* elfxx-mips.c (_bfd_mips_elf_section_processing): Warn and
[binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
21
22 /* SECTION
23
24 ELF backends
25
26 BFD support for ELF formats is being worked on.
27 Currently, the best supported back ends are for sparc and i386
28 (running svr4 or Solaris 2).
29
30 Documentation of the internals of the support code still needs
31 to be written. The code is changing quickly enough that we
32 haven't bothered yet. */
33
34 /* For sparc64-cross-sparc32. */
35 #define _SYSCALL32
36 #include "bfd.h"
37 #include "sysdep.h"
38 #include "bfdlink.h"
39 #include "libbfd.h"
40 #define ARCH_SIZE 0
41 #include "elf-bfd.h"
42 #include "libiberty.h"
43
44 static int elf_sort_sections (const void *, const void *);
45 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
46 static bfd_boolean prep_headers (bfd *);
47 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
48 static bfd_boolean elfcore_read_notes (bfd *, file_ptr, bfd_size_type) ;
49
50 /* Swap version information in and out. The version information is
51 currently size independent. If that ever changes, this code will
52 need to move into elfcode.h. */
53
54 /* Swap in a Verdef structure. */
55
56 void
57 _bfd_elf_swap_verdef_in (bfd *abfd,
58 const Elf_External_Verdef *src,
59 Elf_Internal_Verdef *dst)
60 {
61 dst->vd_version = H_GET_16 (abfd, src->vd_version);
62 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
63 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
64 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
65 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
66 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
67 dst->vd_next = H_GET_32 (abfd, src->vd_next);
68 }
69
70 /* Swap out a Verdef structure. */
71
72 void
73 _bfd_elf_swap_verdef_out (bfd *abfd,
74 const Elf_Internal_Verdef *src,
75 Elf_External_Verdef *dst)
76 {
77 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
78 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
79 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
80 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
81 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
82 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
83 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
84 }
85
86 /* Swap in a Verdaux structure. */
87
88 void
89 _bfd_elf_swap_verdaux_in (bfd *abfd,
90 const Elf_External_Verdaux *src,
91 Elf_Internal_Verdaux *dst)
92 {
93 dst->vda_name = H_GET_32 (abfd, src->vda_name);
94 dst->vda_next = H_GET_32 (abfd, src->vda_next);
95 }
96
97 /* Swap out a Verdaux structure. */
98
99 void
100 _bfd_elf_swap_verdaux_out (bfd *abfd,
101 const Elf_Internal_Verdaux *src,
102 Elf_External_Verdaux *dst)
103 {
104 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
105 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
106 }
107
108 /* Swap in a Verneed structure. */
109
110 void
111 _bfd_elf_swap_verneed_in (bfd *abfd,
112 const Elf_External_Verneed *src,
113 Elf_Internal_Verneed *dst)
114 {
115 dst->vn_version = H_GET_16 (abfd, src->vn_version);
116 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
117 dst->vn_file = H_GET_32 (abfd, src->vn_file);
118 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
119 dst->vn_next = H_GET_32 (abfd, src->vn_next);
120 }
121
122 /* Swap out a Verneed structure. */
123
124 void
125 _bfd_elf_swap_verneed_out (bfd *abfd,
126 const Elf_Internal_Verneed *src,
127 Elf_External_Verneed *dst)
128 {
129 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
130 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
131 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
132 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
133 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
134 }
135
136 /* Swap in a Vernaux structure. */
137
138 void
139 _bfd_elf_swap_vernaux_in (bfd *abfd,
140 const Elf_External_Vernaux *src,
141 Elf_Internal_Vernaux *dst)
142 {
143 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
144 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
145 dst->vna_other = H_GET_16 (abfd, src->vna_other);
146 dst->vna_name = H_GET_32 (abfd, src->vna_name);
147 dst->vna_next = H_GET_32 (abfd, src->vna_next);
148 }
149
150 /* Swap out a Vernaux structure. */
151
152 void
153 _bfd_elf_swap_vernaux_out (bfd *abfd,
154 const Elf_Internal_Vernaux *src,
155 Elf_External_Vernaux *dst)
156 {
157 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
158 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
159 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
160 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
161 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
162 }
163
164 /* Swap in a Versym structure. */
165
166 void
167 _bfd_elf_swap_versym_in (bfd *abfd,
168 const Elf_External_Versym *src,
169 Elf_Internal_Versym *dst)
170 {
171 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
172 }
173
174 /* Swap out a Versym structure. */
175
176 void
177 _bfd_elf_swap_versym_out (bfd *abfd,
178 const Elf_Internal_Versym *src,
179 Elf_External_Versym *dst)
180 {
181 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
182 }
183
184 /* Standard ELF hash function. Do not change this function; you will
185 cause invalid hash tables to be generated. */
186
187 unsigned long
188 bfd_elf_hash (const char *namearg)
189 {
190 const unsigned char *name = (const unsigned char *) namearg;
191 unsigned long h = 0;
192 unsigned long g;
193 int ch;
194
195 while ((ch = *name++) != '\0')
196 {
197 h = (h << 4) + ch;
198 if ((g = (h & 0xf0000000)) != 0)
199 {
200 h ^= g >> 24;
201 /* The ELF ABI says `h &= ~g', but this is equivalent in
202 this case and on some machines one insn instead of two. */
203 h ^= g;
204 }
205 }
206 return h & 0xffffffff;
207 }
208
209 /* Read a specified number of bytes at a specified offset in an ELF
210 file, into a newly allocated buffer, and return a pointer to the
211 buffer. */
212
213 static bfd_byte *
214 elf_read (bfd *abfd, file_ptr offset, bfd_size_type size)
215 {
216 bfd_byte *buf;
217
218 if ((buf = bfd_alloc (abfd, size)) == NULL)
219 return NULL;
220 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
221 return NULL;
222 if (bfd_bread (buf, size, abfd) != size)
223 {
224 if (bfd_get_error () != bfd_error_system_call)
225 bfd_set_error (bfd_error_file_truncated);
226 return NULL;
227 }
228 return buf;
229 }
230
231 bfd_boolean
232 bfd_elf_mkobject (bfd *abfd)
233 {
234 /* This just does initialization. */
235 /* coff_mkobject zalloc's space for tdata.coff_obj_data ... */
236 elf_tdata (abfd) = bfd_zalloc (abfd, sizeof (struct elf_obj_tdata));
237 if (elf_tdata (abfd) == 0)
238 return FALSE;
239 /* Since everything is done at close time, do we need any
240 initialization? */
241
242 return TRUE;
243 }
244
245 bfd_boolean
246 bfd_elf_mkcorefile (bfd *abfd)
247 {
248 /* I think this can be done just like an object file. */
249 return bfd_elf_mkobject (abfd);
250 }
251
252 char *
253 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
254 {
255 Elf_Internal_Shdr **i_shdrp;
256 bfd_byte *shstrtab = NULL;
257 file_ptr offset;
258 bfd_size_type shstrtabsize;
259
260 i_shdrp = elf_elfsections (abfd);
261 if (i_shdrp == 0 || i_shdrp[shindex] == 0)
262 return NULL;
263
264 shstrtab = i_shdrp[shindex]->contents;
265 if (shstrtab == NULL)
266 {
267 /* No cached one, attempt to read, and cache what we read. */
268 offset = i_shdrp[shindex]->sh_offset;
269 shstrtabsize = i_shdrp[shindex]->sh_size;
270 shstrtab = elf_read (abfd, offset, shstrtabsize);
271 i_shdrp[shindex]->contents = shstrtab;
272 }
273 return (char *) shstrtab;
274 }
275
276 char *
277 bfd_elf_string_from_elf_section (bfd *abfd,
278 unsigned int shindex,
279 unsigned int strindex)
280 {
281 Elf_Internal_Shdr *hdr;
282
283 if (strindex == 0)
284 return "";
285
286 hdr = elf_elfsections (abfd)[shindex];
287
288 if (hdr->contents == NULL
289 && bfd_elf_get_str_section (abfd, shindex) == NULL)
290 return NULL;
291
292 if (strindex >= hdr->sh_size)
293 {
294 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
295 (*_bfd_error_handler)
296 (_("%B: invalid string offset %u >= %lu for section `%s'"),
297 abfd, strindex, (unsigned long) hdr->sh_size,
298 (shindex == shstrndx && strindex == hdr->sh_name
299 ? ".shstrtab"
300 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
301 return "";
302 }
303
304 return ((char *) hdr->contents) + strindex;
305 }
306
307 /* Read and convert symbols to internal format.
308 SYMCOUNT specifies the number of symbols to read, starting from
309 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
310 are non-NULL, they are used to store the internal symbols, external
311 symbols, and symbol section index extensions, respectively. */
312
313 Elf_Internal_Sym *
314 bfd_elf_get_elf_syms (bfd *ibfd,
315 Elf_Internal_Shdr *symtab_hdr,
316 size_t symcount,
317 size_t symoffset,
318 Elf_Internal_Sym *intsym_buf,
319 void *extsym_buf,
320 Elf_External_Sym_Shndx *extshndx_buf)
321 {
322 Elf_Internal_Shdr *shndx_hdr;
323 void *alloc_ext;
324 const bfd_byte *esym;
325 Elf_External_Sym_Shndx *alloc_extshndx;
326 Elf_External_Sym_Shndx *shndx;
327 Elf_Internal_Sym *isym;
328 Elf_Internal_Sym *isymend;
329 const struct elf_backend_data *bed;
330 size_t extsym_size;
331 bfd_size_type amt;
332 file_ptr pos;
333
334 if (symcount == 0)
335 return intsym_buf;
336
337 /* Normal syms might have section extension entries. */
338 shndx_hdr = NULL;
339 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
340 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
341
342 /* Read the symbols. */
343 alloc_ext = NULL;
344 alloc_extshndx = NULL;
345 bed = get_elf_backend_data (ibfd);
346 extsym_size = bed->s->sizeof_sym;
347 amt = symcount * extsym_size;
348 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
349 if (extsym_buf == NULL)
350 {
351 alloc_ext = bfd_malloc (amt);
352 extsym_buf = alloc_ext;
353 }
354 if (extsym_buf == NULL
355 || bfd_seek (ibfd, pos, SEEK_SET) != 0
356 || bfd_bread (extsym_buf, amt, ibfd) != amt)
357 {
358 intsym_buf = NULL;
359 goto out;
360 }
361
362 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
363 extshndx_buf = NULL;
364 else
365 {
366 amt = symcount * sizeof (Elf_External_Sym_Shndx);
367 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
368 if (extshndx_buf == NULL)
369 {
370 alloc_extshndx = bfd_malloc (amt);
371 extshndx_buf = alloc_extshndx;
372 }
373 if (extshndx_buf == NULL
374 || bfd_seek (ibfd, pos, SEEK_SET) != 0
375 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
376 {
377 intsym_buf = NULL;
378 goto out;
379 }
380 }
381
382 if (intsym_buf == NULL)
383 {
384 bfd_size_type amt = symcount * sizeof (Elf_Internal_Sym);
385 intsym_buf = bfd_malloc (amt);
386 if (intsym_buf == NULL)
387 goto out;
388 }
389
390 /* Convert the symbols to internal form. */
391 isymend = intsym_buf + symcount;
392 for (esym = extsym_buf, isym = intsym_buf, shndx = extshndx_buf;
393 isym < isymend;
394 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
395 (*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym);
396
397 out:
398 if (alloc_ext != NULL)
399 free (alloc_ext);
400 if (alloc_extshndx != NULL)
401 free (alloc_extshndx);
402
403 return intsym_buf;
404 }
405
406 /* Look up a symbol name. */
407 const char *
408 bfd_elf_sym_name (bfd *abfd,
409 Elf_Internal_Shdr *symtab_hdr,
410 Elf_Internal_Sym *isym,
411 asection *sym_sec)
412 {
413 const char *name;
414 unsigned int iname = isym->st_name;
415 unsigned int shindex = symtab_hdr->sh_link;
416
417 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
418 /* Check for a bogus st_shndx to avoid crashing. */
419 && isym->st_shndx < elf_numsections (abfd)
420 && !(isym->st_shndx >= SHN_LORESERVE && isym->st_shndx <= SHN_HIRESERVE))
421 {
422 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
423 shindex = elf_elfheader (abfd)->e_shstrndx;
424 }
425
426 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
427 if (name == NULL)
428 name = "(null)";
429 else if (sym_sec && *name == '\0')
430 name = bfd_section_name (abfd, sym_sec);
431
432 return name;
433 }
434
435 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
436 sections. The first element is the flags, the rest are section
437 pointers. */
438
439 typedef union elf_internal_group {
440 Elf_Internal_Shdr *shdr;
441 unsigned int flags;
442 } Elf_Internal_Group;
443
444 /* Return the name of the group signature symbol. Why isn't the
445 signature just a string? */
446
447 static const char *
448 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
449 {
450 Elf_Internal_Shdr *hdr;
451 unsigned char esym[sizeof (Elf64_External_Sym)];
452 Elf_External_Sym_Shndx eshndx;
453 Elf_Internal_Sym isym;
454
455 /* First we need to ensure the symbol table is available. Make sure
456 that it is a symbol table section. */
457 hdr = elf_elfsections (abfd) [ghdr->sh_link];
458 if (hdr->sh_type != SHT_SYMTAB
459 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
460 return NULL;
461
462 /* Go read the symbol. */
463 hdr = &elf_tdata (abfd)->symtab_hdr;
464 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
465 &isym, esym, &eshndx) == NULL)
466 return NULL;
467
468 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
469 }
470
471 /* Set next_in_group list pointer, and group name for NEWSECT. */
472
473 static bfd_boolean
474 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
475 {
476 unsigned int num_group = elf_tdata (abfd)->num_group;
477
478 /* If num_group is zero, read in all SHT_GROUP sections. The count
479 is set to -1 if there are no SHT_GROUP sections. */
480 if (num_group == 0)
481 {
482 unsigned int i, shnum;
483
484 /* First count the number of groups. If we have a SHT_GROUP
485 section with just a flag word (ie. sh_size is 4), ignore it. */
486 shnum = elf_numsections (abfd);
487 num_group = 0;
488 for (i = 0; i < shnum; i++)
489 {
490 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
491 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
492 num_group += 1;
493 }
494
495 if (num_group == 0)
496 {
497 num_group = (unsigned) -1;
498 elf_tdata (abfd)->num_group = num_group;
499 }
500 else
501 {
502 /* We keep a list of elf section headers for group sections,
503 so we can find them quickly. */
504 bfd_size_type amt;
505
506 elf_tdata (abfd)->num_group = num_group;
507 amt = num_group * sizeof (Elf_Internal_Shdr *);
508 elf_tdata (abfd)->group_sect_ptr = bfd_alloc (abfd, amt);
509 if (elf_tdata (abfd)->group_sect_ptr == NULL)
510 return FALSE;
511
512 num_group = 0;
513 for (i = 0; i < shnum; i++)
514 {
515 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
516 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
517 {
518 unsigned char *src;
519 Elf_Internal_Group *dest;
520
521 /* Add to list of sections. */
522 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
523 num_group += 1;
524
525 /* Read the raw contents. */
526 BFD_ASSERT (sizeof (*dest) >= 4);
527 amt = shdr->sh_size * sizeof (*dest) / 4;
528 shdr->contents = bfd_alloc (abfd, amt);
529 if (shdr->contents == NULL
530 || bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
531 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
532 != shdr->sh_size))
533 return FALSE;
534
535 /* Translate raw contents, a flag word followed by an
536 array of elf section indices all in target byte order,
537 to the flag word followed by an array of elf section
538 pointers. */
539 src = shdr->contents + shdr->sh_size;
540 dest = (Elf_Internal_Group *) (shdr->contents + amt);
541 while (1)
542 {
543 unsigned int idx;
544
545 src -= 4;
546 --dest;
547 idx = H_GET_32 (abfd, src);
548 if (src == shdr->contents)
549 {
550 dest->flags = idx;
551 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
552 shdr->bfd_section->flags
553 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
554 break;
555 }
556 if (idx >= shnum)
557 {
558 ((*_bfd_error_handler)
559 (_("%B: invalid SHT_GROUP entry"), abfd));
560 idx = 0;
561 }
562 dest->shdr = elf_elfsections (abfd)[idx];
563 }
564 }
565 }
566 }
567 }
568
569 if (num_group != (unsigned) -1)
570 {
571 unsigned int i;
572
573 for (i = 0; i < num_group; i++)
574 {
575 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
576 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
577 unsigned int n_elt = shdr->sh_size / 4;
578
579 /* Look through this group's sections to see if current
580 section is a member. */
581 while (--n_elt != 0)
582 if ((++idx)->shdr == hdr)
583 {
584 asection *s = NULL;
585
586 /* We are a member of this group. Go looking through
587 other members to see if any others are linked via
588 next_in_group. */
589 idx = (Elf_Internal_Group *) shdr->contents;
590 n_elt = shdr->sh_size / 4;
591 while (--n_elt != 0)
592 if ((s = (++idx)->shdr->bfd_section) != NULL
593 && elf_next_in_group (s) != NULL)
594 break;
595 if (n_elt != 0)
596 {
597 /* Snarf the group name from other member, and
598 insert current section in circular list. */
599 elf_group_name (newsect) = elf_group_name (s);
600 elf_next_in_group (newsect) = elf_next_in_group (s);
601 elf_next_in_group (s) = newsect;
602 }
603 else
604 {
605 const char *gname;
606
607 gname = group_signature (abfd, shdr);
608 if (gname == NULL)
609 return FALSE;
610 elf_group_name (newsect) = gname;
611
612 /* Start a circular list with one element. */
613 elf_next_in_group (newsect) = newsect;
614 }
615
616 /* If the group section has been created, point to the
617 new member. */
618 if (shdr->bfd_section != NULL)
619 elf_next_in_group (shdr->bfd_section) = newsect;
620
621 i = num_group - 1;
622 break;
623 }
624 }
625 }
626
627 if (elf_group_name (newsect) == NULL)
628 {
629 (*_bfd_error_handler) (_("%B: no group info for section %A"),
630 abfd, newsect);
631 }
632 return TRUE;
633 }
634
635 bfd_boolean
636 _bfd_elf_setup_group_pointers (bfd *abfd)
637 {
638 unsigned int i;
639 unsigned int num_group = elf_tdata (abfd)->num_group;
640 bfd_boolean result = TRUE;
641
642 if (num_group == (unsigned) -1)
643 return result;
644
645 for (i = 0; i < num_group; i++)
646 {
647 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
648 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
649 unsigned int n_elt = shdr->sh_size / 4;
650
651 while (--n_elt != 0)
652 if ((++idx)->shdr->bfd_section)
653 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
654 else if (idx->shdr->sh_type == SHT_RELA
655 || idx->shdr->sh_type == SHT_REL)
656 /* We won't include relocation sections in section groups in
657 output object files. We adjust the group section size here
658 so that relocatable link will work correctly when
659 relocation sections are in section group in input object
660 files. */
661 shdr->bfd_section->size -= 4;
662 else
663 {
664 /* There are some unknown sections in the group. */
665 (*_bfd_error_handler)
666 (_("%B: unknown [%d] section `%s' in group [%s]"),
667 abfd,
668 (unsigned int) idx->shdr->sh_type,
669 bfd_elf_string_from_elf_section (abfd,
670 (elf_elfheader (abfd)
671 ->e_shstrndx),
672 idx->shdr->sh_name),
673 shdr->bfd_section->name);
674 result = FALSE;
675 }
676 }
677 return result;
678 }
679
680 bfd_boolean
681 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
682 {
683 return elf_next_in_group (sec) != NULL;
684 }
685
686 /* Make a BFD section from an ELF section. We store a pointer to the
687 BFD section in the bfd_section field of the header. */
688
689 bfd_boolean
690 _bfd_elf_make_section_from_shdr (bfd *abfd,
691 Elf_Internal_Shdr *hdr,
692 const char *name,
693 int shindex)
694 {
695 asection *newsect;
696 flagword flags;
697 const struct elf_backend_data *bed;
698
699 if (hdr->bfd_section != NULL)
700 {
701 BFD_ASSERT (strcmp (name,
702 bfd_get_section_name (abfd, hdr->bfd_section)) == 0);
703 return TRUE;
704 }
705
706 newsect = bfd_make_section_anyway (abfd, name);
707 if (newsect == NULL)
708 return FALSE;
709
710 hdr->bfd_section = newsect;
711 elf_section_data (newsect)->this_hdr = *hdr;
712 elf_section_data (newsect)->this_idx = shindex;
713
714 /* Always use the real type/flags. */
715 elf_section_type (newsect) = hdr->sh_type;
716 elf_section_flags (newsect) = hdr->sh_flags;
717
718 newsect->filepos = hdr->sh_offset;
719
720 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
721 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
722 || ! bfd_set_section_alignment (abfd, newsect,
723 bfd_log2 ((bfd_vma) hdr->sh_addralign)))
724 return FALSE;
725
726 flags = SEC_NO_FLAGS;
727 if (hdr->sh_type != SHT_NOBITS)
728 flags |= SEC_HAS_CONTENTS;
729 if (hdr->sh_type == SHT_GROUP)
730 flags |= SEC_GROUP | SEC_EXCLUDE;
731 if ((hdr->sh_flags & SHF_ALLOC) != 0)
732 {
733 flags |= SEC_ALLOC;
734 if (hdr->sh_type != SHT_NOBITS)
735 flags |= SEC_LOAD;
736 }
737 if ((hdr->sh_flags & SHF_WRITE) == 0)
738 flags |= SEC_READONLY;
739 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
740 flags |= SEC_CODE;
741 else if ((flags & SEC_LOAD) != 0)
742 flags |= SEC_DATA;
743 if ((hdr->sh_flags & SHF_MERGE) != 0)
744 {
745 flags |= SEC_MERGE;
746 newsect->entsize = hdr->sh_entsize;
747 if ((hdr->sh_flags & SHF_STRINGS) != 0)
748 flags |= SEC_STRINGS;
749 }
750 if (hdr->sh_flags & SHF_GROUP)
751 if (!setup_group (abfd, hdr, newsect))
752 return FALSE;
753 if ((hdr->sh_flags & SHF_TLS) != 0)
754 flags |= SEC_THREAD_LOCAL;
755
756 if ((flags & SEC_ALLOC) == 0)
757 {
758 /* The debugging sections appear to be recognized only by name,
759 not any sort of flag. Their SEC_ALLOC bits are cleared. */
760 static const struct
761 {
762 const char *name;
763 int len;
764 } debug_sections [] =
765 {
766 { "debug", 5 }, /* 'd' */
767 { NULL, 0 }, /* 'e' */
768 { NULL, 0 }, /* 'f' */
769 { "gnu.linkonce.wi.", 17 }, /* 'g' */
770 { NULL, 0 }, /* 'h' */
771 { NULL, 0 }, /* 'i' */
772 { NULL, 0 }, /* 'j' */
773 { NULL, 0 }, /* 'k' */
774 { "line", 4 }, /* 'l' */
775 { NULL, 0 }, /* 'm' */
776 { NULL, 0 }, /* 'n' */
777 { NULL, 0 }, /* 'o' */
778 { NULL, 0 }, /* 'p' */
779 { NULL, 0 }, /* 'q' */
780 { NULL, 0 }, /* 'r' */
781 { "stab", 4 } /* 's' */
782 };
783
784 if (name [0] == '.')
785 {
786 int i = name [1] - 'd';
787 if (i >= 0
788 && i < (int) ARRAY_SIZE (debug_sections)
789 && debug_sections [i].name != NULL
790 && strncmp (&name [1], debug_sections [i].name,
791 debug_sections [i].len) == 0)
792 flags |= SEC_DEBUGGING;
793 }
794 }
795
796 /* As a GNU extension, if the name begins with .gnu.linkonce, we
797 only link a single copy of the section. This is used to support
798 g++. g++ will emit each template expansion in its own section.
799 The symbols will be defined as weak, so that multiple definitions
800 are permitted. The GNU linker extension is to actually discard
801 all but one of the sections. */
802 if (strncmp (name, ".gnu.linkonce", sizeof ".gnu.linkonce" - 1) == 0
803 && elf_next_in_group (newsect) == NULL)
804 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
805
806 bed = get_elf_backend_data (abfd);
807 if (bed->elf_backend_section_flags)
808 if (! bed->elf_backend_section_flags (&flags, hdr))
809 return FALSE;
810
811 if (! bfd_set_section_flags (abfd, newsect, flags))
812 return FALSE;
813
814 if ((flags & SEC_ALLOC) != 0)
815 {
816 Elf_Internal_Phdr *phdr;
817 unsigned int i;
818
819 /* Look through the phdrs to see if we need to adjust the lma.
820 If all the p_paddr fields are zero, we ignore them, since
821 some ELF linkers produce such output. */
822 phdr = elf_tdata (abfd)->phdr;
823 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
824 {
825 if (phdr->p_paddr != 0)
826 break;
827 }
828 if (i < elf_elfheader (abfd)->e_phnum)
829 {
830 phdr = elf_tdata (abfd)->phdr;
831 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
832 {
833 /* This section is part of this segment if its file
834 offset plus size lies within the segment's memory
835 span and, if the section is loaded, the extent of the
836 loaded data lies within the extent of the segment.
837
838 Note - we used to check the p_paddr field as well, and
839 refuse to set the LMA if it was 0. This is wrong
840 though, as a perfectly valid initialised segment can
841 have a p_paddr of zero. Some architectures, eg ARM,
842 place special significance on the address 0 and
843 executables need to be able to have a segment which
844 covers this address. */
845 if (phdr->p_type == PT_LOAD
846 && (bfd_vma) hdr->sh_offset >= phdr->p_offset
847 && (hdr->sh_offset + hdr->sh_size
848 <= phdr->p_offset + phdr->p_memsz)
849 && ((flags & SEC_LOAD) == 0
850 || (hdr->sh_offset + hdr->sh_size
851 <= phdr->p_offset + phdr->p_filesz)))
852 {
853 if ((flags & SEC_LOAD) == 0)
854 newsect->lma = (phdr->p_paddr
855 + hdr->sh_addr - phdr->p_vaddr);
856 else
857 /* We used to use the same adjustment for SEC_LOAD
858 sections, but that doesn't work if the segment
859 is packed with code from multiple VMAs.
860 Instead we calculate the section LMA based on
861 the segment LMA. It is assumed that the
862 segment will contain sections with contiguous
863 LMAs, even if the VMAs are not. */
864 newsect->lma = (phdr->p_paddr
865 + hdr->sh_offset - phdr->p_offset);
866
867 /* With contiguous segments, we can't tell from file
868 offsets whether a section with zero size should
869 be placed at the end of one segment or the
870 beginning of the next. Decide based on vaddr. */
871 if (hdr->sh_addr >= phdr->p_vaddr
872 && (hdr->sh_addr + hdr->sh_size
873 <= phdr->p_vaddr + phdr->p_memsz))
874 break;
875 }
876 }
877 }
878 }
879
880 return TRUE;
881 }
882
883 /*
884 INTERNAL_FUNCTION
885 bfd_elf_find_section
886
887 SYNOPSIS
888 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
889
890 DESCRIPTION
891 Helper functions for GDB to locate the string tables.
892 Since BFD hides string tables from callers, GDB needs to use an
893 internal hook to find them. Sun's .stabstr, in particular,
894 isn't even pointed to by the .stab section, so ordinary
895 mechanisms wouldn't work to find it, even if we had some.
896 */
897
898 struct elf_internal_shdr *
899 bfd_elf_find_section (bfd *abfd, char *name)
900 {
901 Elf_Internal_Shdr **i_shdrp;
902 char *shstrtab;
903 unsigned int max;
904 unsigned int i;
905
906 i_shdrp = elf_elfsections (abfd);
907 if (i_shdrp != NULL)
908 {
909 shstrtab = bfd_elf_get_str_section (abfd,
910 elf_elfheader (abfd)->e_shstrndx);
911 if (shstrtab != NULL)
912 {
913 max = elf_numsections (abfd);
914 for (i = 1; i < max; i++)
915 if (!strcmp (&shstrtab[i_shdrp[i]->sh_name], name))
916 return i_shdrp[i];
917 }
918 }
919 return 0;
920 }
921
922 const char *const bfd_elf_section_type_names[] = {
923 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
924 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
925 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
926 };
927
928 /* ELF relocs are against symbols. If we are producing relocatable
929 output, and the reloc is against an external symbol, and nothing
930 has given us any additional addend, the resulting reloc will also
931 be against the same symbol. In such a case, we don't want to
932 change anything about the way the reloc is handled, since it will
933 all be done at final link time. Rather than put special case code
934 into bfd_perform_relocation, all the reloc types use this howto
935 function. It just short circuits the reloc if producing
936 relocatable output against an external symbol. */
937
938 bfd_reloc_status_type
939 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
940 arelent *reloc_entry,
941 asymbol *symbol,
942 void *data ATTRIBUTE_UNUSED,
943 asection *input_section,
944 bfd *output_bfd,
945 char **error_message ATTRIBUTE_UNUSED)
946 {
947 if (output_bfd != NULL
948 && (symbol->flags & BSF_SECTION_SYM) == 0
949 && (! reloc_entry->howto->partial_inplace
950 || reloc_entry->addend == 0))
951 {
952 reloc_entry->address += input_section->output_offset;
953 return bfd_reloc_ok;
954 }
955
956 return bfd_reloc_continue;
957 }
958 \f
959 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
960
961 static void
962 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
963 asection *sec)
964 {
965 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
966 sec->sec_info_type = ELF_INFO_TYPE_NONE;
967 }
968
969 /* Finish SHF_MERGE section merging. */
970
971 bfd_boolean
972 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
973 {
974 bfd *ibfd;
975 asection *sec;
976
977 if (!is_elf_hash_table (info->hash))
978 return FALSE;
979
980 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
981 if ((ibfd->flags & DYNAMIC) == 0)
982 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
983 if ((sec->flags & SEC_MERGE) != 0
984 && !bfd_is_abs_section (sec->output_section))
985 {
986 struct bfd_elf_section_data *secdata;
987
988 secdata = elf_section_data (sec);
989 if (! _bfd_add_merge_section (abfd,
990 &elf_hash_table (info)->merge_info,
991 sec, &secdata->sec_info))
992 return FALSE;
993 else if (secdata->sec_info)
994 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
995 }
996
997 if (elf_hash_table (info)->merge_info != NULL)
998 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
999 merge_sections_remove_hook);
1000 return TRUE;
1001 }
1002
1003 void
1004 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
1005 {
1006 sec->output_section = bfd_abs_section_ptr;
1007 sec->output_offset = sec->vma;
1008 if (!is_elf_hash_table (info->hash))
1009 return;
1010
1011 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
1012 }
1013 \f
1014 /* Copy the program header and other data from one object module to
1015 another. */
1016
1017 bfd_boolean
1018 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1019 {
1020 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1021 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1022 return TRUE;
1023
1024 BFD_ASSERT (!elf_flags_init (obfd)
1025 || (elf_elfheader (obfd)->e_flags
1026 == elf_elfheader (ibfd)->e_flags));
1027
1028 elf_gp (obfd) = elf_gp (ibfd);
1029 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1030 elf_flags_init (obfd) = TRUE;
1031 return TRUE;
1032 }
1033
1034 /* Print out the program headers. */
1035
1036 bfd_boolean
1037 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1038 {
1039 FILE *f = farg;
1040 Elf_Internal_Phdr *p;
1041 asection *s;
1042 bfd_byte *dynbuf = NULL;
1043
1044 p = elf_tdata (abfd)->phdr;
1045 if (p != NULL)
1046 {
1047 unsigned int i, c;
1048
1049 fprintf (f, _("\nProgram Header:\n"));
1050 c = elf_elfheader (abfd)->e_phnum;
1051 for (i = 0; i < c; i++, p++)
1052 {
1053 const char *pt;
1054 char buf[20];
1055
1056 switch (p->p_type)
1057 {
1058 case PT_NULL: pt = "NULL"; break;
1059 case PT_LOAD: pt = "LOAD"; break;
1060 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1061 case PT_INTERP: pt = "INTERP"; break;
1062 case PT_NOTE: pt = "NOTE"; break;
1063 case PT_SHLIB: pt = "SHLIB"; break;
1064 case PT_PHDR: pt = "PHDR"; break;
1065 case PT_TLS: pt = "TLS"; break;
1066 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1067 case PT_GNU_STACK: pt = "STACK"; break;
1068 case PT_GNU_RELRO: pt = "RELRO"; break;
1069 default: sprintf (buf, "0x%lx", p->p_type); pt = buf; break;
1070 }
1071 fprintf (f, "%8s off 0x", pt);
1072 bfd_fprintf_vma (abfd, f, p->p_offset);
1073 fprintf (f, " vaddr 0x");
1074 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1075 fprintf (f, " paddr 0x");
1076 bfd_fprintf_vma (abfd, f, p->p_paddr);
1077 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1078 fprintf (f, " filesz 0x");
1079 bfd_fprintf_vma (abfd, f, p->p_filesz);
1080 fprintf (f, " memsz 0x");
1081 bfd_fprintf_vma (abfd, f, p->p_memsz);
1082 fprintf (f, " flags %c%c%c",
1083 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1084 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1085 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1086 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1087 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1088 fprintf (f, "\n");
1089 }
1090 }
1091
1092 s = bfd_get_section_by_name (abfd, ".dynamic");
1093 if (s != NULL)
1094 {
1095 int elfsec;
1096 unsigned long shlink;
1097 bfd_byte *extdyn, *extdynend;
1098 size_t extdynsize;
1099 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1100
1101 fprintf (f, _("\nDynamic Section:\n"));
1102
1103 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1104 goto error_return;
1105
1106 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1107 if (elfsec == -1)
1108 goto error_return;
1109 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1110
1111 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1112 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1113
1114 extdyn = dynbuf;
1115 extdynend = extdyn + s->size;
1116 for (; extdyn < extdynend; extdyn += extdynsize)
1117 {
1118 Elf_Internal_Dyn dyn;
1119 const char *name;
1120 char ab[20];
1121 bfd_boolean stringp;
1122
1123 (*swap_dyn_in) (abfd, extdyn, &dyn);
1124
1125 if (dyn.d_tag == DT_NULL)
1126 break;
1127
1128 stringp = FALSE;
1129 switch (dyn.d_tag)
1130 {
1131 default:
1132 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1133 name = ab;
1134 break;
1135
1136 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1137 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1138 case DT_PLTGOT: name = "PLTGOT"; break;
1139 case DT_HASH: name = "HASH"; break;
1140 case DT_STRTAB: name = "STRTAB"; break;
1141 case DT_SYMTAB: name = "SYMTAB"; break;
1142 case DT_RELA: name = "RELA"; break;
1143 case DT_RELASZ: name = "RELASZ"; break;
1144 case DT_RELAENT: name = "RELAENT"; break;
1145 case DT_STRSZ: name = "STRSZ"; break;
1146 case DT_SYMENT: name = "SYMENT"; break;
1147 case DT_INIT: name = "INIT"; break;
1148 case DT_FINI: name = "FINI"; break;
1149 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1150 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1151 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1152 case DT_REL: name = "REL"; break;
1153 case DT_RELSZ: name = "RELSZ"; break;
1154 case DT_RELENT: name = "RELENT"; break;
1155 case DT_PLTREL: name = "PLTREL"; break;
1156 case DT_DEBUG: name = "DEBUG"; break;
1157 case DT_TEXTREL: name = "TEXTREL"; break;
1158 case DT_JMPREL: name = "JMPREL"; break;
1159 case DT_BIND_NOW: name = "BIND_NOW"; break;
1160 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1161 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1162 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1163 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1164 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1165 case DT_FLAGS: name = "FLAGS"; break;
1166 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1167 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1168 case DT_CHECKSUM: name = "CHECKSUM"; break;
1169 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1170 case DT_MOVEENT: name = "MOVEENT"; break;
1171 case DT_MOVESZ: name = "MOVESZ"; break;
1172 case DT_FEATURE: name = "FEATURE"; break;
1173 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1174 case DT_SYMINSZ: name = "SYMINSZ"; break;
1175 case DT_SYMINENT: name = "SYMINENT"; break;
1176 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1177 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1178 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1179 case DT_PLTPAD: name = "PLTPAD"; break;
1180 case DT_MOVETAB: name = "MOVETAB"; break;
1181 case DT_SYMINFO: name = "SYMINFO"; break;
1182 case DT_RELACOUNT: name = "RELACOUNT"; break;
1183 case DT_RELCOUNT: name = "RELCOUNT"; break;
1184 case DT_FLAGS_1: name = "FLAGS_1"; break;
1185 case DT_VERSYM: name = "VERSYM"; break;
1186 case DT_VERDEF: name = "VERDEF"; break;
1187 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1188 case DT_VERNEED: name = "VERNEED"; break;
1189 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1190 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1191 case DT_USED: name = "USED"; break;
1192 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1193 }
1194
1195 fprintf (f, " %-11s ", name);
1196 if (! stringp)
1197 fprintf (f, "0x%lx", (unsigned long) dyn.d_un.d_val);
1198 else
1199 {
1200 const char *string;
1201 unsigned int tagv = dyn.d_un.d_val;
1202
1203 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1204 if (string == NULL)
1205 goto error_return;
1206 fprintf (f, "%s", string);
1207 }
1208 fprintf (f, "\n");
1209 }
1210
1211 free (dynbuf);
1212 dynbuf = NULL;
1213 }
1214
1215 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1216 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1217 {
1218 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1219 return FALSE;
1220 }
1221
1222 if (elf_dynverdef (abfd) != 0)
1223 {
1224 Elf_Internal_Verdef *t;
1225
1226 fprintf (f, _("\nVersion definitions:\n"));
1227 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1228 {
1229 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1230 t->vd_flags, t->vd_hash, t->vd_nodename);
1231 if (t->vd_auxptr->vda_nextptr != NULL)
1232 {
1233 Elf_Internal_Verdaux *a;
1234
1235 fprintf (f, "\t");
1236 for (a = t->vd_auxptr->vda_nextptr;
1237 a != NULL;
1238 a = a->vda_nextptr)
1239 fprintf (f, "%s ", a->vda_nodename);
1240 fprintf (f, "\n");
1241 }
1242 }
1243 }
1244
1245 if (elf_dynverref (abfd) != 0)
1246 {
1247 Elf_Internal_Verneed *t;
1248
1249 fprintf (f, _("\nVersion References:\n"));
1250 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1251 {
1252 Elf_Internal_Vernaux *a;
1253
1254 fprintf (f, _(" required from %s:\n"), t->vn_filename);
1255 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1256 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1257 a->vna_flags, a->vna_other, a->vna_nodename);
1258 }
1259 }
1260
1261 return TRUE;
1262
1263 error_return:
1264 if (dynbuf != NULL)
1265 free (dynbuf);
1266 return FALSE;
1267 }
1268
1269 /* Display ELF-specific fields of a symbol. */
1270
1271 void
1272 bfd_elf_print_symbol (bfd *abfd,
1273 void *filep,
1274 asymbol *symbol,
1275 bfd_print_symbol_type how)
1276 {
1277 FILE *file = filep;
1278 switch (how)
1279 {
1280 case bfd_print_symbol_name:
1281 fprintf (file, "%s", symbol->name);
1282 break;
1283 case bfd_print_symbol_more:
1284 fprintf (file, "elf ");
1285 bfd_fprintf_vma (abfd, file, symbol->value);
1286 fprintf (file, " %lx", (long) symbol->flags);
1287 break;
1288 case bfd_print_symbol_all:
1289 {
1290 const char *section_name;
1291 const char *name = NULL;
1292 const struct elf_backend_data *bed;
1293 unsigned char st_other;
1294 bfd_vma val;
1295
1296 section_name = symbol->section ? symbol->section->name : "(*none*)";
1297
1298 bed = get_elf_backend_data (abfd);
1299 if (bed->elf_backend_print_symbol_all)
1300 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1301
1302 if (name == NULL)
1303 {
1304 name = symbol->name;
1305 bfd_print_symbol_vandf (abfd, file, symbol);
1306 }
1307
1308 fprintf (file, " %s\t", section_name);
1309 /* Print the "other" value for a symbol. For common symbols,
1310 we've already printed the size; now print the alignment.
1311 For other symbols, we have no specified alignment, and
1312 we've printed the address; now print the size. */
1313 if (bfd_is_com_section (symbol->section))
1314 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1315 else
1316 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1317 bfd_fprintf_vma (abfd, file, val);
1318
1319 /* If we have version information, print it. */
1320 if (elf_tdata (abfd)->dynversym_section != 0
1321 && (elf_tdata (abfd)->dynverdef_section != 0
1322 || elf_tdata (abfd)->dynverref_section != 0))
1323 {
1324 unsigned int vernum;
1325 const char *version_string;
1326
1327 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1328
1329 if (vernum == 0)
1330 version_string = "";
1331 else if (vernum == 1)
1332 version_string = "Base";
1333 else if (vernum <= elf_tdata (abfd)->cverdefs)
1334 version_string =
1335 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1336 else
1337 {
1338 Elf_Internal_Verneed *t;
1339
1340 version_string = "";
1341 for (t = elf_tdata (abfd)->verref;
1342 t != NULL;
1343 t = t->vn_nextref)
1344 {
1345 Elf_Internal_Vernaux *a;
1346
1347 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1348 {
1349 if (a->vna_other == vernum)
1350 {
1351 version_string = a->vna_nodename;
1352 break;
1353 }
1354 }
1355 }
1356 }
1357
1358 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1359 fprintf (file, " %-11s", version_string);
1360 else
1361 {
1362 int i;
1363
1364 fprintf (file, " (%s)", version_string);
1365 for (i = 10 - strlen (version_string); i > 0; --i)
1366 putc (' ', file);
1367 }
1368 }
1369
1370 /* If the st_other field is not zero, print it. */
1371 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1372
1373 switch (st_other)
1374 {
1375 case 0: break;
1376 case STV_INTERNAL: fprintf (file, " .internal"); break;
1377 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1378 case STV_PROTECTED: fprintf (file, " .protected"); break;
1379 default:
1380 /* Some other non-defined flags are also present, so print
1381 everything hex. */
1382 fprintf (file, " 0x%02x", (unsigned int) st_other);
1383 }
1384
1385 fprintf (file, " %s", name);
1386 }
1387 break;
1388 }
1389 }
1390 \f
1391 /* Create an entry in an ELF linker hash table. */
1392
1393 struct bfd_hash_entry *
1394 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1395 struct bfd_hash_table *table,
1396 const char *string)
1397 {
1398 /* Allocate the structure if it has not already been allocated by a
1399 subclass. */
1400 if (entry == NULL)
1401 {
1402 entry = bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
1403 if (entry == NULL)
1404 return entry;
1405 }
1406
1407 /* Call the allocation method of the superclass. */
1408 entry = _bfd_link_hash_newfunc (entry, table, string);
1409 if (entry != NULL)
1410 {
1411 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
1412 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
1413
1414 /* Set local fields. */
1415 ret->indx = -1;
1416 ret->dynindx = -1;
1417 ret->got = htab->init_got_refcount;
1418 ret->plt = htab->init_plt_refcount;
1419 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
1420 - offsetof (struct elf_link_hash_entry, size)));
1421 /* Assume that we have been called by a non-ELF symbol reader.
1422 This flag is then reset by the code which reads an ELF input
1423 file. This ensures that a symbol created by a non-ELF symbol
1424 reader will have the flag set correctly. */
1425 ret->non_elf = 1;
1426 }
1427
1428 return entry;
1429 }
1430
1431 /* Copy data from an indirect symbol to its direct symbol, hiding the
1432 old indirect symbol. Also used for copying flags to a weakdef. */
1433
1434 void
1435 _bfd_elf_link_hash_copy_indirect (const struct elf_backend_data *bed,
1436 struct elf_link_hash_entry *dir,
1437 struct elf_link_hash_entry *ind)
1438 {
1439 bfd_signed_vma tmp;
1440 bfd_signed_vma lowest_valid = bed->can_refcount;
1441
1442 /* Copy down any references that we may have already seen to the
1443 symbol which just became indirect. */
1444
1445 dir->ref_dynamic |= ind->ref_dynamic;
1446 dir->ref_regular |= ind->ref_regular;
1447 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
1448 dir->non_got_ref |= ind->non_got_ref;
1449 dir->needs_plt |= ind->needs_plt;
1450 dir->pointer_equality_needed |= ind->pointer_equality_needed;
1451
1452 if (ind->root.type != bfd_link_hash_indirect)
1453 return;
1454
1455 /* Copy over the global and procedure linkage table refcount entries.
1456 These may have been already set up by a check_relocs routine. */
1457 tmp = dir->got.refcount;
1458 if (tmp < lowest_valid)
1459 {
1460 dir->got.refcount = ind->got.refcount;
1461 ind->got.refcount = tmp;
1462 }
1463 else
1464 BFD_ASSERT (ind->got.refcount < lowest_valid);
1465
1466 tmp = dir->plt.refcount;
1467 if (tmp < lowest_valid)
1468 {
1469 dir->plt.refcount = ind->plt.refcount;
1470 ind->plt.refcount = tmp;
1471 }
1472 else
1473 BFD_ASSERT (ind->plt.refcount < lowest_valid);
1474
1475 if (dir->dynindx == -1)
1476 {
1477 dir->dynindx = ind->dynindx;
1478 dir->dynstr_index = ind->dynstr_index;
1479 ind->dynindx = -1;
1480 ind->dynstr_index = 0;
1481 }
1482 else
1483 BFD_ASSERT (ind->dynindx == -1);
1484 }
1485
1486 void
1487 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
1488 struct elf_link_hash_entry *h,
1489 bfd_boolean force_local)
1490 {
1491 h->plt = elf_hash_table (info)->init_plt_offset;
1492 h->needs_plt = 0;
1493 if (force_local)
1494 {
1495 h->forced_local = 1;
1496 if (h->dynindx != -1)
1497 {
1498 h->dynindx = -1;
1499 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1500 h->dynstr_index);
1501 }
1502 }
1503 }
1504
1505 /* Initialize an ELF linker hash table. */
1506
1507 bfd_boolean
1508 _bfd_elf_link_hash_table_init
1509 (struct elf_link_hash_table *table,
1510 bfd *abfd,
1511 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
1512 struct bfd_hash_table *,
1513 const char *))
1514 {
1515 bfd_boolean ret;
1516 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
1517
1518 table->dynamic_sections_created = FALSE;
1519 table->dynobj = NULL;
1520 table->init_got_refcount.refcount = can_refcount - 1;
1521 table->init_plt_refcount.refcount = can_refcount - 1;
1522 table->init_got_offset.offset = -(bfd_vma) 1;
1523 table->init_plt_offset.offset = -(bfd_vma) 1;
1524 /* The first dynamic symbol is a dummy. */
1525 table->dynsymcount = 1;
1526 table->dynstr = NULL;
1527 table->bucketcount = 0;
1528 table->needed = NULL;
1529 table->hgot = NULL;
1530 table->merge_info = NULL;
1531 memset (&table->stab_info, 0, sizeof (table->stab_info));
1532 memset (&table->eh_info, 0, sizeof (table->eh_info));
1533 table->dynlocal = NULL;
1534 table->runpath = NULL;
1535 table->tls_sec = NULL;
1536 table->tls_size = 0;
1537 table->loaded = NULL;
1538 table->is_relocatable_executable = FALSE;
1539
1540 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc);
1541 table->root.type = bfd_link_elf_hash_table;
1542
1543 return ret;
1544 }
1545
1546 /* Create an ELF linker hash table. */
1547
1548 struct bfd_link_hash_table *
1549 _bfd_elf_link_hash_table_create (bfd *abfd)
1550 {
1551 struct elf_link_hash_table *ret;
1552 bfd_size_type amt = sizeof (struct elf_link_hash_table);
1553
1554 ret = bfd_malloc (amt);
1555 if (ret == NULL)
1556 return NULL;
1557
1558 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc))
1559 {
1560 free (ret);
1561 return NULL;
1562 }
1563
1564 return &ret->root;
1565 }
1566
1567 /* This is a hook for the ELF emulation code in the generic linker to
1568 tell the backend linker what file name to use for the DT_NEEDED
1569 entry for a dynamic object. */
1570
1571 void
1572 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
1573 {
1574 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1575 && bfd_get_format (abfd) == bfd_object)
1576 elf_dt_name (abfd) = name;
1577 }
1578
1579 int
1580 bfd_elf_get_dyn_lib_class (bfd *abfd)
1581 {
1582 int lib_class;
1583 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1584 && bfd_get_format (abfd) == bfd_object)
1585 lib_class = elf_dyn_lib_class (abfd);
1586 else
1587 lib_class = 0;
1588 return lib_class;
1589 }
1590
1591 void
1592 bfd_elf_set_dyn_lib_class (bfd *abfd, int lib_class)
1593 {
1594 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1595 && bfd_get_format (abfd) == bfd_object)
1596 elf_dyn_lib_class (abfd) = lib_class;
1597 }
1598
1599 /* Get the list of DT_NEEDED entries for a link. This is a hook for
1600 the linker ELF emulation code. */
1601
1602 struct bfd_link_needed_list *
1603 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
1604 struct bfd_link_info *info)
1605 {
1606 if (! is_elf_hash_table (info->hash))
1607 return NULL;
1608 return elf_hash_table (info)->needed;
1609 }
1610
1611 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
1612 hook for the linker ELF emulation code. */
1613
1614 struct bfd_link_needed_list *
1615 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
1616 struct bfd_link_info *info)
1617 {
1618 if (! is_elf_hash_table (info->hash))
1619 return NULL;
1620 return elf_hash_table (info)->runpath;
1621 }
1622
1623 /* Get the name actually used for a dynamic object for a link. This
1624 is the SONAME entry if there is one. Otherwise, it is the string
1625 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
1626
1627 const char *
1628 bfd_elf_get_dt_soname (bfd *abfd)
1629 {
1630 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1631 && bfd_get_format (abfd) == bfd_object)
1632 return elf_dt_name (abfd);
1633 return NULL;
1634 }
1635
1636 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
1637 the ELF linker emulation code. */
1638
1639 bfd_boolean
1640 bfd_elf_get_bfd_needed_list (bfd *abfd,
1641 struct bfd_link_needed_list **pneeded)
1642 {
1643 asection *s;
1644 bfd_byte *dynbuf = NULL;
1645 int elfsec;
1646 unsigned long shlink;
1647 bfd_byte *extdyn, *extdynend;
1648 size_t extdynsize;
1649 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1650
1651 *pneeded = NULL;
1652
1653 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
1654 || bfd_get_format (abfd) != bfd_object)
1655 return TRUE;
1656
1657 s = bfd_get_section_by_name (abfd, ".dynamic");
1658 if (s == NULL || s->size == 0)
1659 return TRUE;
1660
1661 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1662 goto error_return;
1663
1664 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1665 if (elfsec == -1)
1666 goto error_return;
1667
1668 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1669
1670 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1671 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1672
1673 extdyn = dynbuf;
1674 extdynend = extdyn + s->size;
1675 for (; extdyn < extdynend; extdyn += extdynsize)
1676 {
1677 Elf_Internal_Dyn dyn;
1678
1679 (*swap_dyn_in) (abfd, extdyn, &dyn);
1680
1681 if (dyn.d_tag == DT_NULL)
1682 break;
1683
1684 if (dyn.d_tag == DT_NEEDED)
1685 {
1686 const char *string;
1687 struct bfd_link_needed_list *l;
1688 unsigned int tagv = dyn.d_un.d_val;
1689 bfd_size_type amt;
1690
1691 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1692 if (string == NULL)
1693 goto error_return;
1694
1695 amt = sizeof *l;
1696 l = bfd_alloc (abfd, amt);
1697 if (l == NULL)
1698 goto error_return;
1699
1700 l->by = abfd;
1701 l->name = string;
1702 l->next = *pneeded;
1703 *pneeded = l;
1704 }
1705 }
1706
1707 free (dynbuf);
1708
1709 return TRUE;
1710
1711 error_return:
1712 if (dynbuf != NULL)
1713 free (dynbuf);
1714 return FALSE;
1715 }
1716 \f
1717 /* Allocate an ELF string table--force the first byte to be zero. */
1718
1719 struct bfd_strtab_hash *
1720 _bfd_elf_stringtab_init (void)
1721 {
1722 struct bfd_strtab_hash *ret;
1723
1724 ret = _bfd_stringtab_init ();
1725 if (ret != NULL)
1726 {
1727 bfd_size_type loc;
1728
1729 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1730 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1731 if (loc == (bfd_size_type) -1)
1732 {
1733 _bfd_stringtab_free (ret);
1734 ret = NULL;
1735 }
1736 }
1737 return ret;
1738 }
1739 \f
1740 /* ELF .o/exec file reading */
1741
1742 /* Create a new bfd section from an ELF section header. */
1743
1744 bfd_boolean
1745 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1746 {
1747 Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[shindex];
1748 Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
1749 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1750 const char *name;
1751
1752 name = bfd_elf_string_from_elf_section (abfd,
1753 elf_elfheader (abfd)->e_shstrndx,
1754 hdr->sh_name);
1755
1756 switch (hdr->sh_type)
1757 {
1758 case SHT_NULL:
1759 /* Inactive section. Throw it away. */
1760 return TRUE;
1761
1762 case SHT_PROGBITS: /* Normal section with contents. */
1763 case SHT_NOBITS: /* .bss section. */
1764 case SHT_HASH: /* .hash section. */
1765 case SHT_NOTE: /* .note section. */
1766 case SHT_INIT_ARRAY: /* .init_array section. */
1767 case SHT_FINI_ARRAY: /* .fini_array section. */
1768 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1769 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1770 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1771
1772 case SHT_DYNAMIC: /* Dynamic linking information. */
1773 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1774 return FALSE;
1775 if (hdr->sh_link > elf_numsections (abfd)
1776 || elf_elfsections (abfd)[hdr->sh_link] == NULL)
1777 return FALSE;
1778 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1779 {
1780 Elf_Internal_Shdr *dynsymhdr;
1781
1782 /* The shared libraries distributed with hpux11 have a bogus
1783 sh_link field for the ".dynamic" section. Find the
1784 string table for the ".dynsym" section instead. */
1785 if (elf_dynsymtab (abfd) != 0)
1786 {
1787 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1788 hdr->sh_link = dynsymhdr->sh_link;
1789 }
1790 else
1791 {
1792 unsigned int i, num_sec;
1793
1794 num_sec = elf_numsections (abfd);
1795 for (i = 1; i < num_sec; i++)
1796 {
1797 dynsymhdr = elf_elfsections (abfd)[i];
1798 if (dynsymhdr->sh_type == SHT_DYNSYM)
1799 {
1800 hdr->sh_link = dynsymhdr->sh_link;
1801 break;
1802 }
1803 }
1804 }
1805 }
1806 break;
1807
1808 case SHT_SYMTAB: /* A symbol table */
1809 if (elf_onesymtab (abfd) == shindex)
1810 return TRUE;
1811
1812 BFD_ASSERT (hdr->sh_entsize == bed->s->sizeof_sym);
1813 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1814 elf_onesymtab (abfd) = shindex;
1815 elf_tdata (abfd)->symtab_hdr = *hdr;
1816 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1817 abfd->flags |= HAS_SYMS;
1818
1819 /* Sometimes a shared object will map in the symbol table. If
1820 SHF_ALLOC is set, and this is a shared object, then we also
1821 treat this section as a BFD section. We can not base the
1822 decision purely on SHF_ALLOC, because that flag is sometimes
1823 set in a relocatable object file, which would confuse the
1824 linker. */
1825 if ((hdr->sh_flags & SHF_ALLOC) != 0
1826 && (abfd->flags & DYNAMIC) != 0
1827 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1828 shindex))
1829 return FALSE;
1830
1831 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1832 can't read symbols without that section loaded as well. It
1833 is most likely specified by the next section header. */
1834 if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
1835 {
1836 unsigned int i, num_sec;
1837
1838 num_sec = elf_numsections (abfd);
1839 for (i = shindex + 1; i < num_sec; i++)
1840 {
1841 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1842 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1843 && hdr2->sh_link == shindex)
1844 break;
1845 }
1846 if (i == num_sec)
1847 for (i = 1; i < shindex; i++)
1848 {
1849 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1850 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1851 && hdr2->sh_link == shindex)
1852 break;
1853 }
1854 if (i != shindex)
1855 return bfd_section_from_shdr (abfd, i);
1856 }
1857 return TRUE;
1858
1859 case SHT_DYNSYM: /* A dynamic symbol table */
1860 if (elf_dynsymtab (abfd) == shindex)
1861 return TRUE;
1862
1863 BFD_ASSERT (hdr->sh_entsize == bed->s->sizeof_sym);
1864 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1865 elf_dynsymtab (abfd) = shindex;
1866 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1867 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1868 abfd->flags |= HAS_SYMS;
1869
1870 /* Besides being a symbol table, we also treat this as a regular
1871 section, so that objcopy can handle it. */
1872 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1873
1874 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1875 if (elf_symtab_shndx (abfd) == shindex)
1876 return TRUE;
1877
1878 BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
1879 elf_symtab_shndx (abfd) = shindex;
1880 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1881 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1882 return TRUE;
1883
1884 case SHT_STRTAB: /* A string table */
1885 if (hdr->bfd_section != NULL)
1886 return TRUE;
1887 if (ehdr->e_shstrndx == shindex)
1888 {
1889 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1890 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1891 return TRUE;
1892 }
1893 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
1894 {
1895 symtab_strtab:
1896 elf_tdata (abfd)->strtab_hdr = *hdr;
1897 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
1898 return TRUE;
1899 }
1900 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
1901 {
1902 dynsymtab_strtab:
1903 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1904 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
1905 elf_elfsections (abfd)[shindex] = hdr;
1906 /* We also treat this as a regular section, so that objcopy
1907 can handle it. */
1908 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1909 shindex);
1910 }
1911
1912 /* If the string table isn't one of the above, then treat it as a
1913 regular section. We need to scan all the headers to be sure,
1914 just in case this strtab section appeared before the above. */
1915 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
1916 {
1917 unsigned int i, num_sec;
1918
1919 num_sec = elf_numsections (abfd);
1920 for (i = 1; i < num_sec; i++)
1921 {
1922 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1923 if (hdr2->sh_link == shindex)
1924 {
1925 if (! bfd_section_from_shdr (abfd, i))
1926 return FALSE;
1927 if (elf_onesymtab (abfd) == i)
1928 goto symtab_strtab;
1929 if (elf_dynsymtab (abfd) == i)
1930 goto dynsymtab_strtab;
1931 }
1932 }
1933 }
1934 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1935
1936 case SHT_REL:
1937 case SHT_RELA:
1938 /* *These* do a lot of work -- but build no sections! */
1939 {
1940 asection *target_sect;
1941 Elf_Internal_Shdr *hdr2;
1942 unsigned int num_sec = elf_numsections (abfd);
1943
1944 /* Check for a bogus link to avoid crashing. */
1945 if ((hdr->sh_link >= SHN_LORESERVE && hdr->sh_link <= SHN_HIRESERVE)
1946 || hdr->sh_link >= num_sec)
1947 {
1948 ((*_bfd_error_handler)
1949 (_("%B: invalid link %lu for reloc section %s (index %u)"),
1950 abfd, hdr->sh_link, name, shindex));
1951 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1952 shindex);
1953 }
1954
1955 /* For some incomprehensible reason Oracle distributes
1956 libraries for Solaris in which some of the objects have
1957 bogus sh_link fields. It would be nice if we could just
1958 reject them, but, unfortunately, some people need to use
1959 them. We scan through the section headers; if we find only
1960 one suitable symbol table, we clobber the sh_link to point
1961 to it. I hope this doesn't break anything. */
1962 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
1963 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
1964 {
1965 unsigned int scan;
1966 int found;
1967
1968 found = 0;
1969 for (scan = 1; scan < num_sec; scan++)
1970 {
1971 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
1972 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
1973 {
1974 if (found != 0)
1975 {
1976 found = 0;
1977 break;
1978 }
1979 found = scan;
1980 }
1981 }
1982 if (found != 0)
1983 hdr->sh_link = found;
1984 }
1985
1986 /* Get the symbol table. */
1987 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
1988 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
1989 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
1990 return FALSE;
1991
1992 /* If this reloc section does not use the main symbol table we
1993 don't treat it as a reloc section. BFD can't adequately
1994 represent such a section, so at least for now, we don't
1995 try. We just present it as a normal section. We also
1996 can't use it as a reloc section if it points to the null
1997 section. */
1998 if (hdr->sh_link != elf_onesymtab (abfd) || hdr->sh_info == SHN_UNDEF)
1999 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2000 shindex);
2001
2002 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
2003 return FALSE;
2004 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
2005 if (target_sect == NULL)
2006 return FALSE;
2007
2008 if ((target_sect->flags & SEC_RELOC) == 0
2009 || target_sect->reloc_count == 0)
2010 hdr2 = &elf_section_data (target_sect)->rel_hdr;
2011 else
2012 {
2013 bfd_size_type amt;
2014 BFD_ASSERT (elf_section_data (target_sect)->rel_hdr2 == NULL);
2015 amt = sizeof (*hdr2);
2016 hdr2 = bfd_alloc (abfd, amt);
2017 elf_section_data (target_sect)->rel_hdr2 = hdr2;
2018 }
2019 *hdr2 = *hdr;
2020 elf_elfsections (abfd)[shindex] = hdr2;
2021 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
2022 target_sect->flags |= SEC_RELOC;
2023 target_sect->relocation = NULL;
2024 target_sect->rel_filepos = hdr->sh_offset;
2025 /* In the section to which the relocations apply, mark whether
2026 its relocations are of the REL or RELA variety. */
2027 if (hdr->sh_size != 0)
2028 target_sect->use_rela_p = hdr->sh_type == SHT_RELA;
2029 abfd->flags |= HAS_RELOC;
2030 return TRUE;
2031 }
2032 break;
2033
2034 case SHT_GNU_verdef:
2035 elf_dynverdef (abfd) = shindex;
2036 elf_tdata (abfd)->dynverdef_hdr = *hdr;
2037 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2038 break;
2039
2040 case SHT_GNU_versym:
2041 elf_dynversym (abfd) = shindex;
2042 elf_tdata (abfd)->dynversym_hdr = *hdr;
2043 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2044 break;
2045
2046 case SHT_GNU_verneed:
2047 elf_dynverref (abfd) = shindex;
2048 elf_tdata (abfd)->dynverref_hdr = *hdr;
2049 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2050 break;
2051
2052 case SHT_SHLIB:
2053 return TRUE;
2054
2055 case SHT_GROUP:
2056 /* We need a BFD section for objcopy and relocatable linking,
2057 and it's handy to have the signature available as the section
2058 name. */
2059 name = group_signature (abfd, hdr);
2060 if (name == NULL)
2061 return FALSE;
2062 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2063 return FALSE;
2064 if (hdr->contents != NULL)
2065 {
2066 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
2067 unsigned int n_elt = hdr->sh_size / 4;
2068 asection *s;
2069
2070 if (idx->flags & GRP_COMDAT)
2071 hdr->bfd_section->flags
2072 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
2073
2074 /* We try to keep the same section order as it comes in. */
2075 idx += n_elt;
2076 while (--n_elt != 0)
2077 if ((s = (--idx)->shdr->bfd_section) != NULL
2078 && elf_next_in_group (s) != NULL)
2079 {
2080 elf_next_in_group (hdr->bfd_section) = s;
2081 break;
2082 }
2083 }
2084 break;
2085
2086 default:
2087 /* Check for any processor-specific section types. */
2088 return bed->elf_backend_section_from_shdr (abfd, hdr, name,
2089 shindex);
2090 }
2091
2092 return TRUE;
2093 }
2094
2095 /* Return the section for the local symbol specified by ABFD, R_SYMNDX.
2096 Return SEC for sections that have no elf section, and NULL on error. */
2097
2098 asection *
2099 bfd_section_from_r_symndx (bfd *abfd,
2100 struct sym_sec_cache *cache,
2101 asection *sec,
2102 unsigned long r_symndx)
2103 {
2104 Elf_Internal_Shdr *symtab_hdr;
2105 unsigned char esym[sizeof (Elf64_External_Sym)];
2106 Elf_External_Sym_Shndx eshndx;
2107 Elf_Internal_Sym isym;
2108 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2109
2110 if (cache->abfd == abfd && cache->indx[ent] == r_symndx)
2111 return cache->sec[ent];
2112
2113 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2114 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2115 &isym, esym, &eshndx) == NULL)
2116 return NULL;
2117
2118 if (cache->abfd != abfd)
2119 {
2120 memset (cache->indx, -1, sizeof (cache->indx));
2121 cache->abfd = abfd;
2122 }
2123 cache->indx[ent] = r_symndx;
2124 cache->sec[ent] = sec;
2125 if ((isym.st_shndx != SHN_UNDEF && isym.st_shndx < SHN_LORESERVE)
2126 || isym.st_shndx > SHN_HIRESERVE)
2127 {
2128 asection *s;
2129 s = bfd_section_from_elf_index (abfd, isym.st_shndx);
2130 if (s != NULL)
2131 cache->sec[ent] = s;
2132 }
2133 return cache->sec[ent];
2134 }
2135
2136 /* Given an ELF section number, retrieve the corresponding BFD
2137 section. */
2138
2139 asection *
2140 bfd_section_from_elf_index (bfd *abfd, unsigned int index)
2141 {
2142 if (index >= elf_numsections (abfd))
2143 return NULL;
2144 return elf_elfsections (abfd)[index]->bfd_section;
2145 }
2146
2147 static struct bfd_elf_special_section const special_sections_b[] =
2148 {
2149 { ".bss", 4, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2150 { NULL, 0, 0, 0, 0 }
2151 };
2152
2153 static struct bfd_elf_special_section const special_sections_c[] =
2154 {
2155 { ".comment", 8, 0, SHT_PROGBITS, 0 },
2156 { NULL, 0, 0, 0, 0 }
2157 };
2158
2159 static struct bfd_elf_special_section const special_sections_d[] =
2160 {
2161 { ".data", 5, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2162 { ".data1", 6, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2163 { ".debug", 6, 0, SHT_PROGBITS, 0 },
2164 { ".debug_line", 11, 0, SHT_PROGBITS, 0 },
2165 { ".debug_info", 11, 0, SHT_PROGBITS, 0 },
2166 { ".debug_abbrev", 13, 0, SHT_PROGBITS, 0 },
2167 { ".debug_aranges", 14, 0, SHT_PROGBITS, 0 },
2168 { ".dynamic", 8, 0, SHT_DYNAMIC, SHF_ALLOC },
2169 { ".dynstr", 7, 0, SHT_STRTAB, SHF_ALLOC },
2170 { ".dynsym", 7, 0, SHT_DYNSYM, SHF_ALLOC },
2171 { NULL, 0, 0, 0, 0 }
2172 };
2173
2174 static struct bfd_elf_special_section const special_sections_f[] =
2175 {
2176 { ".fini", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2177 { ".fini_array", 11, 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2178 { NULL, 0, 0, 0, 0 }
2179 };
2180
2181 static struct bfd_elf_special_section const special_sections_g[] =
2182 {
2183 { ".gnu.linkonce.b",15, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2184 { ".got", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2185 { ".gnu.version", 12, 0, SHT_GNU_versym, 0 },
2186 { ".gnu.version_d", 14, 0, SHT_GNU_verdef, 0 },
2187 { ".gnu.version_r", 14, 0, SHT_GNU_verneed, 0 },
2188 { ".gnu.liblist", 12, 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2189 { ".gnu.conflict", 13, 0, SHT_RELA, SHF_ALLOC },
2190 { NULL, 0, 0, 0, 0 }
2191 };
2192
2193 static struct bfd_elf_special_section const special_sections_h[] =
2194 {
2195 { ".hash", 5, 0, SHT_HASH, SHF_ALLOC },
2196 { NULL, 0, 0, 0, 0 }
2197 };
2198
2199 static struct bfd_elf_special_section const special_sections_i[] =
2200 {
2201 { ".init", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2202 { ".init_array", 11, 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2203 { ".interp", 7, 0, SHT_PROGBITS, 0 },
2204 { NULL, 0, 0, 0, 0 }
2205 };
2206
2207 static struct bfd_elf_special_section const special_sections_l[] =
2208 {
2209 { ".line", 5, 0, SHT_PROGBITS, 0 },
2210 { NULL, 0, 0, 0, 0 }
2211 };
2212
2213 static struct bfd_elf_special_section const special_sections_n[] =
2214 {
2215 { ".note.GNU-stack",15, 0, SHT_PROGBITS, 0 },
2216 { ".note", 5, -1, SHT_NOTE, 0 },
2217 { NULL, 0, 0, 0, 0 }
2218 };
2219
2220 static struct bfd_elf_special_section const special_sections_p[] =
2221 {
2222 { ".preinit_array", 14, 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2223 { ".plt", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2224 { NULL, 0, 0, 0, 0 }
2225 };
2226
2227 static struct bfd_elf_special_section const special_sections_r[] =
2228 {
2229 { ".rodata", 7, -2, SHT_PROGBITS, SHF_ALLOC },
2230 { ".rodata1", 8, 0, SHT_PROGBITS, SHF_ALLOC },
2231 { ".rela", 5, -1, SHT_RELA, 0 },
2232 { ".rel", 4, -1, SHT_REL, 0 },
2233 { NULL, 0, 0, 0, 0 }
2234 };
2235
2236 static struct bfd_elf_special_section const special_sections_s[] =
2237 {
2238 { ".shstrtab", 9, 0, SHT_STRTAB, 0 },
2239 { ".strtab", 7, 0, SHT_STRTAB, 0 },
2240 { ".symtab", 7, 0, SHT_SYMTAB, 0 },
2241 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2242 { NULL, 0, 0, 0, 0 }
2243 };
2244
2245 static struct bfd_elf_special_section const special_sections_t[] =
2246 {
2247 { ".text", 5, -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2248 { ".tbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2249 { ".tdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2250 { NULL, 0, 0, 0, 0 }
2251 };
2252
2253 static struct bfd_elf_special_section const *special_sections [27] =
2254 {
2255 NULL, /* 'a' */
2256 special_sections_b, /* 'b' */
2257 special_sections_c, /* 'b' */
2258 special_sections_d, /* 'd' */
2259 NULL, /* 'e' */
2260 special_sections_f, /* 'f' */
2261 special_sections_g, /* 'g' */
2262 special_sections_h, /* 'h' */
2263 special_sections_i, /* 'i' */
2264 NULL, /* 'j' */
2265 NULL, /* 'k' */
2266 special_sections_l, /* 'l' */
2267 NULL, /* 'm' */
2268 special_sections_n, /* 'n' */
2269 NULL, /* 'o' */
2270 special_sections_p, /* 'p' */
2271 NULL, /* 'q' */
2272 special_sections_r, /* 'r' */
2273 special_sections_s, /* 's' */
2274 special_sections_t, /* 't' */
2275 NULL, /* 'u' */
2276 NULL, /* 'v' */
2277 NULL, /* 'w' */
2278 NULL, /* 'x' */
2279 NULL, /* 'y' */
2280 NULL, /* 'z' */
2281 NULL /* other */
2282 };
2283
2284 static const struct bfd_elf_special_section *
2285 get_special_section (const char *name,
2286 const struct bfd_elf_special_section **special_sections_p,
2287 unsigned int rela)
2288 {
2289 int i;
2290 int len;
2291 const struct bfd_elf_special_section *special_sections;
2292
2293 if (name [0] == '.')
2294 {
2295 i = name [1] - 'a';
2296 if (i < 0 || i > 25)
2297 i = 26;
2298 }
2299 else
2300 i = 26;
2301
2302 special_sections = special_sections_p [i];
2303
2304 if (!special_sections)
2305 return special_sections;
2306
2307 len= strlen (name);
2308
2309 for (i = 0; special_sections[i].prefix != NULL; i++)
2310 {
2311 int suffix_len;
2312 int prefix_len = special_sections[i].prefix_length;
2313
2314 if (len < prefix_len)
2315 continue;
2316 if (memcmp (name, special_sections[i].prefix, prefix_len) != 0)
2317 continue;
2318
2319 suffix_len = special_sections[i].suffix_length;
2320 if (suffix_len <= 0)
2321 {
2322 if (name[prefix_len] != 0)
2323 {
2324 if (suffix_len == 0)
2325 continue;
2326 if (name[prefix_len] != '.'
2327 && (suffix_len == -2
2328 || (rela && special_sections[i].type == SHT_REL)))
2329 continue;
2330 }
2331 }
2332 else
2333 {
2334 if (len < prefix_len + suffix_len)
2335 continue;
2336 if (memcmp (name + len - suffix_len,
2337 special_sections[i].prefix + prefix_len,
2338 suffix_len) != 0)
2339 continue;
2340 }
2341 return &special_sections[i];
2342 }
2343
2344 return NULL;
2345 }
2346
2347 const struct bfd_elf_special_section *
2348 _bfd_elf_get_sec_type_attr (bfd *abfd, const char *name)
2349 {
2350 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2351 const struct bfd_elf_special_section *ssect = NULL;
2352
2353 /* See if this is one of the special sections. */
2354 if (name)
2355 {
2356 unsigned int rela = bed->default_use_rela_p;
2357
2358 if (bed->special_sections)
2359 ssect = get_special_section (name, bed->special_sections, rela);
2360
2361 if (! ssect)
2362 ssect = get_special_section (name, special_sections, rela);
2363 }
2364
2365 return ssect;
2366 }
2367
2368 bfd_boolean
2369 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2370 {
2371 struct bfd_elf_section_data *sdata;
2372 const struct bfd_elf_special_section *ssect;
2373
2374 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2375 if (sdata == NULL)
2376 {
2377 sdata = bfd_zalloc (abfd, sizeof (*sdata));
2378 if (sdata == NULL)
2379 return FALSE;
2380 sec->used_by_bfd = sdata;
2381 }
2382
2383 /* When we read a file, we don't need section type and flags unless
2384 it is a linker created section. They will be overridden in
2385 _bfd_elf_make_section_from_shdr anyway. */
2386 if (abfd->direction != read_direction
2387 || (sec->flags & SEC_LINKER_CREATED) != 0)
2388 {
2389 ssect = _bfd_elf_get_sec_type_attr (abfd, sec->name);
2390 if (ssect != NULL)
2391 {
2392 elf_section_type (sec) = ssect->type;
2393 elf_section_flags (sec) = ssect->attr;
2394 }
2395 }
2396
2397 /* Indicate whether or not this section should use RELA relocations. */
2398 sec->use_rela_p = get_elf_backend_data (abfd)->default_use_rela_p;
2399
2400 return TRUE;
2401 }
2402
2403 /* Create a new bfd section from an ELF program header.
2404
2405 Since program segments have no names, we generate a synthetic name
2406 of the form segment<NUM>, where NUM is generally the index in the
2407 program header table. For segments that are split (see below) we
2408 generate the names segment<NUM>a and segment<NUM>b.
2409
2410 Note that some program segments may have a file size that is different than
2411 (less than) the memory size. All this means is that at execution the
2412 system must allocate the amount of memory specified by the memory size,
2413 but only initialize it with the first "file size" bytes read from the
2414 file. This would occur for example, with program segments consisting
2415 of combined data+bss.
2416
2417 To handle the above situation, this routine generates TWO bfd sections
2418 for the single program segment. The first has the length specified by
2419 the file size of the segment, and the second has the length specified
2420 by the difference between the two sizes. In effect, the segment is split
2421 into it's initialized and uninitialized parts.
2422
2423 */
2424
2425 bfd_boolean
2426 _bfd_elf_make_section_from_phdr (bfd *abfd,
2427 Elf_Internal_Phdr *hdr,
2428 int index,
2429 const char *typename)
2430 {
2431 asection *newsect;
2432 char *name;
2433 char namebuf[64];
2434 size_t len;
2435 int split;
2436
2437 split = ((hdr->p_memsz > 0)
2438 && (hdr->p_filesz > 0)
2439 && (hdr->p_memsz > hdr->p_filesz));
2440 sprintf (namebuf, "%s%d%s", typename, index, split ? "a" : "");
2441 len = strlen (namebuf) + 1;
2442 name = bfd_alloc (abfd, len);
2443 if (!name)
2444 return FALSE;
2445 memcpy (name, namebuf, len);
2446 newsect = bfd_make_section (abfd, name);
2447 if (newsect == NULL)
2448 return FALSE;
2449 newsect->vma = hdr->p_vaddr;
2450 newsect->lma = hdr->p_paddr;
2451 newsect->size = hdr->p_filesz;
2452 newsect->filepos = hdr->p_offset;
2453 newsect->flags |= SEC_HAS_CONTENTS;
2454 newsect->alignment_power = bfd_log2 (hdr->p_align);
2455 if (hdr->p_type == PT_LOAD)
2456 {
2457 newsect->flags |= SEC_ALLOC;
2458 newsect->flags |= SEC_LOAD;
2459 if (hdr->p_flags & PF_X)
2460 {
2461 /* FIXME: all we known is that it has execute PERMISSION,
2462 may be data. */
2463 newsect->flags |= SEC_CODE;
2464 }
2465 }
2466 if (!(hdr->p_flags & PF_W))
2467 {
2468 newsect->flags |= SEC_READONLY;
2469 }
2470
2471 if (split)
2472 {
2473 sprintf (namebuf, "%s%db", typename, index);
2474 len = strlen (namebuf) + 1;
2475 name = bfd_alloc (abfd, len);
2476 if (!name)
2477 return FALSE;
2478 memcpy (name, namebuf, len);
2479 newsect = bfd_make_section (abfd, name);
2480 if (newsect == NULL)
2481 return FALSE;
2482 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2483 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2484 newsect->size = hdr->p_memsz - hdr->p_filesz;
2485 if (hdr->p_type == PT_LOAD)
2486 {
2487 newsect->flags |= SEC_ALLOC;
2488 if (hdr->p_flags & PF_X)
2489 newsect->flags |= SEC_CODE;
2490 }
2491 if (!(hdr->p_flags & PF_W))
2492 newsect->flags |= SEC_READONLY;
2493 }
2494
2495 return TRUE;
2496 }
2497
2498 bfd_boolean
2499 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index)
2500 {
2501 const struct elf_backend_data *bed;
2502
2503 switch (hdr->p_type)
2504 {
2505 case PT_NULL:
2506 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "null");
2507
2508 case PT_LOAD:
2509 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "load");
2510
2511 case PT_DYNAMIC:
2512 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "dynamic");
2513
2514 case PT_INTERP:
2515 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "interp");
2516
2517 case PT_NOTE:
2518 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, index, "note"))
2519 return FALSE;
2520 if (! elfcore_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2521 return FALSE;
2522 return TRUE;
2523
2524 case PT_SHLIB:
2525 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "shlib");
2526
2527 case PT_PHDR:
2528 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "phdr");
2529
2530 case PT_GNU_EH_FRAME:
2531 return _bfd_elf_make_section_from_phdr (abfd, hdr, index,
2532 "eh_frame_hdr");
2533
2534 case PT_GNU_STACK:
2535 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "stack");
2536
2537 case PT_GNU_RELRO:
2538 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "relro");
2539
2540 default:
2541 /* Check for any processor-specific program segment types. */
2542 bed = get_elf_backend_data (abfd);
2543 return bed->elf_backend_section_from_phdr (abfd, hdr, index, "proc");
2544 }
2545 }
2546
2547 /* Initialize REL_HDR, the section-header for new section, containing
2548 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2549 relocations; otherwise, we use REL relocations. */
2550
2551 bfd_boolean
2552 _bfd_elf_init_reloc_shdr (bfd *abfd,
2553 Elf_Internal_Shdr *rel_hdr,
2554 asection *asect,
2555 bfd_boolean use_rela_p)
2556 {
2557 char *name;
2558 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2559 bfd_size_type amt = sizeof ".rela" + strlen (asect->name);
2560
2561 name = bfd_alloc (abfd, amt);
2562 if (name == NULL)
2563 return FALSE;
2564 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2565 rel_hdr->sh_name =
2566 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2567 FALSE);
2568 if (rel_hdr->sh_name == (unsigned int) -1)
2569 return FALSE;
2570 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2571 rel_hdr->sh_entsize = (use_rela_p
2572 ? bed->s->sizeof_rela
2573 : bed->s->sizeof_rel);
2574 rel_hdr->sh_addralign = 1 << bed->s->log_file_align;
2575 rel_hdr->sh_flags = 0;
2576 rel_hdr->sh_addr = 0;
2577 rel_hdr->sh_size = 0;
2578 rel_hdr->sh_offset = 0;
2579
2580 return TRUE;
2581 }
2582
2583 /* Set up an ELF internal section header for a section. */
2584
2585 static void
2586 elf_fake_sections (bfd *abfd, asection *asect, void *failedptrarg)
2587 {
2588 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2589 bfd_boolean *failedptr = failedptrarg;
2590 Elf_Internal_Shdr *this_hdr;
2591
2592 if (*failedptr)
2593 {
2594 /* We already failed; just get out of the bfd_map_over_sections
2595 loop. */
2596 return;
2597 }
2598
2599 this_hdr = &elf_section_data (asect)->this_hdr;
2600
2601 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2602 asect->name, FALSE);
2603 if (this_hdr->sh_name == (unsigned int) -1)
2604 {
2605 *failedptr = TRUE;
2606 return;
2607 }
2608
2609 this_hdr->sh_flags = 0;
2610
2611 if ((asect->flags & SEC_ALLOC) != 0
2612 || asect->user_set_vma)
2613 this_hdr->sh_addr = asect->vma;
2614 else
2615 this_hdr->sh_addr = 0;
2616
2617 this_hdr->sh_offset = 0;
2618 this_hdr->sh_size = asect->size;
2619 this_hdr->sh_link = 0;
2620 this_hdr->sh_addralign = 1 << asect->alignment_power;
2621 /* The sh_entsize and sh_info fields may have been set already by
2622 copy_private_section_data. */
2623
2624 this_hdr->bfd_section = asect;
2625 this_hdr->contents = NULL;
2626
2627 /* If the section type is unspecified, we set it based on
2628 asect->flags. */
2629 if (this_hdr->sh_type == SHT_NULL)
2630 {
2631 if ((asect->flags & SEC_GROUP) != 0)
2632 {
2633 /* We also need to mark SHF_GROUP here for relocatable
2634 link. */
2635 struct bfd_link_order *l;
2636 asection *elt;
2637
2638 for (l = asect->map_head.link_order; l != NULL; l = l->next)
2639 if (l->type == bfd_indirect_link_order
2640 && (elt = elf_next_in_group (l->u.indirect.section)) != NULL)
2641 do
2642 {
2643 /* The name is not important. Anything will do. */
2644 elf_group_name (elt->output_section) = "G";
2645 elf_section_flags (elt->output_section) |= SHF_GROUP;
2646
2647 elt = elf_next_in_group (elt);
2648 /* During a relocatable link, the lists are
2649 circular. */
2650 }
2651 while (elt != elf_next_in_group (l->u.indirect.section));
2652
2653 this_hdr->sh_type = SHT_GROUP;
2654 }
2655 else if ((asect->flags & SEC_ALLOC) != 0
2656 && (((asect->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2657 || (asect->flags & SEC_NEVER_LOAD) != 0))
2658 this_hdr->sh_type = SHT_NOBITS;
2659 else
2660 this_hdr->sh_type = SHT_PROGBITS;
2661 }
2662
2663 switch (this_hdr->sh_type)
2664 {
2665 default:
2666 break;
2667
2668 case SHT_STRTAB:
2669 case SHT_INIT_ARRAY:
2670 case SHT_FINI_ARRAY:
2671 case SHT_PREINIT_ARRAY:
2672 case SHT_NOTE:
2673 case SHT_NOBITS:
2674 case SHT_PROGBITS:
2675 break;
2676
2677 case SHT_HASH:
2678 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2679 break;
2680
2681 case SHT_DYNSYM:
2682 this_hdr->sh_entsize = bed->s->sizeof_sym;
2683 break;
2684
2685 case SHT_DYNAMIC:
2686 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2687 break;
2688
2689 case SHT_RELA:
2690 if (get_elf_backend_data (abfd)->may_use_rela_p)
2691 this_hdr->sh_entsize = bed->s->sizeof_rela;
2692 break;
2693
2694 case SHT_REL:
2695 if (get_elf_backend_data (abfd)->may_use_rel_p)
2696 this_hdr->sh_entsize = bed->s->sizeof_rel;
2697 break;
2698
2699 case SHT_GNU_versym:
2700 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2701 break;
2702
2703 case SHT_GNU_verdef:
2704 this_hdr->sh_entsize = 0;
2705 /* objcopy or strip will copy over sh_info, but may not set
2706 cverdefs. The linker will set cverdefs, but sh_info will be
2707 zero. */
2708 if (this_hdr->sh_info == 0)
2709 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2710 else
2711 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2712 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2713 break;
2714
2715 case SHT_GNU_verneed:
2716 this_hdr->sh_entsize = 0;
2717 /* objcopy or strip will copy over sh_info, but may not set
2718 cverrefs. The linker will set cverrefs, but sh_info will be
2719 zero. */
2720 if (this_hdr->sh_info == 0)
2721 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2722 else
2723 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2724 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2725 break;
2726
2727 case SHT_GROUP:
2728 this_hdr->sh_entsize = 4;
2729 break;
2730 }
2731
2732 if ((asect->flags & SEC_ALLOC) != 0)
2733 this_hdr->sh_flags |= SHF_ALLOC;
2734 if ((asect->flags & SEC_READONLY) == 0)
2735 this_hdr->sh_flags |= SHF_WRITE;
2736 if ((asect->flags & SEC_CODE) != 0)
2737 this_hdr->sh_flags |= SHF_EXECINSTR;
2738 if ((asect->flags & SEC_MERGE) != 0)
2739 {
2740 this_hdr->sh_flags |= SHF_MERGE;
2741 this_hdr->sh_entsize = asect->entsize;
2742 if ((asect->flags & SEC_STRINGS) != 0)
2743 this_hdr->sh_flags |= SHF_STRINGS;
2744 }
2745 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2746 this_hdr->sh_flags |= SHF_GROUP;
2747 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2748 {
2749 this_hdr->sh_flags |= SHF_TLS;
2750 if (asect->size == 0 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2751 {
2752 struct bfd_link_order *o;
2753
2754 this_hdr->sh_size = 0;
2755 for (o = asect->map_head.link_order; o != NULL; o = o->next)
2756 if (this_hdr->sh_size < o->offset + o->size)
2757 this_hdr->sh_size = o->offset + o->size;
2758 if (this_hdr->sh_size)
2759 this_hdr->sh_type = SHT_NOBITS;
2760 }
2761 }
2762
2763 /* Check for processor-specific section types. */
2764 if (bed->elf_backend_fake_sections
2765 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2766 *failedptr = TRUE;
2767
2768 /* If the section has relocs, set up a section header for the
2769 SHT_REL[A] section. If two relocation sections are required for
2770 this section, it is up to the processor-specific back-end to
2771 create the other. */
2772 if ((asect->flags & SEC_RELOC) != 0
2773 && !_bfd_elf_init_reloc_shdr (abfd,
2774 &elf_section_data (asect)->rel_hdr,
2775 asect,
2776 asect->use_rela_p))
2777 *failedptr = TRUE;
2778 }
2779
2780 /* Fill in the contents of a SHT_GROUP section. */
2781
2782 void
2783 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2784 {
2785 bfd_boolean *failedptr = failedptrarg;
2786 unsigned long symindx;
2787 asection *elt, *first;
2788 unsigned char *loc;
2789 struct bfd_link_order *l;
2790 bfd_boolean gas;
2791
2792 /* Ignore linker created group section. See elfNN_ia64_object_p in
2793 elfxx-ia64.c. */
2794 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
2795 || *failedptr)
2796 return;
2797
2798 symindx = 0;
2799 if (elf_group_id (sec) != NULL)
2800 symindx = elf_group_id (sec)->udata.i;
2801
2802 if (symindx == 0)
2803 {
2804 /* If called from the assembler, swap_out_syms will have set up
2805 elf_section_syms; If called for "ld -r", use target_index. */
2806 if (elf_section_syms (abfd) != NULL)
2807 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2808 else
2809 symindx = sec->target_index;
2810 }
2811 elf_section_data (sec)->this_hdr.sh_info = symindx;
2812
2813 /* The contents won't be allocated for "ld -r" or objcopy. */
2814 gas = TRUE;
2815 if (sec->contents == NULL)
2816 {
2817 gas = FALSE;
2818 sec->contents = bfd_alloc (abfd, sec->size);
2819
2820 /* Arrange for the section to be written out. */
2821 elf_section_data (sec)->this_hdr.contents = sec->contents;
2822 if (sec->contents == NULL)
2823 {
2824 *failedptr = TRUE;
2825 return;
2826 }
2827 }
2828
2829 loc = sec->contents + sec->size;
2830
2831 /* Get the pointer to the first section in the group that gas
2832 squirreled away here. objcopy arranges for this to be set to the
2833 start of the input section group. */
2834 first = elt = elf_next_in_group (sec);
2835
2836 /* First element is a flag word. Rest of section is elf section
2837 indices for all the sections of the group. Write them backwards
2838 just to keep the group in the same order as given in .section
2839 directives, not that it matters. */
2840 while (elt != NULL)
2841 {
2842 asection *s;
2843 unsigned int idx;
2844
2845 loc -= 4;
2846 s = elt;
2847 if (!gas)
2848 s = s->output_section;
2849 idx = 0;
2850 if (s != NULL)
2851 idx = elf_section_data (s)->this_idx;
2852 H_PUT_32 (abfd, idx, loc);
2853 elt = elf_next_in_group (elt);
2854 if (elt == first)
2855 break;
2856 }
2857
2858 /* If this is a relocatable link, then the above did nothing because
2859 SEC is the output section. Look through the input sections
2860 instead. */
2861 for (l = sec->map_head.link_order; l != NULL; l = l->next)
2862 if (l->type == bfd_indirect_link_order
2863 && (elt = elf_next_in_group (l->u.indirect.section)) != NULL)
2864 do
2865 {
2866 loc -= 4;
2867 H_PUT_32 (abfd,
2868 elf_section_data (elt->output_section)->this_idx, loc);
2869 elt = elf_next_in_group (elt);
2870 /* During a relocatable link, the lists are circular. */
2871 }
2872 while (elt != elf_next_in_group (l->u.indirect.section));
2873
2874 if ((loc -= 4) != sec->contents)
2875 abort ();
2876
2877 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2878 }
2879
2880 /* Assign all ELF section numbers. The dummy first section is handled here
2881 too. The link/info pointers for the standard section types are filled
2882 in here too, while we're at it. */
2883
2884 static bfd_boolean
2885 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
2886 {
2887 struct elf_obj_tdata *t = elf_tdata (abfd);
2888 asection *sec;
2889 unsigned int section_number, secn;
2890 Elf_Internal_Shdr **i_shdrp;
2891 bfd_size_type amt;
2892 struct bfd_elf_section_data *d;
2893
2894 section_number = 1;
2895
2896 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2897
2898 /* SHT_GROUP sections are in relocatable files only. */
2899 if (link_info == NULL || link_info->relocatable)
2900 {
2901 /* Put SHT_GROUP sections first. */
2902 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2903 {
2904 d = elf_section_data (sec);
2905
2906 if (d->this_hdr.sh_type == SHT_GROUP)
2907 {
2908 if (sec->flags & SEC_LINKER_CREATED)
2909 {
2910 /* Remove the linker created SHT_GROUP sections. */
2911 bfd_section_list_remove (abfd, sec);
2912 abfd->section_count--;
2913 }
2914 else
2915 {
2916 if (section_number == SHN_LORESERVE)
2917 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2918 d->this_idx = section_number++;
2919 }
2920 }
2921 }
2922 }
2923
2924 for (sec = abfd->sections; sec; sec = sec->next)
2925 {
2926 d = elf_section_data (sec);
2927
2928 if (d->this_hdr.sh_type != SHT_GROUP)
2929 {
2930 if (section_number == SHN_LORESERVE)
2931 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2932 d->this_idx = section_number++;
2933 }
2934 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
2935 if ((sec->flags & SEC_RELOC) == 0)
2936 d->rel_idx = 0;
2937 else
2938 {
2939 if (section_number == SHN_LORESERVE)
2940 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2941 d->rel_idx = section_number++;
2942 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr.sh_name);
2943 }
2944
2945 if (d->rel_hdr2)
2946 {
2947 if (section_number == SHN_LORESERVE)
2948 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2949 d->rel_idx2 = section_number++;
2950 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr2->sh_name);
2951 }
2952 else
2953 d->rel_idx2 = 0;
2954 }
2955
2956 if (section_number == SHN_LORESERVE)
2957 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2958 t->shstrtab_section = section_number++;
2959 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
2960 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
2961
2962 if (bfd_get_symcount (abfd) > 0)
2963 {
2964 if (section_number == SHN_LORESERVE)
2965 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2966 t->symtab_section = section_number++;
2967 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
2968 if (section_number > SHN_LORESERVE - 2)
2969 {
2970 if (section_number == SHN_LORESERVE)
2971 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2972 t->symtab_shndx_section = section_number++;
2973 t->symtab_shndx_hdr.sh_name
2974 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2975 ".symtab_shndx", FALSE);
2976 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
2977 return FALSE;
2978 }
2979 if (section_number == SHN_LORESERVE)
2980 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2981 t->strtab_section = section_number++;
2982 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
2983 }
2984
2985 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
2986 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
2987
2988 elf_numsections (abfd) = section_number;
2989 elf_elfheader (abfd)->e_shnum = section_number;
2990 if (section_number > SHN_LORESERVE)
2991 elf_elfheader (abfd)->e_shnum -= SHN_HIRESERVE + 1 - SHN_LORESERVE;
2992
2993 /* Set up the list of section header pointers, in agreement with the
2994 indices. */
2995 amt = section_number * sizeof (Elf_Internal_Shdr *);
2996 i_shdrp = bfd_zalloc (abfd, amt);
2997 if (i_shdrp == NULL)
2998 return FALSE;
2999
3000 amt = sizeof (Elf_Internal_Shdr);
3001 i_shdrp[0] = bfd_zalloc (abfd, amt);
3002 if (i_shdrp[0] == NULL)
3003 {
3004 bfd_release (abfd, i_shdrp);
3005 return FALSE;
3006 }
3007
3008 elf_elfsections (abfd) = i_shdrp;
3009
3010 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
3011 if (bfd_get_symcount (abfd) > 0)
3012 {
3013 i_shdrp[t->symtab_section] = &t->symtab_hdr;
3014 if (elf_numsections (abfd) > SHN_LORESERVE)
3015 {
3016 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
3017 t->symtab_shndx_hdr.sh_link = t->symtab_section;
3018 }
3019 i_shdrp[t->strtab_section] = &t->strtab_hdr;
3020 t->symtab_hdr.sh_link = t->strtab_section;
3021 }
3022
3023 for (sec = abfd->sections; sec; sec = sec->next)
3024 {
3025 struct bfd_elf_section_data *d = elf_section_data (sec);
3026 asection *s;
3027 const char *name;
3028
3029 i_shdrp[d->this_idx] = &d->this_hdr;
3030 if (d->rel_idx != 0)
3031 i_shdrp[d->rel_idx] = &d->rel_hdr;
3032 if (d->rel_idx2 != 0)
3033 i_shdrp[d->rel_idx2] = d->rel_hdr2;
3034
3035 /* Fill in the sh_link and sh_info fields while we're at it. */
3036
3037 /* sh_link of a reloc section is the section index of the symbol
3038 table. sh_info is the section index of the section to which
3039 the relocation entries apply. */
3040 if (d->rel_idx != 0)
3041 {
3042 d->rel_hdr.sh_link = t->symtab_section;
3043 d->rel_hdr.sh_info = d->this_idx;
3044 }
3045 if (d->rel_idx2 != 0)
3046 {
3047 d->rel_hdr2->sh_link = t->symtab_section;
3048 d->rel_hdr2->sh_info = d->this_idx;
3049 }
3050
3051 /* We need to set up sh_link for SHF_LINK_ORDER. */
3052 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3053 {
3054 s = elf_linked_to_section (sec);
3055 if (s)
3056 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3057 else
3058 {
3059 struct bfd_link_order *p;
3060
3061 /* Find out what the corresponding section in output
3062 is. */
3063 for (p = sec->map_head.link_order; p != NULL; p = p->next)
3064 {
3065 s = p->u.indirect.section;
3066 if (p->type == bfd_indirect_link_order
3067 && (bfd_get_flavour (s->owner)
3068 == bfd_target_elf_flavour))
3069 {
3070 Elf_Internal_Shdr ** const elf_shdrp
3071 = elf_elfsections (s->owner);
3072 int elfsec
3073 = _bfd_elf_section_from_bfd_section (s->owner, s);
3074 elfsec = elf_shdrp[elfsec]->sh_link;
3075 /* PR 290:
3076 The Intel C compiler generates SHT_IA_64_UNWIND with
3077 SHF_LINK_ORDER. But it doesn't set the sh_link or
3078 sh_info fields. Hence we could get the situation
3079 where elfsec is 0. */
3080 if (elfsec == 0)
3081 {
3082 const struct elf_backend_data *bed
3083 = get_elf_backend_data (abfd);
3084 if (bed->link_order_error_handler)
3085 bed->link_order_error_handler
3086 (_("%B: warning: sh_link not set for section `%A'"),
3087 abfd, s);
3088 }
3089 else
3090 {
3091 s = elf_shdrp[elfsec]->bfd_section;
3092 if (elf_discarded_section (s))
3093 {
3094 asection *kept;
3095 (*_bfd_error_handler)
3096 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
3097 abfd, d->this_hdr.bfd_section,
3098 s, s->owner);
3099 /* Point to the kept section if it has
3100 the same size as the discarded
3101 one. */
3102 kept = _bfd_elf_check_kept_section (s);
3103 if (kept == NULL)
3104 {
3105 bfd_set_error (bfd_error_bad_value);
3106 return FALSE;
3107 }
3108 s = kept;
3109 }
3110 s = s->output_section;
3111 BFD_ASSERT (s != NULL);
3112 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3113 }
3114 break;
3115 }
3116 }
3117 }
3118 }
3119
3120 switch (d->this_hdr.sh_type)
3121 {
3122 case SHT_REL:
3123 case SHT_RELA:
3124 /* A reloc section which we are treating as a normal BFD
3125 section. sh_link is the section index of the symbol
3126 table. sh_info is the section index of the section to
3127 which the relocation entries apply. We assume that an
3128 allocated reloc section uses the dynamic symbol table.
3129 FIXME: How can we be sure? */
3130 s = bfd_get_section_by_name (abfd, ".dynsym");
3131 if (s != NULL)
3132 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3133
3134 /* We look up the section the relocs apply to by name. */
3135 name = sec->name;
3136 if (d->this_hdr.sh_type == SHT_REL)
3137 name += 4;
3138 else
3139 name += 5;
3140 s = bfd_get_section_by_name (abfd, name);
3141 if (s != NULL)
3142 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3143 break;
3144
3145 case SHT_STRTAB:
3146 /* We assume that a section named .stab*str is a stabs
3147 string section. We look for a section with the same name
3148 but without the trailing ``str'', and set its sh_link
3149 field to point to this section. */
3150 if (strncmp (sec->name, ".stab", sizeof ".stab" - 1) == 0
3151 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3152 {
3153 size_t len;
3154 char *alc;
3155
3156 len = strlen (sec->name);
3157 alc = bfd_malloc (len - 2);
3158 if (alc == NULL)
3159 return FALSE;
3160 memcpy (alc, sec->name, len - 3);
3161 alc[len - 3] = '\0';
3162 s = bfd_get_section_by_name (abfd, alc);
3163 free (alc);
3164 if (s != NULL)
3165 {
3166 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3167
3168 /* This is a .stab section. */
3169 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3170 elf_section_data (s)->this_hdr.sh_entsize
3171 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3172 }
3173 }
3174 break;
3175
3176 case SHT_DYNAMIC:
3177 case SHT_DYNSYM:
3178 case SHT_GNU_verneed:
3179 case SHT_GNU_verdef:
3180 /* sh_link is the section header index of the string table
3181 used for the dynamic entries, or the symbol table, or the
3182 version strings. */
3183 s = bfd_get_section_by_name (abfd, ".dynstr");
3184 if (s != NULL)
3185 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3186 break;
3187
3188 case SHT_GNU_LIBLIST:
3189 /* sh_link is the section header index of the prelink library
3190 list
3191 used for the dynamic entries, or the symbol table, or the
3192 version strings. */
3193 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3194 ? ".dynstr" : ".gnu.libstr");
3195 if (s != NULL)
3196 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3197 break;
3198
3199 case SHT_HASH:
3200 case SHT_GNU_versym:
3201 /* sh_link is the section header index of the symbol table
3202 this hash table or version table is for. */
3203 s = bfd_get_section_by_name (abfd, ".dynsym");
3204 if (s != NULL)
3205 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3206 break;
3207
3208 case SHT_GROUP:
3209 d->this_hdr.sh_link = t->symtab_section;
3210 }
3211 }
3212
3213 for (secn = 1; secn < section_number; ++secn)
3214 if (i_shdrp[secn] == NULL)
3215 i_shdrp[secn] = i_shdrp[0];
3216 else
3217 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
3218 i_shdrp[secn]->sh_name);
3219 return TRUE;
3220 }
3221
3222 /* Map symbol from it's internal number to the external number, moving
3223 all local symbols to be at the head of the list. */
3224
3225 static int
3226 sym_is_global (bfd *abfd, asymbol *sym)
3227 {
3228 /* If the backend has a special mapping, use it. */
3229 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3230 if (bed->elf_backend_sym_is_global)
3231 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3232
3233 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
3234 || bfd_is_und_section (bfd_get_section (sym))
3235 || bfd_is_com_section (bfd_get_section (sym)));
3236 }
3237
3238 static bfd_boolean
3239 elf_map_symbols (bfd *abfd)
3240 {
3241 unsigned int symcount = bfd_get_symcount (abfd);
3242 asymbol **syms = bfd_get_outsymbols (abfd);
3243 asymbol **sect_syms;
3244 unsigned int num_locals = 0;
3245 unsigned int num_globals = 0;
3246 unsigned int num_locals2 = 0;
3247 unsigned int num_globals2 = 0;
3248 int max_index = 0;
3249 unsigned int idx;
3250 asection *asect;
3251 asymbol **new_syms;
3252 bfd_size_type amt;
3253
3254 #ifdef DEBUG
3255 fprintf (stderr, "elf_map_symbols\n");
3256 fflush (stderr);
3257 #endif
3258
3259 for (asect = abfd->sections; asect; asect = asect->next)
3260 {
3261 if (max_index < asect->index)
3262 max_index = asect->index;
3263 }
3264
3265 max_index++;
3266 amt = max_index * sizeof (asymbol *);
3267 sect_syms = bfd_zalloc (abfd, amt);
3268 if (sect_syms == NULL)
3269 return FALSE;
3270 elf_section_syms (abfd) = sect_syms;
3271 elf_num_section_syms (abfd) = max_index;
3272
3273 /* Init sect_syms entries for any section symbols we have already
3274 decided to output. */
3275 for (idx = 0; idx < symcount; idx++)
3276 {
3277 asymbol *sym = syms[idx];
3278
3279 if ((sym->flags & BSF_SECTION_SYM) != 0
3280 && sym->value == 0)
3281 {
3282 asection *sec;
3283
3284 sec = sym->section;
3285
3286 if (sec->owner != NULL)
3287 {
3288 if (sec->owner != abfd)
3289 {
3290 if (sec->output_offset != 0)
3291 continue;
3292
3293 sec = sec->output_section;
3294
3295 /* Empty sections in the input files may have had a
3296 section symbol created for them. (See the comment
3297 near the end of _bfd_generic_link_output_symbols in
3298 linker.c). If the linker script discards such
3299 sections then we will reach this point. Since we know
3300 that we cannot avoid this case, we detect it and skip
3301 the abort and the assignment to the sect_syms array.
3302 To reproduce this particular case try running the
3303 linker testsuite test ld-scripts/weak.exp for an ELF
3304 port that uses the generic linker. */
3305 if (sec->owner == NULL)
3306 continue;
3307
3308 BFD_ASSERT (sec->owner == abfd);
3309 }
3310 sect_syms[sec->index] = syms[idx];
3311 }
3312 }
3313 }
3314
3315 /* Classify all of the symbols. */
3316 for (idx = 0; idx < symcount; idx++)
3317 {
3318 if (!sym_is_global (abfd, syms[idx]))
3319 num_locals++;
3320 else
3321 num_globals++;
3322 }
3323
3324 /* We will be adding a section symbol for each BFD section. Most normal
3325 sections will already have a section symbol in outsymbols, but
3326 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3327 at least in that case. */
3328 for (asect = abfd->sections; asect; asect = asect->next)
3329 {
3330 if (sect_syms[asect->index] == NULL)
3331 {
3332 if (!sym_is_global (abfd, asect->symbol))
3333 num_locals++;
3334 else
3335 num_globals++;
3336 }
3337 }
3338
3339 /* Now sort the symbols so the local symbols are first. */
3340 amt = (num_locals + num_globals) * sizeof (asymbol *);
3341 new_syms = bfd_alloc (abfd, amt);
3342
3343 if (new_syms == NULL)
3344 return FALSE;
3345
3346 for (idx = 0; idx < symcount; idx++)
3347 {
3348 asymbol *sym = syms[idx];
3349 unsigned int i;
3350
3351 if (!sym_is_global (abfd, sym))
3352 i = num_locals2++;
3353 else
3354 i = num_locals + num_globals2++;
3355 new_syms[i] = sym;
3356 sym->udata.i = i + 1;
3357 }
3358 for (asect = abfd->sections; asect; asect = asect->next)
3359 {
3360 if (sect_syms[asect->index] == NULL)
3361 {
3362 asymbol *sym = asect->symbol;
3363 unsigned int i;
3364
3365 sect_syms[asect->index] = sym;
3366 if (!sym_is_global (abfd, sym))
3367 i = num_locals2++;
3368 else
3369 i = num_locals + num_globals2++;
3370 new_syms[i] = sym;
3371 sym->udata.i = i + 1;
3372 }
3373 }
3374
3375 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3376
3377 elf_num_locals (abfd) = num_locals;
3378 elf_num_globals (abfd) = num_globals;
3379 return TRUE;
3380 }
3381
3382 /* Align to the maximum file alignment that could be required for any
3383 ELF data structure. */
3384
3385 static inline file_ptr
3386 align_file_position (file_ptr off, int align)
3387 {
3388 return (off + align - 1) & ~(align - 1);
3389 }
3390
3391 /* Assign a file position to a section, optionally aligning to the
3392 required section alignment. */
3393
3394 file_ptr
3395 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3396 file_ptr offset,
3397 bfd_boolean align)
3398 {
3399 if (align)
3400 {
3401 unsigned int al;
3402
3403 al = i_shdrp->sh_addralign;
3404 if (al > 1)
3405 offset = BFD_ALIGN (offset, al);
3406 }
3407 i_shdrp->sh_offset = offset;
3408 if (i_shdrp->bfd_section != NULL)
3409 i_shdrp->bfd_section->filepos = offset;
3410 if (i_shdrp->sh_type != SHT_NOBITS)
3411 offset += i_shdrp->sh_size;
3412 return offset;
3413 }
3414
3415 /* Compute the file positions we are going to put the sections at, and
3416 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3417 is not NULL, this is being called by the ELF backend linker. */
3418
3419 bfd_boolean
3420 _bfd_elf_compute_section_file_positions (bfd *abfd,
3421 struct bfd_link_info *link_info)
3422 {
3423 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3424 bfd_boolean failed;
3425 struct bfd_strtab_hash *strtab = NULL;
3426 Elf_Internal_Shdr *shstrtab_hdr;
3427
3428 if (abfd->output_has_begun)
3429 return TRUE;
3430
3431 /* Do any elf backend specific processing first. */
3432 if (bed->elf_backend_begin_write_processing)
3433 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3434
3435 if (! prep_headers (abfd))
3436 return FALSE;
3437
3438 /* Post process the headers if necessary. */
3439 if (bed->elf_backend_post_process_headers)
3440 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3441
3442 failed = FALSE;
3443 bfd_map_over_sections (abfd, elf_fake_sections, &failed);
3444 if (failed)
3445 return FALSE;
3446
3447 if (!assign_section_numbers (abfd, link_info))
3448 return FALSE;
3449
3450 /* The backend linker builds symbol table information itself. */
3451 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3452 {
3453 /* Non-zero if doing a relocatable link. */
3454 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3455
3456 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3457 return FALSE;
3458 }
3459
3460 if (link_info == NULL)
3461 {
3462 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3463 if (failed)
3464 return FALSE;
3465 }
3466
3467 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3468 /* sh_name was set in prep_headers. */
3469 shstrtab_hdr->sh_type = SHT_STRTAB;
3470 shstrtab_hdr->sh_flags = 0;
3471 shstrtab_hdr->sh_addr = 0;
3472 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3473 shstrtab_hdr->sh_entsize = 0;
3474 shstrtab_hdr->sh_link = 0;
3475 shstrtab_hdr->sh_info = 0;
3476 /* sh_offset is set in assign_file_positions_except_relocs. */
3477 shstrtab_hdr->sh_addralign = 1;
3478
3479 if (!assign_file_positions_except_relocs (abfd, link_info))
3480 return FALSE;
3481
3482 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3483 {
3484 file_ptr off;
3485 Elf_Internal_Shdr *hdr;
3486
3487 off = elf_tdata (abfd)->next_file_pos;
3488
3489 hdr = &elf_tdata (abfd)->symtab_hdr;
3490 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3491
3492 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3493 if (hdr->sh_size != 0)
3494 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3495
3496 hdr = &elf_tdata (abfd)->strtab_hdr;
3497 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3498
3499 elf_tdata (abfd)->next_file_pos = off;
3500
3501 /* Now that we know where the .strtab section goes, write it
3502 out. */
3503 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3504 || ! _bfd_stringtab_emit (abfd, strtab))
3505 return FALSE;
3506 _bfd_stringtab_free (strtab);
3507 }
3508
3509 abfd->output_has_begun = TRUE;
3510
3511 return TRUE;
3512 }
3513
3514 /* Create a mapping from a set of sections to a program segment. */
3515
3516 static struct elf_segment_map *
3517 make_mapping (bfd *abfd,
3518 asection **sections,
3519 unsigned int from,
3520 unsigned int to,
3521 bfd_boolean phdr)
3522 {
3523 struct elf_segment_map *m;
3524 unsigned int i;
3525 asection **hdrpp;
3526 bfd_size_type amt;
3527
3528 amt = sizeof (struct elf_segment_map);
3529 amt += (to - from - 1) * sizeof (asection *);
3530 m = bfd_zalloc (abfd, amt);
3531 if (m == NULL)
3532 return NULL;
3533 m->next = NULL;
3534 m->p_type = PT_LOAD;
3535 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3536 m->sections[i - from] = *hdrpp;
3537 m->count = to - from;
3538
3539 if (from == 0 && phdr)
3540 {
3541 /* Include the headers in the first PT_LOAD segment. */
3542 m->includes_filehdr = 1;
3543 m->includes_phdrs = 1;
3544 }
3545
3546 return m;
3547 }
3548
3549 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3550 on failure. */
3551
3552 struct elf_segment_map *
3553 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3554 {
3555 struct elf_segment_map *m;
3556
3557 m = bfd_zalloc (abfd, sizeof (struct elf_segment_map));
3558 if (m == NULL)
3559 return NULL;
3560 m->next = NULL;
3561 m->p_type = PT_DYNAMIC;
3562 m->count = 1;
3563 m->sections[0] = dynsec;
3564
3565 return m;
3566 }
3567
3568 /* Set up a mapping from BFD sections to program segments. */
3569
3570 static bfd_boolean
3571 map_sections_to_segments (bfd *abfd)
3572 {
3573 asection **sections = NULL;
3574 asection *s;
3575 unsigned int i;
3576 unsigned int count;
3577 struct elf_segment_map *mfirst;
3578 struct elf_segment_map **pm;
3579 struct elf_segment_map *m;
3580 asection *last_hdr;
3581 bfd_vma last_size;
3582 unsigned int phdr_index;
3583 bfd_vma maxpagesize;
3584 asection **hdrpp;
3585 bfd_boolean phdr_in_segment = TRUE;
3586 bfd_boolean writable;
3587 int tls_count = 0;
3588 asection *first_tls = NULL;
3589 asection *dynsec, *eh_frame_hdr;
3590 bfd_size_type amt;
3591
3592 if (elf_tdata (abfd)->segment_map != NULL)
3593 return TRUE;
3594
3595 if (bfd_count_sections (abfd) == 0)
3596 return TRUE;
3597
3598 /* Select the allocated sections, and sort them. */
3599
3600 amt = bfd_count_sections (abfd) * sizeof (asection *);
3601 sections = bfd_malloc (amt);
3602 if (sections == NULL)
3603 goto error_return;
3604
3605 i = 0;
3606 for (s = abfd->sections; s != NULL; s = s->next)
3607 {
3608 if ((s->flags & SEC_ALLOC) != 0)
3609 {
3610 sections[i] = s;
3611 ++i;
3612 }
3613 }
3614 BFD_ASSERT (i <= bfd_count_sections (abfd));
3615 count = i;
3616
3617 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3618
3619 /* Build the mapping. */
3620
3621 mfirst = NULL;
3622 pm = &mfirst;
3623
3624 /* If we have a .interp section, then create a PT_PHDR segment for
3625 the program headers and a PT_INTERP segment for the .interp
3626 section. */
3627 s = bfd_get_section_by_name (abfd, ".interp");
3628 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3629 {
3630 amt = sizeof (struct elf_segment_map);
3631 m = bfd_zalloc (abfd, amt);
3632 if (m == NULL)
3633 goto error_return;
3634 m->next = NULL;
3635 m->p_type = PT_PHDR;
3636 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3637 m->p_flags = PF_R | PF_X;
3638 m->p_flags_valid = 1;
3639 m->includes_phdrs = 1;
3640
3641 *pm = m;
3642 pm = &m->next;
3643
3644 amt = sizeof (struct elf_segment_map);
3645 m = bfd_zalloc (abfd, amt);
3646 if (m == NULL)
3647 goto error_return;
3648 m->next = NULL;
3649 m->p_type = PT_INTERP;
3650 m->count = 1;
3651 m->sections[0] = s;
3652
3653 *pm = m;
3654 pm = &m->next;
3655 }
3656
3657 /* Look through the sections. We put sections in the same program
3658 segment when the start of the second section can be placed within
3659 a few bytes of the end of the first section. */
3660 last_hdr = NULL;
3661 last_size = 0;
3662 phdr_index = 0;
3663 maxpagesize = get_elf_backend_data (abfd)->maxpagesize;
3664 writable = FALSE;
3665 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3666 if (dynsec != NULL
3667 && (dynsec->flags & SEC_LOAD) == 0)
3668 dynsec = NULL;
3669
3670 /* Deal with -Ttext or something similar such that the first section
3671 is not adjacent to the program headers. This is an
3672 approximation, since at this point we don't know exactly how many
3673 program headers we will need. */
3674 if (count > 0)
3675 {
3676 bfd_size_type phdr_size;
3677
3678 phdr_size = elf_tdata (abfd)->program_header_size;
3679 if (phdr_size == 0)
3680 phdr_size = get_elf_backend_data (abfd)->s->sizeof_phdr;
3681 if ((abfd->flags & D_PAGED) == 0
3682 || sections[0]->lma < phdr_size
3683 || sections[0]->lma % maxpagesize < phdr_size % maxpagesize)
3684 phdr_in_segment = FALSE;
3685 }
3686
3687 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3688 {
3689 asection *hdr;
3690 bfd_boolean new_segment;
3691
3692 hdr = *hdrpp;
3693
3694 /* See if this section and the last one will fit in the same
3695 segment. */
3696
3697 if (last_hdr == NULL)
3698 {
3699 /* If we don't have a segment yet, then we don't need a new
3700 one (we build the last one after this loop). */
3701 new_segment = FALSE;
3702 }
3703 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3704 {
3705 /* If this section has a different relation between the
3706 virtual address and the load address, then we need a new
3707 segment. */
3708 new_segment = TRUE;
3709 }
3710 else if (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
3711 < BFD_ALIGN (hdr->lma, maxpagesize))
3712 {
3713 /* If putting this section in this segment would force us to
3714 skip a page in the segment, then we need a new segment. */
3715 new_segment = TRUE;
3716 }
3717 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
3718 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
3719 {
3720 /* We don't want to put a loadable section after a
3721 nonloadable section in the same segment.
3722 Consider .tbss sections as loadable for this purpose. */
3723 new_segment = TRUE;
3724 }
3725 else if ((abfd->flags & D_PAGED) == 0)
3726 {
3727 /* If the file is not demand paged, which means that we
3728 don't require the sections to be correctly aligned in the
3729 file, then there is no other reason for a new segment. */
3730 new_segment = FALSE;
3731 }
3732 else if (! writable
3733 && (hdr->flags & SEC_READONLY) == 0
3734 && (((last_hdr->lma + last_size - 1)
3735 & ~(maxpagesize - 1))
3736 != (hdr->lma & ~(maxpagesize - 1))))
3737 {
3738 /* We don't want to put a writable section in a read only
3739 segment, unless they are on the same page in memory
3740 anyhow. We already know that the last section does not
3741 bring us past the current section on the page, so the
3742 only case in which the new section is not on the same
3743 page as the previous section is when the previous section
3744 ends precisely on a page boundary. */
3745 new_segment = TRUE;
3746 }
3747 else
3748 {
3749 /* Otherwise, we can use the same segment. */
3750 new_segment = FALSE;
3751 }
3752
3753 if (! new_segment)
3754 {
3755 if ((hdr->flags & SEC_READONLY) == 0)
3756 writable = TRUE;
3757 last_hdr = hdr;
3758 /* .tbss sections effectively have zero size. */
3759 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3760 last_size = hdr->size;
3761 else
3762 last_size = 0;
3763 continue;
3764 }
3765
3766 /* We need a new program segment. We must create a new program
3767 header holding all the sections from phdr_index until hdr. */
3768
3769 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3770 if (m == NULL)
3771 goto error_return;
3772
3773 *pm = m;
3774 pm = &m->next;
3775
3776 if ((hdr->flags & SEC_READONLY) == 0)
3777 writable = TRUE;
3778 else
3779 writable = FALSE;
3780
3781 last_hdr = hdr;
3782 /* .tbss sections effectively have zero size. */
3783 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3784 last_size = hdr->size;
3785 else
3786 last_size = 0;
3787 phdr_index = i;
3788 phdr_in_segment = FALSE;
3789 }
3790
3791 /* Create a final PT_LOAD program segment. */
3792 if (last_hdr != NULL)
3793 {
3794 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3795 if (m == NULL)
3796 goto error_return;
3797
3798 *pm = m;
3799 pm = &m->next;
3800 }
3801
3802 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
3803 if (dynsec != NULL)
3804 {
3805 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
3806 if (m == NULL)
3807 goto error_return;
3808 *pm = m;
3809 pm = &m->next;
3810 }
3811
3812 /* For each loadable .note section, add a PT_NOTE segment. We don't
3813 use bfd_get_section_by_name, because if we link together
3814 nonloadable .note sections and loadable .note sections, we will
3815 generate two .note sections in the output file. FIXME: Using
3816 names for section types is bogus anyhow. */
3817 for (s = abfd->sections; s != NULL; s = s->next)
3818 {
3819 if ((s->flags & SEC_LOAD) != 0
3820 && strncmp (s->name, ".note", 5) == 0)
3821 {
3822 amt = sizeof (struct elf_segment_map);
3823 m = bfd_zalloc (abfd, amt);
3824 if (m == NULL)
3825 goto error_return;
3826 m->next = NULL;
3827 m->p_type = PT_NOTE;
3828 m->count = 1;
3829 m->sections[0] = s;
3830
3831 *pm = m;
3832 pm = &m->next;
3833 }
3834 if (s->flags & SEC_THREAD_LOCAL)
3835 {
3836 if (! tls_count)
3837 first_tls = s;
3838 tls_count++;
3839 }
3840 }
3841
3842 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
3843 if (tls_count > 0)
3844 {
3845 int i;
3846
3847 amt = sizeof (struct elf_segment_map);
3848 amt += (tls_count - 1) * sizeof (asection *);
3849 m = bfd_zalloc (abfd, amt);
3850 if (m == NULL)
3851 goto error_return;
3852 m->next = NULL;
3853 m->p_type = PT_TLS;
3854 m->count = tls_count;
3855 /* Mandated PF_R. */
3856 m->p_flags = PF_R;
3857 m->p_flags_valid = 1;
3858 for (i = 0; i < tls_count; ++i)
3859 {
3860 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
3861 m->sections[i] = first_tls;
3862 first_tls = first_tls->next;
3863 }
3864
3865 *pm = m;
3866 pm = &m->next;
3867 }
3868
3869 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
3870 segment. */
3871 eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
3872 if (eh_frame_hdr != NULL
3873 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
3874 {
3875 amt = sizeof (struct elf_segment_map);
3876 m = bfd_zalloc (abfd, amt);
3877 if (m == NULL)
3878 goto error_return;
3879 m->next = NULL;
3880 m->p_type = PT_GNU_EH_FRAME;
3881 m->count = 1;
3882 m->sections[0] = eh_frame_hdr->output_section;
3883
3884 *pm = m;
3885 pm = &m->next;
3886 }
3887
3888 if (elf_tdata (abfd)->stack_flags)
3889 {
3890 amt = sizeof (struct elf_segment_map);
3891 m = bfd_zalloc (abfd, amt);
3892 if (m == NULL)
3893 goto error_return;
3894 m->next = NULL;
3895 m->p_type = PT_GNU_STACK;
3896 m->p_flags = elf_tdata (abfd)->stack_flags;
3897 m->p_flags_valid = 1;
3898
3899 *pm = m;
3900 pm = &m->next;
3901 }
3902
3903 if (elf_tdata (abfd)->relro)
3904 {
3905 amt = sizeof (struct elf_segment_map);
3906 m = bfd_zalloc (abfd, amt);
3907 if (m == NULL)
3908 goto error_return;
3909 m->next = NULL;
3910 m->p_type = PT_GNU_RELRO;
3911 m->p_flags = PF_R;
3912 m->p_flags_valid = 1;
3913
3914 *pm = m;
3915 pm = &m->next;
3916 }
3917
3918 free (sections);
3919 sections = NULL;
3920
3921 elf_tdata (abfd)->segment_map = mfirst;
3922 return TRUE;
3923
3924 error_return:
3925 if (sections != NULL)
3926 free (sections);
3927 return FALSE;
3928 }
3929
3930 /* Sort sections by address. */
3931
3932 static int
3933 elf_sort_sections (const void *arg1, const void *arg2)
3934 {
3935 const asection *sec1 = *(const asection **) arg1;
3936 const asection *sec2 = *(const asection **) arg2;
3937 bfd_size_type size1, size2;
3938
3939 /* Sort by LMA first, since this is the address used to
3940 place the section into a segment. */
3941 if (sec1->lma < sec2->lma)
3942 return -1;
3943 else if (sec1->lma > sec2->lma)
3944 return 1;
3945
3946 /* Then sort by VMA. Normally the LMA and the VMA will be
3947 the same, and this will do nothing. */
3948 if (sec1->vma < sec2->vma)
3949 return -1;
3950 else if (sec1->vma > sec2->vma)
3951 return 1;
3952
3953 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
3954
3955 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
3956
3957 if (TOEND (sec1))
3958 {
3959 if (TOEND (sec2))
3960 {
3961 /* If the indicies are the same, do not return 0
3962 here, but continue to try the next comparison. */
3963 if (sec1->target_index - sec2->target_index != 0)
3964 return sec1->target_index - sec2->target_index;
3965 }
3966 else
3967 return 1;
3968 }
3969 else if (TOEND (sec2))
3970 return -1;
3971
3972 #undef TOEND
3973
3974 /* Sort by size, to put zero sized sections
3975 before others at the same address. */
3976
3977 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
3978 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
3979
3980 if (size1 < size2)
3981 return -1;
3982 if (size1 > size2)
3983 return 1;
3984
3985 return sec1->target_index - sec2->target_index;
3986 }
3987
3988 /* Ian Lance Taylor writes:
3989
3990 We shouldn't be using % with a negative signed number. That's just
3991 not good. We have to make sure either that the number is not
3992 negative, or that the number has an unsigned type. When the types
3993 are all the same size they wind up as unsigned. When file_ptr is a
3994 larger signed type, the arithmetic winds up as signed long long,
3995 which is wrong.
3996
3997 What we're trying to say here is something like ``increase OFF by
3998 the least amount that will cause it to be equal to the VMA modulo
3999 the page size.'' */
4000 /* In other words, something like:
4001
4002 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4003 off_offset = off % bed->maxpagesize;
4004 if (vma_offset < off_offset)
4005 adjustment = vma_offset + bed->maxpagesize - off_offset;
4006 else
4007 adjustment = vma_offset - off_offset;
4008
4009 which can can be collapsed into the expression below. */
4010
4011 static file_ptr
4012 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
4013 {
4014 return ((vma - off) % maxpagesize);
4015 }
4016
4017 /* Assign file positions to the sections based on the mapping from
4018 sections to segments. This function also sets up some fields in
4019 the file header, and writes out the program headers. */
4020
4021 static bfd_boolean
4022 assign_file_positions_for_segments (bfd *abfd, struct bfd_link_info *link_info)
4023 {
4024 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4025 unsigned int count;
4026 struct elf_segment_map *m;
4027 unsigned int alloc;
4028 Elf_Internal_Phdr *phdrs;
4029 file_ptr off, voff;
4030 bfd_vma filehdr_vaddr, filehdr_paddr;
4031 bfd_vma phdrs_vaddr, phdrs_paddr;
4032 Elf_Internal_Phdr *p;
4033 bfd_size_type amt;
4034
4035 if (elf_tdata (abfd)->segment_map == NULL)
4036 {
4037 if (! map_sections_to_segments (abfd))
4038 return FALSE;
4039 }
4040 else
4041 {
4042 /* The placement algorithm assumes that non allocated sections are
4043 not in PT_LOAD segments. We ensure this here by removing such
4044 sections from the segment map. */
4045 for (m = elf_tdata (abfd)->segment_map;
4046 m != NULL;
4047 m = m->next)
4048 {
4049 unsigned int new_count;
4050 unsigned int i;
4051
4052 if (m->p_type != PT_LOAD)
4053 continue;
4054
4055 new_count = 0;
4056 for (i = 0; i < m->count; i ++)
4057 {
4058 if ((m->sections[i]->flags & SEC_ALLOC) != 0)
4059 {
4060 if (i != new_count)
4061 m->sections[new_count] = m->sections[i];
4062
4063 new_count ++;
4064 }
4065 }
4066
4067 if (new_count != m->count)
4068 m->count = new_count;
4069 }
4070 }
4071
4072 if (bed->elf_backend_modify_segment_map)
4073 {
4074 if (! (*bed->elf_backend_modify_segment_map) (abfd, link_info))
4075 return FALSE;
4076 }
4077
4078 count = 0;
4079 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4080 ++count;
4081
4082 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
4083 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
4084 elf_elfheader (abfd)->e_phnum = count;
4085
4086 if (count == 0)
4087 {
4088 elf_tdata (abfd)->next_file_pos = bed->s->sizeof_ehdr;
4089 return TRUE;
4090 }
4091
4092 /* If we already counted the number of program segments, make sure
4093 that we allocated enough space. This happens when SIZEOF_HEADERS
4094 is used in a linker script. */
4095 alloc = elf_tdata (abfd)->program_header_size / bed->s->sizeof_phdr;
4096 if (alloc != 0 && count > alloc)
4097 {
4098 ((*_bfd_error_handler)
4099 (_("%B: Not enough room for program headers (allocated %u, need %u)"),
4100 abfd, alloc, count));
4101 bfd_set_error (bfd_error_bad_value);
4102 return FALSE;
4103 }
4104
4105 if (alloc == 0)
4106 alloc = count;
4107
4108 amt = alloc * sizeof (Elf_Internal_Phdr);
4109 phdrs = bfd_alloc (abfd, amt);
4110 if (phdrs == NULL)
4111 return FALSE;
4112
4113 off = bed->s->sizeof_ehdr;
4114 off += alloc * bed->s->sizeof_phdr;
4115
4116 filehdr_vaddr = 0;
4117 filehdr_paddr = 0;
4118 phdrs_vaddr = 0;
4119 phdrs_paddr = 0;
4120
4121 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4122 m != NULL;
4123 m = m->next, p++)
4124 {
4125 unsigned int i;
4126 asection **secpp;
4127
4128 /* If elf_segment_map is not from map_sections_to_segments, the
4129 sections may not be correctly ordered. NOTE: sorting should
4130 not be done to the PT_NOTE section of a corefile, which may
4131 contain several pseudo-sections artificially created by bfd.
4132 Sorting these pseudo-sections breaks things badly. */
4133 if (m->count > 1
4134 && !(elf_elfheader (abfd)->e_type == ET_CORE
4135 && m->p_type == PT_NOTE))
4136 qsort (m->sections, (size_t) m->count, sizeof (asection *),
4137 elf_sort_sections);
4138
4139 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4140 number of sections with contents contributing to both p_filesz
4141 and p_memsz, followed by a number of sections with no contents
4142 that just contribute to p_memsz. In this loop, OFF tracks next
4143 available file offset for PT_LOAD and PT_NOTE segments. VOFF is
4144 an adjustment we use for segments that have no file contents
4145 but need zero filled memory allocation. */
4146 voff = 0;
4147 p->p_type = m->p_type;
4148 p->p_flags = m->p_flags;
4149
4150 if (p->p_type == PT_LOAD
4151 && m->count > 0)
4152 {
4153 bfd_size_type align;
4154 bfd_vma adjust;
4155 unsigned int align_power = 0;
4156
4157 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4158 {
4159 unsigned int secalign;
4160
4161 secalign = bfd_get_section_alignment (abfd, *secpp);
4162 if (secalign > align_power)
4163 align_power = secalign;
4164 }
4165 align = (bfd_size_type) 1 << align_power;
4166
4167 if ((abfd->flags & D_PAGED) != 0 && bed->maxpagesize > align)
4168 align = bed->maxpagesize;
4169
4170 adjust = vma_page_aligned_bias (m->sections[0]->vma, off, align);
4171 off += adjust;
4172 if (adjust != 0
4173 && !m->includes_filehdr
4174 && !m->includes_phdrs
4175 && (ufile_ptr) off >= align)
4176 {
4177 /* If the first section isn't loadable, the same holds for
4178 any other sections. Since the segment won't need file
4179 space, we can make p_offset overlap some prior segment.
4180 However, .tbss is special. If a segment starts with
4181 .tbss, we need to look at the next section to decide
4182 whether the segment has any loadable sections. */
4183 i = 0;
4184 while ((m->sections[i]->flags & SEC_LOAD) == 0)
4185 {
4186 if ((m->sections[i]->flags & SEC_THREAD_LOCAL) == 0
4187 || ++i >= m->count)
4188 {
4189 off -= adjust;
4190 voff = adjust - align;
4191 break;
4192 }
4193 }
4194 }
4195 }
4196 /* Make sure the .dynamic section is the first section in the
4197 PT_DYNAMIC segment. */
4198 else if (p->p_type == PT_DYNAMIC
4199 && m->count > 1
4200 && strcmp (m->sections[0]->name, ".dynamic") != 0)
4201 {
4202 _bfd_error_handler
4203 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4204 abfd);
4205 bfd_set_error (bfd_error_bad_value);
4206 return FALSE;
4207 }
4208
4209 if (m->count == 0)
4210 p->p_vaddr = 0;
4211 else
4212 p->p_vaddr = m->sections[0]->vma;
4213
4214 if (m->p_paddr_valid)
4215 p->p_paddr = m->p_paddr;
4216 else if (m->count == 0)
4217 p->p_paddr = 0;
4218 else
4219 p->p_paddr = m->sections[0]->lma;
4220
4221 if (p->p_type == PT_LOAD
4222 && (abfd->flags & D_PAGED) != 0)
4223 p->p_align = bed->maxpagesize;
4224 else if (m->count == 0)
4225 p->p_align = 1 << bed->s->log_file_align;
4226 else
4227 p->p_align = 0;
4228
4229 p->p_offset = 0;
4230 p->p_filesz = 0;
4231 p->p_memsz = 0;
4232
4233 if (m->includes_filehdr)
4234 {
4235 if (! m->p_flags_valid)
4236 p->p_flags |= PF_R;
4237 p->p_offset = 0;
4238 p->p_filesz = bed->s->sizeof_ehdr;
4239 p->p_memsz = bed->s->sizeof_ehdr;
4240 if (m->count > 0)
4241 {
4242 BFD_ASSERT (p->p_type == PT_LOAD);
4243
4244 if (p->p_vaddr < (bfd_vma) off)
4245 {
4246 (*_bfd_error_handler)
4247 (_("%B: Not enough room for program headers, try linking with -N"),
4248 abfd);
4249 bfd_set_error (bfd_error_bad_value);
4250 return FALSE;
4251 }
4252
4253 p->p_vaddr -= off;
4254 if (! m->p_paddr_valid)
4255 p->p_paddr -= off;
4256 }
4257 if (p->p_type == PT_LOAD)
4258 {
4259 filehdr_vaddr = p->p_vaddr;
4260 filehdr_paddr = p->p_paddr;
4261 }
4262 }
4263
4264 if (m->includes_phdrs)
4265 {
4266 if (! m->p_flags_valid)
4267 p->p_flags |= PF_R;
4268
4269 if (m->includes_filehdr)
4270 {
4271 if (p->p_type == PT_LOAD)
4272 {
4273 phdrs_vaddr = p->p_vaddr + bed->s->sizeof_ehdr;
4274 phdrs_paddr = p->p_paddr + bed->s->sizeof_ehdr;
4275 }
4276 }
4277 else
4278 {
4279 p->p_offset = bed->s->sizeof_ehdr;
4280
4281 if (m->count > 0)
4282 {
4283 BFD_ASSERT (p->p_type == PT_LOAD);
4284 p->p_vaddr -= off - p->p_offset;
4285 if (! m->p_paddr_valid)
4286 p->p_paddr -= off - p->p_offset;
4287 }
4288
4289 if (p->p_type == PT_LOAD)
4290 {
4291 phdrs_vaddr = p->p_vaddr;
4292 phdrs_paddr = p->p_paddr;
4293 }
4294 else
4295 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
4296 }
4297
4298 p->p_filesz += alloc * bed->s->sizeof_phdr;
4299 p->p_memsz += alloc * bed->s->sizeof_phdr;
4300 }
4301
4302 if (p->p_type == PT_LOAD
4303 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4304 {
4305 if (! m->includes_filehdr && ! m->includes_phdrs)
4306 p->p_offset = off + voff;
4307 else
4308 {
4309 file_ptr adjust;
4310
4311 adjust = off - (p->p_offset + p->p_filesz);
4312 p->p_filesz += adjust;
4313 p->p_memsz += adjust;
4314 }
4315 }
4316
4317 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4318 {
4319 asection *sec;
4320 flagword flags;
4321 bfd_size_type align;
4322
4323 sec = *secpp;
4324 flags = sec->flags;
4325 align = 1 << bfd_get_section_alignment (abfd, sec);
4326
4327 if (p->p_type == PT_LOAD
4328 || p->p_type == PT_TLS)
4329 {
4330 bfd_signed_vma adjust;
4331
4332 if ((flags & SEC_LOAD) != 0)
4333 {
4334 adjust = sec->lma - (p->p_paddr + p->p_filesz);
4335 if (adjust < 0)
4336 {
4337 (*_bfd_error_handler)
4338 (_("%B: section %A lma 0x%lx overlaps previous sections"),
4339 abfd, sec, (unsigned long) sec->lma);
4340 adjust = 0;
4341 }
4342 off += adjust;
4343 p->p_filesz += adjust;
4344 p->p_memsz += adjust;
4345 }
4346 /* .tbss is special. It doesn't contribute to p_memsz of
4347 normal segments. */
4348 else if ((flags & SEC_THREAD_LOCAL) == 0
4349 || p->p_type == PT_TLS)
4350 {
4351 /* The section VMA must equal the file position
4352 modulo the page size. */
4353 bfd_size_type page = align;
4354 if ((abfd->flags & D_PAGED) != 0 && bed->maxpagesize > page)
4355 page = bed->maxpagesize;
4356 adjust = vma_page_aligned_bias (sec->vma,
4357 p->p_vaddr + p->p_memsz,
4358 page);
4359 p->p_memsz += adjust;
4360 }
4361 }
4362
4363 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
4364 {
4365 /* The section at i == 0 is the one that actually contains
4366 everything. */
4367 if (i == 0)
4368 {
4369 sec->filepos = off;
4370 off += sec->size;
4371 p->p_filesz = sec->size;
4372 p->p_memsz = 0;
4373 p->p_align = 1;
4374 }
4375 else
4376 {
4377 /* The rest are fake sections that shouldn't be written. */
4378 sec->filepos = 0;
4379 sec->size = 0;
4380 sec->flags = 0;
4381 continue;
4382 }
4383 }
4384 else
4385 {
4386 if (p->p_type == PT_LOAD)
4387 {
4388 sec->filepos = off;
4389 /* FIXME: The SEC_HAS_CONTENTS test here dates back to
4390 1997, and the exact reason for it isn't clear. One
4391 plausible explanation is that it is to work around
4392 a problem we have with linker scripts using data
4393 statements in NOLOAD sections. I don't think it
4394 makes a great deal of sense to have such a section
4395 assigned to a PT_LOAD segment, but apparently
4396 people do this. The data statement results in a
4397 bfd_data_link_order being built, and these need
4398 section contents to write into. Eventually, we get
4399 to _bfd_elf_write_object_contents which writes any
4400 section with contents to the output. Make room
4401 here for the write, so that following segments are
4402 not trashed. */
4403 if ((flags & SEC_LOAD) != 0
4404 || (flags & SEC_HAS_CONTENTS) != 0)
4405 off += sec->size;
4406 }
4407
4408 if ((flags & SEC_LOAD) != 0)
4409 {
4410 p->p_filesz += sec->size;
4411 p->p_memsz += sec->size;
4412 }
4413 /* PR ld/594: Sections in note segments which are not loaded
4414 contribute to the file size but not the in-memory size. */
4415 else if (p->p_type == PT_NOTE
4416 && (flags & SEC_HAS_CONTENTS) != 0)
4417 p->p_filesz += sec->size;
4418
4419 /* .tbss is special. It doesn't contribute to p_memsz of
4420 normal segments. */
4421 else if ((flags & SEC_THREAD_LOCAL) == 0
4422 || p->p_type == PT_TLS)
4423 p->p_memsz += sec->size;
4424
4425 if (p->p_type == PT_TLS
4426 && sec->size == 0
4427 && (sec->flags & SEC_HAS_CONTENTS) == 0)
4428 {
4429 struct bfd_link_order *o;
4430 bfd_vma tbss_size = 0;
4431
4432 for (o = sec->map_head.link_order; o != NULL; o = o->next)
4433 if (tbss_size < o->offset + o->size)
4434 tbss_size = o->offset + o->size;
4435
4436 p->p_memsz += tbss_size;
4437 }
4438
4439 if (align > p->p_align
4440 && (p->p_type != PT_LOAD || (abfd->flags & D_PAGED) == 0))
4441 p->p_align = align;
4442 }
4443
4444 if (! m->p_flags_valid)
4445 {
4446 p->p_flags |= PF_R;
4447 if ((flags & SEC_CODE) != 0)
4448 p->p_flags |= PF_X;
4449 if ((flags & SEC_READONLY) == 0)
4450 p->p_flags |= PF_W;
4451 }
4452 }
4453 }
4454
4455 /* Now that we have set the section file positions, we can set up
4456 the file positions for the non PT_LOAD segments. */
4457 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4458 m != NULL;
4459 m = m->next, p++)
4460 {
4461 if (p->p_type != PT_LOAD && m->count > 0)
4462 {
4463 BFD_ASSERT (! m->includes_filehdr && ! m->includes_phdrs);
4464 /* If the section has not yet been assigned a file position,
4465 do so now. The ARM BPABI requires that .dynamic section
4466 not be marked SEC_ALLOC because it is not part of any
4467 PT_LOAD segment, so it will not be processed above. */
4468 if (p->p_type == PT_DYNAMIC && m->sections[0]->filepos == 0)
4469 {
4470 unsigned int i;
4471 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4472
4473 i = 1;
4474 while (i_shdrpp[i]->bfd_section != m->sections[0])
4475 ++i;
4476 off = (_bfd_elf_assign_file_position_for_section
4477 (i_shdrpp[i], off, TRUE));
4478 p->p_filesz = m->sections[0]->size;
4479 }
4480 p->p_offset = m->sections[0]->filepos;
4481 }
4482 if (m->count == 0)
4483 {
4484 if (m->includes_filehdr)
4485 {
4486 p->p_vaddr = filehdr_vaddr;
4487 if (! m->p_paddr_valid)
4488 p->p_paddr = filehdr_paddr;
4489 }
4490 else if (m->includes_phdrs)
4491 {
4492 p->p_vaddr = phdrs_vaddr;
4493 if (! m->p_paddr_valid)
4494 p->p_paddr = phdrs_paddr;
4495 }
4496 else if (p->p_type == PT_GNU_RELRO)
4497 {
4498 Elf_Internal_Phdr *lp;
4499
4500 for (lp = phdrs; lp < phdrs + count; ++lp)
4501 {
4502 if (lp->p_type == PT_LOAD
4503 && lp->p_vaddr <= link_info->relro_end
4504 && lp->p_vaddr >= link_info->relro_start
4505 && lp->p_vaddr + lp->p_filesz
4506 >= link_info->relro_end)
4507 break;
4508 }
4509
4510 if (lp < phdrs + count
4511 && link_info->relro_end > lp->p_vaddr)
4512 {
4513 p->p_vaddr = lp->p_vaddr;
4514 p->p_paddr = lp->p_paddr;
4515 p->p_offset = lp->p_offset;
4516 p->p_filesz = link_info->relro_end - lp->p_vaddr;
4517 p->p_memsz = p->p_filesz;
4518 p->p_align = 1;
4519 p->p_flags = (lp->p_flags & ~PF_W);
4520 }
4521 else
4522 {
4523 memset (p, 0, sizeof *p);
4524 p->p_type = PT_NULL;
4525 }
4526 }
4527 }
4528 }
4529
4530 /* Clear out any program headers we allocated but did not use. */
4531 for (; count < alloc; count++, p++)
4532 {
4533 memset (p, 0, sizeof *p);
4534 p->p_type = PT_NULL;
4535 }
4536
4537 elf_tdata (abfd)->phdr = phdrs;
4538
4539 elf_tdata (abfd)->next_file_pos = off;
4540
4541 /* Write out the program headers. */
4542 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
4543 || bed->s->write_out_phdrs (abfd, phdrs, alloc) != 0)
4544 return FALSE;
4545
4546 return TRUE;
4547 }
4548
4549 /* Get the size of the program header.
4550
4551 If this is called by the linker before any of the section VMA's are set, it
4552 can't calculate the correct value for a strange memory layout. This only
4553 happens when SIZEOF_HEADERS is used in a linker script. In this case,
4554 SORTED_HDRS is NULL and we assume the normal scenario of one text and one
4555 data segment (exclusive of .interp and .dynamic).
4556
4557 ??? User written scripts must either not use SIZEOF_HEADERS, or assume there
4558 will be two segments. */
4559
4560 static bfd_size_type
4561 get_program_header_size (bfd *abfd)
4562 {
4563 size_t segs;
4564 asection *s;
4565 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4566
4567 /* We can't return a different result each time we're called. */
4568 if (elf_tdata (abfd)->program_header_size != 0)
4569 return elf_tdata (abfd)->program_header_size;
4570
4571 if (elf_tdata (abfd)->segment_map != NULL)
4572 {
4573 struct elf_segment_map *m;
4574
4575 segs = 0;
4576 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4577 ++segs;
4578 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
4579 return elf_tdata (abfd)->program_header_size;
4580 }
4581
4582 /* Assume we will need exactly two PT_LOAD segments: one for text
4583 and one for data. */
4584 segs = 2;
4585
4586 s = bfd_get_section_by_name (abfd, ".interp");
4587 if (s != NULL && (s->flags & SEC_LOAD) != 0)
4588 {
4589 /* If we have a loadable interpreter section, we need a
4590 PT_INTERP segment. In this case, assume we also need a
4591 PT_PHDR segment, although that may not be true for all
4592 targets. */
4593 segs += 2;
4594 }
4595
4596 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4597 {
4598 /* We need a PT_DYNAMIC segment. */
4599 ++segs;
4600 }
4601
4602 if (elf_tdata (abfd)->eh_frame_hdr)
4603 {
4604 /* We need a PT_GNU_EH_FRAME segment. */
4605 ++segs;
4606 }
4607
4608 if (elf_tdata (abfd)->stack_flags)
4609 {
4610 /* We need a PT_GNU_STACK segment. */
4611 ++segs;
4612 }
4613
4614 if (elf_tdata (abfd)->relro)
4615 {
4616 /* We need a PT_GNU_RELRO segment. */
4617 ++segs;
4618 }
4619
4620 for (s = abfd->sections; s != NULL; s = s->next)
4621 {
4622 if ((s->flags & SEC_LOAD) != 0
4623 && strncmp (s->name, ".note", 5) == 0)
4624 {
4625 /* We need a PT_NOTE segment. */
4626 ++segs;
4627 }
4628 }
4629
4630 for (s = abfd->sections; s != NULL; s = s->next)
4631 {
4632 if (s->flags & SEC_THREAD_LOCAL)
4633 {
4634 /* We need a PT_TLS segment. */
4635 ++segs;
4636 break;
4637 }
4638 }
4639
4640 /* Let the backend count up any program headers it might need. */
4641 if (bed->elf_backend_additional_program_headers)
4642 {
4643 int a;
4644
4645 a = (*bed->elf_backend_additional_program_headers) (abfd);
4646 if (a == -1)
4647 abort ();
4648 segs += a;
4649 }
4650
4651 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
4652 return elf_tdata (abfd)->program_header_size;
4653 }
4654
4655 /* Work out the file positions of all the sections. This is called by
4656 _bfd_elf_compute_section_file_positions. All the section sizes and
4657 VMAs must be known before this is called.
4658
4659 Reloc sections come in two flavours: Those processed specially as
4660 "side-channel" data attached to a section to which they apply, and
4661 those that bfd doesn't process as relocations. The latter sort are
4662 stored in a normal bfd section by bfd_section_from_shdr. We don't
4663 consider the former sort here, unless they form part of the loadable
4664 image. Reloc sections not assigned here will be handled later by
4665 assign_file_positions_for_relocs.
4666
4667 We also don't set the positions of the .symtab and .strtab here. */
4668
4669 static bfd_boolean
4670 assign_file_positions_except_relocs (bfd *abfd,
4671 struct bfd_link_info *link_info)
4672 {
4673 struct elf_obj_tdata * const tdata = elf_tdata (abfd);
4674 Elf_Internal_Ehdr * const i_ehdrp = elf_elfheader (abfd);
4675 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4676 unsigned int num_sec = elf_numsections (abfd);
4677 file_ptr off;
4678 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4679
4680 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
4681 && bfd_get_format (abfd) != bfd_core)
4682 {
4683 Elf_Internal_Shdr **hdrpp;
4684 unsigned int i;
4685
4686 /* Start after the ELF header. */
4687 off = i_ehdrp->e_ehsize;
4688
4689 /* We are not creating an executable, which means that we are
4690 not creating a program header, and that the actual order of
4691 the sections in the file is unimportant. */
4692 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4693 {
4694 Elf_Internal_Shdr *hdr;
4695
4696 hdr = *hdrpp;
4697 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4698 && hdr->bfd_section == NULL)
4699 || i == tdata->symtab_section
4700 || i == tdata->symtab_shndx_section
4701 || i == tdata->strtab_section)
4702 {
4703 hdr->sh_offset = -1;
4704 }
4705 else
4706 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4707
4708 if (i == SHN_LORESERVE - 1)
4709 {
4710 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4711 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4712 }
4713 }
4714 }
4715 else
4716 {
4717 unsigned int i;
4718 Elf_Internal_Shdr **hdrpp;
4719
4720 /* Assign file positions for the loaded sections based on the
4721 assignment of sections to segments. */
4722 if (! assign_file_positions_for_segments (abfd, link_info))
4723 return FALSE;
4724
4725 /* Assign file positions for the other sections. */
4726
4727 off = elf_tdata (abfd)->next_file_pos;
4728 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4729 {
4730 Elf_Internal_Shdr *hdr;
4731
4732 hdr = *hdrpp;
4733 if (hdr->bfd_section != NULL
4734 && hdr->bfd_section->filepos != 0)
4735 hdr->sh_offset = hdr->bfd_section->filepos;
4736 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4737 {
4738 ((*_bfd_error_handler)
4739 (_("%B: warning: allocated section `%s' not in segment"),
4740 abfd,
4741 (hdr->bfd_section == NULL
4742 ? "*unknown*"
4743 : hdr->bfd_section->name)));
4744 if ((abfd->flags & D_PAGED) != 0)
4745 off += vma_page_aligned_bias (hdr->sh_addr, off,
4746 bed->maxpagesize);
4747 else
4748 off += vma_page_aligned_bias (hdr->sh_addr, off,
4749 hdr->sh_addralign);
4750 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4751 FALSE);
4752 }
4753 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4754 && hdr->bfd_section == NULL)
4755 || hdr == i_shdrpp[tdata->symtab_section]
4756 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4757 || hdr == i_shdrpp[tdata->strtab_section])
4758 hdr->sh_offset = -1;
4759 else
4760 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4761
4762 if (i == SHN_LORESERVE - 1)
4763 {
4764 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4765 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4766 }
4767 }
4768 }
4769
4770 /* Place the section headers. */
4771 off = align_file_position (off, 1 << bed->s->log_file_align);
4772 i_ehdrp->e_shoff = off;
4773 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
4774
4775 elf_tdata (abfd)->next_file_pos = off;
4776
4777 return TRUE;
4778 }
4779
4780 static bfd_boolean
4781 prep_headers (bfd *abfd)
4782 {
4783 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
4784 Elf_Internal_Phdr *i_phdrp = 0; /* Program header table, internal form */
4785 Elf_Internal_Shdr **i_shdrp; /* Section header table, internal form */
4786 struct elf_strtab_hash *shstrtab;
4787 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4788
4789 i_ehdrp = elf_elfheader (abfd);
4790 i_shdrp = elf_elfsections (abfd);
4791
4792 shstrtab = _bfd_elf_strtab_init ();
4793 if (shstrtab == NULL)
4794 return FALSE;
4795
4796 elf_shstrtab (abfd) = shstrtab;
4797
4798 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
4799 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
4800 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
4801 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
4802
4803 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
4804 i_ehdrp->e_ident[EI_DATA] =
4805 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
4806 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
4807
4808 if ((abfd->flags & DYNAMIC) != 0)
4809 i_ehdrp->e_type = ET_DYN;
4810 else if ((abfd->flags & EXEC_P) != 0)
4811 i_ehdrp->e_type = ET_EXEC;
4812 else if (bfd_get_format (abfd) == bfd_core)
4813 i_ehdrp->e_type = ET_CORE;
4814 else
4815 i_ehdrp->e_type = ET_REL;
4816
4817 switch (bfd_get_arch (abfd))
4818 {
4819 case bfd_arch_unknown:
4820 i_ehdrp->e_machine = EM_NONE;
4821 break;
4822
4823 /* There used to be a long list of cases here, each one setting
4824 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4825 in the corresponding bfd definition. To avoid duplication,
4826 the switch was removed. Machines that need special handling
4827 can generally do it in elf_backend_final_write_processing(),
4828 unless they need the information earlier than the final write.
4829 Such need can generally be supplied by replacing the tests for
4830 e_machine with the conditions used to determine it. */
4831 default:
4832 i_ehdrp->e_machine = bed->elf_machine_code;
4833 }
4834
4835 i_ehdrp->e_version = bed->s->ev_current;
4836 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
4837
4838 /* No program header, for now. */
4839 i_ehdrp->e_phoff = 0;
4840 i_ehdrp->e_phentsize = 0;
4841 i_ehdrp->e_phnum = 0;
4842
4843 /* Each bfd section is section header entry. */
4844 i_ehdrp->e_entry = bfd_get_start_address (abfd);
4845 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
4846
4847 /* If we're building an executable, we'll need a program header table. */
4848 if (abfd->flags & EXEC_P)
4849 /* It all happens later. */
4850 ;
4851 else
4852 {
4853 i_ehdrp->e_phentsize = 0;
4854 i_phdrp = 0;
4855 i_ehdrp->e_phoff = 0;
4856 }
4857
4858 elf_tdata (abfd)->symtab_hdr.sh_name =
4859 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
4860 elf_tdata (abfd)->strtab_hdr.sh_name =
4861 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
4862 elf_tdata (abfd)->shstrtab_hdr.sh_name =
4863 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
4864 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4865 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4866 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
4867 return FALSE;
4868
4869 return TRUE;
4870 }
4871
4872 /* Assign file positions for all the reloc sections which are not part
4873 of the loadable file image. */
4874
4875 void
4876 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
4877 {
4878 file_ptr off;
4879 unsigned int i, num_sec;
4880 Elf_Internal_Shdr **shdrpp;
4881
4882 off = elf_tdata (abfd)->next_file_pos;
4883
4884 num_sec = elf_numsections (abfd);
4885 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
4886 {
4887 Elf_Internal_Shdr *shdrp;
4888
4889 shdrp = *shdrpp;
4890 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
4891 && shdrp->sh_offset == -1)
4892 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
4893 }
4894
4895 elf_tdata (abfd)->next_file_pos = off;
4896 }
4897
4898 bfd_boolean
4899 _bfd_elf_write_object_contents (bfd *abfd)
4900 {
4901 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4902 Elf_Internal_Ehdr *i_ehdrp;
4903 Elf_Internal_Shdr **i_shdrp;
4904 bfd_boolean failed;
4905 unsigned int count, num_sec;
4906
4907 if (! abfd->output_has_begun
4908 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
4909 return FALSE;
4910
4911 i_shdrp = elf_elfsections (abfd);
4912 i_ehdrp = elf_elfheader (abfd);
4913
4914 failed = FALSE;
4915 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
4916 if (failed)
4917 return FALSE;
4918
4919 _bfd_elf_assign_file_positions_for_relocs (abfd);
4920
4921 /* After writing the headers, we need to write the sections too... */
4922 num_sec = elf_numsections (abfd);
4923 for (count = 1; count < num_sec; count++)
4924 {
4925 if (bed->elf_backend_section_processing)
4926 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
4927 if (i_shdrp[count]->contents)
4928 {
4929 bfd_size_type amt = i_shdrp[count]->sh_size;
4930
4931 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
4932 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
4933 return FALSE;
4934 }
4935 if (count == SHN_LORESERVE - 1)
4936 count += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4937 }
4938
4939 /* Write out the section header names. */
4940 if (elf_shstrtab (abfd) != NULL
4941 && (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
4942 || ! _bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
4943 return FALSE;
4944
4945 if (bed->elf_backend_final_write_processing)
4946 (*bed->elf_backend_final_write_processing) (abfd,
4947 elf_tdata (abfd)->linker);
4948
4949 return bed->s->write_shdrs_and_ehdr (abfd);
4950 }
4951
4952 bfd_boolean
4953 _bfd_elf_write_corefile_contents (bfd *abfd)
4954 {
4955 /* Hopefully this can be done just like an object file. */
4956 return _bfd_elf_write_object_contents (abfd);
4957 }
4958
4959 /* Given a section, search the header to find them. */
4960
4961 int
4962 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
4963 {
4964 const struct elf_backend_data *bed;
4965 int index;
4966
4967 if (elf_section_data (asect) != NULL
4968 && elf_section_data (asect)->this_idx != 0)
4969 return elf_section_data (asect)->this_idx;
4970
4971 if (bfd_is_abs_section (asect))
4972 index = SHN_ABS;
4973 else if (bfd_is_com_section (asect))
4974 index = SHN_COMMON;
4975 else if (bfd_is_und_section (asect))
4976 index = SHN_UNDEF;
4977 else
4978 index = -1;
4979
4980 bed = get_elf_backend_data (abfd);
4981 if (bed->elf_backend_section_from_bfd_section)
4982 {
4983 int retval = index;
4984
4985 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
4986 return retval;
4987 }
4988
4989 if (index == -1)
4990 bfd_set_error (bfd_error_nonrepresentable_section);
4991
4992 return index;
4993 }
4994
4995 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
4996 on error. */
4997
4998 int
4999 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
5000 {
5001 asymbol *asym_ptr = *asym_ptr_ptr;
5002 int idx;
5003 flagword flags = asym_ptr->flags;
5004
5005 /* When gas creates relocations against local labels, it creates its
5006 own symbol for the section, but does put the symbol into the
5007 symbol chain, so udata is 0. When the linker is generating
5008 relocatable output, this section symbol may be for one of the
5009 input sections rather than the output section. */
5010 if (asym_ptr->udata.i == 0
5011 && (flags & BSF_SECTION_SYM)
5012 && asym_ptr->section)
5013 {
5014 int indx;
5015
5016 if (asym_ptr->section->output_section != NULL)
5017 indx = asym_ptr->section->output_section->index;
5018 else
5019 indx = asym_ptr->section->index;
5020 if (indx < elf_num_section_syms (abfd)
5021 && elf_section_syms (abfd)[indx] != NULL)
5022 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
5023 }
5024
5025 idx = asym_ptr->udata.i;
5026
5027 if (idx == 0)
5028 {
5029 /* This case can occur when using --strip-symbol on a symbol
5030 which is used in a relocation entry. */
5031 (*_bfd_error_handler)
5032 (_("%B: symbol `%s' required but not present"),
5033 abfd, bfd_asymbol_name (asym_ptr));
5034 bfd_set_error (bfd_error_no_symbols);
5035 return -1;
5036 }
5037
5038 #if DEBUG & 4
5039 {
5040 fprintf (stderr,
5041 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
5042 (long) asym_ptr, asym_ptr->name, idx, flags,
5043 elf_symbol_flags (flags));
5044 fflush (stderr);
5045 }
5046 #endif
5047
5048 return idx;
5049 }
5050
5051 /* Copy private BFD data. This copies any program header information. */
5052
5053 static bfd_boolean
5054 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
5055 {
5056 Elf_Internal_Ehdr *iehdr;
5057 struct elf_segment_map *map;
5058 struct elf_segment_map *map_first;
5059 struct elf_segment_map **pointer_to_map;
5060 Elf_Internal_Phdr *segment;
5061 asection *section;
5062 unsigned int i;
5063 unsigned int num_segments;
5064 bfd_boolean phdr_included = FALSE;
5065 bfd_vma maxpagesize;
5066 struct elf_segment_map *phdr_adjust_seg = NULL;
5067 unsigned int phdr_adjust_num = 0;
5068 const struct elf_backend_data *bed;
5069
5070 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5071 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5072 return TRUE;
5073
5074 if (elf_tdata (ibfd)->phdr == NULL)
5075 return TRUE;
5076
5077 bed = get_elf_backend_data (ibfd);
5078 iehdr = elf_elfheader (ibfd);
5079
5080 map_first = NULL;
5081 pointer_to_map = &map_first;
5082
5083 num_segments = elf_elfheader (ibfd)->e_phnum;
5084 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
5085
5086 /* Returns the end address of the segment + 1. */
5087 #define SEGMENT_END(segment, start) \
5088 (start + (segment->p_memsz > segment->p_filesz \
5089 ? segment->p_memsz : segment->p_filesz))
5090
5091 #define SECTION_SIZE(section, segment) \
5092 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5093 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5094 ? section->size : 0)
5095
5096 /* Returns TRUE if the given section is contained within
5097 the given segment. VMA addresses are compared. */
5098 #define IS_CONTAINED_BY_VMA(section, segment) \
5099 (section->vma >= segment->p_vaddr \
5100 && (section->vma + SECTION_SIZE (section, segment) \
5101 <= (SEGMENT_END (segment, segment->p_vaddr))))
5102
5103 /* Returns TRUE if the given section is contained within
5104 the given segment. LMA addresses are compared. */
5105 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5106 (section->lma >= base \
5107 && (section->lma + SECTION_SIZE (section, segment) \
5108 <= SEGMENT_END (segment, base)))
5109
5110 /* Special case: corefile "NOTE" section containing regs, prpsinfo etc. */
5111 #define IS_COREFILE_NOTE(p, s) \
5112 (p->p_type == PT_NOTE \
5113 && bfd_get_format (ibfd) == bfd_core \
5114 && s->vma == 0 && s->lma == 0 \
5115 && (bfd_vma) s->filepos >= p->p_offset \
5116 && ((bfd_vma) s->filepos + s->size \
5117 <= p->p_offset + p->p_filesz))
5118
5119 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5120 linker, which generates a PT_INTERP section with p_vaddr and
5121 p_memsz set to 0. */
5122 #define IS_SOLARIS_PT_INTERP(p, s) \
5123 (p->p_vaddr == 0 \
5124 && p->p_paddr == 0 \
5125 && p->p_memsz == 0 \
5126 && p->p_filesz > 0 \
5127 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5128 && s->size > 0 \
5129 && (bfd_vma) s->filepos >= p->p_offset \
5130 && ((bfd_vma) s->filepos + s->size \
5131 <= p->p_offset + p->p_filesz))
5132
5133 /* Decide if the given section should be included in the given segment.
5134 A section will be included if:
5135 1. It is within the address space of the segment -- we use the LMA
5136 if that is set for the segment and the VMA otherwise,
5137 2. It is an allocated segment,
5138 3. There is an output section associated with it,
5139 4. The section has not already been allocated to a previous segment.
5140 5. PT_GNU_STACK segments do not include any sections.
5141 6. PT_TLS segment includes only SHF_TLS sections.
5142 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5143 8. PT_DYNAMIC should not contain empty sections at the beginning
5144 (with the possible exception of .dynamic). */
5145 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5146 ((((segment->p_paddr \
5147 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5148 : IS_CONTAINED_BY_VMA (section, segment)) \
5149 && (section->flags & SEC_ALLOC) != 0) \
5150 || IS_COREFILE_NOTE (segment, section)) \
5151 && section->output_section != NULL \
5152 && segment->p_type != PT_GNU_STACK \
5153 && (segment->p_type != PT_TLS \
5154 || (section->flags & SEC_THREAD_LOCAL)) \
5155 && (segment->p_type == PT_LOAD \
5156 || segment->p_type == PT_TLS \
5157 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5158 && (segment->p_type != PT_DYNAMIC \
5159 || SECTION_SIZE (section, segment) > 0 \
5160 || (segment->p_paddr \
5161 ? segment->p_paddr != section->lma \
5162 : segment->p_vaddr != section->vma) \
5163 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5164 == 0)) \
5165 && ! section->segment_mark)
5166
5167 /* Returns TRUE iff seg1 starts after the end of seg2. */
5168 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5169 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5170
5171 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5172 their VMA address ranges and their LMA address ranges overlap.
5173 It is possible to have overlapping VMA ranges without overlapping LMA
5174 ranges. RedBoot images for example can have both .data and .bss mapped
5175 to the same VMA range, but with the .data section mapped to a different
5176 LMA. */
5177 #define SEGMENT_OVERLAPS(seg1, seg2) \
5178 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5179 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5180 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5181 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5182
5183 /* Initialise the segment mark field. */
5184 for (section = ibfd->sections; section != NULL; section = section->next)
5185 section->segment_mark = FALSE;
5186
5187 /* Scan through the segments specified in the program header
5188 of the input BFD. For this first scan we look for overlaps
5189 in the loadable segments. These can be created by weird
5190 parameters to objcopy. Also, fix some solaris weirdness. */
5191 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5192 i < num_segments;
5193 i++, segment++)
5194 {
5195 unsigned int j;
5196 Elf_Internal_Phdr *segment2;
5197
5198 if (segment->p_type == PT_INTERP)
5199 for (section = ibfd->sections; section; section = section->next)
5200 if (IS_SOLARIS_PT_INTERP (segment, section))
5201 {
5202 /* Mininal change so that the normal section to segment
5203 assignment code will work. */
5204 segment->p_vaddr = section->vma;
5205 break;
5206 }
5207
5208 if (segment->p_type != PT_LOAD)
5209 continue;
5210
5211 /* Determine if this segment overlaps any previous segments. */
5212 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2 ++)
5213 {
5214 bfd_signed_vma extra_length;
5215
5216 if (segment2->p_type != PT_LOAD
5217 || ! SEGMENT_OVERLAPS (segment, segment2))
5218 continue;
5219
5220 /* Merge the two segments together. */
5221 if (segment2->p_vaddr < segment->p_vaddr)
5222 {
5223 /* Extend SEGMENT2 to include SEGMENT and then delete
5224 SEGMENT. */
5225 extra_length =
5226 SEGMENT_END (segment, segment->p_vaddr)
5227 - SEGMENT_END (segment2, segment2->p_vaddr);
5228
5229 if (extra_length > 0)
5230 {
5231 segment2->p_memsz += extra_length;
5232 segment2->p_filesz += extra_length;
5233 }
5234
5235 segment->p_type = PT_NULL;
5236
5237 /* Since we have deleted P we must restart the outer loop. */
5238 i = 0;
5239 segment = elf_tdata (ibfd)->phdr;
5240 break;
5241 }
5242 else
5243 {
5244 /* Extend SEGMENT to include SEGMENT2 and then delete
5245 SEGMENT2. */
5246 extra_length =
5247 SEGMENT_END (segment2, segment2->p_vaddr)
5248 - SEGMENT_END (segment, segment->p_vaddr);
5249
5250 if (extra_length > 0)
5251 {
5252 segment->p_memsz += extra_length;
5253 segment->p_filesz += extra_length;
5254 }
5255
5256 segment2->p_type = PT_NULL;
5257 }
5258 }
5259 }
5260
5261 /* The second scan attempts to assign sections to segments. */
5262 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5263 i < num_segments;
5264 i ++, segment ++)
5265 {
5266 unsigned int section_count;
5267 asection ** sections;
5268 asection * output_section;
5269 unsigned int isec;
5270 bfd_vma matching_lma;
5271 bfd_vma suggested_lma;
5272 unsigned int j;
5273 bfd_size_type amt;
5274
5275 if (segment->p_type == PT_NULL)
5276 continue;
5277
5278 /* Compute how many sections might be placed into this segment. */
5279 for (section = ibfd->sections, section_count = 0;
5280 section != NULL;
5281 section = section->next)
5282 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5283 ++section_count;
5284
5285 /* Allocate a segment map big enough to contain
5286 all of the sections we have selected. */
5287 amt = sizeof (struct elf_segment_map);
5288 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5289 map = bfd_alloc (obfd, amt);
5290 if (map == NULL)
5291 return FALSE;
5292
5293 /* Initialise the fields of the segment map. Default to
5294 using the physical address of the segment in the input BFD. */
5295 map->next = NULL;
5296 map->p_type = segment->p_type;
5297 map->p_flags = segment->p_flags;
5298 map->p_flags_valid = 1;
5299 map->p_paddr = segment->p_paddr;
5300 map->p_paddr_valid = 1;
5301
5302 /* Determine if this segment contains the ELF file header
5303 and if it contains the program headers themselves. */
5304 map->includes_filehdr = (segment->p_offset == 0
5305 && segment->p_filesz >= iehdr->e_ehsize);
5306
5307 map->includes_phdrs = 0;
5308
5309 if (! phdr_included || segment->p_type != PT_LOAD)
5310 {
5311 map->includes_phdrs =
5312 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5313 && (segment->p_offset + segment->p_filesz
5314 >= ((bfd_vma) iehdr->e_phoff
5315 + iehdr->e_phnum * iehdr->e_phentsize)));
5316
5317 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5318 phdr_included = TRUE;
5319 }
5320
5321 if (section_count == 0)
5322 {
5323 /* Special segments, such as the PT_PHDR segment, may contain
5324 no sections, but ordinary, loadable segments should contain
5325 something. They are allowed by the ELF spec however, so only
5326 a warning is produced. */
5327 if (segment->p_type == PT_LOAD)
5328 (*_bfd_error_handler)
5329 (_("%B: warning: Empty loadable segment detected, is this intentional ?\n"),
5330 ibfd);
5331
5332 map->count = 0;
5333 *pointer_to_map = map;
5334 pointer_to_map = &map->next;
5335
5336 continue;
5337 }
5338
5339 /* Now scan the sections in the input BFD again and attempt
5340 to add their corresponding output sections to the segment map.
5341 The problem here is how to handle an output section which has
5342 been moved (ie had its LMA changed). There are four possibilities:
5343
5344 1. None of the sections have been moved.
5345 In this case we can continue to use the segment LMA from the
5346 input BFD.
5347
5348 2. All of the sections have been moved by the same amount.
5349 In this case we can change the segment's LMA to match the LMA
5350 of the first section.
5351
5352 3. Some of the sections have been moved, others have not.
5353 In this case those sections which have not been moved can be
5354 placed in the current segment which will have to have its size,
5355 and possibly its LMA changed, and a new segment or segments will
5356 have to be created to contain the other sections.
5357
5358 4. The sections have been moved, but not by the same amount.
5359 In this case we can change the segment's LMA to match the LMA
5360 of the first section and we will have to create a new segment
5361 or segments to contain the other sections.
5362
5363 In order to save time, we allocate an array to hold the section
5364 pointers that we are interested in. As these sections get assigned
5365 to a segment, they are removed from this array. */
5366
5367 /* Gcc 2.96 miscompiles this code on mips. Don't do casting here
5368 to work around this long long bug. */
5369 amt = section_count * sizeof (asection *);
5370 sections = bfd_malloc (amt);
5371 if (sections == NULL)
5372 return FALSE;
5373
5374 /* Step One: Scan for segment vs section LMA conflicts.
5375 Also add the sections to the section array allocated above.
5376 Also add the sections to the current segment. In the common
5377 case, where the sections have not been moved, this means that
5378 we have completely filled the segment, and there is nothing
5379 more to do. */
5380 isec = 0;
5381 matching_lma = 0;
5382 suggested_lma = 0;
5383
5384 for (j = 0, section = ibfd->sections;
5385 section != NULL;
5386 section = section->next)
5387 {
5388 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5389 {
5390 output_section = section->output_section;
5391
5392 sections[j ++] = section;
5393
5394 /* The Solaris native linker always sets p_paddr to 0.
5395 We try to catch that case here, and set it to the
5396 correct value. Note - some backends require that
5397 p_paddr be left as zero. */
5398 if (segment->p_paddr == 0
5399 && segment->p_vaddr != 0
5400 && (! bed->want_p_paddr_set_to_zero)
5401 && isec == 0
5402 && output_section->lma != 0
5403 && (output_section->vma == (segment->p_vaddr
5404 + (map->includes_filehdr
5405 ? iehdr->e_ehsize
5406 : 0)
5407 + (map->includes_phdrs
5408 ? (iehdr->e_phnum
5409 * iehdr->e_phentsize)
5410 : 0))))
5411 map->p_paddr = segment->p_vaddr;
5412
5413 /* Match up the physical address of the segment with the
5414 LMA address of the output section. */
5415 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5416 || IS_COREFILE_NOTE (segment, section)
5417 || (bed->want_p_paddr_set_to_zero &&
5418 IS_CONTAINED_BY_VMA (output_section, segment))
5419 )
5420 {
5421 if (matching_lma == 0)
5422 matching_lma = output_section->lma;
5423
5424 /* We assume that if the section fits within the segment
5425 then it does not overlap any other section within that
5426 segment. */
5427 map->sections[isec ++] = output_section;
5428 }
5429 else if (suggested_lma == 0)
5430 suggested_lma = output_section->lma;
5431 }
5432 }
5433
5434 BFD_ASSERT (j == section_count);
5435
5436 /* Step Two: Adjust the physical address of the current segment,
5437 if necessary. */
5438 if (isec == section_count)
5439 {
5440 /* All of the sections fitted within the segment as currently
5441 specified. This is the default case. Add the segment to
5442 the list of built segments and carry on to process the next
5443 program header in the input BFD. */
5444 map->count = section_count;
5445 *pointer_to_map = map;
5446 pointer_to_map = &map->next;
5447
5448 free (sections);
5449 continue;
5450 }
5451 else
5452 {
5453 if (matching_lma != 0)
5454 {
5455 /* At least one section fits inside the current segment.
5456 Keep it, but modify its physical address to match the
5457 LMA of the first section that fitted. */
5458 map->p_paddr = matching_lma;
5459 }
5460 else
5461 {
5462 /* None of the sections fitted inside the current segment.
5463 Change the current segment's physical address to match
5464 the LMA of the first section. */
5465 map->p_paddr = suggested_lma;
5466 }
5467
5468 /* Offset the segment physical address from the lma
5469 to allow for space taken up by elf headers. */
5470 if (map->includes_filehdr)
5471 map->p_paddr -= iehdr->e_ehsize;
5472
5473 if (map->includes_phdrs)
5474 {
5475 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
5476
5477 /* iehdr->e_phnum is just an estimate of the number
5478 of program headers that we will need. Make a note
5479 here of the number we used and the segment we chose
5480 to hold these headers, so that we can adjust the
5481 offset when we know the correct value. */
5482 phdr_adjust_num = iehdr->e_phnum;
5483 phdr_adjust_seg = map;
5484 }
5485 }
5486
5487 /* Step Three: Loop over the sections again, this time assigning
5488 those that fit to the current segment and removing them from the
5489 sections array; but making sure not to leave large gaps. Once all
5490 possible sections have been assigned to the current segment it is
5491 added to the list of built segments and if sections still remain
5492 to be assigned, a new segment is constructed before repeating
5493 the loop. */
5494 isec = 0;
5495 do
5496 {
5497 map->count = 0;
5498 suggested_lma = 0;
5499
5500 /* Fill the current segment with sections that fit. */
5501 for (j = 0; j < section_count; j++)
5502 {
5503 section = sections[j];
5504
5505 if (section == NULL)
5506 continue;
5507
5508 output_section = section->output_section;
5509
5510 BFD_ASSERT (output_section != NULL);
5511
5512 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5513 || IS_COREFILE_NOTE (segment, section))
5514 {
5515 if (map->count == 0)
5516 {
5517 /* If the first section in a segment does not start at
5518 the beginning of the segment, then something is
5519 wrong. */
5520 if (output_section->lma !=
5521 (map->p_paddr
5522 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
5523 + (map->includes_phdrs
5524 ? iehdr->e_phnum * iehdr->e_phentsize
5525 : 0)))
5526 abort ();
5527 }
5528 else
5529 {
5530 asection * prev_sec;
5531
5532 prev_sec = map->sections[map->count - 1];
5533
5534 /* If the gap between the end of the previous section
5535 and the start of this section is more than
5536 maxpagesize then we need to start a new segment. */
5537 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
5538 maxpagesize)
5539 < BFD_ALIGN (output_section->lma, maxpagesize))
5540 || ((prev_sec->lma + prev_sec->size)
5541 > output_section->lma))
5542 {
5543 if (suggested_lma == 0)
5544 suggested_lma = output_section->lma;
5545
5546 continue;
5547 }
5548 }
5549
5550 map->sections[map->count++] = output_section;
5551 ++isec;
5552 sections[j] = NULL;
5553 section->segment_mark = TRUE;
5554 }
5555 else if (suggested_lma == 0)
5556 suggested_lma = output_section->lma;
5557 }
5558
5559 BFD_ASSERT (map->count > 0);
5560
5561 /* Add the current segment to the list of built segments. */
5562 *pointer_to_map = map;
5563 pointer_to_map = &map->next;
5564
5565 if (isec < section_count)
5566 {
5567 /* We still have not allocated all of the sections to
5568 segments. Create a new segment here, initialise it
5569 and carry on looping. */
5570 amt = sizeof (struct elf_segment_map);
5571 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5572 map = bfd_alloc (obfd, amt);
5573 if (map == NULL)
5574 {
5575 free (sections);
5576 return FALSE;
5577 }
5578
5579 /* Initialise the fields of the segment map. Set the physical
5580 physical address to the LMA of the first section that has
5581 not yet been assigned. */
5582 map->next = NULL;
5583 map->p_type = segment->p_type;
5584 map->p_flags = segment->p_flags;
5585 map->p_flags_valid = 1;
5586 map->p_paddr = suggested_lma;
5587 map->p_paddr_valid = 1;
5588 map->includes_filehdr = 0;
5589 map->includes_phdrs = 0;
5590 }
5591 }
5592 while (isec < section_count);
5593
5594 free (sections);
5595 }
5596
5597 /* The Solaris linker creates program headers in which all the
5598 p_paddr fields are zero. When we try to objcopy or strip such a
5599 file, we get confused. Check for this case, and if we find it
5600 reset the p_paddr_valid fields. */
5601 for (map = map_first; map != NULL; map = map->next)
5602 if (map->p_paddr != 0)
5603 break;
5604 if (map == NULL)
5605 for (map = map_first; map != NULL; map = map->next)
5606 map->p_paddr_valid = 0;
5607
5608 elf_tdata (obfd)->segment_map = map_first;
5609
5610 /* If we had to estimate the number of program headers that were
5611 going to be needed, then check our estimate now and adjust
5612 the offset if necessary. */
5613 if (phdr_adjust_seg != NULL)
5614 {
5615 unsigned int count;
5616
5617 for (count = 0, map = map_first; map != NULL; map = map->next)
5618 count++;
5619
5620 if (count > phdr_adjust_num)
5621 phdr_adjust_seg->p_paddr
5622 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
5623 }
5624
5625 #undef SEGMENT_END
5626 #undef SECTION_SIZE
5627 #undef IS_CONTAINED_BY_VMA
5628 #undef IS_CONTAINED_BY_LMA
5629 #undef IS_COREFILE_NOTE
5630 #undef IS_SOLARIS_PT_INTERP
5631 #undef INCLUDE_SECTION_IN_SEGMENT
5632 #undef SEGMENT_AFTER_SEGMENT
5633 #undef SEGMENT_OVERLAPS
5634 return TRUE;
5635 }
5636
5637 /* Copy private section information. This copies over the entsize
5638 field, and sometimes the info field. */
5639
5640 bfd_boolean
5641 _bfd_elf_copy_private_section_data (bfd *ibfd,
5642 asection *isec,
5643 bfd *obfd,
5644 asection *osec)
5645 {
5646 Elf_Internal_Shdr *ihdr, *ohdr;
5647
5648 if (ibfd->xvec->flavour != bfd_target_elf_flavour
5649 || obfd->xvec->flavour != bfd_target_elf_flavour)
5650 return TRUE;
5651
5652 ihdr = &elf_section_data (isec)->this_hdr;
5653 ohdr = &elf_section_data (osec)->this_hdr;
5654
5655 ohdr->sh_entsize = ihdr->sh_entsize;
5656
5657 if (ihdr->sh_type == SHT_SYMTAB
5658 || ihdr->sh_type == SHT_DYNSYM
5659 || ihdr->sh_type == SHT_GNU_verneed
5660 || ihdr->sh_type == SHT_GNU_verdef)
5661 ohdr->sh_info = ihdr->sh_info;
5662
5663 /* Set things up for objcopy. The output SHT_GROUP section will
5664 have its elf_next_in_group pointing back to the input group
5665 members. Ignore linker created group section. See
5666 elfNN_ia64_object_p in elfxx-ia64.c. */
5667 if (elf_sec_group (isec) == NULL
5668 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
5669 {
5670 elf_next_in_group (osec) = elf_next_in_group (isec);
5671 elf_group_name (osec) = elf_group_name (isec);
5672 }
5673
5674 osec->use_rela_p = isec->use_rela_p;
5675
5676 return TRUE;
5677 }
5678
5679 /* Copy private header information. */
5680
5681 bfd_boolean
5682 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
5683 {
5684 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5685 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5686 return TRUE;
5687
5688 /* Copy over private BFD data if it has not already been copied.
5689 This must be done here, rather than in the copy_private_bfd_data
5690 entry point, because the latter is called after the section
5691 contents have been set, which means that the program headers have
5692 already been worked out. */
5693 if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
5694 {
5695 if (! copy_private_bfd_data (ibfd, obfd))
5696 return FALSE;
5697 }
5698
5699 return TRUE;
5700 }
5701
5702 /* Copy private symbol information. If this symbol is in a section
5703 which we did not map into a BFD section, try to map the section
5704 index correctly. We use special macro definitions for the mapped
5705 section indices; these definitions are interpreted by the
5706 swap_out_syms function. */
5707
5708 #define MAP_ONESYMTAB (SHN_HIOS + 1)
5709 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
5710 #define MAP_STRTAB (SHN_HIOS + 3)
5711 #define MAP_SHSTRTAB (SHN_HIOS + 4)
5712 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
5713
5714 bfd_boolean
5715 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
5716 asymbol *isymarg,
5717 bfd *obfd,
5718 asymbol *osymarg)
5719 {
5720 elf_symbol_type *isym, *osym;
5721
5722 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5723 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5724 return TRUE;
5725
5726 isym = elf_symbol_from (ibfd, isymarg);
5727 osym = elf_symbol_from (obfd, osymarg);
5728
5729 if (isym != NULL
5730 && osym != NULL
5731 && bfd_is_abs_section (isym->symbol.section))
5732 {
5733 unsigned int shndx;
5734
5735 shndx = isym->internal_elf_sym.st_shndx;
5736 if (shndx == elf_onesymtab (ibfd))
5737 shndx = MAP_ONESYMTAB;
5738 else if (shndx == elf_dynsymtab (ibfd))
5739 shndx = MAP_DYNSYMTAB;
5740 else if (shndx == elf_tdata (ibfd)->strtab_section)
5741 shndx = MAP_STRTAB;
5742 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
5743 shndx = MAP_SHSTRTAB;
5744 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
5745 shndx = MAP_SYM_SHNDX;
5746 osym->internal_elf_sym.st_shndx = shndx;
5747 }
5748
5749 return TRUE;
5750 }
5751
5752 /* Swap out the symbols. */
5753
5754 static bfd_boolean
5755 swap_out_syms (bfd *abfd,
5756 struct bfd_strtab_hash **sttp,
5757 int relocatable_p)
5758 {
5759 const struct elf_backend_data *bed;
5760 int symcount;
5761 asymbol **syms;
5762 struct bfd_strtab_hash *stt;
5763 Elf_Internal_Shdr *symtab_hdr;
5764 Elf_Internal_Shdr *symtab_shndx_hdr;
5765 Elf_Internal_Shdr *symstrtab_hdr;
5766 bfd_byte *outbound_syms;
5767 bfd_byte *outbound_shndx;
5768 int idx;
5769 bfd_size_type amt;
5770 bfd_boolean name_local_sections;
5771
5772 if (!elf_map_symbols (abfd))
5773 return FALSE;
5774
5775 /* Dump out the symtabs. */
5776 stt = _bfd_elf_stringtab_init ();
5777 if (stt == NULL)
5778 return FALSE;
5779
5780 bed = get_elf_backend_data (abfd);
5781 symcount = bfd_get_symcount (abfd);
5782 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5783 symtab_hdr->sh_type = SHT_SYMTAB;
5784 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
5785 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
5786 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
5787 symtab_hdr->sh_addralign = 1 << bed->s->log_file_align;
5788
5789 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
5790 symstrtab_hdr->sh_type = SHT_STRTAB;
5791
5792 amt = (bfd_size_type) (1 + symcount) * bed->s->sizeof_sym;
5793 outbound_syms = bfd_alloc (abfd, amt);
5794 if (outbound_syms == NULL)
5795 {
5796 _bfd_stringtab_free (stt);
5797 return FALSE;
5798 }
5799 symtab_hdr->contents = outbound_syms;
5800
5801 outbound_shndx = NULL;
5802 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
5803 if (symtab_shndx_hdr->sh_name != 0)
5804 {
5805 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
5806 outbound_shndx = bfd_zalloc (abfd, amt);
5807 if (outbound_shndx == NULL)
5808 {
5809 _bfd_stringtab_free (stt);
5810 return FALSE;
5811 }
5812
5813 symtab_shndx_hdr->contents = outbound_shndx;
5814 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
5815 symtab_shndx_hdr->sh_size = amt;
5816 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
5817 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
5818 }
5819
5820 /* Now generate the data (for "contents"). */
5821 {
5822 /* Fill in zeroth symbol and swap it out. */
5823 Elf_Internal_Sym sym;
5824 sym.st_name = 0;
5825 sym.st_value = 0;
5826 sym.st_size = 0;
5827 sym.st_info = 0;
5828 sym.st_other = 0;
5829 sym.st_shndx = SHN_UNDEF;
5830 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
5831 outbound_syms += bed->s->sizeof_sym;
5832 if (outbound_shndx != NULL)
5833 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
5834 }
5835
5836 name_local_sections
5837 = (bed->elf_backend_name_local_section_symbols
5838 && bed->elf_backend_name_local_section_symbols (abfd));
5839
5840 syms = bfd_get_outsymbols (abfd);
5841 for (idx = 0; idx < symcount; idx++)
5842 {
5843 Elf_Internal_Sym sym;
5844 bfd_vma value = syms[idx]->value;
5845 elf_symbol_type *type_ptr;
5846 flagword flags = syms[idx]->flags;
5847 int type;
5848
5849 if (!name_local_sections
5850 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
5851 {
5852 /* Local section symbols have no name. */
5853 sym.st_name = 0;
5854 }
5855 else
5856 {
5857 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
5858 syms[idx]->name,
5859 TRUE, FALSE);
5860 if (sym.st_name == (unsigned long) -1)
5861 {
5862 _bfd_stringtab_free (stt);
5863 return FALSE;
5864 }
5865 }
5866
5867 type_ptr = elf_symbol_from (abfd, syms[idx]);
5868
5869 if ((flags & BSF_SECTION_SYM) == 0
5870 && bfd_is_com_section (syms[idx]->section))
5871 {
5872 /* ELF common symbols put the alignment into the `value' field,
5873 and the size into the `size' field. This is backwards from
5874 how BFD handles it, so reverse it here. */
5875 sym.st_size = value;
5876 if (type_ptr == NULL
5877 || type_ptr->internal_elf_sym.st_value == 0)
5878 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
5879 else
5880 sym.st_value = type_ptr->internal_elf_sym.st_value;
5881 sym.st_shndx = _bfd_elf_section_from_bfd_section
5882 (abfd, syms[idx]->section);
5883 }
5884 else
5885 {
5886 asection *sec = syms[idx]->section;
5887 int shndx;
5888
5889 if (sec->output_section)
5890 {
5891 value += sec->output_offset;
5892 sec = sec->output_section;
5893 }
5894
5895 /* Don't add in the section vma for relocatable output. */
5896 if (! relocatable_p)
5897 value += sec->vma;
5898 sym.st_value = value;
5899 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
5900
5901 if (bfd_is_abs_section (sec)
5902 && type_ptr != NULL
5903 && type_ptr->internal_elf_sym.st_shndx != 0)
5904 {
5905 /* This symbol is in a real ELF section which we did
5906 not create as a BFD section. Undo the mapping done
5907 by copy_private_symbol_data. */
5908 shndx = type_ptr->internal_elf_sym.st_shndx;
5909 switch (shndx)
5910 {
5911 case MAP_ONESYMTAB:
5912 shndx = elf_onesymtab (abfd);
5913 break;
5914 case MAP_DYNSYMTAB:
5915 shndx = elf_dynsymtab (abfd);
5916 break;
5917 case MAP_STRTAB:
5918 shndx = elf_tdata (abfd)->strtab_section;
5919 break;
5920 case MAP_SHSTRTAB:
5921 shndx = elf_tdata (abfd)->shstrtab_section;
5922 break;
5923 case MAP_SYM_SHNDX:
5924 shndx = elf_tdata (abfd)->symtab_shndx_section;
5925 break;
5926 default:
5927 break;
5928 }
5929 }
5930 else
5931 {
5932 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
5933
5934 if (shndx == -1)
5935 {
5936 asection *sec2;
5937
5938 /* Writing this would be a hell of a lot easier if
5939 we had some decent documentation on bfd, and
5940 knew what to expect of the library, and what to
5941 demand of applications. For example, it
5942 appears that `objcopy' might not set the
5943 section of a symbol to be a section that is
5944 actually in the output file. */
5945 sec2 = bfd_get_section_by_name (abfd, sec->name);
5946 if (sec2 == NULL)
5947 {
5948 _bfd_error_handler (_("\
5949 Unable to find equivalent output section for symbol '%s' from section '%s'"),
5950 syms[idx]->name ? syms[idx]->name : "<Local sym>",
5951 sec->name);
5952 bfd_set_error (bfd_error_invalid_operation);
5953 _bfd_stringtab_free (stt);
5954 return FALSE;
5955 }
5956
5957 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
5958 BFD_ASSERT (shndx != -1);
5959 }
5960 }
5961
5962 sym.st_shndx = shndx;
5963 }
5964
5965 if ((flags & BSF_THREAD_LOCAL) != 0)
5966 type = STT_TLS;
5967 else if ((flags & BSF_FUNCTION) != 0)
5968 type = STT_FUNC;
5969 else if ((flags & BSF_OBJECT) != 0)
5970 type = STT_OBJECT;
5971 else
5972 type = STT_NOTYPE;
5973
5974 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
5975 type = STT_TLS;
5976
5977 /* Processor-specific types. */
5978 if (type_ptr != NULL
5979 && bed->elf_backend_get_symbol_type)
5980 type = ((*bed->elf_backend_get_symbol_type)
5981 (&type_ptr->internal_elf_sym, type));
5982
5983 if (flags & BSF_SECTION_SYM)
5984 {
5985 if (flags & BSF_GLOBAL)
5986 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
5987 else
5988 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
5989 }
5990 else if (bfd_is_com_section (syms[idx]->section))
5991 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
5992 else if (bfd_is_und_section (syms[idx]->section))
5993 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
5994 ? STB_WEAK
5995 : STB_GLOBAL),
5996 type);
5997 else if (flags & BSF_FILE)
5998 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
5999 else
6000 {
6001 int bind = STB_LOCAL;
6002
6003 if (flags & BSF_LOCAL)
6004 bind = STB_LOCAL;
6005 else if (flags & BSF_WEAK)
6006 bind = STB_WEAK;
6007 else if (flags & BSF_GLOBAL)
6008 bind = STB_GLOBAL;
6009
6010 sym.st_info = ELF_ST_INFO (bind, type);
6011 }
6012
6013 if (type_ptr != NULL)
6014 sym.st_other = type_ptr->internal_elf_sym.st_other;
6015 else
6016 sym.st_other = 0;
6017
6018 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6019 outbound_syms += bed->s->sizeof_sym;
6020 if (outbound_shndx != NULL)
6021 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6022 }
6023
6024 *sttp = stt;
6025 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
6026 symstrtab_hdr->sh_type = SHT_STRTAB;
6027
6028 symstrtab_hdr->sh_flags = 0;
6029 symstrtab_hdr->sh_addr = 0;
6030 symstrtab_hdr->sh_entsize = 0;
6031 symstrtab_hdr->sh_link = 0;
6032 symstrtab_hdr->sh_info = 0;
6033 symstrtab_hdr->sh_addralign = 1;
6034
6035 return TRUE;
6036 }
6037
6038 /* Return the number of bytes required to hold the symtab vector.
6039
6040 Note that we base it on the count plus 1, since we will null terminate
6041 the vector allocated based on this size. However, the ELF symbol table
6042 always has a dummy entry as symbol #0, so it ends up even. */
6043
6044 long
6045 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
6046 {
6047 long symcount;
6048 long symtab_size;
6049 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
6050
6051 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6052 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6053 if (symcount > 0)
6054 symtab_size -= sizeof (asymbol *);
6055
6056 return symtab_size;
6057 }
6058
6059 long
6060 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
6061 {
6062 long symcount;
6063 long symtab_size;
6064 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
6065
6066 if (elf_dynsymtab (abfd) == 0)
6067 {
6068 bfd_set_error (bfd_error_invalid_operation);
6069 return -1;
6070 }
6071
6072 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6073 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6074 if (symcount > 0)
6075 symtab_size -= sizeof (asymbol *);
6076
6077 return symtab_size;
6078 }
6079
6080 long
6081 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
6082 sec_ptr asect)
6083 {
6084 return (asect->reloc_count + 1) * sizeof (arelent *);
6085 }
6086
6087 /* Canonicalize the relocs. */
6088
6089 long
6090 _bfd_elf_canonicalize_reloc (bfd *abfd,
6091 sec_ptr section,
6092 arelent **relptr,
6093 asymbol **symbols)
6094 {
6095 arelent *tblptr;
6096 unsigned int i;
6097 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6098
6099 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
6100 return -1;
6101
6102 tblptr = section->relocation;
6103 for (i = 0; i < section->reloc_count; i++)
6104 *relptr++ = tblptr++;
6105
6106 *relptr = NULL;
6107
6108 return section->reloc_count;
6109 }
6110
6111 long
6112 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
6113 {
6114 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6115 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
6116
6117 if (symcount >= 0)
6118 bfd_get_symcount (abfd) = symcount;
6119 return symcount;
6120 }
6121
6122 long
6123 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
6124 asymbol **allocation)
6125 {
6126 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6127 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
6128
6129 if (symcount >= 0)
6130 bfd_get_dynamic_symcount (abfd) = symcount;
6131 return symcount;
6132 }
6133
6134 /* Return the size required for the dynamic reloc entries. Any loadable
6135 section that was actually installed in the BFD, and has type SHT_REL
6136 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
6137 dynamic reloc section. */
6138
6139 long
6140 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
6141 {
6142 long ret;
6143 asection *s;
6144
6145 if (elf_dynsymtab (abfd) == 0)
6146 {
6147 bfd_set_error (bfd_error_invalid_operation);
6148 return -1;
6149 }
6150
6151 ret = sizeof (arelent *);
6152 for (s = abfd->sections; s != NULL; s = s->next)
6153 if ((s->flags & SEC_LOAD) != 0
6154 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6155 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6156 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6157 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
6158 * sizeof (arelent *));
6159
6160 return ret;
6161 }
6162
6163 /* Canonicalize the dynamic relocation entries. Note that we return the
6164 dynamic relocations as a single block, although they are actually
6165 associated with particular sections; the interface, which was
6166 designed for SunOS style shared libraries, expects that there is only
6167 one set of dynamic relocs. Any loadable section that was actually
6168 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
6169 dynamic symbol table, is considered to be a dynamic reloc section. */
6170
6171 long
6172 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
6173 arelent **storage,
6174 asymbol **syms)
6175 {
6176 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
6177 asection *s;
6178 long ret;
6179
6180 if (elf_dynsymtab (abfd) == 0)
6181 {
6182 bfd_set_error (bfd_error_invalid_operation);
6183 return -1;
6184 }
6185
6186 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
6187 ret = 0;
6188 for (s = abfd->sections; s != NULL; s = s->next)
6189 {
6190 if ((s->flags & SEC_LOAD) != 0
6191 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6192 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6193 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6194 {
6195 arelent *p;
6196 long count, i;
6197
6198 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
6199 return -1;
6200 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
6201 p = s->relocation;
6202 for (i = 0; i < count; i++)
6203 *storage++ = p++;
6204 ret += count;
6205 }
6206 }
6207
6208 *storage = NULL;
6209
6210 return ret;
6211 }
6212 \f
6213 /* Read in the version information. */
6214
6215 bfd_boolean
6216 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
6217 {
6218 bfd_byte *contents = NULL;
6219 bfd_size_type amt;
6220 unsigned int freeidx = 0;
6221
6222 if (elf_dynverref (abfd) != 0)
6223 {
6224 Elf_Internal_Shdr *hdr;
6225 Elf_External_Verneed *everneed;
6226 Elf_Internal_Verneed *iverneed;
6227 unsigned int i;
6228
6229 hdr = &elf_tdata (abfd)->dynverref_hdr;
6230
6231 amt = (bfd_size_type) hdr->sh_info * sizeof (Elf_Internal_Verneed);
6232 elf_tdata (abfd)->verref = bfd_zalloc (abfd, amt);
6233 if (elf_tdata (abfd)->verref == NULL)
6234 goto error_return;
6235
6236 elf_tdata (abfd)->cverrefs = hdr->sh_info;
6237
6238 contents = bfd_malloc (hdr->sh_size);
6239 if (contents == NULL)
6240 goto error_return;
6241 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6242 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6243 goto error_return;
6244
6245 everneed = (Elf_External_Verneed *) contents;
6246 iverneed = elf_tdata (abfd)->verref;
6247 for (i = 0; i < hdr->sh_info; i++, iverneed++)
6248 {
6249 Elf_External_Vernaux *evernaux;
6250 Elf_Internal_Vernaux *ivernaux;
6251 unsigned int j;
6252
6253 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
6254
6255 iverneed->vn_bfd = abfd;
6256
6257 iverneed->vn_filename =
6258 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6259 iverneed->vn_file);
6260 if (iverneed->vn_filename == NULL)
6261 goto error_return;
6262
6263 amt = iverneed->vn_cnt;
6264 amt *= sizeof (Elf_Internal_Vernaux);
6265 iverneed->vn_auxptr = bfd_alloc (abfd, amt);
6266
6267 evernaux = ((Elf_External_Vernaux *)
6268 ((bfd_byte *) everneed + iverneed->vn_aux));
6269 ivernaux = iverneed->vn_auxptr;
6270 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
6271 {
6272 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
6273
6274 ivernaux->vna_nodename =
6275 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6276 ivernaux->vna_name);
6277 if (ivernaux->vna_nodename == NULL)
6278 goto error_return;
6279
6280 if (j + 1 < iverneed->vn_cnt)
6281 ivernaux->vna_nextptr = ivernaux + 1;
6282 else
6283 ivernaux->vna_nextptr = NULL;
6284
6285 evernaux = ((Elf_External_Vernaux *)
6286 ((bfd_byte *) evernaux + ivernaux->vna_next));
6287
6288 if (ivernaux->vna_other > freeidx)
6289 freeidx = ivernaux->vna_other;
6290 }
6291
6292 if (i + 1 < hdr->sh_info)
6293 iverneed->vn_nextref = iverneed + 1;
6294 else
6295 iverneed->vn_nextref = NULL;
6296
6297 everneed = ((Elf_External_Verneed *)
6298 ((bfd_byte *) everneed + iverneed->vn_next));
6299 }
6300
6301 free (contents);
6302 contents = NULL;
6303 }
6304
6305 if (elf_dynverdef (abfd) != 0)
6306 {
6307 Elf_Internal_Shdr *hdr;
6308 Elf_External_Verdef *everdef;
6309 Elf_Internal_Verdef *iverdef;
6310 Elf_Internal_Verdef *iverdefarr;
6311 Elf_Internal_Verdef iverdefmem;
6312 unsigned int i;
6313 unsigned int maxidx;
6314
6315 hdr = &elf_tdata (abfd)->dynverdef_hdr;
6316
6317 contents = bfd_malloc (hdr->sh_size);
6318 if (contents == NULL)
6319 goto error_return;
6320 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6321 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6322 goto error_return;
6323
6324 /* We know the number of entries in the section but not the maximum
6325 index. Therefore we have to run through all entries and find
6326 the maximum. */
6327 everdef = (Elf_External_Verdef *) contents;
6328 maxidx = 0;
6329 for (i = 0; i < hdr->sh_info; ++i)
6330 {
6331 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6332
6333 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
6334 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
6335
6336 everdef = ((Elf_External_Verdef *)
6337 ((bfd_byte *) everdef + iverdefmem.vd_next));
6338 }
6339
6340 if (default_imported_symver)
6341 {
6342 if (freeidx > maxidx)
6343 maxidx = ++freeidx;
6344 else
6345 freeidx = ++maxidx;
6346 }
6347 amt = (bfd_size_type) maxidx * sizeof (Elf_Internal_Verdef);
6348 elf_tdata (abfd)->verdef = bfd_zalloc (abfd, amt);
6349 if (elf_tdata (abfd)->verdef == NULL)
6350 goto error_return;
6351
6352 elf_tdata (abfd)->cverdefs = maxidx;
6353
6354 everdef = (Elf_External_Verdef *) contents;
6355 iverdefarr = elf_tdata (abfd)->verdef;
6356 for (i = 0; i < hdr->sh_info; i++)
6357 {
6358 Elf_External_Verdaux *everdaux;
6359 Elf_Internal_Verdaux *iverdaux;
6360 unsigned int j;
6361
6362 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6363
6364 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
6365 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
6366
6367 iverdef->vd_bfd = abfd;
6368
6369 amt = (bfd_size_type) iverdef->vd_cnt * sizeof (Elf_Internal_Verdaux);
6370 iverdef->vd_auxptr = bfd_alloc (abfd, amt);
6371 if (iverdef->vd_auxptr == NULL)
6372 goto error_return;
6373
6374 everdaux = ((Elf_External_Verdaux *)
6375 ((bfd_byte *) everdef + iverdef->vd_aux));
6376 iverdaux = iverdef->vd_auxptr;
6377 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
6378 {
6379 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
6380
6381 iverdaux->vda_nodename =
6382 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6383 iverdaux->vda_name);
6384 if (iverdaux->vda_nodename == NULL)
6385 goto error_return;
6386
6387 if (j + 1 < iverdef->vd_cnt)
6388 iverdaux->vda_nextptr = iverdaux + 1;
6389 else
6390 iverdaux->vda_nextptr = NULL;
6391
6392 everdaux = ((Elf_External_Verdaux *)
6393 ((bfd_byte *) everdaux + iverdaux->vda_next));
6394 }
6395
6396 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
6397
6398 if (i + 1 < hdr->sh_info)
6399 iverdef->vd_nextdef = iverdef + 1;
6400 else
6401 iverdef->vd_nextdef = NULL;
6402
6403 everdef = ((Elf_External_Verdef *)
6404 ((bfd_byte *) everdef + iverdef->vd_next));
6405 }
6406
6407 free (contents);
6408 contents = NULL;
6409 }
6410 else if (default_imported_symver)
6411 {
6412 if (freeidx < 3)
6413 freeidx = 3;
6414 else
6415 freeidx++;
6416
6417 amt = (bfd_size_type) freeidx * sizeof (Elf_Internal_Verdef);
6418 elf_tdata (abfd)->verdef = bfd_zalloc (abfd, amt);
6419 if (elf_tdata (abfd)->verdef == NULL)
6420 goto error_return;
6421
6422 elf_tdata (abfd)->cverdefs = freeidx;
6423 }
6424
6425 /* Create a default version based on the soname. */
6426 if (default_imported_symver)
6427 {
6428 Elf_Internal_Verdef *iverdef;
6429 Elf_Internal_Verdaux *iverdaux;
6430
6431 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];;
6432
6433 iverdef->vd_version = VER_DEF_CURRENT;
6434 iverdef->vd_flags = 0;
6435 iverdef->vd_ndx = freeidx;
6436 iverdef->vd_cnt = 1;
6437
6438 iverdef->vd_bfd = abfd;
6439
6440 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
6441 if (iverdef->vd_nodename == NULL)
6442 goto error_return;
6443 iverdef->vd_nextdef = NULL;
6444 amt = (bfd_size_type) sizeof (Elf_Internal_Verdaux);
6445 iverdef->vd_auxptr = bfd_alloc (abfd, amt);
6446
6447 iverdaux = iverdef->vd_auxptr;
6448 iverdaux->vda_nodename = iverdef->vd_nodename;
6449 iverdaux->vda_nextptr = NULL;
6450 }
6451
6452 return TRUE;
6453
6454 error_return:
6455 if (contents != NULL)
6456 free (contents);
6457 return FALSE;
6458 }
6459 \f
6460 asymbol *
6461 _bfd_elf_make_empty_symbol (bfd *abfd)
6462 {
6463 elf_symbol_type *newsym;
6464 bfd_size_type amt = sizeof (elf_symbol_type);
6465
6466 newsym = bfd_zalloc (abfd, amt);
6467 if (!newsym)
6468 return NULL;
6469 else
6470 {
6471 newsym->symbol.the_bfd = abfd;
6472 return &newsym->symbol;
6473 }
6474 }
6475
6476 void
6477 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
6478 asymbol *symbol,
6479 symbol_info *ret)
6480 {
6481 bfd_symbol_info (symbol, ret);
6482 }
6483
6484 /* Return whether a symbol name implies a local symbol. Most targets
6485 use this function for the is_local_label_name entry point, but some
6486 override it. */
6487
6488 bfd_boolean
6489 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
6490 const char *name)
6491 {
6492 /* Normal local symbols start with ``.L''. */
6493 if (name[0] == '.' && name[1] == 'L')
6494 return TRUE;
6495
6496 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
6497 DWARF debugging symbols starting with ``..''. */
6498 if (name[0] == '.' && name[1] == '.')
6499 return TRUE;
6500
6501 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
6502 emitting DWARF debugging output. I suspect this is actually a
6503 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
6504 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
6505 underscore to be emitted on some ELF targets). For ease of use,
6506 we treat such symbols as local. */
6507 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
6508 return TRUE;
6509
6510 return FALSE;
6511 }
6512
6513 alent *
6514 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
6515 asymbol *symbol ATTRIBUTE_UNUSED)
6516 {
6517 abort ();
6518 return NULL;
6519 }
6520
6521 bfd_boolean
6522 _bfd_elf_set_arch_mach (bfd *abfd,
6523 enum bfd_architecture arch,
6524 unsigned long machine)
6525 {
6526 /* If this isn't the right architecture for this backend, and this
6527 isn't the generic backend, fail. */
6528 if (arch != get_elf_backend_data (abfd)->arch
6529 && arch != bfd_arch_unknown
6530 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
6531 return FALSE;
6532
6533 return bfd_default_set_arch_mach (abfd, arch, machine);
6534 }
6535
6536 /* Find the function to a particular section and offset,
6537 for error reporting. */
6538
6539 static bfd_boolean
6540 elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
6541 asection *section,
6542 asymbol **symbols,
6543 bfd_vma offset,
6544 const char **filename_ptr,
6545 const char **functionname_ptr)
6546 {
6547 const char *filename;
6548 asymbol *func, *file;
6549 bfd_vma low_func;
6550 asymbol **p;
6551 /* ??? Given multiple file symbols, it is impossible to reliably
6552 choose the right file name for global symbols. File symbols are
6553 local symbols, and thus all file symbols must sort before any
6554 global symbols. The ELF spec may be interpreted to say that a
6555 file symbol must sort before other local symbols, but currently
6556 ld -r doesn't do this. So, for ld -r output, it is possible to
6557 make a better choice of file name for local symbols by ignoring
6558 file symbols appearing after a given local symbol. */
6559 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
6560
6561 filename = NULL;
6562 func = NULL;
6563 file = NULL;
6564 low_func = 0;
6565 state = nothing_seen;
6566
6567 for (p = symbols; *p != NULL; p++)
6568 {
6569 elf_symbol_type *q;
6570
6571 q = (elf_symbol_type *) *p;
6572
6573 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
6574 {
6575 default:
6576 break;
6577 case STT_FILE:
6578 file = &q->symbol;
6579 if (state == symbol_seen)
6580 state = file_after_symbol_seen;
6581 continue;
6582 case STT_SECTION:
6583 continue;
6584 case STT_NOTYPE:
6585 case STT_FUNC:
6586 if (bfd_get_section (&q->symbol) == section
6587 && q->symbol.value >= low_func
6588 && q->symbol.value <= offset)
6589 {
6590 func = (asymbol *) q;
6591 low_func = q->symbol.value;
6592 if (file == NULL)
6593 filename = NULL;
6594 else if (ELF_ST_BIND (q->internal_elf_sym.st_info) != STB_LOCAL
6595 && state == file_after_symbol_seen)
6596 filename = NULL;
6597 else
6598 filename = bfd_asymbol_name (file);
6599 }
6600 break;
6601 }
6602 if (state == nothing_seen)
6603 state = symbol_seen;
6604 }
6605
6606 if (func == NULL)
6607 return FALSE;
6608
6609 if (filename_ptr)
6610 *filename_ptr = filename;
6611 if (functionname_ptr)
6612 *functionname_ptr = bfd_asymbol_name (func);
6613
6614 return TRUE;
6615 }
6616
6617 /* Find the nearest line to a particular section and offset,
6618 for error reporting. */
6619
6620 bfd_boolean
6621 _bfd_elf_find_nearest_line (bfd *abfd,
6622 asection *section,
6623 asymbol **symbols,
6624 bfd_vma offset,
6625 const char **filename_ptr,
6626 const char **functionname_ptr,
6627 unsigned int *line_ptr)
6628 {
6629 bfd_boolean found;
6630
6631 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
6632 filename_ptr, functionname_ptr,
6633 line_ptr))
6634 {
6635 if (!*functionname_ptr)
6636 elf_find_function (abfd, section, symbols, offset,
6637 *filename_ptr ? NULL : filename_ptr,
6638 functionname_ptr);
6639
6640 return TRUE;
6641 }
6642
6643 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
6644 filename_ptr, functionname_ptr,
6645 line_ptr, 0,
6646 &elf_tdata (abfd)->dwarf2_find_line_info))
6647 {
6648 if (!*functionname_ptr)
6649 elf_find_function (abfd, section, symbols, offset,
6650 *filename_ptr ? NULL : filename_ptr,
6651 functionname_ptr);
6652
6653 return TRUE;
6654 }
6655
6656 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
6657 &found, filename_ptr,
6658 functionname_ptr, line_ptr,
6659 &elf_tdata (abfd)->line_info))
6660 return FALSE;
6661 if (found && (*functionname_ptr || *line_ptr))
6662 return TRUE;
6663
6664 if (symbols == NULL)
6665 return FALSE;
6666
6667 if (! elf_find_function (abfd, section, symbols, offset,
6668 filename_ptr, functionname_ptr))
6669 return FALSE;
6670
6671 *line_ptr = 0;
6672 return TRUE;
6673 }
6674
6675 /* After a call to bfd_find_nearest_line, successive calls to
6676 bfd_find_inliner_info can be used to get source information about
6677 each level of function inlining that terminated at the address
6678 passed to bfd_find_nearest_line. Currently this is only supported
6679 for DWARF2 with appropriate DWARF3 extensions. */
6680
6681 bfd_boolean
6682 _bfd_elf_find_inliner_info (bfd *abfd,
6683 const char **filename_ptr,
6684 const char **functionname_ptr,
6685 unsigned int *line_ptr)
6686 {
6687 bfd_boolean found;
6688 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
6689 functionname_ptr, line_ptr,
6690 & elf_tdata (abfd)->dwarf2_find_line_info);
6691 return found;
6692 }
6693
6694 int
6695 _bfd_elf_sizeof_headers (bfd *abfd, bfd_boolean reloc)
6696 {
6697 int ret;
6698
6699 ret = get_elf_backend_data (abfd)->s->sizeof_ehdr;
6700 if (! reloc)
6701 ret += get_program_header_size (abfd);
6702 return ret;
6703 }
6704
6705 bfd_boolean
6706 _bfd_elf_set_section_contents (bfd *abfd,
6707 sec_ptr section,
6708 const void *location,
6709 file_ptr offset,
6710 bfd_size_type count)
6711 {
6712 Elf_Internal_Shdr *hdr;
6713 bfd_signed_vma pos;
6714
6715 if (! abfd->output_has_begun
6716 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
6717 return FALSE;
6718
6719 hdr = &elf_section_data (section)->this_hdr;
6720 pos = hdr->sh_offset + offset;
6721 if (bfd_seek (abfd, pos, SEEK_SET) != 0
6722 || bfd_bwrite (location, count, abfd) != count)
6723 return FALSE;
6724
6725 return TRUE;
6726 }
6727
6728 void
6729 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
6730 arelent *cache_ptr ATTRIBUTE_UNUSED,
6731 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
6732 {
6733 abort ();
6734 }
6735
6736 /* Try to convert a non-ELF reloc into an ELF one. */
6737
6738 bfd_boolean
6739 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
6740 {
6741 /* Check whether we really have an ELF howto. */
6742
6743 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
6744 {
6745 bfd_reloc_code_real_type code;
6746 reloc_howto_type *howto;
6747
6748 /* Alien reloc: Try to determine its type to replace it with an
6749 equivalent ELF reloc. */
6750
6751 if (areloc->howto->pc_relative)
6752 {
6753 switch (areloc->howto->bitsize)
6754 {
6755 case 8:
6756 code = BFD_RELOC_8_PCREL;
6757 break;
6758 case 12:
6759 code = BFD_RELOC_12_PCREL;
6760 break;
6761 case 16:
6762 code = BFD_RELOC_16_PCREL;
6763 break;
6764 case 24:
6765 code = BFD_RELOC_24_PCREL;
6766 break;
6767 case 32:
6768 code = BFD_RELOC_32_PCREL;
6769 break;
6770 case 64:
6771 code = BFD_RELOC_64_PCREL;
6772 break;
6773 default:
6774 goto fail;
6775 }
6776
6777 howto = bfd_reloc_type_lookup (abfd, code);
6778
6779 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
6780 {
6781 if (howto->pcrel_offset)
6782 areloc->addend += areloc->address;
6783 else
6784 areloc->addend -= areloc->address; /* addend is unsigned!! */
6785 }
6786 }
6787 else
6788 {
6789 switch (areloc->howto->bitsize)
6790 {
6791 case 8:
6792 code = BFD_RELOC_8;
6793 break;
6794 case 14:
6795 code = BFD_RELOC_14;
6796 break;
6797 case 16:
6798 code = BFD_RELOC_16;
6799 break;
6800 case 26:
6801 code = BFD_RELOC_26;
6802 break;
6803 case 32:
6804 code = BFD_RELOC_32;
6805 break;
6806 case 64:
6807 code = BFD_RELOC_64;
6808 break;
6809 default:
6810 goto fail;
6811 }
6812
6813 howto = bfd_reloc_type_lookup (abfd, code);
6814 }
6815
6816 if (howto)
6817 areloc->howto = howto;
6818 else
6819 goto fail;
6820 }
6821
6822 return TRUE;
6823
6824 fail:
6825 (*_bfd_error_handler)
6826 (_("%B: unsupported relocation type %s"),
6827 abfd, areloc->howto->name);
6828 bfd_set_error (bfd_error_bad_value);
6829 return FALSE;
6830 }
6831
6832 bfd_boolean
6833 _bfd_elf_close_and_cleanup (bfd *abfd)
6834 {
6835 if (bfd_get_format (abfd) == bfd_object)
6836 {
6837 if (elf_shstrtab (abfd) != NULL)
6838 _bfd_elf_strtab_free (elf_shstrtab (abfd));
6839 _bfd_dwarf2_cleanup_debug_info (abfd);
6840 }
6841
6842 return _bfd_generic_close_and_cleanup (abfd);
6843 }
6844
6845 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
6846 in the relocation's offset. Thus we cannot allow any sort of sanity
6847 range-checking to interfere. There is nothing else to do in processing
6848 this reloc. */
6849
6850 bfd_reloc_status_type
6851 _bfd_elf_rel_vtable_reloc_fn
6852 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
6853 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
6854 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
6855 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
6856 {
6857 return bfd_reloc_ok;
6858 }
6859 \f
6860 /* Elf core file support. Much of this only works on native
6861 toolchains, since we rely on knowing the
6862 machine-dependent procfs structure in order to pick
6863 out details about the corefile. */
6864
6865 #ifdef HAVE_SYS_PROCFS_H
6866 # include <sys/procfs.h>
6867 #endif
6868
6869 /* FIXME: this is kinda wrong, but it's what gdb wants. */
6870
6871 static int
6872 elfcore_make_pid (bfd *abfd)
6873 {
6874 return ((elf_tdata (abfd)->core_lwpid << 16)
6875 + (elf_tdata (abfd)->core_pid));
6876 }
6877
6878 /* If there isn't a section called NAME, make one, using
6879 data from SECT. Note, this function will generate a
6880 reference to NAME, so you shouldn't deallocate or
6881 overwrite it. */
6882
6883 static bfd_boolean
6884 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
6885 {
6886 asection *sect2;
6887
6888 if (bfd_get_section_by_name (abfd, name) != NULL)
6889 return TRUE;
6890
6891 sect2 = bfd_make_section (abfd, name);
6892 if (sect2 == NULL)
6893 return FALSE;
6894
6895 sect2->size = sect->size;
6896 sect2->filepos = sect->filepos;
6897 sect2->flags = sect->flags;
6898 sect2->alignment_power = sect->alignment_power;
6899 return TRUE;
6900 }
6901
6902 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
6903 actually creates up to two pseudosections:
6904 - For the single-threaded case, a section named NAME, unless
6905 such a section already exists.
6906 - For the multi-threaded case, a section named "NAME/PID", where
6907 PID is elfcore_make_pid (abfd).
6908 Both pseudosections have identical contents. */
6909 bfd_boolean
6910 _bfd_elfcore_make_pseudosection (bfd *abfd,
6911 char *name,
6912 size_t size,
6913 ufile_ptr filepos)
6914 {
6915 char buf[100];
6916 char *threaded_name;
6917 size_t len;
6918 asection *sect;
6919
6920 /* Build the section name. */
6921
6922 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
6923 len = strlen (buf) + 1;
6924 threaded_name = bfd_alloc (abfd, len);
6925 if (threaded_name == NULL)
6926 return FALSE;
6927 memcpy (threaded_name, buf, len);
6928
6929 sect = bfd_make_section_anyway (abfd, threaded_name);
6930 if (sect == NULL)
6931 return FALSE;
6932 sect->size = size;
6933 sect->filepos = filepos;
6934 sect->flags = SEC_HAS_CONTENTS;
6935 sect->alignment_power = 2;
6936
6937 return elfcore_maybe_make_sect (abfd, name, sect);
6938 }
6939
6940 /* prstatus_t exists on:
6941 solaris 2.5+
6942 linux 2.[01] + glibc
6943 unixware 4.2
6944 */
6945
6946 #if defined (HAVE_PRSTATUS_T)
6947
6948 static bfd_boolean
6949 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
6950 {
6951 size_t size;
6952 int offset;
6953
6954 if (note->descsz == sizeof (prstatus_t))
6955 {
6956 prstatus_t prstat;
6957
6958 size = sizeof (prstat.pr_reg);
6959 offset = offsetof (prstatus_t, pr_reg);
6960 memcpy (&prstat, note->descdata, sizeof (prstat));
6961
6962 /* Do not overwrite the core signal if it
6963 has already been set by another thread. */
6964 if (elf_tdata (abfd)->core_signal == 0)
6965 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
6966 elf_tdata (abfd)->core_pid = prstat.pr_pid;
6967
6968 /* pr_who exists on:
6969 solaris 2.5+
6970 unixware 4.2
6971 pr_who doesn't exist on:
6972 linux 2.[01]
6973 */
6974 #if defined (HAVE_PRSTATUS_T_PR_WHO)
6975 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
6976 #endif
6977 }
6978 #if defined (HAVE_PRSTATUS32_T)
6979 else if (note->descsz == sizeof (prstatus32_t))
6980 {
6981 /* 64-bit host, 32-bit corefile */
6982 prstatus32_t prstat;
6983
6984 size = sizeof (prstat.pr_reg);
6985 offset = offsetof (prstatus32_t, pr_reg);
6986 memcpy (&prstat, note->descdata, sizeof (prstat));
6987
6988 /* Do not overwrite the core signal if it
6989 has already been set by another thread. */
6990 if (elf_tdata (abfd)->core_signal == 0)
6991 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
6992 elf_tdata (abfd)->core_pid = prstat.pr_pid;
6993
6994 /* pr_who exists on:
6995 solaris 2.5+
6996 unixware 4.2
6997 pr_who doesn't exist on:
6998 linux 2.[01]
6999 */
7000 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
7001 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7002 #endif
7003 }
7004 #endif /* HAVE_PRSTATUS32_T */
7005 else
7006 {
7007 /* Fail - we don't know how to handle any other
7008 note size (ie. data object type). */
7009 return TRUE;
7010 }
7011
7012 /* Make a ".reg/999" section and a ".reg" section. */
7013 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
7014 size, note->descpos + offset);
7015 }
7016 #endif /* defined (HAVE_PRSTATUS_T) */
7017
7018 /* Create a pseudosection containing the exact contents of NOTE. */
7019 static bfd_boolean
7020 elfcore_make_note_pseudosection (bfd *abfd,
7021 char *name,
7022 Elf_Internal_Note *note)
7023 {
7024 return _bfd_elfcore_make_pseudosection (abfd, name,
7025 note->descsz, note->descpos);
7026 }
7027
7028 /* There isn't a consistent prfpregset_t across platforms,
7029 but it doesn't matter, because we don't have to pick this
7030 data structure apart. */
7031
7032 static bfd_boolean
7033 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
7034 {
7035 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7036 }
7037
7038 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
7039 type of 5 (NT_PRXFPREG). Just include the whole note's contents
7040 literally. */
7041
7042 static bfd_boolean
7043 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
7044 {
7045 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
7046 }
7047
7048 #if defined (HAVE_PRPSINFO_T)
7049 typedef prpsinfo_t elfcore_psinfo_t;
7050 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
7051 typedef prpsinfo32_t elfcore_psinfo32_t;
7052 #endif
7053 #endif
7054
7055 #if defined (HAVE_PSINFO_T)
7056 typedef psinfo_t elfcore_psinfo_t;
7057 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
7058 typedef psinfo32_t elfcore_psinfo32_t;
7059 #endif
7060 #endif
7061
7062 /* return a malloc'ed copy of a string at START which is at
7063 most MAX bytes long, possibly without a terminating '\0'.
7064 the copy will always have a terminating '\0'. */
7065
7066 char *
7067 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
7068 {
7069 char *dups;
7070 char *end = memchr (start, '\0', max);
7071 size_t len;
7072
7073 if (end == NULL)
7074 len = max;
7075 else
7076 len = end - start;
7077
7078 dups = bfd_alloc (abfd, len + 1);
7079 if (dups == NULL)
7080 return NULL;
7081
7082 memcpy (dups, start, len);
7083 dups[len] = '\0';
7084
7085 return dups;
7086 }
7087
7088 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7089 static bfd_boolean
7090 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
7091 {
7092 if (note->descsz == sizeof (elfcore_psinfo_t))
7093 {
7094 elfcore_psinfo_t psinfo;
7095
7096 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7097
7098 elf_tdata (abfd)->core_program
7099 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7100 sizeof (psinfo.pr_fname));
7101
7102 elf_tdata (abfd)->core_command
7103 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7104 sizeof (psinfo.pr_psargs));
7105 }
7106 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
7107 else if (note->descsz == sizeof (elfcore_psinfo32_t))
7108 {
7109 /* 64-bit host, 32-bit corefile */
7110 elfcore_psinfo32_t psinfo;
7111
7112 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7113
7114 elf_tdata (abfd)->core_program
7115 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7116 sizeof (psinfo.pr_fname));
7117
7118 elf_tdata (abfd)->core_command
7119 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7120 sizeof (psinfo.pr_psargs));
7121 }
7122 #endif
7123
7124 else
7125 {
7126 /* Fail - we don't know how to handle any other
7127 note size (ie. data object type). */
7128 return TRUE;
7129 }
7130
7131 /* Note that for some reason, a spurious space is tacked
7132 onto the end of the args in some (at least one anyway)
7133 implementations, so strip it off if it exists. */
7134
7135 {
7136 char *command = elf_tdata (abfd)->core_command;
7137 int n = strlen (command);
7138
7139 if (0 < n && command[n - 1] == ' ')
7140 command[n - 1] = '\0';
7141 }
7142
7143 return TRUE;
7144 }
7145 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
7146
7147 #if defined (HAVE_PSTATUS_T)
7148 static bfd_boolean
7149 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
7150 {
7151 if (note->descsz == sizeof (pstatus_t)
7152 #if defined (HAVE_PXSTATUS_T)
7153 || note->descsz == sizeof (pxstatus_t)
7154 #endif
7155 )
7156 {
7157 pstatus_t pstat;
7158
7159 memcpy (&pstat, note->descdata, sizeof (pstat));
7160
7161 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7162 }
7163 #if defined (HAVE_PSTATUS32_T)
7164 else if (note->descsz == sizeof (pstatus32_t))
7165 {
7166 /* 64-bit host, 32-bit corefile */
7167 pstatus32_t pstat;
7168
7169 memcpy (&pstat, note->descdata, sizeof (pstat));
7170
7171 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7172 }
7173 #endif
7174 /* Could grab some more details from the "representative"
7175 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
7176 NT_LWPSTATUS note, presumably. */
7177
7178 return TRUE;
7179 }
7180 #endif /* defined (HAVE_PSTATUS_T) */
7181
7182 #if defined (HAVE_LWPSTATUS_T)
7183 static bfd_boolean
7184 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
7185 {
7186 lwpstatus_t lwpstat;
7187 char buf[100];
7188 char *name;
7189 size_t len;
7190 asection *sect;
7191
7192 if (note->descsz != sizeof (lwpstat)
7193 #if defined (HAVE_LWPXSTATUS_T)
7194 && note->descsz != sizeof (lwpxstatus_t)
7195 #endif
7196 )
7197 return TRUE;
7198
7199 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
7200
7201 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
7202 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
7203
7204 /* Make a ".reg/999" section. */
7205
7206 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
7207 len = strlen (buf) + 1;
7208 name = bfd_alloc (abfd, len);
7209 if (name == NULL)
7210 return FALSE;
7211 memcpy (name, buf, len);
7212
7213 sect = bfd_make_section_anyway (abfd, name);
7214 if (sect == NULL)
7215 return FALSE;
7216
7217 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7218 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
7219 sect->filepos = note->descpos
7220 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
7221 #endif
7222
7223 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7224 sect->size = sizeof (lwpstat.pr_reg);
7225 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
7226 #endif
7227
7228 sect->flags = SEC_HAS_CONTENTS;
7229 sect->alignment_power = 2;
7230
7231 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
7232 return FALSE;
7233
7234 /* Make a ".reg2/999" section */
7235
7236 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
7237 len = strlen (buf) + 1;
7238 name = bfd_alloc (abfd, len);
7239 if (name == NULL)
7240 return FALSE;
7241 memcpy (name, buf, len);
7242
7243 sect = bfd_make_section_anyway (abfd, name);
7244 if (sect == NULL)
7245 return FALSE;
7246
7247 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7248 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
7249 sect->filepos = note->descpos
7250 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
7251 #endif
7252
7253 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
7254 sect->size = sizeof (lwpstat.pr_fpreg);
7255 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
7256 #endif
7257
7258 sect->flags = SEC_HAS_CONTENTS;
7259 sect->alignment_power = 2;
7260
7261 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
7262 }
7263 #endif /* defined (HAVE_LWPSTATUS_T) */
7264
7265 #if defined (HAVE_WIN32_PSTATUS_T)
7266 static bfd_boolean
7267 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
7268 {
7269 char buf[30];
7270 char *name;
7271 size_t len;
7272 asection *sect;
7273 win32_pstatus_t pstatus;
7274
7275 if (note->descsz < sizeof (pstatus))
7276 return TRUE;
7277
7278 memcpy (&pstatus, note->descdata, sizeof (pstatus));
7279
7280 switch (pstatus.data_type)
7281 {
7282 case NOTE_INFO_PROCESS:
7283 /* FIXME: need to add ->core_command. */
7284 elf_tdata (abfd)->core_signal = pstatus.data.process_info.signal;
7285 elf_tdata (abfd)->core_pid = pstatus.data.process_info.pid;
7286 break;
7287
7288 case NOTE_INFO_THREAD:
7289 /* Make a ".reg/999" section. */
7290 sprintf (buf, ".reg/%ld", (long) pstatus.data.thread_info.tid);
7291
7292 len = strlen (buf) + 1;
7293 name = bfd_alloc (abfd, len);
7294 if (name == NULL)
7295 return FALSE;
7296
7297 memcpy (name, buf, len);
7298
7299 sect = bfd_make_section_anyway (abfd, name);
7300 if (sect == NULL)
7301 return FALSE;
7302
7303 sect->size = sizeof (pstatus.data.thread_info.thread_context);
7304 sect->filepos = (note->descpos
7305 + offsetof (struct win32_pstatus,
7306 data.thread_info.thread_context));
7307 sect->flags = SEC_HAS_CONTENTS;
7308 sect->alignment_power = 2;
7309
7310 if (pstatus.data.thread_info.is_active_thread)
7311 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
7312 return FALSE;
7313 break;
7314
7315 case NOTE_INFO_MODULE:
7316 /* Make a ".module/xxxxxxxx" section. */
7317 sprintf (buf, ".module/%08lx",
7318 (long) pstatus.data.module_info.base_address);
7319
7320 len = strlen (buf) + 1;
7321 name = bfd_alloc (abfd, len);
7322 if (name == NULL)
7323 return FALSE;
7324
7325 memcpy (name, buf, len);
7326
7327 sect = bfd_make_section_anyway (abfd, name);
7328
7329 if (sect == NULL)
7330 return FALSE;
7331
7332 sect->size = note->descsz;
7333 sect->filepos = note->descpos;
7334 sect->flags = SEC_HAS_CONTENTS;
7335 sect->alignment_power = 2;
7336 break;
7337
7338 default:
7339 return TRUE;
7340 }
7341
7342 return TRUE;
7343 }
7344 #endif /* HAVE_WIN32_PSTATUS_T */
7345
7346 static bfd_boolean
7347 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
7348 {
7349 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7350
7351 switch (note->type)
7352 {
7353 default:
7354 return TRUE;
7355
7356 case NT_PRSTATUS:
7357 if (bed->elf_backend_grok_prstatus)
7358 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
7359 return TRUE;
7360 #if defined (HAVE_PRSTATUS_T)
7361 return elfcore_grok_prstatus (abfd, note);
7362 #else
7363 return TRUE;
7364 #endif
7365
7366 #if defined (HAVE_PSTATUS_T)
7367 case NT_PSTATUS:
7368 return elfcore_grok_pstatus (abfd, note);
7369 #endif
7370
7371 #if defined (HAVE_LWPSTATUS_T)
7372 case NT_LWPSTATUS:
7373 return elfcore_grok_lwpstatus (abfd, note);
7374 #endif
7375
7376 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
7377 return elfcore_grok_prfpreg (abfd, note);
7378
7379 #if defined (HAVE_WIN32_PSTATUS_T)
7380 case NT_WIN32PSTATUS:
7381 return elfcore_grok_win32pstatus (abfd, note);
7382 #endif
7383
7384 case NT_PRXFPREG: /* Linux SSE extension */
7385 if (note->namesz == 6
7386 && strcmp (note->namedata, "LINUX") == 0)
7387 return elfcore_grok_prxfpreg (abfd, note);
7388 else
7389 return TRUE;
7390
7391 case NT_PRPSINFO:
7392 case NT_PSINFO:
7393 if (bed->elf_backend_grok_psinfo)
7394 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
7395 return TRUE;
7396 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7397 return elfcore_grok_psinfo (abfd, note);
7398 #else
7399 return TRUE;
7400 #endif
7401
7402 case NT_AUXV:
7403 {
7404 asection *sect = bfd_make_section_anyway (abfd, ".auxv");
7405
7406 if (sect == NULL)
7407 return FALSE;
7408 sect->size = note->descsz;
7409 sect->filepos = note->descpos;
7410 sect->flags = SEC_HAS_CONTENTS;
7411 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
7412
7413 return TRUE;
7414 }
7415 }
7416 }
7417
7418 static bfd_boolean
7419 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
7420 {
7421 char *cp;
7422
7423 cp = strchr (note->namedata, '@');
7424 if (cp != NULL)
7425 {
7426 *lwpidp = atoi(cp + 1);
7427 return TRUE;
7428 }
7429 return FALSE;
7430 }
7431
7432 static bfd_boolean
7433 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
7434 {
7435
7436 /* Signal number at offset 0x08. */
7437 elf_tdata (abfd)->core_signal
7438 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
7439
7440 /* Process ID at offset 0x50. */
7441 elf_tdata (abfd)->core_pid
7442 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
7443
7444 /* Command name at 0x7c (max 32 bytes, including nul). */
7445 elf_tdata (abfd)->core_command
7446 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
7447
7448 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
7449 note);
7450 }
7451
7452 static bfd_boolean
7453 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
7454 {
7455 int lwp;
7456
7457 if (elfcore_netbsd_get_lwpid (note, &lwp))
7458 elf_tdata (abfd)->core_lwpid = lwp;
7459
7460 if (note->type == NT_NETBSDCORE_PROCINFO)
7461 {
7462 /* NetBSD-specific core "procinfo". Note that we expect to
7463 find this note before any of the others, which is fine,
7464 since the kernel writes this note out first when it
7465 creates a core file. */
7466
7467 return elfcore_grok_netbsd_procinfo (abfd, note);
7468 }
7469
7470 /* As of Jan 2002 there are no other machine-independent notes
7471 defined for NetBSD core files. If the note type is less
7472 than the start of the machine-dependent note types, we don't
7473 understand it. */
7474
7475 if (note->type < NT_NETBSDCORE_FIRSTMACH)
7476 return TRUE;
7477
7478
7479 switch (bfd_get_arch (abfd))
7480 {
7481 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
7482 PT_GETFPREGS == mach+2. */
7483
7484 case bfd_arch_alpha:
7485 case bfd_arch_sparc:
7486 switch (note->type)
7487 {
7488 case NT_NETBSDCORE_FIRSTMACH+0:
7489 return elfcore_make_note_pseudosection (abfd, ".reg", note);
7490
7491 case NT_NETBSDCORE_FIRSTMACH+2:
7492 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7493
7494 default:
7495 return TRUE;
7496 }
7497
7498 /* On all other arch's, PT_GETREGS == mach+1 and
7499 PT_GETFPREGS == mach+3. */
7500
7501 default:
7502 switch (note->type)
7503 {
7504 case NT_NETBSDCORE_FIRSTMACH+1:
7505 return elfcore_make_note_pseudosection (abfd, ".reg", note);
7506
7507 case NT_NETBSDCORE_FIRSTMACH+3:
7508 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7509
7510 default:
7511 return TRUE;
7512 }
7513 }
7514 /* NOTREACHED */
7515 }
7516
7517 static bfd_boolean
7518 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, pid_t *tid)
7519 {
7520 void *ddata = note->descdata;
7521 char buf[100];
7522 char *name;
7523 asection *sect;
7524 short sig;
7525 unsigned flags;
7526
7527 /* nto_procfs_status 'pid' field is at offset 0. */
7528 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
7529
7530 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
7531 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
7532
7533 /* nto_procfs_status 'flags' field is at offset 8. */
7534 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
7535
7536 /* nto_procfs_status 'what' field is at offset 14. */
7537 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
7538 {
7539 elf_tdata (abfd)->core_signal = sig;
7540 elf_tdata (abfd)->core_lwpid = *tid;
7541 }
7542
7543 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
7544 do not come from signals so we make sure we set the current
7545 thread just in case. */
7546 if (flags & 0x00000080)
7547 elf_tdata (abfd)->core_lwpid = *tid;
7548
7549 /* Make a ".qnx_core_status/%d" section. */
7550 sprintf (buf, ".qnx_core_status/%ld", (long) *tid);
7551
7552 name = bfd_alloc (abfd, strlen (buf) + 1);
7553 if (name == NULL)
7554 return FALSE;
7555 strcpy (name, buf);
7556
7557 sect = bfd_make_section_anyway (abfd, name);
7558 if (sect == NULL)
7559 return FALSE;
7560
7561 sect->size = note->descsz;
7562 sect->filepos = note->descpos;
7563 sect->flags = SEC_HAS_CONTENTS;
7564 sect->alignment_power = 2;
7565
7566 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
7567 }
7568
7569 static bfd_boolean
7570 elfcore_grok_nto_regs (bfd *abfd,
7571 Elf_Internal_Note *note,
7572 pid_t tid,
7573 char *base)
7574 {
7575 char buf[100];
7576 char *name;
7577 asection *sect;
7578
7579 /* Make a "(base)/%d" section. */
7580 sprintf (buf, "%s/%ld", base, (long) tid);
7581
7582 name = bfd_alloc (abfd, strlen (buf) + 1);
7583 if (name == NULL)
7584 return FALSE;
7585 strcpy (name, buf);
7586
7587 sect = bfd_make_section_anyway (abfd, name);
7588 if (sect == NULL)
7589 return FALSE;
7590
7591 sect->size = note->descsz;
7592 sect->filepos = note->descpos;
7593 sect->flags = SEC_HAS_CONTENTS;
7594 sect->alignment_power = 2;
7595
7596 /* This is the current thread. */
7597 if (elf_tdata (abfd)->core_lwpid == tid)
7598 return elfcore_maybe_make_sect (abfd, base, sect);
7599
7600 return TRUE;
7601 }
7602
7603 #define BFD_QNT_CORE_INFO 7
7604 #define BFD_QNT_CORE_STATUS 8
7605 #define BFD_QNT_CORE_GREG 9
7606 #define BFD_QNT_CORE_FPREG 10
7607
7608 static bfd_boolean
7609 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
7610 {
7611 /* Every GREG section has a STATUS section before it. Store the
7612 tid from the previous call to pass down to the next gregs
7613 function. */
7614 static pid_t tid = 1;
7615
7616 switch (note->type)
7617 {
7618 case BFD_QNT_CORE_INFO:
7619 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
7620 case BFD_QNT_CORE_STATUS:
7621 return elfcore_grok_nto_status (abfd, note, &tid);
7622 case BFD_QNT_CORE_GREG:
7623 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
7624 case BFD_QNT_CORE_FPREG:
7625 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
7626 default:
7627 return TRUE;
7628 }
7629 }
7630
7631 /* Function: elfcore_write_note
7632
7633 Inputs:
7634 buffer to hold note
7635 name of note
7636 type of note
7637 data for note
7638 size of data for note
7639
7640 Return:
7641 End of buffer containing note. */
7642
7643 char *
7644 elfcore_write_note (bfd *abfd,
7645 char *buf,
7646 int *bufsiz,
7647 const char *name,
7648 int type,
7649 const void *input,
7650 int size)
7651 {
7652 Elf_External_Note *xnp;
7653 size_t namesz;
7654 size_t pad;
7655 size_t newspace;
7656 char *p, *dest;
7657
7658 namesz = 0;
7659 pad = 0;
7660 if (name != NULL)
7661 {
7662 const struct elf_backend_data *bed;
7663
7664 namesz = strlen (name) + 1;
7665 bed = get_elf_backend_data (abfd);
7666 pad = -namesz & ((1 << bed->s->log_file_align) - 1);
7667 }
7668
7669 newspace = 12 + namesz + pad + size;
7670
7671 p = realloc (buf, *bufsiz + newspace);
7672 dest = p + *bufsiz;
7673 *bufsiz += newspace;
7674 xnp = (Elf_External_Note *) dest;
7675 H_PUT_32 (abfd, namesz, xnp->namesz);
7676 H_PUT_32 (abfd, size, xnp->descsz);
7677 H_PUT_32 (abfd, type, xnp->type);
7678 dest = xnp->name;
7679 if (name != NULL)
7680 {
7681 memcpy (dest, name, namesz);
7682 dest += namesz;
7683 while (pad != 0)
7684 {
7685 *dest++ = '\0';
7686 --pad;
7687 }
7688 }
7689 memcpy (dest, input, size);
7690 return p;
7691 }
7692
7693 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7694 char *
7695 elfcore_write_prpsinfo (bfd *abfd,
7696 char *buf,
7697 int *bufsiz,
7698 const char *fname,
7699 const char *psargs)
7700 {
7701 int note_type;
7702 char *note_name = "CORE";
7703
7704 #if defined (HAVE_PSINFO_T)
7705 psinfo_t data;
7706 note_type = NT_PSINFO;
7707 #else
7708 prpsinfo_t data;
7709 note_type = NT_PRPSINFO;
7710 #endif
7711
7712 memset (&data, 0, sizeof (data));
7713 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
7714 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
7715 return elfcore_write_note (abfd, buf, bufsiz,
7716 note_name, note_type, &data, sizeof (data));
7717 }
7718 #endif /* PSINFO_T or PRPSINFO_T */
7719
7720 #if defined (HAVE_PRSTATUS_T)
7721 char *
7722 elfcore_write_prstatus (bfd *abfd,
7723 char *buf,
7724 int *bufsiz,
7725 long pid,
7726 int cursig,
7727 const void *gregs)
7728 {
7729 prstatus_t prstat;
7730 char *note_name = "CORE";
7731
7732 memset (&prstat, 0, sizeof (prstat));
7733 prstat.pr_pid = pid;
7734 prstat.pr_cursig = cursig;
7735 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
7736 return elfcore_write_note (abfd, buf, bufsiz,
7737 note_name, NT_PRSTATUS, &prstat, sizeof (prstat));
7738 }
7739 #endif /* HAVE_PRSTATUS_T */
7740
7741 #if defined (HAVE_LWPSTATUS_T)
7742 char *
7743 elfcore_write_lwpstatus (bfd *abfd,
7744 char *buf,
7745 int *bufsiz,
7746 long pid,
7747 int cursig,
7748 const void *gregs)
7749 {
7750 lwpstatus_t lwpstat;
7751 char *note_name = "CORE";
7752
7753 memset (&lwpstat, 0, sizeof (lwpstat));
7754 lwpstat.pr_lwpid = pid >> 16;
7755 lwpstat.pr_cursig = cursig;
7756 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7757 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
7758 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7759 #if !defined(gregs)
7760 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
7761 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
7762 #else
7763 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
7764 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
7765 #endif
7766 #endif
7767 return elfcore_write_note (abfd, buf, bufsiz, note_name,
7768 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
7769 }
7770 #endif /* HAVE_LWPSTATUS_T */
7771
7772 #if defined (HAVE_PSTATUS_T)
7773 char *
7774 elfcore_write_pstatus (bfd *abfd,
7775 char *buf,
7776 int *bufsiz,
7777 long pid,
7778 int cursig,
7779 const void *gregs)
7780 {
7781 pstatus_t pstat;
7782 char *note_name = "CORE";
7783
7784 memset (&pstat, 0, sizeof (pstat));
7785 pstat.pr_pid = pid & 0xffff;
7786 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
7787 NT_PSTATUS, &pstat, sizeof (pstat));
7788 return buf;
7789 }
7790 #endif /* HAVE_PSTATUS_T */
7791
7792 char *
7793 elfcore_write_prfpreg (bfd *abfd,
7794 char *buf,
7795 int *bufsiz,
7796 const void *fpregs,
7797 int size)
7798 {
7799 char *note_name = "CORE";
7800 return elfcore_write_note (abfd, buf, bufsiz,
7801 note_name, NT_FPREGSET, fpregs, size);
7802 }
7803
7804 char *
7805 elfcore_write_prxfpreg (bfd *abfd,
7806 char *buf,
7807 int *bufsiz,
7808 const void *xfpregs,
7809 int size)
7810 {
7811 char *note_name = "LINUX";
7812 return elfcore_write_note (abfd, buf, bufsiz,
7813 note_name, NT_PRXFPREG, xfpregs, size);
7814 }
7815
7816 static bfd_boolean
7817 elfcore_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
7818 {
7819 char *buf;
7820 char *p;
7821
7822 if (size <= 0)
7823 return TRUE;
7824
7825 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
7826 return FALSE;
7827
7828 buf = bfd_malloc (size);
7829 if (buf == NULL)
7830 return FALSE;
7831
7832 if (bfd_bread (buf, size, abfd) != size)
7833 {
7834 error:
7835 free (buf);
7836 return FALSE;
7837 }
7838
7839 p = buf;
7840 while (p < buf + size)
7841 {
7842 /* FIXME: bad alignment assumption. */
7843 Elf_External_Note *xnp = (Elf_External_Note *) p;
7844 Elf_Internal_Note in;
7845
7846 in.type = H_GET_32 (abfd, xnp->type);
7847
7848 in.namesz = H_GET_32 (abfd, xnp->namesz);
7849 in.namedata = xnp->name;
7850
7851 in.descsz = H_GET_32 (abfd, xnp->descsz);
7852 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
7853 in.descpos = offset + (in.descdata - buf);
7854
7855 if (strncmp (in.namedata, "NetBSD-CORE", 11) == 0)
7856 {
7857 if (! elfcore_grok_netbsd_note (abfd, &in))
7858 goto error;
7859 }
7860 else if (strncmp (in.namedata, "QNX", 3) == 0)
7861 {
7862 if (! elfcore_grok_nto_note (abfd, &in))
7863 goto error;
7864 }
7865 else
7866 {
7867 if (! elfcore_grok_note (abfd, &in))
7868 goto error;
7869 }
7870
7871 p = in.descdata + BFD_ALIGN (in.descsz, 4);
7872 }
7873
7874 free (buf);
7875 return TRUE;
7876 }
7877 \f
7878 /* Providing external access to the ELF program header table. */
7879
7880 /* Return an upper bound on the number of bytes required to store a
7881 copy of ABFD's program header table entries. Return -1 if an error
7882 occurs; bfd_get_error will return an appropriate code. */
7883
7884 long
7885 bfd_get_elf_phdr_upper_bound (bfd *abfd)
7886 {
7887 if (abfd->xvec->flavour != bfd_target_elf_flavour)
7888 {
7889 bfd_set_error (bfd_error_wrong_format);
7890 return -1;
7891 }
7892
7893 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
7894 }
7895
7896 /* Copy ABFD's program header table entries to *PHDRS. The entries
7897 will be stored as an array of Elf_Internal_Phdr structures, as
7898 defined in include/elf/internal.h. To find out how large the
7899 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
7900
7901 Return the number of program header table entries read, or -1 if an
7902 error occurs; bfd_get_error will return an appropriate code. */
7903
7904 int
7905 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
7906 {
7907 int num_phdrs;
7908
7909 if (abfd->xvec->flavour != bfd_target_elf_flavour)
7910 {
7911 bfd_set_error (bfd_error_wrong_format);
7912 return -1;
7913 }
7914
7915 num_phdrs = elf_elfheader (abfd)->e_phnum;
7916 memcpy (phdrs, elf_tdata (abfd)->phdr,
7917 num_phdrs * sizeof (Elf_Internal_Phdr));
7918
7919 return num_phdrs;
7920 }
7921
7922 void
7923 _bfd_elf_sprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, char *buf, bfd_vma value)
7924 {
7925 #ifdef BFD64
7926 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
7927
7928 i_ehdrp = elf_elfheader (abfd);
7929 if (i_ehdrp == NULL)
7930 sprintf_vma (buf, value);
7931 else
7932 {
7933 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
7934 {
7935 #if BFD_HOST_64BIT_LONG
7936 sprintf (buf, "%016lx", value);
7937 #else
7938 sprintf (buf, "%08lx%08lx", _bfd_int64_high (value),
7939 _bfd_int64_low (value));
7940 #endif
7941 }
7942 else
7943 sprintf (buf, "%08lx", (unsigned long) (value & 0xffffffff));
7944 }
7945 #else
7946 sprintf_vma (buf, value);
7947 #endif
7948 }
7949
7950 void
7951 _bfd_elf_fprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, void *stream, bfd_vma value)
7952 {
7953 #ifdef BFD64
7954 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
7955
7956 i_ehdrp = elf_elfheader (abfd);
7957 if (i_ehdrp == NULL)
7958 fprintf_vma ((FILE *) stream, value);
7959 else
7960 {
7961 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
7962 {
7963 #if BFD_HOST_64BIT_LONG
7964 fprintf ((FILE *) stream, "%016lx", value);
7965 #else
7966 fprintf ((FILE *) stream, "%08lx%08lx",
7967 _bfd_int64_high (value), _bfd_int64_low (value));
7968 #endif
7969 }
7970 else
7971 fprintf ((FILE *) stream, "%08lx",
7972 (unsigned long) (value & 0xffffffff));
7973 }
7974 #else
7975 fprintf_vma ((FILE *) stream, value);
7976 #endif
7977 }
7978
7979 enum elf_reloc_type_class
7980 _bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
7981 {
7982 return reloc_class_normal;
7983 }
7984
7985 /* For RELA architectures, return the relocation value for a
7986 relocation against a local symbol. */
7987
7988 bfd_vma
7989 _bfd_elf_rela_local_sym (bfd *abfd,
7990 Elf_Internal_Sym *sym,
7991 asection **psec,
7992 Elf_Internal_Rela *rel)
7993 {
7994 asection *sec = *psec;
7995 bfd_vma relocation;
7996
7997 relocation = (sec->output_section->vma
7998 + sec->output_offset
7999 + sym->st_value);
8000 if ((sec->flags & SEC_MERGE)
8001 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
8002 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
8003 {
8004 rel->r_addend =
8005 _bfd_merged_section_offset (abfd, psec,
8006 elf_section_data (sec)->sec_info,
8007 sym->st_value + rel->r_addend);
8008 if (sec != *psec)
8009 {
8010 /* If we have changed the section, and our original section is
8011 marked with SEC_EXCLUDE, it means that the original
8012 SEC_MERGE section has been completely subsumed in some
8013 other SEC_MERGE section. In this case, we need to leave
8014 some info around for --emit-relocs. */
8015 if ((sec->flags & SEC_EXCLUDE) != 0)
8016 sec->kept_section = *psec;
8017 sec = *psec;
8018 }
8019 rel->r_addend -= relocation;
8020 rel->r_addend += sec->output_section->vma + sec->output_offset;
8021 }
8022 return relocation;
8023 }
8024
8025 bfd_vma
8026 _bfd_elf_rel_local_sym (bfd *abfd,
8027 Elf_Internal_Sym *sym,
8028 asection **psec,
8029 bfd_vma addend)
8030 {
8031 asection *sec = *psec;
8032
8033 if (sec->sec_info_type != ELF_INFO_TYPE_MERGE)
8034 return sym->st_value + addend;
8035
8036 return _bfd_merged_section_offset (abfd, psec,
8037 elf_section_data (sec)->sec_info,
8038 sym->st_value + addend);
8039 }
8040
8041 bfd_vma
8042 _bfd_elf_section_offset (bfd *abfd,
8043 struct bfd_link_info *info,
8044 asection *sec,
8045 bfd_vma offset)
8046 {
8047 switch (sec->sec_info_type)
8048 {
8049 case ELF_INFO_TYPE_STABS:
8050 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
8051 offset);
8052 case ELF_INFO_TYPE_EH_FRAME:
8053 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
8054 default:
8055 return offset;
8056 }
8057 }
8058 \f
8059 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
8060 reconstruct an ELF file by reading the segments out of remote memory
8061 based on the ELF file header at EHDR_VMA and the ELF program headers it
8062 points to. If not null, *LOADBASEP is filled in with the difference
8063 between the VMAs from which the segments were read, and the VMAs the
8064 file headers (and hence BFD's idea of each section's VMA) put them at.
8065
8066 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
8067 remote memory at target address VMA into the local buffer at MYADDR; it
8068 should return zero on success or an `errno' code on failure. TEMPL must
8069 be a BFD for an ELF target with the word size and byte order found in
8070 the remote memory. */
8071
8072 bfd *
8073 bfd_elf_bfd_from_remote_memory
8074 (bfd *templ,
8075 bfd_vma ehdr_vma,
8076 bfd_vma *loadbasep,
8077 int (*target_read_memory) (bfd_vma, bfd_byte *, int))
8078 {
8079 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
8080 (templ, ehdr_vma, loadbasep, target_read_memory);
8081 }
8082 \f
8083 long
8084 _bfd_elf_get_synthetic_symtab (bfd *abfd,
8085 long symcount ATTRIBUTE_UNUSED,
8086 asymbol **syms ATTRIBUTE_UNUSED,
8087 long dynsymcount,
8088 asymbol **dynsyms,
8089 asymbol **ret)
8090 {
8091 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8092 asection *relplt;
8093 asymbol *s;
8094 const char *relplt_name;
8095 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
8096 arelent *p;
8097 long count, i, n;
8098 size_t size;
8099 Elf_Internal_Shdr *hdr;
8100 char *names;
8101 asection *plt;
8102
8103 *ret = NULL;
8104
8105 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
8106 return 0;
8107
8108 if (dynsymcount <= 0)
8109 return 0;
8110
8111 if (!bed->plt_sym_val)
8112 return 0;
8113
8114 relplt_name = bed->relplt_name;
8115 if (relplt_name == NULL)
8116 relplt_name = bed->default_use_rela_p ? ".rela.plt" : ".rel.plt";
8117 relplt = bfd_get_section_by_name (abfd, relplt_name);
8118 if (relplt == NULL)
8119 return 0;
8120
8121 hdr = &elf_section_data (relplt)->this_hdr;
8122 if (hdr->sh_link != elf_dynsymtab (abfd)
8123 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
8124 return 0;
8125
8126 plt = bfd_get_section_by_name (abfd, ".plt");
8127 if (plt == NULL)
8128 return 0;
8129
8130 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
8131 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
8132 return -1;
8133
8134 count = relplt->size / hdr->sh_entsize;
8135 size = count * sizeof (asymbol);
8136 p = relplt->relocation;
8137 for (i = 0; i < count; i++, s++, p++)
8138 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
8139
8140 s = *ret = bfd_malloc (size);
8141 if (s == NULL)
8142 return -1;
8143
8144 names = (char *) (s + count);
8145 p = relplt->relocation;
8146 n = 0;
8147 for (i = 0; i < count; i++, s++, p++)
8148 {
8149 size_t len;
8150 bfd_vma addr;
8151
8152 addr = bed->plt_sym_val (i, plt, p);
8153 if (addr == (bfd_vma) -1)
8154 continue;
8155
8156 *s = **p->sym_ptr_ptr;
8157 s->section = plt;
8158 s->value = addr - plt->vma;
8159 s->name = names;
8160 len = strlen ((*p->sym_ptr_ptr)->name);
8161 memcpy (names, (*p->sym_ptr_ptr)->name, len);
8162 names += len;
8163 memcpy (names, "@plt", sizeof ("@plt"));
8164 names += sizeof ("@plt");
8165 ++n;
8166 }
8167
8168 return n;
8169 }
8170
8171 /* Sort symbol by binding and section. We want to put definitions
8172 sorted by section at the beginning. */
8173
8174 static int
8175 elf_sort_elf_symbol (const void *arg1, const void *arg2)
8176 {
8177 const Elf_Internal_Sym *s1;
8178 const Elf_Internal_Sym *s2;
8179 int shndx;
8180
8181 /* Make sure that undefined symbols are at the end. */
8182 s1 = (const Elf_Internal_Sym *) arg1;
8183 if (s1->st_shndx == SHN_UNDEF)
8184 return 1;
8185 s2 = (const Elf_Internal_Sym *) arg2;
8186 if (s2->st_shndx == SHN_UNDEF)
8187 return -1;
8188
8189 /* Sorted by section index. */
8190 shndx = s1->st_shndx - s2->st_shndx;
8191 if (shndx != 0)
8192 return shndx;
8193
8194 /* Sorted by binding. */
8195 return ELF_ST_BIND (s1->st_info) - ELF_ST_BIND (s2->st_info);
8196 }
8197
8198 struct elf_symbol
8199 {
8200 Elf_Internal_Sym *sym;
8201 const char *name;
8202 };
8203
8204 static int
8205 elf_sym_name_compare (const void *arg1, const void *arg2)
8206 {
8207 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
8208 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
8209 return strcmp (s1->name, s2->name);
8210 }
8211
8212 /* Check if 2 sections define the same set of local and global
8213 symbols. */
8214
8215 bfd_boolean
8216 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2)
8217 {
8218 bfd *bfd1, *bfd2;
8219 const struct elf_backend_data *bed1, *bed2;
8220 Elf_Internal_Shdr *hdr1, *hdr2;
8221 bfd_size_type symcount1, symcount2;
8222 Elf_Internal_Sym *isymbuf1, *isymbuf2;
8223 Elf_Internal_Sym *isymstart1 = NULL, *isymstart2 = NULL, *isym;
8224 Elf_Internal_Sym *isymend;
8225 struct elf_symbol *symp, *symtable1 = NULL, *symtable2 = NULL;
8226 bfd_size_type count1, count2, i;
8227 int shndx1, shndx2;
8228 bfd_boolean result;
8229
8230 bfd1 = sec1->owner;
8231 bfd2 = sec2->owner;
8232
8233 /* If both are .gnu.linkonce sections, they have to have the same
8234 section name. */
8235 if (strncmp (sec1->name, ".gnu.linkonce",
8236 sizeof ".gnu.linkonce" - 1) == 0
8237 && strncmp (sec2->name, ".gnu.linkonce",
8238 sizeof ".gnu.linkonce" - 1) == 0)
8239 return strcmp (sec1->name + sizeof ".gnu.linkonce",
8240 sec2->name + sizeof ".gnu.linkonce") == 0;
8241
8242 /* Both sections have to be in ELF. */
8243 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
8244 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
8245 return FALSE;
8246
8247 if (elf_section_type (sec1) != elf_section_type (sec2))
8248 return FALSE;
8249
8250 if ((elf_section_flags (sec1) & SHF_GROUP) != 0
8251 && (elf_section_flags (sec2) & SHF_GROUP) != 0)
8252 {
8253 /* If both are members of section groups, they have to have the
8254 same group name. */
8255 if (strcmp (elf_group_name (sec1), elf_group_name (sec2)) != 0)
8256 return FALSE;
8257 }
8258
8259 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
8260 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
8261 if (shndx1 == -1 || shndx2 == -1)
8262 return FALSE;
8263
8264 bed1 = get_elf_backend_data (bfd1);
8265 bed2 = get_elf_backend_data (bfd2);
8266 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
8267 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
8268 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
8269 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
8270
8271 if (symcount1 == 0 || symcount2 == 0)
8272 return FALSE;
8273
8274 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
8275 NULL, NULL, NULL);
8276 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
8277 NULL, NULL, NULL);
8278
8279 result = FALSE;
8280 if (isymbuf1 == NULL || isymbuf2 == NULL)
8281 goto done;
8282
8283 /* Sort symbols by binding and section. Global definitions are at
8284 the beginning. */
8285 qsort (isymbuf1, symcount1, sizeof (Elf_Internal_Sym),
8286 elf_sort_elf_symbol);
8287 qsort (isymbuf2, symcount2, sizeof (Elf_Internal_Sym),
8288 elf_sort_elf_symbol);
8289
8290 /* Count definitions in the section. */
8291 count1 = 0;
8292 for (isym = isymbuf1, isymend = isym + symcount1;
8293 isym < isymend; isym++)
8294 {
8295 if (isym->st_shndx == (unsigned int) shndx1)
8296 {
8297 if (count1 == 0)
8298 isymstart1 = isym;
8299 count1++;
8300 }
8301
8302 if (count1 && isym->st_shndx != (unsigned int) shndx1)
8303 break;
8304 }
8305
8306 count2 = 0;
8307 for (isym = isymbuf2, isymend = isym + symcount2;
8308 isym < isymend; isym++)
8309 {
8310 if (isym->st_shndx == (unsigned int) shndx2)
8311 {
8312 if (count2 == 0)
8313 isymstart2 = isym;
8314 count2++;
8315 }
8316
8317 if (count2 && isym->st_shndx != (unsigned int) shndx2)
8318 break;
8319 }
8320
8321 if (count1 == 0 || count2 == 0 || count1 != count2)
8322 goto done;
8323
8324 symtable1 = bfd_malloc (count1 * sizeof (struct elf_symbol));
8325 symtable2 = bfd_malloc (count1 * sizeof (struct elf_symbol));
8326
8327 if (symtable1 == NULL || symtable2 == NULL)
8328 goto done;
8329
8330 symp = symtable1;
8331 for (isym = isymstart1, isymend = isym + count1;
8332 isym < isymend; isym++)
8333 {
8334 symp->sym = isym;
8335 symp->name = bfd_elf_string_from_elf_section (bfd1,
8336 hdr1->sh_link,
8337 isym->st_name);
8338 symp++;
8339 }
8340
8341 symp = symtable2;
8342 for (isym = isymstart2, isymend = isym + count1;
8343 isym < isymend; isym++)
8344 {
8345 symp->sym = isym;
8346 symp->name = bfd_elf_string_from_elf_section (bfd2,
8347 hdr2->sh_link,
8348 isym->st_name);
8349 symp++;
8350 }
8351
8352 /* Sort symbol by name. */
8353 qsort (symtable1, count1, sizeof (struct elf_symbol),
8354 elf_sym_name_compare);
8355 qsort (symtable2, count1, sizeof (struct elf_symbol),
8356 elf_sym_name_compare);
8357
8358 for (i = 0; i < count1; i++)
8359 /* Two symbols must have the same binding, type and name. */
8360 if (symtable1 [i].sym->st_info != symtable2 [i].sym->st_info
8361 || symtable1 [i].sym->st_other != symtable2 [i].sym->st_other
8362 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
8363 goto done;
8364
8365 result = TRUE;
8366
8367 done:
8368 if (symtable1)
8369 free (symtable1);
8370 if (symtable2)
8371 free (symtable2);
8372 if (isymbuf1)
8373 free (isymbuf1);
8374 if (isymbuf2)
8375 free (isymbuf2);
8376
8377 return result;
8378 }