ppc/svp64: reuse md_parse_name in md_operand
[binutils-gdb.git] / bfd / dwarf2.c
1 /* DWARF 2 support.
2 Copyright (C) 1994-2022 Free Software Foundation, Inc.
3
4 Adapted from gdb/dwarf2read.c by Gavin Koch of Cygnus Solutions
5 (gavin@cygnus.com).
6
7 From the dwarf2read.c header:
8 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
9 Inc. with support from Florida State University (under contract
10 with the Ada Joint Program Office), and Silicon Graphics, Inc.
11 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
12 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
13 support in dwarfread.c
14
15 This file is part of BFD.
16
17 This program is free software; you can redistribute it and/or modify
18 it under the terms of the GNU General Public License as published by
19 the Free Software Foundation; either version 3 of the License, or (at
20 your option) any later version.
21
22 This program is distributed in the hope that it will be useful, but
23 WITHOUT ANY WARRANTY; without even the implied warranty of
24 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
25 General Public License for more details.
26
27 You should have received a copy of the GNU General Public License
28 along with this program; if not, write to the Free Software
29 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
30 MA 02110-1301, USA. */
31
32 #include "sysdep.h"
33 #include "bfd.h"
34 #include "libiberty.h"
35 #include "demangle.h"
36 #include "libbfd.h"
37 #include "elf-bfd.h"
38 #include "dwarf2.h"
39 #include "hashtab.h"
40 #include "splay-tree.h"
41
42 /* The data in the .debug_line statement prologue looks like this. */
43
44 struct line_head
45 {
46 bfd_vma total_length;
47 unsigned short version;
48 bfd_vma prologue_length;
49 unsigned char minimum_instruction_length;
50 unsigned char maximum_ops_per_insn;
51 unsigned char default_is_stmt;
52 int line_base;
53 unsigned char line_range;
54 unsigned char opcode_base;
55 unsigned char *standard_opcode_lengths;
56 };
57
58 /* Attributes have a name and a value. */
59
60 struct attribute
61 {
62 enum dwarf_attribute name;
63 enum dwarf_form form;
64 union
65 {
66 char *str;
67 struct dwarf_block *blk;
68 uint64_t val;
69 int64_t sval;
70 }
71 u;
72 };
73
74 /* Blocks are a bunch of untyped bytes. */
75 struct dwarf_block
76 {
77 unsigned int size;
78 bfd_byte *data;
79 };
80
81 struct adjusted_section
82 {
83 asection *section;
84 bfd_vma adj_vma;
85 };
86
87 /* A trie to map quickly from address range to compilation unit.
88
89 This is a fairly standard radix-256 trie, used to quickly locate which
90 compilation unit any given address belongs to. Given that each compilation
91 unit may register hundreds of very small and unaligned ranges (which may
92 potentially overlap, due to inlining and other concerns), and a large
93 program may end up containing hundreds of thousands of such ranges, we cannot
94 scan through them linearly without undue slowdown.
95
96 We use a hybrid trie to avoid memory explosion: There are two types of trie
97 nodes, leaves and interior nodes. (Almost all nodes are leaves, so they
98 take up the bulk of the memory usage.) Leaves contain a simple array of
99 ranges (high/low address) and which compilation unit contains those ranges,
100 and when we get to a leaf, we scan through it linearly. Interior nodes
101 contain pointers to 256 other nodes, keyed by the next byte of the address.
102 So for a 64-bit address like 0x1234567abcd, we would start at the root and go
103 down child[0x00]->child[0x00]->child[0x01]->child[0x23]->child[0x45] etc.,
104 until we hit a leaf. (Nodes are, in general, leaves until they exceed the
105 default allocation of 16 elements, at which point they are converted to
106 interior node if possible.) This gives us near-constant lookup times;
107 the only thing that can be costly is if there are lots of overlapping ranges
108 within a single 256-byte segment of the binary, in which case we have to
109 scan through them all to find the best match.
110
111 For a binary with few ranges, we will in practice only have a single leaf
112 node at the root, containing a simple array. Thus, the scheme is efficient
113 for both small and large binaries.
114 */
115
116 /* Experiments have shown 16 to be a memory-efficient default leaf size.
117 The only case where a leaf will hold more memory than this, is at the
118 bottomost level (covering 256 bytes in the binary), where we'll expand
119 the leaf to be able to hold more ranges if needed.
120 */
121 #define TRIE_LEAF_SIZE 16
122
123 /* All trie_node pointers will really be trie_leaf or trie_interior,
124 but they have this common head. */
125 struct trie_node
126 {
127 /* If zero, we are an interior node.
128 Otherwise, how many ranges we have room for in this leaf. */
129 unsigned int num_room_in_leaf;
130 };
131
132 struct trie_leaf
133 {
134 struct trie_node head;
135 unsigned int num_stored_in_leaf;
136 struct {
137 struct comp_unit *unit;
138 bfd_vma low_pc, high_pc;
139 } ranges[TRIE_LEAF_SIZE];
140 };
141
142 struct trie_interior
143 {
144 struct trie_node head;
145 struct trie_node *children[256];
146 };
147
148 static struct trie_node *alloc_trie_leaf (bfd *abfd)
149 {
150 struct trie_leaf *leaf = bfd_zalloc (abfd, sizeof (struct trie_leaf));
151 if (leaf == NULL)
152 return NULL;
153 leaf->head.num_room_in_leaf = TRIE_LEAF_SIZE;
154 return &leaf->head;
155 }
156
157 struct addr_range
158 {
159 bfd_byte *start;
160 bfd_byte *end;
161 };
162
163 /* Return true if address range do intersect. */
164
165 static bool
166 addr_range_intersects (struct addr_range *r1, struct addr_range *r2)
167 {
168 return (r1->start <= r2->start && r2->start < r1->end)
169 || (r1->start <= (r2->end - 1) && (r2->end - 1) < r1->end);
170 }
171
172 /* Compare function for splay tree of addr_ranges. */
173
174 static int
175 splay_tree_compare_addr_range (splay_tree_key xa, splay_tree_key xb)
176 {
177 struct addr_range *r1 = (struct addr_range *) xa;
178 struct addr_range *r2 = (struct addr_range *) xb;
179
180 if (addr_range_intersects (r1, r2) || addr_range_intersects (r2, r1))
181 return 0;
182 else if (r1->end <= r2->start)
183 return -1;
184 else
185 return 1;
186 }
187
188 /* Splay tree release function for keys (addr_range). */
189
190 static void
191 splay_tree_free_addr_range (splay_tree_key key)
192 {
193 free ((struct addr_range *)key);
194 }
195
196 struct dwarf2_debug_file
197 {
198 /* The actual bfd from which debug info was loaded. Might be
199 different to orig_bfd because of gnu_debuglink sections. */
200 bfd *bfd_ptr;
201
202 /* Pointer to the symbol table. */
203 asymbol **syms;
204
205 /* The current info pointer for the .debug_info section being parsed. */
206 bfd_byte *info_ptr;
207
208 /* A pointer to the memory block allocated for .debug_info sections. */
209 bfd_byte *dwarf_info_buffer;
210
211 /* Length of the loaded .debug_info sections. */
212 bfd_size_type dwarf_info_size;
213
214 /* Pointer to the .debug_abbrev section loaded into memory. */
215 bfd_byte *dwarf_abbrev_buffer;
216
217 /* Length of the loaded .debug_abbrev section. */
218 bfd_size_type dwarf_abbrev_size;
219
220 /* Buffer for decode_line_info. */
221 bfd_byte *dwarf_line_buffer;
222
223 /* Length of the loaded .debug_line section. */
224 bfd_size_type dwarf_line_size;
225
226 /* Pointer to the .debug_str section loaded into memory. */
227 bfd_byte *dwarf_str_buffer;
228
229 /* Length of the loaded .debug_str section. */
230 bfd_size_type dwarf_str_size;
231
232 /* Pointer to the .debug_str_offsets section loaded into memory. */
233 bfd_byte *dwarf_str_offsets_buffer;
234
235 /* Length of the loaded .debug_str_offsets section. */
236 bfd_size_type dwarf_str_offsets_size;
237
238 /* Pointer to the .debug_addr section loaded into memory. */
239 bfd_byte *dwarf_addr_buffer;
240
241 /* Length of the loaded .debug_addr section. */
242 bfd_size_type dwarf_addr_size;
243
244 /* Pointer to the .debug_line_str section loaded into memory. */
245 bfd_byte *dwarf_line_str_buffer;
246
247 /* Length of the loaded .debug_line_str section. */
248 bfd_size_type dwarf_line_str_size;
249
250 /* Pointer to the .debug_ranges section loaded into memory. */
251 bfd_byte *dwarf_ranges_buffer;
252
253 /* Length of the loaded .debug_ranges section. */
254 bfd_size_type dwarf_ranges_size;
255
256 /* Pointer to the .debug_rnglists section loaded into memory. */
257 bfd_byte *dwarf_rnglists_buffer;
258
259 /* Length of the loaded .debug_rnglists section. */
260 bfd_size_type dwarf_rnglists_size;
261
262 /* A list of all previously read comp_units. */
263 struct comp_unit *all_comp_units;
264
265 /* A list of all previously read comp_units with no ranges (yet). */
266 struct comp_unit *all_comp_units_without_ranges;
267
268 /* Last comp unit in list above. */
269 struct comp_unit *last_comp_unit;
270
271 /* Line table at line_offset zero. */
272 struct line_info_table *line_table;
273
274 /* Hash table to map offsets to decoded abbrevs. */
275 htab_t abbrev_offsets;
276
277 /* Root of a trie to map addresses to compilation units. */
278 struct trie_node *trie_root;
279
280 /* Splay tree to map info_ptr address to compilation units. */
281 splay_tree comp_unit_tree;
282 };
283
284 struct dwarf2_debug
285 {
286 /* Names of the debug sections. */
287 const struct dwarf_debug_section *debug_sections;
288
289 /* Per-file stuff. */
290 struct dwarf2_debug_file f, alt;
291
292 /* Pointer to the original bfd for which debug was loaded. This is what
293 we use to compare and so check that the cached debug data is still
294 valid - it saves having to possibly dereference the gnu_debuglink each
295 time. */
296 bfd *orig_bfd;
297
298 /* If the most recent call to bfd_find_nearest_line was given an
299 address in an inlined function, preserve a pointer into the
300 calling chain for subsequent calls to bfd_find_inliner_info to
301 use. */
302 struct funcinfo *inliner_chain;
303
304 /* Section VMAs at the time the stash was built. */
305 bfd_vma *sec_vma;
306 /* Number of sections in the SEC_VMA table. */
307 unsigned int sec_vma_count;
308
309 /* Number of sections whose VMA we must adjust. */
310 int adjusted_section_count;
311
312 /* Array of sections with adjusted VMA. */
313 struct adjusted_section *adjusted_sections;
314
315 /* Number of times find_line is called. This is used in
316 the heuristic for enabling the info hash tables. */
317 int info_hash_count;
318
319 #define STASH_INFO_HASH_TRIGGER 100
320
321 /* Hash table mapping symbol names to function infos. */
322 struct info_hash_table *funcinfo_hash_table;
323
324 /* Hash table mapping symbol names to variable infos. */
325 struct info_hash_table *varinfo_hash_table;
326
327 /* Head of comp_unit list in the last hash table update. */
328 struct comp_unit *hash_units_head;
329
330 /* Status of info hash. */
331 int info_hash_status;
332 #define STASH_INFO_HASH_OFF 0
333 #define STASH_INFO_HASH_ON 1
334 #define STASH_INFO_HASH_DISABLED 2
335
336 /* True if we opened bfd_ptr. */
337 bool close_on_cleanup;
338 };
339
340 struct arange
341 {
342 struct arange *next;
343 bfd_vma low;
344 bfd_vma high;
345 };
346
347 /* A minimal decoding of DWARF2 compilation units. We only decode
348 what's needed to get to the line number information. */
349
350 struct comp_unit
351 {
352 /* Chain the previously read compilation units. */
353 struct comp_unit *next_unit;
354
355 /* Chain the previously read compilation units that have no ranges yet.
356 We scan these separately when we have a trie over the ranges.
357 Unused if arange.high != 0. */
358 struct comp_unit *next_unit_without_ranges;
359
360 /* Likewise, chain the compilation unit read after this one.
361 The comp units are stored in reversed reading order. */
362 struct comp_unit *prev_unit;
363
364 /* Keep the bfd convenient (for memory allocation). */
365 bfd *abfd;
366
367 /* The lowest and highest addresses contained in this compilation
368 unit as specified in the compilation unit header. */
369 struct arange arange;
370
371 /* The DW_AT_name attribute (for error messages). */
372 char *name;
373
374 /* The abbrev hash table. */
375 struct abbrev_info **abbrevs;
376
377 /* DW_AT_language. */
378 int lang;
379
380 /* Note that an error was found by comp_unit_find_nearest_line. */
381 int error;
382
383 /* The DW_AT_comp_dir attribute. */
384 char *comp_dir;
385
386 /* TRUE if there is a line number table associated with this comp. unit. */
387 int stmtlist;
388
389 /* Pointer to the current comp_unit so that we can find a given entry
390 by its reference. */
391 bfd_byte *info_ptr_unit;
392
393 /* The offset into .debug_line of the line number table. */
394 unsigned long line_offset;
395
396 /* Pointer to the first child die for the comp unit. */
397 bfd_byte *first_child_die_ptr;
398
399 /* The end of the comp unit. */
400 bfd_byte *end_ptr;
401
402 /* The decoded line number, NULL if not yet decoded. */
403 struct line_info_table *line_table;
404
405 /* A list of the functions found in this comp. unit. */
406 struct funcinfo *function_table;
407
408 /* A table of function information references searchable by address. */
409 struct lookup_funcinfo *lookup_funcinfo_table;
410
411 /* Number of functions in the function_table and sorted_function_table. */
412 bfd_size_type number_of_functions;
413
414 /* A list of the variables found in this comp. unit. */
415 struct varinfo *variable_table;
416
417 /* Pointers to dwarf2_debug structures. */
418 struct dwarf2_debug *stash;
419 struct dwarf2_debug_file *file;
420
421 /* DWARF format version for this unit - from unit header. */
422 int version;
423
424 /* Address size for this unit - from unit header. */
425 unsigned char addr_size;
426
427 /* Offset size for this unit - from unit header. */
428 unsigned char offset_size;
429
430 /* Base address for this unit - from DW_AT_low_pc attribute of
431 DW_TAG_compile_unit DIE */
432 bfd_vma base_address;
433
434 /* TRUE if symbols are cached in hash table for faster lookup by name. */
435 bool cached;
436
437 /* Used when iterating over trie leaves to know which units we have
438 already seen in this iteration. */
439 bool mark;
440
441 /* Base address of debug_addr section. */
442 size_t dwarf_addr_offset;
443
444 /* Base address of string offset table. */
445 size_t dwarf_str_offset;
446 };
447
448 /* This data structure holds the information of an abbrev. */
449 struct abbrev_info
450 {
451 unsigned int number; /* Number identifying abbrev. */
452 enum dwarf_tag tag; /* DWARF tag. */
453 bool has_children; /* TRUE if the abbrev has children. */
454 unsigned int num_attrs; /* Number of attributes. */
455 struct attr_abbrev * attrs; /* An array of attribute descriptions. */
456 struct abbrev_info * next; /* Next in chain. */
457 };
458
459 struct attr_abbrev
460 {
461 enum dwarf_attribute name;
462 enum dwarf_form form;
463 bfd_vma implicit_const;
464 };
465
466 /* Map of uncompressed DWARF debug section name to compressed one. It
467 is terminated by NULL uncompressed_name. */
468
469 const struct dwarf_debug_section dwarf_debug_sections[] =
470 {
471 { ".debug_abbrev", ".zdebug_abbrev" },
472 { ".debug_aranges", ".zdebug_aranges" },
473 { ".debug_frame", ".zdebug_frame" },
474 { ".debug_info", ".zdebug_info" },
475 { ".debug_info", ".zdebug_info" },
476 { ".debug_line", ".zdebug_line" },
477 { ".debug_loc", ".zdebug_loc" },
478 { ".debug_macinfo", ".zdebug_macinfo" },
479 { ".debug_macro", ".zdebug_macro" },
480 { ".debug_pubnames", ".zdebug_pubnames" },
481 { ".debug_pubtypes", ".zdebug_pubtypes" },
482 { ".debug_ranges", ".zdebug_ranges" },
483 { ".debug_rnglists", ".zdebug_rnglist" },
484 { ".debug_static_func", ".zdebug_static_func" },
485 { ".debug_static_vars", ".zdebug_static_vars" },
486 { ".debug_str", ".zdebug_str", },
487 { ".debug_str", ".zdebug_str", },
488 { ".debug_str_offsets", ".zdebug_str_offsets", },
489 { ".debug_addr", ".zdebug_addr", },
490 { ".debug_line_str", ".zdebug_line_str", },
491 { ".debug_types", ".zdebug_types" },
492 /* GNU DWARF 1 extensions */
493 { ".debug_sfnames", ".zdebug_sfnames" },
494 { ".debug_srcinfo", ".zebug_srcinfo" },
495 /* SGI/MIPS DWARF 2 extensions */
496 { ".debug_funcnames", ".zdebug_funcnames" },
497 { ".debug_typenames", ".zdebug_typenames" },
498 { ".debug_varnames", ".zdebug_varnames" },
499 { ".debug_weaknames", ".zdebug_weaknames" },
500 { NULL, NULL },
501 };
502
503 /* NB/ Numbers in this enum must match up with indices
504 into the dwarf_debug_sections[] array above. */
505 enum dwarf_debug_section_enum
506 {
507 debug_abbrev = 0,
508 debug_aranges,
509 debug_frame,
510 debug_info,
511 debug_info_alt,
512 debug_line,
513 debug_loc,
514 debug_macinfo,
515 debug_macro,
516 debug_pubnames,
517 debug_pubtypes,
518 debug_ranges,
519 debug_rnglists,
520 debug_static_func,
521 debug_static_vars,
522 debug_str,
523 debug_str_alt,
524 debug_str_offsets,
525 debug_addr,
526 debug_line_str,
527 debug_types,
528 debug_sfnames,
529 debug_srcinfo,
530 debug_funcnames,
531 debug_typenames,
532 debug_varnames,
533 debug_weaknames,
534 debug_max
535 };
536
537 /* A static assertion. */
538 extern int dwarf_debug_section_assert[ARRAY_SIZE (dwarf_debug_sections)
539 == debug_max + 1 ? 1 : -1];
540
541 #ifndef ABBREV_HASH_SIZE
542 #define ABBREV_HASH_SIZE 121
543 #endif
544 #ifndef ATTR_ALLOC_CHUNK
545 #define ATTR_ALLOC_CHUNK 4
546 #endif
547
548 /* Variable and function hash tables. This is used to speed up look-up
549 in lookup_symbol_in_var_table() and lookup_symbol_in_function_table().
550 In order to share code between variable and function infos, we use
551 a list of untyped pointer for all variable/function info associated with
552 a symbol. We waste a bit of memory for list with one node but that
553 simplifies the code. */
554
555 struct info_list_node
556 {
557 struct info_list_node *next;
558 void *info;
559 };
560
561 /* Info hash entry. */
562 struct info_hash_entry
563 {
564 struct bfd_hash_entry root;
565 struct info_list_node *head;
566 };
567
568 struct info_hash_table
569 {
570 struct bfd_hash_table base;
571 };
572
573 /* Function to create a new entry in info hash table. */
574
575 static struct bfd_hash_entry *
576 info_hash_table_newfunc (struct bfd_hash_entry *entry,
577 struct bfd_hash_table *table,
578 const char *string)
579 {
580 struct info_hash_entry *ret = (struct info_hash_entry *) entry;
581
582 /* Allocate the structure if it has not already been allocated by a
583 derived class. */
584 if (ret == NULL)
585 {
586 ret = (struct info_hash_entry *) bfd_hash_allocate (table,
587 sizeof (* ret));
588 if (ret == NULL)
589 return NULL;
590 }
591
592 /* Call the allocation method of the base class. */
593 ret = ((struct info_hash_entry *)
594 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
595
596 /* Initialize the local fields here. */
597 if (ret)
598 ret->head = NULL;
599
600 return (struct bfd_hash_entry *) ret;
601 }
602
603 /* Function to create a new info hash table. It returns a pointer to the
604 newly created table or NULL if there is any error. We need abfd
605 solely for memory allocation. */
606
607 static struct info_hash_table *
608 create_info_hash_table (bfd *abfd)
609 {
610 struct info_hash_table *hash_table;
611
612 hash_table = ((struct info_hash_table *)
613 bfd_alloc (abfd, sizeof (struct info_hash_table)));
614 if (!hash_table)
615 return hash_table;
616
617 if (!bfd_hash_table_init (&hash_table->base, info_hash_table_newfunc,
618 sizeof (struct info_hash_entry)))
619 {
620 bfd_release (abfd, hash_table);
621 return NULL;
622 }
623
624 return hash_table;
625 }
626
627 /* Insert an info entry into an info hash table. We do not check of
628 duplicate entries. Also, the caller need to guarantee that the
629 right type of info in inserted as info is passed as a void* pointer.
630 This function returns true if there is no error. */
631
632 static bool
633 insert_info_hash_table (struct info_hash_table *hash_table,
634 const char *key,
635 void *info,
636 bool copy_p)
637 {
638 struct info_hash_entry *entry;
639 struct info_list_node *node;
640
641 entry = (struct info_hash_entry*) bfd_hash_lookup (&hash_table->base,
642 key, true, copy_p);
643 if (!entry)
644 return false;
645
646 node = (struct info_list_node *) bfd_hash_allocate (&hash_table->base,
647 sizeof (*node));
648 if (!node)
649 return false;
650
651 node->info = info;
652 node->next = entry->head;
653 entry->head = node;
654
655 return true;
656 }
657
658 /* Look up an info entry list from an info hash table. Return NULL
659 if there is none. */
660
661 static struct info_list_node *
662 lookup_info_hash_table (struct info_hash_table *hash_table, const char *key)
663 {
664 struct info_hash_entry *entry;
665
666 entry = (struct info_hash_entry*) bfd_hash_lookup (&hash_table->base, key,
667 false, false);
668 return entry ? entry->head : NULL;
669 }
670
671 /* Read a section into its appropriate place in the dwarf2_debug
672 struct (indicated by SECTION_BUFFER and SECTION_SIZE). If SYMS is
673 not NULL, use bfd_simple_get_relocated_section_contents to read the
674 section contents, otherwise use bfd_get_section_contents. Fail if
675 the located section does not contain at least OFFSET bytes. */
676
677 static bool
678 read_section (bfd *abfd,
679 const struct dwarf_debug_section *sec,
680 asymbol **syms,
681 uint64_t offset,
682 bfd_byte **section_buffer,
683 bfd_size_type *section_size)
684 {
685 const char *section_name = sec->uncompressed_name;
686 bfd_byte *contents = *section_buffer;
687
688 /* The section may have already been read. */
689 if (contents == NULL)
690 {
691 bfd_size_type amt;
692 asection *msec;
693 ufile_ptr filesize;
694
695 msec = bfd_get_section_by_name (abfd, section_name);
696 if (msec == NULL)
697 {
698 section_name = sec->compressed_name;
699 msec = bfd_get_section_by_name (abfd, section_name);
700 }
701 if (msec == NULL)
702 {
703 _bfd_error_handler (_("DWARF error: can't find %s section."),
704 sec->uncompressed_name);
705 bfd_set_error (bfd_error_bad_value);
706 return false;
707 }
708
709 amt = bfd_get_section_limit_octets (abfd, msec);
710 filesize = bfd_get_file_size (abfd);
711 /* PR 28834: A compressed debug section could well decompress to a size
712 larger than the file, so we choose an arbitrary modifier of 10x in
713 the test below. If this ever turns out to be insufficient, it can
714 be changed by a future update. */
715 if (amt >= filesize * 10)
716 {
717 /* PR 26946 */
718 _bfd_error_handler (_("DWARF error: section %s is larger than 10x its filesize! (0x%lx vs 0x%lx)"),
719 section_name, (long) amt, (long) filesize);
720 bfd_set_error (bfd_error_bad_value);
721 return false;
722 }
723 *section_size = amt;
724 /* Paranoia - alloc one extra so that we can make sure a string
725 section is NUL terminated. */
726 amt += 1;
727 if (amt == 0)
728 {
729 /* Paranoia - this should never happen. */
730 bfd_set_error (bfd_error_no_memory);
731 return false;
732 }
733 contents = (bfd_byte *) bfd_malloc (amt);
734 if (contents == NULL)
735 return false;
736 if (syms
737 ? !bfd_simple_get_relocated_section_contents (abfd, msec, contents,
738 syms)
739 : !bfd_get_section_contents (abfd, msec, contents, 0, *section_size))
740 {
741 free (contents);
742 return false;
743 }
744 contents[*section_size] = 0;
745 *section_buffer = contents;
746 }
747
748 /* It is possible to get a bad value for the offset into the section
749 that the client wants. Validate it here to avoid trouble later. */
750 if (offset != 0 && offset >= *section_size)
751 {
752 /* xgettext: c-format */
753 _bfd_error_handler (_("DWARF error: offset (%" PRIu64 ")"
754 " greater than or equal to %s size (%" PRIu64 ")"),
755 (uint64_t) offset, section_name,
756 (uint64_t) *section_size);
757 bfd_set_error (bfd_error_bad_value);
758 return false;
759 }
760
761 return true;
762 }
763
764 /* Read dwarf information from a buffer. */
765
766 static inline uint64_t
767 read_n_bytes (bfd *abfd, bfd_byte **ptr, bfd_byte *end, int n)
768 {
769 bfd_byte *buf = *ptr;
770 if (end - buf < n)
771 {
772 *ptr = end;
773 return 0;
774 }
775 *ptr = buf + n;
776 return bfd_get (n * 8, abfd, buf);
777 }
778
779 static unsigned int
780 read_1_byte (bfd *abfd, bfd_byte **ptr, bfd_byte *end)
781 {
782 return read_n_bytes (abfd, ptr, end, 1);
783 }
784
785 static int
786 read_1_signed_byte (bfd *abfd ATTRIBUTE_UNUSED, bfd_byte **ptr, bfd_byte *end)
787 {
788 bfd_byte *buf = *ptr;
789 if (end - buf < 1)
790 {
791 *ptr = end;
792 return 0;
793 }
794 *ptr = buf + 1;
795 return bfd_get_signed_8 (abfd, buf);
796 }
797
798 static unsigned int
799 read_2_bytes (bfd *abfd, bfd_byte **ptr, bfd_byte *end)
800 {
801 return read_n_bytes (abfd, ptr, end, 2);
802 }
803
804 static unsigned int
805 read_3_bytes (bfd *abfd, bfd_byte **ptr, bfd_byte *end)
806 {
807 unsigned int val = read_1_byte (abfd, ptr, end);
808 val <<= 8;
809 val |= read_1_byte (abfd, ptr, end);
810 val <<= 8;
811 val |= read_1_byte (abfd, ptr, end);
812 if (bfd_little_endian (abfd))
813 val = (((val >> 16) & 0xff)
814 | (val & 0xff00)
815 | ((val & 0xff) << 16));
816 return val;
817 }
818
819 static unsigned int
820 read_4_bytes (bfd *abfd, bfd_byte **ptr, bfd_byte *end)
821 {
822 return read_n_bytes (abfd, ptr, end, 4);
823 }
824
825 static uint64_t
826 read_8_bytes (bfd *abfd, bfd_byte **ptr, bfd_byte *end)
827 {
828 return read_n_bytes (abfd, ptr, end, 8);
829 }
830
831 static struct dwarf_block *
832 read_blk (bfd *abfd, bfd_byte **ptr, bfd_byte *end, size_t size)
833 {
834 bfd_byte *buf = *ptr;
835 struct dwarf_block *block;
836
837 block = (struct dwarf_block *) bfd_alloc (abfd, sizeof (*block));
838 if (block == NULL)
839 return NULL;
840
841 if (size > (size_t) (end - buf))
842 {
843 *ptr = end;
844 block->data = NULL;
845 block->size = 0;
846 }
847 else
848 {
849 *ptr = buf + size;
850 block->data = buf;
851 block->size = size;
852 }
853 return block;
854 }
855
856 /* Scans a NUL terminated string starting at *PTR, returning a pointer to it.
857 Bytes at or beyond BUF_END will not be read. Returns NULL if the
858 terminator is not found or if the string is empty. *PTR is
859 incremented over the bytes scanned, including the terminator. */
860
861 static char *
862 read_string (bfd_byte **ptr,
863 bfd_byte *buf_end)
864 {
865 bfd_byte *buf = *ptr;
866 bfd_byte *str = buf;
867
868 while (buf < buf_end)
869 if (*buf++ == 0)
870 {
871 if (str == buf - 1)
872 break;
873 *ptr = buf;
874 return (char *) str;
875 }
876
877 *ptr = buf;
878 return NULL;
879 }
880
881 /* Reads an offset from *PTR and then locates the string at this offset
882 inside the debug string section. Returns a pointer to the string.
883 Increments *PTR by the number of bytes read for the offset. This
884 value is set even if the function fails. Bytes at or beyond
885 BUF_END will not be read. Returns NULL if there was a problem, or
886 if the string is empty. Does not check for NUL termination of the
887 string. */
888
889 static char *
890 read_indirect_string (struct comp_unit *unit,
891 bfd_byte **ptr,
892 bfd_byte *buf_end)
893 {
894 uint64_t offset;
895 struct dwarf2_debug *stash = unit->stash;
896 struct dwarf2_debug_file *file = unit->file;
897 char *str;
898
899 if (unit->offset_size > (size_t) (buf_end - *ptr))
900 {
901 *ptr = buf_end;
902 return NULL;
903 }
904
905 if (unit->offset_size == 4)
906 offset = read_4_bytes (unit->abfd, ptr, buf_end);
907 else
908 offset = read_8_bytes (unit->abfd, ptr, buf_end);
909
910 if (! read_section (unit->abfd, &stash->debug_sections[debug_str],
911 file->syms, offset,
912 &file->dwarf_str_buffer, &file->dwarf_str_size))
913 return NULL;
914
915 str = (char *) file->dwarf_str_buffer + offset;
916 if (*str == '\0')
917 return NULL;
918 return str;
919 }
920
921 /* Like read_indirect_string but from .debug_line_str section. */
922
923 static char *
924 read_indirect_line_string (struct comp_unit *unit,
925 bfd_byte **ptr,
926 bfd_byte *buf_end)
927 {
928 uint64_t offset;
929 struct dwarf2_debug *stash = unit->stash;
930 struct dwarf2_debug_file *file = unit->file;
931 char *str;
932
933 if (unit->offset_size > (size_t) (buf_end - *ptr))
934 {
935 *ptr = buf_end;
936 return NULL;
937 }
938
939 if (unit->offset_size == 4)
940 offset = read_4_bytes (unit->abfd, ptr, buf_end);
941 else
942 offset = read_8_bytes (unit->abfd, ptr, buf_end);
943
944 if (! read_section (unit->abfd, &stash->debug_sections[debug_line_str],
945 file->syms, offset,
946 &file->dwarf_line_str_buffer,
947 &file->dwarf_line_str_size))
948 return NULL;
949
950 str = (char *) file->dwarf_line_str_buffer + offset;
951 if (*str == '\0')
952 return NULL;
953 return str;
954 }
955
956 /* Like read_indirect_string but uses a .debug_str located in
957 an alternate file pointed to by the .gnu_debugaltlink section.
958 Used to impement DW_FORM_GNU_strp_alt. */
959
960 static char *
961 read_alt_indirect_string (struct comp_unit *unit,
962 bfd_byte **ptr,
963 bfd_byte *buf_end)
964 {
965 uint64_t offset;
966 struct dwarf2_debug *stash = unit->stash;
967 char *str;
968
969 if (unit->offset_size > (size_t) (buf_end - *ptr))
970 {
971 *ptr = buf_end;
972 return NULL;
973 }
974
975 if (unit->offset_size == 4)
976 offset = read_4_bytes (unit->abfd, ptr, buf_end);
977 else
978 offset = read_8_bytes (unit->abfd, ptr, buf_end);
979
980 if (stash->alt.bfd_ptr == NULL)
981 {
982 bfd *debug_bfd;
983 char *debug_filename = bfd_follow_gnu_debugaltlink (unit->abfd, DEBUGDIR);
984
985 if (debug_filename == NULL)
986 return NULL;
987
988 debug_bfd = bfd_openr (debug_filename, NULL);
989 free (debug_filename);
990 if (debug_bfd == NULL)
991 /* FIXME: Should we report our failure to follow the debuglink ? */
992 return NULL;
993
994 if (!bfd_check_format (debug_bfd, bfd_object))
995 {
996 bfd_close (debug_bfd);
997 return NULL;
998 }
999 stash->alt.bfd_ptr = debug_bfd;
1000 }
1001
1002 if (! read_section (unit->stash->alt.bfd_ptr,
1003 stash->debug_sections + debug_str_alt,
1004 stash->alt.syms, offset,
1005 &stash->alt.dwarf_str_buffer,
1006 &stash->alt.dwarf_str_size))
1007 return NULL;
1008
1009 str = (char *) stash->alt.dwarf_str_buffer + offset;
1010 if (*str == '\0')
1011 return NULL;
1012
1013 return str;
1014 }
1015
1016 /* Resolve an alternate reference from UNIT at OFFSET.
1017 Returns a pointer into the loaded alternate CU upon success
1018 or NULL upon failure. */
1019
1020 static bfd_byte *
1021 read_alt_indirect_ref (struct comp_unit *unit, uint64_t offset)
1022 {
1023 struct dwarf2_debug *stash = unit->stash;
1024
1025 if (stash->alt.bfd_ptr == NULL)
1026 {
1027 bfd *debug_bfd;
1028 char *debug_filename = bfd_follow_gnu_debugaltlink (unit->abfd, DEBUGDIR);
1029
1030 if (debug_filename == NULL)
1031 return NULL;
1032
1033 debug_bfd = bfd_openr (debug_filename, NULL);
1034 free (debug_filename);
1035 if (debug_bfd == NULL)
1036 /* FIXME: Should we report our failure to follow the debuglink ? */
1037 return NULL;
1038
1039 if (!bfd_check_format (debug_bfd, bfd_object))
1040 {
1041 bfd_close (debug_bfd);
1042 return NULL;
1043 }
1044 stash->alt.bfd_ptr = debug_bfd;
1045 }
1046
1047 if (! read_section (unit->stash->alt.bfd_ptr,
1048 stash->debug_sections + debug_info_alt,
1049 stash->alt.syms, offset,
1050 &stash->alt.dwarf_info_buffer,
1051 &stash->alt.dwarf_info_size))
1052 return NULL;
1053
1054 return stash->alt.dwarf_info_buffer + offset;
1055 }
1056
1057 static uint64_t
1058 read_address (struct comp_unit *unit, bfd_byte **ptr, bfd_byte *buf_end)
1059 {
1060 bfd_byte *buf = *ptr;
1061 int signed_vma = 0;
1062
1063 if (bfd_get_flavour (unit->abfd) == bfd_target_elf_flavour)
1064 signed_vma = get_elf_backend_data (unit->abfd)->sign_extend_vma;
1065
1066 if (unit->addr_size > (size_t) (buf_end - buf))
1067 {
1068 *ptr = buf_end;
1069 return 0;
1070 }
1071
1072 *ptr = buf + unit->addr_size;
1073 if (signed_vma)
1074 {
1075 switch (unit->addr_size)
1076 {
1077 case 8:
1078 return bfd_get_signed_64 (unit->abfd, buf);
1079 case 4:
1080 return bfd_get_signed_32 (unit->abfd, buf);
1081 case 2:
1082 return bfd_get_signed_16 (unit->abfd, buf);
1083 default:
1084 abort ();
1085 }
1086 }
1087 else
1088 {
1089 switch (unit->addr_size)
1090 {
1091 case 8:
1092 return bfd_get_64 (unit->abfd, buf);
1093 case 4:
1094 return bfd_get_32 (unit->abfd, buf);
1095 case 2:
1096 return bfd_get_16 (unit->abfd, buf);
1097 default:
1098 abort ();
1099 }
1100 }
1101 }
1102
1103 /* Lookup an abbrev_info structure in the abbrev hash table. */
1104
1105 static struct abbrev_info *
1106 lookup_abbrev (unsigned int number, struct abbrev_info **abbrevs)
1107 {
1108 unsigned int hash_number;
1109 struct abbrev_info *abbrev;
1110
1111 hash_number = number % ABBREV_HASH_SIZE;
1112 abbrev = abbrevs[hash_number];
1113
1114 while (abbrev)
1115 {
1116 if (abbrev->number == number)
1117 return abbrev;
1118 else
1119 abbrev = abbrev->next;
1120 }
1121
1122 return NULL;
1123 }
1124
1125 /* We keep a hash table to map .debug_abbrev section offsets to the
1126 array of abbrevs, so that compilation units using the same set of
1127 abbrevs do not waste memory. */
1128
1129 struct abbrev_offset_entry
1130 {
1131 size_t offset;
1132 struct abbrev_info **abbrevs;
1133 };
1134
1135 static hashval_t
1136 hash_abbrev (const void *p)
1137 {
1138 const struct abbrev_offset_entry *ent = p;
1139 return htab_hash_pointer ((void *) ent->offset);
1140 }
1141
1142 static int
1143 eq_abbrev (const void *pa, const void *pb)
1144 {
1145 const struct abbrev_offset_entry *a = pa;
1146 const struct abbrev_offset_entry *b = pb;
1147 return a->offset == b->offset;
1148 }
1149
1150 static void
1151 del_abbrev (void *p)
1152 {
1153 struct abbrev_offset_entry *ent = p;
1154 struct abbrev_info **abbrevs = ent->abbrevs;
1155 size_t i;
1156
1157 for (i = 0; i < ABBREV_HASH_SIZE; i++)
1158 {
1159 struct abbrev_info *abbrev = abbrevs[i];
1160
1161 while (abbrev)
1162 {
1163 free (abbrev->attrs);
1164 abbrev = abbrev->next;
1165 }
1166 }
1167 free (ent);
1168 }
1169
1170 /* In DWARF version 2, the description of the debugging information is
1171 stored in a separate .debug_abbrev section. Before we read any
1172 dies from a section we read in all abbreviations and install them
1173 in a hash table. */
1174
1175 static struct abbrev_info**
1176 read_abbrevs (bfd *abfd, uint64_t offset, struct dwarf2_debug *stash,
1177 struct dwarf2_debug_file *file)
1178 {
1179 struct abbrev_info **abbrevs;
1180 bfd_byte *abbrev_ptr;
1181 bfd_byte *abbrev_end;
1182 struct abbrev_info *cur_abbrev;
1183 unsigned int abbrev_number, abbrev_name;
1184 unsigned int abbrev_form, hash_number;
1185 size_t amt;
1186 void **slot;
1187 struct abbrev_offset_entry ent = { offset, NULL };
1188
1189 if (ent.offset != offset)
1190 return NULL;
1191
1192 slot = htab_find_slot (file->abbrev_offsets, &ent, INSERT);
1193 if (slot == NULL)
1194 return NULL;
1195 if (*slot != NULL)
1196 return ((struct abbrev_offset_entry *) (*slot))->abbrevs;
1197
1198 if (! read_section (abfd, &stash->debug_sections[debug_abbrev],
1199 file->syms, offset,
1200 &file->dwarf_abbrev_buffer,
1201 &file->dwarf_abbrev_size))
1202 return NULL;
1203
1204 amt = sizeof (struct abbrev_info*) * ABBREV_HASH_SIZE;
1205 abbrevs = (struct abbrev_info **) bfd_zalloc (abfd, amt);
1206 if (abbrevs == NULL)
1207 return NULL;
1208
1209 abbrev_ptr = file->dwarf_abbrev_buffer + offset;
1210 abbrev_end = file->dwarf_abbrev_buffer + file->dwarf_abbrev_size;
1211 abbrev_number = _bfd_safe_read_leb128 (abfd, &abbrev_ptr,
1212 false, abbrev_end);
1213
1214 /* Loop until we reach an abbrev number of 0. */
1215 while (abbrev_number)
1216 {
1217 amt = sizeof (struct abbrev_info);
1218 cur_abbrev = (struct abbrev_info *) bfd_zalloc (abfd, amt);
1219 if (cur_abbrev == NULL)
1220 goto fail;
1221
1222 /* Read in abbrev header. */
1223 cur_abbrev->number = abbrev_number;
1224 cur_abbrev->tag = (enum dwarf_tag)
1225 _bfd_safe_read_leb128 (abfd, &abbrev_ptr,
1226 false, abbrev_end);
1227 cur_abbrev->has_children = read_1_byte (abfd, &abbrev_ptr, abbrev_end);
1228
1229 /* Now read in declarations. */
1230 for (;;)
1231 {
1232 /* Initialize it just to avoid a GCC false warning. */
1233 bfd_vma implicit_const = -1;
1234
1235 abbrev_name = _bfd_safe_read_leb128 (abfd, &abbrev_ptr,
1236 false, abbrev_end);
1237 abbrev_form = _bfd_safe_read_leb128 (abfd, &abbrev_ptr,
1238 false, abbrev_end);
1239 if (abbrev_form == DW_FORM_implicit_const)
1240 implicit_const = _bfd_safe_read_leb128 (abfd, &abbrev_ptr,
1241 true, abbrev_end);
1242 if (abbrev_name == 0)
1243 break;
1244
1245 if ((cur_abbrev->num_attrs % ATTR_ALLOC_CHUNK) == 0)
1246 {
1247 struct attr_abbrev *tmp;
1248
1249 amt = cur_abbrev->num_attrs + ATTR_ALLOC_CHUNK;
1250 amt *= sizeof (struct attr_abbrev);
1251 tmp = (struct attr_abbrev *) bfd_realloc (cur_abbrev->attrs, amt);
1252 if (tmp == NULL)
1253 goto fail;
1254 cur_abbrev->attrs = tmp;
1255 }
1256
1257 cur_abbrev->attrs[cur_abbrev->num_attrs].name
1258 = (enum dwarf_attribute) abbrev_name;
1259 cur_abbrev->attrs[cur_abbrev->num_attrs].form
1260 = (enum dwarf_form) abbrev_form;
1261 cur_abbrev->attrs[cur_abbrev->num_attrs].implicit_const
1262 = implicit_const;
1263 ++cur_abbrev->num_attrs;
1264 }
1265
1266 hash_number = abbrev_number % ABBREV_HASH_SIZE;
1267 cur_abbrev->next = abbrevs[hash_number];
1268 abbrevs[hash_number] = cur_abbrev;
1269
1270 /* Get next abbreviation.
1271 Under Irix6 the abbreviations for a compilation unit are not
1272 always properly terminated with an abbrev number of 0.
1273 Exit loop if we encounter an abbreviation which we have
1274 already read (which means we are about to read the abbreviations
1275 for the next compile unit) or if the end of the abbreviation
1276 table is reached. */
1277 if ((size_t) (abbrev_ptr - file->dwarf_abbrev_buffer)
1278 >= file->dwarf_abbrev_size)
1279 break;
1280 abbrev_number = _bfd_safe_read_leb128 (abfd, &abbrev_ptr,
1281 false, abbrev_end);
1282 if (lookup_abbrev (abbrev_number, abbrevs) != NULL)
1283 break;
1284 }
1285
1286 *slot = bfd_malloc (sizeof ent);
1287 if (!*slot)
1288 goto fail;
1289 ent.abbrevs = abbrevs;
1290 memcpy (*slot, &ent, sizeof ent);
1291 return abbrevs;
1292
1293 fail:
1294 if (abbrevs != NULL)
1295 {
1296 size_t i;
1297
1298 for (i = 0; i < ABBREV_HASH_SIZE; i++)
1299 {
1300 struct abbrev_info *abbrev = abbrevs[i];
1301
1302 while (abbrev)
1303 {
1304 free (abbrev->attrs);
1305 abbrev = abbrev->next;
1306 }
1307 }
1308 free (abbrevs);
1309 }
1310 return NULL;
1311 }
1312
1313 /* Returns true if the form is one which has a string value. */
1314
1315 static bool
1316 is_str_form (const struct attribute *attr)
1317 {
1318 switch (attr->form)
1319 {
1320 case DW_FORM_string:
1321 case DW_FORM_strp:
1322 case DW_FORM_strx:
1323 case DW_FORM_strx1:
1324 case DW_FORM_strx2:
1325 case DW_FORM_strx3:
1326 case DW_FORM_strx4:
1327 case DW_FORM_line_strp:
1328 case DW_FORM_GNU_strp_alt:
1329 return true;
1330
1331 default:
1332 return false;
1333 }
1334 }
1335
1336 /* Returns true if the form is one which has an integer value. */
1337
1338 static bool
1339 is_int_form (const struct attribute *attr)
1340 {
1341 switch (attr->form)
1342 {
1343 case DW_FORM_addr:
1344 case DW_FORM_data2:
1345 case DW_FORM_data4:
1346 case DW_FORM_data8:
1347 case DW_FORM_data1:
1348 case DW_FORM_flag:
1349 case DW_FORM_sdata:
1350 case DW_FORM_udata:
1351 case DW_FORM_ref_addr:
1352 case DW_FORM_ref1:
1353 case DW_FORM_ref2:
1354 case DW_FORM_ref4:
1355 case DW_FORM_ref8:
1356 case DW_FORM_ref_udata:
1357 case DW_FORM_sec_offset:
1358 case DW_FORM_flag_present:
1359 case DW_FORM_ref_sig8:
1360 case DW_FORM_addrx:
1361 case DW_FORM_implicit_const:
1362 case DW_FORM_addrx1:
1363 case DW_FORM_addrx2:
1364 case DW_FORM_addrx3:
1365 case DW_FORM_addrx4:
1366 case DW_FORM_GNU_ref_alt:
1367 return true;
1368
1369 default:
1370 return false;
1371 }
1372 }
1373
1374 /* Returns true if the form is strx[1-4]. */
1375
1376 static inline bool
1377 is_strx_form (enum dwarf_form form)
1378 {
1379 return (form == DW_FORM_strx
1380 || form == DW_FORM_strx1
1381 || form == DW_FORM_strx2
1382 || form == DW_FORM_strx3
1383 || form == DW_FORM_strx4);
1384 }
1385
1386 /* Return true if the form is addrx[1-4]. */
1387
1388 static inline bool
1389 is_addrx_form (enum dwarf_form form)
1390 {
1391 return (form == DW_FORM_addrx
1392 || form == DW_FORM_addrx1
1393 || form == DW_FORM_addrx2
1394 || form == DW_FORM_addrx3
1395 || form == DW_FORM_addrx4);
1396 }
1397
1398 /* Returns the address in .debug_addr section using DW_AT_addr_base.
1399 Used to implement DW_FORM_addrx*. */
1400 static uint64_t
1401 read_indexed_address (uint64_t idx, struct comp_unit *unit)
1402 {
1403 struct dwarf2_debug *stash = unit->stash;
1404 struct dwarf2_debug_file *file = unit->file;
1405 bfd_byte *info_ptr;
1406 size_t offset;
1407
1408 if (stash == NULL)
1409 return 0;
1410
1411 if (!read_section (unit->abfd, &stash->debug_sections[debug_addr],
1412 file->syms, 0,
1413 &file->dwarf_addr_buffer, &file->dwarf_addr_size))
1414 return 0;
1415
1416 if (_bfd_mul_overflow (idx, unit->addr_size, &offset))
1417 return 0;
1418
1419 offset += unit->dwarf_addr_offset;
1420 if (offset < unit->dwarf_addr_offset
1421 || offset > file->dwarf_addr_size
1422 || file->dwarf_addr_size - offset < unit->offset_size)
1423 return 0;
1424
1425 info_ptr = file->dwarf_addr_buffer + offset;
1426
1427 if (unit->addr_size == 4)
1428 return bfd_get_32 (unit->abfd, info_ptr);
1429 else if (unit->addr_size == 8)
1430 return bfd_get_64 (unit->abfd, info_ptr);
1431 else
1432 return 0;
1433 }
1434
1435 /* Returns the string using DW_AT_str_offsets_base.
1436 Used to implement DW_FORM_strx*. */
1437 static const char *
1438 read_indexed_string (uint64_t idx, struct comp_unit *unit)
1439 {
1440 struct dwarf2_debug *stash = unit->stash;
1441 struct dwarf2_debug_file *file = unit->file;
1442 bfd_byte *info_ptr;
1443 uint64_t str_offset;
1444 size_t offset;
1445
1446 if (stash == NULL)
1447 return NULL;
1448
1449 if (!read_section (unit->abfd, &stash->debug_sections[debug_str],
1450 file->syms, 0,
1451 &file->dwarf_str_buffer, &file->dwarf_str_size))
1452 return NULL;
1453
1454 if (!read_section (unit->abfd, &stash->debug_sections[debug_str_offsets],
1455 file->syms, 0,
1456 &file->dwarf_str_offsets_buffer,
1457 &file->dwarf_str_offsets_size))
1458 return NULL;
1459
1460 if (_bfd_mul_overflow (idx, unit->offset_size, &offset))
1461 return NULL;
1462
1463 offset += unit->dwarf_str_offset;
1464 if (offset < unit->dwarf_str_offset
1465 || offset > file->dwarf_str_offsets_size
1466 || file->dwarf_str_offsets_size - offset < unit->offset_size)
1467 return NULL;
1468
1469 info_ptr = file->dwarf_str_offsets_buffer + offset;
1470
1471 if (unit->offset_size == 4)
1472 str_offset = bfd_get_32 (unit->abfd, info_ptr);
1473 else if (unit->offset_size == 8)
1474 str_offset = bfd_get_64 (unit->abfd, info_ptr);
1475 else
1476 return NULL;
1477
1478 if (str_offset >= file->dwarf_str_size)
1479 return NULL;
1480 return (const char *) file->dwarf_str_buffer + str_offset;
1481 }
1482
1483 /* Read and fill in the value of attribute ATTR as described by FORM.
1484 Read data starting from INFO_PTR, but never at or beyond INFO_PTR_END.
1485 Returns an updated INFO_PTR taking into account the amount of data read. */
1486
1487 static bfd_byte *
1488 read_attribute_value (struct attribute * attr,
1489 unsigned form,
1490 bfd_vma implicit_const,
1491 struct comp_unit * unit,
1492 bfd_byte * info_ptr,
1493 bfd_byte * info_ptr_end)
1494 {
1495 bfd *abfd = unit->abfd;
1496 size_t amt;
1497
1498 if (info_ptr >= info_ptr_end && form != DW_FORM_flag_present)
1499 {
1500 _bfd_error_handler (_("DWARF error: info pointer extends beyond end of attributes"));
1501 bfd_set_error (bfd_error_bad_value);
1502 return NULL;
1503 }
1504
1505 attr->form = (enum dwarf_form) form;
1506
1507 switch (form)
1508 {
1509 case DW_FORM_flag_present:
1510 attr->u.val = 1;
1511 break;
1512 case DW_FORM_ref_addr:
1513 /* DW_FORM_ref_addr is an address in DWARF2, and an offset in
1514 DWARF3. */
1515 if (unit->version >= 3)
1516 {
1517 if (unit->offset_size == 4)
1518 attr->u.val = read_4_bytes (unit->abfd, &info_ptr, info_ptr_end);
1519 else
1520 attr->u.val = read_8_bytes (unit->abfd, &info_ptr, info_ptr_end);
1521 break;
1522 }
1523 /* FALLTHROUGH */
1524 case DW_FORM_addr:
1525 attr->u.val = read_address (unit, &info_ptr, info_ptr_end);
1526 break;
1527 case DW_FORM_GNU_ref_alt:
1528 case DW_FORM_sec_offset:
1529 if (unit->offset_size == 4)
1530 attr->u.val = read_4_bytes (unit->abfd, &info_ptr, info_ptr_end);
1531 else
1532 attr->u.val = read_8_bytes (unit->abfd, &info_ptr, info_ptr_end);
1533 break;
1534 case DW_FORM_block2:
1535 amt = read_2_bytes (abfd, &info_ptr, info_ptr_end);
1536 attr->u.blk = read_blk (abfd, &info_ptr, info_ptr_end, amt);
1537 if (attr->u.blk == NULL)
1538 return NULL;
1539 break;
1540 case DW_FORM_block4:
1541 amt = read_4_bytes (abfd, &info_ptr, info_ptr_end);
1542 attr->u.blk = read_blk (abfd, &info_ptr, info_ptr_end, amt);
1543 if (attr->u.blk == NULL)
1544 return NULL;
1545 break;
1546 case DW_FORM_ref1:
1547 case DW_FORM_flag:
1548 case DW_FORM_data1:
1549 attr->u.val = read_1_byte (abfd, &info_ptr, info_ptr_end);
1550 break;
1551 case DW_FORM_addrx1:
1552 attr->u.val = read_1_byte (abfd, &info_ptr, info_ptr_end);
1553 /* dwarf_addr_offset value 0 indicates the attribute DW_AT_addr_base
1554 is not yet read. */
1555 if (unit->dwarf_addr_offset != 0)
1556 attr->u.val = read_indexed_address (attr->u.val, unit);
1557 break;
1558 case DW_FORM_data2:
1559 case DW_FORM_ref2:
1560 attr->u.val = read_2_bytes (abfd, &info_ptr, info_ptr_end);
1561 break;
1562 case DW_FORM_addrx2:
1563 attr->u.val = read_2_bytes (abfd, &info_ptr, info_ptr_end);
1564 if (unit->dwarf_addr_offset != 0)
1565 attr->u.val = read_indexed_address (attr->u.val, unit);
1566 break;
1567 case DW_FORM_addrx3:
1568 attr->u.val = read_3_bytes (abfd, &info_ptr, info_ptr_end);
1569 if (unit->dwarf_addr_offset != 0)
1570 attr->u.val = read_indexed_address(attr->u.val, unit);
1571 break;
1572 case DW_FORM_ref4:
1573 case DW_FORM_data4:
1574 attr->u.val = read_4_bytes (abfd, &info_ptr, info_ptr_end);
1575 break;
1576 case DW_FORM_addrx4:
1577 attr->u.val = read_4_bytes (abfd, &info_ptr, info_ptr_end);
1578 if (unit->dwarf_addr_offset != 0)
1579 attr->u.val = read_indexed_address (attr->u.val, unit);
1580 break;
1581 case DW_FORM_data8:
1582 case DW_FORM_ref8:
1583 case DW_FORM_ref_sig8:
1584 attr->u.val = read_8_bytes (abfd, &info_ptr, info_ptr_end);
1585 break;
1586 case DW_FORM_string:
1587 attr->u.str = read_string (&info_ptr, info_ptr_end);
1588 break;
1589 case DW_FORM_strp:
1590 attr->u.str = read_indirect_string (unit, &info_ptr, info_ptr_end);
1591 break;
1592 case DW_FORM_line_strp:
1593 attr->u.str = read_indirect_line_string (unit, &info_ptr, info_ptr_end);
1594 break;
1595 case DW_FORM_GNU_strp_alt:
1596 attr->u.str = read_alt_indirect_string (unit, &info_ptr, info_ptr_end);
1597 break;
1598 case DW_FORM_strx1:
1599 attr->u.val = read_1_byte (abfd, &info_ptr, info_ptr_end);
1600 /* dwarf_str_offset value 0 indicates the attribute DW_AT_str_offsets_base
1601 is not yet read. */
1602 if (unit->dwarf_str_offset != 0)
1603 attr->u.str = (char *) read_indexed_string (attr->u.val, unit);
1604 else
1605 attr->u.str = NULL;
1606 break;
1607 case DW_FORM_strx2:
1608 attr->u.val = read_2_bytes (abfd, &info_ptr, info_ptr_end);
1609 if (unit->dwarf_str_offset != 0)
1610 attr->u.str = (char *) read_indexed_string (attr->u.val, unit);
1611 else
1612 attr->u.str = NULL;
1613 break;
1614 case DW_FORM_strx3:
1615 attr->u.val = read_3_bytes (abfd, &info_ptr, info_ptr_end);
1616 if (unit->dwarf_str_offset != 0)
1617 attr->u.str = (char *) read_indexed_string (attr->u.val, unit);
1618 else
1619 attr->u.str = NULL;
1620 break;
1621 case DW_FORM_strx4:
1622 attr->u.val = read_4_bytes (abfd, &info_ptr, info_ptr_end);
1623 if (unit->dwarf_str_offset != 0)
1624 attr->u.str = (char *) read_indexed_string (attr->u.val, unit);
1625 else
1626 attr->u.str = NULL;
1627 break;
1628 case DW_FORM_strx:
1629 attr->u.val = _bfd_safe_read_leb128 (abfd, &info_ptr,
1630 false, info_ptr_end);
1631 if (unit->dwarf_str_offset != 0)
1632 attr->u.str = (char *) read_indexed_string (attr->u.val, unit);
1633 else
1634 attr->u.str = NULL;
1635 break;
1636 case DW_FORM_exprloc:
1637 case DW_FORM_block:
1638 amt = _bfd_safe_read_leb128 (abfd, &info_ptr,
1639 false, info_ptr_end);
1640 attr->u.blk = read_blk (abfd, &info_ptr, info_ptr_end, amt);
1641 if (attr->u.blk == NULL)
1642 return NULL;
1643 break;
1644 case DW_FORM_block1:
1645 amt = read_1_byte (abfd, &info_ptr, info_ptr_end);
1646 attr->u.blk = read_blk (abfd, &info_ptr, info_ptr_end, amt);
1647 if (attr->u.blk == NULL)
1648 return NULL;
1649 break;
1650 case DW_FORM_sdata:
1651 attr->u.sval = _bfd_safe_read_leb128 (abfd, &info_ptr,
1652 true, info_ptr_end);
1653 break;
1654
1655 case DW_FORM_rnglistx:
1656 case DW_FORM_loclistx:
1657 /* FIXME: Add support for these forms! */
1658 /* Fall through. */
1659 case DW_FORM_ref_udata:
1660 case DW_FORM_udata:
1661 attr->u.val = _bfd_safe_read_leb128 (abfd, &info_ptr,
1662 false, info_ptr_end);
1663 break;
1664 case DW_FORM_addrx:
1665 attr->u.val = _bfd_safe_read_leb128 (abfd, &info_ptr,
1666 false, info_ptr_end);
1667 if (unit->dwarf_addr_offset != 0)
1668 attr->u.val = read_indexed_address (attr->u.val, unit);
1669 break;
1670 case DW_FORM_indirect:
1671 form = _bfd_safe_read_leb128 (abfd, &info_ptr,
1672 false, info_ptr_end);
1673 if (form == DW_FORM_implicit_const)
1674 implicit_const = _bfd_safe_read_leb128 (abfd, &info_ptr,
1675 true, info_ptr_end);
1676 info_ptr = read_attribute_value (attr, form, implicit_const, unit,
1677 info_ptr, info_ptr_end);
1678 break;
1679 case DW_FORM_implicit_const:
1680 attr->form = DW_FORM_sdata;
1681 attr->u.sval = implicit_const;
1682 break;
1683 case DW_FORM_data16:
1684 /* This is really a "constant", but there is no way to store that
1685 so pretend it is a 16 byte block instead. */
1686 attr->u.blk = read_blk (abfd, &info_ptr, info_ptr_end, 16);
1687 if (attr->u.blk == NULL)
1688 return NULL;
1689 break;
1690
1691 default:
1692 _bfd_error_handler (_("DWARF error: invalid or unhandled FORM value: %#x"),
1693 form);
1694 bfd_set_error (bfd_error_bad_value);
1695 return NULL;
1696 }
1697 return info_ptr;
1698 }
1699
1700 /* Read an attribute described by an abbreviated attribute. */
1701
1702 static bfd_byte *
1703 read_attribute (struct attribute * attr,
1704 struct attr_abbrev * abbrev,
1705 struct comp_unit * unit,
1706 bfd_byte * info_ptr,
1707 bfd_byte * info_ptr_end)
1708 {
1709 attr->name = abbrev->name;
1710 info_ptr = read_attribute_value (attr, abbrev->form, abbrev->implicit_const,
1711 unit, info_ptr, info_ptr_end);
1712 return info_ptr;
1713 }
1714
1715 /* Return mangling style given LANG. */
1716
1717 static int
1718 mangle_style (int lang)
1719 {
1720 switch (lang)
1721 {
1722 case DW_LANG_Ada83:
1723 case DW_LANG_Ada95:
1724 return DMGL_GNAT;
1725
1726 case DW_LANG_C_plus_plus:
1727 case DW_LANG_C_plus_plus_03:
1728 case DW_LANG_C_plus_plus_11:
1729 case DW_LANG_C_plus_plus_14:
1730 return DMGL_GNU_V3;
1731
1732 case DW_LANG_Java:
1733 return DMGL_JAVA;
1734
1735 case DW_LANG_D:
1736 return DMGL_DLANG;
1737
1738 case DW_LANG_Rust:
1739 case DW_LANG_Rust_old:
1740 return DMGL_RUST;
1741
1742 default:
1743 return DMGL_AUTO;
1744
1745 case DW_LANG_C89:
1746 case DW_LANG_C:
1747 case DW_LANG_Cobol74:
1748 case DW_LANG_Cobol85:
1749 case DW_LANG_Fortran77:
1750 case DW_LANG_Pascal83:
1751 case DW_LANG_PLI:
1752 case DW_LANG_C99:
1753 case DW_LANG_UPC:
1754 case DW_LANG_C11:
1755 case DW_LANG_Mips_Assembler:
1756 case DW_LANG_Upc:
1757 case DW_LANG_HP_Basic91:
1758 case DW_LANG_HP_IMacro:
1759 case DW_LANG_HP_Assembler:
1760 return 0;
1761 }
1762 }
1763
1764 /* Source line information table routines. */
1765
1766 #define FILE_ALLOC_CHUNK 5
1767 #define DIR_ALLOC_CHUNK 5
1768
1769 struct line_info
1770 {
1771 struct line_info * prev_line;
1772 bfd_vma address;
1773 char * filename;
1774 unsigned int line;
1775 unsigned int column;
1776 unsigned int discriminator;
1777 unsigned char op_index;
1778 unsigned char end_sequence; /* End of (sequential) code sequence. */
1779 };
1780
1781 struct fileinfo
1782 {
1783 char * name;
1784 unsigned int dir;
1785 unsigned int time;
1786 unsigned int size;
1787 };
1788
1789 struct line_sequence
1790 {
1791 bfd_vma low_pc;
1792 struct line_sequence* prev_sequence;
1793 struct line_info* last_line; /* Largest VMA. */
1794 struct line_info** line_info_lookup;
1795 bfd_size_type num_lines;
1796 };
1797
1798 struct line_info_table
1799 {
1800 bfd * abfd;
1801 unsigned int num_files;
1802 unsigned int num_dirs;
1803 unsigned int num_sequences;
1804 bool use_dir_and_file_0;
1805 char * comp_dir;
1806 char ** dirs;
1807 struct fileinfo* files;
1808 struct line_sequence* sequences;
1809 struct line_info* lcl_head; /* Local head; used in 'add_line_info'. */
1810 };
1811
1812 /* Remember some information about each function. If the function is
1813 inlined (DW_TAG_inlined_subroutine) it may have two additional
1814 attributes, DW_AT_call_file and DW_AT_call_line, which specify the
1815 source code location where this function was inlined. */
1816
1817 struct funcinfo
1818 {
1819 /* Pointer to previous function in list of all functions. */
1820 struct funcinfo *prev_func;
1821 /* Pointer to function one scope higher. */
1822 struct funcinfo *caller_func;
1823 /* Source location file name where caller_func inlines this func. */
1824 char *caller_file;
1825 /* Source location file name. */
1826 char *file;
1827 /* Source location line number where caller_func inlines this func. */
1828 int caller_line;
1829 /* Source location line number. */
1830 int line;
1831 int tag;
1832 bool is_linkage;
1833 const char *name;
1834 struct arange arange;
1835 /* The offset of the funcinfo from the start of the unit. */
1836 uint64_t unit_offset;
1837 };
1838
1839 struct lookup_funcinfo
1840 {
1841 /* Function information corresponding to this lookup table entry. */
1842 struct funcinfo *funcinfo;
1843
1844 /* The lowest address for this specific function. */
1845 bfd_vma low_addr;
1846
1847 /* The highest address of this function before the lookup table is sorted.
1848 The highest address of all prior functions after the lookup table is
1849 sorted, which is used for binary search. */
1850 bfd_vma high_addr;
1851 /* Index of this function, used to ensure qsort is stable. */
1852 unsigned int idx;
1853 };
1854
1855 struct varinfo
1856 {
1857 /* Pointer to previous variable in list of all variables. */
1858 struct varinfo *prev_var;
1859 /* The offset of the varinfo from the start of the unit. */
1860 uint64_t unit_offset;
1861 /* Source location file name. */
1862 char *file;
1863 /* Source location line number. */
1864 int line;
1865 /* The type of this variable. */
1866 int tag;
1867 /* The name of the variable, if it has one. */
1868 const char *name;
1869 /* The address of the variable. */
1870 bfd_vma addr;
1871 /* Is this a stack variable? */
1872 bool stack;
1873 };
1874
1875 /* Return TRUE if NEW_LINE should sort after LINE. */
1876
1877 static inline bool
1878 new_line_sorts_after (struct line_info *new_line, struct line_info *line)
1879 {
1880 return (new_line->address > line->address
1881 || (new_line->address == line->address
1882 && new_line->op_index > line->op_index));
1883 }
1884
1885
1886 /* Adds a new entry to the line_info list in the line_info_table, ensuring
1887 that the list is sorted. Note that the line_info list is sorted from
1888 highest to lowest VMA (with possible duplicates); that is,
1889 line_info->prev_line always accesses an equal or smaller VMA. */
1890
1891 static bool
1892 add_line_info (struct line_info_table *table,
1893 bfd_vma address,
1894 unsigned char op_index,
1895 char *filename,
1896 unsigned int line,
1897 unsigned int column,
1898 unsigned int discriminator,
1899 int end_sequence)
1900 {
1901 size_t amt = sizeof (struct line_info);
1902 struct line_sequence* seq = table->sequences;
1903 struct line_info* info = (struct line_info *) bfd_alloc (table->abfd, amt);
1904
1905 if (info == NULL)
1906 return false;
1907
1908 /* Set member data of 'info'. */
1909 info->prev_line = NULL;
1910 info->address = address;
1911 info->op_index = op_index;
1912 info->line = line;
1913 info->column = column;
1914 info->discriminator = discriminator;
1915 info->end_sequence = end_sequence;
1916
1917 if (filename && filename[0])
1918 {
1919 info->filename = (char *) bfd_alloc (table->abfd, strlen (filename) + 1);
1920 if (info->filename == NULL)
1921 return false;
1922 strcpy (info->filename, filename);
1923 }
1924 else
1925 info->filename = NULL;
1926
1927 /* Find the correct location for 'info'. Normally we will receive
1928 new line_info data 1) in order and 2) with increasing VMAs.
1929 However some compilers break the rules (cf. decode_line_info) and
1930 so we include some heuristics for quickly finding the correct
1931 location for 'info'. In particular, these heuristics optimize for
1932 the common case in which the VMA sequence that we receive is a
1933 list of locally sorted VMAs such as
1934 p...z a...j (where a < j < p < z)
1935
1936 Note: table->lcl_head is used to head an *actual* or *possible*
1937 sub-sequence within the list (such as a...j) that is not directly
1938 headed by table->last_line
1939
1940 Note: we may receive duplicate entries from 'decode_line_info'. */
1941
1942 if (seq
1943 && seq->last_line->address == address
1944 && seq->last_line->op_index == op_index
1945 && seq->last_line->end_sequence == end_sequence)
1946 {
1947 /* We only keep the last entry with the same address and end
1948 sequence. See PR ld/4986. */
1949 if (table->lcl_head == seq->last_line)
1950 table->lcl_head = info;
1951 info->prev_line = seq->last_line->prev_line;
1952 seq->last_line = info;
1953 }
1954 else if (!seq || seq->last_line->end_sequence)
1955 {
1956 /* Start a new line sequence. */
1957 amt = sizeof (struct line_sequence);
1958 seq = (struct line_sequence *) bfd_malloc (amt);
1959 if (seq == NULL)
1960 return false;
1961 seq->low_pc = address;
1962 seq->prev_sequence = table->sequences;
1963 seq->last_line = info;
1964 table->lcl_head = info;
1965 table->sequences = seq;
1966 table->num_sequences++;
1967 }
1968 else if (info->end_sequence
1969 || new_line_sorts_after (info, seq->last_line))
1970 {
1971 /* Normal case: add 'info' to the beginning of the current sequence. */
1972 info->prev_line = seq->last_line;
1973 seq->last_line = info;
1974
1975 /* lcl_head: initialize to head a *possible* sequence at the end. */
1976 if (!table->lcl_head)
1977 table->lcl_head = info;
1978 }
1979 else if (!new_line_sorts_after (info, table->lcl_head)
1980 && (!table->lcl_head->prev_line
1981 || new_line_sorts_after (info, table->lcl_head->prev_line)))
1982 {
1983 /* Abnormal but easy: lcl_head is the head of 'info'. */
1984 info->prev_line = table->lcl_head->prev_line;
1985 table->lcl_head->prev_line = info;
1986 }
1987 else
1988 {
1989 /* Abnormal and hard: Neither 'last_line' nor 'lcl_head'
1990 are valid heads for 'info'. Reset 'lcl_head'. */
1991 struct line_info* li2 = seq->last_line; /* Always non-NULL. */
1992 struct line_info* li1 = li2->prev_line;
1993
1994 while (li1)
1995 {
1996 if (!new_line_sorts_after (info, li2)
1997 && new_line_sorts_after (info, li1))
1998 break;
1999
2000 li2 = li1; /* always non-NULL */
2001 li1 = li1->prev_line;
2002 }
2003 table->lcl_head = li2;
2004 info->prev_line = table->lcl_head->prev_line;
2005 table->lcl_head->prev_line = info;
2006 if (address < seq->low_pc)
2007 seq->low_pc = address;
2008 }
2009 return true;
2010 }
2011
2012 /* Extract a fully qualified filename from a line info table.
2013 The returned string has been malloc'ed and it is the caller's
2014 responsibility to free it. */
2015
2016 static char *
2017 concat_filename (struct line_info_table *table, unsigned int file)
2018 {
2019 char *filename;
2020
2021 /* Pre DWARF-5 entry 0 in the directory and filename tables was not used.
2022 So in order to save space in the tables used here the info for, eg
2023 directory 1 is stored in slot 0 of the directory table, directory 2
2024 in slot 1 and so on.
2025
2026 Starting with DWARF-5 the 0'th entry is used so there is a one to one
2027 mapping between DWARF slots and internal table entries. */
2028 if (! table->use_dir_and_file_0)
2029 {
2030 /* Pre DWARF-5, FILE == 0 means unknown. */
2031 if (file == 0)
2032 return strdup ("<unknown>");
2033 -- file;
2034 }
2035
2036 if (table == NULL || file >= table->num_files)
2037 {
2038 _bfd_error_handler
2039 (_("DWARF error: mangled line number section (bad file number)"));
2040 return strdup ("<unknown>");
2041 }
2042
2043 filename = table->files[file].name;
2044
2045 if (filename == NULL)
2046 return strdup ("<unknown>");
2047
2048 if (!IS_ABSOLUTE_PATH (filename))
2049 {
2050 char *dir_name = NULL;
2051 char *subdir_name = NULL;
2052 char *name;
2053 size_t len;
2054
2055 if (table->files[file].dir
2056 /* PR 17512: file: 0317e960. */
2057 && table->files[file].dir <= table->num_dirs
2058 /* PR 17512: file: 7f3d2e4b. */
2059 && table->dirs != NULL)
2060 {
2061 if (table->use_dir_and_file_0)
2062 subdir_name = table->dirs[table->files[file].dir];
2063 else
2064 subdir_name = table->dirs[table->files[file].dir - 1];
2065 }
2066
2067 if (!subdir_name || !IS_ABSOLUTE_PATH (subdir_name))
2068 dir_name = table->comp_dir;
2069
2070 if (!dir_name)
2071 {
2072 dir_name = subdir_name;
2073 subdir_name = NULL;
2074 }
2075
2076 if (!dir_name)
2077 return strdup (filename);
2078
2079 len = strlen (dir_name) + strlen (filename) + 2;
2080
2081 if (subdir_name)
2082 {
2083 len += strlen (subdir_name) + 1;
2084 name = (char *) bfd_malloc (len);
2085 if (name)
2086 sprintf (name, "%s/%s/%s", dir_name, subdir_name, filename);
2087 }
2088 else
2089 {
2090 name = (char *) bfd_malloc (len);
2091 if (name)
2092 sprintf (name, "%s/%s", dir_name, filename);
2093 }
2094
2095 return name;
2096 }
2097
2098 return strdup (filename);
2099 }
2100
2101 /* Number of bits in a bfd_vma. */
2102 #define VMA_BITS (8 * sizeof (bfd_vma))
2103
2104 /* Check whether [low1, high1) can be combined with [low2, high2),
2105 i.e., they touch or overlap. */
2106
2107 static bool
2108 ranges_overlap (bfd_vma low1,
2109 bfd_vma high1,
2110 bfd_vma low2,
2111 bfd_vma high2)
2112 {
2113 if (low1 == low2 || high1 == high2)
2114 return true;
2115
2116 /* Sort so that low1 is below low2. */
2117 if (low1 > low2)
2118 {
2119 bfd_vma tmp;
2120
2121 tmp = low1;
2122 low1 = low2;
2123 low2 = tmp;
2124
2125 tmp = high1;
2126 high1 = high2;
2127 high2 = tmp;
2128 }
2129
2130 /* We touch iff low2 == high1.
2131 We overlap iff low2 is within [low1, high1). */
2132 return low2 <= high1;
2133 }
2134
2135 /* Insert an address range in the trie mapping addresses to compilation units.
2136 Will return the new trie node (usually the same as is being sent in, but
2137 in case of a leaf-to-interior conversion, or expansion of a leaf, it may be
2138 different), or NULL on failure. */
2139
2140 static struct trie_node *
2141 insert_arange_in_trie (bfd *abfd,
2142 struct trie_node *trie,
2143 bfd_vma trie_pc,
2144 unsigned int trie_pc_bits,
2145 struct comp_unit *unit,
2146 bfd_vma low_pc,
2147 bfd_vma high_pc)
2148 {
2149 bfd_vma clamped_low_pc, clamped_high_pc;
2150 int ch, from_ch, to_ch;
2151 bool is_full_leaf = false;
2152
2153 /* See if we can extend any of the existing ranges. This merging
2154 isn't perfect (if merging opens up the possibility of merging two existing
2155 ranges, we won't find them), but it takes the majority of the cases. */
2156 if (trie->num_room_in_leaf > 0)
2157 {
2158 struct trie_leaf *leaf = (struct trie_leaf *) trie;
2159 unsigned int i;
2160
2161 for (i = 0; i < leaf->num_stored_in_leaf; ++i)
2162 {
2163 if (leaf->ranges[i].unit == unit
2164 && ranges_overlap (low_pc, high_pc,
2165 leaf->ranges[i].low_pc,
2166 leaf->ranges[i].high_pc))
2167 {
2168 if (low_pc < leaf->ranges[i].low_pc)
2169 leaf->ranges[i].low_pc = low_pc;
2170 if (high_pc > leaf->ranges[i].high_pc)
2171 leaf->ranges[i].high_pc = high_pc;
2172 return trie;
2173 }
2174 }
2175
2176 is_full_leaf = leaf->num_stored_in_leaf == trie->num_room_in_leaf;
2177 }
2178
2179 /* If we're a leaf with no more room and we're _not_ at the bottom,
2180 convert to an interior node. */
2181 if (is_full_leaf && trie_pc_bits < VMA_BITS)
2182 {
2183 const struct trie_leaf *leaf = (struct trie_leaf *) trie;
2184 unsigned int i;
2185
2186 trie = bfd_zalloc (abfd, sizeof (struct trie_interior));
2187 if (!trie)
2188 return NULL;
2189 is_full_leaf = false;
2190
2191 /* TODO: If we wanted to save a little more memory at the cost of
2192 complexity, we could have reused the old leaf node as one of the
2193 children of the new interior node, instead of throwing it away. */
2194 for (i = 0; i < leaf->num_stored_in_leaf; ++i)
2195 {
2196 if (!insert_arange_in_trie (abfd, trie, trie_pc, trie_pc_bits,
2197 leaf->ranges[i].unit, leaf->ranges[i].low_pc,
2198 leaf->ranges[i].high_pc))
2199 return NULL;
2200 }
2201 }
2202
2203 /* If we're a leaf with no more room and we _are_ at the bottom,
2204 we have no choice but to just make it larger. */
2205 if (is_full_leaf)
2206 {
2207 const struct trie_leaf *leaf = (struct trie_leaf *) trie;
2208 unsigned int new_room_in_leaf = trie->num_room_in_leaf * 2;
2209 struct trie_leaf *new_leaf;
2210 size_t amt = (sizeof (struct trie_leaf)
2211 + ((new_room_in_leaf - TRIE_LEAF_SIZE)
2212 * sizeof (leaf->ranges[0])));
2213 new_leaf = bfd_zalloc (abfd, amt);
2214 new_leaf->head.num_room_in_leaf = new_room_in_leaf;
2215 new_leaf->num_stored_in_leaf = leaf->num_stored_in_leaf;
2216
2217 memcpy (new_leaf->ranges,
2218 leaf->ranges,
2219 leaf->num_stored_in_leaf * sizeof (leaf->ranges[0]));
2220 trie = &new_leaf->head;
2221 is_full_leaf = false;
2222
2223 /* Now the insert below will go through. */
2224 }
2225
2226 /* If we're a leaf (now with room), we can just insert at the end. */
2227 if (trie->num_room_in_leaf > 0)
2228 {
2229 struct trie_leaf *leaf = (struct trie_leaf *) trie;
2230
2231 unsigned int i = leaf->num_stored_in_leaf++;
2232 leaf->ranges[i].unit = unit;
2233 leaf->ranges[i].low_pc = low_pc;
2234 leaf->ranges[i].high_pc = high_pc;
2235 return trie;
2236 }
2237
2238 /* Now we are definitely an interior node, so recurse into all
2239 the relevant buckets. */
2240
2241 /* Clamp the range to the current trie bucket. */
2242 clamped_low_pc = low_pc;
2243 clamped_high_pc = high_pc;
2244 if (trie_pc_bits > 0)
2245 {
2246 bfd_vma bucket_high_pc =
2247 trie_pc + ((bfd_vma) -1 >> trie_pc_bits); /* Inclusive. */
2248 if (clamped_low_pc < trie_pc)
2249 clamped_low_pc = trie_pc;
2250 if (clamped_high_pc > bucket_high_pc)
2251 clamped_high_pc = bucket_high_pc;
2252 }
2253
2254 /* Insert the ranges in all buckets that it spans. */
2255 from_ch = (clamped_low_pc >> (VMA_BITS - trie_pc_bits - 8)) & 0xff;
2256 to_ch = ((clamped_high_pc - 1) >> (VMA_BITS - trie_pc_bits - 8)) & 0xff;
2257 for (ch = from_ch; ch <= to_ch; ++ch)
2258 {
2259 struct trie_interior *interior = (struct trie_interior *) trie;
2260 struct trie_node *child = interior->children[ch];
2261
2262 if (child == NULL)
2263 {
2264 child = alloc_trie_leaf (abfd);
2265 if (!child)
2266 return NULL;
2267 }
2268 bfd_vma bucket = (bfd_vma) ch << (VMA_BITS - trie_pc_bits - 8);
2269 child = insert_arange_in_trie (abfd,
2270 child,
2271 trie_pc + bucket,
2272 trie_pc_bits + 8,
2273 unit,
2274 low_pc,
2275 high_pc);
2276 if (!child)
2277 return NULL;
2278
2279 interior->children[ch] = child;
2280 }
2281
2282 return trie;
2283 }
2284
2285 static bool
2286 arange_add (struct comp_unit *unit, struct arange *first_arange,
2287 struct trie_node **trie_root, bfd_vma low_pc, bfd_vma high_pc)
2288 {
2289 struct arange *arange;
2290
2291 /* Ignore empty ranges. */
2292 if (low_pc == high_pc)
2293 return true;
2294
2295 if (trie_root != NULL)
2296 {
2297 *trie_root = insert_arange_in_trie (unit->file->bfd_ptr,
2298 *trie_root,
2299 0,
2300 0,
2301 unit,
2302 low_pc,
2303 high_pc);
2304 if (*trie_root == NULL)
2305 return false;
2306 }
2307
2308 /* If the first arange is empty, use it. */
2309 if (first_arange->high == 0)
2310 {
2311 first_arange->low = low_pc;
2312 first_arange->high = high_pc;
2313 return true;
2314 }
2315
2316 /* Next see if we can cheaply extend an existing range. */
2317 arange = first_arange;
2318 do
2319 {
2320 if (low_pc == arange->high)
2321 {
2322 arange->high = high_pc;
2323 return true;
2324 }
2325 if (high_pc == arange->low)
2326 {
2327 arange->low = low_pc;
2328 return true;
2329 }
2330 arange = arange->next;
2331 }
2332 while (arange);
2333
2334 /* Need to allocate a new arange and insert it into the arange list.
2335 Order isn't significant, so just insert after the first arange. */
2336 arange = (struct arange *) bfd_alloc (unit->abfd, sizeof (*arange));
2337 if (arange == NULL)
2338 return false;
2339 arange->low = low_pc;
2340 arange->high = high_pc;
2341 arange->next = first_arange->next;
2342 first_arange->next = arange;
2343 return true;
2344 }
2345
2346 /* Compare function for line sequences. */
2347
2348 static int
2349 compare_sequences (const void* a, const void* b)
2350 {
2351 const struct line_sequence* seq1 = a;
2352 const struct line_sequence* seq2 = b;
2353
2354 /* Sort by low_pc as the primary key. */
2355 if (seq1->low_pc < seq2->low_pc)
2356 return -1;
2357 if (seq1->low_pc > seq2->low_pc)
2358 return 1;
2359
2360 /* If low_pc values are equal, sort in reverse order of
2361 high_pc, so that the largest region comes first. */
2362 if (seq1->last_line->address < seq2->last_line->address)
2363 return 1;
2364 if (seq1->last_line->address > seq2->last_line->address)
2365 return -1;
2366
2367 if (seq1->last_line->op_index < seq2->last_line->op_index)
2368 return 1;
2369 if (seq1->last_line->op_index > seq2->last_line->op_index)
2370 return -1;
2371
2372 /* num_lines is initially an index, to make the sort stable. */
2373 if (seq1->num_lines < seq2->num_lines)
2374 return -1;
2375 if (seq1->num_lines > seq2->num_lines)
2376 return 1;
2377 return 0;
2378 }
2379
2380 /* Construct the line information table for quick lookup. */
2381
2382 static bool
2383 build_line_info_table (struct line_info_table * table,
2384 struct line_sequence * seq)
2385 {
2386 size_t amt;
2387 struct line_info **line_info_lookup;
2388 struct line_info *each_line;
2389 unsigned int num_lines;
2390 unsigned int line_index;
2391
2392 if (seq->line_info_lookup != NULL)
2393 return true;
2394
2395 /* Count the number of line information entries. We could do this while
2396 scanning the debug information, but some entries may be added via
2397 lcl_head without having a sequence handy to increment the number of
2398 lines. */
2399 num_lines = 0;
2400 for (each_line = seq->last_line; each_line; each_line = each_line->prev_line)
2401 num_lines++;
2402
2403 seq->num_lines = num_lines;
2404 if (num_lines == 0)
2405 return true;
2406
2407 /* Allocate space for the line information lookup table. */
2408 amt = sizeof (struct line_info*) * num_lines;
2409 line_info_lookup = (struct line_info**) bfd_alloc (table->abfd, amt);
2410 seq->line_info_lookup = line_info_lookup;
2411 if (line_info_lookup == NULL)
2412 return false;
2413
2414 /* Create the line information lookup table. */
2415 line_index = num_lines;
2416 for (each_line = seq->last_line; each_line; each_line = each_line->prev_line)
2417 line_info_lookup[--line_index] = each_line;
2418
2419 BFD_ASSERT (line_index == 0);
2420 return true;
2421 }
2422
2423 /* Sort the line sequences for quick lookup. */
2424
2425 static bool
2426 sort_line_sequences (struct line_info_table* table)
2427 {
2428 size_t amt;
2429 struct line_sequence *sequences;
2430 struct line_sequence *seq;
2431 unsigned int n = 0;
2432 unsigned int num_sequences = table->num_sequences;
2433 bfd_vma last_high_pc;
2434
2435 if (num_sequences == 0)
2436 return true;
2437
2438 /* Allocate space for an array of sequences. */
2439 amt = sizeof (struct line_sequence) * num_sequences;
2440 sequences = (struct line_sequence *) bfd_alloc (table->abfd, amt);
2441 if (sequences == NULL)
2442 return false;
2443
2444 /* Copy the linked list into the array, freeing the original nodes. */
2445 seq = table->sequences;
2446 for (n = 0; n < num_sequences; n++)
2447 {
2448 struct line_sequence* last_seq = seq;
2449
2450 BFD_ASSERT (seq);
2451 sequences[n].low_pc = seq->low_pc;
2452 sequences[n].prev_sequence = NULL;
2453 sequences[n].last_line = seq->last_line;
2454 sequences[n].line_info_lookup = NULL;
2455 sequences[n].num_lines = n;
2456 seq = seq->prev_sequence;
2457 free (last_seq);
2458 }
2459 BFD_ASSERT (seq == NULL);
2460
2461 qsort (sequences, n, sizeof (struct line_sequence), compare_sequences);
2462
2463 /* Make the list binary-searchable by trimming overlapping entries
2464 and removing nested entries. */
2465 num_sequences = 1;
2466 last_high_pc = sequences[0].last_line->address;
2467 for (n = 1; n < table->num_sequences; n++)
2468 {
2469 if (sequences[n].low_pc < last_high_pc)
2470 {
2471 if (sequences[n].last_line->address <= last_high_pc)
2472 /* Skip nested entries. */
2473 continue;
2474
2475 /* Trim overlapping entries. */
2476 sequences[n].low_pc = last_high_pc;
2477 }
2478 last_high_pc = sequences[n].last_line->address;
2479 if (n > num_sequences)
2480 {
2481 /* Close up the gap. */
2482 sequences[num_sequences].low_pc = sequences[n].low_pc;
2483 sequences[num_sequences].last_line = sequences[n].last_line;
2484 }
2485 num_sequences++;
2486 }
2487
2488 table->sequences = sequences;
2489 table->num_sequences = num_sequences;
2490 return true;
2491 }
2492
2493 /* Add directory to TABLE. CUR_DIR memory ownership is taken by TABLE. */
2494
2495 static bool
2496 line_info_add_include_dir (struct line_info_table *table, char *cur_dir)
2497 {
2498 if ((table->num_dirs % DIR_ALLOC_CHUNK) == 0)
2499 {
2500 char **tmp;
2501 size_t amt;
2502
2503 amt = table->num_dirs + DIR_ALLOC_CHUNK;
2504 amt *= sizeof (char *);
2505
2506 tmp = (char **) bfd_realloc (table->dirs, amt);
2507 if (tmp == NULL)
2508 return false;
2509 table->dirs = tmp;
2510 }
2511
2512 table->dirs[table->num_dirs++] = cur_dir;
2513 return true;
2514 }
2515
2516 static bool
2517 line_info_add_include_dir_stub (struct line_info_table *table, char *cur_dir,
2518 unsigned int dir ATTRIBUTE_UNUSED,
2519 unsigned int xtime ATTRIBUTE_UNUSED,
2520 unsigned int size ATTRIBUTE_UNUSED)
2521 {
2522 return line_info_add_include_dir (table, cur_dir);
2523 }
2524
2525 /* Add file to TABLE. CUR_FILE memory ownership is taken by TABLE. */
2526
2527 static bool
2528 line_info_add_file_name (struct line_info_table *table, char *cur_file,
2529 unsigned int dir, unsigned int xtime,
2530 unsigned int size)
2531 {
2532 if ((table->num_files % FILE_ALLOC_CHUNK) == 0)
2533 {
2534 struct fileinfo *tmp;
2535 size_t amt;
2536
2537 amt = table->num_files + FILE_ALLOC_CHUNK;
2538 amt *= sizeof (struct fileinfo);
2539
2540 tmp = (struct fileinfo *) bfd_realloc (table->files, amt);
2541 if (tmp == NULL)
2542 return false;
2543 table->files = tmp;
2544 }
2545
2546 table->files[table->num_files].name = cur_file;
2547 table->files[table->num_files].dir = dir;
2548 table->files[table->num_files].time = xtime;
2549 table->files[table->num_files].size = size;
2550 table->num_files++;
2551 return true;
2552 }
2553
2554 /* Read directory or file name entry format, starting with byte of
2555 format count entries, ULEB128 pairs of entry formats, ULEB128 of
2556 entries count and the entries themselves in the described entry
2557 format. */
2558
2559 static bool
2560 read_formatted_entries (struct comp_unit *unit, bfd_byte **bufp,
2561 bfd_byte *buf_end, struct line_info_table *table,
2562 bool (*callback) (struct line_info_table *table,
2563 char *cur_file,
2564 unsigned int dir,
2565 unsigned int time,
2566 unsigned int size))
2567 {
2568 bfd *abfd = unit->abfd;
2569 bfd_byte format_count, formati;
2570 bfd_vma data_count, datai;
2571 bfd_byte *buf = *bufp;
2572 bfd_byte *format_header_data;
2573
2574 format_count = read_1_byte (abfd, &buf, buf_end);
2575 format_header_data = buf;
2576 for (formati = 0; formati < format_count; formati++)
2577 {
2578 _bfd_safe_read_leb128 (abfd, &buf, false, buf_end);
2579 _bfd_safe_read_leb128 (abfd, &buf, false, buf_end);
2580 }
2581
2582 data_count = _bfd_safe_read_leb128 (abfd, &buf, false, buf_end);
2583 if (format_count == 0 && data_count != 0)
2584 {
2585 _bfd_error_handler (_("DWARF error: zero format count"));
2586 bfd_set_error (bfd_error_bad_value);
2587 return false;
2588 }
2589
2590 /* PR 22210. Paranoia check. Don't bother running the loop
2591 if we know that we are going to run out of buffer. */
2592 if (data_count > (bfd_vma) (buf_end - buf))
2593 {
2594 _bfd_error_handler
2595 (_("DWARF error: data count (%" PRIx64 ") larger than buffer size"),
2596 (uint64_t) data_count);
2597 bfd_set_error (bfd_error_bad_value);
2598 return false;
2599 }
2600
2601 for (datai = 0; datai < data_count; datai++)
2602 {
2603 bfd_byte *format = format_header_data;
2604 struct fileinfo fe;
2605
2606 memset (&fe, 0, sizeof fe);
2607 for (formati = 0; formati < format_count; formati++)
2608 {
2609 bfd_vma content_type, form;
2610 char *string_trash;
2611 char **stringp = &string_trash;
2612 unsigned int uint_trash, *uintp = &uint_trash;
2613 struct attribute attr;
2614
2615 content_type = _bfd_safe_read_leb128 (abfd, &format, false, buf_end);
2616 switch (content_type)
2617 {
2618 case DW_LNCT_path:
2619 stringp = &fe.name;
2620 break;
2621 case DW_LNCT_directory_index:
2622 uintp = &fe.dir;
2623 break;
2624 case DW_LNCT_timestamp:
2625 uintp = &fe.time;
2626 break;
2627 case DW_LNCT_size:
2628 uintp = &fe.size;
2629 break;
2630 case DW_LNCT_MD5:
2631 break;
2632 default:
2633 _bfd_error_handler
2634 (_("DWARF error: unknown format content type %" PRIu64),
2635 (uint64_t) content_type);
2636 bfd_set_error (bfd_error_bad_value);
2637 return false;
2638 }
2639
2640 form = _bfd_safe_read_leb128 (abfd, &format, false, buf_end);
2641 buf = read_attribute_value (&attr, form, 0, unit, buf, buf_end);
2642 if (buf == NULL)
2643 return false;
2644 switch (form)
2645 {
2646 case DW_FORM_string:
2647 case DW_FORM_line_strp:
2648 case DW_FORM_strx:
2649 case DW_FORM_strx1:
2650 case DW_FORM_strx2:
2651 case DW_FORM_strx3:
2652 case DW_FORM_strx4:
2653 *stringp = attr.u.str;
2654 break;
2655
2656 case DW_FORM_data1:
2657 case DW_FORM_data2:
2658 case DW_FORM_data4:
2659 case DW_FORM_data8:
2660 case DW_FORM_udata:
2661 *uintp = attr.u.val;
2662 break;
2663
2664 case DW_FORM_data16:
2665 /* MD5 data is in the attr.blk, but we are ignoring those. */
2666 break;
2667 }
2668 }
2669
2670 if (!callback (table, fe.name, fe.dir, fe.time, fe.size))
2671 return false;
2672 }
2673
2674 *bufp = buf;
2675 return true;
2676 }
2677
2678 /* Decode the line number information for UNIT. */
2679
2680 static struct line_info_table*
2681 decode_line_info (struct comp_unit *unit)
2682 {
2683 bfd *abfd = unit->abfd;
2684 struct dwarf2_debug *stash = unit->stash;
2685 struct dwarf2_debug_file *file = unit->file;
2686 struct line_info_table* table;
2687 bfd_byte *line_ptr;
2688 bfd_byte *line_end;
2689 struct line_head lh;
2690 unsigned int i, offset_size;
2691 char *cur_file, *cur_dir;
2692 unsigned char op_code, extended_op, adj_opcode;
2693 unsigned int exop_len;
2694 size_t amt;
2695
2696 if (unit->line_offset == 0 && file->line_table)
2697 return file->line_table;
2698
2699 if (! read_section (abfd, &stash->debug_sections[debug_line],
2700 file->syms, unit->line_offset,
2701 &file->dwarf_line_buffer, &file->dwarf_line_size))
2702 return NULL;
2703
2704 if (file->dwarf_line_size < 16)
2705 {
2706 _bfd_error_handler
2707 (_("DWARF error: line info section is too small (%" PRId64 ")"),
2708 (int64_t) file->dwarf_line_size);
2709 bfd_set_error (bfd_error_bad_value);
2710 return NULL;
2711 }
2712 line_ptr = file->dwarf_line_buffer + unit->line_offset;
2713 line_end = file->dwarf_line_buffer + file->dwarf_line_size;
2714
2715 /* Read in the prologue. */
2716 lh.total_length = read_4_bytes (abfd, &line_ptr, line_end);
2717 offset_size = 4;
2718 if (lh.total_length == 0xffffffff)
2719 {
2720 lh.total_length = read_8_bytes (abfd, &line_ptr, line_end);
2721 offset_size = 8;
2722 }
2723 else if (lh.total_length == 0 && unit->addr_size == 8)
2724 {
2725 /* Handle (non-standard) 64-bit DWARF2 formats. */
2726 lh.total_length = read_4_bytes (abfd, &line_ptr, line_end);
2727 offset_size = 8;
2728 }
2729
2730 if (lh.total_length > (size_t) (line_end - line_ptr))
2731 {
2732 _bfd_error_handler
2733 /* xgettext: c-format */
2734 (_("DWARF error: line info data is bigger (%#" PRIx64 ")"
2735 " than the space remaining in the section (%#lx)"),
2736 (uint64_t) lh.total_length, (unsigned long) (line_end - line_ptr));
2737 bfd_set_error (bfd_error_bad_value);
2738 return NULL;
2739 }
2740
2741 line_end = line_ptr + lh.total_length;
2742
2743 lh.version = read_2_bytes (abfd, &line_ptr, line_end);
2744 if (lh.version < 2 || lh.version > 5)
2745 {
2746 _bfd_error_handler
2747 (_("DWARF error: unhandled .debug_line version %d"), lh.version);
2748 bfd_set_error (bfd_error_bad_value);
2749 return NULL;
2750 }
2751
2752 if (line_ptr + offset_size + (lh.version >= 5 ? 8 : (lh.version >= 4 ? 6 : 5))
2753 >= line_end)
2754 {
2755 _bfd_error_handler
2756 (_("DWARF error: ran out of room reading prologue"));
2757 bfd_set_error (bfd_error_bad_value);
2758 return NULL;
2759 }
2760
2761 if (lh.version >= 5)
2762 {
2763 unsigned int segment_selector_size;
2764
2765 /* Skip address size. */
2766 read_1_byte (abfd, &line_ptr, line_end);
2767
2768 segment_selector_size = read_1_byte (abfd, &line_ptr, line_end);
2769 if (segment_selector_size != 0)
2770 {
2771 _bfd_error_handler
2772 (_("DWARF error: line info unsupported segment selector size %u"),
2773 segment_selector_size);
2774 bfd_set_error (bfd_error_bad_value);
2775 return NULL;
2776 }
2777 }
2778
2779 if (offset_size == 4)
2780 lh.prologue_length = read_4_bytes (abfd, &line_ptr, line_end);
2781 else
2782 lh.prologue_length = read_8_bytes (abfd, &line_ptr, line_end);
2783
2784 lh.minimum_instruction_length = read_1_byte (abfd, &line_ptr, line_end);
2785
2786 if (lh.version >= 4)
2787 lh.maximum_ops_per_insn = read_1_byte (abfd, &line_ptr, line_end);
2788 else
2789 lh.maximum_ops_per_insn = 1;
2790
2791 if (lh.maximum_ops_per_insn == 0)
2792 {
2793 _bfd_error_handler
2794 (_("DWARF error: invalid maximum operations per instruction"));
2795 bfd_set_error (bfd_error_bad_value);
2796 return NULL;
2797 }
2798
2799 lh.default_is_stmt = read_1_byte (abfd, &line_ptr, line_end);
2800 lh.line_base = read_1_signed_byte (abfd, &line_ptr, line_end);
2801 lh.line_range = read_1_byte (abfd, &line_ptr, line_end);
2802 lh.opcode_base = read_1_byte (abfd, &line_ptr, line_end);
2803
2804 if (line_ptr + (lh.opcode_base - 1) >= line_end)
2805 {
2806 _bfd_error_handler (_("DWARF error: ran out of room reading opcodes"));
2807 bfd_set_error (bfd_error_bad_value);
2808 return NULL;
2809 }
2810
2811 amt = lh.opcode_base * sizeof (unsigned char);
2812 lh.standard_opcode_lengths = (unsigned char *) bfd_alloc (abfd, amt);
2813
2814 lh.standard_opcode_lengths[0] = 1;
2815
2816 for (i = 1; i < lh.opcode_base; ++i)
2817 lh.standard_opcode_lengths[i] = read_1_byte (abfd, &line_ptr, line_end);
2818
2819 amt = sizeof (struct line_info_table);
2820 table = (struct line_info_table *) bfd_alloc (abfd, amt);
2821 if (table == NULL)
2822 return NULL;
2823 table->abfd = abfd;
2824 table->comp_dir = unit->comp_dir;
2825
2826 table->num_files = 0;
2827 table->files = NULL;
2828
2829 table->num_dirs = 0;
2830 table->dirs = NULL;
2831
2832 table->num_sequences = 0;
2833 table->sequences = NULL;
2834
2835 table->lcl_head = NULL;
2836
2837 if (lh.version >= 5)
2838 {
2839 /* Read directory table. */
2840 if (!read_formatted_entries (unit, &line_ptr, line_end, table,
2841 line_info_add_include_dir_stub))
2842 goto fail;
2843
2844 /* Read file name table. */
2845 if (!read_formatted_entries (unit, &line_ptr, line_end, table,
2846 line_info_add_file_name))
2847 goto fail;
2848 table->use_dir_and_file_0 = true;
2849 }
2850 else
2851 {
2852 /* Read directory table. */
2853 while ((cur_dir = read_string (&line_ptr, line_end)) != NULL)
2854 {
2855 if (!line_info_add_include_dir (table, cur_dir))
2856 goto fail;
2857 }
2858
2859 /* Read file name table. */
2860 while ((cur_file = read_string (&line_ptr, line_end)) != NULL)
2861 {
2862 unsigned int dir, xtime, size;
2863
2864 dir = _bfd_safe_read_leb128 (abfd, &line_ptr, false, line_end);
2865 xtime = _bfd_safe_read_leb128 (abfd, &line_ptr, false, line_end);
2866 size = _bfd_safe_read_leb128 (abfd, &line_ptr, false, line_end);
2867
2868 if (!line_info_add_file_name (table, cur_file, dir, xtime, size))
2869 goto fail;
2870 }
2871 table->use_dir_and_file_0 = false;
2872 }
2873
2874 /* Read the statement sequences until there's nothing left. */
2875 while (line_ptr < line_end)
2876 {
2877 /* State machine registers. */
2878 bfd_vma address = 0;
2879 unsigned char op_index = 0;
2880 char * filename = NULL;
2881 unsigned int line = 1;
2882 unsigned int column = 0;
2883 unsigned int discriminator = 0;
2884 int is_stmt = lh.default_is_stmt;
2885 int end_sequence = 0;
2886 unsigned int dir, xtime, size;
2887 /* eraxxon@alumni.rice.edu: Against the DWARF2 specs, some
2888 compilers generate address sequences that are wildly out of
2889 order using DW_LNE_set_address (e.g. Intel C++ 6.0 compiler
2890 for ia64-Linux). Thus, to determine the low and high
2891 address, we must compare on every DW_LNS_copy, etc. */
2892 bfd_vma low_pc = (bfd_vma) -1;
2893 bfd_vma high_pc = 0;
2894
2895 if (table->num_files)
2896 {
2897 if (table->use_dir_and_file_0)
2898 filename = concat_filename (table, 0);
2899 else
2900 filename = concat_filename (table, 1);
2901 }
2902
2903 /* Decode the table. */
2904 while (!end_sequence && line_ptr < line_end)
2905 {
2906 op_code = read_1_byte (abfd, &line_ptr, line_end);
2907
2908 if (op_code >= lh.opcode_base)
2909 {
2910 /* Special operand. */
2911 adj_opcode = op_code - lh.opcode_base;
2912 if (lh.line_range == 0)
2913 goto line_fail;
2914 if (lh.maximum_ops_per_insn == 1)
2915 address += (adj_opcode / lh.line_range
2916 * lh.minimum_instruction_length);
2917 else
2918 {
2919 address += ((op_index + adj_opcode / lh.line_range)
2920 / lh.maximum_ops_per_insn
2921 * lh.minimum_instruction_length);
2922 op_index = ((op_index + adj_opcode / lh.line_range)
2923 % lh.maximum_ops_per_insn);
2924 }
2925 line += lh.line_base + (adj_opcode % lh.line_range);
2926 /* Append row to matrix using current values. */
2927 if (!add_line_info (table, address, op_index, filename,
2928 line, column, discriminator, 0))
2929 goto line_fail;
2930 discriminator = 0;
2931 if (address < low_pc)
2932 low_pc = address;
2933 if (address > high_pc)
2934 high_pc = address;
2935 }
2936 else switch (op_code)
2937 {
2938 case DW_LNS_extended_op:
2939 exop_len = _bfd_safe_read_leb128 (abfd, &line_ptr,
2940 false, line_end);
2941 extended_op = read_1_byte (abfd, &line_ptr, line_end);
2942
2943 switch (extended_op)
2944 {
2945 case DW_LNE_end_sequence:
2946 end_sequence = 1;
2947 if (!add_line_info (table, address, op_index, filename, line,
2948 column, discriminator, end_sequence))
2949 goto line_fail;
2950 discriminator = 0;
2951 if (address < low_pc)
2952 low_pc = address;
2953 if (address > high_pc)
2954 high_pc = address;
2955 if (!arange_add (unit, &unit->arange, &unit->file->trie_root,
2956 low_pc, high_pc))
2957 goto line_fail;
2958 break;
2959 case DW_LNE_set_address:
2960 address = read_address (unit, &line_ptr, line_end);
2961 op_index = 0;
2962 break;
2963 case DW_LNE_define_file:
2964 cur_file = read_string (&line_ptr, line_end);
2965 dir = _bfd_safe_read_leb128 (abfd, &line_ptr,
2966 false, line_end);
2967 xtime = _bfd_safe_read_leb128 (abfd, &line_ptr,
2968 false, line_end);
2969 size = _bfd_safe_read_leb128 (abfd, &line_ptr,
2970 false, line_end);
2971 if (!line_info_add_file_name (table, cur_file, dir,
2972 xtime, size))
2973 goto line_fail;
2974 break;
2975 case DW_LNE_set_discriminator:
2976 discriminator = _bfd_safe_read_leb128 (abfd, &line_ptr,
2977 false, line_end);
2978 break;
2979 case DW_LNE_HP_source_file_correlation:
2980 line_ptr += exop_len - 1;
2981 break;
2982 default:
2983 _bfd_error_handler
2984 (_("DWARF error: mangled line number section"));
2985 bfd_set_error (bfd_error_bad_value);
2986 line_fail:
2987 free (filename);
2988 goto fail;
2989 }
2990 break;
2991 case DW_LNS_copy:
2992 if (!add_line_info (table, address, op_index,
2993 filename, line, column, discriminator, 0))
2994 goto line_fail;
2995 discriminator = 0;
2996 if (address < low_pc)
2997 low_pc = address;
2998 if (address > high_pc)
2999 high_pc = address;
3000 break;
3001 case DW_LNS_advance_pc:
3002 if (lh.maximum_ops_per_insn == 1)
3003 address += (lh.minimum_instruction_length
3004 * _bfd_safe_read_leb128 (abfd, &line_ptr,
3005 false, line_end));
3006 else
3007 {
3008 bfd_vma adjust = _bfd_safe_read_leb128 (abfd, &line_ptr,
3009 false, line_end);
3010 address = ((op_index + adjust) / lh.maximum_ops_per_insn
3011 * lh.minimum_instruction_length);
3012 op_index = (op_index + adjust) % lh.maximum_ops_per_insn;
3013 }
3014 break;
3015 case DW_LNS_advance_line:
3016 line += _bfd_safe_read_leb128 (abfd, &line_ptr,
3017 true, line_end);
3018 break;
3019 case DW_LNS_set_file:
3020 {
3021 unsigned int filenum;
3022
3023 /* The file and directory tables are 0
3024 based, the references are 1 based. */
3025 filenum = _bfd_safe_read_leb128 (abfd, &line_ptr,
3026 false, line_end);
3027 free (filename);
3028 filename = concat_filename (table, filenum);
3029 break;
3030 }
3031 case DW_LNS_set_column:
3032 column = _bfd_safe_read_leb128 (abfd, &line_ptr,
3033 false, line_end);
3034 break;
3035 case DW_LNS_negate_stmt:
3036 is_stmt = (!is_stmt);
3037 break;
3038 case DW_LNS_set_basic_block:
3039 break;
3040 case DW_LNS_const_add_pc:
3041 if (lh.line_range == 0)
3042 goto line_fail;
3043 if (lh.maximum_ops_per_insn == 1)
3044 address += (lh.minimum_instruction_length
3045 * ((255 - lh.opcode_base) / lh.line_range));
3046 else
3047 {
3048 bfd_vma adjust = ((255 - lh.opcode_base) / lh.line_range);
3049 address += (lh.minimum_instruction_length
3050 * ((op_index + adjust)
3051 / lh.maximum_ops_per_insn));
3052 op_index = (op_index + adjust) % lh.maximum_ops_per_insn;
3053 }
3054 break;
3055 case DW_LNS_fixed_advance_pc:
3056 address += read_2_bytes (abfd, &line_ptr, line_end);
3057 op_index = 0;
3058 break;
3059 default:
3060 /* Unknown standard opcode, ignore it. */
3061 for (i = 0; i < lh.standard_opcode_lengths[op_code]; i++)
3062 (void) _bfd_safe_read_leb128 (abfd, &line_ptr,
3063 false, line_end);
3064 break;
3065 }
3066 }
3067
3068 free (filename);
3069 }
3070
3071 if (unit->line_offset == 0)
3072 file->line_table = table;
3073 if (sort_line_sequences (table))
3074 return table;
3075
3076 fail:
3077 while (table->sequences != NULL)
3078 {
3079 struct line_sequence* seq = table->sequences;
3080 table->sequences = table->sequences->prev_sequence;
3081 free (seq);
3082 }
3083 free (table->files);
3084 free (table->dirs);
3085 return NULL;
3086 }
3087
3088 /* If ADDR is within TABLE set the output parameters and return TRUE,
3089 otherwise set *FILENAME_PTR to NULL and return FALSE.
3090 The parameters FILENAME_PTR, LINENUMBER_PTR and DISCRIMINATOR_PTR
3091 are pointers to the objects to be filled in. */
3092
3093 static bool
3094 lookup_address_in_line_info_table (struct line_info_table *table,
3095 bfd_vma addr,
3096 const char **filename_ptr,
3097 unsigned int *linenumber_ptr,
3098 unsigned int *discriminator_ptr)
3099 {
3100 struct line_sequence *seq = NULL;
3101 struct line_info *info;
3102 int low, high, mid;
3103
3104 /* Binary search the array of sequences. */
3105 low = 0;
3106 high = table->num_sequences;
3107 while (low < high)
3108 {
3109 mid = (low + high) / 2;
3110 seq = &table->sequences[mid];
3111 if (addr < seq->low_pc)
3112 high = mid;
3113 else if (addr >= seq->last_line->address)
3114 low = mid + 1;
3115 else
3116 break;
3117 }
3118
3119 /* Check for a valid sequence. */
3120 if (!seq || addr < seq->low_pc || addr >= seq->last_line->address)
3121 goto fail;
3122
3123 if (!build_line_info_table (table, seq))
3124 goto fail;
3125
3126 /* Binary search the array of line information. */
3127 low = 0;
3128 high = seq->num_lines;
3129 info = NULL;
3130 while (low < high)
3131 {
3132 mid = (low + high) / 2;
3133 info = seq->line_info_lookup[mid];
3134 if (addr < info->address)
3135 high = mid;
3136 else if (addr >= seq->line_info_lookup[mid + 1]->address)
3137 low = mid + 1;
3138 else
3139 break;
3140 }
3141
3142 /* Check for a valid line information entry. */
3143 if (info
3144 && addr >= info->address
3145 && addr < seq->line_info_lookup[mid + 1]->address
3146 && !(info->end_sequence || info == seq->last_line))
3147 {
3148 *filename_ptr = info->filename;
3149 *linenumber_ptr = info->line;
3150 if (discriminator_ptr)
3151 *discriminator_ptr = info->discriminator;
3152 return true;
3153 }
3154
3155 fail:
3156 *filename_ptr = NULL;
3157 return false;
3158 }
3159
3160 /* Read in the .debug_ranges section for future reference. */
3161
3162 static bool
3163 read_debug_ranges (struct comp_unit * unit)
3164 {
3165 struct dwarf2_debug *stash = unit->stash;
3166 struct dwarf2_debug_file *file = unit->file;
3167
3168 return read_section (unit->abfd, &stash->debug_sections[debug_ranges],
3169 file->syms, 0,
3170 &file->dwarf_ranges_buffer, &file->dwarf_ranges_size);
3171 }
3172
3173 /* Read in the .debug_rnglists section for future reference. */
3174
3175 static bool
3176 read_debug_rnglists (struct comp_unit * unit)
3177 {
3178 struct dwarf2_debug *stash = unit->stash;
3179 struct dwarf2_debug_file *file = unit->file;
3180
3181 return read_section (unit->abfd, &stash->debug_sections[debug_rnglists],
3182 file->syms, 0,
3183 &file->dwarf_rnglists_buffer, &file->dwarf_rnglists_size);
3184 }
3185
3186 /* Function table functions. */
3187
3188 static int
3189 compare_lookup_funcinfos (const void * a, const void * b)
3190 {
3191 const struct lookup_funcinfo * lookup1 = a;
3192 const struct lookup_funcinfo * lookup2 = b;
3193
3194 if (lookup1->low_addr < lookup2->low_addr)
3195 return -1;
3196 if (lookup1->low_addr > lookup2->low_addr)
3197 return 1;
3198 if (lookup1->high_addr < lookup2->high_addr)
3199 return -1;
3200 if (lookup1->high_addr > lookup2->high_addr)
3201 return 1;
3202
3203 if (lookup1->idx < lookup2->idx)
3204 return -1;
3205 if (lookup1->idx > lookup2->idx)
3206 return 1;
3207 return 0;
3208 }
3209
3210 static bool
3211 build_lookup_funcinfo_table (struct comp_unit * unit)
3212 {
3213 struct lookup_funcinfo *lookup_funcinfo_table = unit->lookup_funcinfo_table;
3214 unsigned int number_of_functions = unit->number_of_functions;
3215 struct funcinfo *each;
3216 struct lookup_funcinfo *entry;
3217 size_t func_index;
3218 struct arange *range;
3219 bfd_vma low_addr, high_addr;
3220
3221 if (lookup_funcinfo_table || number_of_functions == 0)
3222 return true;
3223
3224 /* Create the function info lookup table. */
3225 lookup_funcinfo_table = (struct lookup_funcinfo *)
3226 bfd_malloc (number_of_functions * sizeof (struct lookup_funcinfo));
3227 if (lookup_funcinfo_table == NULL)
3228 return false;
3229
3230 /* Populate the function info lookup table. */
3231 func_index = number_of_functions;
3232 for (each = unit->function_table; each; each = each->prev_func)
3233 {
3234 entry = &lookup_funcinfo_table[--func_index];
3235 entry->funcinfo = each;
3236 entry->idx = func_index;
3237
3238 /* Calculate the lowest and highest address for this function entry. */
3239 low_addr = entry->funcinfo->arange.low;
3240 high_addr = entry->funcinfo->arange.high;
3241
3242 for (range = entry->funcinfo->arange.next; range; range = range->next)
3243 {
3244 if (range->low < low_addr)
3245 low_addr = range->low;
3246 if (range->high > high_addr)
3247 high_addr = range->high;
3248 }
3249
3250 entry->low_addr = low_addr;
3251 entry->high_addr = high_addr;
3252 }
3253
3254 BFD_ASSERT (func_index == 0);
3255
3256 /* Sort the function by address. */
3257 qsort (lookup_funcinfo_table,
3258 number_of_functions,
3259 sizeof (struct lookup_funcinfo),
3260 compare_lookup_funcinfos);
3261
3262 /* Calculate the high watermark for each function in the lookup table. */
3263 high_addr = lookup_funcinfo_table[0].high_addr;
3264 for (func_index = 1; func_index < number_of_functions; func_index++)
3265 {
3266 entry = &lookup_funcinfo_table[func_index];
3267 if (entry->high_addr > high_addr)
3268 high_addr = entry->high_addr;
3269 else
3270 entry->high_addr = high_addr;
3271 }
3272
3273 unit->lookup_funcinfo_table = lookup_funcinfo_table;
3274 return true;
3275 }
3276
3277 /* If ADDR is within UNIT's function tables, set FUNCTION_PTR, and return
3278 TRUE. Note that we need to find the function that has the smallest range
3279 that contains ADDR, to handle inlined functions without depending upon
3280 them being ordered in TABLE by increasing range. */
3281
3282 static bool
3283 lookup_address_in_function_table (struct comp_unit *unit,
3284 bfd_vma addr,
3285 struct funcinfo **function_ptr)
3286 {
3287 unsigned int number_of_functions = unit->number_of_functions;
3288 struct lookup_funcinfo* lookup_funcinfo = NULL;
3289 struct funcinfo* funcinfo = NULL;
3290 struct funcinfo* best_fit = NULL;
3291 bfd_vma best_fit_len = (bfd_vma) -1;
3292 bfd_size_type low, high, mid, first;
3293 struct arange *arange;
3294
3295 if (number_of_functions == 0)
3296 return false;
3297
3298 if (!build_lookup_funcinfo_table (unit))
3299 return false;
3300
3301 if (unit->lookup_funcinfo_table[number_of_functions - 1].high_addr < addr)
3302 return false;
3303
3304 /* Find the first function in the lookup table which may contain the
3305 specified address. */
3306 low = 0;
3307 high = number_of_functions;
3308 first = high;
3309 while (low < high)
3310 {
3311 mid = (low + high) / 2;
3312 lookup_funcinfo = &unit->lookup_funcinfo_table[mid];
3313 if (addr < lookup_funcinfo->low_addr)
3314 high = mid;
3315 else if (addr >= lookup_funcinfo->high_addr)
3316 low = mid + 1;
3317 else
3318 high = first = mid;
3319 }
3320
3321 /* Find the 'best' match for the address. The prior algorithm defined the
3322 best match as the function with the smallest address range containing
3323 the specified address. This definition should probably be changed to the
3324 innermost inline routine containing the address, but right now we want
3325 to get the same results we did before. */
3326 while (first < number_of_functions)
3327 {
3328 if (addr < unit->lookup_funcinfo_table[first].low_addr)
3329 break;
3330 funcinfo = unit->lookup_funcinfo_table[first].funcinfo;
3331
3332 for (arange = &funcinfo->arange; arange; arange = arange->next)
3333 {
3334 if (addr < arange->low || addr >= arange->high)
3335 continue;
3336
3337 if (arange->high - arange->low < best_fit_len
3338 /* The following comparison is designed to return the same
3339 match as the previous algorithm for routines which have the
3340 same best fit length. */
3341 || (arange->high - arange->low == best_fit_len
3342 && funcinfo > best_fit))
3343 {
3344 best_fit = funcinfo;
3345 best_fit_len = arange->high - arange->low;
3346 }
3347 }
3348
3349 first++;
3350 }
3351
3352 if (!best_fit)
3353 return false;
3354
3355 *function_ptr = best_fit;
3356 return true;
3357 }
3358
3359 /* If SYM at ADDR is within function table of UNIT, set FILENAME_PTR
3360 and LINENUMBER_PTR, and return TRUE. */
3361
3362 static bool
3363 lookup_symbol_in_function_table (struct comp_unit *unit,
3364 asymbol *sym,
3365 bfd_vma addr,
3366 const char **filename_ptr,
3367 unsigned int *linenumber_ptr)
3368 {
3369 struct funcinfo* each;
3370 struct funcinfo* best_fit = NULL;
3371 bfd_vma best_fit_len = (bfd_vma) -1;
3372 struct arange *arange;
3373 const char *name = bfd_asymbol_name (sym);
3374
3375 for (each = unit->function_table; each; each = each->prev_func)
3376 for (arange = &each->arange; arange; arange = arange->next)
3377 if (addr >= arange->low
3378 && addr < arange->high
3379 && arange->high - arange->low < best_fit_len
3380 && each->file
3381 && each->name
3382 && strstr (name, each->name) != NULL)
3383 {
3384 best_fit = each;
3385 best_fit_len = arange->high - arange->low;
3386 }
3387
3388 if (best_fit)
3389 {
3390 *filename_ptr = best_fit->file;
3391 *linenumber_ptr = best_fit->line;
3392 return true;
3393 }
3394
3395 return false;
3396 }
3397
3398 /* Variable table functions. */
3399
3400 /* If SYM is within variable table of UNIT, set FILENAME_PTR and
3401 LINENUMBER_PTR, and return TRUE. */
3402
3403 static bool
3404 lookup_symbol_in_variable_table (struct comp_unit *unit,
3405 asymbol *sym,
3406 bfd_vma addr,
3407 const char **filename_ptr,
3408 unsigned int *linenumber_ptr)
3409 {
3410 struct varinfo* each;
3411 const char *name = bfd_asymbol_name (sym);
3412
3413 for (each = unit->variable_table; each; each = each->prev_var)
3414 if (each->addr == addr
3415 && !each->stack
3416 && each->file != NULL
3417 && each->name != NULL
3418 && strstr (name, each->name) != NULL)
3419 break;
3420
3421 if (each)
3422 {
3423 *filename_ptr = each->file;
3424 *linenumber_ptr = each->line;
3425 return true;
3426 }
3427
3428 return false;
3429 }
3430
3431 static struct comp_unit *stash_comp_unit (struct dwarf2_debug *,
3432 struct dwarf2_debug_file *);
3433 static bool comp_unit_maybe_decode_line_info (struct comp_unit *);
3434
3435 static bool
3436 find_abstract_instance (struct comp_unit *unit,
3437 struct attribute *attr_ptr,
3438 unsigned int recur_count,
3439 const char **pname,
3440 bool *is_linkage,
3441 char **filename_ptr,
3442 int *linenumber_ptr)
3443 {
3444 bfd *abfd = unit->abfd;
3445 bfd_byte *info_ptr = NULL;
3446 bfd_byte *info_ptr_end;
3447 unsigned int abbrev_number, i;
3448 struct abbrev_info *abbrev;
3449 uint64_t die_ref = attr_ptr->u.val;
3450 struct attribute attr;
3451 const char *name = NULL;
3452
3453 if (recur_count == 100)
3454 {
3455 _bfd_error_handler
3456 (_("DWARF error: abstract instance recursion detected"));
3457 bfd_set_error (bfd_error_bad_value);
3458 return false;
3459 }
3460
3461 /* DW_FORM_ref_addr can reference an entry in a different CU. It
3462 is an offset from the .debug_info section, not the current CU. */
3463 if (attr_ptr->form == DW_FORM_ref_addr)
3464 {
3465 /* We only support DW_FORM_ref_addr within the same file, so
3466 any relocations should be resolved already. Check this by
3467 testing for a zero die_ref; There can't be a valid reference
3468 to the header of a .debug_info section.
3469 DW_FORM_ref_addr is an offset relative to .debug_info.
3470 Normally when using the GNU linker this is accomplished by
3471 emitting a symbolic reference to a label, because .debug_info
3472 sections are linked at zero. When there are multiple section
3473 groups containing .debug_info, as there might be in a
3474 relocatable object file, it would be reasonable to assume that
3475 a symbolic reference to a label in any .debug_info section
3476 might be used. Since we lay out multiple .debug_info
3477 sections at non-zero VMAs (see place_sections), and read
3478 them contiguously into dwarf_info_buffer, that means the
3479 reference is relative to dwarf_info_buffer. */
3480 size_t total;
3481
3482 info_ptr = unit->file->dwarf_info_buffer;
3483 info_ptr_end = info_ptr + unit->file->dwarf_info_size;
3484 total = info_ptr_end - info_ptr;
3485 if (!die_ref)
3486 return true;
3487 else if (die_ref >= total)
3488 {
3489 _bfd_error_handler
3490 (_("DWARF error: invalid abstract instance DIE ref"));
3491 bfd_set_error (bfd_error_bad_value);
3492 return false;
3493 }
3494 info_ptr += die_ref;
3495 }
3496 else if (attr_ptr->form == DW_FORM_GNU_ref_alt)
3497 {
3498 bool first_time = unit->stash->alt.dwarf_info_buffer == NULL;
3499
3500 info_ptr = read_alt_indirect_ref (unit, die_ref);
3501 if (first_time)
3502 unit->stash->alt.info_ptr = unit->stash->alt.dwarf_info_buffer;
3503 if (info_ptr == NULL)
3504 {
3505 _bfd_error_handler
3506 (_("DWARF error: unable to read alt ref %" PRIu64),
3507 (uint64_t) die_ref);
3508 bfd_set_error (bfd_error_bad_value);
3509 return false;
3510 }
3511 info_ptr_end = (unit->stash->alt.dwarf_info_buffer
3512 + unit->stash->alt.dwarf_info_size);
3513 if (unit->stash->alt.all_comp_units)
3514 unit = unit->stash->alt.all_comp_units;
3515 }
3516
3517 if (attr_ptr->form == DW_FORM_ref_addr
3518 || attr_ptr->form == DW_FORM_GNU_ref_alt)
3519 {
3520 /* Now find the CU containing this pointer. */
3521 if (info_ptr >= unit->info_ptr_unit && info_ptr < unit->end_ptr)
3522 info_ptr_end = unit->end_ptr;
3523 else
3524 {
3525 /* Check other CUs to see if they contain the abbrev. */
3526 struct comp_unit *u = NULL;
3527 struct addr_range range = { info_ptr, info_ptr };
3528 splay_tree_node v = splay_tree_lookup (unit->file->comp_unit_tree,
3529 (splay_tree_key)&range);
3530 if (v != NULL)
3531 u = (struct comp_unit *)v->value;
3532
3533 if (attr_ptr->form == DW_FORM_ref_addr)
3534 while (u == NULL)
3535 {
3536 u = stash_comp_unit (unit->stash, &unit->stash->f);
3537 if (u == NULL)
3538 break;
3539 if (info_ptr >= u->info_ptr_unit && info_ptr < u->end_ptr)
3540 break;
3541 u = NULL;
3542 }
3543
3544 if (attr_ptr->form == DW_FORM_GNU_ref_alt)
3545 while (u == NULL)
3546 {
3547 u = stash_comp_unit (unit->stash, &unit->stash->alt);
3548 if (u == NULL)
3549 break;
3550 if (info_ptr >= u->info_ptr_unit && info_ptr < u->end_ptr)
3551 break;
3552 u = NULL;
3553 }
3554
3555 if (u == NULL)
3556 {
3557 _bfd_error_handler
3558 (_("DWARF error: unable to locate abstract instance DIE ref %"
3559 PRIu64), (uint64_t) die_ref);
3560 bfd_set_error (bfd_error_bad_value);
3561 return false;
3562 }
3563 unit = u;
3564 info_ptr_end = unit->end_ptr;
3565 }
3566 }
3567 else
3568 {
3569 /* DW_FORM_ref1, DW_FORM_ref2, DW_FORM_ref4, DW_FORM_ref8 or
3570 DW_FORM_ref_udata. These are all references relative to the
3571 start of the current CU. */
3572 size_t total;
3573
3574 info_ptr = unit->info_ptr_unit;
3575 info_ptr_end = unit->end_ptr;
3576 total = info_ptr_end - info_ptr;
3577 if (!die_ref || die_ref >= total)
3578 {
3579 _bfd_error_handler
3580 (_("DWARF error: invalid abstract instance DIE ref"));
3581 bfd_set_error (bfd_error_bad_value);
3582 return false;
3583 }
3584 info_ptr += die_ref;
3585 }
3586
3587 abbrev_number = _bfd_safe_read_leb128 (abfd, &info_ptr,
3588 false, info_ptr_end);
3589 if (abbrev_number)
3590 {
3591 abbrev = lookup_abbrev (abbrev_number, unit->abbrevs);
3592 if (! abbrev)
3593 {
3594 _bfd_error_handler
3595 (_("DWARF error: could not find abbrev number %u"), abbrev_number);
3596 bfd_set_error (bfd_error_bad_value);
3597 return false;
3598 }
3599 else
3600 {
3601 for (i = 0; i < abbrev->num_attrs; ++i)
3602 {
3603 info_ptr = read_attribute (&attr, &abbrev->attrs[i], unit,
3604 info_ptr, info_ptr_end);
3605 if (info_ptr == NULL)
3606 break;
3607 switch (attr.name)
3608 {
3609 case DW_AT_name:
3610 /* Prefer DW_AT_MIPS_linkage_name or DW_AT_linkage_name
3611 over DW_AT_name. */
3612 if (name == NULL && is_str_form (&attr))
3613 {
3614 name = attr.u.str;
3615 if (mangle_style (unit->lang) == 0)
3616 *is_linkage = true;
3617 }
3618 break;
3619 case DW_AT_specification:
3620 if (is_int_form (&attr)
3621 && !find_abstract_instance (unit, &attr, recur_count + 1,
3622 &name, is_linkage,
3623 filename_ptr, linenumber_ptr))
3624 return false;
3625 break;
3626 case DW_AT_linkage_name:
3627 case DW_AT_MIPS_linkage_name:
3628 /* PR 16949: Corrupt debug info can place
3629 non-string forms into these attributes. */
3630 if (is_str_form (&attr))
3631 {
3632 name = attr.u.str;
3633 *is_linkage = true;
3634 }
3635 break;
3636 case DW_AT_decl_file:
3637 if (!comp_unit_maybe_decode_line_info (unit))
3638 return false;
3639 if (is_int_form (&attr))
3640 *filename_ptr = concat_filename (unit->line_table,
3641 attr.u.val);
3642 break;
3643 case DW_AT_decl_line:
3644 if (is_int_form (&attr))
3645 *linenumber_ptr = attr.u.val;
3646 break;
3647 default:
3648 break;
3649 }
3650 }
3651 }
3652 }
3653 *pname = name;
3654 return true;
3655 }
3656
3657 static bool
3658 read_ranges (struct comp_unit *unit, struct arange *arange,
3659 struct trie_node **trie_root, uint64_t offset)
3660 {
3661 bfd_byte *ranges_ptr;
3662 bfd_byte *ranges_end;
3663 bfd_vma base_address = unit->base_address;
3664
3665 if (! unit->file->dwarf_ranges_buffer)
3666 {
3667 if (! read_debug_ranges (unit))
3668 return false;
3669 }
3670
3671 if (offset > unit->file->dwarf_ranges_size)
3672 return false;
3673 ranges_ptr = unit->file->dwarf_ranges_buffer + offset;
3674 ranges_end = unit->file->dwarf_ranges_buffer + unit->file->dwarf_ranges_size;
3675
3676 for (;;)
3677 {
3678 bfd_vma low_pc;
3679 bfd_vma high_pc;
3680
3681 /* PR 17512: file: 62cada7d. */
3682 if (2u * unit->addr_size > (size_t) (ranges_end - ranges_ptr))
3683 return false;
3684
3685 low_pc = read_address (unit, &ranges_ptr, ranges_end);
3686 high_pc = read_address (unit, &ranges_ptr, ranges_end);
3687
3688 if (low_pc == 0 && high_pc == 0)
3689 break;
3690 if (low_pc == -1UL && high_pc != -1UL)
3691 base_address = high_pc;
3692 else
3693 {
3694 if (!arange_add (unit, arange, trie_root,
3695 base_address + low_pc, base_address + high_pc))
3696 return false;
3697 }
3698 }
3699 return true;
3700 }
3701
3702 static bool
3703 read_rnglists (struct comp_unit *unit, struct arange *arange,
3704 struct trie_node **trie_root, uint64_t offset)
3705 {
3706 bfd_byte *rngs_ptr;
3707 bfd_byte *rngs_end;
3708 bfd_vma base_address = unit->base_address;
3709 bfd_vma low_pc;
3710 bfd_vma high_pc;
3711 bfd *abfd = unit->abfd;
3712
3713 if (! unit->file->dwarf_rnglists_buffer)
3714 {
3715 if (! read_debug_rnglists (unit))
3716 return false;
3717 }
3718
3719 rngs_ptr = unit->file->dwarf_rnglists_buffer + offset;
3720 if (rngs_ptr < unit->file->dwarf_rnglists_buffer)
3721 return false;
3722 rngs_end = unit->file->dwarf_rnglists_buffer;
3723 rngs_end += unit->file->dwarf_rnglists_size;
3724
3725 for (;;)
3726 {
3727 enum dwarf_range_list_entry rlet;
3728
3729 if (rngs_ptr >= rngs_end)
3730 return false;
3731
3732 rlet = read_1_byte (abfd, &rngs_ptr, rngs_end);
3733
3734 switch (rlet)
3735 {
3736 case DW_RLE_end_of_list:
3737 return true;
3738
3739 case DW_RLE_base_address:
3740 if (unit->addr_size > (size_t) (rngs_end - rngs_ptr))
3741 return false;
3742 base_address = read_address (unit, &rngs_ptr, rngs_end);
3743 continue;
3744
3745 case DW_RLE_start_length:
3746 if (unit->addr_size > (size_t) (rngs_end - rngs_ptr))
3747 return false;
3748 low_pc = read_address (unit, &rngs_ptr, rngs_end);
3749 high_pc = low_pc;
3750 high_pc += _bfd_safe_read_leb128 (abfd, &rngs_ptr,
3751 false, rngs_end);
3752 break;
3753
3754 case DW_RLE_offset_pair:
3755 low_pc = base_address;
3756 low_pc += _bfd_safe_read_leb128 (abfd, &rngs_ptr,
3757 false, rngs_end);
3758 high_pc = base_address;
3759 high_pc += _bfd_safe_read_leb128 (abfd, &rngs_ptr,
3760 false, rngs_end);
3761 break;
3762
3763 case DW_RLE_start_end:
3764 if (2u * unit->addr_size > (size_t) (rngs_end - rngs_ptr))
3765 return false;
3766 low_pc = read_address (unit, &rngs_ptr, rngs_end);
3767 high_pc = read_address (unit, &rngs_ptr, rngs_end);
3768 break;
3769
3770 /* TODO x-variants need .debug_addr support used for split-dwarf. */
3771 case DW_RLE_base_addressx:
3772 case DW_RLE_startx_endx:
3773 case DW_RLE_startx_length:
3774 default:
3775 return false;
3776 }
3777
3778 if (!arange_add (unit, arange, trie_root, low_pc, high_pc))
3779 return false;
3780 }
3781 }
3782
3783 static bool
3784 read_rangelist (struct comp_unit *unit, struct arange *arange,
3785 struct trie_node **trie_root, uint64_t offset)
3786 {
3787 if (unit->version <= 4)
3788 return read_ranges (unit, arange, trie_root, offset);
3789 else
3790 return read_rnglists (unit, arange, trie_root, offset);
3791 }
3792
3793 static struct funcinfo *
3794 lookup_func_by_offset (uint64_t offset, struct funcinfo * table)
3795 {
3796 for (; table != NULL; table = table->prev_func)
3797 if (table->unit_offset == offset)
3798 return table;
3799 return NULL;
3800 }
3801
3802 static struct varinfo *
3803 lookup_var_by_offset (uint64_t offset, struct varinfo * table)
3804 {
3805 while (table)
3806 {
3807 if (table->unit_offset == offset)
3808 return table;
3809 table = table->prev_var;
3810 }
3811
3812 return NULL;
3813 }
3814
3815
3816 /* DWARF2 Compilation unit functions. */
3817
3818 static struct funcinfo *
3819 reverse_funcinfo_list (struct funcinfo *head)
3820 {
3821 struct funcinfo *rhead;
3822 struct funcinfo *temp;
3823
3824 for (rhead = NULL; head; head = temp)
3825 {
3826 temp = head->prev_func;
3827 head->prev_func = rhead;
3828 rhead = head;
3829 }
3830 return rhead;
3831 }
3832
3833 static struct varinfo *
3834 reverse_varinfo_list (struct varinfo *head)
3835 {
3836 struct varinfo *rhead;
3837 struct varinfo *temp;
3838
3839 for (rhead = NULL; head; head = temp)
3840 {
3841 temp = head->prev_var;
3842 head->prev_var = rhead;
3843 rhead = head;
3844 }
3845 return rhead;
3846 }
3847
3848 /* Scan over each die in a comp. unit looking for functions to add
3849 to the function table and variables to the variable table. */
3850
3851 static bool
3852 scan_unit_for_symbols (struct comp_unit *unit)
3853 {
3854 bfd *abfd = unit->abfd;
3855 bfd_byte *info_ptr = unit->first_child_die_ptr;
3856 bfd_byte *info_ptr_end = unit->end_ptr;
3857 int nesting_level = 0;
3858 struct nest_funcinfo
3859 {
3860 struct funcinfo *func;
3861 } *nested_funcs;
3862 int nested_funcs_size;
3863 struct funcinfo *last_func;
3864 struct varinfo *last_var;
3865
3866 /* Maintain a stack of in-scope functions and inlined functions, which we
3867 can use to set the caller_func field. */
3868 nested_funcs_size = 32;
3869 nested_funcs = (struct nest_funcinfo *)
3870 bfd_malloc (nested_funcs_size * sizeof (*nested_funcs));
3871 if (nested_funcs == NULL)
3872 return false;
3873 nested_funcs[nesting_level].func = 0;
3874
3875 /* PR 27484: We must scan the DIEs twice. The first time we look for
3876 function and variable tags and accumulate them into their respective
3877 tables. The second time through we process the attributes of the
3878 functions/variables and augment the table entries. */
3879 while (nesting_level >= 0)
3880 {
3881 unsigned int abbrev_number, i;
3882 struct abbrev_info *abbrev;
3883 struct funcinfo *func;
3884 struct varinfo *var;
3885 uint64_t current_offset;
3886
3887 /* PR 17512: file: 9f405d9d. */
3888 if (info_ptr >= info_ptr_end)
3889 goto fail;
3890
3891 current_offset = info_ptr - unit->info_ptr_unit;
3892 abbrev_number = _bfd_safe_read_leb128 (abfd, &info_ptr,
3893 false, info_ptr_end);
3894 if (abbrev_number == 0)
3895 {
3896 nesting_level--;
3897 continue;
3898 }
3899
3900 abbrev = lookup_abbrev (abbrev_number, unit->abbrevs);
3901 if (! abbrev)
3902 {
3903 static unsigned int previous_failed_abbrev = -1U;
3904
3905 /* Avoid multiple reports of the same missing abbrev. */
3906 if (abbrev_number != previous_failed_abbrev)
3907 {
3908 _bfd_error_handler
3909 (_("DWARF error: could not find abbrev number %u"),
3910 abbrev_number);
3911 previous_failed_abbrev = abbrev_number;
3912 }
3913 bfd_set_error (bfd_error_bad_value);
3914 goto fail;
3915 }
3916
3917 if (abbrev->tag == DW_TAG_subprogram
3918 || abbrev->tag == DW_TAG_entry_point
3919 || abbrev->tag == DW_TAG_inlined_subroutine)
3920 {
3921 size_t amt = sizeof (struct funcinfo);
3922
3923 var = NULL;
3924 func = (struct funcinfo *) bfd_zalloc (abfd, amt);
3925 if (func == NULL)
3926 goto fail;
3927 func->tag = abbrev->tag;
3928 func->prev_func = unit->function_table;
3929 func->unit_offset = current_offset;
3930 unit->function_table = func;
3931 unit->number_of_functions++;
3932 BFD_ASSERT (!unit->cached);
3933
3934 if (func->tag == DW_TAG_inlined_subroutine)
3935 for (i = nesting_level; i-- != 0; )
3936 if (nested_funcs[i].func)
3937 {
3938 func->caller_func = nested_funcs[i].func;
3939 break;
3940 }
3941 nested_funcs[nesting_level].func = func;
3942 }
3943 else
3944 {
3945 func = NULL;
3946 if (abbrev->tag == DW_TAG_variable
3947 || abbrev->tag == DW_TAG_member)
3948 {
3949 size_t amt = sizeof (struct varinfo);
3950
3951 var = (struct varinfo *) bfd_zalloc (abfd, amt);
3952 if (var == NULL)
3953 goto fail;
3954 var->tag = abbrev->tag;
3955 var->stack = true;
3956 var->prev_var = unit->variable_table;
3957 unit->variable_table = var;
3958 var->unit_offset = current_offset;
3959 /* PR 18205: Missing debug information can cause this
3960 var to be attached to an already cached unit. */
3961 }
3962 else
3963 var = NULL;
3964
3965 /* No inline function in scope at this nesting level. */
3966 nested_funcs[nesting_level].func = 0;
3967 }
3968
3969 for (i = 0; i < abbrev->num_attrs; ++i)
3970 {
3971 struct attribute attr;
3972
3973 info_ptr = read_attribute (&attr, &abbrev->attrs[i],
3974 unit, info_ptr, info_ptr_end);
3975 if (info_ptr == NULL)
3976 goto fail;
3977 }
3978
3979 if (abbrev->has_children)
3980 {
3981 nesting_level++;
3982
3983 if (nesting_level >= nested_funcs_size)
3984 {
3985 struct nest_funcinfo *tmp;
3986
3987 nested_funcs_size *= 2;
3988 tmp = (struct nest_funcinfo *)
3989 bfd_realloc (nested_funcs,
3990 nested_funcs_size * sizeof (*nested_funcs));
3991 if (tmp == NULL)
3992 goto fail;
3993 nested_funcs = tmp;
3994 }
3995 nested_funcs[nesting_level].func = 0;
3996 }
3997 }
3998
3999 unit->function_table = reverse_funcinfo_list (unit->function_table);
4000 unit->variable_table = reverse_varinfo_list (unit->variable_table);
4001
4002 /* This is the second pass over the abbrevs. */
4003 info_ptr = unit->first_child_die_ptr;
4004 nesting_level = 0;
4005
4006 last_func = NULL;
4007 last_var = NULL;
4008
4009 while (nesting_level >= 0)
4010 {
4011 unsigned int abbrev_number, i;
4012 struct abbrev_info *abbrev;
4013 struct attribute attr;
4014 struct funcinfo *func;
4015 struct varinfo *var;
4016 bfd_vma low_pc = 0;
4017 bfd_vma high_pc = 0;
4018 bool high_pc_relative = false;
4019 uint64_t current_offset;
4020
4021 /* PR 17512: file: 9f405d9d. */
4022 if (info_ptr >= info_ptr_end)
4023 goto fail;
4024
4025 current_offset = info_ptr - unit->info_ptr_unit;
4026 abbrev_number = _bfd_safe_read_leb128 (abfd, &info_ptr,
4027 false, info_ptr_end);
4028 if (! abbrev_number)
4029 {
4030 nesting_level--;
4031 continue;
4032 }
4033
4034 abbrev = lookup_abbrev (abbrev_number, unit->abbrevs);
4035 /* This should have been handled above. */
4036 BFD_ASSERT (abbrev != NULL);
4037
4038 func = NULL;
4039 var = NULL;
4040 if (abbrev->tag == DW_TAG_subprogram
4041 || abbrev->tag == DW_TAG_entry_point
4042 || abbrev->tag == DW_TAG_inlined_subroutine)
4043 {
4044 if (last_func
4045 && last_func->prev_func
4046 && last_func->prev_func->unit_offset == current_offset)
4047 func = last_func->prev_func;
4048 else
4049 func = lookup_func_by_offset (current_offset, unit->function_table);
4050
4051 if (func == NULL)
4052 goto fail;
4053
4054 last_func = func;
4055 }
4056 else if (abbrev->tag == DW_TAG_variable
4057 || abbrev->tag == DW_TAG_member)
4058 {
4059 if (last_var
4060 && last_var->prev_var
4061 && last_var->prev_var->unit_offset == current_offset)
4062 var = last_var->prev_var;
4063 else
4064 var = lookup_var_by_offset (current_offset, unit->variable_table);
4065
4066 if (var == NULL)
4067 goto fail;
4068
4069 last_var = var;
4070 }
4071
4072 for (i = 0; i < abbrev->num_attrs; ++i)
4073 {
4074 info_ptr = read_attribute (&attr, &abbrev->attrs[i],
4075 unit, info_ptr, info_ptr_end);
4076 if (info_ptr == NULL)
4077 goto fail;
4078
4079 if (func)
4080 {
4081 switch (attr.name)
4082 {
4083 case DW_AT_call_file:
4084 if (is_int_form (&attr))
4085 func->caller_file = concat_filename (unit->line_table,
4086 attr.u.val);
4087 break;
4088
4089 case DW_AT_call_line:
4090 if (is_int_form (&attr))
4091 func->caller_line = attr.u.val;
4092 break;
4093
4094 case DW_AT_abstract_origin:
4095 case DW_AT_specification:
4096 if (is_int_form (&attr)
4097 && !find_abstract_instance (unit, &attr, 0,
4098 &func->name,
4099 &func->is_linkage,
4100 &func->file,
4101 &func->line))
4102 goto fail;
4103 break;
4104
4105 case DW_AT_name:
4106 /* Prefer DW_AT_MIPS_linkage_name or DW_AT_linkage_name
4107 over DW_AT_name. */
4108 if (func->name == NULL && is_str_form (&attr))
4109 {
4110 func->name = attr.u.str;
4111 if (mangle_style (unit->lang) == 0)
4112 func->is_linkage = true;
4113 }
4114 break;
4115
4116 case DW_AT_linkage_name:
4117 case DW_AT_MIPS_linkage_name:
4118 /* PR 16949: Corrupt debug info can place
4119 non-string forms into these attributes. */
4120 if (is_str_form (&attr))
4121 {
4122 func->name = attr.u.str;
4123 func->is_linkage = true;
4124 }
4125 break;
4126
4127 case DW_AT_low_pc:
4128 if (is_int_form (&attr))
4129 low_pc = attr.u.val;
4130 break;
4131
4132 case DW_AT_high_pc:
4133 if (is_int_form (&attr))
4134 {
4135 high_pc = attr.u.val;
4136 high_pc_relative = attr.form != DW_FORM_addr;
4137 }
4138 break;
4139
4140 case DW_AT_ranges:
4141 if (is_int_form (&attr)
4142 && !read_rangelist (unit, &func->arange,
4143 &unit->file->trie_root, attr.u.val))
4144 goto fail;
4145 break;
4146
4147 case DW_AT_decl_file:
4148 if (is_int_form (&attr))
4149 func->file = concat_filename (unit->line_table,
4150 attr.u.val);
4151 break;
4152
4153 case DW_AT_decl_line:
4154 if (is_int_form (&attr))
4155 func->line = attr.u.val;
4156 break;
4157
4158 default:
4159 break;
4160 }
4161 }
4162 else if (var)
4163 {
4164 switch (attr.name)
4165 {
4166 case DW_AT_specification:
4167 if (is_int_form (&attr) && attr.u.val)
4168 {
4169 bool is_linkage;
4170 if (!find_abstract_instance (unit, &attr, 0,
4171 &var->name,
4172 &is_linkage,
4173 &var->file,
4174 &var->line))
4175 {
4176 _bfd_error_handler (_("DWARF error: could not find "
4177 "variable specification "
4178 "at offset 0x%lx"),
4179 (unsigned long) attr.u.val);
4180 break;
4181 }
4182 }
4183 break;
4184
4185 case DW_AT_name:
4186 if (is_str_form (&attr))
4187 var->name = attr.u.str;
4188 break;
4189
4190 case DW_AT_decl_file:
4191 if (is_int_form (&attr))
4192 var->file = concat_filename (unit->line_table,
4193 attr.u.val);
4194 break;
4195
4196 case DW_AT_decl_line:
4197 if (is_int_form (&attr))
4198 var->line = attr.u.val;
4199 break;
4200
4201 case DW_AT_external:
4202 if (is_int_form (&attr) && attr.u.val != 0)
4203 var->stack = false;
4204 break;
4205
4206 case DW_AT_location:
4207 switch (attr.form)
4208 {
4209 case DW_FORM_block:
4210 case DW_FORM_block1:
4211 case DW_FORM_block2:
4212 case DW_FORM_block4:
4213 case DW_FORM_exprloc:
4214 if (attr.u.blk->data != NULL
4215 && *attr.u.blk->data == DW_OP_addr)
4216 {
4217 var->stack = false;
4218
4219 /* Verify that DW_OP_addr is the only opcode in the
4220 location, in which case the block size will be 1
4221 plus the address size. */
4222 /* ??? For TLS variables, gcc can emit
4223 DW_OP_addr <addr> DW_OP_GNU_push_tls_address
4224 which we don't handle here yet. */
4225 if (attr.u.blk->size == unit->addr_size + 1U)
4226 var->addr = bfd_get (unit->addr_size * 8,
4227 unit->abfd,
4228 attr.u.blk->data + 1);
4229 }
4230 break;
4231
4232 default:
4233 break;
4234 }
4235 break;
4236
4237 default:
4238 break;
4239 }
4240 }
4241 }
4242
4243 if (abbrev->has_children)
4244 nesting_level++;
4245
4246 if (high_pc_relative)
4247 high_pc += low_pc;
4248
4249 if (func && high_pc != 0)
4250 {
4251 if (!arange_add (unit, &func->arange, &unit->file->trie_root,
4252 low_pc, high_pc))
4253 goto fail;
4254 }
4255 }
4256
4257 unit->function_table = reverse_funcinfo_list (unit->function_table);
4258 unit->variable_table = reverse_varinfo_list (unit->variable_table);
4259
4260 free (nested_funcs);
4261 return true;
4262
4263 fail:
4264 free (nested_funcs);
4265 return false;
4266 }
4267
4268 /* Read the attributes of the form strx and addrx. */
4269
4270 static void
4271 reread_attribute (struct comp_unit *unit,
4272 struct attribute *attr,
4273 bfd_vma *low_pc,
4274 bfd_vma *high_pc,
4275 bool *high_pc_relative,
4276 bool compunit)
4277 {
4278 if (is_strx_form (attr->form))
4279 attr->u.str = (char *) read_indexed_string (attr->u.val, unit);
4280 if (is_addrx_form (attr->form))
4281 attr->u.val = read_indexed_address (attr->u.val, unit);
4282
4283 switch (attr->name)
4284 {
4285 case DW_AT_stmt_list:
4286 unit->stmtlist = 1;
4287 unit->line_offset = attr->u.val;
4288 break;
4289
4290 case DW_AT_name:
4291 if (is_str_form (attr))
4292 unit->name = attr->u.str;
4293 break;
4294
4295 case DW_AT_low_pc:
4296 *low_pc = attr->u.val;
4297 if (compunit)
4298 unit->base_address = *low_pc;
4299 break;
4300
4301 case DW_AT_high_pc:
4302 *high_pc = attr->u.val;
4303 *high_pc_relative = attr->form != DW_FORM_addr;
4304 break;
4305
4306 case DW_AT_ranges:
4307 if (!read_rangelist (unit, &unit->arange,
4308 &unit->file->trie_root, attr->u.val))
4309 return;
4310 break;
4311
4312 case DW_AT_comp_dir:
4313 {
4314 char *comp_dir = attr->u.str;
4315
4316 if (!is_str_form (attr))
4317 {
4318 _bfd_error_handler
4319 (_("DWARF error: DW_AT_comp_dir attribute encountered "
4320 "with a non-string form"));
4321 comp_dir = NULL;
4322 }
4323
4324 if (comp_dir)
4325 {
4326 char *cp = strchr (comp_dir, ':');
4327
4328 if (cp && cp != comp_dir && cp[-1] == '.' && cp[1] == '/')
4329 comp_dir = cp + 1;
4330 }
4331 unit->comp_dir = comp_dir;
4332 break;
4333 }
4334
4335 case DW_AT_language:
4336 unit->lang = attr->u.val;
4337 default:
4338 break;
4339 }
4340 }
4341
4342 /* Parse a DWARF2 compilation unit starting at INFO_PTR. UNIT_LENGTH
4343 includes the compilation unit header that proceeds the DIE's, but
4344 does not include the length field that precedes each compilation
4345 unit header. END_PTR points one past the end of this comp unit.
4346 OFFSET_SIZE is the size of DWARF2 offsets (either 4 or 8 bytes).
4347
4348 This routine does not read the whole compilation unit; only enough
4349 to get to the line number information for the compilation unit. */
4350
4351 static struct comp_unit *
4352 parse_comp_unit (struct dwarf2_debug *stash,
4353 struct dwarf2_debug_file *file,
4354 bfd_byte *info_ptr,
4355 bfd_vma unit_length,
4356 bfd_byte *info_ptr_unit,
4357 unsigned int offset_size)
4358 {
4359 struct comp_unit* unit;
4360 unsigned int version;
4361 uint64_t abbrev_offset = 0;
4362 /* Initialize it just to avoid a GCC false warning. */
4363 unsigned int addr_size = -1;
4364 struct abbrev_info** abbrevs;
4365 unsigned int abbrev_number, i;
4366 struct abbrev_info *abbrev;
4367 struct attribute attr;
4368 bfd_byte *end_ptr = info_ptr + unit_length;
4369 size_t amt;
4370 bfd_vma low_pc = 0;
4371 bfd_vma high_pc = 0;
4372 bfd *abfd = file->bfd_ptr;
4373 bool high_pc_relative = false;
4374 enum dwarf_unit_type unit_type;
4375 struct attribute *str_addrp = NULL;
4376 size_t str_count = 0;
4377 size_t str_alloc = 0;
4378 bool compunit_flag = false;
4379
4380 version = read_2_bytes (abfd, &info_ptr, end_ptr);
4381 if (version < 2 || version > 5)
4382 {
4383 /* PR 19872: A version number of 0 probably means that there is padding
4384 at the end of the .debug_info section. Gold puts it there when
4385 performing an incremental link, for example. So do not generate
4386 an error, just return a NULL. */
4387 if (version)
4388 {
4389 _bfd_error_handler
4390 (_("DWARF error: found dwarf version '%u', this reader"
4391 " only handles version 2, 3, 4 and 5 information"), version);
4392 bfd_set_error (bfd_error_bad_value);
4393 }
4394 return NULL;
4395 }
4396
4397 if (version < 5)
4398 unit_type = DW_UT_compile;
4399 else
4400 {
4401 unit_type = read_1_byte (abfd, &info_ptr, end_ptr);
4402 addr_size = read_1_byte (abfd, &info_ptr, end_ptr);
4403 }
4404
4405 BFD_ASSERT (offset_size == 4 || offset_size == 8);
4406 if (offset_size == 4)
4407 abbrev_offset = read_4_bytes (abfd, &info_ptr, end_ptr);
4408 else
4409 abbrev_offset = read_8_bytes (abfd, &info_ptr, end_ptr);
4410
4411 if (version < 5)
4412 addr_size = read_1_byte (abfd, &info_ptr, end_ptr);
4413
4414 if (unit_type == DW_UT_type)
4415 {
4416 /* Skip type signature. */
4417 info_ptr += 8;
4418
4419 /* Skip type offset. */
4420 info_ptr += offset_size;
4421 }
4422
4423 if (addr_size > sizeof (bfd_vma))
4424 {
4425 _bfd_error_handler
4426 /* xgettext: c-format */
4427 (_("DWARF error: found address size '%u', this reader"
4428 " can not handle sizes greater than '%u'"),
4429 addr_size,
4430 (unsigned int) sizeof (bfd_vma));
4431 bfd_set_error (bfd_error_bad_value);
4432 return NULL;
4433 }
4434
4435 if (addr_size != 2 && addr_size != 4 && addr_size != 8)
4436 {
4437 _bfd_error_handler
4438 ("DWARF error: found address size '%u', this reader"
4439 " can only handle address sizes '2', '4' and '8'", addr_size);
4440 bfd_set_error (bfd_error_bad_value);
4441 return NULL;
4442 }
4443
4444 /* Read the abbrevs for this compilation unit into a table. */
4445 abbrevs = read_abbrevs (abfd, abbrev_offset, stash, file);
4446 if (! abbrevs)
4447 return NULL;
4448
4449 abbrev_number = _bfd_safe_read_leb128 (abfd, &info_ptr,
4450 false, end_ptr);
4451 if (! abbrev_number)
4452 {
4453 /* PR 19872: An abbrev number of 0 probably means that there is padding
4454 at the end of the .debug_abbrev section. Gold puts it there when
4455 performing an incremental link, for example. So do not generate
4456 an error, just return a NULL. */
4457 return NULL;
4458 }
4459
4460 abbrev = lookup_abbrev (abbrev_number, abbrevs);
4461 if (! abbrev)
4462 {
4463 _bfd_error_handler (_("DWARF error: could not find abbrev number %u"),
4464 abbrev_number);
4465 bfd_set_error (bfd_error_bad_value);
4466 return NULL;
4467 }
4468
4469 amt = sizeof (struct comp_unit);
4470 unit = (struct comp_unit *) bfd_zalloc (abfd, amt);
4471 if (unit == NULL)
4472 return NULL;
4473 unit->abfd = abfd;
4474 unit->version = version;
4475 unit->addr_size = addr_size;
4476 unit->offset_size = offset_size;
4477 unit->abbrevs = abbrevs;
4478 unit->end_ptr = end_ptr;
4479 unit->stash = stash;
4480 unit->file = file;
4481 unit->info_ptr_unit = info_ptr_unit;
4482
4483 if (abbrev->tag == DW_TAG_compile_unit)
4484 compunit_flag = true;
4485
4486 for (i = 0; i < abbrev->num_attrs; ++i)
4487 {
4488 info_ptr = read_attribute (&attr, &abbrev->attrs[i], unit, info_ptr, end_ptr);
4489 if (info_ptr == NULL)
4490 goto err_exit;
4491
4492 /* Identify attributes of the form strx* and addrx* which come before
4493 DW_AT_str_offsets_base and DW_AT_addr_base respectively in the CU.
4494 Store the attributes in an array and process them later. */
4495 if ((unit->dwarf_str_offset == 0 && is_strx_form (attr.form))
4496 || (unit->dwarf_addr_offset == 0 && is_addrx_form (attr.form)))
4497 {
4498 if (str_count <= str_alloc)
4499 {
4500 str_alloc = 2 * str_alloc + 200;
4501 str_addrp = bfd_realloc (str_addrp,
4502 str_alloc * sizeof (*str_addrp));
4503 if (str_addrp == NULL)
4504 goto err_exit;
4505 }
4506 str_addrp[str_count] = attr;
4507 str_count++;
4508 continue;
4509 }
4510
4511 /* Store the data if it is of an attribute we want to keep in a
4512 partial symbol table. */
4513 switch (attr.name)
4514 {
4515 case DW_AT_stmt_list:
4516 if (is_int_form (&attr))
4517 {
4518 unit->stmtlist = 1;
4519 unit->line_offset = attr.u.val;
4520 }
4521 break;
4522
4523 case DW_AT_name:
4524 if (is_str_form (&attr))
4525 unit->name = attr.u.str;
4526 break;
4527
4528 case DW_AT_low_pc:
4529 if (is_int_form (&attr))
4530 {
4531 low_pc = attr.u.val;
4532 /* If the compilation unit DIE has a DW_AT_low_pc attribute,
4533 this is the base address to use when reading location
4534 lists or range lists. */
4535 if (compunit_flag)
4536 unit->base_address = low_pc;
4537 }
4538 break;
4539
4540 case DW_AT_high_pc:
4541 if (is_int_form (&attr))
4542 {
4543 high_pc = attr.u.val;
4544 high_pc_relative = attr.form != DW_FORM_addr;
4545 }
4546 break;
4547
4548 case DW_AT_ranges:
4549 if (is_int_form (&attr)
4550 && !read_rangelist (unit, &unit->arange,
4551 &unit->file->trie_root, attr.u.val))
4552 goto err_exit;
4553 break;
4554
4555 case DW_AT_comp_dir:
4556 {
4557 char *comp_dir = attr.u.str;
4558
4559 /* PR 17512: file: 1fe726be. */
4560 if (!is_str_form (&attr))
4561 {
4562 _bfd_error_handler
4563 (_("DWARF error: DW_AT_comp_dir attribute encountered with a non-string form"));
4564 comp_dir = NULL;
4565 }
4566
4567 if (comp_dir)
4568 {
4569 /* Irix 6.2 native cc prepends <machine>.: to the compilation
4570 directory, get rid of it. */
4571 char *cp = strchr (comp_dir, ':');
4572
4573 if (cp && cp != comp_dir && cp[-1] == '.' && cp[1] == '/')
4574 comp_dir = cp + 1;
4575 }
4576 unit->comp_dir = comp_dir;
4577 break;
4578 }
4579
4580 case DW_AT_language:
4581 if (is_int_form (&attr))
4582 unit->lang = attr.u.val;
4583 break;
4584
4585 case DW_AT_addr_base:
4586 unit->dwarf_addr_offset = attr.u.val;
4587 break;
4588
4589 case DW_AT_str_offsets_base:
4590 unit->dwarf_str_offset = attr.u.val;
4591 break;
4592
4593 default:
4594 break;
4595 }
4596 }
4597
4598 for (i = 0; i < str_count; ++i)
4599 reread_attribute (unit, &str_addrp[i], &low_pc, &high_pc,
4600 &high_pc_relative, compunit_flag);
4601
4602 if (high_pc_relative)
4603 high_pc += low_pc;
4604 if (high_pc != 0)
4605 {
4606 if (!arange_add (unit, &unit->arange, &unit->file->trie_root,
4607 low_pc, high_pc))
4608 goto err_exit;
4609 }
4610
4611 unit->first_child_die_ptr = info_ptr;
4612
4613 free (str_addrp);
4614 return unit;
4615
4616 err_exit:
4617 unit->error = 1;
4618 free (str_addrp);
4619 return NULL;
4620 }
4621
4622 /* Return TRUE if UNIT may contain the address given by ADDR. When
4623 there are functions written entirely with inline asm statements, the
4624 range info in the compilation unit header may not be correct. We
4625 need to consult the line info table to see if a compilation unit
4626 really contains the given address. */
4627
4628 static bool
4629 comp_unit_contains_address (struct comp_unit *unit, bfd_vma addr)
4630 {
4631 struct arange *arange;
4632
4633 if (unit->error)
4634 return false;
4635
4636 arange = &unit->arange;
4637 do
4638 {
4639 if (addr >= arange->low && addr < arange->high)
4640 return true;
4641 arange = arange->next;
4642 }
4643 while (arange);
4644
4645 return false;
4646 }
4647
4648 /* If UNIT contains ADDR, set the output parameters to the values for
4649 the line containing ADDR and return TRUE. Otherwise return FALSE.
4650 The output parameters, FILENAME_PTR, FUNCTION_PTR, and
4651 LINENUMBER_PTR, are pointers to the objects to be filled in. */
4652
4653 static bool
4654 comp_unit_find_nearest_line (struct comp_unit *unit,
4655 bfd_vma addr,
4656 const char **filename_ptr,
4657 struct funcinfo **function_ptr,
4658 unsigned int *linenumber_ptr,
4659 unsigned int *discriminator_ptr)
4660 {
4661 bool line_p, func_p;
4662
4663 if (!comp_unit_maybe_decode_line_info (unit))
4664 return false;
4665
4666 *function_ptr = NULL;
4667 func_p = lookup_address_in_function_table (unit, addr, function_ptr);
4668 if (func_p && (*function_ptr)->tag == DW_TAG_inlined_subroutine)
4669 unit->stash->inliner_chain = *function_ptr;
4670
4671 line_p = lookup_address_in_line_info_table (unit->line_table, addr,
4672 filename_ptr,
4673 linenumber_ptr,
4674 discriminator_ptr);
4675 return line_p || func_p;
4676 }
4677
4678 /* Check to see if line info is already decoded in a comp_unit.
4679 If not, decode it. Returns TRUE if no errors were encountered;
4680 FALSE otherwise. */
4681
4682 static bool
4683 comp_unit_maybe_decode_line_info (struct comp_unit *unit)
4684 {
4685 if (unit->error)
4686 return false;
4687
4688 if (! unit->line_table)
4689 {
4690 if (! unit->stmtlist)
4691 {
4692 unit->error = 1;
4693 return false;
4694 }
4695
4696 unit->line_table = decode_line_info (unit);
4697
4698 if (! unit->line_table)
4699 {
4700 unit->error = 1;
4701 return false;
4702 }
4703
4704 if (unit->first_child_die_ptr < unit->end_ptr
4705 && ! scan_unit_for_symbols (unit))
4706 {
4707 unit->error = 1;
4708 return false;
4709 }
4710 }
4711
4712 return true;
4713 }
4714
4715 /* If UNIT contains SYM at ADDR, set the output parameters to the
4716 values for the line containing SYM. The output parameters,
4717 FILENAME_PTR, and LINENUMBER_PTR, are pointers to the objects to be
4718 filled in.
4719
4720 Return TRUE if UNIT contains SYM, and no errors were encountered;
4721 FALSE otherwise. */
4722
4723 static bool
4724 comp_unit_find_line (struct comp_unit *unit,
4725 asymbol *sym,
4726 bfd_vma addr,
4727 const char **filename_ptr,
4728 unsigned int *linenumber_ptr)
4729 {
4730 if (!comp_unit_maybe_decode_line_info (unit))
4731 return false;
4732
4733 if (sym->flags & BSF_FUNCTION)
4734 return lookup_symbol_in_function_table (unit, sym, addr,
4735 filename_ptr,
4736 linenumber_ptr);
4737
4738 return lookup_symbol_in_variable_table (unit, sym, addr,
4739 filename_ptr,
4740 linenumber_ptr);
4741 }
4742
4743 /* Extract all interesting funcinfos and varinfos of a compilation
4744 unit into hash tables for faster lookup. Returns TRUE if no
4745 errors were enountered; FALSE otherwise. */
4746
4747 static bool
4748 comp_unit_hash_info (struct dwarf2_debug *stash,
4749 struct comp_unit *unit,
4750 struct info_hash_table *funcinfo_hash_table,
4751 struct info_hash_table *varinfo_hash_table)
4752 {
4753 struct funcinfo* each_func;
4754 struct varinfo* each_var;
4755 bool okay = true;
4756
4757 BFD_ASSERT (stash->info_hash_status != STASH_INFO_HASH_DISABLED);
4758
4759 if (!comp_unit_maybe_decode_line_info (unit))
4760 return false;
4761
4762 BFD_ASSERT (!unit->cached);
4763
4764 /* To preserve the original search order, we went to visit the function
4765 infos in the reversed order of the list. However, making the list
4766 bi-directional use quite a bit of extra memory. So we reverse
4767 the list first, traverse the list in the now reversed order and
4768 finally reverse the list again to get back the original order. */
4769 unit->function_table = reverse_funcinfo_list (unit->function_table);
4770 for (each_func = unit->function_table;
4771 each_func && okay;
4772 each_func = each_func->prev_func)
4773 {
4774 /* Skip nameless functions. */
4775 if (each_func->name)
4776 /* There is no need to copy name string into hash table as
4777 name string is either in the dwarf string buffer or
4778 info in the stash. */
4779 okay = insert_info_hash_table (funcinfo_hash_table, each_func->name,
4780 (void*) each_func, false);
4781 }
4782 unit->function_table = reverse_funcinfo_list (unit->function_table);
4783 if (!okay)
4784 return false;
4785
4786 /* We do the same for variable infos. */
4787 unit->variable_table = reverse_varinfo_list (unit->variable_table);
4788 for (each_var = unit->variable_table;
4789 each_var && okay;
4790 each_var = each_var->prev_var)
4791 {
4792 /* Skip stack vars and vars with no files or names. */
4793 if (! each_var->stack
4794 && each_var->file != NULL
4795 && each_var->name != NULL)
4796 /* There is no need to copy name string into hash table as
4797 name string is either in the dwarf string buffer or
4798 info in the stash. */
4799 okay = insert_info_hash_table (varinfo_hash_table, each_var->name,
4800 (void*) each_var, false);
4801 }
4802
4803 unit->variable_table = reverse_varinfo_list (unit->variable_table);
4804 unit->cached = true;
4805 return okay;
4806 }
4807
4808 /* Locate a section in a BFD containing debugging info. The search starts
4809 from the section after AFTER_SEC, or from the first section in the BFD if
4810 AFTER_SEC is NULL. The search works by examining the names of the
4811 sections. There are three permissiable names. The first two are given
4812 by DEBUG_SECTIONS[debug_info] (whose standard DWARF2 names are .debug_info
4813 and .zdebug_info). The third is a prefix .gnu.linkonce.wi.
4814 This is a variation on the .debug_info section which has a checksum
4815 describing the contents appended onto the name. This allows the linker to
4816 identify and discard duplicate debugging sections for different
4817 compilation units. */
4818 #define GNU_LINKONCE_INFO ".gnu.linkonce.wi."
4819
4820 static asection *
4821 find_debug_info (bfd *abfd, const struct dwarf_debug_section *debug_sections,
4822 asection *after_sec)
4823 {
4824 asection *msec;
4825 const char *look;
4826
4827 if (after_sec == NULL)
4828 {
4829 look = debug_sections[debug_info].uncompressed_name;
4830 msec = bfd_get_section_by_name (abfd, look);
4831 if (msec != NULL)
4832 return msec;
4833
4834 look = debug_sections[debug_info].compressed_name;
4835 msec = bfd_get_section_by_name (abfd, look);
4836 if (msec != NULL)
4837 return msec;
4838
4839 for (msec = abfd->sections; msec != NULL; msec = msec->next)
4840 if (startswith (msec->name, GNU_LINKONCE_INFO))
4841 return msec;
4842
4843 return NULL;
4844 }
4845
4846 for (msec = after_sec->next; msec != NULL; msec = msec->next)
4847 {
4848 look = debug_sections[debug_info].uncompressed_name;
4849 if (strcmp (msec->name, look) == 0)
4850 return msec;
4851
4852 look = debug_sections[debug_info].compressed_name;
4853 if (look != NULL && strcmp (msec->name, look) == 0)
4854 return msec;
4855
4856 if (startswith (msec->name, GNU_LINKONCE_INFO))
4857 return msec;
4858 }
4859
4860 return NULL;
4861 }
4862
4863 /* Transfer VMAs from object file to separate debug file. */
4864
4865 static void
4866 set_debug_vma (bfd *orig_bfd, bfd *debug_bfd)
4867 {
4868 asection *s, *d;
4869
4870 for (s = orig_bfd->sections, d = debug_bfd->sections;
4871 s != NULL && d != NULL;
4872 s = s->next, d = d->next)
4873 {
4874 if ((d->flags & SEC_DEBUGGING) != 0)
4875 break;
4876 /* ??? Assumes 1-1 correspondence between sections in the
4877 two files. */
4878 if (strcmp (s->name, d->name) == 0)
4879 {
4880 d->output_section = s->output_section;
4881 d->output_offset = s->output_offset;
4882 d->vma = s->vma;
4883 }
4884 }
4885 }
4886
4887 /* If the dwarf2 info was found in a separate debug file, return the
4888 debug file section corresponding to the section in the original file
4889 and the debug file symbols. */
4890
4891 static void
4892 _bfd_dwarf2_stash_syms (struct dwarf2_debug *stash, bfd *abfd,
4893 asection **sec, asymbol ***syms)
4894 {
4895 if (stash->f.bfd_ptr != abfd)
4896 {
4897 asection *s, *d;
4898
4899 if (*sec == NULL)
4900 {
4901 *syms = stash->f.syms;
4902 return;
4903 }
4904
4905 for (s = abfd->sections, d = stash->f.bfd_ptr->sections;
4906 s != NULL && d != NULL;
4907 s = s->next, d = d->next)
4908 {
4909 if ((d->flags & SEC_DEBUGGING) != 0)
4910 break;
4911 if (s == *sec
4912 && strcmp (s->name, d->name) == 0)
4913 {
4914 *sec = d;
4915 *syms = stash->f.syms;
4916 break;
4917 }
4918 }
4919 }
4920 }
4921
4922 /* Unset vmas for adjusted sections in STASH. */
4923
4924 static void
4925 unset_sections (struct dwarf2_debug *stash)
4926 {
4927 int i;
4928 struct adjusted_section *p;
4929
4930 i = stash->adjusted_section_count;
4931 p = stash->adjusted_sections;
4932 for (; i > 0; i--, p++)
4933 p->section->vma = 0;
4934 }
4935
4936 /* Set VMAs for allocated and .debug_info sections in ORIG_BFD, a
4937 relocatable object file. VMAs are normally all zero in relocatable
4938 object files, so if we want to distinguish locations in sections by
4939 address we need to set VMAs so the sections do not overlap. We
4940 also set VMA on .debug_info so that when we have multiple
4941 .debug_info sections (or the linkonce variant) they also do not
4942 overlap. The multiple .debug_info sections make up a single
4943 logical section. ??? We should probably do the same for other
4944 debug sections. */
4945
4946 static bool
4947 place_sections (bfd *orig_bfd, struct dwarf2_debug *stash)
4948 {
4949 bfd *abfd;
4950 struct adjusted_section *p;
4951 int i;
4952 const char *debug_info_name;
4953
4954 if (stash->adjusted_section_count != 0)
4955 {
4956 i = stash->adjusted_section_count;
4957 p = stash->adjusted_sections;
4958 for (; i > 0; i--, p++)
4959 p->section->vma = p->adj_vma;
4960 return true;
4961 }
4962
4963 debug_info_name = stash->debug_sections[debug_info].uncompressed_name;
4964 i = 0;
4965 abfd = orig_bfd;
4966 while (1)
4967 {
4968 asection *sect;
4969
4970 for (sect = abfd->sections; sect != NULL; sect = sect->next)
4971 {
4972 int is_debug_info;
4973
4974 if ((sect->output_section != NULL
4975 && sect->output_section != sect
4976 && (sect->flags & SEC_DEBUGGING) == 0)
4977 || sect->vma != 0)
4978 continue;
4979
4980 is_debug_info = (strcmp (sect->name, debug_info_name) == 0
4981 || startswith (sect->name, GNU_LINKONCE_INFO));
4982
4983 if (!((sect->flags & SEC_ALLOC) != 0 && abfd == orig_bfd)
4984 && !is_debug_info)
4985 continue;
4986
4987 i++;
4988 }
4989 if (abfd == stash->f.bfd_ptr)
4990 break;
4991 abfd = stash->f.bfd_ptr;
4992 }
4993
4994 if (i <= 1)
4995 stash->adjusted_section_count = -1;
4996 else
4997 {
4998 bfd_vma last_vma = 0, last_dwarf = 0;
4999 size_t amt = i * sizeof (struct adjusted_section);
5000
5001 p = (struct adjusted_section *) bfd_malloc (amt);
5002 if (p == NULL)
5003 return false;
5004
5005 stash->adjusted_sections = p;
5006 stash->adjusted_section_count = i;
5007
5008 abfd = orig_bfd;
5009 while (1)
5010 {
5011 asection *sect;
5012
5013 for (sect = abfd->sections; sect != NULL; sect = sect->next)
5014 {
5015 bfd_size_type sz;
5016 int is_debug_info;
5017
5018 if ((sect->output_section != NULL
5019 && sect->output_section != sect
5020 && (sect->flags & SEC_DEBUGGING) == 0)
5021 || sect->vma != 0)
5022 continue;
5023
5024 is_debug_info = (strcmp (sect->name, debug_info_name) == 0
5025 || startswith (sect->name, GNU_LINKONCE_INFO));
5026
5027 if (!((sect->flags & SEC_ALLOC) != 0 && abfd == orig_bfd)
5028 && !is_debug_info)
5029 continue;
5030
5031 sz = sect->rawsize ? sect->rawsize : sect->size;
5032
5033 if (is_debug_info)
5034 {
5035 BFD_ASSERT (sect->alignment_power == 0);
5036 sect->vma = last_dwarf;
5037 last_dwarf += sz;
5038 }
5039 else
5040 {
5041 /* Align the new address to the current section
5042 alignment. */
5043 last_vma = ((last_vma
5044 + ~(-((bfd_vma) 1 << sect->alignment_power)))
5045 & (-((bfd_vma) 1 << sect->alignment_power)));
5046 sect->vma = last_vma;
5047 last_vma += sz;
5048 }
5049
5050 p->section = sect;
5051 p->adj_vma = sect->vma;
5052 p++;
5053 }
5054 if (abfd == stash->f.bfd_ptr)
5055 break;
5056 abfd = stash->f.bfd_ptr;
5057 }
5058 }
5059
5060 if (orig_bfd != stash->f.bfd_ptr)
5061 set_debug_vma (orig_bfd, stash->f.bfd_ptr);
5062
5063 return true;
5064 }
5065
5066 /* Look up a funcinfo by name using the given info hash table. If found,
5067 also update the locations pointed to by filename_ptr and linenumber_ptr.
5068
5069 This function returns TRUE if a funcinfo that matches the given symbol
5070 and address is found with any error; otherwise it returns FALSE. */
5071
5072 static bool
5073 info_hash_lookup_funcinfo (struct info_hash_table *hash_table,
5074 asymbol *sym,
5075 bfd_vma addr,
5076 const char **filename_ptr,
5077 unsigned int *linenumber_ptr)
5078 {
5079 struct funcinfo* each_func;
5080 struct funcinfo* best_fit = NULL;
5081 bfd_vma best_fit_len = (bfd_vma) -1;
5082 struct info_list_node *node;
5083 struct arange *arange;
5084 const char *name = bfd_asymbol_name (sym);
5085
5086 for (node = lookup_info_hash_table (hash_table, name);
5087 node;
5088 node = node->next)
5089 {
5090 each_func = (struct funcinfo *) node->info;
5091 for (arange = &each_func->arange;
5092 arange;
5093 arange = arange->next)
5094 {
5095 if (addr >= arange->low
5096 && addr < arange->high
5097 && arange->high - arange->low < best_fit_len)
5098 {
5099 best_fit = each_func;
5100 best_fit_len = arange->high - arange->low;
5101 }
5102 }
5103 }
5104
5105 if (best_fit)
5106 {
5107 *filename_ptr = best_fit->file;
5108 *linenumber_ptr = best_fit->line;
5109 return true;
5110 }
5111
5112 return false;
5113 }
5114
5115 /* Look up a varinfo by name using the given info hash table. If found,
5116 also update the locations pointed to by filename_ptr and linenumber_ptr.
5117
5118 This function returns TRUE if a varinfo that matches the given symbol
5119 and address is found with any error; otherwise it returns FALSE. */
5120
5121 static bool
5122 info_hash_lookup_varinfo (struct info_hash_table *hash_table,
5123 asymbol *sym,
5124 bfd_vma addr,
5125 const char **filename_ptr,
5126 unsigned int *linenumber_ptr)
5127 {
5128 struct varinfo* each;
5129 struct info_list_node *node;
5130 const char *name = bfd_asymbol_name (sym);
5131
5132 for (node = lookup_info_hash_table (hash_table, name);
5133 node;
5134 node = node->next)
5135 {
5136 each = (struct varinfo *) node->info;
5137 if (each->addr == addr)
5138 {
5139 *filename_ptr = each->file;
5140 *linenumber_ptr = each->line;
5141 return true;
5142 }
5143 }
5144
5145 return false;
5146 }
5147
5148 /* Update the funcinfo and varinfo info hash tables if they are
5149 not up to date. Returns TRUE if there is no error; otherwise
5150 returns FALSE and disable the info hash tables. */
5151
5152 static bool
5153 stash_maybe_update_info_hash_tables (struct dwarf2_debug *stash)
5154 {
5155 struct comp_unit *each;
5156
5157 /* Exit if hash tables are up-to-date. */
5158 if (stash->f.all_comp_units == stash->hash_units_head)
5159 return true;
5160
5161 if (stash->hash_units_head)
5162 each = stash->hash_units_head->prev_unit;
5163 else
5164 each = stash->f.last_comp_unit;
5165
5166 while (each)
5167 {
5168 if (!comp_unit_hash_info (stash, each, stash->funcinfo_hash_table,
5169 stash->varinfo_hash_table))
5170 {
5171 stash->info_hash_status = STASH_INFO_HASH_DISABLED;
5172 return false;
5173 }
5174 each = each->prev_unit;
5175 }
5176
5177 stash->hash_units_head = stash->f.all_comp_units;
5178 return true;
5179 }
5180
5181 /* Check consistency of info hash tables. This is for debugging only. */
5182
5183 static void ATTRIBUTE_UNUSED
5184 stash_verify_info_hash_table (struct dwarf2_debug *stash)
5185 {
5186 struct comp_unit *each_unit;
5187 struct funcinfo *each_func;
5188 struct varinfo *each_var;
5189 struct info_list_node *node;
5190 bool found;
5191
5192 for (each_unit = stash->f.all_comp_units;
5193 each_unit;
5194 each_unit = each_unit->next_unit)
5195 {
5196 for (each_func = each_unit->function_table;
5197 each_func;
5198 each_func = each_func->prev_func)
5199 {
5200 if (!each_func->name)
5201 continue;
5202 node = lookup_info_hash_table (stash->funcinfo_hash_table,
5203 each_func->name);
5204 BFD_ASSERT (node);
5205 found = false;
5206 while (node && !found)
5207 {
5208 found = node->info == each_func;
5209 node = node->next;
5210 }
5211 BFD_ASSERT (found);
5212 }
5213
5214 for (each_var = each_unit->variable_table;
5215 each_var;
5216 each_var = each_var->prev_var)
5217 {
5218 if (!each_var->name || !each_var->file || each_var->stack)
5219 continue;
5220 node = lookup_info_hash_table (stash->varinfo_hash_table,
5221 each_var->name);
5222 BFD_ASSERT (node);
5223 found = false;
5224 while (node && !found)
5225 {
5226 found = node->info == each_var;
5227 node = node->next;
5228 }
5229 BFD_ASSERT (found);
5230 }
5231 }
5232 }
5233
5234 /* Check to see if we want to enable the info hash tables, which consume
5235 quite a bit of memory. Currently we only check the number times
5236 bfd_dwarf2_find_line is called. In the future, we may also want to
5237 take the number of symbols into account. */
5238
5239 static void
5240 stash_maybe_enable_info_hash_tables (bfd *abfd, struct dwarf2_debug *stash)
5241 {
5242 BFD_ASSERT (stash->info_hash_status == STASH_INFO_HASH_OFF);
5243
5244 if (stash->info_hash_count++ < STASH_INFO_HASH_TRIGGER)
5245 return;
5246
5247 /* FIXME: Maybe we should check the reduce_memory_overheads
5248 and optimize fields in the bfd_link_info structure ? */
5249
5250 /* Create hash tables. */
5251 stash->funcinfo_hash_table = create_info_hash_table (abfd);
5252 stash->varinfo_hash_table = create_info_hash_table (abfd);
5253 if (!stash->funcinfo_hash_table || !stash->varinfo_hash_table)
5254 {
5255 /* Turn off info hashes if any allocation above fails. */
5256 stash->info_hash_status = STASH_INFO_HASH_DISABLED;
5257 return;
5258 }
5259 /* We need a forced update so that the info hash tables will
5260 be created even though there is no compilation unit. That
5261 happens if STASH_INFO_HASH_TRIGGER is 0. */
5262 if (stash_maybe_update_info_hash_tables (stash))
5263 stash->info_hash_status = STASH_INFO_HASH_ON;
5264 }
5265
5266 /* Find the file and line associated with a symbol and address using the
5267 info hash tables of a stash. If there is a match, the function returns
5268 TRUE and update the locations pointed to by filename_ptr and linenumber_ptr;
5269 otherwise it returns FALSE. */
5270
5271 static bool
5272 stash_find_line_fast (struct dwarf2_debug *stash,
5273 asymbol *sym,
5274 bfd_vma addr,
5275 const char **filename_ptr,
5276 unsigned int *linenumber_ptr)
5277 {
5278 BFD_ASSERT (stash->info_hash_status == STASH_INFO_HASH_ON);
5279
5280 if (sym->flags & BSF_FUNCTION)
5281 return info_hash_lookup_funcinfo (stash->funcinfo_hash_table, sym, addr,
5282 filename_ptr, linenumber_ptr);
5283 return info_hash_lookup_varinfo (stash->varinfo_hash_table, sym, addr,
5284 filename_ptr, linenumber_ptr);
5285 }
5286
5287 /* Save current section VMAs. */
5288
5289 static bool
5290 save_section_vma (const bfd *abfd, struct dwarf2_debug *stash)
5291 {
5292 asection *s;
5293 unsigned int i;
5294
5295 if (abfd->section_count == 0)
5296 return true;
5297 stash->sec_vma = bfd_malloc (sizeof (*stash->sec_vma) * abfd->section_count);
5298 if (stash->sec_vma == NULL)
5299 return false;
5300 stash->sec_vma_count = abfd->section_count;
5301 for (i = 0, s = abfd->sections;
5302 s != NULL && i < abfd->section_count;
5303 i++, s = s->next)
5304 {
5305 if (s->output_section != NULL)
5306 stash->sec_vma[i] = s->output_section->vma + s->output_offset;
5307 else
5308 stash->sec_vma[i] = s->vma;
5309 }
5310 return true;
5311 }
5312
5313 /* Compare current section VMAs against those at the time the stash
5314 was created. If find_nearest_line is used in linker warnings or
5315 errors early in the link process, the debug info stash will be
5316 invalid for later calls. This is because we relocate debug info
5317 sections, so the stashed section contents depend on symbol values,
5318 which in turn depend on section VMAs. */
5319
5320 static bool
5321 section_vma_same (const bfd *abfd, const struct dwarf2_debug *stash)
5322 {
5323 asection *s;
5324 unsigned int i;
5325
5326 /* PR 24334: If the number of sections in ABFD has changed between
5327 when the stash was created and now, then we cannot trust the
5328 stashed vma information. */
5329 if (abfd->section_count != stash->sec_vma_count)
5330 return false;
5331
5332 for (i = 0, s = abfd->sections;
5333 s != NULL && i < abfd->section_count;
5334 i++, s = s->next)
5335 {
5336 bfd_vma vma;
5337
5338 if (s->output_section != NULL)
5339 vma = s->output_section->vma + s->output_offset;
5340 else
5341 vma = s->vma;
5342 if (vma != stash->sec_vma[i])
5343 return false;
5344 }
5345 return true;
5346 }
5347
5348 /* Read debug information from DEBUG_BFD when DEBUG_BFD is specified.
5349 If DEBUG_BFD is not specified, we read debug information from ABFD
5350 or its gnu_debuglink. The results will be stored in PINFO.
5351 The function returns TRUE iff debug information is ready. */
5352
5353 bool
5354 _bfd_dwarf2_slurp_debug_info (bfd *abfd, bfd *debug_bfd,
5355 const struct dwarf_debug_section *debug_sections,
5356 asymbol **symbols,
5357 void **pinfo,
5358 bool do_place)
5359 {
5360 size_t amt = sizeof (struct dwarf2_debug);
5361 bfd_size_type total_size;
5362 asection *msec;
5363 struct dwarf2_debug *stash = (struct dwarf2_debug *) *pinfo;
5364
5365 if (stash != NULL)
5366 {
5367 if (stash->orig_bfd == abfd
5368 && section_vma_same (abfd, stash))
5369 {
5370 /* Check that we did previously find some debug information
5371 before attempting to make use of it. */
5372 if (stash->f.bfd_ptr != NULL)
5373 {
5374 if (do_place && !place_sections (abfd, stash))
5375 return false;
5376 return true;
5377 }
5378
5379 return false;
5380 }
5381 _bfd_dwarf2_cleanup_debug_info (abfd, pinfo);
5382 memset (stash, 0, amt);
5383 }
5384 else
5385 {
5386 stash = (struct dwarf2_debug *) bfd_zalloc (abfd, amt);
5387 if (! stash)
5388 return false;
5389 }
5390 stash->orig_bfd = abfd;
5391 stash->debug_sections = debug_sections;
5392 stash->f.syms = symbols;
5393 if (!save_section_vma (abfd, stash))
5394 return false;
5395
5396 stash->f.abbrev_offsets = htab_create_alloc (10, hash_abbrev, eq_abbrev,
5397 del_abbrev, calloc, free);
5398 if (!stash->f.abbrev_offsets)
5399 return false;
5400
5401 stash->alt.abbrev_offsets = htab_create_alloc (10, hash_abbrev, eq_abbrev,
5402 del_abbrev, calloc, free);
5403 if (!stash->alt.abbrev_offsets)
5404 return false;
5405
5406 stash->f.trie_root = alloc_trie_leaf (abfd);
5407 if (!stash->f.trie_root)
5408 return false;
5409
5410 stash->alt.trie_root = alloc_trie_leaf (abfd);
5411 if (!stash->alt.trie_root)
5412 return false;
5413
5414 *pinfo = stash;
5415
5416 if (debug_bfd == NULL)
5417 debug_bfd = abfd;
5418
5419 msec = find_debug_info (debug_bfd, debug_sections, NULL);
5420 if (msec == NULL && abfd == debug_bfd)
5421 {
5422 char * debug_filename;
5423
5424 debug_filename = bfd_follow_build_id_debuglink (abfd, DEBUGDIR);
5425 if (debug_filename == NULL)
5426 debug_filename = bfd_follow_gnu_debuglink (abfd, DEBUGDIR);
5427
5428 if (debug_filename == NULL)
5429 /* No dwarf2 info, and no gnu_debuglink to follow.
5430 Note that at this point the stash has been allocated, but
5431 contains zeros. This lets future calls to this function
5432 fail more quickly. */
5433 return false;
5434
5435 debug_bfd = bfd_openr (debug_filename, NULL);
5436 free (debug_filename);
5437 if (debug_bfd == NULL)
5438 /* FIXME: Should we report our failure to follow the debuglink ? */
5439 return false;
5440
5441 /* Set BFD_DECOMPRESS to decompress debug sections. */
5442 debug_bfd->flags |= BFD_DECOMPRESS;
5443 if (!bfd_check_format (debug_bfd, bfd_object)
5444 || (msec = find_debug_info (debug_bfd,
5445 debug_sections, NULL)) == NULL
5446 || !bfd_generic_link_read_symbols (debug_bfd))
5447 {
5448 bfd_close (debug_bfd);
5449 return false;
5450 }
5451
5452 symbols = bfd_get_outsymbols (debug_bfd);
5453 stash->f.syms = symbols;
5454 stash->close_on_cleanup = true;
5455 }
5456 stash->f.bfd_ptr = debug_bfd;
5457
5458 if (do_place
5459 && !place_sections (abfd, stash))
5460 return false;
5461
5462 /* There can be more than one DWARF2 info section in a BFD these
5463 days. First handle the easy case when there's only one. If
5464 there's more than one, try case two: none of the sections is
5465 compressed. In that case, read them all in and produce one
5466 large stash. We do this in two passes - in the first pass we
5467 just accumulate the section sizes, and in the second pass we
5468 read in the section's contents. (The allows us to avoid
5469 reallocing the data as we add sections to the stash.) If
5470 some or all sections are compressed, then do things the slow
5471 way, with a bunch of reallocs. */
5472
5473 if (! find_debug_info (debug_bfd, debug_sections, msec))
5474 {
5475 /* Case 1: only one info section. */
5476 total_size = msec->size;
5477 if (! read_section (debug_bfd, &stash->debug_sections[debug_info],
5478 symbols, 0,
5479 &stash->f.dwarf_info_buffer, &total_size))
5480 return false;
5481 }
5482 else
5483 {
5484 /* Case 2: multiple sections. */
5485 for (total_size = 0;
5486 msec;
5487 msec = find_debug_info (debug_bfd, debug_sections, msec))
5488 {
5489 /* Catch PR25070 testcase overflowing size calculation here. */
5490 if (total_size + msec->size < total_size
5491 || total_size + msec->size < msec->size)
5492 {
5493 bfd_set_error (bfd_error_no_memory);
5494 return false;
5495 }
5496 total_size += msec->size;
5497 }
5498
5499 stash->f.dwarf_info_buffer = (bfd_byte *) bfd_malloc (total_size);
5500 if (stash->f.dwarf_info_buffer == NULL)
5501 return false;
5502
5503 total_size = 0;
5504 for (msec = find_debug_info (debug_bfd, debug_sections, NULL);
5505 msec;
5506 msec = find_debug_info (debug_bfd, debug_sections, msec))
5507 {
5508 bfd_size_type size;
5509
5510 size = msec->size;
5511 if (size == 0)
5512 continue;
5513
5514 if (!(bfd_simple_get_relocated_section_contents
5515 (debug_bfd, msec, stash->f.dwarf_info_buffer + total_size,
5516 symbols)))
5517 return false;
5518
5519 total_size += size;
5520 }
5521 }
5522
5523 stash->f.info_ptr = stash->f.dwarf_info_buffer;
5524 stash->f.dwarf_info_size = total_size;
5525 return true;
5526 }
5527
5528 /* Parse the next DWARF2 compilation unit at FILE->INFO_PTR. */
5529
5530 static struct comp_unit *
5531 stash_comp_unit (struct dwarf2_debug *stash, struct dwarf2_debug_file *file)
5532 {
5533 bfd_size_type length;
5534 unsigned int offset_size;
5535 bfd_byte *info_ptr_unit = file->info_ptr;
5536 bfd_byte *info_ptr_end = file->dwarf_info_buffer + file->dwarf_info_size;
5537
5538 if (file->info_ptr >= info_ptr_end)
5539 return NULL;
5540
5541 length = read_4_bytes (file->bfd_ptr, &file->info_ptr, info_ptr_end);
5542 /* A 0xffffff length is the DWARF3 way of indicating
5543 we use 64-bit offsets, instead of 32-bit offsets. */
5544 if (length == 0xffffffff)
5545 {
5546 offset_size = 8;
5547 length = read_8_bytes (file->bfd_ptr, &file->info_ptr, info_ptr_end);
5548 }
5549 /* A zero length is the IRIX way of indicating 64-bit offsets,
5550 mostly because the 64-bit length will generally fit in 32
5551 bits, and the endianness helps. */
5552 else if (length == 0)
5553 {
5554 offset_size = 8;
5555 length = read_4_bytes (file->bfd_ptr, &file->info_ptr, info_ptr_end);
5556 }
5557 /* In the absence of the hints above, we assume 32-bit DWARF2
5558 offsets even for targets with 64-bit addresses, because:
5559 a) most of the time these targets will not have generated
5560 more than 2Gb of debug info and so will not need 64-bit
5561 offsets,
5562 and
5563 b) if they do use 64-bit offsets but they are not using
5564 the size hints that are tested for above then they are
5565 not conforming to the DWARF3 standard anyway. */
5566 else
5567 offset_size = 4;
5568
5569 if (length != 0
5570 && length <= (size_t) (info_ptr_end - file->info_ptr))
5571 {
5572 struct comp_unit *each = parse_comp_unit (stash, file,
5573 file->info_ptr, length,
5574 info_ptr_unit, offset_size);
5575 if (each)
5576 {
5577 if (file->comp_unit_tree == NULL)
5578 file->comp_unit_tree
5579 = splay_tree_new (splay_tree_compare_addr_range,
5580 splay_tree_free_addr_range, NULL);
5581
5582 struct addr_range *r
5583 = (struct addr_range *)bfd_malloc (sizeof (struct addr_range));
5584 r->start = each->info_ptr_unit;
5585 r->end = each->end_ptr;
5586 splay_tree_node v = splay_tree_lookup (file->comp_unit_tree,
5587 (splay_tree_key)r);
5588 if (v != NULL || r->end <= r->start)
5589 abort ();
5590 splay_tree_insert (file->comp_unit_tree, (splay_tree_key)r,
5591 (splay_tree_value)each);
5592
5593 if (file->all_comp_units)
5594 file->all_comp_units->prev_unit = each;
5595 else
5596 file->last_comp_unit = each;
5597
5598 each->next_unit = file->all_comp_units;
5599 file->all_comp_units = each;
5600
5601 if (each->arange.high == 0)
5602 {
5603 each->next_unit_without_ranges = file->all_comp_units_without_ranges;
5604 file->all_comp_units_without_ranges = each->next_unit_without_ranges;
5605 }
5606
5607 file->info_ptr += length;
5608 return each;
5609 }
5610 }
5611
5612 /* Don't trust any of the DWARF info after a corrupted length or
5613 parse error. */
5614 file->info_ptr = info_ptr_end;
5615 return NULL;
5616 }
5617
5618 /* Hash function for an asymbol. */
5619
5620 static hashval_t
5621 hash_asymbol (const void *sym)
5622 {
5623 const asymbol *asym = sym;
5624 return htab_hash_string (asym->name);
5625 }
5626
5627 /* Equality function for asymbols. */
5628
5629 static int
5630 eq_asymbol (const void *a, const void *b)
5631 {
5632 const asymbol *sa = a;
5633 const asymbol *sb = b;
5634 return strcmp (sa->name, sb->name) == 0;
5635 }
5636
5637 /* Scan the debug information in PINFO looking for a DW_TAG_subprogram
5638 abbrev with a DW_AT_low_pc attached to it. Then lookup that same
5639 symbol in SYMBOLS and return the difference between the low_pc and
5640 the symbol's address. Returns 0 if no suitable symbol could be found. */
5641
5642 bfd_signed_vma
5643 _bfd_dwarf2_find_symbol_bias (asymbol ** symbols, void ** pinfo)
5644 {
5645 struct dwarf2_debug *stash;
5646 struct comp_unit * unit;
5647 htab_t sym_hash;
5648 bfd_signed_vma result = 0;
5649 asymbol ** psym;
5650
5651 stash = (struct dwarf2_debug *) *pinfo;
5652
5653 if (stash == NULL || symbols == NULL)
5654 return 0;
5655
5656 sym_hash = htab_create_alloc (10, hash_asymbol, eq_asymbol,
5657 NULL, xcalloc, free);
5658 for (psym = symbols; * psym != NULL; psym++)
5659 {
5660 asymbol * sym = * psym;
5661
5662 if (sym->flags & BSF_FUNCTION && sym->section != NULL)
5663 {
5664 void **slot = htab_find_slot (sym_hash, sym, INSERT);
5665 *slot = sym;
5666 }
5667 }
5668
5669 for (unit = stash->f.all_comp_units; unit; unit = unit->next_unit)
5670 {
5671 struct funcinfo * func;
5672
5673 comp_unit_maybe_decode_line_info (unit);
5674
5675 for (func = unit->function_table; func != NULL; func = func->prev_func)
5676 if (func->name && func->arange.low)
5677 {
5678 asymbol search, *sym;
5679
5680 /* FIXME: Do we need to scan the aranges looking for the
5681 lowest pc value? */
5682
5683 search.name = func->name;
5684 sym = htab_find (sym_hash, &search);
5685 if (sym != NULL)
5686 {
5687 result = func->arange.low - (sym->value + sym->section->vma);
5688 goto done;
5689 }
5690 }
5691 }
5692
5693 done:
5694 htab_delete (sym_hash);
5695 return result;
5696 }
5697
5698 /* See _bfd_dwarf2_find_nearest_line_with_alt. */
5699
5700 int
5701 _bfd_dwarf2_find_nearest_line (bfd *abfd,
5702 asymbol **symbols,
5703 asymbol *symbol,
5704 asection *section,
5705 bfd_vma offset,
5706 const char **filename_ptr,
5707 const char **functionname_ptr,
5708 unsigned int *linenumber_ptr,
5709 unsigned int *discriminator_ptr,
5710 const struct dwarf_debug_section *debug_sections,
5711 void **pinfo)
5712 {
5713 return _bfd_dwarf2_find_nearest_line_with_alt
5714 (abfd, NULL, symbols, symbol, section, offset, filename_ptr,
5715 functionname_ptr, linenumber_ptr, discriminator_ptr, debug_sections,
5716 pinfo);
5717 }
5718
5719 /* Find the source code location of SYMBOL. If SYMBOL is NULL
5720 then find the nearest source code location corresponding to
5721 the address SECTION + OFFSET.
5722 Returns 1 if the line is found without error and fills in
5723 FILENAME_PTR and LINENUMBER_PTR. In the case where SYMBOL was
5724 NULL the FUNCTIONNAME_PTR is also filled in.
5725 Returns 2 if partial information from _bfd_elf_find_function is
5726 returned (function and maybe file) by looking at symbols. DWARF2
5727 info is present but not regarding the requested code location.
5728 Returns 0 otherwise.
5729 SYMBOLS contains the symbol table for ABFD.
5730 DEBUG_SECTIONS contains the name of the dwarf debug sections.
5731 If ALT_FILENAME is given, attempt to open the file and use it
5732 as the .gnu_debugaltlink file. Otherwise this file will be
5733 searched for when needed. */
5734
5735 int
5736 _bfd_dwarf2_find_nearest_line_with_alt
5737 (bfd *abfd,
5738 const char *alt_filename,
5739 asymbol **symbols,
5740 asymbol *symbol,
5741 asection *section,
5742 bfd_vma offset,
5743 const char **filename_ptr,
5744 const char **functionname_ptr,
5745 unsigned int *linenumber_ptr,
5746 unsigned int *discriminator_ptr,
5747 const struct dwarf_debug_section *debug_sections,
5748 void **pinfo)
5749 {
5750 /* Read each compilation unit from the section .debug_info, and check
5751 to see if it contains the address we are searching for. If yes,
5752 lookup the address, and return the line number info. If no, go
5753 on to the next compilation unit.
5754
5755 We keep a list of all the previously read compilation units, and
5756 a pointer to the next un-read compilation unit. Check the
5757 previously read units before reading more. */
5758 struct dwarf2_debug *stash;
5759 /* What address are we looking for? */
5760 bfd_vma addr;
5761 struct comp_unit* each;
5762 struct funcinfo *function = NULL;
5763 int found = false;
5764 bool do_line;
5765
5766 *filename_ptr = NULL;
5767 if (functionname_ptr != NULL)
5768 *functionname_ptr = NULL;
5769 *linenumber_ptr = 0;
5770 if (discriminator_ptr)
5771 *discriminator_ptr = 0;
5772
5773 if (! _bfd_dwarf2_slurp_debug_info (abfd, NULL, debug_sections,
5774 symbols, pinfo,
5775 (abfd->flags & (EXEC_P | DYNAMIC)) == 0))
5776 return false;
5777
5778 stash = (struct dwarf2_debug *) *pinfo;
5779
5780 if (stash->alt.bfd_ptr == NULL && alt_filename != NULL)
5781 {
5782 bfd *alt_bfd = bfd_openr (alt_filename, NULL);
5783
5784 if (alt_bfd == NULL)
5785 /* bfd_openr will have set the bfd_error. */
5786 return false;
5787 if (!bfd_check_format (alt_bfd, bfd_object))
5788 {
5789 bfd_set_error (bfd_error_wrong_format);
5790 bfd_close (alt_bfd);
5791 return false;
5792 }
5793
5794 stash->alt.bfd_ptr = alt_bfd;
5795 }
5796
5797 do_line = symbol != NULL;
5798 if (do_line)
5799 {
5800 BFD_ASSERT (section == NULL && offset == 0 && functionname_ptr == NULL);
5801 section = bfd_asymbol_section (symbol);
5802 addr = symbol->value;
5803 }
5804 else
5805 {
5806 BFD_ASSERT (section != NULL && functionname_ptr != NULL);
5807 addr = offset;
5808
5809 /* If we have no SYMBOL but the section we're looking at is not a
5810 code section, then take a look through the list of symbols to see
5811 if we have a symbol at the address we're looking for. If we do
5812 then use this to look up line information. This will allow us to
5813 give file and line results for data symbols. We exclude code
5814 symbols here, if we look up a function symbol and then look up the
5815 line information we'll actually return the line number for the
5816 opening '{' rather than the function definition line. This is
5817 because looking up by symbol uses the line table, in which the
5818 first line for a function is usually the opening '{', while
5819 looking up the function by section + offset uses the
5820 DW_AT_decl_line from the function DW_TAG_subprogram for the line,
5821 which will be the line of the function name. */
5822 if (symbols != NULL && (section->flags & SEC_CODE) == 0)
5823 {
5824 asymbol **tmp;
5825
5826 for (tmp = symbols; (*tmp) != NULL; ++tmp)
5827 if ((*tmp)->the_bfd == abfd
5828 && (*tmp)->section == section
5829 && (*tmp)->value == offset
5830 && ((*tmp)->flags & BSF_SECTION_SYM) == 0)
5831 {
5832 symbol = *tmp;
5833 do_line = true;
5834 /* For local symbols, keep going in the hope we find a
5835 global. */
5836 if ((symbol->flags & BSF_GLOBAL) != 0)
5837 break;
5838 }
5839 }
5840 }
5841
5842 if (section->output_section)
5843 addr += section->output_section->vma + section->output_offset;
5844 else
5845 addr += section->vma;
5846
5847 /* A null info_ptr indicates that there is no dwarf2 info
5848 (or that an error occured while setting up the stash). */
5849 if (! stash->f.info_ptr)
5850 return false;
5851
5852 stash->inliner_chain = NULL;
5853
5854 /* Check the previously read comp. units first. */
5855 if (do_line)
5856 {
5857 /* The info hash tables use quite a bit of memory. We may not want to
5858 always use them. We use some heuristics to decide if and when to
5859 turn it on. */
5860 if (stash->info_hash_status == STASH_INFO_HASH_OFF)
5861 stash_maybe_enable_info_hash_tables (abfd, stash);
5862
5863 /* Keep info hash table up to date if they are available. Note that we
5864 may disable the hash tables if there is any error duing update. */
5865 if (stash->info_hash_status == STASH_INFO_HASH_ON)
5866 stash_maybe_update_info_hash_tables (stash);
5867
5868 if (stash->info_hash_status == STASH_INFO_HASH_ON)
5869 {
5870 found = stash_find_line_fast (stash, symbol, addr,
5871 filename_ptr, linenumber_ptr);
5872 if (found)
5873 goto done;
5874 }
5875
5876 /* Check the previously read comp. units first. */
5877 for (each = stash->f.all_comp_units; each; each = each->next_unit)
5878 if ((symbol->flags & BSF_FUNCTION) == 0
5879 || each->arange.high == 0
5880 || comp_unit_contains_address (each, addr))
5881 {
5882 found = comp_unit_find_line (each, symbol, addr, filename_ptr,
5883 linenumber_ptr);
5884 if (found)
5885 goto done;
5886 }
5887 }
5888 else
5889 {
5890 struct trie_node *trie = stash->f.trie_root;
5891 unsigned int bits = VMA_BITS - 8;
5892 struct comp_unit **prev_each;
5893
5894 /* Traverse interior nodes until we get to a leaf. */
5895 while (trie && trie->num_room_in_leaf == 0)
5896 {
5897 int ch = (addr >> bits) & 0xff;
5898 trie = ((struct trie_interior *) trie)->children[ch];
5899 bits -= 8;
5900 }
5901
5902 if (trie)
5903 {
5904 const struct trie_leaf *leaf = (struct trie_leaf *) trie;
5905 unsigned int i;
5906
5907 for (i = 0; i < leaf->num_stored_in_leaf; ++i)
5908 leaf->ranges[i].unit->mark = false;
5909
5910 for (i = 0; i < leaf->num_stored_in_leaf; ++i)
5911 {
5912 struct comp_unit *unit = leaf->ranges[i].unit;
5913 if (unit->mark
5914 || addr < leaf->ranges[i].low_pc
5915 || addr >= leaf->ranges[i].high_pc)
5916 continue;
5917 unit->mark = true;
5918
5919 found = comp_unit_find_nearest_line (unit, addr,
5920 filename_ptr,
5921 &function,
5922 linenumber_ptr,
5923 discriminator_ptr);
5924 if (found)
5925 goto done;
5926 }
5927 }
5928
5929 /* Also scan through all compilation units without any ranges,
5930 taking them out of the list if they have acquired any since
5931 last time. */
5932 prev_each = &stash->f.all_comp_units_without_ranges;
5933 for (each = *prev_each; each; each = each->next_unit_without_ranges)
5934 {
5935 if (each->arange.high != 0)
5936 {
5937 *prev_each = each->next_unit_without_ranges;
5938 continue;
5939 }
5940
5941 found = comp_unit_find_nearest_line (each, addr,
5942 filename_ptr,
5943 &function,
5944 linenumber_ptr,
5945 discriminator_ptr);
5946 if (found)
5947 goto done;
5948 prev_each = &each->next_unit_without_ranges;
5949 }
5950 }
5951
5952 /* Read each remaining comp. units checking each as they are read. */
5953 while ((each = stash_comp_unit (stash, &stash->f)) != NULL)
5954 {
5955 /* DW_AT_low_pc and DW_AT_high_pc are optional for
5956 compilation units. If we don't have them (i.e.,
5957 unit->high == 0), we need to consult the line info table
5958 to see if a compilation unit contains the given
5959 address. */
5960 if (do_line)
5961 found = (((symbol->flags & BSF_FUNCTION) == 0
5962 || each->arange.high == 0
5963 || comp_unit_contains_address (each, addr))
5964 && comp_unit_find_line (each, symbol, addr,
5965 filename_ptr, linenumber_ptr));
5966 else
5967 found = ((each->arange.high == 0
5968 || comp_unit_contains_address (each, addr))
5969 && comp_unit_find_nearest_line (each, addr,
5970 filename_ptr,
5971 &function,
5972 linenumber_ptr,
5973 discriminator_ptr));
5974
5975 if (found)
5976 break;
5977 }
5978
5979 done:
5980 if (functionname_ptr && function && function->is_linkage)
5981 {
5982 *functionname_ptr = function->name;
5983 if (!found)
5984 found = 2;
5985 }
5986 else if (functionname_ptr
5987 && (!*functionname_ptr
5988 || (function && !function->is_linkage)))
5989 {
5990 asymbol *fun;
5991 asymbol **syms = symbols;
5992 asection *sec = section;
5993
5994 _bfd_dwarf2_stash_syms (stash, abfd, &sec, &syms);
5995 fun = _bfd_elf_find_function (abfd, syms, sec, offset,
5996 *filename_ptr ? NULL : filename_ptr,
5997 functionname_ptr);
5998
5999 if (!found && fun != NULL)
6000 found = 2;
6001
6002 if (function && !function->is_linkage)
6003 {
6004 bfd_vma sec_vma;
6005
6006 sec_vma = section->vma;
6007 if (section->output_section != NULL)
6008 sec_vma = section->output_section->vma + section->output_offset;
6009 if (fun == NULL)
6010 *functionname_ptr = function->name;
6011 else if (fun->value + sec_vma == function->arange.low)
6012 function->name = *functionname_ptr;
6013 /* Even if we didn't find a linkage name, say that we have
6014 to stop a repeated search of symbols. */
6015 function->is_linkage = true;
6016 }
6017 }
6018
6019 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
6020 unset_sections (stash);
6021
6022 return found;
6023 }
6024
6025 bool
6026 _bfd_dwarf2_find_inliner_info (bfd *abfd ATTRIBUTE_UNUSED,
6027 const char **filename_ptr,
6028 const char **functionname_ptr,
6029 unsigned int *linenumber_ptr,
6030 void **pinfo)
6031 {
6032 struct dwarf2_debug *stash;
6033
6034 stash = (struct dwarf2_debug *) *pinfo;
6035 if (stash)
6036 {
6037 struct funcinfo *func = stash->inliner_chain;
6038
6039 if (func && func->caller_func)
6040 {
6041 *filename_ptr = func->caller_file;
6042 *functionname_ptr = func->caller_func->name;
6043 *linenumber_ptr = func->caller_line;
6044 stash->inliner_chain = func->caller_func;
6045 return true;
6046 }
6047 }
6048
6049 return false;
6050 }
6051
6052 void
6053 _bfd_dwarf2_cleanup_debug_info (bfd *abfd, void **pinfo)
6054 {
6055 struct dwarf2_debug *stash = (struct dwarf2_debug *) *pinfo;
6056 struct comp_unit *each;
6057 struct dwarf2_debug_file *file;
6058
6059 if (abfd == NULL || stash == NULL)
6060 return;
6061
6062 if (stash->varinfo_hash_table)
6063 bfd_hash_table_free (&stash->varinfo_hash_table->base);
6064 if (stash->funcinfo_hash_table)
6065 bfd_hash_table_free (&stash->funcinfo_hash_table->base);
6066
6067 file = &stash->f;
6068 while (1)
6069 {
6070 for (each = file->all_comp_units; each; each = each->next_unit)
6071 {
6072 struct funcinfo *function_table = each->function_table;
6073 struct varinfo *variable_table = each->variable_table;
6074
6075 if (each->line_table && each->line_table != file->line_table)
6076 {
6077 free (each->line_table->files);
6078 free (each->line_table->dirs);
6079 }
6080
6081 free (each->lookup_funcinfo_table);
6082 each->lookup_funcinfo_table = NULL;
6083
6084 while (function_table)
6085 {
6086 free (function_table->file);
6087 function_table->file = NULL;
6088 free (function_table->caller_file);
6089 function_table->caller_file = NULL;
6090 function_table = function_table->prev_func;
6091 }
6092
6093 while (variable_table)
6094 {
6095 free (variable_table->file);
6096 variable_table->file = NULL;
6097 variable_table = variable_table->prev_var;
6098 }
6099 }
6100
6101 if (file->line_table)
6102 {
6103 free (file->line_table->files);
6104 free (file->line_table->dirs);
6105 }
6106 htab_delete (file->abbrev_offsets);
6107 if (file->comp_unit_tree != NULL)
6108 splay_tree_delete (file->comp_unit_tree);
6109
6110 free (file->dwarf_line_str_buffer);
6111 free (file->dwarf_str_buffer);
6112 free (file->dwarf_ranges_buffer);
6113 free (file->dwarf_line_buffer);
6114 free (file->dwarf_abbrev_buffer);
6115 free (file->dwarf_info_buffer);
6116 if (file == &stash->alt)
6117 break;
6118 file = &stash->alt;
6119 }
6120 free (stash->sec_vma);
6121 free (stash->adjusted_sections);
6122 if (stash->close_on_cleanup)
6123 bfd_close (stash->f.bfd_ptr);
6124 if (stash->alt.bfd_ptr)
6125 bfd_close (stash->alt.bfd_ptr);
6126 }
6127
6128 /* Find the function to a particular section and offset,
6129 for error reporting. */
6130
6131 asymbol *
6132 _bfd_elf_find_function (bfd *abfd,
6133 asymbol **symbols,
6134 asection *section,
6135 bfd_vma offset,
6136 const char **filename_ptr,
6137 const char **functionname_ptr)
6138 {
6139 struct elf_find_function_cache
6140 {
6141 asection *last_section;
6142 asymbol *func;
6143 const char *filename;
6144 bfd_size_type func_size;
6145 } *cache;
6146
6147 if (symbols == NULL)
6148 return NULL;
6149
6150 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
6151 return NULL;
6152
6153 cache = elf_tdata (abfd)->elf_find_function_cache;
6154 if (cache == NULL)
6155 {
6156 cache = bfd_zalloc (abfd, sizeof (*cache));
6157 elf_tdata (abfd)->elf_find_function_cache = cache;
6158 if (cache == NULL)
6159 return NULL;
6160 }
6161 if (cache->last_section != section
6162 || cache->func == NULL
6163 || offset < cache->func->value
6164 || offset >= cache->func->value + cache->func_size)
6165 {
6166 asymbol *file;
6167 bfd_vma low_func;
6168 asymbol **p;
6169 /* ??? Given multiple file symbols, it is impossible to reliably
6170 choose the right file name for global symbols. File symbols are
6171 local symbols, and thus all file symbols must sort before any
6172 global symbols. The ELF spec may be interpreted to say that a
6173 file symbol must sort before other local symbols, but currently
6174 ld -r doesn't do this. So, for ld -r output, it is possible to
6175 make a better choice of file name for local symbols by ignoring
6176 file symbols appearing after a given local symbol. */
6177 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
6178 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6179
6180 file = NULL;
6181 low_func = 0;
6182 state = nothing_seen;
6183 cache->filename = NULL;
6184 cache->func = NULL;
6185 cache->func_size = 0;
6186 cache->last_section = section;
6187
6188 for (p = symbols; *p != NULL; p++)
6189 {
6190 asymbol *sym = *p;
6191 bfd_vma code_off;
6192 bfd_size_type size;
6193
6194 if ((sym->flags & BSF_FILE) != 0)
6195 {
6196 file = sym;
6197 if (state == symbol_seen)
6198 state = file_after_symbol_seen;
6199 continue;
6200 }
6201
6202 size = bed->maybe_function_sym (sym, section, &code_off);
6203 if (size != 0
6204 && code_off <= offset
6205 && (code_off > low_func
6206 || (code_off == low_func
6207 && size > cache->func_size)))
6208 {
6209 cache->func = sym;
6210 cache->func_size = size;
6211 cache->filename = NULL;
6212 low_func = code_off;
6213 if (file != NULL
6214 && ((sym->flags & BSF_LOCAL) != 0
6215 || state != file_after_symbol_seen))
6216 cache->filename = bfd_asymbol_name (file);
6217 }
6218 if (state == nothing_seen)
6219 state = symbol_seen;
6220 }
6221 }
6222
6223 if (cache->func == NULL)
6224 return NULL;
6225
6226 if (filename_ptr)
6227 *filename_ptr = cache->filename;
6228 if (functionname_ptr)
6229 *functionname_ptr = bfd_asymbol_name (cache->func);
6230
6231 return cache->func;
6232 }