bfd_section_from_shdr: Support SHT_RELR sections
[binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright (C) 1993-2021 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22
23 /*
24 SECTION
25 ELF backends
26
27 BFD support for ELF formats is being worked on.
28 Currently, the best supported back ends are for sparc and i386
29 (running svr4 or Solaris 2).
30
31 Documentation of the internals of the support code still needs
32 to be written. The code is changing quickly enough that we
33 haven't bothered yet. */
34
35 /* For sparc64-cross-sparc32. */
36 #define _SYSCALL32
37 #include "sysdep.h"
38 #include <limits.h>
39 #include "bfd.h"
40 #include "bfdlink.h"
41 #include "libbfd.h"
42 #define ARCH_SIZE 0
43 #include "elf-bfd.h"
44 #include "libiberty.h"
45 #include "safe-ctype.h"
46 #include "elf-linux-core.h"
47
48 #ifdef CORE_HEADER
49 #include CORE_HEADER
50 #endif
51
52 static int elf_sort_sections (const void *, const void *);
53 static bool assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
54 static bool swap_out_syms (bfd *, struct elf_strtab_hash **, int,
55 struct bfd_link_info *);
56 static bool elf_parse_notes (bfd *abfd, char *buf, size_t size,
57 file_ptr offset, size_t align);
58
59 /* Swap version information in and out. The version information is
60 currently size independent. If that ever changes, this code will
61 need to move into elfcode.h. */
62
63 /* Swap in a Verdef structure. */
64
65 void
66 _bfd_elf_swap_verdef_in (bfd *abfd,
67 const Elf_External_Verdef *src,
68 Elf_Internal_Verdef *dst)
69 {
70 dst->vd_version = H_GET_16 (abfd, src->vd_version);
71 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
72 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
73 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
74 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
75 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
76 dst->vd_next = H_GET_32 (abfd, src->vd_next);
77 }
78
79 /* Swap out a Verdef structure. */
80
81 void
82 _bfd_elf_swap_verdef_out (bfd *abfd,
83 const Elf_Internal_Verdef *src,
84 Elf_External_Verdef *dst)
85 {
86 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
87 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
88 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
89 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
90 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
91 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
92 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
93 }
94
95 /* Swap in a Verdaux structure. */
96
97 void
98 _bfd_elf_swap_verdaux_in (bfd *abfd,
99 const Elf_External_Verdaux *src,
100 Elf_Internal_Verdaux *dst)
101 {
102 dst->vda_name = H_GET_32 (abfd, src->vda_name);
103 dst->vda_next = H_GET_32 (abfd, src->vda_next);
104 }
105
106 /* Swap out a Verdaux structure. */
107
108 void
109 _bfd_elf_swap_verdaux_out (bfd *abfd,
110 const Elf_Internal_Verdaux *src,
111 Elf_External_Verdaux *dst)
112 {
113 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
114 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
115 }
116
117 /* Swap in a Verneed structure. */
118
119 void
120 _bfd_elf_swap_verneed_in (bfd *abfd,
121 const Elf_External_Verneed *src,
122 Elf_Internal_Verneed *dst)
123 {
124 dst->vn_version = H_GET_16 (abfd, src->vn_version);
125 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
126 dst->vn_file = H_GET_32 (abfd, src->vn_file);
127 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
128 dst->vn_next = H_GET_32 (abfd, src->vn_next);
129 }
130
131 /* Swap out a Verneed structure. */
132
133 void
134 _bfd_elf_swap_verneed_out (bfd *abfd,
135 const Elf_Internal_Verneed *src,
136 Elf_External_Verneed *dst)
137 {
138 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
139 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
140 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
141 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
142 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
143 }
144
145 /* Swap in a Vernaux structure. */
146
147 void
148 _bfd_elf_swap_vernaux_in (bfd *abfd,
149 const Elf_External_Vernaux *src,
150 Elf_Internal_Vernaux *dst)
151 {
152 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
153 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
154 dst->vna_other = H_GET_16 (abfd, src->vna_other);
155 dst->vna_name = H_GET_32 (abfd, src->vna_name);
156 dst->vna_next = H_GET_32 (abfd, src->vna_next);
157 }
158
159 /* Swap out a Vernaux structure. */
160
161 void
162 _bfd_elf_swap_vernaux_out (bfd *abfd,
163 const Elf_Internal_Vernaux *src,
164 Elf_External_Vernaux *dst)
165 {
166 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
167 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
168 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
169 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
170 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
171 }
172
173 /* Swap in a Versym structure. */
174
175 void
176 _bfd_elf_swap_versym_in (bfd *abfd,
177 const Elf_External_Versym *src,
178 Elf_Internal_Versym *dst)
179 {
180 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
181 }
182
183 /* Swap out a Versym structure. */
184
185 void
186 _bfd_elf_swap_versym_out (bfd *abfd,
187 const Elf_Internal_Versym *src,
188 Elf_External_Versym *dst)
189 {
190 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
191 }
192
193 /* Standard ELF hash function. Do not change this function; you will
194 cause invalid hash tables to be generated. */
195
196 unsigned long
197 bfd_elf_hash (const char *namearg)
198 {
199 const unsigned char *name = (const unsigned char *) namearg;
200 unsigned long h = 0;
201 unsigned long g;
202 int ch;
203
204 while ((ch = *name++) != '\0')
205 {
206 h = (h << 4) + ch;
207 if ((g = (h & 0xf0000000)) != 0)
208 {
209 h ^= g >> 24;
210 /* The ELF ABI says `h &= ~g', but this is equivalent in
211 this case and on some machines one insn instead of two. */
212 h ^= g;
213 }
214 }
215 return h & 0xffffffff;
216 }
217
218 /* DT_GNU_HASH hash function. Do not change this function; you will
219 cause invalid hash tables to be generated. */
220
221 unsigned long
222 bfd_elf_gnu_hash (const char *namearg)
223 {
224 const unsigned char *name = (const unsigned char *) namearg;
225 unsigned long h = 5381;
226 unsigned char ch;
227
228 while ((ch = *name++) != '\0')
229 h = (h << 5) + h + ch;
230 return h & 0xffffffff;
231 }
232
233 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
234 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
235 bool
236 bfd_elf_allocate_object (bfd *abfd,
237 size_t object_size,
238 enum elf_target_id object_id)
239 {
240 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
241 abfd->tdata.any = bfd_zalloc (abfd, object_size);
242 if (abfd->tdata.any == NULL)
243 return false;
244
245 elf_object_id (abfd) = object_id;
246 if (abfd->direction != read_direction)
247 {
248 struct output_elf_obj_tdata *o = bfd_zalloc (abfd, sizeof *o);
249 if (o == NULL)
250 return false;
251 elf_tdata (abfd)->o = o;
252 elf_program_header_size (abfd) = (bfd_size_type) -1;
253 }
254 return true;
255 }
256
257
258 bool
259 bfd_elf_make_object (bfd *abfd)
260 {
261 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
262 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
263 bed->target_id);
264 }
265
266 bool
267 bfd_elf_mkcorefile (bfd *abfd)
268 {
269 /* I think this can be done just like an object file. */
270 if (!abfd->xvec->_bfd_set_format[(int) bfd_object] (abfd))
271 return false;
272 elf_tdata (abfd)->core = bfd_zalloc (abfd, sizeof (*elf_tdata (abfd)->core));
273 return elf_tdata (abfd)->core != NULL;
274 }
275
276 char *
277 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
278 {
279 Elf_Internal_Shdr **i_shdrp;
280 bfd_byte *shstrtab = NULL;
281 file_ptr offset;
282 bfd_size_type shstrtabsize;
283
284 i_shdrp = elf_elfsections (abfd);
285 if (i_shdrp == 0
286 || shindex >= elf_numsections (abfd)
287 || i_shdrp[shindex] == 0)
288 return NULL;
289
290 shstrtab = i_shdrp[shindex]->contents;
291 if (shstrtab == NULL)
292 {
293 /* No cached one, attempt to read, and cache what we read. */
294 offset = i_shdrp[shindex]->sh_offset;
295 shstrtabsize = i_shdrp[shindex]->sh_size;
296
297 /* Allocate and clear an extra byte at the end, to prevent crashes
298 in case the string table is not terminated. */
299 if (shstrtabsize + 1 <= 1
300 || bfd_seek (abfd, offset, SEEK_SET) != 0
301 || (shstrtab = _bfd_alloc_and_read (abfd, shstrtabsize + 1,
302 shstrtabsize)) == NULL)
303 {
304 /* Once we've failed to read it, make sure we don't keep
305 trying. Otherwise, we'll keep allocating space for
306 the string table over and over. */
307 i_shdrp[shindex]->sh_size = 0;
308 }
309 else
310 shstrtab[shstrtabsize] = '\0';
311 i_shdrp[shindex]->contents = shstrtab;
312 }
313 return (char *) shstrtab;
314 }
315
316 char *
317 bfd_elf_string_from_elf_section (bfd *abfd,
318 unsigned int shindex,
319 unsigned int strindex)
320 {
321 Elf_Internal_Shdr *hdr;
322
323 if (strindex == 0)
324 return "";
325
326 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
327 return NULL;
328
329 hdr = elf_elfsections (abfd)[shindex];
330
331 if (hdr->contents == NULL)
332 {
333 if (hdr->sh_type != SHT_STRTAB && hdr->sh_type < SHT_LOOS)
334 {
335 /* PR 17512: file: f057ec89. */
336 /* xgettext:c-format */
337 _bfd_error_handler (_("%pB: attempt to load strings from"
338 " a non-string section (number %d)"),
339 abfd, shindex);
340 return NULL;
341 }
342
343 if (bfd_elf_get_str_section (abfd, shindex) == NULL)
344 return NULL;
345 }
346 else
347 {
348 /* PR 24273: The string section's contents may have already
349 been loaded elsewhere, eg because a corrupt file has the
350 string section index in the ELF header pointing at a group
351 section. So be paranoid, and test that the last byte of
352 the section is zero. */
353 if (hdr->sh_size == 0 || hdr->contents[hdr->sh_size - 1] != 0)
354 return NULL;
355 }
356
357 if (strindex >= hdr->sh_size)
358 {
359 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
360 _bfd_error_handler
361 /* xgettext:c-format */
362 (_("%pB: invalid string offset %u >= %" PRIu64 " for section `%s'"),
363 abfd, strindex, (uint64_t) hdr->sh_size,
364 (shindex == shstrndx && strindex == hdr->sh_name
365 ? ".shstrtab"
366 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
367 return NULL;
368 }
369
370 return ((char *) hdr->contents) + strindex;
371 }
372
373 /* Read and convert symbols to internal format.
374 SYMCOUNT specifies the number of symbols to read, starting from
375 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
376 are non-NULL, they are used to store the internal symbols, external
377 symbols, and symbol section index extensions, respectively.
378 Returns a pointer to the internal symbol buffer (malloced if necessary)
379 or NULL if there were no symbols or some kind of problem. */
380
381 Elf_Internal_Sym *
382 bfd_elf_get_elf_syms (bfd *ibfd,
383 Elf_Internal_Shdr *symtab_hdr,
384 size_t symcount,
385 size_t symoffset,
386 Elf_Internal_Sym *intsym_buf,
387 void *extsym_buf,
388 Elf_External_Sym_Shndx *extshndx_buf)
389 {
390 Elf_Internal_Shdr *shndx_hdr;
391 void *alloc_ext;
392 const bfd_byte *esym;
393 Elf_External_Sym_Shndx *alloc_extshndx;
394 Elf_External_Sym_Shndx *shndx;
395 Elf_Internal_Sym *alloc_intsym;
396 Elf_Internal_Sym *isym;
397 Elf_Internal_Sym *isymend;
398 const struct elf_backend_data *bed;
399 size_t extsym_size;
400 size_t amt;
401 file_ptr pos;
402
403 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
404 abort ();
405
406 if (symcount == 0)
407 return intsym_buf;
408
409 /* Normal syms might have section extension entries. */
410 shndx_hdr = NULL;
411 if (elf_symtab_shndx_list (ibfd) != NULL)
412 {
413 elf_section_list * entry;
414 Elf_Internal_Shdr **sections = elf_elfsections (ibfd);
415
416 /* Find an index section that is linked to this symtab section. */
417 for (entry = elf_symtab_shndx_list (ibfd); entry != NULL; entry = entry->next)
418 {
419 /* PR 20063. */
420 if (entry->hdr.sh_link >= elf_numsections (ibfd))
421 continue;
422
423 if (sections[entry->hdr.sh_link] == symtab_hdr)
424 {
425 shndx_hdr = & entry->hdr;
426 break;
427 };
428 }
429
430 if (shndx_hdr == NULL)
431 {
432 if (symtab_hdr == & elf_symtab_hdr (ibfd))
433 /* Not really accurate, but this was how the old code used to work. */
434 shndx_hdr = & elf_symtab_shndx_list (ibfd)->hdr;
435 /* Otherwise we do nothing. The assumption is that
436 the index table will not be needed. */
437 }
438 }
439
440 /* Read the symbols. */
441 alloc_ext = NULL;
442 alloc_extshndx = NULL;
443 alloc_intsym = NULL;
444 bed = get_elf_backend_data (ibfd);
445 extsym_size = bed->s->sizeof_sym;
446 if (_bfd_mul_overflow (symcount, extsym_size, &amt))
447 {
448 bfd_set_error (bfd_error_file_too_big);
449 intsym_buf = NULL;
450 goto out;
451 }
452 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
453 if (extsym_buf == NULL)
454 {
455 alloc_ext = bfd_malloc (amt);
456 extsym_buf = alloc_ext;
457 }
458 if (extsym_buf == NULL
459 || bfd_seek (ibfd, pos, SEEK_SET) != 0
460 || bfd_bread (extsym_buf, amt, ibfd) != amt)
461 {
462 intsym_buf = NULL;
463 goto out;
464 }
465
466 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
467 extshndx_buf = NULL;
468 else
469 {
470 if (_bfd_mul_overflow (symcount, sizeof (Elf_External_Sym_Shndx), &amt))
471 {
472 bfd_set_error (bfd_error_file_too_big);
473 intsym_buf = NULL;
474 goto out;
475 }
476 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
477 if (extshndx_buf == NULL)
478 {
479 alloc_extshndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
480 extshndx_buf = alloc_extshndx;
481 }
482 if (extshndx_buf == NULL
483 || bfd_seek (ibfd, pos, SEEK_SET) != 0
484 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
485 {
486 intsym_buf = NULL;
487 goto out;
488 }
489 }
490
491 if (intsym_buf == NULL)
492 {
493 if (_bfd_mul_overflow (symcount, sizeof (Elf_Internal_Sym), &amt))
494 {
495 bfd_set_error (bfd_error_file_too_big);
496 goto out;
497 }
498 alloc_intsym = (Elf_Internal_Sym *) bfd_malloc (amt);
499 intsym_buf = alloc_intsym;
500 if (intsym_buf == NULL)
501 goto out;
502 }
503
504 /* Convert the symbols to internal form. */
505 isymend = intsym_buf + symcount;
506 for (esym = (const bfd_byte *) extsym_buf, isym = intsym_buf,
507 shndx = extshndx_buf;
508 isym < isymend;
509 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
510 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
511 {
512 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
513 /* xgettext:c-format */
514 _bfd_error_handler (_("%pB symbol number %lu references"
515 " nonexistent SHT_SYMTAB_SHNDX section"),
516 ibfd, (unsigned long) symoffset);
517 free (alloc_intsym);
518 intsym_buf = NULL;
519 goto out;
520 }
521
522 out:
523 free (alloc_ext);
524 free (alloc_extshndx);
525
526 return intsym_buf;
527 }
528
529 /* Look up a symbol name. */
530 const char *
531 bfd_elf_sym_name (bfd *abfd,
532 Elf_Internal_Shdr *symtab_hdr,
533 Elf_Internal_Sym *isym,
534 asection *sym_sec)
535 {
536 const char *name;
537 unsigned int iname = isym->st_name;
538 unsigned int shindex = symtab_hdr->sh_link;
539
540 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
541 /* Check for a bogus st_shndx to avoid crashing. */
542 && isym->st_shndx < elf_numsections (abfd))
543 {
544 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
545 shindex = elf_elfheader (abfd)->e_shstrndx;
546 }
547
548 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
549 if (name == NULL)
550 name = "(null)";
551 else if (sym_sec && *name == '\0')
552 name = bfd_section_name (sym_sec);
553
554 return name;
555 }
556
557 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
558 sections. The first element is the flags, the rest are section
559 pointers. */
560
561 typedef union elf_internal_group {
562 Elf_Internal_Shdr *shdr;
563 unsigned int flags;
564 } Elf_Internal_Group;
565
566 /* Return the name of the group signature symbol. Why isn't the
567 signature just a string? */
568
569 static const char *
570 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
571 {
572 Elf_Internal_Shdr *hdr;
573 unsigned char esym[sizeof (Elf64_External_Sym)];
574 Elf_External_Sym_Shndx eshndx;
575 Elf_Internal_Sym isym;
576
577 /* First we need to ensure the symbol table is available. Make sure
578 that it is a symbol table section. */
579 if (ghdr->sh_link >= elf_numsections (abfd))
580 return NULL;
581 hdr = elf_elfsections (abfd) [ghdr->sh_link];
582 if (hdr->sh_type != SHT_SYMTAB
583 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
584 return NULL;
585
586 /* Go read the symbol. */
587 hdr = &elf_tdata (abfd)->symtab_hdr;
588 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
589 &isym, esym, &eshndx) == NULL)
590 return NULL;
591
592 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
593 }
594
595 /* Set next_in_group list pointer, and group name for NEWSECT. */
596
597 static bool
598 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
599 {
600 unsigned int num_group = elf_tdata (abfd)->num_group;
601
602 /* If num_group is zero, read in all SHT_GROUP sections. The count
603 is set to -1 if there are no SHT_GROUP sections. */
604 if (num_group == 0)
605 {
606 unsigned int i, shnum;
607
608 /* First count the number of groups. If we have a SHT_GROUP
609 section with just a flag word (ie. sh_size is 4), ignore it. */
610 shnum = elf_numsections (abfd);
611 num_group = 0;
612
613 #define IS_VALID_GROUP_SECTION_HEADER(shdr, minsize) \
614 ( (shdr)->sh_type == SHT_GROUP \
615 && (shdr)->sh_size >= minsize \
616 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
617 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
618
619 for (i = 0; i < shnum; i++)
620 {
621 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
622
623 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
624 num_group += 1;
625 }
626
627 if (num_group == 0)
628 {
629 num_group = (unsigned) -1;
630 elf_tdata (abfd)->num_group = num_group;
631 elf_tdata (abfd)->group_sect_ptr = NULL;
632 }
633 else
634 {
635 /* We keep a list of elf section headers for group sections,
636 so we can find them quickly. */
637 size_t amt;
638
639 elf_tdata (abfd)->num_group = num_group;
640 amt = num_group * sizeof (Elf_Internal_Shdr *);
641 elf_tdata (abfd)->group_sect_ptr
642 = (Elf_Internal_Shdr **) bfd_zalloc (abfd, amt);
643 if (elf_tdata (abfd)->group_sect_ptr == NULL)
644 return false;
645 num_group = 0;
646
647 for (i = 0; i < shnum; i++)
648 {
649 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
650
651 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
652 {
653 unsigned char *src;
654 Elf_Internal_Group *dest;
655
656 /* Make sure the group section has a BFD section
657 attached to it. */
658 if (!bfd_section_from_shdr (abfd, i))
659 return false;
660
661 /* Add to list of sections. */
662 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
663 num_group += 1;
664
665 /* Read the raw contents. */
666 BFD_ASSERT (sizeof (*dest) >= 4 && sizeof (*dest) % 4 == 0);
667 shdr->contents = NULL;
668 if (_bfd_mul_overflow (shdr->sh_size,
669 sizeof (*dest) / 4, &amt)
670 || bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
671 || !(shdr->contents
672 = _bfd_alloc_and_read (abfd, amt, shdr->sh_size)))
673 {
674 _bfd_error_handler
675 /* xgettext:c-format */
676 (_("%pB: invalid size field in group section"
677 " header: %#" PRIx64 ""),
678 abfd, (uint64_t) shdr->sh_size);
679 bfd_set_error (bfd_error_bad_value);
680 -- num_group;
681 continue;
682 }
683
684 /* Translate raw contents, a flag word followed by an
685 array of elf section indices all in target byte order,
686 to the flag word followed by an array of elf section
687 pointers. */
688 src = shdr->contents + shdr->sh_size;
689 dest = (Elf_Internal_Group *) (shdr->contents + amt);
690
691 while (1)
692 {
693 unsigned int idx;
694
695 src -= 4;
696 --dest;
697 idx = H_GET_32 (abfd, src);
698 if (src == shdr->contents)
699 {
700 dest->shdr = NULL;
701 dest->flags = idx;
702 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
703 shdr->bfd_section->flags
704 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
705 break;
706 }
707 if (idx < shnum)
708 {
709 dest->shdr = elf_elfsections (abfd)[idx];
710 /* PR binutils/23199: All sections in a
711 section group should be marked with
712 SHF_GROUP. But some tools generate
713 broken objects without SHF_GROUP. Fix
714 them up here. */
715 dest->shdr->sh_flags |= SHF_GROUP;
716 }
717 if (idx >= shnum
718 || dest->shdr->sh_type == SHT_GROUP)
719 {
720 _bfd_error_handler
721 (_("%pB: invalid entry in SHT_GROUP section [%u]"),
722 abfd, i);
723 dest->shdr = NULL;
724 }
725 }
726 }
727 }
728
729 /* PR 17510: Corrupt binaries might contain invalid groups. */
730 if (num_group != (unsigned) elf_tdata (abfd)->num_group)
731 {
732 elf_tdata (abfd)->num_group = num_group;
733
734 /* If all groups are invalid then fail. */
735 if (num_group == 0)
736 {
737 elf_tdata (abfd)->group_sect_ptr = NULL;
738 elf_tdata (abfd)->num_group = num_group = -1;
739 _bfd_error_handler
740 (_("%pB: no valid group sections found"), abfd);
741 bfd_set_error (bfd_error_bad_value);
742 }
743 }
744 }
745 }
746
747 if (num_group != (unsigned) -1)
748 {
749 unsigned int search_offset = elf_tdata (abfd)->group_search_offset;
750 unsigned int j;
751
752 for (j = 0; j < num_group; j++)
753 {
754 /* Begin search from previous found group. */
755 unsigned i = (j + search_offset) % num_group;
756
757 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
758 Elf_Internal_Group *idx;
759 bfd_size_type n_elt;
760
761 if (shdr == NULL)
762 continue;
763
764 idx = (Elf_Internal_Group *) shdr->contents;
765 if (idx == NULL || shdr->sh_size < 4)
766 {
767 /* See PR 21957 for a reproducer. */
768 /* xgettext:c-format */
769 _bfd_error_handler (_("%pB: group section '%pA' has no contents"),
770 abfd, shdr->bfd_section);
771 elf_tdata (abfd)->group_sect_ptr[i] = NULL;
772 bfd_set_error (bfd_error_bad_value);
773 return false;
774 }
775 n_elt = shdr->sh_size / 4;
776
777 /* Look through this group's sections to see if current
778 section is a member. */
779 while (--n_elt != 0)
780 if ((++idx)->shdr == hdr)
781 {
782 asection *s = NULL;
783
784 /* We are a member of this group. Go looking through
785 other members to see if any others are linked via
786 next_in_group. */
787 idx = (Elf_Internal_Group *) shdr->contents;
788 n_elt = shdr->sh_size / 4;
789 while (--n_elt != 0)
790 if ((++idx)->shdr != NULL
791 && (s = idx->shdr->bfd_section) != NULL
792 && elf_next_in_group (s) != NULL)
793 break;
794 if (n_elt != 0)
795 {
796 /* Snarf the group name from other member, and
797 insert current section in circular list. */
798 elf_group_name (newsect) = elf_group_name (s);
799 elf_next_in_group (newsect) = elf_next_in_group (s);
800 elf_next_in_group (s) = newsect;
801 }
802 else
803 {
804 const char *gname;
805
806 gname = group_signature (abfd, shdr);
807 if (gname == NULL)
808 return false;
809 elf_group_name (newsect) = gname;
810
811 /* Start a circular list with one element. */
812 elf_next_in_group (newsect) = newsect;
813 }
814
815 /* If the group section has been created, point to the
816 new member. */
817 if (shdr->bfd_section != NULL)
818 elf_next_in_group (shdr->bfd_section) = newsect;
819
820 elf_tdata (abfd)->group_search_offset = i;
821 j = num_group - 1;
822 break;
823 }
824 }
825 }
826
827 if (elf_group_name (newsect) == NULL)
828 {
829 /* xgettext:c-format */
830 _bfd_error_handler (_("%pB: no group info for section '%pA'"),
831 abfd, newsect);
832 return false;
833 }
834 return true;
835 }
836
837 bool
838 _bfd_elf_setup_sections (bfd *abfd)
839 {
840 unsigned int i;
841 unsigned int num_group = elf_tdata (abfd)->num_group;
842 bool result = true;
843 asection *s;
844
845 /* Process SHF_LINK_ORDER. */
846 for (s = abfd->sections; s != NULL; s = s->next)
847 {
848 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
849 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
850 {
851 unsigned int elfsec = this_hdr->sh_link;
852 /* An sh_link value of 0 is now allowed. It indicates that linked
853 to section has already been discarded, but that the current
854 section has been retained for some other reason. This linking
855 section is still a candidate for later garbage collection
856 however. */
857 if (elfsec == 0)
858 {
859 elf_linked_to_section (s) = NULL;
860 }
861 else
862 {
863 asection *linksec = NULL;
864
865 if (elfsec < elf_numsections (abfd))
866 {
867 this_hdr = elf_elfsections (abfd)[elfsec];
868 linksec = this_hdr->bfd_section;
869 }
870
871 /* PR 1991, 2008:
872 Some strip/objcopy may leave an incorrect value in
873 sh_link. We don't want to proceed. */
874 if (linksec == NULL)
875 {
876 _bfd_error_handler
877 /* xgettext:c-format */
878 (_("%pB: sh_link [%d] in section `%pA' is incorrect"),
879 s->owner, elfsec, s);
880 result = false;
881 }
882
883 elf_linked_to_section (s) = linksec;
884 }
885 }
886 else if (this_hdr->sh_type == SHT_GROUP
887 && elf_next_in_group (s) == NULL)
888 {
889 _bfd_error_handler
890 /* xgettext:c-format */
891 (_("%pB: SHT_GROUP section [index %d] has no SHF_GROUP sections"),
892 abfd, elf_section_data (s)->this_idx);
893 result = false;
894 }
895 }
896
897 /* Process section groups. */
898 if (num_group == (unsigned) -1)
899 return result;
900
901 for (i = 0; i < num_group; i++)
902 {
903 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
904 Elf_Internal_Group *idx;
905 unsigned int n_elt;
906
907 /* PR binutils/18758: Beware of corrupt binaries with invalid group data. */
908 if (shdr == NULL || shdr->bfd_section == NULL || shdr->contents == NULL)
909 {
910 _bfd_error_handler
911 /* xgettext:c-format */
912 (_("%pB: section group entry number %u is corrupt"),
913 abfd, i);
914 result = false;
915 continue;
916 }
917
918 idx = (Elf_Internal_Group *) shdr->contents;
919 n_elt = shdr->sh_size / 4;
920
921 while (--n_elt != 0)
922 {
923 ++ idx;
924
925 if (idx->shdr == NULL)
926 continue;
927 else if (idx->shdr->bfd_section)
928 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
929 else if (idx->shdr->sh_type != SHT_RELA
930 && idx->shdr->sh_type != SHT_REL)
931 {
932 /* There are some unknown sections in the group. */
933 _bfd_error_handler
934 /* xgettext:c-format */
935 (_("%pB: unknown type [%#x] section `%s' in group [%pA]"),
936 abfd,
937 idx->shdr->sh_type,
938 bfd_elf_string_from_elf_section (abfd,
939 (elf_elfheader (abfd)
940 ->e_shstrndx),
941 idx->shdr->sh_name),
942 shdr->bfd_section);
943 result = false;
944 }
945 }
946 }
947
948 return result;
949 }
950
951 bool
952 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
953 {
954 return elf_next_in_group (sec) != NULL;
955 }
956
957 const char *
958 bfd_elf_group_name (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
959 {
960 if (elf_sec_group (sec) != NULL)
961 return elf_group_name (sec);
962 return NULL;
963 }
964
965 static char *
966 convert_debug_to_zdebug (bfd *abfd, const char *name)
967 {
968 unsigned int len = strlen (name);
969 char *new_name = bfd_alloc (abfd, len + 2);
970 if (new_name == NULL)
971 return NULL;
972 new_name[0] = '.';
973 new_name[1] = 'z';
974 memcpy (new_name + 2, name + 1, len);
975 return new_name;
976 }
977
978 static char *
979 convert_zdebug_to_debug (bfd *abfd, const char *name)
980 {
981 unsigned int len = strlen (name);
982 char *new_name = bfd_alloc (abfd, len);
983 if (new_name == NULL)
984 return NULL;
985 new_name[0] = '.';
986 memcpy (new_name + 1, name + 2, len - 1);
987 return new_name;
988 }
989
990 /* This a copy of lto_section defined in GCC (lto-streamer.h). */
991
992 struct lto_section
993 {
994 int16_t major_version;
995 int16_t minor_version;
996 unsigned char slim_object;
997
998 /* Flags is a private field that is not defined publicly. */
999 uint16_t flags;
1000 };
1001
1002 /* Make a BFD section from an ELF section. We store a pointer to the
1003 BFD section in the bfd_section field of the header. */
1004
1005 bool
1006 _bfd_elf_make_section_from_shdr (bfd *abfd,
1007 Elf_Internal_Shdr *hdr,
1008 const char *name,
1009 int shindex)
1010 {
1011 asection *newsect;
1012 flagword flags;
1013 const struct elf_backend_data *bed;
1014 unsigned int opb = bfd_octets_per_byte (abfd, NULL);
1015
1016 if (hdr->bfd_section != NULL)
1017 return true;
1018
1019 newsect = bfd_make_section_anyway (abfd, name);
1020 if (newsect == NULL)
1021 return false;
1022
1023 hdr->bfd_section = newsect;
1024 elf_section_data (newsect)->this_hdr = *hdr;
1025 elf_section_data (newsect)->this_idx = shindex;
1026
1027 /* Always use the real type/flags. */
1028 elf_section_type (newsect) = hdr->sh_type;
1029 elf_section_flags (newsect) = hdr->sh_flags;
1030
1031 newsect->filepos = hdr->sh_offset;
1032
1033 flags = SEC_NO_FLAGS;
1034 if (hdr->sh_type != SHT_NOBITS)
1035 flags |= SEC_HAS_CONTENTS;
1036 if (hdr->sh_type == SHT_GROUP)
1037 flags |= SEC_GROUP;
1038 if ((hdr->sh_flags & SHF_ALLOC) != 0)
1039 {
1040 flags |= SEC_ALLOC;
1041 if (hdr->sh_type != SHT_NOBITS)
1042 flags |= SEC_LOAD;
1043 }
1044 if ((hdr->sh_flags & SHF_WRITE) == 0)
1045 flags |= SEC_READONLY;
1046 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
1047 flags |= SEC_CODE;
1048 else if ((flags & SEC_LOAD) != 0)
1049 flags |= SEC_DATA;
1050 if ((hdr->sh_flags & SHF_MERGE) != 0)
1051 {
1052 flags |= SEC_MERGE;
1053 newsect->entsize = hdr->sh_entsize;
1054 }
1055 if ((hdr->sh_flags & SHF_STRINGS) != 0)
1056 flags |= SEC_STRINGS;
1057 if (hdr->sh_flags & SHF_GROUP)
1058 if (!setup_group (abfd, hdr, newsect))
1059 return false;
1060 if ((hdr->sh_flags & SHF_TLS) != 0)
1061 flags |= SEC_THREAD_LOCAL;
1062 if ((hdr->sh_flags & SHF_EXCLUDE) != 0)
1063 flags |= SEC_EXCLUDE;
1064
1065 switch (elf_elfheader (abfd)->e_ident[EI_OSABI])
1066 {
1067 /* FIXME: We should not recognize SHF_GNU_MBIND for ELFOSABI_NONE,
1068 but binutils as of 2019-07-23 did not set the EI_OSABI header
1069 byte. */
1070 case ELFOSABI_GNU:
1071 case ELFOSABI_FREEBSD:
1072 if ((hdr->sh_flags & SHF_GNU_RETAIN) != 0)
1073 elf_tdata (abfd)->has_gnu_osabi |= elf_gnu_osabi_retain;
1074 /* Fall through */
1075 case ELFOSABI_NONE:
1076 if ((hdr->sh_flags & SHF_GNU_MBIND) != 0)
1077 elf_tdata (abfd)->has_gnu_osabi |= elf_gnu_osabi_mbind;
1078 break;
1079 }
1080
1081 if ((flags & SEC_ALLOC) == 0)
1082 {
1083 /* The debugging sections appear to be recognized only by name,
1084 not any sort of flag. Their SEC_ALLOC bits are cleared. */
1085 if (name [0] == '.')
1086 {
1087 if (startswith (name, ".debug")
1088 || startswith (name, ".gnu.debuglto_.debug_")
1089 || startswith (name, ".gnu.linkonce.wi.")
1090 || startswith (name, ".zdebug"))
1091 flags |= SEC_DEBUGGING | SEC_ELF_OCTETS;
1092 else if (startswith (name, GNU_BUILD_ATTRS_SECTION_NAME)
1093 || startswith (name, ".note.gnu"))
1094 {
1095 flags |= SEC_ELF_OCTETS;
1096 opb = 1;
1097 }
1098 else if (startswith (name, ".line")
1099 || startswith (name, ".stab")
1100 || strcmp (name, ".gdb_index") == 0)
1101 flags |= SEC_DEBUGGING;
1102 }
1103 }
1104
1105 if (!bfd_set_section_vma (newsect, hdr->sh_addr / opb)
1106 || !bfd_set_section_size (newsect, hdr->sh_size)
1107 || !bfd_set_section_alignment (newsect, bfd_log2 (hdr->sh_addralign)))
1108 return false;
1109
1110 /* As a GNU extension, if the name begins with .gnu.linkonce, we
1111 only link a single copy of the section. This is used to support
1112 g++. g++ will emit each template expansion in its own section.
1113 The symbols will be defined as weak, so that multiple definitions
1114 are permitted. The GNU linker extension is to actually discard
1115 all but one of the sections. */
1116 if (startswith (name, ".gnu.linkonce")
1117 && elf_next_in_group (newsect) == NULL)
1118 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1119
1120 if (!bfd_set_section_flags (newsect, flags))
1121 return false;
1122
1123 bed = get_elf_backend_data (abfd);
1124 if (bed->elf_backend_section_flags)
1125 if (!bed->elf_backend_section_flags (hdr))
1126 return false;
1127
1128 /* We do not parse the PT_NOTE segments as we are interested even in the
1129 separate debug info files which may have the segments offsets corrupted.
1130 PT_NOTEs from the core files are currently not parsed using BFD. */
1131 if (hdr->sh_type == SHT_NOTE)
1132 {
1133 bfd_byte *contents;
1134
1135 if (!bfd_malloc_and_get_section (abfd, newsect, &contents))
1136 return false;
1137
1138 elf_parse_notes (abfd, (char *) contents, hdr->sh_size,
1139 hdr->sh_offset, hdr->sh_addralign);
1140 free (contents);
1141 }
1142
1143 if ((newsect->flags & SEC_ALLOC) != 0)
1144 {
1145 Elf_Internal_Phdr *phdr;
1146 unsigned int i, nload;
1147
1148 /* Some ELF linkers produce binaries with all the program header
1149 p_paddr fields zero. If we have such a binary with more than
1150 one PT_LOAD header, then leave the section lma equal to vma
1151 so that we don't create sections with overlapping lma. */
1152 phdr = elf_tdata (abfd)->phdr;
1153 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1154 if (phdr->p_paddr != 0)
1155 break;
1156 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
1157 ++nload;
1158 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
1159 return true;
1160
1161 phdr = elf_tdata (abfd)->phdr;
1162 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1163 {
1164 if (((phdr->p_type == PT_LOAD
1165 && (hdr->sh_flags & SHF_TLS) == 0)
1166 || phdr->p_type == PT_TLS)
1167 && ELF_SECTION_IN_SEGMENT (hdr, phdr))
1168 {
1169 if ((newsect->flags & SEC_LOAD) == 0)
1170 newsect->lma = (phdr->p_paddr
1171 + hdr->sh_addr - phdr->p_vaddr) / opb;
1172 else
1173 /* We used to use the same adjustment for SEC_LOAD
1174 sections, but that doesn't work if the segment
1175 is packed with code from multiple VMAs.
1176 Instead we calculate the section LMA based on
1177 the segment LMA. It is assumed that the
1178 segment will contain sections with contiguous
1179 LMAs, even if the VMAs are not. */
1180 newsect->lma = (phdr->p_paddr
1181 + hdr->sh_offset - phdr->p_offset) / opb;
1182
1183 /* With contiguous segments, we can't tell from file
1184 offsets whether a section with zero size should
1185 be placed at the end of one segment or the
1186 beginning of the next. Decide based on vaddr. */
1187 if (hdr->sh_addr >= phdr->p_vaddr
1188 && (hdr->sh_addr + hdr->sh_size
1189 <= phdr->p_vaddr + phdr->p_memsz))
1190 break;
1191 }
1192 }
1193 }
1194
1195 /* Compress/decompress DWARF debug sections with names: .debug_* and
1196 .zdebug_*, after the section flags is set. */
1197 if ((newsect->flags & SEC_DEBUGGING)
1198 && ((name[1] == 'd' && name[6] == '_')
1199 || (name[1] == 'z' && name[7] == '_')))
1200 {
1201 enum { nothing, compress, decompress } action = nothing;
1202 int compression_header_size;
1203 bfd_size_type uncompressed_size;
1204 unsigned int uncompressed_align_power;
1205 bool compressed
1206 = bfd_is_section_compressed_with_header (abfd, newsect,
1207 &compression_header_size,
1208 &uncompressed_size,
1209 &uncompressed_align_power);
1210 if (compressed)
1211 {
1212 /* Compressed section. Check if we should decompress. */
1213 if ((abfd->flags & BFD_DECOMPRESS))
1214 action = decompress;
1215 }
1216
1217 /* Compress the uncompressed section or convert from/to .zdebug*
1218 section. Check if we should compress. */
1219 if (action == nothing)
1220 {
1221 if (newsect->size != 0
1222 && (abfd->flags & BFD_COMPRESS)
1223 && compression_header_size >= 0
1224 && uncompressed_size > 0
1225 && (!compressed
1226 || ((compression_header_size > 0)
1227 != ((abfd->flags & BFD_COMPRESS_GABI) != 0))))
1228 action = compress;
1229 else
1230 return true;
1231 }
1232
1233 if (action == compress)
1234 {
1235 if (!bfd_init_section_compress_status (abfd, newsect))
1236 {
1237 _bfd_error_handler
1238 /* xgettext:c-format */
1239 (_("%pB: unable to initialize compress status for section %s"),
1240 abfd, name);
1241 return false;
1242 }
1243 }
1244 else
1245 {
1246 if (!bfd_init_section_decompress_status (abfd, newsect))
1247 {
1248 _bfd_error_handler
1249 /* xgettext:c-format */
1250 (_("%pB: unable to initialize decompress status for section %s"),
1251 abfd, name);
1252 return false;
1253 }
1254 }
1255
1256 if (abfd->is_linker_input)
1257 {
1258 if (name[1] == 'z'
1259 && (action == decompress
1260 || (action == compress
1261 && (abfd->flags & BFD_COMPRESS_GABI) != 0)))
1262 {
1263 /* Convert section name from .zdebug_* to .debug_* so
1264 that linker will consider this section as a debug
1265 section. */
1266 char *new_name = convert_zdebug_to_debug (abfd, name);
1267 if (new_name == NULL)
1268 return false;
1269 bfd_rename_section (newsect, new_name);
1270 }
1271 }
1272 else
1273 /* For objdump, don't rename the section. For objcopy, delay
1274 section rename to elf_fake_sections. */
1275 newsect->flags |= SEC_ELF_RENAME;
1276 }
1277
1278 /* GCC uses .gnu.lto_.lto.<some_hash> as a LTO bytecode information
1279 section. */
1280 if (startswith (name, ".gnu.lto_.lto."))
1281 {
1282 struct lto_section lsection;
1283 if (bfd_get_section_contents (abfd, newsect, &lsection, 0,
1284 sizeof (struct lto_section)))
1285 abfd->lto_slim_object = lsection.slim_object;
1286 }
1287
1288 return true;
1289 }
1290
1291 const char *const bfd_elf_section_type_names[] =
1292 {
1293 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1294 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1295 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1296 };
1297
1298 /* ELF relocs are against symbols. If we are producing relocatable
1299 output, and the reloc is against an external symbol, and nothing
1300 has given us any additional addend, the resulting reloc will also
1301 be against the same symbol. In such a case, we don't want to
1302 change anything about the way the reloc is handled, since it will
1303 all be done at final link time. Rather than put special case code
1304 into bfd_perform_relocation, all the reloc types use this howto
1305 function, or should call this function for relocatable output. */
1306
1307 bfd_reloc_status_type
1308 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1309 arelent *reloc_entry,
1310 asymbol *symbol,
1311 void *data ATTRIBUTE_UNUSED,
1312 asection *input_section,
1313 bfd *output_bfd,
1314 char **error_message ATTRIBUTE_UNUSED)
1315 {
1316 if (output_bfd != NULL
1317 && (symbol->flags & BSF_SECTION_SYM) == 0
1318 && (! reloc_entry->howto->partial_inplace
1319 || reloc_entry->addend == 0))
1320 {
1321 reloc_entry->address += input_section->output_offset;
1322 return bfd_reloc_ok;
1323 }
1324
1325 /* In some cases the relocation should be treated as output section
1326 relative, as when linking ELF DWARF into PE COFF. Many ELF
1327 targets lack section relative relocations and instead use
1328 ordinary absolute relocations for references between DWARF
1329 sections. That is arguably a bug in those targets but it happens
1330 to work for the usual case of linking to non-loaded ELF debug
1331 sections with VMAs forced to zero. PE COFF on the other hand
1332 doesn't allow a section VMA of zero. */
1333 if (output_bfd == NULL
1334 && !reloc_entry->howto->pc_relative
1335 && (symbol->section->flags & SEC_DEBUGGING) != 0
1336 && (input_section->flags & SEC_DEBUGGING) != 0)
1337 reloc_entry->addend -= symbol->section->output_section->vma;
1338
1339 return bfd_reloc_continue;
1340 }
1341 \f
1342 /* Returns TRUE if section A matches section B.
1343 Names, addresses and links may be different, but everything else
1344 should be the same. */
1345
1346 static bool
1347 section_match (const Elf_Internal_Shdr * a,
1348 const Elf_Internal_Shdr * b)
1349 {
1350 if (a->sh_type != b->sh_type
1351 || ((a->sh_flags ^ b->sh_flags) & ~SHF_INFO_LINK) != 0
1352 || a->sh_addralign != b->sh_addralign
1353 || a->sh_entsize != b->sh_entsize)
1354 return false;
1355 if (a->sh_type == SHT_SYMTAB
1356 || a->sh_type == SHT_STRTAB)
1357 return true;
1358 return a->sh_size == b->sh_size;
1359 }
1360
1361 /* Find a section in OBFD that has the same characteristics
1362 as IHEADER. Return the index of this section or SHN_UNDEF if
1363 none can be found. Check's section HINT first, as this is likely
1364 to be the correct section. */
1365
1366 static unsigned int
1367 find_link (const bfd *obfd, const Elf_Internal_Shdr *iheader,
1368 const unsigned int hint)
1369 {
1370 Elf_Internal_Shdr ** oheaders = elf_elfsections (obfd);
1371 unsigned int i;
1372
1373 BFD_ASSERT (iheader != NULL);
1374
1375 /* See PR 20922 for a reproducer of the NULL test. */
1376 if (hint < elf_numsections (obfd)
1377 && oheaders[hint] != NULL
1378 && section_match (oheaders[hint], iheader))
1379 return hint;
1380
1381 for (i = 1; i < elf_numsections (obfd); i++)
1382 {
1383 Elf_Internal_Shdr * oheader = oheaders[i];
1384
1385 if (oheader == NULL)
1386 continue;
1387 if (section_match (oheader, iheader))
1388 /* FIXME: Do we care if there is a potential for
1389 multiple matches ? */
1390 return i;
1391 }
1392
1393 return SHN_UNDEF;
1394 }
1395
1396 /* PR 19938: Attempt to set the ELF section header fields of an OS or
1397 Processor specific section, based upon a matching input section.
1398 Returns TRUE upon success, FALSE otherwise. */
1399
1400 static bool
1401 copy_special_section_fields (const bfd *ibfd,
1402 bfd *obfd,
1403 const Elf_Internal_Shdr *iheader,
1404 Elf_Internal_Shdr *oheader,
1405 const unsigned int secnum)
1406 {
1407 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
1408 const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd);
1409 bool changed = false;
1410 unsigned int sh_link;
1411
1412 if (oheader->sh_type == SHT_NOBITS)
1413 {
1414 /* This is a feature for objcopy --only-keep-debug:
1415 When a section's type is changed to NOBITS, we preserve
1416 the sh_link and sh_info fields so that they can be
1417 matched up with the original.
1418
1419 Note: Strictly speaking these assignments are wrong.
1420 The sh_link and sh_info fields should point to the
1421 relevent sections in the output BFD, which may not be in
1422 the same location as they were in the input BFD. But
1423 the whole point of this action is to preserve the
1424 original values of the sh_link and sh_info fields, so
1425 that they can be matched up with the section headers in
1426 the original file. So strictly speaking we may be
1427 creating an invalid ELF file, but it is only for a file
1428 that just contains debug info and only for sections
1429 without any contents. */
1430 if (oheader->sh_link == 0)
1431 oheader->sh_link = iheader->sh_link;
1432 if (oheader->sh_info == 0)
1433 oheader->sh_info = iheader->sh_info;
1434 return true;
1435 }
1436
1437 /* Allow the target a chance to decide how these fields should be set. */
1438 if (bed->elf_backend_copy_special_section_fields (ibfd, obfd,
1439 iheader, oheader))
1440 return true;
1441
1442 /* We have an iheader which might match oheader, and which has non-zero
1443 sh_info and/or sh_link fields. Attempt to follow those links and find
1444 the section in the output bfd which corresponds to the linked section
1445 in the input bfd. */
1446 if (iheader->sh_link != SHN_UNDEF)
1447 {
1448 /* See PR 20931 for a reproducer. */
1449 if (iheader->sh_link >= elf_numsections (ibfd))
1450 {
1451 _bfd_error_handler
1452 /* xgettext:c-format */
1453 (_("%pB: invalid sh_link field (%d) in section number %d"),
1454 ibfd, iheader->sh_link, secnum);
1455 return false;
1456 }
1457
1458 sh_link = find_link (obfd, iheaders[iheader->sh_link], iheader->sh_link);
1459 if (sh_link != SHN_UNDEF)
1460 {
1461 oheader->sh_link = sh_link;
1462 changed = true;
1463 }
1464 else
1465 /* FIXME: Should we install iheader->sh_link
1466 if we could not find a match ? */
1467 _bfd_error_handler
1468 /* xgettext:c-format */
1469 (_("%pB: failed to find link section for section %d"), obfd, secnum);
1470 }
1471
1472 if (iheader->sh_info)
1473 {
1474 /* The sh_info field can hold arbitrary information, but if the
1475 SHF_LINK_INFO flag is set then it should be interpreted as a
1476 section index. */
1477 if (iheader->sh_flags & SHF_INFO_LINK)
1478 {
1479 sh_link = find_link (obfd, iheaders[iheader->sh_info],
1480 iheader->sh_info);
1481 if (sh_link != SHN_UNDEF)
1482 oheader->sh_flags |= SHF_INFO_LINK;
1483 }
1484 else
1485 /* No idea what it means - just copy it. */
1486 sh_link = iheader->sh_info;
1487
1488 if (sh_link != SHN_UNDEF)
1489 {
1490 oheader->sh_info = sh_link;
1491 changed = true;
1492 }
1493 else
1494 _bfd_error_handler
1495 /* xgettext:c-format */
1496 (_("%pB: failed to find info section for section %d"), obfd, secnum);
1497 }
1498
1499 return changed;
1500 }
1501
1502 /* Copy the program header and other data from one object module to
1503 another. */
1504
1505 bool
1506 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1507 {
1508 const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd);
1509 Elf_Internal_Shdr **oheaders = elf_elfsections (obfd);
1510 const struct elf_backend_data *bed;
1511 unsigned int i;
1512
1513 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1514 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1515 return true;
1516
1517 if (!elf_flags_init (obfd))
1518 {
1519 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1520 elf_flags_init (obfd) = true;
1521 }
1522
1523 elf_gp (obfd) = elf_gp (ibfd);
1524
1525 /* Also copy the EI_OSABI field. */
1526 elf_elfheader (obfd)->e_ident[EI_OSABI] =
1527 elf_elfheader (ibfd)->e_ident[EI_OSABI];
1528
1529 /* If set, copy the EI_ABIVERSION field. */
1530 if (elf_elfheader (ibfd)->e_ident[EI_ABIVERSION])
1531 elf_elfheader (obfd)->e_ident[EI_ABIVERSION]
1532 = elf_elfheader (ibfd)->e_ident[EI_ABIVERSION];
1533
1534 /* Copy object attributes. */
1535 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1536
1537 if (iheaders == NULL || oheaders == NULL)
1538 return true;
1539
1540 bed = get_elf_backend_data (obfd);
1541
1542 /* Possibly copy other fields in the section header. */
1543 for (i = 1; i < elf_numsections (obfd); i++)
1544 {
1545 unsigned int j;
1546 Elf_Internal_Shdr * oheader = oheaders[i];
1547
1548 /* Ignore ordinary sections. SHT_NOBITS sections are considered however
1549 because of a special case need for generating separate debug info
1550 files. See below for more details. */
1551 if (oheader == NULL
1552 || (oheader->sh_type != SHT_NOBITS
1553 && oheader->sh_type < SHT_LOOS))
1554 continue;
1555
1556 /* Ignore empty sections, and sections whose
1557 fields have already been initialised. */
1558 if (oheader->sh_size == 0
1559 || (oheader->sh_info != 0 && oheader->sh_link != 0))
1560 continue;
1561
1562 /* Scan for the matching section in the input bfd.
1563 First we try for a direct mapping between the input and output sections. */
1564 for (j = 1; j < elf_numsections (ibfd); j++)
1565 {
1566 const Elf_Internal_Shdr * iheader = iheaders[j];
1567
1568 if (iheader == NULL)
1569 continue;
1570
1571 if (oheader->bfd_section != NULL
1572 && iheader->bfd_section != NULL
1573 && iheader->bfd_section->output_section != NULL
1574 && iheader->bfd_section->output_section == oheader->bfd_section)
1575 {
1576 /* We have found a connection from the input section to the
1577 output section. Attempt to copy the header fields. If
1578 this fails then do not try any further sections - there
1579 should only be a one-to-one mapping between input and output. */
1580 if (! copy_special_section_fields (ibfd, obfd, iheader, oheader, i))
1581 j = elf_numsections (ibfd);
1582 break;
1583 }
1584 }
1585
1586 if (j < elf_numsections (ibfd))
1587 continue;
1588
1589 /* That failed. So try to deduce the corresponding input section.
1590 Unfortunately we cannot compare names as the output string table
1591 is empty, so instead we check size, address and type. */
1592 for (j = 1; j < elf_numsections (ibfd); j++)
1593 {
1594 const Elf_Internal_Shdr * iheader = iheaders[j];
1595
1596 if (iheader == NULL)
1597 continue;
1598
1599 /* Try matching fields in the input section's header.
1600 Since --only-keep-debug turns all non-debug sections into
1601 SHT_NOBITS sections, the output SHT_NOBITS type matches any
1602 input type. */
1603 if ((oheader->sh_type == SHT_NOBITS
1604 || iheader->sh_type == oheader->sh_type)
1605 && (iheader->sh_flags & ~ SHF_INFO_LINK)
1606 == (oheader->sh_flags & ~ SHF_INFO_LINK)
1607 && iheader->sh_addralign == oheader->sh_addralign
1608 && iheader->sh_entsize == oheader->sh_entsize
1609 && iheader->sh_size == oheader->sh_size
1610 && iheader->sh_addr == oheader->sh_addr
1611 && (iheader->sh_info != oheader->sh_info
1612 || iheader->sh_link != oheader->sh_link))
1613 {
1614 if (copy_special_section_fields (ibfd, obfd, iheader, oheader, i))
1615 break;
1616 }
1617 }
1618
1619 if (j == elf_numsections (ibfd) && oheader->sh_type >= SHT_LOOS)
1620 {
1621 /* Final attempt. Call the backend copy function
1622 with a NULL input section. */
1623 (void) bed->elf_backend_copy_special_section_fields (ibfd, obfd,
1624 NULL, oheader);
1625 }
1626 }
1627
1628 return true;
1629 }
1630
1631 static const char *
1632 get_segment_type (unsigned int p_type)
1633 {
1634 const char *pt;
1635 switch (p_type)
1636 {
1637 case PT_NULL: pt = "NULL"; break;
1638 case PT_LOAD: pt = "LOAD"; break;
1639 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1640 case PT_INTERP: pt = "INTERP"; break;
1641 case PT_NOTE: pt = "NOTE"; break;
1642 case PT_SHLIB: pt = "SHLIB"; break;
1643 case PT_PHDR: pt = "PHDR"; break;
1644 case PT_TLS: pt = "TLS"; break;
1645 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1646 case PT_GNU_STACK: pt = "STACK"; break;
1647 case PT_GNU_RELRO: pt = "RELRO"; break;
1648 default: pt = NULL; break;
1649 }
1650 return pt;
1651 }
1652
1653 /* Print out the program headers. */
1654
1655 bool
1656 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1657 {
1658 FILE *f = (FILE *) farg;
1659 Elf_Internal_Phdr *p;
1660 asection *s;
1661 bfd_byte *dynbuf = NULL;
1662
1663 p = elf_tdata (abfd)->phdr;
1664 if (p != NULL)
1665 {
1666 unsigned int i, c;
1667
1668 fprintf (f, _("\nProgram Header:\n"));
1669 c = elf_elfheader (abfd)->e_phnum;
1670 for (i = 0; i < c; i++, p++)
1671 {
1672 const char *pt = get_segment_type (p->p_type);
1673 char buf[20];
1674
1675 if (pt == NULL)
1676 {
1677 sprintf (buf, "0x%lx", p->p_type);
1678 pt = buf;
1679 }
1680 fprintf (f, "%8s off 0x", pt);
1681 bfd_fprintf_vma (abfd, f, p->p_offset);
1682 fprintf (f, " vaddr 0x");
1683 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1684 fprintf (f, " paddr 0x");
1685 bfd_fprintf_vma (abfd, f, p->p_paddr);
1686 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1687 fprintf (f, " filesz 0x");
1688 bfd_fprintf_vma (abfd, f, p->p_filesz);
1689 fprintf (f, " memsz 0x");
1690 bfd_fprintf_vma (abfd, f, p->p_memsz);
1691 fprintf (f, " flags %c%c%c",
1692 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1693 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1694 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1695 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1696 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1697 fprintf (f, "\n");
1698 }
1699 }
1700
1701 s = bfd_get_section_by_name (abfd, ".dynamic");
1702 if (s != NULL)
1703 {
1704 unsigned int elfsec;
1705 unsigned long shlink;
1706 bfd_byte *extdyn, *extdynend;
1707 size_t extdynsize;
1708 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1709
1710 fprintf (f, _("\nDynamic Section:\n"));
1711
1712 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1713 goto error_return;
1714
1715 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1716 if (elfsec == SHN_BAD)
1717 goto error_return;
1718 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1719
1720 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1721 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1722
1723 extdyn = dynbuf;
1724 /* PR 17512: file: 6f427532. */
1725 if (s->size < extdynsize)
1726 goto error_return;
1727 extdynend = extdyn + s->size;
1728 /* PR 17512: file: id:000006,sig:06,src:000000,op:flip4,pos:5664.
1729 Fix range check. */
1730 for (; extdyn <= (extdynend - extdynsize); extdyn += extdynsize)
1731 {
1732 Elf_Internal_Dyn dyn;
1733 const char *name = "";
1734 char ab[20];
1735 bool stringp;
1736 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1737
1738 (*swap_dyn_in) (abfd, extdyn, &dyn);
1739
1740 if (dyn.d_tag == DT_NULL)
1741 break;
1742
1743 stringp = false;
1744 switch (dyn.d_tag)
1745 {
1746 default:
1747 if (bed->elf_backend_get_target_dtag)
1748 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
1749
1750 if (!strcmp (name, ""))
1751 {
1752 sprintf (ab, "%#" BFD_VMA_FMT "x", dyn.d_tag);
1753 name = ab;
1754 }
1755 break;
1756
1757 case DT_NEEDED: name = "NEEDED"; stringp = true; break;
1758 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1759 case DT_PLTGOT: name = "PLTGOT"; break;
1760 case DT_HASH: name = "HASH"; break;
1761 case DT_STRTAB: name = "STRTAB"; break;
1762 case DT_SYMTAB: name = "SYMTAB"; break;
1763 case DT_RELA: name = "RELA"; break;
1764 case DT_RELASZ: name = "RELASZ"; break;
1765 case DT_RELAENT: name = "RELAENT"; break;
1766 case DT_STRSZ: name = "STRSZ"; break;
1767 case DT_SYMENT: name = "SYMENT"; break;
1768 case DT_INIT: name = "INIT"; break;
1769 case DT_FINI: name = "FINI"; break;
1770 case DT_SONAME: name = "SONAME"; stringp = true; break;
1771 case DT_RPATH: name = "RPATH"; stringp = true; break;
1772 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1773 case DT_REL: name = "REL"; break;
1774 case DT_RELSZ: name = "RELSZ"; break;
1775 case DT_RELENT: name = "RELENT"; break;
1776 case DT_RELR: name = "RELR"; break;
1777 case DT_RELRSZ: name = "RELRSZ"; break;
1778 case DT_RELRENT: name = "RELRENT"; break;
1779 case DT_PLTREL: name = "PLTREL"; break;
1780 case DT_DEBUG: name = "DEBUG"; break;
1781 case DT_TEXTREL: name = "TEXTREL"; break;
1782 case DT_JMPREL: name = "JMPREL"; break;
1783 case DT_BIND_NOW: name = "BIND_NOW"; break;
1784 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1785 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1786 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1787 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1788 case DT_RUNPATH: name = "RUNPATH"; stringp = true; break;
1789 case DT_FLAGS: name = "FLAGS"; break;
1790 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1791 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1792 case DT_CHECKSUM: name = "CHECKSUM"; break;
1793 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1794 case DT_MOVEENT: name = "MOVEENT"; break;
1795 case DT_MOVESZ: name = "MOVESZ"; break;
1796 case DT_FEATURE: name = "FEATURE"; break;
1797 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1798 case DT_SYMINSZ: name = "SYMINSZ"; break;
1799 case DT_SYMINENT: name = "SYMINENT"; break;
1800 case DT_CONFIG: name = "CONFIG"; stringp = true; break;
1801 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = true; break;
1802 case DT_AUDIT: name = "AUDIT"; stringp = true; break;
1803 case DT_PLTPAD: name = "PLTPAD"; break;
1804 case DT_MOVETAB: name = "MOVETAB"; break;
1805 case DT_SYMINFO: name = "SYMINFO"; break;
1806 case DT_RELACOUNT: name = "RELACOUNT"; break;
1807 case DT_RELCOUNT: name = "RELCOUNT"; break;
1808 case DT_FLAGS_1: name = "FLAGS_1"; break;
1809 case DT_VERSYM: name = "VERSYM"; break;
1810 case DT_VERDEF: name = "VERDEF"; break;
1811 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1812 case DT_VERNEED: name = "VERNEED"; break;
1813 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1814 case DT_AUXILIARY: name = "AUXILIARY"; stringp = true; break;
1815 case DT_USED: name = "USED"; break;
1816 case DT_FILTER: name = "FILTER"; stringp = true; break;
1817 case DT_GNU_HASH: name = "GNU_HASH"; break;
1818 }
1819
1820 fprintf (f, " %-20s ", name);
1821 if (! stringp)
1822 {
1823 fprintf (f, "0x");
1824 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
1825 }
1826 else
1827 {
1828 const char *string;
1829 unsigned int tagv = dyn.d_un.d_val;
1830
1831 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1832 if (string == NULL)
1833 goto error_return;
1834 fprintf (f, "%s", string);
1835 }
1836 fprintf (f, "\n");
1837 }
1838
1839 free (dynbuf);
1840 dynbuf = NULL;
1841 }
1842
1843 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1844 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1845 {
1846 if (! _bfd_elf_slurp_version_tables (abfd, false))
1847 return false;
1848 }
1849
1850 if (elf_dynverdef (abfd) != 0)
1851 {
1852 Elf_Internal_Verdef *t;
1853
1854 fprintf (f, _("\nVersion definitions:\n"));
1855 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1856 {
1857 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1858 t->vd_flags, t->vd_hash,
1859 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1860 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1861 {
1862 Elf_Internal_Verdaux *a;
1863
1864 fprintf (f, "\t");
1865 for (a = t->vd_auxptr->vda_nextptr;
1866 a != NULL;
1867 a = a->vda_nextptr)
1868 fprintf (f, "%s ",
1869 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1870 fprintf (f, "\n");
1871 }
1872 }
1873 }
1874
1875 if (elf_dynverref (abfd) != 0)
1876 {
1877 Elf_Internal_Verneed *t;
1878
1879 fprintf (f, _("\nVersion References:\n"));
1880 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1881 {
1882 Elf_Internal_Vernaux *a;
1883
1884 fprintf (f, _(" required from %s:\n"),
1885 t->vn_filename ? t->vn_filename : "<corrupt>");
1886 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1887 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1888 a->vna_flags, a->vna_other,
1889 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1890 }
1891 }
1892
1893 return true;
1894
1895 error_return:
1896 free (dynbuf);
1897 return false;
1898 }
1899
1900 /* Get version name. If BASE_P is TRUE, return "Base" for VER_FLG_BASE
1901 and return symbol version for symbol version itself. */
1902
1903 const char *
1904 _bfd_elf_get_symbol_version_string (bfd *abfd, asymbol *symbol,
1905 bool base_p,
1906 bool *hidden)
1907 {
1908 const char *version_string = NULL;
1909 if (elf_dynversym (abfd) != 0
1910 && (elf_dynverdef (abfd) != 0 || elf_dynverref (abfd) != 0))
1911 {
1912 unsigned int vernum = ((elf_symbol_type *) symbol)->version;
1913
1914 *hidden = (vernum & VERSYM_HIDDEN) != 0;
1915 vernum &= VERSYM_VERSION;
1916
1917 if (vernum == 0)
1918 version_string = "";
1919 else if (vernum == 1
1920 && (vernum > elf_tdata (abfd)->cverdefs
1921 || (elf_tdata (abfd)->verdef[0].vd_flags
1922 == VER_FLG_BASE)))
1923 version_string = base_p ? "Base" : "";
1924 else if (vernum <= elf_tdata (abfd)->cverdefs)
1925 {
1926 const char *nodename
1927 = elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1928 version_string = "";
1929 if (base_p
1930 || nodename == NULL
1931 || symbol->name == NULL
1932 || strcmp (symbol->name, nodename) != 0)
1933 version_string = nodename;
1934 }
1935 else
1936 {
1937 Elf_Internal_Verneed *t;
1938
1939 version_string = _("<corrupt>");
1940 for (t = elf_tdata (abfd)->verref;
1941 t != NULL;
1942 t = t->vn_nextref)
1943 {
1944 Elf_Internal_Vernaux *a;
1945
1946 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1947 {
1948 if (a->vna_other == vernum)
1949 {
1950 *hidden = true;
1951 version_string = a->vna_nodename;
1952 break;
1953 }
1954 }
1955 }
1956 }
1957 }
1958 return version_string;
1959 }
1960
1961 /* Display ELF-specific fields of a symbol. */
1962
1963 void
1964 bfd_elf_print_symbol (bfd *abfd,
1965 void *filep,
1966 asymbol *symbol,
1967 bfd_print_symbol_type how)
1968 {
1969 FILE *file = (FILE *) filep;
1970 switch (how)
1971 {
1972 case bfd_print_symbol_name:
1973 fprintf (file, "%s", symbol->name);
1974 break;
1975 case bfd_print_symbol_more:
1976 fprintf (file, "elf ");
1977 bfd_fprintf_vma (abfd, file, symbol->value);
1978 fprintf (file, " %x", symbol->flags);
1979 break;
1980 case bfd_print_symbol_all:
1981 {
1982 const char *section_name;
1983 const char *name = NULL;
1984 const struct elf_backend_data *bed;
1985 unsigned char st_other;
1986 bfd_vma val;
1987 const char *version_string;
1988 bool hidden;
1989
1990 section_name = symbol->section ? symbol->section->name : "(*none*)";
1991
1992 bed = get_elf_backend_data (abfd);
1993 if (bed->elf_backend_print_symbol_all)
1994 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1995
1996 if (name == NULL)
1997 {
1998 name = symbol->name;
1999 bfd_print_symbol_vandf (abfd, file, symbol);
2000 }
2001
2002 fprintf (file, " %s\t", section_name);
2003 /* Print the "other" value for a symbol. For common symbols,
2004 we've already printed the size; now print the alignment.
2005 For other symbols, we have no specified alignment, and
2006 we've printed the address; now print the size. */
2007 if (symbol->section && bfd_is_com_section (symbol->section))
2008 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
2009 else
2010 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
2011 bfd_fprintf_vma (abfd, file, val);
2012
2013 /* If we have version information, print it. */
2014 version_string = _bfd_elf_get_symbol_version_string (abfd,
2015 symbol,
2016 true,
2017 &hidden);
2018 if (version_string)
2019 {
2020 if (!hidden)
2021 fprintf (file, " %-11s", version_string);
2022 else
2023 {
2024 int i;
2025
2026 fprintf (file, " (%s)", version_string);
2027 for (i = 10 - strlen (version_string); i > 0; --i)
2028 putc (' ', file);
2029 }
2030 }
2031
2032 /* If the st_other field is not zero, print it. */
2033 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
2034
2035 switch (st_other)
2036 {
2037 case 0: break;
2038 case STV_INTERNAL: fprintf (file, " .internal"); break;
2039 case STV_HIDDEN: fprintf (file, " .hidden"); break;
2040 case STV_PROTECTED: fprintf (file, " .protected"); break;
2041 default:
2042 /* Some other non-defined flags are also present, so print
2043 everything hex. */
2044 fprintf (file, " 0x%02x", (unsigned int) st_other);
2045 }
2046
2047 fprintf (file, " %s", name);
2048 }
2049 break;
2050 }
2051 }
2052 \f
2053 /* ELF .o/exec file reading */
2054
2055 /* Create a new bfd section from an ELF section header. */
2056
2057 bool
2058 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
2059 {
2060 Elf_Internal_Shdr *hdr;
2061 Elf_Internal_Ehdr *ehdr;
2062 const struct elf_backend_data *bed;
2063 const char *name;
2064 bool ret = true;
2065
2066 if (shindex >= elf_numsections (abfd))
2067 return false;
2068
2069 /* PR17512: A corrupt ELF binary might contain a loop of sections via
2070 sh_link or sh_info. Detect this here, by refusing to load a
2071 section that we are already in the process of loading. */
2072 if (elf_tdata (abfd)->being_created[shindex])
2073 {
2074 _bfd_error_handler
2075 (_("%pB: warning: loop in section dependencies detected"), abfd);
2076 return false;
2077 }
2078 elf_tdata (abfd)->being_created[shindex] = true;
2079
2080 hdr = elf_elfsections (abfd)[shindex];
2081 ehdr = elf_elfheader (abfd);
2082 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
2083 hdr->sh_name);
2084 if (name == NULL)
2085 goto fail;
2086
2087 bed = get_elf_backend_data (abfd);
2088 switch (hdr->sh_type)
2089 {
2090 case SHT_NULL:
2091 /* Inactive section. Throw it away. */
2092 goto success;
2093
2094 case SHT_PROGBITS: /* Normal section with contents. */
2095 case SHT_NOBITS: /* .bss section. */
2096 case SHT_HASH: /* .hash section. */
2097 case SHT_NOTE: /* .note section. */
2098 case SHT_INIT_ARRAY: /* .init_array section. */
2099 case SHT_FINI_ARRAY: /* .fini_array section. */
2100 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
2101 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
2102 case SHT_GNU_HASH: /* .gnu.hash section. */
2103 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2104 goto success;
2105
2106 case SHT_DYNAMIC: /* Dynamic linking information. */
2107 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2108 goto fail;
2109
2110 if (hdr->sh_link > elf_numsections (abfd))
2111 {
2112 /* PR 10478: Accept Solaris binaries with a sh_link
2113 field set to SHN_BEFORE or SHN_AFTER. */
2114 switch (bfd_get_arch (abfd))
2115 {
2116 case bfd_arch_i386:
2117 case bfd_arch_sparc:
2118 if (hdr->sh_link == (SHN_LORESERVE & 0xffff) /* SHN_BEFORE */
2119 || hdr->sh_link == ((SHN_LORESERVE + 1) & 0xffff) /* SHN_AFTER */)
2120 break;
2121 /* Otherwise fall through. */
2122 default:
2123 goto fail;
2124 }
2125 }
2126 else if (elf_elfsections (abfd)[hdr->sh_link] == NULL)
2127 goto fail;
2128 else if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
2129 {
2130 Elf_Internal_Shdr *dynsymhdr;
2131
2132 /* The shared libraries distributed with hpux11 have a bogus
2133 sh_link field for the ".dynamic" section. Find the
2134 string table for the ".dynsym" section instead. */
2135 if (elf_dynsymtab (abfd) != 0)
2136 {
2137 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
2138 hdr->sh_link = dynsymhdr->sh_link;
2139 }
2140 else
2141 {
2142 unsigned int i, num_sec;
2143
2144 num_sec = elf_numsections (abfd);
2145 for (i = 1; i < num_sec; i++)
2146 {
2147 dynsymhdr = elf_elfsections (abfd)[i];
2148 if (dynsymhdr->sh_type == SHT_DYNSYM)
2149 {
2150 hdr->sh_link = dynsymhdr->sh_link;
2151 break;
2152 }
2153 }
2154 }
2155 }
2156 goto success;
2157
2158 case SHT_SYMTAB: /* A symbol table. */
2159 if (elf_onesymtab (abfd) == shindex)
2160 goto success;
2161
2162 if (hdr->sh_entsize != bed->s->sizeof_sym)
2163 goto fail;
2164
2165 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
2166 {
2167 if (hdr->sh_size != 0)
2168 goto fail;
2169 /* Some assemblers erroneously set sh_info to one with a
2170 zero sh_size. ld sees this as a global symbol count
2171 of (unsigned) -1. Fix it here. */
2172 hdr->sh_info = 0;
2173 goto success;
2174 }
2175
2176 /* PR 18854: A binary might contain more than one symbol table.
2177 Unusual, but possible. Warn, but continue. */
2178 if (elf_onesymtab (abfd) != 0)
2179 {
2180 _bfd_error_handler
2181 /* xgettext:c-format */
2182 (_("%pB: warning: multiple symbol tables detected"
2183 " - ignoring the table in section %u"),
2184 abfd, shindex);
2185 goto success;
2186 }
2187 elf_onesymtab (abfd) = shindex;
2188 elf_symtab_hdr (abfd) = *hdr;
2189 elf_elfsections (abfd)[shindex] = hdr = & elf_symtab_hdr (abfd);
2190 abfd->flags |= HAS_SYMS;
2191
2192 /* Sometimes a shared object will map in the symbol table. If
2193 SHF_ALLOC is set, and this is a shared object, then we also
2194 treat this section as a BFD section. We can not base the
2195 decision purely on SHF_ALLOC, because that flag is sometimes
2196 set in a relocatable object file, which would confuse the
2197 linker. */
2198 if ((hdr->sh_flags & SHF_ALLOC) != 0
2199 && (abfd->flags & DYNAMIC) != 0
2200 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2201 shindex))
2202 goto fail;
2203
2204 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
2205 can't read symbols without that section loaded as well. It
2206 is most likely specified by the next section header. */
2207 {
2208 elf_section_list * entry;
2209 unsigned int i, num_sec;
2210
2211 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
2212 if (entry->hdr.sh_link == shindex)
2213 goto success;
2214
2215 num_sec = elf_numsections (abfd);
2216 for (i = shindex + 1; i < num_sec; i++)
2217 {
2218 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2219
2220 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
2221 && hdr2->sh_link == shindex)
2222 break;
2223 }
2224
2225 if (i == num_sec)
2226 for (i = 1; i < shindex; i++)
2227 {
2228 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2229
2230 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
2231 && hdr2->sh_link == shindex)
2232 break;
2233 }
2234
2235 if (i != shindex)
2236 ret = bfd_section_from_shdr (abfd, i);
2237 /* else FIXME: we have failed to find the symbol table - should we issue an error ? */
2238 goto success;
2239 }
2240
2241 case SHT_DYNSYM: /* A dynamic symbol table. */
2242 if (elf_dynsymtab (abfd) == shindex)
2243 goto success;
2244
2245 if (hdr->sh_entsize != bed->s->sizeof_sym)
2246 goto fail;
2247
2248 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
2249 {
2250 if (hdr->sh_size != 0)
2251 goto fail;
2252
2253 /* Some linkers erroneously set sh_info to one with a
2254 zero sh_size. ld sees this as a global symbol count
2255 of (unsigned) -1. Fix it here. */
2256 hdr->sh_info = 0;
2257 goto success;
2258 }
2259
2260 /* PR 18854: A binary might contain more than one dynamic symbol table.
2261 Unusual, but possible. Warn, but continue. */
2262 if (elf_dynsymtab (abfd) != 0)
2263 {
2264 _bfd_error_handler
2265 /* xgettext:c-format */
2266 (_("%pB: warning: multiple dynamic symbol tables detected"
2267 " - ignoring the table in section %u"),
2268 abfd, shindex);
2269 goto success;
2270 }
2271 elf_dynsymtab (abfd) = shindex;
2272 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
2273 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2274 abfd->flags |= HAS_SYMS;
2275
2276 /* Besides being a symbol table, we also treat this as a regular
2277 section, so that objcopy can handle it. */
2278 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2279 goto success;
2280
2281 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections. */
2282 {
2283 elf_section_list * entry;
2284
2285 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
2286 if (entry->ndx == shindex)
2287 goto success;
2288
2289 entry = bfd_alloc (abfd, sizeof (*entry));
2290 if (entry == NULL)
2291 goto fail;
2292 entry->ndx = shindex;
2293 entry->hdr = * hdr;
2294 entry->next = elf_symtab_shndx_list (abfd);
2295 elf_symtab_shndx_list (abfd) = entry;
2296 elf_elfsections (abfd)[shindex] = & entry->hdr;
2297 goto success;
2298 }
2299
2300 case SHT_STRTAB: /* A string table. */
2301 if (hdr->bfd_section != NULL)
2302 goto success;
2303
2304 if (ehdr->e_shstrndx == shindex)
2305 {
2306 elf_tdata (abfd)->shstrtab_hdr = *hdr;
2307 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
2308 goto success;
2309 }
2310
2311 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
2312 {
2313 symtab_strtab:
2314 elf_tdata (abfd)->strtab_hdr = *hdr;
2315 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
2316 goto success;
2317 }
2318
2319 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
2320 {
2321 dynsymtab_strtab:
2322 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
2323 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
2324 elf_elfsections (abfd)[shindex] = hdr;
2325 /* We also treat this as a regular section, so that objcopy
2326 can handle it. */
2327 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2328 shindex);
2329 goto success;
2330 }
2331
2332 /* If the string table isn't one of the above, then treat it as a
2333 regular section. We need to scan all the headers to be sure,
2334 just in case this strtab section appeared before the above. */
2335 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
2336 {
2337 unsigned int i, num_sec;
2338
2339 num_sec = elf_numsections (abfd);
2340 for (i = 1; i < num_sec; i++)
2341 {
2342 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2343 if (hdr2->sh_link == shindex)
2344 {
2345 /* Prevent endless recursion on broken objects. */
2346 if (i == shindex)
2347 goto fail;
2348 if (! bfd_section_from_shdr (abfd, i))
2349 goto fail;
2350 if (elf_onesymtab (abfd) == i)
2351 goto symtab_strtab;
2352 if (elf_dynsymtab (abfd) == i)
2353 goto dynsymtab_strtab;
2354 }
2355 }
2356 }
2357 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2358 goto success;
2359
2360 case SHT_REL:
2361 case SHT_RELA:
2362 case SHT_RELR:
2363 /* *These* do a lot of work -- but build no sections! */
2364 {
2365 asection *target_sect;
2366 Elf_Internal_Shdr *hdr2, **p_hdr;
2367 unsigned int num_sec = elf_numsections (abfd);
2368 struct bfd_elf_section_data *esdt;
2369 bfd_size_type size;
2370
2371 if (hdr->sh_type == SHT_REL)
2372 size = bed->s->sizeof_rel;
2373 else if (hdr->sh_type == SHT_RELA)
2374 size = bed->s->sizeof_rela;
2375 else
2376 size = bed->s->arch_size / 8;
2377 if (hdr->sh_entsize != size)
2378 goto fail;
2379
2380 /* Check for a bogus link to avoid crashing. */
2381 if (hdr->sh_link >= num_sec)
2382 {
2383 _bfd_error_handler
2384 /* xgettext:c-format */
2385 (_("%pB: invalid link %u for reloc section %s (index %u)"),
2386 abfd, hdr->sh_link, name, shindex);
2387 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2388 shindex);
2389 goto success;
2390 }
2391
2392 /* For some incomprehensible reason Oracle distributes
2393 libraries for Solaris in which some of the objects have
2394 bogus sh_link fields. It would be nice if we could just
2395 reject them, but, unfortunately, some people need to use
2396 them. We scan through the section headers; if we find only
2397 one suitable symbol table, we clobber the sh_link to point
2398 to it. I hope this doesn't break anything.
2399
2400 Don't do it on executable nor shared library. */
2401 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0
2402 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
2403 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
2404 {
2405 unsigned int scan;
2406 int found;
2407
2408 found = 0;
2409 for (scan = 1; scan < num_sec; scan++)
2410 {
2411 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
2412 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
2413 {
2414 if (found != 0)
2415 {
2416 found = 0;
2417 break;
2418 }
2419 found = scan;
2420 }
2421 }
2422 if (found != 0)
2423 hdr->sh_link = found;
2424 }
2425
2426 /* Get the symbol table. */
2427 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
2428 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
2429 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
2430 goto fail;
2431
2432 /* If this is an alloc section in an executable or shared
2433 library, or the reloc section does not use the main symbol
2434 table we don't treat it as a reloc section. BFD can't
2435 adequately represent such a section, so at least for now,
2436 we don't try. We just present it as a normal section. We
2437 also can't use it as a reloc section if it points to the
2438 null section, an invalid section, another reloc section, or
2439 its sh_link points to the null section. */
2440 if (((abfd->flags & (DYNAMIC | EXEC_P)) != 0
2441 && (hdr->sh_flags & SHF_ALLOC) != 0)
2442 || hdr->sh_link == SHN_UNDEF
2443 || hdr->sh_link != elf_onesymtab (abfd)
2444 || hdr->sh_info == SHN_UNDEF
2445 || hdr->sh_info >= num_sec
2446 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
2447 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
2448 {
2449 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2450 shindex);
2451 goto success;
2452 }
2453
2454 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
2455 goto fail;
2456
2457 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
2458 if (target_sect == NULL)
2459 goto fail;
2460
2461 esdt = elf_section_data (target_sect);
2462 if (hdr->sh_type == SHT_RELA)
2463 p_hdr = &esdt->rela.hdr;
2464 else
2465 p_hdr = &esdt->rel.hdr;
2466
2467 /* PR 17512: file: 0b4f81b7.
2468 Also see PR 24456, for a file which deliberately has two reloc
2469 sections. */
2470 if (*p_hdr != NULL)
2471 {
2472 if (!bed->init_secondary_reloc_section (abfd, hdr, name, shindex))
2473 {
2474 _bfd_error_handler
2475 /* xgettext:c-format */
2476 (_("%pB: warning: secondary relocation section '%s' "
2477 "for section %pA found - ignoring"),
2478 abfd, name, target_sect);
2479 }
2480 else
2481 esdt->has_secondary_relocs = true;
2482 goto success;
2483 }
2484
2485 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, sizeof (*hdr2));
2486 if (hdr2 == NULL)
2487 goto fail;
2488 *hdr2 = *hdr;
2489 *p_hdr = hdr2;
2490 elf_elfsections (abfd)[shindex] = hdr2;
2491 target_sect->reloc_count += (NUM_SHDR_ENTRIES (hdr)
2492 * bed->s->int_rels_per_ext_rel);
2493 target_sect->flags |= SEC_RELOC;
2494 target_sect->relocation = NULL;
2495 target_sect->rel_filepos = hdr->sh_offset;
2496 /* In the section to which the relocations apply, mark whether
2497 its relocations are of the REL or RELA variety. */
2498 if (hdr->sh_size != 0)
2499 {
2500 if (hdr->sh_type == SHT_RELA)
2501 target_sect->use_rela_p = 1;
2502 }
2503 abfd->flags |= HAS_RELOC;
2504 goto success;
2505 }
2506
2507 case SHT_GNU_verdef:
2508 elf_dynverdef (abfd) = shindex;
2509 elf_tdata (abfd)->dynverdef_hdr = *hdr;
2510 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2511 goto success;
2512
2513 case SHT_GNU_versym:
2514 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
2515 goto fail;
2516
2517 elf_dynversym (abfd) = shindex;
2518 elf_tdata (abfd)->dynversym_hdr = *hdr;
2519 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2520 goto success;
2521
2522 case SHT_GNU_verneed:
2523 elf_dynverref (abfd) = shindex;
2524 elf_tdata (abfd)->dynverref_hdr = *hdr;
2525 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2526 goto success;
2527
2528 case SHT_SHLIB:
2529 goto success;
2530
2531 case SHT_GROUP:
2532 if (! IS_VALID_GROUP_SECTION_HEADER (hdr, GRP_ENTRY_SIZE))
2533 goto fail;
2534
2535 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2536 goto fail;
2537
2538 goto success;
2539
2540 default:
2541 /* Possibly an attributes section. */
2542 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
2543 || hdr->sh_type == bed->obj_attrs_section_type)
2544 {
2545 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2546 goto fail;
2547 _bfd_elf_parse_attributes (abfd, hdr);
2548 goto success;
2549 }
2550
2551 /* Check for any processor-specific section types. */
2552 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
2553 goto success;
2554
2555 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
2556 {
2557 if ((hdr->sh_flags & SHF_ALLOC) != 0)
2558 /* FIXME: How to properly handle allocated section reserved
2559 for applications? */
2560 _bfd_error_handler
2561 /* xgettext:c-format */
2562 (_("%pB: unknown type [%#x] section `%s'"),
2563 abfd, hdr->sh_type, name);
2564 else
2565 {
2566 /* Allow sections reserved for applications. */
2567 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2568 shindex);
2569 goto success;
2570 }
2571 }
2572 else if (hdr->sh_type >= SHT_LOPROC
2573 && hdr->sh_type <= SHT_HIPROC)
2574 /* FIXME: We should handle this section. */
2575 _bfd_error_handler
2576 /* xgettext:c-format */
2577 (_("%pB: unknown type [%#x] section `%s'"),
2578 abfd, hdr->sh_type, name);
2579 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
2580 {
2581 /* Unrecognised OS-specific sections. */
2582 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
2583 /* SHF_OS_NONCONFORMING indicates that special knowledge is
2584 required to correctly process the section and the file should
2585 be rejected with an error message. */
2586 _bfd_error_handler
2587 /* xgettext:c-format */
2588 (_("%pB: unknown type [%#x] section `%s'"),
2589 abfd, hdr->sh_type, name);
2590 else
2591 {
2592 /* Otherwise it should be processed. */
2593 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2594 goto success;
2595 }
2596 }
2597 else
2598 /* FIXME: We should handle this section. */
2599 _bfd_error_handler
2600 /* xgettext:c-format */
2601 (_("%pB: unknown type [%#x] section `%s'"),
2602 abfd, hdr->sh_type, name);
2603
2604 goto fail;
2605 }
2606
2607 fail:
2608 ret = false;
2609 success:
2610 elf_tdata (abfd)->being_created[shindex] = false;
2611 return ret;
2612 }
2613
2614 /* Return the local symbol specified by ABFD, R_SYMNDX. */
2615
2616 Elf_Internal_Sym *
2617 bfd_sym_from_r_symndx (struct sym_cache *cache,
2618 bfd *abfd,
2619 unsigned long r_symndx)
2620 {
2621 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2622
2623 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
2624 {
2625 Elf_Internal_Shdr *symtab_hdr;
2626 unsigned char esym[sizeof (Elf64_External_Sym)];
2627 Elf_External_Sym_Shndx eshndx;
2628
2629 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2630 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2631 &cache->sym[ent], esym, &eshndx) == NULL)
2632 return NULL;
2633
2634 if (cache->abfd != abfd)
2635 {
2636 memset (cache->indx, -1, sizeof (cache->indx));
2637 cache->abfd = abfd;
2638 }
2639 cache->indx[ent] = r_symndx;
2640 }
2641
2642 return &cache->sym[ent];
2643 }
2644
2645 /* Given an ELF section number, retrieve the corresponding BFD
2646 section. */
2647
2648 asection *
2649 bfd_section_from_elf_index (bfd *abfd, unsigned int sec_index)
2650 {
2651 if (sec_index >= elf_numsections (abfd))
2652 return NULL;
2653 return elf_elfsections (abfd)[sec_index]->bfd_section;
2654 }
2655
2656 static const struct bfd_elf_special_section special_sections_b[] =
2657 {
2658 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2659 { NULL, 0, 0, 0, 0 }
2660 };
2661
2662 static const struct bfd_elf_special_section special_sections_c[] =
2663 {
2664 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2665 { STRING_COMMA_LEN (".ctf"), 0, SHT_PROGBITS, 0 },
2666 { NULL, 0, 0, 0, 0 }
2667 };
2668
2669 static const struct bfd_elf_special_section special_sections_d[] =
2670 {
2671 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2672 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2673 /* There are more DWARF sections than these, but they needn't be added here
2674 unless you have to cope with broken compilers that don't emit section
2675 attributes or you want to help the user writing assembler. */
2676 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2677 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2678 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2679 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2680 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2681 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2682 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2683 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2684 { NULL, 0, 0, 0, 0 }
2685 };
2686
2687 static const struct bfd_elf_special_section special_sections_f[] =
2688 {
2689 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2690 { STRING_COMMA_LEN (".fini_array"), -2, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2691 { NULL, 0 , 0, 0, 0 }
2692 };
2693
2694 static const struct bfd_elf_special_section special_sections_g[] =
2695 {
2696 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2697 { STRING_COMMA_LEN (".gnu.linkonce.n"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2698 { STRING_COMMA_LEN (".gnu.linkonce.p"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2699 { STRING_COMMA_LEN (".gnu.lto_"), -1, SHT_PROGBITS, SHF_EXCLUDE },
2700 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2701 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2702 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2703 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2704 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2705 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2706 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2707 { NULL, 0, 0, 0, 0 }
2708 };
2709
2710 static const struct bfd_elf_special_section special_sections_h[] =
2711 {
2712 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2713 { NULL, 0, 0, 0, 0 }
2714 };
2715
2716 static const struct bfd_elf_special_section special_sections_i[] =
2717 {
2718 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2719 { STRING_COMMA_LEN (".init_array"), -2, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2720 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2721 { NULL, 0, 0, 0, 0 }
2722 };
2723
2724 static const struct bfd_elf_special_section special_sections_l[] =
2725 {
2726 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2727 { NULL, 0, 0, 0, 0 }
2728 };
2729
2730 static const struct bfd_elf_special_section special_sections_n[] =
2731 {
2732 { STRING_COMMA_LEN (".noinit"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2733 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2734 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2735 { NULL, 0, 0, 0, 0 }
2736 };
2737
2738 static const struct bfd_elf_special_section special_sections_p[] =
2739 {
2740 { STRING_COMMA_LEN (".persistent.bss"), 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2741 { STRING_COMMA_LEN (".persistent"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2742 { STRING_COMMA_LEN (".preinit_array"), -2, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2743 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2744 { NULL, 0, 0, 0, 0 }
2745 };
2746
2747 static const struct bfd_elf_special_section special_sections_r[] =
2748 {
2749 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2750 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2751 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2752 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2753 { NULL, 0, 0, 0, 0 }
2754 };
2755
2756 static const struct bfd_elf_special_section special_sections_s[] =
2757 {
2758 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2759 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2760 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2761 /* See struct bfd_elf_special_section declaration for the semantics of
2762 this special case where .prefix_length != strlen (.prefix). */
2763 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2764 { NULL, 0, 0, 0, 0 }
2765 };
2766
2767 static const struct bfd_elf_special_section special_sections_t[] =
2768 {
2769 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2770 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2771 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2772 { NULL, 0, 0, 0, 0 }
2773 };
2774
2775 static const struct bfd_elf_special_section special_sections_z[] =
2776 {
2777 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 },
2778 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 },
2779 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 },
2780 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 },
2781 { NULL, 0, 0, 0, 0 }
2782 };
2783
2784 static const struct bfd_elf_special_section * const special_sections[] =
2785 {
2786 special_sections_b, /* 'b' */
2787 special_sections_c, /* 'c' */
2788 special_sections_d, /* 'd' */
2789 NULL, /* 'e' */
2790 special_sections_f, /* 'f' */
2791 special_sections_g, /* 'g' */
2792 special_sections_h, /* 'h' */
2793 special_sections_i, /* 'i' */
2794 NULL, /* 'j' */
2795 NULL, /* 'k' */
2796 special_sections_l, /* 'l' */
2797 NULL, /* 'm' */
2798 special_sections_n, /* 'n' */
2799 NULL, /* 'o' */
2800 special_sections_p, /* 'p' */
2801 NULL, /* 'q' */
2802 special_sections_r, /* 'r' */
2803 special_sections_s, /* 's' */
2804 special_sections_t, /* 't' */
2805 NULL, /* 'u' */
2806 NULL, /* 'v' */
2807 NULL, /* 'w' */
2808 NULL, /* 'x' */
2809 NULL, /* 'y' */
2810 special_sections_z /* 'z' */
2811 };
2812
2813 const struct bfd_elf_special_section *
2814 _bfd_elf_get_special_section (const char *name,
2815 const struct bfd_elf_special_section *spec,
2816 unsigned int rela)
2817 {
2818 int i;
2819 int len;
2820
2821 len = strlen (name);
2822
2823 for (i = 0; spec[i].prefix != NULL; i++)
2824 {
2825 int suffix_len;
2826 int prefix_len = spec[i].prefix_length;
2827
2828 if (len < prefix_len)
2829 continue;
2830 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2831 continue;
2832
2833 suffix_len = spec[i].suffix_length;
2834 if (suffix_len <= 0)
2835 {
2836 if (name[prefix_len] != 0)
2837 {
2838 if (suffix_len == 0)
2839 continue;
2840 if (name[prefix_len] != '.'
2841 && (suffix_len == -2
2842 || (rela && spec[i].type == SHT_REL)))
2843 continue;
2844 }
2845 }
2846 else
2847 {
2848 if (len < prefix_len + suffix_len)
2849 continue;
2850 if (memcmp (name + len - suffix_len,
2851 spec[i].prefix + prefix_len,
2852 suffix_len) != 0)
2853 continue;
2854 }
2855 return &spec[i];
2856 }
2857
2858 return NULL;
2859 }
2860
2861 const struct bfd_elf_special_section *
2862 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2863 {
2864 int i;
2865 const struct bfd_elf_special_section *spec;
2866 const struct elf_backend_data *bed;
2867
2868 /* See if this is one of the special sections. */
2869 if (sec->name == NULL)
2870 return NULL;
2871
2872 bed = get_elf_backend_data (abfd);
2873 spec = bed->special_sections;
2874 if (spec)
2875 {
2876 spec = _bfd_elf_get_special_section (sec->name,
2877 bed->special_sections,
2878 sec->use_rela_p);
2879 if (spec != NULL)
2880 return spec;
2881 }
2882
2883 if (sec->name[0] != '.')
2884 return NULL;
2885
2886 i = sec->name[1] - 'b';
2887 if (i < 0 || i > 'z' - 'b')
2888 return NULL;
2889
2890 spec = special_sections[i];
2891
2892 if (spec == NULL)
2893 return NULL;
2894
2895 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2896 }
2897
2898 bool
2899 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2900 {
2901 struct bfd_elf_section_data *sdata;
2902 const struct elf_backend_data *bed;
2903 const struct bfd_elf_special_section *ssect;
2904
2905 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2906 if (sdata == NULL)
2907 {
2908 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd,
2909 sizeof (*sdata));
2910 if (sdata == NULL)
2911 return false;
2912 sec->used_by_bfd = sdata;
2913 }
2914
2915 /* Indicate whether or not this section should use RELA relocations. */
2916 bed = get_elf_backend_data (abfd);
2917 sec->use_rela_p = bed->default_use_rela_p;
2918
2919 /* Set up ELF section type and flags for newly created sections, if
2920 there is an ABI mandated section. */
2921 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2922 if (ssect != NULL)
2923 {
2924 elf_section_type (sec) = ssect->type;
2925 elf_section_flags (sec) = ssect->attr;
2926 }
2927
2928 return _bfd_generic_new_section_hook (abfd, sec);
2929 }
2930
2931 /* Create a new bfd section from an ELF program header.
2932
2933 Since program segments have no names, we generate a synthetic name
2934 of the form segment<NUM>, where NUM is generally the index in the
2935 program header table. For segments that are split (see below) we
2936 generate the names segment<NUM>a and segment<NUM>b.
2937
2938 Note that some program segments may have a file size that is different than
2939 (less than) the memory size. All this means is that at execution the
2940 system must allocate the amount of memory specified by the memory size,
2941 but only initialize it with the first "file size" bytes read from the
2942 file. This would occur for example, with program segments consisting
2943 of combined data+bss.
2944
2945 To handle the above situation, this routine generates TWO bfd sections
2946 for the single program segment. The first has the length specified by
2947 the file size of the segment, and the second has the length specified
2948 by the difference between the two sizes. In effect, the segment is split
2949 into its initialized and uninitialized parts.
2950
2951 */
2952
2953 bool
2954 _bfd_elf_make_section_from_phdr (bfd *abfd,
2955 Elf_Internal_Phdr *hdr,
2956 int hdr_index,
2957 const char *type_name)
2958 {
2959 asection *newsect;
2960 char *name;
2961 char namebuf[64];
2962 size_t len;
2963 int split;
2964 unsigned int opb = bfd_octets_per_byte (abfd, NULL);
2965
2966 split = ((hdr->p_memsz > 0)
2967 && (hdr->p_filesz > 0)
2968 && (hdr->p_memsz > hdr->p_filesz));
2969
2970 if (hdr->p_filesz > 0)
2971 {
2972 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "a" : "");
2973 len = strlen (namebuf) + 1;
2974 name = (char *) bfd_alloc (abfd, len);
2975 if (!name)
2976 return false;
2977 memcpy (name, namebuf, len);
2978 newsect = bfd_make_section (abfd, name);
2979 if (newsect == NULL)
2980 return false;
2981 newsect->vma = hdr->p_vaddr / opb;
2982 newsect->lma = hdr->p_paddr / opb;
2983 newsect->size = hdr->p_filesz;
2984 newsect->filepos = hdr->p_offset;
2985 newsect->flags |= SEC_HAS_CONTENTS;
2986 newsect->alignment_power = bfd_log2 (hdr->p_align);
2987 if (hdr->p_type == PT_LOAD)
2988 {
2989 newsect->flags |= SEC_ALLOC;
2990 newsect->flags |= SEC_LOAD;
2991 if (hdr->p_flags & PF_X)
2992 {
2993 /* FIXME: all we known is that it has execute PERMISSION,
2994 may be data. */
2995 newsect->flags |= SEC_CODE;
2996 }
2997 }
2998 if (!(hdr->p_flags & PF_W))
2999 {
3000 newsect->flags |= SEC_READONLY;
3001 }
3002 }
3003
3004 if (hdr->p_memsz > hdr->p_filesz)
3005 {
3006 bfd_vma align;
3007
3008 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "b" : "");
3009 len = strlen (namebuf) + 1;
3010 name = (char *) bfd_alloc (abfd, len);
3011 if (!name)
3012 return false;
3013 memcpy (name, namebuf, len);
3014 newsect = bfd_make_section (abfd, name);
3015 if (newsect == NULL)
3016 return false;
3017 newsect->vma = (hdr->p_vaddr + hdr->p_filesz) / opb;
3018 newsect->lma = (hdr->p_paddr + hdr->p_filesz) / opb;
3019 newsect->size = hdr->p_memsz - hdr->p_filesz;
3020 newsect->filepos = hdr->p_offset + hdr->p_filesz;
3021 align = newsect->vma & -newsect->vma;
3022 if (align == 0 || align > hdr->p_align)
3023 align = hdr->p_align;
3024 newsect->alignment_power = bfd_log2 (align);
3025 if (hdr->p_type == PT_LOAD)
3026 {
3027 newsect->flags |= SEC_ALLOC;
3028 if (hdr->p_flags & PF_X)
3029 newsect->flags |= SEC_CODE;
3030 }
3031 if (!(hdr->p_flags & PF_W))
3032 newsect->flags |= SEC_READONLY;
3033 }
3034
3035 return true;
3036 }
3037
3038 static bool
3039 _bfd_elf_core_find_build_id (bfd *templ, bfd_vma offset)
3040 {
3041 /* The return value is ignored. Build-ids are considered optional. */
3042 if (templ->xvec->flavour == bfd_target_elf_flavour)
3043 return (*get_elf_backend_data (templ)->elf_backend_core_find_build_id)
3044 (templ, offset);
3045 return false;
3046 }
3047
3048 bool
3049 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int hdr_index)
3050 {
3051 const struct elf_backend_data *bed;
3052
3053 switch (hdr->p_type)
3054 {
3055 case PT_NULL:
3056 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "null");
3057
3058 case PT_LOAD:
3059 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "load"))
3060 return false;
3061 if (bfd_get_format (abfd) == bfd_core && abfd->build_id == NULL)
3062 _bfd_elf_core_find_build_id (abfd, hdr->p_offset);
3063 return true;
3064
3065 case PT_DYNAMIC:
3066 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "dynamic");
3067
3068 case PT_INTERP:
3069 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "interp");
3070
3071 case PT_NOTE:
3072 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "note"))
3073 return false;
3074 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz,
3075 hdr->p_align))
3076 return false;
3077 return true;
3078
3079 case PT_SHLIB:
3080 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "shlib");
3081
3082 case PT_PHDR:
3083 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "phdr");
3084
3085 case PT_GNU_EH_FRAME:
3086 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index,
3087 "eh_frame_hdr");
3088
3089 case PT_GNU_STACK:
3090 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "stack");
3091
3092 case PT_GNU_RELRO:
3093 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "relro");
3094
3095 default:
3096 /* Check for any processor-specific program segment types. */
3097 bed = get_elf_backend_data (abfd);
3098 return bed->elf_backend_section_from_phdr (abfd, hdr, hdr_index, "proc");
3099 }
3100 }
3101
3102 /* Return the REL_HDR for SEC, assuming there is only a single one, either
3103 REL or RELA. */
3104
3105 Elf_Internal_Shdr *
3106 _bfd_elf_single_rel_hdr (asection *sec)
3107 {
3108 if (elf_section_data (sec)->rel.hdr)
3109 {
3110 BFD_ASSERT (elf_section_data (sec)->rela.hdr == NULL);
3111 return elf_section_data (sec)->rel.hdr;
3112 }
3113 else
3114 return elf_section_data (sec)->rela.hdr;
3115 }
3116
3117 static bool
3118 _bfd_elf_set_reloc_sh_name (bfd *abfd,
3119 Elf_Internal_Shdr *rel_hdr,
3120 const char *sec_name,
3121 bool use_rela_p)
3122 {
3123 char *name = (char *) bfd_alloc (abfd,
3124 sizeof ".rela" + strlen (sec_name));
3125 if (name == NULL)
3126 return false;
3127
3128 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", sec_name);
3129 rel_hdr->sh_name =
3130 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
3131 false);
3132 if (rel_hdr->sh_name == (unsigned int) -1)
3133 return false;
3134
3135 return true;
3136 }
3137
3138 /* Allocate and initialize a section-header for a new reloc section,
3139 containing relocations against ASECT. It is stored in RELDATA. If
3140 USE_RELA_P is TRUE, we use RELA relocations; otherwise, we use REL
3141 relocations. */
3142
3143 static bool
3144 _bfd_elf_init_reloc_shdr (bfd *abfd,
3145 struct bfd_elf_section_reloc_data *reldata,
3146 const char *sec_name,
3147 bool use_rela_p,
3148 bool delay_st_name_p)
3149 {
3150 Elf_Internal_Shdr *rel_hdr;
3151 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3152
3153 BFD_ASSERT (reldata->hdr == NULL);
3154 rel_hdr = bfd_zalloc (abfd, sizeof (*rel_hdr));
3155 reldata->hdr = rel_hdr;
3156
3157 if (delay_st_name_p)
3158 rel_hdr->sh_name = (unsigned int) -1;
3159 else if (!_bfd_elf_set_reloc_sh_name (abfd, rel_hdr, sec_name,
3160 use_rela_p))
3161 return false;
3162 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
3163 rel_hdr->sh_entsize = (use_rela_p
3164 ? bed->s->sizeof_rela
3165 : bed->s->sizeof_rel);
3166 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
3167 rel_hdr->sh_flags = 0;
3168 rel_hdr->sh_addr = 0;
3169 rel_hdr->sh_size = 0;
3170 rel_hdr->sh_offset = 0;
3171
3172 return true;
3173 }
3174
3175 /* Return the default section type based on the passed in section flags. */
3176
3177 int
3178 bfd_elf_get_default_section_type (flagword flags)
3179 {
3180 if ((flags & (SEC_ALLOC | SEC_IS_COMMON)) != 0
3181 && (flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
3182 return SHT_NOBITS;
3183 return SHT_PROGBITS;
3184 }
3185
3186 struct fake_section_arg
3187 {
3188 struct bfd_link_info *link_info;
3189 bool failed;
3190 };
3191
3192 /* Set up an ELF internal section header for a section. */
3193
3194 static void
3195 elf_fake_sections (bfd *abfd, asection *asect, void *fsarg)
3196 {
3197 struct fake_section_arg *arg = (struct fake_section_arg *)fsarg;
3198 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3199 struct bfd_elf_section_data *esd = elf_section_data (asect);
3200 Elf_Internal_Shdr *this_hdr;
3201 unsigned int sh_type;
3202 const char *name = asect->name;
3203 bool delay_st_name_p = false;
3204 bfd_vma mask;
3205
3206 if (arg->failed)
3207 {
3208 /* We already failed; just get out of the bfd_map_over_sections
3209 loop. */
3210 return;
3211 }
3212
3213 this_hdr = &esd->this_hdr;
3214
3215 if (arg->link_info)
3216 {
3217 /* ld: compress DWARF debug sections with names: .debug_*. */
3218 if ((arg->link_info->compress_debug & COMPRESS_DEBUG)
3219 && (asect->flags & SEC_DEBUGGING)
3220 && name[1] == 'd'
3221 && name[6] == '_')
3222 {
3223 /* Set SEC_ELF_COMPRESS to indicate this section should be
3224 compressed. */
3225 asect->flags |= SEC_ELF_COMPRESS;
3226 /* If this section will be compressed, delay adding section
3227 name to section name section after it is compressed in
3228 _bfd_elf_assign_file_positions_for_non_load. */
3229 delay_st_name_p = true;
3230 }
3231 }
3232 else if ((asect->flags & SEC_ELF_RENAME))
3233 {
3234 /* objcopy: rename output DWARF debug section. */
3235 if ((abfd->flags & (BFD_DECOMPRESS | BFD_COMPRESS_GABI)))
3236 {
3237 /* When we decompress or compress with SHF_COMPRESSED,
3238 convert section name from .zdebug_* to .debug_* if
3239 needed. */
3240 if (name[1] == 'z')
3241 {
3242 char *new_name = convert_zdebug_to_debug (abfd, name);
3243 if (new_name == NULL)
3244 {
3245 arg->failed = true;
3246 return;
3247 }
3248 name = new_name;
3249 }
3250 }
3251 else if (asect->compress_status == COMPRESS_SECTION_DONE)
3252 {
3253 /* PR binutils/18087: Compression does not always make a
3254 section smaller. So only rename the section when
3255 compression has actually taken place. If input section
3256 name is .zdebug_*, we should never compress it again. */
3257 char *new_name = convert_debug_to_zdebug (abfd, name);
3258 if (new_name == NULL)
3259 {
3260 arg->failed = true;
3261 return;
3262 }
3263 BFD_ASSERT (name[1] != 'z');
3264 name = new_name;
3265 }
3266 }
3267
3268 if (delay_st_name_p)
3269 this_hdr->sh_name = (unsigned int) -1;
3270 else
3271 {
3272 this_hdr->sh_name
3273 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3274 name, false);
3275 if (this_hdr->sh_name == (unsigned int) -1)
3276 {
3277 arg->failed = true;
3278 return;
3279 }
3280 }
3281
3282 /* Don't clear sh_flags. Assembler may set additional bits. */
3283
3284 if ((asect->flags & SEC_ALLOC) != 0
3285 || asect->user_set_vma)
3286 this_hdr->sh_addr = asect->vma * bfd_octets_per_byte (abfd, asect);
3287 else
3288 this_hdr->sh_addr = 0;
3289
3290 this_hdr->sh_offset = 0;
3291 this_hdr->sh_size = asect->size;
3292 this_hdr->sh_link = 0;
3293 /* PR 17512: file: 0eb809fe, 8b0535ee. */
3294 if (asect->alignment_power >= (sizeof (bfd_vma) * 8) - 1)
3295 {
3296 _bfd_error_handler
3297 /* xgettext:c-format */
3298 (_("%pB: error: alignment power %d of section `%pA' is too big"),
3299 abfd, asect->alignment_power, asect);
3300 arg->failed = true;
3301 return;
3302 }
3303 /* Set sh_addralign to the highest power of two given by alignment
3304 consistent with the section VMA. Linker scripts can force VMA. */
3305 mask = ((bfd_vma) 1 << asect->alignment_power) | this_hdr->sh_addr;
3306 this_hdr->sh_addralign = mask & -mask;
3307 /* The sh_entsize and sh_info fields may have been set already by
3308 copy_private_section_data. */
3309
3310 this_hdr->bfd_section = asect;
3311 this_hdr->contents = NULL;
3312
3313 /* If the section type is unspecified, we set it based on
3314 asect->flags. */
3315 if ((asect->flags & SEC_GROUP) != 0)
3316 sh_type = SHT_GROUP;
3317 else
3318 sh_type = bfd_elf_get_default_section_type (asect->flags);
3319
3320 if (this_hdr->sh_type == SHT_NULL)
3321 this_hdr->sh_type = sh_type;
3322 else if (this_hdr->sh_type == SHT_NOBITS
3323 && sh_type == SHT_PROGBITS
3324 && (asect->flags & SEC_ALLOC) != 0)
3325 {
3326 /* Warn if we are changing a NOBITS section to PROGBITS, but
3327 allow the link to proceed. This can happen when users link
3328 non-bss input sections to bss output sections, or emit data
3329 to a bss output section via a linker script. */
3330 _bfd_error_handler
3331 (_("warning: section `%pA' type changed to PROGBITS"), asect);
3332 this_hdr->sh_type = sh_type;
3333 }
3334
3335 switch (this_hdr->sh_type)
3336 {
3337 default:
3338 break;
3339
3340 case SHT_STRTAB:
3341 case SHT_NOTE:
3342 case SHT_NOBITS:
3343 case SHT_PROGBITS:
3344 break;
3345
3346 case SHT_INIT_ARRAY:
3347 case SHT_FINI_ARRAY:
3348 case SHT_PREINIT_ARRAY:
3349 this_hdr->sh_entsize = bed->s->arch_size / 8;
3350 break;
3351
3352 case SHT_HASH:
3353 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
3354 break;
3355
3356 case SHT_DYNSYM:
3357 this_hdr->sh_entsize = bed->s->sizeof_sym;
3358 break;
3359
3360 case SHT_DYNAMIC:
3361 this_hdr->sh_entsize = bed->s->sizeof_dyn;
3362 break;
3363
3364 case SHT_RELA:
3365 if (get_elf_backend_data (abfd)->may_use_rela_p)
3366 this_hdr->sh_entsize = bed->s->sizeof_rela;
3367 break;
3368
3369 case SHT_REL:
3370 if (get_elf_backend_data (abfd)->may_use_rel_p)
3371 this_hdr->sh_entsize = bed->s->sizeof_rel;
3372 break;
3373
3374 case SHT_GNU_versym:
3375 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
3376 break;
3377
3378 case SHT_GNU_verdef:
3379 this_hdr->sh_entsize = 0;
3380 /* objcopy or strip will copy over sh_info, but may not set
3381 cverdefs. The linker will set cverdefs, but sh_info will be
3382 zero. */
3383 if (this_hdr->sh_info == 0)
3384 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
3385 else
3386 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
3387 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
3388 break;
3389
3390 case SHT_GNU_verneed:
3391 this_hdr->sh_entsize = 0;
3392 /* objcopy or strip will copy over sh_info, but may not set
3393 cverrefs. The linker will set cverrefs, but sh_info will be
3394 zero. */
3395 if (this_hdr->sh_info == 0)
3396 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
3397 else
3398 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
3399 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
3400 break;
3401
3402 case SHT_GROUP:
3403 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
3404 break;
3405
3406 case SHT_GNU_HASH:
3407 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
3408 break;
3409 }
3410
3411 if ((asect->flags & SEC_ALLOC) != 0)
3412 this_hdr->sh_flags |= SHF_ALLOC;
3413 if ((asect->flags & SEC_READONLY) == 0)
3414 this_hdr->sh_flags |= SHF_WRITE;
3415 if ((asect->flags & SEC_CODE) != 0)
3416 this_hdr->sh_flags |= SHF_EXECINSTR;
3417 if ((asect->flags & SEC_MERGE) != 0)
3418 {
3419 this_hdr->sh_flags |= SHF_MERGE;
3420 this_hdr->sh_entsize = asect->entsize;
3421 }
3422 if ((asect->flags & SEC_STRINGS) != 0)
3423 this_hdr->sh_flags |= SHF_STRINGS;
3424 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
3425 this_hdr->sh_flags |= SHF_GROUP;
3426 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
3427 {
3428 this_hdr->sh_flags |= SHF_TLS;
3429 if (asect->size == 0
3430 && (asect->flags & SEC_HAS_CONTENTS) == 0)
3431 {
3432 struct bfd_link_order *o = asect->map_tail.link_order;
3433
3434 this_hdr->sh_size = 0;
3435 if (o != NULL)
3436 {
3437 this_hdr->sh_size = o->offset + o->size;
3438 if (this_hdr->sh_size != 0)
3439 this_hdr->sh_type = SHT_NOBITS;
3440 }
3441 }
3442 }
3443 if ((asect->flags & (SEC_GROUP | SEC_EXCLUDE)) == SEC_EXCLUDE)
3444 this_hdr->sh_flags |= SHF_EXCLUDE;
3445
3446 /* If the section has relocs, set up a section header for the
3447 SHT_REL[A] section. If two relocation sections are required for
3448 this section, it is up to the processor-specific back-end to
3449 create the other. */
3450 if ((asect->flags & SEC_RELOC) != 0)
3451 {
3452 /* When doing a relocatable link, create both REL and RELA sections if
3453 needed. */
3454 if (arg->link_info
3455 /* Do the normal setup if we wouldn't create any sections here. */
3456 && esd->rel.count + esd->rela.count > 0
3457 && (bfd_link_relocatable (arg->link_info)
3458 || arg->link_info->emitrelocations))
3459 {
3460 if (esd->rel.count && esd->rel.hdr == NULL
3461 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rel, name,
3462 false, delay_st_name_p))
3463 {
3464 arg->failed = true;
3465 return;
3466 }
3467 if (esd->rela.count && esd->rela.hdr == NULL
3468 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rela, name,
3469 true, delay_st_name_p))
3470 {
3471 arg->failed = true;
3472 return;
3473 }
3474 }
3475 else if (!_bfd_elf_init_reloc_shdr (abfd,
3476 (asect->use_rela_p
3477 ? &esd->rela : &esd->rel),
3478 name,
3479 asect->use_rela_p,
3480 delay_st_name_p))
3481 {
3482 arg->failed = true;
3483 return;
3484 }
3485 }
3486
3487 /* Check for processor-specific section types. */
3488 sh_type = this_hdr->sh_type;
3489 if (bed->elf_backend_fake_sections
3490 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
3491 {
3492 arg->failed = true;
3493 return;
3494 }
3495
3496 if (sh_type == SHT_NOBITS && asect->size != 0)
3497 {
3498 /* Don't change the header type from NOBITS if we are being
3499 called for objcopy --only-keep-debug. */
3500 this_hdr->sh_type = sh_type;
3501 }
3502 }
3503
3504 /* Fill in the contents of a SHT_GROUP section. Called from
3505 _bfd_elf_compute_section_file_positions for gas, objcopy, and
3506 when ELF targets use the generic linker, ld. Called for ld -r
3507 from bfd_elf_final_link. */
3508
3509 void
3510 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
3511 {
3512 bool *failedptr = (bool *) failedptrarg;
3513 asection *elt, *first;
3514 unsigned char *loc;
3515 bool gas;
3516
3517 /* Ignore linker created group section. See elfNN_ia64_object_p in
3518 elfxx-ia64.c. */
3519 if ((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP
3520 || sec->size == 0
3521 || *failedptr)
3522 return;
3523
3524 if (elf_section_data (sec)->this_hdr.sh_info == 0)
3525 {
3526 unsigned long symindx = 0;
3527
3528 /* elf_group_id will have been set up by objcopy and the
3529 generic linker. */
3530 if (elf_group_id (sec) != NULL)
3531 symindx = elf_group_id (sec)->udata.i;
3532
3533 if (symindx == 0)
3534 {
3535 /* If called from the assembler, swap_out_syms will have set up
3536 elf_section_syms.
3537 PR 25699: A corrupt input file could contain bogus group info. */
3538 if (elf_section_syms (abfd) == NULL)
3539 {
3540 *failedptr = true;
3541 return;
3542 }
3543 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
3544 }
3545 elf_section_data (sec)->this_hdr.sh_info = symindx;
3546 }
3547 else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2)
3548 {
3549 /* The ELF backend linker sets sh_info to -2 when the group
3550 signature symbol is global, and thus the index can't be
3551 set until all local symbols are output. */
3552 asection *igroup;
3553 struct bfd_elf_section_data *sec_data;
3554 unsigned long symndx;
3555 unsigned long extsymoff;
3556 struct elf_link_hash_entry *h;
3557
3558 /* The point of this little dance to the first SHF_GROUP section
3559 then back to the SHT_GROUP section is that this gets us to
3560 the SHT_GROUP in the input object. */
3561 igroup = elf_sec_group (elf_next_in_group (sec));
3562 sec_data = elf_section_data (igroup);
3563 symndx = sec_data->this_hdr.sh_info;
3564 extsymoff = 0;
3565 if (!elf_bad_symtab (igroup->owner))
3566 {
3567 Elf_Internal_Shdr *symtab_hdr;
3568
3569 symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr;
3570 extsymoff = symtab_hdr->sh_info;
3571 }
3572 h = elf_sym_hashes (igroup->owner)[symndx - extsymoff];
3573 while (h->root.type == bfd_link_hash_indirect
3574 || h->root.type == bfd_link_hash_warning)
3575 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3576
3577 elf_section_data (sec)->this_hdr.sh_info = h->indx;
3578 }
3579
3580 /* The contents won't be allocated for "ld -r" or objcopy. */
3581 gas = true;
3582 if (sec->contents == NULL)
3583 {
3584 gas = false;
3585 sec->contents = (unsigned char *) bfd_alloc (abfd, sec->size);
3586
3587 /* Arrange for the section to be written out. */
3588 elf_section_data (sec)->this_hdr.contents = sec->contents;
3589 if (sec->contents == NULL)
3590 {
3591 *failedptr = true;
3592 return;
3593 }
3594 }
3595
3596 loc = sec->contents + sec->size;
3597
3598 /* Get the pointer to the first section in the group that gas
3599 squirreled away here. objcopy arranges for this to be set to the
3600 start of the input section group. */
3601 first = elt = elf_next_in_group (sec);
3602
3603 /* First element is a flag word. Rest of section is elf section
3604 indices for all the sections of the group. Write them backwards
3605 just to keep the group in the same order as given in .section
3606 directives, not that it matters. */
3607 while (elt != NULL)
3608 {
3609 asection *s;
3610
3611 s = elt;
3612 if (!gas)
3613 s = s->output_section;
3614 if (s != NULL
3615 && !bfd_is_abs_section (s))
3616 {
3617 struct bfd_elf_section_data *elf_sec = elf_section_data (s);
3618 struct bfd_elf_section_data *input_elf_sec = elf_section_data (elt);
3619
3620 if (elf_sec->rel.hdr != NULL
3621 && (gas
3622 || (input_elf_sec->rel.hdr != NULL
3623 && input_elf_sec->rel.hdr->sh_flags & SHF_GROUP) != 0))
3624 {
3625 elf_sec->rel.hdr->sh_flags |= SHF_GROUP;
3626 loc -= 4;
3627 H_PUT_32 (abfd, elf_sec->rel.idx, loc);
3628 }
3629 if (elf_sec->rela.hdr != NULL
3630 && (gas
3631 || (input_elf_sec->rela.hdr != NULL
3632 && input_elf_sec->rela.hdr->sh_flags & SHF_GROUP) != 0))
3633 {
3634 elf_sec->rela.hdr->sh_flags |= SHF_GROUP;
3635 loc -= 4;
3636 H_PUT_32 (abfd, elf_sec->rela.idx, loc);
3637 }
3638 loc -= 4;
3639 H_PUT_32 (abfd, elf_sec->this_idx, loc);
3640 }
3641 elt = elf_next_in_group (elt);
3642 if (elt == first)
3643 break;
3644 }
3645
3646 loc -= 4;
3647 BFD_ASSERT (loc == sec->contents);
3648
3649 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
3650 }
3651
3652 /* Given NAME, the name of a relocation section stripped of its
3653 .rel/.rela prefix, return the section in ABFD to which the
3654 relocations apply. */
3655
3656 asection *
3657 _bfd_elf_plt_get_reloc_section (bfd *abfd, const char *name)
3658 {
3659 /* If a target needs .got.plt section, relocations in rela.plt/rel.plt
3660 section likely apply to .got.plt or .got section. */
3661 if (get_elf_backend_data (abfd)->want_got_plt
3662 && strcmp (name, ".plt") == 0)
3663 {
3664 asection *sec;
3665
3666 name = ".got.plt";
3667 sec = bfd_get_section_by_name (abfd, name);
3668 if (sec != NULL)
3669 return sec;
3670 name = ".got";
3671 }
3672
3673 return bfd_get_section_by_name (abfd, name);
3674 }
3675
3676 /* Return the section to which RELOC_SEC applies. */
3677
3678 static asection *
3679 elf_get_reloc_section (asection *reloc_sec)
3680 {
3681 const char *name;
3682 unsigned int type;
3683 bfd *abfd;
3684 const struct elf_backend_data *bed;
3685
3686 type = elf_section_data (reloc_sec)->this_hdr.sh_type;
3687 if (type != SHT_REL && type != SHT_RELA)
3688 return NULL;
3689
3690 /* We look up the section the relocs apply to by name. */
3691 name = reloc_sec->name;
3692 if (!startswith (name, ".rel"))
3693 return NULL;
3694 name += 4;
3695 if (type == SHT_RELA && *name++ != 'a')
3696 return NULL;
3697
3698 abfd = reloc_sec->owner;
3699 bed = get_elf_backend_data (abfd);
3700 return bed->get_reloc_section (abfd, name);
3701 }
3702
3703 /* Assign all ELF section numbers. The dummy first section is handled here
3704 too. The link/info pointers for the standard section types are filled
3705 in here too, while we're at it. LINK_INFO will be 0 when arriving
3706 here for objcopy, and when using the generic ELF linker. */
3707
3708 static bool
3709 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
3710 {
3711 struct elf_obj_tdata *t = elf_tdata (abfd);
3712 asection *sec;
3713 unsigned int section_number;
3714 Elf_Internal_Shdr **i_shdrp;
3715 struct bfd_elf_section_data *d;
3716 bool need_symtab;
3717 size_t amt;
3718
3719 section_number = 1;
3720
3721 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
3722
3723 /* SHT_GROUP sections are in relocatable files only. */
3724 if (link_info == NULL || !link_info->resolve_section_groups)
3725 {
3726 size_t reloc_count = 0;
3727
3728 /* Put SHT_GROUP sections first. */
3729 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3730 {
3731 d = elf_section_data (sec);
3732
3733 if (d->this_hdr.sh_type == SHT_GROUP)
3734 {
3735 if (sec->flags & SEC_LINKER_CREATED)
3736 {
3737 /* Remove the linker created SHT_GROUP sections. */
3738 bfd_section_list_remove (abfd, sec);
3739 abfd->section_count--;
3740 }
3741 else
3742 d->this_idx = section_number++;
3743 }
3744
3745 /* Count relocations. */
3746 reloc_count += sec->reloc_count;
3747 }
3748
3749 /* Clear HAS_RELOC if there are no relocations. */
3750 if (reloc_count == 0)
3751 abfd->flags &= ~HAS_RELOC;
3752 }
3753
3754 for (sec = abfd->sections; sec; sec = sec->next)
3755 {
3756 d = elf_section_data (sec);
3757
3758 if (d->this_hdr.sh_type != SHT_GROUP)
3759 d->this_idx = section_number++;
3760 if (d->this_hdr.sh_name != (unsigned int) -1)
3761 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
3762 if (d->rel.hdr)
3763 {
3764 d->rel.idx = section_number++;
3765 if (d->rel.hdr->sh_name != (unsigned int) -1)
3766 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel.hdr->sh_name);
3767 }
3768 else
3769 d->rel.idx = 0;
3770
3771 if (d->rela.hdr)
3772 {
3773 d->rela.idx = section_number++;
3774 if (d->rela.hdr->sh_name != (unsigned int) -1)
3775 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rela.hdr->sh_name);
3776 }
3777 else
3778 d->rela.idx = 0;
3779 }
3780
3781 need_symtab = (bfd_get_symcount (abfd) > 0
3782 || (link_info == NULL
3783 && ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
3784 == HAS_RELOC)));
3785 if (need_symtab)
3786 {
3787 elf_onesymtab (abfd) = section_number++;
3788 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
3789 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
3790 {
3791 elf_section_list *entry;
3792
3793 BFD_ASSERT (elf_symtab_shndx_list (abfd) == NULL);
3794
3795 entry = bfd_zalloc (abfd, sizeof (*entry));
3796 entry->ndx = section_number++;
3797 elf_symtab_shndx_list (abfd) = entry;
3798 entry->hdr.sh_name
3799 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3800 ".symtab_shndx", false);
3801 if (entry->hdr.sh_name == (unsigned int) -1)
3802 return false;
3803 }
3804 elf_strtab_sec (abfd) = section_number++;
3805 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3806 }
3807
3808 elf_shstrtab_sec (abfd) = section_number++;
3809 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
3810 elf_elfheader (abfd)->e_shstrndx = elf_shstrtab_sec (abfd);
3811
3812 if (section_number >= SHN_LORESERVE)
3813 {
3814 /* xgettext:c-format */
3815 _bfd_error_handler (_("%pB: too many sections: %u"),
3816 abfd, section_number);
3817 return false;
3818 }
3819
3820 elf_numsections (abfd) = section_number;
3821 elf_elfheader (abfd)->e_shnum = section_number;
3822
3823 /* Set up the list of section header pointers, in agreement with the
3824 indices. */
3825 amt = section_number * sizeof (Elf_Internal_Shdr *);
3826 i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc (abfd, amt);
3827 if (i_shdrp == NULL)
3828 return false;
3829
3830 i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd,
3831 sizeof (Elf_Internal_Shdr));
3832 if (i_shdrp[0] == NULL)
3833 {
3834 bfd_release (abfd, i_shdrp);
3835 return false;
3836 }
3837
3838 elf_elfsections (abfd) = i_shdrp;
3839
3840 i_shdrp[elf_shstrtab_sec (abfd)] = &t->shstrtab_hdr;
3841 if (need_symtab)
3842 {
3843 i_shdrp[elf_onesymtab (abfd)] = &t->symtab_hdr;
3844 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
3845 {
3846 elf_section_list * entry = elf_symtab_shndx_list (abfd);
3847 BFD_ASSERT (entry != NULL);
3848 i_shdrp[entry->ndx] = & entry->hdr;
3849 entry->hdr.sh_link = elf_onesymtab (abfd);
3850 }
3851 i_shdrp[elf_strtab_sec (abfd)] = &t->strtab_hdr;
3852 t->symtab_hdr.sh_link = elf_strtab_sec (abfd);
3853 }
3854
3855 for (sec = abfd->sections; sec; sec = sec->next)
3856 {
3857 asection *s;
3858
3859 d = elf_section_data (sec);
3860
3861 i_shdrp[d->this_idx] = &d->this_hdr;
3862 if (d->rel.idx != 0)
3863 i_shdrp[d->rel.idx] = d->rel.hdr;
3864 if (d->rela.idx != 0)
3865 i_shdrp[d->rela.idx] = d->rela.hdr;
3866
3867 /* Fill in the sh_link and sh_info fields while we're at it. */
3868
3869 /* sh_link of a reloc section is the section index of the symbol
3870 table. sh_info is the section index of the section to which
3871 the relocation entries apply. */
3872 if (d->rel.idx != 0)
3873 {
3874 d->rel.hdr->sh_link = elf_onesymtab (abfd);
3875 d->rel.hdr->sh_info = d->this_idx;
3876 d->rel.hdr->sh_flags |= SHF_INFO_LINK;
3877 }
3878 if (d->rela.idx != 0)
3879 {
3880 d->rela.hdr->sh_link = elf_onesymtab (abfd);
3881 d->rela.hdr->sh_info = d->this_idx;
3882 d->rela.hdr->sh_flags |= SHF_INFO_LINK;
3883 }
3884
3885 /* We need to set up sh_link for SHF_LINK_ORDER. */
3886 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3887 {
3888 s = elf_linked_to_section (sec);
3889 /* We can now have a NULL linked section pointer.
3890 This happens when the sh_link field is 0, which is done
3891 when a linked to section is discarded but the linking
3892 section has been retained for some reason. */
3893 if (s)
3894 {
3895 /* Check discarded linkonce section. */
3896 if (discarded_section (s))
3897 {
3898 asection *kept;
3899 _bfd_error_handler
3900 /* xgettext:c-format */
3901 (_("%pB: sh_link of section `%pA' points to"
3902 " discarded section `%pA' of `%pB'"),
3903 abfd, d->this_hdr.bfd_section, s, s->owner);
3904 /* Point to the kept section if it has the same
3905 size as the discarded one. */
3906 kept = _bfd_elf_check_kept_section (s, link_info);
3907 if (kept == NULL)
3908 {
3909 bfd_set_error (bfd_error_bad_value);
3910 return false;
3911 }
3912 s = kept;
3913 }
3914 /* Handle objcopy. */
3915 else if (s->output_section == NULL)
3916 {
3917 _bfd_error_handler
3918 /* xgettext:c-format */
3919 (_("%pB: sh_link of section `%pA' points to"
3920 " removed section `%pA' of `%pB'"),
3921 abfd, d->this_hdr.bfd_section, s, s->owner);
3922 bfd_set_error (bfd_error_bad_value);
3923 return false;
3924 }
3925 s = s->output_section;
3926 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3927 }
3928 }
3929
3930 switch (d->this_hdr.sh_type)
3931 {
3932 case SHT_REL:
3933 case SHT_RELA:
3934 /* A reloc section which we are treating as a normal BFD
3935 section. sh_link is the section index of the symbol
3936 table. sh_info is the section index of the section to
3937 which the relocation entries apply. We assume that an
3938 allocated reloc section uses the dynamic symbol table.
3939 FIXME: How can we be sure? */
3940 s = bfd_get_section_by_name (abfd, ".dynsym");
3941 if (s != NULL)
3942 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3943
3944 s = elf_get_reloc_section (sec);
3945 if (s != NULL)
3946 {
3947 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3948 d->this_hdr.sh_flags |= SHF_INFO_LINK;
3949 }
3950 break;
3951
3952 case SHT_STRTAB:
3953 /* We assume that a section named .stab*str is a stabs
3954 string section. We look for a section with the same name
3955 but without the trailing ``str'', and set its sh_link
3956 field to point to this section. */
3957 if (startswith (sec->name, ".stab")
3958 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3959 {
3960 size_t len;
3961 char *alc;
3962
3963 len = strlen (sec->name);
3964 alc = (char *) bfd_malloc (len - 2);
3965 if (alc == NULL)
3966 return false;
3967 memcpy (alc, sec->name, len - 3);
3968 alc[len - 3] = '\0';
3969 s = bfd_get_section_by_name (abfd, alc);
3970 free (alc);
3971 if (s != NULL)
3972 {
3973 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3974
3975 /* This is a .stab section. */
3976 elf_section_data (s)->this_hdr.sh_entsize = 12;
3977 }
3978 }
3979 break;
3980
3981 case SHT_DYNAMIC:
3982 case SHT_DYNSYM:
3983 case SHT_GNU_verneed:
3984 case SHT_GNU_verdef:
3985 /* sh_link is the section header index of the string table
3986 used for the dynamic entries, or the symbol table, or the
3987 version strings. */
3988 s = bfd_get_section_by_name (abfd, ".dynstr");
3989 if (s != NULL)
3990 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3991 break;
3992
3993 case SHT_GNU_LIBLIST:
3994 /* sh_link is the section header index of the prelink library
3995 list used for the dynamic entries, or the symbol table, or
3996 the version strings. */
3997 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3998 ? ".dynstr" : ".gnu.libstr");
3999 if (s != NULL)
4000 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
4001 break;
4002
4003 case SHT_HASH:
4004 case SHT_GNU_HASH:
4005 case SHT_GNU_versym:
4006 /* sh_link is the section header index of the symbol table
4007 this hash table or version table is for. */
4008 s = bfd_get_section_by_name (abfd, ".dynsym");
4009 if (s != NULL)
4010 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
4011 break;
4012
4013 case SHT_GROUP:
4014 d->this_hdr.sh_link = elf_onesymtab (abfd);
4015 }
4016 }
4017
4018 /* Delay setting sh_name to _bfd_elf_write_object_contents so that
4019 _bfd_elf_assign_file_positions_for_non_load can convert DWARF
4020 debug section name from .debug_* to .zdebug_* if needed. */
4021
4022 return true;
4023 }
4024
4025 static bool
4026 sym_is_global (bfd *abfd, asymbol *sym)
4027 {
4028 /* If the backend has a special mapping, use it. */
4029 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4030 if (bed->elf_backend_sym_is_global)
4031 return (*bed->elf_backend_sym_is_global) (abfd, sym);
4032
4033 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0
4034 || bfd_is_und_section (bfd_asymbol_section (sym))
4035 || bfd_is_com_section (bfd_asymbol_section (sym)));
4036 }
4037
4038 /* Filter global symbols of ABFD to include in the import library. All
4039 SYMCOUNT symbols of ABFD can be examined from their pointers in
4040 SYMS. Pointers of symbols to keep should be stored contiguously at
4041 the beginning of that array.
4042
4043 Returns the number of symbols to keep. */
4044
4045 unsigned int
4046 _bfd_elf_filter_global_symbols (bfd *abfd, struct bfd_link_info *info,
4047 asymbol **syms, long symcount)
4048 {
4049 long src_count, dst_count = 0;
4050
4051 for (src_count = 0; src_count < symcount; src_count++)
4052 {
4053 asymbol *sym = syms[src_count];
4054 char *name = (char *) bfd_asymbol_name (sym);
4055 struct bfd_link_hash_entry *h;
4056
4057 if (!sym_is_global (abfd, sym))
4058 continue;
4059
4060 h = bfd_link_hash_lookup (info->hash, name, false, false, false);
4061 if (h == NULL)
4062 continue;
4063 if (h->type != bfd_link_hash_defined && h->type != bfd_link_hash_defweak)
4064 continue;
4065 if (h->linker_def || h->ldscript_def)
4066 continue;
4067
4068 syms[dst_count++] = sym;
4069 }
4070
4071 syms[dst_count] = NULL;
4072
4073 return dst_count;
4074 }
4075
4076 /* Don't output section symbols for sections that are not going to be
4077 output, that are duplicates or there is no BFD section. */
4078
4079 static bool
4080 ignore_section_sym (bfd *abfd, asymbol *sym)
4081 {
4082 elf_symbol_type *type_ptr;
4083
4084 if (sym == NULL)
4085 return false;
4086
4087 if ((sym->flags & BSF_SECTION_SYM) == 0)
4088 return false;
4089
4090 /* Ignore the section symbol if it isn't used. */
4091 if ((sym->flags & BSF_SECTION_SYM_USED) == 0)
4092 return true;
4093
4094 if (sym->section == NULL)
4095 return true;
4096
4097 type_ptr = elf_symbol_from (sym);
4098 return ((type_ptr != NULL
4099 && type_ptr->internal_elf_sym.st_shndx != 0
4100 && bfd_is_abs_section (sym->section))
4101 || !(sym->section->owner == abfd
4102 || (sym->section->output_section != NULL
4103 && sym->section->output_section->owner == abfd
4104 && sym->section->output_offset == 0)
4105 || bfd_is_abs_section (sym->section)));
4106 }
4107
4108 /* Map symbol from it's internal number to the external number, moving
4109 all local symbols to be at the head of the list. */
4110
4111 static bool
4112 elf_map_symbols (bfd *abfd, unsigned int *pnum_locals)
4113 {
4114 unsigned int symcount = bfd_get_symcount (abfd);
4115 asymbol **syms = bfd_get_outsymbols (abfd);
4116 asymbol **sect_syms;
4117 unsigned int num_locals = 0;
4118 unsigned int num_globals = 0;
4119 unsigned int num_locals2 = 0;
4120 unsigned int num_globals2 = 0;
4121 unsigned int max_index = 0;
4122 unsigned int idx;
4123 asection *asect;
4124 asymbol **new_syms;
4125 size_t amt;
4126
4127 #ifdef DEBUG
4128 fprintf (stderr, "elf_map_symbols\n");
4129 fflush (stderr);
4130 #endif
4131
4132 for (asect = abfd->sections; asect; asect = asect->next)
4133 {
4134 if (max_index < asect->index)
4135 max_index = asect->index;
4136 }
4137
4138 max_index++;
4139 amt = max_index * sizeof (asymbol *);
4140 sect_syms = (asymbol **) bfd_zalloc (abfd, amt);
4141 if (sect_syms == NULL)
4142 return false;
4143 elf_section_syms (abfd) = sect_syms;
4144 elf_num_section_syms (abfd) = max_index;
4145
4146 /* Init sect_syms entries for any section symbols we have already
4147 decided to output. */
4148 for (idx = 0; idx < symcount; idx++)
4149 {
4150 asymbol *sym = syms[idx];
4151
4152 if ((sym->flags & BSF_SECTION_SYM) != 0
4153 && sym->value == 0
4154 && !ignore_section_sym (abfd, sym)
4155 && !bfd_is_abs_section (sym->section))
4156 {
4157 asection *sec = sym->section;
4158
4159 if (sec->owner != abfd)
4160 sec = sec->output_section;
4161
4162 sect_syms[sec->index] = syms[idx];
4163 }
4164 }
4165
4166 /* Classify all of the symbols. */
4167 for (idx = 0; idx < symcount; idx++)
4168 {
4169 if (sym_is_global (abfd, syms[idx]))
4170 num_globals++;
4171 else if (!ignore_section_sym (abfd, syms[idx]))
4172 num_locals++;
4173 }
4174
4175 /* We will be adding a section symbol for each normal BFD section. Most
4176 sections will already have a section symbol in outsymbols, but
4177 eg. SHT_GROUP sections will not, and we need the section symbol mapped
4178 at least in that case. */
4179 for (asect = abfd->sections; asect; asect = asect->next)
4180 {
4181 asymbol *sym = asect->symbol;
4182 /* Don't include ignored section symbols. */
4183 if (!ignore_section_sym (abfd, sym)
4184 && sect_syms[asect->index] == NULL)
4185 {
4186 if (!sym_is_global (abfd, asect->symbol))
4187 num_locals++;
4188 else
4189 num_globals++;
4190 }
4191 }
4192
4193 /* Now sort the symbols so the local symbols are first. */
4194 amt = (num_locals + num_globals) * sizeof (asymbol *);
4195 new_syms = (asymbol **) bfd_alloc (abfd, amt);
4196 if (new_syms == NULL)
4197 return false;
4198
4199 for (idx = 0; idx < symcount; idx++)
4200 {
4201 asymbol *sym = syms[idx];
4202 unsigned int i;
4203
4204 if (sym_is_global (abfd, sym))
4205 i = num_locals + num_globals2++;
4206 /* Don't include ignored section symbols. */
4207 else if (!ignore_section_sym (abfd, sym))
4208 i = num_locals2++;
4209 else
4210 continue;
4211 new_syms[i] = sym;
4212 sym->udata.i = i + 1;
4213 }
4214 for (asect = abfd->sections; asect; asect = asect->next)
4215 {
4216 asymbol *sym = asect->symbol;
4217 if (!ignore_section_sym (abfd, sym)
4218 && sect_syms[asect->index] == NULL)
4219 {
4220 unsigned int i;
4221
4222 sect_syms[asect->index] = sym;
4223 if (!sym_is_global (abfd, sym))
4224 i = num_locals2++;
4225 else
4226 i = num_locals + num_globals2++;
4227 new_syms[i] = sym;
4228 sym->udata.i = i + 1;
4229 }
4230 }
4231
4232 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
4233
4234 *pnum_locals = num_locals;
4235 return true;
4236 }
4237
4238 /* Align to the maximum file alignment that could be required for any
4239 ELF data structure. */
4240
4241 static inline file_ptr
4242 align_file_position (file_ptr off, int align)
4243 {
4244 return (off + align - 1) & ~(align - 1);
4245 }
4246
4247 /* Assign a file position to a section, optionally aligning to the
4248 required section alignment. */
4249
4250 file_ptr
4251 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
4252 file_ptr offset,
4253 bool align)
4254 {
4255 if (align && i_shdrp->sh_addralign > 1)
4256 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
4257 i_shdrp->sh_offset = offset;
4258 if (i_shdrp->bfd_section != NULL)
4259 i_shdrp->bfd_section->filepos = offset;
4260 if (i_shdrp->sh_type != SHT_NOBITS)
4261 offset += i_shdrp->sh_size;
4262 return offset;
4263 }
4264
4265 /* Compute the file positions we are going to put the sections at, and
4266 otherwise prepare to begin writing out the ELF file. If LINK_INFO
4267 is not NULL, this is being called by the ELF backend linker. */
4268
4269 bool
4270 _bfd_elf_compute_section_file_positions (bfd *abfd,
4271 struct bfd_link_info *link_info)
4272 {
4273 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4274 struct fake_section_arg fsargs;
4275 bool failed;
4276 struct elf_strtab_hash *strtab = NULL;
4277 Elf_Internal_Shdr *shstrtab_hdr;
4278 bool need_symtab;
4279
4280 if (abfd->output_has_begun)
4281 return true;
4282
4283 /* Do any elf backend specific processing first. */
4284 if (bed->elf_backend_begin_write_processing)
4285 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
4286
4287 if (!(*bed->elf_backend_init_file_header) (abfd, link_info))
4288 return false;
4289
4290 fsargs.failed = false;
4291 fsargs.link_info = link_info;
4292 bfd_map_over_sections (abfd, elf_fake_sections, &fsargs);
4293 if (fsargs.failed)
4294 return false;
4295
4296 if (!assign_section_numbers (abfd, link_info))
4297 return false;
4298
4299 /* The backend linker builds symbol table information itself. */
4300 need_symtab = (link_info == NULL
4301 && (bfd_get_symcount (abfd) > 0
4302 || ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
4303 == HAS_RELOC)));
4304 if (need_symtab)
4305 {
4306 /* Non-zero if doing a relocatable link. */
4307 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
4308
4309 if (! swap_out_syms (abfd, &strtab, relocatable_p, link_info))
4310 return false;
4311 }
4312
4313 failed = false;
4314 if (link_info == NULL)
4315 {
4316 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
4317 if (failed)
4318 return false;
4319 }
4320
4321 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
4322 /* sh_name was set in init_file_header. */
4323 shstrtab_hdr->sh_type = SHT_STRTAB;
4324 shstrtab_hdr->sh_flags = bed->elf_strtab_flags;
4325 shstrtab_hdr->sh_addr = 0;
4326 /* sh_size is set in _bfd_elf_assign_file_positions_for_non_load. */
4327 shstrtab_hdr->sh_entsize = 0;
4328 shstrtab_hdr->sh_link = 0;
4329 shstrtab_hdr->sh_info = 0;
4330 /* sh_offset is set in _bfd_elf_assign_file_positions_for_non_load. */
4331 shstrtab_hdr->sh_addralign = 1;
4332
4333 if (!assign_file_positions_except_relocs (abfd, link_info))
4334 return false;
4335
4336 if (need_symtab)
4337 {
4338 file_ptr off;
4339 Elf_Internal_Shdr *hdr;
4340
4341 off = elf_next_file_pos (abfd);
4342
4343 hdr = & elf_symtab_hdr (abfd);
4344 off = _bfd_elf_assign_file_position_for_section (hdr, off, true);
4345
4346 if (elf_symtab_shndx_list (abfd) != NULL)
4347 {
4348 hdr = & elf_symtab_shndx_list (abfd)->hdr;
4349 if (hdr->sh_size != 0)
4350 off = _bfd_elf_assign_file_position_for_section (hdr, off, true);
4351 /* FIXME: What about other symtab_shndx sections in the list ? */
4352 }
4353
4354 hdr = &elf_tdata (abfd)->strtab_hdr;
4355 off = _bfd_elf_assign_file_position_for_section (hdr, off, true);
4356
4357 elf_next_file_pos (abfd) = off;
4358
4359 /* Now that we know where the .strtab section goes, write it
4360 out. */
4361 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
4362 || ! _bfd_elf_strtab_emit (abfd, strtab))
4363 return false;
4364 _bfd_elf_strtab_free (strtab);
4365 }
4366
4367 abfd->output_has_begun = true;
4368
4369 return true;
4370 }
4371
4372 /* Make an initial estimate of the size of the program header. If we
4373 get the number wrong here, we'll redo section placement. */
4374
4375 static bfd_size_type
4376 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
4377 {
4378 size_t segs;
4379 asection *s;
4380 const struct elf_backend_data *bed;
4381
4382 /* Assume we will need exactly two PT_LOAD segments: one for text
4383 and one for data. */
4384 segs = 2;
4385
4386 s = bfd_get_section_by_name (abfd, ".interp");
4387 if (s != NULL && (s->flags & SEC_LOAD) != 0 && s->size != 0)
4388 {
4389 /* If we have a loadable interpreter section, we need a
4390 PT_INTERP segment. In this case, assume we also need a
4391 PT_PHDR segment, although that may not be true for all
4392 targets. */
4393 segs += 2;
4394 }
4395
4396 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4397 {
4398 /* We need a PT_DYNAMIC segment. */
4399 ++segs;
4400 }
4401
4402 if (info != NULL && info->relro)
4403 {
4404 /* We need a PT_GNU_RELRO segment. */
4405 ++segs;
4406 }
4407
4408 if (elf_eh_frame_hdr (abfd))
4409 {
4410 /* We need a PT_GNU_EH_FRAME segment. */
4411 ++segs;
4412 }
4413
4414 if (elf_stack_flags (abfd))
4415 {
4416 /* We need a PT_GNU_STACK segment. */
4417 ++segs;
4418 }
4419
4420 s = bfd_get_section_by_name (abfd,
4421 NOTE_GNU_PROPERTY_SECTION_NAME);
4422 if (s != NULL && s->size != 0)
4423 {
4424 /* We need a PT_GNU_PROPERTY segment. */
4425 ++segs;
4426 }
4427
4428 for (s = abfd->sections; s != NULL; s = s->next)
4429 {
4430 if ((s->flags & SEC_LOAD) != 0
4431 && elf_section_type (s) == SHT_NOTE)
4432 {
4433 unsigned int alignment_power;
4434 /* We need a PT_NOTE segment. */
4435 ++segs;
4436 /* Try to create just one PT_NOTE segment for all adjacent
4437 loadable SHT_NOTE sections. gABI requires that within a
4438 PT_NOTE segment (and also inside of each SHT_NOTE section)
4439 each note should have the same alignment. So we check
4440 whether the sections are correctly aligned. */
4441 alignment_power = s->alignment_power;
4442 while (s->next != NULL
4443 && s->next->alignment_power == alignment_power
4444 && (s->next->flags & SEC_LOAD) != 0
4445 && elf_section_type (s->next) == SHT_NOTE)
4446 s = s->next;
4447 }
4448 }
4449
4450 for (s = abfd->sections; s != NULL; s = s->next)
4451 {
4452 if (s->flags & SEC_THREAD_LOCAL)
4453 {
4454 /* We need a PT_TLS segment. */
4455 ++segs;
4456 break;
4457 }
4458 }
4459
4460 bed = get_elf_backend_data (abfd);
4461
4462 if ((abfd->flags & D_PAGED) != 0
4463 && (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_mbind) != 0)
4464 {
4465 /* Add a PT_GNU_MBIND segment for each mbind section. */
4466 bfd_vma commonpagesize;
4467 unsigned int page_align_power;
4468
4469 if (info != NULL)
4470 commonpagesize = info->commonpagesize;
4471 else
4472 commonpagesize = bed->commonpagesize;
4473 page_align_power = bfd_log2 (commonpagesize);
4474 for (s = abfd->sections; s != NULL; s = s->next)
4475 if (elf_section_flags (s) & SHF_GNU_MBIND)
4476 {
4477 if (elf_section_data (s)->this_hdr.sh_info > PT_GNU_MBIND_NUM)
4478 {
4479 _bfd_error_handler
4480 /* xgettext:c-format */
4481 (_("%pB: GNU_MBIND section `%pA' has invalid "
4482 "sh_info field: %d"),
4483 abfd, s, elf_section_data (s)->this_hdr.sh_info);
4484 continue;
4485 }
4486 /* Align mbind section to page size. */
4487 if (s->alignment_power < page_align_power)
4488 s->alignment_power = page_align_power;
4489 segs ++;
4490 }
4491 }
4492
4493 /* Let the backend count up any program headers it might need. */
4494 if (bed->elf_backend_additional_program_headers)
4495 {
4496 int a;
4497
4498 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
4499 if (a == -1)
4500 abort ();
4501 segs += a;
4502 }
4503
4504 return segs * bed->s->sizeof_phdr;
4505 }
4506
4507 /* Find the segment that contains the output_section of section. */
4508
4509 Elf_Internal_Phdr *
4510 _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
4511 {
4512 struct elf_segment_map *m;
4513 Elf_Internal_Phdr *p;
4514
4515 for (m = elf_seg_map (abfd), p = elf_tdata (abfd)->phdr;
4516 m != NULL;
4517 m = m->next, p++)
4518 {
4519 int i;
4520
4521 for (i = m->count - 1; i >= 0; i--)
4522 if (m->sections[i] == section)
4523 return p;
4524 }
4525
4526 return NULL;
4527 }
4528
4529 /* Create a mapping from a set of sections to a program segment. */
4530
4531 static struct elf_segment_map *
4532 make_mapping (bfd *abfd,
4533 asection **sections,
4534 unsigned int from,
4535 unsigned int to,
4536 bool phdr)
4537 {
4538 struct elf_segment_map *m;
4539 unsigned int i;
4540 asection **hdrpp;
4541 size_t amt;
4542
4543 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
4544 amt += (to - from) * sizeof (asection *);
4545 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4546 if (m == NULL)
4547 return NULL;
4548 m->next = NULL;
4549 m->p_type = PT_LOAD;
4550 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
4551 m->sections[i - from] = *hdrpp;
4552 m->count = to - from;
4553
4554 if (from == 0 && phdr)
4555 {
4556 /* Include the headers in the first PT_LOAD segment. */
4557 m->includes_filehdr = 1;
4558 m->includes_phdrs = 1;
4559 }
4560
4561 return m;
4562 }
4563
4564 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
4565 on failure. */
4566
4567 struct elf_segment_map *
4568 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
4569 {
4570 struct elf_segment_map *m;
4571
4572 m = (struct elf_segment_map *) bfd_zalloc (abfd,
4573 sizeof (struct elf_segment_map));
4574 if (m == NULL)
4575 return NULL;
4576 m->next = NULL;
4577 m->p_type = PT_DYNAMIC;
4578 m->count = 1;
4579 m->sections[0] = dynsec;
4580
4581 return m;
4582 }
4583
4584 /* Possibly add or remove segments from the segment map. */
4585
4586 static bool
4587 elf_modify_segment_map (bfd *abfd,
4588 struct bfd_link_info *info,
4589 bool remove_empty_load)
4590 {
4591 struct elf_segment_map **m;
4592 const struct elf_backend_data *bed;
4593
4594 /* The placement algorithm assumes that non allocated sections are
4595 not in PT_LOAD segments. We ensure this here by removing such
4596 sections from the segment map. We also remove excluded
4597 sections. Finally, any PT_LOAD segment without sections is
4598 removed. */
4599 m = &elf_seg_map (abfd);
4600 while (*m)
4601 {
4602 unsigned int i, new_count;
4603
4604 for (new_count = 0, i = 0; i < (*m)->count; i++)
4605 {
4606 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
4607 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
4608 || (*m)->p_type != PT_LOAD))
4609 {
4610 (*m)->sections[new_count] = (*m)->sections[i];
4611 new_count++;
4612 }
4613 }
4614 (*m)->count = new_count;
4615
4616 if (remove_empty_load
4617 && (*m)->p_type == PT_LOAD
4618 && (*m)->count == 0
4619 && !(*m)->includes_phdrs)
4620 *m = (*m)->next;
4621 else
4622 m = &(*m)->next;
4623 }
4624
4625 bed = get_elf_backend_data (abfd);
4626 if (bed->elf_backend_modify_segment_map != NULL)
4627 {
4628 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
4629 return false;
4630 }
4631
4632 return true;
4633 }
4634
4635 #define IS_TBSS(s) \
4636 ((s->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) == SEC_THREAD_LOCAL)
4637
4638 /* Set up a mapping from BFD sections to program segments. */
4639
4640 bool
4641 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
4642 {
4643 unsigned int count;
4644 struct elf_segment_map *m;
4645 asection **sections = NULL;
4646 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4647 bool no_user_phdrs;
4648
4649 no_user_phdrs = elf_seg_map (abfd) == NULL;
4650
4651 if (info != NULL)
4652 info->user_phdrs = !no_user_phdrs;
4653
4654 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
4655 {
4656 asection *s;
4657 unsigned int i;
4658 struct elf_segment_map *mfirst;
4659 struct elf_segment_map **pm;
4660 asection *last_hdr;
4661 bfd_vma last_size;
4662 unsigned int hdr_index;
4663 bfd_vma maxpagesize;
4664 asection **hdrpp;
4665 bool phdr_in_segment;
4666 bool writable;
4667 bool executable;
4668 unsigned int tls_count = 0;
4669 asection *first_tls = NULL;
4670 asection *first_mbind = NULL;
4671 asection *dynsec, *eh_frame_hdr;
4672 size_t amt;
4673 bfd_vma addr_mask, wrap_to = 0; /* Bytes. */
4674 bfd_size_type phdr_size; /* Octets/bytes. */
4675 unsigned int opb = bfd_octets_per_byte (abfd, NULL);
4676
4677 /* Select the allocated sections, and sort them. */
4678
4679 amt = bfd_count_sections (abfd) * sizeof (asection *);
4680 sections = (asection **) bfd_malloc (amt);
4681 if (sections == NULL)
4682 goto error_return;
4683
4684 /* Calculate top address, avoiding undefined behaviour of shift
4685 left operator when shift count is equal to size of type
4686 being shifted. */
4687 addr_mask = ((bfd_vma) 1 << (bfd_arch_bits_per_address (abfd) - 1)) - 1;
4688 addr_mask = (addr_mask << 1) + 1;
4689
4690 i = 0;
4691 for (s = abfd->sections; s != NULL; s = s->next)
4692 {
4693 if ((s->flags & SEC_ALLOC) != 0)
4694 {
4695 /* target_index is unused until bfd_elf_final_link
4696 starts output of section symbols. Use it to make
4697 qsort stable. */
4698 s->target_index = i;
4699 sections[i] = s;
4700 ++i;
4701 /* A wrapping section potentially clashes with header. */
4702 if (((s->lma + s->size / opb) & addr_mask) < (s->lma & addr_mask))
4703 wrap_to = (s->lma + s->size / opb) & addr_mask;
4704 }
4705 }
4706 BFD_ASSERT (i <= bfd_count_sections (abfd));
4707 count = i;
4708
4709 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
4710
4711 phdr_size = elf_program_header_size (abfd);
4712 if (phdr_size == (bfd_size_type) -1)
4713 phdr_size = get_program_header_size (abfd, info);
4714 phdr_size += bed->s->sizeof_ehdr;
4715 /* phdr_size is compared to LMA values which are in bytes. */
4716 phdr_size /= opb;
4717 if (info != NULL)
4718 maxpagesize = info->maxpagesize;
4719 else
4720 maxpagesize = bed->maxpagesize;
4721 if (maxpagesize == 0)
4722 maxpagesize = 1;
4723 phdr_in_segment = info != NULL && info->load_phdrs;
4724 if (count != 0
4725 && (((sections[0]->lma & addr_mask) & (maxpagesize - 1))
4726 >= (phdr_size & (maxpagesize - 1))))
4727 /* For compatibility with old scripts that may not be using
4728 SIZEOF_HEADERS, add headers when it looks like space has
4729 been left for them. */
4730 phdr_in_segment = true;
4731
4732 /* Build the mapping. */
4733 mfirst = NULL;
4734 pm = &mfirst;
4735
4736 /* If we have a .interp section, then create a PT_PHDR segment for
4737 the program headers and a PT_INTERP segment for the .interp
4738 section. */
4739 s = bfd_get_section_by_name (abfd, ".interp");
4740 if (s != NULL && (s->flags & SEC_LOAD) != 0 && s->size != 0)
4741 {
4742 amt = sizeof (struct elf_segment_map);
4743 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4744 if (m == NULL)
4745 goto error_return;
4746 m->next = NULL;
4747 m->p_type = PT_PHDR;
4748 m->p_flags = PF_R;
4749 m->p_flags_valid = 1;
4750 m->includes_phdrs = 1;
4751 phdr_in_segment = true;
4752 *pm = m;
4753 pm = &m->next;
4754
4755 amt = sizeof (struct elf_segment_map);
4756 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4757 if (m == NULL)
4758 goto error_return;
4759 m->next = NULL;
4760 m->p_type = PT_INTERP;
4761 m->count = 1;
4762 m->sections[0] = s;
4763
4764 *pm = m;
4765 pm = &m->next;
4766 }
4767
4768 /* Look through the sections. We put sections in the same program
4769 segment when the start of the second section can be placed within
4770 a few bytes of the end of the first section. */
4771 last_hdr = NULL;
4772 last_size = 0;
4773 hdr_index = 0;
4774 writable = false;
4775 executable = false;
4776 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
4777 if (dynsec != NULL
4778 && (dynsec->flags & SEC_LOAD) == 0)
4779 dynsec = NULL;
4780
4781 if ((abfd->flags & D_PAGED) == 0)
4782 phdr_in_segment = false;
4783
4784 /* Deal with -Ttext or something similar such that the first section
4785 is not adjacent to the program headers. This is an
4786 approximation, since at this point we don't know exactly how many
4787 program headers we will need. */
4788 if (phdr_in_segment && count > 0)
4789 {
4790 bfd_vma phdr_lma; /* Bytes. */
4791 bool separate_phdr = false;
4792
4793 phdr_lma = (sections[0]->lma - phdr_size) & addr_mask & -maxpagesize;
4794 if (info != NULL
4795 && info->separate_code
4796 && (sections[0]->flags & SEC_CODE) != 0)
4797 {
4798 /* If data sections should be separate from code and
4799 thus not executable, and the first section is
4800 executable then put the file and program headers in
4801 their own PT_LOAD. */
4802 separate_phdr = true;
4803 if ((((phdr_lma + phdr_size - 1) & addr_mask & -maxpagesize)
4804 == (sections[0]->lma & addr_mask & -maxpagesize)))
4805 {
4806 /* The file and program headers are currently on the
4807 same page as the first section. Put them on the
4808 previous page if we can. */
4809 if (phdr_lma >= maxpagesize)
4810 phdr_lma -= maxpagesize;
4811 else
4812 separate_phdr = false;
4813 }
4814 }
4815 if ((sections[0]->lma & addr_mask) < phdr_lma
4816 || (sections[0]->lma & addr_mask) < phdr_size)
4817 /* If file and program headers would be placed at the end
4818 of memory then it's probably better to omit them. */
4819 phdr_in_segment = false;
4820 else if (phdr_lma < wrap_to)
4821 /* If a section wraps around to where we'll be placing
4822 file and program headers, then the headers will be
4823 overwritten. */
4824 phdr_in_segment = false;
4825 else if (separate_phdr)
4826 {
4827 m = make_mapping (abfd, sections, 0, 0, phdr_in_segment);
4828 if (m == NULL)
4829 goto error_return;
4830 m->p_paddr = phdr_lma * opb;
4831 m->p_vaddr_offset
4832 = (sections[0]->vma - phdr_size) & addr_mask & -maxpagesize;
4833 m->p_paddr_valid = 1;
4834 *pm = m;
4835 pm = &m->next;
4836 phdr_in_segment = false;
4837 }
4838 }
4839
4840 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
4841 {
4842 asection *hdr;
4843 bool new_segment;
4844
4845 hdr = *hdrpp;
4846
4847 /* See if this section and the last one will fit in the same
4848 segment. */
4849
4850 if (last_hdr == NULL)
4851 {
4852 /* If we don't have a segment yet, then we don't need a new
4853 one (we build the last one after this loop). */
4854 new_segment = false;
4855 }
4856 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
4857 {
4858 /* If this section has a different relation between the
4859 virtual address and the load address, then we need a new
4860 segment. */
4861 new_segment = true;
4862 }
4863 else if (hdr->lma < last_hdr->lma + last_size
4864 || last_hdr->lma + last_size < last_hdr->lma)
4865 {
4866 /* If this section has a load address that makes it overlap
4867 the previous section, then we need a new segment. */
4868 new_segment = true;
4869 }
4870 else if ((abfd->flags & D_PAGED) != 0
4871 && (((last_hdr->lma + last_size - 1) & -maxpagesize)
4872 == (hdr->lma & -maxpagesize)))
4873 {
4874 /* If we are demand paged then we can't map two disk
4875 pages onto the same memory page. */
4876 new_segment = false;
4877 }
4878 /* In the next test we have to be careful when last_hdr->lma is close
4879 to the end of the address space. If the aligned address wraps
4880 around to the start of the address space, then there are no more
4881 pages left in memory and it is OK to assume that the current
4882 section can be included in the current segment. */
4883 else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
4884 + maxpagesize > last_hdr->lma)
4885 && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
4886 + maxpagesize <= hdr->lma))
4887 {
4888 /* If putting this section in this segment would force us to
4889 skip a page in the segment, then we need a new segment. */
4890 new_segment = true;
4891 }
4892 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
4893 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
4894 {
4895 /* We don't want to put a loaded section after a
4896 nonloaded (ie. bss style) section in the same segment
4897 as that will force the non-loaded section to be loaded.
4898 Consider .tbss sections as loaded for this purpose. */
4899 new_segment = true;
4900 }
4901 else if ((abfd->flags & D_PAGED) == 0)
4902 {
4903 /* If the file is not demand paged, which means that we
4904 don't require the sections to be correctly aligned in the
4905 file, then there is no other reason for a new segment. */
4906 new_segment = false;
4907 }
4908 else if (info != NULL
4909 && info->separate_code
4910 && executable != ((hdr->flags & SEC_CODE) != 0))
4911 {
4912 new_segment = true;
4913 }
4914 else if (! writable
4915 && (hdr->flags & SEC_READONLY) == 0)
4916 {
4917 /* We don't want to put a writable section in a read only
4918 segment. */
4919 new_segment = true;
4920 }
4921 else
4922 {
4923 /* Otherwise, we can use the same segment. */
4924 new_segment = false;
4925 }
4926
4927 /* Allow interested parties a chance to override our decision. */
4928 if (last_hdr != NULL
4929 && info != NULL
4930 && info->callbacks->override_segment_assignment != NULL)
4931 new_segment
4932 = info->callbacks->override_segment_assignment (info, abfd, hdr,
4933 last_hdr,
4934 new_segment);
4935
4936 if (! new_segment)
4937 {
4938 if ((hdr->flags & SEC_READONLY) == 0)
4939 writable = true;
4940 if ((hdr->flags & SEC_CODE) != 0)
4941 executable = true;
4942 last_hdr = hdr;
4943 /* .tbss sections effectively have zero size. */
4944 last_size = (!IS_TBSS (hdr) ? hdr->size : 0) / opb;
4945 continue;
4946 }
4947
4948 /* We need a new program segment. We must create a new program
4949 header holding all the sections from hdr_index until hdr. */
4950
4951 m = make_mapping (abfd, sections, hdr_index, i, phdr_in_segment);
4952 if (m == NULL)
4953 goto error_return;
4954
4955 *pm = m;
4956 pm = &m->next;
4957
4958 if ((hdr->flags & SEC_READONLY) == 0)
4959 writable = true;
4960 else
4961 writable = false;
4962
4963 if ((hdr->flags & SEC_CODE) == 0)
4964 executable = false;
4965 else
4966 executable = true;
4967
4968 last_hdr = hdr;
4969 /* .tbss sections effectively have zero size. */
4970 last_size = (!IS_TBSS (hdr) ? hdr->size : 0) / opb;
4971 hdr_index = i;
4972 phdr_in_segment = false;
4973 }
4974
4975 /* Create a final PT_LOAD program segment, but not if it's just
4976 for .tbss. */
4977 if (last_hdr != NULL
4978 && (i - hdr_index != 1
4979 || !IS_TBSS (last_hdr)))
4980 {
4981 m = make_mapping (abfd, sections, hdr_index, i, phdr_in_segment);
4982 if (m == NULL)
4983 goto error_return;
4984
4985 *pm = m;
4986 pm = &m->next;
4987 }
4988
4989 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4990 if (dynsec != NULL)
4991 {
4992 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
4993 if (m == NULL)
4994 goto error_return;
4995 *pm = m;
4996 pm = &m->next;
4997 }
4998
4999 /* For each batch of consecutive loadable SHT_NOTE sections,
5000 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
5001 because if we link together nonloadable .note sections and
5002 loadable .note sections, we will generate two .note sections
5003 in the output file. */
5004 for (s = abfd->sections; s != NULL; s = s->next)
5005 {
5006 if ((s->flags & SEC_LOAD) != 0
5007 && elf_section_type (s) == SHT_NOTE)
5008 {
5009 asection *s2;
5010 unsigned int alignment_power = s->alignment_power;
5011
5012 count = 1;
5013 for (s2 = s; s2->next != NULL; s2 = s2->next)
5014 {
5015 if (s2->next->alignment_power == alignment_power
5016 && (s2->next->flags & SEC_LOAD) != 0
5017 && elf_section_type (s2->next) == SHT_NOTE
5018 && align_power (s2->lma + s2->size / opb,
5019 alignment_power)
5020 == s2->next->lma)
5021 count++;
5022 else
5023 break;
5024 }
5025 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
5026 amt += count * sizeof (asection *);
5027 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5028 if (m == NULL)
5029 goto error_return;
5030 m->next = NULL;
5031 m->p_type = PT_NOTE;
5032 m->count = count;
5033 while (count > 1)
5034 {
5035 m->sections[m->count - count--] = s;
5036 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
5037 s = s->next;
5038 }
5039 m->sections[m->count - 1] = s;
5040 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
5041 *pm = m;
5042 pm = &m->next;
5043 }
5044 if (s->flags & SEC_THREAD_LOCAL)
5045 {
5046 if (! tls_count)
5047 first_tls = s;
5048 tls_count++;
5049 }
5050 if (first_mbind == NULL
5051 && (elf_section_flags (s) & SHF_GNU_MBIND) != 0)
5052 first_mbind = s;
5053 }
5054
5055 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
5056 if (tls_count > 0)
5057 {
5058 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
5059 amt += tls_count * sizeof (asection *);
5060 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5061 if (m == NULL)
5062 goto error_return;
5063 m->next = NULL;
5064 m->p_type = PT_TLS;
5065 m->count = tls_count;
5066 /* Mandated PF_R. */
5067 m->p_flags = PF_R;
5068 m->p_flags_valid = 1;
5069 s = first_tls;
5070 for (i = 0; i < tls_count; ++i)
5071 {
5072 if ((s->flags & SEC_THREAD_LOCAL) == 0)
5073 {
5074 _bfd_error_handler
5075 (_("%pB: TLS sections are not adjacent:"), abfd);
5076 s = first_tls;
5077 i = 0;
5078 while (i < tls_count)
5079 {
5080 if ((s->flags & SEC_THREAD_LOCAL) != 0)
5081 {
5082 _bfd_error_handler (_(" TLS: %pA"), s);
5083 i++;
5084 }
5085 else
5086 _bfd_error_handler (_(" non-TLS: %pA"), s);
5087 s = s->next;
5088 }
5089 bfd_set_error (bfd_error_bad_value);
5090 goto error_return;
5091 }
5092 m->sections[i] = s;
5093 s = s->next;
5094 }
5095
5096 *pm = m;
5097 pm = &m->next;
5098 }
5099
5100 if (first_mbind
5101 && (abfd->flags & D_PAGED) != 0
5102 && (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_mbind) != 0)
5103 for (s = first_mbind; s != NULL; s = s->next)
5104 if ((elf_section_flags (s) & SHF_GNU_MBIND) != 0
5105 && elf_section_data (s)->this_hdr.sh_info <= PT_GNU_MBIND_NUM)
5106 {
5107 /* Mandated PF_R. */
5108 unsigned long p_flags = PF_R;
5109 if ((s->flags & SEC_READONLY) == 0)
5110 p_flags |= PF_W;
5111 if ((s->flags & SEC_CODE) != 0)
5112 p_flags |= PF_X;
5113
5114 amt = sizeof (struct elf_segment_map) + sizeof (asection *);
5115 m = bfd_zalloc (abfd, amt);
5116 if (m == NULL)
5117 goto error_return;
5118 m->next = NULL;
5119 m->p_type = (PT_GNU_MBIND_LO
5120 + elf_section_data (s)->this_hdr.sh_info);
5121 m->count = 1;
5122 m->p_flags_valid = 1;
5123 m->sections[0] = s;
5124 m->p_flags = p_flags;
5125
5126 *pm = m;
5127 pm = &m->next;
5128 }
5129
5130 s = bfd_get_section_by_name (abfd,
5131 NOTE_GNU_PROPERTY_SECTION_NAME);
5132 if (s != NULL && s->size != 0)
5133 {
5134 amt = sizeof (struct elf_segment_map) + sizeof (asection *);
5135 m = bfd_zalloc (abfd, amt);
5136 if (m == NULL)
5137 goto error_return;
5138 m->next = NULL;
5139 m->p_type = PT_GNU_PROPERTY;
5140 m->count = 1;
5141 m->p_flags_valid = 1;
5142 m->sections[0] = s;
5143 m->p_flags = PF_R;
5144 *pm = m;
5145 pm = &m->next;
5146 }
5147
5148 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
5149 segment. */
5150 eh_frame_hdr = elf_eh_frame_hdr (abfd);
5151 if (eh_frame_hdr != NULL
5152 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
5153 {
5154 amt = sizeof (struct elf_segment_map);
5155 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5156 if (m == NULL)
5157 goto error_return;
5158 m->next = NULL;
5159 m->p_type = PT_GNU_EH_FRAME;
5160 m->count = 1;
5161 m->sections[0] = eh_frame_hdr->output_section;
5162
5163 *pm = m;
5164 pm = &m->next;
5165 }
5166
5167 if (elf_stack_flags (abfd))
5168 {
5169 amt = sizeof (struct elf_segment_map);
5170 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5171 if (m == NULL)
5172 goto error_return;
5173 m->next = NULL;
5174 m->p_type = PT_GNU_STACK;
5175 m->p_flags = elf_stack_flags (abfd);
5176 m->p_align = bed->stack_align;
5177 m->p_flags_valid = 1;
5178 m->p_align_valid = m->p_align != 0;
5179 if (info->stacksize > 0)
5180 {
5181 m->p_size = info->stacksize;
5182 m->p_size_valid = 1;
5183 }
5184
5185 *pm = m;
5186 pm = &m->next;
5187 }
5188
5189 if (info != NULL && info->relro)
5190 {
5191 for (m = mfirst; m != NULL; m = m->next)
5192 {
5193 if (m->p_type == PT_LOAD
5194 && m->count != 0
5195 && m->sections[0]->vma >= info->relro_start
5196 && m->sections[0]->vma < info->relro_end)
5197 {
5198 i = m->count;
5199 while (--i != (unsigned) -1)
5200 {
5201 if (m->sections[i]->size > 0
5202 && (m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS))
5203 == (SEC_LOAD | SEC_HAS_CONTENTS))
5204 break;
5205 }
5206
5207 if (i != (unsigned) -1)
5208 break;
5209 }
5210 }
5211
5212 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
5213 if (m != NULL)
5214 {
5215 amt = sizeof (struct elf_segment_map);
5216 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5217 if (m == NULL)
5218 goto error_return;
5219 m->next = NULL;
5220 m->p_type = PT_GNU_RELRO;
5221 *pm = m;
5222 pm = &m->next;
5223 }
5224 }
5225
5226 free (sections);
5227 elf_seg_map (abfd) = mfirst;
5228 }
5229
5230 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
5231 return false;
5232
5233 for (count = 0, m = elf_seg_map (abfd); m != NULL; m = m->next)
5234 ++count;
5235 elf_program_header_size (abfd) = count * bed->s->sizeof_phdr;
5236
5237 return true;
5238
5239 error_return:
5240 free (sections);
5241 return false;
5242 }
5243
5244 /* Sort sections by address. */
5245
5246 static int
5247 elf_sort_sections (const void *arg1, const void *arg2)
5248 {
5249 const asection *sec1 = *(const asection **) arg1;
5250 const asection *sec2 = *(const asection **) arg2;
5251 bfd_size_type size1, size2;
5252
5253 /* Sort by LMA first, since this is the address used to
5254 place the section into a segment. */
5255 if (sec1->lma < sec2->lma)
5256 return -1;
5257 else if (sec1->lma > sec2->lma)
5258 return 1;
5259
5260 /* Then sort by VMA. Normally the LMA and the VMA will be
5261 the same, and this will do nothing. */
5262 if (sec1->vma < sec2->vma)
5263 return -1;
5264 else if (sec1->vma > sec2->vma)
5265 return 1;
5266
5267 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
5268
5269 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0 \
5270 && (x)->size != 0)
5271
5272 if (TOEND (sec1))
5273 {
5274 if (!TOEND (sec2))
5275 return 1;
5276 }
5277 else if (TOEND (sec2))
5278 return -1;
5279
5280 #undef TOEND
5281
5282 /* Sort by size, to put zero sized sections
5283 before others at the same address. */
5284
5285 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
5286 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
5287
5288 if (size1 < size2)
5289 return -1;
5290 if (size1 > size2)
5291 return 1;
5292
5293 return sec1->target_index - sec2->target_index;
5294 }
5295
5296 /* This qsort comparison functions sorts PT_LOAD segments first and
5297 by p_paddr, for assign_file_positions_for_load_sections. */
5298
5299 static int
5300 elf_sort_segments (const void *arg1, const void *arg2)
5301 {
5302 const struct elf_segment_map *m1 = *(const struct elf_segment_map **) arg1;
5303 const struct elf_segment_map *m2 = *(const struct elf_segment_map **) arg2;
5304
5305 if (m1->p_type != m2->p_type)
5306 {
5307 if (m1->p_type == PT_NULL)
5308 return 1;
5309 if (m2->p_type == PT_NULL)
5310 return -1;
5311 return m1->p_type < m2->p_type ? -1 : 1;
5312 }
5313 if (m1->includes_filehdr != m2->includes_filehdr)
5314 return m1->includes_filehdr ? -1 : 1;
5315 if (m1->no_sort_lma != m2->no_sort_lma)
5316 return m1->no_sort_lma ? -1 : 1;
5317 if (m1->p_type == PT_LOAD && !m1->no_sort_lma)
5318 {
5319 bfd_vma lma1, lma2; /* Octets. */
5320 lma1 = 0;
5321 if (m1->p_paddr_valid)
5322 lma1 = m1->p_paddr;
5323 else if (m1->count != 0)
5324 {
5325 unsigned int opb = bfd_octets_per_byte (m1->sections[0]->owner,
5326 m1->sections[0]);
5327 lma1 = (m1->sections[0]->lma + m1->p_vaddr_offset) * opb;
5328 }
5329 lma2 = 0;
5330 if (m2->p_paddr_valid)
5331 lma2 = m2->p_paddr;
5332 else if (m2->count != 0)
5333 {
5334 unsigned int opb = bfd_octets_per_byte (m2->sections[0]->owner,
5335 m2->sections[0]);
5336 lma2 = (m2->sections[0]->lma + m2->p_vaddr_offset) * opb;
5337 }
5338 if (lma1 != lma2)
5339 return lma1 < lma2 ? -1 : 1;
5340 }
5341 if (m1->idx != m2->idx)
5342 return m1->idx < m2->idx ? -1 : 1;
5343 return 0;
5344 }
5345
5346 /* Ian Lance Taylor writes:
5347
5348 We shouldn't be using % with a negative signed number. That's just
5349 not good. We have to make sure either that the number is not
5350 negative, or that the number has an unsigned type. When the types
5351 are all the same size they wind up as unsigned. When file_ptr is a
5352 larger signed type, the arithmetic winds up as signed long long,
5353 which is wrong.
5354
5355 What we're trying to say here is something like ``increase OFF by
5356 the least amount that will cause it to be equal to the VMA modulo
5357 the page size.'' */
5358 /* In other words, something like:
5359
5360 vma_offset = m->sections[0]->vma % bed->maxpagesize;
5361 off_offset = off % bed->maxpagesize;
5362 if (vma_offset < off_offset)
5363 adjustment = vma_offset + bed->maxpagesize - off_offset;
5364 else
5365 adjustment = vma_offset - off_offset;
5366
5367 which can be collapsed into the expression below. */
5368
5369 static file_ptr
5370 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
5371 {
5372 /* PR binutils/16199: Handle an alignment of zero. */
5373 if (maxpagesize == 0)
5374 maxpagesize = 1;
5375 return ((vma - off) % maxpagesize);
5376 }
5377
5378 static void
5379 print_segment_map (const struct elf_segment_map *m)
5380 {
5381 unsigned int j;
5382 const char *pt = get_segment_type (m->p_type);
5383 char buf[32];
5384
5385 if (pt == NULL)
5386 {
5387 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
5388 sprintf (buf, "LOPROC+%7.7x",
5389 (unsigned int) (m->p_type - PT_LOPROC));
5390 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
5391 sprintf (buf, "LOOS+%7.7x",
5392 (unsigned int) (m->p_type - PT_LOOS));
5393 else
5394 snprintf (buf, sizeof (buf), "%8.8x",
5395 (unsigned int) m->p_type);
5396 pt = buf;
5397 }
5398 fflush (stdout);
5399 fprintf (stderr, "%s:", pt);
5400 for (j = 0; j < m->count; j++)
5401 fprintf (stderr, " %s", m->sections [j]->name);
5402 putc ('\n',stderr);
5403 fflush (stderr);
5404 }
5405
5406 static bool
5407 write_zeros (bfd *abfd, file_ptr pos, bfd_size_type len)
5408 {
5409 void *buf;
5410 bool ret;
5411
5412 if (bfd_seek (abfd, pos, SEEK_SET) != 0)
5413 return false;
5414 buf = bfd_zmalloc (len);
5415 if (buf == NULL)
5416 return false;
5417 ret = bfd_bwrite (buf, len, abfd) == len;
5418 free (buf);
5419 return ret;
5420 }
5421
5422 /* Assign file positions to the sections based on the mapping from
5423 sections to segments. This function also sets up some fields in
5424 the file header. */
5425
5426 static bool
5427 assign_file_positions_for_load_sections (bfd *abfd,
5428 struct bfd_link_info *link_info)
5429 {
5430 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5431 struct elf_segment_map *m;
5432 struct elf_segment_map *phdr_load_seg;
5433 Elf_Internal_Phdr *phdrs;
5434 Elf_Internal_Phdr *p;
5435 file_ptr off; /* Octets. */
5436 bfd_size_type maxpagesize;
5437 unsigned int alloc, actual;
5438 unsigned int i, j;
5439 struct elf_segment_map **sorted_seg_map;
5440 unsigned int opb = bfd_octets_per_byte (abfd, NULL);
5441
5442 if (link_info == NULL
5443 && !_bfd_elf_map_sections_to_segments (abfd, link_info))
5444 return false;
5445
5446 alloc = 0;
5447 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
5448 m->idx = alloc++;
5449
5450 if (alloc)
5451 {
5452 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
5453 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
5454 }
5455 else
5456 {
5457 /* PR binutils/12467. */
5458 elf_elfheader (abfd)->e_phoff = 0;
5459 elf_elfheader (abfd)->e_phentsize = 0;
5460 }
5461
5462 elf_elfheader (abfd)->e_phnum = alloc;
5463
5464 if (elf_program_header_size (abfd) == (bfd_size_type) -1)
5465 {
5466 actual = alloc;
5467 elf_program_header_size (abfd) = alloc * bed->s->sizeof_phdr;
5468 }
5469 else
5470 {
5471 actual = elf_program_header_size (abfd) / bed->s->sizeof_phdr;
5472 BFD_ASSERT (elf_program_header_size (abfd)
5473 == actual * bed->s->sizeof_phdr);
5474 BFD_ASSERT (actual >= alloc);
5475 }
5476
5477 if (alloc == 0)
5478 {
5479 elf_next_file_pos (abfd) = bed->s->sizeof_ehdr;
5480 return true;
5481 }
5482
5483 /* We're writing the size in elf_program_header_size (abfd),
5484 see assign_file_positions_except_relocs, so make sure we have
5485 that amount allocated, with trailing space cleared.
5486 The variable alloc contains the computed need, while
5487 elf_program_header_size (abfd) contains the size used for the
5488 layout.
5489 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
5490 where the layout is forced to according to a larger size in the
5491 last iterations for the testcase ld-elf/header. */
5492 phdrs = bfd_zalloc (abfd, (actual * sizeof (*phdrs)
5493 + alloc * sizeof (*sorted_seg_map)));
5494 sorted_seg_map = (struct elf_segment_map **) (phdrs + actual);
5495 elf_tdata (abfd)->phdr = phdrs;
5496 if (phdrs == NULL)
5497 return false;
5498
5499 for (m = elf_seg_map (abfd), j = 0; m != NULL; m = m->next, j++)
5500 {
5501 sorted_seg_map[j] = m;
5502 /* If elf_segment_map is not from map_sections_to_segments, the
5503 sections may not be correctly ordered. NOTE: sorting should
5504 not be done to the PT_NOTE section of a corefile, which may
5505 contain several pseudo-sections artificially created by bfd.
5506 Sorting these pseudo-sections breaks things badly. */
5507 if (m->count > 1
5508 && !(elf_elfheader (abfd)->e_type == ET_CORE
5509 && m->p_type == PT_NOTE))
5510 {
5511 for (i = 0; i < m->count; i++)
5512 m->sections[i]->target_index = i;
5513 qsort (m->sections, (size_t) m->count, sizeof (asection *),
5514 elf_sort_sections);
5515 }
5516 }
5517 if (alloc > 1)
5518 qsort (sorted_seg_map, alloc, sizeof (*sorted_seg_map),
5519 elf_sort_segments);
5520
5521 maxpagesize = 1;
5522 if ((abfd->flags & D_PAGED) != 0)
5523 {
5524 if (link_info != NULL)
5525 maxpagesize = link_info->maxpagesize;
5526 else
5527 maxpagesize = bed->maxpagesize;
5528 }
5529
5530 /* Sections must map to file offsets past the ELF file header. */
5531 off = bed->s->sizeof_ehdr;
5532 /* And if one of the PT_LOAD headers doesn't include the program
5533 headers then we'll be mapping program headers in the usual
5534 position after the ELF file header. */
5535 phdr_load_seg = NULL;
5536 for (j = 0; j < alloc; j++)
5537 {
5538 m = sorted_seg_map[j];
5539 if (m->p_type != PT_LOAD)
5540 break;
5541 if (m->includes_phdrs)
5542 {
5543 phdr_load_seg = m;
5544 break;
5545 }
5546 }
5547 if (phdr_load_seg == NULL)
5548 off += actual * bed->s->sizeof_phdr;
5549
5550 for (j = 0; j < alloc; j++)
5551 {
5552 asection **secpp;
5553 bfd_vma off_adjust; /* Octets. */
5554 bool no_contents;
5555
5556 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
5557 number of sections with contents contributing to both p_filesz
5558 and p_memsz, followed by a number of sections with no contents
5559 that just contribute to p_memsz. In this loop, OFF tracks next
5560 available file offset for PT_LOAD and PT_NOTE segments. */
5561 m = sorted_seg_map[j];
5562 p = phdrs + m->idx;
5563 p->p_type = m->p_type;
5564 p->p_flags = m->p_flags;
5565
5566 if (m->count == 0)
5567 p->p_vaddr = m->p_vaddr_offset * opb;
5568 else
5569 p->p_vaddr = (m->sections[0]->vma + m->p_vaddr_offset) * opb;
5570
5571 if (m->p_paddr_valid)
5572 p->p_paddr = m->p_paddr;
5573 else if (m->count == 0)
5574 p->p_paddr = 0;
5575 else
5576 p->p_paddr = (m->sections[0]->lma + m->p_vaddr_offset) * opb;
5577
5578 if (p->p_type == PT_LOAD
5579 && (abfd->flags & D_PAGED) != 0)
5580 {
5581 /* p_align in demand paged PT_LOAD segments effectively stores
5582 the maximum page size. When copying an executable with
5583 objcopy, we set m->p_align from the input file. Use this
5584 value for maxpagesize rather than bed->maxpagesize, which
5585 may be different. Note that we use maxpagesize for PT_TLS
5586 segment alignment later in this function, so we are relying
5587 on at least one PT_LOAD segment appearing before a PT_TLS
5588 segment. */
5589 if (m->p_align_valid)
5590 maxpagesize = m->p_align;
5591
5592 p->p_align = maxpagesize;
5593 }
5594 else if (m->p_align_valid)
5595 p->p_align = m->p_align;
5596 else if (m->count == 0)
5597 p->p_align = 1 << bed->s->log_file_align;
5598
5599 if (m == phdr_load_seg)
5600 {
5601 if (!m->includes_filehdr)
5602 p->p_offset = off;
5603 off += actual * bed->s->sizeof_phdr;
5604 }
5605
5606 no_contents = false;
5607 off_adjust = 0;
5608 if (p->p_type == PT_LOAD
5609 && m->count > 0)
5610 {
5611 bfd_size_type align; /* Bytes. */
5612 unsigned int align_power = 0;
5613
5614 if (m->p_align_valid)
5615 align = p->p_align;
5616 else
5617 {
5618 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
5619 {
5620 unsigned int secalign;
5621
5622 secalign = bfd_section_alignment (*secpp);
5623 if (secalign > align_power)
5624 align_power = secalign;
5625 }
5626 align = (bfd_size_type) 1 << align_power;
5627 if (align < maxpagesize)
5628 align = maxpagesize;
5629 }
5630
5631 for (i = 0; i < m->count; i++)
5632 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
5633 /* If we aren't making room for this section, then
5634 it must be SHT_NOBITS regardless of what we've
5635 set via struct bfd_elf_special_section. */
5636 elf_section_type (m->sections[i]) = SHT_NOBITS;
5637
5638 /* Find out whether this segment contains any loadable
5639 sections. */
5640 no_contents = true;
5641 for (i = 0; i < m->count; i++)
5642 if (elf_section_type (m->sections[i]) != SHT_NOBITS)
5643 {
5644 no_contents = false;
5645 break;
5646 }
5647
5648 off_adjust = vma_page_aligned_bias (p->p_vaddr, off, align * opb);
5649
5650 /* Broken hardware and/or kernel require that files do not
5651 map the same page with different permissions on some hppa
5652 processors. */
5653 if (j != 0
5654 && (abfd->flags & D_PAGED) != 0
5655 && bed->no_page_alias
5656 && (off & (maxpagesize - 1)) != 0
5657 && ((off & -maxpagesize)
5658 == ((off + off_adjust) & -maxpagesize)))
5659 off_adjust += maxpagesize;
5660 off += off_adjust;
5661 if (no_contents)
5662 {
5663 /* We shouldn't need to align the segment on disk since
5664 the segment doesn't need file space, but the gABI
5665 arguably requires the alignment and glibc ld.so
5666 checks it. So to comply with the alignment
5667 requirement but not waste file space, we adjust
5668 p_offset for just this segment. (OFF_ADJUST is
5669 subtracted from OFF later.) This may put p_offset
5670 past the end of file, but that shouldn't matter. */
5671 }
5672 else
5673 off_adjust = 0;
5674 }
5675 /* Make sure the .dynamic section is the first section in the
5676 PT_DYNAMIC segment. */
5677 else if (p->p_type == PT_DYNAMIC
5678 && m->count > 1
5679 && strcmp (m->sections[0]->name, ".dynamic") != 0)
5680 {
5681 _bfd_error_handler
5682 (_("%pB: The first section in the PT_DYNAMIC segment"
5683 " is not the .dynamic section"),
5684 abfd);
5685 bfd_set_error (bfd_error_bad_value);
5686 return false;
5687 }
5688 /* Set the note section type to SHT_NOTE. */
5689 else if (p->p_type == PT_NOTE)
5690 for (i = 0; i < m->count; i++)
5691 elf_section_type (m->sections[i]) = SHT_NOTE;
5692
5693 if (m->includes_filehdr)
5694 {
5695 if (!m->p_flags_valid)
5696 p->p_flags |= PF_R;
5697 p->p_filesz = bed->s->sizeof_ehdr;
5698 p->p_memsz = bed->s->sizeof_ehdr;
5699 if (p->p_type == PT_LOAD)
5700 {
5701 if (m->count > 0)
5702 {
5703 if (p->p_vaddr < (bfd_vma) off
5704 || (!m->p_paddr_valid
5705 && p->p_paddr < (bfd_vma) off))
5706 {
5707 _bfd_error_handler
5708 (_("%pB: not enough room for program headers,"
5709 " try linking with -N"),
5710 abfd);
5711 bfd_set_error (bfd_error_bad_value);
5712 return false;
5713 }
5714 p->p_vaddr -= off;
5715 if (!m->p_paddr_valid)
5716 p->p_paddr -= off;
5717 }
5718 }
5719 else if (sorted_seg_map[0]->includes_filehdr)
5720 {
5721 Elf_Internal_Phdr *filehdr = phdrs + sorted_seg_map[0]->idx;
5722 p->p_vaddr = filehdr->p_vaddr;
5723 if (!m->p_paddr_valid)
5724 p->p_paddr = filehdr->p_paddr;
5725 }
5726 }
5727
5728 if (m->includes_phdrs)
5729 {
5730 if (!m->p_flags_valid)
5731 p->p_flags |= PF_R;
5732 p->p_filesz += actual * bed->s->sizeof_phdr;
5733 p->p_memsz += actual * bed->s->sizeof_phdr;
5734 if (!m->includes_filehdr)
5735 {
5736 if (p->p_type == PT_LOAD)
5737 {
5738 elf_elfheader (abfd)->e_phoff = p->p_offset;
5739 if (m->count > 0)
5740 {
5741 p->p_vaddr -= off - p->p_offset;
5742 if (!m->p_paddr_valid)
5743 p->p_paddr -= off - p->p_offset;
5744 }
5745 }
5746 else if (phdr_load_seg != NULL)
5747 {
5748 Elf_Internal_Phdr *phdr = phdrs + phdr_load_seg->idx;
5749 bfd_vma phdr_off = 0; /* Octets. */
5750 if (phdr_load_seg->includes_filehdr)
5751 phdr_off = bed->s->sizeof_ehdr;
5752 p->p_vaddr = phdr->p_vaddr + phdr_off;
5753 if (!m->p_paddr_valid)
5754 p->p_paddr = phdr->p_paddr + phdr_off;
5755 p->p_offset = phdr->p_offset + phdr_off;
5756 }
5757 else
5758 p->p_offset = bed->s->sizeof_ehdr;
5759 }
5760 }
5761
5762 if (p->p_type == PT_LOAD
5763 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
5764 {
5765 if (!m->includes_filehdr && !m->includes_phdrs)
5766 {
5767 p->p_offset = off;
5768 if (no_contents)
5769 {
5770 /* Put meaningless p_offset for PT_LOAD segments
5771 without file contents somewhere within the first
5772 page, in an attempt to not point past EOF. */
5773 bfd_size_type align = maxpagesize;
5774 if (align < p->p_align)
5775 align = p->p_align;
5776 if (align < 1)
5777 align = 1;
5778 p->p_offset = off % align;
5779 }
5780 }
5781 else
5782 {
5783 file_ptr adjust; /* Octets. */
5784
5785 adjust = off - (p->p_offset + p->p_filesz);
5786 if (!no_contents)
5787 p->p_filesz += adjust;
5788 p->p_memsz += adjust;
5789 }
5790 }
5791
5792 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
5793 maps. Set filepos for sections in PT_LOAD segments, and in
5794 core files, for sections in PT_NOTE segments.
5795 assign_file_positions_for_non_load_sections will set filepos
5796 for other sections and update p_filesz for other segments. */
5797 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
5798 {
5799 asection *sec;
5800 bfd_size_type align;
5801 Elf_Internal_Shdr *this_hdr;
5802
5803 sec = *secpp;
5804 this_hdr = &elf_section_data (sec)->this_hdr;
5805 align = (bfd_size_type) 1 << bfd_section_alignment (sec);
5806
5807 if ((p->p_type == PT_LOAD
5808 || p->p_type == PT_TLS)
5809 && (this_hdr->sh_type != SHT_NOBITS
5810 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
5811 && ((this_hdr->sh_flags & SHF_TLS) == 0
5812 || p->p_type == PT_TLS))))
5813 {
5814 bfd_vma p_start = p->p_paddr; /* Octets. */
5815 bfd_vma p_end = p_start + p->p_memsz; /* Octets. */
5816 bfd_vma s_start = sec->lma * opb; /* Octets. */
5817 bfd_vma adjust = s_start - p_end; /* Octets. */
5818
5819 if (adjust != 0
5820 && (s_start < p_end
5821 || p_end < p_start))
5822 {
5823 _bfd_error_handler
5824 /* xgettext:c-format */
5825 (_("%pB: section %pA lma %#" PRIx64 " adjusted to %#" PRIx64),
5826 abfd, sec, (uint64_t) s_start / opb,
5827 (uint64_t) p_end / opb);
5828 adjust = 0;
5829 sec->lma = p_end / opb;
5830 }
5831 p->p_memsz += adjust;
5832
5833 if (p->p_type == PT_LOAD)
5834 {
5835 if (this_hdr->sh_type != SHT_NOBITS)
5836 {
5837 off_adjust = 0;
5838 if (p->p_filesz + adjust < p->p_memsz)
5839 {
5840 /* We have a PROGBITS section following NOBITS ones.
5841 Allocate file space for the NOBITS section(s) and
5842 zero it. */
5843 adjust = p->p_memsz - p->p_filesz;
5844 if (!write_zeros (abfd, off, adjust))
5845 return false;
5846 }
5847 }
5848 /* We only adjust sh_offset in SHT_NOBITS sections
5849 as would seem proper for their address when the
5850 section is first in the segment. sh_offset
5851 doesn't really have any significance for
5852 SHT_NOBITS anyway, apart from a notional position
5853 relative to other sections. Historically we
5854 didn't bother with adjusting sh_offset and some
5855 programs depend on it not being adjusted. See
5856 pr12921 and pr25662. */
5857 if (this_hdr->sh_type != SHT_NOBITS || i == 0)
5858 {
5859 off += adjust;
5860 if (this_hdr->sh_type == SHT_NOBITS)
5861 off_adjust += adjust;
5862 }
5863 }
5864 if (this_hdr->sh_type != SHT_NOBITS)
5865 p->p_filesz += adjust;
5866 }
5867
5868 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
5869 {
5870 /* The section at i == 0 is the one that actually contains
5871 everything. */
5872 if (i == 0)
5873 {
5874 this_hdr->sh_offset = sec->filepos = off;
5875 off += this_hdr->sh_size;
5876 p->p_filesz = this_hdr->sh_size;
5877 p->p_memsz = 0;
5878 p->p_align = 1;
5879 }
5880 else
5881 {
5882 /* The rest are fake sections that shouldn't be written. */
5883 sec->filepos = 0;
5884 sec->size = 0;
5885 sec->flags = 0;
5886 continue;
5887 }
5888 }
5889 else
5890 {
5891 if (p->p_type == PT_LOAD)
5892 {
5893 this_hdr->sh_offset = sec->filepos = off;
5894 if (this_hdr->sh_type != SHT_NOBITS)
5895 off += this_hdr->sh_size;
5896 }
5897 else if (this_hdr->sh_type == SHT_NOBITS
5898 && (this_hdr->sh_flags & SHF_TLS) != 0
5899 && this_hdr->sh_offset == 0)
5900 {
5901 /* This is a .tbss section that didn't get a PT_LOAD.
5902 (See _bfd_elf_map_sections_to_segments "Create a
5903 final PT_LOAD".) Set sh_offset to the value it
5904 would have if we had created a zero p_filesz and
5905 p_memsz PT_LOAD header for the section. This
5906 also makes the PT_TLS header have the same
5907 p_offset value. */
5908 bfd_vma adjust = vma_page_aligned_bias (this_hdr->sh_addr,
5909 off, align);
5910 this_hdr->sh_offset = sec->filepos = off + adjust;
5911 }
5912
5913 if (this_hdr->sh_type != SHT_NOBITS)
5914 {
5915 p->p_filesz += this_hdr->sh_size;
5916 /* A load section without SHF_ALLOC is something like
5917 a note section in a PT_NOTE segment. These take
5918 file space but are not loaded into memory. */
5919 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5920 p->p_memsz += this_hdr->sh_size;
5921 }
5922 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5923 {
5924 if (p->p_type == PT_TLS)
5925 p->p_memsz += this_hdr->sh_size;
5926
5927 /* .tbss is special. It doesn't contribute to p_memsz of
5928 normal segments. */
5929 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
5930 p->p_memsz += this_hdr->sh_size;
5931 }
5932
5933 if (align > p->p_align
5934 && !m->p_align_valid
5935 && (p->p_type != PT_LOAD
5936 || (abfd->flags & D_PAGED) == 0))
5937 p->p_align = align;
5938 }
5939
5940 if (!m->p_flags_valid)
5941 {
5942 p->p_flags |= PF_R;
5943 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
5944 p->p_flags |= PF_X;
5945 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
5946 p->p_flags |= PF_W;
5947 }
5948 }
5949
5950 off -= off_adjust;
5951
5952 /* PR ld/20815 - Check that the program header segment, if
5953 present, will be loaded into memory. */
5954 if (p->p_type == PT_PHDR
5955 && phdr_load_seg == NULL
5956 && !(bed->elf_backend_allow_non_load_phdr != NULL
5957 && bed->elf_backend_allow_non_load_phdr (abfd, phdrs, alloc)))
5958 {
5959 /* The fix for this error is usually to edit the linker script being
5960 used and set up the program headers manually. Either that or
5961 leave room for the headers at the start of the SECTIONS. */
5962 _bfd_error_handler (_("%pB: error: PHDR segment not covered"
5963 " by LOAD segment"),
5964 abfd);
5965 if (link_info == NULL)
5966 return false;
5967 /* Arrange for the linker to exit with an error, deleting
5968 the output file unless --noinhibit-exec is given. */
5969 link_info->callbacks->info ("%X");
5970 }
5971
5972 /* Check that all sections are in a PT_LOAD segment.
5973 Don't check funky gdb generated core files. */
5974 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
5975 {
5976 bool check_vma = true;
5977
5978 for (i = 1; i < m->count; i++)
5979 if (m->sections[i]->vma == m->sections[i - 1]->vma
5980 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i])
5981 ->this_hdr), p) != 0
5982 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i - 1])
5983 ->this_hdr), p) != 0)
5984 {
5985 /* Looks like we have overlays packed into the segment. */
5986 check_vma = false;
5987 break;
5988 }
5989
5990 for (i = 0; i < m->count; i++)
5991 {
5992 Elf_Internal_Shdr *this_hdr;
5993 asection *sec;
5994
5995 sec = m->sections[i];
5996 this_hdr = &(elf_section_data(sec)->this_hdr);
5997 if (!ELF_SECTION_IN_SEGMENT_1 (this_hdr, p, check_vma, 0)
5998 && !ELF_TBSS_SPECIAL (this_hdr, p))
5999 {
6000 _bfd_error_handler
6001 /* xgettext:c-format */
6002 (_("%pB: section `%pA' can't be allocated in segment %d"),
6003 abfd, sec, j);
6004 print_segment_map (m);
6005 }
6006 }
6007 }
6008 }
6009
6010 elf_next_file_pos (abfd) = off;
6011
6012 if (link_info != NULL
6013 && phdr_load_seg != NULL
6014 && phdr_load_seg->includes_filehdr)
6015 {
6016 /* There is a segment that contains both the file headers and the
6017 program headers, so provide a symbol __ehdr_start pointing there.
6018 A program can use this to examine itself robustly. */
6019
6020 struct elf_link_hash_entry *hash
6021 = elf_link_hash_lookup (elf_hash_table (link_info), "__ehdr_start",
6022 false, false, true);
6023 /* If the symbol was referenced and not defined, define it. */
6024 if (hash != NULL
6025 && (hash->root.type == bfd_link_hash_new
6026 || hash->root.type == bfd_link_hash_undefined
6027 || hash->root.type == bfd_link_hash_undefweak
6028 || hash->root.type == bfd_link_hash_common))
6029 {
6030 asection *s = NULL;
6031 bfd_vma filehdr_vaddr = phdrs[phdr_load_seg->idx].p_vaddr / opb;
6032
6033 if (phdr_load_seg->count != 0)
6034 /* The segment contains sections, so use the first one. */
6035 s = phdr_load_seg->sections[0];
6036 else
6037 /* Use the first (i.e. lowest-addressed) section in any segment. */
6038 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
6039 if (m->p_type == PT_LOAD && m->count != 0)
6040 {
6041 s = m->sections[0];
6042 break;
6043 }
6044
6045 if (s != NULL)
6046 {
6047 hash->root.u.def.value = filehdr_vaddr - s->vma;
6048 hash->root.u.def.section = s;
6049 }
6050 else
6051 {
6052 hash->root.u.def.value = filehdr_vaddr;
6053 hash->root.u.def.section = bfd_abs_section_ptr;
6054 }
6055
6056 hash->root.type = bfd_link_hash_defined;
6057 hash->def_regular = 1;
6058 hash->non_elf = 0;
6059 }
6060 }
6061
6062 return true;
6063 }
6064
6065 /* Determine if a bfd is a debuginfo file. Unfortunately there
6066 is no defined method for detecting such files, so we have to
6067 use heuristics instead. */
6068
6069 bool
6070 is_debuginfo_file (bfd *abfd)
6071 {
6072 if (abfd == NULL || bfd_get_flavour (abfd) != bfd_target_elf_flavour)
6073 return false;
6074
6075 Elf_Internal_Shdr **start_headers = elf_elfsections (abfd);
6076 Elf_Internal_Shdr **end_headers = start_headers + elf_numsections (abfd);
6077 Elf_Internal_Shdr **headerp;
6078
6079 for (headerp = start_headers; headerp < end_headers; headerp ++)
6080 {
6081 Elf_Internal_Shdr *header = * headerp;
6082
6083 /* Debuginfo files do not have any allocated SHT_PROGBITS sections.
6084 The only allocated sections are SHT_NOBITS or SHT_NOTES. */
6085 if ((header->sh_flags & SHF_ALLOC) == SHF_ALLOC
6086 && header->sh_type != SHT_NOBITS
6087 && header->sh_type != SHT_NOTE)
6088 return false;
6089 }
6090
6091 return true;
6092 }
6093
6094 /* Assign file positions for the other sections, except for compressed debugging
6095 and other sections assigned in _bfd_elf_assign_file_positions_for_non_load(). */
6096
6097 static bool
6098 assign_file_positions_for_non_load_sections (bfd *abfd,
6099 struct bfd_link_info *link_info)
6100 {
6101 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6102 Elf_Internal_Shdr **i_shdrpp;
6103 Elf_Internal_Shdr **hdrpp, **end_hdrpp;
6104 Elf_Internal_Phdr *phdrs;
6105 Elf_Internal_Phdr *p;
6106 struct elf_segment_map *m;
6107 file_ptr off;
6108 unsigned int opb = bfd_octets_per_byte (abfd, NULL);
6109 bfd_vma maxpagesize;
6110
6111 if (link_info != NULL)
6112 maxpagesize = link_info->maxpagesize;
6113 else
6114 maxpagesize = bed->maxpagesize;
6115 i_shdrpp = elf_elfsections (abfd);
6116 end_hdrpp = i_shdrpp + elf_numsections (abfd);
6117 off = elf_next_file_pos (abfd);
6118 for (hdrpp = i_shdrpp + 1; hdrpp < end_hdrpp; hdrpp++)
6119 {
6120 Elf_Internal_Shdr *hdr;
6121
6122 hdr = *hdrpp;
6123 if (hdr->bfd_section != NULL
6124 && (hdr->bfd_section->filepos != 0
6125 || (hdr->sh_type == SHT_NOBITS
6126 && hdr->contents == NULL)))
6127 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
6128 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
6129 {
6130 if (hdr->sh_size != 0
6131 /* PR 24717 - debuginfo files are known to be not strictly
6132 compliant with the ELF standard. In particular they often
6133 have .note.gnu.property sections that are outside of any
6134 loadable segment. This is not a problem for such files,
6135 so do not warn about them. */
6136 && ! is_debuginfo_file (abfd))
6137 _bfd_error_handler
6138 /* xgettext:c-format */
6139 (_("%pB: warning: allocated section `%s' not in segment"),
6140 abfd,
6141 (hdr->bfd_section == NULL
6142 ? "*unknown*"
6143 : hdr->bfd_section->name));
6144 /* We don't need to page align empty sections. */
6145 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
6146 off += vma_page_aligned_bias (hdr->sh_addr, off,
6147 maxpagesize);
6148 else
6149 off += vma_page_aligned_bias (hdr->sh_addr, off,
6150 hdr->sh_addralign);
6151 off = _bfd_elf_assign_file_position_for_section (hdr, off,
6152 false);
6153 }
6154 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
6155 && hdr->bfd_section == NULL)
6156 /* We don't know the offset of these sections yet: their size has
6157 not been decided. */
6158 || (hdr->bfd_section != NULL
6159 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS
6160 || (bfd_section_is_ctf (hdr->bfd_section)
6161 && abfd->is_linker_output)))
6162 || hdr == i_shdrpp[elf_onesymtab (abfd)]
6163 || (elf_symtab_shndx_list (abfd) != NULL
6164 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
6165 || hdr == i_shdrpp[elf_strtab_sec (abfd)]
6166 || hdr == i_shdrpp[elf_shstrtab_sec (abfd)])
6167 hdr->sh_offset = -1;
6168 else
6169 off = _bfd_elf_assign_file_position_for_section (hdr, off, true);
6170 }
6171 elf_next_file_pos (abfd) = off;
6172
6173 /* Now that we have set the section file positions, we can set up
6174 the file positions for the non PT_LOAD segments. */
6175 phdrs = elf_tdata (abfd)->phdr;
6176 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
6177 {
6178 if (p->p_type == PT_GNU_RELRO)
6179 {
6180 bfd_vma start, end; /* Bytes. */
6181 bool ok;
6182
6183 if (link_info != NULL)
6184 {
6185 /* During linking the range of the RELRO segment is passed
6186 in link_info. Note that there may be padding between
6187 relro_start and the first RELRO section. */
6188 start = link_info->relro_start;
6189 end = link_info->relro_end;
6190 }
6191 else if (m->count != 0)
6192 {
6193 if (!m->p_size_valid)
6194 abort ();
6195 start = m->sections[0]->vma;
6196 end = start + m->p_size / opb;
6197 }
6198 else
6199 {
6200 start = 0;
6201 end = 0;
6202 }
6203
6204 ok = false;
6205 if (start < end)
6206 {
6207 struct elf_segment_map *lm;
6208 const Elf_Internal_Phdr *lp;
6209 unsigned int i;
6210
6211 /* Find a LOAD segment containing a section in the RELRO
6212 segment. */
6213 for (lm = elf_seg_map (abfd), lp = phdrs;
6214 lm != NULL;
6215 lm = lm->next, lp++)
6216 {
6217 if (lp->p_type == PT_LOAD
6218 && lm->count != 0
6219 && (lm->sections[lm->count - 1]->vma
6220 + (!IS_TBSS (lm->sections[lm->count - 1])
6221 ? lm->sections[lm->count - 1]->size / opb
6222 : 0)) > start
6223 && lm->sections[0]->vma < end)
6224 break;
6225 }
6226
6227 if (lm != NULL)
6228 {
6229 /* Find the section starting the RELRO segment. */
6230 for (i = 0; i < lm->count; i++)
6231 {
6232 asection *s = lm->sections[i];
6233 if (s->vma >= start
6234 && s->vma < end
6235 && s->size != 0)
6236 break;
6237 }
6238
6239 if (i < lm->count)
6240 {
6241 p->p_vaddr = lm->sections[i]->vma * opb;
6242 p->p_paddr = lm->sections[i]->lma * opb;
6243 p->p_offset = lm->sections[i]->filepos;
6244 p->p_memsz = end * opb - p->p_vaddr;
6245 p->p_filesz = p->p_memsz;
6246
6247 /* The RELRO segment typically ends a few bytes
6248 into .got.plt but other layouts are possible.
6249 In cases where the end does not match any
6250 loaded section (for instance is in file
6251 padding), trim p_filesz back to correspond to
6252 the end of loaded section contents. */
6253 if (p->p_filesz > lp->p_vaddr + lp->p_filesz - p->p_vaddr)
6254 p->p_filesz = lp->p_vaddr + lp->p_filesz - p->p_vaddr;
6255
6256 /* Preserve the alignment and flags if they are
6257 valid. The gold linker generates RW/4 for
6258 the PT_GNU_RELRO section. It is better for
6259 objcopy/strip to honor these attributes
6260 otherwise gdb will choke when using separate
6261 debug files. */
6262 if (!m->p_align_valid)
6263 p->p_align = 1;
6264 if (!m->p_flags_valid)
6265 p->p_flags = PF_R;
6266 ok = true;
6267 }
6268 }
6269 }
6270
6271 if (!ok)
6272 {
6273 if (link_info != NULL)
6274 _bfd_error_handler
6275 (_("%pB: warning: unable to allocate any sections to PT_GNU_RELRO segment"),
6276 abfd);
6277 memset (p, 0, sizeof *p);
6278 }
6279 }
6280 else if (p->p_type == PT_GNU_STACK)
6281 {
6282 if (m->p_size_valid)
6283 p->p_memsz = m->p_size;
6284 }
6285 else if (m->count != 0)
6286 {
6287 unsigned int i;
6288
6289 if (p->p_type != PT_LOAD
6290 && (p->p_type != PT_NOTE
6291 || bfd_get_format (abfd) != bfd_core))
6292 {
6293 /* A user specified segment layout may include a PHDR
6294 segment that overlaps with a LOAD segment... */
6295 if (p->p_type == PT_PHDR)
6296 {
6297 m->count = 0;
6298 continue;
6299 }
6300
6301 if (m->includes_filehdr || m->includes_phdrs)
6302 {
6303 /* PR 17512: file: 2195325e. */
6304 _bfd_error_handler
6305 (_("%pB: error: non-load segment %d includes file header "
6306 "and/or program header"),
6307 abfd, (int) (p - phdrs));
6308 return false;
6309 }
6310
6311 p->p_filesz = 0;
6312 p->p_offset = m->sections[0]->filepos;
6313 for (i = m->count; i-- != 0;)
6314 {
6315 asection *sect = m->sections[i];
6316 Elf_Internal_Shdr *hdr = &elf_section_data (sect)->this_hdr;
6317 if (hdr->sh_type != SHT_NOBITS)
6318 {
6319 p->p_filesz = (sect->filepos - m->sections[0]->filepos
6320 + hdr->sh_size);
6321 /* NB: p_memsz of the loadable PT_NOTE segment
6322 should be the same as p_filesz. */
6323 if (p->p_type == PT_NOTE
6324 && (hdr->sh_flags & SHF_ALLOC) != 0)
6325 p->p_memsz = p->p_filesz;
6326 break;
6327 }
6328 }
6329 }
6330 }
6331 }
6332
6333 return true;
6334 }
6335
6336 static elf_section_list *
6337 find_section_in_list (unsigned int i, elf_section_list * list)
6338 {
6339 for (;list != NULL; list = list->next)
6340 if (list->ndx == i)
6341 break;
6342 return list;
6343 }
6344
6345 /* Work out the file positions of all the sections. This is called by
6346 _bfd_elf_compute_section_file_positions. All the section sizes and
6347 VMAs must be known before this is called.
6348
6349 Reloc sections come in two flavours: Those processed specially as
6350 "side-channel" data attached to a section to which they apply, and those that
6351 bfd doesn't process as relocations. The latter sort are stored in a normal
6352 bfd section by bfd_section_from_shdr. We don't consider the former sort
6353 here, unless they form part of the loadable image. Reloc sections not
6354 assigned here (and compressed debugging sections and CTF sections which
6355 nothing else in the file can rely upon) will be handled later by
6356 assign_file_positions_for_relocs.
6357
6358 We also don't set the positions of the .symtab and .strtab here. */
6359
6360 static bool
6361 assign_file_positions_except_relocs (bfd *abfd,
6362 struct bfd_link_info *link_info)
6363 {
6364 struct elf_obj_tdata *tdata = elf_tdata (abfd);
6365 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
6366 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6367 unsigned int alloc;
6368
6369 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
6370 && bfd_get_format (abfd) != bfd_core)
6371 {
6372 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
6373 unsigned int num_sec = elf_numsections (abfd);
6374 Elf_Internal_Shdr **hdrpp;
6375 unsigned int i;
6376 file_ptr off;
6377
6378 /* Start after the ELF header. */
6379 off = i_ehdrp->e_ehsize;
6380
6381 /* We are not creating an executable, which means that we are
6382 not creating a program header, and that the actual order of
6383 the sections in the file is unimportant. */
6384 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
6385 {
6386 Elf_Internal_Shdr *hdr;
6387
6388 hdr = *hdrpp;
6389 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
6390 && hdr->bfd_section == NULL)
6391 /* Do not assign offsets for these sections yet: we don't know
6392 their sizes. */
6393 || (hdr->bfd_section != NULL
6394 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS
6395 || (bfd_section_is_ctf (hdr->bfd_section)
6396 && abfd->is_linker_output)))
6397 || i == elf_onesymtab (abfd)
6398 || (elf_symtab_shndx_list (abfd) != NULL
6399 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
6400 || i == elf_strtab_sec (abfd)
6401 || i == elf_shstrtab_sec (abfd))
6402 {
6403 hdr->sh_offset = -1;
6404 }
6405 else
6406 off = _bfd_elf_assign_file_position_for_section (hdr, off, true);
6407 }
6408
6409 elf_next_file_pos (abfd) = off;
6410 elf_program_header_size (abfd) = 0;
6411 }
6412 else
6413 {
6414 /* Assign file positions for the loaded sections based on the
6415 assignment of sections to segments. */
6416 if (!assign_file_positions_for_load_sections (abfd, link_info))
6417 return false;
6418
6419 /* And for non-load sections. */
6420 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
6421 return false;
6422 }
6423
6424 if (!(*bed->elf_backend_modify_headers) (abfd, link_info))
6425 return false;
6426
6427 /* Write out the program headers. */
6428 alloc = i_ehdrp->e_phnum;
6429 if (alloc != 0)
6430 {
6431 if (bfd_seek (abfd, i_ehdrp->e_phoff, SEEK_SET) != 0
6432 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
6433 return false;
6434 }
6435
6436 return true;
6437 }
6438
6439 bool
6440 _bfd_elf_init_file_header (bfd *abfd,
6441 struct bfd_link_info *info ATTRIBUTE_UNUSED)
6442 {
6443 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form. */
6444 struct elf_strtab_hash *shstrtab;
6445 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6446
6447 i_ehdrp = elf_elfheader (abfd);
6448
6449 shstrtab = _bfd_elf_strtab_init ();
6450 if (shstrtab == NULL)
6451 return false;
6452
6453 elf_shstrtab (abfd) = shstrtab;
6454
6455 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
6456 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
6457 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
6458 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
6459
6460 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
6461 i_ehdrp->e_ident[EI_DATA] =
6462 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
6463 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
6464
6465 if ((abfd->flags & DYNAMIC) != 0)
6466 i_ehdrp->e_type = ET_DYN;
6467 else if ((abfd->flags & EXEC_P) != 0)
6468 i_ehdrp->e_type = ET_EXEC;
6469 else if (bfd_get_format (abfd) == bfd_core)
6470 i_ehdrp->e_type = ET_CORE;
6471 else
6472 i_ehdrp->e_type = ET_REL;
6473
6474 switch (bfd_get_arch (abfd))
6475 {
6476 case bfd_arch_unknown:
6477 i_ehdrp->e_machine = EM_NONE;
6478 break;
6479
6480 /* There used to be a long list of cases here, each one setting
6481 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
6482 in the corresponding bfd definition. To avoid duplication,
6483 the switch was removed. Machines that need special handling
6484 can generally do it in elf_backend_final_write_processing(),
6485 unless they need the information earlier than the final write.
6486 Such need can generally be supplied by replacing the tests for
6487 e_machine with the conditions used to determine it. */
6488 default:
6489 i_ehdrp->e_machine = bed->elf_machine_code;
6490 }
6491
6492 i_ehdrp->e_version = bed->s->ev_current;
6493 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
6494
6495 /* No program header, for now. */
6496 i_ehdrp->e_phoff = 0;
6497 i_ehdrp->e_phentsize = 0;
6498 i_ehdrp->e_phnum = 0;
6499
6500 /* Each bfd section is section header entry. */
6501 i_ehdrp->e_entry = bfd_get_start_address (abfd);
6502 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
6503
6504 elf_tdata (abfd)->symtab_hdr.sh_name =
6505 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", false);
6506 elf_tdata (abfd)->strtab_hdr.sh_name =
6507 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", false);
6508 elf_tdata (abfd)->shstrtab_hdr.sh_name =
6509 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", false);
6510 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
6511 || elf_tdata (abfd)->strtab_hdr.sh_name == (unsigned int) -1
6512 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
6513 return false;
6514
6515 return true;
6516 }
6517
6518 /* Set e_type in ELF header to ET_EXEC for -pie -Ttext-segment=.
6519
6520 FIXME: We used to have code here to sort the PT_LOAD segments into
6521 ascending order, as per the ELF spec. But this breaks some programs,
6522 including the Linux kernel. But really either the spec should be
6523 changed or the programs updated. */
6524
6525 bool
6526 _bfd_elf_modify_headers (bfd *obfd, struct bfd_link_info *link_info)
6527 {
6528 if (link_info != NULL && bfd_link_pie (link_info))
6529 {
6530 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (obfd);
6531 unsigned int num_segments = i_ehdrp->e_phnum;
6532 struct elf_obj_tdata *tdata = elf_tdata (obfd);
6533 Elf_Internal_Phdr *segment = tdata->phdr;
6534 Elf_Internal_Phdr *end_segment = &segment[num_segments];
6535
6536 /* Find the lowest p_vaddr in PT_LOAD segments. */
6537 bfd_vma p_vaddr = (bfd_vma) -1;
6538 for (; segment < end_segment; segment++)
6539 if (segment->p_type == PT_LOAD && p_vaddr > segment->p_vaddr)
6540 p_vaddr = segment->p_vaddr;
6541
6542 /* Set e_type to ET_EXEC if the lowest p_vaddr in PT_LOAD
6543 segments is non-zero. */
6544 if (p_vaddr)
6545 i_ehdrp->e_type = ET_EXEC;
6546 }
6547 return true;
6548 }
6549
6550 /* Assign file positions for all the reloc sections which are not part
6551 of the loadable file image, and the file position of section headers. */
6552
6553 static bool
6554 _bfd_elf_assign_file_positions_for_non_load (bfd *abfd)
6555 {
6556 file_ptr off;
6557 Elf_Internal_Shdr **shdrpp, **end_shdrpp;
6558 Elf_Internal_Shdr *shdrp;
6559 Elf_Internal_Ehdr *i_ehdrp;
6560 const struct elf_backend_data *bed;
6561
6562 off = elf_next_file_pos (abfd);
6563
6564 shdrpp = elf_elfsections (abfd);
6565 end_shdrpp = shdrpp + elf_numsections (abfd);
6566 for (shdrpp++; shdrpp < end_shdrpp; shdrpp++)
6567 {
6568 shdrp = *shdrpp;
6569 if (shdrp->sh_offset == -1)
6570 {
6571 asection *sec = shdrp->bfd_section;
6572 bool is_rel = (shdrp->sh_type == SHT_REL
6573 || shdrp->sh_type == SHT_RELA);
6574 bool is_ctf = sec && bfd_section_is_ctf (sec);
6575 if (is_rel
6576 || is_ctf
6577 || (sec != NULL && (sec->flags & SEC_ELF_COMPRESS)))
6578 {
6579 if (!is_rel && !is_ctf)
6580 {
6581 const char *name = sec->name;
6582 struct bfd_elf_section_data *d;
6583
6584 /* Compress DWARF debug sections. */
6585 if (!bfd_compress_section (abfd, sec,
6586 shdrp->contents))
6587 return false;
6588
6589 if (sec->compress_status == COMPRESS_SECTION_DONE
6590 && (abfd->flags & BFD_COMPRESS_GABI) == 0)
6591 {
6592 /* If section is compressed with zlib-gnu, convert
6593 section name from .debug_* to .zdebug_*. */
6594 char *new_name
6595 = convert_debug_to_zdebug (abfd, name);
6596 if (new_name == NULL)
6597 return false;
6598 name = new_name;
6599 }
6600 /* Add section name to section name section. */
6601 if (shdrp->sh_name != (unsigned int) -1)
6602 abort ();
6603 shdrp->sh_name
6604 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
6605 name, false);
6606 d = elf_section_data (sec);
6607
6608 /* Add reloc section name to section name section. */
6609 if (d->rel.hdr
6610 && !_bfd_elf_set_reloc_sh_name (abfd,
6611 d->rel.hdr,
6612 name, false))
6613 return false;
6614 if (d->rela.hdr
6615 && !_bfd_elf_set_reloc_sh_name (abfd,
6616 d->rela.hdr,
6617 name, true))
6618 return false;
6619
6620 /* Update section size and contents. */
6621 shdrp->sh_size = sec->size;
6622 shdrp->contents = sec->contents;
6623 shdrp->bfd_section->contents = NULL;
6624 }
6625 else if (is_ctf)
6626 {
6627 /* Update section size and contents. */
6628 shdrp->sh_size = sec->size;
6629 shdrp->contents = sec->contents;
6630 }
6631
6632 off = _bfd_elf_assign_file_position_for_section (shdrp,
6633 off,
6634 true);
6635 }
6636 }
6637 }
6638
6639 /* Place section name section after DWARF debug sections have been
6640 compressed. */
6641 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
6642 shdrp = &elf_tdata (abfd)->shstrtab_hdr;
6643 shdrp->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
6644 off = _bfd_elf_assign_file_position_for_section (shdrp, off, true);
6645
6646 /* Place the section headers. */
6647 i_ehdrp = elf_elfheader (abfd);
6648 bed = get_elf_backend_data (abfd);
6649 off = align_file_position (off, 1 << bed->s->log_file_align);
6650 i_ehdrp->e_shoff = off;
6651 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
6652 elf_next_file_pos (abfd) = off;
6653
6654 return true;
6655 }
6656
6657 bool
6658 _bfd_elf_write_object_contents (bfd *abfd)
6659 {
6660 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6661 Elf_Internal_Shdr **i_shdrp;
6662 bool failed;
6663 unsigned int count, num_sec;
6664 struct elf_obj_tdata *t;
6665
6666 if (! abfd->output_has_begun
6667 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
6668 return false;
6669 /* Do not rewrite ELF data when the BFD has been opened for update.
6670 abfd->output_has_begun was set to TRUE on opening, so creation of new
6671 sections, and modification of existing section sizes was restricted.
6672 This means the ELF header, program headers and section headers can't have
6673 changed.
6674 If the contents of any sections has been modified, then those changes have
6675 already been written to the BFD. */
6676 else if (abfd->direction == both_direction)
6677 {
6678 BFD_ASSERT (abfd->output_has_begun);
6679 return true;
6680 }
6681
6682 i_shdrp = elf_elfsections (abfd);
6683
6684 failed = false;
6685 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
6686 if (failed)
6687 return false;
6688
6689 if (!_bfd_elf_assign_file_positions_for_non_load (abfd))
6690 return false;
6691
6692 /* After writing the headers, we need to write the sections too... */
6693 num_sec = elf_numsections (abfd);
6694 for (count = 1; count < num_sec; count++)
6695 {
6696 i_shdrp[count]->sh_name
6697 = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
6698 i_shdrp[count]->sh_name);
6699 if (bed->elf_backend_section_processing)
6700 if (!(*bed->elf_backend_section_processing) (abfd, i_shdrp[count]))
6701 return false;
6702 if (i_shdrp[count]->contents)
6703 {
6704 bfd_size_type amt = i_shdrp[count]->sh_size;
6705
6706 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
6707 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
6708 return false;
6709 }
6710 }
6711
6712 /* Write out the section header names. */
6713 t = elf_tdata (abfd);
6714 if (elf_shstrtab (abfd) != NULL
6715 && (bfd_seek (abfd, t->shstrtab_hdr.sh_offset, SEEK_SET) != 0
6716 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
6717 return false;
6718
6719 if (!(*bed->elf_backend_final_write_processing) (abfd))
6720 return false;
6721
6722 if (!bed->s->write_shdrs_and_ehdr (abfd))
6723 return false;
6724
6725 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
6726 if (t->o->build_id.after_write_object_contents != NULL)
6727 return (*t->o->build_id.after_write_object_contents) (abfd);
6728
6729 return true;
6730 }
6731
6732 bool
6733 _bfd_elf_write_corefile_contents (bfd *abfd)
6734 {
6735 /* Hopefully this can be done just like an object file. */
6736 return _bfd_elf_write_object_contents (abfd);
6737 }
6738
6739 /* Given a section, search the header to find them. */
6740
6741 unsigned int
6742 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
6743 {
6744 const struct elf_backend_data *bed;
6745 unsigned int sec_index;
6746
6747 if (elf_section_data (asect) != NULL
6748 && elf_section_data (asect)->this_idx != 0)
6749 return elf_section_data (asect)->this_idx;
6750
6751 if (bfd_is_abs_section (asect))
6752 sec_index = SHN_ABS;
6753 else if (bfd_is_com_section (asect))
6754 sec_index = SHN_COMMON;
6755 else if (bfd_is_und_section (asect))
6756 sec_index = SHN_UNDEF;
6757 else
6758 sec_index = SHN_BAD;
6759
6760 bed = get_elf_backend_data (abfd);
6761 if (bed->elf_backend_section_from_bfd_section)
6762 {
6763 int retval = sec_index;
6764
6765 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
6766 return retval;
6767 }
6768
6769 if (sec_index == SHN_BAD)
6770 bfd_set_error (bfd_error_nonrepresentable_section);
6771
6772 return sec_index;
6773 }
6774
6775 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
6776 on error. */
6777
6778 int
6779 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
6780 {
6781 asymbol *asym_ptr = *asym_ptr_ptr;
6782 int idx;
6783 flagword flags = asym_ptr->flags;
6784
6785 /* When gas creates relocations against local labels, it creates its
6786 own symbol for the section, but does put the symbol into the
6787 symbol chain, so udata is 0. When the linker is generating
6788 relocatable output, this section symbol may be for one of the
6789 input sections rather than the output section. */
6790 if (asym_ptr->udata.i == 0
6791 && (flags & BSF_SECTION_SYM)
6792 && asym_ptr->section)
6793 {
6794 asection *sec;
6795 int indx;
6796
6797 sec = asym_ptr->section;
6798 if (sec->owner != abfd && sec->output_section != NULL)
6799 sec = sec->output_section;
6800 if (sec->owner == abfd
6801 && (indx = sec->index) < elf_num_section_syms (abfd)
6802 && elf_section_syms (abfd)[indx] != NULL)
6803 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
6804 }
6805
6806 idx = asym_ptr->udata.i;
6807
6808 if (idx == 0)
6809 {
6810 /* This case can occur when using --strip-symbol on a symbol
6811 which is used in a relocation entry. */
6812 _bfd_error_handler
6813 /* xgettext:c-format */
6814 (_("%pB: symbol `%s' required but not present"),
6815 abfd, bfd_asymbol_name (asym_ptr));
6816 bfd_set_error (bfd_error_no_symbols);
6817 return -1;
6818 }
6819
6820 #if DEBUG & 4
6821 {
6822 fprintf (stderr,
6823 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8x\n",
6824 (long) asym_ptr, asym_ptr->name, idx, flags);
6825 fflush (stderr);
6826 }
6827 #endif
6828
6829 return idx;
6830 }
6831
6832 /* Rewrite program header information. */
6833
6834 static bool
6835 rewrite_elf_program_header (bfd *ibfd, bfd *obfd, bfd_vma maxpagesize)
6836 {
6837 Elf_Internal_Ehdr *iehdr;
6838 struct elf_segment_map *map;
6839 struct elf_segment_map *map_first;
6840 struct elf_segment_map **pointer_to_map;
6841 Elf_Internal_Phdr *segment;
6842 asection *section;
6843 unsigned int i;
6844 unsigned int num_segments;
6845 bool phdr_included = false;
6846 bool p_paddr_valid;
6847 struct elf_segment_map *phdr_adjust_seg = NULL;
6848 unsigned int phdr_adjust_num = 0;
6849 const struct elf_backend_data *bed;
6850 unsigned int opb = bfd_octets_per_byte (ibfd, NULL);
6851
6852 bed = get_elf_backend_data (ibfd);
6853 iehdr = elf_elfheader (ibfd);
6854
6855 map_first = NULL;
6856 pointer_to_map = &map_first;
6857
6858 num_segments = elf_elfheader (ibfd)->e_phnum;
6859
6860 /* Returns the end address of the segment + 1. */
6861 #define SEGMENT_END(segment, start) \
6862 (start + (segment->p_memsz > segment->p_filesz \
6863 ? segment->p_memsz : segment->p_filesz))
6864
6865 #define SECTION_SIZE(section, segment) \
6866 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
6867 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
6868 ? section->size : 0)
6869
6870 /* Returns TRUE if the given section is contained within
6871 the given segment. VMA addresses are compared. */
6872 #define IS_CONTAINED_BY_VMA(section, segment, opb) \
6873 (section->vma * (opb) >= segment->p_vaddr \
6874 && (section->vma * (opb) + SECTION_SIZE (section, segment) \
6875 <= (SEGMENT_END (segment, segment->p_vaddr))))
6876
6877 /* Returns TRUE if the given section is contained within
6878 the given segment. LMA addresses are compared. */
6879 #define IS_CONTAINED_BY_LMA(section, segment, base, opb) \
6880 (section->lma * (opb) >= base \
6881 && (section->lma + SECTION_SIZE (section, segment) / (opb) >= section->lma) \
6882 && (section->lma * (opb) + SECTION_SIZE (section, segment) \
6883 <= SEGMENT_END (segment, base)))
6884
6885 /* Handle PT_NOTE segment. */
6886 #define IS_NOTE(p, s) \
6887 (p->p_type == PT_NOTE \
6888 && elf_section_type (s) == SHT_NOTE \
6889 && (bfd_vma) s->filepos >= p->p_offset \
6890 && ((bfd_vma) s->filepos + s->size \
6891 <= p->p_offset + p->p_filesz))
6892
6893 /* Special case: corefile "NOTE" section containing regs, prpsinfo
6894 etc. */
6895 #define IS_COREFILE_NOTE(p, s) \
6896 (IS_NOTE (p, s) \
6897 && bfd_get_format (ibfd) == bfd_core \
6898 && s->vma == 0 \
6899 && s->lma == 0)
6900
6901 /* The complicated case when p_vaddr is 0 is to handle the Solaris
6902 linker, which generates a PT_INTERP section with p_vaddr and
6903 p_memsz set to 0. */
6904 #define IS_SOLARIS_PT_INTERP(p, s) \
6905 (p->p_vaddr == 0 \
6906 && p->p_paddr == 0 \
6907 && p->p_memsz == 0 \
6908 && p->p_filesz > 0 \
6909 && (s->flags & SEC_HAS_CONTENTS) != 0 \
6910 && s->size > 0 \
6911 && (bfd_vma) s->filepos >= p->p_offset \
6912 && ((bfd_vma) s->filepos + s->size \
6913 <= p->p_offset + p->p_filesz))
6914
6915 /* Decide if the given section should be included in the given segment.
6916 A section will be included if:
6917 1. It is within the address space of the segment -- we use the LMA
6918 if that is set for the segment and the VMA otherwise,
6919 2. It is an allocated section or a NOTE section in a PT_NOTE
6920 segment.
6921 3. There is an output section associated with it,
6922 4. The section has not already been allocated to a previous segment.
6923 5. PT_GNU_STACK segments do not include any sections.
6924 6. PT_TLS segment includes only SHF_TLS sections.
6925 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
6926 8. PT_DYNAMIC should not contain empty sections at the beginning
6927 (with the possible exception of .dynamic). */
6928 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed, opb) \
6929 ((((segment->p_paddr \
6930 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr, opb) \
6931 : IS_CONTAINED_BY_VMA (section, segment, opb)) \
6932 && (section->flags & SEC_ALLOC) != 0) \
6933 || IS_NOTE (segment, section)) \
6934 && segment->p_type != PT_GNU_STACK \
6935 && (segment->p_type != PT_TLS \
6936 || (section->flags & SEC_THREAD_LOCAL)) \
6937 && (segment->p_type == PT_LOAD \
6938 || segment->p_type == PT_TLS \
6939 || (section->flags & SEC_THREAD_LOCAL) == 0) \
6940 && (segment->p_type != PT_DYNAMIC \
6941 || SECTION_SIZE (section, segment) > 0 \
6942 || (segment->p_paddr \
6943 ? segment->p_paddr != section->lma * (opb) \
6944 : segment->p_vaddr != section->vma * (opb)) \
6945 || (strcmp (bfd_section_name (section), ".dynamic") == 0)) \
6946 && (segment->p_type != PT_LOAD || !section->segment_mark))
6947
6948 /* If the output section of a section in the input segment is NULL,
6949 it is removed from the corresponding output segment. */
6950 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed, opb) \
6951 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed, opb) \
6952 && section->output_section != NULL)
6953
6954 /* Returns TRUE iff seg1 starts after the end of seg2. */
6955 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
6956 (seg1->field >= SEGMENT_END (seg2, seg2->field))
6957
6958 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
6959 their VMA address ranges and their LMA address ranges overlap.
6960 It is possible to have overlapping VMA ranges without overlapping LMA
6961 ranges. RedBoot images for example can have both .data and .bss mapped
6962 to the same VMA range, but with the .data section mapped to a different
6963 LMA. */
6964 #define SEGMENT_OVERLAPS(seg1, seg2) \
6965 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
6966 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
6967 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
6968 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
6969
6970 /* Initialise the segment mark field, and discard stupid alignment. */
6971 for (section = ibfd->sections; section != NULL; section = section->next)
6972 {
6973 asection *o = section->output_section;
6974 if (o != NULL && o->alignment_power >= (sizeof (bfd_vma) * 8) - 1)
6975 o->alignment_power = 0;
6976 section->segment_mark = false;
6977 }
6978
6979 /* The Solaris linker creates program headers in which all the
6980 p_paddr fields are zero. When we try to objcopy or strip such a
6981 file, we get confused. Check for this case, and if we find it
6982 don't set the p_paddr_valid fields. */
6983 p_paddr_valid = false;
6984 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6985 i < num_segments;
6986 i++, segment++)
6987 if (segment->p_paddr != 0)
6988 {
6989 p_paddr_valid = true;
6990 break;
6991 }
6992
6993 /* Scan through the segments specified in the program header
6994 of the input BFD. For this first scan we look for overlaps
6995 in the loadable segments. These can be created by weird
6996 parameters to objcopy. Also, fix some solaris weirdness. */
6997 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6998 i < num_segments;
6999 i++, segment++)
7000 {
7001 unsigned int j;
7002 Elf_Internal_Phdr *segment2;
7003
7004 if (segment->p_type == PT_INTERP)
7005 for (section = ibfd->sections; section; section = section->next)
7006 if (IS_SOLARIS_PT_INTERP (segment, section))
7007 {
7008 /* Mininal change so that the normal section to segment
7009 assignment code will work. */
7010 segment->p_vaddr = section->vma * opb;
7011 break;
7012 }
7013
7014 if (segment->p_type != PT_LOAD)
7015 {
7016 /* Remove PT_GNU_RELRO segment. */
7017 if (segment->p_type == PT_GNU_RELRO)
7018 segment->p_type = PT_NULL;
7019 continue;
7020 }
7021
7022 /* Determine if this segment overlaps any previous segments. */
7023 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
7024 {
7025 bfd_signed_vma extra_length;
7026
7027 if (segment2->p_type != PT_LOAD
7028 || !SEGMENT_OVERLAPS (segment, segment2))
7029 continue;
7030
7031 /* Merge the two segments together. */
7032 if (segment2->p_vaddr < segment->p_vaddr)
7033 {
7034 /* Extend SEGMENT2 to include SEGMENT and then delete
7035 SEGMENT. */
7036 extra_length = (SEGMENT_END (segment, segment->p_vaddr)
7037 - SEGMENT_END (segment2, segment2->p_vaddr));
7038
7039 if (extra_length > 0)
7040 {
7041 segment2->p_memsz += extra_length;
7042 segment2->p_filesz += extra_length;
7043 }
7044
7045 segment->p_type = PT_NULL;
7046
7047 /* Since we have deleted P we must restart the outer loop. */
7048 i = 0;
7049 segment = elf_tdata (ibfd)->phdr;
7050 break;
7051 }
7052 else
7053 {
7054 /* Extend SEGMENT to include SEGMENT2 and then delete
7055 SEGMENT2. */
7056 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
7057 - SEGMENT_END (segment, segment->p_vaddr));
7058
7059 if (extra_length > 0)
7060 {
7061 segment->p_memsz += extra_length;
7062 segment->p_filesz += extra_length;
7063 }
7064
7065 segment2->p_type = PT_NULL;
7066 }
7067 }
7068 }
7069
7070 /* The second scan attempts to assign sections to segments. */
7071 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7072 i < num_segments;
7073 i++, segment++)
7074 {
7075 unsigned int section_count;
7076 asection **sections;
7077 asection *output_section;
7078 unsigned int isec;
7079 asection *matching_lma;
7080 asection *suggested_lma;
7081 unsigned int j;
7082 size_t amt;
7083 asection *first_section;
7084
7085 if (segment->p_type == PT_NULL)
7086 continue;
7087
7088 first_section = NULL;
7089 /* Compute how many sections might be placed into this segment. */
7090 for (section = ibfd->sections, section_count = 0;
7091 section != NULL;
7092 section = section->next)
7093 {
7094 /* Find the first section in the input segment, which may be
7095 removed from the corresponding output segment. */
7096 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed, opb))
7097 {
7098 if (first_section == NULL)
7099 first_section = section;
7100 if (section->output_section != NULL)
7101 ++section_count;
7102 }
7103 }
7104
7105 /* Allocate a segment map big enough to contain
7106 all of the sections we have selected. */
7107 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
7108 amt += section_count * sizeof (asection *);
7109 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7110 if (map == NULL)
7111 return false;
7112
7113 /* Initialise the fields of the segment map. Default to
7114 using the physical address of the segment in the input BFD. */
7115 map->next = NULL;
7116 map->p_type = segment->p_type;
7117 map->p_flags = segment->p_flags;
7118 map->p_flags_valid = 1;
7119
7120 if (map->p_type == PT_LOAD
7121 && (ibfd->flags & D_PAGED) != 0
7122 && maxpagesize > 1
7123 && segment->p_align > 1)
7124 {
7125 map->p_align = segment->p_align;
7126 if (segment->p_align > maxpagesize)
7127 map->p_align = maxpagesize;
7128 map->p_align_valid = 1;
7129 }
7130
7131 /* If the first section in the input segment is removed, there is
7132 no need to preserve segment physical address in the corresponding
7133 output segment. */
7134 if (!first_section || first_section->output_section != NULL)
7135 {
7136 map->p_paddr = segment->p_paddr;
7137 map->p_paddr_valid = p_paddr_valid;
7138 }
7139
7140 /* Determine if this segment contains the ELF file header
7141 and if it contains the program headers themselves. */
7142 map->includes_filehdr = (segment->p_offset == 0
7143 && segment->p_filesz >= iehdr->e_ehsize);
7144 map->includes_phdrs = 0;
7145
7146 if (!phdr_included || segment->p_type != PT_LOAD)
7147 {
7148 map->includes_phdrs =
7149 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
7150 && (segment->p_offset + segment->p_filesz
7151 >= ((bfd_vma) iehdr->e_phoff
7152 + iehdr->e_phnum * iehdr->e_phentsize)));
7153
7154 if (segment->p_type == PT_LOAD && map->includes_phdrs)
7155 phdr_included = true;
7156 }
7157
7158 if (section_count == 0)
7159 {
7160 /* Special segments, such as the PT_PHDR segment, may contain
7161 no sections, but ordinary, loadable segments should contain
7162 something. They are allowed by the ELF spec however, so only
7163 a warning is produced.
7164 There is however the valid use case of embedded systems which
7165 have segments with p_filesz of 0 and a p_memsz > 0 to initialize
7166 flash memory with zeros. No warning is shown for that case. */
7167 if (segment->p_type == PT_LOAD
7168 && (segment->p_filesz > 0 || segment->p_memsz == 0))
7169 /* xgettext:c-format */
7170 _bfd_error_handler
7171 (_("%pB: warning: empty loadable segment detected"
7172 " at vaddr=%#" PRIx64 ", is this intentional?"),
7173 ibfd, (uint64_t) segment->p_vaddr);
7174
7175 map->p_vaddr_offset = segment->p_vaddr / opb;
7176 map->count = 0;
7177 *pointer_to_map = map;
7178 pointer_to_map = &map->next;
7179
7180 continue;
7181 }
7182
7183 /* Now scan the sections in the input BFD again and attempt
7184 to add their corresponding output sections to the segment map.
7185 The problem here is how to handle an output section which has
7186 been moved (ie had its LMA changed). There are four possibilities:
7187
7188 1. None of the sections have been moved.
7189 In this case we can continue to use the segment LMA from the
7190 input BFD.
7191
7192 2. All of the sections have been moved by the same amount.
7193 In this case we can change the segment's LMA to match the LMA
7194 of the first section.
7195
7196 3. Some of the sections have been moved, others have not.
7197 In this case those sections which have not been moved can be
7198 placed in the current segment which will have to have its size,
7199 and possibly its LMA changed, and a new segment or segments will
7200 have to be created to contain the other sections.
7201
7202 4. The sections have been moved, but not by the same amount.
7203 In this case we can change the segment's LMA to match the LMA
7204 of the first section and we will have to create a new segment
7205 or segments to contain the other sections.
7206
7207 In order to save time, we allocate an array to hold the section
7208 pointers that we are interested in. As these sections get assigned
7209 to a segment, they are removed from this array. */
7210
7211 amt = section_count * sizeof (asection *);
7212 sections = (asection **) bfd_malloc (amt);
7213 if (sections == NULL)
7214 return false;
7215
7216 /* Step One: Scan for segment vs section LMA conflicts.
7217 Also add the sections to the section array allocated above.
7218 Also add the sections to the current segment. In the common
7219 case, where the sections have not been moved, this means that
7220 we have completely filled the segment, and there is nothing
7221 more to do. */
7222 isec = 0;
7223 matching_lma = NULL;
7224 suggested_lma = NULL;
7225
7226 for (section = first_section, j = 0;
7227 section != NULL;
7228 section = section->next)
7229 {
7230 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed, opb))
7231 {
7232 output_section = section->output_section;
7233
7234 sections[j++] = section;
7235
7236 /* The Solaris native linker always sets p_paddr to 0.
7237 We try to catch that case here, and set it to the
7238 correct value. Note - some backends require that
7239 p_paddr be left as zero. */
7240 if (!p_paddr_valid
7241 && segment->p_vaddr != 0
7242 && !bed->want_p_paddr_set_to_zero
7243 && isec == 0
7244 && output_section->lma != 0
7245 && (align_power (segment->p_vaddr
7246 + (map->includes_filehdr
7247 ? iehdr->e_ehsize : 0)
7248 + (map->includes_phdrs
7249 ? iehdr->e_phnum * iehdr->e_phentsize
7250 : 0),
7251 output_section->alignment_power * opb)
7252 == (output_section->vma * opb)))
7253 map->p_paddr = segment->p_vaddr;
7254
7255 /* Match up the physical address of the segment with the
7256 LMA address of the output section. */
7257 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr,
7258 opb)
7259 || IS_COREFILE_NOTE (segment, section)
7260 || (bed->want_p_paddr_set_to_zero
7261 && IS_CONTAINED_BY_VMA (output_section, segment, opb)))
7262 {
7263 if (matching_lma == NULL
7264 || output_section->lma < matching_lma->lma)
7265 matching_lma = output_section;
7266
7267 /* We assume that if the section fits within the segment
7268 then it does not overlap any other section within that
7269 segment. */
7270 map->sections[isec++] = output_section;
7271 }
7272 else if (suggested_lma == NULL)
7273 suggested_lma = output_section;
7274
7275 if (j == section_count)
7276 break;
7277 }
7278 }
7279
7280 BFD_ASSERT (j == section_count);
7281
7282 /* Step Two: Adjust the physical address of the current segment,
7283 if necessary. */
7284 if (isec == section_count)
7285 {
7286 /* All of the sections fitted within the segment as currently
7287 specified. This is the default case. Add the segment to
7288 the list of built segments and carry on to process the next
7289 program header in the input BFD. */
7290 map->count = section_count;
7291 *pointer_to_map = map;
7292 pointer_to_map = &map->next;
7293
7294 if (p_paddr_valid
7295 && !bed->want_p_paddr_set_to_zero)
7296 {
7297 bfd_vma hdr_size = 0;
7298 if (map->includes_filehdr)
7299 hdr_size = iehdr->e_ehsize;
7300 if (map->includes_phdrs)
7301 hdr_size += iehdr->e_phnum * iehdr->e_phentsize;
7302
7303 /* Account for padding before the first section in the
7304 segment. */
7305 map->p_vaddr_offset = ((map->p_paddr + hdr_size) / opb
7306 - matching_lma->lma);
7307 }
7308
7309 free (sections);
7310 continue;
7311 }
7312 else
7313 {
7314 /* Change the current segment's physical address to match
7315 the LMA of the first section that fitted, or if no
7316 section fitted, the first section. */
7317 if (matching_lma == NULL)
7318 matching_lma = suggested_lma;
7319
7320 map->p_paddr = matching_lma->lma * opb;
7321
7322 /* Offset the segment physical address from the lma
7323 to allow for space taken up by elf headers. */
7324 if (map->includes_phdrs)
7325 {
7326 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
7327
7328 /* iehdr->e_phnum is just an estimate of the number
7329 of program headers that we will need. Make a note
7330 here of the number we used and the segment we chose
7331 to hold these headers, so that we can adjust the
7332 offset when we know the correct value. */
7333 phdr_adjust_num = iehdr->e_phnum;
7334 phdr_adjust_seg = map;
7335 }
7336
7337 if (map->includes_filehdr)
7338 {
7339 bfd_vma align = (bfd_vma) 1 << matching_lma->alignment_power;
7340 map->p_paddr -= iehdr->e_ehsize;
7341 /* We've subtracted off the size of headers from the
7342 first section lma, but there may have been some
7343 alignment padding before that section too. Try to
7344 account for that by adjusting the segment lma down to
7345 the same alignment. */
7346 if (segment->p_align != 0 && segment->p_align < align)
7347 align = segment->p_align;
7348 map->p_paddr &= -(align * opb);
7349 }
7350 }
7351
7352 /* Step Three: Loop over the sections again, this time assigning
7353 those that fit to the current segment and removing them from the
7354 sections array; but making sure not to leave large gaps. Once all
7355 possible sections have been assigned to the current segment it is
7356 added to the list of built segments and if sections still remain
7357 to be assigned, a new segment is constructed before repeating
7358 the loop. */
7359 isec = 0;
7360 do
7361 {
7362 map->count = 0;
7363 suggested_lma = NULL;
7364
7365 /* Fill the current segment with sections that fit. */
7366 for (j = 0; j < section_count; j++)
7367 {
7368 section = sections[j];
7369
7370 if (section == NULL)
7371 continue;
7372
7373 output_section = section->output_section;
7374
7375 BFD_ASSERT (output_section != NULL);
7376
7377 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr,
7378 opb)
7379 || IS_COREFILE_NOTE (segment, section))
7380 {
7381 if (map->count == 0)
7382 {
7383 /* If the first section in a segment does not start at
7384 the beginning of the segment, then something is
7385 wrong. */
7386 if (align_power (map->p_paddr
7387 + (map->includes_filehdr
7388 ? iehdr->e_ehsize : 0)
7389 + (map->includes_phdrs
7390 ? iehdr->e_phnum * iehdr->e_phentsize
7391 : 0),
7392 output_section->alignment_power * opb)
7393 != output_section->lma * opb)
7394 goto sorry;
7395 }
7396 else
7397 {
7398 asection *prev_sec;
7399
7400 prev_sec = map->sections[map->count - 1];
7401
7402 /* If the gap between the end of the previous section
7403 and the start of this section is more than
7404 maxpagesize then we need to start a new segment. */
7405 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
7406 maxpagesize)
7407 < BFD_ALIGN (output_section->lma, maxpagesize))
7408 || (prev_sec->lma + prev_sec->size
7409 > output_section->lma))
7410 {
7411 if (suggested_lma == NULL)
7412 suggested_lma = output_section;
7413
7414 continue;
7415 }
7416 }
7417
7418 map->sections[map->count++] = output_section;
7419 ++isec;
7420 sections[j] = NULL;
7421 if (segment->p_type == PT_LOAD)
7422 section->segment_mark = true;
7423 }
7424 else if (suggested_lma == NULL)
7425 suggested_lma = output_section;
7426 }
7427
7428 /* PR 23932. A corrupt input file may contain sections that cannot
7429 be assigned to any segment - because for example they have a
7430 negative size - or segments that do not contain any sections.
7431 But there are also valid reasons why a segment can be empty.
7432 So allow a count of zero. */
7433
7434 /* Add the current segment to the list of built segments. */
7435 *pointer_to_map = map;
7436 pointer_to_map = &map->next;
7437
7438 if (isec < section_count)
7439 {
7440 /* We still have not allocated all of the sections to
7441 segments. Create a new segment here, initialise it
7442 and carry on looping. */
7443 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
7444 amt += section_count * sizeof (asection *);
7445 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7446 if (map == NULL)
7447 {
7448 free (sections);
7449 return false;
7450 }
7451
7452 /* Initialise the fields of the segment map. Set the physical
7453 physical address to the LMA of the first section that has
7454 not yet been assigned. */
7455 map->next = NULL;
7456 map->p_type = segment->p_type;
7457 map->p_flags = segment->p_flags;
7458 map->p_flags_valid = 1;
7459 map->p_paddr = suggested_lma->lma * opb;
7460 map->p_paddr_valid = p_paddr_valid;
7461 map->includes_filehdr = 0;
7462 map->includes_phdrs = 0;
7463 }
7464
7465 continue;
7466 sorry:
7467 bfd_set_error (bfd_error_sorry);
7468 free (sections);
7469 return false;
7470 }
7471 while (isec < section_count);
7472
7473 free (sections);
7474 }
7475
7476 elf_seg_map (obfd) = map_first;
7477
7478 /* If we had to estimate the number of program headers that were
7479 going to be needed, then check our estimate now and adjust
7480 the offset if necessary. */
7481 if (phdr_adjust_seg != NULL)
7482 {
7483 unsigned int count;
7484
7485 for (count = 0, map = map_first; map != NULL; map = map->next)
7486 count++;
7487
7488 if (count > phdr_adjust_num)
7489 phdr_adjust_seg->p_paddr
7490 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
7491
7492 for (map = map_first; map != NULL; map = map->next)
7493 if (map->p_type == PT_PHDR)
7494 {
7495 bfd_vma adjust
7496 = phdr_adjust_seg->includes_filehdr ? iehdr->e_ehsize : 0;
7497 map->p_paddr = phdr_adjust_seg->p_paddr + adjust;
7498 break;
7499 }
7500 }
7501
7502 #undef SEGMENT_END
7503 #undef SECTION_SIZE
7504 #undef IS_CONTAINED_BY_VMA
7505 #undef IS_CONTAINED_BY_LMA
7506 #undef IS_NOTE
7507 #undef IS_COREFILE_NOTE
7508 #undef IS_SOLARIS_PT_INTERP
7509 #undef IS_SECTION_IN_INPUT_SEGMENT
7510 #undef INCLUDE_SECTION_IN_SEGMENT
7511 #undef SEGMENT_AFTER_SEGMENT
7512 #undef SEGMENT_OVERLAPS
7513 return true;
7514 }
7515
7516 /* Copy ELF program header information. */
7517
7518 static bool
7519 copy_elf_program_header (bfd *ibfd, bfd *obfd)
7520 {
7521 Elf_Internal_Ehdr *iehdr;
7522 struct elf_segment_map *map;
7523 struct elf_segment_map *map_first;
7524 struct elf_segment_map **pointer_to_map;
7525 Elf_Internal_Phdr *segment;
7526 unsigned int i;
7527 unsigned int num_segments;
7528 bool phdr_included = false;
7529 bool p_paddr_valid;
7530 unsigned int opb = bfd_octets_per_byte (ibfd, NULL);
7531
7532 iehdr = elf_elfheader (ibfd);
7533
7534 map_first = NULL;
7535 pointer_to_map = &map_first;
7536
7537 /* If all the segment p_paddr fields are zero, don't set
7538 map->p_paddr_valid. */
7539 p_paddr_valid = false;
7540 num_segments = elf_elfheader (ibfd)->e_phnum;
7541 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7542 i < num_segments;
7543 i++, segment++)
7544 if (segment->p_paddr != 0)
7545 {
7546 p_paddr_valid = true;
7547 break;
7548 }
7549
7550 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7551 i < num_segments;
7552 i++, segment++)
7553 {
7554 asection *section;
7555 unsigned int section_count;
7556 size_t amt;
7557 Elf_Internal_Shdr *this_hdr;
7558 asection *first_section = NULL;
7559 asection *lowest_section;
7560
7561 /* Compute how many sections are in this segment. */
7562 for (section = ibfd->sections, section_count = 0;
7563 section != NULL;
7564 section = section->next)
7565 {
7566 this_hdr = &(elf_section_data(section)->this_hdr);
7567 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7568 {
7569 if (first_section == NULL)
7570 first_section = section;
7571 section_count++;
7572 }
7573 }
7574
7575 /* Allocate a segment map big enough to contain
7576 all of the sections we have selected. */
7577 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
7578 amt += section_count * sizeof (asection *);
7579 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7580 if (map == NULL)
7581 return false;
7582
7583 /* Initialize the fields of the output segment map with the
7584 input segment. */
7585 map->next = NULL;
7586 map->p_type = segment->p_type;
7587 map->p_flags = segment->p_flags;
7588 map->p_flags_valid = 1;
7589 map->p_paddr = segment->p_paddr;
7590 map->p_paddr_valid = p_paddr_valid;
7591 map->p_align = segment->p_align;
7592 map->p_align_valid = 1;
7593 map->p_vaddr_offset = 0;
7594
7595 if (map->p_type == PT_GNU_RELRO
7596 || map->p_type == PT_GNU_STACK)
7597 {
7598 /* The PT_GNU_RELRO segment may contain the first a few
7599 bytes in the .got.plt section even if the whole .got.plt
7600 section isn't in the PT_GNU_RELRO segment. We won't
7601 change the size of the PT_GNU_RELRO segment.
7602 Similarly, PT_GNU_STACK size is significant on uclinux
7603 systems. */
7604 map->p_size = segment->p_memsz;
7605 map->p_size_valid = 1;
7606 }
7607
7608 /* Determine if this segment contains the ELF file header
7609 and if it contains the program headers themselves. */
7610 map->includes_filehdr = (segment->p_offset == 0
7611 && segment->p_filesz >= iehdr->e_ehsize);
7612
7613 map->includes_phdrs = 0;
7614 if (! phdr_included || segment->p_type != PT_LOAD)
7615 {
7616 map->includes_phdrs =
7617 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
7618 && (segment->p_offset + segment->p_filesz
7619 >= ((bfd_vma) iehdr->e_phoff
7620 + iehdr->e_phnum * iehdr->e_phentsize)));
7621
7622 if (segment->p_type == PT_LOAD && map->includes_phdrs)
7623 phdr_included = true;
7624 }
7625
7626 lowest_section = NULL;
7627 if (section_count != 0)
7628 {
7629 unsigned int isec = 0;
7630
7631 for (section = first_section;
7632 section != NULL;
7633 section = section->next)
7634 {
7635 this_hdr = &(elf_section_data(section)->this_hdr);
7636 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7637 {
7638 map->sections[isec++] = section->output_section;
7639 if ((section->flags & SEC_ALLOC) != 0)
7640 {
7641 bfd_vma seg_off;
7642
7643 if (lowest_section == NULL
7644 || section->lma < lowest_section->lma)
7645 lowest_section = section;
7646
7647 /* Section lmas are set up from PT_LOAD header
7648 p_paddr in _bfd_elf_make_section_from_shdr.
7649 If this header has a p_paddr that disagrees
7650 with the section lma, flag the p_paddr as
7651 invalid. */
7652 if ((section->flags & SEC_LOAD) != 0)
7653 seg_off = this_hdr->sh_offset - segment->p_offset;
7654 else
7655 seg_off = this_hdr->sh_addr - segment->p_vaddr;
7656 if (section->lma * opb - segment->p_paddr != seg_off)
7657 map->p_paddr_valid = false;
7658 }
7659 if (isec == section_count)
7660 break;
7661 }
7662 }
7663 }
7664
7665 if (section_count == 0)
7666 map->p_vaddr_offset = segment->p_vaddr / opb;
7667 else if (map->p_paddr_valid)
7668 {
7669 /* Account for padding before the first section in the segment. */
7670 bfd_vma hdr_size = 0;
7671 if (map->includes_filehdr)
7672 hdr_size = iehdr->e_ehsize;
7673 if (map->includes_phdrs)
7674 hdr_size += iehdr->e_phnum * iehdr->e_phentsize;
7675
7676 map->p_vaddr_offset = ((map->p_paddr + hdr_size) / opb
7677 - (lowest_section ? lowest_section->lma : 0));
7678 }
7679
7680 map->count = section_count;
7681 *pointer_to_map = map;
7682 pointer_to_map = &map->next;
7683 }
7684
7685 elf_seg_map (obfd) = map_first;
7686 return true;
7687 }
7688
7689 /* Copy private BFD data. This copies or rewrites ELF program header
7690 information. */
7691
7692 static bool
7693 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
7694 {
7695 bfd_vma maxpagesize;
7696
7697 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7698 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7699 return true;
7700
7701 if (elf_tdata (ibfd)->phdr == NULL)
7702 return true;
7703
7704 if (ibfd->xvec == obfd->xvec)
7705 {
7706 /* Check to see if any sections in the input BFD
7707 covered by ELF program header have changed. */
7708 Elf_Internal_Phdr *segment;
7709 asection *section, *osec;
7710 unsigned int i, num_segments;
7711 Elf_Internal_Shdr *this_hdr;
7712 const struct elf_backend_data *bed;
7713
7714 bed = get_elf_backend_data (ibfd);
7715
7716 /* Regenerate the segment map if p_paddr is set to 0. */
7717 if (bed->want_p_paddr_set_to_zero)
7718 goto rewrite;
7719
7720 /* Initialize the segment mark field. */
7721 for (section = obfd->sections; section != NULL;
7722 section = section->next)
7723 section->segment_mark = false;
7724
7725 num_segments = elf_elfheader (ibfd)->e_phnum;
7726 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7727 i < num_segments;
7728 i++, segment++)
7729 {
7730 /* PR binutils/3535. The Solaris linker always sets the p_paddr
7731 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
7732 which severly confuses things, so always regenerate the segment
7733 map in this case. */
7734 if (segment->p_paddr == 0
7735 && segment->p_memsz == 0
7736 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
7737 goto rewrite;
7738
7739 for (section = ibfd->sections;
7740 section != NULL; section = section->next)
7741 {
7742 /* We mark the output section so that we know it comes
7743 from the input BFD. */
7744 osec = section->output_section;
7745 if (osec)
7746 osec->segment_mark = true;
7747
7748 /* Check if this section is covered by the segment. */
7749 this_hdr = &(elf_section_data(section)->this_hdr);
7750 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7751 {
7752 /* FIXME: Check if its output section is changed or
7753 removed. What else do we need to check? */
7754 if (osec == NULL
7755 || section->flags != osec->flags
7756 || section->lma != osec->lma
7757 || section->vma != osec->vma
7758 || section->size != osec->size
7759 || section->rawsize != osec->rawsize
7760 || section->alignment_power != osec->alignment_power)
7761 goto rewrite;
7762 }
7763 }
7764 }
7765
7766 /* Check to see if any output section do not come from the
7767 input BFD. */
7768 for (section = obfd->sections; section != NULL;
7769 section = section->next)
7770 {
7771 if (!section->segment_mark)
7772 goto rewrite;
7773 else
7774 section->segment_mark = false;
7775 }
7776
7777 return copy_elf_program_header (ibfd, obfd);
7778 }
7779
7780 rewrite:
7781 maxpagesize = 0;
7782 if (ibfd->xvec == obfd->xvec)
7783 {
7784 /* When rewriting program header, set the output maxpagesize to
7785 the maximum alignment of input PT_LOAD segments. */
7786 Elf_Internal_Phdr *segment;
7787 unsigned int i;
7788 unsigned int num_segments = elf_elfheader (ibfd)->e_phnum;
7789
7790 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7791 i < num_segments;
7792 i++, segment++)
7793 if (segment->p_type == PT_LOAD
7794 && maxpagesize < segment->p_align)
7795 {
7796 /* PR 17512: file: f17299af. */
7797 if (segment->p_align > (bfd_vma) 1 << ((sizeof (bfd_vma) * 8) - 2))
7798 /* xgettext:c-format */
7799 _bfd_error_handler (_("%pB: warning: segment alignment of %#"
7800 PRIx64 " is too large"),
7801 ibfd, (uint64_t) segment->p_align);
7802 else
7803 maxpagesize = segment->p_align;
7804 }
7805 }
7806 if (maxpagesize == 0)
7807 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
7808
7809 return rewrite_elf_program_header (ibfd, obfd, maxpagesize);
7810 }
7811
7812 /* Initialize private output section information from input section. */
7813
7814 bool
7815 _bfd_elf_init_private_section_data (bfd *ibfd,
7816 asection *isec,
7817 bfd *obfd,
7818 asection *osec,
7819 struct bfd_link_info *link_info)
7820
7821 {
7822 Elf_Internal_Shdr *ihdr, *ohdr;
7823 bool final_link = (link_info != NULL
7824 && !bfd_link_relocatable (link_info));
7825
7826 if (ibfd->xvec->flavour != bfd_target_elf_flavour
7827 || obfd->xvec->flavour != bfd_target_elf_flavour)
7828 return true;
7829
7830 BFD_ASSERT (elf_section_data (osec) != NULL);
7831
7832 /* If this is a known ABI section, ELF section type and flags may
7833 have been set up when OSEC was created. For normal sections we
7834 allow the user to override the type and flags other than
7835 SHF_MASKOS and SHF_MASKPROC. */
7836 if (elf_section_type (osec) == SHT_PROGBITS
7837 || elf_section_type (osec) == SHT_NOTE
7838 || elf_section_type (osec) == SHT_NOBITS)
7839 elf_section_type (osec) = SHT_NULL;
7840 /* For objcopy and relocatable link, copy the ELF section type from
7841 the input file if the BFD section flags are the same. (If they
7842 are different the user may be doing something like
7843 "objcopy --set-section-flags .text=alloc,data".) For a final
7844 link allow some flags that the linker clears to differ. */
7845 if (elf_section_type (osec) == SHT_NULL
7846 && (osec->flags == isec->flags
7847 || (final_link
7848 && ((osec->flags ^ isec->flags)
7849 & ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC)) == 0)))
7850 elf_section_type (osec) = elf_section_type (isec);
7851
7852 /* FIXME: Is this correct for all OS/PROC specific flags? */
7853 elf_section_flags (osec) = (elf_section_flags (isec)
7854 & (SHF_MASKOS | SHF_MASKPROC));
7855
7856 /* Copy sh_info from input for mbind section. */
7857 if ((elf_tdata (ibfd)->has_gnu_osabi & elf_gnu_osabi_mbind) != 0
7858 && elf_section_flags (isec) & SHF_GNU_MBIND)
7859 elf_section_data (osec)->this_hdr.sh_info
7860 = elf_section_data (isec)->this_hdr.sh_info;
7861
7862 /* Set things up for objcopy and relocatable link. The output
7863 SHT_GROUP section will have its elf_next_in_group pointing back
7864 to the input group members. Ignore linker created group section.
7865 See elfNN_ia64_object_p in elfxx-ia64.c. */
7866 if ((link_info == NULL
7867 || !link_info->resolve_section_groups)
7868 && (elf_sec_group (isec) == NULL
7869 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0))
7870 {
7871 if (elf_section_flags (isec) & SHF_GROUP)
7872 elf_section_flags (osec) |= SHF_GROUP;
7873 elf_next_in_group (osec) = elf_next_in_group (isec);
7874 elf_section_data (osec)->group = elf_section_data (isec)->group;
7875 }
7876
7877 /* If not decompress, preserve SHF_COMPRESSED. */
7878 if (!final_link && (ibfd->flags & BFD_DECOMPRESS) == 0)
7879 elf_section_flags (osec) |= (elf_section_flags (isec)
7880 & SHF_COMPRESSED);
7881
7882 ihdr = &elf_section_data (isec)->this_hdr;
7883
7884 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
7885 don't use the output section of the linked-to section since it
7886 may be NULL at this point. */
7887 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
7888 {
7889 ohdr = &elf_section_data (osec)->this_hdr;
7890 ohdr->sh_flags |= SHF_LINK_ORDER;
7891 elf_linked_to_section (osec) = elf_linked_to_section (isec);
7892 }
7893
7894 osec->use_rela_p = isec->use_rela_p;
7895
7896 return true;
7897 }
7898
7899 /* Copy private section information. This copies over the entsize
7900 field, and sometimes the info field. */
7901
7902 bool
7903 _bfd_elf_copy_private_section_data (bfd *ibfd,
7904 asection *isec,
7905 bfd *obfd,
7906 asection *osec)
7907 {
7908 Elf_Internal_Shdr *ihdr, *ohdr;
7909
7910 if (ibfd->xvec->flavour != bfd_target_elf_flavour
7911 || obfd->xvec->flavour != bfd_target_elf_flavour)
7912 return true;
7913
7914 ihdr = &elf_section_data (isec)->this_hdr;
7915 ohdr = &elf_section_data (osec)->this_hdr;
7916
7917 ohdr->sh_entsize = ihdr->sh_entsize;
7918
7919 if (ihdr->sh_type == SHT_SYMTAB
7920 || ihdr->sh_type == SHT_DYNSYM
7921 || ihdr->sh_type == SHT_GNU_verneed
7922 || ihdr->sh_type == SHT_GNU_verdef)
7923 ohdr->sh_info = ihdr->sh_info;
7924
7925 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
7926 NULL);
7927 }
7928
7929 /* Look at all the SHT_GROUP sections in IBFD, making any adjustments
7930 necessary if we are removing either the SHT_GROUP section or any of
7931 the group member sections. DISCARDED is the value that a section's
7932 output_section has if the section will be discarded, NULL when this
7933 function is called from objcopy, bfd_abs_section_ptr when called
7934 from the linker. */
7935
7936 bool
7937 _bfd_elf_fixup_group_sections (bfd *ibfd, asection *discarded)
7938 {
7939 asection *isec;
7940
7941 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
7942 if (elf_section_type (isec) == SHT_GROUP)
7943 {
7944 asection *first = elf_next_in_group (isec);
7945 asection *s = first;
7946 bfd_size_type removed = 0;
7947
7948 while (s != NULL)
7949 {
7950 /* If this member section is being output but the
7951 SHT_GROUP section is not, then clear the group info
7952 set up by _bfd_elf_copy_private_section_data. */
7953 if (s->output_section != discarded
7954 && isec->output_section == discarded)
7955 {
7956 elf_section_flags (s->output_section) &= ~SHF_GROUP;
7957 elf_group_name (s->output_section) = NULL;
7958 }
7959 else
7960 {
7961 struct bfd_elf_section_data *elf_sec = elf_section_data (s);
7962 if (s->output_section == discarded
7963 && isec->output_section != discarded)
7964 {
7965 /* Conversely, if the member section is not being
7966 output but the SHT_GROUP section is, then adjust
7967 its size. */
7968 removed += 4;
7969 if (elf_sec->rel.hdr != NULL
7970 && (elf_sec->rel.hdr->sh_flags & SHF_GROUP) != 0)
7971 removed += 4;
7972 if (elf_sec->rela.hdr != NULL
7973 && (elf_sec->rela.hdr->sh_flags & SHF_GROUP) != 0)
7974 removed += 4;
7975 }
7976 else
7977 {
7978 /* Also adjust for zero-sized relocation member
7979 section. */
7980 if (elf_sec->rel.hdr != NULL
7981 && elf_sec->rel.hdr->sh_size == 0)
7982 removed += 4;
7983 if (elf_sec->rela.hdr != NULL
7984 && elf_sec->rela.hdr->sh_size == 0)
7985 removed += 4;
7986 }
7987 }
7988 s = elf_next_in_group (s);
7989 if (s == first)
7990 break;
7991 }
7992 if (removed != 0)
7993 {
7994 if (discarded != NULL)
7995 {
7996 /* If we've been called for ld -r, then we need to
7997 adjust the input section size. */
7998 if (isec->rawsize == 0)
7999 isec->rawsize = isec->size;
8000 isec->size = isec->rawsize - removed;
8001 if (isec->size <= 4)
8002 {
8003 isec->size = 0;
8004 isec->flags |= SEC_EXCLUDE;
8005 }
8006 }
8007 else if (isec->output_section != NULL)
8008 {
8009 /* Adjust the output section size when called from
8010 objcopy. */
8011 isec->output_section->size -= removed;
8012 if (isec->output_section->size <= 4)
8013 {
8014 isec->output_section->size = 0;
8015 isec->output_section->flags |= SEC_EXCLUDE;
8016 }
8017 }
8018 }
8019 }
8020
8021 return true;
8022 }
8023
8024 /* Copy private header information. */
8025
8026 bool
8027 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
8028 {
8029 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
8030 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
8031 return true;
8032
8033 /* Copy over private BFD data if it has not already been copied.
8034 This must be done here, rather than in the copy_private_bfd_data
8035 entry point, because the latter is called after the section
8036 contents have been set, which means that the program headers have
8037 already been worked out. */
8038 if (elf_seg_map (obfd) == NULL && elf_tdata (ibfd)->phdr != NULL)
8039 {
8040 if (! copy_private_bfd_data (ibfd, obfd))
8041 return false;
8042 }
8043
8044 return _bfd_elf_fixup_group_sections (ibfd, NULL);
8045 }
8046
8047 /* Copy private symbol information. If this symbol is in a section
8048 which we did not map into a BFD section, try to map the section
8049 index correctly. We use special macro definitions for the mapped
8050 section indices; these definitions are interpreted by the
8051 swap_out_syms function. */
8052
8053 #define MAP_ONESYMTAB (SHN_HIOS + 1)
8054 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
8055 #define MAP_STRTAB (SHN_HIOS + 3)
8056 #define MAP_SHSTRTAB (SHN_HIOS + 4)
8057 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
8058
8059 bool
8060 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
8061 asymbol *isymarg,
8062 bfd *obfd,
8063 asymbol *osymarg)
8064 {
8065 elf_symbol_type *isym, *osym;
8066
8067 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
8068 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
8069 return true;
8070
8071 isym = elf_symbol_from (isymarg);
8072 osym = elf_symbol_from (osymarg);
8073
8074 if (isym != NULL
8075 && isym->internal_elf_sym.st_shndx != 0
8076 && osym != NULL
8077 && bfd_is_abs_section (isym->symbol.section))
8078 {
8079 unsigned int shndx;
8080
8081 shndx = isym->internal_elf_sym.st_shndx;
8082 if (shndx == elf_onesymtab (ibfd))
8083 shndx = MAP_ONESYMTAB;
8084 else if (shndx == elf_dynsymtab (ibfd))
8085 shndx = MAP_DYNSYMTAB;
8086 else if (shndx == elf_strtab_sec (ibfd))
8087 shndx = MAP_STRTAB;
8088 else if (shndx == elf_shstrtab_sec (ibfd))
8089 shndx = MAP_SHSTRTAB;
8090 else if (find_section_in_list (shndx, elf_symtab_shndx_list (ibfd)))
8091 shndx = MAP_SYM_SHNDX;
8092 osym->internal_elf_sym.st_shndx = shndx;
8093 }
8094
8095 return true;
8096 }
8097
8098 /* Swap out the symbols. */
8099
8100 static bool
8101 swap_out_syms (bfd *abfd,
8102 struct elf_strtab_hash **sttp,
8103 int relocatable_p,
8104 struct bfd_link_info *info)
8105 {
8106 const struct elf_backend_data *bed;
8107 unsigned int symcount;
8108 asymbol **syms;
8109 struct elf_strtab_hash *stt;
8110 Elf_Internal_Shdr *symtab_hdr;
8111 Elf_Internal_Shdr *symtab_shndx_hdr;
8112 Elf_Internal_Shdr *symstrtab_hdr;
8113 struct elf_sym_strtab *symstrtab;
8114 bfd_byte *outbound_syms;
8115 bfd_byte *outbound_shndx;
8116 unsigned long outbound_syms_index;
8117 unsigned int idx;
8118 unsigned int num_locals;
8119 size_t amt;
8120 bool name_local_sections;
8121
8122 if (!elf_map_symbols (abfd, &num_locals))
8123 return false;
8124
8125 /* Dump out the symtabs. */
8126 stt = _bfd_elf_strtab_init ();
8127 if (stt == NULL)
8128 return false;
8129
8130 bed = get_elf_backend_data (abfd);
8131 symcount = bfd_get_symcount (abfd);
8132 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8133 symtab_hdr->sh_type = SHT_SYMTAB;
8134 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
8135 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
8136 symtab_hdr->sh_info = num_locals + 1;
8137 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
8138
8139 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
8140 symstrtab_hdr->sh_type = SHT_STRTAB;
8141
8142 /* Allocate buffer to swap out the .strtab section. */
8143 if (_bfd_mul_overflow (symcount + 1, sizeof (*symstrtab), &amt)
8144 || (symstrtab = (struct elf_sym_strtab *) bfd_malloc (amt)) == NULL)
8145 {
8146 bfd_set_error (bfd_error_no_memory);
8147 _bfd_elf_strtab_free (stt);
8148 return false;
8149 }
8150
8151 if (_bfd_mul_overflow (symcount + 1, bed->s->sizeof_sym, &amt)
8152 || (outbound_syms = (bfd_byte *) bfd_alloc (abfd, amt)) == NULL)
8153 {
8154 error_no_mem:
8155 bfd_set_error (bfd_error_no_memory);
8156 error_return:
8157 free (symstrtab);
8158 _bfd_elf_strtab_free (stt);
8159 return false;
8160 }
8161 symtab_hdr->contents = outbound_syms;
8162 outbound_syms_index = 0;
8163
8164 outbound_shndx = NULL;
8165
8166 if (elf_symtab_shndx_list (abfd))
8167 {
8168 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
8169 if (symtab_shndx_hdr->sh_name != 0)
8170 {
8171 if (_bfd_mul_overflow (symcount + 1,
8172 sizeof (Elf_External_Sym_Shndx), &amt))
8173 goto error_no_mem;
8174 outbound_shndx = (bfd_byte *) bfd_zalloc (abfd, amt);
8175 if (outbound_shndx == NULL)
8176 goto error_return;
8177
8178 symtab_shndx_hdr->contents = outbound_shndx;
8179 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
8180 symtab_shndx_hdr->sh_size = amt;
8181 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
8182 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
8183 }
8184 /* FIXME: What about any other headers in the list ? */
8185 }
8186
8187 /* Now generate the data (for "contents"). */
8188 {
8189 /* Fill in zeroth symbol and swap it out. */
8190 Elf_Internal_Sym sym;
8191 sym.st_name = 0;
8192 sym.st_value = 0;
8193 sym.st_size = 0;
8194 sym.st_info = 0;
8195 sym.st_other = 0;
8196 sym.st_shndx = SHN_UNDEF;
8197 sym.st_target_internal = 0;
8198 symstrtab[0].sym = sym;
8199 symstrtab[0].dest_index = outbound_syms_index;
8200 outbound_syms_index++;
8201 }
8202
8203 name_local_sections
8204 = (bed->elf_backend_name_local_section_symbols
8205 && bed->elf_backend_name_local_section_symbols (abfd));
8206
8207 syms = bfd_get_outsymbols (abfd);
8208 for (idx = 0; idx < symcount;)
8209 {
8210 Elf_Internal_Sym sym;
8211 bfd_vma value = syms[idx]->value;
8212 elf_symbol_type *type_ptr;
8213 flagword flags = syms[idx]->flags;
8214 int type;
8215
8216 if (!name_local_sections
8217 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
8218 {
8219 /* Local section symbols have no name. */
8220 sym.st_name = (unsigned long) -1;
8221 }
8222 else
8223 {
8224 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
8225 to get the final offset for st_name. */
8226 sym.st_name
8227 = (unsigned long) _bfd_elf_strtab_add (stt, syms[idx]->name,
8228 false);
8229 if (sym.st_name == (unsigned long) -1)
8230 goto error_return;
8231 }
8232
8233 type_ptr = elf_symbol_from (syms[idx]);
8234
8235 if ((flags & BSF_SECTION_SYM) == 0
8236 && bfd_is_com_section (syms[idx]->section))
8237 {
8238 /* ELF common symbols put the alignment into the `value' field,
8239 and the size into the `size' field. This is backwards from
8240 how BFD handles it, so reverse it here. */
8241 sym.st_size = value;
8242 if (type_ptr == NULL
8243 || type_ptr->internal_elf_sym.st_value == 0)
8244 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
8245 else
8246 sym.st_value = type_ptr->internal_elf_sym.st_value;
8247 sym.st_shndx = _bfd_elf_section_from_bfd_section
8248 (abfd, syms[idx]->section);
8249 }
8250 else
8251 {
8252 asection *sec = syms[idx]->section;
8253 unsigned int shndx;
8254
8255 if (sec->output_section)
8256 {
8257 value += sec->output_offset;
8258 sec = sec->output_section;
8259 }
8260
8261 /* Don't add in the section vma for relocatable output. */
8262 if (! relocatable_p)
8263 value += sec->vma;
8264 sym.st_value = value;
8265 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
8266
8267 if (bfd_is_abs_section (sec)
8268 && type_ptr != NULL
8269 && type_ptr->internal_elf_sym.st_shndx != 0)
8270 {
8271 /* This symbol is in a real ELF section which we did
8272 not create as a BFD section. Undo the mapping done
8273 by copy_private_symbol_data. */
8274 shndx = type_ptr->internal_elf_sym.st_shndx;
8275 switch (shndx)
8276 {
8277 case MAP_ONESYMTAB:
8278 shndx = elf_onesymtab (abfd);
8279 break;
8280 case MAP_DYNSYMTAB:
8281 shndx = elf_dynsymtab (abfd);
8282 break;
8283 case MAP_STRTAB:
8284 shndx = elf_strtab_sec (abfd);
8285 break;
8286 case MAP_SHSTRTAB:
8287 shndx = elf_shstrtab_sec (abfd);
8288 break;
8289 case MAP_SYM_SHNDX:
8290 if (elf_symtab_shndx_list (abfd))
8291 shndx = elf_symtab_shndx_list (abfd)->ndx;
8292 break;
8293 case SHN_COMMON:
8294 case SHN_ABS:
8295 shndx = SHN_ABS;
8296 break;
8297 default:
8298 if (shndx >= SHN_LOPROC && shndx <= SHN_HIOS)
8299 {
8300 if (bed->symbol_section_index)
8301 shndx = bed->symbol_section_index (abfd, type_ptr);
8302 /* Otherwise just leave the index alone. */
8303 }
8304 else
8305 {
8306 if (shndx > SHN_HIOS && shndx < SHN_HIRESERVE)
8307 _bfd_error_handler (_("%pB: \
8308 Unable to handle section index %x in ELF symbol. Using ABS instead."),
8309 abfd, shndx);
8310 shndx = SHN_ABS;
8311 }
8312 break;
8313 }
8314 }
8315 else
8316 {
8317 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
8318
8319 if (shndx == SHN_BAD)
8320 {
8321 asection *sec2;
8322
8323 /* Writing this would be a hell of a lot easier if
8324 we had some decent documentation on bfd, and
8325 knew what to expect of the library, and what to
8326 demand of applications. For example, it
8327 appears that `objcopy' might not set the
8328 section of a symbol to be a section that is
8329 actually in the output file. */
8330 sec2 = bfd_get_section_by_name (abfd, sec->name);
8331 if (sec2 != NULL)
8332 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
8333 if (shndx == SHN_BAD)
8334 {
8335 /* xgettext:c-format */
8336 _bfd_error_handler
8337 (_("unable to find equivalent output section"
8338 " for symbol '%s' from section '%s'"),
8339 syms[idx]->name ? syms[idx]->name : "<Local sym>",
8340 sec->name);
8341 bfd_set_error (bfd_error_invalid_operation);
8342 goto error_return;
8343 }
8344 }
8345 }
8346
8347 sym.st_shndx = shndx;
8348 }
8349
8350 if ((flags & BSF_THREAD_LOCAL) != 0)
8351 type = STT_TLS;
8352 else if ((flags & BSF_GNU_INDIRECT_FUNCTION) != 0)
8353 type = STT_GNU_IFUNC;
8354 else if ((flags & BSF_FUNCTION) != 0)
8355 type = STT_FUNC;
8356 else if ((flags & BSF_OBJECT) != 0)
8357 type = STT_OBJECT;
8358 else if ((flags & BSF_RELC) != 0)
8359 type = STT_RELC;
8360 else if ((flags & BSF_SRELC) != 0)
8361 type = STT_SRELC;
8362 else
8363 type = STT_NOTYPE;
8364
8365 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
8366 type = STT_TLS;
8367
8368 /* Processor-specific types. */
8369 if (type_ptr != NULL
8370 && bed->elf_backend_get_symbol_type)
8371 type = ((*bed->elf_backend_get_symbol_type)
8372 (&type_ptr->internal_elf_sym, type));
8373
8374 if (flags & BSF_SECTION_SYM)
8375 {
8376 if (flags & BSF_GLOBAL)
8377 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8378 else
8379 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
8380 }
8381 else if (bfd_is_com_section (syms[idx]->section))
8382 {
8383 if (type != STT_TLS)
8384 {
8385 if ((abfd->flags & BFD_CONVERT_ELF_COMMON))
8386 type = ((abfd->flags & BFD_USE_ELF_STT_COMMON)
8387 ? STT_COMMON : STT_OBJECT);
8388 else
8389 type = ((flags & BSF_ELF_COMMON) != 0
8390 ? STT_COMMON : STT_OBJECT);
8391 }
8392 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
8393 }
8394 else if (bfd_is_und_section (syms[idx]->section))
8395 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
8396 ? STB_WEAK
8397 : STB_GLOBAL),
8398 type);
8399 else if (flags & BSF_FILE)
8400 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
8401 else
8402 {
8403 int bind = STB_LOCAL;
8404
8405 if (flags & BSF_LOCAL)
8406 bind = STB_LOCAL;
8407 else if (flags & BSF_GNU_UNIQUE)
8408 bind = STB_GNU_UNIQUE;
8409 else if (flags & BSF_WEAK)
8410 bind = STB_WEAK;
8411 else if (flags & BSF_GLOBAL)
8412 bind = STB_GLOBAL;
8413
8414 sym.st_info = ELF_ST_INFO (bind, type);
8415 }
8416
8417 if (type_ptr != NULL)
8418 {
8419 sym.st_other = type_ptr->internal_elf_sym.st_other;
8420 sym.st_target_internal
8421 = type_ptr->internal_elf_sym.st_target_internal;
8422 }
8423 else
8424 {
8425 sym.st_other = 0;
8426 sym.st_target_internal = 0;
8427 }
8428
8429 idx++;
8430 symstrtab[idx].sym = sym;
8431 symstrtab[idx].dest_index = outbound_syms_index;
8432
8433 outbound_syms_index++;
8434 }
8435
8436 /* Finalize the .strtab section. */
8437 _bfd_elf_strtab_finalize (stt);
8438
8439 /* Swap out the .strtab section. */
8440 for (idx = 0; idx <= symcount; idx++)
8441 {
8442 struct elf_sym_strtab *elfsym = &symstrtab[idx];
8443 if (elfsym->sym.st_name == (unsigned long) -1)
8444 elfsym->sym.st_name = 0;
8445 else
8446 elfsym->sym.st_name = _bfd_elf_strtab_offset (stt,
8447 elfsym->sym.st_name);
8448 if (info && info->callbacks->ctf_new_symbol)
8449 info->callbacks->ctf_new_symbol (elfsym->dest_index,
8450 &elfsym->sym);
8451
8452 /* Inform the linker of the addition of this symbol. */
8453
8454 bed->s->swap_symbol_out (abfd, &elfsym->sym,
8455 (outbound_syms
8456 + (elfsym->dest_index
8457 * bed->s->sizeof_sym)),
8458 NPTR_ADD (outbound_shndx,
8459 (elfsym->dest_index
8460 * sizeof (Elf_External_Sym_Shndx))));
8461 }
8462 free (symstrtab);
8463
8464 *sttp = stt;
8465 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (stt);
8466 symstrtab_hdr->sh_type = SHT_STRTAB;
8467 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
8468 symstrtab_hdr->sh_addr = 0;
8469 symstrtab_hdr->sh_entsize = 0;
8470 symstrtab_hdr->sh_link = 0;
8471 symstrtab_hdr->sh_info = 0;
8472 symstrtab_hdr->sh_addralign = 1;
8473
8474 return true;
8475 }
8476
8477 /* Return the number of bytes required to hold the symtab vector.
8478
8479 Note that we base it on the count plus 1, since we will null terminate
8480 the vector allocated based on this size. However, the ELF symbol table
8481 always has a dummy entry as symbol #0, so it ends up even. */
8482
8483 long
8484 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
8485 {
8486 bfd_size_type symcount;
8487 long symtab_size;
8488 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
8489
8490 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
8491 if (symcount > LONG_MAX / sizeof (asymbol *))
8492 {
8493 bfd_set_error (bfd_error_file_too_big);
8494 return -1;
8495 }
8496 symtab_size = symcount * (sizeof (asymbol *));
8497 if (symcount == 0)
8498 symtab_size = sizeof (asymbol *);
8499 else if (!bfd_write_p (abfd))
8500 {
8501 ufile_ptr filesize = bfd_get_file_size (abfd);
8502
8503 if (filesize != 0 && (unsigned long) symtab_size > filesize)
8504 {
8505 bfd_set_error (bfd_error_file_truncated);
8506 return -1;
8507 }
8508 }
8509
8510 return symtab_size;
8511 }
8512
8513 long
8514 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
8515 {
8516 bfd_size_type symcount;
8517 long symtab_size;
8518 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
8519
8520 if (elf_dynsymtab (abfd) == 0)
8521 {
8522 bfd_set_error (bfd_error_invalid_operation);
8523 return -1;
8524 }
8525
8526 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
8527 if (symcount > LONG_MAX / sizeof (asymbol *))
8528 {
8529 bfd_set_error (bfd_error_file_too_big);
8530 return -1;
8531 }
8532 symtab_size = symcount * (sizeof (asymbol *));
8533 if (symcount == 0)
8534 symtab_size = sizeof (asymbol *);
8535 else if (!bfd_write_p (abfd))
8536 {
8537 ufile_ptr filesize = bfd_get_file_size (abfd);
8538
8539 if (filesize != 0 && (unsigned long) symtab_size > filesize)
8540 {
8541 bfd_set_error (bfd_error_file_truncated);
8542 return -1;
8543 }
8544 }
8545
8546 return symtab_size;
8547 }
8548
8549 long
8550 _bfd_elf_get_reloc_upper_bound (bfd *abfd, sec_ptr asect)
8551 {
8552 if (asect->reloc_count != 0 && !bfd_write_p (abfd))
8553 {
8554 /* Sanity check reloc section size. */
8555 struct bfd_elf_section_data *d = elf_section_data (asect);
8556 Elf_Internal_Shdr *rel_hdr = &d->this_hdr;
8557 bfd_size_type ext_rel_size = rel_hdr->sh_size;
8558 ufile_ptr filesize = bfd_get_file_size (abfd);
8559
8560 if (filesize != 0 && ext_rel_size > filesize)
8561 {
8562 bfd_set_error (bfd_error_file_truncated);
8563 return -1;
8564 }
8565 }
8566
8567 #if SIZEOF_LONG == SIZEOF_INT
8568 if (asect->reloc_count >= LONG_MAX / sizeof (arelent *))
8569 {
8570 bfd_set_error (bfd_error_file_too_big);
8571 return -1;
8572 }
8573 #endif
8574 return (asect->reloc_count + 1L) * sizeof (arelent *);
8575 }
8576
8577 /* Canonicalize the relocs. */
8578
8579 long
8580 _bfd_elf_canonicalize_reloc (bfd *abfd,
8581 sec_ptr section,
8582 arelent **relptr,
8583 asymbol **symbols)
8584 {
8585 arelent *tblptr;
8586 unsigned int i;
8587 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8588
8589 if (! bed->s->slurp_reloc_table (abfd, section, symbols, false))
8590 return -1;
8591
8592 tblptr = section->relocation;
8593 for (i = 0; i < section->reloc_count; i++)
8594 *relptr++ = tblptr++;
8595
8596 *relptr = NULL;
8597
8598 return section->reloc_count;
8599 }
8600
8601 long
8602 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
8603 {
8604 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8605 long symcount = bed->s->slurp_symbol_table (abfd, allocation, false);
8606
8607 if (symcount >= 0)
8608 abfd->symcount = symcount;
8609 return symcount;
8610 }
8611
8612 long
8613 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
8614 asymbol **allocation)
8615 {
8616 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8617 long symcount = bed->s->slurp_symbol_table (abfd, allocation, true);
8618
8619 if (symcount >= 0)
8620 abfd->dynsymcount = symcount;
8621 return symcount;
8622 }
8623
8624 /* Return the size required for the dynamic reloc entries. Any loadable
8625 section that was actually installed in the BFD, and has type SHT_REL
8626 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
8627 dynamic reloc section. */
8628
8629 long
8630 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
8631 {
8632 bfd_size_type count, ext_rel_size;
8633 asection *s;
8634
8635 if (elf_dynsymtab (abfd) == 0)
8636 {
8637 bfd_set_error (bfd_error_invalid_operation);
8638 return -1;
8639 }
8640
8641 count = 1;
8642 ext_rel_size = 0;
8643 for (s = abfd->sections; s != NULL; s = s->next)
8644 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
8645 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
8646 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
8647 {
8648 ext_rel_size += s->size;
8649 if (ext_rel_size < s->size)
8650 {
8651 bfd_set_error (bfd_error_file_truncated);
8652 return -1;
8653 }
8654 count += s->size / elf_section_data (s)->this_hdr.sh_entsize;
8655 if (count > LONG_MAX / sizeof (arelent *))
8656 {
8657 bfd_set_error (bfd_error_file_too_big);
8658 return -1;
8659 }
8660 }
8661 if (count > 1 && !bfd_write_p (abfd))
8662 {
8663 /* Sanity check reloc section sizes. */
8664 ufile_ptr filesize = bfd_get_file_size (abfd);
8665 if (filesize != 0 && ext_rel_size > filesize)
8666 {
8667 bfd_set_error (bfd_error_file_truncated);
8668 return -1;
8669 }
8670 }
8671 return count * sizeof (arelent *);
8672 }
8673
8674 /* Canonicalize the dynamic relocation entries. Note that we return the
8675 dynamic relocations as a single block, although they are actually
8676 associated with particular sections; the interface, which was
8677 designed for SunOS style shared libraries, expects that there is only
8678 one set of dynamic relocs. Any loadable section that was actually
8679 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
8680 dynamic symbol table, is considered to be a dynamic reloc section. */
8681
8682 long
8683 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
8684 arelent **storage,
8685 asymbol **syms)
8686 {
8687 bool (*slurp_relocs) (bfd *, asection *, asymbol **, bool);
8688 asection *s;
8689 long ret;
8690
8691 if (elf_dynsymtab (abfd) == 0)
8692 {
8693 bfd_set_error (bfd_error_invalid_operation);
8694 return -1;
8695 }
8696
8697 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
8698 ret = 0;
8699 for (s = abfd->sections; s != NULL; s = s->next)
8700 {
8701 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
8702 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
8703 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
8704 {
8705 arelent *p;
8706 long count, i;
8707
8708 if (! (*slurp_relocs) (abfd, s, syms, true))
8709 return -1;
8710 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
8711 p = s->relocation;
8712 for (i = 0; i < count; i++)
8713 *storage++ = p++;
8714 ret += count;
8715 }
8716 }
8717
8718 *storage = NULL;
8719
8720 return ret;
8721 }
8722 \f
8723 /* Read in the version information. */
8724
8725 bool
8726 _bfd_elf_slurp_version_tables (bfd *abfd, bool default_imported_symver)
8727 {
8728 bfd_byte *contents = NULL;
8729 unsigned int freeidx = 0;
8730 size_t amt;
8731
8732 if (elf_dynverref (abfd) != 0)
8733 {
8734 Elf_Internal_Shdr *hdr;
8735 Elf_External_Verneed *everneed;
8736 Elf_Internal_Verneed *iverneed;
8737 unsigned int i;
8738 bfd_byte *contents_end;
8739
8740 hdr = &elf_tdata (abfd)->dynverref_hdr;
8741
8742 if (hdr->sh_info == 0
8743 || hdr->sh_info > hdr->sh_size / sizeof (Elf_External_Verneed))
8744 {
8745 error_return_bad_verref:
8746 _bfd_error_handler
8747 (_("%pB: .gnu.version_r invalid entry"), abfd);
8748 bfd_set_error (bfd_error_bad_value);
8749 error_return_verref:
8750 elf_tdata (abfd)->verref = NULL;
8751 elf_tdata (abfd)->cverrefs = 0;
8752 goto error_return;
8753 }
8754
8755 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0)
8756 goto error_return_verref;
8757 contents = _bfd_malloc_and_read (abfd, hdr->sh_size, hdr->sh_size);
8758 if (contents == NULL)
8759 goto error_return_verref;
8760
8761 if (_bfd_mul_overflow (hdr->sh_info, sizeof (Elf_Internal_Verneed), &amt))
8762 {
8763 bfd_set_error (bfd_error_file_too_big);
8764 goto error_return_verref;
8765 }
8766 elf_tdata (abfd)->verref = (Elf_Internal_Verneed *) bfd_alloc (abfd, amt);
8767 if (elf_tdata (abfd)->verref == NULL)
8768 goto error_return_verref;
8769
8770 BFD_ASSERT (sizeof (Elf_External_Verneed)
8771 == sizeof (Elf_External_Vernaux));
8772 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
8773 everneed = (Elf_External_Verneed *) contents;
8774 iverneed = elf_tdata (abfd)->verref;
8775 for (i = 0; i < hdr->sh_info; i++, iverneed++)
8776 {
8777 Elf_External_Vernaux *evernaux;
8778 Elf_Internal_Vernaux *ivernaux;
8779 unsigned int j;
8780
8781 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
8782
8783 iverneed->vn_bfd = abfd;
8784
8785 iverneed->vn_filename =
8786 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8787 iverneed->vn_file);
8788 if (iverneed->vn_filename == NULL)
8789 goto error_return_bad_verref;
8790
8791 if (iverneed->vn_cnt == 0)
8792 iverneed->vn_auxptr = NULL;
8793 else
8794 {
8795 if (_bfd_mul_overflow (iverneed->vn_cnt,
8796 sizeof (Elf_Internal_Vernaux), &amt))
8797 {
8798 bfd_set_error (bfd_error_file_too_big);
8799 goto error_return_verref;
8800 }
8801 iverneed->vn_auxptr = (struct elf_internal_vernaux *)
8802 bfd_alloc (abfd, amt);
8803 if (iverneed->vn_auxptr == NULL)
8804 goto error_return_verref;
8805 }
8806
8807 if (iverneed->vn_aux
8808 > (size_t) (contents_end - (bfd_byte *) everneed))
8809 goto error_return_bad_verref;
8810
8811 evernaux = ((Elf_External_Vernaux *)
8812 ((bfd_byte *) everneed + iverneed->vn_aux));
8813 ivernaux = iverneed->vn_auxptr;
8814 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
8815 {
8816 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
8817
8818 ivernaux->vna_nodename =
8819 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8820 ivernaux->vna_name);
8821 if (ivernaux->vna_nodename == NULL)
8822 goto error_return_bad_verref;
8823
8824 if (ivernaux->vna_other > freeidx)
8825 freeidx = ivernaux->vna_other;
8826
8827 ivernaux->vna_nextptr = NULL;
8828 if (ivernaux->vna_next == 0)
8829 {
8830 iverneed->vn_cnt = j + 1;
8831 break;
8832 }
8833 if (j + 1 < iverneed->vn_cnt)
8834 ivernaux->vna_nextptr = ivernaux + 1;
8835
8836 if (ivernaux->vna_next
8837 > (size_t) (contents_end - (bfd_byte *) evernaux))
8838 goto error_return_bad_verref;
8839
8840 evernaux = ((Elf_External_Vernaux *)
8841 ((bfd_byte *) evernaux + ivernaux->vna_next));
8842 }
8843
8844 iverneed->vn_nextref = NULL;
8845 if (iverneed->vn_next == 0)
8846 break;
8847 if (i + 1 < hdr->sh_info)
8848 iverneed->vn_nextref = iverneed + 1;
8849
8850 if (iverneed->vn_next
8851 > (size_t) (contents_end - (bfd_byte *) everneed))
8852 goto error_return_bad_verref;
8853
8854 everneed = ((Elf_External_Verneed *)
8855 ((bfd_byte *) everneed + iverneed->vn_next));
8856 }
8857 elf_tdata (abfd)->cverrefs = i;
8858
8859 free (contents);
8860 contents = NULL;
8861 }
8862
8863 if (elf_dynverdef (abfd) != 0)
8864 {
8865 Elf_Internal_Shdr *hdr;
8866 Elf_External_Verdef *everdef;
8867 Elf_Internal_Verdef *iverdef;
8868 Elf_Internal_Verdef *iverdefarr;
8869 Elf_Internal_Verdef iverdefmem;
8870 unsigned int i;
8871 unsigned int maxidx;
8872 bfd_byte *contents_end_def, *contents_end_aux;
8873
8874 hdr = &elf_tdata (abfd)->dynverdef_hdr;
8875
8876 if (hdr->sh_info == 0 || hdr->sh_size < sizeof (Elf_External_Verdef))
8877 {
8878 error_return_bad_verdef:
8879 _bfd_error_handler
8880 (_("%pB: .gnu.version_d invalid entry"), abfd);
8881 bfd_set_error (bfd_error_bad_value);
8882 error_return_verdef:
8883 elf_tdata (abfd)->verdef = NULL;
8884 elf_tdata (abfd)->cverdefs = 0;
8885 goto error_return;
8886 }
8887
8888 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0)
8889 goto error_return_verdef;
8890 contents = _bfd_malloc_and_read (abfd, hdr->sh_size, hdr->sh_size);
8891 if (contents == NULL)
8892 goto error_return_verdef;
8893
8894 BFD_ASSERT (sizeof (Elf_External_Verdef)
8895 >= sizeof (Elf_External_Verdaux));
8896 contents_end_def = contents + hdr->sh_size
8897 - sizeof (Elf_External_Verdef);
8898 contents_end_aux = contents + hdr->sh_size
8899 - sizeof (Elf_External_Verdaux);
8900
8901 /* We know the number of entries in the section but not the maximum
8902 index. Therefore we have to run through all entries and find
8903 the maximum. */
8904 everdef = (Elf_External_Verdef *) contents;
8905 maxidx = 0;
8906 for (i = 0; i < hdr->sh_info; ++i)
8907 {
8908 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
8909
8910 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) == 0)
8911 goto error_return_bad_verdef;
8912 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
8913 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
8914
8915 if (iverdefmem.vd_next == 0)
8916 break;
8917
8918 if (iverdefmem.vd_next
8919 > (size_t) (contents_end_def - (bfd_byte *) everdef))
8920 goto error_return_bad_verdef;
8921
8922 everdef = ((Elf_External_Verdef *)
8923 ((bfd_byte *) everdef + iverdefmem.vd_next));
8924 }
8925
8926 if (default_imported_symver)
8927 {
8928 if (freeidx > maxidx)
8929 maxidx = ++freeidx;
8930 else
8931 freeidx = ++maxidx;
8932 }
8933 if (_bfd_mul_overflow (maxidx, sizeof (Elf_Internal_Verdef), &amt))
8934 {
8935 bfd_set_error (bfd_error_file_too_big);
8936 goto error_return_verdef;
8937 }
8938 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *) bfd_zalloc (abfd, amt);
8939 if (elf_tdata (abfd)->verdef == NULL)
8940 goto error_return_verdef;
8941
8942 elf_tdata (abfd)->cverdefs = maxidx;
8943
8944 everdef = (Elf_External_Verdef *) contents;
8945 iverdefarr = elf_tdata (abfd)->verdef;
8946 for (i = 0; i < hdr->sh_info; i++)
8947 {
8948 Elf_External_Verdaux *everdaux;
8949 Elf_Internal_Verdaux *iverdaux;
8950 unsigned int j;
8951
8952 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
8953
8954 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
8955 goto error_return_bad_verdef;
8956
8957 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
8958 memcpy (iverdef, &iverdefmem, offsetof (Elf_Internal_Verdef, vd_bfd));
8959
8960 iverdef->vd_bfd = abfd;
8961
8962 if (iverdef->vd_cnt == 0)
8963 iverdef->vd_auxptr = NULL;
8964 else
8965 {
8966 if (_bfd_mul_overflow (iverdef->vd_cnt,
8967 sizeof (Elf_Internal_Verdaux), &amt))
8968 {
8969 bfd_set_error (bfd_error_file_too_big);
8970 goto error_return_verdef;
8971 }
8972 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
8973 bfd_alloc (abfd, amt);
8974 if (iverdef->vd_auxptr == NULL)
8975 goto error_return_verdef;
8976 }
8977
8978 if (iverdef->vd_aux
8979 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
8980 goto error_return_bad_verdef;
8981
8982 everdaux = ((Elf_External_Verdaux *)
8983 ((bfd_byte *) everdef + iverdef->vd_aux));
8984 iverdaux = iverdef->vd_auxptr;
8985 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
8986 {
8987 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
8988
8989 iverdaux->vda_nodename =
8990 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8991 iverdaux->vda_name);
8992 if (iverdaux->vda_nodename == NULL)
8993 goto error_return_bad_verdef;
8994
8995 iverdaux->vda_nextptr = NULL;
8996 if (iverdaux->vda_next == 0)
8997 {
8998 iverdef->vd_cnt = j + 1;
8999 break;
9000 }
9001 if (j + 1 < iverdef->vd_cnt)
9002 iverdaux->vda_nextptr = iverdaux + 1;
9003
9004 if (iverdaux->vda_next
9005 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
9006 goto error_return_bad_verdef;
9007
9008 everdaux = ((Elf_External_Verdaux *)
9009 ((bfd_byte *) everdaux + iverdaux->vda_next));
9010 }
9011
9012 iverdef->vd_nodename = NULL;
9013 if (iverdef->vd_cnt)
9014 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
9015
9016 iverdef->vd_nextdef = NULL;
9017 if (iverdef->vd_next == 0)
9018 break;
9019 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
9020 iverdef->vd_nextdef = iverdef + 1;
9021
9022 everdef = ((Elf_External_Verdef *)
9023 ((bfd_byte *) everdef + iverdef->vd_next));
9024 }
9025
9026 free (contents);
9027 contents = NULL;
9028 }
9029 else if (default_imported_symver)
9030 {
9031 if (freeidx < 3)
9032 freeidx = 3;
9033 else
9034 freeidx++;
9035
9036 if (_bfd_mul_overflow (freeidx, sizeof (Elf_Internal_Verdef), &amt))
9037 {
9038 bfd_set_error (bfd_error_file_too_big);
9039 goto error_return;
9040 }
9041 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *) bfd_zalloc (abfd, amt);
9042 if (elf_tdata (abfd)->verdef == NULL)
9043 goto error_return;
9044
9045 elf_tdata (abfd)->cverdefs = freeidx;
9046 }
9047
9048 /* Create a default version based on the soname. */
9049 if (default_imported_symver)
9050 {
9051 Elf_Internal_Verdef *iverdef;
9052 Elf_Internal_Verdaux *iverdaux;
9053
9054 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];
9055
9056 iverdef->vd_version = VER_DEF_CURRENT;
9057 iverdef->vd_flags = 0;
9058 iverdef->vd_ndx = freeidx;
9059 iverdef->vd_cnt = 1;
9060
9061 iverdef->vd_bfd = abfd;
9062
9063 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
9064 if (iverdef->vd_nodename == NULL)
9065 goto error_return_verdef;
9066 iverdef->vd_nextdef = NULL;
9067 iverdef->vd_auxptr = ((struct elf_internal_verdaux *)
9068 bfd_zalloc (abfd, sizeof (Elf_Internal_Verdaux)));
9069 if (iverdef->vd_auxptr == NULL)
9070 goto error_return_verdef;
9071
9072 iverdaux = iverdef->vd_auxptr;
9073 iverdaux->vda_nodename = iverdef->vd_nodename;
9074 }
9075
9076 return true;
9077
9078 error_return:
9079 free (contents);
9080 return false;
9081 }
9082 \f
9083 asymbol *
9084 _bfd_elf_make_empty_symbol (bfd *abfd)
9085 {
9086 elf_symbol_type *newsym;
9087
9088 newsym = (elf_symbol_type *) bfd_zalloc (abfd, sizeof (*newsym));
9089 if (!newsym)
9090 return NULL;
9091 newsym->symbol.the_bfd = abfd;
9092 return &newsym->symbol;
9093 }
9094
9095 void
9096 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
9097 asymbol *symbol,
9098 symbol_info *ret)
9099 {
9100 bfd_symbol_info (symbol, ret);
9101 }
9102
9103 /* Return whether a symbol name implies a local symbol. Most targets
9104 use this function for the is_local_label_name entry point, but some
9105 override it. */
9106
9107 bool
9108 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
9109 const char *name)
9110 {
9111 /* Normal local symbols start with ``.L''. */
9112 if (name[0] == '.' && name[1] == 'L')
9113 return true;
9114
9115 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
9116 DWARF debugging symbols starting with ``..''. */
9117 if (name[0] == '.' && name[1] == '.')
9118 return true;
9119
9120 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
9121 emitting DWARF debugging output. I suspect this is actually a
9122 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
9123 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
9124 underscore to be emitted on some ELF targets). For ease of use,
9125 we treat such symbols as local. */
9126 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
9127 return true;
9128
9129 /* Treat assembler generated fake symbols, dollar local labels and
9130 forward-backward labels (aka local labels) as locals.
9131 These labels have the form:
9132
9133 L0^A.* (fake symbols)
9134
9135 [.]?L[0123456789]+{^A|^B}[0123456789]* (local labels)
9136
9137 Versions which start with .L will have already been matched above,
9138 so we only need to match the rest. */
9139 if (name[0] == 'L' && ISDIGIT (name[1]))
9140 {
9141 bool ret = false;
9142 const char * p;
9143 char c;
9144
9145 for (p = name + 2; (c = *p); p++)
9146 {
9147 if (c == 1 || c == 2)
9148 {
9149 if (c == 1 && p == name + 2)
9150 /* A fake symbol. */
9151 return true;
9152
9153 /* FIXME: We are being paranoid here and treating symbols like
9154 L0^Bfoo as if there were non-local, on the grounds that the
9155 assembler will never generate them. But can any symbol
9156 containing an ASCII value in the range 1-31 ever be anything
9157 other than some kind of local ? */
9158 ret = true;
9159 }
9160
9161 if (! ISDIGIT (c))
9162 {
9163 ret = false;
9164 break;
9165 }
9166 }
9167 return ret;
9168 }
9169
9170 return false;
9171 }
9172
9173 alent *
9174 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
9175 asymbol *symbol ATTRIBUTE_UNUSED)
9176 {
9177 abort ();
9178 return NULL;
9179 }
9180
9181 bool
9182 _bfd_elf_set_arch_mach (bfd *abfd,
9183 enum bfd_architecture arch,
9184 unsigned long machine)
9185 {
9186 /* If this isn't the right architecture for this backend, and this
9187 isn't the generic backend, fail. */
9188 if (arch != get_elf_backend_data (abfd)->arch
9189 && arch != bfd_arch_unknown
9190 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
9191 return false;
9192
9193 return bfd_default_set_arch_mach (abfd, arch, machine);
9194 }
9195
9196 /* Find the nearest line to a particular section and offset,
9197 for error reporting. */
9198
9199 bool
9200 _bfd_elf_find_nearest_line (bfd *abfd,
9201 asymbol **symbols,
9202 asection *section,
9203 bfd_vma offset,
9204 const char **filename_ptr,
9205 const char **functionname_ptr,
9206 unsigned int *line_ptr,
9207 unsigned int *discriminator_ptr)
9208 {
9209 bool found;
9210
9211 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
9212 filename_ptr, functionname_ptr,
9213 line_ptr, discriminator_ptr,
9214 dwarf_debug_sections,
9215 &elf_tdata (abfd)->dwarf2_find_line_info))
9216 return true;
9217
9218 if (_bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
9219 filename_ptr, functionname_ptr, line_ptr))
9220 {
9221 if (!*functionname_ptr)
9222 _bfd_elf_find_function (abfd, symbols, section, offset,
9223 *filename_ptr ? NULL : filename_ptr,
9224 functionname_ptr);
9225 return true;
9226 }
9227
9228 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
9229 &found, filename_ptr,
9230 functionname_ptr, line_ptr,
9231 &elf_tdata (abfd)->line_info))
9232 return false;
9233 if (found && (*functionname_ptr || *line_ptr))
9234 return true;
9235
9236 if (symbols == NULL)
9237 return false;
9238
9239 if (! _bfd_elf_find_function (abfd, symbols, section, offset,
9240 filename_ptr, functionname_ptr))
9241 return false;
9242
9243 *line_ptr = 0;
9244 return true;
9245 }
9246
9247 /* Find the line for a symbol. */
9248
9249 bool
9250 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
9251 const char **filename_ptr, unsigned int *line_ptr)
9252 {
9253 return _bfd_dwarf2_find_nearest_line (abfd, symbols, symbol, NULL, 0,
9254 filename_ptr, NULL, line_ptr, NULL,
9255 dwarf_debug_sections,
9256 &elf_tdata (abfd)->dwarf2_find_line_info);
9257 }
9258
9259 /* After a call to bfd_find_nearest_line, successive calls to
9260 bfd_find_inliner_info can be used to get source information about
9261 each level of function inlining that terminated at the address
9262 passed to bfd_find_nearest_line. Currently this is only supported
9263 for DWARF2 with appropriate DWARF3 extensions. */
9264
9265 bool
9266 _bfd_elf_find_inliner_info (bfd *abfd,
9267 const char **filename_ptr,
9268 const char **functionname_ptr,
9269 unsigned int *line_ptr)
9270 {
9271 bool found;
9272 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
9273 functionname_ptr, line_ptr,
9274 & elf_tdata (abfd)->dwarf2_find_line_info);
9275 return found;
9276 }
9277
9278 int
9279 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
9280 {
9281 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9282 int ret = bed->s->sizeof_ehdr;
9283
9284 if (!bfd_link_relocatable (info))
9285 {
9286 bfd_size_type phdr_size = elf_program_header_size (abfd);
9287
9288 if (phdr_size == (bfd_size_type) -1)
9289 {
9290 struct elf_segment_map *m;
9291
9292 phdr_size = 0;
9293 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
9294 phdr_size += bed->s->sizeof_phdr;
9295
9296 if (phdr_size == 0)
9297 phdr_size = get_program_header_size (abfd, info);
9298 }
9299
9300 elf_program_header_size (abfd) = phdr_size;
9301 ret += phdr_size;
9302 }
9303
9304 return ret;
9305 }
9306
9307 bool
9308 _bfd_elf_set_section_contents (bfd *abfd,
9309 sec_ptr section,
9310 const void *location,
9311 file_ptr offset,
9312 bfd_size_type count)
9313 {
9314 Elf_Internal_Shdr *hdr;
9315 file_ptr pos;
9316
9317 if (! abfd->output_has_begun
9318 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
9319 return false;
9320
9321 if (!count)
9322 return true;
9323
9324 hdr = &elf_section_data (section)->this_hdr;
9325 if (hdr->sh_offset == (file_ptr) -1)
9326 {
9327 unsigned char *contents;
9328
9329 if (bfd_section_is_ctf (section))
9330 /* Nothing to do with this section: the contents are generated
9331 later. */
9332 return true;
9333
9334 if ((section->flags & SEC_ELF_COMPRESS) == 0)
9335 {
9336 _bfd_error_handler
9337 (_("%pB:%pA: error: attempting to write into an unallocated compressed section"),
9338 abfd, section);
9339 bfd_set_error (bfd_error_invalid_operation);
9340 return false;
9341 }
9342
9343 if ((offset + count) > hdr->sh_size)
9344 {
9345 _bfd_error_handler
9346 (_("%pB:%pA: error: attempting to write over the end of the section"),
9347 abfd, section);
9348
9349 bfd_set_error (bfd_error_invalid_operation);
9350 return false;
9351 }
9352
9353 contents = hdr->contents;
9354 if (contents == NULL)
9355 {
9356 _bfd_error_handler
9357 (_("%pB:%pA: error: attempting to write section into an empty buffer"),
9358 abfd, section);
9359
9360 bfd_set_error (bfd_error_invalid_operation);
9361 return false;
9362 }
9363
9364 memcpy (contents + offset, location, count);
9365 return true;
9366 }
9367
9368 pos = hdr->sh_offset + offset;
9369 if (bfd_seek (abfd, pos, SEEK_SET) != 0
9370 || bfd_bwrite (location, count, abfd) != count)
9371 return false;
9372
9373 return true;
9374 }
9375
9376 bool
9377 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
9378 arelent *cache_ptr ATTRIBUTE_UNUSED,
9379 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
9380 {
9381 abort ();
9382 return false;
9383 }
9384
9385 /* Try to convert a non-ELF reloc into an ELF one. */
9386
9387 bool
9388 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
9389 {
9390 /* Check whether we really have an ELF howto. */
9391
9392 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
9393 {
9394 bfd_reloc_code_real_type code;
9395 reloc_howto_type *howto;
9396
9397 /* Alien reloc: Try to determine its type to replace it with an
9398 equivalent ELF reloc. */
9399
9400 if (areloc->howto->pc_relative)
9401 {
9402 switch (areloc->howto->bitsize)
9403 {
9404 case 8:
9405 code = BFD_RELOC_8_PCREL;
9406 break;
9407 case 12:
9408 code = BFD_RELOC_12_PCREL;
9409 break;
9410 case 16:
9411 code = BFD_RELOC_16_PCREL;
9412 break;
9413 case 24:
9414 code = BFD_RELOC_24_PCREL;
9415 break;
9416 case 32:
9417 code = BFD_RELOC_32_PCREL;
9418 break;
9419 case 64:
9420 code = BFD_RELOC_64_PCREL;
9421 break;
9422 default:
9423 goto fail;
9424 }
9425
9426 howto = bfd_reloc_type_lookup (abfd, code);
9427
9428 if (howto && areloc->howto->pcrel_offset != howto->pcrel_offset)
9429 {
9430 if (howto->pcrel_offset)
9431 areloc->addend += areloc->address;
9432 else
9433 areloc->addend -= areloc->address; /* addend is unsigned!! */
9434 }
9435 }
9436 else
9437 {
9438 switch (areloc->howto->bitsize)
9439 {
9440 case 8:
9441 code = BFD_RELOC_8;
9442 break;
9443 case 14:
9444 code = BFD_RELOC_14;
9445 break;
9446 case 16:
9447 code = BFD_RELOC_16;
9448 break;
9449 case 26:
9450 code = BFD_RELOC_26;
9451 break;
9452 case 32:
9453 code = BFD_RELOC_32;
9454 break;
9455 case 64:
9456 code = BFD_RELOC_64;
9457 break;
9458 default:
9459 goto fail;
9460 }
9461
9462 howto = bfd_reloc_type_lookup (abfd, code);
9463 }
9464
9465 if (howto)
9466 areloc->howto = howto;
9467 else
9468 goto fail;
9469 }
9470
9471 return true;
9472
9473 fail:
9474 /* xgettext:c-format */
9475 _bfd_error_handler (_("%pB: %s unsupported"),
9476 abfd, areloc->howto->name);
9477 bfd_set_error (bfd_error_sorry);
9478 return false;
9479 }
9480
9481 bool
9482 _bfd_elf_close_and_cleanup (bfd *abfd)
9483 {
9484 struct elf_obj_tdata *tdata = elf_tdata (abfd);
9485 if (tdata != NULL
9486 && (bfd_get_format (abfd) == bfd_object
9487 || bfd_get_format (abfd) == bfd_core))
9488 {
9489 if (elf_tdata (abfd)->o != NULL && elf_shstrtab (abfd) != NULL)
9490 _bfd_elf_strtab_free (elf_shstrtab (abfd));
9491 _bfd_dwarf2_cleanup_debug_info (abfd, &tdata->dwarf2_find_line_info);
9492 }
9493
9494 return _bfd_generic_close_and_cleanup (abfd);
9495 }
9496
9497 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
9498 in the relocation's offset. Thus we cannot allow any sort of sanity
9499 range-checking to interfere. There is nothing else to do in processing
9500 this reloc. */
9501
9502 bfd_reloc_status_type
9503 _bfd_elf_rel_vtable_reloc_fn
9504 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
9505 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
9506 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
9507 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
9508 {
9509 return bfd_reloc_ok;
9510 }
9511 \f
9512 /* Elf core file support. Much of this only works on native
9513 toolchains, since we rely on knowing the
9514 machine-dependent procfs structure in order to pick
9515 out details about the corefile. */
9516
9517 #ifdef HAVE_SYS_PROCFS_H
9518 # include <sys/procfs.h>
9519 #endif
9520
9521 /* Return a PID that identifies a "thread" for threaded cores, or the
9522 PID of the main process for non-threaded cores. */
9523
9524 static int
9525 elfcore_make_pid (bfd *abfd)
9526 {
9527 int pid;
9528
9529 pid = elf_tdata (abfd)->core->lwpid;
9530 if (pid == 0)
9531 pid = elf_tdata (abfd)->core->pid;
9532
9533 return pid;
9534 }
9535
9536 /* If there isn't a section called NAME, make one, using
9537 data from SECT. Note, this function will generate a
9538 reference to NAME, so you shouldn't deallocate or
9539 overwrite it. */
9540
9541 static bool
9542 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
9543 {
9544 asection *sect2;
9545
9546 if (bfd_get_section_by_name (abfd, name) != NULL)
9547 return true;
9548
9549 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
9550 if (sect2 == NULL)
9551 return false;
9552
9553 sect2->size = sect->size;
9554 sect2->filepos = sect->filepos;
9555 sect2->alignment_power = sect->alignment_power;
9556 return true;
9557 }
9558
9559 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
9560 actually creates up to two pseudosections:
9561 - For the single-threaded case, a section named NAME, unless
9562 such a section already exists.
9563 - For the multi-threaded case, a section named "NAME/PID", where
9564 PID is elfcore_make_pid (abfd).
9565 Both pseudosections have identical contents. */
9566 bool
9567 _bfd_elfcore_make_pseudosection (bfd *abfd,
9568 char *name,
9569 size_t size,
9570 ufile_ptr filepos)
9571 {
9572 char buf[100];
9573 char *threaded_name;
9574 size_t len;
9575 asection *sect;
9576
9577 /* Build the section name. */
9578
9579 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
9580 len = strlen (buf) + 1;
9581 threaded_name = (char *) bfd_alloc (abfd, len);
9582 if (threaded_name == NULL)
9583 return false;
9584 memcpy (threaded_name, buf, len);
9585
9586 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
9587 SEC_HAS_CONTENTS);
9588 if (sect == NULL)
9589 return false;
9590 sect->size = size;
9591 sect->filepos = filepos;
9592 sect->alignment_power = 2;
9593
9594 return elfcore_maybe_make_sect (abfd, name, sect);
9595 }
9596
9597 static bool
9598 elfcore_make_auxv_note_section (bfd *abfd, Elf_Internal_Note *note,
9599 size_t offs)
9600 {
9601 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
9602 SEC_HAS_CONTENTS);
9603
9604 if (sect == NULL)
9605 return false;
9606
9607 sect->size = note->descsz - offs;
9608 sect->filepos = note->descpos + offs;
9609 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
9610
9611 return true;
9612 }
9613
9614 /* prstatus_t exists on:
9615 solaris 2.5+
9616 linux 2.[01] + glibc
9617 unixware 4.2
9618 */
9619
9620 #if defined (HAVE_PRSTATUS_T)
9621
9622 static bool
9623 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
9624 {
9625 size_t size;
9626 int offset;
9627
9628 if (note->descsz == sizeof (prstatus_t))
9629 {
9630 prstatus_t prstat;
9631
9632 size = sizeof (prstat.pr_reg);
9633 offset = offsetof (prstatus_t, pr_reg);
9634 memcpy (&prstat, note->descdata, sizeof (prstat));
9635
9636 /* Do not overwrite the core signal if it
9637 has already been set by another thread. */
9638 if (elf_tdata (abfd)->core->signal == 0)
9639 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
9640 if (elf_tdata (abfd)->core->pid == 0)
9641 elf_tdata (abfd)->core->pid = prstat.pr_pid;
9642
9643 /* pr_who exists on:
9644 solaris 2.5+
9645 unixware 4.2
9646 pr_who doesn't exist on:
9647 linux 2.[01]
9648 */
9649 #if defined (HAVE_PRSTATUS_T_PR_WHO)
9650 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
9651 #else
9652 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
9653 #endif
9654 }
9655 #if defined (HAVE_PRSTATUS32_T)
9656 else if (note->descsz == sizeof (prstatus32_t))
9657 {
9658 /* 64-bit host, 32-bit corefile */
9659 prstatus32_t prstat;
9660
9661 size = sizeof (prstat.pr_reg);
9662 offset = offsetof (prstatus32_t, pr_reg);
9663 memcpy (&prstat, note->descdata, sizeof (prstat));
9664
9665 /* Do not overwrite the core signal if it
9666 has already been set by another thread. */
9667 if (elf_tdata (abfd)->core->signal == 0)
9668 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
9669 if (elf_tdata (abfd)->core->pid == 0)
9670 elf_tdata (abfd)->core->pid = prstat.pr_pid;
9671
9672 /* pr_who exists on:
9673 solaris 2.5+
9674 unixware 4.2
9675 pr_who doesn't exist on:
9676 linux 2.[01]
9677 */
9678 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
9679 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
9680 #else
9681 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
9682 #endif
9683 }
9684 #endif /* HAVE_PRSTATUS32_T */
9685 else
9686 {
9687 /* Fail - we don't know how to handle any other
9688 note size (ie. data object type). */
9689 return true;
9690 }
9691
9692 /* Make a ".reg/999" section and a ".reg" section. */
9693 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
9694 size, note->descpos + offset);
9695 }
9696 #endif /* defined (HAVE_PRSTATUS_T) */
9697
9698 /* Create a pseudosection containing the exact contents of NOTE. */
9699 static bool
9700 elfcore_make_note_pseudosection (bfd *abfd,
9701 char *name,
9702 Elf_Internal_Note *note)
9703 {
9704 return _bfd_elfcore_make_pseudosection (abfd, name,
9705 note->descsz, note->descpos);
9706 }
9707
9708 /* There isn't a consistent prfpregset_t across platforms,
9709 but it doesn't matter, because we don't have to pick this
9710 data structure apart. */
9711
9712 static bool
9713 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
9714 {
9715 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
9716 }
9717
9718 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
9719 type of NT_PRXFPREG. Just include the whole note's contents
9720 literally. */
9721
9722 static bool
9723 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
9724 {
9725 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
9726 }
9727
9728 /* Linux dumps the Intel XSAVE extended state in a note named "LINUX"
9729 with a note type of NT_X86_XSTATE. Just include the whole note's
9730 contents literally. */
9731
9732 static bool
9733 elfcore_grok_xstatereg (bfd *abfd, Elf_Internal_Note *note)
9734 {
9735 return elfcore_make_note_pseudosection (abfd, ".reg-xstate", note);
9736 }
9737
9738 static bool
9739 elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
9740 {
9741 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
9742 }
9743
9744 static bool
9745 elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note)
9746 {
9747 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note);
9748 }
9749
9750 static bool
9751 elfcore_grok_ppc_tar (bfd *abfd, Elf_Internal_Note *note)
9752 {
9753 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tar", note);
9754 }
9755
9756 static bool
9757 elfcore_grok_ppc_ppr (bfd *abfd, Elf_Internal_Note *note)
9758 {
9759 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-ppr", note);
9760 }
9761
9762 static bool
9763 elfcore_grok_ppc_dscr (bfd *abfd, Elf_Internal_Note *note)
9764 {
9765 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-dscr", note);
9766 }
9767
9768 static bool
9769 elfcore_grok_ppc_ebb (bfd *abfd, Elf_Internal_Note *note)
9770 {
9771 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-ebb", note);
9772 }
9773
9774 static bool
9775 elfcore_grok_ppc_pmu (bfd *abfd, Elf_Internal_Note *note)
9776 {
9777 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-pmu", note);
9778 }
9779
9780 static bool
9781 elfcore_grok_ppc_tm_cgpr (bfd *abfd, Elf_Internal_Note *note)
9782 {
9783 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cgpr", note);
9784 }
9785
9786 static bool
9787 elfcore_grok_ppc_tm_cfpr (bfd *abfd, Elf_Internal_Note *note)
9788 {
9789 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cfpr", note);
9790 }
9791
9792 static bool
9793 elfcore_grok_ppc_tm_cvmx (bfd *abfd, Elf_Internal_Note *note)
9794 {
9795 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cvmx", note);
9796 }
9797
9798 static bool
9799 elfcore_grok_ppc_tm_cvsx (bfd *abfd, Elf_Internal_Note *note)
9800 {
9801 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cvsx", note);
9802 }
9803
9804 static bool
9805 elfcore_grok_ppc_tm_spr (bfd *abfd, Elf_Internal_Note *note)
9806 {
9807 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-spr", note);
9808 }
9809
9810 static bool
9811 elfcore_grok_ppc_tm_ctar (bfd *abfd, Elf_Internal_Note *note)
9812 {
9813 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-ctar", note);
9814 }
9815
9816 static bool
9817 elfcore_grok_ppc_tm_cppr (bfd *abfd, Elf_Internal_Note *note)
9818 {
9819 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cppr", note);
9820 }
9821
9822 static bool
9823 elfcore_grok_ppc_tm_cdscr (bfd *abfd, Elf_Internal_Note *note)
9824 {
9825 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cdscr", note);
9826 }
9827
9828 static bool
9829 elfcore_grok_s390_high_gprs (bfd *abfd, Elf_Internal_Note *note)
9830 {
9831 return elfcore_make_note_pseudosection (abfd, ".reg-s390-high-gprs", note);
9832 }
9833
9834 static bool
9835 elfcore_grok_s390_timer (bfd *abfd, Elf_Internal_Note *note)
9836 {
9837 return elfcore_make_note_pseudosection (abfd, ".reg-s390-timer", note);
9838 }
9839
9840 static bool
9841 elfcore_grok_s390_todcmp (bfd *abfd, Elf_Internal_Note *note)
9842 {
9843 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todcmp", note);
9844 }
9845
9846 static bool
9847 elfcore_grok_s390_todpreg (bfd *abfd, Elf_Internal_Note *note)
9848 {
9849 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todpreg", note);
9850 }
9851
9852 static bool
9853 elfcore_grok_s390_ctrs (bfd *abfd, Elf_Internal_Note *note)
9854 {
9855 return elfcore_make_note_pseudosection (abfd, ".reg-s390-ctrs", note);
9856 }
9857
9858 static bool
9859 elfcore_grok_s390_prefix (bfd *abfd, Elf_Internal_Note *note)
9860 {
9861 return elfcore_make_note_pseudosection (abfd, ".reg-s390-prefix", note);
9862 }
9863
9864 static bool
9865 elfcore_grok_s390_last_break (bfd *abfd, Elf_Internal_Note *note)
9866 {
9867 return elfcore_make_note_pseudosection (abfd, ".reg-s390-last-break", note);
9868 }
9869
9870 static bool
9871 elfcore_grok_s390_system_call (bfd *abfd, Elf_Internal_Note *note)
9872 {
9873 return elfcore_make_note_pseudosection (abfd, ".reg-s390-system-call", note);
9874 }
9875
9876 static bool
9877 elfcore_grok_s390_tdb (bfd *abfd, Elf_Internal_Note *note)
9878 {
9879 return elfcore_make_note_pseudosection (abfd, ".reg-s390-tdb", note);
9880 }
9881
9882 static bool
9883 elfcore_grok_s390_vxrs_low (bfd *abfd, Elf_Internal_Note *note)
9884 {
9885 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-low", note);
9886 }
9887
9888 static bool
9889 elfcore_grok_s390_vxrs_high (bfd *abfd, Elf_Internal_Note *note)
9890 {
9891 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-high", note);
9892 }
9893
9894 static bool
9895 elfcore_grok_s390_gs_cb (bfd *abfd, Elf_Internal_Note *note)
9896 {
9897 return elfcore_make_note_pseudosection (abfd, ".reg-s390-gs-cb", note);
9898 }
9899
9900 static bool
9901 elfcore_grok_s390_gs_bc (bfd *abfd, Elf_Internal_Note *note)
9902 {
9903 return elfcore_make_note_pseudosection (abfd, ".reg-s390-gs-bc", note);
9904 }
9905
9906 static bool
9907 elfcore_grok_arm_vfp (bfd *abfd, Elf_Internal_Note *note)
9908 {
9909 return elfcore_make_note_pseudosection (abfd, ".reg-arm-vfp", note);
9910 }
9911
9912 static bool
9913 elfcore_grok_aarch_tls (bfd *abfd, Elf_Internal_Note *note)
9914 {
9915 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-tls", note);
9916 }
9917
9918 static bool
9919 elfcore_grok_aarch_hw_break (bfd *abfd, Elf_Internal_Note *note)
9920 {
9921 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-break", note);
9922 }
9923
9924 static bool
9925 elfcore_grok_aarch_hw_watch (bfd *abfd, Elf_Internal_Note *note)
9926 {
9927 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-watch", note);
9928 }
9929
9930 static bool
9931 elfcore_grok_aarch_sve (bfd *abfd, Elf_Internal_Note *note)
9932 {
9933 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-sve", note);
9934 }
9935
9936 static bool
9937 elfcore_grok_aarch_pauth (bfd *abfd, Elf_Internal_Note *note)
9938 {
9939 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-pauth", note);
9940 }
9941
9942 static bool
9943 elfcore_grok_aarch_mte (bfd *abfd, Elf_Internal_Note *note)
9944 {
9945 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-mte",
9946 note);
9947 }
9948
9949 static bool
9950 elfcore_grok_arc_v2 (bfd *abfd, Elf_Internal_Note *note)
9951 {
9952 return elfcore_make_note_pseudosection (abfd, ".reg-arc-v2", note);
9953 }
9954
9955 /* Convert NOTE into a bfd_section called ".reg-riscv-csr". Return TRUE if
9956 successful otherwise, return FALSE. */
9957
9958 static bool
9959 elfcore_grok_riscv_csr (bfd *abfd, Elf_Internal_Note *note)
9960 {
9961 return elfcore_make_note_pseudosection (abfd, ".reg-riscv-csr", note);
9962 }
9963
9964 /* Convert NOTE into a bfd_section called ".gdb-tdesc". Return TRUE if
9965 successful otherwise, return FALSE. */
9966
9967 static bool
9968 elfcore_grok_gdb_tdesc (bfd *abfd, Elf_Internal_Note *note)
9969 {
9970 return elfcore_make_note_pseudosection (abfd, ".gdb-tdesc", note);
9971 }
9972
9973 static bool
9974 elfcore_grok_loongarch_cpucfg (bfd *abfd, Elf_Internal_Note *note)
9975 {
9976 return elfcore_make_note_pseudosection (abfd, ".reg-loongarch-cpucfg", note);
9977 }
9978
9979 static bool
9980 elfcore_grok_loongarch_lbt (bfd *abfd, Elf_Internal_Note *note)
9981 {
9982 return elfcore_make_note_pseudosection (abfd, ".reg-loongarch-lbt", note);
9983 }
9984
9985 static bool
9986 elfcore_grok_loongarch_lsx (bfd *abfd, Elf_Internal_Note *note)
9987 {
9988 return elfcore_make_note_pseudosection (abfd, ".reg-loongarch-lsx", note);
9989 }
9990
9991 static bool
9992 elfcore_grok_loongarch_lasx (bfd *abfd, Elf_Internal_Note *note)
9993 {
9994 return elfcore_make_note_pseudosection (abfd, ".reg-loongarch-lasx", note);
9995 }
9996
9997 #if defined (HAVE_PRPSINFO_T)
9998 typedef prpsinfo_t elfcore_psinfo_t;
9999 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
10000 typedef prpsinfo32_t elfcore_psinfo32_t;
10001 #endif
10002 #endif
10003
10004 #if defined (HAVE_PSINFO_T)
10005 typedef psinfo_t elfcore_psinfo_t;
10006 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
10007 typedef psinfo32_t elfcore_psinfo32_t;
10008 #endif
10009 #endif
10010
10011 /* return a malloc'ed copy of a string at START which is at
10012 most MAX bytes long, possibly without a terminating '\0'.
10013 the copy will always have a terminating '\0'. */
10014
10015 char *
10016 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
10017 {
10018 char *dups;
10019 char *end = (char *) memchr (start, '\0', max);
10020 size_t len;
10021
10022 if (end == NULL)
10023 len = max;
10024 else
10025 len = end - start;
10026
10027 dups = (char *) bfd_alloc (abfd, len + 1);
10028 if (dups == NULL)
10029 return NULL;
10030
10031 memcpy (dups, start, len);
10032 dups[len] = '\0';
10033
10034 return dups;
10035 }
10036
10037 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
10038 static bool
10039 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
10040 {
10041 if (note->descsz == sizeof (elfcore_psinfo_t))
10042 {
10043 elfcore_psinfo_t psinfo;
10044
10045 memcpy (&psinfo, note->descdata, sizeof (psinfo));
10046
10047 #if defined (HAVE_PSINFO_T_PR_PID) || defined (HAVE_PRPSINFO_T_PR_PID)
10048 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
10049 #endif
10050 elf_tdata (abfd)->core->program
10051 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
10052 sizeof (psinfo.pr_fname));
10053
10054 elf_tdata (abfd)->core->command
10055 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
10056 sizeof (psinfo.pr_psargs));
10057 }
10058 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
10059 else if (note->descsz == sizeof (elfcore_psinfo32_t))
10060 {
10061 /* 64-bit host, 32-bit corefile */
10062 elfcore_psinfo32_t psinfo;
10063
10064 memcpy (&psinfo, note->descdata, sizeof (psinfo));
10065
10066 #if defined (HAVE_PSINFO32_T_PR_PID) || defined (HAVE_PRPSINFO32_T_PR_PID)
10067 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
10068 #endif
10069 elf_tdata (abfd)->core->program
10070 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
10071 sizeof (psinfo.pr_fname));
10072
10073 elf_tdata (abfd)->core->command
10074 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
10075 sizeof (psinfo.pr_psargs));
10076 }
10077 #endif
10078
10079 else
10080 {
10081 /* Fail - we don't know how to handle any other
10082 note size (ie. data object type). */
10083 return true;
10084 }
10085
10086 /* Note that for some reason, a spurious space is tacked
10087 onto the end of the args in some (at least one anyway)
10088 implementations, so strip it off if it exists. */
10089
10090 {
10091 char *command = elf_tdata (abfd)->core->command;
10092 int n = strlen (command);
10093
10094 if (0 < n && command[n - 1] == ' ')
10095 command[n - 1] = '\0';
10096 }
10097
10098 return true;
10099 }
10100 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
10101
10102 #if defined (HAVE_PSTATUS_T)
10103 static bool
10104 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
10105 {
10106 if (note->descsz == sizeof (pstatus_t)
10107 #if defined (HAVE_PXSTATUS_T)
10108 || note->descsz == sizeof (pxstatus_t)
10109 #endif
10110 )
10111 {
10112 pstatus_t pstat;
10113
10114 memcpy (&pstat, note->descdata, sizeof (pstat));
10115
10116 elf_tdata (abfd)->core->pid = pstat.pr_pid;
10117 }
10118 #if defined (HAVE_PSTATUS32_T)
10119 else if (note->descsz == sizeof (pstatus32_t))
10120 {
10121 /* 64-bit host, 32-bit corefile */
10122 pstatus32_t pstat;
10123
10124 memcpy (&pstat, note->descdata, sizeof (pstat));
10125
10126 elf_tdata (abfd)->core->pid = pstat.pr_pid;
10127 }
10128 #endif
10129 /* Could grab some more details from the "representative"
10130 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
10131 NT_LWPSTATUS note, presumably. */
10132
10133 return true;
10134 }
10135 #endif /* defined (HAVE_PSTATUS_T) */
10136
10137 #if defined (HAVE_LWPSTATUS_T)
10138 static bool
10139 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
10140 {
10141 lwpstatus_t lwpstat;
10142 char buf[100];
10143 char *name;
10144 size_t len;
10145 asection *sect;
10146
10147 if (note->descsz != sizeof (lwpstat)
10148 #if defined (HAVE_LWPXSTATUS_T)
10149 && note->descsz != sizeof (lwpxstatus_t)
10150 #endif
10151 )
10152 return true;
10153
10154 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
10155
10156 elf_tdata (abfd)->core->lwpid = lwpstat.pr_lwpid;
10157 /* Do not overwrite the core signal if it has already been set by
10158 another thread. */
10159 if (elf_tdata (abfd)->core->signal == 0)
10160 elf_tdata (abfd)->core->signal = lwpstat.pr_cursig;
10161
10162 /* Make a ".reg/999" section. */
10163
10164 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
10165 len = strlen (buf) + 1;
10166 name = bfd_alloc (abfd, len);
10167 if (name == NULL)
10168 return false;
10169 memcpy (name, buf, len);
10170
10171 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10172 if (sect == NULL)
10173 return false;
10174
10175 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
10176 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
10177 sect->filepos = note->descpos
10178 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
10179 #endif
10180
10181 #if defined (HAVE_LWPSTATUS_T_PR_REG)
10182 sect->size = sizeof (lwpstat.pr_reg);
10183 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
10184 #endif
10185
10186 sect->alignment_power = 2;
10187
10188 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
10189 return false;
10190
10191 /* Make a ".reg2/999" section */
10192
10193 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
10194 len = strlen (buf) + 1;
10195 name = bfd_alloc (abfd, len);
10196 if (name == NULL)
10197 return false;
10198 memcpy (name, buf, len);
10199
10200 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10201 if (sect == NULL)
10202 return false;
10203
10204 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
10205 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
10206 sect->filepos = note->descpos
10207 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
10208 #endif
10209
10210 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
10211 sect->size = sizeof (lwpstat.pr_fpreg);
10212 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
10213 #endif
10214
10215 sect->alignment_power = 2;
10216
10217 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
10218 }
10219 #endif /* defined (HAVE_LWPSTATUS_T) */
10220
10221 /* These constants, and the structure offsets used below, are defined by
10222 Cygwin's core_dump.h */
10223 #define NOTE_INFO_PROCESS 1
10224 #define NOTE_INFO_THREAD 2
10225 #define NOTE_INFO_MODULE 3
10226 #define NOTE_INFO_MODULE64 4
10227
10228 static bool
10229 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
10230 {
10231 char buf[30];
10232 char *name;
10233 size_t len;
10234 unsigned int name_size;
10235 asection *sect;
10236 unsigned int type;
10237 int is_active_thread;
10238 bfd_vma base_addr;
10239
10240 if (note->descsz < 4)
10241 return true;
10242
10243 if (! startswith (note->namedata, "win32"))
10244 return true;
10245
10246 type = bfd_get_32 (abfd, note->descdata);
10247
10248 struct
10249 {
10250 const char *type_name;
10251 unsigned long min_size;
10252 } size_check[] =
10253 {
10254 { "NOTE_INFO_PROCESS", 12 },
10255 { "NOTE_INFO_THREAD", 12 },
10256 { "NOTE_INFO_MODULE", 12 },
10257 { "NOTE_INFO_MODULE64", 16 },
10258 };
10259
10260 if (type == 0 || type > (sizeof(size_check)/sizeof(size_check[0])))
10261 return true;
10262
10263 if (note->descsz < size_check[type - 1].min_size)
10264 {
10265 _bfd_error_handler (_("%pB: warning: win32pstatus %s of size %lu bytes is too small"),
10266 abfd, size_check[type - 1].type_name, note->descsz);
10267 return true;
10268 }
10269
10270 switch (type)
10271 {
10272 case NOTE_INFO_PROCESS:
10273 /* FIXME: need to add ->core->command. */
10274 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, note->descdata + 4);
10275 elf_tdata (abfd)->core->signal = bfd_get_32 (abfd, note->descdata + 8);
10276 break;
10277
10278 case NOTE_INFO_THREAD:
10279 /* Make a ".reg/<tid>" section containing the Win32 API thread CONTEXT
10280 structure. */
10281 /* thread_info.tid */
10282 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 4));
10283
10284 len = strlen (buf) + 1;
10285 name = (char *) bfd_alloc (abfd, len);
10286 if (name == NULL)
10287 return false;
10288
10289 memcpy (name, buf, len);
10290
10291 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10292 if (sect == NULL)
10293 return false;
10294
10295 /* sizeof (thread_info.thread_context) */
10296 sect->size = note->descsz - 12;
10297 /* offsetof (thread_info.thread_context) */
10298 sect->filepos = note->descpos + 12;
10299 sect->alignment_power = 2;
10300
10301 /* thread_info.is_active_thread */
10302 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
10303
10304 if (is_active_thread)
10305 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
10306 return false;
10307 break;
10308
10309 case NOTE_INFO_MODULE:
10310 case NOTE_INFO_MODULE64:
10311 /* Make a ".module/xxxxxxxx" section. */
10312 if (type == NOTE_INFO_MODULE)
10313 {
10314 /* module_info.base_address */
10315 base_addr = bfd_get_32 (abfd, note->descdata + 4);
10316 sprintf (buf, ".module/%08lx", (unsigned long) base_addr);
10317 /* module_info.module_name_size */
10318 name_size = bfd_get_32 (abfd, note->descdata + 8);
10319 }
10320 else /* NOTE_INFO_MODULE64 */
10321 {
10322 /* module_info.base_address */
10323 base_addr = bfd_get_64 (abfd, note->descdata + 4);
10324 sprintf (buf, ".module/%016lx", (unsigned long) base_addr);
10325 /* module_info.module_name_size */
10326 name_size = bfd_get_32 (abfd, note->descdata + 12);
10327 }
10328
10329 len = strlen (buf) + 1;
10330 name = (char *) bfd_alloc (abfd, len);
10331 if (name == NULL)
10332 return false;
10333
10334 memcpy (name, buf, len);
10335
10336 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10337
10338 if (sect == NULL)
10339 return false;
10340
10341 if (note->descsz < 12 + name_size)
10342 {
10343 _bfd_error_handler (_("%pB: win32pstatus NOTE_INFO_MODULE of size %lu is too small to contain a name of size %u"),
10344 abfd, note->descsz, name_size);
10345 return true;
10346 }
10347
10348 sect->size = note->descsz;
10349 sect->filepos = note->descpos;
10350 sect->alignment_power = 2;
10351 break;
10352
10353 default:
10354 return true;
10355 }
10356
10357 return true;
10358 }
10359
10360 static bool
10361 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
10362 {
10363 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10364
10365 switch (note->type)
10366 {
10367 default:
10368 return true;
10369
10370 case NT_PRSTATUS:
10371 if (bed->elf_backend_grok_prstatus)
10372 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
10373 return true;
10374 #if defined (HAVE_PRSTATUS_T)
10375 return elfcore_grok_prstatus (abfd, note);
10376 #else
10377 return true;
10378 #endif
10379
10380 #if defined (HAVE_PSTATUS_T)
10381 case NT_PSTATUS:
10382 return elfcore_grok_pstatus (abfd, note);
10383 #endif
10384
10385 #if defined (HAVE_LWPSTATUS_T)
10386 case NT_LWPSTATUS:
10387 return elfcore_grok_lwpstatus (abfd, note);
10388 #endif
10389
10390 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
10391 return elfcore_grok_prfpreg (abfd, note);
10392
10393 case NT_WIN32PSTATUS:
10394 return elfcore_grok_win32pstatus (abfd, note);
10395
10396 case NT_PRXFPREG: /* Linux SSE extension */
10397 if (note->namesz == 6
10398 && strcmp (note->namedata, "LINUX") == 0)
10399 return elfcore_grok_prxfpreg (abfd, note);
10400 else
10401 return true;
10402
10403 case NT_X86_XSTATE: /* Linux XSAVE extension */
10404 if (note->namesz == 6
10405 && strcmp (note->namedata, "LINUX") == 0)
10406 return elfcore_grok_xstatereg (abfd, note);
10407 else
10408 return true;
10409
10410 case NT_PPC_VMX:
10411 if (note->namesz == 6
10412 && strcmp (note->namedata, "LINUX") == 0)
10413 return elfcore_grok_ppc_vmx (abfd, note);
10414 else
10415 return true;
10416
10417 case NT_PPC_VSX:
10418 if (note->namesz == 6
10419 && strcmp (note->namedata, "LINUX") == 0)
10420 return elfcore_grok_ppc_vsx (abfd, note);
10421 else
10422 return true;
10423
10424 case NT_PPC_TAR:
10425 if (note->namesz == 6
10426 && strcmp (note->namedata, "LINUX") == 0)
10427 return elfcore_grok_ppc_tar (abfd, note);
10428 else
10429 return true;
10430
10431 case NT_PPC_PPR:
10432 if (note->namesz == 6
10433 && strcmp (note->namedata, "LINUX") == 0)
10434 return elfcore_grok_ppc_ppr (abfd, note);
10435 else
10436 return true;
10437
10438 case NT_PPC_DSCR:
10439 if (note->namesz == 6
10440 && strcmp (note->namedata, "LINUX") == 0)
10441 return elfcore_grok_ppc_dscr (abfd, note);
10442 else
10443 return true;
10444
10445 case NT_PPC_EBB:
10446 if (note->namesz == 6
10447 && strcmp (note->namedata, "LINUX") == 0)
10448 return elfcore_grok_ppc_ebb (abfd, note);
10449 else
10450 return true;
10451
10452 case NT_PPC_PMU:
10453 if (note->namesz == 6
10454 && strcmp (note->namedata, "LINUX") == 0)
10455 return elfcore_grok_ppc_pmu (abfd, note);
10456 else
10457 return true;
10458
10459 case NT_PPC_TM_CGPR:
10460 if (note->namesz == 6
10461 && strcmp (note->namedata, "LINUX") == 0)
10462 return elfcore_grok_ppc_tm_cgpr (abfd, note);
10463 else
10464 return true;
10465
10466 case NT_PPC_TM_CFPR:
10467 if (note->namesz == 6
10468 && strcmp (note->namedata, "LINUX") == 0)
10469 return elfcore_grok_ppc_tm_cfpr (abfd, note);
10470 else
10471 return true;
10472
10473 case NT_PPC_TM_CVMX:
10474 if (note->namesz == 6
10475 && strcmp (note->namedata, "LINUX") == 0)
10476 return elfcore_grok_ppc_tm_cvmx (abfd, note);
10477 else
10478 return true;
10479
10480 case NT_PPC_TM_CVSX:
10481 if (note->namesz == 6
10482 && strcmp (note->namedata, "LINUX") == 0)
10483 return elfcore_grok_ppc_tm_cvsx (abfd, note);
10484 else
10485 return true;
10486
10487 case NT_PPC_TM_SPR:
10488 if (note->namesz == 6
10489 && strcmp (note->namedata, "LINUX") == 0)
10490 return elfcore_grok_ppc_tm_spr (abfd, note);
10491 else
10492 return true;
10493
10494 case NT_PPC_TM_CTAR:
10495 if (note->namesz == 6
10496 && strcmp (note->namedata, "LINUX") == 0)
10497 return elfcore_grok_ppc_tm_ctar (abfd, note);
10498 else
10499 return true;
10500
10501 case NT_PPC_TM_CPPR:
10502 if (note->namesz == 6
10503 && strcmp (note->namedata, "LINUX") == 0)
10504 return elfcore_grok_ppc_tm_cppr (abfd, note);
10505 else
10506 return true;
10507
10508 case NT_PPC_TM_CDSCR:
10509 if (note->namesz == 6
10510 && strcmp (note->namedata, "LINUX") == 0)
10511 return elfcore_grok_ppc_tm_cdscr (abfd, note);
10512 else
10513 return true;
10514
10515 case NT_S390_HIGH_GPRS:
10516 if (note->namesz == 6
10517 && strcmp (note->namedata, "LINUX") == 0)
10518 return elfcore_grok_s390_high_gprs (abfd, note);
10519 else
10520 return true;
10521
10522 case NT_S390_TIMER:
10523 if (note->namesz == 6
10524 && strcmp (note->namedata, "LINUX") == 0)
10525 return elfcore_grok_s390_timer (abfd, note);
10526 else
10527 return true;
10528
10529 case NT_S390_TODCMP:
10530 if (note->namesz == 6
10531 && strcmp (note->namedata, "LINUX") == 0)
10532 return elfcore_grok_s390_todcmp (abfd, note);
10533 else
10534 return true;
10535
10536 case NT_S390_TODPREG:
10537 if (note->namesz == 6
10538 && strcmp (note->namedata, "LINUX") == 0)
10539 return elfcore_grok_s390_todpreg (abfd, note);
10540 else
10541 return true;
10542
10543 case NT_S390_CTRS:
10544 if (note->namesz == 6
10545 && strcmp (note->namedata, "LINUX") == 0)
10546 return elfcore_grok_s390_ctrs (abfd, note);
10547 else
10548 return true;
10549
10550 case NT_S390_PREFIX:
10551 if (note->namesz == 6
10552 && strcmp (note->namedata, "LINUX") == 0)
10553 return elfcore_grok_s390_prefix (abfd, note);
10554 else
10555 return true;
10556
10557 case NT_S390_LAST_BREAK:
10558 if (note->namesz == 6
10559 && strcmp (note->namedata, "LINUX") == 0)
10560 return elfcore_grok_s390_last_break (abfd, note);
10561 else
10562 return true;
10563
10564 case NT_S390_SYSTEM_CALL:
10565 if (note->namesz == 6
10566 && strcmp (note->namedata, "LINUX") == 0)
10567 return elfcore_grok_s390_system_call (abfd, note);
10568 else
10569 return true;
10570
10571 case NT_S390_TDB:
10572 if (note->namesz == 6
10573 && strcmp (note->namedata, "LINUX") == 0)
10574 return elfcore_grok_s390_tdb (abfd, note);
10575 else
10576 return true;
10577
10578 case NT_S390_VXRS_LOW:
10579 if (note->namesz == 6
10580 && strcmp (note->namedata, "LINUX") == 0)
10581 return elfcore_grok_s390_vxrs_low (abfd, note);
10582 else
10583 return true;
10584
10585 case NT_S390_VXRS_HIGH:
10586 if (note->namesz == 6
10587 && strcmp (note->namedata, "LINUX") == 0)
10588 return elfcore_grok_s390_vxrs_high (abfd, note);
10589 else
10590 return true;
10591
10592 case NT_S390_GS_CB:
10593 if (note->namesz == 6
10594 && strcmp (note->namedata, "LINUX") == 0)
10595 return elfcore_grok_s390_gs_cb (abfd, note);
10596 else
10597 return true;
10598
10599 case NT_S390_GS_BC:
10600 if (note->namesz == 6
10601 && strcmp (note->namedata, "LINUX") == 0)
10602 return elfcore_grok_s390_gs_bc (abfd, note);
10603 else
10604 return true;
10605
10606 case NT_ARC_V2:
10607 if (note->namesz == 6
10608 && strcmp (note->namedata, "LINUX") == 0)
10609 return elfcore_grok_arc_v2 (abfd, note);
10610 else
10611 return true;
10612
10613 case NT_ARM_VFP:
10614 if (note->namesz == 6
10615 && strcmp (note->namedata, "LINUX") == 0)
10616 return elfcore_grok_arm_vfp (abfd, note);
10617 else
10618 return true;
10619
10620 case NT_ARM_TLS:
10621 if (note->namesz == 6
10622 && strcmp (note->namedata, "LINUX") == 0)
10623 return elfcore_grok_aarch_tls (abfd, note);
10624 else
10625 return true;
10626
10627 case NT_ARM_HW_BREAK:
10628 if (note->namesz == 6
10629 && strcmp (note->namedata, "LINUX") == 0)
10630 return elfcore_grok_aarch_hw_break (abfd, note);
10631 else
10632 return true;
10633
10634 case NT_ARM_HW_WATCH:
10635 if (note->namesz == 6
10636 && strcmp (note->namedata, "LINUX") == 0)
10637 return elfcore_grok_aarch_hw_watch (abfd, note);
10638 else
10639 return true;
10640
10641 case NT_ARM_SVE:
10642 if (note->namesz == 6
10643 && strcmp (note->namedata, "LINUX") == 0)
10644 return elfcore_grok_aarch_sve (abfd, note);
10645 else
10646 return true;
10647
10648 case NT_ARM_PAC_MASK:
10649 if (note->namesz == 6
10650 && strcmp (note->namedata, "LINUX") == 0)
10651 return elfcore_grok_aarch_pauth (abfd, note);
10652 else
10653 return true;
10654
10655 case NT_ARM_TAGGED_ADDR_CTRL:
10656 if (note->namesz == 6
10657 && strcmp (note->namedata, "LINUX") == 0)
10658 return elfcore_grok_aarch_mte (abfd, note);
10659 else
10660 return true;
10661
10662 case NT_GDB_TDESC:
10663 if (note->namesz == 4
10664 && strcmp (note->namedata, "GDB") == 0)
10665 return elfcore_grok_gdb_tdesc (abfd, note);
10666 else
10667 return true;
10668
10669 case NT_RISCV_CSR:
10670 if (note->namesz == 4
10671 && strcmp (note->namedata, "GDB") == 0)
10672 return elfcore_grok_riscv_csr (abfd, note);
10673 else
10674 return true;
10675
10676 case NT_LARCH_CPUCFG:
10677 if (note->namesz == 6
10678 && strcmp (note->namedata, "LINUX") == 0)
10679 return elfcore_grok_loongarch_cpucfg (abfd, note);
10680 else
10681 return true;
10682
10683 case NT_LARCH_LBT:
10684 if (note->namesz == 6
10685 && strcmp (note->namedata, "LINUX") == 0)
10686 return elfcore_grok_loongarch_lbt (abfd, note);
10687 else
10688 return true;
10689
10690 case NT_LARCH_LSX:
10691 if (note->namesz == 6
10692 && strcmp (note->namedata, "LINUX") == 0)
10693 return elfcore_grok_loongarch_lsx (abfd, note);
10694 else
10695 return true;
10696
10697 case NT_LARCH_LASX:
10698 if (note->namesz == 6
10699 && strcmp (note->namedata, "LINUX") == 0)
10700 return elfcore_grok_loongarch_lasx (abfd, note);
10701 else
10702 return true;
10703
10704 case NT_PRPSINFO:
10705 case NT_PSINFO:
10706 if (bed->elf_backend_grok_psinfo)
10707 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
10708 return true;
10709 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
10710 return elfcore_grok_psinfo (abfd, note);
10711 #else
10712 return true;
10713 #endif
10714
10715 case NT_AUXV:
10716 return elfcore_make_auxv_note_section (abfd, note, 0);
10717
10718 case NT_FILE:
10719 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.file",
10720 note);
10721
10722 case NT_SIGINFO:
10723 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.siginfo",
10724 note);
10725
10726 }
10727 }
10728
10729 static bool
10730 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
10731 {
10732 struct bfd_build_id* build_id;
10733
10734 if (note->descsz == 0)
10735 return false;
10736
10737 build_id = bfd_alloc (abfd, sizeof (struct bfd_build_id) - 1 + note->descsz);
10738 if (build_id == NULL)
10739 return false;
10740
10741 build_id->size = note->descsz;
10742 memcpy (build_id->data, note->descdata, note->descsz);
10743 abfd->build_id = build_id;
10744
10745 return true;
10746 }
10747
10748 static bool
10749 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
10750 {
10751 switch (note->type)
10752 {
10753 default:
10754 return true;
10755
10756 case NT_GNU_PROPERTY_TYPE_0:
10757 return _bfd_elf_parse_gnu_properties (abfd, note);
10758
10759 case NT_GNU_BUILD_ID:
10760 return elfobj_grok_gnu_build_id (abfd, note);
10761 }
10762 }
10763
10764 static bool
10765 elfobj_grok_stapsdt_note_1 (bfd *abfd, Elf_Internal_Note *note)
10766 {
10767 struct sdt_note *cur =
10768 (struct sdt_note *) bfd_alloc (abfd,
10769 sizeof (struct sdt_note) + note->descsz);
10770
10771 cur->next = (struct sdt_note *) (elf_tdata (abfd))->sdt_note_head;
10772 cur->size = (bfd_size_type) note->descsz;
10773 memcpy (cur->data, note->descdata, note->descsz);
10774
10775 elf_tdata (abfd)->sdt_note_head = cur;
10776
10777 return true;
10778 }
10779
10780 static bool
10781 elfobj_grok_stapsdt_note (bfd *abfd, Elf_Internal_Note *note)
10782 {
10783 switch (note->type)
10784 {
10785 case NT_STAPSDT:
10786 return elfobj_grok_stapsdt_note_1 (abfd, note);
10787
10788 default:
10789 return true;
10790 }
10791 }
10792
10793 static bool
10794 elfcore_grok_freebsd_psinfo (bfd *abfd, Elf_Internal_Note *note)
10795 {
10796 size_t offset;
10797
10798 switch (elf_elfheader (abfd)->e_ident[EI_CLASS])
10799 {
10800 case ELFCLASS32:
10801 if (note->descsz < 108)
10802 return false;
10803 break;
10804
10805 case ELFCLASS64:
10806 if (note->descsz < 120)
10807 return false;
10808 break;
10809
10810 default:
10811 return false;
10812 }
10813
10814 /* Check for version 1 in pr_version. */
10815 if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1)
10816 return false;
10817
10818 offset = 4;
10819
10820 /* Skip over pr_psinfosz. */
10821 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS32)
10822 offset += 4;
10823 else
10824 {
10825 offset += 4; /* Padding before pr_psinfosz. */
10826 offset += 8;
10827 }
10828
10829 /* pr_fname is PRFNAMESZ (16) + 1 bytes in size. */
10830 elf_tdata (abfd)->core->program
10831 = _bfd_elfcore_strndup (abfd, note->descdata + offset, 17);
10832 offset += 17;
10833
10834 /* pr_psargs is PRARGSZ (80) + 1 bytes in size. */
10835 elf_tdata (abfd)->core->command
10836 = _bfd_elfcore_strndup (abfd, note->descdata + offset, 81);
10837 offset += 81;
10838
10839 /* Padding before pr_pid. */
10840 offset += 2;
10841
10842 /* The pr_pid field was added in version "1a". */
10843 if (note->descsz < offset + 4)
10844 return true;
10845
10846 elf_tdata (abfd)->core->pid
10847 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10848
10849 return true;
10850 }
10851
10852 static bool
10853 elfcore_grok_freebsd_prstatus (bfd *abfd, Elf_Internal_Note *note)
10854 {
10855 size_t offset;
10856 size_t size;
10857 size_t min_size;
10858
10859 /* Compute offset of pr_getregsz, skipping over pr_statussz.
10860 Also compute minimum size of this note. */
10861 switch (elf_elfheader (abfd)->e_ident[EI_CLASS])
10862 {
10863 case ELFCLASS32:
10864 offset = 4 + 4;
10865 min_size = offset + (4 * 2) + 4 + 4 + 4;
10866 break;
10867
10868 case ELFCLASS64:
10869 offset = 4 + 4 + 8; /* Includes padding before pr_statussz. */
10870 min_size = offset + (8 * 2) + 4 + 4 + 4 + 4;
10871 break;
10872
10873 default:
10874 return false;
10875 }
10876
10877 if (note->descsz < min_size)
10878 return false;
10879
10880 /* Check for version 1 in pr_version. */
10881 if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1)
10882 return false;
10883
10884 /* Extract size of pr_reg from pr_gregsetsz. */
10885 /* Skip over pr_gregsetsz and pr_fpregsetsz. */
10886 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS32)
10887 {
10888 size = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10889 offset += 4 * 2;
10890 }
10891 else
10892 {
10893 size = bfd_h_get_64 (abfd, (bfd_byte *) note->descdata + offset);
10894 offset += 8 * 2;
10895 }
10896
10897 /* Skip over pr_osreldate. */
10898 offset += 4;
10899
10900 /* Read signal from pr_cursig. */
10901 if (elf_tdata (abfd)->core->signal == 0)
10902 elf_tdata (abfd)->core->signal
10903 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10904 offset += 4;
10905
10906 /* Read TID from pr_pid. */
10907 elf_tdata (abfd)->core->lwpid
10908 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10909 offset += 4;
10910
10911 /* Padding before pr_reg. */
10912 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
10913 offset += 4;
10914
10915 /* Make sure that there is enough data remaining in the note. */
10916 if ((note->descsz - offset) < size)
10917 return false;
10918
10919 /* Make a ".reg/999" section and a ".reg" section. */
10920 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
10921 size, note->descpos + offset);
10922 }
10923
10924 static bool
10925 elfcore_grok_freebsd_note (bfd *abfd, Elf_Internal_Note *note)
10926 {
10927 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10928
10929 switch (note->type)
10930 {
10931 case NT_PRSTATUS:
10932 if (bed->elf_backend_grok_freebsd_prstatus)
10933 if ((*bed->elf_backend_grok_freebsd_prstatus) (abfd, note))
10934 return true;
10935 return elfcore_grok_freebsd_prstatus (abfd, note);
10936
10937 case NT_FPREGSET:
10938 return elfcore_grok_prfpreg (abfd, note);
10939
10940 case NT_PRPSINFO:
10941 return elfcore_grok_freebsd_psinfo (abfd, note);
10942
10943 case NT_FREEBSD_THRMISC:
10944 if (note->namesz == 8)
10945 return elfcore_make_note_pseudosection (abfd, ".thrmisc", note);
10946 else
10947 return true;
10948
10949 case NT_FREEBSD_PROCSTAT_PROC:
10950 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.proc",
10951 note);
10952
10953 case NT_FREEBSD_PROCSTAT_FILES:
10954 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.files",
10955 note);
10956
10957 case NT_FREEBSD_PROCSTAT_VMMAP:
10958 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.vmmap",
10959 note);
10960
10961 case NT_FREEBSD_PROCSTAT_AUXV:
10962 return elfcore_make_auxv_note_section (abfd, note, 4);
10963
10964 case NT_X86_XSTATE:
10965 if (note->namesz == 8)
10966 return elfcore_grok_xstatereg (abfd, note);
10967 else
10968 return true;
10969
10970 case NT_FREEBSD_PTLWPINFO:
10971 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.lwpinfo",
10972 note);
10973
10974 case NT_ARM_VFP:
10975 return elfcore_grok_arm_vfp (abfd, note);
10976
10977 default:
10978 return true;
10979 }
10980 }
10981
10982 static bool
10983 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
10984 {
10985 char *cp;
10986
10987 cp = strchr (note->namedata, '@');
10988 if (cp != NULL)
10989 {
10990 *lwpidp = atoi(cp + 1);
10991 return true;
10992 }
10993 return false;
10994 }
10995
10996 static bool
10997 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
10998 {
10999 if (note->descsz <= 0x7c + 31)
11000 return false;
11001
11002 /* Signal number at offset 0x08. */
11003 elf_tdata (abfd)->core->signal
11004 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
11005
11006 /* Process ID at offset 0x50. */
11007 elf_tdata (abfd)->core->pid
11008 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
11009
11010 /* Command name at 0x7c (max 32 bytes, including nul). */
11011 elf_tdata (abfd)->core->command
11012 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
11013
11014 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
11015 note);
11016 }
11017
11018 static bool
11019 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
11020 {
11021 int lwp;
11022
11023 if (elfcore_netbsd_get_lwpid (note, &lwp))
11024 elf_tdata (abfd)->core->lwpid = lwp;
11025
11026 switch (note->type)
11027 {
11028 case NT_NETBSDCORE_PROCINFO:
11029 /* NetBSD-specific core "procinfo". Note that we expect to
11030 find this note before any of the others, which is fine,
11031 since the kernel writes this note out first when it
11032 creates a core file. */
11033 return elfcore_grok_netbsd_procinfo (abfd, note);
11034 case NT_NETBSDCORE_AUXV:
11035 /* NetBSD-specific Elf Auxiliary Vector data. */
11036 return elfcore_make_auxv_note_section (abfd, note, 4);
11037 case NT_NETBSDCORE_LWPSTATUS:
11038 return elfcore_make_note_pseudosection (abfd,
11039 ".note.netbsdcore.lwpstatus",
11040 note);
11041 default:
11042 break;
11043 }
11044
11045 /* As of March 2020 there are no other machine-independent notes
11046 defined for NetBSD core files. If the note type is less
11047 than the start of the machine-dependent note types, we don't
11048 understand it. */
11049
11050 if (note->type < NT_NETBSDCORE_FIRSTMACH)
11051 return true;
11052
11053
11054 switch (bfd_get_arch (abfd))
11055 {
11056 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
11057 PT_GETFPREGS == mach+2. */
11058
11059 case bfd_arch_aarch64:
11060 case bfd_arch_alpha:
11061 case bfd_arch_sparc:
11062 switch (note->type)
11063 {
11064 case NT_NETBSDCORE_FIRSTMACH+0:
11065 return elfcore_make_note_pseudosection (abfd, ".reg", note);
11066
11067 case NT_NETBSDCORE_FIRSTMACH+2:
11068 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
11069
11070 default:
11071 return true;
11072 }
11073
11074 /* On SuperH, PT_GETREGS == mach+3 and PT_GETFPREGS == mach+5.
11075 There's also old PT___GETREGS40 == mach + 1 for old reg
11076 structure which lacks GBR. */
11077
11078 case bfd_arch_sh:
11079 switch (note->type)
11080 {
11081 case NT_NETBSDCORE_FIRSTMACH+3:
11082 return elfcore_make_note_pseudosection (abfd, ".reg", note);
11083
11084 case NT_NETBSDCORE_FIRSTMACH+5:
11085 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
11086
11087 default:
11088 return true;
11089 }
11090
11091 /* On all other arch's, PT_GETREGS == mach+1 and
11092 PT_GETFPREGS == mach+3. */
11093
11094 default:
11095 switch (note->type)
11096 {
11097 case NT_NETBSDCORE_FIRSTMACH+1:
11098 return elfcore_make_note_pseudosection (abfd, ".reg", note);
11099
11100 case NT_NETBSDCORE_FIRSTMACH+3:
11101 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
11102
11103 default:
11104 return true;
11105 }
11106 }
11107 /* NOTREACHED */
11108 }
11109
11110 static bool
11111 elfcore_grok_openbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
11112 {
11113 if (note->descsz <= 0x48 + 31)
11114 return false;
11115
11116 /* Signal number at offset 0x08. */
11117 elf_tdata (abfd)->core->signal
11118 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
11119
11120 /* Process ID at offset 0x20. */
11121 elf_tdata (abfd)->core->pid
11122 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x20);
11123
11124 /* Command name at 0x48 (max 32 bytes, including nul). */
11125 elf_tdata (abfd)->core->command
11126 = _bfd_elfcore_strndup (abfd, note->descdata + 0x48, 31);
11127
11128 return true;
11129 }
11130
11131 /* Processes Solaris's process status note.
11132 sig_off ~ offsetof(prstatus_t, pr_cursig)
11133 pid_off ~ offsetof(prstatus_t, pr_pid)
11134 lwpid_off ~ offsetof(prstatus_t, pr_who)
11135 gregset_size ~ sizeof(gregset_t)
11136 gregset_offset ~ offsetof(prstatus_t, pr_reg) */
11137
11138 static bool
11139 elfcore_grok_solaris_prstatus (bfd *abfd, Elf_Internal_Note* note, int sig_off,
11140 int pid_off, int lwpid_off, size_t gregset_size,
11141 size_t gregset_offset)
11142 {
11143 asection *sect = NULL;
11144 elf_tdata (abfd)->core->signal
11145 = bfd_get_16 (abfd, note->descdata + sig_off);
11146 elf_tdata (abfd)->core->pid
11147 = bfd_get_32 (abfd, note->descdata + pid_off);
11148 elf_tdata (abfd)->core->lwpid
11149 = bfd_get_32 (abfd, note->descdata + lwpid_off);
11150
11151 sect = bfd_get_section_by_name (abfd, ".reg");
11152 if (sect != NULL)
11153 sect->size = gregset_size;
11154
11155 return _bfd_elfcore_make_pseudosection (abfd, ".reg", gregset_size,
11156 note->descpos + gregset_offset);
11157 }
11158
11159 /* Gets program and arguments from a core.
11160 prog_off ~ offsetof(prpsinfo | psinfo_t, pr_fname)
11161 comm_off ~ offsetof(prpsinfo | psinfo_t, pr_psargs) */
11162
11163 static bool
11164 elfcore_grok_solaris_info(bfd *abfd, Elf_Internal_Note* note,
11165 int prog_off, int comm_off)
11166 {
11167 elf_tdata (abfd)->core->program
11168 = _bfd_elfcore_strndup (abfd, note->descdata + prog_off, 16);
11169 elf_tdata (abfd)->core->command
11170 = _bfd_elfcore_strndup (abfd, note->descdata + comm_off, 80);
11171
11172 return true;
11173 }
11174
11175 /* Processes Solaris's LWP status note.
11176 gregset_size ~ sizeof(gregset_t)
11177 gregset_off ~ offsetof(lwpstatus_t, pr_reg)
11178 fpregset_size ~ sizeof(fpregset_t)
11179 fpregset_off ~ offsetof(lwpstatus_t, pr_fpreg) */
11180
11181 static bool
11182 elfcore_grok_solaris_lwpstatus (bfd *abfd, Elf_Internal_Note* note,
11183 size_t gregset_size, int gregset_off,
11184 size_t fpregset_size, int fpregset_off)
11185 {
11186 asection *sect = NULL;
11187 char reg2_section_name[16] = { 0 };
11188
11189 (void) snprintf (reg2_section_name, 16, "%s/%i", ".reg2",
11190 elf_tdata (abfd)->core->lwpid);
11191
11192 /* offsetof(lwpstatus_t, pr_lwpid) */
11193 elf_tdata (abfd)->core->lwpid
11194 = bfd_get_32 (abfd, note->descdata + 4);
11195 /* offsetof(lwpstatus_t, pr_cursig) */
11196 elf_tdata (abfd)->core->signal
11197 = bfd_get_16 (abfd, note->descdata + 12);
11198
11199 sect = bfd_get_section_by_name (abfd, ".reg");
11200 if (sect != NULL)
11201 sect->size = gregset_size;
11202 else if (!_bfd_elfcore_make_pseudosection (abfd, ".reg", gregset_size,
11203 note->descpos + gregset_off))
11204 return false;
11205
11206 sect = bfd_get_section_by_name (abfd, reg2_section_name);
11207 if (sect != NULL)
11208 {
11209 sect->size = fpregset_size;
11210 sect->filepos = note->descpos + fpregset_off;
11211 sect->alignment_power = 2;
11212 }
11213 else if (!_bfd_elfcore_make_pseudosection (abfd, ".reg2", fpregset_size,
11214 note->descpos + fpregset_off))
11215 return false;
11216
11217 return true;
11218 }
11219
11220 static bool
11221 elfcore_grok_solaris_note_impl (bfd *abfd, Elf_Internal_Note *note)
11222 {
11223 if (note == NULL)
11224 return false;
11225
11226 /* core files are identified as 32- or 64-bit, SPARC or x86,
11227 by the size of the descsz which matches the sizeof()
11228 the type appropriate for that note type (e.g., prstatus_t for
11229 SOLARIS_NT_PRSTATUS) for the corresponding architecture
11230 on Solaris. The core file bitness may differ from the bitness of
11231 gdb itself, so fixed values are used instead of sizeof().
11232 Appropriate fixed offsets are also used to obtain data from
11233 the note. */
11234
11235 switch ((int) note->type)
11236 {
11237 case SOLARIS_NT_PRSTATUS:
11238 switch (note->descsz)
11239 {
11240 case 508: /* sizeof(prstatus_t) SPARC 32-bit */
11241 return elfcore_grok_solaris_prstatus(abfd, note,
11242 136, 216, 308, 152, 356);
11243 case 904: /* sizeof(prstatus_t) SPARC 64-bit */
11244 return elfcore_grok_solaris_prstatus(abfd, note,
11245 264, 360, 520, 304, 600);
11246 case 432: /* sizeof(prstatus_t) Intel 32-bit */
11247 return elfcore_grok_solaris_prstatus(abfd, note,
11248 136, 216, 308, 76, 356);
11249 case 824: /* sizeof(prstatus_t) Intel 64-bit */
11250 return elfcore_grok_solaris_prstatus(abfd, note,
11251 264, 360, 520, 224, 600);
11252 default:
11253 return true;
11254 }
11255
11256 case SOLARIS_NT_PSINFO:
11257 case SOLARIS_NT_PRPSINFO:
11258 switch (note->descsz)
11259 {
11260 case 260: /* sizeof(prpsinfo_t) SPARC and Intel 32-bit */
11261 return elfcore_grok_solaris_info(abfd, note, 84, 100);
11262 case 328: /* sizeof(prpsinfo_t) SPARC and Intel 64-bit */
11263 return elfcore_grok_solaris_info(abfd, note, 120, 136);
11264 case 360: /* sizeof(psinfo_t) SPARC and Intel 32-bit */
11265 return elfcore_grok_solaris_info(abfd, note, 88, 104);
11266 case 440: /* sizeof(psinfo_t) SPARC and Intel 64-bit */
11267 return elfcore_grok_solaris_info(abfd, note, 136, 152);
11268 default:
11269 return true;
11270 }
11271
11272 case SOLARIS_NT_LWPSTATUS:
11273 switch (note->descsz)
11274 {
11275 case 896: /* sizeof(lwpstatus_t) SPARC 32-bit */
11276 return elfcore_grok_solaris_lwpstatus(abfd, note,
11277 152, 344, 400, 496);
11278 case 1392: /* sizeof(lwpstatus_t) SPARC 64-bit */
11279 return elfcore_grok_solaris_lwpstatus(abfd, note,
11280 304, 544, 544, 848);
11281 case 800: /* sizeof(lwpstatus_t) Intel 32-bit */
11282 return elfcore_grok_solaris_lwpstatus(abfd, note,
11283 76, 344, 380, 420);
11284 case 1296: /* sizeof(lwpstatus_t) Intel 64-bit */
11285 return elfcore_grok_solaris_lwpstatus(abfd, note,
11286 224, 544, 528, 768);
11287 default:
11288 return true;
11289 }
11290
11291 case SOLARIS_NT_LWPSINFO:
11292 /* sizeof(lwpsinfo_t) on 32- and 64-bit, respectively */
11293 if (note->descsz == 128 || note->descsz == 152)
11294 elf_tdata (abfd)->core->lwpid =
11295 bfd_get_32 (abfd, note->descdata + 4);
11296 break;
11297
11298 default:
11299 break;
11300 }
11301
11302 return true;
11303 }
11304
11305 /* For name starting with "CORE" this may be either a Solaris
11306 core file or a gdb-generated core file. Do Solaris-specific
11307 processing on selected note types first with
11308 elfcore_grok_solaris_note(), then process the note
11309 in elfcore_grok_note(). */
11310
11311 static bool
11312 elfcore_grok_solaris_note (bfd *abfd, Elf_Internal_Note *note)
11313 {
11314 if (!elfcore_grok_solaris_note_impl (abfd, note))
11315 return false;
11316
11317 return elfcore_grok_note (abfd, note);
11318 }
11319
11320 static bool
11321 elfcore_grok_openbsd_note (bfd *abfd, Elf_Internal_Note *note)
11322 {
11323 if (note->type == NT_OPENBSD_PROCINFO)
11324 return elfcore_grok_openbsd_procinfo (abfd, note);
11325
11326 if (note->type == NT_OPENBSD_REGS)
11327 return elfcore_make_note_pseudosection (abfd, ".reg", note);
11328
11329 if (note->type == NT_OPENBSD_FPREGS)
11330 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
11331
11332 if (note->type == NT_OPENBSD_XFPREGS)
11333 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
11334
11335 if (note->type == NT_OPENBSD_AUXV)
11336 return elfcore_make_auxv_note_section (abfd, note, 0);
11337
11338 if (note->type == NT_OPENBSD_WCOOKIE)
11339 {
11340 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".wcookie",
11341 SEC_HAS_CONTENTS);
11342
11343 if (sect == NULL)
11344 return false;
11345 sect->size = note->descsz;
11346 sect->filepos = note->descpos;
11347 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
11348
11349 return true;
11350 }
11351
11352 return true;
11353 }
11354
11355 static bool
11356 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
11357 {
11358 void *ddata = note->descdata;
11359 char buf[100];
11360 char *name;
11361 asection *sect;
11362 short sig;
11363 unsigned flags;
11364
11365 if (note->descsz < 16)
11366 return false;
11367
11368 /* nto_procfs_status 'pid' field is at offset 0. */
11369 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
11370
11371 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
11372 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
11373
11374 /* nto_procfs_status 'flags' field is at offset 8. */
11375 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
11376
11377 /* nto_procfs_status 'what' field is at offset 14. */
11378 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
11379 {
11380 elf_tdata (abfd)->core->signal = sig;
11381 elf_tdata (abfd)->core->lwpid = *tid;
11382 }
11383
11384 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
11385 do not come from signals so we make sure we set the current
11386 thread just in case. */
11387 if (flags & 0x00000080)
11388 elf_tdata (abfd)->core->lwpid = *tid;
11389
11390 /* Make a ".qnx_core_status/%d" section. */
11391 sprintf (buf, ".qnx_core_status/%ld", *tid);
11392
11393 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
11394 if (name == NULL)
11395 return false;
11396 strcpy (name, buf);
11397
11398 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
11399 if (sect == NULL)
11400 return false;
11401
11402 sect->size = note->descsz;
11403 sect->filepos = note->descpos;
11404 sect->alignment_power = 2;
11405
11406 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
11407 }
11408
11409 static bool
11410 elfcore_grok_nto_regs (bfd *abfd,
11411 Elf_Internal_Note *note,
11412 long tid,
11413 char *base)
11414 {
11415 char buf[100];
11416 char *name;
11417 asection *sect;
11418
11419 /* Make a "(base)/%d" section. */
11420 sprintf (buf, "%s/%ld", base, tid);
11421
11422 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
11423 if (name == NULL)
11424 return false;
11425 strcpy (name, buf);
11426
11427 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
11428 if (sect == NULL)
11429 return false;
11430
11431 sect->size = note->descsz;
11432 sect->filepos = note->descpos;
11433 sect->alignment_power = 2;
11434
11435 /* This is the current thread. */
11436 if (elf_tdata (abfd)->core->lwpid == tid)
11437 return elfcore_maybe_make_sect (abfd, base, sect);
11438
11439 return true;
11440 }
11441
11442 #define BFD_QNT_CORE_INFO 7
11443 #define BFD_QNT_CORE_STATUS 8
11444 #define BFD_QNT_CORE_GREG 9
11445 #define BFD_QNT_CORE_FPREG 10
11446
11447 static bool
11448 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
11449 {
11450 /* Every GREG section has a STATUS section before it. Store the
11451 tid from the previous call to pass down to the next gregs
11452 function. */
11453 static long tid = 1;
11454
11455 switch (note->type)
11456 {
11457 case BFD_QNT_CORE_INFO:
11458 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
11459 case BFD_QNT_CORE_STATUS:
11460 return elfcore_grok_nto_status (abfd, note, &tid);
11461 case BFD_QNT_CORE_GREG:
11462 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
11463 case BFD_QNT_CORE_FPREG:
11464 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
11465 default:
11466 return true;
11467 }
11468 }
11469
11470 static bool
11471 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
11472 {
11473 char *name;
11474 asection *sect;
11475 size_t len;
11476
11477 /* Use note name as section name. */
11478 len = note->namesz;
11479 name = (char *) bfd_alloc (abfd, len);
11480 if (name == NULL)
11481 return false;
11482 memcpy (name, note->namedata, len);
11483 name[len - 1] = '\0';
11484
11485 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
11486 if (sect == NULL)
11487 return false;
11488
11489 sect->size = note->descsz;
11490 sect->filepos = note->descpos;
11491 sect->alignment_power = 1;
11492
11493 return true;
11494 }
11495
11496 /* Function: elfcore_write_note
11497
11498 Inputs:
11499 buffer to hold note, and current size of buffer
11500 name of note
11501 type of note
11502 data for note
11503 size of data for note
11504
11505 Writes note to end of buffer. ELF64 notes are written exactly as
11506 for ELF32, despite the current (as of 2006) ELF gabi specifying
11507 that they ought to have 8-byte namesz and descsz field, and have
11508 8-byte alignment. Other writers, eg. Linux kernel, do the same.
11509
11510 Return:
11511 Pointer to realloc'd buffer, *BUFSIZ updated. */
11512
11513 char *
11514 elfcore_write_note (bfd *abfd,
11515 char *buf,
11516 int *bufsiz,
11517 const char *name,
11518 int type,
11519 const void *input,
11520 int size)
11521 {
11522 Elf_External_Note *xnp;
11523 size_t namesz;
11524 size_t newspace;
11525 char *dest;
11526
11527 namesz = 0;
11528 if (name != NULL)
11529 namesz = strlen (name) + 1;
11530
11531 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
11532
11533 buf = (char *) realloc (buf, *bufsiz + newspace);
11534 if (buf == NULL)
11535 return buf;
11536 dest = buf + *bufsiz;
11537 *bufsiz += newspace;
11538 xnp = (Elf_External_Note *) dest;
11539 H_PUT_32 (abfd, namesz, xnp->namesz);
11540 H_PUT_32 (abfd, size, xnp->descsz);
11541 H_PUT_32 (abfd, type, xnp->type);
11542 dest = xnp->name;
11543 if (name != NULL)
11544 {
11545 memcpy (dest, name, namesz);
11546 dest += namesz;
11547 while (namesz & 3)
11548 {
11549 *dest++ = '\0';
11550 ++namesz;
11551 }
11552 }
11553 memcpy (dest, input, size);
11554 dest += size;
11555 while (size & 3)
11556 {
11557 *dest++ = '\0';
11558 ++size;
11559 }
11560 return buf;
11561 }
11562
11563 /* gcc-8 warns (*) on all the strncpy calls in this function about
11564 possible string truncation. The "truncation" is not a bug. We
11565 have an external representation of structs with fields that are not
11566 necessarily NULL terminated and corresponding internal
11567 representation fields that are one larger so that they can always
11568 be NULL terminated.
11569 gcc versions between 4.2 and 4.6 do not allow pragma control of
11570 diagnostics inside functions, giving a hard error if you try to use
11571 the finer control available with later versions.
11572 gcc prior to 4.2 warns about diagnostic push and pop.
11573 gcc-5, gcc-6 and gcc-7 warn that -Wstringop-truncation is unknown,
11574 unless you also add #pragma GCC diagnostic ignored "-Wpragma".
11575 (*) Depending on your system header files! */
11576 #if GCC_VERSION >= 8000
11577 # pragma GCC diagnostic push
11578 # pragma GCC diagnostic ignored "-Wstringop-truncation"
11579 #endif
11580 char *
11581 elfcore_write_prpsinfo (bfd *abfd,
11582 char *buf,
11583 int *bufsiz,
11584 const char *fname,
11585 const char *psargs)
11586 {
11587 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11588
11589 if (bed->elf_backend_write_core_note != NULL)
11590 {
11591 char *ret;
11592 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
11593 NT_PRPSINFO, fname, psargs);
11594 if (ret != NULL)
11595 return ret;
11596 }
11597
11598 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
11599 # if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
11600 if (bed->s->elfclass == ELFCLASS32)
11601 {
11602 # if defined (HAVE_PSINFO32_T)
11603 psinfo32_t data;
11604 int note_type = NT_PSINFO;
11605 # else
11606 prpsinfo32_t data;
11607 int note_type = NT_PRPSINFO;
11608 # endif
11609
11610 memset (&data, 0, sizeof (data));
11611 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
11612 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
11613 return elfcore_write_note (abfd, buf, bufsiz,
11614 "CORE", note_type, &data, sizeof (data));
11615 }
11616 else
11617 # endif
11618 {
11619 # if defined (HAVE_PSINFO_T)
11620 psinfo_t data;
11621 int note_type = NT_PSINFO;
11622 # else
11623 prpsinfo_t data;
11624 int note_type = NT_PRPSINFO;
11625 # endif
11626
11627 memset (&data, 0, sizeof (data));
11628 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
11629 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
11630 return elfcore_write_note (abfd, buf, bufsiz,
11631 "CORE", note_type, &data, sizeof (data));
11632 }
11633 #endif /* PSINFO_T or PRPSINFO_T */
11634
11635 free (buf);
11636 return NULL;
11637 }
11638 #if GCC_VERSION >= 8000
11639 # pragma GCC diagnostic pop
11640 #endif
11641
11642 char *
11643 elfcore_write_linux_prpsinfo32
11644 (bfd *abfd, char *buf, int *bufsiz,
11645 const struct elf_internal_linux_prpsinfo *prpsinfo)
11646 {
11647 if (get_elf_backend_data (abfd)->linux_prpsinfo32_ugid16)
11648 {
11649 struct elf_external_linux_prpsinfo32_ugid16 data;
11650
11651 swap_linux_prpsinfo32_ugid16_out (abfd, prpsinfo, &data);
11652 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
11653 &data, sizeof (data));
11654 }
11655 else
11656 {
11657 struct elf_external_linux_prpsinfo32_ugid32 data;
11658
11659 swap_linux_prpsinfo32_ugid32_out (abfd, prpsinfo, &data);
11660 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
11661 &data, sizeof (data));
11662 }
11663 }
11664
11665 char *
11666 elfcore_write_linux_prpsinfo64
11667 (bfd *abfd, char *buf, int *bufsiz,
11668 const struct elf_internal_linux_prpsinfo *prpsinfo)
11669 {
11670 if (get_elf_backend_data (abfd)->linux_prpsinfo64_ugid16)
11671 {
11672 struct elf_external_linux_prpsinfo64_ugid16 data;
11673
11674 swap_linux_prpsinfo64_ugid16_out (abfd, prpsinfo, &data);
11675 return elfcore_write_note (abfd, buf, bufsiz,
11676 "CORE", NT_PRPSINFO, &data, sizeof (data));
11677 }
11678 else
11679 {
11680 struct elf_external_linux_prpsinfo64_ugid32 data;
11681
11682 swap_linux_prpsinfo64_ugid32_out (abfd, prpsinfo, &data);
11683 return elfcore_write_note (abfd, buf, bufsiz,
11684 "CORE", NT_PRPSINFO, &data, sizeof (data));
11685 }
11686 }
11687
11688 char *
11689 elfcore_write_prstatus (bfd *abfd,
11690 char *buf,
11691 int *bufsiz,
11692 long pid,
11693 int cursig,
11694 const void *gregs)
11695 {
11696 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11697
11698 if (bed->elf_backend_write_core_note != NULL)
11699 {
11700 char *ret;
11701 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
11702 NT_PRSTATUS,
11703 pid, cursig, gregs);
11704 if (ret != NULL)
11705 return ret;
11706 }
11707
11708 #if defined (HAVE_PRSTATUS_T)
11709 #if defined (HAVE_PRSTATUS32_T)
11710 if (bed->s->elfclass == ELFCLASS32)
11711 {
11712 prstatus32_t prstat;
11713
11714 memset (&prstat, 0, sizeof (prstat));
11715 prstat.pr_pid = pid;
11716 prstat.pr_cursig = cursig;
11717 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
11718 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
11719 NT_PRSTATUS, &prstat, sizeof (prstat));
11720 }
11721 else
11722 #endif
11723 {
11724 prstatus_t prstat;
11725
11726 memset (&prstat, 0, sizeof (prstat));
11727 prstat.pr_pid = pid;
11728 prstat.pr_cursig = cursig;
11729 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
11730 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
11731 NT_PRSTATUS, &prstat, sizeof (prstat));
11732 }
11733 #endif /* HAVE_PRSTATUS_T */
11734
11735 free (buf);
11736 return NULL;
11737 }
11738
11739 #if defined (HAVE_LWPSTATUS_T)
11740 char *
11741 elfcore_write_lwpstatus (bfd *abfd,
11742 char *buf,
11743 int *bufsiz,
11744 long pid,
11745 int cursig,
11746 const void *gregs)
11747 {
11748 lwpstatus_t lwpstat;
11749 const char *note_name = "CORE";
11750
11751 memset (&lwpstat, 0, sizeof (lwpstat));
11752 lwpstat.pr_lwpid = pid >> 16;
11753 lwpstat.pr_cursig = cursig;
11754 #if defined (HAVE_LWPSTATUS_T_PR_REG)
11755 memcpy (&lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
11756 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
11757 #if !defined(gregs)
11758 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
11759 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
11760 #else
11761 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
11762 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
11763 #endif
11764 #endif
11765 return elfcore_write_note (abfd, buf, bufsiz, note_name,
11766 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
11767 }
11768 #endif /* HAVE_LWPSTATUS_T */
11769
11770 #if defined (HAVE_PSTATUS_T)
11771 char *
11772 elfcore_write_pstatus (bfd *abfd,
11773 char *buf,
11774 int *bufsiz,
11775 long pid,
11776 int cursig ATTRIBUTE_UNUSED,
11777 const void *gregs ATTRIBUTE_UNUSED)
11778 {
11779 const char *note_name = "CORE";
11780 #if defined (HAVE_PSTATUS32_T)
11781 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11782
11783 if (bed->s->elfclass == ELFCLASS32)
11784 {
11785 pstatus32_t pstat;
11786
11787 memset (&pstat, 0, sizeof (pstat));
11788 pstat.pr_pid = pid & 0xffff;
11789 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
11790 NT_PSTATUS, &pstat, sizeof (pstat));
11791 return buf;
11792 }
11793 else
11794 #endif
11795 {
11796 pstatus_t pstat;
11797
11798 memset (&pstat, 0, sizeof (pstat));
11799 pstat.pr_pid = pid & 0xffff;
11800 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
11801 NT_PSTATUS, &pstat, sizeof (pstat));
11802 return buf;
11803 }
11804 }
11805 #endif /* HAVE_PSTATUS_T */
11806
11807 char *
11808 elfcore_write_prfpreg (bfd *abfd,
11809 char *buf,
11810 int *bufsiz,
11811 const void *fpregs,
11812 int size)
11813 {
11814 const char *note_name = "CORE";
11815 return elfcore_write_note (abfd, buf, bufsiz,
11816 note_name, NT_FPREGSET, fpregs, size);
11817 }
11818
11819 char *
11820 elfcore_write_prxfpreg (bfd *abfd,
11821 char *buf,
11822 int *bufsiz,
11823 const void *xfpregs,
11824 int size)
11825 {
11826 char *note_name = "LINUX";
11827 return elfcore_write_note (abfd, buf, bufsiz,
11828 note_name, NT_PRXFPREG, xfpregs, size);
11829 }
11830
11831 char *
11832 elfcore_write_xstatereg (bfd *abfd, char *buf, int *bufsiz,
11833 const void *xfpregs, int size)
11834 {
11835 char *note_name;
11836 if (get_elf_backend_data (abfd)->elf_osabi == ELFOSABI_FREEBSD)
11837 note_name = "FreeBSD";
11838 else
11839 note_name = "LINUX";
11840 return elfcore_write_note (abfd, buf, bufsiz,
11841 note_name, NT_X86_XSTATE, xfpregs, size);
11842 }
11843
11844 char *
11845 elfcore_write_ppc_vmx (bfd *abfd,
11846 char *buf,
11847 int *bufsiz,
11848 const void *ppc_vmx,
11849 int size)
11850 {
11851 char *note_name = "LINUX";
11852 return elfcore_write_note (abfd, buf, bufsiz,
11853 note_name, NT_PPC_VMX, ppc_vmx, size);
11854 }
11855
11856 char *
11857 elfcore_write_ppc_vsx (bfd *abfd,
11858 char *buf,
11859 int *bufsiz,
11860 const void *ppc_vsx,
11861 int size)
11862 {
11863 char *note_name = "LINUX";
11864 return elfcore_write_note (abfd, buf, bufsiz,
11865 note_name, NT_PPC_VSX, ppc_vsx, size);
11866 }
11867
11868 char *
11869 elfcore_write_ppc_tar (bfd *abfd,
11870 char *buf,
11871 int *bufsiz,
11872 const void *ppc_tar,
11873 int size)
11874 {
11875 char *note_name = "LINUX";
11876 return elfcore_write_note (abfd, buf, bufsiz,
11877 note_name, NT_PPC_TAR, ppc_tar, size);
11878 }
11879
11880 char *
11881 elfcore_write_ppc_ppr (bfd *abfd,
11882 char *buf,
11883 int *bufsiz,
11884 const void *ppc_ppr,
11885 int size)
11886 {
11887 char *note_name = "LINUX";
11888 return elfcore_write_note (abfd, buf, bufsiz,
11889 note_name, NT_PPC_PPR, ppc_ppr, size);
11890 }
11891
11892 char *
11893 elfcore_write_ppc_dscr (bfd *abfd,
11894 char *buf,
11895 int *bufsiz,
11896 const void *ppc_dscr,
11897 int size)
11898 {
11899 char *note_name = "LINUX";
11900 return elfcore_write_note (abfd, buf, bufsiz,
11901 note_name, NT_PPC_DSCR, ppc_dscr, size);
11902 }
11903
11904 char *
11905 elfcore_write_ppc_ebb (bfd *abfd,
11906 char *buf,
11907 int *bufsiz,
11908 const void *ppc_ebb,
11909 int size)
11910 {
11911 char *note_name = "LINUX";
11912 return elfcore_write_note (abfd, buf, bufsiz,
11913 note_name, NT_PPC_EBB, ppc_ebb, size);
11914 }
11915
11916 char *
11917 elfcore_write_ppc_pmu (bfd *abfd,
11918 char *buf,
11919 int *bufsiz,
11920 const void *ppc_pmu,
11921 int size)
11922 {
11923 char *note_name = "LINUX";
11924 return elfcore_write_note (abfd, buf, bufsiz,
11925 note_name, NT_PPC_PMU, ppc_pmu, size);
11926 }
11927
11928 char *
11929 elfcore_write_ppc_tm_cgpr (bfd *abfd,
11930 char *buf,
11931 int *bufsiz,
11932 const void *ppc_tm_cgpr,
11933 int size)
11934 {
11935 char *note_name = "LINUX";
11936 return elfcore_write_note (abfd, buf, bufsiz,
11937 note_name, NT_PPC_TM_CGPR, ppc_tm_cgpr, size);
11938 }
11939
11940 char *
11941 elfcore_write_ppc_tm_cfpr (bfd *abfd,
11942 char *buf,
11943 int *bufsiz,
11944 const void *ppc_tm_cfpr,
11945 int size)
11946 {
11947 char *note_name = "LINUX";
11948 return elfcore_write_note (abfd, buf, bufsiz,
11949 note_name, NT_PPC_TM_CFPR, ppc_tm_cfpr, size);
11950 }
11951
11952 char *
11953 elfcore_write_ppc_tm_cvmx (bfd *abfd,
11954 char *buf,
11955 int *bufsiz,
11956 const void *ppc_tm_cvmx,
11957 int size)
11958 {
11959 char *note_name = "LINUX";
11960 return elfcore_write_note (abfd, buf, bufsiz,
11961 note_name, NT_PPC_TM_CVMX, ppc_tm_cvmx, size);
11962 }
11963
11964 char *
11965 elfcore_write_ppc_tm_cvsx (bfd *abfd,
11966 char *buf,
11967 int *bufsiz,
11968 const void *ppc_tm_cvsx,
11969 int size)
11970 {
11971 char *note_name = "LINUX";
11972 return elfcore_write_note (abfd, buf, bufsiz,
11973 note_name, NT_PPC_TM_CVSX, ppc_tm_cvsx, size);
11974 }
11975
11976 char *
11977 elfcore_write_ppc_tm_spr (bfd *abfd,
11978 char *buf,
11979 int *bufsiz,
11980 const void *ppc_tm_spr,
11981 int size)
11982 {
11983 char *note_name = "LINUX";
11984 return elfcore_write_note (abfd, buf, bufsiz,
11985 note_name, NT_PPC_TM_SPR, ppc_tm_spr, size);
11986 }
11987
11988 char *
11989 elfcore_write_ppc_tm_ctar (bfd *abfd,
11990 char *buf,
11991 int *bufsiz,
11992 const void *ppc_tm_ctar,
11993 int size)
11994 {
11995 char *note_name = "LINUX";
11996 return elfcore_write_note (abfd, buf, bufsiz,
11997 note_name, NT_PPC_TM_CTAR, ppc_tm_ctar, size);
11998 }
11999
12000 char *
12001 elfcore_write_ppc_tm_cppr (bfd *abfd,
12002 char *buf,
12003 int *bufsiz,
12004 const void *ppc_tm_cppr,
12005 int size)
12006 {
12007 char *note_name = "LINUX";
12008 return elfcore_write_note (abfd, buf, bufsiz,
12009 note_name, NT_PPC_TM_CPPR, ppc_tm_cppr, size);
12010 }
12011
12012 char *
12013 elfcore_write_ppc_tm_cdscr (bfd *abfd,
12014 char *buf,
12015 int *bufsiz,
12016 const void *ppc_tm_cdscr,
12017 int size)
12018 {
12019 char *note_name = "LINUX";
12020 return elfcore_write_note (abfd, buf, bufsiz,
12021 note_name, NT_PPC_TM_CDSCR, ppc_tm_cdscr, size);
12022 }
12023
12024 static char *
12025 elfcore_write_s390_high_gprs (bfd *abfd,
12026 char *buf,
12027 int *bufsiz,
12028 const void *s390_high_gprs,
12029 int size)
12030 {
12031 char *note_name = "LINUX";
12032 return elfcore_write_note (abfd, buf, bufsiz,
12033 note_name, NT_S390_HIGH_GPRS,
12034 s390_high_gprs, size);
12035 }
12036
12037 char *
12038 elfcore_write_s390_timer (bfd *abfd,
12039 char *buf,
12040 int *bufsiz,
12041 const void *s390_timer,
12042 int size)
12043 {
12044 char *note_name = "LINUX";
12045 return elfcore_write_note (abfd, buf, bufsiz,
12046 note_name, NT_S390_TIMER, s390_timer, size);
12047 }
12048
12049 char *
12050 elfcore_write_s390_todcmp (bfd *abfd,
12051 char *buf,
12052 int *bufsiz,
12053 const void *s390_todcmp,
12054 int size)
12055 {
12056 char *note_name = "LINUX";
12057 return elfcore_write_note (abfd, buf, bufsiz,
12058 note_name, NT_S390_TODCMP, s390_todcmp, size);
12059 }
12060
12061 char *
12062 elfcore_write_s390_todpreg (bfd *abfd,
12063 char *buf,
12064 int *bufsiz,
12065 const void *s390_todpreg,
12066 int size)
12067 {
12068 char *note_name = "LINUX";
12069 return elfcore_write_note (abfd, buf, bufsiz,
12070 note_name, NT_S390_TODPREG, s390_todpreg, size);
12071 }
12072
12073 char *
12074 elfcore_write_s390_ctrs (bfd *abfd,
12075 char *buf,
12076 int *bufsiz,
12077 const void *s390_ctrs,
12078 int size)
12079 {
12080 char *note_name = "LINUX";
12081 return elfcore_write_note (abfd, buf, bufsiz,
12082 note_name, NT_S390_CTRS, s390_ctrs, size);
12083 }
12084
12085 char *
12086 elfcore_write_s390_prefix (bfd *abfd,
12087 char *buf,
12088 int *bufsiz,
12089 const void *s390_prefix,
12090 int size)
12091 {
12092 char *note_name = "LINUX";
12093 return elfcore_write_note (abfd, buf, bufsiz,
12094 note_name, NT_S390_PREFIX, s390_prefix, size);
12095 }
12096
12097 char *
12098 elfcore_write_s390_last_break (bfd *abfd,
12099 char *buf,
12100 int *bufsiz,
12101 const void *s390_last_break,
12102 int size)
12103 {
12104 char *note_name = "LINUX";
12105 return elfcore_write_note (abfd, buf, bufsiz,
12106 note_name, NT_S390_LAST_BREAK,
12107 s390_last_break, size);
12108 }
12109
12110 char *
12111 elfcore_write_s390_system_call (bfd *abfd,
12112 char *buf,
12113 int *bufsiz,
12114 const void *s390_system_call,
12115 int size)
12116 {
12117 char *note_name = "LINUX";
12118 return elfcore_write_note (abfd, buf, bufsiz,
12119 note_name, NT_S390_SYSTEM_CALL,
12120 s390_system_call, size);
12121 }
12122
12123 char *
12124 elfcore_write_s390_tdb (bfd *abfd,
12125 char *buf,
12126 int *bufsiz,
12127 const void *s390_tdb,
12128 int size)
12129 {
12130 char *note_name = "LINUX";
12131 return elfcore_write_note (abfd, buf, bufsiz,
12132 note_name, NT_S390_TDB, s390_tdb, size);
12133 }
12134
12135 char *
12136 elfcore_write_s390_vxrs_low (bfd *abfd,
12137 char *buf,
12138 int *bufsiz,
12139 const void *s390_vxrs_low,
12140 int size)
12141 {
12142 char *note_name = "LINUX";
12143 return elfcore_write_note (abfd, buf, bufsiz,
12144 note_name, NT_S390_VXRS_LOW, s390_vxrs_low, size);
12145 }
12146
12147 char *
12148 elfcore_write_s390_vxrs_high (bfd *abfd,
12149 char *buf,
12150 int *bufsiz,
12151 const void *s390_vxrs_high,
12152 int size)
12153 {
12154 char *note_name = "LINUX";
12155 return elfcore_write_note (abfd, buf, bufsiz,
12156 note_name, NT_S390_VXRS_HIGH,
12157 s390_vxrs_high, size);
12158 }
12159
12160 char *
12161 elfcore_write_s390_gs_cb (bfd *abfd,
12162 char *buf,
12163 int *bufsiz,
12164 const void *s390_gs_cb,
12165 int size)
12166 {
12167 char *note_name = "LINUX";
12168 return elfcore_write_note (abfd, buf, bufsiz,
12169 note_name, NT_S390_GS_CB,
12170 s390_gs_cb, size);
12171 }
12172
12173 char *
12174 elfcore_write_s390_gs_bc (bfd *abfd,
12175 char *buf,
12176 int *bufsiz,
12177 const void *s390_gs_bc,
12178 int size)
12179 {
12180 char *note_name = "LINUX";
12181 return elfcore_write_note (abfd, buf, bufsiz,
12182 note_name, NT_S390_GS_BC,
12183 s390_gs_bc, size);
12184 }
12185
12186 char *
12187 elfcore_write_arm_vfp (bfd *abfd,
12188 char *buf,
12189 int *bufsiz,
12190 const void *arm_vfp,
12191 int size)
12192 {
12193 char *note_name = "LINUX";
12194 return elfcore_write_note (abfd, buf, bufsiz,
12195 note_name, NT_ARM_VFP, arm_vfp, size);
12196 }
12197
12198 char *
12199 elfcore_write_aarch_tls (bfd *abfd,
12200 char *buf,
12201 int *bufsiz,
12202 const void *aarch_tls,
12203 int size)
12204 {
12205 char *note_name = "LINUX";
12206 return elfcore_write_note (abfd, buf, bufsiz,
12207 note_name, NT_ARM_TLS, aarch_tls, size);
12208 }
12209
12210 char *
12211 elfcore_write_aarch_hw_break (bfd *abfd,
12212 char *buf,
12213 int *bufsiz,
12214 const void *aarch_hw_break,
12215 int size)
12216 {
12217 char *note_name = "LINUX";
12218 return elfcore_write_note (abfd, buf, bufsiz,
12219 note_name, NT_ARM_HW_BREAK, aarch_hw_break, size);
12220 }
12221
12222 char *
12223 elfcore_write_aarch_hw_watch (bfd *abfd,
12224 char *buf,
12225 int *bufsiz,
12226 const void *aarch_hw_watch,
12227 int size)
12228 {
12229 char *note_name = "LINUX";
12230 return elfcore_write_note (abfd, buf, bufsiz,
12231 note_name, NT_ARM_HW_WATCH, aarch_hw_watch, size);
12232 }
12233
12234 char *
12235 elfcore_write_aarch_sve (bfd *abfd,
12236 char *buf,
12237 int *bufsiz,
12238 const void *aarch_sve,
12239 int size)
12240 {
12241 char *note_name = "LINUX";
12242 return elfcore_write_note (abfd, buf, bufsiz,
12243 note_name, NT_ARM_SVE, aarch_sve, size);
12244 }
12245
12246 char *
12247 elfcore_write_aarch_pauth (bfd *abfd,
12248 char *buf,
12249 int *bufsiz,
12250 const void *aarch_pauth,
12251 int size)
12252 {
12253 char *note_name = "LINUX";
12254 return elfcore_write_note (abfd, buf, bufsiz,
12255 note_name, NT_ARM_PAC_MASK, aarch_pauth, size);
12256 }
12257
12258 char *
12259 elfcore_write_aarch_mte (bfd *abfd,
12260 char *buf,
12261 int *bufsiz,
12262 const void *aarch_mte,
12263 int size)
12264 {
12265 char *note_name = "LINUX";
12266 return elfcore_write_note (abfd, buf, bufsiz,
12267 note_name, NT_ARM_TAGGED_ADDR_CTRL,
12268 aarch_mte,
12269 size);
12270 }
12271
12272 char *
12273 elfcore_write_arc_v2 (bfd *abfd,
12274 char *buf,
12275 int *bufsiz,
12276 const void *arc_v2,
12277 int size)
12278 {
12279 char *note_name = "LINUX";
12280 return elfcore_write_note (abfd, buf, bufsiz,
12281 note_name, NT_ARC_V2, arc_v2, size);
12282 }
12283
12284 char *
12285 elfcore_write_loongarch_cpucfg (bfd *abfd,
12286 char *buf,
12287 int *bufsiz,
12288 const void *loongarch_cpucfg,
12289 int size)
12290 {
12291 char *note_name = "LINUX";
12292 return elfcore_write_note (abfd, buf, bufsiz,
12293 note_name, NT_LARCH_CPUCFG,
12294 loongarch_cpucfg, size);
12295 }
12296
12297 char *
12298 elfcore_write_loongarch_lbt (bfd *abfd,
12299 char *buf,
12300 int *bufsiz,
12301 const void *loongarch_lbt,
12302 int size)
12303 {
12304 char *note_name = "LINUX";
12305 return elfcore_write_note (abfd, buf, bufsiz,
12306 note_name, NT_LARCH_LBT, loongarch_lbt, size);
12307 }
12308
12309 char *
12310 elfcore_write_loongarch_lsx (bfd *abfd,
12311 char *buf,
12312 int *bufsiz,
12313 const void *loongarch_lsx,
12314 int size)
12315 {
12316 char *note_name = "LINUX";
12317 return elfcore_write_note (abfd, buf, bufsiz,
12318 note_name, NT_LARCH_LSX, loongarch_lsx, size);
12319 }
12320
12321 char *
12322 elfcore_write_loongarch_lasx (bfd *abfd,
12323 char *buf,
12324 int *bufsiz,
12325 const void *loongarch_lasx,
12326 int size)
12327 {
12328 char *note_name = "LINUX";
12329 return elfcore_write_note (abfd, buf, bufsiz,
12330 note_name, NT_LARCH_LASX, loongarch_lasx, size);
12331 }
12332
12333 /* Write the buffer of csr values in CSRS (length SIZE) into the note
12334 buffer BUF and update *BUFSIZ. ABFD is the bfd the note is being
12335 written into. Return a pointer to the new start of the note buffer, to
12336 replace BUF which may no longer be valid. */
12337
12338 char *
12339 elfcore_write_riscv_csr (bfd *abfd,
12340 char *buf,
12341 int *bufsiz,
12342 const void *csrs,
12343 int size)
12344 {
12345 const char *note_name = "GDB";
12346 return elfcore_write_note (abfd, buf, bufsiz,
12347 note_name, NT_RISCV_CSR, csrs, size);
12348 }
12349
12350 /* Write the target description (a string) pointed to by TDESC, length
12351 SIZE, into the note buffer BUF, and update *BUFSIZ. ABFD is the bfd the
12352 note is being written into. Return a pointer to the new start of the
12353 note buffer, to replace BUF which may no longer be valid. */
12354
12355 char *
12356 elfcore_write_gdb_tdesc (bfd *abfd,
12357 char *buf,
12358 int *bufsiz,
12359 const void *tdesc,
12360 int size)
12361 {
12362 const char *note_name = "GDB";
12363 return elfcore_write_note (abfd, buf, bufsiz,
12364 note_name, NT_GDB_TDESC, tdesc, size);
12365 }
12366
12367 char *
12368 elfcore_write_register_note (bfd *abfd,
12369 char *buf,
12370 int *bufsiz,
12371 const char *section,
12372 const void *data,
12373 int size)
12374 {
12375 if (strcmp (section, ".reg2") == 0)
12376 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
12377 if (strcmp (section, ".reg-xfp") == 0)
12378 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
12379 if (strcmp (section, ".reg-xstate") == 0)
12380 return elfcore_write_xstatereg (abfd, buf, bufsiz, data, size);
12381 if (strcmp (section, ".reg-ppc-vmx") == 0)
12382 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
12383 if (strcmp (section, ".reg-ppc-vsx") == 0)
12384 return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size);
12385 if (strcmp (section, ".reg-ppc-tar") == 0)
12386 return elfcore_write_ppc_tar (abfd, buf, bufsiz, data, size);
12387 if (strcmp (section, ".reg-ppc-ppr") == 0)
12388 return elfcore_write_ppc_ppr (abfd, buf, bufsiz, data, size);
12389 if (strcmp (section, ".reg-ppc-dscr") == 0)
12390 return elfcore_write_ppc_dscr (abfd, buf, bufsiz, data, size);
12391 if (strcmp (section, ".reg-ppc-ebb") == 0)
12392 return elfcore_write_ppc_ebb (abfd, buf, bufsiz, data, size);
12393 if (strcmp (section, ".reg-ppc-pmu") == 0)
12394 return elfcore_write_ppc_pmu (abfd, buf, bufsiz, data, size);
12395 if (strcmp (section, ".reg-ppc-tm-cgpr") == 0)
12396 return elfcore_write_ppc_tm_cgpr (abfd, buf, bufsiz, data, size);
12397 if (strcmp (section, ".reg-ppc-tm-cfpr") == 0)
12398 return elfcore_write_ppc_tm_cfpr (abfd, buf, bufsiz, data, size);
12399 if (strcmp (section, ".reg-ppc-tm-cvmx") == 0)
12400 return elfcore_write_ppc_tm_cvmx (abfd, buf, bufsiz, data, size);
12401 if (strcmp (section, ".reg-ppc-tm-cvsx") == 0)
12402 return elfcore_write_ppc_tm_cvsx (abfd, buf, bufsiz, data, size);
12403 if (strcmp (section, ".reg-ppc-tm-spr") == 0)
12404 return elfcore_write_ppc_tm_spr (abfd, buf, bufsiz, data, size);
12405 if (strcmp (section, ".reg-ppc-tm-ctar") == 0)
12406 return elfcore_write_ppc_tm_ctar (abfd, buf, bufsiz, data, size);
12407 if (strcmp (section, ".reg-ppc-tm-cppr") == 0)
12408 return elfcore_write_ppc_tm_cppr (abfd, buf, bufsiz, data, size);
12409 if (strcmp (section, ".reg-ppc-tm-cdscr") == 0)
12410 return elfcore_write_ppc_tm_cdscr (abfd, buf, bufsiz, data, size);
12411 if (strcmp (section, ".reg-s390-high-gprs") == 0)
12412 return elfcore_write_s390_high_gprs (abfd, buf, bufsiz, data, size);
12413 if (strcmp (section, ".reg-s390-timer") == 0)
12414 return elfcore_write_s390_timer (abfd, buf, bufsiz, data, size);
12415 if (strcmp (section, ".reg-s390-todcmp") == 0)
12416 return elfcore_write_s390_todcmp (abfd, buf, bufsiz, data, size);
12417 if (strcmp (section, ".reg-s390-todpreg") == 0)
12418 return elfcore_write_s390_todpreg (abfd, buf, bufsiz, data, size);
12419 if (strcmp (section, ".reg-s390-ctrs") == 0)
12420 return elfcore_write_s390_ctrs (abfd, buf, bufsiz, data, size);
12421 if (strcmp (section, ".reg-s390-prefix") == 0)
12422 return elfcore_write_s390_prefix (abfd, buf, bufsiz, data, size);
12423 if (strcmp (section, ".reg-s390-last-break") == 0)
12424 return elfcore_write_s390_last_break (abfd, buf, bufsiz, data, size);
12425 if (strcmp (section, ".reg-s390-system-call") == 0)
12426 return elfcore_write_s390_system_call (abfd, buf, bufsiz, data, size);
12427 if (strcmp (section, ".reg-s390-tdb") == 0)
12428 return elfcore_write_s390_tdb (abfd, buf, bufsiz, data, size);
12429 if (strcmp (section, ".reg-s390-vxrs-low") == 0)
12430 return elfcore_write_s390_vxrs_low (abfd, buf, bufsiz, data, size);
12431 if (strcmp (section, ".reg-s390-vxrs-high") == 0)
12432 return elfcore_write_s390_vxrs_high (abfd, buf, bufsiz, data, size);
12433 if (strcmp (section, ".reg-s390-gs-cb") == 0)
12434 return elfcore_write_s390_gs_cb (abfd, buf, bufsiz, data, size);
12435 if (strcmp (section, ".reg-s390-gs-bc") == 0)
12436 return elfcore_write_s390_gs_bc (abfd, buf, bufsiz, data, size);
12437 if (strcmp (section, ".reg-arm-vfp") == 0)
12438 return elfcore_write_arm_vfp (abfd, buf, bufsiz, data, size);
12439 if (strcmp (section, ".reg-aarch-tls") == 0)
12440 return elfcore_write_aarch_tls (abfd, buf, bufsiz, data, size);
12441 if (strcmp (section, ".reg-aarch-hw-break") == 0)
12442 return elfcore_write_aarch_hw_break (abfd, buf, bufsiz, data, size);
12443 if (strcmp (section, ".reg-aarch-hw-watch") == 0)
12444 return elfcore_write_aarch_hw_watch (abfd, buf, bufsiz, data, size);
12445 if (strcmp (section, ".reg-aarch-sve") == 0)
12446 return elfcore_write_aarch_sve (abfd, buf, bufsiz, data, size);
12447 if (strcmp (section, ".reg-aarch-pauth") == 0)
12448 return elfcore_write_aarch_pauth (abfd, buf, bufsiz, data, size);
12449 if (strcmp (section, ".reg-aarch-mte") == 0)
12450 return elfcore_write_aarch_mte (abfd, buf, bufsiz, data, size);
12451 if (strcmp (section, ".reg-arc-v2") == 0)
12452 return elfcore_write_arc_v2 (abfd, buf, bufsiz, data, size);
12453 if (strcmp (section, ".gdb-tdesc") == 0)
12454 return elfcore_write_gdb_tdesc (abfd, buf, bufsiz, data, size);
12455 if (strcmp (section, ".reg-riscv-csr") == 0)
12456 return elfcore_write_riscv_csr (abfd, buf, bufsiz, data, size);
12457 if (strcmp (section, ".reg-loongarch-cpucfg") == 0)
12458 return elfcore_write_loongarch_cpucfg (abfd, buf, bufsiz, data, size);
12459 if (strcmp (section, ".reg-loongarch-lbt") == 0)
12460 return elfcore_write_loongarch_lbt (abfd, buf, bufsiz, data, size);
12461 if (strcmp (section, ".reg-loongarch-lsx") == 0)
12462 return elfcore_write_loongarch_lsx (abfd, buf, bufsiz, data, size);
12463 if (strcmp (section, ".reg-loongarch-lasx") == 0)
12464 return elfcore_write_loongarch_lasx (abfd, buf, bufsiz, data, size);
12465 return NULL;
12466 }
12467
12468 char *
12469 elfcore_write_file_note (bfd *obfd, char *note_data, int *note_size,
12470 const void *buf, int bufsiz)
12471 {
12472 return elfcore_write_note (obfd, note_data, note_size,
12473 "CORE", NT_FILE, buf, bufsiz);
12474 }
12475
12476 static bool
12477 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset,
12478 size_t align)
12479 {
12480 char *p;
12481
12482 /* NB: CORE PT_NOTE segments may have p_align values of 0 or 1.
12483 gABI specifies that PT_NOTE alignment should be aligned to 4
12484 bytes for 32-bit objects and to 8 bytes for 64-bit objects. If
12485 align is less than 4, we use 4 byte alignment. */
12486 if (align < 4)
12487 align = 4;
12488 if (align != 4 && align != 8)
12489 return false;
12490
12491 p = buf;
12492 while (p < buf + size)
12493 {
12494 Elf_External_Note *xnp = (Elf_External_Note *) p;
12495 Elf_Internal_Note in;
12496
12497 if (offsetof (Elf_External_Note, name) > buf - p + size)
12498 return false;
12499
12500 in.type = H_GET_32 (abfd, xnp->type);
12501
12502 in.namesz = H_GET_32 (abfd, xnp->namesz);
12503 in.namedata = xnp->name;
12504 if (in.namesz > buf - in.namedata + size)
12505 return false;
12506
12507 in.descsz = H_GET_32 (abfd, xnp->descsz);
12508 in.descdata = p + ELF_NOTE_DESC_OFFSET (in.namesz, align);
12509 in.descpos = offset + (in.descdata - buf);
12510 if (in.descsz != 0
12511 && (in.descdata >= buf + size
12512 || in.descsz > buf - in.descdata + size))
12513 return false;
12514
12515 switch (bfd_get_format (abfd))
12516 {
12517 default:
12518 return true;
12519
12520 case bfd_core:
12521 {
12522 #define GROKER_ELEMENT(S,F) {S, sizeof (S) - 1, F}
12523 struct
12524 {
12525 const char * string;
12526 size_t len;
12527 bool (*func) (bfd *, Elf_Internal_Note *);
12528 }
12529 grokers[] =
12530 {
12531 GROKER_ELEMENT ("", elfcore_grok_note),
12532 GROKER_ELEMENT ("FreeBSD", elfcore_grok_freebsd_note),
12533 GROKER_ELEMENT ("NetBSD-CORE", elfcore_grok_netbsd_note),
12534 GROKER_ELEMENT ("OpenBSD", elfcore_grok_openbsd_note),
12535 GROKER_ELEMENT ("QNX", elfcore_grok_nto_note),
12536 GROKER_ELEMENT ("SPU/", elfcore_grok_spu_note),
12537 GROKER_ELEMENT ("GNU", elfobj_grok_gnu_note),
12538 GROKER_ELEMENT ("CORE", elfcore_grok_solaris_note)
12539 };
12540 #undef GROKER_ELEMENT
12541 int i;
12542
12543 for (i = ARRAY_SIZE (grokers); i--;)
12544 {
12545 if (in.namesz >= grokers[i].len
12546 && strncmp (in.namedata, grokers[i].string,
12547 grokers[i].len) == 0)
12548 {
12549 if (! grokers[i].func (abfd, & in))
12550 return false;
12551 break;
12552 }
12553 }
12554 break;
12555 }
12556
12557 case bfd_object:
12558 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
12559 {
12560 if (! elfobj_grok_gnu_note (abfd, &in))
12561 return false;
12562 }
12563 else if (in.namesz == sizeof "stapsdt"
12564 && strcmp (in.namedata, "stapsdt") == 0)
12565 {
12566 if (! elfobj_grok_stapsdt_note (abfd, &in))
12567 return false;
12568 }
12569 break;
12570 }
12571
12572 p += ELF_NOTE_NEXT_OFFSET (in.namesz, in.descsz, align);
12573 }
12574
12575 return true;
12576 }
12577
12578 bool
12579 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size,
12580 size_t align)
12581 {
12582 char *buf;
12583
12584 if (size == 0 || (size + 1) == 0)
12585 return true;
12586
12587 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
12588 return false;
12589
12590 buf = (char *) _bfd_malloc_and_read (abfd, size + 1, size);
12591 if (buf == NULL)
12592 return false;
12593
12594 /* PR 17512: file: ec08f814
12595 0-termintate the buffer so that string searches will not overflow. */
12596 buf[size] = 0;
12597
12598 if (!elf_parse_notes (abfd, buf, size, offset, align))
12599 {
12600 free (buf);
12601 return false;
12602 }
12603
12604 free (buf);
12605 return true;
12606 }
12607 \f
12608 /* Providing external access to the ELF program header table. */
12609
12610 /* Return an upper bound on the number of bytes required to store a
12611 copy of ABFD's program header table entries. Return -1 if an error
12612 occurs; bfd_get_error will return an appropriate code. */
12613
12614 long
12615 bfd_get_elf_phdr_upper_bound (bfd *abfd)
12616 {
12617 if (abfd->xvec->flavour != bfd_target_elf_flavour)
12618 {
12619 bfd_set_error (bfd_error_wrong_format);
12620 return -1;
12621 }
12622
12623 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
12624 }
12625
12626 /* Copy ABFD's program header table entries to *PHDRS. The entries
12627 will be stored as an array of Elf_Internal_Phdr structures, as
12628 defined in include/elf/internal.h. To find out how large the
12629 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
12630
12631 Return the number of program header table entries read, or -1 if an
12632 error occurs; bfd_get_error will return an appropriate code. */
12633
12634 int
12635 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
12636 {
12637 int num_phdrs;
12638
12639 if (abfd->xvec->flavour != bfd_target_elf_flavour)
12640 {
12641 bfd_set_error (bfd_error_wrong_format);
12642 return -1;
12643 }
12644
12645 num_phdrs = elf_elfheader (abfd)->e_phnum;
12646 if (num_phdrs != 0)
12647 memcpy (phdrs, elf_tdata (abfd)->phdr,
12648 num_phdrs * sizeof (Elf_Internal_Phdr));
12649
12650 return num_phdrs;
12651 }
12652
12653 enum elf_reloc_type_class
12654 _bfd_elf_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
12655 const asection *rel_sec ATTRIBUTE_UNUSED,
12656 const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
12657 {
12658 return reloc_class_normal;
12659 }
12660
12661 /* For RELA architectures, return the relocation value for a
12662 relocation against a local symbol. */
12663
12664 bfd_vma
12665 _bfd_elf_rela_local_sym (bfd *abfd,
12666 Elf_Internal_Sym *sym,
12667 asection **psec,
12668 Elf_Internal_Rela *rel)
12669 {
12670 asection *sec = *psec;
12671 bfd_vma relocation;
12672
12673 relocation = (sec->output_section->vma
12674 + sec->output_offset
12675 + sym->st_value);
12676 if ((sec->flags & SEC_MERGE)
12677 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
12678 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
12679 {
12680 rel->r_addend =
12681 _bfd_merged_section_offset (abfd, psec,
12682 elf_section_data (sec)->sec_info,
12683 sym->st_value + rel->r_addend);
12684 if (sec != *psec)
12685 {
12686 /* If we have changed the section, and our original section is
12687 marked with SEC_EXCLUDE, it means that the original
12688 SEC_MERGE section has been completely subsumed in some
12689 other SEC_MERGE section. In this case, we need to leave
12690 some info around for --emit-relocs. */
12691 if ((sec->flags & SEC_EXCLUDE) != 0)
12692 sec->kept_section = *psec;
12693 sec = *psec;
12694 }
12695 rel->r_addend -= relocation;
12696 rel->r_addend += sec->output_section->vma + sec->output_offset;
12697 }
12698 return relocation;
12699 }
12700
12701 bfd_vma
12702 _bfd_elf_rel_local_sym (bfd *abfd,
12703 Elf_Internal_Sym *sym,
12704 asection **psec,
12705 bfd_vma addend)
12706 {
12707 asection *sec = *psec;
12708
12709 if (sec->sec_info_type != SEC_INFO_TYPE_MERGE)
12710 return sym->st_value + addend;
12711
12712 return _bfd_merged_section_offset (abfd, psec,
12713 elf_section_data (sec)->sec_info,
12714 sym->st_value + addend);
12715 }
12716
12717 /* Adjust an address within a section. Given OFFSET within SEC, return
12718 the new offset within the section, based upon changes made to the
12719 section. Returns -1 if the offset is now invalid.
12720 The offset (in abnd out) is in target sized bytes, however big a
12721 byte may be. */
12722
12723 bfd_vma
12724 _bfd_elf_section_offset (bfd *abfd,
12725 struct bfd_link_info *info,
12726 asection *sec,
12727 bfd_vma offset)
12728 {
12729 switch (sec->sec_info_type)
12730 {
12731 case SEC_INFO_TYPE_STABS:
12732 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
12733 offset);
12734 case SEC_INFO_TYPE_EH_FRAME:
12735 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
12736
12737 default:
12738 if ((sec->flags & SEC_ELF_REVERSE_COPY) != 0)
12739 {
12740 /* Reverse the offset. */
12741 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12742 bfd_size_type address_size = bed->s->arch_size / 8;
12743
12744 /* address_size and sec->size are in octets. Convert
12745 to bytes before subtracting the original offset. */
12746 offset = ((sec->size - address_size)
12747 / bfd_octets_per_byte (abfd, sec) - offset);
12748 }
12749 return offset;
12750 }
12751 }
12752 \f
12753 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
12754 reconstruct an ELF file by reading the segments out of remote memory
12755 based on the ELF file header at EHDR_VMA and the ELF program headers it
12756 points to. If not null, *LOADBASEP is filled in with the difference
12757 between the VMAs from which the segments were read, and the VMAs the
12758 file headers (and hence BFD's idea of each section's VMA) put them at.
12759
12760 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
12761 remote memory at target address VMA into the local buffer at MYADDR; it
12762 should return zero on success or an `errno' code on failure. TEMPL must
12763 be a BFD for an ELF target with the word size and byte order found in
12764 the remote memory. */
12765
12766 bfd *
12767 bfd_elf_bfd_from_remote_memory
12768 (bfd *templ,
12769 bfd_vma ehdr_vma,
12770 bfd_size_type size,
12771 bfd_vma *loadbasep,
12772 int (*target_read_memory) (bfd_vma, bfd_byte *, bfd_size_type))
12773 {
12774 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
12775 (templ, ehdr_vma, size, loadbasep, target_read_memory);
12776 }
12777 \f
12778 long
12779 _bfd_elf_get_synthetic_symtab (bfd *abfd,
12780 long symcount ATTRIBUTE_UNUSED,
12781 asymbol **syms ATTRIBUTE_UNUSED,
12782 long dynsymcount,
12783 asymbol **dynsyms,
12784 asymbol **ret)
12785 {
12786 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12787 asection *relplt;
12788 asymbol *s;
12789 const char *relplt_name;
12790 bool (*slurp_relocs) (bfd *, asection *, asymbol **, bool);
12791 arelent *p;
12792 long count, i, n;
12793 size_t size;
12794 Elf_Internal_Shdr *hdr;
12795 char *names;
12796 asection *plt;
12797
12798 *ret = NULL;
12799
12800 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
12801 return 0;
12802
12803 if (dynsymcount <= 0)
12804 return 0;
12805
12806 if (!bed->plt_sym_val)
12807 return 0;
12808
12809 relplt_name = bed->relplt_name;
12810 if (relplt_name == NULL)
12811 relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt";
12812 relplt = bfd_get_section_by_name (abfd, relplt_name);
12813 if (relplt == NULL)
12814 return 0;
12815
12816 hdr = &elf_section_data (relplt)->this_hdr;
12817 if (hdr->sh_link != elf_dynsymtab (abfd)
12818 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
12819 return 0;
12820
12821 plt = bfd_get_section_by_name (abfd, ".plt");
12822 if (plt == NULL)
12823 return 0;
12824
12825 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
12826 if (! (*slurp_relocs) (abfd, relplt, dynsyms, true))
12827 return -1;
12828
12829 count = relplt->size / hdr->sh_entsize;
12830 size = count * sizeof (asymbol);
12831 p = relplt->relocation;
12832 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
12833 {
12834 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
12835 if (p->addend != 0)
12836 {
12837 #ifdef BFD64
12838 size += sizeof ("+0x") - 1 + 8 + 8 * (bed->s->elfclass == ELFCLASS64);
12839 #else
12840 size += sizeof ("+0x") - 1 + 8;
12841 #endif
12842 }
12843 }
12844
12845 s = *ret = (asymbol *) bfd_malloc (size);
12846 if (s == NULL)
12847 return -1;
12848
12849 names = (char *) (s + count);
12850 p = relplt->relocation;
12851 n = 0;
12852 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
12853 {
12854 size_t len;
12855 bfd_vma addr;
12856
12857 addr = bed->plt_sym_val (i, plt, p);
12858 if (addr == (bfd_vma) -1)
12859 continue;
12860
12861 *s = **p->sym_ptr_ptr;
12862 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
12863 we are defining a symbol, ensure one of them is set. */
12864 if ((s->flags & BSF_LOCAL) == 0)
12865 s->flags |= BSF_GLOBAL;
12866 s->flags |= BSF_SYNTHETIC;
12867 s->section = plt;
12868 s->value = addr - plt->vma;
12869 s->name = names;
12870 s->udata.p = NULL;
12871 len = strlen ((*p->sym_ptr_ptr)->name);
12872 memcpy (names, (*p->sym_ptr_ptr)->name, len);
12873 names += len;
12874 if (p->addend != 0)
12875 {
12876 char buf[30], *a;
12877
12878 memcpy (names, "+0x", sizeof ("+0x") - 1);
12879 names += sizeof ("+0x") - 1;
12880 bfd_sprintf_vma (abfd, buf, p->addend);
12881 for (a = buf; *a == '0'; ++a)
12882 ;
12883 len = strlen (a);
12884 memcpy (names, a, len);
12885 names += len;
12886 }
12887 memcpy (names, "@plt", sizeof ("@plt"));
12888 names += sizeof ("@plt");
12889 ++s, ++n;
12890 }
12891
12892 return n;
12893 }
12894
12895 /* It is only used by x86-64 so far.
12896 ??? This repeats *COM* id of zero. sec->id is supposed to be unique,
12897 but current usage would allow all of _bfd_std_section to be zero. */
12898 static const asymbol lcomm_sym
12899 = GLOBAL_SYM_INIT ("LARGE_COMMON", &_bfd_elf_large_com_section);
12900 asection _bfd_elf_large_com_section
12901 = BFD_FAKE_SECTION (_bfd_elf_large_com_section, &lcomm_sym,
12902 "LARGE_COMMON", 0, SEC_IS_COMMON);
12903
12904 bool
12905 _bfd_elf_final_write_processing (bfd *abfd)
12906 {
12907 Elf_Internal_Ehdr *i_ehdrp; /* ELF file header, internal form. */
12908
12909 i_ehdrp = elf_elfheader (abfd);
12910
12911 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE)
12912 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
12913
12914 /* Set the osabi field to ELFOSABI_GNU if the binary contains
12915 SHF_GNU_MBIND or SHF_GNU_RETAIN sections or symbols of STT_GNU_IFUNC type
12916 or STB_GNU_UNIQUE binding. */
12917 if (elf_tdata (abfd)->has_gnu_osabi != 0)
12918 {
12919 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE)
12920 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_GNU;
12921 else if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_GNU
12922 && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_FREEBSD)
12923 {
12924 if (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_mbind)
12925 _bfd_error_handler (_("GNU_MBIND section is supported only by GNU "
12926 "and FreeBSD targets"));
12927 if (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_ifunc)
12928 _bfd_error_handler (_("symbol type STT_GNU_IFUNC is supported "
12929 "only by GNU and FreeBSD targets"));
12930 if (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_unique)
12931 _bfd_error_handler (_("symbol binding STB_GNU_UNIQUE is supported "
12932 "only by GNU and FreeBSD targets"));
12933 if (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_retain)
12934 _bfd_error_handler (_("GNU_RETAIN section is supported "
12935 "only by GNU and FreeBSD targets"));
12936 bfd_set_error (bfd_error_sorry);
12937 return false;
12938 }
12939 }
12940 return true;
12941 }
12942
12943
12944 /* Return TRUE for ELF symbol types that represent functions.
12945 This is the default version of this function, which is sufficient for
12946 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */
12947
12948 bool
12949 _bfd_elf_is_function_type (unsigned int type)
12950 {
12951 return (type == STT_FUNC
12952 || type == STT_GNU_IFUNC);
12953 }
12954
12955 /* If the ELF symbol SYM might be a function in SEC, return the
12956 function size and set *CODE_OFF to the function's entry point,
12957 otherwise return zero. */
12958
12959 bfd_size_type
12960 _bfd_elf_maybe_function_sym (const asymbol *sym, asection *sec,
12961 bfd_vma *code_off)
12962 {
12963 bfd_size_type size;
12964 elf_symbol_type * elf_sym = (elf_symbol_type *) sym;
12965
12966 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
12967 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0
12968 || sym->section != sec)
12969 return 0;
12970
12971 size = (sym->flags & BSF_SYNTHETIC) ? 0 : elf_sym->internal_elf_sym.st_size;
12972
12973 /* In theory we should check that the symbol's type satisfies
12974 _bfd_elf_is_function_type(), but there are some function-like
12975 symbols which would fail this test. (eg _start). Instead
12976 we check for hidden, local, notype symbols with zero size.
12977 This type of symbol is generated by the annobin plugin for gcc
12978 and clang, and should not be considered to be a function symbol. */
12979 if (size == 0
12980 && ((sym->flags & (BSF_SYNTHETIC | BSF_LOCAL)) == BSF_LOCAL)
12981 && ELF_ST_TYPE (elf_sym->internal_elf_sym.st_info) == STT_NOTYPE
12982 && ELF_ST_VISIBILITY (elf_sym->internal_elf_sym.st_other) == STV_HIDDEN)
12983 return 0;
12984
12985 *code_off = sym->value;
12986 /* Do not return 0 for the function's size. */
12987 return size ? size : 1;
12988 }
12989
12990 /* Set to non-zero to enable some debug messages. */
12991 #define DEBUG_SECONDARY_RELOCS 0
12992
12993 /* An internal-to-the-bfd-library only section type
12994 used to indicate a cached secondary reloc section. */
12995 #define SHT_SECONDARY_RELOC (SHT_LOOS + SHT_RELA)
12996
12997 /* Create a BFD section to hold a secondary reloc section. */
12998
12999 bool
13000 _bfd_elf_init_secondary_reloc_section (bfd * abfd,
13001 Elf_Internal_Shdr *hdr,
13002 const char * name,
13003 unsigned int shindex)
13004 {
13005 /* We only support RELA secondary relocs. */
13006 if (hdr->sh_type != SHT_RELA)
13007 return false;
13008
13009 #if DEBUG_SECONDARY_RELOCS
13010 fprintf (stderr, "secondary reloc section %s encountered\n", name);
13011 #endif
13012 hdr->sh_type = SHT_SECONDARY_RELOC;
13013 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
13014 }
13015
13016 /* Read in any secondary relocs associated with SEC. */
13017
13018 bool
13019 _bfd_elf_slurp_secondary_reloc_section (bfd * abfd,
13020 asection * sec,
13021 asymbol ** symbols,
13022 bool dynamic)
13023 {
13024 const struct elf_backend_data * const ebd = get_elf_backend_data (abfd);
13025 asection * relsec;
13026 bool result = true;
13027 bfd_vma (*r_sym) (bfd_vma);
13028
13029 #if BFD_DEFAULT_TARGET_SIZE > 32
13030 if (bfd_arch_bits_per_address (abfd) != 32)
13031 r_sym = elf64_r_sym;
13032 else
13033 #endif
13034 r_sym = elf32_r_sym;
13035
13036 if (!elf_section_data (sec)->has_secondary_relocs)
13037 return true;
13038
13039 /* Discover if there are any secondary reloc sections
13040 associated with SEC. */
13041 for (relsec = abfd->sections; relsec != NULL; relsec = relsec->next)
13042 {
13043 Elf_Internal_Shdr * hdr = & elf_section_data (relsec)->this_hdr;
13044
13045 if (hdr->sh_type == SHT_SECONDARY_RELOC
13046 && hdr->sh_info == (unsigned) elf_section_data (sec)->this_idx
13047 && (hdr->sh_entsize == ebd->s->sizeof_rel
13048 || hdr->sh_entsize == ebd->s->sizeof_rela))
13049 {
13050 bfd_byte * native_relocs;
13051 bfd_byte * native_reloc;
13052 arelent * internal_relocs;
13053 arelent * internal_reloc;
13054 unsigned int i;
13055 unsigned int entsize;
13056 unsigned int symcount;
13057 unsigned int reloc_count;
13058 size_t amt;
13059
13060 if (ebd->elf_info_to_howto == NULL)
13061 return false;
13062
13063 #if DEBUG_SECONDARY_RELOCS
13064 fprintf (stderr, "read secondary relocs for %s from %s\n",
13065 sec->name, relsec->name);
13066 #endif
13067 entsize = hdr->sh_entsize;
13068
13069 native_relocs = bfd_malloc (hdr->sh_size);
13070 if (native_relocs == NULL)
13071 {
13072 result = false;
13073 continue;
13074 }
13075
13076 reloc_count = NUM_SHDR_ENTRIES (hdr);
13077 if (_bfd_mul_overflow (reloc_count, sizeof (arelent), & amt))
13078 {
13079 free (native_relocs);
13080 bfd_set_error (bfd_error_file_too_big);
13081 result = false;
13082 continue;
13083 }
13084
13085 internal_relocs = (arelent *) bfd_alloc (abfd, amt);
13086 if (internal_relocs == NULL)
13087 {
13088 free (native_relocs);
13089 result = false;
13090 continue;
13091 }
13092
13093 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
13094 || (bfd_bread (native_relocs, hdr->sh_size, abfd)
13095 != hdr->sh_size))
13096 {
13097 free (native_relocs);
13098 /* The internal_relocs will be freed when
13099 the memory for the bfd is released. */
13100 result = false;
13101 continue;
13102 }
13103
13104 if (dynamic)
13105 symcount = bfd_get_dynamic_symcount (abfd);
13106 else
13107 symcount = bfd_get_symcount (abfd);
13108
13109 for (i = 0, internal_reloc = internal_relocs,
13110 native_reloc = native_relocs;
13111 i < reloc_count;
13112 i++, internal_reloc++, native_reloc += entsize)
13113 {
13114 bool res;
13115 Elf_Internal_Rela rela;
13116
13117 if (entsize == ebd->s->sizeof_rel)
13118 ebd->s->swap_reloc_in (abfd, native_reloc, & rela);
13119 else /* entsize == ebd->s->sizeof_rela */
13120 ebd->s->swap_reloca_in (abfd, native_reloc, & rela);
13121
13122 /* The address of an ELF reloc is section relative for an object
13123 file, and absolute for an executable file or shared library.
13124 The address of a normal BFD reloc is always section relative,
13125 and the address of a dynamic reloc is absolute.. */
13126 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
13127 internal_reloc->address = rela.r_offset;
13128 else
13129 internal_reloc->address = rela.r_offset - sec->vma;
13130
13131 if (r_sym (rela.r_info) == STN_UNDEF)
13132 {
13133 /* FIXME: This and the error case below mean that we
13134 have a symbol on relocs that is not elf_symbol_type. */
13135 internal_reloc->sym_ptr_ptr =
13136 bfd_abs_section_ptr->symbol_ptr_ptr;
13137 }
13138 else if (r_sym (rela.r_info) > symcount)
13139 {
13140 _bfd_error_handler
13141 /* xgettext:c-format */
13142 (_("%pB(%pA): relocation %d has invalid symbol index %ld"),
13143 abfd, sec, i, (long) r_sym (rela.r_info));
13144 bfd_set_error (bfd_error_bad_value);
13145 internal_reloc->sym_ptr_ptr =
13146 bfd_abs_section_ptr->symbol_ptr_ptr;
13147 result = false;
13148 }
13149 else
13150 {
13151 asymbol **ps;
13152
13153 ps = symbols + r_sym (rela.r_info) - 1;
13154 internal_reloc->sym_ptr_ptr = ps;
13155 /* Make sure that this symbol is not removed by strip. */
13156 (*ps)->flags |= BSF_KEEP;
13157 }
13158
13159 internal_reloc->addend = rela.r_addend;
13160
13161 res = ebd->elf_info_to_howto (abfd, internal_reloc, & rela);
13162 if (! res || internal_reloc->howto == NULL)
13163 {
13164 #if DEBUG_SECONDARY_RELOCS
13165 fprintf (stderr, "there is no howto associated with reloc %lx\n",
13166 rela.r_info);
13167 #endif
13168 result = false;
13169 }
13170 }
13171
13172 free (native_relocs);
13173 /* Store the internal relocs. */
13174 elf_section_data (relsec)->sec_info = internal_relocs;
13175 }
13176 }
13177
13178 return result;
13179 }
13180
13181 /* Set the ELF section header fields of an output secondary reloc section. */
13182
13183 bool
13184 _bfd_elf_copy_special_section_fields (const bfd * ibfd ATTRIBUTE_UNUSED,
13185 bfd * obfd ATTRIBUTE_UNUSED,
13186 const Elf_Internal_Shdr * isection,
13187 Elf_Internal_Shdr * osection)
13188 {
13189 asection * isec;
13190 asection * osec;
13191 struct bfd_elf_section_data * esd;
13192
13193 if (isection == NULL)
13194 return false;
13195
13196 if (isection->sh_type != SHT_SECONDARY_RELOC)
13197 return true;
13198
13199 isec = isection->bfd_section;
13200 if (isec == NULL)
13201 return false;
13202
13203 osec = osection->bfd_section;
13204 if (osec == NULL)
13205 return false;
13206
13207 esd = elf_section_data (osec);
13208 BFD_ASSERT (esd->sec_info == NULL);
13209 esd->sec_info = elf_section_data (isec)->sec_info;
13210 osection->sh_type = SHT_RELA;
13211 osection->sh_link = elf_onesymtab (obfd);
13212 if (osection->sh_link == 0)
13213 {
13214 /* There is no symbol table - we are hosed... */
13215 _bfd_error_handler
13216 /* xgettext:c-format */
13217 (_("%pB(%pA): link section cannot be set because the output file does not have a symbol table"),
13218 obfd, osec);
13219 bfd_set_error (bfd_error_bad_value);
13220 return false;
13221 }
13222
13223 /* Find the output section that corresponds to the isection's sh_info link. */
13224 if (isection->sh_info == 0
13225 || isection->sh_info >= elf_numsections (ibfd))
13226 {
13227 _bfd_error_handler
13228 /* xgettext:c-format */
13229 (_("%pB(%pA): info section index is invalid"),
13230 obfd, osec);
13231 bfd_set_error (bfd_error_bad_value);
13232 return false;
13233 }
13234
13235 isection = elf_elfsections (ibfd)[isection->sh_info];
13236
13237 if (isection == NULL
13238 || isection->bfd_section == NULL
13239 || isection->bfd_section->output_section == NULL)
13240 {
13241 _bfd_error_handler
13242 /* xgettext:c-format */
13243 (_("%pB(%pA): info section index cannot be set because the section is not in the output"),
13244 obfd, osec);
13245 bfd_set_error (bfd_error_bad_value);
13246 return false;
13247 }
13248
13249 esd = elf_section_data (isection->bfd_section->output_section);
13250 BFD_ASSERT (esd != NULL);
13251 osection->sh_info = esd->this_idx;
13252 esd->has_secondary_relocs = true;
13253 #if DEBUG_SECONDARY_RELOCS
13254 fprintf (stderr, "update header of %s, sh_link = %u, sh_info = %u\n",
13255 osec->name, osection->sh_link, osection->sh_info);
13256 fprintf (stderr, "mark section %s as having secondary relocs\n",
13257 bfd_section_name (isection->bfd_section->output_section));
13258 #endif
13259
13260 return true;
13261 }
13262
13263 /* Write out a secondary reloc section.
13264
13265 FIXME: Currently this function can result in a serious performance penalty
13266 for files with secondary relocs and lots of sections. The proper way to
13267 fix this is for _bfd_elf_copy_special_section_fields() to chain secondary
13268 relocs together and then to have this function just walk that chain. */
13269
13270 bool
13271 _bfd_elf_write_secondary_reloc_section (bfd *abfd, asection *sec)
13272 {
13273 const struct elf_backend_data * const ebd = get_elf_backend_data (abfd);
13274 bfd_vma addr_offset;
13275 asection * relsec;
13276 bfd_vma (*r_info) (bfd_vma, bfd_vma);
13277 bool result = true;
13278
13279 if (sec == NULL)
13280 return false;
13281
13282 #if BFD_DEFAULT_TARGET_SIZE > 32
13283 if (bfd_arch_bits_per_address (abfd) != 32)
13284 r_info = elf64_r_info;
13285 else
13286 #endif
13287 r_info = elf32_r_info;
13288
13289 /* The address of an ELF reloc is section relative for an object
13290 file, and absolute for an executable file or shared library.
13291 The address of a BFD reloc is always section relative. */
13292 addr_offset = 0;
13293 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
13294 addr_offset = sec->vma;
13295
13296 /* Discover if there are any secondary reloc sections
13297 associated with SEC. */
13298 for (relsec = abfd->sections; relsec != NULL; relsec = relsec->next)
13299 {
13300 const struct bfd_elf_section_data * const esd = elf_section_data (relsec);
13301 Elf_Internal_Shdr * const hdr = (Elf_Internal_Shdr *) & esd->this_hdr;
13302
13303 if (hdr->sh_type == SHT_RELA
13304 && hdr->sh_info == (unsigned) elf_section_data (sec)->this_idx)
13305 {
13306 asymbol * last_sym;
13307 int last_sym_idx;
13308 unsigned int reloc_count;
13309 unsigned int idx;
13310 unsigned int entsize;
13311 arelent * src_irel;
13312 bfd_byte * dst_rela;
13313
13314 if (hdr->contents != NULL)
13315 {
13316 _bfd_error_handler
13317 /* xgettext:c-format */
13318 (_("%pB(%pA): error: secondary reloc section processed twice"),
13319 abfd, relsec);
13320 bfd_set_error (bfd_error_bad_value);
13321 result = false;
13322 continue;
13323 }
13324
13325 entsize = hdr->sh_entsize;
13326 if (entsize == 0)
13327 {
13328 _bfd_error_handler
13329 /* xgettext:c-format */
13330 (_("%pB(%pA): error: secondary reloc section has zero sized entries"),
13331 abfd, relsec);
13332 bfd_set_error (bfd_error_bad_value);
13333 result = false;
13334 continue;
13335 }
13336 else if (entsize != ebd->s->sizeof_rel
13337 && entsize != ebd->s->sizeof_rela)
13338 {
13339 _bfd_error_handler
13340 /* xgettext:c-format */
13341 (_("%pB(%pA): error: secondary reloc section has non-standard sized entries"),
13342 abfd, relsec);
13343 bfd_set_error (bfd_error_bad_value);
13344 result = false;
13345 continue;
13346 }
13347
13348 reloc_count = hdr->sh_size / entsize;
13349 if (reloc_count <= 0)
13350 {
13351 _bfd_error_handler
13352 /* xgettext:c-format */
13353 (_("%pB(%pA): error: secondary reloc section is empty!"),
13354 abfd, relsec);
13355 bfd_set_error (bfd_error_bad_value);
13356 result = false;
13357 continue;
13358 }
13359
13360 hdr->contents = bfd_alloc (abfd, hdr->sh_size);
13361 if (hdr->contents == NULL)
13362 continue;
13363
13364 #if DEBUG_SECONDARY_RELOCS
13365 fprintf (stderr, "write %u secondary relocs for %s from %s\n",
13366 reloc_count, sec->name, relsec->name);
13367 #endif
13368 last_sym = NULL;
13369 last_sym_idx = 0;
13370 dst_rela = hdr->contents;
13371 src_irel = (arelent *) esd->sec_info;
13372 if (src_irel == NULL)
13373 {
13374 _bfd_error_handler
13375 /* xgettext:c-format */
13376 (_("%pB(%pA): error: internal relocs missing for secondary reloc section"),
13377 abfd, relsec);
13378 bfd_set_error (bfd_error_bad_value);
13379 result = false;
13380 continue;
13381 }
13382
13383 for (idx = 0; idx < reloc_count; idx++, dst_rela += entsize)
13384 {
13385 Elf_Internal_Rela src_rela;
13386 arelent *ptr;
13387 asymbol *sym;
13388 int n;
13389
13390 ptr = src_irel + idx;
13391 if (ptr == NULL)
13392 {
13393 _bfd_error_handler
13394 /* xgettext:c-format */
13395 (_("%pB(%pA): error: reloc table entry %u is empty"),
13396 abfd, relsec, idx);
13397 bfd_set_error (bfd_error_bad_value);
13398 result = false;
13399 break;
13400 }
13401
13402 if (ptr->sym_ptr_ptr == NULL)
13403 {
13404 /* FIXME: Is this an error ? */
13405 n = 0;
13406 }
13407 else
13408 {
13409 sym = *ptr->sym_ptr_ptr;
13410
13411 if (sym == last_sym)
13412 n = last_sym_idx;
13413 else
13414 {
13415 n = _bfd_elf_symbol_from_bfd_symbol (abfd, & sym);
13416 if (n < 0)
13417 {
13418 _bfd_error_handler
13419 /* xgettext:c-format */
13420 (_("%pB(%pA): error: secondary reloc %u references a missing symbol"),
13421 abfd, relsec, idx);
13422 bfd_set_error (bfd_error_bad_value);
13423 result = false;
13424 n = 0;
13425 }
13426
13427 last_sym = sym;
13428 last_sym_idx = n;
13429 }
13430
13431 if (sym->the_bfd != NULL
13432 && sym->the_bfd->xvec != abfd->xvec
13433 && ! _bfd_elf_validate_reloc (abfd, ptr))
13434 {
13435 _bfd_error_handler
13436 /* xgettext:c-format */
13437 (_("%pB(%pA): error: secondary reloc %u references a deleted symbol"),
13438 abfd, relsec, idx);
13439 bfd_set_error (bfd_error_bad_value);
13440 result = false;
13441 n = 0;
13442 }
13443 }
13444
13445 src_rela.r_offset = ptr->address + addr_offset;
13446 if (ptr->howto == NULL)
13447 {
13448 _bfd_error_handler
13449 /* xgettext:c-format */
13450 (_("%pB(%pA): error: secondary reloc %u is of an unknown type"),
13451 abfd, relsec, idx);
13452 bfd_set_error (bfd_error_bad_value);
13453 result = false;
13454 src_rela.r_info = r_info (0, 0);
13455 }
13456 else
13457 src_rela.r_info = r_info (n, ptr->howto->type);
13458 src_rela.r_addend = ptr->addend;
13459
13460 if (entsize == ebd->s->sizeof_rel)
13461 ebd->s->swap_reloc_out (abfd, &src_rela, dst_rela);
13462 else /* entsize == ebd->s->sizeof_rela */
13463 ebd->s->swap_reloca_out (abfd, &src_rela, dst_rela);
13464 }
13465 }
13466 }
13467
13468 return result;
13469 }