Use function view when iterating over block symbols
[binutils-gdb.git] / bfd / elf-eh-frame.c
1 /* .eh_frame section optimization.
2 Copyright (C) 2001-2022 Free Software Foundation, Inc.
3 Written by Jakub Jelinek <jakub@redhat.com>.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 #include "sysdep.h"
23 #include "bfd.h"
24 #include "libbfd.h"
25 #include "elf-bfd.h"
26 #include "dwarf2.h"
27
28 #define EH_FRAME_HDR_SIZE 8
29
30 struct cie
31 {
32 unsigned int length;
33 unsigned int hash;
34 unsigned char version;
35 unsigned char local_personality;
36 char augmentation[20];
37 bfd_vma code_align;
38 bfd_signed_vma data_align;
39 bfd_vma ra_column;
40 bfd_vma augmentation_size;
41 union {
42 struct elf_link_hash_entry *h;
43 struct {
44 unsigned int bfd_id;
45 unsigned int index;
46 } sym;
47 unsigned int reloc_index;
48 } personality;
49 struct eh_cie_fde *cie_inf;
50 unsigned char per_encoding;
51 unsigned char lsda_encoding;
52 unsigned char fde_encoding;
53 unsigned char initial_insn_length;
54 unsigned char can_make_lsda_relative;
55 unsigned char initial_instructions[50];
56 };
57
58
59
60 /* If *ITER hasn't reached END yet, read the next byte into *RESULT and
61 move onto the next byte. Return true on success. */
62
63 static inline bool
64 read_byte (bfd_byte **iter, bfd_byte *end, unsigned char *result)
65 {
66 if (*iter >= end)
67 return false;
68 *result = *((*iter)++);
69 return true;
70 }
71
72 /* Move *ITER over LENGTH bytes, or up to END, whichever is closer.
73 Return true it was possible to move LENGTH bytes. */
74
75 static inline bool
76 skip_bytes (bfd_byte **iter, bfd_byte *end, bfd_size_type length)
77 {
78 if ((bfd_size_type) (end - *iter) < length)
79 {
80 *iter = end;
81 return false;
82 }
83 *iter += length;
84 return true;
85 }
86
87 /* Move *ITER over an leb128, stopping at END. Return true if the end
88 of the leb128 was found. */
89
90 static bool
91 skip_leb128 (bfd_byte **iter, bfd_byte *end)
92 {
93 unsigned char byte;
94 do
95 if (!read_byte (iter, end, &byte))
96 return false;
97 while (byte & 0x80);
98 return true;
99 }
100
101 /* Like skip_leb128, but treat the leb128 as an unsigned value and
102 store it in *VALUE. */
103
104 static bool
105 read_uleb128 (bfd_byte **iter, bfd_byte *end, bfd_vma *value)
106 {
107 bfd_byte *start, *p;
108
109 start = *iter;
110 if (!skip_leb128 (iter, end))
111 return false;
112
113 p = *iter;
114 *value = *--p;
115 while (p > start)
116 *value = (*value << 7) | (*--p & 0x7f);
117
118 return true;
119 }
120
121 /* Like read_uleb128, but for signed values. */
122
123 static bool
124 read_sleb128 (bfd_byte **iter, bfd_byte *end, bfd_signed_vma *value)
125 {
126 bfd_byte *start, *p;
127
128 start = *iter;
129 if (!skip_leb128 (iter, end))
130 return false;
131
132 p = *iter;
133 *value = ((*--p & 0x7f) ^ 0x40) - 0x40;
134 while (p > start)
135 *value = (*value << 7) | (*--p & 0x7f);
136
137 return true;
138 }
139
140 /* Return 0 if either encoding is variable width, or not yet known to bfd. */
141
142 static
143 int get_DW_EH_PE_width (int encoding, int ptr_size)
144 {
145 /* DW_EH_PE_ values of 0x60 and 0x70 weren't defined at the time .eh_frame
146 was added to bfd. */
147 if ((encoding & 0x60) == 0x60)
148 return 0;
149
150 switch (encoding & 7)
151 {
152 case DW_EH_PE_udata2: return 2;
153 case DW_EH_PE_udata4: return 4;
154 case DW_EH_PE_udata8: return 8;
155 case DW_EH_PE_absptr: return ptr_size;
156 default:
157 break;
158 }
159
160 return 0;
161 }
162
163 #define get_DW_EH_PE_signed(encoding) (((encoding) & DW_EH_PE_signed) != 0)
164
165 /* Read a width sized value from memory. */
166
167 static bfd_vma
168 read_value (bfd *abfd, bfd_byte *buf, int width, int is_signed)
169 {
170 bfd_vma value;
171
172 switch (width)
173 {
174 case 2:
175 if (is_signed)
176 value = bfd_get_signed_16 (abfd, buf);
177 else
178 value = bfd_get_16 (abfd, buf);
179 break;
180 case 4:
181 if (is_signed)
182 value = bfd_get_signed_32 (abfd, buf);
183 else
184 value = bfd_get_32 (abfd, buf);
185 break;
186 case 8:
187 if (is_signed)
188 value = bfd_get_signed_64 (abfd, buf);
189 else
190 value = bfd_get_64 (abfd, buf);
191 break;
192 default:
193 BFD_FAIL ();
194 return 0;
195 }
196
197 return value;
198 }
199
200 /* Store a width sized value to memory. */
201
202 static void
203 write_value (bfd *abfd, bfd_byte *buf, bfd_vma value, int width)
204 {
205 switch (width)
206 {
207 case 2: bfd_put_16 (abfd, value, buf); break;
208 case 4: bfd_put_32 (abfd, value, buf); break;
209 case 8: bfd_put_64 (abfd, value, buf); break;
210 default: BFD_FAIL ();
211 }
212 }
213
214 /* Return one if C1 and C2 CIEs can be merged. */
215
216 static int
217 cie_eq (const void *e1, const void *e2)
218 {
219 const struct cie *c1 = (const struct cie *) e1;
220 const struct cie *c2 = (const struct cie *) e2;
221
222 if (c1->hash == c2->hash
223 && c1->length == c2->length
224 && c1->version == c2->version
225 && c1->local_personality == c2->local_personality
226 && strcmp (c1->augmentation, c2->augmentation) == 0
227 && strcmp (c1->augmentation, "eh") != 0
228 && c1->code_align == c2->code_align
229 && c1->data_align == c2->data_align
230 && c1->ra_column == c2->ra_column
231 && c1->augmentation_size == c2->augmentation_size
232 && memcmp (&c1->personality, &c2->personality,
233 sizeof (c1->personality)) == 0
234 && (c1->cie_inf->u.cie.u.sec->output_section
235 == c2->cie_inf->u.cie.u.sec->output_section)
236 && c1->per_encoding == c2->per_encoding
237 && c1->lsda_encoding == c2->lsda_encoding
238 && c1->fde_encoding == c2->fde_encoding
239 && c1->initial_insn_length == c2->initial_insn_length
240 && c1->initial_insn_length <= sizeof (c1->initial_instructions)
241 && memcmp (c1->initial_instructions,
242 c2->initial_instructions,
243 c1->initial_insn_length) == 0)
244 return 1;
245
246 return 0;
247 }
248
249 static hashval_t
250 cie_hash (const void *e)
251 {
252 const struct cie *c = (const struct cie *) e;
253 return c->hash;
254 }
255
256 static hashval_t
257 cie_compute_hash (struct cie *c)
258 {
259 hashval_t h = 0;
260 size_t len;
261 h = iterative_hash_object (c->length, h);
262 h = iterative_hash_object (c->version, h);
263 h = iterative_hash (c->augmentation, strlen (c->augmentation) + 1, h);
264 h = iterative_hash_object (c->code_align, h);
265 h = iterative_hash_object (c->data_align, h);
266 h = iterative_hash_object (c->ra_column, h);
267 h = iterative_hash_object (c->augmentation_size, h);
268 h = iterative_hash_object (c->personality, h);
269 h = iterative_hash_object (c->cie_inf->u.cie.u.sec->output_section, h);
270 h = iterative_hash_object (c->per_encoding, h);
271 h = iterative_hash_object (c->lsda_encoding, h);
272 h = iterative_hash_object (c->fde_encoding, h);
273 h = iterative_hash_object (c->initial_insn_length, h);
274 len = c->initial_insn_length;
275 if (len > sizeof (c->initial_instructions))
276 len = sizeof (c->initial_instructions);
277 h = iterative_hash (c->initial_instructions, len, h);
278 c->hash = h;
279 return h;
280 }
281
282 /* Return the number of extra bytes that we'll be inserting into
283 ENTRY's augmentation string. */
284
285 static inline unsigned int
286 extra_augmentation_string_bytes (struct eh_cie_fde *entry)
287 {
288 unsigned int size = 0;
289 if (entry->cie)
290 {
291 if (entry->add_augmentation_size)
292 size++;
293 if (entry->u.cie.add_fde_encoding)
294 size++;
295 }
296 return size;
297 }
298
299 /* Likewise ENTRY's augmentation data. */
300
301 static inline unsigned int
302 extra_augmentation_data_bytes (struct eh_cie_fde *entry)
303 {
304 unsigned int size = 0;
305 if (entry->add_augmentation_size)
306 size++;
307 if (entry->cie && entry->u.cie.add_fde_encoding)
308 size++;
309 return size;
310 }
311
312 /* Return the size that ENTRY will have in the output. */
313
314 static unsigned int
315 size_of_output_cie_fde (struct eh_cie_fde *entry)
316 {
317 if (entry->removed)
318 return 0;
319 if (entry->size == 4)
320 return 4;
321 return (entry->size
322 + extra_augmentation_string_bytes (entry)
323 + extra_augmentation_data_bytes (entry));
324 }
325
326 /* Return the offset of the FDE or CIE after ENT. */
327
328 static unsigned int
329 next_cie_fde_offset (const struct eh_cie_fde *ent,
330 const struct eh_cie_fde *last,
331 const asection *sec)
332 {
333 while (++ent < last)
334 {
335 if (!ent->removed)
336 return ent->new_offset;
337 }
338 return sec->size;
339 }
340
341 /* Assume that the bytes between *ITER and END are CFA instructions.
342 Try to move *ITER past the first instruction and return true on
343 success. ENCODED_PTR_WIDTH gives the width of pointer entries. */
344
345 static bool
346 skip_cfa_op (bfd_byte **iter, bfd_byte *end, unsigned int encoded_ptr_width)
347 {
348 bfd_byte op;
349 bfd_vma length;
350
351 if (!read_byte (iter, end, &op))
352 return false;
353
354 switch (op & 0xc0 ? op & 0xc0 : op)
355 {
356 case DW_CFA_nop:
357 case DW_CFA_advance_loc:
358 case DW_CFA_restore:
359 case DW_CFA_remember_state:
360 case DW_CFA_restore_state:
361 case DW_CFA_GNU_window_save:
362 /* No arguments. */
363 return true;
364
365 case DW_CFA_offset:
366 case DW_CFA_restore_extended:
367 case DW_CFA_undefined:
368 case DW_CFA_same_value:
369 case DW_CFA_def_cfa_register:
370 case DW_CFA_def_cfa_offset:
371 case DW_CFA_def_cfa_offset_sf:
372 case DW_CFA_GNU_args_size:
373 /* One leb128 argument. */
374 return skip_leb128 (iter, end);
375
376 case DW_CFA_val_offset:
377 case DW_CFA_val_offset_sf:
378 case DW_CFA_offset_extended:
379 case DW_CFA_register:
380 case DW_CFA_def_cfa:
381 case DW_CFA_offset_extended_sf:
382 case DW_CFA_GNU_negative_offset_extended:
383 case DW_CFA_def_cfa_sf:
384 /* Two leb128 arguments. */
385 return (skip_leb128 (iter, end)
386 && skip_leb128 (iter, end));
387
388 case DW_CFA_def_cfa_expression:
389 /* A variable-length argument. */
390 return (read_uleb128 (iter, end, &length)
391 && skip_bytes (iter, end, length));
392
393 case DW_CFA_expression:
394 case DW_CFA_val_expression:
395 /* A leb128 followed by a variable-length argument. */
396 return (skip_leb128 (iter, end)
397 && read_uleb128 (iter, end, &length)
398 && skip_bytes (iter, end, length));
399
400 case DW_CFA_set_loc:
401 return skip_bytes (iter, end, encoded_ptr_width);
402
403 case DW_CFA_advance_loc1:
404 return skip_bytes (iter, end, 1);
405
406 case DW_CFA_advance_loc2:
407 return skip_bytes (iter, end, 2);
408
409 case DW_CFA_advance_loc4:
410 return skip_bytes (iter, end, 4);
411
412 case DW_CFA_MIPS_advance_loc8:
413 return skip_bytes (iter, end, 8);
414
415 default:
416 return false;
417 }
418 }
419
420 /* Try to interpret the bytes between BUF and END as CFA instructions.
421 If every byte makes sense, return a pointer to the first DW_CFA_nop
422 padding byte, or END if there is no padding. Return null otherwise.
423 ENCODED_PTR_WIDTH is as for skip_cfa_op. */
424
425 static bfd_byte *
426 skip_non_nops (bfd_byte *buf, bfd_byte *end, unsigned int encoded_ptr_width,
427 unsigned int *set_loc_count)
428 {
429 bfd_byte *last;
430
431 last = buf;
432 while (buf < end)
433 if (*buf == DW_CFA_nop)
434 buf++;
435 else
436 {
437 if (*buf == DW_CFA_set_loc)
438 ++*set_loc_count;
439 if (!skip_cfa_op (&buf, end, encoded_ptr_width))
440 return 0;
441 last = buf;
442 }
443 return last;
444 }
445
446 /* Convert absolute encoding ENCODING into PC-relative form.
447 SIZE is the size of a pointer. */
448
449 static unsigned char
450 make_pc_relative (unsigned char encoding, unsigned int ptr_size)
451 {
452 if ((encoding & 0x7f) == DW_EH_PE_absptr)
453 switch (ptr_size)
454 {
455 case 2:
456 encoding |= DW_EH_PE_sdata2;
457 break;
458 case 4:
459 encoding |= DW_EH_PE_sdata4;
460 break;
461 case 8:
462 encoding |= DW_EH_PE_sdata8;
463 break;
464 }
465 return encoding | DW_EH_PE_pcrel;
466 }
467
468 /* Examine each .eh_frame_entry section and discard those
469 those that are marked SEC_EXCLUDE. */
470
471 static void
472 bfd_elf_discard_eh_frame_entry (struct eh_frame_hdr_info *hdr_info)
473 {
474 unsigned int i;
475 for (i = 0; i < hdr_info->array_count; i++)
476 {
477 if (hdr_info->u.compact.entries[i]->flags & SEC_EXCLUDE)
478 {
479 unsigned int j;
480 for (j = i + 1; j < hdr_info->array_count; j++)
481 hdr_info->u.compact.entries[j-1] = hdr_info->u.compact.entries[j];
482
483 hdr_info->array_count--;
484 hdr_info->u.compact.entries[hdr_info->array_count] = NULL;
485 i--;
486 }
487 }
488 }
489
490 /* Add a .eh_frame_entry section. */
491
492 static void
493 bfd_elf_record_eh_frame_entry (struct eh_frame_hdr_info *hdr_info,
494 asection *sec)
495 {
496 if (hdr_info->array_count == hdr_info->u.compact.allocated_entries)
497 {
498 if (hdr_info->u.compact.allocated_entries == 0)
499 {
500 hdr_info->frame_hdr_is_compact = true;
501 hdr_info->u.compact.allocated_entries = 2;
502 hdr_info->u.compact.entries =
503 bfd_malloc (hdr_info->u.compact.allocated_entries
504 * sizeof (hdr_info->u.compact.entries[0]));
505 }
506 else
507 {
508 hdr_info->u.compact.allocated_entries *= 2;
509 hdr_info->u.compact.entries =
510 bfd_realloc (hdr_info->u.compact.entries,
511 hdr_info->u.compact.allocated_entries
512 * sizeof (hdr_info->u.compact.entries[0]));
513 }
514
515 BFD_ASSERT (hdr_info->u.compact.entries);
516 }
517
518 hdr_info->u.compact.entries[hdr_info->array_count++] = sec;
519 }
520
521 /* Parse a .eh_frame_entry section. Figure out which text section it
522 references. */
523
524 bool
525 _bfd_elf_parse_eh_frame_entry (struct bfd_link_info *info,
526 asection *sec, struct elf_reloc_cookie *cookie)
527 {
528 struct elf_link_hash_table *htab;
529 struct eh_frame_hdr_info *hdr_info;
530 unsigned long r_symndx;
531 asection *text_sec;
532
533 htab = elf_hash_table (info);
534 hdr_info = &htab->eh_info;
535
536 if (sec->size == 0
537 || sec->sec_info_type != SEC_INFO_TYPE_NONE)
538 {
539 return true;
540 }
541
542 if (sec->output_section && bfd_is_abs_section (sec->output_section))
543 {
544 /* At least one of the sections is being discarded from the
545 link, so we should just ignore them. */
546 return true;
547 }
548
549 if (cookie->rel == cookie->relend)
550 return false;
551
552 /* The first relocation is the function start. */
553 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
554 if (r_symndx == STN_UNDEF)
555 return false;
556
557 text_sec = _bfd_elf_section_for_symbol (cookie, r_symndx, false);
558
559 if (text_sec == NULL)
560 return false;
561
562 elf_section_eh_frame_entry (text_sec) = sec;
563 if (text_sec->output_section
564 && bfd_is_abs_section (text_sec->output_section))
565 sec->flags |= SEC_EXCLUDE;
566
567 sec->sec_info_type = SEC_INFO_TYPE_EH_FRAME_ENTRY;
568 elf_section_data (sec)->sec_info = text_sec;
569 bfd_elf_record_eh_frame_entry (hdr_info, sec);
570 return true;
571 }
572
573 /* Try to parse .eh_frame section SEC, which belongs to ABFD. Store the
574 information in the section's sec_info field on success. COOKIE
575 describes the relocations in SEC. */
576
577 void
578 _bfd_elf_parse_eh_frame (bfd *abfd, struct bfd_link_info *info,
579 asection *sec, struct elf_reloc_cookie *cookie)
580 {
581 #define REQUIRE(COND) \
582 do \
583 if (!(COND)) \
584 goto free_no_table; \
585 while (0)
586
587 bfd_byte *ehbuf = NULL, *buf, *end;
588 bfd_byte *last_fde;
589 struct eh_cie_fde *this_inf;
590 unsigned int hdr_length, hdr_id;
591 unsigned int cie_count;
592 struct cie *cie, *local_cies = NULL;
593 struct elf_link_hash_table *htab;
594 struct eh_frame_hdr_info *hdr_info;
595 struct eh_frame_sec_info *sec_info = NULL;
596 unsigned int ptr_size;
597 unsigned int num_cies;
598 unsigned int num_entries;
599 elf_gc_mark_hook_fn gc_mark_hook;
600
601 htab = elf_hash_table (info);
602 hdr_info = &htab->eh_info;
603
604 if (sec->size == 0
605 || sec->sec_info_type != SEC_INFO_TYPE_NONE)
606 {
607 /* This file does not contain .eh_frame information. */
608 return;
609 }
610
611 if (bfd_is_abs_section (sec->output_section))
612 {
613 /* At least one of the sections is being discarded from the
614 link, so we should just ignore them. */
615 return;
616 }
617
618 /* Read the frame unwind information from abfd. */
619
620 REQUIRE (bfd_malloc_and_get_section (abfd, sec, &ehbuf));
621
622 /* If .eh_frame section size doesn't fit into int, we cannot handle
623 it (it would need to use 64-bit .eh_frame format anyway). */
624 REQUIRE (sec->size == (unsigned int) sec->size);
625
626 ptr_size = (get_elf_backend_data (abfd)
627 ->elf_backend_eh_frame_address_size (abfd, sec));
628 REQUIRE (ptr_size != 0);
629
630 /* Go through the section contents and work out how many FDEs and
631 CIEs there are. */
632 buf = ehbuf;
633 end = ehbuf + sec->size;
634 num_cies = 0;
635 num_entries = 0;
636 while (buf != end)
637 {
638 num_entries++;
639
640 /* Read the length of the entry. */
641 REQUIRE (skip_bytes (&buf, end, 4));
642 hdr_length = bfd_get_32 (abfd, buf - 4);
643
644 /* 64-bit .eh_frame is not supported. */
645 REQUIRE (hdr_length != 0xffffffff);
646 if (hdr_length == 0)
647 break;
648
649 REQUIRE (skip_bytes (&buf, end, 4));
650 hdr_id = bfd_get_32 (abfd, buf - 4);
651 if (hdr_id == 0)
652 num_cies++;
653
654 REQUIRE (skip_bytes (&buf, end, hdr_length - 4));
655 }
656
657 sec_info = (struct eh_frame_sec_info *)
658 bfd_zmalloc (sizeof (struct eh_frame_sec_info)
659 + (num_entries - 1) * sizeof (struct eh_cie_fde));
660 REQUIRE (sec_info);
661
662 /* We need to have a "struct cie" for each CIE in this section. */
663 if (num_cies)
664 {
665 local_cies = (struct cie *) bfd_zmalloc (num_cies * sizeof (*local_cies));
666 REQUIRE (local_cies);
667 }
668
669 /* FIXME: octets_per_byte. */
670 #define ENSURE_NO_RELOCS(buf) \
671 while (cookie->rel < cookie->relend \
672 && (cookie->rel->r_offset \
673 < (bfd_size_type) ((buf) - ehbuf))) \
674 { \
675 REQUIRE (cookie->rel->r_info == 0); \
676 cookie->rel++; \
677 }
678
679 /* FIXME: octets_per_byte. */
680 #define SKIP_RELOCS(buf) \
681 while (cookie->rel < cookie->relend \
682 && (cookie->rel->r_offset \
683 < (bfd_size_type) ((buf) - ehbuf))) \
684 cookie->rel++
685
686 /* FIXME: octets_per_byte. */
687 #define GET_RELOC(buf) \
688 ((cookie->rel < cookie->relend \
689 && (cookie->rel->r_offset \
690 == (bfd_size_type) ((buf) - ehbuf))) \
691 ? cookie->rel : NULL)
692
693 buf = ehbuf;
694 cie_count = 0;
695 gc_mark_hook = get_elf_backend_data (abfd)->gc_mark_hook;
696 while ((bfd_size_type) (buf - ehbuf) != sec->size)
697 {
698 char *aug;
699 bfd_byte *start, *insns, *insns_end;
700 bfd_size_type length;
701 unsigned int set_loc_count;
702
703 this_inf = sec_info->entry + sec_info->count;
704 last_fde = buf;
705
706 /* Read the length of the entry. */
707 REQUIRE (skip_bytes (&buf, ehbuf + sec->size, 4));
708 hdr_length = bfd_get_32 (abfd, buf - 4);
709
710 /* The CIE/FDE must be fully contained in this input section. */
711 REQUIRE ((bfd_size_type) (buf - ehbuf) + hdr_length <= sec->size);
712 end = buf + hdr_length;
713
714 this_inf->offset = last_fde - ehbuf;
715 this_inf->size = 4 + hdr_length;
716 this_inf->reloc_index = cookie->rel - cookie->rels;
717
718 if (hdr_length == 0)
719 {
720 /* A zero-length CIE should only be found at the end of
721 the section, but allow multiple terminators. */
722 while (skip_bytes (&buf, ehbuf + sec->size, 4))
723 REQUIRE (bfd_get_32 (abfd, buf - 4) == 0);
724 REQUIRE ((bfd_size_type) (buf - ehbuf) == sec->size);
725 ENSURE_NO_RELOCS (buf);
726 sec_info->count++;
727 break;
728 }
729
730 REQUIRE (skip_bytes (&buf, end, 4));
731 hdr_id = bfd_get_32 (abfd, buf - 4);
732
733 if (hdr_id == 0)
734 {
735 unsigned int initial_insn_length;
736
737 /* CIE */
738 this_inf->cie = 1;
739
740 /* Point CIE to one of the section-local cie structures. */
741 cie = local_cies + cie_count++;
742
743 cie->cie_inf = this_inf;
744 cie->length = hdr_length;
745 start = buf;
746 REQUIRE (read_byte (&buf, end, &cie->version));
747
748 /* Cannot handle unknown versions. */
749 REQUIRE (cie->version == 1
750 || cie->version == 3
751 || cie->version == 4);
752 REQUIRE (strlen ((char *) buf) < sizeof (cie->augmentation));
753
754 strcpy (cie->augmentation, (char *) buf);
755 buf = (bfd_byte *) strchr ((char *) buf, '\0') + 1;
756 this_inf->u.cie.aug_str_len = buf - start - 1;
757 ENSURE_NO_RELOCS (buf);
758 if (buf[0] == 'e' && buf[1] == 'h')
759 {
760 /* GCC < 3.0 .eh_frame CIE */
761 /* We cannot merge "eh" CIEs because __EXCEPTION_TABLE__
762 is private to each CIE, so we don't need it for anything.
763 Just skip it. */
764 REQUIRE (skip_bytes (&buf, end, ptr_size));
765 SKIP_RELOCS (buf);
766 }
767 if (cie->version >= 4)
768 {
769 REQUIRE (buf + 1 < end);
770 REQUIRE (buf[0] == ptr_size);
771 REQUIRE (buf[1] == 0);
772 buf += 2;
773 }
774 REQUIRE (read_uleb128 (&buf, end, &cie->code_align));
775 REQUIRE (read_sleb128 (&buf, end, &cie->data_align));
776 if (cie->version == 1)
777 {
778 REQUIRE (buf < end);
779 cie->ra_column = *buf++;
780 }
781 else
782 REQUIRE (read_uleb128 (&buf, end, &cie->ra_column));
783 ENSURE_NO_RELOCS (buf);
784 cie->lsda_encoding = DW_EH_PE_omit;
785 cie->fde_encoding = DW_EH_PE_omit;
786 cie->per_encoding = DW_EH_PE_omit;
787 aug = cie->augmentation;
788 if (aug[0] != 'e' || aug[1] != 'h')
789 {
790 if (*aug == 'z')
791 {
792 aug++;
793 REQUIRE (read_uleb128 (&buf, end, &cie->augmentation_size));
794 ENSURE_NO_RELOCS (buf);
795 }
796
797 while (*aug != '\0')
798 switch (*aug++)
799 {
800 case 'B':
801 break;
802 case 'L':
803 REQUIRE (read_byte (&buf, end, &cie->lsda_encoding));
804 ENSURE_NO_RELOCS (buf);
805 REQUIRE (get_DW_EH_PE_width (cie->lsda_encoding, ptr_size));
806 break;
807 case 'R':
808 REQUIRE (read_byte (&buf, end, &cie->fde_encoding));
809 ENSURE_NO_RELOCS (buf);
810 REQUIRE (get_DW_EH_PE_width (cie->fde_encoding, ptr_size));
811 break;
812 case 'S':
813 break;
814 case 'P':
815 {
816 int per_width;
817
818 REQUIRE (read_byte (&buf, end, &cie->per_encoding));
819 per_width = get_DW_EH_PE_width (cie->per_encoding,
820 ptr_size);
821 REQUIRE (per_width);
822 if ((cie->per_encoding & 0x70) == DW_EH_PE_aligned)
823 {
824 length = -(buf - ehbuf) & (per_width - 1);
825 REQUIRE (skip_bytes (&buf, end, length));
826 if (per_width == 8)
827 this_inf->u.cie.per_encoding_aligned8 = 1;
828 }
829 this_inf->u.cie.personality_offset = buf - start;
830 ENSURE_NO_RELOCS (buf);
831 /* Ensure we have a reloc here. */
832 REQUIRE (GET_RELOC (buf));
833 cie->personality.reloc_index
834 = cookie->rel - cookie->rels;
835 /* Cope with MIPS-style composite relocations. */
836 do
837 cookie->rel++;
838 while (GET_RELOC (buf) != NULL);
839 REQUIRE (skip_bytes (&buf, end, per_width));
840 }
841 break;
842 default:
843 /* Unrecognized augmentation. Better bail out. */
844 goto free_no_table;
845 }
846 }
847 this_inf->u.cie.aug_data_len
848 = buf - start - 1 - this_inf->u.cie.aug_str_len;
849
850 /* For shared libraries, try to get rid of as many RELATIVE relocs
851 as possible. */
852 if (bfd_link_pic (info)
853 && (get_elf_backend_data (abfd)
854 ->elf_backend_can_make_relative_eh_frame
855 (abfd, info, sec)))
856 {
857 if ((cie->fde_encoding & 0x70) == DW_EH_PE_absptr)
858 this_inf->make_relative = 1;
859 /* If the CIE doesn't already have an 'R' entry, it's fairly
860 easy to add one, provided that there's no aligned data
861 after the augmentation string. */
862 else if (cie->fde_encoding == DW_EH_PE_omit
863 && (cie->per_encoding & 0x70) != DW_EH_PE_aligned)
864 {
865 if (*cie->augmentation == 0)
866 this_inf->add_augmentation_size = 1;
867 this_inf->u.cie.add_fde_encoding = 1;
868 this_inf->make_relative = 1;
869 }
870
871 if ((cie->lsda_encoding & 0x70) == DW_EH_PE_absptr)
872 cie->can_make_lsda_relative = 1;
873 }
874
875 /* If FDE encoding was not specified, it defaults to
876 DW_EH_absptr. */
877 if (cie->fde_encoding == DW_EH_PE_omit)
878 cie->fde_encoding = DW_EH_PE_absptr;
879
880 initial_insn_length = end - buf;
881 cie->initial_insn_length = initial_insn_length;
882 memcpy (cie->initial_instructions, buf,
883 initial_insn_length <= sizeof (cie->initial_instructions)
884 ? initial_insn_length : sizeof (cie->initial_instructions));
885 insns = buf;
886 buf += initial_insn_length;
887 ENSURE_NO_RELOCS (buf);
888
889 if (!bfd_link_relocatable (info))
890 {
891 /* Keep info for merging cies. */
892 this_inf->u.cie.u.full_cie = cie;
893 this_inf->u.cie.per_encoding_relative
894 = (cie->per_encoding & 0x70) == DW_EH_PE_pcrel;
895 }
896 }
897 else
898 {
899 /* Find the corresponding CIE. */
900 unsigned int cie_offset = this_inf->offset + 4 - hdr_id;
901 for (cie = local_cies; cie < local_cies + cie_count; cie++)
902 if (cie_offset == cie->cie_inf->offset)
903 break;
904
905 /* Ensure this FDE references one of the CIEs in this input
906 section. */
907 REQUIRE (cie != local_cies + cie_count);
908 this_inf->u.fde.cie_inf = cie->cie_inf;
909 this_inf->make_relative = cie->cie_inf->make_relative;
910 this_inf->add_augmentation_size
911 = cie->cie_inf->add_augmentation_size;
912
913 ENSURE_NO_RELOCS (buf);
914 if ((sec->flags & SEC_LINKER_CREATED) == 0 || cookie->rels != NULL)
915 {
916 asection *rsec;
917
918 REQUIRE (GET_RELOC (buf));
919
920 /* Chain together the FDEs for each section. */
921 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook,
922 cookie, NULL);
923 /* RSEC will be NULL if FDE was cleared out as it was belonging to
924 a discarded SHT_GROUP. */
925 if (rsec)
926 {
927 REQUIRE (rsec->owner == abfd);
928 this_inf->u.fde.next_for_section = elf_fde_list (rsec);
929 elf_fde_list (rsec) = this_inf;
930 }
931 }
932
933 /* Skip the initial location and address range. */
934 start = buf;
935 length = get_DW_EH_PE_width (cie->fde_encoding, ptr_size);
936 REQUIRE (skip_bytes (&buf, end, 2 * length));
937
938 SKIP_RELOCS (buf - length);
939 if (!GET_RELOC (buf - length)
940 && read_value (abfd, buf - length, length, false) == 0)
941 {
942 (*info->callbacks->minfo)
943 /* xgettext:c-format */
944 (_("discarding zero address range FDE in %pB(%pA).\n"),
945 abfd, sec);
946 this_inf->u.fde.cie_inf = NULL;
947 }
948
949 /* Skip the augmentation size, if present. */
950 if (cie->augmentation[0] == 'z')
951 REQUIRE (read_uleb128 (&buf, end, &length));
952 else
953 length = 0;
954
955 /* Of the supported augmentation characters above, only 'L'
956 adds augmentation data to the FDE. This code would need to
957 be adjusted if any future augmentations do the same thing. */
958 if (cie->lsda_encoding != DW_EH_PE_omit)
959 {
960 SKIP_RELOCS (buf);
961 if (cie->can_make_lsda_relative && GET_RELOC (buf))
962 cie->cie_inf->u.cie.make_lsda_relative = 1;
963 this_inf->lsda_offset = buf - start;
964 /* If there's no 'z' augmentation, we don't know where the
965 CFA insns begin. Assume no padding. */
966 if (cie->augmentation[0] != 'z')
967 length = end - buf;
968 }
969
970 /* Skip over the augmentation data. */
971 REQUIRE (skip_bytes (&buf, end, length));
972 insns = buf;
973
974 buf = last_fde + 4 + hdr_length;
975
976 /* For NULL RSEC (cleared FDE belonging to a discarded section)
977 the relocations are commonly cleared. We do not sanity check if
978 all these relocations are cleared as (1) relocations to
979 .gcc_except_table will remain uncleared (they will get dropped
980 with the drop of this unused FDE) and (2) BFD already safely drops
981 relocations of any type to .eh_frame by
982 elf_section_ignore_discarded_relocs.
983 TODO: The .gcc_except_table entries should be also filtered as
984 .eh_frame entries; or GCC could rather use COMDAT for them. */
985 SKIP_RELOCS (buf);
986 }
987
988 /* Try to interpret the CFA instructions and find the first
989 padding nop. Shrink this_inf's size so that it doesn't
990 include the padding. */
991 length = get_DW_EH_PE_width (cie->fde_encoding, ptr_size);
992 set_loc_count = 0;
993 insns_end = skip_non_nops (insns, end, length, &set_loc_count);
994 /* If we don't understand the CFA instructions, we can't know
995 what needs to be adjusted there. */
996 if (insns_end == NULL
997 /* For the time being we don't support DW_CFA_set_loc in
998 CIE instructions. */
999 || (set_loc_count && this_inf->cie))
1000 goto free_no_table;
1001 this_inf->size -= end - insns_end;
1002 if (insns_end != end && this_inf->cie)
1003 {
1004 cie->initial_insn_length -= end - insns_end;
1005 cie->length -= end - insns_end;
1006 }
1007 if (set_loc_count
1008 && ((cie->fde_encoding & 0x70) == DW_EH_PE_pcrel
1009 || this_inf->make_relative))
1010 {
1011 unsigned int cnt;
1012 bfd_byte *p;
1013
1014 this_inf->set_loc = (unsigned int *)
1015 bfd_malloc ((set_loc_count + 1) * sizeof (unsigned int));
1016 REQUIRE (this_inf->set_loc);
1017 this_inf->set_loc[0] = set_loc_count;
1018 p = insns;
1019 cnt = 0;
1020 while (p < end)
1021 {
1022 if (*p == DW_CFA_set_loc)
1023 this_inf->set_loc[++cnt] = p + 1 - start;
1024 REQUIRE (skip_cfa_op (&p, end, length));
1025 }
1026 }
1027
1028 this_inf->removed = 1;
1029 this_inf->fde_encoding = cie->fde_encoding;
1030 this_inf->lsda_encoding = cie->lsda_encoding;
1031 sec_info->count++;
1032 }
1033 BFD_ASSERT (sec_info->count == num_entries);
1034 BFD_ASSERT (cie_count == num_cies);
1035
1036 elf_section_data (sec)->sec_info = sec_info;
1037 sec->sec_info_type = SEC_INFO_TYPE_EH_FRAME;
1038 if (!bfd_link_relocatable (info))
1039 {
1040 /* Keep info for merging cies. */
1041 sec_info->cies = local_cies;
1042 local_cies = NULL;
1043 }
1044 goto success;
1045
1046 free_no_table:
1047 _bfd_error_handler
1048 /* xgettext:c-format */
1049 (_("error in %pB(%pA); no .eh_frame_hdr table will be created"),
1050 abfd, sec);
1051 hdr_info->u.dwarf.table = false;
1052 free (sec_info);
1053 success:
1054 free (ehbuf);
1055 free (local_cies);
1056 #undef REQUIRE
1057 }
1058
1059 /* Order eh_frame_hdr entries by the VMA of their text section. */
1060
1061 static int
1062 cmp_eh_frame_hdr (const void *a, const void *b)
1063 {
1064 bfd_vma text_a;
1065 bfd_vma text_b;
1066 asection *sec;
1067
1068 sec = *(asection *const *)a;
1069 sec = (asection *) elf_section_data (sec)->sec_info;
1070 text_a = sec->output_section->vma + sec->output_offset;
1071 sec = *(asection *const *)b;
1072 sec = (asection *) elf_section_data (sec)->sec_info;
1073 text_b = sec->output_section->vma + sec->output_offset;
1074
1075 if (text_a < text_b)
1076 return -1;
1077 return text_a > text_b;
1078
1079 }
1080
1081 /* Add space for a CANTUNWIND terminator to SEC if the text sections
1082 referenced by it and NEXT are not contiguous, or NEXT is NULL. */
1083
1084 static void
1085 add_eh_frame_hdr_terminator (asection *sec,
1086 asection *next)
1087 {
1088 bfd_vma end;
1089 bfd_vma next_start;
1090 asection *text_sec;
1091
1092 if (next)
1093 {
1094 /* See if there is a gap (presumably a text section without unwind info)
1095 between these two entries. */
1096 text_sec = (asection *) elf_section_data (sec)->sec_info;
1097 end = text_sec->output_section->vma + text_sec->output_offset
1098 + text_sec->size;
1099 text_sec = (asection *) elf_section_data (next)->sec_info;
1100 next_start = text_sec->output_section->vma + text_sec->output_offset;
1101 if (end == next_start)
1102 return;
1103 }
1104
1105 /* Add space for a CANTUNWIND terminator. */
1106 if (!sec->rawsize)
1107 sec->rawsize = sec->size;
1108
1109 bfd_set_section_size (sec, sec->size + 8);
1110 }
1111
1112 /* Finish a pass over all .eh_frame_entry sections. */
1113
1114 bool
1115 _bfd_elf_end_eh_frame_parsing (struct bfd_link_info *info)
1116 {
1117 struct eh_frame_hdr_info *hdr_info;
1118 unsigned int i;
1119
1120 hdr_info = &elf_hash_table (info)->eh_info;
1121
1122 if (info->eh_frame_hdr_type != COMPACT_EH_HDR
1123 || hdr_info->array_count == 0)
1124 return false;
1125
1126 bfd_elf_discard_eh_frame_entry (hdr_info);
1127
1128 qsort (hdr_info->u.compact.entries, hdr_info->array_count,
1129 sizeof (asection *), cmp_eh_frame_hdr);
1130
1131 for (i = 0; i < hdr_info->array_count - 1; i++)
1132 {
1133 add_eh_frame_hdr_terminator (hdr_info->u.compact.entries[i],
1134 hdr_info->u.compact.entries[i + 1]);
1135 }
1136
1137 /* Add a CANTUNWIND terminator after the last entry. */
1138 add_eh_frame_hdr_terminator (hdr_info->u.compact.entries[i], NULL);
1139 return true;
1140 }
1141
1142 /* Mark all relocations against CIE or FDE ENT, which occurs in
1143 .eh_frame section SEC. COOKIE describes the relocations in SEC;
1144 its "rel" field can be changed freely. */
1145
1146 static bool
1147 mark_entry (struct bfd_link_info *info, asection *sec,
1148 struct eh_cie_fde *ent, elf_gc_mark_hook_fn gc_mark_hook,
1149 struct elf_reloc_cookie *cookie)
1150 {
1151 /* FIXME: octets_per_byte. */
1152 for (cookie->rel = cookie->rels + ent->reloc_index;
1153 cookie->rel < cookie->relend
1154 && cookie->rel->r_offset < ent->offset + ent->size;
1155 cookie->rel++)
1156 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, cookie))
1157 return false;
1158
1159 return true;
1160 }
1161
1162 /* Mark all the relocations against FDEs that relate to code in input
1163 section SEC. The FDEs belong to .eh_frame section EH_FRAME, whose
1164 relocations are described by COOKIE. */
1165
1166 bool
1167 _bfd_elf_gc_mark_fdes (struct bfd_link_info *info, asection *sec,
1168 asection *eh_frame, elf_gc_mark_hook_fn gc_mark_hook,
1169 struct elf_reloc_cookie *cookie)
1170 {
1171 struct eh_cie_fde *fde, *cie;
1172
1173 for (fde = elf_fde_list (sec); fde; fde = fde->u.fde.next_for_section)
1174 {
1175 if (!mark_entry (info, eh_frame, fde, gc_mark_hook, cookie))
1176 return false;
1177
1178 /* At this stage, all cie_inf fields point to local CIEs, so we
1179 can use the same cookie to refer to them. */
1180 cie = fde->u.fde.cie_inf;
1181 if (cie != NULL && !cie->u.cie.gc_mark)
1182 {
1183 cie->u.cie.gc_mark = 1;
1184 if (!mark_entry (info, eh_frame, cie, gc_mark_hook, cookie))
1185 return false;
1186 }
1187 }
1188 return true;
1189 }
1190
1191 /* Input section SEC of ABFD is an .eh_frame section that contains the
1192 CIE described by CIE_INF. Return a version of CIE_INF that is going
1193 to be kept in the output, adding CIE_INF to the output if necessary.
1194
1195 HDR_INFO is the .eh_frame_hdr information and COOKIE describes the
1196 relocations in REL. */
1197
1198 static struct eh_cie_fde *
1199 find_merged_cie (bfd *abfd, struct bfd_link_info *info, asection *sec,
1200 struct eh_frame_hdr_info *hdr_info,
1201 struct elf_reloc_cookie *cookie,
1202 struct eh_cie_fde *cie_inf)
1203 {
1204 unsigned long r_symndx;
1205 struct cie *cie, *new_cie;
1206 Elf_Internal_Rela *rel;
1207 void **loc;
1208
1209 /* Use CIE_INF if we have already decided to keep it. */
1210 if (!cie_inf->removed)
1211 return cie_inf;
1212
1213 /* If we have merged CIE_INF with another CIE, use that CIE instead. */
1214 if (cie_inf->u.cie.merged)
1215 return cie_inf->u.cie.u.merged_with;
1216
1217 cie = cie_inf->u.cie.u.full_cie;
1218
1219 /* Assume we will need to keep CIE_INF. */
1220 cie_inf->removed = 0;
1221 cie_inf->u.cie.u.sec = sec;
1222
1223 /* If we are not merging CIEs, use CIE_INF. */
1224 if (cie == NULL)
1225 return cie_inf;
1226
1227 if (cie->per_encoding != DW_EH_PE_omit)
1228 {
1229 bool per_binds_local;
1230
1231 /* Work out the address of personality routine, or at least
1232 enough info that we could calculate the address had we made a
1233 final section layout. The symbol on the reloc is enough,
1234 either the hash for a global, or (bfd id, index) pair for a
1235 local. The assumption here is that no one uses addends on
1236 the reloc. */
1237 rel = cookie->rels + cie->personality.reloc_index;
1238 memset (&cie->personality, 0, sizeof (cie->personality));
1239 #ifdef BFD64
1240 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
1241 r_symndx = ELF64_R_SYM (rel->r_info);
1242 else
1243 #endif
1244 r_symndx = ELF32_R_SYM (rel->r_info);
1245 if (r_symndx >= cookie->locsymcount
1246 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
1247 {
1248 struct elf_link_hash_entry *h;
1249
1250 r_symndx -= cookie->extsymoff;
1251 h = cookie->sym_hashes[r_symndx];
1252
1253 while (h->root.type == bfd_link_hash_indirect
1254 || h->root.type == bfd_link_hash_warning)
1255 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1256
1257 cie->personality.h = h;
1258 per_binds_local = SYMBOL_REFERENCES_LOCAL (info, h);
1259 }
1260 else
1261 {
1262 Elf_Internal_Sym *sym;
1263 asection *sym_sec;
1264
1265 sym = &cookie->locsyms[r_symndx];
1266 sym_sec = bfd_section_from_elf_index (abfd, sym->st_shndx);
1267 if (sym_sec == NULL)
1268 return cie_inf;
1269
1270 if (sym_sec->kept_section != NULL)
1271 sym_sec = sym_sec->kept_section;
1272 if (sym_sec->output_section == NULL)
1273 return cie_inf;
1274
1275 cie->local_personality = 1;
1276 cie->personality.sym.bfd_id = abfd->id;
1277 cie->personality.sym.index = r_symndx;
1278 per_binds_local = true;
1279 }
1280
1281 if (per_binds_local
1282 && bfd_link_pic (info)
1283 && (cie->per_encoding & 0x70) == DW_EH_PE_absptr
1284 && (get_elf_backend_data (abfd)
1285 ->elf_backend_can_make_relative_eh_frame (abfd, info, sec)))
1286 {
1287 cie_inf->u.cie.make_per_encoding_relative = 1;
1288 cie_inf->u.cie.per_encoding_relative = 1;
1289 }
1290 }
1291
1292 /* See if we can merge this CIE with an earlier one. */
1293 cie_compute_hash (cie);
1294 if (hdr_info->u.dwarf.cies == NULL)
1295 {
1296 hdr_info->u.dwarf.cies = htab_try_create (1, cie_hash, cie_eq, free);
1297 if (hdr_info->u.dwarf.cies == NULL)
1298 return cie_inf;
1299 }
1300 loc = htab_find_slot_with_hash (hdr_info->u.dwarf.cies, cie,
1301 cie->hash, INSERT);
1302 if (loc == NULL)
1303 return cie_inf;
1304
1305 new_cie = (struct cie *) *loc;
1306 if (new_cie == NULL)
1307 {
1308 /* Keep CIE_INF and record it in the hash table. */
1309 new_cie = (struct cie *) malloc (sizeof (struct cie));
1310 if (new_cie == NULL)
1311 return cie_inf;
1312
1313 memcpy (new_cie, cie, sizeof (struct cie));
1314 *loc = new_cie;
1315 }
1316 else
1317 {
1318 /* Merge CIE_INF with NEW_CIE->CIE_INF. */
1319 cie_inf->removed = 1;
1320 cie_inf->u.cie.merged = 1;
1321 cie_inf->u.cie.u.merged_with = new_cie->cie_inf;
1322 if (cie_inf->u.cie.make_lsda_relative)
1323 new_cie->cie_inf->u.cie.make_lsda_relative = 1;
1324 }
1325 return new_cie->cie_inf;
1326 }
1327
1328 /* For a given OFFSET in SEC, return the delta to the new location
1329 after .eh_frame editing. */
1330
1331 static bfd_signed_vma
1332 offset_adjust (bfd_vma offset, const asection *sec)
1333 {
1334 struct eh_frame_sec_info *sec_info
1335 = (struct eh_frame_sec_info *) elf_section_data (sec)->sec_info;
1336 unsigned int lo, hi, mid;
1337 struct eh_cie_fde *ent = NULL;
1338 bfd_signed_vma delta;
1339
1340 lo = 0;
1341 hi = sec_info->count;
1342 if (hi == 0)
1343 return 0;
1344
1345 while (lo < hi)
1346 {
1347 mid = (lo + hi) / 2;
1348 ent = &sec_info->entry[mid];
1349 if (offset < ent->offset)
1350 hi = mid;
1351 else if (mid + 1 >= hi)
1352 break;
1353 else if (offset >= ent[1].offset)
1354 lo = mid + 1;
1355 else
1356 break;
1357 }
1358
1359 if (!ent->removed)
1360 delta = (bfd_vma) ent->new_offset - (bfd_vma) ent->offset;
1361 else if (ent->cie && ent->u.cie.merged)
1362 {
1363 struct eh_cie_fde *cie = ent->u.cie.u.merged_with;
1364 delta = ((bfd_vma) cie->new_offset + cie->u.cie.u.sec->output_offset
1365 - (bfd_vma) ent->offset - sec->output_offset);
1366 }
1367 else
1368 {
1369 /* Is putting the symbol on the next entry best for a deleted
1370 CIE/FDE? */
1371 struct eh_cie_fde *last = sec_info->entry + sec_info->count;
1372 delta = ((bfd_vma) next_cie_fde_offset (ent, last, sec)
1373 - (bfd_vma) ent->offset);
1374 return delta;
1375 }
1376
1377 /* Account for editing within this CIE/FDE. */
1378 offset -= ent->offset;
1379 if (ent->cie)
1380 {
1381 unsigned int extra
1382 = ent->add_augmentation_size + ent->u.cie.add_fde_encoding;
1383 if (extra == 0
1384 || offset <= 9u + ent->u.cie.aug_str_len)
1385 return delta;
1386 delta += extra;
1387 if (offset <= 9u + ent->u.cie.aug_str_len + ent->u.cie.aug_data_len)
1388 return delta;
1389 delta += extra;
1390 }
1391 else
1392 {
1393 unsigned int ptr_size, width, extra = ent->add_augmentation_size;
1394 if (offset <= 12 || extra == 0)
1395 return delta;
1396 ptr_size = (get_elf_backend_data (sec->owner)
1397 ->elf_backend_eh_frame_address_size (sec->owner, sec));
1398 width = get_DW_EH_PE_width (ent->fde_encoding, ptr_size);
1399 if (offset <= 8 + 2 * width)
1400 return delta;
1401 delta += extra;
1402 }
1403
1404 return delta;
1405 }
1406
1407 /* Adjust a global symbol defined in .eh_frame, so that it stays
1408 relative to its original CIE/FDE. It is assumed that a symbol
1409 defined at the beginning of a CIE/FDE belongs to that CIE/FDE
1410 rather than marking the end of the previous CIE/FDE. This matters
1411 when a CIE is merged with a previous CIE, since the symbol is
1412 moved to the merged CIE. */
1413
1414 bool
1415 _bfd_elf_adjust_eh_frame_global_symbol (struct elf_link_hash_entry *h,
1416 void *arg ATTRIBUTE_UNUSED)
1417 {
1418 asection *sym_sec;
1419 bfd_signed_vma delta;
1420
1421 if (h->root.type != bfd_link_hash_defined
1422 && h->root.type != bfd_link_hash_defweak)
1423 return true;
1424
1425 sym_sec = h->root.u.def.section;
1426 if (sym_sec->sec_info_type != SEC_INFO_TYPE_EH_FRAME
1427 || elf_section_data (sym_sec)->sec_info == NULL)
1428 return true;
1429
1430 delta = offset_adjust (h->root.u.def.value, sym_sec);
1431 h->root.u.def.value += delta;
1432
1433 return true;
1434 }
1435
1436 /* The same for all local symbols defined in .eh_frame. Returns true
1437 if any symbol was changed. */
1438
1439 static int
1440 adjust_eh_frame_local_symbols (const asection *sec,
1441 struct elf_reloc_cookie *cookie)
1442 {
1443 int adjusted = 0;
1444
1445 if (cookie->locsymcount > 1)
1446 {
1447 unsigned int shndx = elf_section_data (sec)->this_idx;
1448 Elf_Internal_Sym *end_sym = cookie->locsyms + cookie->locsymcount;
1449 Elf_Internal_Sym *sym;
1450
1451 for (sym = cookie->locsyms + 1; sym < end_sym; ++sym)
1452 if (sym->st_info <= ELF_ST_INFO (STB_LOCAL, STT_OBJECT)
1453 && sym->st_shndx == shndx)
1454 {
1455 bfd_signed_vma delta = offset_adjust (sym->st_value, sec);
1456
1457 if (delta != 0)
1458 {
1459 adjusted = 1;
1460 sym->st_value += delta;
1461 }
1462 }
1463 }
1464 return adjusted;
1465 }
1466
1467 /* This function is called for each input file before the .eh_frame
1468 section is relocated. It discards duplicate CIEs and FDEs for discarded
1469 functions. The function returns TRUE iff any entries have been
1470 deleted. */
1471
1472 bool
1473 _bfd_elf_discard_section_eh_frame
1474 (bfd *abfd, struct bfd_link_info *info, asection *sec,
1475 bool (*reloc_symbol_deleted_p) (bfd_vma, void *),
1476 struct elf_reloc_cookie *cookie)
1477 {
1478 struct eh_cie_fde *ent;
1479 struct eh_frame_sec_info *sec_info;
1480 struct eh_frame_hdr_info *hdr_info;
1481 unsigned int ptr_size, offset, eh_alignment;
1482 int changed;
1483
1484 if (sec->sec_info_type != SEC_INFO_TYPE_EH_FRAME)
1485 return false;
1486
1487 sec_info = (struct eh_frame_sec_info *) elf_section_data (sec)->sec_info;
1488 if (sec_info == NULL)
1489 return false;
1490
1491 ptr_size = (get_elf_backend_data (sec->owner)
1492 ->elf_backend_eh_frame_address_size (sec->owner, sec));
1493
1494 hdr_info = &elf_hash_table (info)->eh_info;
1495 for (ent = sec_info->entry; ent < sec_info->entry + sec_info->count; ++ent)
1496 if (ent->size == 4)
1497 /* There should only be one zero terminator, on the last input
1498 file supplying .eh_frame (crtend.o). Remove any others. */
1499 ent->removed = sec->map_head.s != NULL;
1500 else if (!ent->cie && ent->u.fde.cie_inf != NULL)
1501 {
1502 bool keep;
1503 if ((sec->flags & SEC_LINKER_CREATED) != 0 && cookie->rels == NULL)
1504 {
1505 unsigned int width
1506 = get_DW_EH_PE_width (ent->fde_encoding, ptr_size);
1507 bfd_vma value
1508 = read_value (abfd, sec->contents + ent->offset + 8 + width,
1509 width, get_DW_EH_PE_signed (ent->fde_encoding));
1510 keep = value != 0;
1511 }
1512 else
1513 {
1514 cookie->rel = cookie->rels + ent->reloc_index;
1515 /* FIXME: octets_per_byte. */
1516 BFD_ASSERT (cookie->rel < cookie->relend
1517 && cookie->rel->r_offset == ent->offset + 8);
1518 keep = !(*reloc_symbol_deleted_p) (ent->offset + 8, cookie);
1519 }
1520 if (keep)
1521 {
1522 if (bfd_link_pic (info)
1523 && (((ent->fde_encoding & 0x70) == DW_EH_PE_absptr
1524 && ent->make_relative == 0)
1525 || (ent->fde_encoding & 0x70) == DW_EH_PE_aligned))
1526 {
1527 static int num_warnings_issued = 0;
1528
1529 /* If a shared library uses absolute pointers
1530 which we cannot turn into PC relative,
1531 don't create the binary search table,
1532 since it is affected by runtime relocations. */
1533 hdr_info->u.dwarf.table = false;
1534 /* Only warn if --eh-frame-hdr was specified. */
1535 if (info->eh_frame_hdr_type != 0)
1536 {
1537 if (num_warnings_issued < 10)
1538 {
1539 _bfd_error_handler
1540 /* xgettext:c-format */
1541 (_("FDE encoding in %pB(%pA) prevents .eh_frame_hdr"
1542 " table being created"), abfd, sec);
1543 num_warnings_issued ++;
1544 }
1545 else if (num_warnings_issued == 10)
1546 {
1547 _bfd_error_handler
1548 (_("further warnings about FDE encoding preventing .eh_frame_hdr generation dropped"));
1549 num_warnings_issued ++;
1550 }
1551 }
1552 }
1553 ent->removed = 0;
1554 hdr_info->u.dwarf.fde_count++;
1555 ent->u.fde.cie_inf = find_merged_cie (abfd, info, sec, hdr_info,
1556 cookie, ent->u.fde.cie_inf);
1557 }
1558 }
1559
1560 free (sec_info->cies);
1561 sec_info->cies = NULL;
1562
1563 /* It may be that some .eh_frame input section has greater alignment
1564 than other .eh_frame sections. In that case we run the risk of
1565 padding with zeros before that section, which would be seen as a
1566 zero terminator. Alignment padding must be added *inside* the
1567 last FDE instead. For other FDEs we align according to their
1568 encoding, in order to align FDE address range entries naturally. */
1569 offset = 0;
1570 changed = 0;
1571 for (ent = sec_info->entry; ent < sec_info->entry + sec_info->count; ++ent)
1572 if (!ent->removed)
1573 {
1574 eh_alignment = 4;
1575 if (ent->size == 4)
1576 ;
1577 else if (ent->cie)
1578 {
1579 if (ent->u.cie.per_encoding_aligned8)
1580 eh_alignment = 8;
1581 }
1582 else
1583 {
1584 eh_alignment = get_DW_EH_PE_width (ent->fde_encoding, ptr_size);
1585 if (eh_alignment < 4)
1586 eh_alignment = 4;
1587 }
1588 offset = (offset + eh_alignment - 1) & -eh_alignment;
1589 ent->new_offset = offset;
1590 if (ent->new_offset != ent->offset)
1591 changed = 1;
1592 offset += size_of_output_cie_fde (ent);
1593 }
1594
1595 eh_alignment = 4;
1596 offset = (offset + eh_alignment - 1) & -eh_alignment;
1597 sec->rawsize = sec->size;
1598 sec->size = offset;
1599 if (sec->size != sec->rawsize)
1600 changed = 1;
1601
1602 if (changed && adjust_eh_frame_local_symbols (sec, cookie))
1603 {
1604 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1605 symtab_hdr->contents = (unsigned char *) cookie->locsyms;
1606 }
1607 return changed;
1608 }
1609
1610 /* This function is called for .eh_frame_hdr section after
1611 _bfd_elf_discard_section_eh_frame has been called on all .eh_frame
1612 input sections. It finalizes the size of .eh_frame_hdr section. */
1613
1614 bool
1615 _bfd_elf_discard_section_eh_frame_hdr (struct bfd_link_info *info)
1616 {
1617 struct elf_link_hash_table *htab;
1618 struct eh_frame_hdr_info *hdr_info;
1619 asection *sec;
1620
1621 htab = elf_hash_table (info);
1622 hdr_info = &htab->eh_info;
1623
1624 if (!hdr_info->frame_hdr_is_compact && hdr_info->u.dwarf.cies != NULL)
1625 {
1626 htab_delete (hdr_info->u.dwarf.cies);
1627 hdr_info->u.dwarf.cies = NULL;
1628 }
1629
1630 sec = hdr_info->hdr_sec;
1631 if (sec == NULL)
1632 return false;
1633
1634 if (info->eh_frame_hdr_type == COMPACT_EH_HDR)
1635 {
1636 /* For compact frames we only add the header. The actual table comes
1637 from the .eh_frame_entry sections. */
1638 sec->size = 8;
1639 }
1640 else
1641 {
1642 sec->size = EH_FRAME_HDR_SIZE;
1643 if (hdr_info->u.dwarf.table)
1644 sec->size += 4 + hdr_info->u.dwarf.fde_count * 8;
1645 }
1646
1647 return true;
1648 }
1649
1650 /* Return true if there is at least one non-empty .eh_frame section in
1651 input files. Can only be called after ld has mapped input to
1652 output sections, and before sections are stripped. */
1653
1654 bool
1655 _bfd_elf_eh_frame_present (struct bfd_link_info *info)
1656 {
1657 asection *eh = bfd_get_section_by_name (info->output_bfd, ".eh_frame");
1658
1659 if (eh == NULL)
1660 return false;
1661
1662 /* Count only sections which have at least a single CIE or FDE.
1663 There cannot be any CIE or FDE <= 8 bytes. */
1664 for (eh = eh->map_head.s; eh != NULL; eh = eh->map_head.s)
1665 if (eh->size > 8)
1666 return true;
1667
1668 return false;
1669 }
1670
1671 /* Return true if there is at least one .eh_frame_entry section in
1672 input files. */
1673
1674 bool
1675 _bfd_elf_eh_frame_entry_present (struct bfd_link_info *info)
1676 {
1677 asection *o;
1678 bfd *abfd;
1679
1680 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
1681 {
1682 for (o = abfd->sections; o; o = o->next)
1683 {
1684 const char *name = bfd_section_name (o);
1685
1686 if (strcmp (name, ".eh_frame_entry")
1687 && !bfd_is_abs_section (o->output_section))
1688 return true;
1689 }
1690 }
1691 return false;
1692 }
1693
1694 /* This function is called from size_dynamic_sections.
1695 It needs to decide whether .eh_frame_hdr should be output or not,
1696 because when the dynamic symbol table has been sized it is too late
1697 to strip sections. */
1698
1699 bool
1700 _bfd_elf_maybe_strip_eh_frame_hdr (struct bfd_link_info *info)
1701 {
1702 struct elf_link_hash_table *htab;
1703 struct eh_frame_hdr_info *hdr_info;
1704 struct bfd_link_hash_entry *bh = NULL;
1705 struct elf_link_hash_entry *h;
1706
1707 htab = elf_hash_table (info);
1708 hdr_info = &htab->eh_info;
1709 if (hdr_info->hdr_sec == NULL)
1710 return true;
1711
1712 if (bfd_is_abs_section (hdr_info->hdr_sec->output_section)
1713 || info->eh_frame_hdr_type == 0
1714 || (info->eh_frame_hdr_type == DWARF2_EH_HDR
1715 && !_bfd_elf_eh_frame_present (info))
1716 || (info->eh_frame_hdr_type == COMPACT_EH_HDR
1717 && !_bfd_elf_eh_frame_entry_present (info)))
1718 {
1719 hdr_info->hdr_sec->flags |= SEC_EXCLUDE;
1720 hdr_info->hdr_sec = NULL;
1721 return true;
1722 }
1723
1724 /* Add a hidden symbol so that systems without access to PHDRs can
1725 find the table. */
1726 if (! (_bfd_generic_link_add_one_symbol
1727 (info, info->output_bfd, "__GNU_EH_FRAME_HDR", BSF_LOCAL,
1728 hdr_info->hdr_sec, 0, NULL, false, false, &bh)))
1729 return false;
1730
1731 h = (struct elf_link_hash_entry *) bh;
1732 h->def_regular = 1;
1733 h->other = STV_HIDDEN;
1734 get_elf_backend_data
1735 (info->output_bfd)->elf_backend_hide_symbol (info, h, true);
1736
1737 if (!hdr_info->frame_hdr_is_compact)
1738 hdr_info->u.dwarf.table = true;
1739 return true;
1740 }
1741
1742 /* Adjust an address in the .eh_frame section. Given OFFSET within
1743 SEC, this returns the new offset in the adjusted .eh_frame section,
1744 or -1 if the address refers to a CIE/FDE which has been removed
1745 or to offset with dynamic relocation which is no longer needed. */
1746
1747 bfd_vma
1748 _bfd_elf_eh_frame_section_offset (bfd *output_bfd ATTRIBUTE_UNUSED,
1749 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1750 asection *sec,
1751 bfd_vma offset)
1752 {
1753 struct eh_frame_sec_info *sec_info;
1754 unsigned int lo, hi, mid;
1755
1756 if (sec->sec_info_type != SEC_INFO_TYPE_EH_FRAME)
1757 return offset;
1758 sec_info = (struct eh_frame_sec_info *) elf_section_data (sec)->sec_info;
1759
1760 if (offset >= sec->rawsize)
1761 return offset - sec->rawsize + sec->size;
1762
1763 lo = 0;
1764 hi = sec_info->count;
1765 mid = 0;
1766 while (lo < hi)
1767 {
1768 mid = (lo + hi) / 2;
1769 if (offset < sec_info->entry[mid].offset)
1770 hi = mid;
1771 else if (offset
1772 >= sec_info->entry[mid].offset + sec_info->entry[mid].size)
1773 lo = mid + 1;
1774 else
1775 break;
1776 }
1777
1778 BFD_ASSERT (lo < hi);
1779
1780 /* FDE or CIE was removed. */
1781 if (sec_info->entry[mid].removed)
1782 return (bfd_vma) -1;
1783
1784 /* If converting personality pointers to DW_EH_PE_pcrel, there will be
1785 no need for run-time relocation against the personality field. */
1786 if (sec_info->entry[mid].cie
1787 && sec_info->entry[mid].u.cie.make_per_encoding_relative
1788 && offset == (sec_info->entry[mid].offset + 8
1789 + sec_info->entry[mid].u.cie.personality_offset))
1790 return (bfd_vma) -2;
1791
1792 /* If converting to DW_EH_PE_pcrel, there will be no need for run-time
1793 relocation against FDE's initial_location field. */
1794 if (!sec_info->entry[mid].cie
1795 && sec_info->entry[mid].make_relative
1796 && offset == sec_info->entry[mid].offset + 8)
1797 return (bfd_vma) -2;
1798
1799 /* If converting LSDA pointers to DW_EH_PE_pcrel, there will be no need
1800 for run-time relocation against LSDA field. */
1801 if (!sec_info->entry[mid].cie
1802 && sec_info->entry[mid].u.fde.cie_inf->u.cie.make_lsda_relative
1803 && offset == (sec_info->entry[mid].offset + 8
1804 + sec_info->entry[mid].lsda_offset))
1805 return (bfd_vma) -2;
1806
1807 /* If converting to DW_EH_PE_pcrel, there will be no need for run-time
1808 relocation against DW_CFA_set_loc's arguments. */
1809 if (sec_info->entry[mid].set_loc
1810 && sec_info->entry[mid].make_relative
1811 && (offset >= sec_info->entry[mid].offset + 8
1812 + sec_info->entry[mid].set_loc[1]))
1813 {
1814 unsigned int cnt;
1815
1816 for (cnt = 1; cnt <= sec_info->entry[mid].set_loc[0]; cnt++)
1817 if (offset == sec_info->entry[mid].offset + 8
1818 + sec_info->entry[mid].set_loc[cnt])
1819 return (bfd_vma) -2;
1820 }
1821
1822 /* Any new augmentation bytes go before the first relocation. */
1823 return (offset + sec_info->entry[mid].new_offset
1824 - sec_info->entry[mid].offset
1825 + extra_augmentation_string_bytes (sec_info->entry + mid)
1826 + extra_augmentation_data_bytes (sec_info->entry + mid));
1827 }
1828
1829 /* Write out .eh_frame_entry section. Add CANTUNWIND terminator if needed.
1830 Also check that the contents look sane. */
1831
1832 bool
1833 _bfd_elf_write_section_eh_frame_entry (bfd *abfd, struct bfd_link_info *info,
1834 asection *sec, bfd_byte *contents)
1835 {
1836 const struct elf_backend_data *bed;
1837 bfd_byte cantunwind[8];
1838 bfd_vma addr;
1839 bfd_vma last_addr;
1840 bfd_vma offset;
1841 asection *text_sec = (asection *) elf_section_data (sec)->sec_info;
1842
1843 if (!sec->rawsize)
1844 sec->rawsize = sec->size;
1845
1846 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_EH_FRAME_ENTRY);
1847
1848 /* Check to make sure that the text section corresponding to this eh_frame_entry
1849 section has not been excluded. In particular, mips16 stub entries will be
1850 excluded outside of the normal process. */
1851 if (sec->flags & SEC_EXCLUDE
1852 || text_sec->flags & SEC_EXCLUDE)
1853 return true;
1854
1855 if (!bfd_set_section_contents (abfd, sec->output_section, contents,
1856 sec->output_offset, sec->rawsize))
1857 return false;
1858
1859 last_addr = bfd_get_signed_32 (abfd, contents);
1860 /* Check that all the entries are in order. */
1861 for (offset = 8; offset < sec->rawsize; offset += 8)
1862 {
1863 addr = bfd_get_signed_32 (abfd, contents + offset) + offset;
1864 if (addr <= last_addr)
1865 {
1866 /* xgettext:c-format */
1867 _bfd_error_handler (_("%pB: %pA not in order"), sec->owner, sec);
1868 return false;
1869 }
1870
1871 last_addr = addr;
1872 }
1873
1874 addr = text_sec->output_section->vma + text_sec->output_offset
1875 + text_sec->size;
1876 addr &= ~1;
1877 addr -= (sec->output_section->vma + sec->output_offset + sec->rawsize);
1878 if (addr & 1)
1879 {
1880 /* xgettext:c-format */
1881 _bfd_error_handler (_("%pB: %pA invalid input section size"),
1882 sec->owner, sec);
1883 bfd_set_error (bfd_error_bad_value);
1884 return false;
1885 }
1886 if (last_addr >= addr + sec->rawsize)
1887 {
1888 /* xgettext:c-format */
1889 _bfd_error_handler (_("%pB: %pA points past end of text section"),
1890 sec->owner, sec);
1891 bfd_set_error (bfd_error_bad_value);
1892 return false;
1893 }
1894
1895 if (sec->size == sec->rawsize)
1896 return true;
1897
1898 bed = get_elf_backend_data (abfd);
1899 BFD_ASSERT (sec->size == sec->rawsize + 8);
1900 BFD_ASSERT ((addr & 1) == 0);
1901 BFD_ASSERT (bed->cant_unwind_opcode);
1902
1903 bfd_put_32 (abfd, addr, cantunwind);
1904 bfd_put_32 (abfd, (*bed->cant_unwind_opcode) (info), cantunwind + 4);
1905 return bfd_set_section_contents (abfd, sec->output_section, cantunwind,
1906 sec->output_offset + sec->rawsize, 8);
1907 }
1908
1909 /* Write out .eh_frame section. This is called with the relocated
1910 contents. */
1911
1912 bool
1913 _bfd_elf_write_section_eh_frame (bfd *abfd,
1914 struct bfd_link_info *info,
1915 asection *sec,
1916 bfd_byte *contents)
1917 {
1918 struct eh_frame_sec_info *sec_info;
1919 struct elf_link_hash_table *htab;
1920 struct eh_frame_hdr_info *hdr_info;
1921 unsigned int ptr_size;
1922 struct eh_cie_fde *ent, *last_ent;
1923
1924 if (sec->sec_info_type != SEC_INFO_TYPE_EH_FRAME)
1925 /* FIXME: octets_per_byte. */
1926 return bfd_set_section_contents (abfd, sec->output_section, contents,
1927 sec->output_offset, sec->size);
1928
1929 ptr_size = (get_elf_backend_data (abfd)
1930 ->elf_backend_eh_frame_address_size (abfd, sec));
1931 BFD_ASSERT (ptr_size != 0);
1932
1933 sec_info = (struct eh_frame_sec_info *) elf_section_data (sec)->sec_info;
1934 htab = elf_hash_table (info);
1935 hdr_info = &htab->eh_info;
1936
1937 if (hdr_info->u.dwarf.table && hdr_info->u.dwarf.array == NULL)
1938 {
1939 hdr_info->frame_hdr_is_compact = false;
1940 hdr_info->u.dwarf.array = (struct eh_frame_array_ent *)
1941 bfd_malloc (hdr_info->u.dwarf.fde_count
1942 * sizeof (*hdr_info->u.dwarf.array));
1943 }
1944 if (hdr_info->u.dwarf.array == NULL)
1945 hdr_info = NULL;
1946
1947 /* The new offsets can be bigger or smaller than the original offsets.
1948 We therefore need to make two passes over the section: one backward
1949 pass to move entries up and one forward pass to move entries down.
1950 The two passes won't interfere with each other because entries are
1951 not reordered */
1952 for (ent = sec_info->entry + sec_info->count; ent-- != sec_info->entry;)
1953 if (!ent->removed && ent->new_offset > ent->offset)
1954 memmove (contents + ent->new_offset, contents + ent->offset, ent->size);
1955
1956 for (ent = sec_info->entry; ent < sec_info->entry + sec_info->count; ++ent)
1957 if (!ent->removed && ent->new_offset < ent->offset)
1958 memmove (contents + ent->new_offset, contents + ent->offset, ent->size);
1959
1960 last_ent = sec_info->entry + sec_info->count;
1961 for (ent = sec_info->entry; ent < last_ent; ++ent)
1962 {
1963 unsigned char *buf, *end;
1964 unsigned int new_size;
1965
1966 if (ent->removed)
1967 continue;
1968
1969 if (ent->size == 4)
1970 {
1971 /* Any terminating FDE must be at the end of the section. */
1972 BFD_ASSERT (ent == last_ent - 1);
1973 continue;
1974 }
1975
1976 buf = contents + ent->new_offset;
1977 end = buf + ent->size;
1978 new_size = next_cie_fde_offset (ent, last_ent, sec) - ent->new_offset;
1979
1980 /* Update the size. It may be shrinked. */
1981 bfd_put_32 (abfd, new_size - 4, buf);
1982
1983 /* Filling the extra bytes with DW_CFA_nops. */
1984 if (new_size != ent->size)
1985 memset (end, 0, new_size - ent->size);
1986
1987 if (ent->cie)
1988 {
1989 /* CIE */
1990 if (ent->make_relative
1991 || ent->u.cie.make_lsda_relative
1992 || ent->u.cie.per_encoding_relative)
1993 {
1994 char *aug;
1995 unsigned int version, action, extra_string, extra_data;
1996 unsigned int per_width, per_encoding;
1997
1998 /* Need to find 'R' or 'L' augmentation's argument and modify
1999 DW_EH_PE_* value. */
2000 action = ((ent->make_relative ? 1 : 0)
2001 | (ent->u.cie.make_lsda_relative ? 2 : 0)
2002 | (ent->u.cie.per_encoding_relative ? 4 : 0));
2003 extra_string = extra_augmentation_string_bytes (ent);
2004 extra_data = extra_augmentation_data_bytes (ent);
2005
2006 /* Skip length, id. */
2007 buf += 8;
2008 version = *buf++;
2009 aug = (char *) buf;
2010 buf += strlen (aug) + 1;
2011 skip_leb128 (&buf, end);
2012 skip_leb128 (&buf, end);
2013 if (version == 1)
2014 skip_bytes (&buf, end, 1);
2015 else
2016 skip_leb128 (&buf, end);
2017 if (*aug == 'z')
2018 {
2019 /* The uleb128 will always be a single byte for the kind
2020 of augmentation strings that we're prepared to handle. */
2021 *buf++ += extra_data;
2022 aug++;
2023 }
2024
2025 /* Make room for the new augmentation string and data bytes. */
2026 memmove (buf + extra_string + extra_data, buf, end - buf);
2027 memmove (aug + extra_string, aug, buf - (bfd_byte *) aug);
2028 buf += extra_string;
2029 end += extra_string + extra_data;
2030
2031 if (ent->add_augmentation_size)
2032 {
2033 *aug++ = 'z';
2034 *buf++ = extra_data - 1;
2035 }
2036 if (ent->u.cie.add_fde_encoding)
2037 {
2038 BFD_ASSERT (action & 1);
2039 *aug++ = 'R';
2040 *buf++ = make_pc_relative (DW_EH_PE_absptr, ptr_size);
2041 action &= ~1;
2042 }
2043
2044 while (action)
2045 switch (*aug++)
2046 {
2047 case 'L':
2048 if (action & 2)
2049 {
2050 BFD_ASSERT (*buf == ent->lsda_encoding);
2051 *buf = make_pc_relative (*buf, ptr_size);
2052 action &= ~2;
2053 }
2054 buf++;
2055 break;
2056 case 'P':
2057 if (ent->u.cie.make_per_encoding_relative)
2058 *buf = make_pc_relative (*buf, ptr_size);
2059 per_encoding = *buf++;
2060 per_width = get_DW_EH_PE_width (per_encoding, ptr_size);
2061 BFD_ASSERT (per_width != 0);
2062 BFD_ASSERT (((per_encoding & 0x70) == DW_EH_PE_pcrel)
2063 == ent->u.cie.per_encoding_relative);
2064 if ((per_encoding & 0x70) == DW_EH_PE_aligned)
2065 buf = (contents
2066 + ((buf - contents + per_width - 1)
2067 & ~((bfd_size_type) per_width - 1)));
2068 if (action & 4)
2069 {
2070 bfd_vma val;
2071
2072 val = read_value (abfd, buf, per_width,
2073 get_DW_EH_PE_signed (per_encoding));
2074 if (ent->u.cie.make_per_encoding_relative)
2075 val -= (sec->output_section->vma
2076 + sec->output_offset
2077 + (buf - contents));
2078 else
2079 {
2080 val += (bfd_vma) ent->offset - ent->new_offset;
2081 val -= extra_string + extra_data;
2082 }
2083 write_value (abfd, buf, val, per_width);
2084 action &= ~4;
2085 }
2086 buf += per_width;
2087 break;
2088 case 'R':
2089 if (action & 1)
2090 {
2091 BFD_ASSERT (*buf == ent->fde_encoding);
2092 *buf = make_pc_relative (*buf, ptr_size);
2093 action &= ~1;
2094 }
2095 buf++;
2096 break;
2097 case 'S':
2098 break;
2099 default:
2100 BFD_FAIL ();
2101 }
2102 }
2103 }
2104 else
2105 {
2106 /* FDE */
2107 bfd_vma value, address;
2108 unsigned int width;
2109 bfd_byte *start;
2110 struct eh_cie_fde *cie;
2111
2112 /* Skip length. */
2113 cie = ent->u.fde.cie_inf;
2114 buf += 4;
2115 value = ((ent->new_offset + sec->output_offset + 4)
2116 - (cie->new_offset + cie->u.cie.u.sec->output_offset));
2117 bfd_put_32 (abfd, value, buf);
2118 if (bfd_link_relocatable (info))
2119 continue;
2120 buf += 4;
2121 width = get_DW_EH_PE_width (ent->fde_encoding, ptr_size);
2122 value = read_value (abfd, buf, width,
2123 get_DW_EH_PE_signed (ent->fde_encoding));
2124 address = value;
2125 if (value)
2126 {
2127 switch (ent->fde_encoding & 0x70)
2128 {
2129 case DW_EH_PE_textrel:
2130 BFD_ASSERT (hdr_info == NULL);
2131 break;
2132 case DW_EH_PE_datarel:
2133 {
2134 switch (abfd->arch_info->arch)
2135 {
2136 case bfd_arch_ia64:
2137 BFD_ASSERT (elf_gp (abfd) != 0);
2138 address += elf_gp (abfd);
2139 break;
2140 default:
2141 _bfd_error_handler
2142 (_("DW_EH_PE_datarel unspecified"
2143 " for this architecture"));
2144 /* Fall thru */
2145 case bfd_arch_frv:
2146 case bfd_arch_i386:
2147 case bfd_arch_nios2:
2148 BFD_ASSERT (htab->hgot != NULL
2149 && ((htab->hgot->root.type
2150 == bfd_link_hash_defined)
2151 || (htab->hgot->root.type
2152 == bfd_link_hash_defweak)));
2153 address
2154 += (htab->hgot->root.u.def.value
2155 + htab->hgot->root.u.def.section->output_offset
2156 + (htab->hgot->root.u.def.section->output_section
2157 ->vma));
2158 break;
2159 }
2160 }
2161 break;
2162 case DW_EH_PE_pcrel:
2163 value += (bfd_vma) ent->offset - ent->new_offset;
2164 address += (sec->output_section->vma
2165 + sec->output_offset
2166 + ent->offset + 8);
2167 break;
2168 }
2169 if (ent->make_relative)
2170 value -= (sec->output_section->vma
2171 + sec->output_offset
2172 + ent->new_offset + 8);
2173 write_value (abfd, buf, value, width);
2174 }
2175
2176 start = buf;
2177
2178 if (hdr_info)
2179 {
2180 /* The address calculation may overflow, giving us a
2181 value greater than 4G on a 32-bit target when
2182 dwarf_vma is 64-bit. */
2183 if (sizeof (address) > 4 && ptr_size == 4)
2184 address &= 0xffffffff;
2185 hdr_info->u.dwarf.array[hdr_info->array_count].initial_loc
2186 = address;
2187 hdr_info->u.dwarf.array[hdr_info->array_count].range
2188 = read_value (abfd, buf + width, width, false);
2189 hdr_info->u.dwarf.array[hdr_info->array_count++].fde
2190 = (sec->output_section->vma
2191 + sec->output_offset
2192 + ent->new_offset);
2193 }
2194
2195 if ((ent->lsda_encoding & 0x70) == DW_EH_PE_pcrel
2196 || cie->u.cie.make_lsda_relative)
2197 {
2198 buf += ent->lsda_offset;
2199 width = get_DW_EH_PE_width (ent->lsda_encoding, ptr_size);
2200 value = read_value (abfd, buf, width,
2201 get_DW_EH_PE_signed (ent->lsda_encoding));
2202 if (value)
2203 {
2204 if ((ent->lsda_encoding & 0x70) == DW_EH_PE_pcrel)
2205 value += (bfd_vma) ent->offset - ent->new_offset;
2206 else if (cie->u.cie.make_lsda_relative)
2207 value -= (sec->output_section->vma
2208 + sec->output_offset
2209 + ent->new_offset + 8 + ent->lsda_offset);
2210 write_value (abfd, buf, value, width);
2211 }
2212 }
2213 else if (ent->add_augmentation_size)
2214 {
2215 /* Skip the PC and length and insert a zero byte for the
2216 augmentation size. */
2217 buf += width * 2;
2218 memmove (buf + 1, buf, end - buf);
2219 *buf = 0;
2220 }
2221
2222 if (ent->set_loc)
2223 {
2224 /* Adjust DW_CFA_set_loc. */
2225 unsigned int cnt;
2226 bfd_vma new_offset;
2227
2228 width = get_DW_EH_PE_width (ent->fde_encoding, ptr_size);
2229 new_offset = ent->new_offset + 8
2230 + extra_augmentation_string_bytes (ent)
2231 + extra_augmentation_data_bytes (ent);
2232
2233 for (cnt = 1; cnt <= ent->set_loc[0]; cnt++)
2234 {
2235 buf = start + ent->set_loc[cnt];
2236
2237 value = read_value (abfd, buf, width,
2238 get_DW_EH_PE_signed (ent->fde_encoding));
2239 if (!value)
2240 continue;
2241
2242 if ((ent->fde_encoding & 0x70) == DW_EH_PE_pcrel)
2243 value += (bfd_vma) ent->offset + 8 - new_offset;
2244 if (ent->make_relative)
2245 value -= (sec->output_section->vma
2246 + sec->output_offset
2247 + new_offset + ent->set_loc[cnt]);
2248 write_value (abfd, buf, value, width);
2249 }
2250 }
2251 }
2252 }
2253
2254 /* FIXME: octets_per_byte. */
2255 return bfd_set_section_contents (abfd, sec->output_section,
2256 contents, (file_ptr) sec->output_offset,
2257 sec->size);
2258 }
2259
2260 /* Helper function used to sort .eh_frame_hdr search table by increasing
2261 VMA of FDE initial location. */
2262
2263 static int
2264 vma_compare (const void *a, const void *b)
2265 {
2266 const struct eh_frame_array_ent *p = (const struct eh_frame_array_ent *) a;
2267 const struct eh_frame_array_ent *q = (const struct eh_frame_array_ent *) b;
2268 if (p->initial_loc > q->initial_loc)
2269 return 1;
2270 if (p->initial_loc < q->initial_loc)
2271 return -1;
2272 if (p->range > q->range)
2273 return 1;
2274 if (p->range < q->range)
2275 return -1;
2276 return 0;
2277 }
2278
2279 /* Reorder .eh_frame_entry sections to match the associated text sections.
2280 This routine is called during the final linking step, just before writing
2281 the contents. At this stage, sections in the eh_frame_hdr_info are already
2282 sorted in order of increasing text section address and so we simply need
2283 to make the .eh_frame_entrys follow that same order. Note that it is
2284 invalid for a linker script to try to force a particular order of
2285 .eh_frame_entry sections. */
2286
2287 bool
2288 _bfd_elf_fixup_eh_frame_hdr (struct bfd_link_info *info)
2289 {
2290 asection *sec = NULL;
2291 asection *osec;
2292 struct eh_frame_hdr_info *hdr_info;
2293 unsigned int i;
2294 bfd_vma offset;
2295 struct bfd_link_order *p;
2296
2297 hdr_info = &elf_hash_table (info)->eh_info;
2298
2299 if (hdr_info->hdr_sec == NULL
2300 || info->eh_frame_hdr_type != COMPACT_EH_HDR
2301 || hdr_info->array_count == 0)
2302 return true;
2303
2304 /* Change section output offsets to be in text section order. */
2305 offset = 8;
2306 osec = hdr_info->u.compact.entries[0]->output_section;
2307 for (i = 0; i < hdr_info->array_count; i++)
2308 {
2309 sec = hdr_info->u.compact.entries[i];
2310 if (sec->output_section != osec)
2311 {
2312 _bfd_error_handler
2313 (_("invalid output section for .eh_frame_entry: %pA"),
2314 sec->output_section);
2315 return false;
2316 }
2317 sec->output_offset = offset;
2318 offset += sec->size;
2319 }
2320
2321
2322 /* Fix the link_order to match. */
2323 for (p = sec->output_section->map_head.link_order; p != NULL; p = p->next)
2324 {
2325 if (p->type != bfd_indirect_link_order)
2326 abort();
2327
2328 p->offset = p->u.indirect.section->output_offset;
2329 if (p->next != NULL)
2330 i--;
2331 }
2332
2333 if (i != 0)
2334 {
2335 _bfd_error_handler
2336 (_("invalid contents in %pA section"), osec);
2337 return false;
2338 }
2339
2340 return true;
2341 }
2342
2343 /* The .eh_frame_hdr format for Compact EH frames:
2344 ubyte version (2)
2345 ubyte eh_ref_enc (DW_EH_PE_* encoding of typinfo references)
2346 uint32_t count (Number of entries in table)
2347 [array from .eh_frame_entry sections] */
2348
2349 static bool
2350 write_compact_eh_frame_hdr (bfd *abfd, struct bfd_link_info *info)
2351 {
2352 struct elf_link_hash_table *htab;
2353 struct eh_frame_hdr_info *hdr_info;
2354 asection *sec;
2355 const struct elf_backend_data *bed;
2356 bfd_vma count;
2357 bfd_byte contents[8];
2358 unsigned int i;
2359
2360 htab = elf_hash_table (info);
2361 hdr_info = &htab->eh_info;
2362 sec = hdr_info->hdr_sec;
2363
2364 if (sec->size != 8)
2365 abort();
2366
2367 for (i = 0; i < sizeof (contents); i++)
2368 contents[i] = 0;
2369
2370 contents[0] = COMPACT_EH_HDR;
2371 bed = get_elf_backend_data (abfd);
2372
2373 BFD_ASSERT (bed->compact_eh_encoding);
2374 contents[1] = (*bed->compact_eh_encoding) (info);
2375
2376 count = (sec->output_section->size - 8) / 8;
2377 bfd_put_32 (abfd, count, contents + 4);
2378 return bfd_set_section_contents (abfd, sec->output_section, contents,
2379 (file_ptr) sec->output_offset, sec->size);
2380 }
2381
2382 /* The .eh_frame_hdr format for DWARF frames:
2383
2384 ubyte version (currently 1)
2385 ubyte eh_frame_ptr_enc (DW_EH_PE_* encoding of pointer to start of
2386 .eh_frame section)
2387 ubyte fde_count_enc (DW_EH_PE_* encoding of total FDE count
2388 number (or DW_EH_PE_omit if there is no
2389 binary search table computed))
2390 ubyte table_enc (DW_EH_PE_* encoding of binary search table,
2391 or DW_EH_PE_omit if not present.
2392 DW_EH_PE_datarel is using address of
2393 .eh_frame_hdr section start as base)
2394 [encoded] eh_frame_ptr (pointer to start of .eh_frame section)
2395 optionally followed by:
2396 [encoded] fde_count (total number of FDEs in .eh_frame section)
2397 fde_count x [encoded] initial_loc, fde
2398 (array of encoded pairs containing
2399 FDE initial_location field and FDE address,
2400 sorted by increasing initial_loc). */
2401
2402 static bool
2403 write_dwarf_eh_frame_hdr (bfd *abfd, struct bfd_link_info *info)
2404 {
2405 struct elf_link_hash_table *htab;
2406 struct eh_frame_hdr_info *hdr_info;
2407 asection *sec;
2408 bool retval = true;
2409
2410 htab = elf_hash_table (info);
2411 hdr_info = &htab->eh_info;
2412 sec = hdr_info->hdr_sec;
2413 bfd_byte *contents;
2414 asection *eh_frame_sec;
2415 bfd_size_type size;
2416 bfd_vma encoded_eh_frame;
2417
2418 size = EH_FRAME_HDR_SIZE;
2419 if (hdr_info->u.dwarf.array
2420 && hdr_info->array_count == hdr_info->u.dwarf.fde_count)
2421 size += 4 + hdr_info->u.dwarf.fde_count * 8;
2422 contents = (bfd_byte *) bfd_malloc (size);
2423 if (contents == NULL)
2424 return false;
2425
2426 eh_frame_sec = bfd_get_section_by_name (abfd, ".eh_frame");
2427 if (eh_frame_sec == NULL)
2428 {
2429 free (contents);
2430 return false;
2431 }
2432
2433 memset (contents, 0, EH_FRAME_HDR_SIZE);
2434 /* Version. */
2435 contents[0] = 1;
2436 /* .eh_frame offset. */
2437 contents[1] = get_elf_backend_data (abfd)->elf_backend_encode_eh_address
2438 (abfd, info, eh_frame_sec, 0, sec, 4, &encoded_eh_frame);
2439
2440 if (hdr_info->u.dwarf.array
2441 && hdr_info->array_count == hdr_info->u.dwarf.fde_count)
2442 {
2443 /* FDE count encoding. */
2444 contents[2] = DW_EH_PE_udata4;
2445 /* Search table encoding. */
2446 contents[3] = DW_EH_PE_datarel | DW_EH_PE_sdata4;
2447 }
2448 else
2449 {
2450 contents[2] = DW_EH_PE_omit;
2451 contents[3] = DW_EH_PE_omit;
2452 }
2453 bfd_put_32 (abfd, encoded_eh_frame, contents + 4);
2454
2455 if (contents[2] != DW_EH_PE_omit)
2456 {
2457 unsigned int i;
2458 bool overlap, overflow;
2459
2460 bfd_put_32 (abfd, hdr_info->u.dwarf.fde_count,
2461 contents + EH_FRAME_HDR_SIZE);
2462 qsort (hdr_info->u.dwarf.array, hdr_info->u.dwarf.fde_count,
2463 sizeof (*hdr_info->u.dwarf.array), vma_compare);
2464 overlap = false;
2465 overflow = false;
2466 for (i = 0; i < hdr_info->u.dwarf.fde_count; i++)
2467 {
2468 bfd_vma val;
2469
2470 val = hdr_info->u.dwarf.array[i].initial_loc
2471 - sec->output_section->vma;
2472 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
2473 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64
2474 && (hdr_info->u.dwarf.array[i].initial_loc
2475 != sec->output_section->vma + val))
2476 overflow = true;
2477 bfd_put_32 (abfd, val, contents + EH_FRAME_HDR_SIZE + i * 8 + 4);
2478 val = hdr_info->u.dwarf.array[i].fde - sec->output_section->vma;
2479 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
2480 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64
2481 && (hdr_info->u.dwarf.array[i].fde
2482 != sec->output_section->vma + val))
2483 overflow = true;
2484 bfd_put_32 (abfd, val, contents + EH_FRAME_HDR_SIZE + i * 8 + 8);
2485 if (i != 0
2486 && (hdr_info->u.dwarf.array[i].initial_loc
2487 < (hdr_info->u.dwarf.array[i - 1].initial_loc
2488 + hdr_info->u.dwarf.array[i - 1].range)))
2489 overlap = true;
2490 }
2491 if (overflow)
2492 _bfd_error_handler (_(".eh_frame_hdr entry overflow"));
2493 if (overlap)
2494 _bfd_error_handler (_(".eh_frame_hdr refers to overlapping FDEs"));
2495 if (overflow || overlap)
2496 {
2497 bfd_set_error (bfd_error_bad_value);
2498 retval = false;
2499 }
2500 }
2501
2502 /* FIXME: octets_per_byte. */
2503 if (!bfd_set_section_contents (abfd, sec->output_section, contents,
2504 (file_ptr) sec->output_offset,
2505 sec->size))
2506 retval = false;
2507 free (contents);
2508
2509 free (hdr_info->u.dwarf.array);
2510 return retval;
2511 }
2512
2513 /* Write out .eh_frame_hdr section. This must be called after
2514 _bfd_elf_write_section_eh_frame has been called on all input
2515 .eh_frame sections. */
2516
2517 bool
2518 _bfd_elf_write_section_eh_frame_hdr (bfd *abfd, struct bfd_link_info *info)
2519 {
2520 struct elf_link_hash_table *htab;
2521 struct eh_frame_hdr_info *hdr_info;
2522 asection *sec;
2523
2524 htab = elf_hash_table (info);
2525 hdr_info = &htab->eh_info;
2526 sec = hdr_info->hdr_sec;
2527
2528 if (info->eh_frame_hdr_type == 0 || sec == NULL)
2529 return true;
2530
2531 if (info->eh_frame_hdr_type == COMPACT_EH_HDR)
2532 return write_compact_eh_frame_hdr (abfd, info);
2533 else
2534 return write_dwarf_eh_frame_hdr (abfd, info);
2535 }
2536
2537 /* Return the width of FDE addresses. This is the default implementation. */
2538
2539 unsigned int
2540 _bfd_elf_eh_frame_address_size (bfd *abfd, const asection *sec ATTRIBUTE_UNUSED)
2541 {
2542 return elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64 ? 8 : 4;
2543 }
2544
2545 /* Decide whether we can use a PC-relative encoding within the given
2546 EH frame section. This is the default implementation. */
2547
2548 bool
2549 _bfd_elf_can_make_relative (bfd *input_bfd ATTRIBUTE_UNUSED,
2550 struct bfd_link_info *info ATTRIBUTE_UNUSED,
2551 asection *eh_frame_section ATTRIBUTE_UNUSED)
2552 {
2553 return true;
2554 }
2555
2556 /* Select an encoding for the given address. Preference is given to
2557 PC-relative addressing modes. */
2558
2559 bfd_byte
2560 _bfd_elf_encode_eh_address (bfd *abfd ATTRIBUTE_UNUSED,
2561 struct bfd_link_info *info ATTRIBUTE_UNUSED,
2562 asection *osec, bfd_vma offset,
2563 asection *loc_sec, bfd_vma loc_offset,
2564 bfd_vma *encoded)
2565 {
2566 *encoded = osec->vma + offset -
2567 (loc_sec->output_section->vma + loc_sec->output_offset + loc_offset);
2568 return DW_EH_PE_pcrel | DW_EH_PE_sdata4;
2569 }