Merge pull request #2344 from YosysHQ/mwk/opt_share-fixes
[yosys.git] / backends / cxxrtl / cxxrtl.h
1 /*
2 * yosys -- Yosys Open SYnthesis Suite
3 *
4 * Copyright (C) 2019-2020 whitequark <whitequark@whitequark.org>
5 *
6 * Permission to use, copy, modify, and/or distribute this software for any
7 * purpose with or without fee is hereby granted.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 *
17 */
18
19 // This file is included by the designs generated with `write_cxxrtl`. It is not used in Yosys itself.
20 //
21 // The CXXRTL support library implements compile time specialized arbitrary width arithmetics, as well as provides
22 // composite lvalues made out of bit slices and concatenations of lvalues. This allows the `write_cxxrtl` pass
23 // to perform a straightforward translation of RTLIL structures to readable C++, relying on the C++ compiler
24 // to unwrap the abstraction and generate efficient code.
25
26 #ifndef CXXRTL_H
27 #define CXXRTL_H
28
29 #include <cstddef>
30 #include <cstdint>
31 #include <cassert>
32 #include <limits>
33 #include <type_traits>
34 #include <tuple>
35 #include <vector>
36 #include <map>
37 #include <algorithm>
38 #include <memory>
39 #include <sstream>
40
41 #include <backends/cxxrtl/cxxrtl_capi.h>
42
43 // CXXRTL essentially uses the C++ compiler as a hygienic macro engine that feeds an instruction selector.
44 // It generates a lot of specialized template functions with relatively large bodies that, when inlined
45 // into the caller and (for those with loops) unrolled, often expose many new optimization opportunities.
46 // Because of this, most of the CXXRTL runtime must be always inlined for best performance.
47 #ifndef __has_attribute
48 # define __has_attribute(x) 0
49 #endif
50 #if __has_attribute(always_inline)
51 #define CXXRTL_ALWAYS_INLINE inline __attribute__((__always_inline__))
52 #else
53 #define CXXRTL_ALWAYS_INLINE inline
54 #endif
55
56 namespace cxxrtl {
57
58 // All arbitrary-width values in CXXRTL are backed by arrays of unsigned integers called chunks. The chunk size
59 // is the same regardless of the value width to simplify manipulating values via FFI interfaces, e.g. driving
60 // and introspecting the simulation in Python.
61 //
62 // It is practical to use chunk sizes between 32 bits and platform register size because when arithmetics on
63 // narrower integer types is legalized by the C++ compiler, it inserts code to clear the high bits of the register.
64 // However, (a) most of our operations do not change those bits in the first place because of invariants that are
65 // invisible to the compiler, (b) we often operate on non-power-of-2 values and have to clear the high bits anyway.
66 // Therefore, using relatively wide chunks and clearing the high bits explicitly and only when we know they may be
67 // clobbered results in simpler generated code.
68 typedef uint32_t chunk_t;
69 typedef uint64_t wide_chunk_t;
70
71 template<typename T>
72 struct chunk_traits {
73 static_assert(std::is_integral<T>::value && std::is_unsigned<T>::value,
74 "chunk type must be an unsigned integral type");
75 using type = T;
76 static constexpr size_t bits = std::numeric_limits<T>::digits;
77 static constexpr T mask = std::numeric_limits<T>::max();
78 };
79
80 template<class T>
81 struct expr_base;
82
83 template<size_t Bits>
84 struct value : public expr_base<value<Bits>> {
85 static constexpr size_t bits = Bits;
86
87 using chunk = chunk_traits<chunk_t>;
88 static constexpr chunk::type msb_mask = (Bits % chunk::bits == 0) ? chunk::mask
89 : chunk::mask >> (chunk::bits - (Bits % chunk::bits));
90
91 static constexpr size_t chunks = (Bits + chunk::bits - 1) / chunk::bits;
92 chunk::type data[chunks] = {};
93
94 value() = default;
95 template<typename... Init>
96 explicit constexpr value(Init ...init) : data{init...} {}
97
98 value(const value<Bits> &) = default;
99 value(value<Bits> &&) = default;
100 value<Bits> &operator=(const value<Bits> &) = default;
101
102 // A (no-op) helper that forces the cast to value<>.
103 CXXRTL_ALWAYS_INLINE
104 const value<Bits> &val() const {
105 return *this;
106 }
107
108 std::string str() const {
109 std::stringstream ss;
110 ss << *this;
111 return ss.str();
112 }
113
114 // Conversion operations.
115 //
116 // These functions ensure that a conversion is never out of range, and should be always used, if at all
117 // possible, instead of direct manipulation of the `data` member. For very large types, .slice() and
118 // .concat() can be used to split them into more manageable parts.
119 template<class IntegerT>
120 CXXRTL_ALWAYS_INLINE
121 IntegerT get() const {
122 static_assert(std::numeric_limits<IntegerT>::is_integer && !std::numeric_limits<IntegerT>::is_signed,
123 "get<T>() requires T to be an unsigned integral type");
124 static_assert(std::numeric_limits<IntegerT>::digits >= Bits,
125 "get<T>() requires T to be at least as wide as the value is");
126 IntegerT result = 0;
127 for (size_t n = 0; n < chunks; n++)
128 result |= IntegerT(data[n]) << (n * chunk::bits);
129 return result;
130 }
131
132 template<class IntegerT>
133 CXXRTL_ALWAYS_INLINE
134 void set(IntegerT other) {
135 static_assert(std::numeric_limits<IntegerT>::is_integer && !std::numeric_limits<IntegerT>::is_signed,
136 "set<T>() requires T to be an unsigned integral type");
137 static_assert(std::numeric_limits<IntegerT>::digits >= Bits,
138 "set<T>() requires the value to be at least as wide as T is");
139 for (size_t n = 0; n < chunks; n++)
140 data[n] = (other >> (n * chunk::bits)) & chunk::mask;
141 }
142
143 // Operations with compile-time parameters.
144 //
145 // These operations are used to implement slicing, concatenation, and blitting.
146 // The trunc, zext and sext operations add or remove most significant bits (i.e. on the left);
147 // the rtrunc and rzext operations add or remove least significant bits (i.e. on the right).
148 template<size_t NewBits>
149 CXXRTL_ALWAYS_INLINE
150 value<NewBits> trunc() const {
151 static_assert(NewBits <= Bits, "trunc() may not increase width");
152 value<NewBits> result;
153 for (size_t n = 0; n < result.chunks; n++)
154 result.data[n] = data[n];
155 result.data[result.chunks - 1] &= result.msb_mask;
156 return result;
157 }
158
159 template<size_t NewBits>
160 CXXRTL_ALWAYS_INLINE
161 value<NewBits> zext() const {
162 static_assert(NewBits >= Bits, "zext() may not decrease width");
163 value<NewBits> result;
164 for (size_t n = 0; n < chunks; n++)
165 result.data[n] = data[n];
166 return result;
167 }
168
169 template<size_t NewBits>
170 CXXRTL_ALWAYS_INLINE
171 value<NewBits> sext() const {
172 static_assert(NewBits >= Bits, "sext() may not decrease width");
173 value<NewBits> result;
174 for (size_t n = 0; n < chunks; n++)
175 result.data[n] = data[n];
176 if (is_neg()) {
177 result.data[chunks - 1] |= ~msb_mask;
178 for (size_t n = chunks; n < result.chunks; n++)
179 result.data[n] = chunk::mask;
180 result.data[result.chunks - 1] &= result.msb_mask;
181 }
182 return result;
183 }
184
185 template<size_t NewBits>
186 CXXRTL_ALWAYS_INLINE
187 value<NewBits> rtrunc() const {
188 static_assert(NewBits <= Bits, "rtrunc() may not increase width");
189 value<NewBits> result;
190 constexpr size_t shift_chunks = (Bits - NewBits) / chunk::bits;
191 constexpr size_t shift_bits = (Bits - NewBits) % chunk::bits;
192 chunk::type carry = 0;
193 if (shift_chunks + result.chunks < chunks) {
194 carry = (shift_bits == 0) ? 0
195 : data[shift_chunks + result.chunks] << (chunk::bits - shift_bits);
196 }
197 for (size_t n = result.chunks; n > 0; n--) {
198 result.data[n - 1] = carry | (data[shift_chunks + n - 1] >> shift_bits);
199 carry = (shift_bits == 0) ? 0
200 : data[shift_chunks + n - 1] << (chunk::bits - shift_bits);
201 }
202 return result;
203 }
204
205 template<size_t NewBits>
206 CXXRTL_ALWAYS_INLINE
207 value<NewBits> rzext() const {
208 static_assert(NewBits >= Bits, "rzext() may not decrease width");
209 value<NewBits> result;
210 constexpr size_t shift_chunks = (NewBits - Bits) / chunk::bits;
211 constexpr size_t shift_bits = (NewBits - Bits) % chunk::bits;
212 chunk::type carry = 0;
213 for (size_t n = 0; n < chunks; n++) {
214 result.data[shift_chunks + n] = (data[n] << shift_bits) | carry;
215 carry = (shift_bits == 0) ? 0
216 : data[n] >> (chunk::bits - shift_bits);
217 }
218 if (shift_chunks + chunks < result.chunks)
219 result.data[shift_chunks + chunks] = carry;
220 return result;
221 }
222
223 // Bit blit operation, i.e. a partial read-modify-write.
224 template<size_t Stop, size_t Start>
225 CXXRTL_ALWAYS_INLINE
226 value<Bits> blit(const value<Stop - Start + 1> &source) const {
227 static_assert(Stop >= Start, "blit() may not reverse bit order");
228 constexpr chunk::type start_mask = ~(chunk::mask << (Start % chunk::bits));
229 constexpr chunk::type stop_mask = (Stop % chunk::bits + 1 == chunk::bits) ? 0
230 : (chunk::mask << (Stop % chunk::bits + 1));
231 value<Bits> masked = *this;
232 if (Start / chunk::bits == Stop / chunk::bits) {
233 masked.data[Start / chunk::bits] &= stop_mask | start_mask;
234 } else {
235 masked.data[Start / chunk::bits] &= start_mask;
236 for (size_t n = Start / chunk::bits + 1; n < Stop / chunk::bits; n++)
237 masked.data[n] = 0;
238 masked.data[Stop / chunk::bits] &= stop_mask;
239 }
240 value<Bits> shifted = source
241 .template rzext<Stop + 1>()
242 .template zext<Bits>();
243 return masked.bit_or(shifted);
244 }
245
246 // Helpers for selecting extending or truncating operation depending on whether the result is wider or narrower
247 // than the operand. In C++17 these can be replaced with `if constexpr`.
248 template<size_t NewBits, typename = void>
249 struct zext_cast {
250 CXXRTL_ALWAYS_INLINE
251 value<NewBits> operator()(const value<Bits> &val) {
252 return val.template zext<NewBits>();
253 }
254 };
255
256 template<size_t NewBits>
257 struct zext_cast<NewBits, typename std::enable_if<(NewBits < Bits)>::type> {
258 CXXRTL_ALWAYS_INLINE
259 value<NewBits> operator()(const value<Bits> &val) {
260 return val.template trunc<NewBits>();
261 }
262 };
263
264 template<size_t NewBits, typename = void>
265 struct sext_cast {
266 CXXRTL_ALWAYS_INLINE
267 value<NewBits> operator()(const value<Bits> &val) {
268 return val.template sext<NewBits>();
269 }
270 };
271
272 template<size_t NewBits>
273 struct sext_cast<NewBits, typename std::enable_if<(NewBits < Bits)>::type> {
274 CXXRTL_ALWAYS_INLINE
275 value<NewBits> operator()(const value<Bits> &val) {
276 return val.template trunc<NewBits>();
277 }
278 };
279
280 template<size_t NewBits>
281 CXXRTL_ALWAYS_INLINE
282 value<NewBits> zcast() const {
283 return zext_cast<NewBits>()(*this);
284 }
285
286 template<size_t NewBits>
287 CXXRTL_ALWAYS_INLINE
288 value<NewBits> scast() const {
289 return sext_cast<NewBits>()(*this);
290 }
291
292 // Operations with run-time parameters (offsets, amounts, etc).
293 //
294 // These operations are used for computations.
295 bool bit(size_t offset) const {
296 return data[offset / chunk::bits] & (1 << (offset % chunk::bits));
297 }
298
299 void set_bit(size_t offset, bool value = true) {
300 size_t offset_chunks = offset / chunk::bits;
301 size_t offset_bits = offset % chunk::bits;
302 data[offset_chunks] &= ~(1 << offset_bits);
303 data[offset_chunks] |= value ? 1 << offset_bits : 0;
304 }
305
306 explicit operator bool() const {
307 return !is_zero();
308 }
309
310 bool is_zero() const {
311 for (size_t n = 0; n < chunks; n++)
312 if (data[n] != 0)
313 return false;
314 return true;
315 }
316
317 bool is_neg() const {
318 return data[chunks - 1] & (1 << ((Bits - 1) % chunk::bits));
319 }
320
321 bool operator ==(const value<Bits> &other) const {
322 for (size_t n = 0; n < chunks; n++)
323 if (data[n] != other.data[n])
324 return false;
325 return true;
326 }
327
328 bool operator !=(const value<Bits> &other) const {
329 return !(*this == other);
330 }
331
332 value<Bits> bit_not() const {
333 value<Bits> result;
334 for (size_t n = 0; n < chunks; n++)
335 result.data[n] = ~data[n];
336 result.data[chunks - 1] &= msb_mask;
337 return result;
338 }
339
340 value<Bits> bit_and(const value<Bits> &other) const {
341 value<Bits> result;
342 for (size_t n = 0; n < chunks; n++)
343 result.data[n] = data[n] & other.data[n];
344 return result;
345 }
346
347 value<Bits> bit_or(const value<Bits> &other) const {
348 value<Bits> result;
349 for (size_t n = 0; n < chunks; n++)
350 result.data[n] = data[n] | other.data[n];
351 return result;
352 }
353
354 value<Bits> bit_xor(const value<Bits> &other) const {
355 value<Bits> result;
356 for (size_t n = 0; n < chunks; n++)
357 result.data[n] = data[n] ^ other.data[n];
358 return result;
359 }
360
361 value<Bits> update(const value<Bits> &val, const value<Bits> &mask) const {
362 return bit_and(mask.bit_not()).bit_or(val.bit_and(mask));
363 }
364
365 template<size_t AmountBits>
366 value<Bits> shl(const value<AmountBits> &amount) const {
367 // Ensure our early return is correct by prohibiting values larger than 4 Gbit.
368 static_assert(Bits <= chunk::mask, "shl() of unreasonably large values is not supported");
369 // Detect shifts definitely large than Bits early.
370 for (size_t n = 1; n < amount.chunks; n++)
371 if (amount.data[n] != 0)
372 return {};
373 // Past this point we can use the least significant chunk as the shift size.
374 size_t shift_chunks = amount.data[0] / chunk::bits;
375 size_t shift_bits = amount.data[0] % chunk::bits;
376 if (shift_chunks >= chunks)
377 return {};
378 value<Bits> result;
379 chunk::type carry = 0;
380 for (size_t n = 0; n < chunks - shift_chunks; n++) {
381 result.data[shift_chunks + n] = (data[n] << shift_bits) | carry;
382 carry = (shift_bits == 0) ? 0
383 : data[n] >> (chunk::bits - shift_bits);
384 }
385 return result;
386 }
387
388 template<size_t AmountBits, bool Signed = false>
389 value<Bits> shr(const value<AmountBits> &amount) const {
390 // Ensure our early return is correct by prohibiting values larger than 4 Gbit.
391 static_assert(Bits <= chunk::mask, "shr() of unreasonably large values is not supported");
392 // Detect shifts definitely large than Bits early.
393 for (size_t n = 1; n < amount.chunks; n++)
394 if (amount.data[n] != 0)
395 return {};
396 // Past this point we can use the least significant chunk as the shift size.
397 size_t shift_chunks = amount.data[0] / chunk::bits;
398 size_t shift_bits = amount.data[0] % chunk::bits;
399 if (shift_chunks >= chunks)
400 return {};
401 value<Bits> result;
402 chunk::type carry = 0;
403 for (size_t n = 0; n < chunks - shift_chunks; n++) {
404 result.data[chunks - shift_chunks - 1 - n] = carry | (data[chunks - 1 - n] >> shift_bits);
405 carry = (shift_bits == 0) ? 0
406 : data[chunks - 1 - n] << (chunk::bits - shift_bits);
407 }
408 if (Signed && is_neg()) {
409 size_t top_chunk_idx = (Bits - shift_bits) / chunk::bits;
410 size_t top_chunk_bits = (Bits - shift_bits) % chunk::bits;
411 for (size_t n = top_chunk_idx + 1; n < chunks; n++)
412 result.data[n] = chunk::mask;
413 if (shift_bits != 0)
414 result.data[top_chunk_idx] |= chunk::mask << top_chunk_bits;
415 }
416 return result;
417 }
418
419 template<size_t AmountBits>
420 value<Bits> sshr(const value<AmountBits> &amount) const {
421 return shr<AmountBits, /*Signed=*/true>(amount);
422 }
423
424 size_t ctpop() const {
425 size_t count = 0;
426 for (size_t n = 0; n < chunks; n++) {
427 // This loop implements the population count idiom as recognized by LLVM and GCC.
428 for (chunk::type x = data[n]; x != 0; count++)
429 x = x & (x - 1);
430 }
431 return count;
432 }
433
434 size_t ctlz() const {
435 size_t count = 0;
436 for (size_t n = 0; n < chunks; n++) {
437 chunk::type x = data[chunks - 1 - n];
438 if (x == 0) {
439 count += (n == 0 ? Bits % chunk::bits : chunk::bits);
440 } else {
441 // This loop implements the find first set idiom as recognized by LLVM.
442 for (; x != 0; count++)
443 x >>= 1;
444 }
445 }
446 return count;
447 }
448
449 template<bool Invert, bool CarryIn>
450 std::pair<value<Bits>, bool /*CarryOut*/> alu(const value<Bits> &other) const {
451 value<Bits> result;
452 bool carry = CarryIn;
453 for (size_t n = 0; n < result.chunks; n++) {
454 result.data[n] = data[n] + (Invert ? ~other.data[n] : other.data[n]) + carry;
455 if (result.chunks - 1 == n)
456 result.data[result.chunks - 1] &= result.msb_mask;
457 carry = (result.data[n] < data[n]) ||
458 (result.data[n] == data[n] && carry);
459 }
460 return {result, carry};
461 }
462
463 value<Bits> add(const value<Bits> &other) const {
464 return alu</*Invert=*/false, /*CarryIn=*/false>(other).first;
465 }
466
467 value<Bits> sub(const value<Bits> &other) const {
468 return alu</*Invert=*/true, /*CarryIn=*/true>(other).first;
469 }
470
471 value<Bits> neg() const {
472 return value<Bits> { 0u }.sub(*this);
473 }
474
475 bool ucmp(const value<Bits> &other) const {
476 bool carry;
477 std::tie(std::ignore, carry) = alu</*Invert=*/true, /*CarryIn=*/true>(other);
478 return !carry; // a.ucmp(b) ≡ a u< b
479 }
480
481 bool scmp(const value<Bits> &other) const {
482 value<Bits> result;
483 bool carry;
484 std::tie(result, carry) = alu</*Invert=*/true, /*CarryIn=*/true>(other);
485 bool overflow = (is_neg() == !other.is_neg()) && (is_neg() != result.is_neg());
486 return result.is_neg() ^ overflow; // a.scmp(b) ≡ a s< b
487 }
488
489 template<size_t ResultBits>
490 value<ResultBits> mul(const value<Bits> &other) const {
491 value<ResultBits> result;
492 wide_chunk_t wide_result[result.chunks + 1] = {};
493 for (size_t n = 0; n < chunks; n++) {
494 for (size_t m = 0; m < chunks && n + m < result.chunks; m++) {
495 wide_result[n + m] += wide_chunk_t(data[n]) * wide_chunk_t(other.data[m]);
496 wide_result[n + m + 1] += wide_result[n + m] >> chunk::bits;
497 wide_result[n + m] &= chunk::mask;
498 }
499 }
500 for (size_t n = 0; n < result.chunks; n++) {
501 result.data[n] = wide_result[n];
502 }
503 result.data[result.chunks - 1] &= result.msb_mask;
504 return result;
505 }
506 };
507
508 // Expression template for a slice, usable as lvalue or rvalue, and composable with other expression templates here.
509 template<class T, size_t Stop, size_t Start>
510 struct slice_expr : public expr_base<slice_expr<T, Stop, Start>> {
511 static_assert(Stop >= Start, "slice_expr() may not reverse bit order");
512 static_assert(Start < T::bits && Stop < T::bits, "slice_expr() must be within bounds");
513 static constexpr size_t bits = Stop - Start + 1;
514
515 T &expr;
516
517 slice_expr(T &expr) : expr(expr) {}
518 slice_expr(const slice_expr<T, Stop, Start> &) = delete;
519
520 CXXRTL_ALWAYS_INLINE
521 operator value<bits>() const {
522 return static_cast<const value<T::bits> &>(expr)
523 .template rtrunc<T::bits - Start>()
524 .template trunc<bits>();
525 }
526
527 CXXRTL_ALWAYS_INLINE
528 slice_expr<T, Stop, Start> &operator=(const value<bits> &rhs) {
529 // Generic partial assignment implemented using a read-modify-write operation on the sliced expression.
530 expr = static_cast<const value<T::bits> &>(expr)
531 .template blit<Stop, Start>(rhs);
532 return *this;
533 }
534
535 // A helper that forces the cast to value<>, which allows deduction to work.
536 CXXRTL_ALWAYS_INLINE
537 value<bits> val() const {
538 return static_cast<const value<bits> &>(*this);
539 }
540 };
541
542 // Expression template for a concatenation, usable as lvalue or rvalue, and composable with other expression templates here.
543 template<class T, class U>
544 struct concat_expr : public expr_base<concat_expr<T, U>> {
545 static constexpr size_t bits = T::bits + U::bits;
546
547 T &ms_expr;
548 U &ls_expr;
549
550 concat_expr(T &ms_expr, U &ls_expr) : ms_expr(ms_expr), ls_expr(ls_expr) {}
551 concat_expr(const concat_expr<T, U> &) = delete;
552
553 CXXRTL_ALWAYS_INLINE
554 operator value<bits>() const {
555 value<bits> ms_shifted = static_cast<const value<T::bits> &>(ms_expr)
556 .template rzext<bits>();
557 value<bits> ls_extended = static_cast<const value<U::bits> &>(ls_expr)
558 .template zext<bits>();
559 return ms_shifted.bit_or(ls_extended);
560 }
561
562 CXXRTL_ALWAYS_INLINE
563 concat_expr<T, U> &operator=(const value<bits> &rhs) {
564 ms_expr = rhs.template rtrunc<T::bits>();
565 ls_expr = rhs.template trunc<U::bits>();
566 return *this;
567 }
568
569 // A helper that forces the cast to value<>, which allows deduction to work.
570 CXXRTL_ALWAYS_INLINE
571 value<bits> val() const {
572 return static_cast<const value<bits> &>(*this);
573 }
574 };
575
576 // Base class for expression templates, providing helper methods for operations that are valid on both rvalues and lvalues.
577 //
578 // Note that expression objects (slices and concatenations) constructed in this way should NEVER be captured because
579 // they refer to temporaries that will, in general, only live until the end of the statement. For example, both of
580 // these snippets perform use-after-free:
581 //
582 // const auto &a = val.slice<7,0>().slice<1>();
583 // value<1> b = a;
584 //
585 // auto &&c = val.slice<7,0>().slice<1>();
586 // c = value<1>{1u};
587 //
588 // An easy way to write code using slices and concatenations safely is to follow two simple rules:
589 // * Never explicitly name any type except `value<W>` or `const value<W> &`.
590 // * Never use a `const auto &` or `auto &&` in any such expression.
591 // Then, any code that compiles will be well-defined.
592 template<class T>
593 struct expr_base {
594 template<size_t Stop, size_t Start = Stop>
595 CXXRTL_ALWAYS_INLINE
596 slice_expr<const T, Stop, Start> slice() const {
597 return {*static_cast<const T *>(this)};
598 }
599
600 template<size_t Stop, size_t Start = Stop>
601 CXXRTL_ALWAYS_INLINE
602 slice_expr<T, Stop, Start> slice() {
603 return {*static_cast<T *>(this)};
604 }
605
606 template<class U>
607 CXXRTL_ALWAYS_INLINE
608 concat_expr<const T, typename std::remove_reference<const U>::type> concat(const U &other) const {
609 return {*static_cast<const T *>(this), other};
610 }
611
612 template<class U>
613 CXXRTL_ALWAYS_INLINE
614 concat_expr<T, typename std::remove_reference<U>::type> concat(U &&other) {
615 return {*static_cast<T *>(this), other};
616 }
617 };
618
619 template<size_t Bits>
620 std::ostream &operator<<(std::ostream &os, const value<Bits> &val) {
621 auto old_flags = os.flags(std::ios::right);
622 auto old_width = os.width(0);
623 auto old_fill = os.fill('0');
624 os << val.bits << '\'' << std::hex;
625 for (size_t n = val.chunks - 1; n != (size_t)-1; n--) {
626 if (n == val.chunks - 1 && Bits % value<Bits>::chunk::bits != 0)
627 os.width((Bits % value<Bits>::chunk::bits + 3) / 4);
628 else
629 os.width((value<Bits>::chunk::bits + 3) / 4);
630 os << val.data[n];
631 }
632 os.fill(old_fill);
633 os.width(old_width);
634 os.flags(old_flags);
635 return os;
636 }
637
638 template<size_t Bits>
639 struct wire {
640 static constexpr size_t bits = Bits;
641
642 value<Bits> curr;
643 value<Bits> next;
644
645 wire() = default;
646 constexpr wire(const value<Bits> &init) : curr(init), next(init) {}
647 template<typename... Init>
648 explicit constexpr wire(Init ...init) : curr{init...}, next{init...} {}
649
650 wire(const wire<Bits> &) = delete;
651 wire(wire<Bits> &&) = default;
652 wire<Bits> &operator=(const wire<Bits> &) = delete;
653
654 template<class IntegerT>
655 CXXRTL_ALWAYS_INLINE
656 IntegerT get() const {
657 return curr.template get<IntegerT>();
658 }
659
660 template<class IntegerT>
661 CXXRTL_ALWAYS_INLINE
662 void set(IntegerT other) {
663 next.template set<IntegerT>(other);
664 }
665
666 bool commit() {
667 if (curr != next) {
668 curr = next;
669 return true;
670 }
671 return false;
672 }
673 };
674
675 template<size_t Bits>
676 std::ostream &operator<<(std::ostream &os, const wire<Bits> &val) {
677 os << val.curr;
678 return os;
679 }
680
681 template<size_t Width>
682 struct memory {
683 std::vector<value<Width>> data;
684
685 size_t depth() const {
686 return data.size();
687 }
688
689 memory() = delete;
690 explicit memory(size_t depth) : data(depth) {}
691
692 memory(const memory<Width> &) = delete;
693 memory<Width> &operator=(const memory<Width> &) = delete;
694
695 // The only way to get the compiler to put the initializer in .rodata and do not copy it on stack is to stuff it
696 // into a plain array. You'd think an std::initializer_list would work here, but it doesn't, because you can't
697 // construct an initializer_list in a constexpr (or something) and so if you try to do that the whole thing is
698 // first copied on the stack (probably overflowing it) and then again into `data`.
699 template<size_t Size>
700 struct init {
701 size_t offset;
702 value<Width> data[Size];
703 };
704
705 template<size_t... InitSize>
706 explicit memory(size_t depth, const init<InitSize> &...init) : data(depth) {
707 data.resize(depth);
708 // This utterly reprehensible construct is the most reasonable way to apply a function to every element
709 // of a parameter pack, if the elements all have different types and so cannot be cast to an initializer list.
710 auto _ = {std::move(std::begin(init.data), std::end(init.data), data.begin() + init.offset)...};
711 (void)_;
712 }
713
714 // An operator for direct memory reads. May be used at any time during the simulation.
715 const value<Width> &operator [](size_t index) const {
716 assert(index < data.size());
717 return data[index];
718 }
719
720 // An operator for direct memory writes. May only be used before the simulation is started. If used
721 // after the simulation is started, the design may malfunction.
722 value<Width> &operator [](size_t index) {
723 assert(index < data.size());
724 return data[index];
725 }
726
727 // A simple way to make a writable memory would be to use an array of wires instead of an array of values.
728 // However, there are two significant downsides to this approach: first, it has large overhead (2× space
729 // overhead, and O(depth) time overhead during commit); second, it does not simplify handling write port
730 // priorities. Although in principle write ports could be ordered or conditionally enabled in generated
731 // code based on their priorities and selected addresses, the feedback arc set problem is computationally
732 // expensive, and the heuristic based algorithms are not easily modified to guarantee (rather than prefer)
733 // a particular write port evaluation order.
734 //
735 // The approach used here instead is to queue writes into a buffer during the eval phase, then perform
736 // the writes during the commit phase in the priority order. This approach has low overhead, with both space
737 // and time proportional to the amount of write ports. Because virtually every memory in a practical design
738 // has at most two write ports, linear search is used on every write, being the fastest and simplest approach.
739 struct write {
740 size_t index;
741 value<Width> val;
742 value<Width> mask;
743 int priority;
744 };
745 std::vector<write> write_queue;
746
747 void update(size_t index, const value<Width> &val, const value<Width> &mask, int priority = 0) {
748 assert(index < data.size());
749 // Queue up the write while keeping the queue sorted by priority.
750 write_queue.insert(
751 std::upper_bound(write_queue.begin(), write_queue.end(), priority,
752 [](const int a, const write& b) { return a < b.priority; }),
753 write { index, val, mask, priority });
754 }
755
756 bool commit() {
757 bool changed = false;
758 for (const write &entry : write_queue) {
759 value<Width> elem = data[entry.index];
760 elem = elem.update(entry.val, entry.mask);
761 changed |= (data[entry.index] != elem);
762 data[entry.index] = elem;
763 }
764 write_queue.clear();
765 return changed;
766 }
767 };
768
769 struct metadata {
770 const enum {
771 MISSING = 0,
772 UINT = 1,
773 SINT = 2,
774 STRING = 3,
775 DOUBLE = 4,
776 } value_type;
777
778 // In debug mode, using the wrong .as_*() function will assert.
779 // In release mode, using the wrong .as_*() function will safely return a default value.
780 const unsigned uint_value = 0;
781 const signed sint_value = 0;
782 const std::string string_value = "";
783 const double double_value = 0.0;
784
785 metadata() : value_type(MISSING) {}
786 metadata(unsigned value) : value_type(UINT), uint_value(value) {}
787 metadata(signed value) : value_type(SINT), sint_value(value) {}
788 metadata(const std::string &value) : value_type(STRING), string_value(value) {}
789 metadata(const char *value) : value_type(STRING), string_value(value) {}
790 metadata(double value) : value_type(DOUBLE), double_value(value) {}
791
792 metadata(const metadata &) = default;
793 metadata &operator=(const metadata &) = delete;
794
795 unsigned as_uint() const {
796 assert(value_type == UINT);
797 return uint_value;
798 }
799
800 signed as_sint() const {
801 assert(value_type == SINT);
802 return sint_value;
803 }
804
805 const std::string &as_string() const {
806 assert(value_type == STRING);
807 return string_value;
808 }
809
810 double as_double() const {
811 assert(value_type == DOUBLE);
812 return double_value;
813 }
814 };
815
816 typedef std::map<std::string, metadata> metadata_map;
817
818 // Helper class to disambiguate values/wires and their aliases.
819 struct debug_alias {};
820
821 // This structure is intended for consumption via foreign function interfaces, like Python's ctypes.
822 // Because of this it uses a C-style layout that is easy to parse rather than more idiomatic C++.
823 //
824 // To avoid violating strict aliasing rules, this structure has to be a subclass of the one used
825 // in the C API, or it would not be possible to cast between the pointers to these.
826 struct debug_item : ::cxxrtl_object {
827 enum : uint32_t {
828 VALUE = CXXRTL_VALUE,
829 WIRE = CXXRTL_WIRE,
830 MEMORY = CXXRTL_MEMORY,
831 ALIAS = CXXRTL_ALIAS,
832 };
833
834 debug_item(const ::cxxrtl_object &object) : cxxrtl_object(object) {}
835
836 template<size_t Bits>
837 debug_item(value<Bits> &item, size_t lsb_offset = 0) {
838 static_assert(sizeof(item) == value<Bits>::chunks * sizeof(chunk_t),
839 "value<Bits> is not compatible with C layout");
840 type = VALUE;
841 width = Bits;
842 lsb_at = lsb_offset;
843 depth = 1;
844 zero_at = 0;
845 curr = item.data;
846 next = item.data;
847 }
848
849 template<size_t Bits>
850 debug_item(const value<Bits> &item, size_t lsb_offset = 0) {
851 static_assert(sizeof(item) == value<Bits>::chunks * sizeof(chunk_t),
852 "value<Bits> is not compatible with C layout");
853 type = VALUE;
854 width = Bits;
855 lsb_at = lsb_offset;
856 depth = 1;
857 zero_at = 0;
858 curr = const_cast<chunk_t*>(item.data);
859 next = nullptr;
860 }
861
862 template<size_t Bits>
863 debug_item(wire<Bits> &item, size_t lsb_offset = 0) {
864 static_assert(sizeof(item.curr) == value<Bits>::chunks * sizeof(chunk_t) &&
865 sizeof(item.next) == value<Bits>::chunks * sizeof(chunk_t),
866 "wire<Bits> is not compatible with C layout");
867 type = WIRE;
868 width = Bits;
869 lsb_at = lsb_offset;
870 depth = 1;
871 zero_at = 0;
872 curr = item.curr.data;
873 next = item.next.data;
874 }
875
876 template<size_t Width>
877 debug_item(memory<Width> &item, size_t zero_offset = 0) {
878 static_assert(sizeof(item.data[0]) == value<Width>::chunks * sizeof(chunk_t),
879 "memory<Width> is not compatible with C layout");
880 type = MEMORY;
881 width = Width;
882 lsb_at = 0;
883 depth = item.data.size();
884 zero_at = zero_offset;
885 curr = item.data.empty() ? nullptr : item.data[0].data;
886 next = nullptr;
887 }
888
889 template<size_t Bits>
890 debug_item(debug_alias, const value<Bits> &item, size_t lsb_offset = 0) {
891 static_assert(sizeof(item) == value<Bits>::chunks * sizeof(chunk_t),
892 "value<Bits> is not compatible with C layout");
893 type = ALIAS;
894 width = Bits;
895 lsb_at = lsb_offset;
896 depth = 1;
897 zero_at = 0;
898 curr = const_cast<chunk_t*>(item.data);
899 next = nullptr;
900 }
901
902 template<size_t Bits>
903 debug_item(debug_alias, const wire<Bits> &item, size_t lsb_offset = 0) {
904 static_assert(sizeof(item.curr) == value<Bits>::chunks * sizeof(chunk_t) &&
905 sizeof(item.next) == value<Bits>::chunks * sizeof(chunk_t),
906 "wire<Bits> is not compatible with C layout");
907 type = ALIAS;
908 width = Bits;
909 lsb_at = lsb_offset;
910 depth = 1;
911 zero_at = 0;
912 curr = const_cast<chunk_t*>(item.curr.data);
913 next = nullptr;
914 }
915 };
916 static_assert(std::is_standard_layout<debug_item>::value, "debug_item is not compatible with C layout");
917
918 struct debug_items {
919 std::map<std::string, std::vector<debug_item>> table;
920
921 void add(const std::string &name, debug_item &&item) {
922 std::vector<debug_item> &parts = table[name];
923 parts.emplace_back(item);
924 std::sort(parts.begin(), parts.end(),
925 [](const debug_item &a, const debug_item &b) {
926 return a.lsb_at < b.lsb_at;
927 });
928 }
929
930 size_t count(const std::string &name) const {
931 if (table.count(name) == 0)
932 return 0;
933 return table.at(name).size();
934 }
935
936 const std::vector<debug_item> &parts_at(const std::string &name) const {
937 return table.at(name);
938 }
939
940 const debug_item &at(const std::string &name) const {
941 const std::vector<debug_item> &parts = table.at(name);
942 assert(parts.size() == 1);
943 return parts.at(0);
944 }
945
946 const debug_item &operator [](const std::string &name) const {
947 return at(name);
948 }
949 };
950
951 struct module {
952 module() {}
953 virtual ~module() {}
954
955 module(const module &) = delete;
956 module &operator=(const module &) = delete;
957
958 virtual bool eval() = 0;
959 virtual bool commit() = 0;
960
961 size_t step() {
962 size_t deltas = 0;
963 bool converged = false;
964 do {
965 converged = eval();
966 deltas++;
967 } while (commit() && !converged);
968 return deltas;
969 }
970
971 virtual void debug_info(debug_items &items, std::string path = "") {
972 (void)items, (void)path;
973 }
974 };
975
976 } // namespace cxxrtl
977
978 // Internal structure used to communicate with the implementation of the C interface.
979 typedef struct _cxxrtl_toplevel {
980 std::unique_ptr<cxxrtl::module> module;
981 } *cxxrtl_toplevel;
982
983 // Definitions of internal Yosys cells. Other than the functions in this namespace, CXXRTL is fully generic
984 // and indepenent of Yosys implementation details.
985 //
986 // The `write_cxxrtl` pass translates internal cells (cells with names that start with `$`) to calls of these
987 // functions. All of Yosys arithmetic and logical cells perform sign or zero extension on their operands,
988 // whereas basic operations on arbitrary width values require operands to be of the same width. These functions
989 // bridge the gap by performing the necessary casts. They are named similar to `cell_A[B]`, where A and B are `u`
990 // if the corresponding operand is unsigned, and `s` if it is signed.
991 namespace cxxrtl_yosys {
992
993 using namespace cxxrtl;
994
995 // std::max isn't constexpr until C++14 for no particular reason (it's an oversight), so we define our own.
996 template<class T>
997 CXXRTL_ALWAYS_INLINE
998 constexpr T max(const T &a, const T &b) {
999 return a > b ? a : b;
1000 }
1001
1002 // Logic operations
1003 template<size_t BitsY, size_t BitsA>
1004 CXXRTL_ALWAYS_INLINE
1005 value<BitsY> logic_not(const value<BitsA> &a) {
1006 return value<BitsY> { a ? 0u : 1u };
1007 }
1008
1009 template<size_t BitsY, size_t BitsA, size_t BitsB>
1010 CXXRTL_ALWAYS_INLINE
1011 value<BitsY> logic_and(const value<BitsA> &a, const value<BitsB> &b) {
1012 return value<BitsY> { (bool(a) && bool(b)) ? 1u : 0u };
1013 }
1014
1015 template<size_t BitsY, size_t BitsA, size_t BitsB>
1016 CXXRTL_ALWAYS_INLINE
1017 value<BitsY> logic_or(const value<BitsA> &a, const value<BitsB> &b) {
1018 return value<BitsY> { (bool(a) || bool(b)) ? 1u : 0u };
1019 }
1020
1021 // Reduction operations
1022 template<size_t BitsY, size_t BitsA>
1023 CXXRTL_ALWAYS_INLINE
1024 value<BitsY> reduce_and(const value<BitsA> &a) {
1025 return value<BitsY> { a.bit_not().is_zero() ? 1u : 0u };
1026 }
1027
1028 template<size_t BitsY, size_t BitsA>
1029 CXXRTL_ALWAYS_INLINE
1030 value<BitsY> reduce_or(const value<BitsA> &a) {
1031 return value<BitsY> { a ? 1u : 0u };
1032 }
1033
1034 template<size_t BitsY, size_t BitsA>
1035 CXXRTL_ALWAYS_INLINE
1036 value<BitsY> reduce_xor(const value<BitsA> &a) {
1037 return value<BitsY> { (a.ctpop() % 2) ? 1u : 0u };
1038 }
1039
1040 template<size_t BitsY, size_t BitsA>
1041 CXXRTL_ALWAYS_INLINE
1042 value<BitsY> reduce_xnor(const value<BitsA> &a) {
1043 return value<BitsY> { (a.ctpop() % 2) ? 0u : 1u };
1044 }
1045
1046 template<size_t BitsY, size_t BitsA>
1047 CXXRTL_ALWAYS_INLINE
1048 value<BitsY> reduce_bool(const value<BitsA> &a) {
1049 return value<BitsY> { a ? 1u : 0u };
1050 }
1051
1052 // Bitwise operations
1053 template<size_t BitsY, size_t BitsA>
1054 CXXRTL_ALWAYS_INLINE
1055 value<BitsY> not_u(const value<BitsA> &a) {
1056 return a.template zcast<BitsY>().bit_not();
1057 }
1058
1059 template<size_t BitsY, size_t BitsA>
1060 CXXRTL_ALWAYS_INLINE
1061 value<BitsY> not_s(const value<BitsA> &a) {
1062 return a.template scast<BitsY>().bit_not();
1063 }
1064
1065 template<size_t BitsY, size_t BitsA, size_t BitsB>
1066 CXXRTL_ALWAYS_INLINE
1067 value<BitsY> and_uu(const value<BitsA> &a, const value<BitsB> &b) {
1068 return a.template zcast<BitsY>().bit_and(b.template zcast<BitsY>());
1069 }
1070
1071 template<size_t BitsY, size_t BitsA, size_t BitsB>
1072 CXXRTL_ALWAYS_INLINE
1073 value<BitsY> and_ss(const value<BitsA> &a, const value<BitsB> &b) {
1074 return a.template scast<BitsY>().bit_and(b.template scast<BitsY>());
1075 }
1076
1077 template<size_t BitsY, size_t BitsA, size_t BitsB>
1078 CXXRTL_ALWAYS_INLINE
1079 value<BitsY> or_uu(const value<BitsA> &a, const value<BitsB> &b) {
1080 return a.template zcast<BitsY>().bit_or(b.template zcast<BitsY>());
1081 }
1082
1083 template<size_t BitsY, size_t BitsA, size_t BitsB>
1084 CXXRTL_ALWAYS_INLINE
1085 value<BitsY> or_ss(const value<BitsA> &a, const value<BitsB> &b) {
1086 return a.template scast<BitsY>().bit_or(b.template scast<BitsY>());
1087 }
1088
1089 template<size_t BitsY, size_t BitsA, size_t BitsB>
1090 CXXRTL_ALWAYS_INLINE
1091 value<BitsY> xor_uu(const value<BitsA> &a, const value<BitsB> &b) {
1092 return a.template zcast<BitsY>().bit_xor(b.template zcast<BitsY>());
1093 }
1094
1095 template<size_t BitsY, size_t BitsA, size_t BitsB>
1096 CXXRTL_ALWAYS_INLINE
1097 value<BitsY> xor_ss(const value<BitsA> &a, const value<BitsB> &b) {
1098 return a.template scast<BitsY>().bit_xor(b.template scast<BitsY>());
1099 }
1100
1101 template<size_t BitsY, size_t BitsA, size_t BitsB>
1102 CXXRTL_ALWAYS_INLINE
1103 value<BitsY> xnor_uu(const value<BitsA> &a, const value<BitsB> &b) {
1104 return a.template zcast<BitsY>().bit_xor(b.template zcast<BitsY>()).bit_not();
1105 }
1106
1107 template<size_t BitsY, size_t BitsA, size_t BitsB>
1108 CXXRTL_ALWAYS_INLINE
1109 value<BitsY> xnor_ss(const value<BitsA> &a, const value<BitsB> &b) {
1110 return a.template scast<BitsY>().bit_xor(b.template scast<BitsY>()).bit_not();
1111 }
1112
1113 template<size_t BitsY, size_t BitsA, size_t BitsB>
1114 CXXRTL_ALWAYS_INLINE
1115 value<BitsY> shl_uu(const value<BitsA> &a, const value<BitsB> &b) {
1116 return a.template zcast<BitsY>().template shl(b);
1117 }
1118
1119 template<size_t BitsY, size_t BitsA, size_t BitsB>
1120 CXXRTL_ALWAYS_INLINE
1121 value<BitsY> shl_su(const value<BitsA> &a, const value<BitsB> &b) {
1122 return a.template scast<BitsY>().template shl(b);
1123 }
1124
1125 template<size_t BitsY, size_t BitsA, size_t BitsB>
1126 CXXRTL_ALWAYS_INLINE
1127 value<BitsY> sshl_uu(const value<BitsA> &a, const value<BitsB> &b) {
1128 return a.template zcast<BitsY>().template shl(b);
1129 }
1130
1131 template<size_t BitsY, size_t BitsA, size_t BitsB>
1132 CXXRTL_ALWAYS_INLINE
1133 value<BitsY> sshl_su(const value<BitsA> &a, const value<BitsB> &b) {
1134 return a.template scast<BitsY>().template shl(b);
1135 }
1136
1137 template<size_t BitsY, size_t BitsA, size_t BitsB>
1138 CXXRTL_ALWAYS_INLINE
1139 value<BitsY> shr_uu(const value<BitsA> &a, const value<BitsB> &b) {
1140 return a.template shr(b).template zcast<BitsY>();
1141 }
1142
1143 template<size_t BitsY, size_t BitsA, size_t BitsB>
1144 CXXRTL_ALWAYS_INLINE
1145 value<BitsY> shr_su(const value<BitsA> &a, const value<BitsB> &b) {
1146 return a.template shr(b).template scast<BitsY>();
1147 }
1148
1149 template<size_t BitsY, size_t BitsA, size_t BitsB>
1150 CXXRTL_ALWAYS_INLINE
1151 value<BitsY> sshr_uu(const value<BitsA> &a, const value<BitsB> &b) {
1152 return a.template shr(b).template zcast<BitsY>();
1153 }
1154
1155 template<size_t BitsY, size_t BitsA, size_t BitsB>
1156 CXXRTL_ALWAYS_INLINE
1157 value<BitsY> sshr_su(const value<BitsA> &a, const value<BitsB> &b) {
1158 return a.template sshr(b).template scast<BitsY>();
1159 }
1160
1161 template<size_t BitsY, size_t BitsA, size_t BitsB>
1162 CXXRTL_ALWAYS_INLINE
1163 value<BitsY> shift_uu(const value<BitsA> &a, const value<BitsB> &b) {
1164 return shr_uu<BitsY>(a, b);
1165 }
1166
1167 template<size_t BitsY, size_t BitsA, size_t BitsB>
1168 CXXRTL_ALWAYS_INLINE
1169 value<BitsY> shift_su(const value<BitsA> &a, const value<BitsB> &b) {
1170 return shr_su<BitsY>(a, b);
1171 }
1172
1173 template<size_t BitsY, size_t BitsA, size_t BitsB>
1174 CXXRTL_ALWAYS_INLINE
1175 value<BitsY> shift_us(const value<BitsA> &a, const value<BitsB> &b) {
1176 return b.is_neg() ? shl_uu<BitsY>(a, b.template sext<BitsB + 1>().neg()) : shr_uu<BitsY>(a, b);
1177 }
1178
1179 template<size_t BitsY, size_t BitsA, size_t BitsB>
1180 CXXRTL_ALWAYS_INLINE
1181 value<BitsY> shift_ss(const value<BitsA> &a, const value<BitsB> &b) {
1182 return b.is_neg() ? shl_su<BitsY>(a, b.template sext<BitsB + 1>().neg()) : shr_su<BitsY>(a, b);
1183 }
1184
1185 template<size_t BitsY, size_t BitsA, size_t BitsB>
1186 CXXRTL_ALWAYS_INLINE
1187 value<BitsY> shiftx_uu(const value<BitsA> &a, const value<BitsB> &b) {
1188 return shift_uu<BitsY>(a, b);
1189 }
1190
1191 template<size_t BitsY, size_t BitsA, size_t BitsB>
1192 CXXRTL_ALWAYS_INLINE
1193 value<BitsY> shiftx_su(const value<BitsA> &a, const value<BitsB> &b) {
1194 return shift_su<BitsY>(a, b);
1195 }
1196
1197 template<size_t BitsY, size_t BitsA, size_t BitsB>
1198 CXXRTL_ALWAYS_INLINE
1199 value<BitsY> shiftx_us(const value<BitsA> &a, const value<BitsB> &b) {
1200 return shift_us<BitsY>(a, b);
1201 }
1202
1203 template<size_t BitsY, size_t BitsA, size_t BitsB>
1204 CXXRTL_ALWAYS_INLINE
1205 value<BitsY> shiftx_ss(const value<BitsA> &a, const value<BitsB> &b) {
1206 return shift_ss<BitsY>(a, b);
1207 }
1208
1209 // Comparison operations
1210 template<size_t BitsY, size_t BitsA, size_t BitsB>
1211 CXXRTL_ALWAYS_INLINE
1212 value<BitsY> eq_uu(const value<BitsA> &a, const value<BitsB> &b) {
1213 constexpr size_t BitsExt = max(BitsA, BitsB);
1214 return value<BitsY>{ a.template zext<BitsExt>() == b.template zext<BitsExt>() ? 1u : 0u };
1215 }
1216
1217 template<size_t BitsY, size_t BitsA, size_t BitsB>
1218 CXXRTL_ALWAYS_INLINE
1219 value<BitsY> eq_ss(const value<BitsA> &a, const value<BitsB> &b) {
1220 constexpr size_t BitsExt = max(BitsA, BitsB);
1221 return value<BitsY>{ a.template sext<BitsExt>() == b.template sext<BitsExt>() ? 1u : 0u };
1222 }
1223
1224 template<size_t BitsY, size_t BitsA, size_t BitsB>
1225 CXXRTL_ALWAYS_INLINE
1226 value<BitsY> ne_uu(const value<BitsA> &a, const value<BitsB> &b) {
1227 constexpr size_t BitsExt = max(BitsA, BitsB);
1228 return value<BitsY>{ a.template zext<BitsExt>() != b.template zext<BitsExt>() ? 1u : 0u };
1229 }
1230
1231 template<size_t BitsY, size_t BitsA, size_t BitsB>
1232 CXXRTL_ALWAYS_INLINE
1233 value<BitsY> ne_ss(const value<BitsA> &a, const value<BitsB> &b) {
1234 constexpr size_t BitsExt = max(BitsA, BitsB);
1235 return value<BitsY>{ a.template sext<BitsExt>() != b.template sext<BitsExt>() ? 1u : 0u };
1236 }
1237
1238 template<size_t BitsY, size_t BitsA, size_t BitsB>
1239 CXXRTL_ALWAYS_INLINE
1240 value<BitsY> eqx_uu(const value<BitsA> &a, const value<BitsB> &b) {
1241 return eq_uu<BitsY>(a, b);
1242 }
1243
1244 template<size_t BitsY, size_t BitsA, size_t BitsB>
1245 CXXRTL_ALWAYS_INLINE
1246 value<BitsY> eqx_ss(const value<BitsA> &a, const value<BitsB> &b) {
1247 return eq_ss<BitsY>(a, b);
1248 }
1249
1250 template<size_t BitsY, size_t BitsA, size_t BitsB>
1251 CXXRTL_ALWAYS_INLINE
1252 value<BitsY> nex_uu(const value<BitsA> &a, const value<BitsB> &b) {
1253 return ne_uu<BitsY>(a, b);
1254 }
1255
1256 template<size_t BitsY, size_t BitsA, size_t BitsB>
1257 CXXRTL_ALWAYS_INLINE
1258 value<BitsY> nex_ss(const value<BitsA> &a, const value<BitsB> &b) {
1259 return ne_ss<BitsY>(a, b);
1260 }
1261
1262 template<size_t BitsY, size_t BitsA, size_t BitsB>
1263 CXXRTL_ALWAYS_INLINE
1264 value<BitsY> gt_uu(const value<BitsA> &a, const value<BitsB> &b) {
1265 constexpr size_t BitsExt = max(BitsA, BitsB);
1266 return value<BitsY> { b.template zext<BitsExt>().ucmp(a.template zext<BitsExt>()) ? 1u : 0u };
1267 }
1268
1269 template<size_t BitsY, size_t BitsA, size_t BitsB>
1270 CXXRTL_ALWAYS_INLINE
1271 value<BitsY> gt_ss(const value<BitsA> &a, const value<BitsB> &b) {
1272 constexpr size_t BitsExt = max(BitsA, BitsB);
1273 return value<BitsY> { b.template sext<BitsExt>().scmp(a.template sext<BitsExt>()) ? 1u : 0u };
1274 }
1275
1276 template<size_t BitsY, size_t BitsA, size_t BitsB>
1277 CXXRTL_ALWAYS_INLINE
1278 value<BitsY> ge_uu(const value<BitsA> &a, const value<BitsB> &b) {
1279 constexpr size_t BitsExt = max(BitsA, BitsB);
1280 return value<BitsY> { !a.template zext<BitsExt>().ucmp(b.template zext<BitsExt>()) ? 1u : 0u };
1281 }
1282
1283 template<size_t BitsY, size_t BitsA, size_t BitsB>
1284 CXXRTL_ALWAYS_INLINE
1285 value<BitsY> ge_ss(const value<BitsA> &a, const value<BitsB> &b) {
1286 constexpr size_t BitsExt = max(BitsA, BitsB);
1287 return value<BitsY> { !a.template sext<BitsExt>().scmp(b.template sext<BitsExt>()) ? 1u : 0u };
1288 }
1289
1290 template<size_t BitsY, size_t BitsA, size_t BitsB>
1291 CXXRTL_ALWAYS_INLINE
1292 value<BitsY> lt_uu(const value<BitsA> &a, const value<BitsB> &b) {
1293 constexpr size_t BitsExt = max(BitsA, BitsB);
1294 return value<BitsY> { a.template zext<BitsExt>().ucmp(b.template zext<BitsExt>()) ? 1u : 0u };
1295 }
1296
1297 template<size_t BitsY, size_t BitsA, size_t BitsB>
1298 CXXRTL_ALWAYS_INLINE
1299 value<BitsY> lt_ss(const value<BitsA> &a, const value<BitsB> &b) {
1300 constexpr size_t BitsExt = max(BitsA, BitsB);
1301 return value<BitsY> { a.template sext<BitsExt>().scmp(b.template sext<BitsExt>()) ? 1u : 0u };
1302 }
1303
1304 template<size_t BitsY, size_t BitsA, size_t BitsB>
1305 CXXRTL_ALWAYS_INLINE
1306 value<BitsY> le_uu(const value<BitsA> &a, const value<BitsB> &b) {
1307 constexpr size_t BitsExt = max(BitsA, BitsB);
1308 return value<BitsY> { !b.template zext<BitsExt>().ucmp(a.template zext<BitsExt>()) ? 1u : 0u };
1309 }
1310
1311 template<size_t BitsY, size_t BitsA, size_t BitsB>
1312 CXXRTL_ALWAYS_INLINE
1313 value<BitsY> le_ss(const value<BitsA> &a, const value<BitsB> &b) {
1314 constexpr size_t BitsExt = max(BitsA, BitsB);
1315 return value<BitsY> { !b.template sext<BitsExt>().scmp(a.template sext<BitsExt>()) ? 1u : 0u };
1316 }
1317
1318 // Arithmetic operations
1319 template<size_t BitsY, size_t BitsA>
1320 CXXRTL_ALWAYS_INLINE
1321 value<BitsY> pos_u(const value<BitsA> &a) {
1322 return a.template zcast<BitsY>();
1323 }
1324
1325 template<size_t BitsY, size_t BitsA>
1326 CXXRTL_ALWAYS_INLINE
1327 value<BitsY> pos_s(const value<BitsA> &a) {
1328 return a.template scast<BitsY>();
1329 }
1330
1331 template<size_t BitsY, size_t BitsA>
1332 CXXRTL_ALWAYS_INLINE
1333 value<BitsY> neg_u(const value<BitsA> &a) {
1334 return a.template zcast<BitsY>().neg();
1335 }
1336
1337 template<size_t BitsY, size_t BitsA>
1338 CXXRTL_ALWAYS_INLINE
1339 value<BitsY> neg_s(const value<BitsA> &a) {
1340 return a.template scast<BitsY>().neg();
1341 }
1342
1343 template<size_t BitsY, size_t BitsA, size_t BitsB>
1344 CXXRTL_ALWAYS_INLINE
1345 value<BitsY> add_uu(const value<BitsA> &a, const value<BitsB> &b) {
1346 return a.template zcast<BitsY>().add(b.template zcast<BitsY>());
1347 }
1348
1349 template<size_t BitsY, size_t BitsA, size_t BitsB>
1350 CXXRTL_ALWAYS_INLINE
1351 value<BitsY> add_ss(const value<BitsA> &a, const value<BitsB> &b) {
1352 return a.template scast<BitsY>().add(b.template scast<BitsY>());
1353 }
1354
1355 template<size_t BitsY, size_t BitsA, size_t BitsB>
1356 CXXRTL_ALWAYS_INLINE
1357 value<BitsY> sub_uu(const value<BitsA> &a, const value<BitsB> &b) {
1358 return a.template zcast<BitsY>().sub(b.template zcast<BitsY>());
1359 }
1360
1361 template<size_t BitsY, size_t BitsA, size_t BitsB>
1362 CXXRTL_ALWAYS_INLINE
1363 value<BitsY> sub_ss(const value<BitsA> &a, const value<BitsB> &b) {
1364 return a.template scast<BitsY>().sub(b.template scast<BitsY>());
1365 }
1366
1367 template<size_t BitsY, size_t BitsA, size_t BitsB>
1368 CXXRTL_ALWAYS_INLINE
1369 value<BitsY> mul_uu(const value<BitsA> &a, const value<BitsB> &b) {
1370 constexpr size_t BitsM = BitsA >= BitsB ? BitsA : BitsB;
1371 return a.template zcast<BitsM>().template mul<BitsY>(b.template zcast<BitsM>());
1372 }
1373
1374 template<size_t BitsY, size_t BitsA, size_t BitsB>
1375 CXXRTL_ALWAYS_INLINE
1376 value<BitsY> mul_ss(const value<BitsA> &a, const value<BitsB> &b) {
1377 return a.template scast<BitsY>().template mul<BitsY>(b.template scast<BitsY>());
1378 }
1379
1380 template<size_t BitsY, size_t BitsA, size_t BitsB>
1381 CXXRTL_ALWAYS_INLINE
1382 std::pair<value<BitsY>, value<BitsY>> divmod_uu(const value<BitsA> &a, const value<BitsB> &b) {
1383 constexpr size_t Bits = max(BitsY, max(BitsA, BitsB));
1384 value<Bits> quotient;
1385 value<Bits> dividend = a.template zext<Bits>();
1386 value<Bits> divisor = b.template zext<Bits>();
1387 if (dividend.ucmp(divisor))
1388 return {/*quotient=*/value<BitsY> { 0u }, /*remainder=*/dividend.template trunc<BitsY>()};
1389 uint32_t divisor_shift = dividend.ctlz() - divisor.ctlz();
1390 divisor = divisor.shl(value<32> { divisor_shift });
1391 for (size_t step = 0; step <= divisor_shift; step++) {
1392 quotient = quotient.shl(value<1> { 1u });
1393 if (!dividend.ucmp(divisor)) {
1394 dividend = dividend.sub(divisor);
1395 quotient.set_bit(0, true);
1396 }
1397 divisor = divisor.shr(value<1> { 1u });
1398 }
1399 return {quotient.template trunc<BitsY>(), /*remainder=*/dividend.template trunc<BitsY>()};
1400 }
1401
1402 template<size_t BitsY, size_t BitsA, size_t BitsB>
1403 CXXRTL_ALWAYS_INLINE
1404 std::pair<value<BitsY>, value<BitsY>> divmod_ss(const value<BitsA> &a, const value<BitsB> &b) {
1405 value<BitsA + 1> ua = a.template sext<BitsA + 1>();
1406 value<BitsB + 1> ub = b.template sext<BitsB + 1>();
1407 if (ua.is_neg()) ua = ua.neg();
1408 if (ub.is_neg()) ub = ub.neg();
1409 value<BitsY> y, r;
1410 std::tie(y, r) = divmod_uu<BitsY>(ua, ub);
1411 if (a.is_neg() != b.is_neg()) y = y.neg();
1412 if (a.is_neg()) r = r.neg();
1413 return {y, r};
1414 }
1415
1416 template<size_t BitsY, size_t BitsA, size_t BitsB>
1417 CXXRTL_ALWAYS_INLINE
1418 value<BitsY> div_uu(const value<BitsA> &a, const value<BitsB> &b) {
1419 return divmod_uu<BitsY>(a, b).first;
1420 }
1421
1422 template<size_t BitsY, size_t BitsA, size_t BitsB>
1423 CXXRTL_ALWAYS_INLINE
1424 value<BitsY> div_ss(const value<BitsA> &a, const value<BitsB> &b) {
1425 return divmod_ss<BitsY>(a, b).first;
1426 }
1427
1428 template<size_t BitsY, size_t BitsA, size_t BitsB>
1429 CXXRTL_ALWAYS_INLINE
1430 value<BitsY> mod_uu(const value<BitsA> &a, const value<BitsB> &b) {
1431 return divmod_uu<BitsY>(a, b).second;
1432 }
1433
1434 template<size_t BitsY, size_t BitsA, size_t BitsB>
1435 CXXRTL_ALWAYS_INLINE
1436 value<BitsY> mod_ss(const value<BitsA> &a, const value<BitsB> &b) {
1437 return divmod_ss<BitsY>(a, b).second;
1438 }
1439
1440 // Memory helper
1441 struct memory_index {
1442 bool valid;
1443 size_t index;
1444
1445 template<size_t BitsAddr>
1446 memory_index(const value<BitsAddr> &addr, size_t offset, size_t depth) {
1447 static_assert(value<BitsAddr>::chunks <= 1, "memory address is too wide");
1448 size_t offset_index = addr.data[0];
1449
1450 valid = (offset_index >= offset && offset_index < offset + depth);
1451 index = offset_index - offset;
1452 }
1453 };
1454
1455 } // namespace cxxrtl_yosys
1456
1457 #endif