bfd/Dwarf2: gas doesn't mangle names
[binutils-gdb.git] / bfd / dwarf2.c
1 /* DWARF 2 support.
2 Copyright (C) 1994-2022 Free Software Foundation, Inc.
3
4 Adapted from gdb/dwarf2read.c by Gavin Koch of Cygnus Solutions
5 (gavin@cygnus.com).
6
7 From the dwarf2read.c header:
8 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
9 Inc. with support from Florida State University (under contract
10 with the Ada Joint Program Office), and Silicon Graphics, Inc.
11 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
12 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
13 support in dwarfread.c
14
15 This file is part of BFD.
16
17 This program is free software; you can redistribute it and/or modify
18 it under the terms of the GNU General Public License as published by
19 the Free Software Foundation; either version 3 of the License, or (at
20 your option) any later version.
21
22 This program is distributed in the hope that it will be useful, but
23 WITHOUT ANY WARRANTY; without even the implied warranty of
24 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
25 General Public License for more details.
26
27 You should have received a copy of the GNU General Public License
28 along with this program; if not, write to the Free Software
29 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
30 MA 02110-1301, USA. */
31
32 #include "sysdep.h"
33 #include "bfd.h"
34 #include "libiberty.h"
35 #include "libbfd.h"
36 #include "elf-bfd.h"
37 #include "dwarf2.h"
38 #include "hashtab.h"
39
40 /* The data in the .debug_line statement prologue looks like this. */
41
42 struct line_head
43 {
44 bfd_vma total_length;
45 unsigned short version;
46 bfd_vma prologue_length;
47 unsigned char minimum_instruction_length;
48 unsigned char maximum_ops_per_insn;
49 unsigned char default_is_stmt;
50 int line_base;
51 unsigned char line_range;
52 unsigned char opcode_base;
53 unsigned char *standard_opcode_lengths;
54 };
55
56 /* Attributes have a name and a value. */
57
58 struct attribute
59 {
60 enum dwarf_attribute name;
61 enum dwarf_form form;
62 union
63 {
64 char *str;
65 struct dwarf_block *blk;
66 bfd_uint64_t val;
67 bfd_int64_t sval;
68 }
69 u;
70 };
71
72 /* Blocks are a bunch of untyped bytes. */
73 struct dwarf_block
74 {
75 unsigned int size;
76 bfd_byte *data;
77 };
78
79 struct adjusted_section
80 {
81 asection *section;
82 bfd_vma adj_vma;
83 };
84
85 struct dwarf2_debug_file
86 {
87 /* The actual bfd from which debug info was loaded. Might be
88 different to orig_bfd because of gnu_debuglink sections. */
89 bfd *bfd_ptr;
90
91 /* Pointer to the symbol table. */
92 asymbol **syms;
93
94 /* The current info pointer for the .debug_info section being parsed. */
95 bfd_byte *info_ptr;
96
97 /* A pointer to the memory block allocated for .debug_info sections. */
98 bfd_byte *dwarf_info_buffer;
99
100 /* Length of the loaded .debug_info sections. */
101 bfd_size_type dwarf_info_size;
102
103 /* Pointer to the .debug_abbrev section loaded into memory. */
104 bfd_byte *dwarf_abbrev_buffer;
105
106 /* Length of the loaded .debug_abbrev section. */
107 bfd_size_type dwarf_abbrev_size;
108
109 /* Buffer for decode_line_info. */
110 bfd_byte *dwarf_line_buffer;
111
112 /* Length of the loaded .debug_line section. */
113 bfd_size_type dwarf_line_size;
114
115 /* Pointer to the .debug_str section loaded into memory. */
116 bfd_byte *dwarf_str_buffer;
117
118 /* Length of the loaded .debug_str section. */
119 bfd_size_type dwarf_str_size;
120
121 /* Pointer to the .debug_line_str section loaded into memory. */
122 bfd_byte *dwarf_line_str_buffer;
123
124 /* Length of the loaded .debug_line_str section. */
125 bfd_size_type dwarf_line_str_size;
126
127 /* Pointer to the .debug_ranges section loaded into memory. */
128 bfd_byte *dwarf_ranges_buffer;
129
130 /* Length of the loaded .debug_ranges section. */
131 bfd_size_type dwarf_ranges_size;
132
133 /* Pointer to the .debug_rnglists section loaded into memory. */
134 bfd_byte *dwarf_rnglists_buffer;
135
136 /* Length of the loaded .debug_rnglists section. */
137 bfd_size_type dwarf_rnglists_size;
138
139 /* A list of all previously read comp_units. */
140 struct comp_unit *all_comp_units;
141
142 /* Last comp unit in list above. */
143 struct comp_unit *last_comp_unit;
144
145 /* Line table at line_offset zero. */
146 struct line_info_table *line_table;
147
148 /* Hash table to map offsets to decoded abbrevs. */
149 htab_t abbrev_offsets;
150 };
151
152 struct dwarf2_debug
153 {
154 /* Names of the debug sections. */
155 const struct dwarf_debug_section *debug_sections;
156
157 /* Per-file stuff. */
158 struct dwarf2_debug_file f, alt;
159
160 /* Pointer to the original bfd for which debug was loaded. This is what
161 we use to compare and so check that the cached debug data is still
162 valid - it saves having to possibly dereference the gnu_debuglink each
163 time. */
164 bfd *orig_bfd;
165
166 /* If the most recent call to bfd_find_nearest_line was given an
167 address in an inlined function, preserve a pointer into the
168 calling chain for subsequent calls to bfd_find_inliner_info to
169 use. */
170 struct funcinfo *inliner_chain;
171
172 /* Section VMAs at the time the stash was built. */
173 bfd_vma *sec_vma;
174 /* Number of sections in the SEC_VMA table. */
175 unsigned int sec_vma_count;
176
177 /* Number of sections whose VMA we must adjust. */
178 int adjusted_section_count;
179
180 /* Array of sections with adjusted VMA. */
181 struct adjusted_section *adjusted_sections;
182
183 /* Number of times find_line is called. This is used in
184 the heuristic for enabling the info hash tables. */
185 int info_hash_count;
186
187 #define STASH_INFO_HASH_TRIGGER 100
188
189 /* Hash table mapping symbol names to function infos. */
190 struct info_hash_table *funcinfo_hash_table;
191
192 /* Hash table mapping symbol names to variable infos. */
193 struct info_hash_table *varinfo_hash_table;
194
195 /* Head of comp_unit list in the last hash table update. */
196 struct comp_unit *hash_units_head;
197
198 /* Status of info hash. */
199 int info_hash_status;
200 #define STASH_INFO_HASH_OFF 0
201 #define STASH_INFO_HASH_ON 1
202 #define STASH_INFO_HASH_DISABLED 2
203
204 /* True if we opened bfd_ptr. */
205 bool close_on_cleanup;
206 };
207
208 struct arange
209 {
210 struct arange *next;
211 bfd_vma low;
212 bfd_vma high;
213 };
214
215 /* A minimal decoding of DWARF2 compilation units. We only decode
216 what's needed to get to the line number information. */
217
218 struct comp_unit
219 {
220 /* Chain the previously read compilation units. */
221 struct comp_unit *next_unit;
222
223 /* Likewise, chain the compilation unit read after this one.
224 The comp units are stored in reversed reading order. */
225 struct comp_unit *prev_unit;
226
227 /* Keep the bfd convenient (for memory allocation). */
228 bfd *abfd;
229
230 /* The lowest and highest addresses contained in this compilation
231 unit as specified in the compilation unit header. */
232 struct arange arange;
233
234 /* The DW_AT_name attribute (for error messages). */
235 char *name;
236
237 /* The abbrev hash table. */
238 struct abbrev_info **abbrevs;
239
240 /* DW_AT_language. */
241 int lang;
242
243 /* Note that an error was found by comp_unit_find_nearest_line. */
244 int error;
245
246 /* The DW_AT_comp_dir attribute. */
247 char *comp_dir;
248
249 /* TRUE if there is a line number table associated with this comp. unit. */
250 int stmtlist;
251
252 /* Pointer to the current comp_unit so that we can find a given entry
253 by its reference. */
254 bfd_byte *info_ptr_unit;
255
256 /* The offset into .debug_line of the line number table. */
257 unsigned long line_offset;
258
259 /* Pointer to the first child die for the comp unit. */
260 bfd_byte *first_child_die_ptr;
261
262 /* The end of the comp unit. */
263 bfd_byte *end_ptr;
264
265 /* The decoded line number, NULL if not yet decoded. */
266 struct line_info_table *line_table;
267
268 /* A list of the functions found in this comp. unit. */
269 struct funcinfo *function_table;
270
271 /* A table of function information references searchable by address. */
272 struct lookup_funcinfo *lookup_funcinfo_table;
273
274 /* Number of functions in the function_table and sorted_function_table. */
275 bfd_size_type number_of_functions;
276
277 /* A list of the variables found in this comp. unit. */
278 struct varinfo *variable_table;
279
280 /* Pointers to dwarf2_debug structures. */
281 struct dwarf2_debug *stash;
282 struct dwarf2_debug_file *file;
283
284 /* DWARF format version for this unit - from unit header. */
285 int version;
286
287 /* Address size for this unit - from unit header. */
288 unsigned char addr_size;
289
290 /* Offset size for this unit - from unit header. */
291 unsigned char offset_size;
292
293 /* Base address for this unit - from DW_AT_low_pc attribute of
294 DW_TAG_compile_unit DIE */
295 bfd_vma base_address;
296
297 /* TRUE if symbols are cached in hash table for faster lookup by name. */
298 bool cached;
299 };
300
301 /* This data structure holds the information of an abbrev. */
302 struct abbrev_info
303 {
304 unsigned int number; /* Number identifying abbrev. */
305 enum dwarf_tag tag; /* DWARF tag. */
306 bool has_children; /* TRUE if the abbrev has children. */
307 unsigned int num_attrs; /* Number of attributes. */
308 struct attr_abbrev * attrs; /* An array of attribute descriptions. */
309 struct abbrev_info * next; /* Next in chain. */
310 };
311
312 struct attr_abbrev
313 {
314 enum dwarf_attribute name;
315 enum dwarf_form form;
316 bfd_vma implicit_const;
317 };
318
319 /* Map of uncompressed DWARF debug section name to compressed one. It
320 is terminated by NULL uncompressed_name. */
321
322 const struct dwarf_debug_section dwarf_debug_sections[] =
323 {
324 { ".debug_abbrev", ".zdebug_abbrev" },
325 { ".debug_aranges", ".zdebug_aranges" },
326 { ".debug_frame", ".zdebug_frame" },
327 { ".debug_info", ".zdebug_info" },
328 { ".debug_info", ".zdebug_info" },
329 { ".debug_line", ".zdebug_line" },
330 { ".debug_loc", ".zdebug_loc" },
331 { ".debug_macinfo", ".zdebug_macinfo" },
332 { ".debug_macro", ".zdebug_macro" },
333 { ".debug_pubnames", ".zdebug_pubnames" },
334 { ".debug_pubtypes", ".zdebug_pubtypes" },
335 { ".debug_ranges", ".zdebug_ranges" },
336 { ".debug_rnglists", ".zdebug_rnglist" },
337 { ".debug_static_func", ".zdebug_static_func" },
338 { ".debug_static_vars", ".zdebug_static_vars" },
339 { ".debug_str", ".zdebug_str", },
340 { ".debug_str", ".zdebug_str", },
341 { ".debug_line_str", ".zdebug_line_str", },
342 { ".debug_types", ".zdebug_types" },
343 /* GNU DWARF 1 extensions */
344 { ".debug_sfnames", ".zdebug_sfnames" },
345 { ".debug_srcinfo", ".zebug_srcinfo" },
346 /* SGI/MIPS DWARF 2 extensions */
347 { ".debug_funcnames", ".zdebug_funcnames" },
348 { ".debug_typenames", ".zdebug_typenames" },
349 { ".debug_varnames", ".zdebug_varnames" },
350 { ".debug_weaknames", ".zdebug_weaknames" },
351 { NULL, NULL },
352 };
353
354 /* NB/ Numbers in this enum must match up with indices
355 into the dwarf_debug_sections[] array above. */
356 enum dwarf_debug_section_enum
357 {
358 debug_abbrev = 0,
359 debug_aranges,
360 debug_frame,
361 debug_info,
362 debug_info_alt,
363 debug_line,
364 debug_loc,
365 debug_macinfo,
366 debug_macro,
367 debug_pubnames,
368 debug_pubtypes,
369 debug_ranges,
370 debug_rnglists,
371 debug_static_func,
372 debug_static_vars,
373 debug_str,
374 debug_str_alt,
375 debug_line_str,
376 debug_types,
377 debug_sfnames,
378 debug_srcinfo,
379 debug_funcnames,
380 debug_typenames,
381 debug_varnames,
382 debug_weaknames,
383 debug_max
384 };
385
386 /* A static assertion. */
387 extern int dwarf_debug_section_assert[ARRAY_SIZE (dwarf_debug_sections)
388 == debug_max + 1 ? 1 : -1];
389
390 #ifndef ABBREV_HASH_SIZE
391 #define ABBREV_HASH_SIZE 121
392 #endif
393 #ifndef ATTR_ALLOC_CHUNK
394 #define ATTR_ALLOC_CHUNK 4
395 #endif
396
397 /* Variable and function hash tables. This is used to speed up look-up
398 in lookup_symbol_in_var_table() and lookup_symbol_in_function_table().
399 In order to share code between variable and function infos, we use
400 a list of untyped pointer for all variable/function info associated with
401 a symbol. We waste a bit of memory for list with one node but that
402 simplifies the code. */
403
404 struct info_list_node
405 {
406 struct info_list_node *next;
407 void *info;
408 };
409
410 /* Info hash entry. */
411 struct info_hash_entry
412 {
413 struct bfd_hash_entry root;
414 struct info_list_node *head;
415 };
416
417 struct info_hash_table
418 {
419 struct bfd_hash_table base;
420 };
421
422 /* Function to create a new entry in info hash table. */
423
424 static struct bfd_hash_entry *
425 info_hash_table_newfunc (struct bfd_hash_entry *entry,
426 struct bfd_hash_table *table,
427 const char *string)
428 {
429 struct info_hash_entry *ret = (struct info_hash_entry *) entry;
430
431 /* Allocate the structure if it has not already been allocated by a
432 derived class. */
433 if (ret == NULL)
434 {
435 ret = (struct info_hash_entry *) bfd_hash_allocate (table,
436 sizeof (* ret));
437 if (ret == NULL)
438 return NULL;
439 }
440
441 /* Call the allocation method of the base class. */
442 ret = ((struct info_hash_entry *)
443 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
444
445 /* Initialize the local fields here. */
446 if (ret)
447 ret->head = NULL;
448
449 return (struct bfd_hash_entry *) ret;
450 }
451
452 /* Function to create a new info hash table. It returns a pointer to the
453 newly created table or NULL if there is any error. We need abfd
454 solely for memory allocation. */
455
456 static struct info_hash_table *
457 create_info_hash_table (bfd *abfd)
458 {
459 struct info_hash_table *hash_table;
460
461 hash_table = ((struct info_hash_table *)
462 bfd_alloc (abfd, sizeof (struct info_hash_table)));
463 if (!hash_table)
464 return hash_table;
465
466 if (!bfd_hash_table_init (&hash_table->base, info_hash_table_newfunc,
467 sizeof (struct info_hash_entry)))
468 {
469 bfd_release (abfd, hash_table);
470 return NULL;
471 }
472
473 return hash_table;
474 }
475
476 /* Insert an info entry into an info hash table. We do not check of
477 duplicate entries. Also, the caller need to guarantee that the
478 right type of info in inserted as info is passed as a void* pointer.
479 This function returns true if there is no error. */
480
481 static bool
482 insert_info_hash_table (struct info_hash_table *hash_table,
483 const char *key,
484 void *info,
485 bool copy_p)
486 {
487 struct info_hash_entry *entry;
488 struct info_list_node *node;
489
490 entry = (struct info_hash_entry*) bfd_hash_lookup (&hash_table->base,
491 key, true, copy_p);
492 if (!entry)
493 return false;
494
495 node = (struct info_list_node *) bfd_hash_allocate (&hash_table->base,
496 sizeof (*node));
497 if (!node)
498 return false;
499
500 node->info = info;
501 node->next = entry->head;
502 entry->head = node;
503
504 return true;
505 }
506
507 /* Look up an info entry list from an info hash table. Return NULL
508 if there is none. */
509
510 static struct info_list_node *
511 lookup_info_hash_table (struct info_hash_table *hash_table, const char *key)
512 {
513 struct info_hash_entry *entry;
514
515 entry = (struct info_hash_entry*) bfd_hash_lookup (&hash_table->base, key,
516 false, false);
517 return entry ? entry->head : NULL;
518 }
519
520 /* Read a section into its appropriate place in the dwarf2_debug
521 struct (indicated by SECTION_BUFFER and SECTION_SIZE). If SYMS is
522 not NULL, use bfd_simple_get_relocated_section_contents to read the
523 section contents, otherwise use bfd_get_section_contents. Fail if
524 the located section does not contain at least OFFSET bytes. */
525
526 static bool
527 read_section (bfd * abfd,
528 const struct dwarf_debug_section *sec,
529 asymbol ** syms,
530 bfd_uint64_t offset,
531 bfd_byte ** section_buffer,
532 bfd_size_type * section_size)
533 {
534 const char *section_name = sec->uncompressed_name;
535 bfd_byte *contents = *section_buffer;
536
537 /* The section may have already been read. */
538 if (contents == NULL)
539 {
540 bfd_size_type amt;
541 asection *msec;
542 ufile_ptr filesize;
543
544 msec = bfd_get_section_by_name (abfd, section_name);
545 if (msec == NULL)
546 {
547 section_name = sec->compressed_name;
548 msec = bfd_get_section_by_name (abfd, section_name);
549 }
550 if (msec == NULL)
551 {
552 _bfd_error_handler (_("DWARF error: can't find %s section."),
553 sec->uncompressed_name);
554 bfd_set_error (bfd_error_bad_value);
555 return false;
556 }
557
558 amt = bfd_get_section_limit_octets (abfd, msec);
559 filesize = bfd_get_file_size (abfd);
560 /* PR 28834: A compressed debug section could well decompress to a size
561 larger than the file, so we choose an arbitrary modifier of 10x in
562 the test below. If this ever turns out to be insufficient, it can
563 be changed by a future update. */
564 if (amt >= filesize * 10)
565 {
566 /* PR 26946 */
567 _bfd_error_handler (_("DWARF error: section %s is larger than 10x its filesize! (0x%lx vs 0x%lx)"),
568 section_name, (long) amt, (long) filesize);
569 bfd_set_error (bfd_error_bad_value);
570 return false;
571 }
572 *section_size = amt;
573 /* Paranoia - alloc one extra so that we can make sure a string
574 section is NUL terminated. */
575 amt += 1;
576 if (amt == 0)
577 {
578 /* Paranoia - this should never happen. */
579 bfd_set_error (bfd_error_no_memory);
580 return false;
581 }
582 contents = (bfd_byte *) bfd_malloc (amt);
583 if (contents == NULL)
584 return false;
585 if (syms
586 ? !bfd_simple_get_relocated_section_contents (abfd, msec, contents,
587 syms)
588 : !bfd_get_section_contents (abfd, msec, contents, 0, *section_size))
589 {
590 free (contents);
591 return false;
592 }
593 contents[*section_size] = 0;
594 *section_buffer = contents;
595 }
596
597 /* It is possible to get a bad value for the offset into the section
598 that the client wants. Validate it here to avoid trouble later. */
599 if (offset != 0 && offset >= *section_size)
600 {
601 /* xgettext: c-format */
602 _bfd_error_handler (_("DWARF error: offset (%" PRIu64 ")"
603 " greater than or equal to %s size (%" PRIu64 ")"),
604 (uint64_t) offset, section_name,
605 (uint64_t) *section_size);
606 bfd_set_error (bfd_error_bad_value);
607 return false;
608 }
609
610 return true;
611 }
612
613 /* Read dwarf information from a buffer. */
614
615 static inline uint64_t
616 read_n_bytes (bfd *abfd, bfd_byte **ptr, bfd_byte *end, int n)
617 {
618 bfd_byte *buf = *ptr;
619 if (end - buf < n)
620 {
621 *ptr = end;
622 return 0;
623 }
624 *ptr = buf + n;
625 return bfd_get (n * 8, abfd, buf);
626 }
627
628 static unsigned int
629 read_1_byte (bfd *abfd, bfd_byte **ptr, bfd_byte *end)
630 {
631 return read_n_bytes (abfd, ptr, end, 1);
632 }
633
634 static int
635 read_1_signed_byte (bfd *abfd ATTRIBUTE_UNUSED, bfd_byte **ptr, bfd_byte *end)
636 {
637 bfd_byte *buf = *ptr;
638 if (end - buf < 1)
639 {
640 *ptr = end;
641 return 0;
642 }
643 *ptr = buf + 1;
644 return bfd_get_signed_8 (abfd, buf);
645 }
646
647 static unsigned int
648 read_2_bytes (bfd *abfd, bfd_byte **ptr, bfd_byte *end)
649 {
650 return read_n_bytes (abfd, ptr, end, 2);
651 }
652
653 static unsigned int
654 read_3_bytes (bfd *abfd, bfd_byte **ptr, bfd_byte *end)
655 {
656 unsigned int val = read_1_byte (abfd, ptr, end);
657 val <<= 8;
658 val |= read_1_byte (abfd, ptr, end);
659 val <<= 8;
660 val |= read_1_byte (abfd, ptr, end);
661 if (bfd_little_endian (abfd))
662 val = (((val >> 16) & 0xff)
663 | (val & 0xff00)
664 | ((val & 0xff) << 16));
665 return val;
666 }
667
668 static unsigned int
669 read_4_bytes (bfd *abfd, bfd_byte **ptr, bfd_byte *end)
670 {
671 return read_n_bytes (abfd, ptr, end, 4);
672 }
673
674 static uint64_t
675 read_8_bytes (bfd *abfd, bfd_byte **ptr, bfd_byte *end)
676 {
677 return read_n_bytes (abfd, ptr, end, 8);
678 }
679
680 static struct dwarf_block *
681 read_blk (bfd *abfd, bfd_byte **ptr, bfd_byte *end, size_t size)
682 {
683 bfd_byte *buf = *ptr;
684 struct dwarf_block *block;
685
686 block = (struct dwarf_block *) bfd_alloc (abfd, sizeof (*block));
687 if (block == NULL)
688 return NULL;
689
690 if (size > (size_t) (end - buf))
691 {
692 *ptr = end;
693 block->data = NULL;
694 block->size = 0;
695 }
696 else
697 {
698 *ptr = buf + size;
699 block->data = buf;
700 block->size = size;
701 }
702 return block;
703 }
704
705 /* Scans a NUL terminated string starting at *PTR, returning a pointer to it.
706 Bytes at or beyond BUF_END will not be read. Returns NULL if the
707 terminator is not found or if the string is empty. *PTR is
708 incremented over the bytes scanned, including the terminator. */
709
710 static char *
711 read_string (bfd_byte **ptr,
712 bfd_byte *buf_end)
713 {
714 bfd_byte *buf = *ptr;
715 bfd_byte *str = buf;
716
717 while (buf < buf_end)
718 if (*buf++ == 0)
719 {
720 if (str == buf - 1)
721 break;
722 *ptr = buf;
723 return (char *) str;
724 }
725
726 *ptr = buf;
727 return NULL;
728 }
729
730 /* Reads an offset from *PTR and then locates the string at this offset
731 inside the debug string section. Returns a pointer to the string.
732 Increments *PTR by the number of bytes read for the offset. This
733 value is set even if the function fails. Bytes at or beyond
734 BUF_END will not be read. Returns NULL if there was a problem, or
735 if the string is empty. Does not check for NUL termination of the
736 string. */
737
738 static char *
739 read_indirect_string (struct comp_unit *unit,
740 bfd_byte **ptr,
741 bfd_byte *buf_end)
742 {
743 bfd_uint64_t offset;
744 struct dwarf2_debug *stash = unit->stash;
745 struct dwarf2_debug_file *file = unit->file;
746 char *str;
747
748 if (unit->offset_size > (size_t) (buf_end - *ptr))
749 {
750 *ptr = buf_end;
751 return NULL;
752 }
753
754 if (unit->offset_size == 4)
755 offset = read_4_bytes (unit->abfd, ptr, buf_end);
756 else
757 offset = read_8_bytes (unit->abfd, ptr, buf_end);
758
759 if (! read_section (unit->abfd, &stash->debug_sections[debug_str],
760 file->syms, offset,
761 &file->dwarf_str_buffer, &file->dwarf_str_size))
762 return NULL;
763
764 str = (char *) file->dwarf_str_buffer + offset;
765 if (*str == '\0')
766 return NULL;
767 return str;
768 }
769
770 /* Like read_indirect_string but from .debug_line_str section. */
771
772 static char *
773 read_indirect_line_string (struct comp_unit *unit,
774 bfd_byte **ptr,
775 bfd_byte *buf_end)
776 {
777 bfd_uint64_t offset;
778 struct dwarf2_debug *stash = unit->stash;
779 struct dwarf2_debug_file *file = unit->file;
780 char *str;
781
782 if (unit->offset_size > (size_t) (buf_end - *ptr))
783 {
784 *ptr = buf_end;
785 return NULL;
786 }
787
788 if (unit->offset_size == 4)
789 offset = read_4_bytes (unit->abfd, ptr, buf_end);
790 else
791 offset = read_8_bytes (unit->abfd, ptr, buf_end);
792
793 if (! read_section (unit->abfd, &stash->debug_sections[debug_line_str],
794 file->syms, offset,
795 &file->dwarf_line_str_buffer,
796 &file->dwarf_line_str_size))
797 return NULL;
798
799 str = (char *) file->dwarf_line_str_buffer + offset;
800 if (*str == '\0')
801 return NULL;
802 return str;
803 }
804
805 /* Like read_indirect_string but uses a .debug_str located in
806 an alternate file pointed to by the .gnu_debugaltlink section.
807 Used to impement DW_FORM_GNU_strp_alt. */
808
809 static char *
810 read_alt_indirect_string (struct comp_unit *unit,
811 bfd_byte **ptr,
812 bfd_byte *buf_end)
813 {
814 bfd_uint64_t offset;
815 struct dwarf2_debug *stash = unit->stash;
816 char *str;
817
818 if (unit->offset_size > (size_t) (buf_end - *ptr))
819 {
820 *ptr = buf_end;
821 return NULL;
822 }
823
824 if (unit->offset_size == 4)
825 offset = read_4_bytes (unit->abfd, ptr, buf_end);
826 else
827 offset = read_8_bytes (unit->abfd, ptr, buf_end);
828
829 if (stash->alt.bfd_ptr == NULL)
830 {
831 bfd *debug_bfd;
832 char *debug_filename = bfd_follow_gnu_debugaltlink (unit->abfd, DEBUGDIR);
833
834 if (debug_filename == NULL)
835 return NULL;
836
837 debug_bfd = bfd_openr (debug_filename, NULL);
838 free (debug_filename);
839 if (debug_bfd == NULL)
840 /* FIXME: Should we report our failure to follow the debuglink ? */
841 return NULL;
842
843 if (!bfd_check_format (debug_bfd, bfd_object))
844 {
845 bfd_close (debug_bfd);
846 return NULL;
847 }
848 stash->alt.bfd_ptr = debug_bfd;
849 }
850
851 if (! read_section (unit->stash->alt.bfd_ptr,
852 stash->debug_sections + debug_str_alt,
853 stash->alt.syms, offset,
854 &stash->alt.dwarf_str_buffer,
855 &stash->alt.dwarf_str_size))
856 return NULL;
857
858 str = (char *) stash->alt.dwarf_str_buffer + offset;
859 if (*str == '\0')
860 return NULL;
861
862 return str;
863 }
864
865 /* Resolve an alternate reference from UNIT at OFFSET.
866 Returns a pointer into the loaded alternate CU upon success
867 or NULL upon failure. */
868
869 static bfd_byte *
870 read_alt_indirect_ref (struct comp_unit * unit,
871 bfd_uint64_t offset)
872 {
873 struct dwarf2_debug *stash = unit->stash;
874
875 if (stash->alt.bfd_ptr == NULL)
876 {
877 bfd *debug_bfd;
878 char *debug_filename = bfd_follow_gnu_debugaltlink (unit->abfd, DEBUGDIR);
879
880 if (debug_filename == NULL)
881 return NULL;
882
883 debug_bfd = bfd_openr (debug_filename, NULL);
884 free (debug_filename);
885 if (debug_bfd == NULL)
886 /* FIXME: Should we report our failure to follow the debuglink ? */
887 return NULL;
888
889 if (!bfd_check_format (debug_bfd, bfd_object))
890 {
891 bfd_close (debug_bfd);
892 return NULL;
893 }
894 stash->alt.bfd_ptr = debug_bfd;
895 }
896
897 if (! read_section (unit->stash->alt.bfd_ptr,
898 stash->debug_sections + debug_info_alt,
899 stash->alt.syms, offset,
900 &stash->alt.dwarf_info_buffer,
901 &stash->alt.dwarf_info_size))
902 return NULL;
903
904 return stash->alt.dwarf_info_buffer + offset;
905 }
906
907 static bfd_uint64_t
908 read_address (struct comp_unit *unit, bfd_byte **ptr, bfd_byte *buf_end)
909 {
910 bfd_byte *buf = *ptr;
911 int signed_vma = 0;
912
913 if (bfd_get_flavour (unit->abfd) == bfd_target_elf_flavour)
914 signed_vma = get_elf_backend_data (unit->abfd)->sign_extend_vma;
915
916 if (unit->addr_size > (size_t) (buf_end - buf))
917 {
918 *ptr = buf_end;
919 return 0;
920 }
921
922 *ptr = buf + unit->addr_size;
923 if (signed_vma)
924 {
925 switch (unit->addr_size)
926 {
927 case 8:
928 return bfd_get_signed_64 (unit->abfd, buf);
929 case 4:
930 return bfd_get_signed_32 (unit->abfd, buf);
931 case 2:
932 return bfd_get_signed_16 (unit->abfd, buf);
933 default:
934 abort ();
935 }
936 }
937 else
938 {
939 switch (unit->addr_size)
940 {
941 case 8:
942 return bfd_get_64 (unit->abfd, buf);
943 case 4:
944 return bfd_get_32 (unit->abfd, buf);
945 case 2:
946 return bfd_get_16 (unit->abfd, buf);
947 default:
948 abort ();
949 }
950 }
951 }
952
953 /* Lookup an abbrev_info structure in the abbrev hash table. */
954
955 static struct abbrev_info *
956 lookup_abbrev (unsigned int number, struct abbrev_info **abbrevs)
957 {
958 unsigned int hash_number;
959 struct abbrev_info *abbrev;
960
961 hash_number = number % ABBREV_HASH_SIZE;
962 abbrev = abbrevs[hash_number];
963
964 while (abbrev)
965 {
966 if (abbrev->number == number)
967 return abbrev;
968 else
969 abbrev = abbrev->next;
970 }
971
972 return NULL;
973 }
974
975 /* We keep a hash table to map .debug_abbrev section offsets to the
976 array of abbrevs, so that compilation units using the same set of
977 abbrevs do not waste memory. */
978
979 struct abbrev_offset_entry
980 {
981 size_t offset;
982 struct abbrev_info **abbrevs;
983 };
984
985 static hashval_t
986 hash_abbrev (const void *p)
987 {
988 const struct abbrev_offset_entry *ent = p;
989 return htab_hash_pointer ((void *) ent->offset);
990 }
991
992 static int
993 eq_abbrev (const void *pa, const void *pb)
994 {
995 const struct abbrev_offset_entry *a = pa;
996 const struct abbrev_offset_entry *b = pb;
997 return a->offset == b->offset;
998 }
999
1000 static void
1001 del_abbrev (void *p)
1002 {
1003 struct abbrev_offset_entry *ent = p;
1004 struct abbrev_info **abbrevs = ent->abbrevs;
1005 size_t i;
1006
1007 for (i = 0; i < ABBREV_HASH_SIZE; i++)
1008 {
1009 struct abbrev_info *abbrev = abbrevs[i];
1010
1011 while (abbrev)
1012 {
1013 free (abbrev->attrs);
1014 abbrev = abbrev->next;
1015 }
1016 }
1017 free (ent);
1018 }
1019
1020 /* In DWARF version 2, the description of the debugging information is
1021 stored in a separate .debug_abbrev section. Before we read any
1022 dies from a section we read in all abbreviations and install them
1023 in a hash table. */
1024
1025 static struct abbrev_info**
1026 read_abbrevs (bfd *abfd, bfd_uint64_t offset, struct dwarf2_debug *stash,
1027 struct dwarf2_debug_file *file)
1028 {
1029 struct abbrev_info **abbrevs;
1030 bfd_byte *abbrev_ptr;
1031 bfd_byte *abbrev_end;
1032 struct abbrev_info *cur_abbrev;
1033 unsigned int abbrev_number, abbrev_name;
1034 unsigned int abbrev_form, hash_number;
1035 size_t amt;
1036 void **slot;
1037 struct abbrev_offset_entry ent = { offset, NULL };
1038
1039 if (ent.offset != offset)
1040 return NULL;
1041
1042 slot = htab_find_slot (file->abbrev_offsets, &ent, INSERT);
1043 if (slot == NULL)
1044 return NULL;
1045 if (*slot != NULL)
1046 return ((struct abbrev_offset_entry *) (*slot))->abbrevs;
1047
1048 if (! read_section (abfd, &stash->debug_sections[debug_abbrev],
1049 file->syms, offset,
1050 &file->dwarf_abbrev_buffer,
1051 &file->dwarf_abbrev_size))
1052 return NULL;
1053
1054 amt = sizeof (struct abbrev_info*) * ABBREV_HASH_SIZE;
1055 abbrevs = (struct abbrev_info **) bfd_zalloc (abfd, amt);
1056 if (abbrevs == NULL)
1057 return NULL;
1058
1059 abbrev_ptr = file->dwarf_abbrev_buffer + offset;
1060 abbrev_end = file->dwarf_abbrev_buffer + file->dwarf_abbrev_size;
1061 abbrev_number = _bfd_safe_read_leb128 (abfd, &abbrev_ptr,
1062 false, abbrev_end);
1063
1064 /* Loop until we reach an abbrev number of 0. */
1065 while (abbrev_number)
1066 {
1067 amt = sizeof (struct abbrev_info);
1068 cur_abbrev = (struct abbrev_info *) bfd_zalloc (abfd, amt);
1069 if (cur_abbrev == NULL)
1070 goto fail;
1071
1072 /* Read in abbrev header. */
1073 cur_abbrev->number = abbrev_number;
1074 cur_abbrev->tag = (enum dwarf_tag)
1075 _bfd_safe_read_leb128 (abfd, &abbrev_ptr,
1076 false, abbrev_end);
1077 cur_abbrev->has_children = read_1_byte (abfd, &abbrev_ptr, abbrev_end);
1078
1079 /* Now read in declarations. */
1080 for (;;)
1081 {
1082 /* Initialize it just to avoid a GCC false warning. */
1083 bfd_vma implicit_const = -1;
1084
1085 abbrev_name = _bfd_safe_read_leb128 (abfd, &abbrev_ptr,
1086 false, abbrev_end);
1087 abbrev_form = _bfd_safe_read_leb128 (abfd, &abbrev_ptr,
1088 false, abbrev_end);
1089 if (abbrev_form == DW_FORM_implicit_const)
1090 implicit_const = _bfd_safe_read_leb128 (abfd, &abbrev_ptr,
1091 true, abbrev_end);
1092 if (abbrev_name == 0)
1093 break;
1094
1095 if ((cur_abbrev->num_attrs % ATTR_ALLOC_CHUNK) == 0)
1096 {
1097 struct attr_abbrev *tmp;
1098
1099 amt = cur_abbrev->num_attrs + ATTR_ALLOC_CHUNK;
1100 amt *= sizeof (struct attr_abbrev);
1101 tmp = (struct attr_abbrev *) bfd_realloc (cur_abbrev->attrs, amt);
1102 if (tmp == NULL)
1103 goto fail;
1104 cur_abbrev->attrs = tmp;
1105 }
1106
1107 cur_abbrev->attrs[cur_abbrev->num_attrs].name
1108 = (enum dwarf_attribute) abbrev_name;
1109 cur_abbrev->attrs[cur_abbrev->num_attrs].form
1110 = (enum dwarf_form) abbrev_form;
1111 cur_abbrev->attrs[cur_abbrev->num_attrs].implicit_const
1112 = implicit_const;
1113 ++cur_abbrev->num_attrs;
1114 }
1115
1116 hash_number = abbrev_number % ABBREV_HASH_SIZE;
1117 cur_abbrev->next = abbrevs[hash_number];
1118 abbrevs[hash_number] = cur_abbrev;
1119
1120 /* Get next abbreviation.
1121 Under Irix6 the abbreviations for a compilation unit are not
1122 always properly terminated with an abbrev number of 0.
1123 Exit loop if we encounter an abbreviation which we have
1124 already read (which means we are about to read the abbreviations
1125 for the next compile unit) or if the end of the abbreviation
1126 table is reached. */
1127 if ((size_t) (abbrev_ptr - file->dwarf_abbrev_buffer)
1128 >= file->dwarf_abbrev_size)
1129 break;
1130 abbrev_number = _bfd_safe_read_leb128 (abfd, &abbrev_ptr,
1131 false, abbrev_end);
1132 if (lookup_abbrev (abbrev_number, abbrevs) != NULL)
1133 break;
1134 }
1135
1136 *slot = bfd_malloc (sizeof ent);
1137 if (!*slot)
1138 goto fail;
1139 ent.abbrevs = abbrevs;
1140 memcpy (*slot, &ent, sizeof ent);
1141 return abbrevs;
1142
1143 fail:
1144 if (abbrevs != NULL)
1145 {
1146 size_t i;
1147
1148 for (i = 0; i < ABBREV_HASH_SIZE; i++)
1149 {
1150 struct abbrev_info *abbrev = abbrevs[i];
1151
1152 while (abbrev)
1153 {
1154 free (abbrev->attrs);
1155 abbrev = abbrev->next;
1156 }
1157 }
1158 free (abbrevs);
1159 }
1160 return NULL;
1161 }
1162
1163 /* Returns true if the form is one which has a string value. */
1164
1165 static bool
1166 is_str_form (const struct attribute *attr)
1167 {
1168 switch (attr->form)
1169 {
1170 case DW_FORM_string:
1171 case DW_FORM_strp:
1172 case DW_FORM_strx:
1173 case DW_FORM_strx1:
1174 case DW_FORM_strx2:
1175 case DW_FORM_strx3:
1176 case DW_FORM_strx4:
1177 case DW_FORM_line_strp:
1178 case DW_FORM_GNU_strp_alt:
1179 return true;
1180
1181 default:
1182 return false;
1183 }
1184 }
1185
1186 /* Returns true if the form is one which has an integer value. */
1187
1188 static bool
1189 is_int_form (const struct attribute *attr)
1190 {
1191 switch (attr->form)
1192 {
1193 case DW_FORM_addr:
1194 case DW_FORM_data2:
1195 case DW_FORM_data4:
1196 case DW_FORM_data8:
1197 case DW_FORM_data1:
1198 case DW_FORM_flag:
1199 case DW_FORM_sdata:
1200 case DW_FORM_udata:
1201 case DW_FORM_ref_addr:
1202 case DW_FORM_ref1:
1203 case DW_FORM_ref2:
1204 case DW_FORM_ref4:
1205 case DW_FORM_ref8:
1206 case DW_FORM_ref_udata:
1207 case DW_FORM_sec_offset:
1208 case DW_FORM_flag_present:
1209 case DW_FORM_ref_sig8:
1210 case DW_FORM_addrx:
1211 case DW_FORM_implicit_const:
1212 case DW_FORM_addrx1:
1213 case DW_FORM_addrx2:
1214 case DW_FORM_addrx3:
1215 case DW_FORM_addrx4:
1216 case DW_FORM_GNU_ref_alt:
1217 return true;
1218
1219 default:
1220 return false;
1221 }
1222 }
1223
1224 static const char *
1225 read_indexed_string (bfd_uint64_t idx ATTRIBUTE_UNUSED,
1226 struct comp_unit * unit ATTRIBUTE_UNUSED)
1227 {
1228 /* FIXME: Add support for indexed strings. */
1229 return "<indexed strings not yet supported>";
1230 }
1231
1232 /* Read and fill in the value of attribute ATTR as described by FORM.
1233 Read data starting from INFO_PTR, but never at or beyond INFO_PTR_END.
1234 Returns an updated INFO_PTR taking into account the amount of data read. */
1235
1236 static bfd_byte *
1237 read_attribute_value (struct attribute * attr,
1238 unsigned form,
1239 bfd_vma implicit_const,
1240 struct comp_unit * unit,
1241 bfd_byte * info_ptr,
1242 bfd_byte * info_ptr_end)
1243 {
1244 bfd *abfd = unit->abfd;
1245 size_t amt;
1246
1247 if (info_ptr >= info_ptr_end && form != DW_FORM_flag_present)
1248 {
1249 _bfd_error_handler (_("DWARF error: info pointer extends beyond end of attributes"));
1250 bfd_set_error (bfd_error_bad_value);
1251 return NULL;
1252 }
1253
1254 attr->form = (enum dwarf_form) form;
1255
1256 switch (form)
1257 {
1258 case DW_FORM_flag_present:
1259 attr->u.val = 1;
1260 break;
1261 case DW_FORM_ref_addr:
1262 /* DW_FORM_ref_addr is an address in DWARF2, and an offset in
1263 DWARF3. */
1264 if (unit->version >= 3)
1265 {
1266 if (unit->offset_size == 4)
1267 attr->u.val = read_4_bytes (unit->abfd, &info_ptr, info_ptr_end);
1268 else
1269 attr->u.val = read_8_bytes (unit->abfd, &info_ptr, info_ptr_end);
1270 break;
1271 }
1272 /* FALLTHROUGH */
1273 case DW_FORM_addr:
1274 attr->u.val = read_address (unit, &info_ptr, info_ptr_end);
1275 break;
1276 case DW_FORM_GNU_ref_alt:
1277 case DW_FORM_sec_offset:
1278 if (unit->offset_size == 4)
1279 attr->u.val = read_4_bytes (unit->abfd, &info_ptr, info_ptr_end);
1280 else
1281 attr->u.val = read_8_bytes (unit->abfd, &info_ptr, info_ptr_end);
1282 break;
1283 case DW_FORM_block2:
1284 amt = read_2_bytes (abfd, &info_ptr, info_ptr_end);
1285 attr->u.blk = read_blk (abfd, &info_ptr, info_ptr_end, amt);
1286 if (attr->u.blk == NULL)
1287 return NULL;
1288 break;
1289 case DW_FORM_block4:
1290 amt = read_4_bytes (abfd, &info_ptr, info_ptr_end);
1291 attr->u.blk = read_blk (abfd, &info_ptr, info_ptr_end, amt);
1292 if (attr->u.blk == NULL)
1293 return NULL;
1294 break;
1295 case DW_FORM_ref1:
1296 case DW_FORM_flag:
1297 case DW_FORM_data1:
1298 case DW_FORM_addrx1:
1299 attr->u.val = read_1_byte (abfd, &info_ptr, info_ptr_end);
1300 break;
1301 case DW_FORM_data2:
1302 case DW_FORM_addrx2:
1303 case DW_FORM_ref2:
1304 attr->u.val = read_2_bytes (abfd, &info_ptr, info_ptr_end);
1305 break;
1306 case DW_FORM_addrx3:
1307 attr->u.val = read_3_bytes (abfd, &info_ptr, info_ptr_end);
1308 break;
1309 case DW_FORM_ref4:
1310 case DW_FORM_data4:
1311 case DW_FORM_addrx4:
1312 attr->u.val = read_4_bytes (abfd, &info_ptr, info_ptr_end);
1313 break;
1314 case DW_FORM_data8:
1315 case DW_FORM_ref8:
1316 case DW_FORM_ref_sig8:
1317 attr->u.val = read_8_bytes (abfd, &info_ptr, info_ptr_end);
1318 break;
1319 case DW_FORM_string:
1320 attr->u.str = read_string (&info_ptr, info_ptr_end);
1321 break;
1322 case DW_FORM_strp:
1323 attr->u.str = read_indirect_string (unit, &info_ptr, info_ptr_end);
1324 break;
1325 case DW_FORM_line_strp:
1326 attr->u.str = read_indirect_line_string (unit, &info_ptr, info_ptr_end);
1327 break;
1328 case DW_FORM_GNU_strp_alt:
1329 attr->u.str = read_alt_indirect_string (unit, &info_ptr, info_ptr_end);
1330 break;
1331 case DW_FORM_strx1:
1332 attr->u.val = read_1_byte (abfd, &info_ptr, info_ptr_end);
1333 attr->u.str = (char *) read_indexed_string (attr->u.val, unit);
1334 break;
1335 case DW_FORM_strx2:
1336 attr->u.val = read_2_bytes (abfd, &info_ptr, info_ptr_end);
1337 attr->u.str = (char *) read_indexed_string (attr->u.val, unit);
1338 break;
1339 case DW_FORM_strx3:
1340 attr->u.val = read_3_bytes (abfd, &info_ptr, info_ptr_end);
1341 attr->u.str = (char *) read_indexed_string (attr->u.val, unit);
1342 break;
1343 case DW_FORM_strx4:
1344 attr->u.val = read_4_bytes (abfd, &info_ptr, info_ptr_end);
1345 attr->u.str = (char *) read_indexed_string (attr->u.val, unit);
1346 break;
1347 case DW_FORM_strx:
1348 attr->u.val = _bfd_safe_read_leb128 (abfd, &info_ptr,
1349 false, info_ptr_end);
1350 attr->u.str = (char *) read_indexed_string (attr->u.val, unit);
1351 break;
1352 case DW_FORM_exprloc:
1353 case DW_FORM_block:
1354 amt = _bfd_safe_read_leb128 (abfd, &info_ptr,
1355 false, info_ptr_end);
1356 attr->u.blk = read_blk (abfd, &info_ptr, info_ptr_end, amt);
1357 if (attr->u.blk == NULL)
1358 return NULL;
1359 break;
1360 case DW_FORM_block1:
1361 amt = read_1_byte (abfd, &info_ptr, info_ptr_end);
1362 attr->u.blk = read_blk (abfd, &info_ptr, info_ptr_end, amt);
1363 if (attr->u.blk == NULL)
1364 return NULL;
1365 break;
1366 case DW_FORM_sdata:
1367 attr->u.sval = _bfd_safe_read_leb128 (abfd, &info_ptr,
1368 true, info_ptr_end);
1369 break;
1370 case DW_FORM_ref_udata:
1371 case DW_FORM_udata:
1372 case DW_FORM_addrx:
1373 attr->u.val = _bfd_safe_read_leb128 (abfd, &info_ptr,
1374 false, info_ptr_end);
1375 break;
1376 case DW_FORM_indirect:
1377 form = _bfd_safe_read_leb128 (abfd, &info_ptr,
1378 false, info_ptr_end);
1379 if (form == DW_FORM_implicit_const)
1380 implicit_const = _bfd_safe_read_leb128 (abfd, &info_ptr,
1381 true, info_ptr_end);
1382 info_ptr = read_attribute_value (attr, form, implicit_const, unit,
1383 info_ptr, info_ptr_end);
1384 break;
1385 case DW_FORM_implicit_const:
1386 attr->form = DW_FORM_sdata;
1387 attr->u.sval = implicit_const;
1388 break;
1389 case DW_FORM_data16:
1390 /* This is really a "constant", but there is no way to store that
1391 so pretend it is a 16 byte block instead. */
1392 attr->u.blk = read_blk (abfd, &info_ptr, info_ptr_end, 16);
1393 if (attr->u.blk == NULL)
1394 return NULL;
1395 break;
1396
1397 default:
1398 _bfd_error_handler (_("DWARF error: invalid or unhandled FORM value: %#x"),
1399 form);
1400 bfd_set_error (bfd_error_bad_value);
1401 return NULL;
1402 }
1403 return info_ptr;
1404 }
1405
1406 /* Read an attribute described by an abbreviated attribute. */
1407
1408 static bfd_byte *
1409 read_attribute (struct attribute * attr,
1410 struct attr_abbrev * abbrev,
1411 struct comp_unit * unit,
1412 bfd_byte * info_ptr,
1413 bfd_byte * info_ptr_end)
1414 {
1415 attr->name = abbrev->name;
1416 info_ptr = read_attribute_value (attr, abbrev->form, abbrev->implicit_const,
1417 unit, info_ptr, info_ptr_end);
1418 return info_ptr;
1419 }
1420
1421 /* Return whether DW_AT_name will return the same as DW_AT_linkage_name
1422 for a function. */
1423
1424 static bool
1425 non_mangled (int lang)
1426 {
1427 switch (lang)
1428 {
1429 default:
1430 return false;
1431
1432 case DW_LANG_C89:
1433 case DW_LANG_C:
1434 case DW_LANG_Ada83:
1435 case DW_LANG_Cobol74:
1436 case DW_LANG_Cobol85:
1437 case DW_LANG_Fortran77:
1438 case DW_LANG_Pascal83:
1439 case DW_LANG_C99:
1440 case DW_LANG_Ada95:
1441 case DW_LANG_PLI:
1442 case DW_LANG_UPC:
1443 case DW_LANG_C11:
1444 case DW_LANG_Mips_Assembler:
1445 return true;
1446 }
1447 }
1448
1449 /* Source line information table routines. */
1450
1451 #define FILE_ALLOC_CHUNK 5
1452 #define DIR_ALLOC_CHUNK 5
1453
1454 struct line_info
1455 {
1456 struct line_info * prev_line;
1457 bfd_vma address;
1458 char * filename;
1459 unsigned int line;
1460 unsigned int column;
1461 unsigned int discriminator;
1462 unsigned char op_index;
1463 unsigned char end_sequence; /* End of (sequential) code sequence. */
1464 };
1465
1466 struct fileinfo
1467 {
1468 char * name;
1469 unsigned int dir;
1470 unsigned int time;
1471 unsigned int size;
1472 };
1473
1474 struct line_sequence
1475 {
1476 bfd_vma low_pc;
1477 struct line_sequence* prev_sequence;
1478 struct line_info* last_line; /* Largest VMA. */
1479 struct line_info** line_info_lookup;
1480 bfd_size_type num_lines;
1481 };
1482
1483 struct line_info_table
1484 {
1485 bfd * abfd;
1486 unsigned int num_files;
1487 unsigned int num_dirs;
1488 unsigned int num_sequences;
1489 char * comp_dir;
1490 char ** dirs;
1491 struct fileinfo* files;
1492 struct line_sequence* sequences;
1493 struct line_info* lcl_head; /* Local head; used in 'add_line_info'. */
1494 };
1495
1496 /* Remember some information about each function. If the function is
1497 inlined (DW_TAG_inlined_subroutine) it may have two additional
1498 attributes, DW_AT_call_file and DW_AT_call_line, which specify the
1499 source code location where this function was inlined. */
1500
1501 struct funcinfo
1502 {
1503 /* Pointer to previous function in list of all functions. */
1504 struct funcinfo * prev_func;
1505 /* Pointer to function one scope higher. */
1506 struct funcinfo * caller_func;
1507 /* Source location file name where caller_func inlines this func. */
1508 char * caller_file;
1509 /* Source location file name. */
1510 char * file;
1511 /* Source location line number where caller_func inlines this func. */
1512 int caller_line;
1513 /* Source location line number. */
1514 int line;
1515 int tag;
1516 bool is_linkage;
1517 const char * name;
1518 struct arange arange;
1519 /* Where the symbol is defined. */
1520 asection * sec;
1521 /* The offset of the funcinfo from the start of the unit. */
1522 bfd_uint64_t unit_offset;
1523 };
1524
1525 struct lookup_funcinfo
1526 {
1527 /* Function information corresponding to this lookup table entry. */
1528 struct funcinfo * funcinfo;
1529
1530 /* The lowest address for this specific function. */
1531 bfd_vma low_addr;
1532
1533 /* The highest address of this function before the lookup table is sorted.
1534 The highest address of all prior functions after the lookup table is
1535 sorted, which is used for binary search. */
1536 bfd_vma high_addr;
1537 /* Index of this function, used to ensure qsort is stable. */
1538 unsigned int idx;
1539 };
1540
1541 struct varinfo
1542 {
1543 /* Pointer to previous variable in list of all variables. */
1544 struct varinfo *prev_var;
1545 /* The offset of the varinfo from the start of the unit. */
1546 bfd_uint64_t unit_offset;
1547 /* Source location file name. */
1548 char *file;
1549 /* Source location line number. */
1550 int line;
1551 /* The type of this variable. */
1552 int tag;
1553 /* The name of the variable, if it has one. */
1554 char *name;
1555 /* The address of the variable. */
1556 bfd_vma addr;
1557 /* Where the symbol is defined. */
1558 asection *sec;
1559 /* Is this a stack variable? */
1560 bool stack;
1561 };
1562
1563 /* Return TRUE if NEW_LINE should sort after LINE. */
1564
1565 static inline bool
1566 new_line_sorts_after (struct line_info *new_line, struct line_info *line)
1567 {
1568 return (new_line->address > line->address
1569 || (new_line->address == line->address
1570 && new_line->op_index > line->op_index));
1571 }
1572
1573
1574 /* Adds a new entry to the line_info list in the line_info_table, ensuring
1575 that the list is sorted. Note that the line_info list is sorted from
1576 highest to lowest VMA (with possible duplicates); that is,
1577 line_info->prev_line always accesses an equal or smaller VMA. */
1578
1579 static bool
1580 add_line_info (struct line_info_table *table,
1581 bfd_vma address,
1582 unsigned char op_index,
1583 char *filename,
1584 unsigned int line,
1585 unsigned int column,
1586 unsigned int discriminator,
1587 int end_sequence)
1588 {
1589 size_t amt = sizeof (struct line_info);
1590 struct line_sequence* seq = table->sequences;
1591 struct line_info* info = (struct line_info *) bfd_alloc (table->abfd, amt);
1592
1593 if (info == NULL)
1594 return false;
1595
1596 /* Set member data of 'info'. */
1597 info->prev_line = NULL;
1598 info->address = address;
1599 info->op_index = op_index;
1600 info->line = line;
1601 info->column = column;
1602 info->discriminator = discriminator;
1603 info->end_sequence = end_sequence;
1604
1605 if (filename && filename[0])
1606 {
1607 info->filename = (char *) bfd_alloc (table->abfd, strlen (filename) + 1);
1608 if (info->filename == NULL)
1609 return false;
1610 strcpy (info->filename, filename);
1611 }
1612 else
1613 info->filename = NULL;
1614
1615 /* Find the correct location for 'info'. Normally we will receive
1616 new line_info data 1) in order and 2) with increasing VMAs.
1617 However some compilers break the rules (cf. decode_line_info) and
1618 so we include some heuristics for quickly finding the correct
1619 location for 'info'. In particular, these heuristics optimize for
1620 the common case in which the VMA sequence that we receive is a
1621 list of locally sorted VMAs such as
1622 p...z a...j (where a < j < p < z)
1623
1624 Note: table->lcl_head is used to head an *actual* or *possible*
1625 sub-sequence within the list (such as a...j) that is not directly
1626 headed by table->last_line
1627
1628 Note: we may receive duplicate entries from 'decode_line_info'. */
1629
1630 if (seq
1631 && seq->last_line->address == address
1632 && seq->last_line->op_index == op_index
1633 && seq->last_line->end_sequence == end_sequence)
1634 {
1635 /* We only keep the last entry with the same address and end
1636 sequence. See PR ld/4986. */
1637 if (table->lcl_head == seq->last_line)
1638 table->lcl_head = info;
1639 info->prev_line = seq->last_line->prev_line;
1640 seq->last_line = info;
1641 }
1642 else if (!seq || seq->last_line->end_sequence)
1643 {
1644 /* Start a new line sequence. */
1645 amt = sizeof (struct line_sequence);
1646 seq = (struct line_sequence *) bfd_malloc (amt);
1647 if (seq == NULL)
1648 return false;
1649 seq->low_pc = address;
1650 seq->prev_sequence = table->sequences;
1651 seq->last_line = info;
1652 table->lcl_head = info;
1653 table->sequences = seq;
1654 table->num_sequences++;
1655 }
1656 else if (info->end_sequence
1657 || new_line_sorts_after (info, seq->last_line))
1658 {
1659 /* Normal case: add 'info' to the beginning of the current sequence. */
1660 info->prev_line = seq->last_line;
1661 seq->last_line = info;
1662
1663 /* lcl_head: initialize to head a *possible* sequence at the end. */
1664 if (!table->lcl_head)
1665 table->lcl_head = info;
1666 }
1667 else if (!new_line_sorts_after (info, table->lcl_head)
1668 && (!table->lcl_head->prev_line
1669 || new_line_sorts_after (info, table->lcl_head->prev_line)))
1670 {
1671 /* Abnormal but easy: lcl_head is the head of 'info'. */
1672 info->prev_line = table->lcl_head->prev_line;
1673 table->lcl_head->prev_line = info;
1674 }
1675 else
1676 {
1677 /* Abnormal and hard: Neither 'last_line' nor 'lcl_head'
1678 are valid heads for 'info'. Reset 'lcl_head'. */
1679 struct line_info* li2 = seq->last_line; /* Always non-NULL. */
1680 struct line_info* li1 = li2->prev_line;
1681
1682 while (li1)
1683 {
1684 if (!new_line_sorts_after (info, li2)
1685 && new_line_sorts_after (info, li1))
1686 break;
1687
1688 li2 = li1; /* always non-NULL */
1689 li1 = li1->prev_line;
1690 }
1691 table->lcl_head = li2;
1692 info->prev_line = table->lcl_head->prev_line;
1693 table->lcl_head->prev_line = info;
1694 if (address < seq->low_pc)
1695 seq->low_pc = address;
1696 }
1697 return true;
1698 }
1699
1700 /* Extract a fully qualified filename from a line info table.
1701 The returned string has been malloc'ed and it is the caller's
1702 responsibility to free it. */
1703
1704 static char *
1705 concat_filename (struct line_info_table *table, unsigned int file)
1706 {
1707 char *filename;
1708
1709 if (table == NULL || file - 1 >= table->num_files)
1710 {
1711 /* FILE == 0 means unknown. */
1712 if (file)
1713 _bfd_error_handler
1714 (_("DWARF error: mangled line number section (bad file number)"));
1715 return strdup ("<unknown>");
1716 }
1717
1718 filename = table->files[file - 1].name;
1719 if (filename == NULL)
1720 return strdup ("<unknown>");
1721
1722 if (!IS_ABSOLUTE_PATH (filename))
1723 {
1724 char *dir_name = NULL;
1725 char *subdir_name = NULL;
1726 char *name;
1727 size_t len;
1728
1729 if (table->files[file - 1].dir
1730 /* PR 17512: file: 0317e960. */
1731 && table->files[file - 1].dir <= table->num_dirs
1732 /* PR 17512: file: 7f3d2e4b. */
1733 && table->dirs != NULL)
1734 subdir_name = table->dirs[table->files[file - 1].dir - 1];
1735
1736 if (!subdir_name || !IS_ABSOLUTE_PATH (subdir_name))
1737 dir_name = table->comp_dir;
1738
1739 if (!dir_name)
1740 {
1741 dir_name = subdir_name;
1742 subdir_name = NULL;
1743 }
1744
1745 if (!dir_name)
1746 return strdup (filename);
1747
1748 len = strlen (dir_name) + strlen (filename) + 2;
1749
1750 if (subdir_name)
1751 {
1752 len += strlen (subdir_name) + 1;
1753 name = (char *) bfd_malloc (len);
1754 if (name)
1755 sprintf (name, "%s/%s/%s", dir_name, subdir_name, filename);
1756 }
1757 else
1758 {
1759 name = (char *) bfd_malloc (len);
1760 if (name)
1761 sprintf (name, "%s/%s", dir_name, filename);
1762 }
1763
1764 return name;
1765 }
1766
1767 return strdup (filename);
1768 }
1769
1770 static bool
1771 arange_add (const struct comp_unit *unit, struct arange *first_arange,
1772 bfd_vma low_pc, bfd_vma high_pc)
1773 {
1774 struct arange *arange;
1775
1776 /* Ignore empty ranges. */
1777 if (low_pc == high_pc)
1778 return true;
1779
1780 /* If the first arange is empty, use it. */
1781 if (first_arange->high == 0)
1782 {
1783 first_arange->low = low_pc;
1784 first_arange->high = high_pc;
1785 return true;
1786 }
1787
1788 /* Next see if we can cheaply extend an existing range. */
1789 arange = first_arange;
1790 do
1791 {
1792 if (low_pc == arange->high)
1793 {
1794 arange->high = high_pc;
1795 return true;
1796 }
1797 if (high_pc == arange->low)
1798 {
1799 arange->low = low_pc;
1800 return true;
1801 }
1802 arange = arange->next;
1803 }
1804 while (arange);
1805
1806 /* Need to allocate a new arange and insert it into the arange list.
1807 Order isn't significant, so just insert after the first arange. */
1808 arange = (struct arange *) bfd_alloc (unit->abfd, sizeof (*arange));
1809 if (arange == NULL)
1810 return false;
1811 arange->low = low_pc;
1812 arange->high = high_pc;
1813 arange->next = first_arange->next;
1814 first_arange->next = arange;
1815 return true;
1816 }
1817
1818 /* Compare function for line sequences. */
1819
1820 static int
1821 compare_sequences (const void* a, const void* b)
1822 {
1823 const struct line_sequence* seq1 = a;
1824 const struct line_sequence* seq2 = b;
1825
1826 /* Sort by low_pc as the primary key. */
1827 if (seq1->low_pc < seq2->low_pc)
1828 return -1;
1829 if (seq1->low_pc > seq2->low_pc)
1830 return 1;
1831
1832 /* If low_pc values are equal, sort in reverse order of
1833 high_pc, so that the largest region comes first. */
1834 if (seq1->last_line->address < seq2->last_line->address)
1835 return 1;
1836 if (seq1->last_line->address > seq2->last_line->address)
1837 return -1;
1838
1839 if (seq1->last_line->op_index < seq2->last_line->op_index)
1840 return 1;
1841 if (seq1->last_line->op_index > seq2->last_line->op_index)
1842 return -1;
1843
1844 /* num_lines is initially an index, to make the sort stable. */
1845 if (seq1->num_lines < seq2->num_lines)
1846 return -1;
1847 if (seq1->num_lines > seq2->num_lines)
1848 return 1;
1849 return 0;
1850 }
1851
1852 /* Construct the line information table for quick lookup. */
1853
1854 static bool
1855 build_line_info_table (struct line_info_table * table,
1856 struct line_sequence * seq)
1857 {
1858 size_t amt;
1859 struct line_info **line_info_lookup;
1860 struct line_info *each_line;
1861 unsigned int num_lines;
1862 unsigned int line_index;
1863
1864 if (seq->line_info_lookup != NULL)
1865 return true;
1866
1867 /* Count the number of line information entries. We could do this while
1868 scanning the debug information, but some entries may be added via
1869 lcl_head without having a sequence handy to increment the number of
1870 lines. */
1871 num_lines = 0;
1872 for (each_line = seq->last_line; each_line; each_line = each_line->prev_line)
1873 num_lines++;
1874
1875 seq->num_lines = num_lines;
1876 if (num_lines == 0)
1877 return true;
1878
1879 /* Allocate space for the line information lookup table. */
1880 amt = sizeof (struct line_info*) * num_lines;
1881 line_info_lookup = (struct line_info**) bfd_alloc (table->abfd, amt);
1882 seq->line_info_lookup = line_info_lookup;
1883 if (line_info_lookup == NULL)
1884 return false;
1885
1886 /* Create the line information lookup table. */
1887 line_index = num_lines;
1888 for (each_line = seq->last_line; each_line; each_line = each_line->prev_line)
1889 line_info_lookup[--line_index] = each_line;
1890
1891 BFD_ASSERT (line_index == 0);
1892 return true;
1893 }
1894
1895 /* Sort the line sequences for quick lookup. */
1896
1897 static bool
1898 sort_line_sequences (struct line_info_table* table)
1899 {
1900 size_t amt;
1901 struct line_sequence *sequences;
1902 struct line_sequence *seq;
1903 unsigned int n = 0;
1904 unsigned int num_sequences = table->num_sequences;
1905 bfd_vma last_high_pc;
1906
1907 if (num_sequences == 0)
1908 return true;
1909
1910 /* Allocate space for an array of sequences. */
1911 amt = sizeof (struct line_sequence) * num_sequences;
1912 sequences = (struct line_sequence *) bfd_alloc (table->abfd, amt);
1913 if (sequences == NULL)
1914 return false;
1915
1916 /* Copy the linked list into the array, freeing the original nodes. */
1917 seq = table->sequences;
1918 for (n = 0; n < num_sequences; n++)
1919 {
1920 struct line_sequence* last_seq = seq;
1921
1922 BFD_ASSERT (seq);
1923 sequences[n].low_pc = seq->low_pc;
1924 sequences[n].prev_sequence = NULL;
1925 sequences[n].last_line = seq->last_line;
1926 sequences[n].line_info_lookup = NULL;
1927 sequences[n].num_lines = n;
1928 seq = seq->prev_sequence;
1929 free (last_seq);
1930 }
1931 BFD_ASSERT (seq == NULL);
1932
1933 qsort (sequences, n, sizeof (struct line_sequence), compare_sequences);
1934
1935 /* Make the list binary-searchable by trimming overlapping entries
1936 and removing nested entries. */
1937 num_sequences = 1;
1938 last_high_pc = sequences[0].last_line->address;
1939 for (n = 1; n < table->num_sequences; n++)
1940 {
1941 if (sequences[n].low_pc < last_high_pc)
1942 {
1943 if (sequences[n].last_line->address <= last_high_pc)
1944 /* Skip nested entries. */
1945 continue;
1946
1947 /* Trim overlapping entries. */
1948 sequences[n].low_pc = last_high_pc;
1949 }
1950 last_high_pc = sequences[n].last_line->address;
1951 if (n > num_sequences)
1952 {
1953 /* Close up the gap. */
1954 sequences[num_sequences].low_pc = sequences[n].low_pc;
1955 sequences[num_sequences].last_line = sequences[n].last_line;
1956 }
1957 num_sequences++;
1958 }
1959
1960 table->sequences = sequences;
1961 table->num_sequences = num_sequences;
1962 return true;
1963 }
1964
1965 /* Add directory to TABLE. CUR_DIR memory ownership is taken by TABLE. */
1966
1967 static bool
1968 line_info_add_include_dir (struct line_info_table *table, char *cur_dir)
1969 {
1970 if ((table->num_dirs % DIR_ALLOC_CHUNK) == 0)
1971 {
1972 char **tmp;
1973 size_t amt;
1974
1975 amt = table->num_dirs + DIR_ALLOC_CHUNK;
1976 amt *= sizeof (char *);
1977
1978 tmp = (char **) bfd_realloc (table->dirs, amt);
1979 if (tmp == NULL)
1980 return false;
1981 table->dirs = tmp;
1982 }
1983
1984 table->dirs[table->num_dirs++] = cur_dir;
1985 return true;
1986 }
1987
1988 static bool
1989 line_info_add_include_dir_stub (struct line_info_table *table, char *cur_dir,
1990 unsigned int dir ATTRIBUTE_UNUSED,
1991 unsigned int xtime ATTRIBUTE_UNUSED,
1992 unsigned int size ATTRIBUTE_UNUSED)
1993 {
1994 return line_info_add_include_dir (table, cur_dir);
1995 }
1996
1997 /* Add file to TABLE. CUR_FILE memory ownership is taken by TABLE. */
1998
1999 static bool
2000 line_info_add_file_name (struct line_info_table *table, char *cur_file,
2001 unsigned int dir, unsigned int xtime,
2002 unsigned int size)
2003 {
2004 if ((table->num_files % FILE_ALLOC_CHUNK) == 0)
2005 {
2006 struct fileinfo *tmp;
2007 size_t amt;
2008
2009 amt = table->num_files + FILE_ALLOC_CHUNK;
2010 amt *= sizeof (struct fileinfo);
2011
2012 tmp = (struct fileinfo *) bfd_realloc (table->files, amt);
2013 if (tmp == NULL)
2014 return false;
2015 table->files = tmp;
2016 }
2017
2018 table->files[table->num_files].name = cur_file;
2019 table->files[table->num_files].dir = dir;
2020 table->files[table->num_files].time = xtime;
2021 table->files[table->num_files].size = size;
2022 table->num_files++;
2023 return true;
2024 }
2025
2026 /* Read directory or file name entry format, starting with byte of
2027 format count entries, ULEB128 pairs of entry formats, ULEB128 of
2028 entries count and the entries themselves in the described entry
2029 format. */
2030
2031 static bool
2032 read_formatted_entries (struct comp_unit *unit, bfd_byte **bufp,
2033 bfd_byte *buf_end, struct line_info_table *table,
2034 bool (*callback) (struct line_info_table *table,
2035 char *cur_file,
2036 unsigned int dir,
2037 unsigned int time,
2038 unsigned int size))
2039 {
2040 bfd *abfd = unit->abfd;
2041 bfd_byte format_count, formati;
2042 bfd_vma data_count, datai;
2043 bfd_byte *buf = *bufp;
2044 bfd_byte *format_header_data;
2045
2046 format_count = read_1_byte (abfd, &buf, buf_end);
2047 format_header_data = buf;
2048 for (formati = 0; formati < format_count; formati++)
2049 {
2050 _bfd_safe_read_leb128 (abfd, &buf, false, buf_end);
2051 _bfd_safe_read_leb128 (abfd, &buf, false, buf_end);
2052 }
2053
2054 data_count = _bfd_safe_read_leb128 (abfd, &buf, false, buf_end);
2055 if (format_count == 0 && data_count != 0)
2056 {
2057 _bfd_error_handler (_("DWARF error: zero format count"));
2058 bfd_set_error (bfd_error_bad_value);
2059 return false;
2060 }
2061
2062 /* PR 22210. Paranoia check. Don't bother running the loop
2063 if we know that we are going to run out of buffer. */
2064 if (data_count > (bfd_vma) (buf_end - buf))
2065 {
2066 _bfd_error_handler
2067 (_("DWARF error: data count (%" PRIx64 ") larger than buffer size"),
2068 (uint64_t) data_count);
2069 bfd_set_error (bfd_error_bad_value);
2070 return false;
2071 }
2072
2073 for (datai = 0; datai < data_count; datai++)
2074 {
2075 bfd_byte *format = format_header_data;
2076 struct fileinfo fe;
2077
2078 memset (&fe, 0, sizeof fe);
2079 for (formati = 0; formati < format_count; formati++)
2080 {
2081 bfd_vma content_type, form;
2082 char *string_trash;
2083 char **stringp = &string_trash;
2084 unsigned int uint_trash, *uintp = &uint_trash;
2085 struct attribute attr;
2086
2087 content_type = _bfd_safe_read_leb128 (abfd, &format, false, buf_end);
2088 switch (content_type)
2089 {
2090 case DW_LNCT_path:
2091 stringp = &fe.name;
2092 break;
2093 case DW_LNCT_directory_index:
2094 uintp = &fe.dir;
2095 break;
2096 case DW_LNCT_timestamp:
2097 uintp = &fe.time;
2098 break;
2099 case DW_LNCT_size:
2100 uintp = &fe.size;
2101 break;
2102 case DW_LNCT_MD5:
2103 break;
2104 default:
2105 _bfd_error_handler
2106 (_("DWARF error: unknown format content type %" PRIu64),
2107 (uint64_t) content_type);
2108 bfd_set_error (bfd_error_bad_value);
2109 return false;
2110 }
2111
2112 form = _bfd_safe_read_leb128 (abfd, &format, false, buf_end);
2113 buf = read_attribute_value (&attr, form, 0, unit, buf, buf_end);
2114 if (buf == NULL)
2115 return false;
2116 switch (form)
2117 {
2118 case DW_FORM_string:
2119 case DW_FORM_line_strp:
2120 *stringp = attr.u.str;
2121 break;
2122
2123 case DW_FORM_data1:
2124 case DW_FORM_data2:
2125 case DW_FORM_data4:
2126 case DW_FORM_data8:
2127 case DW_FORM_udata:
2128 *uintp = attr.u.val;
2129 break;
2130
2131 case DW_FORM_data16:
2132 /* MD5 data is in the attr.blk, but we are ignoring those. */
2133 break;
2134 }
2135 }
2136
2137 /* Skip the first "zero entry", which is the compilation dir/file. */
2138 if (datai != 0)
2139 if (!callback (table, fe.name, fe.dir, fe.time, fe.size))
2140 return false;
2141 }
2142
2143 *bufp = buf;
2144 return true;
2145 }
2146
2147 /* Decode the line number information for UNIT. */
2148
2149 static struct line_info_table*
2150 decode_line_info (struct comp_unit *unit)
2151 {
2152 bfd *abfd = unit->abfd;
2153 struct dwarf2_debug *stash = unit->stash;
2154 struct dwarf2_debug_file *file = unit->file;
2155 struct line_info_table* table;
2156 bfd_byte *line_ptr;
2157 bfd_byte *line_end;
2158 struct line_head lh;
2159 unsigned int i, offset_size;
2160 char *cur_file, *cur_dir;
2161 unsigned char op_code, extended_op, adj_opcode;
2162 unsigned int exop_len;
2163 size_t amt;
2164
2165 if (unit->line_offset == 0 && file->line_table)
2166 return file->line_table;
2167
2168 if (! read_section (abfd, &stash->debug_sections[debug_line],
2169 file->syms, unit->line_offset,
2170 &file->dwarf_line_buffer, &file->dwarf_line_size))
2171 return NULL;
2172
2173 if (file->dwarf_line_size < 16)
2174 {
2175 _bfd_error_handler
2176 (_("DWARF error: line info section is too small (%" PRId64 ")"),
2177 (int64_t) file->dwarf_line_size);
2178 bfd_set_error (bfd_error_bad_value);
2179 return NULL;
2180 }
2181 line_ptr = file->dwarf_line_buffer + unit->line_offset;
2182 line_end = file->dwarf_line_buffer + file->dwarf_line_size;
2183
2184 /* Read in the prologue. */
2185 lh.total_length = read_4_bytes (abfd, &line_ptr, line_end);
2186 offset_size = 4;
2187 if (lh.total_length == 0xffffffff)
2188 {
2189 lh.total_length = read_8_bytes (abfd, &line_ptr, line_end);
2190 offset_size = 8;
2191 }
2192 else if (lh.total_length == 0 && unit->addr_size == 8)
2193 {
2194 /* Handle (non-standard) 64-bit DWARF2 formats. */
2195 lh.total_length = read_4_bytes (abfd, &line_ptr, line_end);
2196 offset_size = 8;
2197 }
2198
2199 if (lh.total_length > (size_t) (line_end - line_ptr))
2200 {
2201 _bfd_error_handler
2202 /* xgettext: c-format */
2203 (_("DWARF error: line info data is bigger (%#" PRIx64 ")"
2204 " than the space remaining in the section (%#lx)"),
2205 (uint64_t) lh.total_length, (unsigned long) (line_end - line_ptr));
2206 bfd_set_error (bfd_error_bad_value);
2207 return NULL;
2208 }
2209
2210 line_end = line_ptr + lh.total_length;
2211
2212 lh.version = read_2_bytes (abfd, &line_ptr, line_end);
2213 if (lh.version < 2 || lh.version > 5)
2214 {
2215 _bfd_error_handler
2216 (_("DWARF error: unhandled .debug_line version %d"), lh.version);
2217 bfd_set_error (bfd_error_bad_value);
2218 return NULL;
2219 }
2220
2221 if (line_ptr + offset_size + (lh.version >= 5 ? 8 : (lh.version >= 4 ? 6 : 5))
2222 >= line_end)
2223 {
2224 _bfd_error_handler
2225 (_("DWARF error: ran out of room reading prologue"));
2226 bfd_set_error (bfd_error_bad_value);
2227 return NULL;
2228 }
2229
2230 if (lh.version >= 5)
2231 {
2232 unsigned int segment_selector_size;
2233
2234 /* Skip address size. */
2235 read_1_byte (abfd, &line_ptr, line_end);
2236
2237 segment_selector_size = read_1_byte (abfd, &line_ptr, line_end);
2238 if (segment_selector_size != 0)
2239 {
2240 _bfd_error_handler
2241 (_("DWARF error: line info unsupported segment selector size %u"),
2242 segment_selector_size);
2243 bfd_set_error (bfd_error_bad_value);
2244 return NULL;
2245 }
2246 }
2247
2248 if (offset_size == 4)
2249 lh.prologue_length = read_4_bytes (abfd, &line_ptr, line_end);
2250 else
2251 lh.prologue_length = read_8_bytes (abfd, &line_ptr, line_end);
2252
2253 lh.minimum_instruction_length = read_1_byte (abfd, &line_ptr, line_end);
2254
2255 if (lh.version >= 4)
2256 lh.maximum_ops_per_insn = read_1_byte (abfd, &line_ptr, line_end);
2257 else
2258 lh.maximum_ops_per_insn = 1;
2259
2260 if (lh.maximum_ops_per_insn == 0)
2261 {
2262 _bfd_error_handler
2263 (_("DWARF error: invalid maximum operations per instruction"));
2264 bfd_set_error (bfd_error_bad_value);
2265 return NULL;
2266 }
2267
2268 lh.default_is_stmt = read_1_byte (abfd, &line_ptr, line_end);
2269 lh.line_base = read_1_signed_byte (abfd, &line_ptr, line_end);
2270 lh.line_range = read_1_byte (abfd, &line_ptr, line_end);
2271 lh.opcode_base = read_1_byte (abfd, &line_ptr, line_end);
2272
2273 if (line_ptr + (lh.opcode_base - 1) >= line_end)
2274 {
2275 _bfd_error_handler (_("DWARF error: ran out of room reading opcodes"));
2276 bfd_set_error (bfd_error_bad_value);
2277 return NULL;
2278 }
2279
2280 amt = lh.opcode_base * sizeof (unsigned char);
2281 lh.standard_opcode_lengths = (unsigned char *) bfd_alloc (abfd, amt);
2282
2283 lh.standard_opcode_lengths[0] = 1;
2284
2285 for (i = 1; i < lh.opcode_base; ++i)
2286 lh.standard_opcode_lengths[i] = read_1_byte (abfd, &line_ptr, line_end);
2287
2288 amt = sizeof (struct line_info_table);
2289 table = (struct line_info_table *) bfd_alloc (abfd, amt);
2290 if (table == NULL)
2291 return NULL;
2292 table->abfd = abfd;
2293 table->comp_dir = unit->comp_dir;
2294
2295 table->num_files = 0;
2296 table->files = NULL;
2297
2298 table->num_dirs = 0;
2299 table->dirs = NULL;
2300
2301 table->num_sequences = 0;
2302 table->sequences = NULL;
2303
2304 table->lcl_head = NULL;
2305
2306 if (lh.version >= 5)
2307 {
2308 /* Read directory table. */
2309 if (!read_formatted_entries (unit, &line_ptr, line_end, table,
2310 line_info_add_include_dir_stub))
2311 goto fail;
2312
2313 /* Read file name table. */
2314 if (!read_formatted_entries (unit, &line_ptr, line_end, table,
2315 line_info_add_file_name))
2316 goto fail;
2317 }
2318 else
2319 {
2320 /* Read directory table. */
2321 while ((cur_dir = read_string (&line_ptr, line_end)) != NULL)
2322 {
2323 if (!line_info_add_include_dir (table, cur_dir))
2324 goto fail;
2325 }
2326
2327 /* Read file name table. */
2328 while ((cur_file = read_string (&line_ptr, line_end)) != NULL)
2329 {
2330 unsigned int dir, xtime, size;
2331
2332 dir = _bfd_safe_read_leb128 (abfd, &line_ptr, false, line_end);
2333 xtime = _bfd_safe_read_leb128 (abfd, &line_ptr, false, line_end);
2334 size = _bfd_safe_read_leb128 (abfd, &line_ptr, false, line_end);
2335
2336 if (!line_info_add_file_name (table, cur_file, dir, xtime, size))
2337 goto fail;
2338 }
2339 }
2340
2341 /* Read the statement sequences until there's nothing left. */
2342 while (line_ptr < line_end)
2343 {
2344 /* State machine registers. */
2345 bfd_vma address = 0;
2346 unsigned char op_index = 0;
2347 char * filename = table->num_files ? concat_filename (table, 1) : NULL;
2348 unsigned int line = 1;
2349 unsigned int column = 0;
2350 unsigned int discriminator = 0;
2351 int is_stmt = lh.default_is_stmt;
2352 int end_sequence = 0;
2353 unsigned int dir, xtime, size;
2354 /* eraxxon@alumni.rice.edu: Against the DWARF2 specs, some
2355 compilers generate address sequences that are wildly out of
2356 order using DW_LNE_set_address (e.g. Intel C++ 6.0 compiler
2357 for ia64-Linux). Thus, to determine the low and high
2358 address, we must compare on every DW_LNS_copy, etc. */
2359 bfd_vma low_pc = (bfd_vma) -1;
2360 bfd_vma high_pc = 0;
2361
2362 /* Decode the table. */
2363 while (!end_sequence && line_ptr < line_end)
2364 {
2365 op_code = read_1_byte (abfd, &line_ptr, line_end);
2366
2367 if (op_code >= lh.opcode_base)
2368 {
2369 /* Special operand. */
2370 adj_opcode = op_code - lh.opcode_base;
2371 if (lh.line_range == 0)
2372 goto line_fail;
2373 if (lh.maximum_ops_per_insn == 1)
2374 address += (adj_opcode / lh.line_range
2375 * lh.minimum_instruction_length);
2376 else
2377 {
2378 address += ((op_index + adj_opcode / lh.line_range)
2379 / lh.maximum_ops_per_insn
2380 * lh.minimum_instruction_length);
2381 op_index = ((op_index + adj_opcode / lh.line_range)
2382 % lh.maximum_ops_per_insn);
2383 }
2384 line += lh.line_base + (adj_opcode % lh.line_range);
2385 /* Append row to matrix using current values. */
2386 if (!add_line_info (table, address, op_index, filename,
2387 line, column, discriminator, 0))
2388 goto line_fail;
2389 discriminator = 0;
2390 if (address < low_pc)
2391 low_pc = address;
2392 if (address > high_pc)
2393 high_pc = address;
2394 }
2395 else switch (op_code)
2396 {
2397 case DW_LNS_extended_op:
2398 exop_len = _bfd_safe_read_leb128 (abfd, &line_ptr,
2399 false, line_end);
2400 extended_op = read_1_byte (abfd, &line_ptr, line_end);
2401
2402 switch (extended_op)
2403 {
2404 case DW_LNE_end_sequence:
2405 end_sequence = 1;
2406 if (!add_line_info (table, address, op_index, filename, line,
2407 column, discriminator, end_sequence))
2408 goto line_fail;
2409 discriminator = 0;
2410 if (address < low_pc)
2411 low_pc = address;
2412 if (address > high_pc)
2413 high_pc = address;
2414 if (!arange_add (unit, &unit->arange, low_pc, high_pc))
2415 goto line_fail;
2416 break;
2417 case DW_LNE_set_address:
2418 address = read_address (unit, &line_ptr, line_end);
2419 op_index = 0;
2420 break;
2421 case DW_LNE_define_file:
2422 cur_file = read_string (&line_ptr, line_end);
2423 dir = _bfd_safe_read_leb128 (abfd, &line_ptr,
2424 false, line_end);
2425 xtime = _bfd_safe_read_leb128 (abfd, &line_ptr,
2426 false, line_end);
2427 size = _bfd_safe_read_leb128 (abfd, &line_ptr,
2428 false, line_end);
2429 if (!line_info_add_file_name (table, cur_file, dir,
2430 xtime, size))
2431 goto line_fail;
2432 break;
2433 case DW_LNE_set_discriminator:
2434 discriminator =
2435 _bfd_safe_read_leb128 (abfd, &line_ptr,
2436 false, line_end);
2437 break;
2438 case DW_LNE_HP_source_file_correlation:
2439 line_ptr += exop_len - 1;
2440 break;
2441 default:
2442 _bfd_error_handler
2443 (_("DWARF error: mangled line number section"));
2444 bfd_set_error (bfd_error_bad_value);
2445 line_fail:
2446 free (filename);
2447 goto fail;
2448 }
2449 break;
2450 case DW_LNS_copy:
2451 if (!add_line_info (table, address, op_index,
2452 filename, line, column, discriminator, 0))
2453 goto line_fail;
2454 discriminator = 0;
2455 if (address < low_pc)
2456 low_pc = address;
2457 if (address > high_pc)
2458 high_pc = address;
2459 break;
2460 case DW_LNS_advance_pc:
2461 if (lh.maximum_ops_per_insn == 1)
2462 address += (lh.minimum_instruction_length
2463 * _bfd_safe_read_leb128 (abfd, &line_ptr,
2464 false, line_end));
2465 else
2466 {
2467 bfd_vma adjust = _bfd_safe_read_leb128 (abfd, &line_ptr,
2468 false, line_end);
2469 address = ((op_index + adjust) / lh.maximum_ops_per_insn
2470 * lh.minimum_instruction_length);
2471 op_index = (op_index + adjust) % lh.maximum_ops_per_insn;
2472 }
2473 break;
2474 case DW_LNS_advance_line:
2475 line += _bfd_safe_read_leb128 (abfd, &line_ptr,
2476 true, line_end);
2477 break;
2478 case DW_LNS_set_file:
2479 {
2480 unsigned int filenum;
2481
2482 /* The file and directory tables are 0
2483 based, the references are 1 based. */
2484 filenum = _bfd_safe_read_leb128 (abfd, &line_ptr,
2485 false, line_end);
2486 free (filename);
2487 filename = concat_filename (table, filenum);
2488 break;
2489 }
2490 case DW_LNS_set_column:
2491 column = _bfd_safe_read_leb128 (abfd, &line_ptr,
2492 false, line_end);
2493 break;
2494 case DW_LNS_negate_stmt:
2495 is_stmt = (!is_stmt);
2496 break;
2497 case DW_LNS_set_basic_block:
2498 break;
2499 case DW_LNS_const_add_pc:
2500 if (lh.line_range == 0)
2501 goto line_fail;
2502 if (lh.maximum_ops_per_insn == 1)
2503 address += (lh.minimum_instruction_length
2504 * ((255 - lh.opcode_base) / lh.line_range));
2505 else
2506 {
2507 bfd_vma adjust = ((255 - lh.opcode_base) / lh.line_range);
2508 address += (lh.minimum_instruction_length
2509 * ((op_index + adjust)
2510 / lh.maximum_ops_per_insn));
2511 op_index = (op_index + adjust) % lh.maximum_ops_per_insn;
2512 }
2513 break;
2514 case DW_LNS_fixed_advance_pc:
2515 address += read_2_bytes (abfd, &line_ptr, line_end);
2516 op_index = 0;
2517 break;
2518 default:
2519 /* Unknown standard opcode, ignore it. */
2520 for (i = 0; i < lh.standard_opcode_lengths[op_code]; i++)
2521 (void) _bfd_safe_read_leb128 (abfd, &line_ptr,
2522 false, line_end);
2523 break;
2524 }
2525 }
2526
2527 free (filename);
2528 }
2529
2530 if (unit->line_offset == 0)
2531 file->line_table = table;
2532 if (sort_line_sequences (table))
2533 return table;
2534
2535 fail:
2536 while (table->sequences != NULL)
2537 {
2538 struct line_sequence* seq = table->sequences;
2539 table->sequences = table->sequences->prev_sequence;
2540 free (seq);
2541 }
2542 free (table->files);
2543 free (table->dirs);
2544 return NULL;
2545 }
2546
2547 /* If ADDR is within TABLE set the output parameters and return the
2548 range of addresses covered by the entry used to fill them out.
2549 Otherwise set * FILENAME_PTR to NULL and return 0.
2550 The parameters FILENAME_PTR, LINENUMBER_PTR and DISCRIMINATOR_PTR
2551 are pointers to the objects to be filled in. */
2552
2553 static bfd_vma
2554 lookup_address_in_line_info_table (struct line_info_table *table,
2555 bfd_vma addr,
2556 const char **filename_ptr,
2557 unsigned int *linenumber_ptr,
2558 unsigned int *discriminator_ptr)
2559 {
2560 struct line_sequence *seq = NULL;
2561 struct line_info *info;
2562 int low, high, mid;
2563
2564 /* Binary search the array of sequences. */
2565 low = 0;
2566 high = table->num_sequences;
2567 while (low < high)
2568 {
2569 mid = (low + high) / 2;
2570 seq = &table->sequences[mid];
2571 if (addr < seq->low_pc)
2572 high = mid;
2573 else if (addr >= seq->last_line->address)
2574 low = mid + 1;
2575 else
2576 break;
2577 }
2578
2579 /* Check for a valid sequence. */
2580 if (!seq || addr < seq->low_pc || addr >= seq->last_line->address)
2581 goto fail;
2582
2583 if (!build_line_info_table (table, seq))
2584 goto fail;
2585
2586 /* Binary search the array of line information. */
2587 low = 0;
2588 high = seq->num_lines;
2589 info = NULL;
2590 while (low < high)
2591 {
2592 mid = (low + high) / 2;
2593 info = seq->line_info_lookup[mid];
2594 if (addr < info->address)
2595 high = mid;
2596 else if (addr >= seq->line_info_lookup[mid + 1]->address)
2597 low = mid + 1;
2598 else
2599 break;
2600 }
2601
2602 /* Check for a valid line information entry. */
2603 if (info
2604 && addr >= info->address
2605 && addr < seq->line_info_lookup[mid + 1]->address
2606 && !(info->end_sequence || info == seq->last_line))
2607 {
2608 *filename_ptr = info->filename;
2609 *linenumber_ptr = info->line;
2610 if (discriminator_ptr)
2611 *discriminator_ptr = info->discriminator;
2612 return seq->last_line->address - seq->low_pc;
2613 }
2614
2615 fail:
2616 *filename_ptr = NULL;
2617 return 0;
2618 }
2619
2620 /* Read in the .debug_ranges section for future reference. */
2621
2622 static bool
2623 read_debug_ranges (struct comp_unit * unit)
2624 {
2625 struct dwarf2_debug *stash = unit->stash;
2626 struct dwarf2_debug_file *file = unit->file;
2627
2628 return read_section (unit->abfd, &stash->debug_sections[debug_ranges],
2629 file->syms, 0,
2630 &file->dwarf_ranges_buffer, &file->dwarf_ranges_size);
2631 }
2632
2633 /* Read in the .debug_rnglists section for future reference. */
2634
2635 static bool
2636 read_debug_rnglists (struct comp_unit * unit)
2637 {
2638 struct dwarf2_debug *stash = unit->stash;
2639 struct dwarf2_debug_file *file = unit->file;
2640
2641 return read_section (unit->abfd, &stash->debug_sections[debug_rnglists],
2642 file->syms, 0,
2643 &file->dwarf_rnglists_buffer, &file->dwarf_rnglists_size);
2644 }
2645
2646 /* Function table functions. */
2647
2648 static int
2649 compare_lookup_funcinfos (const void * a, const void * b)
2650 {
2651 const struct lookup_funcinfo * lookup1 = a;
2652 const struct lookup_funcinfo * lookup2 = b;
2653
2654 if (lookup1->low_addr < lookup2->low_addr)
2655 return -1;
2656 if (lookup1->low_addr > lookup2->low_addr)
2657 return 1;
2658 if (lookup1->high_addr < lookup2->high_addr)
2659 return -1;
2660 if (lookup1->high_addr > lookup2->high_addr)
2661 return 1;
2662
2663 if (lookup1->idx < lookup2->idx)
2664 return -1;
2665 if (lookup1->idx > lookup2->idx)
2666 return 1;
2667 return 0;
2668 }
2669
2670 static bool
2671 build_lookup_funcinfo_table (struct comp_unit * unit)
2672 {
2673 struct lookup_funcinfo *lookup_funcinfo_table = unit->lookup_funcinfo_table;
2674 unsigned int number_of_functions = unit->number_of_functions;
2675 struct funcinfo *each;
2676 struct lookup_funcinfo *entry;
2677 size_t func_index;
2678 struct arange *range;
2679 bfd_vma low_addr, high_addr;
2680
2681 if (lookup_funcinfo_table || number_of_functions == 0)
2682 return true;
2683
2684 /* Create the function info lookup table. */
2685 lookup_funcinfo_table = (struct lookup_funcinfo *)
2686 bfd_malloc (number_of_functions * sizeof (struct lookup_funcinfo));
2687 if (lookup_funcinfo_table == NULL)
2688 return false;
2689
2690 /* Populate the function info lookup table. */
2691 func_index = number_of_functions;
2692 for (each = unit->function_table; each; each = each->prev_func)
2693 {
2694 entry = &lookup_funcinfo_table[--func_index];
2695 entry->funcinfo = each;
2696 entry->idx = func_index;
2697
2698 /* Calculate the lowest and highest address for this function entry. */
2699 low_addr = entry->funcinfo->arange.low;
2700 high_addr = entry->funcinfo->arange.high;
2701
2702 for (range = entry->funcinfo->arange.next; range; range = range->next)
2703 {
2704 if (range->low < low_addr)
2705 low_addr = range->low;
2706 if (range->high > high_addr)
2707 high_addr = range->high;
2708 }
2709
2710 entry->low_addr = low_addr;
2711 entry->high_addr = high_addr;
2712 }
2713
2714 BFD_ASSERT (func_index == 0);
2715
2716 /* Sort the function by address. */
2717 qsort (lookup_funcinfo_table,
2718 number_of_functions,
2719 sizeof (struct lookup_funcinfo),
2720 compare_lookup_funcinfos);
2721
2722 /* Calculate the high watermark for each function in the lookup table. */
2723 high_addr = lookup_funcinfo_table[0].high_addr;
2724 for (func_index = 1; func_index < number_of_functions; func_index++)
2725 {
2726 entry = &lookup_funcinfo_table[func_index];
2727 if (entry->high_addr > high_addr)
2728 high_addr = entry->high_addr;
2729 else
2730 entry->high_addr = high_addr;
2731 }
2732
2733 unit->lookup_funcinfo_table = lookup_funcinfo_table;
2734 return true;
2735 }
2736
2737 /* If ADDR is within UNIT's function tables, set FUNCTION_PTR, and return
2738 TRUE. Note that we need to find the function that has the smallest range
2739 that contains ADDR, to handle inlined functions without depending upon
2740 them being ordered in TABLE by increasing range. */
2741
2742 static bool
2743 lookup_address_in_function_table (struct comp_unit *unit,
2744 bfd_vma addr,
2745 struct funcinfo **function_ptr)
2746 {
2747 unsigned int number_of_functions = unit->number_of_functions;
2748 struct lookup_funcinfo* lookup_funcinfo = NULL;
2749 struct funcinfo* funcinfo = NULL;
2750 struct funcinfo* best_fit = NULL;
2751 bfd_vma best_fit_len = 0;
2752 bfd_size_type low, high, mid, first;
2753 struct arange *arange;
2754
2755 if (number_of_functions == 0)
2756 return false;
2757
2758 if (!build_lookup_funcinfo_table (unit))
2759 return false;
2760
2761 if (unit->lookup_funcinfo_table[number_of_functions - 1].high_addr < addr)
2762 return false;
2763
2764 /* Find the first function in the lookup table which may contain the
2765 specified address. */
2766 low = 0;
2767 high = number_of_functions;
2768 first = high;
2769 while (low < high)
2770 {
2771 mid = (low + high) / 2;
2772 lookup_funcinfo = &unit->lookup_funcinfo_table[mid];
2773 if (addr < lookup_funcinfo->low_addr)
2774 high = mid;
2775 else if (addr >= lookup_funcinfo->high_addr)
2776 low = mid + 1;
2777 else
2778 high = first = mid;
2779 }
2780
2781 /* Find the 'best' match for the address. The prior algorithm defined the
2782 best match as the function with the smallest address range containing
2783 the specified address. This definition should probably be changed to the
2784 innermost inline routine containing the address, but right now we want
2785 to get the same results we did before. */
2786 while (first < number_of_functions)
2787 {
2788 if (addr < unit->lookup_funcinfo_table[first].low_addr)
2789 break;
2790 funcinfo = unit->lookup_funcinfo_table[first].funcinfo;
2791
2792 for (arange = &funcinfo->arange; arange; arange = arange->next)
2793 {
2794 if (addr < arange->low || addr >= arange->high)
2795 continue;
2796
2797 if (!best_fit
2798 || arange->high - arange->low < best_fit_len
2799 /* The following comparison is designed to return the same
2800 match as the previous algorithm for routines which have the
2801 same best fit length. */
2802 || (arange->high - arange->low == best_fit_len
2803 && funcinfo > best_fit))
2804 {
2805 best_fit = funcinfo;
2806 best_fit_len = arange->high - arange->low;
2807 }
2808 }
2809
2810 first++;
2811 }
2812
2813 if (!best_fit)
2814 return false;
2815
2816 *function_ptr = best_fit;
2817 return true;
2818 }
2819
2820 /* If SYM at ADDR is within function table of UNIT, set FILENAME_PTR
2821 and LINENUMBER_PTR, and return TRUE. */
2822
2823 static bool
2824 lookup_symbol_in_function_table (struct comp_unit *unit,
2825 asymbol *sym,
2826 bfd_vma addr,
2827 const char **filename_ptr,
2828 unsigned int *linenumber_ptr)
2829 {
2830 struct funcinfo* each_func;
2831 struct funcinfo* best_fit = NULL;
2832 bfd_vma best_fit_len = 0;
2833 struct arange *arange;
2834 const char *name = bfd_asymbol_name (sym);
2835 asection *sec = bfd_asymbol_section (sym);
2836
2837 for (each_func = unit->function_table;
2838 each_func;
2839 each_func = each_func->prev_func)
2840 {
2841 for (arange = &each_func->arange;
2842 arange;
2843 arange = arange->next)
2844 {
2845 if ((!each_func->sec || each_func->sec == sec)
2846 && addr >= arange->low
2847 && addr < arange->high
2848 && each_func->name
2849 && strcmp (name, each_func->name) == 0
2850 && (!best_fit
2851 || arange->high - arange->low < best_fit_len))
2852 {
2853 best_fit = each_func;
2854 best_fit_len = arange->high - arange->low;
2855 }
2856 }
2857 }
2858
2859 if (best_fit)
2860 {
2861 best_fit->sec = sec;
2862 *filename_ptr = best_fit->file;
2863 *linenumber_ptr = best_fit->line;
2864 return true;
2865 }
2866 else
2867 return false;
2868 }
2869
2870 /* Variable table functions. */
2871
2872 /* If SYM is within variable table of UNIT, set FILENAME_PTR and
2873 LINENUMBER_PTR, and return TRUE. */
2874
2875 static bool
2876 lookup_symbol_in_variable_table (struct comp_unit *unit,
2877 asymbol *sym,
2878 bfd_vma addr,
2879 const char **filename_ptr,
2880 unsigned int *linenumber_ptr)
2881 {
2882 const char *name = bfd_asymbol_name (sym);
2883 asection *sec = bfd_asymbol_section (sym);
2884 struct varinfo* each;
2885
2886 for (each = unit->variable_table; each; each = each->prev_var)
2887 if (! each->stack
2888 && each->file != NULL
2889 && each->name != NULL
2890 && each->addr == addr
2891 && (!each->sec || each->sec == sec)
2892 && strcmp (name, each->name) == 0)
2893 break;
2894
2895 if (each)
2896 {
2897 each->sec = sec;
2898 *filename_ptr = each->file;
2899 *linenumber_ptr = each->line;
2900 return true;
2901 }
2902
2903 return false;
2904 }
2905
2906 static struct comp_unit *stash_comp_unit (struct dwarf2_debug *,
2907 struct dwarf2_debug_file *);
2908 static bool comp_unit_maybe_decode_line_info (struct comp_unit *);
2909
2910 static bool
2911 find_abstract_instance (struct comp_unit *unit,
2912 struct attribute *attr_ptr,
2913 unsigned int recur_count,
2914 const char **pname,
2915 bool *is_linkage,
2916 char **filename_ptr,
2917 int *linenumber_ptr)
2918 {
2919 bfd *abfd = unit->abfd;
2920 bfd_byte *info_ptr = NULL;
2921 bfd_byte *info_ptr_end;
2922 unsigned int abbrev_number, i;
2923 struct abbrev_info *abbrev;
2924 bfd_uint64_t die_ref = attr_ptr->u.val;
2925 struct attribute attr;
2926 const char *name = NULL;
2927
2928 if (recur_count == 100)
2929 {
2930 _bfd_error_handler
2931 (_("DWARF error: abstract instance recursion detected"));
2932 bfd_set_error (bfd_error_bad_value);
2933 return false;
2934 }
2935
2936 /* DW_FORM_ref_addr can reference an entry in a different CU. It
2937 is an offset from the .debug_info section, not the current CU. */
2938 if (attr_ptr->form == DW_FORM_ref_addr)
2939 {
2940 /* We only support DW_FORM_ref_addr within the same file, so
2941 any relocations should be resolved already. Check this by
2942 testing for a zero die_ref; There can't be a valid reference
2943 to the header of a .debug_info section.
2944 DW_FORM_ref_addr is an offset relative to .debug_info.
2945 Normally when using the GNU linker this is accomplished by
2946 emitting a symbolic reference to a label, because .debug_info
2947 sections are linked at zero. When there are multiple section
2948 groups containing .debug_info, as there might be in a
2949 relocatable object file, it would be reasonable to assume that
2950 a symbolic reference to a label in any .debug_info section
2951 might be used. Since we lay out multiple .debug_info
2952 sections at non-zero VMAs (see place_sections), and read
2953 them contiguously into dwarf_info_buffer, that means the
2954 reference is relative to dwarf_info_buffer. */
2955 size_t total;
2956
2957 info_ptr = unit->file->dwarf_info_buffer;
2958 info_ptr_end = info_ptr + unit->file->dwarf_info_size;
2959 total = info_ptr_end - info_ptr;
2960 if (!die_ref)
2961 return true;
2962 else if (die_ref >= total)
2963 {
2964 _bfd_error_handler
2965 (_("DWARF error: invalid abstract instance DIE ref"));
2966 bfd_set_error (bfd_error_bad_value);
2967 return false;
2968 }
2969 info_ptr += die_ref;
2970 }
2971 else if (attr_ptr->form == DW_FORM_GNU_ref_alt)
2972 {
2973 bool first_time = unit->stash->alt.dwarf_info_buffer == NULL;
2974
2975 info_ptr = read_alt_indirect_ref (unit, die_ref);
2976 if (first_time)
2977 unit->stash->alt.info_ptr = unit->stash->alt.dwarf_info_buffer;
2978 if (info_ptr == NULL)
2979 {
2980 _bfd_error_handler
2981 (_("DWARF error: unable to read alt ref %" PRIu64),
2982 (uint64_t) die_ref);
2983 bfd_set_error (bfd_error_bad_value);
2984 return false;
2985 }
2986 info_ptr_end = (unit->stash->alt.dwarf_info_buffer
2987 + unit->stash->alt.dwarf_info_size);
2988 if (unit->stash->alt.all_comp_units)
2989 unit = unit->stash->alt.all_comp_units;
2990 }
2991
2992 if (attr_ptr->form == DW_FORM_ref_addr
2993 || attr_ptr->form == DW_FORM_GNU_ref_alt)
2994 {
2995 /* Now find the CU containing this pointer. */
2996 if (info_ptr >= unit->info_ptr_unit && info_ptr < unit->end_ptr)
2997 info_ptr_end = unit->end_ptr;
2998 else
2999 {
3000 /* Check other CUs to see if they contain the abbrev. */
3001 struct comp_unit *u;
3002
3003 for (u = unit->prev_unit; u != NULL; u = u->prev_unit)
3004 if (info_ptr >= u->info_ptr_unit && info_ptr < u->end_ptr)
3005 break;
3006
3007 if (u == NULL)
3008 for (u = unit->next_unit; u != NULL; u = u->next_unit)
3009 if (info_ptr >= u->info_ptr_unit && info_ptr < u->end_ptr)
3010 break;
3011
3012 if (attr_ptr->form == DW_FORM_ref_addr)
3013 while (u == NULL)
3014 {
3015 u = stash_comp_unit (unit->stash, &unit->stash->f);
3016 if (u == NULL)
3017 break;
3018 if (info_ptr >= u->info_ptr_unit && info_ptr < u->end_ptr)
3019 break;
3020 u = NULL;
3021 }
3022
3023 if (attr_ptr->form == DW_FORM_GNU_ref_alt)
3024 while (u == NULL)
3025 {
3026 u = stash_comp_unit (unit->stash, &unit->stash->alt);
3027 if (u == NULL)
3028 break;
3029 if (info_ptr >= u->info_ptr_unit && info_ptr < u->end_ptr)
3030 break;
3031 u = NULL;
3032 }
3033
3034 if (u == NULL)
3035 {
3036 _bfd_error_handler
3037 (_("DWARF error: unable to locate abstract instance DIE ref %"
3038 PRIu64), (uint64_t) die_ref);
3039 bfd_set_error (bfd_error_bad_value);
3040 return false;
3041 }
3042 unit = u;
3043 info_ptr_end = unit->end_ptr;
3044 }
3045 }
3046 else
3047 {
3048 /* DW_FORM_ref1, DW_FORM_ref2, DW_FORM_ref4, DW_FORM_ref8 or
3049 DW_FORM_ref_udata. These are all references relative to the
3050 start of the current CU. */
3051 size_t total;
3052
3053 info_ptr = unit->info_ptr_unit;
3054 info_ptr_end = unit->end_ptr;
3055 total = info_ptr_end - info_ptr;
3056 if (!die_ref || die_ref >= total)
3057 {
3058 _bfd_error_handler
3059 (_("DWARF error: invalid abstract instance DIE ref"));
3060 bfd_set_error (bfd_error_bad_value);
3061 return false;
3062 }
3063 info_ptr += die_ref;
3064 }
3065
3066 abbrev_number = _bfd_safe_read_leb128 (abfd, &info_ptr,
3067 false, info_ptr_end);
3068 if (abbrev_number)
3069 {
3070 abbrev = lookup_abbrev (abbrev_number, unit->abbrevs);
3071 if (! abbrev)
3072 {
3073 _bfd_error_handler
3074 (_("DWARF error: could not find abbrev number %u"), abbrev_number);
3075 bfd_set_error (bfd_error_bad_value);
3076 return false;
3077 }
3078 else
3079 {
3080 for (i = 0; i < abbrev->num_attrs; ++i)
3081 {
3082 info_ptr = read_attribute (&attr, &abbrev->attrs[i], unit,
3083 info_ptr, info_ptr_end);
3084 if (info_ptr == NULL)
3085 break;
3086 switch (attr.name)
3087 {
3088 case DW_AT_name:
3089 /* Prefer DW_AT_MIPS_linkage_name or DW_AT_linkage_name
3090 over DW_AT_name. */
3091 if (name == NULL && is_str_form (&attr))
3092 {
3093 name = attr.u.str;
3094 if (non_mangled (unit->lang))
3095 *is_linkage = true;
3096 }
3097 break;
3098 case DW_AT_specification:
3099 if (is_int_form (&attr)
3100 && !find_abstract_instance (unit, &attr, recur_count + 1,
3101 &name, is_linkage,
3102 filename_ptr, linenumber_ptr))
3103 return false;
3104 break;
3105 case DW_AT_linkage_name:
3106 case DW_AT_MIPS_linkage_name:
3107 /* PR 16949: Corrupt debug info can place
3108 non-string forms into these attributes. */
3109 if (is_str_form (&attr))
3110 {
3111 name = attr.u.str;
3112 *is_linkage = true;
3113 }
3114 break;
3115 case DW_AT_decl_file:
3116 if (!comp_unit_maybe_decode_line_info (unit))
3117 return false;
3118 if (is_int_form (&attr))
3119 *filename_ptr = concat_filename (unit->line_table,
3120 attr.u.val);
3121 break;
3122 case DW_AT_decl_line:
3123 if (is_int_form (&attr))
3124 *linenumber_ptr = attr.u.val;
3125 break;
3126 default:
3127 break;
3128 }
3129 }
3130 }
3131 }
3132 *pname = name;
3133 return true;
3134 }
3135
3136 static bool
3137 read_ranges (struct comp_unit *unit, struct arange *arange,
3138 bfd_uint64_t offset)
3139 {
3140 bfd_byte *ranges_ptr;
3141 bfd_byte *ranges_end;
3142 bfd_vma base_address = unit->base_address;
3143
3144 if (! unit->file->dwarf_ranges_buffer)
3145 {
3146 if (! read_debug_ranges (unit))
3147 return false;
3148 }
3149
3150 if (offset > unit->file->dwarf_ranges_size)
3151 return false;
3152 ranges_ptr = unit->file->dwarf_ranges_buffer + offset;
3153 ranges_end = unit->file->dwarf_ranges_buffer + unit->file->dwarf_ranges_size;
3154
3155 for (;;)
3156 {
3157 bfd_vma low_pc;
3158 bfd_vma high_pc;
3159
3160 /* PR 17512: file: 62cada7d. */
3161 if (2u * unit->addr_size > (size_t) (ranges_end - ranges_ptr))
3162 return false;
3163
3164 low_pc = read_address (unit, &ranges_ptr, ranges_end);
3165 high_pc = read_address (unit, &ranges_ptr, ranges_end);
3166
3167 if (low_pc == 0 && high_pc == 0)
3168 break;
3169 if (low_pc == -1UL && high_pc != -1UL)
3170 base_address = high_pc;
3171 else
3172 {
3173 if (!arange_add (unit, arange,
3174 base_address + low_pc, base_address + high_pc))
3175 return false;
3176 }
3177 }
3178 return true;
3179 }
3180
3181 static bool
3182 read_rnglists (struct comp_unit *unit, struct arange *arange,
3183 bfd_uint64_t offset)
3184 {
3185 bfd_byte *rngs_ptr;
3186 bfd_byte *rngs_end;
3187 bfd_vma base_address = unit->base_address;
3188 bfd_vma low_pc;
3189 bfd_vma high_pc;
3190 bfd *abfd = unit->abfd;
3191
3192 if (! unit->file->dwarf_rnglists_buffer)
3193 {
3194 if (! read_debug_rnglists (unit))
3195 return false;
3196 }
3197
3198 rngs_ptr = unit->file->dwarf_rnglists_buffer + offset;
3199 if (rngs_ptr < unit->file->dwarf_rnglists_buffer)
3200 return false;
3201 rngs_end = unit->file->dwarf_rnglists_buffer;
3202 rngs_end += unit->file->dwarf_rnglists_size;
3203
3204 for (;;)
3205 {
3206 enum dwarf_range_list_entry rlet;
3207
3208 if (rngs_ptr >= rngs_end)
3209 return false;
3210
3211 rlet = read_1_byte (abfd, &rngs_ptr, rngs_end);
3212
3213 switch (rlet)
3214 {
3215 case DW_RLE_end_of_list:
3216 return true;
3217
3218 case DW_RLE_base_address:
3219 if (unit->addr_size > (size_t) (rngs_end - rngs_ptr))
3220 return false;
3221 base_address = read_address (unit, &rngs_ptr, rngs_end);
3222 continue;
3223
3224 case DW_RLE_start_length:
3225 if (unit->addr_size > (size_t) (rngs_end - rngs_ptr))
3226 return false;
3227 low_pc = read_address (unit, &rngs_ptr, rngs_end);
3228 high_pc = low_pc;
3229 high_pc += _bfd_safe_read_leb128 (abfd, &rngs_ptr,
3230 false, rngs_end);
3231 break;
3232
3233 case DW_RLE_offset_pair:
3234 low_pc = base_address;
3235 low_pc += _bfd_safe_read_leb128 (abfd, &rngs_ptr,
3236 false, rngs_end);
3237 high_pc = base_address;
3238 high_pc += _bfd_safe_read_leb128 (abfd, &rngs_ptr,
3239 false, rngs_end);
3240 break;
3241
3242 case DW_RLE_start_end:
3243 if (2u * unit->addr_size > (size_t) (rngs_end - rngs_ptr))
3244 return false;
3245 low_pc = read_address (unit, &rngs_ptr, rngs_end);
3246 high_pc = read_address (unit, &rngs_ptr, rngs_end);
3247 break;
3248
3249 /* TODO x-variants need .debug_addr support used for split-dwarf. */
3250 case DW_RLE_base_addressx:
3251 case DW_RLE_startx_endx:
3252 case DW_RLE_startx_length:
3253 default:
3254 return false;
3255 }
3256
3257 if (!arange_add (unit, arange, low_pc, high_pc))
3258 return false;
3259 }
3260 }
3261
3262 static bool
3263 read_rangelist (struct comp_unit *unit, struct arange *arange,
3264 bfd_uint64_t offset)
3265 {
3266 if (unit->version <= 4)
3267 return read_ranges (unit, arange, offset);
3268 else
3269 return read_rnglists (unit, arange, offset);
3270 }
3271
3272 static struct funcinfo *
3273 lookup_func_by_offset (bfd_uint64_t offset, struct funcinfo * table)
3274 {
3275 for (; table != NULL; table = table->prev_func)
3276 if (table->unit_offset == offset)
3277 return table;
3278 return NULL;
3279 }
3280
3281 static struct varinfo *
3282 lookup_var_by_offset (bfd_uint64_t offset, struct varinfo * table)
3283 {
3284 while (table)
3285 {
3286 if (table->unit_offset == offset)
3287 return table;
3288 table = table->prev_var;
3289 }
3290
3291 return NULL;
3292 }
3293
3294
3295 /* DWARF2 Compilation unit functions. */
3296
3297 static struct funcinfo *
3298 reverse_funcinfo_list (struct funcinfo *head)
3299 {
3300 struct funcinfo *rhead;
3301 struct funcinfo *temp;
3302
3303 for (rhead = NULL; head; head = temp)
3304 {
3305 temp = head->prev_func;
3306 head->prev_func = rhead;
3307 rhead = head;
3308 }
3309 return rhead;
3310 }
3311
3312 static struct varinfo *
3313 reverse_varinfo_list (struct varinfo *head)
3314 {
3315 struct varinfo *rhead;
3316 struct varinfo *temp;
3317
3318 for (rhead = NULL; head; head = temp)
3319 {
3320 temp = head->prev_var;
3321 head->prev_var = rhead;
3322 rhead = head;
3323 }
3324 return rhead;
3325 }
3326
3327 /* Scan over each die in a comp. unit looking for functions to add
3328 to the function table and variables to the variable table. */
3329
3330 static bool
3331 scan_unit_for_symbols (struct comp_unit *unit)
3332 {
3333 bfd *abfd = unit->abfd;
3334 bfd_byte *info_ptr = unit->first_child_die_ptr;
3335 bfd_byte *info_ptr_end = unit->end_ptr;
3336 int nesting_level = 0;
3337 struct nest_funcinfo
3338 {
3339 struct funcinfo *func;
3340 } *nested_funcs;
3341 int nested_funcs_size;
3342 struct funcinfo *last_func;
3343 struct varinfo *last_var;
3344
3345 /* Maintain a stack of in-scope functions and inlined functions, which we
3346 can use to set the caller_func field. */
3347 nested_funcs_size = 32;
3348 nested_funcs = (struct nest_funcinfo *)
3349 bfd_malloc (nested_funcs_size * sizeof (*nested_funcs));
3350 if (nested_funcs == NULL)
3351 return false;
3352 nested_funcs[nesting_level].func = 0;
3353
3354 /* PR 27484: We must scan the DIEs twice. The first time we look for
3355 function and variable tags and accumulate them into their respective
3356 tables. The second time through we process the attributes of the
3357 functions/variables and augment the table entries. */
3358 while (nesting_level >= 0)
3359 {
3360 unsigned int abbrev_number, i;
3361 struct abbrev_info *abbrev;
3362 struct funcinfo *func;
3363 struct varinfo *var;
3364 bfd_uint64_t current_offset;
3365
3366 /* PR 17512: file: 9f405d9d. */
3367 if (info_ptr >= info_ptr_end)
3368 goto fail;
3369
3370 current_offset = info_ptr - unit->info_ptr_unit;
3371 abbrev_number = _bfd_safe_read_leb128 (abfd, &info_ptr,
3372 false, info_ptr_end);
3373 if (abbrev_number == 0)
3374 {
3375 nesting_level--;
3376 continue;
3377 }
3378
3379 abbrev = lookup_abbrev (abbrev_number, unit->abbrevs);
3380 if (! abbrev)
3381 {
3382 static unsigned int previous_failed_abbrev = -1U;
3383
3384 /* Avoid multiple reports of the same missing abbrev. */
3385 if (abbrev_number != previous_failed_abbrev)
3386 {
3387 _bfd_error_handler
3388 (_("DWARF error: could not find abbrev number %u"),
3389 abbrev_number);
3390 previous_failed_abbrev = abbrev_number;
3391 }
3392 bfd_set_error (bfd_error_bad_value);
3393 goto fail;
3394 }
3395
3396 if (abbrev->tag == DW_TAG_subprogram
3397 || abbrev->tag == DW_TAG_entry_point
3398 || abbrev->tag == DW_TAG_inlined_subroutine)
3399 {
3400 size_t amt = sizeof (struct funcinfo);
3401
3402 var = NULL;
3403 func = (struct funcinfo *) bfd_zalloc (abfd, amt);
3404 if (func == NULL)
3405 goto fail;
3406 func->tag = abbrev->tag;
3407 func->prev_func = unit->function_table;
3408 func->unit_offset = current_offset;
3409 unit->function_table = func;
3410 unit->number_of_functions++;
3411 BFD_ASSERT (!unit->cached);
3412
3413 if (func->tag == DW_TAG_inlined_subroutine)
3414 for (i = nesting_level; i-- != 0; )
3415 if (nested_funcs[i].func)
3416 {
3417 func->caller_func = nested_funcs[i].func;
3418 break;
3419 }
3420 nested_funcs[nesting_level].func = func;
3421 }
3422 else
3423 {
3424 func = NULL;
3425 if (abbrev->tag == DW_TAG_variable
3426 || abbrev->tag == DW_TAG_member)
3427 {
3428 size_t amt = sizeof (struct varinfo);
3429
3430 var = (struct varinfo *) bfd_zalloc (abfd, amt);
3431 if (var == NULL)
3432 goto fail;
3433 var->tag = abbrev->tag;
3434 var->stack = true;
3435 var->prev_var = unit->variable_table;
3436 unit->variable_table = var;
3437 var->unit_offset = current_offset;
3438 /* PR 18205: Missing debug information can cause this
3439 var to be attached to an already cached unit. */
3440 }
3441 else
3442 var = NULL;
3443
3444 /* No inline function in scope at this nesting level. */
3445 nested_funcs[nesting_level].func = 0;
3446 }
3447
3448 for (i = 0; i < abbrev->num_attrs; ++i)
3449 {
3450 struct attribute attr;
3451
3452 info_ptr = read_attribute (&attr, &abbrev->attrs[i],
3453 unit, info_ptr, info_ptr_end);
3454 if (info_ptr == NULL)
3455 goto fail;
3456 }
3457
3458 if (abbrev->has_children)
3459 {
3460 nesting_level++;
3461
3462 if (nesting_level >= nested_funcs_size)
3463 {
3464 struct nest_funcinfo *tmp;
3465
3466 nested_funcs_size *= 2;
3467 tmp = (struct nest_funcinfo *)
3468 bfd_realloc (nested_funcs,
3469 nested_funcs_size * sizeof (*nested_funcs));
3470 if (tmp == NULL)
3471 goto fail;
3472 nested_funcs = tmp;
3473 }
3474 nested_funcs[nesting_level].func = 0;
3475 }
3476 }
3477
3478 unit->function_table = reverse_funcinfo_list (unit->function_table);
3479 unit->variable_table = reverse_varinfo_list (unit->variable_table);
3480
3481 /* This is the second pass over the abbrevs. */
3482 info_ptr = unit->first_child_die_ptr;
3483 nesting_level = 0;
3484
3485 last_func = NULL;
3486 last_var = NULL;
3487
3488 while (nesting_level >= 0)
3489 {
3490 unsigned int abbrev_number, i;
3491 struct abbrev_info *abbrev;
3492 struct attribute attr;
3493 struct funcinfo *func;
3494 struct varinfo *var;
3495 bfd_vma low_pc = 0;
3496 bfd_vma high_pc = 0;
3497 bool high_pc_relative = false;
3498 bfd_uint64_t current_offset;
3499
3500 /* PR 17512: file: 9f405d9d. */
3501 if (info_ptr >= info_ptr_end)
3502 goto fail;
3503
3504 current_offset = info_ptr - unit->info_ptr_unit;
3505 abbrev_number = _bfd_safe_read_leb128 (abfd, &info_ptr,
3506 false, info_ptr_end);
3507 if (! abbrev_number)
3508 {
3509 nesting_level--;
3510 continue;
3511 }
3512
3513 abbrev = lookup_abbrev (abbrev_number, unit->abbrevs);
3514 /* This should have been handled above. */
3515 BFD_ASSERT (abbrev != NULL);
3516
3517 func = NULL;
3518 var = NULL;
3519 if (abbrev->tag == DW_TAG_subprogram
3520 || abbrev->tag == DW_TAG_entry_point
3521 || abbrev->tag == DW_TAG_inlined_subroutine)
3522 {
3523 if (last_func
3524 && last_func->prev_func
3525 && last_func->prev_func->unit_offset == current_offset)
3526 func = last_func->prev_func;
3527 else
3528 func = lookup_func_by_offset (current_offset, unit->function_table);
3529
3530 if (func == NULL)
3531 goto fail;
3532
3533 last_func = func;
3534 }
3535 else if (abbrev->tag == DW_TAG_variable
3536 || abbrev->tag == DW_TAG_member)
3537 {
3538 if (last_var
3539 && last_var->prev_var
3540 && last_var->prev_var->unit_offset == current_offset)
3541 var = last_var->prev_var;
3542 else
3543 var = lookup_var_by_offset (current_offset, unit->variable_table);
3544
3545 if (var == NULL)
3546 goto fail;
3547
3548 last_var = var;
3549 }
3550
3551 for (i = 0; i < abbrev->num_attrs; ++i)
3552 {
3553 info_ptr = read_attribute (&attr, &abbrev->attrs[i],
3554 unit, info_ptr, info_ptr_end);
3555 if (info_ptr == NULL)
3556 goto fail;
3557
3558 if (func)
3559 {
3560 switch (attr.name)
3561 {
3562 case DW_AT_call_file:
3563 if (is_int_form (&attr))
3564 func->caller_file = concat_filename (unit->line_table,
3565 attr.u.val);
3566 break;
3567
3568 case DW_AT_call_line:
3569 if (is_int_form (&attr))
3570 func->caller_line = attr.u.val;
3571 break;
3572
3573 case DW_AT_abstract_origin:
3574 case DW_AT_specification:
3575 if (is_int_form (&attr)
3576 && !find_abstract_instance (unit, &attr, 0,
3577 &func->name,
3578 &func->is_linkage,
3579 &func->file,
3580 &func->line))
3581 goto fail;
3582 break;
3583
3584 case DW_AT_name:
3585 /* Prefer DW_AT_MIPS_linkage_name or DW_AT_linkage_name
3586 over DW_AT_name. */
3587 if (func->name == NULL && is_str_form (&attr))
3588 {
3589 func->name = attr.u.str;
3590 if (non_mangled (unit->lang))
3591 func->is_linkage = true;
3592 }
3593 break;
3594
3595 case DW_AT_linkage_name:
3596 case DW_AT_MIPS_linkage_name:
3597 /* PR 16949: Corrupt debug info can place
3598 non-string forms into these attributes. */
3599 if (is_str_form (&attr))
3600 {
3601 func->name = attr.u.str;
3602 func->is_linkage = true;
3603 }
3604 break;
3605
3606 case DW_AT_low_pc:
3607 if (is_int_form (&attr))
3608 low_pc = attr.u.val;
3609 break;
3610
3611 case DW_AT_high_pc:
3612 if (is_int_form (&attr))
3613 {
3614 high_pc = attr.u.val;
3615 high_pc_relative = attr.form != DW_FORM_addr;
3616 }
3617 break;
3618
3619 case DW_AT_ranges:
3620 if (is_int_form (&attr)
3621 && !read_rangelist (unit, &func->arange, attr.u.val))
3622 goto fail;
3623 break;
3624
3625 case DW_AT_decl_file:
3626 if (is_int_form (&attr))
3627 func->file = concat_filename (unit->line_table,
3628 attr.u.val);
3629 break;
3630
3631 case DW_AT_decl_line:
3632 if (is_int_form (&attr))
3633 func->line = attr.u.val;
3634 break;
3635
3636 default:
3637 break;
3638 }
3639 }
3640 else if (var)
3641 {
3642 switch (attr.name)
3643 {
3644 case DW_AT_specification:
3645 if (is_int_form (&attr) && attr.u.val)
3646 {
3647 struct varinfo * spec_var;
3648
3649 spec_var = lookup_var_by_offset (attr.u.val,
3650 unit->variable_table);
3651 if (spec_var == NULL)
3652 {
3653 _bfd_error_handler (_("DWARF error: could not find "
3654 "variable specification "
3655 "at offset 0x%lx"),
3656 (unsigned long) attr.u.val);
3657 break;
3658 }
3659
3660 if (var->name == NULL)
3661 var->name = spec_var->name;
3662 if (var->file == NULL && spec_var->file != NULL)
3663 var->file = strdup (spec_var->file);
3664 if (var->line == 0)
3665 var->line = spec_var->line;
3666 if (var->sec == NULL)
3667 var->sec = spec_var->sec;
3668 }
3669 break;
3670
3671 case DW_AT_name:
3672 if (is_str_form (&attr))
3673 var->name = attr.u.str;
3674 break;
3675
3676 case DW_AT_decl_file:
3677 if (is_int_form (&attr))
3678 var->file = concat_filename (unit->line_table,
3679 attr.u.val);
3680 break;
3681
3682 case DW_AT_decl_line:
3683 if (is_int_form (&attr))
3684 var->line = attr.u.val;
3685 break;
3686
3687 case DW_AT_external:
3688 if (is_int_form (&attr) && attr.u.val != 0)
3689 var->stack = false;
3690 break;
3691
3692 case DW_AT_location:
3693 switch (attr.form)
3694 {
3695 case DW_FORM_block:
3696 case DW_FORM_block1:
3697 case DW_FORM_block2:
3698 case DW_FORM_block4:
3699 case DW_FORM_exprloc:
3700 if (attr.u.blk->data != NULL
3701 && *attr.u.blk->data == DW_OP_addr)
3702 {
3703 var->stack = false;
3704
3705 /* Verify that DW_OP_addr is the only opcode in the
3706 location, in which case the block size will be 1
3707 plus the address size. */
3708 /* ??? For TLS variables, gcc can emit
3709 DW_OP_addr <addr> DW_OP_GNU_push_tls_address
3710 which we don't handle here yet. */
3711 if (attr.u.blk->size == unit->addr_size + 1U)
3712 var->addr = bfd_get (unit->addr_size * 8,
3713 unit->abfd,
3714 attr.u.blk->data + 1);
3715 }
3716 break;
3717
3718 default:
3719 break;
3720 }
3721 break;
3722
3723 default:
3724 break;
3725 }
3726 }
3727 }
3728
3729 if (abbrev->has_children)
3730 nesting_level++;
3731
3732 if (high_pc_relative)
3733 high_pc += low_pc;
3734
3735 if (func && high_pc != 0)
3736 {
3737 if (!arange_add (unit, &func->arange, low_pc, high_pc))
3738 goto fail;
3739 }
3740 }
3741
3742 unit->function_table = reverse_funcinfo_list (unit->function_table);
3743 unit->variable_table = reverse_varinfo_list (unit->variable_table);
3744
3745 free (nested_funcs);
3746 return true;
3747
3748 fail:
3749 free (nested_funcs);
3750 return false;
3751 }
3752
3753 /* Parse a DWARF2 compilation unit starting at INFO_PTR. UNIT_LENGTH
3754 includes the compilation unit header that proceeds the DIE's, but
3755 does not include the length field that precedes each compilation
3756 unit header. END_PTR points one past the end of this comp unit.
3757 OFFSET_SIZE is the size of DWARF2 offsets (either 4 or 8 bytes).
3758
3759 This routine does not read the whole compilation unit; only enough
3760 to get to the line number information for the compilation unit. */
3761
3762 static struct comp_unit *
3763 parse_comp_unit (struct dwarf2_debug *stash,
3764 struct dwarf2_debug_file *file,
3765 bfd_byte *info_ptr,
3766 bfd_vma unit_length,
3767 bfd_byte *info_ptr_unit,
3768 unsigned int offset_size)
3769 {
3770 struct comp_unit* unit;
3771 unsigned int version;
3772 bfd_uint64_t abbrev_offset = 0;
3773 /* Initialize it just to avoid a GCC false warning. */
3774 unsigned int addr_size = -1;
3775 struct abbrev_info** abbrevs;
3776 unsigned int abbrev_number, i;
3777 struct abbrev_info *abbrev;
3778 struct attribute attr;
3779 bfd_byte *end_ptr = info_ptr + unit_length;
3780 size_t amt;
3781 bfd_vma low_pc = 0;
3782 bfd_vma high_pc = 0;
3783 bfd *abfd = file->bfd_ptr;
3784 bool high_pc_relative = false;
3785 enum dwarf_unit_type unit_type;
3786
3787 version = read_2_bytes (abfd, &info_ptr, end_ptr);
3788 if (version < 2 || version > 5)
3789 {
3790 /* PR 19872: A version number of 0 probably means that there is padding
3791 at the end of the .debug_info section. Gold puts it there when
3792 performing an incremental link, for example. So do not generate
3793 an error, just return a NULL. */
3794 if (version)
3795 {
3796 _bfd_error_handler
3797 (_("DWARF error: found dwarf version '%u', this reader"
3798 " only handles version 2, 3, 4 and 5 information"), version);
3799 bfd_set_error (bfd_error_bad_value);
3800 }
3801 return NULL;
3802 }
3803
3804 if (version < 5)
3805 unit_type = DW_UT_compile;
3806 else
3807 {
3808 unit_type = read_1_byte (abfd, &info_ptr, end_ptr);
3809 addr_size = read_1_byte (abfd, &info_ptr, end_ptr);
3810 }
3811
3812 BFD_ASSERT (offset_size == 4 || offset_size == 8);
3813 if (offset_size == 4)
3814 abbrev_offset = read_4_bytes (abfd, &info_ptr, end_ptr);
3815 else
3816 abbrev_offset = read_8_bytes (abfd, &info_ptr, end_ptr);
3817
3818 if (version < 5)
3819 addr_size = read_1_byte (abfd, &info_ptr, end_ptr);
3820
3821 if (unit_type == DW_UT_type)
3822 {
3823 /* Skip type signature. */
3824 info_ptr += 8;
3825
3826 /* Skip type offset. */
3827 info_ptr += offset_size;
3828 }
3829
3830 if (addr_size > sizeof (bfd_vma))
3831 {
3832 _bfd_error_handler
3833 /* xgettext: c-format */
3834 (_("DWARF error: found address size '%u', this reader"
3835 " can not handle sizes greater than '%u'"),
3836 addr_size,
3837 (unsigned int) sizeof (bfd_vma));
3838 bfd_set_error (bfd_error_bad_value);
3839 return NULL;
3840 }
3841
3842 if (addr_size != 2 && addr_size != 4 && addr_size != 8)
3843 {
3844 _bfd_error_handler
3845 ("DWARF error: found address size '%u', this reader"
3846 " can only handle address sizes '2', '4' and '8'", addr_size);
3847 bfd_set_error (bfd_error_bad_value);
3848 return NULL;
3849 }
3850
3851 /* Read the abbrevs for this compilation unit into a table. */
3852 abbrevs = read_abbrevs (abfd, abbrev_offset, stash, file);
3853 if (! abbrevs)
3854 return NULL;
3855
3856 abbrev_number = _bfd_safe_read_leb128 (abfd, &info_ptr,
3857 false, end_ptr);
3858 if (! abbrev_number)
3859 {
3860 /* PR 19872: An abbrev number of 0 probably means that there is padding
3861 at the end of the .debug_abbrev section. Gold puts it there when
3862 performing an incremental link, for example. So do not generate
3863 an error, just return a NULL. */
3864 return NULL;
3865 }
3866
3867 abbrev = lookup_abbrev (abbrev_number, abbrevs);
3868 if (! abbrev)
3869 {
3870 _bfd_error_handler (_("DWARF error: could not find abbrev number %u"),
3871 abbrev_number);
3872 bfd_set_error (bfd_error_bad_value);
3873 return NULL;
3874 }
3875
3876 amt = sizeof (struct comp_unit);
3877 unit = (struct comp_unit *) bfd_zalloc (abfd, amt);
3878 if (unit == NULL)
3879 return NULL;
3880 unit->abfd = abfd;
3881 unit->version = version;
3882 unit->addr_size = addr_size;
3883 unit->offset_size = offset_size;
3884 unit->abbrevs = abbrevs;
3885 unit->end_ptr = end_ptr;
3886 unit->stash = stash;
3887 unit->file = file;
3888 unit->info_ptr_unit = info_ptr_unit;
3889
3890 for (i = 0; i < abbrev->num_attrs; ++i)
3891 {
3892 info_ptr = read_attribute (&attr, &abbrev->attrs[i], unit, info_ptr, end_ptr);
3893 if (info_ptr == NULL)
3894 return NULL;
3895
3896 /* Store the data if it is of an attribute we want to keep in a
3897 partial symbol table. */
3898 switch (attr.name)
3899 {
3900 case DW_AT_stmt_list:
3901 if (is_int_form (&attr))
3902 {
3903 unit->stmtlist = 1;
3904 unit->line_offset = attr.u.val;
3905 }
3906 break;
3907
3908 case DW_AT_name:
3909 if (is_str_form (&attr))
3910 unit->name = attr.u.str;
3911 break;
3912
3913 case DW_AT_low_pc:
3914 if (is_int_form (&attr))
3915 {
3916 low_pc = attr.u.val;
3917 /* If the compilation unit DIE has a DW_AT_low_pc attribute,
3918 this is the base address to use when reading location
3919 lists or range lists. */
3920 if (abbrev->tag == DW_TAG_compile_unit)
3921 unit->base_address = low_pc;
3922 }
3923 break;
3924
3925 case DW_AT_high_pc:
3926 if (is_int_form (&attr))
3927 {
3928 high_pc = attr.u.val;
3929 high_pc_relative = attr.form != DW_FORM_addr;
3930 }
3931 break;
3932
3933 case DW_AT_ranges:
3934 if (is_int_form (&attr)
3935 && !read_rangelist (unit, &unit->arange, attr.u.val))
3936 return NULL;
3937 break;
3938
3939 case DW_AT_comp_dir:
3940 {
3941 char *comp_dir = attr.u.str;
3942
3943 /* PR 17512: file: 1fe726be. */
3944 if (!is_str_form (&attr))
3945 {
3946 _bfd_error_handler
3947 (_("DWARF error: DW_AT_comp_dir attribute encountered with a non-string form"));
3948 comp_dir = NULL;
3949 }
3950
3951 if (comp_dir)
3952 {
3953 /* Irix 6.2 native cc prepends <machine>.: to the compilation
3954 directory, get rid of it. */
3955 char *cp = strchr (comp_dir, ':');
3956
3957 if (cp && cp != comp_dir && cp[-1] == '.' && cp[1] == '/')
3958 comp_dir = cp + 1;
3959 }
3960 unit->comp_dir = comp_dir;
3961 break;
3962 }
3963
3964 case DW_AT_language:
3965 if (is_int_form (&attr))
3966 unit->lang = attr.u.val;
3967 break;
3968
3969 default:
3970 break;
3971 }
3972 }
3973 if (high_pc_relative)
3974 high_pc += low_pc;
3975 if (high_pc != 0)
3976 {
3977 if (!arange_add (unit, &unit->arange, low_pc, high_pc))
3978 return NULL;
3979 }
3980
3981 unit->first_child_die_ptr = info_ptr;
3982 return unit;
3983 }
3984
3985 /* Return TRUE if UNIT may contain the address given by ADDR. When
3986 there are functions written entirely with inline asm statements, the
3987 range info in the compilation unit header may not be correct. We
3988 need to consult the line info table to see if a compilation unit
3989 really contains the given address. */
3990
3991 static bool
3992 comp_unit_contains_address (struct comp_unit *unit, bfd_vma addr)
3993 {
3994 struct arange *arange;
3995
3996 if (unit->error)
3997 return false;
3998
3999 arange = &unit->arange;
4000 do
4001 {
4002 if (addr >= arange->low && addr < arange->high)
4003 return true;
4004 arange = arange->next;
4005 }
4006 while (arange);
4007
4008 return false;
4009 }
4010
4011 /* If UNIT contains ADDR, set the output parameters to the values for
4012 the line containing ADDR. The output parameters, FILENAME_PTR,
4013 FUNCTION_PTR, and LINENUMBER_PTR, are pointers to the objects
4014 to be filled in.
4015
4016 Returns the range of addresses covered by the entry that was used
4017 to fill in *LINENUMBER_PTR or 0 if it was not filled in. */
4018
4019 static bfd_vma
4020 comp_unit_find_nearest_line (struct comp_unit *unit,
4021 bfd_vma addr,
4022 const char **filename_ptr,
4023 struct funcinfo **function_ptr,
4024 unsigned int *linenumber_ptr,
4025 unsigned int *discriminator_ptr)
4026 {
4027 bool func_p;
4028
4029 if (!comp_unit_maybe_decode_line_info (unit))
4030 return false;
4031
4032 *function_ptr = NULL;
4033 func_p = lookup_address_in_function_table (unit, addr, function_ptr);
4034 if (func_p && (*function_ptr)->tag == DW_TAG_inlined_subroutine)
4035 unit->stash->inliner_chain = *function_ptr;
4036
4037 return lookup_address_in_line_info_table (unit->line_table, addr,
4038 filename_ptr,
4039 linenumber_ptr,
4040 discriminator_ptr);
4041 }
4042
4043 /* Check to see if line info is already decoded in a comp_unit.
4044 If not, decode it. Returns TRUE if no errors were encountered;
4045 FALSE otherwise. */
4046
4047 static bool
4048 comp_unit_maybe_decode_line_info (struct comp_unit *unit)
4049 {
4050 if (unit->error)
4051 return false;
4052
4053 if (! unit->line_table)
4054 {
4055 if (! unit->stmtlist)
4056 {
4057 unit->error = 1;
4058 return false;
4059 }
4060
4061 unit->line_table = decode_line_info (unit);
4062
4063 if (! unit->line_table)
4064 {
4065 unit->error = 1;
4066 return false;
4067 }
4068
4069 if (unit->first_child_die_ptr < unit->end_ptr
4070 && ! scan_unit_for_symbols (unit))
4071 {
4072 unit->error = 1;
4073 return false;
4074 }
4075 }
4076
4077 return true;
4078 }
4079
4080 /* If UNIT contains SYM at ADDR, set the output parameters to the
4081 values for the line containing SYM. The output parameters,
4082 FILENAME_PTR, and LINENUMBER_PTR, are pointers to the objects to be
4083 filled in.
4084
4085 Return TRUE if UNIT contains SYM, and no errors were encountered;
4086 FALSE otherwise. */
4087
4088 static bool
4089 comp_unit_find_line (struct comp_unit *unit,
4090 asymbol *sym,
4091 bfd_vma addr,
4092 const char **filename_ptr,
4093 unsigned int *linenumber_ptr)
4094 {
4095 if (!comp_unit_maybe_decode_line_info (unit))
4096 return false;
4097
4098 if (sym->flags & BSF_FUNCTION)
4099 return lookup_symbol_in_function_table (unit, sym, addr,
4100 filename_ptr,
4101 linenumber_ptr);
4102
4103 return lookup_symbol_in_variable_table (unit, sym, addr,
4104 filename_ptr,
4105 linenumber_ptr);
4106 }
4107
4108 /* Extract all interesting funcinfos and varinfos of a compilation
4109 unit into hash tables for faster lookup. Returns TRUE if no
4110 errors were enountered; FALSE otherwise. */
4111
4112 static bool
4113 comp_unit_hash_info (struct dwarf2_debug *stash,
4114 struct comp_unit *unit,
4115 struct info_hash_table *funcinfo_hash_table,
4116 struct info_hash_table *varinfo_hash_table)
4117 {
4118 struct funcinfo* each_func;
4119 struct varinfo* each_var;
4120 bool okay = true;
4121
4122 BFD_ASSERT (stash->info_hash_status != STASH_INFO_HASH_DISABLED);
4123
4124 if (!comp_unit_maybe_decode_line_info (unit))
4125 return false;
4126
4127 BFD_ASSERT (!unit->cached);
4128
4129 /* To preserve the original search order, we went to visit the function
4130 infos in the reversed order of the list. However, making the list
4131 bi-directional use quite a bit of extra memory. So we reverse
4132 the list first, traverse the list in the now reversed order and
4133 finally reverse the list again to get back the original order. */
4134 unit->function_table = reverse_funcinfo_list (unit->function_table);
4135 for (each_func = unit->function_table;
4136 each_func && okay;
4137 each_func = each_func->prev_func)
4138 {
4139 /* Skip nameless functions. */
4140 if (each_func->name)
4141 /* There is no need to copy name string into hash table as
4142 name string is either in the dwarf string buffer or
4143 info in the stash. */
4144 okay = insert_info_hash_table (funcinfo_hash_table, each_func->name,
4145 (void*) each_func, false);
4146 }
4147 unit->function_table = reverse_funcinfo_list (unit->function_table);
4148 if (!okay)
4149 return false;
4150
4151 /* We do the same for variable infos. */
4152 unit->variable_table = reverse_varinfo_list (unit->variable_table);
4153 for (each_var = unit->variable_table;
4154 each_var && okay;
4155 each_var = each_var->prev_var)
4156 {
4157 /* Skip stack vars and vars with no files or names. */
4158 if (! each_var->stack
4159 && each_var->file != NULL
4160 && each_var->name != NULL)
4161 /* There is no need to copy name string into hash table as
4162 name string is either in the dwarf string buffer or
4163 info in the stash. */
4164 okay = insert_info_hash_table (varinfo_hash_table, each_var->name,
4165 (void*) each_var, false);
4166 }
4167
4168 unit->variable_table = reverse_varinfo_list (unit->variable_table);
4169 unit->cached = true;
4170 return okay;
4171 }
4172
4173 /* Locate a section in a BFD containing debugging info. The search starts
4174 from the section after AFTER_SEC, or from the first section in the BFD if
4175 AFTER_SEC is NULL. The search works by examining the names of the
4176 sections. There are three permissiable names. The first two are given
4177 by DEBUG_SECTIONS[debug_info] (whose standard DWARF2 names are .debug_info
4178 and .zdebug_info). The third is a prefix .gnu.linkonce.wi.
4179 This is a variation on the .debug_info section which has a checksum
4180 describing the contents appended onto the name. This allows the linker to
4181 identify and discard duplicate debugging sections for different
4182 compilation units. */
4183 #define GNU_LINKONCE_INFO ".gnu.linkonce.wi."
4184
4185 static asection *
4186 find_debug_info (bfd *abfd, const struct dwarf_debug_section *debug_sections,
4187 asection *after_sec)
4188 {
4189 asection *msec;
4190 const char *look;
4191
4192 if (after_sec == NULL)
4193 {
4194 look = debug_sections[debug_info].uncompressed_name;
4195 msec = bfd_get_section_by_name (abfd, look);
4196 if (msec != NULL)
4197 return msec;
4198
4199 look = debug_sections[debug_info].compressed_name;
4200 msec = bfd_get_section_by_name (abfd, look);
4201 if (msec != NULL)
4202 return msec;
4203
4204 for (msec = abfd->sections; msec != NULL; msec = msec->next)
4205 if (startswith (msec->name, GNU_LINKONCE_INFO))
4206 return msec;
4207
4208 return NULL;
4209 }
4210
4211 for (msec = after_sec->next; msec != NULL; msec = msec->next)
4212 {
4213 look = debug_sections[debug_info].uncompressed_name;
4214 if (strcmp (msec->name, look) == 0)
4215 return msec;
4216
4217 look = debug_sections[debug_info].compressed_name;
4218 if (look != NULL && strcmp (msec->name, look) == 0)
4219 return msec;
4220
4221 if (startswith (msec->name, GNU_LINKONCE_INFO))
4222 return msec;
4223 }
4224
4225 return NULL;
4226 }
4227
4228 /* Transfer VMAs from object file to separate debug file. */
4229
4230 static void
4231 set_debug_vma (bfd *orig_bfd, bfd *debug_bfd)
4232 {
4233 asection *s, *d;
4234
4235 for (s = orig_bfd->sections, d = debug_bfd->sections;
4236 s != NULL && d != NULL;
4237 s = s->next, d = d->next)
4238 {
4239 if ((d->flags & SEC_DEBUGGING) != 0)
4240 break;
4241 /* ??? Assumes 1-1 correspondence between sections in the
4242 two files. */
4243 if (strcmp (s->name, d->name) == 0)
4244 {
4245 d->output_section = s->output_section;
4246 d->output_offset = s->output_offset;
4247 d->vma = s->vma;
4248 }
4249 }
4250 }
4251
4252 /* If the dwarf2 info was found in a separate debug file, return the
4253 debug file section corresponding to the section in the original file
4254 and the debug file symbols. */
4255
4256 static void
4257 _bfd_dwarf2_stash_syms (struct dwarf2_debug *stash, bfd *abfd,
4258 asection **sec, asymbol ***syms)
4259 {
4260 if (stash->f.bfd_ptr != abfd)
4261 {
4262 asection *s, *d;
4263
4264 if (*sec == NULL)
4265 {
4266 *syms = stash->f.syms;
4267 return;
4268 }
4269
4270 for (s = abfd->sections, d = stash->f.bfd_ptr->sections;
4271 s != NULL && d != NULL;
4272 s = s->next, d = d->next)
4273 {
4274 if ((d->flags & SEC_DEBUGGING) != 0)
4275 break;
4276 if (s == *sec
4277 && strcmp (s->name, d->name) == 0)
4278 {
4279 *sec = d;
4280 *syms = stash->f.syms;
4281 break;
4282 }
4283 }
4284 }
4285 }
4286
4287 /* Unset vmas for adjusted sections in STASH. */
4288
4289 static void
4290 unset_sections (struct dwarf2_debug *stash)
4291 {
4292 int i;
4293 struct adjusted_section *p;
4294
4295 i = stash->adjusted_section_count;
4296 p = stash->adjusted_sections;
4297 for (; i > 0; i--, p++)
4298 p->section->vma = 0;
4299 }
4300
4301 /* Set VMAs for allocated and .debug_info sections in ORIG_BFD, a
4302 relocatable object file. VMAs are normally all zero in relocatable
4303 object files, so if we want to distinguish locations in sections by
4304 address we need to set VMAs so the sections do not overlap. We
4305 also set VMA on .debug_info so that when we have multiple
4306 .debug_info sections (or the linkonce variant) they also do not
4307 overlap. The multiple .debug_info sections make up a single
4308 logical section. ??? We should probably do the same for other
4309 debug sections. */
4310
4311 static bool
4312 place_sections (bfd *orig_bfd, struct dwarf2_debug *stash)
4313 {
4314 bfd *abfd;
4315 struct adjusted_section *p;
4316 int i;
4317 const char *debug_info_name;
4318
4319 if (stash->adjusted_section_count != 0)
4320 {
4321 i = stash->adjusted_section_count;
4322 p = stash->adjusted_sections;
4323 for (; i > 0; i--, p++)
4324 p->section->vma = p->adj_vma;
4325 return true;
4326 }
4327
4328 debug_info_name = stash->debug_sections[debug_info].uncompressed_name;
4329 i = 0;
4330 abfd = orig_bfd;
4331 while (1)
4332 {
4333 asection *sect;
4334
4335 for (sect = abfd->sections; sect != NULL; sect = sect->next)
4336 {
4337 int is_debug_info;
4338
4339 if ((sect->output_section != NULL
4340 && sect->output_section != sect
4341 && (sect->flags & SEC_DEBUGGING) == 0)
4342 || sect->vma != 0)
4343 continue;
4344
4345 is_debug_info = (strcmp (sect->name, debug_info_name) == 0
4346 || startswith (sect->name, GNU_LINKONCE_INFO));
4347
4348 if (!((sect->flags & SEC_ALLOC) != 0 && abfd == orig_bfd)
4349 && !is_debug_info)
4350 continue;
4351
4352 i++;
4353 }
4354 if (abfd == stash->f.bfd_ptr)
4355 break;
4356 abfd = stash->f.bfd_ptr;
4357 }
4358
4359 if (i <= 1)
4360 stash->adjusted_section_count = -1;
4361 else
4362 {
4363 bfd_vma last_vma = 0, last_dwarf = 0;
4364 size_t amt = i * sizeof (struct adjusted_section);
4365
4366 p = (struct adjusted_section *) bfd_malloc (amt);
4367 if (p == NULL)
4368 return false;
4369
4370 stash->adjusted_sections = p;
4371 stash->adjusted_section_count = i;
4372
4373 abfd = orig_bfd;
4374 while (1)
4375 {
4376 asection *sect;
4377
4378 for (sect = abfd->sections; sect != NULL; sect = sect->next)
4379 {
4380 bfd_size_type sz;
4381 int is_debug_info;
4382
4383 if ((sect->output_section != NULL
4384 && sect->output_section != sect
4385 && (sect->flags & SEC_DEBUGGING) == 0)
4386 || sect->vma != 0)
4387 continue;
4388
4389 is_debug_info = (strcmp (sect->name, debug_info_name) == 0
4390 || startswith (sect->name, GNU_LINKONCE_INFO));
4391
4392 if (!((sect->flags & SEC_ALLOC) != 0 && abfd == orig_bfd)
4393 && !is_debug_info)
4394 continue;
4395
4396 sz = sect->rawsize ? sect->rawsize : sect->size;
4397
4398 if (is_debug_info)
4399 {
4400 BFD_ASSERT (sect->alignment_power == 0);
4401 sect->vma = last_dwarf;
4402 last_dwarf += sz;
4403 }
4404 else
4405 {
4406 /* Align the new address to the current section
4407 alignment. */
4408 last_vma = ((last_vma
4409 + ~(-((bfd_vma) 1 << sect->alignment_power)))
4410 & (-((bfd_vma) 1 << sect->alignment_power)));
4411 sect->vma = last_vma;
4412 last_vma += sz;
4413 }
4414
4415 p->section = sect;
4416 p->adj_vma = sect->vma;
4417 p++;
4418 }
4419 if (abfd == stash->f.bfd_ptr)
4420 break;
4421 abfd = stash->f.bfd_ptr;
4422 }
4423 }
4424
4425 if (orig_bfd != stash->f.bfd_ptr)
4426 set_debug_vma (orig_bfd, stash->f.bfd_ptr);
4427
4428 return true;
4429 }
4430
4431 /* Look up a funcinfo by name using the given info hash table. If found,
4432 also update the locations pointed to by filename_ptr and linenumber_ptr.
4433
4434 This function returns TRUE if a funcinfo that matches the given symbol
4435 and address is found with any error; otherwise it returns FALSE. */
4436
4437 static bool
4438 info_hash_lookup_funcinfo (struct info_hash_table *hash_table,
4439 asymbol *sym,
4440 bfd_vma addr,
4441 const char **filename_ptr,
4442 unsigned int *linenumber_ptr)
4443 {
4444 struct funcinfo* each_func;
4445 struct funcinfo* best_fit = NULL;
4446 bfd_vma best_fit_len = 0;
4447 struct info_list_node *node;
4448 struct arange *arange;
4449 const char *name = bfd_asymbol_name (sym);
4450 asection *sec = bfd_asymbol_section (sym);
4451
4452 for (node = lookup_info_hash_table (hash_table, name);
4453 node;
4454 node = node->next)
4455 {
4456 each_func = (struct funcinfo *) node->info;
4457 for (arange = &each_func->arange;
4458 arange;
4459 arange = arange->next)
4460 {
4461 if ((!each_func->sec || each_func->sec == sec)
4462 && addr >= arange->low
4463 && addr < arange->high
4464 && (!best_fit
4465 || arange->high - arange->low < best_fit_len))
4466 {
4467 best_fit = each_func;
4468 best_fit_len = arange->high - arange->low;
4469 }
4470 }
4471 }
4472
4473 if (best_fit)
4474 {
4475 best_fit->sec = sec;
4476 *filename_ptr = best_fit->file;
4477 *linenumber_ptr = best_fit->line;
4478 return true;
4479 }
4480
4481 return false;
4482 }
4483
4484 /* Look up a varinfo by name using the given info hash table. If found,
4485 also update the locations pointed to by filename_ptr and linenumber_ptr.
4486
4487 This function returns TRUE if a varinfo that matches the given symbol
4488 and address is found with any error; otherwise it returns FALSE. */
4489
4490 static bool
4491 info_hash_lookup_varinfo (struct info_hash_table *hash_table,
4492 asymbol *sym,
4493 bfd_vma addr,
4494 const char **filename_ptr,
4495 unsigned int *linenumber_ptr)
4496 {
4497 const char *name = bfd_asymbol_name (sym);
4498 asection *sec = bfd_asymbol_section (sym);
4499 struct varinfo* each;
4500 struct info_list_node *node;
4501
4502 for (node = lookup_info_hash_table (hash_table, name);
4503 node;
4504 node = node->next)
4505 {
4506 each = (struct varinfo *) node->info;
4507 if (each->addr == addr
4508 && (!each->sec || each->sec == sec))
4509 {
4510 each->sec = sec;
4511 *filename_ptr = each->file;
4512 *linenumber_ptr = each->line;
4513 return true;
4514 }
4515 }
4516
4517 return false;
4518 }
4519
4520 /* Update the funcinfo and varinfo info hash tables if they are
4521 not up to date. Returns TRUE if there is no error; otherwise
4522 returns FALSE and disable the info hash tables. */
4523
4524 static bool
4525 stash_maybe_update_info_hash_tables (struct dwarf2_debug *stash)
4526 {
4527 struct comp_unit *each;
4528
4529 /* Exit if hash tables are up-to-date. */
4530 if (stash->f.all_comp_units == stash->hash_units_head)
4531 return true;
4532
4533 if (stash->hash_units_head)
4534 each = stash->hash_units_head->prev_unit;
4535 else
4536 each = stash->f.last_comp_unit;
4537
4538 while (each)
4539 {
4540 if (!comp_unit_hash_info (stash, each, stash->funcinfo_hash_table,
4541 stash->varinfo_hash_table))
4542 {
4543 stash->info_hash_status = STASH_INFO_HASH_DISABLED;
4544 return false;
4545 }
4546 each = each->prev_unit;
4547 }
4548
4549 stash->hash_units_head = stash->f.all_comp_units;
4550 return true;
4551 }
4552
4553 /* Check consistency of info hash tables. This is for debugging only. */
4554
4555 static void ATTRIBUTE_UNUSED
4556 stash_verify_info_hash_table (struct dwarf2_debug *stash)
4557 {
4558 struct comp_unit *each_unit;
4559 struct funcinfo *each_func;
4560 struct varinfo *each_var;
4561 struct info_list_node *node;
4562 bool found;
4563
4564 for (each_unit = stash->f.all_comp_units;
4565 each_unit;
4566 each_unit = each_unit->next_unit)
4567 {
4568 for (each_func = each_unit->function_table;
4569 each_func;
4570 each_func = each_func->prev_func)
4571 {
4572 if (!each_func->name)
4573 continue;
4574 node = lookup_info_hash_table (stash->funcinfo_hash_table,
4575 each_func->name);
4576 BFD_ASSERT (node);
4577 found = false;
4578 while (node && !found)
4579 {
4580 found = node->info == each_func;
4581 node = node->next;
4582 }
4583 BFD_ASSERT (found);
4584 }
4585
4586 for (each_var = each_unit->variable_table;
4587 each_var;
4588 each_var = each_var->prev_var)
4589 {
4590 if (!each_var->name || !each_var->file || each_var->stack)
4591 continue;
4592 node = lookup_info_hash_table (stash->varinfo_hash_table,
4593 each_var->name);
4594 BFD_ASSERT (node);
4595 found = false;
4596 while (node && !found)
4597 {
4598 found = node->info == each_var;
4599 node = node->next;
4600 }
4601 BFD_ASSERT (found);
4602 }
4603 }
4604 }
4605
4606 /* Check to see if we want to enable the info hash tables, which consume
4607 quite a bit of memory. Currently we only check the number times
4608 bfd_dwarf2_find_line is called. In the future, we may also want to
4609 take the number of symbols into account. */
4610
4611 static void
4612 stash_maybe_enable_info_hash_tables (bfd *abfd, struct dwarf2_debug *stash)
4613 {
4614 BFD_ASSERT (stash->info_hash_status == STASH_INFO_HASH_OFF);
4615
4616 if (stash->info_hash_count++ < STASH_INFO_HASH_TRIGGER)
4617 return;
4618
4619 /* FIXME: Maybe we should check the reduce_memory_overheads
4620 and optimize fields in the bfd_link_info structure ? */
4621
4622 /* Create hash tables. */
4623 stash->funcinfo_hash_table = create_info_hash_table (abfd);
4624 stash->varinfo_hash_table = create_info_hash_table (abfd);
4625 if (!stash->funcinfo_hash_table || !stash->varinfo_hash_table)
4626 {
4627 /* Turn off info hashes if any allocation above fails. */
4628 stash->info_hash_status = STASH_INFO_HASH_DISABLED;
4629 return;
4630 }
4631 /* We need a forced update so that the info hash tables will
4632 be created even though there is no compilation unit. That
4633 happens if STASH_INFO_HASH_TRIGGER is 0. */
4634 if (stash_maybe_update_info_hash_tables (stash))
4635 stash->info_hash_status = STASH_INFO_HASH_ON;
4636 }
4637
4638 /* Find the file and line associated with a symbol and address using the
4639 info hash tables of a stash. If there is a match, the function returns
4640 TRUE and update the locations pointed to by filename_ptr and linenumber_ptr;
4641 otherwise it returns FALSE. */
4642
4643 static bool
4644 stash_find_line_fast (struct dwarf2_debug *stash,
4645 asymbol *sym,
4646 bfd_vma addr,
4647 const char **filename_ptr,
4648 unsigned int *linenumber_ptr)
4649 {
4650 BFD_ASSERT (stash->info_hash_status == STASH_INFO_HASH_ON);
4651
4652 if (sym->flags & BSF_FUNCTION)
4653 return info_hash_lookup_funcinfo (stash->funcinfo_hash_table, sym, addr,
4654 filename_ptr, linenumber_ptr);
4655 return info_hash_lookup_varinfo (stash->varinfo_hash_table, sym, addr,
4656 filename_ptr, linenumber_ptr);
4657 }
4658
4659 /* Save current section VMAs. */
4660
4661 static bool
4662 save_section_vma (const bfd *abfd, struct dwarf2_debug *stash)
4663 {
4664 asection *s;
4665 unsigned int i;
4666
4667 if (abfd->section_count == 0)
4668 return true;
4669 stash->sec_vma = bfd_malloc (sizeof (*stash->sec_vma) * abfd->section_count);
4670 if (stash->sec_vma == NULL)
4671 return false;
4672 stash->sec_vma_count = abfd->section_count;
4673 for (i = 0, s = abfd->sections;
4674 s != NULL && i < abfd->section_count;
4675 i++, s = s->next)
4676 {
4677 if (s->output_section != NULL)
4678 stash->sec_vma[i] = s->output_section->vma + s->output_offset;
4679 else
4680 stash->sec_vma[i] = s->vma;
4681 }
4682 return true;
4683 }
4684
4685 /* Compare current section VMAs against those at the time the stash
4686 was created. If find_nearest_line is used in linker warnings or
4687 errors early in the link process, the debug info stash will be
4688 invalid for later calls. This is because we relocate debug info
4689 sections, so the stashed section contents depend on symbol values,
4690 which in turn depend on section VMAs. */
4691
4692 static bool
4693 section_vma_same (const bfd *abfd, const struct dwarf2_debug *stash)
4694 {
4695 asection *s;
4696 unsigned int i;
4697
4698 /* PR 24334: If the number of sections in ABFD has changed between
4699 when the stash was created and now, then we cannot trust the
4700 stashed vma information. */
4701 if (abfd->section_count != stash->sec_vma_count)
4702 return false;
4703
4704 for (i = 0, s = abfd->sections;
4705 s != NULL && i < abfd->section_count;
4706 i++, s = s->next)
4707 {
4708 bfd_vma vma;
4709
4710 if (s->output_section != NULL)
4711 vma = s->output_section->vma + s->output_offset;
4712 else
4713 vma = s->vma;
4714 if (vma != stash->sec_vma[i])
4715 return false;
4716 }
4717 return true;
4718 }
4719
4720 /* Read debug information from DEBUG_BFD when DEBUG_BFD is specified.
4721 If DEBUG_BFD is not specified, we read debug information from ABFD
4722 or its gnu_debuglink. The results will be stored in PINFO.
4723 The function returns TRUE iff debug information is ready. */
4724
4725 bool
4726 _bfd_dwarf2_slurp_debug_info (bfd *abfd, bfd *debug_bfd,
4727 const struct dwarf_debug_section *debug_sections,
4728 asymbol **symbols,
4729 void **pinfo,
4730 bool do_place)
4731 {
4732 size_t amt = sizeof (struct dwarf2_debug);
4733 bfd_size_type total_size;
4734 asection *msec;
4735 struct dwarf2_debug *stash = (struct dwarf2_debug *) *pinfo;
4736
4737 if (stash != NULL)
4738 {
4739 if (stash->orig_bfd == abfd
4740 && section_vma_same (abfd, stash))
4741 {
4742 /* Check that we did previously find some debug information
4743 before attempting to make use of it. */
4744 if (stash->f.bfd_ptr != NULL)
4745 {
4746 if (do_place && !place_sections (abfd, stash))
4747 return false;
4748 return true;
4749 }
4750
4751 return false;
4752 }
4753 _bfd_dwarf2_cleanup_debug_info (abfd, pinfo);
4754 memset (stash, 0, amt);
4755 }
4756 else
4757 {
4758 stash = (struct dwarf2_debug *) bfd_zalloc (abfd, amt);
4759 if (! stash)
4760 return false;
4761 }
4762 stash->orig_bfd = abfd;
4763 stash->debug_sections = debug_sections;
4764 stash->f.syms = symbols;
4765 if (!save_section_vma (abfd, stash))
4766 return false;
4767
4768 stash->f.abbrev_offsets = htab_create_alloc (10, hash_abbrev, eq_abbrev,
4769 del_abbrev, calloc, free);
4770 if (!stash->f.abbrev_offsets)
4771 return false;
4772
4773 stash->alt.abbrev_offsets = htab_create_alloc (10, hash_abbrev, eq_abbrev,
4774 del_abbrev, calloc, free);
4775 if (!stash->alt.abbrev_offsets)
4776 return false;
4777
4778 *pinfo = stash;
4779
4780 if (debug_bfd == NULL)
4781 debug_bfd = abfd;
4782
4783 msec = find_debug_info (debug_bfd, debug_sections, NULL);
4784 if (msec == NULL && abfd == debug_bfd)
4785 {
4786 char * debug_filename;
4787
4788 debug_filename = bfd_follow_build_id_debuglink (abfd, DEBUGDIR);
4789 if (debug_filename == NULL)
4790 debug_filename = bfd_follow_gnu_debuglink (abfd, DEBUGDIR);
4791
4792 if (debug_filename == NULL)
4793 /* No dwarf2 info, and no gnu_debuglink to follow.
4794 Note that at this point the stash has been allocated, but
4795 contains zeros. This lets future calls to this function
4796 fail more quickly. */
4797 return false;
4798
4799 debug_bfd = bfd_openr (debug_filename, NULL);
4800 free (debug_filename);
4801 if (debug_bfd == NULL)
4802 /* FIXME: Should we report our failure to follow the debuglink ? */
4803 return false;
4804
4805 /* Set BFD_DECOMPRESS to decompress debug sections. */
4806 debug_bfd->flags |= BFD_DECOMPRESS;
4807 if (!bfd_check_format (debug_bfd, bfd_object)
4808 || (msec = find_debug_info (debug_bfd,
4809 debug_sections, NULL)) == NULL
4810 || !bfd_generic_link_read_symbols (debug_bfd))
4811 {
4812 bfd_close (debug_bfd);
4813 return false;
4814 }
4815
4816 symbols = bfd_get_outsymbols (debug_bfd);
4817 stash->f.syms = symbols;
4818 stash->close_on_cleanup = true;
4819 }
4820 stash->f.bfd_ptr = debug_bfd;
4821
4822 if (do_place
4823 && !place_sections (abfd, stash))
4824 return false;
4825
4826 /* There can be more than one DWARF2 info section in a BFD these
4827 days. First handle the easy case when there's only one. If
4828 there's more than one, try case two: none of the sections is
4829 compressed. In that case, read them all in and produce one
4830 large stash. We do this in two passes - in the first pass we
4831 just accumulate the section sizes, and in the second pass we
4832 read in the section's contents. (The allows us to avoid
4833 reallocing the data as we add sections to the stash.) If
4834 some or all sections are compressed, then do things the slow
4835 way, with a bunch of reallocs. */
4836
4837 if (! find_debug_info (debug_bfd, debug_sections, msec))
4838 {
4839 /* Case 1: only one info section. */
4840 total_size = msec->size;
4841 if (! read_section (debug_bfd, &stash->debug_sections[debug_info],
4842 symbols, 0,
4843 &stash->f.dwarf_info_buffer, &total_size))
4844 return false;
4845 }
4846 else
4847 {
4848 /* Case 2: multiple sections. */
4849 for (total_size = 0;
4850 msec;
4851 msec = find_debug_info (debug_bfd, debug_sections, msec))
4852 {
4853 /* Catch PR25070 testcase overflowing size calculation here. */
4854 if (total_size + msec->size < total_size
4855 || total_size + msec->size < msec->size)
4856 {
4857 bfd_set_error (bfd_error_no_memory);
4858 return false;
4859 }
4860 total_size += msec->size;
4861 }
4862
4863 stash->f.dwarf_info_buffer = (bfd_byte *) bfd_malloc (total_size);
4864 if (stash->f.dwarf_info_buffer == NULL)
4865 return false;
4866
4867 total_size = 0;
4868 for (msec = find_debug_info (debug_bfd, debug_sections, NULL);
4869 msec;
4870 msec = find_debug_info (debug_bfd, debug_sections, msec))
4871 {
4872 bfd_size_type size;
4873
4874 size = msec->size;
4875 if (size == 0)
4876 continue;
4877
4878 if (!(bfd_simple_get_relocated_section_contents
4879 (debug_bfd, msec, stash->f.dwarf_info_buffer + total_size,
4880 symbols)))
4881 return false;
4882
4883 total_size += size;
4884 }
4885 }
4886
4887 stash->f.info_ptr = stash->f.dwarf_info_buffer;
4888 stash->f.dwarf_info_size = total_size;
4889 return true;
4890 }
4891
4892 /* Parse the next DWARF2 compilation unit at FILE->INFO_PTR. */
4893
4894 static struct comp_unit *
4895 stash_comp_unit (struct dwarf2_debug *stash, struct dwarf2_debug_file *file)
4896 {
4897 bfd_size_type length;
4898 unsigned int offset_size;
4899 bfd_byte *info_ptr_unit = file->info_ptr;
4900 bfd_byte *info_ptr_end = file->dwarf_info_buffer + file->dwarf_info_size;
4901
4902 if (file->info_ptr >= info_ptr_end)
4903 return NULL;
4904
4905 length = read_4_bytes (file->bfd_ptr, &file->info_ptr, info_ptr_end);
4906 /* A 0xffffff length is the DWARF3 way of indicating
4907 we use 64-bit offsets, instead of 32-bit offsets. */
4908 if (length == 0xffffffff)
4909 {
4910 offset_size = 8;
4911 length = read_8_bytes (file->bfd_ptr, &file->info_ptr, info_ptr_end);
4912 }
4913 /* A zero length is the IRIX way of indicating 64-bit offsets,
4914 mostly because the 64-bit length will generally fit in 32
4915 bits, and the endianness helps. */
4916 else if (length == 0)
4917 {
4918 offset_size = 8;
4919 length = read_4_bytes (file->bfd_ptr, &file->info_ptr, info_ptr_end);
4920 }
4921 /* In the absence of the hints above, we assume 32-bit DWARF2
4922 offsets even for targets with 64-bit addresses, because:
4923 a) most of the time these targets will not have generated
4924 more than 2Gb of debug info and so will not need 64-bit
4925 offsets,
4926 and
4927 b) if they do use 64-bit offsets but they are not using
4928 the size hints that are tested for above then they are
4929 not conforming to the DWARF3 standard anyway. */
4930 else
4931 offset_size = 4;
4932
4933 if (length != 0
4934 && length <= (size_t) (info_ptr_end - file->info_ptr))
4935 {
4936 struct comp_unit *each = parse_comp_unit (stash, file,
4937 file->info_ptr, length,
4938 info_ptr_unit, offset_size);
4939 if (each)
4940 {
4941 if (file->all_comp_units)
4942 file->all_comp_units->prev_unit = each;
4943 else
4944 file->last_comp_unit = each;
4945
4946 each->next_unit = file->all_comp_units;
4947 file->all_comp_units = each;
4948
4949 file->info_ptr += length;
4950 return each;
4951 }
4952 }
4953
4954 /* Don't trust any of the DWARF info after a corrupted length or
4955 parse error. */
4956 file->info_ptr = info_ptr_end;
4957 return NULL;
4958 }
4959
4960 /* Hash function for an asymbol. */
4961
4962 static hashval_t
4963 hash_asymbol (const void *sym)
4964 {
4965 const asymbol *asym = sym;
4966 return htab_hash_string (asym->name);
4967 }
4968
4969 /* Equality function for asymbols. */
4970
4971 static int
4972 eq_asymbol (const void *a, const void *b)
4973 {
4974 const asymbol *sa = a;
4975 const asymbol *sb = b;
4976 return strcmp (sa->name, sb->name) == 0;
4977 }
4978
4979 /* Scan the debug information in PINFO looking for a DW_TAG_subprogram
4980 abbrev with a DW_AT_low_pc attached to it. Then lookup that same
4981 symbol in SYMBOLS and return the difference between the low_pc and
4982 the symbol's address. Returns 0 if no suitable symbol could be found. */
4983
4984 bfd_signed_vma
4985 _bfd_dwarf2_find_symbol_bias (asymbol ** symbols, void ** pinfo)
4986 {
4987 struct dwarf2_debug *stash;
4988 struct comp_unit * unit;
4989 htab_t sym_hash;
4990 bfd_signed_vma result = 0;
4991 asymbol ** psym;
4992
4993 stash = (struct dwarf2_debug *) *pinfo;
4994
4995 if (stash == NULL || symbols == NULL)
4996 return 0;
4997
4998 sym_hash = htab_create_alloc (10, hash_asymbol, eq_asymbol,
4999 NULL, xcalloc, free);
5000 for (psym = symbols; * psym != NULL; psym++)
5001 {
5002 asymbol * sym = * psym;
5003
5004 if (sym->flags & BSF_FUNCTION && sym->section != NULL)
5005 {
5006 void **slot = htab_find_slot (sym_hash, sym, INSERT);
5007 *slot = sym;
5008 }
5009 }
5010
5011 for (unit = stash->f.all_comp_units; unit; unit = unit->next_unit)
5012 {
5013 struct funcinfo * func;
5014
5015 comp_unit_maybe_decode_line_info (unit);
5016
5017 for (func = unit->function_table; func != NULL; func = func->prev_func)
5018 if (func->name && func->arange.low)
5019 {
5020 asymbol search, *sym;
5021
5022 /* FIXME: Do we need to scan the aranges looking for the lowest pc value ? */
5023
5024 search.name = func->name;
5025 sym = htab_find (sym_hash, &search);
5026 if (sym != NULL)
5027 {
5028 result = ((bfd_signed_vma) func->arange.low) -
5029 ((bfd_signed_vma) (sym->value + sym->section->vma));
5030 goto done;
5031 }
5032 }
5033 }
5034
5035 done:
5036 htab_delete (sym_hash);
5037 return result;
5038 }
5039
5040 /* Find the source code location of SYMBOL. If SYMBOL is NULL
5041 then find the nearest source code location corresponding to
5042 the address SECTION + OFFSET.
5043 Returns 1 if the line is found without error and fills in
5044 FILENAME_PTR and LINENUMBER_PTR. In the case where SYMBOL was
5045 NULL the FUNCTIONNAME_PTR is also filled in.
5046 Returns 2 if partial information from _bfd_elf_find_function is
5047 returned (function and maybe file) by looking at symbols. DWARF2
5048 info is present but not regarding the requested code location.
5049 Returns 0 otherwise.
5050 SYMBOLS contains the symbol table for ABFD.
5051 DEBUG_SECTIONS contains the name of the dwarf debug sections. */
5052
5053 int
5054 _bfd_dwarf2_find_nearest_line (bfd *abfd,
5055 asymbol **symbols,
5056 asymbol *symbol,
5057 asection *section,
5058 bfd_vma offset,
5059 const char **filename_ptr,
5060 const char **functionname_ptr,
5061 unsigned int *linenumber_ptr,
5062 unsigned int *discriminator_ptr,
5063 const struct dwarf_debug_section *debug_sections,
5064 void **pinfo)
5065 {
5066 /* Read each compilation unit from the section .debug_info, and check
5067 to see if it contains the address we are searching for. If yes,
5068 lookup the address, and return the line number info. If no, go
5069 on to the next compilation unit.
5070
5071 We keep a list of all the previously read compilation units, and
5072 a pointer to the next un-read compilation unit. Check the
5073 previously read units before reading more. */
5074 struct dwarf2_debug *stash;
5075 /* What address are we looking for? */
5076 bfd_vma addr;
5077 struct comp_unit* each;
5078 struct funcinfo *function = NULL;
5079 int found = false;
5080 bool do_line;
5081
5082 *filename_ptr = NULL;
5083 if (functionname_ptr != NULL)
5084 *functionname_ptr = NULL;
5085 *linenumber_ptr = 0;
5086 if (discriminator_ptr)
5087 *discriminator_ptr = 0;
5088
5089 if (! _bfd_dwarf2_slurp_debug_info (abfd, NULL, debug_sections,
5090 symbols, pinfo,
5091 (abfd->flags & (EXEC_P | DYNAMIC)) == 0))
5092 return false;
5093
5094 stash = (struct dwarf2_debug *) *pinfo;
5095
5096 do_line = symbol != NULL;
5097 if (do_line)
5098 {
5099 BFD_ASSERT (section == NULL && offset == 0 && functionname_ptr == NULL);
5100 section = bfd_asymbol_section (symbol);
5101 addr = symbol->value;
5102 }
5103 else
5104 {
5105 BFD_ASSERT (section != NULL && functionname_ptr != NULL);
5106 addr = offset;
5107
5108 /* If we have no SYMBOL but the section we're looking at is not a
5109 code section, then take a look through the list of symbols to see
5110 if we have a symbol at the address we're looking for. If we do
5111 then use this to look up line information. This will allow us to
5112 give file and line results for data symbols. We exclude code
5113 symbols here, if we look up a function symbol and then look up the
5114 line information we'll actually return the line number for the
5115 opening '{' rather than the function definition line. This is
5116 because looking up by symbol uses the line table, in which the
5117 first line for a function is usually the opening '{', while
5118 looking up the function by section + offset uses the
5119 DW_AT_decl_line from the function DW_TAG_subprogram for the line,
5120 which will be the line of the function name. */
5121 if (symbols != NULL && (section->flags & SEC_CODE) == 0)
5122 {
5123 asymbol **tmp;
5124
5125 for (tmp = symbols; (*tmp) != NULL; ++tmp)
5126 if ((*tmp)->the_bfd == abfd
5127 && (*tmp)->section == section
5128 && (*tmp)->value == offset
5129 && ((*tmp)->flags & BSF_SECTION_SYM) == 0)
5130 {
5131 symbol = *tmp;
5132 do_line = true;
5133 /* For local symbols, keep going in the hope we find a
5134 global. */
5135 if ((symbol->flags & BSF_GLOBAL) != 0)
5136 break;
5137 }
5138 }
5139 }
5140
5141 if (section->output_section)
5142 addr += section->output_section->vma + section->output_offset;
5143 else
5144 addr += section->vma;
5145
5146 /* A null info_ptr indicates that there is no dwarf2 info
5147 (or that an error occured while setting up the stash). */
5148 if (! stash->f.info_ptr)
5149 return false;
5150
5151 stash->inliner_chain = NULL;
5152
5153 /* Check the previously read comp. units first. */
5154 if (do_line)
5155 {
5156 /* The info hash tables use quite a bit of memory. We may not want to
5157 always use them. We use some heuristics to decide if and when to
5158 turn it on. */
5159 if (stash->info_hash_status == STASH_INFO_HASH_OFF)
5160 stash_maybe_enable_info_hash_tables (abfd, stash);
5161
5162 /* Keep info hash table up to date if they are available. Note that we
5163 may disable the hash tables if there is any error duing update. */
5164 if (stash->info_hash_status == STASH_INFO_HASH_ON)
5165 stash_maybe_update_info_hash_tables (stash);
5166
5167 if (stash->info_hash_status == STASH_INFO_HASH_ON)
5168 {
5169 found = stash_find_line_fast (stash, symbol, addr, filename_ptr,
5170 linenumber_ptr);
5171 if (found)
5172 goto done;
5173 }
5174 else
5175 {
5176 /* Check the previously read comp. units first. */
5177 for (each = stash->f.all_comp_units; each; each = each->next_unit)
5178 if ((symbol->flags & BSF_FUNCTION) == 0
5179 || each->arange.high == 0
5180 || comp_unit_contains_address (each, addr))
5181 {
5182 found = comp_unit_find_line (each, symbol, addr, filename_ptr,
5183 linenumber_ptr);
5184 if (found)
5185 goto done;
5186 }
5187 }
5188 }
5189 else
5190 {
5191 bfd_vma min_range = (bfd_vma) -1;
5192 const char * local_filename = NULL;
5193 struct funcinfo *local_function = NULL;
5194 unsigned int local_linenumber = 0;
5195 unsigned int local_discriminator = 0;
5196
5197 for (each = stash->f.all_comp_units; each; each = each->next_unit)
5198 {
5199 bfd_vma range = (bfd_vma) -1;
5200
5201 found = ((each->arange.high == 0
5202 || comp_unit_contains_address (each, addr))
5203 && (range = (comp_unit_find_nearest_line
5204 (each, addr, &local_filename,
5205 &local_function, &local_linenumber,
5206 &local_discriminator))) != 0);
5207 if (found)
5208 {
5209 /* PRs 15935 15994: Bogus debug information may have provided us
5210 with an erroneous match. We attempt to counter this by
5211 selecting the match that has the smallest address range
5212 associated with it. (We are assuming that corrupt debug info
5213 will tend to result in extra large address ranges rather than
5214 extra small ranges).
5215
5216 This does mean that we scan through all of the CUs associated
5217 with the bfd each time this function is called. But this does
5218 have the benefit of producing consistent results every time the
5219 function is called. */
5220 if (range <= min_range)
5221 {
5222 if (filename_ptr && local_filename)
5223 * filename_ptr = local_filename;
5224 if (local_function)
5225 function = local_function;
5226 if (discriminator_ptr && local_discriminator)
5227 * discriminator_ptr = local_discriminator;
5228 if (local_linenumber)
5229 * linenumber_ptr = local_linenumber;
5230 min_range = range;
5231 }
5232 }
5233 }
5234
5235 if (* linenumber_ptr)
5236 {
5237 found = true;
5238 goto done;
5239 }
5240 }
5241
5242 /* Read each remaining comp. units checking each as they are read. */
5243 while ((each = stash_comp_unit (stash, &stash->f)) != NULL)
5244 {
5245 /* DW_AT_low_pc and DW_AT_high_pc are optional for
5246 compilation units. If we don't have them (i.e.,
5247 unit->high == 0), we need to consult the line info table
5248 to see if a compilation unit contains the given
5249 address. */
5250 if (do_line)
5251 found = (((symbol->flags & BSF_FUNCTION) == 0
5252 || each->arange.high == 0
5253 || comp_unit_contains_address (each, addr))
5254 && comp_unit_find_line (each, symbol, addr,
5255 filename_ptr, linenumber_ptr));
5256 else
5257 found = ((each->arange.high == 0
5258 || comp_unit_contains_address (each, addr))
5259 && comp_unit_find_nearest_line (each, addr,
5260 filename_ptr,
5261 &function,
5262 linenumber_ptr,
5263 discriminator_ptr) != 0);
5264
5265 if (found)
5266 break;
5267 }
5268
5269 done:
5270 if (functionname_ptr && function && function->is_linkage)
5271 {
5272 *functionname_ptr = function->name;
5273 if (!found)
5274 found = 2;
5275 }
5276 else if (functionname_ptr
5277 && (!*functionname_ptr
5278 || (function && !function->is_linkage)))
5279 {
5280 asymbol *fun;
5281 asymbol **syms = symbols;
5282 asection *sec = section;
5283
5284 _bfd_dwarf2_stash_syms (stash, abfd, &sec, &syms);
5285 fun = _bfd_elf_find_function (abfd, syms, sec, offset,
5286 *filename_ptr ? NULL : filename_ptr,
5287 functionname_ptr);
5288
5289 if (!found && fun != NULL)
5290 found = 2;
5291
5292 if (function && !function->is_linkage)
5293 {
5294 bfd_vma sec_vma;
5295
5296 sec_vma = section->vma;
5297 if (section->output_section != NULL)
5298 sec_vma = section->output_section->vma + section->output_offset;
5299 if (fun == NULL)
5300 *functionname_ptr = function->name;
5301 else if (fun->value + sec_vma == function->arange.low)
5302 function->name = *functionname_ptr;
5303 /* Even if we didn't find a linkage name, say that we have
5304 to stop a repeated search of symbols. */
5305 function->is_linkage = true;
5306 }
5307 }
5308
5309 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
5310 unset_sections (stash);
5311
5312 return found;
5313 }
5314
5315 bool
5316 _bfd_dwarf2_find_inliner_info (bfd *abfd ATTRIBUTE_UNUSED,
5317 const char **filename_ptr,
5318 const char **functionname_ptr,
5319 unsigned int *linenumber_ptr,
5320 void **pinfo)
5321 {
5322 struct dwarf2_debug *stash;
5323
5324 stash = (struct dwarf2_debug *) *pinfo;
5325 if (stash)
5326 {
5327 struct funcinfo *func = stash->inliner_chain;
5328
5329 if (func && func->caller_func)
5330 {
5331 *filename_ptr = func->caller_file;
5332 *functionname_ptr = func->caller_func->name;
5333 *linenumber_ptr = func->caller_line;
5334 stash->inliner_chain = func->caller_func;
5335 return true;
5336 }
5337 }
5338
5339 return false;
5340 }
5341
5342 void
5343 _bfd_dwarf2_cleanup_debug_info (bfd *abfd, void **pinfo)
5344 {
5345 struct dwarf2_debug *stash = (struct dwarf2_debug *) *pinfo;
5346 struct comp_unit *each;
5347 struct dwarf2_debug_file *file;
5348
5349 if (abfd == NULL || stash == NULL)
5350 return;
5351
5352 if (stash->varinfo_hash_table)
5353 bfd_hash_table_free (&stash->varinfo_hash_table->base);
5354 if (stash->funcinfo_hash_table)
5355 bfd_hash_table_free (&stash->funcinfo_hash_table->base);
5356
5357 file = &stash->f;
5358 while (1)
5359 {
5360 for (each = file->all_comp_units; each; each = each->next_unit)
5361 {
5362 struct funcinfo *function_table = each->function_table;
5363 struct varinfo *variable_table = each->variable_table;
5364
5365 if (each->line_table && each->line_table != file->line_table)
5366 {
5367 free (each->line_table->files);
5368 free (each->line_table->dirs);
5369 }
5370
5371 free (each->lookup_funcinfo_table);
5372 each->lookup_funcinfo_table = NULL;
5373
5374 while (function_table)
5375 {
5376 free (function_table->file);
5377 function_table->file = NULL;
5378 free (function_table->caller_file);
5379 function_table->caller_file = NULL;
5380 function_table = function_table->prev_func;
5381 }
5382
5383 while (variable_table)
5384 {
5385 free (variable_table->file);
5386 variable_table->file = NULL;
5387 variable_table = variable_table->prev_var;
5388 }
5389 }
5390
5391 if (file->line_table)
5392 {
5393 free (file->line_table->files);
5394 free (file->line_table->dirs);
5395 }
5396 htab_delete (file->abbrev_offsets);
5397
5398 free (file->dwarf_line_str_buffer);
5399 free (file->dwarf_str_buffer);
5400 free (file->dwarf_ranges_buffer);
5401 free (file->dwarf_line_buffer);
5402 free (file->dwarf_abbrev_buffer);
5403 free (file->dwarf_info_buffer);
5404 if (file == &stash->alt)
5405 break;
5406 file = &stash->alt;
5407 }
5408 free (stash->sec_vma);
5409 free (stash->adjusted_sections);
5410 if (stash->close_on_cleanup)
5411 bfd_close (stash->f.bfd_ptr);
5412 if (stash->alt.bfd_ptr)
5413 bfd_close (stash->alt.bfd_ptr);
5414 }
5415
5416 /* Find the function to a particular section and offset,
5417 for error reporting. */
5418
5419 asymbol *
5420 _bfd_elf_find_function (bfd *abfd,
5421 asymbol **symbols,
5422 asection *section,
5423 bfd_vma offset,
5424 const char **filename_ptr,
5425 const char **functionname_ptr)
5426 {
5427 struct elf_find_function_cache
5428 {
5429 asection *last_section;
5430 asymbol *func;
5431 const char *filename;
5432 bfd_size_type func_size;
5433 } *cache;
5434
5435 if (symbols == NULL)
5436 return NULL;
5437
5438 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
5439 return NULL;
5440
5441 cache = elf_tdata (abfd)->elf_find_function_cache;
5442 if (cache == NULL)
5443 {
5444 cache = bfd_zalloc (abfd, sizeof (*cache));
5445 elf_tdata (abfd)->elf_find_function_cache = cache;
5446 if (cache == NULL)
5447 return NULL;
5448 }
5449 if (cache->last_section != section
5450 || cache->func == NULL
5451 || offset < cache->func->value
5452 || offset >= cache->func->value + cache->func_size)
5453 {
5454 asymbol *file;
5455 bfd_vma low_func;
5456 asymbol **p;
5457 /* ??? Given multiple file symbols, it is impossible to reliably
5458 choose the right file name for global symbols. File symbols are
5459 local symbols, and thus all file symbols must sort before any
5460 global symbols. The ELF spec may be interpreted to say that a
5461 file symbol must sort before other local symbols, but currently
5462 ld -r doesn't do this. So, for ld -r output, it is possible to
5463 make a better choice of file name for local symbols by ignoring
5464 file symbols appearing after a given local symbol. */
5465 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
5466 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5467
5468 file = NULL;
5469 low_func = 0;
5470 state = nothing_seen;
5471 cache->filename = NULL;
5472 cache->func = NULL;
5473 cache->func_size = 0;
5474 cache->last_section = section;
5475
5476 for (p = symbols; *p != NULL; p++)
5477 {
5478 asymbol *sym = *p;
5479 bfd_vma code_off;
5480 bfd_size_type size;
5481
5482 if ((sym->flags & BSF_FILE) != 0)
5483 {
5484 file = sym;
5485 if (state == symbol_seen)
5486 state = file_after_symbol_seen;
5487 continue;
5488 }
5489
5490 size = bed->maybe_function_sym (sym, section, &code_off);
5491 if (size != 0
5492 && code_off <= offset
5493 && (code_off > low_func
5494 || (code_off == low_func
5495 && size > cache->func_size)))
5496 {
5497 cache->func = sym;
5498 cache->func_size = size;
5499 cache->filename = NULL;
5500 low_func = code_off;
5501 if (file != NULL
5502 && ((sym->flags & BSF_LOCAL) != 0
5503 || state != file_after_symbol_seen))
5504 cache->filename = bfd_asymbol_name (file);
5505 }
5506 if (state == nothing_seen)
5507 state = symbol_seen;
5508 }
5509 }
5510
5511 if (cache->func == NULL)
5512 return NULL;
5513
5514 if (filename_ptr)
5515 *filename_ptr = cache->filename;
5516 if (functionname_ptr)
5517 *functionname_ptr = bfd_asymbol_name (cache->func);
5518
5519 return cache->func;
5520 }