remote_gdb.cc:
[gem5.git] / base / remote_gdb.cc
1 /*
2 * Copyright (c) 2003 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /*
30 * Copyright (c) 1990, 1993
31 * The Regents of the University of California. All rights reserved.
32 *
33 * This software was developed by the Computer Systems Engineering group
34 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
35 * contributed to Berkeley.
36 *
37 * All advertising materials mentioning features or use of this software
38 * must display the following acknowledgement:
39 * This product includes software developed by the University of
40 * California, Lawrence Berkeley Laboratories.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 * must display the following acknowledgement:
52 * This product includes software developed by the University of
53 * California, Berkeley and its contributors.
54 * 4. Neither the name of the University nor the names of its contributors
55 * may be used to endorse or promote products derived from this software
56 * without specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 * SUCH DAMAGE.
69 *
70 * @(#)kgdb_stub.c 8.4 (Berkeley) 1/12/94
71 */
72
73 /*-
74 * Copyright (c) 2001 The NetBSD Foundation, Inc.
75 * All rights reserved.
76 *
77 * This code is derived from software contributed to The NetBSD Foundation
78 * by Jason R. Thorpe.
79 *
80 * Redistribution and use in source and binary forms, with or without
81 * modification, are permitted provided that the following conditions
82 * are met:
83 * 1. Redistributions of source code must retain the above copyright
84 * notice, this list of conditions and the following disclaimer.
85 * 2. Redistributions in binary form must reproduce the above copyright
86 * notice, this list of conditions and the following disclaimer in the
87 * documentation and/or other materials provided with the distribution.
88 * 3. All advertising materials mentioning features or use of this software
89 * must display the following acknowledgement:
90 * This product includes software developed by the NetBSD
91 * Foundation, Inc. and its contributors.
92 * 4. Neither the name of The NetBSD Foundation nor the names of its
93 * contributors may be used to endorse or promote products derived
94 * from this software without specific prior written permission.
95 *
96 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
97 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
98 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
99 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
100 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
101 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
102 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
103 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
104 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
105 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
106 * POSSIBILITY OF SUCH DAMAGE.
107 */
108
109 /*
110 * $NetBSD: kgdb_stub.c,v 1.8 2001/07/07 22:58:00 wdk Exp $
111 *
112 * Taken from NetBSD
113 *
114 * "Stub" to allow remote cpu to debug over a serial line using gdb.
115 */
116
117 #include <sys/signal.h>
118
119 #include <unistd.h>
120
121 #include <cstdio>
122 #include <string>
123
124 #include "cpu/exec_context.hh"
125 #include "base/intmath.hh"
126 #include "base/kgdb.h"
127
128 #include "mem/functional_mem/physical_memory.hh"
129 #include "base/remote_gdb.hh"
130 #include "base/socket.hh"
131 #include "base/trace.hh"
132 #include "targetarch/vtophys.hh"
133 #include "sim/system.hh"
134 #include "cpu/static_inst.hh"
135
136 using namespace std;
137
138 #ifdef DEBUG
139 RemoteGDB *theDebugger = NULL;
140
141 void
142 debugger()
143 {
144 if (theDebugger)
145 theDebugger->trap(ALPHA_KENTRY_IF);
146 }
147 #endif
148
149 ///////////////////////////////////////////////////////////
150 //
151 //
152 //
153
154 GDBListener::Event::Event(GDBListener *l, int fd, int e)
155 : PollEvent(fd, e), listener(l)
156 {}
157
158 void
159 GDBListener::Event::process(int revent)
160 {
161 listener->accept();
162 }
163
164 GDBListener::GDBListener(RemoteGDB *g, int p)
165 : event(NULL), gdb(g), port(p)
166 {}
167
168 GDBListener::~GDBListener()
169 {
170 if (event)
171 delete event;
172 }
173
174 void
175 GDBListener::listen()
176 {
177 while (!listener.listen(port, true)) {
178 DPRINTF(RGDB, "GDBListener(listen): Can't bind port %d\n", port);
179 port++;
180 }
181
182 cerr << "Listening for remote gdb connection on port " << port << endl;
183 event = new Event(this, listener.getfd(), POLLIN);
184 pollQueue.schedule(event);
185 }
186
187 void
188 GDBListener::accept()
189 {
190 if (!listener.islistening())
191 panic("GDBListener(accept): cannot accept a connection if we're not listening!");
192
193 int sfd = listener.accept(true);
194
195 if (sfd != -1) {
196 if (gdb->isattached())
197 close(sfd);
198 else
199 gdb->attach(sfd);
200 }
201 }
202
203 ///////////////////////////////////////////////////////////
204 //
205 //
206 //
207 int digit2i(char);
208 char i2digit(int);
209 void mem2hex(void *, const void *, int);
210 const char *hex2mem(void *, const char *, int);
211 Addr hex2i(const char **);
212
213 RemoteGDB::Event::Event(RemoteGDB *g, int fd, int e)
214 : PollEvent(fd, e), gdb(g)
215 {}
216
217 void
218 RemoteGDB::Event::process(int revent)
219 { gdb->trap(ALPHA_KENTRY_IF); }
220
221 RemoteGDB::RemoteGDB(System *_system, ExecContext *c)
222 : event(NULL), fd(-1), active(false), attached(false),
223 system(_system), pmem(_system->physmem), context(c)
224 {
225 memset(gdbregs, 0, sizeof(gdbregs));
226 }
227
228 RemoteGDB::~RemoteGDB()
229 {
230 if (event)
231 delete event;
232 }
233
234 bool
235 RemoteGDB::isattached()
236 { return attached; }
237
238 void
239 RemoteGDB::attach(int f)
240 {
241 fd = f;
242
243 event = new Event(this, fd, POLLIN);
244 pollQueue.schedule(event);
245
246 attached = true;
247 DPRINTFN("remote gdb attached\n");
248 #ifdef DEBUG
249 theDebugger = this;
250 #endif
251 }
252
253 void
254 RemoteGDB::detach()
255 {
256 attached = false;
257 close(fd);
258 fd = -1;
259
260 pollQueue.remove(event);
261 DPRINTFN("remote gdb detached\n");
262 }
263
264 const char *
265 gdb_command(char cmd)
266 {
267 switch (cmd) {
268 case KGDB_SIGNAL: return "KGDB_SIGNAL";
269 case KGDB_SET_BAUD: return "KGDB_SET_BAUD";
270 case KGDB_SET_BREAK: return "KGDB_SET_BREAK";
271 case KGDB_CONT: return "KGDB_CONT";
272 case KGDB_ASYNC_CONT: return "KGDB_ASYNC_CONT";
273 case KGDB_DEBUG: return "KGDB_DEBUG";
274 case KGDB_DETACH: return "KGDB_DETACH";
275 case KGDB_REG_R: return "KGDB_REG_R";
276 case KGDB_REG_W: return "KGDB_REG_W";
277 case KGDB_SET_THREAD: return "KGDB_SET_THREAD";
278 case KGDB_CYCLE_STEP: return "KGDB_CYCLE_STEP";
279 case KGDB_SIG_CYCLE_STEP: return "KGDB_SIG_CYCLE_STEP";
280 case KGDB_KILL: return "KGDB_KILL";
281 case KGDB_MEM_W: return "KGDB_MEM_W";
282 case KGDB_MEM_R: return "KGDB_MEM_R";
283 case KGDB_SET_REG: return "KGDB_SET_REG";
284 case KGDB_READ_REG: return "KGDB_READ_REG";
285 case KGDB_QUERY_VAR: return "KGDB_QUERY_VAR";
286 case KGDB_SET_VAR: return "KGDB_SET_VAR";
287 case KGDB_RESET: return "KGDB_RESET";
288 case KGDB_STEP: return "KGDB_STEP";
289 case KGDB_ASYNC_STEP: return "KGDB_ASYNC_STEP";
290 case KGDB_THREAD_ALIVE: return "KGDB_THREAD_ALIVE";
291 case KGDB_TARGET_EXIT: return "KGDB_TARGET_EXIT";
292 case KGDB_BINARY_DLOAD: return "KGDB_BINARY_DLOAD";
293 case KGDB_CLR_HW_BKPT: return "KGDB_CLR_HW_BKPT";
294 case KGDB_SET_HW_BKPT: return "KGDB_SET_HW_BKPT";
295 case KGDB_START: return "KGDB_START";
296 case KGDB_END: return "KGDB_END";
297 case KGDB_GOODP: return "KGDB_GOODP";
298 case KGDB_BADP: return "KGDB_BADP";
299 default: return "KGDB_UNKNOWN";
300 }
301 }
302
303 ///////////////////////////////////////////////////////////
304 // RemoteGDB::acc
305 //
306 // Determine if the mapping at va..(va+len) is valid.
307 //
308 bool
309 RemoteGDB::acc(Addr va, size_t len)
310 {
311 Addr last_va;
312 Addr pte;
313
314 va = alpha_trunc_page(va);
315 last_va = alpha_round_page(va + len);
316
317 do {
318 if (va < ALPHA_K0SEG_BASE) {
319 DPRINTF(RGDB, "RGDB(acc): Mapping is invalid %#x < K0SEG\n", va);
320 return false;
321 }
322
323 if (va < ALPHA_K1SEG_BASE) {
324 if (va < (ALPHA_K0SEG_BASE + pmem->getSize())) {
325 DPRINTF(RGDB, "RGDB(acc): Mapping is valid K0SEG <= "
326 "%#x < K0SEG + size\n", va);
327 return true;
328 } else {
329 DPRINTF(RGDB, "RGDB(acc): Mapping is invalid %#x < K0SEG\n",
330 va);
331 return false;
332 }
333 }
334
335 Addr ptbr = context->regs.ipr[AlphaISA::IPR_PALtemp20];
336 pte = kernel_pte_lookup(pmem, ptbr, va);
337 if (!pte || !entry_valid(pmem->phys_read_qword(pte))) {
338 DPRINTF(RGDB, "RGDB(acc): %#x pte is invalid\n", va);
339 return false;
340 }
341 va += ALPHA_PGBYTES;
342 } while (va < last_va);
343
344 DPRINTF(RGDB, "RGDB(acc): %#x mapping is valid\n", va);
345 return true;
346 }
347
348 ///////////////////////////////////////////////////////////
349 // RemoteGDB::signal
350 //
351 // Translate a trap number into a Unix-compatible signal number.
352 // (GDB only understands Unix signal numbers.)
353 //
354 int
355 RemoteGDB::signal(int type)
356 {
357 switch (type) {
358 case ALPHA_KENTRY_UNA:
359 return (SIGBUS);
360
361 case ALPHA_KENTRY_ARITH:
362 return (SIGFPE);
363
364 case ALPHA_KENTRY_IF:
365 return (SIGILL);
366
367 case ALPHA_KENTRY_MM:
368 return (SIGSEGV);
369
370 default:
371 panic("unknown signal type");
372 return 0;
373 }
374 }
375
376 ///////////////////////////////////////////////////////////
377 // RemoteGDB::getregs
378 //
379 // Translate the kernel debugger register format into
380 // the GDB register format.
381 void
382 RemoteGDB::getregs()
383 {
384 memset(gdbregs, 0, sizeof(gdbregs));
385 memcpy(&gdbregs[KGDB_REG_V0], context->regs.intRegFile, 32 * sizeof(uint64_t));
386 #ifdef KGDB_FP_REGS
387 memcpy(&gdbregs[KGDB_REG_F0], context->regs.floatRegFile.q,
388 32 * sizeof(uint64_t));
389 #endif
390 gdbregs[KGDB_REG_PC] = context->regs.pc;
391 }
392
393 ///////////////////////////////////////////////////////////
394 // RemoteGDB::setregs
395 //
396 // Translate the GDB register format into the kernel
397 // debugger register format.
398 //
399 void
400 RemoteGDB::setregs()
401 {
402 memcpy(context->regs.intRegFile, &gdbregs[KGDB_REG_V0], 32 * sizeof(uint64_t));
403 #ifdef KGDB_FP_REGS
404 memcpy(context->regs.floatRegFile.q, &gdbregs[KGDB_REG_F0],
405 32 * sizeof(uint64_t));
406 #endif
407 context->regs.pc = gdbregs[KGDB_REG_PC];
408 }
409
410 void
411 RemoteGDB::setTempBreakpoint(TempBreakpoint &bkpt, Addr addr)
412 {
413 DPRINTF(RGDB, "RGDB(setTempBreakpoint): addr=%#x\n", addr);
414
415 bkpt.address = addr;
416 insertHardBreak(addr, 4);
417 }
418
419 void
420 RemoteGDB::clearTempBreakpoint(TempBreakpoint &bkpt)
421 {
422 DPRINTF(RGDB, "RGDB(setTempBreakpoint): addr=%#x\n",
423 bkpt.address);
424
425
426 removeHardBreak(bkpt.address, 4);
427 bkpt.address = 0;
428 }
429
430 void
431 RemoteGDB::clearSingleStep()
432 {
433 DPRINTF(RGDB, "clearSingleStep bt_addr=%#x nt_addr=%#x\n",
434 takenBkpt.address, notTakenBkpt.address);
435
436 if (takenBkpt.address != 0)
437 clearTempBreakpoint(takenBkpt);
438
439 if (notTakenBkpt.address != 0)
440 clearTempBreakpoint(notTakenBkpt);
441 }
442
443 void
444 RemoteGDB::setSingleStep()
445 {
446 Addr pc = context->regs.pc;
447 Addr npc, bpc;
448 bool set_bt = false;
449
450 npc = pc + sizeof(MachInst);
451
452 // User was stopped at pc, e.g. the instruction at pc was not
453 // executed.
454 MachInst inst = read<MachInst>(pc);
455 StaticInstPtr<TheISA> si(inst);
456 if (si->hasBranchTarget(pc, context, bpc)) {
457 // Don't bother setting a breakpoint on the taken branch if it
458 // is the same as the next pc
459 if (bpc != npc)
460 set_bt = true;
461 }
462
463 DPRINTF(RGDB, "setSingleStep bt_addr=%#x nt_addr=%#x\n",
464 takenBkpt.address, notTakenBkpt.address);
465
466 setTempBreakpoint(notTakenBkpt, npc);
467
468 if (set_bt)
469 setTempBreakpoint(takenBkpt, bpc);
470 }
471
472 /////////////////////////
473 //
474 //
475
476 uint8_t
477 RemoteGDB::getbyte()
478 {
479 uint8_t b;
480 ::read(fd, &b, 1);
481 return b;
482 }
483
484 void
485 RemoteGDB::putbyte(uint8_t b)
486 {
487 ::write(fd, &b, 1);
488 }
489
490 // Send a packet to gdb
491 void
492 RemoteGDB::send(const char *bp)
493 {
494 const char *p;
495 uint8_t csum, c;
496
497 // DPRINTF(RGDB, "RGDB(send): %s\n", bp);
498
499 do {
500 p = bp;
501 putbyte(KGDB_START);
502 for (csum = 0; (c = *p); p++) {
503 putbyte(c);
504 csum += c;
505 }
506 putbyte(KGDB_END);
507 putbyte(i2digit(csum >> 4));
508 putbyte(i2digit(csum));
509 } while ((c = getbyte() & 0x7f) == KGDB_BADP);
510 }
511
512 // Receive a packet from gdb
513 int
514 RemoteGDB::recv(char *bp, int maxlen)
515 {
516 char *p;
517 int c, csum;
518 int len;
519
520 do {
521 p = bp;
522 csum = len = 0;
523 while ((c = getbyte()) != KGDB_START)
524 ;
525
526 while ((c = getbyte()) != KGDB_END && len < maxlen) {
527 c &= 0x7f;
528 csum += c;
529 *p++ = c;
530 len++;
531 }
532 csum &= 0xff;
533 *p = '\0';
534
535 if (len >= maxlen) {
536 putbyte(KGDB_BADP);
537 continue;
538 }
539
540 csum -= digit2i(getbyte()) * 16;
541 csum -= digit2i(getbyte());
542
543 if (csum == 0) {
544 putbyte(KGDB_GOODP);
545 // Sequence present?
546 if (bp[2] == ':') {
547 putbyte(bp[0]);
548 putbyte(bp[1]);
549 len -= 3;
550 bcopy(bp + 3, bp, len);
551 }
552 break;
553 }
554 putbyte(KGDB_BADP);
555 } while (1);
556
557 // DPRINTF(RGDB, "RGDB(recv): %s: %s\n", gdb_command(*bp), bp);
558
559 return (len);
560 }
561
562 // Read bytes from kernel address space for debugger.
563 bool
564 RemoteGDB::read(Addr vaddr, size_t size, char *data)
565 {
566 static Addr lastaddr = 0;
567 static size_t lastsize = 0;
568
569 uint8_t *maddr;
570
571 if (vaddr < 10) {
572 DPRINTF(RGDB, "\nRGDB(read): reading memory location zero!\n");
573 vaddr = lastaddr + lastsize;
574 }
575
576 DPRINTF(RGDB, "RGDB(read): addr=%#x, size=%d", vaddr, size);
577 #if TRACING_ON
578 char *d = data;
579 size_t s = size;
580 #endif
581
582 lastaddr = vaddr;
583 lastsize = size;
584
585 size_t count = min((Addr)size,
586 VMPageSize - (vaddr & (VMPageSize - 1)));
587
588 maddr = vtomem(context, vaddr, count);
589 memcpy(data, maddr, count);
590
591 vaddr += count;
592 data += count;
593 size -= count;
594
595 while (size >= VMPageSize) {
596 maddr = vtomem(context, vaddr, count);
597 memcpy(data, maddr, VMPageSize);
598
599 vaddr += VMPageSize;
600 data += VMPageSize;
601 size -= VMPageSize;
602 }
603
604 if (size > 0) {
605 maddr = vtomem(context, vaddr, count);
606 memcpy(data, maddr, size);
607 }
608
609 #if TRACING_ON
610 if (DTRACE(RGDB)) {
611 char buf[1024];
612 mem2hex(buf, d, s);
613 cprintf(": %s\n", buf);
614 }
615 #endif
616
617 return true;
618 }
619
620 // Write bytes to kernel address space for debugger.
621 bool
622 RemoteGDB::write(Addr vaddr, size_t size, const char *data)
623 {
624 static Addr lastaddr = 0;
625 static size_t lastsize = 0;
626
627 uint8_t *maddr;
628
629 if (vaddr < 10) {
630 DPRINTF(RGDB, "RGDB(write): writing memory location zero!\n");
631 vaddr = lastaddr + lastsize;
632 }
633
634 if (DTRACE(RGDB)) {
635 char buf[1024];
636 mem2hex(buf, data, size);
637 cprintf("RGDB(write): addr=%#x, size=%d: %s\n", vaddr, size, buf);
638 }
639
640 lastaddr = vaddr;
641 lastsize = size;
642
643 size_t count = min((Addr)size,
644 VMPageSize - (vaddr & (VMPageSize - 1)));
645
646 maddr = vtomem(context, vaddr, count);
647 memcpy(maddr, data, count);
648
649 vaddr += count;
650 data += count;
651 size -= count;
652
653 while (size >= VMPageSize) {
654 maddr = vtomem(context, vaddr, count);
655 memcpy(maddr, data, VMPageSize);
656
657 vaddr += VMPageSize;
658 data += VMPageSize;
659 size -= VMPageSize;
660 }
661
662 if (size > 0) {
663 maddr = vtomem(context, vaddr, count);
664 memcpy(maddr, data, size);
665 }
666
667 #ifdef IMB
668 alpha_pal_imb();
669 #endif
670
671 return true;
672 }
673
674
675 PCEventQueue *RemoteGDB::getPcEventQueue()
676 {
677 return &system->pcEventQueue;
678 }
679
680
681 RemoteGDB::HardBreakpoint::HardBreakpoint(RemoteGDB *_gdb, Addr pc)
682 : PCEvent(_gdb->getPcEventQueue(), "HardBreakpoint Event", pc),
683 gdb(_gdb), refcount(0)
684 {
685 DPRINTF(RGDB, "creating hardware breakpoint at %#x\n", evpc);
686 schedule();
687 }
688
689 void
690 RemoteGDB::HardBreakpoint::process(ExecContext *xc)
691 {
692 DPRINTF(RGDB, "handling hardware breakpoint at %#x\n", pc());
693
694 if (xc == gdb->context)
695 gdb->trap(ALPHA_KENTRY_IF);
696 }
697
698 bool
699 RemoteGDB::insertSoftBreak(Addr addr, size_t len)
700 {
701 if (len != sizeof(MachInst))
702 panic("invalid length\n");
703
704 return insertHardBreak(addr, len);
705 }
706
707 bool
708 RemoteGDB::removeSoftBreak(Addr addr, size_t len)
709 {
710 if (len != sizeof(MachInst))
711 panic("invalid length\n");
712
713 return removeHardBreak(addr, len);
714 }
715
716 bool
717 RemoteGDB::insertHardBreak(Addr addr, size_t len)
718 {
719 if (len != sizeof(MachInst))
720 panic("invalid length\n");
721
722 DPRINTF(RGDB, "inserting hardware breakpoint at %#x\n", addr);
723
724 HardBreakpoint *&bkpt = hardBreakMap[addr];
725 if (bkpt == 0)
726 bkpt = new HardBreakpoint(this, addr);
727
728 bkpt->refcount++;
729
730 return true;
731
732 #if 0
733 break_iter_t i = hardBreakMap.find(addr);
734 if (i == hardBreakMap.end()) {
735 HardBreakpoint *bkpt = new HardBreakpoint(this, addr);
736 hardBreakMap[addr] = bkpt;
737 i = hardBreakMap.insert(make_pair(addr, bkpt));
738 if (i == hardBreakMap.end())
739 return false;
740 }
741
742 (*i).second->refcount++;
743 #endif
744 }
745
746 bool
747 RemoteGDB::removeHardBreak(Addr addr, size_t len)
748 {
749 if (len != sizeof(MachInst))
750 panic("invalid length\n");
751
752 DPRINTF(RGDB, "removing hardware breakpoint at %#x\n", addr);
753
754 break_iter_t i = hardBreakMap.find(addr);
755 if (i == hardBreakMap.end())
756 return false;
757
758 HardBreakpoint *hbp = (*i).second;
759 if (--hbp->refcount == 0) {
760 delete hbp;
761 hardBreakMap.erase(i);
762 }
763
764 return true;
765 }
766
767 const char *
768 break_type(char c)
769 {
770 switch(c) {
771 case '0': return "software breakpoint";
772 case '1': return "hardware breakpoint";
773 case '2': return "write watchpoint";
774 case '3': return "read watchpoint";
775 case '4': return "access watchpoint";
776 default: return "unknown breakpoint/watchpoint";
777 }
778 }
779
780 // This function does all command processing for interfacing to a
781 // remote gdb. Note that the error codes are ignored by gdb at
782 // present, but might eventually become meaningful. (XXX) It might
783 // makes sense to use POSIX errno values, because that is what the
784 // gdb/remote.c functions want to return.
785 bool
786 RemoteGDB::trap(int type)
787 {
788 uint64_t val;
789 size_t datalen, len;
790 char data[KGDB_BUFLEN + 1];
791 char buffer[sizeof(gdbregs) * 2 + 256];
792 char temp[KGDB_BUFLEN];
793 const char *p;
794 char command, subcmd;
795 string var;
796 bool ret;
797
798 if (!attached)
799 return false;
800
801 DPRINTF(RGDB, "RGDB(trap): PC=%#x NPC=%#x\n",
802 context->regs.pc, context->regs.npc);
803
804 clearSingleStep();
805
806 /*
807 * The first entry to this function is normally through
808 * a breakpoint trap in kgdb_connect(), in which case we
809 * must advance past the breakpoint because gdb will not.
810 *
811 * On the first entry here, we expect that gdb is not yet
812 * listening to us, so just enter the interaction loop.
813 * After the debugger is "active" (connected) it will be
814 * waiting for a "signaled" message from us.
815 */
816 if (!active) {
817 if (!IS_BREAKPOINT_TRAP(type, 0)) {
818 // No debugger active -- let trap handle this.
819 return false;
820 }
821 active = true;
822 } else {
823 // Tell remote host that an exception has occurred.
824 sprintf((char *)buffer, "S%02x", signal(type));
825 send(buffer);
826 }
827
828 // Stick frame regs into our reg cache.
829 getregs();
830
831 for (;;) {
832 datalen = recv(data, sizeof(data));
833 data[sizeof(data) - 1] = 0; // Sentinel
834 command = data[0];
835 subcmd = 0;
836 p = data + 1;
837 switch (command) {
838
839 case KGDB_SIGNAL:
840 // if this command came from a running gdb, answer it --
841 // the other guy has no way of knowing if we're in or out
842 // of this loop when he issues a "remote-signal".
843 sprintf((char *)buffer, "S%02x", signal(type));
844 send(buffer);
845 continue;
846
847 case KGDB_REG_R:
848 if (2 * sizeof(gdbregs) > sizeof(buffer))
849 panic("buffer too small");
850
851 mem2hex(buffer, gdbregs, sizeof(gdbregs));
852 send(buffer);
853 continue;
854
855 case KGDB_REG_W:
856 p = hex2mem(gdbregs, p, sizeof(gdbregs));
857 if (p == NULL || *p != '\0')
858 send("E01");
859 else {
860 setregs();
861 send("OK");
862 }
863 continue;
864
865 #if 0
866 case KGDB_SET_REG:
867 val = hex2i(&p);
868 if (*p++ != '=') {
869 send("E01");
870 continue;
871 }
872 if (val < 0 && val >= KGDB_NUMREGS) {
873 send("E01");
874 continue;
875 }
876
877 gdbregs[val] = hex2i(&p);
878 setregs();
879 send("OK");
880
881 continue;
882 #endif
883
884 case KGDB_MEM_R:
885 val = hex2i(&p);
886 if (*p++ != ',') {
887 send("E02");
888 continue;
889 }
890 len = hex2i(&p);
891 if (*p != '\0') {
892 send("E03");
893 continue;
894 }
895 if (len > sizeof(buffer)) {
896 send("E04");
897 continue;
898 }
899 if (!acc(val, len)) {
900 send("E05");
901 continue;
902 }
903
904 if (read(val, (size_t)len, (char *)buffer)) {
905 mem2hex(temp, buffer, len);
906 send(temp);
907 } else {
908 send("E05");
909 }
910 continue;
911
912 case KGDB_MEM_W:
913 val = hex2i(&p);
914 if (*p++ != ',') {
915 send("E06");
916 continue;
917 }
918 len = hex2i(&p);
919 if (*p++ != ':') {
920 send("E07");
921 continue;
922 }
923 if (len > datalen - (p - data)) {
924 send("E08");
925 continue;
926 }
927 p = hex2mem(buffer, p, sizeof(buffer));
928 if (p == NULL) {
929 send("E09");
930 continue;
931 }
932 if (!acc(val, len)) {
933 send("E0A");
934 continue;
935 }
936 if (write(val, (size_t)len, (char *)buffer))
937 send("OK");
938 else
939 send("E0B");
940 continue;
941
942 case KGDB_SET_THREAD:
943 subcmd = *p++;
944 val = hex2i(&p);
945 if (val == 0)
946 send("OK");
947 else
948 send("E01");
949 continue;
950
951 case KGDB_DETACH:
952 case KGDB_KILL:
953 active = false;
954 clearSingleStep();
955 detach();
956 goto out;
957
958 case KGDB_ASYNC_CONT:
959 subcmd = hex2i(&p);
960 if (*p++ == ';') {
961 val = hex2i(&p);
962 context->regs.pc = val;
963 context->regs.npc = val + sizeof(MachInst);
964 }
965 clearSingleStep();
966 goto out;
967
968 case KGDB_CONT:
969 if (p - data < datalen) {
970 val = hex2i(&p);
971 context->regs.pc = val;
972 context->regs.npc = val + sizeof(MachInst);
973 }
974 clearSingleStep();
975 goto out;
976
977 case KGDB_ASYNC_STEP:
978 subcmd = hex2i(&p);
979 if (*p++ == ';') {
980 val = hex2i(&p);
981 context->regs.pc = val;
982 context->regs.npc = val + sizeof(MachInst);
983 }
984 setSingleStep();
985 goto out;
986
987 case KGDB_STEP:
988 if (p - data < datalen) {
989 val = hex2i(&p);
990 context->regs.pc = val;
991 context->regs.npc = val + sizeof(MachInst);
992 }
993 setSingleStep();
994 goto out;
995
996 case KGDB_CLR_HW_BKPT:
997 subcmd = *p++;
998 if (*p++ != ',') send("E0D");
999 val = hex2i(&p);
1000 if (*p++ != ',') send("E0D");
1001 len = hex2i(&p);
1002
1003 DPRINTF(RGDB, "kgdb: clear %s, addr=%#x, len=%d\n",
1004 break_type(subcmd), val, len);
1005
1006 ret = false;
1007
1008 switch (subcmd) {
1009 case '0': // software breakpoint
1010 ret = removeSoftBreak(val, len);
1011 break;
1012
1013 case '1': // hardware breakpoint
1014 ret = removeHardBreak(val, len);
1015 break;
1016
1017 case '2': // write watchpoint
1018 case '3': // read watchpoint
1019 case '4': // access watchpoint
1020 default: // unknown
1021 send("");
1022 break;
1023 }
1024
1025 send(ret ? "OK" : "E0C");
1026 continue;
1027
1028 case KGDB_SET_HW_BKPT:
1029 subcmd = *p++;
1030 if (*p++ != ',') send("E0D");
1031 val = hex2i(&p);
1032 if (*p++ != ',') send("E0D");
1033 len = hex2i(&p);
1034
1035 DPRINTF(RGDB, "kgdb: set %s, addr=%#x, len=%d\n",
1036 break_type(subcmd), val, len);
1037
1038 ret = false;
1039
1040 switch (subcmd) {
1041 case '0': // software breakpoint
1042 ret = insertSoftBreak(val, len);
1043 break;
1044
1045 case '1': // hardware breakpoint
1046 ret = insertHardBreak(val, len);
1047 break;
1048
1049 case '2': // write watchpoint
1050 case '3': // read watchpoint
1051 case '4': // access watchpoint
1052 default: // unknown
1053 send("");
1054 break;
1055 }
1056
1057 send(ret ? "OK" : "E0C");
1058 continue;
1059
1060 case KGDB_QUERY_VAR:
1061 var = string(p, datalen - 1);
1062 if (var == "C")
1063 send("QC0");
1064 else
1065 send("");
1066 continue;
1067
1068 case KGDB_SET_BAUD:
1069 case KGDB_SET_BREAK:
1070 case KGDB_DEBUG:
1071 case KGDB_CYCLE_STEP:
1072 case KGDB_SIG_CYCLE_STEP:
1073 case KGDB_READ_REG:
1074 case KGDB_SET_VAR:
1075 case KGDB_RESET:
1076 case KGDB_THREAD_ALIVE:
1077 case KGDB_TARGET_EXIT:
1078 case KGDB_BINARY_DLOAD:
1079 // Unsupported command
1080 DPRINTF(RGDB, "kgdb: Unsupported command: %s\n",
1081 gdb_command(command));
1082 DDUMP(RGDB, (uint8_t *)data, datalen);
1083 send("");
1084 continue;
1085
1086 default:
1087 // Unknown command.
1088 DPRINTF(RGDB, "kgdb: Unknown command: %c(%#x)\n",
1089 command, command);
1090 send("");
1091 continue;
1092
1093
1094 }
1095 }
1096
1097 out:
1098 return true;
1099 }
1100
1101 // Convert a hex digit into an integer.
1102 // This returns -1 if the argument passed is no valid hex digit.
1103 int
1104 digit2i(char c)
1105 {
1106 if (c >= '0' && c <= '9')
1107 return (c - '0');
1108 else if (c >= 'a' && c <= 'f')
1109 return (c - 'a' + 10);
1110 else if (c >= 'A' && c <= 'F')
1111
1112 return (c - 'A' + 10);
1113 else
1114 return (-1);
1115 }
1116
1117 // Convert the low 4 bits of an integer into an hex digit.
1118 char
1119 i2digit(int n)
1120 {
1121 return ("0123456789abcdef"[n & 0x0f]);
1122 }
1123
1124 // Convert a byte array into an hex string.
1125 void
1126 mem2hex(void *vdst, const void *vsrc, int len)
1127 {
1128 char *dst = (char *)vdst;
1129 const char *src = (const char *)vsrc;
1130
1131 while (len--) {
1132 *dst++ = i2digit(*src >> 4);
1133 *dst++ = i2digit(*src++);
1134 }
1135 *dst = '\0';
1136 }
1137
1138 // Convert an hex string into a byte array.
1139 // This returns a pointer to the character following the last valid
1140 // hex digit. If the string ends in the middle of a byte, NULL is
1141 // returned.
1142 const char *
1143 hex2mem(void *vdst, const char *src, int maxlen)
1144 {
1145 char *dst = (char *)vdst;
1146 int msb, lsb;
1147
1148 while (*src && maxlen--) {
1149 msb = digit2i(*src++);
1150 if (msb < 0)
1151 return (src - 1);
1152 lsb = digit2i(*src++);
1153 if (lsb < 0)
1154 return (NULL);
1155 *dst++ = (msb << 4) | lsb;
1156 }
1157 return (src);
1158 }
1159
1160 // Convert an hex string into an integer.
1161 // This returns a pointer to the character following the last valid
1162 // hex digit.
1163 Addr
1164 hex2i(const char **srcp)
1165 {
1166 const char *src = *srcp;
1167 Addr r = 0;
1168 int nibble;
1169
1170 while ((nibble = digit2i(*src)) >= 0) {
1171 r *= 16;
1172 r += nibble;
1173 src++;
1174 }
1175 *srcp = src;
1176 return (r);
1177 }
1178