4f2d69a0574d2385cad018204a9e4369c6d2fa99
[binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
21
22 /*
23 SECTION
24 ELF backends
25
26 BFD support for ELF formats is being worked on.
27 Currently, the best supported back ends are for sparc and i386
28 (running svr4 or Solaris 2).
29
30 Documentation of the internals of the support code still needs
31 to be written. The code is changing quickly enough that we
32 haven't bothered yet. */
33
34 /* For sparc64-cross-sparc32. */
35 #define _SYSCALL32
36 #include "bfd.h"
37 #include "sysdep.h"
38 #include "bfdlink.h"
39 #include "libbfd.h"
40 #define ARCH_SIZE 0
41 #include "elf-bfd.h"
42 #include "libiberty.h"
43
44 static int elf_sort_sections (const void *, const void *);
45 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
46 static bfd_boolean prep_headers (bfd *);
47 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
48 static bfd_boolean elfcore_read_notes (bfd *, file_ptr, bfd_size_type) ;
49
50 /* Swap version information in and out. The version information is
51 currently size independent. If that ever changes, this code will
52 need to move into elfcode.h. */
53
54 /* Swap in a Verdef structure. */
55
56 void
57 _bfd_elf_swap_verdef_in (bfd *abfd,
58 const Elf_External_Verdef *src,
59 Elf_Internal_Verdef *dst)
60 {
61 dst->vd_version = H_GET_16 (abfd, src->vd_version);
62 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
63 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
64 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
65 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
66 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
67 dst->vd_next = H_GET_32 (abfd, src->vd_next);
68 }
69
70 /* Swap out a Verdef structure. */
71
72 void
73 _bfd_elf_swap_verdef_out (bfd *abfd,
74 const Elf_Internal_Verdef *src,
75 Elf_External_Verdef *dst)
76 {
77 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
78 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
79 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
80 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
81 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
82 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
83 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
84 }
85
86 /* Swap in a Verdaux structure. */
87
88 void
89 _bfd_elf_swap_verdaux_in (bfd *abfd,
90 const Elf_External_Verdaux *src,
91 Elf_Internal_Verdaux *dst)
92 {
93 dst->vda_name = H_GET_32 (abfd, src->vda_name);
94 dst->vda_next = H_GET_32 (abfd, src->vda_next);
95 }
96
97 /* Swap out a Verdaux structure. */
98
99 void
100 _bfd_elf_swap_verdaux_out (bfd *abfd,
101 const Elf_Internal_Verdaux *src,
102 Elf_External_Verdaux *dst)
103 {
104 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
105 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
106 }
107
108 /* Swap in a Verneed structure. */
109
110 void
111 _bfd_elf_swap_verneed_in (bfd *abfd,
112 const Elf_External_Verneed *src,
113 Elf_Internal_Verneed *dst)
114 {
115 dst->vn_version = H_GET_16 (abfd, src->vn_version);
116 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
117 dst->vn_file = H_GET_32 (abfd, src->vn_file);
118 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
119 dst->vn_next = H_GET_32 (abfd, src->vn_next);
120 }
121
122 /* Swap out a Verneed structure. */
123
124 void
125 _bfd_elf_swap_verneed_out (bfd *abfd,
126 const Elf_Internal_Verneed *src,
127 Elf_External_Verneed *dst)
128 {
129 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
130 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
131 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
132 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
133 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
134 }
135
136 /* Swap in a Vernaux structure. */
137
138 void
139 _bfd_elf_swap_vernaux_in (bfd *abfd,
140 const Elf_External_Vernaux *src,
141 Elf_Internal_Vernaux *dst)
142 {
143 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
144 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
145 dst->vna_other = H_GET_16 (abfd, src->vna_other);
146 dst->vna_name = H_GET_32 (abfd, src->vna_name);
147 dst->vna_next = H_GET_32 (abfd, src->vna_next);
148 }
149
150 /* Swap out a Vernaux structure. */
151
152 void
153 _bfd_elf_swap_vernaux_out (bfd *abfd,
154 const Elf_Internal_Vernaux *src,
155 Elf_External_Vernaux *dst)
156 {
157 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
158 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
159 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
160 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
161 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
162 }
163
164 /* Swap in a Versym structure. */
165
166 void
167 _bfd_elf_swap_versym_in (bfd *abfd,
168 const Elf_External_Versym *src,
169 Elf_Internal_Versym *dst)
170 {
171 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
172 }
173
174 /* Swap out a Versym structure. */
175
176 void
177 _bfd_elf_swap_versym_out (bfd *abfd,
178 const Elf_Internal_Versym *src,
179 Elf_External_Versym *dst)
180 {
181 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
182 }
183
184 /* Standard ELF hash function. Do not change this function; you will
185 cause invalid hash tables to be generated. */
186
187 unsigned long
188 bfd_elf_hash (const char *namearg)
189 {
190 const unsigned char *name = (const unsigned char *) namearg;
191 unsigned long h = 0;
192 unsigned long g;
193 int ch;
194
195 while ((ch = *name++) != '\0')
196 {
197 h = (h << 4) + ch;
198 if ((g = (h & 0xf0000000)) != 0)
199 {
200 h ^= g >> 24;
201 /* The ELF ABI says `h &= ~g', but this is equivalent in
202 this case and on some machines one insn instead of two. */
203 h ^= g;
204 }
205 }
206 return h & 0xffffffff;
207 }
208
209 bfd_boolean
210 bfd_elf_mkobject (bfd *abfd)
211 {
212 /* This just does initialization. */
213 /* coff_mkobject zalloc's space for tdata.coff_obj_data ... */
214 elf_tdata (abfd) = bfd_zalloc (abfd, sizeof (struct elf_obj_tdata));
215 if (elf_tdata (abfd) == 0)
216 return FALSE;
217 /* Since everything is done at close time, do we need any
218 initialization? */
219
220 return TRUE;
221 }
222
223 bfd_boolean
224 bfd_elf_mkcorefile (bfd *abfd)
225 {
226 /* I think this can be done just like an object file. */
227 return bfd_elf_mkobject (abfd);
228 }
229
230 char *
231 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
232 {
233 Elf_Internal_Shdr **i_shdrp;
234 bfd_byte *shstrtab = NULL;
235 file_ptr offset;
236 bfd_size_type shstrtabsize;
237
238 i_shdrp = elf_elfsections (abfd);
239 if (i_shdrp == 0 || i_shdrp[shindex] == 0)
240 return NULL;
241
242 shstrtab = i_shdrp[shindex]->contents;
243 if (shstrtab == NULL)
244 {
245 /* No cached one, attempt to read, and cache what we read. */
246 offset = i_shdrp[shindex]->sh_offset;
247 shstrtabsize = i_shdrp[shindex]->sh_size;
248
249 /* Allocate and clear an extra byte at the end, to prevent crashes
250 in case the string table is not terminated. */
251 if (shstrtabsize + 1 == 0
252 || (shstrtab = bfd_alloc (abfd, shstrtabsize + 1)) == NULL
253 || bfd_seek (abfd, offset, SEEK_SET) != 0)
254 shstrtab = NULL;
255 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
256 {
257 if (bfd_get_error () != bfd_error_system_call)
258 bfd_set_error (bfd_error_file_truncated);
259 shstrtab = NULL;
260 }
261 else
262 shstrtab[shstrtabsize] = '\0';
263 i_shdrp[shindex]->contents = shstrtab;
264 }
265 return (char *) shstrtab;
266 }
267
268 char *
269 bfd_elf_string_from_elf_section (bfd *abfd,
270 unsigned int shindex,
271 unsigned int strindex)
272 {
273 Elf_Internal_Shdr *hdr;
274
275 if (strindex == 0)
276 return "";
277
278 hdr = elf_elfsections (abfd)[shindex];
279
280 if (hdr->contents == NULL
281 && bfd_elf_get_str_section (abfd, shindex) == NULL)
282 return NULL;
283
284 if (strindex >= hdr->sh_size)
285 {
286 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
287 (*_bfd_error_handler)
288 (_("%B: invalid string offset %u >= %lu for section `%s'"),
289 abfd, strindex, (unsigned long) hdr->sh_size,
290 (shindex == shstrndx && strindex == hdr->sh_name
291 ? ".shstrtab"
292 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
293 return "";
294 }
295
296 return ((char *) hdr->contents) + strindex;
297 }
298
299 /* Read and convert symbols to internal format.
300 SYMCOUNT specifies the number of symbols to read, starting from
301 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
302 are non-NULL, they are used to store the internal symbols, external
303 symbols, and symbol section index extensions, respectively. */
304
305 Elf_Internal_Sym *
306 bfd_elf_get_elf_syms (bfd *ibfd,
307 Elf_Internal_Shdr *symtab_hdr,
308 size_t symcount,
309 size_t symoffset,
310 Elf_Internal_Sym *intsym_buf,
311 void *extsym_buf,
312 Elf_External_Sym_Shndx *extshndx_buf)
313 {
314 Elf_Internal_Shdr *shndx_hdr;
315 void *alloc_ext;
316 const bfd_byte *esym;
317 Elf_External_Sym_Shndx *alloc_extshndx;
318 Elf_External_Sym_Shndx *shndx;
319 Elf_Internal_Sym *isym;
320 Elf_Internal_Sym *isymend;
321 const struct elf_backend_data *bed;
322 size_t extsym_size;
323 bfd_size_type amt;
324 file_ptr pos;
325
326 if (symcount == 0)
327 return intsym_buf;
328
329 /* Normal syms might have section extension entries. */
330 shndx_hdr = NULL;
331 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
332 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
333
334 /* Read the symbols. */
335 alloc_ext = NULL;
336 alloc_extshndx = NULL;
337 bed = get_elf_backend_data (ibfd);
338 extsym_size = bed->s->sizeof_sym;
339 amt = symcount * extsym_size;
340 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
341 if (extsym_buf == NULL)
342 {
343 alloc_ext = bfd_malloc2 (symcount, extsym_size);
344 extsym_buf = alloc_ext;
345 }
346 if (extsym_buf == NULL
347 || bfd_seek (ibfd, pos, SEEK_SET) != 0
348 || bfd_bread (extsym_buf, amt, ibfd) != amt)
349 {
350 intsym_buf = NULL;
351 goto out;
352 }
353
354 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
355 extshndx_buf = NULL;
356 else
357 {
358 amt = symcount * sizeof (Elf_External_Sym_Shndx);
359 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
360 if (extshndx_buf == NULL)
361 {
362 alloc_extshndx = bfd_malloc2 (symcount,
363 sizeof (Elf_External_Sym_Shndx));
364 extshndx_buf = alloc_extshndx;
365 }
366 if (extshndx_buf == NULL
367 || bfd_seek (ibfd, pos, SEEK_SET) != 0
368 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
369 {
370 intsym_buf = NULL;
371 goto out;
372 }
373 }
374
375 if (intsym_buf == NULL)
376 {
377 intsym_buf = bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
378 if (intsym_buf == NULL)
379 goto out;
380 }
381
382 /* Convert the symbols to internal form. */
383 isymend = intsym_buf + symcount;
384 for (esym = extsym_buf, isym = intsym_buf, shndx = extshndx_buf;
385 isym < isymend;
386 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
387 (*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym);
388
389 out:
390 if (alloc_ext != NULL)
391 free (alloc_ext);
392 if (alloc_extshndx != NULL)
393 free (alloc_extshndx);
394
395 return intsym_buf;
396 }
397
398 /* Look up a symbol name. */
399 const char *
400 bfd_elf_sym_name (bfd *abfd,
401 Elf_Internal_Shdr *symtab_hdr,
402 Elf_Internal_Sym *isym,
403 asection *sym_sec)
404 {
405 const char *name;
406 unsigned int iname = isym->st_name;
407 unsigned int shindex = symtab_hdr->sh_link;
408
409 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
410 /* Check for a bogus st_shndx to avoid crashing. */
411 && isym->st_shndx < elf_numsections (abfd)
412 && !(isym->st_shndx >= SHN_LORESERVE && isym->st_shndx <= SHN_HIRESERVE))
413 {
414 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
415 shindex = elf_elfheader (abfd)->e_shstrndx;
416 }
417
418 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
419 if (name == NULL)
420 name = "(null)";
421 else if (sym_sec && *name == '\0')
422 name = bfd_section_name (abfd, sym_sec);
423
424 return name;
425 }
426
427 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
428 sections. The first element is the flags, the rest are section
429 pointers. */
430
431 typedef union elf_internal_group {
432 Elf_Internal_Shdr *shdr;
433 unsigned int flags;
434 } Elf_Internal_Group;
435
436 /* Return the name of the group signature symbol. Why isn't the
437 signature just a string? */
438
439 static const char *
440 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
441 {
442 Elf_Internal_Shdr *hdr;
443 unsigned char esym[sizeof (Elf64_External_Sym)];
444 Elf_External_Sym_Shndx eshndx;
445 Elf_Internal_Sym isym;
446
447 /* First we need to ensure the symbol table is available. Make sure
448 that it is a symbol table section. */
449 hdr = elf_elfsections (abfd) [ghdr->sh_link];
450 if (hdr->sh_type != SHT_SYMTAB
451 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
452 return NULL;
453
454 /* Go read the symbol. */
455 hdr = &elf_tdata (abfd)->symtab_hdr;
456 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
457 &isym, esym, &eshndx) == NULL)
458 return NULL;
459
460 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
461 }
462
463 /* Set next_in_group list pointer, and group name for NEWSECT. */
464
465 static bfd_boolean
466 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
467 {
468 unsigned int num_group = elf_tdata (abfd)->num_group;
469
470 /* If num_group is zero, read in all SHT_GROUP sections. The count
471 is set to -1 if there are no SHT_GROUP sections. */
472 if (num_group == 0)
473 {
474 unsigned int i, shnum;
475
476 /* First count the number of groups. If we have a SHT_GROUP
477 section with just a flag word (ie. sh_size is 4), ignore it. */
478 shnum = elf_numsections (abfd);
479 num_group = 0;
480 for (i = 0; i < shnum; i++)
481 {
482 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
483 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
484 num_group += 1;
485 }
486
487 if (num_group == 0)
488 {
489 num_group = (unsigned) -1;
490 elf_tdata (abfd)->num_group = num_group;
491 }
492 else
493 {
494 /* We keep a list of elf section headers for group sections,
495 so we can find them quickly. */
496 bfd_size_type amt;
497
498 elf_tdata (abfd)->num_group = num_group;
499 elf_tdata (abfd)->group_sect_ptr
500 = bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
501 if (elf_tdata (abfd)->group_sect_ptr == NULL)
502 return FALSE;
503
504 num_group = 0;
505 for (i = 0; i < shnum; i++)
506 {
507 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
508 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
509 {
510 unsigned char *src;
511 Elf_Internal_Group *dest;
512
513 /* Add to list of sections. */
514 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
515 num_group += 1;
516
517 /* Read the raw contents. */
518 BFD_ASSERT (sizeof (*dest) >= 4);
519 amt = shdr->sh_size * sizeof (*dest) / 4;
520 shdr->contents = bfd_alloc2 (abfd, shdr->sh_size,
521 sizeof (*dest) / 4);
522 if (shdr->contents == NULL
523 || bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
524 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
525 != shdr->sh_size))
526 return FALSE;
527
528 /* Translate raw contents, a flag word followed by an
529 array of elf section indices all in target byte order,
530 to the flag word followed by an array of elf section
531 pointers. */
532 src = shdr->contents + shdr->sh_size;
533 dest = (Elf_Internal_Group *) (shdr->contents + amt);
534 while (1)
535 {
536 unsigned int idx;
537
538 src -= 4;
539 --dest;
540 idx = H_GET_32 (abfd, src);
541 if (src == shdr->contents)
542 {
543 dest->flags = idx;
544 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
545 shdr->bfd_section->flags
546 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
547 break;
548 }
549 if (idx >= shnum)
550 {
551 ((*_bfd_error_handler)
552 (_("%B: invalid SHT_GROUP entry"), abfd));
553 idx = 0;
554 }
555 dest->shdr = elf_elfsections (abfd)[idx];
556 }
557 }
558 }
559 }
560 }
561
562 if (num_group != (unsigned) -1)
563 {
564 unsigned int i;
565
566 for (i = 0; i < num_group; i++)
567 {
568 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
569 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
570 unsigned int n_elt = shdr->sh_size / 4;
571
572 /* Look through this group's sections to see if current
573 section is a member. */
574 while (--n_elt != 0)
575 if ((++idx)->shdr == hdr)
576 {
577 asection *s = NULL;
578
579 /* We are a member of this group. Go looking through
580 other members to see if any others are linked via
581 next_in_group. */
582 idx = (Elf_Internal_Group *) shdr->contents;
583 n_elt = shdr->sh_size / 4;
584 while (--n_elt != 0)
585 if ((s = (++idx)->shdr->bfd_section) != NULL
586 && elf_next_in_group (s) != NULL)
587 break;
588 if (n_elt != 0)
589 {
590 /* Snarf the group name from other member, and
591 insert current section in circular list. */
592 elf_group_name (newsect) = elf_group_name (s);
593 elf_next_in_group (newsect) = elf_next_in_group (s);
594 elf_next_in_group (s) = newsect;
595 }
596 else
597 {
598 const char *gname;
599
600 gname = group_signature (abfd, shdr);
601 if (gname == NULL)
602 return FALSE;
603 elf_group_name (newsect) = gname;
604
605 /* Start a circular list with one element. */
606 elf_next_in_group (newsect) = newsect;
607 }
608
609 /* If the group section has been created, point to the
610 new member. */
611 if (shdr->bfd_section != NULL)
612 elf_next_in_group (shdr->bfd_section) = newsect;
613
614 i = num_group - 1;
615 break;
616 }
617 }
618 }
619
620 if (elf_group_name (newsect) == NULL)
621 {
622 (*_bfd_error_handler) (_("%B: no group info for section %A"),
623 abfd, newsect);
624 }
625 return TRUE;
626 }
627
628 bfd_boolean
629 _bfd_elf_setup_sections (bfd *abfd)
630 {
631 unsigned int i;
632 unsigned int num_group = elf_tdata (abfd)->num_group;
633 bfd_boolean result = TRUE;
634 asection *s;
635
636 /* Process SHF_LINK_ORDER. */
637 for (s = abfd->sections; s != NULL; s = s->next)
638 {
639 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
640 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
641 {
642 unsigned int elfsec = this_hdr->sh_link;
643 /* FIXME: The old Intel compiler and old strip/objcopy may
644 not set the sh_link or sh_info fields. Hence we could
645 get the situation where elfsec is 0. */
646 if (elfsec == 0)
647 {
648 const struct elf_backend_data *bed
649 = get_elf_backend_data (abfd);
650 if (bed->link_order_error_handler)
651 bed->link_order_error_handler
652 (_("%B: warning: sh_link not set for section `%A'"),
653 abfd, s);
654 }
655 else
656 {
657 asection *link;
658
659 this_hdr = elf_elfsections (abfd)[elfsec];
660
661 /* PR 1991, 2008:
662 Some strip/objcopy may leave an incorrect value in
663 sh_link. We don't want to proceed. */
664 link = this_hdr->bfd_section;
665 if (link == NULL)
666 {
667 (*_bfd_error_handler)
668 (_("%B: sh_link [%d] in section `%A' is incorrect"),
669 s->owner, s, elfsec);
670 result = FALSE;
671 }
672
673 elf_linked_to_section (s) = link;
674 }
675 }
676 }
677
678 /* Process section groups. */
679 if (num_group == (unsigned) -1)
680 return result;
681
682 for (i = 0; i < num_group; i++)
683 {
684 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
685 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
686 unsigned int n_elt = shdr->sh_size / 4;
687
688 while (--n_elt != 0)
689 if ((++idx)->shdr->bfd_section)
690 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
691 else if (idx->shdr->sh_type == SHT_RELA
692 || idx->shdr->sh_type == SHT_REL)
693 /* We won't include relocation sections in section groups in
694 output object files. We adjust the group section size here
695 so that relocatable link will work correctly when
696 relocation sections are in section group in input object
697 files. */
698 shdr->bfd_section->size -= 4;
699 else
700 {
701 /* There are some unknown sections in the group. */
702 (*_bfd_error_handler)
703 (_("%B: unknown [%d] section `%s' in group [%s]"),
704 abfd,
705 (unsigned int) idx->shdr->sh_type,
706 bfd_elf_string_from_elf_section (abfd,
707 (elf_elfheader (abfd)
708 ->e_shstrndx),
709 idx->shdr->sh_name),
710 shdr->bfd_section->name);
711 result = FALSE;
712 }
713 }
714 return result;
715 }
716
717 bfd_boolean
718 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
719 {
720 return elf_next_in_group (sec) != NULL;
721 }
722
723 /* Make a BFD section from an ELF section. We store a pointer to the
724 BFD section in the bfd_section field of the header. */
725
726 bfd_boolean
727 _bfd_elf_make_section_from_shdr (bfd *abfd,
728 Elf_Internal_Shdr *hdr,
729 const char *name,
730 int shindex)
731 {
732 asection *newsect;
733 flagword flags;
734 const struct elf_backend_data *bed;
735
736 if (hdr->bfd_section != NULL)
737 {
738 BFD_ASSERT (strcmp (name,
739 bfd_get_section_name (abfd, hdr->bfd_section)) == 0);
740 return TRUE;
741 }
742
743 newsect = bfd_make_section_anyway (abfd, name);
744 if (newsect == NULL)
745 return FALSE;
746
747 hdr->bfd_section = newsect;
748 elf_section_data (newsect)->this_hdr = *hdr;
749 elf_section_data (newsect)->this_idx = shindex;
750
751 /* Always use the real type/flags. */
752 elf_section_type (newsect) = hdr->sh_type;
753 elf_section_flags (newsect) = hdr->sh_flags;
754
755 newsect->filepos = hdr->sh_offset;
756
757 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
758 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
759 || ! bfd_set_section_alignment (abfd, newsect,
760 bfd_log2 ((bfd_vma) hdr->sh_addralign)))
761 return FALSE;
762
763 flags = SEC_NO_FLAGS;
764 if (hdr->sh_type != SHT_NOBITS)
765 flags |= SEC_HAS_CONTENTS;
766 if (hdr->sh_type == SHT_GROUP)
767 flags |= SEC_GROUP | SEC_EXCLUDE;
768 if ((hdr->sh_flags & SHF_ALLOC) != 0)
769 {
770 flags |= SEC_ALLOC;
771 if (hdr->sh_type != SHT_NOBITS)
772 flags |= SEC_LOAD;
773 }
774 if ((hdr->sh_flags & SHF_WRITE) == 0)
775 flags |= SEC_READONLY;
776 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
777 flags |= SEC_CODE;
778 else if ((flags & SEC_LOAD) != 0)
779 flags |= SEC_DATA;
780 if ((hdr->sh_flags & SHF_MERGE) != 0)
781 {
782 flags |= SEC_MERGE;
783 newsect->entsize = hdr->sh_entsize;
784 if ((hdr->sh_flags & SHF_STRINGS) != 0)
785 flags |= SEC_STRINGS;
786 }
787 if (hdr->sh_flags & SHF_GROUP)
788 if (!setup_group (abfd, hdr, newsect))
789 return FALSE;
790 if ((hdr->sh_flags & SHF_TLS) != 0)
791 flags |= SEC_THREAD_LOCAL;
792
793 if ((flags & SEC_ALLOC) == 0)
794 {
795 /* The debugging sections appear to be recognized only by name,
796 not any sort of flag. Their SEC_ALLOC bits are cleared. */
797 static const struct
798 {
799 const char *name;
800 int len;
801 } debug_sections [] =
802 {
803 { "debug", 5 }, /* 'd' */
804 { NULL, 0 }, /* 'e' */
805 { NULL, 0 }, /* 'f' */
806 { "gnu.linkonce.wi.", 17 }, /* 'g' */
807 { NULL, 0 }, /* 'h' */
808 { NULL, 0 }, /* 'i' */
809 { NULL, 0 }, /* 'j' */
810 { NULL, 0 }, /* 'k' */
811 { "line", 4 }, /* 'l' */
812 { NULL, 0 }, /* 'm' */
813 { NULL, 0 }, /* 'n' */
814 { NULL, 0 }, /* 'o' */
815 { NULL, 0 }, /* 'p' */
816 { NULL, 0 }, /* 'q' */
817 { NULL, 0 }, /* 'r' */
818 { "stab", 4 } /* 's' */
819 };
820
821 if (name [0] == '.')
822 {
823 int i = name [1] - 'd';
824 if (i >= 0
825 && i < (int) ARRAY_SIZE (debug_sections)
826 && debug_sections [i].name != NULL
827 && strncmp (&name [1], debug_sections [i].name,
828 debug_sections [i].len) == 0)
829 flags |= SEC_DEBUGGING;
830 }
831 }
832
833 /* As a GNU extension, if the name begins with .gnu.linkonce, we
834 only link a single copy of the section. This is used to support
835 g++. g++ will emit each template expansion in its own section.
836 The symbols will be defined as weak, so that multiple definitions
837 are permitted. The GNU linker extension is to actually discard
838 all but one of the sections. */
839 if (strncmp (name, ".gnu.linkonce", sizeof ".gnu.linkonce" - 1) == 0
840 && elf_next_in_group (newsect) == NULL)
841 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
842
843 bed = get_elf_backend_data (abfd);
844 if (bed->elf_backend_section_flags)
845 if (! bed->elf_backend_section_flags (&flags, hdr))
846 return FALSE;
847
848 if (! bfd_set_section_flags (abfd, newsect, flags))
849 return FALSE;
850
851 if ((flags & SEC_ALLOC) != 0)
852 {
853 Elf_Internal_Phdr *phdr;
854 unsigned int i;
855
856 /* Look through the phdrs to see if we need to adjust the lma.
857 If all the p_paddr fields are zero, we ignore them, since
858 some ELF linkers produce such output. */
859 phdr = elf_tdata (abfd)->phdr;
860 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
861 {
862 if (phdr->p_paddr != 0)
863 break;
864 }
865 if (i < elf_elfheader (abfd)->e_phnum)
866 {
867 phdr = elf_tdata (abfd)->phdr;
868 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
869 {
870 /* This section is part of this segment if its file
871 offset plus size lies within the segment's memory
872 span and, if the section is loaded, the extent of the
873 loaded data lies within the extent of the segment.
874
875 Note - we used to check the p_paddr field as well, and
876 refuse to set the LMA if it was 0. This is wrong
877 though, as a perfectly valid initialised segment can
878 have a p_paddr of zero. Some architectures, eg ARM,
879 place special significance on the address 0 and
880 executables need to be able to have a segment which
881 covers this address. */
882 if (phdr->p_type == PT_LOAD
883 && (bfd_vma) hdr->sh_offset >= phdr->p_offset
884 && (hdr->sh_offset + hdr->sh_size
885 <= phdr->p_offset + phdr->p_memsz)
886 && ((flags & SEC_LOAD) == 0
887 || (hdr->sh_offset + hdr->sh_size
888 <= phdr->p_offset + phdr->p_filesz)))
889 {
890 if ((flags & SEC_LOAD) == 0)
891 newsect->lma = (phdr->p_paddr
892 + hdr->sh_addr - phdr->p_vaddr);
893 else
894 /* We used to use the same adjustment for SEC_LOAD
895 sections, but that doesn't work if the segment
896 is packed with code from multiple VMAs.
897 Instead we calculate the section LMA based on
898 the segment LMA. It is assumed that the
899 segment will contain sections with contiguous
900 LMAs, even if the VMAs are not. */
901 newsect->lma = (phdr->p_paddr
902 + hdr->sh_offset - phdr->p_offset);
903
904 /* With contiguous segments, we can't tell from file
905 offsets whether a section with zero size should
906 be placed at the end of one segment or the
907 beginning of the next. Decide based on vaddr. */
908 if (hdr->sh_addr >= phdr->p_vaddr
909 && (hdr->sh_addr + hdr->sh_size
910 <= phdr->p_vaddr + phdr->p_memsz))
911 break;
912 }
913 }
914 }
915 }
916
917 return TRUE;
918 }
919
920 /*
921 INTERNAL_FUNCTION
922 bfd_elf_find_section
923
924 SYNOPSIS
925 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
926
927 DESCRIPTION
928 Helper functions for GDB to locate the string tables.
929 Since BFD hides string tables from callers, GDB needs to use an
930 internal hook to find them. Sun's .stabstr, in particular,
931 isn't even pointed to by the .stab section, so ordinary
932 mechanisms wouldn't work to find it, even if we had some.
933 */
934
935 struct elf_internal_shdr *
936 bfd_elf_find_section (bfd *abfd, char *name)
937 {
938 Elf_Internal_Shdr **i_shdrp;
939 char *shstrtab;
940 unsigned int max;
941 unsigned int i;
942
943 i_shdrp = elf_elfsections (abfd);
944 if (i_shdrp != NULL)
945 {
946 shstrtab = bfd_elf_get_str_section (abfd,
947 elf_elfheader (abfd)->e_shstrndx);
948 if (shstrtab != NULL)
949 {
950 max = elf_numsections (abfd);
951 for (i = 1; i < max; i++)
952 if (!strcmp (&shstrtab[i_shdrp[i]->sh_name], name))
953 return i_shdrp[i];
954 }
955 }
956 return 0;
957 }
958
959 const char *const bfd_elf_section_type_names[] = {
960 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
961 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
962 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
963 };
964
965 /* ELF relocs are against symbols. If we are producing relocatable
966 output, and the reloc is against an external symbol, and nothing
967 has given us any additional addend, the resulting reloc will also
968 be against the same symbol. In such a case, we don't want to
969 change anything about the way the reloc is handled, since it will
970 all be done at final link time. Rather than put special case code
971 into bfd_perform_relocation, all the reloc types use this howto
972 function. It just short circuits the reloc if producing
973 relocatable output against an external symbol. */
974
975 bfd_reloc_status_type
976 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
977 arelent *reloc_entry,
978 asymbol *symbol,
979 void *data ATTRIBUTE_UNUSED,
980 asection *input_section,
981 bfd *output_bfd,
982 char **error_message ATTRIBUTE_UNUSED)
983 {
984 if (output_bfd != NULL
985 && (symbol->flags & BSF_SECTION_SYM) == 0
986 && (! reloc_entry->howto->partial_inplace
987 || reloc_entry->addend == 0))
988 {
989 reloc_entry->address += input_section->output_offset;
990 return bfd_reloc_ok;
991 }
992
993 return bfd_reloc_continue;
994 }
995 \f
996 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
997
998 static void
999 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
1000 asection *sec)
1001 {
1002 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
1003 sec->sec_info_type = ELF_INFO_TYPE_NONE;
1004 }
1005
1006 /* Finish SHF_MERGE section merging. */
1007
1008 bfd_boolean
1009 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
1010 {
1011 bfd *ibfd;
1012 asection *sec;
1013
1014 if (!is_elf_hash_table (info->hash))
1015 return FALSE;
1016
1017 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
1018 if ((ibfd->flags & DYNAMIC) == 0)
1019 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
1020 if ((sec->flags & SEC_MERGE) != 0
1021 && !bfd_is_abs_section (sec->output_section))
1022 {
1023 struct bfd_elf_section_data *secdata;
1024
1025 secdata = elf_section_data (sec);
1026 if (! _bfd_add_merge_section (abfd,
1027 &elf_hash_table (info)->merge_info,
1028 sec, &secdata->sec_info))
1029 return FALSE;
1030 else if (secdata->sec_info)
1031 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
1032 }
1033
1034 if (elf_hash_table (info)->merge_info != NULL)
1035 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
1036 merge_sections_remove_hook);
1037 return TRUE;
1038 }
1039
1040 void
1041 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
1042 {
1043 sec->output_section = bfd_abs_section_ptr;
1044 sec->output_offset = sec->vma;
1045 if (!is_elf_hash_table (info->hash))
1046 return;
1047
1048 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
1049 }
1050 \f
1051 /* Copy the program header and other data from one object module to
1052 another. */
1053
1054 bfd_boolean
1055 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1056 {
1057 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1058 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1059 return TRUE;
1060
1061 BFD_ASSERT (!elf_flags_init (obfd)
1062 || (elf_elfheader (obfd)->e_flags
1063 == elf_elfheader (ibfd)->e_flags));
1064
1065 elf_gp (obfd) = elf_gp (ibfd);
1066 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1067 elf_flags_init (obfd) = TRUE;
1068 return TRUE;
1069 }
1070
1071 static const char *
1072 get_segment_type (unsigned int p_type)
1073 {
1074 const char *pt;
1075 switch (p_type)
1076 {
1077 case PT_NULL: pt = "NULL"; break;
1078 case PT_LOAD: pt = "LOAD"; break;
1079 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1080 case PT_INTERP: pt = "INTERP"; break;
1081 case PT_NOTE: pt = "NOTE"; break;
1082 case PT_SHLIB: pt = "SHLIB"; break;
1083 case PT_PHDR: pt = "PHDR"; break;
1084 case PT_TLS: pt = "TLS"; break;
1085 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1086 case PT_GNU_STACK: pt = "STACK"; break;
1087 case PT_GNU_RELRO: pt = "RELRO"; break;
1088 default: pt = NULL; break;
1089 }
1090 return pt;
1091 }
1092
1093 /* Print out the program headers. */
1094
1095 bfd_boolean
1096 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1097 {
1098 FILE *f = farg;
1099 Elf_Internal_Phdr *p;
1100 asection *s;
1101 bfd_byte *dynbuf = NULL;
1102
1103 p = elf_tdata (abfd)->phdr;
1104 if (p != NULL)
1105 {
1106 unsigned int i, c;
1107
1108 fprintf (f, _("\nProgram Header:\n"));
1109 c = elf_elfheader (abfd)->e_phnum;
1110 for (i = 0; i < c; i++, p++)
1111 {
1112 const char *pt = get_segment_type (p->p_type);
1113 char buf[20];
1114
1115 if (pt == NULL)
1116 {
1117 sprintf (buf, "0x%lx", p->p_type);
1118 pt = buf;
1119 }
1120 fprintf (f, "%8s off 0x", pt);
1121 bfd_fprintf_vma (abfd, f, p->p_offset);
1122 fprintf (f, " vaddr 0x");
1123 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1124 fprintf (f, " paddr 0x");
1125 bfd_fprintf_vma (abfd, f, p->p_paddr);
1126 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1127 fprintf (f, " filesz 0x");
1128 bfd_fprintf_vma (abfd, f, p->p_filesz);
1129 fprintf (f, " memsz 0x");
1130 bfd_fprintf_vma (abfd, f, p->p_memsz);
1131 fprintf (f, " flags %c%c%c",
1132 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1133 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1134 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1135 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1136 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1137 fprintf (f, "\n");
1138 }
1139 }
1140
1141 s = bfd_get_section_by_name (abfd, ".dynamic");
1142 if (s != NULL)
1143 {
1144 int elfsec;
1145 unsigned long shlink;
1146 bfd_byte *extdyn, *extdynend;
1147 size_t extdynsize;
1148 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1149
1150 fprintf (f, _("\nDynamic Section:\n"));
1151
1152 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1153 goto error_return;
1154
1155 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1156 if (elfsec == -1)
1157 goto error_return;
1158 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1159
1160 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1161 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1162
1163 extdyn = dynbuf;
1164 extdynend = extdyn + s->size;
1165 for (; extdyn < extdynend; extdyn += extdynsize)
1166 {
1167 Elf_Internal_Dyn dyn;
1168 const char *name;
1169 char ab[20];
1170 bfd_boolean stringp;
1171
1172 (*swap_dyn_in) (abfd, extdyn, &dyn);
1173
1174 if (dyn.d_tag == DT_NULL)
1175 break;
1176
1177 stringp = FALSE;
1178 switch (dyn.d_tag)
1179 {
1180 default:
1181 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1182 name = ab;
1183 break;
1184
1185 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1186 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1187 case DT_PLTGOT: name = "PLTGOT"; break;
1188 case DT_HASH: name = "HASH"; break;
1189 case DT_STRTAB: name = "STRTAB"; break;
1190 case DT_SYMTAB: name = "SYMTAB"; break;
1191 case DT_RELA: name = "RELA"; break;
1192 case DT_RELASZ: name = "RELASZ"; break;
1193 case DT_RELAENT: name = "RELAENT"; break;
1194 case DT_STRSZ: name = "STRSZ"; break;
1195 case DT_SYMENT: name = "SYMENT"; break;
1196 case DT_INIT: name = "INIT"; break;
1197 case DT_FINI: name = "FINI"; break;
1198 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1199 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1200 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1201 case DT_REL: name = "REL"; break;
1202 case DT_RELSZ: name = "RELSZ"; break;
1203 case DT_RELENT: name = "RELENT"; break;
1204 case DT_PLTREL: name = "PLTREL"; break;
1205 case DT_DEBUG: name = "DEBUG"; break;
1206 case DT_TEXTREL: name = "TEXTREL"; break;
1207 case DT_JMPREL: name = "JMPREL"; break;
1208 case DT_BIND_NOW: name = "BIND_NOW"; break;
1209 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1210 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1211 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1212 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1213 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1214 case DT_FLAGS: name = "FLAGS"; break;
1215 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1216 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1217 case DT_CHECKSUM: name = "CHECKSUM"; break;
1218 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1219 case DT_MOVEENT: name = "MOVEENT"; break;
1220 case DT_MOVESZ: name = "MOVESZ"; break;
1221 case DT_FEATURE: name = "FEATURE"; break;
1222 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1223 case DT_SYMINSZ: name = "SYMINSZ"; break;
1224 case DT_SYMINENT: name = "SYMINENT"; break;
1225 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1226 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1227 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1228 case DT_PLTPAD: name = "PLTPAD"; break;
1229 case DT_MOVETAB: name = "MOVETAB"; break;
1230 case DT_SYMINFO: name = "SYMINFO"; break;
1231 case DT_RELACOUNT: name = "RELACOUNT"; break;
1232 case DT_RELCOUNT: name = "RELCOUNT"; break;
1233 case DT_FLAGS_1: name = "FLAGS_1"; break;
1234 case DT_VERSYM: name = "VERSYM"; break;
1235 case DT_VERDEF: name = "VERDEF"; break;
1236 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1237 case DT_VERNEED: name = "VERNEED"; break;
1238 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1239 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1240 case DT_USED: name = "USED"; break;
1241 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1242 }
1243
1244 fprintf (f, " %-11s ", name);
1245 if (! stringp)
1246 fprintf (f, "0x%lx", (unsigned long) dyn.d_un.d_val);
1247 else
1248 {
1249 const char *string;
1250 unsigned int tagv = dyn.d_un.d_val;
1251
1252 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1253 if (string == NULL)
1254 goto error_return;
1255 fprintf (f, "%s", string);
1256 }
1257 fprintf (f, "\n");
1258 }
1259
1260 free (dynbuf);
1261 dynbuf = NULL;
1262 }
1263
1264 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1265 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1266 {
1267 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1268 return FALSE;
1269 }
1270
1271 if (elf_dynverdef (abfd) != 0)
1272 {
1273 Elf_Internal_Verdef *t;
1274
1275 fprintf (f, _("\nVersion definitions:\n"));
1276 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1277 {
1278 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1279 t->vd_flags, t->vd_hash,
1280 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1281 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1282 {
1283 Elf_Internal_Verdaux *a;
1284
1285 fprintf (f, "\t");
1286 for (a = t->vd_auxptr->vda_nextptr;
1287 a != NULL;
1288 a = a->vda_nextptr)
1289 fprintf (f, "%s ",
1290 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1291 fprintf (f, "\n");
1292 }
1293 }
1294 }
1295
1296 if (elf_dynverref (abfd) != 0)
1297 {
1298 Elf_Internal_Verneed *t;
1299
1300 fprintf (f, _("\nVersion References:\n"));
1301 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1302 {
1303 Elf_Internal_Vernaux *a;
1304
1305 fprintf (f, _(" required from %s:\n"),
1306 t->vn_filename ? t->vn_filename : "<corrupt>");
1307 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1308 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1309 a->vna_flags, a->vna_other,
1310 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1311 }
1312 }
1313
1314 return TRUE;
1315
1316 error_return:
1317 if (dynbuf != NULL)
1318 free (dynbuf);
1319 return FALSE;
1320 }
1321
1322 /* Display ELF-specific fields of a symbol. */
1323
1324 void
1325 bfd_elf_print_symbol (bfd *abfd,
1326 void *filep,
1327 asymbol *symbol,
1328 bfd_print_symbol_type how)
1329 {
1330 FILE *file = filep;
1331 switch (how)
1332 {
1333 case bfd_print_symbol_name:
1334 fprintf (file, "%s", symbol->name);
1335 break;
1336 case bfd_print_symbol_more:
1337 fprintf (file, "elf ");
1338 bfd_fprintf_vma (abfd, file, symbol->value);
1339 fprintf (file, " %lx", (long) symbol->flags);
1340 break;
1341 case bfd_print_symbol_all:
1342 {
1343 const char *section_name;
1344 const char *name = NULL;
1345 const struct elf_backend_data *bed;
1346 unsigned char st_other;
1347 bfd_vma val;
1348
1349 section_name = symbol->section ? symbol->section->name : "(*none*)";
1350
1351 bed = get_elf_backend_data (abfd);
1352 if (bed->elf_backend_print_symbol_all)
1353 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1354
1355 if (name == NULL)
1356 {
1357 name = symbol->name;
1358 bfd_print_symbol_vandf (abfd, file, symbol);
1359 }
1360
1361 fprintf (file, " %s\t", section_name);
1362 /* Print the "other" value for a symbol. For common symbols,
1363 we've already printed the size; now print the alignment.
1364 For other symbols, we have no specified alignment, and
1365 we've printed the address; now print the size. */
1366 if (bfd_is_com_section (symbol->section))
1367 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1368 else
1369 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1370 bfd_fprintf_vma (abfd, file, val);
1371
1372 /* If we have version information, print it. */
1373 if (elf_tdata (abfd)->dynversym_section != 0
1374 && (elf_tdata (abfd)->dynverdef_section != 0
1375 || elf_tdata (abfd)->dynverref_section != 0))
1376 {
1377 unsigned int vernum;
1378 const char *version_string;
1379
1380 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1381
1382 if (vernum == 0)
1383 version_string = "";
1384 else if (vernum == 1)
1385 version_string = "Base";
1386 else if (vernum <= elf_tdata (abfd)->cverdefs)
1387 version_string =
1388 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1389 else
1390 {
1391 Elf_Internal_Verneed *t;
1392
1393 version_string = "";
1394 for (t = elf_tdata (abfd)->verref;
1395 t != NULL;
1396 t = t->vn_nextref)
1397 {
1398 Elf_Internal_Vernaux *a;
1399
1400 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1401 {
1402 if (a->vna_other == vernum)
1403 {
1404 version_string = a->vna_nodename;
1405 break;
1406 }
1407 }
1408 }
1409 }
1410
1411 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1412 fprintf (file, " %-11s", version_string);
1413 else
1414 {
1415 int i;
1416
1417 fprintf (file, " (%s)", version_string);
1418 for (i = 10 - strlen (version_string); i > 0; --i)
1419 putc (' ', file);
1420 }
1421 }
1422
1423 /* If the st_other field is not zero, print it. */
1424 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1425
1426 switch (st_other)
1427 {
1428 case 0: break;
1429 case STV_INTERNAL: fprintf (file, " .internal"); break;
1430 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1431 case STV_PROTECTED: fprintf (file, " .protected"); break;
1432 default:
1433 /* Some other non-defined flags are also present, so print
1434 everything hex. */
1435 fprintf (file, " 0x%02x", (unsigned int) st_other);
1436 }
1437
1438 fprintf (file, " %s", name);
1439 }
1440 break;
1441 }
1442 }
1443 \f
1444 /* Create an entry in an ELF linker hash table. */
1445
1446 struct bfd_hash_entry *
1447 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1448 struct bfd_hash_table *table,
1449 const char *string)
1450 {
1451 /* Allocate the structure if it has not already been allocated by a
1452 subclass. */
1453 if (entry == NULL)
1454 {
1455 entry = bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
1456 if (entry == NULL)
1457 return entry;
1458 }
1459
1460 /* Call the allocation method of the superclass. */
1461 entry = _bfd_link_hash_newfunc (entry, table, string);
1462 if (entry != NULL)
1463 {
1464 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
1465 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
1466
1467 /* Set local fields. */
1468 ret->indx = -1;
1469 ret->dynindx = -1;
1470 ret->got = htab->init_got_refcount;
1471 ret->plt = htab->init_plt_refcount;
1472 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
1473 - offsetof (struct elf_link_hash_entry, size)));
1474 /* Assume that we have been called by a non-ELF symbol reader.
1475 This flag is then reset by the code which reads an ELF input
1476 file. This ensures that a symbol created by a non-ELF symbol
1477 reader will have the flag set correctly. */
1478 ret->non_elf = 1;
1479 }
1480
1481 return entry;
1482 }
1483
1484 /* Copy data from an indirect symbol to its direct symbol, hiding the
1485 old indirect symbol. Also used for copying flags to a weakdef. */
1486
1487 void
1488 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
1489 struct elf_link_hash_entry *dir,
1490 struct elf_link_hash_entry *ind)
1491 {
1492 struct elf_link_hash_table *htab;
1493
1494 /* Copy down any references that we may have already seen to the
1495 symbol which just became indirect. */
1496
1497 dir->ref_dynamic |= ind->ref_dynamic;
1498 dir->ref_regular |= ind->ref_regular;
1499 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
1500 dir->non_got_ref |= ind->non_got_ref;
1501 dir->needs_plt |= ind->needs_plt;
1502 dir->pointer_equality_needed |= ind->pointer_equality_needed;
1503
1504 if (ind->root.type != bfd_link_hash_indirect)
1505 return;
1506
1507 /* Copy over the global and procedure linkage table refcount entries.
1508 These may have been already set up by a check_relocs routine. */
1509 htab = elf_hash_table (info);
1510 if (ind->got.refcount > htab->init_got_refcount.refcount)
1511 {
1512 if (dir->got.refcount < 0)
1513 dir->got.refcount = 0;
1514 dir->got.refcount += ind->got.refcount;
1515 ind->got.refcount = htab->init_got_refcount.refcount;
1516 }
1517
1518 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
1519 {
1520 if (dir->plt.refcount < 0)
1521 dir->plt.refcount = 0;
1522 dir->plt.refcount += ind->plt.refcount;
1523 ind->plt.refcount = htab->init_plt_refcount.refcount;
1524 }
1525
1526 if (ind->dynindx != -1)
1527 {
1528 if (dir->dynindx != -1)
1529 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
1530 dir->dynindx = ind->dynindx;
1531 dir->dynstr_index = ind->dynstr_index;
1532 ind->dynindx = -1;
1533 ind->dynstr_index = 0;
1534 }
1535 }
1536
1537 void
1538 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
1539 struct elf_link_hash_entry *h,
1540 bfd_boolean force_local)
1541 {
1542 h->plt = elf_hash_table (info)->init_plt_offset;
1543 h->needs_plt = 0;
1544 if (force_local)
1545 {
1546 h->forced_local = 1;
1547 if (h->dynindx != -1)
1548 {
1549 h->dynindx = -1;
1550 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1551 h->dynstr_index);
1552 }
1553 }
1554 }
1555
1556 /* Initialize an ELF linker hash table. */
1557
1558 bfd_boolean
1559 _bfd_elf_link_hash_table_init
1560 (struct elf_link_hash_table *table,
1561 bfd *abfd,
1562 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
1563 struct bfd_hash_table *,
1564 const char *),
1565 unsigned int entsize)
1566 {
1567 bfd_boolean ret;
1568 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
1569
1570 table->dynamic_sections_created = FALSE;
1571 table->dynobj = NULL;
1572 table->init_got_refcount.refcount = can_refcount - 1;
1573 table->init_plt_refcount.refcount = can_refcount - 1;
1574 table->init_got_offset.offset = -(bfd_vma) 1;
1575 table->init_plt_offset.offset = -(bfd_vma) 1;
1576 /* The first dynamic symbol is a dummy. */
1577 table->dynsymcount = 1;
1578 table->dynstr = NULL;
1579 table->bucketcount = 0;
1580 table->needed = NULL;
1581 table->hgot = NULL;
1582 table->merge_info = NULL;
1583 memset (&table->stab_info, 0, sizeof (table->stab_info));
1584 memset (&table->eh_info, 0, sizeof (table->eh_info));
1585 table->dynlocal = NULL;
1586 table->runpath = NULL;
1587 table->tls_sec = NULL;
1588 table->tls_size = 0;
1589 table->loaded = NULL;
1590 table->is_relocatable_executable = FALSE;
1591
1592 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
1593 table->root.type = bfd_link_elf_hash_table;
1594
1595 return ret;
1596 }
1597
1598 /* Create an ELF linker hash table. */
1599
1600 struct bfd_link_hash_table *
1601 _bfd_elf_link_hash_table_create (bfd *abfd)
1602 {
1603 struct elf_link_hash_table *ret;
1604 bfd_size_type amt = sizeof (struct elf_link_hash_table);
1605
1606 ret = bfd_malloc (amt);
1607 if (ret == NULL)
1608 return NULL;
1609
1610 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
1611 sizeof (struct elf_link_hash_entry)))
1612 {
1613 free (ret);
1614 return NULL;
1615 }
1616
1617 return &ret->root;
1618 }
1619
1620 /* This is a hook for the ELF emulation code in the generic linker to
1621 tell the backend linker what file name to use for the DT_NEEDED
1622 entry for a dynamic object. */
1623
1624 void
1625 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
1626 {
1627 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1628 && bfd_get_format (abfd) == bfd_object)
1629 elf_dt_name (abfd) = name;
1630 }
1631
1632 int
1633 bfd_elf_get_dyn_lib_class (bfd *abfd)
1634 {
1635 int lib_class;
1636 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1637 && bfd_get_format (abfd) == bfd_object)
1638 lib_class = elf_dyn_lib_class (abfd);
1639 else
1640 lib_class = 0;
1641 return lib_class;
1642 }
1643
1644 void
1645 bfd_elf_set_dyn_lib_class (bfd *abfd, int lib_class)
1646 {
1647 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1648 && bfd_get_format (abfd) == bfd_object)
1649 elf_dyn_lib_class (abfd) = lib_class;
1650 }
1651
1652 /* Get the list of DT_NEEDED entries for a link. This is a hook for
1653 the linker ELF emulation code. */
1654
1655 struct bfd_link_needed_list *
1656 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
1657 struct bfd_link_info *info)
1658 {
1659 if (! is_elf_hash_table (info->hash))
1660 return NULL;
1661 return elf_hash_table (info)->needed;
1662 }
1663
1664 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
1665 hook for the linker ELF emulation code. */
1666
1667 struct bfd_link_needed_list *
1668 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
1669 struct bfd_link_info *info)
1670 {
1671 if (! is_elf_hash_table (info->hash))
1672 return NULL;
1673 return elf_hash_table (info)->runpath;
1674 }
1675
1676 /* Get the name actually used for a dynamic object for a link. This
1677 is the SONAME entry if there is one. Otherwise, it is the string
1678 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
1679
1680 const char *
1681 bfd_elf_get_dt_soname (bfd *abfd)
1682 {
1683 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1684 && bfd_get_format (abfd) == bfd_object)
1685 return elf_dt_name (abfd);
1686 return NULL;
1687 }
1688
1689 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
1690 the ELF linker emulation code. */
1691
1692 bfd_boolean
1693 bfd_elf_get_bfd_needed_list (bfd *abfd,
1694 struct bfd_link_needed_list **pneeded)
1695 {
1696 asection *s;
1697 bfd_byte *dynbuf = NULL;
1698 int elfsec;
1699 unsigned long shlink;
1700 bfd_byte *extdyn, *extdynend;
1701 size_t extdynsize;
1702 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1703
1704 *pneeded = NULL;
1705
1706 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
1707 || bfd_get_format (abfd) != bfd_object)
1708 return TRUE;
1709
1710 s = bfd_get_section_by_name (abfd, ".dynamic");
1711 if (s == NULL || s->size == 0)
1712 return TRUE;
1713
1714 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1715 goto error_return;
1716
1717 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1718 if (elfsec == -1)
1719 goto error_return;
1720
1721 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1722
1723 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1724 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1725
1726 extdyn = dynbuf;
1727 extdynend = extdyn + s->size;
1728 for (; extdyn < extdynend; extdyn += extdynsize)
1729 {
1730 Elf_Internal_Dyn dyn;
1731
1732 (*swap_dyn_in) (abfd, extdyn, &dyn);
1733
1734 if (dyn.d_tag == DT_NULL)
1735 break;
1736
1737 if (dyn.d_tag == DT_NEEDED)
1738 {
1739 const char *string;
1740 struct bfd_link_needed_list *l;
1741 unsigned int tagv = dyn.d_un.d_val;
1742 bfd_size_type amt;
1743
1744 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1745 if (string == NULL)
1746 goto error_return;
1747
1748 amt = sizeof *l;
1749 l = bfd_alloc (abfd, amt);
1750 if (l == NULL)
1751 goto error_return;
1752
1753 l->by = abfd;
1754 l->name = string;
1755 l->next = *pneeded;
1756 *pneeded = l;
1757 }
1758 }
1759
1760 free (dynbuf);
1761
1762 return TRUE;
1763
1764 error_return:
1765 if (dynbuf != NULL)
1766 free (dynbuf);
1767 return FALSE;
1768 }
1769 \f
1770 /* Allocate an ELF string table--force the first byte to be zero. */
1771
1772 struct bfd_strtab_hash *
1773 _bfd_elf_stringtab_init (void)
1774 {
1775 struct bfd_strtab_hash *ret;
1776
1777 ret = _bfd_stringtab_init ();
1778 if (ret != NULL)
1779 {
1780 bfd_size_type loc;
1781
1782 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1783 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1784 if (loc == (bfd_size_type) -1)
1785 {
1786 _bfd_stringtab_free (ret);
1787 ret = NULL;
1788 }
1789 }
1790 return ret;
1791 }
1792 \f
1793 /* ELF .o/exec file reading */
1794
1795 /* Create a new bfd section from an ELF section header. */
1796
1797 bfd_boolean
1798 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1799 {
1800 Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[shindex];
1801 Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
1802 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1803 const char *name;
1804
1805 name = bfd_elf_string_from_elf_section (abfd,
1806 elf_elfheader (abfd)->e_shstrndx,
1807 hdr->sh_name);
1808 if (name == NULL)
1809 return FALSE;
1810
1811 switch (hdr->sh_type)
1812 {
1813 case SHT_NULL:
1814 /* Inactive section. Throw it away. */
1815 return TRUE;
1816
1817 case SHT_PROGBITS: /* Normal section with contents. */
1818 case SHT_NOBITS: /* .bss section. */
1819 case SHT_HASH: /* .hash section. */
1820 case SHT_NOTE: /* .note section. */
1821 case SHT_INIT_ARRAY: /* .init_array section. */
1822 case SHT_FINI_ARRAY: /* .fini_array section. */
1823 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1824 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1825 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1826
1827 case SHT_DYNAMIC: /* Dynamic linking information. */
1828 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1829 return FALSE;
1830 if (hdr->sh_link > elf_numsections (abfd)
1831 || elf_elfsections (abfd)[hdr->sh_link] == NULL)
1832 return FALSE;
1833 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1834 {
1835 Elf_Internal_Shdr *dynsymhdr;
1836
1837 /* The shared libraries distributed with hpux11 have a bogus
1838 sh_link field for the ".dynamic" section. Find the
1839 string table for the ".dynsym" section instead. */
1840 if (elf_dynsymtab (abfd) != 0)
1841 {
1842 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1843 hdr->sh_link = dynsymhdr->sh_link;
1844 }
1845 else
1846 {
1847 unsigned int i, num_sec;
1848
1849 num_sec = elf_numsections (abfd);
1850 for (i = 1; i < num_sec; i++)
1851 {
1852 dynsymhdr = elf_elfsections (abfd)[i];
1853 if (dynsymhdr->sh_type == SHT_DYNSYM)
1854 {
1855 hdr->sh_link = dynsymhdr->sh_link;
1856 break;
1857 }
1858 }
1859 }
1860 }
1861 break;
1862
1863 case SHT_SYMTAB: /* A symbol table */
1864 if (elf_onesymtab (abfd) == shindex)
1865 return TRUE;
1866
1867 if (hdr->sh_entsize != bed->s->sizeof_sym)
1868 return FALSE;
1869 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1870 elf_onesymtab (abfd) = shindex;
1871 elf_tdata (abfd)->symtab_hdr = *hdr;
1872 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1873 abfd->flags |= HAS_SYMS;
1874
1875 /* Sometimes a shared object will map in the symbol table. If
1876 SHF_ALLOC is set, and this is a shared object, then we also
1877 treat this section as a BFD section. We can not base the
1878 decision purely on SHF_ALLOC, because that flag is sometimes
1879 set in a relocatable object file, which would confuse the
1880 linker. */
1881 if ((hdr->sh_flags & SHF_ALLOC) != 0
1882 && (abfd->flags & DYNAMIC) != 0
1883 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1884 shindex))
1885 return FALSE;
1886
1887 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1888 can't read symbols without that section loaded as well. It
1889 is most likely specified by the next section header. */
1890 if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
1891 {
1892 unsigned int i, num_sec;
1893
1894 num_sec = elf_numsections (abfd);
1895 for (i = shindex + 1; i < num_sec; i++)
1896 {
1897 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1898 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1899 && hdr2->sh_link == shindex)
1900 break;
1901 }
1902 if (i == num_sec)
1903 for (i = 1; i < shindex; i++)
1904 {
1905 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1906 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1907 && hdr2->sh_link == shindex)
1908 break;
1909 }
1910 if (i != shindex)
1911 return bfd_section_from_shdr (abfd, i);
1912 }
1913 return TRUE;
1914
1915 case SHT_DYNSYM: /* A dynamic symbol table */
1916 if (elf_dynsymtab (abfd) == shindex)
1917 return TRUE;
1918
1919 if (hdr->sh_entsize != bed->s->sizeof_sym)
1920 return FALSE;
1921 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1922 elf_dynsymtab (abfd) = shindex;
1923 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1924 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1925 abfd->flags |= HAS_SYMS;
1926
1927 /* Besides being a symbol table, we also treat this as a regular
1928 section, so that objcopy can handle it. */
1929 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1930
1931 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1932 if (elf_symtab_shndx (abfd) == shindex)
1933 return TRUE;
1934
1935 BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
1936 elf_symtab_shndx (abfd) = shindex;
1937 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1938 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1939 return TRUE;
1940
1941 case SHT_STRTAB: /* A string table */
1942 if (hdr->bfd_section != NULL)
1943 return TRUE;
1944 if (ehdr->e_shstrndx == shindex)
1945 {
1946 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1947 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1948 return TRUE;
1949 }
1950 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
1951 {
1952 symtab_strtab:
1953 elf_tdata (abfd)->strtab_hdr = *hdr;
1954 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
1955 return TRUE;
1956 }
1957 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
1958 {
1959 dynsymtab_strtab:
1960 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1961 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
1962 elf_elfsections (abfd)[shindex] = hdr;
1963 /* We also treat this as a regular section, so that objcopy
1964 can handle it. */
1965 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1966 shindex);
1967 }
1968
1969 /* If the string table isn't one of the above, then treat it as a
1970 regular section. We need to scan all the headers to be sure,
1971 just in case this strtab section appeared before the above. */
1972 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
1973 {
1974 unsigned int i, num_sec;
1975
1976 num_sec = elf_numsections (abfd);
1977 for (i = 1; i < num_sec; i++)
1978 {
1979 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1980 if (hdr2->sh_link == shindex)
1981 {
1982 /* Prevent endless recursion on broken objects. */
1983 if (i == shindex)
1984 return FALSE;
1985 if (! bfd_section_from_shdr (abfd, i))
1986 return FALSE;
1987 if (elf_onesymtab (abfd) == i)
1988 goto symtab_strtab;
1989 if (elf_dynsymtab (abfd) == i)
1990 goto dynsymtab_strtab;
1991 }
1992 }
1993 }
1994 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1995
1996 case SHT_REL:
1997 case SHT_RELA:
1998 /* *These* do a lot of work -- but build no sections! */
1999 {
2000 asection *target_sect;
2001 Elf_Internal_Shdr *hdr2;
2002 unsigned int num_sec = elf_numsections (abfd);
2003
2004 if (hdr->sh_entsize
2005 != (bfd_size_type) (hdr->sh_type == SHT_REL
2006 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
2007 return FALSE;
2008
2009 /* Check for a bogus link to avoid crashing. */
2010 if ((hdr->sh_link >= SHN_LORESERVE && hdr->sh_link <= SHN_HIRESERVE)
2011 || hdr->sh_link >= num_sec)
2012 {
2013 ((*_bfd_error_handler)
2014 (_("%B: invalid link %lu for reloc section %s (index %u)"),
2015 abfd, hdr->sh_link, name, shindex));
2016 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2017 shindex);
2018 }
2019
2020 /* For some incomprehensible reason Oracle distributes
2021 libraries for Solaris in which some of the objects have
2022 bogus sh_link fields. It would be nice if we could just
2023 reject them, but, unfortunately, some people need to use
2024 them. We scan through the section headers; if we find only
2025 one suitable symbol table, we clobber the sh_link to point
2026 to it. I hope this doesn't break anything. */
2027 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
2028 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
2029 {
2030 unsigned int scan;
2031 int found;
2032
2033 found = 0;
2034 for (scan = 1; scan < num_sec; scan++)
2035 {
2036 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
2037 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
2038 {
2039 if (found != 0)
2040 {
2041 found = 0;
2042 break;
2043 }
2044 found = scan;
2045 }
2046 }
2047 if (found != 0)
2048 hdr->sh_link = found;
2049 }
2050
2051 /* Get the symbol table. */
2052 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
2053 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
2054 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
2055 return FALSE;
2056
2057 /* If this reloc section does not use the main symbol table we
2058 don't treat it as a reloc section. BFD can't adequately
2059 represent such a section, so at least for now, we don't
2060 try. We just present it as a normal section. We also
2061 can't use it as a reloc section if it points to the null
2062 section, an invalid section, or another reloc section. */
2063 if (hdr->sh_link != elf_onesymtab (abfd)
2064 || hdr->sh_info == SHN_UNDEF
2065 || (hdr->sh_info >= SHN_LORESERVE && hdr->sh_info <= SHN_HIRESERVE)
2066 || hdr->sh_info >= num_sec
2067 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
2068 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
2069 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2070 shindex);
2071
2072 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
2073 return FALSE;
2074 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
2075 if (target_sect == NULL)
2076 return FALSE;
2077
2078 if ((target_sect->flags & SEC_RELOC) == 0
2079 || target_sect->reloc_count == 0)
2080 hdr2 = &elf_section_data (target_sect)->rel_hdr;
2081 else
2082 {
2083 bfd_size_type amt;
2084 BFD_ASSERT (elf_section_data (target_sect)->rel_hdr2 == NULL);
2085 amt = sizeof (*hdr2);
2086 hdr2 = bfd_alloc (abfd, amt);
2087 elf_section_data (target_sect)->rel_hdr2 = hdr2;
2088 }
2089 *hdr2 = *hdr;
2090 elf_elfsections (abfd)[shindex] = hdr2;
2091 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
2092 target_sect->flags |= SEC_RELOC;
2093 target_sect->relocation = NULL;
2094 target_sect->rel_filepos = hdr->sh_offset;
2095 /* In the section to which the relocations apply, mark whether
2096 its relocations are of the REL or RELA variety. */
2097 if (hdr->sh_size != 0)
2098 target_sect->use_rela_p = hdr->sh_type == SHT_RELA;
2099 abfd->flags |= HAS_RELOC;
2100 return TRUE;
2101 }
2102 break;
2103
2104 case SHT_GNU_verdef:
2105 elf_dynverdef (abfd) = shindex;
2106 elf_tdata (abfd)->dynverdef_hdr = *hdr;
2107 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2108 break;
2109
2110 case SHT_GNU_versym:
2111 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
2112 return FALSE;
2113 elf_dynversym (abfd) = shindex;
2114 elf_tdata (abfd)->dynversym_hdr = *hdr;
2115 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2116
2117 case SHT_GNU_verneed:
2118 elf_dynverref (abfd) = shindex;
2119 elf_tdata (abfd)->dynverref_hdr = *hdr;
2120 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2121
2122 case SHT_SHLIB:
2123 return TRUE;
2124
2125 case SHT_GROUP:
2126 /* We need a BFD section for objcopy and relocatable linking,
2127 and it's handy to have the signature available as the section
2128 name. */
2129 if (hdr->sh_entsize != GRP_ENTRY_SIZE)
2130 return FALSE;
2131 name = group_signature (abfd, hdr);
2132 if (name == NULL)
2133 return FALSE;
2134 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2135 return FALSE;
2136 if (hdr->contents != NULL)
2137 {
2138 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
2139 unsigned int n_elt = hdr->sh_size / 4;
2140 asection *s;
2141
2142 if (idx->flags & GRP_COMDAT)
2143 hdr->bfd_section->flags
2144 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
2145
2146 /* We try to keep the same section order as it comes in. */
2147 idx += n_elt;
2148 while (--n_elt != 0)
2149 if ((s = (--idx)->shdr->bfd_section) != NULL
2150 && elf_next_in_group (s) != NULL)
2151 {
2152 elf_next_in_group (hdr->bfd_section) = s;
2153 break;
2154 }
2155 }
2156 break;
2157
2158 default:
2159 /* Check for any processor-specific section types. */
2160 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
2161 return TRUE;
2162
2163 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
2164 {
2165 if ((hdr->sh_flags & SHF_ALLOC) != 0)
2166 /* FIXME: How to properly handle allocated section reserved
2167 for applications? */
2168 (*_bfd_error_handler)
2169 (_("%B: don't know how to handle allocated, application "
2170 "specific section `%s' [0x%8x]"),
2171 abfd, name, hdr->sh_type);
2172 else
2173 /* Allow sections reserved for applications. */
2174 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2175 shindex);
2176 }
2177 else if (hdr->sh_type >= SHT_LOPROC
2178 && hdr->sh_type <= SHT_HIPROC)
2179 /* FIXME: We should handle this section. */
2180 (*_bfd_error_handler)
2181 (_("%B: don't know how to handle processor specific section "
2182 "`%s' [0x%8x]"),
2183 abfd, name, hdr->sh_type);
2184 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
2185 /* FIXME: We should handle this section. */
2186 (*_bfd_error_handler)
2187 (_("%B: don't know how to handle OS specific section "
2188 "`%s' [0x%8x]"),
2189 abfd, name, hdr->sh_type);
2190 else
2191 /* FIXME: We should handle this section. */
2192 (*_bfd_error_handler)
2193 (_("%B: don't know how to handle section `%s' [0x%8x]"),
2194 abfd, name, hdr->sh_type);
2195
2196 return FALSE;
2197 }
2198
2199 return TRUE;
2200 }
2201
2202 /* Return the section for the local symbol specified by ABFD, R_SYMNDX.
2203 Return SEC for sections that have no elf section, and NULL on error. */
2204
2205 asection *
2206 bfd_section_from_r_symndx (bfd *abfd,
2207 struct sym_sec_cache *cache,
2208 asection *sec,
2209 unsigned long r_symndx)
2210 {
2211 Elf_Internal_Shdr *symtab_hdr;
2212 unsigned char esym[sizeof (Elf64_External_Sym)];
2213 Elf_External_Sym_Shndx eshndx;
2214 Elf_Internal_Sym isym;
2215 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2216
2217 if (cache->abfd == abfd && cache->indx[ent] == r_symndx)
2218 return cache->sec[ent];
2219
2220 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2221 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2222 &isym, esym, &eshndx) == NULL)
2223 return NULL;
2224
2225 if (cache->abfd != abfd)
2226 {
2227 memset (cache->indx, -1, sizeof (cache->indx));
2228 cache->abfd = abfd;
2229 }
2230 cache->indx[ent] = r_symndx;
2231 cache->sec[ent] = sec;
2232 if ((isym.st_shndx != SHN_UNDEF && isym.st_shndx < SHN_LORESERVE)
2233 || isym.st_shndx > SHN_HIRESERVE)
2234 {
2235 asection *s;
2236 s = bfd_section_from_elf_index (abfd, isym.st_shndx);
2237 if (s != NULL)
2238 cache->sec[ent] = s;
2239 }
2240 return cache->sec[ent];
2241 }
2242
2243 /* Given an ELF section number, retrieve the corresponding BFD
2244 section. */
2245
2246 asection *
2247 bfd_section_from_elf_index (bfd *abfd, unsigned int index)
2248 {
2249 if (index >= elf_numsections (abfd))
2250 return NULL;
2251 return elf_elfsections (abfd)[index]->bfd_section;
2252 }
2253
2254 static const struct bfd_elf_special_section special_sections_b[] =
2255 {
2256 { ".bss", 4, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2257 { NULL, 0, 0, 0, 0 }
2258 };
2259
2260 static const struct bfd_elf_special_section special_sections_c[] =
2261 {
2262 { ".comment", 8, 0, SHT_PROGBITS, 0 },
2263 { NULL, 0, 0, 0, 0 }
2264 };
2265
2266 static const struct bfd_elf_special_section special_sections_d[] =
2267 {
2268 { ".data", 5, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2269 { ".data1", 6, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2270 { ".debug", 6, 0, SHT_PROGBITS, 0 },
2271 { ".debug_line", 11, 0, SHT_PROGBITS, 0 },
2272 { ".debug_info", 11, 0, SHT_PROGBITS, 0 },
2273 { ".debug_abbrev", 13, 0, SHT_PROGBITS, 0 },
2274 { ".debug_aranges", 14, 0, SHT_PROGBITS, 0 },
2275 { ".dynamic", 8, 0, SHT_DYNAMIC, SHF_ALLOC },
2276 { ".dynstr", 7, 0, SHT_STRTAB, SHF_ALLOC },
2277 { ".dynsym", 7, 0, SHT_DYNSYM, SHF_ALLOC },
2278 { NULL, 0, 0, 0, 0 }
2279 };
2280
2281 static const struct bfd_elf_special_section special_sections_f[] =
2282 {
2283 { ".fini", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2284 { ".fini_array", 11, 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2285 { NULL, 0, 0, 0, 0 }
2286 };
2287
2288 static const struct bfd_elf_special_section special_sections_g[] =
2289 {
2290 { ".gnu.linkonce.b",15, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2291 { ".got", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2292 { ".gnu.version", 12, 0, SHT_GNU_versym, 0 },
2293 { ".gnu.version_d", 14, 0, SHT_GNU_verdef, 0 },
2294 { ".gnu.version_r", 14, 0, SHT_GNU_verneed, 0 },
2295 { ".gnu.liblist", 12, 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2296 { ".gnu.conflict", 13, 0, SHT_RELA, SHF_ALLOC },
2297 { NULL, 0, 0, 0, 0 }
2298 };
2299
2300 static const struct bfd_elf_special_section special_sections_h[] =
2301 {
2302 { ".hash", 5, 0, SHT_HASH, SHF_ALLOC },
2303 { NULL, 0, 0, 0, 0 }
2304 };
2305
2306 static const struct bfd_elf_special_section special_sections_i[] =
2307 {
2308 { ".init", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2309 { ".init_array", 11, 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2310 { ".interp", 7, 0, SHT_PROGBITS, 0 },
2311 { NULL, 0, 0, 0, 0 }
2312 };
2313
2314 static const struct bfd_elf_special_section special_sections_l[] =
2315 {
2316 { ".line", 5, 0, SHT_PROGBITS, 0 },
2317 { NULL, 0, 0, 0, 0 }
2318 };
2319
2320 static const struct bfd_elf_special_section special_sections_n[] =
2321 {
2322 { ".note.GNU-stack",15, 0, SHT_PROGBITS, 0 },
2323 { ".note", 5, -1, SHT_NOTE, 0 },
2324 { NULL, 0, 0, 0, 0 }
2325 };
2326
2327 static const struct bfd_elf_special_section special_sections_p[] =
2328 {
2329 { ".preinit_array", 14, 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2330 { ".plt", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2331 { NULL, 0, 0, 0, 0 }
2332 };
2333
2334 static const struct bfd_elf_special_section special_sections_r[] =
2335 {
2336 { ".rodata", 7, -2, SHT_PROGBITS, SHF_ALLOC },
2337 { ".rodata1", 8, 0, SHT_PROGBITS, SHF_ALLOC },
2338 { ".rela", 5, -1, SHT_RELA, 0 },
2339 { ".rel", 4, -1, SHT_REL, 0 },
2340 { NULL, 0, 0, 0, 0 }
2341 };
2342
2343 static const struct bfd_elf_special_section special_sections_s[] =
2344 {
2345 { ".shstrtab", 9, 0, SHT_STRTAB, 0 },
2346 { ".strtab", 7, 0, SHT_STRTAB, 0 },
2347 { ".symtab", 7, 0, SHT_SYMTAB, 0 },
2348 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2349 { NULL, 0, 0, 0, 0 }
2350 };
2351
2352 static const struct bfd_elf_special_section special_sections_t[] =
2353 {
2354 { ".text", 5, -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2355 { ".tbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2356 { ".tdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2357 { NULL, 0, 0, 0, 0 }
2358 };
2359
2360 static const struct bfd_elf_special_section *special_sections[] =
2361 {
2362 special_sections_b, /* 'b' */
2363 special_sections_c, /* 'b' */
2364 special_sections_d, /* 'd' */
2365 NULL, /* 'e' */
2366 special_sections_f, /* 'f' */
2367 special_sections_g, /* 'g' */
2368 special_sections_h, /* 'h' */
2369 special_sections_i, /* 'i' */
2370 NULL, /* 'j' */
2371 NULL, /* 'k' */
2372 special_sections_l, /* 'l' */
2373 NULL, /* 'm' */
2374 special_sections_n, /* 'n' */
2375 NULL, /* 'o' */
2376 special_sections_p, /* 'p' */
2377 NULL, /* 'q' */
2378 special_sections_r, /* 'r' */
2379 special_sections_s, /* 's' */
2380 special_sections_t, /* 't' */
2381 };
2382
2383 const struct bfd_elf_special_section *
2384 _bfd_elf_get_special_section (const char *name,
2385 const struct bfd_elf_special_section *spec,
2386 unsigned int rela)
2387 {
2388 int i;
2389 int len;
2390
2391 len = strlen (name);
2392
2393 for (i = 0; spec[i].prefix != NULL; i++)
2394 {
2395 int suffix_len;
2396 int prefix_len = spec[i].prefix_length;
2397
2398 if (len < prefix_len)
2399 continue;
2400 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2401 continue;
2402
2403 suffix_len = spec[i].suffix_length;
2404 if (suffix_len <= 0)
2405 {
2406 if (name[prefix_len] != 0)
2407 {
2408 if (suffix_len == 0)
2409 continue;
2410 if (name[prefix_len] != '.'
2411 && (suffix_len == -2
2412 || (rela && spec[i].type == SHT_REL)))
2413 continue;
2414 }
2415 }
2416 else
2417 {
2418 if (len < prefix_len + suffix_len)
2419 continue;
2420 if (memcmp (name + len - suffix_len,
2421 spec[i].prefix + prefix_len,
2422 suffix_len) != 0)
2423 continue;
2424 }
2425 return &spec[i];
2426 }
2427
2428 return NULL;
2429 }
2430
2431 const struct bfd_elf_special_section *
2432 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2433 {
2434 int i;
2435 const struct bfd_elf_special_section *spec;
2436 const struct elf_backend_data *bed;
2437
2438 /* See if this is one of the special sections. */
2439 if (sec->name == NULL)
2440 return NULL;
2441
2442 bed = get_elf_backend_data (abfd);
2443 spec = bed->special_sections;
2444 if (spec)
2445 {
2446 spec = _bfd_elf_get_special_section (sec->name,
2447 bed->special_sections,
2448 sec->use_rela_p);
2449 if (spec != NULL)
2450 return spec;
2451 }
2452
2453 if (sec->name[0] != '.')
2454 return NULL;
2455
2456 i = sec->name[1] - 'b';
2457 if (i < 0 || i > 't' - 'b')
2458 return NULL;
2459
2460 spec = special_sections[i];
2461
2462 if (spec == NULL)
2463 return NULL;
2464
2465 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2466 }
2467
2468 bfd_boolean
2469 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2470 {
2471 struct bfd_elf_section_data *sdata;
2472 const struct elf_backend_data *bed;
2473 const struct bfd_elf_special_section *ssect;
2474
2475 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2476 if (sdata == NULL)
2477 {
2478 sdata = bfd_zalloc (abfd, sizeof (*sdata));
2479 if (sdata == NULL)
2480 return FALSE;
2481 sec->used_by_bfd = sdata;
2482 }
2483
2484 /* Indicate whether or not this section should use RELA relocations. */
2485 bed = get_elf_backend_data (abfd);
2486 sec->use_rela_p = bed->default_use_rela_p;
2487
2488 /* When we read a file, we don't need to set ELF section type and
2489 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2490 anyway. We will set ELF section type and flags for all linker
2491 created sections. If user specifies BFD section flags, we will
2492 set ELF section type and flags based on BFD section flags in
2493 elf_fake_sections. */
2494 if ((!sec->flags && abfd->direction != read_direction)
2495 || (sec->flags & SEC_LINKER_CREATED) != 0)
2496 {
2497 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2498 if (ssect != NULL)
2499 {
2500 elf_section_type (sec) = ssect->type;
2501 elf_section_flags (sec) = ssect->attr;
2502 }
2503 }
2504
2505 return _bfd_generic_new_section_hook (abfd, sec);
2506 }
2507
2508 /* Create a new bfd section from an ELF program header.
2509
2510 Since program segments have no names, we generate a synthetic name
2511 of the form segment<NUM>, where NUM is generally the index in the
2512 program header table. For segments that are split (see below) we
2513 generate the names segment<NUM>a and segment<NUM>b.
2514
2515 Note that some program segments may have a file size that is different than
2516 (less than) the memory size. All this means is that at execution the
2517 system must allocate the amount of memory specified by the memory size,
2518 but only initialize it with the first "file size" bytes read from the
2519 file. This would occur for example, with program segments consisting
2520 of combined data+bss.
2521
2522 To handle the above situation, this routine generates TWO bfd sections
2523 for the single program segment. The first has the length specified by
2524 the file size of the segment, and the second has the length specified
2525 by the difference between the two sizes. In effect, the segment is split
2526 into it's initialized and uninitialized parts.
2527
2528 */
2529
2530 bfd_boolean
2531 _bfd_elf_make_section_from_phdr (bfd *abfd,
2532 Elf_Internal_Phdr *hdr,
2533 int index,
2534 const char *typename)
2535 {
2536 asection *newsect;
2537 char *name;
2538 char namebuf[64];
2539 size_t len;
2540 int split;
2541
2542 split = ((hdr->p_memsz > 0)
2543 && (hdr->p_filesz > 0)
2544 && (hdr->p_memsz > hdr->p_filesz));
2545 sprintf (namebuf, "%s%d%s", typename, index, split ? "a" : "");
2546 len = strlen (namebuf) + 1;
2547 name = bfd_alloc (abfd, len);
2548 if (!name)
2549 return FALSE;
2550 memcpy (name, namebuf, len);
2551 newsect = bfd_make_section (abfd, name);
2552 if (newsect == NULL)
2553 return FALSE;
2554 newsect->vma = hdr->p_vaddr;
2555 newsect->lma = hdr->p_paddr;
2556 newsect->size = hdr->p_filesz;
2557 newsect->filepos = hdr->p_offset;
2558 newsect->flags |= SEC_HAS_CONTENTS;
2559 newsect->alignment_power = bfd_log2 (hdr->p_align);
2560 if (hdr->p_type == PT_LOAD)
2561 {
2562 newsect->flags |= SEC_ALLOC;
2563 newsect->flags |= SEC_LOAD;
2564 if (hdr->p_flags & PF_X)
2565 {
2566 /* FIXME: all we known is that it has execute PERMISSION,
2567 may be data. */
2568 newsect->flags |= SEC_CODE;
2569 }
2570 }
2571 if (!(hdr->p_flags & PF_W))
2572 {
2573 newsect->flags |= SEC_READONLY;
2574 }
2575
2576 if (split)
2577 {
2578 sprintf (namebuf, "%s%db", typename, index);
2579 len = strlen (namebuf) + 1;
2580 name = bfd_alloc (abfd, len);
2581 if (!name)
2582 return FALSE;
2583 memcpy (name, namebuf, len);
2584 newsect = bfd_make_section (abfd, name);
2585 if (newsect == NULL)
2586 return FALSE;
2587 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2588 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2589 newsect->size = hdr->p_memsz - hdr->p_filesz;
2590 if (hdr->p_type == PT_LOAD)
2591 {
2592 newsect->flags |= SEC_ALLOC;
2593 if (hdr->p_flags & PF_X)
2594 newsect->flags |= SEC_CODE;
2595 }
2596 if (!(hdr->p_flags & PF_W))
2597 newsect->flags |= SEC_READONLY;
2598 }
2599
2600 return TRUE;
2601 }
2602
2603 bfd_boolean
2604 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index)
2605 {
2606 const struct elf_backend_data *bed;
2607
2608 switch (hdr->p_type)
2609 {
2610 case PT_NULL:
2611 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "null");
2612
2613 case PT_LOAD:
2614 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "load");
2615
2616 case PT_DYNAMIC:
2617 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "dynamic");
2618
2619 case PT_INTERP:
2620 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "interp");
2621
2622 case PT_NOTE:
2623 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, index, "note"))
2624 return FALSE;
2625 if (! elfcore_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2626 return FALSE;
2627 return TRUE;
2628
2629 case PT_SHLIB:
2630 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "shlib");
2631
2632 case PT_PHDR:
2633 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "phdr");
2634
2635 case PT_GNU_EH_FRAME:
2636 return _bfd_elf_make_section_from_phdr (abfd, hdr, index,
2637 "eh_frame_hdr");
2638
2639 case PT_GNU_STACK:
2640 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "stack");
2641
2642 case PT_GNU_RELRO:
2643 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "relro");
2644
2645 default:
2646 /* Check for any processor-specific program segment types. */
2647 bed = get_elf_backend_data (abfd);
2648 return bed->elf_backend_section_from_phdr (abfd, hdr, index, "proc");
2649 }
2650 }
2651
2652 /* Initialize REL_HDR, the section-header for new section, containing
2653 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2654 relocations; otherwise, we use REL relocations. */
2655
2656 bfd_boolean
2657 _bfd_elf_init_reloc_shdr (bfd *abfd,
2658 Elf_Internal_Shdr *rel_hdr,
2659 asection *asect,
2660 bfd_boolean use_rela_p)
2661 {
2662 char *name;
2663 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2664 bfd_size_type amt = sizeof ".rela" + strlen (asect->name);
2665
2666 name = bfd_alloc (abfd, amt);
2667 if (name == NULL)
2668 return FALSE;
2669 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2670 rel_hdr->sh_name =
2671 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2672 FALSE);
2673 if (rel_hdr->sh_name == (unsigned int) -1)
2674 return FALSE;
2675 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2676 rel_hdr->sh_entsize = (use_rela_p
2677 ? bed->s->sizeof_rela
2678 : bed->s->sizeof_rel);
2679 rel_hdr->sh_addralign = 1 << bed->s->log_file_align;
2680 rel_hdr->sh_flags = 0;
2681 rel_hdr->sh_addr = 0;
2682 rel_hdr->sh_size = 0;
2683 rel_hdr->sh_offset = 0;
2684
2685 return TRUE;
2686 }
2687
2688 /* Set up an ELF internal section header for a section. */
2689
2690 static void
2691 elf_fake_sections (bfd *abfd, asection *asect, void *failedptrarg)
2692 {
2693 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2694 bfd_boolean *failedptr = failedptrarg;
2695 Elf_Internal_Shdr *this_hdr;
2696
2697 if (*failedptr)
2698 {
2699 /* We already failed; just get out of the bfd_map_over_sections
2700 loop. */
2701 return;
2702 }
2703
2704 this_hdr = &elf_section_data (asect)->this_hdr;
2705
2706 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2707 asect->name, FALSE);
2708 if (this_hdr->sh_name == (unsigned int) -1)
2709 {
2710 *failedptr = TRUE;
2711 return;
2712 }
2713
2714 /* Don't clear sh_flags. Assembler may set additional bits. */
2715
2716 if ((asect->flags & SEC_ALLOC) != 0
2717 || asect->user_set_vma)
2718 this_hdr->sh_addr = asect->vma;
2719 else
2720 this_hdr->sh_addr = 0;
2721
2722 this_hdr->sh_offset = 0;
2723 this_hdr->sh_size = asect->size;
2724 this_hdr->sh_link = 0;
2725 this_hdr->sh_addralign = 1 << asect->alignment_power;
2726 /* The sh_entsize and sh_info fields may have been set already by
2727 copy_private_section_data. */
2728
2729 this_hdr->bfd_section = asect;
2730 this_hdr->contents = NULL;
2731
2732 /* If the section type is unspecified, we set it based on
2733 asect->flags. */
2734 if (this_hdr->sh_type == SHT_NULL)
2735 {
2736 if ((asect->flags & SEC_GROUP) != 0)
2737 this_hdr->sh_type = SHT_GROUP;
2738 else if ((asect->flags & SEC_ALLOC) != 0
2739 && (((asect->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2740 || (asect->flags & SEC_NEVER_LOAD) != 0))
2741 this_hdr->sh_type = SHT_NOBITS;
2742 else
2743 this_hdr->sh_type = SHT_PROGBITS;
2744 }
2745
2746 switch (this_hdr->sh_type)
2747 {
2748 default:
2749 break;
2750
2751 case SHT_STRTAB:
2752 case SHT_INIT_ARRAY:
2753 case SHT_FINI_ARRAY:
2754 case SHT_PREINIT_ARRAY:
2755 case SHT_NOTE:
2756 case SHT_NOBITS:
2757 case SHT_PROGBITS:
2758 break;
2759
2760 case SHT_HASH:
2761 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2762 break;
2763
2764 case SHT_DYNSYM:
2765 this_hdr->sh_entsize = bed->s->sizeof_sym;
2766 break;
2767
2768 case SHT_DYNAMIC:
2769 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2770 break;
2771
2772 case SHT_RELA:
2773 if (get_elf_backend_data (abfd)->may_use_rela_p)
2774 this_hdr->sh_entsize = bed->s->sizeof_rela;
2775 break;
2776
2777 case SHT_REL:
2778 if (get_elf_backend_data (abfd)->may_use_rel_p)
2779 this_hdr->sh_entsize = bed->s->sizeof_rel;
2780 break;
2781
2782 case SHT_GNU_versym:
2783 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2784 break;
2785
2786 case SHT_GNU_verdef:
2787 this_hdr->sh_entsize = 0;
2788 /* objcopy or strip will copy over sh_info, but may not set
2789 cverdefs. The linker will set cverdefs, but sh_info will be
2790 zero. */
2791 if (this_hdr->sh_info == 0)
2792 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2793 else
2794 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2795 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2796 break;
2797
2798 case SHT_GNU_verneed:
2799 this_hdr->sh_entsize = 0;
2800 /* objcopy or strip will copy over sh_info, but may not set
2801 cverrefs. The linker will set cverrefs, but sh_info will be
2802 zero. */
2803 if (this_hdr->sh_info == 0)
2804 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2805 else
2806 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2807 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2808 break;
2809
2810 case SHT_GROUP:
2811 this_hdr->sh_entsize = 4;
2812 break;
2813 }
2814
2815 if ((asect->flags & SEC_ALLOC) != 0)
2816 this_hdr->sh_flags |= SHF_ALLOC;
2817 if ((asect->flags & SEC_READONLY) == 0)
2818 this_hdr->sh_flags |= SHF_WRITE;
2819 if ((asect->flags & SEC_CODE) != 0)
2820 this_hdr->sh_flags |= SHF_EXECINSTR;
2821 if ((asect->flags & SEC_MERGE) != 0)
2822 {
2823 this_hdr->sh_flags |= SHF_MERGE;
2824 this_hdr->sh_entsize = asect->entsize;
2825 if ((asect->flags & SEC_STRINGS) != 0)
2826 this_hdr->sh_flags |= SHF_STRINGS;
2827 }
2828 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2829 this_hdr->sh_flags |= SHF_GROUP;
2830 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2831 {
2832 this_hdr->sh_flags |= SHF_TLS;
2833 if (asect->size == 0
2834 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2835 {
2836 struct bfd_link_order *o = asect->map_tail.link_order;
2837
2838 this_hdr->sh_size = 0;
2839 if (o != NULL)
2840 {
2841 this_hdr->sh_size = o->offset + o->size;
2842 if (this_hdr->sh_size != 0)
2843 this_hdr->sh_type = SHT_NOBITS;
2844 }
2845 }
2846 }
2847
2848 /* Check for processor-specific section types. */
2849 if (bed->elf_backend_fake_sections
2850 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2851 *failedptr = TRUE;
2852
2853 /* If the section has relocs, set up a section header for the
2854 SHT_REL[A] section. If two relocation sections are required for
2855 this section, it is up to the processor-specific back-end to
2856 create the other. */
2857 if ((asect->flags & SEC_RELOC) != 0
2858 && !_bfd_elf_init_reloc_shdr (abfd,
2859 &elf_section_data (asect)->rel_hdr,
2860 asect,
2861 asect->use_rela_p))
2862 *failedptr = TRUE;
2863 }
2864
2865 /* Fill in the contents of a SHT_GROUP section. */
2866
2867 void
2868 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2869 {
2870 bfd_boolean *failedptr = failedptrarg;
2871 unsigned long symindx;
2872 asection *elt, *first;
2873 unsigned char *loc;
2874 bfd_boolean gas;
2875
2876 /* Ignore linker created group section. See elfNN_ia64_object_p in
2877 elfxx-ia64.c. */
2878 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
2879 || *failedptr)
2880 return;
2881
2882 symindx = 0;
2883 if (elf_group_id (sec) != NULL)
2884 symindx = elf_group_id (sec)->udata.i;
2885
2886 if (symindx == 0)
2887 {
2888 /* If called from the assembler, swap_out_syms will have set up
2889 elf_section_syms; If called for "ld -r", use target_index. */
2890 if (elf_section_syms (abfd) != NULL)
2891 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2892 else
2893 symindx = sec->target_index;
2894 }
2895 elf_section_data (sec)->this_hdr.sh_info = symindx;
2896
2897 /* The contents won't be allocated for "ld -r" or objcopy. */
2898 gas = TRUE;
2899 if (sec->contents == NULL)
2900 {
2901 gas = FALSE;
2902 sec->contents = bfd_alloc (abfd, sec->size);
2903
2904 /* Arrange for the section to be written out. */
2905 elf_section_data (sec)->this_hdr.contents = sec->contents;
2906 if (sec->contents == NULL)
2907 {
2908 *failedptr = TRUE;
2909 return;
2910 }
2911 }
2912
2913 loc = sec->contents + sec->size;
2914
2915 /* Get the pointer to the first section in the group that gas
2916 squirreled away here. objcopy arranges for this to be set to the
2917 start of the input section group. */
2918 first = elt = elf_next_in_group (sec);
2919
2920 /* First element is a flag word. Rest of section is elf section
2921 indices for all the sections of the group. Write them backwards
2922 just to keep the group in the same order as given in .section
2923 directives, not that it matters. */
2924 while (elt != NULL)
2925 {
2926 asection *s;
2927 unsigned int idx;
2928
2929 loc -= 4;
2930 s = elt;
2931 if (!gas)
2932 s = s->output_section;
2933 idx = 0;
2934 if (s != NULL)
2935 idx = elf_section_data (s)->this_idx;
2936 H_PUT_32 (abfd, idx, loc);
2937 elt = elf_next_in_group (elt);
2938 if (elt == first)
2939 break;
2940 }
2941
2942 if ((loc -= 4) != sec->contents)
2943 abort ();
2944
2945 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2946 }
2947
2948 /* Assign all ELF section numbers. The dummy first section is handled here
2949 too. The link/info pointers for the standard section types are filled
2950 in here too, while we're at it. */
2951
2952 static bfd_boolean
2953 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
2954 {
2955 struct elf_obj_tdata *t = elf_tdata (abfd);
2956 asection *sec;
2957 unsigned int section_number, secn;
2958 Elf_Internal_Shdr **i_shdrp;
2959 struct bfd_elf_section_data *d;
2960
2961 section_number = 1;
2962
2963 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2964
2965 /* SHT_GROUP sections are in relocatable files only. */
2966 if (link_info == NULL || link_info->relocatable)
2967 {
2968 /* Put SHT_GROUP sections first. */
2969 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2970 {
2971 d = elf_section_data (sec);
2972
2973 if (d->this_hdr.sh_type == SHT_GROUP)
2974 {
2975 if (sec->flags & SEC_LINKER_CREATED)
2976 {
2977 /* Remove the linker created SHT_GROUP sections. */
2978 bfd_section_list_remove (abfd, sec);
2979 abfd->section_count--;
2980 }
2981 else
2982 {
2983 if (section_number == SHN_LORESERVE)
2984 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2985 d->this_idx = section_number++;
2986 }
2987 }
2988 }
2989 }
2990
2991 for (sec = abfd->sections; sec; sec = sec->next)
2992 {
2993 d = elf_section_data (sec);
2994
2995 if (d->this_hdr.sh_type != SHT_GROUP)
2996 {
2997 if (section_number == SHN_LORESERVE)
2998 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2999 d->this_idx = section_number++;
3000 }
3001 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
3002 if ((sec->flags & SEC_RELOC) == 0)
3003 d->rel_idx = 0;
3004 else
3005 {
3006 if (section_number == SHN_LORESERVE)
3007 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3008 d->rel_idx = section_number++;
3009 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr.sh_name);
3010 }
3011
3012 if (d->rel_hdr2)
3013 {
3014 if (section_number == SHN_LORESERVE)
3015 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3016 d->rel_idx2 = section_number++;
3017 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr2->sh_name);
3018 }
3019 else
3020 d->rel_idx2 = 0;
3021 }
3022
3023 if (section_number == SHN_LORESERVE)
3024 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3025 t->shstrtab_section = section_number++;
3026 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
3027 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
3028
3029 if (bfd_get_symcount (abfd) > 0)
3030 {
3031 if (section_number == SHN_LORESERVE)
3032 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3033 t->symtab_section = section_number++;
3034 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
3035 if (section_number > SHN_LORESERVE - 2)
3036 {
3037 if (section_number == SHN_LORESERVE)
3038 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3039 t->symtab_shndx_section = section_number++;
3040 t->symtab_shndx_hdr.sh_name
3041 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3042 ".symtab_shndx", FALSE);
3043 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
3044 return FALSE;
3045 }
3046 if (section_number == SHN_LORESERVE)
3047 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3048 t->strtab_section = section_number++;
3049 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3050 }
3051
3052 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
3053 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3054
3055 elf_numsections (abfd) = section_number;
3056 elf_elfheader (abfd)->e_shnum = section_number;
3057 if (section_number > SHN_LORESERVE)
3058 elf_elfheader (abfd)->e_shnum -= SHN_HIRESERVE + 1 - SHN_LORESERVE;
3059
3060 /* Set up the list of section header pointers, in agreement with the
3061 indices. */
3062 i_shdrp = bfd_zalloc2 (abfd, section_number, sizeof (Elf_Internal_Shdr *));
3063 if (i_shdrp == NULL)
3064 return FALSE;
3065
3066 i_shdrp[0] = bfd_zalloc (abfd, sizeof (Elf_Internal_Shdr));
3067 if (i_shdrp[0] == NULL)
3068 {
3069 bfd_release (abfd, i_shdrp);
3070 return FALSE;
3071 }
3072
3073 elf_elfsections (abfd) = i_shdrp;
3074
3075 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
3076 if (bfd_get_symcount (abfd) > 0)
3077 {
3078 i_shdrp[t->symtab_section] = &t->symtab_hdr;
3079 if (elf_numsections (abfd) > SHN_LORESERVE)
3080 {
3081 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
3082 t->symtab_shndx_hdr.sh_link = t->symtab_section;
3083 }
3084 i_shdrp[t->strtab_section] = &t->strtab_hdr;
3085 t->symtab_hdr.sh_link = t->strtab_section;
3086 }
3087
3088 for (sec = abfd->sections; sec; sec = sec->next)
3089 {
3090 struct bfd_elf_section_data *d = elf_section_data (sec);
3091 asection *s;
3092 const char *name;
3093
3094 i_shdrp[d->this_idx] = &d->this_hdr;
3095 if (d->rel_idx != 0)
3096 i_shdrp[d->rel_idx] = &d->rel_hdr;
3097 if (d->rel_idx2 != 0)
3098 i_shdrp[d->rel_idx2] = d->rel_hdr2;
3099
3100 /* Fill in the sh_link and sh_info fields while we're at it. */
3101
3102 /* sh_link of a reloc section is the section index of the symbol
3103 table. sh_info is the section index of the section to which
3104 the relocation entries apply. */
3105 if (d->rel_idx != 0)
3106 {
3107 d->rel_hdr.sh_link = t->symtab_section;
3108 d->rel_hdr.sh_info = d->this_idx;
3109 }
3110 if (d->rel_idx2 != 0)
3111 {
3112 d->rel_hdr2->sh_link = t->symtab_section;
3113 d->rel_hdr2->sh_info = d->this_idx;
3114 }
3115
3116 /* We need to set up sh_link for SHF_LINK_ORDER. */
3117 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3118 {
3119 s = elf_linked_to_section (sec);
3120 if (s)
3121 {
3122 /* elf_linked_to_section points to the input section. */
3123 if (link_info != NULL)
3124 {
3125 /* Check discarded linkonce section. */
3126 if (elf_discarded_section (s))
3127 {
3128 asection *kept;
3129 (*_bfd_error_handler)
3130 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
3131 abfd, d->this_hdr.bfd_section,
3132 s, s->owner);
3133 /* Point to the kept section if it has the same
3134 size as the discarded one. */
3135 kept = _bfd_elf_check_kept_section (s);
3136 if (kept == NULL)
3137 {
3138 bfd_set_error (bfd_error_bad_value);
3139 return FALSE;
3140 }
3141 s = kept;
3142 }
3143
3144 s = s->output_section;
3145 BFD_ASSERT (s != NULL);
3146 }
3147 else
3148 {
3149 /* Handle objcopy. */
3150 if (s->output_section == NULL)
3151 {
3152 (*_bfd_error_handler)
3153 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
3154 abfd, d->this_hdr.bfd_section, s, s->owner);
3155 bfd_set_error (bfd_error_bad_value);
3156 return FALSE;
3157 }
3158 s = s->output_section;
3159 }
3160 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3161 }
3162 else
3163 {
3164 /* PR 290:
3165 The Intel C compiler generates SHT_IA_64_UNWIND with
3166 SHF_LINK_ORDER. But it doesn't set the sh_link or
3167 sh_info fields. Hence we could get the situation
3168 where s is NULL. */
3169 const struct elf_backend_data *bed
3170 = get_elf_backend_data (abfd);
3171 if (bed->link_order_error_handler)
3172 bed->link_order_error_handler
3173 (_("%B: warning: sh_link not set for section `%A'"),
3174 abfd, sec);
3175 }
3176 }
3177
3178 switch (d->this_hdr.sh_type)
3179 {
3180 case SHT_REL:
3181 case SHT_RELA:
3182 /* A reloc section which we are treating as a normal BFD
3183 section. sh_link is the section index of the symbol
3184 table. sh_info is the section index of the section to
3185 which the relocation entries apply. We assume that an
3186 allocated reloc section uses the dynamic symbol table.
3187 FIXME: How can we be sure? */
3188 s = bfd_get_section_by_name (abfd, ".dynsym");
3189 if (s != NULL)
3190 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3191
3192 /* We look up the section the relocs apply to by name. */
3193 name = sec->name;
3194 if (d->this_hdr.sh_type == SHT_REL)
3195 name += 4;
3196 else
3197 name += 5;
3198 s = bfd_get_section_by_name (abfd, name);
3199 if (s != NULL)
3200 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3201 break;
3202
3203 case SHT_STRTAB:
3204 /* We assume that a section named .stab*str is a stabs
3205 string section. We look for a section with the same name
3206 but without the trailing ``str'', and set its sh_link
3207 field to point to this section. */
3208 if (strncmp (sec->name, ".stab", sizeof ".stab" - 1) == 0
3209 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3210 {
3211 size_t len;
3212 char *alc;
3213
3214 len = strlen (sec->name);
3215 alc = bfd_malloc (len - 2);
3216 if (alc == NULL)
3217 return FALSE;
3218 memcpy (alc, sec->name, len - 3);
3219 alc[len - 3] = '\0';
3220 s = bfd_get_section_by_name (abfd, alc);
3221 free (alc);
3222 if (s != NULL)
3223 {
3224 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3225
3226 /* This is a .stab section. */
3227 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3228 elf_section_data (s)->this_hdr.sh_entsize
3229 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3230 }
3231 }
3232 break;
3233
3234 case SHT_DYNAMIC:
3235 case SHT_DYNSYM:
3236 case SHT_GNU_verneed:
3237 case SHT_GNU_verdef:
3238 /* sh_link is the section header index of the string table
3239 used for the dynamic entries, or the symbol table, or the
3240 version strings. */
3241 s = bfd_get_section_by_name (abfd, ".dynstr");
3242 if (s != NULL)
3243 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3244 break;
3245
3246 case SHT_GNU_LIBLIST:
3247 /* sh_link is the section header index of the prelink library
3248 list
3249 used for the dynamic entries, or the symbol table, or the
3250 version strings. */
3251 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3252 ? ".dynstr" : ".gnu.libstr");
3253 if (s != NULL)
3254 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3255 break;
3256
3257 case SHT_HASH:
3258 case SHT_GNU_versym:
3259 /* sh_link is the section header index of the symbol table
3260 this hash table or version table is for. */
3261 s = bfd_get_section_by_name (abfd, ".dynsym");
3262 if (s != NULL)
3263 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3264 break;
3265
3266 case SHT_GROUP:
3267 d->this_hdr.sh_link = t->symtab_section;
3268 }
3269 }
3270
3271 for (secn = 1; secn < section_number; ++secn)
3272 if (i_shdrp[secn] == NULL)
3273 i_shdrp[secn] = i_shdrp[0];
3274 else
3275 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
3276 i_shdrp[secn]->sh_name);
3277 return TRUE;
3278 }
3279
3280 /* Map symbol from it's internal number to the external number, moving
3281 all local symbols to be at the head of the list. */
3282
3283 static int
3284 sym_is_global (bfd *abfd, asymbol *sym)
3285 {
3286 /* If the backend has a special mapping, use it. */
3287 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3288 if (bed->elf_backend_sym_is_global)
3289 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3290
3291 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
3292 || bfd_is_und_section (bfd_get_section (sym))
3293 || bfd_is_com_section (bfd_get_section (sym)));
3294 }
3295
3296 static bfd_boolean
3297 elf_map_symbols (bfd *abfd)
3298 {
3299 unsigned int symcount = bfd_get_symcount (abfd);
3300 asymbol **syms = bfd_get_outsymbols (abfd);
3301 asymbol **sect_syms;
3302 unsigned int num_locals = 0;
3303 unsigned int num_globals = 0;
3304 unsigned int num_locals2 = 0;
3305 unsigned int num_globals2 = 0;
3306 int max_index = 0;
3307 unsigned int idx;
3308 asection *asect;
3309 asymbol **new_syms;
3310
3311 #ifdef DEBUG
3312 fprintf (stderr, "elf_map_symbols\n");
3313 fflush (stderr);
3314 #endif
3315
3316 for (asect = abfd->sections; asect; asect = asect->next)
3317 {
3318 if (max_index < asect->index)
3319 max_index = asect->index;
3320 }
3321
3322 max_index++;
3323 sect_syms = bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
3324 if (sect_syms == NULL)
3325 return FALSE;
3326 elf_section_syms (abfd) = sect_syms;
3327 elf_num_section_syms (abfd) = max_index;
3328
3329 /* Init sect_syms entries for any section symbols we have already
3330 decided to output. */
3331 for (idx = 0; idx < symcount; idx++)
3332 {
3333 asymbol *sym = syms[idx];
3334
3335 if ((sym->flags & BSF_SECTION_SYM) != 0
3336 && sym->value == 0)
3337 {
3338 asection *sec;
3339
3340 sec = sym->section;
3341
3342 if (sec->owner != NULL)
3343 {
3344 if (sec->owner != abfd)
3345 {
3346 if (sec->output_offset != 0)
3347 continue;
3348
3349 sec = sec->output_section;
3350
3351 /* Empty sections in the input files may have had a
3352 section symbol created for them. (See the comment
3353 near the end of _bfd_generic_link_output_symbols in
3354 linker.c). If the linker script discards such
3355 sections then we will reach this point. Since we know
3356 that we cannot avoid this case, we detect it and skip
3357 the abort and the assignment to the sect_syms array.
3358 To reproduce this particular case try running the
3359 linker testsuite test ld-scripts/weak.exp for an ELF
3360 port that uses the generic linker. */
3361 if (sec->owner == NULL)
3362 continue;
3363
3364 BFD_ASSERT (sec->owner == abfd);
3365 }
3366 sect_syms[sec->index] = syms[idx];
3367 }
3368 }
3369 }
3370
3371 /* Classify all of the symbols. */
3372 for (idx = 0; idx < symcount; idx++)
3373 {
3374 if (!sym_is_global (abfd, syms[idx]))
3375 num_locals++;
3376 else
3377 num_globals++;
3378 }
3379
3380 /* We will be adding a section symbol for each BFD section. Most normal
3381 sections will already have a section symbol in outsymbols, but
3382 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3383 at least in that case. */
3384 for (asect = abfd->sections; asect; asect = asect->next)
3385 {
3386 if (sect_syms[asect->index] == NULL)
3387 {
3388 if (!sym_is_global (abfd, asect->symbol))
3389 num_locals++;
3390 else
3391 num_globals++;
3392 }
3393 }
3394
3395 /* Now sort the symbols so the local symbols are first. */
3396 new_syms = bfd_alloc2 (abfd, num_locals + num_globals, sizeof (asymbol *));
3397
3398 if (new_syms == NULL)
3399 return FALSE;
3400
3401 for (idx = 0; idx < symcount; idx++)
3402 {
3403 asymbol *sym = syms[idx];
3404 unsigned int i;
3405
3406 if (!sym_is_global (abfd, sym))
3407 i = num_locals2++;
3408 else
3409 i = num_locals + num_globals2++;
3410 new_syms[i] = sym;
3411 sym->udata.i = i + 1;
3412 }
3413 for (asect = abfd->sections; asect; asect = asect->next)
3414 {
3415 if (sect_syms[asect->index] == NULL)
3416 {
3417 asymbol *sym = asect->symbol;
3418 unsigned int i;
3419
3420 sect_syms[asect->index] = sym;
3421 if (!sym_is_global (abfd, sym))
3422 i = num_locals2++;
3423 else
3424 i = num_locals + num_globals2++;
3425 new_syms[i] = sym;
3426 sym->udata.i = i + 1;
3427 }
3428 }
3429
3430 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3431
3432 elf_num_locals (abfd) = num_locals;
3433 elf_num_globals (abfd) = num_globals;
3434 return TRUE;
3435 }
3436
3437 /* Align to the maximum file alignment that could be required for any
3438 ELF data structure. */
3439
3440 static inline file_ptr
3441 align_file_position (file_ptr off, int align)
3442 {
3443 return (off + align - 1) & ~(align - 1);
3444 }
3445
3446 /* Assign a file position to a section, optionally aligning to the
3447 required section alignment. */
3448
3449 file_ptr
3450 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3451 file_ptr offset,
3452 bfd_boolean align)
3453 {
3454 if (align)
3455 {
3456 unsigned int al;
3457
3458 al = i_shdrp->sh_addralign;
3459 if (al > 1)
3460 offset = BFD_ALIGN (offset, al);
3461 }
3462 i_shdrp->sh_offset = offset;
3463 if (i_shdrp->bfd_section != NULL)
3464 i_shdrp->bfd_section->filepos = offset;
3465 if (i_shdrp->sh_type != SHT_NOBITS)
3466 offset += i_shdrp->sh_size;
3467 return offset;
3468 }
3469
3470 /* Compute the file positions we are going to put the sections at, and
3471 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3472 is not NULL, this is being called by the ELF backend linker. */
3473
3474 bfd_boolean
3475 _bfd_elf_compute_section_file_positions (bfd *abfd,
3476 struct bfd_link_info *link_info)
3477 {
3478 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3479 bfd_boolean failed;
3480 struct bfd_strtab_hash *strtab = NULL;
3481 Elf_Internal_Shdr *shstrtab_hdr;
3482
3483 if (abfd->output_has_begun)
3484 return TRUE;
3485
3486 /* Do any elf backend specific processing first. */
3487 if (bed->elf_backend_begin_write_processing)
3488 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3489
3490 if (! prep_headers (abfd))
3491 return FALSE;
3492
3493 /* Post process the headers if necessary. */
3494 if (bed->elf_backend_post_process_headers)
3495 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3496
3497 failed = FALSE;
3498 bfd_map_over_sections (abfd, elf_fake_sections, &failed);
3499 if (failed)
3500 return FALSE;
3501
3502 if (!assign_section_numbers (abfd, link_info))
3503 return FALSE;
3504
3505 /* The backend linker builds symbol table information itself. */
3506 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3507 {
3508 /* Non-zero if doing a relocatable link. */
3509 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3510
3511 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3512 return FALSE;
3513 }
3514
3515 if (link_info == NULL)
3516 {
3517 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3518 if (failed)
3519 return FALSE;
3520 }
3521
3522 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3523 /* sh_name was set in prep_headers. */
3524 shstrtab_hdr->sh_type = SHT_STRTAB;
3525 shstrtab_hdr->sh_flags = 0;
3526 shstrtab_hdr->sh_addr = 0;
3527 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3528 shstrtab_hdr->sh_entsize = 0;
3529 shstrtab_hdr->sh_link = 0;
3530 shstrtab_hdr->sh_info = 0;
3531 /* sh_offset is set in assign_file_positions_except_relocs. */
3532 shstrtab_hdr->sh_addralign = 1;
3533
3534 if (!assign_file_positions_except_relocs (abfd, link_info))
3535 return FALSE;
3536
3537 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3538 {
3539 file_ptr off;
3540 Elf_Internal_Shdr *hdr;
3541
3542 off = elf_tdata (abfd)->next_file_pos;
3543
3544 hdr = &elf_tdata (abfd)->symtab_hdr;
3545 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3546
3547 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3548 if (hdr->sh_size != 0)
3549 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3550
3551 hdr = &elf_tdata (abfd)->strtab_hdr;
3552 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3553
3554 elf_tdata (abfd)->next_file_pos = off;
3555
3556 /* Now that we know where the .strtab section goes, write it
3557 out. */
3558 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3559 || ! _bfd_stringtab_emit (abfd, strtab))
3560 return FALSE;
3561 _bfd_stringtab_free (strtab);
3562 }
3563
3564 abfd->output_has_begun = TRUE;
3565
3566 return TRUE;
3567 }
3568
3569 /* Create a mapping from a set of sections to a program segment. */
3570
3571 static struct elf_segment_map *
3572 make_mapping (bfd *abfd,
3573 asection **sections,
3574 unsigned int from,
3575 unsigned int to,
3576 bfd_boolean phdr)
3577 {
3578 struct elf_segment_map *m;
3579 unsigned int i;
3580 asection **hdrpp;
3581 bfd_size_type amt;
3582
3583 amt = sizeof (struct elf_segment_map);
3584 amt += (to - from - 1) * sizeof (asection *);
3585 m = bfd_zalloc (abfd, amt);
3586 if (m == NULL)
3587 return NULL;
3588 m->next = NULL;
3589 m->p_type = PT_LOAD;
3590 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3591 m->sections[i - from] = *hdrpp;
3592 m->count = to - from;
3593
3594 if (from == 0 && phdr)
3595 {
3596 /* Include the headers in the first PT_LOAD segment. */
3597 m->includes_filehdr = 1;
3598 m->includes_phdrs = 1;
3599 }
3600
3601 return m;
3602 }
3603
3604 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3605 on failure. */
3606
3607 struct elf_segment_map *
3608 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3609 {
3610 struct elf_segment_map *m;
3611
3612 m = bfd_zalloc (abfd, sizeof (struct elf_segment_map));
3613 if (m == NULL)
3614 return NULL;
3615 m->next = NULL;
3616 m->p_type = PT_DYNAMIC;
3617 m->count = 1;
3618 m->sections[0] = dynsec;
3619
3620 return m;
3621 }
3622
3623 /* Set up a mapping from BFD sections to program segments. */
3624
3625 static bfd_boolean
3626 map_sections_to_segments (bfd *abfd)
3627 {
3628 asection **sections = NULL;
3629 asection *s;
3630 unsigned int i;
3631 unsigned int count;
3632 struct elf_segment_map *mfirst;
3633 struct elf_segment_map **pm;
3634 struct elf_segment_map *m;
3635 asection *last_hdr;
3636 bfd_vma last_size;
3637 unsigned int phdr_index;
3638 bfd_vma maxpagesize;
3639 asection **hdrpp;
3640 bfd_boolean phdr_in_segment = TRUE;
3641 bfd_boolean writable;
3642 int tls_count = 0;
3643 asection *first_tls = NULL;
3644 asection *dynsec, *eh_frame_hdr;
3645 bfd_size_type amt;
3646
3647 if (elf_tdata (abfd)->segment_map != NULL)
3648 return TRUE;
3649
3650 if (bfd_count_sections (abfd) == 0)
3651 return TRUE;
3652
3653 /* Select the allocated sections, and sort them. */
3654
3655 sections = bfd_malloc2 (bfd_count_sections (abfd), sizeof (asection *));
3656 if (sections == NULL)
3657 goto error_return;
3658
3659 i = 0;
3660 for (s = abfd->sections; s != NULL; s = s->next)
3661 {
3662 if ((s->flags & SEC_ALLOC) != 0)
3663 {
3664 sections[i] = s;
3665 ++i;
3666 }
3667 }
3668 BFD_ASSERT (i <= bfd_count_sections (abfd));
3669 count = i;
3670
3671 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3672
3673 /* Build the mapping. */
3674
3675 mfirst = NULL;
3676 pm = &mfirst;
3677
3678 /* If we have a .interp section, then create a PT_PHDR segment for
3679 the program headers and a PT_INTERP segment for the .interp
3680 section. */
3681 s = bfd_get_section_by_name (abfd, ".interp");
3682 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3683 {
3684 amt = sizeof (struct elf_segment_map);
3685 m = bfd_zalloc (abfd, amt);
3686 if (m == NULL)
3687 goto error_return;
3688 m->next = NULL;
3689 m->p_type = PT_PHDR;
3690 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3691 m->p_flags = PF_R | PF_X;
3692 m->p_flags_valid = 1;
3693 m->includes_phdrs = 1;
3694
3695 *pm = m;
3696 pm = &m->next;
3697
3698 amt = sizeof (struct elf_segment_map);
3699 m = bfd_zalloc (abfd, amt);
3700 if (m == NULL)
3701 goto error_return;
3702 m->next = NULL;
3703 m->p_type = PT_INTERP;
3704 m->count = 1;
3705 m->sections[0] = s;
3706
3707 *pm = m;
3708 pm = &m->next;
3709 }
3710
3711 /* Look through the sections. We put sections in the same program
3712 segment when the start of the second section can be placed within
3713 a few bytes of the end of the first section. */
3714 last_hdr = NULL;
3715 last_size = 0;
3716 phdr_index = 0;
3717 maxpagesize = get_elf_backend_data (abfd)->maxpagesize;
3718 writable = FALSE;
3719 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3720 if (dynsec != NULL
3721 && (dynsec->flags & SEC_LOAD) == 0)
3722 dynsec = NULL;
3723
3724 /* Deal with -Ttext or something similar such that the first section
3725 is not adjacent to the program headers. This is an
3726 approximation, since at this point we don't know exactly how many
3727 program headers we will need. */
3728 if (count > 0)
3729 {
3730 bfd_size_type phdr_size;
3731
3732 phdr_size = elf_tdata (abfd)->program_header_size;
3733 if (phdr_size == 0)
3734 phdr_size = get_elf_backend_data (abfd)->s->sizeof_phdr;
3735 if ((abfd->flags & D_PAGED) == 0
3736 || sections[0]->lma < phdr_size
3737 || sections[0]->lma % maxpagesize < phdr_size % maxpagesize)
3738 phdr_in_segment = FALSE;
3739 }
3740
3741 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3742 {
3743 asection *hdr;
3744 bfd_boolean new_segment;
3745
3746 hdr = *hdrpp;
3747
3748 /* See if this section and the last one will fit in the same
3749 segment. */
3750
3751 if (last_hdr == NULL)
3752 {
3753 /* If we don't have a segment yet, then we don't need a new
3754 one (we build the last one after this loop). */
3755 new_segment = FALSE;
3756 }
3757 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3758 {
3759 /* If this section has a different relation between the
3760 virtual address and the load address, then we need a new
3761 segment. */
3762 new_segment = TRUE;
3763 }
3764 else if (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
3765 < BFD_ALIGN (hdr->lma, maxpagesize))
3766 {
3767 /* If putting this section in this segment would force us to
3768 skip a page in the segment, then we need a new segment. */
3769 new_segment = TRUE;
3770 }
3771 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
3772 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
3773 {
3774 /* We don't want to put a loadable section after a
3775 nonloadable section in the same segment.
3776 Consider .tbss sections as loadable for this purpose. */
3777 new_segment = TRUE;
3778 }
3779 else if ((abfd->flags & D_PAGED) == 0)
3780 {
3781 /* If the file is not demand paged, which means that we
3782 don't require the sections to be correctly aligned in the
3783 file, then there is no other reason for a new segment. */
3784 new_segment = FALSE;
3785 }
3786 else if (! writable
3787 && (hdr->flags & SEC_READONLY) == 0
3788 && (((last_hdr->lma + last_size - 1)
3789 & ~(maxpagesize - 1))
3790 != (hdr->lma & ~(maxpagesize - 1))))
3791 {
3792 /* We don't want to put a writable section in a read only
3793 segment, unless they are on the same page in memory
3794 anyhow. We already know that the last section does not
3795 bring us past the current section on the page, so the
3796 only case in which the new section is not on the same
3797 page as the previous section is when the previous section
3798 ends precisely on a page boundary. */
3799 new_segment = TRUE;
3800 }
3801 else
3802 {
3803 /* Otherwise, we can use the same segment. */
3804 new_segment = FALSE;
3805 }
3806
3807 if (! new_segment)
3808 {
3809 if ((hdr->flags & SEC_READONLY) == 0)
3810 writable = TRUE;
3811 last_hdr = hdr;
3812 /* .tbss sections effectively have zero size. */
3813 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3814 last_size = hdr->size;
3815 else
3816 last_size = 0;
3817 continue;
3818 }
3819
3820 /* We need a new program segment. We must create a new program
3821 header holding all the sections from phdr_index until hdr. */
3822
3823 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3824 if (m == NULL)
3825 goto error_return;
3826
3827 *pm = m;
3828 pm = &m->next;
3829
3830 if ((hdr->flags & SEC_READONLY) == 0)
3831 writable = TRUE;
3832 else
3833 writable = FALSE;
3834
3835 last_hdr = hdr;
3836 /* .tbss sections effectively have zero size. */
3837 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3838 last_size = hdr->size;
3839 else
3840 last_size = 0;
3841 phdr_index = i;
3842 phdr_in_segment = FALSE;
3843 }
3844
3845 /* Create a final PT_LOAD program segment. */
3846 if (last_hdr != NULL)
3847 {
3848 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3849 if (m == NULL)
3850 goto error_return;
3851
3852 *pm = m;
3853 pm = &m->next;
3854 }
3855
3856 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
3857 if (dynsec != NULL)
3858 {
3859 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
3860 if (m == NULL)
3861 goto error_return;
3862 *pm = m;
3863 pm = &m->next;
3864 }
3865
3866 /* For each loadable .note section, add a PT_NOTE segment. We don't
3867 use bfd_get_section_by_name, because if we link together
3868 nonloadable .note sections and loadable .note sections, we will
3869 generate two .note sections in the output file. FIXME: Using
3870 names for section types is bogus anyhow. */
3871 for (s = abfd->sections; s != NULL; s = s->next)
3872 {
3873 if ((s->flags & SEC_LOAD) != 0
3874 && strncmp (s->name, ".note", 5) == 0)
3875 {
3876 amt = sizeof (struct elf_segment_map);
3877 m = bfd_zalloc (abfd, amt);
3878 if (m == NULL)
3879 goto error_return;
3880 m->next = NULL;
3881 m->p_type = PT_NOTE;
3882 m->count = 1;
3883 m->sections[0] = s;
3884
3885 *pm = m;
3886 pm = &m->next;
3887 }
3888 if (s->flags & SEC_THREAD_LOCAL)
3889 {
3890 if (! tls_count)
3891 first_tls = s;
3892 tls_count++;
3893 }
3894 }
3895
3896 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
3897 if (tls_count > 0)
3898 {
3899 int i;
3900
3901 amt = sizeof (struct elf_segment_map);
3902 amt += (tls_count - 1) * sizeof (asection *);
3903 m = bfd_zalloc (abfd, amt);
3904 if (m == NULL)
3905 goto error_return;
3906 m->next = NULL;
3907 m->p_type = PT_TLS;
3908 m->count = tls_count;
3909 /* Mandated PF_R. */
3910 m->p_flags = PF_R;
3911 m->p_flags_valid = 1;
3912 for (i = 0; i < tls_count; ++i)
3913 {
3914 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
3915 m->sections[i] = first_tls;
3916 first_tls = first_tls->next;
3917 }
3918
3919 *pm = m;
3920 pm = &m->next;
3921 }
3922
3923 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
3924 segment. */
3925 eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
3926 if (eh_frame_hdr != NULL
3927 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
3928 {
3929 amt = sizeof (struct elf_segment_map);
3930 m = bfd_zalloc (abfd, amt);
3931 if (m == NULL)
3932 goto error_return;
3933 m->next = NULL;
3934 m->p_type = PT_GNU_EH_FRAME;
3935 m->count = 1;
3936 m->sections[0] = eh_frame_hdr->output_section;
3937
3938 *pm = m;
3939 pm = &m->next;
3940 }
3941
3942 if (elf_tdata (abfd)->stack_flags)
3943 {
3944 amt = sizeof (struct elf_segment_map);
3945 m = bfd_zalloc (abfd, amt);
3946 if (m == NULL)
3947 goto error_return;
3948 m->next = NULL;
3949 m->p_type = PT_GNU_STACK;
3950 m->p_flags = elf_tdata (abfd)->stack_flags;
3951 m->p_flags_valid = 1;
3952
3953 *pm = m;
3954 pm = &m->next;
3955 }
3956
3957 if (elf_tdata (abfd)->relro)
3958 {
3959 amt = sizeof (struct elf_segment_map);
3960 m = bfd_zalloc (abfd, amt);
3961 if (m == NULL)
3962 goto error_return;
3963 m->next = NULL;
3964 m->p_type = PT_GNU_RELRO;
3965 m->p_flags = PF_R;
3966 m->p_flags_valid = 1;
3967
3968 *pm = m;
3969 pm = &m->next;
3970 }
3971
3972 free (sections);
3973 sections = NULL;
3974
3975 elf_tdata (abfd)->segment_map = mfirst;
3976 return TRUE;
3977
3978 error_return:
3979 if (sections != NULL)
3980 free (sections);
3981 return FALSE;
3982 }
3983
3984 /* Sort sections by address. */
3985
3986 static int
3987 elf_sort_sections (const void *arg1, const void *arg2)
3988 {
3989 const asection *sec1 = *(const asection **) arg1;
3990 const asection *sec2 = *(const asection **) arg2;
3991 bfd_size_type size1, size2;
3992
3993 /* Sort by LMA first, since this is the address used to
3994 place the section into a segment. */
3995 if (sec1->lma < sec2->lma)
3996 return -1;
3997 else if (sec1->lma > sec2->lma)
3998 return 1;
3999
4000 /* Then sort by VMA. Normally the LMA and the VMA will be
4001 the same, and this will do nothing. */
4002 if (sec1->vma < sec2->vma)
4003 return -1;
4004 else if (sec1->vma > sec2->vma)
4005 return 1;
4006
4007 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
4008
4009 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
4010
4011 if (TOEND (sec1))
4012 {
4013 if (TOEND (sec2))
4014 {
4015 /* If the indicies are the same, do not return 0
4016 here, but continue to try the next comparison. */
4017 if (sec1->target_index - sec2->target_index != 0)
4018 return sec1->target_index - sec2->target_index;
4019 }
4020 else
4021 return 1;
4022 }
4023 else if (TOEND (sec2))
4024 return -1;
4025
4026 #undef TOEND
4027
4028 /* Sort by size, to put zero sized sections
4029 before others at the same address. */
4030
4031 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
4032 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
4033
4034 if (size1 < size2)
4035 return -1;
4036 if (size1 > size2)
4037 return 1;
4038
4039 return sec1->target_index - sec2->target_index;
4040 }
4041
4042 /* Ian Lance Taylor writes:
4043
4044 We shouldn't be using % with a negative signed number. That's just
4045 not good. We have to make sure either that the number is not
4046 negative, or that the number has an unsigned type. When the types
4047 are all the same size they wind up as unsigned. When file_ptr is a
4048 larger signed type, the arithmetic winds up as signed long long,
4049 which is wrong.
4050
4051 What we're trying to say here is something like ``increase OFF by
4052 the least amount that will cause it to be equal to the VMA modulo
4053 the page size.'' */
4054 /* In other words, something like:
4055
4056 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4057 off_offset = off % bed->maxpagesize;
4058 if (vma_offset < off_offset)
4059 adjustment = vma_offset + bed->maxpagesize - off_offset;
4060 else
4061 adjustment = vma_offset - off_offset;
4062
4063 which can can be collapsed into the expression below. */
4064
4065 static file_ptr
4066 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
4067 {
4068 return ((vma - off) % maxpagesize);
4069 }
4070
4071 static void
4072 print_segment_map (bfd *abfd)
4073 {
4074 struct elf_segment_map *m;
4075 unsigned int i, j;
4076
4077 fprintf (stderr, _(" Section to Segment mapping:\n"));
4078 fprintf (stderr, _(" Segment Sections...\n"));
4079
4080 for (i= 0, m = elf_tdata (abfd)->segment_map;
4081 m != NULL;
4082 i++, m = m->next)
4083 {
4084 const char *pt = get_segment_type (m->p_type);
4085 char buf[32];
4086
4087 if (pt == NULL)
4088 {
4089 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
4090 sprintf (buf, "LOPROC+%7.7x",
4091 (unsigned int) (m->p_type - PT_LOPROC));
4092 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
4093 sprintf (buf, "LOOS+%7.7x",
4094 (unsigned int) (m->p_type - PT_LOOS));
4095 else
4096 snprintf (buf, sizeof (buf), "%8.8x",
4097 (unsigned int) m->p_type);
4098 pt = buf;
4099 }
4100 fprintf (stderr, " %2.2d: %14.14s: ", i, pt);
4101 for (j = 0; j < m->count; j++)
4102 fprintf (stderr, "%s ", m->sections [j]->name);
4103 putc ('\n',stderr);
4104 }
4105 }
4106
4107 /* Assign file positions to the sections based on the mapping from
4108 sections to segments. This function also sets up some fields in
4109 the file header. */
4110
4111 static bfd_boolean
4112 assign_file_positions_for_load_sections (bfd *abfd,
4113 struct bfd_link_info *link_info)
4114 {
4115 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4116 struct elf_segment_map *m;
4117 Elf_Internal_Phdr *phdrs;
4118 Elf_Internal_Phdr *p;
4119 file_ptr off, voff;
4120 unsigned int count;
4121 unsigned int alloc;
4122 unsigned int i;
4123
4124 if (elf_tdata (abfd)->segment_map == NULL)
4125 {
4126 if (! map_sections_to_segments (abfd))
4127 return FALSE;
4128 }
4129 else
4130 {
4131 /* The placement algorithm assumes that non allocated sections are
4132 not in PT_LOAD segments. We ensure this here by removing such
4133 sections from the segment map. We also remove excluded
4134 sections. */
4135 for (m = elf_tdata (abfd)->segment_map;
4136 m != NULL;
4137 m = m->next)
4138 {
4139 unsigned int new_count;
4140
4141 new_count = 0;
4142 for (i = 0; i < m->count; i ++)
4143 {
4144 if ((m->sections[i]->flags & SEC_EXCLUDE) == 0
4145 && ((m->sections[i]->flags & SEC_ALLOC) != 0
4146 || m->p_type != PT_LOAD))
4147 {
4148 if (i != new_count)
4149 m->sections[new_count] = m->sections[i];
4150
4151 new_count ++;
4152 }
4153 }
4154
4155 if (new_count != m->count)
4156 m->count = new_count;
4157 }
4158 }
4159
4160 if (bed->elf_backend_modify_segment_map)
4161 {
4162 if (! (*bed->elf_backend_modify_segment_map) (abfd, link_info))
4163 return FALSE;
4164 }
4165
4166 count = 0;
4167 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4168 ++count;
4169
4170 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
4171 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
4172 elf_elfheader (abfd)->e_phnum = count;
4173
4174 if (count == 0)
4175 {
4176 elf_tdata (abfd)->next_file_pos = bed->s->sizeof_ehdr;
4177 return TRUE;
4178 }
4179
4180 /* If we already counted the number of program segments, make sure
4181 that we allocated enough space. This happens when SIZEOF_HEADERS
4182 is used in a linker script. */
4183 alloc = elf_tdata (abfd)->program_header_size / bed->s->sizeof_phdr;
4184 if (alloc != 0 && count > alloc)
4185 {
4186 ((*_bfd_error_handler)
4187 (_("%B: Not enough room for program headers (allocated %u, need %u)"),
4188 abfd, alloc, count));
4189 print_segment_map (abfd);
4190 bfd_set_error (bfd_error_bad_value);
4191 return FALSE;
4192 }
4193
4194 if (alloc == 0)
4195 {
4196 alloc = count;
4197 elf_tdata (abfd)->program_header_size = alloc * bed->s->sizeof_phdr;
4198 }
4199
4200 phdrs = bfd_alloc2 (abfd, alloc, sizeof (Elf_Internal_Phdr));
4201 elf_tdata (abfd)->phdr = phdrs;
4202 if (phdrs == NULL)
4203 return FALSE;
4204
4205 off = bed->s->sizeof_ehdr;
4206 off += alloc * bed->s->sizeof_phdr;
4207
4208 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4209 m != NULL;
4210 m = m->next, p++)
4211 {
4212 asection **secpp;
4213
4214 /* If elf_segment_map is not from map_sections_to_segments, the
4215 sections may not be correctly ordered. NOTE: sorting should
4216 not be done to the PT_NOTE section of a corefile, which may
4217 contain several pseudo-sections artificially created by bfd.
4218 Sorting these pseudo-sections breaks things badly. */
4219 if (m->count > 1
4220 && !(elf_elfheader (abfd)->e_type == ET_CORE
4221 && m->p_type == PT_NOTE))
4222 qsort (m->sections, (size_t) m->count, sizeof (asection *),
4223 elf_sort_sections);
4224
4225 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4226 number of sections with contents contributing to both p_filesz
4227 and p_memsz, followed by a number of sections with no contents
4228 that just contribute to p_memsz. In this loop, OFF tracks next
4229 available file offset for PT_LOAD and PT_NOTE segments. VOFF is
4230 an adjustment we use for segments that have no file contents
4231 but need zero filled memory allocation. */
4232 voff = 0;
4233 p->p_type = m->p_type;
4234 p->p_flags = m->p_flags;
4235
4236 if (p->p_type == PT_LOAD
4237 && m->count > 0)
4238 {
4239 bfd_size_type align;
4240 bfd_vma adjust;
4241 unsigned int align_power = 0;
4242
4243 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4244 {
4245 unsigned int secalign;
4246
4247 secalign = bfd_get_section_alignment (abfd, *secpp);
4248 if (secalign > align_power)
4249 align_power = secalign;
4250 }
4251 align = (bfd_size_type) 1 << align_power;
4252
4253 if ((abfd->flags & D_PAGED) != 0 && bed->maxpagesize > align)
4254 align = bed->maxpagesize;
4255
4256 adjust = vma_page_aligned_bias (m->sections[0]->vma, off, align);
4257 off += adjust;
4258 if (adjust != 0
4259 && !m->includes_filehdr
4260 && !m->includes_phdrs
4261 && (ufile_ptr) off >= align)
4262 {
4263 /* If the first section isn't loadable, the same holds for
4264 any other sections. Since the segment won't need file
4265 space, we can make p_offset overlap some prior segment.
4266 However, .tbss is special. If a segment starts with
4267 .tbss, we need to look at the next section to decide
4268 whether the segment has any loadable sections. */
4269 i = 0;
4270 while ((m->sections[i]->flags & SEC_LOAD) == 0)
4271 {
4272 if ((m->sections[i]->flags & SEC_THREAD_LOCAL) == 0
4273 || ++i >= m->count)
4274 {
4275 off -= adjust;
4276 voff = adjust - align;
4277 break;
4278 }
4279 }
4280 }
4281 }
4282 /* Make sure the .dynamic section is the first section in the
4283 PT_DYNAMIC segment. */
4284 else if (p->p_type == PT_DYNAMIC
4285 && m->count > 1
4286 && strcmp (m->sections[0]->name, ".dynamic") != 0)
4287 {
4288 _bfd_error_handler
4289 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4290 abfd);
4291 bfd_set_error (bfd_error_bad_value);
4292 return FALSE;
4293 }
4294
4295 if (m->count == 0)
4296 p->p_vaddr = 0;
4297 else
4298 p->p_vaddr = m->sections[0]->vma;
4299
4300 if (m->p_paddr_valid)
4301 p->p_paddr = m->p_paddr;
4302 else if (m->count == 0)
4303 p->p_paddr = 0;
4304 else
4305 p->p_paddr = m->sections[0]->lma;
4306
4307 if (p->p_type == PT_LOAD
4308 && (abfd->flags & D_PAGED) != 0)
4309 p->p_align = bed->maxpagesize;
4310 else if (m->count == 0)
4311 p->p_align = 1 << bed->s->log_file_align;
4312 else
4313 p->p_align = 0;
4314
4315 p->p_offset = 0;
4316 p->p_filesz = 0;
4317 p->p_memsz = 0;
4318
4319 if (m->includes_filehdr)
4320 {
4321 if (! m->p_flags_valid)
4322 p->p_flags |= PF_R;
4323 p->p_offset = 0;
4324 p->p_filesz = bed->s->sizeof_ehdr;
4325 p->p_memsz = bed->s->sizeof_ehdr;
4326 if (m->count > 0)
4327 {
4328 BFD_ASSERT (p->p_type == PT_LOAD);
4329
4330 if (p->p_vaddr < (bfd_vma) off)
4331 {
4332 (*_bfd_error_handler)
4333 (_("%B: Not enough room for program headers, try linking with -N"),
4334 abfd);
4335 bfd_set_error (bfd_error_bad_value);
4336 return FALSE;
4337 }
4338
4339 p->p_vaddr -= off;
4340 if (! m->p_paddr_valid)
4341 p->p_paddr -= off;
4342 }
4343 }
4344
4345 if (m->includes_phdrs)
4346 {
4347 if (! m->p_flags_valid)
4348 p->p_flags |= PF_R;
4349
4350 if (!m->includes_filehdr)
4351 {
4352 p->p_offset = bed->s->sizeof_ehdr;
4353
4354 if (m->count > 0)
4355 {
4356 BFD_ASSERT (p->p_type == PT_LOAD);
4357 p->p_vaddr -= off - p->p_offset;
4358 if (! m->p_paddr_valid)
4359 p->p_paddr -= off - p->p_offset;
4360 }
4361 }
4362
4363 p->p_filesz += alloc * bed->s->sizeof_phdr;
4364 p->p_memsz += alloc * bed->s->sizeof_phdr;
4365 }
4366
4367 if (p->p_type == PT_LOAD
4368 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4369 {
4370 if (! m->includes_filehdr && ! m->includes_phdrs)
4371 p->p_offset = off + voff;
4372 else
4373 {
4374 file_ptr adjust;
4375
4376 adjust = off - (p->p_offset + p->p_filesz);
4377 p->p_filesz += adjust;
4378 p->p_memsz += adjust;
4379 }
4380 }
4381
4382 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
4383 maps. Set filepos for sections in PT_LOAD segments, and in
4384 core files, for sections in PT_NOTE segments.
4385 assign_file_positions_for_non_load_sections will set filepos
4386 for other sections and update p_filesz for other segments. */
4387 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4388 {
4389 asection *sec;
4390 flagword flags;
4391 bfd_size_type align;
4392
4393 sec = *secpp;
4394 flags = sec->flags;
4395 align = 1 << bfd_get_section_alignment (abfd, sec);
4396
4397 if (p->p_type == PT_LOAD
4398 || p->p_type == PT_TLS)
4399 {
4400 bfd_signed_vma adjust;
4401
4402 if ((flags & SEC_LOAD) != 0)
4403 {
4404 adjust = sec->lma - (p->p_paddr + p->p_filesz);
4405 if (adjust < 0)
4406 {
4407 (*_bfd_error_handler)
4408 (_("%B: section %A lma 0x%lx overlaps previous sections"),
4409 abfd, sec, (unsigned long) sec->lma);
4410 adjust = 0;
4411 }
4412 off += adjust;
4413 p->p_filesz += adjust;
4414 p->p_memsz += adjust;
4415 }
4416 /* .tbss is special. It doesn't contribute to p_memsz of
4417 normal segments. */
4418 else if ((flags & SEC_ALLOC) != 0
4419 && ((flags & SEC_THREAD_LOCAL) == 0
4420 || p->p_type == PT_TLS))
4421 {
4422 /* The section VMA must equal the file position
4423 modulo the page size. */
4424 bfd_size_type page = align;
4425 if ((abfd->flags & D_PAGED) != 0 && bed->maxpagesize > page)
4426 page = bed->maxpagesize;
4427 adjust = vma_page_aligned_bias (sec->vma,
4428 p->p_vaddr + p->p_memsz,
4429 page);
4430 p->p_memsz += adjust;
4431 }
4432 }
4433
4434 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
4435 {
4436 /* The section at i == 0 is the one that actually contains
4437 everything. */
4438 if (i == 0)
4439 {
4440 sec->filepos = off;
4441 off += sec->size;
4442 p->p_filesz = sec->size;
4443 p->p_memsz = 0;
4444 p->p_align = 1;
4445 }
4446 else
4447 {
4448 /* The rest are fake sections that shouldn't be written. */
4449 sec->filepos = 0;
4450 sec->size = 0;
4451 sec->flags = 0;
4452 continue;
4453 }
4454 }
4455 else
4456 {
4457 if (p->p_type == PT_LOAD)
4458 {
4459 sec->filepos = off;
4460 /* FIXME: The SEC_HAS_CONTENTS test here dates back to
4461 1997, and the exact reason for it isn't clear. One
4462 plausible explanation is that it is to work around
4463 a problem we have with linker scripts using data
4464 statements in NOLOAD sections. I don't think it
4465 makes a great deal of sense to have such a section
4466 assigned to a PT_LOAD segment, but apparently
4467 people do this. The data statement results in a
4468 bfd_data_link_order being built, and these need
4469 section contents to write into. Eventually, we get
4470 to _bfd_elf_write_object_contents which writes any
4471 section with contents to the output. Make room
4472 here for the write, so that following segments are
4473 not trashed. */
4474 if ((flags & SEC_LOAD) != 0
4475 || (flags & SEC_HAS_CONTENTS) != 0)
4476 off += sec->size;
4477 }
4478
4479 if ((flags & SEC_LOAD) != 0)
4480 {
4481 p->p_filesz += sec->size;
4482 p->p_memsz += sec->size;
4483 }
4484
4485 /* .tbss is special. It doesn't contribute to p_memsz of
4486 normal segments. */
4487 else if ((flags & SEC_ALLOC) != 0
4488 && ((flags & SEC_THREAD_LOCAL) == 0
4489 || p->p_type == PT_TLS))
4490 p->p_memsz += sec->size;
4491
4492 if (p->p_type == PT_TLS
4493 && sec->size == 0
4494 && (sec->flags & SEC_HAS_CONTENTS) == 0)
4495 {
4496 struct bfd_link_order *o = sec->map_tail.link_order;
4497 if (o != NULL)
4498 p->p_memsz += o->offset + o->size;
4499 }
4500
4501 if (align > p->p_align
4502 && (p->p_type != PT_LOAD
4503 || (abfd->flags & D_PAGED) == 0
4504 || ((p->p_vaddr - p->p_offset) & (align - 1)) == 0))
4505 p->p_align = align;
4506 }
4507
4508 if (! m->p_flags_valid)
4509 {
4510 p->p_flags |= PF_R;
4511 if ((flags & SEC_CODE) != 0)
4512 p->p_flags |= PF_X;
4513 if ((flags & SEC_READONLY) == 0)
4514 p->p_flags |= PF_W;
4515 }
4516 }
4517 }
4518
4519 /* Clear out any program headers we allocated but did not use. */
4520 for (; count < alloc; count++, p++)
4521 {
4522 memset (p, 0, sizeof *p);
4523 p->p_type = PT_NULL;
4524 }
4525
4526 elf_tdata (abfd)->next_file_pos = off;
4527 return TRUE;
4528 }
4529
4530 /* Assign file positions for the other sections. */
4531
4532 static bfd_boolean
4533 assign_file_positions_for_non_load_sections (bfd *abfd,
4534 struct bfd_link_info *link_info)
4535 {
4536 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4537 Elf_Internal_Shdr **i_shdrpp;
4538 Elf_Internal_Shdr **hdrpp;
4539 Elf_Internal_Phdr *phdrs;
4540 Elf_Internal_Phdr *p;
4541 struct elf_segment_map *m;
4542 bfd_vma filehdr_vaddr, filehdr_paddr;
4543 bfd_vma phdrs_vaddr, phdrs_paddr;
4544 file_ptr off;
4545 unsigned int num_sec;
4546 unsigned int i;
4547 unsigned int count;
4548
4549 i_shdrpp = elf_elfsections (abfd);
4550 num_sec = elf_numsections (abfd);
4551 off = elf_tdata (abfd)->next_file_pos;
4552 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4553 {
4554 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4555 Elf_Internal_Shdr *hdr;
4556
4557 hdr = *hdrpp;
4558 if (hdr->bfd_section != NULL
4559 && hdr->bfd_section->filepos != 0)
4560 hdr->sh_offset = hdr->bfd_section->filepos;
4561 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4562 {
4563 ((*_bfd_error_handler)
4564 (_("%B: warning: allocated section `%s' not in segment"),
4565 abfd,
4566 (hdr->bfd_section == NULL
4567 ? "*unknown*"
4568 : hdr->bfd_section->name)));
4569 if ((abfd->flags & D_PAGED) != 0)
4570 off += vma_page_aligned_bias (hdr->sh_addr, off,
4571 bed->maxpagesize);
4572 else
4573 off += vma_page_aligned_bias (hdr->sh_addr, off,
4574 hdr->sh_addralign);
4575 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4576 FALSE);
4577 }
4578 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4579 && hdr->bfd_section == NULL)
4580 || hdr == i_shdrpp[tdata->symtab_section]
4581 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4582 || hdr == i_shdrpp[tdata->strtab_section])
4583 hdr->sh_offset = -1;
4584 else
4585 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4586
4587 if (i == SHN_LORESERVE - 1)
4588 {
4589 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4590 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4591 }
4592 }
4593
4594 /* Now that we have set the section file positions, we can set up
4595 the file positions for the non PT_LOAD segments. */
4596 count = 0;
4597 filehdr_vaddr = 0;
4598 filehdr_paddr = 0;
4599 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
4600 phdrs_paddr = 0;
4601 phdrs = elf_tdata (abfd)->phdr;
4602 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4603 m != NULL;
4604 m = m->next, p++)
4605 {
4606 ++count;
4607 if (p->p_type != PT_LOAD)
4608 continue;
4609
4610 if (m->includes_filehdr)
4611 {
4612 filehdr_vaddr = p->p_vaddr;
4613 filehdr_paddr = p->p_paddr;
4614 }
4615 if (m->includes_phdrs)
4616 {
4617 phdrs_vaddr = p->p_vaddr;
4618 phdrs_paddr = p->p_paddr;
4619 if (m->includes_filehdr)
4620 {
4621 phdrs_vaddr += bed->s->sizeof_ehdr;
4622 phdrs_paddr += bed->s->sizeof_ehdr;
4623 }
4624 }
4625 }
4626
4627 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4628 m != NULL;
4629 m = m->next, p++)
4630 {
4631 if (m->count != 0)
4632 {
4633 if (p->p_type != PT_LOAD
4634 && (p->p_type != PT_NOTE || bfd_get_format (abfd) != bfd_core))
4635 {
4636 Elf_Internal_Shdr *hdr;
4637 BFD_ASSERT (!m->includes_filehdr && !m->includes_phdrs);
4638
4639 hdr = &elf_section_data (m->sections[m->count - 1])->this_hdr;
4640 p->p_filesz = (m->sections[m->count - 1]->filepos
4641 - m->sections[0]->filepos);
4642 if (hdr->sh_type != SHT_NOBITS)
4643 p->p_filesz += hdr->sh_size;
4644
4645 p->p_offset = m->sections[0]->filepos;
4646 }
4647 }
4648 else
4649 {
4650 if (m->includes_filehdr)
4651 {
4652 p->p_vaddr = filehdr_vaddr;
4653 if (! m->p_paddr_valid)
4654 p->p_paddr = filehdr_paddr;
4655 }
4656 else if (m->includes_phdrs)
4657 {
4658 p->p_vaddr = phdrs_vaddr;
4659 if (! m->p_paddr_valid)
4660 p->p_paddr = phdrs_paddr;
4661 }
4662 else if (p->p_type == PT_GNU_RELRO)
4663 {
4664 Elf_Internal_Phdr *lp;
4665
4666 for (lp = phdrs; lp < phdrs + count; ++lp)
4667 {
4668 if (lp->p_type == PT_LOAD
4669 && lp->p_vaddr <= link_info->relro_end
4670 && lp->p_vaddr >= link_info->relro_start
4671 && lp->p_vaddr + lp->p_filesz
4672 >= link_info->relro_end)
4673 break;
4674 }
4675
4676 if (lp < phdrs + count
4677 && link_info->relro_end > lp->p_vaddr)
4678 {
4679 p->p_vaddr = lp->p_vaddr;
4680 p->p_paddr = lp->p_paddr;
4681 p->p_offset = lp->p_offset;
4682 p->p_filesz = link_info->relro_end - lp->p_vaddr;
4683 p->p_memsz = p->p_filesz;
4684 p->p_align = 1;
4685 p->p_flags = (lp->p_flags & ~PF_W);
4686 }
4687 else
4688 {
4689 memset (p, 0, sizeof *p);
4690 p->p_type = PT_NULL;
4691 }
4692 }
4693 }
4694 }
4695
4696 elf_tdata (abfd)->next_file_pos = off;
4697
4698 return TRUE;
4699 }
4700
4701 /* Get the size of the program header.
4702
4703 If this is called by the linker before any of the section VMA's are set, it
4704 can't calculate the correct value for a strange memory layout. This only
4705 happens when SIZEOF_HEADERS is used in a linker script. In this case,
4706 SORTED_HDRS is NULL and we assume the normal scenario of one text and one
4707 data segment (exclusive of .interp and .dynamic).
4708
4709 ??? User written scripts must either not use SIZEOF_HEADERS, or assume there
4710 will be two segments. */
4711
4712 static bfd_size_type
4713 get_program_header_size (bfd *abfd)
4714 {
4715 size_t segs;
4716 asection *s;
4717 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4718
4719 /* We can't return a different result each time we're called. */
4720 if (elf_tdata (abfd)->program_header_size != 0)
4721 return elf_tdata (abfd)->program_header_size;
4722
4723 if (elf_tdata (abfd)->segment_map != NULL)
4724 {
4725 struct elf_segment_map *m;
4726
4727 segs = 0;
4728 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4729 ++segs;
4730 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
4731 return elf_tdata (abfd)->program_header_size;
4732 }
4733
4734 /* Assume we will need exactly two PT_LOAD segments: one for text
4735 and one for data. */
4736 segs = 2;
4737
4738 s = bfd_get_section_by_name (abfd, ".interp");
4739 if (s != NULL && (s->flags & SEC_LOAD) != 0)
4740 {
4741 /* If we have a loadable interpreter section, we need a
4742 PT_INTERP segment. In this case, assume we also need a
4743 PT_PHDR segment, although that may not be true for all
4744 targets. */
4745 segs += 2;
4746 }
4747
4748 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4749 {
4750 /* We need a PT_DYNAMIC segment. */
4751 ++segs;
4752 }
4753
4754 if (elf_tdata (abfd)->eh_frame_hdr)
4755 {
4756 /* We need a PT_GNU_EH_FRAME segment. */
4757 ++segs;
4758 }
4759
4760 if (elf_tdata (abfd)->stack_flags)
4761 {
4762 /* We need a PT_GNU_STACK segment. */
4763 ++segs;
4764 }
4765
4766 if (elf_tdata (abfd)->relro)
4767 {
4768 /* We need a PT_GNU_RELRO segment. */
4769 ++segs;
4770 }
4771
4772 for (s = abfd->sections; s != NULL; s = s->next)
4773 {
4774 if ((s->flags & SEC_LOAD) != 0
4775 && strncmp (s->name, ".note", 5) == 0)
4776 {
4777 /* We need a PT_NOTE segment. */
4778 ++segs;
4779 }
4780 }
4781
4782 for (s = abfd->sections; s != NULL; s = s->next)
4783 {
4784 if (s->flags & SEC_THREAD_LOCAL)
4785 {
4786 /* We need a PT_TLS segment. */
4787 ++segs;
4788 break;
4789 }
4790 }
4791
4792 /* Let the backend count up any program headers it might need. */
4793 if (bed->elf_backend_additional_program_headers)
4794 {
4795 int a;
4796
4797 a = (*bed->elf_backend_additional_program_headers) (abfd);
4798 if (a == -1)
4799 abort ();
4800 segs += a;
4801 }
4802
4803 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
4804 return elf_tdata (abfd)->program_header_size;
4805 }
4806
4807 /* Work out the file positions of all the sections. This is called by
4808 _bfd_elf_compute_section_file_positions. All the section sizes and
4809 VMAs must be known before this is called.
4810
4811 Reloc sections come in two flavours: Those processed specially as
4812 "side-channel" data attached to a section to which they apply, and
4813 those that bfd doesn't process as relocations. The latter sort are
4814 stored in a normal bfd section by bfd_section_from_shdr. We don't
4815 consider the former sort here, unless they form part of the loadable
4816 image. Reloc sections not assigned here will be handled later by
4817 assign_file_positions_for_relocs.
4818
4819 We also don't set the positions of the .symtab and .strtab here. */
4820
4821 static bfd_boolean
4822 assign_file_positions_except_relocs (bfd *abfd,
4823 struct bfd_link_info *link_info)
4824 {
4825 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4826 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
4827 file_ptr off;
4828 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4829
4830 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
4831 && bfd_get_format (abfd) != bfd_core)
4832 {
4833 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4834 unsigned int num_sec = elf_numsections (abfd);
4835 Elf_Internal_Shdr **hdrpp;
4836 unsigned int i;
4837
4838 /* Start after the ELF header. */
4839 off = i_ehdrp->e_ehsize;
4840
4841 /* We are not creating an executable, which means that we are
4842 not creating a program header, and that the actual order of
4843 the sections in the file is unimportant. */
4844 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4845 {
4846 Elf_Internal_Shdr *hdr;
4847
4848 hdr = *hdrpp;
4849 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4850 && hdr->bfd_section == NULL)
4851 || i == tdata->symtab_section
4852 || i == tdata->symtab_shndx_section
4853 || i == tdata->strtab_section)
4854 {
4855 hdr->sh_offset = -1;
4856 }
4857 else
4858 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4859
4860 if (i == SHN_LORESERVE - 1)
4861 {
4862 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4863 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4864 }
4865 }
4866 }
4867 else
4868 {
4869 unsigned int alloc;
4870
4871 /* Assign file positions for the loaded sections based on the
4872 assignment of sections to segments. */
4873 if (!assign_file_positions_for_load_sections (abfd, link_info))
4874 return FALSE;
4875
4876 /* And for non-load sections. */
4877 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
4878 return FALSE;
4879
4880 /* Write out the program headers. */
4881 alloc = tdata->program_header_size / bed->s->sizeof_phdr;
4882 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
4883 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
4884 return FALSE;
4885
4886 off = tdata->next_file_pos;
4887 }
4888
4889 /* Place the section headers. */
4890 off = align_file_position (off, 1 << bed->s->log_file_align);
4891 i_ehdrp->e_shoff = off;
4892 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
4893
4894 tdata->next_file_pos = off;
4895
4896 return TRUE;
4897 }
4898
4899 static bfd_boolean
4900 prep_headers (bfd *abfd)
4901 {
4902 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
4903 Elf_Internal_Phdr *i_phdrp = 0; /* Program header table, internal form */
4904 Elf_Internal_Shdr **i_shdrp; /* Section header table, internal form */
4905 struct elf_strtab_hash *shstrtab;
4906 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4907
4908 i_ehdrp = elf_elfheader (abfd);
4909 i_shdrp = elf_elfsections (abfd);
4910
4911 shstrtab = _bfd_elf_strtab_init ();
4912 if (shstrtab == NULL)
4913 return FALSE;
4914
4915 elf_shstrtab (abfd) = shstrtab;
4916
4917 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
4918 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
4919 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
4920 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
4921
4922 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
4923 i_ehdrp->e_ident[EI_DATA] =
4924 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
4925 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
4926
4927 if ((abfd->flags & DYNAMIC) != 0)
4928 i_ehdrp->e_type = ET_DYN;
4929 else if ((abfd->flags & EXEC_P) != 0)
4930 i_ehdrp->e_type = ET_EXEC;
4931 else if (bfd_get_format (abfd) == bfd_core)
4932 i_ehdrp->e_type = ET_CORE;
4933 else
4934 i_ehdrp->e_type = ET_REL;
4935
4936 switch (bfd_get_arch (abfd))
4937 {
4938 case bfd_arch_unknown:
4939 i_ehdrp->e_machine = EM_NONE;
4940 break;
4941
4942 /* There used to be a long list of cases here, each one setting
4943 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4944 in the corresponding bfd definition. To avoid duplication,
4945 the switch was removed. Machines that need special handling
4946 can generally do it in elf_backend_final_write_processing(),
4947 unless they need the information earlier than the final write.
4948 Such need can generally be supplied by replacing the tests for
4949 e_machine with the conditions used to determine it. */
4950 default:
4951 i_ehdrp->e_machine = bed->elf_machine_code;
4952 }
4953
4954 i_ehdrp->e_version = bed->s->ev_current;
4955 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
4956
4957 /* No program header, for now. */
4958 i_ehdrp->e_phoff = 0;
4959 i_ehdrp->e_phentsize = 0;
4960 i_ehdrp->e_phnum = 0;
4961
4962 /* Each bfd section is section header entry. */
4963 i_ehdrp->e_entry = bfd_get_start_address (abfd);
4964 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
4965
4966 /* If we're building an executable, we'll need a program header table. */
4967 if (abfd->flags & EXEC_P)
4968 /* It all happens later. */
4969 ;
4970 else
4971 {
4972 i_ehdrp->e_phentsize = 0;
4973 i_phdrp = 0;
4974 i_ehdrp->e_phoff = 0;
4975 }
4976
4977 elf_tdata (abfd)->symtab_hdr.sh_name =
4978 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
4979 elf_tdata (abfd)->strtab_hdr.sh_name =
4980 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
4981 elf_tdata (abfd)->shstrtab_hdr.sh_name =
4982 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
4983 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4984 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4985 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
4986 return FALSE;
4987
4988 return TRUE;
4989 }
4990
4991 /* Assign file positions for all the reloc sections which are not part
4992 of the loadable file image. */
4993
4994 void
4995 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
4996 {
4997 file_ptr off;
4998 unsigned int i, num_sec;
4999 Elf_Internal_Shdr **shdrpp;
5000
5001 off = elf_tdata (abfd)->next_file_pos;
5002
5003 num_sec = elf_numsections (abfd);
5004 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
5005 {
5006 Elf_Internal_Shdr *shdrp;
5007
5008 shdrp = *shdrpp;
5009 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
5010 && shdrp->sh_offset == -1)
5011 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
5012 }
5013
5014 elf_tdata (abfd)->next_file_pos = off;
5015 }
5016
5017 bfd_boolean
5018 _bfd_elf_write_object_contents (bfd *abfd)
5019 {
5020 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5021 Elf_Internal_Ehdr *i_ehdrp;
5022 Elf_Internal_Shdr **i_shdrp;
5023 bfd_boolean failed;
5024 unsigned int count, num_sec;
5025
5026 if (! abfd->output_has_begun
5027 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
5028 return FALSE;
5029
5030 i_shdrp = elf_elfsections (abfd);
5031 i_ehdrp = elf_elfheader (abfd);
5032
5033 failed = FALSE;
5034 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
5035 if (failed)
5036 return FALSE;
5037
5038 _bfd_elf_assign_file_positions_for_relocs (abfd);
5039
5040 /* After writing the headers, we need to write the sections too... */
5041 num_sec = elf_numsections (abfd);
5042 for (count = 1; count < num_sec; count++)
5043 {
5044 if (bed->elf_backend_section_processing)
5045 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
5046 if (i_shdrp[count]->contents)
5047 {
5048 bfd_size_type amt = i_shdrp[count]->sh_size;
5049
5050 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
5051 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
5052 return FALSE;
5053 }
5054 if (count == SHN_LORESERVE - 1)
5055 count += SHN_HIRESERVE + 1 - SHN_LORESERVE;
5056 }
5057
5058 /* Write out the section header names. */
5059 if (elf_shstrtab (abfd) != NULL
5060 && (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
5061 || ! _bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
5062 return FALSE;
5063
5064 if (bed->elf_backend_final_write_processing)
5065 (*bed->elf_backend_final_write_processing) (abfd,
5066 elf_tdata (abfd)->linker);
5067
5068 return bed->s->write_shdrs_and_ehdr (abfd);
5069 }
5070
5071 bfd_boolean
5072 _bfd_elf_write_corefile_contents (bfd *abfd)
5073 {
5074 /* Hopefully this can be done just like an object file. */
5075 return _bfd_elf_write_object_contents (abfd);
5076 }
5077
5078 /* Given a section, search the header to find them. */
5079
5080 int
5081 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
5082 {
5083 const struct elf_backend_data *bed;
5084 int index;
5085
5086 if (elf_section_data (asect) != NULL
5087 && elf_section_data (asect)->this_idx != 0)
5088 return elf_section_data (asect)->this_idx;
5089
5090 if (bfd_is_abs_section (asect))
5091 index = SHN_ABS;
5092 else if (bfd_is_com_section (asect))
5093 index = SHN_COMMON;
5094 else if (bfd_is_und_section (asect))
5095 index = SHN_UNDEF;
5096 else
5097 index = -1;
5098
5099 bed = get_elf_backend_data (abfd);
5100 if (bed->elf_backend_section_from_bfd_section)
5101 {
5102 int retval = index;
5103
5104 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
5105 return retval;
5106 }
5107
5108 if (index == -1)
5109 bfd_set_error (bfd_error_nonrepresentable_section);
5110
5111 return index;
5112 }
5113
5114 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
5115 on error. */
5116
5117 int
5118 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
5119 {
5120 asymbol *asym_ptr = *asym_ptr_ptr;
5121 int idx;
5122 flagword flags = asym_ptr->flags;
5123
5124 /* When gas creates relocations against local labels, it creates its
5125 own symbol for the section, but does put the symbol into the
5126 symbol chain, so udata is 0. When the linker is generating
5127 relocatable output, this section symbol may be for one of the
5128 input sections rather than the output section. */
5129 if (asym_ptr->udata.i == 0
5130 && (flags & BSF_SECTION_SYM)
5131 && asym_ptr->section)
5132 {
5133 int indx;
5134
5135 if (asym_ptr->section->output_section != NULL)
5136 indx = asym_ptr->section->output_section->index;
5137 else
5138 indx = asym_ptr->section->index;
5139 if (indx < elf_num_section_syms (abfd)
5140 && elf_section_syms (abfd)[indx] != NULL)
5141 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
5142 }
5143
5144 idx = asym_ptr->udata.i;
5145
5146 if (idx == 0)
5147 {
5148 /* This case can occur when using --strip-symbol on a symbol
5149 which is used in a relocation entry. */
5150 (*_bfd_error_handler)
5151 (_("%B: symbol `%s' required but not present"),
5152 abfd, bfd_asymbol_name (asym_ptr));
5153 bfd_set_error (bfd_error_no_symbols);
5154 return -1;
5155 }
5156
5157 #if DEBUG & 4
5158 {
5159 fprintf (stderr,
5160 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
5161 (long) asym_ptr, asym_ptr->name, idx, flags,
5162 elf_symbol_flags (flags));
5163 fflush (stderr);
5164 }
5165 #endif
5166
5167 return idx;
5168 }
5169
5170 /* Rewrite program header information. */
5171
5172 static bfd_boolean
5173 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
5174 {
5175 Elf_Internal_Ehdr *iehdr;
5176 struct elf_segment_map *map;
5177 struct elf_segment_map *map_first;
5178 struct elf_segment_map **pointer_to_map;
5179 Elf_Internal_Phdr *segment;
5180 asection *section;
5181 unsigned int i;
5182 unsigned int num_segments;
5183 bfd_boolean phdr_included = FALSE;
5184 bfd_vma maxpagesize;
5185 struct elf_segment_map *phdr_adjust_seg = NULL;
5186 unsigned int phdr_adjust_num = 0;
5187 const struct elf_backend_data *bed;
5188
5189 bed = get_elf_backend_data (ibfd);
5190 iehdr = elf_elfheader (ibfd);
5191
5192 map_first = NULL;
5193 pointer_to_map = &map_first;
5194
5195 num_segments = elf_elfheader (ibfd)->e_phnum;
5196 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
5197
5198 /* Returns the end address of the segment + 1. */
5199 #define SEGMENT_END(segment, start) \
5200 (start + (segment->p_memsz > segment->p_filesz \
5201 ? segment->p_memsz : segment->p_filesz))
5202
5203 #define SECTION_SIZE(section, segment) \
5204 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5205 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5206 ? section->size : 0)
5207
5208 /* Returns TRUE if the given section is contained within
5209 the given segment. VMA addresses are compared. */
5210 #define IS_CONTAINED_BY_VMA(section, segment) \
5211 (section->vma >= segment->p_vaddr \
5212 && (section->vma + SECTION_SIZE (section, segment) \
5213 <= (SEGMENT_END (segment, segment->p_vaddr))))
5214
5215 /* Returns TRUE if the given section is contained within
5216 the given segment. LMA addresses are compared. */
5217 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5218 (section->lma >= base \
5219 && (section->lma + SECTION_SIZE (section, segment) \
5220 <= SEGMENT_END (segment, base)))
5221
5222 /* Special case: corefile "NOTE" section containing regs, prpsinfo etc. */
5223 #define IS_COREFILE_NOTE(p, s) \
5224 (p->p_type == PT_NOTE \
5225 && bfd_get_format (ibfd) == bfd_core \
5226 && s->vma == 0 && s->lma == 0 \
5227 && (bfd_vma) s->filepos >= p->p_offset \
5228 && ((bfd_vma) s->filepos + s->size \
5229 <= p->p_offset + p->p_filesz))
5230
5231 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5232 linker, which generates a PT_INTERP section with p_vaddr and
5233 p_memsz set to 0. */
5234 #define IS_SOLARIS_PT_INTERP(p, s) \
5235 (p->p_vaddr == 0 \
5236 && p->p_paddr == 0 \
5237 && p->p_memsz == 0 \
5238 && p->p_filesz > 0 \
5239 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5240 && s->size > 0 \
5241 && (bfd_vma) s->filepos >= p->p_offset \
5242 && ((bfd_vma) s->filepos + s->size \
5243 <= p->p_offset + p->p_filesz))
5244
5245 /* Decide if the given section should be included in the given segment.
5246 A section will be included if:
5247 1. It is within the address space of the segment -- we use the LMA
5248 if that is set for the segment and the VMA otherwise,
5249 2. It is an allocated segment,
5250 3. There is an output section associated with it,
5251 4. The section has not already been allocated to a previous segment.
5252 5. PT_GNU_STACK segments do not include any sections.
5253 6. PT_TLS segment includes only SHF_TLS sections.
5254 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5255 8. PT_DYNAMIC should not contain empty sections at the beginning
5256 (with the possible exception of .dynamic). */
5257 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5258 ((((segment->p_paddr \
5259 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5260 : IS_CONTAINED_BY_VMA (section, segment)) \
5261 && (section->flags & SEC_ALLOC) != 0) \
5262 || IS_COREFILE_NOTE (segment, section)) \
5263 && section->output_section != NULL \
5264 && segment->p_type != PT_GNU_STACK \
5265 && (segment->p_type != PT_TLS \
5266 || (section->flags & SEC_THREAD_LOCAL)) \
5267 && (segment->p_type == PT_LOAD \
5268 || segment->p_type == PT_TLS \
5269 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5270 && (segment->p_type != PT_DYNAMIC \
5271 || SECTION_SIZE (section, segment) > 0 \
5272 || (segment->p_paddr \
5273 ? segment->p_paddr != section->lma \
5274 : segment->p_vaddr != section->vma) \
5275 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5276 == 0)) \
5277 && ! section->segment_mark)
5278
5279 /* Returns TRUE iff seg1 starts after the end of seg2. */
5280 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5281 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5282
5283 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5284 their VMA address ranges and their LMA address ranges overlap.
5285 It is possible to have overlapping VMA ranges without overlapping LMA
5286 ranges. RedBoot images for example can have both .data and .bss mapped
5287 to the same VMA range, but with the .data section mapped to a different
5288 LMA. */
5289 #define SEGMENT_OVERLAPS(seg1, seg2) \
5290 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5291 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5292 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5293 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5294
5295 /* Initialise the segment mark field. */
5296 for (section = ibfd->sections; section != NULL; section = section->next)
5297 section->segment_mark = FALSE;
5298
5299 /* Scan through the segments specified in the program header
5300 of the input BFD. For this first scan we look for overlaps
5301 in the loadable segments. These can be created by weird
5302 parameters to objcopy. Also, fix some solaris weirdness. */
5303 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5304 i < num_segments;
5305 i++, segment++)
5306 {
5307 unsigned int j;
5308 Elf_Internal_Phdr *segment2;
5309
5310 if (segment->p_type == PT_INTERP)
5311 for (section = ibfd->sections; section; section = section->next)
5312 if (IS_SOLARIS_PT_INTERP (segment, section))
5313 {
5314 /* Mininal change so that the normal section to segment
5315 assignment code will work. */
5316 segment->p_vaddr = section->vma;
5317 break;
5318 }
5319
5320 if (segment->p_type != PT_LOAD)
5321 continue;
5322
5323 /* Determine if this segment overlaps any previous segments. */
5324 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2 ++)
5325 {
5326 bfd_signed_vma extra_length;
5327
5328 if (segment2->p_type != PT_LOAD
5329 || ! SEGMENT_OVERLAPS (segment, segment2))
5330 continue;
5331
5332 /* Merge the two segments together. */
5333 if (segment2->p_vaddr < segment->p_vaddr)
5334 {
5335 /* Extend SEGMENT2 to include SEGMENT and then delete
5336 SEGMENT. */
5337 extra_length =
5338 SEGMENT_END (segment, segment->p_vaddr)
5339 - SEGMENT_END (segment2, segment2->p_vaddr);
5340
5341 if (extra_length > 0)
5342 {
5343 segment2->p_memsz += extra_length;
5344 segment2->p_filesz += extra_length;
5345 }
5346
5347 segment->p_type = PT_NULL;
5348
5349 /* Since we have deleted P we must restart the outer loop. */
5350 i = 0;
5351 segment = elf_tdata (ibfd)->phdr;
5352 break;
5353 }
5354 else
5355 {
5356 /* Extend SEGMENT to include SEGMENT2 and then delete
5357 SEGMENT2. */
5358 extra_length =
5359 SEGMENT_END (segment2, segment2->p_vaddr)
5360 - SEGMENT_END (segment, segment->p_vaddr);
5361
5362 if (extra_length > 0)
5363 {
5364 segment->p_memsz += extra_length;
5365 segment->p_filesz += extra_length;
5366 }
5367
5368 segment2->p_type = PT_NULL;
5369 }
5370 }
5371 }
5372
5373 /* The second scan attempts to assign sections to segments. */
5374 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5375 i < num_segments;
5376 i ++, segment ++)
5377 {
5378 unsigned int section_count;
5379 asection ** sections;
5380 asection * output_section;
5381 unsigned int isec;
5382 bfd_vma matching_lma;
5383 bfd_vma suggested_lma;
5384 unsigned int j;
5385 bfd_size_type amt;
5386
5387 if (segment->p_type == PT_NULL)
5388 continue;
5389
5390 /* Compute how many sections might be placed into this segment. */
5391 for (section = ibfd->sections, section_count = 0;
5392 section != NULL;
5393 section = section->next)
5394 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5395 ++section_count;
5396
5397 /* Allocate a segment map big enough to contain
5398 all of the sections we have selected. */
5399 amt = sizeof (struct elf_segment_map);
5400 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5401 map = bfd_alloc (obfd, amt);
5402 if (map == NULL)
5403 return FALSE;
5404
5405 /* Initialise the fields of the segment map. Default to
5406 using the physical address of the segment in the input BFD. */
5407 map->next = NULL;
5408 map->p_type = segment->p_type;
5409 map->p_flags = segment->p_flags;
5410 map->p_flags_valid = 1;
5411 map->p_paddr = segment->p_paddr;
5412 map->p_paddr_valid = 1;
5413
5414 /* Determine if this segment contains the ELF file header
5415 and if it contains the program headers themselves. */
5416 map->includes_filehdr = (segment->p_offset == 0
5417 && segment->p_filesz >= iehdr->e_ehsize);
5418
5419 map->includes_phdrs = 0;
5420
5421 if (! phdr_included || segment->p_type != PT_LOAD)
5422 {
5423 map->includes_phdrs =
5424 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5425 && (segment->p_offset + segment->p_filesz
5426 >= ((bfd_vma) iehdr->e_phoff
5427 + iehdr->e_phnum * iehdr->e_phentsize)));
5428
5429 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5430 phdr_included = TRUE;
5431 }
5432
5433 if (section_count == 0)
5434 {
5435 /* Special segments, such as the PT_PHDR segment, may contain
5436 no sections, but ordinary, loadable segments should contain
5437 something. They are allowed by the ELF spec however, so only
5438 a warning is produced. */
5439 if (segment->p_type == PT_LOAD)
5440 (*_bfd_error_handler)
5441 (_("%B: warning: Empty loadable segment detected, is this intentional ?\n"),
5442 ibfd);
5443
5444 map->count = 0;
5445 *pointer_to_map = map;
5446 pointer_to_map = &map->next;
5447
5448 continue;
5449 }
5450
5451 /* Now scan the sections in the input BFD again and attempt
5452 to add their corresponding output sections to the segment map.
5453 The problem here is how to handle an output section which has
5454 been moved (ie had its LMA changed). There are four possibilities:
5455
5456 1. None of the sections have been moved.
5457 In this case we can continue to use the segment LMA from the
5458 input BFD.
5459
5460 2. All of the sections have been moved by the same amount.
5461 In this case we can change the segment's LMA to match the LMA
5462 of the first section.
5463
5464 3. Some of the sections have been moved, others have not.
5465 In this case those sections which have not been moved can be
5466 placed in the current segment which will have to have its size,
5467 and possibly its LMA changed, and a new segment or segments will
5468 have to be created to contain the other sections.
5469
5470 4. The sections have been moved, but not by the same amount.
5471 In this case we can change the segment's LMA to match the LMA
5472 of the first section and we will have to create a new segment
5473 or segments to contain the other sections.
5474
5475 In order to save time, we allocate an array to hold the section
5476 pointers that we are interested in. As these sections get assigned
5477 to a segment, they are removed from this array. */
5478
5479 /* Gcc 2.96 miscompiles this code on mips. Don't do casting here
5480 to work around this long long bug. */
5481 sections = bfd_malloc2 (section_count, sizeof (asection *));
5482 if (sections == NULL)
5483 return FALSE;
5484
5485 /* Step One: Scan for segment vs section LMA conflicts.
5486 Also add the sections to the section array allocated above.
5487 Also add the sections to the current segment. In the common
5488 case, where the sections have not been moved, this means that
5489 we have completely filled the segment, and there is nothing
5490 more to do. */
5491 isec = 0;
5492 matching_lma = 0;
5493 suggested_lma = 0;
5494
5495 for (j = 0, section = ibfd->sections;
5496 section != NULL;
5497 section = section->next)
5498 {
5499 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5500 {
5501 output_section = section->output_section;
5502
5503 sections[j ++] = section;
5504
5505 /* The Solaris native linker always sets p_paddr to 0.
5506 We try to catch that case here, and set it to the
5507 correct value. Note - some backends require that
5508 p_paddr be left as zero. */
5509 if (segment->p_paddr == 0
5510 && segment->p_vaddr != 0
5511 && (! bed->want_p_paddr_set_to_zero)
5512 && isec == 0
5513 && output_section->lma != 0
5514 && (output_section->vma == (segment->p_vaddr
5515 + (map->includes_filehdr
5516 ? iehdr->e_ehsize
5517 : 0)
5518 + (map->includes_phdrs
5519 ? (iehdr->e_phnum
5520 * iehdr->e_phentsize)
5521 : 0))))
5522 map->p_paddr = segment->p_vaddr;
5523
5524 /* Match up the physical address of the segment with the
5525 LMA address of the output section. */
5526 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5527 || IS_COREFILE_NOTE (segment, section)
5528 || (bed->want_p_paddr_set_to_zero &&
5529 IS_CONTAINED_BY_VMA (output_section, segment))
5530 )
5531 {
5532 if (matching_lma == 0)
5533 matching_lma = output_section->lma;
5534
5535 /* We assume that if the section fits within the segment
5536 then it does not overlap any other section within that
5537 segment. */
5538 map->sections[isec ++] = output_section;
5539 }
5540 else if (suggested_lma == 0)
5541 suggested_lma = output_section->lma;
5542 }
5543 }
5544
5545 BFD_ASSERT (j == section_count);
5546
5547 /* Step Two: Adjust the physical address of the current segment,
5548 if necessary. */
5549 if (isec == section_count)
5550 {
5551 /* All of the sections fitted within the segment as currently
5552 specified. This is the default case. Add the segment to
5553 the list of built segments and carry on to process the next
5554 program header in the input BFD. */
5555 map->count = section_count;
5556 *pointer_to_map = map;
5557 pointer_to_map = &map->next;
5558
5559 free (sections);
5560 continue;
5561 }
5562 else
5563 {
5564 if (matching_lma != 0)
5565 {
5566 /* At least one section fits inside the current segment.
5567 Keep it, but modify its physical address to match the
5568 LMA of the first section that fitted. */
5569 map->p_paddr = matching_lma;
5570 }
5571 else
5572 {
5573 /* None of the sections fitted inside the current segment.
5574 Change the current segment's physical address to match
5575 the LMA of the first section. */
5576 map->p_paddr = suggested_lma;
5577 }
5578
5579 /* Offset the segment physical address from the lma
5580 to allow for space taken up by elf headers. */
5581 if (map->includes_filehdr)
5582 map->p_paddr -= iehdr->e_ehsize;
5583
5584 if (map->includes_phdrs)
5585 {
5586 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
5587
5588 /* iehdr->e_phnum is just an estimate of the number
5589 of program headers that we will need. Make a note
5590 here of the number we used and the segment we chose
5591 to hold these headers, so that we can adjust the
5592 offset when we know the correct value. */
5593 phdr_adjust_num = iehdr->e_phnum;
5594 phdr_adjust_seg = map;
5595 }
5596 }
5597
5598 /* Step Three: Loop over the sections again, this time assigning
5599 those that fit to the current segment and removing them from the
5600 sections array; but making sure not to leave large gaps. Once all
5601 possible sections have been assigned to the current segment it is
5602 added to the list of built segments and if sections still remain
5603 to be assigned, a new segment is constructed before repeating
5604 the loop. */
5605 isec = 0;
5606 do
5607 {
5608 map->count = 0;
5609 suggested_lma = 0;
5610
5611 /* Fill the current segment with sections that fit. */
5612 for (j = 0; j < section_count; j++)
5613 {
5614 section = sections[j];
5615
5616 if (section == NULL)
5617 continue;
5618
5619 output_section = section->output_section;
5620
5621 BFD_ASSERT (output_section != NULL);
5622
5623 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5624 || IS_COREFILE_NOTE (segment, section))
5625 {
5626 if (map->count == 0)
5627 {
5628 /* If the first section in a segment does not start at
5629 the beginning of the segment, then something is
5630 wrong. */
5631 if (output_section->lma !=
5632 (map->p_paddr
5633 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
5634 + (map->includes_phdrs
5635 ? iehdr->e_phnum * iehdr->e_phentsize
5636 : 0)))
5637 abort ();
5638 }
5639 else
5640 {
5641 asection * prev_sec;
5642
5643 prev_sec = map->sections[map->count - 1];
5644
5645 /* If the gap between the end of the previous section
5646 and the start of this section is more than
5647 maxpagesize then we need to start a new segment. */
5648 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
5649 maxpagesize)
5650 < BFD_ALIGN (output_section->lma, maxpagesize))
5651 || ((prev_sec->lma + prev_sec->size)
5652 > output_section->lma))
5653 {
5654 if (suggested_lma == 0)
5655 suggested_lma = output_section->lma;
5656
5657 continue;
5658 }
5659 }
5660
5661 map->sections[map->count++] = output_section;
5662 ++isec;
5663 sections[j] = NULL;
5664 section->segment_mark = TRUE;
5665 }
5666 else if (suggested_lma == 0)
5667 suggested_lma = output_section->lma;
5668 }
5669
5670 BFD_ASSERT (map->count > 0);
5671
5672 /* Add the current segment to the list of built segments. */
5673 *pointer_to_map = map;
5674 pointer_to_map = &map->next;
5675
5676 if (isec < section_count)
5677 {
5678 /* We still have not allocated all of the sections to
5679 segments. Create a new segment here, initialise it
5680 and carry on looping. */
5681 amt = sizeof (struct elf_segment_map);
5682 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5683 map = bfd_alloc (obfd, amt);
5684 if (map == NULL)
5685 {
5686 free (sections);
5687 return FALSE;
5688 }
5689
5690 /* Initialise the fields of the segment map. Set the physical
5691 physical address to the LMA of the first section that has
5692 not yet been assigned. */
5693 map->next = NULL;
5694 map->p_type = segment->p_type;
5695 map->p_flags = segment->p_flags;
5696 map->p_flags_valid = 1;
5697 map->p_paddr = suggested_lma;
5698 map->p_paddr_valid = 1;
5699 map->includes_filehdr = 0;
5700 map->includes_phdrs = 0;
5701 }
5702 }
5703 while (isec < section_count);
5704
5705 free (sections);
5706 }
5707
5708 /* The Solaris linker creates program headers in which all the
5709 p_paddr fields are zero. When we try to objcopy or strip such a
5710 file, we get confused. Check for this case, and if we find it
5711 reset the p_paddr_valid fields. */
5712 for (map = map_first; map != NULL; map = map->next)
5713 if (map->p_paddr != 0)
5714 break;
5715 if (map == NULL)
5716 for (map = map_first; map != NULL; map = map->next)
5717 map->p_paddr_valid = 0;
5718
5719 elf_tdata (obfd)->segment_map = map_first;
5720
5721 /* If we had to estimate the number of program headers that were
5722 going to be needed, then check our estimate now and adjust
5723 the offset if necessary. */
5724 if (phdr_adjust_seg != NULL)
5725 {
5726 unsigned int count;
5727
5728 for (count = 0, map = map_first; map != NULL; map = map->next)
5729 count++;
5730
5731 if (count > phdr_adjust_num)
5732 phdr_adjust_seg->p_paddr
5733 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
5734 }
5735
5736 #undef SEGMENT_END
5737 #undef SECTION_SIZE
5738 #undef IS_CONTAINED_BY_VMA
5739 #undef IS_CONTAINED_BY_LMA
5740 #undef IS_COREFILE_NOTE
5741 #undef IS_SOLARIS_PT_INTERP
5742 #undef INCLUDE_SECTION_IN_SEGMENT
5743 #undef SEGMENT_AFTER_SEGMENT
5744 #undef SEGMENT_OVERLAPS
5745 return TRUE;
5746 }
5747
5748 /* Copy ELF program header information. */
5749
5750 static bfd_boolean
5751 copy_elf_program_header (bfd *ibfd, bfd *obfd)
5752 {
5753 Elf_Internal_Ehdr *iehdr;
5754 struct elf_segment_map *map;
5755 struct elf_segment_map *map_first;
5756 struct elf_segment_map **pointer_to_map;
5757 Elf_Internal_Phdr *segment;
5758 unsigned int i;
5759 unsigned int num_segments;
5760 bfd_boolean phdr_included = FALSE;
5761
5762 iehdr = elf_elfheader (ibfd);
5763
5764 map_first = NULL;
5765 pointer_to_map = &map_first;
5766
5767 num_segments = elf_elfheader (ibfd)->e_phnum;
5768 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5769 i < num_segments;
5770 i++, segment++)
5771 {
5772 asection *section;
5773 unsigned int section_count;
5774 bfd_size_type amt;
5775 Elf_Internal_Shdr *this_hdr;
5776
5777 /* FIXME: Do we need to copy PT_NULL segment? */
5778 if (segment->p_type == PT_NULL)
5779 continue;
5780
5781 /* Compute how many sections are in this segment. */
5782 for (section = ibfd->sections, section_count = 0;
5783 section != NULL;
5784 section = section->next)
5785 {
5786 this_hdr = &(elf_section_data(section)->this_hdr);
5787 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5788 section_count++;
5789 }
5790
5791 /* Allocate a segment map big enough to contain
5792 all of the sections we have selected. */
5793 amt = sizeof (struct elf_segment_map);
5794 if (section_count != 0)
5795 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5796 map = bfd_alloc (obfd, amt);
5797 if (map == NULL)
5798 return FALSE;
5799
5800 /* Initialize the fields of the output segment map with the
5801 input segment. */
5802 map->next = NULL;
5803 map->p_type = segment->p_type;
5804 map->p_flags = segment->p_flags;
5805 map->p_flags_valid = 1;
5806 map->p_paddr = segment->p_paddr;
5807 map->p_paddr_valid = 1;
5808
5809 /* Determine if this segment contains the ELF file header
5810 and if it contains the program headers themselves. */
5811 map->includes_filehdr = (segment->p_offset == 0
5812 && segment->p_filesz >= iehdr->e_ehsize);
5813
5814 map->includes_phdrs = 0;
5815 if (! phdr_included || segment->p_type != PT_LOAD)
5816 {
5817 map->includes_phdrs =
5818 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5819 && (segment->p_offset + segment->p_filesz
5820 >= ((bfd_vma) iehdr->e_phoff
5821 + iehdr->e_phnum * iehdr->e_phentsize)));
5822
5823 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5824 phdr_included = TRUE;
5825 }
5826
5827 if (section_count != 0)
5828 {
5829 unsigned int isec = 0;
5830
5831 for (section = ibfd->sections;
5832 section != NULL;
5833 section = section->next)
5834 {
5835 this_hdr = &(elf_section_data(section)->this_hdr);
5836 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5837 map->sections[isec++] = section->output_section;
5838 }
5839 }
5840
5841 map->count = section_count;
5842 *pointer_to_map = map;
5843 pointer_to_map = &map->next;
5844 }
5845
5846 elf_tdata (obfd)->segment_map = map_first;
5847 return TRUE;
5848 }
5849
5850 /* Copy private BFD data. This copies or rewrites ELF program header
5851 information. */
5852
5853 static bfd_boolean
5854 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
5855 {
5856 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5857 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5858 return TRUE;
5859
5860 if (elf_tdata (ibfd)->phdr == NULL)
5861 return TRUE;
5862
5863 if (ibfd->xvec == obfd->xvec)
5864 {
5865 /* Check if any sections in the input BFD covered by ELF program
5866 header are changed. */
5867 Elf_Internal_Phdr *segment;
5868 asection *section, *osec;
5869 unsigned int i, num_segments;
5870 Elf_Internal_Shdr *this_hdr;
5871
5872 /* Initialize the segment mark field. */
5873 for (section = obfd->sections; section != NULL;
5874 section = section->next)
5875 section->segment_mark = FALSE;
5876
5877 num_segments = elf_elfheader (ibfd)->e_phnum;
5878 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5879 i < num_segments;
5880 i++, segment++)
5881 {
5882 for (section = ibfd->sections;
5883 section != NULL; section = section->next)
5884 {
5885 /* We mark the output section so that we know it comes
5886 from the input BFD. */
5887 osec = section->output_section;
5888 if (osec)
5889 osec->segment_mark = TRUE;
5890
5891 /* Check if this section is covered by the segment. */
5892 this_hdr = &(elf_section_data(section)->this_hdr);
5893 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5894 {
5895 /* FIXME: Check if its output section is changed or
5896 removed. What else do we need to check? */
5897 if (osec == NULL
5898 || section->flags != osec->flags
5899 || section->lma != osec->lma
5900 || section->vma != osec->vma
5901 || section->size != osec->size
5902 || section->rawsize != osec->rawsize
5903 || section->alignment_power != osec->alignment_power)
5904 goto rewrite;
5905 }
5906 }
5907 }
5908
5909 /* Check to see if any output section doesn't come from the
5910 input BFD. */
5911 for (section = obfd->sections; section != NULL;
5912 section = section->next)
5913 {
5914 if (section->segment_mark == FALSE)
5915 goto rewrite;
5916 else
5917 section->segment_mark = FALSE;
5918 }
5919
5920 return copy_elf_program_header (ibfd, obfd);
5921 }
5922
5923 rewrite:
5924 return rewrite_elf_program_header (ibfd, obfd);
5925 }
5926
5927 /* Initialize private output section information from input section. */
5928
5929 bfd_boolean
5930 _bfd_elf_init_private_section_data (bfd *ibfd,
5931 asection *isec,
5932 bfd *obfd,
5933 asection *osec,
5934 struct bfd_link_info *link_info)
5935
5936 {
5937 Elf_Internal_Shdr *ihdr, *ohdr;
5938 bfd_boolean need_group = link_info == NULL || link_info->relocatable;
5939
5940 if (ibfd->xvec->flavour != bfd_target_elf_flavour
5941 || obfd->xvec->flavour != bfd_target_elf_flavour)
5942 return TRUE;
5943
5944 /* Don't copy the output ELF section type from input if the
5945 output BFD section flags has been set to something different.
5946 elf_fake_sections will set ELF section type based on BFD
5947 section flags. */
5948 if (osec->flags == isec->flags
5949 || (osec->flags == 0 && elf_section_type (osec) == SHT_NULL))
5950 elf_section_type (osec) = elf_section_type (isec);
5951
5952 /* Set things up for objcopy and relocatable link. The output
5953 SHT_GROUP section will have its elf_next_in_group pointing back
5954 to the input group members. Ignore linker created group section.
5955 See elfNN_ia64_object_p in elfxx-ia64.c. */
5956
5957 if (need_group)
5958 {
5959 if (elf_sec_group (isec) == NULL
5960 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
5961 {
5962 if (elf_section_flags (isec) & SHF_GROUP)
5963 elf_section_flags (osec) |= SHF_GROUP;
5964 elf_next_in_group (osec) = elf_next_in_group (isec);
5965 elf_group_name (osec) = elf_group_name (isec);
5966 }
5967 }
5968
5969 ihdr = &elf_section_data (isec)->this_hdr;
5970
5971 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
5972 don't use the output section of the linked-to section since it
5973 may be NULL at this point. */
5974 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
5975 {
5976 ohdr = &elf_section_data (osec)->this_hdr;
5977 ohdr->sh_flags |= SHF_LINK_ORDER;
5978 elf_linked_to_section (osec) = elf_linked_to_section (isec);
5979 }
5980
5981 osec->use_rela_p = isec->use_rela_p;
5982
5983 return TRUE;
5984 }
5985
5986 /* Copy private section information. This copies over the entsize
5987 field, and sometimes the info field. */
5988
5989 bfd_boolean
5990 _bfd_elf_copy_private_section_data (bfd *ibfd,
5991 asection *isec,
5992 bfd *obfd,
5993 asection *osec)
5994 {
5995 Elf_Internal_Shdr *ihdr, *ohdr;
5996
5997 if (ibfd->xvec->flavour != bfd_target_elf_flavour
5998 || obfd->xvec->flavour != bfd_target_elf_flavour)
5999 return TRUE;
6000
6001 ihdr = &elf_section_data (isec)->this_hdr;
6002 ohdr = &elf_section_data (osec)->this_hdr;
6003
6004 ohdr->sh_entsize = ihdr->sh_entsize;
6005
6006 if (ihdr->sh_type == SHT_SYMTAB
6007 || ihdr->sh_type == SHT_DYNSYM
6008 || ihdr->sh_type == SHT_GNU_verneed
6009 || ihdr->sh_type == SHT_GNU_verdef)
6010 ohdr->sh_info = ihdr->sh_info;
6011
6012 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
6013 NULL);
6014 }
6015
6016 /* Copy private header information. */
6017
6018 bfd_boolean
6019 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
6020 {
6021 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6022 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6023 return TRUE;
6024
6025 /* Copy over private BFD data if it has not already been copied.
6026 This must be done here, rather than in the copy_private_bfd_data
6027 entry point, because the latter is called after the section
6028 contents have been set, which means that the program headers have
6029 already been worked out. */
6030 if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
6031 {
6032 if (! copy_private_bfd_data (ibfd, obfd))
6033 return FALSE;
6034 }
6035
6036 return TRUE;
6037 }
6038
6039 /* Copy private symbol information. If this symbol is in a section
6040 which we did not map into a BFD section, try to map the section
6041 index correctly. We use special macro definitions for the mapped
6042 section indices; these definitions are interpreted by the
6043 swap_out_syms function. */
6044
6045 #define MAP_ONESYMTAB (SHN_HIOS + 1)
6046 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
6047 #define MAP_STRTAB (SHN_HIOS + 3)
6048 #define MAP_SHSTRTAB (SHN_HIOS + 4)
6049 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
6050
6051 bfd_boolean
6052 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
6053 asymbol *isymarg,
6054 bfd *obfd,
6055 asymbol *osymarg)
6056 {
6057 elf_symbol_type *isym, *osym;
6058
6059 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6060 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6061 return TRUE;
6062
6063 isym = elf_symbol_from (ibfd, isymarg);
6064 osym = elf_symbol_from (obfd, osymarg);
6065
6066 if (isym != NULL
6067 && osym != NULL
6068 && bfd_is_abs_section (isym->symbol.section))
6069 {
6070 unsigned int shndx;
6071
6072 shndx = isym->internal_elf_sym.st_shndx;
6073 if (shndx == elf_onesymtab (ibfd))
6074 shndx = MAP_ONESYMTAB;
6075 else if (shndx == elf_dynsymtab (ibfd))
6076 shndx = MAP_DYNSYMTAB;
6077 else if (shndx == elf_tdata (ibfd)->strtab_section)
6078 shndx = MAP_STRTAB;
6079 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
6080 shndx = MAP_SHSTRTAB;
6081 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
6082 shndx = MAP_SYM_SHNDX;
6083 osym->internal_elf_sym.st_shndx = shndx;
6084 }
6085
6086 return TRUE;
6087 }
6088
6089 /* Swap out the symbols. */
6090
6091 static bfd_boolean
6092 swap_out_syms (bfd *abfd,
6093 struct bfd_strtab_hash **sttp,
6094 int relocatable_p)
6095 {
6096 const struct elf_backend_data *bed;
6097 int symcount;
6098 asymbol **syms;
6099 struct bfd_strtab_hash *stt;
6100 Elf_Internal_Shdr *symtab_hdr;
6101 Elf_Internal_Shdr *symtab_shndx_hdr;
6102 Elf_Internal_Shdr *symstrtab_hdr;
6103 bfd_byte *outbound_syms;
6104 bfd_byte *outbound_shndx;
6105 int idx;
6106 bfd_size_type amt;
6107 bfd_boolean name_local_sections;
6108
6109 if (!elf_map_symbols (abfd))
6110 return FALSE;
6111
6112 /* Dump out the symtabs. */
6113 stt = _bfd_elf_stringtab_init ();
6114 if (stt == NULL)
6115 return FALSE;
6116
6117 bed = get_elf_backend_data (abfd);
6118 symcount = bfd_get_symcount (abfd);
6119 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6120 symtab_hdr->sh_type = SHT_SYMTAB;
6121 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
6122 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
6123 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
6124 symtab_hdr->sh_addralign = 1 << bed->s->log_file_align;
6125
6126 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
6127 symstrtab_hdr->sh_type = SHT_STRTAB;
6128
6129 outbound_syms = bfd_alloc2 (abfd, 1 + symcount, bed->s->sizeof_sym);
6130 if (outbound_syms == NULL)
6131 {
6132 _bfd_stringtab_free (stt);
6133 return FALSE;
6134 }
6135 symtab_hdr->contents = outbound_syms;
6136
6137 outbound_shndx = NULL;
6138 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
6139 if (symtab_shndx_hdr->sh_name != 0)
6140 {
6141 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
6142 outbound_shndx = bfd_zalloc2 (abfd, 1 + symcount,
6143 sizeof (Elf_External_Sym_Shndx));
6144 if (outbound_shndx == NULL)
6145 {
6146 _bfd_stringtab_free (stt);
6147 return FALSE;
6148 }
6149
6150 symtab_shndx_hdr->contents = outbound_shndx;
6151 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
6152 symtab_shndx_hdr->sh_size = amt;
6153 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
6154 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
6155 }
6156
6157 /* Now generate the data (for "contents"). */
6158 {
6159 /* Fill in zeroth symbol and swap it out. */
6160 Elf_Internal_Sym sym;
6161 sym.st_name = 0;
6162 sym.st_value = 0;
6163 sym.st_size = 0;
6164 sym.st_info = 0;
6165 sym.st_other = 0;
6166 sym.st_shndx = SHN_UNDEF;
6167 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6168 outbound_syms += bed->s->sizeof_sym;
6169 if (outbound_shndx != NULL)
6170 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6171 }
6172
6173 name_local_sections
6174 = (bed->elf_backend_name_local_section_symbols
6175 && bed->elf_backend_name_local_section_symbols (abfd));
6176
6177 syms = bfd_get_outsymbols (abfd);
6178 for (idx = 0; idx < symcount; idx++)
6179 {
6180 Elf_Internal_Sym sym;
6181 bfd_vma value = syms[idx]->value;
6182 elf_symbol_type *type_ptr;
6183 flagword flags = syms[idx]->flags;
6184 int type;
6185
6186 if (!name_local_sections
6187 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
6188 {
6189 /* Local section symbols have no name. */
6190 sym.st_name = 0;
6191 }
6192 else
6193 {
6194 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
6195 syms[idx]->name,
6196 TRUE, FALSE);
6197 if (sym.st_name == (unsigned long) -1)
6198 {
6199 _bfd_stringtab_free (stt);
6200 return FALSE;
6201 }
6202 }
6203
6204 type_ptr = elf_symbol_from (abfd, syms[idx]);
6205
6206 if ((flags & BSF_SECTION_SYM) == 0
6207 && bfd_is_com_section (syms[idx]->section))
6208 {
6209 /* ELF common symbols put the alignment into the `value' field,
6210 and the size into the `size' field. This is backwards from
6211 how BFD handles it, so reverse it here. */
6212 sym.st_size = value;
6213 if (type_ptr == NULL
6214 || type_ptr->internal_elf_sym.st_value == 0)
6215 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
6216 else
6217 sym.st_value = type_ptr->internal_elf_sym.st_value;
6218 sym.st_shndx = _bfd_elf_section_from_bfd_section
6219 (abfd, syms[idx]->section);
6220 }
6221 else
6222 {
6223 asection *sec = syms[idx]->section;
6224 int shndx;
6225
6226 if (sec->output_section)
6227 {
6228 value += sec->output_offset;
6229 sec = sec->output_section;
6230 }
6231
6232 /* Don't add in the section vma for relocatable output. */
6233 if (! relocatable_p)
6234 value += sec->vma;
6235 sym.st_value = value;
6236 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
6237
6238 if (bfd_is_abs_section (sec)
6239 && type_ptr != NULL
6240 && type_ptr->internal_elf_sym.st_shndx != 0)
6241 {
6242 /* This symbol is in a real ELF section which we did
6243 not create as a BFD section. Undo the mapping done
6244 by copy_private_symbol_data. */
6245 shndx = type_ptr->internal_elf_sym.st_shndx;
6246 switch (shndx)
6247 {
6248 case MAP_ONESYMTAB:
6249 shndx = elf_onesymtab (abfd);
6250 break;
6251 case MAP_DYNSYMTAB:
6252 shndx = elf_dynsymtab (abfd);
6253 break;
6254 case MAP_STRTAB:
6255 shndx = elf_tdata (abfd)->strtab_section;
6256 break;
6257 case MAP_SHSTRTAB:
6258 shndx = elf_tdata (abfd)->shstrtab_section;
6259 break;
6260 case MAP_SYM_SHNDX:
6261 shndx = elf_tdata (abfd)->symtab_shndx_section;
6262 break;
6263 default:
6264 break;
6265 }
6266 }
6267 else
6268 {
6269 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
6270
6271 if (shndx == -1)
6272 {
6273 asection *sec2;
6274
6275 /* Writing this would be a hell of a lot easier if
6276 we had some decent documentation on bfd, and
6277 knew what to expect of the library, and what to
6278 demand of applications. For example, it
6279 appears that `objcopy' might not set the
6280 section of a symbol to be a section that is
6281 actually in the output file. */
6282 sec2 = bfd_get_section_by_name (abfd, sec->name);
6283 if (sec2 == NULL)
6284 {
6285 _bfd_error_handler (_("\
6286 Unable to find equivalent output section for symbol '%s' from section '%s'"),
6287 syms[idx]->name ? syms[idx]->name : "<Local sym>",
6288 sec->name);
6289 bfd_set_error (bfd_error_invalid_operation);
6290 _bfd_stringtab_free (stt);
6291 return FALSE;
6292 }
6293
6294 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
6295 BFD_ASSERT (shndx != -1);
6296 }
6297 }
6298
6299 sym.st_shndx = shndx;
6300 }
6301
6302 if ((flags & BSF_THREAD_LOCAL) != 0)
6303 type = STT_TLS;
6304 else if ((flags & BSF_FUNCTION) != 0)
6305 type = STT_FUNC;
6306 else if ((flags & BSF_OBJECT) != 0)
6307 type = STT_OBJECT;
6308 else
6309 type = STT_NOTYPE;
6310
6311 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
6312 type = STT_TLS;
6313
6314 /* Processor-specific types. */
6315 if (type_ptr != NULL
6316 && bed->elf_backend_get_symbol_type)
6317 type = ((*bed->elf_backend_get_symbol_type)
6318 (&type_ptr->internal_elf_sym, type));
6319
6320 if (flags & BSF_SECTION_SYM)
6321 {
6322 if (flags & BSF_GLOBAL)
6323 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6324 else
6325 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
6326 }
6327 else if (bfd_is_com_section (syms[idx]->section))
6328 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
6329 else if (bfd_is_und_section (syms[idx]->section))
6330 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
6331 ? STB_WEAK
6332 : STB_GLOBAL),
6333 type);
6334 else if (flags & BSF_FILE)
6335 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
6336 else
6337 {
6338 int bind = STB_LOCAL;
6339
6340 if (flags & BSF_LOCAL)
6341 bind = STB_LOCAL;
6342 else if (flags & BSF_WEAK)
6343 bind = STB_WEAK;
6344 else if (flags & BSF_GLOBAL)
6345 bind = STB_GLOBAL;
6346
6347 sym.st_info = ELF_ST_INFO (bind, type);
6348 }
6349
6350 if (type_ptr != NULL)
6351 sym.st_other = type_ptr->internal_elf_sym.st_other;
6352 else
6353 sym.st_other = 0;
6354
6355 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6356 outbound_syms += bed->s->sizeof_sym;
6357 if (outbound_shndx != NULL)
6358 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6359 }
6360
6361 *sttp = stt;
6362 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
6363 symstrtab_hdr->sh_type = SHT_STRTAB;
6364
6365 symstrtab_hdr->sh_flags = 0;
6366 symstrtab_hdr->sh_addr = 0;
6367 symstrtab_hdr->sh_entsize = 0;
6368 symstrtab_hdr->sh_link = 0;
6369 symstrtab_hdr->sh_info = 0;
6370 symstrtab_hdr->sh_addralign = 1;
6371
6372 return TRUE;
6373 }
6374
6375 /* Return the number of bytes required to hold the symtab vector.
6376
6377 Note that we base it on the count plus 1, since we will null terminate
6378 the vector allocated based on this size. However, the ELF symbol table
6379 always has a dummy entry as symbol #0, so it ends up even. */
6380
6381 long
6382 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
6383 {
6384 long symcount;
6385 long symtab_size;
6386 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
6387
6388 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6389 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6390 if (symcount > 0)
6391 symtab_size -= sizeof (asymbol *);
6392
6393 return symtab_size;
6394 }
6395
6396 long
6397 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
6398 {
6399 long symcount;
6400 long symtab_size;
6401 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
6402
6403 if (elf_dynsymtab (abfd) == 0)
6404 {
6405 bfd_set_error (bfd_error_invalid_operation);
6406 return -1;
6407 }
6408
6409 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6410 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6411 if (symcount > 0)
6412 symtab_size -= sizeof (asymbol *);
6413
6414 return symtab_size;
6415 }
6416
6417 long
6418 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
6419 sec_ptr asect)
6420 {
6421 return (asect->reloc_count + 1) * sizeof (arelent *);
6422 }
6423
6424 /* Canonicalize the relocs. */
6425
6426 long
6427 _bfd_elf_canonicalize_reloc (bfd *abfd,
6428 sec_ptr section,
6429 arelent **relptr,
6430 asymbol **symbols)
6431 {
6432 arelent *tblptr;
6433 unsigned int i;
6434 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6435
6436 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
6437 return -1;
6438
6439 tblptr = section->relocation;
6440 for (i = 0; i < section->reloc_count; i++)
6441 *relptr++ = tblptr++;
6442
6443 *relptr = NULL;
6444
6445 return section->reloc_count;
6446 }
6447
6448 long
6449 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
6450 {
6451 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6452 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
6453
6454 if (symcount >= 0)
6455 bfd_get_symcount (abfd) = symcount;
6456 return symcount;
6457 }
6458
6459 long
6460 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
6461 asymbol **allocation)
6462 {
6463 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6464 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
6465
6466 if (symcount >= 0)
6467 bfd_get_dynamic_symcount (abfd) = symcount;
6468 return symcount;
6469 }
6470
6471 /* Return the size required for the dynamic reloc entries. Any loadable
6472 section that was actually installed in the BFD, and has type SHT_REL
6473 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
6474 dynamic reloc section. */
6475
6476 long
6477 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
6478 {
6479 long ret;
6480 asection *s;
6481
6482 if (elf_dynsymtab (abfd) == 0)
6483 {
6484 bfd_set_error (bfd_error_invalid_operation);
6485 return -1;
6486 }
6487
6488 ret = sizeof (arelent *);
6489 for (s = abfd->sections; s != NULL; s = s->next)
6490 if ((s->flags & SEC_LOAD) != 0
6491 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6492 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6493 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6494 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
6495 * sizeof (arelent *));
6496
6497 return ret;
6498 }
6499
6500 /* Canonicalize the dynamic relocation entries. Note that we return the
6501 dynamic relocations as a single block, although they are actually
6502 associated with particular sections; the interface, which was
6503 designed for SunOS style shared libraries, expects that there is only
6504 one set of dynamic relocs. Any loadable section that was actually
6505 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
6506 dynamic symbol table, is considered to be a dynamic reloc section. */
6507
6508 long
6509 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
6510 arelent **storage,
6511 asymbol **syms)
6512 {
6513 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
6514 asection *s;
6515 long ret;
6516
6517 if (elf_dynsymtab (abfd) == 0)
6518 {
6519 bfd_set_error (bfd_error_invalid_operation);
6520 return -1;
6521 }
6522
6523 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
6524 ret = 0;
6525 for (s = abfd->sections; s != NULL; s = s->next)
6526 {
6527 if ((s->flags & SEC_LOAD) != 0
6528 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6529 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6530 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6531 {
6532 arelent *p;
6533 long count, i;
6534
6535 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
6536 return -1;
6537 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
6538 p = s->relocation;
6539 for (i = 0; i < count; i++)
6540 *storage++ = p++;
6541 ret += count;
6542 }
6543 }
6544
6545 *storage = NULL;
6546
6547 return ret;
6548 }
6549 \f
6550 /* Read in the version information. */
6551
6552 bfd_boolean
6553 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
6554 {
6555 bfd_byte *contents = NULL;
6556 unsigned int freeidx = 0;
6557
6558 if (elf_dynverref (abfd) != 0)
6559 {
6560 Elf_Internal_Shdr *hdr;
6561 Elf_External_Verneed *everneed;
6562 Elf_Internal_Verneed *iverneed;
6563 unsigned int i;
6564 bfd_byte *contents_end;
6565
6566 hdr = &elf_tdata (abfd)->dynverref_hdr;
6567
6568 elf_tdata (abfd)->verref = bfd_zalloc2 (abfd, hdr->sh_info,
6569 sizeof (Elf_Internal_Verneed));
6570 if (elf_tdata (abfd)->verref == NULL)
6571 goto error_return;
6572
6573 elf_tdata (abfd)->cverrefs = hdr->sh_info;
6574
6575 contents = bfd_malloc (hdr->sh_size);
6576 if (contents == NULL)
6577 {
6578 error_return_verref:
6579 elf_tdata (abfd)->verref = NULL;
6580 elf_tdata (abfd)->cverrefs = 0;
6581 goto error_return;
6582 }
6583 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6584 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6585 goto error_return_verref;
6586
6587 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verneed))
6588 goto error_return_verref;
6589
6590 BFD_ASSERT (sizeof (Elf_External_Verneed)
6591 == sizeof (Elf_External_Vernaux));
6592 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
6593 everneed = (Elf_External_Verneed *) contents;
6594 iverneed = elf_tdata (abfd)->verref;
6595 for (i = 0; i < hdr->sh_info; i++, iverneed++)
6596 {
6597 Elf_External_Vernaux *evernaux;
6598 Elf_Internal_Vernaux *ivernaux;
6599 unsigned int j;
6600
6601 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
6602
6603 iverneed->vn_bfd = abfd;
6604
6605 iverneed->vn_filename =
6606 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6607 iverneed->vn_file);
6608 if (iverneed->vn_filename == NULL)
6609 goto error_return_verref;
6610
6611 if (iverneed->vn_cnt == 0)
6612 iverneed->vn_auxptr = NULL;
6613 else
6614 {
6615 iverneed->vn_auxptr = bfd_alloc2 (abfd, iverneed->vn_cnt,
6616 sizeof (Elf_Internal_Vernaux));
6617 if (iverneed->vn_auxptr == NULL)
6618 goto error_return_verref;
6619 }
6620
6621 if (iverneed->vn_aux
6622 > (size_t) (contents_end - (bfd_byte *) everneed))
6623 goto error_return_verref;
6624
6625 evernaux = ((Elf_External_Vernaux *)
6626 ((bfd_byte *) everneed + iverneed->vn_aux));
6627 ivernaux = iverneed->vn_auxptr;
6628 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
6629 {
6630 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
6631
6632 ivernaux->vna_nodename =
6633 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6634 ivernaux->vna_name);
6635 if (ivernaux->vna_nodename == NULL)
6636 goto error_return_verref;
6637
6638 if (j + 1 < iverneed->vn_cnt)
6639 ivernaux->vna_nextptr = ivernaux + 1;
6640 else
6641 ivernaux->vna_nextptr = NULL;
6642
6643 if (ivernaux->vna_next
6644 > (size_t) (contents_end - (bfd_byte *) evernaux))
6645 goto error_return_verref;
6646
6647 evernaux = ((Elf_External_Vernaux *)
6648 ((bfd_byte *) evernaux + ivernaux->vna_next));
6649
6650 if (ivernaux->vna_other > freeidx)
6651 freeidx = ivernaux->vna_other;
6652 }
6653
6654 if (i + 1 < hdr->sh_info)
6655 iverneed->vn_nextref = iverneed + 1;
6656 else
6657 iverneed->vn_nextref = NULL;
6658
6659 if (iverneed->vn_next
6660 > (size_t) (contents_end - (bfd_byte *) everneed))
6661 goto error_return_verref;
6662
6663 everneed = ((Elf_External_Verneed *)
6664 ((bfd_byte *) everneed + iverneed->vn_next));
6665 }
6666
6667 free (contents);
6668 contents = NULL;
6669 }
6670
6671 if (elf_dynverdef (abfd) != 0)
6672 {
6673 Elf_Internal_Shdr *hdr;
6674 Elf_External_Verdef *everdef;
6675 Elf_Internal_Verdef *iverdef;
6676 Elf_Internal_Verdef *iverdefarr;
6677 Elf_Internal_Verdef iverdefmem;
6678 unsigned int i;
6679 unsigned int maxidx;
6680 bfd_byte *contents_end_def, *contents_end_aux;
6681
6682 hdr = &elf_tdata (abfd)->dynverdef_hdr;
6683
6684 contents = bfd_malloc (hdr->sh_size);
6685 if (contents == NULL)
6686 goto error_return;
6687 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6688 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6689 goto error_return;
6690
6691 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verdef))
6692 goto error_return;
6693
6694 BFD_ASSERT (sizeof (Elf_External_Verdef)
6695 >= sizeof (Elf_External_Verdaux));
6696 contents_end_def = contents + hdr->sh_size
6697 - sizeof (Elf_External_Verdef);
6698 contents_end_aux = contents + hdr->sh_size
6699 - sizeof (Elf_External_Verdaux);
6700
6701 /* We know the number of entries in the section but not the maximum
6702 index. Therefore we have to run through all entries and find
6703 the maximum. */
6704 everdef = (Elf_External_Verdef *) contents;
6705 maxidx = 0;
6706 for (i = 0; i < hdr->sh_info; ++i)
6707 {
6708 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6709
6710 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
6711 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
6712
6713 if (iverdefmem.vd_next
6714 > (size_t) (contents_end_def - (bfd_byte *) everdef))
6715 goto error_return;
6716
6717 everdef = ((Elf_External_Verdef *)
6718 ((bfd_byte *) everdef + iverdefmem.vd_next));
6719 }
6720
6721 if (default_imported_symver)
6722 {
6723 if (freeidx > maxidx)
6724 maxidx = ++freeidx;
6725 else
6726 freeidx = ++maxidx;
6727 }
6728 elf_tdata (abfd)->verdef = bfd_zalloc2 (abfd, maxidx,
6729 sizeof (Elf_Internal_Verdef));
6730 if (elf_tdata (abfd)->verdef == NULL)
6731 goto error_return;
6732
6733 elf_tdata (abfd)->cverdefs = maxidx;
6734
6735 everdef = (Elf_External_Verdef *) contents;
6736 iverdefarr = elf_tdata (abfd)->verdef;
6737 for (i = 0; i < hdr->sh_info; i++)
6738 {
6739 Elf_External_Verdaux *everdaux;
6740 Elf_Internal_Verdaux *iverdaux;
6741 unsigned int j;
6742
6743 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6744
6745 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
6746 {
6747 error_return_verdef:
6748 elf_tdata (abfd)->verdef = NULL;
6749 elf_tdata (abfd)->cverdefs = 0;
6750 goto error_return;
6751 }
6752
6753 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
6754 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
6755
6756 iverdef->vd_bfd = abfd;
6757
6758 if (iverdef->vd_cnt == 0)
6759 iverdef->vd_auxptr = NULL;
6760 else
6761 {
6762 iverdef->vd_auxptr = bfd_alloc2 (abfd, iverdef->vd_cnt,
6763 sizeof (Elf_Internal_Verdaux));
6764 if (iverdef->vd_auxptr == NULL)
6765 goto error_return_verdef;
6766 }
6767
6768 if (iverdef->vd_aux
6769 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
6770 goto error_return_verdef;
6771
6772 everdaux = ((Elf_External_Verdaux *)
6773 ((bfd_byte *) everdef + iverdef->vd_aux));
6774 iverdaux = iverdef->vd_auxptr;
6775 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
6776 {
6777 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
6778
6779 iverdaux->vda_nodename =
6780 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6781 iverdaux->vda_name);
6782 if (iverdaux->vda_nodename == NULL)
6783 goto error_return_verdef;
6784
6785 if (j + 1 < iverdef->vd_cnt)
6786 iverdaux->vda_nextptr = iverdaux + 1;
6787 else
6788 iverdaux->vda_nextptr = NULL;
6789
6790 if (iverdaux->vda_next
6791 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
6792 goto error_return_verdef;
6793
6794 everdaux = ((Elf_External_Verdaux *)
6795 ((bfd_byte *) everdaux + iverdaux->vda_next));
6796 }
6797
6798 if (iverdef->vd_cnt)
6799 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
6800
6801 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
6802 iverdef->vd_nextdef = iverdef + 1;
6803 else
6804 iverdef->vd_nextdef = NULL;
6805
6806 everdef = ((Elf_External_Verdef *)
6807 ((bfd_byte *) everdef + iverdef->vd_next));
6808 }
6809
6810 free (contents);
6811 contents = NULL;
6812 }
6813 else if (default_imported_symver)
6814 {
6815 if (freeidx < 3)
6816 freeidx = 3;
6817 else
6818 freeidx++;
6819
6820 elf_tdata (abfd)->verdef = bfd_zalloc2 (abfd, freeidx,
6821 sizeof (Elf_Internal_Verdef));
6822 if (elf_tdata (abfd)->verdef == NULL)
6823 goto error_return;
6824
6825 elf_tdata (abfd)->cverdefs = freeidx;
6826 }
6827
6828 /* Create a default version based on the soname. */
6829 if (default_imported_symver)
6830 {
6831 Elf_Internal_Verdef *iverdef;
6832 Elf_Internal_Verdaux *iverdaux;
6833
6834 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];;
6835
6836 iverdef->vd_version = VER_DEF_CURRENT;
6837 iverdef->vd_flags = 0;
6838 iverdef->vd_ndx = freeidx;
6839 iverdef->vd_cnt = 1;
6840
6841 iverdef->vd_bfd = abfd;
6842
6843 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
6844 if (iverdef->vd_nodename == NULL)
6845 goto error_return_verdef;
6846 iverdef->vd_nextdef = NULL;
6847 iverdef->vd_auxptr = bfd_alloc (abfd, sizeof (Elf_Internal_Verdaux));
6848 if (iverdef->vd_auxptr == NULL)
6849 goto error_return_verdef;
6850
6851 iverdaux = iverdef->vd_auxptr;
6852 iverdaux->vda_nodename = iverdef->vd_nodename;
6853 iverdaux->vda_nextptr = NULL;
6854 }
6855
6856 return TRUE;
6857
6858 error_return:
6859 if (contents != NULL)
6860 free (contents);
6861 return FALSE;
6862 }
6863 \f
6864 asymbol *
6865 _bfd_elf_make_empty_symbol (bfd *abfd)
6866 {
6867 elf_symbol_type *newsym;
6868 bfd_size_type amt = sizeof (elf_symbol_type);
6869
6870 newsym = bfd_zalloc (abfd, amt);
6871 if (!newsym)
6872 return NULL;
6873 else
6874 {
6875 newsym->symbol.the_bfd = abfd;
6876 return &newsym->symbol;
6877 }
6878 }
6879
6880 void
6881 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
6882 asymbol *symbol,
6883 symbol_info *ret)
6884 {
6885 bfd_symbol_info (symbol, ret);
6886 }
6887
6888 /* Return whether a symbol name implies a local symbol. Most targets
6889 use this function for the is_local_label_name entry point, but some
6890 override it. */
6891
6892 bfd_boolean
6893 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
6894 const char *name)
6895 {
6896 /* Normal local symbols start with ``.L''. */
6897 if (name[0] == '.' && name[1] == 'L')
6898 return TRUE;
6899
6900 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
6901 DWARF debugging symbols starting with ``..''. */
6902 if (name[0] == '.' && name[1] == '.')
6903 return TRUE;
6904
6905 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
6906 emitting DWARF debugging output. I suspect this is actually a
6907 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
6908 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
6909 underscore to be emitted on some ELF targets). For ease of use,
6910 we treat such symbols as local. */
6911 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
6912 return TRUE;
6913
6914 return FALSE;
6915 }
6916
6917 alent *
6918 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
6919 asymbol *symbol ATTRIBUTE_UNUSED)
6920 {
6921 abort ();
6922 return NULL;
6923 }
6924
6925 bfd_boolean
6926 _bfd_elf_set_arch_mach (bfd *abfd,
6927 enum bfd_architecture arch,
6928 unsigned long machine)
6929 {
6930 /* If this isn't the right architecture for this backend, and this
6931 isn't the generic backend, fail. */
6932 if (arch != get_elf_backend_data (abfd)->arch
6933 && arch != bfd_arch_unknown
6934 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
6935 return FALSE;
6936
6937 return bfd_default_set_arch_mach (abfd, arch, machine);
6938 }
6939
6940 /* Find the function to a particular section and offset,
6941 for error reporting. */
6942
6943 static bfd_boolean
6944 elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
6945 asection *section,
6946 asymbol **symbols,
6947 bfd_vma offset,
6948 const char **filename_ptr,
6949 const char **functionname_ptr)
6950 {
6951 const char *filename;
6952 asymbol *func, *file;
6953 bfd_vma low_func;
6954 asymbol **p;
6955 /* ??? Given multiple file symbols, it is impossible to reliably
6956 choose the right file name for global symbols. File symbols are
6957 local symbols, and thus all file symbols must sort before any
6958 global symbols. The ELF spec may be interpreted to say that a
6959 file symbol must sort before other local symbols, but currently
6960 ld -r doesn't do this. So, for ld -r output, it is possible to
6961 make a better choice of file name for local symbols by ignoring
6962 file symbols appearing after a given local symbol. */
6963 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
6964
6965 filename = NULL;
6966 func = NULL;
6967 file = NULL;
6968 low_func = 0;
6969 state = nothing_seen;
6970
6971 for (p = symbols; *p != NULL; p++)
6972 {
6973 elf_symbol_type *q;
6974
6975 q = (elf_symbol_type *) *p;
6976
6977 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
6978 {
6979 default:
6980 break;
6981 case STT_FILE:
6982 file = &q->symbol;
6983 if (state == symbol_seen)
6984 state = file_after_symbol_seen;
6985 continue;
6986 case STT_NOTYPE:
6987 case STT_FUNC:
6988 if (bfd_get_section (&q->symbol) == section
6989 && q->symbol.value >= low_func
6990 && q->symbol.value <= offset)
6991 {
6992 func = (asymbol *) q;
6993 low_func = q->symbol.value;
6994 filename = NULL;
6995 if (file != NULL
6996 && (ELF_ST_BIND (q->internal_elf_sym.st_info) == STB_LOCAL
6997 || state != file_after_symbol_seen))
6998 filename = bfd_asymbol_name (file);
6999 }
7000 break;
7001 }
7002 if (state == nothing_seen)
7003 state = symbol_seen;
7004 }
7005
7006 if (func == NULL)
7007 return FALSE;
7008
7009 if (filename_ptr)
7010 *filename_ptr = filename;
7011 if (functionname_ptr)
7012 *functionname_ptr = bfd_asymbol_name (func);
7013
7014 return TRUE;
7015 }
7016
7017 /* Find the nearest line to a particular section and offset,
7018 for error reporting. */
7019
7020 bfd_boolean
7021 _bfd_elf_find_nearest_line (bfd *abfd,
7022 asection *section,
7023 asymbol **symbols,
7024 bfd_vma offset,
7025 const char **filename_ptr,
7026 const char **functionname_ptr,
7027 unsigned int *line_ptr)
7028 {
7029 bfd_boolean found;
7030
7031 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
7032 filename_ptr, functionname_ptr,
7033 line_ptr))
7034 {
7035 if (!*functionname_ptr)
7036 elf_find_function (abfd, section, symbols, offset,
7037 *filename_ptr ? NULL : filename_ptr,
7038 functionname_ptr);
7039
7040 return TRUE;
7041 }
7042
7043 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
7044 filename_ptr, functionname_ptr,
7045 line_ptr, 0,
7046 &elf_tdata (abfd)->dwarf2_find_line_info))
7047 {
7048 if (!*functionname_ptr)
7049 elf_find_function (abfd, section, symbols, offset,
7050 *filename_ptr ? NULL : filename_ptr,
7051 functionname_ptr);
7052
7053 return TRUE;
7054 }
7055
7056 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
7057 &found, filename_ptr,
7058 functionname_ptr, line_ptr,
7059 &elf_tdata (abfd)->line_info))
7060 return FALSE;
7061 if (found && (*functionname_ptr || *line_ptr))
7062 return TRUE;
7063
7064 if (symbols == NULL)
7065 return FALSE;
7066
7067 if (! elf_find_function (abfd, section, symbols, offset,
7068 filename_ptr, functionname_ptr))
7069 return FALSE;
7070
7071 *line_ptr = 0;
7072 return TRUE;
7073 }
7074
7075 /* Find the line for a symbol. */
7076
7077 bfd_boolean
7078 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
7079 const char **filename_ptr, unsigned int *line_ptr)
7080 {
7081 return _bfd_dwarf2_find_line (abfd, symbols, symbol,
7082 filename_ptr, line_ptr, 0,
7083 &elf_tdata (abfd)->dwarf2_find_line_info);
7084 }
7085
7086 /* After a call to bfd_find_nearest_line, successive calls to
7087 bfd_find_inliner_info can be used to get source information about
7088 each level of function inlining that terminated at the address
7089 passed to bfd_find_nearest_line. Currently this is only supported
7090 for DWARF2 with appropriate DWARF3 extensions. */
7091
7092 bfd_boolean
7093 _bfd_elf_find_inliner_info (bfd *abfd,
7094 const char **filename_ptr,
7095 const char **functionname_ptr,
7096 unsigned int *line_ptr)
7097 {
7098 bfd_boolean found;
7099 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
7100 functionname_ptr, line_ptr,
7101 & elf_tdata (abfd)->dwarf2_find_line_info);
7102 return found;
7103 }
7104
7105 int
7106 _bfd_elf_sizeof_headers (bfd *abfd, bfd_boolean reloc)
7107 {
7108 int ret;
7109
7110 ret = get_elf_backend_data (abfd)->s->sizeof_ehdr;
7111 if (! reloc)
7112 ret += get_program_header_size (abfd);
7113 return ret;
7114 }
7115
7116 bfd_boolean
7117 _bfd_elf_set_section_contents (bfd *abfd,
7118 sec_ptr section,
7119 const void *location,
7120 file_ptr offset,
7121 bfd_size_type count)
7122 {
7123 Elf_Internal_Shdr *hdr;
7124 bfd_signed_vma pos;
7125
7126 if (! abfd->output_has_begun
7127 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
7128 return FALSE;
7129
7130 hdr = &elf_section_data (section)->this_hdr;
7131 pos = hdr->sh_offset + offset;
7132 if (bfd_seek (abfd, pos, SEEK_SET) != 0
7133 || bfd_bwrite (location, count, abfd) != count)
7134 return FALSE;
7135
7136 return TRUE;
7137 }
7138
7139 void
7140 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
7141 arelent *cache_ptr ATTRIBUTE_UNUSED,
7142 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
7143 {
7144 abort ();
7145 }
7146
7147 /* Try to convert a non-ELF reloc into an ELF one. */
7148
7149 bfd_boolean
7150 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
7151 {
7152 /* Check whether we really have an ELF howto. */
7153
7154 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
7155 {
7156 bfd_reloc_code_real_type code;
7157 reloc_howto_type *howto;
7158
7159 /* Alien reloc: Try to determine its type to replace it with an
7160 equivalent ELF reloc. */
7161
7162 if (areloc->howto->pc_relative)
7163 {
7164 switch (areloc->howto->bitsize)
7165 {
7166 case 8:
7167 code = BFD_RELOC_8_PCREL;
7168 break;
7169 case 12:
7170 code = BFD_RELOC_12_PCREL;
7171 break;
7172 case 16:
7173 code = BFD_RELOC_16_PCREL;
7174 break;
7175 case 24:
7176 code = BFD_RELOC_24_PCREL;
7177 break;
7178 case 32:
7179 code = BFD_RELOC_32_PCREL;
7180 break;
7181 case 64:
7182 code = BFD_RELOC_64_PCREL;
7183 break;
7184 default:
7185 goto fail;
7186 }
7187
7188 howto = bfd_reloc_type_lookup (abfd, code);
7189
7190 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
7191 {
7192 if (howto->pcrel_offset)
7193 areloc->addend += areloc->address;
7194 else
7195 areloc->addend -= areloc->address; /* addend is unsigned!! */
7196 }
7197 }
7198 else
7199 {
7200 switch (areloc->howto->bitsize)
7201 {
7202 case 8:
7203 code = BFD_RELOC_8;
7204 break;
7205 case 14:
7206 code = BFD_RELOC_14;
7207 break;
7208 case 16:
7209 code = BFD_RELOC_16;
7210 break;
7211 case 26:
7212 code = BFD_RELOC_26;
7213 break;
7214 case 32:
7215 code = BFD_RELOC_32;
7216 break;
7217 case 64:
7218 code = BFD_RELOC_64;
7219 break;
7220 default:
7221 goto fail;
7222 }
7223
7224 howto = bfd_reloc_type_lookup (abfd, code);
7225 }
7226
7227 if (howto)
7228 areloc->howto = howto;
7229 else
7230 goto fail;
7231 }
7232
7233 return TRUE;
7234
7235 fail:
7236 (*_bfd_error_handler)
7237 (_("%B: unsupported relocation type %s"),
7238 abfd, areloc->howto->name);
7239 bfd_set_error (bfd_error_bad_value);
7240 return FALSE;
7241 }
7242
7243 bfd_boolean
7244 _bfd_elf_close_and_cleanup (bfd *abfd)
7245 {
7246 if (bfd_get_format (abfd) == bfd_object)
7247 {
7248 if (elf_tdata (abfd) != NULL && elf_shstrtab (abfd) != NULL)
7249 _bfd_elf_strtab_free (elf_shstrtab (abfd));
7250 _bfd_dwarf2_cleanup_debug_info (abfd);
7251 }
7252
7253 return _bfd_generic_close_and_cleanup (abfd);
7254 }
7255
7256 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
7257 in the relocation's offset. Thus we cannot allow any sort of sanity
7258 range-checking to interfere. There is nothing else to do in processing
7259 this reloc. */
7260
7261 bfd_reloc_status_type
7262 _bfd_elf_rel_vtable_reloc_fn
7263 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
7264 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
7265 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
7266 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
7267 {
7268 return bfd_reloc_ok;
7269 }
7270 \f
7271 /* Elf core file support. Much of this only works on native
7272 toolchains, since we rely on knowing the
7273 machine-dependent procfs structure in order to pick
7274 out details about the corefile. */
7275
7276 #ifdef HAVE_SYS_PROCFS_H
7277 # include <sys/procfs.h>
7278 #endif
7279
7280 /* FIXME: this is kinda wrong, but it's what gdb wants. */
7281
7282 static int
7283 elfcore_make_pid (bfd *abfd)
7284 {
7285 return ((elf_tdata (abfd)->core_lwpid << 16)
7286 + (elf_tdata (abfd)->core_pid));
7287 }
7288
7289 /* If there isn't a section called NAME, make one, using
7290 data from SECT. Note, this function will generate a
7291 reference to NAME, so you shouldn't deallocate or
7292 overwrite it. */
7293
7294 static bfd_boolean
7295 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
7296 {
7297 asection *sect2;
7298
7299 if (bfd_get_section_by_name (abfd, name) != NULL)
7300 return TRUE;
7301
7302 sect2 = bfd_make_section (abfd, name);
7303 if (sect2 == NULL)
7304 return FALSE;
7305
7306 sect2->size = sect->size;
7307 sect2->filepos = sect->filepos;
7308 sect2->flags = sect->flags;
7309 sect2->alignment_power = sect->alignment_power;
7310 return TRUE;
7311 }
7312
7313 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
7314 actually creates up to two pseudosections:
7315 - For the single-threaded case, a section named NAME, unless
7316 such a section already exists.
7317 - For the multi-threaded case, a section named "NAME/PID", where
7318 PID is elfcore_make_pid (abfd).
7319 Both pseudosections have identical contents. */
7320 bfd_boolean
7321 _bfd_elfcore_make_pseudosection (bfd *abfd,
7322 char *name,
7323 size_t size,
7324 ufile_ptr filepos)
7325 {
7326 char buf[100];
7327 char *threaded_name;
7328 size_t len;
7329 asection *sect;
7330
7331 /* Build the section name. */
7332
7333 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
7334 len = strlen (buf) + 1;
7335 threaded_name = bfd_alloc (abfd, len);
7336 if (threaded_name == NULL)
7337 return FALSE;
7338 memcpy (threaded_name, buf, len);
7339
7340 sect = bfd_make_section_anyway (abfd, threaded_name);
7341 if (sect == NULL)
7342 return FALSE;
7343 sect->size = size;
7344 sect->filepos = filepos;
7345 sect->flags = SEC_HAS_CONTENTS;
7346 sect->alignment_power = 2;
7347
7348 return elfcore_maybe_make_sect (abfd, name, sect);
7349 }
7350
7351 /* prstatus_t exists on:
7352 solaris 2.5+
7353 linux 2.[01] + glibc
7354 unixware 4.2
7355 */
7356
7357 #if defined (HAVE_PRSTATUS_T)
7358
7359 static bfd_boolean
7360 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
7361 {
7362 size_t size;
7363 int offset;
7364
7365 if (note->descsz == sizeof (prstatus_t))
7366 {
7367 prstatus_t prstat;
7368
7369 size = sizeof (prstat.pr_reg);
7370 offset = offsetof (prstatus_t, pr_reg);
7371 memcpy (&prstat, note->descdata, sizeof (prstat));
7372
7373 /* Do not overwrite the core signal if it
7374 has already been set by another thread. */
7375 if (elf_tdata (abfd)->core_signal == 0)
7376 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7377 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7378
7379 /* pr_who exists on:
7380 solaris 2.5+
7381 unixware 4.2
7382 pr_who doesn't exist on:
7383 linux 2.[01]
7384 */
7385 #if defined (HAVE_PRSTATUS_T_PR_WHO)
7386 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7387 #endif
7388 }
7389 #if defined (HAVE_PRSTATUS32_T)
7390 else if (note->descsz == sizeof (prstatus32_t))
7391 {
7392 /* 64-bit host, 32-bit corefile */
7393 prstatus32_t prstat;
7394
7395 size = sizeof (prstat.pr_reg);
7396 offset = offsetof (prstatus32_t, pr_reg);
7397 memcpy (&prstat, note->descdata, sizeof (prstat));
7398
7399 /* Do not overwrite the core signal if it
7400 has already been set by another thread. */
7401 if (elf_tdata (abfd)->core_signal == 0)
7402 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7403 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7404
7405 /* pr_who exists on:
7406 solaris 2.5+
7407 unixware 4.2
7408 pr_who doesn't exist on:
7409 linux 2.[01]
7410 */
7411 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
7412 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7413 #endif
7414 }
7415 #endif /* HAVE_PRSTATUS32_T */
7416 else
7417 {
7418 /* Fail - we don't know how to handle any other
7419 note size (ie. data object type). */
7420 return TRUE;
7421 }
7422
7423 /* Make a ".reg/999" section and a ".reg" section. */
7424 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
7425 size, note->descpos + offset);
7426 }
7427 #endif /* defined (HAVE_PRSTATUS_T) */
7428
7429 /* Create a pseudosection containing the exact contents of NOTE. */
7430 static bfd_boolean
7431 elfcore_make_note_pseudosection (bfd *abfd,
7432 char *name,
7433 Elf_Internal_Note *note)
7434 {
7435 return _bfd_elfcore_make_pseudosection (abfd, name,
7436 note->descsz, note->descpos);
7437 }
7438
7439 /* There isn't a consistent prfpregset_t across platforms,
7440 but it doesn't matter, because we don't have to pick this
7441 data structure apart. */
7442
7443 static bfd_boolean
7444 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
7445 {
7446 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7447 }
7448
7449 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
7450 type of 5 (NT_PRXFPREG). Just include the whole note's contents
7451 literally. */
7452
7453 static bfd_boolean
7454 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
7455 {
7456 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
7457 }
7458
7459 #if defined (HAVE_PRPSINFO_T)
7460 typedef prpsinfo_t elfcore_psinfo_t;
7461 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
7462 typedef prpsinfo32_t elfcore_psinfo32_t;
7463 #endif
7464 #endif
7465
7466 #if defined (HAVE_PSINFO_T)
7467 typedef psinfo_t elfcore_psinfo_t;
7468 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
7469 typedef psinfo32_t elfcore_psinfo32_t;
7470 #endif
7471 #endif
7472
7473 /* return a malloc'ed copy of a string at START which is at
7474 most MAX bytes long, possibly without a terminating '\0'.
7475 the copy will always have a terminating '\0'. */
7476
7477 char *
7478 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
7479 {
7480 char *dups;
7481 char *end = memchr (start, '\0', max);
7482 size_t len;
7483
7484 if (end == NULL)
7485 len = max;
7486 else
7487 len = end - start;
7488
7489 dups = bfd_alloc (abfd, len + 1);
7490 if (dups == NULL)
7491 return NULL;
7492
7493 memcpy (dups, start, len);
7494 dups[len] = '\0';
7495
7496 return dups;
7497 }
7498
7499 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7500 static bfd_boolean
7501 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
7502 {
7503 if (note->descsz == sizeof (elfcore_psinfo_t))
7504 {
7505 elfcore_psinfo_t psinfo;
7506
7507 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7508
7509 elf_tdata (abfd)->core_program
7510 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7511 sizeof (psinfo.pr_fname));
7512
7513 elf_tdata (abfd)->core_command
7514 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7515 sizeof (psinfo.pr_psargs));
7516 }
7517 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
7518 else if (note->descsz == sizeof (elfcore_psinfo32_t))
7519 {
7520 /* 64-bit host, 32-bit corefile */
7521 elfcore_psinfo32_t psinfo;
7522
7523 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7524
7525 elf_tdata (abfd)->core_program
7526 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7527 sizeof (psinfo.pr_fname));
7528
7529 elf_tdata (abfd)->core_command
7530 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7531 sizeof (psinfo.pr_psargs));
7532 }
7533 #endif
7534
7535 else
7536 {
7537 /* Fail - we don't know how to handle any other
7538 note size (ie. data object type). */
7539 return TRUE;
7540 }
7541
7542 /* Note that for some reason, a spurious space is tacked
7543 onto the end of the args in some (at least one anyway)
7544 implementations, so strip it off if it exists. */
7545
7546 {
7547 char *command = elf_tdata (abfd)->core_command;
7548 int n = strlen (command);
7549
7550 if (0 < n && command[n - 1] == ' ')
7551 command[n - 1] = '\0';
7552 }
7553
7554 return TRUE;
7555 }
7556 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
7557
7558 #if defined (HAVE_PSTATUS_T)
7559 static bfd_boolean
7560 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
7561 {
7562 if (note->descsz == sizeof (pstatus_t)
7563 #if defined (HAVE_PXSTATUS_T)
7564 || note->descsz == sizeof (pxstatus_t)
7565 #endif
7566 )
7567 {
7568 pstatus_t pstat;
7569
7570 memcpy (&pstat, note->descdata, sizeof (pstat));
7571
7572 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7573 }
7574 #if defined (HAVE_PSTATUS32_T)
7575 else if (note->descsz == sizeof (pstatus32_t))
7576 {
7577 /* 64-bit host, 32-bit corefile */
7578 pstatus32_t pstat;
7579
7580 memcpy (&pstat, note->descdata, sizeof (pstat));
7581
7582 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7583 }
7584 #endif
7585 /* Could grab some more details from the "representative"
7586 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
7587 NT_LWPSTATUS note, presumably. */
7588
7589 return TRUE;
7590 }
7591 #endif /* defined (HAVE_PSTATUS_T) */
7592
7593 #if defined (HAVE_LWPSTATUS_T)
7594 static bfd_boolean
7595 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
7596 {
7597 lwpstatus_t lwpstat;
7598 char buf[100];
7599 char *name;
7600 size_t len;
7601 asection *sect;
7602
7603 if (note->descsz != sizeof (lwpstat)
7604 #if defined (HAVE_LWPXSTATUS_T)
7605 && note->descsz != sizeof (lwpxstatus_t)
7606 #endif
7607 )
7608 return TRUE;
7609
7610 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
7611
7612 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
7613 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
7614
7615 /* Make a ".reg/999" section. */
7616
7617 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
7618 len = strlen (buf) + 1;
7619 name = bfd_alloc (abfd, len);
7620 if (name == NULL)
7621 return FALSE;
7622 memcpy (name, buf, len);
7623
7624 sect = bfd_make_section_anyway (abfd, name);
7625 if (sect == NULL)
7626 return FALSE;
7627
7628 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7629 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
7630 sect->filepos = note->descpos
7631 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
7632 #endif
7633
7634 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7635 sect->size = sizeof (lwpstat.pr_reg);
7636 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
7637 #endif
7638
7639 sect->flags = SEC_HAS_CONTENTS;
7640 sect->alignment_power = 2;
7641
7642 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
7643 return FALSE;
7644
7645 /* Make a ".reg2/999" section */
7646
7647 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
7648 len = strlen (buf) + 1;
7649 name = bfd_alloc (abfd, len);
7650 if (name == NULL)
7651 return FALSE;
7652 memcpy (name, buf, len);
7653
7654 sect = bfd_make_section_anyway (abfd, name);
7655 if (sect == NULL)
7656 return FALSE;
7657
7658 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7659 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
7660 sect->filepos = note->descpos
7661 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
7662 #endif
7663
7664 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
7665 sect->size = sizeof (lwpstat.pr_fpreg);
7666 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
7667 #endif
7668
7669 sect->flags = SEC_HAS_CONTENTS;
7670 sect->alignment_power = 2;
7671
7672 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
7673 }
7674 #endif /* defined (HAVE_LWPSTATUS_T) */
7675
7676 #if defined (HAVE_WIN32_PSTATUS_T)
7677 static bfd_boolean
7678 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
7679 {
7680 char buf[30];
7681 char *name;
7682 size_t len;
7683 asection *sect;
7684 win32_pstatus_t pstatus;
7685
7686 if (note->descsz < sizeof (pstatus))
7687 return TRUE;
7688
7689 memcpy (&pstatus, note->descdata, sizeof (pstatus));
7690
7691 switch (pstatus.data_type)
7692 {
7693 case NOTE_INFO_PROCESS:
7694 /* FIXME: need to add ->core_command. */
7695 elf_tdata (abfd)->core_signal = pstatus.data.process_info.signal;
7696 elf_tdata (abfd)->core_pid = pstatus.data.process_info.pid;
7697 break;
7698
7699 case NOTE_INFO_THREAD:
7700 /* Make a ".reg/999" section. */
7701 sprintf (buf, ".reg/%ld", (long) pstatus.data.thread_info.tid);
7702
7703 len = strlen (buf) + 1;
7704 name = bfd_alloc (abfd, len);
7705 if (name == NULL)
7706 return FALSE;
7707
7708 memcpy (name, buf, len);
7709
7710 sect = bfd_make_section_anyway (abfd, name);
7711 if (sect == NULL)
7712 return FALSE;
7713
7714 sect->size = sizeof (pstatus.data.thread_info.thread_context);
7715 sect->filepos = (note->descpos
7716 + offsetof (struct win32_pstatus,
7717 data.thread_info.thread_context));
7718 sect->flags = SEC_HAS_CONTENTS;
7719 sect->alignment_power = 2;
7720
7721 if (pstatus.data.thread_info.is_active_thread)
7722 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
7723 return FALSE;
7724 break;
7725
7726 case NOTE_INFO_MODULE:
7727 /* Make a ".module/xxxxxxxx" section. */
7728 sprintf (buf, ".module/%08lx",
7729 (long) pstatus.data.module_info.base_address);
7730
7731 len = strlen (buf) + 1;
7732 name = bfd_alloc (abfd, len);
7733 if (name == NULL)
7734 return FALSE;
7735
7736 memcpy (name, buf, len);
7737
7738 sect = bfd_make_section_anyway (abfd, name);
7739
7740 if (sect == NULL)
7741 return FALSE;
7742
7743 sect->size = note->descsz;
7744 sect->filepos = note->descpos;
7745 sect->flags = SEC_HAS_CONTENTS;
7746 sect->alignment_power = 2;
7747 break;
7748
7749 default:
7750 return TRUE;
7751 }
7752
7753 return TRUE;
7754 }
7755 #endif /* HAVE_WIN32_PSTATUS_T */
7756
7757 static bfd_boolean
7758 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
7759 {
7760 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7761
7762 switch (note->type)
7763 {
7764 default:
7765 return TRUE;
7766
7767 case NT_PRSTATUS:
7768 if (bed->elf_backend_grok_prstatus)
7769 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
7770 return TRUE;
7771 #if defined (HAVE_PRSTATUS_T)
7772 return elfcore_grok_prstatus (abfd, note);
7773 #else
7774 return TRUE;
7775 #endif
7776
7777 #if defined (HAVE_PSTATUS_T)
7778 case NT_PSTATUS:
7779 return elfcore_grok_pstatus (abfd, note);
7780 #endif
7781
7782 #if defined (HAVE_LWPSTATUS_T)
7783 case NT_LWPSTATUS:
7784 return elfcore_grok_lwpstatus (abfd, note);
7785 #endif
7786
7787 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
7788 return elfcore_grok_prfpreg (abfd, note);
7789
7790 #if defined (HAVE_WIN32_PSTATUS_T)
7791 case NT_WIN32PSTATUS:
7792 return elfcore_grok_win32pstatus (abfd, note);
7793 #endif
7794
7795 case NT_PRXFPREG: /* Linux SSE extension */
7796 if (note->namesz == 6
7797 && strcmp (note->namedata, "LINUX") == 0)
7798 return elfcore_grok_prxfpreg (abfd, note);
7799 else
7800 return TRUE;
7801
7802 case NT_PRPSINFO:
7803 case NT_PSINFO:
7804 if (bed->elf_backend_grok_psinfo)
7805 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
7806 return TRUE;
7807 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7808 return elfcore_grok_psinfo (abfd, note);
7809 #else
7810 return TRUE;
7811 #endif
7812
7813 case NT_AUXV:
7814 {
7815 asection *sect = bfd_make_section_anyway (abfd, ".auxv");
7816
7817 if (sect == NULL)
7818 return FALSE;
7819 sect->size = note->descsz;
7820 sect->filepos = note->descpos;
7821 sect->flags = SEC_HAS_CONTENTS;
7822 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
7823
7824 return TRUE;
7825 }
7826 }
7827 }
7828
7829 static bfd_boolean
7830 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
7831 {
7832 char *cp;
7833
7834 cp = strchr (note->namedata, '@');
7835 if (cp != NULL)
7836 {
7837 *lwpidp = atoi(cp + 1);
7838 return TRUE;
7839 }
7840 return FALSE;
7841 }
7842
7843 static bfd_boolean
7844 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
7845 {
7846
7847 /* Signal number at offset 0x08. */
7848 elf_tdata (abfd)->core_signal
7849 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
7850
7851 /* Process ID at offset 0x50. */
7852 elf_tdata (abfd)->core_pid
7853 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
7854
7855 /* Command name at 0x7c (max 32 bytes, including nul). */
7856 elf_tdata (abfd)->core_command
7857 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
7858
7859 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
7860 note);
7861 }
7862
7863 static bfd_boolean
7864 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
7865 {
7866 int lwp;
7867
7868 if (elfcore_netbsd_get_lwpid (note, &lwp))
7869 elf_tdata (abfd)->core_lwpid = lwp;
7870
7871 if (note->type == NT_NETBSDCORE_PROCINFO)
7872 {
7873 /* NetBSD-specific core "procinfo". Note that we expect to
7874 find this note before any of the others, which is fine,
7875 since the kernel writes this note out first when it
7876 creates a core file. */
7877
7878 return elfcore_grok_netbsd_procinfo (abfd, note);
7879 }
7880
7881 /* As of Jan 2002 there are no other machine-independent notes
7882 defined for NetBSD core files. If the note type is less
7883 than the start of the machine-dependent note types, we don't
7884 understand it. */
7885
7886 if (note->type < NT_NETBSDCORE_FIRSTMACH)
7887 return TRUE;
7888
7889
7890 switch (bfd_get_arch (abfd))
7891 {
7892 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
7893 PT_GETFPREGS == mach+2. */
7894
7895 case bfd_arch_alpha:
7896 case bfd_arch_sparc:
7897 switch (note->type)
7898 {
7899 case NT_NETBSDCORE_FIRSTMACH+0:
7900 return elfcore_make_note_pseudosection (abfd, ".reg", note);
7901
7902 case NT_NETBSDCORE_FIRSTMACH+2:
7903 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7904
7905 default:
7906 return TRUE;
7907 }
7908
7909 /* On all other arch's, PT_GETREGS == mach+1 and
7910 PT_GETFPREGS == mach+3. */
7911
7912 default:
7913 switch (note->type)
7914 {
7915 case NT_NETBSDCORE_FIRSTMACH+1:
7916 return elfcore_make_note_pseudosection (abfd, ".reg", note);
7917
7918 case NT_NETBSDCORE_FIRSTMACH+3:
7919 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7920
7921 default:
7922 return TRUE;
7923 }
7924 }
7925 /* NOTREACHED */
7926 }
7927
7928 static bfd_boolean
7929 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, pid_t *tid)
7930 {
7931 void *ddata = note->descdata;
7932 char buf[100];
7933 char *name;
7934 asection *sect;
7935 short sig;
7936 unsigned flags;
7937
7938 /* nto_procfs_status 'pid' field is at offset 0. */
7939 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
7940
7941 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
7942 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
7943
7944 /* nto_procfs_status 'flags' field is at offset 8. */
7945 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
7946
7947 /* nto_procfs_status 'what' field is at offset 14. */
7948 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
7949 {
7950 elf_tdata (abfd)->core_signal = sig;
7951 elf_tdata (abfd)->core_lwpid = *tid;
7952 }
7953
7954 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
7955 do not come from signals so we make sure we set the current
7956 thread just in case. */
7957 if (flags & 0x00000080)
7958 elf_tdata (abfd)->core_lwpid = *tid;
7959
7960 /* Make a ".qnx_core_status/%d" section. */
7961 sprintf (buf, ".qnx_core_status/%ld", (long) *tid);
7962
7963 name = bfd_alloc (abfd, strlen (buf) + 1);
7964 if (name == NULL)
7965 return FALSE;
7966 strcpy (name, buf);
7967
7968 sect = bfd_make_section_anyway (abfd, name);
7969 if (sect == NULL)
7970 return FALSE;
7971
7972 sect->size = note->descsz;
7973 sect->filepos = note->descpos;
7974 sect->flags = SEC_HAS_CONTENTS;
7975 sect->alignment_power = 2;
7976
7977 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
7978 }
7979
7980 static bfd_boolean
7981 elfcore_grok_nto_regs (bfd *abfd,
7982 Elf_Internal_Note *note,
7983 pid_t tid,
7984 char *base)
7985 {
7986 char buf[100];
7987 char *name;
7988 asection *sect;
7989
7990 /* Make a "(base)/%d" section. */
7991 sprintf (buf, "%s/%ld", base, (long) tid);
7992
7993 name = bfd_alloc (abfd, strlen (buf) + 1);
7994 if (name == NULL)
7995 return FALSE;
7996 strcpy (name, buf);
7997
7998 sect = bfd_make_section_anyway (abfd, name);
7999 if (sect == NULL)
8000 return FALSE;
8001
8002 sect->size = note->descsz;
8003 sect->filepos = note->descpos;
8004 sect->flags = SEC_HAS_CONTENTS;
8005 sect->alignment_power = 2;
8006
8007 /* This is the current thread. */
8008 if (elf_tdata (abfd)->core_lwpid == tid)
8009 return elfcore_maybe_make_sect (abfd, base, sect);
8010
8011 return TRUE;
8012 }
8013
8014 #define BFD_QNT_CORE_INFO 7
8015 #define BFD_QNT_CORE_STATUS 8
8016 #define BFD_QNT_CORE_GREG 9
8017 #define BFD_QNT_CORE_FPREG 10
8018
8019 static bfd_boolean
8020 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
8021 {
8022 /* Every GREG section has a STATUS section before it. Store the
8023 tid from the previous call to pass down to the next gregs
8024 function. */
8025 static pid_t tid = 1;
8026
8027 switch (note->type)
8028 {
8029 case BFD_QNT_CORE_INFO:
8030 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
8031 case BFD_QNT_CORE_STATUS:
8032 return elfcore_grok_nto_status (abfd, note, &tid);
8033 case BFD_QNT_CORE_GREG:
8034 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
8035 case BFD_QNT_CORE_FPREG:
8036 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
8037 default:
8038 return TRUE;
8039 }
8040 }
8041
8042 /* Function: elfcore_write_note
8043
8044 Inputs:
8045 buffer to hold note
8046 name of note
8047 type of note
8048 data for note
8049 size of data for note
8050
8051 Return:
8052 End of buffer containing note. */
8053
8054 char *
8055 elfcore_write_note (bfd *abfd,
8056 char *buf,
8057 int *bufsiz,
8058 const char *name,
8059 int type,
8060 const void *input,
8061 int size)
8062 {
8063 Elf_External_Note *xnp;
8064 size_t namesz;
8065 size_t pad;
8066 size_t newspace;
8067 char *p, *dest;
8068
8069 namesz = 0;
8070 pad = 0;
8071 if (name != NULL)
8072 {
8073 const struct elf_backend_data *bed;
8074
8075 namesz = strlen (name) + 1;
8076 bed = get_elf_backend_data (abfd);
8077 pad = -namesz & ((1 << bed->s->log_file_align) - 1);
8078 }
8079
8080 newspace = 12 + namesz + pad + size;
8081
8082 p = realloc (buf, *bufsiz + newspace);
8083 dest = p + *bufsiz;
8084 *bufsiz += newspace;
8085 xnp = (Elf_External_Note *) dest;
8086 H_PUT_32 (abfd, namesz, xnp->namesz);
8087 H_PUT_32 (abfd, size, xnp->descsz);
8088 H_PUT_32 (abfd, type, xnp->type);
8089 dest = xnp->name;
8090 if (name != NULL)
8091 {
8092 memcpy (dest, name, namesz);
8093 dest += namesz;
8094 while (pad != 0)
8095 {
8096 *dest++ = '\0';
8097 --pad;
8098 }
8099 }
8100 memcpy (dest, input, size);
8101 return p;
8102 }
8103
8104 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8105 char *
8106 elfcore_write_prpsinfo (bfd *abfd,
8107 char *buf,
8108 int *bufsiz,
8109 const char *fname,
8110 const char *psargs)
8111 {
8112 int note_type;
8113 char *note_name = "CORE";
8114
8115 #if defined (HAVE_PSINFO_T)
8116 psinfo_t data;
8117 note_type = NT_PSINFO;
8118 #else
8119 prpsinfo_t data;
8120 note_type = NT_PRPSINFO;
8121 #endif
8122
8123 memset (&data, 0, sizeof (data));
8124 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
8125 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
8126 return elfcore_write_note (abfd, buf, bufsiz,
8127 note_name, note_type, &data, sizeof (data));
8128 }
8129 #endif /* PSINFO_T or PRPSINFO_T */
8130
8131 #if defined (HAVE_PRSTATUS_T)
8132 char *
8133 elfcore_write_prstatus (bfd *abfd,
8134 char *buf,
8135 int *bufsiz,
8136 long pid,
8137 int cursig,
8138 const void *gregs)
8139 {
8140 prstatus_t prstat;
8141 char *note_name = "CORE";
8142
8143 memset (&prstat, 0, sizeof (prstat));
8144 prstat.pr_pid = pid;
8145 prstat.pr_cursig = cursig;
8146 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
8147 return elfcore_write_note (abfd, buf, bufsiz,
8148 note_name, NT_PRSTATUS, &prstat, sizeof (prstat));
8149 }
8150 #endif /* HAVE_PRSTATUS_T */
8151
8152 #if defined (HAVE_LWPSTATUS_T)
8153 char *
8154 elfcore_write_lwpstatus (bfd *abfd,
8155 char *buf,
8156 int *bufsiz,
8157 long pid,
8158 int cursig,
8159 const void *gregs)
8160 {
8161 lwpstatus_t lwpstat;
8162 char *note_name = "CORE";
8163
8164 memset (&lwpstat, 0, sizeof (lwpstat));
8165 lwpstat.pr_lwpid = pid >> 16;
8166 lwpstat.pr_cursig = cursig;
8167 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8168 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
8169 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8170 #if !defined(gregs)
8171 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
8172 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
8173 #else
8174 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
8175 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
8176 #endif
8177 #endif
8178 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8179 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
8180 }
8181 #endif /* HAVE_LWPSTATUS_T */
8182
8183 #if defined (HAVE_PSTATUS_T)
8184 char *
8185 elfcore_write_pstatus (bfd *abfd,
8186 char *buf,
8187 int *bufsiz,
8188 long pid,
8189 int cursig ATTRIBUTE_UNUSED,
8190 const void *gregs ATTRIBUTE_UNUSED)
8191 {
8192 pstatus_t pstat;
8193 char *note_name = "CORE";
8194
8195 memset (&pstat, 0, sizeof (pstat));
8196 pstat.pr_pid = pid & 0xffff;
8197 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
8198 NT_PSTATUS, &pstat, sizeof (pstat));
8199 return buf;
8200 }
8201 #endif /* HAVE_PSTATUS_T */
8202
8203 char *
8204 elfcore_write_prfpreg (bfd *abfd,
8205 char *buf,
8206 int *bufsiz,
8207 const void *fpregs,
8208 int size)
8209 {
8210 char *note_name = "CORE";
8211 return elfcore_write_note (abfd, buf, bufsiz,
8212 note_name, NT_FPREGSET, fpregs, size);
8213 }
8214
8215 char *
8216 elfcore_write_prxfpreg (bfd *abfd,
8217 char *buf,
8218 int *bufsiz,
8219 const void *xfpregs,
8220 int size)
8221 {
8222 char *note_name = "LINUX";
8223 return elfcore_write_note (abfd, buf, bufsiz,
8224 note_name, NT_PRXFPREG, xfpregs, size);
8225 }
8226
8227 static bfd_boolean
8228 elfcore_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
8229 {
8230 char *buf;
8231 char *p;
8232
8233 if (size <= 0)
8234 return TRUE;
8235
8236 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
8237 return FALSE;
8238
8239 buf = bfd_malloc (size);
8240 if (buf == NULL)
8241 return FALSE;
8242
8243 if (bfd_bread (buf, size, abfd) != size)
8244 {
8245 error:
8246 free (buf);
8247 return FALSE;
8248 }
8249
8250 p = buf;
8251 while (p < buf + size)
8252 {
8253 /* FIXME: bad alignment assumption. */
8254 Elf_External_Note *xnp = (Elf_External_Note *) p;
8255 Elf_Internal_Note in;
8256
8257 in.type = H_GET_32 (abfd, xnp->type);
8258
8259 in.namesz = H_GET_32 (abfd, xnp->namesz);
8260 in.namedata = xnp->name;
8261
8262 in.descsz = H_GET_32 (abfd, xnp->descsz);
8263 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
8264 in.descpos = offset + (in.descdata - buf);
8265
8266 if (strncmp (in.namedata, "NetBSD-CORE", 11) == 0)
8267 {
8268 if (! elfcore_grok_netbsd_note (abfd, &in))
8269 goto error;
8270 }
8271 else if (strncmp (in.namedata, "QNX", 3) == 0)
8272 {
8273 if (! elfcore_grok_nto_note (abfd, &in))
8274 goto error;
8275 }
8276 else
8277 {
8278 if (! elfcore_grok_note (abfd, &in))
8279 goto error;
8280 }
8281
8282 p = in.descdata + BFD_ALIGN (in.descsz, 4);
8283 }
8284
8285 free (buf);
8286 return TRUE;
8287 }
8288 \f
8289 /* Providing external access to the ELF program header table. */
8290
8291 /* Return an upper bound on the number of bytes required to store a
8292 copy of ABFD's program header table entries. Return -1 if an error
8293 occurs; bfd_get_error will return an appropriate code. */
8294
8295 long
8296 bfd_get_elf_phdr_upper_bound (bfd *abfd)
8297 {
8298 if (abfd->xvec->flavour != bfd_target_elf_flavour)
8299 {
8300 bfd_set_error (bfd_error_wrong_format);
8301 return -1;
8302 }
8303
8304 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
8305 }
8306
8307 /* Copy ABFD's program header table entries to *PHDRS. The entries
8308 will be stored as an array of Elf_Internal_Phdr structures, as
8309 defined in include/elf/internal.h. To find out how large the
8310 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
8311
8312 Return the number of program header table entries read, or -1 if an
8313 error occurs; bfd_get_error will return an appropriate code. */
8314
8315 int
8316 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
8317 {
8318 int num_phdrs;
8319
8320 if (abfd->xvec->flavour != bfd_target_elf_flavour)
8321 {
8322 bfd_set_error (bfd_error_wrong_format);
8323 return -1;
8324 }
8325
8326 num_phdrs = elf_elfheader (abfd)->e_phnum;
8327 memcpy (phdrs, elf_tdata (abfd)->phdr,
8328 num_phdrs * sizeof (Elf_Internal_Phdr));
8329
8330 return num_phdrs;
8331 }
8332
8333 void
8334 _bfd_elf_sprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, char *buf, bfd_vma value)
8335 {
8336 #ifdef BFD64
8337 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
8338
8339 i_ehdrp = elf_elfheader (abfd);
8340 if (i_ehdrp == NULL)
8341 sprintf_vma (buf, value);
8342 else
8343 {
8344 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
8345 {
8346 #if BFD_HOST_64BIT_LONG
8347 sprintf (buf, "%016lx", value);
8348 #else
8349 sprintf (buf, "%08lx%08lx", _bfd_int64_high (value),
8350 _bfd_int64_low (value));
8351 #endif
8352 }
8353 else
8354 sprintf (buf, "%08lx", (unsigned long) (value & 0xffffffff));
8355 }
8356 #else
8357 sprintf_vma (buf, value);
8358 #endif
8359 }
8360
8361 void
8362 _bfd_elf_fprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, void *stream, bfd_vma value)
8363 {
8364 #ifdef BFD64
8365 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
8366
8367 i_ehdrp = elf_elfheader (abfd);
8368 if (i_ehdrp == NULL)
8369 fprintf_vma ((FILE *) stream, value);
8370 else
8371 {
8372 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
8373 {
8374 #if BFD_HOST_64BIT_LONG
8375 fprintf ((FILE *) stream, "%016lx", value);
8376 #else
8377 fprintf ((FILE *) stream, "%08lx%08lx",
8378 _bfd_int64_high (value), _bfd_int64_low (value));
8379 #endif
8380 }
8381 else
8382 fprintf ((FILE *) stream, "%08lx",
8383 (unsigned long) (value & 0xffffffff));
8384 }
8385 #else
8386 fprintf_vma ((FILE *) stream, value);
8387 #endif
8388 }
8389
8390 enum elf_reloc_type_class
8391 _bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
8392 {
8393 return reloc_class_normal;
8394 }
8395
8396 /* For RELA architectures, return the relocation value for a
8397 relocation against a local symbol. */
8398
8399 bfd_vma
8400 _bfd_elf_rela_local_sym (bfd *abfd,
8401 Elf_Internal_Sym *sym,
8402 asection **psec,
8403 Elf_Internal_Rela *rel)
8404 {
8405 asection *sec = *psec;
8406 bfd_vma relocation;
8407
8408 relocation = (sec->output_section->vma
8409 + sec->output_offset
8410 + sym->st_value);
8411 if ((sec->flags & SEC_MERGE)
8412 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
8413 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
8414 {
8415 rel->r_addend =
8416 _bfd_merged_section_offset (abfd, psec,
8417 elf_section_data (sec)->sec_info,
8418 sym->st_value + rel->r_addend);
8419 if (sec != *psec)
8420 {
8421 /* If we have changed the section, and our original section is
8422 marked with SEC_EXCLUDE, it means that the original
8423 SEC_MERGE section has been completely subsumed in some
8424 other SEC_MERGE section. In this case, we need to leave
8425 some info around for --emit-relocs. */
8426 if ((sec->flags & SEC_EXCLUDE) != 0)
8427 sec->kept_section = *psec;
8428 sec = *psec;
8429 }
8430 rel->r_addend -= relocation;
8431 rel->r_addend += sec->output_section->vma + sec->output_offset;
8432 }
8433 return relocation;
8434 }
8435
8436 bfd_vma
8437 _bfd_elf_rel_local_sym (bfd *abfd,
8438 Elf_Internal_Sym *sym,
8439 asection **psec,
8440 bfd_vma addend)
8441 {
8442 asection *sec = *psec;
8443
8444 if (sec->sec_info_type != ELF_INFO_TYPE_MERGE)
8445 return sym->st_value + addend;
8446
8447 return _bfd_merged_section_offset (abfd, psec,
8448 elf_section_data (sec)->sec_info,
8449 sym->st_value + addend);
8450 }
8451
8452 bfd_vma
8453 _bfd_elf_section_offset (bfd *abfd,
8454 struct bfd_link_info *info,
8455 asection *sec,
8456 bfd_vma offset)
8457 {
8458 switch (sec->sec_info_type)
8459 {
8460 case ELF_INFO_TYPE_STABS:
8461 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
8462 offset);
8463 case ELF_INFO_TYPE_EH_FRAME:
8464 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
8465 default:
8466 return offset;
8467 }
8468 }
8469 \f
8470 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
8471 reconstruct an ELF file by reading the segments out of remote memory
8472 based on the ELF file header at EHDR_VMA and the ELF program headers it
8473 points to. If not null, *LOADBASEP is filled in with the difference
8474 between the VMAs from which the segments were read, and the VMAs the
8475 file headers (and hence BFD's idea of each section's VMA) put them at.
8476
8477 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
8478 remote memory at target address VMA into the local buffer at MYADDR; it
8479 should return zero on success or an `errno' code on failure. TEMPL must
8480 be a BFD for an ELF target with the word size and byte order found in
8481 the remote memory. */
8482
8483 bfd *
8484 bfd_elf_bfd_from_remote_memory
8485 (bfd *templ,
8486 bfd_vma ehdr_vma,
8487 bfd_vma *loadbasep,
8488 int (*target_read_memory) (bfd_vma, bfd_byte *, int))
8489 {
8490 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
8491 (templ, ehdr_vma, loadbasep, target_read_memory);
8492 }
8493 \f
8494 long
8495 _bfd_elf_get_synthetic_symtab (bfd *abfd,
8496 long symcount ATTRIBUTE_UNUSED,
8497 asymbol **syms ATTRIBUTE_UNUSED,
8498 long dynsymcount,
8499 asymbol **dynsyms,
8500 asymbol **ret)
8501 {
8502 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8503 asection *relplt;
8504 asymbol *s;
8505 const char *relplt_name;
8506 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
8507 arelent *p;
8508 long count, i, n;
8509 size_t size;
8510 Elf_Internal_Shdr *hdr;
8511 char *names;
8512 asection *plt;
8513
8514 *ret = NULL;
8515
8516 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
8517 return 0;
8518
8519 if (dynsymcount <= 0)
8520 return 0;
8521
8522 if (!bed->plt_sym_val)
8523 return 0;
8524
8525 relplt_name = bed->relplt_name;
8526 if (relplt_name == NULL)
8527 relplt_name = bed->default_use_rela_p ? ".rela.plt" : ".rel.plt";
8528 relplt = bfd_get_section_by_name (abfd, relplt_name);
8529 if (relplt == NULL)
8530 return 0;
8531
8532 hdr = &elf_section_data (relplt)->this_hdr;
8533 if (hdr->sh_link != elf_dynsymtab (abfd)
8534 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
8535 return 0;
8536
8537 plt = bfd_get_section_by_name (abfd, ".plt");
8538 if (plt == NULL)
8539 return 0;
8540
8541 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
8542 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
8543 return -1;
8544
8545 count = relplt->size / hdr->sh_entsize;
8546 size = count * sizeof (asymbol);
8547 p = relplt->relocation;
8548 for (i = 0; i < count; i++, s++, p++)
8549 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
8550
8551 s = *ret = bfd_malloc (size);
8552 if (s == NULL)
8553 return -1;
8554
8555 names = (char *) (s + count);
8556 p = relplt->relocation;
8557 n = 0;
8558 for (i = 0; i < count; i++, s++, p++)
8559 {
8560 size_t len;
8561 bfd_vma addr;
8562
8563 addr = bed->plt_sym_val (i, plt, p);
8564 if (addr == (bfd_vma) -1)
8565 continue;
8566
8567 *s = **p->sym_ptr_ptr;
8568 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
8569 we are defining a symbol, ensure one of them is set. */
8570 if ((s->flags & BSF_LOCAL) == 0)
8571 s->flags |= BSF_GLOBAL;
8572 s->section = plt;
8573 s->value = addr - plt->vma;
8574 s->name = names;
8575 len = strlen ((*p->sym_ptr_ptr)->name);
8576 memcpy (names, (*p->sym_ptr_ptr)->name, len);
8577 names += len;
8578 memcpy (names, "@plt", sizeof ("@plt"));
8579 names += sizeof ("@plt");
8580 ++n;
8581 }
8582
8583 return n;
8584 }
8585
8586 /* Sort symbol by binding and section. We want to put definitions
8587 sorted by section at the beginning. */
8588
8589 static int
8590 elf_sort_elf_symbol (const void *arg1, const void *arg2)
8591 {
8592 const Elf_Internal_Sym *s1;
8593 const Elf_Internal_Sym *s2;
8594 int shndx;
8595
8596 /* Make sure that undefined symbols are at the end. */
8597 s1 = (const Elf_Internal_Sym *) arg1;
8598 if (s1->st_shndx == SHN_UNDEF)
8599 return 1;
8600 s2 = (const Elf_Internal_Sym *) arg2;
8601 if (s2->st_shndx == SHN_UNDEF)
8602 return -1;
8603
8604 /* Sorted by section index. */
8605 shndx = s1->st_shndx - s2->st_shndx;
8606 if (shndx != 0)
8607 return shndx;
8608
8609 /* Sorted by binding. */
8610 return ELF_ST_BIND (s1->st_info) - ELF_ST_BIND (s2->st_info);
8611 }
8612
8613 struct elf_symbol
8614 {
8615 Elf_Internal_Sym *sym;
8616 const char *name;
8617 };
8618
8619 static int
8620 elf_sym_name_compare (const void *arg1, const void *arg2)
8621 {
8622 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
8623 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
8624 return strcmp (s1->name, s2->name);
8625 }
8626
8627 /* Check if 2 sections define the same set of local and global
8628 symbols. */
8629
8630 bfd_boolean
8631 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2)
8632 {
8633 bfd *bfd1, *bfd2;
8634 const struct elf_backend_data *bed1, *bed2;
8635 Elf_Internal_Shdr *hdr1, *hdr2;
8636 bfd_size_type symcount1, symcount2;
8637 Elf_Internal_Sym *isymbuf1, *isymbuf2;
8638 Elf_Internal_Sym *isymstart1 = NULL, *isymstart2 = NULL, *isym;
8639 Elf_Internal_Sym *isymend;
8640 struct elf_symbol *symp, *symtable1 = NULL, *symtable2 = NULL;
8641 bfd_size_type count1, count2, i;
8642 int shndx1, shndx2;
8643 bfd_boolean result;
8644
8645 bfd1 = sec1->owner;
8646 bfd2 = sec2->owner;
8647
8648 /* If both are .gnu.linkonce sections, they have to have the same
8649 section name. */
8650 if (strncmp (sec1->name, ".gnu.linkonce",
8651 sizeof ".gnu.linkonce" - 1) == 0
8652 && strncmp (sec2->name, ".gnu.linkonce",
8653 sizeof ".gnu.linkonce" - 1) == 0)
8654 return strcmp (sec1->name + sizeof ".gnu.linkonce",
8655 sec2->name + sizeof ".gnu.linkonce") == 0;
8656
8657 /* Both sections have to be in ELF. */
8658 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
8659 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
8660 return FALSE;
8661
8662 if (elf_section_type (sec1) != elf_section_type (sec2))
8663 return FALSE;
8664
8665 if ((elf_section_flags (sec1) & SHF_GROUP) != 0
8666 && (elf_section_flags (sec2) & SHF_GROUP) != 0)
8667 {
8668 /* If both are members of section groups, they have to have the
8669 same group name. */
8670 if (strcmp (elf_group_name (sec1), elf_group_name (sec2)) != 0)
8671 return FALSE;
8672 }
8673
8674 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
8675 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
8676 if (shndx1 == -1 || shndx2 == -1)
8677 return FALSE;
8678
8679 bed1 = get_elf_backend_data (bfd1);
8680 bed2 = get_elf_backend_data (bfd2);
8681 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
8682 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
8683 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
8684 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
8685
8686 if (symcount1 == 0 || symcount2 == 0)
8687 return FALSE;
8688
8689 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
8690 NULL, NULL, NULL);
8691 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
8692 NULL, NULL, NULL);
8693
8694 result = FALSE;
8695 if (isymbuf1 == NULL || isymbuf2 == NULL)
8696 goto done;
8697
8698 /* Sort symbols by binding and section. Global definitions are at
8699 the beginning. */
8700 qsort (isymbuf1, symcount1, sizeof (Elf_Internal_Sym),
8701 elf_sort_elf_symbol);
8702 qsort (isymbuf2, symcount2, sizeof (Elf_Internal_Sym),
8703 elf_sort_elf_symbol);
8704
8705 /* Count definitions in the section. */
8706 count1 = 0;
8707 for (isym = isymbuf1, isymend = isym + symcount1;
8708 isym < isymend; isym++)
8709 {
8710 if (isym->st_shndx == (unsigned int) shndx1)
8711 {
8712 if (count1 == 0)
8713 isymstart1 = isym;
8714 count1++;
8715 }
8716
8717 if (count1 && isym->st_shndx != (unsigned int) shndx1)
8718 break;
8719 }
8720
8721 count2 = 0;
8722 for (isym = isymbuf2, isymend = isym + symcount2;
8723 isym < isymend; isym++)
8724 {
8725 if (isym->st_shndx == (unsigned int) shndx2)
8726 {
8727 if (count2 == 0)
8728 isymstart2 = isym;
8729 count2++;
8730 }
8731
8732 if (count2 && isym->st_shndx != (unsigned int) shndx2)
8733 break;
8734 }
8735
8736 if (count1 == 0 || count2 == 0 || count1 != count2)
8737 goto done;
8738
8739 symtable1 = bfd_malloc (count1 * sizeof (struct elf_symbol));
8740 symtable2 = bfd_malloc (count1 * sizeof (struct elf_symbol));
8741
8742 if (symtable1 == NULL || symtable2 == NULL)
8743 goto done;
8744
8745 symp = symtable1;
8746 for (isym = isymstart1, isymend = isym + count1;
8747 isym < isymend; isym++)
8748 {
8749 symp->sym = isym;
8750 symp->name = bfd_elf_string_from_elf_section (bfd1,
8751 hdr1->sh_link,
8752 isym->st_name);
8753 symp++;
8754 }
8755
8756 symp = symtable2;
8757 for (isym = isymstart2, isymend = isym + count1;
8758 isym < isymend; isym++)
8759 {
8760 symp->sym = isym;
8761 symp->name = bfd_elf_string_from_elf_section (bfd2,
8762 hdr2->sh_link,
8763 isym->st_name);
8764 symp++;
8765 }
8766
8767 /* Sort symbol by name. */
8768 qsort (symtable1, count1, sizeof (struct elf_symbol),
8769 elf_sym_name_compare);
8770 qsort (symtable2, count1, sizeof (struct elf_symbol),
8771 elf_sym_name_compare);
8772
8773 for (i = 0; i < count1; i++)
8774 /* Two symbols must have the same binding, type and name. */
8775 if (symtable1 [i].sym->st_info != symtable2 [i].sym->st_info
8776 || symtable1 [i].sym->st_other != symtable2 [i].sym->st_other
8777 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
8778 goto done;
8779
8780 result = TRUE;
8781
8782 done:
8783 if (symtable1)
8784 free (symtable1);
8785 if (symtable2)
8786 free (symtable2);
8787 if (isymbuf1)
8788 free (isymbuf1);
8789 if (isymbuf2)
8790 free (isymbuf2);
8791
8792 return result;
8793 }
8794
8795 /* It is only used by x86-64 so far. */
8796 asection _bfd_elf_large_com_section
8797 = BFD_FAKE_SECTION (_bfd_elf_large_com_section,
8798 SEC_IS_COMMON, NULL, "LARGE_COMMON", 0);
8799
8800 /* Return TRUE if 2 section types are compatible. */
8801
8802 bfd_boolean
8803 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
8804 bfd *bbfd, const asection *bsec)
8805 {
8806 if (asec == NULL
8807 || bsec == NULL
8808 || abfd->xvec->flavour != bfd_target_elf_flavour
8809 || bbfd->xvec->flavour != bfd_target_elf_flavour)
8810 return TRUE;
8811
8812 return elf_section_type (asec) == elf_section_type (bsec);
8813 }