65bb1e4e32d2ae552435d9f9aef49bc8bbce9dd7
[binutils-gdb.git] / bfd / dwarf2.c
1 /* DWARF 2 support.
2 Copyright (C) 1994-2019 Free Software Foundation, Inc.
3
4 Adapted from gdb/dwarf2read.c by Gavin Koch of Cygnus Solutions
5 (gavin@cygnus.com).
6
7 From the dwarf2read.c header:
8 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
9 Inc. with support from Florida State University (under contract
10 with the Ada Joint Program Office), and Silicon Graphics, Inc.
11 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
12 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
13 support in dwarfread.c
14
15 This file is part of BFD.
16
17 This program is free software; you can redistribute it and/or modify
18 it under the terms of the GNU General Public License as published by
19 the Free Software Foundation; either version 3 of the License, or (at
20 your option) any later version.
21
22 This program is distributed in the hope that it will be useful, but
23 WITHOUT ANY WARRANTY; without even the implied warranty of
24 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
25 General Public License for more details.
26
27 You should have received a copy of the GNU General Public License
28 along with this program; if not, write to the Free Software
29 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
30 MA 02110-1301, USA. */
31
32 #include "sysdep.h"
33 #include "bfd.h"
34 #include "libiberty.h"
35 #include "libbfd.h"
36 #include "elf-bfd.h"
37 #include "dwarf2.h"
38
39 /* The data in the .debug_line statement prologue looks like this. */
40
41 struct line_head
42 {
43 bfd_vma total_length;
44 unsigned short version;
45 bfd_vma prologue_length;
46 unsigned char minimum_instruction_length;
47 unsigned char maximum_ops_per_insn;
48 unsigned char default_is_stmt;
49 int line_base;
50 unsigned char line_range;
51 unsigned char opcode_base;
52 unsigned char *standard_opcode_lengths;
53 };
54
55 /* Attributes have a name and a value. */
56
57 struct attribute
58 {
59 enum dwarf_attribute name;
60 enum dwarf_form form;
61 union
62 {
63 char *str;
64 struct dwarf_block *blk;
65 bfd_uint64_t val;
66 bfd_int64_t sval;
67 }
68 u;
69 };
70
71 /* Blocks are a bunch of untyped bytes. */
72 struct dwarf_block
73 {
74 unsigned int size;
75 bfd_byte *data;
76 };
77
78 struct adjusted_section
79 {
80 asection *section;
81 bfd_vma adj_vma;
82 };
83
84 struct dwarf2_debug
85 {
86 /* A list of all previously read comp_units. */
87 struct comp_unit *all_comp_units;
88
89 /* Last comp unit in list above. */
90 struct comp_unit *last_comp_unit;
91
92 /* Names of the debug sections. */
93 const struct dwarf_debug_section *debug_sections;
94
95 /* The next unread compilation unit within the .debug_info section.
96 Zero indicates that the .debug_info section has not been loaded
97 into a buffer yet. */
98 bfd_byte *info_ptr;
99
100 /* Pointer to the end of the .debug_info section memory buffer. */
101 bfd_byte *info_ptr_end;
102
103 /* Pointer to the original bfd for which debug was loaded. This is what
104 we use to compare and so check that the cached debug data is still
105 valid - it saves having to possibly dereference the gnu_debuglink each
106 time. */
107 bfd *orig_bfd;
108
109 /* Pointer to the bfd, section and address of the beginning of the
110 section. The bfd might be different than expected because of
111 gnu_debuglink sections. */
112 bfd *bfd_ptr;
113 asection *sec;
114 bfd_byte *sec_info_ptr;
115
116 /* Support for alternate debug info sections created by the DWZ utility:
117 This includes a pointer to an alternate bfd which contains *extra*,
118 possibly duplicate debug sections, and pointers to the loaded
119 .debug_str and .debug_info sections from this bfd. */
120 bfd * alt_bfd_ptr;
121 bfd_byte * alt_dwarf_str_buffer;
122 bfd_size_type alt_dwarf_str_size;
123 bfd_byte * alt_dwarf_info_buffer;
124 bfd_size_type alt_dwarf_info_size;
125
126 /* A pointer to the memory block allocated for info_ptr. Neither
127 info_ptr nor sec_info_ptr are guaranteed to stay pointing to the
128 beginning of the malloc block. */
129 bfd_byte *info_ptr_memory;
130
131 /* Pointer to the symbol table. */
132 asymbol **syms;
133
134 /* Pointer to the .debug_abbrev section loaded into memory. */
135 bfd_byte *dwarf_abbrev_buffer;
136
137 /* Length of the loaded .debug_abbrev section. */
138 bfd_size_type dwarf_abbrev_size;
139
140 /* Buffer for decode_line_info. */
141 bfd_byte *dwarf_line_buffer;
142
143 /* Length of the loaded .debug_line section. */
144 bfd_size_type dwarf_line_size;
145
146 /* Pointer to the .debug_str section loaded into memory. */
147 bfd_byte *dwarf_str_buffer;
148
149 /* Length of the loaded .debug_str section. */
150 bfd_size_type dwarf_str_size;
151
152 /* Pointer to the .debug_line_str section loaded into memory. */
153 bfd_byte *dwarf_line_str_buffer;
154
155 /* Length of the loaded .debug_line_str section. */
156 bfd_size_type dwarf_line_str_size;
157
158 /* Pointer to the .debug_ranges section loaded into memory. */
159 bfd_byte *dwarf_ranges_buffer;
160
161 /* Length of the loaded .debug_ranges section. */
162 bfd_size_type dwarf_ranges_size;
163
164 /* If the most recent call to bfd_find_nearest_line was given an
165 address in an inlined function, preserve a pointer into the
166 calling chain for subsequent calls to bfd_find_inliner_info to
167 use. */
168 struct funcinfo *inliner_chain;
169
170 /* Section VMAs at the time the stash was built. */
171 bfd_vma *sec_vma;
172 /* Number of sections in the SEC_VMA table. */
173 unsigned int sec_vma_count;
174
175 /* Number of sections whose VMA we must adjust. */
176 int adjusted_section_count;
177
178 /* Array of sections with adjusted VMA. */
179 struct adjusted_section *adjusted_sections;
180
181 /* Number of times find_line is called. This is used in
182 the heuristic for enabling the info hash tables. */
183 int info_hash_count;
184
185 #define STASH_INFO_HASH_TRIGGER 100
186
187 /* Hash table mapping symbol names to function infos. */
188 struct info_hash_table *funcinfo_hash_table;
189
190 /* Hash table mapping symbol names to variable infos. */
191 struct info_hash_table *varinfo_hash_table;
192
193 /* Head of comp_unit list in the last hash table update. */
194 struct comp_unit *hash_units_head;
195
196 /* Status of info hash. */
197 int info_hash_status;
198 #define STASH_INFO_HASH_OFF 0
199 #define STASH_INFO_HASH_ON 1
200 #define STASH_INFO_HASH_DISABLED 2
201
202 /* True if we opened bfd_ptr. */
203 bfd_boolean close_on_cleanup;
204 };
205
206 struct arange
207 {
208 struct arange *next;
209 bfd_vma low;
210 bfd_vma high;
211 };
212
213 /* A minimal decoding of DWARF2 compilation units. We only decode
214 what's needed to get to the line number information. */
215
216 struct comp_unit
217 {
218 /* Chain the previously read compilation units. */
219 struct comp_unit *next_unit;
220
221 /* Likewise, chain the compilation unit read after this one.
222 The comp units are stored in reversed reading order. */
223 struct comp_unit *prev_unit;
224
225 /* Keep the bfd convenient (for memory allocation). */
226 bfd *abfd;
227
228 /* The lowest and highest addresses contained in this compilation
229 unit as specified in the compilation unit header. */
230 struct arange arange;
231
232 /* The DW_AT_name attribute (for error messages). */
233 char *name;
234
235 /* The abbrev hash table. */
236 struct abbrev_info **abbrevs;
237
238 /* DW_AT_language. */
239 int lang;
240
241 /* Note that an error was found by comp_unit_find_nearest_line. */
242 int error;
243
244 /* The DW_AT_comp_dir attribute. */
245 char *comp_dir;
246
247 /* TRUE if there is a line number table associated with this comp. unit. */
248 int stmtlist;
249
250 /* Pointer to the current comp_unit so that we can find a given entry
251 by its reference. */
252 bfd_byte *info_ptr_unit;
253
254 /* The offset into .debug_line of the line number table. */
255 unsigned long line_offset;
256
257 /* Pointer to the first child die for the comp unit. */
258 bfd_byte *first_child_die_ptr;
259
260 /* The end of the comp unit. */
261 bfd_byte *end_ptr;
262
263 /* The decoded line number, NULL if not yet decoded. */
264 struct line_info_table *line_table;
265
266 /* A list of the functions found in this comp. unit. */
267 struct funcinfo *function_table;
268
269 /* A table of function information references searchable by address. */
270 struct lookup_funcinfo *lookup_funcinfo_table;
271
272 /* Number of functions in the function_table and sorted_function_table. */
273 bfd_size_type number_of_functions;
274
275 /* A list of the variables found in this comp. unit. */
276 struct varinfo *variable_table;
277
278 /* Pointer to dwarf2_debug structure. */
279 struct dwarf2_debug *stash;
280
281 /* DWARF format version for this unit - from unit header. */
282 int version;
283
284 /* Address size for this unit - from unit header. */
285 unsigned char addr_size;
286
287 /* Offset size for this unit - from unit header. */
288 unsigned char offset_size;
289
290 /* Base address for this unit - from DW_AT_low_pc attribute of
291 DW_TAG_compile_unit DIE */
292 bfd_vma base_address;
293
294 /* TRUE if symbols are cached in hash table for faster lookup by name. */
295 bfd_boolean cached;
296 };
297
298 /* This data structure holds the information of an abbrev. */
299 struct abbrev_info
300 {
301 unsigned int number; /* Number identifying abbrev. */
302 enum dwarf_tag tag; /* DWARF tag. */
303 int has_children; /* Boolean. */
304 unsigned int num_attrs; /* Number of attributes. */
305 struct attr_abbrev *attrs; /* An array of attribute descriptions. */
306 struct abbrev_info *next; /* Next in chain. */
307 };
308
309 struct attr_abbrev
310 {
311 enum dwarf_attribute name;
312 enum dwarf_form form;
313 bfd_vma implicit_const;
314 };
315
316 /* Map of uncompressed DWARF debug section name to compressed one. It
317 is terminated by NULL uncompressed_name. */
318
319 const struct dwarf_debug_section dwarf_debug_sections[] =
320 {
321 { ".debug_abbrev", ".zdebug_abbrev" },
322 { ".debug_aranges", ".zdebug_aranges" },
323 { ".debug_frame", ".zdebug_frame" },
324 { ".debug_info", ".zdebug_info" },
325 { ".debug_info", ".zdebug_info" },
326 { ".debug_line", ".zdebug_line" },
327 { ".debug_loc", ".zdebug_loc" },
328 { ".debug_macinfo", ".zdebug_macinfo" },
329 { ".debug_macro", ".zdebug_macro" },
330 { ".debug_pubnames", ".zdebug_pubnames" },
331 { ".debug_pubtypes", ".zdebug_pubtypes" },
332 { ".debug_ranges", ".zdebug_ranges" },
333 { ".debug_static_func", ".zdebug_static_func" },
334 { ".debug_static_vars", ".zdebug_static_vars" },
335 { ".debug_str", ".zdebug_str", },
336 { ".debug_str", ".zdebug_str", },
337 { ".debug_line_str", ".zdebug_line_str", },
338 { ".debug_types", ".zdebug_types" },
339 /* GNU DWARF 1 extensions */
340 { ".debug_sfnames", ".zdebug_sfnames" },
341 { ".debug_srcinfo", ".zebug_srcinfo" },
342 /* SGI/MIPS DWARF 2 extensions */
343 { ".debug_funcnames", ".zdebug_funcnames" },
344 { ".debug_typenames", ".zdebug_typenames" },
345 { ".debug_varnames", ".zdebug_varnames" },
346 { ".debug_weaknames", ".zdebug_weaknames" },
347 { NULL, NULL },
348 };
349
350 /* NB/ Numbers in this enum must match up with indices
351 into the dwarf_debug_sections[] array above. */
352 enum dwarf_debug_section_enum
353 {
354 debug_abbrev = 0,
355 debug_aranges,
356 debug_frame,
357 debug_info,
358 debug_info_alt,
359 debug_line,
360 debug_loc,
361 debug_macinfo,
362 debug_macro,
363 debug_pubnames,
364 debug_pubtypes,
365 debug_ranges,
366 debug_static_func,
367 debug_static_vars,
368 debug_str,
369 debug_str_alt,
370 debug_line_str,
371 debug_types,
372 debug_sfnames,
373 debug_srcinfo,
374 debug_funcnames,
375 debug_typenames,
376 debug_varnames,
377 debug_weaknames,
378 debug_max
379 };
380
381 /* A static assertion. */
382 extern int dwarf_debug_section_assert[ARRAY_SIZE (dwarf_debug_sections)
383 == debug_max + 1 ? 1 : -1];
384
385 #ifndef ABBREV_HASH_SIZE
386 #define ABBREV_HASH_SIZE 121
387 #endif
388 #ifndef ATTR_ALLOC_CHUNK
389 #define ATTR_ALLOC_CHUNK 4
390 #endif
391
392 /* Variable and function hash tables. This is used to speed up look-up
393 in lookup_symbol_in_var_table() and lookup_symbol_in_function_table().
394 In order to share code between variable and function infos, we use
395 a list of untyped pointer for all variable/function info associated with
396 a symbol. We waste a bit of memory for list with one node but that
397 simplifies the code. */
398
399 struct info_list_node
400 {
401 struct info_list_node *next;
402 void *info;
403 };
404
405 /* Info hash entry. */
406 struct info_hash_entry
407 {
408 struct bfd_hash_entry root;
409 struct info_list_node *head;
410 };
411
412 struct info_hash_table
413 {
414 struct bfd_hash_table base;
415 };
416
417 /* Function to create a new entry in info hash table. */
418
419 static struct bfd_hash_entry *
420 info_hash_table_newfunc (struct bfd_hash_entry *entry,
421 struct bfd_hash_table *table,
422 const char *string)
423 {
424 struct info_hash_entry *ret = (struct info_hash_entry *) entry;
425
426 /* Allocate the structure if it has not already been allocated by a
427 derived class. */
428 if (ret == NULL)
429 {
430 ret = (struct info_hash_entry *) bfd_hash_allocate (table,
431 sizeof (* ret));
432 if (ret == NULL)
433 return NULL;
434 }
435
436 /* Call the allocation method of the base class. */
437 ret = ((struct info_hash_entry *)
438 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
439
440 /* Initialize the local fields here. */
441 if (ret)
442 ret->head = NULL;
443
444 return (struct bfd_hash_entry *) ret;
445 }
446
447 /* Function to create a new info hash table. It returns a pointer to the
448 newly created table or NULL if there is any error. We need abfd
449 solely for memory allocation. */
450
451 static struct info_hash_table *
452 create_info_hash_table (bfd *abfd)
453 {
454 struct info_hash_table *hash_table;
455
456 hash_table = ((struct info_hash_table *)
457 bfd_alloc (abfd, sizeof (struct info_hash_table)));
458 if (!hash_table)
459 return hash_table;
460
461 if (!bfd_hash_table_init (&hash_table->base, info_hash_table_newfunc,
462 sizeof (struct info_hash_entry)))
463 {
464 bfd_release (abfd, hash_table);
465 return NULL;
466 }
467
468 return hash_table;
469 }
470
471 /* Insert an info entry into an info hash table. We do not check of
472 duplicate entries. Also, the caller need to guarantee that the
473 right type of info in inserted as info is passed as a void* pointer.
474 This function returns true if there is no error. */
475
476 static bfd_boolean
477 insert_info_hash_table (struct info_hash_table *hash_table,
478 const char *key,
479 void *info,
480 bfd_boolean copy_p)
481 {
482 struct info_hash_entry *entry;
483 struct info_list_node *node;
484
485 entry = (struct info_hash_entry*) bfd_hash_lookup (&hash_table->base,
486 key, TRUE, copy_p);
487 if (!entry)
488 return FALSE;
489
490 node = (struct info_list_node *) bfd_hash_allocate (&hash_table->base,
491 sizeof (*node));
492 if (!node)
493 return FALSE;
494
495 node->info = info;
496 node->next = entry->head;
497 entry->head = node;
498
499 return TRUE;
500 }
501
502 /* Look up an info entry list from an info hash table. Return NULL
503 if there is none. */
504
505 static struct info_list_node *
506 lookup_info_hash_table (struct info_hash_table *hash_table, const char *key)
507 {
508 struct info_hash_entry *entry;
509
510 entry = (struct info_hash_entry*) bfd_hash_lookup (&hash_table->base, key,
511 FALSE, FALSE);
512 return entry ? entry->head : NULL;
513 }
514
515 /* Read a section into its appropriate place in the dwarf2_debug
516 struct (indicated by SECTION_BUFFER and SECTION_SIZE). If SYMS is
517 not NULL, use bfd_simple_get_relocated_section_contents to read the
518 section contents, otherwise use bfd_get_section_contents. Fail if
519 the located section does not contain at least OFFSET bytes. */
520
521 static bfd_boolean
522 read_section (bfd * abfd,
523 const struct dwarf_debug_section *sec,
524 asymbol ** syms,
525 bfd_uint64_t offset,
526 bfd_byte ** section_buffer,
527 bfd_size_type * section_size)
528 {
529 asection *msec;
530 const char *section_name = sec->uncompressed_name;
531 bfd_byte *contents = *section_buffer;
532 bfd_size_type amt;
533
534 /* The section may have already been read. */
535 if (contents == NULL)
536 {
537 msec = bfd_get_section_by_name (abfd, section_name);
538 if (! msec)
539 {
540 section_name = sec->compressed_name;
541 if (section_name != NULL)
542 msec = bfd_get_section_by_name (abfd, section_name);
543 }
544 if (! msec)
545 {
546 _bfd_error_handler (_("DWARF error: can't find %s section."),
547 sec->uncompressed_name);
548 bfd_set_error (bfd_error_bad_value);
549 return FALSE;
550 }
551
552 *section_size = msec->rawsize ? msec->rawsize : msec->size;
553 /* Paranoia - alloc one extra so that we can make sure a string
554 section is NUL terminated. */
555 amt = *section_size + 1;
556 if (amt == 0)
557 {
558 bfd_set_error (bfd_error_no_memory);
559 return FALSE;
560 }
561 contents = (bfd_byte *) bfd_malloc (amt);
562 if (contents == NULL)
563 return FALSE;
564 if (syms
565 ? !bfd_simple_get_relocated_section_contents (abfd, msec, contents,
566 syms)
567 : !bfd_get_section_contents (abfd, msec, contents, 0, *section_size))
568 {
569 free (contents);
570 return FALSE;
571 }
572 contents[*section_size] = 0;
573 *section_buffer = contents;
574 }
575
576 /* It is possible to get a bad value for the offset into the section
577 that the client wants. Validate it here to avoid trouble later. */
578 if (offset != 0 && offset >= *section_size)
579 {
580 /* xgettext: c-format */
581 _bfd_error_handler (_("DWARF error: offset (%" PRIu64 ")"
582 " greater than or equal to %s size (%" PRIu64 ")"),
583 (uint64_t) offset, section_name,
584 (uint64_t) *section_size);
585 bfd_set_error (bfd_error_bad_value);
586 return FALSE;
587 }
588
589 return TRUE;
590 }
591
592 /* Read dwarf information from a buffer. */
593
594 static unsigned int
595 read_1_byte (bfd *abfd ATTRIBUTE_UNUSED, bfd_byte *buf, bfd_byte *end)
596 {
597 if (buf + 1 > end)
598 return 0;
599 return bfd_get_8 (abfd, buf);
600 }
601
602 static int
603 read_1_signed_byte (bfd *abfd ATTRIBUTE_UNUSED, bfd_byte *buf, bfd_byte *end)
604 {
605 if (buf + 1 > end)
606 return 0;
607 return bfd_get_signed_8 (abfd, buf);
608 }
609
610 static unsigned int
611 read_2_bytes (bfd *abfd, bfd_byte *buf, bfd_byte *end)
612 {
613 if (buf + 2 > end)
614 return 0;
615 return bfd_get_16 (abfd, buf);
616 }
617
618 static unsigned int
619 read_4_bytes (bfd *abfd, bfd_byte *buf, bfd_byte *end)
620 {
621 if (buf + 4 > end)
622 return 0;
623 return bfd_get_32 (abfd, buf);
624 }
625
626 static bfd_uint64_t
627 read_8_bytes (bfd *abfd, bfd_byte *buf, bfd_byte *end)
628 {
629 if (buf + 8 > end)
630 return 0;
631 return bfd_get_64 (abfd, buf);
632 }
633
634 static bfd_byte *
635 read_n_bytes (bfd_byte * buf,
636 bfd_byte * end,
637 struct dwarf_block * block)
638 {
639 unsigned int size = block->size;
640 bfd_byte * block_end = buf + size;
641
642 if (block_end > end || block_end < buf)
643 {
644 block->data = NULL;
645 block->size = 0;
646 return end;
647 }
648 else
649 {
650 block->data = buf;
651 return block_end;
652 }
653 }
654
655 /* Scans a NUL terminated string starting at BUF, returning a pointer to it.
656 Returns the number of characters in the string, *including* the NUL byte,
657 in BYTES_READ_PTR. This value is set even if the function fails. Bytes
658 at or beyond BUF_END will not be read. Returns NULL if there was a
659 problem, or if the string is empty. */
660
661 static char *
662 read_string (bfd * abfd ATTRIBUTE_UNUSED,
663 bfd_byte * buf,
664 bfd_byte * buf_end,
665 unsigned int * bytes_read_ptr)
666 {
667 bfd_byte *str = buf;
668
669 if (buf >= buf_end)
670 {
671 * bytes_read_ptr = 0;
672 return NULL;
673 }
674
675 if (*str == '\0')
676 {
677 * bytes_read_ptr = 1;
678 return NULL;
679 }
680
681 while (buf < buf_end)
682 if (* buf ++ == 0)
683 {
684 * bytes_read_ptr = buf - str;
685 return (char *) str;
686 }
687
688 * bytes_read_ptr = buf - str;
689 return NULL;
690 }
691
692 /* Reads an offset from BUF and then locates the string at this offset
693 inside the debug string section. Returns a pointer to the string.
694 Returns the number of bytes read from BUF, *not* the length of the string,
695 in BYTES_READ_PTR. This value is set even if the function fails. Bytes
696 at or beyond BUF_END will not be read from BUF. Returns NULL if there was
697 a problem, or if the string is empty. Does not check for NUL termination
698 of the string. */
699
700 static char *
701 read_indirect_string (struct comp_unit * unit,
702 bfd_byte * buf,
703 bfd_byte * buf_end,
704 unsigned int * bytes_read_ptr)
705 {
706 bfd_uint64_t offset;
707 struct dwarf2_debug *stash = unit->stash;
708 char *str;
709
710 if (buf + unit->offset_size > buf_end)
711 {
712 * bytes_read_ptr = 0;
713 return NULL;
714 }
715
716 if (unit->offset_size == 4)
717 offset = read_4_bytes (unit->abfd, buf, buf_end);
718 else
719 offset = read_8_bytes (unit->abfd, buf, buf_end);
720
721 *bytes_read_ptr = unit->offset_size;
722
723 if (! read_section (unit->abfd, &stash->debug_sections[debug_str],
724 stash->syms, offset,
725 &stash->dwarf_str_buffer, &stash->dwarf_str_size))
726 return NULL;
727
728 if (offset >= stash->dwarf_str_size)
729 return NULL;
730 str = (char *) stash->dwarf_str_buffer + offset;
731 if (*str == '\0')
732 return NULL;
733 return str;
734 }
735
736 /* Like read_indirect_string but from .debug_line_str section. */
737
738 static char *
739 read_indirect_line_string (struct comp_unit * unit,
740 bfd_byte * buf,
741 bfd_byte * buf_end,
742 unsigned int * bytes_read_ptr)
743 {
744 bfd_uint64_t offset;
745 struct dwarf2_debug *stash = unit->stash;
746 char *str;
747
748 if (buf + unit->offset_size > buf_end)
749 {
750 * bytes_read_ptr = 0;
751 return NULL;
752 }
753
754 if (unit->offset_size == 4)
755 offset = read_4_bytes (unit->abfd, buf, buf_end);
756 else
757 offset = read_8_bytes (unit->abfd, buf, buf_end);
758
759 *bytes_read_ptr = unit->offset_size;
760
761 if (! read_section (unit->abfd, &stash->debug_sections[debug_line_str],
762 stash->syms, offset,
763 &stash->dwarf_line_str_buffer,
764 &stash->dwarf_line_str_size))
765 return NULL;
766
767 if (offset >= stash->dwarf_line_str_size)
768 return NULL;
769 str = (char *) stash->dwarf_line_str_buffer + offset;
770 if (*str == '\0')
771 return NULL;
772 return str;
773 }
774
775 /* Like read_indirect_string but uses a .debug_str located in
776 an alternate file pointed to by the .gnu_debugaltlink section.
777 Used to impement DW_FORM_GNU_strp_alt. */
778
779 static char *
780 read_alt_indirect_string (struct comp_unit * unit,
781 bfd_byte * buf,
782 bfd_byte * buf_end,
783 unsigned int * bytes_read_ptr)
784 {
785 bfd_uint64_t offset;
786 struct dwarf2_debug *stash = unit->stash;
787 char *str;
788
789 if (buf + unit->offset_size > buf_end)
790 {
791 * bytes_read_ptr = 0;
792 return NULL;
793 }
794
795 if (unit->offset_size == 4)
796 offset = read_4_bytes (unit->abfd, buf, buf_end);
797 else
798 offset = read_8_bytes (unit->abfd, buf, buf_end);
799
800 *bytes_read_ptr = unit->offset_size;
801
802 if (stash->alt_bfd_ptr == NULL)
803 {
804 bfd * debug_bfd;
805 char * debug_filename = bfd_follow_gnu_debugaltlink (unit->abfd, DEBUGDIR);
806
807 if (debug_filename == NULL)
808 return NULL;
809
810 if ((debug_bfd = bfd_openr (debug_filename, NULL)) == NULL
811 || ! bfd_check_format (debug_bfd, bfd_object))
812 {
813 if (debug_bfd)
814 bfd_close (debug_bfd);
815
816 /* FIXME: Should we report our failure to follow the debuglink ? */
817 free (debug_filename);
818 return NULL;
819 }
820 stash->alt_bfd_ptr = debug_bfd;
821 }
822
823 if (! read_section (unit->stash->alt_bfd_ptr,
824 stash->debug_sections + debug_str_alt,
825 NULL, /* FIXME: Do we need to load alternate symbols ? */
826 offset,
827 &stash->alt_dwarf_str_buffer,
828 &stash->alt_dwarf_str_size))
829 return NULL;
830
831 if (offset >= stash->alt_dwarf_str_size)
832 return NULL;
833 str = (char *) stash->alt_dwarf_str_buffer + offset;
834 if (*str == '\0')
835 return NULL;
836
837 return str;
838 }
839
840 /* Resolve an alternate reference from UNIT at OFFSET.
841 Returns a pointer into the loaded alternate CU upon success
842 or NULL upon failure. */
843
844 static bfd_byte *
845 read_alt_indirect_ref (struct comp_unit * unit,
846 bfd_uint64_t offset)
847 {
848 struct dwarf2_debug *stash = unit->stash;
849
850 if (stash->alt_bfd_ptr == NULL)
851 {
852 bfd * debug_bfd;
853 char * debug_filename = bfd_follow_gnu_debugaltlink (unit->abfd, DEBUGDIR);
854
855 if (debug_filename == NULL)
856 return FALSE;
857
858 if ((debug_bfd = bfd_openr (debug_filename, NULL)) == NULL
859 || ! bfd_check_format (debug_bfd, bfd_object))
860 {
861 if (debug_bfd)
862 bfd_close (debug_bfd);
863
864 /* FIXME: Should we report our failure to follow the debuglink ? */
865 free (debug_filename);
866 return NULL;
867 }
868 stash->alt_bfd_ptr = debug_bfd;
869 }
870
871 if (! read_section (unit->stash->alt_bfd_ptr,
872 stash->debug_sections + debug_info_alt,
873 NULL, /* FIXME: Do we need to load alternate symbols ? */
874 offset,
875 &stash->alt_dwarf_info_buffer,
876 &stash->alt_dwarf_info_size))
877 return NULL;
878
879 if (offset >= stash->alt_dwarf_info_size)
880 return NULL;
881 return stash->alt_dwarf_info_buffer + offset;
882 }
883
884 static bfd_uint64_t
885 read_address (struct comp_unit *unit, bfd_byte *buf, bfd_byte * buf_end)
886 {
887 int signed_vma = 0;
888
889 if (bfd_get_flavour (unit->abfd) == bfd_target_elf_flavour)
890 signed_vma = get_elf_backend_data (unit->abfd)->sign_extend_vma;
891
892 if (buf + unit->addr_size > buf_end)
893 return 0;
894
895 if (signed_vma)
896 {
897 switch (unit->addr_size)
898 {
899 case 8:
900 return bfd_get_signed_64 (unit->abfd, buf);
901 case 4:
902 return bfd_get_signed_32 (unit->abfd, buf);
903 case 2:
904 return bfd_get_signed_16 (unit->abfd, buf);
905 default:
906 abort ();
907 }
908 }
909 else
910 {
911 switch (unit->addr_size)
912 {
913 case 8:
914 return bfd_get_64 (unit->abfd, buf);
915 case 4:
916 return bfd_get_32 (unit->abfd, buf);
917 case 2:
918 return bfd_get_16 (unit->abfd, buf);
919 default:
920 abort ();
921 }
922 }
923 }
924
925 /* Lookup an abbrev_info structure in the abbrev hash table. */
926
927 static struct abbrev_info *
928 lookup_abbrev (unsigned int number, struct abbrev_info **abbrevs)
929 {
930 unsigned int hash_number;
931 struct abbrev_info *abbrev;
932
933 hash_number = number % ABBREV_HASH_SIZE;
934 abbrev = abbrevs[hash_number];
935
936 while (abbrev)
937 {
938 if (abbrev->number == number)
939 return abbrev;
940 else
941 abbrev = abbrev->next;
942 }
943
944 return NULL;
945 }
946
947 /* In DWARF version 2, the description of the debugging information is
948 stored in a separate .debug_abbrev section. Before we read any
949 dies from a section we read in all abbreviations and install them
950 in a hash table. */
951
952 static struct abbrev_info**
953 read_abbrevs (bfd *abfd, bfd_uint64_t offset, struct dwarf2_debug *stash)
954 {
955 struct abbrev_info **abbrevs;
956 bfd_byte *abbrev_ptr;
957 bfd_byte *abbrev_end;
958 struct abbrev_info *cur_abbrev;
959 unsigned int abbrev_number, bytes_read, abbrev_name;
960 unsigned int abbrev_form, hash_number;
961 bfd_size_type amt;
962
963 if (! read_section (abfd, &stash->debug_sections[debug_abbrev],
964 stash->syms, offset,
965 &stash->dwarf_abbrev_buffer, &stash->dwarf_abbrev_size))
966 return NULL;
967
968 if (offset >= stash->dwarf_abbrev_size)
969 return NULL;
970
971 amt = sizeof (struct abbrev_info*) * ABBREV_HASH_SIZE;
972 abbrevs = (struct abbrev_info **) bfd_zalloc (abfd, amt);
973 if (abbrevs == NULL)
974 return NULL;
975
976 abbrev_ptr = stash->dwarf_abbrev_buffer + offset;
977 abbrev_end = stash->dwarf_abbrev_buffer + stash->dwarf_abbrev_size;
978 abbrev_number = _bfd_safe_read_leb128 (abfd, abbrev_ptr, &bytes_read,
979 FALSE, abbrev_end);
980 abbrev_ptr += bytes_read;
981
982 /* Loop until we reach an abbrev number of 0. */
983 while (abbrev_number)
984 {
985 amt = sizeof (struct abbrev_info);
986 cur_abbrev = (struct abbrev_info *) bfd_zalloc (abfd, amt);
987 if (cur_abbrev == NULL)
988 return NULL;
989
990 /* Read in abbrev header. */
991 cur_abbrev->number = abbrev_number;
992 cur_abbrev->tag = (enum dwarf_tag)
993 _bfd_safe_read_leb128 (abfd, abbrev_ptr, &bytes_read,
994 FALSE, abbrev_end);
995 abbrev_ptr += bytes_read;
996 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr, abbrev_end);
997 abbrev_ptr += 1;
998
999 /* Now read in declarations. */
1000 for (;;)
1001 {
1002 /* Initialize it just to avoid a GCC false warning. */
1003 bfd_vma implicit_const = -1;
1004
1005 abbrev_name = _bfd_safe_read_leb128 (abfd, abbrev_ptr, &bytes_read,
1006 FALSE, abbrev_end);
1007 abbrev_ptr += bytes_read;
1008 abbrev_form = _bfd_safe_read_leb128 (abfd, abbrev_ptr, &bytes_read,
1009 FALSE, abbrev_end);
1010 abbrev_ptr += bytes_read;
1011 if (abbrev_form == DW_FORM_implicit_const)
1012 {
1013 implicit_const = _bfd_safe_read_leb128 (abfd, abbrev_ptr,
1014 &bytes_read, TRUE,
1015 abbrev_end);
1016 abbrev_ptr += bytes_read;
1017 }
1018
1019 if (abbrev_name == 0)
1020 break;
1021
1022 if ((cur_abbrev->num_attrs % ATTR_ALLOC_CHUNK) == 0)
1023 {
1024 struct attr_abbrev *tmp;
1025
1026 amt = cur_abbrev->num_attrs + ATTR_ALLOC_CHUNK;
1027 amt *= sizeof (struct attr_abbrev);
1028 tmp = (struct attr_abbrev *) bfd_realloc (cur_abbrev->attrs, amt);
1029 if (tmp == NULL)
1030 {
1031 size_t i;
1032
1033 for (i = 0; i < ABBREV_HASH_SIZE; i++)
1034 {
1035 struct abbrev_info *abbrev = abbrevs[i];
1036
1037 while (abbrev)
1038 {
1039 free (abbrev->attrs);
1040 abbrev = abbrev->next;
1041 }
1042 }
1043 return NULL;
1044 }
1045 cur_abbrev->attrs = tmp;
1046 }
1047
1048 cur_abbrev->attrs[cur_abbrev->num_attrs].name
1049 = (enum dwarf_attribute) abbrev_name;
1050 cur_abbrev->attrs[cur_abbrev->num_attrs].form
1051 = (enum dwarf_form) abbrev_form;
1052 cur_abbrev->attrs[cur_abbrev->num_attrs].implicit_const
1053 = implicit_const;
1054 ++cur_abbrev->num_attrs;
1055 }
1056
1057 hash_number = abbrev_number % ABBREV_HASH_SIZE;
1058 cur_abbrev->next = abbrevs[hash_number];
1059 abbrevs[hash_number] = cur_abbrev;
1060
1061 /* Get next abbreviation.
1062 Under Irix6 the abbreviations for a compilation unit are not
1063 always properly terminated with an abbrev number of 0.
1064 Exit loop if we encounter an abbreviation which we have
1065 already read (which means we are about to read the abbreviations
1066 for the next compile unit) or if the end of the abbreviation
1067 table is reached. */
1068 if ((unsigned int) (abbrev_ptr - stash->dwarf_abbrev_buffer)
1069 >= stash->dwarf_abbrev_size)
1070 break;
1071 abbrev_number = _bfd_safe_read_leb128 (abfd, abbrev_ptr,
1072 &bytes_read, FALSE, abbrev_end);
1073 abbrev_ptr += bytes_read;
1074 if (lookup_abbrev (abbrev_number, abbrevs) != NULL)
1075 break;
1076 }
1077
1078 return abbrevs;
1079 }
1080
1081 /* Returns true if the form is one which has a string value. */
1082
1083 static inline bfd_boolean
1084 is_str_attr (enum dwarf_form form)
1085 {
1086 return (form == DW_FORM_string || form == DW_FORM_strp
1087 || form == DW_FORM_line_strp || form == DW_FORM_GNU_strp_alt);
1088 }
1089
1090 /* Read and fill in the value of attribute ATTR as described by FORM.
1091 Read data starting from INFO_PTR, but never at or beyond INFO_PTR_END.
1092 Returns an updated INFO_PTR taking into account the amount of data read. */
1093
1094 static bfd_byte *
1095 read_attribute_value (struct attribute * attr,
1096 unsigned form,
1097 bfd_vma implicit_const,
1098 struct comp_unit * unit,
1099 bfd_byte * info_ptr,
1100 bfd_byte * info_ptr_end)
1101 {
1102 bfd *abfd = unit->abfd;
1103 unsigned int bytes_read;
1104 struct dwarf_block *blk;
1105 bfd_size_type amt;
1106
1107 if (info_ptr >= info_ptr_end && form != DW_FORM_flag_present)
1108 {
1109 _bfd_error_handler (_("DWARF error: info pointer extends beyond end of attributes"));
1110 bfd_set_error (bfd_error_bad_value);
1111 return info_ptr;
1112 }
1113
1114 attr->form = (enum dwarf_form) form;
1115
1116 switch (form)
1117 {
1118 case DW_FORM_ref_addr:
1119 /* DW_FORM_ref_addr is an address in DWARF2, and an offset in
1120 DWARF3. */
1121 if (unit->version == 3 || unit->version == 4)
1122 {
1123 if (unit->offset_size == 4)
1124 attr->u.val = read_4_bytes (unit->abfd, info_ptr, info_ptr_end);
1125 else
1126 attr->u.val = read_8_bytes (unit->abfd, info_ptr, info_ptr_end);
1127 info_ptr += unit->offset_size;
1128 break;
1129 }
1130 /* FALLTHROUGH */
1131 case DW_FORM_addr:
1132 attr->u.val = read_address (unit, info_ptr, info_ptr_end);
1133 info_ptr += unit->addr_size;
1134 break;
1135 case DW_FORM_GNU_ref_alt:
1136 case DW_FORM_sec_offset:
1137 if (unit->offset_size == 4)
1138 attr->u.val = read_4_bytes (unit->abfd, info_ptr, info_ptr_end);
1139 else
1140 attr->u.val = read_8_bytes (unit->abfd, info_ptr, info_ptr_end);
1141 info_ptr += unit->offset_size;
1142 break;
1143 case DW_FORM_block2:
1144 amt = sizeof (struct dwarf_block);
1145 blk = (struct dwarf_block *) bfd_alloc (abfd, amt);
1146 if (blk == NULL)
1147 return NULL;
1148 blk->size = read_2_bytes (abfd, info_ptr, info_ptr_end);
1149 info_ptr += 2;
1150 info_ptr = read_n_bytes (info_ptr, info_ptr_end, blk);
1151 attr->u.blk = blk;
1152 break;
1153 case DW_FORM_block4:
1154 amt = sizeof (struct dwarf_block);
1155 blk = (struct dwarf_block *) bfd_alloc (abfd, amt);
1156 if (blk == NULL)
1157 return NULL;
1158 blk->size = read_4_bytes (abfd, info_ptr, info_ptr_end);
1159 info_ptr += 4;
1160 info_ptr = read_n_bytes (info_ptr, info_ptr_end, blk);
1161 attr->u.blk = blk;
1162 break;
1163 case DW_FORM_data2:
1164 attr->u.val = read_2_bytes (abfd, info_ptr, info_ptr_end);
1165 info_ptr += 2;
1166 break;
1167 case DW_FORM_data4:
1168 attr->u.val = read_4_bytes (abfd, info_ptr, info_ptr_end);
1169 info_ptr += 4;
1170 break;
1171 case DW_FORM_data8:
1172 attr->u.val = read_8_bytes (abfd, info_ptr, info_ptr_end);
1173 info_ptr += 8;
1174 break;
1175 case DW_FORM_string:
1176 attr->u.str = read_string (abfd, info_ptr, info_ptr_end, &bytes_read);
1177 info_ptr += bytes_read;
1178 break;
1179 case DW_FORM_strp:
1180 attr->u.str = read_indirect_string (unit, info_ptr, info_ptr_end, &bytes_read);
1181 info_ptr += bytes_read;
1182 break;
1183 case DW_FORM_line_strp:
1184 attr->u.str = read_indirect_line_string (unit, info_ptr, info_ptr_end, &bytes_read);
1185 info_ptr += bytes_read;
1186 break;
1187 case DW_FORM_GNU_strp_alt:
1188 attr->u.str = read_alt_indirect_string (unit, info_ptr, info_ptr_end, &bytes_read);
1189 info_ptr += bytes_read;
1190 break;
1191 case DW_FORM_exprloc:
1192 case DW_FORM_block:
1193 amt = sizeof (struct dwarf_block);
1194 blk = (struct dwarf_block *) bfd_alloc (abfd, amt);
1195 if (blk == NULL)
1196 return NULL;
1197 blk->size = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
1198 FALSE, info_ptr_end);
1199 info_ptr += bytes_read;
1200 info_ptr = read_n_bytes (info_ptr, info_ptr_end, blk);
1201 attr->u.blk = blk;
1202 break;
1203 case DW_FORM_block1:
1204 amt = sizeof (struct dwarf_block);
1205 blk = (struct dwarf_block *) bfd_alloc (abfd, amt);
1206 if (blk == NULL)
1207 return NULL;
1208 blk->size = read_1_byte (abfd, info_ptr, info_ptr_end);
1209 info_ptr += 1;
1210 info_ptr = read_n_bytes (info_ptr, info_ptr_end, blk);
1211 attr->u.blk = blk;
1212 break;
1213 case DW_FORM_data1:
1214 attr->u.val = read_1_byte (abfd, info_ptr, info_ptr_end);
1215 info_ptr += 1;
1216 break;
1217 case DW_FORM_flag:
1218 attr->u.val = read_1_byte (abfd, info_ptr, info_ptr_end);
1219 info_ptr += 1;
1220 break;
1221 case DW_FORM_flag_present:
1222 attr->u.val = 1;
1223 break;
1224 case DW_FORM_sdata:
1225 attr->u.sval = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
1226 TRUE, info_ptr_end);
1227 info_ptr += bytes_read;
1228 break;
1229 case DW_FORM_udata:
1230 attr->u.val = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
1231 FALSE, info_ptr_end);
1232 info_ptr += bytes_read;
1233 break;
1234 case DW_FORM_ref1:
1235 attr->u.val = read_1_byte (abfd, info_ptr, info_ptr_end);
1236 info_ptr += 1;
1237 break;
1238 case DW_FORM_ref2:
1239 attr->u.val = read_2_bytes (abfd, info_ptr, info_ptr_end);
1240 info_ptr += 2;
1241 break;
1242 case DW_FORM_ref4:
1243 attr->u.val = read_4_bytes (abfd, info_ptr, info_ptr_end);
1244 info_ptr += 4;
1245 break;
1246 case DW_FORM_ref8:
1247 attr->u.val = read_8_bytes (abfd, info_ptr, info_ptr_end);
1248 info_ptr += 8;
1249 break;
1250 case DW_FORM_ref_sig8:
1251 attr->u.val = read_8_bytes (abfd, info_ptr, info_ptr_end);
1252 info_ptr += 8;
1253 break;
1254 case DW_FORM_ref_udata:
1255 attr->u.val = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
1256 FALSE, info_ptr_end);
1257 info_ptr += bytes_read;
1258 break;
1259 case DW_FORM_indirect:
1260 form = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
1261 FALSE, info_ptr_end);
1262 info_ptr += bytes_read;
1263 if (form == DW_FORM_implicit_const)
1264 {
1265 implicit_const = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
1266 TRUE, info_ptr_end);
1267 info_ptr += bytes_read;
1268 }
1269 info_ptr = read_attribute_value (attr, form, implicit_const, unit,
1270 info_ptr, info_ptr_end);
1271 break;
1272 case DW_FORM_implicit_const:
1273 attr->form = DW_FORM_sdata;
1274 attr->u.sval = implicit_const;
1275 break;
1276 default:
1277 _bfd_error_handler (_("DWARF error: invalid or unhandled FORM value: %#x"),
1278 form);
1279 bfd_set_error (bfd_error_bad_value);
1280 return NULL;
1281 }
1282 return info_ptr;
1283 }
1284
1285 /* Read an attribute described by an abbreviated attribute. */
1286
1287 static bfd_byte *
1288 read_attribute (struct attribute * attr,
1289 struct attr_abbrev * abbrev,
1290 struct comp_unit * unit,
1291 bfd_byte * info_ptr,
1292 bfd_byte * info_ptr_end)
1293 {
1294 attr->name = abbrev->name;
1295 info_ptr = read_attribute_value (attr, abbrev->form, abbrev->implicit_const,
1296 unit, info_ptr, info_ptr_end);
1297 return info_ptr;
1298 }
1299
1300 /* Return whether DW_AT_name will return the same as DW_AT_linkage_name
1301 for a function. */
1302
1303 static bfd_boolean
1304 non_mangled (int lang)
1305 {
1306 switch (lang)
1307 {
1308 default:
1309 return FALSE;
1310
1311 case DW_LANG_C89:
1312 case DW_LANG_C:
1313 case DW_LANG_Ada83:
1314 case DW_LANG_Cobol74:
1315 case DW_LANG_Cobol85:
1316 case DW_LANG_Fortran77:
1317 case DW_LANG_Pascal83:
1318 case DW_LANG_C99:
1319 case DW_LANG_Ada95:
1320 case DW_LANG_PLI:
1321 case DW_LANG_UPC:
1322 case DW_LANG_C11:
1323 return TRUE;
1324 }
1325 }
1326
1327 /* Source line information table routines. */
1328
1329 #define FILE_ALLOC_CHUNK 5
1330 #define DIR_ALLOC_CHUNK 5
1331
1332 struct line_info
1333 {
1334 struct line_info * prev_line;
1335 bfd_vma address;
1336 char * filename;
1337 unsigned int line;
1338 unsigned int column;
1339 unsigned int discriminator;
1340 unsigned char op_index;
1341 unsigned char end_sequence; /* End of (sequential) code sequence. */
1342 };
1343
1344 struct fileinfo
1345 {
1346 char * name;
1347 unsigned int dir;
1348 unsigned int time;
1349 unsigned int size;
1350 };
1351
1352 struct line_sequence
1353 {
1354 bfd_vma low_pc;
1355 struct line_sequence* prev_sequence;
1356 struct line_info* last_line; /* Largest VMA. */
1357 struct line_info** line_info_lookup;
1358 bfd_size_type num_lines;
1359 };
1360
1361 struct line_info_table
1362 {
1363 bfd * abfd;
1364 unsigned int num_files;
1365 unsigned int num_dirs;
1366 unsigned int num_sequences;
1367 char * comp_dir;
1368 char ** dirs;
1369 struct fileinfo* files;
1370 struct line_sequence* sequences;
1371 struct line_info* lcl_head; /* Local head; used in 'add_line_info'. */
1372 };
1373
1374 /* Remember some information about each function. If the function is
1375 inlined (DW_TAG_inlined_subroutine) it may have two additional
1376 attributes, DW_AT_call_file and DW_AT_call_line, which specify the
1377 source code location where this function was inlined. */
1378
1379 struct funcinfo
1380 {
1381 /* Pointer to previous function in list of all functions. */
1382 struct funcinfo * prev_func;
1383 /* Pointer to function one scope higher. */
1384 struct funcinfo * caller_func;
1385 /* Source location file name where caller_func inlines this func. */
1386 char * caller_file;
1387 /* Source location file name. */
1388 char * file;
1389 /* Source location line number where caller_func inlines this func. */
1390 int caller_line;
1391 /* Source location line number. */
1392 int line;
1393 int tag;
1394 bfd_boolean is_linkage;
1395 const char * name;
1396 struct arange arange;
1397 /* Where the symbol is defined. */
1398 asection * sec;
1399 };
1400
1401 struct lookup_funcinfo
1402 {
1403 /* Function information corresponding to this lookup table entry. */
1404 struct funcinfo * funcinfo;
1405
1406 /* The lowest address for this specific function. */
1407 bfd_vma low_addr;
1408
1409 /* The highest address of this function before the lookup table is sorted.
1410 The highest address of all prior functions after the lookup table is
1411 sorted, which is used for binary search. */
1412 bfd_vma high_addr;
1413 };
1414
1415 struct varinfo
1416 {
1417 /* Pointer to previous variable in list of all variables */
1418 struct varinfo *prev_var;
1419 /* Source location file name */
1420 char *file;
1421 /* Source location line number */
1422 int line;
1423 int tag;
1424 char *name;
1425 bfd_vma addr;
1426 /* Where the symbol is defined */
1427 asection *sec;
1428 /* Is this a stack variable? */
1429 unsigned int stack: 1;
1430 };
1431
1432 /* Return TRUE if NEW_LINE should sort after LINE. */
1433
1434 static inline bfd_boolean
1435 new_line_sorts_after (struct line_info *new_line, struct line_info *line)
1436 {
1437 return (new_line->address > line->address
1438 || (new_line->address == line->address
1439 && new_line->op_index > line->op_index));
1440 }
1441
1442
1443 /* Adds a new entry to the line_info list in the line_info_table, ensuring
1444 that the list is sorted. Note that the line_info list is sorted from
1445 highest to lowest VMA (with possible duplicates); that is,
1446 line_info->prev_line always accesses an equal or smaller VMA. */
1447
1448 static bfd_boolean
1449 add_line_info (struct line_info_table *table,
1450 bfd_vma address,
1451 unsigned char op_index,
1452 char *filename,
1453 unsigned int line,
1454 unsigned int column,
1455 unsigned int discriminator,
1456 int end_sequence)
1457 {
1458 bfd_size_type amt = sizeof (struct line_info);
1459 struct line_sequence* seq = table->sequences;
1460 struct line_info* info = (struct line_info *) bfd_alloc (table->abfd, amt);
1461
1462 if (info == NULL)
1463 return FALSE;
1464
1465 /* Set member data of 'info'. */
1466 info->prev_line = NULL;
1467 info->address = address;
1468 info->op_index = op_index;
1469 info->line = line;
1470 info->column = column;
1471 info->discriminator = discriminator;
1472 info->end_sequence = end_sequence;
1473
1474 if (filename && filename[0])
1475 {
1476 info->filename = (char *) bfd_alloc (table->abfd, strlen (filename) + 1);
1477 if (info->filename == NULL)
1478 return FALSE;
1479 strcpy (info->filename, filename);
1480 }
1481 else
1482 info->filename = NULL;
1483
1484 /* Find the correct location for 'info'. Normally we will receive
1485 new line_info data 1) in order and 2) with increasing VMAs.
1486 However some compilers break the rules (cf. decode_line_info) and
1487 so we include some heuristics for quickly finding the correct
1488 location for 'info'. In particular, these heuristics optimize for
1489 the common case in which the VMA sequence that we receive is a
1490 list of locally sorted VMAs such as
1491 p...z a...j (where a < j < p < z)
1492
1493 Note: table->lcl_head is used to head an *actual* or *possible*
1494 sub-sequence within the list (such as a...j) that is not directly
1495 headed by table->last_line
1496
1497 Note: we may receive duplicate entries from 'decode_line_info'. */
1498
1499 if (seq
1500 && seq->last_line->address == address
1501 && seq->last_line->op_index == op_index
1502 && seq->last_line->end_sequence == end_sequence)
1503 {
1504 /* We only keep the last entry with the same address and end
1505 sequence. See PR ld/4986. */
1506 if (table->lcl_head == seq->last_line)
1507 table->lcl_head = info;
1508 info->prev_line = seq->last_line->prev_line;
1509 seq->last_line = info;
1510 }
1511 else if (!seq || seq->last_line->end_sequence)
1512 {
1513 /* Start a new line sequence. */
1514 amt = sizeof (struct line_sequence);
1515 seq = (struct line_sequence *) bfd_malloc (amt);
1516 if (seq == NULL)
1517 return FALSE;
1518 seq->low_pc = address;
1519 seq->prev_sequence = table->sequences;
1520 seq->last_line = info;
1521 table->lcl_head = info;
1522 table->sequences = seq;
1523 table->num_sequences++;
1524 }
1525 else if (info->end_sequence
1526 || new_line_sorts_after (info, seq->last_line))
1527 {
1528 /* Normal case: add 'info' to the beginning of the current sequence. */
1529 info->prev_line = seq->last_line;
1530 seq->last_line = info;
1531
1532 /* lcl_head: initialize to head a *possible* sequence at the end. */
1533 if (!table->lcl_head)
1534 table->lcl_head = info;
1535 }
1536 else if (!new_line_sorts_after (info, table->lcl_head)
1537 && (!table->lcl_head->prev_line
1538 || new_line_sorts_after (info, table->lcl_head->prev_line)))
1539 {
1540 /* Abnormal but easy: lcl_head is the head of 'info'. */
1541 info->prev_line = table->lcl_head->prev_line;
1542 table->lcl_head->prev_line = info;
1543 }
1544 else
1545 {
1546 /* Abnormal and hard: Neither 'last_line' nor 'lcl_head'
1547 are valid heads for 'info'. Reset 'lcl_head'. */
1548 struct line_info* li2 = seq->last_line; /* Always non-NULL. */
1549 struct line_info* li1 = li2->prev_line;
1550
1551 while (li1)
1552 {
1553 if (!new_line_sorts_after (info, li2)
1554 && new_line_sorts_after (info, li1))
1555 break;
1556
1557 li2 = li1; /* always non-NULL */
1558 li1 = li1->prev_line;
1559 }
1560 table->lcl_head = li2;
1561 info->prev_line = table->lcl_head->prev_line;
1562 table->lcl_head->prev_line = info;
1563 if (address < seq->low_pc)
1564 seq->low_pc = address;
1565 }
1566 return TRUE;
1567 }
1568
1569 /* Extract a fully qualified filename from a line info table.
1570 The returned string has been malloc'ed and it is the caller's
1571 responsibility to free it. */
1572
1573 static char *
1574 concat_filename (struct line_info_table *table, unsigned int file)
1575 {
1576 char *filename;
1577
1578 if (table == NULL || file - 1 >= table->num_files)
1579 {
1580 /* FILE == 0 means unknown. */
1581 if (file)
1582 _bfd_error_handler
1583 (_("DWARF error: mangled line number section (bad file number)"));
1584 return strdup ("<unknown>");
1585 }
1586
1587 filename = table->files[file - 1].name;
1588 if (filename == NULL)
1589 return strdup ("<unknown>");
1590
1591 if (!IS_ABSOLUTE_PATH (filename))
1592 {
1593 char *dir_name = NULL;
1594 char *subdir_name = NULL;
1595 char *name;
1596 size_t len;
1597
1598 if (table->files[file - 1].dir
1599 /* PR 17512: file: 0317e960. */
1600 && table->files[file - 1].dir <= table->num_dirs
1601 /* PR 17512: file: 7f3d2e4b. */
1602 && table->dirs != NULL)
1603 subdir_name = table->dirs[table->files[file - 1].dir - 1];
1604
1605 if (!subdir_name || !IS_ABSOLUTE_PATH (subdir_name))
1606 dir_name = table->comp_dir;
1607
1608 if (!dir_name)
1609 {
1610 dir_name = subdir_name;
1611 subdir_name = NULL;
1612 }
1613
1614 if (!dir_name)
1615 return strdup (filename);
1616
1617 len = strlen (dir_name) + strlen (filename) + 2;
1618
1619 if (subdir_name)
1620 {
1621 len += strlen (subdir_name) + 1;
1622 name = (char *) bfd_malloc (len);
1623 if (name)
1624 sprintf (name, "%s/%s/%s", dir_name, subdir_name, filename);
1625 }
1626 else
1627 {
1628 name = (char *) bfd_malloc (len);
1629 if (name)
1630 sprintf (name, "%s/%s", dir_name, filename);
1631 }
1632
1633 return name;
1634 }
1635
1636 return strdup (filename);
1637 }
1638
1639 static bfd_boolean
1640 arange_add (const struct comp_unit *unit, struct arange *first_arange,
1641 bfd_vma low_pc, bfd_vma high_pc)
1642 {
1643 struct arange *arange;
1644
1645 /* Ignore empty ranges. */
1646 if (low_pc == high_pc)
1647 return TRUE;
1648
1649 /* If the first arange is empty, use it. */
1650 if (first_arange->high == 0)
1651 {
1652 first_arange->low = low_pc;
1653 first_arange->high = high_pc;
1654 return TRUE;
1655 }
1656
1657 /* Next see if we can cheaply extend an existing range. */
1658 arange = first_arange;
1659 do
1660 {
1661 if (low_pc == arange->high)
1662 {
1663 arange->high = high_pc;
1664 return TRUE;
1665 }
1666 if (high_pc == arange->low)
1667 {
1668 arange->low = low_pc;
1669 return TRUE;
1670 }
1671 arange = arange->next;
1672 }
1673 while (arange);
1674
1675 /* Need to allocate a new arange and insert it into the arange list.
1676 Order isn't significant, so just insert after the first arange. */
1677 arange = (struct arange *) bfd_alloc (unit->abfd, sizeof (*arange));
1678 if (arange == NULL)
1679 return FALSE;
1680 arange->low = low_pc;
1681 arange->high = high_pc;
1682 arange->next = first_arange->next;
1683 first_arange->next = arange;
1684 return TRUE;
1685 }
1686
1687 /* Compare function for line sequences. */
1688
1689 static int
1690 compare_sequences (const void* a, const void* b)
1691 {
1692 const struct line_sequence* seq1 = a;
1693 const struct line_sequence* seq2 = b;
1694
1695 /* Sort by low_pc as the primary key. */
1696 if (seq1->low_pc < seq2->low_pc)
1697 return -1;
1698 if (seq1->low_pc > seq2->low_pc)
1699 return 1;
1700
1701 /* If low_pc values are equal, sort in reverse order of
1702 high_pc, so that the largest region comes first. */
1703 if (seq1->last_line->address < seq2->last_line->address)
1704 return 1;
1705 if (seq1->last_line->address > seq2->last_line->address)
1706 return -1;
1707
1708 if (seq1->last_line->op_index < seq2->last_line->op_index)
1709 return 1;
1710 if (seq1->last_line->op_index > seq2->last_line->op_index)
1711 return -1;
1712
1713 return 0;
1714 }
1715
1716 /* Construct the line information table for quick lookup. */
1717
1718 static bfd_boolean
1719 build_line_info_table (struct line_info_table * table,
1720 struct line_sequence * seq)
1721 {
1722 bfd_size_type amt;
1723 struct line_info** line_info_lookup;
1724 struct line_info* each_line;
1725 unsigned int num_lines;
1726 unsigned int line_index;
1727
1728 if (seq->line_info_lookup != NULL)
1729 return TRUE;
1730
1731 /* Count the number of line information entries. We could do this while
1732 scanning the debug information, but some entries may be added via
1733 lcl_head without having a sequence handy to increment the number of
1734 lines. */
1735 num_lines = 0;
1736 for (each_line = seq->last_line; each_line; each_line = each_line->prev_line)
1737 num_lines++;
1738
1739 if (num_lines == 0)
1740 return TRUE;
1741
1742 /* Allocate space for the line information lookup table. */
1743 amt = sizeof (struct line_info*) * num_lines;
1744 line_info_lookup = (struct line_info**) bfd_alloc (table->abfd, amt);
1745 if (line_info_lookup == NULL)
1746 return FALSE;
1747
1748 /* Create the line information lookup table. */
1749 line_index = num_lines;
1750 for (each_line = seq->last_line; each_line; each_line = each_line->prev_line)
1751 line_info_lookup[--line_index] = each_line;
1752
1753 BFD_ASSERT (line_index == 0);
1754
1755 seq->num_lines = num_lines;
1756 seq->line_info_lookup = line_info_lookup;
1757
1758 return TRUE;
1759 }
1760
1761 /* Sort the line sequences for quick lookup. */
1762
1763 static bfd_boolean
1764 sort_line_sequences (struct line_info_table* table)
1765 {
1766 bfd_size_type amt;
1767 struct line_sequence* sequences;
1768 struct line_sequence* seq;
1769 unsigned int n = 0;
1770 unsigned int num_sequences = table->num_sequences;
1771 bfd_vma last_high_pc;
1772
1773 if (num_sequences == 0)
1774 return TRUE;
1775
1776 /* Allocate space for an array of sequences. */
1777 amt = sizeof (struct line_sequence) * num_sequences;
1778 sequences = (struct line_sequence *) bfd_alloc (table->abfd, amt);
1779 if (sequences == NULL)
1780 return FALSE;
1781
1782 /* Copy the linked list into the array, freeing the original nodes. */
1783 seq = table->sequences;
1784 for (n = 0; n < num_sequences; n++)
1785 {
1786 struct line_sequence* last_seq = seq;
1787
1788 BFD_ASSERT (seq);
1789 sequences[n].low_pc = seq->low_pc;
1790 sequences[n].prev_sequence = NULL;
1791 sequences[n].last_line = seq->last_line;
1792 sequences[n].line_info_lookup = NULL;
1793 sequences[n].num_lines = 0;
1794 seq = seq->prev_sequence;
1795 free (last_seq);
1796 }
1797 BFD_ASSERT (seq == NULL);
1798
1799 qsort (sequences, n, sizeof (struct line_sequence), compare_sequences);
1800
1801 /* Make the list binary-searchable by trimming overlapping entries
1802 and removing nested entries. */
1803 num_sequences = 1;
1804 last_high_pc = sequences[0].last_line->address;
1805 for (n = 1; n < table->num_sequences; n++)
1806 {
1807 if (sequences[n].low_pc < last_high_pc)
1808 {
1809 if (sequences[n].last_line->address <= last_high_pc)
1810 /* Skip nested entries. */
1811 continue;
1812
1813 /* Trim overlapping entries. */
1814 sequences[n].low_pc = last_high_pc;
1815 }
1816 last_high_pc = sequences[n].last_line->address;
1817 if (n > num_sequences)
1818 {
1819 /* Close up the gap. */
1820 sequences[num_sequences].low_pc = sequences[n].low_pc;
1821 sequences[num_sequences].last_line = sequences[n].last_line;
1822 }
1823 num_sequences++;
1824 }
1825
1826 table->sequences = sequences;
1827 table->num_sequences = num_sequences;
1828 return TRUE;
1829 }
1830
1831 /* Add directory to TABLE. CUR_DIR memory ownership is taken by TABLE. */
1832
1833 static bfd_boolean
1834 line_info_add_include_dir (struct line_info_table *table, char *cur_dir)
1835 {
1836 if ((table->num_dirs % DIR_ALLOC_CHUNK) == 0)
1837 {
1838 char **tmp;
1839 bfd_size_type amt;
1840
1841 amt = table->num_dirs + DIR_ALLOC_CHUNK;
1842 amt *= sizeof (char *);
1843
1844 tmp = (char **) bfd_realloc (table->dirs, amt);
1845 if (tmp == NULL)
1846 return FALSE;
1847 table->dirs = tmp;
1848 }
1849
1850 table->dirs[table->num_dirs++] = cur_dir;
1851 return TRUE;
1852 }
1853
1854 static bfd_boolean
1855 line_info_add_include_dir_stub (struct line_info_table *table, char *cur_dir,
1856 unsigned int dir ATTRIBUTE_UNUSED,
1857 unsigned int xtime ATTRIBUTE_UNUSED,
1858 unsigned int size ATTRIBUTE_UNUSED)
1859 {
1860 return line_info_add_include_dir (table, cur_dir);
1861 }
1862
1863 /* Add file to TABLE. CUR_FILE memory ownership is taken by TABLE. */
1864
1865 static bfd_boolean
1866 line_info_add_file_name (struct line_info_table *table, char *cur_file,
1867 unsigned int dir, unsigned int xtime,
1868 unsigned int size)
1869 {
1870 if ((table->num_files % FILE_ALLOC_CHUNK) == 0)
1871 {
1872 struct fileinfo *tmp;
1873 bfd_size_type amt;
1874
1875 amt = table->num_files + FILE_ALLOC_CHUNK;
1876 amt *= sizeof (struct fileinfo);
1877
1878 tmp = (struct fileinfo *) bfd_realloc (table->files, amt);
1879 if (tmp == NULL)
1880 return FALSE;
1881 table->files = tmp;
1882 }
1883
1884 table->files[table->num_files].name = cur_file;
1885 table->files[table->num_files].dir = dir;
1886 table->files[table->num_files].time = xtime;
1887 table->files[table->num_files].size = size;
1888 table->num_files++;
1889 return TRUE;
1890 }
1891
1892 /* Read directory or file name entry format, starting with byte of
1893 format count entries, ULEB128 pairs of entry formats, ULEB128 of
1894 entries count and the entries themselves in the described entry
1895 format. */
1896
1897 static bfd_boolean
1898 read_formatted_entries (struct comp_unit *unit, bfd_byte **bufp,
1899 bfd_byte *buf_end, struct line_info_table *table,
1900 bfd_boolean (*callback) (struct line_info_table *table,
1901 char *cur_file,
1902 unsigned int dir,
1903 unsigned int time,
1904 unsigned int size))
1905 {
1906 bfd *abfd = unit->abfd;
1907 bfd_byte format_count, formati;
1908 bfd_vma data_count, datai;
1909 bfd_byte *buf = *bufp;
1910 bfd_byte *format_header_data;
1911 unsigned int bytes_read;
1912
1913 format_count = read_1_byte (abfd, buf, buf_end);
1914 buf += 1;
1915 format_header_data = buf;
1916 for (formati = 0; formati < format_count; formati++)
1917 {
1918 _bfd_safe_read_leb128 (abfd, buf, &bytes_read, FALSE, buf_end);
1919 buf += bytes_read;
1920 _bfd_safe_read_leb128 (abfd, buf, &bytes_read, FALSE, buf_end);
1921 buf += bytes_read;
1922 }
1923
1924 data_count = _bfd_safe_read_leb128 (abfd, buf, &bytes_read, FALSE, buf_end);
1925 buf += bytes_read;
1926 if (format_count == 0 && data_count != 0)
1927 {
1928 _bfd_error_handler (_("DWARF error: zero format count"));
1929 bfd_set_error (bfd_error_bad_value);
1930 return FALSE;
1931 }
1932
1933 /* PR 22210. Paranoia check. Don't bother running the loop
1934 if we know that we are going to run out of buffer. */
1935 if (data_count > (bfd_vma) (buf_end - buf))
1936 {
1937 _bfd_error_handler
1938 (_("DWARF error: data count (%" PRIx64 ") larger than buffer size"),
1939 (uint64_t) data_count);
1940 bfd_set_error (bfd_error_bad_value);
1941 return FALSE;
1942 }
1943
1944 for (datai = 0; datai < data_count; datai++)
1945 {
1946 bfd_byte *format = format_header_data;
1947 struct fileinfo fe;
1948
1949 memset (&fe, 0, sizeof fe);
1950 for (formati = 0; formati < format_count; formati++)
1951 {
1952 bfd_vma content_type, form;
1953 char *string_trash;
1954 char **stringp = &string_trash;
1955 unsigned int uint_trash, *uintp = &uint_trash;
1956 struct attribute attr;
1957
1958 content_type = _bfd_safe_read_leb128 (abfd, format, &bytes_read,
1959 FALSE, buf_end);
1960 format += bytes_read;
1961 switch (content_type)
1962 {
1963 case DW_LNCT_path:
1964 stringp = &fe.name;
1965 break;
1966 case DW_LNCT_directory_index:
1967 uintp = &fe.dir;
1968 break;
1969 case DW_LNCT_timestamp:
1970 uintp = &fe.time;
1971 break;
1972 case DW_LNCT_size:
1973 uintp = &fe.size;
1974 break;
1975 case DW_LNCT_MD5:
1976 break;
1977 default:
1978 _bfd_error_handler
1979 (_("DWARF error: unknown format content type %" PRIu64),
1980 (uint64_t) content_type);
1981 bfd_set_error (bfd_error_bad_value);
1982 return FALSE;
1983 }
1984
1985 form = _bfd_safe_read_leb128 (abfd, format, &bytes_read, FALSE,
1986 buf_end);
1987 format += bytes_read;
1988
1989 buf = read_attribute_value (&attr, form, 0, unit, buf, buf_end);
1990 if (buf == NULL)
1991 return FALSE;
1992 switch (form)
1993 {
1994 case DW_FORM_string:
1995 case DW_FORM_line_strp:
1996 *stringp = attr.u.str;
1997 break;
1998
1999 case DW_FORM_data1:
2000 case DW_FORM_data2:
2001 case DW_FORM_data4:
2002 case DW_FORM_data8:
2003 case DW_FORM_udata:
2004 *uintp = attr.u.val;
2005 break;
2006 }
2007 }
2008
2009 if (!callback (table, fe.name, fe.dir, fe.time, fe.size))
2010 return FALSE;
2011 }
2012
2013 *bufp = buf;
2014 return TRUE;
2015 }
2016
2017 /* Decode the line number information for UNIT. */
2018
2019 static struct line_info_table*
2020 decode_line_info (struct comp_unit *unit, struct dwarf2_debug *stash)
2021 {
2022 bfd *abfd = unit->abfd;
2023 struct line_info_table* table;
2024 bfd_byte *line_ptr;
2025 bfd_byte *line_end;
2026 struct line_head lh;
2027 unsigned int i, bytes_read, offset_size;
2028 char *cur_file, *cur_dir;
2029 unsigned char op_code, extended_op, adj_opcode;
2030 unsigned int exop_len;
2031 bfd_size_type amt;
2032
2033 if (! read_section (abfd, &stash->debug_sections[debug_line],
2034 stash->syms, unit->line_offset,
2035 &stash->dwarf_line_buffer, &stash->dwarf_line_size))
2036 return NULL;
2037
2038 amt = sizeof (struct line_info_table);
2039 table = (struct line_info_table *) bfd_alloc (abfd, amt);
2040 if (table == NULL)
2041 return NULL;
2042 table->abfd = abfd;
2043 table->comp_dir = unit->comp_dir;
2044
2045 table->num_files = 0;
2046 table->files = NULL;
2047
2048 table->num_dirs = 0;
2049 table->dirs = NULL;
2050
2051 table->num_sequences = 0;
2052 table->sequences = NULL;
2053
2054 table->lcl_head = NULL;
2055
2056 if (stash->dwarf_line_size < 16)
2057 {
2058 _bfd_error_handler
2059 (_("DWARF error: line info section is too small (%" PRId64 ")"),
2060 (int64_t) stash->dwarf_line_size);
2061 bfd_set_error (bfd_error_bad_value);
2062 return NULL;
2063 }
2064 line_ptr = stash->dwarf_line_buffer + unit->line_offset;
2065 line_end = stash->dwarf_line_buffer + stash->dwarf_line_size;
2066
2067 /* Read in the prologue. */
2068 lh.total_length = read_4_bytes (abfd, line_ptr, line_end);
2069 line_ptr += 4;
2070 offset_size = 4;
2071 if (lh.total_length == 0xffffffff)
2072 {
2073 lh.total_length = read_8_bytes (abfd, line_ptr, line_end);
2074 line_ptr += 8;
2075 offset_size = 8;
2076 }
2077 else if (lh.total_length == 0 && unit->addr_size == 8)
2078 {
2079 /* Handle (non-standard) 64-bit DWARF2 formats. */
2080 lh.total_length = read_4_bytes (abfd, line_ptr, line_end);
2081 line_ptr += 4;
2082 offset_size = 8;
2083 }
2084
2085 if (lh.total_length > (size_t) (line_end - line_ptr))
2086 {
2087 _bfd_error_handler
2088 /* xgettext: c-format */
2089 (_("DWARF error: line info data is bigger (%#" PRIx64 ")"
2090 " than the space remaining in the section (%#lx)"),
2091 (uint64_t) lh.total_length, (unsigned long) (line_end - line_ptr));
2092 bfd_set_error (bfd_error_bad_value);
2093 return NULL;
2094 }
2095
2096 line_end = line_ptr + lh.total_length;
2097
2098 lh.version = read_2_bytes (abfd, line_ptr, line_end);
2099 if (lh.version < 2 || lh.version > 5)
2100 {
2101 _bfd_error_handler
2102 (_("DWARF error: unhandled .debug_line version %d"), lh.version);
2103 bfd_set_error (bfd_error_bad_value);
2104 return NULL;
2105 }
2106 line_ptr += 2;
2107
2108 if (line_ptr + offset_size + (lh.version >= 5 ? 8 : (lh.version >= 4 ? 6 : 5))
2109 >= line_end)
2110 {
2111 _bfd_error_handler
2112 (_("DWARF error: ran out of room reading prologue"));
2113 bfd_set_error (bfd_error_bad_value);
2114 return NULL;
2115 }
2116
2117 if (lh.version >= 5)
2118 {
2119 unsigned int segment_selector_size;
2120
2121 /* Skip address size. */
2122 read_1_byte (abfd, line_ptr, line_end);
2123 line_ptr += 1;
2124
2125 segment_selector_size = read_1_byte (abfd, line_ptr, line_end);
2126 line_ptr += 1;
2127 if (segment_selector_size != 0)
2128 {
2129 _bfd_error_handler
2130 (_("DWARF error: line info unsupported segment selector size %u"),
2131 segment_selector_size);
2132 bfd_set_error (bfd_error_bad_value);
2133 return NULL;
2134 }
2135 }
2136
2137 if (offset_size == 4)
2138 lh.prologue_length = read_4_bytes (abfd, line_ptr, line_end);
2139 else
2140 lh.prologue_length = read_8_bytes (abfd, line_ptr, line_end);
2141 line_ptr += offset_size;
2142
2143 lh.minimum_instruction_length = read_1_byte (abfd, line_ptr, line_end);
2144 line_ptr += 1;
2145
2146 if (lh.version >= 4)
2147 {
2148 lh.maximum_ops_per_insn = read_1_byte (abfd, line_ptr, line_end);
2149 line_ptr += 1;
2150 }
2151 else
2152 lh.maximum_ops_per_insn = 1;
2153
2154 if (lh.maximum_ops_per_insn == 0)
2155 {
2156 _bfd_error_handler
2157 (_("DWARF error: invalid maximum operations per instruction"));
2158 bfd_set_error (bfd_error_bad_value);
2159 return NULL;
2160 }
2161
2162 lh.default_is_stmt = read_1_byte (abfd, line_ptr, line_end);
2163 line_ptr += 1;
2164
2165 lh.line_base = read_1_signed_byte (abfd, line_ptr, line_end);
2166 line_ptr += 1;
2167
2168 lh.line_range = read_1_byte (abfd, line_ptr, line_end);
2169 line_ptr += 1;
2170
2171 lh.opcode_base = read_1_byte (abfd, line_ptr, line_end);
2172 line_ptr += 1;
2173
2174 if (line_ptr + (lh.opcode_base - 1) >= line_end)
2175 {
2176 _bfd_error_handler (_("DWARF error: ran out of room reading opcodes"));
2177 bfd_set_error (bfd_error_bad_value);
2178 return NULL;
2179 }
2180
2181 amt = lh.opcode_base * sizeof (unsigned char);
2182 lh.standard_opcode_lengths = (unsigned char *) bfd_alloc (abfd, amt);
2183
2184 lh.standard_opcode_lengths[0] = 1;
2185
2186 for (i = 1; i < lh.opcode_base; ++i)
2187 {
2188 lh.standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr, line_end);
2189 line_ptr += 1;
2190 }
2191
2192 if (lh.version >= 5)
2193 {
2194 /* Read directory table. */
2195 if (!read_formatted_entries (unit, &line_ptr, line_end, table,
2196 line_info_add_include_dir_stub))
2197 goto fail;
2198
2199 /* Read file name table. */
2200 if (!read_formatted_entries (unit, &line_ptr, line_end, table,
2201 line_info_add_file_name))
2202 goto fail;
2203 }
2204 else
2205 {
2206 /* Read directory table. */
2207 while ((cur_dir = read_string (abfd, line_ptr, line_end, &bytes_read)) != NULL)
2208 {
2209 line_ptr += bytes_read;
2210
2211 if (!line_info_add_include_dir (table, cur_dir))
2212 goto fail;
2213 }
2214
2215 line_ptr += bytes_read;
2216
2217 /* Read file name table. */
2218 while ((cur_file = read_string (abfd, line_ptr, line_end, &bytes_read)) != NULL)
2219 {
2220 unsigned int dir, xtime, size;
2221
2222 line_ptr += bytes_read;
2223
2224 dir = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read, FALSE, line_end);
2225 line_ptr += bytes_read;
2226 xtime = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read, FALSE, line_end);
2227 line_ptr += bytes_read;
2228 size = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read, FALSE, line_end);
2229 line_ptr += bytes_read;
2230
2231 if (!line_info_add_file_name (table, cur_file, dir, xtime, size))
2232 goto fail;
2233 }
2234
2235 line_ptr += bytes_read;
2236 }
2237
2238 /* Read the statement sequences until there's nothing left. */
2239 while (line_ptr < line_end)
2240 {
2241 /* State machine registers. */
2242 bfd_vma address = 0;
2243 unsigned char op_index = 0;
2244 char * filename = table->num_files ? concat_filename (table, 1) : NULL;
2245 unsigned int line = 1;
2246 unsigned int column = 0;
2247 unsigned int discriminator = 0;
2248 int is_stmt = lh.default_is_stmt;
2249 int end_sequence = 0;
2250 unsigned int dir, xtime, size;
2251 /* eraxxon@alumni.rice.edu: Against the DWARF2 specs, some
2252 compilers generate address sequences that are wildly out of
2253 order using DW_LNE_set_address (e.g. Intel C++ 6.0 compiler
2254 for ia64-Linux). Thus, to determine the low and high
2255 address, we must compare on every DW_LNS_copy, etc. */
2256 bfd_vma low_pc = (bfd_vma) -1;
2257 bfd_vma high_pc = 0;
2258
2259 /* Decode the table. */
2260 while (!end_sequence && line_ptr < line_end)
2261 {
2262 op_code = read_1_byte (abfd, line_ptr, line_end);
2263 line_ptr += 1;
2264
2265 if (op_code >= lh.opcode_base)
2266 {
2267 /* Special operand. */
2268 adj_opcode = op_code - lh.opcode_base;
2269 if (lh.line_range == 0)
2270 goto line_fail;
2271 if (lh.maximum_ops_per_insn == 1)
2272 address += (adj_opcode / lh.line_range
2273 * lh.minimum_instruction_length);
2274 else
2275 {
2276 address += ((op_index + adj_opcode / lh.line_range)
2277 / lh.maximum_ops_per_insn
2278 * lh.minimum_instruction_length);
2279 op_index = ((op_index + adj_opcode / lh.line_range)
2280 % lh.maximum_ops_per_insn);
2281 }
2282 line += lh.line_base + (adj_opcode % lh.line_range);
2283 /* Append row to matrix using current values. */
2284 if (!add_line_info (table, address, op_index, filename,
2285 line, column, discriminator, 0))
2286 goto line_fail;
2287 discriminator = 0;
2288 if (address < low_pc)
2289 low_pc = address;
2290 if (address > high_pc)
2291 high_pc = address;
2292 }
2293 else switch (op_code)
2294 {
2295 case DW_LNS_extended_op:
2296 exop_len = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2297 FALSE, line_end);
2298 line_ptr += bytes_read;
2299 extended_op = read_1_byte (abfd, line_ptr, line_end);
2300 line_ptr += 1;
2301
2302 switch (extended_op)
2303 {
2304 case DW_LNE_end_sequence:
2305 end_sequence = 1;
2306 if (!add_line_info (table, address, op_index, filename, line,
2307 column, discriminator, end_sequence))
2308 goto line_fail;
2309 discriminator = 0;
2310 if (address < low_pc)
2311 low_pc = address;
2312 if (address > high_pc)
2313 high_pc = address;
2314 if (!arange_add (unit, &unit->arange, low_pc, high_pc))
2315 goto line_fail;
2316 break;
2317 case DW_LNE_set_address:
2318 address = read_address (unit, line_ptr, line_end);
2319 op_index = 0;
2320 line_ptr += unit->addr_size;
2321 break;
2322 case DW_LNE_define_file:
2323 cur_file = read_string (abfd, line_ptr, line_end, &bytes_read);
2324 line_ptr += bytes_read;
2325 dir = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2326 FALSE, line_end);
2327 line_ptr += bytes_read;
2328 xtime = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2329 FALSE, line_end);
2330 line_ptr += bytes_read;
2331 size = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2332 FALSE, line_end);
2333 line_ptr += bytes_read;
2334 if (!line_info_add_file_name (table, cur_file, dir,
2335 xtime, size))
2336 goto line_fail;
2337 break;
2338 case DW_LNE_set_discriminator:
2339 discriminator =
2340 _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2341 FALSE, line_end);
2342 line_ptr += bytes_read;
2343 break;
2344 case DW_LNE_HP_source_file_correlation:
2345 line_ptr += exop_len - 1;
2346 break;
2347 default:
2348 _bfd_error_handler
2349 (_("DWARF error: mangled line number section"));
2350 bfd_set_error (bfd_error_bad_value);
2351 line_fail:
2352 if (filename != NULL)
2353 free (filename);
2354 goto fail;
2355 }
2356 break;
2357 case DW_LNS_copy:
2358 if (!add_line_info (table, address, op_index,
2359 filename, line, column, discriminator, 0))
2360 goto line_fail;
2361 discriminator = 0;
2362 if (address < low_pc)
2363 low_pc = address;
2364 if (address > high_pc)
2365 high_pc = address;
2366 break;
2367 case DW_LNS_advance_pc:
2368 if (lh.maximum_ops_per_insn == 1)
2369 address += (lh.minimum_instruction_length
2370 * _bfd_safe_read_leb128 (abfd, line_ptr,
2371 &bytes_read,
2372 FALSE, line_end));
2373 else
2374 {
2375 bfd_vma adjust = _bfd_safe_read_leb128 (abfd, line_ptr,
2376 &bytes_read,
2377 FALSE, line_end);
2378 address = ((op_index + adjust) / lh.maximum_ops_per_insn
2379 * lh.minimum_instruction_length);
2380 op_index = (op_index + adjust) % lh.maximum_ops_per_insn;
2381 }
2382 line_ptr += bytes_read;
2383 break;
2384 case DW_LNS_advance_line:
2385 line += _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2386 TRUE, line_end);
2387 line_ptr += bytes_read;
2388 break;
2389 case DW_LNS_set_file:
2390 {
2391 unsigned int file;
2392
2393 /* The file and directory tables are 0
2394 based, the references are 1 based. */
2395 file = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2396 FALSE, line_end);
2397 line_ptr += bytes_read;
2398 if (filename)
2399 free (filename);
2400 filename = concat_filename (table, file);
2401 break;
2402 }
2403 case DW_LNS_set_column:
2404 column = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2405 FALSE, line_end);
2406 line_ptr += bytes_read;
2407 break;
2408 case DW_LNS_negate_stmt:
2409 is_stmt = (!is_stmt);
2410 break;
2411 case DW_LNS_set_basic_block:
2412 break;
2413 case DW_LNS_const_add_pc:
2414 if (lh.line_range == 0)
2415 goto line_fail;
2416 if (lh.maximum_ops_per_insn == 1)
2417 address += (lh.minimum_instruction_length
2418 * ((255 - lh.opcode_base) / lh.line_range));
2419 else
2420 {
2421 bfd_vma adjust = ((255 - lh.opcode_base) / lh.line_range);
2422 address += (lh.minimum_instruction_length
2423 * ((op_index + adjust)
2424 / lh.maximum_ops_per_insn));
2425 op_index = (op_index + adjust) % lh.maximum_ops_per_insn;
2426 }
2427 break;
2428 case DW_LNS_fixed_advance_pc:
2429 address += read_2_bytes (abfd, line_ptr, line_end);
2430 op_index = 0;
2431 line_ptr += 2;
2432 break;
2433 default:
2434 /* Unknown standard opcode, ignore it. */
2435 for (i = 0; i < lh.standard_opcode_lengths[op_code]; i++)
2436 {
2437 (void) _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2438 FALSE, line_end);
2439 line_ptr += bytes_read;
2440 }
2441 break;
2442 }
2443 }
2444
2445 if (filename)
2446 free (filename);
2447 }
2448
2449 if (sort_line_sequences (table))
2450 return table;
2451
2452 fail:
2453 while (table->sequences != NULL)
2454 {
2455 struct line_sequence* seq = table->sequences;
2456 table->sequences = table->sequences->prev_sequence;
2457 free (seq);
2458 }
2459 if (table->files != NULL)
2460 free (table->files);
2461 if (table->dirs != NULL)
2462 free (table->dirs);
2463 return NULL;
2464 }
2465
2466 /* If ADDR is within TABLE set the output parameters and return the
2467 range of addresses covered by the entry used to fill them out.
2468 Otherwise set * FILENAME_PTR to NULL and return 0.
2469 The parameters FILENAME_PTR, LINENUMBER_PTR and DISCRIMINATOR_PTR
2470 are pointers to the objects to be filled in. */
2471
2472 static bfd_vma
2473 lookup_address_in_line_info_table (struct line_info_table *table,
2474 bfd_vma addr,
2475 const char **filename_ptr,
2476 unsigned int *linenumber_ptr,
2477 unsigned int *discriminator_ptr)
2478 {
2479 struct line_sequence *seq = NULL;
2480 struct line_info *info;
2481 int low, high, mid;
2482
2483 /* Binary search the array of sequences. */
2484 low = 0;
2485 high = table->num_sequences;
2486 while (low < high)
2487 {
2488 mid = (low + high) / 2;
2489 seq = &table->sequences[mid];
2490 if (addr < seq->low_pc)
2491 high = mid;
2492 else if (addr >= seq->last_line->address)
2493 low = mid + 1;
2494 else
2495 break;
2496 }
2497
2498 /* Check for a valid sequence. */
2499 if (!seq || addr < seq->low_pc || addr >= seq->last_line->address)
2500 goto fail;
2501
2502 if (!build_line_info_table (table, seq))
2503 goto fail;
2504
2505 /* Binary search the array of line information. */
2506 low = 0;
2507 high = seq->num_lines;
2508 info = NULL;
2509 while (low < high)
2510 {
2511 mid = (low + high) / 2;
2512 info = seq->line_info_lookup[mid];
2513 if (addr < info->address)
2514 high = mid;
2515 else if (addr >= seq->line_info_lookup[mid + 1]->address)
2516 low = mid + 1;
2517 else
2518 break;
2519 }
2520
2521 /* Check for a valid line information entry. */
2522 if (info
2523 && addr >= info->address
2524 && addr < seq->line_info_lookup[mid + 1]->address
2525 && !(info->end_sequence || info == seq->last_line))
2526 {
2527 *filename_ptr = info->filename;
2528 *linenumber_ptr = info->line;
2529 if (discriminator_ptr)
2530 *discriminator_ptr = info->discriminator;
2531 return seq->last_line->address - seq->low_pc;
2532 }
2533
2534 fail:
2535 *filename_ptr = NULL;
2536 return 0;
2537 }
2538
2539 /* Read in the .debug_ranges section for future reference. */
2540
2541 static bfd_boolean
2542 read_debug_ranges (struct comp_unit * unit)
2543 {
2544 struct dwarf2_debug * stash = unit->stash;
2545
2546 return read_section (unit->abfd, &stash->debug_sections[debug_ranges],
2547 stash->syms, 0,
2548 &stash->dwarf_ranges_buffer,
2549 &stash->dwarf_ranges_size);
2550 }
2551
2552 /* Function table functions. */
2553
2554 static int
2555 compare_lookup_funcinfos (const void * a, const void * b)
2556 {
2557 const struct lookup_funcinfo * lookup1 = a;
2558 const struct lookup_funcinfo * lookup2 = b;
2559
2560 if (lookup1->low_addr < lookup2->low_addr)
2561 return -1;
2562 if (lookup1->low_addr > lookup2->low_addr)
2563 return 1;
2564 if (lookup1->high_addr < lookup2->high_addr)
2565 return -1;
2566 if (lookup1->high_addr > lookup2->high_addr)
2567 return 1;
2568
2569 return 0;
2570 }
2571
2572 static bfd_boolean
2573 build_lookup_funcinfo_table (struct comp_unit * unit)
2574 {
2575 struct lookup_funcinfo *lookup_funcinfo_table = unit->lookup_funcinfo_table;
2576 unsigned int number_of_functions = unit->number_of_functions;
2577 struct funcinfo *each;
2578 struct lookup_funcinfo *entry;
2579 size_t func_index;
2580 struct arange *range;
2581 bfd_vma low_addr, high_addr;
2582
2583 if (lookup_funcinfo_table || number_of_functions == 0)
2584 return TRUE;
2585
2586 /* Create the function info lookup table. */
2587 lookup_funcinfo_table = (struct lookup_funcinfo *)
2588 bfd_malloc (number_of_functions * sizeof (struct lookup_funcinfo));
2589 if (lookup_funcinfo_table == NULL)
2590 return FALSE;
2591
2592 /* Populate the function info lookup table. */
2593 func_index = number_of_functions;
2594 for (each = unit->function_table; each; each = each->prev_func)
2595 {
2596 entry = &lookup_funcinfo_table[--func_index];
2597 entry->funcinfo = each;
2598
2599 /* Calculate the lowest and highest address for this function entry. */
2600 low_addr = entry->funcinfo->arange.low;
2601 high_addr = entry->funcinfo->arange.high;
2602
2603 for (range = entry->funcinfo->arange.next; range; range = range->next)
2604 {
2605 if (range->low < low_addr)
2606 low_addr = range->low;
2607 if (range->high > high_addr)
2608 high_addr = range->high;
2609 }
2610
2611 entry->low_addr = low_addr;
2612 entry->high_addr = high_addr;
2613 }
2614
2615 BFD_ASSERT (func_index == 0);
2616
2617 /* Sort the function by address. */
2618 qsort (lookup_funcinfo_table,
2619 number_of_functions,
2620 sizeof (struct lookup_funcinfo),
2621 compare_lookup_funcinfos);
2622
2623 /* Calculate the high watermark for each function in the lookup table. */
2624 high_addr = lookup_funcinfo_table[0].high_addr;
2625 for (func_index = 1; func_index < number_of_functions; func_index++)
2626 {
2627 entry = &lookup_funcinfo_table[func_index];
2628 if (entry->high_addr > high_addr)
2629 high_addr = entry->high_addr;
2630 else
2631 entry->high_addr = high_addr;
2632 }
2633
2634 unit->lookup_funcinfo_table = lookup_funcinfo_table;
2635 return TRUE;
2636 }
2637
2638 /* If ADDR is within UNIT's function tables, set FUNCTION_PTR, and return
2639 TRUE. Note that we need to find the function that has the smallest range
2640 that contains ADDR, to handle inlined functions without depending upon
2641 them being ordered in TABLE by increasing range. */
2642
2643 static bfd_boolean
2644 lookup_address_in_function_table (struct comp_unit *unit,
2645 bfd_vma addr,
2646 struct funcinfo **function_ptr)
2647 {
2648 unsigned int number_of_functions = unit->number_of_functions;
2649 struct lookup_funcinfo* lookup_funcinfo = NULL;
2650 struct funcinfo* funcinfo = NULL;
2651 struct funcinfo* best_fit = NULL;
2652 bfd_vma best_fit_len = 0;
2653 bfd_size_type low, high, mid, first;
2654 struct arange *arange;
2655
2656 if (number_of_functions == 0)
2657 return FALSE;
2658
2659 if (!build_lookup_funcinfo_table (unit))
2660 return FALSE;
2661
2662 if (unit->lookup_funcinfo_table[number_of_functions - 1].high_addr < addr)
2663 return FALSE;
2664
2665 /* Find the first function in the lookup table which may contain the
2666 specified address. */
2667 low = 0;
2668 high = number_of_functions;
2669 first = high;
2670 while (low < high)
2671 {
2672 mid = (low + high) / 2;
2673 lookup_funcinfo = &unit->lookup_funcinfo_table[mid];
2674 if (addr < lookup_funcinfo->low_addr)
2675 high = mid;
2676 else if (addr >= lookup_funcinfo->high_addr)
2677 low = mid + 1;
2678 else
2679 high = first = mid;
2680 }
2681
2682 /* Find the 'best' match for the address. The prior algorithm defined the
2683 best match as the function with the smallest address range containing
2684 the specified address. This definition should probably be changed to the
2685 innermost inline routine containing the address, but right now we want
2686 to get the same results we did before. */
2687 while (first < number_of_functions)
2688 {
2689 if (addr < unit->lookup_funcinfo_table[first].low_addr)
2690 break;
2691 funcinfo = unit->lookup_funcinfo_table[first].funcinfo;
2692
2693 for (arange = &funcinfo->arange; arange; arange = arange->next)
2694 {
2695 if (addr < arange->low || addr >= arange->high)
2696 continue;
2697
2698 if (!best_fit
2699 || arange->high - arange->low < best_fit_len
2700 /* The following comparison is designed to return the same
2701 match as the previous algorithm for routines which have the
2702 same best fit length. */
2703 || (arange->high - arange->low == best_fit_len
2704 && funcinfo > best_fit))
2705 {
2706 best_fit = funcinfo;
2707 best_fit_len = arange->high - arange->low;
2708 }
2709 }
2710
2711 first++;
2712 }
2713
2714 if (!best_fit)
2715 return FALSE;
2716
2717 *function_ptr = best_fit;
2718 return TRUE;
2719 }
2720
2721 /* If SYM at ADDR is within function table of UNIT, set FILENAME_PTR
2722 and LINENUMBER_PTR, and return TRUE. */
2723
2724 static bfd_boolean
2725 lookup_symbol_in_function_table (struct comp_unit *unit,
2726 asymbol *sym,
2727 bfd_vma addr,
2728 const char **filename_ptr,
2729 unsigned int *linenumber_ptr)
2730 {
2731 struct funcinfo* each_func;
2732 struct funcinfo* best_fit = NULL;
2733 bfd_vma best_fit_len = 0;
2734 struct arange *arange;
2735 const char *name = bfd_asymbol_name (sym);
2736 asection *sec = bfd_get_section (sym);
2737
2738 for (each_func = unit->function_table;
2739 each_func;
2740 each_func = each_func->prev_func)
2741 {
2742 for (arange = &each_func->arange;
2743 arange;
2744 arange = arange->next)
2745 {
2746 if ((!each_func->sec || each_func->sec == sec)
2747 && addr >= arange->low
2748 && addr < arange->high
2749 && each_func->name
2750 && strcmp (name, each_func->name) == 0
2751 && (!best_fit
2752 || arange->high - arange->low < best_fit_len))
2753 {
2754 best_fit = each_func;
2755 best_fit_len = arange->high - arange->low;
2756 }
2757 }
2758 }
2759
2760 if (best_fit)
2761 {
2762 best_fit->sec = sec;
2763 *filename_ptr = best_fit->file;
2764 *linenumber_ptr = best_fit->line;
2765 return TRUE;
2766 }
2767 else
2768 return FALSE;
2769 }
2770
2771 /* Variable table functions. */
2772
2773 /* If SYM is within variable table of UNIT, set FILENAME_PTR and
2774 LINENUMBER_PTR, and return TRUE. */
2775
2776 static bfd_boolean
2777 lookup_symbol_in_variable_table (struct comp_unit *unit,
2778 asymbol *sym,
2779 bfd_vma addr,
2780 const char **filename_ptr,
2781 unsigned int *linenumber_ptr)
2782 {
2783 const char *name = bfd_asymbol_name (sym);
2784 asection *sec = bfd_get_section (sym);
2785 struct varinfo* each;
2786
2787 for (each = unit->variable_table; each; each = each->prev_var)
2788 if (each->stack == 0
2789 && each->file != NULL
2790 && each->name != NULL
2791 && each->addr == addr
2792 && (!each->sec || each->sec == sec)
2793 && strcmp (name, each->name) == 0)
2794 break;
2795
2796 if (each)
2797 {
2798 each->sec = sec;
2799 *filename_ptr = each->file;
2800 *linenumber_ptr = each->line;
2801 return TRUE;
2802 }
2803
2804 return FALSE;
2805 }
2806
2807 static bfd_boolean comp_unit_maybe_decode_line_info (struct comp_unit *,
2808 struct dwarf2_debug *);
2809
2810 static bfd_boolean
2811 find_abstract_instance (struct comp_unit * unit,
2812 bfd_byte * orig_info_ptr,
2813 struct attribute * attr_ptr,
2814 const char ** pname,
2815 bfd_boolean * is_linkage,
2816 char ** filename_ptr,
2817 int * linenumber_ptr)
2818 {
2819 bfd *abfd = unit->abfd;
2820 bfd_byte *info_ptr;
2821 bfd_byte *info_ptr_end;
2822 unsigned int abbrev_number, bytes_read, i;
2823 struct abbrev_info *abbrev;
2824 bfd_uint64_t die_ref = attr_ptr->u.val;
2825 struct attribute attr;
2826 const char *name = NULL;
2827
2828 /* DW_FORM_ref_addr can reference an entry in a different CU. It
2829 is an offset from the .debug_info section, not the current CU. */
2830 if (attr_ptr->form == DW_FORM_ref_addr)
2831 {
2832 /* We only support DW_FORM_ref_addr within the same file, so
2833 any relocations should be resolved already. Check this by
2834 testing for a zero die_ref; There can't be a valid reference
2835 to the header of a .debug_info section.
2836 DW_FORM_ref_addr is an offset relative to .debug_info.
2837 Normally when using the GNU linker this is accomplished by
2838 emitting a symbolic reference to a label, because .debug_info
2839 sections are linked at zero. When there are multiple section
2840 groups containing .debug_info, as there might be in a
2841 relocatable object file, it would be reasonable to assume that
2842 a symbolic reference to a label in any .debug_info section
2843 might be used. Since we lay out multiple .debug_info
2844 sections at non-zero VMAs (see place_sections), and read
2845 them contiguously into stash->info_ptr_memory, that means
2846 the reference is relative to stash->info_ptr_memory. */
2847 size_t total;
2848
2849 info_ptr = unit->stash->info_ptr_memory;
2850 info_ptr_end = unit->stash->info_ptr_end;
2851 total = info_ptr_end - info_ptr;
2852 if (!die_ref)
2853 return TRUE;
2854 else if (die_ref >= total)
2855 {
2856 _bfd_error_handler
2857 (_("DWARF error: invalid abstract instance DIE ref"));
2858 bfd_set_error (bfd_error_bad_value);
2859 return FALSE;
2860 }
2861 info_ptr += die_ref;
2862
2863 /* Now find the CU containing this pointer. */
2864 if (info_ptr >= unit->info_ptr_unit && info_ptr < unit->end_ptr)
2865 info_ptr_end = unit->end_ptr;
2866 else
2867 {
2868 /* Check other CUs to see if they contain the abbrev. */
2869 struct comp_unit * u;
2870
2871 for (u = unit->prev_unit; u != NULL; u = u->prev_unit)
2872 if (info_ptr >= u->info_ptr_unit && info_ptr < u->end_ptr)
2873 break;
2874
2875 if (u == NULL)
2876 for (u = unit->next_unit; u != NULL; u = u->next_unit)
2877 if (info_ptr >= u->info_ptr_unit && info_ptr < u->end_ptr)
2878 break;
2879
2880 if (u)
2881 {
2882 unit = u;
2883 info_ptr_end = unit->end_ptr;
2884 }
2885 /* else FIXME: What do we do now ? */
2886 }
2887 }
2888 else if (attr_ptr->form == DW_FORM_GNU_ref_alt)
2889 {
2890 info_ptr = read_alt_indirect_ref (unit, die_ref);
2891 if (info_ptr == NULL)
2892 {
2893 _bfd_error_handler
2894 (_("DWARF error: unable to read alt ref %" PRIu64),
2895 (uint64_t) die_ref);
2896 bfd_set_error (bfd_error_bad_value);
2897 return FALSE;
2898 }
2899 info_ptr_end = (unit->stash->alt_dwarf_info_buffer
2900 + unit->stash->alt_dwarf_info_size);
2901
2902 /* FIXME: Do we need to locate the correct CU, in a similar
2903 fashion to the code in the DW_FORM_ref_addr case above ? */
2904 }
2905 else
2906 {
2907 /* DW_FORM_ref1, DW_FORM_ref2, DW_FORM_ref4, DW_FORM_ref8 or
2908 DW_FORM_ref_udata. These are all references relative to the
2909 start of the current CU. */
2910 size_t total;
2911
2912 info_ptr = unit->info_ptr_unit;
2913 info_ptr_end = unit->end_ptr;
2914 total = info_ptr_end - info_ptr;
2915 if (!die_ref || die_ref >= total)
2916 {
2917 _bfd_error_handler
2918 (_("DWARF error: invalid abstract instance DIE ref"));
2919 bfd_set_error (bfd_error_bad_value);
2920 return FALSE;
2921 }
2922 info_ptr += die_ref;
2923 }
2924
2925 abbrev_number = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
2926 FALSE, info_ptr_end);
2927 info_ptr += bytes_read;
2928
2929 if (abbrev_number)
2930 {
2931 abbrev = lookup_abbrev (abbrev_number, unit->abbrevs);
2932 if (! abbrev)
2933 {
2934 _bfd_error_handler
2935 (_("DWARF error: could not find abbrev number %u"), abbrev_number);
2936 bfd_set_error (bfd_error_bad_value);
2937 return FALSE;
2938 }
2939 else
2940 {
2941 for (i = 0; i < abbrev->num_attrs; ++i)
2942 {
2943 info_ptr = read_attribute (&attr, &abbrev->attrs[i], unit,
2944 info_ptr, info_ptr_end);
2945 if (info_ptr == NULL)
2946 break;
2947 /* It doesn't ever make sense for DW_AT_specification to
2948 refer to the same DIE. Stop simple recursion. */
2949 if (info_ptr == orig_info_ptr)
2950 {
2951 _bfd_error_handler
2952 (_("DWARF error: abstract instance recursion detected"));
2953 bfd_set_error (bfd_error_bad_value);
2954 return FALSE;
2955 }
2956 switch (attr.name)
2957 {
2958 case DW_AT_name:
2959 /* Prefer DW_AT_MIPS_linkage_name or DW_AT_linkage_name
2960 over DW_AT_name. */
2961 if (name == NULL && is_str_attr (attr.form))
2962 {
2963 name = attr.u.str;
2964 if (non_mangled (unit->lang))
2965 *is_linkage = TRUE;
2966 }
2967 break;
2968 case DW_AT_specification:
2969 if (!find_abstract_instance (unit, info_ptr, &attr,
2970 &name, is_linkage,
2971 filename_ptr, linenumber_ptr))
2972 return FALSE;
2973 break;
2974 case DW_AT_linkage_name:
2975 case DW_AT_MIPS_linkage_name:
2976 /* PR 16949: Corrupt debug info can place
2977 non-string forms into these attributes. */
2978 if (is_str_attr (attr.form))
2979 {
2980 name = attr.u.str;
2981 *is_linkage = TRUE;
2982 }
2983 break;
2984 case DW_AT_decl_file:
2985 *filename_ptr = concat_filename (unit->line_table,
2986 attr.u.val);
2987 break;
2988 case DW_AT_decl_line:
2989 *linenumber_ptr = attr.u.val;
2990 break;
2991 default:
2992 break;
2993 }
2994 }
2995 }
2996 }
2997 *pname = name;
2998 return TRUE;
2999 }
3000
3001 static bfd_boolean
3002 read_rangelist (struct comp_unit *unit, struct arange *arange,
3003 bfd_uint64_t offset)
3004 {
3005 bfd_byte *ranges_ptr;
3006 bfd_byte *ranges_end;
3007 bfd_vma base_address = unit->base_address;
3008
3009 if (! unit->stash->dwarf_ranges_buffer)
3010 {
3011 if (! read_debug_ranges (unit))
3012 return FALSE;
3013 }
3014
3015 ranges_ptr = unit->stash->dwarf_ranges_buffer + offset;
3016 if (ranges_ptr < unit->stash->dwarf_ranges_buffer)
3017 return FALSE;
3018 ranges_end = unit->stash->dwarf_ranges_buffer + unit->stash->dwarf_ranges_size;
3019
3020 for (;;)
3021 {
3022 bfd_vma low_pc;
3023 bfd_vma high_pc;
3024
3025 /* PR 17512: file: 62cada7d. */
3026 if (ranges_ptr + 2 * unit->addr_size > ranges_end)
3027 return FALSE;
3028
3029 low_pc = read_address (unit, ranges_ptr, ranges_end);
3030 ranges_ptr += unit->addr_size;
3031 high_pc = read_address (unit, ranges_ptr, ranges_end);
3032 ranges_ptr += unit->addr_size;
3033
3034 if (low_pc == 0 && high_pc == 0)
3035 break;
3036 if (low_pc == -1UL && high_pc != -1UL)
3037 base_address = high_pc;
3038 else
3039 {
3040 if (!arange_add (unit, arange,
3041 base_address + low_pc, base_address + high_pc))
3042 return FALSE;
3043 }
3044 }
3045 return TRUE;
3046 }
3047
3048 /* DWARF2 Compilation unit functions. */
3049
3050 /* Scan over each die in a comp. unit looking for functions to add
3051 to the function table and variables to the variable table. */
3052
3053 static bfd_boolean
3054 scan_unit_for_symbols (struct comp_unit *unit)
3055 {
3056 bfd *abfd = unit->abfd;
3057 bfd_byte *info_ptr = unit->first_child_die_ptr;
3058 bfd_byte *info_ptr_end = unit->stash->info_ptr_end;
3059 int nesting_level = 0;
3060 struct nest_funcinfo {
3061 struct funcinfo *func;
3062 } *nested_funcs;
3063 int nested_funcs_size;
3064
3065 /* Maintain a stack of in-scope functions and inlined functions, which we
3066 can use to set the caller_func field. */
3067 nested_funcs_size = 32;
3068 nested_funcs = (struct nest_funcinfo *)
3069 bfd_malloc (nested_funcs_size * sizeof (*nested_funcs));
3070 if (nested_funcs == NULL)
3071 return FALSE;
3072 nested_funcs[nesting_level].func = 0;
3073
3074 while (nesting_level >= 0)
3075 {
3076 unsigned int abbrev_number, bytes_read, i;
3077 struct abbrev_info *abbrev;
3078 struct attribute attr;
3079 struct funcinfo *func;
3080 struct varinfo *var;
3081 bfd_vma low_pc = 0;
3082 bfd_vma high_pc = 0;
3083 bfd_boolean high_pc_relative = FALSE;
3084
3085 /* PR 17512: file: 9f405d9d. */
3086 if (info_ptr >= info_ptr_end)
3087 goto fail;
3088
3089 abbrev_number = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
3090 FALSE, info_ptr_end);
3091 info_ptr += bytes_read;
3092
3093 if (! abbrev_number)
3094 {
3095 nesting_level--;
3096 continue;
3097 }
3098
3099 abbrev = lookup_abbrev (abbrev_number, unit->abbrevs);
3100 if (! abbrev)
3101 {
3102 static unsigned int previous_failed_abbrev = -1U;
3103
3104 /* Avoid multiple reports of the same missing abbrev. */
3105 if (abbrev_number != previous_failed_abbrev)
3106 {
3107 _bfd_error_handler
3108 (_("DWARF error: could not find abbrev number %u"),
3109 abbrev_number);
3110 previous_failed_abbrev = abbrev_number;
3111 }
3112 bfd_set_error (bfd_error_bad_value);
3113 goto fail;
3114 }
3115
3116 var = NULL;
3117 if (abbrev->tag == DW_TAG_subprogram
3118 || abbrev->tag == DW_TAG_entry_point
3119 || abbrev->tag == DW_TAG_inlined_subroutine)
3120 {
3121 bfd_size_type amt = sizeof (struct funcinfo);
3122 func = (struct funcinfo *) bfd_zalloc (abfd, amt);
3123 if (func == NULL)
3124 goto fail;
3125 func->tag = abbrev->tag;
3126 func->prev_func = unit->function_table;
3127 unit->function_table = func;
3128 unit->number_of_functions++;
3129 BFD_ASSERT (!unit->cached);
3130
3131 if (func->tag == DW_TAG_inlined_subroutine)
3132 for (i = nesting_level; i-- != 0; )
3133 if (nested_funcs[i].func)
3134 {
3135 func->caller_func = nested_funcs[i].func;
3136 break;
3137 }
3138 nested_funcs[nesting_level].func = func;
3139 }
3140 else
3141 {
3142 func = NULL;
3143 if (abbrev->tag == DW_TAG_variable)
3144 {
3145 bfd_size_type amt = sizeof (struct varinfo);
3146 var = (struct varinfo *) bfd_zalloc (abfd, amt);
3147 if (var == NULL)
3148 goto fail;
3149 var->tag = abbrev->tag;
3150 var->stack = 1;
3151 var->prev_var = unit->variable_table;
3152 unit->variable_table = var;
3153 /* PR 18205: Missing debug information can cause this
3154 var to be attached to an already cached unit. */
3155 }
3156
3157 /* No inline function in scope at this nesting level. */
3158 nested_funcs[nesting_level].func = 0;
3159 }
3160
3161 for (i = 0; i < abbrev->num_attrs; ++i)
3162 {
3163 info_ptr = read_attribute (&attr, &abbrev->attrs[i],
3164 unit, info_ptr, info_ptr_end);
3165 if (info_ptr == NULL)
3166 goto fail;
3167
3168 if (func)
3169 {
3170 switch (attr.name)
3171 {
3172 case DW_AT_call_file:
3173 func->caller_file = concat_filename (unit->line_table,
3174 attr.u.val);
3175 break;
3176
3177 case DW_AT_call_line:
3178 func->caller_line = attr.u.val;
3179 break;
3180
3181 case DW_AT_abstract_origin:
3182 case DW_AT_specification:
3183 if (!find_abstract_instance (unit, info_ptr, &attr,
3184 &func->name,
3185 &func->is_linkage,
3186 &func->file,
3187 &func->line))
3188 goto fail;
3189 break;
3190
3191 case DW_AT_name:
3192 /* Prefer DW_AT_MIPS_linkage_name or DW_AT_linkage_name
3193 over DW_AT_name. */
3194 if (func->name == NULL && is_str_attr (attr.form))
3195 {
3196 func->name = attr.u.str;
3197 if (non_mangled (unit->lang))
3198 func->is_linkage = TRUE;
3199 }
3200 break;
3201
3202 case DW_AT_linkage_name:
3203 case DW_AT_MIPS_linkage_name:
3204 /* PR 16949: Corrupt debug info can place
3205 non-string forms into these attributes. */
3206 if (is_str_attr (attr.form))
3207 {
3208 func->name = attr.u.str;
3209 func->is_linkage = TRUE;
3210 }
3211 break;
3212
3213 case DW_AT_low_pc:
3214 low_pc = attr.u.val;
3215 break;
3216
3217 case DW_AT_high_pc:
3218 high_pc = attr.u.val;
3219 high_pc_relative = attr.form != DW_FORM_addr;
3220 break;
3221
3222 case DW_AT_ranges:
3223 if (!read_rangelist (unit, &func->arange, attr.u.val))
3224 goto fail;
3225 break;
3226
3227 case DW_AT_decl_file:
3228 func->file = concat_filename (unit->line_table,
3229 attr.u.val);
3230 break;
3231
3232 case DW_AT_decl_line:
3233 func->line = attr.u.val;
3234 break;
3235
3236 default:
3237 break;
3238 }
3239 }
3240 else if (var)
3241 {
3242 switch (attr.name)
3243 {
3244 case DW_AT_name:
3245 if (is_str_attr (attr.form))
3246 var->name = attr.u.str;
3247 break;
3248
3249 case DW_AT_decl_file:
3250 var->file = concat_filename (unit->line_table,
3251 attr.u.val);
3252 break;
3253
3254 case DW_AT_decl_line:
3255 var->line = attr.u.val;
3256 break;
3257
3258 case DW_AT_external:
3259 if (attr.u.val != 0)
3260 var->stack = 0;
3261 break;
3262
3263 case DW_AT_location:
3264 switch (attr.form)
3265 {
3266 case DW_FORM_block:
3267 case DW_FORM_block1:
3268 case DW_FORM_block2:
3269 case DW_FORM_block4:
3270 case DW_FORM_exprloc:
3271 if (attr.u.blk->data != NULL
3272 && *attr.u.blk->data == DW_OP_addr)
3273 {
3274 var->stack = 0;
3275
3276 /* Verify that DW_OP_addr is the only opcode in the
3277 location, in which case the block size will be 1
3278 plus the address size. */
3279 /* ??? For TLS variables, gcc can emit
3280 DW_OP_addr <addr> DW_OP_GNU_push_tls_address
3281 which we don't handle here yet. */
3282 if (attr.u.blk->size == unit->addr_size + 1U)
3283 var->addr = bfd_get (unit->addr_size * 8,
3284 unit->abfd,
3285 attr.u.blk->data + 1);
3286 }
3287 break;
3288
3289 default:
3290 break;
3291 }
3292 break;
3293
3294 default:
3295 break;
3296 }
3297 }
3298 }
3299
3300 if (high_pc_relative)
3301 high_pc += low_pc;
3302
3303 if (func && high_pc != 0)
3304 {
3305 if (!arange_add (unit, &func->arange, low_pc, high_pc))
3306 goto fail;
3307 }
3308
3309 if (abbrev->has_children)
3310 {
3311 nesting_level++;
3312
3313 if (nesting_level >= nested_funcs_size)
3314 {
3315 struct nest_funcinfo *tmp;
3316
3317 nested_funcs_size *= 2;
3318 tmp = (struct nest_funcinfo *)
3319 bfd_realloc (nested_funcs,
3320 nested_funcs_size * sizeof (*nested_funcs));
3321 if (tmp == NULL)
3322 goto fail;
3323 nested_funcs = tmp;
3324 }
3325 nested_funcs[nesting_level].func = 0;
3326 }
3327 }
3328
3329 free (nested_funcs);
3330 return TRUE;
3331
3332 fail:
3333 free (nested_funcs);
3334 return FALSE;
3335 }
3336
3337 /* Parse a DWARF2 compilation unit starting at INFO_PTR. This
3338 includes the compilation unit header that proceeds the DIE's, but
3339 does not include the length field that precedes each compilation
3340 unit header. END_PTR points one past the end of this comp unit.
3341 OFFSET_SIZE is the size of DWARF2 offsets (either 4 or 8 bytes).
3342
3343 This routine does not read the whole compilation unit; only enough
3344 to get to the line number information for the compilation unit. */
3345
3346 static struct comp_unit *
3347 parse_comp_unit (struct dwarf2_debug *stash,
3348 bfd_vma unit_length,
3349 bfd_byte *info_ptr_unit,
3350 unsigned int offset_size)
3351 {
3352 struct comp_unit* unit;
3353 unsigned int version;
3354 bfd_uint64_t abbrev_offset = 0;
3355 /* Initialize it just to avoid a GCC false warning. */
3356 unsigned int addr_size = -1;
3357 struct abbrev_info** abbrevs;
3358 unsigned int abbrev_number, bytes_read, i;
3359 struct abbrev_info *abbrev;
3360 struct attribute attr;
3361 bfd_byte *info_ptr = stash->info_ptr;
3362 bfd_byte *end_ptr = info_ptr + unit_length;
3363 bfd_size_type amt;
3364 bfd_vma low_pc = 0;
3365 bfd_vma high_pc = 0;
3366 bfd *abfd = stash->bfd_ptr;
3367 bfd_boolean high_pc_relative = FALSE;
3368 enum dwarf_unit_type unit_type;
3369
3370 version = read_2_bytes (abfd, info_ptr, end_ptr);
3371 info_ptr += 2;
3372 if (version < 2 || version > 5)
3373 {
3374 /* PR 19872: A version number of 0 probably means that there is padding
3375 at the end of the .debug_info section. Gold puts it there when
3376 performing an incremental link, for example. So do not generate
3377 an error, just return a NULL. */
3378 if (version)
3379 {
3380 _bfd_error_handler
3381 (_("DWARF error: found dwarf version '%u', this reader"
3382 " only handles version 2, 3, 4 and 5 information"), version);
3383 bfd_set_error (bfd_error_bad_value);
3384 }
3385 return NULL;
3386 }
3387
3388 if (version < 5)
3389 unit_type = DW_UT_compile;
3390 else
3391 {
3392 unit_type = read_1_byte (abfd, info_ptr, end_ptr);
3393 info_ptr += 1;
3394
3395 addr_size = read_1_byte (abfd, info_ptr, end_ptr);
3396 info_ptr += 1;
3397 }
3398
3399 BFD_ASSERT (offset_size == 4 || offset_size == 8);
3400 if (offset_size == 4)
3401 abbrev_offset = read_4_bytes (abfd, info_ptr, end_ptr);
3402 else
3403 abbrev_offset = read_8_bytes (abfd, info_ptr, end_ptr);
3404 info_ptr += offset_size;
3405
3406 if (version < 5)
3407 {
3408 addr_size = read_1_byte (abfd, info_ptr, end_ptr);
3409 info_ptr += 1;
3410 }
3411
3412 if (unit_type == DW_UT_type)
3413 {
3414 /* Skip type signature. */
3415 info_ptr += 8;
3416
3417 /* Skip type offset. */
3418 info_ptr += offset_size;
3419 }
3420
3421 if (addr_size > sizeof (bfd_vma))
3422 {
3423 _bfd_error_handler
3424 /* xgettext: c-format */
3425 (_("DWARF error: found address size '%u', this reader"
3426 " can not handle sizes greater than '%u'"),
3427 addr_size,
3428 (unsigned int) sizeof (bfd_vma));
3429 bfd_set_error (bfd_error_bad_value);
3430 return NULL;
3431 }
3432
3433 if (addr_size != 2 && addr_size != 4 && addr_size != 8)
3434 {
3435 _bfd_error_handler
3436 ("DWARF error: found address size '%u', this reader"
3437 " can only handle address sizes '2', '4' and '8'", addr_size);
3438 bfd_set_error (bfd_error_bad_value);
3439 return NULL;
3440 }
3441
3442 /* Read the abbrevs for this compilation unit into a table. */
3443 abbrevs = read_abbrevs (abfd, abbrev_offset, stash);
3444 if (! abbrevs)
3445 return NULL;
3446
3447 abbrev_number = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
3448 FALSE, end_ptr);
3449 info_ptr += bytes_read;
3450 if (! abbrev_number)
3451 {
3452 /* PR 19872: An abbrev number of 0 probably means that there is padding
3453 at the end of the .debug_abbrev section. Gold puts it there when
3454 performing an incremental link, for example. So do not generate
3455 an error, just return a NULL. */
3456 return NULL;
3457 }
3458
3459 abbrev = lookup_abbrev (abbrev_number, abbrevs);
3460 if (! abbrev)
3461 {
3462 _bfd_error_handler (_("DWARF error: could not find abbrev number %u"),
3463 abbrev_number);
3464 bfd_set_error (bfd_error_bad_value);
3465 return NULL;
3466 }
3467
3468 amt = sizeof (struct comp_unit);
3469 unit = (struct comp_unit *) bfd_zalloc (abfd, amt);
3470 if (unit == NULL)
3471 return NULL;
3472 unit->abfd = abfd;
3473 unit->version = version;
3474 unit->addr_size = addr_size;
3475 unit->offset_size = offset_size;
3476 unit->abbrevs = abbrevs;
3477 unit->end_ptr = end_ptr;
3478 unit->stash = stash;
3479 unit->info_ptr_unit = info_ptr_unit;
3480
3481 for (i = 0; i < abbrev->num_attrs; ++i)
3482 {
3483 info_ptr = read_attribute (&attr, &abbrev->attrs[i], unit, info_ptr, end_ptr);
3484 if (info_ptr == NULL)
3485 return NULL;
3486
3487 /* Store the data if it is of an attribute we want to keep in a
3488 partial symbol table. */
3489 switch (attr.name)
3490 {
3491 case DW_AT_stmt_list:
3492 unit->stmtlist = 1;
3493 unit->line_offset = attr.u.val;
3494 break;
3495
3496 case DW_AT_name:
3497 if (is_str_attr (attr.form))
3498 unit->name = attr.u.str;
3499 break;
3500
3501 case DW_AT_low_pc:
3502 low_pc = attr.u.val;
3503 /* If the compilation unit DIE has a DW_AT_low_pc attribute,
3504 this is the base address to use when reading location
3505 lists or range lists. */
3506 if (abbrev->tag == DW_TAG_compile_unit)
3507 unit->base_address = low_pc;
3508 break;
3509
3510 case DW_AT_high_pc:
3511 high_pc = attr.u.val;
3512 high_pc_relative = attr.form != DW_FORM_addr;
3513 break;
3514
3515 case DW_AT_ranges:
3516 if (!read_rangelist (unit, &unit->arange, attr.u.val))
3517 return NULL;
3518 break;
3519
3520 case DW_AT_comp_dir:
3521 {
3522 char *comp_dir = attr.u.str;
3523
3524 /* PR 17512: file: 1fe726be. */
3525 if (! is_str_attr (attr.form))
3526 {
3527 _bfd_error_handler
3528 (_("DWARF error: DW_AT_comp_dir attribute encountered with a non-string form"));
3529 comp_dir = NULL;
3530 }
3531
3532 if (comp_dir)
3533 {
3534 /* Irix 6.2 native cc prepends <machine>.: to the compilation
3535 directory, get rid of it. */
3536 char *cp = strchr (comp_dir, ':');
3537
3538 if (cp && cp != comp_dir && cp[-1] == '.' && cp[1] == '/')
3539 comp_dir = cp + 1;
3540 }
3541 unit->comp_dir = comp_dir;
3542 break;
3543 }
3544
3545 case DW_AT_language:
3546 unit->lang = attr.u.val;
3547 break;
3548
3549 default:
3550 break;
3551 }
3552 }
3553 if (high_pc_relative)
3554 high_pc += low_pc;
3555 if (high_pc != 0)
3556 {
3557 if (!arange_add (unit, &unit->arange, low_pc, high_pc))
3558 return NULL;
3559 }
3560
3561 unit->first_child_die_ptr = info_ptr;
3562 return unit;
3563 }
3564
3565 /* Return TRUE if UNIT may contain the address given by ADDR. When
3566 there are functions written entirely with inline asm statements, the
3567 range info in the compilation unit header may not be correct. We
3568 need to consult the line info table to see if a compilation unit
3569 really contains the given address. */
3570
3571 static bfd_boolean
3572 comp_unit_contains_address (struct comp_unit *unit, bfd_vma addr)
3573 {
3574 struct arange *arange;
3575
3576 if (unit->error)
3577 return FALSE;
3578
3579 arange = &unit->arange;
3580 do
3581 {
3582 if (addr >= arange->low && addr < arange->high)
3583 return TRUE;
3584 arange = arange->next;
3585 }
3586 while (arange);
3587
3588 return FALSE;
3589 }
3590
3591 /* If UNIT contains ADDR, set the output parameters to the values for
3592 the line containing ADDR. The output parameters, FILENAME_PTR,
3593 FUNCTION_PTR, and LINENUMBER_PTR, are pointers to the objects
3594 to be filled in.
3595
3596 Returns the range of addresses covered by the entry that was used
3597 to fill in *LINENUMBER_PTR or 0 if it was not filled in. */
3598
3599 static bfd_vma
3600 comp_unit_find_nearest_line (struct comp_unit *unit,
3601 bfd_vma addr,
3602 const char **filename_ptr,
3603 struct funcinfo **function_ptr,
3604 unsigned int *linenumber_ptr,
3605 unsigned int *discriminator_ptr,
3606 struct dwarf2_debug *stash)
3607 {
3608 bfd_boolean func_p;
3609
3610 if (!comp_unit_maybe_decode_line_info (unit, stash))
3611 return FALSE;
3612
3613 *function_ptr = NULL;
3614 func_p = lookup_address_in_function_table (unit, addr, function_ptr);
3615 if (func_p && (*function_ptr)->tag == DW_TAG_inlined_subroutine)
3616 stash->inliner_chain = *function_ptr;
3617
3618 return lookup_address_in_line_info_table (unit->line_table, addr,
3619 filename_ptr,
3620 linenumber_ptr,
3621 discriminator_ptr);
3622 }
3623
3624 /* Check to see if line info is already decoded in a comp_unit.
3625 If not, decode it. Returns TRUE if no errors were encountered;
3626 FALSE otherwise. */
3627
3628 static bfd_boolean
3629 comp_unit_maybe_decode_line_info (struct comp_unit *unit,
3630 struct dwarf2_debug *stash)
3631 {
3632 if (unit->error)
3633 return FALSE;
3634
3635 if (! unit->line_table)
3636 {
3637 if (! unit->stmtlist)
3638 {
3639 unit->error = 1;
3640 return FALSE;
3641 }
3642
3643 unit->line_table = decode_line_info (unit, stash);
3644
3645 if (! unit->line_table)
3646 {
3647 unit->error = 1;
3648 return FALSE;
3649 }
3650
3651 if (unit->first_child_die_ptr < unit->end_ptr
3652 && ! scan_unit_for_symbols (unit))
3653 {
3654 unit->error = 1;
3655 return FALSE;
3656 }
3657 }
3658
3659 return TRUE;
3660 }
3661
3662 /* If UNIT contains SYM at ADDR, set the output parameters to the
3663 values for the line containing SYM. The output parameters,
3664 FILENAME_PTR, and LINENUMBER_PTR, are pointers to the objects to be
3665 filled in.
3666
3667 Return TRUE if UNIT contains SYM, and no errors were encountered;
3668 FALSE otherwise. */
3669
3670 static bfd_boolean
3671 comp_unit_find_line (struct comp_unit *unit,
3672 asymbol *sym,
3673 bfd_vma addr,
3674 const char **filename_ptr,
3675 unsigned int *linenumber_ptr,
3676 struct dwarf2_debug *stash)
3677 {
3678 if (!comp_unit_maybe_decode_line_info (unit, stash))
3679 return FALSE;
3680
3681 if (sym->flags & BSF_FUNCTION)
3682 return lookup_symbol_in_function_table (unit, sym, addr,
3683 filename_ptr,
3684 linenumber_ptr);
3685
3686 return lookup_symbol_in_variable_table (unit, sym, addr,
3687 filename_ptr,
3688 linenumber_ptr);
3689 }
3690
3691 static struct funcinfo *
3692 reverse_funcinfo_list (struct funcinfo *head)
3693 {
3694 struct funcinfo *rhead;
3695 struct funcinfo *temp;
3696
3697 for (rhead = NULL; head; head = temp)
3698 {
3699 temp = head->prev_func;
3700 head->prev_func = rhead;
3701 rhead = head;
3702 }
3703 return rhead;
3704 }
3705
3706 static struct varinfo *
3707 reverse_varinfo_list (struct varinfo *head)
3708 {
3709 struct varinfo *rhead;
3710 struct varinfo *temp;
3711
3712 for (rhead = NULL; head; head = temp)
3713 {
3714 temp = head->prev_var;
3715 head->prev_var = rhead;
3716 rhead = head;
3717 }
3718 return rhead;
3719 }
3720
3721 /* Extract all interesting funcinfos and varinfos of a compilation
3722 unit into hash tables for faster lookup. Returns TRUE if no
3723 errors were enountered; FALSE otherwise. */
3724
3725 static bfd_boolean
3726 comp_unit_hash_info (struct dwarf2_debug *stash,
3727 struct comp_unit *unit,
3728 struct info_hash_table *funcinfo_hash_table,
3729 struct info_hash_table *varinfo_hash_table)
3730 {
3731 struct funcinfo* each_func;
3732 struct varinfo* each_var;
3733 bfd_boolean okay = TRUE;
3734
3735 BFD_ASSERT (stash->info_hash_status != STASH_INFO_HASH_DISABLED);
3736
3737 if (!comp_unit_maybe_decode_line_info (unit, stash))
3738 return FALSE;
3739
3740 BFD_ASSERT (!unit->cached);
3741
3742 /* To preserve the original search order, we went to visit the function
3743 infos in the reversed order of the list. However, making the list
3744 bi-directional use quite a bit of extra memory. So we reverse
3745 the list first, traverse the list in the now reversed order and
3746 finally reverse the list again to get back the original order. */
3747 unit->function_table = reverse_funcinfo_list (unit->function_table);
3748 for (each_func = unit->function_table;
3749 each_func && okay;
3750 each_func = each_func->prev_func)
3751 {
3752 /* Skip nameless functions. */
3753 if (each_func->name)
3754 /* There is no need to copy name string into hash table as
3755 name string is either in the dwarf string buffer or
3756 info in the stash. */
3757 okay = insert_info_hash_table (funcinfo_hash_table, each_func->name,
3758 (void*) each_func, FALSE);
3759 }
3760 unit->function_table = reverse_funcinfo_list (unit->function_table);
3761 if (!okay)
3762 return FALSE;
3763
3764 /* We do the same for variable infos. */
3765 unit->variable_table = reverse_varinfo_list (unit->variable_table);
3766 for (each_var = unit->variable_table;
3767 each_var && okay;
3768 each_var = each_var->prev_var)
3769 {
3770 /* Skip stack vars and vars with no files or names. */
3771 if (each_var->stack == 0
3772 && each_var->file != NULL
3773 && each_var->name != NULL)
3774 /* There is no need to copy name string into hash table as
3775 name string is either in the dwarf string buffer or
3776 info in the stash. */
3777 okay = insert_info_hash_table (varinfo_hash_table, each_var->name,
3778 (void*) each_var, FALSE);
3779 }
3780
3781 unit->variable_table = reverse_varinfo_list (unit->variable_table);
3782 unit->cached = TRUE;
3783 return okay;
3784 }
3785
3786 /* Locate a section in a BFD containing debugging info. The search starts
3787 from the section after AFTER_SEC, or from the first section in the BFD if
3788 AFTER_SEC is NULL. The search works by examining the names of the
3789 sections. There are three permissiable names. The first two are given
3790 by DEBUG_SECTIONS[debug_info] (whose standard DWARF2 names are .debug_info
3791 and .zdebug_info). The third is a prefix .gnu.linkonce.wi.
3792 This is a variation on the .debug_info section which has a checksum
3793 describing the contents appended onto the name. This allows the linker to
3794 identify and discard duplicate debugging sections for different
3795 compilation units. */
3796 #define GNU_LINKONCE_INFO ".gnu.linkonce.wi."
3797
3798 static asection *
3799 find_debug_info (bfd *abfd, const struct dwarf_debug_section *debug_sections,
3800 asection *after_sec)
3801 {
3802 asection *msec;
3803 const char *look;
3804
3805 if (after_sec == NULL)
3806 {
3807 look = debug_sections[debug_info].uncompressed_name;
3808 msec = bfd_get_section_by_name (abfd, look);
3809 if (msec != NULL)
3810 return msec;
3811
3812 look = debug_sections[debug_info].compressed_name;
3813 if (look != NULL)
3814 {
3815 msec = bfd_get_section_by_name (abfd, look);
3816 if (msec != NULL)
3817 return msec;
3818 }
3819
3820 for (msec = abfd->sections; msec != NULL; msec = msec->next)
3821 if (CONST_STRNEQ (msec->name, GNU_LINKONCE_INFO))
3822 return msec;
3823
3824 return NULL;
3825 }
3826
3827 for (msec = after_sec->next; msec != NULL; msec = msec->next)
3828 {
3829 look = debug_sections[debug_info].uncompressed_name;
3830 if (strcmp (msec->name, look) == 0)
3831 return msec;
3832
3833 look = debug_sections[debug_info].compressed_name;
3834 if (look != NULL && strcmp (msec->name, look) == 0)
3835 return msec;
3836
3837 if (CONST_STRNEQ (msec->name, GNU_LINKONCE_INFO))
3838 return msec;
3839 }
3840
3841 return NULL;
3842 }
3843
3844 /* Transfer VMAs from object file to separate debug file. */
3845
3846 static void
3847 set_debug_vma (bfd *orig_bfd, bfd *debug_bfd)
3848 {
3849 asection *s, *d;
3850
3851 for (s = orig_bfd->sections, d = debug_bfd->sections;
3852 s != NULL && d != NULL;
3853 s = s->next, d = d->next)
3854 {
3855 if ((d->flags & SEC_DEBUGGING) != 0)
3856 break;
3857 /* ??? Assumes 1-1 correspondence between sections in the
3858 two files. */
3859 if (strcmp (s->name, d->name) == 0)
3860 {
3861 d->output_section = s->output_section;
3862 d->output_offset = s->output_offset;
3863 d->vma = s->vma;
3864 }
3865 }
3866 }
3867
3868 /* Unset vmas for adjusted sections in STASH. */
3869
3870 static void
3871 unset_sections (struct dwarf2_debug *stash)
3872 {
3873 int i;
3874 struct adjusted_section *p;
3875
3876 i = stash->adjusted_section_count;
3877 p = stash->adjusted_sections;
3878 for (; i > 0; i--, p++)
3879 p->section->vma = 0;
3880 }
3881
3882 /* Set VMAs for allocated and .debug_info sections in ORIG_BFD, a
3883 relocatable object file. VMAs are normally all zero in relocatable
3884 object files, so if we want to distinguish locations in sections by
3885 address we need to set VMAs so the sections do not overlap. We
3886 also set VMA on .debug_info so that when we have multiple
3887 .debug_info sections (or the linkonce variant) they also do not
3888 overlap. The multiple .debug_info sections make up a single
3889 logical section. ??? We should probably do the same for other
3890 debug sections. */
3891
3892 static bfd_boolean
3893 place_sections (bfd *orig_bfd, struct dwarf2_debug *stash)
3894 {
3895 bfd *abfd;
3896 struct adjusted_section *p;
3897 int i;
3898 const char *debug_info_name;
3899
3900 if (stash->adjusted_section_count != 0)
3901 {
3902 i = stash->adjusted_section_count;
3903 p = stash->adjusted_sections;
3904 for (; i > 0; i--, p++)
3905 p->section->vma = p->adj_vma;
3906 return TRUE;
3907 }
3908
3909 debug_info_name = stash->debug_sections[debug_info].uncompressed_name;
3910 i = 0;
3911 abfd = orig_bfd;
3912 while (1)
3913 {
3914 asection *sect;
3915
3916 for (sect = abfd->sections; sect != NULL; sect = sect->next)
3917 {
3918 int is_debug_info;
3919
3920 if ((sect->output_section != NULL
3921 && sect->output_section != sect
3922 && (sect->flags & SEC_DEBUGGING) == 0)
3923 || sect->vma != 0)
3924 continue;
3925
3926 is_debug_info = (strcmp (sect->name, debug_info_name) == 0
3927 || CONST_STRNEQ (sect->name, GNU_LINKONCE_INFO));
3928
3929 if (!((sect->flags & SEC_ALLOC) != 0 && abfd == orig_bfd)
3930 && !is_debug_info)
3931 continue;
3932
3933 i++;
3934 }
3935 if (abfd == stash->bfd_ptr)
3936 break;
3937 abfd = stash->bfd_ptr;
3938 }
3939
3940 if (i <= 1)
3941 stash->adjusted_section_count = -1;
3942 else
3943 {
3944 bfd_vma last_vma = 0, last_dwarf = 0;
3945 bfd_size_type amt = i * sizeof (struct adjusted_section);
3946
3947 p = (struct adjusted_section *) bfd_malloc (amt);
3948 if (p == NULL)
3949 return FALSE;
3950
3951 stash->adjusted_sections = p;
3952 stash->adjusted_section_count = i;
3953
3954 abfd = orig_bfd;
3955 while (1)
3956 {
3957 asection *sect;
3958
3959 for (sect = abfd->sections; sect != NULL; sect = sect->next)
3960 {
3961 bfd_size_type sz;
3962 int is_debug_info;
3963
3964 if ((sect->output_section != NULL
3965 && sect->output_section != sect
3966 && (sect->flags & SEC_DEBUGGING) == 0)
3967 || sect->vma != 0)
3968 continue;
3969
3970 is_debug_info = (strcmp (sect->name, debug_info_name) == 0
3971 || CONST_STRNEQ (sect->name, GNU_LINKONCE_INFO));
3972
3973 if (!((sect->flags & SEC_ALLOC) != 0 && abfd == orig_bfd)
3974 && !is_debug_info)
3975 continue;
3976
3977 sz = sect->rawsize ? sect->rawsize : sect->size;
3978
3979 if (is_debug_info)
3980 {
3981 BFD_ASSERT (sect->alignment_power == 0);
3982 sect->vma = last_dwarf;
3983 last_dwarf += sz;
3984 }
3985 else
3986 {
3987 /* Align the new address to the current section
3988 alignment. */
3989 last_vma = ((last_vma
3990 + ~(-((bfd_vma) 1 << sect->alignment_power)))
3991 & (-((bfd_vma) 1 << sect->alignment_power)));
3992 sect->vma = last_vma;
3993 last_vma += sz;
3994 }
3995
3996 p->section = sect;
3997 p->adj_vma = sect->vma;
3998 p++;
3999 }
4000 if (abfd == stash->bfd_ptr)
4001 break;
4002 abfd = stash->bfd_ptr;
4003 }
4004 }
4005
4006 if (orig_bfd != stash->bfd_ptr)
4007 set_debug_vma (orig_bfd, stash->bfd_ptr);
4008
4009 return TRUE;
4010 }
4011
4012 /* Look up a funcinfo by name using the given info hash table. If found,
4013 also update the locations pointed to by filename_ptr and linenumber_ptr.
4014
4015 This function returns TRUE if a funcinfo that matches the given symbol
4016 and address is found with any error; otherwise it returns FALSE. */
4017
4018 static bfd_boolean
4019 info_hash_lookup_funcinfo (struct info_hash_table *hash_table,
4020 asymbol *sym,
4021 bfd_vma addr,
4022 const char **filename_ptr,
4023 unsigned int *linenumber_ptr)
4024 {
4025 struct funcinfo* each_func;
4026 struct funcinfo* best_fit = NULL;
4027 bfd_vma best_fit_len = 0;
4028 struct info_list_node *node;
4029 struct arange *arange;
4030 const char *name = bfd_asymbol_name (sym);
4031 asection *sec = bfd_get_section (sym);
4032
4033 for (node = lookup_info_hash_table (hash_table, name);
4034 node;
4035 node = node->next)
4036 {
4037 each_func = (struct funcinfo *) node->info;
4038 for (arange = &each_func->arange;
4039 arange;
4040 arange = arange->next)
4041 {
4042 if ((!each_func->sec || each_func->sec == sec)
4043 && addr >= arange->low
4044 && addr < arange->high
4045 && (!best_fit
4046 || arange->high - arange->low < best_fit_len))
4047 {
4048 best_fit = each_func;
4049 best_fit_len = arange->high - arange->low;
4050 }
4051 }
4052 }
4053
4054 if (best_fit)
4055 {
4056 best_fit->sec = sec;
4057 *filename_ptr = best_fit->file;
4058 *linenumber_ptr = best_fit->line;
4059 return TRUE;
4060 }
4061
4062 return FALSE;
4063 }
4064
4065 /* Look up a varinfo by name using the given info hash table. If found,
4066 also update the locations pointed to by filename_ptr and linenumber_ptr.
4067
4068 This function returns TRUE if a varinfo that matches the given symbol
4069 and address is found with any error; otherwise it returns FALSE. */
4070
4071 static bfd_boolean
4072 info_hash_lookup_varinfo (struct info_hash_table *hash_table,
4073 asymbol *sym,
4074 bfd_vma addr,
4075 const char **filename_ptr,
4076 unsigned int *linenumber_ptr)
4077 {
4078 const char *name = bfd_asymbol_name (sym);
4079 asection *sec = bfd_get_section (sym);
4080 struct varinfo* each;
4081 struct info_list_node *node;
4082
4083 for (node = lookup_info_hash_table (hash_table, name);
4084 node;
4085 node = node->next)
4086 {
4087 each = (struct varinfo *) node->info;
4088 if (each->addr == addr
4089 && (!each->sec || each->sec == sec))
4090 {
4091 each->sec = sec;
4092 *filename_ptr = each->file;
4093 *linenumber_ptr = each->line;
4094 return TRUE;
4095 }
4096 }
4097
4098 return FALSE;
4099 }
4100
4101 /* Update the funcinfo and varinfo info hash tables if they are
4102 not up to date. Returns TRUE if there is no error; otherwise
4103 returns FALSE and disable the info hash tables. */
4104
4105 static bfd_boolean
4106 stash_maybe_update_info_hash_tables (struct dwarf2_debug *stash)
4107 {
4108 struct comp_unit *each;
4109
4110 /* Exit if hash tables are up-to-date. */
4111 if (stash->all_comp_units == stash->hash_units_head)
4112 return TRUE;
4113
4114 if (stash->hash_units_head)
4115 each = stash->hash_units_head->prev_unit;
4116 else
4117 each = stash->last_comp_unit;
4118
4119 while (each)
4120 {
4121 if (!comp_unit_hash_info (stash, each, stash->funcinfo_hash_table,
4122 stash->varinfo_hash_table))
4123 {
4124 stash->info_hash_status = STASH_INFO_HASH_DISABLED;
4125 return FALSE;
4126 }
4127 each = each->prev_unit;
4128 }
4129
4130 stash->hash_units_head = stash->all_comp_units;
4131 return TRUE;
4132 }
4133
4134 /* Check consistency of info hash tables. This is for debugging only. */
4135
4136 static void ATTRIBUTE_UNUSED
4137 stash_verify_info_hash_table (struct dwarf2_debug *stash)
4138 {
4139 struct comp_unit *each_unit;
4140 struct funcinfo *each_func;
4141 struct varinfo *each_var;
4142 struct info_list_node *node;
4143 bfd_boolean found;
4144
4145 for (each_unit = stash->all_comp_units;
4146 each_unit;
4147 each_unit = each_unit->next_unit)
4148 {
4149 for (each_func = each_unit->function_table;
4150 each_func;
4151 each_func = each_func->prev_func)
4152 {
4153 if (!each_func->name)
4154 continue;
4155 node = lookup_info_hash_table (stash->funcinfo_hash_table,
4156 each_func->name);
4157 BFD_ASSERT (node);
4158 found = FALSE;
4159 while (node && !found)
4160 {
4161 found = node->info == each_func;
4162 node = node->next;
4163 }
4164 BFD_ASSERT (found);
4165 }
4166
4167 for (each_var = each_unit->variable_table;
4168 each_var;
4169 each_var = each_var->prev_var)
4170 {
4171 if (!each_var->name || !each_var->file || each_var->stack)
4172 continue;
4173 node = lookup_info_hash_table (stash->varinfo_hash_table,
4174 each_var->name);
4175 BFD_ASSERT (node);
4176 found = FALSE;
4177 while (node && !found)
4178 {
4179 found = node->info == each_var;
4180 node = node->next;
4181 }
4182 BFD_ASSERT (found);
4183 }
4184 }
4185 }
4186
4187 /* Check to see if we want to enable the info hash tables, which consume
4188 quite a bit of memory. Currently we only check the number times
4189 bfd_dwarf2_find_line is called. In the future, we may also want to
4190 take the number of symbols into account. */
4191
4192 static void
4193 stash_maybe_enable_info_hash_tables (bfd *abfd, struct dwarf2_debug *stash)
4194 {
4195 BFD_ASSERT (stash->info_hash_status == STASH_INFO_HASH_OFF);
4196
4197 if (stash->info_hash_count++ < STASH_INFO_HASH_TRIGGER)
4198 return;
4199
4200 /* FIXME: Maybe we should check the reduce_memory_overheads
4201 and optimize fields in the bfd_link_info structure ? */
4202
4203 /* Create hash tables. */
4204 stash->funcinfo_hash_table = create_info_hash_table (abfd);
4205 stash->varinfo_hash_table = create_info_hash_table (abfd);
4206 if (!stash->funcinfo_hash_table || !stash->varinfo_hash_table)
4207 {
4208 /* Turn off info hashes if any allocation above fails. */
4209 stash->info_hash_status = STASH_INFO_HASH_DISABLED;
4210 return;
4211 }
4212 /* We need a forced update so that the info hash tables will
4213 be created even though there is no compilation unit. That
4214 happens if STASH_INFO_HASH_TRIGGER is 0. */
4215 stash_maybe_update_info_hash_tables (stash);
4216 stash->info_hash_status = STASH_INFO_HASH_ON;
4217 }
4218
4219 /* Find the file and line associated with a symbol and address using the
4220 info hash tables of a stash. If there is a match, the function returns
4221 TRUE and update the locations pointed to by filename_ptr and linenumber_ptr;
4222 otherwise it returns FALSE. */
4223
4224 static bfd_boolean
4225 stash_find_line_fast (struct dwarf2_debug *stash,
4226 asymbol *sym,
4227 bfd_vma addr,
4228 const char **filename_ptr,
4229 unsigned int *linenumber_ptr)
4230 {
4231 BFD_ASSERT (stash->info_hash_status == STASH_INFO_HASH_ON);
4232
4233 if (sym->flags & BSF_FUNCTION)
4234 return info_hash_lookup_funcinfo (stash->funcinfo_hash_table, sym, addr,
4235 filename_ptr, linenumber_ptr);
4236 return info_hash_lookup_varinfo (stash->varinfo_hash_table, sym, addr,
4237 filename_ptr, linenumber_ptr);
4238 }
4239
4240 /* Save current section VMAs. */
4241
4242 static bfd_boolean
4243 save_section_vma (const bfd *abfd, struct dwarf2_debug *stash)
4244 {
4245 asection *s;
4246 unsigned int i;
4247
4248 if (abfd->section_count == 0)
4249 return TRUE;
4250 stash->sec_vma = bfd_malloc (sizeof (*stash->sec_vma) * abfd->section_count);
4251 if (stash->sec_vma == NULL)
4252 return FALSE;
4253 stash->sec_vma_count = abfd->section_count;
4254 for (i = 0, s = abfd->sections;
4255 s != NULL && i < abfd->section_count;
4256 i++, s = s->next)
4257 {
4258 if (s->output_section != NULL)
4259 stash->sec_vma[i] = s->output_section->vma + s->output_offset;
4260 else
4261 stash->sec_vma[i] = s->vma;
4262 }
4263 return TRUE;
4264 }
4265
4266 /* Compare current section VMAs against those at the time the stash
4267 was created. If find_nearest_line is used in linker warnings or
4268 errors early in the link process, the debug info stash will be
4269 invalid for later calls. This is because we relocate debug info
4270 sections, so the stashed section contents depend on symbol values,
4271 which in turn depend on section VMAs. */
4272
4273 static bfd_boolean
4274 section_vma_same (const bfd *abfd, const struct dwarf2_debug *stash)
4275 {
4276 asection *s;
4277 unsigned int i;
4278
4279 /* PR 24334: If the number of sections in ABFD has changed between
4280 when the stash was created and now, then we cannot trust the
4281 stashed vma information. */
4282 if (abfd->section_count != stash->sec_vma_count)
4283 return FALSE;
4284
4285 for (i = 0, s = abfd->sections;
4286 s != NULL && i < abfd->section_count;
4287 i++, s = s->next)
4288 {
4289 bfd_vma vma;
4290
4291 if (s->output_section != NULL)
4292 vma = s->output_section->vma + s->output_offset;
4293 else
4294 vma = s->vma;
4295 if (vma != stash->sec_vma[i])
4296 return FALSE;
4297 }
4298 return TRUE;
4299 }
4300
4301 /* Read debug information from DEBUG_BFD when DEBUG_BFD is specified.
4302 If DEBUG_BFD is not specified, we read debug information from ABFD
4303 or its gnu_debuglink. The results will be stored in PINFO.
4304 The function returns TRUE iff debug information is ready. */
4305
4306 bfd_boolean
4307 _bfd_dwarf2_slurp_debug_info (bfd *abfd, bfd *debug_bfd,
4308 const struct dwarf_debug_section *debug_sections,
4309 asymbol **symbols,
4310 void **pinfo,
4311 bfd_boolean do_place)
4312 {
4313 bfd_size_type amt = sizeof (struct dwarf2_debug);
4314 bfd_size_type total_size;
4315 asection *msec;
4316 struct dwarf2_debug *stash = (struct dwarf2_debug *) *pinfo;
4317
4318 if (stash != NULL)
4319 {
4320 if (stash->orig_bfd == abfd
4321 && section_vma_same (abfd, stash))
4322 {
4323 /* Check that we did previously find some debug information
4324 before attempting to make use of it. */
4325 if (stash->bfd_ptr != NULL)
4326 {
4327 if (do_place && !place_sections (abfd, stash))
4328 return FALSE;
4329 return TRUE;
4330 }
4331
4332 return FALSE;
4333 }
4334 _bfd_dwarf2_cleanup_debug_info (abfd, pinfo);
4335 memset (stash, 0, amt);
4336 }
4337 else
4338 {
4339 stash = (struct dwarf2_debug *) bfd_zalloc (abfd, amt);
4340 if (! stash)
4341 return FALSE;
4342 }
4343 stash->orig_bfd = abfd;
4344 stash->debug_sections = debug_sections;
4345 stash->syms = symbols;
4346 if (!save_section_vma (abfd, stash))
4347 return FALSE;
4348
4349 *pinfo = stash;
4350
4351 if (debug_bfd == NULL)
4352 debug_bfd = abfd;
4353
4354 msec = find_debug_info (debug_bfd, debug_sections, NULL);
4355 if (msec == NULL && abfd == debug_bfd)
4356 {
4357 char * debug_filename;
4358
4359 debug_filename = bfd_follow_build_id_debuglink (abfd, DEBUGDIR);
4360 if (debug_filename == NULL)
4361 debug_filename = bfd_follow_gnu_debuglink (abfd, DEBUGDIR);
4362
4363 if (debug_filename == NULL)
4364 /* No dwarf2 info, and no gnu_debuglink to follow.
4365 Note that at this point the stash has been allocated, but
4366 contains zeros. This lets future calls to this function
4367 fail more quickly. */
4368 return FALSE;
4369
4370 /* Set BFD_DECOMPRESS to decompress debug sections. */
4371 if ((debug_bfd = bfd_openr (debug_filename, NULL)) == NULL
4372 || !(debug_bfd->flags |= BFD_DECOMPRESS,
4373 bfd_check_format (debug_bfd, bfd_object))
4374 || (msec = find_debug_info (debug_bfd,
4375 debug_sections, NULL)) == NULL
4376 || !bfd_generic_link_read_symbols (debug_bfd))
4377 {
4378 if (debug_bfd)
4379 bfd_close (debug_bfd);
4380 /* FIXME: Should we report our failure to follow the debuglink ? */
4381 free (debug_filename);
4382 return FALSE;
4383 }
4384
4385 symbols = bfd_get_outsymbols (debug_bfd);
4386 stash->syms = symbols;
4387 stash->close_on_cleanup = TRUE;
4388 }
4389 stash->bfd_ptr = debug_bfd;
4390
4391 if (do_place
4392 && !place_sections (abfd, stash))
4393 return FALSE;
4394
4395 /* There can be more than one DWARF2 info section in a BFD these
4396 days. First handle the easy case when there's only one. If
4397 there's more than one, try case two: none of the sections is
4398 compressed. In that case, read them all in and produce one
4399 large stash. We do this in two passes - in the first pass we
4400 just accumulate the section sizes, and in the second pass we
4401 read in the section's contents. (The allows us to avoid
4402 reallocing the data as we add sections to the stash.) If
4403 some or all sections are compressed, then do things the slow
4404 way, with a bunch of reallocs. */
4405
4406 if (! find_debug_info (debug_bfd, debug_sections, msec))
4407 {
4408 /* Case 1: only one info section. */
4409 total_size = msec->size;
4410 if (! read_section (debug_bfd, &stash->debug_sections[debug_info],
4411 symbols, 0,
4412 &stash->info_ptr_memory, &total_size))
4413 return FALSE;
4414 }
4415 else
4416 {
4417 /* Case 2: multiple sections. */
4418 for (total_size = 0;
4419 msec;
4420 msec = find_debug_info (debug_bfd, debug_sections, msec))
4421 total_size += msec->size;
4422
4423 stash->info_ptr_memory = (bfd_byte *) bfd_malloc (total_size);
4424 if (stash->info_ptr_memory == NULL)
4425 return FALSE;
4426
4427 total_size = 0;
4428 for (msec = find_debug_info (debug_bfd, debug_sections, NULL);
4429 msec;
4430 msec = find_debug_info (debug_bfd, debug_sections, msec))
4431 {
4432 bfd_size_type size;
4433
4434 size = msec->size;
4435 if (size == 0)
4436 continue;
4437
4438 if (!(bfd_simple_get_relocated_section_contents
4439 (debug_bfd, msec, stash->info_ptr_memory + total_size,
4440 symbols)))
4441 return FALSE;
4442
4443 total_size += size;
4444 }
4445 }
4446
4447 stash->info_ptr = stash->info_ptr_memory;
4448 stash->info_ptr_end = stash->info_ptr + total_size;
4449 stash->sec = find_debug_info (debug_bfd, debug_sections, NULL);
4450 stash->sec_info_ptr = stash->info_ptr;
4451 return TRUE;
4452 }
4453
4454 /* Scan the debug information in PINFO looking for a DW_TAG_subprogram
4455 abbrev with a DW_AT_low_pc attached to it. Then lookup that same
4456 symbol in SYMBOLS and return the difference between the low_pc and
4457 the symbol's address. Returns 0 if no suitable symbol could be found. */
4458
4459 bfd_signed_vma
4460 _bfd_dwarf2_find_symbol_bias (asymbol ** symbols, void ** pinfo)
4461 {
4462 struct dwarf2_debug *stash;
4463 struct comp_unit * unit;
4464
4465 stash = (struct dwarf2_debug *) *pinfo;
4466
4467 if (stash == NULL || symbols == NULL)
4468 return 0;
4469
4470 for (unit = stash->all_comp_units; unit; unit = unit->next_unit)
4471 {
4472 struct funcinfo * func;
4473
4474 comp_unit_maybe_decode_line_info (unit, stash);
4475
4476 for (func = unit->function_table; func != NULL; func = func->prev_func)
4477 if (func->name && func->arange.low)
4478 {
4479 asymbol ** psym;
4480
4481 /* FIXME: Do we need to scan the aranges looking for the lowest pc value ? */
4482
4483 for (psym = symbols; * psym != NULL; psym++)
4484 {
4485 asymbol * sym = * psym;
4486
4487 if (sym->flags & BSF_FUNCTION
4488 && sym->section != NULL
4489 && strcmp (sym->name, func->name) == 0)
4490 return ((bfd_signed_vma) func->arange.low) -
4491 ((bfd_signed_vma) (sym->value + sym->section->vma));
4492 }
4493 }
4494 }
4495
4496 return 0;
4497 }
4498
4499 /* Find the source code location of SYMBOL. If SYMBOL is NULL
4500 then find the nearest source code location corresponding to
4501 the address SECTION + OFFSET.
4502 Returns TRUE if the line is found without error and fills in
4503 FILENAME_PTR and LINENUMBER_PTR. In the case where SYMBOL was
4504 NULL the FUNCTIONNAME_PTR is also filled in.
4505 SYMBOLS contains the symbol table for ABFD.
4506 DEBUG_SECTIONS contains the name of the dwarf debug sections.
4507 field and in the abbreviation offset, or zero to indicate that the
4508 default value should be used. */
4509
4510 bfd_boolean
4511 _bfd_dwarf2_find_nearest_line (bfd *abfd,
4512 asymbol **symbols,
4513 asymbol *symbol,
4514 asection *section,
4515 bfd_vma offset,
4516 const char **filename_ptr,
4517 const char **functionname_ptr,
4518 unsigned int *linenumber_ptr,
4519 unsigned int *discriminator_ptr,
4520 const struct dwarf_debug_section *debug_sections,
4521 void **pinfo)
4522 {
4523 /* Read each compilation unit from the section .debug_info, and check
4524 to see if it contains the address we are searching for. If yes,
4525 lookup the address, and return the line number info. If no, go
4526 on to the next compilation unit.
4527
4528 We keep a list of all the previously read compilation units, and
4529 a pointer to the next un-read compilation unit. Check the
4530 previously read units before reading more. */
4531 struct dwarf2_debug *stash;
4532 /* What address are we looking for? */
4533 bfd_vma addr;
4534 struct comp_unit* each;
4535 struct funcinfo *function = NULL;
4536 bfd_boolean found = FALSE;
4537 bfd_boolean do_line;
4538
4539 *filename_ptr = NULL;
4540 if (functionname_ptr != NULL)
4541 *functionname_ptr = NULL;
4542 *linenumber_ptr = 0;
4543 if (discriminator_ptr)
4544 *discriminator_ptr = 0;
4545
4546 if (! _bfd_dwarf2_slurp_debug_info (abfd, NULL, debug_sections,
4547 symbols, pinfo,
4548 (abfd->flags & (EXEC_P | DYNAMIC)) == 0))
4549 return FALSE;
4550
4551 stash = (struct dwarf2_debug *) *pinfo;
4552
4553 do_line = symbol != NULL;
4554 if (do_line)
4555 {
4556 BFD_ASSERT (section == NULL && offset == 0 && functionname_ptr == NULL);
4557 section = bfd_get_section (symbol);
4558 addr = symbol->value;
4559 }
4560 else
4561 {
4562 BFD_ASSERT (section != NULL && functionname_ptr != NULL);
4563 addr = offset;
4564
4565 /* If we have no SYMBOL but the section we're looking at is not a
4566 code section, then take a look through the list of symbols to see
4567 if we have a symbol at the address we're looking for. If we do
4568 then use this to look up line information. This will allow us to
4569 give file and line results for data symbols. We exclude code
4570 symbols here, if we look up a function symbol and then look up the
4571 line information we'll actually return the line number for the
4572 opening '{' rather than the function definition line. This is
4573 because looking up by symbol uses the line table, in which the
4574 first line for a function is usually the opening '{', while
4575 looking up the function by section + offset uses the
4576 DW_AT_decl_line from the function DW_TAG_subprogram for the line,
4577 which will be the line of the function name. */
4578 if (symbols != NULL && (section->flags & SEC_CODE) == 0)
4579 {
4580 asymbol **tmp;
4581
4582 for (tmp = symbols; (*tmp) != NULL; ++tmp)
4583 if ((*tmp)->the_bfd == abfd
4584 && (*tmp)->section == section
4585 && (*tmp)->value == offset
4586 && ((*tmp)->flags & BSF_SECTION_SYM) == 0)
4587 {
4588 symbol = *tmp;
4589 do_line = TRUE;
4590 /* For local symbols, keep going in the hope we find a
4591 global. */
4592 if ((symbol->flags & BSF_GLOBAL) != 0)
4593 break;
4594 }
4595 }
4596 }
4597
4598 if (section->output_section)
4599 addr += section->output_section->vma + section->output_offset;
4600 else
4601 addr += section->vma;
4602
4603 /* A null info_ptr indicates that there is no dwarf2 info
4604 (or that an error occured while setting up the stash). */
4605 if (! stash->info_ptr)
4606 return FALSE;
4607
4608 stash->inliner_chain = NULL;
4609
4610 /* Check the previously read comp. units first. */
4611 if (do_line)
4612 {
4613 /* The info hash tables use quite a bit of memory. We may not want to
4614 always use them. We use some heuristics to decide if and when to
4615 turn it on. */
4616 if (stash->info_hash_status == STASH_INFO_HASH_OFF)
4617 stash_maybe_enable_info_hash_tables (abfd, stash);
4618
4619 /* Keep info hash table up to date if they are available. Note that we
4620 may disable the hash tables if there is any error duing update. */
4621 if (stash->info_hash_status == STASH_INFO_HASH_ON)
4622 stash_maybe_update_info_hash_tables (stash);
4623
4624 if (stash->info_hash_status == STASH_INFO_HASH_ON)
4625 {
4626 found = stash_find_line_fast (stash, symbol, addr, filename_ptr,
4627 linenumber_ptr);
4628 if (found)
4629 goto done;
4630 }
4631 else
4632 {
4633 /* Check the previously read comp. units first. */
4634 for (each = stash->all_comp_units; each; each = each->next_unit)
4635 if ((symbol->flags & BSF_FUNCTION) == 0
4636 || each->arange.high == 0
4637 || comp_unit_contains_address (each, addr))
4638 {
4639 found = comp_unit_find_line (each, symbol, addr, filename_ptr,
4640 linenumber_ptr, stash);
4641 if (found)
4642 goto done;
4643 }
4644 }
4645 }
4646 else
4647 {
4648 bfd_vma min_range = (bfd_vma) -1;
4649 const char * local_filename = NULL;
4650 struct funcinfo *local_function = NULL;
4651 unsigned int local_linenumber = 0;
4652 unsigned int local_discriminator = 0;
4653
4654 for (each = stash->all_comp_units; each; each = each->next_unit)
4655 {
4656 bfd_vma range = (bfd_vma) -1;
4657
4658 found = ((each->arange.high == 0
4659 || comp_unit_contains_address (each, addr))
4660 && (range = comp_unit_find_nearest_line (each, addr,
4661 & local_filename,
4662 & local_function,
4663 & local_linenumber,
4664 & local_discriminator,
4665 stash)) != 0);
4666 if (found)
4667 {
4668 /* PRs 15935 15994: Bogus debug information may have provided us
4669 with an erroneous match. We attempt to counter this by
4670 selecting the match that has the smallest address range
4671 associated with it. (We are assuming that corrupt debug info
4672 will tend to result in extra large address ranges rather than
4673 extra small ranges).
4674
4675 This does mean that we scan through all of the CUs associated
4676 with the bfd each time this function is called. But this does
4677 have the benefit of producing consistent results every time the
4678 function is called. */
4679 if (range <= min_range)
4680 {
4681 if (filename_ptr && local_filename)
4682 * filename_ptr = local_filename;
4683 if (local_function)
4684 function = local_function;
4685 if (discriminator_ptr && local_discriminator)
4686 * discriminator_ptr = local_discriminator;
4687 if (local_linenumber)
4688 * linenumber_ptr = local_linenumber;
4689 min_range = range;
4690 }
4691 }
4692 }
4693
4694 if (* linenumber_ptr)
4695 {
4696 found = TRUE;
4697 goto done;
4698 }
4699 }
4700
4701 /* Read each remaining comp. units checking each as they are read. */
4702 while (stash->info_ptr < stash->info_ptr_end)
4703 {
4704 bfd_vma length;
4705 unsigned int offset_size;
4706 bfd_byte *info_ptr_unit = stash->info_ptr;
4707
4708 length = read_4_bytes (stash->bfd_ptr, stash->info_ptr, stash->info_ptr_end);
4709 /* A 0xffffff length is the DWARF3 way of indicating
4710 we use 64-bit offsets, instead of 32-bit offsets. */
4711 if (length == 0xffffffff)
4712 {
4713 offset_size = 8;
4714 length = read_8_bytes (stash->bfd_ptr, stash->info_ptr + 4, stash->info_ptr_end);
4715 stash->info_ptr += 12;
4716 }
4717 /* A zero length is the IRIX way of indicating 64-bit offsets,
4718 mostly because the 64-bit length will generally fit in 32
4719 bits, and the endianness helps. */
4720 else if (length == 0)
4721 {
4722 offset_size = 8;
4723 length = read_4_bytes (stash->bfd_ptr, stash->info_ptr + 4, stash->info_ptr_end);
4724 stash->info_ptr += 8;
4725 }
4726 /* In the absence of the hints above, we assume 32-bit DWARF2
4727 offsets even for targets with 64-bit addresses, because:
4728 a) most of the time these targets will not have generated
4729 more than 2Gb of debug info and so will not need 64-bit
4730 offsets,
4731 and
4732 b) if they do use 64-bit offsets but they are not using
4733 the size hints that are tested for above then they are
4734 not conforming to the DWARF3 standard anyway. */
4735 else
4736 {
4737 offset_size = 4;
4738 stash->info_ptr += 4;
4739 }
4740
4741 if (length > 0)
4742 {
4743 bfd_byte * new_ptr;
4744
4745 /* PR 21151 */
4746 if (stash->info_ptr + length > stash->info_ptr_end)
4747 return FALSE;
4748
4749 each = parse_comp_unit (stash, length, info_ptr_unit,
4750 offset_size);
4751 if (!each)
4752 /* The dwarf information is damaged, don't trust it any
4753 more. */
4754 break;
4755
4756 new_ptr = stash->info_ptr + length;
4757 /* PR 17512: file: 1500698c. */
4758 if (new_ptr < stash->info_ptr)
4759 {
4760 /* A corrupt length value - do not trust the info any more. */
4761 found = FALSE;
4762 break;
4763 }
4764 else
4765 stash->info_ptr = new_ptr;
4766
4767 if (stash->all_comp_units)
4768 stash->all_comp_units->prev_unit = each;
4769 else
4770 stash->last_comp_unit = each;
4771
4772 each->next_unit = stash->all_comp_units;
4773 stash->all_comp_units = each;
4774
4775 /* DW_AT_low_pc and DW_AT_high_pc are optional for
4776 compilation units. If we don't have them (i.e.,
4777 unit->high == 0), we need to consult the line info table
4778 to see if a compilation unit contains the given
4779 address. */
4780 if (do_line)
4781 found = (((symbol->flags & BSF_FUNCTION) == 0
4782 || each->arange.high == 0
4783 || comp_unit_contains_address (each, addr))
4784 && comp_unit_find_line (each, symbol, addr,
4785 filename_ptr,
4786 linenumber_ptr,
4787 stash));
4788 else
4789 found = ((each->arange.high == 0
4790 || comp_unit_contains_address (each, addr))
4791 && comp_unit_find_nearest_line (each, addr,
4792 filename_ptr,
4793 &function,
4794 linenumber_ptr,
4795 discriminator_ptr,
4796 stash) != 0);
4797
4798 if ((bfd_vma) (stash->info_ptr - stash->sec_info_ptr)
4799 == stash->sec->size)
4800 {
4801 stash->sec = find_debug_info (stash->bfd_ptr, debug_sections,
4802 stash->sec);
4803 stash->sec_info_ptr = stash->info_ptr;
4804 }
4805
4806 if (found)
4807 goto done;
4808 }
4809 }
4810
4811 done:
4812 if (function)
4813 {
4814 if (!function->is_linkage)
4815 {
4816 asymbol *fun;
4817 bfd_vma sec_vma;
4818
4819 fun = _bfd_elf_find_function (abfd, symbols, section, offset,
4820 *filename_ptr ? NULL : filename_ptr,
4821 functionname_ptr);
4822 sec_vma = section->vma;
4823 if (section->output_section != NULL)
4824 sec_vma = section->output_section->vma + section->output_offset;
4825 if (fun != NULL
4826 && fun->value + sec_vma == function->arange.low)
4827 function->name = *functionname_ptr;
4828 /* Even if we didn't find a linkage name, say that we have
4829 to stop a repeated search of symbols. */
4830 function->is_linkage = TRUE;
4831 }
4832 *functionname_ptr = function->name;
4833 }
4834 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
4835 unset_sections (stash);
4836
4837 return found;
4838 }
4839
4840 bfd_boolean
4841 _bfd_dwarf2_find_inliner_info (bfd *abfd ATTRIBUTE_UNUSED,
4842 const char **filename_ptr,
4843 const char **functionname_ptr,
4844 unsigned int *linenumber_ptr,
4845 void **pinfo)
4846 {
4847 struct dwarf2_debug *stash;
4848
4849 stash = (struct dwarf2_debug *) *pinfo;
4850 if (stash)
4851 {
4852 struct funcinfo *func = stash->inliner_chain;
4853
4854 if (func && func->caller_func)
4855 {
4856 *filename_ptr = func->caller_file;
4857 *functionname_ptr = func->caller_func->name;
4858 *linenumber_ptr = func->caller_line;
4859 stash->inliner_chain = func->caller_func;
4860 return TRUE;
4861 }
4862 }
4863
4864 return FALSE;
4865 }
4866
4867 void
4868 _bfd_dwarf2_cleanup_debug_info (bfd *abfd, void **pinfo)
4869 {
4870 struct dwarf2_debug *stash = (struct dwarf2_debug *) *pinfo;
4871 struct comp_unit *each;
4872
4873 if (abfd == NULL || stash == NULL)
4874 return;
4875
4876 for (each = stash->all_comp_units; each; each = each->next_unit)
4877 {
4878 struct abbrev_info **abbrevs = each->abbrevs;
4879 struct funcinfo *function_table = each->function_table;
4880 struct varinfo *variable_table = each->variable_table;
4881 size_t i;
4882
4883 for (i = 0; i < ABBREV_HASH_SIZE; i++)
4884 {
4885 struct abbrev_info *abbrev = abbrevs[i];
4886
4887 while (abbrev)
4888 {
4889 free (abbrev->attrs);
4890 abbrev = abbrev->next;
4891 }
4892 }
4893
4894 if (each->line_table)
4895 {
4896 free (each->line_table->dirs);
4897 free (each->line_table->files);
4898 }
4899
4900 while (function_table)
4901 {
4902 if (function_table->file)
4903 {
4904 free (function_table->file);
4905 function_table->file = NULL;
4906 }
4907
4908 if (function_table->caller_file)
4909 {
4910 free (function_table->caller_file);
4911 function_table->caller_file = NULL;
4912 }
4913 function_table = function_table->prev_func;
4914 }
4915
4916 if (each->lookup_funcinfo_table)
4917 {
4918 free (each->lookup_funcinfo_table);
4919 each->lookup_funcinfo_table = NULL;
4920 }
4921
4922 while (variable_table)
4923 {
4924 if (variable_table->file)
4925 {
4926 free (variable_table->file);
4927 variable_table->file = NULL;
4928 }
4929
4930 variable_table = variable_table->prev_var;
4931 }
4932 }
4933
4934 if (stash->funcinfo_hash_table)
4935 bfd_hash_table_free (&stash->funcinfo_hash_table->base);
4936 if (stash->varinfo_hash_table)
4937 bfd_hash_table_free (&stash->varinfo_hash_table->base);
4938 if (stash->dwarf_abbrev_buffer)
4939 free (stash->dwarf_abbrev_buffer);
4940 if (stash->dwarf_line_buffer)
4941 free (stash->dwarf_line_buffer);
4942 if (stash->dwarf_str_buffer)
4943 free (stash->dwarf_str_buffer);
4944 if (stash->dwarf_line_str_buffer)
4945 free (stash->dwarf_line_str_buffer);
4946 if (stash->dwarf_ranges_buffer)
4947 free (stash->dwarf_ranges_buffer);
4948 if (stash->info_ptr_memory)
4949 free (stash->info_ptr_memory);
4950 if (stash->close_on_cleanup)
4951 bfd_close (stash->bfd_ptr);
4952 if (stash->alt_dwarf_str_buffer)
4953 free (stash->alt_dwarf_str_buffer);
4954 if (stash->alt_dwarf_info_buffer)
4955 free (stash->alt_dwarf_info_buffer);
4956 if (stash->sec_vma)
4957 free (stash->sec_vma);
4958 if (stash->adjusted_sections)
4959 free (stash->adjusted_sections);
4960 if (stash->alt_bfd_ptr)
4961 bfd_close (stash->alt_bfd_ptr);
4962 }
4963
4964 /* Find the function to a particular section and offset,
4965 for error reporting. */
4966
4967 asymbol *
4968 _bfd_elf_find_function (bfd *abfd,
4969 asymbol **symbols,
4970 asection *section,
4971 bfd_vma offset,
4972 const char **filename_ptr,
4973 const char **functionname_ptr)
4974 {
4975 struct elf_find_function_cache
4976 {
4977 asection *last_section;
4978 asymbol *func;
4979 const char *filename;
4980 bfd_size_type func_size;
4981 } *cache;
4982
4983 if (symbols == NULL)
4984 return NULL;
4985
4986 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
4987 return NULL;
4988
4989 cache = elf_tdata (abfd)->elf_find_function_cache;
4990 if (cache == NULL)
4991 {
4992 cache = bfd_zalloc (abfd, sizeof (*cache));
4993 elf_tdata (abfd)->elf_find_function_cache = cache;
4994 if (cache == NULL)
4995 return NULL;
4996 }
4997 if (cache->last_section != section
4998 || cache->func == NULL
4999 || offset < cache->func->value
5000 || offset >= cache->func->value + cache->func_size)
5001 {
5002 asymbol *file;
5003 bfd_vma low_func;
5004 asymbol **p;
5005 /* ??? Given multiple file symbols, it is impossible to reliably
5006 choose the right file name for global symbols. File symbols are
5007 local symbols, and thus all file symbols must sort before any
5008 global symbols. The ELF spec may be interpreted to say that a
5009 file symbol must sort before other local symbols, but currently
5010 ld -r doesn't do this. So, for ld -r output, it is possible to
5011 make a better choice of file name for local symbols by ignoring
5012 file symbols appearing after a given local symbol. */
5013 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
5014 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5015
5016 file = NULL;
5017 low_func = 0;
5018 state = nothing_seen;
5019 cache->filename = NULL;
5020 cache->func = NULL;
5021 cache->func_size = 0;
5022 cache->last_section = section;
5023
5024 for (p = symbols; *p != NULL; p++)
5025 {
5026 asymbol *sym = *p;
5027 bfd_vma code_off;
5028 bfd_size_type size;
5029
5030 if ((sym->flags & BSF_FILE) != 0)
5031 {
5032 file = sym;
5033 if (state == symbol_seen)
5034 state = file_after_symbol_seen;
5035 continue;
5036 }
5037
5038 size = bed->maybe_function_sym (sym, section, &code_off);
5039 if (size != 0
5040 && code_off <= offset
5041 && (code_off > low_func
5042 || (code_off == low_func
5043 && size > cache->func_size)))
5044 {
5045 cache->func = sym;
5046 cache->func_size = size;
5047 cache->filename = NULL;
5048 low_func = code_off;
5049 if (file != NULL
5050 && ((sym->flags & BSF_LOCAL) != 0
5051 || state != file_after_symbol_seen))
5052 cache->filename = bfd_asymbol_name (file);
5053 }
5054 if (state == nothing_seen)
5055 state = symbol_seen;
5056 }
5057 }
5058
5059 if (cache->func == NULL)
5060 return NULL;
5061
5062 if (filename_ptr)
5063 *filename_ptr = cache->filename;
5064 if (functionname_ptr)
5065 *functionname_ptr = bfd_asymbol_name (cache->func);
5066
5067 return cache->func;
5068 }