s390: Add DT_JMPREL pointing to .rela.[i]plt with static-pie
[binutils-gdb.git] / bfd / coff-alpha.c
1 /* BFD back-end for ALPHA Extended-Coff files.
2 Copyright (C) 1993-2022 Free Software Foundation, Inc.
3 Modified from coff-mips.c by Steve Chamberlain <sac@cygnus.com> and
4 Ian Lance Taylor <ian@cygnus.com>.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "bfdlink.h"
26 #include "libbfd.h"
27 #include "coff/internal.h"
28 #include "coff/sym.h"
29 #include "coff/symconst.h"
30 #include "coff/ecoff.h"
31 #include "coff/alpha.h"
32 #include "aout/ar.h"
33 #include "libcoff.h"
34 #include "libecoff.h"
35 \f
36 /* Prototypes for static functions. */
37
38
39 \f
40 /* ECOFF has COFF sections, but the debugging information is stored in
41 a completely different format. ECOFF targets use some of the
42 swapping routines from coffswap.h, and some of the generic COFF
43 routines in coffgen.c, but, unlike the real COFF targets, do not
44 use coffcode.h itself.
45
46 Get the generic COFF swapping routines, except for the reloc,
47 symbol, and lineno ones. Give them ecoff names. Define some
48 accessor macros for the large sizes used for Alpha ECOFF. */
49
50 #define GET_FILEHDR_SYMPTR H_GET_64
51 #define PUT_FILEHDR_SYMPTR H_PUT_64
52 #define GET_AOUTHDR_TSIZE H_GET_64
53 #define PUT_AOUTHDR_TSIZE H_PUT_64
54 #define GET_AOUTHDR_DSIZE H_GET_64
55 #define PUT_AOUTHDR_DSIZE H_PUT_64
56 #define GET_AOUTHDR_BSIZE H_GET_64
57 #define PUT_AOUTHDR_BSIZE H_PUT_64
58 #define GET_AOUTHDR_ENTRY H_GET_64
59 #define PUT_AOUTHDR_ENTRY H_PUT_64
60 #define GET_AOUTHDR_TEXT_START H_GET_64
61 #define PUT_AOUTHDR_TEXT_START H_PUT_64
62 #define GET_AOUTHDR_DATA_START H_GET_64
63 #define PUT_AOUTHDR_DATA_START H_PUT_64
64 #define GET_SCNHDR_PADDR H_GET_64
65 #define PUT_SCNHDR_PADDR H_PUT_64
66 #define GET_SCNHDR_VADDR H_GET_64
67 #define PUT_SCNHDR_VADDR H_PUT_64
68 #define GET_SCNHDR_SIZE H_GET_64
69 #define PUT_SCNHDR_SIZE H_PUT_64
70 #define GET_SCNHDR_SCNPTR H_GET_64
71 #define PUT_SCNHDR_SCNPTR H_PUT_64
72 #define GET_SCNHDR_RELPTR H_GET_64
73 #define PUT_SCNHDR_RELPTR H_PUT_64
74 #define GET_SCNHDR_LNNOPTR H_GET_64
75 #define PUT_SCNHDR_LNNOPTR H_PUT_64
76
77 #define ALPHAECOFF
78
79 #define NO_COFF_RELOCS
80 #define NO_COFF_SYMBOLS
81 #define NO_COFF_LINENOS
82 #define coff_swap_filehdr_in alpha_ecoff_swap_filehdr_in
83 #define coff_swap_filehdr_out alpha_ecoff_swap_filehdr_out
84 #define coff_swap_aouthdr_in alpha_ecoff_swap_aouthdr_in
85 #define coff_swap_aouthdr_out alpha_ecoff_swap_aouthdr_out
86 #define coff_swap_scnhdr_in alpha_ecoff_swap_scnhdr_in
87 #define coff_swap_scnhdr_out alpha_ecoff_swap_scnhdr_out
88 #include "coffswap.h"
89
90 /* Get the ECOFF swapping routines. */
91 #define ECOFF_64
92 #include "ecoffswap.h"
93 \f
94 /* How to process the various reloc types. */
95
96 static bfd_reloc_status_type
97 reloc_nil (bfd *abfd ATTRIBUTE_UNUSED,
98 arelent *reloc ATTRIBUTE_UNUSED,
99 asymbol *sym ATTRIBUTE_UNUSED,
100 void * data ATTRIBUTE_UNUSED,
101 asection *sec ATTRIBUTE_UNUSED,
102 bfd *output_bfd ATTRIBUTE_UNUSED,
103 char **error_message ATTRIBUTE_UNUSED)
104 {
105 return bfd_reloc_ok;
106 }
107
108 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
109 from smaller values. Start with zero, widen, *then* decrement. */
110 #define MINUS_ONE (((bfd_vma)0) - 1)
111
112 static reloc_howto_type alpha_howto_table[] =
113 {
114 /* Reloc type 0 is ignored by itself. However, it appears after a
115 GPDISP reloc to identify the location where the low order 16 bits
116 of the gp register are loaded. */
117 HOWTO (ALPHA_R_IGNORE, /* type */
118 0, /* rightshift */
119 0, /* size (0 = byte, 1 = short, 2 = long) */
120 8, /* bitsize */
121 true, /* pc_relative */
122 0, /* bitpos */
123 complain_overflow_dont, /* complain_on_overflow */
124 reloc_nil, /* special_function */
125 "IGNORE", /* name */
126 true, /* partial_inplace */
127 0, /* src_mask */
128 0, /* dst_mask */
129 true), /* pcrel_offset */
130
131 /* A 32 bit reference to a symbol. */
132 HOWTO (ALPHA_R_REFLONG, /* type */
133 0, /* rightshift */
134 2, /* size (0 = byte, 1 = short, 2 = long) */
135 32, /* bitsize */
136 false, /* pc_relative */
137 0, /* bitpos */
138 complain_overflow_bitfield, /* complain_on_overflow */
139 0, /* special_function */
140 "REFLONG", /* name */
141 true, /* partial_inplace */
142 0xffffffff, /* src_mask */
143 0xffffffff, /* dst_mask */
144 false), /* pcrel_offset */
145
146 /* A 64 bit reference to a symbol. */
147 HOWTO (ALPHA_R_REFQUAD, /* type */
148 0, /* rightshift */
149 4, /* size (0 = byte, 1 = short, 2 = long) */
150 64, /* bitsize */
151 false, /* pc_relative */
152 0, /* bitpos */
153 complain_overflow_bitfield, /* complain_on_overflow */
154 0, /* special_function */
155 "REFQUAD", /* name */
156 true, /* partial_inplace */
157 MINUS_ONE, /* src_mask */
158 MINUS_ONE, /* dst_mask */
159 false), /* pcrel_offset */
160
161 /* A 32 bit GP relative offset. This is just like REFLONG except
162 that when the value is used the value of the gp register will be
163 added in. */
164 HOWTO (ALPHA_R_GPREL32, /* type */
165 0, /* rightshift */
166 2, /* size (0 = byte, 1 = short, 2 = long) */
167 32, /* bitsize */
168 false, /* pc_relative */
169 0, /* bitpos */
170 complain_overflow_bitfield, /* complain_on_overflow */
171 0, /* special_function */
172 "GPREL32", /* name */
173 true, /* partial_inplace */
174 0xffffffff, /* src_mask */
175 0xffffffff, /* dst_mask */
176 false), /* pcrel_offset */
177
178 /* Used for an instruction that refers to memory off the GP
179 register. The offset is 16 bits of the 32 bit instruction. This
180 reloc always seems to be against the .lita section. */
181 HOWTO (ALPHA_R_LITERAL, /* type */
182 0, /* rightshift */
183 2, /* size (0 = byte, 1 = short, 2 = long) */
184 16, /* bitsize */
185 false, /* pc_relative */
186 0, /* bitpos */
187 complain_overflow_signed, /* complain_on_overflow */
188 0, /* special_function */
189 "LITERAL", /* name */
190 true, /* partial_inplace */
191 0xffff, /* src_mask */
192 0xffff, /* dst_mask */
193 false), /* pcrel_offset */
194
195 /* This reloc only appears immediately following a LITERAL reloc.
196 It identifies a use of the literal. It seems that the linker can
197 use this to eliminate a portion of the .lita section. The symbol
198 index is special: 1 means the literal address is in the base
199 register of a memory format instruction; 2 means the literal
200 address is in the byte offset register of a byte-manipulation
201 instruction; 3 means the literal address is in the target
202 register of a jsr instruction. This does not actually do any
203 relocation. */
204 HOWTO (ALPHA_R_LITUSE, /* type */
205 0, /* rightshift */
206 2, /* size (0 = byte, 1 = short, 2 = long) */
207 32, /* bitsize */
208 false, /* pc_relative */
209 0, /* bitpos */
210 complain_overflow_dont, /* complain_on_overflow */
211 reloc_nil, /* special_function */
212 "LITUSE", /* name */
213 false, /* partial_inplace */
214 0, /* src_mask */
215 0, /* dst_mask */
216 false), /* pcrel_offset */
217
218 /* Load the gp register. This is always used for a ldah instruction
219 which loads the upper 16 bits of the gp register. The next reloc
220 will be an IGNORE reloc which identifies the location of the lda
221 instruction which loads the lower 16 bits. The symbol index of
222 the GPDISP instruction appears to actually be the number of bytes
223 between the ldah and lda instructions. This gives two different
224 ways to determine where the lda instruction is; I don't know why
225 both are used. The value to use for the relocation is the
226 difference between the GP value and the current location; the
227 load will always be done against a register holding the current
228 address. */
229 HOWTO (ALPHA_R_GPDISP, /* type */
230 16, /* rightshift */
231 2, /* size (0 = byte, 1 = short, 2 = long) */
232 16, /* bitsize */
233 true, /* pc_relative */
234 0, /* bitpos */
235 complain_overflow_dont, /* complain_on_overflow */
236 reloc_nil, /* special_function */
237 "GPDISP", /* name */
238 true, /* partial_inplace */
239 0xffff, /* src_mask */
240 0xffff, /* dst_mask */
241 true), /* pcrel_offset */
242
243 /* A 21 bit branch. The native assembler generates these for
244 branches within the text segment, and also fills in the PC
245 relative offset in the instruction. */
246 HOWTO (ALPHA_R_BRADDR, /* type */
247 2, /* rightshift */
248 2, /* size (0 = byte, 1 = short, 2 = long) */
249 21, /* bitsize */
250 true, /* pc_relative */
251 0, /* bitpos */
252 complain_overflow_signed, /* complain_on_overflow */
253 0, /* special_function */
254 "BRADDR", /* name */
255 true, /* partial_inplace */
256 0x1fffff, /* src_mask */
257 0x1fffff, /* dst_mask */
258 false), /* pcrel_offset */
259
260 /* A hint for a jump to a register. */
261 HOWTO (ALPHA_R_HINT, /* type */
262 2, /* rightshift */
263 2, /* size (0 = byte, 1 = short, 2 = long) */
264 14, /* bitsize */
265 true, /* pc_relative */
266 0, /* bitpos */
267 complain_overflow_dont, /* complain_on_overflow */
268 0, /* special_function */
269 "HINT", /* name */
270 true, /* partial_inplace */
271 0x3fff, /* src_mask */
272 0x3fff, /* dst_mask */
273 false), /* pcrel_offset */
274
275 /* 16 bit PC relative offset. */
276 HOWTO (ALPHA_R_SREL16, /* type */
277 0, /* rightshift */
278 1, /* size (0 = byte, 1 = short, 2 = long) */
279 16, /* bitsize */
280 true, /* pc_relative */
281 0, /* bitpos */
282 complain_overflow_signed, /* complain_on_overflow */
283 0, /* special_function */
284 "SREL16", /* name */
285 true, /* partial_inplace */
286 0xffff, /* src_mask */
287 0xffff, /* dst_mask */
288 false), /* pcrel_offset */
289
290 /* 32 bit PC relative offset. */
291 HOWTO (ALPHA_R_SREL32, /* type */
292 0, /* rightshift */
293 2, /* size (0 = byte, 1 = short, 2 = long) */
294 32, /* bitsize */
295 true, /* pc_relative */
296 0, /* bitpos */
297 complain_overflow_signed, /* complain_on_overflow */
298 0, /* special_function */
299 "SREL32", /* name */
300 true, /* partial_inplace */
301 0xffffffff, /* src_mask */
302 0xffffffff, /* dst_mask */
303 false), /* pcrel_offset */
304
305 /* A 64 bit PC relative offset. */
306 HOWTO (ALPHA_R_SREL64, /* type */
307 0, /* rightshift */
308 4, /* size (0 = byte, 1 = short, 2 = long) */
309 64, /* bitsize */
310 true, /* pc_relative */
311 0, /* bitpos */
312 complain_overflow_signed, /* complain_on_overflow */
313 0, /* special_function */
314 "SREL64", /* name */
315 true, /* partial_inplace */
316 MINUS_ONE, /* src_mask */
317 MINUS_ONE, /* dst_mask */
318 false), /* pcrel_offset */
319
320 /* Push a value on the reloc evaluation stack. */
321 HOWTO (ALPHA_R_OP_PUSH, /* type */
322 0, /* rightshift */
323 0, /* size (0 = byte, 1 = short, 2 = long) */
324 0, /* bitsize */
325 false, /* pc_relative */
326 0, /* bitpos */
327 complain_overflow_dont, /* complain_on_overflow */
328 0, /* special_function */
329 "OP_PUSH", /* name */
330 false, /* partial_inplace */
331 0, /* src_mask */
332 0, /* dst_mask */
333 false), /* pcrel_offset */
334
335 /* Store the value from the stack at the given address. Store it in
336 a bitfield of size r_size starting at bit position r_offset. */
337 HOWTO (ALPHA_R_OP_STORE, /* type */
338 0, /* rightshift */
339 4, /* size (0 = byte, 1 = short, 2 = long) */
340 64, /* bitsize */
341 false, /* pc_relative */
342 0, /* bitpos */
343 complain_overflow_dont, /* complain_on_overflow */
344 0, /* special_function */
345 "OP_STORE", /* name */
346 false, /* partial_inplace */
347 0, /* src_mask */
348 MINUS_ONE, /* dst_mask */
349 false), /* pcrel_offset */
350
351 /* Subtract the reloc address from the value on the top of the
352 relocation stack. */
353 HOWTO (ALPHA_R_OP_PSUB, /* type */
354 0, /* rightshift */
355 0, /* size (0 = byte, 1 = short, 2 = long) */
356 0, /* bitsize */
357 false, /* pc_relative */
358 0, /* bitpos */
359 complain_overflow_dont, /* complain_on_overflow */
360 0, /* special_function */
361 "OP_PSUB", /* name */
362 false, /* partial_inplace */
363 0, /* src_mask */
364 0, /* dst_mask */
365 false), /* pcrel_offset */
366
367 /* Shift the value on the top of the relocation stack right by the
368 given value. */
369 HOWTO (ALPHA_R_OP_PRSHIFT, /* type */
370 0, /* rightshift */
371 0, /* size (0 = byte, 1 = short, 2 = long) */
372 0, /* bitsize */
373 false, /* pc_relative */
374 0, /* bitpos */
375 complain_overflow_dont, /* complain_on_overflow */
376 0, /* special_function */
377 "OP_PRSHIFT", /* name */
378 false, /* partial_inplace */
379 0, /* src_mask */
380 0, /* dst_mask */
381 false), /* pcrel_offset */
382
383 /* Adjust the GP value for a new range in the object file. */
384 HOWTO (ALPHA_R_GPVALUE, /* type */
385 0, /* rightshift */
386 0, /* size (0 = byte, 1 = short, 2 = long) */
387 0, /* bitsize */
388 false, /* pc_relative */
389 0, /* bitpos */
390 complain_overflow_dont, /* complain_on_overflow */
391 0, /* special_function */
392 "GPVALUE", /* name */
393 false, /* partial_inplace */
394 0, /* src_mask */
395 0, /* dst_mask */
396 false) /* pcrel_offset */
397 };
398 \f
399 /* Recognize an Alpha ECOFF file. */
400
401 static bfd_cleanup
402 alpha_ecoff_object_p (bfd *abfd)
403 {
404 bfd_cleanup ret;
405
406 ret = coff_object_p (abfd);
407
408 if (ret != NULL)
409 {
410 asection *sec;
411
412 /* Alpha ECOFF has a .pdata section. The lnnoptr field of the
413 .pdata section is the number of entries it contains. Each
414 entry takes up 8 bytes. The number of entries is required
415 since the section is aligned to a 16 byte boundary. When we
416 link .pdata sections together, we do not want to include the
417 alignment bytes. We handle this on input by faking the size
418 of the .pdata section to remove the unwanted alignment bytes.
419 On output we will set the lnnoptr field and force the
420 alignment. */
421 sec = bfd_get_section_by_name (abfd, _PDATA);
422 if (sec != (asection *) NULL)
423 {
424 bfd_size_type size;
425
426 size = (bfd_size_type) sec->line_filepos * 8;
427 BFD_ASSERT (size == sec->size
428 || size + 8 == sec->size);
429 if (!bfd_set_section_size (sec, size))
430 return NULL;
431 }
432 }
433
434 return ret;
435 }
436
437 /* See whether the magic number matches. */
438
439 static bool
440 alpha_ecoff_bad_format_hook (bfd *abfd ATTRIBUTE_UNUSED,
441 void * filehdr)
442 {
443 struct internal_filehdr *internal_f = (struct internal_filehdr *) filehdr;
444
445 if (! ALPHA_ECOFF_BADMAG (*internal_f))
446 return true;
447
448 if (ALPHA_ECOFF_COMPRESSEDMAG (*internal_f))
449 _bfd_error_handler
450 (_("%pB: cannot handle compressed Alpha binaries; "
451 "use compiler flags, or objZ, to generate uncompressed binaries"),
452 abfd);
453
454 return false;
455 }
456
457 /* This is a hook called by coff_real_object_p to create any backend
458 specific information. */
459
460 static void *
461 alpha_ecoff_mkobject_hook (bfd *abfd, void * filehdr, void * aouthdr)
462 {
463 void * ecoff;
464
465 ecoff = _bfd_ecoff_mkobject_hook (abfd, filehdr, aouthdr);
466
467 if (ecoff != NULL)
468 {
469 struct internal_filehdr *internal_f = (struct internal_filehdr *) filehdr;
470
471 /* Set additional BFD flags according to the object type from the
472 machine specific file header flags. */
473 switch (internal_f->f_flags & F_ALPHA_OBJECT_TYPE_MASK)
474 {
475 case F_ALPHA_SHARABLE:
476 abfd->flags |= DYNAMIC;
477 break;
478 case F_ALPHA_CALL_SHARED:
479 /* Always executable if using shared libraries as the run time
480 loader might resolve undefined references. */
481 abfd->flags |= (DYNAMIC | EXEC_P);
482 break;
483 }
484 }
485 return ecoff;
486 }
487 \f
488 /* Reloc handling. */
489
490 /* Swap a reloc in. */
491
492 static void
493 alpha_ecoff_swap_reloc_in (bfd *abfd,
494 void * ext_ptr,
495 struct internal_reloc *intern)
496 {
497 const RELOC *ext = (RELOC *) ext_ptr;
498
499 intern->r_vaddr = H_GET_64 (abfd, ext->r_vaddr);
500 intern->r_symndx = H_GET_32 (abfd, ext->r_symndx);
501
502 BFD_ASSERT (bfd_header_little_endian (abfd));
503
504 intern->r_type = ((ext->r_bits[0] & RELOC_BITS0_TYPE_LITTLE)
505 >> RELOC_BITS0_TYPE_SH_LITTLE);
506 intern->r_extern = (ext->r_bits[1] & RELOC_BITS1_EXTERN_LITTLE) != 0;
507 intern->r_offset = ((ext->r_bits[1] & RELOC_BITS1_OFFSET_LITTLE)
508 >> RELOC_BITS1_OFFSET_SH_LITTLE);
509 /* Ignored the reserved bits. */
510 intern->r_size = ((ext->r_bits[3] & RELOC_BITS3_SIZE_LITTLE)
511 >> RELOC_BITS3_SIZE_SH_LITTLE);
512
513 if (intern->r_type == ALPHA_R_LITUSE
514 || intern->r_type == ALPHA_R_GPDISP)
515 {
516 /* Handle the LITUSE and GPDISP relocs specially. Its symndx
517 value is not actually a symbol index, but is instead a
518 special code. We put the code in the r_size field, and
519 clobber the symndx. */
520 if (intern->r_size != 0)
521 abort ();
522 intern->r_size = intern->r_symndx;
523 intern->r_symndx = RELOC_SECTION_NONE;
524 }
525 else if (intern->r_type == ALPHA_R_IGNORE)
526 {
527 /* The IGNORE reloc generally follows a GPDISP reloc, and is
528 against the .lita section. The section is irrelevant. */
529 if (! intern->r_extern &&
530 intern->r_symndx == RELOC_SECTION_ABS)
531 abort ();
532 if (! intern->r_extern && intern->r_symndx == RELOC_SECTION_LITA)
533 intern->r_symndx = RELOC_SECTION_ABS;
534 }
535 }
536
537 /* Swap a reloc out. */
538
539 static void
540 alpha_ecoff_swap_reloc_out (bfd *abfd,
541 const struct internal_reloc *intern,
542 void * dst)
543 {
544 RELOC *ext = (RELOC *) dst;
545 long symndx;
546 unsigned char size;
547
548 /* Undo the hackery done in swap_reloc_in. */
549 if (intern->r_type == ALPHA_R_LITUSE
550 || intern->r_type == ALPHA_R_GPDISP)
551 {
552 symndx = intern->r_size;
553 size = 0;
554 }
555 else if (intern->r_type == ALPHA_R_IGNORE
556 && ! intern->r_extern
557 && intern->r_symndx == RELOC_SECTION_ABS)
558 {
559 symndx = RELOC_SECTION_LITA;
560 size = intern->r_size;
561 }
562 else
563 {
564 symndx = intern->r_symndx;
565 size = intern->r_size;
566 }
567
568 /* XXX FIXME: The maximum symndx value used to be 14 but this
569 fails with object files produced by DEC's C++ compiler.
570 Where does the value 14 (or 15) come from anyway ? */
571 BFD_ASSERT (intern->r_extern
572 || (intern->r_symndx >= 0 && intern->r_symndx <= 15));
573
574 H_PUT_64 (abfd, intern->r_vaddr, ext->r_vaddr);
575 H_PUT_32 (abfd, symndx, ext->r_symndx);
576
577 BFD_ASSERT (bfd_header_little_endian (abfd));
578
579 ext->r_bits[0] = ((intern->r_type << RELOC_BITS0_TYPE_SH_LITTLE)
580 & RELOC_BITS0_TYPE_LITTLE);
581 ext->r_bits[1] = ((intern->r_extern ? RELOC_BITS1_EXTERN_LITTLE : 0)
582 | ((intern->r_offset << RELOC_BITS1_OFFSET_SH_LITTLE)
583 & RELOC_BITS1_OFFSET_LITTLE));
584 ext->r_bits[2] = 0;
585 ext->r_bits[3] = ((size << RELOC_BITS3_SIZE_SH_LITTLE)
586 & RELOC_BITS3_SIZE_LITTLE);
587 }
588
589 /* Finish canonicalizing a reloc. Part of this is generic to all
590 ECOFF targets, and that part is in ecoff.c. The rest is done in
591 this backend routine. It must fill in the howto field. */
592
593 static void
594 alpha_adjust_reloc_in (bfd *abfd,
595 const struct internal_reloc *intern,
596 arelent *rptr)
597 {
598 if (intern->r_type > ALPHA_R_GPVALUE)
599 {
600 /* xgettext:c-format */
601 _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
602 abfd, intern->r_type);
603 bfd_set_error (bfd_error_bad_value);
604 rptr->addend = 0;
605 rptr->howto = NULL;
606 return;
607 }
608
609 switch (intern->r_type)
610 {
611 case ALPHA_R_BRADDR:
612 case ALPHA_R_SREL16:
613 case ALPHA_R_SREL32:
614 case ALPHA_R_SREL64:
615 /* This relocs appear to be fully resolved when they are against
616 internal symbols. Against external symbols, BRADDR at least
617 appears to be resolved against the next instruction. */
618 if (! intern->r_extern)
619 rptr->addend = 0;
620 else
621 rptr->addend = - (intern->r_vaddr + 4);
622 break;
623
624 case ALPHA_R_GPREL32:
625 case ALPHA_R_LITERAL:
626 /* Copy the gp value for this object file into the addend, to
627 ensure that we are not confused by the linker. */
628 if (! intern->r_extern)
629 rptr->addend += ecoff_data (abfd)->gp;
630 break;
631
632 case ALPHA_R_LITUSE:
633 case ALPHA_R_GPDISP:
634 /* The LITUSE and GPDISP relocs do not use a symbol, or an
635 addend, but they do use a special code. Put this code in the
636 addend field. */
637 rptr->addend = intern->r_size;
638 break;
639
640 case ALPHA_R_OP_STORE:
641 /* The STORE reloc needs the size and offset fields. We store
642 them in the addend. */
643 BFD_ASSERT (intern->r_offset <= 256);
644 rptr->addend = (intern->r_offset << 8) + intern->r_size;
645 break;
646
647 case ALPHA_R_OP_PUSH:
648 case ALPHA_R_OP_PSUB:
649 case ALPHA_R_OP_PRSHIFT:
650 /* The PUSH, PSUB and PRSHIFT relocs do not actually use an
651 address. I believe that the address supplied is really an
652 addend. */
653 rptr->addend = intern->r_vaddr;
654 break;
655
656 case ALPHA_R_GPVALUE:
657 /* Set the addend field to the new GP value. */
658 rptr->addend = intern->r_symndx + ecoff_data (abfd)->gp;
659 break;
660
661 case ALPHA_R_IGNORE:
662 /* If the type is ALPHA_R_IGNORE, make sure this is a reference
663 to the absolute section so that the reloc is ignored. For
664 some reason the address of this reloc type is not adjusted by
665 the section vma. We record the gp value for this object file
666 here, for convenience when doing the GPDISP relocation. */
667 rptr->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
668 rptr->address = intern->r_vaddr;
669 rptr->addend = ecoff_data (abfd)->gp;
670 break;
671
672 default:
673 break;
674 }
675
676 rptr->howto = &alpha_howto_table[intern->r_type];
677 }
678
679 /* When writing out a reloc we need to pull some values back out of
680 the addend field into the reloc. This is roughly the reverse of
681 alpha_adjust_reloc_in, except that there are several changes we do
682 not need to undo. */
683
684 static void
685 alpha_adjust_reloc_out (bfd *abfd ATTRIBUTE_UNUSED,
686 const arelent *rel,
687 struct internal_reloc *intern)
688 {
689 switch (intern->r_type)
690 {
691 case ALPHA_R_LITUSE:
692 case ALPHA_R_GPDISP:
693 intern->r_size = rel->addend;
694 break;
695
696 case ALPHA_R_OP_STORE:
697 intern->r_size = rel->addend & 0xff;
698 intern->r_offset = (rel->addend >> 8) & 0xff;
699 break;
700
701 case ALPHA_R_OP_PUSH:
702 case ALPHA_R_OP_PSUB:
703 case ALPHA_R_OP_PRSHIFT:
704 intern->r_vaddr = rel->addend;
705 break;
706
707 case ALPHA_R_IGNORE:
708 intern->r_vaddr = rel->address;
709 break;
710
711 default:
712 break;
713 }
714 }
715
716 /* The size of the stack for the relocation evaluator. */
717 #define RELOC_STACKSIZE (10)
718
719 /* Alpha ECOFF relocs have a built in expression evaluator as well as
720 other interdependencies. Rather than use a bunch of special
721 functions and global variables, we use a single routine to do all
722 the relocation for a section. I haven't yet worked out how the
723 assembler is going to handle this. */
724
725 static bfd_byte *
726 alpha_ecoff_get_relocated_section_contents (bfd *abfd,
727 struct bfd_link_info *link_info,
728 struct bfd_link_order *link_order,
729 bfd_byte *data,
730 bool relocatable,
731 asymbol **symbols)
732 {
733 bfd *input_bfd = link_order->u.indirect.section->owner;
734 asection *input_section = link_order->u.indirect.section;
735 long reloc_size;
736 arelent **reloc_vector;
737 long reloc_count;
738 bfd *output_bfd = relocatable ? abfd : (bfd *) NULL;
739 bfd_vma gp;
740 bool gp_undefined;
741 bfd_vma stack[RELOC_STACKSIZE];
742 int tos = 0;
743
744 reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
745 if (reloc_size < 0)
746 return NULL;
747
748 if (!bfd_get_full_section_contents (input_bfd, input_section, &data))
749 return NULL;
750
751 if (data == NULL)
752 return NULL;
753
754 if (reloc_size == 0)
755 return data;
756
757 reloc_vector = (arelent **) bfd_malloc (reloc_size);
758 if (reloc_vector == NULL)
759 return NULL;
760
761 reloc_count = bfd_canonicalize_reloc (input_bfd, input_section,
762 reloc_vector, symbols);
763 if (reloc_count < 0)
764 goto error_return;
765 if (reloc_count == 0)
766 goto successful_return;
767
768 /* Get the GP value for the output BFD. */
769 gp_undefined = false;
770 gp = _bfd_get_gp_value (abfd);
771 if (gp == 0)
772 {
773 if (relocatable)
774 {
775 asection *sec;
776 bfd_vma lo;
777
778 /* Make up a value. */
779 lo = (bfd_vma) -1;
780 for (sec = abfd->sections; sec != NULL; sec = sec->next)
781 {
782 if (sec->vma < lo
783 && (strcmp (sec->name, ".sbss") == 0
784 || strcmp (sec->name, ".sdata") == 0
785 || strcmp (sec->name, ".lit4") == 0
786 || strcmp (sec->name, ".lit8") == 0
787 || strcmp (sec->name, ".lita") == 0))
788 lo = sec->vma;
789 }
790 gp = lo + 0x8000;
791 _bfd_set_gp_value (abfd, gp);
792 }
793 else
794 {
795 struct bfd_link_hash_entry *h;
796
797 h = bfd_link_hash_lookup (link_info->hash, "_gp", false, false,
798 true);
799 if (h == (struct bfd_link_hash_entry *) NULL
800 || h->type != bfd_link_hash_defined)
801 gp_undefined = true;
802 else
803 {
804 gp = (h->u.def.value
805 + h->u.def.section->output_section->vma
806 + h->u.def.section->output_offset);
807 _bfd_set_gp_value (abfd, gp);
808 }
809 }
810 }
811
812 for (; *reloc_vector != (arelent *) NULL; reloc_vector++)
813 {
814 arelent *rel;
815 bfd_reloc_status_type r;
816 char *err;
817
818 rel = *reloc_vector;
819 r = bfd_reloc_ok;
820 switch (rel->howto->type)
821 {
822 case ALPHA_R_IGNORE:
823 rel->address += input_section->output_offset;
824 break;
825
826 case ALPHA_R_REFLONG:
827 case ALPHA_R_REFQUAD:
828 case ALPHA_R_BRADDR:
829 case ALPHA_R_HINT:
830 case ALPHA_R_SREL16:
831 case ALPHA_R_SREL32:
832 case ALPHA_R_SREL64:
833 if (relocatable
834 && ((*rel->sym_ptr_ptr)->flags & BSF_SECTION_SYM) == 0)
835 {
836 rel->address += input_section->output_offset;
837 break;
838 }
839 r = bfd_perform_relocation (input_bfd, rel, data, input_section,
840 output_bfd, &err);
841 break;
842
843 case ALPHA_R_GPREL32:
844 /* This relocation is used in a switch table. It is a 32
845 bit offset from the current GP value. We must adjust it
846 by the different between the original GP value and the
847 current GP value. The original GP value is stored in the
848 addend. We adjust the addend and let
849 bfd_perform_relocation finish the job. */
850 rel->addend -= gp;
851 r = bfd_perform_relocation (input_bfd, rel, data, input_section,
852 output_bfd, &err);
853 if (r == bfd_reloc_ok && gp_undefined)
854 {
855 r = bfd_reloc_dangerous;
856 err = (char *) _("GP relative relocation used when GP not defined");
857 }
858 break;
859
860 case ALPHA_R_LITERAL:
861 /* This is a reference to a literal value, generally
862 (always?) in the .lita section. This is a 16 bit GP
863 relative relocation. Sometimes the subsequent reloc is a
864 LITUSE reloc, which indicates how this reloc is used.
865 This sometimes permits rewriting the two instructions
866 referred to by the LITERAL and the LITUSE into different
867 instructions which do not refer to .lita. This can save
868 a memory reference, and permits removing a value from
869 .lita thus saving GP relative space.
870
871 We do not these optimizations. To do them we would need
872 to arrange to link the .lita section first, so that by
873 the time we got here we would know the final values to
874 use. This would not be particularly difficult, but it is
875 not currently implemented. */
876
877 {
878 unsigned long insn;
879
880 /* I believe that the LITERAL reloc will only apply to a
881 ldq or ldl instruction, so check my assumption. */
882 insn = bfd_get_32 (input_bfd, data + rel->address);
883 BFD_ASSERT (((insn >> 26) & 0x3f) == 0x29
884 || ((insn >> 26) & 0x3f) == 0x28);
885
886 rel->addend -= gp;
887 r = bfd_perform_relocation (input_bfd, rel, data, input_section,
888 output_bfd, &err);
889 if (r == bfd_reloc_ok && gp_undefined)
890 {
891 r = bfd_reloc_dangerous;
892 err =
893 (char *) _("GP relative relocation used when GP not defined");
894 }
895 }
896 break;
897
898 case ALPHA_R_LITUSE:
899 /* See ALPHA_R_LITERAL above for the uses of this reloc. It
900 does not cause anything to happen, itself. */
901 rel->address += input_section->output_offset;
902 break;
903
904 case ALPHA_R_GPDISP:
905 /* This marks the ldah of an ldah/lda pair which loads the
906 gp register with the difference of the gp value and the
907 current location. The second of the pair is r_size bytes
908 ahead; it used to be marked with an ALPHA_R_IGNORE reloc,
909 but that no longer happens in OSF/1 3.2. */
910 {
911 unsigned long insn1, insn2;
912 bfd_vma addend;
913
914 /* Get the two instructions. */
915 insn1 = bfd_get_32 (input_bfd, data + rel->address);
916 insn2 = bfd_get_32 (input_bfd, data + rel->address + rel->addend);
917
918 BFD_ASSERT (((insn1 >> 26) & 0x3f) == 0x09); /* ldah */
919 BFD_ASSERT (((insn2 >> 26) & 0x3f) == 0x08); /* lda */
920
921 /* Get the existing addend. We must account for the sign
922 extension done by lda and ldah. */
923 addend = ((insn1 & 0xffff) << 16) + (insn2 & 0xffff);
924 if (insn1 & 0x8000)
925 {
926 addend -= 0x80000000;
927 addend -= 0x80000000;
928 }
929 if (insn2 & 0x8000)
930 addend -= 0x10000;
931
932 /* The existing addend includes the different between the
933 gp of the input BFD and the address in the input BFD.
934 Subtract this out. */
935 addend -= (ecoff_data (input_bfd)->gp
936 - (input_section->vma + rel->address));
937
938 /* Now add in the final gp value, and subtract out the
939 final address. */
940 addend += (gp
941 - (input_section->output_section->vma
942 + input_section->output_offset
943 + rel->address));
944
945 /* Change the instructions, accounting for the sign
946 extension, and write them out. */
947 if (addend & 0x8000)
948 addend += 0x10000;
949 insn1 = (insn1 & 0xffff0000) | ((addend >> 16) & 0xffff);
950 insn2 = (insn2 & 0xffff0000) | (addend & 0xffff);
951
952 bfd_put_32 (input_bfd, (bfd_vma) insn1, data + rel->address);
953 bfd_put_32 (input_bfd, (bfd_vma) insn2,
954 data + rel->address + rel->addend);
955
956 rel->address += input_section->output_offset;
957 }
958 break;
959
960 case ALPHA_R_OP_PUSH:
961 /* Push a value on the reloc evaluation stack. */
962 {
963 asymbol *symbol;
964 bfd_vma relocation;
965
966 if (relocatable)
967 {
968 rel->address += input_section->output_offset;
969 break;
970 }
971
972 /* Figure out the relocation of this symbol. */
973 symbol = *rel->sym_ptr_ptr;
974
975 if (bfd_is_und_section (symbol->section))
976 r = bfd_reloc_undefined;
977
978 if (bfd_is_com_section (symbol->section))
979 relocation = 0;
980 else
981 relocation = symbol->value;
982 relocation += symbol->section->output_section->vma;
983 relocation += symbol->section->output_offset;
984 relocation += rel->addend;
985
986 if (tos >= RELOC_STACKSIZE)
987 abort ();
988
989 stack[tos++] = relocation;
990 }
991 break;
992
993 case ALPHA_R_OP_STORE:
994 /* Store a value from the reloc stack into a bitfield. */
995 {
996 bfd_vma val;
997 int offset, size;
998
999 if (relocatable)
1000 {
1001 rel->address += input_section->output_offset;
1002 break;
1003 }
1004
1005 if (tos == 0)
1006 abort ();
1007
1008 /* The offset and size for this reloc are encoded into the
1009 addend field by alpha_adjust_reloc_in. */
1010 offset = (rel->addend >> 8) & 0xff;
1011 size = rel->addend & 0xff;
1012
1013 val = bfd_get_64 (abfd, data + rel->address);
1014 val &=~ (((1 << size) - 1) << offset);
1015 val |= (stack[--tos] & ((1 << size) - 1)) << offset;
1016 bfd_put_64 (abfd, val, data + rel->address);
1017 }
1018 break;
1019
1020 case ALPHA_R_OP_PSUB:
1021 /* Subtract a value from the top of the stack. */
1022 {
1023 asymbol *symbol;
1024 bfd_vma relocation;
1025
1026 if (relocatable)
1027 {
1028 rel->address += input_section->output_offset;
1029 break;
1030 }
1031
1032 /* Figure out the relocation of this symbol. */
1033 symbol = *rel->sym_ptr_ptr;
1034
1035 if (bfd_is_und_section (symbol->section))
1036 r = bfd_reloc_undefined;
1037
1038 if (bfd_is_com_section (symbol->section))
1039 relocation = 0;
1040 else
1041 relocation = symbol->value;
1042 relocation += symbol->section->output_section->vma;
1043 relocation += symbol->section->output_offset;
1044 relocation += rel->addend;
1045
1046 if (tos == 0)
1047 abort ();
1048
1049 stack[tos - 1] -= relocation;
1050 }
1051 break;
1052
1053 case ALPHA_R_OP_PRSHIFT:
1054 /* Shift the value on the top of the stack. */
1055 {
1056 asymbol *symbol;
1057 bfd_vma relocation;
1058
1059 if (relocatable)
1060 {
1061 rel->address += input_section->output_offset;
1062 break;
1063 }
1064
1065 /* Figure out the relocation of this symbol. */
1066 symbol = *rel->sym_ptr_ptr;
1067
1068 if (bfd_is_und_section (symbol->section))
1069 r = bfd_reloc_undefined;
1070
1071 if (bfd_is_com_section (symbol->section))
1072 relocation = 0;
1073 else
1074 relocation = symbol->value;
1075 relocation += symbol->section->output_section->vma;
1076 relocation += symbol->section->output_offset;
1077 relocation += rel->addend;
1078
1079 if (tos == 0)
1080 abort ();
1081
1082 stack[tos - 1] >>= relocation;
1083 }
1084 break;
1085
1086 case ALPHA_R_GPVALUE:
1087 /* I really don't know if this does the right thing. */
1088 gp = rel->addend;
1089 gp_undefined = false;
1090 break;
1091
1092 default:
1093 abort ();
1094 }
1095
1096 if (relocatable)
1097 {
1098 asection *os = input_section->output_section;
1099
1100 /* A partial link, so keep the relocs. */
1101 os->orelocation[os->reloc_count] = rel;
1102 os->reloc_count++;
1103 }
1104
1105 if (r != bfd_reloc_ok)
1106 {
1107 switch (r)
1108 {
1109 case bfd_reloc_undefined:
1110 (*link_info->callbacks->undefined_symbol)
1111 (link_info, bfd_asymbol_name (*rel->sym_ptr_ptr),
1112 input_bfd, input_section, rel->address, true);
1113 break;
1114 case bfd_reloc_dangerous:
1115 (*link_info->callbacks->reloc_dangerous)
1116 (link_info, err, input_bfd, input_section, rel->address);
1117 break;
1118 case bfd_reloc_overflow:
1119 (*link_info->callbacks->reloc_overflow)
1120 (link_info, NULL, bfd_asymbol_name (*rel->sym_ptr_ptr),
1121 rel->howto->name, rel->addend, input_bfd,
1122 input_section, rel->address);
1123 break;
1124 case bfd_reloc_outofrange:
1125 default:
1126 abort ();
1127 break;
1128 }
1129 }
1130 }
1131
1132 if (tos != 0)
1133 abort ();
1134
1135 successful_return:
1136 free (reloc_vector);
1137 return data;
1138
1139 error_return:
1140 free (reloc_vector);
1141 return NULL;
1142 }
1143
1144 /* Get the howto structure for a generic reloc type. */
1145
1146 static reloc_howto_type *
1147 alpha_bfd_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1148 bfd_reloc_code_real_type code)
1149 {
1150 int alpha_type;
1151
1152 switch (code)
1153 {
1154 case BFD_RELOC_32:
1155 alpha_type = ALPHA_R_REFLONG;
1156 break;
1157 case BFD_RELOC_64:
1158 case BFD_RELOC_CTOR:
1159 alpha_type = ALPHA_R_REFQUAD;
1160 break;
1161 case BFD_RELOC_GPREL32:
1162 alpha_type = ALPHA_R_GPREL32;
1163 break;
1164 case BFD_RELOC_ALPHA_LITERAL:
1165 alpha_type = ALPHA_R_LITERAL;
1166 break;
1167 case BFD_RELOC_ALPHA_LITUSE:
1168 alpha_type = ALPHA_R_LITUSE;
1169 break;
1170 case BFD_RELOC_ALPHA_GPDISP_HI16:
1171 alpha_type = ALPHA_R_GPDISP;
1172 break;
1173 case BFD_RELOC_ALPHA_GPDISP_LO16:
1174 alpha_type = ALPHA_R_IGNORE;
1175 break;
1176 case BFD_RELOC_23_PCREL_S2:
1177 alpha_type = ALPHA_R_BRADDR;
1178 break;
1179 case BFD_RELOC_ALPHA_HINT:
1180 alpha_type = ALPHA_R_HINT;
1181 break;
1182 case BFD_RELOC_16_PCREL:
1183 alpha_type = ALPHA_R_SREL16;
1184 break;
1185 case BFD_RELOC_32_PCREL:
1186 alpha_type = ALPHA_R_SREL32;
1187 break;
1188 case BFD_RELOC_64_PCREL:
1189 alpha_type = ALPHA_R_SREL64;
1190 break;
1191 default:
1192 return (reloc_howto_type *) NULL;
1193 }
1194
1195 return &alpha_howto_table[alpha_type];
1196 }
1197
1198 static reloc_howto_type *
1199 alpha_bfd_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1200 const char *r_name)
1201 {
1202 unsigned int i;
1203
1204 for (i = 0;
1205 i < sizeof (alpha_howto_table) / sizeof (alpha_howto_table[0]);
1206 i++)
1207 if (alpha_howto_table[i].name != NULL
1208 && strcasecmp (alpha_howto_table[i].name, r_name) == 0)
1209 return &alpha_howto_table[i];
1210
1211 return NULL;
1212 }
1213 \f
1214 /* A helper routine for alpha_relocate_section which converts an
1215 external reloc when generating relocatable output. Returns the
1216 relocation amount. */
1217
1218 static bfd_vma
1219 alpha_convert_external_reloc (bfd *output_bfd ATTRIBUTE_UNUSED,
1220 struct bfd_link_info *info,
1221 bfd *input_bfd,
1222 struct external_reloc *ext_rel,
1223 struct ecoff_link_hash_entry *h)
1224 {
1225 unsigned long r_symndx;
1226 bfd_vma relocation;
1227
1228 BFD_ASSERT (bfd_link_relocatable (info));
1229
1230 if (h->root.type == bfd_link_hash_defined
1231 || h->root.type == bfd_link_hash_defweak)
1232 {
1233 asection *hsec;
1234 const char *name;
1235
1236 /* This symbol is defined in the output. Convert the reloc from
1237 being against the symbol to being against the section. */
1238
1239 /* Clear the r_extern bit. */
1240 ext_rel->r_bits[1] &=~ RELOC_BITS1_EXTERN_LITTLE;
1241
1242 /* Compute a new r_symndx value. */
1243 hsec = h->root.u.def.section;
1244 name = bfd_section_name (hsec->output_section);
1245
1246 r_symndx = (unsigned long) -1;
1247 switch (name[1])
1248 {
1249 case 'A':
1250 if (strcmp (name, "*ABS*") == 0)
1251 r_symndx = RELOC_SECTION_ABS;
1252 break;
1253 case 'b':
1254 if (strcmp (name, ".bss") == 0)
1255 r_symndx = RELOC_SECTION_BSS;
1256 break;
1257 case 'd':
1258 if (strcmp (name, ".data") == 0)
1259 r_symndx = RELOC_SECTION_DATA;
1260 break;
1261 case 'f':
1262 if (strcmp (name, ".fini") == 0)
1263 r_symndx = RELOC_SECTION_FINI;
1264 break;
1265 case 'i':
1266 if (strcmp (name, ".init") == 0)
1267 r_symndx = RELOC_SECTION_INIT;
1268 break;
1269 case 'l':
1270 if (strcmp (name, ".lita") == 0)
1271 r_symndx = RELOC_SECTION_LITA;
1272 else if (strcmp (name, ".lit8") == 0)
1273 r_symndx = RELOC_SECTION_LIT8;
1274 else if (strcmp (name, ".lit4") == 0)
1275 r_symndx = RELOC_SECTION_LIT4;
1276 break;
1277 case 'p':
1278 if (strcmp (name, ".pdata") == 0)
1279 r_symndx = RELOC_SECTION_PDATA;
1280 break;
1281 case 'r':
1282 if (strcmp (name, ".rdata") == 0)
1283 r_symndx = RELOC_SECTION_RDATA;
1284 else if (strcmp (name, ".rconst") == 0)
1285 r_symndx = RELOC_SECTION_RCONST;
1286 break;
1287 case 's':
1288 if (strcmp (name, ".sdata") == 0)
1289 r_symndx = RELOC_SECTION_SDATA;
1290 else if (strcmp (name, ".sbss") == 0)
1291 r_symndx = RELOC_SECTION_SBSS;
1292 break;
1293 case 't':
1294 if (strcmp (name, ".text") == 0)
1295 r_symndx = RELOC_SECTION_TEXT;
1296 break;
1297 case 'x':
1298 if (strcmp (name, ".xdata") == 0)
1299 r_symndx = RELOC_SECTION_XDATA;
1300 break;
1301 }
1302
1303 if (r_symndx == (unsigned long) -1)
1304 abort ();
1305
1306 /* Add the section VMA and the symbol value. */
1307 relocation = (h->root.u.def.value
1308 + hsec->output_section->vma
1309 + hsec->output_offset);
1310 }
1311 else
1312 {
1313 /* Change the symndx value to the right one for
1314 the output BFD. */
1315 r_symndx = h->indx;
1316 if (r_symndx == (unsigned long) -1)
1317 {
1318 /* Caller must give an error. */
1319 r_symndx = 0;
1320 }
1321 relocation = 0;
1322 }
1323
1324 /* Write out the new r_symndx value. */
1325 H_PUT_32 (input_bfd, r_symndx, ext_rel->r_symndx);
1326
1327 return relocation;
1328 }
1329
1330 /* Relocate a section while linking an Alpha ECOFF file. This is
1331 quite similar to get_relocated_section_contents. Perhaps they
1332 could be combined somehow. */
1333
1334 static bool
1335 alpha_relocate_section (bfd *output_bfd,
1336 struct bfd_link_info *info,
1337 bfd *input_bfd,
1338 asection *input_section,
1339 bfd_byte *contents,
1340 void * external_relocs)
1341 {
1342 asection **symndx_to_section, *lita_sec;
1343 struct ecoff_link_hash_entry **sym_hashes;
1344 bfd_vma gp;
1345 bool gp_undefined;
1346 bfd_vma stack[RELOC_STACKSIZE];
1347 int tos = 0;
1348 struct external_reloc *ext_rel;
1349 struct external_reloc *ext_rel_end;
1350 bfd_size_type amt;
1351
1352 /* We keep a table mapping the symndx found in an internal reloc to
1353 the appropriate section. This is faster than looking up the
1354 section by name each time. */
1355 symndx_to_section = ecoff_data (input_bfd)->symndx_to_section;
1356 if (symndx_to_section == (asection **) NULL)
1357 {
1358 amt = NUM_RELOC_SECTIONS * sizeof (asection *);
1359 symndx_to_section = (asection **) bfd_alloc (input_bfd, amt);
1360 if (!symndx_to_section)
1361 return false;
1362
1363 symndx_to_section[RELOC_SECTION_NONE] = NULL;
1364 symndx_to_section[RELOC_SECTION_TEXT] =
1365 bfd_get_section_by_name (input_bfd, ".text");
1366 symndx_to_section[RELOC_SECTION_RDATA] =
1367 bfd_get_section_by_name (input_bfd, ".rdata");
1368 symndx_to_section[RELOC_SECTION_DATA] =
1369 bfd_get_section_by_name (input_bfd, ".data");
1370 symndx_to_section[RELOC_SECTION_SDATA] =
1371 bfd_get_section_by_name (input_bfd, ".sdata");
1372 symndx_to_section[RELOC_SECTION_SBSS] =
1373 bfd_get_section_by_name (input_bfd, ".sbss");
1374 symndx_to_section[RELOC_SECTION_BSS] =
1375 bfd_get_section_by_name (input_bfd, ".bss");
1376 symndx_to_section[RELOC_SECTION_INIT] =
1377 bfd_get_section_by_name (input_bfd, ".init");
1378 symndx_to_section[RELOC_SECTION_LIT8] =
1379 bfd_get_section_by_name (input_bfd, ".lit8");
1380 symndx_to_section[RELOC_SECTION_LIT4] =
1381 bfd_get_section_by_name (input_bfd, ".lit4");
1382 symndx_to_section[RELOC_SECTION_XDATA] =
1383 bfd_get_section_by_name (input_bfd, ".xdata");
1384 symndx_to_section[RELOC_SECTION_PDATA] =
1385 bfd_get_section_by_name (input_bfd, ".pdata");
1386 symndx_to_section[RELOC_SECTION_FINI] =
1387 bfd_get_section_by_name (input_bfd, ".fini");
1388 symndx_to_section[RELOC_SECTION_LITA] =
1389 bfd_get_section_by_name (input_bfd, ".lita");
1390 symndx_to_section[RELOC_SECTION_ABS] = bfd_abs_section_ptr;
1391 symndx_to_section[RELOC_SECTION_RCONST] =
1392 bfd_get_section_by_name (input_bfd, ".rconst");
1393
1394 ecoff_data (input_bfd)->symndx_to_section = symndx_to_section;
1395 }
1396
1397 sym_hashes = ecoff_data (input_bfd)->sym_hashes;
1398
1399 /* On the Alpha, the .lita section must be addressable by the global
1400 pointer. To support large programs, we need to allow multiple
1401 global pointers. This works as long as each input .lita section
1402 is <64KB big. This implies that when producing relocatable
1403 output, the .lita section is limited to 64KB. . */
1404
1405 lita_sec = symndx_to_section[RELOC_SECTION_LITA];
1406 gp = _bfd_get_gp_value (output_bfd);
1407 if (! bfd_link_relocatable (info) && lita_sec != NULL)
1408 {
1409 struct ecoff_section_tdata *lita_sec_data;
1410
1411 /* Make sure we have a section data structure to which we can
1412 hang on to the gp value we pick for the section. */
1413 lita_sec_data = ecoff_section_data (input_bfd, lita_sec);
1414 if (lita_sec_data == NULL)
1415 {
1416 amt = sizeof (struct ecoff_section_tdata);
1417 lita_sec_data = ((struct ecoff_section_tdata *)
1418 bfd_zalloc (input_bfd, amt));
1419 lita_sec->used_by_bfd = lita_sec_data;
1420 }
1421
1422 if (lita_sec_data->gp != 0)
1423 {
1424 /* If we already assigned a gp to this section, we better
1425 stick with that value. */
1426 gp = lita_sec_data->gp;
1427 }
1428 else
1429 {
1430 bfd_vma lita_vma;
1431 bfd_size_type lita_size;
1432
1433 lita_vma = lita_sec->output_offset + lita_sec->output_section->vma;
1434 lita_size = lita_sec->size;
1435
1436 if (gp == 0
1437 || lita_vma < gp - 0x8000
1438 || lita_vma + lita_size >= gp + 0x8000)
1439 {
1440 /* Either gp hasn't been set at all or the current gp
1441 cannot address this .lita section. In both cases we
1442 reset the gp to point into the "middle" of the
1443 current input .lita section. */
1444 if (gp && !ecoff_data (output_bfd)->issued_multiple_gp_warning)
1445 {
1446 (*info->callbacks->warning) (info,
1447 _("using multiple gp values"),
1448 (char *) NULL, output_bfd,
1449 (asection *) NULL, (bfd_vma) 0);
1450 ecoff_data (output_bfd)->issued_multiple_gp_warning = true;
1451 }
1452 if (lita_vma < gp - 0x8000)
1453 gp = lita_vma + lita_size - 0x8000;
1454 else
1455 gp = lita_vma + 0x8000;
1456
1457 }
1458
1459 lita_sec_data->gp = gp;
1460 }
1461
1462 _bfd_set_gp_value (output_bfd, gp);
1463 }
1464
1465 gp_undefined = (gp == 0);
1466
1467 BFD_ASSERT (bfd_header_little_endian (output_bfd));
1468 BFD_ASSERT (bfd_header_little_endian (input_bfd));
1469
1470 ext_rel = (struct external_reloc *) external_relocs;
1471 ext_rel_end = ext_rel + input_section->reloc_count;
1472 for (; ext_rel < ext_rel_end; ext_rel++)
1473 {
1474 bfd_vma r_vaddr;
1475 unsigned long r_symndx;
1476 int r_type;
1477 int r_extern;
1478 int r_offset;
1479 int r_size;
1480 bool relocatep;
1481 bool adjust_addrp;
1482 bool gp_usedp;
1483 bfd_vma addend;
1484
1485 r_vaddr = H_GET_64 (input_bfd, ext_rel->r_vaddr);
1486 r_symndx = H_GET_32 (input_bfd, ext_rel->r_symndx);
1487
1488 r_type = ((ext_rel->r_bits[0] & RELOC_BITS0_TYPE_LITTLE)
1489 >> RELOC_BITS0_TYPE_SH_LITTLE);
1490 r_extern = (ext_rel->r_bits[1] & RELOC_BITS1_EXTERN_LITTLE) != 0;
1491 r_offset = ((ext_rel->r_bits[1] & RELOC_BITS1_OFFSET_LITTLE)
1492 >> RELOC_BITS1_OFFSET_SH_LITTLE);
1493 /* Ignored the reserved bits. */
1494 r_size = ((ext_rel->r_bits[3] & RELOC_BITS3_SIZE_LITTLE)
1495 >> RELOC_BITS3_SIZE_SH_LITTLE);
1496
1497 relocatep = false;
1498 adjust_addrp = true;
1499 gp_usedp = false;
1500 addend = 0;
1501
1502 switch (r_type)
1503 {
1504 case ALPHA_R_GPRELHIGH:
1505 _bfd_error_handler (_("%pB: %s unsupported"),
1506 input_bfd, "ALPHA_R_GPRELHIGH");
1507 bfd_set_error (bfd_error_bad_value);
1508 continue;
1509
1510 case ALPHA_R_GPRELLOW:
1511 _bfd_error_handler (_("%pB: %s unsupported"),
1512 input_bfd, "ALPHA_R_GPRELLOW");
1513 bfd_set_error (bfd_error_bad_value);
1514 continue;
1515
1516 default:
1517 /* xgettext:c-format */
1518 _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
1519 input_bfd, (int) r_type);
1520 bfd_set_error (bfd_error_bad_value);
1521 continue;
1522
1523 case ALPHA_R_IGNORE:
1524 /* This reloc appears after a GPDISP reloc. On earlier
1525 versions of OSF/1, It marked the position of the second
1526 instruction to be altered by the GPDISP reloc, but it is
1527 not otherwise used for anything. For some reason, the
1528 address of the relocation does not appear to include the
1529 section VMA, unlike the other relocation types. */
1530 if (bfd_link_relocatable (info))
1531 H_PUT_64 (input_bfd, input_section->output_offset + r_vaddr,
1532 ext_rel->r_vaddr);
1533 adjust_addrp = false;
1534 break;
1535
1536 case ALPHA_R_REFLONG:
1537 case ALPHA_R_REFQUAD:
1538 case ALPHA_R_HINT:
1539 relocatep = true;
1540 break;
1541
1542 case ALPHA_R_BRADDR:
1543 case ALPHA_R_SREL16:
1544 case ALPHA_R_SREL32:
1545 case ALPHA_R_SREL64:
1546 if (r_extern)
1547 addend += - (r_vaddr + 4);
1548 relocatep = true;
1549 break;
1550
1551 case ALPHA_R_GPREL32:
1552 /* This relocation is used in a switch table. It is a 32
1553 bit offset from the current GP value. We must adjust it
1554 by the different between the original GP value and the
1555 current GP value. */
1556 relocatep = true;
1557 addend = ecoff_data (input_bfd)->gp - gp;
1558 gp_usedp = true;
1559 break;
1560
1561 case ALPHA_R_LITERAL:
1562 /* This is a reference to a literal value, generally
1563 (always?) in the .lita section. This is a 16 bit GP
1564 relative relocation. Sometimes the subsequent reloc is a
1565 LITUSE reloc, which indicates how this reloc is used.
1566 This sometimes permits rewriting the two instructions
1567 referred to by the LITERAL and the LITUSE into different
1568 instructions which do not refer to .lita. This can save
1569 a memory reference, and permits removing a value from
1570 .lita thus saving GP relative space.
1571
1572 We do not these optimizations. To do them we would need
1573 to arrange to link the .lita section first, so that by
1574 the time we got here we would know the final values to
1575 use. This would not be particularly difficult, but it is
1576 not currently implemented. */
1577
1578 /* I believe that the LITERAL reloc will only apply to a ldq
1579 or ldl instruction, so check my assumption. */
1580 {
1581 unsigned long insn;
1582
1583 insn = bfd_get_32 (input_bfd,
1584 contents + r_vaddr - input_section->vma);
1585 BFD_ASSERT (((insn >> 26) & 0x3f) == 0x29
1586 || ((insn >> 26) & 0x3f) == 0x28);
1587 }
1588
1589 relocatep = true;
1590 addend = ecoff_data (input_bfd)->gp - gp;
1591 gp_usedp = true;
1592 break;
1593
1594 case ALPHA_R_LITUSE:
1595 /* See ALPHA_R_LITERAL above for the uses of this reloc. It
1596 does not cause anything to happen, itself. */
1597 break;
1598
1599 case ALPHA_R_GPDISP:
1600 /* This marks the ldah of an ldah/lda pair which loads the
1601 gp register with the difference of the gp value and the
1602 current location. The second of the pair is r_symndx
1603 bytes ahead. It used to be marked with an ALPHA_R_IGNORE
1604 reloc, but OSF/1 3.2 no longer does that. */
1605 {
1606 unsigned long insn1, insn2;
1607
1608 /* Get the two instructions. */
1609 insn1 = bfd_get_32 (input_bfd,
1610 contents + r_vaddr - input_section->vma);
1611 insn2 = bfd_get_32 (input_bfd,
1612 (contents
1613 + r_vaddr
1614 - input_section->vma
1615 + r_symndx));
1616
1617 BFD_ASSERT (((insn1 >> 26) & 0x3f) == 0x09); /* ldah */
1618 BFD_ASSERT (((insn2 >> 26) & 0x3f) == 0x08); /* lda */
1619
1620 /* Get the existing addend. We must account for the sign
1621 extension done by lda and ldah. */
1622 addend = ((insn1 & 0xffff) << 16) + (insn2 & 0xffff);
1623 if (insn1 & 0x8000)
1624 {
1625 /* This is addend -= 0x100000000 without causing an
1626 integer overflow on a 32 bit host. */
1627 addend -= 0x80000000;
1628 addend -= 0x80000000;
1629 }
1630 if (insn2 & 0x8000)
1631 addend -= 0x10000;
1632
1633 /* The existing addend includes the difference between the
1634 gp of the input BFD and the address in the input BFD.
1635 We want to change this to the difference between the
1636 final GP and the final address. */
1637 addend += (gp
1638 - ecoff_data (input_bfd)->gp
1639 + input_section->vma
1640 - (input_section->output_section->vma
1641 + input_section->output_offset));
1642
1643 /* Change the instructions, accounting for the sign
1644 extension, and write them out. */
1645 if (addend & 0x8000)
1646 addend += 0x10000;
1647 insn1 = (insn1 & 0xffff0000) | ((addend >> 16) & 0xffff);
1648 insn2 = (insn2 & 0xffff0000) | (addend & 0xffff);
1649
1650 bfd_put_32 (input_bfd, (bfd_vma) insn1,
1651 contents + r_vaddr - input_section->vma);
1652 bfd_put_32 (input_bfd, (bfd_vma) insn2,
1653 contents + r_vaddr - input_section->vma + r_symndx);
1654
1655 gp_usedp = true;
1656 }
1657 break;
1658
1659 case ALPHA_R_OP_PUSH:
1660 case ALPHA_R_OP_PSUB:
1661 case ALPHA_R_OP_PRSHIFT:
1662 /* Manipulate values on the reloc evaluation stack. The
1663 r_vaddr field is not an address in input_section, it is
1664 the current value (including any addend) of the object
1665 being used. */
1666 if (! r_extern)
1667 {
1668 asection *s;
1669
1670 s = symndx_to_section[r_symndx];
1671 if (s == (asection *) NULL)
1672 abort ();
1673 addend = s->output_section->vma + s->output_offset - s->vma;
1674 }
1675 else
1676 {
1677 struct ecoff_link_hash_entry *h;
1678
1679 h = sym_hashes[r_symndx];
1680 if (h == (struct ecoff_link_hash_entry *) NULL)
1681 abort ();
1682
1683 if (! bfd_link_relocatable (info))
1684 {
1685 if (h->root.type == bfd_link_hash_defined
1686 || h->root.type == bfd_link_hash_defweak)
1687 addend = (h->root.u.def.value
1688 + h->root.u.def.section->output_section->vma
1689 + h->root.u.def.section->output_offset);
1690 else
1691 {
1692 /* Note that we pass the address as 0, since we
1693 do not have a meaningful number for the
1694 location within the section that is being
1695 relocated. */
1696 (*info->callbacks->undefined_symbol)
1697 (info, h->root.root.string, input_bfd,
1698 input_section, (bfd_vma) 0, true);
1699 addend = 0;
1700 }
1701 }
1702 else
1703 {
1704 if (h->root.type != bfd_link_hash_defined
1705 && h->root.type != bfd_link_hash_defweak
1706 && h->indx == -1)
1707 {
1708 /* This symbol is not being written out. Pass
1709 the address as 0, as with undefined_symbol,
1710 above. */
1711 (*info->callbacks->unattached_reloc)
1712 (info, h->root.root.string,
1713 input_bfd, input_section, (bfd_vma) 0);
1714 }
1715
1716 addend = alpha_convert_external_reloc (output_bfd, info,
1717 input_bfd,
1718 ext_rel, h);
1719 }
1720 }
1721
1722 addend += r_vaddr;
1723
1724 if (bfd_link_relocatable (info))
1725 {
1726 /* Adjust r_vaddr by the addend. */
1727 H_PUT_64 (input_bfd, addend, ext_rel->r_vaddr);
1728 }
1729 else
1730 {
1731 switch (r_type)
1732 {
1733 case ALPHA_R_OP_PUSH:
1734 if (tos >= RELOC_STACKSIZE)
1735 abort ();
1736 stack[tos++] = addend;
1737 break;
1738
1739 case ALPHA_R_OP_PSUB:
1740 if (tos == 0)
1741 abort ();
1742 stack[tos - 1] -= addend;
1743 break;
1744
1745 case ALPHA_R_OP_PRSHIFT:
1746 if (tos == 0)
1747 abort ();
1748 stack[tos - 1] >>= addend;
1749 break;
1750 }
1751 }
1752
1753 adjust_addrp = false;
1754 break;
1755
1756 case ALPHA_R_OP_STORE:
1757 /* Store a value from the reloc stack into a bitfield. If
1758 we are generating relocatable output, all we do is
1759 adjust the address of the reloc. */
1760 if (! bfd_link_relocatable (info))
1761 {
1762 bfd_vma mask;
1763 bfd_vma val;
1764
1765 if (tos == 0)
1766 abort ();
1767
1768 /* Get the relocation mask. The separate steps and the
1769 casts to bfd_vma are attempts to avoid a bug in the
1770 Alpha OSF 1.3 C compiler. See reloc.c for more
1771 details. */
1772 mask = 1;
1773 mask <<= (bfd_vma) r_size;
1774 mask -= 1;
1775
1776 /* FIXME: I don't know what kind of overflow checking,
1777 if any, should be done here. */
1778 val = bfd_get_64 (input_bfd,
1779 contents + r_vaddr - input_section->vma);
1780 val &=~ mask << (bfd_vma) r_offset;
1781 val |= (stack[--tos] & mask) << (bfd_vma) r_offset;
1782 bfd_put_64 (input_bfd, val,
1783 contents + r_vaddr - input_section->vma);
1784 }
1785 break;
1786
1787 case ALPHA_R_GPVALUE:
1788 /* I really don't know if this does the right thing. */
1789 gp = ecoff_data (input_bfd)->gp + r_symndx;
1790 gp_undefined = false;
1791 break;
1792 }
1793
1794 if (relocatep)
1795 {
1796 reloc_howto_type *howto;
1797 struct ecoff_link_hash_entry *h = NULL;
1798 asection *s = NULL;
1799 bfd_vma relocation;
1800 bfd_reloc_status_type r;
1801
1802 /* Perform a relocation. */
1803
1804 howto = &alpha_howto_table[r_type];
1805
1806 if (r_extern)
1807 {
1808 h = sym_hashes[r_symndx];
1809 /* If h is NULL, that means that there is a reloc
1810 against an external symbol which we thought was just
1811 a debugging symbol. This should not happen. */
1812 if (h == (struct ecoff_link_hash_entry *) NULL)
1813 abort ();
1814 }
1815 else
1816 {
1817 if (r_symndx >= NUM_RELOC_SECTIONS)
1818 s = NULL;
1819 else
1820 s = symndx_to_section[r_symndx];
1821
1822 if (s == (asection *) NULL)
1823 abort ();
1824 }
1825
1826 if (bfd_link_relocatable (info))
1827 {
1828 /* We are generating relocatable output, and must
1829 convert the existing reloc. */
1830 if (r_extern)
1831 {
1832 if (h->root.type != bfd_link_hash_defined
1833 && h->root.type != bfd_link_hash_defweak
1834 && h->indx == -1)
1835 {
1836 /* This symbol is not being written out. */
1837 (*info->callbacks->unattached_reloc)
1838 (info, h->root.root.string, input_bfd,
1839 input_section, r_vaddr - input_section->vma);
1840 }
1841
1842 relocation = alpha_convert_external_reloc (output_bfd,
1843 info,
1844 input_bfd,
1845 ext_rel,
1846 h);
1847 }
1848 else
1849 {
1850 /* This is a relocation against a section. Adjust
1851 the value by the amount the section moved. */
1852 relocation = (s->output_section->vma
1853 + s->output_offset
1854 - s->vma);
1855 }
1856
1857 /* If this is PC relative, the existing object file
1858 appears to already have the reloc worked out. We
1859 must subtract out the old value and add in the new
1860 one. */
1861 if (howto->pc_relative)
1862 relocation -= (input_section->output_section->vma
1863 + input_section->output_offset
1864 - input_section->vma);
1865
1866 /* Put in any addend. */
1867 relocation += addend;
1868
1869 /* Adjust the contents. */
1870 r = _bfd_relocate_contents (howto, input_bfd, relocation,
1871 (contents
1872 + r_vaddr
1873 - input_section->vma));
1874 }
1875 else
1876 {
1877 /* We are producing a final executable. */
1878 if (r_extern)
1879 {
1880 /* This is a reloc against a symbol. */
1881 if (h->root.type == bfd_link_hash_defined
1882 || h->root.type == bfd_link_hash_defweak)
1883 {
1884 asection *hsec;
1885
1886 hsec = h->root.u.def.section;
1887 relocation = (h->root.u.def.value
1888 + hsec->output_section->vma
1889 + hsec->output_offset);
1890 }
1891 else
1892 {
1893 (*info->callbacks->undefined_symbol)
1894 (info, h->root.root.string, input_bfd, input_section,
1895 r_vaddr - input_section->vma, true);
1896 relocation = 0;
1897 }
1898 }
1899 else
1900 {
1901 /* This is a reloc against a section. */
1902 relocation = (s->output_section->vma
1903 + s->output_offset
1904 - s->vma);
1905
1906 /* Adjust a PC relative relocation by removing the
1907 reference to the original source section. */
1908 if (howto->pc_relative)
1909 relocation += input_section->vma;
1910 }
1911
1912 r = _bfd_final_link_relocate (howto,
1913 input_bfd,
1914 input_section,
1915 contents,
1916 r_vaddr - input_section->vma,
1917 relocation,
1918 addend);
1919 }
1920
1921 if (r != bfd_reloc_ok)
1922 {
1923 switch (r)
1924 {
1925 default:
1926 case bfd_reloc_outofrange:
1927 abort ();
1928 case bfd_reloc_overflow:
1929 {
1930 const char *name;
1931
1932 if (r_extern)
1933 name = sym_hashes[r_symndx]->root.root.string;
1934 else
1935 name = bfd_section_name (symndx_to_section[r_symndx]);
1936 (*info->callbacks->reloc_overflow)
1937 (info, NULL, name, alpha_howto_table[r_type].name,
1938 (bfd_vma) 0, input_bfd, input_section,
1939 r_vaddr - input_section->vma);
1940 }
1941 break;
1942 }
1943 }
1944 }
1945
1946 if (bfd_link_relocatable (info) && adjust_addrp)
1947 {
1948 /* Change the address of the relocation. */
1949 H_PUT_64 (input_bfd,
1950 (input_section->output_section->vma
1951 + input_section->output_offset
1952 - input_section->vma
1953 + r_vaddr),
1954 ext_rel->r_vaddr);
1955 }
1956
1957 if (gp_usedp && gp_undefined)
1958 {
1959 (*info->callbacks->reloc_dangerous)
1960 (info, _("GP relative relocation used when GP not defined"),
1961 input_bfd, input_section, r_vaddr - input_section->vma);
1962 /* Only give the error once per link. */
1963 gp = 4;
1964 _bfd_set_gp_value (output_bfd, gp);
1965 gp_undefined = false;
1966 }
1967 }
1968
1969 if (tos != 0)
1970 abort ();
1971
1972 return true;
1973 }
1974 \f
1975 /* Do final adjustments to the filehdr and the aouthdr. This routine
1976 sets the dynamic bits in the file header. */
1977
1978 static bool
1979 alpha_adjust_headers (bfd *abfd,
1980 struct internal_filehdr *fhdr,
1981 struct internal_aouthdr *ahdr ATTRIBUTE_UNUSED)
1982 {
1983 if ((abfd->flags & (DYNAMIC | EXEC_P)) == (DYNAMIC | EXEC_P))
1984 fhdr->f_flags |= F_ALPHA_CALL_SHARED;
1985 else if ((abfd->flags & DYNAMIC) != 0)
1986 fhdr->f_flags |= F_ALPHA_SHARABLE;
1987 return true;
1988 }
1989 \f
1990 /* Archive handling. In OSF/1 (or Digital Unix) v3.2, Digital
1991 introduced archive packing, in which the elements in an archive are
1992 optionally compressed using a simple dictionary scheme. We know
1993 how to read such archives, but we don't write them. */
1994
1995 #define alpha_ecoff_slurp_armap _bfd_ecoff_slurp_armap
1996 #define alpha_ecoff_slurp_extended_name_table \
1997 _bfd_ecoff_slurp_extended_name_table
1998 #define alpha_ecoff_construct_extended_name_table \
1999 _bfd_ecoff_construct_extended_name_table
2000 #define alpha_ecoff_truncate_arname _bfd_ecoff_truncate_arname
2001 #define alpha_ecoff_write_armap _bfd_ecoff_write_armap
2002 #define alpha_ecoff_write_ar_hdr _bfd_generic_write_ar_hdr
2003 #define alpha_ecoff_generic_stat_arch_elt _bfd_ecoff_generic_stat_arch_elt
2004 #define alpha_ecoff_update_armap_timestamp _bfd_ecoff_update_armap_timestamp
2005
2006 /* A compressed file uses this instead of ARFMAG. */
2007
2008 #define ARFZMAG "Z\012"
2009
2010 /* Read an archive header. This is like the standard routine, but it
2011 also accepts ARFZMAG. */
2012
2013 static void *
2014 alpha_ecoff_read_ar_hdr (bfd *abfd)
2015 {
2016 struct areltdata *ret;
2017 struct ar_hdr *h;
2018
2019 ret = (struct areltdata *) _bfd_generic_read_ar_hdr_mag (abfd, ARFZMAG);
2020 if (ret == NULL)
2021 return NULL;
2022
2023 h = (struct ar_hdr *) ret->arch_header;
2024 if (strncmp (h->ar_fmag, ARFZMAG, 2) == 0)
2025 {
2026 bfd_byte ab[8];
2027
2028 /* This is a compressed file. We must set the size correctly.
2029 The size is the eight bytes after the dummy file header. */
2030 if (bfd_seek (abfd, (file_ptr) FILHSZ, SEEK_CUR) != 0
2031 || bfd_bread (ab, (bfd_size_type) 8, abfd) != 8
2032 || bfd_seek (abfd, (file_ptr) (- (FILHSZ + 8)), SEEK_CUR) != 0)
2033 {
2034 free (ret);
2035 return NULL;
2036 }
2037
2038 ret->parsed_size = H_GET_64 (abfd, ab);
2039 }
2040
2041 return ret;
2042 }
2043
2044 /* Get an archive element at a specified file position. This is where
2045 we uncompress the archive element if necessary. */
2046
2047 static bfd *
2048 alpha_ecoff_get_elt_at_filepos (bfd *archive, file_ptr filepos,
2049 struct bfd_link_info *info)
2050 {
2051 bfd *nbfd = NULL;
2052 struct areltdata *tdata;
2053 struct ar_hdr *hdr;
2054 bfd_byte ab[8];
2055 bfd_size_type size;
2056 bfd_byte *buf, *p;
2057 struct bfd_in_memory *bim;
2058 ufile_ptr filesize;
2059
2060 buf = NULL;
2061 nbfd = _bfd_get_elt_at_filepos (archive, filepos, info);
2062 if (nbfd == NULL)
2063 goto error_return;
2064
2065 if ((nbfd->flags & BFD_IN_MEMORY) != 0)
2066 {
2067 /* We have already expanded this BFD. */
2068 return nbfd;
2069 }
2070
2071 tdata = (struct areltdata *) nbfd->arelt_data;
2072 hdr = (struct ar_hdr *) tdata->arch_header;
2073 if (strncmp (hdr->ar_fmag, ARFZMAG, 2) != 0)
2074 return nbfd;
2075
2076 /* We must uncompress this element. We do this by copying it into a
2077 memory buffer, and making bfd_bread and bfd_seek use that buffer.
2078 This can use a lot of memory, but it's simpler than getting a
2079 temporary file, making that work with the file descriptor caching
2080 code, and making sure that it is deleted at all appropriate
2081 times. It can be changed if it ever becomes important. */
2082
2083 /* The compressed file starts with a dummy ECOFF file header. */
2084 if (bfd_seek (nbfd, (file_ptr) FILHSZ, SEEK_SET) != 0)
2085 goto error_return;
2086
2087 /* The next eight bytes are the real file size. */
2088 if (bfd_bread (ab, (bfd_size_type) 8, nbfd) != 8)
2089 goto error_return;
2090 size = H_GET_64 (nbfd, ab);
2091
2092 /* The decompression algorithm will at most expand by eight times. */
2093 filesize = bfd_get_file_size (archive);
2094 if (filesize != 0 && size / 8 > filesize)
2095 {
2096 bfd_set_error (bfd_error_malformed_archive);
2097 goto error_return;
2098 }
2099
2100 if (size != 0)
2101 {
2102 bfd_size_type left;
2103 bfd_byte dict[4096];
2104 unsigned int h;
2105 bfd_byte b;
2106
2107 buf = (bfd_byte *) bfd_malloc (size);
2108 if (buf == NULL)
2109 goto error_return;
2110 p = buf;
2111
2112 left = size;
2113
2114 /* I don't know what the next eight bytes are for. */
2115 if (bfd_bread (ab, (bfd_size_type) 8, nbfd) != 8)
2116 goto error_return;
2117
2118 /* This is the uncompression algorithm. It's a simple
2119 dictionary based scheme in which each character is predicted
2120 by a hash of the previous three characters. A control byte
2121 indicates whether the character is predicted or whether it
2122 appears in the input stream; each control byte manages the
2123 next eight bytes in the output stream. */
2124 memset (dict, 0, sizeof dict);
2125 h = 0;
2126 while (bfd_bread (&b, (bfd_size_type) 1, nbfd) == 1)
2127 {
2128 unsigned int i;
2129
2130 for (i = 0; i < 8; i++, b >>= 1)
2131 {
2132 bfd_byte n;
2133
2134 if ((b & 1) == 0)
2135 n = dict[h];
2136 else
2137 {
2138 if (bfd_bread (&n, 1, nbfd) != 1)
2139 goto error_return;
2140 dict[h] = n;
2141 }
2142
2143 *p++ = n;
2144
2145 --left;
2146 if (left == 0)
2147 break;
2148
2149 h <<= 4;
2150 h ^= n;
2151 h &= sizeof dict - 1;
2152 }
2153
2154 if (left == 0)
2155 break;
2156 }
2157 }
2158
2159 /* Now the uncompressed file contents are in buf. */
2160 bim = ((struct bfd_in_memory *)
2161 bfd_malloc ((bfd_size_type) sizeof (struct bfd_in_memory)));
2162 if (bim == NULL)
2163 goto error_return;
2164 bim->size = size;
2165 bim->buffer = buf;
2166
2167 nbfd->mtime_set = true;
2168 nbfd->mtime = strtol (hdr->ar_date, (char **) NULL, 10);
2169
2170 nbfd->flags |= BFD_IN_MEMORY;
2171 nbfd->iostream = bim;
2172 nbfd->iovec = &_bfd_memory_iovec;
2173 nbfd->origin = 0;
2174 BFD_ASSERT (! nbfd->cacheable);
2175
2176 return nbfd;
2177
2178 error_return:
2179 free (buf);
2180 if (nbfd != NULL)
2181 bfd_close (nbfd);
2182 return NULL;
2183 }
2184
2185 /* Open the next archived file. */
2186
2187 static bfd *
2188 alpha_ecoff_openr_next_archived_file (bfd *archive, bfd *last_file)
2189 {
2190 ufile_ptr filestart;
2191
2192 if (last_file == NULL)
2193 filestart = bfd_ardata (archive)->first_file_filepos;
2194 else
2195 {
2196 struct areltdata *t;
2197 struct ar_hdr *h;
2198 bfd_size_type size;
2199
2200 /* We can't use arelt_size here, because that uses parsed_size,
2201 which is the uncompressed size. We need the compressed size. */
2202 t = (struct areltdata *) last_file->arelt_data;
2203 h = (struct ar_hdr *) t->arch_header;
2204 size = strtol (h->ar_size, (char **) NULL, 10);
2205
2206 /* Pad to an even boundary...
2207 Note that last_file->origin can be odd in the case of
2208 BSD-4.4-style element with a long odd size. */
2209 filestart = last_file->proxy_origin + size;
2210 filestart += filestart % 2;
2211 if (filestart < last_file->proxy_origin)
2212 {
2213 /* Prevent looping. See PR19256. */
2214 bfd_set_error (bfd_error_malformed_archive);
2215 return NULL;
2216 }
2217 }
2218
2219 return alpha_ecoff_get_elt_at_filepos (archive, filestart, NULL);
2220 }
2221
2222 /* Open the archive file given an index into the armap. */
2223
2224 static bfd *
2225 alpha_ecoff_get_elt_at_index (bfd *abfd, symindex sym_index)
2226 {
2227 carsym *entry;
2228
2229 entry = bfd_ardata (abfd)->symdefs + sym_index;
2230 return alpha_ecoff_get_elt_at_filepos (abfd, entry->file_offset,
2231 NULL);
2232 }
2233
2234 static void
2235 alpha_ecoff_swap_coff_aux_in (bfd *abfd ATTRIBUTE_UNUSED,
2236 void *ext1 ATTRIBUTE_UNUSED,
2237 int type ATTRIBUTE_UNUSED,
2238 int in_class ATTRIBUTE_UNUSED,
2239 int indx ATTRIBUTE_UNUSED,
2240 int numaux ATTRIBUTE_UNUSED,
2241 void *in1 ATTRIBUTE_UNUSED)
2242 {
2243 }
2244
2245 static void
2246 alpha_ecoff_swap_coff_sym_in (bfd *abfd ATTRIBUTE_UNUSED,
2247 void *ext1 ATTRIBUTE_UNUSED,
2248 void *in1 ATTRIBUTE_UNUSED)
2249 {
2250 }
2251
2252 static void
2253 alpha_ecoff_swap_coff_lineno_in (bfd *abfd ATTRIBUTE_UNUSED,
2254 void *ext1 ATTRIBUTE_UNUSED,
2255 void *in1 ATTRIBUTE_UNUSED)
2256 {
2257 }
2258
2259 static unsigned int
2260 alpha_ecoff_swap_coff_aux_out (bfd *abfd ATTRIBUTE_UNUSED,
2261 void *inp ATTRIBUTE_UNUSED,
2262 int type ATTRIBUTE_UNUSED,
2263 int in_class ATTRIBUTE_UNUSED,
2264 int indx ATTRIBUTE_UNUSED,
2265 int numaux ATTRIBUTE_UNUSED,
2266 void *extp ATTRIBUTE_UNUSED)
2267 {
2268 return 0;
2269 }
2270
2271 static unsigned int
2272 alpha_ecoff_swap_coff_sym_out (bfd *abfd ATTRIBUTE_UNUSED,
2273 void *inp ATTRIBUTE_UNUSED,
2274 void *extp ATTRIBUTE_UNUSED)
2275 {
2276 return 0;
2277 }
2278
2279 static unsigned int
2280 alpha_ecoff_swap_coff_lineno_out (bfd *abfd ATTRIBUTE_UNUSED,
2281 void *inp ATTRIBUTE_UNUSED,
2282 void *extp ATTRIBUTE_UNUSED)
2283 {
2284 return 0;
2285 }
2286
2287 static unsigned int
2288 alpha_ecoff_swap_coff_reloc_out (bfd *abfd ATTRIBUTE_UNUSED,
2289 void *inp ATTRIBUTE_UNUSED,
2290 void *extp ATTRIBUTE_UNUSED)
2291 {
2292 return 0;
2293 }
2294 \f
2295 /* This is the ECOFF backend structure. The backend field of the
2296 target vector points to this. */
2297
2298 static const struct ecoff_backend_data alpha_ecoff_backend_data =
2299 {
2300 /* COFF backend structure. */
2301 {
2302 alpha_ecoff_swap_coff_aux_in, alpha_ecoff_swap_coff_sym_in,
2303 alpha_ecoff_swap_coff_lineno_in, alpha_ecoff_swap_coff_aux_out,
2304 alpha_ecoff_swap_coff_sym_out, alpha_ecoff_swap_coff_lineno_out,
2305 alpha_ecoff_swap_coff_reloc_out,
2306 alpha_ecoff_swap_filehdr_out, alpha_ecoff_swap_aouthdr_out,
2307 alpha_ecoff_swap_scnhdr_out,
2308 FILHSZ, AOUTSZ, SCNHSZ, 0, 0, 0, 0, FILNMLEN, true,
2309 ECOFF_NO_LONG_SECTION_NAMES, 4, false, 2, 32768,
2310 alpha_ecoff_swap_filehdr_in, alpha_ecoff_swap_aouthdr_in,
2311 alpha_ecoff_swap_scnhdr_in, NULL,
2312 alpha_ecoff_bad_format_hook, _bfd_ecoff_set_arch_mach_hook,
2313 alpha_ecoff_mkobject_hook, _bfd_ecoff_styp_to_sec_flags,
2314 _bfd_ecoff_set_alignment_hook, _bfd_ecoff_slurp_symbol_table,
2315 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2316 NULL, NULL, NULL, NULL
2317 },
2318 /* Supported architecture. */
2319 bfd_arch_alpha,
2320 /* Initial portion of armap string. */
2321 "________64",
2322 /* The page boundary used to align sections in a demand-paged
2323 executable file. E.g., 0x1000. */
2324 0x2000,
2325 /* TRUE if the .rdata section is part of the text segment, as on the
2326 Alpha. FALSE if .rdata is part of the data segment, as on the
2327 MIPS. */
2328 true,
2329 /* Bitsize of constructor entries. */
2330 64,
2331 /* Reloc to use for constructor entries. */
2332 &alpha_howto_table[ALPHA_R_REFQUAD],
2333 {
2334 /* Symbol table magic number. */
2335 magicSym2,
2336 /* Alignment of debugging information. E.g., 4. */
2337 8,
2338 /* Sizes of external symbolic information. */
2339 sizeof (struct hdr_ext),
2340 sizeof (struct dnr_ext),
2341 sizeof (struct pdr_ext),
2342 sizeof (struct sym_ext),
2343 sizeof (struct opt_ext),
2344 sizeof (struct fdr_ext),
2345 sizeof (struct rfd_ext),
2346 sizeof (struct ext_ext),
2347 /* Functions to swap in external symbolic data. */
2348 ecoff_swap_hdr_in,
2349 ecoff_swap_dnr_in,
2350 ecoff_swap_pdr_in,
2351 ecoff_swap_sym_in,
2352 ecoff_swap_opt_in,
2353 ecoff_swap_fdr_in,
2354 ecoff_swap_rfd_in,
2355 ecoff_swap_ext_in,
2356 _bfd_ecoff_swap_tir_in,
2357 _bfd_ecoff_swap_rndx_in,
2358 /* Functions to swap out external symbolic data. */
2359 ecoff_swap_hdr_out,
2360 ecoff_swap_dnr_out,
2361 ecoff_swap_pdr_out,
2362 ecoff_swap_sym_out,
2363 ecoff_swap_opt_out,
2364 ecoff_swap_fdr_out,
2365 ecoff_swap_rfd_out,
2366 ecoff_swap_ext_out,
2367 _bfd_ecoff_swap_tir_out,
2368 _bfd_ecoff_swap_rndx_out,
2369 /* Function to read in symbolic data. */
2370 _bfd_ecoff_slurp_symbolic_info
2371 },
2372 /* External reloc size. */
2373 RELSZ,
2374 /* Reloc swapping functions. */
2375 alpha_ecoff_swap_reloc_in,
2376 alpha_ecoff_swap_reloc_out,
2377 /* Backend reloc tweaking. */
2378 alpha_adjust_reloc_in,
2379 alpha_adjust_reloc_out,
2380 /* Relocate section contents while linking. */
2381 alpha_relocate_section,
2382 /* Do final adjustments to filehdr and aouthdr. */
2383 alpha_adjust_headers,
2384 /* Read an element from an archive at a given file position. */
2385 alpha_ecoff_get_elt_at_filepos
2386 };
2387
2388 /* Looking up a reloc type is Alpha specific. */
2389 #define _bfd_ecoff_bfd_reloc_type_lookup alpha_bfd_reloc_type_lookup
2390 #define _bfd_ecoff_bfd_reloc_name_lookup \
2391 alpha_bfd_reloc_name_lookup
2392
2393 /* So is getting relocated section contents. */
2394 #define _bfd_ecoff_bfd_get_relocated_section_contents \
2395 alpha_ecoff_get_relocated_section_contents
2396
2397 /* Handling file windows is generic. */
2398 #define _bfd_ecoff_get_section_contents_in_window \
2399 _bfd_generic_get_section_contents_in_window
2400
2401 /* Input section flag lookup is generic. */
2402 #define _bfd_ecoff_bfd_lookup_section_flags bfd_generic_lookup_section_flags
2403
2404 /* Relaxing sections is generic. */
2405 #define _bfd_ecoff_bfd_relax_section bfd_generic_relax_section
2406 #define _bfd_ecoff_bfd_gc_sections bfd_generic_gc_sections
2407 #define _bfd_ecoff_bfd_merge_sections bfd_generic_merge_sections
2408 #define _bfd_ecoff_bfd_is_group_section bfd_generic_is_group_section
2409 #define _bfd_ecoff_bfd_group_name bfd_generic_group_name
2410 #define _bfd_ecoff_bfd_discard_group bfd_generic_discard_group
2411 #define _bfd_ecoff_section_already_linked \
2412 _bfd_coff_section_already_linked
2413 #define _bfd_ecoff_bfd_define_common_symbol bfd_generic_define_common_symbol
2414 #define _bfd_ecoff_bfd_link_hide_symbol _bfd_generic_link_hide_symbol
2415 #define _bfd_ecoff_bfd_define_start_stop bfd_generic_define_start_stop
2416 #define _bfd_ecoff_bfd_link_check_relocs _bfd_generic_link_check_relocs
2417
2418 /* Installing internal relocations in a section is also generic. */
2419 #define _bfd_ecoff_set_reloc _bfd_generic_set_reloc
2420
2421 const bfd_target alpha_ecoff_le_vec =
2422 {
2423 "ecoff-littlealpha", /* name */
2424 bfd_target_ecoff_flavour,
2425 BFD_ENDIAN_LITTLE, /* data byte order is little */
2426 BFD_ENDIAN_LITTLE, /* header byte order is little */
2427
2428 (HAS_RELOC | EXEC_P /* object flags */
2429 | HAS_LINENO | HAS_DEBUG
2430 | HAS_SYMS | HAS_LOCALS | DYNAMIC | WP_TEXT | D_PAGED),
2431
2432 (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_CODE
2433 | SEC_DATA | SEC_SMALL_DATA),
2434 0, /* leading underscore */
2435 ' ', /* ar_pad_char */
2436 15, /* ar_max_namelen */
2437 0, /* match priority. */
2438 TARGET_KEEP_UNUSED_SECTION_SYMBOLS, /* keep unused section symbols. */
2439 bfd_getl64, bfd_getl_signed_64, bfd_putl64,
2440 bfd_getl32, bfd_getl_signed_32, bfd_putl32,
2441 bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* data */
2442 bfd_getl64, bfd_getl_signed_64, bfd_putl64,
2443 bfd_getl32, bfd_getl_signed_32, bfd_putl32,
2444 bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* hdrs */
2445
2446 { /* bfd_check_format */
2447 _bfd_dummy_target,
2448 alpha_ecoff_object_p,
2449 bfd_generic_archive_p,
2450 _bfd_dummy_target
2451 },
2452 { /* bfd_set_format */
2453 _bfd_bool_bfd_false_error,
2454 _bfd_ecoff_mkobject,
2455 _bfd_generic_mkarchive,
2456 _bfd_bool_bfd_false_error
2457 },
2458 { /* bfd_write_contents */
2459 _bfd_bool_bfd_false_error,
2460 _bfd_ecoff_write_object_contents,
2461 _bfd_write_archive_contents,
2462 _bfd_bool_bfd_false_error
2463 },
2464
2465 BFD_JUMP_TABLE_GENERIC (_bfd_ecoff),
2466 BFD_JUMP_TABLE_COPY (_bfd_ecoff),
2467 BFD_JUMP_TABLE_CORE (_bfd_nocore),
2468 BFD_JUMP_TABLE_ARCHIVE (alpha_ecoff),
2469 BFD_JUMP_TABLE_SYMBOLS (_bfd_ecoff),
2470 BFD_JUMP_TABLE_RELOCS (_bfd_ecoff),
2471 BFD_JUMP_TABLE_WRITE (_bfd_ecoff),
2472 BFD_JUMP_TABLE_LINK (_bfd_ecoff),
2473 BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
2474
2475 NULL,
2476
2477 &alpha_ecoff_backend_data
2478 };