Fix seg-fault running strip on a corrupt binary.
[binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright (C) 1993-2016 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22
23 /*
24 SECTION
25 ELF backends
26
27 BFD support for ELF formats is being worked on.
28 Currently, the best supported back ends are for sparc and i386
29 (running svr4 or Solaris 2).
30
31 Documentation of the internals of the support code still needs
32 to be written. The code is changing quickly enough that we
33 haven't bothered yet. */
34
35 /* For sparc64-cross-sparc32. */
36 #define _SYSCALL32
37 #include "sysdep.h"
38 #include "bfd.h"
39 #include "bfdlink.h"
40 #include "libbfd.h"
41 #define ARCH_SIZE 0
42 #include "elf-bfd.h"
43 #include "libiberty.h"
44 #include "safe-ctype.h"
45 #include "elf-linux-core.h"
46
47 #ifdef CORE_HEADER
48 #include CORE_HEADER
49 #endif
50
51 static int elf_sort_sections (const void *, const void *);
52 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
53 static bfd_boolean prep_headers (bfd *);
54 static bfd_boolean swap_out_syms (bfd *, struct elf_strtab_hash **, int) ;
55 static bfd_boolean elf_read_notes (bfd *, file_ptr, bfd_size_type) ;
56 static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
57 file_ptr offset);
58
59 /* Swap version information in and out. The version information is
60 currently size independent. If that ever changes, this code will
61 need to move into elfcode.h. */
62
63 /* Swap in a Verdef structure. */
64
65 void
66 _bfd_elf_swap_verdef_in (bfd *abfd,
67 const Elf_External_Verdef *src,
68 Elf_Internal_Verdef *dst)
69 {
70 dst->vd_version = H_GET_16 (abfd, src->vd_version);
71 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
72 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
73 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
74 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
75 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
76 dst->vd_next = H_GET_32 (abfd, src->vd_next);
77 }
78
79 /* Swap out a Verdef structure. */
80
81 void
82 _bfd_elf_swap_verdef_out (bfd *abfd,
83 const Elf_Internal_Verdef *src,
84 Elf_External_Verdef *dst)
85 {
86 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
87 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
88 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
89 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
90 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
91 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
92 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
93 }
94
95 /* Swap in a Verdaux structure. */
96
97 void
98 _bfd_elf_swap_verdaux_in (bfd *abfd,
99 const Elf_External_Verdaux *src,
100 Elf_Internal_Verdaux *dst)
101 {
102 dst->vda_name = H_GET_32 (abfd, src->vda_name);
103 dst->vda_next = H_GET_32 (abfd, src->vda_next);
104 }
105
106 /* Swap out a Verdaux structure. */
107
108 void
109 _bfd_elf_swap_verdaux_out (bfd *abfd,
110 const Elf_Internal_Verdaux *src,
111 Elf_External_Verdaux *dst)
112 {
113 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
114 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
115 }
116
117 /* Swap in a Verneed structure. */
118
119 void
120 _bfd_elf_swap_verneed_in (bfd *abfd,
121 const Elf_External_Verneed *src,
122 Elf_Internal_Verneed *dst)
123 {
124 dst->vn_version = H_GET_16 (abfd, src->vn_version);
125 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
126 dst->vn_file = H_GET_32 (abfd, src->vn_file);
127 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
128 dst->vn_next = H_GET_32 (abfd, src->vn_next);
129 }
130
131 /* Swap out a Verneed structure. */
132
133 void
134 _bfd_elf_swap_verneed_out (bfd *abfd,
135 const Elf_Internal_Verneed *src,
136 Elf_External_Verneed *dst)
137 {
138 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
139 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
140 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
141 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
142 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
143 }
144
145 /* Swap in a Vernaux structure. */
146
147 void
148 _bfd_elf_swap_vernaux_in (bfd *abfd,
149 const Elf_External_Vernaux *src,
150 Elf_Internal_Vernaux *dst)
151 {
152 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
153 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
154 dst->vna_other = H_GET_16 (abfd, src->vna_other);
155 dst->vna_name = H_GET_32 (abfd, src->vna_name);
156 dst->vna_next = H_GET_32 (abfd, src->vna_next);
157 }
158
159 /* Swap out a Vernaux structure. */
160
161 void
162 _bfd_elf_swap_vernaux_out (bfd *abfd,
163 const Elf_Internal_Vernaux *src,
164 Elf_External_Vernaux *dst)
165 {
166 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
167 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
168 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
169 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
170 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
171 }
172
173 /* Swap in a Versym structure. */
174
175 void
176 _bfd_elf_swap_versym_in (bfd *abfd,
177 const Elf_External_Versym *src,
178 Elf_Internal_Versym *dst)
179 {
180 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
181 }
182
183 /* Swap out a Versym structure. */
184
185 void
186 _bfd_elf_swap_versym_out (bfd *abfd,
187 const Elf_Internal_Versym *src,
188 Elf_External_Versym *dst)
189 {
190 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
191 }
192
193 /* Standard ELF hash function. Do not change this function; you will
194 cause invalid hash tables to be generated. */
195
196 unsigned long
197 bfd_elf_hash (const char *namearg)
198 {
199 const unsigned char *name = (const unsigned char *) namearg;
200 unsigned long h = 0;
201 unsigned long g;
202 int ch;
203
204 while ((ch = *name++) != '\0')
205 {
206 h = (h << 4) + ch;
207 if ((g = (h & 0xf0000000)) != 0)
208 {
209 h ^= g >> 24;
210 /* The ELF ABI says `h &= ~g', but this is equivalent in
211 this case and on some machines one insn instead of two. */
212 h ^= g;
213 }
214 }
215 return h & 0xffffffff;
216 }
217
218 /* DT_GNU_HASH hash function. Do not change this function; you will
219 cause invalid hash tables to be generated. */
220
221 unsigned long
222 bfd_elf_gnu_hash (const char *namearg)
223 {
224 const unsigned char *name = (const unsigned char *) namearg;
225 unsigned long h = 5381;
226 unsigned char ch;
227
228 while ((ch = *name++) != '\0')
229 h = (h << 5) + h + ch;
230 return h & 0xffffffff;
231 }
232
233 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
234 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
235 bfd_boolean
236 bfd_elf_allocate_object (bfd *abfd,
237 size_t object_size,
238 enum elf_target_id object_id)
239 {
240 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
241 abfd->tdata.any = bfd_zalloc (abfd, object_size);
242 if (abfd->tdata.any == NULL)
243 return FALSE;
244
245 elf_object_id (abfd) = object_id;
246 if (abfd->direction != read_direction)
247 {
248 struct output_elf_obj_tdata *o = bfd_zalloc (abfd, sizeof *o);
249 if (o == NULL)
250 return FALSE;
251 elf_tdata (abfd)->o = o;
252 elf_program_header_size (abfd) = (bfd_size_type) -1;
253 }
254 return TRUE;
255 }
256
257
258 bfd_boolean
259 bfd_elf_make_object (bfd *abfd)
260 {
261 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
262 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
263 bed->target_id);
264 }
265
266 bfd_boolean
267 bfd_elf_mkcorefile (bfd *abfd)
268 {
269 /* I think this can be done just like an object file. */
270 if (!abfd->xvec->_bfd_set_format[(int) bfd_object] (abfd))
271 return FALSE;
272 elf_tdata (abfd)->core = bfd_zalloc (abfd, sizeof (*elf_tdata (abfd)->core));
273 return elf_tdata (abfd)->core != NULL;
274 }
275
276 static char *
277 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
278 {
279 Elf_Internal_Shdr **i_shdrp;
280 bfd_byte *shstrtab = NULL;
281 file_ptr offset;
282 bfd_size_type shstrtabsize;
283
284 i_shdrp = elf_elfsections (abfd);
285 if (i_shdrp == 0
286 || shindex >= elf_numsections (abfd)
287 || i_shdrp[shindex] == 0)
288 return NULL;
289
290 shstrtab = i_shdrp[shindex]->contents;
291 if (shstrtab == NULL)
292 {
293 /* No cached one, attempt to read, and cache what we read. */
294 offset = i_shdrp[shindex]->sh_offset;
295 shstrtabsize = i_shdrp[shindex]->sh_size;
296
297 /* Allocate and clear an extra byte at the end, to prevent crashes
298 in case the string table is not terminated. */
299 if (shstrtabsize + 1 <= 1
300 || bfd_seek (abfd, offset, SEEK_SET) != 0
301 || (shstrtab = (bfd_byte *) bfd_alloc (abfd, shstrtabsize + 1)) == NULL)
302 shstrtab = NULL;
303 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
304 {
305 if (bfd_get_error () != bfd_error_system_call)
306 bfd_set_error (bfd_error_file_truncated);
307 bfd_release (abfd, shstrtab);
308 shstrtab = NULL;
309 /* Once we've failed to read it, make sure we don't keep
310 trying. Otherwise, we'll keep allocating space for
311 the string table over and over. */
312 i_shdrp[shindex]->sh_size = 0;
313 }
314 else
315 shstrtab[shstrtabsize] = '\0';
316 i_shdrp[shindex]->contents = shstrtab;
317 }
318 return (char *) shstrtab;
319 }
320
321 char *
322 bfd_elf_string_from_elf_section (bfd *abfd,
323 unsigned int shindex,
324 unsigned int strindex)
325 {
326 Elf_Internal_Shdr *hdr;
327
328 if (strindex == 0)
329 return "";
330
331 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
332 return NULL;
333
334 hdr = elf_elfsections (abfd)[shindex];
335
336 if (hdr->contents == NULL)
337 {
338 if (hdr->sh_type != SHT_STRTAB && hdr->sh_type < SHT_LOOS)
339 {
340 /* PR 17512: file: f057ec89. */
341 /* xgettext:c-format */
342 _bfd_error_handler (_("%B: attempt to load strings from a non-string section (number %d)"),
343 abfd, shindex);
344 return NULL;
345 }
346
347 if (bfd_elf_get_str_section (abfd, shindex) == NULL)
348 return NULL;
349 }
350
351 if (strindex >= hdr->sh_size)
352 {
353 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
354 _bfd_error_handler
355 /* xgettext:c-format */
356 (_("%B: invalid string offset %u >= %lu for section `%s'"),
357 abfd, strindex, (unsigned long) hdr->sh_size,
358 (shindex == shstrndx && strindex == hdr->sh_name
359 ? ".shstrtab"
360 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
361 return NULL;
362 }
363
364 return ((char *) hdr->contents) + strindex;
365 }
366
367 /* Read and convert symbols to internal format.
368 SYMCOUNT specifies the number of symbols to read, starting from
369 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
370 are non-NULL, they are used to store the internal symbols, external
371 symbols, and symbol section index extensions, respectively.
372 Returns a pointer to the internal symbol buffer (malloced if necessary)
373 or NULL if there were no symbols or some kind of problem. */
374
375 Elf_Internal_Sym *
376 bfd_elf_get_elf_syms (bfd *ibfd,
377 Elf_Internal_Shdr *symtab_hdr,
378 size_t symcount,
379 size_t symoffset,
380 Elf_Internal_Sym *intsym_buf,
381 void *extsym_buf,
382 Elf_External_Sym_Shndx *extshndx_buf)
383 {
384 Elf_Internal_Shdr *shndx_hdr;
385 void *alloc_ext;
386 const bfd_byte *esym;
387 Elf_External_Sym_Shndx *alloc_extshndx;
388 Elf_External_Sym_Shndx *shndx;
389 Elf_Internal_Sym *alloc_intsym;
390 Elf_Internal_Sym *isym;
391 Elf_Internal_Sym *isymend;
392 const struct elf_backend_data *bed;
393 size_t extsym_size;
394 bfd_size_type amt;
395 file_ptr pos;
396
397 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
398 abort ();
399
400 if (symcount == 0)
401 return intsym_buf;
402
403 /* Normal syms might have section extension entries. */
404 shndx_hdr = NULL;
405 if (elf_symtab_shndx_list (ibfd) != NULL)
406 {
407 elf_section_list * entry;
408 Elf_Internal_Shdr **sections = elf_elfsections (ibfd);
409
410 /* Find an index section that is linked to this symtab section. */
411 for (entry = elf_symtab_shndx_list (ibfd); entry != NULL; entry = entry->next)
412 {
413 /* PR 20063. */
414 if (entry->hdr.sh_link >= elf_numsections (ibfd))
415 continue;
416
417 if (sections[entry->hdr.sh_link] == symtab_hdr)
418 {
419 shndx_hdr = & entry->hdr;
420 break;
421 };
422 }
423
424 if (shndx_hdr == NULL)
425 {
426 if (symtab_hdr == & elf_symtab_hdr (ibfd))
427 /* Not really accurate, but this was how the old code used to work. */
428 shndx_hdr = & elf_symtab_shndx_list (ibfd)->hdr;
429 /* Otherwise we do nothing. The assumption is that
430 the index table will not be needed. */
431 }
432 }
433
434 /* Read the symbols. */
435 alloc_ext = NULL;
436 alloc_extshndx = NULL;
437 alloc_intsym = NULL;
438 bed = get_elf_backend_data (ibfd);
439 extsym_size = bed->s->sizeof_sym;
440 amt = (bfd_size_type) symcount * extsym_size;
441 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
442 if (extsym_buf == NULL)
443 {
444 alloc_ext = bfd_malloc2 (symcount, extsym_size);
445 extsym_buf = alloc_ext;
446 }
447 if (extsym_buf == NULL
448 || bfd_seek (ibfd, pos, SEEK_SET) != 0
449 || bfd_bread (extsym_buf, amt, ibfd) != amt)
450 {
451 intsym_buf = NULL;
452 goto out;
453 }
454
455 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
456 extshndx_buf = NULL;
457 else
458 {
459 amt = (bfd_size_type) symcount * sizeof (Elf_External_Sym_Shndx);
460 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
461 if (extshndx_buf == NULL)
462 {
463 alloc_extshndx = (Elf_External_Sym_Shndx *)
464 bfd_malloc2 (symcount, sizeof (Elf_External_Sym_Shndx));
465 extshndx_buf = alloc_extshndx;
466 }
467 if (extshndx_buf == NULL
468 || bfd_seek (ibfd, pos, SEEK_SET) != 0
469 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
470 {
471 intsym_buf = NULL;
472 goto out;
473 }
474 }
475
476 if (intsym_buf == NULL)
477 {
478 alloc_intsym = (Elf_Internal_Sym *)
479 bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
480 intsym_buf = alloc_intsym;
481 if (intsym_buf == NULL)
482 goto out;
483 }
484
485 /* Convert the symbols to internal form. */
486 isymend = intsym_buf + symcount;
487 for (esym = (const bfd_byte *) extsym_buf, isym = intsym_buf,
488 shndx = extshndx_buf;
489 isym < isymend;
490 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
491 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
492 {
493 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
494 /* xgettext:c-format */
495 _bfd_error_handler (_("%B symbol number %lu references "
496 "nonexistent SHT_SYMTAB_SHNDX section"),
497 ibfd, (unsigned long) symoffset);
498 if (alloc_intsym != NULL)
499 free (alloc_intsym);
500 intsym_buf = NULL;
501 goto out;
502 }
503
504 out:
505 if (alloc_ext != NULL)
506 free (alloc_ext);
507 if (alloc_extshndx != NULL)
508 free (alloc_extshndx);
509
510 return intsym_buf;
511 }
512
513 /* Look up a symbol name. */
514 const char *
515 bfd_elf_sym_name (bfd *abfd,
516 Elf_Internal_Shdr *symtab_hdr,
517 Elf_Internal_Sym *isym,
518 asection *sym_sec)
519 {
520 const char *name;
521 unsigned int iname = isym->st_name;
522 unsigned int shindex = symtab_hdr->sh_link;
523
524 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
525 /* Check for a bogus st_shndx to avoid crashing. */
526 && isym->st_shndx < elf_numsections (abfd))
527 {
528 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
529 shindex = elf_elfheader (abfd)->e_shstrndx;
530 }
531
532 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
533 if (name == NULL)
534 name = "(null)";
535 else if (sym_sec && *name == '\0')
536 name = bfd_section_name (abfd, sym_sec);
537
538 return name;
539 }
540
541 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
542 sections. The first element is the flags, the rest are section
543 pointers. */
544
545 typedef union elf_internal_group {
546 Elf_Internal_Shdr *shdr;
547 unsigned int flags;
548 } Elf_Internal_Group;
549
550 /* Return the name of the group signature symbol. Why isn't the
551 signature just a string? */
552
553 static const char *
554 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
555 {
556 Elf_Internal_Shdr *hdr;
557 unsigned char esym[sizeof (Elf64_External_Sym)];
558 Elf_External_Sym_Shndx eshndx;
559 Elf_Internal_Sym isym;
560
561 /* First we need to ensure the symbol table is available. Make sure
562 that it is a symbol table section. */
563 if (ghdr->sh_link >= elf_numsections (abfd))
564 return NULL;
565 hdr = elf_elfsections (abfd) [ghdr->sh_link];
566 if (hdr->sh_type != SHT_SYMTAB
567 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
568 return NULL;
569
570 /* Go read the symbol. */
571 hdr = &elf_tdata (abfd)->symtab_hdr;
572 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
573 &isym, esym, &eshndx) == NULL)
574 return NULL;
575
576 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
577 }
578
579 /* Set next_in_group list pointer, and group name for NEWSECT. */
580
581 static bfd_boolean
582 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
583 {
584 unsigned int num_group = elf_tdata (abfd)->num_group;
585
586 /* If num_group is zero, read in all SHT_GROUP sections. The count
587 is set to -1 if there are no SHT_GROUP sections. */
588 if (num_group == 0)
589 {
590 unsigned int i, shnum;
591
592 /* First count the number of groups. If we have a SHT_GROUP
593 section with just a flag word (ie. sh_size is 4), ignore it. */
594 shnum = elf_numsections (abfd);
595 num_group = 0;
596
597 #define IS_VALID_GROUP_SECTION_HEADER(shdr, minsize) \
598 ( (shdr)->sh_type == SHT_GROUP \
599 && (shdr)->sh_size >= minsize \
600 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
601 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
602
603 for (i = 0; i < shnum; i++)
604 {
605 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
606
607 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
608 num_group += 1;
609 }
610
611 if (num_group == 0)
612 {
613 num_group = (unsigned) -1;
614 elf_tdata (abfd)->num_group = num_group;
615 }
616 else
617 {
618 /* We keep a list of elf section headers for group sections,
619 so we can find them quickly. */
620 bfd_size_type amt;
621
622 elf_tdata (abfd)->num_group = num_group;
623 elf_tdata (abfd)->group_sect_ptr = (Elf_Internal_Shdr **)
624 bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
625 if (elf_tdata (abfd)->group_sect_ptr == NULL)
626 return FALSE;
627
628 num_group = 0;
629 for (i = 0; i < shnum; i++)
630 {
631 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
632
633 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
634 {
635 unsigned char *src;
636 Elf_Internal_Group *dest;
637
638 /* Add to list of sections. */
639 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
640 num_group += 1;
641
642 /* Read the raw contents. */
643 BFD_ASSERT (sizeof (*dest) >= 4);
644 amt = shdr->sh_size * sizeof (*dest) / 4;
645 shdr->contents = (unsigned char *)
646 bfd_alloc2 (abfd, shdr->sh_size, sizeof (*dest) / 4);
647 /* PR binutils/4110: Handle corrupt group headers. */
648 if (shdr->contents == NULL)
649 {
650 _bfd_error_handler
651 /* xgettext:c-format */
652 (_("%B: corrupt size field in group section header: 0x%lx"), abfd, shdr->sh_size);
653 bfd_set_error (bfd_error_bad_value);
654 -- num_group;
655 continue;
656 }
657
658 memset (shdr->contents, 0, amt);
659
660 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
661 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
662 != shdr->sh_size))
663 {
664 _bfd_error_handler
665 /* xgettext:c-format */
666 (_("%B: invalid size field in group section header: 0x%lx"), abfd, shdr->sh_size);
667 bfd_set_error (bfd_error_bad_value);
668 -- num_group;
669 /* PR 17510: If the group contents are even partially
670 corrupt, do not allow any of the contents to be used. */
671 memset (shdr->contents, 0, amt);
672 continue;
673 }
674
675 /* Translate raw contents, a flag word followed by an
676 array of elf section indices all in target byte order,
677 to the flag word followed by an array of elf section
678 pointers. */
679 src = shdr->contents + shdr->sh_size;
680 dest = (Elf_Internal_Group *) (shdr->contents + amt);
681
682 while (1)
683 {
684 unsigned int idx;
685
686 src -= 4;
687 --dest;
688 idx = H_GET_32 (abfd, src);
689 if (src == shdr->contents)
690 {
691 dest->flags = idx;
692 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
693 shdr->bfd_section->flags
694 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
695 break;
696 }
697 if (idx >= shnum)
698 {
699 _bfd_error_handler
700 (_("%B: invalid SHT_GROUP entry"), abfd);
701 idx = 0;
702 }
703 dest->shdr = elf_elfsections (abfd)[idx];
704 }
705 }
706 }
707
708 /* PR 17510: Corrupt binaries might contain invalid groups. */
709 if (num_group != (unsigned) elf_tdata (abfd)->num_group)
710 {
711 elf_tdata (abfd)->num_group = num_group;
712
713 /* If all groups are invalid then fail. */
714 if (num_group == 0)
715 {
716 elf_tdata (abfd)->group_sect_ptr = NULL;
717 elf_tdata (abfd)->num_group = num_group = -1;
718 _bfd_error_handler
719 (_("%B: no valid group sections found"), abfd);
720 bfd_set_error (bfd_error_bad_value);
721 }
722 }
723 }
724 }
725
726 if (num_group != (unsigned) -1)
727 {
728 unsigned int i;
729
730 for (i = 0; i < num_group; i++)
731 {
732 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
733 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
734 unsigned int n_elt = shdr->sh_size / 4;
735
736 /* Look through this group's sections to see if current
737 section is a member. */
738 while (--n_elt != 0)
739 if ((++idx)->shdr == hdr)
740 {
741 asection *s = NULL;
742
743 /* We are a member of this group. Go looking through
744 other members to see if any others are linked via
745 next_in_group. */
746 idx = (Elf_Internal_Group *) shdr->contents;
747 n_elt = shdr->sh_size / 4;
748 while (--n_elt != 0)
749 if ((s = (++idx)->shdr->bfd_section) != NULL
750 && elf_next_in_group (s) != NULL)
751 break;
752 if (n_elt != 0)
753 {
754 /* Snarf the group name from other member, and
755 insert current section in circular list. */
756 elf_group_name (newsect) = elf_group_name (s);
757 elf_next_in_group (newsect) = elf_next_in_group (s);
758 elf_next_in_group (s) = newsect;
759 }
760 else
761 {
762 const char *gname;
763
764 gname = group_signature (abfd, shdr);
765 if (gname == NULL)
766 return FALSE;
767 elf_group_name (newsect) = gname;
768
769 /* Start a circular list with one element. */
770 elf_next_in_group (newsect) = newsect;
771 }
772
773 /* If the group section has been created, point to the
774 new member. */
775 if (shdr->bfd_section != NULL)
776 elf_next_in_group (shdr->bfd_section) = newsect;
777
778 i = num_group - 1;
779 break;
780 }
781 }
782 }
783
784 if (elf_group_name (newsect) == NULL)
785 {
786 /* xgettext:c-format */
787 _bfd_error_handler (_("%B: no group info for section %A"),
788 abfd, newsect);
789 return FALSE;
790 }
791 return TRUE;
792 }
793
794 bfd_boolean
795 _bfd_elf_setup_sections (bfd *abfd)
796 {
797 unsigned int i;
798 unsigned int num_group = elf_tdata (abfd)->num_group;
799 bfd_boolean result = TRUE;
800 asection *s;
801
802 /* Process SHF_LINK_ORDER. */
803 for (s = abfd->sections; s != NULL; s = s->next)
804 {
805 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
806 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
807 {
808 unsigned int elfsec = this_hdr->sh_link;
809 /* FIXME: The old Intel compiler and old strip/objcopy may
810 not set the sh_link or sh_info fields. Hence we could
811 get the situation where elfsec is 0. */
812 if (elfsec == 0)
813 {
814 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
815 if (bed->link_order_error_handler)
816 bed->link_order_error_handler
817 /* xgettext:c-format */
818 (_("%B: warning: sh_link not set for section `%A'"),
819 abfd, s);
820 }
821 else
822 {
823 asection *linksec = NULL;
824
825 if (elfsec < elf_numsections (abfd))
826 {
827 this_hdr = elf_elfsections (abfd)[elfsec];
828 linksec = this_hdr->bfd_section;
829 }
830
831 /* PR 1991, 2008:
832 Some strip/objcopy may leave an incorrect value in
833 sh_link. We don't want to proceed. */
834 if (linksec == NULL)
835 {
836 _bfd_error_handler
837 /* xgettext:c-format */
838 (_("%B: sh_link [%d] in section `%A' is incorrect"),
839 s->owner, s, elfsec);
840 result = FALSE;
841 }
842
843 elf_linked_to_section (s) = linksec;
844 }
845 }
846 else if (this_hdr->sh_type == SHT_GROUP
847 && elf_next_in_group (s) == NULL)
848 {
849 _bfd_error_handler
850 /* xgettext:c-format */
851 (_("%B: SHT_GROUP section [index %d] has no SHF_GROUP sections"),
852 abfd, elf_section_data (s)->this_idx);
853 result = FALSE;
854 }
855 }
856
857 /* Process section groups. */
858 if (num_group == (unsigned) -1)
859 return result;
860
861 for (i = 0; i < num_group; i++)
862 {
863 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
864 Elf_Internal_Group *idx;
865 unsigned int n_elt;
866
867 /* PR binutils/18758: Beware of corrupt binaries with invalid group data. */
868 if (shdr == NULL || shdr->bfd_section == NULL || shdr->contents == NULL)
869 {
870 _bfd_error_handler
871 /* xgettext:c-format */
872 (_("%B: section group entry number %u is corrupt"),
873 abfd, i);
874 result = FALSE;
875 continue;
876 }
877
878 idx = (Elf_Internal_Group *) shdr->contents;
879 n_elt = shdr->sh_size / 4;
880
881 while (--n_elt != 0)
882 if ((++idx)->shdr->bfd_section)
883 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
884 else if (idx->shdr->sh_type == SHT_RELA
885 || idx->shdr->sh_type == SHT_REL)
886 /* We won't include relocation sections in section groups in
887 output object files. We adjust the group section size here
888 so that relocatable link will work correctly when
889 relocation sections are in section group in input object
890 files. */
891 shdr->bfd_section->size -= 4;
892 else
893 {
894 /* There are some unknown sections in the group. */
895 _bfd_error_handler
896 /* xgettext:c-format */
897 (_("%B: unknown [%d] section `%s' in group [%s]"),
898 abfd,
899 (unsigned int) idx->shdr->sh_type,
900 bfd_elf_string_from_elf_section (abfd,
901 (elf_elfheader (abfd)
902 ->e_shstrndx),
903 idx->shdr->sh_name),
904 shdr->bfd_section->name);
905 result = FALSE;
906 }
907 }
908 return result;
909 }
910
911 bfd_boolean
912 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
913 {
914 return elf_next_in_group (sec) != NULL;
915 }
916
917 static char *
918 convert_debug_to_zdebug (bfd *abfd, const char *name)
919 {
920 unsigned int len = strlen (name);
921 char *new_name = bfd_alloc (abfd, len + 2);
922 if (new_name == NULL)
923 return NULL;
924 new_name[0] = '.';
925 new_name[1] = 'z';
926 memcpy (new_name + 2, name + 1, len);
927 return new_name;
928 }
929
930 static char *
931 convert_zdebug_to_debug (bfd *abfd, const char *name)
932 {
933 unsigned int len = strlen (name);
934 char *new_name = bfd_alloc (abfd, len);
935 if (new_name == NULL)
936 return NULL;
937 new_name[0] = '.';
938 memcpy (new_name + 1, name + 2, len - 1);
939 return new_name;
940 }
941
942 /* Make a BFD section from an ELF section. We store a pointer to the
943 BFD section in the bfd_section field of the header. */
944
945 bfd_boolean
946 _bfd_elf_make_section_from_shdr (bfd *abfd,
947 Elf_Internal_Shdr *hdr,
948 const char *name,
949 int shindex)
950 {
951 asection *newsect;
952 flagword flags;
953 const struct elf_backend_data *bed;
954
955 if (hdr->bfd_section != NULL)
956 return TRUE;
957
958 newsect = bfd_make_section_anyway (abfd, name);
959 if (newsect == NULL)
960 return FALSE;
961
962 hdr->bfd_section = newsect;
963 elf_section_data (newsect)->this_hdr = *hdr;
964 elf_section_data (newsect)->this_idx = shindex;
965
966 /* Always use the real type/flags. */
967 elf_section_type (newsect) = hdr->sh_type;
968 elf_section_flags (newsect) = hdr->sh_flags;
969
970 newsect->filepos = hdr->sh_offset;
971
972 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
973 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
974 || ! bfd_set_section_alignment (abfd, newsect,
975 bfd_log2 (hdr->sh_addralign)))
976 return FALSE;
977
978 flags = SEC_NO_FLAGS;
979 if (hdr->sh_type != SHT_NOBITS)
980 flags |= SEC_HAS_CONTENTS;
981 if (hdr->sh_type == SHT_GROUP)
982 flags |= SEC_GROUP | SEC_EXCLUDE;
983 if ((hdr->sh_flags & SHF_ALLOC) != 0)
984 {
985 flags |= SEC_ALLOC;
986 if (hdr->sh_type != SHT_NOBITS)
987 flags |= SEC_LOAD;
988 }
989 if ((hdr->sh_flags & SHF_WRITE) == 0)
990 flags |= SEC_READONLY;
991 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
992 flags |= SEC_CODE;
993 else if ((flags & SEC_LOAD) != 0)
994 flags |= SEC_DATA;
995 if ((hdr->sh_flags & SHF_MERGE) != 0)
996 {
997 flags |= SEC_MERGE;
998 newsect->entsize = hdr->sh_entsize;
999 }
1000 if ((hdr->sh_flags & SHF_STRINGS) != 0)
1001 flags |= SEC_STRINGS;
1002 if (hdr->sh_flags & SHF_GROUP)
1003 if (!setup_group (abfd, hdr, newsect))
1004 return FALSE;
1005 if ((hdr->sh_flags & SHF_TLS) != 0)
1006 flags |= SEC_THREAD_LOCAL;
1007 if ((hdr->sh_flags & SHF_EXCLUDE) != 0)
1008 flags |= SEC_EXCLUDE;
1009
1010 if ((flags & SEC_ALLOC) == 0)
1011 {
1012 /* The debugging sections appear to be recognized only by name,
1013 not any sort of flag. Their SEC_ALLOC bits are cleared. */
1014 if (name [0] == '.')
1015 {
1016 const char *p;
1017 int n;
1018 if (name[1] == 'd')
1019 p = ".debug", n = 6;
1020 else if (name[1] == 'g' && name[2] == 'n')
1021 p = ".gnu.linkonce.wi.", n = 17;
1022 else if (name[1] == 'g' && name[2] == 'd')
1023 p = ".gdb_index", n = 11; /* yes we really do mean 11. */
1024 else if (name[1] == 'l')
1025 p = ".line", n = 5;
1026 else if (name[1] == 's')
1027 p = ".stab", n = 5;
1028 else if (name[1] == 'z')
1029 p = ".zdebug", n = 7;
1030 else
1031 p = NULL, n = 0;
1032 if (p != NULL && strncmp (name, p, n) == 0)
1033 flags |= SEC_DEBUGGING;
1034 }
1035 }
1036
1037 /* As a GNU extension, if the name begins with .gnu.linkonce, we
1038 only link a single copy of the section. This is used to support
1039 g++. g++ will emit each template expansion in its own section.
1040 The symbols will be defined as weak, so that multiple definitions
1041 are permitted. The GNU linker extension is to actually discard
1042 all but one of the sections. */
1043 if (CONST_STRNEQ (name, ".gnu.linkonce")
1044 && elf_next_in_group (newsect) == NULL)
1045 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1046
1047 bed = get_elf_backend_data (abfd);
1048 if (bed->elf_backend_section_flags)
1049 if (! bed->elf_backend_section_flags (&flags, hdr))
1050 return FALSE;
1051
1052 if (! bfd_set_section_flags (abfd, newsect, flags))
1053 return FALSE;
1054
1055 /* We do not parse the PT_NOTE segments as we are interested even in the
1056 separate debug info files which may have the segments offsets corrupted.
1057 PT_NOTEs from the core files are currently not parsed using BFD. */
1058 if (hdr->sh_type == SHT_NOTE)
1059 {
1060 bfd_byte *contents;
1061
1062 if (!bfd_malloc_and_get_section (abfd, newsect, &contents))
1063 return FALSE;
1064
1065 elf_parse_notes (abfd, (char *) contents, hdr->sh_size, hdr->sh_offset);
1066 free (contents);
1067 }
1068
1069 if ((flags & SEC_ALLOC) != 0)
1070 {
1071 Elf_Internal_Phdr *phdr;
1072 unsigned int i, nload;
1073
1074 /* Some ELF linkers produce binaries with all the program header
1075 p_paddr fields zero. If we have such a binary with more than
1076 one PT_LOAD header, then leave the section lma equal to vma
1077 so that we don't create sections with overlapping lma. */
1078 phdr = elf_tdata (abfd)->phdr;
1079 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1080 if (phdr->p_paddr != 0)
1081 break;
1082 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
1083 ++nload;
1084 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
1085 return TRUE;
1086
1087 phdr = elf_tdata (abfd)->phdr;
1088 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1089 {
1090 if (((phdr->p_type == PT_LOAD
1091 && (hdr->sh_flags & SHF_TLS) == 0)
1092 || phdr->p_type == PT_TLS)
1093 && ELF_SECTION_IN_SEGMENT (hdr, phdr))
1094 {
1095 if ((flags & SEC_LOAD) == 0)
1096 newsect->lma = (phdr->p_paddr
1097 + hdr->sh_addr - phdr->p_vaddr);
1098 else
1099 /* We used to use the same adjustment for SEC_LOAD
1100 sections, but that doesn't work if the segment
1101 is packed with code from multiple VMAs.
1102 Instead we calculate the section LMA based on
1103 the segment LMA. It is assumed that the
1104 segment will contain sections with contiguous
1105 LMAs, even if the VMAs are not. */
1106 newsect->lma = (phdr->p_paddr
1107 + hdr->sh_offset - phdr->p_offset);
1108
1109 /* With contiguous segments, we can't tell from file
1110 offsets whether a section with zero size should
1111 be placed at the end of one segment or the
1112 beginning of the next. Decide based on vaddr. */
1113 if (hdr->sh_addr >= phdr->p_vaddr
1114 && (hdr->sh_addr + hdr->sh_size
1115 <= phdr->p_vaddr + phdr->p_memsz))
1116 break;
1117 }
1118 }
1119 }
1120
1121 /* Compress/decompress DWARF debug sections with names: .debug_* and
1122 .zdebug_*, after the section flags is set. */
1123 if ((flags & SEC_DEBUGGING)
1124 && ((name[1] == 'd' && name[6] == '_')
1125 || (name[1] == 'z' && name[7] == '_')))
1126 {
1127 enum { nothing, compress, decompress } action = nothing;
1128 int compression_header_size;
1129 bfd_size_type uncompressed_size;
1130 bfd_boolean compressed
1131 = bfd_is_section_compressed_with_header (abfd, newsect,
1132 &compression_header_size,
1133 &uncompressed_size);
1134
1135 if (compressed)
1136 {
1137 /* Compressed section. Check if we should decompress. */
1138 if ((abfd->flags & BFD_DECOMPRESS))
1139 action = decompress;
1140 }
1141
1142 /* Compress the uncompressed section or convert from/to .zdebug*
1143 section. Check if we should compress. */
1144 if (action == nothing)
1145 {
1146 if (newsect->size != 0
1147 && (abfd->flags & BFD_COMPRESS)
1148 && compression_header_size >= 0
1149 && uncompressed_size > 0
1150 && (!compressed
1151 || ((compression_header_size > 0)
1152 != ((abfd->flags & BFD_COMPRESS_GABI) != 0))))
1153 action = compress;
1154 else
1155 return TRUE;
1156 }
1157
1158 if (action == compress)
1159 {
1160 if (!bfd_init_section_compress_status (abfd, newsect))
1161 {
1162 _bfd_error_handler
1163 /* xgettext:c-format */
1164 (_("%B: unable to initialize compress status for section %s"),
1165 abfd, name);
1166 return FALSE;
1167 }
1168 }
1169 else
1170 {
1171 if (!bfd_init_section_decompress_status (abfd, newsect))
1172 {
1173 _bfd_error_handler
1174 /* xgettext:c-format */
1175 (_("%B: unable to initialize decompress status for section %s"),
1176 abfd, name);
1177 return FALSE;
1178 }
1179 }
1180
1181 if (abfd->is_linker_input)
1182 {
1183 if (name[1] == 'z'
1184 && (action == decompress
1185 || (action == compress
1186 && (abfd->flags & BFD_COMPRESS_GABI) != 0)))
1187 {
1188 /* Convert section name from .zdebug_* to .debug_* so
1189 that linker will consider this section as a debug
1190 section. */
1191 char *new_name = convert_zdebug_to_debug (abfd, name);
1192 if (new_name == NULL)
1193 return FALSE;
1194 bfd_rename_section (abfd, newsect, new_name);
1195 }
1196 }
1197 else
1198 /* For objdump, don't rename the section. For objcopy, delay
1199 section rename to elf_fake_sections. */
1200 newsect->flags |= SEC_ELF_RENAME;
1201 }
1202
1203 return TRUE;
1204 }
1205
1206 const char *const bfd_elf_section_type_names[] =
1207 {
1208 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1209 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1210 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1211 };
1212
1213 /* ELF relocs are against symbols. If we are producing relocatable
1214 output, and the reloc is against an external symbol, and nothing
1215 has given us any additional addend, the resulting reloc will also
1216 be against the same symbol. In such a case, we don't want to
1217 change anything about the way the reloc is handled, since it will
1218 all be done at final link time. Rather than put special case code
1219 into bfd_perform_relocation, all the reloc types use this howto
1220 function. It just short circuits the reloc if producing
1221 relocatable output against an external symbol. */
1222
1223 bfd_reloc_status_type
1224 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1225 arelent *reloc_entry,
1226 asymbol *symbol,
1227 void *data ATTRIBUTE_UNUSED,
1228 asection *input_section,
1229 bfd *output_bfd,
1230 char **error_message ATTRIBUTE_UNUSED)
1231 {
1232 if (output_bfd != NULL
1233 && (symbol->flags & BSF_SECTION_SYM) == 0
1234 && (! reloc_entry->howto->partial_inplace
1235 || reloc_entry->addend == 0))
1236 {
1237 reloc_entry->address += input_section->output_offset;
1238 return bfd_reloc_ok;
1239 }
1240
1241 return bfd_reloc_continue;
1242 }
1243 \f
1244 /* Returns TRUE if section A matches section B.
1245 Names, addresses and links may be different, but everything else
1246 should be the same. */
1247
1248 static bfd_boolean
1249 section_match (const Elf_Internal_Shdr * a,
1250 const Elf_Internal_Shdr * b)
1251 {
1252 return
1253 a->sh_type == b->sh_type
1254 && (a->sh_flags & ~ SHF_INFO_LINK)
1255 == (b->sh_flags & ~ SHF_INFO_LINK)
1256 && a->sh_addralign == b->sh_addralign
1257 && a->sh_size == b->sh_size
1258 && a->sh_entsize == b->sh_entsize
1259 /* FIXME: Check sh_addr ? */
1260 ;
1261 }
1262
1263 /* Find a section in OBFD that has the same characteristics
1264 as IHEADER. Return the index of this section or SHN_UNDEF if
1265 none can be found. Check's section HINT first, as this is likely
1266 to be the correct section. */
1267
1268 static unsigned int
1269 find_link (const bfd * obfd, const Elf_Internal_Shdr * iheader, const unsigned int hint)
1270 {
1271 Elf_Internal_Shdr ** oheaders = elf_elfsections (obfd);
1272 unsigned int i;
1273
1274 BFD_ASSERT (iheader != NULL);
1275
1276 /* See PR 20922 for a reproducer of the NULL test. */
1277 if (oheaders[hint] != NULL
1278 && section_match (oheaders[hint], iheader))
1279 return hint;
1280
1281 for (i = 1; i < elf_numsections (obfd); i++)
1282 {
1283 Elf_Internal_Shdr * oheader = oheaders[i];
1284
1285 if (oheader == NULL)
1286 continue;
1287 if (section_match (oheader, iheader))
1288 /* FIXME: Do we care if there is a potential for
1289 multiple matches ? */
1290 return i;
1291 }
1292
1293 return SHN_UNDEF;
1294 }
1295
1296 /* PR 19938: Attempt to set the ELF section header fields of an OS or
1297 Processor specific section, based upon a matching input section.
1298 Returns TRUE upon success, FALSE otherwise. */
1299
1300 static bfd_boolean
1301 copy_special_section_fields (const bfd *ibfd,
1302 bfd *obfd,
1303 const Elf_Internal_Shdr *iheader,
1304 Elf_Internal_Shdr *oheader,
1305 const unsigned int secnum)
1306 {
1307 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
1308 const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd);
1309 bfd_boolean changed = FALSE;
1310 unsigned int sh_link;
1311
1312 if (oheader->sh_type == SHT_NOBITS)
1313 {
1314 /* This is a feature for objcopy --only-keep-debug:
1315 When a section's type is changed to NOBITS, we preserve
1316 the sh_link and sh_info fields so that they can be
1317 matched up with the original.
1318
1319 Note: Strictly speaking these assignments are wrong.
1320 The sh_link and sh_info fields should point to the
1321 relevent sections in the output BFD, which may not be in
1322 the same location as they were in the input BFD. But
1323 the whole point of this action is to preserve the
1324 original values of the sh_link and sh_info fields, so
1325 that they can be matched up with the section headers in
1326 the original file. So strictly speaking we may be
1327 creating an invalid ELF file, but it is only for a file
1328 that just contains debug info and only for sections
1329 without any contents. */
1330 if (oheader->sh_link == 0)
1331 oheader->sh_link = iheader->sh_link;
1332 if (oheader->sh_info == 0)
1333 oheader->sh_info = iheader->sh_info;
1334 return TRUE;
1335 }
1336
1337 /* Allow the target a chance to decide how these fields should be set. */
1338 if (bed->elf_backend_copy_special_section_fields != NULL
1339 && bed->elf_backend_copy_special_section_fields
1340 (ibfd, obfd, iheader, oheader))
1341 return TRUE;
1342
1343 /* We have an iheader which might match oheader, and which has non-zero
1344 sh_info and/or sh_link fields. Attempt to follow those links and find
1345 the section in the output bfd which corresponds to the linked section
1346 in the input bfd. */
1347 if (iheader->sh_link != SHN_UNDEF)
1348 {
1349 sh_link = find_link (obfd, iheaders[iheader->sh_link], iheader->sh_link);
1350 if (sh_link != SHN_UNDEF)
1351 {
1352 oheader->sh_link = sh_link;
1353 changed = TRUE;
1354 }
1355 else
1356 /* FIXME: Should we install iheader->sh_link
1357 if we could not find a match ? */
1358 (* _bfd_error_handler)
1359 /* xgettext:c-format */
1360 (_("%B: Failed to find link section for section %d"), obfd, secnum);
1361 }
1362
1363 if (iheader->sh_info)
1364 {
1365 /* The sh_info field can hold arbitrary information, but if the
1366 SHF_LINK_INFO flag is set then it should be interpreted as a
1367 section index. */
1368 if (iheader->sh_flags & SHF_INFO_LINK)
1369 {
1370 sh_link = find_link (obfd, iheaders[iheader->sh_info],
1371 iheader->sh_info);
1372 if (sh_link != SHN_UNDEF)
1373 oheader->sh_flags |= SHF_INFO_LINK;
1374 }
1375 else
1376 /* No idea what it means - just copy it. */
1377 sh_link = iheader->sh_info;
1378
1379 if (sh_link != SHN_UNDEF)
1380 {
1381 oheader->sh_info = sh_link;
1382 changed = TRUE;
1383 }
1384 else
1385 (* _bfd_error_handler)
1386 /* xgettext:c-format */
1387 (_("%B: Failed to find info section for section %d"), obfd, secnum);
1388 }
1389
1390 return changed;
1391 }
1392
1393 /* Copy the program header and other data from one object module to
1394 another. */
1395
1396 bfd_boolean
1397 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1398 {
1399 const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd);
1400 Elf_Internal_Shdr **oheaders = elf_elfsections (obfd);
1401 const struct elf_backend_data *bed;
1402 unsigned int i;
1403
1404 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1405 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1406 return TRUE;
1407
1408 if (!elf_flags_init (obfd))
1409 {
1410 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1411 elf_flags_init (obfd) = TRUE;
1412 }
1413
1414 elf_gp (obfd) = elf_gp (ibfd);
1415
1416 /* Also copy the EI_OSABI field. */
1417 elf_elfheader (obfd)->e_ident[EI_OSABI] =
1418 elf_elfheader (ibfd)->e_ident[EI_OSABI];
1419
1420 /* If set, copy the EI_ABIVERSION field. */
1421 if (elf_elfheader (ibfd)->e_ident[EI_ABIVERSION])
1422 elf_elfheader (obfd)->e_ident[EI_ABIVERSION]
1423 = elf_elfheader (ibfd)->e_ident[EI_ABIVERSION];
1424
1425 /* Copy object attributes. */
1426 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1427
1428 if (iheaders == NULL || oheaders == NULL)
1429 return TRUE;
1430
1431 bed = get_elf_backend_data (obfd);
1432
1433 /* Possibly copy other fields in the section header. */
1434 for (i = 1; i < elf_numsections (obfd); i++)
1435 {
1436 unsigned int j;
1437 Elf_Internal_Shdr * oheader = oheaders[i];
1438
1439 /* Ignore ordinary sections. SHT_NOBITS sections are considered however
1440 because of a special case need for generating separate debug info
1441 files. See below for more details. */
1442 if (oheader == NULL
1443 || (oheader->sh_type != SHT_NOBITS
1444 && oheader->sh_type < SHT_LOOS))
1445 continue;
1446
1447 /* Ignore empty sections, and sections whose
1448 fields have already been initialised. */
1449 if (oheader->sh_size == 0
1450 || (oheader->sh_info != 0 && oheader->sh_link != 0))
1451 continue;
1452
1453 /* Scan for the matching section in the input bfd.
1454 First we try for a direct mapping between the input and output sections. */
1455 for (j = 1; j < elf_numsections (ibfd); j++)
1456 {
1457 const Elf_Internal_Shdr * iheader = iheaders[j];
1458
1459 if (iheader == NULL)
1460 continue;
1461
1462 if (oheader->bfd_section != NULL
1463 && iheader->bfd_section != NULL
1464 && iheader->bfd_section->output_section != NULL
1465 && iheader->bfd_section->output_section == oheader->bfd_section)
1466 {
1467 /* We have found a connection from the input section to the
1468 output section. Attempt to copy the header fields. If
1469 this fails then do not try any further sections - there
1470 should only be a one-to-one mapping between input and output. */
1471 if (! copy_special_section_fields (ibfd, obfd, iheader, oheader, i))
1472 j = elf_numsections (ibfd);
1473 break;
1474 }
1475 }
1476
1477 if (j < elf_numsections (ibfd))
1478 continue;
1479
1480 /* That failed. So try to deduce the corresponding input section.
1481 Unfortunately we cannot compare names as the output string table
1482 is empty, so instead we check size, address and type. */
1483 for (j = 1; j < elf_numsections (ibfd); j++)
1484 {
1485 const Elf_Internal_Shdr * iheader = iheaders[j];
1486
1487 if (iheader == NULL)
1488 continue;
1489
1490 /* Try matching fields in the input section's header.
1491 Since --only-keep-debug turns all non-debug sections into
1492 SHT_NOBITS sections, the output SHT_NOBITS type matches any
1493 input type. */
1494 if ((oheader->sh_type == SHT_NOBITS
1495 || iheader->sh_type == oheader->sh_type)
1496 && (iheader->sh_flags & ~ SHF_INFO_LINK)
1497 == (oheader->sh_flags & ~ SHF_INFO_LINK)
1498 && iheader->sh_addralign == oheader->sh_addralign
1499 && iheader->sh_entsize == oheader->sh_entsize
1500 && iheader->sh_size == oheader->sh_size
1501 && iheader->sh_addr == oheader->sh_addr
1502 && (iheader->sh_info != oheader->sh_info
1503 || iheader->sh_link != oheader->sh_link))
1504 {
1505 if (copy_special_section_fields (ibfd, obfd, iheader, oheader, i))
1506 break;
1507 }
1508 }
1509
1510 if (j == elf_numsections (ibfd) && oheader->sh_type >= SHT_LOOS)
1511 {
1512 /* Final attempt. Call the backend copy function
1513 with a NULL input section. */
1514 if (bed->elf_backend_copy_special_section_fields != NULL)
1515 bed->elf_backend_copy_special_section_fields (ibfd, obfd, NULL, oheader);
1516 }
1517 }
1518
1519 return TRUE;
1520 }
1521
1522 static const char *
1523 get_segment_type (unsigned int p_type)
1524 {
1525 const char *pt;
1526 switch (p_type)
1527 {
1528 case PT_NULL: pt = "NULL"; break;
1529 case PT_LOAD: pt = "LOAD"; break;
1530 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1531 case PT_INTERP: pt = "INTERP"; break;
1532 case PT_NOTE: pt = "NOTE"; break;
1533 case PT_SHLIB: pt = "SHLIB"; break;
1534 case PT_PHDR: pt = "PHDR"; break;
1535 case PT_TLS: pt = "TLS"; break;
1536 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1537 case PT_GNU_STACK: pt = "STACK"; break;
1538 case PT_GNU_RELRO: pt = "RELRO"; break;
1539 default: pt = NULL; break;
1540 }
1541 return pt;
1542 }
1543
1544 /* Print out the program headers. */
1545
1546 bfd_boolean
1547 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1548 {
1549 FILE *f = (FILE *) farg;
1550 Elf_Internal_Phdr *p;
1551 asection *s;
1552 bfd_byte *dynbuf = NULL;
1553
1554 p = elf_tdata (abfd)->phdr;
1555 if (p != NULL)
1556 {
1557 unsigned int i, c;
1558
1559 fprintf (f, _("\nProgram Header:\n"));
1560 c = elf_elfheader (abfd)->e_phnum;
1561 for (i = 0; i < c; i++, p++)
1562 {
1563 const char *pt = get_segment_type (p->p_type);
1564 char buf[20];
1565
1566 if (pt == NULL)
1567 {
1568 sprintf (buf, "0x%lx", p->p_type);
1569 pt = buf;
1570 }
1571 fprintf (f, "%8s off 0x", pt);
1572 bfd_fprintf_vma (abfd, f, p->p_offset);
1573 fprintf (f, " vaddr 0x");
1574 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1575 fprintf (f, " paddr 0x");
1576 bfd_fprintf_vma (abfd, f, p->p_paddr);
1577 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1578 fprintf (f, " filesz 0x");
1579 bfd_fprintf_vma (abfd, f, p->p_filesz);
1580 fprintf (f, " memsz 0x");
1581 bfd_fprintf_vma (abfd, f, p->p_memsz);
1582 fprintf (f, " flags %c%c%c",
1583 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1584 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1585 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1586 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1587 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1588 fprintf (f, "\n");
1589 }
1590 }
1591
1592 s = bfd_get_section_by_name (abfd, ".dynamic");
1593 if (s != NULL)
1594 {
1595 unsigned int elfsec;
1596 unsigned long shlink;
1597 bfd_byte *extdyn, *extdynend;
1598 size_t extdynsize;
1599 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1600
1601 fprintf (f, _("\nDynamic Section:\n"));
1602
1603 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1604 goto error_return;
1605
1606 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1607 if (elfsec == SHN_BAD)
1608 goto error_return;
1609 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1610
1611 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1612 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1613
1614 extdyn = dynbuf;
1615 /* PR 17512: file: 6f427532. */
1616 if (s->size < extdynsize)
1617 goto error_return;
1618 extdynend = extdyn + s->size;
1619 /* PR 17512: file: id:000006,sig:06,src:000000,op:flip4,pos:5664.
1620 Fix range check. */
1621 for (; extdyn <= (extdynend - extdynsize); extdyn += extdynsize)
1622 {
1623 Elf_Internal_Dyn dyn;
1624 const char *name = "";
1625 char ab[20];
1626 bfd_boolean stringp;
1627 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1628
1629 (*swap_dyn_in) (abfd, extdyn, &dyn);
1630
1631 if (dyn.d_tag == DT_NULL)
1632 break;
1633
1634 stringp = FALSE;
1635 switch (dyn.d_tag)
1636 {
1637 default:
1638 if (bed->elf_backend_get_target_dtag)
1639 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
1640
1641 if (!strcmp (name, ""))
1642 {
1643 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1644 name = ab;
1645 }
1646 break;
1647
1648 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1649 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1650 case DT_PLTGOT: name = "PLTGOT"; break;
1651 case DT_HASH: name = "HASH"; break;
1652 case DT_STRTAB: name = "STRTAB"; break;
1653 case DT_SYMTAB: name = "SYMTAB"; break;
1654 case DT_RELA: name = "RELA"; break;
1655 case DT_RELASZ: name = "RELASZ"; break;
1656 case DT_RELAENT: name = "RELAENT"; break;
1657 case DT_STRSZ: name = "STRSZ"; break;
1658 case DT_SYMENT: name = "SYMENT"; break;
1659 case DT_INIT: name = "INIT"; break;
1660 case DT_FINI: name = "FINI"; break;
1661 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1662 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1663 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1664 case DT_REL: name = "REL"; break;
1665 case DT_RELSZ: name = "RELSZ"; break;
1666 case DT_RELENT: name = "RELENT"; break;
1667 case DT_PLTREL: name = "PLTREL"; break;
1668 case DT_DEBUG: name = "DEBUG"; break;
1669 case DT_TEXTREL: name = "TEXTREL"; break;
1670 case DT_JMPREL: name = "JMPREL"; break;
1671 case DT_BIND_NOW: name = "BIND_NOW"; break;
1672 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1673 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1674 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1675 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1676 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1677 case DT_FLAGS: name = "FLAGS"; break;
1678 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1679 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1680 case DT_CHECKSUM: name = "CHECKSUM"; break;
1681 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1682 case DT_MOVEENT: name = "MOVEENT"; break;
1683 case DT_MOVESZ: name = "MOVESZ"; break;
1684 case DT_FEATURE: name = "FEATURE"; break;
1685 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1686 case DT_SYMINSZ: name = "SYMINSZ"; break;
1687 case DT_SYMINENT: name = "SYMINENT"; break;
1688 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1689 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1690 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1691 case DT_PLTPAD: name = "PLTPAD"; break;
1692 case DT_MOVETAB: name = "MOVETAB"; break;
1693 case DT_SYMINFO: name = "SYMINFO"; break;
1694 case DT_RELACOUNT: name = "RELACOUNT"; break;
1695 case DT_RELCOUNT: name = "RELCOUNT"; break;
1696 case DT_FLAGS_1: name = "FLAGS_1"; break;
1697 case DT_VERSYM: name = "VERSYM"; break;
1698 case DT_VERDEF: name = "VERDEF"; break;
1699 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1700 case DT_VERNEED: name = "VERNEED"; break;
1701 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1702 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1703 case DT_USED: name = "USED"; break;
1704 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1705 case DT_GNU_HASH: name = "GNU_HASH"; break;
1706 }
1707
1708 fprintf (f, " %-20s ", name);
1709 if (! stringp)
1710 {
1711 fprintf (f, "0x");
1712 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
1713 }
1714 else
1715 {
1716 const char *string;
1717 unsigned int tagv = dyn.d_un.d_val;
1718
1719 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1720 if (string == NULL)
1721 goto error_return;
1722 fprintf (f, "%s", string);
1723 }
1724 fprintf (f, "\n");
1725 }
1726
1727 free (dynbuf);
1728 dynbuf = NULL;
1729 }
1730
1731 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1732 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1733 {
1734 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1735 return FALSE;
1736 }
1737
1738 if (elf_dynverdef (abfd) != 0)
1739 {
1740 Elf_Internal_Verdef *t;
1741
1742 fprintf (f, _("\nVersion definitions:\n"));
1743 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1744 {
1745 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1746 t->vd_flags, t->vd_hash,
1747 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1748 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1749 {
1750 Elf_Internal_Verdaux *a;
1751
1752 fprintf (f, "\t");
1753 for (a = t->vd_auxptr->vda_nextptr;
1754 a != NULL;
1755 a = a->vda_nextptr)
1756 fprintf (f, "%s ",
1757 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1758 fprintf (f, "\n");
1759 }
1760 }
1761 }
1762
1763 if (elf_dynverref (abfd) != 0)
1764 {
1765 Elf_Internal_Verneed *t;
1766
1767 fprintf (f, _("\nVersion References:\n"));
1768 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1769 {
1770 Elf_Internal_Vernaux *a;
1771
1772 fprintf (f, _(" required from %s:\n"),
1773 t->vn_filename ? t->vn_filename : "<corrupt>");
1774 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1775 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1776 a->vna_flags, a->vna_other,
1777 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1778 }
1779 }
1780
1781 return TRUE;
1782
1783 error_return:
1784 if (dynbuf != NULL)
1785 free (dynbuf);
1786 return FALSE;
1787 }
1788
1789 /* Get version string. */
1790
1791 const char *
1792 _bfd_elf_get_symbol_version_string (bfd *abfd, asymbol *symbol,
1793 bfd_boolean *hidden)
1794 {
1795 const char *version_string = NULL;
1796 if (elf_dynversym (abfd) != 0
1797 && (elf_dynverdef (abfd) != 0 || elf_dynverref (abfd) != 0))
1798 {
1799 unsigned int vernum = ((elf_symbol_type *) symbol)->version;
1800
1801 *hidden = (vernum & VERSYM_HIDDEN) != 0;
1802 vernum &= VERSYM_VERSION;
1803
1804 if (vernum == 0)
1805 version_string = "";
1806 else if (vernum == 1)
1807 version_string = "Base";
1808 else if (vernum <= elf_tdata (abfd)->cverdefs)
1809 version_string =
1810 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1811 else
1812 {
1813 Elf_Internal_Verneed *t;
1814
1815 version_string = "";
1816 for (t = elf_tdata (abfd)->verref;
1817 t != NULL;
1818 t = t->vn_nextref)
1819 {
1820 Elf_Internal_Vernaux *a;
1821
1822 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1823 {
1824 if (a->vna_other == vernum)
1825 {
1826 version_string = a->vna_nodename;
1827 break;
1828 }
1829 }
1830 }
1831 }
1832 }
1833 return version_string;
1834 }
1835
1836 /* Display ELF-specific fields of a symbol. */
1837
1838 void
1839 bfd_elf_print_symbol (bfd *abfd,
1840 void *filep,
1841 asymbol *symbol,
1842 bfd_print_symbol_type how)
1843 {
1844 FILE *file = (FILE *) filep;
1845 switch (how)
1846 {
1847 case bfd_print_symbol_name:
1848 fprintf (file, "%s", symbol->name);
1849 break;
1850 case bfd_print_symbol_more:
1851 fprintf (file, "elf ");
1852 bfd_fprintf_vma (abfd, file, symbol->value);
1853 fprintf (file, " %lx", (unsigned long) symbol->flags);
1854 break;
1855 case bfd_print_symbol_all:
1856 {
1857 const char *section_name;
1858 const char *name = NULL;
1859 const struct elf_backend_data *bed;
1860 unsigned char st_other;
1861 bfd_vma val;
1862 const char *version_string;
1863 bfd_boolean hidden;
1864
1865 section_name = symbol->section ? symbol->section->name : "(*none*)";
1866
1867 bed = get_elf_backend_data (abfd);
1868 if (bed->elf_backend_print_symbol_all)
1869 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1870
1871 if (name == NULL)
1872 {
1873 name = symbol->name;
1874 bfd_print_symbol_vandf (abfd, file, symbol);
1875 }
1876
1877 fprintf (file, " %s\t", section_name);
1878 /* Print the "other" value for a symbol. For common symbols,
1879 we've already printed the size; now print the alignment.
1880 For other symbols, we have no specified alignment, and
1881 we've printed the address; now print the size. */
1882 if (symbol->section && bfd_is_com_section (symbol->section))
1883 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1884 else
1885 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1886 bfd_fprintf_vma (abfd, file, val);
1887
1888 /* If we have version information, print it. */
1889 version_string = _bfd_elf_get_symbol_version_string (abfd,
1890 symbol,
1891 &hidden);
1892 if (version_string)
1893 {
1894 if (!hidden)
1895 fprintf (file, " %-11s", version_string);
1896 else
1897 {
1898 int i;
1899
1900 fprintf (file, " (%s)", version_string);
1901 for (i = 10 - strlen (version_string); i > 0; --i)
1902 putc (' ', file);
1903 }
1904 }
1905
1906 /* If the st_other field is not zero, print it. */
1907 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1908
1909 switch (st_other)
1910 {
1911 case 0: break;
1912 case STV_INTERNAL: fprintf (file, " .internal"); break;
1913 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1914 case STV_PROTECTED: fprintf (file, " .protected"); break;
1915 default:
1916 /* Some other non-defined flags are also present, so print
1917 everything hex. */
1918 fprintf (file, " 0x%02x", (unsigned int) st_other);
1919 }
1920
1921 fprintf (file, " %s", name);
1922 }
1923 break;
1924 }
1925 }
1926 \f
1927 /* ELF .o/exec file reading */
1928
1929 /* Create a new bfd section from an ELF section header. */
1930
1931 bfd_boolean
1932 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1933 {
1934 Elf_Internal_Shdr *hdr;
1935 Elf_Internal_Ehdr *ehdr;
1936 const struct elf_backend_data *bed;
1937 const char *name;
1938 bfd_boolean ret = TRUE;
1939 static bfd_boolean * sections_being_created = NULL;
1940 static bfd * sections_being_created_abfd = NULL;
1941 static unsigned int nesting = 0;
1942
1943 if (shindex >= elf_numsections (abfd))
1944 return FALSE;
1945
1946 if (++ nesting > 3)
1947 {
1948 /* PR17512: A corrupt ELF binary might contain a recursive group of
1949 sections, with each the string indicies pointing to the next in the
1950 loop. Detect this here, by refusing to load a section that we are
1951 already in the process of loading. We only trigger this test if
1952 we have nested at least three sections deep as normal ELF binaries
1953 can expect to recurse at least once.
1954
1955 FIXME: It would be better if this array was attached to the bfd,
1956 rather than being held in a static pointer. */
1957
1958 if (sections_being_created_abfd != abfd)
1959 sections_being_created = NULL;
1960 if (sections_being_created == NULL)
1961 {
1962 /* FIXME: It would be more efficient to attach this array to the bfd somehow. */
1963 sections_being_created = (bfd_boolean *)
1964 bfd_zalloc (abfd, elf_numsections (abfd) * sizeof (bfd_boolean));
1965 sections_being_created_abfd = abfd;
1966 }
1967 if (sections_being_created [shindex])
1968 {
1969 _bfd_error_handler
1970 (_("%B: warning: loop in section dependencies detected"), abfd);
1971 return FALSE;
1972 }
1973 sections_being_created [shindex] = TRUE;
1974 }
1975
1976 hdr = elf_elfsections (abfd)[shindex];
1977 ehdr = elf_elfheader (abfd);
1978 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
1979 hdr->sh_name);
1980 if (name == NULL)
1981 goto fail;
1982
1983 bed = get_elf_backend_data (abfd);
1984 switch (hdr->sh_type)
1985 {
1986 case SHT_NULL:
1987 /* Inactive section. Throw it away. */
1988 goto success;
1989
1990 case SHT_PROGBITS: /* Normal section with contents. */
1991 case SHT_NOBITS: /* .bss section. */
1992 case SHT_HASH: /* .hash section. */
1993 case SHT_NOTE: /* .note section. */
1994 case SHT_INIT_ARRAY: /* .init_array section. */
1995 case SHT_FINI_ARRAY: /* .fini_array section. */
1996 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1997 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1998 case SHT_GNU_HASH: /* .gnu.hash section. */
1999 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2000 goto success;
2001
2002 case SHT_DYNAMIC: /* Dynamic linking information. */
2003 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2004 goto fail;
2005
2006 if (hdr->sh_link > elf_numsections (abfd))
2007 {
2008 /* PR 10478: Accept Solaris binaries with a sh_link
2009 field set to SHN_BEFORE or SHN_AFTER. */
2010 switch (bfd_get_arch (abfd))
2011 {
2012 case bfd_arch_i386:
2013 case bfd_arch_sparc:
2014 if (hdr->sh_link == (SHN_LORESERVE & 0xffff) /* SHN_BEFORE */
2015 || hdr->sh_link == ((SHN_LORESERVE + 1) & 0xffff) /* SHN_AFTER */)
2016 break;
2017 /* Otherwise fall through. */
2018 default:
2019 goto fail;
2020 }
2021 }
2022 else if (elf_elfsections (abfd)[hdr->sh_link] == NULL)
2023 goto fail;
2024 else if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
2025 {
2026 Elf_Internal_Shdr *dynsymhdr;
2027
2028 /* The shared libraries distributed with hpux11 have a bogus
2029 sh_link field for the ".dynamic" section. Find the
2030 string table for the ".dynsym" section instead. */
2031 if (elf_dynsymtab (abfd) != 0)
2032 {
2033 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
2034 hdr->sh_link = dynsymhdr->sh_link;
2035 }
2036 else
2037 {
2038 unsigned int i, num_sec;
2039
2040 num_sec = elf_numsections (abfd);
2041 for (i = 1; i < num_sec; i++)
2042 {
2043 dynsymhdr = elf_elfsections (abfd)[i];
2044 if (dynsymhdr->sh_type == SHT_DYNSYM)
2045 {
2046 hdr->sh_link = dynsymhdr->sh_link;
2047 break;
2048 }
2049 }
2050 }
2051 }
2052 goto success;
2053
2054 case SHT_SYMTAB: /* A symbol table. */
2055 if (elf_onesymtab (abfd) == shindex)
2056 goto success;
2057
2058 if (hdr->sh_entsize != bed->s->sizeof_sym)
2059 goto fail;
2060
2061 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
2062 {
2063 if (hdr->sh_size != 0)
2064 goto fail;
2065 /* Some assemblers erroneously set sh_info to one with a
2066 zero sh_size. ld sees this as a global symbol count
2067 of (unsigned) -1. Fix it here. */
2068 hdr->sh_info = 0;
2069 goto success;
2070 }
2071
2072 /* PR 18854: A binary might contain more than one symbol table.
2073 Unusual, but possible. Warn, but continue. */
2074 if (elf_onesymtab (abfd) != 0)
2075 {
2076 _bfd_error_handler
2077 /* xgettext:c-format */
2078 (_("%B: warning: multiple symbol tables detected - ignoring the table in section %u"),
2079 abfd, shindex);
2080 goto success;
2081 }
2082 elf_onesymtab (abfd) = shindex;
2083 elf_symtab_hdr (abfd) = *hdr;
2084 elf_elfsections (abfd)[shindex] = hdr = & elf_symtab_hdr (abfd);
2085 abfd->flags |= HAS_SYMS;
2086
2087 /* Sometimes a shared object will map in the symbol table. If
2088 SHF_ALLOC is set, and this is a shared object, then we also
2089 treat this section as a BFD section. We can not base the
2090 decision purely on SHF_ALLOC, because that flag is sometimes
2091 set in a relocatable object file, which would confuse the
2092 linker. */
2093 if ((hdr->sh_flags & SHF_ALLOC) != 0
2094 && (abfd->flags & DYNAMIC) != 0
2095 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2096 shindex))
2097 goto fail;
2098
2099 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
2100 can't read symbols without that section loaded as well. It
2101 is most likely specified by the next section header. */
2102 {
2103 elf_section_list * entry;
2104 unsigned int i, num_sec;
2105
2106 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
2107 if (entry->hdr.sh_link == shindex)
2108 goto success;
2109
2110 num_sec = elf_numsections (abfd);
2111 for (i = shindex + 1; i < num_sec; i++)
2112 {
2113 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2114
2115 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
2116 && hdr2->sh_link == shindex)
2117 break;
2118 }
2119
2120 if (i == num_sec)
2121 for (i = 1; i < shindex; i++)
2122 {
2123 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2124
2125 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
2126 && hdr2->sh_link == shindex)
2127 break;
2128 }
2129
2130 if (i != shindex)
2131 ret = bfd_section_from_shdr (abfd, i);
2132 /* else FIXME: we have failed to find the symbol table - should we issue an error ? */
2133 goto success;
2134 }
2135
2136 case SHT_DYNSYM: /* A dynamic symbol table. */
2137 if (elf_dynsymtab (abfd) == shindex)
2138 goto success;
2139
2140 if (hdr->sh_entsize != bed->s->sizeof_sym)
2141 goto fail;
2142
2143 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
2144 {
2145 if (hdr->sh_size != 0)
2146 goto fail;
2147
2148 /* Some linkers erroneously set sh_info to one with a
2149 zero sh_size. ld sees this as a global symbol count
2150 of (unsigned) -1. Fix it here. */
2151 hdr->sh_info = 0;
2152 goto success;
2153 }
2154
2155 /* PR 18854: A binary might contain more than one dynamic symbol table.
2156 Unusual, but possible. Warn, but continue. */
2157 if (elf_dynsymtab (abfd) != 0)
2158 {
2159 _bfd_error_handler
2160 /* xgettext:c-format */
2161 (_("%B: warning: multiple dynamic symbol tables detected - ignoring the table in section %u"),
2162 abfd, shindex);
2163 goto success;
2164 }
2165 elf_dynsymtab (abfd) = shindex;
2166 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
2167 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2168 abfd->flags |= HAS_SYMS;
2169
2170 /* Besides being a symbol table, we also treat this as a regular
2171 section, so that objcopy can handle it. */
2172 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2173 goto success;
2174
2175 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections. */
2176 {
2177 elf_section_list * entry;
2178
2179 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
2180 if (entry->ndx == shindex)
2181 goto success;
2182
2183 entry = bfd_alloc (abfd, sizeof * entry);
2184 if (entry == NULL)
2185 goto fail;
2186 entry->ndx = shindex;
2187 entry->hdr = * hdr;
2188 entry->next = elf_symtab_shndx_list (abfd);
2189 elf_symtab_shndx_list (abfd) = entry;
2190 elf_elfsections (abfd)[shindex] = & entry->hdr;
2191 goto success;
2192 }
2193
2194 case SHT_STRTAB: /* A string table. */
2195 if (hdr->bfd_section != NULL)
2196 goto success;
2197
2198 if (ehdr->e_shstrndx == shindex)
2199 {
2200 elf_tdata (abfd)->shstrtab_hdr = *hdr;
2201 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
2202 goto success;
2203 }
2204
2205 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
2206 {
2207 symtab_strtab:
2208 elf_tdata (abfd)->strtab_hdr = *hdr;
2209 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
2210 goto success;
2211 }
2212
2213 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
2214 {
2215 dynsymtab_strtab:
2216 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
2217 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
2218 elf_elfsections (abfd)[shindex] = hdr;
2219 /* We also treat this as a regular section, so that objcopy
2220 can handle it. */
2221 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2222 shindex);
2223 goto success;
2224 }
2225
2226 /* If the string table isn't one of the above, then treat it as a
2227 regular section. We need to scan all the headers to be sure,
2228 just in case this strtab section appeared before the above. */
2229 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
2230 {
2231 unsigned int i, num_sec;
2232
2233 num_sec = elf_numsections (abfd);
2234 for (i = 1; i < num_sec; i++)
2235 {
2236 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2237 if (hdr2->sh_link == shindex)
2238 {
2239 /* Prevent endless recursion on broken objects. */
2240 if (i == shindex)
2241 goto fail;
2242 if (! bfd_section_from_shdr (abfd, i))
2243 goto fail;
2244 if (elf_onesymtab (abfd) == i)
2245 goto symtab_strtab;
2246 if (elf_dynsymtab (abfd) == i)
2247 goto dynsymtab_strtab;
2248 }
2249 }
2250 }
2251 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2252 goto success;
2253
2254 case SHT_REL:
2255 case SHT_RELA:
2256 /* *These* do a lot of work -- but build no sections! */
2257 {
2258 asection *target_sect;
2259 Elf_Internal_Shdr *hdr2, **p_hdr;
2260 unsigned int num_sec = elf_numsections (abfd);
2261 struct bfd_elf_section_data *esdt;
2262
2263 if (hdr->sh_entsize
2264 != (bfd_size_type) (hdr->sh_type == SHT_REL
2265 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
2266 goto fail;
2267
2268 /* Check for a bogus link to avoid crashing. */
2269 if (hdr->sh_link >= num_sec)
2270 {
2271 _bfd_error_handler
2272 /* xgettext:c-format */
2273 (_("%B: invalid link %lu for reloc section %s (index %u)"),
2274 abfd, hdr->sh_link, name, shindex);
2275 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2276 shindex);
2277 goto success;
2278 }
2279
2280 /* For some incomprehensible reason Oracle distributes
2281 libraries for Solaris in which some of the objects have
2282 bogus sh_link fields. It would be nice if we could just
2283 reject them, but, unfortunately, some people need to use
2284 them. We scan through the section headers; if we find only
2285 one suitable symbol table, we clobber the sh_link to point
2286 to it. I hope this doesn't break anything.
2287
2288 Don't do it on executable nor shared library. */
2289 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0
2290 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
2291 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
2292 {
2293 unsigned int scan;
2294 int found;
2295
2296 found = 0;
2297 for (scan = 1; scan < num_sec; scan++)
2298 {
2299 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
2300 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
2301 {
2302 if (found != 0)
2303 {
2304 found = 0;
2305 break;
2306 }
2307 found = scan;
2308 }
2309 }
2310 if (found != 0)
2311 hdr->sh_link = found;
2312 }
2313
2314 /* Get the symbol table. */
2315 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
2316 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
2317 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
2318 goto fail;
2319
2320 /* If this reloc section does not use the main symbol table we
2321 don't treat it as a reloc section. BFD can't adequately
2322 represent such a section, so at least for now, we don't
2323 try. We just present it as a normal section. We also
2324 can't use it as a reloc section if it points to the null
2325 section, an invalid section, another reloc section, or its
2326 sh_link points to the null section. */
2327 if (hdr->sh_link != elf_onesymtab (abfd)
2328 || hdr->sh_link == SHN_UNDEF
2329 || hdr->sh_info == SHN_UNDEF
2330 || hdr->sh_info >= num_sec
2331 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
2332 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
2333 {
2334 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2335 shindex);
2336 goto success;
2337 }
2338
2339 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
2340 goto fail;
2341
2342 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
2343 if (target_sect == NULL)
2344 goto fail;
2345
2346 esdt = elf_section_data (target_sect);
2347 if (hdr->sh_type == SHT_RELA)
2348 p_hdr = &esdt->rela.hdr;
2349 else
2350 p_hdr = &esdt->rel.hdr;
2351
2352 /* PR 17512: file: 0b4f81b7. */
2353 if (*p_hdr != NULL)
2354 goto fail;
2355 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, sizeof (*hdr2));
2356 if (hdr2 == NULL)
2357 goto fail;
2358 *hdr2 = *hdr;
2359 *p_hdr = hdr2;
2360 elf_elfsections (abfd)[shindex] = hdr2;
2361 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
2362 target_sect->flags |= SEC_RELOC;
2363 target_sect->relocation = NULL;
2364 target_sect->rel_filepos = hdr->sh_offset;
2365 /* In the section to which the relocations apply, mark whether
2366 its relocations are of the REL or RELA variety. */
2367 if (hdr->sh_size != 0)
2368 {
2369 if (hdr->sh_type == SHT_RELA)
2370 target_sect->use_rela_p = 1;
2371 }
2372 abfd->flags |= HAS_RELOC;
2373 goto success;
2374 }
2375
2376 case SHT_GNU_verdef:
2377 elf_dynverdef (abfd) = shindex;
2378 elf_tdata (abfd)->dynverdef_hdr = *hdr;
2379 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2380 goto success;
2381
2382 case SHT_GNU_versym:
2383 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
2384 goto fail;
2385
2386 elf_dynversym (abfd) = shindex;
2387 elf_tdata (abfd)->dynversym_hdr = *hdr;
2388 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2389 goto success;
2390
2391 case SHT_GNU_verneed:
2392 elf_dynverref (abfd) = shindex;
2393 elf_tdata (abfd)->dynverref_hdr = *hdr;
2394 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2395 goto success;
2396
2397 case SHT_SHLIB:
2398 goto success;
2399
2400 case SHT_GROUP:
2401 if (! IS_VALID_GROUP_SECTION_HEADER (hdr, GRP_ENTRY_SIZE))
2402 goto fail;
2403
2404 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2405 goto fail;
2406
2407 if (hdr->contents != NULL)
2408 {
2409 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
2410 unsigned int n_elt = hdr->sh_size / sizeof (* idx);
2411 asection *s;
2412
2413 if (n_elt == 0)
2414 goto fail;
2415 if (idx->flags & GRP_COMDAT)
2416 hdr->bfd_section->flags
2417 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
2418
2419 /* We try to keep the same section order as it comes in. */
2420 idx += n_elt;
2421
2422 while (--n_elt != 0)
2423 {
2424 --idx;
2425
2426 if (idx->shdr != NULL
2427 && (s = idx->shdr->bfd_section) != NULL
2428 && elf_next_in_group (s) != NULL)
2429 {
2430 elf_next_in_group (hdr->bfd_section) = s;
2431 break;
2432 }
2433 }
2434 }
2435 goto success;
2436
2437 default:
2438 /* Possibly an attributes section. */
2439 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
2440 || hdr->sh_type == bed->obj_attrs_section_type)
2441 {
2442 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2443 goto fail;
2444 _bfd_elf_parse_attributes (abfd, hdr);
2445 goto success;
2446 }
2447
2448 /* Check for any processor-specific section types. */
2449 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
2450 goto success;
2451
2452 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
2453 {
2454 if ((hdr->sh_flags & SHF_ALLOC) != 0)
2455 /* FIXME: How to properly handle allocated section reserved
2456 for applications? */
2457 _bfd_error_handler
2458 /* xgettext:c-format */
2459 (_("%B: don't know how to handle allocated, application "
2460 "specific section `%s' [0x%8x]"),
2461 abfd, name, hdr->sh_type);
2462 else
2463 {
2464 /* Allow sections reserved for applications. */
2465 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2466 shindex);
2467 goto success;
2468 }
2469 }
2470 else if (hdr->sh_type >= SHT_LOPROC
2471 && hdr->sh_type <= SHT_HIPROC)
2472 /* FIXME: We should handle this section. */
2473 _bfd_error_handler
2474 /* xgettext:c-format */
2475 (_("%B: don't know how to handle processor specific section "
2476 "`%s' [0x%8x]"),
2477 abfd, name, hdr->sh_type);
2478 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
2479 {
2480 /* Unrecognised OS-specific sections. */
2481 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
2482 /* SHF_OS_NONCONFORMING indicates that special knowledge is
2483 required to correctly process the section and the file should
2484 be rejected with an error message. */
2485 _bfd_error_handler
2486 /* xgettext:c-format */
2487 (_("%B: don't know how to handle OS specific section "
2488 "`%s' [0x%8x]"),
2489 abfd, name, hdr->sh_type);
2490 else
2491 {
2492 /* Otherwise it should be processed. */
2493 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2494 goto success;
2495 }
2496 }
2497 else
2498 /* FIXME: We should handle this section. */
2499 _bfd_error_handler
2500 /* xgettext:c-format */
2501 (_("%B: don't know how to handle section `%s' [0x%8x]"),
2502 abfd, name, hdr->sh_type);
2503
2504 goto fail;
2505 }
2506
2507 fail:
2508 ret = FALSE;
2509 success:
2510 if (sections_being_created && sections_being_created_abfd == abfd)
2511 sections_being_created [shindex] = FALSE;
2512 if (-- nesting == 0)
2513 {
2514 sections_being_created = NULL;
2515 sections_being_created_abfd = abfd;
2516 }
2517 return ret;
2518 }
2519
2520 /* Return the local symbol specified by ABFD, R_SYMNDX. */
2521
2522 Elf_Internal_Sym *
2523 bfd_sym_from_r_symndx (struct sym_cache *cache,
2524 bfd *abfd,
2525 unsigned long r_symndx)
2526 {
2527 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2528
2529 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
2530 {
2531 Elf_Internal_Shdr *symtab_hdr;
2532 unsigned char esym[sizeof (Elf64_External_Sym)];
2533 Elf_External_Sym_Shndx eshndx;
2534
2535 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2536 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2537 &cache->sym[ent], esym, &eshndx) == NULL)
2538 return NULL;
2539
2540 if (cache->abfd != abfd)
2541 {
2542 memset (cache->indx, -1, sizeof (cache->indx));
2543 cache->abfd = abfd;
2544 }
2545 cache->indx[ent] = r_symndx;
2546 }
2547
2548 return &cache->sym[ent];
2549 }
2550
2551 /* Given an ELF section number, retrieve the corresponding BFD
2552 section. */
2553
2554 asection *
2555 bfd_section_from_elf_index (bfd *abfd, unsigned int sec_index)
2556 {
2557 if (sec_index >= elf_numsections (abfd))
2558 return NULL;
2559 return elf_elfsections (abfd)[sec_index]->bfd_section;
2560 }
2561
2562 static const struct bfd_elf_special_section special_sections_b[] =
2563 {
2564 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2565 { NULL, 0, 0, 0, 0 }
2566 };
2567
2568 static const struct bfd_elf_special_section special_sections_c[] =
2569 {
2570 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2571 { NULL, 0, 0, 0, 0 }
2572 };
2573
2574 static const struct bfd_elf_special_section special_sections_d[] =
2575 {
2576 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2577 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2578 /* There are more DWARF sections than these, but they needn't be added here
2579 unless you have to cope with broken compilers that don't emit section
2580 attributes or you want to help the user writing assembler. */
2581 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2582 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2583 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2584 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2585 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2586 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2587 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2588 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2589 { NULL, 0, 0, 0, 0 }
2590 };
2591
2592 static const struct bfd_elf_special_section special_sections_f[] =
2593 {
2594 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2595 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2596 { NULL, 0, 0, 0, 0 }
2597 };
2598
2599 static const struct bfd_elf_special_section special_sections_g[] =
2600 {
2601 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2602 { STRING_COMMA_LEN (".gnu.lto_"), -1, SHT_PROGBITS, SHF_EXCLUDE },
2603 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2604 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2605 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2606 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2607 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2608 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2609 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2610 { NULL, 0, 0, 0, 0 }
2611 };
2612
2613 static const struct bfd_elf_special_section special_sections_h[] =
2614 {
2615 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2616 { NULL, 0, 0, 0, 0 }
2617 };
2618
2619 static const struct bfd_elf_special_section special_sections_i[] =
2620 {
2621 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2622 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2623 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2624 { NULL, 0, 0, 0, 0 }
2625 };
2626
2627 static const struct bfd_elf_special_section special_sections_l[] =
2628 {
2629 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2630 { NULL, 0, 0, 0, 0 }
2631 };
2632
2633 static const struct bfd_elf_special_section special_sections_n[] =
2634 {
2635 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2636 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2637 { NULL, 0, 0, 0, 0 }
2638 };
2639
2640 static const struct bfd_elf_special_section special_sections_p[] =
2641 {
2642 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2643 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2644 { NULL, 0, 0, 0, 0 }
2645 };
2646
2647 static const struct bfd_elf_special_section special_sections_r[] =
2648 {
2649 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2650 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2651 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2652 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2653 { NULL, 0, 0, 0, 0 }
2654 };
2655
2656 static const struct bfd_elf_special_section special_sections_s[] =
2657 {
2658 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2659 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2660 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2661 /* See struct bfd_elf_special_section declaration for the semantics of
2662 this special case where .prefix_length != strlen (.prefix). */
2663 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2664 { NULL, 0, 0, 0, 0 }
2665 };
2666
2667 static const struct bfd_elf_special_section special_sections_t[] =
2668 {
2669 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2670 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2671 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2672 { NULL, 0, 0, 0, 0 }
2673 };
2674
2675 static const struct bfd_elf_special_section special_sections_z[] =
2676 {
2677 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 },
2678 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 },
2679 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 },
2680 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 },
2681 { NULL, 0, 0, 0, 0 }
2682 };
2683
2684 static const struct bfd_elf_special_section * const special_sections[] =
2685 {
2686 special_sections_b, /* 'b' */
2687 special_sections_c, /* 'c' */
2688 special_sections_d, /* 'd' */
2689 NULL, /* 'e' */
2690 special_sections_f, /* 'f' */
2691 special_sections_g, /* 'g' */
2692 special_sections_h, /* 'h' */
2693 special_sections_i, /* 'i' */
2694 NULL, /* 'j' */
2695 NULL, /* 'k' */
2696 special_sections_l, /* 'l' */
2697 NULL, /* 'm' */
2698 special_sections_n, /* 'n' */
2699 NULL, /* 'o' */
2700 special_sections_p, /* 'p' */
2701 NULL, /* 'q' */
2702 special_sections_r, /* 'r' */
2703 special_sections_s, /* 's' */
2704 special_sections_t, /* 't' */
2705 NULL, /* 'u' */
2706 NULL, /* 'v' */
2707 NULL, /* 'w' */
2708 NULL, /* 'x' */
2709 NULL, /* 'y' */
2710 special_sections_z /* 'z' */
2711 };
2712
2713 const struct bfd_elf_special_section *
2714 _bfd_elf_get_special_section (const char *name,
2715 const struct bfd_elf_special_section *spec,
2716 unsigned int rela)
2717 {
2718 int i;
2719 int len;
2720
2721 len = strlen (name);
2722
2723 for (i = 0; spec[i].prefix != NULL; i++)
2724 {
2725 int suffix_len;
2726 int prefix_len = spec[i].prefix_length;
2727
2728 if (len < prefix_len)
2729 continue;
2730 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2731 continue;
2732
2733 suffix_len = spec[i].suffix_length;
2734 if (suffix_len <= 0)
2735 {
2736 if (name[prefix_len] != 0)
2737 {
2738 if (suffix_len == 0)
2739 continue;
2740 if (name[prefix_len] != '.'
2741 && (suffix_len == -2
2742 || (rela && spec[i].type == SHT_REL)))
2743 continue;
2744 }
2745 }
2746 else
2747 {
2748 if (len < prefix_len + suffix_len)
2749 continue;
2750 if (memcmp (name + len - suffix_len,
2751 spec[i].prefix + prefix_len,
2752 suffix_len) != 0)
2753 continue;
2754 }
2755 return &spec[i];
2756 }
2757
2758 return NULL;
2759 }
2760
2761 const struct bfd_elf_special_section *
2762 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2763 {
2764 int i;
2765 const struct bfd_elf_special_section *spec;
2766 const struct elf_backend_data *bed;
2767
2768 /* See if this is one of the special sections. */
2769 if (sec->name == NULL)
2770 return NULL;
2771
2772 bed = get_elf_backend_data (abfd);
2773 spec = bed->special_sections;
2774 if (spec)
2775 {
2776 spec = _bfd_elf_get_special_section (sec->name,
2777 bed->special_sections,
2778 sec->use_rela_p);
2779 if (spec != NULL)
2780 return spec;
2781 }
2782
2783 if (sec->name[0] != '.')
2784 return NULL;
2785
2786 i = sec->name[1] - 'b';
2787 if (i < 0 || i > 'z' - 'b')
2788 return NULL;
2789
2790 spec = special_sections[i];
2791
2792 if (spec == NULL)
2793 return NULL;
2794
2795 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2796 }
2797
2798 bfd_boolean
2799 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2800 {
2801 struct bfd_elf_section_data *sdata;
2802 const struct elf_backend_data *bed;
2803 const struct bfd_elf_special_section *ssect;
2804
2805 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2806 if (sdata == NULL)
2807 {
2808 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd,
2809 sizeof (*sdata));
2810 if (sdata == NULL)
2811 return FALSE;
2812 sec->used_by_bfd = sdata;
2813 }
2814
2815 /* Indicate whether or not this section should use RELA relocations. */
2816 bed = get_elf_backend_data (abfd);
2817 sec->use_rela_p = bed->default_use_rela_p;
2818
2819 /* When we read a file, we don't need to set ELF section type and
2820 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2821 anyway. We will set ELF section type and flags for all linker
2822 created sections. If user specifies BFD section flags, we will
2823 set ELF section type and flags based on BFD section flags in
2824 elf_fake_sections. Special handling for .init_array/.fini_array
2825 output sections since they may contain .ctors/.dtors input
2826 sections. We don't want _bfd_elf_init_private_section_data to
2827 copy ELF section type from .ctors/.dtors input sections. */
2828 if (abfd->direction != read_direction
2829 || (sec->flags & SEC_LINKER_CREATED) != 0)
2830 {
2831 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2832 if (ssect != NULL
2833 && (!sec->flags
2834 || (sec->flags & SEC_LINKER_CREATED) != 0
2835 || ssect->type == SHT_INIT_ARRAY
2836 || ssect->type == SHT_FINI_ARRAY))
2837 {
2838 elf_section_type (sec) = ssect->type;
2839 elf_section_flags (sec) = ssect->attr;
2840 }
2841 }
2842
2843 return _bfd_generic_new_section_hook (abfd, sec);
2844 }
2845
2846 /* Create a new bfd section from an ELF program header.
2847
2848 Since program segments have no names, we generate a synthetic name
2849 of the form segment<NUM>, where NUM is generally the index in the
2850 program header table. For segments that are split (see below) we
2851 generate the names segment<NUM>a and segment<NUM>b.
2852
2853 Note that some program segments may have a file size that is different than
2854 (less than) the memory size. All this means is that at execution the
2855 system must allocate the amount of memory specified by the memory size,
2856 but only initialize it with the first "file size" bytes read from the
2857 file. This would occur for example, with program segments consisting
2858 of combined data+bss.
2859
2860 To handle the above situation, this routine generates TWO bfd sections
2861 for the single program segment. The first has the length specified by
2862 the file size of the segment, and the second has the length specified
2863 by the difference between the two sizes. In effect, the segment is split
2864 into its initialized and uninitialized parts.
2865
2866 */
2867
2868 bfd_boolean
2869 _bfd_elf_make_section_from_phdr (bfd *abfd,
2870 Elf_Internal_Phdr *hdr,
2871 int hdr_index,
2872 const char *type_name)
2873 {
2874 asection *newsect;
2875 char *name;
2876 char namebuf[64];
2877 size_t len;
2878 int split;
2879
2880 split = ((hdr->p_memsz > 0)
2881 && (hdr->p_filesz > 0)
2882 && (hdr->p_memsz > hdr->p_filesz));
2883
2884 if (hdr->p_filesz > 0)
2885 {
2886 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "a" : "");
2887 len = strlen (namebuf) + 1;
2888 name = (char *) bfd_alloc (abfd, len);
2889 if (!name)
2890 return FALSE;
2891 memcpy (name, namebuf, len);
2892 newsect = bfd_make_section (abfd, name);
2893 if (newsect == NULL)
2894 return FALSE;
2895 newsect->vma = hdr->p_vaddr;
2896 newsect->lma = hdr->p_paddr;
2897 newsect->size = hdr->p_filesz;
2898 newsect->filepos = hdr->p_offset;
2899 newsect->flags |= SEC_HAS_CONTENTS;
2900 newsect->alignment_power = bfd_log2 (hdr->p_align);
2901 if (hdr->p_type == PT_LOAD)
2902 {
2903 newsect->flags |= SEC_ALLOC;
2904 newsect->flags |= SEC_LOAD;
2905 if (hdr->p_flags & PF_X)
2906 {
2907 /* FIXME: all we known is that it has execute PERMISSION,
2908 may be data. */
2909 newsect->flags |= SEC_CODE;
2910 }
2911 }
2912 if (!(hdr->p_flags & PF_W))
2913 {
2914 newsect->flags |= SEC_READONLY;
2915 }
2916 }
2917
2918 if (hdr->p_memsz > hdr->p_filesz)
2919 {
2920 bfd_vma align;
2921
2922 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "b" : "");
2923 len = strlen (namebuf) + 1;
2924 name = (char *) bfd_alloc (abfd, len);
2925 if (!name)
2926 return FALSE;
2927 memcpy (name, namebuf, len);
2928 newsect = bfd_make_section (abfd, name);
2929 if (newsect == NULL)
2930 return FALSE;
2931 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2932 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2933 newsect->size = hdr->p_memsz - hdr->p_filesz;
2934 newsect->filepos = hdr->p_offset + hdr->p_filesz;
2935 align = newsect->vma & -newsect->vma;
2936 if (align == 0 || align > hdr->p_align)
2937 align = hdr->p_align;
2938 newsect->alignment_power = bfd_log2 (align);
2939 if (hdr->p_type == PT_LOAD)
2940 {
2941 /* Hack for gdb. Segments that have not been modified do
2942 not have their contents written to a core file, on the
2943 assumption that a debugger can find the contents in the
2944 executable. We flag this case by setting the fake
2945 section size to zero. Note that "real" bss sections will
2946 always have their contents dumped to the core file. */
2947 if (bfd_get_format (abfd) == bfd_core)
2948 newsect->size = 0;
2949 newsect->flags |= SEC_ALLOC;
2950 if (hdr->p_flags & PF_X)
2951 newsect->flags |= SEC_CODE;
2952 }
2953 if (!(hdr->p_flags & PF_W))
2954 newsect->flags |= SEC_READONLY;
2955 }
2956
2957 return TRUE;
2958 }
2959
2960 bfd_boolean
2961 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int hdr_index)
2962 {
2963 const struct elf_backend_data *bed;
2964
2965 switch (hdr->p_type)
2966 {
2967 case PT_NULL:
2968 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "null");
2969
2970 case PT_LOAD:
2971 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "load");
2972
2973 case PT_DYNAMIC:
2974 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "dynamic");
2975
2976 case PT_INTERP:
2977 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "interp");
2978
2979 case PT_NOTE:
2980 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "note"))
2981 return FALSE;
2982 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2983 return FALSE;
2984 return TRUE;
2985
2986 case PT_SHLIB:
2987 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "shlib");
2988
2989 case PT_PHDR:
2990 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "phdr");
2991
2992 case PT_GNU_EH_FRAME:
2993 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index,
2994 "eh_frame_hdr");
2995
2996 case PT_GNU_STACK:
2997 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "stack");
2998
2999 case PT_GNU_RELRO:
3000 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "relro");
3001
3002 default:
3003 /* Check for any processor-specific program segment types. */
3004 bed = get_elf_backend_data (abfd);
3005 return bed->elf_backend_section_from_phdr (abfd, hdr, hdr_index, "proc");
3006 }
3007 }
3008
3009 /* Return the REL_HDR for SEC, assuming there is only a single one, either
3010 REL or RELA. */
3011
3012 Elf_Internal_Shdr *
3013 _bfd_elf_single_rel_hdr (asection *sec)
3014 {
3015 if (elf_section_data (sec)->rel.hdr)
3016 {
3017 BFD_ASSERT (elf_section_data (sec)->rela.hdr == NULL);
3018 return elf_section_data (sec)->rel.hdr;
3019 }
3020 else
3021 return elf_section_data (sec)->rela.hdr;
3022 }
3023
3024 static bfd_boolean
3025 _bfd_elf_set_reloc_sh_name (bfd *abfd,
3026 Elf_Internal_Shdr *rel_hdr,
3027 const char *sec_name,
3028 bfd_boolean use_rela_p)
3029 {
3030 char *name = (char *) bfd_alloc (abfd,
3031 sizeof ".rela" + strlen (sec_name));
3032 if (name == NULL)
3033 return FALSE;
3034
3035 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", sec_name);
3036 rel_hdr->sh_name =
3037 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
3038 FALSE);
3039 if (rel_hdr->sh_name == (unsigned int) -1)
3040 return FALSE;
3041
3042 return TRUE;
3043 }
3044
3045 /* Allocate and initialize a section-header for a new reloc section,
3046 containing relocations against ASECT. It is stored in RELDATA. If
3047 USE_RELA_P is TRUE, we use RELA relocations; otherwise, we use REL
3048 relocations. */
3049
3050 static bfd_boolean
3051 _bfd_elf_init_reloc_shdr (bfd *abfd,
3052 struct bfd_elf_section_reloc_data *reldata,
3053 const char *sec_name,
3054 bfd_boolean use_rela_p,
3055 bfd_boolean delay_st_name_p)
3056 {
3057 Elf_Internal_Shdr *rel_hdr;
3058 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3059
3060 BFD_ASSERT (reldata->hdr == NULL);
3061 rel_hdr = bfd_zalloc (abfd, sizeof (*rel_hdr));
3062 reldata->hdr = rel_hdr;
3063
3064 if (delay_st_name_p)
3065 rel_hdr->sh_name = (unsigned int) -1;
3066 else if (!_bfd_elf_set_reloc_sh_name (abfd, rel_hdr, sec_name,
3067 use_rela_p))
3068 return FALSE;
3069 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
3070 rel_hdr->sh_entsize = (use_rela_p
3071 ? bed->s->sizeof_rela
3072 : bed->s->sizeof_rel);
3073 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
3074 rel_hdr->sh_flags = 0;
3075 rel_hdr->sh_addr = 0;
3076 rel_hdr->sh_size = 0;
3077 rel_hdr->sh_offset = 0;
3078
3079 return TRUE;
3080 }
3081
3082 /* Return the default section type based on the passed in section flags. */
3083
3084 int
3085 bfd_elf_get_default_section_type (flagword flags)
3086 {
3087 if ((flags & SEC_ALLOC) != 0
3088 && (flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
3089 return SHT_NOBITS;
3090 return SHT_PROGBITS;
3091 }
3092
3093 struct fake_section_arg
3094 {
3095 struct bfd_link_info *link_info;
3096 bfd_boolean failed;
3097 };
3098
3099 /* Set up an ELF internal section header for a section. */
3100
3101 static void
3102 elf_fake_sections (bfd *abfd, asection *asect, void *fsarg)
3103 {
3104 struct fake_section_arg *arg = (struct fake_section_arg *)fsarg;
3105 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3106 struct bfd_elf_section_data *esd = elf_section_data (asect);
3107 Elf_Internal_Shdr *this_hdr;
3108 unsigned int sh_type;
3109 const char *name = asect->name;
3110 bfd_boolean delay_st_name_p = FALSE;
3111
3112 if (arg->failed)
3113 {
3114 /* We already failed; just get out of the bfd_map_over_sections
3115 loop. */
3116 return;
3117 }
3118
3119 this_hdr = &esd->this_hdr;
3120
3121 if (arg->link_info)
3122 {
3123 /* ld: compress DWARF debug sections with names: .debug_*. */
3124 if ((arg->link_info->compress_debug & COMPRESS_DEBUG)
3125 && (asect->flags & SEC_DEBUGGING)
3126 && name[1] == 'd'
3127 && name[6] == '_')
3128 {
3129 /* Set SEC_ELF_COMPRESS to indicate this section should be
3130 compressed. */
3131 asect->flags |= SEC_ELF_COMPRESS;
3132
3133 /* If this section will be compressed, delay adding section
3134 name to section name section after it is compressed in
3135 _bfd_elf_assign_file_positions_for_non_load. */
3136 delay_st_name_p = TRUE;
3137 }
3138 }
3139 else if ((asect->flags & SEC_ELF_RENAME))
3140 {
3141 /* objcopy: rename output DWARF debug section. */
3142 if ((abfd->flags & (BFD_DECOMPRESS | BFD_COMPRESS_GABI)))
3143 {
3144 /* When we decompress or compress with SHF_COMPRESSED,
3145 convert section name from .zdebug_* to .debug_* if
3146 needed. */
3147 if (name[1] == 'z')
3148 {
3149 char *new_name = convert_zdebug_to_debug (abfd, name);
3150 if (new_name == NULL)
3151 {
3152 arg->failed = TRUE;
3153 return;
3154 }
3155 name = new_name;
3156 }
3157 }
3158 else if (asect->compress_status == COMPRESS_SECTION_DONE)
3159 {
3160 /* PR binutils/18087: Compression does not always make a
3161 section smaller. So only rename the section when
3162 compression has actually taken place. If input section
3163 name is .zdebug_*, we should never compress it again. */
3164 char *new_name = convert_debug_to_zdebug (abfd, name);
3165 if (new_name == NULL)
3166 {
3167 arg->failed = TRUE;
3168 return;
3169 }
3170 BFD_ASSERT (name[1] != 'z');
3171 name = new_name;
3172 }
3173 }
3174
3175 if (delay_st_name_p)
3176 this_hdr->sh_name = (unsigned int) -1;
3177 else
3178 {
3179 this_hdr->sh_name
3180 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3181 name, FALSE);
3182 if (this_hdr->sh_name == (unsigned int) -1)
3183 {
3184 arg->failed = TRUE;
3185 return;
3186 }
3187 }
3188
3189 /* Don't clear sh_flags. Assembler may set additional bits. */
3190
3191 if ((asect->flags & SEC_ALLOC) != 0
3192 || asect->user_set_vma)
3193 this_hdr->sh_addr = asect->vma;
3194 else
3195 this_hdr->sh_addr = 0;
3196
3197 this_hdr->sh_offset = 0;
3198 this_hdr->sh_size = asect->size;
3199 this_hdr->sh_link = 0;
3200 /* PR 17512: file: 0eb809fe, 8b0535ee. */
3201 if (asect->alignment_power >= (sizeof (bfd_vma) * 8) - 1)
3202 {
3203 _bfd_error_handler
3204 /* xgettext:c-format */
3205 (_("%B: error: Alignment power %d of section `%A' is too big"),
3206 abfd, asect, asect->alignment_power);
3207 arg->failed = TRUE;
3208 return;
3209 }
3210 this_hdr->sh_addralign = (bfd_vma) 1 << asect->alignment_power;
3211 /* The sh_entsize and sh_info fields may have been set already by
3212 copy_private_section_data. */
3213
3214 this_hdr->bfd_section = asect;
3215 this_hdr->contents = NULL;
3216
3217 /* If the section type is unspecified, we set it based on
3218 asect->flags. */
3219 if ((asect->flags & SEC_GROUP) != 0)
3220 sh_type = SHT_GROUP;
3221 else
3222 sh_type = bfd_elf_get_default_section_type (asect->flags);
3223
3224 if (this_hdr->sh_type == SHT_NULL)
3225 this_hdr->sh_type = sh_type;
3226 else if (this_hdr->sh_type == SHT_NOBITS
3227 && sh_type == SHT_PROGBITS
3228 && (asect->flags & SEC_ALLOC) != 0)
3229 {
3230 /* Warn if we are changing a NOBITS section to PROGBITS, but
3231 allow the link to proceed. This can happen when users link
3232 non-bss input sections to bss output sections, or emit data
3233 to a bss output section via a linker script. */
3234 _bfd_error_handler
3235 (_("warning: section `%A' type changed to PROGBITS"), asect);
3236 this_hdr->sh_type = sh_type;
3237 }
3238
3239 switch (this_hdr->sh_type)
3240 {
3241 default:
3242 break;
3243
3244 case SHT_STRTAB:
3245 case SHT_NOTE:
3246 case SHT_NOBITS:
3247 case SHT_PROGBITS:
3248 break;
3249
3250 case SHT_INIT_ARRAY:
3251 case SHT_FINI_ARRAY:
3252 case SHT_PREINIT_ARRAY:
3253 this_hdr->sh_entsize = bed->s->arch_size / 8;
3254 break;
3255
3256 case SHT_HASH:
3257 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
3258 break;
3259
3260 case SHT_DYNSYM:
3261 this_hdr->sh_entsize = bed->s->sizeof_sym;
3262 break;
3263
3264 case SHT_DYNAMIC:
3265 this_hdr->sh_entsize = bed->s->sizeof_dyn;
3266 break;
3267
3268 case SHT_RELA:
3269 if (get_elf_backend_data (abfd)->may_use_rela_p)
3270 this_hdr->sh_entsize = bed->s->sizeof_rela;
3271 break;
3272
3273 case SHT_REL:
3274 if (get_elf_backend_data (abfd)->may_use_rel_p)
3275 this_hdr->sh_entsize = bed->s->sizeof_rel;
3276 break;
3277
3278 case SHT_GNU_versym:
3279 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
3280 break;
3281
3282 case SHT_GNU_verdef:
3283 this_hdr->sh_entsize = 0;
3284 /* objcopy or strip will copy over sh_info, but may not set
3285 cverdefs. The linker will set cverdefs, but sh_info will be
3286 zero. */
3287 if (this_hdr->sh_info == 0)
3288 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
3289 else
3290 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
3291 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
3292 break;
3293
3294 case SHT_GNU_verneed:
3295 this_hdr->sh_entsize = 0;
3296 /* objcopy or strip will copy over sh_info, but may not set
3297 cverrefs. The linker will set cverrefs, but sh_info will be
3298 zero. */
3299 if (this_hdr->sh_info == 0)
3300 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
3301 else
3302 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
3303 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
3304 break;
3305
3306 case SHT_GROUP:
3307 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
3308 break;
3309
3310 case SHT_GNU_HASH:
3311 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
3312 break;
3313 }
3314
3315 if ((asect->flags & SEC_ALLOC) != 0)
3316 this_hdr->sh_flags |= SHF_ALLOC;
3317 if ((asect->flags & SEC_READONLY) == 0)
3318 this_hdr->sh_flags |= SHF_WRITE;
3319 if ((asect->flags & SEC_CODE) != 0)
3320 this_hdr->sh_flags |= SHF_EXECINSTR;
3321 if ((asect->flags & SEC_MERGE) != 0)
3322 {
3323 this_hdr->sh_flags |= SHF_MERGE;
3324 this_hdr->sh_entsize = asect->entsize;
3325 }
3326 if ((asect->flags & SEC_STRINGS) != 0)
3327 this_hdr->sh_flags |= SHF_STRINGS;
3328 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
3329 this_hdr->sh_flags |= SHF_GROUP;
3330 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
3331 {
3332 this_hdr->sh_flags |= SHF_TLS;
3333 if (asect->size == 0
3334 && (asect->flags & SEC_HAS_CONTENTS) == 0)
3335 {
3336 struct bfd_link_order *o = asect->map_tail.link_order;
3337
3338 this_hdr->sh_size = 0;
3339 if (o != NULL)
3340 {
3341 this_hdr->sh_size = o->offset + o->size;
3342 if (this_hdr->sh_size != 0)
3343 this_hdr->sh_type = SHT_NOBITS;
3344 }
3345 }
3346 }
3347 if ((asect->flags & (SEC_GROUP | SEC_EXCLUDE)) == SEC_EXCLUDE)
3348 this_hdr->sh_flags |= SHF_EXCLUDE;
3349
3350 /* If the section has relocs, set up a section header for the
3351 SHT_REL[A] section. If two relocation sections are required for
3352 this section, it is up to the processor-specific back-end to
3353 create the other. */
3354 if ((asect->flags & SEC_RELOC) != 0)
3355 {
3356 /* When doing a relocatable link, create both REL and RELA sections if
3357 needed. */
3358 if (arg->link_info
3359 /* Do the normal setup if we wouldn't create any sections here. */
3360 && esd->rel.count + esd->rela.count > 0
3361 && (bfd_link_relocatable (arg->link_info)
3362 || arg->link_info->emitrelocations))
3363 {
3364 if (esd->rel.count && esd->rel.hdr == NULL
3365 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rel, name, FALSE,
3366 delay_st_name_p))
3367 {
3368 arg->failed = TRUE;
3369 return;
3370 }
3371 if (esd->rela.count && esd->rela.hdr == NULL
3372 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rela, name, TRUE,
3373 delay_st_name_p))
3374 {
3375 arg->failed = TRUE;
3376 return;
3377 }
3378 }
3379 else if (!_bfd_elf_init_reloc_shdr (abfd,
3380 (asect->use_rela_p
3381 ? &esd->rela : &esd->rel),
3382 name,
3383 asect->use_rela_p,
3384 delay_st_name_p))
3385 arg->failed = TRUE;
3386 }
3387
3388 /* Check for processor-specific section types. */
3389 sh_type = this_hdr->sh_type;
3390 if (bed->elf_backend_fake_sections
3391 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
3392 arg->failed = TRUE;
3393
3394 if (sh_type == SHT_NOBITS && asect->size != 0)
3395 {
3396 /* Don't change the header type from NOBITS if we are being
3397 called for objcopy --only-keep-debug. */
3398 this_hdr->sh_type = sh_type;
3399 }
3400 }
3401
3402 /* Fill in the contents of a SHT_GROUP section. Called from
3403 _bfd_elf_compute_section_file_positions for gas, objcopy, and
3404 when ELF targets use the generic linker, ld. Called for ld -r
3405 from bfd_elf_final_link. */
3406
3407 void
3408 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
3409 {
3410 bfd_boolean *failedptr = (bfd_boolean *) failedptrarg;
3411 asection *elt, *first;
3412 unsigned char *loc;
3413 bfd_boolean gas;
3414
3415 /* Ignore linker created group section. See elfNN_ia64_object_p in
3416 elfxx-ia64.c. */
3417 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
3418 || *failedptr)
3419 return;
3420
3421 if (elf_section_data (sec)->this_hdr.sh_info == 0)
3422 {
3423 unsigned long symindx = 0;
3424
3425 /* elf_group_id will have been set up by objcopy and the
3426 generic linker. */
3427 if (elf_group_id (sec) != NULL)
3428 symindx = elf_group_id (sec)->udata.i;
3429
3430 if (symindx == 0)
3431 {
3432 /* If called from the assembler, swap_out_syms will have set up
3433 elf_section_syms. */
3434 BFD_ASSERT (elf_section_syms (abfd) != NULL);
3435 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
3436 }
3437 elf_section_data (sec)->this_hdr.sh_info = symindx;
3438 }
3439 else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2)
3440 {
3441 /* The ELF backend linker sets sh_info to -2 when the group
3442 signature symbol is global, and thus the index can't be
3443 set until all local symbols are output. */
3444 asection *igroup;
3445 struct bfd_elf_section_data *sec_data;
3446 unsigned long symndx;
3447 unsigned long extsymoff;
3448 struct elf_link_hash_entry *h;
3449
3450 /* The point of this little dance to the first SHF_GROUP section
3451 then back to the SHT_GROUP section is that this gets us to
3452 the SHT_GROUP in the input object. */
3453 igroup = elf_sec_group (elf_next_in_group (sec));
3454 sec_data = elf_section_data (igroup);
3455 symndx = sec_data->this_hdr.sh_info;
3456 extsymoff = 0;
3457 if (!elf_bad_symtab (igroup->owner))
3458 {
3459 Elf_Internal_Shdr *symtab_hdr;
3460
3461 symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr;
3462 extsymoff = symtab_hdr->sh_info;
3463 }
3464 h = elf_sym_hashes (igroup->owner)[symndx - extsymoff];
3465 while (h->root.type == bfd_link_hash_indirect
3466 || h->root.type == bfd_link_hash_warning)
3467 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3468
3469 elf_section_data (sec)->this_hdr.sh_info = h->indx;
3470 }
3471
3472 /* The contents won't be allocated for "ld -r" or objcopy. */
3473 gas = TRUE;
3474 if (sec->contents == NULL)
3475 {
3476 gas = FALSE;
3477 sec->contents = (unsigned char *) bfd_alloc (abfd, sec->size);
3478
3479 /* Arrange for the section to be written out. */
3480 elf_section_data (sec)->this_hdr.contents = sec->contents;
3481 if (sec->contents == NULL)
3482 {
3483 *failedptr = TRUE;
3484 return;
3485 }
3486 }
3487
3488 loc = sec->contents + sec->size;
3489
3490 /* Get the pointer to the first section in the group that gas
3491 squirreled away here. objcopy arranges for this to be set to the
3492 start of the input section group. */
3493 first = elt = elf_next_in_group (sec);
3494
3495 /* First element is a flag word. Rest of section is elf section
3496 indices for all the sections of the group. Write them backwards
3497 just to keep the group in the same order as given in .section
3498 directives, not that it matters. */
3499 while (elt != NULL)
3500 {
3501 asection *s;
3502
3503 s = elt;
3504 if (!gas)
3505 s = s->output_section;
3506 if (s != NULL
3507 && !bfd_is_abs_section (s))
3508 {
3509 unsigned int idx = elf_section_data (s)->this_idx;
3510
3511 loc -= 4;
3512 H_PUT_32 (abfd, idx, loc);
3513 }
3514 elt = elf_next_in_group (elt);
3515 if (elt == first)
3516 break;
3517 }
3518
3519 if ((loc -= 4) != sec->contents)
3520 abort ();
3521
3522 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
3523 }
3524
3525 /* Return the section which RELOC_SEC applies to. */
3526
3527 asection *
3528 _bfd_elf_get_reloc_section (asection *reloc_sec)
3529 {
3530 const char *name;
3531 unsigned int type;
3532 bfd *abfd;
3533
3534 if (reloc_sec == NULL)
3535 return NULL;
3536
3537 type = elf_section_data (reloc_sec)->this_hdr.sh_type;
3538 if (type != SHT_REL && type != SHT_RELA)
3539 return NULL;
3540
3541 /* We look up the section the relocs apply to by name. */
3542 name = reloc_sec->name;
3543 if (type == SHT_REL)
3544 name += 4;
3545 else
3546 name += 5;
3547
3548 /* If a target needs .got.plt section, relocations in rela.plt/rel.plt
3549 section apply to .got.plt section. */
3550 abfd = reloc_sec->owner;
3551 if (get_elf_backend_data (abfd)->want_got_plt
3552 && strcmp (name, ".plt") == 0)
3553 {
3554 /* .got.plt is a linker created input section. It may be mapped
3555 to some other output section. Try two likely sections. */
3556 name = ".got.plt";
3557 reloc_sec = bfd_get_section_by_name (abfd, name);
3558 if (reloc_sec != NULL)
3559 return reloc_sec;
3560 name = ".got";
3561 }
3562
3563 reloc_sec = bfd_get_section_by_name (abfd, name);
3564 return reloc_sec;
3565 }
3566
3567 /* Assign all ELF section numbers. The dummy first section is handled here
3568 too. The link/info pointers for the standard section types are filled
3569 in here too, while we're at it. */
3570
3571 static bfd_boolean
3572 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
3573 {
3574 struct elf_obj_tdata *t = elf_tdata (abfd);
3575 asection *sec;
3576 unsigned int section_number;
3577 Elf_Internal_Shdr **i_shdrp;
3578 struct bfd_elf_section_data *d;
3579 bfd_boolean need_symtab;
3580
3581 section_number = 1;
3582
3583 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
3584
3585 /* SHT_GROUP sections are in relocatable files only. */
3586 if (link_info == NULL || bfd_link_relocatable (link_info))
3587 {
3588 size_t reloc_count = 0;
3589
3590 /* Put SHT_GROUP sections first. */
3591 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3592 {
3593 d = elf_section_data (sec);
3594
3595 if (d->this_hdr.sh_type == SHT_GROUP)
3596 {
3597 if (sec->flags & SEC_LINKER_CREATED)
3598 {
3599 /* Remove the linker created SHT_GROUP sections. */
3600 bfd_section_list_remove (abfd, sec);
3601 abfd->section_count--;
3602 }
3603 else
3604 d->this_idx = section_number++;
3605 }
3606
3607 /* Count relocations. */
3608 reloc_count += sec->reloc_count;
3609 }
3610
3611 /* Clear HAS_RELOC if there are no relocations. */
3612 if (reloc_count == 0)
3613 abfd->flags &= ~HAS_RELOC;
3614 }
3615
3616 for (sec = abfd->sections; sec; sec = sec->next)
3617 {
3618 d = elf_section_data (sec);
3619
3620 if (d->this_hdr.sh_type != SHT_GROUP)
3621 d->this_idx = section_number++;
3622 if (d->this_hdr.sh_name != (unsigned int) -1)
3623 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
3624 if (d->rel.hdr)
3625 {
3626 d->rel.idx = section_number++;
3627 if (d->rel.hdr->sh_name != (unsigned int) -1)
3628 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel.hdr->sh_name);
3629 }
3630 else
3631 d->rel.idx = 0;
3632
3633 if (d->rela.hdr)
3634 {
3635 d->rela.idx = section_number++;
3636 if (d->rela.hdr->sh_name != (unsigned int) -1)
3637 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rela.hdr->sh_name);
3638 }
3639 else
3640 d->rela.idx = 0;
3641 }
3642
3643 need_symtab = (bfd_get_symcount (abfd) > 0
3644 || (link_info == NULL
3645 && ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
3646 == HAS_RELOC)));
3647 if (need_symtab)
3648 {
3649 elf_onesymtab (abfd) = section_number++;
3650 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
3651 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
3652 {
3653 elf_section_list * entry;
3654
3655 BFD_ASSERT (elf_symtab_shndx_list (abfd) == NULL);
3656
3657 entry = bfd_zalloc (abfd, sizeof * entry);
3658 entry->ndx = section_number++;
3659 elf_symtab_shndx_list (abfd) = entry;
3660 entry->hdr.sh_name
3661 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3662 ".symtab_shndx", FALSE);
3663 if (entry->hdr.sh_name == (unsigned int) -1)
3664 return FALSE;
3665 }
3666 elf_strtab_sec (abfd) = section_number++;
3667 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3668 }
3669
3670 elf_shstrtab_sec (abfd) = section_number++;
3671 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
3672 elf_elfheader (abfd)->e_shstrndx = elf_shstrtab_sec (abfd);
3673
3674 if (section_number >= SHN_LORESERVE)
3675 {
3676 /* xgettext:c-format */
3677 _bfd_error_handler (_("%B: too many sections: %u"),
3678 abfd, section_number);
3679 return FALSE;
3680 }
3681
3682 elf_numsections (abfd) = section_number;
3683 elf_elfheader (abfd)->e_shnum = section_number;
3684
3685 /* Set up the list of section header pointers, in agreement with the
3686 indices. */
3687 i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc2 (abfd, section_number,
3688 sizeof (Elf_Internal_Shdr *));
3689 if (i_shdrp == NULL)
3690 return FALSE;
3691
3692 i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd,
3693 sizeof (Elf_Internal_Shdr));
3694 if (i_shdrp[0] == NULL)
3695 {
3696 bfd_release (abfd, i_shdrp);
3697 return FALSE;
3698 }
3699
3700 elf_elfsections (abfd) = i_shdrp;
3701
3702 i_shdrp[elf_shstrtab_sec (abfd)] = &t->shstrtab_hdr;
3703 if (need_symtab)
3704 {
3705 i_shdrp[elf_onesymtab (abfd)] = &t->symtab_hdr;
3706 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
3707 {
3708 elf_section_list * entry = elf_symtab_shndx_list (abfd);
3709 BFD_ASSERT (entry != NULL);
3710 i_shdrp[entry->ndx] = & entry->hdr;
3711 entry->hdr.sh_link = elf_onesymtab (abfd);
3712 }
3713 i_shdrp[elf_strtab_sec (abfd)] = &t->strtab_hdr;
3714 t->symtab_hdr.sh_link = elf_strtab_sec (abfd);
3715 }
3716
3717 for (sec = abfd->sections; sec; sec = sec->next)
3718 {
3719 asection *s;
3720
3721 d = elf_section_data (sec);
3722
3723 i_shdrp[d->this_idx] = &d->this_hdr;
3724 if (d->rel.idx != 0)
3725 i_shdrp[d->rel.idx] = d->rel.hdr;
3726 if (d->rela.idx != 0)
3727 i_shdrp[d->rela.idx] = d->rela.hdr;
3728
3729 /* Fill in the sh_link and sh_info fields while we're at it. */
3730
3731 /* sh_link of a reloc section is the section index of the symbol
3732 table. sh_info is the section index of the section to which
3733 the relocation entries apply. */
3734 if (d->rel.idx != 0)
3735 {
3736 d->rel.hdr->sh_link = elf_onesymtab (abfd);
3737 d->rel.hdr->sh_info = d->this_idx;
3738 d->rel.hdr->sh_flags |= SHF_INFO_LINK;
3739 }
3740 if (d->rela.idx != 0)
3741 {
3742 d->rela.hdr->sh_link = elf_onesymtab (abfd);
3743 d->rela.hdr->sh_info = d->this_idx;
3744 d->rela.hdr->sh_flags |= SHF_INFO_LINK;
3745 }
3746
3747 /* We need to set up sh_link for SHF_LINK_ORDER. */
3748 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3749 {
3750 s = elf_linked_to_section (sec);
3751 if (s)
3752 {
3753 /* elf_linked_to_section points to the input section. */
3754 if (link_info != NULL)
3755 {
3756 /* Check discarded linkonce section. */
3757 if (discarded_section (s))
3758 {
3759 asection *kept;
3760 _bfd_error_handler
3761 /* xgettext:c-format */
3762 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
3763 abfd, d->this_hdr.bfd_section,
3764 s, s->owner);
3765 /* Point to the kept section if it has the same
3766 size as the discarded one. */
3767 kept = _bfd_elf_check_kept_section (s, link_info);
3768 if (kept == NULL)
3769 {
3770 bfd_set_error (bfd_error_bad_value);
3771 return FALSE;
3772 }
3773 s = kept;
3774 }
3775
3776 s = s->output_section;
3777 BFD_ASSERT (s != NULL);
3778 }
3779 else
3780 {
3781 /* Handle objcopy. */
3782 if (s->output_section == NULL)
3783 {
3784 _bfd_error_handler
3785 /* xgettext:c-format */
3786 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
3787 abfd, d->this_hdr.bfd_section, s, s->owner);
3788 bfd_set_error (bfd_error_bad_value);
3789 return FALSE;
3790 }
3791 s = s->output_section;
3792 }
3793 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3794 }
3795 else
3796 {
3797 /* PR 290:
3798 The Intel C compiler generates SHT_IA_64_UNWIND with
3799 SHF_LINK_ORDER. But it doesn't set the sh_link or
3800 sh_info fields. Hence we could get the situation
3801 where s is NULL. */
3802 const struct elf_backend_data *bed
3803 = get_elf_backend_data (abfd);
3804 if (bed->link_order_error_handler)
3805 bed->link_order_error_handler
3806 /* xgettext:c-format */
3807 (_("%B: warning: sh_link not set for section `%A'"),
3808 abfd, sec);
3809 }
3810 }
3811
3812 switch (d->this_hdr.sh_type)
3813 {
3814 case SHT_REL:
3815 case SHT_RELA:
3816 /* A reloc section which we are treating as a normal BFD
3817 section. sh_link is the section index of the symbol
3818 table. sh_info is the section index of the section to
3819 which the relocation entries apply. We assume that an
3820 allocated reloc section uses the dynamic symbol table.
3821 FIXME: How can we be sure? */
3822 s = bfd_get_section_by_name (abfd, ".dynsym");
3823 if (s != NULL)
3824 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3825
3826 s = get_elf_backend_data (abfd)->get_reloc_section (sec);
3827 if (s != NULL)
3828 {
3829 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3830 d->this_hdr.sh_flags |= SHF_INFO_LINK;
3831 }
3832 break;
3833
3834 case SHT_STRTAB:
3835 /* We assume that a section named .stab*str is a stabs
3836 string section. We look for a section with the same name
3837 but without the trailing ``str'', and set its sh_link
3838 field to point to this section. */
3839 if (CONST_STRNEQ (sec->name, ".stab")
3840 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3841 {
3842 size_t len;
3843 char *alc;
3844
3845 len = strlen (sec->name);
3846 alc = (char *) bfd_malloc (len - 2);
3847 if (alc == NULL)
3848 return FALSE;
3849 memcpy (alc, sec->name, len - 3);
3850 alc[len - 3] = '\0';
3851 s = bfd_get_section_by_name (abfd, alc);
3852 free (alc);
3853 if (s != NULL)
3854 {
3855 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3856
3857 /* This is a .stab section. */
3858 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3859 elf_section_data (s)->this_hdr.sh_entsize
3860 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3861 }
3862 }
3863 break;
3864
3865 case SHT_DYNAMIC:
3866 case SHT_DYNSYM:
3867 case SHT_GNU_verneed:
3868 case SHT_GNU_verdef:
3869 /* sh_link is the section header index of the string table
3870 used for the dynamic entries, or the symbol table, or the
3871 version strings. */
3872 s = bfd_get_section_by_name (abfd, ".dynstr");
3873 if (s != NULL)
3874 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3875 break;
3876
3877 case SHT_GNU_LIBLIST:
3878 /* sh_link is the section header index of the prelink library
3879 list used for the dynamic entries, or the symbol table, or
3880 the version strings. */
3881 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3882 ? ".dynstr" : ".gnu.libstr");
3883 if (s != NULL)
3884 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3885 break;
3886
3887 case SHT_HASH:
3888 case SHT_GNU_HASH:
3889 case SHT_GNU_versym:
3890 /* sh_link is the section header index of the symbol table
3891 this hash table or version table is for. */
3892 s = bfd_get_section_by_name (abfd, ".dynsym");
3893 if (s != NULL)
3894 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3895 break;
3896
3897 case SHT_GROUP:
3898 d->this_hdr.sh_link = elf_onesymtab (abfd);
3899 }
3900 }
3901
3902 /* Delay setting sh_name to _bfd_elf_write_object_contents so that
3903 _bfd_elf_assign_file_positions_for_non_load can convert DWARF
3904 debug section name from .debug_* to .zdebug_* if needed. */
3905
3906 return TRUE;
3907 }
3908
3909 static bfd_boolean
3910 sym_is_global (bfd *abfd, asymbol *sym)
3911 {
3912 /* If the backend has a special mapping, use it. */
3913 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3914 if (bed->elf_backend_sym_is_global)
3915 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3916
3917 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0
3918 || bfd_is_und_section (bfd_get_section (sym))
3919 || bfd_is_com_section (bfd_get_section (sym)));
3920 }
3921
3922 /* Filter global symbols of ABFD to include in the import library. All
3923 SYMCOUNT symbols of ABFD can be examined from their pointers in
3924 SYMS. Pointers of symbols to keep should be stored contiguously at
3925 the beginning of that array.
3926
3927 Returns the number of symbols to keep. */
3928
3929 unsigned int
3930 _bfd_elf_filter_global_symbols (bfd *abfd, struct bfd_link_info *info,
3931 asymbol **syms, long symcount)
3932 {
3933 long src_count, dst_count = 0;
3934
3935 for (src_count = 0; src_count < symcount; src_count++)
3936 {
3937 asymbol *sym = syms[src_count];
3938 char *name = (char *) bfd_asymbol_name (sym);
3939 struct bfd_link_hash_entry *h;
3940
3941 if (!sym_is_global (abfd, sym))
3942 continue;
3943
3944 h = bfd_link_hash_lookup (info->hash, name, FALSE, FALSE, FALSE);
3945 if (h == NULL)
3946 continue;
3947 if (h->type != bfd_link_hash_defined && h->type != bfd_link_hash_defweak)
3948 continue;
3949 if (h->linker_def || h->ldscript_def)
3950 continue;
3951
3952 syms[dst_count++] = sym;
3953 }
3954
3955 syms[dst_count] = NULL;
3956
3957 return dst_count;
3958 }
3959
3960 /* Don't output section symbols for sections that are not going to be
3961 output, that are duplicates or there is no BFD section. */
3962
3963 static bfd_boolean
3964 ignore_section_sym (bfd *abfd, asymbol *sym)
3965 {
3966 elf_symbol_type *type_ptr;
3967
3968 if ((sym->flags & BSF_SECTION_SYM) == 0)
3969 return FALSE;
3970
3971 type_ptr = elf_symbol_from (abfd, sym);
3972 return ((type_ptr != NULL
3973 && type_ptr->internal_elf_sym.st_shndx != 0
3974 && bfd_is_abs_section (sym->section))
3975 || !(sym->section->owner == abfd
3976 || (sym->section->output_section->owner == abfd
3977 && sym->section->output_offset == 0)
3978 || bfd_is_abs_section (sym->section)));
3979 }
3980
3981 /* Map symbol from it's internal number to the external number, moving
3982 all local symbols to be at the head of the list. */
3983
3984 static bfd_boolean
3985 elf_map_symbols (bfd *abfd, unsigned int *pnum_locals)
3986 {
3987 unsigned int symcount = bfd_get_symcount (abfd);
3988 asymbol **syms = bfd_get_outsymbols (abfd);
3989 asymbol **sect_syms;
3990 unsigned int num_locals = 0;
3991 unsigned int num_globals = 0;
3992 unsigned int num_locals2 = 0;
3993 unsigned int num_globals2 = 0;
3994 unsigned int max_index = 0;
3995 unsigned int idx;
3996 asection *asect;
3997 asymbol **new_syms;
3998
3999 #ifdef DEBUG
4000 fprintf (stderr, "elf_map_symbols\n");
4001 fflush (stderr);
4002 #endif
4003
4004 for (asect = abfd->sections; asect; asect = asect->next)
4005 {
4006 if (max_index < asect->index)
4007 max_index = asect->index;
4008 }
4009
4010 max_index++;
4011 sect_syms = (asymbol **) bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
4012 if (sect_syms == NULL)
4013 return FALSE;
4014 elf_section_syms (abfd) = sect_syms;
4015 elf_num_section_syms (abfd) = max_index;
4016
4017 /* Init sect_syms entries for any section symbols we have already
4018 decided to output. */
4019 for (idx = 0; idx < symcount; idx++)
4020 {
4021 asymbol *sym = syms[idx];
4022
4023 if ((sym->flags & BSF_SECTION_SYM) != 0
4024 && sym->value == 0
4025 && !ignore_section_sym (abfd, sym)
4026 && !bfd_is_abs_section (sym->section))
4027 {
4028 asection *sec = sym->section;
4029
4030 if (sec->owner != abfd)
4031 sec = sec->output_section;
4032
4033 sect_syms[sec->index] = syms[idx];
4034 }
4035 }
4036
4037 /* Classify all of the symbols. */
4038 for (idx = 0; idx < symcount; idx++)
4039 {
4040 if (sym_is_global (abfd, syms[idx]))
4041 num_globals++;
4042 else if (!ignore_section_sym (abfd, syms[idx]))
4043 num_locals++;
4044 }
4045
4046 /* We will be adding a section symbol for each normal BFD section. Most
4047 sections will already have a section symbol in outsymbols, but
4048 eg. SHT_GROUP sections will not, and we need the section symbol mapped
4049 at least in that case. */
4050 for (asect = abfd->sections; asect; asect = asect->next)
4051 {
4052 if (sect_syms[asect->index] == NULL)
4053 {
4054 if (!sym_is_global (abfd, asect->symbol))
4055 num_locals++;
4056 else
4057 num_globals++;
4058 }
4059 }
4060
4061 /* Now sort the symbols so the local symbols are first. */
4062 new_syms = (asymbol **) bfd_alloc2 (abfd, num_locals + num_globals,
4063 sizeof (asymbol *));
4064
4065 if (new_syms == NULL)
4066 return FALSE;
4067
4068 for (idx = 0; idx < symcount; idx++)
4069 {
4070 asymbol *sym = syms[idx];
4071 unsigned int i;
4072
4073 if (sym_is_global (abfd, sym))
4074 i = num_locals + num_globals2++;
4075 else if (!ignore_section_sym (abfd, sym))
4076 i = num_locals2++;
4077 else
4078 continue;
4079 new_syms[i] = sym;
4080 sym->udata.i = i + 1;
4081 }
4082 for (asect = abfd->sections; asect; asect = asect->next)
4083 {
4084 if (sect_syms[asect->index] == NULL)
4085 {
4086 asymbol *sym = asect->symbol;
4087 unsigned int i;
4088
4089 sect_syms[asect->index] = sym;
4090 if (!sym_is_global (abfd, sym))
4091 i = num_locals2++;
4092 else
4093 i = num_locals + num_globals2++;
4094 new_syms[i] = sym;
4095 sym->udata.i = i + 1;
4096 }
4097 }
4098
4099 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
4100
4101 *pnum_locals = num_locals;
4102 return TRUE;
4103 }
4104
4105 /* Align to the maximum file alignment that could be required for any
4106 ELF data structure. */
4107
4108 static inline file_ptr
4109 align_file_position (file_ptr off, int align)
4110 {
4111 return (off + align - 1) & ~(align - 1);
4112 }
4113
4114 /* Assign a file position to a section, optionally aligning to the
4115 required section alignment. */
4116
4117 file_ptr
4118 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
4119 file_ptr offset,
4120 bfd_boolean align)
4121 {
4122 if (align && i_shdrp->sh_addralign > 1)
4123 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
4124 i_shdrp->sh_offset = offset;
4125 if (i_shdrp->bfd_section != NULL)
4126 i_shdrp->bfd_section->filepos = offset;
4127 if (i_shdrp->sh_type != SHT_NOBITS)
4128 offset += i_shdrp->sh_size;
4129 return offset;
4130 }
4131
4132 /* Compute the file positions we are going to put the sections at, and
4133 otherwise prepare to begin writing out the ELF file. If LINK_INFO
4134 is not NULL, this is being called by the ELF backend linker. */
4135
4136 bfd_boolean
4137 _bfd_elf_compute_section_file_positions (bfd *abfd,
4138 struct bfd_link_info *link_info)
4139 {
4140 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4141 struct fake_section_arg fsargs;
4142 bfd_boolean failed;
4143 struct elf_strtab_hash *strtab = NULL;
4144 Elf_Internal_Shdr *shstrtab_hdr;
4145 bfd_boolean need_symtab;
4146
4147 if (abfd->output_has_begun)
4148 return TRUE;
4149
4150 /* Do any elf backend specific processing first. */
4151 if (bed->elf_backend_begin_write_processing)
4152 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
4153
4154 if (! prep_headers (abfd))
4155 return FALSE;
4156
4157 /* Post process the headers if necessary. */
4158 (*bed->elf_backend_post_process_headers) (abfd, link_info);
4159
4160 fsargs.failed = FALSE;
4161 fsargs.link_info = link_info;
4162 bfd_map_over_sections (abfd, elf_fake_sections, &fsargs);
4163 if (fsargs.failed)
4164 return FALSE;
4165
4166 if (!assign_section_numbers (abfd, link_info))
4167 return FALSE;
4168
4169 /* The backend linker builds symbol table information itself. */
4170 need_symtab = (link_info == NULL
4171 && (bfd_get_symcount (abfd) > 0
4172 || ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
4173 == HAS_RELOC)));
4174 if (need_symtab)
4175 {
4176 /* Non-zero if doing a relocatable link. */
4177 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
4178
4179 if (! swap_out_syms (abfd, &strtab, relocatable_p))
4180 return FALSE;
4181 }
4182
4183 failed = FALSE;
4184 if (link_info == NULL)
4185 {
4186 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
4187 if (failed)
4188 return FALSE;
4189 }
4190
4191 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
4192 /* sh_name was set in prep_headers. */
4193 shstrtab_hdr->sh_type = SHT_STRTAB;
4194 shstrtab_hdr->sh_flags = bed->elf_strtab_flags;
4195 shstrtab_hdr->sh_addr = 0;
4196 /* sh_size is set in _bfd_elf_assign_file_positions_for_non_load. */
4197 shstrtab_hdr->sh_entsize = 0;
4198 shstrtab_hdr->sh_link = 0;
4199 shstrtab_hdr->sh_info = 0;
4200 /* sh_offset is set in _bfd_elf_assign_file_positions_for_non_load. */
4201 shstrtab_hdr->sh_addralign = 1;
4202
4203 if (!assign_file_positions_except_relocs (abfd, link_info))
4204 return FALSE;
4205
4206 if (need_symtab)
4207 {
4208 file_ptr off;
4209 Elf_Internal_Shdr *hdr;
4210
4211 off = elf_next_file_pos (abfd);
4212
4213 hdr = & elf_symtab_hdr (abfd);
4214 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4215
4216 if (elf_symtab_shndx_list (abfd) != NULL)
4217 {
4218 hdr = & elf_symtab_shndx_list (abfd)->hdr;
4219 if (hdr->sh_size != 0)
4220 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4221 /* FIXME: What about other symtab_shndx sections in the list ? */
4222 }
4223
4224 hdr = &elf_tdata (abfd)->strtab_hdr;
4225 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4226
4227 elf_next_file_pos (abfd) = off;
4228
4229 /* Now that we know where the .strtab section goes, write it
4230 out. */
4231 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
4232 || ! _bfd_elf_strtab_emit (abfd, strtab))
4233 return FALSE;
4234 _bfd_elf_strtab_free (strtab);
4235 }
4236
4237 abfd->output_has_begun = TRUE;
4238
4239 return TRUE;
4240 }
4241
4242 /* Make an initial estimate of the size of the program header. If we
4243 get the number wrong here, we'll redo section placement. */
4244
4245 static bfd_size_type
4246 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
4247 {
4248 size_t segs;
4249 asection *s;
4250 const struct elf_backend_data *bed;
4251
4252 /* Assume we will need exactly two PT_LOAD segments: one for text
4253 and one for data. */
4254 segs = 2;
4255
4256 s = bfd_get_section_by_name (abfd, ".interp");
4257 if (s != NULL && (s->flags & SEC_LOAD) != 0)
4258 {
4259 /* If we have a loadable interpreter section, we need a
4260 PT_INTERP segment. In this case, assume we also need a
4261 PT_PHDR segment, although that may not be true for all
4262 targets. */
4263 segs += 2;
4264 }
4265
4266 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4267 {
4268 /* We need a PT_DYNAMIC segment. */
4269 ++segs;
4270 }
4271
4272 if (info != NULL && info->relro)
4273 {
4274 /* We need a PT_GNU_RELRO segment. */
4275 ++segs;
4276 }
4277
4278 if (elf_eh_frame_hdr (abfd))
4279 {
4280 /* We need a PT_GNU_EH_FRAME segment. */
4281 ++segs;
4282 }
4283
4284 if (elf_stack_flags (abfd))
4285 {
4286 /* We need a PT_GNU_STACK segment. */
4287 ++segs;
4288 }
4289
4290 for (s = abfd->sections; s != NULL; s = s->next)
4291 {
4292 if ((s->flags & SEC_LOAD) != 0
4293 && CONST_STRNEQ (s->name, ".note"))
4294 {
4295 /* We need a PT_NOTE segment. */
4296 ++segs;
4297 /* Try to create just one PT_NOTE segment
4298 for all adjacent loadable .note* sections.
4299 gABI requires that within a PT_NOTE segment
4300 (and also inside of each SHT_NOTE section)
4301 each note is padded to a multiple of 4 size,
4302 so we check whether the sections are correctly
4303 aligned. */
4304 if (s->alignment_power == 2)
4305 while (s->next != NULL
4306 && s->next->alignment_power == 2
4307 && (s->next->flags & SEC_LOAD) != 0
4308 && CONST_STRNEQ (s->next->name, ".note"))
4309 s = s->next;
4310 }
4311 }
4312
4313 for (s = abfd->sections; s != NULL; s = s->next)
4314 {
4315 if (s->flags & SEC_THREAD_LOCAL)
4316 {
4317 /* We need a PT_TLS segment. */
4318 ++segs;
4319 break;
4320 }
4321 }
4322
4323 /* Let the backend count up any program headers it might need. */
4324 bed = get_elf_backend_data (abfd);
4325 if (bed->elf_backend_additional_program_headers)
4326 {
4327 int a;
4328
4329 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
4330 if (a == -1)
4331 abort ();
4332 segs += a;
4333 }
4334
4335 return segs * bed->s->sizeof_phdr;
4336 }
4337
4338 /* Find the segment that contains the output_section of section. */
4339
4340 Elf_Internal_Phdr *
4341 _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
4342 {
4343 struct elf_segment_map *m;
4344 Elf_Internal_Phdr *p;
4345
4346 for (m = elf_seg_map (abfd), p = elf_tdata (abfd)->phdr;
4347 m != NULL;
4348 m = m->next, p++)
4349 {
4350 int i;
4351
4352 for (i = m->count - 1; i >= 0; i--)
4353 if (m->sections[i] == section)
4354 return p;
4355 }
4356
4357 return NULL;
4358 }
4359
4360 /* Create a mapping from a set of sections to a program segment. */
4361
4362 static struct elf_segment_map *
4363 make_mapping (bfd *abfd,
4364 asection **sections,
4365 unsigned int from,
4366 unsigned int to,
4367 bfd_boolean phdr)
4368 {
4369 struct elf_segment_map *m;
4370 unsigned int i;
4371 asection **hdrpp;
4372 bfd_size_type amt;
4373
4374 amt = sizeof (struct elf_segment_map);
4375 amt += (to - from - 1) * sizeof (asection *);
4376 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4377 if (m == NULL)
4378 return NULL;
4379 m->next = NULL;
4380 m->p_type = PT_LOAD;
4381 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
4382 m->sections[i - from] = *hdrpp;
4383 m->count = to - from;
4384
4385 if (from == 0 && phdr)
4386 {
4387 /* Include the headers in the first PT_LOAD segment. */
4388 m->includes_filehdr = 1;
4389 m->includes_phdrs = 1;
4390 }
4391
4392 return m;
4393 }
4394
4395 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
4396 on failure. */
4397
4398 struct elf_segment_map *
4399 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
4400 {
4401 struct elf_segment_map *m;
4402
4403 m = (struct elf_segment_map *) bfd_zalloc (abfd,
4404 sizeof (struct elf_segment_map));
4405 if (m == NULL)
4406 return NULL;
4407 m->next = NULL;
4408 m->p_type = PT_DYNAMIC;
4409 m->count = 1;
4410 m->sections[0] = dynsec;
4411
4412 return m;
4413 }
4414
4415 /* Possibly add or remove segments from the segment map. */
4416
4417 static bfd_boolean
4418 elf_modify_segment_map (bfd *abfd,
4419 struct bfd_link_info *info,
4420 bfd_boolean remove_empty_load)
4421 {
4422 struct elf_segment_map **m;
4423 const struct elf_backend_data *bed;
4424
4425 /* The placement algorithm assumes that non allocated sections are
4426 not in PT_LOAD segments. We ensure this here by removing such
4427 sections from the segment map. We also remove excluded
4428 sections. Finally, any PT_LOAD segment without sections is
4429 removed. */
4430 m = &elf_seg_map (abfd);
4431 while (*m)
4432 {
4433 unsigned int i, new_count;
4434
4435 for (new_count = 0, i = 0; i < (*m)->count; i++)
4436 {
4437 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
4438 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
4439 || (*m)->p_type != PT_LOAD))
4440 {
4441 (*m)->sections[new_count] = (*m)->sections[i];
4442 new_count++;
4443 }
4444 }
4445 (*m)->count = new_count;
4446
4447 if (remove_empty_load
4448 && (*m)->p_type == PT_LOAD
4449 && (*m)->count == 0
4450 && !(*m)->includes_phdrs)
4451 *m = (*m)->next;
4452 else
4453 m = &(*m)->next;
4454 }
4455
4456 bed = get_elf_backend_data (abfd);
4457 if (bed->elf_backend_modify_segment_map != NULL)
4458 {
4459 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
4460 return FALSE;
4461 }
4462
4463 return TRUE;
4464 }
4465
4466 /* Set up a mapping from BFD sections to program segments. */
4467
4468 bfd_boolean
4469 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
4470 {
4471 unsigned int count;
4472 struct elf_segment_map *m;
4473 asection **sections = NULL;
4474 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4475 bfd_boolean no_user_phdrs;
4476
4477 no_user_phdrs = elf_seg_map (abfd) == NULL;
4478
4479 if (info != NULL)
4480 info->user_phdrs = !no_user_phdrs;
4481
4482 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
4483 {
4484 asection *s;
4485 unsigned int i;
4486 struct elf_segment_map *mfirst;
4487 struct elf_segment_map **pm;
4488 asection *last_hdr;
4489 bfd_vma last_size;
4490 unsigned int phdr_index;
4491 bfd_vma maxpagesize;
4492 asection **hdrpp;
4493 bfd_boolean phdr_in_segment = TRUE;
4494 bfd_boolean writable;
4495 int tls_count = 0;
4496 asection *first_tls = NULL;
4497 asection *dynsec, *eh_frame_hdr;
4498 bfd_size_type amt;
4499 bfd_vma addr_mask, wrap_to = 0;
4500 bfd_boolean linker_created_pt_phdr_segment = FALSE;
4501
4502 /* Select the allocated sections, and sort them. */
4503
4504 sections = (asection **) bfd_malloc2 (bfd_count_sections (abfd),
4505 sizeof (asection *));
4506 if (sections == NULL)
4507 goto error_return;
4508
4509 /* Calculate top address, avoiding undefined behaviour of shift
4510 left operator when shift count is equal to size of type
4511 being shifted. */
4512 addr_mask = ((bfd_vma) 1 << (bfd_arch_bits_per_address (abfd) - 1)) - 1;
4513 addr_mask = (addr_mask << 1) + 1;
4514
4515 i = 0;
4516 for (s = abfd->sections; s != NULL; s = s->next)
4517 {
4518 if ((s->flags & SEC_ALLOC) != 0)
4519 {
4520 sections[i] = s;
4521 ++i;
4522 /* A wrapping section potentially clashes with header. */
4523 if (((s->lma + s->size) & addr_mask) < (s->lma & addr_mask))
4524 wrap_to = (s->lma + s->size) & addr_mask;
4525 }
4526 }
4527 BFD_ASSERT (i <= bfd_count_sections (abfd));
4528 count = i;
4529
4530 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
4531
4532 /* Build the mapping. */
4533
4534 mfirst = NULL;
4535 pm = &mfirst;
4536
4537 /* If we have a .interp section, then create a PT_PHDR segment for
4538 the program headers and a PT_INTERP segment for the .interp
4539 section. */
4540 s = bfd_get_section_by_name (abfd, ".interp");
4541 if (s != NULL && (s->flags & SEC_LOAD) != 0)
4542 {
4543 amt = sizeof (struct elf_segment_map);
4544 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4545 if (m == NULL)
4546 goto error_return;
4547 m->next = NULL;
4548 m->p_type = PT_PHDR;
4549 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
4550 m->p_flags = PF_R | PF_X;
4551 m->p_flags_valid = 1;
4552 m->includes_phdrs = 1;
4553 linker_created_pt_phdr_segment = TRUE;
4554 *pm = m;
4555 pm = &m->next;
4556
4557 amt = sizeof (struct elf_segment_map);
4558 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4559 if (m == NULL)
4560 goto error_return;
4561 m->next = NULL;
4562 m->p_type = PT_INTERP;
4563 m->count = 1;
4564 m->sections[0] = s;
4565
4566 *pm = m;
4567 pm = &m->next;
4568 }
4569
4570 /* Look through the sections. We put sections in the same program
4571 segment when the start of the second section can be placed within
4572 a few bytes of the end of the first section. */
4573 last_hdr = NULL;
4574 last_size = 0;
4575 phdr_index = 0;
4576 maxpagesize = bed->maxpagesize;
4577 /* PR 17512: file: c8455299.
4578 Avoid divide-by-zero errors later on.
4579 FIXME: Should we abort if the maxpagesize is zero ? */
4580 if (maxpagesize == 0)
4581 maxpagesize = 1;
4582 writable = FALSE;
4583 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
4584 if (dynsec != NULL
4585 && (dynsec->flags & SEC_LOAD) == 0)
4586 dynsec = NULL;
4587
4588 /* Deal with -Ttext or something similar such that the first section
4589 is not adjacent to the program headers. This is an
4590 approximation, since at this point we don't know exactly how many
4591 program headers we will need. */
4592 if (count > 0)
4593 {
4594 bfd_size_type phdr_size = elf_program_header_size (abfd);
4595
4596 if (phdr_size == (bfd_size_type) -1)
4597 phdr_size = get_program_header_size (abfd, info);
4598 phdr_size += bed->s->sizeof_ehdr;
4599 if ((abfd->flags & D_PAGED) == 0
4600 || (sections[0]->lma & addr_mask) < phdr_size
4601 || ((sections[0]->lma & addr_mask) % maxpagesize
4602 < phdr_size % maxpagesize)
4603 || (sections[0]->lma & addr_mask & -maxpagesize) < wrap_to)
4604 {
4605 /* PR 20815: The ELF standard says that a PT_PHDR segment, if
4606 present, must be included as part of the memory image of the
4607 program. Ie it must be part of a PT_LOAD segment as well.
4608 If we have had to create our own PT_PHDR segment, but it is
4609 not going to be covered by the first PT_LOAD segment, then
4610 force the inclusion if we can... */
4611 if ((abfd->flags & D_PAGED) != 0
4612 && linker_created_pt_phdr_segment)
4613 phdr_in_segment = TRUE;
4614 else
4615 phdr_in_segment = FALSE;
4616 }
4617 }
4618
4619 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
4620 {
4621 asection *hdr;
4622 bfd_boolean new_segment;
4623
4624 hdr = *hdrpp;
4625
4626 /* See if this section and the last one will fit in the same
4627 segment. */
4628
4629 if (last_hdr == NULL)
4630 {
4631 /* If we don't have a segment yet, then we don't need a new
4632 one (we build the last one after this loop). */
4633 new_segment = FALSE;
4634 }
4635 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
4636 {
4637 /* If this section has a different relation between the
4638 virtual address and the load address, then we need a new
4639 segment. */
4640 new_segment = TRUE;
4641 }
4642 else if (hdr->lma < last_hdr->lma + last_size
4643 || last_hdr->lma + last_size < last_hdr->lma)
4644 {
4645 /* If this section has a load address that makes it overlap
4646 the previous section, then we need a new segment. */
4647 new_segment = TRUE;
4648 }
4649 /* In the next test we have to be careful when last_hdr->lma is close
4650 to the end of the address space. If the aligned address wraps
4651 around to the start of the address space, then there are no more
4652 pages left in memory and it is OK to assume that the current
4653 section can be included in the current segment. */
4654 else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
4655 > last_hdr->lma)
4656 && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
4657 <= hdr->lma))
4658 {
4659 /* If putting this section in this segment would force us to
4660 skip a page in the segment, then we need a new segment. */
4661 new_segment = TRUE;
4662 }
4663 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
4664 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0
4665 && ((abfd->flags & D_PAGED) == 0
4666 || (((last_hdr->lma + last_size - 1) & -maxpagesize)
4667 != (hdr->lma & -maxpagesize))))
4668 {
4669 /* We don't want to put a loaded section after a
4670 nonloaded (ie. bss style) section in the same segment
4671 as that will force the non-loaded section to be loaded.
4672 Consider .tbss sections as loaded for this purpose.
4673 However, like the writable/non-writable case below,
4674 if they are on the same page then they must be put
4675 in the same segment. */
4676 new_segment = TRUE;
4677 }
4678 else if ((abfd->flags & D_PAGED) == 0)
4679 {
4680 /* If the file is not demand paged, which means that we
4681 don't require the sections to be correctly aligned in the
4682 file, then there is no other reason for a new segment. */
4683 new_segment = FALSE;
4684 }
4685 else if (! writable
4686 && (hdr->flags & SEC_READONLY) == 0
4687 && (((last_hdr->lma + last_size - 1) & -maxpagesize)
4688 != (hdr->lma & -maxpagesize)))
4689 {
4690 /* We don't want to put a writable section in a read only
4691 segment, unless they are on the same page in memory
4692 anyhow. We already know that the last section does not
4693 bring us past the current section on the page, so the
4694 only case in which the new section is not on the same
4695 page as the previous section is when the previous section
4696 ends precisely on a page boundary. */
4697 new_segment = TRUE;
4698 }
4699 else
4700 {
4701 /* Otherwise, we can use the same segment. */
4702 new_segment = FALSE;
4703 }
4704
4705 /* Allow interested parties a chance to override our decision. */
4706 if (last_hdr != NULL
4707 && info != NULL
4708 && info->callbacks->override_segment_assignment != NULL)
4709 new_segment
4710 = info->callbacks->override_segment_assignment (info, abfd, hdr,
4711 last_hdr,
4712 new_segment);
4713
4714 if (! new_segment)
4715 {
4716 if ((hdr->flags & SEC_READONLY) == 0)
4717 writable = TRUE;
4718 last_hdr = hdr;
4719 /* .tbss sections effectively have zero size. */
4720 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
4721 != SEC_THREAD_LOCAL)
4722 last_size = hdr->size;
4723 else
4724 last_size = 0;
4725 continue;
4726 }
4727
4728 /* We need a new program segment. We must create a new program
4729 header holding all the sections from phdr_index until hdr. */
4730
4731 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
4732 if (m == NULL)
4733 goto error_return;
4734
4735 *pm = m;
4736 pm = &m->next;
4737
4738 if ((hdr->flags & SEC_READONLY) == 0)
4739 writable = TRUE;
4740 else
4741 writable = FALSE;
4742
4743 last_hdr = hdr;
4744 /* .tbss sections effectively have zero size. */
4745 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
4746 last_size = hdr->size;
4747 else
4748 last_size = 0;
4749 phdr_index = i;
4750 phdr_in_segment = FALSE;
4751 }
4752
4753 /* Create a final PT_LOAD program segment, but not if it's just
4754 for .tbss. */
4755 if (last_hdr != NULL
4756 && (i - phdr_index != 1
4757 || ((last_hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
4758 != SEC_THREAD_LOCAL)))
4759 {
4760 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
4761 if (m == NULL)
4762 goto error_return;
4763
4764 *pm = m;
4765 pm = &m->next;
4766 }
4767
4768 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4769 if (dynsec != NULL)
4770 {
4771 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
4772 if (m == NULL)
4773 goto error_return;
4774 *pm = m;
4775 pm = &m->next;
4776 }
4777
4778 /* For each batch of consecutive loadable .note sections,
4779 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
4780 because if we link together nonloadable .note sections and
4781 loadable .note sections, we will generate two .note sections
4782 in the output file. FIXME: Using names for section types is
4783 bogus anyhow. */
4784 for (s = abfd->sections; s != NULL; s = s->next)
4785 {
4786 if ((s->flags & SEC_LOAD) != 0
4787 && CONST_STRNEQ (s->name, ".note"))
4788 {
4789 asection *s2;
4790
4791 count = 1;
4792 amt = sizeof (struct elf_segment_map);
4793 if (s->alignment_power == 2)
4794 for (s2 = s; s2->next != NULL; s2 = s2->next)
4795 {
4796 if (s2->next->alignment_power == 2
4797 && (s2->next->flags & SEC_LOAD) != 0
4798 && CONST_STRNEQ (s2->next->name, ".note")
4799 && align_power (s2->lma + s2->size, 2)
4800 == s2->next->lma)
4801 count++;
4802 else
4803 break;
4804 }
4805 amt += (count - 1) * sizeof (asection *);
4806 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4807 if (m == NULL)
4808 goto error_return;
4809 m->next = NULL;
4810 m->p_type = PT_NOTE;
4811 m->count = count;
4812 while (count > 1)
4813 {
4814 m->sections[m->count - count--] = s;
4815 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4816 s = s->next;
4817 }
4818 m->sections[m->count - 1] = s;
4819 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4820 *pm = m;
4821 pm = &m->next;
4822 }
4823 if (s->flags & SEC_THREAD_LOCAL)
4824 {
4825 if (! tls_count)
4826 first_tls = s;
4827 tls_count++;
4828 }
4829 }
4830
4831 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
4832 if (tls_count > 0)
4833 {
4834 amt = sizeof (struct elf_segment_map);
4835 amt += (tls_count - 1) * sizeof (asection *);
4836 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4837 if (m == NULL)
4838 goto error_return;
4839 m->next = NULL;
4840 m->p_type = PT_TLS;
4841 m->count = tls_count;
4842 /* Mandated PF_R. */
4843 m->p_flags = PF_R;
4844 m->p_flags_valid = 1;
4845 s = first_tls;
4846 for (i = 0; i < (unsigned int) tls_count; ++i)
4847 {
4848 if ((s->flags & SEC_THREAD_LOCAL) == 0)
4849 {
4850 _bfd_error_handler
4851 (_("%B: TLS sections are not adjacent:"), abfd);
4852 s = first_tls;
4853 i = 0;
4854 while (i < (unsigned int) tls_count)
4855 {
4856 if ((s->flags & SEC_THREAD_LOCAL) != 0)
4857 {
4858 _bfd_error_handler (_(" TLS: %A"), s);
4859 i++;
4860 }
4861 else
4862 _bfd_error_handler (_(" non-TLS: %A"), s);
4863 s = s->next;
4864 }
4865 bfd_set_error (bfd_error_bad_value);
4866 goto error_return;
4867 }
4868 m->sections[i] = s;
4869 s = s->next;
4870 }
4871
4872 *pm = m;
4873 pm = &m->next;
4874 }
4875
4876 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
4877 segment. */
4878 eh_frame_hdr = elf_eh_frame_hdr (abfd);
4879 if (eh_frame_hdr != NULL
4880 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
4881 {
4882 amt = sizeof (struct elf_segment_map);
4883 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4884 if (m == NULL)
4885 goto error_return;
4886 m->next = NULL;
4887 m->p_type = PT_GNU_EH_FRAME;
4888 m->count = 1;
4889 m->sections[0] = eh_frame_hdr->output_section;
4890
4891 *pm = m;
4892 pm = &m->next;
4893 }
4894
4895 if (elf_stack_flags (abfd))
4896 {
4897 amt = sizeof (struct elf_segment_map);
4898 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4899 if (m == NULL)
4900 goto error_return;
4901 m->next = NULL;
4902 m->p_type = PT_GNU_STACK;
4903 m->p_flags = elf_stack_flags (abfd);
4904 m->p_align = bed->stack_align;
4905 m->p_flags_valid = 1;
4906 m->p_align_valid = m->p_align != 0;
4907 if (info->stacksize > 0)
4908 {
4909 m->p_size = info->stacksize;
4910 m->p_size_valid = 1;
4911 }
4912
4913 *pm = m;
4914 pm = &m->next;
4915 }
4916
4917 if (info != NULL && info->relro)
4918 {
4919 for (m = mfirst; m != NULL; m = m->next)
4920 {
4921 if (m->p_type == PT_LOAD
4922 && m->count != 0
4923 && m->sections[0]->vma >= info->relro_start
4924 && m->sections[0]->vma < info->relro_end)
4925 {
4926 i = m->count;
4927 while (--i != (unsigned) -1)
4928 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS))
4929 == (SEC_LOAD | SEC_HAS_CONTENTS))
4930 break;
4931
4932 if (i != (unsigned) -1)
4933 break;
4934 }
4935 }
4936
4937 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
4938 if (m != NULL)
4939 {
4940 amt = sizeof (struct elf_segment_map);
4941 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4942 if (m == NULL)
4943 goto error_return;
4944 m->next = NULL;
4945 m->p_type = PT_GNU_RELRO;
4946 *pm = m;
4947 pm = &m->next;
4948 }
4949 }
4950
4951 free (sections);
4952 elf_seg_map (abfd) = mfirst;
4953 }
4954
4955 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
4956 return FALSE;
4957
4958 for (count = 0, m = elf_seg_map (abfd); m != NULL; m = m->next)
4959 ++count;
4960 elf_program_header_size (abfd) = count * bed->s->sizeof_phdr;
4961
4962 return TRUE;
4963
4964 error_return:
4965 if (sections != NULL)
4966 free (sections);
4967 return FALSE;
4968 }
4969
4970 /* Sort sections by address. */
4971
4972 static int
4973 elf_sort_sections (const void *arg1, const void *arg2)
4974 {
4975 const asection *sec1 = *(const asection **) arg1;
4976 const asection *sec2 = *(const asection **) arg2;
4977 bfd_size_type size1, size2;
4978
4979 /* Sort by LMA first, since this is the address used to
4980 place the section into a segment. */
4981 if (sec1->lma < sec2->lma)
4982 return -1;
4983 else if (sec1->lma > sec2->lma)
4984 return 1;
4985
4986 /* Then sort by VMA. Normally the LMA and the VMA will be
4987 the same, and this will do nothing. */
4988 if (sec1->vma < sec2->vma)
4989 return -1;
4990 else if (sec1->vma > sec2->vma)
4991 return 1;
4992
4993 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
4994
4995 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
4996
4997 if (TOEND (sec1))
4998 {
4999 if (TOEND (sec2))
5000 {
5001 /* If the indicies are the same, do not return 0
5002 here, but continue to try the next comparison. */
5003 if (sec1->target_index - sec2->target_index != 0)
5004 return sec1->target_index - sec2->target_index;
5005 }
5006 else
5007 return 1;
5008 }
5009 else if (TOEND (sec2))
5010 return -1;
5011
5012 #undef TOEND
5013
5014 /* Sort by size, to put zero sized sections
5015 before others at the same address. */
5016
5017 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
5018 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
5019
5020 if (size1 < size2)
5021 return -1;
5022 if (size1 > size2)
5023 return 1;
5024
5025 return sec1->target_index - sec2->target_index;
5026 }
5027
5028 /* Ian Lance Taylor writes:
5029
5030 We shouldn't be using % with a negative signed number. That's just
5031 not good. We have to make sure either that the number is not
5032 negative, or that the number has an unsigned type. When the types
5033 are all the same size they wind up as unsigned. When file_ptr is a
5034 larger signed type, the arithmetic winds up as signed long long,
5035 which is wrong.
5036
5037 What we're trying to say here is something like ``increase OFF by
5038 the least amount that will cause it to be equal to the VMA modulo
5039 the page size.'' */
5040 /* In other words, something like:
5041
5042 vma_offset = m->sections[0]->vma % bed->maxpagesize;
5043 off_offset = off % bed->maxpagesize;
5044 if (vma_offset < off_offset)
5045 adjustment = vma_offset + bed->maxpagesize - off_offset;
5046 else
5047 adjustment = vma_offset - off_offset;
5048
5049 which can can be collapsed into the expression below. */
5050
5051 static file_ptr
5052 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
5053 {
5054 /* PR binutils/16199: Handle an alignment of zero. */
5055 if (maxpagesize == 0)
5056 maxpagesize = 1;
5057 return ((vma - off) % maxpagesize);
5058 }
5059
5060 static void
5061 print_segment_map (const struct elf_segment_map *m)
5062 {
5063 unsigned int j;
5064 const char *pt = get_segment_type (m->p_type);
5065 char buf[32];
5066
5067 if (pt == NULL)
5068 {
5069 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
5070 sprintf (buf, "LOPROC+%7.7x",
5071 (unsigned int) (m->p_type - PT_LOPROC));
5072 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
5073 sprintf (buf, "LOOS+%7.7x",
5074 (unsigned int) (m->p_type - PT_LOOS));
5075 else
5076 snprintf (buf, sizeof (buf), "%8.8x",
5077 (unsigned int) m->p_type);
5078 pt = buf;
5079 }
5080 fflush (stdout);
5081 fprintf (stderr, "%s:", pt);
5082 for (j = 0; j < m->count; j++)
5083 fprintf (stderr, " %s", m->sections [j]->name);
5084 putc ('\n',stderr);
5085 fflush (stderr);
5086 }
5087
5088 static bfd_boolean
5089 write_zeros (bfd *abfd, file_ptr pos, bfd_size_type len)
5090 {
5091 void *buf;
5092 bfd_boolean ret;
5093
5094 if (bfd_seek (abfd, pos, SEEK_SET) != 0)
5095 return FALSE;
5096 buf = bfd_zmalloc (len);
5097 if (buf == NULL)
5098 return FALSE;
5099 ret = bfd_bwrite (buf, len, abfd) == len;
5100 free (buf);
5101 return ret;
5102 }
5103
5104 /* Assign file positions to the sections based on the mapping from
5105 sections to segments. This function also sets up some fields in
5106 the file header. */
5107
5108 static bfd_boolean
5109 assign_file_positions_for_load_sections (bfd *abfd,
5110 struct bfd_link_info *link_info)
5111 {
5112 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5113 struct elf_segment_map *m;
5114 Elf_Internal_Phdr *phdrs;
5115 Elf_Internal_Phdr *p;
5116 file_ptr off;
5117 bfd_size_type maxpagesize;
5118 unsigned int alloc;
5119 unsigned int i, j;
5120 bfd_vma header_pad = 0;
5121
5122 if (link_info == NULL
5123 && !_bfd_elf_map_sections_to_segments (abfd, link_info))
5124 return FALSE;
5125
5126 alloc = 0;
5127 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
5128 {
5129 ++alloc;
5130 if (m->header_size)
5131 header_pad = m->header_size;
5132 }
5133
5134 if (alloc)
5135 {
5136 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
5137 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
5138 }
5139 else
5140 {
5141 /* PR binutils/12467. */
5142 elf_elfheader (abfd)->e_phoff = 0;
5143 elf_elfheader (abfd)->e_phentsize = 0;
5144 }
5145
5146 elf_elfheader (abfd)->e_phnum = alloc;
5147
5148 if (elf_program_header_size (abfd) == (bfd_size_type) -1)
5149 elf_program_header_size (abfd) = alloc * bed->s->sizeof_phdr;
5150 else
5151 BFD_ASSERT (elf_program_header_size (abfd)
5152 >= alloc * bed->s->sizeof_phdr);
5153
5154 if (alloc == 0)
5155 {
5156 elf_next_file_pos (abfd) = bed->s->sizeof_ehdr;
5157 return TRUE;
5158 }
5159
5160 /* We're writing the size in elf_program_header_size (abfd),
5161 see assign_file_positions_except_relocs, so make sure we have
5162 that amount allocated, with trailing space cleared.
5163 The variable alloc contains the computed need, while
5164 elf_program_header_size (abfd) contains the size used for the
5165 layout.
5166 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
5167 where the layout is forced to according to a larger size in the
5168 last iterations for the testcase ld-elf/header. */
5169 BFD_ASSERT (elf_program_header_size (abfd) % bed->s->sizeof_phdr
5170 == 0);
5171 phdrs = (Elf_Internal_Phdr *)
5172 bfd_zalloc2 (abfd,
5173 (elf_program_header_size (abfd) / bed->s->sizeof_phdr),
5174 sizeof (Elf_Internal_Phdr));
5175 elf_tdata (abfd)->phdr = phdrs;
5176 if (phdrs == NULL)
5177 return FALSE;
5178
5179 maxpagesize = 1;
5180 if ((abfd->flags & D_PAGED) != 0)
5181 maxpagesize = bed->maxpagesize;
5182
5183 off = bed->s->sizeof_ehdr;
5184 off += alloc * bed->s->sizeof_phdr;
5185 if (header_pad < (bfd_vma) off)
5186 header_pad = 0;
5187 else
5188 header_pad -= off;
5189 off += header_pad;
5190
5191 for (m = elf_seg_map (abfd), p = phdrs, j = 0;
5192 m != NULL;
5193 m = m->next, p++, j++)
5194 {
5195 asection **secpp;
5196 bfd_vma off_adjust;
5197 bfd_boolean no_contents;
5198
5199 /* If elf_segment_map is not from map_sections_to_segments, the
5200 sections may not be correctly ordered. NOTE: sorting should
5201 not be done to the PT_NOTE section of a corefile, which may
5202 contain several pseudo-sections artificially created by bfd.
5203 Sorting these pseudo-sections breaks things badly. */
5204 if (m->count > 1
5205 && !(elf_elfheader (abfd)->e_type == ET_CORE
5206 && m->p_type == PT_NOTE))
5207 qsort (m->sections, (size_t) m->count, sizeof (asection *),
5208 elf_sort_sections);
5209
5210 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
5211 number of sections with contents contributing to both p_filesz
5212 and p_memsz, followed by a number of sections with no contents
5213 that just contribute to p_memsz. In this loop, OFF tracks next
5214 available file offset for PT_LOAD and PT_NOTE segments. */
5215 p->p_type = m->p_type;
5216 p->p_flags = m->p_flags;
5217
5218 if (m->count == 0)
5219 p->p_vaddr = 0;
5220 else
5221 p->p_vaddr = m->sections[0]->vma - m->p_vaddr_offset;
5222
5223 if (m->p_paddr_valid)
5224 p->p_paddr = m->p_paddr;
5225 else if (m->count == 0)
5226 p->p_paddr = 0;
5227 else
5228 p->p_paddr = m->sections[0]->lma - m->p_vaddr_offset;
5229
5230 if (p->p_type == PT_LOAD
5231 && (abfd->flags & D_PAGED) != 0)
5232 {
5233 /* p_align in demand paged PT_LOAD segments effectively stores
5234 the maximum page size. When copying an executable with
5235 objcopy, we set m->p_align from the input file. Use this
5236 value for maxpagesize rather than bed->maxpagesize, which
5237 may be different. Note that we use maxpagesize for PT_TLS
5238 segment alignment later in this function, so we are relying
5239 on at least one PT_LOAD segment appearing before a PT_TLS
5240 segment. */
5241 if (m->p_align_valid)
5242 maxpagesize = m->p_align;
5243
5244 p->p_align = maxpagesize;
5245 }
5246 else if (m->p_align_valid)
5247 p->p_align = m->p_align;
5248 else if (m->count == 0)
5249 p->p_align = 1 << bed->s->log_file_align;
5250 else
5251 p->p_align = 0;
5252
5253 no_contents = FALSE;
5254 off_adjust = 0;
5255 if (p->p_type == PT_LOAD
5256 && m->count > 0)
5257 {
5258 bfd_size_type align;
5259 unsigned int align_power = 0;
5260
5261 if (m->p_align_valid)
5262 align = p->p_align;
5263 else
5264 {
5265 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
5266 {
5267 unsigned int secalign;
5268
5269 secalign = bfd_get_section_alignment (abfd, *secpp);
5270 if (secalign > align_power)
5271 align_power = secalign;
5272 }
5273 align = (bfd_size_type) 1 << align_power;
5274 if (align < maxpagesize)
5275 align = maxpagesize;
5276 }
5277
5278 for (i = 0; i < m->count; i++)
5279 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
5280 /* If we aren't making room for this section, then
5281 it must be SHT_NOBITS regardless of what we've
5282 set via struct bfd_elf_special_section. */
5283 elf_section_type (m->sections[i]) = SHT_NOBITS;
5284
5285 /* Find out whether this segment contains any loadable
5286 sections. */
5287 no_contents = TRUE;
5288 for (i = 0; i < m->count; i++)
5289 if (elf_section_type (m->sections[i]) != SHT_NOBITS)
5290 {
5291 no_contents = FALSE;
5292 break;
5293 }
5294
5295 off_adjust = vma_page_aligned_bias (p->p_vaddr, off, align);
5296 off += off_adjust;
5297 if (no_contents)
5298 {
5299 /* We shouldn't need to align the segment on disk since
5300 the segment doesn't need file space, but the gABI
5301 arguably requires the alignment and glibc ld.so
5302 checks it. So to comply with the alignment
5303 requirement but not waste file space, we adjust
5304 p_offset for just this segment. (OFF_ADJUST is
5305 subtracted from OFF later.) This may put p_offset
5306 past the end of file, but that shouldn't matter. */
5307 }
5308 else
5309 off_adjust = 0;
5310 }
5311 /* Make sure the .dynamic section is the first section in the
5312 PT_DYNAMIC segment. */
5313 else if (p->p_type == PT_DYNAMIC
5314 && m->count > 1
5315 && strcmp (m->sections[0]->name, ".dynamic") != 0)
5316 {
5317 _bfd_error_handler
5318 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
5319 abfd);
5320 bfd_set_error (bfd_error_bad_value);
5321 return FALSE;
5322 }
5323 /* Set the note section type to SHT_NOTE. */
5324 else if (p->p_type == PT_NOTE)
5325 for (i = 0; i < m->count; i++)
5326 elf_section_type (m->sections[i]) = SHT_NOTE;
5327
5328 p->p_offset = 0;
5329 p->p_filesz = 0;
5330 p->p_memsz = 0;
5331
5332 if (m->includes_filehdr)
5333 {
5334 if (!m->p_flags_valid)
5335 p->p_flags |= PF_R;
5336 p->p_filesz = bed->s->sizeof_ehdr;
5337 p->p_memsz = bed->s->sizeof_ehdr;
5338 if (m->count > 0)
5339 {
5340 if (p->p_vaddr < (bfd_vma) off
5341 || (!m->p_paddr_valid
5342 && p->p_paddr < (bfd_vma) off))
5343 {
5344 _bfd_error_handler
5345 (_("%B: Not enough room for program headers, try linking with -N"),
5346 abfd);
5347 bfd_set_error (bfd_error_bad_value);
5348 return FALSE;
5349 }
5350
5351 p->p_vaddr -= off;
5352 if (!m->p_paddr_valid)
5353 p->p_paddr -= off;
5354 }
5355 }
5356
5357 if (m->includes_phdrs)
5358 {
5359 if (!m->p_flags_valid)
5360 p->p_flags |= PF_R;
5361
5362 if (!m->includes_filehdr)
5363 {
5364 p->p_offset = bed->s->sizeof_ehdr;
5365
5366 if (m->count > 0)
5367 {
5368 p->p_vaddr -= off - p->p_offset;
5369 if (!m->p_paddr_valid)
5370 p->p_paddr -= off - p->p_offset;
5371 }
5372 }
5373
5374 p->p_filesz += alloc * bed->s->sizeof_phdr;
5375 p->p_memsz += alloc * bed->s->sizeof_phdr;
5376 if (m->count)
5377 {
5378 p->p_filesz += header_pad;
5379 p->p_memsz += header_pad;
5380 }
5381 }
5382
5383 if (p->p_type == PT_LOAD
5384 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
5385 {
5386 if (!m->includes_filehdr && !m->includes_phdrs)
5387 p->p_offset = off;
5388 else
5389 {
5390 file_ptr adjust;
5391
5392 adjust = off - (p->p_offset + p->p_filesz);
5393 if (!no_contents)
5394 p->p_filesz += adjust;
5395 p->p_memsz += adjust;
5396 }
5397 }
5398
5399 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
5400 maps. Set filepos for sections in PT_LOAD segments, and in
5401 core files, for sections in PT_NOTE segments.
5402 assign_file_positions_for_non_load_sections will set filepos
5403 for other sections and update p_filesz for other segments. */
5404 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
5405 {
5406 asection *sec;
5407 bfd_size_type align;
5408 Elf_Internal_Shdr *this_hdr;
5409
5410 sec = *secpp;
5411 this_hdr = &elf_section_data (sec)->this_hdr;
5412 align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec);
5413
5414 if ((p->p_type == PT_LOAD
5415 || p->p_type == PT_TLS)
5416 && (this_hdr->sh_type != SHT_NOBITS
5417 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
5418 && ((this_hdr->sh_flags & SHF_TLS) == 0
5419 || p->p_type == PT_TLS))))
5420 {
5421 bfd_vma p_start = p->p_paddr;
5422 bfd_vma p_end = p_start + p->p_memsz;
5423 bfd_vma s_start = sec->lma;
5424 bfd_vma adjust = s_start - p_end;
5425
5426 if (adjust != 0
5427 && (s_start < p_end
5428 || p_end < p_start))
5429 {
5430 _bfd_error_handler
5431 /* xgettext:c-format */
5432 (_("%B: section %A lma %#lx adjusted to %#lx"), abfd, sec,
5433 (unsigned long) s_start, (unsigned long) p_end);
5434 adjust = 0;
5435 sec->lma = p_end;
5436 }
5437 p->p_memsz += adjust;
5438
5439 if (this_hdr->sh_type != SHT_NOBITS)
5440 {
5441 if (p->p_filesz + adjust < p->p_memsz)
5442 {
5443 /* We have a PROGBITS section following NOBITS ones.
5444 Allocate file space for the NOBITS section(s) and
5445 zero it. */
5446 adjust = p->p_memsz - p->p_filesz;
5447 if (!write_zeros (abfd, off, adjust))
5448 return FALSE;
5449 }
5450 off += adjust;
5451 p->p_filesz += adjust;
5452 }
5453 }
5454
5455 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
5456 {
5457 /* The section at i == 0 is the one that actually contains
5458 everything. */
5459 if (i == 0)
5460 {
5461 this_hdr->sh_offset = sec->filepos = off;
5462 off += this_hdr->sh_size;
5463 p->p_filesz = this_hdr->sh_size;
5464 p->p_memsz = 0;
5465 p->p_align = 1;
5466 }
5467 else
5468 {
5469 /* The rest are fake sections that shouldn't be written. */
5470 sec->filepos = 0;
5471 sec->size = 0;
5472 sec->flags = 0;
5473 continue;
5474 }
5475 }
5476 else
5477 {
5478 if (p->p_type == PT_LOAD)
5479 {
5480 this_hdr->sh_offset = sec->filepos = off;
5481 if (this_hdr->sh_type != SHT_NOBITS)
5482 off += this_hdr->sh_size;
5483 }
5484 else if (this_hdr->sh_type == SHT_NOBITS
5485 && (this_hdr->sh_flags & SHF_TLS) != 0
5486 && this_hdr->sh_offset == 0)
5487 {
5488 /* This is a .tbss section that didn't get a PT_LOAD.
5489 (See _bfd_elf_map_sections_to_segments "Create a
5490 final PT_LOAD".) Set sh_offset to the value it
5491 would have if we had created a zero p_filesz and
5492 p_memsz PT_LOAD header for the section. This
5493 also makes the PT_TLS header have the same
5494 p_offset value. */
5495 bfd_vma adjust = vma_page_aligned_bias (this_hdr->sh_addr,
5496 off, align);
5497 this_hdr->sh_offset = sec->filepos = off + adjust;
5498 }
5499
5500 if (this_hdr->sh_type != SHT_NOBITS)
5501 {
5502 p->p_filesz += this_hdr->sh_size;
5503 /* A load section without SHF_ALLOC is something like
5504 a note section in a PT_NOTE segment. These take
5505 file space but are not loaded into memory. */
5506 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5507 p->p_memsz += this_hdr->sh_size;
5508 }
5509 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5510 {
5511 if (p->p_type == PT_TLS)
5512 p->p_memsz += this_hdr->sh_size;
5513
5514 /* .tbss is special. It doesn't contribute to p_memsz of
5515 normal segments. */
5516 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
5517 p->p_memsz += this_hdr->sh_size;
5518 }
5519
5520 if (align > p->p_align
5521 && !m->p_align_valid
5522 && (p->p_type != PT_LOAD
5523 || (abfd->flags & D_PAGED) == 0))
5524 p->p_align = align;
5525 }
5526
5527 if (!m->p_flags_valid)
5528 {
5529 p->p_flags |= PF_R;
5530 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
5531 p->p_flags |= PF_X;
5532 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
5533 p->p_flags |= PF_W;
5534 }
5535 }
5536
5537 off -= off_adjust;
5538
5539 /* Check that all sections are in a PT_LOAD segment.
5540 Don't check funky gdb generated core files. */
5541 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
5542 {
5543 bfd_boolean check_vma = TRUE;
5544
5545 for (i = 1; i < m->count; i++)
5546 if (m->sections[i]->vma == m->sections[i - 1]->vma
5547 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i])
5548 ->this_hdr), p) != 0
5549 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i - 1])
5550 ->this_hdr), p) != 0)
5551 {
5552 /* Looks like we have overlays packed into the segment. */
5553 check_vma = FALSE;
5554 break;
5555 }
5556
5557 for (i = 0; i < m->count; i++)
5558 {
5559 Elf_Internal_Shdr *this_hdr;
5560 asection *sec;
5561
5562 sec = m->sections[i];
5563 this_hdr = &(elf_section_data(sec)->this_hdr);
5564 if (!ELF_SECTION_IN_SEGMENT_1 (this_hdr, p, check_vma, 0)
5565 && !ELF_TBSS_SPECIAL (this_hdr, p))
5566 {
5567 _bfd_error_handler
5568 /* xgettext:c-format */
5569 (_("%B: section `%A' can't be allocated in segment %d"),
5570 abfd, sec, j);
5571 print_segment_map (m);
5572 }
5573 }
5574 }
5575 }
5576
5577 elf_next_file_pos (abfd) = off;
5578 return TRUE;
5579 }
5580
5581 /* Assign file positions for the other sections. */
5582
5583 static bfd_boolean
5584 assign_file_positions_for_non_load_sections (bfd *abfd,
5585 struct bfd_link_info *link_info)
5586 {
5587 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5588 Elf_Internal_Shdr **i_shdrpp;
5589 Elf_Internal_Shdr **hdrpp, **end_hdrpp;
5590 Elf_Internal_Phdr *phdrs;
5591 Elf_Internal_Phdr *p;
5592 struct elf_segment_map *m;
5593 struct elf_segment_map *hdrs_segment;
5594 bfd_vma filehdr_vaddr, filehdr_paddr;
5595 bfd_vma phdrs_vaddr, phdrs_paddr;
5596 file_ptr off;
5597 unsigned int count;
5598
5599 i_shdrpp = elf_elfsections (abfd);
5600 end_hdrpp = i_shdrpp + elf_numsections (abfd);
5601 off = elf_next_file_pos (abfd);
5602 for (hdrpp = i_shdrpp + 1; hdrpp < end_hdrpp; hdrpp++)
5603 {
5604 Elf_Internal_Shdr *hdr;
5605
5606 hdr = *hdrpp;
5607 if (hdr->bfd_section != NULL
5608 && (hdr->bfd_section->filepos != 0
5609 || (hdr->sh_type == SHT_NOBITS
5610 && hdr->contents == NULL)))
5611 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
5612 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
5613 {
5614 if (hdr->sh_size != 0)
5615 _bfd_error_handler
5616 /* xgettext:c-format */
5617 (_("%B: warning: allocated section `%s' not in segment"),
5618 abfd,
5619 (hdr->bfd_section == NULL
5620 ? "*unknown*"
5621 : hdr->bfd_section->name));
5622 /* We don't need to page align empty sections. */
5623 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
5624 off += vma_page_aligned_bias (hdr->sh_addr, off,
5625 bed->maxpagesize);
5626 else
5627 off += vma_page_aligned_bias (hdr->sh_addr, off,
5628 hdr->sh_addralign);
5629 off = _bfd_elf_assign_file_position_for_section (hdr, off,
5630 FALSE);
5631 }
5632 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
5633 && hdr->bfd_section == NULL)
5634 || (hdr->bfd_section != NULL
5635 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS))
5636 /* Compress DWARF debug sections. */
5637 || hdr == i_shdrpp[elf_onesymtab (abfd)]
5638 || (elf_symtab_shndx_list (abfd) != NULL
5639 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
5640 || hdr == i_shdrpp[elf_strtab_sec (abfd)]
5641 || hdr == i_shdrpp[elf_shstrtab_sec (abfd)])
5642 hdr->sh_offset = -1;
5643 else
5644 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
5645 }
5646
5647 /* Now that we have set the section file positions, we can set up
5648 the file positions for the non PT_LOAD segments. */
5649 count = 0;
5650 filehdr_vaddr = 0;
5651 filehdr_paddr = 0;
5652 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
5653 phdrs_paddr = 0;
5654 hdrs_segment = NULL;
5655 phdrs = elf_tdata (abfd)->phdr;
5656 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
5657 {
5658 ++count;
5659 if (p->p_type != PT_LOAD)
5660 continue;
5661
5662 if (m->includes_filehdr)
5663 {
5664 filehdr_vaddr = p->p_vaddr;
5665 filehdr_paddr = p->p_paddr;
5666 }
5667 if (m->includes_phdrs)
5668 {
5669 phdrs_vaddr = p->p_vaddr;
5670 phdrs_paddr = p->p_paddr;
5671 if (m->includes_filehdr)
5672 {
5673 hdrs_segment = m;
5674 phdrs_vaddr += bed->s->sizeof_ehdr;
5675 phdrs_paddr += bed->s->sizeof_ehdr;
5676 }
5677 }
5678 }
5679
5680 if (hdrs_segment != NULL && link_info != NULL)
5681 {
5682 /* There is a segment that contains both the file headers and the
5683 program headers, so provide a symbol __ehdr_start pointing there.
5684 A program can use this to examine itself robustly. */
5685
5686 struct elf_link_hash_entry *hash
5687 = elf_link_hash_lookup (elf_hash_table (link_info), "__ehdr_start",
5688 FALSE, FALSE, TRUE);
5689 /* If the symbol was referenced and not defined, define it. */
5690 if (hash != NULL
5691 && (hash->root.type == bfd_link_hash_new
5692 || hash->root.type == bfd_link_hash_undefined
5693 || hash->root.type == bfd_link_hash_undefweak
5694 || hash->root.type == bfd_link_hash_common))
5695 {
5696 asection *s = NULL;
5697 if (hdrs_segment->count != 0)
5698 /* The segment contains sections, so use the first one. */
5699 s = hdrs_segment->sections[0];
5700 else
5701 /* Use the first (i.e. lowest-addressed) section in any segment. */
5702 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
5703 if (m->count != 0)
5704 {
5705 s = m->sections[0];
5706 break;
5707 }
5708
5709 if (s != NULL)
5710 {
5711 hash->root.u.def.value = filehdr_vaddr - s->vma;
5712 hash->root.u.def.section = s;
5713 }
5714 else
5715 {
5716 hash->root.u.def.value = filehdr_vaddr;
5717 hash->root.u.def.section = bfd_abs_section_ptr;
5718 }
5719
5720 hash->root.type = bfd_link_hash_defined;
5721 hash->def_regular = 1;
5722 hash->non_elf = 0;
5723 }
5724 }
5725
5726 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
5727 {
5728 if (p->p_type == PT_GNU_RELRO)
5729 {
5730 const Elf_Internal_Phdr *lp;
5731 struct elf_segment_map *lm;
5732
5733 if (link_info != NULL)
5734 {
5735 /* During linking the range of the RELRO segment is passed
5736 in link_info. */
5737 for (lm = elf_seg_map (abfd), lp = phdrs;
5738 lm != NULL;
5739 lm = lm->next, lp++)
5740 {
5741 if (lp->p_type == PT_LOAD
5742 && lp->p_vaddr < link_info->relro_end
5743 && lm->count != 0
5744 && lm->sections[0]->vma >= link_info->relro_start)
5745 break;
5746 }
5747
5748 BFD_ASSERT (lm != NULL);
5749 }
5750 else
5751 {
5752 /* Otherwise we are copying an executable or shared
5753 library, but we need to use the same linker logic. */
5754 for (lp = phdrs; lp < phdrs + count; ++lp)
5755 {
5756 if (lp->p_type == PT_LOAD
5757 && lp->p_paddr == p->p_paddr)
5758 break;
5759 }
5760 }
5761
5762 if (lp < phdrs + count)
5763 {
5764 p->p_vaddr = lp->p_vaddr;
5765 p->p_paddr = lp->p_paddr;
5766 p->p_offset = lp->p_offset;
5767 if (link_info != NULL)
5768 p->p_filesz = link_info->relro_end - lp->p_vaddr;
5769 else if (m->p_size_valid)
5770 p->p_filesz = m->p_size;
5771 else
5772 abort ();
5773 p->p_memsz = p->p_filesz;
5774 /* Preserve the alignment and flags if they are valid. The
5775 gold linker generates RW/4 for the PT_GNU_RELRO section.
5776 It is better for objcopy/strip to honor these attributes
5777 otherwise gdb will choke when using separate debug files.
5778 */
5779 if (!m->p_align_valid)
5780 p->p_align = 1;
5781 if (!m->p_flags_valid)
5782 p->p_flags = PF_R;
5783 }
5784 else
5785 {
5786 memset (p, 0, sizeof *p);
5787 p->p_type = PT_NULL;
5788 }
5789 }
5790 else if (p->p_type == PT_GNU_STACK)
5791 {
5792 if (m->p_size_valid)
5793 p->p_memsz = m->p_size;
5794 }
5795 else if (m->count != 0)
5796 {
5797 unsigned int i;
5798
5799 if (p->p_type != PT_LOAD
5800 && (p->p_type != PT_NOTE
5801 || bfd_get_format (abfd) != bfd_core))
5802 {
5803 /* A user specified segment layout may include a PHDR
5804 segment that overlaps with a LOAD segment... */
5805 if (p->p_type == PT_PHDR)
5806 {
5807 m->count = 0;
5808 continue;
5809 }
5810
5811 if (m->includes_filehdr || m->includes_phdrs)
5812 {
5813 /* PR 17512: file: 2195325e. */
5814 _bfd_error_handler
5815 (_("%B: error: non-load segment %d includes file header and/or program header"),
5816 abfd, (int)(p - phdrs));
5817 return FALSE;
5818 }
5819
5820 p->p_filesz = 0;
5821 p->p_offset = m->sections[0]->filepos;
5822 for (i = m->count; i-- != 0;)
5823 {
5824 asection *sect = m->sections[i];
5825 Elf_Internal_Shdr *hdr = &elf_section_data (sect)->this_hdr;
5826 if (hdr->sh_type != SHT_NOBITS)
5827 {
5828 p->p_filesz = (sect->filepos - m->sections[0]->filepos
5829 + hdr->sh_size);
5830 break;
5831 }
5832 }
5833 }
5834 }
5835 else if (m->includes_filehdr)
5836 {
5837 p->p_vaddr = filehdr_vaddr;
5838 if (! m->p_paddr_valid)
5839 p->p_paddr = filehdr_paddr;
5840 }
5841 else if (m->includes_phdrs)
5842 {
5843 p->p_vaddr = phdrs_vaddr;
5844 if (! m->p_paddr_valid)
5845 p->p_paddr = phdrs_paddr;
5846 }
5847 }
5848
5849 elf_next_file_pos (abfd) = off;
5850
5851 return TRUE;
5852 }
5853
5854 static elf_section_list *
5855 find_section_in_list (unsigned int i, elf_section_list * list)
5856 {
5857 for (;list != NULL; list = list->next)
5858 if (list->ndx == i)
5859 break;
5860 return list;
5861 }
5862
5863 /* Work out the file positions of all the sections. This is called by
5864 _bfd_elf_compute_section_file_positions. All the section sizes and
5865 VMAs must be known before this is called.
5866
5867 Reloc sections come in two flavours: Those processed specially as
5868 "side-channel" data attached to a section to which they apply, and
5869 those that bfd doesn't process as relocations. The latter sort are
5870 stored in a normal bfd section by bfd_section_from_shdr. We don't
5871 consider the former sort here, unless they form part of the loadable
5872 image. Reloc sections not assigned here will be handled later by
5873 assign_file_positions_for_relocs.
5874
5875 We also don't set the positions of the .symtab and .strtab here. */
5876
5877 static bfd_boolean
5878 assign_file_positions_except_relocs (bfd *abfd,
5879 struct bfd_link_info *link_info)
5880 {
5881 struct elf_obj_tdata *tdata = elf_tdata (abfd);
5882 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
5883 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5884
5885 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
5886 && bfd_get_format (abfd) != bfd_core)
5887 {
5888 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
5889 unsigned int num_sec = elf_numsections (abfd);
5890 Elf_Internal_Shdr **hdrpp;
5891 unsigned int i;
5892 file_ptr off;
5893
5894 /* Start after the ELF header. */
5895 off = i_ehdrp->e_ehsize;
5896
5897 /* We are not creating an executable, which means that we are
5898 not creating a program header, and that the actual order of
5899 the sections in the file is unimportant. */
5900 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
5901 {
5902 Elf_Internal_Shdr *hdr;
5903
5904 hdr = *hdrpp;
5905 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
5906 && hdr->bfd_section == NULL)
5907 || (hdr->bfd_section != NULL
5908 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS))
5909 /* Compress DWARF debug sections. */
5910 || i == elf_onesymtab (abfd)
5911 || (elf_symtab_shndx_list (abfd) != NULL
5912 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
5913 || i == elf_strtab_sec (abfd)
5914 || i == elf_shstrtab_sec (abfd))
5915 {
5916 hdr->sh_offset = -1;
5917 }
5918 else
5919 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
5920 }
5921
5922 elf_next_file_pos (abfd) = off;
5923 }
5924 else
5925 {
5926 unsigned int alloc;
5927
5928 /* Assign file positions for the loaded sections based on the
5929 assignment of sections to segments. */
5930 if (!assign_file_positions_for_load_sections (abfd, link_info))
5931 return FALSE;
5932
5933 /* And for non-load sections. */
5934 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
5935 return FALSE;
5936
5937 if (bed->elf_backend_modify_program_headers != NULL)
5938 {
5939 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
5940 return FALSE;
5941 }
5942
5943 /* Set e_type in ELF header to ET_EXEC for -pie -Ttext-segment=. */
5944 if (link_info != NULL && bfd_link_pie (link_info))
5945 {
5946 unsigned int num_segments = elf_elfheader (abfd)->e_phnum;
5947 Elf_Internal_Phdr *segment = elf_tdata (abfd)->phdr;
5948 Elf_Internal_Phdr *end_segment = &segment[num_segments];
5949
5950 /* Find the lowest p_vaddr in PT_LOAD segments. */
5951 bfd_vma p_vaddr = (bfd_vma) -1;
5952 for (; segment < end_segment; segment++)
5953 if (segment->p_type == PT_LOAD && p_vaddr > segment->p_vaddr)
5954 p_vaddr = segment->p_vaddr;
5955
5956 /* Set e_type to ET_EXEC if the lowest p_vaddr in PT_LOAD
5957 segments is non-zero. */
5958 if (p_vaddr)
5959 i_ehdrp->e_type = ET_EXEC;
5960 }
5961
5962 /* Write out the program headers. */
5963 alloc = elf_program_header_size (abfd) / bed->s->sizeof_phdr;
5964
5965 /* Sort the program headers into the ordering required by the ELF standard. */
5966 if (alloc == 0)
5967 return TRUE;
5968
5969 /* PR ld/20815 - Check that the program header segment, if present, will
5970 be loaded into memory. FIXME: The check below is not sufficient as
5971 really all PT_LOAD segments should be checked before issuing an error
5972 message. Plus the PHDR segment does not have to be the first segment
5973 in the program header table. But this version of the check should
5974 catch all real world use cases.
5975
5976 FIXME: We used to have code here to sort the PT_LOAD segments into
5977 ascending order, as per the ELF spec. But this breaks some programs,
5978 including the Linux kernel. But really either the spec should be
5979 changed or the programs updated. */
5980 if (alloc > 1
5981 && tdata->phdr[0].p_type == PT_PHDR
5982 && ! bed->elf_backend_allow_non_load_phdr (abfd, tdata->phdr, alloc)
5983 && tdata->phdr[1].p_type == PT_LOAD
5984 && (tdata->phdr[1].p_vaddr > tdata->phdr[0].p_vaddr
5985 || (tdata->phdr[1].p_vaddr + tdata->phdr[1].p_memsz)
5986 < (tdata->phdr[0].p_vaddr + tdata->phdr[0].p_memsz)))
5987 {
5988 /* The fix for this error is usually to edit the linker script being
5989 used and set up the program headers manually. Either that or
5990 leave room for the headers at the start of the SECTIONS. */
5991 _bfd_error_handler (_("\
5992 %B: error: PHDR segment not covered by LOAD segment"),
5993 abfd);
5994 return FALSE;
5995 }
5996
5997 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
5998 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
5999 return FALSE;
6000 }
6001
6002 return TRUE;
6003 }
6004
6005 static bfd_boolean
6006 prep_headers (bfd *abfd)
6007 {
6008 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form. */
6009 struct elf_strtab_hash *shstrtab;
6010 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6011
6012 i_ehdrp = elf_elfheader (abfd);
6013
6014 shstrtab = _bfd_elf_strtab_init ();
6015 if (shstrtab == NULL)
6016 return FALSE;
6017
6018 elf_shstrtab (abfd) = shstrtab;
6019
6020 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
6021 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
6022 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
6023 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
6024
6025 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
6026 i_ehdrp->e_ident[EI_DATA] =
6027 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
6028 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
6029
6030 if ((abfd->flags & DYNAMIC) != 0)
6031 i_ehdrp->e_type = ET_DYN;
6032 else if ((abfd->flags & EXEC_P) != 0)
6033 i_ehdrp->e_type = ET_EXEC;
6034 else if (bfd_get_format (abfd) == bfd_core)
6035 i_ehdrp->e_type = ET_CORE;
6036 else
6037 i_ehdrp->e_type = ET_REL;
6038
6039 switch (bfd_get_arch (abfd))
6040 {
6041 case bfd_arch_unknown:
6042 i_ehdrp->e_machine = EM_NONE;
6043 break;
6044
6045 /* There used to be a long list of cases here, each one setting
6046 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
6047 in the corresponding bfd definition. To avoid duplication,
6048 the switch was removed. Machines that need special handling
6049 can generally do it in elf_backend_final_write_processing(),
6050 unless they need the information earlier than the final write.
6051 Such need can generally be supplied by replacing the tests for
6052 e_machine with the conditions used to determine it. */
6053 default:
6054 i_ehdrp->e_machine = bed->elf_machine_code;
6055 }
6056
6057 i_ehdrp->e_version = bed->s->ev_current;
6058 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
6059
6060 /* No program header, for now. */
6061 i_ehdrp->e_phoff = 0;
6062 i_ehdrp->e_phentsize = 0;
6063 i_ehdrp->e_phnum = 0;
6064
6065 /* Each bfd section is section header entry. */
6066 i_ehdrp->e_entry = bfd_get_start_address (abfd);
6067 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
6068
6069 /* If we're building an executable, we'll need a program header table. */
6070 if (abfd->flags & EXEC_P)
6071 /* It all happens later. */
6072 ;
6073 else
6074 {
6075 i_ehdrp->e_phentsize = 0;
6076 i_ehdrp->e_phoff = 0;
6077 }
6078
6079 elf_tdata (abfd)->symtab_hdr.sh_name =
6080 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
6081 elf_tdata (abfd)->strtab_hdr.sh_name =
6082 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
6083 elf_tdata (abfd)->shstrtab_hdr.sh_name =
6084 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
6085 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
6086 || elf_tdata (abfd)->strtab_hdr.sh_name == (unsigned int) -1
6087 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
6088 return FALSE;
6089
6090 return TRUE;
6091 }
6092
6093 /* Assign file positions for all the reloc sections which are not part
6094 of the loadable file image, and the file position of section headers. */
6095
6096 static bfd_boolean
6097 _bfd_elf_assign_file_positions_for_non_load (bfd *abfd)
6098 {
6099 file_ptr off;
6100 Elf_Internal_Shdr **shdrpp, **end_shdrpp;
6101 Elf_Internal_Shdr *shdrp;
6102 Elf_Internal_Ehdr *i_ehdrp;
6103 const struct elf_backend_data *bed;
6104
6105 off = elf_next_file_pos (abfd);
6106
6107 shdrpp = elf_elfsections (abfd);
6108 end_shdrpp = shdrpp + elf_numsections (abfd);
6109 for (shdrpp++; shdrpp < end_shdrpp; shdrpp++)
6110 {
6111 shdrp = *shdrpp;
6112 if (shdrp->sh_offset == -1)
6113 {
6114 asection *sec = shdrp->bfd_section;
6115 bfd_boolean is_rel = (shdrp->sh_type == SHT_REL
6116 || shdrp->sh_type == SHT_RELA);
6117 if (is_rel
6118 || (sec != NULL && (sec->flags & SEC_ELF_COMPRESS)))
6119 {
6120 if (!is_rel)
6121 {
6122 const char *name = sec->name;
6123 struct bfd_elf_section_data *d;
6124
6125 /* Compress DWARF debug sections. */
6126 if (!bfd_compress_section (abfd, sec,
6127 shdrp->contents))
6128 return FALSE;
6129
6130 if (sec->compress_status == COMPRESS_SECTION_DONE
6131 && (abfd->flags & BFD_COMPRESS_GABI) == 0)
6132 {
6133 /* If section is compressed with zlib-gnu, convert
6134 section name from .debug_* to .zdebug_*. */
6135 char *new_name
6136 = convert_debug_to_zdebug (abfd, name);
6137 if (new_name == NULL)
6138 return FALSE;
6139 name = new_name;
6140 }
6141 /* Add section name to section name section. */
6142 if (shdrp->sh_name != (unsigned int) -1)
6143 abort ();
6144 shdrp->sh_name
6145 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
6146 name, FALSE);
6147 d = elf_section_data (sec);
6148
6149 /* Add reloc section name to section name section. */
6150 if (d->rel.hdr
6151 && !_bfd_elf_set_reloc_sh_name (abfd,
6152 d->rel.hdr,
6153 name, FALSE))
6154 return FALSE;
6155 if (d->rela.hdr
6156 && !_bfd_elf_set_reloc_sh_name (abfd,
6157 d->rela.hdr,
6158 name, TRUE))
6159 return FALSE;
6160
6161 /* Update section size and contents. */
6162 shdrp->sh_size = sec->size;
6163 shdrp->contents = sec->contents;
6164 shdrp->bfd_section->contents = NULL;
6165 }
6166 off = _bfd_elf_assign_file_position_for_section (shdrp,
6167 off,
6168 TRUE);
6169 }
6170 }
6171 }
6172
6173 /* Place section name section after DWARF debug sections have been
6174 compressed. */
6175 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
6176 shdrp = &elf_tdata (abfd)->shstrtab_hdr;
6177 shdrp->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
6178 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
6179
6180 /* Place the section headers. */
6181 i_ehdrp = elf_elfheader (abfd);
6182 bed = get_elf_backend_data (abfd);
6183 off = align_file_position (off, 1 << bed->s->log_file_align);
6184 i_ehdrp->e_shoff = off;
6185 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
6186 elf_next_file_pos (abfd) = off;
6187
6188 return TRUE;
6189 }
6190
6191 bfd_boolean
6192 _bfd_elf_write_object_contents (bfd *abfd)
6193 {
6194 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6195 Elf_Internal_Shdr **i_shdrp;
6196 bfd_boolean failed;
6197 unsigned int count, num_sec;
6198 struct elf_obj_tdata *t;
6199
6200 if (! abfd->output_has_begun
6201 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
6202 return FALSE;
6203
6204 i_shdrp = elf_elfsections (abfd);
6205
6206 failed = FALSE;
6207 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
6208 if (failed)
6209 return FALSE;
6210
6211 if (!_bfd_elf_assign_file_positions_for_non_load (abfd))
6212 return FALSE;
6213
6214 /* After writing the headers, we need to write the sections too... */
6215 num_sec = elf_numsections (abfd);
6216 for (count = 1; count < num_sec; count++)
6217 {
6218 i_shdrp[count]->sh_name
6219 = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
6220 i_shdrp[count]->sh_name);
6221 if (bed->elf_backend_section_processing)
6222 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
6223 if (i_shdrp[count]->contents)
6224 {
6225 bfd_size_type amt = i_shdrp[count]->sh_size;
6226
6227 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
6228 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
6229 return FALSE;
6230 }
6231 }
6232
6233 /* Write out the section header names. */
6234 t = elf_tdata (abfd);
6235 if (elf_shstrtab (abfd) != NULL
6236 && (bfd_seek (abfd, t->shstrtab_hdr.sh_offset, SEEK_SET) != 0
6237 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
6238 return FALSE;
6239
6240 if (bed->elf_backend_final_write_processing)
6241 (*bed->elf_backend_final_write_processing) (abfd, elf_linker (abfd));
6242
6243 if (!bed->s->write_shdrs_and_ehdr (abfd))
6244 return FALSE;
6245
6246 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
6247 if (t->o->build_id.after_write_object_contents != NULL)
6248 return (*t->o->build_id.after_write_object_contents) (abfd);
6249
6250 return TRUE;
6251 }
6252
6253 bfd_boolean
6254 _bfd_elf_write_corefile_contents (bfd *abfd)
6255 {
6256 /* Hopefully this can be done just like an object file. */
6257 return _bfd_elf_write_object_contents (abfd);
6258 }
6259
6260 /* Given a section, search the header to find them. */
6261
6262 unsigned int
6263 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
6264 {
6265 const struct elf_backend_data *bed;
6266 unsigned int sec_index;
6267
6268 if (elf_section_data (asect) != NULL
6269 && elf_section_data (asect)->this_idx != 0)
6270 return elf_section_data (asect)->this_idx;
6271
6272 if (bfd_is_abs_section (asect))
6273 sec_index = SHN_ABS;
6274 else if (bfd_is_com_section (asect))
6275 sec_index = SHN_COMMON;
6276 else if (bfd_is_und_section (asect))
6277 sec_index = SHN_UNDEF;
6278 else
6279 sec_index = SHN_BAD;
6280
6281 bed = get_elf_backend_data (abfd);
6282 if (bed->elf_backend_section_from_bfd_section)
6283 {
6284 int retval = sec_index;
6285
6286 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
6287 return retval;
6288 }
6289
6290 if (sec_index == SHN_BAD)
6291 bfd_set_error (bfd_error_nonrepresentable_section);
6292
6293 return sec_index;
6294 }
6295
6296 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
6297 on error. */
6298
6299 int
6300 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
6301 {
6302 asymbol *asym_ptr = *asym_ptr_ptr;
6303 int idx;
6304 flagword flags = asym_ptr->flags;
6305
6306 /* When gas creates relocations against local labels, it creates its
6307 own symbol for the section, but does put the symbol into the
6308 symbol chain, so udata is 0. When the linker is generating
6309 relocatable output, this section symbol may be for one of the
6310 input sections rather than the output section. */
6311 if (asym_ptr->udata.i == 0
6312 && (flags & BSF_SECTION_SYM)
6313 && asym_ptr->section)
6314 {
6315 asection *sec;
6316 int indx;
6317
6318 sec = asym_ptr->section;
6319 if (sec->owner != abfd && sec->output_section != NULL)
6320 sec = sec->output_section;
6321 if (sec->owner == abfd
6322 && (indx = sec->index) < elf_num_section_syms (abfd)
6323 && elf_section_syms (abfd)[indx] != NULL)
6324 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
6325 }
6326
6327 idx = asym_ptr->udata.i;
6328
6329 if (idx == 0)
6330 {
6331 /* This case can occur when using --strip-symbol on a symbol
6332 which is used in a relocation entry. */
6333 _bfd_error_handler
6334 /* xgettext:c-format */
6335 (_("%B: symbol `%s' required but not present"),
6336 abfd, bfd_asymbol_name (asym_ptr));
6337 bfd_set_error (bfd_error_no_symbols);
6338 return -1;
6339 }
6340
6341 #if DEBUG & 4
6342 {
6343 fprintf (stderr,
6344 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx\n",
6345 (long) asym_ptr, asym_ptr->name, idx, (long) flags);
6346 fflush (stderr);
6347 }
6348 #endif
6349
6350 return idx;
6351 }
6352
6353 /* Rewrite program header information. */
6354
6355 static bfd_boolean
6356 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
6357 {
6358 Elf_Internal_Ehdr *iehdr;
6359 struct elf_segment_map *map;
6360 struct elf_segment_map *map_first;
6361 struct elf_segment_map **pointer_to_map;
6362 Elf_Internal_Phdr *segment;
6363 asection *section;
6364 unsigned int i;
6365 unsigned int num_segments;
6366 bfd_boolean phdr_included = FALSE;
6367 bfd_boolean p_paddr_valid;
6368 bfd_vma maxpagesize;
6369 struct elf_segment_map *phdr_adjust_seg = NULL;
6370 unsigned int phdr_adjust_num = 0;
6371 const struct elf_backend_data *bed;
6372
6373 bed = get_elf_backend_data (ibfd);
6374 iehdr = elf_elfheader (ibfd);
6375
6376 map_first = NULL;
6377 pointer_to_map = &map_first;
6378
6379 num_segments = elf_elfheader (ibfd)->e_phnum;
6380 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
6381
6382 /* Returns the end address of the segment + 1. */
6383 #define SEGMENT_END(segment, start) \
6384 (start + (segment->p_memsz > segment->p_filesz \
6385 ? segment->p_memsz : segment->p_filesz))
6386
6387 #define SECTION_SIZE(section, segment) \
6388 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
6389 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
6390 ? section->size : 0)
6391
6392 /* Returns TRUE if the given section is contained within
6393 the given segment. VMA addresses are compared. */
6394 #define IS_CONTAINED_BY_VMA(section, segment) \
6395 (section->vma >= segment->p_vaddr \
6396 && (section->vma + SECTION_SIZE (section, segment) \
6397 <= (SEGMENT_END (segment, segment->p_vaddr))))
6398
6399 /* Returns TRUE if the given section is contained within
6400 the given segment. LMA addresses are compared. */
6401 #define IS_CONTAINED_BY_LMA(section, segment, base) \
6402 (section->lma >= base \
6403 && (section->lma + SECTION_SIZE (section, segment) \
6404 <= SEGMENT_END (segment, base)))
6405
6406 /* Handle PT_NOTE segment. */
6407 #define IS_NOTE(p, s) \
6408 (p->p_type == PT_NOTE \
6409 && elf_section_type (s) == SHT_NOTE \
6410 && (bfd_vma) s->filepos >= p->p_offset \
6411 && ((bfd_vma) s->filepos + s->size \
6412 <= p->p_offset + p->p_filesz))
6413
6414 /* Special case: corefile "NOTE" section containing regs, prpsinfo
6415 etc. */
6416 #define IS_COREFILE_NOTE(p, s) \
6417 (IS_NOTE (p, s) \
6418 && bfd_get_format (ibfd) == bfd_core \
6419 && s->vma == 0 \
6420 && s->lma == 0)
6421
6422 /* The complicated case when p_vaddr is 0 is to handle the Solaris
6423 linker, which generates a PT_INTERP section with p_vaddr and
6424 p_memsz set to 0. */
6425 #define IS_SOLARIS_PT_INTERP(p, s) \
6426 (p->p_vaddr == 0 \
6427 && p->p_paddr == 0 \
6428 && p->p_memsz == 0 \
6429 && p->p_filesz > 0 \
6430 && (s->flags & SEC_HAS_CONTENTS) != 0 \
6431 && s->size > 0 \
6432 && (bfd_vma) s->filepos >= p->p_offset \
6433 && ((bfd_vma) s->filepos + s->size \
6434 <= p->p_offset + p->p_filesz))
6435
6436 /* Decide if the given section should be included in the given segment.
6437 A section will be included if:
6438 1. It is within the address space of the segment -- we use the LMA
6439 if that is set for the segment and the VMA otherwise,
6440 2. It is an allocated section or a NOTE section in a PT_NOTE
6441 segment.
6442 3. There is an output section associated with it,
6443 4. The section has not already been allocated to a previous segment.
6444 5. PT_GNU_STACK segments do not include any sections.
6445 6. PT_TLS segment includes only SHF_TLS sections.
6446 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
6447 8. PT_DYNAMIC should not contain empty sections at the beginning
6448 (with the possible exception of .dynamic). */
6449 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
6450 ((((segment->p_paddr \
6451 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
6452 : IS_CONTAINED_BY_VMA (section, segment)) \
6453 && (section->flags & SEC_ALLOC) != 0) \
6454 || IS_NOTE (segment, section)) \
6455 && segment->p_type != PT_GNU_STACK \
6456 && (segment->p_type != PT_TLS \
6457 || (section->flags & SEC_THREAD_LOCAL)) \
6458 && (segment->p_type == PT_LOAD \
6459 || segment->p_type == PT_TLS \
6460 || (section->flags & SEC_THREAD_LOCAL) == 0) \
6461 && (segment->p_type != PT_DYNAMIC \
6462 || SECTION_SIZE (section, segment) > 0 \
6463 || (segment->p_paddr \
6464 ? segment->p_paddr != section->lma \
6465 : segment->p_vaddr != section->vma) \
6466 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
6467 == 0)) \
6468 && !section->segment_mark)
6469
6470 /* If the output section of a section in the input segment is NULL,
6471 it is removed from the corresponding output segment. */
6472 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
6473 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
6474 && section->output_section != NULL)
6475
6476 /* Returns TRUE iff seg1 starts after the end of seg2. */
6477 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
6478 (seg1->field >= SEGMENT_END (seg2, seg2->field))
6479
6480 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
6481 their VMA address ranges and their LMA address ranges overlap.
6482 It is possible to have overlapping VMA ranges without overlapping LMA
6483 ranges. RedBoot images for example can have both .data and .bss mapped
6484 to the same VMA range, but with the .data section mapped to a different
6485 LMA. */
6486 #define SEGMENT_OVERLAPS(seg1, seg2) \
6487 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
6488 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
6489 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
6490 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
6491
6492 /* Initialise the segment mark field. */
6493 for (section = ibfd->sections; section != NULL; section = section->next)
6494 section->segment_mark = FALSE;
6495
6496 /* The Solaris linker creates program headers in which all the
6497 p_paddr fields are zero. When we try to objcopy or strip such a
6498 file, we get confused. Check for this case, and if we find it
6499 don't set the p_paddr_valid fields. */
6500 p_paddr_valid = FALSE;
6501 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6502 i < num_segments;
6503 i++, segment++)
6504 if (segment->p_paddr != 0)
6505 {
6506 p_paddr_valid = TRUE;
6507 break;
6508 }
6509
6510 /* Scan through the segments specified in the program header
6511 of the input BFD. For this first scan we look for overlaps
6512 in the loadable segments. These can be created by weird
6513 parameters to objcopy. Also, fix some solaris weirdness. */
6514 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6515 i < num_segments;
6516 i++, segment++)
6517 {
6518 unsigned int j;
6519 Elf_Internal_Phdr *segment2;
6520
6521 if (segment->p_type == PT_INTERP)
6522 for (section = ibfd->sections; section; section = section->next)
6523 if (IS_SOLARIS_PT_INTERP (segment, section))
6524 {
6525 /* Mininal change so that the normal section to segment
6526 assignment code will work. */
6527 segment->p_vaddr = section->vma;
6528 break;
6529 }
6530
6531 if (segment->p_type != PT_LOAD)
6532 {
6533 /* Remove PT_GNU_RELRO segment. */
6534 if (segment->p_type == PT_GNU_RELRO)
6535 segment->p_type = PT_NULL;
6536 continue;
6537 }
6538
6539 /* Determine if this segment overlaps any previous segments. */
6540 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
6541 {
6542 bfd_signed_vma extra_length;
6543
6544 if (segment2->p_type != PT_LOAD
6545 || !SEGMENT_OVERLAPS (segment, segment2))
6546 continue;
6547
6548 /* Merge the two segments together. */
6549 if (segment2->p_vaddr < segment->p_vaddr)
6550 {
6551 /* Extend SEGMENT2 to include SEGMENT and then delete
6552 SEGMENT. */
6553 extra_length = (SEGMENT_END (segment, segment->p_vaddr)
6554 - SEGMENT_END (segment2, segment2->p_vaddr));
6555
6556 if (extra_length > 0)
6557 {
6558 segment2->p_memsz += extra_length;
6559 segment2->p_filesz += extra_length;
6560 }
6561
6562 segment->p_type = PT_NULL;
6563
6564 /* Since we have deleted P we must restart the outer loop. */
6565 i = 0;
6566 segment = elf_tdata (ibfd)->phdr;
6567 break;
6568 }
6569 else
6570 {
6571 /* Extend SEGMENT to include SEGMENT2 and then delete
6572 SEGMENT2. */
6573 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
6574 - SEGMENT_END (segment, segment->p_vaddr));
6575
6576 if (extra_length > 0)
6577 {
6578 segment->p_memsz += extra_length;
6579 segment->p_filesz += extra_length;
6580 }
6581
6582 segment2->p_type = PT_NULL;
6583 }
6584 }
6585 }
6586
6587 /* The second scan attempts to assign sections to segments. */
6588 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6589 i < num_segments;
6590 i++, segment++)
6591 {
6592 unsigned int section_count;
6593 asection **sections;
6594 asection *output_section;
6595 unsigned int isec;
6596 bfd_vma matching_lma;
6597 bfd_vma suggested_lma;
6598 unsigned int j;
6599 bfd_size_type amt;
6600 asection *first_section;
6601 bfd_boolean first_matching_lma;
6602 bfd_boolean first_suggested_lma;
6603
6604 if (segment->p_type == PT_NULL)
6605 continue;
6606
6607 first_section = NULL;
6608 /* Compute how many sections might be placed into this segment. */
6609 for (section = ibfd->sections, section_count = 0;
6610 section != NULL;
6611 section = section->next)
6612 {
6613 /* Find the first section in the input segment, which may be
6614 removed from the corresponding output segment. */
6615 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
6616 {
6617 if (first_section == NULL)
6618 first_section = section;
6619 if (section->output_section != NULL)
6620 ++section_count;
6621 }
6622 }
6623
6624 /* Allocate a segment map big enough to contain
6625 all of the sections we have selected. */
6626 amt = sizeof (struct elf_segment_map);
6627 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
6628 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
6629 if (map == NULL)
6630 return FALSE;
6631
6632 /* Initialise the fields of the segment map. Default to
6633 using the physical address of the segment in the input BFD. */
6634 map->next = NULL;
6635 map->p_type = segment->p_type;
6636 map->p_flags = segment->p_flags;
6637 map->p_flags_valid = 1;
6638
6639 /* If the first section in the input segment is removed, there is
6640 no need to preserve segment physical address in the corresponding
6641 output segment. */
6642 if (!first_section || first_section->output_section != NULL)
6643 {
6644 map->p_paddr = segment->p_paddr;
6645 map->p_paddr_valid = p_paddr_valid;
6646 }
6647
6648 /* Determine if this segment contains the ELF file header
6649 and if it contains the program headers themselves. */
6650 map->includes_filehdr = (segment->p_offset == 0
6651 && segment->p_filesz >= iehdr->e_ehsize);
6652 map->includes_phdrs = 0;
6653
6654 if (!phdr_included || segment->p_type != PT_LOAD)
6655 {
6656 map->includes_phdrs =
6657 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
6658 && (segment->p_offset + segment->p_filesz
6659 >= ((bfd_vma) iehdr->e_phoff
6660 + iehdr->e_phnum * iehdr->e_phentsize)));
6661
6662 if (segment->p_type == PT_LOAD && map->includes_phdrs)
6663 phdr_included = TRUE;
6664 }
6665
6666 if (section_count == 0)
6667 {
6668 /* Special segments, such as the PT_PHDR segment, may contain
6669 no sections, but ordinary, loadable segments should contain
6670 something. They are allowed by the ELF spec however, so only
6671 a warning is produced. */
6672 if (segment->p_type == PT_LOAD)
6673 _bfd_error_handler (_("\
6674 %B: warning: Empty loadable segment detected, is this intentional ?"),
6675 ibfd);
6676
6677 map->count = 0;
6678 *pointer_to_map = map;
6679 pointer_to_map = &map->next;
6680
6681 continue;
6682 }
6683
6684 /* Now scan the sections in the input BFD again and attempt
6685 to add their corresponding output sections to the segment map.
6686 The problem here is how to handle an output section which has
6687 been moved (ie had its LMA changed). There are four possibilities:
6688
6689 1. None of the sections have been moved.
6690 In this case we can continue to use the segment LMA from the
6691 input BFD.
6692
6693 2. All of the sections have been moved by the same amount.
6694 In this case we can change the segment's LMA to match the LMA
6695 of the first section.
6696
6697 3. Some of the sections have been moved, others have not.
6698 In this case those sections which have not been moved can be
6699 placed in the current segment which will have to have its size,
6700 and possibly its LMA changed, and a new segment or segments will
6701 have to be created to contain the other sections.
6702
6703 4. The sections have been moved, but not by the same amount.
6704 In this case we can change the segment's LMA to match the LMA
6705 of the first section and we will have to create a new segment
6706 or segments to contain the other sections.
6707
6708 In order to save time, we allocate an array to hold the section
6709 pointers that we are interested in. As these sections get assigned
6710 to a segment, they are removed from this array. */
6711
6712 sections = (asection **) bfd_malloc2 (section_count, sizeof (asection *));
6713 if (sections == NULL)
6714 return FALSE;
6715
6716 /* Step One: Scan for segment vs section LMA conflicts.
6717 Also add the sections to the section array allocated above.
6718 Also add the sections to the current segment. In the common
6719 case, where the sections have not been moved, this means that
6720 we have completely filled the segment, and there is nothing
6721 more to do. */
6722 isec = 0;
6723 matching_lma = 0;
6724 suggested_lma = 0;
6725 first_matching_lma = TRUE;
6726 first_suggested_lma = TRUE;
6727
6728 for (section = first_section, j = 0;
6729 section != NULL;
6730 section = section->next)
6731 {
6732 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
6733 {
6734 output_section = section->output_section;
6735
6736 sections[j++] = section;
6737
6738 /* The Solaris native linker always sets p_paddr to 0.
6739 We try to catch that case here, and set it to the
6740 correct value. Note - some backends require that
6741 p_paddr be left as zero. */
6742 if (!p_paddr_valid
6743 && segment->p_vaddr != 0
6744 && !bed->want_p_paddr_set_to_zero
6745 && isec == 0
6746 && output_section->lma != 0
6747 && output_section->vma == (segment->p_vaddr
6748 + (map->includes_filehdr
6749 ? iehdr->e_ehsize
6750 : 0)
6751 + (map->includes_phdrs
6752 ? (iehdr->e_phnum
6753 * iehdr->e_phentsize)
6754 : 0)))
6755 map->p_paddr = segment->p_vaddr;
6756
6757 /* Match up the physical address of the segment with the
6758 LMA address of the output section. */
6759 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
6760 || IS_COREFILE_NOTE (segment, section)
6761 || (bed->want_p_paddr_set_to_zero
6762 && IS_CONTAINED_BY_VMA (output_section, segment)))
6763 {
6764 if (first_matching_lma || output_section->lma < matching_lma)
6765 {
6766 matching_lma = output_section->lma;
6767 first_matching_lma = FALSE;
6768 }
6769
6770 /* We assume that if the section fits within the segment
6771 then it does not overlap any other section within that
6772 segment. */
6773 map->sections[isec++] = output_section;
6774 }
6775 else if (first_suggested_lma)
6776 {
6777 suggested_lma = output_section->lma;
6778 first_suggested_lma = FALSE;
6779 }
6780
6781 if (j == section_count)
6782 break;
6783 }
6784 }
6785
6786 BFD_ASSERT (j == section_count);
6787
6788 /* Step Two: Adjust the physical address of the current segment,
6789 if necessary. */
6790 if (isec == section_count)
6791 {
6792 /* All of the sections fitted within the segment as currently
6793 specified. This is the default case. Add the segment to
6794 the list of built segments and carry on to process the next
6795 program header in the input BFD. */
6796 map->count = section_count;
6797 *pointer_to_map = map;
6798 pointer_to_map = &map->next;
6799
6800 if (p_paddr_valid
6801 && !bed->want_p_paddr_set_to_zero
6802 && matching_lma != map->p_paddr
6803 && !map->includes_filehdr
6804 && !map->includes_phdrs)
6805 /* There is some padding before the first section in the
6806 segment. So, we must account for that in the output
6807 segment's vma. */
6808 map->p_vaddr_offset = matching_lma - map->p_paddr;
6809
6810 free (sections);
6811 continue;
6812 }
6813 else
6814 {
6815 if (!first_matching_lma)
6816 {
6817 /* At least one section fits inside the current segment.
6818 Keep it, but modify its physical address to match the
6819 LMA of the first section that fitted. */
6820 map->p_paddr = matching_lma;
6821 }
6822 else
6823 {
6824 /* None of the sections fitted inside the current segment.
6825 Change the current segment's physical address to match
6826 the LMA of the first section. */
6827 map->p_paddr = suggested_lma;
6828 }
6829
6830 /* Offset the segment physical address from the lma
6831 to allow for space taken up by elf headers. */
6832 if (map->includes_filehdr)
6833 {
6834 if (map->p_paddr >= iehdr->e_ehsize)
6835 map->p_paddr -= iehdr->e_ehsize;
6836 else
6837 {
6838 map->includes_filehdr = FALSE;
6839 map->includes_phdrs = FALSE;
6840 }
6841 }
6842
6843 if (map->includes_phdrs)
6844 {
6845 if (map->p_paddr >= iehdr->e_phnum * iehdr->e_phentsize)
6846 {
6847 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
6848
6849 /* iehdr->e_phnum is just an estimate of the number
6850 of program headers that we will need. Make a note
6851 here of the number we used and the segment we chose
6852 to hold these headers, so that we can adjust the
6853 offset when we know the correct value. */
6854 phdr_adjust_num = iehdr->e_phnum;
6855 phdr_adjust_seg = map;
6856 }
6857 else
6858 map->includes_phdrs = FALSE;
6859 }
6860 }
6861
6862 /* Step Three: Loop over the sections again, this time assigning
6863 those that fit to the current segment and removing them from the
6864 sections array; but making sure not to leave large gaps. Once all
6865 possible sections have been assigned to the current segment it is
6866 added to the list of built segments and if sections still remain
6867 to be assigned, a new segment is constructed before repeating
6868 the loop. */
6869 isec = 0;
6870 do
6871 {
6872 map->count = 0;
6873 suggested_lma = 0;
6874 first_suggested_lma = TRUE;
6875
6876 /* Fill the current segment with sections that fit. */
6877 for (j = 0; j < section_count; j++)
6878 {
6879 section = sections[j];
6880
6881 if (section == NULL)
6882 continue;
6883
6884 output_section = section->output_section;
6885
6886 BFD_ASSERT (output_section != NULL);
6887
6888 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
6889 || IS_COREFILE_NOTE (segment, section))
6890 {
6891 if (map->count == 0)
6892 {
6893 /* If the first section in a segment does not start at
6894 the beginning of the segment, then something is
6895 wrong. */
6896 if (output_section->lma
6897 != (map->p_paddr
6898 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
6899 + (map->includes_phdrs
6900 ? iehdr->e_phnum * iehdr->e_phentsize
6901 : 0)))
6902 abort ();
6903 }
6904 else
6905 {
6906 asection *prev_sec;
6907
6908 prev_sec = map->sections[map->count - 1];
6909
6910 /* If the gap between the end of the previous section
6911 and the start of this section is more than
6912 maxpagesize then we need to start a new segment. */
6913 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
6914 maxpagesize)
6915 < BFD_ALIGN (output_section->lma, maxpagesize))
6916 || (prev_sec->lma + prev_sec->size
6917 > output_section->lma))
6918 {
6919 if (first_suggested_lma)
6920 {
6921 suggested_lma = output_section->lma;
6922 first_suggested_lma = FALSE;
6923 }
6924
6925 continue;
6926 }
6927 }
6928
6929 map->sections[map->count++] = output_section;
6930 ++isec;
6931 sections[j] = NULL;
6932 section->segment_mark = TRUE;
6933 }
6934 else if (first_suggested_lma)
6935 {
6936 suggested_lma = output_section->lma;
6937 first_suggested_lma = FALSE;
6938 }
6939 }
6940
6941 BFD_ASSERT (map->count > 0);
6942
6943 /* Add the current segment to the list of built segments. */
6944 *pointer_to_map = map;
6945 pointer_to_map = &map->next;
6946
6947 if (isec < section_count)
6948 {
6949 /* We still have not allocated all of the sections to
6950 segments. Create a new segment here, initialise it
6951 and carry on looping. */
6952 amt = sizeof (struct elf_segment_map);
6953 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
6954 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
6955 if (map == NULL)
6956 {
6957 free (sections);
6958 return FALSE;
6959 }
6960
6961 /* Initialise the fields of the segment map. Set the physical
6962 physical address to the LMA of the first section that has
6963 not yet been assigned. */
6964 map->next = NULL;
6965 map->p_type = segment->p_type;
6966 map->p_flags = segment->p_flags;
6967 map->p_flags_valid = 1;
6968 map->p_paddr = suggested_lma;
6969 map->p_paddr_valid = p_paddr_valid;
6970 map->includes_filehdr = 0;
6971 map->includes_phdrs = 0;
6972 }
6973 }
6974 while (isec < section_count);
6975
6976 free (sections);
6977 }
6978
6979 elf_seg_map (obfd) = map_first;
6980
6981 /* If we had to estimate the number of program headers that were
6982 going to be needed, then check our estimate now and adjust
6983 the offset if necessary. */
6984 if (phdr_adjust_seg != NULL)
6985 {
6986 unsigned int count;
6987
6988 for (count = 0, map = map_first; map != NULL; map = map->next)
6989 count++;
6990
6991 if (count > phdr_adjust_num)
6992 phdr_adjust_seg->p_paddr
6993 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
6994 }
6995
6996 #undef SEGMENT_END
6997 #undef SECTION_SIZE
6998 #undef IS_CONTAINED_BY_VMA
6999 #undef IS_CONTAINED_BY_LMA
7000 #undef IS_NOTE
7001 #undef IS_COREFILE_NOTE
7002 #undef IS_SOLARIS_PT_INTERP
7003 #undef IS_SECTION_IN_INPUT_SEGMENT
7004 #undef INCLUDE_SECTION_IN_SEGMENT
7005 #undef SEGMENT_AFTER_SEGMENT
7006 #undef SEGMENT_OVERLAPS
7007 return TRUE;
7008 }
7009
7010 /* Copy ELF program header information. */
7011
7012 static bfd_boolean
7013 copy_elf_program_header (bfd *ibfd, bfd *obfd)
7014 {
7015 Elf_Internal_Ehdr *iehdr;
7016 struct elf_segment_map *map;
7017 struct elf_segment_map *map_first;
7018 struct elf_segment_map **pointer_to_map;
7019 Elf_Internal_Phdr *segment;
7020 unsigned int i;
7021 unsigned int num_segments;
7022 bfd_boolean phdr_included = FALSE;
7023 bfd_boolean p_paddr_valid;
7024
7025 iehdr = elf_elfheader (ibfd);
7026
7027 map_first = NULL;
7028 pointer_to_map = &map_first;
7029
7030 /* If all the segment p_paddr fields are zero, don't set
7031 map->p_paddr_valid. */
7032 p_paddr_valid = FALSE;
7033 num_segments = elf_elfheader (ibfd)->e_phnum;
7034 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7035 i < num_segments;
7036 i++, segment++)
7037 if (segment->p_paddr != 0)
7038 {
7039 p_paddr_valid = TRUE;
7040 break;
7041 }
7042
7043 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7044 i < num_segments;
7045 i++, segment++)
7046 {
7047 asection *section;
7048 unsigned int section_count;
7049 bfd_size_type amt;
7050 Elf_Internal_Shdr *this_hdr;
7051 asection *first_section = NULL;
7052 asection *lowest_section;
7053
7054 /* Compute how many sections are in this segment. */
7055 for (section = ibfd->sections, section_count = 0;
7056 section != NULL;
7057 section = section->next)
7058 {
7059 this_hdr = &(elf_section_data(section)->this_hdr);
7060 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7061 {
7062 if (first_section == NULL)
7063 first_section = section;
7064 section_count++;
7065 }
7066 }
7067
7068 /* Allocate a segment map big enough to contain
7069 all of the sections we have selected. */
7070 amt = sizeof (struct elf_segment_map);
7071 if (section_count != 0)
7072 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
7073 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7074 if (map == NULL)
7075 return FALSE;
7076
7077 /* Initialize the fields of the output segment map with the
7078 input segment. */
7079 map->next = NULL;
7080 map->p_type = segment->p_type;
7081 map->p_flags = segment->p_flags;
7082 map->p_flags_valid = 1;
7083 map->p_paddr = segment->p_paddr;
7084 map->p_paddr_valid = p_paddr_valid;
7085 map->p_align = segment->p_align;
7086 map->p_align_valid = 1;
7087 map->p_vaddr_offset = 0;
7088
7089 if (map->p_type == PT_GNU_RELRO
7090 || map->p_type == PT_GNU_STACK)
7091 {
7092 /* The PT_GNU_RELRO segment may contain the first a few
7093 bytes in the .got.plt section even if the whole .got.plt
7094 section isn't in the PT_GNU_RELRO segment. We won't
7095 change the size of the PT_GNU_RELRO segment.
7096 Similarly, PT_GNU_STACK size is significant on uclinux
7097 systems. */
7098 map->p_size = segment->p_memsz;
7099 map->p_size_valid = 1;
7100 }
7101
7102 /* Determine if this segment contains the ELF file header
7103 and if it contains the program headers themselves. */
7104 map->includes_filehdr = (segment->p_offset == 0
7105 && segment->p_filesz >= iehdr->e_ehsize);
7106
7107 map->includes_phdrs = 0;
7108 if (! phdr_included || segment->p_type != PT_LOAD)
7109 {
7110 map->includes_phdrs =
7111 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
7112 && (segment->p_offset + segment->p_filesz
7113 >= ((bfd_vma) iehdr->e_phoff
7114 + iehdr->e_phnum * iehdr->e_phentsize)));
7115
7116 if (segment->p_type == PT_LOAD && map->includes_phdrs)
7117 phdr_included = TRUE;
7118 }
7119
7120 lowest_section = NULL;
7121 if (section_count != 0)
7122 {
7123 unsigned int isec = 0;
7124
7125 for (section = first_section;
7126 section != NULL;
7127 section = section->next)
7128 {
7129 this_hdr = &(elf_section_data(section)->this_hdr);
7130 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7131 {
7132 map->sections[isec++] = section->output_section;
7133 if ((section->flags & SEC_ALLOC) != 0)
7134 {
7135 bfd_vma seg_off;
7136
7137 if (lowest_section == NULL
7138 || section->lma < lowest_section->lma)
7139 lowest_section = section;
7140
7141 /* Section lmas are set up from PT_LOAD header
7142 p_paddr in _bfd_elf_make_section_from_shdr.
7143 If this header has a p_paddr that disagrees
7144 with the section lma, flag the p_paddr as
7145 invalid. */
7146 if ((section->flags & SEC_LOAD) != 0)
7147 seg_off = this_hdr->sh_offset - segment->p_offset;
7148 else
7149 seg_off = this_hdr->sh_addr - segment->p_vaddr;
7150 if (section->lma - segment->p_paddr != seg_off)
7151 map->p_paddr_valid = FALSE;
7152 }
7153 if (isec == section_count)
7154 break;
7155 }
7156 }
7157 }
7158
7159 if (map->includes_filehdr && lowest_section != NULL)
7160 /* We need to keep the space used by the headers fixed. */
7161 map->header_size = lowest_section->vma - segment->p_vaddr;
7162
7163 if (!map->includes_phdrs
7164 && !map->includes_filehdr
7165 && map->p_paddr_valid)
7166 /* There is some other padding before the first section. */
7167 map->p_vaddr_offset = ((lowest_section ? lowest_section->lma : 0)
7168 - segment->p_paddr);
7169
7170 map->count = section_count;
7171 *pointer_to_map = map;
7172 pointer_to_map = &map->next;
7173 }
7174
7175 elf_seg_map (obfd) = map_first;
7176 return TRUE;
7177 }
7178
7179 /* Copy private BFD data. This copies or rewrites ELF program header
7180 information. */
7181
7182 static bfd_boolean
7183 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
7184 {
7185 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7186 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7187 return TRUE;
7188
7189 if (elf_tdata (ibfd)->phdr == NULL)
7190 return TRUE;
7191
7192 if (ibfd->xvec == obfd->xvec)
7193 {
7194 /* Check to see if any sections in the input BFD
7195 covered by ELF program header have changed. */
7196 Elf_Internal_Phdr *segment;
7197 asection *section, *osec;
7198 unsigned int i, num_segments;
7199 Elf_Internal_Shdr *this_hdr;
7200 const struct elf_backend_data *bed;
7201
7202 bed = get_elf_backend_data (ibfd);
7203
7204 /* Regenerate the segment map if p_paddr is set to 0. */
7205 if (bed->want_p_paddr_set_to_zero)
7206 goto rewrite;
7207
7208 /* Initialize the segment mark field. */
7209 for (section = obfd->sections; section != NULL;
7210 section = section->next)
7211 section->segment_mark = FALSE;
7212
7213 num_segments = elf_elfheader (ibfd)->e_phnum;
7214 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7215 i < num_segments;
7216 i++, segment++)
7217 {
7218 /* PR binutils/3535. The Solaris linker always sets the p_paddr
7219 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
7220 which severly confuses things, so always regenerate the segment
7221 map in this case. */
7222 if (segment->p_paddr == 0
7223 && segment->p_memsz == 0
7224 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
7225 goto rewrite;
7226
7227 for (section = ibfd->sections;
7228 section != NULL; section = section->next)
7229 {
7230 /* We mark the output section so that we know it comes
7231 from the input BFD. */
7232 osec = section->output_section;
7233 if (osec)
7234 osec->segment_mark = TRUE;
7235
7236 /* Check if this section is covered by the segment. */
7237 this_hdr = &(elf_section_data(section)->this_hdr);
7238 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7239 {
7240 /* FIXME: Check if its output section is changed or
7241 removed. What else do we need to check? */
7242 if (osec == NULL
7243 || section->flags != osec->flags
7244 || section->lma != osec->lma
7245 || section->vma != osec->vma
7246 || section->size != osec->size
7247 || section->rawsize != osec->rawsize
7248 || section->alignment_power != osec->alignment_power)
7249 goto rewrite;
7250 }
7251 }
7252 }
7253
7254 /* Check to see if any output section do not come from the
7255 input BFD. */
7256 for (section = obfd->sections; section != NULL;
7257 section = section->next)
7258 {
7259 if (section->segment_mark == FALSE)
7260 goto rewrite;
7261 else
7262 section->segment_mark = FALSE;
7263 }
7264
7265 return copy_elf_program_header (ibfd, obfd);
7266 }
7267
7268 rewrite:
7269 if (ibfd->xvec == obfd->xvec)
7270 {
7271 /* When rewriting program header, set the output maxpagesize to
7272 the maximum alignment of input PT_LOAD segments. */
7273 Elf_Internal_Phdr *segment;
7274 unsigned int i;
7275 unsigned int num_segments = elf_elfheader (ibfd)->e_phnum;
7276 bfd_vma maxpagesize = 0;
7277
7278 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7279 i < num_segments;
7280 i++, segment++)
7281 if (segment->p_type == PT_LOAD
7282 && maxpagesize < segment->p_align)
7283 {
7284 /* PR 17512: file: f17299af. */
7285 if (segment->p_align > (bfd_vma) 1 << ((sizeof (bfd_vma) * 8) - 2))
7286 /* xgettext:c-format */
7287 _bfd_error_handler (_("\
7288 %B: warning: segment alignment of 0x%llx is too large"),
7289 ibfd, (long long) segment->p_align);
7290 else
7291 maxpagesize = segment->p_align;
7292 }
7293
7294 if (maxpagesize != get_elf_backend_data (obfd)->maxpagesize)
7295 bfd_emul_set_maxpagesize (bfd_get_target (obfd), maxpagesize);
7296 }
7297
7298 return rewrite_elf_program_header (ibfd, obfd);
7299 }
7300
7301 /* Initialize private output section information from input section. */
7302
7303 bfd_boolean
7304 _bfd_elf_init_private_section_data (bfd *ibfd,
7305 asection *isec,
7306 bfd *obfd,
7307 asection *osec,
7308 struct bfd_link_info *link_info)
7309
7310 {
7311 Elf_Internal_Shdr *ihdr, *ohdr;
7312 bfd_boolean final_link = (link_info != NULL
7313 && !bfd_link_relocatable (link_info));
7314
7315 if (ibfd->xvec->flavour != bfd_target_elf_flavour
7316 || obfd->xvec->flavour != bfd_target_elf_flavour)
7317 return TRUE;
7318
7319 BFD_ASSERT (elf_section_data (osec) != NULL);
7320
7321 /* For objcopy and relocatable link, don't copy the output ELF
7322 section type from input if the output BFD section flags have been
7323 set to something different. For a final link allow some flags
7324 that the linker clears to differ. */
7325 if (elf_section_type (osec) == SHT_NULL
7326 && (osec->flags == isec->flags
7327 || (final_link
7328 && ((osec->flags ^ isec->flags)
7329 & ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC)) == 0)))
7330 elf_section_type (osec) = elf_section_type (isec);
7331
7332 /* FIXME: Is this correct for all OS/PROC specific flags? */
7333 elf_section_flags (osec) |= (elf_section_flags (isec)
7334 & (SHF_MASKOS | SHF_MASKPROC));
7335
7336 /* Set things up for objcopy and relocatable link. The output
7337 SHT_GROUP section will have its elf_next_in_group pointing back
7338 to the input group members. Ignore linker created group section.
7339 See elfNN_ia64_object_p in elfxx-ia64.c. */
7340 if (!final_link)
7341 {
7342 if (elf_sec_group (isec) == NULL
7343 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
7344 {
7345 if (elf_section_flags (isec) & SHF_GROUP)
7346 elf_section_flags (osec) |= SHF_GROUP;
7347 elf_next_in_group (osec) = elf_next_in_group (isec);
7348 elf_section_data (osec)->group = elf_section_data (isec)->group;
7349 }
7350
7351 /* If not decompress, preserve SHF_COMPRESSED. */
7352 if ((ibfd->flags & BFD_DECOMPRESS) == 0)
7353 elf_section_flags (osec) |= (elf_section_flags (isec)
7354 & SHF_COMPRESSED);
7355 }
7356
7357 ihdr = &elf_section_data (isec)->this_hdr;
7358
7359 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
7360 don't use the output section of the linked-to section since it
7361 may be NULL at this point. */
7362 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
7363 {
7364 ohdr = &elf_section_data (osec)->this_hdr;
7365 ohdr->sh_flags |= SHF_LINK_ORDER;
7366 elf_linked_to_section (osec) = elf_linked_to_section (isec);
7367 }
7368
7369 osec->use_rela_p = isec->use_rela_p;
7370
7371 return TRUE;
7372 }
7373
7374 /* Copy private section information. This copies over the entsize
7375 field, and sometimes the info field. */
7376
7377 bfd_boolean
7378 _bfd_elf_copy_private_section_data (bfd *ibfd,
7379 asection *isec,
7380 bfd *obfd,
7381 asection *osec)
7382 {
7383 Elf_Internal_Shdr *ihdr, *ohdr;
7384
7385 if (ibfd->xvec->flavour != bfd_target_elf_flavour
7386 || obfd->xvec->flavour != bfd_target_elf_flavour)
7387 return TRUE;
7388
7389 ihdr = &elf_section_data (isec)->this_hdr;
7390 ohdr = &elf_section_data (osec)->this_hdr;
7391
7392 ohdr->sh_entsize = ihdr->sh_entsize;
7393
7394 if (ihdr->sh_type == SHT_SYMTAB
7395 || ihdr->sh_type == SHT_DYNSYM
7396 || ihdr->sh_type == SHT_GNU_verneed
7397 || ihdr->sh_type == SHT_GNU_verdef)
7398 ohdr->sh_info = ihdr->sh_info;
7399
7400 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
7401 NULL);
7402 }
7403
7404 /* Look at all the SHT_GROUP sections in IBFD, making any adjustments
7405 necessary if we are removing either the SHT_GROUP section or any of
7406 the group member sections. DISCARDED is the value that a section's
7407 output_section has if the section will be discarded, NULL when this
7408 function is called from objcopy, bfd_abs_section_ptr when called
7409 from the linker. */
7410
7411 bfd_boolean
7412 _bfd_elf_fixup_group_sections (bfd *ibfd, asection *discarded)
7413 {
7414 asection *isec;
7415
7416 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
7417 if (elf_section_type (isec) == SHT_GROUP)
7418 {
7419 asection *first = elf_next_in_group (isec);
7420 asection *s = first;
7421 bfd_size_type removed = 0;
7422
7423 while (s != NULL)
7424 {
7425 /* If this member section is being output but the
7426 SHT_GROUP section is not, then clear the group info
7427 set up by _bfd_elf_copy_private_section_data. */
7428 if (s->output_section != discarded
7429 && isec->output_section == discarded)
7430 {
7431 elf_section_flags (s->output_section) &= ~SHF_GROUP;
7432 elf_group_name (s->output_section) = NULL;
7433 }
7434 /* Conversely, if the member section is not being output
7435 but the SHT_GROUP section is, then adjust its size. */
7436 else if (s->output_section == discarded
7437 && isec->output_section != discarded)
7438 removed += 4;
7439 s = elf_next_in_group (s);
7440 if (s == first)
7441 break;
7442 }
7443 if (removed != 0)
7444 {
7445 if (discarded != NULL)
7446 {
7447 /* If we've been called for ld -r, then we need to
7448 adjust the input section size. This function may
7449 be called multiple times, so save the original
7450 size. */
7451 if (isec->rawsize == 0)
7452 isec->rawsize = isec->size;
7453 isec->size = isec->rawsize - removed;
7454 }
7455 else
7456 {
7457 /* Adjust the output section size when called from
7458 objcopy. */
7459 isec->output_section->size -= removed;
7460 }
7461 }
7462 }
7463
7464 return TRUE;
7465 }
7466
7467 /* Copy private header information. */
7468
7469 bfd_boolean
7470 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
7471 {
7472 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7473 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7474 return TRUE;
7475
7476 /* Copy over private BFD data if it has not already been copied.
7477 This must be done here, rather than in the copy_private_bfd_data
7478 entry point, because the latter is called after the section
7479 contents have been set, which means that the program headers have
7480 already been worked out. */
7481 if (elf_seg_map (obfd) == NULL && elf_tdata (ibfd)->phdr != NULL)
7482 {
7483 if (! copy_private_bfd_data (ibfd, obfd))
7484 return FALSE;
7485 }
7486
7487 return _bfd_elf_fixup_group_sections (ibfd, NULL);
7488 }
7489
7490 /* Copy private symbol information. If this symbol is in a section
7491 which we did not map into a BFD section, try to map the section
7492 index correctly. We use special macro definitions for the mapped
7493 section indices; these definitions are interpreted by the
7494 swap_out_syms function. */
7495
7496 #define MAP_ONESYMTAB (SHN_HIOS + 1)
7497 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
7498 #define MAP_STRTAB (SHN_HIOS + 3)
7499 #define MAP_SHSTRTAB (SHN_HIOS + 4)
7500 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
7501
7502 bfd_boolean
7503 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
7504 asymbol *isymarg,
7505 bfd *obfd,
7506 asymbol *osymarg)
7507 {
7508 elf_symbol_type *isym, *osym;
7509
7510 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7511 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7512 return TRUE;
7513
7514 isym = elf_symbol_from (ibfd, isymarg);
7515 osym = elf_symbol_from (obfd, osymarg);
7516
7517 if (isym != NULL
7518 && isym->internal_elf_sym.st_shndx != 0
7519 && osym != NULL
7520 && bfd_is_abs_section (isym->symbol.section))
7521 {
7522 unsigned int shndx;
7523
7524 shndx = isym->internal_elf_sym.st_shndx;
7525 if (shndx == elf_onesymtab (ibfd))
7526 shndx = MAP_ONESYMTAB;
7527 else if (shndx == elf_dynsymtab (ibfd))
7528 shndx = MAP_DYNSYMTAB;
7529 else if (shndx == elf_strtab_sec (ibfd))
7530 shndx = MAP_STRTAB;
7531 else if (shndx == elf_shstrtab_sec (ibfd))
7532 shndx = MAP_SHSTRTAB;
7533 else if (find_section_in_list (shndx, elf_symtab_shndx_list (ibfd)))
7534 shndx = MAP_SYM_SHNDX;
7535 osym->internal_elf_sym.st_shndx = shndx;
7536 }
7537
7538 return TRUE;
7539 }
7540
7541 /* Swap out the symbols. */
7542
7543 static bfd_boolean
7544 swap_out_syms (bfd *abfd,
7545 struct elf_strtab_hash **sttp,
7546 int relocatable_p)
7547 {
7548 const struct elf_backend_data *bed;
7549 int symcount;
7550 asymbol **syms;
7551 struct elf_strtab_hash *stt;
7552 Elf_Internal_Shdr *symtab_hdr;
7553 Elf_Internal_Shdr *symtab_shndx_hdr;
7554 Elf_Internal_Shdr *symstrtab_hdr;
7555 struct elf_sym_strtab *symstrtab;
7556 bfd_byte *outbound_syms;
7557 bfd_byte *outbound_shndx;
7558 unsigned long outbound_syms_index;
7559 unsigned long outbound_shndx_index;
7560 int idx;
7561 unsigned int num_locals;
7562 bfd_size_type amt;
7563 bfd_boolean name_local_sections;
7564
7565 if (!elf_map_symbols (abfd, &num_locals))
7566 return FALSE;
7567
7568 /* Dump out the symtabs. */
7569 stt = _bfd_elf_strtab_init ();
7570 if (stt == NULL)
7571 return FALSE;
7572
7573 bed = get_elf_backend_data (abfd);
7574 symcount = bfd_get_symcount (abfd);
7575 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7576 symtab_hdr->sh_type = SHT_SYMTAB;
7577 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
7578 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
7579 symtab_hdr->sh_info = num_locals + 1;
7580 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
7581
7582 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
7583 symstrtab_hdr->sh_type = SHT_STRTAB;
7584
7585 /* Allocate buffer to swap out the .strtab section. */
7586 symstrtab = (struct elf_sym_strtab *) bfd_malloc ((symcount + 1)
7587 * sizeof (*symstrtab));
7588 if (symstrtab == NULL)
7589 {
7590 _bfd_elf_strtab_free (stt);
7591 return FALSE;
7592 }
7593
7594 outbound_syms = (bfd_byte *) bfd_alloc2 (abfd, 1 + symcount,
7595 bed->s->sizeof_sym);
7596 if (outbound_syms == NULL)
7597 {
7598 error_return:
7599 _bfd_elf_strtab_free (stt);
7600 free (symstrtab);
7601 return FALSE;
7602 }
7603 symtab_hdr->contents = outbound_syms;
7604 outbound_syms_index = 0;
7605
7606 outbound_shndx = NULL;
7607 outbound_shndx_index = 0;
7608
7609 if (elf_symtab_shndx_list (abfd))
7610 {
7611 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
7612 if (symtab_shndx_hdr->sh_name != 0)
7613 {
7614 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
7615 outbound_shndx = (bfd_byte *)
7616 bfd_zalloc2 (abfd, 1 + symcount, sizeof (Elf_External_Sym_Shndx));
7617 if (outbound_shndx == NULL)
7618 goto error_return;
7619
7620 symtab_shndx_hdr->contents = outbound_shndx;
7621 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
7622 symtab_shndx_hdr->sh_size = amt;
7623 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
7624 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
7625 }
7626 /* FIXME: What about any other headers in the list ? */
7627 }
7628
7629 /* Now generate the data (for "contents"). */
7630 {
7631 /* Fill in zeroth symbol and swap it out. */
7632 Elf_Internal_Sym sym;
7633 sym.st_name = 0;
7634 sym.st_value = 0;
7635 sym.st_size = 0;
7636 sym.st_info = 0;
7637 sym.st_other = 0;
7638 sym.st_shndx = SHN_UNDEF;
7639 sym.st_target_internal = 0;
7640 symstrtab[0].sym = sym;
7641 symstrtab[0].dest_index = outbound_syms_index;
7642 symstrtab[0].destshndx_index = outbound_shndx_index;
7643 outbound_syms_index++;
7644 if (outbound_shndx != NULL)
7645 outbound_shndx_index++;
7646 }
7647
7648 name_local_sections
7649 = (bed->elf_backend_name_local_section_symbols
7650 && bed->elf_backend_name_local_section_symbols (abfd));
7651
7652 syms = bfd_get_outsymbols (abfd);
7653 for (idx = 0; idx < symcount;)
7654 {
7655 Elf_Internal_Sym sym;
7656 bfd_vma value = syms[idx]->value;
7657 elf_symbol_type *type_ptr;
7658 flagword flags = syms[idx]->flags;
7659 int type;
7660
7661 if (!name_local_sections
7662 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
7663 {
7664 /* Local section symbols have no name. */
7665 sym.st_name = (unsigned long) -1;
7666 }
7667 else
7668 {
7669 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
7670 to get the final offset for st_name. */
7671 sym.st_name
7672 = (unsigned long) _bfd_elf_strtab_add (stt, syms[idx]->name,
7673 FALSE);
7674 if (sym.st_name == (unsigned long) -1)
7675 goto error_return;
7676 }
7677
7678 type_ptr = elf_symbol_from (abfd, syms[idx]);
7679
7680 if ((flags & BSF_SECTION_SYM) == 0
7681 && bfd_is_com_section (syms[idx]->section))
7682 {
7683 /* ELF common symbols put the alignment into the `value' field,
7684 and the size into the `size' field. This is backwards from
7685 how BFD handles it, so reverse it here. */
7686 sym.st_size = value;
7687 if (type_ptr == NULL
7688 || type_ptr->internal_elf_sym.st_value == 0)
7689 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
7690 else
7691 sym.st_value = type_ptr->internal_elf_sym.st_value;
7692 sym.st_shndx = _bfd_elf_section_from_bfd_section
7693 (abfd, syms[idx]->section);
7694 }
7695 else
7696 {
7697 asection *sec = syms[idx]->section;
7698 unsigned int shndx;
7699
7700 if (sec->output_section)
7701 {
7702 value += sec->output_offset;
7703 sec = sec->output_section;
7704 }
7705
7706 /* Don't add in the section vma for relocatable output. */
7707 if (! relocatable_p)
7708 value += sec->vma;
7709 sym.st_value = value;
7710 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
7711
7712 if (bfd_is_abs_section (sec)
7713 && type_ptr != NULL
7714 && type_ptr->internal_elf_sym.st_shndx != 0)
7715 {
7716 /* This symbol is in a real ELF section which we did
7717 not create as a BFD section. Undo the mapping done
7718 by copy_private_symbol_data. */
7719 shndx = type_ptr->internal_elf_sym.st_shndx;
7720 switch (shndx)
7721 {
7722 case MAP_ONESYMTAB:
7723 shndx = elf_onesymtab (abfd);
7724 break;
7725 case MAP_DYNSYMTAB:
7726 shndx = elf_dynsymtab (abfd);
7727 break;
7728 case MAP_STRTAB:
7729 shndx = elf_strtab_sec (abfd);
7730 break;
7731 case MAP_SHSTRTAB:
7732 shndx = elf_shstrtab_sec (abfd);
7733 break;
7734 case MAP_SYM_SHNDX:
7735 if (elf_symtab_shndx_list (abfd))
7736 shndx = elf_symtab_shndx_list (abfd)->ndx;
7737 break;
7738 default:
7739 shndx = SHN_ABS;
7740 break;
7741 }
7742 }
7743 else
7744 {
7745 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
7746
7747 if (shndx == SHN_BAD)
7748 {
7749 asection *sec2;
7750
7751 /* Writing this would be a hell of a lot easier if
7752 we had some decent documentation on bfd, and
7753 knew what to expect of the library, and what to
7754 demand of applications. For example, it
7755 appears that `objcopy' might not set the
7756 section of a symbol to be a section that is
7757 actually in the output file. */
7758 sec2 = bfd_get_section_by_name (abfd, sec->name);
7759 if (sec2 != NULL)
7760 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
7761 if (shndx == SHN_BAD)
7762 {
7763 /* xgettext:c-format */
7764 _bfd_error_handler (_("\
7765 Unable to find equivalent output section for symbol '%s' from section '%s'"),
7766 syms[idx]->name ? syms[idx]->name : "<Local sym>",
7767 sec->name);
7768 bfd_set_error (bfd_error_invalid_operation);
7769 goto error_return;
7770 }
7771 }
7772 }
7773
7774 sym.st_shndx = shndx;
7775 }
7776
7777 if ((flags & BSF_THREAD_LOCAL) != 0)
7778 type = STT_TLS;
7779 else if ((flags & BSF_GNU_INDIRECT_FUNCTION) != 0)
7780 type = STT_GNU_IFUNC;
7781 else if ((flags & BSF_FUNCTION) != 0)
7782 type = STT_FUNC;
7783 else if ((flags & BSF_OBJECT) != 0)
7784 type = STT_OBJECT;
7785 else if ((flags & BSF_RELC) != 0)
7786 type = STT_RELC;
7787 else if ((flags & BSF_SRELC) != 0)
7788 type = STT_SRELC;
7789 else
7790 type = STT_NOTYPE;
7791
7792 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
7793 type = STT_TLS;
7794
7795 /* Processor-specific types. */
7796 if (type_ptr != NULL
7797 && bed->elf_backend_get_symbol_type)
7798 type = ((*bed->elf_backend_get_symbol_type)
7799 (&type_ptr->internal_elf_sym, type));
7800
7801 if (flags & BSF_SECTION_SYM)
7802 {
7803 if (flags & BSF_GLOBAL)
7804 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
7805 else
7806 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
7807 }
7808 else if (bfd_is_com_section (syms[idx]->section))
7809 {
7810 if (type != STT_TLS)
7811 {
7812 if ((abfd->flags & BFD_CONVERT_ELF_COMMON))
7813 type = ((abfd->flags & BFD_USE_ELF_STT_COMMON)
7814 ? STT_COMMON : STT_OBJECT);
7815 else
7816 type = ((flags & BSF_ELF_COMMON) != 0
7817 ? STT_COMMON : STT_OBJECT);
7818 }
7819 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
7820 }
7821 else if (bfd_is_und_section (syms[idx]->section))
7822 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
7823 ? STB_WEAK
7824 : STB_GLOBAL),
7825 type);
7826 else if (flags & BSF_FILE)
7827 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
7828 else
7829 {
7830 int bind = STB_LOCAL;
7831
7832 if (flags & BSF_LOCAL)
7833 bind = STB_LOCAL;
7834 else if (flags & BSF_GNU_UNIQUE)
7835 bind = STB_GNU_UNIQUE;
7836 else if (flags & BSF_WEAK)
7837 bind = STB_WEAK;
7838 else if (flags & BSF_GLOBAL)
7839 bind = STB_GLOBAL;
7840
7841 sym.st_info = ELF_ST_INFO (bind, type);
7842 }
7843
7844 if (type_ptr != NULL)
7845 {
7846 sym.st_other = type_ptr->internal_elf_sym.st_other;
7847 sym.st_target_internal
7848 = type_ptr->internal_elf_sym.st_target_internal;
7849 }
7850 else
7851 {
7852 sym.st_other = 0;
7853 sym.st_target_internal = 0;
7854 }
7855
7856 idx++;
7857 symstrtab[idx].sym = sym;
7858 symstrtab[idx].dest_index = outbound_syms_index;
7859 symstrtab[idx].destshndx_index = outbound_shndx_index;
7860
7861 outbound_syms_index++;
7862 if (outbound_shndx != NULL)
7863 outbound_shndx_index++;
7864 }
7865
7866 /* Finalize the .strtab section. */
7867 _bfd_elf_strtab_finalize (stt);
7868
7869 /* Swap out the .strtab section. */
7870 for (idx = 0; idx <= symcount; idx++)
7871 {
7872 struct elf_sym_strtab *elfsym = &symstrtab[idx];
7873 if (elfsym->sym.st_name == (unsigned long) -1)
7874 elfsym->sym.st_name = 0;
7875 else
7876 elfsym->sym.st_name = _bfd_elf_strtab_offset (stt,
7877 elfsym->sym.st_name);
7878 bed->s->swap_symbol_out (abfd, &elfsym->sym,
7879 (outbound_syms
7880 + (elfsym->dest_index
7881 * bed->s->sizeof_sym)),
7882 (outbound_shndx
7883 + (elfsym->destshndx_index
7884 * sizeof (Elf_External_Sym_Shndx))));
7885 }
7886 free (symstrtab);
7887
7888 *sttp = stt;
7889 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (stt);
7890 symstrtab_hdr->sh_type = SHT_STRTAB;
7891 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
7892 symstrtab_hdr->sh_addr = 0;
7893 symstrtab_hdr->sh_entsize = 0;
7894 symstrtab_hdr->sh_link = 0;
7895 symstrtab_hdr->sh_info = 0;
7896 symstrtab_hdr->sh_addralign = 1;
7897
7898 return TRUE;
7899 }
7900
7901 /* Return the number of bytes required to hold the symtab vector.
7902
7903 Note that we base it on the count plus 1, since we will null terminate
7904 the vector allocated based on this size. However, the ELF symbol table
7905 always has a dummy entry as symbol #0, so it ends up even. */
7906
7907 long
7908 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
7909 {
7910 long symcount;
7911 long symtab_size;
7912 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
7913
7914 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
7915 symtab_size = (symcount + 1) * (sizeof (asymbol *));
7916 if (symcount > 0)
7917 symtab_size -= sizeof (asymbol *);
7918
7919 return symtab_size;
7920 }
7921
7922 long
7923 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
7924 {
7925 long symcount;
7926 long symtab_size;
7927 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
7928
7929 if (elf_dynsymtab (abfd) == 0)
7930 {
7931 bfd_set_error (bfd_error_invalid_operation);
7932 return -1;
7933 }
7934
7935 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
7936 symtab_size = (symcount + 1) * (sizeof (asymbol *));
7937 if (symcount > 0)
7938 symtab_size -= sizeof (asymbol *);
7939
7940 return symtab_size;
7941 }
7942
7943 long
7944 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
7945 sec_ptr asect)
7946 {
7947 return (asect->reloc_count + 1) * sizeof (arelent *);
7948 }
7949
7950 /* Canonicalize the relocs. */
7951
7952 long
7953 _bfd_elf_canonicalize_reloc (bfd *abfd,
7954 sec_ptr section,
7955 arelent **relptr,
7956 asymbol **symbols)
7957 {
7958 arelent *tblptr;
7959 unsigned int i;
7960 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7961
7962 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
7963 return -1;
7964
7965 tblptr = section->relocation;
7966 for (i = 0; i < section->reloc_count; i++)
7967 *relptr++ = tblptr++;
7968
7969 *relptr = NULL;
7970
7971 return section->reloc_count;
7972 }
7973
7974 long
7975 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
7976 {
7977 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7978 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
7979
7980 if (symcount >= 0)
7981 bfd_get_symcount (abfd) = symcount;
7982 return symcount;
7983 }
7984
7985 long
7986 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
7987 asymbol **allocation)
7988 {
7989 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7990 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
7991
7992 if (symcount >= 0)
7993 bfd_get_dynamic_symcount (abfd) = symcount;
7994 return symcount;
7995 }
7996
7997 /* Return the size required for the dynamic reloc entries. Any loadable
7998 section that was actually installed in the BFD, and has type SHT_REL
7999 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
8000 dynamic reloc section. */
8001
8002 long
8003 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
8004 {
8005 long ret;
8006 asection *s;
8007
8008 if (elf_dynsymtab (abfd) == 0)
8009 {
8010 bfd_set_error (bfd_error_invalid_operation);
8011 return -1;
8012 }
8013
8014 ret = sizeof (arelent *);
8015 for (s = abfd->sections; s != NULL; s = s->next)
8016 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
8017 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
8018 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
8019 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
8020 * sizeof (arelent *));
8021
8022 return ret;
8023 }
8024
8025 /* Canonicalize the dynamic relocation entries. Note that we return the
8026 dynamic relocations as a single block, although they are actually
8027 associated with particular sections; the interface, which was
8028 designed for SunOS style shared libraries, expects that there is only
8029 one set of dynamic relocs. Any loadable section that was actually
8030 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
8031 dynamic symbol table, is considered to be a dynamic reloc section. */
8032
8033 long
8034 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
8035 arelent **storage,
8036 asymbol **syms)
8037 {
8038 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
8039 asection *s;
8040 long ret;
8041
8042 if (elf_dynsymtab (abfd) == 0)
8043 {
8044 bfd_set_error (bfd_error_invalid_operation);
8045 return -1;
8046 }
8047
8048 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
8049 ret = 0;
8050 for (s = abfd->sections; s != NULL; s = s->next)
8051 {
8052 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
8053 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
8054 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
8055 {
8056 arelent *p;
8057 long count, i;
8058
8059 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
8060 return -1;
8061 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
8062 p = s->relocation;
8063 for (i = 0; i < count; i++)
8064 *storage++ = p++;
8065 ret += count;
8066 }
8067 }
8068
8069 *storage = NULL;
8070
8071 return ret;
8072 }
8073 \f
8074 /* Read in the version information. */
8075
8076 bfd_boolean
8077 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
8078 {
8079 bfd_byte *contents = NULL;
8080 unsigned int freeidx = 0;
8081
8082 if (elf_dynverref (abfd) != 0)
8083 {
8084 Elf_Internal_Shdr *hdr;
8085 Elf_External_Verneed *everneed;
8086 Elf_Internal_Verneed *iverneed;
8087 unsigned int i;
8088 bfd_byte *contents_end;
8089
8090 hdr = &elf_tdata (abfd)->dynverref_hdr;
8091
8092 if (hdr->sh_info == 0 || hdr->sh_size < sizeof (Elf_External_Verneed))
8093 {
8094 error_return_bad_verref:
8095 _bfd_error_handler
8096 (_("%B: .gnu.version_r invalid entry"), abfd);
8097 bfd_set_error (bfd_error_bad_value);
8098 error_return_verref:
8099 elf_tdata (abfd)->verref = NULL;
8100 elf_tdata (abfd)->cverrefs = 0;
8101 goto error_return;
8102 }
8103
8104 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
8105 if (contents == NULL)
8106 goto error_return_verref;
8107
8108 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
8109 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
8110 goto error_return_verref;
8111
8112 elf_tdata (abfd)->verref = (Elf_Internal_Verneed *)
8113 bfd_zalloc2 (abfd, hdr->sh_info, sizeof (Elf_Internal_Verneed));
8114
8115 if (elf_tdata (abfd)->verref == NULL)
8116 goto error_return_verref;
8117
8118 BFD_ASSERT (sizeof (Elf_External_Verneed)
8119 == sizeof (Elf_External_Vernaux));
8120 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
8121 everneed = (Elf_External_Verneed *) contents;
8122 iverneed = elf_tdata (abfd)->verref;
8123 for (i = 0; i < hdr->sh_info; i++, iverneed++)
8124 {
8125 Elf_External_Vernaux *evernaux;
8126 Elf_Internal_Vernaux *ivernaux;
8127 unsigned int j;
8128
8129 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
8130
8131 iverneed->vn_bfd = abfd;
8132
8133 iverneed->vn_filename =
8134 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8135 iverneed->vn_file);
8136 if (iverneed->vn_filename == NULL)
8137 goto error_return_bad_verref;
8138
8139 if (iverneed->vn_cnt == 0)
8140 iverneed->vn_auxptr = NULL;
8141 else
8142 {
8143 iverneed->vn_auxptr = (struct elf_internal_vernaux *)
8144 bfd_alloc2 (abfd, iverneed->vn_cnt,
8145 sizeof (Elf_Internal_Vernaux));
8146 if (iverneed->vn_auxptr == NULL)
8147 goto error_return_verref;
8148 }
8149
8150 if (iverneed->vn_aux
8151 > (size_t) (contents_end - (bfd_byte *) everneed))
8152 goto error_return_bad_verref;
8153
8154 evernaux = ((Elf_External_Vernaux *)
8155 ((bfd_byte *) everneed + iverneed->vn_aux));
8156 ivernaux = iverneed->vn_auxptr;
8157 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
8158 {
8159 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
8160
8161 ivernaux->vna_nodename =
8162 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8163 ivernaux->vna_name);
8164 if (ivernaux->vna_nodename == NULL)
8165 goto error_return_bad_verref;
8166
8167 if (ivernaux->vna_other > freeidx)
8168 freeidx = ivernaux->vna_other;
8169
8170 ivernaux->vna_nextptr = NULL;
8171 if (ivernaux->vna_next == 0)
8172 {
8173 iverneed->vn_cnt = j + 1;
8174 break;
8175 }
8176 if (j + 1 < iverneed->vn_cnt)
8177 ivernaux->vna_nextptr = ivernaux + 1;
8178
8179 if (ivernaux->vna_next
8180 > (size_t) (contents_end - (bfd_byte *) evernaux))
8181 goto error_return_bad_verref;
8182
8183 evernaux = ((Elf_External_Vernaux *)
8184 ((bfd_byte *) evernaux + ivernaux->vna_next));
8185 }
8186
8187 iverneed->vn_nextref = NULL;
8188 if (iverneed->vn_next == 0)
8189 break;
8190 if (i + 1 < hdr->sh_info)
8191 iverneed->vn_nextref = iverneed + 1;
8192
8193 if (iverneed->vn_next
8194 > (size_t) (contents_end - (bfd_byte *) everneed))
8195 goto error_return_bad_verref;
8196
8197 everneed = ((Elf_External_Verneed *)
8198 ((bfd_byte *) everneed + iverneed->vn_next));
8199 }
8200 elf_tdata (abfd)->cverrefs = i;
8201
8202 free (contents);
8203 contents = NULL;
8204 }
8205
8206 if (elf_dynverdef (abfd) != 0)
8207 {
8208 Elf_Internal_Shdr *hdr;
8209 Elf_External_Verdef *everdef;
8210 Elf_Internal_Verdef *iverdef;
8211 Elf_Internal_Verdef *iverdefarr;
8212 Elf_Internal_Verdef iverdefmem;
8213 unsigned int i;
8214 unsigned int maxidx;
8215 bfd_byte *contents_end_def, *contents_end_aux;
8216
8217 hdr = &elf_tdata (abfd)->dynverdef_hdr;
8218
8219 if (hdr->sh_info == 0 || hdr->sh_size < sizeof (Elf_External_Verdef))
8220 {
8221 error_return_bad_verdef:
8222 _bfd_error_handler
8223 (_("%B: .gnu.version_d invalid entry"), abfd);
8224 bfd_set_error (bfd_error_bad_value);
8225 error_return_verdef:
8226 elf_tdata (abfd)->verdef = NULL;
8227 elf_tdata (abfd)->cverdefs = 0;
8228 goto error_return;
8229 }
8230
8231 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
8232 if (contents == NULL)
8233 goto error_return_verdef;
8234 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
8235 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
8236 goto error_return_verdef;
8237
8238 BFD_ASSERT (sizeof (Elf_External_Verdef)
8239 >= sizeof (Elf_External_Verdaux));
8240 contents_end_def = contents + hdr->sh_size
8241 - sizeof (Elf_External_Verdef);
8242 contents_end_aux = contents + hdr->sh_size
8243 - sizeof (Elf_External_Verdaux);
8244
8245 /* We know the number of entries in the section but not the maximum
8246 index. Therefore we have to run through all entries and find
8247 the maximum. */
8248 everdef = (Elf_External_Verdef *) contents;
8249 maxidx = 0;
8250 for (i = 0; i < hdr->sh_info; ++i)
8251 {
8252 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
8253
8254 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) == 0)
8255 goto error_return_bad_verdef;
8256 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
8257 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
8258
8259 if (iverdefmem.vd_next == 0)
8260 break;
8261
8262 if (iverdefmem.vd_next
8263 > (size_t) (contents_end_def - (bfd_byte *) everdef))
8264 goto error_return_bad_verdef;
8265
8266 everdef = ((Elf_External_Verdef *)
8267 ((bfd_byte *) everdef + iverdefmem.vd_next));
8268 }
8269
8270 if (default_imported_symver)
8271 {
8272 if (freeidx > maxidx)
8273 maxidx = ++freeidx;
8274 else
8275 freeidx = ++maxidx;
8276 }
8277
8278 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
8279 bfd_zalloc2 (abfd, maxidx, sizeof (Elf_Internal_Verdef));
8280 if (elf_tdata (abfd)->verdef == NULL)
8281 goto error_return_verdef;
8282
8283 elf_tdata (abfd)->cverdefs = maxidx;
8284
8285 everdef = (Elf_External_Verdef *) contents;
8286 iverdefarr = elf_tdata (abfd)->verdef;
8287 for (i = 0; i < hdr->sh_info; i++)
8288 {
8289 Elf_External_Verdaux *everdaux;
8290 Elf_Internal_Verdaux *iverdaux;
8291 unsigned int j;
8292
8293 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
8294
8295 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
8296 goto error_return_bad_verdef;
8297
8298 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
8299 memcpy (iverdef, &iverdefmem, offsetof (Elf_Internal_Verdef, vd_bfd));
8300
8301 iverdef->vd_bfd = abfd;
8302
8303 if (iverdef->vd_cnt == 0)
8304 iverdef->vd_auxptr = NULL;
8305 else
8306 {
8307 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
8308 bfd_alloc2 (abfd, iverdef->vd_cnt,
8309 sizeof (Elf_Internal_Verdaux));
8310 if (iverdef->vd_auxptr == NULL)
8311 goto error_return_verdef;
8312 }
8313
8314 if (iverdef->vd_aux
8315 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
8316 goto error_return_bad_verdef;
8317
8318 everdaux = ((Elf_External_Verdaux *)
8319 ((bfd_byte *) everdef + iverdef->vd_aux));
8320 iverdaux = iverdef->vd_auxptr;
8321 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
8322 {
8323 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
8324
8325 iverdaux->vda_nodename =
8326 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8327 iverdaux->vda_name);
8328 if (iverdaux->vda_nodename == NULL)
8329 goto error_return_bad_verdef;
8330
8331 iverdaux->vda_nextptr = NULL;
8332 if (iverdaux->vda_next == 0)
8333 {
8334 iverdef->vd_cnt = j + 1;
8335 break;
8336 }
8337 if (j + 1 < iverdef->vd_cnt)
8338 iverdaux->vda_nextptr = iverdaux + 1;
8339
8340 if (iverdaux->vda_next
8341 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
8342 goto error_return_bad_verdef;
8343
8344 everdaux = ((Elf_External_Verdaux *)
8345 ((bfd_byte *) everdaux + iverdaux->vda_next));
8346 }
8347
8348 iverdef->vd_nodename = NULL;
8349 if (iverdef->vd_cnt)
8350 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
8351
8352 iverdef->vd_nextdef = NULL;
8353 if (iverdef->vd_next == 0)
8354 break;
8355 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
8356 iverdef->vd_nextdef = iverdef + 1;
8357
8358 everdef = ((Elf_External_Verdef *)
8359 ((bfd_byte *) everdef + iverdef->vd_next));
8360 }
8361
8362 free (contents);
8363 contents = NULL;
8364 }
8365 else if (default_imported_symver)
8366 {
8367 if (freeidx < 3)
8368 freeidx = 3;
8369 else
8370 freeidx++;
8371
8372 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
8373 bfd_zalloc2 (abfd, freeidx, sizeof (Elf_Internal_Verdef));
8374 if (elf_tdata (abfd)->verdef == NULL)
8375 goto error_return;
8376
8377 elf_tdata (abfd)->cverdefs = freeidx;
8378 }
8379
8380 /* Create a default version based on the soname. */
8381 if (default_imported_symver)
8382 {
8383 Elf_Internal_Verdef *iverdef;
8384 Elf_Internal_Verdaux *iverdaux;
8385
8386 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];
8387
8388 iverdef->vd_version = VER_DEF_CURRENT;
8389 iverdef->vd_flags = 0;
8390 iverdef->vd_ndx = freeidx;
8391 iverdef->vd_cnt = 1;
8392
8393 iverdef->vd_bfd = abfd;
8394
8395 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
8396 if (iverdef->vd_nodename == NULL)
8397 goto error_return_verdef;
8398 iverdef->vd_nextdef = NULL;
8399 iverdef->vd_auxptr = ((struct elf_internal_verdaux *)
8400 bfd_zalloc (abfd, sizeof (Elf_Internal_Verdaux)));
8401 if (iverdef->vd_auxptr == NULL)
8402 goto error_return_verdef;
8403
8404 iverdaux = iverdef->vd_auxptr;
8405 iverdaux->vda_nodename = iverdef->vd_nodename;
8406 }
8407
8408 return TRUE;
8409
8410 error_return:
8411 if (contents != NULL)
8412 free (contents);
8413 return FALSE;
8414 }
8415 \f
8416 asymbol *
8417 _bfd_elf_make_empty_symbol (bfd *abfd)
8418 {
8419 elf_symbol_type *newsym;
8420
8421 newsym = (elf_symbol_type *) bfd_zalloc (abfd, sizeof * newsym);
8422 if (!newsym)
8423 return NULL;
8424 newsym->symbol.the_bfd = abfd;
8425 return &newsym->symbol;
8426 }
8427
8428 void
8429 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
8430 asymbol *symbol,
8431 symbol_info *ret)
8432 {
8433 bfd_symbol_info (symbol, ret);
8434 }
8435
8436 /* Return whether a symbol name implies a local symbol. Most targets
8437 use this function for the is_local_label_name entry point, but some
8438 override it. */
8439
8440 bfd_boolean
8441 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
8442 const char *name)
8443 {
8444 /* Normal local symbols start with ``.L''. */
8445 if (name[0] == '.' && name[1] == 'L')
8446 return TRUE;
8447
8448 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
8449 DWARF debugging symbols starting with ``..''. */
8450 if (name[0] == '.' && name[1] == '.')
8451 return TRUE;
8452
8453 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
8454 emitting DWARF debugging output. I suspect this is actually a
8455 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
8456 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
8457 underscore to be emitted on some ELF targets). For ease of use,
8458 we treat such symbols as local. */
8459 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
8460 return TRUE;
8461
8462 /* Treat assembler generated fake symbols, dollar local labels and
8463 forward-backward labels (aka local labels) as locals.
8464 These labels have the form:
8465
8466 L0^A.* (fake symbols)
8467
8468 [.]?L[0123456789]+{^A|^B}[0123456789]* (local labels)
8469
8470 Versions which start with .L will have already been matched above,
8471 so we only need to match the rest. */
8472 if (name[0] == 'L' && ISDIGIT (name[1]))
8473 {
8474 bfd_boolean ret = FALSE;
8475 const char * p;
8476 char c;
8477
8478 for (p = name + 2; (c = *p); p++)
8479 {
8480 if (c == 1 || c == 2)
8481 {
8482 if (c == 1 && p == name + 2)
8483 /* A fake symbol. */
8484 return TRUE;
8485
8486 /* FIXME: We are being paranoid here and treating symbols like
8487 L0^Bfoo as if there were non-local, on the grounds that the
8488 assembler will never generate them. But can any symbol
8489 containing an ASCII value in the range 1-31 ever be anything
8490 other than some kind of local ? */
8491 ret = TRUE;
8492 }
8493
8494 if (! ISDIGIT (c))
8495 {
8496 ret = FALSE;
8497 break;
8498 }
8499 }
8500 return ret;
8501 }
8502
8503 return FALSE;
8504 }
8505
8506 alent *
8507 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
8508 asymbol *symbol ATTRIBUTE_UNUSED)
8509 {
8510 abort ();
8511 return NULL;
8512 }
8513
8514 bfd_boolean
8515 _bfd_elf_set_arch_mach (bfd *abfd,
8516 enum bfd_architecture arch,
8517 unsigned long machine)
8518 {
8519 /* If this isn't the right architecture for this backend, and this
8520 isn't the generic backend, fail. */
8521 if (arch != get_elf_backend_data (abfd)->arch
8522 && arch != bfd_arch_unknown
8523 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
8524 return FALSE;
8525
8526 return bfd_default_set_arch_mach (abfd, arch, machine);
8527 }
8528
8529 /* Find the nearest line to a particular section and offset,
8530 for error reporting. */
8531
8532 bfd_boolean
8533 _bfd_elf_find_nearest_line (bfd *abfd,
8534 asymbol **symbols,
8535 asection *section,
8536 bfd_vma offset,
8537 const char **filename_ptr,
8538 const char **functionname_ptr,
8539 unsigned int *line_ptr,
8540 unsigned int *discriminator_ptr)
8541 {
8542 bfd_boolean found;
8543
8544 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
8545 filename_ptr, functionname_ptr,
8546 line_ptr, discriminator_ptr,
8547 dwarf_debug_sections, 0,
8548 &elf_tdata (abfd)->dwarf2_find_line_info)
8549 || _bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
8550 filename_ptr, functionname_ptr,
8551 line_ptr))
8552 {
8553 if (!*functionname_ptr)
8554 _bfd_elf_find_function (abfd, symbols, section, offset,
8555 *filename_ptr ? NULL : filename_ptr,
8556 functionname_ptr);
8557 return TRUE;
8558 }
8559
8560 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
8561 &found, filename_ptr,
8562 functionname_ptr, line_ptr,
8563 &elf_tdata (abfd)->line_info))
8564 return FALSE;
8565 if (found && (*functionname_ptr || *line_ptr))
8566 return TRUE;
8567
8568 if (symbols == NULL)
8569 return FALSE;
8570
8571 if (! _bfd_elf_find_function (abfd, symbols, section, offset,
8572 filename_ptr, functionname_ptr))
8573 return FALSE;
8574
8575 *line_ptr = 0;
8576 return TRUE;
8577 }
8578
8579 /* Find the line for a symbol. */
8580
8581 bfd_boolean
8582 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
8583 const char **filename_ptr, unsigned int *line_ptr)
8584 {
8585 return _bfd_dwarf2_find_nearest_line (abfd, symbols, symbol, NULL, 0,
8586 filename_ptr, NULL, line_ptr, NULL,
8587 dwarf_debug_sections, 0,
8588 &elf_tdata (abfd)->dwarf2_find_line_info);
8589 }
8590
8591 /* After a call to bfd_find_nearest_line, successive calls to
8592 bfd_find_inliner_info can be used to get source information about
8593 each level of function inlining that terminated at the address
8594 passed to bfd_find_nearest_line. Currently this is only supported
8595 for DWARF2 with appropriate DWARF3 extensions. */
8596
8597 bfd_boolean
8598 _bfd_elf_find_inliner_info (bfd *abfd,
8599 const char **filename_ptr,
8600 const char **functionname_ptr,
8601 unsigned int *line_ptr)
8602 {
8603 bfd_boolean found;
8604 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
8605 functionname_ptr, line_ptr,
8606 & elf_tdata (abfd)->dwarf2_find_line_info);
8607 return found;
8608 }
8609
8610 int
8611 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
8612 {
8613 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8614 int ret = bed->s->sizeof_ehdr;
8615
8616 if (!bfd_link_relocatable (info))
8617 {
8618 bfd_size_type phdr_size = elf_program_header_size (abfd);
8619
8620 if (phdr_size == (bfd_size_type) -1)
8621 {
8622 struct elf_segment_map *m;
8623
8624 phdr_size = 0;
8625 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
8626 phdr_size += bed->s->sizeof_phdr;
8627
8628 if (phdr_size == 0)
8629 phdr_size = get_program_header_size (abfd, info);
8630 }
8631
8632 elf_program_header_size (abfd) = phdr_size;
8633 ret += phdr_size;
8634 }
8635
8636 return ret;
8637 }
8638
8639 bfd_boolean
8640 _bfd_elf_set_section_contents (bfd *abfd,
8641 sec_ptr section,
8642 const void *location,
8643 file_ptr offset,
8644 bfd_size_type count)
8645 {
8646 Elf_Internal_Shdr *hdr;
8647 file_ptr pos;
8648
8649 if (! abfd->output_has_begun
8650 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
8651 return FALSE;
8652
8653 if (!count)
8654 return TRUE;
8655
8656 hdr = &elf_section_data (section)->this_hdr;
8657 if (hdr->sh_offset == (file_ptr) -1)
8658 {
8659 /* We must compress this section. Write output to the buffer. */
8660 unsigned char *contents = hdr->contents;
8661 if ((offset + count) > hdr->sh_size
8662 || (section->flags & SEC_ELF_COMPRESS) == 0
8663 || contents == NULL)
8664 abort ();
8665 memcpy (contents + offset, location, count);
8666 return TRUE;
8667 }
8668 pos = hdr->sh_offset + offset;
8669 if (bfd_seek (abfd, pos, SEEK_SET) != 0
8670 || bfd_bwrite (location, count, abfd) != count)
8671 return FALSE;
8672
8673 return TRUE;
8674 }
8675
8676 void
8677 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
8678 arelent *cache_ptr ATTRIBUTE_UNUSED,
8679 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
8680 {
8681 abort ();
8682 }
8683
8684 /* Try to convert a non-ELF reloc into an ELF one. */
8685
8686 bfd_boolean
8687 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
8688 {
8689 /* Check whether we really have an ELF howto. */
8690
8691 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
8692 {
8693 bfd_reloc_code_real_type code;
8694 reloc_howto_type *howto;
8695
8696 /* Alien reloc: Try to determine its type to replace it with an
8697 equivalent ELF reloc. */
8698
8699 if (areloc->howto->pc_relative)
8700 {
8701 switch (areloc->howto->bitsize)
8702 {
8703 case 8:
8704 code = BFD_RELOC_8_PCREL;
8705 break;
8706 case 12:
8707 code = BFD_RELOC_12_PCREL;
8708 break;
8709 case 16:
8710 code = BFD_RELOC_16_PCREL;
8711 break;
8712 case 24:
8713 code = BFD_RELOC_24_PCREL;
8714 break;
8715 case 32:
8716 code = BFD_RELOC_32_PCREL;
8717 break;
8718 case 64:
8719 code = BFD_RELOC_64_PCREL;
8720 break;
8721 default:
8722 goto fail;
8723 }
8724
8725 howto = bfd_reloc_type_lookup (abfd, code);
8726
8727 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
8728 {
8729 if (howto->pcrel_offset)
8730 areloc->addend += areloc->address;
8731 else
8732 areloc->addend -= areloc->address; /* addend is unsigned!! */
8733 }
8734 }
8735 else
8736 {
8737 switch (areloc->howto->bitsize)
8738 {
8739 case 8:
8740 code = BFD_RELOC_8;
8741 break;
8742 case 14:
8743 code = BFD_RELOC_14;
8744 break;
8745 case 16:
8746 code = BFD_RELOC_16;
8747 break;
8748 case 26:
8749 code = BFD_RELOC_26;
8750 break;
8751 case 32:
8752 code = BFD_RELOC_32;
8753 break;
8754 case 64:
8755 code = BFD_RELOC_64;
8756 break;
8757 default:
8758 goto fail;
8759 }
8760
8761 howto = bfd_reloc_type_lookup (abfd, code);
8762 }
8763
8764 if (howto)
8765 areloc->howto = howto;
8766 else
8767 goto fail;
8768 }
8769
8770 return TRUE;
8771
8772 fail:
8773 _bfd_error_handler
8774 /* xgettext:c-format */
8775 (_("%B: unsupported relocation type %s"),
8776 abfd, areloc->howto->name);
8777 bfd_set_error (bfd_error_bad_value);
8778 return FALSE;
8779 }
8780
8781 bfd_boolean
8782 _bfd_elf_close_and_cleanup (bfd *abfd)
8783 {
8784 struct elf_obj_tdata *tdata = elf_tdata (abfd);
8785 if (bfd_get_format (abfd) == bfd_object && tdata != NULL)
8786 {
8787 if (elf_tdata (abfd)->o != NULL && elf_shstrtab (abfd) != NULL)
8788 _bfd_elf_strtab_free (elf_shstrtab (abfd));
8789 _bfd_dwarf2_cleanup_debug_info (abfd, &tdata->dwarf2_find_line_info);
8790 }
8791
8792 return _bfd_generic_close_and_cleanup (abfd);
8793 }
8794
8795 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
8796 in the relocation's offset. Thus we cannot allow any sort of sanity
8797 range-checking to interfere. There is nothing else to do in processing
8798 this reloc. */
8799
8800 bfd_reloc_status_type
8801 _bfd_elf_rel_vtable_reloc_fn
8802 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
8803 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
8804 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
8805 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
8806 {
8807 return bfd_reloc_ok;
8808 }
8809 \f
8810 /* Elf core file support. Much of this only works on native
8811 toolchains, since we rely on knowing the
8812 machine-dependent procfs structure in order to pick
8813 out details about the corefile. */
8814
8815 #ifdef HAVE_SYS_PROCFS_H
8816 /* Needed for new procfs interface on sparc-solaris. */
8817 # define _STRUCTURED_PROC 1
8818 # include <sys/procfs.h>
8819 #endif
8820
8821 /* Return a PID that identifies a "thread" for threaded cores, or the
8822 PID of the main process for non-threaded cores. */
8823
8824 static int
8825 elfcore_make_pid (bfd *abfd)
8826 {
8827 int pid;
8828
8829 pid = elf_tdata (abfd)->core->lwpid;
8830 if (pid == 0)
8831 pid = elf_tdata (abfd)->core->pid;
8832
8833 return pid;
8834 }
8835
8836 /* If there isn't a section called NAME, make one, using
8837 data from SECT. Note, this function will generate a
8838 reference to NAME, so you shouldn't deallocate or
8839 overwrite it. */
8840
8841 static bfd_boolean
8842 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
8843 {
8844 asection *sect2;
8845
8846 if (bfd_get_section_by_name (abfd, name) != NULL)
8847 return TRUE;
8848
8849 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
8850 if (sect2 == NULL)
8851 return FALSE;
8852
8853 sect2->size = sect->size;
8854 sect2->filepos = sect->filepos;
8855 sect2->alignment_power = sect->alignment_power;
8856 return TRUE;
8857 }
8858
8859 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
8860 actually creates up to two pseudosections:
8861 - For the single-threaded case, a section named NAME, unless
8862 such a section already exists.
8863 - For the multi-threaded case, a section named "NAME/PID", where
8864 PID is elfcore_make_pid (abfd).
8865 Both pseudosections have identical contents. */
8866 bfd_boolean
8867 _bfd_elfcore_make_pseudosection (bfd *abfd,
8868 char *name,
8869 size_t size,
8870 ufile_ptr filepos)
8871 {
8872 char buf[100];
8873 char *threaded_name;
8874 size_t len;
8875 asection *sect;
8876
8877 /* Build the section name. */
8878
8879 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
8880 len = strlen (buf) + 1;
8881 threaded_name = (char *) bfd_alloc (abfd, len);
8882 if (threaded_name == NULL)
8883 return FALSE;
8884 memcpy (threaded_name, buf, len);
8885
8886 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
8887 SEC_HAS_CONTENTS);
8888 if (sect == NULL)
8889 return FALSE;
8890 sect->size = size;
8891 sect->filepos = filepos;
8892 sect->alignment_power = 2;
8893
8894 return elfcore_maybe_make_sect (abfd, name, sect);
8895 }
8896
8897 /* prstatus_t exists on:
8898 solaris 2.5+
8899 linux 2.[01] + glibc
8900 unixware 4.2
8901 */
8902
8903 #if defined (HAVE_PRSTATUS_T)
8904
8905 static bfd_boolean
8906 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
8907 {
8908 size_t size;
8909 int offset;
8910
8911 if (note->descsz == sizeof (prstatus_t))
8912 {
8913 prstatus_t prstat;
8914
8915 size = sizeof (prstat.pr_reg);
8916 offset = offsetof (prstatus_t, pr_reg);
8917 memcpy (&prstat, note->descdata, sizeof (prstat));
8918
8919 /* Do not overwrite the core signal if it
8920 has already been set by another thread. */
8921 if (elf_tdata (abfd)->core->signal == 0)
8922 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
8923 if (elf_tdata (abfd)->core->pid == 0)
8924 elf_tdata (abfd)->core->pid = prstat.pr_pid;
8925
8926 /* pr_who exists on:
8927 solaris 2.5+
8928 unixware 4.2
8929 pr_who doesn't exist on:
8930 linux 2.[01]
8931 */
8932 #if defined (HAVE_PRSTATUS_T_PR_WHO)
8933 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
8934 #else
8935 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
8936 #endif
8937 }
8938 #if defined (HAVE_PRSTATUS32_T)
8939 else if (note->descsz == sizeof (prstatus32_t))
8940 {
8941 /* 64-bit host, 32-bit corefile */
8942 prstatus32_t prstat;
8943
8944 size = sizeof (prstat.pr_reg);
8945 offset = offsetof (prstatus32_t, pr_reg);
8946 memcpy (&prstat, note->descdata, sizeof (prstat));
8947
8948 /* Do not overwrite the core signal if it
8949 has already been set by another thread. */
8950 if (elf_tdata (abfd)->core->signal == 0)
8951 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
8952 if (elf_tdata (abfd)->core->pid == 0)
8953 elf_tdata (abfd)->core->pid = prstat.pr_pid;
8954
8955 /* pr_who exists on:
8956 solaris 2.5+
8957 unixware 4.2
8958 pr_who doesn't exist on:
8959 linux 2.[01]
8960 */
8961 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
8962 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
8963 #else
8964 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
8965 #endif
8966 }
8967 #endif /* HAVE_PRSTATUS32_T */
8968 else
8969 {
8970 /* Fail - we don't know how to handle any other
8971 note size (ie. data object type). */
8972 return TRUE;
8973 }
8974
8975 /* Make a ".reg/999" section and a ".reg" section. */
8976 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
8977 size, note->descpos + offset);
8978 }
8979 #endif /* defined (HAVE_PRSTATUS_T) */
8980
8981 /* Create a pseudosection containing the exact contents of NOTE. */
8982 static bfd_boolean
8983 elfcore_make_note_pseudosection (bfd *abfd,
8984 char *name,
8985 Elf_Internal_Note *note)
8986 {
8987 return _bfd_elfcore_make_pseudosection (abfd, name,
8988 note->descsz, note->descpos);
8989 }
8990
8991 /* There isn't a consistent prfpregset_t across platforms,
8992 but it doesn't matter, because we don't have to pick this
8993 data structure apart. */
8994
8995 static bfd_boolean
8996 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
8997 {
8998 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8999 }
9000
9001 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
9002 type of NT_PRXFPREG. Just include the whole note's contents
9003 literally. */
9004
9005 static bfd_boolean
9006 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
9007 {
9008 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
9009 }
9010
9011 /* Linux dumps the Intel XSAVE extended state in a note named "LINUX"
9012 with a note type of NT_X86_XSTATE. Just include the whole note's
9013 contents literally. */
9014
9015 static bfd_boolean
9016 elfcore_grok_xstatereg (bfd *abfd, Elf_Internal_Note *note)
9017 {
9018 return elfcore_make_note_pseudosection (abfd, ".reg-xstate", note);
9019 }
9020
9021 static bfd_boolean
9022 elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
9023 {
9024 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
9025 }
9026
9027 static bfd_boolean
9028 elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note)
9029 {
9030 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note);
9031 }
9032
9033 static bfd_boolean
9034 elfcore_grok_s390_high_gprs (bfd *abfd, Elf_Internal_Note *note)
9035 {
9036 return elfcore_make_note_pseudosection (abfd, ".reg-s390-high-gprs", note);
9037 }
9038
9039 static bfd_boolean
9040 elfcore_grok_s390_timer (bfd *abfd, Elf_Internal_Note *note)
9041 {
9042 return elfcore_make_note_pseudosection (abfd, ".reg-s390-timer", note);
9043 }
9044
9045 static bfd_boolean
9046 elfcore_grok_s390_todcmp (bfd *abfd, Elf_Internal_Note *note)
9047 {
9048 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todcmp", note);
9049 }
9050
9051 static bfd_boolean
9052 elfcore_grok_s390_todpreg (bfd *abfd, Elf_Internal_Note *note)
9053 {
9054 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todpreg", note);
9055 }
9056
9057 static bfd_boolean
9058 elfcore_grok_s390_ctrs (bfd *abfd, Elf_Internal_Note *note)
9059 {
9060 return elfcore_make_note_pseudosection (abfd, ".reg-s390-ctrs", note);
9061 }
9062
9063 static bfd_boolean
9064 elfcore_grok_s390_prefix (bfd *abfd, Elf_Internal_Note *note)
9065 {
9066 return elfcore_make_note_pseudosection (abfd, ".reg-s390-prefix", note);
9067 }
9068
9069 static bfd_boolean
9070 elfcore_grok_s390_last_break (bfd *abfd, Elf_Internal_Note *note)
9071 {
9072 return elfcore_make_note_pseudosection (abfd, ".reg-s390-last-break", note);
9073 }
9074
9075 static bfd_boolean
9076 elfcore_grok_s390_system_call (bfd *abfd, Elf_Internal_Note *note)
9077 {
9078 return elfcore_make_note_pseudosection (abfd, ".reg-s390-system-call", note);
9079 }
9080
9081 static bfd_boolean
9082 elfcore_grok_s390_tdb (bfd *abfd, Elf_Internal_Note *note)
9083 {
9084 return elfcore_make_note_pseudosection (abfd, ".reg-s390-tdb", note);
9085 }
9086
9087 static bfd_boolean
9088 elfcore_grok_s390_vxrs_low (bfd *abfd, Elf_Internal_Note *note)
9089 {
9090 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-low", note);
9091 }
9092
9093 static bfd_boolean
9094 elfcore_grok_s390_vxrs_high (bfd *abfd, Elf_Internal_Note *note)
9095 {
9096 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-high", note);
9097 }
9098
9099 static bfd_boolean
9100 elfcore_grok_arm_vfp (bfd *abfd, Elf_Internal_Note *note)
9101 {
9102 return elfcore_make_note_pseudosection (abfd, ".reg-arm-vfp", note);
9103 }
9104
9105 static bfd_boolean
9106 elfcore_grok_aarch_tls (bfd *abfd, Elf_Internal_Note *note)
9107 {
9108 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-tls", note);
9109 }
9110
9111 static bfd_boolean
9112 elfcore_grok_aarch_hw_break (bfd *abfd, Elf_Internal_Note *note)
9113 {
9114 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-break", note);
9115 }
9116
9117 static bfd_boolean
9118 elfcore_grok_aarch_hw_watch (bfd *abfd, Elf_Internal_Note *note)
9119 {
9120 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-watch", note);
9121 }
9122
9123 #if defined (HAVE_PRPSINFO_T)
9124 typedef prpsinfo_t elfcore_psinfo_t;
9125 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
9126 typedef prpsinfo32_t elfcore_psinfo32_t;
9127 #endif
9128 #endif
9129
9130 #if defined (HAVE_PSINFO_T)
9131 typedef psinfo_t elfcore_psinfo_t;
9132 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
9133 typedef psinfo32_t elfcore_psinfo32_t;
9134 #endif
9135 #endif
9136
9137 /* return a malloc'ed copy of a string at START which is at
9138 most MAX bytes long, possibly without a terminating '\0'.
9139 the copy will always have a terminating '\0'. */
9140
9141 char *
9142 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
9143 {
9144 char *dups;
9145 char *end = (char *) memchr (start, '\0', max);
9146 size_t len;
9147
9148 if (end == NULL)
9149 len = max;
9150 else
9151 len = end - start;
9152
9153 dups = (char *) bfd_alloc (abfd, len + 1);
9154 if (dups == NULL)
9155 return NULL;
9156
9157 memcpy (dups, start, len);
9158 dups[len] = '\0';
9159
9160 return dups;
9161 }
9162
9163 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
9164 static bfd_boolean
9165 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
9166 {
9167 if (note->descsz == sizeof (elfcore_psinfo_t))
9168 {
9169 elfcore_psinfo_t psinfo;
9170
9171 memcpy (&psinfo, note->descdata, sizeof (psinfo));
9172
9173 #if defined (HAVE_PSINFO_T_PR_PID) || defined (HAVE_PRPSINFO_T_PR_PID)
9174 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
9175 #endif
9176 elf_tdata (abfd)->core->program
9177 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
9178 sizeof (psinfo.pr_fname));
9179
9180 elf_tdata (abfd)->core->command
9181 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
9182 sizeof (psinfo.pr_psargs));
9183 }
9184 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
9185 else if (note->descsz == sizeof (elfcore_psinfo32_t))
9186 {
9187 /* 64-bit host, 32-bit corefile */
9188 elfcore_psinfo32_t psinfo;
9189
9190 memcpy (&psinfo, note->descdata, sizeof (psinfo));
9191
9192 #if defined (HAVE_PSINFO32_T_PR_PID) || defined (HAVE_PRPSINFO32_T_PR_PID)
9193 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
9194 #endif
9195 elf_tdata (abfd)->core->program
9196 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
9197 sizeof (psinfo.pr_fname));
9198
9199 elf_tdata (abfd)->core->command
9200 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
9201 sizeof (psinfo.pr_psargs));
9202 }
9203 #endif
9204
9205 else
9206 {
9207 /* Fail - we don't know how to handle any other
9208 note size (ie. data object type). */
9209 return TRUE;
9210 }
9211
9212 /* Note that for some reason, a spurious space is tacked
9213 onto the end of the args in some (at least one anyway)
9214 implementations, so strip it off if it exists. */
9215
9216 {
9217 char *command = elf_tdata (abfd)->core->command;
9218 int n = strlen (command);
9219
9220 if (0 < n && command[n - 1] == ' ')
9221 command[n - 1] = '\0';
9222 }
9223
9224 return TRUE;
9225 }
9226 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
9227
9228 #if defined (HAVE_PSTATUS_T)
9229 static bfd_boolean
9230 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
9231 {
9232 if (note->descsz == sizeof (pstatus_t)
9233 #if defined (HAVE_PXSTATUS_T)
9234 || note->descsz == sizeof (pxstatus_t)
9235 #endif
9236 )
9237 {
9238 pstatus_t pstat;
9239
9240 memcpy (&pstat, note->descdata, sizeof (pstat));
9241
9242 elf_tdata (abfd)->core->pid = pstat.pr_pid;
9243 }
9244 #if defined (HAVE_PSTATUS32_T)
9245 else if (note->descsz == sizeof (pstatus32_t))
9246 {
9247 /* 64-bit host, 32-bit corefile */
9248 pstatus32_t pstat;
9249
9250 memcpy (&pstat, note->descdata, sizeof (pstat));
9251
9252 elf_tdata (abfd)->core->pid = pstat.pr_pid;
9253 }
9254 #endif
9255 /* Could grab some more details from the "representative"
9256 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
9257 NT_LWPSTATUS note, presumably. */
9258
9259 return TRUE;
9260 }
9261 #endif /* defined (HAVE_PSTATUS_T) */
9262
9263 #if defined (HAVE_LWPSTATUS_T)
9264 static bfd_boolean
9265 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
9266 {
9267 lwpstatus_t lwpstat;
9268 char buf[100];
9269 char *name;
9270 size_t len;
9271 asection *sect;
9272
9273 if (note->descsz != sizeof (lwpstat)
9274 #if defined (HAVE_LWPXSTATUS_T)
9275 && note->descsz != sizeof (lwpxstatus_t)
9276 #endif
9277 )
9278 return TRUE;
9279
9280 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
9281
9282 elf_tdata (abfd)->core->lwpid = lwpstat.pr_lwpid;
9283 /* Do not overwrite the core signal if it has already been set by
9284 another thread. */
9285 if (elf_tdata (abfd)->core->signal == 0)
9286 elf_tdata (abfd)->core->signal = lwpstat.pr_cursig;
9287
9288 /* Make a ".reg/999" section. */
9289
9290 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
9291 len = strlen (buf) + 1;
9292 name = bfd_alloc (abfd, len);
9293 if (name == NULL)
9294 return FALSE;
9295 memcpy (name, buf, len);
9296
9297 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9298 if (sect == NULL)
9299 return FALSE;
9300
9301 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9302 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
9303 sect->filepos = note->descpos
9304 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
9305 #endif
9306
9307 #if defined (HAVE_LWPSTATUS_T_PR_REG)
9308 sect->size = sizeof (lwpstat.pr_reg);
9309 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
9310 #endif
9311
9312 sect->alignment_power = 2;
9313
9314 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
9315 return FALSE;
9316
9317 /* Make a ".reg2/999" section */
9318
9319 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
9320 len = strlen (buf) + 1;
9321 name = bfd_alloc (abfd, len);
9322 if (name == NULL)
9323 return FALSE;
9324 memcpy (name, buf, len);
9325
9326 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9327 if (sect == NULL)
9328 return FALSE;
9329
9330 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9331 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
9332 sect->filepos = note->descpos
9333 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
9334 #endif
9335
9336 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
9337 sect->size = sizeof (lwpstat.pr_fpreg);
9338 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
9339 #endif
9340
9341 sect->alignment_power = 2;
9342
9343 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
9344 }
9345 #endif /* defined (HAVE_LWPSTATUS_T) */
9346
9347 static bfd_boolean
9348 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
9349 {
9350 char buf[30];
9351 char *name;
9352 size_t len;
9353 asection *sect;
9354 int type;
9355 int is_active_thread;
9356 bfd_vma base_addr;
9357
9358 if (note->descsz < 728)
9359 return TRUE;
9360
9361 if (! CONST_STRNEQ (note->namedata, "win32"))
9362 return TRUE;
9363
9364 type = bfd_get_32 (abfd, note->descdata);
9365
9366 switch (type)
9367 {
9368 case 1 /* NOTE_INFO_PROCESS */:
9369 /* FIXME: need to add ->core->command. */
9370 /* process_info.pid */
9371 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, note->descdata + 8);
9372 /* process_info.signal */
9373 elf_tdata (abfd)->core->signal = bfd_get_32 (abfd, note->descdata + 12);
9374 break;
9375
9376 case 2 /* NOTE_INFO_THREAD */:
9377 /* Make a ".reg/999" section. */
9378 /* thread_info.tid */
9379 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 8));
9380
9381 len = strlen (buf) + 1;
9382 name = (char *) bfd_alloc (abfd, len);
9383 if (name == NULL)
9384 return FALSE;
9385
9386 memcpy (name, buf, len);
9387
9388 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9389 if (sect == NULL)
9390 return FALSE;
9391
9392 /* sizeof (thread_info.thread_context) */
9393 sect->size = 716;
9394 /* offsetof (thread_info.thread_context) */
9395 sect->filepos = note->descpos + 12;
9396 sect->alignment_power = 2;
9397
9398 /* thread_info.is_active_thread */
9399 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
9400
9401 if (is_active_thread)
9402 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
9403 return FALSE;
9404 break;
9405
9406 case 3 /* NOTE_INFO_MODULE */:
9407 /* Make a ".module/xxxxxxxx" section. */
9408 /* module_info.base_address */
9409 base_addr = bfd_get_32 (abfd, note->descdata + 4);
9410 sprintf (buf, ".module/%08lx", (unsigned long) base_addr);
9411
9412 len = strlen (buf) + 1;
9413 name = (char *) bfd_alloc (abfd, len);
9414 if (name == NULL)
9415 return FALSE;
9416
9417 memcpy (name, buf, len);
9418
9419 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9420
9421 if (sect == NULL)
9422 return FALSE;
9423
9424 sect->size = note->descsz;
9425 sect->filepos = note->descpos;
9426 sect->alignment_power = 2;
9427 break;
9428
9429 default:
9430 return TRUE;
9431 }
9432
9433 return TRUE;
9434 }
9435
9436 static bfd_boolean
9437 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
9438 {
9439 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9440
9441 switch (note->type)
9442 {
9443 default:
9444 return TRUE;
9445
9446 case NT_PRSTATUS:
9447 if (bed->elf_backend_grok_prstatus)
9448 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
9449 return TRUE;
9450 #if defined (HAVE_PRSTATUS_T)
9451 return elfcore_grok_prstatus (abfd, note);
9452 #else
9453 return TRUE;
9454 #endif
9455
9456 #if defined (HAVE_PSTATUS_T)
9457 case NT_PSTATUS:
9458 return elfcore_grok_pstatus (abfd, note);
9459 #endif
9460
9461 #if defined (HAVE_LWPSTATUS_T)
9462 case NT_LWPSTATUS:
9463 return elfcore_grok_lwpstatus (abfd, note);
9464 #endif
9465
9466 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
9467 return elfcore_grok_prfpreg (abfd, note);
9468
9469 case NT_WIN32PSTATUS:
9470 return elfcore_grok_win32pstatus (abfd, note);
9471
9472 case NT_PRXFPREG: /* Linux SSE extension */
9473 if (note->namesz == 6
9474 && strcmp (note->namedata, "LINUX") == 0)
9475 return elfcore_grok_prxfpreg (abfd, note);
9476 else
9477 return TRUE;
9478
9479 case NT_X86_XSTATE: /* Linux XSAVE extension */
9480 if (note->namesz == 6
9481 && strcmp (note->namedata, "LINUX") == 0)
9482 return elfcore_grok_xstatereg (abfd, note);
9483 else
9484 return TRUE;
9485
9486 case NT_PPC_VMX:
9487 if (note->namesz == 6
9488 && strcmp (note->namedata, "LINUX") == 0)
9489 return elfcore_grok_ppc_vmx (abfd, note);
9490 else
9491 return TRUE;
9492
9493 case NT_PPC_VSX:
9494 if (note->namesz == 6
9495 && strcmp (note->namedata, "LINUX") == 0)
9496 return elfcore_grok_ppc_vsx (abfd, note);
9497 else
9498 return TRUE;
9499
9500 case NT_S390_HIGH_GPRS:
9501 if (note->namesz == 6
9502 && strcmp (note->namedata, "LINUX") == 0)
9503 return elfcore_grok_s390_high_gprs (abfd, note);
9504 else
9505 return TRUE;
9506
9507 case NT_S390_TIMER:
9508 if (note->namesz == 6
9509 && strcmp (note->namedata, "LINUX") == 0)
9510 return elfcore_grok_s390_timer (abfd, note);
9511 else
9512 return TRUE;
9513
9514 case NT_S390_TODCMP:
9515 if (note->namesz == 6
9516 && strcmp (note->namedata, "LINUX") == 0)
9517 return elfcore_grok_s390_todcmp (abfd, note);
9518 else
9519 return TRUE;
9520
9521 case NT_S390_TODPREG:
9522 if (note->namesz == 6
9523 && strcmp (note->namedata, "LINUX") == 0)
9524 return elfcore_grok_s390_todpreg (abfd, note);
9525 else
9526 return TRUE;
9527
9528 case NT_S390_CTRS:
9529 if (note->namesz == 6
9530 && strcmp (note->namedata, "LINUX") == 0)
9531 return elfcore_grok_s390_ctrs (abfd, note);
9532 else
9533 return TRUE;
9534
9535 case NT_S390_PREFIX:
9536 if (note->namesz == 6
9537 && strcmp (note->namedata, "LINUX") == 0)
9538 return elfcore_grok_s390_prefix (abfd, note);
9539 else
9540 return TRUE;
9541
9542 case NT_S390_LAST_BREAK:
9543 if (note->namesz == 6
9544 && strcmp (note->namedata, "LINUX") == 0)
9545 return elfcore_grok_s390_last_break (abfd, note);
9546 else
9547 return TRUE;
9548
9549 case NT_S390_SYSTEM_CALL:
9550 if (note->namesz == 6
9551 && strcmp (note->namedata, "LINUX") == 0)
9552 return elfcore_grok_s390_system_call (abfd, note);
9553 else
9554 return TRUE;
9555
9556 case NT_S390_TDB:
9557 if (note->namesz == 6
9558 && strcmp (note->namedata, "LINUX") == 0)
9559 return elfcore_grok_s390_tdb (abfd, note);
9560 else
9561 return TRUE;
9562
9563 case NT_S390_VXRS_LOW:
9564 if (note->namesz == 6
9565 && strcmp (note->namedata, "LINUX") == 0)
9566 return elfcore_grok_s390_vxrs_low (abfd, note);
9567 else
9568 return TRUE;
9569
9570 case NT_S390_VXRS_HIGH:
9571 if (note->namesz == 6
9572 && strcmp (note->namedata, "LINUX") == 0)
9573 return elfcore_grok_s390_vxrs_high (abfd, note);
9574 else
9575 return TRUE;
9576
9577 case NT_ARM_VFP:
9578 if (note->namesz == 6
9579 && strcmp (note->namedata, "LINUX") == 0)
9580 return elfcore_grok_arm_vfp (abfd, note);
9581 else
9582 return TRUE;
9583
9584 case NT_ARM_TLS:
9585 if (note->namesz == 6
9586 && strcmp (note->namedata, "LINUX") == 0)
9587 return elfcore_grok_aarch_tls (abfd, note);
9588 else
9589 return TRUE;
9590
9591 case NT_ARM_HW_BREAK:
9592 if (note->namesz == 6
9593 && strcmp (note->namedata, "LINUX") == 0)
9594 return elfcore_grok_aarch_hw_break (abfd, note);
9595 else
9596 return TRUE;
9597
9598 case NT_ARM_HW_WATCH:
9599 if (note->namesz == 6
9600 && strcmp (note->namedata, "LINUX") == 0)
9601 return elfcore_grok_aarch_hw_watch (abfd, note);
9602 else
9603 return TRUE;
9604
9605 case NT_PRPSINFO:
9606 case NT_PSINFO:
9607 if (bed->elf_backend_grok_psinfo)
9608 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
9609 return TRUE;
9610 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
9611 return elfcore_grok_psinfo (abfd, note);
9612 #else
9613 return TRUE;
9614 #endif
9615
9616 case NT_AUXV:
9617 {
9618 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
9619 SEC_HAS_CONTENTS);
9620
9621 if (sect == NULL)
9622 return FALSE;
9623 sect->size = note->descsz;
9624 sect->filepos = note->descpos;
9625 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
9626
9627 return TRUE;
9628 }
9629
9630 case NT_FILE:
9631 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.file",
9632 note);
9633
9634 case NT_SIGINFO:
9635 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.siginfo",
9636 note);
9637
9638 }
9639 }
9640
9641 static bfd_boolean
9642 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
9643 {
9644 struct bfd_build_id* build_id;
9645
9646 if (note->descsz == 0)
9647 return FALSE;
9648
9649 build_id = bfd_alloc (abfd, sizeof (struct bfd_build_id) - 1 + note->descsz);
9650 if (build_id == NULL)
9651 return FALSE;
9652
9653 build_id->size = note->descsz;
9654 memcpy (build_id->data, note->descdata, note->descsz);
9655 abfd->build_id = build_id;
9656
9657 return TRUE;
9658 }
9659
9660 static bfd_boolean
9661 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
9662 {
9663 switch (note->type)
9664 {
9665 default:
9666 return TRUE;
9667
9668 case NT_GNU_BUILD_ID:
9669 return elfobj_grok_gnu_build_id (abfd, note);
9670 }
9671 }
9672
9673 static bfd_boolean
9674 elfobj_grok_stapsdt_note_1 (bfd *abfd, Elf_Internal_Note *note)
9675 {
9676 struct sdt_note *cur =
9677 (struct sdt_note *) bfd_alloc (abfd, sizeof (struct sdt_note)
9678 + note->descsz);
9679
9680 cur->next = (struct sdt_note *) (elf_tdata (abfd))->sdt_note_head;
9681 cur->size = (bfd_size_type) note->descsz;
9682 memcpy (cur->data, note->descdata, note->descsz);
9683
9684 elf_tdata (abfd)->sdt_note_head = cur;
9685
9686 return TRUE;
9687 }
9688
9689 static bfd_boolean
9690 elfobj_grok_stapsdt_note (bfd *abfd, Elf_Internal_Note *note)
9691 {
9692 switch (note->type)
9693 {
9694 case NT_STAPSDT:
9695 return elfobj_grok_stapsdt_note_1 (abfd, note);
9696
9697 default:
9698 return TRUE;
9699 }
9700 }
9701
9702 static bfd_boolean
9703 elfcore_grok_freebsd_psinfo (bfd *abfd, Elf_Internal_Note *note)
9704 {
9705 size_t offset;
9706
9707 switch (abfd->arch_info->bits_per_word)
9708 {
9709 case 32:
9710 if (note->descsz < 108)
9711 return FALSE;
9712 break;
9713
9714 case 64:
9715 if (note->descsz < 120)
9716 return FALSE;
9717 break;
9718
9719 default:
9720 return FALSE;
9721 }
9722
9723 /* Check for version 1 in pr_version. */
9724 if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1)
9725 return FALSE;
9726 offset = 4;
9727
9728 /* Skip over pr_psinfosz. */
9729 if (abfd->arch_info->bits_per_word == 32)
9730 offset += 4;
9731 else
9732 {
9733 offset += 4; /* Padding before pr_psinfosz. */
9734 offset += 8;
9735 }
9736
9737 /* pr_fname is PRFNAMESZ (16) + 1 bytes in size. */
9738 elf_tdata (abfd)->core->program
9739 = _bfd_elfcore_strndup (abfd, note->descdata + offset, 17);
9740 offset += 17;
9741
9742 /* pr_psargs is PRARGSZ (80) + 1 bytes in size. */
9743 elf_tdata (abfd)->core->command
9744 = _bfd_elfcore_strndup (abfd, note->descdata + offset, 81);
9745 offset += 81;
9746
9747 /* Padding before pr_pid. */
9748 offset += 2;
9749
9750 /* The pr_pid field was added in version "1a". */
9751 if (note->descsz < offset + 4)
9752 return TRUE;
9753
9754 elf_tdata (abfd)->core->pid
9755 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
9756
9757 return TRUE;
9758 }
9759
9760 static bfd_boolean
9761 elfcore_grok_freebsd_prstatus (bfd *abfd, Elf_Internal_Note *note)
9762 {
9763 size_t offset;
9764 size_t size;
9765
9766 /* Check for version 1 in pr_version. */
9767 if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1)
9768 return FALSE;
9769 offset = 4;
9770
9771 /* Skip over pr_statussz. */
9772 switch (abfd->arch_info->bits_per_word)
9773 {
9774 case 32:
9775 offset += 4;
9776 break;
9777
9778 case 64:
9779 offset += 4; /* Padding before pr_statussz. */
9780 offset += 8;
9781 break;
9782
9783 default:
9784 return FALSE;
9785 }
9786
9787 /* Extract size of pr_reg from pr_gregsetsz. */
9788 if (abfd->arch_info->bits_per_word == 32)
9789 size = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
9790 else
9791 size = bfd_h_get_64 (abfd, (bfd_byte *) note->descdata + offset);
9792
9793 /* Skip over pr_gregsetsz and pr_fpregsetsz. */
9794 offset += (abfd->arch_info->bits_per_word / 8) * 2;
9795
9796 /* Skip over pr_osreldate. */
9797 offset += 4;
9798
9799 /* Read signal from pr_cursig. */
9800 if (elf_tdata (abfd)->core->signal == 0)
9801 elf_tdata (abfd)->core->signal
9802 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
9803 offset += 4;
9804
9805 /* Read TID from pr_pid. */
9806 elf_tdata (abfd)->core->lwpid
9807 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
9808 offset += 4;
9809
9810 /* Padding before pr_reg. */
9811 if (abfd->arch_info->bits_per_word == 64)
9812 offset += 4;
9813
9814 /* Make a ".reg/999" section and a ".reg" section. */
9815 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
9816 size, note->descpos + offset);
9817 }
9818
9819 static bfd_boolean
9820 elfcore_grok_freebsd_note (bfd *abfd, Elf_Internal_Note *note)
9821 {
9822 switch (note->type)
9823 {
9824 case NT_PRSTATUS:
9825 return elfcore_grok_freebsd_prstatus (abfd, note);
9826
9827 case NT_FPREGSET:
9828 return elfcore_grok_prfpreg (abfd, note);
9829
9830 case NT_PRPSINFO:
9831 return elfcore_grok_freebsd_psinfo (abfd, note);
9832
9833 case NT_FREEBSD_THRMISC:
9834 if (note->namesz == 8)
9835 return elfcore_make_note_pseudosection (abfd, ".thrmisc", note);
9836 else
9837 return TRUE;
9838
9839 case NT_FREEBSD_PROCSTAT_AUXV:
9840 {
9841 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
9842 SEC_HAS_CONTENTS);
9843
9844 if (sect == NULL)
9845 return FALSE;
9846 sect->size = note->descsz - 4;
9847 sect->filepos = note->descpos + 4;
9848 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
9849
9850 return TRUE;
9851 }
9852
9853 case NT_X86_XSTATE:
9854 if (note->namesz == 8)
9855 return elfcore_grok_xstatereg (abfd, note);
9856 else
9857 return TRUE;
9858
9859 default:
9860 return TRUE;
9861 }
9862 }
9863
9864 static bfd_boolean
9865 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
9866 {
9867 char *cp;
9868
9869 cp = strchr (note->namedata, '@');
9870 if (cp != NULL)
9871 {
9872 *lwpidp = atoi(cp + 1);
9873 return TRUE;
9874 }
9875 return FALSE;
9876 }
9877
9878 static bfd_boolean
9879 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
9880 {
9881 /* Signal number at offset 0x08. */
9882 elf_tdata (abfd)->core->signal
9883 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
9884
9885 /* Process ID at offset 0x50. */
9886 elf_tdata (abfd)->core->pid
9887 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
9888
9889 /* Command name at 0x7c (max 32 bytes, including nul). */
9890 elf_tdata (abfd)->core->command
9891 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
9892
9893 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
9894 note);
9895 }
9896
9897 static bfd_boolean
9898 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
9899 {
9900 int lwp;
9901
9902 if (elfcore_netbsd_get_lwpid (note, &lwp))
9903 elf_tdata (abfd)->core->lwpid = lwp;
9904
9905 if (note->type == NT_NETBSDCORE_PROCINFO)
9906 {
9907 /* NetBSD-specific core "procinfo". Note that we expect to
9908 find this note before any of the others, which is fine,
9909 since the kernel writes this note out first when it
9910 creates a core file. */
9911
9912 return elfcore_grok_netbsd_procinfo (abfd, note);
9913 }
9914
9915 /* As of Jan 2002 there are no other machine-independent notes
9916 defined for NetBSD core files. If the note type is less
9917 than the start of the machine-dependent note types, we don't
9918 understand it. */
9919
9920 if (note->type < NT_NETBSDCORE_FIRSTMACH)
9921 return TRUE;
9922
9923
9924 switch (bfd_get_arch (abfd))
9925 {
9926 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
9927 PT_GETFPREGS == mach+2. */
9928
9929 case bfd_arch_alpha:
9930 case bfd_arch_sparc:
9931 switch (note->type)
9932 {
9933 case NT_NETBSDCORE_FIRSTMACH+0:
9934 return elfcore_make_note_pseudosection (abfd, ".reg", note);
9935
9936 case NT_NETBSDCORE_FIRSTMACH+2:
9937 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
9938
9939 default:
9940 return TRUE;
9941 }
9942
9943 /* On all other arch's, PT_GETREGS == mach+1 and
9944 PT_GETFPREGS == mach+3. */
9945
9946 default:
9947 switch (note->type)
9948 {
9949 case NT_NETBSDCORE_FIRSTMACH+1:
9950 return elfcore_make_note_pseudosection (abfd, ".reg", note);
9951
9952 case NT_NETBSDCORE_FIRSTMACH+3:
9953 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
9954
9955 default:
9956 return TRUE;
9957 }
9958 }
9959 /* NOTREACHED */
9960 }
9961
9962 static bfd_boolean
9963 elfcore_grok_openbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
9964 {
9965 /* Signal number at offset 0x08. */
9966 elf_tdata (abfd)->core->signal
9967 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
9968
9969 /* Process ID at offset 0x20. */
9970 elf_tdata (abfd)->core->pid
9971 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x20);
9972
9973 /* Command name at 0x48 (max 32 bytes, including nul). */
9974 elf_tdata (abfd)->core->command
9975 = _bfd_elfcore_strndup (abfd, note->descdata + 0x48, 31);
9976
9977 return TRUE;
9978 }
9979
9980 static bfd_boolean
9981 elfcore_grok_openbsd_note (bfd *abfd, Elf_Internal_Note *note)
9982 {
9983 if (note->type == NT_OPENBSD_PROCINFO)
9984 return elfcore_grok_openbsd_procinfo (abfd, note);
9985
9986 if (note->type == NT_OPENBSD_REGS)
9987 return elfcore_make_note_pseudosection (abfd, ".reg", note);
9988
9989 if (note->type == NT_OPENBSD_FPREGS)
9990 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
9991
9992 if (note->type == NT_OPENBSD_XFPREGS)
9993 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
9994
9995 if (note->type == NT_OPENBSD_AUXV)
9996 {
9997 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
9998 SEC_HAS_CONTENTS);
9999
10000 if (sect == NULL)
10001 return FALSE;
10002 sect->size = note->descsz;
10003 sect->filepos = note->descpos;
10004 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
10005
10006 return TRUE;
10007 }
10008
10009 if (note->type == NT_OPENBSD_WCOOKIE)
10010 {
10011 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".wcookie",
10012 SEC_HAS_CONTENTS);
10013
10014 if (sect == NULL)
10015 return FALSE;
10016 sect->size = note->descsz;
10017 sect->filepos = note->descpos;
10018 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
10019
10020 return TRUE;
10021 }
10022
10023 return TRUE;
10024 }
10025
10026 static bfd_boolean
10027 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
10028 {
10029 void *ddata = note->descdata;
10030 char buf[100];
10031 char *name;
10032 asection *sect;
10033 short sig;
10034 unsigned flags;
10035
10036 /* nto_procfs_status 'pid' field is at offset 0. */
10037 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
10038
10039 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
10040 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
10041
10042 /* nto_procfs_status 'flags' field is at offset 8. */
10043 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
10044
10045 /* nto_procfs_status 'what' field is at offset 14. */
10046 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
10047 {
10048 elf_tdata (abfd)->core->signal = sig;
10049 elf_tdata (abfd)->core->lwpid = *tid;
10050 }
10051
10052 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
10053 do not come from signals so we make sure we set the current
10054 thread just in case. */
10055 if (flags & 0x00000080)
10056 elf_tdata (abfd)->core->lwpid = *tid;
10057
10058 /* Make a ".qnx_core_status/%d" section. */
10059 sprintf (buf, ".qnx_core_status/%ld", *tid);
10060
10061 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
10062 if (name == NULL)
10063 return FALSE;
10064 strcpy (name, buf);
10065
10066 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10067 if (sect == NULL)
10068 return FALSE;
10069
10070 sect->size = note->descsz;
10071 sect->filepos = note->descpos;
10072 sect->alignment_power = 2;
10073
10074 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
10075 }
10076
10077 static bfd_boolean
10078 elfcore_grok_nto_regs (bfd *abfd,
10079 Elf_Internal_Note *note,
10080 long tid,
10081 char *base)
10082 {
10083 char buf[100];
10084 char *name;
10085 asection *sect;
10086
10087 /* Make a "(base)/%d" section. */
10088 sprintf (buf, "%s/%ld", base, tid);
10089
10090 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
10091 if (name == NULL)
10092 return FALSE;
10093 strcpy (name, buf);
10094
10095 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10096 if (sect == NULL)
10097 return FALSE;
10098
10099 sect->size = note->descsz;
10100 sect->filepos = note->descpos;
10101 sect->alignment_power = 2;
10102
10103 /* This is the current thread. */
10104 if (elf_tdata (abfd)->core->lwpid == tid)
10105 return elfcore_maybe_make_sect (abfd, base, sect);
10106
10107 return TRUE;
10108 }
10109
10110 #define BFD_QNT_CORE_INFO 7
10111 #define BFD_QNT_CORE_STATUS 8
10112 #define BFD_QNT_CORE_GREG 9
10113 #define BFD_QNT_CORE_FPREG 10
10114
10115 static bfd_boolean
10116 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
10117 {
10118 /* Every GREG section has a STATUS section before it. Store the
10119 tid from the previous call to pass down to the next gregs
10120 function. */
10121 static long tid = 1;
10122
10123 switch (note->type)
10124 {
10125 case BFD_QNT_CORE_INFO:
10126 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
10127 case BFD_QNT_CORE_STATUS:
10128 return elfcore_grok_nto_status (abfd, note, &tid);
10129 case BFD_QNT_CORE_GREG:
10130 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
10131 case BFD_QNT_CORE_FPREG:
10132 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
10133 default:
10134 return TRUE;
10135 }
10136 }
10137
10138 static bfd_boolean
10139 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
10140 {
10141 char *name;
10142 asection *sect;
10143 size_t len;
10144
10145 /* Use note name as section name. */
10146 len = note->namesz;
10147 name = (char *) bfd_alloc (abfd, len);
10148 if (name == NULL)
10149 return FALSE;
10150 memcpy (name, note->namedata, len);
10151 name[len - 1] = '\0';
10152
10153 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10154 if (sect == NULL)
10155 return FALSE;
10156
10157 sect->size = note->descsz;
10158 sect->filepos = note->descpos;
10159 sect->alignment_power = 1;
10160
10161 return TRUE;
10162 }
10163
10164 /* Function: elfcore_write_note
10165
10166 Inputs:
10167 buffer to hold note, and current size of buffer
10168 name of note
10169 type of note
10170 data for note
10171 size of data for note
10172
10173 Writes note to end of buffer. ELF64 notes are written exactly as
10174 for ELF32, despite the current (as of 2006) ELF gabi specifying
10175 that they ought to have 8-byte namesz and descsz field, and have
10176 8-byte alignment. Other writers, eg. Linux kernel, do the same.
10177
10178 Return:
10179 Pointer to realloc'd buffer, *BUFSIZ updated. */
10180
10181 char *
10182 elfcore_write_note (bfd *abfd,
10183 char *buf,
10184 int *bufsiz,
10185 const char *name,
10186 int type,
10187 const void *input,
10188 int size)
10189 {
10190 Elf_External_Note *xnp;
10191 size_t namesz;
10192 size_t newspace;
10193 char *dest;
10194
10195 namesz = 0;
10196 if (name != NULL)
10197 namesz = strlen (name) + 1;
10198
10199 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
10200
10201 buf = (char *) realloc (buf, *bufsiz + newspace);
10202 if (buf == NULL)
10203 return buf;
10204 dest = buf + *bufsiz;
10205 *bufsiz += newspace;
10206 xnp = (Elf_External_Note *) dest;
10207 H_PUT_32 (abfd, namesz, xnp->namesz);
10208 H_PUT_32 (abfd, size, xnp->descsz);
10209 H_PUT_32 (abfd, type, xnp->type);
10210 dest = xnp->name;
10211 if (name != NULL)
10212 {
10213 memcpy (dest, name, namesz);
10214 dest += namesz;
10215 while (namesz & 3)
10216 {
10217 *dest++ = '\0';
10218 ++namesz;
10219 }
10220 }
10221 memcpy (dest, input, size);
10222 dest += size;
10223 while (size & 3)
10224 {
10225 *dest++ = '\0';
10226 ++size;
10227 }
10228 return buf;
10229 }
10230
10231 char *
10232 elfcore_write_prpsinfo (bfd *abfd,
10233 char *buf,
10234 int *bufsiz,
10235 const char *fname,
10236 const char *psargs)
10237 {
10238 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10239
10240 if (bed->elf_backend_write_core_note != NULL)
10241 {
10242 char *ret;
10243 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
10244 NT_PRPSINFO, fname, psargs);
10245 if (ret != NULL)
10246 return ret;
10247 }
10248
10249 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
10250 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
10251 if (bed->s->elfclass == ELFCLASS32)
10252 {
10253 #if defined (HAVE_PSINFO32_T)
10254 psinfo32_t data;
10255 int note_type = NT_PSINFO;
10256 #else
10257 prpsinfo32_t data;
10258 int note_type = NT_PRPSINFO;
10259 #endif
10260
10261 memset (&data, 0, sizeof (data));
10262 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
10263 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
10264 return elfcore_write_note (abfd, buf, bufsiz,
10265 "CORE", note_type, &data, sizeof (data));
10266 }
10267 else
10268 #endif
10269 {
10270 #if defined (HAVE_PSINFO_T)
10271 psinfo_t data;
10272 int note_type = NT_PSINFO;
10273 #else
10274 prpsinfo_t data;
10275 int note_type = NT_PRPSINFO;
10276 #endif
10277
10278 memset (&data, 0, sizeof (data));
10279 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
10280 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
10281 return elfcore_write_note (abfd, buf, bufsiz,
10282 "CORE", note_type, &data, sizeof (data));
10283 }
10284 #endif /* PSINFO_T or PRPSINFO_T */
10285
10286 free (buf);
10287 return NULL;
10288 }
10289
10290 char *
10291 elfcore_write_linux_prpsinfo32
10292 (bfd *abfd, char *buf, int *bufsiz,
10293 const struct elf_internal_linux_prpsinfo *prpsinfo)
10294 {
10295 struct elf_external_linux_prpsinfo32 data;
10296
10297 swap_linux_prpsinfo32_out (abfd, prpsinfo, &data);
10298 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
10299 &data, sizeof (data));
10300 }
10301
10302 char *
10303 elfcore_write_linux_prpsinfo64
10304 (bfd *abfd, char *buf, int *bufsiz,
10305 const struct elf_internal_linux_prpsinfo *prpsinfo)
10306 {
10307 struct elf_external_linux_prpsinfo64 data;
10308
10309 swap_linux_prpsinfo64_out (abfd, prpsinfo, &data);
10310 return elfcore_write_note (abfd, buf, bufsiz,
10311 "CORE", NT_PRPSINFO, &data, sizeof (data));
10312 }
10313
10314 char *
10315 elfcore_write_prstatus (bfd *abfd,
10316 char *buf,
10317 int *bufsiz,
10318 long pid,
10319 int cursig,
10320 const void *gregs)
10321 {
10322 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10323
10324 if (bed->elf_backend_write_core_note != NULL)
10325 {
10326 char *ret;
10327 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
10328 NT_PRSTATUS,
10329 pid, cursig, gregs);
10330 if (ret != NULL)
10331 return ret;
10332 }
10333
10334 #if defined (HAVE_PRSTATUS_T)
10335 #if defined (HAVE_PRSTATUS32_T)
10336 if (bed->s->elfclass == ELFCLASS32)
10337 {
10338 prstatus32_t prstat;
10339
10340 memset (&prstat, 0, sizeof (prstat));
10341 prstat.pr_pid = pid;
10342 prstat.pr_cursig = cursig;
10343 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
10344 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
10345 NT_PRSTATUS, &prstat, sizeof (prstat));
10346 }
10347 else
10348 #endif
10349 {
10350 prstatus_t prstat;
10351
10352 memset (&prstat, 0, sizeof (prstat));
10353 prstat.pr_pid = pid;
10354 prstat.pr_cursig = cursig;
10355 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
10356 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
10357 NT_PRSTATUS, &prstat, sizeof (prstat));
10358 }
10359 #endif /* HAVE_PRSTATUS_T */
10360
10361 free (buf);
10362 return NULL;
10363 }
10364
10365 #if defined (HAVE_LWPSTATUS_T)
10366 char *
10367 elfcore_write_lwpstatus (bfd *abfd,
10368 char *buf,
10369 int *bufsiz,
10370 long pid,
10371 int cursig,
10372 const void *gregs)
10373 {
10374 lwpstatus_t lwpstat;
10375 const char *note_name = "CORE";
10376
10377 memset (&lwpstat, 0, sizeof (lwpstat));
10378 lwpstat.pr_lwpid = pid >> 16;
10379 lwpstat.pr_cursig = cursig;
10380 #if defined (HAVE_LWPSTATUS_T_PR_REG)
10381 memcpy (&lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
10382 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
10383 #if !defined(gregs)
10384 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
10385 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
10386 #else
10387 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
10388 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
10389 #endif
10390 #endif
10391 return elfcore_write_note (abfd, buf, bufsiz, note_name,
10392 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
10393 }
10394 #endif /* HAVE_LWPSTATUS_T */
10395
10396 #if defined (HAVE_PSTATUS_T)
10397 char *
10398 elfcore_write_pstatus (bfd *abfd,
10399 char *buf,
10400 int *bufsiz,
10401 long pid,
10402 int cursig ATTRIBUTE_UNUSED,
10403 const void *gregs ATTRIBUTE_UNUSED)
10404 {
10405 const char *note_name = "CORE";
10406 #if defined (HAVE_PSTATUS32_T)
10407 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10408
10409 if (bed->s->elfclass == ELFCLASS32)
10410 {
10411 pstatus32_t pstat;
10412
10413 memset (&pstat, 0, sizeof (pstat));
10414 pstat.pr_pid = pid & 0xffff;
10415 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
10416 NT_PSTATUS, &pstat, sizeof (pstat));
10417 return buf;
10418 }
10419 else
10420 #endif
10421 {
10422 pstatus_t pstat;
10423
10424 memset (&pstat, 0, sizeof (pstat));
10425 pstat.pr_pid = pid & 0xffff;
10426 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
10427 NT_PSTATUS, &pstat, sizeof (pstat));
10428 return buf;
10429 }
10430 }
10431 #endif /* HAVE_PSTATUS_T */
10432
10433 char *
10434 elfcore_write_prfpreg (bfd *abfd,
10435 char *buf,
10436 int *bufsiz,
10437 const void *fpregs,
10438 int size)
10439 {
10440 const char *note_name = "CORE";
10441 return elfcore_write_note (abfd, buf, bufsiz,
10442 note_name, NT_FPREGSET, fpregs, size);
10443 }
10444
10445 char *
10446 elfcore_write_prxfpreg (bfd *abfd,
10447 char *buf,
10448 int *bufsiz,
10449 const void *xfpregs,
10450 int size)
10451 {
10452 char *note_name = "LINUX";
10453 return elfcore_write_note (abfd, buf, bufsiz,
10454 note_name, NT_PRXFPREG, xfpregs, size);
10455 }
10456
10457 char *
10458 elfcore_write_xstatereg (bfd *abfd, char *buf, int *bufsiz,
10459 const void *xfpregs, int size)
10460 {
10461 char *note_name;
10462 if (get_elf_backend_data (abfd)->elf_osabi == ELFOSABI_FREEBSD)
10463 note_name = "FreeBSD";
10464 else
10465 note_name = "LINUX";
10466 return elfcore_write_note (abfd, buf, bufsiz,
10467 note_name, NT_X86_XSTATE, xfpregs, size);
10468 }
10469
10470 char *
10471 elfcore_write_ppc_vmx (bfd *abfd,
10472 char *buf,
10473 int *bufsiz,
10474 const void *ppc_vmx,
10475 int size)
10476 {
10477 char *note_name = "LINUX";
10478 return elfcore_write_note (abfd, buf, bufsiz,
10479 note_name, NT_PPC_VMX, ppc_vmx, size);
10480 }
10481
10482 char *
10483 elfcore_write_ppc_vsx (bfd *abfd,
10484 char *buf,
10485 int *bufsiz,
10486 const void *ppc_vsx,
10487 int size)
10488 {
10489 char *note_name = "LINUX";
10490 return elfcore_write_note (abfd, buf, bufsiz,
10491 note_name, NT_PPC_VSX, ppc_vsx, size);
10492 }
10493
10494 static char *
10495 elfcore_write_s390_high_gprs (bfd *abfd,
10496 char *buf,
10497 int *bufsiz,
10498 const void *s390_high_gprs,
10499 int size)
10500 {
10501 char *note_name = "LINUX";
10502 return elfcore_write_note (abfd, buf, bufsiz,
10503 note_name, NT_S390_HIGH_GPRS,
10504 s390_high_gprs, size);
10505 }
10506
10507 char *
10508 elfcore_write_s390_timer (bfd *abfd,
10509 char *buf,
10510 int *bufsiz,
10511 const void *s390_timer,
10512 int size)
10513 {
10514 char *note_name = "LINUX";
10515 return elfcore_write_note (abfd, buf, bufsiz,
10516 note_name, NT_S390_TIMER, s390_timer, size);
10517 }
10518
10519 char *
10520 elfcore_write_s390_todcmp (bfd *abfd,
10521 char *buf,
10522 int *bufsiz,
10523 const void *s390_todcmp,
10524 int size)
10525 {
10526 char *note_name = "LINUX";
10527 return elfcore_write_note (abfd, buf, bufsiz,
10528 note_name, NT_S390_TODCMP, s390_todcmp, size);
10529 }
10530
10531 char *
10532 elfcore_write_s390_todpreg (bfd *abfd,
10533 char *buf,
10534 int *bufsiz,
10535 const void *s390_todpreg,
10536 int size)
10537 {
10538 char *note_name = "LINUX";
10539 return elfcore_write_note (abfd, buf, bufsiz,
10540 note_name, NT_S390_TODPREG, s390_todpreg, size);
10541 }
10542
10543 char *
10544 elfcore_write_s390_ctrs (bfd *abfd,
10545 char *buf,
10546 int *bufsiz,
10547 const void *s390_ctrs,
10548 int size)
10549 {
10550 char *note_name = "LINUX";
10551 return elfcore_write_note (abfd, buf, bufsiz,
10552 note_name, NT_S390_CTRS, s390_ctrs, size);
10553 }
10554
10555 char *
10556 elfcore_write_s390_prefix (bfd *abfd,
10557 char *buf,
10558 int *bufsiz,
10559 const void *s390_prefix,
10560 int size)
10561 {
10562 char *note_name = "LINUX";
10563 return elfcore_write_note (abfd, buf, bufsiz,
10564 note_name, NT_S390_PREFIX, s390_prefix, size);
10565 }
10566
10567 char *
10568 elfcore_write_s390_last_break (bfd *abfd,
10569 char *buf,
10570 int *bufsiz,
10571 const void *s390_last_break,
10572 int size)
10573 {
10574 char *note_name = "LINUX";
10575 return elfcore_write_note (abfd, buf, bufsiz,
10576 note_name, NT_S390_LAST_BREAK,
10577 s390_last_break, size);
10578 }
10579
10580 char *
10581 elfcore_write_s390_system_call (bfd *abfd,
10582 char *buf,
10583 int *bufsiz,
10584 const void *s390_system_call,
10585 int size)
10586 {
10587 char *note_name = "LINUX";
10588 return elfcore_write_note (abfd, buf, bufsiz,
10589 note_name, NT_S390_SYSTEM_CALL,
10590 s390_system_call, size);
10591 }
10592
10593 char *
10594 elfcore_write_s390_tdb (bfd *abfd,
10595 char *buf,
10596 int *bufsiz,
10597 const void *s390_tdb,
10598 int size)
10599 {
10600 char *note_name = "LINUX";
10601 return elfcore_write_note (abfd, buf, bufsiz,
10602 note_name, NT_S390_TDB, s390_tdb, size);
10603 }
10604
10605 char *
10606 elfcore_write_s390_vxrs_low (bfd *abfd,
10607 char *buf,
10608 int *bufsiz,
10609 const void *s390_vxrs_low,
10610 int size)
10611 {
10612 char *note_name = "LINUX";
10613 return elfcore_write_note (abfd, buf, bufsiz,
10614 note_name, NT_S390_VXRS_LOW, s390_vxrs_low, size);
10615 }
10616
10617 char *
10618 elfcore_write_s390_vxrs_high (bfd *abfd,
10619 char *buf,
10620 int *bufsiz,
10621 const void *s390_vxrs_high,
10622 int size)
10623 {
10624 char *note_name = "LINUX";
10625 return elfcore_write_note (abfd, buf, bufsiz,
10626 note_name, NT_S390_VXRS_HIGH,
10627 s390_vxrs_high, size);
10628 }
10629
10630 char *
10631 elfcore_write_arm_vfp (bfd *abfd,
10632 char *buf,
10633 int *bufsiz,
10634 const void *arm_vfp,
10635 int size)
10636 {
10637 char *note_name = "LINUX";
10638 return elfcore_write_note (abfd, buf, bufsiz,
10639 note_name, NT_ARM_VFP, arm_vfp, size);
10640 }
10641
10642 char *
10643 elfcore_write_aarch_tls (bfd *abfd,
10644 char *buf,
10645 int *bufsiz,
10646 const void *aarch_tls,
10647 int size)
10648 {
10649 char *note_name = "LINUX";
10650 return elfcore_write_note (abfd, buf, bufsiz,
10651 note_name, NT_ARM_TLS, aarch_tls, size);
10652 }
10653
10654 char *
10655 elfcore_write_aarch_hw_break (bfd *abfd,
10656 char *buf,
10657 int *bufsiz,
10658 const void *aarch_hw_break,
10659 int size)
10660 {
10661 char *note_name = "LINUX";
10662 return elfcore_write_note (abfd, buf, bufsiz,
10663 note_name, NT_ARM_HW_BREAK, aarch_hw_break, size);
10664 }
10665
10666 char *
10667 elfcore_write_aarch_hw_watch (bfd *abfd,
10668 char *buf,
10669 int *bufsiz,
10670 const void *aarch_hw_watch,
10671 int size)
10672 {
10673 char *note_name = "LINUX";
10674 return elfcore_write_note (abfd, buf, bufsiz,
10675 note_name, NT_ARM_HW_WATCH, aarch_hw_watch, size);
10676 }
10677
10678 char *
10679 elfcore_write_register_note (bfd *abfd,
10680 char *buf,
10681 int *bufsiz,
10682 const char *section,
10683 const void *data,
10684 int size)
10685 {
10686 if (strcmp (section, ".reg2") == 0)
10687 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
10688 if (strcmp (section, ".reg-xfp") == 0)
10689 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
10690 if (strcmp (section, ".reg-xstate") == 0)
10691 return elfcore_write_xstatereg (abfd, buf, bufsiz, data, size);
10692 if (strcmp (section, ".reg-ppc-vmx") == 0)
10693 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
10694 if (strcmp (section, ".reg-ppc-vsx") == 0)
10695 return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size);
10696 if (strcmp (section, ".reg-s390-high-gprs") == 0)
10697 return elfcore_write_s390_high_gprs (abfd, buf, bufsiz, data, size);
10698 if (strcmp (section, ".reg-s390-timer") == 0)
10699 return elfcore_write_s390_timer (abfd, buf, bufsiz, data, size);
10700 if (strcmp (section, ".reg-s390-todcmp") == 0)
10701 return elfcore_write_s390_todcmp (abfd, buf, bufsiz, data, size);
10702 if (strcmp (section, ".reg-s390-todpreg") == 0)
10703 return elfcore_write_s390_todpreg (abfd, buf, bufsiz, data, size);
10704 if (strcmp (section, ".reg-s390-ctrs") == 0)
10705 return elfcore_write_s390_ctrs (abfd, buf, bufsiz, data, size);
10706 if (strcmp (section, ".reg-s390-prefix") == 0)
10707 return elfcore_write_s390_prefix (abfd, buf, bufsiz, data, size);
10708 if (strcmp (section, ".reg-s390-last-break") == 0)
10709 return elfcore_write_s390_last_break (abfd, buf, bufsiz, data, size);
10710 if (strcmp (section, ".reg-s390-system-call") == 0)
10711 return elfcore_write_s390_system_call (abfd, buf, bufsiz, data, size);
10712 if (strcmp (section, ".reg-s390-tdb") == 0)
10713 return elfcore_write_s390_tdb (abfd, buf, bufsiz, data, size);
10714 if (strcmp (section, ".reg-s390-vxrs-low") == 0)
10715 return elfcore_write_s390_vxrs_low (abfd, buf, bufsiz, data, size);
10716 if (strcmp (section, ".reg-s390-vxrs-high") == 0)
10717 return elfcore_write_s390_vxrs_high (abfd, buf, bufsiz, data, size);
10718 if (strcmp (section, ".reg-arm-vfp") == 0)
10719 return elfcore_write_arm_vfp (abfd, buf, bufsiz, data, size);
10720 if (strcmp (section, ".reg-aarch-tls") == 0)
10721 return elfcore_write_aarch_tls (abfd, buf, bufsiz, data, size);
10722 if (strcmp (section, ".reg-aarch-hw-break") == 0)
10723 return elfcore_write_aarch_hw_break (abfd, buf, bufsiz, data, size);
10724 if (strcmp (section, ".reg-aarch-hw-watch") == 0)
10725 return elfcore_write_aarch_hw_watch (abfd, buf, bufsiz, data, size);
10726 return NULL;
10727 }
10728
10729 static bfd_boolean
10730 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset)
10731 {
10732 char *p;
10733
10734 p = buf;
10735 while (p < buf + size)
10736 {
10737 /* FIXME: bad alignment assumption. */
10738 Elf_External_Note *xnp = (Elf_External_Note *) p;
10739 Elf_Internal_Note in;
10740
10741 if (offsetof (Elf_External_Note, name) > buf - p + size)
10742 return FALSE;
10743
10744 in.type = H_GET_32 (abfd, xnp->type);
10745
10746 in.namesz = H_GET_32 (abfd, xnp->namesz);
10747 in.namedata = xnp->name;
10748 if (in.namesz > buf - in.namedata + size)
10749 return FALSE;
10750
10751 in.descsz = H_GET_32 (abfd, xnp->descsz);
10752 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
10753 in.descpos = offset + (in.descdata - buf);
10754 if (in.descsz != 0
10755 && (in.descdata >= buf + size
10756 || in.descsz > buf - in.descdata + size))
10757 return FALSE;
10758
10759 switch (bfd_get_format (abfd))
10760 {
10761 default:
10762 return TRUE;
10763
10764 case bfd_core:
10765 {
10766 #define GROKER_ELEMENT(S,F) {S, sizeof (S) - 1, F}
10767 struct
10768 {
10769 const char * string;
10770 size_t len;
10771 bfd_boolean (* func)(bfd *, Elf_Internal_Note *);
10772 }
10773 grokers[] =
10774 {
10775 GROKER_ELEMENT ("", elfcore_grok_note),
10776 GROKER_ELEMENT ("FreeBSD", elfcore_grok_freebsd_note),
10777 GROKER_ELEMENT ("NetBSD-CORE", elfcore_grok_netbsd_note),
10778 GROKER_ELEMENT ( "OpenBSD", elfcore_grok_openbsd_note),
10779 GROKER_ELEMENT ("QNX", elfcore_grok_nto_note),
10780 GROKER_ELEMENT ("SPU/", elfcore_grok_spu_note)
10781 };
10782 #undef GROKER_ELEMENT
10783 int i;
10784
10785 for (i = ARRAY_SIZE (grokers); i--;)
10786 {
10787 if (in.namesz >= grokers[i].len
10788 && strncmp (in.namedata, grokers[i].string,
10789 grokers[i].len) == 0)
10790 {
10791 if (! grokers[i].func (abfd, & in))
10792 return FALSE;
10793 break;
10794 }
10795 }
10796 break;
10797 }
10798
10799 case bfd_object:
10800 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
10801 {
10802 if (! elfobj_grok_gnu_note (abfd, &in))
10803 return FALSE;
10804 }
10805 else if (in.namesz == sizeof "stapsdt"
10806 && strcmp (in.namedata, "stapsdt") == 0)
10807 {
10808 if (! elfobj_grok_stapsdt_note (abfd, &in))
10809 return FALSE;
10810 }
10811 break;
10812 }
10813
10814 p = in.descdata + BFD_ALIGN (in.descsz, 4);
10815 }
10816
10817 return TRUE;
10818 }
10819
10820 static bfd_boolean
10821 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
10822 {
10823 char *buf;
10824
10825 if (size <= 0)
10826 return TRUE;
10827
10828 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
10829 return FALSE;
10830
10831 buf = (char *) bfd_malloc (size + 1);
10832 if (buf == NULL)
10833 return FALSE;
10834
10835 /* PR 17512: file: ec08f814
10836 0-termintate the buffer so that string searches will not overflow. */
10837 buf[size] = 0;
10838
10839 if (bfd_bread (buf, size, abfd) != size
10840 || !elf_parse_notes (abfd, buf, size, offset))
10841 {
10842 free (buf);
10843 return FALSE;
10844 }
10845
10846 free (buf);
10847 return TRUE;
10848 }
10849 \f
10850 /* Providing external access to the ELF program header table. */
10851
10852 /* Return an upper bound on the number of bytes required to store a
10853 copy of ABFD's program header table entries. Return -1 if an error
10854 occurs; bfd_get_error will return an appropriate code. */
10855
10856 long
10857 bfd_get_elf_phdr_upper_bound (bfd *abfd)
10858 {
10859 if (abfd->xvec->flavour != bfd_target_elf_flavour)
10860 {
10861 bfd_set_error (bfd_error_wrong_format);
10862 return -1;
10863 }
10864
10865 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
10866 }
10867
10868 /* Copy ABFD's program header table entries to *PHDRS. The entries
10869 will be stored as an array of Elf_Internal_Phdr structures, as
10870 defined in include/elf/internal.h. To find out how large the
10871 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
10872
10873 Return the number of program header table entries read, or -1 if an
10874 error occurs; bfd_get_error will return an appropriate code. */
10875
10876 int
10877 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
10878 {
10879 int num_phdrs;
10880
10881 if (abfd->xvec->flavour != bfd_target_elf_flavour)
10882 {
10883 bfd_set_error (bfd_error_wrong_format);
10884 return -1;
10885 }
10886
10887 num_phdrs = elf_elfheader (abfd)->e_phnum;
10888 memcpy (phdrs, elf_tdata (abfd)->phdr,
10889 num_phdrs * sizeof (Elf_Internal_Phdr));
10890
10891 return num_phdrs;
10892 }
10893
10894 enum elf_reloc_type_class
10895 _bfd_elf_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
10896 const asection *rel_sec ATTRIBUTE_UNUSED,
10897 const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
10898 {
10899 return reloc_class_normal;
10900 }
10901
10902 /* For RELA architectures, return the relocation value for a
10903 relocation against a local symbol. */
10904
10905 bfd_vma
10906 _bfd_elf_rela_local_sym (bfd *abfd,
10907 Elf_Internal_Sym *sym,
10908 asection **psec,
10909 Elf_Internal_Rela *rel)
10910 {
10911 asection *sec = *psec;
10912 bfd_vma relocation;
10913
10914 relocation = (sec->output_section->vma
10915 + sec->output_offset
10916 + sym->st_value);
10917 if ((sec->flags & SEC_MERGE)
10918 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
10919 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
10920 {
10921 rel->r_addend =
10922 _bfd_merged_section_offset (abfd, psec,
10923 elf_section_data (sec)->sec_info,
10924 sym->st_value + rel->r_addend);
10925 if (sec != *psec)
10926 {
10927 /* If we have changed the section, and our original section is
10928 marked with SEC_EXCLUDE, it means that the original
10929 SEC_MERGE section has been completely subsumed in some
10930 other SEC_MERGE section. In this case, we need to leave
10931 some info around for --emit-relocs. */
10932 if ((sec->flags & SEC_EXCLUDE) != 0)
10933 sec->kept_section = *psec;
10934 sec = *psec;
10935 }
10936 rel->r_addend -= relocation;
10937 rel->r_addend += sec->output_section->vma + sec->output_offset;
10938 }
10939 return relocation;
10940 }
10941
10942 bfd_vma
10943 _bfd_elf_rel_local_sym (bfd *abfd,
10944 Elf_Internal_Sym *sym,
10945 asection **psec,
10946 bfd_vma addend)
10947 {
10948 asection *sec = *psec;
10949
10950 if (sec->sec_info_type != SEC_INFO_TYPE_MERGE)
10951 return sym->st_value + addend;
10952
10953 return _bfd_merged_section_offset (abfd, psec,
10954 elf_section_data (sec)->sec_info,
10955 sym->st_value + addend);
10956 }
10957
10958 /* Adjust an address within a section. Given OFFSET within SEC, return
10959 the new offset within the section, based upon changes made to the
10960 section. Returns -1 if the offset is now invalid.
10961 The offset (in abnd out) is in target sized bytes, however big a
10962 byte may be. */
10963
10964 bfd_vma
10965 _bfd_elf_section_offset (bfd *abfd,
10966 struct bfd_link_info *info,
10967 asection *sec,
10968 bfd_vma offset)
10969 {
10970 switch (sec->sec_info_type)
10971 {
10972 case SEC_INFO_TYPE_STABS:
10973 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
10974 offset);
10975 case SEC_INFO_TYPE_EH_FRAME:
10976 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
10977
10978 default:
10979 if ((sec->flags & SEC_ELF_REVERSE_COPY) != 0)
10980 {
10981 /* Reverse the offset. */
10982 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10983 bfd_size_type address_size = bed->s->arch_size / 8;
10984
10985 /* address_size and sec->size are in octets. Convert
10986 to bytes before subtracting the original offset. */
10987 offset = (sec->size - address_size) / bfd_octets_per_byte (abfd) - offset;
10988 }
10989 return offset;
10990 }
10991 }
10992 \f
10993 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
10994 reconstruct an ELF file by reading the segments out of remote memory
10995 based on the ELF file header at EHDR_VMA and the ELF program headers it
10996 points to. If not null, *LOADBASEP is filled in with the difference
10997 between the VMAs from which the segments were read, and the VMAs the
10998 file headers (and hence BFD's idea of each section's VMA) put them at.
10999
11000 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
11001 remote memory at target address VMA into the local buffer at MYADDR; it
11002 should return zero on success or an `errno' code on failure. TEMPL must
11003 be a BFD for an ELF target with the word size and byte order found in
11004 the remote memory. */
11005
11006 bfd *
11007 bfd_elf_bfd_from_remote_memory
11008 (bfd *templ,
11009 bfd_vma ehdr_vma,
11010 bfd_size_type size,
11011 bfd_vma *loadbasep,
11012 int (*target_read_memory) (bfd_vma, bfd_byte *, bfd_size_type))
11013 {
11014 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
11015 (templ, ehdr_vma, size, loadbasep, target_read_memory);
11016 }
11017 \f
11018 long
11019 _bfd_elf_get_synthetic_symtab (bfd *abfd,
11020 long symcount ATTRIBUTE_UNUSED,
11021 asymbol **syms ATTRIBUTE_UNUSED,
11022 long dynsymcount,
11023 asymbol **dynsyms,
11024 asymbol **ret)
11025 {
11026 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11027 asection *relplt;
11028 asymbol *s;
11029 const char *relplt_name;
11030 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
11031 arelent *p;
11032 long count, i, n;
11033 size_t size;
11034 Elf_Internal_Shdr *hdr;
11035 char *names;
11036 asection *plt;
11037
11038 *ret = NULL;
11039
11040 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
11041 return 0;
11042
11043 if (dynsymcount <= 0)
11044 return 0;
11045
11046 if (!bed->plt_sym_val)
11047 return 0;
11048
11049 relplt_name = bed->relplt_name;
11050 if (relplt_name == NULL)
11051 relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt";
11052 relplt = bfd_get_section_by_name (abfd, relplt_name);
11053 if (relplt == NULL)
11054 return 0;
11055
11056 hdr = &elf_section_data (relplt)->this_hdr;
11057 if (hdr->sh_link != elf_dynsymtab (abfd)
11058 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
11059 return 0;
11060
11061 plt = bfd_get_section_by_name (abfd, ".plt");
11062 if (plt == NULL)
11063 return 0;
11064
11065 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
11066 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
11067 return -1;
11068
11069 count = relplt->size / hdr->sh_entsize;
11070 size = count * sizeof (asymbol);
11071 p = relplt->relocation;
11072 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
11073 {
11074 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
11075 if (p->addend != 0)
11076 {
11077 #ifdef BFD64
11078 size += sizeof ("+0x") - 1 + 8 + 8 * (bed->s->elfclass == ELFCLASS64);
11079 #else
11080 size += sizeof ("+0x") - 1 + 8;
11081 #endif
11082 }
11083 }
11084
11085 s = *ret = (asymbol *) bfd_malloc (size);
11086 if (s == NULL)
11087 return -1;
11088
11089 names = (char *) (s + count);
11090 p = relplt->relocation;
11091 n = 0;
11092 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
11093 {
11094 size_t len;
11095 bfd_vma addr;
11096
11097 addr = bed->plt_sym_val (i, plt, p);
11098 if (addr == (bfd_vma) -1)
11099 continue;
11100
11101 *s = **p->sym_ptr_ptr;
11102 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
11103 we are defining a symbol, ensure one of them is set. */
11104 if ((s->flags & BSF_LOCAL) == 0)
11105 s->flags |= BSF_GLOBAL;
11106 s->flags |= BSF_SYNTHETIC;
11107 s->section = plt;
11108 s->value = addr - plt->vma;
11109 s->name = names;
11110 s->udata.p = NULL;
11111 len = strlen ((*p->sym_ptr_ptr)->name);
11112 memcpy (names, (*p->sym_ptr_ptr)->name, len);
11113 names += len;
11114 if (p->addend != 0)
11115 {
11116 char buf[30], *a;
11117
11118 memcpy (names, "+0x", sizeof ("+0x") - 1);
11119 names += sizeof ("+0x") - 1;
11120 bfd_sprintf_vma (abfd, buf, p->addend);
11121 for (a = buf; *a == '0'; ++a)
11122 ;
11123 len = strlen (a);
11124 memcpy (names, a, len);
11125 names += len;
11126 }
11127 memcpy (names, "@plt", sizeof ("@plt"));
11128 names += sizeof ("@plt");
11129 ++s, ++n;
11130 }
11131
11132 return n;
11133 }
11134
11135 /* It is only used by x86-64 so far.
11136 ??? This repeats *COM* id of zero. sec->id is supposed to be unique,
11137 but current usage would allow all of _bfd_std_section to be zero. t*/
11138 asection _bfd_elf_large_com_section
11139 = BFD_FAKE_SECTION (_bfd_elf_large_com_section, NULL,
11140 "LARGE_COMMON", 0, SEC_IS_COMMON);
11141
11142 void
11143 _bfd_elf_post_process_headers (bfd * abfd,
11144 struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
11145 {
11146 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
11147
11148 i_ehdrp = elf_elfheader (abfd);
11149
11150 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
11151
11152 /* To make things simpler for the loader on Linux systems we set the
11153 osabi field to ELFOSABI_GNU if the binary contains symbols of
11154 the STT_GNU_IFUNC type or STB_GNU_UNIQUE binding. */
11155 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE
11156 && elf_tdata (abfd)->has_gnu_symbols)
11157 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_GNU;
11158 }
11159
11160
11161 /* Return TRUE for ELF symbol types that represent functions.
11162 This is the default version of this function, which is sufficient for
11163 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */
11164
11165 bfd_boolean
11166 _bfd_elf_is_function_type (unsigned int type)
11167 {
11168 return (type == STT_FUNC
11169 || type == STT_GNU_IFUNC);
11170 }
11171
11172 /* If the ELF symbol SYM might be a function in SEC, return the
11173 function size and set *CODE_OFF to the function's entry point,
11174 otherwise return zero. */
11175
11176 bfd_size_type
11177 _bfd_elf_maybe_function_sym (const asymbol *sym, asection *sec,
11178 bfd_vma *code_off)
11179 {
11180 bfd_size_type size;
11181
11182 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
11183 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0
11184 || sym->section != sec)
11185 return 0;
11186
11187 *code_off = sym->value;
11188 size = 0;
11189 if (!(sym->flags & BSF_SYNTHETIC))
11190 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
11191 if (size == 0)
11192 size = 1;
11193 return size;
11194 }