integral constant expression greater than or equal to the
937 * declared size. It is also illegal to index an array with a
938 * negative constant expression."
939 */
940 if ((op[0]->type->array_size() > 0)
941 && (op[0]->type->array_size() <= idx)) {
942 _mesa_glsl_error(& loc, state,
943 "array index must be < %u",
944 op[0]->type->array_size());
945 error_emitted = true;
946 }
947
948 if (idx < 0) {
949 _mesa_glsl_error(& loc, state,
950 "array index must be >= 0");
951 error_emitted = true;
952 }
953 }
954
955 if (error_emitted)
956 result->type = glsl_type::error_type;
957
958 type = result->type;
959 break;
960 }
961
962 case ast_function_call:
963 /* Should *NEVER* get here. ast_function_call should always be handled
964 * by ast_function_expression::hir.
965 */
966 assert(0);
967 break;
968
969 case ast_identifier: {
970 /* ast_identifier can appear several places in a full abstract syntax
971 * tree. This particular use must be at location specified in the grammar
972 * as 'variable_identifier'.
973 */
974 ir_variable *var =
975 state->symbols->get_variable(this->primary_expression.identifier);
976
977 result = new ir_dereference(var);
978
979 if (var != NULL) {
980 type = result->type;
981 } else {
982 _mesa_glsl_error(& loc, state, "`%s' undeclared",
983 this->primary_expression.identifier);
984
985 error_emitted = true;
986 }
987 break;
988 }
989
990 case ast_int_constant:
991 type = glsl_type::int_type;
992 result = new ir_constant(type, & this->primary_expression);
993 break;
994
995 case ast_uint_constant:
996 type = glsl_type::uint_type;
997 result = new ir_constant(type, & this->primary_expression);
998 break;
999
1000 case ast_float_constant:
1001 type = glsl_type::float_type;
1002 result = new ir_constant(type, & this->primary_expression);
1003 break;
1004
1005 case ast_bool_constant:
1006 type = glsl_type::bool_type;
1007 result = new ir_constant(type, & this->primary_expression);
1008 break;
1009
1010 case ast_sequence: {
1011 struct simple_node *ptr;
1012
1013 /* It should not be possible to generate a sequence in the AST without
1014 * any expressions in it.
1015 */
1016 assert(!is_empty_list(&this->expressions));
1017
1018 /* The r-value of a sequence is the last expression in the sequence. If
1019 * the other expressions in the sequence do not have side-effects (and
1020 * therefore add instructions to the instruction list), they get dropped
1021 * on the floor.
1022 */
1023 foreach (ptr, &this->expressions)
1024 result = ((ast_node *)ptr)->hir(instructions, state);
1025
1026 type = result->type;
1027
1028 /* Any errors should have already been emitted in the loop above.
1029 */
1030 error_emitted = true;
1031 break;
1032 }
1033 }
1034
1035 if (type->is_error() && !error_emitted)
1036 _mesa_glsl_error(& loc, state, "type mismatch");
1037
1038 return result;
1039 }
1040
1041
1042 ir_rvalue *
1043 ast_expression_statement::hir(exec_list *instructions,
1044 struct _mesa_glsl_parse_state *state)
1045 {
1046 /* It is possible to have expression statements that don't have an
1047 * expression. This is the solitary semicolon:
1048 *
1049 * for (i = 0; i < 5; i++)
1050 * ;
1051 *
1052 * In this case the expression will be NULL. Test for NULL and don't do
1053 * anything in that case.
1054 */
1055 if (expression != NULL)
1056 expression->hir(instructions, state);
1057
1058 /* Statements do not have r-values.
1059 */
1060 return NULL;
1061 }
1062
1063
1064 ir_rvalue *
1065 ast_compound_statement::hir(exec_list *instructions,
1066 struct _mesa_glsl_parse_state *state)
1067 {
1068 struct simple_node *ptr;
1069
1070
1071 if (new_scope)
1072 state->symbols->push_scope();
1073
1074 foreach (ptr, &statements)
1075 ((ast_node *)ptr)->hir(instructions, state);
1076
1077 if (new_scope)
1078 state->symbols->pop_scope();
1079
1080 /* Compound statements do not have r-values.
1081 */
1082 return NULL;
1083 }
1084
1085
1086 static const glsl_type *
1087 process_array_type(const glsl_type *base, ast_node *array_size,
1088 struct _mesa_glsl_parse_state *state)
1089 {
1090 unsigned length = 0;
1091
1092 /* FINISHME: Reject delcarations of multidimensional arrays. */
1093
1094 if (array_size != NULL) {
1095 exec_list dummy_instructions;
1096 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
1097 YYLTYPE loc = array_size->get_location();
1098
1099 /* FINISHME: Verify that the grammar forbids side-effects in array
1100 * FINISHME: sizes. i.e., 'vec4 [x = 12] data'
1101 */
1102 assert(dummy_instructions.is_empty());
1103
1104 if (ir != NULL) {
1105 if (!ir->type->is_integer()) {
1106 _mesa_glsl_error(& loc, state, "array size must be integer type");
1107 } else if (!ir->type->is_scalar()) {
1108 _mesa_glsl_error(& loc, state, "array size must be scalar type");
1109 } else {
1110 ir_constant *const size = ir->constant_expression_value();
1111
1112 if (size == NULL) {
1113 _mesa_glsl_error(& loc, state, "array size must be a "
1114 "constant valued expression");
1115 } else if (size->value.i[0] <= 0) {
1116 _mesa_glsl_error(& loc, state, "array size must be > 0");
1117 } else {
1118 assert(size->type == ir->type);
1119 length = size->value.u[0];
1120 }
1121 }
1122 }
1123 }
1124
1125 return glsl_type::get_array_instance(base, length);
1126 }
1127
1128
1129 const glsl_type *
1130 ast_type_specifier::glsl_type(const char **name,
1131 struct _mesa_glsl_parse_state *state) const
1132 {
1133 const struct glsl_type *type;
1134
1135 if (this->type_specifier == ast_struct) {
1136 /* FINISHME: Handle annonymous structures. */
1137 type = NULL;
1138 } else {
1139 type = state->symbols->get_type(this->type_name);
1140 *name = this->type_name;
1141
1142 if (this->is_array) {
1143 type = process_array_type(type, this->array_size, state);
1144 }
1145 }
1146
1147 return type;
1148 }
1149
1150
1151 static void
1152 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
1153 struct ir_variable *var,
1154 struct _mesa_glsl_parse_state *state,
1155 YYLTYPE *loc)
1156 {
1157 if (qual->invariant)
1158 var->invariant = 1;
1159
1160 /* FINISHME: Mark 'in' variables at global scope as read-only. */
1161 if (qual->constant || qual->attribute || qual->uniform
1162 || (qual->varying && (state->target == fragment_shader)))
1163 var->read_only = 1;
1164
1165 if (qual->centroid)
1166 var->centroid = 1;
1167
1168 if (qual->attribute && state->target == fragment_shader) {
1169 var->type = glsl_type::error_type;
1170 _mesa_glsl_error(loc, state,
1171 "`attribute' variables may not be declared in the "
1172 "fragment shader");
1173 }
1174
1175 if (qual->in && qual->out)
1176 var->mode = ir_var_inout;
1177 else if (qual->attribute || qual->in
1178 || (qual->varying && (state->target == fragment_shader)))
1179 var->mode = ir_var_in;
1180 else if (qual->out || (qual->varying && (state->target == vertex_shader)))
1181 var->mode = ir_var_out;
1182 else if (qual->uniform)
1183 var->mode = ir_var_uniform;
1184 else
1185 var->mode = ir_var_auto;
1186
1187 if (qual->flat)
1188 var->interpolation = ir_var_flat;
1189 else if (qual->noperspective)
1190 var->interpolation = ir_var_noperspective;
1191 else
1192 var->interpolation = ir_var_smooth;
1193 }
1194
1195
1196 ir_rvalue *
1197 ast_declarator_list::hir(exec_list *instructions,
1198 struct _mesa_glsl_parse_state *state)
1199 {
1200 struct simple_node *ptr;
1201 const struct glsl_type *decl_type;
1202 const char *type_name = NULL;
1203
1204
1205 /* FINISHME: Handle vertex shader "invariant" declarations that do not
1206 * FINISHME: include a type. These re-declare built-in variables to be
1207 * FINISHME: invariant.
1208 */
1209
1210 decl_type = this->type->specifier->glsl_type(& type_name, state);
1211
1212 foreach (ptr, &this->declarations) {
1213 struct ast_declaration *const decl = (struct ast_declaration * )ptr;
1214 const struct glsl_type *var_type;
1215 struct ir_variable *var;
1216 YYLTYPE loc = this->get_location();
1217
1218 /* FINISHME: Emit a warning if a variable declaration shadows a
1219 * FINISHME: declaration at a higher scope.
1220 */
1221
1222 if ((decl_type == NULL) || decl_type->is_void()) {
1223 if (type_name != NULL) {
1224 _mesa_glsl_error(& loc, state,
1225 "invalid type `%s' in declaration of `%s'",
1226 type_name, decl->identifier);
1227 } else {
1228 _mesa_glsl_error(& loc, state,
1229 "invalid type in declaration of `%s'",
1230 decl->identifier);
1231 }
1232 continue;
1233 }
1234
1235 if (decl->is_array) {
1236 var_type = process_array_type(decl_type, decl->array_size, state);
1237 } else {
1238 var_type = decl_type;
1239 }
1240
1241 var = new ir_variable(var_type, decl->identifier);
1242
1243 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
1244 & loc);
1245
1246 /* Attempt to add the variable to the symbol table. If this fails, it
1247 * means the variable has already been declared at this scope. Arrays
1248 * fudge this rule a little bit.
1249 *
1250 * From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
1251 *
1252 * "It is legal to declare an array without a size and then
1253 * later re-declare the same name as an array of the same
1254 * type and specify a size."
1255 */
1256 if (state->symbols->name_declared_this_scope(decl->identifier)) {
1257 ir_variable *const earlier =
1258 state->symbols->get_variable(decl->identifier);
1259
1260 if ((earlier != NULL)
1261 && (earlier->type->array_size() == 0)
1262 && var->type->is_array()
1263 && (var->type->element_type() == earlier->type->element_type())) {
1264 /* FINISHME: This doesn't match the qualifiers on the two
1265 * FINISHME: declarations. It's not 100% clear whether this is
1266 * FINISHME: required or not.
1267 */
1268 /* FINISHME: Check that the array hasn't already been accessed
1269 * FINISHME: beyond the newly defined bounds.
1270 */
1271 earlier->type = var->type;
1272 delete var;
1273 var = NULL;
1274 } else {
1275 YYLTYPE loc = this->get_location();
1276
1277 _mesa_glsl_error(& loc, state, "`%s' redeclared",
1278 decl->identifier);
1279 }
1280
1281 continue;
1282 }
1283
1284 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
1285 *
1286 * "Identifiers starting with "gl_" are reserved for use by
1287 * OpenGL, and may not be declared in a shader as either a
1288 * variable or a function."
1289 */
1290 if (strncmp(decl->identifier, "gl_", 3) == 0) {
1291 /* FINISHME: This should only trigger if we're not redefining
1292 * FINISHME: a builtin (to add a qualifier, for example).
1293 */
1294 _mesa_glsl_error(& loc, state,
1295 "identifier `%s' uses reserved `gl_' prefix",
1296 decl->identifier);
1297 }
1298
1299 instructions->push_tail(var);
1300
1301 if (state->current_function != NULL) {
1302 const char *mode = NULL;
1303 const char *extra = "";
1304
1305 /* There is no need to check for 'inout' here because the parser will
1306 * only allow that in function parameter lists.
1307 */
1308 if (this->type->qualifier.attribute) {
1309 mode = "attribute";
1310 } else if (this->type->qualifier.uniform) {
1311 mode = "uniform";
1312 } else if (this->type->qualifier.varying) {
1313 mode = "varying";
1314 } else if (this->type->qualifier.in) {
1315 mode = "in";
1316 extra = " or in function parameter list";
1317 } else if (this->type->qualifier.out) {
1318 mode = "out";
1319 extra = " or in function parameter list";
1320 }
1321
1322 if (mode) {
1323 _mesa_glsl_error(& loc, state,
1324 "%s variable `%s' must be declared at "
1325 "global scope%s",
1326 mode, var->name, extra);
1327 }
1328 } else if (var->mode == ir_var_in) {
1329 if (state->target == vertex_shader) {
1330 bool error_emitted = false;
1331
1332 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
1333 *
1334 * "Vertex shader inputs can only be float, floating-point
1335 * vectors, matrices, signed and unsigned integers and integer
1336 * vectors. Vertex shader inputs can also form arrays of these
1337 * types, but not structures."
1338 *
1339 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
1340 *
1341 * "Vertex shader inputs can only be float, floating-point
1342 * vectors, matrices, signed and unsigned integers and integer
1343 * vectors. They cannot be arrays or structures."
1344 *
1345 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
1346 *
1347 * "The attribute qualifier can be used only with float,
1348 * floating-point vectors, and matrices. Attribute variables
1349 * cannot be declared as arrays or structures."
1350 */
1351 const glsl_type *check_type = var->type->is_array()
1352 ? var->type->fields.array : var->type;
1353
1354 switch (check_type->base_type) {
1355 case GLSL_TYPE_FLOAT:
1356 break;
1357 case GLSL_TYPE_UINT:
1358 case GLSL_TYPE_INT:
1359 if (state->language_version > 120)
1360 break;
1361 /* FALLTHROUGH */
1362 default:
1363 _mesa_glsl_error(& loc, state,
1364 "vertex shader input / attribute cannot have "
1365 "type %s`%s'",
1366 var->type->is_array() ? "array of " : "",
1367 check_type->name);
1368 error_emitted = true;
1369 }
1370
1371 if (!error_emitted && (state->language_version <= 130)
1372 && var->type->is_array()) {
1373 _mesa_glsl_error(& loc, state,
1374 "vertex shader input / attribute cannot have "
1375 "array type");
1376 error_emitted = true;
1377 }
1378 }
1379 }
1380
1381 if (decl->initializer != NULL) {
1382 YYLTYPE initializer_loc = decl->initializer->get_location();
1383
1384 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
1385 *
1386 * "All uniform variables are read-only and are initialized either
1387 * directly by an application via API commands, or indirectly by
1388 * OpenGL."
1389 */
1390 if ((state->language_version <= 110)
1391 && (var->mode == ir_var_uniform)) {
1392 _mesa_glsl_error(& initializer_loc, state,
1393 "cannot initialize uniforms in GLSL 1.10");
1394 }
1395
1396 if (var->type->is_sampler()) {
1397 _mesa_glsl_error(& initializer_loc, state,
1398 "cannot initialize samplers");
1399 }
1400
1401 if ((var->mode == ir_var_in) && (state->current_function == NULL)) {
1402 _mesa_glsl_error(& initializer_loc, state,
1403 "cannot initialize %s shader input / %s",
1404 (state->target == vertex_shader)
1405 ? "vertex" : "fragment",
1406 (state->target == vertex_shader)
1407 ? "attribute" : "varying");
1408 }
1409
1410 ir_dereference *const lhs = new ir_dereference(var);
1411 ir_rvalue *const rhs = decl->initializer->hir(instructions, state);
1412
1413 /* FINISHME: If the declaration is either 'const' or 'uniform', the
1414 * FINISHME: initializer (rhs) must be a constant expression.
1415 */
1416
1417 if (!rhs->type->is_error()) {
1418 (void) do_assignment(instructions, state, lhs, rhs,
1419 this->get_location());
1420 }
1421 }
1422
1423 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
1424 *
1425 * "It is an error to write to a const variable outside of
1426 * its declaration, so they must be initialized when
1427 * declared."
1428 */
1429 if (this->type->qualifier.constant && decl->initializer == NULL) {
1430 _mesa_glsl_error(& loc, state,
1431 "const declaration of `%s' must be initialized");
1432 }
1433
1434 /* Add the vairable to the symbol table after processing the initializer.
1435 * This differs from most C-like languages, but it follows the GLSL
1436 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
1437 * spec:
1438 *
1439 * "Within a declaration, the scope of a name starts immediately
1440 * after the initializer if present or immediately after the name
1441 * being declared if not."
1442 */
1443 const bool added_variable =
1444 state->symbols->add_variable(decl->identifier, var);
1445 assert(added_variable);
1446 }
1447
1448 /* Variable declarations do not have r-values.
1449 */
1450 return NULL;
1451 }
1452
1453
1454 ir_rvalue *
1455 ast_parameter_declarator::hir(exec_list *instructions,
1456 struct _mesa_glsl_parse_state *state)
1457 {
1458 const struct glsl_type *type;
1459 const char *name = NULL;
1460 YYLTYPE loc = this->get_location();
1461
1462 type = this->type->specifier->glsl_type(& name, state);
1463
1464 if (type == NULL) {
1465 if (name != NULL) {
1466 _mesa_glsl_error(& loc, state,
1467 "invalid type `%s' in declaration of `%s'",
1468 name, this->identifier);
1469 } else {
1470 _mesa_glsl_error(& loc, state,
1471 "invalid type in declaration of `%s'",
1472 this->identifier);
1473 }
1474
1475 type = glsl_type::error_type;
1476 }
1477
1478 ir_variable *var = new ir_variable(type, this->identifier);
1479
1480 /* FINISHME: Handle array declarations. Note that this requires
1481 * FINISHME: complete handling of constant expressions.
1482 */
1483
1484 /* Apply any specified qualifiers to the parameter declaration. Note that
1485 * for function parameters the default mode is 'in'.
1486 */
1487 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc);
1488 if (var->mode == ir_var_auto)
1489 var->mode = ir_var_in;
1490
1491 instructions->push_tail(var);
1492
1493 /* Parameter declarations do not have r-values.
1494 */
1495 return NULL;
1496 }
1497
1498
1499 static void
1500 ast_function_parameters_to_hir(struct simple_node *ast_parameters,
1501 exec_list *ir_parameters,
1502 struct _mesa_glsl_parse_state *state)
1503 {
1504 struct simple_node *ptr;
1505
1506 foreach (ptr, ast_parameters) {
1507 ((ast_node *)ptr)->hir(ir_parameters, state);
1508 }
1509 }
1510
1511
1512 static bool
1513 parameter_lists_match(exec_list *list_a, exec_list *list_b)
1514 {
1515 exec_list_iterator iter_a = list_a->iterator();
1516 exec_list_iterator iter_b = list_b->iterator();
1517
1518 while (iter_a.has_next()) {
1519 /* If all of the parameters from the other parameter list have been
1520 * exhausted, the lists have different length and, by definition,
1521 * do not match.
1522 */
1523 if (!iter_b.has_next())
1524 return false;
1525
1526 /* If the types of the parameters do not match, the parameters lists
1527 * are different.
1528 */
1529 /* FINISHME */
1530
1531
1532 iter_a.next();
1533 iter_b.next();
1534 }
1535
1536 return true;
1537 }
1538
1539
1540 ir_rvalue *
1541 ast_function::hir(exec_list *instructions,
1542 struct _mesa_glsl_parse_state *state)
1543 {
1544 ir_function *f = NULL;
1545 ir_function_signature *sig = NULL;
1546 exec_list hir_parameters;
1547
1548
1549 /* The prototype part of a function does not generate anything in the IR
1550 * instruction stream.
1551 */
1552 (void) instructions;
1553
1554 /* Convert the list of function parameters to HIR now so that they can be
1555 * used below to compare this function's signature with previously seen
1556 * signatures for functions with the same name.
1557 */
1558 ast_function_parameters_to_hir(& this->parameters, & hir_parameters, state);
1559
1560 const char *return_type_name;
1561 const glsl_type *return_type =
1562 this->return_type->specifier->glsl_type(& return_type_name, state);
1563
1564 assert(return_type != NULL);
1565
1566 /* Verify that this function's signature either doesn't match a previously
1567 * seen signature for a function with the same name, or, if a match is found,
1568 * that the previously seen signature does not have an associated definition.
1569 */
1570 const char *const name = identifier;
1571 f = state->symbols->get_function(name);
1572 if (f != NULL) {
1573 foreach_iter(exec_list_iterator, iter, *f) {
1574 sig = (struct ir_function_signature *) iter.get();
1575
1576 /* Compare the parameter list of the function being defined to the
1577 * existing function. If the parameter lists match, then the return
1578 * type must also match and the existing function must not have a
1579 * definition.
1580 */
1581 if (parameter_lists_match(& hir_parameters, & sig->parameters)) {
1582 /* FINISHME: Compare return types. */
1583
1584 if (is_definition && (sig->definition != NULL)) {
1585 YYLTYPE loc = this->get_location();
1586
1587 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
1588 sig = NULL;
1589 break;
1590 }
1591 }
1592
1593 sig = NULL;
1594 }
1595
1596 } else if (state->symbols->name_declared_this_scope(name)) {
1597 /* This function name shadows a non-function use of the same name.
1598 */
1599 YYLTYPE loc = this->get_location();
1600
1601 _mesa_glsl_error(& loc, state, "function name `%s' conflicts with "
1602 "non-function", name);
1603 sig = NULL;
1604 } else {
1605 f = new ir_function(name);
1606 state->symbols->add_function(f->name, f);
1607 }
1608
1609 /* Verify the return type of main() */
1610 if (strcmp(name, "main") == 0) {
1611 if (! return_type->is_void()) {
1612 YYLTYPE loc = this->get_location();
1613
1614 _mesa_glsl_error(& loc, state, "main() must return void");
1615 }
1616
1617 if (!hir_parameters.is_empty()) {
1618 YYLTYPE loc = this->get_location();
1619
1620 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
1621 }
1622 }
1623
1624 /* Finish storing the information about this new function in its signature.
1625 */
1626 if (sig == NULL) {
1627 sig = new ir_function_signature(return_type);
1628 f->add_signature(sig);
1629 } else if (is_definition) {
1630 /* Destroy all of the previous parameter information. The previous
1631 * parameter information comes from the function prototype, and it can
1632 * either include invalid parameter names or may not have names at all.
1633 */
1634 foreach_iter(exec_list_iterator, iter, sig->parameters) {
1635 assert(((ir_instruction *) iter.get())->as_variable() != NULL);
1636
1637 iter.remove();
1638 delete iter.get();
1639 }
1640 }
1641
1642 hir_parameters.move_nodes_to(& sig->parameters);
1643 signature = sig;
1644
1645 /* Function declarations (prototypes) do not have r-values.
1646 */
1647 return NULL;
1648 }
1649
1650
1651 ir_rvalue *
1652 ast_function_definition::hir(exec_list *instructions,
1653 struct _mesa_glsl_parse_state *state)
1654 {
1655 prototype->is_definition = true;
1656 prototype->hir(instructions, state);
1657
1658 ir_function_signature *signature = prototype->signature;
1659
1660 assert(state->current_function == NULL);
1661 state->current_function = signature;
1662
1663 ir_label *label = new ir_label(signature->function_name());
1664 if (signature->definition == NULL) {
1665 signature->definition = label;
1666 }
1667 instructions->push_tail(label);
1668
1669 /* Duplicate parameters declared in the prototype as concrete variables.
1670 * Add these to the symbol table.
1671 */
1672 state->symbols->push_scope();
1673 foreach_iter(exec_list_iterator, iter, signature->parameters) {
1674 ir_variable *const proto = ((ir_instruction *) iter.get())->as_variable();
1675
1676 assert(proto != NULL);
1677
1678 ir_variable *const var = proto->clone();
1679
1680 instructions->push_tail(var);
1681
1682 /* The only way a parameter would "exist" is if two parameters have
1683 * the same name.
1684 */
1685 if (state->symbols->name_declared_this_scope(var->name)) {
1686 YYLTYPE loc = this->get_location();
1687
1688 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
1689 } else {
1690 state->symbols->add_variable(var->name, var);
1691 }
1692 }
1693
1694 /* Convert the body of the function to HIR, and append the resulting
1695 * instructions to the list that currently consists of the function label
1696 * and the function parameters.
1697 */
1698 this->body->hir(instructions, state);
1699
1700 state->symbols->pop_scope();
1701
1702 assert(state->current_function == signature);
1703 state->current_function = NULL;
1704
1705 /* Function definitions do not have r-values.
1706 */
1707 return NULL;
1708 }
1709
1710
1711 ir_rvalue *
1712 ast_jump_statement::hir(exec_list *instructions,
1713 struct _mesa_glsl_parse_state *state)
1714 {
1715
1716 if (mode == ast_return) {
1717 ir_return *inst;
1718 assert(state->current_function);
1719
1720 if (opt_return_value) {
1721 if (state->current_function->return_type->base_type ==
1722 GLSL_TYPE_VOID) {
1723 YYLTYPE loc = this->get_location();
1724
1725 _mesa_glsl_error(& loc, state,
1726 "`return` with a value, in function `%s' "
1727 "returning void",
1728 state->current_function->definition->label);
1729 }
1730
1731 ir_expression *const ret = (ir_expression *)
1732 opt_return_value->hir(instructions, state);
1733 assert(ret != NULL);
1734
1735 /* FINISHME: Make sure the type of the return value matches the return
1736 * FINISHME: type of the enclosing function.
1737 */
1738
1739 inst = new ir_return(ret);
1740 } else {
1741 if (state->current_function->return_type->base_type !=
1742 GLSL_TYPE_VOID) {
1743 YYLTYPE loc = this->get_location();
1744
1745 _mesa_glsl_error(& loc, state,
1746 "`return' with no value, in function %s returning "
1747 "non-void",
1748 state->current_function->definition->label);
1749 }
1750 inst = new ir_return;
1751 }
1752
1753 instructions->push_tail(inst);
1754 }
1755
1756 if (mode == ast_discard) {
1757 /* FINISHME: discard support */
1758 if (state->target != fragment_shader) {
1759 YYLTYPE loc = this->get_location();
1760
1761 _mesa_glsl_error(& loc, state,
1762 "`discard' may only appear in a fragment shader");
1763 }
1764 }
1765
1766 /* Jump instructions do not have r-values.
1767 */
1768 return NULL;
1769 }
1770
1771
1772 ir_rvalue *
1773 ast_selection_statement::hir(exec_list *instructions,
1774 struct _mesa_glsl_parse_state *state)
1775 {
1776 ir_rvalue *const condition = this->condition->hir(instructions, state);
1777
1778 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
1779 *
1780 * "Any expression whose type evaluates to a Boolean can be used as the
1781 * conditional expression bool-expression. Vector types are not accepted
1782 * as the expression to if."
1783 *
1784 * The checks are separated so that higher quality diagnostics can be
1785 * generated for cases where both rules are violated.
1786 */
1787 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
1788 YYLTYPE loc = this->condition->get_location();
1789
1790 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
1791 "boolean");
1792 }
1793
1794 ir_if *const stmt = new ir_if(condition);
1795
1796 if (then_statement != NULL) {
1797 ast_node *node = (ast_node *) then_statement;
1798 do {
1799 node->hir(& stmt->then_instructions, state);
1800 node = (ast_node *) node->next;
1801 } while (node != then_statement);
1802 }
1803
1804 if (else_statement != NULL) {
1805 ast_node *node = (ast_node *) else_statement;
1806 do {
1807 node->hir(& stmt->else_instructions, state);
1808 node = (ast_node *) node->next;
1809 } while (node != else_statement);
1810 }
1811
1812 instructions->push_tail(stmt);
1813
1814 /* if-statements do not have r-values.
1815 */
1816 return NULL;
1817 }