Strip quotes around fileinfo strings
[yosys.git] / backends / firrtl / firrtl.cc
1 /*
2 * yosys -- Yosys Open SYnthesis Suite
3 *
4 * Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
5 *
6 * Permission to use, copy, modify, and/or distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
9 *
10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 *
18 */
19
20 #include "kernel/rtlil.h"
21 #include "kernel/register.h"
22 #include "kernel/sigtools.h"
23 #include "kernel/celltypes.h"
24 #include "kernel/cellaigs.h"
25 #include "kernel/log.h"
26 #include <algorithm>
27 #include <string>
28 #include <vector>
29 #include <cmath>
30
31 USING_YOSYS_NAMESPACE
32 PRIVATE_NAMESPACE_BEGIN
33
34 pool<string> used_names;
35 dict<IdString, string> namecache;
36 int autoid_counter;
37
38 typedef unsigned FDirection;
39 static const FDirection FD_NODIRECTION = 0x0;
40 static const FDirection FD_IN = 0x1;
41 static const FDirection FD_OUT = 0x2;
42 static const FDirection FD_INOUT = 0x3;
43 static const int FIRRTL_MAX_DSH_WIDTH_ERROR = 20; // For historic reasons, this is actually one greater than the maximum allowed shift width
44
45 // Shamelessly copied from ilang_backend.cc. Something better is surely possible here.
46 void dump_const(std::ostream &f, const RTLIL::Const &data, int width = -1, int offset = 0, bool autoint = true)
47 {
48 if (width < 0)
49 width = data.bits.size() - offset;
50 if ((data.flags & RTLIL::CONST_FLAG_STRING) == 0 || width != (int)data.bits.size()) {
51 if (width == 32 && autoint) {
52 int32_t val = 0;
53 for (int i = 0; i < width; i++) {
54 log_assert(offset+i < (int)data.bits.size());
55 switch (data.bits[offset+i]) {
56 case RTLIL::S0: break;
57 case RTLIL::S1: val |= 1 << i; break;
58 default: val = -1; break;
59 }
60 }
61 if (val >= 0) {
62 f << stringf("%d", val);
63 return;
64 }
65 }
66 f << stringf("%d'", width);
67 for (int i = offset+width-1; i >= offset; i--) {
68 log_assert(i < (int)data.bits.size());
69 switch (data.bits[i]) {
70 case RTLIL::S0: f << stringf("0"); break;
71 case RTLIL::S1: f << stringf("1"); break;
72 case RTLIL::Sx: f << stringf("x"); break;
73 case RTLIL::Sz: f << stringf("z"); break;
74 case RTLIL::Sa: f << stringf("-"); break;
75 case RTLIL::Sm: f << stringf("m"); break;
76 }
77 }
78 } else {
79 f << stringf("\"");
80 std::string str = data.decode_string();
81 for (size_t i = 0; i < str.size(); i++) {
82 if (str[i] == '\n')
83 f << stringf("\\n");
84 else if (str[i] == '\t')
85 f << stringf("\\t");
86 else if (str[i] < 32)
87 f << stringf("\\%03o", str[i]);
88 else if (str[i] == '"')
89 f << stringf("\\\"");
90 else if (str[i] == '\\')
91 f << stringf("\\\\");
92 else
93 f << str[i];
94 }
95 f << stringf("\"");
96 }
97 }
98
99 std::string getFileinfo(dict<RTLIL::IdString, RTLIL::Const> attributes)
100 {
101 std::ostringstream fileinfo;
102 for (auto &it : attributes) {
103 if (it.first == "\\src") {
104 fileinfo << "@[";
105 dump_const(fileinfo, it.second);
106 fileinfo << "]";
107 }
108 }
109
110 std::string fileinfo_str = fileinfo.str();
111 fileinfo_str.erase(std::remove(fileinfo_str.begin(), fileinfo_str.end(), '\"'), fileinfo_str.end());
112
113 return fileinfo_str;
114 }
115
116 // Get a port direction with respect to a specific module.
117 FDirection getPortFDirection(IdString id, Module *module)
118 {
119 Wire *wire = module->wires_.at(id);
120 FDirection direction = FD_NODIRECTION;
121 if (wire && wire->port_id)
122 {
123 if (wire->port_input)
124 direction |= FD_IN;
125 if (wire->port_output)
126 direction |= FD_OUT;
127 }
128 return direction;
129 }
130
131 string next_id()
132 {
133 string new_id;
134
135 while (1) {
136 new_id = stringf("_%d", autoid_counter++);
137 if (used_names.count(new_id) == 0) break;
138 }
139
140 used_names.insert(new_id);
141 return new_id;
142 }
143
144 const char *make_id(IdString id)
145 {
146 if (namecache.count(id) != 0)
147 return namecache.at(id).c_str();
148
149 string new_id = log_id(id);
150
151 for (int i = 0; i < GetSize(new_id); i++)
152 {
153 char &ch = new_id[i];
154 if ('a' <= ch && ch <= 'z') continue;
155 if ('A' <= ch && ch <= 'Z') continue;
156 if ('0' <= ch && ch <= '9' && i != 0) continue;
157 if ('_' == ch) continue;
158 ch = '_';
159 }
160
161 while (used_names.count(new_id) != 0)
162 new_id += '_';
163
164 namecache[id] = new_id;
165 used_names.insert(new_id);
166 return namecache.at(id).c_str();
167 }
168
169 struct FirrtlWorker
170 {
171 Module *module;
172 std::ostream &f;
173
174 dict<SigBit, pair<string, int>> reverse_wire_map;
175 string unconn_id;
176 RTLIL::Design *design;
177 std::string indent;
178
179 // Define read/write ports and memories.
180 // We'll collect their definitions and emit the corresponding FIRRTL definitions at the appropriate point in module construction.
181 // For the moment, we don't handle $readmemh or $readmemb.
182 // These will be part of a subsequent PR.
183 struct read_port {
184 string name;
185 bool clk_enable;
186 bool clk_parity;
187 bool transparent;
188 RTLIL::SigSpec clk;
189 RTLIL::SigSpec ena;
190 RTLIL::SigSpec addr;
191 read_port(string name, bool clk_enable, bool clk_parity, bool transparent, RTLIL::SigSpec clk, RTLIL::SigSpec ena, RTLIL::SigSpec addr) : name(name), clk_enable(clk_enable), clk_parity(clk_parity), transparent(transparent), clk(clk), ena(ena), addr(addr) {
192 // Current (3/13/2019) conventions:
193 // generate a constant 0 for clock and a constant 1 for enable if they are undefined.
194 if (!clk.is_fully_def())
195 this->clk = SigSpec(State::S0);
196 if (!ena.is_fully_def())
197 this->ena = SigSpec(State::S1);
198 }
199 string gen_read(const char * indent) {
200 string addr_expr = make_expr(addr);
201 string ena_expr = make_expr(ena);
202 string clk_expr = make_expr(clk);
203 string addr_str = stringf("%s%s.addr <= %s\n", indent, name.c_str(), addr_expr.c_str());
204 string ena_str = stringf("%s%s.en <= %s\n", indent, name.c_str(), ena_expr.c_str());
205 string clk_str = stringf("%s%s.clk <= asClock(%s)\n", indent, name.c_str(), clk_expr.c_str());
206 return addr_str + ena_str + clk_str;
207 }
208 };
209 struct write_port : read_port {
210 RTLIL::SigSpec mask;
211 write_port(string name, bool clk_enable, bool clk_parity, bool transparent, RTLIL::SigSpec clk, RTLIL::SigSpec ena, RTLIL::SigSpec addr, RTLIL::SigSpec mask) : read_port(name, clk_enable, clk_parity, transparent, clk, ena, addr), mask(mask) {
212 if (!clk.is_fully_def())
213 this->clk = SigSpec(RTLIL::Const(0));
214 if (!ena.is_fully_def())
215 this->ena = SigSpec(RTLIL::Const(0));
216 if (!mask.is_fully_def())
217 this->ena = SigSpec(RTLIL::Const(1));
218 }
219 string gen_read(const char * /* indent */) {
220 log_error("gen_read called on write_port: %s\n", name.c_str());
221 return stringf("gen_read called on write_port: %s\n", name.c_str());
222 }
223 string gen_write(const char * indent) {
224 string addr_expr = make_expr(addr);
225 string ena_expr = make_expr(ena);
226 string clk_expr = make_expr(clk);
227 string mask_expr = make_expr(mask);
228 string mask_str = stringf("%s%s.mask <= %s\n", indent, name.c_str(), mask_expr.c_str());
229 string addr_str = stringf("%s%s.addr <= %s\n", indent, name.c_str(), addr_expr.c_str());
230 string ena_str = stringf("%s%s.en <= %s\n", indent, name.c_str(), ena_expr.c_str());
231 string clk_str = stringf("%s%s.clk <= asClock(%s)\n", indent, name.c_str(), clk_expr.c_str());
232 return addr_str + ena_str + clk_str + mask_str;
233 }
234 };
235 /* Memories defined within this module. */
236 struct memory {
237 Cell *pCell; // for error reporting
238 string name; // memory name
239 int abits; // number of address bits
240 int size; // size (in units) of the memory
241 int width; // size (in bits) of each element
242 int read_latency;
243 int write_latency;
244 vector<read_port> read_ports;
245 vector<write_port> write_ports;
246 std::string init_file;
247 std::string init_file_srcFileSpec;
248 string srcLine;
249 memory(Cell *pCell, string name, int abits, int size, int width) : pCell(pCell), name(name), abits(abits), size(size), width(width), read_latency(0), write_latency(1), init_file(""), init_file_srcFileSpec("") {
250 // Provide defaults for abits or size if one (but not the other) is specified.
251 if (this->abits == 0 && this->size != 0) {
252 this->abits = ceil_log2(this->size);
253 } else if (this->abits != 0 && this->size == 0) {
254 this->size = 1 << this->abits;
255 }
256 // Sanity-check this construction.
257 if (this->name == "") {
258 log_error("Nameless memory%s\n", this->atLine());
259 }
260 if (this->abits == 0 && this->size == 0) {
261 log_error("Memory %s has zero address bits and size%s\n", this->name.c_str(), this->atLine());
262 }
263 if (this->width == 0) {
264 log_error("Memory %s has zero width%s\n", this->name.c_str(), this->atLine());
265 }
266 }
267 // We need a default constructor for the dict insert.
268 memory() : pCell(0), read_latency(0), write_latency(1), init_file(""), init_file_srcFileSpec(""){}
269
270 const char *atLine() {
271 if (srcLine == "") {
272 if (pCell) {
273 auto p = pCell->attributes.find("\\src");
274 srcLine = " at " + p->second.decode_string();
275 }
276 }
277 return srcLine.c_str();
278 }
279 void add_memory_read_port(read_port &rp) {
280 read_ports.push_back(rp);
281 }
282 void add_memory_write_port(write_port &wp) {
283 write_ports.push_back(wp);
284 }
285 void add_memory_file(std::string init_file, std::string init_file_srcFileSpec) {
286 this->init_file = init_file;
287 this->init_file_srcFileSpec = init_file_srcFileSpec;
288 }
289
290 };
291 dict<string, memory> memories;
292
293 void register_memory(memory &m)
294 {
295 memories[m.name] = m;
296 }
297
298 void register_reverse_wire_map(string id, SigSpec sig)
299 {
300 for (int i = 0; i < GetSize(sig); i++)
301 reverse_wire_map[sig[i]] = make_pair(id, i);
302 }
303
304 FirrtlWorker(Module *module, std::ostream &f, RTLIL::Design *theDesign) : module(module), f(f), design(theDesign), indent(" ")
305 {
306 }
307
308 static string make_expr(const SigSpec &sig)
309 {
310 string expr;
311
312 for (auto chunk : sig.chunks())
313 {
314 string new_expr;
315
316 if (chunk.wire == nullptr)
317 {
318 std::vector<RTLIL::State> bits = chunk.data;
319 new_expr = stringf("UInt<%d>(\"h", GetSize(bits));
320
321 while (GetSize(bits) % 4 != 0)
322 bits.push_back(State::S0);
323
324 for (int i = GetSize(bits)-4; i >= 0; i -= 4)
325 {
326 int val = 0;
327 if (bits[i+0] == State::S1) val += 1;
328 if (bits[i+1] == State::S1) val += 2;
329 if (bits[i+2] == State::S1) val += 4;
330 if (bits[i+3] == State::S1) val += 8;
331 new_expr.push_back(val < 10 ? '0' + val : 'a' + val - 10);
332 }
333
334 new_expr += "\")";
335 }
336 else if (chunk.offset == 0 && chunk.width == chunk.wire->width)
337 {
338 new_expr = make_id(chunk.wire->name);
339 }
340 else
341 {
342 string wire_id = make_id(chunk.wire->name);
343 new_expr = stringf("bits(%s, %d, %d)", wire_id.c_str(), chunk.offset + chunk.width - 1, chunk.offset);
344 }
345
346 if (expr.empty())
347 expr = new_expr;
348 else
349 expr = "cat(" + new_expr + ", " + expr + ")";
350 }
351
352 return expr;
353 }
354
355 std::string fid(RTLIL::IdString internal_id)
356 {
357 return make_id(internal_id);
358 }
359
360 std::string cellname(RTLIL::Cell *cell)
361 {
362 return fid(cell->name).c_str();
363 }
364
365 void process_instance(RTLIL::Cell *cell, vector<string> &wire_exprs)
366 {
367 std::string cell_type = fid(cell->type);
368 std::string instanceOf;
369 // If this is a parameterized module, its parent module is encoded in the cell type
370 if (cell->type.begins_with("$paramod"))
371 {
372 std::string::iterator it;
373 for (it = cell_type.begin(); it < cell_type.end(); it++)
374 {
375 switch (*it) {
376 case '\\': /* FALL_THROUGH */
377 case '=': /* FALL_THROUGH */
378 case '\'': /* FALL_THROUGH */
379 case '$': instanceOf.append("_"); break;
380 default: instanceOf.append(1, *it); break;
381 }
382 }
383 }
384 else
385 {
386 instanceOf = cell_type;
387 }
388
389 std::string cell_name = cellname(cell);
390 std::string cell_name_comment;
391 if (cell_name != fid(cell->name))
392 cell_name_comment = " /* " + fid(cell->name) + " */ ";
393 else
394 cell_name_comment = "";
395 // Find the module corresponding to this instance.
396 auto instModule = design->module(cell->type);
397 // If there is no instance for this, just return.
398 if (instModule == NULL)
399 {
400 log_warning("No instance for %s.%s\n", cell_type.c_str(), cell_name.c_str());
401 return;
402 }
403 auto cellFileinfo = getFileinfo(cell->attributes);
404 wire_exprs.push_back(stringf("%s" "inst %s%s of %s %s", indent.c_str(), cell_name.c_str(), cell_name_comment.c_str(), instanceOf.c_str(), cellFileinfo.c_str()));
405
406 for (auto it = cell->connections().begin(); it != cell->connections().end(); ++it) {
407 if (it->second.size() > 0) {
408 const SigSpec &secondSig = it->second;
409 const std::string firstName = cell_name + "." + make_id(it->first);
410 const std::string secondExpr = make_expr(secondSig);
411 // Find the direction for this port.
412 FDirection dir = getPortFDirection(it->first, instModule);
413 std::string sourceExpr, sinkExpr;
414 const SigSpec *sinkSig = nullptr;
415 switch (dir) {
416 case FD_INOUT:
417 log_warning("Instance port connection %s.%s is INOUT; treating as OUT\n", cell_type.c_str(), log_signal(it->second));
418 /* FALLTHRU */
419 case FD_OUT:
420 sourceExpr = firstName;
421 sinkExpr = secondExpr;
422 sinkSig = &secondSig;
423 break;
424 case FD_NODIRECTION:
425 log_warning("Instance port connection %s.%s is NODIRECTION; treating as IN\n", cell_type.c_str(), log_signal(it->second));
426 /* FALLTHRU */
427 case FD_IN:
428 sourceExpr = secondExpr;
429 sinkExpr = firstName;
430 break;
431 default:
432 log_error("Instance port %s.%s unrecognized connection direction 0x%x !\n", cell_type.c_str(), log_signal(it->second), dir);
433 break;
434 }
435 // Check for subfield assignment.
436 std::string bitsString = "bits(";
437 if (sinkExpr.compare(0, bitsString.length(), bitsString) == 0) {
438 if (sinkSig == nullptr)
439 log_error("Unknown subfield %s.%s\n", cell_type.c_str(), sinkExpr.c_str());
440 // Don't generate the assignment here.
441 // Add the source and sink to the "reverse_wire_map" and we'll output the assignment
442 // as part of the coalesced subfield assignments for this wire.
443 register_reverse_wire_map(sourceExpr, *sinkSig);
444 } else {
445 wire_exprs.push_back(stringf("\n%s%s <= %s %s", indent.c_str(), sinkExpr.c_str(), sourceExpr.c_str(), cellFileinfo.c_str()));
446 }
447 }
448 }
449 wire_exprs.push_back(stringf("\n"));
450
451 }
452
453 // Given an expression for a shift amount, and a maximum width,
454 // generate the FIRRTL expression for equivalent dynamic shift taking into account FIRRTL shift semantics.
455 std::string gen_dshl(const string b_expr, const int b_width)
456 {
457 string result = b_expr;
458 if (b_width >= FIRRTL_MAX_DSH_WIDTH_ERROR) {
459 int max_shift_width_bits = FIRRTL_MAX_DSH_WIDTH_ERROR - 1;
460 string max_shift_string = stringf("UInt<%d>(%d)", max_shift_width_bits, (1<<max_shift_width_bits) - 1);
461 // Deal with the difference in semantics between FIRRTL and verilog
462 result = stringf("mux(gt(%s, %s), %s, bits(%s, %d, 0))", b_expr.c_str(), max_shift_string.c_str(), max_shift_string.c_str(), b_expr.c_str(), max_shift_width_bits - 1);
463 }
464 return result;
465 }
466
467 void run()
468 {
469 auto moduleFileinfo = getFileinfo(module->attributes);
470 f << stringf(" module %s: %s\n", make_id(module->name), moduleFileinfo.c_str());
471 vector<string> port_decls, wire_decls, cell_exprs, wire_exprs;
472
473 for (auto wire : module->wires())
474 {
475 const auto wireName = make_id(wire->name);
476 auto wireFileinfo = getFileinfo(wire->attributes);
477
478 // If a wire has initial data, issue a warning since FIRRTL doesn't currently support it.
479 if (wire->attributes.count("\\init")) {
480 log_warning("Initial value (%s) for (%s.%s) not supported\n",
481 wire->attributes.at("\\init").as_string().c_str(),
482 log_id(module), log_id(wire));
483 }
484 if (wire->port_id)
485 {
486 if (wire->port_input && wire->port_output)
487 log_error("Module port %s.%s is inout!\n", log_id(module), log_id(wire));
488 port_decls.push_back(stringf(" %s %s: UInt<%d> %s\n", wire->port_input ? "input" : "output",
489 wireName, wire->width, wireFileinfo.c_str()));
490 }
491 else
492 {
493 wire_decls.push_back(stringf(" wire %s: UInt<%d> %s\n", wireName, wire->width, wireFileinfo.c_str()));
494 }
495 }
496
497 for (auto cell : module->cells())
498 {
499 static Const ndef(0, 0);
500
501 // Is this cell is a module instance?
502 if (cell->type[0] != '$')
503 {
504 process_instance(cell, wire_exprs);
505 continue;
506 }
507 // Not a module instance. Set up cell properties
508 bool extract_y_bits = false; // Assume no extraction of final bits will be required.
509 int a_width = cell->parameters.at("\\A_WIDTH", ndef).as_int(); // The width of "A"
510 int b_width = cell->parameters.at("\\B_WIDTH", ndef).as_int(); // The width of "A"
511 const int y_width = cell->parameters.at("\\Y_WIDTH", ndef).as_int(); // The width of the result
512 const bool a_signed = cell->parameters.at("\\A_SIGNED", ndef).as_bool();
513 const bool b_signed = cell->parameters.at("\\B_SIGNED", ndef).as_bool();
514 bool firrtl_is_signed = a_signed; // The result is signed (subsequent code may change this).
515 int firrtl_width = 0;
516 string primop;
517 bool always_uint = false;
518 string y_id = make_id(cell->name);
519 std::string cellFileinfo = getFileinfo(cell->attributes);
520
521 if (cell->type.in("$not", "$logic_not", "$neg", "$reduce_and", "$reduce_or", "$reduce_xor", "$reduce_bool", "$reduce_xnor"))
522 {
523 string a_expr = make_expr(cell->getPort("\\A"));
524 wire_decls.push_back(stringf(" wire %s: UInt<%d> %s\n", y_id.c_str(), y_width, cellFileinfo.c_str()));
525
526 if (a_signed) {
527 a_expr = "asSInt(" + a_expr + ")";
528 }
529
530 // Don't use the results of logical operations (a single bit) to control padding
531 if (!(cell->type.in("$eq", "$eqx", "$gt", "$ge", "$lt", "$le", "$ne", "$nex", "$reduce_bool", "$logic_not") && y_width == 1) ) {
532 a_expr = stringf("pad(%s, %d)", a_expr.c_str(), y_width);
533 }
534
535 // Assume the FIRRTL width is a single bit.
536 firrtl_width = 1;
537 if (cell->type == "$not") primop = "not";
538 else if (cell->type == "$neg") {
539 primop = "neg";
540 firrtl_is_signed = true; // Result of "neg" is signed (an SInt).
541 firrtl_width = a_width;
542 } else if (cell->type == "$logic_not") {
543 primop = "eq";
544 a_expr = stringf("%s, UInt(0)", a_expr.c_str());
545 }
546 else if (cell->type == "$reduce_and") primop = "andr";
547 else if (cell->type == "$reduce_or") primop = "orr";
548 else if (cell->type == "$reduce_xor") primop = "xorr";
549 else if (cell->type == "$reduce_xnor") {
550 primop = "not";
551 a_expr = stringf("xorr(%s)", a_expr.c_str());
552 }
553 else if (cell->type == "$reduce_bool") {
554 primop = "neq";
555 // Use the sign of the a_expr and its width as the type (UInt/SInt) and width of the comparand.
556 a_expr = stringf("%s, %cInt<%d>(0)", a_expr.c_str(), a_signed ? 'S' : 'U', a_width);
557 }
558
559 string expr = stringf("%s(%s)", primop.c_str(), a_expr.c_str());
560
561 if ((firrtl_is_signed && !always_uint))
562 expr = stringf("asUInt(%s)", expr.c_str());
563
564 cell_exprs.push_back(stringf(" %s <= %s %s\n", y_id.c_str(), expr.c_str(), cellFileinfo.c_str()));
565 register_reverse_wire_map(y_id, cell->getPort("\\Y"));
566
567 continue;
568 }
569 if (cell->type.in("$add", "$sub", "$mul", "$div", "$mod", "$xor", "$xnor", "$and", "$or", "$eq", "$eqx",
570 "$gt", "$ge", "$lt", "$le", "$ne", "$nex", "$shr", "$sshr", "$sshl", "$shl",
571 "$logic_and", "$logic_or", "$pow"))
572 {
573 string a_expr = make_expr(cell->getPort("\\A"));
574 string b_expr = make_expr(cell->getPort("\\B"));
575 std::string cellFileinfo = getFileinfo(cell->attributes);
576 wire_decls.push_back(stringf(" wire %s: UInt<%d> %s\n", y_id.c_str(), y_width, cellFileinfo.c_str()));
577
578 if (a_signed) {
579 a_expr = "asSInt(" + a_expr + ")";
580 // Expand the "A" operand to the result width
581 if (a_width < y_width) {
582 a_expr = stringf("pad(%s, %d)", a_expr.c_str(), y_width);
583 a_width = y_width;
584 }
585 }
586 // Shift amount is always unsigned, and needn't be padded to result width,
587 // otherwise, we need to cast the b_expr appropriately
588 if (b_signed && !cell->type.in("$shr", "$sshr", "$shl", "$sshl", "$pow")) {
589 b_expr = "asSInt(" + b_expr + ")";
590 // Expand the "B" operand to the result width
591 if (b_width < y_width) {
592 b_expr = stringf("pad(%s, %d)", b_expr.c_str(), y_width);
593 b_width = y_width;
594 }
595 }
596
597 // For the arithmetic ops, expand operand widths to result widths befor performing the operation.
598 // This corresponds (according to iverilog) to what verilog compilers implement.
599 if (cell->type.in("$add", "$sub", "$mul", "$div", "$mod", "$xor", "$xnor", "$and", "$or"))
600 {
601 if (a_width < y_width) {
602 a_expr = stringf("pad(%s, %d)", a_expr.c_str(), y_width);
603 a_width = y_width;
604 }
605 if (b_width < y_width) {
606 b_expr = stringf("pad(%s, %d)", b_expr.c_str(), y_width);
607 b_width = y_width;
608 }
609 }
610 // Assume the FIRRTL width is the width of "A"
611 firrtl_width = a_width;
612 auto a_sig = cell->getPort("\\A");
613
614 if (cell->type == "$add") {
615 primop = "add";
616 firrtl_is_signed = a_signed | b_signed;
617 firrtl_width = max(a_width, b_width);
618 } else if (cell->type == "$sub") {
619 primop = "sub";
620 firrtl_is_signed = true;
621 int a_widthInc = (!a_signed && b_signed) ? 2 : (a_signed && !b_signed) ? 1 : 0;
622 int b_widthInc = (a_signed && !b_signed) ? 2 : (!a_signed && b_signed) ? 1 : 0;
623 firrtl_width = max(a_width + a_widthInc, b_width + b_widthInc);
624 } else if (cell->type == "$mul") {
625 primop = "mul";
626 firrtl_is_signed = a_signed | b_signed;
627 firrtl_width = a_width + b_width;
628 } else if (cell->type == "$div") {
629 primop = "div";
630 firrtl_is_signed = a_signed | b_signed;
631 firrtl_width = a_width;
632 } else if (cell->type == "$mod") {
633 primop = "rem";
634 firrtl_width = min(a_width, b_width);
635 } else if (cell->type == "$and") {
636 primop = "and";
637 always_uint = true;
638 firrtl_width = max(a_width, b_width);
639 }
640 else if (cell->type == "$or" ) {
641 primop = "or";
642 always_uint = true;
643 firrtl_width = max(a_width, b_width);
644 }
645 else if (cell->type == "$xor") {
646 primop = "xor";
647 always_uint = true;
648 firrtl_width = max(a_width, b_width);
649 }
650 else if (cell->type == "$xnor") {
651 primop = "xnor";
652 always_uint = true;
653 firrtl_width = max(a_width, b_width);
654 }
655 else if ((cell->type == "$eq") | (cell->type == "$eqx")) {
656 primop = "eq";
657 always_uint = true;
658 firrtl_width = 1;
659 }
660 else if ((cell->type == "$ne") | (cell->type == "$nex")) {
661 primop = "neq";
662 always_uint = true;
663 firrtl_width = 1;
664 }
665 else if (cell->type == "$gt") {
666 primop = "gt";
667 always_uint = true;
668 firrtl_width = 1;
669 }
670 else if (cell->type == "$ge") {
671 primop = "geq";
672 always_uint = true;
673 firrtl_width = 1;
674 }
675 else if (cell->type == "$lt") {
676 primop = "lt";
677 always_uint = true;
678 firrtl_width = 1;
679 }
680 else if (cell->type == "$le") {
681 primop = "leq";
682 always_uint = true;
683 firrtl_width = 1;
684 }
685 else if ((cell->type == "$shl") | (cell->type == "$sshl")) {
686 // FIRRTL will widen the result (y) by the amount of the shift.
687 // We'll need to offset this by extracting the un-widened portion as Verilog would do.
688 extract_y_bits = true;
689 // Is the shift amount constant?
690 auto b_sig = cell->getPort("\\B");
691 if (b_sig.is_fully_const()) {
692 primop = "shl";
693 int shift_amount = b_sig.as_int();
694 b_expr = std::to_string(shift_amount);
695 firrtl_width = a_width + shift_amount;
696 } else {
697 primop = "dshl";
698 // Convert from FIRRTL left shift semantics.
699 b_expr = gen_dshl(b_expr, b_width);
700 firrtl_width = a_width + (1 << b_width) - 1;
701 }
702 }
703 else if ((cell->type == "$shr") | (cell->type == "$sshr")) {
704 // We don't need to extract a specific range of bits.
705 extract_y_bits = false;
706 // Is the shift amount constant?
707 auto b_sig = cell->getPort("\\B");
708 if (b_sig.is_fully_const()) {
709 primop = "shr";
710 int shift_amount = b_sig.as_int();
711 b_expr = std::to_string(shift_amount);
712 firrtl_width = max(1, a_width - shift_amount);
713 } else {
714 primop = "dshr";
715 firrtl_width = a_width;
716 }
717 // We'll need to do some special fixups if the source (and thus result) is signed.
718 if (firrtl_is_signed) {
719 // If this is a "logical" shift right, pretend the source is unsigned.
720 if (cell->type == "$shr") {
721 a_expr = "asUInt(" + a_expr + ")";
722 }
723 }
724 }
725 else if ((cell->type == "$logic_and")) {
726 primop = "and";
727 a_expr = "neq(" + a_expr + ", UInt(0))";
728 b_expr = "neq(" + b_expr + ", UInt(0))";
729 always_uint = true;
730 firrtl_width = 1;
731 }
732 else if ((cell->type == "$logic_or")) {
733 primop = "or";
734 a_expr = "neq(" + a_expr + ", UInt(0))";
735 b_expr = "neq(" + b_expr + ", UInt(0))";
736 always_uint = true;
737 firrtl_width = 1;
738 }
739 else if ((cell->type == "$pow")) {
740 if (a_sig.is_fully_const() && a_sig.as_int() == 2) {
741 // We'll convert this to a shift. To simplify things, change the a_expr to "1"
742 // so we can use b_expr directly as a shift amount.
743 // Only support 2 ** N (i.e., shift left)
744 // FIRRTL will widen the result (y) by the amount of the shift.
745 // We'll need to offset this by extracting the un-widened portion as Verilog would do.
746 a_expr = firrtl_is_signed ? "SInt(1)" : "UInt(1)";
747 extract_y_bits = true;
748 // Is the shift amount constant?
749 auto b_sig = cell->getPort("\\B");
750 if (b_sig.is_fully_const()) {
751 primop = "shl";
752 int shiftAmount = b_sig.as_int();
753 if (shiftAmount < 0) {
754 log_error("Negative power exponent - %d: %s.%s\n", shiftAmount, log_id(module), log_id(cell));
755 }
756 b_expr = std::to_string(shiftAmount);
757 firrtl_width = a_width + shiftAmount;
758 } else {
759 primop = "dshl";
760 // Convert from FIRRTL left shift semantics.
761 b_expr = gen_dshl(b_expr, b_width);
762 firrtl_width = a_width + (1 << b_width) - 1;
763 }
764 } else {
765 log_error("Non power 2: %s.%s\n", log_id(module), log_id(cell));
766 }
767 }
768
769 if (!cell->parameters.at("\\B_SIGNED").as_bool()) {
770 b_expr = "asUInt(" + b_expr + ")";
771 }
772
773 string expr;
774 // Deal with $xnor == ~^ (not xor)
775 if (primop == "xnor") {
776 expr = stringf("not(xor(%s, %s))", a_expr.c_str(), b_expr.c_str());
777 } else {
778 expr = stringf("%s(%s, %s)", primop.c_str(), a_expr.c_str(), b_expr.c_str());
779 }
780
781 // Deal with FIRRTL's "shift widens" semantics, or the need to widen the FIRRTL result.
782 // If the operation is signed, the FIRRTL width will be 1 one bit larger.
783 if (extract_y_bits) {
784 expr = stringf("bits(%s, %d, 0)", expr.c_str(), y_width - 1);
785 } else if (firrtl_is_signed && (firrtl_width + 1) < y_width) {
786 expr = stringf("pad(%s, %d)", expr.c_str(), y_width);
787 }
788
789 if ((firrtl_is_signed && !always_uint))
790 expr = stringf("asUInt(%s)", expr.c_str());
791
792 cell_exprs.push_back(stringf(" %s <= %s %s\n", y_id.c_str(), expr.c_str(), cellFileinfo.c_str()));
793 register_reverse_wire_map(y_id, cell->getPort("\\Y"));
794
795 continue;
796 }
797
798 if (cell->type.in("$mux"))
799 {
800 int width = cell->parameters.at("\\WIDTH").as_int();
801 string a_expr = make_expr(cell->getPort("\\A"));
802 string b_expr = make_expr(cell->getPort("\\B"));
803 string s_expr = make_expr(cell->getPort("\\S"));
804 wire_decls.push_back(stringf(" wire %s: UInt<%d> %s\n", y_id.c_str(), width, cellFileinfo.c_str()));
805
806 string expr = stringf("mux(%s, %s, %s)", s_expr.c_str(), b_expr.c_str(), a_expr.c_str());
807
808 cell_exprs.push_back(stringf(" %s <= %s %s\n", y_id.c_str(), expr.c_str(), cellFileinfo.c_str()));
809 register_reverse_wire_map(y_id, cell->getPort("\\Y"));
810
811 continue;
812 }
813
814 if (cell->type.in("$mem"))
815 {
816 string mem_id = make_id(cell->name);
817 int abits = cell->parameters.at("\\ABITS").as_int();
818 int width = cell->parameters.at("\\WIDTH").as_int();
819 int size = cell->parameters.at("\\SIZE").as_int();
820 memory m(cell, mem_id, abits, size, width);
821 int rd_ports = cell->parameters.at("\\RD_PORTS").as_int();
822 int wr_ports = cell->parameters.at("\\WR_PORTS").as_int();
823
824 Const initdata = cell->parameters.at("\\INIT");
825 for (State bit : initdata.bits)
826 if (bit != State::Sx)
827 log_error("Memory with initialization data: %s.%s\n", log_id(module), log_id(cell));
828
829 Const rd_clk_enable = cell->parameters.at("\\RD_CLK_ENABLE");
830 Const wr_clk_enable = cell->parameters.at("\\WR_CLK_ENABLE");
831 Const wr_clk_polarity = cell->parameters.at("\\WR_CLK_POLARITY");
832
833 int offset = cell->parameters.at("\\OFFSET").as_int();
834 if (offset != 0)
835 log_error("Memory with nonzero offset: %s.%s\n", log_id(module), log_id(cell));
836
837 for (int i = 0; i < rd_ports; i++)
838 {
839 if (rd_clk_enable[i] != State::S0)
840 log_error("Clocked read port %d on memory %s.%s.\n", i, log_id(module), log_id(cell));
841
842 SigSpec addr_sig = cell->getPort("\\RD_ADDR").extract(i*abits, abits);
843 SigSpec data_sig = cell->getPort("\\RD_DATA").extract(i*width, width);
844 string addr_expr = make_expr(addr_sig);
845 string name(stringf("%s.r%d", m.name.c_str(), i));
846 bool clk_enable = false;
847 bool clk_parity = true;
848 bool transparency = false;
849 SigSpec ena_sig = RTLIL::SigSpec(RTLIL::State::S1, 1);
850 SigSpec clk_sig = RTLIL::SigSpec(RTLIL::State::S0, 1);
851 read_port rp(name, clk_enable, clk_parity, transparency, clk_sig, ena_sig, addr_sig);
852 m.add_memory_read_port(rp);
853 cell_exprs.push_back(rp.gen_read(indent.c_str()));
854 register_reverse_wire_map(stringf("%s.data", name.c_str()), data_sig);
855 }
856
857 for (int i = 0; i < wr_ports; i++)
858 {
859 if (wr_clk_enable[i] != State::S1)
860 log_error("Unclocked write port %d on memory %s.%s.\n", i, log_id(module), log_id(cell));
861
862 if (wr_clk_polarity[i] != State::S1)
863 log_error("Negedge write port %d on memory %s.%s.\n", i, log_id(module), log_id(cell));
864
865 string name(stringf("%s.w%d", m.name.c_str(), i));
866 bool clk_enable = true;
867 bool clk_parity = true;
868 bool transparency = false;
869 SigSpec addr_sig =cell->getPort("\\WR_ADDR").extract(i*abits, abits);
870 string addr_expr = make_expr(addr_sig);
871 SigSpec data_sig =cell->getPort("\\WR_DATA").extract(i*width, width);
872 string data_expr = make_expr(data_sig);
873 SigSpec clk_sig = cell->getPort("\\WR_CLK").extract(i);
874 string clk_expr = make_expr(clk_sig);
875
876 SigSpec wen_sig = cell->getPort("\\WR_EN").extract(i*width, width);
877 string wen_expr = make_expr(wen_sig[0]);
878
879 for (int i = 1; i < GetSize(wen_sig); i++)
880 if (wen_sig[0] != wen_sig[i])
881 log_error("Complex write enable on port %d on memory %s.%s.\n", i, log_id(module), log_id(cell));
882
883 SigSpec mask_sig = RTLIL::SigSpec(RTLIL::State::S1, 1);
884 write_port wp(name, clk_enable, clk_parity, transparency, clk_sig, wen_sig[0], addr_sig, mask_sig);
885 m.add_memory_write_port(wp);
886 cell_exprs.push_back(stringf("%s%s.data <= %s\n", indent.c_str(), name.c_str(), data_expr.c_str()));
887 cell_exprs.push_back(wp.gen_write(indent.c_str()));
888 }
889 register_memory(m);
890 continue;
891 }
892
893 if (cell->type.in("$memwr", "$memrd", "$meminit"))
894 {
895 std::string cell_type = fid(cell->type);
896 std::string mem_id = make_id(cell->parameters["\\MEMID"].decode_string());
897 int abits = cell->parameters.at("\\ABITS").as_int();
898 int width = cell->parameters.at("\\WIDTH").as_int();
899 memory *mp = nullptr;
900 if (cell->type == "$meminit" ) {
901 log_error("$meminit (%s.%s.%s) currently unsupported\n", log_id(module), log_id(cell), mem_id.c_str());
902 } else {
903 // It's a $memwr or $memrd. Remember the read/write port parameters for the eventual FIRRTL memory definition.
904 auto addrSig = cell->getPort("\\ADDR");
905 auto dataSig = cell->getPort("\\DATA");
906 auto enableSig = cell->getPort("\\EN");
907 auto clockSig = cell->getPort("\\CLK");
908 Const clk_enable = cell->parameters.at("\\CLK_ENABLE");
909 Const clk_polarity = cell->parameters.at("\\CLK_POLARITY");
910
911 // Do we already have an entry for this memory?
912 if (memories.count(mem_id) == 0) {
913 memory m(cell, mem_id, abits, 0, width);
914 register_memory(m);
915 }
916 mp = &memories.at(mem_id);
917 int portNum = 0;
918 bool transparency = false;
919 string data_expr = make_expr(dataSig);
920 if (cell->type.in("$memwr")) {
921 portNum = (int) mp->write_ports.size();
922 write_port wp(stringf("%s.w%d", mem_id.c_str(), portNum), clk_enable.as_bool(), clk_polarity.as_bool(), transparency, clockSig, enableSig, addrSig, dataSig);
923 mp->add_memory_write_port(wp);
924 cell_exprs.push_back(stringf("%s%s.data <= %s\n", indent.c_str(), wp.name.c_str(), data_expr.c_str()));
925 cell_exprs.push_back(wp.gen_write(indent.c_str()));
926 } else if (cell->type.in("$memrd")) {
927 portNum = (int) mp->read_ports.size();
928 read_port rp(stringf("%s.r%d", mem_id.c_str(), portNum), clk_enable.as_bool(), clk_polarity.as_bool(), transparency, clockSig, enableSig, addrSig);
929 mp->add_memory_read_port(rp);
930 cell_exprs.push_back(rp.gen_read(indent.c_str()));
931 register_reverse_wire_map(stringf("%s.data", rp.name.c_str()), dataSig);
932 }
933 }
934 continue;
935 }
936
937 if (cell->type.in("$dff"))
938 {
939 bool clkpol = cell->parameters.at("\\CLK_POLARITY").as_bool();
940 if (clkpol == false)
941 log_error("Negative edge clock on FF %s.%s.\n", log_id(module), log_id(cell));
942
943 int width = cell->parameters.at("\\WIDTH").as_int();
944 string expr = make_expr(cell->getPort("\\D"));
945 string clk_expr = "asClock(" + make_expr(cell->getPort("\\CLK")) + ")";
946
947 wire_decls.push_back(stringf(" reg %s: UInt<%d>, %s %s\n", y_id.c_str(), width, clk_expr.c_str(), cellFileinfo.c_str()));
948
949 cell_exprs.push_back(stringf(" %s <= %s %s\n", y_id.c_str(), expr.c_str(), cellFileinfo.c_str()));
950 register_reverse_wire_map(y_id, cell->getPort("\\Q"));
951
952 continue;
953 }
954
955 // This may be a parameterized module - paramod.
956 if (cell->type.begins_with("$paramod"))
957 {
958 process_instance(cell, wire_exprs);
959 continue;
960 }
961 if (cell->type == "$shiftx") {
962 // assign y = a[b +: y_width];
963 // We'll extract the correct bits as part of the primop.
964
965 string a_expr = make_expr(cell->getPort("\\A"));
966 // Get the initial bit selector
967 string b_expr = make_expr(cell->getPort("\\B"));
968 wire_decls.push_back(stringf(" wire %s: UInt<%d>\n", y_id.c_str(), y_width));
969
970 if (cell->getParam("\\B_SIGNED").as_bool()) {
971 // Use validif to constrain the selection (test the sign bit)
972 auto b_string = b_expr.c_str();
973 int b_sign = cell->parameters.at("\\B_WIDTH").as_int() - 1;
974 b_expr = stringf("validif(not(bits(%s, %d, %d)), %s)", b_string, b_sign, b_sign, b_string);
975 }
976 string expr = stringf("dshr(%s, %s)", a_expr.c_str(), b_expr.c_str());
977
978 cell_exprs.push_back(stringf(" %s <= %s\n", y_id.c_str(), expr.c_str()));
979 register_reverse_wire_map(y_id, cell->getPort("\\Y"));
980 continue;
981 }
982 if (cell->type == "$shift") {
983 // assign y = a >> b;
984 // where b may be negative
985
986 string a_expr = make_expr(cell->getPort("\\A"));
987 string b_expr = make_expr(cell->getPort("\\B"));
988 auto b_string = b_expr.c_str();
989 string expr;
990 wire_decls.push_back(stringf(" wire %s: UInt<%d>\n", y_id.c_str(), y_width));
991
992 if (cell->getParam("\\B_SIGNED").as_bool()) {
993 // We generate a left or right shift based on the sign of b.
994 std::string dshl = stringf("bits(dshl(%s, %s), 0, %d)", a_expr.c_str(), gen_dshl(b_expr, b_width).c_str(), y_width);
995 std::string dshr = stringf("dshr(%s, %s)", a_expr.c_str(), b_string);
996 expr = stringf("mux(%s < 0, %s, %s)",
997 b_string,
998 dshl.c_str(),
999 dshr.c_str()
1000 );
1001 } else {
1002 expr = stringf("dshr(%s, %s)", a_expr.c_str(), b_string);
1003 }
1004 cell_exprs.push_back(stringf(" %s <= %s\n", y_id.c_str(), expr.c_str()));
1005 register_reverse_wire_map(y_id, cell->getPort("\\Y"));
1006 continue;
1007 }
1008 if (cell->type == "$pos") {
1009 // assign y = a;
1010 // printCell(cell);
1011 string a_expr = make_expr(cell->getPort("\\A"));
1012 // Verilog appears to treat the result as signed, so if the result is wider than "A",
1013 // we need to pad.
1014 if (a_width < y_width) {
1015 a_expr = stringf("pad(%s, %d)", a_expr.c_str(), y_width);
1016 }
1017 wire_decls.push_back(stringf(" wire %s: UInt<%d>\n", y_id.c_str(), y_width));
1018 cell_exprs.push_back(stringf(" %s <= %s\n", y_id.c_str(), a_expr.c_str()));
1019 register_reverse_wire_map(y_id, cell->getPort("\\Y"));
1020 continue;
1021 }
1022 log_error("Cell type not supported: %s (%s.%s)\n", log_id(cell->type), log_id(module), log_id(cell));
1023 }
1024
1025 for (auto conn : module->connections())
1026 {
1027 string y_id = next_id();
1028 int y_width = GetSize(conn.first);
1029 string expr = make_expr(conn.second);
1030
1031 wire_decls.push_back(stringf(" wire %s: UInt<%d>\n", y_id.c_str(), y_width));
1032 cell_exprs.push_back(stringf(" %s <= %s\n", y_id.c_str(), expr.c_str()));
1033 register_reverse_wire_map(y_id, conn.first);
1034 }
1035
1036 for (auto wire : module->wires())
1037 {
1038 string expr;
1039 std::string wireFileinfo = getFileinfo(wire->attributes);
1040
1041 if (wire->port_input)
1042 continue;
1043
1044 int cursor = 0;
1045 bool is_valid = false;
1046 bool make_unconn_id = false;
1047
1048 while (cursor < wire->width)
1049 {
1050 int chunk_width = 1;
1051 string new_expr;
1052
1053 SigBit start_bit(wire, cursor);
1054
1055 if (reverse_wire_map.count(start_bit))
1056 {
1057 pair<string, int> start_map = reverse_wire_map.at(start_bit);
1058
1059 while (cursor+chunk_width < wire->width)
1060 {
1061 SigBit stop_bit(wire, cursor+chunk_width);
1062
1063 if (reverse_wire_map.count(stop_bit) == 0)
1064 break;
1065
1066 pair<string, int> stop_map = reverse_wire_map.at(stop_bit);
1067 stop_map.second -= chunk_width;
1068
1069 if (start_map != stop_map)
1070 break;
1071
1072 chunk_width++;
1073 }
1074
1075 new_expr = stringf("bits(%s, %d, %d)", start_map.first.c_str(),
1076 start_map.second + chunk_width - 1, start_map.second);
1077 is_valid = true;
1078 }
1079 else
1080 {
1081 if (unconn_id.empty()) {
1082 unconn_id = next_id();
1083 make_unconn_id = true;
1084 }
1085 new_expr = unconn_id;
1086 }
1087
1088 if (expr.empty())
1089 expr = new_expr;
1090 else
1091 expr = "cat(" + new_expr + ", " + expr + ")";
1092
1093 cursor += chunk_width;
1094 }
1095
1096 if (is_valid) {
1097 if (make_unconn_id) {
1098 wire_decls.push_back(stringf(" wire %s: UInt<1> %s\n", unconn_id.c_str(), wireFileinfo.c_str()));
1099 // `invalid` is a firrtl construction for simulation so we will not
1100 // tag it with a @[fileinfo] tag as it doesn't directly correspond to
1101 // a specific line of verilog code.
1102 wire_decls.push_back(stringf(" %s is invalid\n", unconn_id.c_str()));
1103 }
1104 wire_exprs.push_back(stringf(" %s <= %s %s\n", make_id(wire->name), expr.c_str(), wireFileinfo.c_str()));
1105 } else {
1106 if (make_unconn_id) {
1107 unconn_id.clear();
1108 }
1109 // `invalid` is a firrtl construction for simulation so we will not
1110 // tag it with a @[fileinfo] tag as it doesn't directly correspond to
1111 // a specific line of verilog code.
1112 wire_decls.push_back(stringf(" %s is invalid\n", make_id(wire->name)));
1113 }
1114 }
1115
1116 for (auto str : port_decls)
1117 f << str;
1118
1119 f << stringf("\n");
1120
1121 for (auto str : wire_decls)
1122 f << str;
1123
1124 f << stringf("\n");
1125
1126 // If we have any memory definitions, output them.
1127 for (auto kv : memories) {
1128 memory &m = kv.second;
1129 f << stringf(" mem %s:\n", m.name.c_str());
1130 f << stringf(" data-type => UInt<%d>\n", m.width);
1131 f << stringf(" depth => %d\n", m.size);
1132 for (int i = 0; i < (int) m.read_ports.size(); i += 1) {
1133 f << stringf(" reader => r%d\n", i);
1134 }
1135 for (int i = 0; i < (int) m.write_ports.size(); i += 1) {
1136 f << stringf(" writer => w%d\n", i);
1137 }
1138 f << stringf(" read-latency => %d\n", m.read_latency);
1139 f << stringf(" write-latency => %d\n", m.write_latency);
1140 f << stringf(" read-under-write => undefined\n");
1141 }
1142 f << stringf("\n");
1143
1144 for (auto str : cell_exprs)
1145 f << str;
1146
1147 f << stringf("\n");
1148
1149 for (auto str : wire_exprs)
1150 f << str;
1151 }
1152 };
1153
1154 struct FirrtlBackend : public Backend {
1155 FirrtlBackend() : Backend("firrtl", "write design to a FIRRTL file") { }
1156 void help() YS_OVERRIDE
1157 {
1158 // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
1159 log("\n");
1160 log(" write_firrtl [options] [filename]\n");
1161 log("\n");
1162 log("Write a FIRRTL netlist of the current design.\n");
1163 log("The following commands are executed by this command:\n");
1164 log(" pmuxtree\n");
1165 log("\n");
1166 }
1167 void execute(std::ostream *&f, std::string filename, std::vector<std::string> args, RTLIL::Design *design) YS_OVERRIDE
1168 {
1169 size_t argidx = args.size(); // We aren't expecting any arguments.
1170
1171 // If we weren't explicitly passed a filename, use the last argument (if it isn't a flag).
1172 if (filename == "") {
1173 if (argidx > 0 && args[argidx - 1][0] != '-') {
1174 // extra_args and friends need to see this argument.
1175 argidx -= 1;
1176 filename = args[argidx];
1177 }
1178 }
1179 extra_args(f, filename, args, argidx);
1180
1181 if (!design->full_selection())
1182 log_cmd_error("This command only operates on fully selected designs!\n");
1183
1184 log_header(design, "Executing FIRRTL backend.\n");
1185 log_push();
1186
1187 Pass::call(design, stringf("pmuxtree"));
1188
1189 namecache.clear();
1190 autoid_counter = 0;
1191
1192 // Get the top module, or a reasonable facsimile - we need something for the circuit name.
1193 Module *top = design->top_module();
1194 Module *last = nullptr;
1195 // Generate module and wire names.
1196 for (auto module : design->modules()) {
1197 make_id(module->name);
1198 last = module;
1199 if (top == nullptr && module->get_bool_attribute("\\top")) {
1200 top = module;
1201 }
1202 for (auto wire : module->wires())
1203 if (wire->port_id)
1204 make_id(wire->name);
1205 }
1206
1207 if (top == nullptr)
1208 top = last;
1209
1210 auto circuitFileinfo = getFileinfo(top->attributes);
1211 *f << stringf("circuit %s: %s\n", make_id(top->name), circuitFileinfo.c_str());
1212
1213 for (auto module : design->modules())
1214 {
1215 FirrtlWorker worker(module, *f, design);
1216 worker.run();
1217 }
1218
1219 namecache.clear();
1220 autoid_counter = 0;
1221 }
1222 } FirrtlBackend;
1223
1224 PRIVATE_NAMESPACE_END