PR22209, invalid memory read in find_abstract_instance_name
[binutils-gdb.git] / bfd / dwarf2.c
1 /* DWARF 2 support.
2 Copyright (C) 1994-2017 Free Software Foundation, Inc.
3
4 Adapted from gdb/dwarf2read.c by Gavin Koch of Cygnus Solutions
5 (gavin@cygnus.com).
6
7 From the dwarf2read.c header:
8 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
9 Inc. with support from Florida State University (under contract
10 with the Ada Joint Program Office), and Silicon Graphics, Inc.
11 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
12 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
13 support in dwarfread.c
14
15 This file is part of BFD.
16
17 This program is free software; you can redistribute it and/or modify
18 it under the terms of the GNU General Public License as published by
19 the Free Software Foundation; either version 3 of the License, or (at
20 your option) any later version.
21
22 This program is distributed in the hope that it will be useful, but
23 WITHOUT ANY WARRANTY; without even the implied warranty of
24 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
25 General Public License for more details.
26
27 You should have received a copy of the GNU General Public License
28 along with this program; if not, write to the Free Software
29 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
30 MA 02110-1301, USA. */
31
32 #include "sysdep.h"
33 #include "bfd.h"
34 #include "libiberty.h"
35 #include "libbfd.h"
36 #include "elf-bfd.h"
37 #include "dwarf2.h"
38
39 /* The data in the .debug_line statement prologue looks like this. */
40
41 struct line_head
42 {
43 bfd_vma total_length;
44 unsigned short version;
45 bfd_vma prologue_length;
46 unsigned char minimum_instruction_length;
47 unsigned char maximum_ops_per_insn;
48 unsigned char default_is_stmt;
49 int line_base;
50 unsigned char line_range;
51 unsigned char opcode_base;
52 unsigned char *standard_opcode_lengths;
53 };
54
55 /* Attributes have a name and a value. */
56
57 struct attribute
58 {
59 enum dwarf_attribute name;
60 enum dwarf_form form;
61 union
62 {
63 char *str;
64 struct dwarf_block *blk;
65 bfd_uint64_t val;
66 bfd_int64_t sval;
67 }
68 u;
69 };
70
71 /* Blocks are a bunch of untyped bytes. */
72 struct dwarf_block
73 {
74 unsigned int size;
75 bfd_byte *data;
76 };
77
78 struct adjusted_section
79 {
80 asection *section;
81 bfd_vma adj_vma;
82 };
83
84 struct dwarf2_debug
85 {
86 /* A list of all previously read comp_units. */
87 struct comp_unit *all_comp_units;
88
89 /* Last comp unit in list above. */
90 struct comp_unit *last_comp_unit;
91
92 /* Names of the debug sections. */
93 const struct dwarf_debug_section *debug_sections;
94
95 /* The next unread compilation unit within the .debug_info section.
96 Zero indicates that the .debug_info section has not been loaded
97 into a buffer yet. */
98 bfd_byte *info_ptr;
99
100 /* Pointer to the end of the .debug_info section memory buffer. */
101 bfd_byte *info_ptr_end;
102
103 /* Pointer to the original bfd for which debug was loaded. This is what
104 we use to compare and so check that the cached debug data is still
105 valid - it saves having to possibly dereference the gnu_debuglink each
106 time. */
107 bfd *orig_bfd;
108
109 /* Pointer to the bfd, section and address of the beginning of the
110 section. The bfd might be different than expected because of
111 gnu_debuglink sections. */
112 bfd *bfd_ptr;
113 asection *sec;
114 bfd_byte *sec_info_ptr;
115
116 /* Support for alternate debug info sections created by the DWZ utility:
117 This includes a pointer to an alternate bfd which contains *extra*,
118 possibly duplicate debug sections, and pointers to the loaded
119 .debug_str and .debug_info sections from this bfd. */
120 bfd * alt_bfd_ptr;
121 bfd_byte * alt_dwarf_str_buffer;
122 bfd_size_type alt_dwarf_str_size;
123 bfd_byte * alt_dwarf_info_buffer;
124 bfd_size_type alt_dwarf_info_size;
125
126 /* A pointer to the memory block allocated for info_ptr. Neither
127 info_ptr nor sec_info_ptr are guaranteed to stay pointing to the
128 beginning of the malloc block. */
129 bfd_byte *info_ptr_memory;
130
131 /* Pointer to the symbol table. */
132 asymbol **syms;
133
134 /* Pointer to the .debug_abbrev section loaded into memory. */
135 bfd_byte *dwarf_abbrev_buffer;
136
137 /* Length of the loaded .debug_abbrev section. */
138 bfd_size_type dwarf_abbrev_size;
139
140 /* Buffer for decode_line_info. */
141 bfd_byte *dwarf_line_buffer;
142
143 /* Length of the loaded .debug_line section. */
144 bfd_size_type dwarf_line_size;
145
146 /* Pointer to the .debug_str section loaded into memory. */
147 bfd_byte *dwarf_str_buffer;
148
149 /* Length of the loaded .debug_str section. */
150 bfd_size_type dwarf_str_size;
151
152 /* Pointer to the .debug_line_str section loaded into memory. */
153 bfd_byte *dwarf_line_str_buffer;
154
155 /* Length of the loaded .debug_line_str section. */
156 bfd_size_type dwarf_line_str_size;
157
158 /* Pointer to the .debug_ranges section loaded into memory. */
159 bfd_byte *dwarf_ranges_buffer;
160
161 /* Length of the loaded .debug_ranges section. */
162 bfd_size_type dwarf_ranges_size;
163
164 /* If the most recent call to bfd_find_nearest_line was given an
165 address in an inlined function, preserve a pointer into the
166 calling chain for subsequent calls to bfd_find_inliner_info to
167 use. */
168 struct funcinfo *inliner_chain;
169
170 /* Section VMAs at the time the stash was built. */
171 bfd_vma *sec_vma;
172
173 /* Number of sections whose VMA we must adjust. */
174 int adjusted_section_count;
175
176 /* Array of sections with adjusted VMA. */
177 struct adjusted_section *adjusted_sections;
178
179 /* Number of times find_line is called. This is used in
180 the heuristic for enabling the info hash tables. */
181 int info_hash_count;
182
183 #define STASH_INFO_HASH_TRIGGER 100
184
185 /* Hash table mapping symbol names to function infos. */
186 struct info_hash_table *funcinfo_hash_table;
187
188 /* Hash table mapping symbol names to variable infos. */
189 struct info_hash_table *varinfo_hash_table;
190
191 /* Head of comp_unit list in the last hash table update. */
192 struct comp_unit *hash_units_head;
193
194 /* Status of info hash. */
195 int info_hash_status;
196 #define STASH_INFO_HASH_OFF 0
197 #define STASH_INFO_HASH_ON 1
198 #define STASH_INFO_HASH_DISABLED 2
199
200 /* True if we opened bfd_ptr. */
201 bfd_boolean close_on_cleanup;
202 };
203
204 struct arange
205 {
206 struct arange *next;
207 bfd_vma low;
208 bfd_vma high;
209 };
210
211 /* A minimal decoding of DWARF2 compilation units. We only decode
212 what's needed to get to the line number information. */
213
214 struct comp_unit
215 {
216 /* Chain the previously read compilation units. */
217 struct comp_unit *next_unit;
218
219 /* Likewise, chain the compilation unit read after this one.
220 The comp units are stored in reversed reading order. */
221 struct comp_unit *prev_unit;
222
223 /* Keep the bfd convenient (for memory allocation). */
224 bfd *abfd;
225
226 /* The lowest and highest addresses contained in this compilation
227 unit as specified in the compilation unit header. */
228 struct arange arange;
229
230 /* The DW_AT_name attribute (for error messages). */
231 char *name;
232
233 /* The abbrev hash table. */
234 struct abbrev_info **abbrevs;
235
236 /* DW_AT_language. */
237 int lang;
238
239 /* Note that an error was found by comp_unit_find_nearest_line. */
240 int error;
241
242 /* The DW_AT_comp_dir attribute. */
243 char *comp_dir;
244
245 /* TRUE if there is a line number table associated with this comp. unit. */
246 int stmtlist;
247
248 /* Pointer to the current comp_unit so that we can find a given entry
249 by its reference. */
250 bfd_byte *info_ptr_unit;
251
252 /* The offset into .debug_line of the line number table. */
253 unsigned long line_offset;
254
255 /* Pointer to the first child die for the comp unit. */
256 bfd_byte *first_child_die_ptr;
257
258 /* The end of the comp unit. */
259 bfd_byte *end_ptr;
260
261 /* The decoded line number, NULL if not yet decoded. */
262 struct line_info_table *line_table;
263
264 /* A list of the functions found in this comp. unit. */
265 struct funcinfo *function_table;
266
267 /* A table of function information references searchable by address. */
268 struct lookup_funcinfo *lookup_funcinfo_table;
269
270 /* Number of functions in the function_table and sorted_function_table. */
271 bfd_size_type number_of_functions;
272
273 /* A list of the variables found in this comp. unit. */
274 struct varinfo *variable_table;
275
276 /* Pointer to dwarf2_debug structure. */
277 struct dwarf2_debug *stash;
278
279 /* DWARF format version for this unit - from unit header. */
280 int version;
281
282 /* Address size for this unit - from unit header. */
283 unsigned char addr_size;
284
285 /* Offset size for this unit - from unit header. */
286 unsigned char offset_size;
287
288 /* Base address for this unit - from DW_AT_low_pc attribute of
289 DW_TAG_compile_unit DIE */
290 bfd_vma base_address;
291
292 /* TRUE if symbols are cached in hash table for faster lookup by name. */
293 bfd_boolean cached;
294 };
295
296 /* This data structure holds the information of an abbrev. */
297 struct abbrev_info
298 {
299 unsigned int number; /* Number identifying abbrev. */
300 enum dwarf_tag tag; /* DWARF tag. */
301 int has_children; /* Boolean. */
302 unsigned int num_attrs; /* Number of attributes. */
303 struct attr_abbrev *attrs; /* An array of attribute descriptions. */
304 struct abbrev_info *next; /* Next in chain. */
305 };
306
307 struct attr_abbrev
308 {
309 enum dwarf_attribute name;
310 enum dwarf_form form;
311 bfd_vma implicit_const;
312 };
313
314 /* Map of uncompressed DWARF debug section name to compressed one. It
315 is terminated by NULL uncompressed_name. */
316
317 const struct dwarf_debug_section dwarf_debug_sections[] =
318 {
319 { ".debug_abbrev", ".zdebug_abbrev" },
320 { ".debug_aranges", ".zdebug_aranges" },
321 { ".debug_frame", ".zdebug_frame" },
322 { ".debug_info", ".zdebug_info" },
323 { ".debug_info", ".zdebug_info" },
324 { ".debug_line", ".zdebug_line" },
325 { ".debug_loc", ".zdebug_loc" },
326 { ".debug_macinfo", ".zdebug_macinfo" },
327 { ".debug_macro", ".zdebug_macro" },
328 { ".debug_pubnames", ".zdebug_pubnames" },
329 { ".debug_pubtypes", ".zdebug_pubtypes" },
330 { ".debug_ranges", ".zdebug_ranges" },
331 { ".debug_static_func", ".zdebug_static_func" },
332 { ".debug_static_vars", ".zdebug_static_vars" },
333 { ".debug_str", ".zdebug_str", },
334 { ".debug_str", ".zdebug_str", },
335 { ".debug_line_str", ".zdebug_line_str", },
336 { ".debug_types", ".zdebug_types" },
337 /* GNU DWARF 1 extensions */
338 { ".debug_sfnames", ".zdebug_sfnames" },
339 { ".debug_srcinfo", ".zebug_srcinfo" },
340 /* SGI/MIPS DWARF 2 extensions */
341 { ".debug_funcnames", ".zdebug_funcnames" },
342 { ".debug_typenames", ".zdebug_typenames" },
343 { ".debug_varnames", ".zdebug_varnames" },
344 { ".debug_weaknames", ".zdebug_weaknames" },
345 { NULL, NULL },
346 };
347
348 /* NB/ Numbers in this enum must match up with indicies
349 into the dwarf_debug_sections[] array above. */
350 enum dwarf_debug_section_enum
351 {
352 debug_abbrev = 0,
353 debug_aranges,
354 debug_frame,
355 debug_info,
356 debug_info_alt,
357 debug_line,
358 debug_loc,
359 debug_macinfo,
360 debug_macro,
361 debug_pubnames,
362 debug_pubtypes,
363 debug_ranges,
364 debug_static_func,
365 debug_static_vars,
366 debug_str,
367 debug_str_alt,
368 debug_line_str,
369 debug_types,
370 debug_sfnames,
371 debug_srcinfo,
372 debug_funcnames,
373 debug_typenames,
374 debug_varnames,
375 debug_weaknames,
376 debug_max
377 };
378
379 /* A static assertion. */
380 extern int dwarf_debug_section_assert[ARRAY_SIZE (dwarf_debug_sections)
381 == debug_max + 1 ? 1 : -1];
382
383 #ifndef ABBREV_HASH_SIZE
384 #define ABBREV_HASH_SIZE 121
385 #endif
386 #ifndef ATTR_ALLOC_CHUNK
387 #define ATTR_ALLOC_CHUNK 4
388 #endif
389
390 /* Variable and function hash tables. This is used to speed up look-up
391 in lookup_symbol_in_var_table() and lookup_symbol_in_function_table().
392 In order to share code between variable and function infos, we use
393 a list of untyped pointer for all variable/function info associated with
394 a symbol. We waste a bit of memory for list with one node but that
395 simplifies the code. */
396
397 struct info_list_node
398 {
399 struct info_list_node *next;
400 void *info;
401 };
402
403 /* Info hash entry. */
404 struct info_hash_entry
405 {
406 struct bfd_hash_entry root;
407 struct info_list_node *head;
408 };
409
410 struct info_hash_table
411 {
412 struct bfd_hash_table base;
413 };
414
415 /* Function to create a new entry in info hash table. */
416
417 static struct bfd_hash_entry *
418 info_hash_table_newfunc (struct bfd_hash_entry *entry,
419 struct bfd_hash_table *table,
420 const char *string)
421 {
422 struct info_hash_entry *ret = (struct info_hash_entry *) entry;
423
424 /* Allocate the structure if it has not already been allocated by a
425 derived class. */
426 if (ret == NULL)
427 {
428 ret = (struct info_hash_entry *) bfd_hash_allocate (table,
429 sizeof (* ret));
430 if (ret == NULL)
431 return NULL;
432 }
433
434 /* Call the allocation method of the base class. */
435 ret = ((struct info_hash_entry *)
436 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
437
438 /* Initialize the local fields here. */
439 if (ret)
440 ret->head = NULL;
441
442 return (struct bfd_hash_entry *) ret;
443 }
444
445 /* Function to create a new info hash table. It returns a pointer to the
446 newly created table or NULL if there is any error. We need abfd
447 solely for memory allocation. */
448
449 static struct info_hash_table *
450 create_info_hash_table (bfd *abfd)
451 {
452 struct info_hash_table *hash_table;
453
454 hash_table = ((struct info_hash_table *)
455 bfd_alloc (abfd, sizeof (struct info_hash_table)));
456 if (!hash_table)
457 return hash_table;
458
459 if (!bfd_hash_table_init (&hash_table->base, info_hash_table_newfunc,
460 sizeof (struct info_hash_entry)))
461 {
462 bfd_release (abfd, hash_table);
463 return NULL;
464 }
465
466 return hash_table;
467 }
468
469 /* Insert an info entry into an info hash table. We do not check of
470 duplicate entries. Also, the caller need to guarantee that the
471 right type of info in inserted as info is passed as a void* pointer.
472 This function returns true if there is no error. */
473
474 static bfd_boolean
475 insert_info_hash_table (struct info_hash_table *hash_table,
476 const char *key,
477 void *info,
478 bfd_boolean copy_p)
479 {
480 struct info_hash_entry *entry;
481 struct info_list_node *node;
482
483 entry = (struct info_hash_entry*) bfd_hash_lookup (&hash_table->base,
484 key, TRUE, copy_p);
485 if (!entry)
486 return FALSE;
487
488 node = (struct info_list_node *) bfd_hash_allocate (&hash_table->base,
489 sizeof (*node));
490 if (!node)
491 return FALSE;
492
493 node->info = info;
494 node->next = entry->head;
495 entry->head = node;
496
497 return TRUE;
498 }
499
500 /* Look up an info entry list from an info hash table. Return NULL
501 if there is none. */
502
503 static struct info_list_node *
504 lookup_info_hash_table (struct info_hash_table *hash_table, const char *key)
505 {
506 struct info_hash_entry *entry;
507
508 entry = (struct info_hash_entry*) bfd_hash_lookup (&hash_table->base, key,
509 FALSE, FALSE);
510 return entry ? entry->head : NULL;
511 }
512
513 /* Read a section into its appropriate place in the dwarf2_debug
514 struct (indicated by SECTION_BUFFER and SECTION_SIZE). If SYMS is
515 not NULL, use bfd_simple_get_relocated_section_contents to read the
516 section contents, otherwise use bfd_get_section_contents. Fail if
517 the located section does not contain at least OFFSET bytes. */
518
519 static bfd_boolean
520 read_section (bfd * abfd,
521 const struct dwarf_debug_section *sec,
522 asymbol ** syms,
523 bfd_uint64_t offset,
524 bfd_byte ** section_buffer,
525 bfd_size_type * section_size)
526 {
527 asection *msec;
528 const char *section_name = sec->uncompressed_name;
529
530 /* The section may have already been read. */
531 if (*section_buffer == NULL)
532 {
533 msec = bfd_get_section_by_name (abfd, section_name);
534 if (! msec)
535 {
536 section_name = sec->compressed_name;
537 if (section_name != NULL)
538 msec = bfd_get_section_by_name (abfd, section_name);
539 }
540 if (! msec)
541 {
542 _bfd_error_handler (_("Dwarf Error: Can't find %s section."),
543 sec->uncompressed_name);
544 bfd_set_error (bfd_error_bad_value);
545 return FALSE;
546 }
547
548 *section_size = msec->rawsize ? msec->rawsize : msec->size;
549 if (syms)
550 {
551 *section_buffer
552 = bfd_simple_get_relocated_section_contents (abfd, msec, NULL, syms);
553 if (! *section_buffer)
554 return FALSE;
555 }
556 else
557 {
558 *section_buffer = (bfd_byte *) bfd_malloc (*section_size);
559 if (! *section_buffer)
560 return FALSE;
561 if (! bfd_get_section_contents (abfd, msec, *section_buffer,
562 0, *section_size))
563 return FALSE;
564 }
565
566 /* Paranoia - if we are reading in a string section, make sure that it
567 is NUL terminated. This is to prevent string functions from running
568 off the end of the buffer. Note - knowing the size of the buffer is
569 not enough as some functions, eg strchr, do not have a range limited
570 equivalent.
571
572 FIXME: We ought to use a flag in the dwarf_debug_sections[] table to
573 determine the nature of a debug section, rather than checking the
574 section name as we do here. */
575 if (*section_size > 0
576 && (*section_buffer)[*section_size - 1] != 0
577 && (strstr (section_name, "_str") || strstr (section_name, "names")))
578 {
579 bfd_byte * new_buffer = malloc (*section_size + 1);
580
581 _bfd_error_handler (_("warning: dwarf string section '%s' is not NUL terminated"),
582 section_name);
583 memcpy (new_buffer, *section_buffer, *section_size);
584 new_buffer[*section_size] = 0;
585 free (*section_buffer);
586 *section_buffer = new_buffer;
587 }
588 }
589
590 /* It is possible to get a bad value for the offset into the section
591 that the client wants. Validate it here to avoid trouble later. */
592 if (offset != 0 && offset >= *section_size)
593 {
594 /* xgettext: c-format */
595 _bfd_error_handler (_("Dwarf Error: Offset (%llu)"
596 " greater than or equal to %s size (%Lu)."),
597 (long long) offset, section_name, *section_size);
598 bfd_set_error (bfd_error_bad_value);
599 return FALSE;
600 }
601
602 return TRUE;
603 }
604
605 /* Read dwarf information from a buffer. */
606
607 static unsigned int
608 read_1_byte (bfd *abfd ATTRIBUTE_UNUSED, bfd_byte *buf, bfd_byte *end)
609 {
610 if (buf + 1 > end)
611 return 0;
612 return bfd_get_8 (abfd, buf);
613 }
614
615 static int
616 read_1_signed_byte (bfd *abfd ATTRIBUTE_UNUSED, bfd_byte *buf, bfd_byte *end)
617 {
618 if (buf + 1 > end)
619 return 0;
620 return bfd_get_signed_8 (abfd, buf);
621 }
622
623 static unsigned int
624 read_2_bytes (bfd *abfd, bfd_byte *buf, bfd_byte *end)
625 {
626 if (buf + 2 > end)
627 return 0;
628 return bfd_get_16 (abfd, buf);
629 }
630
631 static unsigned int
632 read_4_bytes (bfd *abfd, bfd_byte *buf, bfd_byte *end)
633 {
634 if (buf + 4 > end)
635 return 0;
636 return bfd_get_32 (abfd, buf);
637 }
638
639 static bfd_uint64_t
640 read_8_bytes (bfd *abfd, bfd_byte *buf, bfd_byte *end)
641 {
642 if (buf + 8 > end)
643 return 0;
644 return bfd_get_64 (abfd, buf);
645 }
646
647 static bfd_byte *
648 read_n_bytes (bfd *abfd ATTRIBUTE_UNUSED,
649 bfd_byte *buf,
650 bfd_byte *end,
651 unsigned int size ATTRIBUTE_UNUSED)
652 {
653 if (buf + size > end)
654 return NULL;
655 return buf;
656 }
657
658 /* Scans a NUL terminated string starting at BUF, returning a pointer to it.
659 Returns the number of characters in the string, *including* the NUL byte,
660 in BYTES_READ_PTR. This value is set even if the function fails. Bytes
661 at or beyond BUF_END will not be read. Returns NULL if there was a
662 problem, or if the string is empty. */
663
664 static char *
665 read_string (bfd * abfd ATTRIBUTE_UNUSED,
666 bfd_byte * buf,
667 bfd_byte * buf_end,
668 unsigned int * bytes_read_ptr)
669 {
670 bfd_byte *str = buf;
671
672 if (buf >= buf_end)
673 {
674 * bytes_read_ptr = 0;
675 return NULL;
676 }
677
678 if (*str == '\0')
679 {
680 * bytes_read_ptr = 1;
681 return NULL;
682 }
683
684 while (buf < buf_end)
685 if (* buf ++ == 0)
686 {
687 * bytes_read_ptr = buf - str;
688 return (char *) str;
689 }
690
691 * bytes_read_ptr = buf - str;
692 return NULL;
693 }
694
695 /* Reads an offset from BUF and then locates the string at this offset
696 inside the debug string section. Returns a pointer to the string.
697 Returns the number of bytes read from BUF, *not* the length of the string,
698 in BYTES_READ_PTR. This value is set even if the function fails. Bytes
699 at or beyond BUF_END will not be read from BUF. Returns NULL if there was
700 a problem, or if the string is empty. Does not check for NUL termination
701 of the string. */
702
703 static char *
704 read_indirect_string (struct comp_unit * unit,
705 bfd_byte * buf,
706 bfd_byte * buf_end,
707 unsigned int * bytes_read_ptr)
708 {
709 bfd_uint64_t offset;
710 struct dwarf2_debug *stash = unit->stash;
711 char *str;
712
713 if (buf + unit->offset_size > buf_end)
714 {
715 * bytes_read_ptr = 0;
716 return NULL;
717 }
718
719 if (unit->offset_size == 4)
720 offset = read_4_bytes (unit->abfd, buf, buf_end);
721 else
722 offset = read_8_bytes (unit->abfd, buf, buf_end);
723
724 *bytes_read_ptr = unit->offset_size;
725
726 if (! read_section (unit->abfd, &stash->debug_sections[debug_str],
727 stash->syms, offset,
728 &stash->dwarf_str_buffer, &stash->dwarf_str_size))
729 return NULL;
730
731 if (offset >= stash->dwarf_str_size)
732 return NULL;
733 str = (char *) stash->dwarf_str_buffer + offset;
734 if (*str == '\0')
735 return NULL;
736 return str;
737 }
738
739 /* Like read_indirect_string but from .debug_line_str section. */
740
741 static char *
742 read_indirect_line_string (struct comp_unit * unit,
743 bfd_byte * buf,
744 bfd_byte * buf_end,
745 unsigned int * bytes_read_ptr)
746 {
747 bfd_uint64_t offset;
748 struct dwarf2_debug *stash = unit->stash;
749 char *str;
750
751 if (buf + unit->offset_size > buf_end)
752 {
753 * bytes_read_ptr = 0;
754 return NULL;
755 }
756
757 if (unit->offset_size == 4)
758 offset = read_4_bytes (unit->abfd, buf, buf_end);
759 else
760 offset = read_8_bytes (unit->abfd, buf, buf_end);
761
762 *bytes_read_ptr = unit->offset_size;
763
764 if (! read_section (unit->abfd, &stash->debug_sections[debug_line_str],
765 stash->syms, offset,
766 &stash->dwarf_line_str_buffer,
767 &stash->dwarf_line_str_size))
768 return NULL;
769
770 if (offset >= stash->dwarf_line_str_size)
771 return NULL;
772 str = (char *) stash->dwarf_line_str_buffer + offset;
773 if (*str == '\0')
774 return NULL;
775 return str;
776 }
777
778 /* Like read_indirect_string but uses a .debug_str located in
779 an alternate file pointed to by the .gnu_debugaltlink section.
780 Used to impement DW_FORM_GNU_strp_alt. */
781
782 static char *
783 read_alt_indirect_string (struct comp_unit * unit,
784 bfd_byte * buf,
785 bfd_byte * buf_end,
786 unsigned int * bytes_read_ptr)
787 {
788 bfd_uint64_t offset;
789 struct dwarf2_debug *stash = unit->stash;
790 char *str;
791
792 if (buf + unit->offset_size > buf_end)
793 {
794 * bytes_read_ptr = 0;
795 return NULL;
796 }
797
798 if (unit->offset_size == 4)
799 offset = read_4_bytes (unit->abfd, buf, buf_end);
800 else
801 offset = read_8_bytes (unit->abfd, buf, buf_end);
802
803 *bytes_read_ptr = unit->offset_size;
804
805 if (stash->alt_bfd_ptr == NULL)
806 {
807 bfd * debug_bfd;
808 char * debug_filename = bfd_follow_gnu_debugaltlink (unit->abfd, DEBUGDIR);
809
810 if (debug_filename == NULL)
811 return NULL;
812
813 if ((debug_bfd = bfd_openr (debug_filename, NULL)) == NULL
814 || ! bfd_check_format (debug_bfd, bfd_object))
815 {
816 if (debug_bfd)
817 bfd_close (debug_bfd);
818
819 /* FIXME: Should we report our failure to follow the debuglink ? */
820 free (debug_filename);
821 return NULL;
822 }
823 stash->alt_bfd_ptr = debug_bfd;
824 }
825
826 if (! read_section (unit->stash->alt_bfd_ptr,
827 stash->debug_sections + debug_str_alt,
828 NULL, /* FIXME: Do we need to load alternate symbols ? */
829 offset,
830 &stash->alt_dwarf_str_buffer,
831 &stash->alt_dwarf_str_size))
832 return NULL;
833
834 if (offset >= stash->alt_dwarf_str_size)
835 return NULL;
836 str = (char *) stash->alt_dwarf_str_buffer + offset;
837 if (*str == '\0')
838 return NULL;
839
840 return str;
841 }
842
843 /* Resolve an alternate reference from UNIT at OFFSET.
844 Returns a pointer into the loaded alternate CU upon success
845 or NULL upon failure. */
846
847 static bfd_byte *
848 read_alt_indirect_ref (struct comp_unit * unit,
849 bfd_uint64_t offset)
850 {
851 struct dwarf2_debug *stash = unit->stash;
852
853 if (stash->alt_bfd_ptr == NULL)
854 {
855 bfd * debug_bfd;
856 char * debug_filename = bfd_follow_gnu_debugaltlink (unit->abfd, DEBUGDIR);
857
858 if (debug_filename == NULL)
859 return FALSE;
860
861 if ((debug_bfd = bfd_openr (debug_filename, NULL)) == NULL
862 || ! bfd_check_format (debug_bfd, bfd_object))
863 {
864 if (debug_bfd)
865 bfd_close (debug_bfd);
866
867 /* FIXME: Should we report our failure to follow the debuglink ? */
868 free (debug_filename);
869 return NULL;
870 }
871 stash->alt_bfd_ptr = debug_bfd;
872 }
873
874 if (! read_section (unit->stash->alt_bfd_ptr,
875 stash->debug_sections + debug_info_alt,
876 NULL, /* FIXME: Do we need to load alternate symbols ? */
877 offset,
878 &stash->alt_dwarf_info_buffer,
879 &stash->alt_dwarf_info_size))
880 return NULL;
881
882 if (offset >= stash->alt_dwarf_info_size)
883 return NULL;
884 return stash->alt_dwarf_info_buffer + offset;
885 }
886
887 static bfd_uint64_t
888 read_address (struct comp_unit *unit, bfd_byte *buf, bfd_byte * buf_end)
889 {
890 int signed_vma = 0;
891
892 if (bfd_get_flavour (unit->abfd) == bfd_target_elf_flavour)
893 signed_vma = get_elf_backend_data (unit->abfd)->sign_extend_vma;
894
895 if (buf + unit->addr_size > buf_end)
896 return 0;
897
898 if (signed_vma)
899 {
900 switch (unit->addr_size)
901 {
902 case 8:
903 return bfd_get_signed_64 (unit->abfd, buf);
904 case 4:
905 return bfd_get_signed_32 (unit->abfd, buf);
906 case 2:
907 return bfd_get_signed_16 (unit->abfd, buf);
908 default:
909 abort ();
910 }
911 }
912 else
913 {
914 switch (unit->addr_size)
915 {
916 case 8:
917 return bfd_get_64 (unit->abfd, buf);
918 case 4:
919 return bfd_get_32 (unit->abfd, buf);
920 case 2:
921 return bfd_get_16 (unit->abfd, buf);
922 default:
923 abort ();
924 }
925 }
926 }
927
928 /* Lookup an abbrev_info structure in the abbrev hash table. */
929
930 static struct abbrev_info *
931 lookup_abbrev (unsigned int number, struct abbrev_info **abbrevs)
932 {
933 unsigned int hash_number;
934 struct abbrev_info *abbrev;
935
936 hash_number = number % ABBREV_HASH_SIZE;
937 abbrev = abbrevs[hash_number];
938
939 while (abbrev)
940 {
941 if (abbrev->number == number)
942 return abbrev;
943 else
944 abbrev = abbrev->next;
945 }
946
947 return NULL;
948 }
949
950 /* In DWARF version 2, the description of the debugging information is
951 stored in a separate .debug_abbrev section. Before we read any
952 dies from a section we read in all abbreviations and install them
953 in a hash table. */
954
955 static struct abbrev_info**
956 read_abbrevs (bfd *abfd, bfd_uint64_t offset, struct dwarf2_debug *stash)
957 {
958 struct abbrev_info **abbrevs;
959 bfd_byte *abbrev_ptr;
960 bfd_byte *abbrev_end;
961 struct abbrev_info *cur_abbrev;
962 unsigned int abbrev_number, bytes_read, abbrev_name;
963 unsigned int abbrev_form, hash_number;
964 bfd_size_type amt;
965
966 if (! read_section (abfd, &stash->debug_sections[debug_abbrev],
967 stash->syms, offset,
968 &stash->dwarf_abbrev_buffer, &stash->dwarf_abbrev_size))
969 return NULL;
970
971 if (offset >= stash->dwarf_abbrev_size)
972 return NULL;
973
974 amt = sizeof (struct abbrev_info*) * ABBREV_HASH_SIZE;
975 abbrevs = (struct abbrev_info **) bfd_zalloc (abfd, amt);
976 if (abbrevs == NULL)
977 return NULL;
978
979 abbrev_ptr = stash->dwarf_abbrev_buffer + offset;
980 abbrev_end = stash->dwarf_abbrev_buffer + stash->dwarf_abbrev_size;
981 abbrev_number = _bfd_safe_read_leb128 (abfd, abbrev_ptr, &bytes_read,
982 FALSE, abbrev_end);
983 abbrev_ptr += bytes_read;
984
985 /* Loop until we reach an abbrev number of 0. */
986 while (abbrev_number)
987 {
988 amt = sizeof (struct abbrev_info);
989 cur_abbrev = (struct abbrev_info *) bfd_zalloc (abfd, amt);
990 if (cur_abbrev == NULL)
991 return NULL;
992
993 /* Read in abbrev header. */
994 cur_abbrev->number = abbrev_number;
995 cur_abbrev->tag = (enum dwarf_tag)
996 _bfd_safe_read_leb128 (abfd, abbrev_ptr, &bytes_read,
997 FALSE, abbrev_end);
998 abbrev_ptr += bytes_read;
999 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr, abbrev_end);
1000 abbrev_ptr += 1;
1001
1002 /* Now read in declarations. */
1003 for (;;)
1004 {
1005 /* Initialize it just to avoid a GCC false warning. */
1006 bfd_vma implicit_const = -1;
1007
1008 abbrev_name = _bfd_safe_read_leb128 (abfd, abbrev_ptr, &bytes_read,
1009 FALSE, abbrev_end);
1010 abbrev_ptr += bytes_read;
1011 abbrev_form = _bfd_safe_read_leb128 (abfd, abbrev_ptr, &bytes_read,
1012 FALSE, abbrev_end);
1013 abbrev_ptr += bytes_read;
1014 if (abbrev_form == DW_FORM_implicit_const)
1015 {
1016 implicit_const = _bfd_safe_read_leb128 (abfd, abbrev_ptr,
1017 &bytes_read, TRUE,
1018 abbrev_end);
1019 abbrev_ptr += bytes_read;
1020 }
1021
1022 if (abbrev_name == 0)
1023 break;
1024
1025 if ((cur_abbrev->num_attrs % ATTR_ALLOC_CHUNK) == 0)
1026 {
1027 struct attr_abbrev *tmp;
1028
1029 amt = cur_abbrev->num_attrs + ATTR_ALLOC_CHUNK;
1030 amt *= sizeof (struct attr_abbrev);
1031 tmp = (struct attr_abbrev *) bfd_realloc (cur_abbrev->attrs, amt);
1032 if (tmp == NULL)
1033 {
1034 size_t i;
1035
1036 for (i = 0; i < ABBREV_HASH_SIZE; i++)
1037 {
1038 struct abbrev_info *abbrev = abbrevs[i];
1039
1040 while (abbrev)
1041 {
1042 free (abbrev->attrs);
1043 abbrev = abbrev->next;
1044 }
1045 }
1046 return NULL;
1047 }
1048 cur_abbrev->attrs = tmp;
1049 }
1050
1051 cur_abbrev->attrs[cur_abbrev->num_attrs].name
1052 = (enum dwarf_attribute) abbrev_name;
1053 cur_abbrev->attrs[cur_abbrev->num_attrs].form
1054 = (enum dwarf_form) abbrev_form;
1055 cur_abbrev->attrs[cur_abbrev->num_attrs].implicit_const
1056 = implicit_const;
1057 ++cur_abbrev->num_attrs;
1058 }
1059
1060 hash_number = abbrev_number % ABBREV_HASH_SIZE;
1061 cur_abbrev->next = abbrevs[hash_number];
1062 abbrevs[hash_number] = cur_abbrev;
1063
1064 /* Get next abbreviation.
1065 Under Irix6 the abbreviations for a compilation unit are not
1066 always properly terminated with an abbrev number of 0.
1067 Exit loop if we encounter an abbreviation which we have
1068 already read (which means we are about to read the abbreviations
1069 for the next compile unit) or if the end of the abbreviation
1070 table is reached. */
1071 if ((unsigned int) (abbrev_ptr - stash->dwarf_abbrev_buffer)
1072 >= stash->dwarf_abbrev_size)
1073 break;
1074 abbrev_number = _bfd_safe_read_leb128 (abfd, abbrev_ptr,
1075 &bytes_read, FALSE, abbrev_end);
1076 abbrev_ptr += bytes_read;
1077 if (lookup_abbrev (abbrev_number, abbrevs) != NULL)
1078 break;
1079 }
1080
1081 return abbrevs;
1082 }
1083
1084 /* Returns true if the form is one which has a string value. */
1085
1086 static inline bfd_boolean
1087 is_str_attr (enum dwarf_form form)
1088 {
1089 return (form == DW_FORM_string || form == DW_FORM_strp
1090 || form == DW_FORM_line_strp || form == DW_FORM_GNU_strp_alt);
1091 }
1092
1093 /* Read and fill in the value of attribute ATTR as described by FORM.
1094 Read data starting from INFO_PTR, but never at or beyond INFO_PTR_END.
1095 Returns an updated INFO_PTR taking into account the amount of data read. */
1096
1097 static bfd_byte *
1098 read_attribute_value (struct attribute * attr,
1099 unsigned form,
1100 bfd_vma implicit_const,
1101 struct comp_unit * unit,
1102 bfd_byte * info_ptr,
1103 bfd_byte * info_ptr_end)
1104 {
1105 bfd *abfd = unit->abfd;
1106 unsigned int bytes_read;
1107 struct dwarf_block *blk;
1108 bfd_size_type amt;
1109
1110 if (info_ptr >= info_ptr_end && form != DW_FORM_flag_present)
1111 {
1112 _bfd_error_handler (_("Dwarf Error: Info pointer extends beyond end of attributes"));
1113 bfd_set_error (bfd_error_bad_value);
1114 return info_ptr;
1115 }
1116
1117 attr->form = (enum dwarf_form) form;
1118
1119 switch (form)
1120 {
1121 case DW_FORM_ref_addr:
1122 /* DW_FORM_ref_addr is an address in DWARF2, and an offset in
1123 DWARF3. */
1124 if (unit->version == 3 || unit->version == 4)
1125 {
1126 if (unit->offset_size == 4)
1127 attr->u.val = read_4_bytes (unit->abfd, info_ptr, info_ptr_end);
1128 else
1129 attr->u.val = read_8_bytes (unit->abfd, info_ptr, info_ptr_end);
1130 info_ptr += unit->offset_size;
1131 break;
1132 }
1133 /* FALLTHROUGH */
1134 case DW_FORM_addr:
1135 attr->u.val = read_address (unit, info_ptr, info_ptr_end);
1136 info_ptr += unit->addr_size;
1137 break;
1138 case DW_FORM_GNU_ref_alt:
1139 case DW_FORM_sec_offset:
1140 if (unit->offset_size == 4)
1141 attr->u.val = read_4_bytes (unit->abfd, info_ptr, info_ptr_end);
1142 else
1143 attr->u.val = read_8_bytes (unit->abfd, info_ptr, info_ptr_end);
1144 info_ptr += unit->offset_size;
1145 break;
1146 case DW_FORM_block2:
1147 amt = sizeof (struct dwarf_block);
1148 blk = (struct dwarf_block *) bfd_alloc (abfd, amt);
1149 if (blk == NULL)
1150 return NULL;
1151 blk->size = read_2_bytes (abfd, info_ptr, info_ptr_end);
1152 info_ptr += 2;
1153 blk->data = read_n_bytes (abfd, info_ptr, info_ptr_end, blk->size);
1154 info_ptr += blk->size;
1155 attr->u.blk = blk;
1156 break;
1157 case DW_FORM_block4:
1158 amt = sizeof (struct dwarf_block);
1159 blk = (struct dwarf_block *) bfd_alloc (abfd, amt);
1160 if (blk == NULL)
1161 return NULL;
1162 blk->size = read_4_bytes (abfd, info_ptr, info_ptr_end);
1163 info_ptr += 4;
1164 blk->data = read_n_bytes (abfd, info_ptr, info_ptr_end, blk->size);
1165 info_ptr += blk->size;
1166 attr->u.blk = blk;
1167 break;
1168 case DW_FORM_data2:
1169 attr->u.val = read_2_bytes (abfd, info_ptr, info_ptr_end);
1170 info_ptr += 2;
1171 break;
1172 case DW_FORM_data4:
1173 attr->u.val = read_4_bytes (abfd, info_ptr, info_ptr_end);
1174 info_ptr += 4;
1175 break;
1176 case DW_FORM_data8:
1177 attr->u.val = read_8_bytes (abfd, info_ptr, info_ptr_end);
1178 info_ptr += 8;
1179 break;
1180 case DW_FORM_string:
1181 attr->u.str = read_string (abfd, info_ptr, info_ptr_end, &bytes_read);
1182 info_ptr += bytes_read;
1183 break;
1184 case DW_FORM_strp:
1185 attr->u.str = read_indirect_string (unit, info_ptr, info_ptr_end, &bytes_read);
1186 info_ptr += bytes_read;
1187 break;
1188 case DW_FORM_line_strp:
1189 attr->u.str = read_indirect_line_string (unit, info_ptr, info_ptr_end, &bytes_read);
1190 info_ptr += bytes_read;
1191 break;
1192 case DW_FORM_GNU_strp_alt:
1193 attr->u.str = read_alt_indirect_string (unit, info_ptr, info_ptr_end, &bytes_read);
1194 info_ptr += bytes_read;
1195 break;
1196 case DW_FORM_exprloc:
1197 case DW_FORM_block:
1198 amt = sizeof (struct dwarf_block);
1199 blk = (struct dwarf_block *) bfd_alloc (abfd, amt);
1200 if (blk == NULL)
1201 return NULL;
1202 blk->size = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
1203 FALSE, info_ptr_end);
1204 info_ptr += bytes_read;
1205 blk->data = read_n_bytes (abfd, info_ptr, info_ptr_end, blk->size);
1206 info_ptr += blk->size;
1207 attr->u.blk = blk;
1208 break;
1209 case DW_FORM_block1:
1210 amt = sizeof (struct dwarf_block);
1211 blk = (struct dwarf_block *) bfd_alloc (abfd, amt);
1212 if (blk == NULL)
1213 return NULL;
1214 blk->size = read_1_byte (abfd, info_ptr, info_ptr_end);
1215 info_ptr += 1;
1216 blk->data = read_n_bytes (abfd, info_ptr, info_ptr_end, blk->size);
1217 info_ptr += blk->size;
1218 attr->u.blk = blk;
1219 break;
1220 case DW_FORM_data1:
1221 attr->u.val = read_1_byte (abfd, info_ptr, info_ptr_end);
1222 info_ptr += 1;
1223 break;
1224 case DW_FORM_flag:
1225 attr->u.val = read_1_byte (abfd, info_ptr, info_ptr_end);
1226 info_ptr += 1;
1227 break;
1228 case DW_FORM_flag_present:
1229 attr->u.val = 1;
1230 break;
1231 case DW_FORM_sdata:
1232 attr->u.sval = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
1233 TRUE, info_ptr_end);
1234 info_ptr += bytes_read;
1235 break;
1236 case DW_FORM_udata:
1237 attr->u.val = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
1238 FALSE, info_ptr_end);
1239 info_ptr += bytes_read;
1240 break;
1241 case DW_FORM_ref1:
1242 attr->u.val = read_1_byte (abfd, info_ptr, info_ptr_end);
1243 info_ptr += 1;
1244 break;
1245 case DW_FORM_ref2:
1246 attr->u.val = read_2_bytes (abfd, info_ptr, info_ptr_end);
1247 info_ptr += 2;
1248 break;
1249 case DW_FORM_ref4:
1250 attr->u.val = read_4_bytes (abfd, info_ptr, info_ptr_end);
1251 info_ptr += 4;
1252 break;
1253 case DW_FORM_ref8:
1254 attr->u.val = read_8_bytes (abfd, info_ptr, info_ptr_end);
1255 info_ptr += 8;
1256 break;
1257 case DW_FORM_ref_sig8:
1258 attr->u.val = read_8_bytes (abfd, info_ptr, info_ptr_end);
1259 info_ptr += 8;
1260 break;
1261 case DW_FORM_ref_udata:
1262 attr->u.val = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
1263 FALSE, info_ptr_end);
1264 info_ptr += bytes_read;
1265 break;
1266 case DW_FORM_indirect:
1267 form = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
1268 FALSE, info_ptr_end);
1269 info_ptr += bytes_read;
1270 if (form == DW_FORM_implicit_const)
1271 {
1272 implicit_const = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
1273 TRUE, info_ptr_end);
1274 info_ptr += bytes_read;
1275 }
1276 info_ptr = read_attribute_value (attr, form, implicit_const, unit,
1277 info_ptr, info_ptr_end);
1278 break;
1279 case DW_FORM_implicit_const:
1280 attr->form = DW_FORM_sdata;
1281 attr->u.sval = implicit_const;
1282 break;
1283 default:
1284 _bfd_error_handler (_("Dwarf Error: Invalid or unhandled FORM value: %#x."),
1285 form);
1286 bfd_set_error (bfd_error_bad_value);
1287 return NULL;
1288 }
1289 return info_ptr;
1290 }
1291
1292 /* Read an attribute described by an abbreviated attribute. */
1293
1294 static bfd_byte *
1295 read_attribute (struct attribute * attr,
1296 struct attr_abbrev * abbrev,
1297 struct comp_unit * unit,
1298 bfd_byte * info_ptr,
1299 bfd_byte * info_ptr_end)
1300 {
1301 attr->name = abbrev->name;
1302 info_ptr = read_attribute_value (attr, abbrev->form, abbrev->implicit_const,
1303 unit, info_ptr, info_ptr_end);
1304 return info_ptr;
1305 }
1306
1307 /* Return whether DW_AT_name will return the same as DW_AT_linkage_name
1308 for a function. */
1309
1310 static bfd_boolean
1311 non_mangled (int lang)
1312 {
1313 switch (lang)
1314 {
1315 default:
1316 return FALSE;
1317
1318 case DW_LANG_C89:
1319 case DW_LANG_C:
1320 case DW_LANG_Ada83:
1321 case DW_LANG_Cobol74:
1322 case DW_LANG_Cobol85:
1323 case DW_LANG_Fortran77:
1324 case DW_LANG_Pascal83:
1325 case DW_LANG_C99:
1326 case DW_LANG_Ada95:
1327 case DW_LANG_PLI:
1328 case DW_LANG_UPC:
1329 case DW_LANG_C11:
1330 return TRUE;
1331 }
1332 }
1333
1334 /* Source line information table routines. */
1335
1336 #define FILE_ALLOC_CHUNK 5
1337 #define DIR_ALLOC_CHUNK 5
1338
1339 struct line_info
1340 {
1341 struct line_info * prev_line;
1342 bfd_vma address;
1343 char * filename;
1344 unsigned int line;
1345 unsigned int column;
1346 unsigned int discriminator;
1347 unsigned char op_index;
1348 unsigned char end_sequence; /* End of (sequential) code sequence. */
1349 };
1350
1351 struct fileinfo
1352 {
1353 char * name;
1354 unsigned int dir;
1355 unsigned int time;
1356 unsigned int size;
1357 };
1358
1359 struct line_sequence
1360 {
1361 bfd_vma low_pc;
1362 struct line_sequence* prev_sequence;
1363 struct line_info* last_line; /* Largest VMA. */
1364 struct line_info** line_info_lookup;
1365 bfd_size_type num_lines;
1366 };
1367
1368 struct line_info_table
1369 {
1370 bfd * abfd;
1371 unsigned int num_files;
1372 unsigned int num_dirs;
1373 unsigned int num_sequences;
1374 char * comp_dir;
1375 char ** dirs;
1376 struct fileinfo* files;
1377 struct line_sequence* sequences;
1378 struct line_info* lcl_head; /* Local head; used in 'add_line_info'. */
1379 };
1380
1381 /* Remember some information about each function. If the function is
1382 inlined (DW_TAG_inlined_subroutine) it may have two additional
1383 attributes, DW_AT_call_file and DW_AT_call_line, which specify the
1384 source code location where this function was inlined. */
1385
1386 struct funcinfo
1387 {
1388 /* Pointer to previous function in list of all functions. */
1389 struct funcinfo * prev_func;
1390 /* Pointer to function one scope higher. */
1391 struct funcinfo * caller_func;
1392 /* Source location file name where caller_func inlines this func. */
1393 char * caller_file;
1394 /* Source location file name. */
1395 char * file;
1396 /* Source location line number where caller_func inlines this func. */
1397 int caller_line;
1398 /* Source location line number. */
1399 int line;
1400 int tag;
1401 bfd_boolean is_linkage;
1402 const char * name;
1403 struct arange arange;
1404 /* Where the symbol is defined. */
1405 asection * sec;
1406 };
1407
1408 struct lookup_funcinfo
1409 {
1410 /* Function information corresponding to this lookup table entry. */
1411 struct funcinfo * funcinfo;
1412
1413 /* The lowest address for this specific function. */
1414 bfd_vma low_addr;
1415
1416 /* The highest address of this function before the lookup table is sorted.
1417 The highest address of all prior functions after the lookup table is
1418 sorted, which is used for binary search. */
1419 bfd_vma high_addr;
1420 };
1421
1422 struct varinfo
1423 {
1424 /* Pointer to previous variable in list of all variables */
1425 struct varinfo *prev_var;
1426 /* Source location file name */
1427 char *file;
1428 /* Source location line number */
1429 int line;
1430 int tag;
1431 char *name;
1432 bfd_vma addr;
1433 /* Where the symbol is defined */
1434 asection *sec;
1435 /* Is this a stack variable? */
1436 unsigned int stack: 1;
1437 };
1438
1439 /* Return TRUE if NEW_LINE should sort after LINE. */
1440
1441 static inline bfd_boolean
1442 new_line_sorts_after (struct line_info *new_line, struct line_info *line)
1443 {
1444 return (new_line->address > line->address
1445 || (new_line->address == line->address
1446 && (new_line->op_index > line->op_index
1447 || (new_line->op_index == line->op_index
1448 && new_line->end_sequence < line->end_sequence))));
1449 }
1450
1451
1452 /* Adds a new entry to the line_info list in the line_info_table, ensuring
1453 that the list is sorted. Note that the line_info list is sorted from
1454 highest to lowest VMA (with possible duplicates); that is,
1455 line_info->prev_line always accesses an equal or smaller VMA. */
1456
1457 static bfd_boolean
1458 add_line_info (struct line_info_table *table,
1459 bfd_vma address,
1460 unsigned char op_index,
1461 char *filename,
1462 unsigned int line,
1463 unsigned int column,
1464 unsigned int discriminator,
1465 int end_sequence)
1466 {
1467 bfd_size_type amt = sizeof (struct line_info);
1468 struct line_sequence* seq = table->sequences;
1469 struct line_info* info = (struct line_info *) bfd_alloc (table->abfd, amt);
1470
1471 if (info == NULL)
1472 return FALSE;
1473
1474 /* Set member data of 'info'. */
1475 info->prev_line = NULL;
1476 info->address = address;
1477 info->op_index = op_index;
1478 info->line = line;
1479 info->column = column;
1480 info->discriminator = discriminator;
1481 info->end_sequence = end_sequence;
1482
1483 if (filename && filename[0])
1484 {
1485 info->filename = (char *) bfd_alloc (table->abfd, strlen (filename) + 1);
1486 if (info->filename == NULL)
1487 return FALSE;
1488 strcpy (info->filename, filename);
1489 }
1490 else
1491 info->filename = NULL;
1492
1493 /* Find the correct location for 'info'. Normally we will receive
1494 new line_info data 1) in order and 2) with increasing VMAs.
1495 However some compilers break the rules (cf. decode_line_info) and
1496 so we include some heuristics for quickly finding the correct
1497 location for 'info'. In particular, these heuristics optimize for
1498 the common case in which the VMA sequence that we receive is a
1499 list of locally sorted VMAs such as
1500 p...z a...j (where a < j < p < z)
1501
1502 Note: table->lcl_head is used to head an *actual* or *possible*
1503 sub-sequence within the list (such as a...j) that is not directly
1504 headed by table->last_line
1505
1506 Note: we may receive duplicate entries from 'decode_line_info'. */
1507
1508 if (seq
1509 && seq->last_line->address == address
1510 && seq->last_line->op_index == op_index
1511 && seq->last_line->end_sequence == end_sequence)
1512 {
1513 /* We only keep the last entry with the same address and end
1514 sequence. See PR ld/4986. */
1515 if (table->lcl_head == seq->last_line)
1516 table->lcl_head = info;
1517 info->prev_line = seq->last_line->prev_line;
1518 seq->last_line = info;
1519 }
1520 else if (!seq || seq->last_line->end_sequence)
1521 {
1522 /* Start a new line sequence. */
1523 amt = sizeof (struct line_sequence);
1524 seq = (struct line_sequence *) bfd_malloc (amt);
1525 if (seq == NULL)
1526 return FALSE;
1527 seq->low_pc = address;
1528 seq->prev_sequence = table->sequences;
1529 seq->last_line = info;
1530 table->lcl_head = info;
1531 table->sequences = seq;
1532 table->num_sequences++;
1533 }
1534 else if (new_line_sorts_after (info, seq->last_line))
1535 {
1536 /* Normal case: add 'info' to the beginning of the current sequence. */
1537 info->prev_line = seq->last_line;
1538 seq->last_line = info;
1539
1540 /* lcl_head: initialize to head a *possible* sequence at the end. */
1541 if (!table->lcl_head)
1542 table->lcl_head = info;
1543 }
1544 else if (!new_line_sorts_after (info, table->lcl_head)
1545 && (!table->lcl_head->prev_line
1546 || new_line_sorts_after (info, table->lcl_head->prev_line)))
1547 {
1548 /* Abnormal but easy: lcl_head is the head of 'info'. */
1549 info->prev_line = table->lcl_head->prev_line;
1550 table->lcl_head->prev_line = info;
1551 }
1552 else
1553 {
1554 /* Abnormal and hard: Neither 'last_line' nor 'lcl_head'
1555 are valid heads for 'info'. Reset 'lcl_head'. */
1556 struct line_info* li2 = seq->last_line; /* Always non-NULL. */
1557 struct line_info* li1 = li2->prev_line;
1558
1559 while (li1)
1560 {
1561 if (!new_line_sorts_after (info, li2)
1562 && new_line_sorts_after (info, li1))
1563 break;
1564
1565 li2 = li1; /* always non-NULL */
1566 li1 = li1->prev_line;
1567 }
1568 table->lcl_head = li2;
1569 info->prev_line = table->lcl_head->prev_line;
1570 table->lcl_head->prev_line = info;
1571 if (address < seq->low_pc)
1572 seq->low_pc = address;
1573 }
1574 return TRUE;
1575 }
1576
1577 /* Extract a fully qualified filename from a line info table.
1578 The returned string has been malloc'ed and it is the caller's
1579 responsibility to free it. */
1580
1581 static char *
1582 concat_filename (struct line_info_table *table, unsigned int file)
1583 {
1584 char *filename;
1585
1586 if (file - 1 >= table->num_files)
1587 {
1588 /* FILE == 0 means unknown. */
1589 if (file)
1590 _bfd_error_handler
1591 (_("Dwarf Error: mangled line number section (bad file number)."));
1592 return strdup ("<unknown>");
1593 }
1594
1595 filename = table->files[file - 1].name;
1596 if (filename == NULL)
1597 return strdup ("<unknown>");
1598
1599 if (!IS_ABSOLUTE_PATH (filename))
1600 {
1601 char *dir_name = NULL;
1602 char *subdir_name = NULL;
1603 char *name;
1604 size_t len;
1605
1606 if (table->files[file - 1].dir
1607 /* PR 17512: file: 0317e960. */
1608 && table->files[file - 1].dir <= table->num_dirs
1609 /* PR 17512: file: 7f3d2e4b. */
1610 && table->dirs != NULL)
1611 subdir_name = table->dirs[table->files[file - 1].dir - 1];
1612
1613 if (!subdir_name || !IS_ABSOLUTE_PATH (subdir_name))
1614 dir_name = table->comp_dir;
1615
1616 if (!dir_name)
1617 {
1618 dir_name = subdir_name;
1619 subdir_name = NULL;
1620 }
1621
1622 if (!dir_name)
1623 return strdup (filename);
1624
1625 len = strlen (dir_name) + strlen (filename) + 2;
1626
1627 if (subdir_name)
1628 {
1629 len += strlen (subdir_name) + 1;
1630 name = (char *) bfd_malloc (len);
1631 if (name)
1632 sprintf (name, "%s/%s/%s", dir_name, subdir_name, filename);
1633 }
1634 else
1635 {
1636 name = (char *) bfd_malloc (len);
1637 if (name)
1638 sprintf (name, "%s/%s", dir_name, filename);
1639 }
1640
1641 return name;
1642 }
1643
1644 return strdup (filename);
1645 }
1646
1647 static bfd_boolean
1648 arange_add (const struct comp_unit *unit, struct arange *first_arange,
1649 bfd_vma low_pc, bfd_vma high_pc)
1650 {
1651 struct arange *arange;
1652
1653 /* Ignore empty ranges. */
1654 if (low_pc == high_pc)
1655 return TRUE;
1656
1657 /* If the first arange is empty, use it. */
1658 if (first_arange->high == 0)
1659 {
1660 first_arange->low = low_pc;
1661 first_arange->high = high_pc;
1662 return TRUE;
1663 }
1664
1665 /* Next see if we can cheaply extend an existing range. */
1666 arange = first_arange;
1667 do
1668 {
1669 if (low_pc == arange->high)
1670 {
1671 arange->high = high_pc;
1672 return TRUE;
1673 }
1674 if (high_pc == arange->low)
1675 {
1676 arange->low = low_pc;
1677 return TRUE;
1678 }
1679 arange = arange->next;
1680 }
1681 while (arange);
1682
1683 /* Need to allocate a new arange and insert it into the arange list.
1684 Order isn't significant, so just insert after the first arange. */
1685 arange = (struct arange *) bfd_alloc (unit->abfd, sizeof (*arange));
1686 if (arange == NULL)
1687 return FALSE;
1688 arange->low = low_pc;
1689 arange->high = high_pc;
1690 arange->next = first_arange->next;
1691 first_arange->next = arange;
1692 return TRUE;
1693 }
1694
1695 /* Compare function for line sequences. */
1696
1697 static int
1698 compare_sequences (const void* a, const void* b)
1699 {
1700 const struct line_sequence* seq1 = a;
1701 const struct line_sequence* seq2 = b;
1702
1703 /* Sort by low_pc as the primary key. */
1704 if (seq1->low_pc < seq2->low_pc)
1705 return -1;
1706 if (seq1->low_pc > seq2->low_pc)
1707 return 1;
1708
1709 /* If low_pc values are equal, sort in reverse order of
1710 high_pc, so that the largest region comes first. */
1711 if (seq1->last_line->address < seq2->last_line->address)
1712 return 1;
1713 if (seq1->last_line->address > seq2->last_line->address)
1714 return -1;
1715
1716 if (seq1->last_line->op_index < seq2->last_line->op_index)
1717 return 1;
1718 if (seq1->last_line->op_index > seq2->last_line->op_index)
1719 return -1;
1720
1721 return 0;
1722 }
1723
1724 /* Construct the line information table for quick lookup. */
1725
1726 static bfd_boolean
1727 build_line_info_table (struct line_info_table * table,
1728 struct line_sequence * seq)
1729 {
1730 bfd_size_type amt;
1731 struct line_info** line_info_lookup;
1732 struct line_info* each_line;
1733 unsigned int num_lines;
1734 unsigned int line_index;
1735
1736 if (seq->line_info_lookup != NULL)
1737 return TRUE;
1738
1739 /* Count the number of line information entries. We could do this while
1740 scanning the debug information, but some entries may be added via
1741 lcl_head without having a sequence handy to increment the number of
1742 lines. */
1743 num_lines = 0;
1744 for (each_line = seq->last_line; each_line; each_line = each_line->prev_line)
1745 num_lines++;
1746
1747 if (num_lines == 0)
1748 return TRUE;
1749
1750 /* Allocate space for the line information lookup table. */
1751 amt = sizeof (struct line_info*) * num_lines;
1752 line_info_lookup = (struct line_info**) bfd_alloc (table->abfd, amt);
1753 if (line_info_lookup == NULL)
1754 return FALSE;
1755
1756 /* Create the line information lookup table. */
1757 line_index = num_lines;
1758 for (each_line = seq->last_line; each_line; each_line = each_line->prev_line)
1759 line_info_lookup[--line_index] = each_line;
1760
1761 BFD_ASSERT (line_index == 0);
1762
1763 seq->num_lines = num_lines;
1764 seq->line_info_lookup = line_info_lookup;
1765
1766 return TRUE;
1767 }
1768
1769 /* Sort the line sequences for quick lookup. */
1770
1771 static bfd_boolean
1772 sort_line_sequences (struct line_info_table* table)
1773 {
1774 bfd_size_type amt;
1775 struct line_sequence* sequences;
1776 struct line_sequence* seq;
1777 unsigned int n = 0;
1778 unsigned int num_sequences = table->num_sequences;
1779 bfd_vma last_high_pc;
1780
1781 if (num_sequences == 0)
1782 return TRUE;
1783
1784 /* Allocate space for an array of sequences. */
1785 amt = sizeof (struct line_sequence) * num_sequences;
1786 sequences = (struct line_sequence *) bfd_alloc (table->abfd, amt);
1787 if (sequences == NULL)
1788 return FALSE;
1789
1790 /* Copy the linked list into the array, freeing the original nodes. */
1791 seq = table->sequences;
1792 for (n = 0; n < num_sequences; n++)
1793 {
1794 struct line_sequence* last_seq = seq;
1795
1796 BFD_ASSERT (seq);
1797 sequences[n].low_pc = seq->low_pc;
1798 sequences[n].prev_sequence = NULL;
1799 sequences[n].last_line = seq->last_line;
1800 sequences[n].line_info_lookup = NULL;
1801 sequences[n].num_lines = 0;
1802 seq = seq->prev_sequence;
1803 free (last_seq);
1804 }
1805 BFD_ASSERT (seq == NULL);
1806
1807 qsort (sequences, n, sizeof (struct line_sequence), compare_sequences);
1808
1809 /* Make the list binary-searchable by trimming overlapping entries
1810 and removing nested entries. */
1811 num_sequences = 1;
1812 last_high_pc = sequences[0].last_line->address;
1813 for (n = 1; n < table->num_sequences; n++)
1814 {
1815 if (sequences[n].low_pc < last_high_pc)
1816 {
1817 if (sequences[n].last_line->address <= last_high_pc)
1818 /* Skip nested entries. */
1819 continue;
1820
1821 /* Trim overlapping entries. */
1822 sequences[n].low_pc = last_high_pc;
1823 }
1824 last_high_pc = sequences[n].last_line->address;
1825 if (n > num_sequences)
1826 {
1827 /* Close up the gap. */
1828 sequences[num_sequences].low_pc = sequences[n].low_pc;
1829 sequences[num_sequences].last_line = sequences[n].last_line;
1830 }
1831 num_sequences++;
1832 }
1833
1834 table->sequences = sequences;
1835 table->num_sequences = num_sequences;
1836 return TRUE;
1837 }
1838
1839 /* Add directory to TABLE. CUR_DIR memory ownership is taken by TABLE. */
1840
1841 static bfd_boolean
1842 line_info_add_include_dir (struct line_info_table *table, char *cur_dir)
1843 {
1844 if ((table->num_dirs % DIR_ALLOC_CHUNK) == 0)
1845 {
1846 char **tmp;
1847 bfd_size_type amt;
1848
1849 amt = table->num_dirs + DIR_ALLOC_CHUNK;
1850 amt *= sizeof (char *);
1851
1852 tmp = (char **) bfd_realloc (table->dirs, amt);
1853 if (tmp == NULL)
1854 return FALSE;
1855 table->dirs = tmp;
1856 }
1857
1858 table->dirs[table->num_dirs++] = cur_dir;
1859 return TRUE;
1860 }
1861
1862 static bfd_boolean
1863 line_info_add_include_dir_stub (struct line_info_table *table, char *cur_dir,
1864 unsigned int dir ATTRIBUTE_UNUSED,
1865 unsigned int xtime ATTRIBUTE_UNUSED,
1866 unsigned int size ATTRIBUTE_UNUSED)
1867 {
1868 return line_info_add_include_dir (table, cur_dir);
1869 }
1870
1871 /* Add file to TABLE. CUR_FILE memory ownership is taken by TABLE. */
1872
1873 static bfd_boolean
1874 line_info_add_file_name (struct line_info_table *table, char *cur_file,
1875 unsigned int dir, unsigned int xtime,
1876 unsigned int size)
1877 {
1878 if ((table->num_files % FILE_ALLOC_CHUNK) == 0)
1879 {
1880 struct fileinfo *tmp;
1881 bfd_size_type amt;
1882
1883 amt = table->num_files + FILE_ALLOC_CHUNK;
1884 amt *= sizeof (struct fileinfo);
1885
1886 tmp = (struct fileinfo *) bfd_realloc (table->files, amt);
1887 if (tmp == NULL)
1888 return FALSE;
1889 table->files = tmp;
1890 }
1891
1892 table->files[table->num_files].name = cur_file;
1893 table->files[table->num_files].dir = dir;
1894 table->files[table->num_files].time = xtime;
1895 table->files[table->num_files].size = size;
1896 table->num_files++;
1897 return TRUE;
1898 }
1899
1900 /* Read directory or file name entry format, starting with byte of
1901 format count entries, ULEB128 pairs of entry formats, ULEB128 of
1902 entries count and the entries themselves in the described entry
1903 format. */
1904
1905 static bfd_boolean
1906 read_formatted_entries (struct comp_unit *unit, bfd_byte **bufp,
1907 bfd_byte *buf_end, struct line_info_table *table,
1908 bfd_boolean (*callback) (struct line_info_table *table,
1909 char *cur_file,
1910 unsigned int dir,
1911 unsigned int time,
1912 unsigned int size))
1913 {
1914 bfd *abfd = unit->abfd;
1915 bfd_byte format_count, formati;
1916 bfd_vma data_count, datai;
1917 bfd_byte *buf = *bufp;
1918 bfd_byte *format_header_data;
1919 unsigned int bytes_read;
1920
1921 format_count = read_1_byte (abfd, buf, buf_end);
1922 buf += 1;
1923 format_header_data = buf;
1924 for (formati = 0; formati < format_count; formati++)
1925 {
1926 _bfd_safe_read_leb128 (abfd, buf, &bytes_read, FALSE, buf_end);
1927 buf += bytes_read;
1928 _bfd_safe_read_leb128 (abfd, buf, &bytes_read, FALSE, buf_end);
1929 buf += bytes_read;
1930 }
1931
1932 data_count = _bfd_safe_read_leb128 (abfd, buf, &bytes_read, FALSE, buf_end);
1933 buf += bytes_read;
1934 if (format_count == 0 && data_count != 0)
1935 {
1936 _bfd_error_handler (_("Dwarf Error: Zero format count."));
1937 bfd_set_error (bfd_error_bad_value);
1938 return FALSE;
1939 }
1940
1941 for (datai = 0; datai < data_count; datai++)
1942 {
1943 bfd_byte *format = format_header_data;
1944 struct fileinfo fe;
1945
1946 memset (&fe, 0, sizeof fe);
1947 for (formati = 0; formati < format_count; formati++)
1948 {
1949 bfd_vma content_type, form;
1950 char *string_trash;
1951 char **stringp = &string_trash;
1952 unsigned int uint_trash, *uintp = &uint_trash;
1953
1954 content_type = _bfd_safe_read_leb128 (abfd, format, &bytes_read,
1955 FALSE, buf_end);
1956 format += bytes_read;
1957 switch (content_type)
1958 {
1959 case DW_LNCT_path:
1960 stringp = &fe.name;
1961 break;
1962 case DW_LNCT_directory_index:
1963 uintp = &fe.dir;
1964 break;
1965 case DW_LNCT_timestamp:
1966 uintp = &fe.time;
1967 break;
1968 case DW_LNCT_size:
1969 uintp = &fe.size;
1970 break;
1971 case DW_LNCT_MD5:
1972 break;
1973 default:
1974 _bfd_error_handler
1975 (_("Dwarf Error: Unknown format content type %Lu."),
1976 content_type);
1977 bfd_set_error (bfd_error_bad_value);
1978 return FALSE;
1979 }
1980
1981 form = _bfd_safe_read_leb128 (abfd, format, &bytes_read, FALSE,
1982 buf_end);
1983 format += bytes_read;
1984 switch (form)
1985 {
1986 case DW_FORM_string:
1987 *stringp = read_string (abfd, buf, buf_end, &bytes_read);
1988 buf += bytes_read;
1989 break;
1990
1991 case DW_FORM_line_strp:
1992 *stringp = read_indirect_line_string (unit, buf, buf_end, &bytes_read);
1993 buf += bytes_read;
1994 break;
1995
1996 case DW_FORM_data1:
1997 *uintp = read_1_byte (abfd, buf, buf_end);
1998 buf += 1;
1999 break;
2000
2001 case DW_FORM_data2:
2002 *uintp = read_2_bytes (abfd, buf, buf_end);
2003 buf += 2;
2004 break;
2005
2006 case DW_FORM_data4:
2007 *uintp = read_4_bytes (abfd, buf, buf_end);
2008 buf += 4;
2009 break;
2010
2011 case DW_FORM_data8:
2012 *uintp = read_8_bytes (abfd, buf, buf_end);
2013 buf += 8;
2014 break;
2015
2016 case DW_FORM_udata:
2017 *uintp = _bfd_safe_read_leb128 (abfd, buf, &bytes_read, FALSE,
2018 buf_end);
2019 buf += bytes_read;
2020 break;
2021
2022 case DW_FORM_block:
2023 /* It is valid only for DW_LNCT_timestamp which is ignored by
2024 current GDB. */
2025 break;
2026 }
2027 }
2028
2029 if (!callback (table, fe.name, fe.dir, fe.time, fe.size))
2030 return FALSE;
2031 }
2032
2033 *bufp = buf;
2034 return TRUE;
2035 }
2036
2037 /* Decode the line number information for UNIT. */
2038
2039 static struct line_info_table*
2040 decode_line_info (struct comp_unit *unit, struct dwarf2_debug *stash)
2041 {
2042 bfd *abfd = unit->abfd;
2043 struct line_info_table* table;
2044 bfd_byte *line_ptr;
2045 bfd_byte *line_end;
2046 struct line_head lh;
2047 unsigned int i, bytes_read, offset_size;
2048 char *cur_file, *cur_dir;
2049 unsigned char op_code, extended_op, adj_opcode;
2050 unsigned int exop_len;
2051 bfd_size_type amt;
2052
2053 if (! read_section (abfd, &stash->debug_sections[debug_line],
2054 stash->syms, unit->line_offset,
2055 &stash->dwarf_line_buffer, &stash->dwarf_line_size))
2056 return NULL;
2057
2058 amt = sizeof (struct line_info_table);
2059 table = (struct line_info_table *) bfd_alloc (abfd, amt);
2060 if (table == NULL)
2061 return NULL;
2062 table->abfd = abfd;
2063 table->comp_dir = unit->comp_dir;
2064
2065 table->num_files = 0;
2066 table->files = NULL;
2067
2068 table->num_dirs = 0;
2069 table->dirs = NULL;
2070
2071 table->num_sequences = 0;
2072 table->sequences = NULL;
2073
2074 table->lcl_head = NULL;
2075
2076 if (stash->dwarf_line_size < 16)
2077 {
2078 _bfd_error_handler
2079 (_("Dwarf Error: Line info section is too small (%Ld)"),
2080 stash->dwarf_line_size);
2081 bfd_set_error (bfd_error_bad_value);
2082 return NULL;
2083 }
2084 line_ptr = stash->dwarf_line_buffer + unit->line_offset;
2085 line_end = stash->dwarf_line_buffer + stash->dwarf_line_size;
2086
2087 /* Read in the prologue. */
2088 lh.total_length = read_4_bytes (abfd, line_ptr, line_end);
2089 line_ptr += 4;
2090 offset_size = 4;
2091 if (lh.total_length == 0xffffffff)
2092 {
2093 lh.total_length = read_8_bytes (abfd, line_ptr, line_end);
2094 line_ptr += 8;
2095 offset_size = 8;
2096 }
2097 else if (lh.total_length == 0 && unit->addr_size == 8)
2098 {
2099 /* Handle (non-standard) 64-bit DWARF2 formats. */
2100 lh.total_length = read_4_bytes (abfd, line_ptr, line_end);
2101 line_ptr += 4;
2102 offset_size = 8;
2103 }
2104
2105 if (lh.total_length > (size_t) (line_end - line_ptr))
2106 {
2107 _bfd_error_handler
2108 /* xgettext: c-format */
2109 (_("Dwarf Error: Line info data is bigger (%#Lx)"
2110 " than the space remaining in the section (%#lx)"),
2111 lh.total_length, (unsigned long) (line_end - line_ptr));
2112 bfd_set_error (bfd_error_bad_value);
2113 return NULL;
2114 }
2115
2116 line_end = line_ptr + lh.total_length;
2117
2118 lh.version = read_2_bytes (abfd, line_ptr, line_end);
2119 if (lh.version < 2 || lh.version > 5)
2120 {
2121 _bfd_error_handler
2122 (_("Dwarf Error: Unhandled .debug_line version %d."), lh.version);
2123 bfd_set_error (bfd_error_bad_value);
2124 return NULL;
2125 }
2126 line_ptr += 2;
2127
2128 if (line_ptr + offset_size + (lh.version >= 5 ? 8 : (lh.version >= 4 ? 6 : 5))
2129 >= line_end)
2130 {
2131 _bfd_error_handler
2132 (_("Dwarf Error: Ran out of room reading prologue"));
2133 bfd_set_error (bfd_error_bad_value);
2134 return NULL;
2135 }
2136
2137 if (lh.version >= 5)
2138 {
2139 unsigned int segment_selector_size;
2140
2141 /* Skip address size. */
2142 read_1_byte (abfd, line_ptr, line_end);
2143 line_ptr += 1;
2144
2145 segment_selector_size = read_1_byte (abfd, line_ptr, line_end);
2146 line_ptr += 1;
2147 if (segment_selector_size != 0)
2148 {
2149 _bfd_error_handler
2150 (_("Dwarf Error: Line info unsupported segment selector size %u."),
2151 segment_selector_size);
2152 bfd_set_error (bfd_error_bad_value);
2153 return NULL;
2154 }
2155 }
2156
2157 if (offset_size == 4)
2158 lh.prologue_length = read_4_bytes (abfd, line_ptr, line_end);
2159 else
2160 lh.prologue_length = read_8_bytes (abfd, line_ptr, line_end);
2161 line_ptr += offset_size;
2162
2163 lh.minimum_instruction_length = read_1_byte (abfd, line_ptr, line_end);
2164 line_ptr += 1;
2165
2166 if (lh.version >= 4)
2167 {
2168 lh.maximum_ops_per_insn = read_1_byte (abfd, line_ptr, line_end);
2169 line_ptr += 1;
2170 }
2171 else
2172 lh.maximum_ops_per_insn = 1;
2173
2174 if (lh.maximum_ops_per_insn == 0)
2175 {
2176 _bfd_error_handler
2177 (_("Dwarf Error: Invalid maximum operations per instruction."));
2178 bfd_set_error (bfd_error_bad_value);
2179 return NULL;
2180 }
2181
2182 lh.default_is_stmt = read_1_byte (abfd, line_ptr, line_end);
2183 line_ptr += 1;
2184
2185 lh.line_base = read_1_signed_byte (abfd, line_ptr, line_end);
2186 line_ptr += 1;
2187
2188 lh.line_range = read_1_byte (abfd, line_ptr, line_end);
2189 line_ptr += 1;
2190
2191 lh.opcode_base = read_1_byte (abfd, line_ptr, line_end);
2192 line_ptr += 1;
2193
2194 if (line_ptr + (lh.opcode_base - 1) >= line_end)
2195 {
2196 _bfd_error_handler (_("Dwarf Error: Ran out of room reading opcodes"));
2197 bfd_set_error (bfd_error_bad_value);
2198 return NULL;
2199 }
2200
2201 amt = lh.opcode_base * sizeof (unsigned char);
2202 lh.standard_opcode_lengths = (unsigned char *) bfd_alloc (abfd, amt);
2203
2204 lh.standard_opcode_lengths[0] = 1;
2205
2206 for (i = 1; i < lh.opcode_base; ++i)
2207 {
2208 lh.standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr, line_end);
2209 line_ptr += 1;
2210 }
2211
2212 if (lh.version >= 5)
2213 {
2214 /* Read directory table. */
2215 if (!read_formatted_entries (unit, &line_ptr, line_end, table,
2216 line_info_add_include_dir_stub))
2217 goto fail;
2218
2219 /* Read file name table. */
2220 if (!read_formatted_entries (unit, &line_ptr, line_end, table,
2221 line_info_add_file_name))
2222 goto fail;
2223 }
2224 else
2225 {
2226 /* Read directory table. */
2227 while ((cur_dir = read_string (abfd, line_ptr, line_end, &bytes_read)) != NULL)
2228 {
2229 line_ptr += bytes_read;
2230
2231 if (!line_info_add_include_dir (table, cur_dir))
2232 goto fail;
2233 }
2234
2235 line_ptr += bytes_read;
2236
2237 /* Read file name table. */
2238 while ((cur_file = read_string (abfd, line_ptr, line_end, &bytes_read)) != NULL)
2239 {
2240 unsigned int dir, xtime, size;
2241
2242 line_ptr += bytes_read;
2243
2244 dir = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read, FALSE, line_end);
2245 line_ptr += bytes_read;
2246 xtime = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read, FALSE, line_end);
2247 line_ptr += bytes_read;
2248 size = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read, FALSE, line_end);
2249 line_ptr += bytes_read;
2250
2251 if (!line_info_add_file_name (table, cur_file, dir, xtime, size))
2252 goto fail;
2253 }
2254
2255 line_ptr += bytes_read;
2256 }
2257
2258 /* Read the statement sequences until there's nothing left. */
2259 while (line_ptr < line_end)
2260 {
2261 /* State machine registers. */
2262 bfd_vma address = 0;
2263 unsigned char op_index = 0;
2264 char * filename = table->num_files ? concat_filename (table, 1) : NULL;
2265 unsigned int line = 1;
2266 unsigned int column = 0;
2267 unsigned int discriminator = 0;
2268 int is_stmt = lh.default_is_stmt;
2269 int end_sequence = 0;
2270 unsigned int dir, xtime, size;
2271 /* eraxxon@alumni.rice.edu: Against the DWARF2 specs, some
2272 compilers generate address sequences that are wildly out of
2273 order using DW_LNE_set_address (e.g. Intel C++ 6.0 compiler
2274 for ia64-Linux). Thus, to determine the low and high
2275 address, we must compare on every DW_LNS_copy, etc. */
2276 bfd_vma low_pc = (bfd_vma) -1;
2277 bfd_vma high_pc = 0;
2278
2279 /* Decode the table. */
2280 while (!end_sequence && line_ptr < line_end)
2281 {
2282 op_code = read_1_byte (abfd, line_ptr, line_end);
2283 line_ptr += 1;
2284
2285 if (op_code >= lh.opcode_base)
2286 {
2287 /* Special operand. */
2288 adj_opcode = op_code - lh.opcode_base;
2289 if (lh.line_range == 0)
2290 goto line_fail;
2291 if (lh.maximum_ops_per_insn == 1)
2292 address += (adj_opcode / lh.line_range
2293 * lh.minimum_instruction_length);
2294 else
2295 {
2296 address += ((op_index + adj_opcode / lh.line_range)
2297 / lh.maximum_ops_per_insn
2298 * lh.minimum_instruction_length);
2299 op_index = ((op_index + adj_opcode / lh.line_range)
2300 % lh.maximum_ops_per_insn);
2301 }
2302 line += lh.line_base + (adj_opcode % lh.line_range);
2303 /* Append row to matrix using current values. */
2304 if (!add_line_info (table, address, op_index, filename,
2305 line, column, discriminator, 0))
2306 goto line_fail;
2307 discriminator = 0;
2308 if (address < low_pc)
2309 low_pc = address;
2310 if (address > high_pc)
2311 high_pc = address;
2312 }
2313 else switch (op_code)
2314 {
2315 case DW_LNS_extended_op:
2316 exop_len = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2317 FALSE, line_end);
2318 line_ptr += bytes_read;
2319 extended_op = read_1_byte (abfd, line_ptr, line_end);
2320 line_ptr += 1;
2321
2322 switch (extended_op)
2323 {
2324 case DW_LNE_end_sequence:
2325 end_sequence = 1;
2326 if (!add_line_info (table, address, op_index, filename, line,
2327 column, discriminator, end_sequence))
2328 goto line_fail;
2329 discriminator = 0;
2330 if (address < low_pc)
2331 low_pc = address;
2332 if (address > high_pc)
2333 high_pc = address;
2334 if (!arange_add (unit, &unit->arange, low_pc, high_pc))
2335 goto line_fail;
2336 break;
2337 case DW_LNE_set_address:
2338 address = read_address (unit, line_ptr, line_end);
2339 op_index = 0;
2340 line_ptr += unit->addr_size;
2341 break;
2342 case DW_LNE_define_file:
2343 cur_file = read_string (abfd, line_ptr, line_end, &bytes_read);
2344 line_ptr += bytes_read;
2345 dir = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2346 FALSE, line_end);
2347 line_ptr += bytes_read;
2348 xtime = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2349 FALSE, line_end);
2350 line_ptr += bytes_read;
2351 size = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2352 FALSE, line_end);
2353 line_ptr += bytes_read;
2354 if (!line_info_add_file_name (table, cur_file, dir,
2355 xtime, size))
2356 goto line_fail;
2357 break;
2358 case DW_LNE_set_discriminator:
2359 discriminator =
2360 _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2361 FALSE, line_end);
2362 line_ptr += bytes_read;
2363 break;
2364 case DW_LNE_HP_source_file_correlation:
2365 line_ptr += exop_len - 1;
2366 break;
2367 default:
2368 _bfd_error_handler
2369 (_("Dwarf Error: mangled line number section."));
2370 bfd_set_error (bfd_error_bad_value);
2371 line_fail:
2372 if (filename != NULL)
2373 free (filename);
2374 goto fail;
2375 }
2376 break;
2377 case DW_LNS_copy:
2378 if (!add_line_info (table, address, op_index,
2379 filename, line, column, discriminator, 0))
2380 goto line_fail;
2381 discriminator = 0;
2382 if (address < low_pc)
2383 low_pc = address;
2384 if (address > high_pc)
2385 high_pc = address;
2386 break;
2387 case DW_LNS_advance_pc:
2388 if (lh.maximum_ops_per_insn == 1)
2389 address += (lh.minimum_instruction_length
2390 * _bfd_safe_read_leb128 (abfd, line_ptr,
2391 &bytes_read,
2392 FALSE, line_end));
2393 else
2394 {
2395 bfd_vma adjust = _bfd_safe_read_leb128 (abfd, line_ptr,
2396 &bytes_read,
2397 FALSE, line_end);
2398 address = ((op_index + adjust) / lh.maximum_ops_per_insn
2399 * lh.minimum_instruction_length);
2400 op_index = (op_index + adjust) % lh.maximum_ops_per_insn;
2401 }
2402 line_ptr += bytes_read;
2403 break;
2404 case DW_LNS_advance_line:
2405 line += _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2406 TRUE, line_end);
2407 line_ptr += bytes_read;
2408 break;
2409 case DW_LNS_set_file:
2410 {
2411 unsigned int file;
2412
2413 /* The file and directory tables are 0
2414 based, the references are 1 based. */
2415 file = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2416 FALSE, line_end);
2417 line_ptr += bytes_read;
2418 if (filename)
2419 free (filename);
2420 filename = concat_filename (table, file);
2421 break;
2422 }
2423 case DW_LNS_set_column:
2424 column = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2425 FALSE, line_end);
2426 line_ptr += bytes_read;
2427 break;
2428 case DW_LNS_negate_stmt:
2429 is_stmt = (!is_stmt);
2430 break;
2431 case DW_LNS_set_basic_block:
2432 break;
2433 case DW_LNS_const_add_pc:
2434 if (lh.line_range == 0)
2435 goto line_fail;
2436 if (lh.maximum_ops_per_insn == 1)
2437 address += (lh.minimum_instruction_length
2438 * ((255 - lh.opcode_base) / lh.line_range));
2439 else
2440 {
2441 bfd_vma adjust = ((255 - lh.opcode_base) / lh.line_range);
2442 address += (lh.minimum_instruction_length
2443 * ((op_index + adjust)
2444 / lh.maximum_ops_per_insn));
2445 op_index = (op_index + adjust) % lh.maximum_ops_per_insn;
2446 }
2447 break;
2448 case DW_LNS_fixed_advance_pc:
2449 address += read_2_bytes (abfd, line_ptr, line_end);
2450 op_index = 0;
2451 line_ptr += 2;
2452 break;
2453 default:
2454 /* Unknown standard opcode, ignore it. */
2455 for (i = 0; i < lh.standard_opcode_lengths[op_code]; i++)
2456 {
2457 (void) _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2458 FALSE, line_end);
2459 line_ptr += bytes_read;
2460 }
2461 break;
2462 }
2463 }
2464
2465 if (filename)
2466 free (filename);
2467 }
2468
2469 if (sort_line_sequences (table))
2470 return table;
2471
2472 fail:
2473 while (table->sequences != NULL)
2474 {
2475 struct line_sequence* seq = table->sequences;
2476 table->sequences = table->sequences->prev_sequence;
2477 free (seq);
2478 }
2479 if (table->files != NULL)
2480 free (table->files);
2481 if (table->dirs != NULL)
2482 free (table->dirs);
2483 return NULL;
2484 }
2485
2486 /* If ADDR is within TABLE set the output parameters and return the
2487 range of addresses covered by the entry used to fill them out.
2488 Otherwise set * FILENAME_PTR to NULL and return 0.
2489 The parameters FILENAME_PTR, LINENUMBER_PTR and DISCRIMINATOR_PTR
2490 are pointers to the objects to be filled in. */
2491
2492 static bfd_vma
2493 lookup_address_in_line_info_table (struct line_info_table *table,
2494 bfd_vma addr,
2495 const char **filename_ptr,
2496 unsigned int *linenumber_ptr,
2497 unsigned int *discriminator_ptr)
2498 {
2499 struct line_sequence *seq = NULL;
2500 struct line_info *info;
2501 int low, high, mid;
2502
2503 /* Binary search the array of sequences. */
2504 low = 0;
2505 high = table->num_sequences;
2506 while (low < high)
2507 {
2508 mid = (low + high) / 2;
2509 seq = &table->sequences[mid];
2510 if (addr < seq->low_pc)
2511 high = mid;
2512 else if (addr >= seq->last_line->address)
2513 low = mid + 1;
2514 else
2515 break;
2516 }
2517
2518 /* Check for a valid sequence. */
2519 if (!seq || addr < seq->low_pc || addr >= seq->last_line->address)
2520 goto fail;
2521
2522 if (!build_line_info_table (table, seq))
2523 goto fail;
2524
2525 /* Binary search the array of line information. */
2526 low = 0;
2527 high = seq->num_lines;
2528 info = NULL;
2529 while (low < high)
2530 {
2531 mid = (low + high) / 2;
2532 info = seq->line_info_lookup[mid];
2533 if (addr < info->address)
2534 high = mid;
2535 else if (addr >= seq->line_info_lookup[mid + 1]->address)
2536 low = mid + 1;
2537 else
2538 break;
2539 }
2540
2541 /* Check for a valid line information entry. */
2542 if (info
2543 && addr >= info->address
2544 && addr < seq->line_info_lookup[mid + 1]->address
2545 && !(info->end_sequence || info == seq->last_line))
2546 {
2547 *filename_ptr = info->filename;
2548 *linenumber_ptr = info->line;
2549 if (discriminator_ptr)
2550 *discriminator_ptr = info->discriminator;
2551 return seq->last_line->address - seq->low_pc;
2552 }
2553
2554 fail:
2555 *filename_ptr = NULL;
2556 return 0;
2557 }
2558
2559 /* Read in the .debug_ranges section for future reference. */
2560
2561 static bfd_boolean
2562 read_debug_ranges (struct comp_unit * unit)
2563 {
2564 struct dwarf2_debug * stash = unit->stash;
2565
2566 return read_section (unit->abfd, &stash->debug_sections[debug_ranges],
2567 stash->syms, 0,
2568 &stash->dwarf_ranges_buffer,
2569 &stash->dwarf_ranges_size);
2570 }
2571
2572 /* Function table functions. */
2573
2574 static int
2575 compare_lookup_funcinfos (const void * a, const void * b)
2576 {
2577 const struct lookup_funcinfo * lookup1 = a;
2578 const struct lookup_funcinfo * lookup2 = b;
2579
2580 if (lookup1->low_addr < lookup2->low_addr)
2581 return -1;
2582 if (lookup1->low_addr > lookup2->low_addr)
2583 return 1;
2584 if (lookup1->high_addr < lookup2->high_addr)
2585 return -1;
2586 if (lookup1->high_addr > lookup2->high_addr)
2587 return 1;
2588
2589 return 0;
2590 }
2591
2592 static bfd_boolean
2593 build_lookup_funcinfo_table (struct comp_unit * unit)
2594 {
2595 struct lookup_funcinfo *lookup_funcinfo_table = unit->lookup_funcinfo_table;
2596 unsigned int number_of_functions = unit->number_of_functions;
2597 struct funcinfo *each;
2598 struct lookup_funcinfo *entry;
2599 size_t func_index;
2600 struct arange *range;
2601 bfd_vma low_addr, high_addr;
2602
2603 if (lookup_funcinfo_table || number_of_functions == 0)
2604 return TRUE;
2605
2606 /* Create the function info lookup table. */
2607 lookup_funcinfo_table = (struct lookup_funcinfo *)
2608 bfd_malloc (number_of_functions * sizeof (struct lookup_funcinfo));
2609 if (lookup_funcinfo_table == NULL)
2610 return FALSE;
2611
2612 /* Populate the function info lookup table. */
2613 func_index = number_of_functions;
2614 for (each = unit->function_table; each; each = each->prev_func)
2615 {
2616 entry = &lookup_funcinfo_table[--func_index];
2617 entry->funcinfo = each;
2618
2619 /* Calculate the lowest and highest address for this function entry. */
2620 low_addr = entry->funcinfo->arange.low;
2621 high_addr = entry->funcinfo->arange.high;
2622
2623 for (range = entry->funcinfo->arange.next; range; range = range->next)
2624 {
2625 if (range->low < low_addr)
2626 low_addr = range->low;
2627 if (range->high > high_addr)
2628 high_addr = range->high;
2629 }
2630
2631 entry->low_addr = low_addr;
2632 entry->high_addr = high_addr;
2633 }
2634
2635 BFD_ASSERT (func_index == 0);
2636
2637 /* Sort the function by address. */
2638 qsort (lookup_funcinfo_table,
2639 number_of_functions,
2640 sizeof (struct lookup_funcinfo),
2641 compare_lookup_funcinfos);
2642
2643 /* Calculate the high watermark for each function in the lookup table. */
2644 high_addr = lookup_funcinfo_table[0].high_addr;
2645 for (func_index = 1; func_index < number_of_functions; func_index++)
2646 {
2647 entry = &lookup_funcinfo_table[func_index];
2648 if (entry->high_addr > high_addr)
2649 high_addr = entry->high_addr;
2650 else
2651 entry->high_addr = high_addr;
2652 }
2653
2654 unit->lookup_funcinfo_table = lookup_funcinfo_table;
2655 return TRUE;
2656 }
2657
2658 /* If ADDR is within UNIT's function tables, set FUNCTION_PTR, and return
2659 TRUE. Note that we need to find the function that has the smallest range
2660 that contains ADDR, to handle inlined functions without depending upon
2661 them being ordered in TABLE by increasing range. */
2662
2663 static bfd_boolean
2664 lookup_address_in_function_table (struct comp_unit *unit,
2665 bfd_vma addr,
2666 struct funcinfo **function_ptr)
2667 {
2668 unsigned int number_of_functions = unit->number_of_functions;
2669 struct lookup_funcinfo* lookup_funcinfo = NULL;
2670 struct funcinfo* funcinfo = NULL;
2671 struct funcinfo* best_fit = NULL;
2672 bfd_vma best_fit_len = 0;
2673 bfd_size_type low, high, mid, first;
2674 struct arange *arange;
2675
2676 if (number_of_functions == 0)
2677 return FALSE;
2678
2679 if (!build_lookup_funcinfo_table (unit))
2680 return FALSE;
2681
2682 if (unit->lookup_funcinfo_table[number_of_functions - 1].high_addr < addr)
2683 return FALSE;
2684
2685 /* Find the first function in the lookup table which may contain the
2686 specified address. */
2687 low = 0;
2688 high = number_of_functions;
2689 first = high;
2690 while (low < high)
2691 {
2692 mid = (low + high) / 2;
2693 lookup_funcinfo = &unit->lookup_funcinfo_table[mid];
2694 if (addr < lookup_funcinfo->low_addr)
2695 high = mid;
2696 else if (addr >= lookup_funcinfo->high_addr)
2697 low = mid + 1;
2698 else
2699 high = first = mid;
2700 }
2701
2702 /* Find the 'best' match for the address. The prior algorithm defined the
2703 best match as the function with the smallest address range containing
2704 the specified address. This definition should probably be changed to the
2705 innermost inline routine containing the address, but right now we want
2706 to get the same results we did before. */
2707 while (first < number_of_functions)
2708 {
2709 if (addr < unit->lookup_funcinfo_table[first].low_addr)
2710 break;
2711 funcinfo = unit->lookup_funcinfo_table[first].funcinfo;
2712
2713 for (arange = &funcinfo->arange; arange; arange = arange->next)
2714 {
2715 if (addr < arange->low || addr >= arange->high)
2716 continue;
2717
2718 if (!best_fit
2719 || arange->high - arange->low < best_fit_len
2720 /* The following comparison is designed to return the same
2721 match as the previous algorithm for routines which have the
2722 same best fit length. */
2723 || (arange->high - arange->low == best_fit_len
2724 && funcinfo > best_fit))
2725 {
2726 best_fit = funcinfo;
2727 best_fit_len = arange->high - arange->low;
2728 }
2729 }
2730
2731 first++;
2732 }
2733
2734 if (!best_fit)
2735 return FALSE;
2736
2737 *function_ptr = best_fit;
2738 return TRUE;
2739 }
2740
2741 /* If SYM at ADDR is within function table of UNIT, set FILENAME_PTR
2742 and LINENUMBER_PTR, and return TRUE. */
2743
2744 static bfd_boolean
2745 lookup_symbol_in_function_table (struct comp_unit *unit,
2746 asymbol *sym,
2747 bfd_vma addr,
2748 const char **filename_ptr,
2749 unsigned int *linenumber_ptr)
2750 {
2751 struct funcinfo* each_func;
2752 struct funcinfo* best_fit = NULL;
2753 bfd_vma best_fit_len = 0;
2754 struct arange *arange;
2755 const char *name = bfd_asymbol_name (sym);
2756 asection *sec = bfd_get_section (sym);
2757
2758 for (each_func = unit->function_table;
2759 each_func;
2760 each_func = each_func->prev_func)
2761 {
2762 for (arange = &each_func->arange;
2763 arange;
2764 arange = arange->next)
2765 {
2766 if ((!each_func->sec || each_func->sec == sec)
2767 && addr >= arange->low
2768 && addr < arange->high
2769 && each_func->name
2770 && strcmp (name, each_func->name) == 0
2771 && (!best_fit
2772 || arange->high - arange->low < best_fit_len))
2773 {
2774 best_fit = each_func;
2775 best_fit_len = arange->high - arange->low;
2776 }
2777 }
2778 }
2779
2780 if (best_fit)
2781 {
2782 best_fit->sec = sec;
2783 *filename_ptr = best_fit->file;
2784 *linenumber_ptr = best_fit->line;
2785 return TRUE;
2786 }
2787 else
2788 return FALSE;
2789 }
2790
2791 /* Variable table functions. */
2792
2793 /* If SYM is within variable table of UNIT, set FILENAME_PTR and
2794 LINENUMBER_PTR, and return TRUE. */
2795
2796 static bfd_boolean
2797 lookup_symbol_in_variable_table (struct comp_unit *unit,
2798 asymbol *sym,
2799 bfd_vma addr,
2800 const char **filename_ptr,
2801 unsigned int *linenumber_ptr)
2802 {
2803 const char *name = bfd_asymbol_name (sym);
2804 asection *sec = bfd_get_section (sym);
2805 struct varinfo* each;
2806
2807 for (each = unit->variable_table; each; each = each->prev_var)
2808 if (each->stack == 0
2809 && each->file != NULL
2810 && each->name != NULL
2811 && each->addr == addr
2812 && (!each->sec || each->sec == sec)
2813 && strcmp (name, each->name) == 0)
2814 break;
2815
2816 if (each)
2817 {
2818 each->sec = sec;
2819 *filename_ptr = each->file;
2820 *linenumber_ptr = each->line;
2821 return TRUE;
2822 }
2823
2824 return FALSE;
2825 }
2826
2827 static bfd_boolean
2828 find_abstract_instance_name (struct comp_unit *unit,
2829 bfd_byte *orig_info_ptr,
2830 struct attribute *attr_ptr,
2831 const char **pname,
2832 bfd_boolean *is_linkage)
2833 {
2834 bfd *abfd = unit->abfd;
2835 bfd_byte *info_ptr;
2836 bfd_byte *info_ptr_end;
2837 unsigned int abbrev_number, bytes_read, i;
2838 struct abbrev_info *abbrev;
2839 bfd_uint64_t die_ref = attr_ptr->u.val;
2840 struct attribute attr;
2841 const char *name = NULL;
2842
2843 /* DW_FORM_ref_addr can reference an entry in a different CU. It
2844 is an offset from the .debug_info section, not the current CU. */
2845 if (attr_ptr->form == DW_FORM_ref_addr)
2846 {
2847 /* We only support DW_FORM_ref_addr within the same file, so
2848 any relocations should be resolved already. Check this by
2849 testing for a zero die_ref; There can't be a valid reference
2850 to the header of a .debug_info section.
2851 DW_FORM_ref_addr is an offset relative to .debug_info.
2852 Normally when using the GNU linker this is accomplished by
2853 emitting a symbolic reference to a label, because .debug_info
2854 sections are linked at zero. When there are multiple section
2855 groups containing .debug_info, as there might be in a
2856 relocatable object file, it would be reasonable to assume that
2857 a symbolic reference to a label in any .debug_info section
2858 might be used. Since we lay out multiple .debug_info
2859 sections at non-zero VMAs (see place_sections), and read
2860 them contiguously into stash->info_ptr_memory, that means
2861 the reference is relative to stash->info_ptr_memory. */
2862 size_t total;
2863
2864 info_ptr = unit->stash->info_ptr_memory;
2865 info_ptr_end = unit->stash->info_ptr_end;
2866 total = info_ptr_end - info_ptr;
2867 if (!die_ref || die_ref >= total)
2868 {
2869 _bfd_error_handler
2870 (_("Dwarf Error: Invalid abstract instance DIE ref."));
2871 bfd_set_error (bfd_error_bad_value);
2872 return FALSE;
2873 }
2874 info_ptr += die_ref;
2875
2876 /* Now find the CU containing this pointer. */
2877 if (info_ptr >= unit->info_ptr_unit && info_ptr < unit->end_ptr)
2878 info_ptr_end = unit->end_ptr;
2879 else
2880 {
2881 /* Check other CUs to see if they contain the abbrev. */
2882 struct comp_unit * u;
2883
2884 for (u = unit->prev_unit; u != NULL; u = u->prev_unit)
2885 if (info_ptr >= u->info_ptr_unit && info_ptr < u->end_ptr)
2886 break;
2887
2888 if (u == NULL)
2889 for (u = unit->next_unit; u != NULL; u = u->next_unit)
2890 if (info_ptr >= u->info_ptr_unit && info_ptr < u->end_ptr)
2891 break;
2892
2893 if (u)
2894 {
2895 unit = u;
2896 info_ptr_end = unit->end_ptr;
2897 }
2898 /* else FIXME: What do we do now ? */
2899 }
2900 }
2901 else if (attr_ptr->form == DW_FORM_GNU_ref_alt)
2902 {
2903 info_ptr = read_alt_indirect_ref (unit, die_ref);
2904 if (info_ptr == NULL)
2905 {
2906 _bfd_error_handler
2907 (_("Dwarf Error: Unable to read alt ref %llu."),
2908 (long long) die_ref);
2909 bfd_set_error (bfd_error_bad_value);
2910 return FALSE;
2911 }
2912 info_ptr_end = (unit->stash->alt_dwarf_info_buffer
2913 + unit->stash->alt_dwarf_info_size);
2914
2915 /* FIXME: Do we need to locate the correct CU, in a similar
2916 fashion to the code in the DW_FORM_ref_addr case above ? */
2917 }
2918 else
2919 {
2920 /* DW_FORM_ref1, DW_FORM_ref2, DW_FORM_ref4, DW_FORM_ref8 or
2921 DW_FORM_ref_udata. These are all references relative to the
2922 start of the current CU. */
2923 size_t total;
2924
2925 info_ptr = unit->info_ptr_unit;
2926 info_ptr_end = unit->end_ptr;
2927 total = info_ptr_end - info_ptr;
2928 if (!die_ref || die_ref >= total)
2929 {
2930 _bfd_error_handler
2931 (_("Dwarf Error: Invalid abstract instance DIE ref."));
2932 bfd_set_error (bfd_error_bad_value);
2933 return FALSE;
2934 }
2935 info_ptr += die_ref;
2936 }
2937
2938 abbrev_number = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
2939 FALSE, info_ptr_end);
2940 info_ptr += bytes_read;
2941
2942 if (abbrev_number)
2943 {
2944 abbrev = lookup_abbrev (abbrev_number, unit->abbrevs);
2945 if (! abbrev)
2946 {
2947 _bfd_error_handler
2948 (_("Dwarf Error: Could not find abbrev number %u."), abbrev_number);
2949 bfd_set_error (bfd_error_bad_value);
2950 return FALSE;
2951 }
2952 else
2953 {
2954 for (i = 0; i < abbrev->num_attrs; ++i)
2955 {
2956 info_ptr = read_attribute (&attr, &abbrev->attrs[i], unit,
2957 info_ptr, info_ptr_end);
2958 if (info_ptr == NULL)
2959 break;
2960 /* It doesn't ever make sense for DW_AT_specification to
2961 refer to the same DIE. Stop simple recursion. */
2962 if (info_ptr == orig_info_ptr)
2963 {
2964 _bfd_error_handler
2965 (_("Dwarf Error: Abstract instance recursion detected."));
2966 bfd_set_error (bfd_error_bad_value);
2967 return FALSE;
2968 }
2969 switch (attr.name)
2970 {
2971 case DW_AT_name:
2972 /* Prefer DW_AT_MIPS_linkage_name or DW_AT_linkage_name
2973 over DW_AT_name. */
2974 if (name == NULL && is_str_attr (attr.form))
2975 {
2976 name = attr.u.str;
2977 if (non_mangled (unit->lang))
2978 *is_linkage = TRUE;
2979 }
2980 break;
2981 case DW_AT_specification:
2982 if (!find_abstract_instance_name (unit, info_ptr, &attr,
2983 pname, is_linkage))
2984 return FALSE;
2985 break;
2986 case DW_AT_linkage_name:
2987 case DW_AT_MIPS_linkage_name:
2988 /* PR 16949: Corrupt debug info can place
2989 non-string forms into these attributes. */
2990 if (is_str_attr (attr.form))
2991 {
2992 name = attr.u.str;
2993 *is_linkage = TRUE;
2994 }
2995 break;
2996 default:
2997 break;
2998 }
2999 }
3000 }
3001 }
3002 *pname = name;
3003 return TRUE;
3004 }
3005
3006 static bfd_boolean
3007 read_rangelist (struct comp_unit *unit, struct arange *arange,
3008 bfd_uint64_t offset)
3009 {
3010 bfd_byte *ranges_ptr;
3011 bfd_byte *ranges_end;
3012 bfd_vma base_address = unit->base_address;
3013
3014 if (! unit->stash->dwarf_ranges_buffer)
3015 {
3016 if (! read_debug_ranges (unit))
3017 return FALSE;
3018 }
3019
3020 ranges_ptr = unit->stash->dwarf_ranges_buffer + offset;
3021 if (ranges_ptr < unit->stash->dwarf_ranges_buffer)
3022 return FALSE;
3023 ranges_end = unit->stash->dwarf_ranges_buffer + unit->stash->dwarf_ranges_size;
3024
3025 for (;;)
3026 {
3027 bfd_vma low_pc;
3028 bfd_vma high_pc;
3029
3030 /* PR 17512: file: 62cada7d. */
3031 if (ranges_ptr + 2 * unit->addr_size > ranges_end)
3032 return FALSE;
3033
3034 low_pc = read_address (unit, ranges_ptr, ranges_end);
3035 ranges_ptr += unit->addr_size;
3036 high_pc = read_address (unit, ranges_ptr, ranges_end);
3037 ranges_ptr += unit->addr_size;
3038
3039 if (low_pc == 0 && high_pc == 0)
3040 break;
3041 if (low_pc == -1UL && high_pc != -1UL)
3042 base_address = high_pc;
3043 else
3044 {
3045 if (!arange_add (unit, arange,
3046 base_address + low_pc, base_address + high_pc))
3047 return FALSE;
3048 }
3049 }
3050 return TRUE;
3051 }
3052
3053 /* DWARF2 Compilation unit functions. */
3054
3055 /* Scan over each die in a comp. unit looking for functions to add
3056 to the function table and variables to the variable table. */
3057
3058 static bfd_boolean
3059 scan_unit_for_symbols (struct comp_unit *unit)
3060 {
3061 bfd *abfd = unit->abfd;
3062 bfd_byte *info_ptr = unit->first_child_die_ptr;
3063 bfd_byte *info_ptr_end = unit->stash->info_ptr_end;
3064 int nesting_level = 0;
3065 struct nest_funcinfo {
3066 struct funcinfo *func;
3067 } *nested_funcs;
3068 int nested_funcs_size;
3069
3070 /* Maintain a stack of in-scope functions and inlined functions, which we
3071 can use to set the caller_func field. */
3072 nested_funcs_size = 32;
3073 nested_funcs = (struct nest_funcinfo *)
3074 bfd_malloc (nested_funcs_size * sizeof (*nested_funcs));
3075 if (nested_funcs == NULL)
3076 return FALSE;
3077 nested_funcs[nesting_level].func = 0;
3078
3079 while (nesting_level >= 0)
3080 {
3081 unsigned int abbrev_number, bytes_read, i;
3082 struct abbrev_info *abbrev;
3083 struct attribute attr;
3084 struct funcinfo *func;
3085 struct varinfo *var;
3086 bfd_vma low_pc = 0;
3087 bfd_vma high_pc = 0;
3088 bfd_boolean high_pc_relative = FALSE;
3089
3090 /* PR 17512: file: 9f405d9d. */
3091 if (info_ptr >= info_ptr_end)
3092 goto fail;
3093
3094 abbrev_number = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
3095 FALSE, info_ptr_end);
3096 info_ptr += bytes_read;
3097
3098 if (! abbrev_number)
3099 {
3100 nesting_level--;
3101 continue;
3102 }
3103
3104 abbrev = lookup_abbrev (abbrev_number, unit->abbrevs);
3105 if (! abbrev)
3106 {
3107 static unsigned int previous_failed_abbrev = -1U;
3108
3109 /* Avoid multiple reports of the same missing abbrev. */
3110 if (abbrev_number != previous_failed_abbrev)
3111 {
3112 _bfd_error_handler
3113 (_("Dwarf Error: Could not find abbrev number %u."),
3114 abbrev_number);
3115 previous_failed_abbrev = abbrev_number;
3116 }
3117 bfd_set_error (bfd_error_bad_value);
3118 goto fail;
3119 }
3120
3121 var = NULL;
3122 if (abbrev->tag == DW_TAG_subprogram
3123 || abbrev->tag == DW_TAG_entry_point
3124 || abbrev->tag == DW_TAG_inlined_subroutine)
3125 {
3126 bfd_size_type amt = sizeof (struct funcinfo);
3127 func = (struct funcinfo *) bfd_zalloc (abfd, amt);
3128 if (func == NULL)
3129 goto fail;
3130 func->tag = abbrev->tag;
3131 func->prev_func = unit->function_table;
3132 unit->function_table = func;
3133 unit->number_of_functions++;
3134 BFD_ASSERT (!unit->cached);
3135
3136 if (func->tag == DW_TAG_inlined_subroutine)
3137 for (i = nesting_level; i-- != 0; )
3138 if (nested_funcs[i].func)
3139 {
3140 func->caller_func = nested_funcs[i].func;
3141 break;
3142 }
3143 nested_funcs[nesting_level].func = func;
3144 }
3145 else
3146 {
3147 func = NULL;
3148 if (abbrev->tag == DW_TAG_variable)
3149 {
3150 bfd_size_type amt = sizeof (struct varinfo);
3151 var = (struct varinfo *) bfd_zalloc (abfd, amt);
3152 if (var == NULL)
3153 goto fail;
3154 var->tag = abbrev->tag;
3155 var->stack = 1;
3156 var->prev_var = unit->variable_table;
3157 unit->variable_table = var;
3158 /* PR 18205: Missing debug information can cause this
3159 var to be attached to an already cached unit. */
3160 }
3161
3162 /* No inline function in scope at this nesting level. */
3163 nested_funcs[nesting_level].func = 0;
3164 }
3165
3166 for (i = 0; i < abbrev->num_attrs; ++i)
3167 {
3168 info_ptr = read_attribute (&attr, &abbrev->attrs[i],
3169 unit, info_ptr, info_ptr_end);
3170 if (info_ptr == NULL)
3171 goto fail;
3172
3173 if (func)
3174 {
3175 switch (attr.name)
3176 {
3177 case DW_AT_call_file:
3178 func->caller_file = concat_filename (unit->line_table,
3179 attr.u.val);
3180 break;
3181
3182 case DW_AT_call_line:
3183 func->caller_line = attr.u.val;
3184 break;
3185
3186 case DW_AT_abstract_origin:
3187 case DW_AT_specification:
3188 if (!find_abstract_instance_name (unit, info_ptr, &attr,
3189 &func->name,
3190 &func->is_linkage))
3191 goto fail;
3192 break;
3193
3194 case DW_AT_name:
3195 /* Prefer DW_AT_MIPS_linkage_name or DW_AT_linkage_name
3196 over DW_AT_name. */
3197 if (func->name == NULL && is_str_attr (attr.form))
3198 {
3199 func->name = attr.u.str;
3200 if (non_mangled (unit->lang))
3201 func->is_linkage = TRUE;
3202 }
3203 break;
3204
3205 case DW_AT_linkage_name:
3206 case DW_AT_MIPS_linkage_name:
3207 /* PR 16949: Corrupt debug info can place
3208 non-string forms into these attributes. */
3209 if (is_str_attr (attr.form))
3210 {
3211 func->name = attr.u.str;
3212 func->is_linkage = TRUE;
3213 }
3214 break;
3215
3216 case DW_AT_low_pc:
3217 low_pc = attr.u.val;
3218 break;
3219
3220 case DW_AT_high_pc:
3221 high_pc = attr.u.val;
3222 high_pc_relative = attr.form != DW_FORM_addr;
3223 break;
3224
3225 case DW_AT_ranges:
3226 if (!read_rangelist (unit, &func->arange, attr.u.val))
3227 goto fail;
3228 break;
3229
3230 case DW_AT_decl_file:
3231 func->file = concat_filename (unit->line_table,
3232 attr.u.val);
3233 break;
3234
3235 case DW_AT_decl_line:
3236 func->line = attr.u.val;
3237 break;
3238
3239 default:
3240 break;
3241 }
3242 }
3243 else if (var)
3244 {
3245 switch (attr.name)
3246 {
3247 case DW_AT_name:
3248 if (is_str_attr (attr.form))
3249 var->name = attr.u.str;
3250 break;
3251
3252 case DW_AT_decl_file:
3253 var->file = concat_filename (unit->line_table,
3254 attr.u.val);
3255 break;
3256
3257 case DW_AT_decl_line:
3258 var->line = attr.u.val;
3259 break;
3260
3261 case DW_AT_external:
3262 if (attr.u.val != 0)
3263 var->stack = 0;
3264 break;
3265
3266 case DW_AT_location:
3267 switch (attr.form)
3268 {
3269 case DW_FORM_block:
3270 case DW_FORM_block1:
3271 case DW_FORM_block2:
3272 case DW_FORM_block4:
3273 case DW_FORM_exprloc:
3274 if (attr.u.blk->data != NULL
3275 && *attr.u.blk->data == DW_OP_addr)
3276 {
3277 var->stack = 0;
3278
3279 /* Verify that DW_OP_addr is the only opcode in the
3280 location, in which case the block size will be 1
3281 plus the address size. */
3282 /* ??? For TLS variables, gcc can emit
3283 DW_OP_addr <addr> DW_OP_GNU_push_tls_address
3284 which we don't handle here yet. */
3285 if (attr.u.blk->size == unit->addr_size + 1U)
3286 var->addr = bfd_get (unit->addr_size * 8,
3287 unit->abfd,
3288 attr.u.blk->data + 1);
3289 }
3290 break;
3291
3292 default:
3293 break;
3294 }
3295 break;
3296
3297 default:
3298 break;
3299 }
3300 }
3301 }
3302
3303 if (high_pc_relative)
3304 high_pc += low_pc;
3305
3306 if (func && high_pc != 0)
3307 {
3308 if (!arange_add (unit, &func->arange, low_pc, high_pc))
3309 goto fail;
3310 }
3311
3312 if (abbrev->has_children)
3313 {
3314 nesting_level++;
3315
3316 if (nesting_level >= nested_funcs_size)
3317 {
3318 struct nest_funcinfo *tmp;
3319
3320 nested_funcs_size *= 2;
3321 tmp = (struct nest_funcinfo *)
3322 bfd_realloc (nested_funcs,
3323 nested_funcs_size * sizeof (*nested_funcs));
3324 if (tmp == NULL)
3325 goto fail;
3326 nested_funcs = tmp;
3327 }
3328 nested_funcs[nesting_level].func = 0;
3329 }
3330 }
3331
3332 free (nested_funcs);
3333 return TRUE;
3334
3335 fail:
3336 free (nested_funcs);
3337 return FALSE;
3338 }
3339
3340 /* Parse a DWARF2 compilation unit starting at INFO_PTR. This
3341 includes the compilation unit header that proceeds the DIE's, but
3342 does not include the length field that precedes each compilation
3343 unit header. END_PTR points one past the end of this comp unit.
3344 OFFSET_SIZE is the size of DWARF2 offsets (either 4 or 8 bytes).
3345
3346 This routine does not read the whole compilation unit; only enough
3347 to get to the line number information for the compilation unit. */
3348
3349 static struct comp_unit *
3350 parse_comp_unit (struct dwarf2_debug *stash,
3351 bfd_vma unit_length,
3352 bfd_byte *info_ptr_unit,
3353 unsigned int offset_size)
3354 {
3355 struct comp_unit* unit;
3356 unsigned int version;
3357 bfd_uint64_t abbrev_offset = 0;
3358 /* Initialize it just to avoid a GCC false warning. */
3359 unsigned int addr_size = -1;
3360 struct abbrev_info** abbrevs;
3361 unsigned int abbrev_number, bytes_read, i;
3362 struct abbrev_info *abbrev;
3363 struct attribute attr;
3364 bfd_byte *info_ptr = stash->info_ptr;
3365 bfd_byte *end_ptr = info_ptr + unit_length;
3366 bfd_size_type amt;
3367 bfd_vma low_pc = 0;
3368 bfd_vma high_pc = 0;
3369 bfd *abfd = stash->bfd_ptr;
3370 bfd_boolean high_pc_relative = FALSE;
3371 enum dwarf_unit_type unit_type;
3372
3373 version = read_2_bytes (abfd, info_ptr, end_ptr);
3374 info_ptr += 2;
3375 if (version < 2 || version > 5)
3376 {
3377 /* PR 19872: A version number of 0 probably means that there is padding
3378 at the end of the .debug_info section. Gold puts it there when
3379 performing an incremental link, for example. So do not generate
3380 an error, just return a NULL. */
3381 if (version)
3382 {
3383 _bfd_error_handler
3384 (_("Dwarf Error: found dwarf version '%u', this reader"
3385 " only handles version 2, 3, 4 and 5 information."), version);
3386 bfd_set_error (bfd_error_bad_value);
3387 }
3388 return NULL;
3389 }
3390
3391 if (version < 5)
3392 unit_type = DW_UT_compile;
3393 else
3394 {
3395 unit_type = read_1_byte (abfd, info_ptr, end_ptr);
3396 info_ptr += 1;
3397
3398 addr_size = read_1_byte (abfd, info_ptr, end_ptr);
3399 info_ptr += 1;
3400 }
3401
3402 BFD_ASSERT (offset_size == 4 || offset_size == 8);
3403 if (offset_size == 4)
3404 abbrev_offset = read_4_bytes (abfd, info_ptr, end_ptr);
3405 else
3406 abbrev_offset = read_8_bytes (abfd, info_ptr, end_ptr);
3407 info_ptr += offset_size;
3408
3409 if (version < 5)
3410 {
3411 addr_size = read_1_byte (abfd, info_ptr, end_ptr);
3412 info_ptr += 1;
3413 }
3414
3415 if (unit_type == DW_UT_type)
3416 {
3417 /* Skip type signature. */
3418 info_ptr += 8;
3419
3420 /* Skip type offset. */
3421 info_ptr += offset_size;
3422 }
3423
3424 if (addr_size > sizeof (bfd_vma))
3425 {
3426 _bfd_error_handler
3427 /* xgettext: c-format */
3428 (_("Dwarf Error: found address size '%u', this reader"
3429 " can not handle sizes greater than '%u'."),
3430 addr_size,
3431 (unsigned int) sizeof (bfd_vma));
3432 bfd_set_error (bfd_error_bad_value);
3433 return NULL;
3434 }
3435
3436 if (addr_size != 2 && addr_size != 4 && addr_size != 8)
3437 {
3438 _bfd_error_handler
3439 ("Dwarf Error: found address size '%u', this reader"
3440 " can only handle address sizes '2', '4' and '8'.", addr_size);
3441 bfd_set_error (bfd_error_bad_value);
3442 return NULL;
3443 }
3444
3445 /* Read the abbrevs for this compilation unit into a table. */
3446 abbrevs = read_abbrevs (abfd, abbrev_offset, stash);
3447 if (! abbrevs)
3448 return NULL;
3449
3450 abbrev_number = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
3451 FALSE, end_ptr);
3452 info_ptr += bytes_read;
3453 if (! abbrev_number)
3454 {
3455 /* PR 19872: An abbrev number of 0 probably means that there is padding
3456 at the end of the .debug_abbrev section. Gold puts it there when
3457 performing an incremental link, for example. So do not generate
3458 an error, just return a NULL. */
3459 return NULL;
3460 }
3461
3462 abbrev = lookup_abbrev (abbrev_number, abbrevs);
3463 if (! abbrev)
3464 {
3465 _bfd_error_handler (_("Dwarf Error: Could not find abbrev number %u."),
3466 abbrev_number);
3467 bfd_set_error (bfd_error_bad_value);
3468 return NULL;
3469 }
3470
3471 amt = sizeof (struct comp_unit);
3472 unit = (struct comp_unit *) bfd_zalloc (abfd, amt);
3473 if (unit == NULL)
3474 return NULL;
3475 unit->abfd = abfd;
3476 unit->version = version;
3477 unit->addr_size = addr_size;
3478 unit->offset_size = offset_size;
3479 unit->abbrevs = abbrevs;
3480 unit->end_ptr = end_ptr;
3481 unit->stash = stash;
3482 unit->info_ptr_unit = info_ptr_unit;
3483
3484 for (i = 0; i < abbrev->num_attrs; ++i)
3485 {
3486 info_ptr = read_attribute (&attr, &abbrev->attrs[i], unit, info_ptr, end_ptr);
3487 if (info_ptr == NULL)
3488 return NULL;
3489
3490 /* Store the data if it is of an attribute we want to keep in a
3491 partial symbol table. */
3492 switch (attr.name)
3493 {
3494 case DW_AT_stmt_list:
3495 unit->stmtlist = 1;
3496 unit->line_offset = attr.u.val;
3497 break;
3498
3499 case DW_AT_name:
3500 if (is_str_attr (attr.form))
3501 unit->name = attr.u.str;
3502 break;
3503
3504 case DW_AT_low_pc:
3505 low_pc = attr.u.val;
3506 /* If the compilation unit DIE has a DW_AT_low_pc attribute,
3507 this is the base address to use when reading location
3508 lists or range lists. */
3509 if (abbrev->tag == DW_TAG_compile_unit)
3510 unit->base_address = low_pc;
3511 break;
3512
3513 case DW_AT_high_pc:
3514 high_pc = attr.u.val;
3515 high_pc_relative = attr.form != DW_FORM_addr;
3516 break;
3517
3518 case DW_AT_ranges:
3519 if (!read_rangelist (unit, &unit->arange, attr.u.val))
3520 return NULL;
3521 break;
3522
3523 case DW_AT_comp_dir:
3524 {
3525 char *comp_dir = attr.u.str;
3526
3527 /* PR 17512: file: 1fe726be. */
3528 if (! is_str_attr (attr.form))
3529 {
3530 _bfd_error_handler
3531 (_("Dwarf Error: DW_AT_comp_dir attribute encountered with a non-string form."));
3532 comp_dir = NULL;
3533 }
3534
3535 if (comp_dir)
3536 {
3537 /* Irix 6.2 native cc prepends <machine>.: to the compilation
3538 directory, get rid of it. */
3539 char *cp = strchr (comp_dir, ':');
3540
3541 if (cp && cp != comp_dir && cp[-1] == '.' && cp[1] == '/')
3542 comp_dir = cp + 1;
3543 }
3544 unit->comp_dir = comp_dir;
3545 break;
3546 }
3547
3548 case DW_AT_language:
3549 unit->lang = attr.u.val;
3550 break;
3551
3552 default:
3553 break;
3554 }
3555 }
3556 if (high_pc_relative)
3557 high_pc += low_pc;
3558 if (high_pc != 0)
3559 {
3560 if (!arange_add (unit, &unit->arange, low_pc, high_pc))
3561 return NULL;
3562 }
3563
3564 unit->first_child_die_ptr = info_ptr;
3565 return unit;
3566 }
3567
3568 /* Return TRUE if UNIT may contain the address given by ADDR. When
3569 there are functions written entirely with inline asm statements, the
3570 range info in the compilation unit header may not be correct. We
3571 need to consult the line info table to see if a compilation unit
3572 really contains the given address. */
3573
3574 static bfd_boolean
3575 comp_unit_contains_address (struct comp_unit *unit, bfd_vma addr)
3576 {
3577 struct arange *arange;
3578
3579 if (unit->error)
3580 return FALSE;
3581
3582 arange = &unit->arange;
3583 do
3584 {
3585 if (addr >= arange->low && addr < arange->high)
3586 return TRUE;
3587 arange = arange->next;
3588 }
3589 while (arange);
3590
3591 return FALSE;
3592 }
3593
3594 /* If UNIT contains ADDR, set the output parameters to the values for
3595 the line containing ADDR. The output parameters, FILENAME_PTR,
3596 FUNCTION_PTR, and LINENUMBER_PTR, are pointers to the objects
3597 to be filled in.
3598
3599 Returns the range of addresses covered by the entry that was used
3600 to fill in *LINENUMBER_PTR or 0 if it was not filled in. */
3601
3602 static bfd_vma
3603 comp_unit_find_nearest_line (struct comp_unit *unit,
3604 bfd_vma addr,
3605 const char **filename_ptr,
3606 struct funcinfo **function_ptr,
3607 unsigned int *linenumber_ptr,
3608 unsigned int *discriminator_ptr,
3609 struct dwarf2_debug *stash)
3610 {
3611 bfd_boolean func_p;
3612
3613 if (unit->error)
3614 return FALSE;
3615
3616 if (! unit->line_table)
3617 {
3618 if (! unit->stmtlist)
3619 {
3620 unit->error = 1;
3621 return FALSE;
3622 }
3623
3624 unit->line_table = decode_line_info (unit, stash);
3625
3626 if (! unit->line_table)
3627 {
3628 unit->error = 1;
3629 return FALSE;
3630 }
3631
3632 if (unit->first_child_die_ptr < unit->end_ptr
3633 && ! scan_unit_for_symbols (unit))
3634 {
3635 unit->error = 1;
3636 return FALSE;
3637 }
3638 }
3639
3640 *function_ptr = NULL;
3641 func_p = lookup_address_in_function_table (unit, addr, function_ptr);
3642 if (func_p && (*function_ptr)->tag == DW_TAG_inlined_subroutine)
3643 stash->inliner_chain = *function_ptr;
3644
3645 return lookup_address_in_line_info_table (unit->line_table, addr,
3646 filename_ptr,
3647 linenumber_ptr,
3648 discriminator_ptr);
3649 }
3650
3651 /* Check to see if line info is already decoded in a comp_unit.
3652 If not, decode it. Returns TRUE if no errors were encountered;
3653 FALSE otherwise. */
3654
3655 static bfd_boolean
3656 comp_unit_maybe_decode_line_info (struct comp_unit *unit,
3657 struct dwarf2_debug *stash)
3658 {
3659 if (unit->error)
3660 return FALSE;
3661
3662 if (! unit->line_table)
3663 {
3664 if (! unit->stmtlist)
3665 {
3666 unit->error = 1;
3667 return FALSE;
3668 }
3669
3670 unit->line_table = decode_line_info (unit, stash);
3671
3672 if (! unit->line_table)
3673 {
3674 unit->error = 1;
3675 return FALSE;
3676 }
3677
3678 if (unit->first_child_die_ptr < unit->end_ptr
3679 && ! scan_unit_for_symbols (unit))
3680 {
3681 unit->error = 1;
3682 return FALSE;
3683 }
3684 }
3685
3686 return TRUE;
3687 }
3688
3689 /* If UNIT contains SYM at ADDR, set the output parameters to the
3690 values for the line containing SYM. The output parameters,
3691 FILENAME_PTR, and LINENUMBER_PTR, are pointers to the objects to be
3692 filled in.
3693
3694 Return TRUE if UNIT contains SYM, and no errors were encountered;
3695 FALSE otherwise. */
3696
3697 static bfd_boolean
3698 comp_unit_find_line (struct comp_unit *unit,
3699 asymbol *sym,
3700 bfd_vma addr,
3701 const char **filename_ptr,
3702 unsigned int *linenumber_ptr,
3703 struct dwarf2_debug *stash)
3704 {
3705 if (!comp_unit_maybe_decode_line_info (unit, stash))
3706 return FALSE;
3707
3708 if (sym->flags & BSF_FUNCTION)
3709 return lookup_symbol_in_function_table (unit, sym, addr,
3710 filename_ptr,
3711 linenumber_ptr);
3712
3713 return lookup_symbol_in_variable_table (unit, sym, addr,
3714 filename_ptr,
3715 linenumber_ptr);
3716 }
3717
3718 static struct funcinfo *
3719 reverse_funcinfo_list (struct funcinfo *head)
3720 {
3721 struct funcinfo *rhead;
3722 struct funcinfo *temp;
3723
3724 for (rhead = NULL; head; head = temp)
3725 {
3726 temp = head->prev_func;
3727 head->prev_func = rhead;
3728 rhead = head;
3729 }
3730 return rhead;
3731 }
3732
3733 static struct varinfo *
3734 reverse_varinfo_list (struct varinfo *head)
3735 {
3736 struct varinfo *rhead;
3737 struct varinfo *temp;
3738
3739 for (rhead = NULL; head; head = temp)
3740 {
3741 temp = head->prev_var;
3742 head->prev_var = rhead;
3743 rhead = head;
3744 }
3745 return rhead;
3746 }
3747
3748 /* Extract all interesting funcinfos and varinfos of a compilation
3749 unit into hash tables for faster lookup. Returns TRUE if no
3750 errors were enountered; FALSE otherwise. */
3751
3752 static bfd_boolean
3753 comp_unit_hash_info (struct dwarf2_debug *stash,
3754 struct comp_unit *unit,
3755 struct info_hash_table *funcinfo_hash_table,
3756 struct info_hash_table *varinfo_hash_table)
3757 {
3758 struct funcinfo* each_func;
3759 struct varinfo* each_var;
3760 bfd_boolean okay = TRUE;
3761
3762 BFD_ASSERT (stash->info_hash_status != STASH_INFO_HASH_DISABLED);
3763
3764 if (!comp_unit_maybe_decode_line_info (unit, stash))
3765 return FALSE;
3766
3767 BFD_ASSERT (!unit->cached);
3768
3769 /* To preserve the original search order, we went to visit the function
3770 infos in the reversed order of the list. However, making the list
3771 bi-directional use quite a bit of extra memory. So we reverse
3772 the list first, traverse the list in the now reversed order and
3773 finally reverse the list again to get back the original order. */
3774 unit->function_table = reverse_funcinfo_list (unit->function_table);
3775 for (each_func = unit->function_table;
3776 each_func && okay;
3777 each_func = each_func->prev_func)
3778 {
3779 /* Skip nameless functions. */
3780 if (each_func->name)
3781 /* There is no need to copy name string into hash table as
3782 name string is either in the dwarf string buffer or
3783 info in the stash. */
3784 okay = insert_info_hash_table (funcinfo_hash_table, each_func->name,
3785 (void*) each_func, FALSE);
3786 }
3787 unit->function_table = reverse_funcinfo_list (unit->function_table);
3788 if (!okay)
3789 return FALSE;
3790
3791 /* We do the same for variable infos. */
3792 unit->variable_table = reverse_varinfo_list (unit->variable_table);
3793 for (each_var = unit->variable_table;
3794 each_var && okay;
3795 each_var = each_var->prev_var)
3796 {
3797 /* Skip stack vars and vars with no files or names. */
3798 if (each_var->stack == 0
3799 && each_var->file != NULL
3800 && each_var->name != NULL)
3801 /* There is no need to copy name string into hash table as
3802 name string is either in the dwarf string buffer or
3803 info in the stash. */
3804 okay = insert_info_hash_table (varinfo_hash_table, each_var->name,
3805 (void*) each_var, FALSE);
3806 }
3807
3808 unit->variable_table = reverse_varinfo_list (unit->variable_table);
3809 unit->cached = TRUE;
3810 return okay;
3811 }
3812
3813 /* Locate a section in a BFD containing debugging info. The search starts
3814 from the section after AFTER_SEC, or from the first section in the BFD if
3815 AFTER_SEC is NULL. The search works by examining the names of the
3816 sections. There are three permissiable names. The first two are given
3817 by DEBUG_SECTIONS[debug_info] (whose standard DWARF2 names are .debug_info
3818 and .zdebug_info). The third is a prefix .gnu.linkonce.wi.
3819 This is a variation on the .debug_info section which has a checksum
3820 describing the contents appended onto the name. This allows the linker to
3821 identify and discard duplicate debugging sections for different
3822 compilation units. */
3823 #define GNU_LINKONCE_INFO ".gnu.linkonce.wi."
3824
3825 static asection *
3826 find_debug_info (bfd *abfd, const struct dwarf_debug_section *debug_sections,
3827 asection *after_sec)
3828 {
3829 asection *msec;
3830 const char *look;
3831
3832 if (after_sec == NULL)
3833 {
3834 look = debug_sections[debug_info].uncompressed_name;
3835 msec = bfd_get_section_by_name (abfd, look);
3836 if (msec != NULL)
3837 return msec;
3838
3839 look = debug_sections[debug_info].compressed_name;
3840 if (look != NULL)
3841 {
3842 msec = bfd_get_section_by_name (abfd, look);
3843 if (msec != NULL)
3844 return msec;
3845 }
3846
3847 for (msec = abfd->sections; msec != NULL; msec = msec->next)
3848 if (CONST_STRNEQ (msec->name, GNU_LINKONCE_INFO))
3849 return msec;
3850
3851 return NULL;
3852 }
3853
3854 for (msec = after_sec->next; msec != NULL; msec = msec->next)
3855 {
3856 look = debug_sections[debug_info].uncompressed_name;
3857 if (strcmp (msec->name, look) == 0)
3858 return msec;
3859
3860 look = debug_sections[debug_info].compressed_name;
3861 if (look != NULL && strcmp (msec->name, look) == 0)
3862 return msec;
3863
3864 if (CONST_STRNEQ (msec->name, GNU_LINKONCE_INFO))
3865 return msec;
3866 }
3867
3868 return NULL;
3869 }
3870
3871 /* Transfer VMAs from object file to separate debug file. */
3872
3873 static void
3874 set_debug_vma (bfd *orig_bfd, bfd *debug_bfd)
3875 {
3876 asection *s, *d;
3877
3878 for (s = orig_bfd->sections, d = debug_bfd->sections;
3879 s != NULL && d != NULL;
3880 s = s->next, d = d->next)
3881 {
3882 if ((d->flags & SEC_DEBUGGING) != 0)
3883 break;
3884 /* ??? Assumes 1-1 correspondence between sections in the
3885 two files. */
3886 if (strcmp (s->name, d->name) == 0)
3887 {
3888 d->output_section = s->output_section;
3889 d->output_offset = s->output_offset;
3890 d->vma = s->vma;
3891 }
3892 }
3893 }
3894
3895 /* Unset vmas for adjusted sections in STASH. */
3896
3897 static void
3898 unset_sections (struct dwarf2_debug *stash)
3899 {
3900 int i;
3901 struct adjusted_section *p;
3902
3903 i = stash->adjusted_section_count;
3904 p = stash->adjusted_sections;
3905 for (; i > 0; i--, p++)
3906 p->section->vma = 0;
3907 }
3908
3909 /* Set VMAs for allocated and .debug_info sections in ORIG_BFD, a
3910 relocatable object file. VMAs are normally all zero in relocatable
3911 object files, so if we want to distinguish locations in sections by
3912 address we need to set VMAs so the sections do not overlap. We
3913 also set VMA on .debug_info so that when we have multiple
3914 .debug_info sections (or the linkonce variant) they also do not
3915 overlap. The multiple .debug_info sections make up a single
3916 logical section. ??? We should probably do the same for other
3917 debug sections. */
3918
3919 static bfd_boolean
3920 place_sections (bfd *orig_bfd, struct dwarf2_debug *stash)
3921 {
3922 bfd *abfd;
3923 struct adjusted_section *p;
3924 int i;
3925 const char *debug_info_name;
3926
3927 if (stash->adjusted_section_count != 0)
3928 {
3929 i = stash->adjusted_section_count;
3930 p = stash->adjusted_sections;
3931 for (; i > 0; i--, p++)
3932 p->section->vma = p->adj_vma;
3933 return TRUE;
3934 }
3935
3936 debug_info_name = stash->debug_sections[debug_info].uncompressed_name;
3937 i = 0;
3938 abfd = orig_bfd;
3939 while (1)
3940 {
3941 asection *sect;
3942
3943 for (sect = abfd->sections; sect != NULL; sect = sect->next)
3944 {
3945 int is_debug_info;
3946
3947 if ((sect->output_section != NULL
3948 && sect->output_section != sect
3949 && (sect->flags & SEC_DEBUGGING) == 0)
3950 || sect->vma != 0)
3951 continue;
3952
3953 is_debug_info = (strcmp (sect->name, debug_info_name) == 0
3954 || CONST_STRNEQ (sect->name, GNU_LINKONCE_INFO));
3955
3956 if (!((sect->flags & SEC_ALLOC) != 0 && abfd == orig_bfd)
3957 && !is_debug_info)
3958 continue;
3959
3960 i++;
3961 }
3962 if (abfd == stash->bfd_ptr)
3963 break;
3964 abfd = stash->bfd_ptr;
3965 }
3966
3967 if (i <= 1)
3968 stash->adjusted_section_count = -1;
3969 else
3970 {
3971 bfd_vma last_vma = 0, last_dwarf = 0;
3972 bfd_size_type amt = i * sizeof (struct adjusted_section);
3973
3974 p = (struct adjusted_section *) bfd_malloc (amt);
3975 if (p == NULL)
3976 return FALSE;
3977
3978 stash->adjusted_sections = p;
3979 stash->adjusted_section_count = i;
3980
3981 abfd = orig_bfd;
3982 while (1)
3983 {
3984 asection *sect;
3985
3986 for (sect = abfd->sections; sect != NULL; sect = sect->next)
3987 {
3988 bfd_size_type sz;
3989 int is_debug_info;
3990
3991 if ((sect->output_section != NULL
3992 && sect->output_section != sect
3993 && (sect->flags & SEC_DEBUGGING) == 0)
3994 || sect->vma != 0)
3995 continue;
3996
3997 is_debug_info = (strcmp (sect->name, debug_info_name) == 0
3998 || CONST_STRNEQ (sect->name, GNU_LINKONCE_INFO));
3999
4000 if (!((sect->flags & SEC_ALLOC) != 0 && abfd == orig_bfd)
4001 && !is_debug_info)
4002 continue;
4003
4004 sz = sect->rawsize ? sect->rawsize : sect->size;
4005
4006 if (is_debug_info)
4007 {
4008 BFD_ASSERT (sect->alignment_power == 0);
4009 sect->vma = last_dwarf;
4010 last_dwarf += sz;
4011 }
4012 else
4013 {
4014 /* Align the new address to the current section
4015 alignment. */
4016 last_vma = ((last_vma
4017 + ~(-((bfd_vma) 1 << sect->alignment_power)))
4018 & (-((bfd_vma) 1 << sect->alignment_power)));
4019 sect->vma = last_vma;
4020 last_vma += sz;
4021 }
4022
4023 p->section = sect;
4024 p->adj_vma = sect->vma;
4025 p++;
4026 }
4027 if (abfd == stash->bfd_ptr)
4028 break;
4029 abfd = stash->bfd_ptr;
4030 }
4031 }
4032
4033 if (orig_bfd != stash->bfd_ptr)
4034 set_debug_vma (orig_bfd, stash->bfd_ptr);
4035
4036 return TRUE;
4037 }
4038
4039 /* Look up a funcinfo by name using the given info hash table. If found,
4040 also update the locations pointed to by filename_ptr and linenumber_ptr.
4041
4042 This function returns TRUE if a funcinfo that matches the given symbol
4043 and address is found with any error; otherwise it returns FALSE. */
4044
4045 static bfd_boolean
4046 info_hash_lookup_funcinfo (struct info_hash_table *hash_table,
4047 asymbol *sym,
4048 bfd_vma addr,
4049 const char **filename_ptr,
4050 unsigned int *linenumber_ptr)
4051 {
4052 struct funcinfo* each_func;
4053 struct funcinfo* best_fit = NULL;
4054 bfd_vma best_fit_len = 0;
4055 struct info_list_node *node;
4056 struct arange *arange;
4057 const char *name = bfd_asymbol_name (sym);
4058 asection *sec = bfd_get_section (sym);
4059
4060 for (node = lookup_info_hash_table (hash_table, name);
4061 node;
4062 node = node->next)
4063 {
4064 each_func = (struct funcinfo *) node->info;
4065 for (arange = &each_func->arange;
4066 arange;
4067 arange = arange->next)
4068 {
4069 if ((!each_func->sec || each_func->sec == sec)
4070 && addr >= arange->low
4071 && addr < arange->high
4072 && (!best_fit
4073 || arange->high - arange->low < best_fit_len))
4074 {
4075 best_fit = each_func;
4076 best_fit_len = arange->high - arange->low;
4077 }
4078 }
4079 }
4080
4081 if (best_fit)
4082 {
4083 best_fit->sec = sec;
4084 *filename_ptr = best_fit->file;
4085 *linenumber_ptr = best_fit->line;
4086 return TRUE;
4087 }
4088
4089 return FALSE;
4090 }
4091
4092 /* Look up a varinfo by name using the given info hash table. If found,
4093 also update the locations pointed to by filename_ptr and linenumber_ptr.
4094
4095 This function returns TRUE if a varinfo that matches the given symbol
4096 and address is found with any error; otherwise it returns FALSE. */
4097
4098 static bfd_boolean
4099 info_hash_lookup_varinfo (struct info_hash_table *hash_table,
4100 asymbol *sym,
4101 bfd_vma addr,
4102 const char **filename_ptr,
4103 unsigned int *linenumber_ptr)
4104 {
4105 const char *name = bfd_asymbol_name (sym);
4106 asection *sec = bfd_get_section (sym);
4107 struct varinfo* each;
4108 struct info_list_node *node;
4109
4110 for (node = lookup_info_hash_table (hash_table, name);
4111 node;
4112 node = node->next)
4113 {
4114 each = (struct varinfo *) node->info;
4115 if (each->addr == addr
4116 && (!each->sec || each->sec == sec))
4117 {
4118 each->sec = sec;
4119 *filename_ptr = each->file;
4120 *linenumber_ptr = each->line;
4121 return TRUE;
4122 }
4123 }
4124
4125 return FALSE;
4126 }
4127
4128 /* Update the funcinfo and varinfo info hash tables if they are
4129 not up to date. Returns TRUE if there is no error; otherwise
4130 returns FALSE and disable the info hash tables. */
4131
4132 static bfd_boolean
4133 stash_maybe_update_info_hash_tables (struct dwarf2_debug *stash)
4134 {
4135 struct comp_unit *each;
4136
4137 /* Exit if hash tables are up-to-date. */
4138 if (stash->all_comp_units == stash->hash_units_head)
4139 return TRUE;
4140
4141 if (stash->hash_units_head)
4142 each = stash->hash_units_head->prev_unit;
4143 else
4144 each = stash->last_comp_unit;
4145
4146 while (each)
4147 {
4148 if (!comp_unit_hash_info (stash, each, stash->funcinfo_hash_table,
4149 stash->varinfo_hash_table))
4150 {
4151 stash->info_hash_status = STASH_INFO_HASH_DISABLED;
4152 return FALSE;
4153 }
4154 each = each->prev_unit;
4155 }
4156
4157 stash->hash_units_head = stash->all_comp_units;
4158 return TRUE;
4159 }
4160
4161 /* Check consistency of info hash tables. This is for debugging only. */
4162
4163 static void ATTRIBUTE_UNUSED
4164 stash_verify_info_hash_table (struct dwarf2_debug *stash)
4165 {
4166 struct comp_unit *each_unit;
4167 struct funcinfo *each_func;
4168 struct varinfo *each_var;
4169 struct info_list_node *node;
4170 bfd_boolean found;
4171
4172 for (each_unit = stash->all_comp_units;
4173 each_unit;
4174 each_unit = each_unit->next_unit)
4175 {
4176 for (each_func = each_unit->function_table;
4177 each_func;
4178 each_func = each_func->prev_func)
4179 {
4180 if (!each_func->name)
4181 continue;
4182 node = lookup_info_hash_table (stash->funcinfo_hash_table,
4183 each_func->name);
4184 BFD_ASSERT (node);
4185 found = FALSE;
4186 while (node && !found)
4187 {
4188 found = node->info == each_func;
4189 node = node->next;
4190 }
4191 BFD_ASSERT (found);
4192 }
4193
4194 for (each_var = each_unit->variable_table;
4195 each_var;
4196 each_var = each_var->prev_var)
4197 {
4198 if (!each_var->name || !each_var->file || each_var->stack)
4199 continue;
4200 node = lookup_info_hash_table (stash->varinfo_hash_table,
4201 each_var->name);
4202 BFD_ASSERT (node);
4203 found = FALSE;
4204 while (node && !found)
4205 {
4206 found = node->info == each_var;
4207 node = node->next;
4208 }
4209 BFD_ASSERT (found);
4210 }
4211 }
4212 }
4213
4214 /* Check to see if we want to enable the info hash tables, which consume
4215 quite a bit of memory. Currently we only check the number times
4216 bfd_dwarf2_find_line is called. In the future, we may also want to
4217 take the number of symbols into account. */
4218
4219 static void
4220 stash_maybe_enable_info_hash_tables (bfd *abfd, struct dwarf2_debug *stash)
4221 {
4222 BFD_ASSERT (stash->info_hash_status == STASH_INFO_HASH_OFF);
4223
4224 if (stash->info_hash_count++ < STASH_INFO_HASH_TRIGGER)
4225 return;
4226
4227 /* FIXME: Maybe we should check the reduce_memory_overheads
4228 and optimize fields in the bfd_link_info structure ? */
4229
4230 /* Create hash tables. */
4231 stash->funcinfo_hash_table = create_info_hash_table (abfd);
4232 stash->varinfo_hash_table = create_info_hash_table (abfd);
4233 if (!stash->funcinfo_hash_table || !stash->varinfo_hash_table)
4234 {
4235 /* Turn off info hashes if any allocation above fails. */
4236 stash->info_hash_status = STASH_INFO_HASH_DISABLED;
4237 return;
4238 }
4239 /* We need a forced update so that the info hash tables will
4240 be created even though there is no compilation unit. That
4241 happens if STASH_INFO_HASH_TRIGGER is 0. */
4242 stash_maybe_update_info_hash_tables (stash);
4243 stash->info_hash_status = STASH_INFO_HASH_ON;
4244 }
4245
4246 /* Find the file and line associated with a symbol and address using the
4247 info hash tables of a stash. If there is a match, the function returns
4248 TRUE and update the locations pointed to by filename_ptr and linenumber_ptr;
4249 otherwise it returns FALSE. */
4250
4251 static bfd_boolean
4252 stash_find_line_fast (struct dwarf2_debug *stash,
4253 asymbol *sym,
4254 bfd_vma addr,
4255 const char **filename_ptr,
4256 unsigned int *linenumber_ptr)
4257 {
4258 BFD_ASSERT (stash->info_hash_status == STASH_INFO_HASH_ON);
4259
4260 if (sym->flags & BSF_FUNCTION)
4261 return info_hash_lookup_funcinfo (stash->funcinfo_hash_table, sym, addr,
4262 filename_ptr, linenumber_ptr);
4263 return info_hash_lookup_varinfo (stash->varinfo_hash_table, sym, addr,
4264 filename_ptr, linenumber_ptr);
4265 }
4266
4267 /* Save current section VMAs. */
4268
4269 static bfd_boolean
4270 save_section_vma (const bfd *abfd, struct dwarf2_debug *stash)
4271 {
4272 asection *s;
4273 unsigned int i;
4274
4275 if (abfd->section_count == 0)
4276 return TRUE;
4277 stash->sec_vma = bfd_malloc (sizeof (*stash->sec_vma) * abfd->section_count);
4278 if (stash->sec_vma == NULL)
4279 return FALSE;
4280 for (i = 0, s = abfd->sections; i < abfd->section_count; i++, s = s->next)
4281 {
4282 if (s->output_section != NULL)
4283 stash->sec_vma[i] = s->output_section->vma + s->output_offset;
4284 else
4285 stash->sec_vma[i] = s->vma;
4286 }
4287 return TRUE;
4288 }
4289
4290 /* Compare current section VMAs against those at the time the stash
4291 was created. If find_nearest_line is used in linker warnings or
4292 errors early in the link process, the debug info stash will be
4293 invalid for later calls. This is because we relocate debug info
4294 sections, so the stashed section contents depend on symbol values,
4295 which in turn depend on section VMAs. */
4296
4297 static bfd_boolean
4298 section_vma_same (const bfd *abfd, const struct dwarf2_debug *stash)
4299 {
4300 asection *s;
4301 unsigned int i;
4302
4303 for (i = 0, s = abfd->sections; i < abfd->section_count; i++, s = s->next)
4304 {
4305 bfd_vma vma;
4306
4307 if (s->output_section != NULL)
4308 vma = s->output_section->vma + s->output_offset;
4309 else
4310 vma = s->vma;
4311 if (vma != stash->sec_vma[i])
4312 return FALSE;
4313 }
4314 return TRUE;
4315 }
4316
4317 /* Read debug information from DEBUG_BFD when DEBUG_BFD is specified.
4318 If DEBUG_BFD is not specified, we read debug information from ABFD
4319 or its gnu_debuglink. The results will be stored in PINFO.
4320 The function returns TRUE iff debug information is ready. */
4321
4322 bfd_boolean
4323 _bfd_dwarf2_slurp_debug_info (bfd *abfd, bfd *debug_bfd,
4324 const struct dwarf_debug_section *debug_sections,
4325 asymbol **symbols,
4326 void **pinfo,
4327 bfd_boolean do_place)
4328 {
4329 bfd_size_type amt = sizeof (struct dwarf2_debug);
4330 bfd_size_type total_size;
4331 asection *msec;
4332 struct dwarf2_debug *stash = (struct dwarf2_debug *) *pinfo;
4333
4334 if (stash != NULL)
4335 {
4336 if (stash->orig_bfd == abfd
4337 && section_vma_same (abfd, stash))
4338 {
4339 /* Check that we did previously find some debug information
4340 before attempting to make use of it. */
4341 if (stash->bfd_ptr != NULL)
4342 {
4343 if (do_place && !place_sections (abfd, stash))
4344 return FALSE;
4345 return TRUE;
4346 }
4347
4348 return FALSE;
4349 }
4350 _bfd_dwarf2_cleanup_debug_info (abfd, pinfo);
4351 memset (stash, 0, amt);
4352 }
4353 else
4354 {
4355 stash = (struct dwarf2_debug *) bfd_zalloc (abfd, amt);
4356 if (! stash)
4357 return FALSE;
4358 }
4359 stash->orig_bfd = abfd;
4360 stash->debug_sections = debug_sections;
4361 stash->syms = symbols;
4362 if (!save_section_vma (abfd, stash))
4363 return FALSE;
4364
4365 *pinfo = stash;
4366
4367 if (debug_bfd == NULL)
4368 debug_bfd = abfd;
4369
4370 msec = find_debug_info (debug_bfd, debug_sections, NULL);
4371 if (msec == NULL && abfd == debug_bfd)
4372 {
4373 char * debug_filename;
4374
4375 debug_filename = bfd_follow_build_id_debuglink (abfd, DEBUGDIR);
4376 if (debug_filename == NULL)
4377 debug_filename = bfd_follow_gnu_debuglink (abfd, DEBUGDIR);
4378
4379 if (debug_filename == NULL)
4380 /* No dwarf2 info, and no gnu_debuglink to follow.
4381 Note that at this point the stash has been allocated, but
4382 contains zeros. This lets future calls to this function
4383 fail more quickly. */
4384 return FALSE;
4385
4386 /* Set BFD_DECOMPRESS to decompress debug sections. */
4387 if ((debug_bfd = bfd_openr (debug_filename, NULL)) == NULL
4388 || !(debug_bfd->flags |= BFD_DECOMPRESS,
4389 bfd_check_format (debug_bfd, bfd_object))
4390 || (msec = find_debug_info (debug_bfd,
4391 debug_sections, NULL)) == NULL
4392 || !bfd_generic_link_read_symbols (debug_bfd))
4393 {
4394 if (debug_bfd)
4395 bfd_close (debug_bfd);
4396 /* FIXME: Should we report our failure to follow the debuglink ? */
4397 free (debug_filename);
4398 return FALSE;
4399 }
4400
4401 symbols = bfd_get_outsymbols (debug_bfd);
4402 stash->syms = symbols;
4403 stash->close_on_cleanup = TRUE;
4404 }
4405 stash->bfd_ptr = debug_bfd;
4406
4407 if (do_place
4408 && !place_sections (abfd, stash))
4409 return FALSE;
4410
4411 /* There can be more than one DWARF2 info section in a BFD these
4412 days. First handle the easy case when there's only one. If
4413 there's more than one, try case two: none of the sections is
4414 compressed. In that case, read them all in and produce one
4415 large stash. We do this in two passes - in the first pass we
4416 just accumulate the section sizes, and in the second pass we
4417 read in the section's contents. (The allows us to avoid
4418 reallocing the data as we add sections to the stash.) If
4419 some or all sections are compressed, then do things the slow
4420 way, with a bunch of reallocs. */
4421
4422 if (! find_debug_info (debug_bfd, debug_sections, msec))
4423 {
4424 /* Case 1: only one info section. */
4425 total_size = msec->size;
4426 if (! read_section (debug_bfd, &stash->debug_sections[debug_info],
4427 symbols, 0,
4428 &stash->info_ptr_memory, &total_size))
4429 return FALSE;
4430 }
4431 else
4432 {
4433 /* Case 2: multiple sections. */
4434 for (total_size = 0;
4435 msec;
4436 msec = find_debug_info (debug_bfd, debug_sections, msec))
4437 total_size += msec->size;
4438
4439 stash->info_ptr_memory = (bfd_byte *) bfd_malloc (total_size);
4440 if (stash->info_ptr_memory == NULL)
4441 return FALSE;
4442
4443 total_size = 0;
4444 for (msec = find_debug_info (debug_bfd, debug_sections, NULL);
4445 msec;
4446 msec = find_debug_info (debug_bfd, debug_sections, msec))
4447 {
4448 bfd_size_type size;
4449
4450 size = msec->size;
4451 if (size == 0)
4452 continue;
4453
4454 if (!(bfd_simple_get_relocated_section_contents
4455 (debug_bfd, msec, stash->info_ptr_memory + total_size,
4456 symbols)))
4457 return FALSE;
4458
4459 total_size += size;
4460 }
4461 }
4462
4463 stash->info_ptr = stash->info_ptr_memory;
4464 stash->info_ptr_end = stash->info_ptr + total_size;
4465 stash->sec = find_debug_info (debug_bfd, debug_sections, NULL);
4466 stash->sec_info_ptr = stash->info_ptr;
4467 return TRUE;
4468 }
4469
4470 /* Scan the debug information in PINFO looking for a DW_TAG_subprogram
4471 abbrev with a DW_AT_low_pc attached to it. Then lookup that same
4472 symbol in SYMBOLS and return the difference between the low_pc and
4473 the symbol's address. Returns 0 if no suitable symbol could be found. */
4474
4475 bfd_signed_vma
4476 _bfd_dwarf2_find_symbol_bias (asymbol ** symbols, void ** pinfo)
4477 {
4478 struct dwarf2_debug *stash;
4479 struct comp_unit * unit;
4480
4481 stash = (struct dwarf2_debug *) *pinfo;
4482
4483 if (stash == NULL)
4484 return 0;
4485
4486 for (unit = stash->all_comp_units; unit; unit = unit->next_unit)
4487 {
4488 struct funcinfo * func;
4489
4490 if (unit->function_table == NULL)
4491 {
4492 if (unit->line_table == NULL)
4493 unit->line_table = decode_line_info (unit, stash);
4494 if (unit->line_table != NULL)
4495 scan_unit_for_symbols (unit);
4496 }
4497
4498 for (func = unit->function_table; func != NULL; func = func->prev_func)
4499 if (func->name && func->arange.low)
4500 {
4501 asymbol ** psym;
4502
4503 /* FIXME: Do we need to scan the aranges looking for the lowest pc value ? */
4504
4505 for (psym = symbols; * psym != NULL; psym++)
4506 {
4507 asymbol * sym = * psym;
4508
4509 if (sym->flags & BSF_FUNCTION
4510 && sym->section != NULL
4511 && strcmp (sym->name, func->name) == 0)
4512 return ((bfd_signed_vma) func->arange.low) -
4513 ((bfd_signed_vma) (sym->value + sym->section->vma));
4514 }
4515 }
4516 }
4517
4518 return 0;
4519 }
4520
4521 /* Find the source code location of SYMBOL. If SYMBOL is NULL
4522 then find the nearest source code location corresponding to
4523 the address SECTION + OFFSET.
4524 Returns TRUE if the line is found without error and fills in
4525 FILENAME_PTR and LINENUMBER_PTR. In the case where SYMBOL was
4526 NULL the FUNCTIONNAME_PTR is also filled in.
4527 SYMBOLS contains the symbol table for ABFD.
4528 DEBUG_SECTIONS contains the name of the dwarf debug sections.
4529 ADDR_SIZE is the number of bytes in the initial .debug_info length
4530 field and in the abbreviation offset, or zero to indicate that the
4531 default value should be used. */
4532
4533 bfd_boolean
4534 _bfd_dwarf2_find_nearest_line (bfd *abfd,
4535 asymbol **symbols,
4536 asymbol *symbol,
4537 asection *section,
4538 bfd_vma offset,
4539 const char **filename_ptr,
4540 const char **functionname_ptr,
4541 unsigned int *linenumber_ptr,
4542 unsigned int *discriminator_ptr,
4543 const struct dwarf_debug_section *debug_sections,
4544 unsigned int addr_size,
4545 void **pinfo)
4546 {
4547 /* Read each compilation unit from the section .debug_info, and check
4548 to see if it contains the address we are searching for. If yes,
4549 lookup the address, and return the line number info. If no, go
4550 on to the next compilation unit.
4551
4552 We keep a list of all the previously read compilation units, and
4553 a pointer to the next un-read compilation unit. Check the
4554 previously read units before reading more. */
4555 struct dwarf2_debug *stash;
4556 /* What address are we looking for? */
4557 bfd_vma addr;
4558 struct comp_unit* each;
4559 struct funcinfo *function = NULL;
4560 bfd_boolean found = FALSE;
4561 bfd_boolean do_line;
4562
4563 *filename_ptr = NULL;
4564 if (functionname_ptr != NULL)
4565 *functionname_ptr = NULL;
4566 *linenumber_ptr = 0;
4567 if (discriminator_ptr)
4568 *discriminator_ptr = 0;
4569
4570 if (! _bfd_dwarf2_slurp_debug_info (abfd, NULL, debug_sections,
4571 symbols, pinfo,
4572 (abfd->flags & (EXEC_P | DYNAMIC)) == 0))
4573 return FALSE;
4574
4575 stash = (struct dwarf2_debug *) *pinfo;
4576
4577 do_line = symbol != NULL;
4578 if (do_line)
4579 {
4580 BFD_ASSERT (section == NULL && offset == 0 && functionname_ptr == NULL);
4581 section = bfd_get_section (symbol);
4582 addr = symbol->value;
4583 }
4584 else
4585 {
4586 BFD_ASSERT (section != NULL && functionname_ptr != NULL);
4587 addr = offset;
4588
4589 /* If we have no SYMBOL but the section we're looking at is not a
4590 code section, then take a look through the list of symbols to see
4591 if we have a symbol at the address we're looking for. If we do
4592 then use this to look up line information. This will allow us to
4593 give file and line results for data symbols. We exclude code
4594 symbols here, if we look up a function symbol and then look up the
4595 line information we'll actually return the line number for the
4596 opening '{' rather than the function definition line. This is
4597 because looking up by symbol uses the line table, in which the
4598 first line for a function is usually the opening '{', while
4599 looking up the function by section + offset uses the
4600 DW_AT_decl_line from the function DW_TAG_subprogram for the line,
4601 which will be the line of the function name. */
4602 if (symbols != NULL && (section->flags & SEC_CODE) == 0)
4603 {
4604 asymbol **tmp;
4605
4606 for (tmp = symbols; (*tmp) != NULL; ++tmp)
4607 if ((*tmp)->the_bfd == abfd
4608 && (*tmp)->section == section
4609 && (*tmp)->value == offset
4610 && ((*tmp)->flags & BSF_SECTION_SYM) == 0)
4611 {
4612 symbol = *tmp;
4613 do_line = TRUE;
4614 /* For local symbols, keep going in the hope we find a
4615 global. */
4616 if ((symbol->flags & BSF_GLOBAL) != 0)
4617 break;
4618 }
4619 }
4620 }
4621
4622 if (section->output_section)
4623 addr += section->output_section->vma + section->output_offset;
4624 else
4625 addr += section->vma;
4626
4627 /* A null info_ptr indicates that there is no dwarf2 info
4628 (or that an error occured while setting up the stash). */
4629 if (! stash->info_ptr)
4630 return FALSE;
4631
4632 stash->inliner_chain = NULL;
4633
4634 /* Check the previously read comp. units first. */
4635 if (do_line)
4636 {
4637 /* The info hash tables use quite a bit of memory. We may not want to
4638 always use them. We use some heuristics to decide if and when to
4639 turn it on. */
4640 if (stash->info_hash_status == STASH_INFO_HASH_OFF)
4641 stash_maybe_enable_info_hash_tables (abfd, stash);
4642
4643 /* Keep info hash table up to date if they are available. Note that we
4644 may disable the hash tables if there is any error duing update. */
4645 if (stash->info_hash_status == STASH_INFO_HASH_ON)
4646 stash_maybe_update_info_hash_tables (stash);
4647
4648 if (stash->info_hash_status == STASH_INFO_HASH_ON)
4649 {
4650 found = stash_find_line_fast (stash, symbol, addr, filename_ptr,
4651 linenumber_ptr);
4652 if (found)
4653 goto done;
4654 }
4655 else
4656 {
4657 /* Check the previously read comp. units first. */
4658 for (each = stash->all_comp_units; each; each = each->next_unit)
4659 if ((symbol->flags & BSF_FUNCTION) == 0
4660 || each->arange.high == 0
4661 || comp_unit_contains_address (each, addr))
4662 {
4663 found = comp_unit_find_line (each, symbol, addr, filename_ptr,
4664 linenumber_ptr, stash);
4665 if (found)
4666 goto done;
4667 }
4668 }
4669 }
4670 else
4671 {
4672 bfd_vma min_range = (bfd_vma) -1;
4673 const char * local_filename = NULL;
4674 struct funcinfo *local_function = NULL;
4675 unsigned int local_linenumber = 0;
4676 unsigned int local_discriminator = 0;
4677
4678 for (each = stash->all_comp_units; each; each = each->next_unit)
4679 {
4680 bfd_vma range = (bfd_vma) -1;
4681
4682 found = ((each->arange.high == 0
4683 || comp_unit_contains_address (each, addr))
4684 && (range = comp_unit_find_nearest_line (each, addr,
4685 & local_filename,
4686 & local_function,
4687 & local_linenumber,
4688 & local_discriminator,
4689 stash)) != 0);
4690 if (found)
4691 {
4692 /* PRs 15935 15994: Bogus debug information may have provided us
4693 with an erroneous match. We attempt to counter this by
4694 selecting the match that has the smallest address range
4695 associated with it. (We are assuming that corrupt debug info
4696 will tend to result in extra large address ranges rather than
4697 extra small ranges).
4698
4699 This does mean that we scan through all of the CUs associated
4700 with the bfd each time this function is called. But this does
4701 have the benefit of producing consistent results every time the
4702 function is called. */
4703 if (range <= min_range)
4704 {
4705 if (filename_ptr && local_filename)
4706 * filename_ptr = local_filename;
4707 if (local_function)
4708 function = local_function;
4709 if (discriminator_ptr && local_discriminator)
4710 * discriminator_ptr = local_discriminator;
4711 if (local_linenumber)
4712 * linenumber_ptr = local_linenumber;
4713 min_range = range;
4714 }
4715 }
4716 }
4717
4718 if (* linenumber_ptr)
4719 {
4720 found = TRUE;
4721 goto done;
4722 }
4723 }
4724
4725 /* The DWARF2 spec says that the initial length field, and the
4726 offset of the abbreviation table, should both be 4-byte values.
4727 However, some compilers do things differently. */
4728 if (addr_size == 0)
4729 addr_size = 4;
4730 BFD_ASSERT (addr_size == 4 || addr_size == 8);
4731
4732 /* Read each remaining comp. units checking each as they are read. */
4733 while (stash->info_ptr < stash->info_ptr_end)
4734 {
4735 bfd_vma length;
4736 unsigned int offset_size = addr_size;
4737 bfd_byte *info_ptr_unit = stash->info_ptr;
4738
4739 length = read_4_bytes (stash->bfd_ptr, stash->info_ptr, stash->info_ptr_end);
4740 /* A 0xffffff length is the DWARF3 way of indicating
4741 we use 64-bit offsets, instead of 32-bit offsets. */
4742 if (length == 0xffffffff)
4743 {
4744 offset_size = 8;
4745 length = read_8_bytes (stash->bfd_ptr, stash->info_ptr + 4, stash->info_ptr_end);
4746 stash->info_ptr += 12;
4747 }
4748 /* A zero length is the IRIX way of indicating 64-bit offsets,
4749 mostly because the 64-bit length will generally fit in 32
4750 bits, and the endianness helps. */
4751 else if (length == 0)
4752 {
4753 offset_size = 8;
4754 length = read_4_bytes (stash->bfd_ptr, stash->info_ptr + 4, stash->info_ptr_end);
4755 stash->info_ptr += 8;
4756 }
4757 /* In the absence of the hints above, we assume 32-bit DWARF2
4758 offsets even for targets with 64-bit addresses, because:
4759 a) most of the time these targets will not have generated
4760 more than 2Gb of debug info and so will not need 64-bit
4761 offsets,
4762 and
4763 b) if they do use 64-bit offsets but they are not using
4764 the size hints that are tested for above then they are
4765 not conforming to the DWARF3 standard anyway. */
4766 else if (addr_size == 8)
4767 {
4768 offset_size = 4;
4769 stash->info_ptr += 4;
4770 }
4771 else
4772 stash->info_ptr += 4;
4773
4774 if (length > 0)
4775 {
4776 bfd_byte * new_ptr;
4777
4778 /* PR 21151 */
4779 if (stash->info_ptr + length > stash->info_ptr_end)
4780 return FALSE;
4781
4782 each = parse_comp_unit (stash, length, info_ptr_unit,
4783 offset_size);
4784 if (!each)
4785 /* The dwarf information is damaged, don't trust it any
4786 more. */
4787 break;
4788
4789 new_ptr = stash->info_ptr + length;
4790 /* PR 17512: file: 1500698c. */
4791 if (new_ptr < stash->info_ptr)
4792 {
4793 /* A corrupt length value - do not trust the info any more. */
4794 found = FALSE;
4795 break;
4796 }
4797 else
4798 stash->info_ptr = new_ptr;
4799
4800 if (stash->all_comp_units)
4801 stash->all_comp_units->prev_unit = each;
4802 else
4803 stash->last_comp_unit = each;
4804
4805 each->next_unit = stash->all_comp_units;
4806 stash->all_comp_units = each;
4807
4808 /* DW_AT_low_pc and DW_AT_high_pc are optional for
4809 compilation units. If we don't have them (i.e.,
4810 unit->high == 0), we need to consult the line info table
4811 to see if a compilation unit contains the given
4812 address. */
4813 if (do_line)
4814 found = (((symbol->flags & BSF_FUNCTION) == 0
4815 || each->arange.high == 0
4816 || comp_unit_contains_address (each, addr))
4817 && comp_unit_find_line (each, symbol, addr,
4818 filename_ptr,
4819 linenumber_ptr,
4820 stash));
4821 else
4822 found = ((each->arange.high == 0
4823 || comp_unit_contains_address (each, addr))
4824 && comp_unit_find_nearest_line (each, addr,
4825 filename_ptr,
4826 &function,
4827 linenumber_ptr,
4828 discriminator_ptr,
4829 stash) != 0);
4830
4831 if ((bfd_vma) (stash->info_ptr - stash->sec_info_ptr)
4832 == stash->sec->size)
4833 {
4834 stash->sec = find_debug_info (stash->bfd_ptr, debug_sections,
4835 stash->sec);
4836 stash->sec_info_ptr = stash->info_ptr;
4837 }
4838
4839 if (found)
4840 goto done;
4841 }
4842 }
4843
4844 done:
4845 if (function)
4846 {
4847 if (!function->is_linkage)
4848 {
4849 asymbol *fun;
4850 bfd_vma sec_vma;
4851
4852 fun = _bfd_elf_find_function (abfd, symbols, section, offset,
4853 *filename_ptr ? NULL : filename_ptr,
4854 functionname_ptr);
4855 sec_vma = section->vma;
4856 if (section->output_section != NULL)
4857 sec_vma = section->output_section->vma + section->output_offset;
4858 if (fun != NULL
4859 && fun->value + sec_vma == function->arange.low)
4860 function->name = *functionname_ptr;
4861 /* Even if we didn't find a linkage name, say that we have
4862 to stop a repeated search of symbols. */
4863 function->is_linkage = TRUE;
4864 }
4865 *functionname_ptr = function->name;
4866 }
4867 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
4868 unset_sections (stash);
4869
4870 return found;
4871 }
4872
4873 bfd_boolean
4874 _bfd_dwarf2_find_inliner_info (bfd *abfd ATTRIBUTE_UNUSED,
4875 const char **filename_ptr,
4876 const char **functionname_ptr,
4877 unsigned int *linenumber_ptr,
4878 void **pinfo)
4879 {
4880 struct dwarf2_debug *stash;
4881
4882 stash = (struct dwarf2_debug *) *pinfo;
4883 if (stash)
4884 {
4885 struct funcinfo *func = stash->inliner_chain;
4886
4887 if (func && func->caller_func)
4888 {
4889 *filename_ptr = func->caller_file;
4890 *functionname_ptr = func->caller_func->name;
4891 *linenumber_ptr = func->caller_line;
4892 stash->inliner_chain = func->caller_func;
4893 return TRUE;
4894 }
4895 }
4896
4897 return FALSE;
4898 }
4899
4900 void
4901 _bfd_dwarf2_cleanup_debug_info (bfd *abfd, void **pinfo)
4902 {
4903 struct dwarf2_debug *stash = (struct dwarf2_debug *) *pinfo;
4904 struct comp_unit *each;
4905
4906 if (abfd == NULL || stash == NULL)
4907 return;
4908
4909 for (each = stash->all_comp_units; each; each = each->next_unit)
4910 {
4911 struct abbrev_info **abbrevs = each->abbrevs;
4912 struct funcinfo *function_table = each->function_table;
4913 struct varinfo *variable_table = each->variable_table;
4914 size_t i;
4915
4916 for (i = 0; i < ABBREV_HASH_SIZE; i++)
4917 {
4918 struct abbrev_info *abbrev = abbrevs[i];
4919
4920 while (abbrev)
4921 {
4922 free (abbrev->attrs);
4923 abbrev = abbrev->next;
4924 }
4925 }
4926
4927 if (each->line_table)
4928 {
4929 free (each->line_table->dirs);
4930 free (each->line_table->files);
4931 }
4932
4933 while (function_table)
4934 {
4935 if (function_table->file)
4936 {
4937 free (function_table->file);
4938 function_table->file = NULL;
4939 }
4940
4941 if (function_table->caller_file)
4942 {
4943 free (function_table->caller_file);
4944 function_table->caller_file = NULL;
4945 }
4946 function_table = function_table->prev_func;
4947 }
4948
4949 if (each->lookup_funcinfo_table)
4950 {
4951 free (each->lookup_funcinfo_table);
4952 each->lookup_funcinfo_table = NULL;
4953 }
4954
4955 while (variable_table)
4956 {
4957 if (variable_table->file)
4958 {
4959 free (variable_table->file);
4960 variable_table->file = NULL;
4961 }
4962
4963 variable_table = variable_table->prev_var;
4964 }
4965 }
4966
4967 if (stash->dwarf_abbrev_buffer)
4968 free (stash->dwarf_abbrev_buffer);
4969 if (stash->dwarf_line_buffer)
4970 free (stash->dwarf_line_buffer);
4971 if (stash->dwarf_str_buffer)
4972 free (stash->dwarf_str_buffer);
4973 if (stash->dwarf_line_str_buffer)
4974 free (stash->dwarf_line_str_buffer);
4975 if (stash->dwarf_ranges_buffer)
4976 free (stash->dwarf_ranges_buffer);
4977 if (stash->info_ptr_memory)
4978 free (stash->info_ptr_memory);
4979 if (stash->close_on_cleanup)
4980 bfd_close (stash->bfd_ptr);
4981 if (stash->alt_dwarf_str_buffer)
4982 free (stash->alt_dwarf_str_buffer);
4983 if (stash->alt_dwarf_info_buffer)
4984 free (stash->alt_dwarf_info_buffer);
4985 if (stash->sec_vma)
4986 free (stash->sec_vma);
4987 if (stash->adjusted_sections)
4988 free (stash->adjusted_sections);
4989 if (stash->alt_bfd_ptr)
4990 bfd_close (stash->alt_bfd_ptr);
4991 }
4992
4993 /* Find the function to a particular section and offset,
4994 for error reporting. */
4995
4996 asymbol *
4997 _bfd_elf_find_function (bfd *abfd,
4998 asymbol **symbols,
4999 asection *section,
5000 bfd_vma offset,
5001 const char **filename_ptr,
5002 const char **functionname_ptr)
5003 {
5004 struct elf_find_function_cache
5005 {
5006 asection *last_section;
5007 asymbol *func;
5008 const char *filename;
5009 bfd_size_type func_size;
5010 } *cache;
5011
5012 if (symbols == NULL)
5013 return NULL;
5014
5015 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
5016 return NULL;
5017
5018 cache = elf_tdata (abfd)->elf_find_function_cache;
5019 if (cache == NULL)
5020 {
5021 cache = bfd_zalloc (abfd, sizeof (*cache));
5022 elf_tdata (abfd)->elf_find_function_cache = cache;
5023 if (cache == NULL)
5024 return NULL;
5025 }
5026 if (cache->last_section != section
5027 || cache->func == NULL
5028 || offset < cache->func->value
5029 || offset >= cache->func->value + cache->func_size)
5030 {
5031 asymbol *file;
5032 bfd_vma low_func;
5033 asymbol **p;
5034 /* ??? Given multiple file symbols, it is impossible to reliably
5035 choose the right file name for global symbols. File symbols are
5036 local symbols, and thus all file symbols must sort before any
5037 global symbols. The ELF spec may be interpreted to say that a
5038 file symbol must sort before other local symbols, but currently
5039 ld -r doesn't do this. So, for ld -r output, it is possible to
5040 make a better choice of file name for local symbols by ignoring
5041 file symbols appearing after a given local symbol. */
5042 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
5043 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5044
5045 file = NULL;
5046 low_func = 0;
5047 state = nothing_seen;
5048 cache->filename = NULL;
5049 cache->func = NULL;
5050 cache->func_size = 0;
5051 cache->last_section = section;
5052
5053 for (p = symbols; *p != NULL; p++)
5054 {
5055 asymbol *sym = *p;
5056 bfd_vma code_off;
5057 bfd_size_type size;
5058
5059 if ((sym->flags & BSF_FILE) != 0)
5060 {
5061 file = sym;
5062 if (state == symbol_seen)
5063 state = file_after_symbol_seen;
5064 continue;
5065 }
5066
5067 size = bed->maybe_function_sym (sym, section, &code_off);
5068 if (size != 0
5069 && code_off <= offset
5070 && (code_off > low_func
5071 || (code_off == low_func
5072 && size > cache->func_size)))
5073 {
5074 cache->func = sym;
5075 cache->func_size = size;
5076 cache->filename = NULL;
5077 low_func = code_off;
5078 if (file != NULL
5079 && ((sym->flags & BSF_LOCAL) != 0
5080 || state != file_after_symbol_seen))
5081 cache->filename = bfd_asymbol_name (file);
5082 }
5083 if (state == nothing_seen)
5084 state = symbol_seen;
5085 }
5086 }
5087
5088 if (cache->func == NULL)
5089 return NULL;
5090
5091 if (filename_ptr)
5092 *filename_ptr = cache->filename;
5093 if (functionname_ptr)
5094 *functionname_ptr = bfd_asymbol_name (cache->func);
5095
5096 return cache->func;
5097 }