34529090f5eb4dff7a24b7a5b1a3a62dd258f3b6
[binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21
22 /* SECTION
23
24 ELF backends
25
26 BFD support for ELF formats is being worked on.
27 Currently, the best supported back ends are for sparc and i386
28 (running svr4 or Solaris 2).
29
30 Documentation of the internals of the support code still needs
31 to be written. The code is changing quickly enough that we
32 haven't bothered yet. */
33
34 /* For sparc64-cross-sparc32. */
35 #define _SYSCALL32
36 #include "bfd.h"
37 #include "sysdep.h"
38 #include "bfdlink.h"
39 #include "libbfd.h"
40 #define ARCH_SIZE 0
41 #include "elf-bfd.h"
42 #include "libiberty.h"
43
44 static int elf_sort_sections (const void *, const void *);
45 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
46 static bfd_boolean prep_headers (bfd *);
47 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
48 static bfd_boolean elfcore_read_notes (bfd *, file_ptr, bfd_size_type) ;
49
50 /* Swap version information in and out. The version information is
51 currently size independent. If that ever changes, this code will
52 need to move into elfcode.h. */
53
54 /* Swap in a Verdef structure. */
55
56 void
57 _bfd_elf_swap_verdef_in (bfd *abfd,
58 const Elf_External_Verdef *src,
59 Elf_Internal_Verdef *dst)
60 {
61 dst->vd_version = H_GET_16 (abfd, src->vd_version);
62 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
63 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
64 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
65 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
66 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
67 dst->vd_next = H_GET_32 (abfd, src->vd_next);
68 }
69
70 /* Swap out a Verdef structure. */
71
72 void
73 _bfd_elf_swap_verdef_out (bfd *abfd,
74 const Elf_Internal_Verdef *src,
75 Elf_External_Verdef *dst)
76 {
77 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
78 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
79 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
80 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
81 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
82 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
83 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
84 }
85
86 /* Swap in a Verdaux structure. */
87
88 void
89 _bfd_elf_swap_verdaux_in (bfd *abfd,
90 const Elf_External_Verdaux *src,
91 Elf_Internal_Verdaux *dst)
92 {
93 dst->vda_name = H_GET_32 (abfd, src->vda_name);
94 dst->vda_next = H_GET_32 (abfd, src->vda_next);
95 }
96
97 /* Swap out a Verdaux structure. */
98
99 void
100 _bfd_elf_swap_verdaux_out (bfd *abfd,
101 const Elf_Internal_Verdaux *src,
102 Elf_External_Verdaux *dst)
103 {
104 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
105 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
106 }
107
108 /* Swap in a Verneed structure. */
109
110 void
111 _bfd_elf_swap_verneed_in (bfd *abfd,
112 const Elf_External_Verneed *src,
113 Elf_Internal_Verneed *dst)
114 {
115 dst->vn_version = H_GET_16 (abfd, src->vn_version);
116 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
117 dst->vn_file = H_GET_32 (abfd, src->vn_file);
118 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
119 dst->vn_next = H_GET_32 (abfd, src->vn_next);
120 }
121
122 /* Swap out a Verneed structure. */
123
124 void
125 _bfd_elf_swap_verneed_out (bfd *abfd,
126 const Elf_Internal_Verneed *src,
127 Elf_External_Verneed *dst)
128 {
129 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
130 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
131 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
132 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
133 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
134 }
135
136 /* Swap in a Vernaux structure. */
137
138 void
139 _bfd_elf_swap_vernaux_in (bfd *abfd,
140 const Elf_External_Vernaux *src,
141 Elf_Internal_Vernaux *dst)
142 {
143 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
144 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
145 dst->vna_other = H_GET_16 (abfd, src->vna_other);
146 dst->vna_name = H_GET_32 (abfd, src->vna_name);
147 dst->vna_next = H_GET_32 (abfd, src->vna_next);
148 }
149
150 /* Swap out a Vernaux structure. */
151
152 void
153 _bfd_elf_swap_vernaux_out (bfd *abfd,
154 const Elf_Internal_Vernaux *src,
155 Elf_External_Vernaux *dst)
156 {
157 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
158 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
159 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
160 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
161 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
162 }
163
164 /* Swap in a Versym structure. */
165
166 void
167 _bfd_elf_swap_versym_in (bfd *abfd,
168 const Elf_External_Versym *src,
169 Elf_Internal_Versym *dst)
170 {
171 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
172 }
173
174 /* Swap out a Versym structure. */
175
176 void
177 _bfd_elf_swap_versym_out (bfd *abfd,
178 const Elf_Internal_Versym *src,
179 Elf_External_Versym *dst)
180 {
181 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
182 }
183
184 /* Standard ELF hash function. Do not change this function; you will
185 cause invalid hash tables to be generated. */
186
187 unsigned long
188 bfd_elf_hash (const char *namearg)
189 {
190 const unsigned char *name = (const unsigned char *) namearg;
191 unsigned long h = 0;
192 unsigned long g;
193 int ch;
194
195 while ((ch = *name++) != '\0')
196 {
197 h = (h << 4) + ch;
198 if ((g = (h & 0xf0000000)) != 0)
199 {
200 h ^= g >> 24;
201 /* The ELF ABI says `h &= ~g', but this is equivalent in
202 this case and on some machines one insn instead of two. */
203 h ^= g;
204 }
205 }
206 return h & 0xffffffff;
207 }
208
209 /* Read a specified number of bytes at a specified offset in an ELF
210 file, into a newly allocated buffer, and return a pointer to the
211 buffer. */
212
213 static bfd_byte *
214 elf_read (bfd *abfd, file_ptr offset, bfd_size_type size)
215 {
216 bfd_byte *buf;
217
218 if ((buf = bfd_alloc (abfd, size)) == NULL)
219 return NULL;
220 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
221 return NULL;
222 if (bfd_bread (buf, size, abfd) != size)
223 {
224 if (bfd_get_error () != bfd_error_system_call)
225 bfd_set_error (bfd_error_file_truncated);
226 return NULL;
227 }
228 return buf;
229 }
230
231 bfd_boolean
232 bfd_elf_mkobject (bfd *abfd)
233 {
234 /* This just does initialization. */
235 /* coff_mkobject zalloc's space for tdata.coff_obj_data ... */
236 elf_tdata (abfd) = bfd_zalloc (abfd, sizeof (struct elf_obj_tdata));
237 if (elf_tdata (abfd) == 0)
238 return FALSE;
239 /* Since everything is done at close time, do we need any
240 initialization? */
241
242 return TRUE;
243 }
244
245 bfd_boolean
246 bfd_elf_mkcorefile (bfd *abfd)
247 {
248 /* I think this can be done just like an object file. */
249 return bfd_elf_mkobject (abfd);
250 }
251
252 char *
253 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
254 {
255 Elf_Internal_Shdr **i_shdrp;
256 bfd_byte *shstrtab = NULL;
257 file_ptr offset;
258 bfd_size_type shstrtabsize;
259
260 i_shdrp = elf_elfsections (abfd);
261 if (i_shdrp == 0 || i_shdrp[shindex] == 0)
262 return NULL;
263
264 shstrtab = i_shdrp[shindex]->contents;
265 if (shstrtab == NULL)
266 {
267 /* No cached one, attempt to read, and cache what we read. */
268 offset = i_shdrp[shindex]->sh_offset;
269 shstrtabsize = i_shdrp[shindex]->sh_size;
270 shstrtab = elf_read (abfd, offset, shstrtabsize);
271 i_shdrp[shindex]->contents = shstrtab;
272 }
273 return (char *) shstrtab;
274 }
275
276 char *
277 bfd_elf_string_from_elf_section (bfd *abfd,
278 unsigned int shindex,
279 unsigned int strindex)
280 {
281 Elf_Internal_Shdr *hdr;
282
283 if (strindex == 0)
284 return "";
285
286 hdr = elf_elfsections (abfd)[shindex];
287
288 if (hdr->contents == NULL
289 && bfd_elf_get_str_section (abfd, shindex) == NULL)
290 return NULL;
291
292 if (strindex >= hdr->sh_size)
293 {
294 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
295 (*_bfd_error_handler)
296 (_("%B: invalid string offset %u >= %lu for section `%s'"),
297 abfd, strindex, (unsigned long) hdr->sh_size,
298 (shindex == shstrndx && strindex == hdr->sh_name
299 ? ".shstrtab"
300 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
301 return "";
302 }
303
304 return ((char *) hdr->contents) + strindex;
305 }
306
307 /* Read and convert symbols to internal format.
308 SYMCOUNT specifies the number of symbols to read, starting from
309 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
310 are non-NULL, they are used to store the internal symbols, external
311 symbols, and symbol section index extensions, respectively. */
312
313 Elf_Internal_Sym *
314 bfd_elf_get_elf_syms (bfd *ibfd,
315 Elf_Internal_Shdr *symtab_hdr,
316 size_t symcount,
317 size_t symoffset,
318 Elf_Internal_Sym *intsym_buf,
319 void *extsym_buf,
320 Elf_External_Sym_Shndx *extshndx_buf)
321 {
322 Elf_Internal_Shdr *shndx_hdr;
323 void *alloc_ext;
324 const bfd_byte *esym;
325 Elf_External_Sym_Shndx *alloc_extshndx;
326 Elf_External_Sym_Shndx *shndx;
327 Elf_Internal_Sym *isym;
328 Elf_Internal_Sym *isymend;
329 const struct elf_backend_data *bed;
330 size_t extsym_size;
331 bfd_size_type amt;
332 file_ptr pos;
333
334 if (symcount == 0)
335 return intsym_buf;
336
337 /* Normal syms might have section extension entries. */
338 shndx_hdr = NULL;
339 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
340 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
341
342 /* Read the symbols. */
343 alloc_ext = NULL;
344 alloc_extshndx = NULL;
345 bed = get_elf_backend_data (ibfd);
346 extsym_size = bed->s->sizeof_sym;
347 amt = symcount * extsym_size;
348 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
349 if (extsym_buf == NULL)
350 {
351 alloc_ext = bfd_malloc (amt);
352 extsym_buf = alloc_ext;
353 }
354 if (extsym_buf == NULL
355 || bfd_seek (ibfd, pos, SEEK_SET) != 0
356 || bfd_bread (extsym_buf, amt, ibfd) != amt)
357 {
358 intsym_buf = NULL;
359 goto out;
360 }
361
362 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
363 extshndx_buf = NULL;
364 else
365 {
366 amt = symcount * sizeof (Elf_External_Sym_Shndx);
367 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
368 if (extshndx_buf == NULL)
369 {
370 alloc_extshndx = bfd_malloc (amt);
371 extshndx_buf = alloc_extshndx;
372 }
373 if (extshndx_buf == NULL
374 || bfd_seek (ibfd, pos, SEEK_SET) != 0
375 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
376 {
377 intsym_buf = NULL;
378 goto out;
379 }
380 }
381
382 if (intsym_buf == NULL)
383 {
384 bfd_size_type amt = symcount * sizeof (Elf_Internal_Sym);
385 intsym_buf = bfd_malloc (amt);
386 if (intsym_buf == NULL)
387 goto out;
388 }
389
390 /* Convert the symbols to internal form. */
391 isymend = intsym_buf + symcount;
392 for (esym = extsym_buf, isym = intsym_buf, shndx = extshndx_buf;
393 isym < isymend;
394 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
395 (*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym);
396
397 out:
398 if (alloc_ext != NULL)
399 free (alloc_ext);
400 if (alloc_extshndx != NULL)
401 free (alloc_extshndx);
402
403 return intsym_buf;
404 }
405
406 /* Look up a symbol name. */
407 const char *
408 bfd_elf_sym_name (bfd *abfd,
409 Elf_Internal_Shdr *symtab_hdr,
410 Elf_Internal_Sym *isym)
411 {
412 unsigned int iname = isym->st_name;
413 unsigned int shindex = symtab_hdr->sh_link;
414 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
415 /* Check for a bogus st_shndx to avoid crashing. */
416 && isym->st_shndx < elf_numsections (abfd)
417 && !(isym->st_shndx >= SHN_LORESERVE && isym->st_shndx <= SHN_HIRESERVE))
418 {
419 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
420 shindex = elf_elfheader (abfd)->e_shstrndx;
421 }
422
423 return bfd_elf_string_from_elf_section (abfd, shindex, iname);
424 }
425
426 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
427 sections. The first element is the flags, the rest are section
428 pointers. */
429
430 typedef union elf_internal_group {
431 Elf_Internal_Shdr *shdr;
432 unsigned int flags;
433 } Elf_Internal_Group;
434
435 /* Return the name of the group signature symbol. Why isn't the
436 signature just a string? */
437
438 static const char *
439 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
440 {
441 Elf_Internal_Shdr *hdr;
442 unsigned char esym[sizeof (Elf64_External_Sym)];
443 Elf_External_Sym_Shndx eshndx;
444 Elf_Internal_Sym isym;
445
446 /* First we need to ensure the symbol table is available. */
447 if (! bfd_section_from_shdr (abfd, ghdr->sh_link))
448 return NULL;
449
450 /* Go read the symbol. */
451 hdr = &elf_tdata (abfd)->symtab_hdr;
452 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
453 &isym, esym, &eshndx) == NULL)
454 return NULL;
455
456 return bfd_elf_sym_name (abfd, hdr, &isym);
457 }
458
459 /* Set next_in_group list pointer, and group name for NEWSECT. */
460
461 static bfd_boolean
462 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
463 {
464 unsigned int num_group = elf_tdata (abfd)->num_group;
465
466 /* If num_group is zero, read in all SHT_GROUP sections. The count
467 is set to -1 if there are no SHT_GROUP sections. */
468 if (num_group == 0)
469 {
470 unsigned int i, shnum;
471
472 /* First count the number of groups. If we have a SHT_GROUP
473 section with just a flag word (ie. sh_size is 4), ignore it. */
474 shnum = elf_numsections (abfd);
475 num_group = 0;
476 for (i = 0; i < shnum; i++)
477 {
478 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
479 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
480 num_group += 1;
481 }
482
483 if (num_group == 0)
484 num_group = (unsigned) -1;
485 elf_tdata (abfd)->num_group = num_group;
486
487 if (num_group > 0)
488 {
489 /* We keep a list of elf section headers for group sections,
490 so we can find them quickly. */
491 bfd_size_type amt = num_group * sizeof (Elf_Internal_Shdr *);
492 elf_tdata (abfd)->group_sect_ptr = bfd_alloc (abfd, amt);
493 if (elf_tdata (abfd)->group_sect_ptr == NULL)
494 return FALSE;
495
496 num_group = 0;
497 for (i = 0; i < shnum; i++)
498 {
499 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
500 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
501 {
502 unsigned char *src;
503 Elf_Internal_Group *dest;
504
505 /* Add to list of sections. */
506 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
507 num_group += 1;
508
509 /* Read the raw contents. */
510 BFD_ASSERT (sizeof (*dest) >= 4);
511 amt = shdr->sh_size * sizeof (*dest) / 4;
512 shdr->contents = bfd_alloc (abfd, amt);
513 if (shdr->contents == NULL
514 || bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
515 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
516 != shdr->sh_size))
517 return FALSE;
518
519 /* Translate raw contents, a flag word followed by an
520 array of elf section indices all in target byte order,
521 to the flag word followed by an array of elf section
522 pointers. */
523 src = shdr->contents + shdr->sh_size;
524 dest = (Elf_Internal_Group *) (shdr->contents + amt);
525 while (1)
526 {
527 unsigned int idx;
528
529 src -= 4;
530 --dest;
531 idx = H_GET_32 (abfd, src);
532 if (src == shdr->contents)
533 {
534 dest->flags = idx;
535 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
536 shdr->bfd_section->flags
537 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
538 break;
539 }
540 if (idx >= shnum)
541 {
542 ((*_bfd_error_handler)
543 (_("%B: invalid SHT_GROUP entry"), abfd));
544 idx = 0;
545 }
546 dest->shdr = elf_elfsections (abfd)[idx];
547 }
548 }
549 }
550 }
551 }
552
553 if (num_group != (unsigned) -1)
554 {
555 unsigned int i;
556
557 for (i = 0; i < num_group; i++)
558 {
559 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
560 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
561 unsigned int n_elt = shdr->sh_size / 4;
562
563 /* Look through this group's sections to see if current
564 section is a member. */
565 while (--n_elt != 0)
566 if ((++idx)->shdr == hdr)
567 {
568 asection *s = NULL;
569
570 /* We are a member of this group. Go looking through
571 other members to see if any others are linked via
572 next_in_group. */
573 idx = (Elf_Internal_Group *) shdr->contents;
574 n_elt = shdr->sh_size / 4;
575 while (--n_elt != 0)
576 if ((s = (++idx)->shdr->bfd_section) != NULL
577 && elf_next_in_group (s) != NULL)
578 break;
579 if (n_elt != 0)
580 {
581 /* Snarf the group name from other member, and
582 insert current section in circular list. */
583 elf_group_name (newsect) = elf_group_name (s);
584 elf_next_in_group (newsect) = elf_next_in_group (s);
585 elf_next_in_group (s) = newsect;
586 }
587 else
588 {
589 const char *gname;
590
591 gname = group_signature (abfd, shdr);
592 if (gname == NULL)
593 return FALSE;
594 elf_group_name (newsect) = gname;
595
596 /* Start a circular list with one element. */
597 elf_next_in_group (newsect) = newsect;
598 }
599
600 /* If the group section has been created, point to the
601 new member. */
602 if (shdr->bfd_section != NULL)
603 elf_next_in_group (shdr->bfd_section) = newsect;
604
605 i = num_group - 1;
606 break;
607 }
608 }
609 }
610
611 if (elf_group_name (newsect) == NULL)
612 {
613 (*_bfd_error_handler) (_("%B: no group info for section %A"),
614 abfd, newsect);
615 }
616 return TRUE;
617 }
618
619 bfd_boolean
620 _bfd_elf_setup_group_pointers (bfd *abfd)
621 {
622 unsigned int i;
623 unsigned int num_group = elf_tdata (abfd)->num_group;
624 bfd_boolean result = TRUE;
625
626 if (num_group == (unsigned) -1)
627 return result;
628
629 for (i = 0; i < num_group; i++)
630 {
631 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
632 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
633 unsigned int n_elt = shdr->sh_size / 4;
634
635 while (--n_elt != 0)
636 if ((++idx)->shdr->bfd_section)
637 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
638 else if (idx->shdr->sh_type == SHT_RELA
639 || idx->shdr->sh_type == SHT_REL)
640 /* We won't include relocation sections in section groups in
641 output object files. We adjust the group section size here
642 so that relocatable link will work correctly when
643 relocation sections are in section group in input object
644 files. */
645 shdr->bfd_section->size -= 4;
646 else
647 {
648 /* There are some unknown sections in the group. */
649 (*_bfd_error_handler)
650 (_("%B: unknown [%d] section `%s' in group [%s]"),
651 abfd,
652 (unsigned int) idx->shdr->sh_type,
653 bfd_elf_string_from_elf_section (abfd,
654 (elf_elfheader (abfd)
655 ->e_shstrndx),
656 idx->shdr->sh_name),
657 shdr->bfd_section->name);
658 result = FALSE;
659 }
660 }
661 return result;
662 }
663
664 bfd_boolean
665 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
666 {
667 return elf_next_in_group (sec) != NULL;
668 }
669
670 /* Make a BFD section from an ELF section. We store a pointer to the
671 BFD section in the bfd_section field of the header. */
672
673 bfd_boolean
674 _bfd_elf_make_section_from_shdr (bfd *abfd,
675 Elf_Internal_Shdr *hdr,
676 const char *name,
677 int shindex)
678 {
679 asection *newsect;
680 flagword flags;
681 const struct elf_backend_data *bed;
682
683 if (hdr->bfd_section != NULL)
684 {
685 BFD_ASSERT (strcmp (name,
686 bfd_get_section_name (abfd, hdr->bfd_section)) == 0);
687 return TRUE;
688 }
689
690 newsect = bfd_make_section_anyway (abfd, name);
691 if (newsect == NULL)
692 return FALSE;
693
694 hdr->bfd_section = newsect;
695 elf_section_data (newsect)->this_hdr = *hdr;
696 elf_section_data (newsect)->this_idx = shindex;
697
698 /* Always use the real type/flags. */
699 elf_section_type (newsect) = hdr->sh_type;
700 elf_section_flags (newsect) = hdr->sh_flags;
701
702 newsect->filepos = hdr->sh_offset;
703
704 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
705 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
706 || ! bfd_set_section_alignment (abfd, newsect,
707 bfd_log2 ((bfd_vma) hdr->sh_addralign)))
708 return FALSE;
709
710 flags = SEC_NO_FLAGS;
711 if (hdr->sh_type != SHT_NOBITS)
712 flags |= SEC_HAS_CONTENTS;
713 if (hdr->sh_type == SHT_GROUP)
714 flags |= SEC_GROUP | SEC_EXCLUDE;
715 if ((hdr->sh_flags & SHF_ALLOC) != 0)
716 {
717 flags |= SEC_ALLOC;
718 if (hdr->sh_type != SHT_NOBITS)
719 flags |= SEC_LOAD;
720 }
721 if ((hdr->sh_flags & SHF_WRITE) == 0)
722 flags |= SEC_READONLY;
723 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
724 flags |= SEC_CODE;
725 else if ((flags & SEC_LOAD) != 0)
726 flags |= SEC_DATA;
727 if ((hdr->sh_flags & SHF_MERGE) != 0)
728 {
729 flags |= SEC_MERGE;
730 newsect->entsize = hdr->sh_entsize;
731 if ((hdr->sh_flags & SHF_STRINGS) != 0)
732 flags |= SEC_STRINGS;
733 }
734 if (hdr->sh_flags & SHF_GROUP)
735 if (!setup_group (abfd, hdr, newsect))
736 return FALSE;
737 if ((hdr->sh_flags & SHF_TLS) != 0)
738 flags |= SEC_THREAD_LOCAL;
739
740 /* The debugging sections appear to be recognized only by name, not
741 any sort of flag. */
742 {
743 static const char *debug_sec_names [] =
744 {
745 ".debug",
746 ".gnu.linkonce.wi.",
747 ".line",
748 ".stab"
749 };
750 int i;
751
752 for (i = ARRAY_SIZE (debug_sec_names); i--;)
753 if (strncmp (name, debug_sec_names[i], strlen (debug_sec_names[i])) == 0)
754 break;
755
756 if (i >= 0)
757 flags |= SEC_DEBUGGING;
758 }
759
760 /* As a GNU extension, if the name begins with .gnu.linkonce, we
761 only link a single copy of the section. This is used to support
762 g++. g++ will emit each template expansion in its own section.
763 The symbols will be defined as weak, so that multiple definitions
764 are permitted. The GNU linker extension is to actually discard
765 all but one of the sections. */
766 if (strncmp (name, ".gnu.linkonce", sizeof ".gnu.linkonce" - 1) == 0
767 && elf_next_in_group (newsect) == NULL)
768 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
769
770 bed = get_elf_backend_data (abfd);
771 if (bed->elf_backend_section_flags)
772 if (! bed->elf_backend_section_flags (&flags, hdr))
773 return FALSE;
774
775 if (! bfd_set_section_flags (abfd, newsect, flags))
776 return FALSE;
777
778 if ((flags & SEC_ALLOC) != 0)
779 {
780 Elf_Internal_Phdr *phdr;
781 unsigned int i;
782
783 /* Look through the phdrs to see if we need to adjust the lma.
784 If all the p_paddr fields are zero, we ignore them, since
785 some ELF linkers produce such output. */
786 phdr = elf_tdata (abfd)->phdr;
787 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
788 {
789 if (phdr->p_paddr != 0)
790 break;
791 }
792 if (i < elf_elfheader (abfd)->e_phnum)
793 {
794 phdr = elf_tdata (abfd)->phdr;
795 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
796 {
797 /* This section is part of this segment if its file
798 offset plus size lies within the segment's memory
799 span and, if the section is loaded, the extent of the
800 loaded data lies within the extent of the segment.
801
802 Note - we used to check the p_paddr field as well, and
803 refuse to set the LMA if it was 0. This is wrong
804 though, as a perfectly valid initialised segment can
805 have a p_paddr of zero. Some architectures, eg ARM,
806 place special significance on the address 0 and
807 executables need to be able to have a segment which
808 covers this address. */
809 if (phdr->p_type == PT_LOAD
810 && (bfd_vma) hdr->sh_offset >= phdr->p_offset
811 && (hdr->sh_offset + hdr->sh_size
812 <= phdr->p_offset + phdr->p_memsz)
813 && ((flags & SEC_LOAD) == 0
814 || (hdr->sh_offset + hdr->sh_size
815 <= phdr->p_offset + phdr->p_filesz)))
816 {
817 if ((flags & SEC_LOAD) == 0)
818 newsect->lma = (phdr->p_paddr
819 + hdr->sh_addr - phdr->p_vaddr);
820 else
821 /* We used to use the same adjustment for SEC_LOAD
822 sections, but that doesn't work if the segment
823 is packed with code from multiple VMAs.
824 Instead we calculate the section LMA based on
825 the segment LMA. It is assumed that the
826 segment will contain sections with contiguous
827 LMAs, even if the VMAs are not. */
828 newsect->lma = (phdr->p_paddr
829 + hdr->sh_offset - phdr->p_offset);
830
831 /* With contiguous segments, we can't tell from file
832 offsets whether a section with zero size should
833 be placed at the end of one segment or the
834 beginning of the next. Decide based on vaddr. */
835 if (hdr->sh_addr >= phdr->p_vaddr
836 && (hdr->sh_addr + hdr->sh_size
837 <= phdr->p_vaddr + phdr->p_memsz))
838 break;
839 }
840 }
841 }
842 }
843
844 return TRUE;
845 }
846
847 /*
848 INTERNAL_FUNCTION
849 bfd_elf_find_section
850
851 SYNOPSIS
852 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
853
854 DESCRIPTION
855 Helper functions for GDB to locate the string tables.
856 Since BFD hides string tables from callers, GDB needs to use an
857 internal hook to find them. Sun's .stabstr, in particular,
858 isn't even pointed to by the .stab section, so ordinary
859 mechanisms wouldn't work to find it, even if we had some.
860 */
861
862 struct elf_internal_shdr *
863 bfd_elf_find_section (bfd *abfd, char *name)
864 {
865 Elf_Internal_Shdr **i_shdrp;
866 char *shstrtab;
867 unsigned int max;
868 unsigned int i;
869
870 i_shdrp = elf_elfsections (abfd);
871 if (i_shdrp != NULL)
872 {
873 shstrtab = bfd_elf_get_str_section (abfd,
874 elf_elfheader (abfd)->e_shstrndx);
875 if (shstrtab != NULL)
876 {
877 max = elf_numsections (abfd);
878 for (i = 1; i < max; i++)
879 if (!strcmp (&shstrtab[i_shdrp[i]->sh_name], name))
880 return i_shdrp[i];
881 }
882 }
883 return 0;
884 }
885
886 const char *const bfd_elf_section_type_names[] = {
887 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
888 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
889 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
890 };
891
892 /* ELF relocs are against symbols. If we are producing relocatable
893 output, and the reloc is against an external symbol, and nothing
894 has given us any additional addend, the resulting reloc will also
895 be against the same symbol. In such a case, we don't want to
896 change anything about the way the reloc is handled, since it will
897 all be done at final link time. Rather than put special case code
898 into bfd_perform_relocation, all the reloc types use this howto
899 function. It just short circuits the reloc if producing
900 relocatable output against an external symbol. */
901
902 bfd_reloc_status_type
903 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
904 arelent *reloc_entry,
905 asymbol *symbol,
906 void *data ATTRIBUTE_UNUSED,
907 asection *input_section,
908 bfd *output_bfd,
909 char **error_message ATTRIBUTE_UNUSED)
910 {
911 if (output_bfd != NULL
912 && (symbol->flags & BSF_SECTION_SYM) == 0
913 && (! reloc_entry->howto->partial_inplace
914 || reloc_entry->addend == 0))
915 {
916 reloc_entry->address += input_section->output_offset;
917 return bfd_reloc_ok;
918 }
919
920 return bfd_reloc_continue;
921 }
922 \f
923 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
924
925 static void
926 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
927 asection *sec)
928 {
929 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
930 sec->sec_info_type = ELF_INFO_TYPE_NONE;
931 }
932
933 /* Finish SHF_MERGE section merging. */
934
935 bfd_boolean
936 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
937 {
938 bfd *ibfd;
939 asection *sec;
940
941 if (!is_elf_hash_table (info->hash))
942 return FALSE;
943
944 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
945 if ((ibfd->flags & DYNAMIC) == 0)
946 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
947 if ((sec->flags & SEC_MERGE) != 0
948 && !bfd_is_abs_section (sec->output_section))
949 {
950 struct bfd_elf_section_data *secdata;
951
952 secdata = elf_section_data (sec);
953 if (! _bfd_add_merge_section (abfd,
954 &elf_hash_table (info)->merge_info,
955 sec, &secdata->sec_info))
956 return FALSE;
957 else if (secdata->sec_info)
958 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
959 }
960
961 if (elf_hash_table (info)->merge_info != NULL)
962 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
963 merge_sections_remove_hook);
964 return TRUE;
965 }
966
967 void
968 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
969 {
970 sec->output_section = bfd_abs_section_ptr;
971 sec->output_offset = sec->vma;
972 if (!is_elf_hash_table (info->hash))
973 return;
974
975 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
976 }
977 \f
978 /* Copy the program header and other data from one object module to
979 another. */
980
981 bfd_boolean
982 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
983 {
984 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
985 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
986 return TRUE;
987
988 BFD_ASSERT (!elf_flags_init (obfd)
989 || (elf_elfheader (obfd)->e_flags
990 == elf_elfheader (ibfd)->e_flags));
991
992 elf_gp (obfd) = elf_gp (ibfd);
993 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
994 elf_flags_init (obfd) = TRUE;
995 return TRUE;
996 }
997
998 /* Print out the program headers. */
999
1000 bfd_boolean
1001 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1002 {
1003 FILE *f = farg;
1004 Elf_Internal_Phdr *p;
1005 asection *s;
1006 bfd_byte *dynbuf = NULL;
1007
1008 p = elf_tdata (abfd)->phdr;
1009 if (p != NULL)
1010 {
1011 unsigned int i, c;
1012
1013 fprintf (f, _("\nProgram Header:\n"));
1014 c = elf_elfheader (abfd)->e_phnum;
1015 for (i = 0; i < c; i++, p++)
1016 {
1017 const char *pt;
1018 char buf[20];
1019
1020 switch (p->p_type)
1021 {
1022 case PT_NULL: pt = "NULL"; break;
1023 case PT_LOAD: pt = "LOAD"; break;
1024 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1025 case PT_INTERP: pt = "INTERP"; break;
1026 case PT_NOTE: pt = "NOTE"; break;
1027 case PT_SHLIB: pt = "SHLIB"; break;
1028 case PT_PHDR: pt = "PHDR"; break;
1029 case PT_TLS: pt = "TLS"; break;
1030 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1031 case PT_GNU_STACK: pt = "STACK"; break;
1032 case PT_GNU_RELRO: pt = "RELRO"; break;
1033 default: sprintf (buf, "0x%lx", p->p_type); pt = buf; break;
1034 }
1035 fprintf (f, "%8s off 0x", pt);
1036 bfd_fprintf_vma (abfd, f, p->p_offset);
1037 fprintf (f, " vaddr 0x");
1038 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1039 fprintf (f, " paddr 0x");
1040 bfd_fprintf_vma (abfd, f, p->p_paddr);
1041 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1042 fprintf (f, " filesz 0x");
1043 bfd_fprintf_vma (abfd, f, p->p_filesz);
1044 fprintf (f, " memsz 0x");
1045 bfd_fprintf_vma (abfd, f, p->p_memsz);
1046 fprintf (f, " flags %c%c%c",
1047 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1048 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1049 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1050 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1051 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1052 fprintf (f, "\n");
1053 }
1054 }
1055
1056 s = bfd_get_section_by_name (abfd, ".dynamic");
1057 if (s != NULL)
1058 {
1059 int elfsec;
1060 unsigned long shlink;
1061 bfd_byte *extdyn, *extdynend;
1062 size_t extdynsize;
1063 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1064
1065 fprintf (f, _("\nDynamic Section:\n"));
1066
1067 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1068 goto error_return;
1069
1070 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1071 if (elfsec == -1)
1072 goto error_return;
1073 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1074
1075 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1076 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1077
1078 extdyn = dynbuf;
1079 extdynend = extdyn + s->size;
1080 for (; extdyn < extdynend; extdyn += extdynsize)
1081 {
1082 Elf_Internal_Dyn dyn;
1083 const char *name;
1084 char ab[20];
1085 bfd_boolean stringp;
1086
1087 (*swap_dyn_in) (abfd, extdyn, &dyn);
1088
1089 if (dyn.d_tag == DT_NULL)
1090 break;
1091
1092 stringp = FALSE;
1093 switch (dyn.d_tag)
1094 {
1095 default:
1096 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1097 name = ab;
1098 break;
1099
1100 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1101 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1102 case DT_PLTGOT: name = "PLTGOT"; break;
1103 case DT_HASH: name = "HASH"; break;
1104 case DT_STRTAB: name = "STRTAB"; break;
1105 case DT_SYMTAB: name = "SYMTAB"; break;
1106 case DT_RELA: name = "RELA"; break;
1107 case DT_RELASZ: name = "RELASZ"; break;
1108 case DT_RELAENT: name = "RELAENT"; break;
1109 case DT_STRSZ: name = "STRSZ"; break;
1110 case DT_SYMENT: name = "SYMENT"; break;
1111 case DT_INIT: name = "INIT"; break;
1112 case DT_FINI: name = "FINI"; break;
1113 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1114 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1115 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1116 case DT_REL: name = "REL"; break;
1117 case DT_RELSZ: name = "RELSZ"; break;
1118 case DT_RELENT: name = "RELENT"; break;
1119 case DT_PLTREL: name = "PLTREL"; break;
1120 case DT_DEBUG: name = "DEBUG"; break;
1121 case DT_TEXTREL: name = "TEXTREL"; break;
1122 case DT_JMPREL: name = "JMPREL"; break;
1123 case DT_BIND_NOW: name = "BIND_NOW"; break;
1124 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1125 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1126 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1127 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1128 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1129 case DT_FLAGS: name = "FLAGS"; break;
1130 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1131 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1132 case DT_CHECKSUM: name = "CHECKSUM"; break;
1133 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1134 case DT_MOVEENT: name = "MOVEENT"; break;
1135 case DT_MOVESZ: name = "MOVESZ"; break;
1136 case DT_FEATURE: name = "FEATURE"; break;
1137 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1138 case DT_SYMINSZ: name = "SYMINSZ"; break;
1139 case DT_SYMINENT: name = "SYMINENT"; break;
1140 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1141 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1142 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1143 case DT_PLTPAD: name = "PLTPAD"; break;
1144 case DT_MOVETAB: name = "MOVETAB"; break;
1145 case DT_SYMINFO: name = "SYMINFO"; break;
1146 case DT_RELACOUNT: name = "RELACOUNT"; break;
1147 case DT_RELCOUNT: name = "RELCOUNT"; break;
1148 case DT_FLAGS_1: name = "FLAGS_1"; break;
1149 case DT_VERSYM: name = "VERSYM"; break;
1150 case DT_VERDEF: name = "VERDEF"; break;
1151 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1152 case DT_VERNEED: name = "VERNEED"; break;
1153 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1154 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1155 case DT_USED: name = "USED"; break;
1156 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1157 }
1158
1159 fprintf (f, " %-11s ", name);
1160 if (! stringp)
1161 fprintf (f, "0x%lx", (unsigned long) dyn.d_un.d_val);
1162 else
1163 {
1164 const char *string;
1165 unsigned int tagv = dyn.d_un.d_val;
1166
1167 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1168 if (string == NULL)
1169 goto error_return;
1170 fprintf (f, "%s", string);
1171 }
1172 fprintf (f, "\n");
1173 }
1174
1175 free (dynbuf);
1176 dynbuf = NULL;
1177 }
1178
1179 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1180 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1181 {
1182 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1183 return FALSE;
1184 }
1185
1186 if (elf_dynverdef (abfd) != 0)
1187 {
1188 Elf_Internal_Verdef *t;
1189
1190 fprintf (f, _("\nVersion definitions:\n"));
1191 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1192 {
1193 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1194 t->vd_flags, t->vd_hash, t->vd_nodename);
1195 if (t->vd_auxptr->vda_nextptr != NULL)
1196 {
1197 Elf_Internal_Verdaux *a;
1198
1199 fprintf (f, "\t");
1200 for (a = t->vd_auxptr->vda_nextptr;
1201 a != NULL;
1202 a = a->vda_nextptr)
1203 fprintf (f, "%s ", a->vda_nodename);
1204 fprintf (f, "\n");
1205 }
1206 }
1207 }
1208
1209 if (elf_dynverref (abfd) != 0)
1210 {
1211 Elf_Internal_Verneed *t;
1212
1213 fprintf (f, _("\nVersion References:\n"));
1214 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1215 {
1216 Elf_Internal_Vernaux *a;
1217
1218 fprintf (f, _(" required from %s:\n"), t->vn_filename);
1219 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1220 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1221 a->vna_flags, a->vna_other, a->vna_nodename);
1222 }
1223 }
1224
1225 return TRUE;
1226
1227 error_return:
1228 if (dynbuf != NULL)
1229 free (dynbuf);
1230 return FALSE;
1231 }
1232
1233 /* Display ELF-specific fields of a symbol. */
1234
1235 void
1236 bfd_elf_print_symbol (bfd *abfd,
1237 void *filep,
1238 asymbol *symbol,
1239 bfd_print_symbol_type how)
1240 {
1241 FILE *file = filep;
1242 switch (how)
1243 {
1244 case bfd_print_symbol_name:
1245 fprintf (file, "%s", symbol->name);
1246 break;
1247 case bfd_print_symbol_more:
1248 fprintf (file, "elf ");
1249 bfd_fprintf_vma (abfd, file, symbol->value);
1250 fprintf (file, " %lx", (long) symbol->flags);
1251 break;
1252 case bfd_print_symbol_all:
1253 {
1254 const char *section_name;
1255 const char *name = NULL;
1256 const struct elf_backend_data *bed;
1257 unsigned char st_other;
1258 bfd_vma val;
1259
1260 section_name = symbol->section ? symbol->section->name : "(*none*)";
1261
1262 bed = get_elf_backend_data (abfd);
1263 if (bed->elf_backend_print_symbol_all)
1264 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1265
1266 if (name == NULL)
1267 {
1268 name = symbol->name;
1269 bfd_print_symbol_vandf (abfd, file, symbol);
1270 }
1271
1272 fprintf (file, " %s\t", section_name);
1273 /* Print the "other" value for a symbol. For common symbols,
1274 we've already printed the size; now print the alignment.
1275 For other symbols, we have no specified alignment, and
1276 we've printed the address; now print the size. */
1277 if (bfd_is_com_section (symbol->section))
1278 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1279 else
1280 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1281 bfd_fprintf_vma (abfd, file, val);
1282
1283 /* If we have version information, print it. */
1284 if (elf_tdata (abfd)->dynversym_section != 0
1285 && (elf_tdata (abfd)->dynverdef_section != 0
1286 || elf_tdata (abfd)->dynverref_section != 0))
1287 {
1288 unsigned int vernum;
1289 const char *version_string;
1290
1291 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1292
1293 if (vernum == 0)
1294 version_string = "";
1295 else if (vernum == 1)
1296 version_string = "Base";
1297 else if (vernum <= elf_tdata (abfd)->cverdefs)
1298 version_string =
1299 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1300 else
1301 {
1302 Elf_Internal_Verneed *t;
1303
1304 version_string = "";
1305 for (t = elf_tdata (abfd)->verref;
1306 t != NULL;
1307 t = t->vn_nextref)
1308 {
1309 Elf_Internal_Vernaux *a;
1310
1311 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1312 {
1313 if (a->vna_other == vernum)
1314 {
1315 version_string = a->vna_nodename;
1316 break;
1317 }
1318 }
1319 }
1320 }
1321
1322 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1323 fprintf (file, " %-11s", version_string);
1324 else
1325 {
1326 int i;
1327
1328 fprintf (file, " (%s)", version_string);
1329 for (i = 10 - strlen (version_string); i > 0; --i)
1330 putc (' ', file);
1331 }
1332 }
1333
1334 /* If the st_other field is not zero, print it. */
1335 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1336
1337 switch (st_other)
1338 {
1339 case 0: break;
1340 case STV_INTERNAL: fprintf (file, " .internal"); break;
1341 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1342 case STV_PROTECTED: fprintf (file, " .protected"); break;
1343 default:
1344 /* Some other non-defined flags are also present, so print
1345 everything hex. */
1346 fprintf (file, " 0x%02x", (unsigned int) st_other);
1347 }
1348
1349 fprintf (file, " %s", name);
1350 }
1351 break;
1352 }
1353 }
1354 \f
1355 /* Create an entry in an ELF linker hash table. */
1356
1357 struct bfd_hash_entry *
1358 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1359 struct bfd_hash_table *table,
1360 const char *string)
1361 {
1362 /* Allocate the structure if it has not already been allocated by a
1363 subclass. */
1364 if (entry == NULL)
1365 {
1366 entry = bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
1367 if (entry == NULL)
1368 return entry;
1369 }
1370
1371 /* Call the allocation method of the superclass. */
1372 entry = _bfd_link_hash_newfunc (entry, table, string);
1373 if (entry != NULL)
1374 {
1375 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
1376 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
1377
1378 /* Set local fields. */
1379 ret->indx = -1;
1380 ret->dynindx = -1;
1381 ret->got = ret->plt = htab->init_refcount;
1382 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
1383 - offsetof (struct elf_link_hash_entry, size)));
1384 /* Assume that we have been called by a non-ELF symbol reader.
1385 This flag is then reset by the code which reads an ELF input
1386 file. This ensures that a symbol created by a non-ELF symbol
1387 reader will have the flag set correctly. */
1388 ret->non_elf = 1;
1389 }
1390
1391 return entry;
1392 }
1393
1394 /* Copy data from an indirect symbol to its direct symbol, hiding the
1395 old indirect symbol. Also used for copying flags to a weakdef. */
1396
1397 void
1398 _bfd_elf_link_hash_copy_indirect (const struct elf_backend_data *bed,
1399 struct elf_link_hash_entry *dir,
1400 struct elf_link_hash_entry *ind)
1401 {
1402 bfd_signed_vma tmp;
1403 bfd_signed_vma lowest_valid = bed->can_refcount;
1404
1405 /* Copy down any references that we may have already seen to the
1406 symbol which just became indirect. */
1407
1408 dir->ref_dynamic |= ind->ref_dynamic;
1409 dir->ref_regular |= ind->ref_regular;
1410 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
1411 dir->non_got_ref |= ind->non_got_ref;
1412 dir->needs_plt |= ind->needs_plt;
1413 dir->pointer_equality_needed |= ind->pointer_equality_needed;
1414
1415 if (ind->root.type != bfd_link_hash_indirect)
1416 return;
1417
1418 /* Copy over the global and procedure linkage table refcount entries.
1419 These may have been already set up by a check_relocs routine. */
1420 tmp = dir->got.refcount;
1421 if (tmp < lowest_valid)
1422 {
1423 dir->got.refcount = ind->got.refcount;
1424 ind->got.refcount = tmp;
1425 }
1426 else
1427 BFD_ASSERT (ind->got.refcount < lowest_valid);
1428
1429 tmp = dir->plt.refcount;
1430 if (tmp < lowest_valid)
1431 {
1432 dir->plt.refcount = ind->plt.refcount;
1433 ind->plt.refcount = tmp;
1434 }
1435 else
1436 BFD_ASSERT (ind->plt.refcount < lowest_valid);
1437
1438 if (dir->dynindx == -1)
1439 {
1440 dir->dynindx = ind->dynindx;
1441 dir->dynstr_index = ind->dynstr_index;
1442 ind->dynindx = -1;
1443 ind->dynstr_index = 0;
1444 }
1445 else
1446 BFD_ASSERT (ind->dynindx == -1);
1447 }
1448
1449 void
1450 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
1451 struct elf_link_hash_entry *h,
1452 bfd_boolean force_local)
1453 {
1454 h->plt = elf_hash_table (info)->init_offset;
1455 h->needs_plt = 0;
1456 if (force_local)
1457 {
1458 h->forced_local = 1;
1459 if (h->dynindx != -1)
1460 {
1461 h->dynindx = -1;
1462 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1463 h->dynstr_index);
1464 }
1465 }
1466 }
1467
1468 /* Initialize an ELF linker hash table. */
1469
1470 bfd_boolean
1471 _bfd_elf_link_hash_table_init
1472 (struct elf_link_hash_table *table,
1473 bfd *abfd,
1474 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
1475 struct bfd_hash_table *,
1476 const char *))
1477 {
1478 bfd_boolean ret;
1479
1480 table->dynamic_sections_created = FALSE;
1481 table->dynobj = NULL;
1482 /* Make sure can_refcount is extended to the width and signedness of
1483 init_refcount before we subtract one from it. */
1484 table->init_refcount.refcount = get_elf_backend_data (abfd)->can_refcount;
1485 table->init_refcount.refcount -= 1;
1486 table->init_offset.offset = -(bfd_vma) 1;
1487 /* The first dynamic symbol is a dummy. */
1488 table->dynsymcount = 1;
1489 table->dynstr = NULL;
1490 table->bucketcount = 0;
1491 table->needed = NULL;
1492 table->hgot = NULL;
1493 table->merge_info = NULL;
1494 memset (&table->stab_info, 0, sizeof (table->stab_info));
1495 memset (&table->eh_info, 0, sizeof (table->eh_info));
1496 table->dynlocal = NULL;
1497 table->runpath = NULL;
1498 table->tls_sec = NULL;
1499 table->tls_size = 0;
1500 table->loaded = NULL;
1501 table->is_relocatable_executable = FALSE;
1502
1503 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc);
1504 table->root.type = bfd_link_elf_hash_table;
1505
1506 return ret;
1507 }
1508
1509 /* Create an ELF linker hash table. */
1510
1511 struct bfd_link_hash_table *
1512 _bfd_elf_link_hash_table_create (bfd *abfd)
1513 {
1514 struct elf_link_hash_table *ret;
1515 bfd_size_type amt = sizeof (struct elf_link_hash_table);
1516
1517 ret = bfd_malloc (amt);
1518 if (ret == NULL)
1519 return NULL;
1520
1521 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc))
1522 {
1523 free (ret);
1524 return NULL;
1525 }
1526
1527 return &ret->root;
1528 }
1529
1530 /* This is a hook for the ELF emulation code in the generic linker to
1531 tell the backend linker what file name to use for the DT_NEEDED
1532 entry for a dynamic object. */
1533
1534 void
1535 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
1536 {
1537 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1538 && bfd_get_format (abfd) == bfd_object)
1539 elf_dt_name (abfd) = name;
1540 }
1541
1542 int
1543 bfd_elf_get_dyn_lib_class (bfd *abfd)
1544 {
1545 int lib_class;
1546 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1547 && bfd_get_format (abfd) == bfd_object)
1548 lib_class = elf_dyn_lib_class (abfd);
1549 else
1550 lib_class = 0;
1551 return lib_class;
1552 }
1553
1554 void
1555 bfd_elf_set_dyn_lib_class (bfd *abfd, int lib_class)
1556 {
1557 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1558 && bfd_get_format (abfd) == bfd_object)
1559 elf_dyn_lib_class (abfd) = lib_class;
1560 }
1561
1562 /* Get the list of DT_NEEDED entries for a link. This is a hook for
1563 the linker ELF emulation code. */
1564
1565 struct bfd_link_needed_list *
1566 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
1567 struct bfd_link_info *info)
1568 {
1569 if (! is_elf_hash_table (info->hash))
1570 return NULL;
1571 return elf_hash_table (info)->needed;
1572 }
1573
1574 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
1575 hook for the linker ELF emulation code. */
1576
1577 struct bfd_link_needed_list *
1578 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
1579 struct bfd_link_info *info)
1580 {
1581 if (! is_elf_hash_table (info->hash))
1582 return NULL;
1583 return elf_hash_table (info)->runpath;
1584 }
1585
1586 /* Get the name actually used for a dynamic object for a link. This
1587 is the SONAME entry if there is one. Otherwise, it is the string
1588 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
1589
1590 const char *
1591 bfd_elf_get_dt_soname (bfd *abfd)
1592 {
1593 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1594 && bfd_get_format (abfd) == bfd_object)
1595 return elf_dt_name (abfd);
1596 return NULL;
1597 }
1598
1599 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
1600 the ELF linker emulation code. */
1601
1602 bfd_boolean
1603 bfd_elf_get_bfd_needed_list (bfd *abfd,
1604 struct bfd_link_needed_list **pneeded)
1605 {
1606 asection *s;
1607 bfd_byte *dynbuf = NULL;
1608 int elfsec;
1609 unsigned long shlink;
1610 bfd_byte *extdyn, *extdynend;
1611 size_t extdynsize;
1612 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1613
1614 *pneeded = NULL;
1615
1616 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
1617 || bfd_get_format (abfd) != bfd_object)
1618 return TRUE;
1619
1620 s = bfd_get_section_by_name (abfd, ".dynamic");
1621 if (s == NULL || s->size == 0)
1622 return TRUE;
1623
1624 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1625 goto error_return;
1626
1627 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1628 if (elfsec == -1)
1629 goto error_return;
1630
1631 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1632
1633 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1634 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1635
1636 extdyn = dynbuf;
1637 extdynend = extdyn + s->size;
1638 for (; extdyn < extdynend; extdyn += extdynsize)
1639 {
1640 Elf_Internal_Dyn dyn;
1641
1642 (*swap_dyn_in) (abfd, extdyn, &dyn);
1643
1644 if (dyn.d_tag == DT_NULL)
1645 break;
1646
1647 if (dyn.d_tag == DT_NEEDED)
1648 {
1649 const char *string;
1650 struct bfd_link_needed_list *l;
1651 unsigned int tagv = dyn.d_un.d_val;
1652 bfd_size_type amt;
1653
1654 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1655 if (string == NULL)
1656 goto error_return;
1657
1658 amt = sizeof *l;
1659 l = bfd_alloc (abfd, amt);
1660 if (l == NULL)
1661 goto error_return;
1662
1663 l->by = abfd;
1664 l->name = string;
1665 l->next = *pneeded;
1666 *pneeded = l;
1667 }
1668 }
1669
1670 free (dynbuf);
1671
1672 return TRUE;
1673
1674 error_return:
1675 if (dynbuf != NULL)
1676 free (dynbuf);
1677 return FALSE;
1678 }
1679 \f
1680 /* Allocate an ELF string table--force the first byte to be zero. */
1681
1682 struct bfd_strtab_hash *
1683 _bfd_elf_stringtab_init (void)
1684 {
1685 struct bfd_strtab_hash *ret;
1686
1687 ret = _bfd_stringtab_init ();
1688 if (ret != NULL)
1689 {
1690 bfd_size_type loc;
1691
1692 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1693 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1694 if (loc == (bfd_size_type) -1)
1695 {
1696 _bfd_stringtab_free (ret);
1697 ret = NULL;
1698 }
1699 }
1700 return ret;
1701 }
1702 \f
1703 /* ELF .o/exec file reading */
1704
1705 /* Create a new bfd section from an ELF section header. */
1706
1707 bfd_boolean
1708 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1709 {
1710 Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[shindex];
1711 Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
1712 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1713 const char *name;
1714
1715 name = bfd_elf_string_from_elf_section (abfd,
1716 elf_elfheader (abfd)->e_shstrndx,
1717 hdr->sh_name);
1718
1719 switch (hdr->sh_type)
1720 {
1721 case SHT_NULL:
1722 /* Inactive section. Throw it away. */
1723 return TRUE;
1724
1725 case SHT_PROGBITS: /* Normal section with contents. */
1726 case SHT_NOBITS: /* .bss section. */
1727 case SHT_HASH: /* .hash section. */
1728 case SHT_NOTE: /* .note section. */
1729 case SHT_INIT_ARRAY: /* .init_array section. */
1730 case SHT_FINI_ARRAY: /* .fini_array section. */
1731 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1732 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1733 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1734
1735 case SHT_DYNAMIC: /* Dynamic linking information. */
1736 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1737 return FALSE;
1738 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1739 {
1740 Elf_Internal_Shdr *dynsymhdr;
1741
1742 /* The shared libraries distributed with hpux11 have a bogus
1743 sh_link field for the ".dynamic" section. Find the
1744 string table for the ".dynsym" section instead. */
1745 if (elf_dynsymtab (abfd) != 0)
1746 {
1747 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1748 hdr->sh_link = dynsymhdr->sh_link;
1749 }
1750 else
1751 {
1752 unsigned int i, num_sec;
1753
1754 num_sec = elf_numsections (abfd);
1755 for (i = 1; i < num_sec; i++)
1756 {
1757 dynsymhdr = elf_elfsections (abfd)[i];
1758 if (dynsymhdr->sh_type == SHT_DYNSYM)
1759 {
1760 hdr->sh_link = dynsymhdr->sh_link;
1761 break;
1762 }
1763 }
1764 }
1765 }
1766 break;
1767
1768 case SHT_SYMTAB: /* A symbol table */
1769 if (elf_onesymtab (abfd) == shindex)
1770 return TRUE;
1771
1772 BFD_ASSERT (hdr->sh_entsize == bed->s->sizeof_sym);
1773 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1774 elf_onesymtab (abfd) = shindex;
1775 elf_tdata (abfd)->symtab_hdr = *hdr;
1776 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1777 abfd->flags |= HAS_SYMS;
1778
1779 /* Sometimes a shared object will map in the symbol table. If
1780 SHF_ALLOC is set, and this is a shared object, then we also
1781 treat this section as a BFD section. We can not base the
1782 decision purely on SHF_ALLOC, because that flag is sometimes
1783 set in a relocatable object file, which would confuse the
1784 linker. */
1785 if ((hdr->sh_flags & SHF_ALLOC) != 0
1786 && (abfd->flags & DYNAMIC) != 0
1787 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1788 shindex))
1789 return FALSE;
1790
1791 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1792 can't read symbols without that section loaded as well. It
1793 is most likely specified by the next section header. */
1794 if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
1795 {
1796 unsigned int i, num_sec;
1797
1798 num_sec = elf_numsections (abfd);
1799 for (i = shindex + 1; i < num_sec; i++)
1800 {
1801 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1802 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1803 && hdr2->sh_link == shindex)
1804 break;
1805 }
1806 if (i == num_sec)
1807 for (i = 1; i < shindex; i++)
1808 {
1809 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1810 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1811 && hdr2->sh_link == shindex)
1812 break;
1813 }
1814 if (i != shindex)
1815 return bfd_section_from_shdr (abfd, i);
1816 }
1817 return TRUE;
1818
1819 case SHT_DYNSYM: /* A dynamic symbol table */
1820 if (elf_dynsymtab (abfd) == shindex)
1821 return TRUE;
1822
1823 BFD_ASSERT (hdr->sh_entsize == bed->s->sizeof_sym);
1824 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1825 elf_dynsymtab (abfd) = shindex;
1826 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1827 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1828 abfd->flags |= HAS_SYMS;
1829
1830 /* Besides being a symbol table, we also treat this as a regular
1831 section, so that objcopy can handle it. */
1832 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1833
1834 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1835 if (elf_symtab_shndx (abfd) == shindex)
1836 return TRUE;
1837
1838 BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
1839 elf_symtab_shndx (abfd) = shindex;
1840 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1841 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1842 return TRUE;
1843
1844 case SHT_STRTAB: /* A string table */
1845 if (hdr->bfd_section != NULL)
1846 return TRUE;
1847 if (ehdr->e_shstrndx == shindex)
1848 {
1849 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1850 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1851 return TRUE;
1852 }
1853 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
1854 {
1855 symtab_strtab:
1856 elf_tdata (abfd)->strtab_hdr = *hdr;
1857 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
1858 return TRUE;
1859 }
1860 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
1861 {
1862 dynsymtab_strtab:
1863 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1864 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
1865 elf_elfsections (abfd)[shindex] = hdr;
1866 /* We also treat this as a regular section, so that objcopy
1867 can handle it. */
1868 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1869 shindex);
1870 }
1871
1872 /* If the string table isn't one of the above, then treat it as a
1873 regular section. We need to scan all the headers to be sure,
1874 just in case this strtab section appeared before the above. */
1875 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
1876 {
1877 unsigned int i, num_sec;
1878
1879 num_sec = elf_numsections (abfd);
1880 for (i = 1; i < num_sec; i++)
1881 {
1882 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1883 if (hdr2->sh_link == shindex)
1884 {
1885 if (! bfd_section_from_shdr (abfd, i))
1886 return FALSE;
1887 if (elf_onesymtab (abfd) == i)
1888 goto symtab_strtab;
1889 if (elf_dynsymtab (abfd) == i)
1890 goto dynsymtab_strtab;
1891 }
1892 }
1893 }
1894 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1895
1896 case SHT_REL:
1897 case SHT_RELA:
1898 /* *These* do a lot of work -- but build no sections! */
1899 {
1900 asection *target_sect;
1901 Elf_Internal_Shdr *hdr2;
1902 unsigned int num_sec = elf_numsections (abfd);
1903
1904 /* Check for a bogus link to avoid crashing. */
1905 if ((hdr->sh_link >= SHN_LORESERVE && hdr->sh_link <= SHN_HIRESERVE)
1906 || hdr->sh_link >= num_sec)
1907 {
1908 ((*_bfd_error_handler)
1909 (_("%B: invalid link %lu for reloc section %s (index %u)"),
1910 abfd, hdr->sh_link, name, shindex));
1911 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1912 shindex);
1913 }
1914
1915 /* For some incomprehensible reason Oracle distributes
1916 libraries for Solaris in which some of the objects have
1917 bogus sh_link fields. It would be nice if we could just
1918 reject them, but, unfortunately, some people need to use
1919 them. We scan through the section headers; if we find only
1920 one suitable symbol table, we clobber the sh_link to point
1921 to it. I hope this doesn't break anything. */
1922 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
1923 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
1924 {
1925 unsigned int scan;
1926 int found;
1927
1928 found = 0;
1929 for (scan = 1; scan < num_sec; scan++)
1930 {
1931 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
1932 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
1933 {
1934 if (found != 0)
1935 {
1936 found = 0;
1937 break;
1938 }
1939 found = scan;
1940 }
1941 }
1942 if (found != 0)
1943 hdr->sh_link = found;
1944 }
1945
1946 /* Get the symbol table. */
1947 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
1948 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
1949 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
1950 return FALSE;
1951
1952 /* If this reloc section does not use the main symbol table we
1953 don't treat it as a reloc section. BFD can't adequately
1954 represent such a section, so at least for now, we don't
1955 try. We just present it as a normal section. We also
1956 can't use it as a reloc section if it points to the null
1957 section. */
1958 if (hdr->sh_link != elf_onesymtab (abfd) || hdr->sh_info == SHN_UNDEF)
1959 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1960 shindex);
1961
1962 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
1963 return FALSE;
1964 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
1965 if (target_sect == NULL)
1966 return FALSE;
1967
1968 if ((target_sect->flags & SEC_RELOC) == 0
1969 || target_sect->reloc_count == 0)
1970 hdr2 = &elf_section_data (target_sect)->rel_hdr;
1971 else
1972 {
1973 bfd_size_type amt;
1974 BFD_ASSERT (elf_section_data (target_sect)->rel_hdr2 == NULL);
1975 amt = sizeof (*hdr2);
1976 hdr2 = bfd_alloc (abfd, amt);
1977 elf_section_data (target_sect)->rel_hdr2 = hdr2;
1978 }
1979 *hdr2 = *hdr;
1980 elf_elfsections (abfd)[shindex] = hdr2;
1981 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
1982 target_sect->flags |= SEC_RELOC;
1983 target_sect->relocation = NULL;
1984 target_sect->rel_filepos = hdr->sh_offset;
1985 /* In the section to which the relocations apply, mark whether
1986 its relocations are of the REL or RELA variety. */
1987 if (hdr->sh_size != 0)
1988 target_sect->use_rela_p = hdr->sh_type == SHT_RELA;
1989 abfd->flags |= HAS_RELOC;
1990 return TRUE;
1991 }
1992 break;
1993
1994 case SHT_GNU_verdef:
1995 elf_dynverdef (abfd) = shindex;
1996 elf_tdata (abfd)->dynverdef_hdr = *hdr;
1997 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1998 break;
1999
2000 case SHT_GNU_versym:
2001 elf_dynversym (abfd) = shindex;
2002 elf_tdata (abfd)->dynversym_hdr = *hdr;
2003 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2004 break;
2005
2006 case SHT_GNU_verneed:
2007 elf_dynverref (abfd) = shindex;
2008 elf_tdata (abfd)->dynverref_hdr = *hdr;
2009 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2010 break;
2011
2012 case SHT_SHLIB:
2013 return TRUE;
2014
2015 case SHT_GROUP:
2016 /* We need a BFD section for objcopy and relocatable linking,
2017 and it's handy to have the signature available as the section
2018 name. */
2019 name = group_signature (abfd, hdr);
2020 if (name == NULL)
2021 return FALSE;
2022 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2023 return FALSE;
2024 if (hdr->contents != NULL)
2025 {
2026 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
2027 unsigned int n_elt = hdr->sh_size / 4;
2028 asection *s;
2029
2030 if (idx->flags & GRP_COMDAT)
2031 hdr->bfd_section->flags
2032 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
2033
2034 /* We try to keep the same section order as it comes in. */
2035 idx += n_elt;
2036 while (--n_elt != 0)
2037 if ((s = (--idx)->shdr->bfd_section) != NULL
2038 && elf_next_in_group (s) != NULL)
2039 {
2040 elf_next_in_group (hdr->bfd_section) = s;
2041 break;
2042 }
2043 }
2044 break;
2045
2046 default:
2047 /* Check for any processor-specific section types. */
2048 return bed->elf_backend_section_from_shdr (abfd, hdr, name,
2049 shindex);
2050 }
2051
2052 return TRUE;
2053 }
2054
2055 /* Return the section for the local symbol specified by ABFD, R_SYMNDX.
2056 Return SEC for sections that have no elf section, and NULL on error. */
2057
2058 asection *
2059 bfd_section_from_r_symndx (bfd *abfd,
2060 struct sym_sec_cache *cache,
2061 asection *sec,
2062 unsigned long r_symndx)
2063 {
2064 Elf_Internal_Shdr *symtab_hdr;
2065 unsigned char esym[sizeof (Elf64_External_Sym)];
2066 Elf_External_Sym_Shndx eshndx;
2067 Elf_Internal_Sym isym;
2068 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2069
2070 if (cache->abfd == abfd && cache->indx[ent] == r_symndx)
2071 return cache->sec[ent];
2072
2073 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2074 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2075 &isym, esym, &eshndx) == NULL)
2076 return NULL;
2077
2078 if (cache->abfd != abfd)
2079 {
2080 memset (cache->indx, -1, sizeof (cache->indx));
2081 cache->abfd = abfd;
2082 }
2083 cache->indx[ent] = r_symndx;
2084 cache->sec[ent] = sec;
2085 if ((isym.st_shndx != SHN_UNDEF && isym.st_shndx < SHN_LORESERVE)
2086 || isym.st_shndx > SHN_HIRESERVE)
2087 {
2088 asection *s;
2089 s = bfd_section_from_elf_index (abfd, isym.st_shndx);
2090 if (s != NULL)
2091 cache->sec[ent] = s;
2092 }
2093 return cache->sec[ent];
2094 }
2095
2096 /* Given an ELF section number, retrieve the corresponding BFD
2097 section. */
2098
2099 asection *
2100 bfd_section_from_elf_index (bfd *abfd, unsigned int index)
2101 {
2102 if (index >= elf_numsections (abfd))
2103 return NULL;
2104 return elf_elfsections (abfd)[index]->bfd_section;
2105 }
2106
2107 static struct bfd_elf_special_section const special_sections[] =
2108 {
2109 { ".bss", 4, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2110 { ".gnu.linkonce.b",15, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2111 { ".comment", 8, 0, SHT_PROGBITS, 0 },
2112 { ".data", 5, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2113 { ".data1", 6, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2114 { ".debug", 6, 0, SHT_PROGBITS, 0 },
2115 { ".fini", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2116 { ".init", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2117 { ".line", 5, 0, SHT_PROGBITS, 0 },
2118 { ".rodata", 7, -2, SHT_PROGBITS, SHF_ALLOC },
2119 { ".rodata1", 8, 0, SHT_PROGBITS, SHF_ALLOC },
2120 { ".tbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2121 { ".tdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2122 { ".text", 5, -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2123 { ".init_array", 11, 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2124 { ".fini_array", 11, 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2125 { ".preinit_array", 14, 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2126 { ".debug_line", 11, 0, SHT_PROGBITS, 0 },
2127 { ".debug_info", 11, 0, SHT_PROGBITS, 0 },
2128 { ".debug_abbrev", 13, 0, SHT_PROGBITS, 0 },
2129 { ".debug_aranges", 14, 0, SHT_PROGBITS, 0 },
2130 { ".dynamic", 8, 0, SHT_DYNAMIC, SHF_ALLOC },
2131 { ".dynstr", 7, 0, SHT_STRTAB, SHF_ALLOC },
2132 { ".dynsym", 7, 0, SHT_DYNSYM, SHF_ALLOC },
2133 { ".got", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2134 { ".hash", 5, 0, SHT_HASH, SHF_ALLOC },
2135 { ".interp", 7, 0, SHT_PROGBITS, 0 },
2136 { ".plt", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2137 { ".shstrtab", 9, 0, SHT_STRTAB, 0 },
2138 { ".strtab", 7, 0, SHT_STRTAB, 0 },
2139 { ".symtab", 7, 0, SHT_SYMTAB, 0 },
2140 { ".gnu.version", 12, 0, SHT_GNU_versym, 0 },
2141 { ".gnu.version_d", 14, 0, SHT_GNU_verdef, 0 },
2142 { ".gnu.version_r", 14, 0, SHT_GNU_verneed, 0 },
2143 { ".note.GNU-stack",15, 0, SHT_PROGBITS, 0 },
2144 { ".note", 5, -1, SHT_NOTE, 0 },
2145 { ".rela", 5, -1, SHT_RELA, 0 },
2146 { ".rel", 4, -1, SHT_REL, 0 },
2147 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2148 { ".gnu.liblist", 12, 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2149 { ".gnu.conflict", 13, 0, SHT_RELA, SHF_ALLOC },
2150 { NULL, 0, 0, 0, 0 }
2151 };
2152
2153 static const struct bfd_elf_special_section *
2154 get_special_section (const char *name,
2155 const struct bfd_elf_special_section *special_sections,
2156 unsigned int rela)
2157 {
2158 int i;
2159 int len = strlen (name);
2160
2161 for (i = 0; special_sections[i].prefix != NULL; i++)
2162 {
2163 int suffix_len;
2164 int prefix_len = special_sections[i].prefix_length;
2165
2166 if (len < prefix_len)
2167 continue;
2168 if (memcmp (name, special_sections[i].prefix, prefix_len) != 0)
2169 continue;
2170
2171 suffix_len = special_sections[i].suffix_length;
2172 if (suffix_len <= 0)
2173 {
2174 if (name[prefix_len] != 0)
2175 {
2176 if (suffix_len == 0)
2177 continue;
2178 if (name[prefix_len] != '.'
2179 && (suffix_len == -2
2180 || (rela && special_sections[i].type == SHT_REL)))
2181 continue;
2182 }
2183 }
2184 else
2185 {
2186 if (len < prefix_len + suffix_len)
2187 continue;
2188 if (memcmp (name + len - suffix_len,
2189 special_sections[i].prefix + prefix_len,
2190 suffix_len) != 0)
2191 continue;
2192 }
2193 return &special_sections[i];
2194 }
2195
2196 return NULL;
2197 }
2198
2199 const struct bfd_elf_special_section *
2200 _bfd_elf_get_sec_type_attr (bfd *abfd, const char *name)
2201 {
2202 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2203 const struct bfd_elf_special_section *ssect = NULL;
2204
2205 /* See if this is one of the special sections. */
2206 if (name)
2207 {
2208 unsigned int rela = bed->default_use_rela_p;
2209
2210 if (bed->special_sections)
2211 ssect = get_special_section (name, bed->special_sections, rela);
2212
2213 if (! ssect)
2214 ssect = get_special_section (name, special_sections, rela);
2215 }
2216
2217 return ssect;
2218 }
2219
2220 bfd_boolean
2221 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2222 {
2223 struct bfd_elf_section_data *sdata;
2224 const struct bfd_elf_special_section *ssect;
2225
2226 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2227 if (sdata == NULL)
2228 {
2229 sdata = bfd_zalloc (abfd, sizeof (*sdata));
2230 if (sdata == NULL)
2231 return FALSE;
2232 sec->used_by_bfd = sdata;
2233 }
2234
2235 elf_section_type (sec) = SHT_NULL;
2236 ssect = _bfd_elf_get_sec_type_attr (abfd, sec->name);
2237 if (ssect != NULL)
2238 {
2239 elf_section_type (sec) = ssect->type;
2240 elf_section_flags (sec) = ssect->attr;
2241 }
2242
2243 /* Indicate whether or not this section should use RELA relocations. */
2244 sec->use_rela_p = get_elf_backend_data (abfd)->default_use_rela_p;
2245
2246 return TRUE;
2247 }
2248
2249 /* Create a new bfd section from an ELF program header.
2250
2251 Since program segments have no names, we generate a synthetic name
2252 of the form segment<NUM>, where NUM is generally the index in the
2253 program header table. For segments that are split (see below) we
2254 generate the names segment<NUM>a and segment<NUM>b.
2255
2256 Note that some program segments may have a file size that is different than
2257 (less than) the memory size. All this means is that at execution the
2258 system must allocate the amount of memory specified by the memory size,
2259 but only initialize it with the first "file size" bytes read from the
2260 file. This would occur for example, with program segments consisting
2261 of combined data+bss.
2262
2263 To handle the above situation, this routine generates TWO bfd sections
2264 for the single program segment. The first has the length specified by
2265 the file size of the segment, and the second has the length specified
2266 by the difference between the two sizes. In effect, the segment is split
2267 into it's initialized and uninitialized parts.
2268
2269 */
2270
2271 bfd_boolean
2272 _bfd_elf_make_section_from_phdr (bfd *abfd,
2273 Elf_Internal_Phdr *hdr,
2274 int index,
2275 const char *typename)
2276 {
2277 asection *newsect;
2278 char *name;
2279 char namebuf[64];
2280 size_t len;
2281 int split;
2282
2283 split = ((hdr->p_memsz > 0)
2284 && (hdr->p_filesz > 0)
2285 && (hdr->p_memsz > hdr->p_filesz));
2286 sprintf (namebuf, "%s%d%s", typename, index, split ? "a" : "");
2287 len = strlen (namebuf) + 1;
2288 name = bfd_alloc (abfd, len);
2289 if (!name)
2290 return FALSE;
2291 memcpy (name, namebuf, len);
2292 newsect = bfd_make_section (abfd, name);
2293 if (newsect == NULL)
2294 return FALSE;
2295 newsect->vma = hdr->p_vaddr;
2296 newsect->lma = hdr->p_paddr;
2297 newsect->size = hdr->p_filesz;
2298 newsect->filepos = hdr->p_offset;
2299 newsect->flags |= SEC_HAS_CONTENTS;
2300 newsect->alignment_power = bfd_log2 (hdr->p_align);
2301 if (hdr->p_type == PT_LOAD)
2302 {
2303 newsect->flags |= SEC_ALLOC;
2304 newsect->flags |= SEC_LOAD;
2305 if (hdr->p_flags & PF_X)
2306 {
2307 /* FIXME: all we known is that it has execute PERMISSION,
2308 may be data. */
2309 newsect->flags |= SEC_CODE;
2310 }
2311 }
2312 if (!(hdr->p_flags & PF_W))
2313 {
2314 newsect->flags |= SEC_READONLY;
2315 }
2316
2317 if (split)
2318 {
2319 sprintf (namebuf, "%s%db", typename, index);
2320 len = strlen (namebuf) + 1;
2321 name = bfd_alloc (abfd, len);
2322 if (!name)
2323 return FALSE;
2324 memcpy (name, namebuf, len);
2325 newsect = bfd_make_section (abfd, name);
2326 if (newsect == NULL)
2327 return FALSE;
2328 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2329 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2330 newsect->size = hdr->p_memsz - hdr->p_filesz;
2331 if (hdr->p_type == PT_LOAD)
2332 {
2333 newsect->flags |= SEC_ALLOC;
2334 if (hdr->p_flags & PF_X)
2335 newsect->flags |= SEC_CODE;
2336 }
2337 if (!(hdr->p_flags & PF_W))
2338 newsect->flags |= SEC_READONLY;
2339 }
2340
2341 return TRUE;
2342 }
2343
2344 bfd_boolean
2345 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index)
2346 {
2347 const struct elf_backend_data *bed;
2348
2349 switch (hdr->p_type)
2350 {
2351 case PT_NULL:
2352 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "null");
2353
2354 case PT_LOAD:
2355 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "load");
2356
2357 case PT_DYNAMIC:
2358 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "dynamic");
2359
2360 case PT_INTERP:
2361 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "interp");
2362
2363 case PT_NOTE:
2364 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, index, "note"))
2365 return FALSE;
2366 if (! elfcore_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2367 return FALSE;
2368 return TRUE;
2369
2370 case PT_SHLIB:
2371 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "shlib");
2372
2373 case PT_PHDR:
2374 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "phdr");
2375
2376 case PT_GNU_EH_FRAME:
2377 return _bfd_elf_make_section_from_phdr (abfd, hdr, index,
2378 "eh_frame_hdr");
2379
2380 case PT_GNU_STACK:
2381 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "stack");
2382
2383 case PT_GNU_RELRO:
2384 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "relro");
2385
2386 default:
2387 /* Check for any processor-specific program segment types. */
2388 bed = get_elf_backend_data (abfd);
2389 return bed->elf_backend_section_from_phdr (abfd, hdr, index, "proc");
2390 }
2391 }
2392
2393 /* Initialize REL_HDR, the section-header for new section, containing
2394 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2395 relocations; otherwise, we use REL relocations. */
2396
2397 bfd_boolean
2398 _bfd_elf_init_reloc_shdr (bfd *abfd,
2399 Elf_Internal_Shdr *rel_hdr,
2400 asection *asect,
2401 bfd_boolean use_rela_p)
2402 {
2403 char *name;
2404 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2405 bfd_size_type amt = sizeof ".rela" + strlen (asect->name);
2406
2407 name = bfd_alloc (abfd, amt);
2408 if (name == NULL)
2409 return FALSE;
2410 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2411 rel_hdr->sh_name =
2412 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2413 FALSE);
2414 if (rel_hdr->sh_name == (unsigned int) -1)
2415 return FALSE;
2416 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2417 rel_hdr->sh_entsize = (use_rela_p
2418 ? bed->s->sizeof_rela
2419 : bed->s->sizeof_rel);
2420 rel_hdr->sh_addralign = 1 << bed->s->log_file_align;
2421 rel_hdr->sh_flags = 0;
2422 rel_hdr->sh_addr = 0;
2423 rel_hdr->sh_size = 0;
2424 rel_hdr->sh_offset = 0;
2425
2426 return TRUE;
2427 }
2428
2429 /* Set up an ELF internal section header for a section. */
2430
2431 static void
2432 elf_fake_sections (bfd *abfd, asection *asect, void *failedptrarg)
2433 {
2434 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2435 bfd_boolean *failedptr = failedptrarg;
2436 Elf_Internal_Shdr *this_hdr;
2437
2438 if (*failedptr)
2439 {
2440 /* We already failed; just get out of the bfd_map_over_sections
2441 loop. */
2442 return;
2443 }
2444
2445 this_hdr = &elf_section_data (asect)->this_hdr;
2446
2447 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2448 asect->name, FALSE);
2449 if (this_hdr->sh_name == (unsigned int) -1)
2450 {
2451 *failedptr = TRUE;
2452 return;
2453 }
2454
2455 this_hdr->sh_flags = 0;
2456
2457 if ((asect->flags & SEC_ALLOC) != 0
2458 || asect->user_set_vma)
2459 this_hdr->sh_addr = asect->vma;
2460 else
2461 this_hdr->sh_addr = 0;
2462
2463 this_hdr->sh_offset = 0;
2464 this_hdr->sh_size = asect->size;
2465 this_hdr->sh_link = 0;
2466 this_hdr->sh_addralign = 1 << asect->alignment_power;
2467 /* The sh_entsize and sh_info fields may have been set already by
2468 copy_private_section_data. */
2469
2470 this_hdr->bfd_section = asect;
2471 this_hdr->contents = NULL;
2472
2473 /* If the section type is unspecified, we set it based on
2474 asect->flags. */
2475 if (this_hdr->sh_type == SHT_NULL)
2476 {
2477 if ((asect->flags & SEC_GROUP) != 0)
2478 {
2479 /* We also need to mark SHF_GROUP here for relocatable
2480 link. */
2481 struct bfd_link_order *l;
2482 asection *elt;
2483
2484 for (l = asect->link_order_head; l != NULL; l = l->next)
2485 if (l->type == bfd_indirect_link_order
2486 && (elt = elf_next_in_group (l->u.indirect.section)) != NULL)
2487 do
2488 {
2489 /* The name is not important. Anything will do. */
2490 elf_group_name (elt->output_section) = "G";
2491 elf_section_flags (elt->output_section) |= SHF_GROUP;
2492
2493 elt = elf_next_in_group (elt);
2494 /* During a relocatable link, the lists are
2495 circular. */
2496 }
2497 while (elt != elf_next_in_group (l->u.indirect.section));
2498
2499 this_hdr->sh_type = SHT_GROUP;
2500 }
2501 else if ((asect->flags & SEC_ALLOC) != 0
2502 && (((asect->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2503 || (asect->flags & SEC_NEVER_LOAD) != 0))
2504 this_hdr->sh_type = SHT_NOBITS;
2505 else
2506 this_hdr->sh_type = SHT_PROGBITS;
2507 }
2508
2509 switch (this_hdr->sh_type)
2510 {
2511 default:
2512 break;
2513
2514 case SHT_STRTAB:
2515 case SHT_INIT_ARRAY:
2516 case SHT_FINI_ARRAY:
2517 case SHT_PREINIT_ARRAY:
2518 case SHT_NOTE:
2519 case SHT_NOBITS:
2520 case SHT_PROGBITS:
2521 break;
2522
2523 case SHT_HASH:
2524 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2525 break;
2526
2527 case SHT_DYNSYM:
2528 this_hdr->sh_entsize = bed->s->sizeof_sym;
2529 break;
2530
2531 case SHT_DYNAMIC:
2532 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2533 break;
2534
2535 case SHT_RELA:
2536 if (get_elf_backend_data (abfd)->may_use_rela_p)
2537 this_hdr->sh_entsize = bed->s->sizeof_rela;
2538 break;
2539
2540 case SHT_REL:
2541 if (get_elf_backend_data (abfd)->may_use_rel_p)
2542 this_hdr->sh_entsize = bed->s->sizeof_rel;
2543 break;
2544
2545 case SHT_GNU_versym:
2546 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2547 break;
2548
2549 case SHT_GNU_verdef:
2550 this_hdr->sh_entsize = 0;
2551 /* objcopy or strip will copy over sh_info, but may not set
2552 cverdefs. The linker will set cverdefs, but sh_info will be
2553 zero. */
2554 if (this_hdr->sh_info == 0)
2555 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2556 else
2557 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2558 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2559 break;
2560
2561 case SHT_GNU_verneed:
2562 this_hdr->sh_entsize = 0;
2563 /* objcopy or strip will copy over sh_info, but may not set
2564 cverrefs. The linker will set cverrefs, but sh_info will be
2565 zero. */
2566 if (this_hdr->sh_info == 0)
2567 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2568 else
2569 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2570 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2571 break;
2572
2573 case SHT_GROUP:
2574 this_hdr->sh_entsize = 4;
2575 break;
2576 }
2577
2578 if ((asect->flags & SEC_ALLOC) != 0)
2579 this_hdr->sh_flags |= SHF_ALLOC;
2580 if ((asect->flags & SEC_READONLY) == 0)
2581 this_hdr->sh_flags |= SHF_WRITE;
2582 if ((asect->flags & SEC_CODE) != 0)
2583 this_hdr->sh_flags |= SHF_EXECINSTR;
2584 if ((asect->flags & SEC_MERGE) != 0)
2585 {
2586 this_hdr->sh_flags |= SHF_MERGE;
2587 this_hdr->sh_entsize = asect->entsize;
2588 if ((asect->flags & SEC_STRINGS) != 0)
2589 this_hdr->sh_flags |= SHF_STRINGS;
2590 }
2591 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2592 this_hdr->sh_flags |= SHF_GROUP;
2593 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2594 {
2595 this_hdr->sh_flags |= SHF_TLS;
2596 if (asect->size == 0 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2597 {
2598 struct bfd_link_order *o;
2599
2600 this_hdr->sh_size = 0;
2601 for (o = asect->link_order_head; o != NULL; o = o->next)
2602 if (this_hdr->sh_size < o->offset + o->size)
2603 this_hdr->sh_size = o->offset + o->size;
2604 if (this_hdr->sh_size)
2605 this_hdr->sh_type = SHT_NOBITS;
2606 }
2607 }
2608
2609 /* Check for processor-specific section types. */
2610 if (bed->elf_backend_fake_sections
2611 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2612 *failedptr = TRUE;
2613
2614 /* If the section has relocs, set up a section header for the
2615 SHT_REL[A] section. If two relocation sections are required for
2616 this section, it is up to the processor-specific back-end to
2617 create the other. */
2618 if ((asect->flags & SEC_RELOC) != 0
2619 && !_bfd_elf_init_reloc_shdr (abfd,
2620 &elf_section_data (asect)->rel_hdr,
2621 asect,
2622 asect->use_rela_p))
2623 *failedptr = TRUE;
2624 }
2625
2626 /* Fill in the contents of a SHT_GROUP section. */
2627
2628 void
2629 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2630 {
2631 bfd_boolean *failedptr = failedptrarg;
2632 unsigned long symindx;
2633 asection *elt, *first;
2634 unsigned char *loc;
2635 struct bfd_link_order *l;
2636 bfd_boolean gas;
2637
2638 if (elf_section_data (sec)->this_hdr.sh_type != SHT_GROUP
2639 || *failedptr)
2640 return;
2641
2642 symindx = 0;
2643 if (elf_group_id (sec) != NULL)
2644 symindx = elf_group_id (sec)->udata.i;
2645
2646 if (symindx == 0)
2647 {
2648 /* If called from the assembler, swap_out_syms will have set up
2649 elf_section_syms; If called for "ld -r", use target_index. */
2650 if (elf_section_syms (abfd) != NULL)
2651 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2652 else
2653 symindx = sec->target_index;
2654 }
2655 elf_section_data (sec)->this_hdr.sh_info = symindx;
2656
2657 /* The contents won't be allocated for "ld -r" or objcopy. */
2658 gas = TRUE;
2659 if (sec->contents == NULL)
2660 {
2661 gas = FALSE;
2662 sec->contents = bfd_alloc (abfd, sec->size);
2663
2664 /* Arrange for the section to be written out. */
2665 elf_section_data (sec)->this_hdr.contents = sec->contents;
2666 if (sec->contents == NULL)
2667 {
2668 *failedptr = TRUE;
2669 return;
2670 }
2671 }
2672
2673 loc = sec->contents + sec->size;
2674
2675 /* Get the pointer to the first section in the group that gas
2676 squirreled away here. objcopy arranges for this to be set to the
2677 start of the input section group. */
2678 first = elt = elf_next_in_group (sec);
2679
2680 /* First element is a flag word. Rest of section is elf section
2681 indices for all the sections of the group. Write them backwards
2682 just to keep the group in the same order as given in .section
2683 directives, not that it matters. */
2684 while (elt != NULL)
2685 {
2686 asection *s;
2687 unsigned int idx;
2688
2689 loc -= 4;
2690 s = elt;
2691 if (!gas)
2692 s = s->output_section;
2693 idx = 0;
2694 if (s != NULL)
2695 idx = elf_section_data (s)->this_idx;
2696 H_PUT_32 (abfd, idx, loc);
2697 elt = elf_next_in_group (elt);
2698 if (elt == first)
2699 break;
2700 }
2701
2702 /* If this is a relocatable link, then the above did nothing because
2703 SEC is the output section. Look through the input sections
2704 instead. */
2705 for (l = sec->link_order_head; l != NULL; l = l->next)
2706 if (l->type == bfd_indirect_link_order
2707 && (elt = elf_next_in_group (l->u.indirect.section)) != NULL)
2708 do
2709 {
2710 loc -= 4;
2711 H_PUT_32 (abfd,
2712 elf_section_data (elt->output_section)->this_idx, loc);
2713 elt = elf_next_in_group (elt);
2714 /* During a relocatable link, the lists are circular. */
2715 }
2716 while (elt != elf_next_in_group (l->u.indirect.section));
2717
2718 if ((loc -= 4) != sec->contents)
2719 abort ();
2720
2721 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2722 }
2723
2724 /* Assign all ELF section numbers. The dummy first section is handled here
2725 too. The link/info pointers for the standard section types are filled
2726 in here too, while we're at it. */
2727
2728 static bfd_boolean
2729 assign_section_numbers (bfd *abfd)
2730 {
2731 struct elf_obj_tdata *t = elf_tdata (abfd);
2732 asection *sec;
2733 unsigned int section_number, secn;
2734 Elf_Internal_Shdr **i_shdrp;
2735 bfd_size_type amt;
2736 struct bfd_elf_section_data *d;
2737
2738 section_number = 1;
2739
2740 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2741
2742 /* Put SHT_GROUP sections first. */
2743 for (sec = abfd->sections; sec; sec = sec->next)
2744 {
2745 d = elf_section_data (sec);
2746
2747 if (d->this_hdr.sh_type == SHT_GROUP)
2748 {
2749 if (section_number == SHN_LORESERVE)
2750 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2751 d->this_idx = section_number++;
2752 }
2753 }
2754
2755 for (sec = abfd->sections; sec; sec = sec->next)
2756 {
2757 d = elf_section_data (sec);
2758
2759 if (d->this_hdr.sh_type != SHT_GROUP)
2760 {
2761 if (section_number == SHN_LORESERVE)
2762 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2763 d->this_idx = section_number++;
2764 }
2765 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
2766 if ((sec->flags & SEC_RELOC) == 0)
2767 d->rel_idx = 0;
2768 else
2769 {
2770 if (section_number == SHN_LORESERVE)
2771 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2772 d->rel_idx = section_number++;
2773 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr.sh_name);
2774 }
2775
2776 if (d->rel_hdr2)
2777 {
2778 if (section_number == SHN_LORESERVE)
2779 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2780 d->rel_idx2 = section_number++;
2781 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr2->sh_name);
2782 }
2783 else
2784 d->rel_idx2 = 0;
2785 }
2786
2787 if (section_number == SHN_LORESERVE)
2788 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2789 t->shstrtab_section = section_number++;
2790 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
2791 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
2792
2793 if (bfd_get_symcount (abfd) > 0)
2794 {
2795 if (section_number == SHN_LORESERVE)
2796 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2797 t->symtab_section = section_number++;
2798 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
2799 if (section_number > SHN_LORESERVE - 2)
2800 {
2801 if (section_number == SHN_LORESERVE)
2802 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2803 t->symtab_shndx_section = section_number++;
2804 t->symtab_shndx_hdr.sh_name
2805 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2806 ".symtab_shndx", FALSE);
2807 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
2808 return FALSE;
2809 }
2810 if (section_number == SHN_LORESERVE)
2811 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2812 t->strtab_section = section_number++;
2813 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
2814 }
2815
2816 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
2817 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
2818
2819 elf_numsections (abfd) = section_number;
2820 elf_elfheader (abfd)->e_shnum = section_number;
2821 if (section_number > SHN_LORESERVE)
2822 elf_elfheader (abfd)->e_shnum -= SHN_HIRESERVE + 1 - SHN_LORESERVE;
2823
2824 /* Set up the list of section header pointers, in agreement with the
2825 indices. */
2826 amt = section_number * sizeof (Elf_Internal_Shdr *);
2827 i_shdrp = bfd_zalloc (abfd, amt);
2828 if (i_shdrp == NULL)
2829 return FALSE;
2830
2831 amt = sizeof (Elf_Internal_Shdr);
2832 i_shdrp[0] = bfd_zalloc (abfd, amt);
2833 if (i_shdrp[0] == NULL)
2834 {
2835 bfd_release (abfd, i_shdrp);
2836 return FALSE;
2837 }
2838
2839 elf_elfsections (abfd) = i_shdrp;
2840
2841 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
2842 if (bfd_get_symcount (abfd) > 0)
2843 {
2844 i_shdrp[t->symtab_section] = &t->symtab_hdr;
2845 if (elf_numsections (abfd) > SHN_LORESERVE)
2846 {
2847 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
2848 t->symtab_shndx_hdr.sh_link = t->symtab_section;
2849 }
2850 i_shdrp[t->strtab_section] = &t->strtab_hdr;
2851 t->symtab_hdr.sh_link = t->strtab_section;
2852 }
2853
2854 for (sec = abfd->sections; sec; sec = sec->next)
2855 {
2856 struct bfd_elf_section_data *d = elf_section_data (sec);
2857 asection *s;
2858 const char *name;
2859
2860 i_shdrp[d->this_idx] = &d->this_hdr;
2861 if (d->rel_idx != 0)
2862 i_shdrp[d->rel_idx] = &d->rel_hdr;
2863 if (d->rel_idx2 != 0)
2864 i_shdrp[d->rel_idx2] = d->rel_hdr2;
2865
2866 /* Fill in the sh_link and sh_info fields while we're at it. */
2867
2868 /* sh_link of a reloc section is the section index of the symbol
2869 table. sh_info is the section index of the section to which
2870 the relocation entries apply. */
2871 if (d->rel_idx != 0)
2872 {
2873 d->rel_hdr.sh_link = t->symtab_section;
2874 d->rel_hdr.sh_info = d->this_idx;
2875 }
2876 if (d->rel_idx2 != 0)
2877 {
2878 d->rel_hdr2->sh_link = t->symtab_section;
2879 d->rel_hdr2->sh_info = d->this_idx;
2880 }
2881
2882 /* We need to set up sh_link for SHF_LINK_ORDER. */
2883 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
2884 {
2885 s = elf_linked_to_section (sec);
2886 if (s)
2887 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2888 else
2889 {
2890 struct bfd_link_order *p;
2891
2892 /* Find out what the corresponding section in output
2893 is. */
2894 for (p = sec->link_order_head; p != NULL; p = p->next)
2895 {
2896 s = p->u.indirect.section;
2897 if (p->type == bfd_indirect_link_order
2898 && (bfd_get_flavour (s->owner)
2899 == bfd_target_elf_flavour))
2900 {
2901 Elf_Internal_Shdr ** const elf_shdrp
2902 = elf_elfsections (s->owner);
2903 int elfsec
2904 = _bfd_elf_section_from_bfd_section (s->owner, s);
2905 elfsec = elf_shdrp[elfsec]->sh_link;
2906 /* PR 290:
2907 The Intel C compiler generates SHT_IA_64_UNWIND with
2908 SHF_LINK_ORDER. But it doesn't set theh sh_link or
2909 sh_info fields. Hence we could get the situation
2910 where elfsec is 0. */
2911 if (elfsec == 0)
2912 {
2913 const struct elf_backend_data *bed
2914 = get_elf_backend_data (abfd);
2915 if (bed->link_order_error_handler)
2916 bed->link_order_error_handler
2917 (_("%B: warning: sh_link not set for section `%A'"),
2918 abfd, s);
2919 }
2920 else
2921 {
2922 s = elf_shdrp[elfsec]->bfd_section;
2923 if (elf_discarded_section (s))
2924 {
2925 asection *kept;
2926 (*_bfd_error_handler)
2927 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
2928 abfd, d->this_hdr.bfd_section,
2929 s, s->owner);
2930 /* Point to the kept section if it has
2931 the same size as the discarded
2932 one. */
2933 kept = _bfd_elf_check_kept_section (s);
2934 if (kept == NULL)
2935 {
2936 bfd_set_error (bfd_error_bad_value);
2937 return FALSE;
2938 }
2939 s = kept;
2940 }
2941 s = s->output_section;
2942 BFD_ASSERT (s != NULL);
2943 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2944 }
2945 break;
2946 }
2947 }
2948 }
2949 }
2950
2951 switch (d->this_hdr.sh_type)
2952 {
2953 case SHT_REL:
2954 case SHT_RELA:
2955 /* A reloc section which we are treating as a normal BFD
2956 section. sh_link is the section index of the symbol
2957 table. sh_info is the section index of the section to
2958 which the relocation entries apply. We assume that an
2959 allocated reloc section uses the dynamic symbol table.
2960 FIXME: How can we be sure? */
2961 s = bfd_get_section_by_name (abfd, ".dynsym");
2962 if (s != NULL)
2963 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2964
2965 /* We look up the section the relocs apply to by name. */
2966 name = sec->name;
2967 if (d->this_hdr.sh_type == SHT_REL)
2968 name += 4;
2969 else
2970 name += 5;
2971 s = bfd_get_section_by_name (abfd, name);
2972 if (s != NULL)
2973 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
2974 break;
2975
2976 case SHT_STRTAB:
2977 /* We assume that a section named .stab*str is a stabs
2978 string section. We look for a section with the same name
2979 but without the trailing ``str'', and set its sh_link
2980 field to point to this section. */
2981 if (strncmp (sec->name, ".stab", sizeof ".stab" - 1) == 0
2982 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
2983 {
2984 size_t len;
2985 char *alc;
2986
2987 len = strlen (sec->name);
2988 alc = bfd_malloc (len - 2);
2989 if (alc == NULL)
2990 return FALSE;
2991 memcpy (alc, sec->name, len - 3);
2992 alc[len - 3] = '\0';
2993 s = bfd_get_section_by_name (abfd, alc);
2994 free (alc);
2995 if (s != NULL)
2996 {
2997 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
2998
2999 /* This is a .stab section. */
3000 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3001 elf_section_data (s)->this_hdr.sh_entsize
3002 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3003 }
3004 }
3005 break;
3006
3007 case SHT_DYNAMIC:
3008 case SHT_DYNSYM:
3009 case SHT_GNU_verneed:
3010 case SHT_GNU_verdef:
3011 /* sh_link is the section header index of the string table
3012 used for the dynamic entries, or the symbol table, or the
3013 version strings. */
3014 s = bfd_get_section_by_name (abfd, ".dynstr");
3015 if (s != NULL)
3016 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3017 break;
3018
3019 case SHT_GNU_LIBLIST:
3020 /* sh_link is the section header index of the prelink library
3021 list
3022 used for the dynamic entries, or the symbol table, or the
3023 version strings. */
3024 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3025 ? ".dynstr" : ".gnu.libstr");
3026 if (s != NULL)
3027 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3028 break;
3029
3030 case SHT_HASH:
3031 case SHT_GNU_versym:
3032 /* sh_link is the section header index of the symbol table
3033 this hash table or version table is for. */
3034 s = bfd_get_section_by_name (abfd, ".dynsym");
3035 if (s != NULL)
3036 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3037 break;
3038
3039 case SHT_GROUP:
3040 d->this_hdr.sh_link = t->symtab_section;
3041 }
3042 }
3043
3044 for (secn = 1; secn < section_number; ++secn)
3045 if (i_shdrp[secn] == NULL)
3046 i_shdrp[secn] = i_shdrp[0];
3047 else
3048 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
3049 i_shdrp[secn]->sh_name);
3050 return TRUE;
3051 }
3052
3053 /* Map symbol from it's internal number to the external number, moving
3054 all local symbols to be at the head of the list. */
3055
3056 static int
3057 sym_is_global (bfd *abfd, asymbol *sym)
3058 {
3059 /* If the backend has a special mapping, use it. */
3060 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3061 if (bed->elf_backend_sym_is_global)
3062 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3063
3064 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
3065 || bfd_is_und_section (bfd_get_section (sym))
3066 || bfd_is_com_section (bfd_get_section (sym)));
3067 }
3068
3069 static bfd_boolean
3070 elf_map_symbols (bfd *abfd)
3071 {
3072 unsigned int symcount = bfd_get_symcount (abfd);
3073 asymbol **syms = bfd_get_outsymbols (abfd);
3074 asymbol **sect_syms;
3075 unsigned int num_locals = 0;
3076 unsigned int num_globals = 0;
3077 unsigned int num_locals2 = 0;
3078 unsigned int num_globals2 = 0;
3079 int max_index = 0;
3080 unsigned int idx;
3081 asection *asect;
3082 asymbol **new_syms;
3083 bfd_size_type amt;
3084
3085 #ifdef DEBUG
3086 fprintf (stderr, "elf_map_symbols\n");
3087 fflush (stderr);
3088 #endif
3089
3090 for (asect = abfd->sections; asect; asect = asect->next)
3091 {
3092 if (max_index < asect->index)
3093 max_index = asect->index;
3094 }
3095
3096 max_index++;
3097 amt = max_index * sizeof (asymbol *);
3098 sect_syms = bfd_zalloc (abfd, amt);
3099 if (sect_syms == NULL)
3100 return FALSE;
3101 elf_section_syms (abfd) = sect_syms;
3102 elf_num_section_syms (abfd) = max_index;
3103
3104 /* Init sect_syms entries for any section symbols we have already
3105 decided to output. */
3106 for (idx = 0; idx < symcount; idx++)
3107 {
3108 asymbol *sym = syms[idx];
3109
3110 if ((sym->flags & BSF_SECTION_SYM) != 0
3111 && sym->value == 0)
3112 {
3113 asection *sec;
3114
3115 sec = sym->section;
3116
3117 if (sec->owner != NULL)
3118 {
3119 if (sec->owner != abfd)
3120 {
3121 if (sec->output_offset != 0)
3122 continue;
3123
3124 sec = sec->output_section;
3125
3126 /* Empty sections in the input files may have had a
3127 section symbol created for them. (See the comment
3128 near the end of _bfd_generic_link_output_symbols in
3129 linker.c). If the linker script discards such
3130 sections then we will reach this point. Since we know
3131 that we cannot avoid this case, we detect it and skip
3132 the abort and the assignment to the sect_syms array.
3133 To reproduce this particular case try running the
3134 linker testsuite test ld-scripts/weak.exp for an ELF
3135 port that uses the generic linker. */
3136 if (sec->owner == NULL)
3137 continue;
3138
3139 BFD_ASSERT (sec->owner == abfd);
3140 }
3141 sect_syms[sec->index] = syms[idx];
3142 }
3143 }
3144 }
3145
3146 /* Classify all of the symbols. */
3147 for (idx = 0; idx < symcount; idx++)
3148 {
3149 if (!sym_is_global (abfd, syms[idx]))
3150 num_locals++;
3151 else
3152 num_globals++;
3153 }
3154
3155 /* We will be adding a section symbol for each BFD section. Most normal
3156 sections will already have a section symbol in outsymbols, but
3157 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3158 at least in that case. */
3159 for (asect = abfd->sections; asect; asect = asect->next)
3160 {
3161 if (sect_syms[asect->index] == NULL)
3162 {
3163 if (!sym_is_global (abfd, asect->symbol))
3164 num_locals++;
3165 else
3166 num_globals++;
3167 }
3168 }
3169
3170 /* Now sort the symbols so the local symbols are first. */
3171 amt = (num_locals + num_globals) * sizeof (asymbol *);
3172 new_syms = bfd_alloc (abfd, amt);
3173
3174 if (new_syms == NULL)
3175 return FALSE;
3176
3177 for (idx = 0; idx < symcount; idx++)
3178 {
3179 asymbol *sym = syms[idx];
3180 unsigned int i;
3181
3182 if (!sym_is_global (abfd, sym))
3183 i = num_locals2++;
3184 else
3185 i = num_locals + num_globals2++;
3186 new_syms[i] = sym;
3187 sym->udata.i = i + 1;
3188 }
3189 for (asect = abfd->sections; asect; asect = asect->next)
3190 {
3191 if (sect_syms[asect->index] == NULL)
3192 {
3193 asymbol *sym = asect->symbol;
3194 unsigned int i;
3195
3196 sect_syms[asect->index] = sym;
3197 if (!sym_is_global (abfd, sym))
3198 i = num_locals2++;
3199 else
3200 i = num_locals + num_globals2++;
3201 new_syms[i] = sym;
3202 sym->udata.i = i + 1;
3203 }
3204 }
3205
3206 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3207
3208 elf_num_locals (abfd) = num_locals;
3209 elf_num_globals (abfd) = num_globals;
3210 return TRUE;
3211 }
3212
3213 /* Align to the maximum file alignment that could be required for any
3214 ELF data structure. */
3215
3216 static inline file_ptr
3217 align_file_position (file_ptr off, int align)
3218 {
3219 return (off + align - 1) & ~(align - 1);
3220 }
3221
3222 /* Assign a file position to a section, optionally aligning to the
3223 required section alignment. */
3224
3225 file_ptr
3226 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3227 file_ptr offset,
3228 bfd_boolean align)
3229 {
3230 if (align)
3231 {
3232 unsigned int al;
3233
3234 al = i_shdrp->sh_addralign;
3235 if (al > 1)
3236 offset = BFD_ALIGN (offset, al);
3237 }
3238 i_shdrp->sh_offset = offset;
3239 if (i_shdrp->bfd_section != NULL)
3240 i_shdrp->bfd_section->filepos = offset;
3241 if (i_shdrp->sh_type != SHT_NOBITS)
3242 offset += i_shdrp->sh_size;
3243 return offset;
3244 }
3245
3246 /* Compute the file positions we are going to put the sections at, and
3247 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3248 is not NULL, this is being called by the ELF backend linker. */
3249
3250 bfd_boolean
3251 _bfd_elf_compute_section_file_positions (bfd *abfd,
3252 struct bfd_link_info *link_info)
3253 {
3254 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3255 bfd_boolean failed;
3256 struct bfd_strtab_hash *strtab = NULL;
3257 Elf_Internal_Shdr *shstrtab_hdr;
3258
3259 if (abfd->output_has_begun)
3260 return TRUE;
3261
3262 /* Do any elf backend specific processing first. */
3263 if (bed->elf_backend_begin_write_processing)
3264 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3265
3266 if (! prep_headers (abfd))
3267 return FALSE;
3268
3269 /* Post process the headers if necessary. */
3270 if (bed->elf_backend_post_process_headers)
3271 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3272
3273 failed = FALSE;
3274 bfd_map_over_sections (abfd, elf_fake_sections, &failed);
3275 if (failed)
3276 return FALSE;
3277
3278 if (!assign_section_numbers (abfd))
3279 return FALSE;
3280
3281 /* The backend linker builds symbol table information itself. */
3282 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3283 {
3284 /* Non-zero if doing a relocatable link. */
3285 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3286
3287 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3288 return FALSE;
3289 }
3290
3291 if (link_info == NULL)
3292 {
3293 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3294 if (failed)
3295 return FALSE;
3296 }
3297
3298 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3299 /* sh_name was set in prep_headers. */
3300 shstrtab_hdr->sh_type = SHT_STRTAB;
3301 shstrtab_hdr->sh_flags = 0;
3302 shstrtab_hdr->sh_addr = 0;
3303 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3304 shstrtab_hdr->sh_entsize = 0;
3305 shstrtab_hdr->sh_link = 0;
3306 shstrtab_hdr->sh_info = 0;
3307 /* sh_offset is set in assign_file_positions_except_relocs. */
3308 shstrtab_hdr->sh_addralign = 1;
3309
3310 if (!assign_file_positions_except_relocs (abfd, link_info))
3311 return FALSE;
3312
3313 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3314 {
3315 file_ptr off;
3316 Elf_Internal_Shdr *hdr;
3317
3318 off = elf_tdata (abfd)->next_file_pos;
3319
3320 hdr = &elf_tdata (abfd)->symtab_hdr;
3321 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3322
3323 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3324 if (hdr->sh_size != 0)
3325 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3326
3327 hdr = &elf_tdata (abfd)->strtab_hdr;
3328 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3329
3330 elf_tdata (abfd)->next_file_pos = off;
3331
3332 /* Now that we know where the .strtab section goes, write it
3333 out. */
3334 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3335 || ! _bfd_stringtab_emit (abfd, strtab))
3336 return FALSE;
3337 _bfd_stringtab_free (strtab);
3338 }
3339
3340 abfd->output_has_begun = TRUE;
3341
3342 return TRUE;
3343 }
3344
3345 /* Create a mapping from a set of sections to a program segment. */
3346
3347 static struct elf_segment_map *
3348 make_mapping (bfd *abfd,
3349 asection **sections,
3350 unsigned int from,
3351 unsigned int to,
3352 bfd_boolean phdr)
3353 {
3354 struct elf_segment_map *m;
3355 unsigned int i;
3356 asection **hdrpp;
3357 bfd_size_type amt;
3358
3359 amt = sizeof (struct elf_segment_map);
3360 amt += (to - from - 1) * sizeof (asection *);
3361 m = bfd_zalloc (abfd, amt);
3362 if (m == NULL)
3363 return NULL;
3364 m->next = NULL;
3365 m->p_type = PT_LOAD;
3366 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3367 m->sections[i - from] = *hdrpp;
3368 m->count = to - from;
3369
3370 if (from == 0 && phdr)
3371 {
3372 /* Include the headers in the first PT_LOAD segment. */
3373 m->includes_filehdr = 1;
3374 m->includes_phdrs = 1;
3375 }
3376
3377 return m;
3378 }
3379
3380 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3381 on failure. */
3382
3383 struct elf_segment_map *
3384 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3385 {
3386 struct elf_segment_map *m;
3387
3388 m = bfd_zalloc (abfd, sizeof (struct elf_segment_map));
3389 if (m == NULL)
3390 return NULL;
3391 m->next = NULL;
3392 m->p_type = PT_DYNAMIC;
3393 m->count = 1;
3394 m->sections[0] = dynsec;
3395
3396 return m;
3397 }
3398
3399 /* Set up a mapping from BFD sections to program segments. */
3400
3401 static bfd_boolean
3402 map_sections_to_segments (bfd *abfd)
3403 {
3404 asection **sections = NULL;
3405 asection *s;
3406 unsigned int i;
3407 unsigned int count;
3408 struct elf_segment_map *mfirst;
3409 struct elf_segment_map **pm;
3410 struct elf_segment_map *m;
3411 asection *last_hdr;
3412 bfd_vma last_size;
3413 unsigned int phdr_index;
3414 bfd_vma maxpagesize;
3415 asection **hdrpp;
3416 bfd_boolean phdr_in_segment = TRUE;
3417 bfd_boolean writable;
3418 int tls_count = 0;
3419 asection *first_tls = NULL;
3420 asection *dynsec, *eh_frame_hdr;
3421 bfd_size_type amt;
3422
3423 if (elf_tdata (abfd)->segment_map != NULL)
3424 return TRUE;
3425
3426 if (bfd_count_sections (abfd) == 0)
3427 return TRUE;
3428
3429 /* Select the allocated sections, and sort them. */
3430
3431 amt = bfd_count_sections (abfd) * sizeof (asection *);
3432 sections = bfd_malloc (amt);
3433 if (sections == NULL)
3434 goto error_return;
3435
3436 i = 0;
3437 for (s = abfd->sections; s != NULL; s = s->next)
3438 {
3439 if ((s->flags & SEC_ALLOC) != 0)
3440 {
3441 sections[i] = s;
3442 ++i;
3443 }
3444 }
3445 BFD_ASSERT (i <= bfd_count_sections (abfd));
3446 count = i;
3447
3448 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3449
3450 /* Build the mapping. */
3451
3452 mfirst = NULL;
3453 pm = &mfirst;
3454
3455 /* If we have a .interp section, then create a PT_PHDR segment for
3456 the program headers and a PT_INTERP segment for the .interp
3457 section. */
3458 s = bfd_get_section_by_name (abfd, ".interp");
3459 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3460 {
3461 amt = sizeof (struct elf_segment_map);
3462 m = bfd_zalloc (abfd, amt);
3463 if (m == NULL)
3464 goto error_return;
3465 m->next = NULL;
3466 m->p_type = PT_PHDR;
3467 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3468 m->p_flags = PF_R | PF_X;
3469 m->p_flags_valid = 1;
3470 m->includes_phdrs = 1;
3471
3472 *pm = m;
3473 pm = &m->next;
3474
3475 amt = sizeof (struct elf_segment_map);
3476 m = bfd_zalloc (abfd, amt);
3477 if (m == NULL)
3478 goto error_return;
3479 m->next = NULL;
3480 m->p_type = PT_INTERP;
3481 m->count = 1;
3482 m->sections[0] = s;
3483
3484 *pm = m;
3485 pm = &m->next;
3486 }
3487
3488 /* Look through the sections. We put sections in the same program
3489 segment when the start of the second section can be placed within
3490 a few bytes of the end of the first section. */
3491 last_hdr = NULL;
3492 last_size = 0;
3493 phdr_index = 0;
3494 maxpagesize = get_elf_backend_data (abfd)->maxpagesize;
3495 writable = FALSE;
3496 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3497 if (dynsec != NULL
3498 && (dynsec->flags & SEC_LOAD) == 0)
3499 dynsec = NULL;
3500
3501 /* Deal with -Ttext or something similar such that the first section
3502 is not adjacent to the program headers. This is an
3503 approximation, since at this point we don't know exactly how many
3504 program headers we will need. */
3505 if (count > 0)
3506 {
3507 bfd_size_type phdr_size;
3508
3509 phdr_size = elf_tdata (abfd)->program_header_size;
3510 if (phdr_size == 0)
3511 phdr_size = get_elf_backend_data (abfd)->s->sizeof_phdr;
3512 if ((abfd->flags & D_PAGED) == 0
3513 || sections[0]->lma < phdr_size
3514 || sections[0]->lma % maxpagesize < phdr_size % maxpagesize)
3515 phdr_in_segment = FALSE;
3516 }
3517
3518 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3519 {
3520 asection *hdr;
3521 bfd_boolean new_segment;
3522
3523 hdr = *hdrpp;
3524
3525 /* See if this section and the last one will fit in the same
3526 segment. */
3527
3528 if (last_hdr == NULL)
3529 {
3530 /* If we don't have a segment yet, then we don't need a new
3531 one (we build the last one after this loop). */
3532 new_segment = FALSE;
3533 }
3534 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3535 {
3536 /* If this section has a different relation between the
3537 virtual address and the load address, then we need a new
3538 segment. */
3539 new_segment = TRUE;
3540 }
3541 else if (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
3542 < BFD_ALIGN (hdr->lma, maxpagesize))
3543 {
3544 /* If putting this section in this segment would force us to
3545 skip a page in the segment, then we need a new segment. */
3546 new_segment = TRUE;
3547 }
3548 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
3549 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
3550 {
3551 /* We don't want to put a loadable section after a
3552 nonloadable section in the same segment.
3553 Consider .tbss sections as loadable for this purpose. */
3554 new_segment = TRUE;
3555 }
3556 else if ((abfd->flags & D_PAGED) == 0)
3557 {
3558 /* If the file is not demand paged, which means that we
3559 don't require the sections to be correctly aligned in the
3560 file, then there is no other reason for a new segment. */
3561 new_segment = FALSE;
3562 }
3563 else if (! writable
3564 && (hdr->flags & SEC_READONLY) == 0
3565 && (((last_hdr->lma + last_size - 1)
3566 & ~(maxpagesize - 1))
3567 != (hdr->lma & ~(maxpagesize - 1))))
3568 {
3569 /* We don't want to put a writable section in a read only
3570 segment, unless they are on the same page in memory
3571 anyhow. We already know that the last section does not
3572 bring us past the current section on the page, so the
3573 only case in which the new section is not on the same
3574 page as the previous section is when the previous section
3575 ends precisely on a page boundary. */
3576 new_segment = TRUE;
3577 }
3578 else
3579 {
3580 /* Otherwise, we can use the same segment. */
3581 new_segment = FALSE;
3582 }
3583
3584 if (! new_segment)
3585 {
3586 if ((hdr->flags & SEC_READONLY) == 0)
3587 writable = TRUE;
3588 last_hdr = hdr;
3589 /* .tbss sections effectively have zero size. */
3590 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3591 last_size = hdr->size;
3592 else
3593 last_size = 0;
3594 continue;
3595 }
3596
3597 /* We need a new program segment. We must create a new program
3598 header holding all the sections from phdr_index until hdr. */
3599
3600 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3601 if (m == NULL)
3602 goto error_return;
3603
3604 *pm = m;
3605 pm = &m->next;
3606
3607 if ((hdr->flags & SEC_READONLY) == 0)
3608 writable = TRUE;
3609 else
3610 writable = FALSE;
3611
3612 last_hdr = hdr;
3613 /* .tbss sections effectively have zero size. */
3614 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3615 last_size = hdr->size;
3616 else
3617 last_size = 0;
3618 phdr_index = i;
3619 phdr_in_segment = FALSE;
3620 }
3621
3622 /* Create a final PT_LOAD program segment. */
3623 if (last_hdr != NULL)
3624 {
3625 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3626 if (m == NULL)
3627 goto error_return;
3628
3629 *pm = m;
3630 pm = &m->next;
3631 }
3632
3633 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
3634 if (dynsec != NULL)
3635 {
3636 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
3637 if (m == NULL)
3638 goto error_return;
3639 *pm = m;
3640 pm = &m->next;
3641 }
3642
3643 /* For each loadable .note section, add a PT_NOTE segment. We don't
3644 use bfd_get_section_by_name, because if we link together
3645 nonloadable .note sections and loadable .note sections, we will
3646 generate two .note sections in the output file. FIXME: Using
3647 names for section types is bogus anyhow. */
3648 for (s = abfd->sections; s != NULL; s = s->next)
3649 {
3650 if ((s->flags & SEC_LOAD) != 0
3651 && strncmp (s->name, ".note", 5) == 0)
3652 {
3653 amt = sizeof (struct elf_segment_map);
3654 m = bfd_zalloc (abfd, amt);
3655 if (m == NULL)
3656 goto error_return;
3657 m->next = NULL;
3658 m->p_type = PT_NOTE;
3659 m->count = 1;
3660 m->sections[0] = s;
3661
3662 *pm = m;
3663 pm = &m->next;
3664 }
3665 if (s->flags & SEC_THREAD_LOCAL)
3666 {
3667 if (! tls_count)
3668 first_tls = s;
3669 tls_count++;
3670 }
3671 }
3672
3673 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
3674 if (tls_count > 0)
3675 {
3676 int i;
3677
3678 amt = sizeof (struct elf_segment_map);
3679 amt += (tls_count - 1) * sizeof (asection *);
3680 m = bfd_zalloc (abfd, amt);
3681 if (m == NULL)
3682 goto error_return;
3683 m->next = NULL;
3684 m->p_type = PT_TLS;
3685 m->count = tls_count;
3686 /* Mandated PF_R. */
3687 m->p_flags = PF_R;
3688 m->p_flags_valid = 1;
3689 for (i = 0; i < tls_count; ++i)
3690 {
3691 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
3692 m->sections[i] = first_tls;
3693 first_tls = first_tls->next;
3694 }
3695
3696 *pm = m;
3697 pm = &m->next;
3698 }
3699
3700 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
3701 segment. */
3702 eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
3703 if (eh_frame_hdr != NULL
3704 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
3705 {
3706 amt = sizeof (struct elf_segment_map);
3707 m = bfd_zalloc (abfd, amt);
3708 if (m == NULL)
3709 goto error_return;
3710 m->next = NULL;
3711 m->p_type = PT_GNU_EH_FRAME;
3712 m->count = 1;
3713 m->sections[0] = eh_frame_hdr->output_section;
3714
3715 *pm = m;
3716 pm = &m->next;
3717 }
3718
3719 if (elf_tdata (abfd)->stack_flags)
3720 {
3721 amt = sizeof (struct elf_segment_map);
3722 m = bfd_zalloc (abfd, amt);
3723 if (m == NULL)
3724 goto error_return;
3725 m->next = NULL;
3726 m->p_type = PT_GNU_STACK;
3727 m->p_flags = elf_tdata (abfd)->stack_flags;
3728 m->p_flags_valid = 1;
3729
3730 *pm = m;
3731 pm = &m->next;
3732 }
3733
3734 if (elf_tdata (abfd)->relro)
3735 {
3736 amt = sizeof (struct elf_segment_map);
3737 m = bfd_zalloc (abfd, amt);
3738 if (m == NULL)
3739 goto error_return;
3740 m->next = NULL;
3741 m->p_type = PT_GNU_RELRO;
3742 m->p_flags = PF_R;
3743 m->p_flags_valid = 1;
3744
3745 *pm = m;
3746 pm = &m->next;
3747 }
3748
3749 free (sections);
3750 sections = NULL;
3751
3752 elf_tdata (abfd)->segment_map = mfirst;
3753 return TRUE;
3754
3755 error_return:
3756 if (sections != NULL)
3757 free (sections);
3758 return FALSE;
3759 }
3760
3761 /* Sort sections by address. */
3762
3763 static int
3764 elf_sort_sections (const void *arg1, const void *arg2)
3765 {
3766 const asection *sec1 = *(const asection **) arg1;
3767 const asection *sec2 = *(const asection **) arg2;
3768 bfd_size_type size1, size2;
3769
3770 /* Sort by LMA first, since this is the address used to
3771 place the section into a segment. */
3772 if (sec1->lma < sec2->lma)
3773 return -1;
3774 else if (sec1->lma > sec2->lma)
3775 return 1;
3776
3777 /* Then sort by VMA. Normally the LMA and the VMA will be
3778 the same, and this will do nothing. */
3779 if (sec1->vma < sec2->vma)
3780 return -1;
3781 else if (sec1->vma > sec2->vma)
3782 return 1;
3783
3784 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
3785
3786 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
3787
3788 if (TOEND (sec1))
3789 {
3790 if (TOEND (sec2))
3791 {
3792 /* If the indicies are the same, do not return 0
3793 here, but continue to try the next comparison. */
3794 if (sec1->target_index - sec2->target_index != 0)
3795 return sec1->target_index - sec2->target_index;
3796 }
3797 else
3798 return 1;
3799 }
3800 else if (TOEND (sec2))
3801 return -1;
3802
3803 #undef TOEND
3804
3805 /* Sort by size, to put zero sized sections
3806 before others at the same address. */
3807
3808 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
3809 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
3810
3811 if (size1 < size2)
3812 return -1;
3813 if (size1 > size2)
3814 return 1;
3815
3816 return sec1->target_index - sec2->target_index;
3817 }
3818
3819 /* Ian Lance Taylor writes:
3820
3821 We shouldn't be using % with a negative signed number. That's just
3822 not good. We have to make sure either that the number is not
3823 negative, or that the number has an unsigned type. When the types
3824 are all the same size they wind up as unsigned. When file_ptr is a
3825 larger signed type, the arithmetic winds up as signed long long,
3826 which is wrong.
3827
3828 What we're trying to say here is something like ``increase OFF by
3829 the least amount that will cause it to be equal to the VMA modulo
3830 the page size.'' */
3831 /* In other words, something like:
3832
3833 vma_offset = m->sections[0]->vma % bed->maxpagesize;
3834 off_offset = off % bed->maxpagesize;
3835 if (vma_offset < off_offset)
3836 adjustment = vma_offset + bed->maxpagesize - off_offset;
3837 else
3838 adjustment = vma_offset - off_offset;
3839
3840 which can can be collapsed into the expression below. */
3841
3842 static file_ptr
3843 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
3844 {
3845 return ((vma - off) % maxpagesize);
3846 }
3847
3848 /* Assign file positions to the sections based on the mapping from
3849 sections to segments. This function also sets up some fields in
3850 the file header, and writes out the program headers. */
3851
3852 static bfd_boolean
3853 assign_file_positions_for_segments (bfd *abfd, struct bfd_link_info *link_info)
3854 {
3855 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3856 unsigned int count;
3857 struct elf_segment_map *m;
3858 unsigned int alloc;
3859 Elf_Internal_Phdr *phdrs;
3860 file_ptr off, voff;
3861 bfd_vma filehdr_vaddr, filehdr_paddr;
3862 bfd_vma phdrs_vaddr, phdrs_paddr;
3863 Elf_Internal_Phdr *p;
3864 bfd_size_type amt;
3865
3866 if (elf_tdata (abfd)->segment_map == NULL)
3867 {
3868 if (! map_sections_to_segments (abfd))
3869 return FALSE;
3870 }
3871 else
3872 {
3873 /* The placement algorithm assumes that non allocated sections are
3874 not in PT_LOAD segments. We ensure this here by removing such
3875 sections from the segment map. */
3876 for (m = elf_tdata (abfd)->segment_map;
3877 m != NULL;
3878 m = m->next)
3879 {
3880 unsigned int new_count;
3881 unsigned int i;
3882
3883 if (m->p_type != PT_LOAD)
3884 continue;
3885
3886 new_count = 0;
3887 for (i = 0; i < m->count; i ++)
3888 {
3889 if ((m->sections[i]->flags & SEC_ALLOC) != 0)
3890 {
3891 if (i != new_count)
3892 m->sections[new_count] = m->sections[i];
3893
3894 new_count ++;
3895 }
3896 }
3897
3898 if (new_count != m->count)
3899 m->count = new_count;
3900 }
3901 }
3902
3903 if (bed->elf_backend_modify_segment_map)
3904 {
3905 if (! (*bed->elf_backend_modify_segment_map) (abfd, link_info))
3906 return FALSE;
3907 }
3908
3909 count = 0;
3910 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
3911 ++count;
3912
3913 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
3914 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
3915 elf_elfheader (abfd)->e_phnum = count;
3916
3917 if (count == 0)
3918 {
3919 elf_tdata (abfd)->next_file_pos = bed->s->sizeof_ehdr;
3920 return TRUE;
3921 }
3922
3923 /* If we already counted the number of program segments, make sure
3924 that we allocated enough space. This happens when SIZEOF_HEADERS
3925 is used in a linker script. */
3926 alloc = elf_tdata (abfd)->program_header_size / bed->s->sizeof_phdr;
3927 if (alloc != 0 && count > alloc)
3928 {
3929 ((*_bfd_error_handler)
3930 (_("%B: Not enough room for program headers (allocated %u, need %u)"),
3931 abfd, alloc, count));
3932 bfd_set_error (bfd_error_bad_value);
3933 return FALSE;
3934 }
3935
3936 if (alloc == 0)
3937 alloc = count;
3938
3939 amt = alloc * sizeof (Elf_Internal_Phdr);
3940 phdrs = bfd_alloc (abfd, amt);
3941 if (phdrs == NULL)
3942 return FALSE;
3943
3944 off = bed->s->sizeof_ehdr;
3945 off += alloc * bed->s->sizeof_phdr;
3946
3947 filehdr_vaddr = 0;
3948 filehdr_paddr = 0;
3949 phdrs_vaddr = 0;
3950 phdrs_paddr = 0;
3951
3952 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
3953 m != NULL;
3954 m = m->next, p++)
3955 {
3956 unsigned int i;
3957 asection **secpp;
3958
3959 /* If elf_segment_map is not from map_sections_to_segments, the
3960 sections may not be correctly ordered. NOTE: sorting should
3961 not be done to the PT_NOTE section of a corefile, which may
3962 contain several pseudo-sections artificially created by bfd.
3963 Sorting these pseudo-sections breaks things badly. */
3964 if (m->count > 1
3965 && !(elf_elfheader (abfd)->e_type == ET_CORE
3966 && m->p_type == PT_NOTE))
3967 qsort (m->sections, (size_t) m->count, sizeof (asection *),
3968 elf_sort_sections);
3969
3970 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
3971 number of sections with contents contributing to both p_filesz
3972 and p_memsz, followed by a number of sections with no contents
3973 that just contribute to p_memsz. In this loop, OFF tracks next
3974 available file offset for PT_LOAD and PT_NOTE segments. VOFF is
3975 an adjustment we use for segments that have no file contents
3976 but need zero filled memory allocation. */
3977 voff = 0;
3978 p->p_type = m->p_type;
3979 p->p_flags = m->p_flags;
3980
3981 if (p->p_type == PT_LOAD
3982 && m->count > 0)
3983 {
3984 bfd_size_type align;
3985 bfd_vma adjust;
3986
3987 if ((abfd->flags & D_PAGED) != 0)
3988 align = bed->maxpagesize;
3989 else
3990 {
3991 unsigned int align_power = 0;
3992 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
3993 {
3994 unsigned int secalign;
3995
3996 secalign = bfd_get_section_alignment (abfd, *secpp);
3997 if (secalign > align_power)
3998 align_power = secalign;
3999 }
4000 align = (bfd_size_type) 1 << align_power;
4001 }
4002
4003 adjust = vma_page_aligned_bias (m->sections[0]->vma, off, align);
4004 off += adjust;
4005 if (adjust != 0
4006 && !m->includes_filehdr
4007 && !m->includes_phdrs
4008 && (ufile_ptr) off >= align)
4009 {
4010 /* If the first section isn't loadable, the same holds for
4011 any other sections. Since the segment won't need file
4012 space, we can make p_offset overlap some prior segment.
4013 However, .tbss is special. If a segment starts with
4014 .tbss, we need to look at the next section to decide
4015 whether the segment has any loadable sections. */
4016 i = 0;
4017 while ((m->sections[i]->flags & SEC_LOAD) == 0)
4018 {
4019 if ((m->sections[i]->flags & SEC_THREAD_LOCAL) == 0
4020 || ++i >= m->count)
4021 {
4022 off -= adjust;
4023 voff = adjust - align;
4024 break;
4025 }
4026 }
4027 }
4028 }
4029 /* Make sure the .dynamic section is the first section in the
4030 PT_DYNAMIC segment. */
4031 else if (p->p_type == PT_DYNAMIC
4032 && m->count > 1
4033 && strcmp (m->sections[0]->name, ".dynamic") != 0)
4034 {
4035 _bfd_error_handler
4036 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4037 abfd);
4038 bfd_set_error (bfd_error_bad_value);
4039 return FALSE;
4040 }
4041
4042 if (m->count == 0)
4043 p->p_vaddr = 0;
4044 else
4045 p->p_vaddr = m->sections[0]->vma;
4046
4047 if (m->p_paddr_valid)
4048 p->p_paddr = m->p_paddr;
4049 else if (m->count == 0)
4050 p->p_paddr = 0;
4051 else
4052 p->p_paddr = m->sections[0]->lma;
4053
4054 if (p->p_type == PT_LOAD
4055 && (abfd->flags & D_PAGED) != 0)
4056 p->p_align = bed->maxpagesize;
4057 else if (m->count == 0)
4058 p->p_align = 1 << bed->s->log_file_align;
4059 else
4060 p->p_align = 0;
4061
4062 p->p_offset = 0;
4063 p->p_filesz = 0;
4064 p->p_memsz = 0;
4065
4066 if (m->includes_filehdr)
4067 {
4068 if (! m->p_flags_valid)
4069 p->p_flags |= PF_R;
4070 p->p_offset = 0;
4071 p->p_filesz = bed->s->sizeof_ehdr;
4072 p->p_memsz = bed->s->sizeof_ehdr;
4073 if (m->count > 0)
4074 {
4075 BFD_ASSERT (p->p_type == PT_LOAD);
4076
4077 if (p->p_vaddr < (bfd_vma) off)
4078 {
4079 (*_bfd_error_handler)
4080 (_("%B: Not enough room for program headers, try linking with -N"),
4081 abfd);
4082 bfd_set_error (bfd_error_bad_value);
4083 return FALSE;
4084 }
4085
4086 p->p_vaddr -= off;
4087 if (! m->p_paddr_valid)
4088 p->p_paddr -= off;
4089 }
4090 if (p->p_type == PT_LOAD)
4091 {
4092 filehdr_vaddr = p->p_vaddr;
4093 filehdr_paddr = p->p_paddr;
4094 }
4095 }
4096
4097 if (m->includes_phdrs)
4098 {
4099 if (! m->p_flags_valid)
4100 p->p_flags |= PF_R;
4101
4102 if (m->includes_filehdr)
4103 {
4104 if (p->p_type == PT_LOAD)
4105 {
4106 phdrs_vaddr = p->p_vaddr + bed->s->sizeof_ehdr;
4107 phdrs_paddr = p->p_paddr + bed->s->sizeof_ehdr;
4108 }
4109 }
4110 else
4111 {
4112 p->p_offset = bed->s->sizeof_ehdr;
4113
4114 if (m->count > 0)
4115 {
4116 BFD_ASSERT (p->p_type == PT_LOAD);
4117 p->p_vaddr -= off - p->p_offset;
4118 if (! m->p_paddr_valid)
4119 p->p_paddr -= off - p->p_offset;
4120 }
4121
4122 if (p->p_type == PT_LOAD)
4123 {
4124 phdrs_vaddr = p->p_vaddr;
4125 phdrs_paddr = p->p_paddr;
4126 }
4127 else
4128 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
4129 }
4130
4131 p->p_filesz += alloc * bed->s->sizeof_phdr;
4132 p->p_memsz += alloc * bed->s->sizeof_phdr;
4133 }
4134
4135 if (p->p_type == PT_LOAD
4136 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4137 {
4138 if (! m->includes_filehdr && ! m->includes_phdrs)
4139 p->p_offset = off + voff;
4140 else
4141 {
4142 file_ptr adjust;
4143
4144 adjust = off - (p->p_offset + p->p_filesz);
4145 p->p_filesz += adjust;
4146 p->p_memsz += adjust;
4147 }
4148 }
4149
4150 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4151 {
4152 asection *sec;
4153 flagword flags;
4154 bfd_size_type align;
4155
4156 sec = *secpp;
4157 flags = sec->flags;
4158 align = 1 << bfd_get_section_alignment (abfd, sec);
4159
4160 if (p->p_type == PT_LOAD
4161 || p->p_type == PT_TLS)
4162 {
4163 bfd_signed_vma adjust;
4164
4165 if ((flags & SEC_LOAD) != 0)
4166 {
4167 adjust = sec->lma - (p->p_paddr + p->p_filesz);
4168 if (adjust < 0)
4169 {
4170 (*_bfd_error_handler)
4171 (_("%B: section %A lma 0x%lx overlaps previous sections"),
4172 abfd, sec, (unsigned long) sec->lma);
4173 adjust = 0;
4174 }
4175 off += adjust;
4176 p->p_filesz += adjust;
4177 p->p_memsz += adjust;
4178 }
4179 /* .tbss is special. It doesn't contribute to p_memsz of
4180 normal segments. */
4181 else if ((flags & SEC_THREAD_LOCAL) == 0
4182 || p->p_type == PT_TLS)
4183 {
4184 /* The section VMA must equal the file position
4185 modulo the page size. */
4186 bfd_size_type page = align;
4187 if ((abfd->flags & D_PAGED) != 0)
4188 page = bed->maxpagesize;
4189 adjust = vma_page_aligned_bias (sec->vma,
4190 p->p_vaddr + p->p_memsz,
4191 page);
4192 p->p_memsz += adjust;
4193 }
4194 }
4195
4196 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
4197 {
4198 /* The section at i == 0 is the one that actually contains
4199 everything. */
4200 if (i == 0)
4201 {
4202 sec->filepos = off;
4203 off += sec->size;
4204 p->p_filesz = sec->size;
4205 p->p_memsz = 0;
4206 p->p_align = 1;
4207 }
4208 else
4209 {
4210 /* The rest are fake sections that shouldn't be written. */
4211 sec->filepos = 0;
4212 sec->size = 0;
4213 sec->flags = 0;
4214 continue;
4215 }
4216 }
4217 else
4218 {
4219 if (p->p_type == PT_LOAD)
4220 {
4221 sec->filepos = off;
4222 /* FIXME: The SEC_HAS_CONTENTS test here dates back to
4223 1997, and the exact reason for it isn't clear. One
4224 plausible explanation is that it is to work around
4225 a problem we have with linker scripts using data
4226 statements in NOLOAD sections. I don't think it
4227 makes a great deal of sense to have such a section
4228 assigned to a PT_LOAD segment, but apparently
4229 people do this. The data statement results in a
4230 bfd_data_link_order being built, and these need
4231 section contents to write into. Eventually, we get
4232 to _bfd_elf_write_object_contents which writes any
4233 section with contents to the output. Make room
4234 here for the write, so that following segments are
4235 not trashed. */
4236 if ((flags & SEC_LOAD) != 0
4237 || (flags & SEC_HAS_CONTENTS) != 0)
4238 off += sec->size;
4239 }
4240
4241 if ((flags & SEC_LOAD) != 0)
4242 {
4243 p->p_filesz += sec->size;
4244 p->p_memsz += sec->size;
4245 }
4246 /* PR ld/594: Sections in note segments which are not loaded
4247 contribute to the file size but not the in-memory size. */
4248 else if (p->p_type == PT_NOTE
4249 && (flags & SEC_HAS_CONTENTS) != 0)
4250 p->p_filesz += sec->size;
4251
4252 /* .tbss is special. It doesn't contribute to p_memsz of
4253 normal segments. */
4254 else if ((flags & SEC_THREAD_LOCAL) == 0
4255 || p->p_type == PT_TLS)
4256 p->p_memsz += sec->size;
4257
4258 if (p->p_type == PT_TLS
4259 && sec->size == 0
4260 && (sec->flags & SEC_HAS_CONTENTS) == 0)
4261 {
4262 struct bfd_link_order *o;
4263 bfd_vma tbss_size = 0;
4264
4265 for (o = sec->link_order_head; o != NULL; o = o->next)
4266 if (tbss_size < o->offset + o->size)
4267 tbss_size = o->offset + o->size;
4268
4269 p->p_memsz += tbss_size;
4270 }
4271
4272 if (align > p->p_align
4273 && (p->p_type != PT_LOAD || (abfd->flags & D_PAGED) == 0))
4274 p->p_align = align;
4275 }
4276
4277 if (! m->p_flags_valid)
4278 {
4279 p->p_flags |= PF_R;
4280 if ((flags & SEC_CODE) != 0)
4281 p->p_flags |= PF_X;
4282 if ((flags & SEC_READONLY) == 0)
4283 p->p_flags |= PF_W;
4284 }
4285 }
4286 }
4287
4288 /* Now that we have set the section file positions, we can set up
4289 the file positions for the non PT_LOAD segments. */
4290 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4291 m != NULL;
4292 m = m->next, p++)
4293 {
4294 if (p->p_type != PT_LOAD && m->count > 0)
4295 {
4296 BFD_ASSERT (! m->includes_filehdr && ! m->includes_phdrs);
4297 /* If the section has not yet been assigned a file position,
4298 do so now. The ARM BPABI requires that .dynamic section
4299 not be marked SEC_ALLOC because it is not part of any
4300 PT_LOAD segment, so it will not be processed above. */
4301 if (p->p_type == PT_DYNAMIC && m->sections[0]->filepos == 0)
4302 {
4303 unsigned int i;
4304 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4305
4306 i = 1;
4307 while (i_shdrpp[i]->bfd_section != m->sections[0])
4308 ++i;
4309 off = (_bfd_elf_assign_file_position_for_section
4310 (i_shdrpp[i], off, TRUE));
4311 p->p_filesz = m->sections[0]->size;
4312 }
4313 p->p_offset = m->sections[0]->filepos;
4314 }
4315 if (m->count == 0)
4316 {
4317 if (m->includes_filehdr)
4318 {
4319 p->p_vaddr = filehdr_vaddr;
4320 if (! m->p_paddr_valid)
4321 p->p_paddr = filehdr_paddr;
4322 }
4323 else if (m->includes_phdrs)
4324 {
4325 p->p_vaddr = phdrs_vaddr;
4326 if (! m->p_paddr_valid)
4327 p->p_paddr = phdrs_paddr;
4328 }
4329 else if (p->p_type == PT_GNU_RELRO)
4330 {
4331 Elf_Internal_Phdr *lp;
4332
4333 for (lp = phdrs; lp < phdrs + count; ++lp)
4334 {
4335 if (lp->p_type == PT_LOAD
4336 && lp->p_vaddr <= link_info->relro_end
4337 && lp->p_vaddr >= link_info->relro_start
4338 && lp->p_vaddr + lp->p_filesz
4339 >= link_info->relro_end)
4340 break;
4341 }
4342
4343 if (lp < phdrs + count
4344 && link_info->relro_end > lp->p_vaddr)
4345 {
4346 p->p_vaddr = lp->p_vaddr;
4347 p->p_paddr = lp->p_paddr;
4348 p->p_offset = lp->p_offset;
4349 p->p_filesz = link_info->relro_end - lp->p_vaddr;
4350 p->p_memsz = p->p_filesz;
4351 p->p_align = 1;
4352 p->p_flags = (lp->p_flags & ~PF_W);
4353 }
4354 else
4355 {
4356 memset (p, 0, sizeof *p);
4357 p->p_type = PT_NULL;
4358 }
4359 }
4360 }
4361 }
4362
4363 /* Clear out any program headers we allocated but did not use. */
4364 for (; count < alloc; count++, p++)
4365 {
4366 memset (p, 0, sizeof *p);
4367 p->p_type = PT_NULL;
4368 }
4369
4370 elf_tdata (abfd)->phdr = phdrs;
4371
4372 elf_tdata (abfd)->next_file_pos = off;
4373
4374 /* Write out the program headers. */
4375 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
4376 || bed->s->write_out_phdrs (abfd, phdrs, alloc) != 0)
4377 return FALSE;
4378
4379 return TRUE;
4380 }
4381
4382 /* Get the size of the program header.
4383
4384 If this is called by the linker before any of the section VMA's are set, it
4385 can't calculate the correct value for a strange memory layout. This only
4386 happens when SIZEOF_HEADERS is used in a linker script. In this case,
4387 SORTED_HDRS is NULL and we assume the normal scenario of one text and one
4388 data segment (exclusive of .interp and .dynamic).
4389
4390 ??? User written scripts must either not use SIZEOF_HEADERS, or assume there
4391 will be two segments. */
4392
4393 static bfd_size_type
4394 get_program_header_size (bfd *abfd)
4395 {
4396 size_t segs;
4397 asection *s;
4398 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4399
4400 /* We can't return a different result each time we're called. */
4401 if (elf_tdata (abfd)->program_header_size != 0)
4402 return elf_tdata (abfd)->program_header_size;
4403
4404 if (elf_tdata (abfd)->segment_map != NULL)
4405 {
4406 struct elf_segment_map *m;
4407
4408 segs = 0;
4409 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4410 ++segs;
4411 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
4412 return elf_tdata (abfd)->program_header_size;
4413 }
4414
4415 /* Assume we will need exactly two PT_LOAD segments: one for text
4416 and one for data. */
4417 segs = 2;
4418
4419 s = bfd_get_section_by_name (abfd, ".interp");
4420 if (s != NULL && (s->flags & SEC_LOAD) != 0)
4421 {
4422 /* If we have a loadable interpreter section, we need a
4423 PT_INTERP segment. In this case, assume we also need a
4424 PT_PHDR segment, although that may not be true for all
4425 targets. */
4426 segs += 2;
4427 }
4428
4429 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4430 {
4431 /* We need a PT_DYNAMIC segment. */
4432 ++segs;
4433 }
4434
4435 if (elf_tdata (abfd)->eh_frame_hdr)
4436 {
4437 /* We need a PT_GNU_EH_FRAME segment. */
4438 ++segs;
4439 }
4440
4441 if (elf_tdata (abfd)->stack_flags)
4442 {
4443 /* We need a PT_GNU_STACK segment. */
4444 ++segs;
4445 }
4446
4447 if (elf_tdata (abfd)->relro)
4448 {
4449 /* We need a PT_GNU_RELRO segment. */
4450 ++segs;
4451 }
4452
4453 for (s = abfd->sections; s != NULL; s = s->next)
4454 {
4455 if ((s->flags & SEC_LOAD) != 0
4456 && strncmp (s->name, ".note", 5) == 0)
4457 {
4458 /* We need a PT_NOTE segment. */
4459 ++segs;
4460 }
4461 }
4462
4463 for (s = abfd->sections; s != NULL; s = s->next)
4464 {
4465 if (s->flags & SEC_THREAD_LOCAL)
4466 {
4467 /* We need a PT_TLS segment. */
4468 ++segs;
4469 break;
4470 }
4471 }
4472
4473 /* Let the backend count up any program headers it might need. */
4474 if (bed->elf_backend_additional_program_headers)
4475 {
4476 int a;
4477
4478 a = (*bed->elf_backend_additional_program_headers) (abfd);
4479 if (a == -1)
4480 abort ();
4481 segs += a;
4482 }
4483
4484 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
4485 return elf_tdata (abfd)->program_header_size;
4486 }
4487
4488 /* Work out the file positions of all the sections. This is called by
4489 _bfd_elf_compute_section_file_positions. All the section sizes and
4490 VMAs must be known before this is called.
4491
4492 Reloc sections come in two flavours: Those processed specially as
4493 "side-channel" data attached to a section to which they apply, and
4494 those that bfd doesn't process as relocations. The latter sort are
4495 stored in a normal bfd section by bfd_section_from_shdr. We don't
4496 consider the former sort here, unless they form part of the loadable
4497 image. Reloc sections not assigned here will be handled later by
4498 assign_file_positions_for_relocs.
4499
4500 We also don't set the positions of the .symtab and .strtab here. */
4501
4502 static bfd_boolean
4503 assign_file_positions_except_relocs (bfd *abfd,
4504 struct bfd_link_info *link_info)
4505 {
4506 struct elf_obj_tdata * const tdata = elf_tdata (abfd);
4507 Elf_Internal_Ehdr * const i_ehdrp = elf_elfheader (abfd);
4508 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4509 unsigned int num_sec = elf_numsections (abfd);
4510 file_ptr off;
4511 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4512
4513 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
4514 && bfd_get_format (abfd) != bfd_core)
4515 {
4516 Elf_Internal_Shdr **hdrpp;
4517 unsigned int i;
4518
4519 /* Start after the ELF header. */
4520 off = i_ehdrp->e_ehsize;
4521
4522 /* We are not creating an executable, which means that we are
4523 not creating a program header, and that the actual order of
4524 the sections in the file is unimportant. */
4525 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4526 {
4527 Elf_Internal_Shdr *hdr;
4528
4529 hdr = *hdrpp;
4530 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4531 && hdr->bfd_section == NULL)
4532 || i == tdata->symtab_section
4533 || i == tdata->symtab_shndx_section
4534 || i == tdata->strtab_section)
4535 {
4536 hdr->sh_offset = -1;
4537 }
4538 else
4539 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4540
4541 if (i == SHN_LORESERVE - 1)
4542 {
4543 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4544 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4545 }
4546 }
4547 }
4548 else
4549 {
4550 unsigned int i;
4551 Elf_Internal_Shdr **hdrpp;
4552
4553 /* Assign file positions for the loaded sections based on the
4554 assignment of sections to segments. */
4555 if (! assign_file_positions_for_segments (abfd, link_info))
4556 return FALSE;
4557
4558 /* Assign file positions for the other sections. */
4559
4560 off = elf_tdata (abfd)->next_file_pos;
4561 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4562 {
4563 Elf_Internal_Shdr *hdr;
4564
4565 hdr = *hdrpp;
4566 if (hdr->bfd_section != NULL
4567 && hdr->bfd_section->filepos != 0)
4568 hdr->sh_offset = hdr->bfd_section->filepos;
4569 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4570 {
4571 ((*_bfd_error_handler)
4572 (_("%B: warning: allocated section `%s' not in segment"),
4573 abfd,
4574 (hdr->bfd_section == NULL
4575 ? "*unknown*"
4576 : hdr->bfd_section->name)));
4577 if ((abfd->flags & D_PAGED) != 0)
4578 off += vma_page_aligned_bias (hdr->sh_addr, off,
4579 bed->maxpagesize);
4580 else
4581 off += vma_page_aligned_bias (hdr->sh_addr, off,
4582 hdr->sh_addralign);
4583 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4584 FALSE);
4585 }
4586 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4587 && hdr->bfd_section == NULL)
4588 || hdr == i_shdrpp[tdata->symtab_section]
4589 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4590 || hdr == i_shdrpp[tdata->strtab_section])
4591 hdr->sh_offset = -1;
4592 else
4593 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4594
4595 if (i == SHN_LORESERVE - 1)
4596 {
4597 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4598 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4599 }
4600 }
4601 }
4602
4603 /* Place the section headers. */
4604 off = align_file_position (off, 1 << bed->s->log_file_align);
4605 i_ehdrp->e_shoff = off;
4606 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
4607
4608 elf_tdata (abfd)->next_file_pos = off;
4609
4610 return TRUE;
4611 }
4612
4613 static bfd_boolean
4614 prep_headers (bfd *abfd)
4615 {
4616 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
4617 Elf_Internal_Phdr *i_phdrp = 0; /* Program header table, internal form */
4618 Elf_Internal_Shdr **i_shdrp; /* Section header table, internal form */
4619 struct elf_strtab_hash *shstrtab;
4620 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4621
4622 i_ehdrp = elf_elfheader (abfd);
4623 i_shdrp = elf_elfsections (abfd);
4624
4625 shstrtab = _bfd_elf_strtab_init ();
4626 if (shstrtab == NULL)
4627 return FALSE;
4628
4629 elf_shstrtab (abfd) = shstrtab;
4630
4631 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
4632 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
4633 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
4634 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
4635
4636 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
4637 i_ehdrp->e_ident[EI_DATA] =
4638 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
4639 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
4640
4641 if ((abfd->flags & DYNAMIC) != 0)
4642 i_ehdrp->e_type = ET_DYN;
4643 else if ((abfd->flags & EXEC_P) != 0)
4644 i_ehdrp->e_type = ET_EXEC;
4645 else if (bfd_get_format (abfd) == bfd_core)
4646 i_ehdrp->e_type = ET_CORE;
4647 else
4648 i_ehdrp->e_type = ET_REL;
4649
4650 switch (bfd_get_arch (abfd))
4651 {
4652 case bfd_arch_unknown:
4653 i_ehdrp->e_machine = EM_NONE;
4654 break;
4655
4656 /* There used to be a long list of cases here, each one setting
4657 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4658 in the corresponding bfd definition. To avoid duplication,
4659 the switch was removed. Machines that need special handling
4660 can generally do it in elf_backend_final_write_processing(),
4661 unless they need the information earlier than the final write.
4662 Such need can generally be supplied by replacing the tests for
4663 e_machine with the conditions used to determine it. */
4664 default:
4665 i_ehdrp->e_machine = bed->elf_machine_code;
4666 }
4667
4668 i_ehdrp->e_version = bed->s->ev_current;
4669 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
4670
4671 /* No program header, for now. */
4672 i_ehdrp->e_phoff = 0;
4673 i_ehdrp->e_phentsize = 0;
4674 i_ehdrp->e_phnum = 0;
4675
4676 /* Each bfd section is section header entry. */
4677 i_ehdrp->e_entry = bfd_get_start_address (abfd);
4678 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
4679
4680 /* If we're building an executable, we'll need a program header table. */
4681 if (abfd->flags & EXEC_P)
4682 /* It all happens later. */
4683 ;
4684 else
4685 {
4686 i_ehdrp->e_phentsize = 0;
4687 i_phdrp = 0;
4688 i_ehdrp->e_phoff = 0;
4689 }
4690
4691 elf_tdata (abfd)->symtab_hdr.sh_name =
4692 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
4693 elf_tdata (abfd)->strtab_hdr.sh_name =
4694 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
4695 elf_tdata (abfd)->shstrtab_hdr.sh_name =
4696 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
4697 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4698 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4699 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
4700 return FALSE;
4701
4702 return TRUE;
4703 }
4704
4705 /* Assign file positions for all the reloc sections which are not part
4706 of the loadable file image. */
4707
4708 void
4709 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
4710 {
4711 file_ptr off;
4712 unsigned int i, num_sec;
4713 Elf_Internal_Shdr **shdrpp;
4714
4715 off = elf_tdata (abfd)->next_file_pos;
4716
4717 num_sec = elf_numsections (abfd);
4718 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
4719 {
4720 Elf_Internal_Shdr *shdrp;
4721
4722 shdrp = *shdrpp;
4723 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
4724 && shdrp->sh_offset == -1)
4725 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
4726 }
4727
4728 elf_tdata (abfd)->next_file_pos = off;
4729 }
4730
4731 bfd_boolean
4732 _bfd_elf_write_object_contents (bfd *abfd)
4733 {
4734 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4735 Elf_Internal_Ehdr *i_ehdrp;
4736 Elf_Internal_Shdr **i_shdrp;
4737 bfd_boolean failed;
4738 unsigned int count, num_sec;
4739
4740 if (! abfd->output_has_begun
4741 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
4742 return FALSE;
4743
4744 i_shdrp = elf_elfsections (abfd);
4745 i_ehdrp = elf_elfheader (abfd);
4746
4747 failed = FALSE;
4748 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
4749 if (failed)
4750 return FALSE;
4751
4752 _bfd_elf_assign_file_positions_for_relocs (abfd);
4753
4754 /* After writing the headers, we need to write the sections too... */
4755 num_sec = elf_numsections (abfd);
4756 for (count = 1; count < num_sec; count++)
4757 {
4758 if (bed->elf_backend_section_processing)
4759 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
4760 if (i_shdrp[count]->contents)
4761 {
4762 bfd_size_type amt = i_shdrp[count]->sh_size;
4763
4764 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
4765 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
4766 return FALSE;
4767 }
4768 if (count == SHN_LORESERVE - 1)
4769 count += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4770 }
4771
4772 /* Write out the section header names. */
4773 if (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
4774 || ! _bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd)))
4775 return FALSE;
4776
4777 if (bed->elf_backend_final_write_processing)
4778 (*bed->elf_backend_final_write_processing) (abfd,
4779 elf_tdata (abfd)->linker);
4780
4781 return bed->s->write_shdrs_and_ehdr (abfd);
4782 }
4783
4784 bfd_boolean
4785 _bfd_elf_write_corefile_contents (bfd *abfd)
4786 {
4787 /* Hopefully this can be done just like an object file. */
4788 return _bfd_elf_write_object_contents (abfd);
4789 }
4790
4791 /* Given a section, search the header to find them. */
4792
4793 int
4794 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
4795 {
4796 const struct elf_backend_data *bed;
4797 int index;
4798
4799 if (elf_section_data (asect) != NULL
4800 && elf_section_data (asect)->this_idx != 0)
4801 return elf_section_data (asect)->this_idx;
4802
4803 if (bfd_is_abs_section (asect))
4804 index = SHN_ABS;
4805 else if (bfd_is_com_section (asect))
4806 index = SHN_COMMON;
4807 else if (bfd_is_und_section (asect))
4808 index = SHN_UNDEF;
4809 else
4810 index = -1;
4811
4812 bed = get_elf_backend_data (abfd);
4813 if (bed->elf_backend_section_from_bfd_section)
4814 {
4815 int retval = index;
4816
4817 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
4818 return retval;
4819 }
4820
4821 if (index == -1)
4822 bfd_set_error (bfd_error_nonrepresentable_section);
4823
4824 return index;
4825 }
4826
4827 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
4828 on error. */
4829
4830 int
4831 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
4832 {
4833 asymbol *asym_ptr = *asym_ptr_ptr;
4834 int idx;
4835 flagword flags = asym_ptr->flags;
4836
4837 /* When gas creates relocations against local labels, it creates its
4838 own symbol for the section, but does put the symbol into the
4839 symbol chain, so udata is 0. When the linker is generating
4840 relocatable output, this section symbol may be for one of the
4841 input sections rather than the output section. */
4842 if (asym_ptr->udata.i == 0
4843 && (flags & BSF_SECTION_SYM)
4844 && asym_ptr->section)
4845 {
4846 int indx;
4847
4848 if (asym_ptr->section->output_section != NULL)
4849 indx = asym_ptr->section->output_section->index;
4850 else
4851 indx = asym_ptr->section->index;
4852 if (indx < elf_num_section_syms (abfd)
4853 && elf_section_syms (abfd)[indx] != NULL)
4854 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
4855 }
4856
4857 idx = asym_ptr->udata.i;
4858
4859 if (idx == 0)
4860 {
4861 /* This case can occur when using --strip-symbol on a symbol
4862 which is used in a relocation entry. */
4863 (*_bfd_error_handler)
4864 (_("%B: symbol `%s' required but not present"),
4865 abfd, bfd_asymbol_name (asym_ptr));
4866 bfd_set_error (bfd_error_no_symbols);
4867 return -1;
4868 }
4869
4870 #if DEBUG & 4
4871 {
4872 fprintf (stderr,
4873 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
4874 (long) asym_ptr, asym_ptr->name, idx, flags,
4875 elf_symbol_flags (flags));
4876 fflush (stderr);
4877 }
4878 #endif
4879
4880 return idx;
4881 }
4882
4883 /* Copy private BFD data. This copies any program header information. */
4884
4885 static bfd_boolean
4886 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
4887 {
4888 Elf_Internal_Ehdr *iehdr;
4889 struct elf_segment_map *map;
4890 struct elf_segment_map *map_first;
4891 struct elf_segment_map **pointer_to_map;
4892 Elf_Internal_Phdr *segment;
4893 asection *section;
4894 unsigned int i;
4895 unsigned int num_segments;
4896 bfd_boolean phdr_included = FALSE;
4897 bfd_vma maxpagesize;
4898 struct elf_segment_map *phdr_adjust_seg = NULL;
4899 unsigned int phdr_adjust_num = 0;
4900 const struct elf_backend_data *bed;
4901
4902 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
4903 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
4904 return TRUE;
4905
4906 if (elf_tdata (ibfd)->phdr == NULL)
4907 return TRUE;
4908
4909 bed = get_elf_backend_data (ibfd);
4910 iehdr = elf_elfheader (ibfd);
4911
4912 map_first = NULL;
4913 pointer_to_map = &map_first;
4914
4915 num_segments = elf_elfheader (ibfd)->e_phnum;
4916 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
4917
4918 /* Returns the end address of the segment + 1. */
4919 #define SEGMENT_END(segment, start) \
4920 (start + (segment->p_memsz > segment->p_filesz \
4921 ? segment->p_memsz : segment->p_filesz))
4922
4923 #define SECTION_SIZE(section, segment) \
4924 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
4925 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
4926 ? section->size : 0)
4927
4928 /* Returns TRUE if the given section is contained within
4929 the given segment. VMA addresses are compared. */
4930 #define IS_CONTAINED_BY_VMA(section, segment) \
4931 (section->vma >= segment->p_vaddr \
4932 && (section->vma + SECTION_SIZE (section, segment) \
4933 <= (SEGMENT_END (segment, segment->p_vaddr))))
4934
4935 /* Returns TRUE if the given section is contained within
4936 the given segment. LMA addresses are compared. */
4937 #define IS_CONTAINED_BY_LMA(section, segment, base) \
4938 (section->lma >= base \
4939 && (section->lma + SECTION_SIZE (section, segment) \
4940 <= SEGMENT_END (segment, base)))
4941
4942 /* Special case: corefile "NOTE" section containing regs, prpsinfo etc. */
4943 #define IS_COREFILE_NOTE(p, s) \
4944 (p->p_type == PT_NOTE \
4945 && bfd_get_format (ibfd) == bfd_core \
4946 && s->vma == 0 && s->lma == 0 \
4947 && (bfd_vma) s->filepos >= p->p_offset \
4948 && ((bfd_vma) s->filepos + s->size \
4949 <= p->p_offset + p->p_filesz))
4950
4951 /* The complicated case when p_vaddr is 0 is to handle the Solaris
4952 linker, which generates a PT_INTERP section with p_vaddr and
4953 p_memsz set to 0. */
4954 #define IS_SOLARIS_PT_INTERP(p, s) \
4955 (p->p_vaddr == 0 \
4956 && p->p_paddr == 0 \
4957 && p->p_memsz == 0 \
4958 && p->p_filesz > 0 \
4959 && (s->flags & SEC_HAS_CONTENTS) != 0 \
4960 && s->size > 0 \
4961 && (bfd_vma) s->filepos >= p->p_offset \
4962 && ((bfd_vma) s->filepos + s->size \
4963 <= p->p_offset + p->p_filesz))
4964
4965 /* Decide if the given section should be included in the given segment.
4966 A section will be included if:
4967 1. It is within the address space of the segment -- we use the LMA
4968 if that is set for the segment and the VMA otherwise,
4969 2. It is an allocated segment,
4970 3. There is an output section associated with it,
4971 4. The section has not already been allocated to a previous segment.
4972 5. PT_GNU_STACK segments do not include any sections.
4973 6. PT_TLS segment includes only SHF_TLS sections.
4974 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
4975 8. PT_DYNAMIC should not contain empty sections at the beginning
4976 (with the possible exception of .dynamic). */
4977 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
4978 ((((segment->p_paddr \
4979 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
4980 : IS_CONTAINED_BY_VMA (section, segment)) \
4981 && (section->flags & SEC_ALLOC) != 0) \
4982 || IS_COREFILE_NOTE (segment, section)) \
4983 && section->output_section != NULL \
4984 && segment->p_type != PT_GNU_STACK \
4985 && (segment->p_type != PT_TLS \
4986 || (section->flags & SEC_THREAD_LOCAL)) \
4987 && (segment->p_type == PT_LOAD \
4988 || segment->p_type == PT_TLS \
4989 || (section->flags & SEC_THREAD_LOCAL) == 0) \
4990 && (segment->p_type != PT_DYNAMIC \
4991 || SECTION_SIZE (section, segment) > 0 \
4992 || (segment->p_paddr \
4993 ? segment->p_paddr != section->lma \
4994 : segment->p_vaddr != section->vma) \
4995 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
4996 == 0)) \
4997 && ! section->segment_mark)
4998
4999 /* Returns TRUE iff seg1 starts after the end of seg2. */
5000 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5001 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5002
5003 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5004 their VMA address ranges and their LMA address ranges overlap.
5005 It is possible to have overlapping VMA ranges without overlapping LMA
5006 ranges. RedBoot images for example can have both .data and .bss mapped
5007 to the same VMA range, but with the .data section mapped to a different
5008 LMA. */
5009 #define SEGMENT_OVERLAPS(seg1, seg2) \
5010 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5011 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5012 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5013 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5014
5015 /* Initialise the segment mark field. */
5016 for (section = ibfd->sections; section != NULL; section = section->next)
5017 section->segment_mark = FALSE;
5018
5019 /* Scan through the segments specified in the program header
5020 of the input BFD. For this first scan we look for overlaps
5021 in the loadable segments. These can be created by weird
5022 parameters to objcopy. Also, fix some solaris weirdness. */
5023 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5024 i < num_segments;
5025 i++, segment++)
5026 {
5027 unsigned int j;
5028 Elf_Internal_Phdr *segment2;
5029
5030 if (segment->p_type == PT_INTERP)
5031 for (section = ibfd->sections; section; section = section->next)
5032 if (IS_SOLARIS_PT_INTERP (segment, section))
5033 {
5034 /* Mininal change so that the normal section to segment
5035 assignment code will work. */
5036 segment->p_vaddr = section->vma;
5037 break;
5038 }
5039
5040 if (segment->p_type != PT_LOAD)
5041 continue;
5042
5043 /* Determine if this segment overlaps any previous segments. */
5044 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2 ++)
5045 {
5046 bfd_signed_vma extra_length;
5047
5048 if (segment2->p_type != PT_LOAD
5049 || ! SEGMENT_OVERLAPS (segment, segment2))
5050 continue;
5051
5052 /* Merge the two segments together. */
5053 if (segment2->p_vaddr < segment->p_vaddr)
5054 {
5055 /* Extend SEGMENT2 to include SEGMENT and then delete
5056 SEGMENT. */
5057 extra_length =
5058 SEGMENT_END (segment, segment->p_vaddr)
5059 - SEGMENT_END (segment2, segment2->p_vaddr);
5060
5061 if (extra_length > 0)
5062 {
5063 segment2->p_memsz += extra_length;
5064 segment2->p_filesz += extra_length;
5065 }
5066
5067 segment->p_type = PT_NULL;
5068
5069 /* Since we have deleted P we must restart the outer loop. */
5070 i = 0;
5071 segment = elf_tdata (ibfd)->phdr;
5072 break;
5073 }
5074 else
5075 {
5076 /* Extend SEGMENT to include SEGMENT2 and then delete
5077 SEGMENT2. */
5078 extra_length =
5079 SEGMENT_END (segment2, segment2->p_vaddr)
5080 - SEGMENT_END (segment, segment->p_vaddr);
5081
5082 if (extra_length > 0)
5083 {
5084 segment->p_memsz += extra_length;
5085 segment->p_filesz += extra_length;
5086 }
5087
5088 segment2->p_type = PT_NULL;
5089 }
5090 }
5091 }
5092
5093 /* The second scan attempts to assign sections to segments. */
5094 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5095 i < num_segments;
5096 i ++, segment ++)
5097 {
5098 unsigned int section_count;
5099 asection ** sections;
5100 asection * output_section;
5101 unsigned int isec;
5102 bfd_vma matching_lma;
5103 bfd_vma suggested_lma;
5104 unsigned int j;
5105 bfd_size_type amt;
5106
5107 if (segment->p_type == PT_NULL)
5108 continue;
5109
5110 /* Compute how many sections might be placed into this segment. */
5111 for (section = ibfd->sections, section_count = 0;
5112 section != NULL;
5113 section = section->next)
5114 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5115 ++section_count;
5116
5117 /* Allocate a segment map big enough to contain
5118 all of the sections we have selected. */
5119 amt = sizeof (struct elf_segment_map);
5120 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5121 map = bfd_alloc (obfd, amt);
5122 if (map == NULL)
5123 return FALSE;
5124
5125 /* Initialise the fields of the segment map. Default to
5126 using the physical address of the segment in the input BFD. */
5127 map->next = NULL;
5128 map->p_type = segment->p_type;
5129 map->p_flags = segment->p_flags;
5130 map->p_flags_valid = 1;
5131 map->p_paddr = segment->p_paddr;
5132 map->p_paddr_valid = 1;
5133
5134 /* Determine if this segment contains the ELF file header
5135 and if it contains the program headers themselves. */
5136 map->includes_filehdr = (segment->p_offset == 0
5137 && segment->p_filesz >= iehdr->e_ehsize);
5138
5139 map->includes_phdrs = 0;
5140
5141 if (! phdr_included || segment->p_type != PT_LOAD)
5142 {
5143 map->includes_phdrs =
5144 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5145 && (segment->p_offset + segment->p_filesz
5146 >= ((bfd_vma) iehdr->e_phoff
5147 + iehdr->e_phnum * iehdr->e_phentsize)));
5148
5149 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5150 phdr_included = TRUE;
5151 }
5152
5153 if (section_count == 0)
5154 {
5155 /* Special segments, such as the PT_PHDR segment, may contain
5156 no sections, but ordinary, loadable segments should contain
5157 something. They are allowed by the ELF spec however, so only
5158 a warning is produced. */
5159 if (segment->p_type == PT_LOAD)
5160 (*_bfd_error_handler)
5161 (_("%B: warning: Empty loadable segment detected, is this intentional ?\n"),
5162 ibfd);
5163
5164 map->count = 0;
5165 *pointer_to_map = map;
5166 pointer_to_map = &map->next;
5167
5168 continue;
5169 }
5170
5171 /* Now scan the sections in the input BFD again and attempt
5172 to add their corresponding output sections to the segment map.
5173 The problem here is how to handle an output section which has
5174 been moved (ie had its LMA changed). There are four possibilities:
5175
5176 1. None of the sections have been moved.
5177 In this case we can continue to use the segment LMA from the
5178 input BFD.
5179
5180 2. All of the sections have been moved by the same amount.
5181 In this case we can change the segment's LMA to match the LMA
5182 of the first section.
5183
5184 3. Some of the sections have been moved, others have not.
5185 In this case those sections which have not been moved can be
5186 placed in the current segment which will have to have its size,
5187 and possibly its LMA changed, and a new segment or segments will
5188 have to be created to contain the other sections.
5189
5190 4. The sections have been moved, but not by the same amount.
5191 In this case we can change the segment's LMA to match the LMA
5192 of the first section and we will have to create a new segment
5193 or segments to contain the other sections.
5194
5195 In order to save time, we allocate an array to hold the section
5196 pointers that we are interested in. As these sections get assigned
5197 to a segment, they are removed from this array. */
5198
5199 /* Gcc 2.96 miscompiles this code on mips. Don't do casting here
5200 to work around this long long bug. */
5201 amt = section_count * sizeof (asection *);
5202 sections = bfd_malloc (amt);
5203 if (sections == NULL)
5204 return FALSE;
5205
5206 /* Step One: Scan for segment vs section LMA conflicts.
5207 Also add the sections to the section array allocated above.
5208 Also add the sections to the current segment. In the common
5209 case, where the sections have not been moved, this means that
5210 we have completely filled the segment, and there is nothing
5211 more to do. */
5212 isec = 0;
5213 matching_lma = 0;
5214 suggested_lma = 0;
5215
5216 for (j = 0, section = ibfd->sections;
5217 section != NULL;
5218 section = section->next)
5219 {
5220 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5221 {
5222 output_section = section->output_section;
5223
5224 sections[j ++] = section;
5225
5226 /* The Solaris native linker always sets p_paddr to 0.
5227 We try to catch that case here, and set it to the
5228 correct value. Note - some backends require that
5229 p_paddr be left as zero. */
5230 if (segment->p_paddr == 0
5231 && segment->p_vaddr != 0
5232 && (! bed->want_p_paddr_set_to_zero)
5233 && isec == 0
5234 && output_section->lma != 0
5235 && (output_section->vma == (segment->p_vaddr
5236 + (map->includes_filehdr
5237 ? iehdr->e_ehsize
5238 : 0)
5239 + (map->includes_phdrs
5240 ? (iehdr->e_phnum
5241 * iehdr->e_phentsize)
5242 : 0))))
5243 map->p_paddr = segment->p_vaddr;
5244
5245 /* Match up the physical address of the segment with the
5246 LMA address of the output section. */
5247 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5248 || IS_COREFILE_NOTE (segment, section)
5249 || (bed->want_p_paddr_set_to_zero &&
5250 IS_CONTAINED_BY_VMA (output_section, segment))
5251 )
5252 {
5253 if (matching_lma == 0)
5254 matching_lma = output_section->lma;
5255
5256 /* We assume that if the section fits within the segment
5257 then it does not overlap any other section within that
5258 segment. */
5259 map->sections[isec ++] = output_section;
5260 }
5261 else if (suggested_lma == 0)
5262 suggested_lma = output_section->lma;
5263 }
5264 }
5265
5266 BFD_ASSERT (j == section_count);
5267
5268 /* Step Two: Adjust the physical address of the current segment,
5269 if necessary. */
5270 if (isec == section_count)
5271 {
5272 /* All of the sections fitted within the segment as currently
5273 specified. This is the default case. Add the segment to
5274 the list of built segments and carry on to process the next
5275 program header in the input BFD. */
5276 map->count = section_count;
5277 *pointer_to_map = map;
5278 pointer_to_map = &map->next;
5279
5280 free (sections);
5281 continue;
5282 }
5283 else
5284 {
5285 if (matching_lma != 0)
5286 {
5287 /* At least one section fits inside the current segment.
5288 Keep it, but modify its physical address to match the
5289 LMA of the first section that fitted. */
5290 map->p_paddr = matching_lma;
5291 }
5292 else
5293 {
5294 /* None of the sections fitted inside the current segment.
5295 Change the current segment's physical address to match
5296 the LMA of the first section. */
5297 map->p_paddr = suggested_lma;
5298 }
5299
5300 /* Offset the segment physical address from the lma
5301 to allow for space taken up by elf headers. */
5302 if (map->includes_filehdr)
5303 map->p_paddr -= iehdr->e_ehsize;
5304
5305 if (map->includes_phdrs)
5306 {
5307 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
5308
5309 /* iehdr->e_phnum is just an estimate of the number
5310 of program headers that we will need. Make a note
5311 here of the number we used and the segment we chose
5312 to hold these headers, so that we can adjust the
5313 offset when we know the correct value. */
5314 phdr_adjust_num = iehdr->e_phnum;
5315 phdr_adjust_seg = map;
5316 }
5317 }
5318
5319 /* Step Three: Loop over the sections again, this time assigning
5320 those that fit to the current segment and removing them from the
5321 sections array; but making sure not to leave large gaps. Once all
5322 possible sections have been assigned to the current segment it is
5323 added to the list of built segments and if sections still remain
5324 to be assigned, a new segment is constructed before repeating
5325 the loop. */
5326 isec = 0;
5327 do
5328 {
5329 map->count = 0;
5330 suggested_lma = 0;
5331
5332 /* Fill the current segment with sections that fit. */
5333 for (j = 0; j < section_count; j++)
5334 {
5335 section = sections[j];
5336
5337 if (section == NULL)
5338 continue;
5339
5340 output_section = section->output_section;
5341
5342 BFD_ASSERT (output_section != NULL);
5343
5344 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5345 || IS_COREFILE_NOTE (segment, section))
5346 {
5347 if (map->count == 0)
5348 {
5349 /* If the first section in a segment does not start at
5350 the beginning of the segment, then something is
5351 wrong. */
5352 if (output_section->lma !=
5353 (map->p_paddr
5354 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
5355 + (map->includes_phdrs
5356 ? iehdr->e_phnum * iehdr->e_phentsize
5357 : 0)))
5358 abort ();
5359 }
5360 else
5361 {
5362 asection * prev_sec;
5363
5364 prev_sec = map->sections[map->count - 1];
5365
5366 /* If the gap between the end of the previous section
5367 and the start of this section is more than
5368 maxpagesize then we need to start a new segment. */
5369 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
5370 maxpagesize)
5371 < BFD_ALIGN (output_section->lma, maxpagesize))
5372 || ((prev_sec->lma + prev_sec->size)
5373 > output_section->lma))
5374 {
5375 if (suggested_lma == 0)
5376 suggested_lma = output_section->lma;
5377
5378 continue;
5379 }
5380 }
5381
5382 map->sections[map->count++] = output_section;
5383 ++isec;
5384 sections[j] = NULL;
5385 section->segment_mark = TRUE;
5386 }
5387 else if (suggested_lma == 0)
5388 suggested_lma = output_section->lma;
5389 }
5390
5391 BFD_ASSERT (map->count > 0);
5392
5393 /* Add the current segment to the list of built segments. */
5394 *pointer_to_map = map;
5395 pointer_to_map = &map->next;
5396
5397 if (isec < section_count)
5398 {
5399 /* We still have not allocated all of the sections to
5400 segments. Create a new segment here, initialise it
5401 and carry on looping. */
5402 amt = sizeof (struct elf_segment_map);
5403 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5404 map = bfd_alloc (obfd, amt);
5405 if (map == NULL)
5406 {
5407 free (sections);
5408 return FALSE;
5409 }
5410
5411 /* Initialise the fields of the segment map. Set the physical
5412 physical address to the LMA of the first section that has
5413 not yet been assigned. */
5414 map->next = NULL;
5415 map->p_type = segment->p_type;
5416 map->p_flags = segment->p_flags;
5417 map->p_flags_valid = 1;
5418 map->p_paddr = suggested_lma;
5419 map->p_paddr_valid = 1;
5420 map->includes_filehdr = 0;
5421 map->includes_phdrs = 0;
5422 }
5423 }
5424 while (isec < section_count);
5425
5426 free (sections);
5427 }
5428
5429 /* The Solaris linker creates program headers in which all the
5430 p_paddr fields are zero. When we try to objcopy or strip such a
5431 file, we get confused. Check for this case, and if we find it
5432 reset the p_paddr_valid fields. */
5433 for (map = map_first; map != NULL; map = map->next)
5434 if (map->p_paddr != 0)
5435 break;
5436 if (map == NULL)
5437 for (map = map_first; map != NULL; map = map->next)
5438 map->p_paddr_valid = 0;
5439
5440 elf_tdata (obfd)->segment_map = map_first;
5441
5442 /* If we had to estimate the number of program headers that were
5443 going to be needed, then check our estimate now and adjust
5444 the offset if necessary. */
5445 if (phdr_adjust_seg != NULL)
5446 {
5447 unsigned int count;
5448
5449 for (count = 0, map = map_first; map != NULL; map = map->next)
5450 count++;
5451
5452 if (count > phdr_adjust_num)
5453 phdr_adjust_seg->p_paddr
5454 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
5455 }
5456
5457 #undef SEGMENT_END
5458 #undef SECTION_SIZE
5459 #undef IS_CONTAINED_BY_VMA
5460 #undef IS_CONTAINED_BY_LMA
5461 #undef IS_COREFILE_NOTE
5462 #undef IS_SOLARIS_PT_INTERP
5463 #undef INCLUDE_SECTION_IN_SEGMENT
5464 #undef SEGMENT_AFTER_SEGMENT
5465 #undef SEGMENT_OVERLAPS
5466 return TRUE;
5467 }
5468
5469 /* Copy private section information. This copies over the entsize
5470 field, and sometimes the info field. */
5471
5472 bfd_boolean
5473 _bfd_elf_copy_private_section_data (bfd *ibfd,
5474 asection *isec,
5475 bfd *obfd,
5476 asection *osec)
5477 {
5478 Elf_Internal_Shdr *ihdr, *ohdr;
5479
5480 if (ibfd->xvec->flavour != bfd_target_elf_flavour
5481 || obfd->xvec->flavour != bfd_target_elf_flavour)
5482 return TRUE;
5483
5484 ihdr = &elf_section_data (isec)->this_hdr;
5485 ohdr = &elf_section_data (osec)->this_hdr;
5486
5487 ohdr->sh_entsize = ihdr->sh_entsize;
5488
5489 if (ihdr->sh_type == SHT_SYMTAB
5490 || ihdr->sh_type == SHT_DYNSYM
5491 || ihdr->sh_type == SHT_GNU_verneed
5492 || ihdr->sh_type == SHT_GNU_verdef)
5493 ohdr->sh_info = ihdr->sh_info;
5494
5495 /* Set things up for objcopy. The output SHT_GROUP section will
5496 have its elf_next_in_group pointing back to the input group
5497 members. */
5498 elf_next_in_group (osec) = elf_next_in_group (isec);
5499 elf_group_name (osec) = elf_group_name (isec);
5500
5501 osec->use_rela_p = isec->use_rela_p;
5502
5503 return TRUE;
5504 }
5505
5506 /* Copy private header information. */
5507
5508 bfd_boolean
5509 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
5510 {
5511 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5512 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5513 return TRUE;
5514
5515 /* Copy over private BFD data if it has not already been copied.
5516 This must be done here, rather than in the copy_private_bfd_data
5517 entry point, because the latter is called after the section
5518 contents have been set, which means that the program headers have
5519 already been worked out. */
5520 if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
5521 {
5522 if (! copy_private_bfd_data (ibfd, obfd))
5523 return FALSE;
5524 }
5525
5526 return TRUE;
5527 }
5528
5529 /* Copy private symbol information. If this symbol is in a section
5530 which we did not map into a BFD section, try to map the section
5531 index correctly. We use special macro definitions for the mapped
5532 section indices; these definitions are interpreted by the
5533 swap_out_syms function. */
5534
5535 #define MAP_ONESYMTAB (SHN_HIOS + 1)
5536 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
5537 #define MAP_STRTAB (SHN_HIOS + 3)
5538 #define MAP_SHSTRTAB (SHN_HIOS + 4)
5539 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
5540
5541 bfd_boolean
5542 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
5543 asymbol *isymarg,
5544 bfd *obfd,
5545 asymbol *osymarg)
5546 {
5547 elf_symbol_type *isym, *osym;
5548
5549 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5550 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5551 return TRUE;
5552
5553 isym = elf_symbol_from (ibfd, isymarg);
5554 osym = elf_symbol_from (obfd, osymarg);
5555
5556 if (isym != NULL
5557 && osym != NULL
5558 && bfd_is_abs_section (isym->symbol.section))
5559 {
5560 unsigned int shndx;
5561
5562 shndx = isym->internal_elf_sym.st_shndx;
5563 if (shndx == elf_onesymtab (ibfd))
5564 shndx = MAP_ONESYMTAB;
5565 else if (shndx == elf_dynsymtab (ibfd))
5566 shndx = MAP_DYNSYMTAB;
5567 else if (shndx == elf_tdata (ibfd)->strtab_section)
5568 shndx = MAP_STRTAB;
5569 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
5570 shndx = MAP_SHSTRTAB;
5571 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
5572 shndx = MAP_SYM_SHNDX;
5573 osym->internal_elf_sym.st_shndx = shndx;
5574 }
5575
5576 return TRUE;
5577 }
5578
5579 /* Swap out the symbols. */
5580
5581 static bfd_boolean
5582 swap_out_syms (bfd *abfd,
5583 struct bfd_strtab_hash **sttp,
5584 int relocatable_p)
5585 {
5586 const struct elf_backend_data *bed;
5587 int symcount;
5588 asymbol **syms;
5589 struct bfd_strtab_hash *stt;
5590 Elf_Internal_Shdr *symtab_hdr;
5591 Elf_Internal_Shdr *symtab_shndx_hdr;
5592 Elf_Internal_Shdr *symstrtab_hdr;
5593 bfd_byte *outbound_syms;
5594 bfd_byte *outbound_shndx;
5595 int idx;
5596 bfd_size_type amt;
5597 bfd_boolean name_local_sections;
5598
5599 if (!elf_map_symbols (abfd))
5600 return FALSE;
5601
5602 /* Dump out the symtabs. */
5603 stt = _bfd_elf_stringtab_init ();
5604 if (stt == NULL)
5605 return FALSE;
5606
5607 bed = get_elf_backend_data (abfd);
5608 symcount = bfd_get_symcount (abfd);
5609 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5610 symtab_hdr->sh_type = SHT_SYMTAB;
5611 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
5612 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
5613 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
5614 symtab_hdr->sh_addralign = 1 << bed->s->log_file_align;
5615
5616 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
5617 symstrtab_hdr->sh_type = SHT_STRTAB;
5618
5619 amt = (bfd_size_type) (1 + symcount) * bed->s->sizeof_sym;
5620 outbound_syms = bfd_alloc (abfd, amt);
5621 if (outbound_syms == NULL)
5622 {
5623 _bfd_stringtab_free (stt);
5624 return FALSE;
5625 }
5626 symtab_hdr->contents = outbound_syms;
5627
5628 outbound_shndx = NULL;
5629 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
5630 if (symtab_shndx_hdr->sh_name != 0)
5631 {
5632 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
5633 outbound_shndx = bfd_zalloc (abfd, amt);
5634 if (outbound_shndx == NULL)
5635 {
5636 _bfd_stringtab_free (stt);
5637 return FALSE;
5638 }
5639
5640 symtab_shndx_hdr->contents = outbound_shndx;
5641 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
5642 symtab_shndx_hdr->sh_size = amt;
5643 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
5644 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
5645 }
5646
5647 /* Now generate the data (for "contents"). */
5648 {
5649 /* Fill in zeroth symbol and swap it out. */
5650 Elf_Internal_Sym sym;
5651 sym.st_name = 0;
5652 sym.st_value = 0;
5653 sym.st_size = 0;
5654 sym.st_info = 0;
5655 sym.st_other = 0;
5656 sym.st_shndx = SHN_UNDEF;
5657 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
5658 outbound_syms += bed->s->sizeof_sym;
5659 if (outbound_shndx != NULL)
5660 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
5661 }
5662
5663 name_local_sections
5664 = (bed->elf_backend_name_local_section_symbols
5665 && bed->elf_backend_name_local_section_symbols (abfd));
5666
5667 syms = bfd_get_outsymbols (abfd);
5668 for (idx = 0; idx < symcount; idx++)
5669 {
5670 Elf_Internal_Sym sym;
5671 bfd_vma value = syms[idx]->value;
5672 elf_symbol_type *type_ptr;
5673 flagword flags = syms[idx]->flags;
5674 int type;
5675
5676 if (!name_local_sections
5677 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
5678 {
5679 /* Local section symbols have no name. */
5680 sym.st_name = 0;
5681 }
5682 else
5683 {
5684 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
5685 syms[idx]->name,
5686 TRUE, FALSE);
5687 if (sym.st_name == (unsigned long) -1)
5688 {
5689 _bfd_stringtab_free (stt);
5690 return FALSE;
5691 }
5692 }
5693
5694 type_ptr = elf_symbol_from (abfd, syms[idx]);
5695
5696 if ((flags & BSF_SECTION_SYM) == 0
5697 && bfd_is_com_section (syms[idx]->section))
5698 {
5699 /* ELF common symbols put the alignment into the `value' field,
5700 and the size into the `size' field. This is backwards from
5701 how BFD handles it, so reverse it here. */
5702 sym.st_size = value;
5703 if (type_ptr == NULL
5704 || type_ptr->internal_elf_sym.st_value == 0)
5705 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
5706 else
5707 sym.st_value = type_ptr->internal_elf_sym.st_value;
5708 sym.st_shndx = _bfd_elf_section_from_bfd_section
5709 (abfd, syms[idx]->section);
5710 }
5711 else
5712 {
5713 asection *sec = syms[idx]->section;
5714 int shndx;
5715
5716 if (sec->output_section)
5717 {
5718 value += sec->output_offset;
5719 sec = sec->output_section;
5720 }
5721
5722 /* Don't add in the section vma for relocatable output. */
5723 if (! relocatable_p)
5724 value += sec->vma;
5725 sym.st_value = value;
5726 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
5727
5728 if (bfd_is_abs_section (sec)
5729 && type_ptr != NULL
5730 && type_ptr->internal_elf_sym.st_shndx != 0)
5731 {
5732 /* This symbol is in a real ELF section which we did
5733 not create as a BFD section. Undo the mapping done
5734 by copy_private_symbol_data. */
5735 shndx = type_ptr->internal_elf_sym.st_shndx;
5736 switch (shndx)
5737 {
5738 case MAP_ONESYMTAB:
5739 shndx = elf_onesymtab (abfd);
5740 break;
5741 case MAP_DYNSYMTAB:
5742 shndx = elf_dynsymtab (abfd);
5743 break;
5744 case MAP_STRTAB:
5745 shndx = elf_tdata (abfd)->strtab_section;
5746 break;
5747 case MAP_SHSTRTAB:
5748 shndx = elf_tdata (abfd)->shstrtab_section;
5749 break;
5750 case MAP_SYM_SHNDX:
5751 shndx = elf_tdata (abfd)->symtab_shndx_section;
5752 break;
5753 default:
5754 break;
5755 }
5756 }
5757 else
5758 {
5759 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
5760
5761 if (shndx == -1)
5762 {
5763 asection *sec2;
5764
5765 /* Writing this would be a hell of a lot easier if
5766 we had some decent documentation on bfd, and
5767 knew what to expect of the library, and what to
5768 demand of applications. For example, it
5769 appears that `objcopy' might not set the
5770 section of a symbol to be a section that is
5771 actually in the output file. */
5772 sec2 = bfd_get_section_by_name (abfd, sec->name);
5773 if (sec2 == NULL)
5774 {
5775 _bfd_error_handler (_("\
5776 Unable to find equivalent output section for symbol '%s' from section '%s'"),
5777 syms[idx]->name ? syms[idx]->name : "<Local sym>",
5778 sec->name);
5779 bfd_set_error (bfd_error_invalid_operation);
5780 _bfd_stringtab_free (stt);
5781 return FALSE;
5782 }
5783
5784 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
5785 BFD_ASSERT (shndx != -1);
5786 }
5787 }
5788
5789 sym.st_shndx = shndx;
5790 }
5791
5792 if ((flags & BSF_THREAD_LOCAL) != 0)
5793 type = STT_TLS;
5794 else if ((flags & BSF_FUNCTION) != 0)
5795 type = STT_FUNC;
5796 else if ((flags & BSF_OBJECT) != 0)
5797 type = STT_OBJECT;
5798 else
5799 type = STT_NOTYPE;
5800
5801 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
5802 type = STT_TLS;
5803
5804 /* Processor-specific types. */
5805 if (type_ptr != NULL
5806 && bed->elf_backend_get_symbol_type)
5807 type = ((*bed->elf_backend_get_symbol_type)
5808 (&type_ptr->internal_elf_sym, type));
5809
5810 if (flags & BSF_SECTION_SYM)
5811 {
5812 if (flags & BSF_GLOBAL)
5813 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
5814 else
5815 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
5816 }
5817 else if (bfd_is_com_section (syms[idx]->section))
5818 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
5819 else if (bfd_is_und_section (syms[idx]->section))
5820 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
5821 ? STB_WEAK
5822 : STB_GLOBAL),
5823 type);
5824 else if (flags & BSF_FILE)
5825 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
5826 else
5827 {
5828 int bind = STB_LOCAL;
5829
5830 if (flags & BSF_LOCAL)
5831 bind = STB_LOCAL;
5832 else if (flags & BSF_WEAK)
5833 bind = STB_WEAK;
5834 else if (flags & BSF_GLOBAL)
5835 bind = STB_GLOBAL;
5836
5837 sym.st_info = ELF_ST_INFO (bind, type);
5838 }
5839
5840 if (type_ptr != NULL)
5841 sym.st_other = type_ptr->internal_elf_sym.st_other;
5842 else
5843 sym.st_other = 0;
5844
5845 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
5846 outbound_syms += bed->s->sizeof_sym;
5847 if (outbound_shndx != NULL)
5848 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
5849 }
5850
5851 *sttp = stt;
5852 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
5853 symstrtab_hdr->sh_type = SHT_STRTAB;
5854
5855 symstrtab_hdr->sh_flags = 0;
5856 symstrtab_hdr->sh_addr = 0;
5857 symstrtab_hdr->sh_entsize = 0;
5858 symstrtab_hdr->sh_link = 0;
5859 symstrtab_hdr->sh_info = 0;
5860 symstrtab_hdr->sh_addralign = 1;
5861
5862 return TRUE;
5863 }
5864
5865 /* Return the number of bytes required to hold the symtab vector.
5866
5867 Note that we base it on the count plus 1, since we will null terminate
5868 the vector allocated based on this size. However, the ELF symbol table
5869 always has a dummy entry as symbol #0, so it ends up even. */
5870
5871 long
5872 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
5873 {
5874 long symcount;
5875 long symtab_size;
5876 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
5877
5878 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
5879 symtab_size = (symcount + 1) * (sizeof (asymbol *));
5880 if (symcount > 0)
5881 symtab_size -= sizeof (asymbol *);
5882
5883 return symtab_size;
5884 }
5885
5886 long
5887 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
5888 {
5889 long symcount;
5890 long symtab_size;
5891 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
5892
5893 if (elf_dynsymtab (abfd) == 0)
5894 {
5895 bfd_set_error (bfd_error_invalid_operation);
5896 return -1;
5897 }
5898
5899 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
5900 symtab_size = (symcount + 1) * (sizeof (asymbol *));
5901 if (symcount > 0)
5902 symtab_size -= sizeof (asymbol *);
5903
5904 return symtab_size;
5905 }
5906
5907 long
5908 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
5909 sec_ptr asect)
5910 {
5911 return (asect->reloc_count + 1) * sizeof (arelent *);
5912 }
5913
5914 /* Canonicalize the relocs. */
5915
5916 long
5917 _bfd_elf_canonicalize_reloc (bfd *abfd,
5918 sec_ptr section,
5919 arelent **relptr,
5920 asymbol **symbols)
5921 {
5922 arelent *tblptr;
5923 unsigned int i;
5924 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5925
5926 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
5927 return -1;
5928
5929 tblptr = section->relocation;
5930 for (i = 0; i < section->reloc_count; i++)
5931 *relptr++ = tblptr++;
5932
5933 *relptr = NULL;
5934
5935 return section->reloc_count;
5936 }
5937
5938 long
5939 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
5940 {
5941 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5942 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
5943
5944 if (symcount >= 0)
5945 bfd_get_symcount (abfd) = symcount;
5946 return symcount;
5947 }
5948
5949 long
5950 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
5951 asymbol **allocation)
5952 {
5953 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5954 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
5955
5956 if (symcount >= 0)
5957 bfd_get_dynamic_symcount (abfd) = symcount;
5958 return symcount;
5959 }
5960
5961 /* Return the size required for the dynamic reloc entries. Any loadable
5962 section that was actually installed in the BFD, and has type SHT_REL
5963 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
5964 dynamic reloc section. */
5965
5966 long
5967 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
5968 {
5969 long ret;
5970 asection *s;
5971
5972 if (elf_dynsymtab (abfd) == 0)
5973 {
5974 bfd_set_error (bfd_error_invalid_operation);
5975 return -1;
5976 }
5977
5978 ret = sizeof (arelent *);
5979 for (s = abfd->sections; s != NULL; s = s->next)
5980 if ((s->flags & SEC_LOAD) != 0
5981 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
5982 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
5983 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
5984 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
5985 * sizeof (arelent *));
5986
5987 return ret;
5988 }
5989
5990 /* Canonicalize the dynamic relocation entries. Note that we return the
5991 dynamic relocations as a single block, although they are actually
5992 associated with particular sections; the interface, which was
5993 designed for SunOS style shared libraries, expects that there is only
5994 one set of dynamic relocs. Any loadable section that was actually
5995 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
5996 dynamic symbol table, is considered to be a dynamic reloc section. */
5997
5998 long
5999 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
6000 arelent **storage,
6001 asymbol **syms)
6002 {
6003 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
6004 asection *s;
6005 long ret;
6006
6007 if (elf_dynsymtab (abfd) == 0)
6008 {
6009 bfd_set_error (bfd_error_invalid_operation);
6010 return -1;
6011 }
6012
6013 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
6014 ret = 0;
6015 for (s = abfd->sections; s != NULL; s = s->next)
6016 {
6017 if ((s->flags & SEC_LOAD) != 0
6018 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6019 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6020 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6021 {
6022 arelent *p;
6023 long count, i;
6024
6025 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
6026 return -1;
6027 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
6028 p = s->relocation;
6029 for (i = 0; i < count; i++)
6030 *storage++ = p++;
6031 ret += count;
6032 }
6033 }
6034
6035 *storage = NULL;
6036
6037 return ret;
6038 }
6039 \f
6040 /* Read in the version information. */
6041
6042 bfd_boolean
6043 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
6044 {
6045 bfd_byte *contents = NULL;
6046 bfd_size_type amt;
6047 unsigned int freeidx = 0;
6048
6049 if (elf_dynverref (abfd) != 0)
6050 {
6051 Elf_Internal_Shdr *hdr;
6052 Elf_External_Verneed *everneed;
6053 Elf_Internal_Verneed *iverneed;
6054 unsigned int i;
6055
6056 hdr = &elf_tdata (abfd)->dynverref_hdr;
6057
6058 amt = (bfd_size_type) hdr->sh_info * sizeof (Elf_Internal_Verneed);
6059 elf_tdata (abfd)->verref = bfd_zalloc (abfd, amt);
6060 if (elf_tdata (abfd)->verref == NULL)
6061 goto error_return;
6062
6063 elf_tdata (abfd)->cverrefs = hdr->sh_info;
6064
6065 contents = bfd_malloc (hdr->sh_size);
6066 if (contents == NULL)
6067 goto error_return;
6068 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6069 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6070 goto error_return;
6071
6072 everneed = (Elf_External_Verneed *) contents;
6073 iverneed = elf_tdata (abfd)->verref;
6074 for (i = 0; i < hdr->sh_info; i++, iverneed++)
6075 {
6076 Elf_External_Vernaux *evernaux;
6077 Elf_Internal_Vernaux *ivernaux;
6078 unsigned int j;
6079
6080 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
6081
6082 iverneed->vn_bfd = abfd;
6083
6084 iverneed->vn_filename =
6085 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6086 iverneed->vn_file);
6087 if (iverneed->vn_filename == NULL)
6088 goto error_return;
6089
6090 amt = iverneed->vn_cnt;
6091 amt *= sizeof (Elf_Internal_Vernaux);
6092 iverneed->vn_auxptr = bfd_alloc (abfd, amt);
6093
6094 evernaux = ((Elf_External_Vernaux *)
6095 ((bfd_byte *) everneed + iverneed->vn_aux));
6096 ivernaux = iverneed->vn_auxptr;
6097 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
6098 {
6099 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
6100
6101 ivernaux->vna_nodename =
6102 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6103 ivernaux->vna_name);
6104 if (ivernaux->vna_nodename == NULL)
6105 goto error_return;
6106
6107 if (j + 1 < iverneed->vn_cnt)
6108 ivernaux->vna_nextptr = ivernaux + 1;
6109 else
6110 ivernaux->vna_nextptr = NULL;
6111
6112 evernaux = ((Elf_External_Vernaux *)
6113 ((bfd_byte *) evernaux + ivernaux->vna_next));
6114
6115 if (ivernaux->vna_other > freeidx)
6116 freeidx = ivernaux->vna_other;
6117 }
6118
6119 if (i + 1 < hdr->sh_info)
6120 iverneed->vn_nextref = iverneed + 1;
6121 else
6122 iverneed->vn_nextref = NULL;
6123
6124 everneed = ((Elf_External_Verneed *)
6125 ((bfd_byte *) everneed + iverneed->vn_next));
6126 }
6127
6128 free (contents);
6129 contents = NULL;
6130 }
6131
6132 if (elf_dynverdef (abfd) != 0)
6133 {
6134 Elf_Internal_Shdr *hdr;
6135 Elf_External_Verdef *everdef;
6136 Elf_Internal_Verdef *iverdef;
6137 Elf_Internal_Verdef *iverdefarr;
6138 Elf_Internal_Verdef iverdefmem;
6139 unsigned int i;
6140 unsigned int maxidx;
6141
6142 hdr = &elf_tdata (abfd)->dynverdef_hdr;
6143
6144 contents = bfd_malloc (hdr->sh_size);
6145 if (contents == NULL)
6146 goto error_return;
6147 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6148 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6149 goto error_return;
6150
6151 /* We know the number of entries in the section but not the maximum
6152 index. Therefore we have to run through all entries and find
6153 the maximum. */
6154 everdef = (Elf_External_Verdef *) contents;
6155 maxidx = 0;
6156 for (i = 0; i < hdr->sh_info; ++i)
6157 {
6158 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6159
6160 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
6161 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
6162
6163 everdef = ((Elf_External_Verdef *)
6164 ((bfd_byte *) everdef + iverdefmem.vd_next));
6165 }
6166
6167 if (default_imported_symver)
6168 {
6169 if (freeidx > maxidx)
6170 maxidx = ++freeidx;
6171 else
6172 freeidx = ++maxidx;
6173 }
6174 amt = (bfd_size_type) maxidx * sizeof (Elf_Internal_Verdef);
6175 elf_tdata (abfd)->verdef = bfd_zalloc (abfd, amt);
6176 if (elf_tdata (abfd)->verdef == NULL)
6177 goto error_return;
6178
6179 elf_tdata (abfd)->cverdefs = maxidx;
6180
6181 everdef = (Elf_External_Verdef *) contents;
6182 iverdefarr = elf_tdata (abfd)->verdef;
6183 for (i = 0; i < hdr->sh_info; i++)
6184 {
6185 Elf_External_Verdaux *everdaux;
6186 Elf_Internal_Verdaux *iverdaux;
6187 unsigned int j;
6188
6189 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6190
6191 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
6192 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
6193
6194 iverdef->vd_bfd = abfd;
6195
6196 amt = (bfd_size_type) iverdef->vd_cnt * sizeof (Elf_Internal_Verdaux);
6197 iverdef->vd_auxptr = bfd_alloc (abfd, amt);
6198 if (iverdef->vd_auxptr == NULL)
6199 goto error_return;
6200
6201 everdaux = ((Elf_External_Verdaux *)
6202 ((bfd_byte *) everdef + iverdef->vd_aux));
6203 iverdaux = iverdef->vd_auxptr;
6204 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
6205 {
6206 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
6207
6208 iverdaux->vda_nodename =
6209 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6210 iverdaux->vda_name);
6211 if (iverdaux->vda_nodename == NULL)
6212 goto error_return;
6213
6214 if (j + 1 < iverdef->vd_cnt)
6215 iverdaux->vda_nextptr = iverdaux + 1;
6216 else
6217 iverdaux->vda_nextptr = NULL;
6218
6219 everdaux = ((Elf_External_Verdaux *)
6220 ((bfd_byte *) everdaux + iverdaux->vda_next));
6221 }
6222
6223 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
6224
6225 if (i + 1 < hdr->sh_info)
6226 iverdef->vd_nextdef = iverdef + 1;
6227 else
6228 iverdef->vd_nextdef = NULL;
6229
6230 everdef = ((Elf_External_Verdef *)
6231 ((bfd_byte *) everdef + iverdef->vd_next));
6232 }
6233
6234 free (contents);
6235 contents = NULL;
6236 }
6237 else if (default_imported_symver)
6238 {
6239 if (freeidx < 3)
6240 freeidx = 3;
6241 else
6242 freeidx++;
6243
6244 amt = (bfd_size_type) freeidx * sizeof (Elf_Internal_Verdef);
6245 elf_tdata (abfd)->verdef = bfd_zalloc (abfd, amt);
6246 if (elf_tdata (abfd)->verdef == NULL)
6247 goto error_return;
6248
6249 elf_tdata (abfd)->cverdefs = freeidx;
6250 }
6251
6252 /* Create a default version based on the soname. */
6253 if (default_imported_symver)
6254 {
6255 Elf_Internal_Verdef *iverdef;
6256 Elf_Internal_Verdaux *iverdaux;
6257
6258 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];;
6259
6260 iverdef->vd_version = VER_DEF_CURRENT;
6261 iverdef->vd_flags = 0;
6262 iverdef->vd_ndx = freeidx;
6263 iverdef->vd_cnt = 1;
6264
6265 iverdef->vd_bfd = abfd;
6266
6267 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
6268 if (iverdef->vd_nodename == NULL)
6269 goto error_return;
6270 iverdef->vd_nextdef = NULL;
6271 amt = (bfd_size_type) sizeof (Elf_Internal_Verdaux);
6272 iverdef->vd_auxptr = bfd_alloc (abfd, amt);
6273
6274 iverdaux = iverdef->vd_auxptr;
6275 iverdaux->vda_nodename = iverdef->vd_nodename;
6276 iverdaux->vda_nextptr = NULL;
6277 }
6278
6279 return TRUE;
6280
6281 error_return:
6282 if (contents != NULL)
6283 free (contents);
6284 return FALSE;
6285 }
6286 \f
6287 asymbol *
6288 _bfd_elf_make_empty_symbol (bfd *abfd)
6289 {
6290 elf_symbol_type *newsym;
6291 bfd_size_type amt = sizeof (elf_symbol_type);
6292
6293 newsym = bfd_zalloc (abfd, amt);
6294 if (!newsym)
6295 return NULL;
6296 else
6297 {
6298 newsym->symbol.the_bfd = abfd;
6299 return &newsym->symbol;
6300 }
6301 }
6302
6303 void
6304 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
6305 asymbol *symbol,
6306 symbol_info *ret)
6307 {
6308 bfd_symbol_info (symbol, ret);
6309 }
6310
6311 /* Return whether a symbol name implies a local symbol. Most targets
6312 use this function for the is_local_label_name entry point, but some
6313 override it. */
6314
6315 bfd_boolean
6316 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
6317 const char *name)
6318 {
6319 /* Normal local symbols start with ``.L''. */
6320 if (name[0] == '.' && name[1] == 'L')
6321 return TRUE;
6322
6323 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
6324 DWARF debugging symbols starting with ``..''. */
6325 if (name[0] == '.' && name[1] == '.')
6326 return TRUE;
6327
6328 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
6329 emitting DWARF debugging output. I suspect this is actually a
6330 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
6331 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
6332 underscore to be emitted on some ELF targets). For ease of use,
6333 we treat such symbols as local. */
6334 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
6335 return TRUE;
6336
6337 return FALSE;
6338 }
6339
6340 alent *
6341 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
6342 asymbol *symbol ATTRIBUTE_UNUSED)
6343 {
6344 abort ();
6345 return NULL;
6346 }
6347
6348 bfd_boolean
6349 _bfd_elf_set_arch_mach (bfd *abfd,
6350 enum bfd_architecture arch,
6351 unsigned long machine)
6352 {
6353 /* If this isn't the right architecture for this backend, and this
6354 isn't the generic backend, fail. */
6355 if (arch != get_elf_backend_data (abfd)->arch
6356 && arch != bfd_arch_unknown
6357 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
6358 return FALSE;
6359
6360 return bfd_default_set_arch_mach (abfd, arch, machine);
6361 }
6362
6363 /* Find the function to a particular section and offset,
6364 for error reporting. */
6365
6366 static bfd_boolean
6367 elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
6368 asection *section,
6369 asymbol **symbols,
6370 bfd_vma offset,
6371 const char **filename_ptr,
6372 const char **functionname_ptr)
6373 {
6374 const char *filename;
6375 asymbol *func, *file;
6376 bfd_vma low_func;
6377 asymbol **p;
6378 /* ??? Given multiple file symbols, it is impossible to reliably
6379 choose the right file name for global symbols. File symbols are
6380 local symbols, and thus all file symbols must sort before any
6381 global symbols. The ELF spec may be interpreted to say that a
6382 file symbol must sort before other local symbols, but currently
6383 ld -r doesn't do this. So, for ld -r output, it is possible to
6384 make a better choice of file name for local symbols by ignoring
6385 file symbols appearing after a given local symbol. */
6386 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
6387
6388 filename = NULL;
6389 func = NULL;
6390 file = NULL;
6391 low_func = 0;
6392 state = nothing_seen;
6393
6394 for (p = symbols; *p != NULL; p++)
6395 {
6396 elf_symbol_type *q;
6397
6398 q = (elf_symbol_type *) *p;
6399
6400 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
6401 {
6402 default:
6403 break;
6404 case STT_FILE:
6405 file = &q->symbol;
6406 if (state == symbol_seen)
6407 state = file_after_symbol_seen;
6408 continue;
6409 case STT_SECTION:
6410 continue;
6411 case STT_NOTYPE:
6412 case STT_FUNC:
6413 if (bfd_get_section (&q->symbol) == section
6414 && q->symbol.value >= low_func
6415 && q->symbol.value <= offset)
6416 {
6417 func = (asymbol *) q;
6418 low_func = q->symbol.value;
6419 if (file == NULL)
6420 filename = NULL;
6421 else if (ELF_ST_BIND (q->internal_elf_sym.st_info) != STB_LOCAL
6422 && state == file_after_symbol_seen)
6423 filename = NULL;
6424 else
6425 filename = bfd_asymbol_name (file);
6426 }
6427 break;
6428 }
6429 if (state == nothing_seen)
6430 state = symbol_seen;
6431 }
6432
6433 if (func == NULL)
6434 return FALSE;
6435
6436 if (filename_ptr)
6437 *filename_ptr = filename;
6438 if (functionname_ptr)
6439 *functionname_ptr = bfd_asymbol_name (func);
6440
6441 return TRUE;
6442 }
6443
6444 /* Find the nearest line to a particular section and offset,
6445 for error reporting. */
6446
6447 bfd_boolean
6448 _bfd_elf_find_nearest_line (bfd *abfd,
6449 asection *section,
6450 asymbol **symbols,
6451 bfd_vma offset,
6452 const char **filename_ptr,
6453 const char **functionname_ptr,
6454 unsigned int *line_ptr)
6455 {
6456 bfd_boolean found;
6457
6458 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
6459 filename_ptr, functionname_ptr,
6460 line_ptr))
6461 {
6462 if (!*functionname_ptr)
6463 elf_find_function (abfd, section, symbols, offset,
6464 *filename_ptr ? NULL : filename_ptr,
6465 functionname_ptr);
6466
6467 return TRUE;
6468 }
6469
6470 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
6471 filename_ptr, functionname_ptr,
6472 line_ptr, 0,
6473 &elf_tdata (abfd)->dwarf2_find_line_info))
6474 {
6475 if (!*functionname_ptr)
6476 elf_find_function (abfd, section, symbols, offset,
6477 *filename_ptr ? NULL : filename_ptr,
6478 functionname_ptr);
6479
6480 return TRUE;
6481 }
6482
6483 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
6484 &found, filename_ptr,
6485 functionname_ptr, line_ptr,
6486 &elf_tdata (abfd)->line_info))
6487 return FALSE;
6488 if (found && (*functionname_ptr || *line_ptr))
6489 return TRUE;
6490
6491 if (symbols == NULL)
6492 return FALSE;
6493
6494 if (! elf_find_function (abfd, section, symbols, offset,
6495 filename_ptr, functionname_ptr))
6496 return FALSE;
6497
6498 *line_ptr = 0;
6499 return TRUE;
6500 }
6501
6502 int
6503 _bfd_elf_sizeof_headers (bfd *abfd, bfd_boolean reloc)
6504 {
6505 int ret;
6506
6507 ret = get_elf_backend_data (abfd)->s->sizeof_ehdr;
6508 if (! reloc)
6509 ret += get_program_header_size (abfd);
6510 return ret;
6511 }
6512
6513 bfd_boolean
6514 _bfd_elf_set_section_contents (bfd *abfd,
6515 sec_ptr section,
6516 const void *location,
6517 file_ptr offset,
6518 bfd_size_type count)
6519 {
6520 Elf_Internal_Shdr *hdr;
6521 bfd_signed_vma pos;
6522
6523 if (! abfd->output_has_begun
6524 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
6525 return FALSE;
6526
6527 hdr = &elf_section_data (section)->this_hdr;
6528 pos = hdr->sh_offset + offset;
6529 if (bfd_seek (abfd, pos, SEEK_SET) != 0
6530 || bfd_bwrite (location, count, abfd) != count)
6531 return FALSE;
6532
6533 return TRUE;
6534 }
6535
6536 void
6537 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
6538 arelent *cache_ptr ATTRIBUTE_UNUSED,
6539 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
6540 {
6541 abort ();
6542 }
6543
6544 /* Try to convert a non-ELF reloc into an ELF one. */
6545
6546 bfd_boolean
6547 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
6548 {
6549 /* Check whether we really have an ELF howto. */
6550
6551 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
6552 {
6553 bfd_reloc_code_real_type code;
6554 reloc_howto_type *howto;
6555
6556 /* Alien reloc: Try to determine its type to replace it with an
6557 equivalent ELF reloc. */
6558
6559 if (areloc->howto->pc_relative)
6560 {
6561 switch (areloc->howto->bitsize)
6562 {
6563 case 8:
6564 code = BFD_RELOC_8_PCREL;
6565 break;
6566 case 12:
6567 code = BFD_RELOC_12_PCREL;
6568 break;
6569 case 16:
6570 code = BFD_RELOC_16_PCREL;
6571 break;
6572 case 24:
6573 code = BFD_RELOC_24_PCREL;
6574 break;
6575 case 32:
6576 code = BFD_RELOC_32_PCREL;
6577 break;
6578 case 64:
6579 code = BFD_RELOC_64_PCREL;
6580 break;
6581 default:
6582 goto fail;
6583 }
6584
6585 howto = bfd_reloc_type_lookup (abfd, code);
6586
6587 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
6588 {
6589 if (howto->pcrel_offset)
6590 areloc->addend += areloc->address;
6591 else
6592 areloc->addend -= areloc->address; /* addend is unsigned!! */
6593 }
6594 }
6595 else
6596 {
6597 switch (areloc->howto->bitsize)
6598 {
6599 case 8:
6600 code = BFD_RELOC_8;
6601 break;
6602 case 14:
6603 code = BFD_RELOC_14;
6604 break;
6605 case 16:
6606 code = BFD_RELOC_16;
6607 break;
6608 case 26:
6609 code = BFD_RELOC_26;
6610 break;
6611 case 32:
6612 code = BFD_RELOC_32;
6613 break;
6614 case 64:
6615 code = BFD_RELOC_64;
6616 break;
6617 default:
6618 goto fail;
6619 }
6620
6621 howto = bfd_reloc_type_lookup (abfd, code);
6622 }
6623
6624 if (howto)
6625 areloc->howto = howto;
6626 else
6627 goto fail;
6628 }
6629
6630 return TRUE;
6631
6632 fail:
6633 (*_bfd_error_handler)
6634 (_("%B: unsupported relocation type %s"),
6635 abfd, areloc->howto->name);
6636 bfd_set_error (bfd_error_bad_value);
6637 return FALSE;
6638 }
6639
6640 bfd_boolean
6641 _bfd_elf_close_and_cleanup (bfd *abfd)
6642 {
6643 if (bfd_get_format (abfd) == bfd_object)
6644 {
6645 if (elf_shstrtab (abfd) != NULL)
6646 _bfd_elf_strtab_free (elf_shstrtab (abfd));
6647 }
6648
6649 return _bfd_generic_close_and_cleanup (abfd);
6650 }
6651
6652 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
6653 in the relocation's offset. Thus we cannot allow any sort of sanity
6654 range-checking to interfere. There is nothing else to do in processing
6655 this reloc. */
6656
6657 bfd_reloc_status_type
6658 _bfd_elf_rel_vtable_reloc_fn
6659 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
6660 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
6661 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
6662 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
6663 {
6664 return bfd_reloc_ok;
6665 }
6666 \f
6667 /* Elf core file support. Much of this only works on native
6668 toolchains, since we rely on knowing the
6669 machine-dependent procfs structure in order to pick
6670 out details about the corefile. */
6671
6672 #ifdef HAVE_SYS_PROCFS_H
6673 # include <sys/procfs.h>
6674 #endif
6675
6676 /* FIXME: this is kinda wrong, but it's what gdb wants. */
6677
6678 static int
6679 elfcore_make_pid (bfd *abfd)
6680 {
6681 return ((elf_tdata (abfd)->core_lwpid << 16)
6682 + (elf_tdata (abfd)->core_pid));
6683 }
6684
6685 /* If there isn't a section called NAME, make one, using
6686 data from SECT. Note, this function will generate a
6687 reference to NAME, so you shouldn't deallocate or
6688 overwrite it. */
6689
6690 static bfd_boolean
6691 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
6692 {
6693 asection *sect2;
6694
6695 if (bfd_get_section_by_name (abfd, name) != NULL)
6696 return TRUE;
6697
6698 sect2 = bfd_make_section (abfd, name);
6699 if (sect2 == NULL)
6700 return FALSE;
6701
6702 sect2->size = sect->size;
6703 sect2->filepos = sect->filepos;
6704 sect2->flags = sect->flags;
6705 sect2->alignment_power = sect->alignment_power;
6706 return TRUE;
6707 }
6708
6709 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
6710 actually creates up to two pseudosections:
6711 - For the single-threaded case, a section named NAME, unless
6712 such a section already exists.
6713 - For the multi-threaded case, a section named "NAME/PID", where
6714 PID is elfcore_make_pid (abfd).
6715 Both pseudosections have identical contents. */
6716 bfd_boolean
6717 _bfd_elfcore_make_pseudosection (bfd *abfd,
6718 char *name,
6719 size_t size,
6720 ufile_ptr filepos)
6721 {
6722 char buf[100];
6723 char *threaded_name;
6724 size_t len;
6725 asection *sect;
6726
6727 /* Build the section name. */
6728
6729 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
6730 len = strlen (buf) + 1;
6731 threaded_name = bfd_alloc (abfd, len);
6732 if (threaded_name == NULL)
6733 return FALSE;
6734 memcpy (threaded_name, buf, len);
6735
6736 sect = bfd_make_section_anyway (abfd, threaded_name);
6737 if (sect == NULL)
6738 return FALSE;
6739 sect->size = size;
6740 sect->filepos = filepos;
6741 sect->flags = SEC_HAS_CONTENTS;
6742 sect->alignment_power = 2;
6743
6744 return elfcore_maybe_make_sect (abfd, name, sect);
6745 }
6746
6747 /* prstatus_t exists on:
6748 solaris 2.5+
6749 linux 2.[01] + glibc
6750 unixware 4.2
6751 */
6752
6753 #if defined (HAVE_PRSTATUS_T)
6754
6755 static bfd_boolean
6756 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
6757 {
6758 size_t size;
6759 int offset;
6760
6761 if (note->descsz == sizeof (prstatus_t))
6762 {
6763 prstatus_t prstat;
6764
6765 size = sizeof (prstat.pr_reg);
6766 offset = offsetof (prstatus_t, pr_reg);
6767 memcpy (&prstat, note->descdata, sizeof (prstat));
6768
6769 /* Do not overwrite the core signal if it
6770 has already been set by another thread. */
6771 if (elf_tdata (abfd)->core_signal == 0)
6772 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
6773 elf_tdata (abfd)->core_pid = prstat.pr_pid;
6774
6775 /* pr_who exists on:
6776 solaris 2.5+
6777 unixware 4.2
6778 pr_who doesn't exist on:
6779 linux 2.[01]
6780 */
6781 #if defined (HAVE_PRSTATUS_T_PR_WHO)
6782 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
6783 #endif
6784 }
6785 #if defined (HAVE_PRSTATUS32_T)
6786 else if (note->descsz == sizeof (prstatus32_t))
6787 {
6788 /* 64-bit host, 32-bit corefile */
6789 prstatus32_t prstat;
6790
6791 size = sizeof (prstat.pr_reg);
6792 offset = offsetof (prstatus32_t, pr_reg);
6793 memcpy (&prstat, note->descdata, sizeof (prstat));
6794
6795 /* Do not overwrite the core signal if it
6796 has already been set by another thread. */
6797 if (elf_tdata (abfd)->core_signal == 0)
6798 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
6799 elf_tdata (abfd)->core_pid = prstat.pr_pid;
6800
6801 /* pr_who exists on:
6802 solaris 2.5+
6803 unixware 4.2
6804 pr_who doesn't exist on:
6805 linux 2.[01]
6806 */
6807 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
6808 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
6809 #endif
6810 }
6811 #endif /* HAVE_PRSTATUS32_T */
6812 else
6813 {
6814 /* Fail - we don't know how to handle any other
6815 note size (ie. data object type). */
6816 return TRUE;
6817 }
6818
6819 /* Make a ".reg/999" section and a ".reg" section. */
6820 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
6821 size, note->descpos + offset);
6822 }
6823 #endif /* defined (HAVE_PRSTATUS_T) */
6824
6825 /* Create a pseudosection containing the exact contents of NOTE. */
6826 static bfd_boolean
6827 elfcore_make_note_pseudosection (bfd *abfd,
6828 char *name,
6829 Elf_Internal_Note *note)
6830 {
6831 return _bfd_elfcore_make_pseudosection (abfd, name,
6832 note->descsz, note->descpos);
6833 }
6834
6835 /* There isn't a consistent prfpregset_t across platforms,
6836 but it doesn't matter, because we don't have to pick this
6837 data structure apart. */
6838
6839 static bfd_boolean
6840 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
6841 {
6842 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
6843 }
6844
6845 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
6846 type of 5 (NT_PRXFPREG). Just include the whole note's contents
6847 literally. */
6848
6849 static bfd_boolean
6850 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
6851 {
6852 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
6853 }
6854
6855 #if defined (HAVE_PRPSINFO_T)
6856 typedef prpsinfo_t elfcore_psinfo_t;
6857 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
6858 typedef prpsinfo32_t elfcore_psinfo32_t;
6859 #endif
6860 #endif
6861
6862 #if defined (HAVE_PSINFO_T)
6863 typedef psinfo_t elfcore_psinfo_t;
6864 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
6865 typedef psinfo32_t elfcore_psinfo32_t;
6866 #endif
6867 #endif
6868
6869 /* return a malloc'ed copy of a string at START which is at
6870 most MAX bytes long, possibly without a terminating '\0'.
6871 the copy will always have a terminating '\0'. */
6872
6873 char *
6874 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
6875 {
6876 char *dups;
6877 char *end = memchr (start, '\0', max);
6878 size_t len;
6879
6880 if (end == NULL)
6881 len = max;
6882 else
6883 len = end - start;
6884
6885 dups = bfd_alloc (abfd, len + 1);
6886 if (dups == NULL)
6887 return NULL;
6888
6889 memcpy (dups, start, len);
6890 dups[len] = '\0';
6891
6892 return dups;
6893 }
6894
6895 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
6896 static bfd_boolean
6897 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
6898 {
6899 if (note->descsz == sizeof (elfcore_psinfo_t))
6900 {
6901 elfcore_psinfo_t psinfo;
6902
6903 memcpy (&psinfo, note->descdata, sizeof (psinfo));
6904
6905 elf_tdata (abfd)->core_program
6906 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
6907 sizeof (psinfo.pr_fname));
6908
6909 elf_tdata (abfd)->core_command
6910 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
6911 sizeof (psinfo.pr_psargs));
6912 }
6913 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
6914 else if (note->descsz == sizeof (elfcore_psinfo32_t))
6915 {
6916 /* 64-bit host, 32-bit corefile */
6917 elfcore_psinfo32_t psinfo;
6918
6919 memcpy (&psinfo, note->descdata, sizeof (psinfo));
6920
6921 elf_tdata (abfd)->core_program
6922 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
6923 sizeof (psinfo.pr_fname));
6924
6925 elf_tdata (abfd)->core_command
6926 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
6927 sizeof (psinfo.pr_psargs));
6928 }
6929 #endif
6930
6931 else
6932 {
6933 /* Fail - we don't know how to handle any other
6934 note size (ie. data object type). */
6935 return TRUE;
6936 }
6937
6938 /* Note that for some reason, a spurious space is tacked
6939 onto the end of the args in some (at least one anyway)
6940 implementations, so strip it off if it exists. */
6941
6942 {
6943 char *command = elf_tdata (abfd)->core_command;
6944 int n = strlen (command);
6945
6946 if (0 < n && command[n - 1] == ' ')
6947 command[n - 1] = '\0';
6948 }
6949
6950 return TRUE;
6951 }
6952 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
6953
6954 #if defined (HAVE_PSTATUS_T)
6955 static bfd_boolean
6956 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
6957 {
6958 if (note->descsz == sizeof (pstatus_t)
6959 #if defined (HAVE_PXSTATUS_T)
6960 || note->descsz == sizeof (pxstatus_t)
6961 #endif
6962 )
6963 {
6964 pstatus_t pstat;
6965
6966 memcpy (&pstat, note->descdata, sizeof (pstat));
6967
6968 elf_tdata (abfd)->core_pid = pstat.pr_pid;
6969 }
6970 #if defined (HAVE_PSTATUS32_T)
6971 else if (note->descsz == sizeof (pstatus32_t))
6972 {
6973 /* 64-bit host, 32-bit corefile */
6974 pstatus32_t pstat;
6975
6976 memcpy (&pstat, note->descdata, sizeof (pstat));
6977
6978 elf_tdata (abfd)->core_pid = pstat.pr_pid;
6979 }
6980 #endif
6981 /* Could grab some more details from the "representative"
6982 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
6983 NT_LWPSTATUS note, presumably. */
6984
6985 return TRUE;
6986 }
6987 #endif /* defined (HAVE_PSTATUS_T) */
6988
6989 #if defined (HAVE_LWPSTATUS_T)
6990 static bfd_boolean
6991 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
6992 {
6993 lwpstatus_t lwpstat;
6994 char buf[100];
6995 char *name;
6996 size_t len;
6997 asection *sect;
6998
6999 if (note->descsz != sizeof (lwpstat)
7000 #if defined (HAVE_LWPXSTATUS_T)
7001 && note->descsz != sizeof (lwpxstatus_t)
7002 #endif
7003 )
7004 return TRUE;
7005
7006 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
7007
7008 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
7009 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
7010
7011 /* Make a ".reg/999" section. */
7012
7013 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
7014 len = strlen (buf) + 1;
7015 name = bfd_alloc (abfd, len);
7016 if (name == NULL)
7017 return FALSE;
7018 memcpy (name, buf, len);
7019
7020 sect = bfd_make_section_anyway (abfd, name);
7021 if (sect == NULL)
7022 return FALSE;
7023
7024 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7025 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
7026 sect->filepos = note->descpos
7027 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
7028 #endif
7029
7030 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7031 sect->size = sizeof (lwpstat.pr_reg);
7032 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
7033 #endif
7034
7035 sect->flags = SEC_HAS_CONTENTS;
7036 sect->alignment_power = 2;
7037
7038 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
7039 return FALSE;
7040
7041 /* Make a ".reg2/999" section */
7042
7043 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
7044 len = strlen (buf) + 1;
7045 name = bfd_alloc (abfd, len);
7046 if (name == NULL)
7047 return FALSE;
7048 memcpy (name, buf, len);
7049
7050 sect = bfd_make_section_anyway (abfd, name);
7051 if (sect == NULL)
7052 return FALSE;
7053
7054 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7055 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
7056 sect->filepos = note->descpos
7057 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
7058 #endif
7059
7060 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
7061 sect->size = sizeof (lwpstat.pr_fpreg);
7062 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
7063 #endif
7064
7065 sect->flags = SEC_HAS_CONTENTS;
7066 sect->alignment_power = 2;
7067
7068 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
7069 }
7070 #endif /* defined (HAVE_LWPSTATUS_T) */
7071
7072 #if defined (HAVE_WIN32_PSTATUS_T)
7073 static bfd_boolean
7074 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
7075 {
7076 char buf[30];
7077 char *name;
7078 size_t len;
7079 asection *sect;
7080 win32_pstatus_t pstatus;
7081
7082 if (note->descsz < sizeof (pstatus))
7083 return TRUE;
7084
7085 memcpy (&pstatus, note->descdata, sizeof (pstatus));
7086
7087 switch (pstatus.data_type)
7088 {
7089 case NOTE_INFO_PROCESS:
7090 /* FIXME: need to add ->core_command. */
7091 elf_tdata (abfd)->core_signal = pstatus.data.process_info.signal;
7092 elf_tdata (abfd)->core_pid = pstatus.data.process_info.pid;
7093 break;
7094
7095 case NOTE_INFO_THREAD:
7096 /* Make a ".reg/999" section. */
7097 sprintf (buf, ".reg/%ld", (long) pstatus.data.thread_info.tid);
7098
7099 len = strlen (buf) + 1;
7100 name = bfd_alloc (abfd, len);
7101 if (name == NULL)
7102 return FALSE;
7103
7104 memcpy (name, buf, len);
7105
7106 sect = bfd_make_section_anyway (abfd, name);
7107 if (sect == NULL)
7108 return FALSE;
7109
7110 sect->size = sizeof (pstatus.data.thread_info.thread_context);
7111 sect->filepos = (note->descpos
7112 + offsetof (struct win32_pstatus,
7113 data.thread_info.thread_context));
7114 sect->flags = SEC_HAS_CONTENTS;
7115 sect->alignment_power = 2;
7116
7117 if (pstatus.data.thread_info.is_active_thread)
7118 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
7119 return FALSE;
7120 break;
7121
7122 case NOTE_INFO_MODULE:
7123 /* Make a ".module/xxxxxxxx" section. */
7124 sprintf (buf, ".module/%08lx",
7125 (long) pstatus.data.module_info.base_address);
7126
7127 len = strlen (buf) + 1;
7128 name = bfd_alloc (abfd, len);
7129 if (name == NULL)
7130 return FALSE;
7131
7132 memcpy (name, buf, len);
7133
7134 sect = bfd_make_section_anyway (abfd, name);
7135
7136 if (sect == NULL)
7137 return FALSE;
7138
7139 sect->size = note->descsz;
7140 sect->filepos = note->descpos;
7141 sect->flags = SEC_HAS_CONTENTS;
7142 sect->alignment_power = 2;
7143 break;
7144
7145 default:
7146 return TRUE;
7147 }
7148
7149 return TRUE;
7150 }
7151 #endif /* HAVE_WIN32_PSTATUS_T */
7152
7153 static bfd_boolean
7154 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
7155 {
7156 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7157
7158 switch (note->type)
7159 {
7160 default:
7161 return TRUE;
7162
7163 case NT_PRSTATUS:
7164 if (bed->elf_backend_grok_prstatus)
7165 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
7166 return TRUE;
7167 #if defined (HAVE_PRSTATUS_T)
7168 return elfcore_grok_prstatus (abfd, note);
7169 #else
7170 return TRUE;
7171 #endif
7172
7173 #if defined (HAVE_PSTATUS_T)
7174 case NT_PSTATUS:
7175 return elfcore_grok_pstatus (abfd, note);
7176 #endif
7177
7178 #if defined (HAVE_LWPSTATUS_T)
7179 case NT_LWPSTATUS:
7180 return elfcore_grok_lwpstatus (abfd, note);
7181 #endif
7182
7183 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
7184 return elfcore_grok_prfpreg (abfd, note);
7185
7186 #if defined (HAVE_WIN32_PSTATUS_T)
7187 case NT_WIN32PSTATUS:
7188 return elfcore_grok_win32pstatus (abfd, note);
7189 #endif
7190
7191 case NT_PRXFPREG: /* Linux SSE extension */
7192 if (note->namesz == 6
7193 && strcmp (note->namedata, "LINUX") == 0)
7194 return elfcore_grok_prxfpreg (abfd, note);
7195 else
7196 return TRUE;
7197
7198 case NT_PRPSINFO:
7199 case NT_PSINFO:
7200 if (bed->elf_backend_grok_psinfo)
7201 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
7202 return TRUE;
7203 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7204 return elfcore_grok_psinfo (abfd, note);
7205 #else
7206 return TRUE;
7207 #endif
7208
7209 case NT_AUXV:
7210 {
7211 asection *sect = bfd_make_section_anyway (abfd, ".auxv");
7212
7213 if (sect == NULL)
7214 return FALSE;
7215 sect->size = note->descsz;
7216 sect->filepos = note->descpos;
7217 sect->flags = SEC_HAS_CONTENTS;
7218 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
7219
7220 return TRUE;
7221 }
7222 }
7223 }
7224
7225 static bfd_boolean
7226 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
7227 {
7228 char *cp;
7229
7230 cp = strchr (note->namedata, '@');
7231 if (cp != NULL)
7232 {
7233 *lwpidp = atoi(cp + 1);
7234 return TRUE;
7235 }
7236 return FALSE;
7237 }
7238
7239 static bfd_boolean
7240 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
7241 {
7242
7243 /* Signal number at offset 0x08. */
7244 elf_tdata (abfd)->core_signal
7245 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
7246
7247 /* Process ID at offset 0x50. */
7248 elf_tdata (abfd)->core_pid
7249 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
7250
7251 /* Command name at 0x7c (max 32 bytes, including nul). */
7252 elf_tdata (abfd)->core_command
7253 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
7254
7255 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
7256 note);
7257 }
7258
7259 static bfd_boolean
7260 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
7261 {
7262 int lwp;
7263
7264 if (elfcore_netbsd_get_lwpid (note, &lwp))
7265 elf_tdata (abfd)->core_lwpid = lwp;
7266
7267 if (note->type == NT_NETBSDCORE_PROCINFO)
7268 {
7269 /* NetBSD-specific core "procinfo". Note that we expect to
7270 find this note before any of the others, which is fine,
7271 since the kernel writes this note out first when it
7272 creates a core file. */
7273
7274 return elfcore_grok_netbsd_procinfo (abfd, note);
7275 }
7276
7277 /* As of Jan 2002 there are no other machine-independent notes
7278 defined for NetBSD core files. If the note type is less
7279 than the start of the machine-dependent note types, we don't
7280 understand it. */
7281
7282 if (note->type < NT_NETBSDCORE_FIRSTMACH)
7283 return TRUE;
7284
7285
7286 switch (bfd_get_arch (abfd))
7287 {
7288 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
7289 PT_GETFPREGS == mach+2. */
7290
7291 case bfd_arch_alpha:
7292 case bfd_arch_sparc:
7293 switch (note->type)
7294 {
7295 case NT_NETBSDCORE_FIRSTMACH+0:
7296 return elfcore_make_note_pseudosection (abfd, ".reg", note);
7297
7298 case NT_NETBSDCORE_FIRSTMACH+2:
7299 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7300
7301 default:
7302 return TRUE;
7303 }
7304
7305 /* On all other arch's, PT_GETREGS == mach+1 and
7306 PT_GETFPREGS == mach+3. */
7307
7308 default:
7309 switch (note->type)
7310 {
7311 case NT_NETBSDCORE_FIRSTMACH+1:
7312 return elfcore_make_note_pseudosection (abfd, ".reg", note);
7313
7314 case NT_NETBSDCORE_FIRSTMACH+3:
7315 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7316
7317 default:
7318 return TRUE;
7319 }
7320 }
7321 /* NOTREACHED */
7322 }
7323
7324 static bfd_boolean
7325 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, pid_t *tid)
7326 {
7327 void *ddata = note->descdata;
7328 char buf[100];
7329 char *name;
7330 asection *sect;
7331 short sig;
7332 unsigned flags;
7333
7334 /* nto_procfs_status 'pid' field is at offset 0. */
7335 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
7336
7337 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
7338 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
7339
7340 /* nto_procfs_status 'flags' field is at offset 8. */
7341 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
7342
7343 /* nto_procfs_status 'what' field is at offset 14. */
7344 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
7345 {
7346 elf_tdata (abfd)->core_signal = sig;
7347 elf_tdata (abfd)->core_lwpid = *tid;
7348 }
7349
7350 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
7351 do not come from signals so we make sure we set the current
7352 thread just in case. */
7353 if (flags & 0x00000080)
7354 elf_tdata (abfd)->core_lwpid = *tid;
7355
7356 /* Make a ".qnx_core_status/%d" section. */
7357 sprintf (buf, ".qnx_core_status/%ld", (long) *tid);
7358
7359 name = bfd_alloc (abfd, strlen (buf) + 1);
7360 if (name == NULL)
7361 return FALSE;
7362 strcpy (name, buf);
7363
7364 sect = bfd_make_section_anyway (abfd, name);
7365 if (sect == NULL)
7366 return FALSE;
7367
7368 sect->size = note->descsz;
7369 sect->filepos = note->descpos;
7370 sect->flags = SEC_HAS_CONTENTS;
7371 sect->alignment_power = 2;
7372
7373 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
7374 }
7375
7376 static bfd_boolean
7377 elfcore_grok_nto_regs (bfd *abfd,
7378 Elf_Internal_Note *note,
7379 pid_t tid,
7380 char *base)
7381 {
7382 char buf[100];
7383 char *name;
7384 asection *sect;
7385
7386 /* Make a "(base)/%d" section. */
7387 sprintf (buf, "%s/%ld", base, (long) tid);
7388
7389 name = bfd_alloc (abfd, strlen (buf) + 1);
7390 if (name == NULL)
7391 return FALSE;
7392 strcpy (name, buf);
7393
7394 sect = bfd_make_section_anyway (abfd, name);
7395 if (sect == NULL)
7396 return FALSE;
7397
7398 sect->size = note->descsz;
7399 sect->filepos = note->descpos;
7400 sect->flags = SEC_HAS_CONTENTS;
7401 sect->alignment_power = 2;
7402
7403 /* This is the current thread. */
7404 if (elf_tdata (abfd)->core_lwpid == tid)
7405 return elfcore_maybe_make_sect (abfd, base, sect);
7406
7407 return TRUE;
7408 }
7409
7410 #define BFD_QNT_CORE_INFO 7
7411 #define BFD_QNT_CORE_STATUS 8
7412 #define BFD_QNT_CORE_GREG 9
7413 #define BFD_QNT_CORE_FPREG 10
7414
7415 static bfd_boolean
7416 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
7417 {
7418 /* Every GREG section has a STATUS section before it. Store the
7419 tid from the previous call to pass down to the next gregs
7420 function. */
7421 static pid_t tid = 1;
7422
7423 switch (note->type)
7424 {
7425 case BFD_QNT_CORE_INFO:
7426 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
7427 case BFD_QNT_CORE_STATUS:
7428 return elfcore_grok_nto_status (abfd, note, &tid);
7429 case BFD_QNT_CORE_GREG:
7430 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
7431 case BFD_QNT_CORE_FPREG:
7432 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
7433 default:
7434 return TRUE;
7435 }
7436 }
7437
7438 /* Function: elfcore_write_note
7439
7440 Inputs:
7441 buffer to hold note
7442 name of note
7443 type of note
7444 data for note
7445 size of data for note
7446
7447 Return:
7448 End of buffer containing note. */
7449
7450 char *
7451 elfcore_write_note (bfd *abfd,
7452 char *buf,
7453 int *bufsiz,
7454 const char *name,
7455 int type,
7456 const void *input,
7457 int size)
7458 {
7459 Elf_External_Note *xnp;
7460 size_t namesz;
7461 size_t pad;
7462 size_t newspace;
7463 char *p, *dest;
7464
7465 namesz = 0;
7466 pad = 0;
7467 if (name != NULL)
7468 {
7469 const struct elf_backend_data *bed;
7470
7471 namesz = strlen (name) + 1;
7472 bed = get_elf_backend_data (abfd);
7473 pad = -namesz & ((1 << bed->s->log_file_align) - 1);
7474 }
7475
7476 newspace = 12 + namesz + pad + size;
7477
7478 p = realloc (buf, *bufsiz + newspace);
7479 dest = p + *bufsiz;
7480 *bufsiz += newspace;
7481 xnp = (Elf_External_Note *) dest;
7482 H_PUT_32 (abfd, namesz, xnp->namesz);
7483 H_PUT_32 (abfd, size, xnp->descsz);
7484 H_PUT_32 (abfd, type, xnp->type);
7485 dest = xnp->name;
7486 if (name != NULL)
7487 {
7488 memcpy (dest, name, namesz);
7489 dest += namesz;
7490 while (pad != 0)
7491 {
7492 *dest++ = '\0';
7493 --pad;
7494 }
7495 }
7496 memcpy (dest, input, size);
7497 return p;
7498 }
7499
7500 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7501 char *
7502 elfcore_write_prpsinfo (bfd *abfd,
7503 char *buf,
7504 int *bufsiz,
7505 const char *fname,
7506 const char *psargs)
7507 {
7508 int note_type;
7509 char *note_name = "CORE";
7510
7511 #if defined (HAVE_PSINFO_T)
7512 psinfo_t data;
7513 note_type = NT_PSINFO;
7514 #else
7515 prpsinfo_t data;
7516 note_type = NT_PRPSINFO;
7517 #endif
7518
7519 memset (&data, 0, sizeof (data));
7520 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
7521 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
7522 return elfcore_write_note (abfd, buf, bufsiz,
7523 note_name, note_type, &data, sizeof (data));
7524 }
7525 #endif /* PSINFO_T or PRPSINFO_T */
7526
7527 #if defined (HAVE_PRSTATUS_T)
7528 char *
7529 elfcore_write_prstatus (bfd *abfd,
7530 char *buf,
7531 int *bufsiz,
7532 long pid,
7533 int cursig,
7534 const void *gregs)
7535 {
7536 prstatus_t prstat;
7537 char *note_name = "CORE";
7538
7539 memset (&prstat, 0, sizeof (prstat));
7540 prstat.pr_pid = pid;
7541 prstat.pr_cursig = cursig;
7542 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
7543 return elfcore_write_note (abfd, buf, bufsiz,
7544 note_name, NT_PRSTATUS, &prstat, sizeof (prstat));
7545 }
7546 #endif /* HAVE_PRSTATUS_T */
7547
7548 #if defined (HAVE_LWPSTATUS_T)
7549 char *
7550 elfcore_write_lwpstatus (bfd *abfd,
7551 char *buf,
7552 int *bufsiz,
7553 long pid,
7554 int cursig,
7555 const void *gregs)
7556 {
7557 lwpstatus_t lwpstat;
7558 char *note_name = "CORE";
7559
7560 memset (&lwpstat, 0, sizeof (lwpstat));
7561 lwpstat.pr_lwpid = pid >> 16;
7562 lwpstat.pr_cursig = cursig;
7563 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7564 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
7565 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7566 #if !defined(gregs)
7567 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
7568 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
7569 #else
7570 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
7571 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
7572 #endif
7573 #endif
7574 return elfcore_write_note (abfd, buf, bufsiz, note_name,
7575 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
7576 }
7577 #endif /* HAVE_LWPSTATUS_T */
7578
7579 #if defined (HAVE_PSTATUS_T)
7580 char *
7581 elfcore_write_pstatus (bfd *abfd,
7582 char *buf,
7583 int *bufsiz,
7584 long pid,
7585 int cursig,
7586 const void *gregs)
7587 {
7588 pstatus_t pstat;
7589 char *note_name = "CORE";
7590
7591 memset (&pstat, 0, sizeof (pstat));
7592 pstat.pr_pid = pid & 0xffff;
7593 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
7594 NT_PSTATUS, &pstat, sizeof (pstat));
7595 return buf;
7596 }
7597 #endif /* HAVE_PSTATUS_T */
7598
7599 char *
7600 elfcore_write_prfpreg (bfd *abfd,
7601 char *buf,
7602 int *bufsiz,
7603 const void *fpregs,
7604 int size)
7605 {
7606 char *note_name = "CORE";
7607 return elfcore_write_note (abfd, buf, bufsiz,
7608 note_name, NT_FPREGSET, fpregs, size);
7609 }
7610
7611 char *
7612 elfcore_write_prxfpreg (bfd *abfd,
7613 char *buf,
7614 int *bufsiz,
7615 const void *xfpregs,
7616 int size)
7617 {
7618 char *note_name = "LINUX";
7619 return elfcore_write_note (abfd, buf, bufsiz,
7620 note_name, NT_PRXFPREG, xfpregs, size);
7621 }
7622
7623 static bfd_boolean
7624 elfcore_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
7625 {
7626 char *buf;
7627 char *p;
7628
7629 if (size <= 0)
7630 return TRUE;
7631
7632 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
7633 return FALSE;
7634
7635 buf = bfd_malloc (size);
7636 if (buf == NULL)
7637 return FALSE;
7638
7639 if (bfd_bread (buf, size, abfd) != size)
7640 {
7641 error:
7642 free (buf);
7643 return FALSE;
7644 }
7645
7646 p = buf;
7647 while (p < buf + size)
7648 {
7649 /* FIXME: bad alignment assumption. */
7650 Elf_External_Note *xnp = (Elf_External_Note *) p;
7651 Elf_Internal_Note in;
7652
7653 in.type = H_GET_32 (abfd, xnp->type);
7654
7655 in.namesz = H_GET_32 (abfd, xnp->namesz);
7656 in.namedata = xnp->name;
7657
7658 in.descsz = H_GET_32 (abfd, xnp->descsz);
7659 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
7660 in.descpos = offset + (in.descdata - buf);
7661
7662 if (strncmp (in.namedata, "NetBSD-CORE", 11) == 0)
7663 {
7664 if (! elfcore_grok_netbsd_note (abfd, &in))
7665 goto error;
7666 }
7667 else if (strncmp (in.namedata, "QNX", 3) == 0)
7668 {
7669 if (! elfcore_grok_nto_note (abfd, &in))
7670 goto error;
7671 }
7672 else
7673 {
7674 if (! elfcore_grok_note (abfd, &in))
7675 goto error;
7676 }
7677
7678 p = in.descdata + BFD_ALIGN (in.descsz, 4);
7679 }
7680
7681 free (buf);
7682 return TRUE;
7683 }
7684 \f
7685 /* Providing external access to the ELF program header table. */
7686
7687 /* Return an upper bound on the number of bytes required to store a
7688 copy of ABFD's program header table entries. Return -1 if an error
7689 occurs; bfd_get_error will return an appropriate code. */
7690
7691 long
7692 bfd_get_elf_phdr_upper_bound (bfd *abfd)
7693 {
7694 if (abfd->xvec->flavour != bfd_target_elf_flavour)
7695 {
7696 bfd_set_error (bfd_error_wrong_format);
7697 return -1;
7698 }
7699
7700 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
7701 }
7702
7703 /* Copy ABFD's program header table entries to *PHDRS. The entries
7704 will be stored as an array of Elf_Internal_Phdr structures, as
7705 defined in include/elf/internal.h. To find out how large the
7706 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
7707
7708 Return the number of program header table entries read, or -1 if an
7709 error occurs; bfd_get_error will return an appropriate code. */
7710
7711 int
7712 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
7713 {
7714 int num_phdrs;
7715
7716 if (abfd->xvec->flavour != bfd_target_elf_flavour)
7717 {
7718 bfd_set_error (bfd_error_wrong_format);
7719 return -1;
7720 }
7721
7722 num_phdrs = elf_elfheader (abfd)->e_phnum;
7723 memcpy (phdrs, elf_tdata (abfd)->phdr,
7724 num_phdrs * sizeof (Elf_Internal_Phdr));
7725
7726 return num_phdrs;
7727 }
7728
7729 void
7730 _bfd_elf_sprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, char *buf, bfd_vma value)
7731 {
7732 #ifdef BFD64
7733 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
7734
7735 i_ehdrp = elf_elfheader (abfd);
7736 if (i_ehdrp == NULL)
7737 sprintf_vma (buf, value);
7738 else
7739 {
7740 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
7741 {
7742 #if BFD_HOST_64BIT_LONG
7743 sprintf (buf, "%016lx", value);
7744 #else
7745 sprintf (buf, "%08lx%08lx", _bfd_int64_high (value),
7746 _bfd_int64_low (value));
7747 #endif
7748 }
7749 else
7750 sprintf (buf, "%08lx", (unsigned long) (value & 0xffffffff));
7751 }
7752 #else
7753 sprintf_vma (buf, value);
7754 #endif
7755 }
7756
7757 void
7758 _bfd_elf_fprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, void *stream, bfd_vma value)
7759 {
7760 #ifdef BFD64
7761 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
7762
7763 i_ehdrp = elf_elfheader (abfd);
7764 if (i_ehdrp == NULL)
7765 fprintf_vma ((FILE *) stream, value);
7766 else
7767 {
7768 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
7769 {
7770 #if BFD_HOST_64BIT_LONG
7771 fprintf ((FILE *) stream, "%016lx", value);
7772 #else
7773 fprintf ((FILE *) stream, "%08lx%08lx",
7774 _bfd_int64_high (value), _bfd_int64_low (value));
7775 #endif
7776 }
7777 else
7778 fprintf ((FILE *) stream, "%08lx",
7779 (unsigned long) (value & 0xffffffff));
7780 }
7781 #else
7782 fprintf_vma ((FILE *) stream, value);
7783 #endif
7784 }
7785
7786 enum elf_reloc_type_class
7787 _bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
7788 {
7789 return reloc_class_normal;
7790 }
7791
7792 /* For RELA architectures, return the relocation value for a
7793 relocation against a local symbol. */
7794
7795 bfd_vma
7796 _bfd_elf_rela_local_sym (bfd *abfd,
7797 Elf_Internal_Sym *sym,
7798 asection **psec,
7799 Elf_Internal_Rela *rel)
7800 {
7801 asection *sec = *psec;
7802 bfd_vma relocation;
7803
7804 relocation = (sec->output_section->vma
7805 + sec->output_offset
7806 + sym->st_value);
7807 if ((sec->flags & SEC_MERGE)
7808 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
7809 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
7810 {
7811 rel->r_addend =
7812 _bfd_merged_section_offset (abfd, psec,
7813 elf_section_data (sec)->sec_info,
7814 sym->st_value + rel->r_addend);
7815 if (sec != *psec)
7816 {
7817 /* If we have changed the section, and our original section is
7818 marked with SEC_EXCLUDE, it means that the original
7819 SEC_MERGE section has been completely subsumed in some
7820 other SEC_MERGE section. In this case, we need to leave
7821 some info around for --emit-relocs. */
7822 if ((sec->flags & SEC_EXCLUDE) != 0)
7823 sec->kept_section = *psec;
7824 sec = *psec;
7825 }
7826 rel->r_addend -= relocation;
7827 rel->r_addend += sec->output_section->vma + sec->output_offset;
7828 }
7829 return relocation;
7830 }
7831
7832 bfd_vma
7833 _bfd_elf_rel_local_sym (bfd *abfd,
7834 Elf_Internal_Sym *sym,
7835 asection **psec,
7836 bfd_vma addend)
7837 {
7838 asection *sec = *psec;
7839
7840 if (sec->sec_info_type != ELF_INFO_TYPE_MERGE)
7841 return sym->st_value + addend;
7842
7843 return _bfd_merged_section_offset (abfd, psec,
7844 elf_section_data (sec)->sec_info,
7845 sym->st_value + addend);
7846 }
7847
7848 bfd_vma
7849 _bfd_elf_section_offset (bfd *abfd,
7850 struct bfd_link_info *info,
7851 asection *sec,
7852 bfd_vma offset)
7853 {
7854 switch (sec->sec_info_type)
7855 {
7856 case ELF_INFO_TYPE_STABS:
7857 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
7858 offset);
7859 case ELF_INFO_TYPE_EH_FRAME:
7860 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
7861 default:
7862 return offset;
7863 }
7864 }
7865 \f
7866 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
7867 reconstruct an ELF file by reading the segments out of remote memory
7868 based on the ELF file header at EHDR_VMA and the ELF program headers it
7869 points to. If not null, *LOADBASEP is filled in with the difference
7870 between the VMAs from which the segments were read, and the VMAs the
7871 file headers (and hence BFD's idea of each section's VMA) put them at.
7872
7873 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
7874 remote memory at target address VMA into the local buffer at MYADDR; it
7875 should return zero on success or an `errno' code on failure. TEMPL must
7876 be a BFD for an ELF target with the word size and byte order found in
7877 the remote memory. */
7878
7879 bfd *
7880 bfd_elf_bfd_from_remote_memory
7881 (bfd *templ,
7882 bfd_vma ehdr_vma,
7883 bfd_vma *loadbasep,
7884 int (*target_read_memory) (bfd_vma, bfd_byte *, int))
7885 {
7886 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
7887 (templ, ehdr_vma, loadbasep, target_read_memory);
7888 }
7889 \f
7890 long
7891 _bfd_elf_get_synthetic_symtab (bfd *abfd,
7892 long symcount ATTRIBUTE_UNUSED,
7893 asymbol **syms ATTRIBUTE_UNUSED,
7894 long dynsymcount,
7895 asymbol **dynsyms,
7896 asymbol **ret)
7897 {
7898 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7899 asection *relplt;
7900 asymbol *s;
7901 const char *relplt_name;
7902 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
7903 arelent *p;
7904 long count, i, n;
7905 size_t size;
7906 Elf_Internal_Shdr *hdr;
7907 char *names;
7908 asection *plt;
7909
7910 *ret = NULL;
7911
7912 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
7913 return 0;
7914
7915 if (dynsymcount <= 0)
7916 return 0;
7917
7918 if (!bed->plt_sym_val)
7919 return 0;
7920
7921 relplt_name = bed->relplt_name;
7922 if (relplt_name == NULL)
7923 relplt_name = bed->default_use_rela_p ? ".rela.plt" : ".rel.plt";
7924 relplt = bfd_get_section_by_name (abfd, relplt_name);
7925 if (relplt == NULL)
7926 return 0;
7927
7928 hdr = &elf_section_data (relplt)->this_hdr;
7929 if (hdr->sh_link != elf_dynsymtab (abfd)
7930 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
7931 return 0;
7932
7933 plt = bfd_get_section_by_name (abfd, ".plt");
7934 if (plt == NULL)
7935 return 0;
7936
7937 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
7938 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
7939 return -1;
7940
7941 count = relplt->size / hdr->sh_entsize;
7942 size = count * sizeof (asymbol);
7943 p = relplt->relocation;
7944 for (i = 0; i < count; i++, s++, p++)
7945 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
7946
7947 s = *ret = bfd_malloc (size);
7948 if (s == NULL)
7949 return -1;
7950
7951 names = (char *) (s + count);
7952 p = relplt->relocation;
7953 n = 0;
7954 for (i = 0; i < count; i++, s++, p++)
7955 {
7956 size_t len;
7957 bfd_vma addr;
7958
7959 addr = bed->plt_sym_val (i, plt, p);
7960 if (addr == (bfd_vma) -1)
7961 continue;
7962
7963 *s = **p->sym_ptr_ptr;
7964 s->section = plt;
7965 s->value = addr - plt->vma;
7966 s->name = names;
7967 len = strlen ((*p->sym_ptr_ptr)->name);
7968 memcpy (names, (*p->sym_ptr_ptr)->name, len);
7969 names += len;
7970 memcpy (names, "@plt", sizeof ("@plt"));
7971 names += sizeof ("@plt");
7972 ++n;
7973 }
7974
7975 return n;
7976 }
7977
7978 /* Sort symbol by binding and section. We want to put definitions
7979 sorted by section at the beginning. */
7980
7981 static int
7982 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7983 {
7984 const Elf_Internal_Sym *s1;
7985 const Elf_Internal_Sym *s2;
7986 int shndx;
7987
7988 /* Make sure that undefined symbols are at the end. */
7989 s1 = (const Elf_Internal_Sym *) arg1;
7990 if (s1->st_shndx == SHN_UNDEF)
7991 return 1;
7992 s2 = (const Elf_Internal_Sym *) arg2;
7993 if (s2->st_shndx == SHN_UNDEF)
7994 return -1;
7995
7996 /* Sorted by section index. */
7997 shndx = s1->st_shndx - s2->st_shndx;
7998 if (shndx != 0)
7999 return shndx;
8000
8001 /* Sorted by binding. */
8002 return ELF_ST_BIND (s1->st_info) - ELF_ST_BIND (s2->st_info);
8003 }
8004
8005 struct elf_symbol
8006 {
8007 Elf_Internal_Sym *sym;
8008 const char *name;
8009 };
8010
8011 static int
8012 elf_sym_name_compare (const void *arg1, const void *arg2)
8013 {
8014 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
8015 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
8016 return strcmp (s1->name, s2->name);
8017 }
8018
8019 /* Check if 2 sections define the same set of local and global
8020 symbols. */
8021
8022 bfd_boolean
8023 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2)
8024 {
8025 bfd *bfd1, *bfd2;
8026 const struct elf_backend_data *bed1, *bed2;
8027 Elf_Internal_Shdr *hdr1, *hdr2;
8028 bfd_size_type symcount1, symcount2;
8029 Elf_Internal_Sym *isymbuf1, *isymbuf2;
8030 Elf_Internal_Sym *isymstart1 = NULL, *isymstart2 = NULL, *isym;
8031 Elf_Internal_Sym *isymend;
8032 struct elf_symbol *symp, *symtable1 = NULL, *symtable2 = NULL;
8033 bfd_size_type count1, count2, i;
8034 int shndx1, shndx2;
8035 bfd_boolean result;
8036
8037 bfd1 = sec1->owner;
8038 bfd2 = sec2->owner;
8039
8040 /* If both are .gnu.linkonce sections, they have to have the same
8041 section name. */
8042 if (strncmp (sec1->name, ".gnu.linkonce",
8043 sizeof ".gnu.linkonce" - 1) == 0
8044 && strncmp (sec2->name, ".gnu.linkonce",
8045 sizeof ".gnu.linkonce" - 1) == 0)
8046 return strcmp (sec1->name + sizeof ".gnu.linkonce",
8047 sec2->name + sizeof ".gnu.linkonce") == 0;
8048
8049 /* Both sections have to be in ELF. */
8050 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
8051 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
8052 return FALSE;
8053
8054 if (elf_section_type (sec1) != elf_section_type (sec2))
8055 return FALSE;
8056
8057 if ((elf_section_flags (sec1) & SHF_GROUP) != 0
8058 && (elf_section_flags (sec2) & SHF_GROUP) != 0)
8059 {
8060 /* If both are members of section groups, they have to have the
8061 same group name. */
8062 if (strcmp (elf_group_name (sec1), elf_group_name (sec2)) != 0)
8063 return FALSE;
8064 }
8065
8066 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
8067 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
8068 if (shndx1 == -1 || shndx2 == -1)
8069 return FALSE;
8070
8071 bed1 = get_elf_backend_data (bfd1);
8072 bed2 = get_elf_backend_data (bfd2);
8073 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
8074 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
8075 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
8076 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
8077
8078 if (symcount1 == 0 || symcount2 == 0)
8079 return FALSE;
8080
8081 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
8082 NULL, NULL, NULL);
8083 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
8084 NULL, NULL, NULL);
8085
8086 result = FALSE;
8087 if (isymbuf1 == NULL || isymbuf2 == NULL)
8088 goto done;
8089
8090 /* Sort symbols by binding and section. Global definitions are at
8091 the beginning. */
8092 qsort (isymbuf1, symcount1, sizeof (Elf_Internal_Sym),
8093 elf_sort_elf_symbol);
8094 qsort (isymbuf2, symcount2, sizeof (Elf_Internal_Sym),
8095 elf_sort_elf_symbol);
8096
8097 /* Count definitions in the section. */
8098 count1 = 0;
8099 for (isym = isymbuf1, isymend = isym + symcount1;
8100 isym < isymend; isym++)
8101 {
8102 if (isym->st_shndx == (unsigned int) shndx1)
8103 {
8104 if (count1 == 0)
8105 isymstart1 = isym;
8106 count1++;
8107 }
8108
8109 if (count1 && isym->st_shndx != (unsigned int) shndx1)
8110 break;
8111 }
8112
8113 count2 = 0;
8114 for (isym = isymbuf2, isymend = isym + symcount2;
8115 isym < isymend; isym++)
8116 {
8117 if (isym->st_shndx == (unsigned int) shndx2)
8118 {
8119 if (count2 == 0)
8120 isymstart2 = isym;
8121 count2++;
8122 }
8123
8124 if (count2 && isym->st_shndx != (unsigned int) shndx2)
8125 break;
8126 }
8127
8128 if (count1 == 0 || count2 == 0 || count1 != count2)
8129 goto done;
8130
8131 symtable1 = bfd_malloc (count1 * sizeof (struct elf_symbol));
8132 symtable2 = bfd_malloc (count1 * sizeof (struct elf_symbol));
8133
8134 if (symtable1 == NULL || symtable2 == NULL)
8135 goto done;
8136
8137 symp = symtable1;
8138 for (isym = isymstart1, isymend = isym + count1;
8139 isym < isymend; isym++)
8140 {
8141 symp->sym = isym;
8142 symp->name = bfd_elf_string_from_elf_section (bfd1,
8143 hdr1->sh_link,
8144 isym->st_name);
8145 symp++;
8146 }
8147
8148 symp = symtable2;
8149 for (isym = isymstart2, isymend = isym + count1;
8150 isym < isymend; isym++)
8151 {
8152 symp->sym = isym;
8153 symp->name = bfd_elf_string_from_elf_section (bfd2,
8154 hdr2->sh_link,
8155 isym->st_name);
8156 symp++;
8157 }
8158
8159 /* Sort symbol by name. */
8160 qsort (symtable1, count1, sizeof (struct elf_symbol),
8161 elf_sym_name_compare);
8162 qsort (symtable2, count1, sizeof (struct elf_symbol),
8163 elf_sym_name_compare);
8164
8165 for (i = 0; i < count1; i++)
8166 /* Two symbols must have the same binding, type and name. */
8167 if (symtable1 [i].sym->st_info != symtable2 [i].sym->st_info
8168 || symtable1 [i].sym->st_other != symtable2 [i].sym->st_other
8169 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
8170 goto done;
8171
8172 result = TRUE;
8173
8174 done:
8175 if (symtable1)
8176 free (symtable1);
8177 if (symtable2)
8178 free (symtable2);
8179 if (isymbuf1)
8180 free (isymbuf1);
8181 if (isymbuf2)
8182 free (isymbuf2);
8183
8184 return result;
8185 }