9a44f2399d3c02d1705529196180d3b72a41d96b
[binutils-gdb.git] / bfd / aoutx.h
1 /* BFD semi-generic back-end for a.out binaries.
2 Copyright 1990, 1991, 1992, 1993 Free Software Foundation, Inc.
3 Written by Cygnus Support.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21 /*
22 SECTION
23 a.out backends
24
25
26 DESCRIPTION
27
28 BFD supports a number of different flavours of a.out format,
29 though the major differences are only the sizes of the
30 structures on disk, and the shape of the relocation
31 information.
32
33 The support is split into a basic support file @code{aoutx.h}
34 and other files which derive functions from the base. One
35 derivation file is @code{aoutf1.h} (for a.out flavour 1), and
36 adds to the basic a.out functions support for sun3, sun4, 386
37 and 29k a.out files, to create a target jump vector for a
38 specific target.
39
40 This information is further split out into more specific files
41 for each machine, including @code{sunos.c} for sun3 and sun4,
42 @code{newsos3.c} for the Sony NEWS, and @code{demo64.c} for a
43 demonstration of a 64 bit a.out format.
44
45 The base file @code{aoutx.h} defines general mechanisms for
46 reading and writing records to and from disk, and various
47 other methods which BFD requires. It is included by
48 @code{aout32.c} and @code{aout64.c} to form the names
49 aout_32_swap_exec_header_in, aout_64_swap_exec_header_in, etc.
50
51 As an example, this is what goes on to make the back end for a
52 sun4, from aout32.c
53
54 | #define ARCH_SIZE 32
55 | #include "aoutx.h"
56
57 Which exports names:
58
59 | ...
60 | aout_32_canonicalize_reloc
61 | aout_32_find_nearest_line
62 | aout_32_get_lineno
63 | aout_32_get_reloc_upper_bound
64 | ...
65
66 from sunos.c
67
68 | #define ARCH 32
69 | #define TARGET_NAME "a.out-sunos-big"
70 | #define VECNAME sunos_big_vec
71 | #include "aoutf1.h"
72
73 requires all the names from aout32.c, and produces the jump vector
74
75 | sunos_big_vec
76
77 The file host-aout.c is a special case. It is for a large set
78 of hosts that use ``more or less standard'' a.out files, and
79 for which cross-debugging is not interesting. It uses the
80 standard 32-bit a.out support routines, but determines the
81 file offsets and addresses of the text, data, and BSS
82 sections, the machine architecture and machine type, and the
83 entry point address, in a host-dependent manner. Once these
84 values have been determined, generic code is used to handle
85 the object file.
86
87 When porting it to run on a new system, you must supply:
88
89 | HOST_PAGE_SIZE
90 | HOST_SEGMENT_SIZE
91 | HOST_MACHINE_ARCH (optional)
92 | HOST_MACHINE_MACHINE (optional)
93 | HOST_TEXT_START_ADDR
94 | HOST_STACK_END_ADDR
95
96 in the file <<../include/sys/h-XXX.h>> (for your host). These
97 values, plus the structures and macros defined in <<a.out.h>> on
98 your host system, will produce a BFD target that will access
99 ordinary a.out files on your host. To configure a new machine
100 to use <<host-aout.c>., specify:
101
102 | TDEFAULTS = -DDEFAULT_VECTOR=host_aout_big_vec
103 | TDEPFILES= host-aout.o trad-core.o
104
105 in the <<config/mt-XXX>> file, and modify configure.in to use the
106 <<mt-XXX>> file (by setting "<<bfd_target=XXX>>") when your
107 configuration is selected.
108
109 */
110
111 /* Some assumptions:
112 * Any BFD with D_PAGED set is ZMAGIC, and vice versa.
113 Doesn't matter what the setting of WP_TEXT is on output, but it'll
114 get set on input.
115 * Any BFD with D_PAGED clear and WP_TEXT set is NMAGIC.
116 * Any BFD with both flags clear is OMAGIC.
117 (Just want to make these explicit, so the conditions tested in this
118 file make sense if you're more familiar with a.out than with BFD.) */
119
120 #define KEEPIT flags
121 #define KEEPITTYPE int
122
123 #include <assert.h>
124 #include <string.h> /* For strchr and friends */
125 #include "bfd.h"
126 #include <sysdep.h>
127 #include <ansidecl.h>
128
129 struct external_exec;
130 #include "libaout.h"
131 #include "libbfd.h"
132 #include "aout/aout64.h"
133 #include "aout/stab_gnu.h"
134 #include "aout/ar.h"
135
136 extern void (*bfd_error_trap)();
137
138 /*
139 SUBSECTION
140 relocations
141
142 DESCRIPTION
143 The file @code{aoutx.h} caters for both the @emph{standard}
144 and @emph{extended} forms of a.out relocation records.
145
146 The standard records are characterised by containing only an
147 address, a symbol index and a type field. The extended records
148 (used on 29ks and sparcs) also have a full integer for an
149 addend.
150
151 */
152 #define CTOR_TABLE_RELOC_IDX 2
153
154 #define howto_table_ext NAME(aout,ext_howto_table)
155 #define howto_table_std NAME(aout,std_howto_table)
156
157 reloc_howto_type howto_table_ext[] =
158 {
159 /* type rightshift size bitsize pc_ bit absol compl spec name partial_ src_ dst_ pcrel_
160 rela pos ute ain_on ial_ inplace mask mask offset
161 tive _overf fn */
162 HOWTO(RELOC_8, 0, 0, 8, false, 0, true, true,0,"8", false, 0,0x000000ff, false),
163 HOWTO(RELOC_16, 0, 1, 16, false, 0, true, true,0,"16", false, 0,0x0000ffff, false),
164 HOWTO(RELOC_32, 0, 2, 32, false, 0, true, true,0,"32", false, 0,0xffffffff, false),
165 HOWTO(RELOC_DISP8, 0, 0, 8, true, 0, false, true,0,"DISP8", false, 0,0x000000ff, false),
166 HOWTO(RELOC_DISP16, 0, 1, 16, true, 0, false, true,0,"DISP16", false, 0,0x0000ffff, false),
167 HOWTO(RELOC_DISP32, 0, 2, 32, true, 0, false, true,0,"DISP32", false, 0,0xffffffff, false),
168 HOWTO(RELOC_WDISP30,2, 2, 30, true, 0, false, true,0,"WDISP30", false, 0,0x3fffffff, false),
169 HOWTO(RELOC_WDISP22,2, 2, 22, true, 0, false, true,0,"WDISP22", false, 0,0x003fffff, false),
170 HOWTO(RELOC_HI22, 10, 2, 22, false, 0, false, true,0,"HI22", false, 0,0x003fffff, false),
171 HOWTO(RELOC_22, 0, 2, 22, false, 0, false, true,0,"22", false, 0,0x003fffff, false),
172 HOWTO(RELOC_13, 0, 2, 13, false, 0, false, true,0,"13", false, 0,0x00001fff, false),
173 HOWTO(RELOC_LO10, 0, 2, 10, false, 0, false, true,0,"LO10", false, 0,0x000003ff, false),
174 HOWTO(RELOC_SFA_BASE,0, 2, 32, false, 0, false, true,0,"SFA_BASE", false, 0,0xffffffff, false),
175 HOWTO(RELOC_SFA_OFF13,0,2, 32, false, 0, false, true,0,"SFA_OFF13",false, 0,0xffffffff, false),
176 HOWTO(RELOC_BASE10, 0, 2, 16, false, 0, false, true,0,"BASE10", false, 0,0x0000ffff, false),
177 HOWTO(RELOC_BASE13, 0, 2, 13, false, 0, false, true,0,"BASE13", false, 0,0x00001fff, false),
178 HOWTO(RELOC_BASE22, 0, 2, 0, false, 0, false, true,0,"BASE22", false, 0,0x00000000, false),
179 HOWTO(RELOC_PC10, 0, 2, 10, false, 0, false, true,0,"PC10", false, 0,0x000003ff, false),
180 HOWTO(RELOC_PC22, 0, 2, 22, false, 0, false, true,0,"PC22", false, 0,0x003fffff, false),
181 HOWTO(RELOC_JMP_TBL,0, 2, 32, false, 0, false, true,0,"JMP_TBL", false, 0,0xffffffff, false),
182 HOWTO(RELOC_SEGOFF16,0, 2, 0, false, 0, false, true,0,"SEGOFF16", false, 0,0x00000000, false),
183 HOWTO(RELOC_GLOB_DAT,0, 2, 0, false, 0, false, true,0,"GLOB_DAT", false, 0,0x00000000, false),
184 HOWTO(RELOC_JMP_SLOT,0, 2, 0, false, 0, false, true,0,"JMP_SLOT", false, 0,0x00000000, false),
185 HOWTO(RELOC_RELATIVE,0, 2, 0, false, 0, false, true,0,"RELATIVE", false, 0,0x00000000, false),
186 };
187
188 /* Convert standard reloc records to "arelent" format (incl byte swap). */
189
190 reloc_howto_type howto_table_std[] = {
191 /* type rs size bsz pcrel bitpos abs ovrf sf name part_inpl readmask setmask pcdone */
192 HOWTO( 0, 0, 0, 8, false, 0, true, true,0,"8", true, 0x000000ff,0x000000ff, false),
193 HOWTO( 1, 0, 1, 16, false, 0, true, true,0,"16", true, 0x0000ffff,0x0000ffff, false),
194 HOWTO( 2, 0, 2, 32, false, 0, true, true,0,"32", true, 0xffffffff,0xffffffff, false),
195 HOWTO( 3, 0, 3, 64, false, 0, true, true,0,"64", true, 0xdeaddead,0xdeaddead, false),
196 HOWTO( 4, 0, 0, 8, true, 0, false, true,0,"DISP8", true, 0x000000ff,0x000000ff, false),
197 HOWTO( 5, 0, 1, 16, true, 0, false, true,0,"DISP16", true, 0x0000ffff,0x0000ffff, false),
198 HOWTO( 6, 0, 2, 32, true, 0, false, true,0,"DISP32", true, 0xffffffff,0xffffffff, false),
199 HOWTO( 7, 0, 3, 64, true, 0, false, true,0,"DISP64", true, 0xfeedface,0xfeedface, false),
200 };
201
202 CONST struct reloc_howto_struct *
203 DEFUN(NAME(aout,reloc_type_lookup),(abfd,code),
204 bfd *abfd AND
205 bfd_reloc_code_real_type code)
206 {
207 #define EXT(i,j) case i: return &howto_table_ext[j]
208 #define STD(i,j) case i: return &howto_table_std[j]
209 int ext = obj_reloc_entry_size (abfd) == RELOC_EXT_SIZE;
210 if (code == BFD_RELOC_CTOR)
211 switch (bfd_get_arch_info (abfd)->bits_per_address)
212 {
213 case 32:
214 code = BFD_RELOC_32;
215 break;
216 }
217 if (ext)
218 switch (code)
219 {
220 EXT (BFD_RELOC_32, 2);
221 EXT (BFD_RELOC_HI22, 8);
222 EXT (BFD_RELOC_LO10, 11);
223 EXT (BFD_RELOC_32_PCREL_S2, 6);
224 default: return (CONST struct reloc_howto_struct *) 0;
225 }
226 else
227 /* std relocs */
228 switch (code)
229 {
230 STD (BFD_RELOC_16, 1);
231 STD (BFD_RELOC_32, 2);
232 STD (BFD_RELOC_8_PCREL, 4);
233 STD (BFD_RELOC_16_PCREL, 5);
234 STD (BFD_RELOC_32_PCREL, 6);
235 default: return (CONST struct reloc_howto_struct *) 0;
236 }
237 }
238
239 extern bfd_error_vector_type bfd_error_vector;
240
241 /*
242 SUBSECTION
243 Internal Entry Points
244
245 DESCRIPTION
246 @code{aoutx.h} exports several routines for accessing the
247 contents of an a.out file, which are gathered and exported in
248 turn by various format specific files (eg sunos.c).
249
250 */
251
252 /*
253 FUNCTION
254 aout_<size>_swap_exec_header_in
255
256 DESCRIPTION
257 Swaps the information in an executable header taken from a raw
258 byte stream memory image, into the internal exec_header
259 structure.
260
261 SYNOPSIS
262 void aout_<size>_swap_exec_header_in,
263 (bfd *abfd,
264 struct external_exec *raw_bytes,
265 struct internal_exec *execp);
266 */
267
268 #ifndef NAME_swap_exec_header_in
269 void
270 DEFUN(NAME(aout,swap_exec_header_in),(abfd, raw_bytes, execp),
271 bfd *abfd AND
272 struct external_exec *raw_bytes AND
273 struct internal_exec *execp)
274 {
275 struct external_exec *bytes = (struct external_exec *)raw_bytes;
276
277 /* The internal_exec structure has some fields that are unused in this
278 configuration (IE for i960), so ensure that all such uninitialized
279 fields are zero'd out. There are places where two of these structs
280 are memcmp'd, and thus the contents do matter. */
281 memset (execp, 0, sizeof (struct internal_exec));
282 /* Now fill in fields in the execp, from the bytes in the raw data. */
283 execp->a_info = bfd_h_get_32 (abfd, bytes->e_info);
284 execp->a_text = GET_WORD (abfd, bytes->e_text);
285 execp->a_data = GET_WORD (abfd, bytes->e_data);
286 execp->a_bss = GET_WORD (abfd, bytes->e_bss);
287 execp->a_syms = GET_WORD (abfd, bytes->e_syms);
288 execp->a_entry = GET_WORD (abfd, bytes->e_entry);
289 execp->a_trsize = GET_WORD (abfd, bytes->e_trsize);
290 execp->a_drsize = GET_WORD (abfd, bytes->e_drsize);
291 }
292 #define NAME_swap_exec_header_in NAME(aout,swap_exec_header_in)
293 #endif
294
295 /*
296 FUNCTION
297 aout_<size>_swap_exec_header_out
298
299 DESCRIPTION
300 Swaps the information in an internal exec header structure
301 into the supplied buffer ready for writing to disk.
302
303 SYNOPSIS
304 void aout_<size>_swap_exec_header_out
305 (bfd *abfd,
306 struct internal_exec *execp,
307 struct external_exec *raw_bytes);
308 */
309 void
310 DEFUN(NAME(aout,swap_exec_header_out),(abfd, execp, raw_bytes),
311 bfd *abfd AND
312 struct internal_exec *execp AND
313 struct external_exec *raw_bytes)
314 {
315 struct external_exec *bytes = (struct external_exec *)raw_bytes;
316
317 /* Now fill in fields in the raw data, from the fields in the exec struct. */
318 bfd_h_put_32 (abfd, execp->a_info , bytes->e_info);
319 PUT_WORD (abfd, execp->a_text , bytes->e_text);
320 PUT_WORD (abfd, execp->a_data , bytes->e_data);
321 PUT_WORD (abfd, execp->a_bss , bytes->e_bss);
322 PUT_WORD (abfd, execp->a_syms , bytes->e_syms);
323 PUT_WORD (abfd, execp->a_entry , bytes->e_entry);
324 PUT_WORD (abfd, execp->a_trsize, bytes->e_trsize);
325 PUT_WORD (abfd, execp->a_drsize, bytes->e_drsize);
326 }
327
328
329
330 /*
331 FUNCTION
332 aout_<size>_some_aout_object_p
333
334 DESCRIPTION
335 Some A.OUT variant thinks that the file whose format we're
336 checking is an a.out file. Do some more checking, and set up
337 for access if it really is. Call back to the calling
338 environments "finish up" function just before returning, to
339 handle any last-minute setup.
340
341 SYNOPSIS
342 bfd_target *aout_<size>_some_aout_object_p
343 (bfd *abfd,
344 bfd_target *(*callback_to_real_object_p)());
345 */
346
347 bfd_target *
348 DEFUN(NAME(aout,some_aout_object_p),(abfd, execp, callback_to_real_object_p),
349 bfd *abfd AND
350 struct internal_exec *execp AND
351 bfd_target *(*callback_to_real_object_p) PARAMS ((bfd *)))
352 {
353 struct aout_data_struct *rawptr, *oldrawptr;
354 bfd_target *result;
355
356 rawptr = (struct aout_data_struct *) bfd_zalloc (abfd, sizeof (struct aout_data_struct ));
357 if (rawptr == NULL) {
358 bfd_error = no_memory;
359 return 0;
360 }
361
362 oldrawptr = abfd->tdata.aout_data;
363 abfd->tdata.aout_data = rawptr;
364
365 /* Copy the contents of the old tdata struct.
366 In particular, we want the subformat, since for hpux it was set in
367 hp300hpux.c:swap_exec_header_in and will be used in
368 hp300hpux.c:callback. */
369 if (oldrawptr != NULL)
370 *abfd->tdata.aout_data = *oldrawptr;
371
372 abfd->tdata.aout_data->a.hdr = &rawptr->e;
373 *(abfd->tdata.aout_data->a.hdr) = *execp; /* Copy in the internal_exec struct */
374 execp = abfd->tdata.aout_data->a.hdr;
375
376 /* Set the file flags */
377 abfd->flags = NO_FLAGS;
378 if (execp->a_drsize || execp->a_trsize)
379 abfd->flags |= HAS_RELOC;
380 /* Setting of EXEC_P has been deferred to the bottom of this function */
381 if (execp->a_syms)
382 abfd->flags |= HAS_LINENO | HAS_DEBUG | HAS_SYMS | HAS_LOCALS;
383
384 if (N_MAGIC (*execp) == ZMAGIC)
385 {
386 abfd->flags |= D_PAGED|WP_TEXT;
387 adata(abfd).magic = z_magic;
388 }
389 else if (N_MAGIC (*execp) == NMAGIC)
390 {
391 abfd->flags |= WP_TEXT;
392 adata(abfd).magic = n_magic;
393 }
394 else
395 adata(abfd).magic = o_magic;
396
397 bfd_get_start_address (abfd) = execp->a_entry;
398
399 obj_aout_symbols (abfd) = (aout_symbol_type *)NULL;
400 bfd_get_symcount (abfd) = execp->a_syms / sizeof (struct external_nlist);
401
402 /* The default relocation entry size is that of traditional V7 Unix. */
403 obj_reloc_entry_size (abfd) = RELOC_STD_SIZE;
404
405 /* The default symbol entry size is that of traditional Unix. */
406 obj_symbol_entry_size (abfd) = EXTERNAL_NLIST_SIZE;
407
408 /* create the sections. This is raunchy, but bfd_close wants to reclaim
409 them */
410
411 obj_textsec (abfd) = bfd_make_section_old_way (abfd, ".text");
412 obj_datasec (abfd) = bfd_make_section_old_way (abfd, ".data");
413 obj_bsssec (abfd) = bfd_make_section_old_way (abfd, ".bss");
414
415 #if 0
416 (void)bfd_make_section (abfd, ".text");
417 (void)bfd_make_section (abfd, ".data");
418 (void)bfd_make_section (abfd, ".bss");
419 #endif
420
421 obj_datasec (abfd)->_raw_size = execp->a_data;
422 obj_bsssec (abfd)->_raw_size = execp->a_bss;
423
424 obj_textsec (abfd)->flags = (execp->a_trsize != 0 ?
425 (SEC_ALLOC | SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS | SEC_RELOC) :
426 (SEC_ALLOC | SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS));
427 obj_datasec (abfd)->flags = (execp->a_drsize != 0 ?
428 (SEC_ALLOC | SEC_LOAD | SEC_DATA | SEC_HAS_CONTENTS | SEC_RELOC) :
429 (SEC_ALLOC | SEC_LOAD | SEC_DATA | SEC_HAS_CONTENTS));
430 obj_bsssec (abfd)->flags = SEC_ALLOC;
431
432 #ifdef THIS_IS_ONLY_DOCUMENTATION
433 /* The common code can't fill in these things because they depend
434 on either the start address of the text segment, the rounding
435 up of virtual addersses between segments, or the starting file
436 position of the text segment -- all of which varies among different
437 versions of a.out. */
438
439 /* Call back to the format-dependent code to fill in the rest of the
440 fields and do any further cleanup. Things that should be filled
441 in by the callback: */
442
443 struct exec *execp = exec_hdr (abfd);
444
445 obj_textsec (abfd)->size = N_TXTSIZE(*execp);
446 obj_textsec (abfd)->raw_size = N_TXTSIZE(*execp);
447 /* data and bss are already filled in since they're so standard */
448
449 /* The virtual memory addresses of the sections */
450 obj_textsec (abfd)->vma = N_TXTADDR(*execp);
451 obj_datasec (abfd)->vma = N_DATADDR(*execp);
452 obj_bsssec (abfd)->vma = N_BSSADDR(*execp);
453
454 /* The file offsets of the sections */
455 obj_textsec (abfd)->filepos = N_TXTOFF(*execp);
456 obj_datasec (abfd)->filepos = N_DATOFF(*execp);
457
458 /* The file offsets of the relocation info */
459 obj_textsec (abfd)->rel_filepos = N_TRELOFF(*execp);
460 obj_datasec (abfd)->rel_filepos = N_DRELOFF(*execp);
461
462 /* The file offsets of the string table and symbol table. */
463 obj_str_filepos (abfd) = N_STROFF (*execp);
464 obj_sym_filepos (abfd) = N_SYMOFF (*execp);
465
466 /* Determine the architecture and machine type of the object file. */
467 switch (N_MACHTYPE (*exec_hdr (abfd))) {
468 default:
469 abfd->obj_arch = bfd_arch_obscure;
470 break;
471 }
472
473 adata(abfd)->page_size = PAGE_SIZE;
474 adata(abfd)->segment_size = SEGMENT_SIZE;
475 adata(abfd)->exec_bytes_size = EXEC_BYTES_SIZE;
476
477 return abfd->xvec;
478
479 /* The architecture is encoded in various ways in various a.out variants,
480 or is not encoded at all in some of them. The relocation size depends
481 on the architecture and the a.out variant. Finally, the return value
482 is the bfd_target vector in use. If an error occurs, return zero and
483 set bfd_error to the appropriate error code.
484
485 Formats such as b.out, which have additional fields in the a.out
486 header, should cope with them in this callback as well. */
487 #endif /* DOCUMENTATION */
488
489 result = (*callback_to_real_object_p)(abfd);
490
491 /* Now that the segment addresses have been worked out, take a better
492 guess at whether the file is executable. If the entry point
493 is within the text segment, assume it is. (This makes files
494 executable even if their entry point address is 0, as long as
495 their text starts at zero.)
496
497 At some point we should probably break down and stat the file and
498 declare it executable if (one of) its 'x' bits are on... */
499 if ((execp->a_entry >= obj_textsec(abfd)->vma) &&
500 (execp->a_entry < obj_textsec(abfd)->vma + obj_textsec(abfd)->_raw_size))
501 abfd->flags |= EXEC_P;
502 if (result)
503 {
504 #if 0 /* These should be set correctly anyways. */
505 abfd->sections = obj_textsec (abfd);
506 obj_textsec (abfd)->next = obj_datasec (abfd);
507 obj_datasec (abfd)->next = obj_bsssec (abfd);
508 #endif
509 }
510 else
511 {
512 free (rawptr);
513 abfd->tdata.aout_data = oldrawptr;
514 }
515 return result;
516 }
517
518 /*
519 FUNCTION
520 aout_<size>_mkobject
521
522 DESCRIPTION
523 This routine initializes a BFD for use with a.out files.
524
525 SYNOPSIS
526 boolean aout_<size>_mkobject, (bfd *);
527 */
528
529 boolean
530 DEFUN(NAME(aout,mkobject),(abfd),
531 bfd *abfd)
532 {
533 struct aout_data_struct *rawptr;
534
535 bfd_error = system_call_error;
536
537 /* Use an intermediate variable for clarity */
538 rawptr = (struct aout_data_struct *)bfd_zalloc (abfd, sizeof (struct aout_data_struct ));
539
540 if (rawptr == NULL) {
541 bfd_error = no_memory;
542 return false;
543 }
544
545 abfd->tdata.aout_data = rawptr;
546 exec_hdr (abfd) = &(rawptr->e);
547
548 /* For simplicity's sake we just make all the sections right here. */
549
550 obj_textsec (abfd) = (asection *)NULL;
551 obj_datasec (abfd) = (asection *)NULL;
552 obj_bsssec (abfd) = (asection *)NULL;
553 bfd_make_section (abfd, ".text");
554 bfd_make_section (abfd, ".data");
555 bfd_make_section (abfd, ".bss");
556 bfd_make_section (abfd, BFD_ABS_SECTION_NAME);
557 bfd_make_section (abfd, BFD_UND_SECTION_NAME);
558 bfd_make_section (abfd, BFD_COM_SECTION_NAME);
559
560 return true;
561 }
562
563
564 /*
565 FUNCTION
566 aout_<size>_machine_type
567
568 DESCRIPTION
569 Keep track of machine architecture and machine type for
570 a.out's. Return the machine_type for a particular
571 arch&machine, or M_UNKNOWN if that exact arch&machine can't be
572 represented in a.out format.
573
574 If the architecture is understood, machine type 0 (default)
575 should always be understood.
576
577 SYNOPSIS
578 enum machine_type aout_<size>_machine_type
579 (enum bfd_architecture arch,
580 unsigned long machine));
581 */
582
583 enum machine_type
584 DEFUN(NAME(aout,machine_type),(arch, machine),
585 enum bfd_architecture arch AND
586 unsigned long machine)
587 {
588 enum machine_type arch_flags;
589
590 arch_flags = M_UNKNOWN;
591
592 switch (arch) {
593 case bfd_arch_sparc:
594 if (machine == 0) arch_flags = M_SPARC;
595 break;
596
597 case bfd_arch_m68k:
598 switch (machine) {
599 case 0: arch_flags = M_68010; break;
600 case 68000: arch_flags = M_UNKNOWN; break;
601 case 68010: arch_flags = M_68010; break;
602 case 68020: arch_flags = M_68020; break;
603 default: arch_flags = M_UNKNOWN; break;
604 }
605 break;
606
607 case bfd_arch_i386:
608 if (machine == 0) arch_flags = M_386;
609 break;
610
611 case bfd_arch_a29k:
612 if (machine == 0) arch_flags = M_29K;
613 break;
614
615 case bfd_arch_mips:
616 switch (machine) {
617 case 0:
618 case 2000:
619 case 3000: arch_flags = M_MIPS1; break;
620 case 4000:
621 case 4400:
622 case 6000: arch_flags = M_MIPS2; break;
623 default: arch_flags = M_UNKNOWN; break;
624 }
625 break;
626
627 default:
628 arch_flags = M_UNKNOWN;
629 }
630 return arch_flags;
631 }
632
633
634 /*
635 FUNCTION
636 aout_<size>_set_arch_mach
637
638 DESCRIPTION
639 Sets the architecture and the machine of the BFD to those
640 values supplied. Verifies that the format can support the
641 architecture required.
642
643 SYNOPSIS
644 boolean aout_<size>_set_arch_mach,
645 (bfd *,
646 enum bfd_architecture,
647 unsigned long machine));
648 */
649
650 boolean
651 DEFUN(NAME(aout,set_arch_mach),(abfd, arch, machine),
652 bfd *abfd AND
653 enum bfd_architecture arch AND
654 unsigned long machine)
655 {
656 bfd_default_set_arch_mach(abfd, arch, machine);
657 if (arch != bfd_arch_unknown &&
658 NAME(aout,machine_type) (arch, machine) == M_UNKNOWN)
659 return false; /* We can't represent this type */
660
661 /* Determine the size of a relocation entry */
662 switch (arch) {
663 case bfd_arch_sparc:
664 case bfd_arch_a29k:
665 case bfd_arch_mips:
666 obj_reloc_entry_size (abfd) = RELOC_EXT_SIZE;
667 break;
668 default:
669 obj_reloc_entry_size (abfd) = RELOC_STD_SIZE;
670 break;
671 }
672
673 return (*aout_backend_info(abfd)->set_sizes) (abfd);
674 }
675
676 boolean
677 DEFUN (NAME (aout,adjust_sizes_and_vmas), (abfd, text_size, text_end),
678 bfd *abfd AND bfd_size_type *text_size AND file_ptr *text_end)
679 {
680 struct internal_exec *execp = exec_hdr (abfd);
681 if ((obj_textsec (abfd) == NULL) || (obj_datasec (abfd) == NULL))
682 {
683 bfd_error = invalid_operation;
684 return false;
685 }
686 if (adata(abfd).magic != undecided_magic) return true;
687 obj_textsec(abfd)->_raw_size =
688 align_power(obj_textsec(abfd)->_raw_size,
689 obj_textsec(abfd)->alignment_power);
690
691 *text_size = obj_textsec (abfd)->_raw_size;
692 /* Rule (heuristic) for when to pad to a new page. Note that there
693 * are (at least) two ways demand-paged (ZMAGIC) files have been
694 * handled. Most Berkeley-based systems start the text segment at
695 * (PAGE_SIZE). However, newer versions of SUNOS start the text
696 * segment right after the exec header; the latter is counted in the
697 * text segment size, and is paged in by the kernel with the rest of
698 * the text. */
699
700 /* This perhaps isn't the right way to do this, but made it simpler for me
701 to understand enough to implement it. Better would probably be to go
702 right from BFD flags to alignment/positioning characteristics. But the
703 old code was sloppy enough about handling the flags, and had enough
704 other magic, that it was a little hard for me to understand. I think
705 I understand it better now, but I haven't time to do the cleanup this
706 minute. */
707 if (adata(abfd).magic == undecided_magic)
708 {
709 if (abfd->flags & D_PAGED)
710 /* whether or not WP_TEXT is set */
711 adata(abfd).magic = z_magic;
712 else if (abfd->flags & WP_TEXT)
713 adata(abfd).magic = n_magic;
714 else
715 adata(abfd).magic = o_magic;
716 }
717
718 #ifdef BFD_AOUT_DEBUG /* requires gcc2 */
719 #if __GNUC__ >= 2
720 fprintf (stderr, "%s text=<%x,%x,%x> data=<%x,%x,%x> bss=<%x,%x,%x>\n",
721 ({ char *str;
722 switch (adata(abfd).magic) {
723 case n_magic: str = "NMAGIC"; break;
724 case o_magic: str = "OMAGIC"; break;
725 case z_magic: str = "ZMAGIC"; break;
726 default: abort ();
727 }
728 str;
729 }),
730 obj_textsec(abfd)->vma, obj_textsec(abfd)->_raw_size, obj_textsec(abfd)->alignment_power,
731 obj_datasec(abfd)->vma, obj_datasec(abfd)->_raw_size, obj_datasec(abfd)->alignment_power,
732 obj_bsssec(abfd)->vma, obj_bsssec(abfd)->_raw_size, obj_bsssec(abfd)->alignment_power);
733 #endif
734 #endif
735
736 switch (adata(abfd).magic)
737 {
738 case o_magic:
739 {
740 file_ptr pos = adata (abfd).exec_bytes_size;
741 bfd_vma vma = 0;
742 int pad = 0;
743
744 obj_textsec(abfd)->filepos = pos;
745 pos += obj_textsec(abfd)->_raw_size;
746 vma += obj_textsec(abfd)->_raw_size;
747 if (!obj_datasec(abfd)->user_set_vma)
748 {
749 #if 0 /* ?? Does alignment in the file image really matter? */
750 pad = align_power (vma, obj_datasec(abfd)->alignment_power) - vma;
751 #endif
752 obj_textsec(abfd)->_raw_size += pad;
753 pos += pad;
754 vma += pad;
755 obj_datasec(abfd)->vma = vma;
756 }
757 obj_datasec(abfd)->filepos = pos;
758 pos += obj_datasec(abfd)->_raw_size;
759 vma += obj_datasec(abfd)->_raw_size;
760 if (!obj_bsssec(abfd)->user_set_vma)
761 {
762 #if 0
763 pad = align_power (vma, obj_bsssec(abfd)->alignment_power) - vma;
764 #endif
765 obj_datasec(abfd)->_raw_size += pad;
766 pos += pad;
767 vma += pad;
768 obj_bsssec(abfd)->vma = vma;
769 }
770 obj_bsssec(abfd)->filepos = pos;
771 execp->a_text = obj_textsec(abfd)->_raw_size;
772 execp->a_data = obj_datasec(abfd)->_raw_size;
773 execp->a_bss = obj_bsssec(abfd)->_raw_size;
774 N_SET_MAGIC (*execp, OMAGIC);
775 }
776 break;
777 case z_magic:
778 {
779 bfd_size_type data_pad, text_pad;
780 file_ptr text_end;
781 CONST struct aout_backend_data *abdp;
782 int ztih;
783 bfd_vma data_vma;
784
785 abdp = aout_backend_info (abfd);
786 ztih = abdp && abdp->text_includes_header;
787 obj_textsec(abfd)->filepos = (ztih
788 ? adata(abfd).exec_bytes_size
789 : adata(abfd).page_size);
790 if (! obj_textsec(abfd)->user_set_vma)
791 /* ?? Do we really need to check for relocs here? */
792 obj_textsec(abfd)->vma = ((abfd->flags & HAS_RELOC)
793 ? 0
794 : (ztih
795 ? (abdp->default_text_vma
796 + adata(abfd).exec_bytes_size)
797 : abdp->default_text_vma));
798 /* Could take strange alignment of text section into account here? */
799
800 /* Find start of data. */
801 text_end = obj_textsec(abfd)->filepos + obj_textsec(abfd)->_raw_size;
802 text_pad = BFD_ALIGN (text_end, adata(abfd).page_size) - text_end;
803 obj_textsec(abfd)->_raw_size += text_pad;
804 text_end += text_pad;
805
806 if (!obj_datasec(abfd)->user_set_vma)
807 {
808 bfd_vma vma;
809 vma = obj_textsec(abfd)->vma + obj_textsec(abfd)->_raw_size;
810 obj_datasec(abfd)->vma = BFD_ALIGN (vma, adata(abfd).segment_size);
811 }
812 data_vma = obj_datasec(abfd)->vma;
813 if (abdp && abdp->zmagic_mapped_contiguous)
814 {
815 text_pad = (obj_datasec(abfd)->vma
816 - obj_textsec(abfd)->vma
817 - obj_textsec(abfd)->_raw_size);
818 obj_textsec(abfd)->_raw_size += text_pad;
819 }
820 obj_datasec(abfd)->filepos = (obj_textsec(abfd)->filepos
821 + obj_textsec(abfd)->_raw_size);
822
823 /* Fix up exec header while we're at it. */
824 execp->a_text = obj_textsec(abfd)->_raw_size;
825 if (ztih && (!abdp || (abdp && !abdp->exec_header_not_counted)))
826 execp->a_text += adata(abfd).exec_bytes_size;
827 N_SET_MAGIC (*execp, ZMAGIC);
828 /* Spec says data section should be rounded up to page boundary. */
829 /* If extra space in page is left after data section, fudge data
830 in the header so that the bss section looks smaller by that
831 amount. We'll start the bss section there, and lie to the OS. */
832 obj_datasec(abfd)->_raw_size
833 = align_power (obj_datasec(abfd)->_raw_size,
834 obj_bsssec(abfd)->alignment_power);
835 execp->a_data = BFD_ALIGN (obj_datasec(abfd)->_raw_size,
836 adata(abfd).page_size);
837 data_pad = execp->a_data - obj_datasec(abfd)->_raw_size;
838
839 if (!obj_bsssec(abfd)->user_set_vma)
840 obj_bsssec(abfd)->vma = (obj_datasec(abfd)->vma
841 + obj_datasec(abfd)->_raw_size);
842 if (data_pad > obj_bsssec(abfd)->_raw_size)
843 execp->a_bss = 0;
844 else
845 execp->a_bss = obj_bsssec(abfd)->_raw_size - data_pad;
846 }
847 break;
848 case n_magic:
849 {
850 file_ptr pos = adata(abfd).exec_bytes_size;
851 bfd_vma vma = 0;
852 int pad;
853
854 obj_textsec(abfd)->filepos = pos;
855 if (!obj_textsec(abfd)->user_set_vma)
856 obj_textsec(abfd)->vma = vma;
857 else
858 vma = obj_textsec(abfd)->vma;
859 pos += obj_textsec(abfd)->_raw_size;
860 vma += obj_textsec(abfd)->_raw_size;
861 obj_datasec(abfd)->filepos = pos;
862 if (!obj_datasec(abfd)->user_set_vma)
863 obj_datasec(abfd)->vma = BFD_ALIGN (vma, adata(abfd).segment_size);
864 vma = obj_datasec(abfd)->vma;
865
866 /* Since BSS follows data immediately, see if it needs alignment. */
867 vma += obj_datasec(abfd)->_raw_size;
868 pad = align_power (vma, obj_bsssec(abfd)->alignment_power) - vma;
869 obj_datasec(abfd)->_raw_size += pad;
870 pos += obj_datasec(abfd)->_raw_size;
871
872 if (!obj_bsssec(abfd)->user_set_vma)
873 obj_bsssec(abfd)->vma = vma;
874 else
875 vma = obj_bsssec(abfd)->vma;
876 }
877 execp->a_text = obj_textsec(abfd)->_raw_size;
878 execp->a_data = obj_datasec(abfd)->_raw_size;
879 execp->a_bss = obj_bsssec(abfd)->_raw_size;
880 N_SET_MAGIC (*execp, NMAGIC);
881 break;
882 default:
883 abort ();
884 }
885 #ifdef BFD_AOUT_DEBUG
886 fprintf (stderr, " text=<%x,%x,%x> data=<%x,%x,%x> bss=<%x,%x>\n",
887 obj_textsec(abfd)->vma, obj_textsec(abfd)->_raw_size, obj_textsec(abfd)->filepos,
888 obj_datasec(abfd)->vma, obj_datasec(abfd)->_raw_size, obj_datasec(abfd)->filepos,
889 obj_bsssec(abfd)->vma, obj_bsssec(abfd)->_raw_size);
890 #endif
891 return true;
892 }
893
894 /*
895 FUNCTION
896 aout_<size>_new_section_hook
897
898 DESCRIPTION
899 Called by the BFD in response to a @code{bfd_make_section}
900 request.
901
902 SYNOPSIS
903 boolean aout_<size>_new_section_hook,
904 (bfd *abfd,
905 asection *newsect));
906 */
907 boolean
908 DEFUN(NAME(aout,new_section_hook),(abfd, newsect),
909 bfd *abfd AND
910 asection *newsect)
911 {
912 /* align to double at least */
913 newsect->alignment_power = bfd_get_arch_info(abfd)->section_align_power;
914
915
916 if (bfd_get_format (abfd) == bfd_object)
917 {
918 if (obj_textsec(abfd) == NULL && !strcmp(newsect->name, ".text")) {
919 obj_textsec(abfd)= newsect;
920 newsect->target_index = N_TEXT | N_EXT;
921 return true;
922 }
923
924 if (obj_datasec(abfd) == NULL && !strcmp(newsect->name, ".data")) {
925 obj_datasec(abfd) = newsect;
926 newsect->target_index = N_DATA | N_EXT;
927 return true;
928 }
929
930 if (obj_bsssec(abfd) == NULL && !strcmp(newsect->name, ".bss")) {
931 obj_bsssec(abfd) = newsect;
932 newsect->target_index = N_BSS | N_EXT;
933 return true;
934 }
935
936 }
937
938 /* We allow more than three sections internally */
939 return true;
940 }
941
942 boolean
943 DEFUN(NAME(aout,set_section_contents),(abfd, section, location, offset, count),
944 bfd *abfd AND
945 sec_ptr section AND
946 PTR location AND
947 file_ptr offset AND
948 bfd_size_type count)
949 {
950 file_ptr text_end;
951 bfd_size_type text_size;
952
953 if (abfd->output_has_begun == false)
954 {
955 if (NAME(aout,adjust_sizes_and_vmas) (abfd,
956 &text_size,
957 &text_end) == false)
958 return false;
959 }
960
961 /* regardless, once we know what we're doing, we might as well get going */
962 if (section != obj_bsssec(abfd))
963 {
964 bfd_seek (abfd, section->filepos + offset, SEEK_SET);
965
966 if (count) {
967 return (bfd_write ((PTR)location, 1, count, abfd) == count) ?
968 true : false;
969 }
970 return true;
971 }
972 return true;
973 }
974 \f
975 /* Classify stabs symbols */
976
977 #define sym_in_text_section(sym) \
978 (((sym)->type & (N_ABS | N_TEXT | N_DATA | N_BSS))== N_TEXT)
979
980 #define sym_in_data_section(sym) \
981 (((sym)->type & (N_ABS | N_TEXT | N_DATA | N_BSS))== N_DATA)
982
983 #define sym_in_bss_section(sym) \
984 (((sym)->type & (N_ABS | N_TEXT | N_DATA | N_BSS))== N_BSS)
985
986 /* Symbol is undefined if type is N_UNDF|N_EXT and if it has
987 zero in the "value" field. Nonzeroes there are fortrancommon
988 symbols. */
989 #define sym_is_undefined(sym) \
990 ((sym)->type == (N_UNDF | N_EXT) && (sym)->symbol.value == 0)
991
992 /* Symbol is a global definition if N_EXT is on and if it has
993 a nonzero type field. */
994 #define sym_is_global_defn(sym) \
995 (((sym)->type & N_EXT) && (sym)->type & N_TYPE)
996
997 /* Symbol is debugger info if any bits outside N_TYPE or N_EXT
998 are on. */
999 #define sym_is_debugger_info(sym) \
1000 ((sym)->type & ~(N_EXT | N_TYPE))
1001
1002 #define sym_is_fortrancommon(sym) \
1003 (((sym)->type == (N_EXT)) && (sym)->symbol.value != 0)
1004
1005 /* Symbol is absolute if it has N_ABS set */
1006 #define sym_is_absolute(sym) \
1007 (((sym)->type & N_TYPE)== N_ABS)
1008
1009
1010 #define sym_is_indirect(sym) \
1011 (((sym)->type & N_ABS)== N_ABS)
1012
1013 /* Only in their own functions for ease of debugging; when sym flags have
1014 stabilised these should be inlined into their (single) caller */
1015
1016 static void
1017 DEFUN (translate_from_native_sym_flags, (sym_pointer, cache_ptr, abfd),
1018 struct external_nlist *sym_pointer AND
1019 aout_symbol_type * cache_ptr AND
1020 bfd * abfd)
1021 {
1022 cache_ptr->symbol.section = 0;
1023 switch (cache_ptr->type & N_TYPE)
1024 {
1025 case N_SETA:
1026 case N_SETT:
1027 case N_SETD:
1028 case N_SETB:
1029 {
1030 char *copy = bfd_alloc (abfd, strlen (cache_ptr->symbol.name) + 1);
1031 asection *section;
1032 asection *into_section;
1033
1034 arelent_chain *reloc = (arelent_chain *) bfd_alloc (abfd, sizeof (arelent_chain));
1035 strcpy (copy, cache_ptr->symbol.name);
1036
1037 /* Make sure that this bfd has a section with the right contructor
1038 name */
1039 section = bfd_get_section_by_name (abfd, copy);
1040 if (!section)
1041 section = bfd_make_section (abfd, copy);
1042
1043 /* Build a relocation entry for the constructor */
1044 switch ((cache_ptr->type & N_TYPE))
1045 {
1046 case N_SETA:
1047 into_section = &bfd_abs_section;
1048 cache_ptr->type = N_ABS;
1049 break;
1050 case N_SETT:
1051 into_section = (asection *) obj_textsec (abfd);
1052 cache_ptr->type = N_TEXT;
1053 break;
1054 case N_SETD:
1055 into_section = (asection *) obj_datasec (abfd);
1056 cache_ptr->type = N_DATA;
1057 break;
1058 case N_SETB:
1059 into_section = (asection *) obj_bsssec (abfd);
1060 cache_ptr->type = N_BSS;
1061 break;
1062 default:
1063 abort ();
1064 }
1065
1066 /* Build a relocation pointing into the constuctor section
1067 pointing at the symbol in the set vector specified */
1068
1069 reloc->relent.addend = cache_ptr->symbol.value;
1070 cache_ptr->symbol.section = into_section->symbol->section;
1071 reloc->relent.sym_ptr_ptr = into_section->symbol_ptr_ptr;
1072
1073
1074 /* We modify the symbol to belong to a section depending upon the
1075 name of the symbol - probably __CTOR__ or __DTOR__ but we don't
1076 really care, and add to the size of the section to contain a
1077 pointer to the symbol. Build a reloc entry to relocate to this
1078 symbol attached to this section. */
1079
1080 section->flags = SEC_CONSTRUCTOR;
1081
1082
1083 section->reloc_count++;
1084 section->alignment_power = 2;
1085
1086 reloc->next = section->constructor_chain;
1087 section->constructor_chain = reloc;
1088 reloc->relent.address = section->_raw_size;
1089 section->_raw_size += sizeof (int *);
1090
1091 reloc->relent.howto
1092 = (obj_reloc_entry_size(abfd) == RELOC_EXT_SIZE
1093 ? howto_table_ext : howto_table_std)
1094 + CTOR_TABLE_RELOC_IDX;
1095 cache_ptr->symbol.flags |= BSF_CONSTRUCTOR;
1096 }
1097 break;
1098 default:
1099 if (cache_ptr->type == N_WARNING)
1100 {
1101 /* This symbol is the text of a warning message, the next symbol
1102 is the symbol to associate the warning with */
1103 cache_ptr->symbol.flags = BSF_DEBUGGING | BSF_WARNING;
1104
1105 /* @@ Stuffing pointers into integers is a no-no.
1106 We can usually get away with it if the integer is
1107 large enough though. */
1108 if (sizeof (cache_ptr + 1) > sizeof (bfd_vma))
1109 abort ();
1110 cache_ptr->symbol.value = (bfd_vma) ((cache_ptr + 1));
1111
1112 /* We furgle with the next symbol in place.
1113 We don't want it to be undefined, we'll trample the type */
1114 (sym_pointer + 1)->e_type[0] = 0xff;
1115 break;
1116 }
1117 if ((cache_ptr->type | N_EXT) == (N_INDR | N_EXT))
1118 {
1119 /* Two symbols in a row for an INDR message. The first symbol
1120 contains the name we will match, the second symbol contains
1121 the name the first name is translated into. It is supplied to
1122 us undefined. This is good, since we want to pull in any files
1123 which define it */
1124 cache_ptr->symbol.flags = BSF_DEBUGGING | BSF_INDIRECT;
1125
1126 /* @@ Stuffing pointers into integers is a no-no.
1127 We can usually get away with it if the integer is
1128 large enough though. */
1129 if (sizeof (cache_ptr + 1) > sizeof (bfd_vma))
1130 abort ();
1131
1132 cache_ptr->symbol.value = (bfd_vma) ((cache_ptr + 1));
1133 cache_ptr->symbol.section = &bfd_ind_section;
1134 }
1135
1136 else if (sym_is_debugger_info (cache_ptr))
1137 {
1138 cache_ptr->symbol.flags = BSF_DEBUGGING;
1139 /* Work out the section correct for this symbol */
1140 switch (cache_ptr->type & N_TYPE)
1141 {
1142 case N_TEXT:
1143 case N_FN:
1144 cache_ptr->symbol.section = obj_textsec (abfd);
1145 cache_ptr->symbol.value -= obj_textsec (abfd)->vma;
1146 break;
1147 case N_DATA:
1148 cache_ptr->symbol.value -= obj_datasec (abfd)->vma;
1149 cache_ptr->symbol.section = obj_datasec (abfd);
1150 break;
1151 case N_BSS:
1152 cache_ptr->symbol.section = obj_bsssec (abfd);
1153 cache_ptr->symbol.value -= obj_bsssec (abfd)->vma;
1154 break;
1155 default:
1156 case N_ABS:
1157
1158 cache_ptr->symbol.section = &bfd_abs_section;
1159 break;
1160 }
1161 }
1162 else
1163 {
1164
1165 if (sym_is_fortrancommon (cache_ptr))
1166 {
1167 cache_ptr->symbol.flags = 0;
1168 cache_ptr->symbol.section = &bfd_com_section;
1169 }
1170 else
1171 {
1172
1173
1174 }
1175
1176 /* In a.out, the value of a symbol is always relative to the
1177 * start of the file, if this is a data symbol we'll subtract
1178 * the size of the text section to get the section relative
1179 * value. If this is a bss symbol (which would be strange)
1180 * we'll subtract the size of the previous two sections
1181 * to find the section relative address.
1182 */
1183
1184 if (sym_in_text_section (cache_ptr))
1185 {
1186 cache_ptr->symbol.value -= obj_textsec (abfd)->vma;
1187 cache_ptr->symbol.section = obj_textsec (abfd);
1188 }
1189 else if (sym_in_data_section (cache_ptr))
1190 {
1191 cache_ptr->symbol.value -= obj_datasec (abfd)->vma;
1192 cache_ptr->symbol.section = obj_datasec (abfd);
1193 }
1194 else if (sym_in_bss_section (cache_ptr))
1195 {
1196 cache_ptr->symbol.section = obj_bsssec (abfd);
1197 cache_ptr->symbol.value -= obj_bsssec (abfd)->vma;
1198 }
1199 else if (sym_is_undefined (cache_ptr))
1200 {
1201 cache_ptr->symbol.flags = 0;
1202 cache_ptr->symbol.section = &bfd_und_section;
1203 }
1204 else if (sym_is_absolute (cache_ptr))
1205 {
1206 cache_ptr->symbol.section = &bfd_abs_section;
1207 }
1208
1209 if (sym_is_global_defn (cache_ptr))
1210 {
1211 cache_ptr->symbol.flags = BSF_GLOBAL | BSF_EXPORT;
1212 }
1213 else
1214 {
1215 cache_ptr->symbol.flags = BSF_LOCAL;
1216 }
1217 }
1218 }
1219 if (cache_ptr->symbol.section == 0)
1220 abort ();
1221 }
1222
1223
1224
1225 static void
1226 DEFUN(translate_to_native_sym_flags,(sym_pointer, cache_ptr, abfd),
1227 struct external_nlist *sym_pointer AND
1228 asymbol *cache_ptr AND
1229 bfd *abfd)
1230 {
1231 bfd_vma value = cache_ptr->value;
1232
1233 /* mask out any existing type bits in case copying from one section
1234 to another */
1235 sym_pointer->e_type[0] &= ~N_TYPE;
1236
1237
1238 /* We attempt to order these tests by decreasing frequency of success,
1239 according to tcov when linking the linker. */
1240 if (bfd_get_output_section(cache_ptr) == &bfd_abs_section) {
1241 sym_pointer->e_type[0] |= N_ABS;
1242 }
1243 else if (bfd_get_output_section(cache_ptr) == obj_textsec (abfd)) {
1244 sym_pointer->e_type[0] |= N_TEXT;
1245 }
1246 else if (bfd_get_output_section(cache_ptr) == obj_datasec (abfd)) {
1247 sym_pointer->e_type[0] |= N_DATA;
1248 }
1249 else if (bfd_get_output_section(cache_ptr) == obj_bsssec (abfd)) {
1250 sym_pointer->e_type[0] |= N_BSS;
1251 }
1252 else if (bfd_get_output_section(cache_ptr) == &bfd_und_section)
1253 {
1254 sym_pointer->e_type[0] = (N_UNDF | N_EXT);
1255 }
1256 else if (bfd_get_output_section(cache_ptr) == &bfd_ind_section)
1257 {
1258 sym_pointer->e_type[0] = N_INDR;
1259 }
1260 else if (bfd_is_com_section (bfd_get_output_section (cache_ptr))) {
1261 sym_pointer->e_type[0] = (N_UNDF | N_EXT);
1262 }
1263 else {
1264 if (cache_ptr->section->output_section)
1265 {
1266
1267 bfd_error_vector.nonrepresentable_section(abfd,
1268 bfd_get_output_section(cache_ptr)->name);
1269 }
1270 else
1271 {
1272 bfd_error_vector.nonrepresentable_section(abfd,
1273 cache_ptr->section->name);
1274
1275 }
1276
1277 }
1278 /* Turn the symbol from section relative to absolute again */
1279
1280 value += cache_ptr->section->output_section->vma + cache_ptr->section->output_offset ;
1281
1282
1283 if (cache_ptr->flags & (BSF_WARNING)) {
1284 (sym_pointer+1)->e_type[0] = 1;
1285 }
1286
1287 if (cache_ptr->flags & BSF_DEBUGGING) {
1288 sym_pointer->e_type[0] = ((aout_symbol_type *)cache_ptr)->type;
1289 }
1290 else if (cache_ptr->flags & (BSF_GLOBAL | BSF_EXPORT)) {
1291 sym_pointer->e_type[0] |= N_EXT;
1292 }
1293 if (cache_ptr->flags & BSF_CONSTRUCTOR) {
1294 int type = ((aout_symbol_type *)cache_ptr)->type;
1295 switch (type)
1296 {
1297 case N_ABS: type = N_SETA; break;
1298 case N_TEXT: type = N_SETT; break;
1299 case N_DATA: type = N_SETD; break;
1300 case N_BSS: type = N_SETB; break;
1301 }
1302 sym_pointer->e_type[0] = type;
1303 }
1304
1305 PUT_WORD(abfd, value, sym_pointer->e_value);
1306 }
1307 \f
1308 /* Native-level interface to symbols. */
1309
1310 /* We read the symbols into a buffer, which is discarded when this
1311 function exits. We read the strings into a buffer large enough to
1312 hold them all plus all the cached symbol entries. */
1313
1314 asymbol *
1315 DEFUN(NAME(aout,make_empty_symbol),(abfd),
1316 bfd *abfd)
1317 {
1318 aout_symbol_type *new =
1319 (aout_symbol_type *)bfd_zalloc (abfd, sizeof (aout_symbol_type));
1320 new->symbol.the_bfd = abfd;
1321
1322 return &new->symbol;
1323 }
1324
1325 boolean
1326 DEFUN(NAME(aout,slurp_symbol_table),(abfd),
1327 bfd *abfd)
1328 {
1329 bfd_size_type symbol_size;
1330 bfd_size_type string_size;
1331 unsigned char string_chars[BYTES_IN_WORD];
1332 struct external_nlist *syms;
1333 char *strings;
1334 aout_symbol_type *cached;
1335
1336 /* If there's no work to be done, don't do any */
1337 if (obj_aout_symbols (abfd) != (aout_symbol_type *)NULL) return true;
1338 symbol_size = exec_hdr(abfd)->a_syms;
1339 if (symbol_size == 0)
1340 {
1341 bfd_error = no_symbols;
1342 return false;
1343 }
1344
1345 bfd_seek (abfd, obj_str_filepos (abfd), SEEK_SET);
1346 if (bfd_read ((PTR)string_chars, BYTES_IN_WORD, 1, abfd) != BYTES_IN_WORD)
1347 return false;
1348 string_size = GET_WORD (abfd, string_chars);
1349
1350 strings =(char *) bfd_alloc(abfd, string_size + 1);
1351 cached = (aout_symbol_type *)
1352 bfd_zalloc(abfd, (bfd_size_type)(bfd_get_symcount (abfd) * sizeof(aout_symbol_type)));
1353
1354 /* malloc this, so we can free it if simply. The symbol caching
1355 might want to allocate onto the bfd's obstack */
1356 syms = (struct external_nlist *) bfd_xmalloc(symbol_size);
1357 bfd_seek (abfd, obj_sym_filepos (abfd), SEEK_SET);
1358 if (bfd_read ((PTR)syms, 1, symbol_size, abfd) != symbol_size)
1359 {
1360 bailout:
1361 if (syms)
1362 free (syms);
1363 if (cached)
1364 bfd_release (abfd, cached);
1365 if (strings)
1366 bfd_release (abfd, strings);
1367 return false;
1368 }
1369
1370 bfd_seek (abfd, obj_str_filepos (abfd), SEEK_SET);
1371 if (bfd_read ((PTR)strings, 1, string_size, abfd) != string_size)
1372 {
1373 goto bailout;
1374 }
1375 strings[string_size] = 0; /* Just in case. */
1376
1377 /* OK, now walk the new symtable, cacheing symbol properties */
1378 {
1379 register struct external_nlist *sym_pointer;
1380 register struct external_nlist *sym_end = syms + bfd_get_symcount (abfd);
1381 register aout_symbol_type *cache_ptr = cached;
1382
1383 /* Run through table and copy values */
1384 for (sym_pointer = syms, cache_ptr = cached;
1385 sym_pointer < sym_end; sym_pointer ++, cache_ptr++)
1386 {
1387 long x = GET_WORD(abfd, sym_pointer->e_strx);
1388 cache_ptr->symbol.the_bfd = abfd;
1389 if (x == 0)
1390 cache_ptr->symbol.name = "";
1391 else if (x >= 0 && x < string_size)
1392 cache_ptr->symbol.name = x + strings;
1393 else
1394 goto bailout;
1395
1396 cache_ptr->symbol.value = GET_SWORD(abfd, sym_pointer->e_value);
1397 cache_ptr->desc = bfd_h_get_16(abfd, sym_pointer->e_desc);
1398 cache_ptr->other = bfd_h_get_8(abfd, sym_pointer->e_other);
1399 cache_ptr->type = bfd_h_get_8(abfd, sym_pointer->e_type);
1400 cache_ptr->symbol.udata = 0;
1401 translate_from_native_sym_flags (sym_pointer, cache_ptr, abfd);
1402 }
1403 }
1404
1405 obj_aout_symbols (abfd) = cached;
1406 free((PTR)syms);
1407
1408 return true;
1409 }
1410
1411 \f
1412 /* Possible improvements:
1413 + look for strings matching trailing substrings of other strings
1414 + better data structures? balanced trees?
1415 + smaller per-string or per-symbol data? re-use some of the symbol's
1416 data fields?
1417 + also look at reducing memory use elsewhere -- maybe if we didn't have to
1418 construct the entire symbol table at once, we could get by with smaller
1419 amounts of VM? (What effect does that have on the string table
1420 reductions?)
1421 + rip this out of here, put it into its own file in bfd or libiberty, so
1422 coff and elf can use it too. I'll work on this soon, but have more
1423 pressing tasks right now.
1424
1425 A hash table might(?) be more efficient for handling exactly the cases that
1426 are handled now, but for trailing substring matches, I think we want to
1427 examine the `nearest' values (reverse-)lexically, not merely impose a strict
1428 order, nor look only for exact-match or not-match. I don't think a hash
1429 table would be very useful for that, and I don't feel like fleshing out two
1430 completely different implementations. [raeburn:930419.0331EDT] */
1431
1432 #if __GNUC__ >= 2
1433 #define INLINE __inline__
1434 #else
1435 #define INLINE
1436 #endif
1437
1438 struct stringtab_entry {
1439 /* Hash value for this string. Only useful so long as we aren't doing
1440 substring matches. */
1441 unsigned int hash;
1442
1443 /* Next node to look at, depending on whether the hash value of the string
1444 being searched for is less than or greater than the hash value of the
1445 current node. For now, `equal to' is lumped in with `greater than', for
1446 space efficiency. It's not a common enough case to warrant another field
1447 to be used for all nodes. */
1448 struct stringtab_entry *less;
1449 struct stringtab_entry *greater;
1450
1451 /* The string itself. */
1452 CONST char *string;
1453
1454 /* The index allocated for this string. */
1455 bfd_size_type index;
1456
1457 #ifdef GATHER_STATISTICS
1458 /* How many references have there been to this string? (Not currently used;
1459 could be dumped out for anaylsis, if anyone's interested.) */
1460 unsigned long count;
1461 #endif
1462
1463 /* Next node in linked list, in suggested output order. */
1464 struct stringtab_entry *next_to_output;
1465 };
1466
1467 struct stringtab_data {
1468 /* Tree of string table entries. */
1469 struct stringtab_entry *strings;
1470
1471 /* Fudge factor used to center top node of tree. */
1472 int hash_zero;
1473
1474 /* Next index value to issue. */
1475 bfd_size_type index;
1476
1477 /* Index used for empty strings. Cached here because checking for them
1478 is really easy, and we can avoid searching the tree. */
1479 bfd_size_type empty_string_index;
1480
1481 /* These fields indicate the two ends of a singly-linked list that indicates
1482 the order strings should be written out in. Use this order, and no
1483 seeking will need to be done, so output efficiency should be maximized. */
1484 struct stringtab_entry **end;
1485 struct stringtab_entry *output_order;
1486
1487 #ifdef GATHER_STATISTICS
1488 /* Number of strings which duplicate strings already in the table. */
1489 unsigned long duplicates;
1490
1491 /* Number of bytes saved by not having to write all the duplicate strings. */
1492 unsigned long bytes_saved;
1493
1494 /* Number of zero-length strings. Currently, these all turn into
1495 references to the null byte at the end of the first string. In some
1496 cases (possibly not all? explore this...), it should be possible to
1497 simply write out a zero index value. */
1498 unsigned long empty_strings;
1499
1500 /* Number of times the hash values matched but the strings were different.
1501 Note that this includes the number of times the other string(s) occurs, so
1502 there may only be two strings hashing to the same value, even if this
1503 number is very large. */
1504 unsigned long bad_hash_matches;
1505
1506 /* Null strings aren't counted in this one.
1507 This will probably only be nonzero if we've got an input file
1508 which was produced by `ld -r' (i.e., it's already been processed
1509 through this code). Under some operating systems, native tools
1510 may make all empty strings have the same index; but the pointer
1511 check won't catch those, because to get to that stage we'd already
1512 have to compute the checksum, which requires reading the string,
1513 so we short-circuit that case with empty_string_index above. */
1514 unsigned long pointer_matches;
1515
1516 /* Number of comparisons done. I figure with the algorithms in use below,
1517 the average number of comparisons done (per symbol) should be roughly
1518 log-base-2 of the number of unique strings. */
1519 unsigned long n_compares;
1520 #endif
1521 };
1522
1523 /* Some utility functions for the string table code. */
1524
1525 /* For speed, only hash on the first this many bytes of strings.
1526 This number was chosen by profiling ld linking itself, with -g. */
1527 #define HASHMAXLEN 25
1528
1529 #define HASH_CHAR(c) (sum ^= sum >> 20, sum ^= sum << 7, sum += (c))
1530
1531 static INLINE unsigned int
1532 hash (string, len)
1533 unsigned char *string;
1534 register unsigned int len;
1535 {
1536 register unsigned int sum = 0;
1537
1538 if (len > HASHMAXLEN)
1539 {
1540 HASH_CHAR (len);
1541 len = HASHMAXLEN;
1542 }
1543
1544 while (len--)
1545 {
1546 HASH_CHAR (*string++);
1547 }
1548 return sum;
1549 }
1550
1551 static INLINE void
1552 stringtab_init (tab)
1553 struct stringtab_data *tab;
1554 {
1555 tab->strings = 0;
1556 tab->output_order = 0;
1557 tab->end = &tab->output_order;
1558
1559 /* Initial string table length includes size of length field. */
1560 tab->index = BYTES_IN_WORD;
1561 tab->empty_string_index = -1;
1562 #ifdef GATHER_STATISTICS
1563 tab->duplicates = 0;
1564 tab->empty_strings = 0;
1565 tab->bad_hash_matches = 0;
1566 tab->pointer_matches = 0;
1567 tab->bytes_saved = 0;
1568 tab->n_compares = 0;
1569 #endif
1570 }
1571
1572 static INLINE int
1573 compare (entry, str, hash)
1574 struct stringtab_entry *entry;
1575 CONST char *str;
1576 unsigned int hash;
1577 {
1578 return hash - entry->hash;
1579 }
1580
1581 #ifdef GATHER_STATISTICS
1582 /* Don't want to have to link in math library with all bfd applications... */
1583 static INLINE double
1584 log2 (num)
1585 int num;
1586 {
1587 double d = num;
1588 #if defined (__i386__) && __GNUC__ >= 2
1589 asm ("fyl2x" : "=t" (d) : "0" (d), "u" (1.0));
1590 return d;
1591 #else
1592 int n = 0;
1593 while (d >= 2.0)
1594 n++, d /= 2.0;
1595 return ((d > 1.41) ? 0.5 : 0) + n;
1596 #endif
1597 }
1598 #endif
1599
1600 /* Main string table routines. */
1601 /* Returns index in string table. Whether or not this actually adds an
1602 entry into the string table should be irrelevant -- it just has to
1603 return a valid index. */
1604 static bfd_size_type
1605 add_to_stringtab (abfd, str, tab, check)
1606 bfd *abfd;
1607 CONST char *str;
1608 struct stringtab_data *tab;
1609 int check;
1610 {
1611 struct stringtab_entry **ep;
1612 register struct stringtab_entry *entry;
1613 unsigned int hashval, len;
1614
1615 if (str[0] == 0)
1616 {
1617 bfd_size_type index;
1618 CONST bfd_size_type minus_one = -1;
1619
1620 #ifdef GATHER_STATISTICS
1621 tab->empty_strings++;
1622 #endif
1623 index = tab->empty_string_index;
1624 if (index != minus_one)
1625 {
1626 got_empty:
1627 #ifdef GATHER_STATISTICS
1628 tab->bytes_saved++;
1629 tab->duplicates++;
1630 #endif
1631 return index;
1632 }
1633
1634 /* Need to find it. */
1635 entry = tab->strings;
1636 if (entry)
1637 {
1638 index = entry->index + strlen (entry->string);
1639 tab->empty_string_index = index;
1640 goto got_empty;
1641 }
1642 len = 0;
1643 }
1644 else
1645 len = strlen (str);
1646
1647 /* The hash_zero value is chosen such that the first symbol gets a value of
1648 zero. With a balanced tree, this wouldn't be very useful, but without it,
1649 we might get a more even split at the top level, instead of skewing it
1650 badly should hash("/usr/lib/crt0.o") (or whatever) be far from zero. */
1651 hashval = hash (str, len) ^ tab->hash_zero;
1652 ep = &tab->strings;
1653 if (!*ep)
1654 {
1655 tab->hash_zero = hashval;
1656 hashval = 0;
1657 goto add_it;
1658 }
1659
1660 while (*ep)
1661 {
1662 register int cmp;
1663
1664 entry = *ep;
1665 #ifdef GATHER_STATISTICS
1666 tab->n_compares++;
1667 #endif
1668 cmp = compare (entry, str, hashval);
1669 /* The not-equal cases are more frequent, so check them first. */
1670 if (cmp > 0)
1671 ep = &entry->greater;
1672 else if (cmp < 0)
1673 ep = &entry->less;
1674 else
1675 {
1676 if (entry->string == str)
1677 {
1678 #ifdef GATHER_STATISTICS
1679 tab->pointer_matches++;
1680 #endif
1681 goto match;
1682 }
1683 /* Compare the first bytes to save a function call if they
1684 don't match. */
1685 if (entry->string[0] == str[0] && !strcmp (entry->string, str))
1686 {
1687 match:
1688 #ifdef GATHER_STATISTICS
1689 entry->count++;
1690 tab->bytes_saved += len + 1;
1691 tab->duplicates++;
1692 #endif
1693 /* If we're in the linker, and the new string is from a new
1694 input file which might have already had these reductions
1695 run over it, we want to keep the new string pointer. I
1696 don't think we're likely to see any (or nearly as many,
1697 at least) cases where a later string is in the same location
1698 as an earlier one rather than this one. */
1699 entry->string = str;
1700 return entry->index;
1701 }
1702 #ifdef GATHER_STATISTICS
1703 tab->bad_hash_matches++;
1704 #endif
1705 ep = &entry->greater;
1706 }
1707 }
1708
1709 /* If we get here, nothing that's in the table already matched.
1710 EP points to the `next' field at the end of the chain; stick a
1711 new entry on here. */
1712 add_it:
1713 entry = (struct stringtab_entry *)
1714 bfd_alloc_by_size_t (abfd, sizeof (struct stringtab_entry));
1715
1716 entry->less = entry->greater = 0;
1717 entry->hash = hashval;
1718 entry->index = tab->index;
1719 entry->string = str;
1720 entry->next_to_output = 0;
1721 #ifdef GATHER_STATISTICS
1722 entry->count = 1;
1723 #endif
1724
1725 assert (*tab->end == 0);
1726 *(tab->end) = entry;
1727 tab->end = &entry->next_to_output;
1728 assert (*tab->end == 0);
1729
1730 {
1731 tab->index += len + 1;
1732 if (len == 0)
1733 tab->empty_string_index = entry->index;
1734 }
1735 assert (*ep == 0);
1736 *ep = entry;
1737 return entry->index;
1738 }
1739
1740 static void
1741 emit_strtab (abfd, tab)
1742 bfd *abfd;
1743 struct stringtab_data *tab;
1744 {
1745 struct stringtab_entry *entry;
1746 #ifdef GATHER_STATISTICS
1747 int count = 0;
1748 #endif
1749
1750 /* Be sure to put string length into correct byte ordering before writing
1751 it out. */
1752 char buffer[BYTES_IN_WORD];
1753
1754 PUT_WORD (abfd, tab->index, (unsigned char *) buffer);
1755 bfd_write ((PTR) buffer, 1, BYTES_IN_WORD, abfd);
1756
1757 for (entry = tab->output_order; entry; entry = entry->next_to_output)
1758 {
1759 bfd_write ((PTR) entry->string, 1, strlen (entry->string) + 1, abfd);
1760 #ifdef GATHER_STATISTICS
1761 count++;
1762 #endif
1763 }
1764
1765 #ifdef GATHER_STATISTICS
1766 /* Short form only, for now.
1767 To do: Specify output file. Conditionalize on environment? Detailed
1768 analysis if desired. */
1769 {
1770 int n_syms = bfd_get_symcount (abfd);
1771
1772 fprintf (stderr, "String table data for output file:\n");
1773 fprintf (stderr, " %8d symbols output\n", n_syms);
1774 fprintf (stderr, " %8d duplicate strings\n", tab->duplicates);
1775 fprintf (stderr, " %8d empty strings\n", tab->empty_strings);
1776 fprintf (stderr, " %8d unique strings output\n", count);
1777 fprintf (stderr, " %8d pointer matches\n", tab->pointer_matches);
1778 fprintf (stderr, " %8d bytes saved\n", tab->bytes_saved);
1779 fprintf (stderr, " %8d bad hash matches\n", tab->bad_hash_matches);
1780 fprintf (stderr, " %8d hash-val comparisons\n", tab->n_compares);
1781 if (n_syms)
1782 {
1783 double n_compares = tab->n_compares;
1784 double avg_compares = n_compares / n_syms;
1785 /* The second value here should usually be near one. */
1786 fprintf (stderr,
1787 "\t average %f comparisons per symbol (%f * log2 nstrings)\n",
1788 avg_compares, avg_compares / log2 (count));
1789 }
1790 }
1791 #endif
1792
1793 /* Old code:
1794 unsigned int count;
1795 generic = bfd_get_outsymbols(abfd);
1796 for (count = 0; count < bfd_get_symcount(abfd); count++)
1797 {
1798 asymbol *g = *(generic++);
1799
1800 if (g->name)
1801 {
1802 size_t length = strlen(g->name)+1;
1803 bfd_write((PTR)g->name, 1, length, abfd);
1804 }
1805 g->KEEPIT = (KEEPITTYPE) count;
1806 } */
1807 }
1808
1809 void
1810 DEFUN(NAME(aout,write_syms),(abfd),
1811 bfd *abfd)
1812 {
1813 unsigned int count ;
1814 asymbol **generic = bfd_get_outsymbols (abfd);
1815 struct stringtab_data strtab;
1816
1817 stringtab_init (&strtab);
1818
1819 for (count = 0; count < bfd_get_symcount (abfd); count++)
1820 {
1821 asymbol *g = generic[count];
1822 struct external_nlist nsp;
1823
1824 if (g->name)
1825 PUT_WORD (abfd, add_to_stringtab (abfd, g->name, &strtab),
1826 (unsigned char *) nsp.e_strx);
1827 else
1828 PUT_WORD (abfd, 0, (unsigned char *)nsp.e_strx);
1829
1830 if (bfd_asymbol_flavour(g) == abfd->xvec->flavour)
1831 {
1832 bfd_h_put_16(abfd, aout_symbol(g)->desc, nsp.e_desc);
1833 bfd_h_put_8(abfd, aout_symbol(g)->other, nsp.e_other);
1834 bfd_h_put_8(abfd, aout_symbol(g)->type, nsp.e_type);
1835 }
1836 else
1837 {
1838 bfd_h_put_16(abfd,0, nsp.e_desc);
1839 bfd_h_put_8(abfd, 0, nsp.e_other);
1840 bfd_h_put_8(abfd, 0, nsp.e_type);
1841 }
1842
1843 translate_to_native_sym_flags (&nsp, g, abfd);
1844
1845 bfd_write((PTR)&nsp,1,EXTERNAL_NLIST_SIZE, abfd);
1846
1847 /* NB: `KEEPIT' currently overlays `flags', so set this only
1848 here, at the end. */
1849 g->KEEPIT = count;
1850 }
1851
1852 emit_strtab (abfd, &strtab);
1853 }
1854
1855 \f
1856 unsigned int
1857 DEFUN(NAME(aout,get_symtab),(abfd, location),
1858 bfd *abfd AND
1859 asymbol **location)
1860 {
1861 unsigned int counter = 0;
1862 aout_symbol_type *symbase;
1863
1864 if (!NAME(aout,slurp_symbol_table)(abfd)) return 0;
1865
1866 for (symbase = obj_aout_symbols(abfd); counter++ < bfd_get_symcount (abfd);)
1867 *(location++) = (asymbol *)( symbase++);
1868 *location++ =0;
1869 return bfd_get_symcount (abfd);
1870 }
1871
1872 \f
1873 /* Standard reloc stuff */
1874 /* Output standard relocation information to a file in target byte order. */
1875
1876 void
1877 DEFUN(NAME(aout,swap_std_reloc_out),(abfd, g, natptr),
1878 bfd *abfd AND
1879 arelent *g AND
1880 struct reloc_std_external *natptr)
1881 {
1882 int r_index;
1883 asymbol *sym = *(g->sym_ptr_ptr);
1884 int r_extern;
1885 unsigned int r_length;
1886 int r_pcrel;
1887 int r_baserel, r_jmptable, r_relative;
1888 unsigned int r_addend;
1889 asection *output_section = sym->section->output_section;
1890
1891 PUT_WORD(abfd, g->address, natptr->r_address);
1892
1893 r_length = g->howto->size ; /* Size as a power of two */
1894 r_pcrel = (int) g->howto->pc_relative; /* Relative to PC? */
1895 /* r_baserel, r_jmptable, r_relative??? FIXME-soon */
1896 r_baserel = 0;
1897 r_jmptable = 0;
1898 r_relative = 0;
1899
1900 r_addend = g->addend + (*(g->sym_ptr_ptr))->section->output_section->vma;
1901
1902 /* name was clobbered by aout_write_syms to be symbol index */
1903
1904 /* If this relocation is relative to a symbol then set the
1905 r_index to the symbols index, and the r_extern bit.
1906
1907 Absolute symbols can come in in two ways, either as an offset
1908 from the abs section, or as a symbol which has an abs value.
1909 check for that here
1910 */
1911
1912
1913 if (bfd_is_com_section (output_section)
1914 || output_section == &bfd_abs_section
1915 || output_section == &bfd_und_section)
1916 {
1917 if (bfd_abs_section.symbol == sym)
1918 {
1919 /* Whoops, looked like an abs symbol, but is really an offset
1920 from the abs section */
1921 r_index = 0;
1922 r_extern = 0;
1923 }
1924 else
1925 {
1926 /* Fill in symbol */
1927 r_extern = 1;
1928 r_index = stoi((*(g->sym_ptr_ptr))->KEEPIT);
1929
1930 }
1931 }
1932 else
1933 {
1934 /* Just an ordinary section */
1935 r_extern = 0;
1936 r_index = output_section->target_index;
1937 }
1938
1939 /* now the fun stuff */
1940 if (abfd->xvec->header_byteorder_big_p != false) {
1941 natptr->r_index[0] = r_index >> 16;
1942 natptr->r_index[1] = r_index >> 8;
1943 natptr->r_index[2] = r_index;
1944 natptr->r_type[0] =
1945 (r_extern? RELOC_STD_BITS_EXTERN_BIG: 0)
1946 | (r_pcrel? RELOC_STD_BITS_PCREL_BIG: 0)
1947 | (r_baserel? RELOC_STD_BITS_BASEREL_BIG: 0)
1948 | (r_jmptable? RELOC_STD_BITS_JMPTABLE_BIG: 0)
1949 | (r_relative? RELOC_STD_BITS_RELATIVE_BIG: 0)
1950 | (r_length << RELOC_STD_BITS_LENGTH_SH_BIG);
1951 } else {
1952 natptr->r_index[2] = r_index >> 16;
1953 natptr->r_index[1] = r_index >> 8;
1954 natptr->r_index[0] = r_index;
1955 natptr->r_type[0] =
1956 (r_extern? RELOC_STD_BITS_EXTERN_LITTLE: 0)
1957 | (r_pcrel? RELOC_STD_BITS_PCREL_LITTLE: 0)
1958 | (r_baserel? RELOC_STD_BITS_BASEREL_LITTLE: 0)
1959 | (r_jmptable? RELOC_STD_BITS_JMPTABLE_LITTLE: 0)
1960 | (r_relative? RELOC_STD_BITS_RELATIVE_LITTLE: 0)
1961 | (r_length << RELOC_STD_BITS_LENGTH_SH_LITTLE);
1962 }
1963 }
1964
1965
1966 /* Extended stuff */
1967 /* Output extended relocation information to a file in target byte order. */
1968
1969 void
1970 DEFUN(NAME(aout,swap_ext_reloc_out),(abfd, g, natptr),
1971 bfd *abfd AND
1972 arelent *g AND
1973 register struct reloc_ext_external *natptr)
1974 {
1975 int r_index;
1976 int r_extern;
1977 unsigned int r_type;
1978 unsigned int r_addend;
1979 asymbol *sym = *(g->sym_ptr_ptr);
1980 asection *output_section = sym->section->output_section;
1981
1982 PUT_WORD (abfd, g->address, natptr->r_address);
1983
1984 r_type = (unsigned int) g->howto->type;
1985
1986 r_addend = g->addend + (*(g->sym_ptr_ptr))->section->output_section->vma;
1987
1988
1989 /* If this relocation is relative to a symbol then set the
1990 r_index to the symbols index, and the r_extern bit.
1991
1992 Absolute symbols can come in in two ways, either as an offset
1993 from the abs section, or as a symbol which has an abs value.
1994 check for that here
1995 */
1996
1997 if (bfd_is_com_section (output_section)
1998 || output_section == &bfd_abs_section
1999 || output_section == &bfd_und_section)
2000 {
2001 if (bfd_abs_section.symbol == sym)
2002 {
2003 /* Whoops, looked like an abs symbol, but is really an offset
2004 from the abs section */
2005 r_index = 0;
2006 r_extern = 0;
2007 }
2008 else
2009 {
2010 r_extern = 1;
2011 r_index = stoi((*(g->sym_ptr_ptr))->KEEPIT);
2012 }
2013 }
2014 else
2015 {
2016 /* Just an ordinary section */
2017 r_extern = 0;
2018 r_index = output_section->target_index;
2019 }
2020
2021
2022 /* now the fun stuff */
2023 if (abfd->xvec->header_byteorder_big_p != false) {
2024 natptr->r_index[0] = r_index >> 16;
2025 natptr->r_index[1] = r_index >> 8;
2026 natptr->r_index[2] = r_index;
2027 natptr->r_type[0] =
2028 (r_extern? RELOC_EXT_BITS_EXTERN_BIG: 0)
2029 | (r_type << RELOC_EXT_BITS_TYPE_SH_BIG);
2030 } else {
2031 natptr->r_index[2] = r_index >> 16;
2032 natptr->r_index[1] = r_index >> 8;
2033 natptr->r_index[0] = r_index;
2034 natptr->r_type[0] =
2035 (r_extern? RELOC_EXT_BITS_EXTERN_LITTLE: 0)
2036 | (r_type << RELOC_EXT_BITS_TYPE_SH_LITTLE);
2037 }
2038
2039 PUT_WORD (abfd, r_addend, natptr->r_addend);
2040 }
2041
2042 /* BFD deals internally with all things based from the section they're
2043 in. so, something in 10 bytes into a text section with a base of
2044 50 would have a symbol (.text+10) and know .text vma was 50.
2045
2046 Aout keeps all it's symbols based from zero, so the symbol would
2047 contain 60. This macro subs the base of each section from the value
2048 to give the true offset from the section */
2049
2050
2051 #define MOVE_ADDRESS(ad) \
2052 if (r_extern) { \
2053 /* undefined symbol */ \
2054 cache_ptr->sym_ptr_ptr = symbols + r_index; \
2055 cache_ptr->addend = ad; \
2056 } else { \
2057 /* defined, section relative. replace symbol with pointer to \
2058 symbol which points to section */ \
2059 switch (r_index) { \
2060 case N_TEXT: \
2061 case N_TEXT | N_EXT: \
2062 cache_ptr->sym_ptr_ptr = obj_textsec(abfd)->symbol_ptr_ptr; \
2063 cache_ptr->addend = ad - su->textsec->vma; \
2064 break; \
2065 case N_DATA: \
2066 case N_DATA | N_EXT: \
2067 cache_ptr->sym_ptr_ptr = obj_datasec(abfd)->symbol_ptr_ptr; \
2068 cache_ptr->addend = ad - su->datasec->vma; \
2069 break; \
2070 case N_BSS: \
2071 case N_BSS | N_EXT: \
2072 cache_ptr->sym_ptr_ptr = obj_bsssec(abfd)->symbol_ptr_ptr; \
2073 cache_ptr->addend = ad - su->bsssec->vma; \
2074 break; \
2075 default: \
2076 case N_ABS: \
2077 case N_ABS | N_EXT: \
2078 cache_ptr->sym_ptr_ptr = bfd_abs_section.symbol_ptr_ptr; \
2079 cache_ptr->addend = ad; \
2080 break; \
2081 } \
2082 } \
2083
2084 void
2085 DEFUN(NAME(aout,swap_ext_reloc_in), (abfd, bytes, cache_ptr, symbols),
2086 bfd *abfd AND
2087 struct reloc_ext_external *bytes AND
2088 arelent *cache_ptr AND
2089 asymbol **symbols)
2090 {
2091 int r_index;
2092 int r_extern;
2093 unsigned int r_type;
2094 struct aoutdata *su = &(abfd->tdata.aout_data->a);
2095
2096 cache_ptr->address = (GET_SWORD (abfd, bytes->r_address));
2097
2098 /* now the fun stuff */
2099 if (abfd->xvec->header_byteorder_big_p != false) {
2100 r_index = (bytes->r_index[0] << 16)
2101 | (bytes->r_index[1] << 8)
2102 | bytes->r_index[2];
2103 r_extern = (0 != (bytes->r_type[0] & RELOC_EXT_BITS_EXTERN_BIG));
2104 r_type = (bytes->r_type[0] & RELOC_EXT_BITS_TYPE_BIG)
2105 >> RELOC_EXT_BITS_TYPE_SH_BIG;
2106 } else {
2107 r_index = (bytes->r_index[2] << 16)
2108 | (bytes->r_index[1] << 8)
2109 | bytes->r_index[0];
2110 r_extern = (0 != (bytes->r_type[0] & RELOC_EXT_BITS_EXTERN_LITTLE));
2111 r_type = (bytes->r_type[0] & RELOC_EXT_BITS_TYPE_LITTLE)
2112 >> RELOC_EXT_BITS_TYPE_SH_LITTLE;
2113 }
2114
2115 cache_ptr->howto = howto_table_ext + r_type;
2116 MOVE_ADDRESS(GET_SWORD(abfd, bytes->r_addend));
2117 }
2118
2119 void
2120 DEFUN(NAME(aout,swap_std_reloc_in), (abfd, bytes, cache_ptr, symbols),
2121 bfd *abfd AND
2122 struct reloc_std_external *bytes AND
2123 arelent *cache_ptr AND
2124 asymbol **symbols)
2125 {
2126 int r_index;
2127 int r_extern;
2128 unsigned int r_length;
2129 int r_pcrel;
2130 int r_baserel, r_jmptable, r_relative;
2131 struct aoutdata *su = &(abfd->tdata.aout_data->a);
2132
2133 cache_ptr->address = bfd_h_get_32 (abfd, bytes->r_address);
2134
2135 /* now the fun stuff */
2136 if (abfd->xvec->header_byteorder_big_p != false) {
2137 r_index = (bytes->r_index[0] << 16)
2138 | (bytes->r_index[1] << 8)
2139 | bytes->r_index[2];
2140 r_extern = (0 != (bytes->r_type[0] & RELOC_STD_BITS_EXTERN_BIG));
2141 r_pcrel = (0 != (bytes->r_type[0] & RELOC_STD_BITS_PCREL_BIG));
2142 r_baserel = (0 != (bytes->r_type[0] & RELOC_STD_BITS_BASEREL_BIG));
2143 r_jmptable= (0 != (bytes->r_type[0] & RELOC_STD_BITS_JMPTABLE_BIG));
2144 r_relative= (0 != (bytes->r_type[0] & RELOC_STD_BITS_RELATIVE_BIG));
2145 r_length = (bytes->r_type[0] & RELOC_STD_BITS_LENGTH_BIG)
2146 >> RELOC_STD_BITS_LENGTH_SH_BIG;
2147 } else {
2148 r_index = (bytes->r_index[2] << 16)
2149 | (bytes->r_index[1] << 8)
2150 | bytes->r_index[0];
2151 r_extern = (0 != (bytes->r_type[0] & RELOC_STD_BITS_EXTERN_LITTLE));
2152 r_pcrel = (0 != (bytes->r_type[0] & RELOC_STD_BITS_PCREL_LITTLE));
2153 r_baserel = (0 != (bytes->r_type[0] & RELOC_STD_BITS_BASEREL_LITTLE));
2154 r_jmptable= (0 != (bytes->r_type[0] & RELOC_STD_BITS_JMPTABLE_LITTLE));
2155 r_relative= (0 != (bytes->r_type[0] & RELOC_STD_BITS_RELATIVE_LITTLE));
2156 r_length = (bytes->r_type[0] & RELOC_STD_BITS_LENGTH_LITTLE)
2157 >> RELOC_STD_BITS_LENGTH_SH_LITTLE;
2158 }
2159
2160 cache_ptr->howto = howto_table_std + r_length + 4 * r_pcrel;
2161 /* FIXME-soon: Roll baserel, jmptable, relative bits into howto setting */
2162
2163 MOVE_ADDRESS(0);
2164 }
2165
2166 /* Reloc hackery */
2167
2168 boolean
2169 DEFUN(NAME(aout,slurp_reloc_table),(abfd, asect, symbols),
2170 bfd *abfd AND
2171 sec_ptr asect AND
2172 asymbol **symbols)
2173 {
2174 unsigned int count;
2175 bfd_size_type reloc_size;
2176 PTR relocs;
2177 arelent *reloc_cache;
2178 size_t each_size;
2179
2180 if (asect->relocation) return true;
2181
2182 if (asect->flags & SEC_CONSTRUCTOR) return true;
2183
2184 if (asect == obj_datasec (abfd)) {
2185 reloc_size = exec_hdr(abfd)->a_drsize;
2186 goto doit;
2187 }
2188
2189 if (asect == obj_textsec (abfd)) {
2190 reloc_size = exec_hdr(abfd)->a_trsize;
2191 goto doit;
2192 }
2193
2194 bfd_error = invalid_operation;
2195 return false;
2196
2197 doit:
2198 bfd_seek (abfd, asect->rel_filepos, SEEK_SET);
2199 each_size = obj_reloc_entry_size (abfd);
2200
2201 count = reloc_size / each_size;
2202
2203
2204 reloc_cache = (arelent *) bfd_zalloc (abfd, (size_t)(count * sizeof
2205 (arelent)));
2206 if (!reloc_cache) {
2207 nomem:
2208 bfd_error = no_memory;
2209 return false;
2210 }
2211
2212 relocs = (PTR) bfd_alloc (abfd, reloc_size);
2213 if (!relocs) {
2214 bfd_release (abfd, reloc_cache);
2215 goto nomem;
2216 }
2217
2218 if (bfd_read (relocs, 1, reloc_size, abfd) != reloc_size) {
2219 bfd_release (abfd, relocs);
2220 bfd_release (abfd, reloc_cache);
2221 bfd_error = system_call_error;
2222 return false;
2223 }
2224
2225 if (each_size == RELOC_EXT_SIZE) {
2226 register struct reloc_ext_external *rptr = (struct reloc_ext_external *) relocs;
2227 unsigned int counter = 0;
2228 arelent *cache_ptr = reloc_cache;
2229
2230 for (; counter < count; counter++, rptr++, cache_ptr++) {
2231 NAME(aout,swap_ext_reloc_in)(abfd, rptr, cache_ptr, symbols);
2232 }
2233 } else {
2234 register struct reloc_std_external *rptr = (struct reloc_std_external*) relocs;
2235 unsigned int counter = 0;
2236 arelent *cache_ptr = reloc_cache;
2237
2238 for (; counter < count; counter++, rptr++, cache_ptr++) {
2239 NAME(aout,swap_std_reloc_in)(abfd, rptr, cache_ptr, symbols);
2240 }
2241
2242 }
2243
2244 bfd_release (abfd,relocs);
2245 asect->relocation = reloc_cache;
2246 asect->reloc_count = count;
2247 return true;
2248 }
2249
2250
2251
2252 /* Write out a relocation section into an object file. */
2253
2254 boolean
2255 DEFUN(NAME(aout,squirt_out_relocs),(abfd, section),
2256 bfd *abfd AND
2257 asection *section)
2258 {
2259 arelent **generic;
2260 unsigned char *native, *natptr;
2261 size_t each_size;
2262
2263 unsigned int count = section->reloc_count;
2264 size_t natsize;
2265
2266 if (count == 0) return true;
2267
2268 each_size = obj_reloc_entry_size (abfd);
2269 natsize = each_size * count;
2270 native = (unsigned char *) bfd_zalloc (abfd, natsize);
2271 if (!native) {
2272 bfd_error = no_memory;
2273 return false;
2274 }
2275
2276 generic = section->orelocation;
2277
2278 if (each_size == RELOC_EXT_SIZE)
2279 {
2280 for (natptr = native;
2281 count != 0;
2282 --count, natptr += each_size, ++generic)
2283 NAME(aout,swap_ext_reloc_out) (abfd, *generic, (struct reloc_ext_external *)natptr);
2284 }
2285 else
2286 {
2287 for (natptr = native;
2288 count != 0;
2289 --count, natptr += each_size, ++generic)
2290 NAME(aout,swap_std_reloc_out)(abfd, *generic, (struct reloc_std_external *)natptr);
2291 }
2292
2293 if ( bfd_write ((PTR) native, 1, natsize, abfd) != natsize) {
2294 bfd_release(abfd, native);
2295 return false;
2296 }
2297 bfd_release (abfd, native);
2298
2299 return true;
2300 }
2301
2302 /* This is stupid. This function should be a boolean predicate */
2303 unsigned int
2304 DEFUN(NAME(aout,canonicalize_reloc),(abfd, section, relptr, symbols),
2305 bfd *abfd AND
2306 sec_ptr section AND
2307 arelent **relptr AND
2308 asymbol **symbols)
2309 {
2310 arelent *tblptr = section->relocation;
2311 unsigned int count;
2312
2313 if (!(tblptr || NAME(aout,slurp_reloc_table)(abfd, section, symbols)))
2314 return 0;
2315
2316 if (section->flags & SEC_CONSTRUCTOR) {
2317 arelent_chain *chain = section->constructor_chain;
2318 for (count = 0; count < section->reloc_count; count ++) {
2319 *relptr ++ = &chain->relent;
2320 chain = chain->next;
2321 }
2322 }
2323 else {
2324 tblptr = section->relocation;
2325 if (!tblptr) return 0;
2326
2327 for (count = 0; count++ < section->reloc_count;)
2328 {
2329 *relptr++ = tblptr++;
2330 }
2331 }
2332 *relptr = 0;
2333
2334 return section->reloc_count;
2335 }
2336
2337 unsigned int
2338 DEFUN(NAME(aout,get_reloc_upper_bound),(abfd, asect),
2339 bfd *abfd AND
2340 sec_ptr asect)
2341 {
2342 if (bfd_get_format (abfd) != bfd_object) {
2343 bfd_error = invalid_operation;
2344 return 0;
2345 }
2346 if (asect->flags & SEC_CONSTRUCTOR) {
2347 return (sizeof (arelent *) * (asect->reloc_count+1));
2348 }
2349
2350
2351 if (asect == obj_datasec (abfd))
2352 return (sizeof (arelent *) *
2353 ((exec_hdr(abfd)->a_drsize / obj_reloc_entry_size (abfd))
2354 +1));
2355
2356 if (asect == obj_textsec (abfd))
2357 return (sizeof (arelent *) *
2358 ((exec_hdr(abfd)->a_trsize / obj_reloc_entry_size (abfd))
2359 +1));
2360
2361 bfd_error = invalid_operation;
2362 return 0;
2363 }
2364
2365 \f
2366 unsigned int
2367 DEFUN(NAME(aout,get_symtab_upper_bound),(abfd),
2368 bfd *abfd)
2369 {
2370 if (!NAME(aout,slurp_symbol_table)(abfd)) return 0;
2371
2372 return (bfd_get_symcount (abfd)+1) * (sizeof (aout_symbol_type *));
2373 }
2374 alent *
2375 DEFUN(NAME(aout,get_lineno),(ignore_abfd, ignore_symbol),
2376 bfd *ignore_abfd AND
2377 asymbol *ignore_symbol)
2378 {
2379 return (alent *)NULL;
2380 }
2381
2382 void
2383 DEFUN(NAME(aout,get_symbol_info),(ignore_abfd, symbol, ret),
2384 bfd *ignore_abfd AND
2385 asymbol *symbol AND
2386 symbol_info *ret)
2387 {
2388 bfd_symbol_info (symbol, ret);
2389
2390 if (ret->type == '?')
2391 {
2392 int type_code = aout_symbol(symbol)->type & 0xff;
2393 CONST char *stab_name = aout_stab_name(type_code);
2394 static char buf[10];
2395
2396 if (stab_name == NULL)
2397 {
2398 sprintf(buf, "(%d)", type_code);
2399 stab_name = buf;
2400 }
2401 ret->type = '-';
2402 ret->stab_other = (unsigned)(aout_symbol(symbol)->other & 0xff);
2403 ret->stab_desc = (unsigned)(aout_symbol(symbol)->desc & 0xffff);
2404 ret->stab_name = stab_name;
2405 }
2406 }
2407
2408 void
2409 DEFUN(NAME(aout,print_symbol),(ignore_abfd, afile, symbol, how),
2410 bfd *ignore_abfd AND
2411 PTR afile AND
2412 asymbol *symbol AND
2413 bfd_print_symbol_type how)
2414 {
2415 FILE *file = (FILE *)afile;
2416
2417 switch (how) {
2418 case bfd_print_symbol_name:
2419 if (symbol->name)
2420 fprintf(file,"%s", symbol->name);
2421 break;
2422 case bfd_print_symbol_more:
2423 fprintf(file,"%4x %2x %2x",(unsigned)(aout_symbol(symbol)->desc & 0xffff),
2424 (unsigned)(aout_symbol(symbol)->other & 0xff),
2425 (unsigned)(aout_symbol(symbol)->type));
2426 break;
2427 case bfd_print_symbol_all:
2428 {
2429 CONST char *section_name = symbol->section->name;
2430
2431
2432 bfd_print_symbol_vandf((PTR)file,symbol);
2433
2434 fprintf(file," %-5s %04x %02x %02x",
2435 section_name,
2436 (unsigned)(aout_symbol(symbol)->desc & 0xffff),
2437 (unsigned)(aout_symbol(symbol)->other & 0xff),
2438 (unsigned)(aout_symbol(symbol)->type & 0xff));
2439 if (symbol->name)
2440 fprintf(file," %s", symbol->name);
2441 }
2442 break;
2443 }
2444 }
2445
2446 /*
2447 provided a BFD, a section and an offset into the section, calculate
2448 and return the name of the source file and the line nearest to the
2449 wanted location.
2450 */
2451
2452 boolean
2453 DEFUN(NAME(aout,find_nearest_line),(abfd,
2454 section,
2455 symbols,
2456 offset,
2457 filename_ptr,
2458 functionname_ptr,
2459 line_ptr),
2460 bfd *abfd AND
2461 asection *section AND
2462 asymbol **symbols AND
2463 bfd_vma offset AND
2464 CONST char **filename_ptr AND
2465 CONST char **functionname_ptr AND
2466 unsigned int *line_ptr)
2467 {
2468 /* Run down the file looking for the filename, function and linenumber */
2469 asymbol **p;
2470 static char buffer[100];
2471 static char filename_buffer[200];
2472 CONST char *directory_name = NULL;
2473 CONST char *main_file_name = NULL;
2474 CONST char *current_file_name = NULL;
2475 CONST char *line_file_name = NULL; /* Value of current_file_name at line number. */
2476 bfd_vma high_line_vma = ~0;
2477 bfd_vma low_func_vma = 0;
2478 asymbol *func = 0;
2479 *filename_ptr = abfd->filename;
2480 *functionname_ptr = 0;
2481 *line_ptr = 0;
2482 if (symbols != (asymbol **)NULL) {
2483 for (p = symbols; *p; p++) {
2484 aout_symbol_type *q = (aout_symbol_type *)(*p);
2485 next:
2486 switch (q->type){
2487 case N_SO:
2488 main_file_name = current_file_name = q->symbol.name;
2489 /* Look ahead to next symbol to check if that too is an N_SO. */
2490 p++;
2491 if (*p == NULL)
2492 break;
2493 q = (aout_symbol_type *)(*p);
2494 if (q->type != (int)N_SO)
2495 goto next;
2496
2497 /* Found a second N_SO First is directory; second is filename. */
2498 directory_name = current_file_name;
2499 main_file_name = current_file_name = q->symbol.name;
2500 if (obj_textsec(abfd) != section)
2501 goto done;
2502 break;
2503 case N_SOL:
2504 current_file_name = q->symbol.name;
2505 break;
2506
2507 case N_SLINE:
2508
2509 case N_DSLINE:
2510 case N_BSLINE:
2511 /* We'll keep this if it resolves nearer than the one we have already */
2512 if (q->symbol.value >= offset &&
2513 q->symbol.value < high_line_vma) {
2514 *line_ptr = q->desc;
2515 high_line_vma = q->symbol.value;
2516 line_file_name = current_file_name;
2517 }
2518 break;
2519 case N_FUN:
2520 {
2521 /* We'll keep this if it is nearer than the one we have already */
2522 if (q->symbol.value >= low_func_vma &&
2523 q->symbol.value <= offset) {
2524 low_func_vma = q->symbol.value;
2525 func = (asymbol *)q;
2526 }
2527 if (*line_ptr && func) {
2528 CONST char *function = func->name;
2529 char *p;
2530 strncpy(buffer, function, sizeof(buffer)-1);
2531 buffer[sizeof(buffer)-1] = 0;
2532 /* Have to remove : stuff */
2533 p = strchr(buffer,':');
2534 if (p != NULL) { *p = '\0'; }
2535 *functionname_ptr = buffer;
2536 goto done;
2537
2538 }
2539 }
2540 break;
2541 }
2542 }
2543 }
2544
2545 done:
2546 if (*line_ptr)
2547 main_file_name = line_file_name;
2548 if (main_file_name) {
2549 if (main_file_name[0] == '/' || directory_name == NULL)
2550 *filename_ptr = main_file_name;
2551 else {
2552 sprintf(filename_buffer, "%.140s%.50s",
2553 directory_name, main_file_name);
2554 *filename_ptr = filename_buffer;
2555 }
2556 }
2557 return true;
2558
2559 }
2560
2561 int
2562 DEFUN(NAME(aout,sizeof_headers),(abfd, execable),
2563 bfd *abfd AND
2564 boolean execable)
2565 {
2566 return adata(abfd).exec_bytes_size;
2567 }