qsort: elf_sort_sections use of target_index
[binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright (C) 1993-2019 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22
23 /*
24 SECTION
25 ELF backends
26
27 BFD support for ELF formats is being worked on.
28 Currently, the best supported back ends are for sparc and i386
29 (running svr4 or Solaris 2).
30
31 Documentation of the internals of the support code still needs
32 to be written. The code is changing quickly enough that we
33 haven't bothered yet. */
34
35 /* For sparc64-cross-sparc32. */
36 #define _SYSCALL32
37 #include "sysdep.h"
38 #include <limits.h>
39 #include "bfd.h"
40 #include "bfdlink.h"
41 #include "libbfd.h"
42 #define ARCH_SIZE 0
43 #include "elf-bfd.h"
44 #include "libiberty.h"
45 #include "safe-ctype.h"
46 #include "elf-linux-core.h"
47
48 #ifdef CORE_HEADER
49 #include CORE_HEADER
50 #endif
51
52 static int elf_sort_sections (const void *, const void *);
53 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
54 static bfd_boolean prep_headers (bfd *);
55 static bfd_boolean swap_out_syms (bfd *, struct elf_strtab_hash **, int) ;
56 static bfd_boolean elf_read_notes (bfd *, file_ptr, bfd_size_type,
57 size_t align) ;
58 static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
59 file_ptr offset, size_t align);
60
61 /* Swap version information in and out. The version information is
62 currently size independent. If that ever changes, this code will
63 need to move into elfcode.h. */
64
65 /* Swap in a Verdef structure. */
66
67 void
68 _bfd_elf_swap_verdef_in (bfd *abfd,
69 const Elf_External_Verdef *src,
70 Elf_Internal_Verdef *dst)
71 {
72 dst->vd_version = H_GET_16 (abfd, src->vd_version);
73 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
74 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
75 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
76 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
77 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
78 dst->vd_next = H_GET_32 (abfd, src->vd_next);
79 }
80
81 /* Swap out a Verdef structure. */
82
83 void
84 _bfd_elf_swap_verdef_out (bfd *abfd,
85 const Elf_Internal_Verdef *src,
86 Elf_External_Verdef *dst)
87 {
88 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
89 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
90 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
91 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
92 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
93 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
94 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
95 }
96
97 /* Swap in a Verdaux structure. */
98
99 void
100 _bfd_elf_swap_verdaux_in (bfd *abfd,
101 const Elf_External_Verdaux *src,
102 Elf_Internal_Verdaux *dst)
103 {
104 dst->vda_name = H_GET_32 (abfd, src->vda_name);
105 dst->vda_next = H_GET_32 (abfd, src->vda_next);
106 }
107
108 /* Swap out a Verdaux structure. */
109
110 void
111 _bfd_elf_swap_verdaux_out (bfd *abfd,
112 const Elf_Internal_Verdaux *src,
113 Elf_External_Verdaux *dst)
114 {
115 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
116 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
117 }
118
119 /* Swap in a Verneed structure. */
120
121 void
122 _bfd_elf_swap_verneed_in (bfd *abfd,
123 const Elf_External_Verneed *src,
124 Elf_Internal_Verneed *dst)
125 {
126 dst->vn_version = H_GET_16 (abfd, src->vn_version);
127 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
128 dst->vn_file = H_GET_32 (abfd, src->vn_file);
129 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
130 dst->vn_next = H_GET_32 (abfd, src->vn_next);
131 }
132
133 /* Swap out a Verneed structure. */
134
135 void
136 _bfd_elf_swap_verneed_out (bfd *abfd,
137 const Elf_Internal_Verneed *src,
138 Elf_External_Verneed *dst)
139 {
140 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
141 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
142 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
143 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
144 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
145 }
146
147 /* Swap in a Vernaux structure. */
148
149 void
150 _bfd_elf_swap_vernaux_in (bfd *abfd,
151 const Elf_External_Vernaux *src,
152 Elf_Internal_Vernaux *dst)
153 {
154 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
155 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
156 dst->vna_other = H_GET_16 (abfd, src->vna_other);
157 dst->vna_name = H_GET_32 (abfd, src->vna_name);
158 dst->vna_next = H_GET_32 (abfd, src->vna_next);
159 }
160
161 /* Swap out a Vernaux structure. */
162
163 void
164 _bfd_elf_swap_vernaux_out (bfd *abfd,
165 const Elf_Internal_Vernaux *src,
166 Elf_External_Vernaux *dst)
167 {
168 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
169 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
170 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
171 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
172 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
173 }
174
175 /* Swap in a Versym structure. */
176
177 void
178 _bfd_elf_swap_versym_in (bfd *abfd,
179 const Elf_External_Versym *src,
180 Elf_Internal_Versym *dst)
181 {
182 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
183 }
184
185 /* Swap out a Versym structure. */
186
187 void
188 _bfd_elf_swap_versym_out (bfd *abfd,
189 const Elf_Internal_Versym *src,
190 Elf_External_Versym *dst)
191 {
192 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
193 }
194
195 /* Standard ELF hash function. Do not change this function; you will
196 cause invalid hash tables to be generated. */
197
198 unsigned long
199 bfd_elf_hash (const char *namearg)
200 {
201 const unsigned char *name = (const unsigned char *) namearg;
202 unsigned long h = 0;
203 unsigned long g;
204 int ch;
205
206 while ((ch = *name++) != '\0')
207 {
208 h = (h << 4) + ch;
209 if ((g = (h & 0xf0000000)) != 0)
210 {
211 h ^= g >> 24;
212 /* The ELF ABI says `h &= ~g', but this is equivalent in
213 this case and on some machines one insn instead of two. */
214 h ^= g;
215 }
216 }
217 return h & 0xffffffff;
218 }
219
220 /* DT_GNU_HASH hash function. Do not change this function; you will
221 cause invalid hash tables to be generated. */
222
223 unsigned long
224 bfd_elf_gnu_hash (const char *namearg)
225 {
226 const unsigned char *name = (const unsigned char *) namearg;
227 unsigned long h = 5381;
228 unsigned char ch;
229
230 while ((ch = *name++) != '\0')
231 h = (h << 5) + h + ch;
232 return h & 0xffffffff;
233 }
234
235 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
236 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
237 bfd_boolean
238 bfd_elf_allocate_object (bfd *abfd,
239 size_t object_size,
240 enum elf_target_id object_id)
241 {
242 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
243 abfd->tdata.any = bfd_zalloc (abfd, object_size);
244 if (abfd->tdata.any == NULL)
245 return FALSE;
246
247 elf_object_id (abfd) = object_id;
248 if (abfd->direction != read_direction)
249 {
250 struct output_elf_obj_tdata *o = bfd_zalloc (abfd, sizeof *o);
251 if (o == NULL)
252 return FALSE;
253 elf_tdata (abfd)->o = o;
254 elf_program_header_size (abfd) = (bfd_size_type) -1;
255 }
256 return TRUE;
257 }
258
259
260 bfd_boolean
261 bfd_elf_make_object (bfd *abfd)
262 {
263 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
264 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
265 bed->target_id);
266 }
267
268 bfd_boolean
269 bfd_elf_mkcorefile (bfd *abfd)
270 {
271 /* I think this can be done just like an object file. */
272 if (!abfd->xvec->_bfd_set_format[(int) bfd_object] (abfd))
273 return FALSE;
274 elf_tdata (abfd)->core = bfd_zalloc (abfd, sizeof (*elf_tdata (abfd)->core));
275 return elf_tdata (abfd)->core != NULL;
276 }
277
278 char *
279 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
280 {
281 Elf_Internal_Shdr **i_shdrp;
282 bfd_byte *shstrtab = NULL;
283 file_ptr offset;
284 bfd_size_type shstrtabsize;
285
286 i_shdrp = elf_elfsections (abfd);
287 if (i_shdrp == 0
288 || shindex >= elf_numsections (abfd)
289 || i_shdrp[shindex] == 0)
290 return NULL;
291
292 shstrtab = i_shdrp[shindex]->contents;
293 if (shstrtab == NULL)
294 {
295 /* No cached one, attempt to read, and cache what we read. */
296 offset = i_shdrp[shindex]->sh_offset;
297 shstrtabsize = i_shdrp[shindex]->sh_size;
298
299 /* Allocate and clear an extra byte at the end, to prevent crashes
300 in case the string table is not terminated. */
301 if (shstrtabsize + 1 <= 1
302 || shstrtabsize > bfd_get_file_size (abfd)
303 || bfd_seek (abfd, offset, SEEK_SET) != 0
304 || (shstrtab = (bfd_byte *) bfd_alloc (abfd, shstrtabsize + 1)) == NULL)
305 shstrtab = NULL;
306 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
307 {
308 if (bfd_get_error () != bfd_error_system_call)
309 bfd_set_error (bfd_error_file_truncated);
310 bfd_release (abfd, shstrtab);
311 shstrtab = NULL;
312 /* Once we've failed to read it, make sure we don't keep
313 trying. Otherwise, we'll keep allocating space for
314 the string table over and over. */
315 i_shdrp[shindex]->sh_size = 0;
316 }
317 else
318 shstrtab[shstrtabsize] = '\0';
319 i_shdrp[shindex]->contents = shstrtab;
320 }
321 return (char *) shstrtab;
322 }
323
324 char *
325 bfd_elf_string_from_elf_section (bfd *abfd,
326 unsigned int shindex,
327 unsigned int strindex)
328 {
329 Elf_Internal_Shdr *hdr;
330
331 if (strindex == 0)
332 return "";
333
334 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
335 return NULL;
336
337 hdr = elf_elfsections (abfd)[shindex];
338
339 if (hdr->contents == NULL)
340 {
341 if (hdr->sh_type != SHT_STRTAB && hdr->sh_type < SHT_LOOS)
342 {
343 /* PR 17512: file: f057ec89. */
344 /* xgettext:c-format */
345 _bfd_error_handler (_("%pB: attempt to load strings from"
346 " a non-string section (number %d)"),
347 abfd, shindex);
348 return NULL;
349 }
350
351 if (bfd_elf_get_str_section (abfd, shindex) == NULL)
352 return NULL;
353 }
354 else
355 {
356 /* PR 24273: The string section's contents may have already
357 been loaded elsewhere, eg because a corrupt file has the
358 string section index in the ELF header pointing at a group
359 section. So be paranoid, and test that the last byte of
360 the section is zero. */
361 if (hdr->sh_size == 0 || hdr->contents[hdr->sh_size - 1] != 0)
362 return NULL;
363 }
364
365 if (strindex >= hdr->sh_size)
366 {
367 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
368 _bfd_error_handler
369 /* xgettext:c-format */
370 (_("%pB: invalid string offset %u >= %" PRIu64 " for section `%s'"),
371 abfd, strindex, (uint64_t) hdr->sh_size,
372 (shindex == shstrndx && strindex == hdr->sh_name
373 ? ".shstrtab"
374 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
375 return NULL;
376 }
377
378 return ((char *) hdr->contents) + strindex;
379 }
380
381 /* Read and convert symbols to internal format.
382 SYMCOUNT specifies the number of symbols to read, starting from
383 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
384 are non-NULL, they are used to store the internal symbols, external
385 symbols, and symbol section index extensions, respectively.
386 Returns a pointer to the internal symbol buffer (malloced if necessary)
387 or NULL if there were no symbols or some kind of problem. */
388
389 Elf_Internal_Sym *
390 bfd_elf_get_elf_syms (bfd *ibfd,
391 Elf_Internal_Shdr *symtab_hdr,
392 size_t symcount,
393 size_t symoffset,
394 Elf_Internal_Sym *intsym_buf,
395 void *extsym_buf,
396 Elf_External_Sym_Shndx *extshndx_buf)
397 {
398 Elf_Internal_Shdr *shndx_hdr;
399 void *alloc_ext;
400 const bfd_byte *esym;
401 Elf_External_Sym_Shndx *alloc_extshndx;
402 Elf_External_Sym_Shndx *shndx;
403 Elf_Internal_Sym *alloc_intsym;
404 Elf_Internal_Sym *isym;
405 Elf_Internal_Sym *isymend;
406 const struct elf_backend_data *bed;
407 size_t extsym_size;
408 bfd_size_type amt;
409 file_ptr pos;
410
411 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
412 abort ();
413
414 if (symcount == 0)
415 return intsym_buf;
416
417 /* Normal syms might have section extension entries. */
418 shndx_hdr = NULL;
419 if (elf_symtab_shndx_list (ibfd) != NULL)
420 {
421 elf_section_list * entry;
422 Elf_Internal_Shdr **sections = elf_elfsections (ibfd);
423
424 /* Find an index section that is linked to this symtab section. */
425 for (entry = elf_symtab_shndx_list (ibfd); entry != NULL; entry = entry->next)
426 {
427 /* PR 20063. */
428 if (entry->hdr.sh_link >= elf_numsections (ibfd))
429 continue;
430
431 if (sections[entry->hdr.sh_link] == symtab_hdr)
432 {
433 shndx_hdr = & entry->hdr;
434 break;
435 };
436 }
437
438 if (shndx_hdr == NULL)
439 {
440 if (symtab_hdr == & elf_symtab_hdr (ibfd))
441 /* Not really accurate, but this was how the old code used to work. */
442 shndx_hdr = & elf_symtab_shndx_list (ibfd)->hdr;
443 /* Otherwise we do nothing. The assumption is that
444 the index table will not be needed. */
445 }
446 }
447
448 /* Read the symbols. */
449 alloc_ext = NULL;
450 alloc_extshndx = NULL;
451 alloc_intsym = NULL;
452 bed = get_elf_backend_data (ibfd);
453 extsym_size = bed->s->sizeof_sym;
454 amt = (bfd_size_type) symcount * extsym_size;
455 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
456 if (extsym_buf == NULL)
457 {
458 alloc_ext = bfd_malloc2 (symcount, extsym_size);
459 extsym_buf = alloc_ext;
460 }
461 if (extsym_buf == NULL
462 || bfd_seek (ibfd, pos, SEEK_SET) != 0
463 || bfd_bread (extsym_buf, amt, ibfd) != amt)
464 {
465 intsym_buf = NULL;
466 goto out;
467 }
468
469 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
470 extshndx_buf = NULL;
471 else
472 {
473 amt = (bfd_size_type) symcount * sizeof (Elf_External_Sym_Shndx);
474 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
475 if (extshndx_buf == NULL)
476 {
477 alloc_extshndx = (Elf_External_Sym_Shndx *)
478 bfd_malloc2 (symcount, sizeof (Elf_External_Sym_Shndx));
479 extshndx_buf = alloc_extshndx;
480 }
481 if (extshndx_buf == NULL
482 || bfd_seek (ibfd, pos, SEEK_SET) != 0
483 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
484 {
485 intsym_buf = NULL;
486 goto out;
487 }
488 }
489
490 if (intsym_buf == NULL)
491 {
492 alloc_intsym = (Elf_Internal_Sym *)
493 bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
494 intsym_buf = alloc_intsym;
495 if (intsym_buf == NULL)
496 goto out;
497 }
498
499 /* Convert the symbols to internal form. */
500 isymend = intsym_buf + symcount;
501 for (esym = (const bfd_byte *) extsym_buf, isym = intsym_buf,
502 shndx = extshndx_buf;
503 isym < isymend;
504 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
505 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
506 {
507 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
508 /* xgettext:c-format */
509 _bfd_error_handler (_("%pB symbol number %lu references"
510 " nonexistent SHT_SYMTAB_SHNDX section"),
511 ibfd, (unsigned long) symoffset);
512 if (alloc_intsym != NULL)
513 free (alloc_intsym);
514 intsym_buf = NULL;
515 goto out;
516 }
517
518 out:
519 if (alloc_ext != NULL)
520 free (alloc_ext);
521 if (alloc_extshndx != NULL)
522 free (alloc_extshndx);
523
524 return intsym_buf;
525 }
526
527 /* Look up a symbol name. */
528 const char *
529 bfd_elf_sym_name (bfd *abfd,
530 Elf_Internal_Shdr *symtab_hdr,
531 Elf_Internal_Sym *isym,
532 asection *sym_sec)
533 {
534 const char *name;
535 unsigned int iname = isym->st_name;
536 unsigned int shindex = symtab_hdr->sh_link;
537
538 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
539 /* Check for a bogus st_shndx to avoid crashing. */
540 && isym->st_shndx < elf_numsections (abfd))
541 {
542 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
543 shindex = elf_elfheader (abfd)->e_shstrndx;
544 }
545
546 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
547 if (name == NULL)
548 name = "(null)";
549 else if (sym_sec && *name == '\0')
550 name = bfd_section_name (sym_sec);
551
552 return name;
553 }
554
555 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
556 sections. The first element is the flags, the rest are section
557 pointers. */
558
559 typedef union elf_internal_group {
560 Elf_Internal_Shdr *shdr;
561 unsigned int flags;
562 } Elf_Internal_Group;
563
564 /* Return the name of the group signature symbol. Why isn't the
565 signature just a string? */
566
567 static const char *
568 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
569 {
570 Elf_Internal_Shdr *hdr;
571 unsigned char esym[sizeof (Elf64_External_Sym)];
572 Elf_External_Sym_Shndx eshndx;
573 Elf_Internal_Sym isym;
574
575 /* First we need to ensure the symbol table is available. Make sure
576 that it is a symbol table section. */
577 if (ghdr->sh_link >= elf_numsections (abfd))
578 return NULL;
579 hdr = elf_elfsections (abfd) [ghdr->sh_link];
580 if (hdr->sh_type != SHT_SYMTAB
581 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
582 return NULL;
583
584 /* Go read the symbol. */
585 hdr = &elf_tdata (abfd)->symtab_hdr;
586 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
587 &isym, esym, &eshndx) == NULL)
588 return NULL;
589
590 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
591 }
592
593 /* Set next_in_group list pointer, and group name for NEWSECT. */
594
595 static bfd_boolean
596 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
597 {
598 unsigned int num_group = elf_tdata (abfd)->num_group;
599
600 /* If num_group is zero, read in all SHT_GROUP sections. The count
601 is set to -1 if there are no SHT_GROUP sections. */
602 if (num_group == 0)
603 {
604 unsigned int i, shnum;
605
606 /* First count the number of groups. If we have a SHT_GROUP
607 section with just a flag word (ie. sh_size is 4), ignore it. */
608 shnum = elf_numsections (abfd);
609 num_group = 0;
610
611 #define IS_VALID_GROUP_SECTION_HEADER(shdr, minsize) \
612 ( (shdr)->sh_type == SHT_GROUP \
613 && (shdr)->sh_size >= minsize \
614 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
615 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
616
617 for (i = 0; i < shnum; i++)
618 {
619 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
620
621 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
622 num_group += 1;
623 }
624
625 if (num_group == 0)
626 {
627 num_group = (unsigned) -1;
628 elf_tdata (abfd)->num_group = num_group;
629 elf_tdata (abfd)->group_sect_ptr = NULL;
630 }
631 else
632 {
633 /* We keep a list of elf section headers for group sections,
634 so we can find them quickly. */
635 bfd_size_type amt;
636
637 elf_tdata (abfd)->num_group = num_group;
638 elf_tdata (abfd)->group_sect_ptr = (Elf_Internal_Shdr **)
639 bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
640 if (elf_tdata (abfd)->group_sect_ptr == NULL)
641 return FALSE;
642 memset (elf_tdata (abfd)->group_sect_ptr, 0,
643 num_group * sizeof (Elf_Internal_Shdr *));
644 num_group = 0;
645
646 for (i = 0; i < shnum; i++)
647 {
648 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
649
650 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
651 {
652 unsigned char *src;
653 Elf_Internal_Group *dest;
654
655 /* Make sure the group section has a BFD section
656 attached to it. */
657 if (!bfd_section_from_shdr (abfd, i))
658 return FALSE;
659
660 /* Add to list of sections. */
661 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
662 num_group += 1;
663
664 /* Read the raw contents. */
665 BFD_ASSERT (sizeof (*dest) >= 4);
666 amt = shdr->sh_size * sizeof (*dest) / 4;
667 shdr->contents = (unsigned char *)
668 bfd_alloc2 (abfd, shdr->sh_size, sizeof (*dest) / 4);
669 /* PR binutils/4110: Handle corrupt group headers. */
670 if (shdr->contents == NULL)
671 {
672 _bfd_error_handler
673 /* xgettext:c-format */
674 (_("%pB: corrupt size field in group section"
675 " header: %#" PRIx64),
676 abfd, (uint64_t) shdr->sh_size);
677 bfd_set_error (bfd_error_bad_value);
678 -- num_group;
679 continue;
680 }
681
682 memset (shdr->contents, 0, amt);
683
684 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
685 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
686 != shdr->sh_size))
687 {
688 _bfd_error_handler
689 /* xgettext:c-format */
690 (_("%pB: invalid size field in group section"
691 " header: %#" PRIx64 ""),
692 abfd, (uint64_t) shdr->sh_size);
693 bfd_set_error (bfd_error_bad_value);
694 -- num_group;
695 /* PR 17510: If the group contents are even
696 partially corrupt, do not allow any of the
697 contents to be used. */
698 memset (shdr->contents, 0, amt);
699 continue;
700 }
701
702 /* Translate raw contents, a flag word followed by an
703 array of elf section indices all in target byte order,
704 to the flag word followed by an array of elf section
705 pointers. */
706 src = shdr->contents + shdr->sh_size;
707 dest = (Elf_Internal_Group *) (shdr->contents + amt);
708
709 while (1)
710 {
711 unsigned int idx;
712
713 src -= 4;
714 --dest;
715 idx = H_GET_32 (abfd, src);
716 if (src == shdr->contents)
717 {
718 dest->flags = idx;
719 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
720 shdr->bfd_section->flags
721 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
722 break;
723 }
724 if (idx < shnum)
725 {
726 dest->shdr = elf_elfsections (abfd)[idx];
727 /* PR binutils/23199: All sections in a
728 section group should be marked with
729 SHF_GROUP. But some tools generate
730 broken objects without SHF_GROUP. Fix
731 them up here. */
732 dest->shdr->sh_flags |= SHF_GROUP;
733 }
734 if (idx >= shnum
735 || dest->shdr->sh_type == SHT_GROUP)
736 {
737 _bfd_error_handler
738 (_("%pB: invalid entry in SHT_GROUP section [%u]"),
739 abfd, i);
740 dest->shdr = NULL;
741 }
742 }
743 }
744 }
745
746 /* PR 17510: Corrupt binaries might contain invalid groups. */
747 if (num_group != (unsigned) elf_tdata (abfd)->num_group)
748 {
749 elf_tdata (abfd)->num_group = num_group;
750
751 /* If all groups are invalid then fail. */
752 if (num_group == 0)
753 {
754 elf_tdata (abfd)->group_sect_ptr = NULL;
755 elf_tdata (abfd)->num_group = num_group = -1;
756 _bfd_error_handler
757 (_("%pB: no valid group sections found"), abfd);
758 bfd_set_error (bfd_error_bad_value);
759 }
760 }
761 }
762 }
763
764 if (num_group != (unsigned) -1)
765 {
766 unsigned int search_offset = elf_tdata (abfd)->group_search_offset;
767 unsigned int j;
768
769 for (j = 0; j < num_group; j++)
770 {
771 /* Begin search from previous found group. */
772 unsigned i = (j + search_offset) % num_group;
773
774 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
775 Elf_Internal_Group *idx;
776 bfd_size_type n_elt;
777
778 if (shdr == NULL)
779 continue;
780
781 idx = (Elf_Internal_Group *) shdr->contents;
782 if (idx == NULL || shdr->sh_size < 4)
783 {
784 /* See PR 21957 for a reproducer. */
785 /* xgettext:c-format */
786 _bfd_error_handler (_("%pB: group section '%pA' has no contents"),
787 abfd, shdr->bfd_section);
788 elf_tdata (abfd)->group_sect_ptr[i] = NULL;
789 bfd_set_error (bfd_error_bad_value);
790 return FALSE;
791 }
792 n_elt = shdr->sh_size / 4;
793
794 /* Look through this group's sections to see if current
795 section is a member. */
796 while (--n_elt != 0)
797 if ((++idx)->shdr == hdr)
798 {
799 asection *s = NULL;
800
801 /* We are a member of this group. Go looking through
802 other members to see if any others are linked via
803 next_in_group. */
804 idx = (Elf_Internal_Group *) shdr->contents;
805 n_elt = shdr->sh_size / 4;
806 while (--n_elt != 0)
807 if ((++idx)->shdr != NULL
808 && (s = idx->shdr->bfd_section) != NULL
809 && elf_next_in_group (s) != NULL)
810 break;
811 if (n_elt != 0)
812 {
813 /* Snarf the group name from other member, and
814 insert current section in circular list. */
815 elf_group_name (newsect) = elf_group_name (s);
816 elf_next_in_group (newsect) = elf_next_in_group (s);
817 elf_next_in_group (s) = newsect;
818 }
819 else
820 {
821 const char *gname;
822
823 gname = group_signature (abfd, shdr);
824 if (gname == NULL)
825 return FALSE;
826 elf_group_name (newsect) = gname;
827
828 /* Start a circular list with one element. */
829 elf_next_in_group (newsect) = newsect;
830 }
831
832 /* If the group section has been created, point to the
833 new member. */
834 if (shdr->bfd_section != NULL)
835 elf_next_in_group (shdr->bfd_section) = newsect;
836
837 elf_tdata (abfd)->group_search_offset = i;
838 j = num_group - 1;
839 break;
840 }
841 }
842 }
843
844 if (elf_group_name (newsect) == NULL)
845 {
846 /* xgettext:c-format */
847 _bfd_error_handler (_("%pB: no group info for section '%pA'"),
848 abfd, newsect);
849 return FALSE;
850 }
851 return TRUE;
852 }
853
854 bfd_boolean
855 _bfd_elf_setup_sections (bfd *abfd)
856 {
857 unsigned int i;
858 unsigned int num_group = elf_tdata (abfd)->num_group;
859 bfd_boolean result = TRUE;
860 asection *s;
861
862 /* Process SHF_LINK_ORDER. */
863 for (s = abfd->sections; s != NULL; s = s->next)
864 {
865 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
866 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
867 {
868 unsigned int elfsec = this_hdr->sh_link;
869 /* FIXME: The old Intel compiler and old strip/objcopy may
870 not set the sh_link or sh_info fields. Hence we could
871 get the situation where elfsec is 0. */
872 if (elfsec == 0)
873 {
874 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
875 if (bed->link_order_error_handler)
876 bed->link_order_error_handler
877 /* xgettext:c-format */
878 (_("%pB: warning: sh_link not set for section `%pA'"),
879 abfd, s);
880 }
881 else
882 {
883 asection *linksec = NULL;
884
885 if (elfsec < elf_numsections (abfd))
886 {
887 this_hdr = elf_elfsections (abfd)[elfsec];
888 linksec = this_hdr->bfd_section;
889 }
890
891 /* PR 1991, 2008:
892 Some strip/objcopy may leave an incorrect value in
893 sh_link. We don't want to proceed. */
894 if (linksec == NULL)
895 {
896 _bfd_error_handler
897 /* xgettext:c-format */
898 (_("%pB: sh_link [%d] in section `%pA' is incorrect"),
899 s->owner, elfsec, s);
900 result = FALSE;
901 }
902
903 elf_linked_to_section (s) = linksec;
904 }
905 }
906 else if (this_hdr->sh_type == SHT_GROUP
907 && elf_next_in_group (s) == NULL)
908 {
909 _bfd_error_handler
910 /* xgettext:c-format */
911 (_("%pB: SHT_GROUP section [index %d] has no SHF_GROUP sections"),
912 abfd, elf_section_data (s)->this_idx);
913 result = FALSE;
914 }
915 }
916
917 /* Process section groups. */
918 if (num_group == (unsigned) -1)
919 return result;
920
921 for (i = 0; i < num_group; i++)
922 {
923 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
924 Elf_Internal_Group *idx;
925 unsigned int n_elt;
926
927 /* PR binutils/18758: Beware of corrupt binaries with invalid group data. */
928 if (shdr == NULL || shdr->bfd_section == NULL || shdr->contents == NULL)
929 {
930 _bfd_error_handler
931 /* xgettext:c-format */
932 (_("%pB: section group entry number %u is corrupt"),
933 abfd, i);
934 result = FALSE;
935 continue;
936 }
937
938 idx = (Elf_Internal_Group *) shdr->contents;
939 n_elt = shdr->sh_size / 4;
940
941 while (--n_elt != 0)
942 {
943 ++ idx;
944
945 if (idx->shdr == NULL)
946 continue;
947 else if (idx->shdr->bfd_section)
948 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
949 else if (idx->shdr->sh_type != SHT_RELA
950 && idx->shdr->sh_type != SHT_REL)
951 {
952 /* There are some unknown sections in the group. */
953 _bfd_error_handler
954 /* xgettext:c-format */
955 (_("%pB: unknown type [%#x] section `%s' in group [%pA]"),
956 abfd,
957 idx->shdr->sh_type,
958 bfd_elf_string_from_elf_section (abfd,
959 (elf_elfheader (abfd)
960 ->e_shstrndx),
961 idx->shdr->sh_name),
962 shdr->bfd_section);
963 result = FALSE;
964 }
965 }
966 }
967
968 return result;
969 }
970
971 bfd_boolean
972 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
973 {
974 return elf_next_in_group (sec) != NULL;
975 }
976
977 const char *
978 bfd_elf_group_name (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
979 {
980 if (elf_sec_group (sec) != NULL)
981 return elf_group_name (sec);
982 return NULL;
983 }
984
985 static char *
986 convert_debug_to_zdebug (bfd *abfd, const char *name)
987 {
988 unsigned int len = strlen (name);
989 char *new_name = bfd_alloc (abfd, len + 2);
990 if (new_name == NULL)
991 return NULL;
992 new_name[0] = '.';
993 new_name[1] = 'z';
994 memcpy (new_name + 2, name + 1, len);
995 return new_name;
996 }
997
998 static char *
999 convert_zdebug_to_debug (bfd *abfd, const char *name)
1000 {
1001 unsigned int len = strlen (name);
1002 char *new_name = bfd_alloc (abfd, len);
1003 if (new_name == NULL)
1004 return NULL;
1005 new_name[0] = '.';
1006 memcpy (new_name + 1, name + 2, len - 1);
1007 return new_name;
1008 }
1009
1010 /* This a copy of lto_section defined in GCC (lto-streamer.h). */
1011
1012 struct lto_section
1013 {
1014 int16_t major_version;
1015 int16_t minor_version;
1016 unsigned char slim_object;
1017
1018 /* Flags is a private field that is not defined publicly. */
1019 uint16_t flags;
1020 };
1021
1022 /* Make a BFD section from an ELF section. We store a pointer to the
1023 BFD section in the bfd_section field of the header. */
1024
1025 bfd_boolean
1026 _bfd_elf_make_section_from_shdr (bfd *abfd,
1027 Elf_Internal_Shdr *hdr,
1028 const char *name,
1029 int shindex)
1030 {
1031 asection *newsect;
1032 flagword flags;
1033 const struct elf_backend_data *bed;
1034
1035 if (hdr->bfd_section != NULL)
1036 return TRUE;
1037
1038 newsect = bfd_make_section_anyway (abfd, name);
1039 if (newsect == NULL)
1040 return FALSE;
1041
1042 hdr->bfd_section = newsect;
1043 elf_section_data (newsect)->this_hdr = *hdr;
1044 elf_section_data (newsect)->this_idx = shindex;
1045
1046 /* Always use the real type/flags. */
1047 elf_section_type (newsect) = hdr->sh_type;
1048 elf_section_flags (newsect) = hdr->sh_flags;
1049
1050 newsect->filepos = hdr->sh_offset;
1051
1052 if (!bfd_set_section_vma (newsect, hdr->sh_addr)
1053 || !bfd_set_section_size (newsect, hdr->sh_size)
1054 || !bfd_set_section_alignment (newsect, bfd_log2 (hdr->sh_addralign)))
1055 return FALSE;
1056
1057 flags = SEC_NO_FLAGS;
1058 if (hdr->sh_type != SHT_NOBITS)
1059 flags |= SEC_HAS_CONTENTS;
1060 if (hdr->sh_type == SHT_GROUP)
1061 flags |= SEC_GROUP;
1062 if ((hdr->sh_flags & SHF_ALLOC) != 0)
1063 {
1064 flags |= SEC_ALLOC;
1065 if (hdr->sh_type != SHT_NOBITS)
1066 flags |= SEC_LOAD;
1067 }
1068 if ((hdr->sh_flags & SHF_WRITE) == 0)
1069 flags |= SEC_READONLY;
1070 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
1071 flags |= SEC_CODE;
1072 else if ((flags & SEC_LOAD) != 0)
1073 flags |= SEC_DATA;
1074 if ((hdr->sh_flags & SHF_MERGE) != 0)
1075 {
1076 flags |= SEC_MERGE;
1077 newsect->entsize = hdr->sh_entsize;
1078 }
1079 if ((hdr->sh_flags & SHF_STRINGS) != 0)
1080 flags |= SEC_STRINGS;
1081 if (hdr->sh_flags & SHF_GROUP)
1082 if (!setup_group (abfd, hdr, newsect))
1083 return FALSE;
1084 if ((hdr->sh_flags & SHF_TLS) != 0)
1085 flags |= SEC_THREAD_LOCAL;
1086 if ((hdr->sh_flags & SHF_EXCLUDE) != 0)
1087 flags |= SEC_EXCLUDE;
1088
1089 switch (elf_elfheader (abfd)->e_ident[EI_OSABI])
1090 {
1091 /* FIXME: We should not recognize SHF_GNU_MBIND for ELFOSABI_NONE,
1092 but binutils as of 2019-07-23 did not set the EI_OSABI header
1093 byte. */
1094 case ELFOSABI_NONE:
1095 case ELFOSABI_GNU:
1096 case ELFOSABI_FREEBSD:
1097 if ((hdr->sh_flags & SHF_GNU_MBIND) != 0)
1098 elf_tdata (abfd)->has_gnu_osabi |= elf_gnu_osabi_mbind;
1099 break;
1100 }
1101
1102 if ((flags & SEC_ALLOC) == 0)
1103 {
1104 /* The debugging sections appear to be recognized only by name,
1105 not any sort of flag. Their SEC_ALLOC bits are cleared. */
1106 if (name [0] == '.')
1107 {
1108 const char *p;
1109 int n;
1110 if (name[1] == 'd')
1111 p = ".debug", n = 6;
1112 else if (name[1] == 'g' && name[2] == 'n')
1113 p = ".gnu.linkonce.wi.", n = 17;
1114 else if (name[1] == 'g' && name[2] == 'd')
1115 p = ".gdb_index", n = 11; /* yes we really do mean 11. */
1116 else if (name[1] == 'l')
1117 p = ".line", n = 5;
1118 else if (name[1] == 's')
1119 p = ".stab", n = 5;
1120 else if (name[1] == 'z')
1121 p = ".zdebug", n = 7;
1122 else
1123 p = NULL, n = 0;
1124 if (p != NULL && strncmp (name, p, n) == 0)
1125 flags |= SEC_DEBUGGING;
1126 }
1127 }
1128
1129 /* As a GNU extension, if the name begins with .gnu.linkonce, we
1130 only link a single copy of the section. This is used to support
1131 g++. g++ will emit each template expansion in its own section.
1132 The symbols will be defined as weak, so that multiple definitions
1133 are permitted. The GNU linker extension is to actually discard
1134 all but one of the sections. */
1135 if (CONST_STRNEQ (name, ".gnu.linkonce")
1136 && elf_next_in_group (newsect) == NULL)
1137 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1138
1139 bed = get_elf_backend_data (abfd);
1140 if (bed->elf_backend_section_flags)
1141 if (! bed->elf_backend_section_flags (&flags, hdr))
1142 return FALSE;
1143
1144 if (!bfd_set_section_flags (newsect, flags))
1145 return FALSE;
1146
1147 /* We do not parse the PT_NOTE segments as we are interested even in the
1148 separate debug info files which may have the segments offsets corrupted.
1149 PT_NOTEs from the core files are currently not parsed using BFD. */
1150 if (hdr->sh_type == SHT_NOTE)
1151 {
1152 bfd_byte *contents;
1153
1154 if (!bfd_malloc_and_get_section (abfd, newsect, &contents))
1155 return FALSE;
1156
1157 elf_parse_notes (abfd, (char *) contents, hdr->sh_size,
1158 hdr->sh_offset, hdr->sh_addralign);
1159 free (contents);
1160 }
1161
1162 if ((flags & SEC_ALLOC) != 0)
1163 {
1164 Elf_Internal_Phdr *phdr;
1165 unsigned int i, nload;
1166
1167 /* Some ELF linkers produce binaries with all the program header
1168 p_paddr fields zero. If we have such a binary with more than
1169 one PT_LOAD header, then leave the section lma equal to vma
1170 so that we don't create sections with overlapping lma. */
1171 phdr = elf_tdata (abfd)->phdr;
1172 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1173 if (phdr->p_paddr != 0)
1174 break;
1175 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
1176 ++nload;
1177 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
1178 return TRUE;
1179
1180 phdr = elf_tdata (abfd)->phdr;
1181 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1182 {
1183 if (((phdr->p_type == PT_LOAD
1184 && (hdr->sh_flags & SHF_TLS) == 0)
1185 || phdr->p_type == PT_TLS)
1186 && ELF_SECTION_IN_SEGMENT (hdr, phdr))
1187 {
1188 if ((flags & SEC_LOAD) == 0)
1189 newsect->lma = (phdr->p_paddr
1190 + hdr->sh_addr - phdr->p_vaddr);
1191 else
1192 /* We used to use the same adjustment for SEC_LOAD
1193 sections, but that doesn't work if the segment
1194 is packed with code from multiple VMAs.
1195 Instead we calculate the section LMA based on
1196 the segment LMA. It is assumed that the
1197 segment will contain sections with contiguous
1198 LMAs, even if the VMAs are not. */
1199 newsect->lma = (phdr->p_paddr
1200 + hdr->sh_offset - phdr->p_offset);
1201
1202 /* With contiguous segments, we can't tell from file
1203 offsets whether a section with zero size should
1204 be placed at the end of one segment or the
1205 beginning of the next. Decide based on vaddr. */
1206 if (hdr->sh_addr >= phdr->p_vaddr
1207 && (hdr->sh_addr + hdr->sh_size
1208 <= phdr->p_vaddr + phdr->p_memsz))
1209 break;
1210 }
1211 }
1212 }
1213
1214 /* Compress/decompress DWARF debug sections with names: .debug_* and
1215 .zdebug_*, after the section flags is set. */
1216 if ((flags & SEC_DEBUGGING)
1217 && ((name[1] == 'd' && name[6] == '_')
1218 || (name[1] == 'z' && name[7] == '_')))
1219 {
1220 enum { nothing, compress, decompress } action = nothing;
1221 int compression_header_size;
1222 bfd_size_type uncompressed_size;
1223 unsigned int uncompressed_align_power;
1224 bfd_boolean compressed
1225 = bfd_is_section_compressed_with_header (abfd, newsect,
1226 &compression_header_size,
1227 &uncompressed_size,
1228 &uncompressed_align_power);
1229 if (compressed)
1230 {
1231 /* Compressed section. Check if we should decompress. */
1232 if ((abfd->flags & BFD_DECOMPRESS))
1233 action = decompress;
1234 }
1235
1236 /* Compress the uncompressed section or convert from/to .zdebug*
1237 section. Check if we should compress. */
1238 if (action == nothing)
1239 {
1240 if (newsect->size != 0
1241 && (abfd->flags & BFD_COMPRESS)
1242 && compression_header_size >= 0
1243 && uncompressed_size > 0
1244 && (!compressed
1245 || ((compression_header_size > 0)
1246 != ((abfd->flags & BFD_COMPRESS_GABI) != 0))))
1247 action = compress;
1248 else
1249 return TRUE;
1250 }
1251
1252 if (action == compress)
1253 {
1254 if (!bfd_init_section_compress_status (abfd, newsect))
1255 {
1256 _bfd_error_handler
1257 /* xgettext:c-format */
1258 (_("%pB: unable to initialize compress status for section %s"),
1259 abfd, name);
1260 return FALSE;
1261 }
1262 }
1263 else
1264 {
1265 if (!bfd_init_section_decompress_status (abfd, newsect))
1266 {
1267 _bfd_error_handler
1268 /* xgettext:c-format */
1269 (_("%pB: unable to initialize decompress status for section %s"),
1270 abfd, name);
1271 return FALSE;
1272 }
1273 }
1274
1275 if (abfd->is_linker_input)
1276 {
1277 if (name[1] == 'z'
1278 && (action == decompress
1279 || (action == compress
1280 && (abfd->flags & BFD_COMPRESS_GABI) != 0)))
1281 {
1282 /* Convert section name from .zdebug_* to .debug_* so
1283 that linker will consider this section as a debug
1284 section. */
1285 char *new_name = convert_zdebug_to_debug (abfd, name);
1286 if (new_name == NULL)
1287 return FALSE;
1288 bfd_rename_section (newsect, new_name);
1289 }
1290 }
1291 else
1292 /* For objdump, don't rename the section. For objcopy, delay
1293 section rename to elf_fake_sections. */
1294 newsect->flags |= SEC_ELF_RENAME;
1295 }
1296
1297 /* GCC uses .gnu.lto_.lto.<some_hash> as a LTO bytecode information
1298 section. */
1299 const char *lto_section_name = ".gnu.lto_.lto.";
1300 if (strncmp (name, lto_section_name, strlen (lto_section_name)) == 0)
1301 {
1302 struct lto_section lsection;
1303 if (bfd_get_section_contents (abfd, newsect, &lsection, 0,
1304 sizeof (struct lto_section)))
1305 abfd->lto_slim_object = lsection.slim_object;
1306 }
1307
1308 return TRUE;
1309 }
1310
1311 const char *const bfd_elf_section_type_names[] =
1312 {
1313 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1314 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1315 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1316 };
1317
1318 /* ELF relocs are against symbols. If we are producing relocatable
1319 output, and the reloc is against an external symbol, and nothing
1320 has given us any additional addend, the resulting reloc will also
1321 be against the same symbol. In such a case, we don't want to
1322 change anything about the way the reloc is handled, since it will
1323 all be done at final link time. Rather than put special case code
1324 into bfd_perform_relocation, all the reloc types use this howto
1325 function. It just short circuits the reloc if producing
1326 relocatable output against an external symbol. */
1327
1328 bfd_reloc_status_type
1329 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1330 arelent *reloc_entry,
1331 asymbol *symbol,
1332 void *data ATTRIBUTE_UNUSED,
1333 asection *input_section,
1334 bfd *output_bfd,
1335 char **error_message ATTRIBUTE_UNUSED)
1336 {
1337 if (output_bfd != NULL
1338 && (symbol->flags & BSF_SECTION_SYM) == 0
1339 && (! reloc_entry->howto->partial_inplace
1340 || reloc_entry->addend == 0))
1341 {
1342 reloc_entry->address += input_section->output_offset;
1343 return bfd_reloc_ok;
1344 }
1345
1346 return bfd_reloc_continue;
1347 }
1348 \f
1349 /* Returns TRUE if section A matches section B.
1350 Names, addresses and links may be different, but everything else
1351 should be the same. */
1352
1353 static bfd_boolean
1354 section_match (const Elf_Internal_Shdr * a,
1355 const Elf_Internal_Shdr * b)
1356 {
1357 if (a->sh_type != b->sh_type
1358 || ((a->sh_flags ^ b->sh_flags) & ~SHF_INFO_LINK) != 0
1359 || a->sh_addralign != b->sh_addralign
1360 || a->sh_entsize != b->sh_entsize)
1361 return FALSE;
1362 if (a->sh_type == SHT_SYMTAB
1363 || a->sh_type == SHT_STRTAB)
1364 return TRUE;
1365 return a->sh_size == b->sh_size;
1366 }
1367
1368 /* Find a section in OBFD that has the same characteristics
1369 as IHEADER. Return the index of this section or SHN_UNDEF if
1370 none can be found. Check's section HINT first, as this is likely
1371 to be the correct section. */
1372
1373 static unsigned int
1374 find_link (const bfd *obfd, const Elf_Internal_Shdr *iheader,
1375 const unsigned int hint)
1376 {
1377 Elf_Internal_Shdr ** oheaders = elf_elfsections (obfd);
1378 unsigned int i;
1379
1380 BFD_ASSERT (iheader != NULL);
1381
1382 /* See PR 20922 for a reproducer of the NULL test. */
1383 if (hint < elf_numsections (obfd)
1384 && oheaders[hint] != NULL
1385 && section_match (oheaders[hint], iheader))
1386 return hint;
1387
1388 for (i = 1; i < elf_numsections (obfd); i++)
1389 {
1390 Elf_Internal_Shdr * oheader = oheaders[i];
1391
1392 if (oheader == NULL)
1393 continue;
1394 if (section_match (oheader, iheader))
1395 /* FIXME: Do we care if there is a potential for
1396 multiple matches ? */
1397 return i;
1398 }
1399
1400 return SHN_UNDEF;
1401 }
1402
1403 /* PR 19938: Attempt to set the ELF section header fields of an OS or
1404 Processor specific section, based upon a matching input section.
1405 Returns TRUE upon success, FALSE otherwise. */
1406
1407 static bfd_boolean
1408 copy_special_section_fields (const bfd *ibfd,
1409 bfd *obfd,
1410 const Elf_Internal_Shdr *iheader,
1411 Elf_Internal_Shdr *oheader,
1412 const unsigned int secnum)
1413 {
1414 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
1415 const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd);
1416 bfd_boolean changed = FALSE;
1417 unsigned int sh_link;
1418
1419 if (oheader->sh_type == SHT_NOBITS)
1420 {
1421 /* This is a feature for objcopy --only-keep-debug:
1422 When a section's type is changed to NOBITS, we preserve
1423 the sh_link and sh_info fields so that they can be
1424 matched up with the original.
1425
1426 Note: Strictly speaking these assignments are wrong.
1427 The sh_link and sh_info fields should point to the
1428 relevent sections in the output BFD, which may not be in
1429 the same location as they were in the input BFD. But
1430 the whole point of this action is to preserve the
1431 original values of the sh_link and sh_info fields, so
1432 that they can be matched up with the section headers in
1433 the original file. So strictly speaking we may be
1434 creating an invalid ELF file, but it is only for a file
1435 that just contains debug info and only for sections
1436 without any contents. */
1437 if (oheader->sh_link == 0)
1438 oheader->sh_link = iheader->sh_link;
1439 if (oheader->sh_info == 0)
1440 oheader->sh_info = iheader->sh_info;
1441 return TRUE;
1442 }
1443
1444 /* Allow the target a chance to decide how these fields should be set. */
1445 if (bed->elf_backend_copy_special_section_fields != NULL
1446 && bed->elf_backend_copy_special_section_fields
1447 (ibfd, obfd, iheader, oheader))
1448 return TRUE;
1449
1450 /* We have an iheader which might match oheader, and which has non-zero
1451 sh_info and/or sh_link fields. Attempt to follow those links and find
1452 the section in the output bfd which corresponds to the linked section
1453 in the input bfd. */
1454 if (iheader->sh_link != SHN_UNDEF)
1455 {
1456 /* See PR 20931 for a reproducer. */
1457 if (iheader->sh_link >= elf_numsections (ibfd))
1458 {
1459 _bfd_error_handler
1460 /* xgettext:c-format */
1461 (_("%pB: invalid sh_link field (%d) in section number %d"),
1462 ibfd, iheader->sh_link, secnum);
1463 return FALSE;
1464 }
1465
1466 sh_link = find_link (obfd, iheaders[iheader->sh_link], iheader->sh_link);
1467 if (sh_link != SHN_UNDEF)
1468 {
1469 oheader->sh_link = sh_link;
1470 changed = TRUE;
1471 }
1472 else
1473 /* FIXME: Should we install iheader->sh_link
1474 if we could not find a match ? */
1475 _bfd_error_handler
1476 /* xgettext:c-format */
1477 (_("%pB: failed to find link section for section %d"), obfd, secnum);
1478 }
1479
1480 if (iheader->sh_info)
1481 {
1482 /* The sh_info field can hold arbitrary information, but if the
1483 SHF_LINK_INFO flag is set then it should be interpreted as a
1484 section index. */
1485 if (iheader->sh_flags & SHF_INFO_LINK)
1486 {
1487 sh_link = find_link (obfd, iheaders[iheader->sh_info],
1488 iheader->sh_info);
1489 if (sh_link != SHN_UNDEF)
1490 oheader->sh_flags |= SHF_INFO_LINK;
1491 }
1492 else
1493 /* No idea what it means - just copy it. */
1494 sh_link = iheader->sh_info;
1495
1496 if (sh_link != SHN_UNDEF)
1497 {
1498 oheader->sh_info = sh_link;
1499 changed = TRUE;
1500 }
1501 else
1502 _bfd_error_handler
1503 /* xgettext:c-format */
1504 (_("%pB: failed to find info section for section %d"), obfd, secnum);
1505 }
1506
1507 return changed;
1508 }
1509
1510 /* Copy the program header and other data from one object module to
1511 another. */
1512
1513 bfd_boolean
1514 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1515 {
1516 const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd);
1517 Elf_Internal_Shdr **oheaders = elf_elfsections (obfd);
1518 const struct elf_backend_data *bed;
1519 unsigned int i;
1520
1521 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1522 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1523 return TRUE;
1524
1525 if (!elf_flags_init (obfd))
1526 {
1527 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1528 elf_flags_init (obfd) = TRUE;
1529 }
1530
1531 elf_gp (obfd) = elf_gp (ibfd);
1532
1533 /* Also copy the EI_OSABI field. */
1534 elf_elfheader (obfd)->e_ident[EI_OSABI] =
1535 elf_elfheader (ibfd)->e_ident[EI_OSABI];
1536
1537 /* If set, copy the EI_ABIVERSION field. */
1538 if (elf_elfheader (ibfd)->e_ident[EI_ABIVERSION])
1539 elf_elfheader (obfd)->e_ident[EI_ABIVERSION]
1540 = elf_elfheader (ibfd)->e_ident[EI_ABIVERSION];
1541
1542 /* Copy object attributes. */
1543 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1544
1545 if (iheaders == NULL || oheaders == NULL)
1546 return TRUE;
1547
1548 bed = get_elf_backend_data (obfd);
1549
1550 /* Possibly copy other fields in the section header. */
1551 for (i = 1; i < elf_numsections (obfd); i++)
1552 {
1553 unsigned int j;
1554 Elf_Internal_Shdr * oheader = oheaders[i];
1555
1556 /* Ignore ordinary sections. SHT_NOBITS sections are considered however
1557 because of a special case need for generating separate debug info
1558 files. See below for more details. */
1559 if (oheader == NULL
1560 || (oheader->sh_type != SHT_NOBITS
1561 && oheader->sh_type < SHT_LOOS))
1562 continue;
1563
1564 /* Ignore empty sections, and sections whose
1565 fields have already been initialised. */
1566 if (oheader->sh_size == 0
1567 || (oheader->sh_info != 0 && oheader->sh_link != 0))
1568 continue;
1569
1570 /* Scan for the matching section in the input bfd.
1571 First we try for a direct mapping between the input and output sections. */
1572 for (j = 1; j < elf_numsections (ibfd); j++)
1573 {
1574 const Elf_Internal_Shdr * iheader = iheaders[j];
1575
1576 if (iheader == NULL)
1577 continue;
1578
1579 if (oheader->bfd_section != NULL
1580 && iheader->bfd_section != NULL
1581 && iheader->bfd_section->output_section != NULL
1582 && iheader->bfd_section->output_section == oheader->bfd_section)
1583 {
1584 /* We have found a connection from the input section to the
1585 output section. Attempt to copy the header fields. If
1586 this fails then do not try any further sections - there
1587 should only be a one-to-one mapping between input and output. */
1588 if (! copy_special_section_fields (ibfd, obfd, iheader, oheader, i))
1589 j = elf_numsections (ibfd);
1590 break;
1591 }
1592 }
1593
1594 if (j < elf_numsections (ibfd))
1595 continue;
1596
1597 /* That failed. So try to deduce the corresponding input section.
1598 Unfortunately we cannot compare names as the output string table
1599 is empty, so instead we check size, address and type. */
1600 for (j = 1; j < elf_numsections (ibfd); j++)
1601 {
1602 const Elf_Internal_Shdr * iheader = iheaders[j];
1603
1604 if (iheader == NULL)
1605 continue;
1606
1607 /* Try matching fields in the input section's header.
1608 Since --only-keep-debug turns all non-debug sections into
1609 SHT_NOBITS sections, the output SHT_NOBITS type matches any
1610 input type. */
1611 if ((oheader->sh_type == SHT_NOBITS
1612 || iheader->sh_type == oheader->sh_type)
1613 && (iheader->sh_flags & ~ SHF_INFO_LINK)
1614 == (oheader->sh_flags & ~ SHF_INFO_LINK)
1615 && iheader->sh_addralign == oheader->sh_addralign
1616 && iheader->sh_entsize == oheader->sh_entsize
1617 && iheader->sh_size == oheader->sh_size
1618 && iheader->sh_addr == oheader->sh_addr
1619 && (iheader->sh_info != oheader->sh_info
1620 || iheader->sh_link != oheader->sh_link))
1621 {
1622 if (copy_special_section_fields (ibfd, obfd, iheader, oheader, i))
1623 break;
1624 }
1625 }
1626
1627 if (j == elf_numsections (ibfd) && oheader->sh_type >= SHT_LOOS)
1628 {
1629 /* Final attempt. Call the backend copy function
1630 with a NULL input section. */
1631 if (bed->elf_backend_copy_special_section_fields != NULL)
1632 bed->elf_backend_copy_special_section_fields (ibfd, obfd, NULL, oheader);
1633 }
1634 }
1635
1636 return TRUE;
1637 }
1638
1639 static const char *
1640 get_segment_type (unsigned int p_type)
1641 {
1642 const char *pt;
1643 switch (p_type)
1644 {
1645 case PT_NULL: pt = "NULL"; break;
1646 case PT_LOAD: pt = "LOAD"; break;
1647 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1648 case PT_INTERP: pt = "INTERP"; break;
1649 case PT_NOTE: pt = "NOTE"; break;
1650 case PT_SHLIB: pt = "SHLIB"; break;
1651 case PT_PHDR: pt = "PHDR"; break;
1652 case PT_TLS: pt = "TLS"; break;
1653 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1654 case PT_GNU_STACK: pt = "STACK"; break;
1655 case PT_GNU_RELRO: pt = "RELRO"; break;
1656 default: pt = NULL; break;
1657 }
1658 return pt;
1659 }
1660
1661 /* Print out the program headers. */
1662
1663 bfd_boolean
1664 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1665 {
1666 FILE *f = (FILE *) farg;
1667 Elf_Internal_Phdr *p;
1668 asection *s;
1669 bfd_byte *dynbuf = NULL;
1670
1671 p = elf_tdata (abfd)->phdr;
1672 if (p != NULL)
1673 {
1674 unsigned int i, c;
1675
1676 fprintf (f, _("\nProgram Header:\n"));
1677 c = elf_elfheader (abfd)->e_phnum;
1678 for (i = 0; i < c; i++, p++)
1679 {
1680 const char *pt = get_segment_type (p->p_type);
1681 char buf[20];
1682
1683 if (pt == NULL)
1684 {
1685 sprintf (buf, "0x%lx", p->p_type);
1686 pt = buf;
1687 }
1688 fprintf (f, "%8s off 0x", pt);
1689 bfd_fprintf_vma (abfd, f, p->p_offset);
1690 fprintf (f, " vaddr 0x");
1691 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1692 fprintf (f, " paddr 0x");
1693 bfd_fprintf_vma (abfd, f, p->p_paddr);
1694 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1695 fprintf (f, " filesz 0x");
1696 bfd_fprintf_vma (abfd, f, p->p_filesz);
1697 fprintf (f, " memsz 0x");
1698 bfd_fprintf_vma (abfd, f, p->p_memsz);
1699 fprintf (f, " flags %c%c%c",
1700 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1701 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1702 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1703 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1704 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1705 fprintf (f, "\n");
1706 }
1707 }
1708
1709 s = bfd_get_section_by_name (abfd, ".dynamic");
1710 if (s != NULL)
1711 {
1712 unsigned int elfsec;
1713 unsigned long shlink;
1714 bfd_byte *extdyn, *extdynend;
1715 size_t extdynsize;
1716 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1717
1718 fprintf (f, _("\nDynamic Section:\n"));
1719
1720 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1721 goto error_return;
1722
1723 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1724 if (elfsec == SHN_BAD)
1725 goto error_return;
1726 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1727
1728 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1729 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1730
1731 extdyn = dynbuf;
1732 /* PR 17512: file: 6f427532. */
1733 if (s->size < extdynsize)
1734 goto error_return;
1735 extdynend = extdyn + s->size;
1736 /* PR 17512: file: id:000006,sig:06,src:000000,op:flip4,pos:5664.
1737 Fix range check. */
1738 for (; extdyn <= (extdynend - extdynsize); extdyn += extdynsize)
1739 {
1740 Elf_Internal_Dyn dyn;
1741 const char *name = "";
1742 char ab[20];
1743 bfd_boolean stringp;
1744 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1745
1746 (*swap_dyn_in) (abfd, extdyn, &dyn);
1747
1748 if (dyn.d_tag == DT_NULL)
1749 break;
1750
1751 stringp = FALSE;
1752 switch (dyn.d_tag)
1753 {
1754 default:
1755 if (bed->elf_backend_get_target_dtag)
1756 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
1757
1758 if (!strcmp (name, ""))
1759 {
1760 sprintf (ab, "%#" BFD_VMA_FMT "x", dyn.d_tag);
1761 name = ab;
1762 }
1763 break;
1764
1765 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1766 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1767 case DT_PLTGOT: name = "PLTGOT"; break;
1768 case DT_HASH: name = "HASH"; break;
1769 case DT_STRTAB: name = "STRTAB"; break;
1770 case DT_SYMTAB: name = "SYMTAB"; break;
1771 case DT_RELA: name = "RELA"; break;
1772 case DT_RELASZ: name = "RELASZ"; break;
1773 case DT_RELAENT: name = "RELAENT"; break;
1774 case DT_STRSZ: name = "STRSZ"; break;
1775 case DT_SYMENT: name = "SYMENT"; break;
1776 case DT_INIT: name = "INIT"; break;
1777 case DT_FINI: name = "FINI"; break;
1778 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1779 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1780 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1781 case DT_REL: name = "REL"; break;
1782 case DT_RELSZ: name = "RELSZ"; break;
1783 case DT_RELENT: name = "RELENT"; break;
1784 case DT_PLTREL: name = "PLTREL"; break;
1785 case DT_DEBUG: name = "DEBUG"; break;
1786 case DT_TEXTREL: name = "TEXTREL"; break;
1787 case DT_JMPREL: name = "JMPREL"; break;
1788 case DT_BIND_NOW: name = "BIND_NOW"; break;
1789 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1790 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1791 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1792 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1793 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1794 case DT_FLAGS: name = "FLAGS"; break;
1795 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1796 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1797 case DT_CHECKSUM: name = "CHECKSUM"; break;
1798 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1799 case DT_MOVEENT: name = "MOVEENT"; break;
1800 case DT_MOVESZ: name = "MOVESZ"; break;
1801 case DT_FEATURE: name = "FEATURE"; break;
1802 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1803 case DT_SYMINSZ: name = "SYMINSZ"; break;
1804 case DT_SYMINENT: name = "SYMINENT"; break;
1805 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1806 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1807 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1808 case DT_PLTPAD: name = "PLTPAD"; break;
1809 case DT_MOVETAB: name = "MOVETAB"; break;
1810 case DT_SYMINFO: name = "SYMINFO"; break;
1811 case DT_RELACOUNT: name = "RELACOUNT"; break;
1812 case DT_RELCOUNT: name = "RELCOUNT"; break;
1813 case DT_FLAGS_1: name = "FLAGS_1"; break;
1814 case DT_VERSYM: name = "VERSYM"; break;
1815 case DT_VERDEF: name = "VERDEF"; break;
1816 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1817 case DT_VERNEED: name = "VERNEED"; break;
1818 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1819 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1820 case DT_USED: name = "USED"; break;
1821 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1822 case DT_GNU_HASH: name = "GNU_HASH"; break;
1823 }
1824
1825 fprintf (f, " %-20s ", name);
1826 if (! stringp)
1827 {
1828 fprintf (f, "0x");
1829 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
1830 }
1831 else
1832 {
1833 const char *string;
1834 unsigned int tagv = dyn.d_un.d_val;
1835
1836 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1837 if (string == NULL)
1838 goto error_return;
1839 fprintf (f, "%s", string);
1840 }
1841 fprintf (f, "\n");
1842 }
1843
1844 free (dynbuf);
1845 dynbuf = NULL;
1846 }
1847
1848 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1849 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1850 {
1851 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1852 return FALSE;
1853 }
1854
1855 if (elf_dynverdef (abfd) != 0)
1856 {
1857 Elf_Internal_Verdef *t;
1858
1859 fprintf (f, _("\nVersion definitions:\n"));
1860 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1861 {
1862 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1863 t->vd_flags, t->vd_hash,
1864 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1865 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1866 {
1867 Elf_Internal_Verdaux *a;
1868
1869 fprintf (f, "\t");
1870 for (a = t->vd_auxptr->vda_nextptr;
1871 a != NULL;
1872 a = a->vda_nextptr)
1873 fprintf (f, "%s ",
1874 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1875 fprintf (f, "\n");
1876 }
1877 }
1878 }
1879
1880 if (elf_dynverref (abfd) != 0)
1881 {
1882 Elf_Internal_Verneed *t;
1883
1884 fprintf (f, _("\nVersion References:\n"));
1885 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1886 {
1887 Elf_Internal_Vernaux *a;
1888
1889 fprintf (f, _(" required from %s:\n"),
1890 t->vn_filename ? t->vn_filename : "<corrupt>");
1891 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1892 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1893 a->vna_flags, a->vna_other,
1894 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1895 }
1896 }
1897
1898 return TRUE;
1899
1900 error_return:
1901 if (dynbuf != NULL)
1902 free (dynbuf);
1903 return FALSE;
1904 }
1905
1906 /* Get version string. */
1907
1908 const char *
1909 _bfd_elf_get_symbol_version_string (bfd *abfd, asymbol *symbol,
1910 bfd_boolean *hidden)
1911 {
1912 const char *version_string = NULL;
1913 if (elf_dynversym (abfd) != 0
1914 && (elf_dynverdef (abfd) != 0 || elf_dynverref (abfd) != 0))
1915 {
1916 unsigned int vernum = ((elf_symbol_type *) symbol)->version;
1917
1918 *hidden = (vernum & VERSYM_HIDDEN) != 0;
1919 vernum &= VERSYM_VERSION;
1920
1921 if (vernum == 0)
1922 version_string = "";
1923 else if (vernum == 1
1924 && (vernum > elf_tdata (abfd)->cverdefs
1925 || (elf_tdata (abfd)->verdef[0].vd_flags
1926 == VER_FLG_BASE)))
1927 version_string = "Base";
1928 else if (vernum <= elf_tdata (abfd)->cverdefs)
1929 version_string =
1930 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1931 else
1932 {
1933 Elf_Internal_Verneed *t;
1934
1935 version_string = _("<corrupt>");
1936 for (t = elf_tdata (abfd)->verref;
1937 t != NULL;
1938 t = t->vn_nextref)
1939 {
1940 Elf_Internal_Vernaux *a;
1941
1942 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1943 {
1944 if (a->vna_other == vernum)
1945 {
1946 version_string = a->vna_nodename;
1947 break;
1948 }
1949 }
1950 }
1951 }
1952 }
1953 return version_string;
1954 }
1955
1956 /* Display ELF-specific fields of a symbol. */
1957
1958 void
1959 bfd_elf_print_symbol (bfd *abfd,
1960 void *filep,
1961 asymbol *symbol,
1962 bfd_print_symbol_type how)
1963 {
1964 FILE *file = (FILE *) filep;
1965 switch (how)
1966 {
1967 case bfd_print_symbol_name:
1968 fprintf (file, "%s", symbol->name);
1969 break;
1970 case bfd_print_symbol_more:
1971 fprintf (file, "elf ");
1972 bfd_fprintf_vma (abfd, file, symbol->value);
1973 fprintf (file, " %x", symbol->flags);
1974 break;
1975 case bfd_print_symbol_all:
1976 {
1977 const char *section_name;
1978 const char *name = NULL;
1979 const struct elf_backend_data *bed;
1980 unsigned char st_other;
1981 bfd_vma val;
1982 const char *version_string;
1983 bfd_boolean hidden;
1984
1985 section_name = symbol->section ? symbol->section->name : "(*none*)";
1986
1987 bed = get_elf_backend_data (abfd);
1988 if (bed->elf_backend_print_symbol_all)
1989 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1990
1991 if (name == NULL)
1992 {
1993 name = symbol->name;
1994 bfd_print_symbol_vandf (abfd, file, symbol);
1995 }
1996
1997 fprintf (file, " %s\t", section_name);
1998 /* Print the "other" value for a symbol. For common symbols,
1999 we've already printed the size; now print the alignment.
2000 For other symbols, we have no specified alignment, and
2001 we've printed the address; now print the size. */
2002 if (symbol->section && bfd_is_com_section (symbol->section))
2003 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
2004 else
2005 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
2006 bfd_fprintf_vma (abfd, file, val);
2007
2008 /* If we have version information, print it. */
2009 version_string = _bfd_elf_get_symbol_version_string (abfd,
2010 symbol,
2011 &hidden);
2012 if (version_string)
2013 {
2014 if (!hidden)
2015 fprintf (file, " %-11s", version_string);
2016 else
2017 {
2018 int i;
2019
2020 fprintf (file, " (%s)", version_string);
2021 for (i = 10 - strlen (version_string); i > 0; --i)
2022 putc (' ', file);
2023 }
2024 }
2025
2026 /* If the st_other field is not zero, print it. */
2027 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
2028
2029 switch (st_other)
2030 {
2031 case 0: break;
2032 case STV_INTERNAL: fprintf (file, " .internal"); break;
2033 case STV_HIDDEN: fprintf (file, " .hidden"); break;
2034 case STV_PROTECTED: fprintf (file, " .protected"); break;
2035 default:
2036 /* Some other non-defined flags are also present, so print
2037 everything hex. */
2038 fprintf (file, " 0x%02x", (unsigned int) st_other);
2039 }
2040
2041 fprintf (file, " %s", name);
2042 }
2043 break;
2044 }
2045 }
2046 \f
2047 /* ELF .o/exec file reading */
2048
2049 /* Create a new bfd section from an ELF section header. */
2050
2051 bfd_boolean
2052 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
2053 {
2054 Elf_Internal_Shdr *hdr;
2055 Elf_Internal_Ehdr *ehdr;
2056 const struct elf_backend_data *bed;
2057 const char *name;
2058 bfd_boolean ret = TRUE;
2059 static bfd_boolean * sections_being_created = NULL;
2060 static bfd * sections_being_created_abfd = NULL;
2061 static unsigned int nesting = 0;
2062
2063 if (shindex >= elf_numsections (abfd))
2064 return FALSE;
2065
2066 if (++ nesting > 3)
2067 {
2068 /* PR17512: A corrupt ELF binary might contain a recursive group of
2069 sections, with each the string indices pointing to the next in the
2070 loop. Detect this here, by refusing to load a section that we are
2071 already in the process of loading. We only trigger this test if
2072 we have nested at least three sections deep as normal ELF binaries
2073 can expect to recurse at least once.
2074
2075 FIXME: It would be better if this array was attached to the bfd,
2076 rather than being held in a static pointer. */
2077
2078 if (sections_being_created_abfd != abfd)
2079 sections_being_created = NULL;
2080 if (sections_being_created == NULL)
2081 {
2082 sections_being_created = (bfd_boolean *)
2083 bfd_zalloc2 (abfd, elf_numsections (abfd), sizeof (bfd_boolean));
2084 sections_being_created_abfd = abfd;
2085 }
2086 if (sections_being_created [shindex])
2087 {
2088 _bfd_error_handler
2089 (_("%pB: warning: loop in section dependencies detected"), abfd);
2090 return FALSE;
2091 }
2092 sections_being_created [shindex] = TRUE;
2093 }
2094
2095 hdr = elf_elfsections (abfd)[shindex];
2096 ehdr = elf_elfheader (abfd);
2097 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
2098 hdr->sh_name);
2099 if (name == NULL)
2100 goto fail;
2101
2102 bed = get_elf_backend_data (abfd);
2103 switch (hdr->sh_type)
2104 {
2105 case SHT_NULL:
2106 /* Inactive section. Throw it away. */
2107 goto success;
2108
2109 case SHT_PROGBITS: /* Normal section with contents. */
2110 case SHT_NOBITS: /* .bss section. */
2111 case SHT_HASH: /* .hash section. */
2112 case SHT_NOTE: /* .note section. */
2113 case SHT_INIT_ARRAY: /* .init_array section. */
2114 case SHT_FINI_ARRAY: /* .fini_array section. */
2115 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
2116 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
2117 case SHT_GNU_HASH: /* .gnu.hash section. */
2118 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2119 goto success;
2120
2121 case SHT_DYNAMIC: /* Dynamic linking information. */
2122 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2123 goto fail;
2124
2125 if (hdr->sh_link > elf_numsections (abfd))
2126 {
2127 /* PR 10478: Accept Solaris binaries with a sh_link
2128 field set to SHN_BEFORE or SHN_AFTER. */
2129 switch (bfd_get_arch (abfd))
2130 {
2131 case bfd_arch_i386:
2132 case bfd_arch_sparc:
2133 if (hdr->sh_link == (SHN_LORESERVE & 0xffff) /* SHN_BEFORE */
2134 || hdr->sh_link == ((SHN_LORESERVE + 1) & 0xffff) /* SHN_AFTER */)
2135 break;
2136 /* Otherwise fall through. */
2137 default:
2138 goto fail;
2139 }
2140 }
2141 else if (elf_elfsections (abfd)[hdr->sh_link] == NULL)
2142 goto fail;
2143 else if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
2144 {
2145 Elf_Internal_Shdr *dynsymhdr;
2146
2147 /* The shared libraries distributed with hpux11 have a bogus
2148 sh_link field for the ".dynamic" section. Find the
2149 string table for the ".dynsym" section instead. */
2150 if (elf_dynsymtab (abfd) != 0)
2151 {
2152 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
2153 hdr->sh_link = dynsymhdr->sh_link;
2154 }
2155 else
2156 {
2157 unsigned int i, num_sec;
2158
2159 num_sec = elf_numsections (abfd);
2160 for (i = 1; i < num_sec; i++)
2161 {
2162 dynsymhdr = elf_elfsections (abfd)[i];
2163 if (dynsymhdr->sh_type == SHT_DYNSYM)
2164 {
2165 hdr->sh_link = dynsymhdr->sh_link;
2166 break;
2167 }
2168 }
2169 }
2170 }
2171 goto success;
2172
2173 case SHT_SYMTAB: /* A symbol table. */
2174 if (elf_onesymtab (abfd) == shindex)
2175 goto success;
2176
2177 if (hdr->sh_entsize != bed->s->sizeof_sym)
2178 goto fail;
2179
2180 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
2181 {
2182 if (hdr->sh_size != 0)
2183 goto fail;
2184 /* Some assemblers erroneously set sh_info to one with a
2185 zero sh_size. ld sees this as a global symbol count
2186 of (unsigned) -1. Fix it here. */
2187 hdr->sh_info = 0;
2188 goto success;
2189 }
2190
2191 /* PR 18854: A binary might contain more than one symbol table.
2192 Unusual, but possible. Warn, but continue. */
2193 if (elf_onesymtab (abfd) != 0)
2194 {
2195 _bfd_error_handler
2196 /* xgettext:c-format */
2197 (_("%pB: warning: multiple symbol tables detected"
2198 " - ignoring the table in section %u"),
2199 abfd, shindex);
2200 goto success;
2201 }
2202 elf_onesymtab (abfd) = shindex;
2203 elf_symtab_hdr (abfd) = *hdr;
2204 elf_elfsections (abfd)[shindex] = hdr = & elf_symtab_hdr (abfd);
2205 abfd->flags |= HAS_SYMS;
2206
2207 /* Sometimes a shared object will map in the symbol table. If
2208 SHF_ALLOC is set, and this is a shared object, then we also
2209 treat this section as a BFD section. We can not base the
2210 decision purely on SHF_ALLOC, because that flag is sometimes
2211 set in a relocatable object file, which would confuse the
2212 linker. */
2213 if ((hdr->sh_flags & SHF_ALLOC) != 0
2214 && (abfd->flags & DYNAMIC) != 0
2215 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2216 shindex))
2217 goto fail;
2218
2219 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
2220 can't read symbols without that section loaded as well. It
2221 is most likely specified by the next section header. */
2222 {
2223 elf_section_list * entry;
2224 unsigned int i, num_sec;
2225
2226 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
2227 if (entry->hdr.sh_link == shindex)
2228 goto success;
2229
2230 num_sec = elf_numsections (abfd);
2231 for (i = shindex + 1; i < num_sec; i++)
2232 {
2233 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2234
2235 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
2236 && hdr2->sh_link == shindex)
2237 break;
2238 }
2239
2240 if (i == num_sec)
2241 for (i = 1; i < shindex; i++)
2242 {
2243 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2244
2245 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
2246 && hdr2->sh_link == shindex)
2247 break;
2248 }
2249
2250 if (i != shindex)
2251 ret = bfd_section_from_shdr (abfd, i);
2252 /* else FIXME: we have failed to find the symbol table - should we issue an error ? */
2253 goto success;
2254 }
2255
2256 case SHT_DYNSYM: /* A dynamic symbol table. */
2257 if (elf_dynsymtab (abfd) == shindex)
2258 goto success;
2259
2260 if (hdr->sh_entsize != bed->s->sizeof_sym)
2261 goto fail;
2262
2263 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
2264 {
2265 if (hdr->sh_size != 0)
2266 goto fail;
2267
2268 /* Some linkers erroneously set sh_info to one with a
2269 zero sh_size. ld sees this as a global symbol count
2270 of (unsigned) -1. Fix it here. */
2271 hdr->sh_info = 0;
2272 goto success;
2273 }
2274
2275 /* PR 18854: A binary might contain more than one dynamic symbol table.
2276 Unusual, but possible. Warn, but continue. */
2277 if (elf_dynsymtab (abfd) != 0)
2278 {
2279 _bfd_error_handler
2280 /* xgettext:c-format */
2281 (_("%pB: warning: multiple dynamic symbol tables detected"
2282 " - ignoring the table in section %u"),
2283 abfd, shindex);
2284 goto success;
2285 }
2286 elf_dynsymtab (abfd) = shindex;
2287 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
2288 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2289 abfd->flags |= HAS_SYMS;
2290
2291 /* Besides being a symbol table, we also treat this as a regular
2292 section, so that objcopy can handle it. */
2293 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2294 goto success;
2295
2296 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections. */
2297 {
2298 elf_section_list * entry;
2299
2300 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
2301 if (entry->ndx == shindex)
2302 goto success;
2303
2304 entry = bfd_alloc (abfd, sizeof (*entry));
2305 if (entry == NULL)
2306 goto fail;
2307 entry->ndx = shindex;
2308 entry->hdr = * hdr;
2309 entry->next = elf_symtab_shndx_list (abfd);
2310 elf_symtab_shndx_list (abfd) = entry;
2311 elf_elfsections (abfd)[shindex] = & entry->hdr;
2312 goto success;
2313 }
2314
2315 case SHT_STRTAB: /* A string table. */
2316 if (hdr->bfd_section != NULL)
2317 goto success;
2318
2319 if (ehdr->e_shstrndx == shindex)
2320 {
2321 elf_tdata (abfd)->shstrtab_hdr = *hdr;
2322 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
2323 goto success;
2324 }
2325
2326 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
2327 {
2328 symtab_strtab:
2329 elf_tdata (abfd)->strtab_hdr = *hdr;
2330 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
2331 goto success;
2332 }
2333
2334 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
2335 {
2336 dynsymtab_strtab:
2337 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
2338 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
2339 elf_elfsections (abfd)[shindex] = hdr;
2340 /* We also treat this as a regular section, so that objcopy
2341 can handle it. */
2342 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2343 shindex);
2344 goto success;
2345 }
2346
2347 /* If the string table isn't one of the above, then treat it as a
2348 regular section. We need to scan all the headers to be sure,
2349 just in case this strtab section appeared before the above. */
2350 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
2351 {
2352 unsigned int i, num_sec;
2353
2354 num_sec = elf_numsections (abfd);
2355 for (i = 1; i < num_sec; i++)
2356 {
2357 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2358 if (hdr2->sh_link == shindex)
2359 {
2360 /* Prevent endless recursion on broken objects. */
2361 if (i == shindex)
2362 goto fail;
2363 if (! bfd_section_from_shdr (abfd, i))
2364 goto fail;
2365 if (elf_onesymtab (abfd) == i)
2366 goto symtab_strtab;
2367 if (elf_dynsymtab (abfd) == i)
2368 goto dynsymtab_strtab;
2369 }
2370 }
2371 }
2372 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2373 goto success;
2374
2375 case SHT_REL:
2376 case SHT_RELA:
2377 /* *These* do a lot of work -- but build no sections! */
2378 {
2379 asection *target_sect;
2380 Elf_Internal_Shdr *hdr2, **p_hdr;
2381 unsigned int num_sec = elf_numsections (abfd);
2382 struct bfd_elf_section_data *esdt;
2383
2384 if (hdr->sh_entsize
2385 != (bfd_size_type) (hdr->sh_type == SHT_REL
2386 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
2387 goto fail;
2388
2389 /* Check for a bogus link to avoid crashing. */
2390 if (hdr->sh_link >= num_sec)
2391 {
2392 _bfd_error_handler
2393 /* xgettext:c-format */
2394 (_("%pB: invalid link %u for reloc section %s (index %u)"),
2395 abfd, hdr->sh_link, name, shindex);
2396 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2397 shindex);
2398 goto success;
2399 }
2400
2401 /* For some incomprehensible reason Oracle distributes
2402 libraries for Solaris in which some of the objects have
2403 bogus sh_link fields. It would be nice if we could just
2404 reject them, but, unfortunately, some people need to use
2405 them. We scan through the section headers; if we find only
2406 one suitable symbol table, we clobber the sh_link to point
2407 to it. I hope this doesn't break anything.
2408
2409 Don't do it on executable nor shared library. */
2410 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0
2411 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
2412 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
2413 {
2414 unsigned int scan;
2415 int found;
2416
2417 found = 0;
2418 for (scan = 1; scan < num_sec; scan++)
2419 {
2420 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
2421 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
2422 {
2423 if (found != 0)
2424 {
2425 found = 0;
2426 break;
2427 }
2428 found = scan;
2429 }
2430 }
2431 if (found != 0)
2432 hdr->sh_link = found;
2433 }
2434
2435 /* Get the symbol table. */
2436 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
2437 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
2438 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
2439 goto fail;
2440
2441 /* If this is an alloc section in an executable or shared
2442 library, or the reloc section does not use the main symbol
2443 table we don't treat it as a reloc section. BFD can't
2444 adequately represent such a section, so at least for now,
2445 we don't try. We just present it as a normal section. We
2446 also can't use it as a reloc section if it points to the
2447 null section, an invalid section, another reloc section, or
2448 its sh_link points to the null section. */
2449 if (((abfd->flags & (DYNAMIC | EXEC_P)) != 0
2450 && (hdr->sh_flags & SHF_ALLOC) != 0)
2451 || hdr->sh_link == SHN_UNDEF
2452 || hdr->sh_link != elf_onesymtab (abfd)
2453 || hdr->sh_info == SHN_UNDEF
2454 || hdr->sh_info >= num_sec
2455 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
2456 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
2457 {
2458 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2459 shindex);
2460 goto success;
2461 }
2462
2463 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
2464 goto fail;
2465
2466 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
2467 if (target_sect == NULL)
2468 goto fail;
2469
2470 esdt = elf_section_data (target_sect);
2471 if (hdr->sh_type == SHT_RELA)
2472 p_hdr = &esdt->rela.hdr;
2473 else
2474 p_hdr = &esdt->rel.hdr;
2475
2476 /* PR 17512: file: 0b4f81b7.
2477 Also see PR 24456, for a file which deliberately has two reloc
2478 sections. */
2479 if (*p_hdr != NULL)
2480 {
2481 _bfd_error_handler
2482 /* xgettext:c-format */
2483 (_("%pB: warning: multiple relocation sections for section %pA \
2484 found - ignoring all but the first"),
2485 abfd, target_sect);
2486 goto success;
2487 }
2488 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, sizeof (*hdr2));
2489 if (hdr2 == NULL)
2490 goto fail;
2491 *hdr2 = *hdr;
2492 *p_hdr = hdr2;
2493 elf_elfsections (abfd)[shindex] = hdr2;
2494 target_sect->reloc_count += (NUM_SHDR_ENTRIES (hdr)
2495 * bed->s->int_rels_per_ext_rel);
2496 target_sect->flags |= SEC_RELOC;
2497 target_sect->relocation = NULL;
2498 target_sect->rel_filepos = hdr->sh_offset;
2499 /* In the section to which the relocations apply, mark whether
2500 its relocations are of the REL or RELA variety. */
2501 if (hdr->sh_size != 0)
2502 {
2503 if (hdr->sh_type == SHT_RELA)
2504 target_sect->use_rela_p = 1;
2505 }
2506 abfd->flags |= HAS_RELOC;
2507 goto success;
2508 }
2509
2510 case SHT_GNU_verdef:
2511 elf_dynverdef (abfd) = shindex;
2512 elf_tdata (abfd)->dynverdef_hdr = *hdr;
2513 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2514 goto success;
2515
2516 case SHT_GNU_versym:
2517 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
2518 goto fail;
2519
2520 elf_dynversym (abfd) = shindex;
2521 elf_tdata (abfd)->dynversym_hdr = *hdr;
2522 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2523 goto success;
2524
2525 case SHT_GNU_verneed:
2526 elf_dynverref (abfd) = shindex;
2527 elf_tdata (abfd)->dynverref_hdr = *hdr;
2528 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2529 goto success;
2530
2531 case SHT_SHLIB:
2532 goto success;
2533
2534 case SHT_GROUP:
2535 if (! IS_VALID_GROUP_SECTION_HEADER (hdr, GRP_ENTRY_SIZE))
2536 goto fail;
2537
2538 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2539 goto fail;
2540
2541 goto success;
2542
2543 default:
2544 /* Possibly an attributes section. */
2545 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
2546 || hdr->sh_type == bed->obj_attrs_section_type)
2547 {
2548 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2549 goto fail;
2550 _bfd_elf_parse_attributes (abfd, hdr);
2551 goto success;
2552 }
2553
2554 /* Check for any processor-specific section types. */
2555 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
2556 goto success;
2557
2558 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
2559 {
2560 if ((hdr->sh_flags & SHF_ALLOC) != 0)
2561 /* FIXME: How to properly handle allocated section reserved
2562 for applications? */
2563 _bfd_error_handler
2564 /* xgettext:c-format */
2565 (_("%pB: unknown type [%#x] section `%s'"),
2566 abfd, hdr->sh_type, name);
2567 else
2568 {
2569 /* Allow sections reserved for applications. */
2570 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2571 shindex);
2572 goto success;
2573 }
2574 }
2575 else if (hdr->sh_type >= SHT_LOPROC
2576 && hdr->sh_type <= SHT_HIPROC)
2577 /* FIXME: We should handle this section. */
2578 _bfd_error_handler
2579 /* xgettext:c-format */
2580 (_("%pB: unknown type [%#x] section `%s'"),
2581 abfd, hdr->sh_type, name);
2582 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
2583 {
2584 /* Unrecognised OS-specific sections. */
2585 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
2586 /* SHF_OS_NONCONFORMING indicates that special knowledge is
2587 required to correctly process the section and the file should
2588 be rejected with an error message. */
2589 _bfd_error_handler
2590 /* xgettext:c-format */
2591 (_("%pB: unknown type [%#x] section `%s'"),
2592 abfd, hdr->sh_type, name);
2593 else
2594 {
2595 /* Otherwise it should be processed. */
2596 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2597 goto success;
2598 }
2599 }
2600 else
2601 /* FIXME: We should handle this section. */
2602 _bfd_error_handler
2603 /* xgettext:c-format */
2604 (_("%pB: unknown type [%#x] section `%s'"),
2605 abfd, hdr->sh_type, name);
2606
2607 goto fail;
2608 }
2609
2610 fail:
2611 ret = FALSE;
2612 success:
2613 if (sections_being_created && sections_being_created_abfd == abfd)
2614 sections_being_created [shindex] = FALSE;
2615 if (-- nesting == 0)
2616 {
2617 sections_being_created = NULL;
2618 sections_being_created_abfd = abfd;
2619 }
2620 return ret;
2621 }
2622
2623 /* Return the local symbol specified by ABFD, R_SYMNDX. */
2624
2625 Elf_Internal_Sym *
2626 bfd_sym_from_r_symndx (struct sym_cache *cache,
2627 bfd *abfd,
2628 unsigned long r_symndx)
2629 {
2630 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2631
2632 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
2633 {
2634 Elf_Internal_Shdr *symtab_hdr;
2635 unsigned char esym[sizeof (Elf64_External_Sym)];
2636 Elf_External_Sym_Shndx eshndx;
2637
2638 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2639 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2640 &cache->sym[ent], esym, &eshndx) == NULL)
2641 return NULL;
2642
2643 if (cache->abfd != abfd)
2644 {
2645 memset (cache->indx, -1, sizeof (cache->indx));
2646 cache->abfd = abfd;
2647 }
2648 cache->indx[ent] = r_symndx;
2649 }
2650
2651 return &cache->sym[ent];
2652 }
2653
2654 /* Given an ELF section number, retrieve the corresponding BFD
2655 section. */
2656
2657 asection *
2658 bfd_section_from_elf_index (bfd *abfd, unsigned int sec_index)
2659 {
2660 if (sec_index >= elf_numsections (abfd))
2661 return NULL;
2662 return elf_elfsections (abfd)[sec_index]->bfd_section;
2663 }
2664
2665 static const struct bfd_elf_special_section special_sections_b[] =
2666 {
2667 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2668 { NULL, 0, 0, 0, 0 }
2669 };
2670
2671 static const struct bfd_elf_special_section special_sections_c[] =
2672 {
2673 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2674 { STRING_COMMA_LEN (".ctf"), 0, SHT_PROGBITS, 0 },
2675 { NULL, 0, 0, 0, 0 }
2676 };
2677
2678 static const struct bfd_elf_special_section special_sections_d[] =
2679 {
2680 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2681 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2682 /* There are more DWARF sections than these, but they needn't be added here
2683 unless you have to cope with broken compilers that don't emit section
2684 attributes or you want to help the user writing assembler. */
2685 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2686 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2687 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2688 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2689 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2690 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2691 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2692 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2693 { NULL, 0, 0, 0, 0 }
2694 };
2695
2696 static const struct bfd_elf_special_section special_sections_f[] =
2697 {
2698 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2699 { STRING_COMMA_LEN (".fini_array"), -2, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2700 { NULL, 0 , 0, 0, 0 }
2701 };
2702
2703 static const struct bfd_elf_special_section special_sections_g[] =
2704 {
2705 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2706 { STRING_COMMA_LEN (".gnu.lto_"), -1, SHT_PROGBITS, SHF_EXCLUDE },
2707 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2708 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2709 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2710 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2711 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2712 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2713 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2714 { NULL, 0, 0, 0, 0 }
2715 };
2716
2717 static const struct bfd_elf_special_section special_sections_h[] =
2718 {
2719 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2720 { NULL, 0, 0, 0, 0 }
2721 };
2722
2723 static const struct bfd_elf_special_section special_sections_i[] =
2724 {
2725 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2726 { STRING_COMMA_LEN (".init_array"), -2, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2727 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2728 { NULL, 0, 0, 0, 0 }
2729 };
2730
2731 static const struct bfd_elf_special_section special_sections_l[] =
2732 {
2733 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2734 { NULL, 0, 0, 0, 0 }
2735 };
2736
2737 static const struct bfd_elf_special_section special_sections_n[] =
2738 {
2739 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2740 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2741 { NULL, 0, 0, 0, 0 }
2742 };
2743
2744 static const struct bfd_elf_special_section special_sections_p[] =
2745 {
2746 { STRING_COMMA_LEN (".preinit_array"), -2, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2747 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2748 { NULL, 0, 0, 0, 0 }
2749 };
2750
2751 static const struct bfd_elf_special_section special_sections_r[] =
2752 {
2753 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2754 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2755 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2756 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2757 { NULL, 0, 0, 0, 0 }
2758 };
2759
2760 static const struct bfd_elf_special_section special_sections_s[] =
2761 {
2762 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2763 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2764 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2765 /* See struct bfd_elf_special_section declaration for the semantics of
2766 this special case where .prefix_length != strlen (.prefix). */
2767 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2768 { NULL, 0, 0, 0, 0 }
2769 };
2770
2771 static const struct bfd_elf_special_section special_sections_t[] =
2772 {
2773 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2774 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2775 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2776 { NULL, 0, 0, 0, 0 }
2777 };
2778
2779 static const struct bfd_elf_special_section special_sections_z[] =
2780 {
2781 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 },
2782 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 },
2783 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 },
2784 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 },
2785 { NULL, 0, 0, 0, 0 }
2786 };
2787
2788 static const struct bfd_elf_special_section * const special_sections[] =
2789 {
2790 special_sections_b, /* 'b' */
2791 special_sections_c, /* 'c' */
2792 special_sections_d, /* 'd' */
2793 NULL, /* 'e' */
2794 special_sections_f, /* 'f' */
2795 special_sections_g, /* 'g' */
2796 special_sections_h, /* 'h' */
2797 special_sections_i, /* 'i' */
2798 NULL, /* 'j' */
2799 NULL, /* 'k' */
2800 special_sections_l, /* 'l' */
2801 NULL, /* 'm' */
2802 special_sections_n, /* 'n' */
2803 NULL, /* 'o' */
2804 special_sections_p, /* 'p' */
2805 NULL, /* 'q' */
2806 special_sections_r, /* 'r' */
2807 special_sections_s, /* 's' */
2808 special_sections_t, /* 't' */
2809 NULL, /* 'u' */
2810 NULL, /* 'v' */
2811 NULL, /* 'w' */
2812 NULL, /* 'x' */
2813 NULL, /* 'y' */
2814 special_sections_z /* 'z' */
2815 };
2816
2817 const struct bfd_elf_special_section *
2818 _bfd_elf_get_special_section (const char *name,
2819 const struct bfd_elf_special_section *spec,
2820 unsigned int rela)
2821 {
2822 int i;
2823 int len;
2824
2825 len = strlen (name);
2826
2827 for (i = 0; spec[i].prefix != NULL; i++)
2828 {
2829 int suffix_len;
2830 int prefix_len = spec[i].prefix_length;
2831
2832 if (len < prefix_len)
2833 continue;
2834 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2835 continue;
2836
2837 suffix_len = spec[i].suffix_length;
2838 if (suffix_len <= 0)
2839 {
2840 if (name[prefix_len] != 0)
2841 {
2842 if (suffix_len == 0)
2843 continue;
2844 if (name[prefix_len] != '.'
2845 && (suffix_len == -2
2846 || (rela && spec[i].type == SHT_REL)))
2847 continue;
2848 }
2849 }
2850 else
2851 {
2852 if (len < prefix_len + suffix_len)
2853 continue;
2854 if (memcmp (name + len - suffix_len,
2855 spec[i].prefix + prefix_len,
2856 suffix_len) != 0)
2857 continue;
2858 }
2859 return &spec[i];
2860 }
2861
2862 return NULL;
2863 }
2864
2865 const struct bfd_elf_special_section *
2866 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2867 {
2868 int i;
2869 const struct bfd_elf_special_section *spec;
2870 const struct elf_backend_data *bed;
2871
2872 /* See if this is one of the special sections. */
2873 if (sec->name == NULL)
2874 return NULL;
2875
2876 bed = get_elf_backend_data (abfd);
2877 spec = bed->special_sections;
2878 if (spec)
2879 {
2880 spec = _bfd_elf_get_special_section (sec->name,
2881 bed->special_sections,
2882 sec->use_rela_p);
2883 if (spec != NULL)
2884 return spec;
2885 }
2886
2887 if (sec->name[0] != '.')
2888 return NULL;
2889
2890 i = sec->name[1] - 'b';
2891 if (i < 0 || i > 'z' - 'b')
2892 return NULL;
2893
2894 spec = special_sections[i];
2895
2896 if (spec == NULL)
2897 return NULL;
2898
2899 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2900 }
2901
2902 bfd_boolean
2903 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2904 {
2905 struct bfd_elf_section_data *sdata;
2906 const struct elf_backend_data *bed;
2907 const struct bfd_elf_special_section *ssect;
2908
2909 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2910 if (sdata == NULL)
2911 {
2912 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd,
2913 sizeof (*sdata));
2914 if (sdata == NULL)
2915 return FALSE;
2916 sec->used_by_bfd = sdata;
2917 }
2918
2919 /* Indicate whether or not this section should use RELA relocations. */
2920 bed = get_elf_backend_data (abfd);
2921 sec->use_rela_p = bed->default_use_rela_p;
2922
2923 /* When we read a file, we don't need to set ELF section type and
2924 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2925 anyway. We will set ELF section type and flags for all linker
2926 created sections. If user specifies BFD section flags, we will
2927 set ELF section type and flags based on BFD section flags in
2928 elf_fake_sections. Special handling for .init_array/.fini_array
2929 output sections since they may contain .ctors/.dtors input
2930 sections. We don't want _bfd_elf_init_private_section_data to
2931 copy ELF section type from .ctors/.dtors input sections. */
2932 if (abfd->direction != read_direction
2933 || (sec->flags & SEC_LINKER_CREATED) != 0)
2934 {
2935 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2936 if (ssect != NULL
2937 && (!sec->flags
2938 || (sec->flags & SEC_LINKER_CREATED) != 0
2939 || ssect->type == SHT_INIT_ARRAY
2940 || ssect->type == SHT_FINI_ARRAY))
2941 {
2942 elf_section_type (sec) = ssect->type;
2943 elf_section_flags (sec) = ssect->attr;
2944 }
2945 }
2946
2947 return _bfd_generic_new_section_hook (abfd, sec);
2948 }
2949
2950 /* Create a new bfd section from an ELF program header.
2951
2952 Since program segments have no names, we generate a synthetic name
2953 of the form segment<NUM>, where NUM is generally the index in the
2954 program header table. For segments that are split (see below) we
2955 generate the names segment<NUM>a and segment<NUM>b.
2956
2957 Note that some program segments may have a file size that is different than
2958 (less than) the memory size. All this means is that at execution the
2959 system must allocate the amount of memory specified by the memory size,
2960 but only initialize it with the first "file size" bytes read from the
2961 file. This would occur for example, with program segments consisting
2962 of combined data+bss.
2963
2964 To handle the above situation, this routine generates TWO bfd sections
2965 for the single program segment. The first has the length specified by
2966 the file size of the segment, and the second has the length specified
2967 by the difference between the two sizes. In effect, the segment is split
2968 into its initialized and uninitialized parts.
2969
2970 */
2971
2972 bfd_boolean
2973 _bfd_elf_make_section_from_phdr (bfd *abfd,
2974 Elf_Internal_Phdr *hdr,
2975 int hdr_index,
2976 const char *type_name)
2977 {
2978 asection *newsect;
2979 char *name;
2980 char namebuf[64];
2981 size_t len;
2982 int split;
2983
2984 split = ((hdr->p_memsz > 0)
2985 && (hdr->p_filesz > 0)
2986 && (hdr->p_memsz > hdr->p_filesz));
2987
2988 if (hdr->p_filesz > 0)
2989 {
2990 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "a" : "");
2991 len = strlen (namebuf) + 1;
2992 name = (char *) bfd_alloc (abfd, len);
2993 if (!name)
2994 return FALSE;
2995 memcpy (name, namebuf, len);
2996 newsect = bfd_make_section (abfd, name);
2997 if (newsect == NULL)
2998 return FALSE;
2999 newsect->vma = hdr->p_vaddr;
3000 newsect->lma = hdr->p_paddr;
3001 newsect->size = hdr->p_filesz;
3002 newsect->filepos = hdr->p_offset;
3003 newsect->flags |= SEC_HAS_CONTENTS;
3004 newsect->alignment_power = bfd_log2 (hdr->p_align);
3005 if (hdr->p_type == PT_LOAD)
3006 {
3007 newsect->flags |= SEC_ALLOC;
3008 newsect->flags |= SEC_LOAD;
3009 if (hdr->p_flags & PF_X)
3010 {
3011 /* FIXME: all we known is that it has execute PERMISSION,
3012 may be data. */
3013 newsect->flags |= SEC_CODE;
3014 }
3015 }
3016 if (!(hdr->p_flags & PF_W))
3017 {
3018 newsect->flags |= SEC_READONLY;
3019 }
3020 }
3021
3022 if (hdr->p_memsz > hdr->p_filesz)
3023 {
3024 bfd_vma align;
3025
3026 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "b" : "");
3027 len = strlen (namebuf) + 1;
3028 name = (char *) bfd_alloc (abfd, len);
3029 if (!name)
3030 return FALSE;
3031 memcpy (name, namebuf, len);
3032 newsect = bfd_make_section (abfd, name);
3033 if (newsect == NULL)
3034 return FALSE;
3035 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
3036 newsect->lma = hdr->p_paddr + hdr->p_filesz;
3037 newsect->size = hdr->p_memsz - hdr->p_filesz;
3038 newsect->filepos = hdr->p_offset + hdr->p_filesz;
3039 align = newsect->vma & -newsect->vma;
3040 if (align == 0 || align > hdr->p_align)
3041 align = hdr->p_align;
3042 newsect->alignment_power = bfd_log2 (align);
3043 if (hdr->p_type == PT_LOAD)
3044 {
3045 /* Hack for gdb. Segments that have not been modified do
3046 not have their contents written to a core file, on the
3047 assumption that a debugger can find the contents in the
3048 executable. We flag this case by setting the fake
3049 section size to zero. Note that "real" bss sections will
3050 always have their contents dumped to the core file. */
3051 if (bfd_get_format (abfd) == bfd_core)
3052 newsect->size = 0;
3053 newsect->flags |= SEC_ALLOC;
3054 if (hdr->p_flags & PF_X)
3055 newsect->flags |= SEC_CODE;
3056 }
3057 if (!(hdr->p_flags & PF_W))
3058 newsect->flags |= SEC_READONLY;
3059 }
3060
3061 return TRUE;
3062 }
3063
3064 bfd_boolean
3065 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int hdr_index)
3066 {
3067 const struct elf_backend_data *bed;
3068
3069 switch (hdr->p_type)
3070 {
3071 case PT_NULL:
3072 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "null");
3073
3074 case PT_LOAD:
3075 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "load");
3076
3077 case PT_DYNAMIC:
3078 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "dynamic");
3079
3080 case PT_INTERP:
3081 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "interp");
3082
3083 case PT_NOTE:
3084 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "note"))
3085 return FALSE;
3086 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz,
3087 hdr->p_align))
3088 return FALSE;
3089 return TRUE;
3090
3091 case PT_SHLIB:
3092 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "shlib");
3093
3094 case PT_PHDR:
3095 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "phdr");
3096
3097 case PT_GNU_EH_FRAME:
3098 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index,
3099 "eh_frame_hdr");
3100
3101 case PT_GNU_STACK:
3102 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "stack");
3103
3104 case PT_GNU_RELRO:
3105 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "relro");
3106
3107 default:
3108 /* Check for any processor-specific program segment types. */
3109 bed = get_elf_backend_data (abfd);
3110 return bed->elf_backend_section_from_phdr (abfd, hdr, hdr_index, "proc");
3111 }
3112 }
3113
3114 /* Return the REL_HDR for SEC, assuming there is only a single one, either
3115 REL or RELA. */
3116
3117 Elf_Internal_Shdr *
3118 _bfd_elf_single_rel_hdr (asection *sec)
3119 {
3120 if (elf_section_data (sec)->rel.hdr)
3121 {
3122 BFD_ASSERT (elf_section_data (sec)->rela.hdr == NULL);
3123 return elf_section_data (sec)->rel.hdr;
3124 }
3125 else
3126 return elf_section_data (sec)->rela.hdr;
3127 }
3128
3129 static bfd_boolean
3130 _bfd_elf_set_reloc_sh_name (bfd *abfd,
3131 Elf_Internal_Shdr *rel_hdr,
3132 const char *sec_name,
3133 bfd_boolean use_rela_p)
3134 {
3135 char *name = (char *) bfd_alloc (abfd,
3136 sizeof ".rela" + strlen (sec_name));
3137 if (name == NULL)
3138 return FALSE;
3139
3140 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", sec_name);
3141 rel_hdr->sh_name =
3142 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
3143 FALSE);
3144 if (rel_hdr->sh_name == (unsigned int) -1)
3145 return FALSE;
3146
3147 return TRUE;
3148 }
3149
3150 /* Allocate and initialize a section-header for a new reloc section,
3151 containing relocations against ASECT. It is stored in RELDATA. If
3152 USE_RELA_P is TRUE, we use RELA relocations; otherwise, we use REL
3153 relocations. */
3154
3155 static bfd_boolean
3156 _bfd_elf_init_reloc_shdr (bfd *abfd,
3157 struct bfd_elf_section_reloc_data *reldata,
3158 const char *sec_name,
3159 bfd_boolean use_rela_p,
3160 bfd_boolean delay_st_name_p)
3161 {
3162 Elf_Internal_Shdr *rel_hdr;
3163 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3164
3165 BFD_ASSERT (reldata->hdr == NULL);
3166 rel_hdr = bfd_zalloc (abfd, sizeof (*rel_hdr));
3167 reldata->hdr = rel_hdr;
3168
3169 if (delay_st_name_p)
3170 rel_hdr->sh_name = (unsigned int) -1;
3171 else if (!_bfd_elf_set_reloc_sh_name (abfd, rel_hdr, sec_name,
3172 use_rela_p))
3173 return FALSE;
3174 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
3175 rel_hdr->sh_entsize = (use_rela_p
3176 ? bed->s->sizeof_rela
3177 : bed->s->sizeof_rel);
3178 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
3179 rel_hdr->sh_flags = 0;
3180 rel_hdr->sh_addr = 0;
3181 rel_hdr->sh_size = 0;
3182 rel_hdr->sh_offset = 0;
3183
3184 return TRUE;
3185 }
3186
3187 /* Return the default section type based on the passed in section flags. */
3188
3189 int
3190 bfd_elf_get_default_section_type (flagword flags)
3191 {
3192 if ((flags & (SEC_ALLOC | SEC_IS_COMMON)) != 0
3193 && (flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
3194 return SHT_NOBITS;
3195 return SHT_PROGBITS;
3196 }
3197
3198 struct fake_section_arg
3199 {
3200 struct bfd_link_info *link_info;
3201 bfd_boolean failed;
3202 };
3203
3204 /* Set up an ELF internal section header for a section. */
3205
3206 static void
3207 elf_fake_sections (bfd *abfd, asection *asect, void *fsarg)
3208 {
3209 struct fake_section_arg *arg = (struct fake_section_arg *)fsarg;
3210 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3211 struct bfd_elf_section_data *esd = elf_section_data (asect);
3212 Elf_Internal_Shdr *this_hdr;
3213 unsigned int sh_type;
3214 const char *name = asect->name;
3215 bfd_boolean delay_st_name_p = FALSE;
3216
3217 if (arg->failed)
3218 {
3219 /* We already failed; just get out of the bfd_map_over_sections
3220 loop. */
3221 return;
3222 }
3223
3224 this_hdr = &esd->this_hdr;
3225
3226 if (arg->link_info)
3227 {
3228 /* ld: compress DWARF debug sections with names: .debug_*. */
3229 if ((arg->link_info->compress_debug & COMPRESS_DEBUG)
3230 && (asect->flags & SEC_DEBUGGING)
3231 && name[1] == 'd'
3232 && name[6] == '_')
3233 {
3234 /* Set SEC_ELF_COMPRESS to indicate this section should be
3235 compressed. */
3236 asect->flags |= SEC_ELF_COMPRESS;
3237
3238 /* If this section will be compressed, delay adding section
3239 name to section name section after it is compressed in
3240 _bfd_elf_assign_file_positions_for_non_load. */
3241 delay_st_name_p = TRUE;
3242 }
3243 }
3244 else if ((asect->flags & SEC_ELF_RENAME))
3245 {
3246 /* objcopy: rename output DWARF debug section. */
3247 if ((abfd->flags & (BFD_DECOMPRESS | BFD_COMPRESS_GABI)))
3248 {
3249 /* When we decompress or compress with SHF_COMPRESSED,
3250 convert section name from .zdebug_* to .debug_* if
3251 needed. */
3252 if (name[1] == 'z')
3253 {
3254 char *new_name = convert_zdebug_to_debug (abfd, name);
3255 if (new_name == NULL)
3256 {
3257 arg->failed = TRUE;
3258 return;
3259 }
3260 name = new_name;
3261 }
3262 }
3263 else if (asect->compress_status == COMPRESS_SECTION_DONE)
3264 {
3265 /* PR binutils/18087: Compression does not always make a
3266 section smaller. So only rename the section when
3267 compression has actually taken place. If input section
3268 name is .zdebug_*, we should never compress it again. */
3269 char *new_name = convert_debug_to_zdebug (abfd, name);
3270 if (new_name == NULL)
3271 {
3272 arg->failed = TRUE;
3273 return;
3274 }
3275 BFD_ASSERT (name[1] != 'z');
3276 name = new_name;
3277 }
3278 }
3279
3280 if (delay_st_name_p)
3281 this_hdr->sh_name = (unsigned int) -1;
3282 else
3283 {
3284 this_hdr->sh_name
3285 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3286 name, FALSE);
3287 if (this_hdr->sh_name == (unsigned int) -1)
3288 {
3289 arg->failed = TRUE;
3290 return;
3291 }
3292 }
3293
3294 /* Don't clear sh_flags. Assembler may set additional bits. */
3295
3296 if ((asect->flags & SEC_ALLOC) != 0
3297 || asect->user_set_vma)
3298 this_hdr->sh_addr = asect->vma;
3299 else
3300 this_hdr->sh_addr = 0;
3301
3302 this_hdr->sh_offset = 0;
3303 this_hdr->sh_size = asect->size;
3304 this_hdr->sh_link = 0;
3305 /* PR 17512: file: 0eb809fe, 8b0535ee. */
3306 if (asect->alignment_power >= (sizeof (bfd_vma) * 8) - 1)
3307 {
3308 _bfd_error_handler
3309 /* xgettext:c-format */
3310 (_("%pB: error: alignment power %d of section `%pA' is too big"),
3311 abfd, asect->alignment_power, asect);
3312 arg->failed = TRUE;
3313 return;
3314 }
3315 this_hdr->sh_addralign = (bfd_vma) 1 << asect->alignment_power;
3316 /* The sh_entsize and sh_info fields may have been set already by
3317 copy_private_section_data. */
3318
3319 this_hdr->bfd_section = asect;
3320 this_hdr->contents = NULL;
3321
3322 /* If the section type is unspecified, we set it based on
3323 asect->flags. */
3324 if ((asect->flags & SEC_GROUP) != 0)
3325 sh_type = SHT_GROUP;
3326 else
3327 sh_type = bfd_elf_get_default_section_type (asect->flags);
3328
3329 if (this_hdr->sh_type == SHT_NULL)
3330 this_hdr->sh_type = sh_type;
3331 else if (this_hdr->sh_type == SHT_NOBITS
3332 && sh_type == SHT_PROGBITS
3333 && (asect->flags & SEC_ALLOC) != 0)
3334 {
3335 /* Warn if we are changing a NOBITS section to PROGBITS, but
3336 allow the link to proceed. This can happen when users link
3337 non-bss input sections to bss output sections, or emit data
3338 to a bss output section via a linker script. */
3339 _bfd_error_handler
3340 (_("warning: section `%pA' type changed to PROGBITS"), asect);
3341 this_hdr->sh_type = sh_type;
3342 }
3343
3344 switch (this_hdr->sh_type)
3345 {
3346 default:
3347 break;
3348
3349 case SHT_STRTAB:
3350 case SHT_NOTE:
3351 case SHT_NOBITS:
3352 case SHT_PROGBITS:
3353 break;
3354
3355 case SHT_INIT_ARRAY:
3356 case SHT_FINI_ARRAY:
3357 case SHT_PREINIT_ARRAY:
3358 this_hdr->sh_entsize = bed->s->arch_size / 8;
3359 break;
3360
3361 case SHT_HASH:
3362 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
3363 break;
3364
3365 case SHT_DYNSYM:
3366 this_hdr->sh_entsize = bed->s->sizeof_sym;
3367 break;
3368
3369 case SHT_DYNAMIC:
3370 this_hdr->sh_entsize = bed->s->sizeof_dyn;
3371 break;
3372
3373 case SHT_RELA:
3374 if (get_elf_backend_data (abfd)->may_use_rela_p)
3375 this_hdr->sh_entsize = bed->s->sizeof_rela;
3376 break;
3377
3378 case SHT_REL:
3379 if (get_elf_backend_data (abfd)->may_use_rel_p)
3380 this_hdr->sh_entsize = bed->s->sizeof_rel;
3381 break;
3382
3383 case SHT_GNU_versym:
3384 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
3385 break;
3386
3387 case SHT_GNU_verdef:
3388 this_hdr->sh_entsize = 0;
3389 /* objcopy or strip will copy over sh_info, but may not set
3390 cverdefs. The linker will set cverdefs, but sh_info will be
3391 zero. */
3392 if (this_hdr->sh_info == 0)
3393 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
3394 else
3395 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
3396 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
3397 break;
3398
3399 case SHT_GNU_verneed:
3400 this_hdr->sh_entsize = 0;
3401 /* objcopy or strip will copy over sh_info, but may not set
3402 cverrefs. The linker will set cverrefs, but sh_info will be
3403 zero. */
3404 if (this_hdr->sh_info == 0)
3405 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
3406 else
3407 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
3408 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
3409 break;
3410
3411 case SHT_GROUP:
3412 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
3413 break;
3414
3415 case SHT_GNU_HASH:
3416 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
3417 break;
3418 }
3419
3420 if ((asect->flags & SEC_ALLOC) != 0)
3421 this_hdr->sh_flags |= SHF_ALLOC;
3422 if ((asect->flags & SEC_READONLY) == 0)
3423 this_hdr->sh_flags |= SHF_WRITE;
3424 if ((asect->flags & SEC_CODE) != 0)
3425 this_hdr->sh_flags |= SHF_EXECINSTR;
3426 if ((asect->flags & SEC_MERGE) != 0)
3427 {
3428 this_hdr->sh_flags |= SHF_MERGE;
3429 this_hdr->sh_entsize = asect->entsize;
3430 }
3431 if ((asect->flags & SEC_STRINGS) != 0)
3432 this_hdr->sh_flags |= SHF_STRINGS;
3433 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
3434 this_hdr->sh_flags |= SHF_GROUP;
3435 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
3436 {
3437 this_hdr->sh_flags |= SHF_TLS;
3438 if (asect->size == 0
3439 && (asect->flags & SEC_HAS_CONTENTS) == 0)
3440 {
3441 struct bfd_link_order *o = asect->map_tail.link_order;
3442
3443 this_hdr->sh_size = 0;
3444 if (o != NULL)
3445 {
3446 this_hdr->sh_size = o->offset + o->size;
3447 if (this_hdr->sh_size != 0)
3448 this_hdr->sh_type = SHT_NOBITS;
3449 }
3450 }
3451 }
3452 if ((asect->flags & (SEC_GROUP | SEC_EXCLUDE)) == SEC_EXCLUDE)
3453 this_hdr->sh_flags |= SHF_EXCLUDE;
3454
3455 /* If the section has relocs, set up a section header for the
3456 SHT_REL[A] section. If two relocation sections are required for
3457 this section, it is up to the processor-specific back-end to
3458 create the other. */
3459 if ((asect->flags & SEC_RELOC) != 0)
3460 {
3461 /* When doing a relocatable link, create both REL and RELA sections if
3462 needed. */
3463 if (arg->link_info
3464 /* Do the normal setup if we wouldn't create any sections here. */
3465 && esd->rel.count + esd->rela.count > 0
3466 && (bfd_link_relocatable (arg->link_info)
3467 || arg->link_info->emitrelocations))
3468 {
3469 if (esd->rel.count && esd->rel.hdr == NULL
3470 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rel, name,
3471 FALSE, delay_st_name_p))
3472 {
3473 arg->failed = TRUE;
3474 return;
3475 }
3476 if (esd->rela.count && esd->rela.hdr == NULL
3477 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rela, name,
3478 TRUE, delay_st_name_p))
3479 {
3480 arg->failed = TRUE;
3481 return;
3482 }
3483 }
3484 else if (!_bfd_elf_init_reloc_shdr (abfd,
3485 (asect->use_rela_p
3486 ? &esd->rela : &esd->rel),
3487 name,
3488 asect->use_rela_p,
3489 delay_st_name_p))
3490 {
3491 arg->failed = TRUE;
3492 return;
3493 }
3494 }
3495
3496 /* Check for processor-specific section types. */
3497 sh_type = this_hdr->sh_type;
3498 if (bed->elf_backend_fake_sections
3499 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
3500 {
3501 arg->failed = TRUE;
3502 return;
3503 }
3504
3505 if (sh_type == SHT_NOBITS && asect->size != 0)
3506 {
3507 /* Don't change the header type from NOBITS if we are being
3508 called for objcopy --only-keep-debug. */
3509 this_hdr->sh_type = sh_type;
3510 }
3511 }
3512
3513 /* Fill in the contents of a SHT_GROUP section. Called from
3514 _bfd_elf_compute_section_file_positions for gas, objcopy, and
3515 when ELF targets use the generic linker, ld. Called for ld -r
3516 from bfd_elf_final_link. */
3517
3518 void
3519 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
3520 {
3521 bfd_boolean *failedptr = (bfd_boolean *) failedptrarg;
3522 asection *elt, *first;
3523 unsigned char *loc;
3524 bfd_boolean gas;
3525
3526 /* Ignore linker created group section. See elfNN_ia64_object_p in
3527 elfxx-ia64.c. */
3528 if ((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP
3529 || sec->size == 0
3530 || *failedptr)
3531 return;
3532
3533 if (elf_section_data (sec)->this_hdr.sh_info == 0)
3534 {
3535 unsigned long symindx = 0;
3536
3537 /* elf_group_id will have been set up by objcopy and the
3538 generic linker. */
3539 if (elf_group_id (sec) != NULL)
3540 symindx = elf_group_id (sec)->udata.i;
3541
3542 if (symindx == 0)
3543 {
3544 /* If called from the assembler, swap_out_syms will have set up
3545 elf_section_syms. */
3546 BFD_ASSERT (elf_section_syms (abfd) != NULL);
3547 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
3548 }
3549 elf_section_data (sec)->this_hdr.sh_info = symindx;
3550 }
3551 else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2)
3552 {
3553 /* The ELF backend linker sets sh_info to -2 when the group
3554 signature symbol is global, and thus the index can't be
3555 set until all local symbols are output. */
3556 asection *igroup;
3557 struct bfd_elf_section_data *sec_data;
3558 unsigned long symndx;
3559 unsigned long extsymoff;
3560 struct elf_link_hash_entry *h;
3561
3562 /* The point of this little dance to the first SHF_GROUP section
3563 then back to the SHT_GROUP section is that this gets us to
3564 the SHT_GROUP in the input object. */
3565 igroup = elf_sec_group (elf_next_in_group (sec));
3566 sec_data = elf_section_data (igroup);
3567 symndx = sec_data->this_hdr.sh_info;
3568 extsymoff = 0;
3569 if (!elf_bad_symtab (igroup->owner))
3570 {
3571 Elf_Internal_Shdr *symtab_hdr;
3572
3573 symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr;
3574 extsymoff = symtab_hdr->sh_info;
3575 }
3576 h = elf_sym_hashes (igroup->owner)[symndx - extsymoff];
3577 while (h->root.type == bfd_link_hash_indirect
3578 || h->root.type == bfd_link_hash_warning)
3579 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3580
3581 elf_section_data (sec)->this_hdr.sh_info = h->indx;
3582 }
3583
3584 /* The contents won't be allocated for "ld -r" or objcopy. */
3585 gas = TRUE;
3586 if (sec->contents == NULL)
3587 {
3588 gas = FALSE;
3589 sec->contents = (unsigned char *) bfd_alloc (abfd, sec->size);
3590
3591 /* Arrange for the section to be written out. */
3592 elf_section_data (sec)->this_hdr.contents = sec->contents;
3593 if (sec->contents == NULL)
3594 {
3595 *failedptr = TRUE;
3596 return;
3597 }
3598 }
3599
3600 loc = sec->contents + sec->size;
3601
3602 /* Get the pointer to the first section in the group that gas
3603 squirreled away here. objcopy arranges for this to be set to the
3604 start of the input section group. */
3605 first = elt = elf_next_in_group (sec);
3606
3607 /* First element is a flag word. Rest of section is elf section
3608 indices for all the sections of the group. Write them backwards
3609 just to keep the group in the same order as given in .section
3610 directives, not that it matters. */
3611 while (elt != NULL)
3612 {
3613 asection *s;
3614
3615 s = elt;
3616 if (!gas)
3617 s = s->output_section;
3618 if (s != NULL
3619 && !bfd_is_abs_section (s))
3620 {
3621 struct bfd_elf_section_data *elf_sec = elf_section_data (s);
3622 struct bfd_elf_section_data *input_elf_sec = elf_section_data (elt);
3623
3624 if (elf_sec->rel.hdr != NULL
3625 && (gas
3626 || (input_elf_sec->rel.hdr != NULL
3627 && input_elf_sec->rel.hdr->sh_flags & SHF_GROUP) != 0))
3628 {
3629 elf_sec->rel.hdr->sh_flags |= SHF_GROUP;
3630 loc -= 4;
3631 H_PUT_32 (abfd, elf_sec->rel.idx, loc);
3632 }
3633 if (elf_sec->rela.hdr != NULL
3634 && (gas
3635 || (input_elf_sec->rela.hdr != NULL
3636 && input_elf_sec->rela.hdr->sh_flags & SHF_GROUP) != 0))
3637 {
3638 elf_sec->rela.hdr->sh_flags |= SHF_GROUP;
3639 loc -= 4;
3640 H_PUT_32 (abfd, elf_sec->rela.idx, loc);
3641 }
3642 loc -= 4;
3643 H_PUT_32 (abfd, elf_sec->this_idx, loc);
3644 }
3645 elt = elf_next_in_group (elt);
3646 if (elt == first)
3647 break;
3648 }
3649
3650 loc -= 4;
3651 BFD_ASSERT (loc == sec->contents);
3652
3653 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
3654 }
3655
3656 /* Given NAME, the name of a relocation section stripped of its
3657 .rel/.rela prefix, return the section in ABFD to which the
3658 relocations apply. */
3659
3660 asection *
3661 _bfd_elf_plt_get_reloc_section (bfd *abfd, const char *name)
3662 {
3663 /* If a target needs .got.plt section, relocations in rela.plt/rel.plt
3664 section likely apply to .got.plt or .got section. */
3665 if (get_elf_backend_data (abfd)->want_got_plt
3666 && strcmp (name, ".plt") == 0)
3667 {
3668 asection *sec;
3669
3670 name = ".got.plt";
3671 sec = bfd_get_section_by_name (abfd, name);
3672 if (sec != NULL)
3673 return sec;
3674 name = ".got";
3675 }
3676
3677 return bfd_get_section_by_name (abfd, name);
3678 }
3679
3680 /* Return the section to which RELOC_SEC applies. */
3681
3682 static asection *
3683 elf_get_reloc_section (asection *reloc_sec)
3684 {
3685 const char *name;
3686 unsigned int type;
3687 bfd *abfd;
3688 const struct elf_backend_data *bed;
3689
3690 type = elf_section_data (reloc_sec)->this_hdr.sh_type;
3691 if (type != SHT_REL && type != SHT_RELA)
3692 return NULL;
3693
3694 /* We look up the section the relocs apply to by name. */
3695 name = reloc_sec->name;
3696 if (strncmp (name, ".rel", 4) != 0)
3697 return NULL;
3698 name += 4;
3699 if (type == SHT_RELA && *name++ != 'a')
3700 return NULL;
3701
3702 abfd = reloc_sec->owner;
3703 bed = get_elf_backend_data (abfd);
3704 return bed->get_reloc_section (abfd, name);
3705 }
3706
3707 /* Assign all ELF section numbers. The dummy first section is handled here
3708 too. The link/info pointers for the standard section types are filled
3709 in here too, while we're at it. */
3710
3711 static bfd_boolean
3712 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
3713 {
3714 struct elf_obj_tdata *t = elf_tdata (abfd);
3715 asection *sec;
3716 unsigned int section_number;
3717 Elf_Internal_Shdr **i_shdrp;
3718 struct bfd_elf_section_data *d;
3719 bfd_boolean need_symtab;
3720
3721 section_number = 1;
3722
3723 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
3724
3725 /* SHT_GROUP sections are in relocatable files only. */
3726 if (link_info == NULL || !link_info->resolve_section_groups)
3727 {
3728 size_t reloc_count = 0;
3729
3730 /* Put SHT_GROUP sections first. */
3731 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3732 {
3733 d = elf_section_data (sec);
3734
3735 if (d->this_hdr.sh_type == SHT_GROUP)
3736 {
3737 if (sec->flags & SEC_LINKER_CREATED)
3738 {
3739 /* Remove the linker created SHT_GROUP sections. */
3740 bfd_section_list_remove (abfd, sec);
3741 abfd->section_count--;
3742 }
3743 else
3744 d->this_idx = section_number++;
3745 }
3746
3747 /* Count relocations. */
3748 reloc_count += sec->reloc_count;
3749 }
3750
3751 /* Clear HAS_RELOC if there are no relocations. */
3752 if (reloc_count == 0)
3753 abfd->flags &= ~HAS_RELOC;
3754 }
3755
3756 for (sec = abfd->sections; sec; sec = sec->next)
3757 {
3758 d = elf_section_data (sec);
3759
3760 if (d->this_hdr.sh_type != SHT_GROUP)
3761 d->this_idx = section_number++;
3762 if (d->this_hdr.sh_name != (unsigned int) -1)
3763 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
3764 if (d->rel.hdr)
3765 {
3766 d->rel.idx = section_number++;
3767 if (d->rel.hdr->sh_name != (unsigned int) -1)
3768 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel.hdr->sh_name);
3769 }
3770 else
3771 d->rel.idx = 0;
3772
3773 if (d->rela.hdr)
3774 {
3775 d->rela.idx = section_number++;
3776 if (d->rela.hdr->sh_name != (unsigned int) -1)
3777 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rela.hdr->sh_name);
3778 }
3779 else
3780 d->rela.idx = 0;
3781 }
3782
3783 need_symtab = (bfd_get_symcount (abfd) > 0
3784 || (link_info == NULL
3785 && ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
3786 == HAS_RELOC)));
3787 if (need_symtab)
3788 {
3789 elf_onesymtab (abfd) = section_number++;
3790 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
3791 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
3792 {
3793 elf_section_list *entry;
3794
3795 BFD_ASSERT (elf_symtab_shndx_list (abfd) == NULL);
3796
3797 entry = bfd_zalloc (abfd, sizeof (*entry));
3798 entry->ndx = section_number++;
3799 elf_symtab_shndx_list (abfd) = entry;
3800 entry->hdr.sh_name
3801 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3802 ".symtab_shndx", FALSE);
3803 if (entry->hdr.sh_name == (unsigned int) -1)
3804 return FALSE;
3805 }
3806 elf_strtab_sec (abfd) = section_number++;
3807 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3808 }
3809
3810 elf_shstrtab_sec (abfd) = section_number++;
3811 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
3812 elf_elfheader (abfd)->e_shstrndx = elf_shstrtab_sec (abfd);
3813
3814 if (section_number >= SHN_LORESERVE)
3815 {
3816 /* xgettext:c-format */
3817 _bfd_error_handler (_("%pB: too many sections: %u"),
3818 abfd, section_number);
3819 return FALSE;
3820 }
3821
3822 elf_numsections (abfd) = section_number;
3823 elf_elfheader (abfd)->e_shnum = section_number;
3824
3825 /* Set up the list of section header pointers, in agreement with the
3826 indices. */
3827 i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc2 (abfd, section_number,
3828 sizeof (Elf_Internal_Shdr *));
3829 if (i_shdrp == NULL)
3830 return FALSE;
3831
3832 i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd,
3833 sizeof (Elf_Internal_Shdr));
3834 if (i_shdrp[0] == NULL)
3835 {
3836 bfd_release (abfd, i_shdrp);
3837 return FALSE;
3838 }
3839
3840 elf_elfsections (abfd) = i_shdrp;
3841
3842 i_shdrp[elf_shstrtab_sec (abfd)] = &t->shstrtab_hdr;
3843 if (need_symtab)
3844 {
3845 i_shdrp[elf_onesymtab (abfd)] = &t->symtab_hdr;
3846 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
3847 {
3848 elf_section_list * entry = elf_symtab_shndx_list (abfd);
3849 BFD_ASSERT (entry != NULL);
3850 i_shdrp[entry->ndx] = & entry->hdr;
3851 entry->hdr.sh_link = elf_onesymtab (abfd);
3852 }
3853 i_shdrp[elf_strtab_sec (abfd)] = &t->strtab_hdr;
3854 t->symtab_hdr.sh_link = elf_strtab_sec (abfd);
3855 }
3856
3857 for (sec = abfd->sections; sec; sec = sec->next)
3858 {
3859 asection *s;
3860
3861 d = elf_section_data (sec);
3862
3863 i_shdrp[d->this_idx] = &d->this_hdr;
3864 if (d->rel.idx != 0)
3865 i_shdrp[d->rel.idx] = d->rel.hdr;
3866 if (d->rela.idx != 0)
3867 i_shdrp[d->rela.idx] = d->rela.hdr;
3868
3869 /* Fill in the sh_link and sh_info fields while we're at it. */
3870
3871 /* sh_link of a reloc section is the section index of the symbol
3872 table. sh_info is the section index of the section to which
3873 the relocation entries apply. */
3874 if (d->rel.idx != 0)
3875 {
3876 d->rel.hdr->sh_link = elf_onesymtab (abfd);
3877 d->rel.hdr->sh_info = d->this_idx;
3878 d->rel.hdr->sh_flags |= SHF_INFO_LINK;
3879 }
3880 if (d->rela.idx != 0)
3881 {
3882 d->rela.hdr->sh_link = elf_onesymtab (abfd);
3883 d->rela.hdr->sh_info = d->this_idx;
3884 d->rela.hdr->sh_flags |= SHF_INFO_LINK;
3885 }
3886
3887 /* We need to set up sh_link for SHF_LINK_ORDER. */
3888 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3889 {
3890 s = elf_linked_to_section (sec);
3891 if (s)
3892 {
3893 /* elf_linked_to_section points to the input section. */
3894 if (link_info != NULL)
3895 {
3896 /* Check discarded linkonce section. */
3897 if (discarded_section (s))
3898 {
3899 asection *kept;
3900 _bfd_error_handler
3901 /* xgettext:c-format */
3902 (_("%pB: sh_link of section `%pA' points to"
3903 " discarded section `%pA' of `%pB'"),
3904 abfd, d->this_hdr.bfd_section,
3905 s, s->owner);
3906 /* Point to the kept section if it has the same
3907 size as the discarded one. */
3908 kept = _bfd_elf_check_kept_section (s, link_info);
3909 if (kept == NULL)
3910 {
3911 bfd_set_error (bfd_error_bad_value);
3912 return FALSE;
3913 }
3914 s = kept;
3915 }
3916
3917 s = s->output_section;
3918 BFD_ASSERT (s != NULL);
3919 }
3920 else
3921 {
3922 /* Handle objcopy. */
3923 if (s->output_section == NULL)
3924 {
3925 _bfd_error_handler
3926 /* xgettext:c-format */
3927 (_("%pB: sh_link of section `%pA' points to"
3928 " removed section `%pA' of `%pB'"),
3929 abfd, d->this_hdr.bfd_section, s, s->owner);
3930 bfd_set_error (bfd_error_bad_value);
3931 return FALSE;
3932 }
3933 s = s->output_section;
3934 }
3935 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3936 }
3937 else
3938 {
3939 /* PR 290:
3940 The Intel C compiler generates SHT_IA_64_UNWIND with
3941 SHF_LINK_ORDER. But it doesn't set the sh_link or
3942 sh_info fields. Hence we could get the situation
3943 where s is NULL. */
3944 const struct elf_backend_data *bed
3945 = get_elf_backend_data (abfd);
3946 if (bed->link_order_error_handler)
3947 bed->link_order_error_handler
3948 /* xgettext:c-format */
3949 (_("%pB: warning: sh_link not set for section `%pA'"),
3950 abfd, sec);
3951 }
3952 }
3953
3954 switch (d->this_hdr.sh_type)
3955 {
3956 case SHT_REL:
3957 case SHT_RELA:
3958 /* A reloc section which we are treating as a normal BFD
3959 section. sh_link is the section index of the symbol
3960 table. sh_info is the section index of the section to
3961 which the relocation entries apply. We assume that an
3962 allocated reloc section uses the dynamic symbol table.
3963 FIXME: How can we be sure? */
3964 s = bfd_get_section_by_name (abfd, ".dynsym");
3965 if (s != NULL)
3966 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3967
3968 s = elf_get_reloc_section (sec);
3969 if (s != NULL)
3970 {
3971 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3972 d->this_hdr.sh_flags |= SHF_INFO_LINK;
3973 }
3974 break;
3975
3976 case SHT_STRTAB:
3977 /* We assume that a section named .stab*str is a stabs
3978 string section. We look for a section with the same name
3979 but without the trailing ``str'', and set its sh_link
3980 field to point to this section. */
3981 if (CONST_STRNEQ (sec->name, ".stab")
3982 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3983 {
3984 size_t len;
3985 char *alc;
3986
3987 len = strlen (sec->name);
3988 alc = (char *) bfd_malloc (len - 2);
3989 if (alc == NULL)
3990 return FALSE;
3991 memcpy (alc, sec->name, len - 3);
3992 alc[len - 3] = '\0';
3993 s = bfd_get_section_by_name (abfd, alc);
3994 free (alc);
3995 if (s != NULL)
3996 {
3997 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3998
3999 /* This is a .stab section. */
4000 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
4001 elf_section_data (s)->this_hdr.sh_entsize
4002 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
4003 }
4004 }
4005 break;
4006
4007 case SHT_DYNAMIC:
4008 case SHT_DYNSYM:
4009 case SHT_GNU_verneed:
4010 case SHT_GNU_verdef:
4011 /* sh_link is the section header index of the string table
4012 used for the dynamic entries, or the symbol table, or the
4013 version strings. */
4014 s = bfd_get_section_by_name (abfd, ".dynstr");
4015 if (s != NULL)
4016 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
4017 break;
4018
4019 case SHT_GNU_LIBLIST:
4020 /* sh_link is the section header index of the prelink library
4021 list used for the dynamic entries, or the symbol table, or
4022 the version strings. */
4023 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
4024 ? ".dynstr" : ".gnu.libstr");
4025 if (s != NULL)
4026 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
4027 break;
4028
4029 case SHT_HASH:
4030 case SHT_GNU_HASH:
4031 case SHT_GNU_versym:
4032 /* sh_link is the section header index of the symbol table
4033 this hash table or version table is for. */
4034 s = bfd_get_section_by_name (abfd, ".dynsym");
4035 if (s != NULL)
4036 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
4037 break;
4038
4039 case SHT_GROUP:
4040 d->this_hdr.sh_link = elf_onesymtab (abfd);
4041 }
4042 }
4043
4044 /* Delay setting sh_name to _bfd_elf_write_object_contents so that
4045 _bfd_elf_assign_file_positions_for_non_load can convert DWARF
4046 debug section name from .debug_* to .zdebug_* if needed. */
4047
4048 return TRUE;
4049 }
4050
4051 static bfd_boolean
4052 sym_is_global (bfd *abfd, asymbol *sym)
4053 {
4054 /* If the backend has a special mapping, use it. */
4055 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4056 if (bed->elf_backend_sym_is_global)
4057 return (*bed->elf_backend_sym_is_global) (abfd, sym);
4058
4059 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0
4060 || bfd_is_und_section (bfd_asymbol_section (sym))
4061 || bfd_is_com_section (bfd_asymbol_section (sym)));
4062 }
4063
4064 /* Filter global symbols of ABFD to include in the import library. All
4065 SYMCOUNT symbols of ABFD can be examined from their pointers in
4066 SYMS. Pointers of symbols to keep should be stored contiguously at
4067 the beginning of that array.
4068
4069 Returns the number of symbols to keep. */
4070
4071 unsigned int
4072 _bfd_elf_filter_global_symbols (bfd *abfd, struct bfd_link_info *info,
4073 asymbol **syms, long symcount)
4074 {
4075 long src_count, dst_count = 0;
4076
4077 for (src_count = 0; src_count < symcount; src_count++)
4078 {
4079 asymbol *sym = syms[src_count];
4080 char *name = (char *) bfd_asymbol_name (sym);
4081 struct bfd_link_hash_entry *h;
4082
4083 if (!sym_is_global (abfd, sym))
4084 continue;
4085
4086 h = bfd_link_hash_lookup (info->hash, name, FALSE, FALSE, FALSE);
4087 if (h == NULL)
4088 continue;
4089 if (h->type != bfd_link_hash_defined && h->type != bfd_link_hash_defweak)
4090 continue;
4091 if (h->linker_def || h->ldscript_def)
4092 continue;
4093
4094 syms[dst_count++] = sym;
4095 }
4096
4097 syms[dst_count] = NULL;
4098
4099 return dst_count;
4100 }
4101
4102 /* Don't output section symbols for sections that are not going to be
4103 output, that are duplicates or there is no BFD section. */
4104
4105 static bfd_boolean
4106 ignore_section_sym (bfd *abfd, asymbol *sym)
4107 {
4108 elf_symbol_type *type_ptr;
4109
4110 if (sym == NULL)
4111 return FALSE;
4112
4113 if ((sym->flags & BSF_SECTION_SYM) == 0)
4114 return FALSE;
4115
4116 if (sym->section == NULL)
4117 return TRUE;
4118
4119 type_ptr = elf_symbol_from (abfd, sym);
4120 return ((type_ptr != NULL
4121 && type_ptr->internal_elf_sym.st_shndx != 0
4122 && bfd_is_abs_section (sym->section))
4123 || !(sym->section->owner == abfd
4124 || (sym->section->output_section != NULL
4125 && sym->section->output_section->owner == abfd
4126 && sym->section->output_offset == 0)
4127 || bfd_is_abs_section (sym->section)));
4128 }
4129
4130 /* Map symbol from it's internal number to the external number, moving
4131 all local symbols to be at the head of the list. */
4132
4133 static bfd_boolean
4134 elf_map_symbols (bfd *abfd, unsigned int *pnum_locals)
4135 {
4136 unsigned int symcount = bfd_get_symcount (abfd);
4137 asymbol **syms = bfd_get_outsymbols (abfd);
4138 asymbol **sect_syms;
4139 unsigned int num_locals = 0;
4140 unsigned int num_globals = 0;
4141 unsigned int num_locals2 = 0;
4142 unsigned int num_globals2 = 0;
4143 unsigned int max_index = 0;
4144 unsigned int idx;
4145 asection *asect;
4146 asymbol **new_syms;
4147
4148 #ifdef DEBUG
4149 fprintf (stderr, "elf_map_symbols\n");
4150 fflush (stderr);
4151 #endif
4152
4153 for (asect = abfd->sections; asect; asect = asect->next)
4154 {
4155 if (max_index < asect->index)
4156 max_index = asect->index;
4157 }
4158
4159 max_index++;
4160 sect_syms = (asymbol **) bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
4161 if (sect_syms == NULL)
4162 return FALSE;
4163 elf_section_syms (abfd) = sect_syms;
4164 elf_num_section_syms (abfd) = max_index;
4165
4166 /* Init sect_syms entries for any section symbols we have already
4167 decided to output. */
4168 for (idx = 0; idx < symcount; idx++)
4169 {
4170 asymbol *sym = syms[idx];
4171
4172 if ((sym->flags & BSF_SECTION_SYM) != 0
4173 && sym->value == 0
4174 && !ignore_section_sym (abfd, sym)
4175 && !bfd_is_abs_section (sym->section))
4176 {
4177 asection *sec = sym->section;
4178
4179 if (sec->owner != abfd)
4180 sec = sec->output_section;
4181
4182 sect_syms[sec->index] = syms[idx];
4183 }
4184 }
4185
4186 /* Classify all of the symbols. */
4187 for (idx = 0; idx < symcount; idx++)
4188 {
4189 if (sym_is_global (abfd, syms[idx]))
4190 num_globals++;
4191 else if (!ignore_section_sym (abfd, syms[idx]))
4192 num_locals++;
4193 }
4194
4195 /* We will be adding a section symbol for each normal BFD section. Most
4196 sections will already have a section symbol in outsymbols, but
4197 eg. SHT_GROUP sections will not, and we need the section symbol mapped
4198 at least in that case. */
4199 for (asect = abfd->sections; asect; asect = asect->next)
4200 {
4201 if (sect_syms[asect->index] == NULL)
4202 {
4203 if (!sym_is_global (abfd, asect->symbol))
4204 num_locals++;
4205 else
4206 num_globals++;
4207 }
4208 }
4209
4210 /* Now sort the symbols so the local symbols are first. */
4211 new_syms = (asymbol **) bfd_alloc2 (abfd, num_locals + num_globals,
4212 sizeof (asymbol *));
4213
4214 if (new_syms == NULL)
4215 return FALSE;
4216
4217 for (idx = 0; idx < symcount; idx++)
4218 {
4219 asymbol *sym = syms[idx];
4220 unsigned int i;
4221
4222 if (sym_is_global (abfd, sym))
4223 i = num_locals + num_globals2++;
4224 else if (!ignore_section_sym (abfd, sym))
4225 i = num_locals2++;
4226 else
4227 continue;
4228 new_syms[i] = sym;
4229 sym->udata.i = i + 1;
4230 }
4231 for (asect = abfd->sections; asect; asect = asect->next)
4232 {
4233 if (sect_syms[asect->index] == NULL)
4234 {
4235 asymbol *sym = asect->symbol;
4236 unsigned int i;
4237
4238 sect_syms[asect->index] = sym;
4239 if (!sym_is_global (abfd, sym))
4240 i = num_locals2++;
4241 else
4242 i = num_locals + num_globals2++;
4243 new_syms[i] = sym;
4244 sym->udata.i = i + 1;
4245 }
4246 }
4247
4248 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
4249
4250 *pnum_locals = num_locals;
4251 return TRUE;
4252 }
4253
4254 /* Align to the maximum file alignment that could be required for any
4255 ELF data structure. */
4256
4257 static inline file_ptr
4258 align_file_position (file_ptr off, int align)
4259 {
4260 return (off + align - 1) & ~(align - 1);
4261 }
4262
4263 /* Assign a file position to a section, optionally aligning to the
4264 required section alignment. */
4265
4266 file_ptr
4267 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
4268 file_ptr offset,
4269 bfd_boolean align)
4270 {
4271 if (align && i_shdrp->sh_addralign > 1)
4272 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
4273 i_shdrp->sh_offset = offset;
4274 if (i_shdrp->bfd_section != NULL)
4275 i_shdrp->bfd_section->filepos = offset;
4276 if (i_shdrp->sh_type != SHT_NOBITS)
4277 offset += i_shdrp->sh_size;
4278 return offset;
4279 }
4280
4281 /* Compute the file positions we are going to put the sections at, and
4282 otherwise prepare to begin writing out the ELF file. If LINK_INFO
4283 is not NULL, this is being called by the ELF backend linker. */
4284
4285 bfd_boolean
4286 _bfd_elf_compute_section_file_positions (bfd *abfd,
4287 struct bfd_link_info *link_info)
4288 {
4289 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4290 struct fake_section_arg fsargs;
4291 bfd_boolean failed;
4292 struct elf_strtab_hash *strtab = NULL;
4293 Elf_Internal_Shdr *shstrtab_hdr;
4294 bfd_boolean need_symtab;
4295
4296 if (abfd->output_has_begun)
4297 return TRUE;
4298
4299 /* Do any elf backend specific processing first. */
4300 if (bed->elf_backend_begin_write_processing)
4301 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
4302
4303 if (! prep_headers (abfd))
4304 return FALSE;
4305
4306 /* Post process the headers if necessary. */
4307 (*bed->elf_backend_post_process_headers) (abfd, link_info);
4308
4309 fsargs.failed = FALSE;
4310 fsargs.link_info = link_info;
4311 bfd_map_over_sections (abfd, elf_fake_sections, &fsargs);
4312 if (fsargs.failed)
4313 return FALSE;
4314
4315 if (!assign_section_numbers (abfd, link_info))
4316 return FALSE;
4317
4318 /* The backend linker builds symbol table information itself. */
4319 need_symtab = (link_info == NULL
4320 && (bfd_get_symcount (abfd) > 0
4321 || ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
4322 == HAS_RELOC)));
4323 if (need_symtab)
4324 {
4325 /* Non-zero if doing a relocatable link. */
4326 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
4327
4328 if (! swap_out_syms (abfd, &strtab, relocatable_p))
4329 return FALSE;
4330 }
4331
4332 failed = FALSE;
4333 if (link_info == NULL)
4334 {
4335 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
4336 if (failed)
4337 return FALSE;
4338 }
4339
4340 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
4341 /* sh_name was set in prep_headers. */
4342 shstrtab_hdr->sh_type = SHT_STRTAB;
4343 shstrtab_hdr->sh_flags = bed->elf_strtab_flags;
4344 shstrtab_hdr->sh_addr = 0;
4345 /* sh_size is set in _bfd_elf_assign_file_positions_for_non_load. */
4346 shstrtab_hdr->sh_entsize = 0;
4347 shstrtab_hdr->sh_link = 0;
4348 shstrtab_hdr->sh_info = 0;
4349 /* sh_offset is set in _bfd_elf_assign_file_positions_for_non_load. */
4350 shstrtab_hdr->sh_addralign = 1;
4351
4352 if (!assign_file_positions_except_relocs (abfd, link_info))
4353 return FALSE;
4354
4355 if (need_symtab)
4356 {
4357 file_ptr off;
4358 Elf_Internal_Shdr *hdr;
4359
4360 off = elf_next_file_pos (abfd);
4361
4362 hdr = & elf_symtab_hdr (abfd);
4363 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4364
4365 if (elf_symtab_shndx_list (abfd) != NULL)
4366 {
4367 hdr = & elf_symtab_shndx_list (abfd)->hdr;
4368 if (hdr->sh_size != 0)
4369 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4370 /* FIXME: What about other symtab_shndx sections in the list ? */
4371 }
4372
4373 hdr = &elf_tdata (abfd)->strtab_hdr;
4374 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4375
4376 elf_next_file_pos (abfd) = off;
4377
4378 /* Now that we know where the .strtab section goes, write it
4379 out. */
4380 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
4381 || ! _bfd_elf_strtab_emit (abfd, strtab))
4382 return FALSE;
4383 _bfd_elf_strtab_free (strtab);
4384 }
4385
4386 abfd->output_has_begun = TRUE;
4387
4388 return TRUE;
4389 }
4390
4391 /* Make an initial estimate of the size of the program header. If we
4392 get the number wrong here, we'll redo section placement. */
4393
4394 static bfd_size_type
4395 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
4396 {
4397 size_t segs;
4398 asection *s;
4399 const struct elf_backend_data *bed;
4400
4401 /* Assume we will need exactly two PT_LOAD segments: one for text
4402 and one for data. */
4403 segs = 2;
4404
4405 s = bfd_get_section_by_name (abfd, ".interp");
4406 if (s != NULL && (s->flags & SEC_LOAD) != 0 && s->size != 0)
4407 {
4408 /* If we have a loadable interpreter section, we need a
4409 PT_INTERP segment. In this case, assume we also need a
4410 PT_PHDR segment, although that may not be true for all
4411 targets. */
4412 segs += 2;
4413 }
4414
4415 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4416 {
4417 /* We need a PT_DYNAMIC segment. */
4418 ++segs;
4419 }
4420
4421 if (info != NULL && info->relro)
4422 {
4423 /* We need a PT_GNU_RELRO segment. */
4424 ++segs;
4425 }
4426
4427 if (elf_eh_frame_hdr (abfd))
4428 {
4429 /* We need a PT_GNU_EH_FRAME segment. */
4430 ++segs;
4431 }
4432
4433 if (elf_stack_flags (abfd))
4434 {
4435 /* We need a PT_GNU_STACK segment. */
4436 ++segs;
4437 }
4438
4439 s = bfd_get_section_by_name (abfd,
4440 NOTE_GNU_PROPERTY_SECTION_NAME);
4441 if (s != NULL && s->size != 0)
4442 {
4443 /* We need a PT_GNU_PROPERTY segment. */
4444 ++segs;
4445 }
4446
4447 for (s = abfd->sections; s != NULL; s = s->next)
4448 {
4449 if ((s->flags & SEC_LOAD) != 0
4450 && elf_section_type (s) == SHT_NOTE)
4451 {
4452 unsigned int alignment_power;
4453 /* We need a PT_NOTE segment. */
4454 ++segs;
4455 /* Try to create just one PT_NOTE segment for all adjacent
4456 loadable SHT_NOTE sections. gABI requires that within a
4457 PT_NOTE segment (and also inside of each SHT_NOTE section)
4458 each note should have the same alignment. So we check
4459 whether the sections are correctly aligned. */
4460 alignment_power = s->alignment_power;
4461 while (s->next != NULL
4462 && s->next->alignment_power == alignment_power
4463 && (s->next->flags & SEC_LOAD) != 0
4464 && elf_section_type (s->next) == SHT_NOTE)
4465 s = s->next;
4466 }
4467 }
4468
4469 for (s = abfd->sections; s != NULL; s = s->next)
4470 {
4471 if (s->flags & SEC_THREAD_LOCAL)
4472 {
4473 /* We need a PT_TLS segment. */
4474 ++segs;
4475 break;
4476 }
4477 }
4478
4479 bed = get_elf_backend_data (abfd);
4480
4481 if ((abfd->flags & D_PAGED) != 0
4482 && (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_mbind) != 0)
4483 {
4484 /* Add a PT_GNU_MBIND segment for each mbind section. */
4485 unsigned int page_align_power = bfd_log2 (bed->commonpagesize);
4486 for (s = abfd->sections; s != NULL; s = s->next)
4487 if (elf_section_flags (s) & SHF_GNU_MBIND)
4488 {
4489 if (elf_section_data (s)->this_hdr.sh_info > PT_GNU_MBIND_NUM)
4490 {
4491 _bfd_error_handler
4492 /* xgettext:c-format */
4493 (_("%pB: GNU_MBIND section `%pA' has invalid "
4494 "sh_info field: %d"),
4495 abfd, s, elf_section_data (s)->this_hdr.sh_info);
4496 continue;
4497 }
4498 /* Align mbind section to page size. */
4499 if (s->alignment_power < page_align_power)
4500 s->alignment_power = page_align_power;
4501 segs ++;
4502 }
4503 }
4504
4505 /* Let the backend count up any program headers it might need. */
4506 if (bed->elf_backend_additional_program_headers)
4507 {
4508 int a;
4509
4510 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
4511 if (a == -1)
4512 abort ();
4513 segs += a;
4514 }
4515
4516 return segs * bed->s->sizeof_phdr;
4517 }
4518
4519 /* Find the segment that contains the output_section of section. */
4520
4521 Elf_Internal_Phdr *
4522 _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
4523 {
4524 struct elf_segment_map *m;
4525 Elf_Internal_Phdr *p;
4526
4527 for (m = elf_seg_map (abfd), p = elf_tdata (abfd)->phdr;
4528 m != NULL;
4529 m = m->next, p++)
4530 {
4531 int i;
4532
4533 for (i = m->count - 1; i >= 0; i--)
4534 if (m->sections[i] == section)
4535 return p;
4536 }
4537
4538 return NULL;
4539 }
4540
4541 /* Create a mapping from a set of sections to a program segment. */
4542
4543 static struct elf_segment_map *
4544 make_mapping (bfd *abfd,
4545 asection **sections,
4546 unsigned int from,
4547 unsigned int to,
4548 bfd_boolean phdr)
4549 {
4550 struct elf_segment_map *m;
4551 unsigned int i;
4552 asection **hdrpp;
4553 bfd_size_type amt;
4554
4555 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
4556 amt += (to - from) * sizeof (asection *);
4557 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4558 if (m == NULL)
4559 return NULL;
4560 m->next = NULL;
4561 m->p_type = PT_LOAD;
4562 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
4563 m->sections[i - from] = *hdrpp;
4564 m->count = to - from;
4565
4566 if (from == 0 && phdr)
4567 {
4568 /* Include the headers in the first PT_LOAD segment. */
4569 m->includes_filehdr = 1;
4570 m->includes_phdrs = 1;
4571 }
4572
4573 return m;
4574 }
4575
4576 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
4577 on failure. */
4578
4579 struct elf_segment_map *
4580 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
4581 {
4582 struct elf_segment_map *m;
4583
4584 m = (struct elf_segment_map *) bfd_zalloc (abfd,
4585 sizeof (struct elf_segment_map));
4586 if (m == NULL)
4587 return NULL;
4588 m->next = NULL;
4589 m->p_type = PT_DYNAMIC;
4590 m->count = 1;
4591 m->sections[0] = dynsec;
4592
4593 return m;
4594 }
4595
4596 /* Possibly add or remove segments from the segment map. */
4597
4598 static bfd_boolean
4599 elf_modify_segment_map (bfd *abfd,
4600 struct bfd_link_info *info,
4601 bfd_boolean remove_empty_load)
4602 {
4603 struct elf_segment_map **m;
4604 const struct elf_backend_data *bed;
4605
4606 /* The placement algorithm assumes that non allocated sections are
4607 not in PT_LOAD segments. We ensure this here by removing such
4608 sections from the segment map. We also remove excluded
4609 sections. Finally, any PT_LOAD segment without sections is
4610 removed. */
4611 m = &elf_seg_map (abfd);
4612 while (*m)
4613 {
4614 unsigned int i, new_count;
4615
4616 for (new_count = 0, i = 0; i < (*m)->count; i++)
4617 {
4618 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
4619 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
4620 || (*m)->p_type != PT_LOAD))
4621 {
4622 (*m)->sections[new_count] = (*m)->sections[i];
4623 new_count++;
4624 }
4625 }
4626 (*m)->count = new_count;
4627
4628 if (remove_empty_load
4629 && (*m)->p_type == PT_LOAD
4630 && (*m)->count == 0
4631 && !(*m)->includes_phdrs)
4632 *m = (*m)->next;
4633 else
4634 m = &(*m)->next;
4635 }
4636
4637 bed = get_elf_backend_data (abfd);
4638 if (bed->elf_backend_modify_segment_map != NULL)
4639 {
4640 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
4641 return FALSE;
4642 }
4643
4644 return TRUE;
4645 }
4646
4647 #define IS_TBSS(s) \
4648 ((s->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) == SEC_THREAD_LOCAL)
4649
4650 /* Set up a mapping from BFD sections to program segments. */
4651
4652 bfd_boolean
4653 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
4654 {
4655 unsigned int count;
4656 struct elf_segment_map *m;
4657 asection **sections = NULL;
4658 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4659 bfd_boolean no_user_phdrs;
4660
4661 no_user_phdrs = elf_seg_map (abfd) == NULL;
4662
4663 if (info != NULL)
4664 info->user_phdrs = !no_user_phdrs;
4665
4666 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
4667 {
4668 asection *s;
4669 unsigned int i;
4670 struct elf_segment_map *mfirst;
4671 struct elf_segment_map **pm;
4672 asection *last_hdr;
4673 bfd_vma last_size;
4674 unsigned int hdr_index;
4675 bfd_vma maxpagesize;
4676 asection **hdrpp;
4677 bfd_boolean phdr_in_segment;
4678 bfd_boolean writable;
4679 bfd_boolean executable;
4680 int tls_count = 0;
4681 asection *first_tls = NULL;
4682 asection *first_mbind = NULL;
4683 asection *dynsec, *eh_frame_hdr;
4684 bfd_size_type amt;
4685 bfd_vma addr_mask, wrap_to = 0;
4686 bfd_size_type phdr_size;
4687
4688 /* Select the allocated sections, and sort them. */
4689
4690 sections = (asection **) bfd_malloc2 (bfd_count_sections (abfd),
4691 sizeof (asection *));
4692 if (sections == NULL)
4693 goto error_return;
4694
4695 /* Calculate top address, avoiding undefined behaviour of shift
4696 left operator when shift count is equal to size of type
4697 being shifted. */
4698 addr_mask = ((bfd_vma) 1 << (bfd_arch_bits_per_address (abfd) - 1)) - 1;
4699 addr_mask = (addr_mask << 1) + 1;
4700
4701 i = 0;
4702 for (s = abfd->sections; s != NULL; s = s->next)
4703 {
4704 if ((s->flags & SEC_ALLOC) != 0)
4705 {
4706 /* target_index is unused until bfd_elf_final_link
4707 starts output of section symbols. Use it to make
4708 qsort stable. */
4709 s->target_index = i;
4710 sections[i] = s;
4711 ++i;
4712 /* A wrapping section potentially clashes with header. */
4713 if (((s->lma + s->size) & addr_mask) < (s->lma & addr_mask))
4714 wrap_to = (s->lma + s->size) & addr_mask;
4715 }
4716 }
4717 BFD_ASSERT (i <= bfd_count_sections (abfd));
4718 count = i;
4719
4720 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
4721
4722 phdr_size = elf_program_header_size (abfd);
4723 if (phdr_size == (bfd_size_type) -1)
4724 phdr_size = get_program_header_size (abfd, info);
4725 phdr_size += bed->s->sizeof_ehdr;
4726 maxpagesize = bed->maxpagesize;
4727 if (maxpagesize == 0)
4728 maxpagesize = 1;
4729 phdr_in_segment = info != NULL && info->load_phdrs;
4730 if (count != 0
4731 && (((sections[0]->lma & addr_mask) & (maxpagesize - 1))
4732 >= (phdr_size & (maxpagesize - 1))))
4733 /* For compatibility with old scripts that may not be using
4734 SIZEOF_HEADERS, add headers when it looks like space has
4735 been left for them. */
4736 phdr_in_segment = TRUE;
4737
4738 /* Build the mapping. */
4739 mfirst = NULL;
4740 pm = &mfirst;
4741
4742 /* If we have a .interp section, then create a PT_PHDR segment for
4743 the program headers and a PT_INTERP segment for the .interp
4744 section. */
4745 s = bfd_get_section_by_name (abfd, ".interp");
4746 if (s != NULL && (s->flags & SEC_LOAD) != 0 && s->size != 0)
4747 {
4748 amt = sizeof (struct elf_segment_map);
4749 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4750 if (m == NULL)
4751 goto error_return;
4752 m->next = NULL;
4753 m->p_type = PT_PHDR;
4754 m->p_flags = PF_R;
4755 m->p_flags_valid = 1;
4756 m->includes_phdrs = 1;
4757 phdr_in_segment = TRUE;
4758 *pm = m;
4759 pm = &m->next;
4760
4761 amt = sizeof (struct elf_segment_map);
4762 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4763 if (m == NULL)
4764 goto error_return;
4765 m->next = NULL;
4766 m->p_type = PT_INTERP;
4767 m->count = 1;
4768 m->sections[0] = s;
4769
4770 *pm = m;
4771 pm = &m->next;
4772 }
4773
4774 /* Look through the sections. We put sections in the same program
4775 segment when the start of the second section can be placed within
4776 a few bytes of the end of the first section. */
4777 last_hdr = NULL;
4778 last_size = 0;
4779 hdr_index = 0;
4780 writable = FALSE;
4781 executable = FALSE;
4782 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
4783 if (dynsec != NULL
4784 && (dynsec->flags & SEC_LOAD) == 0)
4785 dynsec = NULL;
4786
4787 if ((abfd->flags & D_PAGED) == 0)
4788 phdr_in_segment = FALSE;
4789
4790 /* Deal with -Ttext or something similar such that the first section
4791 is not adjacent to the program headers. This is an
4792 approximation, since at this point we don't know exactly how many
4793 program headers we will need. */
4794 if (phdr_in_segment && count > 0)
4795 {
4796 bfd_vma phdr_lma;
4797 bfd_boolean separate_phdr = FALSE;
4798
4799 phdr_lma = (sections[0]->lma - phdr_size) & addr_mask & -maxpagesize;
4800 if (info != NULL
4801 && info->separate_code
4802 && (sections[0]->flags & SEC_CODE) != 0)
4803 {
4804 /* If data sections should be separate from code and
4805 thus not executable, and the first section is
4806 executable then put the file and program headers in
4807 their own PT_LOAD. */
4808 separate_phdr = TRUE;
4809 if ((((phdr_lma + phdr_size - 1) & addr_mask & -maxpagesize)
4810 == (sections[0]->lma & addr_mask & -maxpagesize)))
4811 {
4812 /* The file and program headers are currently on the
4813 same page as the first section. Put them on the
4814 previous page if we can. */
4815 if (phdr_lma >= maxpagesize)
4816 phdr_lma -= maxpagesize;
4817 else
4818 separate_phdr = FALSE;
4819 }
4820 }
4821 if ((sections[0]->lma & addr_mask) < phdr_lma
4822 || (sections[0]->lma & addr_mask) < phdr_size)
4823 /* If file and program headers would be placed at the end
4824 of memory then it's probably better to omit them. */
4825 phdr_in_segment = FALSE;
4826 else if (phdr_lma < wrap_to)
4827 /* If a section wraps around to where we'll be placing
4828 file and program headers, then the headers will be
4829 overwritten. */
4830 phdr_in_segment = FALSE;
4831 else if (separate_phdr)
4832 {
4833 m = make_mapping (abfd, sections, 0, 0, phdr_in_segment);
4834 if (m == NULL)
4835 goto error_return;
4836 m->p_paddr = phdr_lma;
4837 m->p_vaddr_offset
4838 = (sections[0]->vma - phdr_size) & addr_mask & -maxpagesize;
4839 m->p_paddr_valid = 1;
4840 *pm = m;
4841 pm = &m->next;
4842 phdr_in_segment = FALSE;
4843 }
4844 }
4845
4846 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
4847 {
4848 asection *hdr;
4849 bfd_boolean new_segment;
4850
4851 hdr = *hdrpp;
4852
4853 /* See if this section and the last one will fit in the same
4854 segment. */
4855
4856 if (last_hdr == NULL)
4857 {
4858 /* If we don't have a segment yet, then we don't need a new
4859 one (we build the last one after this loop). */
4860 new_segment = FALSE;
4861 }
4862 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
4863 {
4864 /* If this section has a different relation between the
4865 virtual address and the load address, then we need a new
4866 segment. */
4867 new_segment = TRUE;
4868 }
4869 else if (hdr->lma < last_hdr->lma + last_size
4870 || last_hdr->lma + last_size < last_hdr->lma)
4871 {
4872 /* If this section has a load address that makes it overlap
4873 the previous section, then we need a new segment. */
4874 new_segment = TRUE;
4875 }
4876 else if ((abfd->flags & D_PAGED) != 0
4877 && (((last_hdr->lma + last_size - 1) & -maxpagesize)
4878 == (hdr->lma & -maxpagesize)))
4879 {
4880 /* If we are demand paged then we can't map two disk
4881 pages onto the same memory page. */
4882 new_segment = FALSE;
4883 }
4884 /* In the next test we have to be careful when last_hdr->lma is close
4885 to the end of the address space. If the aligned address wraps
4886 around to the start of the address space, then there are no more
4887 pages left in memory and it is OK to assume that the current
4888 section can be included in the current segment. */
4889 else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
4890 + maxpagesize > last_hdr->lma)
4891 && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
4892 + maxpagesize <= hdr->lma))
4893 {
4894 /* If putting this section in this segment would force us to
4895 skip a page in the segment, then we need a new segment. */
4896 new_segment = TRUE;
4897 }
4898 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
4899 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
4900 {
4901 /* We don't want to put a loaded section after a
4902 nonloaded (ie. bss style) section in the same segment
4903 as that will force the non-loaded section to be loaded.
4904 Consider .tbss sections as loaded for this purpose. */
4905 new_segment = TRUE;
4906 }
4907 else if ((abfd->flags & D_PAGED) == 0)
4908 {
4909 /* If the file is not demand paged, which means that we
4910 don't require the sections to be correctly aligned in the
4911 file, then there is no other reason for a new segment. */
4912 new_segment = FALSE;
4913 }
4914 else if (info != NULL
4915 && info->separate_code
4916 && executable != ((hdr->flags & SEC_CODE) != 0))
4917 {
4918 new_segment = TRUE;
4919 }
4920 else if (! writable
4921 && (hdr->flags & SEC_READONLY) == 0)
4922 {
4923 /* We don't want to put a writable section in a read only
4924 segment. */
4925 new_segment = TRUE;
4926 }
4927 else
4928 {
4929 /* Otherwise, we can use the same segment. */
4930 new_segment = FALSE;
4931 }
4932
4933 /* Allow interested parties a chance to override our decision. */
4934 if (last_hdr != NULL
4935 && info != NULL
4936 && info->callbacks->override_segment_assignment != NULL)
4937 new_segment
4938 = info->callbacks->override_segment_assignment (info, abfd, hdr,
4939 last_hdr,
4940 new_segment);
4941
4942 if (! new_segment)
4943 {
4944 if ((hdr->flags & SEC_READONLY) == 0)
4945 writable = TRUE;
4946 if ((hdr->flags & SEC_CODE) != 0)
4947 executable = TRUE;
4948 last_hdr = hdr;
4949 /* .tbss sections effectively have zero size. */
4950 last_size = !IS_TBSS (hdr) ? hdr->size : 0;
4951 continue;
4952 }
4953
4954 /* We need a new program segment. We must create a new program
4955 header holding all the sections from hdr_index until hdr. */
4956
4957 m = make_mapping (abfd, sections, hdr_index, i, phdr_in_segment);
4958 if (m == NULL)
4959 goto error_return;
4960
4961 *pm = m;
4962 pm = &m->next;
4963
4964 if ((hdr->flags & SEC_READONLY) == 0)
4965 writable = TRUE;
4966 else
4967 writable = FALSE;
4968
4969 if ((hdr->flags & SEC_CODE) == 0)
4970 executable = FALSE;
4971 else
4972 executable = TRUE;
4973
4974 last_hdr = hdr;
4975 /* .tbss sections effectively have zero size. */
4976 last_size = !IS_TBSS (hdr) ? hdr->size : 0;
4977 hdr_index = i;
4978 phdr_in_segment = FALSE;
4979 }
4980
4981 /* Create a final PT_LOAD program segment, but not if it's just
4982 for .tbss. */
4983 if (last_hdr != NULL
4984 && (i - hdr_index != 1
4985 || !IS_TBSS (last_hdr)))
4986 {
4987 m = make_mapping (abfd, sections, hdr_index, i, phdr_in_segment);
4988 if (m == NULL)
4989 goto error_return;
4990
4991 *pm = m;
4992 pm = &m->next;
4993 }
4994
4995 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4996 if (dynsec != NULL)
4997 {
4998 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
4999 if (m == NULL)
5000 goto error_return;
5001 *pm = m;
5002 pm = &m->next;
5003 }
5004
5005 /* For each batch of consecutive loadable SHT_NOTE sections,
5006 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
5007 because if we link together nonloadable .note sections and
5008 loadable .note sections, we will generate two .note sections
5009 in the output file. */
5010 for (s = abfd->sections; s != NULL; s = s->next)
5011 {
5012 if ((s->flags & SEC_LOAD) != 0
5013 && elf_section_type (s) == SHT_NOTE)
5014 {
5015 asection *s2;
5016 unsigned int alignment_power = s->alignment_power;
5017
5018 count = 1;
5019 for (s2 = s; s2->next != NULL; s2 = s2->next)
5020 {
5021 if (s2->next->alignment_power == alignment_power
5022 && (s2->next->flags & SEC_LOAD) != 0
5023 && elf_section_type (s2->next) == SHT_NOTE
5024 && align_power (s2->lma + s2->size,
5025 alignment_power)
5026 == s2->next->lma)
5027 count++;
5028 else
5029 break;
5030 }
5031 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
5032 amt += count * sizeof (asection *);
5033 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5034 if (m == NULL)
5035 goto error_return;
5036 m->next = NULL;
5037 m->p_type = PT_NOTE;
5038 m->count = count;
5039 while (count > 1)
5040 {
5041 m->sections[m->count - count--] = s;
5042 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
5043 s = s->next;
5044 }
5045 m->sections[m->count - 1] = s;
5046 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
5047 *pm = m;
5048 pm = &m->next;
5049 }
5050 if (s->flags & SEC_THREAD_LOCAL)
5051 {
5052 if (! tls_count)
5053 first_tls = s;
5054 tls_count++;
5055 }
5056 if (first_mbind == NULL
5057 && (elf_section_flags (s) & SHF_GNU_MBIND) != 0)
5058 first_mbind = s;
5059 }
5060
5061 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
5062 if (tls_count > 0)
5063 {
5064 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
5065 amt += tls_count * sizeof (asection *);
5066 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5067 if (m == NULL)
5068 goto error_return;
5069 m->next = NULL;
5070 m->p_type = PT_TLS;
5071 m->count = tls_count;
5072 /* Mandated PF_R. */
5073 m->p_flags = PF_R;
5074 m->p_flags_valid = 1;
5075 s = first_tls;
5076 for (i = 0; i < (unsigned int) tls_count; ++i)
5077 {
5078 if ((s->flags & SEC_THREAD_LOCAL) == 0)
5079 {
5080 _bfd_error_handler
5081 (_("%pB: TLS sections are not adjacent:"), abfd);
5082 s = first_tls;
5083 i = 0;
5084 while (i < (unsigned int) tls_count)
5085 {
5086 if ((s->flags & SEC_THREAD_LOCAL) != 0)
5087 {
5088 _bfd_error_handler (_(" TLS: %pA"), s);
5089 i++;
5090 }
5091 else
5092 _bfd_error_handler (_(" non-TLS: %pA"), s);
5093 s = s->next;
5094 }
5095 bfd_set_error (bfd_error_bad_value);
5096 goto error_return;
5097 }
5098 m->sections[i] = s;
5099 s = s->next;
5100 }
5101
5102 *pm = m;
5103 pm = &m->next;
5104 }
5105
5106 if (first_mbind
5107 && (abfd->flags & D_PAGED) != 0
5108 && (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_mbind) != 0)
5109 for (s = first_mbind; s != NULL; s = s->next)
5110 if ((elf_section_flags (s) & SHF_GNU_MBIND) != 0
5111 && elf_section_data (s)->this_hdr.sh_info <= PT_GNU_MBIND_NUM)
5112 {
5113 /* Mandated PF_R. */
5114 unsigned long p_flags = PF_R;
5115 if ((s->flags & SEC_READONLY) == 0)
5116 p_flags |= PF_W;
5117 if ((s->flags & SEC_CODE) != 0)
5118 p_flags |= PF_X;
5119
5120 amt = sizeof (struct elf_segment_map) + sizeof (asection *);
5121 m = bfd_zalloc (abfd, amt);
5122 if (m == NULL)
5123 goto error_return;
5124 m->next = NULL;
5125 m->p_type = (PT_GNU_MBIND_LO
5126 + elf_section_data (s)->this_hdr.sh_info);
5127 m->count = 1;
5128 m->p_flags_valid = 1;
5129 m->sections[0] = s;
5130 m->p_flags = p_flags;
5131
5132 *pm = m;
5133 pm = &m->next;
5134 }
5135
5136 s = bfd_get_section_by_name (abfd,
5137 NOTE_GNU_PROPERTY_SECTION_NAME);
5138 if (s != NULL && s->size != 0)
5139 {
5140 amt = sizeof (struct elf_segment_map) + sizeof (asection *);
5141 m = bfd_zalloc (abfd, amt);
5142 if (m == NULL)
5143 goto error_return;
5144 m->next = NULL;
5145 m->p_type = PT_GNU_PROPERTY;
5146 m->count = 1;
5147 m->p_flags_valid = 1;
5148 m->sections[0] = s;
5149 m->p_flags = PF_R;
5150 *pm = m;
5151 pm = &m->next;
5152 }
5153
5154 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
5155 segment. */
5156 eh_frame_hdr = elf_eh_frame_hdr (abfd);
5157 if (eh_frame_hdr != NULL
5158 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
5159 {
5160 amt = sizeof (struct elf_segment_map);
5161 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5162 if (m == NULL)
5163 goto error_return;
5164 m->next = NULL;
5165 m->p_type = PT_GNU_EH_FRAME;
5166 m->count = 1;
5167 m->sections[0] = eh_frame_hdr->output_section;
5168
5169 *pm = m;
5170 pm = &m->next;
5171 }
5172
5173 if (elf_stack_flags (abfd))
5174 {
5175 amt = sizeof (struct elf_segment_map);
5176 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5177 if (m == NULL)
5178 goto error_return;
5179 m->next = NULL;
5180 m->p_type = PT_GNU_STACK;
5181 m->p_flags = elf_stack_flags (abfd);
5182 m->p_align = bed->stack_align;
5183 m->p_flags_valid = 1;
5184 m->p_align_valid = m->p_align != 0;
5185 if (info->stacksize > 0)
5186 {
5187 m->p_size = info->stacksize;
5188 m->p_size_valid = 1;
5189 }
5190
5191 *pm = m;
5192 pm = &m->next;
5193 }
5194
5195 if (info != NULL && info->relro)
5196 {
5197 for (m = mfirst; m != NULL; m = m->next)
5198 {
5199 if (m->p_type == PT_LOAD
5200 && m->count != 0
5201 && m->sections[0]->vma >= info->relro_start
5202 && m->sections[0]->vma < info->relro_end)
5203 {
5204 i = m->count;
5205 while (--i != (unsigned) -1)
5206 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS))
5207 == (SEC_LOAD | SEC_HAS_CONTENTS))
5208 break;
5209
5210 if (i != (unsigned) -1)
5211 break;
5212 }
5213 }
5214
5215 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
5216 if (m != NULL)
5217 {
5218 amt = sizeof (struct elf_segment_map);
5219 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5220 if (m == NULL)
5221 goto error_return;
5222 m->next = NULL;
5223 m->p_type = PT_GNU_RELRO;
5224 *pm = m;
5225 pm = &m->next;
5226 }
5227 }
5228
5229 free (sections);
5230 elf_seg_map (abfd) = mfirst;
5231 }
5232
5233 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
5234 return FALSE;
5235
5236 for (count = 0, m = elf_seg_map (abfd); m != NULL; m = m->next)
5237 ++count;
5238 elf_program_header_size (abfd) = count * bed->s->sizeof_phdr;
5239
5240 return TRUE;
5241
5242 error_return:
5243 if (sections != NULL)
5244 free (sections);
5245 return FALSE;
5246 }
5247
5248 /* Sort sections by address. */
5249
5250 static int
5251 elf_sort_sections (const void *arg1, const void *arg2)
5252 {
5253 const asection *sec1 = *(const asection **) arg1;
5254 const asection *sec2 = *(const asection **) arg2;
5255 bfd_size_type size1, size2;
5256
5257 /* Sort by LMA first, since this is the address used to
5258 place the section into a segment. */
5259 if (sec1->lma < sec2->lma)
5260 return -1;
5261 else if (sec1->lma > sec2->lma)
5262 return 1;
5263
5264 /* Then sort by VMA. Normally the LMA and the VMA will be
5265 the same, and this will do nothing. */
5266 if (sec1->vma < sec2->vma)
5267 return -1;
5268 else if (sec1->vma > sec2->vma)
5269 return 1;
5270
5271 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
5272
5273 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
5274
5275 if (TOEND (sec1))
5276 {
5277 if (!TOEND (sec2))
5278 return 1;
5279 }
5280 else if (TOEND (sec2))
5281 return -1;
5282
5283 #undef TOEND
5284
5285 /* Sort by size, to put zero sized sections
5286 before others at the same address. */
5287
5288 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
5289 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
5290
5291 if (size1 < size2)
5292 return -1;
5293 if (size1 > size2)
5294 return 1;
5295
5296 return sec1->target_index - sec2->target_index;
5297 }
5298
5299 /* Ian Lance Taylor writes:
5300
5301 We shouldn't be using % with a negative signed number. That's just
5302 not good. We have to make sure either that the number is not
5303 negative, or that the number has an unsigned type. When the types
5304 are all the same size they wind up as unsigned. When file_ptr is a
5305 larger signed type, the arithmetic winds up as signed long long,
5306 which is wrong.
5307
5308 What we're trying to say here is something like ``increase OFF by
5309 the least amount that will cause it to be equal to the VMA modulo
5310 the page size.'' */
5311 /* In other words, something like:
5312
5313 vma_offset = m->sections[0]->vma % bed->maxpagesize;
5314 off_offset = off % bed->maxpagesize;
5315 if (vma_offset < off_offset)
5316 adjustment = vma_offset + bed->maxpagesize - off_offset;
5317 else
5318 adjustment = vma_offset - off_offset;
5319
5320 which can be collapsed into the expression below. */
5321
5322 static file_ptr
5323 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
5324 {
5325 /* PR binutils/16199: Handle an alignment of zero. */
5326 if (maxpagesize == 0)
5327 maxpagesize = 1;
5328 return ((vma - off) % maxpagesize);
5329 }
5330
5331 static void
5332 print_segment_map (const struct elf_segment_map *m)
5333 {
5334 unsigned int j;
5335 const char *pt = get_segment_type (m->p_type);
5336 char buf[32];
5337
5338 if (pt == NULL)
5339 {
5340 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
5341 sprintf (buf, "LOPROC+%7.7x",
5342 (unsigned int) (m->p_type - PT_LOPROC));
5343 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
5344 sprintf (buf, "LOOS+%7.7x",
5345 (unsigned int) (m->p_type - PT_LOOS));
5346 else
5347 snprintf (buf, sizeof (buf), "%8.8x",
5348 (unsigned int) m->p_type);
5349 pt = buf;
5350 }
5351 fflush (stdout);
5352 fprintf (stderr, "%s:", pt);
5353 for (j = 0; j < m->count; j++)
5354 fprintf (stderr, " %s", m->sections [j]->name);
5355 putc ('\n',stderr);
5356 fflush (stderr);
5357 }
5358
5359 static bfd_boolean
5360 write_zeros (bfd *abfd, file_ptr pos, bfd_size_type len)
5361 {
5362 void *buf;
5363 bfd_boolean ret;
5364
5365 if (bfd_seek (abfd, pos, SEEK_SET) != 0)
5366 return FALSE;
5367 buf = bfd_zmalloc (len);
5368 if (buf == NULL)
5369 return FALSE;
5370 ret = bfd_bwrite (buf, len, abfd) == len;
5371 free (buf);
5372 return ret;
5373 }
5374
5375 /* Assign file positions to the sections based on the mapping from
5376 sections to segments. This function also sets up some fields in
5377 the file header. */
5378
5379 static bfd_boolean
5380 assign_file_positions_for_load_sections (bfd *abfd,
5381 struct bfd_link_info *link_info)
5382 {
5383 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5384 struct elf_segment_map *m;
5385 Elf_Internal_Phdr *phdrs;
5386 Elf_Internal_Phdr *p;
5387 file_ptr off;
5388 bfd_size_type maxpagesize;
5389 unsigned int pt_load_count = 0;
5390 unsigned int alloc;
5391 unsigned int i, j;
5392 bfd_vma header_pad = 0;
5393
5394 if (link_info == NULL
5395 && !_bfd_elf_map_sections_to_segments (abfd, link_info))
5396 return FALSE;
5397
5398 alloc = 0;
5399 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
5400 {
5401 ++alloc;
5402 if (m->header_size)
5403 header_pad = m->header_size;
5404 }
5405
5406 if (alloc)
5407 {
5408 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
5409 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
5410 }
5411 else
5412 {
5413 /* PR binutils/12467. */
5414 elf_elfheader (abfd)->e_phoff = 0;
5415 elf_elfheader (abfd)->e_phentsize = 0;
5416 }
5417
5418 elf_elfheader (abfd)->e_phnum = alloc;
5419
5420 if (elf_program_header_size (abfd) == (bfd_size_type) -1)
5421 elf_program_header_size (abfd) = alloc * bed->s->sizeof_phdr;
5422 else
5423 BFD_ASSERT (elf_program_header_size (abfd)
5424 >= alloc * bed->s->sizeof_phdr);
5425
5426 if (alloc == 0)
5427 {
5428 elf_next_file_pos (abfd) = bed->s->sizeof_ehdr;
5429 return TRUE;
5430 }
5431
5432 /* We're writing the size in elf_program_header_size (abfd),
5433 see assign_file_positions_except_relocs, so make sure we have
5434 that amount allocated, with trailing space cleared.
5435 The variable alloc contains the computed need, while
5436 elf_program_header_size (abfd) contains the size used for the
5437 layout.
5438 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
5439 where the layout is forced to according to a larger size in the
5440 last iterations for the testcase ld-elf/header. */
5441 BFD_ASSERT (elf_program_header_size (abfd) % bed->s->sizeof_phdr
5442 == 0);
5443 phdrs = (Elf_Internal_Phdr *)
5444 bfd_zalloc2 (abfd,
5445 (elf_program_header_size (abfd) / bed->s->sizeof_phdr),
5446 sizeof (Elf_Internal_Phdr));
5447 elf_tdata (abfd)->phdr = phdrs;
5448 if (phdrs == NULL)
5449 return FALSE;
5450
5451 maxpagesize = 1;
5452 if ((abfd->flags & D_PAGED) != 0)
5453 maxpagesize = bed->maxpagesize;
5454
5455 off = bed->s->sizeof_ehdr;
5456 off += alloc * bed->s->sizeof_phdr;
5457 if (header_pad < (bfd_vma) off)
5458 header_pad = 0;
5459 else
5460 header_pad -= off;
5461 off += header_pad;
5462
5463 for (m = elf_seg_map (abfd), p = phdrs, j = 0;
5464 m != NULL;
5465 m = m->next, p++, j++)
5466 {
5467 asection **secpp;
5468 bfd_vma off_adjust;
5469 bfd_boolean no_contents;
5470
5471 /* If elf_segment_map is not from map_sections_to_segments, the
5472 sections may not be correctly ordered. NOTE: sorting should
5473 not be done to the PT_NOTE section of a corefile, which may
5474 contain several pseudo-sections artificially created by bfd.
5475 Sorting these pseudo-sections breaks things badly. */
5476 if (m->count > 1
5477 && !(elf_elfheader (abfd)->e_type == ET_CORE
5478 && m->p_type == PT_NOTE))
5479 {
5480 for (i = 0; i < m->count; i++)
5481 m->sections[i]->target_index = i;
5482 qsort (m->sections, (size_t) m->count, sizeof (asection *),
5483 elf_sort_sections);
5484 }
5485
5486 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
5487 number of sections with contents contributing to both p_filesz
5488 and p_memsz, followed by a number of sections with no contents
5489 that just contribute to p_memsz. In this loop, OFF tracks next
5490 available file offset for PT_LOAD and PT_NOTE segments. */
5491 p->p_type = m->p_type;
5492 p->p_flags = m->p_flags;
5493
5494 if (m->count == 0)
5495 p->p_vaddr = m->p_vaddr_offset;
5496 else
5497 p->p_vaddr = m->sections[0]->vma + m->p_vaddr_offset;
5498
5499 if (m->p_paddr_valid)
5500 p->p_paddr = m->p_paddr;
5501 else if (m->count == 0)
5502 p->p_paddr = 0;
5503 else
5504 p->p_paddr = m->sections[0]->lma + m->p_vaddr_offset;
5505
5506 if (p->p_type == PT_LOAD
5507 && (abfd->flags & D_PAGED) != 0)
5508 {
5509 /* p_align in demand paged PT_LOAD segments effectively stores
5510 the maximum page size. When copying an executable with
5511 objcopy, we set m->p_align from the input file. Use this
5512 value for maxpagesize rather than bed->maxpagesize, which
5513 may be different. Note that we use maxpagesize for PT_TLS
5514 segment alignment later in this function, so we are relying
5515 on at least one PT_LOAD segment appearing before a PT_TLS
5516 segment. */
5517 if (m->p_align_valid)
5518 maxpagesize = m->p_align;
5519
5520 p->p_align = maxpagesize;
5521 pt_load_count += 1;
5522 }
5523 else if (m->p_align_valid)
5524 p->p_align = m->p_align;
5525 else if (m->count == 0)
5526 p->p_align = 1 << bed->s->log_file_align;
5527 else
5528 p->p_align = 0;
5529
5530 no_contents = FALSE;
5531 off_adjust = 0;
5532 if (p->p_type == PT_LOAD
5533 && m->count > 0)
5534 {
5535 bfd_size_type align;
5536 unsigned int align_power = 0;
5537
5538 if (m->p_align_valid)
5539 align = p->p_align;
5540 else
5541 {
5542 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
5543 {
5544 unsigned int secalign;
5545
5546 secalign = bfd_section_alignment (*secpp);
5547 if (secalign > align_power)
5548 align_power = secalign;
5549 }
5550 align = (bfd_size_type) 1 << align_power;
5551 if (align < maxpagesize)
5552 align = maxpagesize;
5553 }
5554
5555 for (i = 0; i < m->count; i++)
5556 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
5557 /* If we aren't making room for this section, then
5558 it must be SHT_NOBITS regardless of what we've
5559 set via struct bfd_elf_special_section. */
5560 elf_section_type (m->sections[i]) = SHT_NOBITS;
5561
5562 /* Find out whether this segment contains any loadable
5563 sections. */
5564 no_contents = TRUE;
5565 for (i = 0; i < m->count; i++)
5566 if (elf_section_type (m->sections[i]) != SHT_NOBITS)
5567 {
5568 no_contents = FALSE;
5569 break;
5570 }
5571
5572 off_adjust = vma_page_aligned_bias (p->p_vaddr, off, align);
5573
5574 /* Broken hardware and/or kernel require that files do not
5575 map the same page with different permissions on some hppa
5576 processors. */
5577 if (pt_load_count > 1
5578 && bed->no_page_alias
5579 && (off & (maxpagesize - 1)) != 0
5580 && (off & -maxpagesize) == ((off + off_adjust) & -maxpagesize))
5581 off_adjust += maxpagesize;
5582 off += off_adjust;
5583 if (no_contents)
5584 {
5585 /* We shouldn't need to align the segment on disk since
5586 the segment doesn't need file space, but the gABI
5587 arguably requires the alignment and glibc ld.so
5588 checks it. So to comply with the alignment
5589 requirement but not waste file space, we adjust
5590 p_offset for just this segment. (OFF_ADJUST is
5591 subtracted from OFF later.) This may put p_offset
5592 past the end of file, but that shouldn't matter. */
5593 }
5594 else
5595 off_adjust = 0;
5596 }
5597 /* Make sure the .dynamic section is the first section in the
5598 PT_DYNAMIC segment. */
5599 else if (p->p_type == PT_DYNAMIC
5600 && m->count > 1
5601 && strcmp (m->sections[0]->name, ".dynamic") != 0)
5602 {
5603 _bfd_error_handler
5604 (_("%pB: The first section in the PT_DYNAMIC segment"
5605 " is not the .dynamic section"),
5606 abfd);
5607 bfd_set_error (bfd_error_bad_value);
5608 return FALSE;
5609 }
5610 /* Set the note section type to SHT_NOTE. */
5611 else if (p->p_type == PT_NOTE)
5612 for (i = 0; i < m->count; i++)
5613 elf_section_type (m->sections[i]) = SHT_NOTE;
5614
5615 p->p_offset = 0;
5616 p->p_filesz = 0;
5617 p->p_memsz = 0;
5618
5619 if (m->includes_filehdr)
5620 {
5621 if (!m->p_flags_valid)
5622 p->p_flags |= PF_R;
5623 p->p_filesz = bed->s->sizeof_ehdr;
5624 p->p_memsz = bed->s->sizeof_ehdr;
5625 if (m->count > 0)
5626 {
5627 if (p->p_vaddr < (bfd_vma) off
5628 || (!m->p_paddr_valid
5629 && p->p_paddr < (bfd_vma) off))
5630 {
5631 _bfd_error_handler
5632 (_("%pB: not enough room for program headers,"
5633 " try linking with -N"),
5634 abfd);
5635 bfd_set_error (bfd_error_bad_value);
5636 return FALSE;
5637 }
5638
5639 p->p_vaddr -= off;
5640 if (!m->p_paddr_valid)
5641 p->p_paddr -= off;
5642 }
5643 }
5644
5645 if (m->includes_phdrs)
5646 {
5647 if (!m->p_flags_valid)
5648 p->p_flags |= PF_R;
5649
5650 if (!m->includes_filehdr)
5651 {
5652 p->p_offset = bed->s->sizeof_ehdr;
5653
5654 if (m->count > 0)
5655 {
5656 p->p_vaddr -= off - p->p_offset;
5657 if (!m->p_paddr_valid)
5658 p->p_paddr -= off - p->p_offset;
5659 }
5660 }
5661
5662 p->p_filesz += alloc * bed->s->sizeof_phdr;
5663 p->p_memsz += alloc * bed->s->sizeof_phdr;
5664 if (m->count)
5665 {
5666 p->p_filesz += header_pad;
5667 p->p_memsz += header_pad;
5668 }
5669 }
5670
5671 if (p->p_type == PT_LOAD
5672 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
5673 {
5674 if (!m->includes_filehdr && !m->includes_phdrs)
5675 p->p_offset = off;
5676 else
5677 {
5678 file_ptr adjust;
5679
5680 adjust = off - (p->p_offset + p->p_filesz);
5681 if (!no_contents)
5682 p->p_filesz += adjust;
5683 p->p_memsz += adjust;
5684 }
5685 }
5686
5687 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
5688 maps. Set filepos for sections in PT_LOAD segments, and in
5689 core files, for sections in PT_NOTE segments.
5690 assign_file_positions_for_non_load_sections will set filepos
5691 for other sections and update p_filesz for other segments. */
5692 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
5693 {
5694 asection *sec;
5695 bfd_size_type align;
5696 Elf_Internal_Shdr *this_hdr;
5697
5698 sec = *secpp;
5699 this_hdr = &elf_section_data (sec)->this_hdr;
5700 align = (bfd_size_type) 1 << bfd_section_alignment (sec);
5701
5702 if ((p->p_type == PT_LOAD
5703 || p->p_type == PT_TLS)
5704 && (this_hdr->sh_type != SHT_NOBITS
5705 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
5706 && ((this_hdr->sh_flags & SHF_TLS) == 0
5707 || p->p_type == PT_TLS))))
5708 {
5709 bfd_vma p_start = p->p_paddr;
5710 bfd_vma p_end = p_start + p->p_memsz;
5711 bfd_vma s_start = sec->lma;
5712 bfd_vma adjust = s_start - p_end;
5713
5714 if (adjust != 0
5715 && (s_start < p_end
5716 || p_end < p_start))
5717 {
5718 _bfd_error_handler
5719 /* xgettext:c-format */
5720 (_("%pB: section %pA lma %#" PRIx64 " adjusted to %#" PRIx64),
5721 abfd, sec, (uint64_t) s_start, (uint64_t) p_end);
5722 adjust = 0;
5723 sec->lma = p_end;
5724 }
5725 p->p_memsz += adjust;
5726
5727 if (this_hdr->sh_type != SHT_NOBITS)
5728 {
5729 if (p->p_filesz + adjust < p->p_memsz)
5730 {
5731 /* We have a PROGBITS section following NOBITS ones.
5732 Allocate file space for the NOBITS section(s) and
5733 zero it. */
5734 adjust = p->p_memsz - p->p_filesz;
5735 if (!write_zeros (abfd, off, adjust))
5736 return FALSE;
5737 }
5738 off += adjust;
5739 p->p_filesz += adjust;
5740 }
5741 }
5742
5743 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
5744 {
5745 /* The section at i == 0 is the one that actually contains
5746 everything. */
5747 if (i == 0)
5748 {
5749 this_hdr->sh_offset = sec->filepos = off;
5750 off += this_hdr->sh_size;
5751 p->p_filesz = this_hdr->sh_size;
5752 p->p_memsz = 0;
5753 p->p_align = 1;
5754 }
5755 else
5756 {
5757 /* The rest are fake sections that shouldn't be written. */
5758 sec->filepos = 0;
5759 sec->size = 0;
5760 sec->flags = 0;
5761 continue;
5762 }
5763 }
5764 else
5765 {
5766 if (p->p_type == PT_LOAD)
5767 {
5768 this_hdr->sh_offset = sec->filepos = off;
5769 if (this_hdr->sh_type != SHT_NOBITS)
5770 off += this_hdr->sh_size;
5771 }
5772 else if (this_hdr->sh_type == SHT_NOBITS
5773 && (this_hdr->sh_flags & SHF_TLS) != 0
5774 && this_hdr->sh_offset == 0)
5775 {
5776 /* This is a .tbss section that didn't get a PT_LOAD.
5777 (See _bfd_elf_map_sections_to_segments "Create a
5778 final PT_LOAD".) Set sh_offset to the value it
5779 would have if we had created a zero p_filesz and
5780 p_memsz PT_LOAD header for the section. This
5781 also makes the PT_TLS header have the same
5782 p_offset value. */
5783 bfd_vma adjust = vma_page_aligned_bias (this_hdr->sh_addr,
5784 off, align);
5785 this_hdr->sh_offset = sec->filepos = off + adjust;
5786 }
5787
5788 if (this_hdr->sh_type != SHT_NOBITS)
5789 {
5790 p->p_filesz += this_hdr->sh_size;
5791 /* A load section without SHF_ALLOC is something like
5792 a note section in a PT_NOTE segment. These take
5793 file space but are not loaded into memory. */
5794 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5795 p->p_memsz += this_hdr->sh_size;
5796 }
5797 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5798 {
5799 if (p->p_type == PT_TLS)
5800 p->p_memsz += this_hdr->sh_size;
5801
5802 /* .tbss is special. It doesn't contribute to p_memsz of
5803 normal segments. */
5804 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
5805 p->p_memsz += this_hdr->sh_size;
5806 }
5807
5808 if (align > p->p_align
5809 && !m->p_align_valid
5810 && (p->p_type != PT_LOAD
5811 || (abfd->flags & D_PAGED) == 0))
5812 p->p_align = align;
5813 }
5814
5815 if (!m->p_flags_valid)
5816 {
5817 p->p_flags |= PF_R;
5818 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
5819 p->p_flags |= PF_X;
5820 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
5821 p->p_flags |= PF_W;
5822 }
5823 }
5824
5825 off -= off_adjust;
5826
5827 /* Check that all sections are in a PT_LOAD segment.
5828 Don't check funky gdb generated core files. */
5829 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
5830 {
5831 bfd_boolean check_vma = TRUE;
5832
5833 for (i = 1; i < m->count; i++)
5834 if (m->sections[i]->vma == m->sections[i - 1]->vma
5835 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i])
5836 ->this_hdr), p) != 0
5837 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i - 1])
5838 ->this_hdr), p) != 0)
5839 {
5840 /* Looks like we have overlays packed into the segment. */
5841 check_vma = FALSE;
5842 break;
5843 }
5844
5845 for (i = 0; i < m->count; i++)
5846 {
5847 Elf_Internal_Shdr *this_hdr;
5848 asection *sec;
5849
5850 sec = m->sections[i];
5851 this_hdr = &(elf_section_data(sec)->this_hdr);
5852 if (!ELF_SECTION_IN_SEGMENT_1 (this_hdr, p, check_vma, 0)
5853 && !ELF_TBSS_SPECIAL (this_hdr, p))
5854 {
5855 _bfd_error_handler
5856 /* xgettext:c-format */
5857 (_("%pB: section `%pA' can't be allocated in segment %d"),
5858 abfd, sec, j);
5859 print_segment_map (m);
5860 }
5861 }
5862 }
5863 }
5864
5865 elf_next_file_pos (abfd) = off;
5866 return TRUE;
5867 }
5868
5869 /* Determine if a bfd is a debuginfo file. Unfortunately there
5870 is no defined method for detecting such files, so we have to
5871 use heuristics instead. */
5872
5873 bfd_boolean
5874 is_debuginfo_file (bfd *abfd)
5875 {
5876 if (abfd == NULL || bfd_get_flavour (abfd) != bfd_target_elf_flavour)
5877 return FALSE;
5878
5879 Elf_Internal_Shdr **start_headers = elf_elfsections (abfd);
5880 Elf_Internal_Shdr **end_headers = start_headers + elf_numsections (abfd);
5881 Elf_Internal_Shdr **headerp;
5882
5883 for (headerp = start_headers; headerp < end_headers; headerp ++)
5884 {
5885 Elf_Internal_Shdr *header = * headerp;
5886
5887 /* Debuginfo files do not have any allocated SHT_PROGBITS sections.
5888 The only allocated sections are SHT_NOBITS or SHT_NOTES. */
5889 if ((header->sh_flags & SHF_ALLOC) == SHF_ALLOC
5890 && header->sh_type != SHT_NOBITS
5891 && header->sh_type != SHT_NOTE)
5892 return FALSE;
5893 }
5894
5895 return TRUE;
5896 }
5897
5898 /* Assign file positions for the other sections, except for compressed debugging
5899 and other sections assigned in _bfd_elf_assign_file_positions_for_non_load(). */
5900
5901 static bfd_boolean
5902 assign_file_positions_for_non_load_sections (bfd *abfd,
5903 struct bfd_link_info *link_info)
5904 {
5905 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5906 Elf_Internal_Shdr **i_shdrpp;
5907 Elf_Internal_Shdr **hdrpp, **end_hdrpp;
5908 Elf_Internal_Phdr *phdrs;
5909 Elf_Internal_Phdr *p;
5910 struct elf_segment_map *m;
5911 struct elf_segment_map *hdrs_segment;
5912 bfd_vma filehdr_vaddr, filehdr_paddr;
5913 bfd_vma phdrs_vaddr, phdrs_paddr;
5914 file_ptr off;
5915 unsigned int count;
5916
5917 i_shdrpp = elf_elfsections (abfd);
5918 end_hdrpp = i_shdrpp + elf_numsections (abfd);
5919 off = elf_next_file_pos (abfd);
5920 for (hdrpp = i_shdrpp + 1; hdrpp < end_hdrpp; hdrpp++)
5921 {
5922 Elf_Internal_Shdr *hdr;
5923
5924 hdr = *hdrpp;
5925 if (hdr->bfd_section != NULL
5926 && (hdr->bfd_section->filepos != 0
5927 || (hdr->sh_type == SHT_NOBITS
5928 && hdr->contents == NULL)))
5929 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
5930 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
5931 {
5932 if (hdr->sh_size != 0
5933 /* PR 24717 - debuginfo files are known to be not strictly
5934 compliant with the ELF standard. In particular they often
5935 have .note.gnu.property sections that are outside of any
5936 loadable segment. This is not a problem for such files,
5937 so do not warn about them. */
5938 && ! is_debuginfo_file (abfd))
5939 _bfd_error_handler
5940 /* xgettext:c-format */
5941 (_("%pB: warning: allocated section `%s' not in segment"),
5942 abfd,
5943 (hdr->bfd_section == NULL
5944 ? "*unknown*"
5945 : hdr->bfd_section->name));
5946 /* We don't need to page align empty sections. */
5947 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
5948 off += vma_page_aligned_bias (hdr->sh_addr, off,
5949 bed->maxpagesize);
5950 else
5951 off += vma_page_aligned_bias (hdr->sh_addr, off,
5952 hdr->sh_addralign);
5953 off = _bfd_elf_assign_file_position_for_section (hdr, off,
5954 FALSE);
5955 }
5956 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
5957 && hdr->bfd_section == NULL)
5958 /* We don't know the offset of these sections yet: their size has
5959 not been decided. */
5960 || (hdr->bfd_section != NULL
5961 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS
5962 || (bfd_section_is_ctf (hdr->bfd_section)
5963 && abfd->is_linker_output)))
5964 || hdr == i_shdrpp[elf_onesymtab (abfd)]
5965 || (elf_symtab_shndx_list (abfd) != NULL
5966 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
5967 || hdr == i_shdrpp[elf_strtab_sec (abfd)]
5968 || hdr == i_shdrpp[elf_shstrtab_sec (abfd)])
5969 hdr->sh_offset = -1;
5970 else
5971 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
5972 }
5973
5974 /* Now that we have set the section file positions, we can set up
5975 the file positions for the non PT_LOAD segments. */
5976 count = 0;
5977 filehdr_vaddr = 0;
5978 filehdr_paddr = 0;
5979 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
5980 phdrs_paddr = 0;
5981 hdrs_segment = NULL;
5982 phdrs = elf_tdata (abfd)->phdr;
5983 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
5984 {
5985 ++count;
5986 if (p->p_type != PT_LOAD)
5987 continue;
5988
5989 if (m->includes_filehdr)
5990 {
5991 filehdr_vaddr = p->p_vaddr;
5992 filehdr_paddr = p->p_paddr;
5993 }
5994 if (m->includes_phdrs)
5995 {
5996 phdrs_vaddr = p->p_vaddr;
5997 phdrs_paddr = p->p_paddr;
5998 if (m->includes_filehdr)
5999 {
6000 hdrs_segment = m;
6001 phdrs_vaddr += bed->s->sizeof_ehdr;
6002 phdrs_paddr += bed->s->sizeof_ehdr;
6003 }
6004 }
6005 }
6006
6007 if (hdrs_segment != NULL && link_info != NULL)
6008 {
6009 /* There is a segment that contains both the file headers and the
6010 program headers, so provide a symbol __ehdr_start pointing there.
6011 A program can use this to examine itself robustly. */
6012
6013 struct elf_link_hash_entry *hash
6014 = elf_link_hash_lookup (elf_hash_table (link_info), "__ehdr_start",
6015 FALSE, FALSE, TRUE);
6016 /* If the symbol was referenced and not defined, define it. */
6017 if (hash != NULL
6018 && (hash->root.type == bfd_link_hash_new
6019 || hash->root.type == bfd_link_hash_undefined
6020 || hash->root.type == bfd_link_hash_undefweak
6021 || hash->root.type == bfd_link_hash_common))
6022 {
6023 asection *s = NULL;
6024 if (hdrs_segment->count != 0)
6025 /* The segment contains sections, so use the first one. */
6026 s = hdrs_segment->sections[0];
6027 else
6028 /* Use the first (i.e. lowest-addressed) section in any segment. */
6029 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
6030 if (m->count != 0)
6031 {
6032 s = m->sections[0];
6033 break;
6034 }
6035
6036 if (s != NULL)
6037 {
6038 hash->root.u.def.value = filehdr_vaddr - s->vma;
6039 hash->root.u.def.section = s;
6040 }
6041 else
6042 {
6043 hash->root.u.def.value = filehdr_vaddr;
6044 hash->root.u.def.section = bfd_abs_section_ptr;
6045 }
6046
6047 hash->root.type = bfd_link_hash_defined;
6048 hash->def_regular = 1;
6049 hash->non_elf = 0;
6050 }
6051 }
6052
6053 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
6054 {
6055 if (p->p_type == PT_GNU_RELRO)
6056 {
6057 bfd_vma start, end;
6058 bfd_boolean ok;
6059
6060 if (link_info != NULL)
6061 {
6062 /* During linking the range of the RELRO segment is passed
6063 in link_info. Note that there may be padding between
6064 relro_start and the first RELRO section. */
6065 start = link_info->relro_start;
6066 end = link_info->relro_end;
6067 }
6068 else if (m->count != 0)
6069 {
6070 if (!m->p_size_valid)
6071 abort ();
6072 start = m->sections[0]->vma;
6073 end = start + m->p_size;
6074 }
6075 else
6076 {
6077 start = 0;
6078 end = 0;
6079 }
6080
6081 ok = FALSE;
6082 if (start < end)
6083 {
6084 struct elf_segment_map *lm;
6085 const Elf_Internal_Phdr *lp;
6086 unsigned int i;
6087
6088 /* Find a LOAD segment containing a section in the RELRO
6089 segment. */
6090 for (lm = elf_seg_map (abfd), lp = phdrs;
6091 lm != NULL;
6092 lm = lm->next, lp++)
6093 {
6094 if (lp->p_type == PT_LOAD
6095 && lm->count != 0
6096 && (lm->sections[lm->count - 1]->vma
6097 + (!IS_TBSS (lm->sections[lm->count - 1])
6098 ? lm->sections[lm->count - 1]->size
6099 : 0)) > start
6100 && lm->sections[0]->vma < end)
6101 break;
6102 }
6103
6104 if (lm != NULL)
6105 {
6106 /* Find the section starting the RELRO segment. */
6107 for (i = 0; i < lm->count; i++)
6108 {
6109 asection *s = lm->sections[i];
6110 if (s->vma >= start
6111 && s->vma < end
6112 && s->size != 0)
6113 break;
6114 }
6115
6116 if (i < lm->count)
6117 {
6118 p->p_vaddr = lm->sections[i]->vma;
6119 p->p_paddr = lm->sections[i]->lma;
6120 p->p_offset = lm->sections[i]->filepos;
6121 p->p_memsz = end - p->p_vaddr;
6122 p->p_filesz = p->p_memsz;
6123
6124 /* The RELRO segment typically ends a few bytes
6125 into .got.plt but other layouts are possible.
6126 In cases where the end does not match any
6127 loaded section (for instance is in file
6128 padding), trim p_filesz back to correspond to
6129 the end of loaded section contents. */
6130 if (p->p_filesz > lp->p_vaddr + lp->p_filesz - p->p_vaddr)
6131 p->p_filesz = lp->p_vaddr + lp->p_filesz - p->p_vaddr;
6132
6133 /* Preserve the alignment and flags if they are
6134 valid. The gold linker generates RW/4 for
6135 the PT_GNU_RELRO section. It is better for
6136 objcopy/strip to honor these attributes
6137 otherwise gdb will choke when using separate
6138 debug files. */
6139 if (!m->p_align_valid)
6140 p->p_align = 1;
6141 if (!m->p_flags_valid)
6142 p->p_flags = PF_R;
6143 ok = TRUE;
6144 }
6145 }
6146 }
6147 if (link_info != NULL)
6148 BFD_ASSERT (ok);
6149 if (!ok)
6150 memset (p, 0, sizeof *p);
6151 }
6152 else if (p->p_type == PT_GNU_STACK)
6153 {
6154 if (m->p_size_valid)
6155 p->p_memsz = m->p_size;
6156 }
6157 else if (m->count != 0)
6158 {
6159 unsigned int i;
6160
6161 if (p->p_type != PT_LOAD
6162 && (p->p_type != PT_NOTE
6163 || bfd_get_format (abfd) != bfd_core))
6164 {
6165 /* A user specified segment layout may include a PHDR
6166 segment that overlaps with a LOAD segment... */
6167 if (p->p_type == PT_PHDR)
6168 {
6169 m->count = 0;
6170 continue;
6171 }
6172
6173 if (m->includes_filehdr || m->includes_phdrs)
6174 {
6175 /* PR 17512: file: 2195325e. */
6176 _bfd_error_handler
6177 (_("%pB: error: non-load segment %d includes file header "
6178 "and/or program header"),
6179 abfd, (int) (p - phdrs));
6180 return FALSE;
6181 }
6182
6183 p->p_filesz = 0;
6184 p->p_offset = m->sections[0]->filepos;
6185 for (i = m->count; i-- != 0;)
6186 {
6187 asection *sect = m->sections[i];
6188 Elf_Internal_Shdr *hdr = &elf_section_data (sect)->this_hdr;
6189 if (hdr->sh_type != SHT_NOBITS)
6190 {
6191 p->p_filesz = (sect->filepos - m->sections[0]->filepos
6192 + hdr->sh_size);
6193 break;
6194 }
6195 }
6196 }
6197 }
6198 else if (m->includes_filehdr)
6199 {
6200 p->p_vaddr = filehdr_vaddr;
6201 if (! m->p_paddr_valid)
6202 p->p_paddr = filehdr_paddr;
6203 }
6204 else if (m->includes_phdrs)
6205 {
6206 p->p_vaddr = phdrs_vaddr;
6207 if (! m->p_paddr_valid)
6208 p->p_paddr = phdrs_paddr;
6209 }
6210 }
6211
6212 elf_next_file_pos (abfd) = off;
6213
6214 return TRUE;
6215 }
6216
6217 static elf_section_list *
6218 find_section_in_list (unsigned int i, elf_section_list * list)
6219 {
6220 for (;list != NULL; list = list->next)
6221 if (list->ndx == i)
6222 break;
6223 return list;
6224 }
6225
6226 /* Work out the file positions of all the sections. This is called by
6227 _bfd_elf_compute_section_file_positions. All the section sizes and
6228 VMAs must be known before this is called.
6229
6230 Reloc sections come in two flavours: Those processed specially as
6231 "side-channel" data attached to a section to which they apply, and those that
6232 bfd doesn't process as relocations. The latter sort are stored in a normal
6233 bfd section by bfd_section_from_shdr. We don't consider the former sort
6234 here, unless they form part of the loadable image. Reloc sections not
6235 assigned here (and compressed debugging sections and CTF sections which
6236 nothing else in the file can rely upon) will be handled later by
6237 assign_file_positions_for_relocs.
6238
6239 We also don't set the positions of the .symtab and .strtab here. */
6240
6241 static bfd_boolean
6242 assign_file_positions_except_relocs (bfd *abfd,
6243 struct bfd_link_info *link_info)
6244 {
6245 struct elf_obj_tdata *tdata = elf_tdata (abfd);
6246 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
6247 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6248
6249 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
6250 && bfd_get_format (abfd) != bfd_core)
6251 {
6252 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
6253 unsigned int num_sec = elf_numsections (abfd);
6254 Elf_Internal_Shdr **hdrpp;
6255 unsigned int i;
6256 file_ptr off;
6257
6258 /* Start after the ELF header. */
6259 off = i_ehdrp->e_ehsize;
6260
6261 /* We are not creating an executable, which means that we are
6262 not creating a program header, and that the actual order of
6263 the sections in the file is unimportant. */
6264 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
6265 {
6266 Elf_Internal_Shdr *hdr;
6267
6268 hdr = *hdrpp;
6269 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
6270 && hdr->bfd_section == NULL)
6271 /* Do not assign offsets for these sections yet: we don't know
6272 their sizes. */
6273 || (hdr->bfd_section != NULL
6274 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS
6275 || (bfd_section_is_ctf (hdr->bfd_section)
6276 && abfd->is_linker_output)))
6277 || i == elf_onesymtab (abfd)
6278 || (elf_symtab_shndx_list (abfd) != NULL
6279 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
6280 || i == elf_strtab_sec (abfd)
6281 || i == elf_shstrtab_sec (abfd))
6282 {
6283 hdr->sh_offset = -1;
6284 }
6285 else
6286 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
6287 }
6288
6289 elf_next_file_pos (abfd) = off;
6290 }
6291 else
6292 {
6293 unsigned int alloc;
6294
6295 /* Assign file positions for the loaded sections based on the
6296 assignment of sections to segments. */
6297 if (!assign_file_positions_for_load_sections (abfd, link_info))
6298 return FALSE;
6299
6300 /* And for non-load sections. */
6301 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
6302 return FALSE;
6303
6304 if (bed->elf_backend_modify_program_headers != NULL)
6305 {
6306 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
6307 return FALSE;
6308 }
6309
6310 /* Set e_type in ELF header to ET_EXEC for -pie -Ttext-segment=. */
6311 if (link_info != NULL && bfd_link_pie (link_info))
6312 {
6313 unsigned int num_segments = elf_elfheader (abfd)->e_phnum;
6314 Elf_Internal_Phdr *segment = elf_tdata (abfd)->phdr;
6315 Elf_Internal_Phdr *end_segment = &segment[num_segments];
6316
6317 /* Find the lowest p_vaddr in PT_LOAD segments. */
6318 bfd_vma p_vaddr = (bfd_vma) -1;
6319 for (; segment < end_segment; segment++)
6320 if (segment->p_type == PT_LOAD && p_vaddr > segment->p_vaddr)
6321 p_vaddr = segment->p_vaddr;
6322
6323 /* Set e_type to ET_EXEC if the lowest p_vaddr in PT_LOAD
6324 segments is non-zero. */
6325 if (p_vaddr)
6326 i_ehdrp->e_type = ET_EXEC;
6327 }
6328
6329 /* Write out the program headers. */
6330 alloc = elf_elfheader (abfd)->e_phnum;
6331 if (alloc == 0)
6332 return TRUE;
6333
6334 /* PR ld/20815 - Check that the program header segment, if present, will
6335 be loaded into memory. FIXME: The check below is not sufficient as
6336 really all PT_LOAD segments should be checked before issuing an error
6337 message. Plus the PHDR segment does not have to be the first segment
6338 in the program header table. But this version of the check should
6339 catch all real world use cases.
6340
6341 FIXME: We used to have code here to sort the PT_LOAD segments into
6342 ascending order, as per the ELF spec. But this breaks some programs,
6343 including the Linux kernel. But really either the spec should be
6344 changed or the programs updated. */
6345 if (alloc > 1
6346 && tdata->phdr[0].p_type == PT_PHDR
6347 && (bed->elf_backend_allow_non_load_phdr == NULL
6348 || !bed->elf_backend_allow_non_load_phdr (abfd, tdata->phdr,
6349 alloc))
6350 && tdata->phdr[1].p_type == PT_LOAD
6351 && (tdata->phdr[1].p_vaddr > tdata->phdr[0].p_vaddr
6352 || (tdata->phdr[1].p_vaddr + tdata->phdr[1].p_memsz
6353 < tdata->phdr[0].p_vaddr + tdata->phdr[0].p_memsz)))
6354 {
6355 /* The fix for this error is usually to edit the linker script being
6356 used and set up the program headers manually. Either that or
6357 leave room for the headers at the start of the SECTIONS. */
6358 _bfd_error_handler (_("%pB: error: PHDR segment not covered"
6359 " by LOAD segment"),
6360 abfd);
6361 return FALSE;
6362 }
6363
6364 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
6365 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
6366 return FALSE;
6367 }
6368
6369 return TRUE;
6370 }
6371
6372 static bfd_boolean
6373 prep_headers (bfd *abfd)
6374 {
6375 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form. */
6376 struct elf_strtab_hash *shstrtab;
6377 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6378
6379 i_ehdrp = elf_elfheader (abfd);
6380
6381 shstrtab = _bfd_elf_strtab_init ();
6382 if (shstrtab == NULL)
6383 return FALSE;
6384
6385 elf_shstrtab (abfd) = shstrtab;
6386
6387 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
6388 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
6389 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
6390 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
6391
6392 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
6393 i_ehdrp->e_ident[EI_DATA] =
6394 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
6395 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
6396
6397 if ((abfd->flags & DYNAMIC) != 0)
6398 i_ehdrp->e_type = ET_DYN;
6399 else if ((abfd->flags & EXEC_P) != 0)
6400 i_ehdrp->e_type = ET_EXEC;
6401 else if (bfd_get_format (abfd) == bfd_core)
6402 i_ehdrp->e_type = ET_CORE;
6403 else
6404 i_ehdrp->e_type = ET_REL;
6405
6406 switch (bfd_get_arch (abfd))
6407 {
6408 case bfd_arch_unknown:
6409 i_ehdrp->e_machine = EM_NONE;
6410 break;
6411
6412 /* There used to be a long list of cases here, each one setting
6413 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
6414 in the corresponding bfd definition. To avoid duplication,
6415 the switch was removed. Machines that need special handling
6416 can generally do it in elf_backend_final_write_processing(),
6417 unless they need the information earlier than the final write.
6418 Such need can generally be supplied by replacing the tests for
6419 e_machine with the conditions used to determine it. */
6420 default:
6421 i_ehdrp->e_machine = bed->elf_machine_code;
6422 }
6423
6424 i_ehdrp->e_version = bed->s->ev_current;
6425 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
6426
6427 /* No program header, for now. */
6428 i_ehdrp->e_phoff = 0;
6429 i_ehdrp->e_phentsize = 0;
6430 i_ehdrp->e_phnum = 0;
6431
6432 /* Each bfd section is section header entry. */
6433 i_ehdrp->e_entry = bfd_get_start_address (abfd);
6434 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
6435
6436 /* If we're building an executable, we'll need a program header table. */
6437 if (abfd->flags & EXEC_P)
6438 /* It all happens later. */
6439 ;
6440 else
6441 {
6442 i_ehdrp->e_phentsize = 0;
6443 i_ehdrp->e_phoff = 0;
6444 }
6445
6446 elf_tdata (abfd)->symtab_hdr.sh_name =
6447 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
6448 elf_tdata (abfd)->strtab_hdr.sh_name =
6449 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
6450 elf_tdata (abfd)->shstrtab_hdr.sh_name =
6451 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
6452 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
6453 || elf_tdata (abfd)->strtab_hdr.sh_name == (unsigned int) -1
6454 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
6455 return FALSE;
6456
6457 return TRUE;
6458 }
6459
6460 /* Assign file positions for all the reloc sections which are not part
6461 of the loadable file image, and the file position of section headers. */
6462
6463 static bfd_boolean
6464 _bfd_elf_assign_file_positions_for_non_load (bfd *abfd)
6465 {
6466 file_ptr off;
6467 Elf_Internal_Shdr **shdrpp, **end_shdrpp;
6468 Elf_Internal_Shdr *shdrp;
6469 Elf_Internal_Ehdr *i_ehdrp;
6470 const struct elf_backend_data *bed;
6471
6472 off = elf_next_file_pos (abfd);
6473
6474 shdrpp = elf_elfsections (abfd);
6475 end_shdrpp = shdrpp + elf_numsections (abfd);
6476 for (shdrpp++; shdrpp < end_shdrpp; shdrpp++)
6477 {
6478 shdrp = *shdrpp;
6479 if (shdrp->sh_offset == -1)
6480 {
6481 asection *sec = shdrp->bfd_section;
6482 bfd_boolean is_rel = (shdrp->sh_type == SHT_REL
6483 || shdrp->sh_type == SHT_RELA);
6484 bfd_boolean is_ctf = sec && bfd_section_is_ctf (sec);
6485 if (is_rel
6486 || is_ctf
6487 || (sec != NULL && (sec->flags & SEC_ELF_COMPRESS)))
6488 {
6489 if (!is_rel && !is_ctf)
6490 {
6491 const char *name = sec->name;
6492 struct bfd_elf_section_data *d;
6493
6494 /* Compress DWARF debug sections. */
6495 if (!bfd_compress_section (abfd, sec,
6496 shdrp->contents))
6497 return FALSE;
6498
6499 if (sec->compress_status == COMPRESS_SECTION_DONE
6500 && (abfd->flags & BFD_COMPRESS_GABI) == 0)
6501 {
6502 /* If section is compressed with zlib-gnu, convert
6503 section name from .debug_* to .zdebug_*. */
6504 char *new_name
6505 = convert_debug_to_zdebug (abfd, name);
6506 if (new_name == NULL)
6507 return FALSE;
6508 name = new_name;
6509 }
6510 /* Add section name to section name section. */
6511 if (shdrp->sh_name != (unsigned int) -1)
6512 abort ();
6513 shdrp->sh_name
6514 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
6515 name, FALSE);
6516 d = elf_section_data (sec);
6517
6518 /* Add reloc section name to section name section. */
6519 if (d->rel.hdr
6520 && !_bfd_elf_set_reloc_sh_name (abfd,
6521 d->rel.hdr,
6522 name, FALSE))
6523 return FALSE;
6524 if (d->rela.hdr
6525 && !_bfd_elf_set_reloc_sh_name (abfd,
6526 d->rela.hdr,
6527 name, TRUE))
6528 return FALSE;
6529
6530 /* Update section size and contents. */
6531 shdrp->sh_size = sec->size;
6532 shdrp->contents = sec->contents;
6533 shdrp->bfd_section->contents = NULL;
6534 }
6535 else if (is_ctf)
6536 {
6537 /* Update section size and contents. */
6538 shdrp->sh_size = sec->size;
6539 shdrp->contents = sec->contents;
6540 }
6541
6542 off = _bfd_elf_assign_file_position_for_section (shdrp,
6543 off,
6544 TRUE);
6545 }
6546 }
6547 }
6548
6549 /* Place section name section after DWARF debug sections have been
6550 compressed. */
6551 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
6552 shdrp = &elf_tdata (abfd)->shstrtab_hdr;
6553 shdrp->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
6554 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
6555
6556 /* Place the section headers. */
6557 i_ehdrp = elf_elfheader (abfd);
6558 bed = get_elf_backend_data (abfd);
6559 off = align_file_position (off, 1 << bed->s->log_file_align);
6560 i_ehdrp->e_shoff = off;
6561 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
6562 elf_next_file_pos (abfd) = off;
6563
6564 return TRUE;
6565 }
6566
6567 bfd_boolean
6568 _bfd_elf_write_object_contents (bfd *abfd)
6569 {
6570 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6571 Elf_Internal_Shdr **i_shdrp;
6572 bfd_boolean failed;
6573 unsigned int count, num_sec;
6574 struct elf_obj_tdata *t;
6575
6576 if (! abfd->output_has_begun
6577 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
6578 return FALSE;
6579 /* Do not rewrite ELF data when the BFD has been opened for update.
6580 abfd->output_has_begun was set to TRUE on opening, so creation of new
6581 sections, and modification of existing section sizes was restricted.
6582 This means the ELF header, program headers and section headers can't have
6583 changed.
6584 If the contents of any sections has been modified, then those changes have
6585 already been written to the BFD. */
6586 else if (abfd->direction == both_direction)
6587 {
6588 BFD_ASSERT (abfd->output_has_begun);
6589 return TRUE;
6590 }
6591
6592 i_shdrp = elf_elfsections (abfd);
6593
6594 failed = FALSE;
6595 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
6596 if (failed)
6597 return FALSE;
6598
6599 if (!_bfd_elf_assign_file_positions_for_non_load (abfd))
6600 return FALSE;
6601
6602 /* After writing the headers, we need to write the sections too... */
6603 num_sec = elf_numsections (abfd);
6604 for (count = 1; count < num_sec; count++)
6605 {
6606 i_shdrp[count]->sh_name
6607 = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
6608 i_shdrp[count]->sh_name);
6609 if (bed->elf_backend_section_processing)
6610 if (!(*bed->elf_backend_section_processing) (abfd, i_shdrp[count]))
6611 return FALSE;
6612 if (i_shdrp[count]->contents)
6613 {
6614 bfd_size_type amt = i_shdrp[count]->sh_size;
6615
6616 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
6617 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
6618 return FALSE;
6619 }
6620 }
6621
6622 /* Write out the section header names. */
6623 t = elf_tdata (abfd);
6624 if (elf_shstrtab (abfd) != NULL
6625 && (bfd_seek (abfd, t->shstrtab_hdr.sh_offset, SEEK_SET) != 0
6626 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
6627 return FALSE;
6628
6629 if (!(*bed->elf_backend_final_write_processing) (abfd))
6630 return FALSE;
6631
6632 if (!bed->s->write_shdrs_and_ehdr (abfd))
6633 return FALSE;
6634
6635 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
6636 if (t->o->build_id.after_write_object_contents != NULL)
6637 return (*t->o->build_id.after_write_object_contents) (abfd);
6638
6639 return TRUE;
6640 }
6641
6642 bfd_boolean
6643 _bfd_elf_write_corefile_contents (bfd *abfd)
6644 {
6645 /* Hopefully this can be done just like an object file. */
6646 return _bfd_elf_write_object_contents (abfd);
6647 }
6648
6649 /* Given a section, search the header to find them. */
6650
6651 unsigned int
6652 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
6653 {
6654 const struct elf_backend_data *bed;
6655 unsigned int sec_index;
6656
6657 if (elf_section_data (asect) != NULL
6658 && elf_section_data (asect)->this_idx != 0)
6659 return elf_section_data (asect)->this_idx;
6660
6661 if (bfd_is_abs_section (asect))
6662 sec_index = SHN_ABS;
6663 else if (bfd_is_com_section (asect))
6664 sec_index = SHN_COMMON;
6665 else if (bfd_is_und_section (asect))
6666 sec_index = SHN_UNDEF;
6667 else
6668 sec_index = SHN_BAD;
6669
6670 bed = get_elf_backend_data (abfd);
6671 if (bed->elf_backend_section_from_bfd_section)
6672 {
6673 int retval = sec_index;
6674
6675 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
6676 return retval;
6677 }
6678
6679 if (sec_index == SHN_BAD)
6680 bfd_set_error (bfd_error_nonrepresentable_section);
6681
6682 return sec_index;
6683 }
6684
6685 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
6686 on error. */
6687
6688 int
6689 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
6690 {
6691 asymbol *asym_ptr = *asym_ptr_ptr;
6692 int idx;
6693 flagword flags = asym_ptr->flags;
6694
6695 /* When gas creates relocations against local labels, it creates its
6696 own symbol for the section, but does put the symbol into the
6697 symbol chain, so udata is 0. When the linker is generating
6698 relocatable output, this section symbol may be for one of the
6699 input sections rather than the output section. */
6700 if (asym_ptr->udata.i == 0
6701 && (flags & BSF_SECTION_SYM)
6702 && asym_ptr->section)
6703 {
6704 asection *sec;
6705 int indx;
6706
6707 sec = asym_ptr->section;
6708 if (sec->owner != abfd && sec->output_section != NULL)
6709 sec = sec->output_section;
6710 if (sec->owner == abfd
6711 && (indx = sec->index) < elf_num_section_syms (abfd)
6712 && elf_section_syms (abfd)[indx] != NULL)
6713 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
6714 }
6715
6716 idx = asym_ptr->udata.i;
6717
6718 if (idx == 0)
6719 {
6720 /* This case can occur when using --strip-symbol on a symbol
6721 which is used in a relocation entry. */
6722 _bfd_error_handler
6723 /* xgettext:c-format */
6724 (_("%pB: symbol `%s' required but not present"),
6725 abfd, bfd_asymbol_name (asym_ptr));
6726 bfd_set_error (bfd_error_no_symbols);
6727 return -1;
6728 }
6729
6730 #if DEBUG & 4
6731 {
6732 fprintf (stderr,
6733 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8x\n",
6734 (long) asym_ptr, asym_ptr->name, idx, flags);
6735 fflush (stderr);
6736 }
6737 #endif
6738
6739 return idx;
6740 }
6741
6742 /* Rewrite program header information. */
6743
6744 static bfd_boolean
6745 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
6746 {
6747 Elf_Internal_Ehdr *iehdr;
6748 struct elf_segment_map *map;
6749 struct elf_segment_map *map_first;
6750 struct elf_segment_map **pointer_to_map;
6751 Elf_Internal_Phdr *segment;
6752 asection *section;
6753 unsigned int i;
6754 unsigned int num_segments;
6755 bfd_boolean phdr_included = FALSE;
6756 bfd_boolean p_paddr_valid;
6757 bfd_vma maxpagesize;
6758 struct elf_segment_map *phdr_adjust_seg = NULL;
6759 unsigned int phdr_adjust_num = 0;
6760 const struct elf_backend_data *bed;
6761
6762 bed = get_elf_backend_data (ibfd);
6763 iehdr = elf_elfheader (ibfd);
6764
6765 map_first = NULL;
6766 pointer_to_map = &map_first;
6767
6768 num_segments = elf_elfheader (ibfd)->e_phnum;
6769 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
6770
6771 /* Returns the end address of the segment + 1. */
6772 #define SEGMENT_END(segment, start) \
6773 (start + (segment->p_memsz > segment->p_filesz \
6774 ? segment->p_memsz : segment->p_filesz))
6775
6776 #define SECTION_SIZE(section, segment) \
6777 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
6778 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
6779 ? section->size : 0)
6780
6781 /* Returns TRUE if the given section is contained within
6782 the given segment. VMA addresses are compared. */
6783 #define IS_CONTAINED_BY_VMA(section, segment) \
6784 (section->vma >= segment->p_vaddr \
6785 && (section->vma + SECTION_SIZE (section, segment) \
6786 <= (SEGMENT_END (segment, segment->p_vaddr))))
6787
6788 /* Returns TRUE if the given section is contained within
6789 the given segment. LMA addresses are compared. */
6790 #define IS_CONTAINED_BY_LMA(section, segment, base) \
6791 (section->lma >= base \
6792 && (section->lma + SECTION_SIZE (section, segment) >= section->lma) \
6793 && (section->lma + SECTION_SIZE (section, segment) \
6794 <= SEGMENT_END (segment, base)))
6795
6796 /* Handle PT_NOTE segment. */
6797 #define IS_NOTE(p, s) \
6798 (p->p_type == PT_NOTE \
6799 && elf_section_type (s) == SHT_NOTE \
6800 && (bfd_vma) s->filepos >= p->p_offset \
6801 && ((bfd_vma) s->filepos + s->size \
6802 <= p->p_offset + p->p_filesz))
6803
6804 /* Special case: corefile "NOTE" section containing regs, prpsinfo
6805 etc. */
6806 #define IS_COREFILE_NOTE(p, s) \
6807 (IS_NOTE (p, s) \
6808 && bfd_get_format (ibfd) == bfd_core \
6809 && s->vma == 0 \
6810 && s->lma == 0)
6811
6812 /* The complicated case when p_vaddr is 0 is to handle the Solaris
6813 linker, which generates a PT_INTERP section with p_vaddr and
6814 p_memsz set to 0. */
6815 #define IS_SOLARIS_PT_INTERP(p, s) \
6816 (p->p_vaddr == 0 \
6817 && p->p_paddr == 0 \
6818 && p->p_memsz == 0 \
6819 && p->p_filesz > 0 \
6820 && (s->flags & SEC_HAS_CONTENTS) != 0 \
6821 && s->size > 0 \
6822 && (bfd_vma) s->filepos >= p->p_offset \
6823 && ((bfd_vma) s->filepos + s->size \
6824 <= p->p_offset + p->p_filesz))
6825
6826 /* Decide if the given section should be included in the given segment.
6827 A section will be included if:
6828 1. It is within the address space of the segment -- we use the LMA
6829 if that is set for the segment and the VMA otherwise,
6830 2. It is an allocated section or a NOTE section in a PT_NOTE
6831 segment.
6832 3. There is an output section associated with it,
6833 4. The section has not already been allocated to a previous segment.
6834 5. PT_GNU_STACK segments do not include any sections.
6835 6. PT_TLS segment includes only SHF_TLS sections.
6836 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
6837 8. PT_DYNAMIC should not contain empty sections at the beginning
6838 (with the possible exception of .dynamic). */
6839 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
6840 ((((segment->p_paddr \
6841 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
6842 : IS_CONTAINED_BY_VMA (section, segment)) \
6843 && (section->flags & SEC_ALLOC) != 0) \
6844 || IS_NOTE (segment, section)) \
6845 && segment->p_type != PT_GNU_STACK \
6846 && (segment->p_type != PT_TLS \
6847 || (section->flags & SEC_THREAD_LOCAL)) \
6848 && (segment->p_type == PT_LOAD \
6849 || segment->p_type == PT_TLS \
6850 || (section->flags & SEC_THREAD_LOCAL) == 0) \
6851 && (segment->p_type != PT_DYNAMIC \
6852 || SECTION_SIZE (section, segment) > 0 \
6853 || (segment->p_paddr \
6854 ? segment->p_paddr != section->lma \
6855 : segment->p_vaddr != section->vma) \
6856 || (strcmp (bfd_section_name (section), ".dynamic") == 0)) \
6857 && (segment->p_type != PT_LOAD || !section->segment_mark))
6858
6859 /* If the output section of a section in the input segment is NULL,
6860 it is removed from the corresponding output segment. */
6861 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
6862 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
6863 && section->output_section != NULL)
6864
6865 /* Returns TRUE iff seg1 starts after the end of seg2. */
6866 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
6867 (seg1->field >= SEGMENT_END (seg2, seg2->field))
6868
6869 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
6870 their VMA address ranges and their LMA address ranges overlap.
6871 It is possible to have overlapping VMA ranges without overlapping LMA
6872 ranges. RedBoot images for example can have both .data and .bss mapped
6873 to the same VMA range, but with the .data section mapped to a different
6874 LMA. */
6875 #define SEGMENT_OVERLAPS(seg1, seg2) \
6876 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
6877 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
6878 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
6879 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
6880
6881 /* Initialise the segment mark field. */
6882 for (section = ibfd->sections; section != NULL; section = section->next)
6883 section->segment_mark = FALSE;
6884
6885 /* The Solaris linker creates program headers in which all the
6886 p_paddr fields are zero. When we try to objcopy or strip such a
6887 file, we get confused. Check for this case, and if we find it
6888 don't set the p_paddr_valid fields. */
6889 p_paddr_valid = FALSE;
6890 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6891 i < num_segments;
6892 i++, segment++)
6893 if (segment->p_paddr != 0)
6894 {
6895 p_paddr_valid = TRUE;
6896 break;
6897 }
6898
6899 /* Scan through the segments specified in the program header
6900 of the input BFD. For this first scan we look for overlaps
6901 in the loadable segments. These can be created by weird
6902 parameters to objcopy. Also, fix some solaris weirdness. */
6903 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6904 i < num_segments;
6905 i++, segment++)
6906 {
6907 unsigned int j;
6908 Elf_Internal_Phdr *segment2;
6909
6910 if (segment->p_type == PT_INTERP)
6911 for (section = ibfd->sections; section; section = section->next)
6912 if (IS_SOLARIS_PT_INTERP (segment, section))
6913 {
6914 /* Mininal change so that the normal section to segment
6915 assignment code will work. */
6916 segment->p_vaddr = section->vma;
6917 break;
6918 }
6919
6920 if (segment->p_type != PT_LOAD)
6921 {
6922 /* Remove PT_GNU_RELRO segment. */
6923 if (segment->p_type == PT_GNU_RELRO)
6924 segment->p_type = PT_NULL;
6925 continue;
6926 }
6927
6928 /* Determine if this segment overlaps any previous segments. */
6929 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
6930 {
6931 bfd_signed_vma extra_length;
6932
6933 if (segment2->p_type != PT_LOAD
6934 || !SEGMENT_OVERLAPS (segment, segment2))
6935 continue;
6936
6937 /* Merge the two segments together. */
6938 if (segment2->p_vaddr < segment->p_vaddr)
6939 {
6940 /* Extend SEGMENT2 to include SEGMENT and then delete
6941 SEGMENT. */
6942 extra_length = (SEGMENT_END (segment, segment->p_vaddr)
6943 - SEGMENT_END (segment2, segment2->p_vaddr));
6944
6945 if (extra_length > 0)
6946 {
6947 segment2->p_memsz += extra_length;
6948 segment2->p_filesz += extra_length;
6949 }
6950
6951 segment->p_type = PT_NULL;
6952
6953 /* Since we have deleted P we must restart the outer loop. */
6954 i = 0;
6955 segment = elf_tdata (ibfd)->phdr;
6956 break;
6957 }
6958 else
6959 {
6960 /* Extend SEGMENT to include SEGMENT2 and then delete
6961 SEGMENT2. */
6962 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
6963 - SEGMENT_END (segment, segment->p_vaddr));
6964
6965 if (extra_length > 0)
6966 {
6967 segment->p_memsz += extra_length;
6968 segment->p_filesz += extra_length;
6969 }
6970
6971 segment2->p_type = PT_NULL;
6972 }
6973 }
6974 }
6975
6976 /* The second scan attempts to assign sections to segments. */
6977 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6978 i < num_segments;
6979 i++, segment++)
6980 {
6981 unsigned int section_count;
6982 asection **sections;
6983 asection *output_section;
6984 unsigned int isec;
6985 asection *matching_lma;
6986 asection *suggested_lma;
6987 unsigned int j;
6988 bfd_size_type amt;
6989 asection *first_section;
6990
6991 if (segment->p_type == PT_NULL)
6992 continue;
6993
6994 first_section = NULL;
6995 /* Compute how many sections might be placed into this segment. */
6996 for (section = ibfd->sections, section_count = 0;
6997 section != NULL;
6998 section = section->next)
6999 {
7000 /* Find the first section in the input segment, which may be
7001 removed from the corresponding output segment. */
7002 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
7003 {
7004 if (first_section == NULL)
7005 first_section = section;
7006 if (section->output_section != NULL)
7007 ++section_count;
7008 }
7009 }
7010
7011 /* Allocate a segment map big enough to contain
7012 all of the sections we have selected. */
7013 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
7014 amt += (bfd_size_type) section_count * sizeof (asection *);
7015 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7016 if (map == NULL)
7017 return FALSE;
7018
7019 /* Initialise the fields of the segment map. Default to
7020 using the physical address of the segment in the input BFD. */
7021 map->next = NULL;
7022 map->p_type = segment->p_type;
7023 map->p_flags = segment->p_flags;
7024 map->p_flags_valid = 1;
7025
7026 /* If the first section in the input segment is removed, there is
7027 no need to preserve segment physical address in the corresponding
7028 output segment. */
7029 if (!first_section || first_section->output_section != NULL)
7030 {
7031 map->p_paddr = segment->p_paddr;
7032 map->p_paddr_valid = p_paddr_valid;
7033 }
7034
7035 /* Determine if this segment contains the ELF file header
7036 and if it contains the program headers themselves. */
7037 map->includes_filehdr = (segment->p_offset == 0
7038 && segment->p_filesz >= iehdr->e_ehsize);
7039 map->includes_phdrs = 0;
7040
7041 if (!phdr_included || segment->p_type != PT_LOAD)
7042 {
7043 map->includes_phdrs =
7044 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
7045 && (segment->p_offset + segment->p_filesz
7046 >= ((bfd_vma) iehdr->e_phoff
7047 + iehdr->e_phnum * iehdr->e_phentsize)));
7048
7049 if (segment->p_type == PT_LOAD && map->includes_phdrs)
7050 phdr_included = TRUE;
7051 }
7052
7053 if (section_count == 0)
7054 {
7055 /* Special segments, such as the PT_PHDR segment, may contain
7056 no sections, but ordinary, loadable segments should contain
7057 something. They are allowed by the ELF spec however, so only
7058 a warning is produced.
7059 There is however the valid use case of embedded systems which
7060 have segments with p_filesz of 0 and a p_memsz > 0 to initialize
7061 flash memory with zeros. No warning is shown for that case. */
7062 if (segment->p_type == PT_LOAD
7063 && (segment->p_filesz > 0 || segment->p_memsz == 0))
7064 /* xgettext:c-format */
7065 _bfd_error_handler
7066 (_("%pB: warning: empty loadable segment detected"
7067 " at vaddr=%#" PRIx64 ", is this intentional?"),
7068 ibfd, (uint64_t) segment->p_vaddr);
7069
7070 map->p_vaddr_offset = segment->p_vaddr;
7071 map->count = 0;
7072 *pointer_to_map = map;
7073 pointer_to_map = &map->next;
7074
7075 continue;
7076 }
7077
7078 /* Now scan the sections in the input BFD again and attempt
7079 to add their corresponding output sections to the segment map.
7080 The problem here is how to handle an output section which has
7081 been moved (ie had its LMA changed). There are four possibilities:
7082
7083 1. None of the sections have been moved.
7084 In this case we can continue to use the segment LMA from the
7085 input BFD.
7086
7087 2. All of the sections have been moved by the same amount.
7088 In this case we can change the segment's LMA to match the LMA
7089 of the first section.
7090
7091 3. Some of the sections have been moved, others have not.
7092 In this case those sections which have not been moved can be
7093 placed in the current segment which will have to have its size,
7094 and possibly its LMA changed, and a new segment or segments will
7095 have to be created to contain the other sections.
7096
7097 4. The sections have been moved, but not by the same amount.
7098 In this case we can change the segment's LMA to match the LMA
7099 of the first section and we will have to create a new segment
7100 or segments to contain the other sections.
7101
7102 In order to save time, we allocate an array to hold the section
7103 pointers that we are interested in. As these sections get assigned
7104 to a segment, they are removed from this array. */
7105
7106 sections = (asection **) bfd_malloc2 (section_count, sizeof (asection *));
7107 if (sections == NULL)
7108 return FALSE;
7109
7110 /* Step One: Scan for segment vs section LMA conflicts.
7111 Also add the sections to the section array allocated above.
7112 Also add the sections to the current segment. In the common
7113 case, where the sections have not been moved, this means that
7114 we have completely filled the segment, and there is nothing
7115 more to do. */
7116 isec = 0;
7117 matching_lma = NULL;
7118 suggested_lma = NULL;
7119
7120 for (section = first_section, j = 0;
7121 section != NULL;
7122 section = section->next)
7123 {
7124 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
7125 {
7126 output_section = section->output_section;
7127
7128 sections[j++] = section;
7129
7130 /* The Solaris native linker always sets p_paddr to 0.
7131 We try to catch that case here, and set it to the
7132 correct value. Note - some backends require that
7133 p_paddr be left as zero. */
7134 if (!p_paddr_valid
7135 && segment->p_vaddr != 0
7136 && !bed->want_p_paddr_set_to_zero
7137 && isec == 0
7138 && output_section->lma != 0
7139 && (align_power (segment->p_vaddr
7140 + (map->includes_filehdr
7141 ? iehdr->e_ehsize : 0)
7142 + (map->includes_phdrs
7143 ? iehdr->e_phnum * iehdr->e_phentsize
7144 : 0),
7145 output_section->alignment_power)
7146 == output_section->vma))
7147 map->p_paddr = segment->p_vaddr;
7148
7149 /* Match up the physical address of the segment with the
7150 LMA address of the output section. */
7151 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
7152 || IS_COREFILE_NOTE (segment, section)
7153 || (bed->want_p_paddr_set_to_zero
7154 && IS_CONTAINED_BY_VMA (output_section, segment)))
7155 {
7156 if (matching_lma == NULL
7157 || output_section->lma < matching_lma->lma)
7158 matching_lma = output_section;
7159
7160 /* We assume that if the section fits within the segment
7161 then it does not overlap any other section within that
7162 segment. */
7163 map->sections[isec++] = output_section;
7164 }
7165 else if (suggested_lma == NULL)
7166 suggested_lma = output_section;
7167
7168 if (j == section_count)
7169 break;
7170 }
7171 }
7172
7173 BFD_ASSERT (j == section_count);
7174
7175 /* Step Two: Adjust the physical address of the current segment,
7176 if necessary. */
7177 if (isec == section_count)
7178 {
7179 /* All of the sections fitted within the segment as currently
7180 specified. This is the default case. Add the segment to
7181 the list of built segments and carry on to process the next
7182 program header in the input BFD. */
7183 map->count = section_count;
7184 *pointer_to_map = map;
7185 pointer_to_map = &map->next;
7186
7187 if (p_paddr_valid
7188 && !bed->want_p_paddr_set_to_zero
7189 && matching_lma->lma != map->p_paddr
7190 && !map->includes_filehdr
7191 && !map->includes_phdrs)
7192 /* There is some padding before the first section in the
7193 segment. So, we must account for that in the output
7194 segment's vma. */
7195 map->p_vaddr_offset = map->p_paddr - matching_lma->lma;
7196
7197 free (sections);
7198 continue;
7199 }
7200 else
7201 {
7202 /* Change the current segment's physical address to match
7203 the LMA of the first section that fitted, or if no
7204 section fitted, the first section. */
7205 if (matching_lma == NULL)
7206 matching_lma = suggested_lma;
7207
7208 map->p_paddr = matching_lma->lma;
7209
7210 /* Offset the segment physical address from the lma
7211 to allow for space taken up by elf headers. */
7212 if (map->includes_phdrs)
7213 {
7214 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
7215
7216 /* iehdr->e_phnum is just an estimate of the number
7217 of program headers that we will need. Make a note
7218 here of the number we used and the segment we chose
7219 to hold these headers, so that we can adjust the
7220 offset when we know the correct value. */
7221 phdr_adjust_num = iehdr->e_phnum;
7222 phdr_adjust_seg = map;
7223 }
7224
7225 if (map->includes_filehdr)
7226 {
7227 bfd_vma align = (bfd_vma) 1 << matching_lma->alignment_power;
7228 map->p_paddr -= iehdr->e_ehsize;
7229 /* We've subtracted off the size of headers from the
7230 first section lma, but there may have been some
7231 alignment padding before that section too. Try to
7232 account for that by adjusting the segment lma down to
7233 the same alignment. */
7234 if (segment->p_align != 0 && segment->p_align < align)
7235 align = segment->p_align;
7236 map->p_paddr &= -align;
7237 }
7238 }
7239
7240 /* Step Three: Loop over the sections again, this time assigning
7241 those that fit to the current segment and removing them from the
7242 sections array; but making sure not to leave large gaps. Once all
7243 possible sections have been assigned to the current segment it is
7244 added to the list of built segments and if sections still remain
7245 to be assigned, a new segment is constructed before repeating
7246 the loop. */
7247 isec = 0;
7248 do
7249 {
7250 map->count = 0;
7251 suggested_lma = NULL;
7252
7253 /* Fill the current segment with sections that fit. */
7254 for (j = 0; j < section_count; j++)
7255 {
7256 section = sections[j];
7257
7258 if (section == NULL)
7259 continue;
7260
7261 output_section = section->output_section;
7262
7263 BFD_ASSERT (output_section != NULL);
7264
7265 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
7266 || IS_COREFILE_NOTE (segment, section))
7267 {
7268 if (map->count == 0)
7269 {
7270 /* If the first section in a segment does not start at
7271 the beginning of the segment, then something is
7272 wrong. */
7273 if (align_power (map->p_paddr
7274 + (map->includes_filehdr
7275 ? iehdr->e_ehsize : 0)
7276 + (map->includes_phdrs
7277 ? iehdr->e_phnum * iehdr->e_phentsize
7278 : 0),
7279 output_section->alignment_power)
7280 != output_section->lma)
7281 abort ();
7282 }
7283 else
7284 {
7285 asection *prev_sec;
7286
7287 prev_sec = map->sections[map->count - 1];
7288
7289 /* If the gap between the end of the previous section
7290 and the start of this section is more than
7291 maxpagesize then we need to start a new segment. */
7292 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
7293 maxpagesize)
7294 < BFD_ALIGN (output_section->lma, maxpagesize))
7295 || (prev_sec->lma + prev_sec->size
7296 > output_section->lma))
7297 {
7298 if (suggested_lma == NULL)
7299 suggested_lma = output_section;
7300
7301 continue;
7302 }
7303 }
7304
7305 map->sections[map->count++] = output_section;
7306 ++isec;
7307 sections[j] = NULL;
7308 if (segment->p_type == PT_LOAD)
7309 section->segment_mark = TRUE;
7310 }
7311 else if (suggested_lma == NULL)
7312 suggested_lma = output_section;
7313 }
7314
7315 /* PR 23932. A corrupt input file may contain sections that cannot
7316 be assigned to any segment - because for example they have a
7317 negative size - or segments that do not contain any sections. */
7318 if (map->count == 0)
7319 {
7320 bfd_set_error (bfd_error_bad_value);
7321 free (sections);
7322 return FALSE;
7323 }
7324
7325 /* Add the current segment to the list of built segments. */
7326 *pointer_to_map = map;
7327 pointer_to_map = &map->next;
7328
7329 if (isec < section_count)
7330 {
7331 /* We still have not allocated all of the sections to
7332 segments. Create a new segment here, initialise it
7333 and carry on looping. */
7334 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
7335 amt += (bfd_size_type) section_count * sizeof (asection *);
7336 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7337 if (map == NULL)
7338 {
7339 free (sections);
7340 return FALSE;
7341 }
7342
7343 /* Initialise the fields of the segment map. Set the physical
7344 physical address to the LMA of the first section that has
7345 not yet been assigned. */
7346 map->next = NULL;
7347 map->p_type = segment->p_type;
7348 map->p_flags = segment->p_flags;
7349 map->p_flags_valid = 1;
7350 map->p_paddr = suggested_lma->lma;
7351 map->p_paddr_valid = p_paddr_valid;
7352 map->includes_filehdr = 0;
7353 map->includes_phdrs = 0;
7354 }
7355 }
7356 while (isec < section_count);
7357
7358 free (sections);
7359 }
7360
7361 elf_seg_map (obfd) = map_first;
7362
7363 /* If we had to estimate the number of program headers that were
7364 going to be needed, then check our estimate now and adjust
7365 the offset if necessary. */
7366 if (phdr_adjust_seg != NULL)
7367 {
7368 unsigned int count;
7369
7370 for (count = 0, map = map_first; map != NULL; map = map->next)
7371 count++;
7372
7373 if (count > phdr_adjust_num)
7374 phdr_adjust_seg->p_paddr
7375 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
7376
7377 for (map = map_first; map != NULL; map = map->next)
7378 if (map->p_type == PT_PHDR)
7379 {
7380 bfd_vma adjust
7381 = phdr_adjust_seg->includes_filehdr ? iehdr->e_ehsize : 0;
7382 map->p_paddr = phdr_adjust_seg->p_paddr + adjust;
7383 break;
7384 }
7385 }
7386
7387 #undef SEGMENT_END
7388 #undef SECTION_SIZE
7389 #undef IS_CONTAINED_BY_VMA
7390 #undef IS_CONTAINED_BY_LMA
7391 #undef IS_NOTE
7392 #undef IS_COREFILE_NOTE
7393 #undef IS_SOLARIS_PT_INTERP
7394 #undef IS_SECTION_IN_INPUT_SEGMENT
7395 #undef INCLUDE_SECTION_IN_SEGMENT
7396 #undef SEGMENT_AFTER_SEGMENT
7397 #undef SEGMENT_OVERLAPS
7398 return TRUE;
7399 }
7400
7401 /* Copy ELF program header information. */
7402
7403 static bfd_boolean
7404 copy_elf_program_header (bfd *ibfd, bfd *obfd)
7405 {
7406 Elf_Internal_Ehdr *iehdr;
7407 struct elf_segment_map *map;
7408 struct elf_segment_map *map_first;
7409 struct elf_segment_map **pointer_to_map;
7410 Elf_Internal_Phdr *segment;
7411 unsigned int i;
7412 unsigned int num_segments;
7413 bfd_boolean phdr_included = FALSE;
7414 bfd_boolean p_paddr_valid;
7415
7416 iehdr = elf_elfheader (ibfd);
7417
7418 map_first = NULL;
7419 pointer_to_map = &map_first;
7420
7421 /* If all the segment p_paddr fields are zero, don't set
7422 map->p_paddr_valid. */
7423 p_paddr_valid = FALSE;
7424 num_segments = elf_elfheader (ibfd)->e_phnum;
7425 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7426 i < num_segments;
7427 i++, segment++)
7428 if (segment->p_paddr != 0)
7429 {
7430 p_paddr_valid = TRUE;
7431 break;
7432 }
7433
7434 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7435 i < num_segments;
7436 i++, segment++)
7437 {
7438 asection *section;
7439 unsigned int section_count;
7440 bfd_size_type amt;
7441 Elf_Internal_Shdr *this_hdr;
7442 asection *first_section = NULL;
7443 asection *lowest_section;
7444 bfd_boolean no_contents = TRUE;
7445
7446 /* Compute how many sections are in this segment. */
7447 for (section = ibfd->sections, section_count = 0;
7448 section != NULL;
7449 section = section->next)
7450 {
7451 this_hdr = &(elf_section_data(section)->this_hdr);
7452 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7453 {
7454 if (first_section == NULL)
7455 first_section = section;
7456 if (elf_section_type (section) != SHT_NOBITS)
7457 no_contents = FALSE;
7458 section_count++;
7459 }
7460 }
7461
7462 /* Allocate a segment map big enough to contain
7463 all of the sections we have selected. */
7464 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
7465 amt += (bfd_size_type) section_count * sizeof (asection *);
7466 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7467 if (map == NULL)
7468 return FALSE;
7469
7470 /* Initialize the fields of the output segment map with the
7471 input segment. */
7472 map->next = NULL;
7473 map->p_type = segment->p_type;
7474 map->p_flags = segment->p_flags;
7475 map->p_flags_valid = 1;
7476 map->p_paddr = segment->p_paddr;
7477 map->p_paddr_valid = p_paddr_valid;
7478 map->p_align = segment->p_align;
7479 map->p_align_valid = 1;
7480 map->p_vaddr_offset = 0;
7481
7482 if (map->p_type == PT_GNU_RELRO
7483 || map->p_type == PT_GNU_STACK)
7484 {
7485 /* The PT_GNU_RELRO segment may contain the first a few
7486 bytes in the .got.plt section even if the whole .got.plt
7487 section isn't in the PT_GNU_RELRO segment. We won't
7488 change the size of the PT_GNU_RELRO segment.
7489 Similarly, PT_GNU_STACK size is significant on uclinux
7490 systems. */
7491 map->p_size = segment->p_memsz;
7492 map->p_size_valid = 1;
7493 }
7494
7495 /* Determine if this segment contains the ELF file header
7496 and if it contains the program headers themselves. */
7497 map->includes_filehdr = (segment->p_offset == 0
7498 && segment->p_filesz >= iehdr->e_ehsize);
7499
7500 map->includes_phdrs = 0;
7501 if (! phdr_included || segment->p_type != PT_LOAD)
7502 {
7503 map->includes_phdrs =
7504 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
7505 && (segment->p_offset + segment->p_filesz
7506 >= ((bfd_vma) iehdr->e_phoff
7507 + iehdr->e_phnum * iehdr->e_phentsize)));
7508
7509 if (segment->p_type == PT_LOAD && map->includes_phdrs)
7510 phdr_included = TRUE;
7511 }
7512
7513 lowest_section = NULL;
7514 if (section_count != 0)
7515 {
7516 unsigned int isec = 0;
7517
7518 for (section = first_section;
7519 section != NULL;
7520 section = section->next)
7521 {
7522 this_hdr = &(elf_section_data(section)->this_hdr);
7523 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7524 {
7525 map->sections[isec++] = section->output_section;
7526 if ((section->flags & SEC_ALLOC) != 0)
7527 {
7528 bfd_vma seg_off;
7529
7530 if (lowest_section == NULL
7531 || section->lma < lowest_section->lma)
7532 lowest_section = section;
7533
7534 /* Section lmas are set up from PT_LOAD header
7535 p_paddr in _bfd_elf_make_section_from_shdr.
7536 If this header has a p_paddr that disagrees
7537 with the section lma, flag the p_paddr as
7538 invalid. */
7539 if ((section->flags & SEC_LOAD) != 0)
7540 seg_off = this_hdr->sh_offset - segment->p_offset;
7541 else
7542 seg_off = this_hdr->sh_addr - segment->p_vaddr;
7543 if (section->lma - segment->p_paddr != seg_off)
7544 map->p_paddr_valid = FALSE;
7545 }
7546 if (isec == section_count)
7547 break;
7548 }
7549 }
7550 }
7551
7552 if (map->includes_filehdr && lowest_section != NULL)
7553 {
7554 /* Try to keep the space used by the headers plus any
7555 padding fixed. If there are sections with file contents
7556 in this segment then the lowest sh_offset is the best
7557 guess. Otherwise the segment only has file contents for
7558 the headers, and p_filesz is the best guess. */
7559 if (no_contents)
7560 map->header_size = segment->p_filesz;
7561 else
7562 map->header_size = lowest_section->filepos;
7563 }
7564
7565 if (section_count == 0)
7566 map->p_vaddr_offset = segment->p_vaddr;
7567 else if (!map->includes_phdrs
7568 && !map->includes_filehdr
7569 && map->p_paddr_valid)
7570 /* Account for padding before the first section. */
7571 map->p_vaddr_offset = (segment->p_paddr
7572 - (lowest_section ? lowest_section->lma : 0));
7573
7574 map->count = section_count;
7575 *pointer_to_map = map;
7576 pointer_to_map = &map->next;
7577 }
7578
7579 elf_seg_map (obfd) = map_first;
7580 return TRUE;
7581 }
7582
7583 /* Copy private BFD data. This copies or rewrites ELF program header
7584 information. */
7585
7586 static bfd_boolean
7587 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
7588 {
7589 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7590 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7591 return TRUE;
7592
7593 if (elf_tdata (ibfd)->phdr == NULL)
7594 return TRUE;
7595
7596 if (ibfd->xvec == obfd->xvec)
7597 {
7598 /* Check to see if any sections in the input BFD
7599 covered by ELF program header have changed. */
7600 Elf_Internal_Phdr *segment;
7601 asection *section, *osec;
7602 unsigned int i, num_segments;
7603 Elf_Internal_Shdr *this_hdr;
7604 const struct elf_backend_data *bed;
7605
7606 bed = get_elf_backend_data (ibfd);
7607
7608 /* Regenerate the segment map if p_paddr is set to 0. */
7609 if (bed->want_p_paddr_set_to_zero)
7610 goto rewrite;
7611
7612 /* Initialize the segment mark field. */
7613 for (section = obfd->sections; section != NULL;
7614 section = section->next)
7615 section->segment_mark = FALSE;
7616
7617 num_segments = elf_elfheader (ibfd)->e_phnum;
7618 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7619 i < num_segments;
7620 i++, segment++)
7621 {
7622 /* PR binutils/3535. The Solaris linker always sets the p_paddr
7623 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
7624 which severly confuses things, so always regenerate the segment
7625 map in this case. */
7626 if (segment->p_paddr == 0
7627 && segment->p_memsz == 0
7628 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
7629 goto rewrite;
7630
7631 for (section = ibfd->sections;
7632 section != NULL; section = section->next)
7633 {
7634 /* We mark the output section so that we know it comes
7635 from the input BFD. */
7636 osec = section->output_section;
7637 if (osec)
7638 osec->segment_mark = TRUE;
7639
7640 /* Check if this section is covered by the segment. */
7641 this_hdr = &(elf_section_data(section)->this_hdr);
7642 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7643 {
7644 /* FIXME: Check if its output section is changed or
7645 removed. What else do we need to check? */
7646 if (osec == NULL
7647 || section->flags != osec->flags
7648 || section->lma != osec->lma
7649 || section->vma != osec->vma
7650 || section->size != osec->size
7651 || section->rawsize != osec->rawsize
7652 || section->alignment_power != osec->alignment_power)
7653 goto rewrite;
7654 }
7655 }
7656 }
7657
7658 /* Check to see if any output section do not come from the
7659 input BFD. */
7660 for (section = obfd->sections; section != NULL;
7661 section = section->next)
7662 {
7663 if (!section->segment_mark)
7664 goto rewrite;
7665 else
7666 section->segment_mark = FALSE;
7667 }
7668
7669 return copy_elf_program_header (ibfd, obfd);
7670 }
7671
7672 rewrite:
7673 if (ibfd->xvec == obfd->xvec)
7674 {
7675 /* When rewriting program header, set the output maxpagesize to
7676 the maximum alignment of input PT_LOAD segments. */
7677 Elf_Internal_Phdr *segment;
7678 unsigned int i;
7679 unsigned int num_segments = elf_elfheader (ibfd)->e_phnum;
7680 bfd_vma maxpagesize = 0;
7681
7682 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7683 i < num_segments;
7684 i++, segment++)
7685 if (segment->p_type == PT_LOAD
7686 && maxpagesize < segment->p_align)
7687 {
7688 /* PR 17512: file: f17299af. */
7689 if (segment->p_align > (bfd_vma) 1 << ((sizeof (bfd_vma) * 8) - 2))
7690 /* xgettext:c-format */
7691 _bfd_error_handler (_("%pB: warning: segment alignment of %#"
7692 PRIx64 " is too large"),
7693 ibfd, (uint64_t) segment->p_align);
7694 else
7695 maxpagesize = segment->p_align;
7696 }
7697
7698 if (maxpagesize != get_elf_backend_data (obfd)->maxpagesize)
7699 bfd_emul_set_maxpagesize (bfd_get_target (obfd), maxpagesize);
7700 }
7701
7702 return rewrite_elf_program_header (ibfd, obfd);
7703 }
7704
7705 /* Initialize private output section information from input section. */
7706
7707 bfd_boolean
7708 _bfd_elf_init_private_section_data (bfd *ibfd,
7709 asection *isec,
7710 bfd *obfd,
7711 asection *osec,
7712 struct bfd_link_info *link_info)
7713
7714 {
7715 Elf_Internal_Shdr *ihdr, *ohdr;
7716 bfd_boolean final_link = (link_info != NULL
7717 && !bfd_link_relocatable (link_info));
7718
7719 if (ibfd->xvec->flavour != bfd_target_elf_flavour
7720 || obfd->xvec->flavour != bfd_target_elf_flavour)
7721 return TRUE;
7722
7723 BFD_ASSERT (elf_section_data (osec) != NULL);
7724
7725 /* For objcopy and relocatable link, don't copy the output ELF
7726 section type from input if the output BFD section flags have been
7727 set to something different. For a final link allow some flags
7728 that the linker clears to differ. */
7729 if (elf_section_type (osec) == SHT_NULL
7730 && (osec->flags == isec->flags
7731 || (final_link
7732 && ((osec->flags ^ isec->flags)
7733 & ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC)) == 0)))
7734 elf_section_type (osec) = elf_section_type (isec);
7735
7736 /* FIXME: Is this correct for all OS/PROC specific flags? */
7737 elf_section_flags (osec) |= (elf_section_flags (isec)
7738 & (SHF_MASKOS | SHF_MASKPROC));
7739
7740 /* Copy sh_info from input for mbind section. */
7741 if ((elf_tdata (ibfd)->has_gnu_osabi & elf_gnu_osabi_mbind) != 0
7742 && elf_section_flags (isec) & SHF_GNU_MBIND)
7743 elf_section_data (osec)->this_hdr.sh_info
7744 = elf_section_data (isec)->this_hdr.sh_info;
7745
7746 /* Set things up for objcopy and relocatable link. The output
7747 SHT_GROUP section will have its elf_next_in_group pointing back
7748 to the input group members. Ignore linker created group section.
7749 See elfNN_ia64_object_p in elfxx-ia64.c. */
7750 if ((link_info == NULL
7751 || !link_info->resolve_section_groups)
7752 && (elf_sec_group (isec) == NULL
7753 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0))
7754 {
7755 if (elf_section_flags (isec) & SHF_GROUP)
7756 elf_section_flags (osec) |= SHF_GROUP;
7757 elf_next_in_group (osec) = elf_next_in_group (isec);
7758 elf_section_data (osec)->group = elf_section_data (isec)->group;
7759 }
7760
7761 /* If not decompress, preserve SHF_COMPRESSED. */
7762 if (!final_link && (ibfd->flags & BFD_DECOMPRESS) == 0)
7763 elf_section_flags (osec) |= (elf_section_flags (isec)
7764 & SHF_COMPRESSED);
7765
7766 ihdr = &elf_section_data (isec)->this_hdr;
7767
7768 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
7769 don't use the output section of the linked-to section since it
7770 may be NULL at this point. */
7771 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
7772 {
7773 ohdr = &elf_section_data (osec)->this_hdr;
7774 ohdr->sh_flags |= SHF_LINK_ORDER;
7775 elf_linked_to_section (osec) = elf_linked_to_section (isec);
7776 }
7777
7778 osec->use_rela_p = isec->use_rela_p;
7779
7780 return TRUE;
7781 }
7782
7783 /* Copy private section information. This copies over the entsize
7784 field, and sometimes the info field. */
7785
7786 bfd_boolean
7787 _bfd_elf_copy_private_section_data (bfd *ibfd,
7788 asection *isec,
7789 bfd *obfd,
7790 asection *osec)
7791 {
7792 Elf_Internal_Shdr *ihdr, *ohdr;
7793
7794 if (ibfd->xvec->flavour != bfd_target_elf_flavour
7795 || obfd->xvec->flavour != bfd_target_elf_flavour)
7796 return TRUE;
7797
7798 ihdr = &elf_section_data (isec)->this_hdr;
7799 ohdr = &elf_section_data (osec)->this_hdr;
7800
7801 ohdr->sh_entsize = ihdr->sh_entsize;
7802
7803 if (ihdr->sh_type == SHT_SYMTAB
7804 || ihdr->sh_type == SHT_DYNSYM
7805 || ihdr->sh_type == SHT_GNU_verneed
7806 || ihdr->sh_type == SHT_GNU_verdef)
7807 ohdr->sh_info = ihdr->sh_info;
7808
7809 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
7810 NULL);
7811 }
7812
7813 /* Look at all the SHT_GROUP sections in IBFD, making any adjustments
7814 necessary if we are removing either the SHT_GROUP section or any of
7815 the group member sections. DISCARDED is the value that a section's
7816 output_section has if the section will be discarded, NULL when this
7817 function is called from objcopy, bfd_abs_section_ptr when called
7818 from the linker. */
7819
7820 bfd_boolean
7821 _bfd_elf_fixup_group_sections (bfd *ibfd, asection *discarded)
7822 {
7823 asection *isec;
7824
7825 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
7826 if (elf_section_type (isec) == SHT_GROUP)
7827 {
7828 asection *first = elf_next_in_group (isec);
7829 asection *s = first;
7830 bfd_size_type removed = 0;
7831
7832 while (s != NULL)
7833 {
7834 /* If this member section is being output but the
7835 SHT_GROUP section is not, then clear the group info
7836 set up by _bfd_elf_copy_private_section_data. */
7837 if (s->output_section != discarded
7838 && isec->output_section == discarded)
7839 {
7840 elf_section_flags (s->output_section) &= ~SHF_GROUP;
7841 elf_group_name (s->output_section) = NULL;
7842 }
7843 /* Conversely, if the member section is not being output
7844 but the SHT_GROUP section is, then adjust its size. */
7845 else if (s->output_section == discarded
7846 && isec->output_section != discarded)
7847 {
7848 struct bfd_elf_section_data *elf_sec = elf_section_data (s);
7849 removed += 4;
7850 if (elf_sec->rel.hdr != NULL
7851 && (elf_sec->rel.hdr->sh_flags & SHF_GROUP) != 0)
7852 removed += 4;
7853 if (elf_sec->rela.hdr != NULL
7854 && (elf_sec->rela.hdr->sh_flags & SHF_GROUP) != 0)
7855 removed += 4;
7856 }
7857 s = elf_next_in_group (s);
7858 if (s == first)
7859 break;
7860 }
7861 if (removed != 0)
7862 {
7863 if (discarded != NULL)
7864 {
7865 /* If we've been called for ld -r, then we need to
7866 adjust the input section size. */
7867 if (isec->rawsize == 0)
7868 isec->rawsize = isec->size;
7869 isec->size = isec->rawsize - removed;
7870 if (isec->size <= 4)
7871 {
7872 isec->size = 0;
7873 isec->flags |= SEC_EXCLUDE;
7874 }
7875 }
7876 else
7877 {
7878 /* Adjust the output section size when called from
7879 objcopy. */
7880 isec->output_section->size -= removed;
7881 if (isec->output_section->size <= 4)
7882 {
7883 isec->output_section->size = 0;
7884 isec->output_section->flags |= SEC_EXCLUDE;
7885 }
7886 }
7887 }
7888 }
7889
7890 return TRUE;
7891 }
7892
7893 /* Copy private header information. */
7894
7895 bfd_boolean
7896 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
7897 {
7898 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7899 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7900 return TRUE;
7901
7902 /* Copy over private BFD data if it has not already been copied.
7903 This must be done here, rather than in the copy_private_bfd_data
7904 entry point, because the latter is called after the section
7905 contents have been set, which means that the program headers have
7906 already been worked out. */
7907 if (elf_seg_map (obfd) == NULL && elf_tdata (ibfd)->phdr != NULL)
7908 {
7909 if (! copy_private_bfd_data (ibfd, obfd))
7910 return FALSE;
7911 }
7912
7913 return _bfd_elf_fixup_group_sections (ibfd, NULL);
7914 }
7915
7916 /* Copy private symbol information. If this symbol is in a section
7917 which we did not map into a BFD section, try to map the section
7918 index correctly. We use special macro definitions for the mapped
7919 section indices; these definitions are interpreted by the
7920 swap_out_syms function. */
7921
7922 #define MAP_ONESYMTAB (SHN_HIOS + 1)
7923 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
7924 #define MAP_STRTAB (SHN_HIOS + 3)
7925 #define MAP_SHSTRTAB (SHN_HIOS + 4)
7926 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
7927
7928 bfd_boolean
7929 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
7930 asymbol *isymarg,
7931 bfd *obfd,
7932 asymbol *osymarg)
7933 {
7934 elf_symbol_type *isym, *osym;
7935
7936 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7937 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7938 return TRUE;
7939
7940 isym = elf_symbol_from (ibfd, isymarg);
7941 osym = elf_symbol_from (obfd, osymarg);
7942
7943 if (isym != NULL
7944 && isym->internal_elf_sym.st_shndx != 0
7945 && osym != NULL
7946 && bfd_is_abs_section (isym->symbol.section))
7947 {
7948 unsigned int shndx;
7949
7950 shndx = isym->internal_elf_sym.st_shndx;
7951 if (shndx == elf_onesymtab (ibfd))
7952 shndx = MAP_ONESYMTAB;
7953 else if (shndx == elf_dynsymtab (ibfd))
7954 shndx = MAP_DYNSYMTAB;
7955 else if (shndx == elf_strtab_sec (ibfd))
7956 shndx = MAP_STRTAB;
7957 else if (shndx == elf_shstrtab_sec (ibfd))
7958 shndx = MAP_SHSTRTAB;
7959 else if (find_section_in_list (shndx, elf_symtab_shndx_list (ibfd)))
7960 shndx = MAP_SYM_SHNDX;
7961 osym->internal_elf_sym.st_shndx = shndx;
7962 }
7963
7964 return TRUE;
7965 }
7966
7967 /* Swap out the symbols. */
7968
7969 static bfd_boolean
7970 swap_out_syms (bfd *abfd,
7971 struct elf_strtab_hash **sttp,
7972 int relocatable_p)
7973 {
7974 const struct elf_backend_data *bed;
7975 int symcount;
7976 asymbol **syms;
7977 struct elf_strtab_hash *stt;
7978 Elf_Internal_Shdr *symtab_hdr;
7979 Elf_Internal_Shdr *symtab_shndx_hdr;
7980 Elf_Internal_Shdr *symstrtab_hdr;
7981 struct elf_sym_strtab *symstrtab;
7982 bfd_byte *outbound_syms;
7983 bfd_byte *outbound_shndx;
7984 unsigned long outbound_syms_index;
7985 unsigned long outbound_shndx_index;
7986 int idx;
7987 unsigned int num_locals;
7988 bfd_size_type amt;
7989 bfd_boolean name_local_sections;
7990
7991 if (!elf_map_symbols (abfd, &num_locals))
7992 return FALSE;
7993
7994 /* Dump out the symtabs. */
7995 stt = _bfd_elf_strtab_init ();
7996 if (stt == NULL)
7997 return FALSE;
7998
7999 bed = get_elf_backend_data (abfd);
8000 symcount = bfd_get_symcount (abfd);
8001 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8002 symtab_hdr->sh_type = SHT_SYMTAB;
8003 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
8004 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
8005 symtab_hdr->sh_info = num_locals + 1;
8006 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
8007
8008 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
8009 symstrtab_hdr->sh_type = SHT_STRTAB;
8010
8011 /* Allocate buffer to swap out the .strtab section. */
8012 symstrtab = (struct elf_sym_strtab *) bfd_malloc2 (symcount + 1,
8013 sizeof (*symstrtab));
8014 if (symstrtab == NULL)
8015 {
8016 _bfd_elf_strtab_free (stt);
8017 return FALSE;
8018 }
8019
8020 outbound_syms = (bfd_byte *) bfd_alloc2 (abfd, 1 + symcount,
8021 bed->s->sizeof_sym);
8022 if (outbound_syms == NULL)
8023 {
8024 error_return:
8025 _bfd_elf_strtab_free (stt);
8026 free (symstrtab);
8027 return FALSE;
8028 }
8029 symtab_hdr->contents = outbound_syms;
8030 outbound_syms_index = 0;
8031
8032 outbound_shndx = NULL;
8033 outbound_shndx_index = 0;
8034
8035 if (elf_symtab_shndx_list (abfd))
8036 {
8037 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
8038 if (symtab_shndx_hdr->sh_name != 0)
8039 {
8040 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
8041 outbound_shndx = (bfd_byte *)
8042 bfd_zalloc2 (abfd, 1 + symcount, sizeof (Elf_External_Sym_Shndx));
8043 if (outbound_shndx == NULL)
8044 goto error_return;
8045
8046 symtab_shndx_hdr->contents = outbound_shndx;
8047 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
8048 symtab_shndx_hdr->sh_size = amt;
8049 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
8050 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
8051 }
8052 /* FIXME: What about any other headers in the list ? */
8053 }
8054
8055 /* Now generate the data (for "contents"). */
8056 {
8057 /* Fill in zeroth symbol and swap it out. */
8058 Elf_Internal_Sym sym;
8059 sym.st_name = 0;
8060 sym.st_value = 0;
8061 sym.st_size = 0;
8062 sym.st_info = 0;
8063 sym.st_other = 0;
8064 sym.st_shndx = SHN_UNDEF;
8065 sym.st_target_internal = 0;
8066 symstrtab[0].sym = sym;
8067 symstrtab[0].dest_index = outbound_syms_index;
8068 symstrtab[0].destshndx_index = outbound_shndx_index;
8069 outbound_syms_index++;
8070 if (outbound_shndx != NULL)
8071 outbound_shndx_index++;
8072 }
8073
8074 name_local_sections
8075 = (bed->elf_backend_name_local_section_symbols
8076 && bed->elf_backend_name_local_section_symbols (abfd));
8077
8078 syms = bfd_get_outsymbols (abfd);
8079 for (idx = 0; idx < symcount;)
8080 {
8081 Elf_Internal_Sym sym;
8082 bfd_vma value = syms[idx]->value;
8083 elf_symbol_type *type_ptr;
8084 flagword flags = syms[idx]->flags;
8085 int type;
8086
8087 if (!name_local_sections
8088 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
8089 {
8090 /* Local section symbols have no name. */
8091 sym.st_name = (unsigned long) -1;
8092 }
8093 else
8094 {
8095 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
8096 to get the final offset for st_name. */
8097 sym.st_name
8098 = (unsigned long) _bfd_elf_strtab_add (stt, syms[idx]->name,
8099 FALSE);
8100 if (sym.st_name == (unsigned long) -1)
8101 goto error_return;
8102 }
8103
8104 type_ptr = elf_symbol_from (abfd, syms[idx]);
8105
8106 if ((flags & BSF_SECTION_SYM) == 0
8107 && bfd_is_com_section (syms[idx]->section))
8108 {
8109 /* ELF common symbols put the alignment into the `value' field,
8110 and the size into the `size' field. This is backwards from
8111 how BFD handles it, so reverse it here. */
8112 sym.st_size = value;
8113 if (type_ptr == NULL
8114 || type_ptr->internal_elf_sym.st_value == 0)
8115 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
8116 else
8117 sym.st_value = type_ptr->internal_elf_sym.st_value;
8118 sym.st_shndx = _bfd_elf_section_from_bfd_section
8119 (abfd, syms[idx]->section);
8120 }
8121 else
8122 {
8123 asection *sec = syms[idx]->section;
8124 unsigned int shndx;
8125
8126 if (sec->output_section)
8127 {
8128 value += sec->output_offset;
8129 sec = sec->output_section;
8130 }
8131
8132 /* Don't add in the section vma for relocatable output. */
8133 if (! relocatable_p)
8134 value += sec->vma;
8135 sym.st_value = value;
8136 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
8137
8138 if (bfd_is_abs_section (sec)
8139 && type_ptr != NULL
8140 && type_ptr->internal_elf_sym.st_shndx != 0)
8141 {
8142 /* This symbol is in a real ELF section which we did
8143 not create as a BFD section. Undo the mapping done
8144 by copy_private_symbol_data. */
8145 shndx = type_ptr->internal_elf_sym.st_shndx;
8146 switch (shndx)
8147 {
8148 case MAP_ONESYMTAB:
8149 shndx = elf_onesymtab (abfd);
8150 break;
8151 case MAP_DYNSYMTAB:
8152 shndx = elf_dynsymtab (abfd);
8153 break;
8154 case MAP_STRTAB:
8155 shndx = elf_strtab_sec (abfd);
8156 break;
8157 case MAP_SHSTRTAB:
8158 shndx = elf_shstrtab_sec (abfd);
8159 break;
8160 case MAP_SYM_SHNDX:
8161 if (elf_symtab_shndx_list (abfd))
8162 shndx = elf_symtab_shndx_list (abfd)->ndx;
8163 break;
8164 default:
8165 shndx = SHN_ABS;
8166 break;
8167 }
8168 }
8169 else
8170 {
8171 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
8172
8173 if (shndx == SHN_BAD)
8174 {
8175 asection *sec2;
8176
8177 /* Writing this would be a hell of a lot easier if
8178 we had some decent documentation on bfd, and
8179 knew what to expect of the library, and what to
8180 demand of applications. For example, it
8181 appears that `objcopy' might not set the
8182 section of a symbol to be a section that is
8183 actually in the output file. */
8184 sec2 = bfd_get_section_by_name (abfd, sec->name);
8185 if (sec2 != NULL)
8186 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
8187 if (shndx == SHN_BAD)
8188 {
8189 /* xgettext:c-format */
8190 _bfd_error_handler
8191 (_("unable to find equivalent output section"
8192 " for symbol '%s' from section '%s'"),
8193 syms[idx]->name ? syms[idx]->name : "<Local sym>",
8194 sec->name);
8195 bfd_set_error (bfd_error_invalid_operation);
8196 goto error_return;
8197 }
8198 }
8199 }
8200
8201 sym.st_shndx = shndx;
8202 }
8203
8204 if ((flags & BSF_THREAD_LOCAL) != 0)
8205 type = STT_TLS;
8206 else if ((flags & BSF_GNU_INDIRECT_FUNCTION) != 0)
8207 type = STT_GNU_IFUNC;
8208 else if ((flags & BSF_FUNCTION) != 0)
8209 type = STT_FUNC;
8210 else if ((flags & BSF_OBJECT) != 0)
8211 type = STT_OBJECT;
8212 else if ((flags & BSF_RELC) != 0)
8213 type = STT_RELC;
8214 else if ((flags & BSF_SRELC) != 0)
8215 type = STT_SRELC;
8216 else
8217 type = STT_NOTYPE;
8218
8219 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
8220 type = STT_TLS;
8221
8222 /* Processor-specific types. */
8223 if (type_ptr != NULL
8224 && bed->elf_backend_get_symbol_type)
8225 type = ((*bed->elf_backend_get_symbol_type)
8226 (&type_ptr->internal_elf_sym, type));
8227
8228 if (flags & BSF_SECTION_SYM)
8229 {
8230 if (flags & BSF_GLOBAL)
8231 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8232 else
8233 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
8234 }
8235 else if (bfd_is_com_section (syms[idx]->section))
8236 {
8237 if (type != STT_TLS)
8238 {
8239 if ((abfd->flags & BFD_CONVERT_ELF_COMMON))
8240 type = ((abfd->flags & BFD_USE_ELF_STT_COMMON)
8241 ? STT_COMMON : STT_OBJECT);
8242 else
8243 type = ((flags & BSF_ELF_COMMON) != 0
8244 ? STT_COMMON : STT_OBJECT);
8245 }
8246 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
8247 }
8248 else if (bfd_is_und_section (syms[idx]->section))
8249 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
8250 ? STB_WEAK
8251 : STB_GLOBAL),
8252 type);
8253 else if (flags & BSF_FILE)
8254 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
8255 else
8256 {
8257 int bind = STB_LOCAL;
8258
8259 if (flags & BSF_LOCAL)
8260 bind = STB_LOCAL;
8261 else if (flags & BSF_GNU_UNIQUE)
8262 bind = STB_GNU_UNIQUE;
8263 else if (flags & BSF_WEAK)
8264 bind = STB_WEAK;
8265 else if (flags & BSF_GLOBAL)
8266 bind = STB_GLOBAL;
8267
8268 sym.st_info = ELF_ST_INFO (bind, type);
8269 }
8270
8271 if (type_ptr != NULL)
8272 {
8273 sym.st_other = type_ptr->internal_elf_sym.st_other;
8274 sym.st_target_internal
8275 = type_ptr->internal_elf_sym.st_target_internal;
8276 }
8277 else
8278 {
8279 sym.st_other = 0;
8280 sym.st_target_internal = 0;
8281 }
8282
8283 idx++;
8284 symstrtab[idx].sym = sym;
8285 symstrtab[idx].dest_index = outbound_syms_index;
8286 symstrtab[idx].destshndx_index = outbound_shndx_index;
8287
8288 outbound_syms_index++;
8289 if (outbound_shndx != NULL)
8290 outbound_shndx_index++;
8291 }
8292
8293 /* Finalize the .strtab section. */
8294 _bfd_elf_strtab_finalize (stt);
8295
8296 /* Swap out the .strtab section. */
8297 for (idx = 0; idx <= symcount; idx++)
8298 {
8299 struct elf_sym_strtab *elfsym = &symstrtab[idx];
8300 if (elfsym->sym.st_name == (unsigned long) -1)
8301 elfsym->sym.st_name = 0;
8302 else
8303 elfsym->sym.st_name = _bfd_elf_strtab_offset (stt,
8304 elfsym->sym.st_name);
8305 bed->s->swap_symbol_out (abfd, &elfsym->sym,
8306 (outbound_syms
8307 + (elfsym->dest_index
8308 * bed->s->sizeof_sym)),
8309 (outbound_shndx
8310 + (elfsym->destshndx_index
8311 * sizeof (Elf_External_Sym_Shndx))));
8312 }
8313 free (symstrtab);
8314
8315 *sttp = stt;
8316 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (stt);
8317 symstrtab_hdr->sh_type = SHT_STRTAB;
8318 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
8319 symstrtab_hdr->sh_addr = 0;
8320 symstrtab_hdr->sh_entsize = 0;
8321 symstrtab_hdr->sh_link = 0;
8322 symstrtab_hdr->sh_info = 0;
8323 symstrtab_hdr->sh_addralign = 1;
8324
8325 return TRUE;
8326 }
8327
8328 /* Return the number of bytes required to hold the symtab vector.
8329
8330 Note that we base it on the count plus 1, since we will null terminate
8331 the vector allocated based on this size. However, the ELF symbol table
8332 always has a dummy entry as symbol #0, so it ends up even. */
8333
8334 long
8335 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
8336 {
8337 bfd_size_type symcount;
8338 long symtab_size;
8339 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
8340
8341 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
8342 if (symcount >= LONG_MAX / sizeof (asymbol *))
8343 {
8344 bfd_set_error (bfd_error_file_too_big);
8345 return -1;
8346 }
8347 symtab_size = (symcount + 1) * (sizeof (asymbol *));
8348 if (symcount > 0)
8349 symtab_size -= sizeof (asymbol *);
8350
8351 return symtab_size;
8352 }
8353
8354 long
8355 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
8356 {
8357 bfd_size_type symcount;
8358 long symtab_size;
8359 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
8360
8361 if (elf_dynsymtab (abfd) == 0)
8362 {
8363 bfd_set_error (bfd_error_invalid_operation);
8364 return -1;
8365 }
8366
8367 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
8368 if (symcount >= LONG_MAX / sizeof (asymbol *))
8369 {
8370 bfd_set_error (bfd_error_file_too_big);
8371 return -1;
8372 }
8373 symtab_size = (symcount + 1) * (sizeof (asymbol *));
8374 if (symcount > 0)
8375 symtab_size -= sizeof (asymbol *);
8376
8377 return symtab_size;
8378 }
8379
8380 long
8381 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
8382 sec_ptr asect)
8383 {
8384 #if SIZEOF_LONG == SIZEOF_INT
8385 if (asect->reloc_count >= LONG_MAX / sizeof (arelent *))
8386 {
8387 bfd_set_error (bfd_error_file_too_big);
8388 return -1;
8389 }
8390 #endif
8391 return (asect->reloc_count + 1) * sizeof (arelent *);
8392 }
8393
8394 /* Canonicalize the relocs. */
8395
8396 long
8397 _bfd_elf_canonicalize_reloc (bfd *abfd,
8398 sec_ptr section,
8399 arelent **relptr,
8400 asymbol **symbols)
8401 {
8402 arelent *tblptr;
8403 unsigned int i;
8404 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8405
8406 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
8407 return -1;
8408
8409 tblptr = section->relocation;
8410 for (i = 0; i < section->reloc_count; i++)
8411 *relptr++ = tblptr++;
8412
8413 *relptr = NULL;
8414
8415 return section->reloc_count;
8416 }
8417
8418 long
8419 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
8420 {
8421 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8422 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
8423
8424 if (symcount >= 0)
8425 abfd->symcount = symcount;
8426 return symcount;
8427 }
8428
8429 long
8430 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
8431 asymbol **allocation)
8432 {
8433 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8434 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
8435
8436 if (symcount >= 0)
8437 abfd->dynsymcount = symcount;
8438 return symcount;
8439 }
8440
8441 /* Return the size required for the dynamic reloc entries. Any loadable
8442 section that was actually installed in the BFD, and has type SHT_REL
8443 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
8444 dynamic reloc section. */
8445
8446 long
8447 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
8448 {
8449 bfd_size_type count;
8450 asection *s;
8451
8452 if (elf_dynsymtab (abfd) == 0)
8453 {
8454 bfd_set_error (bfd_error_invalid_operation);
8455 return -1;
8456 }
8457
8458 count = 1;
8459 for (s = abfd->sections; s != NULL; s = s->next)
8460 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
8461 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
8462 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
8463 {
8464 count += s->size / elf_section_data (s)->this_hdr.sh_entsize;
8465 if (count > LONG_MAX / sizeof (arelent *))
8466 {
8467 bfd_set_error (bfd_error_file_too_big);
8468 return -1;
8469 }
8470 }
8471 return count * sizeof (arelent *);
8472 }
8473
8474 /* Canonicalize the dynamic relocation entries. Note that we return the
8475 dynamic relocations as a single block, although they are actually
8476 associated with particular sections; the interface, which was
8477 designed for SunOS style shared libraries, expects that there is only
8478 one set of dynamic relocs. Any loadable section that was actually
8479 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
8480 dynamic symbol table, is considered to be a dynamic reloc section. */
8481
8482 long
8483 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
8484 arelent **storage,
8485 asymbol **syms)
8486 {
8487 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
8488 asection *s;
8489 long ret;
8490
8491 if (elf_dynsymtab (abfd) == 0)
8492 {
8493 bfd_set_error (bfd_error_invalid_operation);
8494 return -1;
8495 }
8496
8497 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
8498 ret = 0;
8499 for (s = abfd->sections; s != NULL; s = s->next)
8500 {
8501 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
8502 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
8503 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
8504 {
8505 arelent *p;
8506 long count, i;
8507
8508 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
8509 return -1;
8510 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
8511 p = s->relocation;
8512 for (i = 0; i < count; i++)
8513 *storage++ = p++;
8514 ret += count;
8515 }
8516 }
8517
8518 *storage = NULL;
8519
8520 return ret;
8521 }
8522 \f
8523 /* Read in the version information. */
8524
8525 bfd_boolean
8526 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
8527 {
8528 bfd_byte *contents = NULL;
8529 unsigned int freeidx = 0;
8530
8531 if (elf_dynverref (abfd) != 0)
8532 {
8533 Elf_Internal_Shdr *hdr;
8534 Elf_External_Verneed *everneed;
8535 Elf_Internal_Verneed *iverneed;
8536 unsigned int i;
8537 bfd_byte *contents_end;
8538
8539 hdr = &elf_tdata (abfd)->dynverref_hdr;
8540
8541 if (hdr->sh_info == 0
8542 || hdr->sh_info > hdr->sh_size / sizeof (Elf_External_Verneed))
8543 {
8544 error_return_bad_verref:
8545 _bfd_error_handler
8546 (_("%pB: .gnu.version_r invalid entry"), abfd);
8547 bfd_set_error (bfd_error_bad_value);
8548 error_return_verref:
8549 elf_tdata (abfd)->verref = NULL;
8550 elf_tdata (abfd)->cverrefs = 0;
8551 goto error_return;
8552 }
8553
8554 ufile_ptr filesize = bfd_get_file_size (abfd);
8555 if (filesize > 0 && filesize < hdr->sh_size)
8556 {
8557 /* PR 24708: Avoid attempts to allocate a ridiculous amount
8558 of memory. */
8559 bfd_set_error (bfd_error_no_memory);
8560 _bfd_error_handler
8561 /* xgettext:c-format */
8562 (_("error: %pB version reference section is too large (%#" PRIx64 " bytes)"),
8563 abfd, (uint64_t) hdr->sh_size);
8564 goto error_return_verref;
8565 }
8566 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
8567 if (contents == NULL)
8568 goto error_return_verref;
8569
8570 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
8571 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
8572 goto error_return_verref;
8573
8574 elf_tdata (abfd)->verref = (Elf_Internal_Verneed *)
8575 bfd_alloc2 (abfd, hdr->sh_info, sizeof (Elf_Internal_Verneed));
8576
8577 if (elf_tdata (abfd)->verref == NULL)
8578 goto error_return_verref;
8579
8580 BFD_ASSERT (sizeof (Elf_External_Verneed)
8581 == sizeof (Elf_External_Vernaux));
8582 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
8583 everneed = (Elf_External_Verneed *) contents;
8584 iverneed = elf_tdata (abfd)->verref;
8585 for (i = 0; i < hdr->sh_info; i++, iverneed++)
8586 {
8587 Elf_External_Vernaux *evernaux;
8588 Elf_Internal_Vernaux *ivernaux;
8589 unsigned int j;
8590
8591 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
8592
8593 iverneed->vn_bfd = abfd;
8594
8595 iverneed->vn_filename =
8596 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8597 iverneed->vn_file);
8598 if (iverneed->vn_filename == NULL)
8599 goto error_return_bad_verref;
8600
8601 if (iverneed->vn_cnt == 0)
8602 iverneed->vn_auxptr = NULL;
8603 else
8604 {
8605 iverneed->vn_auxptr = (struct elf_internal_vernaux *)
8606 bfd_alloc2 (abfd, iverneed->vn_cnt,
8607 sizeof (Elf_Internal_Vernaux));
8608 if (iverneed->vn_auxptr == NULL)
8609 goto error_return_verref;
8610 }
8611
8612 if (iverneed->vn_aux
8613 > (size_t) (contents_end - (bfd_byte *) everneed))
8614 goto error_return_bad_verref;
8615
8616 evernaux = ((Elf_External_Vernaux *)
8617 ((bfd_byte *) everneed + iverneed->vn_aux));
8618 ivernaux = iverneed->vn_auxptr;
8619 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
8620 {
8621 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
8622
8623 ivernaux->vna_nodename =
8624 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8625 ivernaux->vna_name);
8626 if (ivernaux->vna_nodename == NULL)
8627 goto error_return_bad_verref;
8628
8629 if (ivernaux->vna_other > freeidx)
8630 freeidx = ivernaux->vna_other;
8631
8632 ivernaux->vna_nextptr = NULL;
8633 if (ivernaux->vna_next == 0)
8634 {
8635 iverneed->vn_cnt = j + 1;
8636 break;
8637 }
8638 if (j + 1 < iverneed->vn_cnt)
8639 ivernaux->vna_nextptr = ivernaux + 1;
8640
8641 if (ivernaux->vna_next
8642 > (size_t) (contents_end - (bfd_byte *) evernaux))
8643 goto error_return_bad_verref;
8644
8645 evernaux = ((Elf_External_Vernaux *)
8646 ((bfd_byte *) evernaux + ivernaux->vna_next));
8647 }
8648
8649 iverneed->vn_nextref = NULL;
8650 if (iverneed->vn_next == 0)
8651 break;
8652 if (i + 1 < hdr->sh_info)
8653 iverneed->vn_nextref = iverneed + 1;
8654
8655 if (iverneed->vn_next
8656 > (size_t) (contents_end - (bfd_byte *) everneed))
8657 goto error_return_bad_verref;
8658
8659 everneed = ((Elf_External_Verneed *)
8660 ((bfd_byte *) everneed + iverneed->vn_next));
8661 }
8662 elf_tdata (abfd)->cverrefs = i;
8663
8664 free (contents);
8665 contents = NULL;
8666 }
8667
8668 if (elf_dynverdef (abfd) != 0)
8669 {
8670 Elf_Internal_Shdr *hdr;
8671 Elf_External_Verdef *everdef;
8672 Elf_Internal_Verdef *iverdef;
8673 Elf_Internal_Verdef *iverdefarr;
8674 Elf_Internal_Verdef iverdefmem;
8675 unsigned int i;
8676 unsigned int maxidx;
8677 bfd_byte *contents_end_def, *contents_end_aux;
8678
8679 hdr = &elf_tdata (abfd)->dynverdef_hdr;
8680
8681 if (hdr->sh_info == 0 || hdr->sh_size < sizeof (Elf_External_Verdef))
8682 {
8683 error_return_bad_verdef:
8684 _bfd_error_handler
8685 (_("%pB: .gnu.version_d invalid entry"), abfd);
8686 bfd_set_error (bfd_error_bad_value);
8687 error_return_verdef:
8688 elf_tdata (abfd)->verdef = NULL;
8689 elf_tdata (abfd)->cverdefs = 0;
8690 goto error_return;
8691 }
8692
8693 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
8694 if (contents == NULL)
8695 goto error_return_verdef;
8696 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
8697 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
8698 goto error_return_verdef;
8699
8700 BFD_ASSERT (sizeof (Elf_External_Verdef)
8701 >= sizeof (Elf_External_Verdaux));
8702 contents_end_def = contents + hdr->sh_size
8703 - sizeof (Elf_External_Verdef);
8704 contents_end_aux = contents + hdr->sh_size
8705 - sizeof (Elf_External_Verdaux);
8706
8707 /* We know the number of entries in the section but not the maximum
8708 index. Therefore we have to run through all entries and find
8709 the maximum. */
8710 everdef = (Elf_External_Verdef *) contents;
8711 maxidx = 0;
8712 for (i = 0; i < hdr->sh_info; ++i)
8713 {
8714 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
8715
8716 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) == 0)
8717 goto error_return_bad_verdef;
8718 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
8719 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
8720
8721 if (iverdefmem.vd_next == 0)
8722 break;
8723
8724 if (iverdefmem.vd_next
8725 > (size_t) (contents_end_def - (bfd_byte *) everdef))
8726 goto error_return_bad_verdef;
8727
8728 everdef = ((Elf_External_Verdef *)
8729 ((bfd_byte *) everdef + iverdefmem.vd_next));
8730 }
8731
8732 if (default_imported_symver)
8733 {
8734 if (freeidx > maxidx)
8735 maxidx = ++freeidx;
8736 else
8737 freeidx = ++maxidx;
8738 }
8739
8740 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
8741 bfd_zalloc2 (abfd, maxidx, sizeof (Elf_Internal_Verdef));
8742 if (elf_tdata (abfd)->verdef == NULL)
8743 goto error_return_verdef;
8744
8745 elf_tdata (abfd)->cverdefs = maxidx;
8746
8747 everdef = (Elf_External_Verdef *) contents;
8748 iverdefarr = elf_tdata (abfd)->verdef;
8749 for (i = 0; i < hdr->sh_info; i++)
8750 {
8751 Elf_External_Verdaux *everdaux;
8752 Elf_Internal_Verdaux *iverdaux;
8753 unsigned int j;
8754
8755 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
8756
8757 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
8758 goto error_return_bad_verdef;
8759
8760 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
8761 memcpy (iverdef, &iverdefmem, offsetof (Elf_Internal_Verdef, vd_bfd));
8762
8763 iverdef->vd_bfd = abfd;
8764
8765 if (iverdef->vd_cnt == 0)
8766 iverdef->vd_auxptr = NULL;
8767 else
8768 {
8769 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
8770 bfd_alloc2 (abfd, iverdef->vd_cnt,
8771 sizeof (Elf_Internal_Verdaux));
8772 if (iverdef->vd_auxptr == NULL)
8773 goto error_return_verdef;
8774 }
8775
8776 if (iverdef->vd_aux
8777 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
8778 goto error_return_bad_verdef;
8779
8780 everdaux = ((Elf_External_Verdaux *)
8781 ((bfd_byte *) everdef + iverdef->vd_aux));
8782 iverdaux = iverdef->vd_auxptr;
8783 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
8784 {
8785 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
8786
8787 iverdaux->vda_nodename =
8788 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8789 iverdaux->vda_name);
8790 if (iverdaux->vda_nodename == NULL)
8791 goto error_return_bad_verdef;
8792
8793 iverdaux->vda_nextptr = NULL;
8794 if (iverdaux->vda_next == 0)
8795 {
8796 iverdef->vd_cnt = j + 1;
8797 break;
8798 }
8799 if (j + 1 < iverdef->vd_cnt)
8800 iverdaux->vda_nextptr = iverdaux + 1;
8801
8802 if (iverdaux->vda_next
8803 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
8804 goto error_return_bad_verdef;
8805
8806 everdaux = ((Elf_External_Verdaux *)
8807 ((bfd_byte *) everdaux + iverdaux->vda_next));
8808 }
8809
8810 iverdef->vd_nodename = NULL;
8811 if (iverdef->vd_cnt)
8812 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
8813
8814 iverdef->vd_nextdef = NULL;
8815 if (iverdef->vd_next == 0)
8816 break;
8817 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
8818 iverdef->vd_nextdef = iverdef + 1;
8819
8820 everdef = ((Elf_External_Verdef *)
8821 ((bfd_byte *) everdef + iverdef->vd_next));
8822 }
8823
8824 free (contents);
8825 contents = NULL;
8826 }
8827 else if (default_imported_symver)
8828 {
8829 if (freeidx < 3)
8830 freeidx = 3;
8831 else
8832 freeidx++;
8833
8834 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
8835 bfd_zalloc2 (abfd, freeidx, sizeof (Elf_Internal_Verdef));
8836 if (elf_tdata (abfd)->verdef == NULL)
8837 goto error_return;
8838
8839 elf_tdata (abfd)->cverdefs = freeidx;
8840 }
8841
8842 /* Create a default version based on the soname. */
8843 if (default_imported_symver)
8844 {
8845 Elf_Internal_Verdef *iverdef;
8846 Elf_Internal_Verdaux *iverdaux;
8847
8848 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];
8849
8850 iverdef->vd_version = VER_DEF_CURRENT;
8851 iverdef->vd_flags = 0;
8852 iverdef->vd_ndx = freeidx;
8853 iverdef->vd_cnt = 1;
8854
8855 iverdef->vd_bfd = abfd;
8856
8857 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
8858 if (iverdef->vd_nodename == NULL)
8859 goto error_return_verdef;
8860 iverdef->vd_nextdef = NULL;
8861 iverdef->vd_auxptr = ((struct elf_internal_verdaux *)
8862 bfd_zalloc (abfd, sizeof (Elf_Internal_Verdaux)));
8863 if (iverdef->vd_auxptr == NULL)
8864 goto error_return_verdef;
8865
8866 iverdaux = iverdef->vd_auxptr;
8867 iverdaux->vda_nodename = iverdef->vd_nodename;
8868 }
8869
8870 return TRUE;
8871
8872 error_return:
8873 if (contents != NULL)
8874 free (contents);
8875 return FALSE;
8876 }
8877 \f
8878 asymbol *
8879 _bfd_elf_make_empty_symbol (bfd *abfd)
8880 {
8881 elf_symbol_type *newsym;
8882
8883 newsym = (elf_symbol_type *) bfd_zalloc (abfd, sizeof (*newsym));
8884 if (!newsym)
8885 return NULL;
8886 newsym->symbol.the_bfd = abfd;
8887 return &newsym->symbol;
8888 }
8889
8890 void
8891 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
8892 asymbol *symbol,
8893 symbol_info *ret)
8894 {
8895 bfd_symbol_info (symbol, ret);
8896 }
8897
8898 /* Return whether a symbol name implies a local symbol. Most targets
8899 use this function for the is_local_label_name entry point, but some
8900 override it. */
8901
8902 bfd_boolean
8903 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
8904 const char *name)
8905 {
8906 /* Normal local symbols start with ``.L''. */
8907 if (name[0] == '.' && name[1] == 'L')
8908 return TRUE;
8909
8910 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
8911 DWARF debugging symbols starting with ``..''. */
8912 if (name[0] == '.' && name[1] == '.')
8913 return TRUE;
8914
8915 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
8916 emitting DWARF debugging output. I suspect this is actually a
8917 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
8918 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
8919 underscore to be emitted on some ELF targets). For ease of use,
8920 we treat such symbols as local. */
8921 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
8922 return TRUE;
8923
8924 /* Treat assembler generated fake symbols, dollar local labels and
8925 forward-backward labels (aka local labels) as locals.
8926 These labels have the form:
8927
8928 L0^A.* (fake symbols)
8929
8930 [.]?L[0123456789]+{^A|^B}[0123456789]* (local labels)
8931
8932 Versions which start with .L will have already been matched above,
8933 so we only need to match the rest. */
8934 if (name[0] == 'L' && ISDIGIT (name[1]))
8935 {
8936 bfd_boolean ret = FALSE;
8937 const char * p;
8938 char c;
8939
8940 for (p = name + 2; (c = *p); p++)
8941 {
8942 if (c == 1 || c == 2)
8943 {
8944 if (c == 1 && p == name + 2)
8945 /* A fake symbol. */
8946 return TRUE;
8947
8948 /* FIXME: We are being paranoid here and treating symbols like
8949 L0^Bfoo as if there were non-local, on the grounds that the
8950 assembler will never generate them. But can any symbol
8951 containing an ASCII value in the range 1-31 ever be anything
8952 other than some kind of local ? */
8953 ret = TRUE;
8954 }
8955
8956 if (! ISDIGIT (c))
8957 {
8958 ret = FALSE;
8959 break;
8960 }
8961 }
8962 return ret;
8963 }
8964
8965 return FALSE;
8966 }
8967
8968 alent *
8969 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
8970 asymbol *symbol ATTRIBUTE_UNUSED)
8971 {
8972 abort ();
8973 return NULL;
8974 }
8975
8976 bfd_boolean
8977 _bfd_elf_set_arch_mach (bfd *abfd,
8978 enum bfd_architecture arch,
8979 unsigned long machine)
8980 {
8981 /* If this isn't the right architecture for this backend, and this
8982 isn't the generic backend, fail. */
8983 if (arch != get_elf_backend_data (abfd)->arch
8984 && arch != bfd_arch_unknown
8985 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
8986 return FALSE;
8987
8988 return bfd_default_set_arch_mach (abfd, arch, machine);
8989 }
8990
8991 /* Find the nearest line to a particular section and offset,
8992 for error reporting. */
8993
8994 bfd_boolean
8995 _bfd_elf_find_nearest_line (bfd *abfd,
8996 asymbol **symbols,
8997 asection *section,
8998 bfd_vma offset,
8999 const char **filename_ptr,
9000 const char **functionname_ptr,
9001 unsigned int *line_ptr,
9002 unsigned int *discriminator_ptr)
9003 {
9004 bfd_boolean found;
9005
9006 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
9007 filename_ptr, functionname_ptr,
9008 line_ptr, discriminator_ptr,
9009 dwarf_debug_sections,
9010 &elf_tdata (abfd)->dwarf2_find_line_info)
9011 || _bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
9012 filename_ptr, functionname_ptr,
9013 line_ptr))
9014 {
9015 if (!*functionname_ptr)
9016 _bfd_elf_find_function (abfd, symbols, section, offset,
9017 *filename_ptr ? NULL : filename_ptr,
9018 functionname_ptr);
9019 return TRUE;
9020 }
9021
9022 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
9023 &found, filename_ptr,
9024 functionname_ptr, line_ptr,
9025 &elf_tdata (abfd)->line_info))
9026 return FALSE;
9027 if (found && (*functionname_ptr || *line_ptr))
9028 return TRUE;
9029
9030 if (symbols == NULL)
9031 return FALSE;
9032
9033 if (! _bfd_elf_find_function (abfd, symbols, section, offset,
9034 filename_ptr, functionname_ptr))
9035 return FALSE;
9036
9037 *line_ptr = 0;
9038 return TRUE;
9039 }
9040
9041 /* Find the line for a symbol. */
9042
9043 bfd_boolean
9044 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
9045 const char **filename_ptr, unsigned int *line_ptr)
9046 {
9047 return _bfd_dwarf2_find_nearest_line (abfd, symbols, symbol, NULL, 0,
9048 filename_ptr, NULL, line_ptr, NULL,
9049 dwarf_debug_sections,
9050 &elf_tdata (abfd)->dwarf2_find_line_info);
9051 }
9052
9053 /* After a call to bfd_find_nearest_line, successive calls to
9054 bfd_find_inliner_info can be used to get source information about
9055 each level of function inlining that terminated at the address
9056 passed to bfd_find_nearest_line. Currently this is only supported
9057 for DWARF2 with appropriate DWARF3 extensions. */
9058
9059 bfd_boolean
9060 _bfd_elf_find_inliner_info (bfd *abfd,
9061 const char **filename_ptr,
9062 const char **functionname_ptr,
9063 unsigned int *line_ptr)
9064 {
9065 bfd_boolean found;
9066 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
9067 functionname_ptr, line_ptr,
9068 & elf_tdata (abfd)->dwarf2_find_line_info);
9069 return found;
9070 }
9071
9072 int
9073 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
9074 {
9075 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9076 int ret = bed->s->sizeof_ehdr;
9077
9078 if (!bfd_link_relocatable (info))
9079 {
9080 bfd_size_type phdr_size = elf_program_header_size (abfd);
9081
9082 if (phdr_size == (bfd_size_type) -1)
9083 {
9084 struct elf_segment_map *m;
9085
9086 phdr_size = 0;
9087 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
9088 phdr_size += bed->s->sizeof_phdr;
9089
9090 if (phdr_size == 0)
9091 phdr_size = get_program_header_size (abfd, info);
9092 }
9093
9094 elf_program_header_size (abfd) = phdr_size;
9095 ret += phdr_size;
9096 }
9097
9098 return ret;
9099 }
9100
9101 bfd_boolean
9102 _bfd_elf_set_section_contents (bfd *abfd,
9103 sec_ptr section,
9104 const void *location,
9105 file_ptr offset,
9106 bfd_size_type count)
9107 {
9108 Elf_Internal_Shdr *hdr;
9109 file_ptr pos;
9110
9111 if (! abfd->output_has_begun
9112 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
9113 return FALSE;
9114
9115 if (!count)
9116 return TRUE;
9117
9118 hdr = &elf_section_data (section)->this_hdr;
9119 if (hdr->sh_offset == (file_ptr) -1)
9120 {
9121 if (bfd_section_is_ctf (section))
9122 /* Nothing to do with this section: the contents are generated
9123 later. */
9124 return TRUE;
9125
9126 /* We must compress this section. Write output to the buffer. */
9127 unsigned char *contents = hdr->contents;
9128 if ((offset + count) > hdr->sh_size
9129 || (section->flags & SEC_ELF_COMPRESS) == 0
9130 || contents == NULL)
9131 abort ();
9132 memcpy (contents + offset, location, count);
9133 return TRUE;
9134 }
9135 pos = hdr->sh_offset + offset;
9136 if (bfd_seek (abfd, pos, SEEK_SET) != 0
9137 || bfd_bwrite (location, count, abfd) != count)
9138 return FALSE;
9139
9140 return TRUE;
9141 }
9142
9143 bfd_boolean
9144 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
9145 arelent *cache_ptr ATTRIBUTE_UNUSED,
9146 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
9147 {
9148 abort ();
9149 return FALSE;
9150 }
9151
9152 /* Try to convert a non-ELF reloc into an ELF one. */
9153
9154 bfd_boolean
9155 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
9156 {
9157 /* Check whether we really have an ELF howto. */
9158
9159 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
9160 {
9161 bfd_reloc_code_real_type code;
9162 reloc_howto_type *howto;
9163
9164 /* Alien reloc: Try to determine its type to replace it with an
9165 equivalent ELF reloc. */
9166
9167 if (areloc->howto->pc_relative)
9168 {
9169 switch (areloc->howto->bitsize)
9170 {
9171 case 8:
9172 code = BFD_RELOC_8_PCREL;
9173 break;
9174 case 12:
9175 code = BFD_RELOC_12_PCREL;
9176 break;
9177 case 16:
9178 code = BFD_RELOC_16_PCREL;
9179 break;
9180 case 24:
9181 code = BFD_RELOC_24_PCREL;
9182 break;
9183 case 32:
9184 code = BFD_RELOC_32_PCREL;
9185 break;
9186 case 64:
9187 code = BFD_RELOC_64_PCREL;
9188 break;
9189 default:
9190 goto fail;
9191 }
9192
9193 howto = bfd_reloc_type_lookup (abfd, code);
9194
9195 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
9196 {
9197 if (howto->pcrel_offset)
9198 areloc->addend += areloc->address;
9199 else
9200 areloc->addend -= areloc->address; /* addend is unsigned!! */
9201 }
9202 }
9203 else
9204 {
9205 switch (areloc->howto->bitsize)
9206 {
9207 case 8:
9208 code = BFD_RELOC_8;
9209 break;
9210 case 14:
9211 code = BFD_RELOC_14;
9212 break;
9213 case 16:
9214 code = BFD_RELOC_16;
9215 break;
9216 case 26:
9217 code = BFD_RELOC_26;
9218 break;
9219 case 32:
9220 code = BFD_RELOC_32;
9221 break;
9222 case 64:
9223 code = BFD_RELOC_64;
9224 break;
9225 default:
9226 goto fail;
9227 }
9228
9229 howto = bfd_reloc_type_lookup (abfd, code);
9230 }
9231
9232 if (howto)
9233 areloc->howto = howto;
9234 else
9235 goto fail;
9236 }
9237
9238 return TRUE;
9239
9240 fail:
9241 /* xgettext:c-format */
9242 _bfd_error_handler (_("%pB: %s unsupported"),
9243 abfd, areloc->howto->name);
9244 bfd_set_error (bfd_error_bad_value);
9245 return FALSE;
9246 }
9247
9248 bfd_boolean
9249 _bfd_elf_close_and_cleanup (bfd *abfd)
9250 {
9251 struct elf_obj_tdata *tdata = elf_tdata (abfd);
9252 if (bfd_get_format (abfd) == bfd_object && tdata != NULL)
9253 {
9254 if (elf_tdata (abfd)->o != NULL && elf_shstrtab (abfd) != NULL)
9255 _bfd_elf_strtab_free (elf_shstrtab (abfd));
9256 _bfd_dwarf2_cleanup_debug_info (abfd, &tdata->dwarf2_find_line_info);
9257 }
9258
9259 return _bfd_generic_close_and_cleanup (abfd);
9260 }
9261
9262 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
9263 in the relocation's offset. Thus we cannot allow any sort of sanity
9264 range-checking to interfere. There is nothing else to do in processing
9265 this reloc. */
9266
9267 bfd_reloc_status_type
9268 _bfd_elf_rel_vtable_reloc_fn
9269 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
9270 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
9271 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
9272 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
9273 {
9274 return bfd_reloc_ok;
9275 }
9276 \f
9277 /* Elf core file support. Much of this only works on native
9278 toolchains, since we rely on knowing the
9279 machine-dependent procfs structure in order to pick
9280 out details about the corefile. */
9281
9282 #ifdef HAVE_SYS_PROCFS_H
9283 /* Needed for new procfs interface on sparc-solaris. */
9284 # define _STRUCTURED_PROC 1
9285 # include <sys/procfs.h>
9286 #endif
9287
9288 /* Return a PID that identifies a "thread" for threaded cores, or the
9289 PID of the main process for non-threaded cores. */
9290
9291 static int
9292 elfcore_make_pid (bfd *abfd)
9293 {
9294 int pid;
9295
9296 pid = elf_tdata (abfd)->core->lwpid;
9297 if (pid == 0)
9298 pid = elf_tdata (abfd)->core->pid;
9299
9300 return pid;
9301 }
9302
9303 /* If there isn't a section called NAME, make one, using
9304 data from SECT. Note, this function will generate a
9305 reference to NAME, so you shouldn't deallocate or
9306 overwrite it. */
9307
9308 static bfd_boolean
9309 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
9310 {
9311 asection *sect2;
9312
9313 if (bfd_get_section_by_name (abfd, name) != NULL)
9314 return TRUE;
9315
9316 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
9317 if (sect2 == NULL)
9318 return FALSE;
9319
9320 sect2->size = sect->size;
9321 sect2->filepos = sect->filepos;
9322 sect2->alignment_power = sect->alignment_power;
9323 return TRUE;
9324 }
9325
9326 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
9327 actually creates up to two pseudosections:
9328 - For the single-threaded case, a section named NAME, unless
9329 such a section already exists.
9330 - For the multi-threaded case, a section named "NAME/PID", where
9331 PID is elfcore_make_pid (abfd).
9332 Both pseudosections have identical contents. */
9333 bfd_boolean
9334 _bfd_elfcore_make_pseudosection (bfd *abfd,
9335 char *name,
9336 size_t size,
9337 ufile_ptr filepos)
9338 {
9339 char buf[100];
9340 char *threaded_name;
9341 size_t len;
9342 asection *sect;
9343
9344 /* Build the section name. */
9345
9346 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
9347 len = strlen (buf) + 1;
9348 threaded_name = (char *) bfd_alloc (abfd, len);
9349 if (threaded_name == NULL)
9350 return FALSE;
9351 memcpy (threaded_name, buf, len);
9352
9353 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
9354 SEC_HAS_CONTENTS);
9355 if (sect == NULL)
9356 return FALSE;
9357 sect->size = size;
9358 sect->filepos = filepos;
9359 sect->alignment_power = 2;
9360
9361 return elfcore_maybe_make_sect (abfd, name, sect);
9362 }
9363
9364 static bfd_boolean
9365 elfcore_make_auxv_note_section (bfd *abfd, Elf_Internal_Note *note,
9366 size_t offs)
9367 {
9368 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
9369 SEC_HAS_CONTENTS);
9370
9371 if (sect == NULL)
9372 return FALSE;
9373
9374 sect->size = note->descsz - offs;
9375 sect->filepos = note->descpos + offs;
9376 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
9377
9378 return TRUE;
9379 }
9380
9381 /* prstatus_t exists on:
9382 solaris 2.5+
9383 linux 2.[01] + glibc
9384 unixware 4.2
9385 */
9386
9387 #if defined (HAVE_PRSTATUS_T)
9388
9389 static bfd_boolean
9390 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
9391 {
9392 size_t size;
9393 int offset;
9394
9395 if (note->descsz == sizeof (prstatus_t))
9396 {
9397 prstatus_t prstat;
9398
9399 size = sizeof (prstat.pr_reg);
9400 offset = offsetof (prstatus_t, pr_reg);
9401 memcpy (&prstat, note->descdata, sizeof (prstat));
9402
9403 /* Do not overwrite the core signal if it
9404 has already been set by another thread. */
9405 if (elf_tdata (abfd)->core->signal == 0)
9406 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
9407 if (elf_tdata (abfd)->core->pid == 0)
9408 elf_tdata (abfd)->core->pid = prstat.pr_pid;
9409
9410 /* pr_who exists on:
9411 solaris 2.5+
9412 unixware 4.2
9413 pr_who doesn't exist on:
9414 linux 2.[01]
9415 */
9416 #if defined (HAVE_PRSTATUS_T_PR_WHO)
9417 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
9418 #else
9419 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
9420 #endif
9421 }
9422 #if defined (HAVE_PRSTATUS32_T)
9423 else if (note->descsz == sizeof (prstatus32_t))
9424 {
9425 /* 64-bit host, 32-bit corefile */
9426 prstatus32_t prstat;
9427
9428 size = sizeof (prstat.pr_reg);
9429 offset = offsetof (prstatus32_t, pr_reg);
9430 memcpy (&prstat, note->descdata, sizeof (prstat));
9431
9432 /* Do not overwrite the core signal if it
9433 has already been set by another thread. */
9434 if (elf_tdata (abfd)->core->signal == 0)
9435 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
9436 if (elf_tdata (abfd)->core->pid == 0)
9437 elf_tdata (abfd)->core->pid = prstat.pr_pid;
9438
9439 /* pr_who exists on:
9440 solaris 2.5+
9441 unixware 4.2
9442 pr_who doesn't exist on:
9443 linux 2.[01]
9444 */
9445 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
9446 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
9447 #else
9448 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
9449 #endif
9450 }
9451 #endif /* HAVE_PRSTATUS32_T */
9452 else
9453 {
9454 /* Fail - we don't know how to handle any other
9455 note size (ie. data object type). */
9456 return TRUE;
9457 }
9458
9459 /* Make a ".reg/999" section and a ".reg" section. */
9460 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
9461 size, note->descpos + offset);
9462 }
9463 #endif /* defined (HAVE_PRSTATUS_T) */
9464
9465 /* Create a pseudosection containing the exact contents of NOTE. */
9466 static bfd_boolean
9467 elfcore_make_note_pseudosection (bfd *abfd,
9468 char *name,
9469 Elf_Internal_Note *note)
9470 {
9471 return _bfd_elfcore_make_pseudosection (abfd, name,
9472 note->descsz, note->descpos);
9473 }
9474
9475 /* There isn't a consistent prfpregset_t across platforms,
9476 but it doesn't matter, because we don't have to pick this
9477 data structure apart. */
9478
9479 static bfd_boolean
9480 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
9481 {
9482 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
9483 }
9484
9485 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
9486 type of NT_PRXFPREG. Just include the whole note's contents
9487 literally. */
9488
9489 static bfd_boolean
9490 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
9491 {
9492 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
9493 }
9494
9495 /* Linux dumps the Intel XSAVE extended state in a note named "LINUX"
9496 with a note type of NT_X86_XSTATE. Just include the whole note's
9497 contents literally. */
9498
9499 static bfd_boolean
9500 elfcore_grok_xstatereg (bfd *abfd, Elf_Internal_Note *note)
9501 {
9502 return elfcore_make_note_pseudosection (abfd, ".reg-xstate", note);
9503 }
9504
9505 static bfd_boolean
9506 elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
9507 {
9508 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
9509 }
9510
9511 static bfd_boolean
9512 elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note)
9513 {
9514 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note);
9515 }
9516
9517 static bfd_boolean
9518 elfcore_grok_ppc_tar (bfd *abfd, Elf_Internal_Note *note)
9519 {
9520 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tar", note);
9521 }
9522
9523 static bfd_boolean
9524 elfcore_grok_ppc_ppr (bfd *abfd, Elf_Internal_Note *note)
9525 {
9526 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-ppr", note);
9527 }
9528
9529 static bfd_boolean
9530 elfcore_grok_ppc_dscr (bfd *abfd, Elf_Internal_Note *note)
9531 {
9532 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-dscr", note);
9533 }
9534
9535 static bfd_boolean
9536 elfcore_grok_ppc_ebb (bfd *abfd, Elf_Internal_Note *note)
9537 {
9538 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-ebb", note);
9539 }
9540
9541 static bfd_boolean
9542 elfcore_grok_ppc_pmu (bfd *abfd, Elf_Internal_Note *note)
9543 {
9544 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-pmu", note);
9545 }
9546
9547 static bfd_boolean
9548 elfcore_grok_ppc_tm_cgpr (bfd *abfd, Elf_Internal_Note *note)
9549 {
9550 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cgpr", note);
9551 }
9552
9553 static bfd_boolean
9554 elfcore_grok_ppc_tm_cfpr (bfd *abfd, Elf_Internal_Note *note)
9555 {
9556 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cfpr", note);
9557 }
9558
9559 static bfd_boolean
9560 elfcore_grok_ppc_tm_cvmx (bfd *abfd, Elf_Internal_Note *note)
9561 {
9562 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cvmx", note);
9563 }
9564
9565 static bfd_boolean
9566 elfcore_grok_ppc_tm_cvsx (bfd *abfd, Elf_Internal_Note *note)
9567 {
9568 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cvsx", note);
9569 }
9570
9571 static bfd_boolean
9572 elfcore_grok_ppc_tm_spr (bfd *abfd, Elf_Internal_Note *note)
9573 {
9574 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-spr", note);
9575 }
9576
9577 static bfd_boolean
9578 elfcore_grok_ppc_tm_ctar (bfd *abfd, Elf_Internal_Note *note)
9579 {
9580 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-ctar", note);
9581 }
9582
9583 static bfd_boolean
9584 elfcore_grok_ppc_tm_cppr (bfd *abfd, Elf_Internal_Note *note)
9585 {
9586 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cppr", note);
9587 }
9588
9589 static bfd_boolean
9590 elfcore_grok_ppc_tm_cdscr (bfd *abfd, Elf_Internal_Note *note)
9591 {
9592 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cdscr", note);
9593 }
9594
9595 static bfd_boolean
9596 elfcore_grok_s390_high_gprs (bfd *abfd, Elf_Internal_Note *note)
9597 {
9598 return elfcore_make_note_pseudosection (abfd, ".reg-s390-high-gprs", note);
9599 }
9600
9601 static bfd_boolean
9602 elfcore_grok_s390_timer (bfd *abfd, Elf_Internal_Note *note)
9603 {
9604 return elfcore_make_note_pseudosection (abfd, ".reg-s390-timer", note);
9605 }
9606
9607 static bfd_boolean
9608 elfcore_grok_s390_todcmp (bfd *abfd, Elf_Internal_Note *note)
9609 {
9610 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todcmp", note);
9611 }
9612
9613 static bfd_boolean
9614 elfcore_grok_s390_todpreg (bfd *abfd, Elf_Internal_Note *note)
9615 {
9616 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todpreg", note);
9617 }
9618
9619 static bfd_boolean
9620 elfcore_grok_s390_ctrs (bfd *abfd, Elf_Internal_Note *note)
9621 {
9622 return elfcore_make_note_pseudosection (abfd, ".reg-s390-ctrs", note);
9623 }
9624
9625 static bfd_boolean
9626 elfcore_grok_s390_prefix (bfd *abfd, Elf_Internal_Note *note)
9627 {
9628 return elfcore_make_note_pseudosection (abfd, ".reg-s390-prefix", note);
9629 }
9630
9631 static bfd_boolean
9632 elfcore_grok_s390_last_break (bfd *abfd, Elf_Internal_Note *note)
9633 {
9634 return elfcore_make_note_pseudosection (abfd, ".reg-s390-last-break", note);
9635 }
9636
9637 static bfd_boolean
9638 elfcore_grok_s390_system_call (bfd *abfd, Elf_Internal_Note *note)
9639 {
9640 return elfcore_make_note_pseudosection (abfd, ".reg-s390-system-call", note);
9641 }
9642
9643 static bfd_boolean
9644 elfcore_grok_s390_tdb (bfd *abfd, Elf_Internal_Note *note)
9645 {
9646 return elfcore_make_note_pseudosection (abfd, ".reg-s390-tdb", note);
9647 }
9648
9649 static bfd_boolean
9650 elfcore_grok_s390_vxrs_low (bfd *abfd, Elf_Internal_Note *note)
9651 {
9652 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-low", note);
9653 }
9654
9655 static bfd_boolean
9656 elfcore_grok_s390_vxrs_high (bfd *abfd, Elf_Internal_Note *note)
9657 {
9658 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-high", note);
9659 }
9660
9661 static bfd_boolean
9662 elfcore_grok_s390_gs_cb (bfd *abfd, Elf_Internal_Note *note)
9663 {
9664 return elfcore_make_note_pseudosection (abfd, ".reg-s390-gs-cb", note);
9665 }
9666
9667 static bfd_boolean
9668 elfcore_grok_s390_gs_bc (bfd *abfd, Elf_Internal_Note *note)
9669 {
9670 return elfcore_make_note_pseudosection (abfd, ".reg-s390-gs-bc", note);
9671 }
9672
9673 static bfd_boolean
9674 elfcore_grok_arm_vfp (bfd *abfd, Elf_Internal_Note *note)
9675 {
9676 return elfcore_make_note_pseudosection (abfd, ".reg-arm-vfp", note);
9677 }
9678
9679 static bfd_boolean
9680 elfcore_grok_aarch_tls (bfd *abfd, Elf_Internal_Note *note)
9681 {
9682 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-tls", note);
9683 }
9684
9685 static bfd_boolean
9686 elfcore_grok_aarch_hw_break (bfd *abfd, Elf_Internal_Note *note)
9687 {
9688 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-break", note);
9689 }
9690
9691 static bfd_boolean
9692 elfcore_grok_aarch_hw_watch (bfd *abfd, Elf_Internal_Note *note)
9693 {
9694 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-watch", note);
9695 }
9696
9697 static bfd_boolean
9698 elfcore_grok_aarch_sve (bfd *abfd, Elf_Internal_Note *note)
9699 {
9700 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-sve", note);
9701 }
9702
9703 static bfd_boolean
9704 elfcore_grok_aarch_pauth (bfd *abfd, Elf_Internal_Note *note)
9705 {
9706 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-pauth", note);
9707 }
9708
9709 #if defined (HAVE_PRPSINFO_T)
9710 typedef prpsinfo_t elfcore_psinfo_t;
9711 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
9712 typedef prpsinfo32_t elfcore_psinfo32_t;
9713 #endif
9714 #endif
9715
9716 #if defined (HAVE_PSINFO_T)
9717 typedef psinfo_t elfcore_psinfo_t;
9718 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
9719 typedef psinfo32_t elfcore_psinfo32_t;
9720 #endif
9721 #endif
9722
9723 /* return a malloc'ed copy of a string at START which is at
9724 most MAX bytes long, possibly without a terminating '\0'.
9725 the copy will always have a terminating '\0'. */
9726
9727 char *
9728 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
9729 {
9730 char *dups;
9731 char *end = (char *) memchr (start, '\0', max);
9732 size_t len;
9733
9734 if (end == NULL)
9735 len = max;
9736 else
9737 len = end - start;
9738
9739 dups = (char *) bfd_alloc (abfd, len + 1);
9740 if (dups == NULL)
9741 return NULL;
9742
9743 memcpy (dups, start, len);
9744 dups[len] = '\0';
9745
9746 return dups;
9747 }
9748
9749 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
9750 static bfd_boolean
9751 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
9752 {
9753 if (note->descsz == sizeof (elfcore_psinfo_t))
9754 {
9755 elfcore_psinfo_t psinfo;
9756
9757 memcpy (&psinfo, note->descdata, sizeof (psinfo));
9758
9759 #if defined (HAVE_PSINFO_T_PR_PID) || defined (HAVE_PRPSINFO_T_PR_PID)
9760 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
9761 #endif
9762 elf_tdata (abfd)->core->program
9763 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
9764 sizeof (psinfo.pr_fname));
9765
9766 elf_tdata (abfd)->core->command
9767 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
9768 sizeof (psinfo.pr_psargs));
9769 }
9770 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
9771 else if (note->descsz == sizeof (elfcore_psinfo32_t))
9772 {
9773 /* 64-bit host, 32-bit corefile */
9774 elfcore_psinfo32_t psinfo;
9775
9776 memcpy (&psinfo, note->descdata, sizeof (psinfo));
9777
9778 #if defined (HAVE_PSINFO32_T_PR_PID) || defined (HAVE_PRPSINFO32_T_PR_PID)
9779 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
9780 #endif
9781 elf_tdata (abfd)->core->program
9782 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
9783 sizeof (psinfo.pr_fname));
9784
9785 elf_tdata (abfd)->core->command
9786 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
9787 sizeof (psinfo.pr_psargs));
9788 }
9789 #endif
9790
9791 else
9792 {
9793 /* Fail - we don't know how to handle any other
9794 note size (ie. data object type). */
9795 return TRUE;
9796 }
9797
9798 /* Note that for some reason, a spurious space is tacked
9799 onto the end of the args in some (at least one anyway)
9800 implementations, so strip it off if it exists. */
9801
9802 {
9803 char *command = elf_tdata (abfd)->core->command;
9804 int n = strlen (command);
9805
9806 if (0 < n && command[n - 1] == ' ')
9807 command[n - 1] = '\0';
9808 }
9809
9810 return TRUE;
9811 }
9812 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
9813
9814 #if defined (HAVE_PSTATUS_T)
9815 static bfd_boolean
9816 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
9817 {
9818 if (note->descsz == sizeof (pstatus_t)
9819 #if defined (HAVE_PXSTATUS_T)
9820 || note->descsz == sizeof (pxstatus_t)
9821 #endif
9822 )
9823 {
9824 pstatus_t pstat;
9825
9826 memcpy (&pstat, note->descdata, sizeof (pstat));
9827
9828 elf_tdata (abfd)->core->pid = pstat.pr_pid;
9829 }
9830 #if defined (HAVE_PSTATUS32_T)
9831 else if (note->descsz == sizeof (pstatus32_t))
9832 {
9833 /* 64-bit host, 32-bit corefile */
9834 pstatus32_t pstat;
9835
9836 memcpy (&pstat, note->descdata, sizeof (pstat));
9837
9838 elf_tdata (abfd)->core->pid = pstat.pr_pid;
9839 }
9840 #endif
9841 /* Could grab some more details from the "representative"
9842 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
9843 NT_LWPSTATUS note, presumably. */
9844
9845 return TRUE;
9846 }
9847 #endif /* defined (HAVE_PSTATUS_T) */
9848
9849 #if defined (HAVE_LWPSTATUS_T)
9850 static bfd_boolean
9851 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
9852 {
9853 lwpstatus_t lwpstat;
9854 char buf[100];
9855 char *name;
9856 size_t len;
9857 asection *sect;
9858
9859 if (note->descsz != sizeof (lwpstat)
9860 #if defined (HAVE_LWPXSTATUS_T)
9861 && note->descsz != sizeof (lwpxstatus_t)
9862 #endif
9863 )
9864 return TRUE;
9865
9866 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
9867
9868 elf_tdata (abfd)->core->lwpid = lwpstat.pr_lwpid;
9869 /* Do not overwrite the core signal if it has already been set by
9870 another thread. */
9871 if (elf_tdata (abfd)->core->signal == 0)
9872 elf_tdata (abfd)->core->signal = lwpstat.pr_cursig;
9873
9874 /* Make a ".reg/999" section. */
9875
9876 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
9877 len = strlen (buf) + 1;
9878 name = bfd_alloc (abfd, len);
9879 if (name == NULL)
9880 return FALSE;
9881 memcpy (name, buf, len);
9882
9883 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9884 if (sect == NULL)
9885 return FALSE;
9886
9887 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9888 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
9889 sect->filepos = note->descpos
9890 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
9891 #endif
9892
9893 #if defined (HAVE_LWPSTATUS_T_PR_REG)
9894 sect->size = sizeof (lwpstat.pr_reg);
9895 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
9896 #endif
9897
9898 sect->alignment_power = 2;
9899
9900 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
9901 return FALSE;
9902
9903 /* Make a ".reg2/999" section */
9904
9905 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
9906 len = strlen (buf) + 1;
9907 name = bfd_alloc (abfd, len);
9908 if (name == NULL)
9909 return FALSE;
9910 memcpy (name, buf, len);
9911
9912 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9913 if (sect == NULL)
9914 return FALSE;
9915
9916 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9917 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
9918 sect->filepos = note->descpos
9919 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
9920 #endif
9921
9922 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
9923 sect->size = sizeof (lwpstat.pr_fpreg);
9924 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
9925 #endif
9926
9927 sect->alignment_power = 2;
9928
9929 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
9930 }
9931 #endif /* defined (HAVE_LWPSTATUS_T) */
9932
9933 static bfd_boolean
9934 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
9935 {
9936 char buf[30];
9937 char *name;
9938 size_t len;
9939 asection *sect;
9940 int type;
9941 int is_active_thread;
9942 bfd_vma base_addr;
9943
9944 if (note->descsz < 728)
9945 return TRUE;
9946
9947 if (! CONST_STRNEQ (note->namedata, "win32"))
9948 return TRUE;
9949
9950 type = bfd_get_32 (abfd, note->descdata);
9951
9952 switch (type)
9953 {
9954 case 1 /* NOTE_INFO_PROCESS */:
9955 /* FIXME: need to add ->core->command. */
9956 /* process_info.pid */
9957 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, note->descdata + 8);
9958 /* process_info.signal */
9959 elf_tdata (abfd)->core->signal = bfd_get_32 (abfd, note->descdata + 12);
9960 break;
9961
9962 case 2 /* NOTE_INFO_THREAD */:
9963 /* Make a ".reg/999" section. */
9964 /* thread_info.tid */
9965 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 8));
9966
9967 len = strlen (buf) + 1;
9968 name = (char *) bfd_alloc (abfd, len);
9969 if (name == NULL)
9970 return FALSE;
9971
9972 memcpy (name, buf, len);
9973
9974 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9975 if (sect == NULL)
9976 return FALSE;
9977
9978 /* sizeof (thread_info.thread_context) */
9979 sect->size = 716;
9980 /* offsetof (thread_info.thread_context) */
9981 sect->filepos = note->descpos + 12;
9982 sect->alignment_power = 2;
9983
9984 /* thread_info.is_active_thread */
9985 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
9986
9987 if (is_active_thread)
9988 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
9989 return FALSE;
9990 break;
9991
9992 case 3 /* NOTE_INFO_MODULE */:
9993 /* Make a ".module/xxxxxxxx" section. */
9994 /* module_info.base_address */
9995 base_addr = bfd_get_32 (abfd, note->descdata + 4);
9996 sprintf (buf, ".module/%08lx", (unsigned long) base_addr);
9997
9998 len = strlen (buf) + 1;
9999 name = (char *) bfd_alloc (abfd, len);
10000 if (name == NULL)
10001 return FALSE;
10002
10003 memcpy (name, buf, len);
10004
10005 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10006
10007 if (sect == NULL)
10008 return FALSE;
10009
10010 sect->size = note->descsz;
10011 sect->filepos = note->descpos;
10012 sect->alignment_power = 2;
10013 break;
10014
10015 default:
10016 return TRUE;
10017 }
10018
10019 return TRUE;
10020 }
10021
10022 static bfd_boolean
10023 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
10024 {
10025 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10026
10027 switch (note->type)
10028 {
10029 default:
10030 return TRUE;
10031
10032 case NT_PRSTATUS:
10033 if (bed->elf_backend_grok_prstatus)
10034 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
10035 return TRUE;
10036 #if defined (HAVE_PRSTATUS_T)
10037 return elfcore_grok_prstatus (abfd, note);
10038 #else
10039 return TRUE;
10040 #endif
10041
10042 #if defined (HAVE_PSTATUS_T)
10043 case NT_PSTATUS:
10044 return elfcore_grok_pstatus (abfd, note);
10045 #endif
10046
10047 #if defined (HAVE_LWPSTATUS_T)
10048 case NT_LWPSTATUS:
10049 return elfcore_grok_lwpstatus (abfd, note);
10050 #endif
10051
10052 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
10053 return elfcore_grok_prfpreg (abfd, note);
10054
10055 case NT_WIN32PSTATUS:
10056 return elfcore_grok_win32pstatus (abfd, note);
10057
10058 case NT_PRXFPREG: /* Linux SSE extension */
10059 if (note->namesz == 6
10060 && strcmp (note->namedata, "LINUX") == 0)
10061 return elfcore_grok_prxfpreg (abfd, note);
10062 else
10063 return TRUE;
10064
10065 case NT_X86_XSTATE: /* Linux XSAVE extension */
10066 if (note->namesz == 6
10067 && strcmp (note->namedata, "LINUX") == 0)
10068 return elfcore_grok_xstatereg (abfd, note);
10069 else
10070 return TRUE;
10071
10072 case NT_PPC_VMX:
10073 if (note->namesz == 6
10074 && strcmp (note->namedata, "LINUX") == 0)
10075 return elfcore_grok_ppc_vmx (abfd, note);
10076 else
10077 return TRUE;
10078
10079 case NT_PPC_VSX:
10080 if (note->namesz == 6
10081 && strcmp (note->namedata, "LINUX") == 0)
10082 return elfcore_grok_ppc_vsx (abfd, note);
10083 else
10084 return TRUE;
10085
10086 case NT_PPC_TAR:
10087 if (note->namesz == 6
10088 && strcmp (note->namedata, "LINUX") == 0)
10089 return elfcore_grok_ppc_tar (abfd, note);
10090 else
10091 return TRUE;
10092
10093 case NT_PPC_PPR:
10094 if (note->namesz == 6
10095 && strcmp (note->namedata, "LINUX") == 0)
10096 return elfcore_grok_ppc_ppr (abfd, note);
10097 else
10098 return TRUE;
10099
10100 case NT_PPC_DSCR:
10101 if (note->namesz == 6
10102 && strcmp (note->namedata, "LINUX") == 0)
10103 return elfcore_grok_ppc_dscr (abfd, note);
10104 else
10105 return TRUE;
10106
10107 case NT_PPC_EBB:
10108 if (note->namesz == 6
10109 && strcmp (note->namedata, "LINUX") == 0)
10110 return elfcore_grok_ppc_ebb (abfd, note);
10111 else
10112 return TRUE;
10113
10114 case NT_PPC_PMU:
10115 if (note->namesz == 6
10116 && strcmp (note->namedata, "LINUX") == 0)
10117 return elfcore_grok_ppc_pmu (abfd, note);
10118 else
10119 return TRUE;
10120
10121 case NT_PPC_TM_CGPR:
10122 if (note->namesz == 6
10123 && strcmp (note->namedata, "LINUX") == 0)
10124 return elfcore_grok_ppc_tm_cgpr (abfd, note);
10125 else
10126 return TRUE;
10127
10128 case NT_PPC_TM_CFPR:
10129 if (note->namesz == 6
10130 && strcmp (note->namedata, "LINUX") == 0)
10131 return elfcore_grok_ppc_tm_cfpr (abfd, note);
10132 else
10133 return TRUE;
10134
10135 case NT_PPC_TM_CVMX:
10136 if (note->namesz == 6
10137 && strcmp (note->namedata, "LINUX") == 0)
10138 return elfcore_grok_ppc_tm_cvmx (abfd, note);
10139 else
10140 return TRUE;
10141
10142 case NT_PPC_TM_CVSX:
10143 if (note->namesz == 6
10144 && strcmp (note->namedata, "LINUX") == 0)
10145 return elfcore_grok_ppc_tm_cvsx (abfd, note);
10146 else
10147 return TRUE;
10148
10149 case NT_PPC_TM_SPR:
10150 if (note->namesz == 6
10151 && strcmp (note->namedata, "LINUX") == 0)
10152 return elfcore_grok_ppc_tm_spr (abfd, note);
10153 else
10154 return TRUE;
10155
10156 case NT_PPC_TM_CTAR:
10157 if (note->namesz == 6
10158 && strcmp (note->namedata, "LINUX") == 0)
10159 return elfcore_grok_ppc_tm_ctar (abfd, note);
10160 else
10161 return TRUE;
10162
10163 case NT_PPC_TM_CPPR:
10164 if (note->namesz == 6
10165 && strcmp (note->namedata, "LINUX") == 0)
10166 return elfcore_grok_ppc_tm_cppr (abfd, note);
10167 else
10168 return TRUE;
10169
10170 case NT_PPC_TM_CDSCR:
10171 if (note->namesz == 6
10172 && strcmp (note->namedata, "LINUX") == 0)
10173 return elfcore_grok_ppc_tm_cdscr (abfd, note);
10174 else
10175 return TRUE;
10176
10177 case NT_S390_HIGH_GPRS:
10178 if (note->namesz == 6
10179 && strcmp (note->namedata, "LINUX") == 0)
10180 return elfcore_grok_s390_high_gprs (abfd, note);
10181 else
10182 return TRUE;
10183
10184 case NT_S390_TIMER:
10185 if (note->namesz == 6
10186 && strcmp (note->namedata, "LINUX") == 0)
10187 return elfcore_grok_s390_timer (abfd, note);
10188 else
10189 return TRUE;
10190
10191 case NT_S390_TODCMP:
10192 if (note->namesz == 6
10193 && strcmp (note->namedata, "LINUX") == 0)
10194 return elfcore_grok_s390_todcmp (abfd, note);
10195 else
10196 return TRUE;
10197
10198 case NT_S390_TODPREG:
10199 if (note->namesz == 6
10200 && strcmp (note->namedata, "LINUX") == 0)
10201 return elfcore_grok_s390_todpreg (abfd, note);
10202 else
10203 return TRUE;
10204
10205 case NT_S390_CTRS:
10206 if (note->namesz == 6
10207 && strcmp (note->namedata, "LINUX") == 0)
10208 return elfcore_grok_s390_ctrs (abfd, note);
10209 else
10210 return TRUE;
10211
10212 case NT_S390_PREFIX:
10213 if (note->namesz == 6
10214 && strcmp (note->namedata, "LINUX") == 0)
10215 return elfcore_grok_s390_prefix (abfd, note);
10216 else
10217 return TRUE;
10218
10219 case NT_S390_LAST_BREAK:
10220 if (note->namesz == 6
10221 && strcmp (note->namedata, "LINUX") == 0)
10222 return elfcore_grok_s390_last_break (abfd, note);
10223 else
10224 return TRUE;
10225
10226 case NT_S390_SYSTEM_CALL:
10227 if (note->namesz == 6
10228 && strcmp (note->namedata, "LINUX") == 0)
10229 return elfcore_grok_s390_system_call (abfd, note);
10230 else
10231 return TRUE;
10232
10233 case NT_S390_TDB:
10234 if (note->namesz == 6
10235 && strcmp (note->namedata, "LINUX") == 0)
10236 return elfcore_grok_s390_tdb (abfd, note);
10237 else
10238 return TRUE;
10239
10240 case NT_S390_VXRS_LOW:
10241 if (note->namesz == 6
10242 && strcmp (note->namedata, "LINUX") == 0)
10243 return elfcore_grok_s390_vxrs_low (abfd, note);
10244 else
10245 return TRUE;
10246
10247 case NT_S390_VXRS_HIGH:
10248 if (note->namesz == 6
10249 && strcmp (note->namedata, "LINUX") == 0)
10250 return elfcore_grok_s390_vxrs_high (abfd, note);
10251 else
10252 return TRUE;
10253
10254 case NT_S390_GS_CB:
10255 if (note->namesz == 6
10256 && strcmp (note->namedata, "LINUX") == 0)
10257 return elfcore_grok_s390_gs_cb (abfd, note);
10258 else
10259 return TRUE;
10260
10261 case NT_S390_GS_BC:
10262 if (note->namesz == 6
10263 && strcmp (note->namedata, "LINUX") == 0)
10264 return elfcore_grok_s390_gs_bc (abfd, note);
10265 else
10266 return TRUE;
10267
10268 case NT_ARM_VFP:
10269 if (note->namesz == 6
10270 && strcmp (note->namedata, "LINUX") == 0)
10271 return elfcore_grok_arm_vfp (abfd, note);
10272 else
10273 return TRUE;
10274
10275 case NT_ARM_TLS:
10276 if (note->namesz == 6
10277 && strcmp (note->namedata, "LINUX") == 0)
10278 return elfcore_grok_aarch_tls (abfd, note);
10279 else
10280 return TRUE;
10281
10282 case NT_ARM_HW_BREAK:
10283 if (note->namesz == 6
10284 && strcmp (note->namedata, "LINUX") == 0)
10285 return elfcore_grok_aarch_hw_break (abfd, note);
10286 else
10287 return TRUE;
10288
10289 case NT_ARM_HW_WATCH:
10290 if (note->namesz == 6
10291 && strcmp (note->namedata, "LINUX") == 0)
10292 return elfcore_grok_aarch_hw_watch (abfd, note);
10293 else
10294 return TRUE;
10295
10296 case NT_ARM_SVE:
10297 if (note->namesz == 6
10298 && strcmp (note->namedata, "LINUX") == 0)
10299 return elfcore_grok_aarch_sve (abfd, note);
10300 else
10301 return TRUE;
10302
10303 case NT_ARM_PAC_MASK:
10304 if (note->namesz == 6
10305 && strcmp (note->namedata, "LINUX") == 0)
10306 return elfcore_grok_aarch_pauth (abfd, note);
10307 else
10308 return TRUE;
10309
10310 case NT_PRPSINFO:
10311 case NT_PSINFO:
10312 if (bed->elf_backend_grok_psinfo)
10313 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
10314 return TRUE;
10315 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
10316 return elfcore_grok_psinfo (abfd, note);
10317 #else
10318 return TRUE;
10319 #endif
10320
10321 case NT_AUXV:
10322 return elfcore_make_auxv_note_section (abfd, note, 0);
10323
10324 case NT_FILE:
10325 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.file",
10326 note);
10327
10328 case NT_SIGINFO:
10329 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.siginfo",
10330 note);
10331
10332 }
10333 }
10334
10335 static bfd_boolean
10336 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
10337 {
10338 struct bfd_build_id* build_id;
10339
10340 if (note->descsz == 0)
10341 return FALSE;
10342
10343 build_id = bfd_alloc (abfd, sizeof (struct bfd_build_id) - 1 + note->descsz);
10344 if (build_id == NULL)
10345 return FALSE;
10346
10347 build_id->size = note->descsz;
10348 memcpy (build_id->data, note->descdata, note->descsz);
10349 abfd->build_id = build_id;
10350
10351 return TRUE;
10352 }
10353
10354 static bfd_boolean
10355 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
10356 {
10357 switch (note->type)
10358 {
10359 default:
10360 return TRUE;
10361
10362 case NT_GNU_PROPERTY_TYPE_0:
10363 return _bfd_elf_parse_gnu_properties (abfd, note);
10364
10365 case NT_GNU_BUILD_ID:
10366 return elfobj_grok_gnu_build_id (abfd, note);
10367 }
10368 }
10369
10370 static bfd_boolean
10371 elfobj_grok_stapsdt_note_1 (bfd *abfd, Elf_Internal_Note *note)
10372 {
10373 struct sdt_note *cur =
10374 (struct sdt_note *) bfd_alloc (abfd,
10375 sizeof (struct sdt_note) + note->descsz);
10376
10377 cur->next = (struct sdt_note *) (elf_tdata (abfd))->sdt_note_head;
10378 cur->size = (bfd_size_type) note->descsz;
10379 memcpy (cur->data, note->descdata, note->descsz);
10380
10381 elf_tdata (abfd)->sdt_note_head = cur;
10382
10383 return TRUE;
10384 }
10385
10386 static bfd_boolean
10387 elfobj_grok_stapsdt_note (bfd *abfd, Elf_Internal_Note *note)
10388 {
10389 switch (note->type)
10390 {
10391 case NT_STAPSDT:
10392 return elfobj_grok_stapsdt_note_1 (abfd, note);
10393
10394 default:
10395 return TRUE;
10396 }
10397 }
10398
10399 static bfd_boolean
10400 elfcore_grok_freebsd_psinfo (bfd *abfd, Elf_Internal_Note *note)
10401 {
10402 size_t offset;
10403
10404 switch (elf_elfheader (abfd)->e_ident[EI_CLASS])
10405 {
10406 case ELFCLASS32:
10407 if (note->descsz < 108)
10408 return FALSE;
10409 break;
10410
10411 case ELFCLASS64:
10412 if (note->descsz < 120)
10413 return FALSE;
10414 break;
10415
10416 default:
10417 return FALSE;
10418 }
10419
10420 /* Check for version 1 in pr_version. */
10421 if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1)
10422 return FALSE;
10423
10424 offset = 4;
10425
10426 /* Skip over pr_psinfosz. */
10427 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS32)
10428 offset += 4;
10429 else
10430 {
10431 offset += 4; /* Padding before pr_psinfosz. */
10432 offset += 8;
10433 }
10434
10435 /* pr_fname is PRFNAMESZ (16) + 1 bytes in size. */
10436 elf_tdata (abfd)->core->program
10437 = _bfd_elfcore_strndup (abfd, note->descdata + offset, 17);
10438 offset += 17;
10439
10440 /* pr_psargs is PRARGSZ (80) + 1 bytes in size. */
10441 elf_tdata (abfd)->core->command
10442 = _bfd_elfcore_strndup (abfd, note->descdata + offset, 81);
10443 offset += 81;
10444
10445 /* Padding before pr_pid. */
10446 offset += 2;
10447
10448 /* The pr_pid field was added in version "1a". */
10449 if (note->descsz < offset + 4)
10450 return TRUE;
10451
10452 elf_tdata (abfd)->core->pid
10453 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10454
10455 return TRUE;
10456 }
10457
10458 static bfd_boolean
10459 elfcore_grok_freebsd_prstatus (bfd *abfd, Elf_Internal_Note *note)
10460 {
10461 size_t offset;
10462 size_t size;
10463 size_t min_size;
10464
10465 /* Compute offset of pr_getregsz, skipping over pr_statussz.
10466 Also compute minimum size of this note. */
10467 switch (elf_elfheader (abfd)->e_ident[EI_CLASS])
10468 {
10469 case ELFCLASS32:
10470 offset = 4 + 4;
10471 min_size = offset + (4 * 2) + 4 + 4 + 4;
10472 break;
10473
10474 case ELFCLASS64:
10475 offset = 4 + 4 + 8; /* Includes padding before pr_statussz. */
10476 min_size = offset + (8 * 2) + 4 + 4 + 4 + 4;
10477 break;
10478
10479 default:
10480 return FALSE;
10481 }
10482
10483 if (note->descsz < min_size)
10484 return FALSE;
10485
10486 /* Check for version 1 in pr_version. */
10487 if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1)
10488 return FALSE;
10489
10490 /* Extract size of pr_reg from pr_gregsetsz. */
10491 /* Skip over pr_gregsetsz and pr_fpregsetsz. */
10492 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS32)
10493 {
10494 size = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10495 offset += 4 * 2;
10496 }
10497 else
10498 {
10499 size = bfd_h_get_64 (abfd, (bfd_byte *) note->descdata + offset);
10500 offset += 8 * 2;
10501 }
10502
10503 /* Skip over pr_osreldate. */
10504 offset += 4;
10505
10506 /* Read signal from pr_cursig. */
10507 if (elf_tdata (abfd)->core->signal == 0)
10508 elf_tdata (abfd)->core->signal
10509 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10510 offset += 4;
10511
10512 /* Read TID from pr_pid. */
10513 elf_tdata (abfd)->core->lwpid
10514 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10515 offset += 4;
10516
10517 /* Padding before pr_reg. */
10518 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
10519 offset += 4;
10520
10521 /* Make sure that there is enough data remaining in the note. */
10522 if ((note->descsz - offset) < size)
10523 return FALSE;
10524
10525 /* Make a ".reg/999" section and a ".reg" section. */
10526 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
10527 size, note->descpos + offset);
10528 }
10529
10530 static bfd_boolean
10531 elfcore_grok_freebsd_note (bfd *abfd, Elf_Internal_Note *note)
10532 {
10533 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10534
10535 switch (note->type)
10536 {
10537 case NT_PRSTATUS:
10538 if (bed->elf_backend_grok_freebsd_prstatus)
10539 if ((*bed->elf_backend_grok_freebsd_prstatus) (abfd, note))
10540 return TRUE;
10541 return elfcore_grok_freebsd_prstatus (abfd, note);
10542
10543 case NT_FPREGSET:
10544 return elfcore_grok_prfpreg (abfd, note);
10545
10546 case NT_PRPSINFO:
10547 return elfcore_grok_freebsd_psinfo (abfd, note);
10548
10549 case NT_FREEBSD_THRMISC:
10550 if (note->namesz == 8)
10551 return elfcore_make_note_pseudosection (abfd, ".thrmisc", note);
10552 else
10553 return TRUE;
10554
10555 case NT_FREEBSD_PROCSTAT_PROC:
10556 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.proc",
10557 note);
10558
10559 case NT_FREEBSD_PROCSTAT_FILES:
10560 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.files",
10561 note);
10562
10563 case NT_FREEBSD_PROCSTAT_VMMAP:
10564 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.vmmap",
10565 note);
10566
10567 case NT_FREEBSD_PROCSTAT_AUXV:
10568 return elfcore_make_auxv_note_section (abfd, note, 4);
10569
10570 case NT_X86_XSTATE:
10571 if (note->namesz == 8)
10572 return elfcore_grok_xstatereg (abfd, note);
10573 else
10574 return TRUE;
10575
10576 case NT_FREEBSD_PTLWPINFO:
10577 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.lwpinfo",
10578 note);
10579
10580 case NT_ARM_VFP:
10581 return elfcore_grok_arm_vfp (abfd, note);
10582
10583 default:
10584 return TRUE;
10585 }
10586 }
10587
10588 static bfd_boolean
10589 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
10590 {
10591 char *cp;
10592
10593 cp = strchr (note->namedata, '@');
10594 if (cp != NULL)
10595 {
10596 *lwpidp = atoi(cp + 1);
10597 return TRUE;
10598 }
10599 return FALSE;
10600 }
10601
10602 static bfd_boolean
10603 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
10604 {
10605 if (note->descsz <= 0x7c + 31)
10606 return FALSE;
10607
10608 /* Signal number at offset 0x08. */
10609 elf_tdata (abfd)->core->signal
10610 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
10611
10612 /* Process ID at offset 0x50. */
10613 elf_tdata (abfd)->core->pid
10614 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
10615
10616 /* Command name at 0x7c (max 32 bytes, including nul). */
10617 elf_tdata (abfd)->core->command
10618 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
10619
10620 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
10621 note);
10622 }
10623
10624 static bfd_boolean
10625 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
10626 {
10627 int lwp;
10628
10629 if (elfcore_netbsd_get_lwpid (note, &lwp))
10630 elf_tdata (abfd)->core->lwpid = lwp;
10631
10632 switch (note->type)
10633 {
10634 case NT_NETBSDCORE_PROCINFO:
10635 /* NetBSD-specific core "procinfo". Note that we expect to
10636 find this note before any of the others, which is fine,
10637 since the kernel writes this note out first when it
10638 creates a core file. */
10639 return elfcore_grok_netbsd_procinfo (abfd, note);
10640 #ifdef NT_NETBSDCORE_AUXV
10641 case NT_NETBSDCORE_AUXV:
10642 /* NetBSD-specific Elf Auxiliary Vector data. */
10643 return elfcore_make_auxv_note_section (abfd, note, 4);
10644 #endif
10645 default:
10646 break;
10647 }
10648
10649 /* As of March 2017 there are no other machine-independent notes
10650 defined for NetBSD core files. If the note type is less
10651 than the start of the machine-dependent note types, we don't
10652 understand it. */
10653
10654 if (note->type < NT_NETBSDCORE_FIRSTMACH)
10655 return TRUE;
10656
10657
10658 switch (bfd_get_arch (abfd))
10659 {
10660 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
10661 PT_GETFPREGS == mach+2. */
10662
10663 case bfd_arch_alpha:
10664 case bfd_arch_sparc:
10665 switch (note->type)
10666 {
10667 case NT_NETBSDCORE_FIRSTMACH+0:
10668 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10669
10670 case NT_NETBSDCORE_FIRSTMACH+2:
10671 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10672
10673 default:
10674 return TRUE;
10675 }
10676
10677 /* On SuperH, PT_GETREGS == mach+3 and PT_GETFPREGS == mach+5.
10678 There's also old PT___GETREGS40 == mach + 1 for old reg
10679 structure which lacks GBR. */
10680
10681 case bfd_arch_sh:
10682 switch (note->type)
10683 {
10684 case NT_NETBSDCORE_FIRSTMACH+3:
10685 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10686
10687 case NT_NETBSDCORE_FIRSTMACH+5:
10688 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10689
10690 default:
10691 return TRUE;
10692 }
10693
10694 /* On all other arch's, PT_GETREGS == mach+1 and
10695 PT_GETFPREGS == mach+3. */
10696
10697 default:
10698 switch (note->type)
10699 {
10700 case NT_NETBSDCORE_FIRSTMACH+1:
10701 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10702
10703 case NT_NETBSDCORE_FIRSTMACH+3:
10704 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10705
10706 default:
10707 return TRUE;
10708 }
10709 }
10710 /* NOTREACHED */
10711 }
10712
10713 static bfd_boolean
10714 elfcore_grok_openbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
10715 {
10716 if (note->descsz <= 0x48 + 31)
10717 return FALSE;
10718
10719 /* Signal number at offset 0x08. */
10720 elf_tdata (abfd)->core->signal
10721 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
10722
10723 /* Process ID at offset 0x20. */
10724 elf_tdata (abfd)->core->pid
10725 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x20);
10726
10727 /* Command name at 0x48 (max 32 bytes, including nul). */
10728 elf_tdata (abfd)->core->command
10729 = _bfd_elfcore_strndup (abfd, note->descdata + 0x48, 31);
10730
10731 return TRUE;
10732 }
10733
10734 static bfd_boolean
10735 elfcore_grok_openbsd_note (bfd *abfd, Elf_Internal_Note *note)
10736 {
10737 if (note->type == NT_OPENBSD_PROCINFO)
10738 return elfcore_grok_openbsd_procinfo (abfd, note);
10739
10740 if (note->type == NT_OPENBSD_REGS)
10741 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10742
10743 if (note->type == NT_OPENBSD_FPREGS)
10744 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10745
10746 if (note->type == NT_OPENBSD_XFPREGS)
10747 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
10748
10749 if (note->type == NT_OPENBSD_AUXV)
10750 return elfcore_make_auxv_note_section (abfd, note, 0);
10751
10752 if (note->type == NT_OPENBSD_WCOOKIE)
10753 {
10754 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".wcookie",
10755 SEC_HAS_CONTENTS);
10756
10757 if (sect == NULL)
10758 return FALSE;
10759 sect->size = note->descsz;
10760 sect->filepos = note->descpos;
10761 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
10762
10763 return TRUE;
10764 }
10765
10766 return TRUE;
10767 }
10768
10769 static bfd_boolean
10770 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
10771 {
10772 void *ddata = note->descdata;
10773 char buf[100];
10774 char *name;
10775 asection *sect;
10776 short sig;
10777 unsigned flags;
10778
10779 if (note->descsz < 16)
10780 return FALSE;
10781
10782 /* nto_procfs_status 'pid' field is at offset 0. */
10783 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
10784
10785 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
10786 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
10787
10788 /* nto_procfs_status 'flags' field is at offset 8. */
10789 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
10790
10791 /* nto_procfs_status 'what' field is at offset 14. */
10792 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
10793 {
10794 elf_tdata (abfd)->core->signal = sig;
10795 elf_tdata (abfd)->core->lwpid = *tid;
10796 }
10797
10798 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
10799 do not come from signals so we make sure we set the current
10800 thread just in case. */
10801 if (flags & 0x00000080)
10802 elf_tdata (abfd)->core->lwpid = *tid;
10803
10804 /* Make a ".qnx_core_status/%d" section. */
10805 sprintf (buf, ".qnx_core_status/%ld", *tid);
10806
10807 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
10808 if (name == NULL)
10809 return FALSE;
10810 strcpy (name, buf);
10811
10812 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10813 if (sect == NULL)
10814 return FALSE;
10815
10816 sect->size = note->descsz;
10817 sect->filepos = note->descpos;
10818 sect->alignment_power = 2;
10819
10820 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
10821 }
10822
10823 static bfd_boolean
10824 elfcore_grok_nto_regs (bfd *abfd,
10825 Elf_Internal_Note *note,
10826 long tid,
10827 char *base)
10828 {
10829 char buf[100];
10830 char *name;
10831 asection *sect;
10832
10833 /* Make a "(base)/%d" section. */
10834 sprintf (buf, "%s/%ld", base, tid);
10835
10836 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
10837 if (name == NULL)
10838 return FALSE;
10839 strcpy (name, buf);
10840
10841 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10842 if (sect == NULL)
10843 return FALSE;
10844
10845 sect->size = note->descsz;
10846 sect->filepos = note->descpos;
10847 sect->alignment_power = 2;
10848
10849 /* This is the current thread. */
10850 if (elf_tdata (abfd)->core->lwpid == tid)
10851 return elfcore_maybe_make_sect (abfd, base, sect);
10852
10853 return TRUE;
10854 }
10855
10856 #define BFD_QNT_CORE_INFO 7
10857 #define BFD_QNT_CORE_STATUS 8
10858 #define BFD_QNT_CORE_GREG 9
10859 #define BFD_QNT_CORE_FPREG 10
10860
10861 static bfd_boolean
10862 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
10863 {
10864 /* Every GREG section has a STATUS section before it. Store the
10865 tid from the previous call to pass down to the next gregs
10866 function. */
10867 static long tid = 1;
10868
10869 switch (note->type)
10870 {
10871 case BFD_QNT_CORE_INFO:
10872 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
10873 case BFD_QNT_CORE_STATUS:
10874 return elfcore_grok_nto_status (abfd, note, &tid);
10875 case BFD_QNT_CORE_GREG:
10876 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
10877 case BFD_QNT_CORE_FPREG:
10878 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
10879 default:
10880 return TRUE;
10881 }
10882 }
10883
10884 static bfd_boolean
10885 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
10886 {
10887 char *name;
10888 asection *sect;
10889 size_t len;
10890
10891 /* Use note name as section name. */
10892 len = note->namesz;
10893 name = (char *) bfd_alloc (abfd, len);
10894 if (name == NULL)
10895 return FALSE;
10896 memcpy (name, note->namedata, len);
10897 name[len - 1] = '\0';
10898
10899 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10900 if (sect == NULL)
10901 return FALSE;
10902
10903 sect->size = note->descsz;
10904 sect->filepos = note->descpos;
10905 sect->alignment_power = 1;
10906
10907 return TRUE;
10908 }
10909
10910 /* Function: elfcore_write_note
10911
10912 Inputs:
10913 buffer to hold note, and current size of buffer
10914 name of note
10915 type of note
10916 data for note
10917 size of data for note
10918
10919 Writes note to end of buffer. ELF64 notes are written exactly as
10920 for ELF32, despite the current (as of 2006) ELF gabi specifying
10921 that they ought to have 8-byte namesz and descsz field, and have
10922 8-byte alignment. Other writers, eg. Linux kernel, do the same.
10923
10924 Return:
10925 Pointer to realloc'd buffer, *BUFSIZ updated. */
10926
10927 char *
10928 elfcore_write_note (bfd *abfd,
10929 char *buf,
10930 int *bufsiz,
10931 const char *name,
10932 int type,
10933 const void *input,
10934 int size)
10935 {
10936 Elf_External_Note *xnp;
10937 size_t namesz;
10938 size_t newspace;
10939 char *dest;
10940
10941 namesz = 0;
10942 if (name != NULL)
10943 namesz = strlen (name) + 1;
10944
10945 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
10946
10947 buf = (char *) realloc (buf, *bufsiz + newspace);
10948 if (buf == NULL)
10949 return buf;
10950 dest = buf + *bufsiz;
10951 *bufsiz += newspace;
10952 xnp = (Elf_External_Note *) dest;
10953 H_PUT_32 (abfd, namesz, xnp->namesz);
10954 H_PUT_32 (abfd, size, xnp->descsz);
10955 H_PUT_32 (abfd, type, xnp->type);
10956 dest = xnp->name;
10957 if (name != NULL)
10958 {
10959 memcpy (dest, name, namesz);
10960 dest += namesz;
10961 while (namesz & 3)
10962 {
10963 *dest++ = '\0';
10964 ++namesz;
10965 }
10966 }
10967 memcpy (dest, input, size);
10968 dest += size;
10969 while (size & 3)
10970 {
10971 *dest++ = '\0';
10972 ++size;
10973 }
10974 return buf;
10975 }
10976
10977 /* gcc-8 warns (*) on all the strncpy calls in this function about
10978 possible string truncation. The "truncation" is not a bug. We
10979 have an external representation of structs with fields that are not
10980 necessarily NULL terminated and corresponding internal
10981 representation fields that are one larger so that they can always
10982 be NULL terminated.
10983 gcc versions between 4.2 and 4.6 do not allow pragma control of
10984 diagnostics inside functions, giving a hard error if you try to use
10985 the finer control available with later versions.
10986 gcc prior to 4.2 warns about diagnostic push and pop.
10987 gcc-5, gcc-6 and gcc-7 warn that -Wstringop-truncation is unknown,
10988 unless you also add #pragma GCC diagnostic ignored "-Wpragma".
10989 (*) Depending on your system header files! */
10990 #if GCC_VERSION >= 8000
10991 # pragma GCC diagnostic push
10992 # pragma GCC diagnostic ignored "-Wstringop-truncation"
10993 #endif
10994 char *
10995 elfcore_write_prpsinfo (bfd *abfd,
10996 char *buf,
10997 int *bufsiz,
10998 const char *fname,
10999 const char *psargs)
11000 {
11001 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11002
11003 if (bed->elf_backend_write_core_note != NULL)
11004 {
11005 char *ret;
11006 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
11007 NT_PRPSINFO, fname, psargs);
11008 if (ret != NULL)
11009 return ret;
11010 }
11011
11012 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
11013 # if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
11014 if (bed->s->elfclass == ELFCLASS32)
11015 {
11016 # if defined (HAVE_PSINFO32_T)
11017 psinfo32_t data;
11018 int note_type = NT_PSINFO;
11019 # else
11020 prpsinfo32_t data;
11021 int note_type = NT_PRPSINFO;
11022 # endif
11023
11024 memset (&data, 0, sizeof (data));
11025 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
11026 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
11027 return elfcore_write_note (abfd, buf, bufsiz,
11028 "CORE", note_type, &data, sizeof (data));
11029 }
11030 else
11031 # endif
11032 {
11033 # if defined (HAVE_PSINFO_T)
11034 psinfo_t data;
11035 int note_type = NT_PSINFO;
11036 # else
11037 prpsinfo_t data;
11038 int note_type = NT_PRPSINFO;
11039 # endif
11040
11041 memset (&data, 0, sizeof (data));
11042 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
11043 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
11044 return elfcore_write_note (abfd, buf, bufsiz,
11045 "CORE", note_type, &data, sizeof (data));
11046 }
11047 #endif /* PSINFO_T or PRPSINFO_T */
11048
11049 free (buf);
11050 return NULL;
11051 }
11052 #if GCC_VERSION >= 8000
11053 # pragma GCC diagnostic pop
11054 #endif
11055
11056 char *
11057 elfcore_write_linux_prpsinfo32
11058 (bfd *abfd, char *buf, int *bufsiz,
11059 const struct elf_internal_linux_prpsinfo *prpsinfo)
11060 {
11061 if (get_elf_backend_data (abfd)->linux_prpsinfo32_ugid16)
11062 {
11063 struct elf_external_linux_prpsinfo32_ugid16 data;
11064
11065 swap_linux_prpsinfo32_ugid16_out (abfd, prpsinfo, &data);
11066 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
11067 &data, sizeof (data));
11068 }
11069 else
11070 {
11071 struct elf_external_linux_prpsinfo32_ugid32 data;
11072
11073 swap_linux_prpsinfo32_ugid32_out (abfd, prpsinfo, &data);
11074 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
11075 &data, sizeof (data));
11076 }
11077 }
11078
11079 char *
11080 elfcore_write_linux_prpsinfo64
11081 (bfd *abfd, char *buf, int *bufsiz,
11082 const struct elf_internal_linux_prpsinfo *prpsinfo)
11083 {
11084 if (get_elf_backend_data (abfd)->linux_prpsinfo64_ugid16)
11085 {
11086 struct elf_external_linux_prpsinfo64_ugid16 data;
11087
11088 swap_linux_prpsinfo64_ugid16_out (abfd, prpsinfo, &data);
11089 return elfcore_write_note (abfd, buf, bufsiz,
11090 "CORE", NT_PRPSINFO, &data, sizeof (data));
11091 }
11092 else
11093 {
11094 struct elf_external_linux_prpsinfo64_ugid32 data;
11095
11096 swap_linux_prpsinfo64_ugid32_out (abfd, prpsinfo, &data);
11097 return elfcore_write_note (abfd, buf, bufsiz,
11098 "CORE", NT_PRPSINFO, &data, sizeof (data));
11099 }
11100 }
11101
11102 char *
11103 elfcore_write_prstatus (bfd *abfd,
11104 char *buf,
11105 int *bufsiz,
11106 long pid,
11107 int cursig,
11108 const void *gregs)
11109 {
11110 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11111
11112 if (bed->elf_backend_write_core_note != NULL)
11113 {
11114 char *ret;
11115 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
11116 NT_PRSTATUS,
11117 pid, cursig, gregs);
11118 if (ret != NULL)
11119 return ret;
11120 }
11121
11122 #if defined (HAVE_PRSTATUS_T)
11123 #if defined (HAVE_PRSTATUS32_T)
11124 if (bed->s->elfclass == ELFCLASS32)
11125 {
11126 prstatus32_t prstat;
11127
11128 memset (&prstat, 0, sizeof (prstat));
11129 prstat.pr_pid = pid;
11130 prstat.pr_cursig = cursig;
11131 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
11132 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
11133 NT_PRSTATUS, &prstat, sizeof (prstat));
11134 }
11135 else
11136 #endif
11137 {
11138 prstatus_t prstat;
11139
11140 memset (&prstat, 0, sizeof (prstat));
11141 prstat.pr_pid = pid;
11142 prstat.pr_cursig = cursig;
11143 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
11144 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
11145 NT_PRSTATUS, &prstat, sizeof (prstat));
11146 }
11147 #endif /* HAVE_PRSTATUS_T */
11148
11149 free (buf);
11150 return NULL;
11151 }
11152
11153 #if defined (HAVE_LWPSTATUS_T)
11154 char *
11155 elfcore_write_lwpstatus (bfd *abfd,
11156 char *buf,
11157 int *bufsiz,
11158 long pid,
11159 int cursig,
11160 const void *gregs)
11161 {
11162 lwpstatus_t lwpstat;
11163 const char *note_name = "CORE";
11164
11165 memset (&lwpstat, 0, sizeof (lwpstat));
11166 lwpstat.pr_lwpid = pid >> 16;
11167 lwpstat.pr_cursig = cursig;
11168 #if defined (HAVE_LWPSTATUS_T_PR_REG)
11169 memcpy (&lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
11170 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
11171 #if !defined(gregs)
11172 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
11173 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
11174 #else
11175 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
11176 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
11177 #endif
11178 #endif
11179 return elfcore_write_note (abfd, buf, bufsiz, note_name,
11180 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
11181 }
11182 #endif /* HAVE_LWPSTATUS_T */
11183
11184 #if defined (HAVE_PSTATUS_T)
11185 char *
11186 elfcore_write_pstatus (bfd *abfd,
11187 char *buf,
11188 int *bufsiz,
11189 long pid,
11190 int cursig ATTRIBUTE_UNUSED,
11191 const void *gregs ATTRIBUTE_UNUSED)
11192 {
11193 const char *note_name = "CORE";
11194 #if defined (HAVE_PSTATUS32_T)
11195 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11196
11197 if (bed->s->elfclass == ELFCLASS32)
11198 {
11199 pstatus32_t pstat;
11200
11201 memset (&pstat, 0, sizeof (pstat));
11202 pstat.pr_pid = pid & 0xffff;
11203 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
11204 NT_PSTATUS, &pstat, sizeof (pstat));
11205 return buf;
11206 }
11207 else
11208 #endif
11209 {
11210 pstatus_t pstat;
11211
11212 memset (&pstat, 0, sizeof (pstat));
11213 pstat.pr_pid = pid & 0xffff;
11214 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
11215 NT_PSTATUS, &pstat, sizeof (pstat));
11216 return buf;
11217 }
11218 }
11219 #endif /* HAVE_PSTATUS_T */
11220
11221 char *
11222 elfcore_write_prfpreg (bfd *abfd,
11223 char *buf,
11224 int *bufsiz,
11225 const void *fpregs,
11226 int size)
11227 {
11228 const char *note_name = "CORE";
11229 return elfcore_write_note (abfd, buf, bufsiz,
11230 note_name, NT_FPREGSET, fpregs, size);
11231 }
11232
11233 char *
11234 elfcore_write_prxfpreg (bfd *abfd,
11235 char *buf,
11236 int *bufsiz,
11237 const void *xfpregs,
11238 int size)
11239 {
11240 char *note_name = "LINUX";
11241 return elfcore_write_note (abfd, buf, bufsiz,
11242 note_name, NT_PRXFPREG, xfpregs, size);
11243 }
11244
11245 char *
11246 elfcore_write_xstatereg (bfd *abfd, char *buf, int *bufsiz,
11247 const void *xfpregs, int size)
11248 {
11249 char *note_name;
11250 if (get_elf_backend_data (abfd)->elf_osabi == ELFOSABI_FREEBSD)
11251 note_name = "FreeBSD";
11252 else
11253 note_name = "LINUX";
11254 return elfcore_write_note (abfd, buf, bufsiz,
11255 note_name, NT_X86_XSTATE, xfpregs, size);
11256 }
11257
11258 char *
11259 elfcore_write_ppc_vmx (bfd *abfd,
11260 char *buf,
11261 int *bufsiz,
11262 const void *ppc_vmx,
11263 int size)
11264 {
11265 char *note_name = "LINUX";
11266 return elfcore_write_note (abfd, buf, bufsiz,
11267 note_name, NT_PPC_VMX, ppc_vmx, size);
11268 }
11269
11270 char *
11271 elfcore_write_ppc_vsx (bfd *abfd,
11272 char *buf,
11273 int *bufsiz,
11274 const void *ppc_vsx,
11275 int size)
11276 {
11277 char *note_name = "LINUX";
11278 return elfcore_write_note (abfd, buf, bufsiz,
11279 note_name, NT_PPC_VSX, ppc_vsx, size);
11280 }
11281
11282 char *
11283 elfcore_write_ppc_tar (bfd *abfd,
11284 char *buf,
11285 int *bufsiz,
11286 const void *ppc_tar,
11287 int size)
11288 {
11289 char *note_name = "LINUX";
11290 return elfcore_write_note (abfd, buf, bufsiz,
11291 note_name, NT_PPC_TAR, ppc_tar, size);
11292 }
11293
11294 char *
11295 elfcore_write_ppc_ppr (bfd *abfd,
11296 char *buf,
11297 int *bufsiz,
11298 const void *ppc_ppr,
11299 int size)
11300 {
11301 char *note_name = "LINUX";
11302 return elfcore_write_note (abfd, buf, bufsiz,
11303 note_name, NT_PPC_PPR, ppc_ppr, size);
11304 }
11305
11306 char *
11307 elfcore_write_ppc_dscr (bfd *abfd,
11308 char *buf,
11309 int *bufsiz,
11310 const void *ppc_dscr,
11311 int size)
11312 {
11313 char *note_name = "LINUX";
11314 return elfcore_write_note (abfd, buf, bufsiz,
11315 note_name, NT_PPC_DSCR, ppc_dscr, size);
11316 }
11317
11318 char *
11319 elfcore_write_ppc_ebb (bfd *abfd,
11320 char *buf,
11321 int *bufsiz,
11322 const void *ppc_ebb,
11323 int size)
11324 {
11325 char *note_name = "LINUX";
11326 return elfcore_write_note (abfd, buf, bufsiz,
11327 note_name, NT_PPC_EBB, ppc_ebb, size);
11328 }
11329
11330 char *
11331 elfcore_write_ppc_pmu (bfd *abfd,
11332 char *buf,
11333 int *bufsiz,
11334 const void *ppc_pmu,
11335 int size)
11336 {
11337 char *note_name = "LINUX";
11338 return elfcore_write_note (abfd, buf, bufsiz,
11339 note_name, NT_PPC_PMU, ppc_pmu, size);
11340 }
11341
11342 char *
11343 elfcore_write_ppc_tm_cgpr (bfd *abfd,
11344 char *buf,
11345 int *bufsiz,
11346 const void *ppc_tm_cgpr,
11347 int size)
11348 {
11349 char *note_name = "LINUX";
11350 return elfcore_write_note (abfd, buf, bufsiz,
11351 note_name, NT_PPC_TM_CGPR, ppc_tm_cgpr, size);
11352 }
11353
11354 char *
11355 elfcore_write_ppc_tm_cfpr (bfd *abfd,
11356 char *buf,
11357 int *bufsiz,
11358 const void *ppc_tm_cfpr,
11359 int size)
11360 {
11361 char *note_name = "LINUX";
11362 return elfcore_write_note (abfd, buf, bufsiz,
11363 note_name, NT_PPC_TM_CFPR, ppc_tm_cfpr, size);
11364 }
11365
11366 char *
11367 elfcore_write_ppc_tm_cvmx (bfd *abfd,
11368 char *buf,
11369 int *bufsiz,
11370 const void *ppc_tm_cvmx,
11371 int size)
11372 {
11373 char *note_name = "LINUX";
11374 return elfcore_write_note (abfd, buf, bufsiz,
11375 note_name, NT_PPC_TM_CVMX, ppc_tm_cvmx, size);
11376 }
11377
11378 char *
11379 elfcore_write_ppc_tm_cvsx (bfd *abfd,
11380 char *buf,
11381 int *bufsiz,
11382 const void *ppc_tm_cvsx,
11383 int size)
11384 {
11385 char *note_name = "LINUX";
11386 return elfcore_write_note (abfd, buf, bufsiz,
11387 note_name, NT_PPC_TM_CVSX, ppc_tm_cvsx, size);
11388 }
11389
11390 char *
11391 elfcore_write_ppc_tm_spr (bfd *abfd,
11392 char *buf,
11393 int *bufsiz,
11394 const void *ppc_tm_spr,
11395 int size)
11396 {
11397 char *note_name = "LINUX";
11398 return elfcore_write_note (abfd, buf, bufsiz,
11399 note_name, NT_PPC_TM_SPR, ppc_tm_spr, size);
11400 }
11401
11402 char *
11403 elfcore_write_ppc_tm_ctar (bfd *abfd,
11404 char *buf,
11405 int *bufsiz,
11406 const void *ppc_tm_ctar,
11407 int size)
11408 {
11409 char *note_name = "LINUX";
11410 return elfcore_write_note (abfd, buf, bufsiz,
11411 note_name, NT_PPC_TM_CTAR, ppc_tm_ctar, size);
11412 }
11413
11414 char *
11415 elfcore_write_ppc_tm_cppr (bfd *abfd,
11416 char *buf,
11417 int *bufsiz,
11418 const void *ppc_tm_cppr,
11419 int size)
11420 {
11421 char *note_name = "LINUX";
11422 return elfcore_write_note (abfd, buf, bufsiz,
11423 note_name, NT_PPC_TM_CPPR, ppc_tm_cppr, size);
11424 }
11425
11426 char *
11427 elfcore_write_ppc_tm_cdscr (bfd *abfd,
11428 char *buf,
11429 int *bufsiz,
11430 const void *ppc_tm_cdscr,
11431 int size)
11432 {
11433 char *note_name = "LINUX";
11434 return elfcore_write_note (abfd, buf, bufsiz,
11435 note_name, NT_PPC_TM_CDSCR, ppc_tm_cdscr, size);
11436 }
11437
11438 static char *
11439 elfcore_write_s390_high_gprs (bfd *abfd,
11440 char *buf,
11441 int *bufsiz,
11442 const void *s390_high_gprs,
11443 int size)
11444 {
11445 char *note_name = "LINUX";
11446 return elfcore_write_note (abfd, buf, bufsiz,
11447 note_name, NT_S390_HIGH_GPRS,
11448 s390_high_gprs, size);
11449 }
11450
11451 char *
11452 elfcore_write_s390_timer (bfd *abfd,
11453 char *buf,
11454 int *bufsiz,
11455 const void *s390_timer,
11456 int size)
11457 {
11458 char *note_name = "LINUX";
11459 return elfcore_write_note (abfd, buf, bufsiz,
11460 note_name, NT_S390_TIMER, s390_timer, size);
11461 }
11462
11463 char *
11464 elfcore_write_s390_todcmp (bfd *abfd,
11465 char *buf,
11466 int *bufsiz,
11467 const void *s390_todcmp,
11468 int size)
11469 {
11470 char *note_name = "LINUX";
11471 return elfcore_write_note (abfd, buf, bufsiz,
11472 note_name, NT_S390_TODCMP, s390_todcmp, size);
11473 }
11474
11475 char *
11476 elfcore_write_s390_todpreg (bfd *abfd,
11477 char *buf,
11478 int *bufsiz,
11479 const void *s390_todpreg,
11480 int size)
11481 {
11482 char *note_name = "LINUX";
11483 return elfcore_write_note (abfd, buf, bufsiz,
11484 note_name, NT_S390_TODPREG, s390_todpreg, size);
11485 }
11486
11487 char *
11488 elfcore_write_s390_ctrs (bfd *abfd,
11489 char *buf,
11490 int *bufsiz,
11491 const void *s390_ctrs,
11492 int size)
11493 {
11494 char *note_name = "LINUX";
11495 return elfcore_write_note (abfd, buf, bufsiz,
11496 note_name, NT_S390_CTRS, s390_ctrs, size);
11497 }
11498
11499 char *
11500 elfcore_write_s390_prefix (bfd *abfd,
11501 char *buf,
11502 int *bufsiz,
11503 const void *s390_prefix,
11504 int size)
11505 {
11506 char *note_name = "LINUX";
11507 return elfcore_write_note (abfd, buf, bufsiz,
11508 note_name, NT_S390_PREFIX, s390_prefix, size);
11509 }
11510
11511 char *
11512 elfcore_write_s390_last_break (bfd *abfd,
11513 char *buf,
11514 int *bufsiz,
11515 const void *s390_last_break,
11516 int size)
11517 {
11518 char *note_name = "LINUX";
11519 return elfcore_write_note (abfd, buf, bufsiz,
11520 note_name, NT_S390_LAST_BREAK,
11521 s390_last_break, size);
11522 }
11523
11524 char *
11525 elfcore_write_s390_system_call (bfd *abfd,
11526 char *buf,
11527 int *bufsiz,
11528 const void *s390_system_call,
11529 int size)
11530 {
11531 char *note_name = "LINUX";
11532 return elfcore_write_note (abfd, buf, bufsiz,
11533 note_name, NT_S390_SYSTEM_CALL,
11534 s390_system_call, size);
11535 }
11536
11537 char *
11538 elfcore_write_s390_tdb (bfd *abfd,
11539 char *buf,
11540 int *bufsiz,
11541 const void *s390_tdb,
11542 int size)
11543 {
11544 char *note_name = "LINUX";
11545 return elfcore_write_note (abfd, buf, bufsiz,
11546 note_name, NT_S390_TDB, s390_tdb, size);
11547 }
11548
11549 char *
11550 elfcore_write_s390_vxrs_low (bfd *abfd,
11551 char *buf,
11552 int *bufsiz,
11553 const void *s390_vxrs_low,
11554 int size)
11555 {
11556 char *note_name = "LINUX";
11557 return elfcore_write_note (abfd, buf, bufsiz,
11558 note_name, NT_S390_VXRS_LOW, s390_vxrs_low, size);
11559 }
11560
11561 char *
11562 elfcore_write_s390_vxrs_high (bfd *abfd,
11563 char *buf,
11564 int *bufsiz,
11565 const void *s390_vxrs_high,
11566 int size)
11567 {
11568 char *note_name = "LINUX";
11569 return elfcore_write_note (abfd, buf, bufsiz,
11570 note_name, NT_S390_VXRS_HIGH,
11571 s390_vxrs_high, size);
11572 }
11573
11574 char *
11575 elfcore_write_s390_gs_cb (bfd *abfd,
11576 char *buf,
11577 int *bufsiz,
11578 const void *s390_gs_cb,
11579 int size)
11580 {
11581 char *note_name = "LINUX";
11582 return elfcore_write_note (abfd, buf, bufsiz,
11583 note_name, NT_S390_GS_CB,
11584 s390_gs_cb, size);
11585 }
11586
11587 char *
11588 elfcore_write_s390_gs_bc (bfd *abfd,
11589 char *buf,
11590 int *bufsiz,
11591 const void *s390_gs_bc,
11592 int size)
11593 {
11594 char *note_name = "LINUX";
11595 return elfcore_write_note (abfd, buf, bufsiz,
11596 note_name, NT_S390_GS_BC,
11597 s390_gs_bc, size);
11598 }
11599
11600 char *
11601 elfcore_write_arm_vfp (bfd *abfd,
11602 char *buf,
11603 int *bufsiz,
11604 const void *arm_vfp,
11605 int size)
11606 {
11607 char *note_name = "LINUX";
11608 return elfcore_write_note (abfd, buf, bufsiz,
11609 note_name, NT_ARM_VFP, arm_vfp, size);
11610 }
11611
11612 char *
11613 elfcore_write_aarch_tls (bfd *abfd,
11614 char *buf,
11615 int *bufsiz,
11616 const void *aarch_tls,
11617 int size)
11618 {
11619 char *note_name = "LINUX";
11620 return elfcore_write_note (abfd, buf, bufsiz,
11621 note_name, NT_ARM_TLS, aarch_tls, size);
11622 }
11623
11624 char *
11625 elfcore_write_aarch_hw_break (bfd *abfd,
11626 char *buf,
11627 int *bufsiz,
11628 const void *aarch_hw_break,
11629 int size)
11630 {
11631 char *note_name = "LINUX";
11632 return elfcore_write_note (abfd, buf, bufsiz,
11633 note_name, NT_ARM_HW_BREAK, aarch_hw_break, size);
11634 }
11635
11636 char *
11637 elfcore_write_aarch_hw_watch (bfd *abfd,
11638 char *buf,
11639 int *bufsiz,
11640 const void *aarch_hw_watch,
11641 int size)
11642 {
11643 char *note_name = "LINUX";
11644 return elfcore_write_note (abfd, buf, bufsiz,
11645 note_name, NT_ARM_HW_WATCH, aarch_hw_watch, size);
11646 }
11647
11648 char *
11649 elfcore_write_aarch_sve (bfd *abfd,
11650 char *buf,
11651 int *bufsiz,
11652 const void *aarch_sve,
11653 int size)
11654 {
11655 char *note_name = "LINUX";
11656 return elfcore_write_note (abfd, buf, bufsiz,
11657 note_name, NT_ARM_SVE, aarch_sve, size);
11658 }
11659
11660 char *
11661 elfcore_write_aarch_pauth (bfd *abfd,
11662 char *buf,
11663 int *bufsiz,
11664 const void *aarch_pauth,
11665 int size)
11666 {
11667 char *note_name = "LINUX";
11668 return elfcore_write_note (abfd, buf, bufsiz,
11669 note_name, NT_ARM_PAC_MASK, aarch_pauth, size);
11670 }
11671
11672 char *
11673 elfcore_write_register_note (bfd *abfd,
11674 char *buf,
11675 int *bufsiz,
11676 const char *section,
11677 const void *data,
11678 int size)
11679 {
11680 if (strcmp (section, ".reg2") == 0)
11681 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
11682 if (strcmp (section, ".reg-xfp") == 0)
11683 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
11684 if (strcmp (section, ".reg-xstate") == 0)
11685 return elfcore_write_xstatereg (abfd, buf, bufsiz, data, size);
11686 if (strcmp (section, ".reg-ppc-vmx") == 0)
11687 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
11688 if (strcmp (section, ".reg-ppc-vsx") == 0)
11689 return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size);
11690 if (strcmp (section, ".reg-ppc-tar") == 0)
11691 return elfcore_write_ppc_tar (abfd, buf, bufsiz, data, size);
11692 if (strcmp (section, ".reg-ppc-ppr") == 0)
11693 return elfcore_write_ppc_ppr (abfd, buf, bufsiz, data, size);
11694 if (strcmp (section, ".reg-ppc-dscr") == 0)
11695 return elfcore_write_ppc_dscr (abfd, buf, bufsiz, data, size);
11696 if (strcmp (section, ".reg-ppc-ebb") == 0)
11697 return elfcore_write_ppc_ebb (abfd, buf, bufsiz, data, size);
11698 if (strcmp (section, ".reg-ppc-pmu") == 0)
11699 return elfcore_write_ppc_pmu (abfd, buf, bufsiz, data, size);
11700 if (strcmp (section, ".reg-ppc-tm-cgpr") == 0)
11701 return elfcore_write_ppc_tm_cgpr (abfd, buf, bufsiz, data, size);
11702 if (strcmp (section, ".reg-ppc-tm-cfpr") == 0)
11703 return elfcore_write_ppc_tm_cfpr (abfd, buf, bufsiz, data, size);
11704 if (strcmp (section, ".reg-ppc-tm-cvmx") == 0)
11705 return elfcore_write_ppc_tm_cvmx (abfd, buf, bufsiz, data, size);
11706 if (strcmp (section, ".reg-ppc-tm-cvsx") == 0)
11707 return elfcore_write_ppc_tm_cvsx (abfd, buf, bufsiz, data, size);
11708 if (strcmp (section, ".reg-ppc-tm-spr") == 0)
11709 return elfcore_write_ppc_tm_spr (abfd, buf, bufsiz, data, size);
11710 if (strcmp (section, ".reg-ppc-tm-ctar") == 0)
11711 return elfcore_write_ppc_tm_ctar (abfd, buf, bufsiz, data, size);
11712 if (strcmp (section, ".reg-ppc-tm-cppr") == 0)
11713 return elfcore_write_ppc_tm_cppr (abfd, buf, bufsiz, data, size);
11714 if (strcmp (section, ".reg-ppc-tm-cdscr") == 0)
11715 return elfcore_write_ppc_tm_cdscr (abfd, buf, bufsiz, data, size);
11716 if (strcmp (section, ".reg-s390-high-gprs") == 0)
11717 return elfcore_write_s390_high_gprs (abfd, buf, bufsiz, data, size);
11718 if (strcmp (section, ".reg-s390-timer") == 0)
11719 return elfcore_write_s390_timer (abfd, buf, bufsiz, data, size);
11720 if (strcmp (section, ".reg-s390-todcmp") == 0)
11721 return elfcore_write_s390_todcmp (abfd, buf, bufsiz, data, size);
11722 if (strcmp (section, ".reg-s390-todpreg") == 0)
11723 return elfcore_write_s390_todpreg (abfd, buf, bufsiz, data, size);
11724 if (strcmp (section, ".reg-s390-ctrs") == 0)
11725 return elfcore_write_s390_ctrs (abfd, buf, bufsiz, data, size);
11726 if (strcmp (section, ".reg-s390-prefix") == 0)
11727 return elfcore_write_s390_prefix (abfd, buf, bufsiz, data, size);
11728 if (strcmp (section, ".reg-s390-last-break") == 0)
11729 return elfcore_write_s390_last_break (abfd, buf, bufsiz, data, size);
11730 if (strcmp (section, ".reg-s390-system-call") == 0)
11731 return elfcore_write_s390_system_call (abfd, buf, bufsiz, data, size);
11732 if (strcmp (section, ".reg-s390-tdb") == 0)
11733 return elfcore_write_s390_tdb (abfd, buf, bufsiz, data, size);
11734 if (strcmp (section, ".reg-s390-vxrs-low") == 0)
11735 return elfcore_write_s390_vxrs_low (abfd, buf, bufsiz, data, size);
11736 if (strcmp (section, ".reg-s390-vxrs-high") == 0)
11737 return elfcore_write_s390_vxrs_high (abfd, buf, bufsiz, data, size);
11738 if (strcmp (section, ".reg-s390-gs-cb") == 0)
11739 return elfcore_write_s390_gs_cb (abfd, buf, bufsiz, data, size);
11740 if (strcmp (section, ".reg-s390-gs-bc") == 0)
11741 return elfcore_write_s390_gs_bc (abfd, buf, bufsiz, data, size);
11742 if (strcmp (section, ".reg-arm-vfp") == 0)
11743 return elfcore_write_arm_vfp (abfd, buf, bufsiz, data, size);
11744 if (strcmp (section, ".reg-aarch-tls") == 0)
11745 return elfcore_write_aarch_tls (abfd, buf, bufsiz, data, size);
11746 if (strcmp (section, ".reg-aarch-hw-break") == 0)
11747 return elfcore_write_aarch_hw_break (abfd, buf, bufsiz, data, size);
11748 if (strcmp (section, ".reg-aarch-hw-watch") == 0)
11749 return elfcore_write_aarch_hw_watch (abfd, buf, bufsiz, data, size);
11750 if (strcmp (section, ".reg-aarch-sve") == 0)
11751 return elfcore_write_aarch_sve (abfd, buf, bufsiz, data, size);
11752 if (strcmp (section, ".reg-aarch-pauth") == 0)
11753 return elfcore_write_aarch_pauth (abfd, buf, bufsiz, data, size);
11754 return NULL;
11755 }
11756
11757 static bfd_boolean
11758 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset,
11759 size_t align)
11760 {
11761 char *p;
11762
11763 /* NB: CORE PT_NOTE segments may have p_align values of 0 or 1.
11764 gABI specifies that PT_NOTE alignment should be aligned to 4
11765 bytes for 32-bit objects and to 8 bytes for 64-bit objects. If
11766 align is less than 4, we use 4 byte alignment. */
11767 if (align < 4)
11768 align = 4;
11769 if (align != 4 && align != 8)
11770 return FALSE;
11771
11772 p = buf;
11773 while (p < buf + size)
11774 {
11775 Elf_External_Note *xnp = (Elf_External_Note *) p;
11776 Elf_Internal_Note in;
11777
11778 if (offsetof (Elf_External_Note, name) > buf - p + size)
11779 return FALSE;
11780
11781 in.type = H_GET_32 (abfd, xnp->type);
11782
11783 in.namesz = H_GET_32 (abfd, xnp->namesz);
11784 in.namedata = xnp->name;
11785 if (in.namesz > buf - in.namedata + size)
11786 return FALSE;
11787
11788 in.descsz = H_GET_32 (abfd, xnp->descsz);
11789 in.descdata = p + ELF_NOTE_DESC_OFFSET (in.namesz, align);
11790 in.descpos = offset + (in.descdata - buf);
11791 if (in.descsz != 0
11792 && (in.descdata >= buf + size
11793 || in.descsz > buf - in.descdata + size))
11794 return FALSE;
11795
11796 switch (bfd_get_format (abfd))
11797 {
11798 default:
11799 return TRUE;
11800
11801 case bfd_core:
11802 {
11803 #define GROKER_ELEMENT(S,F) {S, sizeof (S) - 1, F}
11804 struct
11805 {
11806 const char * string;
11807 size_t len;
11808 bfd_boolean (* func)(bfd *, Elf_Internal_Note *);
11809 }
11810 grokers[] =
11811 {
11812 GROKER_ELEMENT ("", elfcore_grok_note),
11813 GROKER_ELEMENT ("FreeBSD", elfcore_grok_freebsd_note),
11814 GROKER_ELEMENT ("NetBSD-CORE", elfcore_grok_netbsd_note),
11815 GROKER_ELEMENT ( "OpenBSD", elfcore_grok_openbsd_note),
11816 GROKER_ELEMENT ("QNX", elfcore_grok_nto_note),
11817 GROKER_ELEMENT ("SPU/", elfcore_grok_spu_note)
11818 };
11819 #undef GROKER_ELEMENT
11820 int i;
11821
11822 for (i = ARRAY_SIZE (grokers); i--;)
11823 {
11824 if (in.namesz >= grokers[i].len
11825 && strncmp (in.namedata, grokers[i].string,
11826 grokers[i].len) == 0)
11827 {
11828 if (! grokers[i].func (abfd, & in))
11829 return FALSE;
11830 break;
11831 }
11832 }
11833 break;
11834 }
11835
11836 case bfd_object:
11837 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
11838 {
11839 if (! elfobj_grok_gnu_note (abfd, &in))
11840 return FALSE;
11841 }
11842 else if (in.namesz == sizeof "stapsdt"
11843 && strcmp (in.namedata, "stapsdt") == 0)
11844 {
11845 if (! elfobj_grok_stapsdt_note (abfd, &in))
11846 return FALSE;
11847 }
11848 break;
11849 }
11850
11851 p += ELF_NOTE_NEXT_OFFSET (in.namesz, in.descsz, align);
11852 }
11853
11854 return TRUE;
11855 }
11856
11857 static bfd_boolean
11858 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size,
11859 size_t align)
11860 {
11861 char *buf;
11862
11863 if (size == 0 || (size + 1) == 0)
11864 return TRUE;
11865
11866 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
11867 return FALSE;
11868
11869 buf = (char *) bfd_malloc (size + 1);
11870 if (buf == NULL)
11871 return FALSE;
11872
11873 /* PR 17512: file: ec08f814
11874 0-termintate the buffer so that string searches will not overflow. */
11875 buf[size] = 0;
11876
11877 if (bfd_bread (buf, size, abfd) != size
11878 || !elf_parse_notes (abfd, buf, size, offset, align))
11879 {
11880 free (buf);
11881 return FALSE;
11882 }
11883
11884 free (buf);
11885 return TRUE;
11886 }
11887 \f
11888 /* Providing external access to the ELF program header table. */
11889
11890 /* Return an upper bound on the number of bytes required to store a
11891 copy of ABFD's program header table entries. Return -1 if an error
11892 occurs; bfd_get_error will return an appropriate code. */
11893
11894 long
11895 bfd_get_elf_phdr_upper_bound (bfd *abfd)
11896 {
11897 if (abfd->xvec->flavour != bfd_target_elf_flavour)
11898 {
11899 bfd_set_error (bfd_error_wrong_format);
11900 return -1;
11901 }
11902
11903 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
11904 }
11905
11906 /* Copy ABFD's program header table entries to *PHDRS. The entries
11907 will be stored as an array of Elf_Internal_Phdr structures, as
11908 defined in include/elf/internal.h. To find out how large the
11909 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
11910
11911 Return the number of program header table entries read, or -1 if an
11912 error occurs; bfd_get_error will return an appropriate code. */
11913
11914 int
11915 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
11916 {
11917 int num_phdrs;
11918
11919 if (abfd->xvec->flavour != bfd_target_elf_flavour)
11920 {
11921 bfd_set_error (bfd_error_wrong_format);
11922 return -1;
11923 }
11924
11925 num_phdrs = elf_elfheader (abfd)->e_phnum;
11926 if (num_phdrs != 0)
11927 memcpy (phdrs, elf_tdata (abfd)->phdr,
11928 num_phdrs * sizeof (Elf_Internal_Phdr));
11929
11930 return num_phdrs;
11931 }
11932
11933 enum elf_reloc_type_class
11934 _bfd_elf_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
11935 const asection *rel_sec ATTRIBUTE_UNUSED,
11936 const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
11937 {
11938 return reloc_class_normal;
11939 }
11940
11941 /* For RELA architectures, return the relocation value for a
11942 relocation against a local symbol. */
11943
11944 bfd_vma
11945 _bfd_elf_rela_local_sym (bfd *abfd,
11946 Elf_Internal_Sym *sym,
11947 asection **psec,
11948 Elf_Internal_Rela *rel)
11949 {
11950 asection *sec = *psec;
11951 bfd_vma relocation;
11952
11953 relocation = (sec->output_section->vma
11954 + sec->output_offset
11955 + sym->st_value);
11956 if ((sec->flags & SEC_MERGE)
11957 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
11958 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
11959 {
11960 rel->r_addend =
11961 _bfd_merged_section_offset (abfd, psec,
11962 elf_section_data (sec)->sec_info,
11963 sym->st_value + rel->r_addend);
11964 if (sec != *psec)
11965 {
11966 /* If we have changed the section, and our original section is
11967 marked with SEC_EXCLUDE, it means that the original
11968 SEC_MERGE section has been completely subsumed in some
11969 other SEC_MERGE section. In this case, we need to leave
11970 some info around for --emit-relocs. */
11971 if ((sec->flags & SEC_EXCLUDE) != 0)
11972 sec->kept_section = *psec;
11973 sec = *psec;
11974 }
11975 rel->r_addend -= relocation;
11976 rel->r_addend += sec->output_section->vma + sec->output_offset;
11977 }
11978 return relocation;
11979 }
11980
11981 bfd_vma
11982 _bfd_elf_rel_local_sym (bfd *abfd,
11983 Elf_Internal_Sym *sym,
11984 asection **psec,
11985 bfd_vma addend)
11986 {
11987 asection *sec = *psec;
11988
11989 if (sec->sec_info_type != SEC_INFO_TYPE_MERGE)
11990 return sym->st_value + addend;
11991
11992 return _bfd_merged_section_offset (abfd, psec,
11993 elf_section_data (sec)->sec_info,
11994 sym->st_value + addend);
11995 }
11996
11997 /* Adjust an address within a section. Given OFFSET within SEC, return
11998 the new offset within the section, based upon changes made to the
11999 section. Returns -1 if the offset is now invalid.
12000 The offset (in abnd out) is in target sized bytes, however big a
12001 byte may be. */
12002
12003 bfd_vma
12004 _bfd_elf_section_offset (bfd *abfd,
12005 struct bfd_link_info *info,
12006 asection *sec,
12007 bfd_vma offset)
12008 {
12009 switch (sec->sec_info_type)
12010 {
12011 case SEC_INFO_TYPE_STABS:
12012 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
12013 offset);
12014 case SEC_INFO_TYPE_EH_FRAME:
12015 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
12016
12017 default:
12018 if ((sec->flags & SEC_ELF_REVERSE_COPY) != 0)
12019 {
12020 /* Reverse the offset. */
12021 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12022 bfd_size_type address_size = bed->s->arch_size / 8;
12023
12024 /* address_size and sec->size are in octets. Convert
12025 to bytes before subtracting the original offset. */
12026 offset = (sec->size - address_size) / bfd_octets_per_byte (abfd) - offset;
12027 }
12028 return offset;
12029 }
12030 }
12031 \f
12032 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
12033 reconstruct an ELF file by reading the segments out of remote memory
12034 based on the ELF file header at EHDR_VMA and the ELF program headers it
12035 points to. If not null, *LOADBASEP is filled in with the difference
12036 between the VMAs from which the segments were read, and the VMAs the
12037 file headers (and hence BFD's idea of each section's VMA) put them at.
12038
12039 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
12040 remote memory at target address VMA into the local buffer at MYADDR; it
12041 should return zero on success or an `errno' code on failure. TEMPL must
12042 be a BFD for an ELF target with the word size and byte order found in
12043 the remote memory. */
12044
12045 bfd *
12046 bfd_elf_bfd_from_remote_memory
12047 (bfd *templ,
12048 bfd_vma ehdr_vma,
12049 bfd_size_type size,
12050 bfd_vma *loadbasep,
12051 int (*target_read_memory) (bfd_vma, bfd_byte *, bfd_size_type))
12052 {
12053 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
12054 (templ, ehdr_vma, size, loadbasep, target_read_memory);
12055 }
12056 \f
12057 long
12058 _bfd_elf_get_synthetic_symtab (bfd *abfd,
12059 long symcount ATTRIBUTE_UNUSED,
12060 asymbol **syms ATTRIBUTE_UNUSED,
12061 long dynsymcount,
12062 asymbol **dynsyms,
12063 asymbol **ret)
12064 {
12065 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12066 asection *relplt;
12067 asymbol *s;
12068 const char *relplt_name;
12069 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
12070 arelent *p;
12071 long count, i, n;
12072 size_t size;
12073 Elf_Internal_Shdr *hdr;
12074 char *names;
12075 asection *plt;
12076
12077 *ret = NULL;
12078
12079 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
12080 return 0;
12081
12082 if (dynsymcount <= 0)
12083 return 0;
12084
12085 if (!bed->plt_sym_val)
12086 return 0;
12087
12088 relplt_name = bed->relplt_name;
12089 if (relplt_name == NULL)
12090 relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt";
12091 relplt = bfd_get_section_by_name (abfd, relplt_name);
12092 if (relplt == NULL)
12093 return 0;
12094
12095 hdr = &elf_section_data (relplt)->this_hdr;
12096 if (hdr->sh_link != elf_dynsymtab (abfd)
12097 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
12098 return 0;
12099
12100 plt = bfd_get_section_by_name (abfd, ".plt");
12101 if (plt == NULL)
12102 return 0;
12103
12104 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
12105 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
12106 return -1;
12107
12108 count = relplt->size / hdr->sh_entsize;
12109 size = count * sizeof (asymbol);
12110 p = relplt->relocation;
12111 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
12112 {
12113 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
12114 if (p->addend != 0)
12115 {
12116 #ifdef BFD64
12117 size += sizeof ("+0x") - 1 + 8 + 8 * (bed->s->elfclass == ELFCLASS64);
12118 #else
12119 size += sizeof ("+0x") - 1 + 8;
12120 #endif
12121 }
12122 }
12123
12124 s = *ret = (asymbol *) bfd_malloc (size);
12125 if (s == NULL)
12126 return -1;
12127
12128 names = (char *) (s + count);
12129 p = relplt->relocation;
12130 n = 0;
12131 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
12132 {
12133 size_t len;
12134 bfd_vma addr;
12135
12136 addr = bed->plt_sym_val (i, plt, p);
12137 if (addr == (bfd_vma) -1)
12138 continue;
12139
12140 *s = **p->sym_ptr_ptr;
12141 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
12142 we are defining a symbol, ensure one of them is set. */
12143 if ((s->flags & BSF_LOCAL) == 0)
12144 s->flags |= BSF_GLOBAL;
12145 s->flags |= BSF_SYNTHETIC;
12146 s->section = plt;
12147 s->value = addr - plt->vma;
12148 s->name = names;
12149 s->udata.p = NULL;
12150 len = strlen ((*p->sym_ptr_ptr)->name);
12151 memcpy (names, (*p->sym_ptr_ptr)->name, len);
12152 names += len;
12153 if (p->addend != 0)
12154 {
12155 char buf[30], *a;
12156
12157 memcpy (names, "+0x", sizeof ("+0x") - 1);
12158 names += sizeof ("+0x") - 1;
12159 bfd_sprintf_vma (abfd, buf, p->addend);
12160 for (a = buf; *a == '0'; ++a)
12161 ;
12162 len = strlen (a);
12163 memcpy (names, a, len);
12164 names += len;
12165 }
12166 memcpy (names, "@plt", sizeof ("@plt"));
12167 names += sizeof ("@plt");
12168 ++s, ++n;
12169 }
12170
12171 return n;
12172 }
12173
12174 /* It is only used by x86-64 so far.
12175 ??? This repeats *COM* id of zero. sec->id is supposed to be unique,
12176 but current usage would allow all of _bfd_std_section to be zero. */
12177 static const asymbol lcomm_sym
12178 = GLOBAL_SYM_INIT ("LARGE_COMMON", &_bfd_elf_large_com_section);
12179 asection _bfd_elf_large_com_section
12180 = BFD_FAKE_SECTION (_bfd_elf_large_com_section, &lcomm_sym,
12181 "LARGE_COMMON", 0, SEC_IS_COMMON);
12182
12183 void
12184 _bfd_elf_post_process_headers (bfd *abfd ATTRIBUTE_UNUSED,
12185 struct bfd_link_info *info ATTRIBUTE_UNUSED)
12186 {
12187 }
12188
12189 bfd_boolean
12190 _bfd_elf_final_write_processing (bfd *abfd)
12191 {
12192 Elf_Internal_Ehdr *i_ehdrp; /* ELF file header, internal form. */
12193
12194 i_ehdrp = elf_elfheader (abfd);
12195
12196 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE)
12197 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
12198
12199 /* Set the osabi field to ELFOSABI_GNU if the binary contains
12200 SHF_GNU_MBIND sections or symbols of STT_GNU_IFUNC type or
12201 STB_GNU_UNIQUE binding. */
12202 if (elf_tdata (abfd)->has_gnu_osabi != 0)
12203 {
12204 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE)
12205 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_GNU;
12206 else if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_GNU
12207 && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_FREEBSD)
12208 {
12209 if (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_mbind)
12210 _bfd_error_handler (_("GNU_MBIND section is unsupported"));
12211 if (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_ifunc)
12212 _bfd_error_handler (_("symbol type STT_GNU_IFUNC is unsupported"));
12213 if (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_unique)
12214 _bfd_error_handler (_("symbol binding STB_GNU_UNIQUE is unsupported"));
12215 bfd_set_error (bfd_error_bad_value);
12216 return FALSE;
12217 }
12218 }
12219 return TRUE;
12220 }
12221
12222
12223 /* Return TRUE for ELF symbol types that represent functions.
12224 This is the default version of this function, which is sufficient for
12225 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */
12226
12227 bfd_boolean
12228 _bfd_elf_is_function_type (unsigned int type)
12229 {
12230 return (type == STT_FUNC
12231 || type == STT_GNU_IFUNC);
12232 }
12233
12234 /* If the ELF symbol SYM might be a function in SEC, return the
12235 function size and set *CODE_OFF to the function's entry point,
12236 otherwise return zero. */
12237
12238 bfd_size_type
12239 _bfd_elf_maybe_function_sym (const asymbol *sym, asection *sec,
12240 bfd_vma *code_off)
12241 {
12242 bfd_size_type size;
12243
12244 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
12245 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0
12246 || sym->section != sec)
12247 return 0;
12248
12249 *code_off = sym->value;
12250 size = 0;
12251 if (!(sym->flags & BSF_SYNTHETIC))
12252 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
12253 if (size == 0)
12254 size = 1;
12255 return size;
12256 }