Merge pull request #2151 from whitequark/cxxrtl-fix-rzext
[yosys.git] / backends / cxxrtl / cxxrtl.h
1 /*
2 * yosys -- Yosys Open SYnthesis Suite
3 *
4 * Copyright (C) 2019-2020 whitequark <whitequark@whitequark.org>
5 *
6 * Permission to use, copy, modify, and/or distribute this software for any
7 * purpose with or without fee is hereby granted.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 *
17 */
18
19 // This file is included by the designs generated with `write_cxxrtl`. It is not used in Yosys itself.
20 //
21 // The CXXRTL support library implements compile time specialized arbitrary width arithmetics, as well as provides
22 // composite lvalues made out of bit slices and concatenations of lvalues. This allows the `write_cxxrtl` pass
23 // to perform a straightforward translation of RTLIL structures to readable C++, relying on the C++ compiler
24 // to unwrap the abstraction and generate efficient code.
25
26 #ifndef CXXRTL_H
27 #define CXXRTL_H
28
29 #include <cstddef>
30 #include <cstdint>
31 #include <cassert>
32 #include <limits>
33 #include <type_traits>
34 #include <tuple>
35 #include <vector>
36 #include <map>
37 #include <algorithm>
38 #include <memory>
39 #include <sstream>
40
41 #include <backends/cxxrtl/cxxrtl_capi.h>
42
43 // CXXRTL essentially uses the C++ compiler as a hygienic macro engine that feeds an instruction selector.
44 // It generates a lot of specialized template functions with relatively large bodies that, when inlined
45 // into the caller and (for those with loops) unrolled, often expose many new optimization opportunities.
46 // Because of this, most of the CXXRTL runtime must be always inlined for best performance.
47 #ifndef __has_attribute
48 # define __has_attribute(x) 0
49 #endif
50 #if __has_attribute(always_inline)
51 #define CXXRTL_ALWAYS_INLINE inline __attribute__((__always_inline__))
52 #else
53 #define CXXRTL_ALWAYS_INLINE inline
54 #endif
55
56 namespace cxxrtl {
57
58 // All arbitrary-width values in CXXRTL are backed by arrays of unsigned integers called chunks. The chunk size
59 // is the same regardless of the value width to simplify manipulating values via FFI interfaces, e.g. driving
60 // and introspecting the simulation in Python.
61 //
62 // It is practical to use chunk sizes between 32 bits and platform register size because when arithmetics on
63 // narrower integer types is legalized by the C++ compiler, it inserts code to clear the high bits of the register.
64 // However, (a) most of our operations do not change those bits in the first place because of invariants that are
65 // invisible to the compiler, (b) we often operate on non-power-of-2 values and have to clear the high bits anyway.
66 // Therefore, using relatively wide chunks and clearing the high bits explicitly and only when we know they may be
67 // clobbered results in simpler generated code.
68 typedef uint32_t chunk_t;
69
70 template<typename T>
71 struct chunk_traits {
72 static_assert(std::is_integral<T>::value && std::is_unsigned<T>::value,
73 "chunk type must be an unsigned integral type");
74 using type = T;
75 static constexpr size_t bits = std::numeric_limits<T>::digits;
76 static constexpr T mask = std::numeric_limits<T>::max();
77 };
78
79 template<class T>
80 struct expr_base;
81
82 template<size_t Bits>
83 struct value : public expr_base<value<Bits>> {
84 static constexpr size_t bits = Bits;
85
86 using chunk = chunk_traits<chunk_t>;
87 static constexpr chunk::type msb_mask = (Bits % chunk::bits == 0) ? chunk::mask
88 : chunk::mask >> (chunk::bits - (Bits % chunk::bits));
89
90 static constexpr size_t chunks = (Bits + chunk::bits - 1) / chunk::bits;
91 chunk::type data[chunks] = {};
92
93 value() = default;
94 template<typename... Init>
95 explicit constexpr value(Init ...init) : data{init...} {}
96
97 value(const value<Bits> &) = default;
98 value(value<Bits> &&) = default;
99 value<Bits> &operator=(const value<Bits> &) = default;
100
101 // A (no-op) helper that forces the cast to value<>.
102 CXXRTL_ALWAYS_INLINE
103 const value<Bits> &val() const {
104 return *this;
105 }
106
107 std::string str() const {
108 std::stringstream ss;
109 ss << *this;
110 return ss.str();
111 }
112
113 // Operations with compile-time parameters.
114 //
115 // These operations are used to implement slicing, concatenation, and blitting.
116 // The trunc, zext and sext operations add or remove most significant bits (i.e. on the left);
117 // the rtrunc and rzext operations add or remove least significant bits (i.e. on the right).
118 template<size_t NewBits>
119 CXXRTL_ALWAYS_INLINE
120 value<NewBits> trunc() const {
121 static_assert(NewBits <= Bits, "trunc() may not increase width");
122 value<NewBits> result;
123 for (size_t n = 0; n < result.chunks; n++)
124 result.data[n] = data[n];
125 result.data[result.chunks - 1] &= result.msb_mask;
126 return result;
127 }
128
129 template<size_t NewBits>
130 CXXRTL_ALWAYS_INLINE
131 value<NewBits> zext() const {
132 static_assert(NewBits >= Bits, "zext() may not decrease width");
133 value<NewBits> result;
134 for (size_t n = 0; n < chunks; n++)
135 result.data[n] = data[n];
136 return result;
137 }
138
139 template<size_t NewBits>
140 CXXRTL_ALWAYS_INLINE
141 value<NewBits> sext() const {
142 static_assert(NewBits >= Bits, "sext() may not decrease width");
143 value<NewBits> result;
144 for (size_t n = 0; n < chunks; n++)
145 result.data[n] = data[n];
146 if (is_neg()) {
147 result.data[chunks - 1] |= ~msb_mask;
148 for (size_t n = chunks; n < result.chunks; n++)
149 result.data[n] = chunk::mask;
150 result.data[result.chunks - 1] &= result.msb_mask;
151 }
152 return result;
153 }
154
155 template<size_t NewBits>
156 CXXRTL_ALWAYS_INLINE
157 value<NewBits> rtrunc() const {
158 static_assert(NewBits <= Bits, "rtrunc() may not increase width");
159 value<NewBits> result;
160 constexpr size_t shift_chunks = (Bits - NewBits) / chunk::bits;
161 constexpr size_t shift_bits = (Bits - NewBits) % chunk::bits;
162 chunk::type carry = 0;
163 if (shift_chunks + result.chunks < chunks) {
164 carry = (shift_bits == 0) ? 0
165 : data[shift_chunks + result.chunks] << (chunk::bits - shift_bits);
166 }
167 for (size_t n = result.chunks; n > 0; n--) {
168 result.data[n - 1] = carry | (data[shift_chunks + n - 1] >> shift_bits);
169 carry = (shift_bits == 0) ? 0
170 : data[shift_chunks + n - 1] << (chunk::bits - shift_bits);
171 }
172 return result;
173 }
174
175 template<size_t NewBits>
176 CXXRTL_ALWAYS_INLINE
177 value<NewBits> rzext() const {
178 static_assert(NewBits >= Bits, "rzext() may not decrease width");
179 value<NewBits> result;
180 constexpr size_t shift_chunks = (NewBits - Bits) / chunk::bits;
181 constexpr size_t shift_bits = (NewBits - Bits) % chunk::bits;
182 chunk::type carry = 0;
183 for (size_t n = 0; n < chunks; n++) {
184 result.data[shift_chunks + n] = (data[n] << shift_bits) | carry;
185 carry = (shift_bits == 0) ? 0
186 : data[n] >> (chunk::bits - shift_bits);
187 }
188 if (shift_chunks + chunks < result.chunks)
189 result.data[shift_chunks + chunks] = carry;
190 return result;
191 }
192
193 // Bit blit operation, i.e. a partial read-modify-write.
194 template<size_t Stop, size_t Start>
195 CXXRTL_ALWAYS_INLINE
196 value<Bits> blit(const value<Stop - Start + 1> &source) const {
197 static_assert(Stop >= Start, "blit() may not reverse bit order");
198 constexpr chunk::type start_mask = ~(chunk::mask << (Start % chunk::bits));
199 constexpr chunk::type stop_mask = (Stop % chunk::bits + 1 == chunk::bits) ? 0
200 : (chunk::mask << (Stop % chunk::bits + 1));
201 value<Bits> masked = *this;
202 if (Start / chunk::bits == Stop / chunk::bits) {
203 masked.data[Start / chunk::bits] &= stop_mask | start_mask;
204 } else {
205 masked.data[Start / chunk::bits] &= start_mask;
206 for (size_t n = Start / chunk::bits + 1; n < Stop / chunk::bits; n++)
207 masked.data[n] = 0;
208 masked.data[Stop / chunk::bits] &= stop_mask;
209 }
210 value<Bits> shifted = source
211 .template rzext<Stop + 1>()
212 .template zext<Bits>();
213 return masked.bit_or(shifted);
214 }
215
216 // Helpers for selecting extending or truncating operation depending on whether the result is wider or narrower
217 // than the operand. In C++17 these can be replaced with `if constexpr`.
218 template<size_t NewBits, typename = void>
219 struct zext_cast {
220 CXXRTL_ALWAYS_INLINE
221 value<NewBits> operator()(const value<Bits> &val) {
222 return val.template zext<NewBits>();
223 }
224 };
225
226 template<size_t NewBits>
227 struct zext_cast<NewBits, typename std::enable_if<(NewBits < Bits)>::type> {
228 CXXRTL_ALWAYS_INLINE
229 value<NewBits> operator()(const value<Bits> &val) {
230 return val.template trunc<NewBits>();
231 }
232 };
233
234 template<size_t NewBits, typename = void>
235 struct sext_cast {
236 CXXRTL_ALWAYS_INLINE
237 value<NewBits> operator()(const value<Bits> &val) {
238 return val.template sext<NewBits>();
239 }
240 };
241
242 template<size_t NewBits>
243 struct sext_cast<NewBits, typename std::enable_if<(NewBits < Bits)>::type> {
244 CXXRTL_ALWAYS_INLINE
245 value<NewBits> operator()(const value<Bits> &val) {
246 return val.template trunc<NewBits>();
247 }
248 };
249
250 template<size_t NewBits>
251 CXXRTL_ALWAYS_INLINE
252 value<NewBits> zcast() const {
253 return zext_cast<NewBits>()(*this);
254 }
255
256 template<size_t NewBits>
257 CXXRTL_ALWAYS_INLINE
258 value<NewBits> scast() const {
259 return sext_cast<NewBits>()(*this);
260 }
261
262 // Operations with run-time parameters (offsets, amounts, etc).
263 //
264 // These operations are used for computations.
265 bool bit(size_t offset) const {
266 return data[offset / chunk::bits] & (1 << (offset % chunk::bits));
267 }
268
269 void set_bit(size_t offset, bool value = true) {
270 size_t offset_chunks = offset / chunk::bits;
271 size_t offset_bits = offset % chunk::bits;
272 data[offset_chunks] &= ~(1 << offset_bits);
273 data[offset_chunks] |= value ? 1 << offset_bits : 0;
274 }
275
276 bool is_zero() const {
277 for (size_t n = 0; n < chunks; n++)
278 if (data[n] != 0)
279 return false;
280 return true;
281 }
282
283 explicit operator bool() const {
284 return !is_zero();
285 }
286
287 bool is_neg() const {
288 return data[chunks - 1] & (1 << ((Bits - 1) % chunk::bits));
289 }
290
291 bool operator ==(const value<Bits> &other) const {
292 for (size_t n = 0; n < chunks; n++)
293 if (data[n] != other.data[n])
294 return false;
295 return true;
296 }
297
298 bool operator !=(const value<Bits> &other) const {
299 return !(*this == other);
300 }
301
302 value<Bits> bit_not() const {
303 value<Bits> result;
304 for (size_t n = 0; n < chunks; n++)
305 result.data[n] = ~data[n];
306 result.data[chunks - 1] &= msb_mask;
307 return result;
308 }
309
310 value<Bits> bit_and(const value<Bits> &other) const {
311 value<Bits> result;
312 for (size_t n = 0; n < chunks; n++)
313 result.data[n] = data[n] & other.data[n];
314 return result;
315 }
316
317 value<Bits> bit_or(const value<Bits> &other) const {
318 value<Bits> result;
319 for (size_t n = 0; n < chunks; n++)
320 result.data[n] = data[n] | other.data[n];
321 return result;
322 }
323
324 value<Bits> bit_xor(const value<Bits> &other) const {
325 value<Bits> result;
326 for (size_t n = 0; n < chunks; n++)
327 result.data[n] = data[n] ^ other.data[n];
328 return result;
329 }
330
331 value<Bits> update(const value<Bits> &val, const value<Bits> &mask) const {
332 return bit_and(mask.bit_not()).bit_or(val.bit_and(mask));
333 }
334
335 template<size_t AmountBits>
336 value<Bits> shl(const value<AmountBits> &amount) const {
337 // Ensure our early return is correct by prohibiting values larger than 4 Gbit.
338 static_assert(Bits <= chunk::mask, "shl() of unreasonably large values is not supported");
339 // Detect shifts definitely large than Bits early.
340 for (size_t n = 1; n < amount.chunks; n++)
341 if (amount.data[n] != 0)
342 return {};
343 // Past this point we can use the least significant chunk as the shift size.
344 size_t shift_chunks = amount.data[0] / chunk::bits;
345 size_t shift_bits = amount.data[0] % chunk::bits;
346 if (shift_chunks >= chunks)
347 return {};
348 value<Bits> result;
349 chunk::type carry = 0;
350 for (size_t n = 0; n < chunks - shift_chunks; n++) {
351 result.data[shift_chunks + n] = (data[n] << shift_bits) | carry;
352 carry = (shift_bits == 0) ? 0
353 : data[n] >> (chunk::bits - shift_bits);
354 }
355 return result;
356 }
357
358 template<size_t AmountBits, bool Signed = false>
359 value<Bits> shr(const value<AmountBits> &amount) const {
360 // Ensure our early return is correct by prohibiting values larger than 4 Gbit.
361 static_assert(Bits <= chunk::mask, "shr() of unreasonably large values is not supported");
362 // Detect shifts definitely large than Bits early.
363 for (size_t n = 1; n < amount.chunks; n++)
364 if (amount.data[n] != 0)
365 return {};
366 // Past this point we can use the least significant chunk as the shift size.
367 size_t shift_chunks = amount.data[0] / chunk::bits;
368 size_t shift_bits = amount.data[0] % chunk::bits;
369 if (shift_chunks >= chunks)
370 return {};
371 value<Bits> result;
372 chunk::type carry = 0;
373 for (size_t n = 0; n < chunks - shift_chunks; n++) {
374 result.data[chunks - shift_chunks - 1 - n] = carry | (data[chunks - 1 - n] >> shift_bits);
375 carry = (shift_bits == 0) ? 0
376 : data[chunks - 1 - n] << (chunk::bits - shift_bits);
377 }
378 if (Signed && is_neg()) {
379 for (size_t n = chunks - shift_chunks; n < chunks; n++)
380 result.data[n] = chunk::mask;
381 if (shift_bits != 0)
382 result.data[chunks - shift_chunks] |= chunk::mask << (chunk::bits - shift_bits);
383 }
384 return result;
385 }
386
387 template<size_t AmountBits>
388 value<Bits> sshr(const value<AmountBits> &amount) const {
389 return shr<AmountBits, /*Signed=*/true>(amount);
390 }
391
392 size_t ctpop() const {
393 size_t count = 0;
394 for (size_t n = 0; n < chunks; n++) {
395 // This loop implements the population count idiom as recognized by LLVM and GCC.
396 for (chunk::type x = data[n]; x != 0; count++)
397 x = x & (x - 1);
398 }
399 return count;
400 }
401
402 size_t ctlz() const {
403 size_t count = 0;
404 for (size_t n = 0; n < chunks; n++) {
405 chunk::type x = data[chunks - 1 - n];
406 if (x == 0) {
407 count += (n == 0 ? Bits % chunk::bits : chunk::bits);
408 } else {
409 // This loop implements the find first set idiom as recognized by LLVM.
410 for (; x != 0; count++)
411 x >>= 1;
412 }
413 }
414 return count;
415 }
416
417 template<bool Invert, bool CarryIn>
418 std::pair<value<Bits>, bool /*CarryOut*/> alu(const value<Bits> &other) const {
419 value<Bits> result;
420 bool carry = CarryIn;
421 for (size_t n = 0; n < result.chunks; n++) {
422 result.data[n] = data[n] + (Invert ? ~other.data[n] : other.data[n]) + carry;
423 carry = (result.data[n] < data[n]) ||
424 (result.data[n] == data[n] && carry);
425 }
426 result.data[result.chunks - 1] &= result.msb_mask;
427 return {result, carry};
428 }
429
430 value<Bits> add(const value<Bits> &other) const {
431 return alu</*Invert=*/false, /*CarryIn=*/false>(other).first;
432 }
433
434 value<Bits> sub(const value<Bits> &other) const {
435 return alu</*Invert=*/true, /*CarryIn=*/true>(other).first;
436 }
437
438 value<Bits> neg() const {
439 return value<Bits> { 0u }.sub(*this);
440 }
441
442 bool ucmp(const value<Bits> &other) const {
443 bool carry;
444 std::tie(std::ignore, carry) = alu</*Invert=*/true, /*CarryIn=*/true>(other);
445 return !carry; // a.ucmp(b) ≡ a u< b
446 }
447
448 bool scmp(const value<Bits> &other) const {
449 value<Bits> result;
450 bool carry;
451 std::tie(result, carry) = alu</*Invert=*/true, /*CarryIn=*/true>(other);
452 bool overflow = (is_neg() == !other.is_neg()) && (is_neg() != result.is_neg());
453 return result.is_neg() ^ overflow; // a.scmp(b) ≡ a s< b
454 }
455 };
456
457 // Expression template for a slice, usable as lvalue or rvalue, and composable with other expression templates here.
458 template<class T, size_t Stop, size_t Start>
459 struct slice_expr : public expr_base<slice_expr<T, Stop, Start>> {
460 static_assert(Stop >= Start, "slice_expr() may not reverse bit order");
461 static_assert(Start < T::bits && Stop < T::bits, "slice_expr() must be within bounds");
462 static constexpr size_t bits = Stop - Start + 1;
463
464 T &expr;
465
466 slice_expr(T &expr) : expr(expr) {}
467 slice_expr(const slice_expr<T, Stop, Start> &) = delete;
468
469 CXXRTL_ALWAYS_INLINE
470 operator value<bits>() const {
471 return static_cast<const value<T::bits> &>(expr)
472 .template rtrunc<T::bits - Start>()
473 .template trunc<bits>();
474 }
475
476 CXXRTL_ALWAYS_INLINE
477 slice_expr<T, Stop, Start> &operator=(const value<bits> &rhs) {
478 // Generic partial assignment implemented using a read-modify-write operation on the sliced expression.
479 expr = static_cast<const value<T::bits> &>(expr)
480 .template blit<Stop, Start>(rhs);
481 return *this;
482 }
483
484 // A helper that forces the cast to value<>, which allows deduction to work.
485 CXXRTL_ALWAYS_INLINE
486 value<bits> val() const {
487 return static_cast<const value<bits> &>(*this);
488 }
489 };
490
491 // Expression template for a concatenation, usable as lvalue or rvalue, and composable with other expression templates here.
492 template<class T, class U>
493 struct concat_expr : public expr_base<concat_expr<T, U>> {
494 static constexpr size_t bits = T::bits + U::bits;
495
496 T &ms_expr;
497 U &ls_expr;
498
499 concat_expr(T &ms_expr, U &ls_expr) : ms_expr(ms_expr), ls_expr(ls_expr) {}
500 concat_expr(const concat_expr<T, U> &) = delete;
501
502 CXXRTL_ALWAYS_INLINE
503 operator value<bits>() const {
504 value<bits> ms_shifted = static_cast<const value<T::bits> &>(ms_expr)
505 .template rzext<bits>();
506 value<bits> ls_extended = static_cast<const value<U::bits> &>(ls_expr)
507 .template zext<bits>();
508 return ms_shifted.bit_or(ls_extended);
509 }
510
511 CXXRTL_ALWAYS_INLINE
512 concat_expr<T, U> &operator=(const value<bits> &rhs) {
513 ms_expr = rhs.template rtrunc<T::bits>();
514 ls_expr = rhs.template trunc<U::bits>();
515 return *this;
516 }
517
518 // A helper that forces the cast to value<>, which allows deduction to work.
519 CXXRTL_ALWAYS_INLINE
520 value<bits> val() const {
521 return static_cast<const value<bits> &>(*this);
522 }
523 };
524
525 // Base class for expression templates, providing helper methods for operations that are valid on both rvalues and lvalues.
526 //
527 // Note that expression objects (slices and concatenations) constructed in this way should NEVER be captured because
528 // they refer to temporaries that will, in general, only live until the end of the statement. For example, both of
529 // these snippets perform use-after-free:
530 //
531 // const auto &a = val.slice<7,0>().slice<1>();
532 // value<1> b = a;
533 //
534 // auto &&c = val.slice<7,0>().slice<1>();
535 // c = value<1>{1u};
536 //
537 // An easy way to write code using slices and concatenations safely is to follow two simple rules:
538 // * Never explicitly name any type except `value<W>` or `const value<W> &`.
539 // * Never use a `const auto &` or `auto &&` in any such expression.
540 // Then, any code that compiles will be well-defined.
541 template<class T>
542 struct expr_base {
543 template<size_t Stop, size_t Start = Stop>
544 CXXRTL_ALWAYS_INLINE
545 slice_expr<const T, Stop, Start> slice() const {
546 return {*static_cast<const T *>(this)};
547 }
548
549 template<size_t Stop, size_t Start = Stop>
550 CXXRTL_ALWAYS_INLINE
551 slice_expr<T, Stop, Start> slice() {
552 return {*static_cast<T *>(this)};
553 }
554
555 template<class U>
556 CXXRTL_ALWAYS_INLINE
557 concat_expr<const T, typename std::remove_reference<const U>::type> concat(const U &other) const {
558 return {*static_cast<const T *>(this), other};
559 }
560
561 template<class U>
562 CXXRTL_ALWAYS_INLINE
563 concat_expr<T, typename std::remove_reference<U>::type> concat(U &&other) {
564 return {*static_cast<T *>(this), other};
565 }
566 };
567
568 template<size_t Bits>
569 std::ostream &operator<<(std::ostream &os, const value<Bits> &val) {
570 auto old_flags = os.flags(std::ios::right);
571 auto old_width = os.width(0);
572 auto old_fill = os.fill('0');
573 os << val.bits << '\'' << std::hex;
574 for (size_t n = val.chunks - 1; n != (size_t)-1; n--) {
575 if (n == val.chunks - 1 && Bits % value<Bits>::chunk::bits != 0)
576 os.width((Bits % value<Bits>::chunk::bits + 3) / 4);
577 else
578 os.width((value<Bits>::chunk::bits + 3) / 4);
579 os << val.data[n];
580 }
581 os.fill(old_fill);
582 os.width(old_width);
583 os.flags(old_flags);
584 return os;
585 }
586
587 template<size_t Bits>
588 struct wire {
589 static constexpr size_t bits = Bits;
590
591 value<Bits> curr;
592 value<Bits> next;
593
594 wire() = default;
595 constexpr wire(const value<Bits> &init) : curr(init), next(init) {}
596 template<typename... Init>
597 explicit constexpr wire(Init ...init) : curr{init...}, next{init...} {}
598
599 wire(const wire<Bits> &) = delete;
600 wire(wire<Bits> &&) = default;
601 wire<Bits> &operator=(const wire<Bits> &) = delete;
602
603 bool commit() {
604 if (curr != next) {
605 curr = next;
606 return true;
607 }
608 return false;
609 }
610 };
611
612 template<size_t Bits>
613 std::ostream &operator<<(std::ostream &os, const wire<Bits> &val) {
614 os << val.curr;
615 return os;
616 }
617
618 template<size_t Width>
619 struct memory {
620 std::vector<value<Width>> data;
621
622 size_t depth() const {
623 return data.size();
624 }
625
626 memory() = delete;
627 explicit memory(size_t depth) : data(depth) {}
628
629 memory(const memory<Width> &) = delete;
630 memory<Width> &operator=(const memory<Width> &) = delete;
631
632 // The only way to get the compiler to put the initializer in .rodata and do not copy it on stack is to stuff it
633 // into a plain array. You'd think an std::initializer_list would work here, but it doesn't, because you can't
634 // construct an initializer_list in a constexpr (or something) and so if you try to do that the whole thing is
635 // first copied on the stack (probably overflowing it) and then again into `data`.
636 template<size_t Size>
637 struct init {
638 size_t offset;
639 value<Width> data[Size];
640 };
641
642 template<size_t... InitSize>
643 explicit memory(size_t depth, const init<InitSize> &...init) : data(depth) {
644 data.resize(depth);
645 // This utterly reprehensible construct is the most reasonable way to apply a function to every element
646 // of a parameter pack, if the elements all have different types and so cannot be cast to an initializer list.
647 auto _ = {std::move(std::begin(init.data), std::end(init.data), data.begin() + init.offset)...};
648 (void)_;
649 }
650
651 // An operator for direct memory reads. May be used at any time during the simulation.
652 const value<Width> &operator [](size_t index) const {
653 assert(index < data.size());
654 return data[index];
655 }
656
657 // An operator for direct memory writes. May only be used before the simulation is started. If used
658 // after the simulation is started, the design may malfunction.
659 value<Width> &operator [](size_t index) {
660 assert(index < data.size());
661 return data[index];
662 }
663
664 // A simple way to make a writable memory would be to use an array of wires instead of an array of values.
665 // However, there are two significant downsides to this approach: first, it has large overhead (2× space
666 // overhead, and O(depth) time overhead during commit); second, it does not simplify handling write port
667 // priorities. Although in principle write ports could be ordered or conditionally enabled in generated
668 // code based on their priorities and selected addresses, the feedback arc set problem is computationally
669 // expensive, and the heuristic based algorithms are not easily modified to guarantee (rather than prefer)
670 // a particular write port evaluation order.
671 //
672 // The approach used here instead is to queue writes into a buffer during the eval phase, then perform
673 // the writes during the commit phase in the priority order. This approach has low overhead, with both space
674 // and time proportional to the amount of write ports. Because virtually every memory in a practical design
675 // has at most two write ports, linear search is used on every write, being the fastest and simplest approach.
676 struct write {
677 size_t index;
678 value<Width> val;
679 value<Width> mask;
680 int priority;
681 };
682 std::vector<write> write_queue;
683
684 void update(size_t index, const value<Width> &val, const value<Width> &mask, int priority = 0) {
685 assert(index < data.size());
686 // Queue up the write while keeping the queue sorted by priority.
687 write_queue.insert(
688 std::upper_bound(write_queue.begin(), write_queue.end(), priority,
689 [](const int a, const write& b) { return a < b.priority; }),
690 write { index, val, mask, priority });
691 }
692
693 bool commit() {
694 bool changed = false;
695 for (const write &entry : write_queue) {
696 value<Width> elem = data[entry.index];
697 elem = elem.update(entry.val, entry.mask);
698 changed |= (data[entry.index] != elem);
699 data[entry.index] = elem;
700 }
701 write_queue.clear();
702 return changed;
703 }
704 };
705
706 struct metadata {
707 const enum {
708 MISSING = 0,
709 UINT = 1,
710 SINT = 2,
711 STRING = 3,
712 DOUBLE = 4,
713 } value_type;
714
715 // In debug mode, using the wrong .as_*() function will assert.
716 // In release mode, using the wrong .as_*() function will safely return a default value.
717 const unsigned uint_value = 0;
718 const signed sint_value = 0;
719 const std::string string_value = "";
720 const double double_value = 0.0;
721
722 metadata() : value_type(MISSING) {}
723 metadata(unsigned value) : value_type(UINT), uint_value(value) {}
724 metadata(signed value) : value_type(SINT), sint_value(value) {}
725 metadata(const std::string &value) : value_type(STRING), string_value(value) {}
726 metadata(const char *value) : value_type(STRING), string_value(value) {}
727 metadata(double value) : value_type(DOUBLE), double_value(value) {}
728
729 metadata(const metadata &) = default;
730 metadata &operator=(const metadata &) = delete;
731
732 unsigned as_uint() const {
733 assert(value_type == UINT);
734 return uint_value;
735 }
736
737 signed as_sint() const {
738 assert(value_type == SINT);
739 return sint_value;
740 }
741
742 const std::string &as_string() const {
743 assert(value_type == STRING);
744 return string_value;
745 }
746
747 double as_double() const {
748 assert(value_type == DOUBLE);
749 return double_value;
750 }
751 };
752
753 typedef std::map<std::string, metadata> metadata_map;
754
755 // Helper class to disambiguate values/wires and their aliases.
756 struct debug_alias {};
757
758 // This structure is intended for consumption via foreign function interfaces, like Python's ctypes.
759 // Because of this it uses a C-style layout that is easy to parse rather than more idiomatic C++.
760 //
761 // To avoid violating strict aliasing rules, this structure has to be a subclass of the one used
762 // in the C API, or it would not be possible to cast between the pointers to these.
763 struct debug_item : ::cxxrtl_object {
764 enum : uint32_t {
765 VALUE = CXXRTL_VALUE,
766 WIRE = CXXRTL_WIRE,
767 MEMORY = CXXRTL_MEMORY,
768 ALIAS = CXXRTL_ALIAS,
769 };
770
771 debug_item(const ::cxxrtl_object &object) : cxxrtl_object(object) {}
772
773 template<size_t Bits>
774 debug_item(value<Bits> &item, size_t lsb_offset = 0) {
775 static_assert(sizeof(item) == value<Bits>::chunks * sizeof(chunk_t),
776 "value<Bits> is not compatible with C layout");
777 type = VALUE;
778 width = Bits;
779 lsb_at = lsb_offset;
780 depth = 1;
781 zero_at = 0;
782 curr = item.data;
783 next = item.data;
784 }
785
786 template<size_t Bits>
787 debug_item(const value<Bits> &item, size_t lsb_offset = 0) {
788 static_assert(sizeof(item) == value<Bits>::chunks * sizeof(chunk_t),
789 "value<Bits> is not compatible with C layout");
790 type = VALUE;
791 width = Bits;
792 lsb_at = lsb_offset;
793 depth = 1;
794 zero_at = 0;
795 curr = const_cast<chunk_t*>(item.data);
796 next = nullptr;
797 }
798
799 template<size_t Bits>
800 debug_item(wire<Bits> &item, size_t lsb_offset = 0) {
801 static_assert(sizeof(item.curr) == value<Bits>::chunks * sizeof(chunk_t) &&
802 sizeof(item.next) == value<Bits>::chunks * sizeof(chunk_t),
803 "wire<Bits> is not compatible with C layout");
804 type = WIRE;
805 width = Bits;
806 lsb_at = lsb_offset;
807 depth = 1;
808 zero_at = 0;
809 curr = item.curr.data;
810 next = item.next.data;
811 }
812
813 template<size_t Width>
814 debug_item(memory<Width> &item, size_t zero_offset = 0) {
815 static_assert(sizeof(item.data[0]) == value<Width>::chunks * sizeof(chunk_t),
816 "memory<Width> is not compatible with C layout");
817 type = MEMORY;
818 width = Width;
819 lsb_at = 0;
820 depth = item.data.size();
821 zero_at = zero_offset;
822 curr = item.data.empty() ? nullptr : item.data[0].data;
823 next = nullptr;
824 }
825
826 template<size_t Bits>
827 debug_item(debug_alias, const value<Bits> &item, size_t lsb_offset = 0) {
828 static_assert(sizeof(item) == value<Bits>::chunks * sizeof(chunk_t),
829 "value<Bits> is not compatible with C layout");
830 type = ALIAS;
831 width = Bits;
832 lsb_at = lsb_offset;
833 depth = 1;
834 zero_at = 0;
835 curr = const_cast<chunk_t*>(item.data);
836 next = nullptr;
837 }
838
839 template<size_t Bits>
840 debug_item(debug_alias, const wire<Bits> &item, size_t lsb_offset = 0) {
841 static_assert(sizeof(item.curr) == value<Bits>::chunks * sizeof(chunk_t) &&
842 sizeof(item.next) == value<Bits>::chunks * sizeof(chunk_t),
843 "wire<Bits> is not compatible with C layout");
844 type = ALIAS;
845 width = Bits;
846 lsb_at = lsb_offset;
847 depth = 1;
848 zero_at = 0;
849 curr = const_cast<chunk_t*>(item.curr.data);
850 next = nullptr;
851 }
852 };
853 static_assert(std::is_standard_layout<debug_item>::value, "debug_item is not compatible with C layout");
854
855 struct debug_items {
856 std::map<std::string, std::vector<debug_item>> table;
857
858 void add(const std::string &name, debug_item &&item) {
859 std::vector<debug_item> &parts = table[name];
860 parts.emplace_back(item);
861 std::sort(parts.begin(), parts.end(),
862 [](const debug_item &a, const debug_item &b) {
863 return a.lsb_at < b.lsb_at;
864 });
865 }
866
867 size_t count(const std::string &name) const {
868 if (table.count(name) == 0)
869 return 0;
870 return table.at(name).size();
871 }
872
873 const std::vector<debug_item> &parts_at(const std::string &name) const {
874 return table.at(name);
875 }
876
877 const debug_item &at(const std::string &name) const {
878 const std::vector<debug_item> &parts = table.at(name);
879 assert(parts.size() == 1);
880 return parts.at(0);
881 }
882
883 const debug_item &operator [](const std::string &name) const {
884 return at(name);
885 }
886 };
887
888 struct module {
889 module() {}
890 virtual ~module() {}
891
892 module(const module &) = delete;
893 module &operator=(const module &) = delete;
894
895 virtual bool eval() = 0;
896 virtual bool commit() = 0;
897
898 size_t step() {
899 size_t deltas = 0;
900 bool converged = false;
901 do {
902 converged = eval();
903 deltas++;
904 } while (commit() && !converged);
905 return deltas;
906 }
907
908 virtual void debug_info(debug_items &items, std::string path = "") {
909 (void)items, (void)path;
910 }
911 };
912
913 } // namespace cxxrtl
914
915 // Internal structure used to communicate with the implementation of the C interface.
916 typedef struct _cxxrtl_toplevel {
917 std::unique_ptr<cxxrtl::module> module;
918 } *cxxrtl_toplevel;
919
920 // Definitions of internal Yosys cells. Other than the functions in this namespace, CXXRTL is fully generic
921 // and indepenent of Yosys implementation details.
922 //
923 // The `write_cxxrtl` pass translates internal cells (cells with names that start with `$`) to calls of these
924 // functions. All of Yosys arithmetic and logical cells perform sign or zero extension on their operands,
925 // whereas basic operations on arbitrary width values require operands to be of the same width. These functions
926 // bridge the gap by performing the necessary casts. They are named similar to `cell_A[B]`, where A and B are `u`
927 // if the corresponding operand is unsigned, and `s` if it is signed.
928 namespace cxxrtl_yosys {
929
930 using namespace cxxrtl;
931
932 // std::max isn't constexpr until C++14 for no particular reason (it's an oversight), so we define our own.
933 template<class T>
934 CXXRTL_ALWAYS_INLINE
935 constexpr T max(const T &a, const T &b) {
936 return a > b ? a : b;
937 }
938
939 // Logic operations
940 template<size_t BitsY, size_t BitsA>
941 CXXRTL_ALWAYS_INLINE
942 value<BitsY> logic_not(const value<BitsA> &a) {
943 return value<BitsY> { a ? 0u : 1u };
944 }
945
946 template<size_t BitsY, size_t BitsA, size_t BitsB>
947 CXXRTL_ALWAYS_INLINE
948 value<BitsY> logic_and(const value<BitsA> &a, const value<BitsB> &b) {
949 return value<BitsY> { (bool(a) & bool(b)) ? 1u : 0u };
950 }
951
952 template<size_t BitsY, size_t BitsA, size_t BitsB>
953 CXXRTL_ALWAYS_INLINE
954 value<BitsY> logic_or(const value<BitsA> &a, const value<BitsB> &b) {
955 return value<BitsY> { (bool(a) | bool(b)) ? 1u : 0u };
956 }
957
958 // Reduction operations
959 template<size_t BitsY, size_t BitsA>
960 CXXRTL_ALWAYS_INLINE
961 value<BitsY> reduce_and(const value<BitsA> &a) {
962 return value<BitsY> { a.bit_not().is_zero() ? 1u : 0u };
963 }
964
965 template<size_t BitsY, size_t BitsA>
966 CXXRTL_ALWAYS_INLINE
967 value<BitsY> reduce_or(const value<BitsA> &a) {
968 return value<BitsY> { a ? 1u : 0u };
969 }
970
971 template<size_t BitsY, size_t BitsA>
972 CXXRTL_ALWAYS_INLINE
973 value<BitsY> reduce_xor(const value<BitsA> &a) {
974 return value<BitsY> { (a.ctpop() % 2) ? 1u : 0u };
975 }
976
977 template<size_t BitsY, size_t BitsA>
978 CXXRTL_ALWAYS_INLINE
979 value<BitsY> reduce_xnor(const value<BitsA> &a) {
980 return value<BitsY> { (a.ctpop() % 2) ? 0u : 1u };
981 }
982
983 template<size_t BitsY, size_t BitsA>
984 CXXRTL_ALWAYS_INLINE
985 value<BitsY> reduce_bool(const value<BitsA> &a) {
986 return value<BitsY> { a ? 1u : 0u };
987 }
988
989 // Bitwise operations
990 template<size_t BitsY, size_t BitsA>
991 CXXRTL_ALWAYS_INLINE
992 value<BitsY> not_u(const value<BitsA> &a) {
993 return a.template zcast<BitsY>().bit_not();
994 }
995
996 template<size_t BitsY, size_t BitsA>
997 CXXRTL_ALWAYS_INLINE
998 value<BitsY> not_s(const value<BitsA> &a) {
999 return a.template scast<BitsY>().bit_not();
1000 }
1001
1002 template<size_t BitsY, size_t BitsA, size_t BitsB>
1003 CXXRTL_ALWAYS_INLINE
1004 value<BitsY> and_uu(const value<BitsA> &a, const value<BitsB> &b) {
1005 return a.template zcast<BitsY>().bit_and(b.template zcast<BitsY>());
1006 }
1007
1008 template<size_t BitsY, size_t BitsA, size_t BitsB>
1009 CXXRTL_ALWAYS_INLINE
1010 value<BitsY> and_ss(const value<BitsA> &a, const value<BitsB> &b) {
1011 return a.template scast<BitsY>().bit_and(b.template scast<BitsY>());
1012 }
1013
1014 template<size_t BitsY, size_t BitsA, size_t BitsB>
1015 CXXRTL_ALWAYS_INLINE
1016 value<BitsY> or_uu(const value<BitsA> &a, const value<BitsB> &b) {
1017 return a.template zcast<BitsY>().bit_or(b.template zcast<BitsY>());
1018 }
1019
1020 template<size_t BitsY, size_t BitsA, size_t BitsB>
1021 CXXRTL_ALWAYS_INLINE
1022 value<BitsY> or_ss(const value<BitsA> &a, const value<BitsB> &b) {
1023 return a.template scast<BitsY>().bit_or(b.template scast<BitsY>());
1024 }
1025
1026 template<size_t BitsY, size_t BitsA, size_t BitsB>
1027 CXXRTL_ALWAYS_INLINE
1028 value<BitsY> xor_uu(const value<BitsA> &a, const value<BitsB> &b) {
1029 return a.template zcast<BitsY>().bit_xor(b.template zcast<BitsY>());
1030 }
1031
1032 template<size_t BitsY, size_t BitsA, size_t BitsB>
1033 CXXRTL_ALWAYS_INLINE
1034 value<BitsY> xor_ss(const value<BitsA> &a, const value<BitsB> &b) {
1035 return a.template scast<BitsY>().bit_xor(b.template scast<BitsY>());
1036 }
1037
1038 template<size_t BitsY, size_t BitsA, size_t BitsB>
1039 CXXRTL_ALWAYS_INLINE
1040 value<BitsY> xnor_uu(const value<BitsA> &a, const value<BitsB> &b) {
1041 return a.template zcast<BitsY>().bit_xor(b.template zcast<BitsY>()).bit_not();
1042 }
1043
1044 template<size_t BitsY, size_t BitsA, size_t BitsB>
1045 CXXRTL_ALWAYS_INLINE
1046 value<BitsY> xnor_ss(const value<BitsA> &a, const value<BitsB> &b) {
1047 return a.template scast<BitsY>().bit_xor(b.template scast<BitsY>()).bit_not();
1048 }
1049
1050 template<size_t BitsY, size_t BitsA, size_t BitsB>
1051 CXXRTL_ALWAYS_INLINE
1052 value<BitsY> shl_uu(const value<BitsA> &a, const value<BitsB> &b) {
1053 return a.template zcast<BitsY>().template shl(b);
1054 }
1055
1056 template<size_t BitsY, size_t BitsA, size_t BitsB>
1057 CXXRTL_ALWAYS_INLINE
1058 value<BitsY> shl_su(const value<BitsA> &a, const value<BitsB> &b) {
1059 return a.template scast<BitsY>().template shl(b);
1060 }
1061
1062 template<size_t BitsY, size_t BitsA, size_t BitsB>
1063 CXXRTL_ALWAYS_INLINE
1064 value<BitsY> sshl_uu(const value<BitsA> &a, const value<BitsB> &b) {
1065 return a.template zcast<BitsY>().template shl(b);
1066 }
1067
1068 template<size_t BitsY, size_t BitsA, size_t BitsB>
1069 CXXRTL_ALWAYS_INLINE
1070 value<BitsY> sshl_su(const value<BitsA> &a, const value<BitsB> &b) {
1071 return a.template scast<BitsY>().template shl(b);
1072 }
1073
1074 template<size_t BitsY, size_t BitsA, size_t BitsB>
1075 CXXRTL_ALWAYS_INLINE
1076 value<BitsY> shr_uu(const value<BitsA> &a, const value<BitsB> &b) {
1077 return a.template shr(b).template zcast<BitsY>();
1078 }
1079
1080 template<size_t BitsY, size_t BitsA, size_t BitsB>
1081 CXXRTL_ALWAYS_INLINE
1082 value<BitsY> shr_su(const value<BitsA> &a, const value<BitsB> &b) {
1083 return a.template shr(b).template scast<BitsY>();
1084 }
1085
1086 template<size_t BitsY, size_t BitsA, size_t BitsB>
1087 CXXRTL_ALWAYS_INLINE
1088 value<BitsY> sshr_uu(const value<BitsA> &a, const value<BitsB> &b) {
1089 return a.template shr(b).template zcast<BitsY>();
1090 }
1091
1092 template<size_t BitsY, size_t BitsA, size_t BitsB>
1093 CXXRTL_ALWAYS_INLINE
1094 value<BitsY> sshr_su(const value<BitsA> &a, const value<BitsB> &b) {
1095 return a.template sshr(b).template scast<BitsY>();
1096 }
1097
1098 template<size_t BitsY, size_t BitsA, size_t BitsB>
1099 CXXRTL_ALWAYS_INLINE
1100 value<BitsY> shift_uu(const value<BitsA> &a, const value<BitsB> &b) {
1101 return shr_uu<BitsY>(a, b);
1102 }
1103
1104 template<size_t BitsY, size_t BitsA, size_t BitsB>
1105 CXXRTL_ALWAYS_INLINE
1106 value<BitsY> shift_su(const value<BitsA> &a, const value<BitsB> &b) {
1107 return shr_su<BitsY>(a, b);
1108 }
1109
1110 template<size_t BitsY, size_t BitsA, size_t BitsB>
1111 CXXRTL_ALWAYS_INLINE
1112 value<BitsY> shift_us(const value<BitsA> &a, const value<BitsB> &b) {
1113 return b.is_neg() ? shl_uu<BitsY>(a, b.template sext<BitsB + 1>().neg()) : shr_uu<BitsY>(a, b);
1114 }
1115
1116 template<size_t BitsY, size_t BitsA, size_t BitsB>
1117 CXXRTL_ALWAYS_INLINE
1118 value<BitsY> shift_ss(const value<BitsA> &a, const value<BitsB> &b) {
1119 return b.is_neg() ? shl_su<BitsY>(a, b.template sext<BitsB + 1>().neg()) : shr_su<BitsY>(a, b);
1120 }
1121
1122 template<size_t BitsY, size_t BitsA, size_t BitsB>
1123 CXXRTL_ALWAYS_INLINE
1124 value<BitsY> shiftx_uu(const value<BitsA> &a, const value<BitsB> &b) {
1125 return shift_uu<BitsY>(a, b);
1126 }
1127
1128 template<size_t BitsY, size_t BitsA, size_t BitsB>
1129 CXXRTL_ALWAYS_INLINE
1130 value<BitsY> shiftx_su(const value<BitsA> &a, const value<BitsB> &b) {
1131 return shift_su<BitsY>(a, b);
1132 }
1133
1134 template<size_t BitsY, size_t BitsA, size_t BitsB>
1135 CXXRTL_ALWAYS_INLINE
1136 value<BitsY> shiftx_us(const value<BitsA> &a, const value<BitsB> &b) {
1137 return shift_us<BitsY>(a, b);
1138 }
1139
1140 template<size_t BitsY, size_t BitsA, size_t BitsB>
1141 CXXRTL_ALWAYS_INLINE
1142 value<BitsY> shiftx_ss(const value<BitsA> &a, const value<BitsB> &b) {
1143 return shift_ss<BitsY>(a, b);
1144 }
1145
1146 // Comparison operations
1147 template<size_t BitsY, size_t BitsA, size_t BitsB>
1148 CXXRTL_ALWAYS_INLINE
1149 value<BitsY> eq_uu(const value<BitsA> &a, const value<BitsB> &b) {
1150 constexpr size_t BitsExt = max(BitsA, BitsB);
1151 return value<BitsY>{ a.template zext<BitsExt>() == b.template zext<BitsExt>() ? 1u : 0u };
1152 }
1153
1154 template<size_t BitsY, size_t BitsA, size_t BitsB>
1155 CXXRTL_ALWAYS_INLINE
1156 value<BitsY> eq_ss(const value<BitsA> &a, const value<BitsB> &b) {
1157 constexpr size_t BitsExt = max(BitsA, BitsB);
1158 return value<BitsY>{ a.template sext<BitsExt>() == b.template sext<BitsExt>() ? 1u : 0u };
1159 }
1160
1161 template<size_t BitsY, size_t BitsA, size_t BitsB>
1162 CXXRTL_ALWAYS_INLINE
1163 value<BitsY> ne_uu(const value<BitsA> &a, const value<BitsB> &b) {
1164 constexpr size_t BitsExt = max(BitsA, BitsB);
1165 return value<BitsY>{ a.template zext<BitsExt>() != b.template zext<BitsExt>() ? 1u : 0u };
1166 }
1167
1168 template<size_t BitsY, size_t BitsA, size_t BitsB>
1169 CXXRTL_ALWAYS_INLINE
1170 value<BitsY> ne_ss(const value<BitsA> &a, const value<BitsB> &b) {
1171 constexpr size_t BitsExt = max(BitsA, BitsB);
1172 return value<BitsY>{ a.template sext<BitsExt>() != b.template sext<BitsExt>() ? 1u : 0u };
1173 }
1174
1175 template<size_t BitsY, size_t BitsA, size_t BitsB>
1176 CXXRTL_ALWAYS_INLINE
1177 value<BitsY> eqx_uu(const value<BitsA> &a, const value<BitsB> &b) {
1178 return eq_uu<BitsY>(a, b);
1179 }
1180
1181 template<size_t BitsY, size_t BitsA, size_t BitsB>
1182 CXXRTL_ALWAYS_INLINE
1183 value<BitsY> eqx_ss(const value<BitsA> &a, const value<BitsB> &b) {
1184 return eq_ss<BitsY>(a, b);
1185 }
1186
1187 template<size_t BitsY, size_t BitsA, size_t BitsB>
1188 CXXRTL_ALWAYS_INLINE
1189 value<BitsY> nex_uu(const value<BitsA> &a, const value<BitsB> &b) {
1190 return ne_uu<BitsY>(a, b);
1191 }
1192
1193 template<size_t BitsY, size_t BitsA, size_t BitsB>
1194 CXXRTL_ALWAYS_INLINE
1195 value<BitsY> nex_ss(const value<BitsA> &a, const value<BitsB> &b) {
1196 return ne_ss<BitsY>(a, b);
1197 }
1198
1199 template<size_t BitsY, size_t BitsA, size_t BitsB>
1200 CXXRTL_ALWAYS_INLINE
1201 value<BitsY> gt_uu(const value<BitsA> &a, const value<BitsB> &b) {
1202 constexpr size_t BitsExt = max(BitsA, BitsB);
1203 return value<BitsY> { b.template zext<BitsExt>().ucmp(a.template zext<BitsExt>()) ? 1u : 0u };
1204 }
1205
1206 template<size_t BitsY, size_t BitsA, size_t BitsB>
1207 CXXRTL_ALWAYS_INLINE
1208 value<BitsY> gt_ss(const value<BitsA> &a, const value<BitsB> &b) {
1209 constexpr size_t BitsExt = max(BitsA, BitsB);
1210 return value<BitsY> { b.template sext<BitsExt>().scmp(a.template sext<BitsExt>()) ? 1u : 0u };
1211 }
1212
1213 template<size_t BitsY, size_t BitsA, size_t BitsB>
1214 CXXRTL_ALWAYS_INLINE
1215 value<BitsY> ge_uu(const value<BitsA> &a, const value<BitsB> &b) {
1216 constexpr size_t BitsExt = max(BitsA, BitsB);
1217 return value<BitsY> { !a.template zext<BitsExt>().ucmp(b.template zext<BitsExt>()) ? 1u : 0u };
1218 }
1219
1220 template<size_t BitsY, size_t BitsA, size_t BitsB>
1221 CXXRTL_ALWAYS_INLINE
1222 value<BitsY> ge_ss(const value<BitsA> &a, const value<BitsB> &b) {
1223 constexpr size_t BitsExt = max(BitsA, BitsB);
1224 return value<BitsY> { !a.template sext<BitsExt>().scmp(b.template sext<BitsExt>()) ? 1u : 0u };
1225 }
1226
1227 template<size_t BitsY, size_t BitsA, size_t BitsB>
1228 CXXRTL_ALWAYS_INLINE
1229 value<BitsY> lt_uu(const value<BitsA> &a, const value<BitsB> &b) {
1230 constexpr size_t BitsExt = max(BitsA, BitsB);
1231 return value<BitsY> { a.template zext<BitsExt>().ucmp(b.template zext<BitsExt>()) ? 1u : 0u };
1232 }
1233
1234 template<size_t BitsY, size_t BitsA, size_t BitsB>
1235 CXXRTL_ALWAYS_INLINE
1236 value<BitsY> lt_ss(const value<BitsA> &a, const value<BitsB> &b) {
1237 constexpr size_t BitsExt = max(BitsA, BitsB);
1238 return value<BitsY> { a.template sext<BitsExt>().scmp(b.template sext<BitsExt>()) ? 1u : 0u };
1239 }
1240
1241 template<size_t BitsY, size_t BitsA, size_t BitsB>
1242 CXXRTL_ALWAYS_INLINE
1243 value<BitsY> le_uu(const value<BitsA> &a, const value<BitsB> &b) {
1244 constexpr size_t BitsExt = max(BitsA, BitsB);
1245 return value<BitsY> { !b.template zext<BitsExt>().ucmp(a.template zext<BitsExt>()) ? 1u : 0u };
1246 }
1247
1248 template<size_t BitsY, size_t BitsA, size_t BitsB>
1249 CXXRTL_ALWAYS_INLINE
1250 value<BitsY> le_ss(const value<BitsA> &a, const value<BitsB> &b) {
1251 constexpr size_t BitsExt = max(BitsA, BitsB);
1252 return value<BitsY> { !b.template sext<BitsExt>().scmp(a.template sext<BitsExt>()) ? 1u : 0u };
1253 }
1254
1255 // Arithmetic operations
1256 template<size_t BitsY, size_t BitsA>
1257 CXXRTL_ALWAYS_INLINE
1258 value<BitsY> pos_u(const value<BitsA> &a) {
1259 return a.template zcast<BitsY>();
1260 }
1261
1262 template<size_t BitsY, size_t BitsA>
1263 CXXRTL_ALWAYS_INLINE
1264 value<BitsY> pos_s(const value<BitsA> &a) {
1265 return a.template scast<BitsY>();
1266 }
1267
1268 template<size_t BitsY, size_t BitsA>
1269 CXXRTL_ALWAYS_INLINE
1270 value<BitsY> neg_u(const value<BitsA> &a) {
1271 return a.template zcast<BitsY>().neg();
1272 }
1273
1274 template<size_t BitsY, size_t BitsA>
1275 CXXRTL_ALWAYS_INLINE
1276 value<BitsY> neg_s(const value<BitsA> &a) {
1277 return a.template scast<BitsY>().neg();
1278 }
1279
1280 template<size_t BitsY, size_t BitsA, size_t BitsB>
1281 CXXRTL_ALWAYS_INLINE
1282 value<BitsY> add_uu(const value<BitsA> &a, const value<BitsB> &b) {
1283 return a.template zcast<BitsY>().add(b.template zcast<BitsY>());
1284 }
1285
1286 template<size_t BitsY, size_t BitsA, size_t BitsB>
1287 CXXRTL_ALWAYS_INLINE
1288 value<BitsY> add_ss(const value<BitsA> &a, const value<BitsB> &b) {
1289 return a.template scast<BitsY>().add(b.template scast<BitsY>());
1290 }
1291
1292 template<size_t BitsY, size_t BitsA, size_t BitsB>
1293 CXXRTL_ALWAYS_INLINE
1294 value<BitsY> sub_uu(const value<BitsA> &a, const value<BitsB> &b) {
1295 return a.template zcast<BitsY>().sub(b.template zcast<BitsY>());
1296 }
1297
1298 template<size_t BitsY, size_t BitsA, size_t BitsB>
1299 CXXRTL_ALWAYS_INLINE
1300 value<BitsY> sub_ss(const value<BitsA> &a, const value<BitsB> &b) {
1301 return a.template scast<BitsY>().sub(b.template scast<BitsY>());
1302 }
1303
1304 template<size_t BitsY, size_t BitsA, size_t BitsB>
1305 CXXRTL_ALWAYS_INLINE
1306 value<BitsY> mul_uu(const value<BitsA> &a, const value<BitsB> &b) {
1307 value<BitsY> product;
1308 value<BitsY> multiplicand = a.template zcast<BitsY>();
1309 const value<BitsB> &multiplier = b;
1310 uint32_t multiplicand_shift = 0;
1311 for (size_t step = 0; step < BitsB; step++) {
1312 if (multiplier.bit(step)) {
1313 multiplicand = multiplicand.shl(value<32> { multiplicand_shift });
1314 product = product.add(multiplicand);
1315 multiplicand_shift = 0;
1316 }
1317 multiplicand_shift++;
1318 }
1319 return product;
1320 }
1321
1322 template<size_t BitsY, size_t BitsA, size_t BitsB>
1323 CXXRTL_ALWAYS_INLINE
1324 value<BitsY> mul_ss(const value<BitsA> &a, const value<BitsB> &b) {
1325 value<BitsB + 1> ub = b.template sext<BitsB + 1>();
1326 if (ub.is_neg()) ub = ub.neg();
1327 value<BitsY> y = mul_uu<BitsY>(a.template scast<BitsY>(), ub);
1328 return b.is_neg() ? y.neg() : y;
1329 }
1330
1331 template<size_t BitsY, size_t BitsA, size_t BitsB>
1332 CXXRTL_ALWAYS_INLINE
1333 std::pair<value<BitsY>, value<BitsY>> divmod_uu(const value<BitsA> &a, const value<BitsB> &b) {
1334 constexpr size_t Bits = max(BitsY, max(BitsA, BitsB));
1335 value<Bits> quotient;
1336 value<Bits> dividend = a.template zext<Bits>();
1337 value<Bits> divisor = b.template zext<Bits>();
1338 if (dividend.ucmp(divisor))
1339 return {/*quotient=*/value<BitsY> { 0u }, /*remainder=*/dividend.template trunc<BitsY>()};
1340 uint32_t divisor_shift = dividend.ctlz() - divisor.ctlz();
1341 divisor = divisor.shl(value<32> { divisor_shift });
1342 for (size_t step = 0; step <= divisor_shift; step++) {
1343 quotient = quotient.shl(value<1> { 1u });
1344 if (!dividend.ucmp(divisor)) {
1345 dividend = dividend.sub(divisor);
1346 quotient.set_bit(0, true);
1347 }
1348 divisor = divisor.shr(value<1> { 1u });
1349 }
1350 return {quotient.template trunc<BitsY>(), /*remainder=*/dividend.template trunc<BitsY>()};
1351 }
1352
1353 template<size_t BitsY, size_t BitsA, size_t BitsB>
1354 CXXRTL_ALWAYS_INLINE
1355 std::pair<value<BitsY>, value<BitsY>> divmod_ss(const value<BitsA> &a, const value<BitsB> &b) {
1356 value<BitsA + 1> ua = a.template sext<BitsA + 1>();
1357 value<BitsB + 1> ub = b.template sext<BitsB + 1>();
1358 if (ua.is_neg()) ua = ua.neg();
1359 if (ub.is_neg()) ub = ub.neg();
1360 value<BitsY> y, r;
1361 std::tie(y, r) = divmod_uu<BitsY>(ua, ub);
1362 if (a.is_neg() != b.is_neg()) y = y.neg();
1363 if (a.is_neg()) r = r.neg();
1364 return {y, r};
1365 }
1366
1367 template<size_t BitsY, size_t BitsA, size_t BitsB>
1368 CXXRTL_ALWAYS_INLINE
1369 value<BitsY> div_uu(const value<BitsA> &a, const value<BitsB> &b) {
1370 return divmod_uu<BitsY>(a, b).first;
1371 }
1372
1373 template<size_t BitsY, size_t BitsA, size_t BitsB>
1374 CXXRTL_ALWAYS_INLINE
1375 value<BitsY> div_ss(const value<BitsA> &a, const value<BitsB> &b) {
1376 return divmod_ss<BitsY>(a, b).first;
1377 }
1378
1379 template<size_t BitsY, size_t BitsA, size_t BitsB>
1380 CXXRTL_ALWAYS_INLINE
1381 value<BitsY> mod_uu(const value<BitsA> &a, const value<BitsB> &b) {
1382 return divmod_uu<BitsY>(a, b).second;
1383 }
1384
1385 template<size_t BitsY, size_t BitsA, size_t BitsB>
1386 CXXRTL_ALWAYS_INLINE
1387 value<BitsY> mod_ss(const value<BitsA> &a, const value<BitsB> &b) {
1388 return divmod_ss<BitsY>(a, b).second;
1389 }
1390
1391 // Memory helper
1392 struct memory_index {
1393 bool valid;
1394 size_t index;
1395
1396 template<size_t BitsAddr>
1397 memory_index(const value<BitsAddr> &addr, size_t offset, size_t depth) {
1398 static_assert(value<BitsAddr>::chunks <= 1, "memory address is too wide");
1399 size_t offset_index = addr.data[0];
1400
1401 valid = (offset_index >= offset && offset_index < offset + depth);
1402 index = offset_index - offset;
1403 }
1404 };
1405
1406 } // namespace cxxrtl_yosys
1407
1408 #endif