2013-02-04 Sergio Durigan Junior <sergiodj@redhat.com>
[binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,
5 2013
6 Free Software Foundation, Inc.
7
8 This file is part of BFD, the Binary File Descriptor library.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
23 MA 02110-1301, USA. */
24
25
26 /*
27 SECTION
28 ELF backends
29
30 BFD support for ELF formats is being worked on.
31 Currently, the best supported back ends are for sparc and i386
32 (running svr4 or Solaris 2).
33
34 Documentation of the internals of the support code still needs
35 to be written. The code is changing quickly enough that we
36 haven't bothered yet. */
37
38 /* For sparc64-cross-sparc32. */
39 #define _SYSCALL32
40 #include "sysdep.h"
41 #include "bfd.h"
42 #include "bfdlink.h"
43 #include "libbfd.h"
44 #define ARCH_SIZE 0
45 #include "elf-bfd.h"
46 #include "libiberty.h"
47 #include "safe-ctype.h"
48 #include "elf-linux-psinfo.h"
49
50 #ifdef CORE_HEADER
51 #include CORE_HEADER
52 #endif
53
54 static int elf_sort_sections (const void *, const void *);
55 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
56 static bfd_boolean prep_headers (bfd *);
57 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
58 static bfd_boolean elf_read_notes (bfd *, file_ptr, bfd_size_type) ;
59 static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
60 file_ptr offset);
61
62 /* Swap version information in and out. The version information is
63 currently size independent. If that ever changes, this code will
64 need to move into elfcode.h. */
65
66 /* Swap in a Verdef structure. */
67
68 void
69 _bfd_elf_swap_verdef_in (bfd *abfd,
70 const Elf_External_Verdef *src,
71 Elf_Internal_Verdef *dst)
72 {
73 dst->vd_version = H_GET_16 (abfd, src->vd_version);
74 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
75 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
76 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
77 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
78 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
79 dst->vd_next = H_GET_32 (abfd, src->vd_next);
80 }
81
82 /* Swap out a Verdef structure. */
83
84 void
85 _bfd_elf_swap_verdef_out (bfd *abfd,
86 const Elf_Internal_Verdef *src,
87 Elf_External_Verdef *dst)
88 {
89 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
90 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
91 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
92 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
93 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
94 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
95 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
96 }
97
98 /* Swap in a Verdaux structure. */
99
100 void
101 _bfd_elf_swap_verdaux_in (bfd *abfd,
102 const Elf_External_Verdaux *src,
103 Elf_Internal_Verdaux *dst)
104 {
105 dst->vda_name = H_GET_32 (abfd, src->vda_name);
106 dst->vda_next = H_GET_32 (abfd, src->vda_next);
107 }
108
109 /* Swap out a Verdaux structure. */
110
111 void
112 _bfd_elf_swap_verdaux_out (bfd *abfd,
113 const Elf_Internal_Verdaux *src,
114 Elf_External_Verdaux *dst)
115 {
116 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
117 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
118 }
119
120 /* Swap in a Verneed structure. */
121
122 void
123 _bfd_elf_swap_verneed_in (bfd *abfd,
124 const Elf_External_Verneed *src,
125 Elf_Internal_Verneed *dst)
126 {
127 dst->vn_version = H_GET_16 (abfd, src->vn_version);
128 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
129 dst->vn_file = H_GET_32 (abfd, src->vn_file);
130 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
131 dst->vn_next = H_GET_32 (abfd, src->vn_next);
132 }
133
134 /* Swap out a Verneed structure. */
135
136 void
137 _bfd_elf_swap_verneed_out (bfd *abfd,
138 const Elf_Internal_Verneed *src,
139 Elf_External_Verneed *dst)
140 {
141 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
142 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
143 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
144 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
145 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
146 }
147
148 /* Swap in a Vernaux structure. */
149
150 void
151 _bfd_elf_swap_vernaux_in (bfd *abfd,
152 const Elf_External_Vernaux *src,
153 Elf_Internal_Vernaux *dst)
154 {
155 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
156 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
157 dst->vna_other = H_GET_16 (abfd, src->vna_other);
158 dst->vna_name = H_GET_32 (abfd, src->vna_name);
159 dst->vna_next = H_GET_32 (abfd, src->vna_next);
160 }
161
162 /* Swap out a Vernaux structure. */
163
164 void
165 _bfd_elf_swap_vernaux_out (bfd *abfd,
166 const Elf_Internal_Vernaux *src,
167 Elf_External_Vernaux *dst)
168 {
169 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
170 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
171 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
172 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
173 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
174 }
175
176 /* Swap in a Versym structure. */
177
178 void
179 _bfd_elf_swap_versym_in (bfd *abfd,
180 const Elf_External_Versym *src,
181 Elf_Internal_Versym *dst)
182 {
183 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
184 }
185
186 /* Swap out a Versym structure. */
187
188 void
189 _bfd_elf_swap_versym_out (bfd *abfd,
190 const Elf_Internal_Versym *src,
191 Elf_External_Versym *dst)
192 {
193 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
194 }
195
196 /* Standard ELF hash function. Do not change this function; you will
197 cause invalid hash tables to be generated. */
198
199 unsigned long
200 bfd_elf_hash (const char *namearg)
201 {
202 const unsigned char *name = (const unsigned char *) namearg;
203 unsigned long h = 0;
204 unsigned long g;
205 int ch;
206
207 while ((ch = *name++) != '\0')
208 {
209 h = (h << 4) + ch;
210 if ((g = (h & 0xf0000000)) != 0)
211 {
212 h ^= g >> 24;
213 /* The ELF ABI says `h &= ~g', but this is equivalent in
214 this case and on some machines one insn instead of two. */
215 h ^= g;
216 }
217 }
218 return h & 0xffffffff;
219 }
220
221 /* DT_GNU_HASH hash function. Do not change this function; you will
222 cause invalid hash tables to be generated. */
223
224 unsigned long
225 bfd_elf_gnu_hash (const char *namearg)
226 {
227 const unsigned char *name = (const unsigned char *) namearg;
228 unsigned long h = 5381;
229 unsigned char ch;
230
231 while ((ch = *name++) != '\0')
232 h = (h << 5) + h + ch;
233 return h & 0xffffffff;
234 }
235
236 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
237 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
238 bfd_boolean
239 bfd_elf_allocate_object (bfd *abfd,
240 size_t object_size,
241 enum elf_target_id object_id)
242 {
243 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
244 abfd->tdata.any = bfd_zalloc (abfd, object_size);
245 if (abfd->tdata.any == NULL)
246 return FALSE;
247
248 elf_object_id (abfd) = object_id;
249 elf_program_header_size (abfd) = (bfd_size_type) -1;
250 return TRUE;
251 }
252
253
254 bfd_boolean
255 bfd_elf_make_object (bfd *abfd)
256 {
257 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
258 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
259 bed->target_id);
260 }
261
262 bfd_boolean
263 bfd_elf_mkcorefile (bfd *abfd)
264 {
265 /* I think this can be done just like an object file. */
266 return abfd->xvec->_bfd_set_format[(int) bfd_object] (abfd);
267 }
268
269 static char *
270 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
271 {
272 Elf_Internal_Shdr **i_shdrp;
273 bfd_byte *shstrtab = NULL;
274 file_ptr offset;
275 bfd_size_type shstrtabsize;
276
277 i_shdrp = elf_elfsections (abfd);
278 if (i_shdrp == 0
279 || shindex >= elf_numsections (abfd)
280 || i_shdrp[shindex] == 0)
281 return NULL;
282
283 shstrtab = i_shdrp[shindex]->contents;
284 if (shstrtab == NULL)
285 {
286 /* No cached one, attempt to read, and cache what we read. */
287 offset = i_shdrp[shindex]->sh_offset;
288 shstrtabsize = i_shdrp[shindex]->sh_size;
289
290 /* Allocate and clear an extra byte at the end, to prevent crashes
291 in case the string table is not terminated. */
292 if (shstrtabsize + 1 <= 1
293 || (shstrtab = (bfd_byte *) bfd_alloc (abfd, shstrtabsize + 1)) == NULL
294 || bfd_seek (abfd, offset, SEEK_SET) != 0)
295 shstrtab = NULL;
296 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
297 {
298 if (bfd_get_error () != bfd_error_system_call)
299 bfd_set_error (bfd_error_file_truncated);
300 shstrtab = NULL;
301 /* Once we've failed to read it, make sure we don't keep
302 trying. Otherwise, we'll keep allocating space for
303 the string table over and over. */
304 i_shdrp[shindex]->sh_size = 0;
305 }
306 else
307 shstrtab[shstrtabsize] = '\0';
308 i_shdrp[shindex]->contents = shstrtab;
309 }
310 return (char *) shstrtab;
311 }
312
313 char *
314 bfd_elf_string_from_elf_section (bfd *abfd,
315 unsigned int shindex,
316 unsigned int strindex)
317 {
318 Elf_Internal_Shdr *hdr;
319
320 if (strindex == 0)
321 return "";
322
323 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
324 return NULL;
325
326 hdr = elf_elfsections (abfd)[shindex];
327
328 if (hdr->contents == NULL
329 && bfd_elf_get_str_section (abfd, shindex) == NULL)
330 return NULL;
331
332 if (strindex >= hdr->sh_size)
333 {
334 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
335 (*_bfd_error_handler)
336 (_("%B: invalid string offset %u >= %lu for section `%s'"),
337 abfd, strindex, (unsigned long) hdr->sh_size,
338 (shindex == shstrndx && strindex == hdr->sh_name
339 ? ".shstrtab"
340 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
341 return NULL;
342 }
343
344 return ((char *) hdr->contents) + strindex;
345 }
346
347 /* Read and convert symbols to internal format.
348 SYMCOUNT specifies the number of symbols to read, starting from
349 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
350 are non-NULL, they are used to store the internal symbols, external
351 symbols, and symbol section index extensions, respectively.
352 Returns a pointer to the internal symbol buffer (malloced if necessary)
353 or NULL if there were no symbols or some kind of problem. */
354
355 Elf_Internal_Sym *
356 bfd_elf_get_elf_syms (bfd *ibfd,
357 Elf_Internal_Shdr *symtab_hdr,
358 size_t symcount,
359 size_t symoffset,
360 Elf_Internal_Sym *intsym_buf,
361 void *extsym_buf,
362 Elf_External_Sym_Shndx *extshndx_buf)
363 {
364 Elf_Internal_Shdr *shndx_hdr;
365 void *alloc_ext;
366 const bfd_byte *esym;
367 Elf_External_Sym_Shndx *alloc_extshndx;
368 Elf_External_Sym_Shndx *shndx;
369 Elf_Internal_Sym *alloc_intsym;
370 Elf_Internal_Sym *isym;
371 Elf_Internal_Sym *isymend;
372 const struct elf_backend_data *bed;
373 size_t extsym_size;
374 bfd_size_type amt;
375 file_ptr pos;
376
377 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
378 abort ();
379
380 if (symcount == 0)
381 return intsym_buf;
382
383 /* Normal syms might have section extension entries. */
384 shndx_hdr = NULL;
385 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
386 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
387
388 /* Read the symbols. */
389 alloc_ext = NULL;
390 alloc_extshndx = NULL;
391 alloc_intsym = NULL;
392 bed = get_elf_backend_data (ibfd);
393 extsym_size = bed->s->sizeof_sym;
394 amt = symcount * extsym_size;
395 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
396 if (extsym_buf == NULL)
397 {
398 alloc_ext = bfd_malloc2 (symcount, extsym_size);
399 extsym_buf = alloc_ext;
400 }
401 if (extsym_buf == NULL
402 || bfd_seek (ibfd, pos, SEEK_SET) != 0
403 || bfd_bread (extsym_buf, amt, ibfd) != amt)
404 {
405 intsym_buf = NULL;
406 goto out;
407 }
408
409 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
410 extshndx_buf = NULL;
411 else
412 {
413 amt = symcount * sizeof (Elf_External_Sym_Shndx);
414 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
415 if (extshndx_buf == NULL)
416 {
417 alloc_extshndx = (Elf_External_Sym_Shndx *)
418 bfd_malloc2 (symcount, sizeof (Elf_External_Sym_Shndx));
419 extshndx_buf = alloc_extshndx;
420 }
421 if (extshndx_buf == NULL
422 || bfd_seek (ibfd, pos, SEEK_SET) != 0
423 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
424 {
425 intsym_buf = NULL;
426 goto out;
427 }
428 }
429
430 if (intsym_buf == NULL)
431 {
432 alloc_intsym = (Elf_Internal_Sym *)
433 bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
434 intsym_buf = alloc_intsym;
435 if (intsym_buf == NULL)
436 goto out;
437 }
438
439 /* Convert the symbols to internal form. */
440 isymend = intsym_buf + symcount;
441 for (esym = (const bfd_byte *) extsym_buf, isym = intsym_buf,
442 shndx = extshndx_buf;
443 isym < isymend;
444 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
445 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
446 {
447 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
448 (*_bfd_error_handler) (_("%B symbol number %lu references "
449 "nonexistent SHT_SYMTAB_SHNDX section"),
450 ibfd, (unsigned long) symoffset);
451 if (alloc_intsym != NULL)
452 free (alloc_intsym);
453 intsym_buf = NULL;
454 goto out;
455 }
456
457 out:
458 if (alloc_ext != NULL)
459 free (alloc_ext);
460 if (alloc_extshndx != NULL)
461 free (alloc_extshndx);
462
463 return intsym_buf;
464 }
465
466 /* Look up a symbol name. */
467 const char *
468 bfd_elf_sym_name (bfd *abfd,
469 Elf_Internal_Shdr *symtab_hdr,
470 Elf_Internal_Sym *isym,
471 asection *sym_sec)
472 {
473 const char *name;
474 unsigned int iname = isym->st_name;
475 unsigned int shindex = symtab_hdr->sh_link;
476
477 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
478 /* Check for a bogus st_shndx to avoid crashing. */
479 && isym->st_shndx < elf_numsections (abfd))
480 {
481 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
482 shindex = elf_elfheader (abfd)->e_shstrndx;
483 }
484
485 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
486 if (name == NULL)
487 name = "(null)";
488 else if (sym_sec && *name == '\0')
489 name = bfd_section_name (abfd, sym_sec);
490
491 return name;
492 }
493
494 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
495 sections. The first element is the flags, the rest are section
496 pointers. */
497
498 typedef union elf_internal_group {
499 Elf_Internal_Shdr *shdr;
500 unsigned int flags;
501 } Elf_Internal_Group;
502
503 /* Return the name of the group signature symbol. Why isn't the
504 signature just a string? */
505
506 static const char *
507 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
508 {
509 Elf_Internal_Shdr *hdr;
510 unsigned char esym[sizeof (Elf64_External_Sym)];
511 Elf_External_Sym_Shndx eshndx;
512 Elf_Internal_Sym isym;
513
514 /* First we need to ensure the symbol table is available. Make sure
515 that it is a symbol table section. */
516 if (ghdr->sh_link >= elf_numsections (abfd))
517 return NULL;
518 hdr = elf_elfsections (abfd) [ghdr->sh_link];
519 if (hdr->sh_type != SHT_SYMTAB
520 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
521 return NULL;
522
523 /* Go read the symbol. */
524 hdr = &elf_tdata (abfd)->symtab_hdr;
525 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
526 &isym, esym, &eshndx) == NULL)
527 return NULL;
528
529 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
530 }
531
532 /* Set next_in_group list pointer, and group name for NEWSECT. */
533
534 static bfd_boolean
535 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
536 {
537 unsigned int num_group = elf_tdata (abfd)->num_group;
538
539 /* If num_group is zero, read in all SHT_GROUP sections. The count
540 is set to -1 if there are no SHT_GROUP sections. */
541 if (num_group == 0)
542 {
543 unsigned int i, shnum;
544
545 /* First count the number of groups. If we have a SHT_GROUP
546 section with just a flag word (ie. sh_size is 4), ignore it. */
547 shnum = elf_numsections (abfd);
548 num_group = 0;
549
550 #define IS_VALID_GROUP_SECTION_HEADER(shdr, minsize) \
551 ( (shdr)->sh_type == SHT_GROUP \
552 && (shdr)->sh_size >= minsize \
553 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
554 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
555
556 for (i = 0; i < shnum; i++)
557 {
558 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
559
560 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
561 num_group += 1;
562 }
563
564 if (num_group == 0)
565 {
566 num_group = (unsigned) -1;
567 elf_tdata (abfd)->num_group = num_group;
568 }
569 else
570 {
571 /* We keep a list of elf section headers for group sections,
572 so we can find them quickly. */
573 bfd_size_type amt;
574
575 elf_tdata (abfd)->num_group = num_group;
576 elf_tdata (abfd)->group_sect_ptr = (Elf_Internal_Shdr **)
577 bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
578 if (elf_tdata (abfd)->group_sect_ptr == NULL)
579 return FALSE;
580
581 num_group = 0;
582 for (i = 0; i < shnum; i++)
583 {
584 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
585
586 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
587 {
588 unsigned char *src;
589 Elf_Internal_Group *dest;
590
591 /* Add to list of sections. */
592 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
593 num_group += 1;
594
595 /* Read the raw contents. */
596 BFD_ASSERT (sizeof (*dest) >= 4);
597 amt = shdr->sh_size * sizeof (*dest) / 4;
598 shdr->contents = (unsigned char *)
599 bfd_alloc2 (abfd, shdr->sh_size, sizeof (*dest) / 4);
600 /* PR binutils/4110: Handle corrupt group headers. */
601 if (shdr->contents == NULL)
602 {
603 _bfd_error_handler
604 (_("%B: Corrupt size field in group section header: 0x%lx"), abfd, shdr->sh_size);
605 bfd_set_error (bfd_error_bad_value);
606 return FALSE;
607 }
608
609 memset (shdr->contents, 0, amt);
610
611 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
612 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
613 != shdr->sh_size))
614 return FALSE;
615
616 /* Translate raw contents, a flag word followed by an
617 array of elf section indices all in target byte order,
618 to the flag word followed by an array of elf section
619 pointers. */
620 src = shdr->contents + shdr->sh_size;
621 dest = (Elf_Internal_Group *) (shdr->contents + amt);
622 while (1)
623 {
624 unsigned int idx;
625
626 src -= 4;
627 --dest;
628 idx = H_GET_32 (abfd, src);
629 if (src == shdr->contents)
630 {
631 dest->flags = idx;
632 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
633 shdr->bfd_section->flags
634 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
635 break;
636 }
637 if (idx >= shnum)
638 {
639 ((*_bfd_error_handler)
640 (_("%B: invalid SHT_GROUP entry"), abfd));
641 idx = 0;
642 }
643 dest->shdr = elf_elfsections (abfd)[idx];
644 }
645 }
646 }
647 }
648 }
649
650 if (num_group != (unsigned) -1)
651 {
652 unsigned int i;
653
654 for (i = 0; i < num_group; i++)
655 {
656 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
657 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
658 unsigned int n_elt = shdr->sh_size / 4;
659
660 /* Look through this group's sections to see if current
661 section is a member. */
662 while (--n_elt != 0)
663 if ((++idx)->shdr == hdr)
664 {
665 asection *s = NULL;
666
667 /* We are a member of this group. Go looking through
668 other members to see if any others are linked via
669 next_in_group. */
670 idx = (Elf_Internal_Group *) shdr->contents;
671 n_elt = shdr->sh_size / 4;
672 while (--n_elt != 0)
673 if ((s = (++idx)->shdr->bfd_section) != NULL
674 && elf_next_in_group (s) != NULL)
675 break;
676 if (n_elt != 0)
677 {
678 /* Snarf the group name from other member, and
679 insert current section in circular list. */
680 elf_group_name (newsect) = elf_group_name (s);
681 elf_next_in_group (newsect) = elf_next_in_group (s);
682 elf_next_in_group (s) = newsect;
683 }
684 else
685 {
686 const char *gname;
687
688 gname = group_signature (abfd, shdr);
689 if (gname == NULL)
690 return FALSE;
691 elf_group_name (newsect) = gname;
692
693 /* Start a circular list with one element. */
694 elf_next_in_group (newsect) = newsect;
695 }
696
697 /* If the group section has been created, point to the
698 new member. */
699 if (shdr->bfd_section != NULL)
700 elf_next_in_group (shdr->bfd_section) = newsect;
701
702 i = num_group - 1;
703 break;
704 }
705 }
706 }
707
708 if (elf_group_name (newsect) == NULL)
709 {
710 (*_bfd_error_handler) (_("%B: no group info for section %A"),
711 abfd, newsect);
712 }
713 return TRUE;
714 }
715
716 bfd_boolean
717 _bfd_elf_setup_sections (bfd *abfd)
718 {
719 unsigned int i;
720 unsigned int num_group = elf_tdata (abfd)->num_group;
721 bfd_boolean result = TRUE;
722 asection *s;
723
724 /* Process SHF_LINK_ORDER. */
725 for (s = abfd->sections; s != NULL; s = s->next)
726 {
727 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
728 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
729 {
730 unsigned int elfsec = this_hdr->sh_link;
731 /* FIXME: The old Intel compiler and old strip/objcopy may
732 not set the sh_link or sh_info fields. Hence we could
733 get the situation where elfsec is 0. */
734 if (elfsec == 0)
735 {
736 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
737 if (bed->link_order_error_handler)
738 bed->link_order_error_handler
739 (_("%B: warning: sh_link not set for section `%A'"),
740 abfd, s);
741 }
742 else
743 {
744 asection *linksec = NULL;
745
746 if (elfsec < elf_numsections (abfd))
747 {
748 this_hdr = elf_elfsections (abfd)[elfsec];
749 linksec = this_hdr->bfd_section;
750 }
751
752 /* PR 1991, 2008:
753 Some strip/objcopy may leave an incorrect value in
754 sh_link. We don't want to proceed. */
755 if (linksec == NULL)
756 {
757 (*_bfd_error_handler)
758 (_("%B: sh_link [%d] in section `%A' is incorrect"),
759 s->owner, s, elfsec);
760 result = FALSE;
761 }
762
763 elf_linked_to_section (s) = linksec;
764 }
765 }
766 }
767
768 /* Process section groups. */
769 if (num_group == (unsigned) -1)
770 return result;
771
772 for (i = 0; i < num_group; i++)
773 {
774 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
775 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
776 unsigned int n_elt = shdr->sh_size / 4;
777
778 while (--n_elt != 0)
779 if ((++idx)->shdr->bfd_section)
780 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
781 else if (idx->shdr->sh_type == SHT_RELA
782 || idx->shdr->sh_type == SHT_REL)
783 /* We won't include relocation sections in section groups in
784 output object files. We adjust the group section size here
785 so that relocatable link will work correctly when
786 relocation sections are in section group in input object
787 files. */
788 shdr->bfd_section->size -= 4;
789 else
790 {
791 /* There are some unknown sections in the group. */
792 (*_bfd_error_handler)
793 (_("%B: unknown [%d] section `%s' in group [%s]"),
794 abfd,
795 (unsigned int) idx->shdr->sh_type,
796 bfd_elf_string_from_elf_section (abfd,
797 (elf_elfheader (abfd)
798 ->e_shstrndx),
799 idx->shdr->sh_name),
800 shdr->bfd_section->name);
801 result = FALSE;
802 }
803 }
804 return result;
805 }
806
807 bfd_boolean
808 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
809 {
810 return elf_next_in_group (sec) != NULL;
811 }
812
813 /* Make a BFD section from an ELF section. We store a pointer to the
814 BFD section in the bfd_section field of the header. */
815
816 bfd_boolean
817 _bfd_elf_make_section_from_shdr (bfd *abfd,
818 Elf_Internal_Shdr *hdr,
819 const char *name,
820 int shindex)
821 {
822 asection *newsect;
823 flagword flags;
824 const struct elf_backend_data *bed;
825
826 if (hdr->bfd_section != NULL)
827 return TRUE;
828
829 newsect = bfd_make_section_anyway (abfd, name);
830 if (newsect == NULL)
831 return FALSE;
832
833 hdr->bfd_section = newsect;
834 elf_section_data (newsect)->this_hdr = *hdr;
835 elf_section_data (newsect)->this_idx = shindex;
836
837 /* Always use the real type/flags. */
838 elf_section_type (newsect) = hdr->sh_type;
839 elf_section_flags (newsect) = hdr->sh_flags;
840
841 newsect->filepos = hdr->sh_offset;
842
843 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
844 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
845 || ! bfd_set_section_alignment (abfd, newsect,
846 bfd_log2 (hdr->sh_addralign)))
847 return FALSE;
848
849 flags = SEC_NO_FLAGS;
850 if (hdr->sh_type != SHT_NOBITS)
851 flags |= SEC_HAS_CONTENTS;
852 if (hdr->sh_type == SHT_GROUP)
853 flags |= SEC_GROUP | SEC_EXCLUDE;
854 if ((hdr->sh_flags & SHF_ALLOC) != 0)
855 {
856 flags |= SEC_ALLOC;
857 if (hdr->sh_type != SHT_NOBITS)
858 flags |= SEC_LOAD;
859 }
860 if ((hdr->sh_flags & SHF_WRITE) == 0)
861 flags |= SEC_READONLY;
862 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
863 flags |= SEC_CODE;
864 else if ((flags & SEC_LOAD) != 0)
865 flags |= SEC_DATA;
866 if ((hdr->sh_flags & SHF_MERGE) != 0)
867 {
868 flags |= SEC_MERGE;
869 newsect->entsize = hdr->sh_entsize;
870 if ((hdr->sh_flags & SHF_STRINGS) != 0)
871 flags |= SEC_STRINGS;
872 }
873 if (hdr->sh_flags & SHF_GROUP)
874 if (!setup_group (abfd, hdr, newsect))
875 return FALSE;
876 if ((hdr->sh_flags & SHF_TLS) != 0)
877 flags |= SEC_THREAD_LOCAL;
878 if ((hdr->sh_flags & SHF_EXCLUDE) != 0)
879 flags |= SEC_EXCLUDE;
880
881 if ((flags & SEC_ALLOC) == 0)
882 {
883 /* The debugging sections appear to be recognized only by name,
884 not any sort of flag. Their SEC_ALLOC bits are cleared. */
885 if (name [0] == '.')
886 {
887 const char *p;
888 int n;
889 if (name[1] == 'd')
890 p = ".debug", n = 6;
891 else if (name[1] == 'g' && name[2] == 'n')
892 p = ".gnu.linkonce.wi.", n = 17;
893 else if (name[1] == 'g' && name[2] == 'd')
894 p = ".gdb_index", n = 11; /* yes we really do mean 11. */
895 else if (name[1] == 'l')
896 p = ".line", n = 5;
897 else if (name[1] == 's')
898 p = ".stab", n = 5;
899 else if (name[1] == 'z')
900 p = ".zdebug", n = 7;
901 else
902 p = NULL, n = 0;
903 if (p != NULL && strncmp (name, p, n) == 0)
904 flags |= SEC_DEBUGGING;
905 }
906 }
907
908 /* As a GNU extension, if the name begins with .gnu.linkonce, we
909 only link a single copy of the section. This is used to support
910 g++. g++ will emit each template expansion in its own section.
911 The symbols will be defined as weak, so that multiple definitions
912 are permitted. The GNU linker extension is to actually discard
913 all but one of the sections. */
914 if (CONST_STRNEQ (name, ".gnu.linkonce")
915 && elf_next_in_group (newsect) == NULL)
916 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
917
918 bed = get_elf_backend_data (abfd);
919 if (bed->elf_backend_section_flags)
920 if (! bed->elf_backend_section_flags (&flags, hdr))
921 return FALSE;
922
923 if (! bfd_set_section_flags (abfd, newsect, flags))
924 return FALSE;
925
926 /* We do not parse the PT_NOTE segments as we are interested even in the
927 separate debug info files which may have the segments offsets corrupted.
928 PT_NOTEs from the core files are currently not parsed using BFD. */
929 if (hdr->sh_type == SHT_NOTE)
930 {
931 bfd_byte *contents;
932
933 if (!bfd_malloc_and_get_section (abfd, newsect, &contents))
934 return FALSE;
935
936 elf_parse_notes (abfd, (char *) contents, hdr->sh_size, -1);
937 free (contents);
938 }
939
940 if ((flags & SEC_ALLOC) != 0)
941 {
942 Elf_Internal_Phdr *phdr;
943 unsigned int i, nload;
944
945 /* Some ELF linkers produce binaries with all the program header
946 p_paddr fields zero. If we have such a binary with more than
947 one PT_LOAD header, then leave the section lma equal to vma
948 so that we don't create sections with overlapping lma. */
949 phdr = elf_tdata (abfd)->phdr;
950 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
951 if (phdr->p_paddr != 0)
952 break;
953 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
954 ++nload;
955 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
956 return TRUE;
957
958 phdr = elf_tdata (abfd)->phdr;
959 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
960 {
961 if (((phdr->p_type == PT_LOAD
962 && (hdr->sh_flags & SHF_TLS) == 0)
963 || phdr->p_type == PT_TLS)
964 && ELF_SECTION_IN_SEGMENT (hdr, phdr))
965 {
966 if ((flags & SEC_LOAD) == 0)
967 newsect->lma = (phdr->p_paddr
968 + hdr->sh_addr - phdr->p_vaddr);
969 else
970 /* We used to use the same adjustment for SEC_LOAD
971 sections, but that doesn't work if the segment
972 is packed with code from multiple VMAs.
973 Instead we calculate the section LMA based on
974 the segment LMA. It is assumed that the
975 segment will contain sections with contiguous
976 LMAs, even if the VMAs are not. */
977 newsect->lma = (phdr->p_paddr
978 + hdr->sh_offset - phdr->p_offset);
979
980 /* With contiguous segments, we can't tell from file
981 offsets whether a section with zero size should
982 be placed at the end of one segment or the
983 beginning of the next. Decide based on vaddr. */
984 if (hdr->sh_addr >= phdr->p_vaddr
985 && (hdr->sh_addr + hdr->sh_size
986 <= phdr->p_vaddr + phdr->p_memsz))
987 break;
988 }
989 }
990 }
991
992 /* Compress/decompress DWARF debug sections with names: .debug_* and
993 .zdebug_*, after the section flags is set. */
994 if ((flags & SEC_DEBUGGING)
995 && ((name[1] == 'd' && name[6] == '_')
996 || (name[1] == 'z' && name[7] == '_')))
997 {
998 enum { nothing, compress, decompress } action = nothing;
999 char *new_name;
1000
1001 if (bfd_is_section_compressed (abfd, newsect))
1002 {
1003 /* Compressed section. Check if we should decompress. */
1004 if ((abfd->flags & BFD_DECOMPRESS))
1005 action = decompress;
1006 }
1007 else
1008 {
1009 /* Normal section. Check if we should compress. */
1010 if ((abfd->flags & BFD_COMPRESS) && newsect->size != 0)
1011 action = compress;
1012 }
1013
1014 new_name = NULL;
1015 switch (action)
1016 {
1017 case nothing:
1018 break;
1019 case compress:
1020 if (!bfd_init_section_compress_status (abfd, newsect))
1021 {
1022 (*_bfd_error_handler)
1023 (_("%B: unable to initialize compress status for section %s"),
1024 abfd, name);
1025 return FALSE;
1026 }
1027 if (name[1] != 'z')
1028 {
1029 unsigned int len = strlen (name);
1030
1031 new_name = bfd_alloc (abfd, len + 2);
1032 if (new_name == NULL)
1033 return FALSE;
1034 new_name[0] = '.';
1035 new_name[1] = 'z';
1036 memcpy (new_name + 2, name + 1, len);
1037 }
1038 break;
1039 case decompress:
1040 if (!bfd_init_section_decompress_status (abfd, newsect))
1041 {
1042 (*_bfd_error_handler)
1043 (_("%B: unable to initialize decompress status for section %s"),
1044 abfd, name);
1045 return FALSE;
1046 }
1047 if (name[1] == 'z')
1048 {
1049 unsigned int len = strlen (name);
1050
1051 new_name = bfd_alloc (abfd, len);
1052 if (new_name == NULL)
1053 return FALSE;
1054 new_name[0] = '.';
1055 memcpy (new_name + 1, name + 2, len - 1);
1056 }
1057 break;
1058 }
1059 if (new_name != NULL)
1060 bfd_rename_section (abfd, newsect, new_name);
1061 }
1062
1063 return TRUE;
1064 }
1065
1066 const char *const bfd_elf_section_type_names[] = {
1067 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1068 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1069 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1070 };
1071
1072 /* ELF relocs are against symbols. If we are producing relocatable
1073 output, and the reloc is against an external symbol, and nothing
1074 has given us any additional addend, the resulting reloc will also
1075 be against the same symbol. In such a case, we don't want to
1076 change anything about the way the reloc is handled, since it will
1077 all be done at final link time. Rather than put special case code
1078 into bfd_perform_relocation, all the reloc types use this howto
1079 function. It just short circuits the reloc if producing
1080 relocatable output against an external symbol. */
1081
1082 bfd_reloc_status_type
1083 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1084 arelent *reloc_entry,
1085 asymbol *symbol,
1086 void *data ATTRIBUTE_UNUSED,
1087 asection *input_section,
1088 bfd *output_bfd,
1089 char **error_message ATTRIBUTE_UNUSED)
1090 {
1091 if (output_bfd != NULL
1092 && (symbol->flags & BSF_SECTION_SYM) == 0
1093 && (! reloc_entry->howto->partial_inplace
1094 || reloc_entry->addend == 0))
1095 {
1096 reloc_entry->address += input_section->output_offset;
1097 return bfd_reloc_ok;
1098 }
1099
1100 return bfd_reloc_continue;
1101 }
1102 \f
1103 /* Copy the program header and other data from one object module to
1104 another. */
1105
1106 bfd_boolean
1107 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1108 {
1109 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1110 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1111 return TRUE;
1112
1113 BFD_ASSERT (!elf_flags_init (obfd)
1114 || (elf_elfheader (obfd)->e_flags
1115 == elf_elfheader (ibfd)->e_flags));
1116
1117 elf_gp (obfd) = elf_gp (ibfd);
1118 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1119 elf_flags_init (obfd) = TRUE;
1120
1121 /* Copy object attributes. */
1122 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1123 return TRUE;
1124 }
1125
1126 static const char *
1127 get_segment_type (unsigned int p_type)
1128 {
1129 const char *pt;
1130 switch (p_type)
1131 {
1132 case PT_NULL: pt = "NULL"; break;
1133 case PT_LOAD: pt = "LOAD"; break;
1134 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1135 case PT_INTERP: pt = "INTERP"; break;
1136 case PT_NOTE: pt = "NOTE"; break;
1137 case PT_SHLIB: pt = "SHLIB"; break;
1138 case PT_PHDR: pt = "PHDR"; break;
1139 case PT_TLS: pt = "TLS"; break;
1140 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1141 case PT_GNU_STACK: pt = "STACK"; break;
1142 case PT_GNU_RELRO: pt = "RELRO"; break;
1143 default: pt = NULL; break;
1144 }
1145 return pt;
1146 }
1147
1148 /* Print out the program headers. */
1149
1150 bfd_boolean
1151 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1152 {
1153 FILE *f = (FILE *) farg;
1154 Elf_Internal_Phdr *p;
1155 asection *s;
1156 bfd_byte *dynbuf = NULL;
1157
1158 p = elf_tdata (abfd)->phdr;
1159 if (p != NULL)
1160 {
1161 unsigned int i, c;
1162
1163 fprintf (f, _("\nProgram Header:\n"));
1164 c = elf_elfheader (abfd)->e_phnum;
1165 for (i = 0; i < c; i++, p++)
1166 {
1167 const char *pt = get_segment_type (p->p_type);
1168 char buf[20];
1169
1170 if (pt == NULL)
1171 {
1172 sprintf (buf, "0x%lx", p->p_type);
1173 pt = buf;
1174 }
1175 fprintf (f, "%8s off 0x", pt);
1176 bfd_fprintf_vma (abfd, f, p->p_offset);
1177 fprintf (f, " vaddr 0x");
1178 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1179 fprintf (f, " paddr 0x");
1180 bfd_fprintf_vma (abfd, f, p->p_paddr);
1181 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1182 fprintf (f, " filesz 0x");
1183 bfd_fprintf_vma (abfd, f, p->p_filesz);
1184 fprintf (f, " memsz 0x");
1185 bfd_fprintf_vma (abfd, f, p->p_memsz);
1186 fprintf (f, " flags %c%c%c",
1187 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1188 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1189 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1190 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1191 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1192 fprintf (f, "\n");
1193 }
1194 }
1195
1196 s = bfd_get_section_by_name (abfd, ".dynamic");
1197 if (s != NULL)
1198 {
1199 unsigned int elfsec;
1200 unsigned long shlink;
1201 bfd_byte *extdyn, *extdynend;
1202 size_t extdynsize;
1203 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1204
1205 fprintf (f, _("\nDynamic Section:\n"));
1206
1207 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1208 goto error_return;
1209
1210 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1211 if (elfsec == SHN_BAD)
1212 goto error_return;
1213 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1214
1215 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1216 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1217
1218 extdyn = dynbuf;
1219 extdynend = extdyn + s->size;
1220 for (; extdyn < extdynend; extdyn += extdynsize)
1221 {
1222 Elf_Internal_Dyn dyn;
1223 const char *name = "";
1224 char ab[20];
1225 bfd_boolean stringp;
1226 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1227
1228 (*swap_dyn_in) (abfd, extdyn, &dyn);
1229
1230 if (dyn.d_tag == DT_NULL)
1231 break;
1232
1233 stringp = FALSE;
1234 switch (dyn.d_tag)
1235 {
1236 default:
1237 if (bed->elf_backend_get_target_dtag)
1238 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
1239
1240 if (!strcmp (name, ""))
1241 {
1242 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1243 name = ab;
1244 }
1245 break;
1246
1247 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1248 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1249 case DT_PLTGOT: name = "PLTGOT"; break;
1250 case DT_HASH: name = "HASH"; break;
1251 case DT_STRTAB: name = "STRTAB"; break;
1252 case DT_SYMTAB: name = "SYMTAB"; break;
1253 case DT_RELA: name = "RELA"; break;
1254 case DT_RELASZ: name = "RELASZ"; break;
1255 case DT_RELAENT: name = "RELAENT"; break;
1256 case DT_STRSZ: name = "STRSZ"; break;
1257 case DT_SYMENT: name = "SYMENT"; break;
1258 case DT_INIT: name = "INIT"; break;
1259 case DT_FINI: name = "FINI"; break;
1260 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1261 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1262 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1263 case DT_REL: name = "REL"; break;
1264 case DT_RELSZ: name = "RELSZ"; break;
1265 case DT_RELENT: name = "RELENT"; break;
1266 case DT_PLTREL: name = "PLTREL"; break;
1267 case DT_DEBUG: name = "DEBUG"; break;
1268 case DT_TEXTREL: name = "TEXTREL"; break;
1269 case DT_JMPREL: name = "JMPREL"; break;
1270 case DT_BIND_NOW: name = "BIND_NOW"; break;
1271 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1272 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1273 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1274 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1275 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1276 case DT_FLAGS: name = "FLAGS"; break;
1277 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1278 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1279 case DT_CHECKSUM: name = "CHECKSUM"; break;
1280 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1281 case DT_MOVEENT: name = "MOVEENT"; break;
1282 case DT_MOVESZ: name = "MOVESZ"; break;
1283 case DT_FEATURE: name = "FEATURE"; break;
1284 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1285 case DT_SYMINSZ: name = "SYMINSZ"; break;
1286 case DT_SYMINENT: name = "SYMINENT"; break;
1287 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1288 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1289 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1290 case DT_PLTPAD: name = "PLTPAD"; break;
1291 case DT_MOVETAB: name = "MOVETAB"; break;
1292 case DT_SYMINFO: name = "SYMINFO"; break;
1293 case DT_RELACOUNT: name = "RELACOUNT"; break;
1294 case DT_RELCOUNT: name = "RELCOUNT"; break;
1295 case DT_FLAGS_1: name = "FLAGS_1"; break;
1296 case DT_VERSYM: name = "VERSYM"; break;
1297 case DT_VERDEF: name = "VERDEF"; break;
1298 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1299 case DT_VERNEED: name = "VERNEED"; break;
1300 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1301 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1302 case DT_USED: name = "USED"; break;
1303 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1304 case DT_GNU_HASH: name = "GNU_HASH"; break;
1305 }
1306
1307 fprintf (f, " %-20s ", name);
1308 if (! stringp)
1309 {
1310 fprintf (f, "0x");
1311 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
1312 }
1313 else
1314 {
1315 const char *string;
1316 unsigned int tagv = dyn.d_un.d_val;
1317
1318 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1319 if (string == NULL)
1320 goto error_return;
1321 fprintf (f, "%s", string);
1322 }
1323 fprintf (f, "\n");
1324 }
1325
1326 free (dynbuf);
1327 dynbuf = NULL;
1328 }
1329
1330 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1331 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1332 {
1333 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1334 return FALSE;
1335 }
1336
1337 if (elf_dynverdef (abfd) != 0)
1338 {
1339 Elf_Internal_Verdef *t;
1340
1341 fprintf (f, _("\nVersion definitions:\n"));
1342 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1343 {
1344 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1345 t->vd_flags, t->vd_hash,
1346 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1347 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1348 {
1349 Elf_Internal_Verdaux *a;
1350
1351 fprintf (f, "\t");
1352 for (a = t->vd_auxptr->vda_nextptr;
1353 a != NULL;
1354 a = a->vda_nextptr)
1355 fprintf (f, "%s ",
1356 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1357 fprintf (f, "\n");
1358 }
1359 }
1360 }
1361
1362 if (elf_dynverref (abfd) != 0)
1363 {
1364 Elf_Internal_Verneed *t;
1365
1366 fprintf (f, _("\nVersion References:\n"));
1367 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1368 {
1369 Elf_Internal_Vernaux *a;
1370
1371 fprintf (f, _(" required from %s:\n"),
1372 t->vn_filename ? t->vn_filename : "<corrupt>");
1373 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1374 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1375 a->vna_flags, a->vna_other,
1376 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1377 }
1378 }
1379
1380 return TRUE;
1381
1382 error_return:
1383 if (dynbuf != NULL)
1384 free (dynbuf);
1385 return FALSE;
1386 }
1387
1388 /* Display ELF-specific fields of a symbol. */
1389
1390 void
1391 bfd_elf_print_symbol (bfd *abfd,
1392 void *filep,
1393 asymbol *symbol,
1394 bfd_print_symbol_type how)
1395 {
1396 FILE *file = (FILE *) filep;
1397 switch (how)
1398 {
1399 case bfd_print_symbol_name:
1400 fprintf (file, "%s", symbol->name);
1401 break;
1402 case bfd_print_symbol_more:
1403 fprintf (file, "elf ");
1404 bfd_fprintf_vma (abfd, file, symbol->value);
1405 fprintf (file, " %lx", (unsigned long) symbol->flags);
1406 break;
1407 case bfd_print_symbol_all:
1408 {
1409 const char *section_name;
1410 const char *name = NULL;
1411 const struct elf_backend_data *bed;
1412 unsigned char st_other;
1413 bfd_vma val;
1414
1415 section_name = symbol->section ? symbol->section->name : "(*none*)";
1416
1417 bed = get_elf_backend_data (abfd);
1418 if (bed->elf_backend_print_symbol_all)
1419 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1420
1421 if (name == NULL)
1422 {
1423 name = symbol->name;
1424 bfd_print_symbol_vandf (abfd, file, symbol);
1425 }
1426
1427 fprintf (file, " %s\t", section_name);
1428 /* Print the "other" value for a symbol. For common symbols,
1429 we've already printed the size; now print the alignment.
1430 For other symbols, we have no specified alignment, and
1431 we've printed the address; now print the size. */
1432 if (symbol->section && bfd_is_com_section (symbol->section))
1433 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1434 else
1435 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1436 bfd_fprintf_vma (abfd, file, val);
1437
1438 /* If we have version information, print it. */
1439 if (elf_tdata (abfd)->dynversym_section != 0
1440 && (elf_tdata (abfd)->dynverdef_section != 0
1441 || elf_tdata (abfd)->dynverref_section != 0))
1442 {
1443 unsigned int vernum;
1444 const char *version_string;
1445
1446 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1447
1448 if (vernum == 0)
1449 version_string = "";
1450 else if (vernum == 1)
1451 version_string = "Base";
1452 else if (vernum <= elf_tdata (abfd)->cverdefs)
1453 version_string =
1454 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1455 else
1456 {
1457 Elf_Internal_Verneed *t;
1458
1459 version_string = "";
1460 for (t = elf_tdata (abfd)->verref;
1461 t != NULL;
1462 t = t->vn_nextref)
1463 {
1464 Elf_Internal_Vernaux *a;
1465
1466 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1467 {
1468 if (a->vna_other == vernum)
1469 {
1470 version_string = a->vna_nodename;
1471 break;
1472 }
1473 }
1474 }
1475 }
1476
1477 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1478 fprintf (file, " %-11s", version_string);
1479 else
1480 {
1481 int i;
1482
1483 fprintf (file, " (%s)", version_string);
1484 for (i = 10 - strlen (version_string); i > 0; --i)
1485 putc (' ', file);
1486 }
1487 }
1488
1489 /* If the st_other field is not zero, print it. */
1490 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1491
1492 switch (st_other)
1493 {
1494 case 0: break;
1495 case STV_INTERNAL: fprintf (file, " .internal"); break;
1496 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1497 case STV_PROTECTED: fprintf (file, " .protected"); break;
1498 default:
1499 /* Some other non-defined flags are also present, so print
1500 everything hex. */
1501 fprintf (file, " 0x%02x", (unsigned int) st_other);
1502 }
1503
1504 fprintf (file, " %s", name);
1505 }
1506 break;
1507 }
1508 }
1509
1510 /* Allocate an ELF string table--force the first byte to be zero. */
1511
1512 struct bfd_strtab_hash *
1513 _bfd_elf_stringtab_init (void)
1514 {
1515 struct bfd_strtab_hash *ret;
1516
1517 ret = _bfd_stringtab_init ();
1518 if (ret != NULL)
1519 {
1520 bfd_size_type loc;
1521
1522 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1523 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1524 if (loc == (bfd_size_type) -1)
1525 {
1526 _bfd_stringtab_free (ret);
1527 ret = NULL;
1528 }
1529 }
1530 return ret;
1531 }
1532 \f
1533 /* ELF .o/exec file reading */
1534
1535 /* Create a new bfd section from an ELF section header. */
1536
1537 bfd_boolean
1538 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1539 {
1540 Elf_Internal_Shdr *hdr;
1541 Elf_Internal_Ehdr *ehdr;
1542 const struct elf_backend_data *bed;
1543 const char *name;
1544
1545 if (shindex >= elf_numsections (abfd))
1546 return FALSE;
1547
1548 hdr = elf_elfsections (abfd)[shindex];
1549 ehdr = elf_elfheader (abfd);
1550 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
1551 hdr->sh_name);
1552 if (name == NULL)
1553 return FALSE;
1554
1555 bed = get_elf_backend_data (abfd);
1556 switch (hdr->sh_type)
1557 {
1558 case SHT_NULL:
1559 /* Inactive section. Throw it away. */
1560 return TRUE;
1561
1562 case SHT_PROGBITS: /* Normal section with contents. */
1563 case SHT_NOBITS: /* .bss section. */
1564 case SHT_HASH: /* .hash section. */
1565 case SHT_NOTE: /* .note section. */
1566 case SHT_INIT_ARRAY: /* .init_array section. */
1567 case SHT_FINI_ARRAY: /* .fini_array section. */
1568 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1569 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1570 case SHT_GNU_HASH: /* .gnu.hash section. */
1571 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1572
1573 case SHT_DYNAMIC: /* Dynamic linking information. */
1574 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1575 return FALSE;
1576 if (hdr->sh_link > elf_numsections (abfd))
1577 {
1578 /* PR 10478: Accept Solaris binaries with a sh_link
1579 field set to SHN_BEFORE or SHN_AFTER. */
1580 switch (bfd_get_arch (abfd))
1581 {
1582 case bfd_arch_i386:
1583 case bfd_arch_sparc:
1584 if (hdr->sh_link == (SHN_LORESERVE & 0xffff) /* SHN_BEFORE */
1585 || hdr->sh_link == ((SHN_LORESERVE + 1) & 0xffff) /* SHN_AFTER */)
1586 break;
1587 /* Otherwise fall through. */
1588 default:
1589 return FALSE;
1590 }
1591 }
1592 else if (elf_elfsections (abfd)[hdr->sh_link] == NULL)
1593 return FALSE;
1594 else if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1595 {
1596 Elf_Internal_Shdr *dynsymhdr;
1597
1598 /* The shared libraries distributed with hpux11 have a bogus
1599 sh_link field for the ".dynamic" section. Find the
1600 string table for the ".dynsym" section instead. */
1601 if (elf_dynsymtab (abfd) != 0)
1602 {
1603 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1604 hdr->sh_link = dynsymhdr->sh_link;
1605 }
1606 else
1607 {
1608 unsigned int i, num_sec;
1609
1610 num_sec = elf_numsections (abfd);
1611 for (i = 1; i < num_sec; i++)
1612 {
1613 dynsymhdr = elf_elfsections (abfd)[i];
1614 if (dynsymhdr->sh_type == SHT_DYNSYM)
1615 {
1616 hdr->sh_link = dynsymhdr->sh_link;
1617 break;
1618 }
1619 }
1620 }
1621 }
1622 break;
1623
1624 case SHT_SYMTAB: /* A symbol table */
1625 if (elf_onesymtab (abfd) == shindex)
1626 return TRUE;
1627
1628 if (hdr->sh_entsize != bed->s->sizeof_sym)
1629 return FALSE;
1630 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
1631 {
1632 if (hdr->sh_size != 0)
1633 return FALSE;
1634 /* Some assemblers erroneously set sh_info to one with a
1635 zero sh_size. ld sees this as a global symbol count
1636 of (unsigned) -1. Fix it here. */
1637 hdr->sh_info = 0;
1638 return TRUE;
1639 }
1640 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1641 elf_onesymtab (abfd) = shindex;
1642 elf_tdata (abfd)->symtab_hdr = *hdr;
1643 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1644 abfd->flags |= HAS_SYMS;
1645
1646 /* Sometimes a shared object will map in the symbol table. If
1647 SHF_ALLOC is set, and this is a shared object, then we also
1648 treat this section as a BFD section. We can not base the
1649 decision purely on SHF_ALLOC, because that flag is sometimes
1650 set in a relocatable object file, which would confuse the
1651 linker. */
1652 if ((hdr->sh_flags & SHF_ALLOC) != 0
1653 && (abfd->flags & DYNAMIC) != 0
1654 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1655 shindex))
1656 return FALSE;
1657
1658 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1659 can't read symbols without that section loaded as well. It
1660 is most likely specified by the next section header. */
1661 if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
1662 {
1663 unsigned int i, num_sec;
1664
1665 num_sec = elf_numsections (abfd);
1666 for (i = shindex + 1; i < num_sec; i++)
1667 {
1668 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1669 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1670 && hdr2->sh_link == shindex)
1671 break;
1672 }
1673 if (i == num_sec)
1674 for (i = 1; i < shindex; i++)
1675 {
1676 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1677 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1678 && hdr2->sh_link == shindex)
1679 break;
1680 }
1681 if (i != shindex)
1682 return bfd_section_from_shdr (abfd, i);
1683 }
1684 return TRUE;
1685
1686 case SHT_DYNSYM: /* A dynamic symbol table */
1687 if (elf_dynsymtab (abfd) == shindex)
1688 return TRUE;
1689
1690 if (hdr->sh_entsize != bed->s->sizeof_sym)
1691 return FALSE;
1692 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
1693 {
1694 if (hdr->sh_size != 0)
1695 return FALSE;
1696 /* Some linkers erroneously set sh_info to one with a
1697 zero sh_size. ld sees this as a global symbol count
1698 of (unsigned) -1. Fix it here. */
1699 hdr->sh_info = 0;
1700 return TRUE;
1701 }
1702 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1703 elf_dynsymtab (abfd) = shindex;
1704 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1705 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1706 abfd->flags |= HAS_SYMS;
1707
1708 /* Besides being a symbol table, we also treat this as a regular
1709 section, so that objcopy can handle it. */
1710 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1711
1712 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1713 if (elf_symtab_shndx (abfd) == shindex)
1714 return TRUE;
1715
1716 BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
1717 elf_symtab_shndx (abfd) = shindex;
1718 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1719 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1720 return TRUE;
1721
1722 case SHT_STRTAB: /* A string table */
1723 if (hdr->bfd_section != NULL)
1724 return TRUE;
1725 if (ehdr->e_shstrndx == shindex)
1726 {
1727 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1728 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1729 return TRUE;
1730 }
1731 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
1732 {
1733 symtab_strtab:
1734 elf_tdata (abfd)->strtab_hdr = *hdr;
1735 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
1736 return TRUE;
1737 }
1738 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
1739 {
1740 dynsymtab_strtab:
1741 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1742 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
1743 elf_elfsections (abfd)[shindex] = hdr;
1744 /* We also treat this as a regular section, so that objcopy
1745 can handle it. */
1746 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1747 shindex);
1748 }
1749
1750 /* If the string table isn't one of the above, then treat it as a
1751 regular section. We need to scan all the headers to be sure,
1752 just in case this strtab section appeared before the above. */
1753 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
1754 {
1755 unsigned int i, num_sec;
1756
1757 num_sec = elf_numsections (abfd);
1758 for (i = 1; i < num_sec; i++)
1759 {
1760 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1761 if (hdr2->sh_link == shindex)
1762 {
1763 /* Prevent endless recursion on broken objects. */
1764 if (i == shindex)
1765 return FALSE;
1766 if (! bfd_section_from_shdr (abfd, i))
1767 return FALSE;
1768 if (elf_onesymtab (abfd) == i)
1769 goto symtab_strtab;
1770 if (elf_dynsymtab (abfd) == i)
1771 goto dynsymtab_strtab;
1772 }
1773 }
1774 }
1775 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1776
1777 case SHT_REL:
1778 case SHT_RELA:
1779 /* *These* do a lot of work -- but build no sections! */
1780 {
1781 asection *target_sect;
1782 Elf_Internal_Shdr *hdr2, **p_hdr;
1783 unsigned int num_sec = elf_numsections (abfd);
1784 struct bfd_elf_section_data *esdt;
1785 bfd_size_type amt;
1786
1787 if (hdr->sh_entsize
1788 != (bfd_size_type) (hdr->sh_type == SHT_REL
1789 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
1790 return FALSE;
1791
1792 /* Check for a bogus link to avoid crashing. */
1793 if (hdr->sh_link >= num_sec)
1794 {
1795 ((*_bfd_error_handler)
1796 (_("%B: invalid link %lu for reloc section %s (index %u)"),
1797 abfd, hdr->sh_link, name, shindex));
1798 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1799 shindex);
1800 }
1801
1802 /* For some incomprehensible reason Oracle distributes
1803 libraries for Solaris in which some of the objects have
1804 bogus sh_link fields. It would be nice if we could just
1805 reject them, but, unfortunately, some people need to use
1806 them. We scan through the section headers; if we find only
1807 one suitable symbol table, we clobber the sh_link to point
1808 to it. I hope this doesn't break anything.
1809
1810 Don't do it on executable nor shared library. */
1811 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0
1812 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
1813 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
1814 {
1815 unsigned int scan;
1816 int found;
1817
1818 found = 0;
1819 for (scan = 1; scan < num_sec; scan++)
1820 {
1821 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
1822 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
1823 {
1824 if (found != 0)
1825 {
1826 found = 0;
1827 break;
1828 }
1829 found = scan;
1830 }
1831 }
1832 if (found != 0)
1833 hdr->sh_link = found;
1834 }
1835
1836 /* Get the symbol table. */
1837 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
1838 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
1839 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
1840 return FALSE;
1841
1842 /* If this reloc section does not use the main symbol table we
1843 don't treat it as a reloc section. BFD can't adequately
1844 represent such a section, so at least for now, we don't
1845 try. We just present it as a normal section. We also
1846 can't use it as a reloc section if it points to the null
1847 section, an invalid section, another reloc section, or its
1848 sh_link points to the null section. */
1849 if (hdr->sh_link != elf_onesymtab (abfd)
1850 || hdr->sh_link == SHN_UNDEF
1851 || hdr->sh_info == SHN_UNDEF
1852 || hdr->sh_info >= num_sec
1853 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
1854 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
1855 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1856 shindex);
1857
1858 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
1859 return FALSE;
1860 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
1861 if (target_sect == NULL)
1862 return FALSE;
1863
1864 esdt = elf_section_data (target_sect);
1865 if (hdr->sh_type == SHT_RELA)
1866 p_hdr = &esdt->rela.hdr;
1867 else
1868 p_hdr = &esdt->rel.hdr;
1869
1870 BFD_ASSERT (*p_hdr == NULL);
1871 amt = sizeof (*hdr2);
1872 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, amt);
1873 if (hdr2 == NULL)
1874 return FALSE;
1875 *hdr2 = *hdr;
1876 *p_hdr = hdr2;
1877 elf_elfsections (abfd)[shindex] = hdr2;
1878 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
1879 target_sect->flags |= SEC_RELOC;
1880 target_sect->relocation = NULL;
1881 target_sect->rel_filepos = hdr->sh_offset;
1882 /* In the section to which the relocations apply, mark whether
1883 its relocations are of the REL or RELA variety. */
1884 if (hdr->sh_size != 0)
1885 {
1886 if (hdr->sh_type == SHT_RELA)
1887 target_sect->use_rela_p = 1;
1888 }
1889 abfd->flags |= HAS_RELOC;
1890 return TRUE;
1891 }
1892
1893 case SHT_GNU_verdef:
1894 elf_dynverdef (abfd) = shindex;
1895 elf_tdata (abfd)->dynverdef_hdr = *hdr;
1896 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1897
1898 case SHT_GNU_versym:
1899 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
1900 return FALSE;
1901 elf_dynversym (abfd) = shindex;
1902 elf_tdata (abfd)->dynversym_hdr = *hdr;
1903 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1904
1905 case SHT_GNU_verneed:
1906 elf_dynverref (abfd) = shindex;
1907 elf_tdata (abfd)->dynverref_hdr = *hdr;
1908 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1909
1910 case SHT_SHLIB:
1911 return TRUE;
1912
1913 case SHT_GROUP:
1914 if (! IS_VALID_GROUP_SECTION_HEADER (hdr, GRP_ENTRY_SIZE))
1915 return FALSE;
1916 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1917 return FALSE;
1918 if (hdr->contents != NULL)
1919 {
1920 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
1921 unsigned int n_elt = hdr->sh_size / GRP_ENTRY_SIZE;
1922 asection *s;
1923
1924 if (idx->flags & GRP_COMDAT)
1925 hdr->bfd_section->flags
1926 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1927
1928 /* We try to keep the same section order as it comes in. */
1929 idx += n_elt;
1930 while (--n_elt != 0)
1931 {
1932 --idx;
1933
1934 if (idx->shdr != NULL
1935 && (s = idx->shdr->bfd_section) != NULL
1936 && elf_next_in_group (s) != NULL)
1937 {
1938 elf_next_in_group (hdr->bfd_section) = s;
1939 break;
1940 }
1941 }
1942 }
1943 break;
1944
1945 default:
1946 /* Possibly an attributes section. */
1947 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
1948 || hdr->sh_type == bed->obj_attrs_section_type)
1949 {
1950 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1951 return FALSE;
1952 _bfd_elf_parse_attributes (abfd, hdr);
1953 return TRUE;
1954 }
1955
1956 /* Check for any processor-specific section types. */
1957 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
1958 return TRUE;
1959
1960 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
1961 {
1962 if ((hdr->sh_flags & SHF_ALLOC) != 0)
1963 /* FIXME: How to properly handle allocated section reserved
1964 for applications? */
1965 (*_bfd_error_handler)
1966 (_("%B: don't know how to handle allocated, application "
1967 "specific section `%s' [0x%8x]"),
1968 abfd, name, hdr->sh_type);
1969 else
1970 /* Allow sections reserved for applications. */
1971 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1972 shindex);
1973 }
1974 else if (hdr->sh_type >= SHT_LOPROC
1975 && hdr->sh_type <= SHT_HIPROC)
1976 /* FIXME: We should handle this section. */
1977 (*_bfd_error_handler)
1978 (_("%B: don't know how to handle processor specific section "
1979 "`%s' [0x%8x]"),
1980 abfd, name, hdr->sh_type);
1981 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
1982 {
1983 /* Unrecognised OS-specific sections. */
1984 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
1985 /* SHF_OS_NONCONFORMING indicates that special knowledge is
1986 required to correctly process the section and the file should
1987 be rejected with an error message. */
1988 (*_bfd_error_handler)
1989 (_("%B: don't know how to handle OS specific section "
1990 "`%s' [0x%8x]"),
1991 abfd, name, hdr->sh_type);
1992 else
1993 /* Otherwise it should be processed. */
1994 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1995 }
1996 else
1997 /* FIXME: We should handle this section. */
1998 (*_bfd_error_handler)
1999 (_("%B: don't know how to handle section `%s' [0x%8x]"),
2000 abfd, name, hdr->sh_type);
2001
2002 return FALSE;
2003 }
2004
2005 return TRUE;
2006 }
2007
2008 /* Return the local symbol specified by ABFD, R_SYMNDX. */
2009
2010 Elf_Internal_Sym *
2011 bfd_sym_from_r_symndx (struct sym_cache *cache,
2012 bfd *abfd,
2013 unsigned long r_symndx)
2014 {
2015 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2016
2017 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
2018 {
2019 Elf_Internal_Shdr *symtab_hdr;
2020 unsigned char esym[sizeof (Elf64_External_Sym)];
2021 Elf_External_Sym_Shndx eshndx;
2022
2023 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2024 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2025 &cache->sym[ent], esym, &eshndx) == NULL)
2026 return NULL;
2027
2028 if (cache->abfd != abfd)
2029 {
2030 memset (cache->indx, -1, sizeof (cache->indx));
2031 cache->abfd = abfd;
2032 }
2033 cache->indx[ent] = r_symndx;
2034 }
2035
2036 return &cache->sym[ent];
2037 }
2038
2039 /* Given an ELF section number, retrieve the corresponding BFD
2040 section. */
2041
2042 asection *
2043 bfd_section_from_elf_index (bfd *abfd, unsigned int sec_index)
2044 {
2045 if (sec_index >= elf_numsections (abfd))
2046 return NULL;
2047 return elf_elfsections (abfd)[sec_index]->bfd_section;
2048 }
2049
2050 static const struct bfd_elf_special_section special_sections_b[] =
2051 {
2052 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2053 { NULL, 0, 0, 0, 0 }
2054 };
2055
2056 static const struct bfd_elf_special_section special_sections_c[] =
2057 {
2058 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2059 { NULL, 0, 0, 0, 0 }
2060 };
2061
2062 static const struct bfd_elf_special_section special_sections_d[] =
2063 {
2064 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2065 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2066 /* There are more DWARF sections than these, but they needn't be added here
2067 unless you have to cope with broken compilers that don't emit section
2068 attributes or you want to help the user writing assembler. */
2069 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2070 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2071 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2072 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2073 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2074 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2075 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2076 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2077 { NULL, 0, 0, 0, 0 }
2078 };
2079
2080 static const struct bfd_elf_special_section special_sections_f[] =
2081 {
2082 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2083 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2084 { NULL, 0, 0, 0, 0 }
2085 };
2086
2087 static const struct bfd_elf_special_section special_sections_g[] =
2088 {
2089 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2090 { STRING_COMMA_LEN (".gnu.lto_"), -1, SHT_PROGBITS, SHF_EXCLUDE },
2091 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2092 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2093 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2094 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2095 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2096 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2097 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2098 { NULL, 0, 0, 0, 0 }
2099 };
2100
2101 static const struct bfd_elf_special_section special_sections_h[] =
2102 {
2103 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2104 { NULL, 0, 0, 0, 0 }
2105 };
2106
2107 static const struct bfd_elf_special_section special_sections_i[] =
2108 {
2109 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2110 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2111 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2112 { NULL, 0, 0, 0, 0 }
2113 };
2114
2115 static const struct bfd_elf_special_section special_sections_l[] =
2116 {
2117 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2118 { NULL, 0, 0, 0, 0 }
2119 };
2120
2121 static const struct bfd_elf_special_section special_sections_n[] =
2122 {
2123 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2124 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2125 { NULL, 0, 0, 0, 0 }
2126 };
2127
2128 static const struct bfd_elf_special_section special_sections_p[] =
2129 {
2130 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2131 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2132 { NULL, 0, 0, 0, 0 }
2133 };
2134
2135 static const struct bfd_elf_special_section special_sections_r[] =
2136 {
2137 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2138 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2139 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2140 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2141 { NULL, 0, 0, 0, 0 }
2142 };
2143
2144 static const struct bfd_elf_special_section special_sections_s[] =
2145 {
2146 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2147 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2148 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2149 /* See struct bfd_elf_special_section declaration for the semantics of
2150 this special case where .prefix_length != strlen (.prefix). */
2151 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2152 { NULL, 0, 0, 0, 0 }
2153 };
2154
2155 static const struct bfd_elf_special_section special_sections_t[] =
2156 {
2157 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2158 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2159 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2160 { NULL, 0, 0, 0, 0 }
2161 };
2162
2163 static const struct bfd_elf_special_section special_sections_z[] =
2164 {
2165 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 },
2166 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 },
2167 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 },
2168 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 },
2169 { NULL, 0, 0, 0, 0 }
2170 };
2171
2172 static const struct bfd_elf_special_section * const special_sections[] =
2173 {
2174 special_sections_b, /* 'b' */
2175 special_sections_c, /* 'c' */
2176 special_sections_d, /* 'd' */
2177 NULL, /* 'e' */
2178 special_sections_f, /* 'f' */
2179 special_sections_g, /* 'g' */
2180 special_sections_h, /* 'h' */
2181 special_sections_i, /* 'i' */
2182 NULL, /* 'j' */
2183 NULL, /* 'k' */
2184 special_sections_l, /* 'l' */
2185 NULL, /* 'm' */
2186 special_sections_n, /* 'n' */
2187 NULL, /* 'o' */
2188 special_sections_p, /* 'p' */
2189 NULL, /* 'q' */
2190 special_sections_r, /* 'r' */
2191 special_sections_s, /* 's' */
2192 special_sections_t, /* 't' */
2193 NULL, /* 'u' */
2194 NULL, /* 'v' */
2195 NULL, /* 'w' */
2196 NULL, /* 'x' */
2197 NULL, /* 'y' */
2198 special_sections_z /* 'z' */
2199 };
2200
2201 const struct bfd_elf_special_section *
2202 _bfd_elf_get_special_section (const char *name,
2203 const struct bfd_elf_special_section *spec,
2204 unsigned int rela)
2205 {
2206 int i;
2207 int len;
2208
2209 len = strlen (name);
2210
2211 for (i = 0; spec[i].prefix != NULL; i++)
2212 {
2213 int suffix_len;
2214 int prefix_len = spec[i].prefix_length;
2215
2216 if (len < prefix_len)
2217 continue;
2218 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2219 continue;
2220
2221 suffix_len = spec[i].suffix_length;
2222 if (suffix_len <= 0)
2223 {
2224 if (name[prefix_len] != 0)
2225 {
2226 if (suffix_len == 0)
2227 continue;
2228 if (name[prefix_len] != '.'
2229 && (suffix_len == -2
2230 || (rela && spec[i].type == SHT_REL)))
2231 continue;
2232 }
2233 }
2234 else
2235 {
2236 if (len < prefix_len + suffix_len)
2237 continue;
2238 if (memcmp (name + len - suffix_len,
2239 spec[i].prefix + prefix_len,
2240 suffix_len) != 0)
2241 continue;
2242 }
2243 return &spec[i];
2244 }
2245
2246 return NULL;
2247 }
2248
2249 const struct bfd_elf_special_section *
2250 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2251 {
2252 int i;
2253 const struct bfd_elf_special_section *spec;
2254 const struct elf_backend_data *bed;
2255
2256 /* See if this is one of the special sections. */
2257 if (sec->name == NULL)
2258 return NULL;
2259
2260 bed = get_elf_backend_data (abfd);
2261 spec = bed->special_sections;
2262 if (spec)
2263 {
2264 spec = _bfd_elf_get_special_section (sec->name,
2265 bed->special_sections,
2266 sec->use_rela_p);
2267 if (spec != NULL)
2268 return spec;
2269 }
2270
2271 if (sec->name[0] != '.')
2272 return NULL;
2273
2274 i = sec->name[1] - 'b';
2275 if (i < 0 || i > 'z' - 'b')
2276 return NULL;
2277
2278 spec = special_sections[i];
2279
2280 if (spec == NULL)
2281 return NULL;
2282
2283 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2284 }
2285
2286 bfd_boolean
2287 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2288 {
2289 struct bfd_elf_section_data *sdata;
2290 const struct elf_backend_data *bed;
2291 const struct bfd_elf_special_section *ssect;
2292
2293 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2294 if (sdata == NULL)
2295 {
2296 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd,
2297 sizeof (*sdata));
2298 if (sdata == NULL)
2299 return FALSE;
2300 sec->used_by_bfd = sdata;
2301 }
2302
2303 /* Indicate whether or not this section should use RELA relocations. */
2304 bed = get_elf_backend_data (abfd);
2305 sec->use_rela_p = bed->default_use_rela_p;
2306
2307 /* When we read a file, we don't need to set ELF section type and
2308 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2309 anyway. We will set ELF section type and flags for all linker
2310 created sections. If user specifies BFD section flags, we will
2311 set ELF section type and flags based on BFD section flags in
2312 elf_fake_sections. Special handling for .init_array/.fini_array
2313 output sections since they may contain .ctors/.dtors input
2314 sections. We don't want _bfd_elf_init_private_section_data to
2315 copy ELF section type from .ctors/.dtors input sections. */
2316 if (abfd->direction != read_direction
2317 || (sec->flags & SEC_LINKER_CREATED) != 0)
2318 {
2319 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2320 if (ssect != NULL
2321 && (!sec->flags
2322 || (sec->flags & SEC_LINKER_CREATED) != 0
2323 || ssect->type == SHT_INIT_ARRAY
2324 || ssect->type == SHT_FINI_ARRAY))
2325 {
2326 elf_section_type (sec) = ssect->type;
2327 elf_section_flags (sec) = ssect->attr;
2328 }
2329 }
2330
2331 return _bfd_generic_new_section_hook (abfd, sec);
2332 }
2333
2334 /* Create a new bfd section from an ELF program header.
2335
2336 Since program segments have no names, we generate a synthetic name
2337 of the form segment<NUM>, where NUM is generally the index in the
2338 program header table. For segments that are split (see below) we
2339 generate the names segment<NUM>a and segment<NUM>b.
2340
2341 Note that some program segments may have a file size that is different than
2342 (less than) the memory size. All this means is that at execution the
2343 system must allocate the amount of memory specified by the memory size,
2344 but only initialize it with the first "file size" bytes read from the
2345 file. This would occur for example, with program segments consisting
2346 of combined data+bss.
2347
2348 To handle the above situation, this routine generates TWO bfd sections
2349 for the single program segment. The first has the length specified by
2350 the file size of the segment, and the second has the length specified
2351 by the difference between the two sizes. In effect, the segment is split
2352 into its initialized and uninitialized parts.
2353
2354 */
2355
2356 bfd_boolean
2357 _bfd_elf_make_section_from_phdr (bfd *abfd,
2358 Elf_Internal_Phdr *hdr,
2359 int hdr_index,
2360 const char *type_name)
2361 {
2362 asection *newsect;
2363 char *name;
2364 char namebuf[64];
2365 size_t len;
2366 int split;
2367
2368 split = ((hdr->p_memsz > 0)
2369 && (hdr->p_filesz > 0)
2370 && (hdr->p_memsz > hdr->p_filesz));
2371
2372 if (hdr->p_filesz > 0)
2373 {
2374 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "a" : "");
2375 len = strlen (namebuf) + 1;
2376 name = (char *) bfd_alloc (abfd, len);
2377 if (!name)
2378 return FALSE;
2379 memcpy (name, namebuf, len);
2380 newsect = bfd_make_section (abfd, name);
2381 if (newsect == NULL)
2382 return FALSE;
2383 newsect->vma = hdr->p_vaddr;
2384 newsect->lma = hdr->p_paddr;
2385 newsect->size = hdr->p_filesz;
2386 newsect->filepos = hdr->p_offset;
2387 newsect->flags |= SEC_HAS_CONTENTS;
2388 newsect->alignment_power = bfd_log2 (hdr->p_align);
2389 if (hdr->p_type == PT_LOAD)
2390 {
2391 newsect->flags |= SEC_ALLOC;
2392 newsect->flags |= SEC_LOAD;
2393 if (hdr->p_flags & PF_X)
2394 {
2395 /* FIXME: all we known is that it has execute PERMISSION,
2396 may be data. */
2397 newsect->flags |= SEC_CODE;
2398 }
2399 }
2400 if (!(hdr->p_flags & PF_W))
2401 {
2402 newsect->flags |= SEC_READONLY;
2403 }
2404 }
2405
2406 if (hdr->p_memsz > hdr->p_filesz)
2407 {
2408 bfd_vma align;
2409
2410 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "b" : "");
2411 len = strlen (namebuf) + 1;
2412 name = (char *) bfd_alloc (abfd, len);
2413 if (!name)
2414 return FALSE;
2415 memcpy (name, namebuf, len);
2416 newsect = bfd_make_section (abfd, name);
2417 if (newsect == NULL)
2418 return FALSE;
2419 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2420 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2421 newsect->size = hdr->p_memsz - hdr->p_filesz;
2422 newsect->filepos = hdr->p_offset + hdr->p_filesz;
2423 align = newsect->vma & -newsect->vma;
2424 if (align == 0 || align > hdr->p_align)
2425 align = hdr->p_align;
2426 newsect->alignment_power = bfd_log2 (align);
2427 if (hdr->p_type == PT_LOAD)
2428 {
2429 /* Hack for gdb. Segments that have not been modified do
2430 not have their contents written to a core file, on the
2431 assumption that a debugger can find the contents in the
2432 executable. We flag this case by setting the fake
2433 section size to zero. Note that "real" bss sections will
2434 always have their contents dumped to the core file. */
2435 if (bfd_get_format (abfd) == bfd_core)
2436 newsect->size = 0;
2437 newsect->flags |= SEC_ALLOC;
2438 if (hdr->p_flags & PF_X)
2439 newsect->flags |= SEC_CODE;
2440 }
2441 if (!(hdr->p_flags & PF_W))
2442 newsect->flags |= SEC_READONLY;
2443 }
2444
2445 return TRUE;
2446 }
2447
2448 bfd_boolean
2449 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int hdr_index)
2450 {
2451 const struct elf_backend_data *bed;
2452
2453 switch (hdr->p_type)
2454 {
2455 case PT_NULL:
2456 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "null");
2457
2458 case PT_LOAD:
2459 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "load");
2460
2461 case PT_DYNAMIC:
2462 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "dynamic");
2463
2464 case PT_INTERP:
2465 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "interp");
2466
2467 case PT_NOTE:
2468 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "note"))
2469 return FALSE;
2470 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2471 return FALSE;
2472 return TRUE;
2473
2474 case PT_SHLIB:
2475 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "shlib");
2476
2477 case PT_PHDR:
2478 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "phdr");
2479
2480 case PT_GNU_EH_FRAME:
2481 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index,
2482 "eh_frame_hdr");
2483
2484 case PT_GNU_STACK:
2485 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "stack");
2486
2487 case PT_GNU_RELRO:
2488 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "relro");
2489
2490 default:
2491 /* Check for any processor-specific program segment types. */
2492 bed = get_elf_backend_data (abfd);
2493 return bed->elf_backend_section_from_phdr (abfd, hdr, hdr_index, "proc");
2494 }
2495 }
2496
2497 /* Return the REL_HDR for SEC, assuming there is only a single one, either
2498 REL or RELA. */
2499
2500 Elf_Internal_Shdr *
2501 _bfd_elf_single_rel_hdr (asection *sec)
2502 {
2503 if (elf_section_data (sec)->rel.hdr)
2504 {
2505 BFD_ASSERT (elf_section_data (sec)->rela.hdr == NULL);
2506 return elf_section_data (sec)->rel.hdr;
2507 }
2508 else
2509 return elf_section_data (sec)->rela.hdr;
2510 }
2511
2512 /* Allocate and initialize a section-header for a new reloc section,
2513 containing relocations against ASECT. It is stored in RELDATA. If
2514 USE_RELA_P is TRUE, we use RELA relocations; otherwise, we use REL
2515 relocations. */
2516
2517 bfd_boolean
2518 _bfd_elf_init_reloc_shdr (bfd *abfd,
2519 struct bfd_elf_section_reloc_data *reldata,
2520 asection *asect,
2521 bfd_boolean use_rela_p)
2522 {
2523 Elf_Internal_Shdr *rel_hdr;
2524 char *name;
2525 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2526 bfd_size_type amt;
2527
2528 amt = sizeof (Elf_Internal_Shdr);
2529 BFD_ASSERT (reldata->hdr == NULL);
2530 rel_hdr = bfd_zalloc (abfd, amt);
2531 reldata->hdr = rel_hdr;
2532
2533 amt = sizeof ".rela" + strlen (asect->name);
2534 name = (char *) bfd_alloc (abfd, amt);
2535 if (name == NULL)
2536 return FALSE;
2537 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2538 rel_hdr->sh_name =
2539 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2540 FALSE);
2541 if (rel_hdr->sh_name == (unsigned int) -1)
2542 return FALSE;
2543 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2544 rel_hdr->sh_entsize = (use_rela_p
2545 ? bed->s->sizeof_rela
2546 : bed->s->sizeof_rel);
2547 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
2548 rel_hdr->sh_flags = 0;
2549 rel_hdr->sh_addr = 0;
2550 rel_hdr->sh_size = 0;
2551 rel_hdr->sh_offset = 0;
2552
2553 return TRUE;
2554 }
2555
2556 /* Return the default section type based on the passed in section flags. */
2557
2558 int
2559 bfd_elf_get_default_section_type (flagword flags)
2560 {
2561 if ((flags & SEC_ALLOC) != 0
2562 && (flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2563 return SHT_NOBITS;
2564 return SHT_PROGBITS;
2565 }
2566
2567 struct fake_section_arg
2568 {
2569 struct bfd_link_info *link_info;
2570 bfd_boolean failed;
2571 };
2572
2573 /* Set up an ELF internal section header for a section. */
2574
2575 static void
2576 elf_fake_sections (bfd *abfd, asection *asect, void *fsarg)
2577 {
2578 struct fake_section_arg *arg = (struct fake_section_arg *)fsarg;
2579 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2580 struct bfd_elf_section_data *esd = elf_section_data (asect);
2581 Elf_Internal_Shdr *this_hdr;
2582 unsigned int sh_type;
2583
2584 if (arg->failed)
2585 {
2586 /* We already failed; just get out of the bfd_map_over_sections
2587 loop. */
2588 return;
2589 }
2590
2591 this_hdr = &esd->this_hdr;
2592
2593 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2594 asect->name, FALSE);
2595 if (this_hdr->sh_name == (unsigned int) -1)
2596 {
2597 arg->failed = TRUE;
2598 return;
2599 }
2600
2601 /* Don't clear sh_flags. Assembler may set additional bits. */
2602
2603 if ((asect->flags & SEC_ALLOC) != 0
2604 || asect->user_set_vma)
2605 this_hdr->sh_addr = asect->vma;
2606 else
2607 this_hdr->sh_addr = 0;
2608
2609 this_hdr->sh_offset = 0;
2610 this_hdr->sh_size = asect->size;
2611 this_hdr->sh_link = 0;
2612 this_hdr->sh_addralign = (bfd_vma) 1 << asect->alignment_power;
2613 /* The sh_entsize and sh_info fields may have been set already by
2614 copy_private_section_data. */
2615
2616 this_hdr->bfd_section = asect;
2617 this_hdr->contents = NULL;
2618
2619 /* If the section type is unspecified, we set it based on
2620 asect->flags. */
2621 if ((asect->flags & SEC_GROUP) != 0)
2622 sh_type = SHT_GROUP;
2623 else
2624 sh_type = bfd_elf_get_default_section_type (asect->flags);
2625
2626 if (this_hdr->sh_type == SHT_NULL)
2627 this_hdr->sh_type = sh_type;
2628 else if (this_hdr->sh_type == SHT_NOBITS
2629 && sh_type == SHT_PROGBITS
2630 && (asect->flags & SEC_ALLOC) != 0)
2631 {
2632 /* Warn if we are changing a NOBITS section to PROGBITS, but
2633 allow the link to proceed. This can happen when users link
2634 non-bss input sections to bss output sections, or emit data
2635 to a bss output section via a linker script. */
2636 (*_bfd_error_handler)
2637 (_("warning: section `%A' type changed to PROGBITS"), asect);
2638 this_hdr->sh_type = sh_type;
2639 }
2640
2641 switch (this_hdr->sh_type)
2642 {
2643 default:
2644 break;
2645
2646 case SHT_STRTAB:
2647 case SHT_INIT_ARRAY:
2648 case SHT_FINI_ARRAY:
2649 case SHT_PREINIT_ARRAY:
2650 case SHT_NOTE:
2651 case SHT_NOBITS:
2652 case SHT_PROGBITS:
2653 break;
2654
2655 case SHT_HASH:
2656 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2657 break;
2658
2659 case SHT_DYNSYM:
2660 this_hdr->sh_entsize = bed->s->sizeof_sym;
2661 break;
2662
2663 case SHT_DYNAMIC:
2664 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2665 break;
2666
2667 case SHT_RELA:
2668 if (get_elf_backend_data (abfd)->may_use_rela_p)
2669 this_hdr->sh_entsize = bed->s->sizeof_rela;
2670 break;
2671
2672 case SHT_REL:
2673 if (get_elf_backend_data (abfd)->may_use_rel_p)
2674 this_hdr->sh_entsize = bed->s->sizeof_rel;
2675 break;
2676
2677 case SHT_GNU_versym:
2678 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2679 break;
2680
2681 case SHT_GNU_verdef:
2682 this_hdr->sh_entsize = 0;
2683 /* objcopy or strip will copy over sh_info, but may not set
2684 cverdefs. The linker will set cverdefs, but sh_info will be
2685 zero. */
2686 if (this_hdr->sh_info == 0)
2687 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2688 else
2689 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2690 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2691 break;
2692
2693 case SHT_GNU_verneed:
2694 this_hdr->sh_entsize = 0;
2695 /* objcopy or strip will copy over sh_info, but may not set
2696 cverrefs. The linker will set cverrefs, but sh_info will be
2697 zero. */
2698 if (this_hdr->sh_info == 0)
2699 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2700 else
2701 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2702 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2703 break;
2704
2705 case SHT_GROUP:
2706 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
2707 break;
2708
2709 case SHT_GNU_HASH:
2710 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
2711 break;
2712 }
2713
2714 if ((asect->flags & SEC_ALLOC) != 0)
2715 this_hdr->sh_flags |= SHF_ALLOC;
2716 if ((asect->flags & SEC_READONLY) == 0)
2717 this_hdr->sh_flags |= SHF_WRITE;
2718 if ((asect->flags & SEC_CODE) != 0)
2719 this_hdr->sh_flags |= SHF_EXECINSTR;
2720 if ((asect->flags & SEC_MERGE) != 0)
2721 {
2722 this_hdr->sh_flags |= SHF_MERGE;
2723 this_hdr->sh_entsize = asect->entsize;
2724 if ((asect->flags & SEC_STRINGS) != 0)
2725 this_hdr->sh_flags |= SHF_STRINGS;
2726 }
2727 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2728 this_hdr->sh_flags |= SHF_GROUP;
2729 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2730 {
2731 this_hdr->sh_flags |= SHF_TLS;
2732 if (asect->size == 0
2733 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2734 {
2735 struct bfd_link_order *o = asect->map_tail.link_order;
2736
2737 this_hdr->sh_size = 0;
2738 if (o != NULL)
2739 {
2740 this_hdr->sh_size = o->offset + o->size;
2741 if (this_hdr->sh_size != 0)
2742 this_hdr->sh_type = SHT_NOBITS;
2743 }
2744 }
2745 }
2746 if ((asect->flags & (SEC_GROUP | SEC_EXCLUDE)) == SEC_EXCLUDE)
2747 this_hdr->sh_flags |= SHF_EXCLUDE;
2748
2749 /* If the section has relocs, set up a section header for the
2750 SHT_REL[A] section. If two relocation sections are required for
2751 this section, it is up to the processor-specific back-end to
2752 create the other. */
2753 if ((asect->flags & SEC_RELOC) != 0)
2754 {
2755 /* When doing a relocatable link, create both REL and RELA sections if
2756 needed. */
2757 if (arg->link_info
2758 /* Do the normal setup if we wouldn't create any sections here. */
2759 && esd->rel.count + esd->rela.count > 0
2760 && (arg->link_info->relocatable || arg->link_info->emitrelocations))
2761 {
2762 if (esd->rel.count && esd->rel.hdr == NULL
2763 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rel, asect, FALSE))
2764 {
2765 arg->failed = TRUE;
2766 return;
2767 }
2768 if (esd->rela.count && esd->rela.hdr == NULL
2769 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rela, asect, TRUE))
2770 {
2771 arg->failed = TRUE;
2772 return;
2773 }
2774 }
2775 else if (!_bfd_elf_init_reloc_shdr (abfd,
2776 (asect->use_rela_p
2777 ? &esd->rela : &esd->rel),
2778 asect,
2779 asect->use_rela_p))
2780 arg->failed = TRUE;
2781 }
2782
2783 /* Check for processor-specific section types. */
2784 sh_type = this_hdr->sh_type;
2785 if (bed->elf_backend_fake_sections
2786 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2787 arg->failed = TRUE;
2788
2789 if (sh_type == SHT_NOBITS && asect->size != 0)
2790 {
2791 /* Don't change the header type from NOBITS if we are being
2792 called for objcopy --only-keep-debug. */
2793 this_hdr->sh_type = sh_type;
2794 }
2795 }
2796
2797 /* Fill in the contents of a SHT_GROUP section. Called from
2798 _bfd_elf_compute_section_file_positions for gas, objcopy, and
2799 when ELF targets use the generic linker, ld. Called for ld -r
2800 from bfd_elf_final_link. */
2801
2802 void
2803 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2804 {
2805 bfd_boolean *failedptr = (bfd_boolean *) failedptrarg;
2806 asection *elt, *first;
2807 unsigned char *loc;
2808 bfd_boolean gas;
2809
2810 /* Ignore linker created group section. See elfNN_ia64_object_p in
2811 elfxx-ia64.c. */
2812 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
2813 || *failedptr)
2814 return;
2815
2816 if (elf_section_data (sec)->this_hdr.sh_info == 0)
2817 {
2818 unsigned long symindx = 0;
2819
2820 /* elf_group_id will have been set up by objcopy and the
2821 generic linker. */
2822 if (elf_group_id (sec) != NULL)
2823 symindx = elf_group_id (sec)->udata.i;
2824
2825 if (symindx == 0)
2826 {
2827 /* If called from the assembler, swap_out_syms will have set up
2828 elf_section_syms. */
2829 BFD_ASSERT (elf_section_syms (abfd) != NULL);
2830 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2831 }
2832 elf_section_data (sec)->this_hdr.sh_info = symindx;
2833 }
2834 else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2)
2835 {
2836 /* The ELF backend linker sets sh_info to -2 when the group
2837 signature symbol is global, and thus the index can't be
2838 set until all local symbols are output. */
2839 asection *igroup = elf_sec_group (elf_next_in_group (sec));
2840 struct bfd_elf_section_data *sec_data = elf_section_data (igroup);
2841 unsigned long symndx = sec_data->this_hdr.sh_info;
2842 unsigned long extsymoff = 0;
2843 struct elf_link_hash_entry *h;
2844
2845 if (!elf_bad_symtab (igroup->owner))
2846 {
2847 Elf_Internal_Shdr *symtab_hdr;
2848
2849 symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr;
2850 extsymoff = symtab_hdr->sh_info;
2851 }
2852 h = elf_sym_hashes (igroup->owner)[symndx - extsymoff];
2853 while (h->root.type == bfd_link_hash_indirect
2854 || h->root.type == bfd_link_hash_warning)
2855 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2856
2857 elf_section_data (sec)->this_hdr.sh_info = h->indx;
2858 }
2859
2860 /* The contents won't be allocated for "ld -r" or objcopy. */
2861 gas = TRUE;
2862 if (sec->contents == NULL)
2863 {
2864 gas = FALSE;
2865 sec->contents = (unsigned char *) bfd_alloc (abfd, sec->size);
2866
2867 /* Arrange for the section to be written out. */
2868 elf_section_data (sec)->this_hdr.contents = sec->contents;
2869 if (sec->contents == NULL)
2870 {
2871 *failedptr = TRUE;
2872 return;
2873 }
2874 }
2875
2876 loc = sec->contents + sec->size;
2877
2878 /* Get the pointer to the first section in the group that gas
2879 squirreled away here. objcopy arranges for this to be set to the
2880 start of the input section group. */
2881 first = elt = elf_next_in_group (sec);
2882
2883 /* First element is a flag word. Rest of section is elf section
2884 indices for all the sections of the group. Write them backwards
2885 just to keep the group in the same order as given in .section
2886 directives, not that it matters. */
2887 while (elt != NULL)
2888 {
2889 asection *s;
2890
2891 s = elt;
2892 if (!gas)
2893 s = s->output_section;
2894 if (s != NULL
2895 && !bfd_is_abs_section (s))
2896 {
2897 unsigned int idx = elf_section_data (s)->this_idx;
2898
2899 loc -= 4;
2900 H_PUT_32 (abfd, idx, loc);
2901 }
2902 elt = elf_next_in_group (elt);
2903 if (elt == first)
2904 break;
2905 }
2906
2907 if ((loc -= 4) != sec->contents)
2908 abort ();
2909
2910 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2911 }
2912
2913 /* Assign all ELF section numbers. The dummy first section is handled here
2914 too. The link/info pointers for the standard section types are filled
2915 in here too, while we're at it. */
2916
2917 static bfd_boolean
2918 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
2919 {
2920 struct elf_obj_tdata *t = elf_tdata (abfd);
2921 asection *sec;
2922 unsigned int section_number, secn;
2923 Elf_Internal_Shdr **i_shdrp;
2924 struct bfd_elf_section_data *d;
2925 bfd_boolean need_symtab;
2926
2927 section_number = 1;
2928
2929 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2930
2931 /* SHT_GROUP sections are in relocatable files only. */
2932 if (link_info == NULL || link_info->relocatable)
2933 {
2934 /* Put SHT_GROUP sections first. */
2935 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2936 {
2937 d = elf_section_data (sec);
2938
2939 if (d->this_hdr.sh_type == SHT_GROUP)
2940 {
2941 if (sec->flags & SEC_LINKER_CREATED)
2942 {
2943 /* Remove the linker created SHT_GROUP sections. */
2944 bfd_section_list_remove (abfd, sec);
2945 abfd->section_count--;
2946 }
2947 else
2948 d->this_idx = section_number++;
2949 }
2950 }
2951 }
2952
2953 for (sec = abfd->sections; sec; sec = sec->next)
2954 {
2955 d = elf_section_data (sec);
2956
2957 if (d->this_hdr.sh_type != SHT_GROUP)
2958 d->this_idx = section_number++;
2959 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
2960 if (d->rel.hdr)
2961 {
2962 d->rel.idx = section_number++;
2963 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel.hdr->sh_name);
2964 }
2965 else
2966 d->rel.idx = 0;
2967
2968 if (d->rela.hdr)
2969 {
2970 d->rela.idx = section_number++;
2971 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rela.hdr->sh_name);
2972 }
2973 else
2974 d->rela.idx = 0;
2975 }
2976
2977 t->shstrtab_section = section_number++;
2978 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
2979 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
2980
2981 need_symtab = (bfd_get_symcount (abfd) > 0
2982 || (link_info == NULL
2983 && ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
2984 == HAS_RELOC)));
2985 if (need_symtab)
2986 {
2987 t->symtab_section = section_number++;
2988 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
2989 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
2990 {
2991 t->symtab_shndx_section = section_number++;
2992 t->symtab_shndx_hdr.sh_name
2993 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2994 ".symtab_shndx", FALSE);
2995 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
2996 return FALSE;
2997 }
2998 t->strtab_section = section_number++;
2999 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3000 }
3001
3002 if (section_number >= SHN_LORESERVE)
3003 {
3004 _bfd_error_handler (_("%B: too many sections: %u"),
3005 abfd, section_number);
3006 return FALSE;
3007 }
3008
3009 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
3010 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3011
3012 elf_numsections (abfd) = section_number;
3013 elf_elfheader (abfd)->e_shnum = section_number;
3014
3015 /* Set up the list of section header pointers, in agreement with the
3016 indices. */
3017 i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc2 (abfd, section_number,
3018 sizeof (Elf_Internal_Shdr *));
3019 if (i_shdrp == NULL)
3020 return FALSE;
3021
3022 i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd,
3023 sizeof (Elf_Internal_Shdr));
3024 if (i_shdrp[0] == NULL)
3025 {
3026 bfd_release (abfd, i_shdrp);
3027 return FALSE;
3028 }
3029
3030 elf_elfsections (abfd) = i_shdrp;
3031
3032 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
3033 if (need_symtab)
3034 {
3035 i_shdrp[t->symtab_section] = &t->symtab_hdr;
3036 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
3037 {
3038 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
3039 t->symtab_shndx_hdr.sh_link = t->symtab_section;
3040 }
3041 i_shdrp[t->strtab_section] = &t->strtab_hdr;
3042 t->symtab_hdr.sh_link = t->strtab_section;
3043 }
3044
3045 for (sec = abfd->sections; sec; sec = sec->next)
3046 {
3047 asection *s;
3048 const char *name;
3049
3050 d = elf_section_data (sec);
3051
3052 i_shdrp[d->this_idx] = &d->this_hdr;
3053 if (d->rel.idx != 0)
3054 i_shdrp[d->rel.idx] = d->rel.hdr;
3055 if (d->rela.idx != 0)
3056 i_shdrp[d->rela.idx] = d->rela.hdr;
3057
3058 /* Fill in the sh_link and sh_info fields while we're at it. */
3059
3060 /* sh_link of a reloc section is the section index of the symbol
3061 table. sh_info is the section index of the section to which
3062 the relocation entries apply. */
3063 if (d->rel.idx != 0)
3064 {
3065 d->rel.hdr->sh_link = t->symtab_section;
3066 d->rel.hdr->sh_info = d->this_idx;
3067 }
3068 if (d->rela.idx != 0)
3069 {
3070 d->rela.hdr->sh_link = t->symtab_section;
3071 d->rela.hdr->sh_info = d->this_idx;
3072 }
3073
3074 /* We need to set up sh_link for SHF_LINK_ORDER. */
3075 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3076 {
3077 s = elf_linked_to_section (sec);
3078 if (s)
3079 {
3080 /* elf_linked_to_section points to the input section. */
3081 if (link_info != NULL)
3082 {
3083 /* Check discarded linkonce section. */
3084 if (discarded_section (s))
3085 {
3086 asection *kept;
3087 (*_bfd_error_handler)
3088 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
3089 abfd, d->this_hdr.bfd_section,
3090 s, s->owner);
3091 /* Point to the kept section if it has the same
3092 size as the discarded one. */
3093 kept = _bfd_elf_check_kept_section (s, link_info);
3094 if (kept == NULL)
3095 {
3096 bfd_set_error (bfd_error_bad_value);
3097 return FALSE;
3098 }
3099 s = kept;
3100 }
3101
3102 s = s->output_section;
3103 BFD_ASSERT (s != NULL);
3104 }
3105 else
3106 {
3107 /* Handle objcopy. */
3108 if (s->output_section == NULL)
3109 {
3110 (*_bfd_error_handler)
3111 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
3112 abfd, d->this_hdr.bfd_section, s, s->owner);
3113 bfd_set_error (bfd_error_bad_value);
3114 return FALSE;
3115 }
3116 s = s->output_section;
3117 }
3118 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3119 }
3120 else
3121 {
3122 /* PR 290:
3123 The Intel C compiler generates SHT_IA_64_UNWIND with
3124 SHF_LINK_ORDER. But it doesn't set the sh_link or
3125 sh_info fields. Hence we could get the situation
3126 where s is NULL. */
3127 const struct elf_backend_data *bed
3128 = get_elf_backend_data (abfd);
3129 if (bed->link_order_error_handler)
3130 bed->link_order_error_handler
3131 (_("%B: warning: sh_link not set for section `%A'"),
3132 abfd, sec);
3133 }
3134 }
3135
3136 switch (d->this_hdr.sh_type)
3137 {
3138 case SHT_REL:
3139 case SHT_RELA:
3140 /* A reloc section which we are treating as a normal BFD
3141 section. sh_link is the section index of the symbol
3142 table. sh_info is the section index of the section to
3143 which the relocation entries apply. We assume that an
3144 allocated reloc section uses the dynamic symbol table.
3145 FIXME: How can we be sure? */
3146 s = bfd_get_section_by_name (abfd, ".dynsym");
3147 if (s != NULL)
3148 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3149
3150 /* We look up the section the relocs apply to by name. */
3151 name = sec->name;
3152 if (d->this_hdr.sh_type == SHT_REL)
3153 name += 4;
3154 else
3155 name += 5;
3156 s = bfd_get_section_by_name (abfd, name);
3157 if (s != NULL)
3158 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3159 break;
3160
3161 case SHT_STRTAB:
3162 /* We assume that a section named .stab*str is a stabs
3163 string section. We look for a section with the same name
3164 but without the trailing ``str'', and set its sh_link
3165 field to point to this section. */
3166 if (CONST_STRNEQ (sec->name, ".stab")
3167 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3168 {
3169 size_t len;
3170 char *alc;
3171
3172 len = strlen (sec->name);
3173 alc = (char *) bfd_malloc (len - 2);
3174 if (alc == NULL)
3175 return FALSE;
3176 memcpy (alc, sec->name, len - 3);
3177 alc[len - 3] = '\0';
3178 s = bfd_get_section_by_name (abfd, alc);
3179 free (alc);
3180 if (s != NULL)
3181 {
3182 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3183
3184 /* This is a .stab section. */
3185 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3186 elf_section_data (s)->this_hdr.sh_entsize
3187 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3188 }
3189 }
3190 break;
3191
3192 case SHT_DYNAMIC:
3193 case SHT_DYNSYM:
3194 case SHT_GNU_verneed:
3195 case SHT_GNU_verdef:
3196 /* sh_link is the section header index of the string table
3197 used for the dynamic entries, or the symbol table, or the
3198 version strings. */
3199 s = bfd_get_section_by_name (abfd, ".dynstr");
3200 if (s != NULL)
3201 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3202 break;
3203
3204 case SHT_GNU_LIBLIST:
3205 /* sh_link is the section header index of the prelink library
3206 list used for the dynamic entries, or the symbol table, or
3207 the version strings. */
3208 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3209 ? ".dynstr" : ".gnu.libstr");
3210 if (s != NULL)
3211 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3212 break;
3213
3214 case SHT_HASH:
3215 case SHT_GNU_HASH:
3216 case SHT_GNU_versym:
3217 /* sh_link is the section header index of the symbol table
3218 this hash table or version table is for. */
3219 s = bfd_get_section_by_name (abfd, ".dynsym");
3220 if (s != NULL)
3221 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3222 break;
3223
3224 case SHT_GROUP:
3225 d->this_hdr.sh_link = t->symtab_section;
3226 }
3227 }
3228
3229 for (secn = 1; secn < section_number; ++secn)
3230 if (i_shdrp[secn] == NULL)
3231 i_shdrp[secn] = i_shdrp[0];
3232 else
3233 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
3234 i_shdrp[secn]->sh_name);
3235 return TRUE;
3236 }
3237
3238 static bfd_boolean
3239 sym_is_global (bfd *abfd, asymbol *sym)
3240 {
3241 /* If the backend has a special mapping, use it. */
3242 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3243 if (bed->elf_backend_sym_is_global)
3244 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3245
3246 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0
3247 || bfd_is_und_section (bfd_get_section (sym))
3248 || bfd_is_com_section (bfd_get_section (sym)));
3249 }
3250
3251 /* Don't output section symbols for sections that are not going to be
3252 output, that are duplicates or there is no BFD section. */
3253
3254 static bfd_boolean
3255 ignore_section_sym (bfd *abfd, asymbol *sym)
3256 {
3257 elf_symbol_type *type_ptr;
3258
3259 if ((sym->flags & BSF_SECTION_SYM) == 0)
3260 return FALSE;
3261
3262 type_ptr = elf_symbol_from (abfd, sym);
3263 return ((type_ptr != NULL
3264 && type_ptr->internal_elf_sym.st_shndx != 0
3265 && bfd_is_abs_section (sym->section))
3266 || !(sym->section->owner == abfd
3267 || (sym->section->output_section->owner == abfd
3268 && sym->section->output_offset == 0)
3269 || bfd_is_abs_section (sym->section)));
3270 }
3271
3272 /* Map symbol from it's internal number to the external number, moving
3273 all local symbols to be at the head of the list. */
3274
3275 static bfd_boolean
3276 elf_map_symbols (bfd *abfd)
3277 {
3278 unsigned int symcount = bfd_get_symcount (abfd);
3279 asymbol **syms = bfd_get_outsymbols (abfd);
3280 asymbol **sect_syms;
3281 unsigned int num_locals = 0;
3282 unsigned int num_globals = 0;
3283 unsigned int num_locals2 = 0;
3284 unsigned int num_globals2 = 0;
3285 int max_index = 0;
3286 unsigned int idx;
3287 asection *asect;
3288 asymbol **new_syms;
3289
3290 #ifdef DEBUG
3291 fprintf (stderr, "elf_map_symbols\n");
3292 fflush (stderr);
3293 #endif
3294
3295 for (asect = abfd->sections; asect; asect = asect->next)
3296 {
3297 if (max_index < asect->index)
3298 max_index = asect->index;
3299 }
3300
3301 max_index++;
3302 sect_syms = (asymbol **) bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
3303 if (sect_syms == NULL)
3304 return FALSE;
3305 elf_section_syms (abfd) = sect_syms;
3306 elf_num_section_syms (abfd) = max_index;
3307
3308 /* Init sect_syms entries for any section symbols we have already
3309 decided to output. */
3310 for (idx = 0; idx < symcount; idx++)
3311 {
3312 asymbol *sym = syms[idx];
3313
3314 if ((sym->flags & BSF_SECTION_SYM) != 0
3315 && sym->value == 0
3316 && !ignore_section_sym (abfd, sym)
3317 && !bfd_is_abs_section (sym->section))
3318 {
3319 asection *sec = sym->section;
3320
3321 if (sec->owner != abfd)
3322 sec = sec->output_section;
3323
3324 sect_syms[sec->index] = syms[idx];
3325 }
3326 }
3327
3328 /* Classify all of the symbols. */
3329 for (idx = 0; idx < symcount; idx++)
3330 {
3331 if (sym_is_global (abfd, syms[idx]))
3332 num_globals++;
3333 else if (!ignore_section_sym (abfd, syms[idx]))
3334 num_locals++;
3335 }
3336
3337 /* We will be adding a section symbol for each normal BFD section. Most
3338 sections will already have a section symbol in outsymbols, but
3339 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3340 at least in that case. */
3341 for (asect = abfd->sections; asect; asect = asect->next)
3342 {
3343 if (sect_syms[asect->index] == NULL)
3344 {
3345 if (!sym_is_global (abfd, asect->symbol))
3346 num_locals++;
3347 else
3348 num_globals++;
3349 }
3350 }
3351
3352 /* Now sort the symbols so the local symbols are first. */
3353 new_syms = (asymbol **) bfd_alloc2 (abfd, num_locals + num_globals,
3354 sizeof (asymbol *));
3355
3356 if (new_syms == NULL)
3357 return FALSE;
3358
3359 for (idx = 0; idx < symcount; idx++)
3360 {
3361 asymbol *sym = syms[idx];
3362 unsigned int i;
3363
3364 if (sym_is_global (abfd, sym))
3365 i = num_locals + num_globals2++;
3366 else if (!ignore_section_sym (abfd, sym))
3367 i = num_locals2++;
3368 else
3369 continue;
3370 new_syms[i] = sym;
3371 sym->udata.i = i + 1;
3372 }
3373 for (asect = abfd->sections; asect; asect = asect->next)
3374 {
3375 if (sect_syms[asect->index] == NULL)
3376 {
3377 asymbol *sym = asect->symbol;
3378 unsigned int i;
3379
3380 sect_syms[asect->index] = sym;
3381 if (!sym_is_global (abfd, sym))
3382 i = num_locals2++;
3383 else
3384 i = num_locals + num_globals2++;
3385 new_syms[i] = sym;
3386 sym->udata.i = i + 1;
3387 }
3388 }
3389
3390 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3391
3392 elf_num_locals (abfd) = num_locals;
3393 elf_num_globals (abfd) = num_globals;
3394 return TRUE;
3395 }
3396
3397 /* Align to the maximum file alignment that could be required for any
3398 ELF data structure. */
3399
3400 static inline file_ptr
3401 align_file_position (file_ptr off, int align)
3402 {
3403 return (off + align - 1) & ~(align - 1);
3404 }
3405
3406 /* Assign a file position to a section, optionally aligning to the
3407 required section alignment. */
3408
3409 file_ptr
3410 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3411 file_ptr offset,
3412 bfd_boolean align)
3413 {
3414 if (align && i_shdrp->sh_addralign > 1)
3415 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
3416 i_shdrp->sh_offset = offset;
3417 if (i_shdrp->bfd_section != NULL)
3418 i_shdrp->bfd_section->filepos = offset;
3419 if (i_shdrp->sh_type != SHT_NOBITS)
3420 offset += i_shdrp->sh_size;
3421 return offset;
3422 }
3423
3424 /* Compute the file positions we are going to put the sections at, and
3425 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3426 is not NULL, this is being called by the ELF backend linker. */
3427
3428 bfd_boolean
3429 _bfd_elf_compute_section_file_positions (bfd *abfd,
3430 struct bfd_link_info *link_info)
3431 {
3432 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3433 struct fake_section_arg fsargs;
3434 bfd_boolean failed;
3435 struct bfd_strtab_hash *strtab = NULL;
3436 Elf_Internal_Shdr *shstrtab_hdr;
3437 bfd_boolean need_symtab;
3438
3439 if (abfd->output_has_begun)
3440 return TRUE;
3441
3442 /* Do any elf backend specific processing first. */
3443 if (bed->elf_backend_begin_write_processing)
3444 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3445
3446 if (! prep_headers (abfd))
3447 return FALSE;
3448
3449 /* Post process the headers if necessary. */
3450 if (bed->elf_backend_post_process_headers)
3451 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3452
3453 fsargs.failed = FALSE;
3454 fsargs.link_info = link_info;
3455 bfd_map_over_sections (abfd, elf_fake_sections, &fsargs);
3456 if (fsargs.failed)
3457 return FALSE;
3458
3459 if (!assign_section_numbers (abfd, link_info))
3460 return FALSE;
3461
3462 /* The backend linker builds symbol table information itself. */
3463 need_symtab = (link_info == NULL
3464 && (bfd_get_symcount (abfd) > 0
3465 || ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
3466 == HAS_RELOC)));
3467 if (need_symtab)
3468 {
3469 /* Non-zero if doing a relocatable link. */
3470 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3471
3472 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3473 return FALSE;
3474 }
3475
3476 failed = FALSE;
3477 if (link_info == NULL)
3478 {
3479 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3480 if (failed)
3481 return FALSE;
3482 }
3483
3484 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3485 /* sh_name was set in prep_headers. */
3486 shstrtab_hdr->sh_type = SHT_STRTAB;
3487 shstrtab_hdr->sh_flags = 0;
3488 shstrtab_hdr->sh_addr = 0;
3489 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3490 shstrtab_hdr->sh_entsize = 0;
3491 shstrtab_hdr->sh_link = 0;
3492 shstrtab_hdr->sh_info = 0;
3493 /* sh_offset is set in assign_file_positions_except_relocs. */
3494 shstrtab_hdr->sh_addralign = 1;
3495
3496 if (!assign_file_positions_except_relocs (abfd, link_info))
3497 return FALSE;
3498
3499 if (need_symtab)
3500 {
3501 file_ptr off;
3502 Elf_Internal_Shdr *hdr;
3503
3504 off = elf_tdata (abfd)->next_file_pos;
3505
3506 hdr = &elf_tdata (abfd)->symtab_hdr;
3507 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3508
3509 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3510 if (hdr->sh_size != 0)
3511 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3512
3513 hdr = &elf_tdata (abfd)->strtab_hdr;
3514 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3515
3516 elf_tdata (abfd)->next_file_pos = off;
3517
3518 /* Now that we know where the .strtab section goes, write it
3519 out. */
3520 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3521 || ! _bfd_stringtab_emit (abfd, strtab))
3522 return FALSE;
3523 _bfd_stringtab_free (strtab);
3524 }
3525
3526 abfd->output_has_begun = TRUE;
3527
3528 return TRUE;
3529 }
3530
3531 /* Make an initial estimate of the size of the program header. If we
3532 get the number wrong here, we'll redo section placement. */
3533
3534 static bfd_size_type
3535 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
3536 {
3537 size_t segs;
3538 asection *s;
3539 const struct elf_backend_data *bed;
3540
3541 /* Assume we will need exactly two PT_LOAD segments: one for text
3542 and one for data. */
3543 segs = 2;
3544
3545 s = bfd_get_section_by_name (abfd, ".interp");
3546 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3547 {
3548 /* If we have a loadable interpreter section, we need a
3549 PT_INTERP segment. In this case, assume we also need a
3550 PT_PHDR segment, although that may not be true for all
3551 targets. */
3552 segs += 2;
3553 }
3554
3555 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
3556 {
3557 /* We need a PT_DYNAMIC segment. */
3558 ++segs;
3559 }
3560
3561 if (info != NULL && info->relro)
3562 {
3563 /* We need a PT_GNU_RELRO segment. */
3564 ++segs;
3565 }
3566
3567 if (elf_tdata (abfd)->eh_frame_hdr)
3568 {
3569 /* We need a PT_GNU_EH_FRAME segment. */
3570 ++segs;
3571 }
3572
3573 if (elf_tdata (abfd)->stack_flags)
3574 {
3575 /* We need a PT_GNU_STACK segment. */
3576 ++segs;
3577 }
3578
3579 for (s = abfd->sections; s != NULL; s = s->next)
3580 {
3581 if ((s->flags & SEC_LOAD) != 0
3582 && CONST_STRNEQ (s->name, ".note"))
3583 {
3584 /* We need a PT_NOTE segment. */
3585 ++segs;
3586 /* Try to create just one PT_NOTE segment
3587 for all adjacent loadable .note* sections.
3588 gABI requires that within a PT_NOTE segment
3589 (and also inside of each SHT_NOTE section)
3590 each note is padded to a multiple of 4 size,
3591 so we check whether the sections are correctly
3592 aligned. */
3593 if (s->alignment_power == 2)
3594 while (s->next != NULL
3595 && s->next->alignment_power == 2
3596 && (s->next->flags & SEC_LOAD) != 0
3597 && CONST_STRNEQ (s->next->name, ".note"))
3598 s = s->next;
3599 }
3600 }
3601
3602 for (s = abfd->sections; s != NULL; s = s->next)
3603 {
3604 if (s->flags & SEC_THREAD_LOCAL)
3605 {
3606 /* We need a PT_TLS segment. */
3607 ++segs;
3608 break;
3609 }
3610 }
3611
3612 /* Let the backend count up any program headers it might need. */
3613 bed = get_elf_backend_data (abfd);
3614 if (bed->elf_backend_additional_program_headers)
3615 {
3616 int a;
3617
3618 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
3619 if (a == -1)
3620 abort ();
3621 segs += a;
3622 }
3623
3624 return segs * bed->s->sizeof_phdr;
3625 }
3626
3627 /* Find the segment that contains the output_section of section. */
3628
3629 Elf_Internal_Phdr *
3630 _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
3631 {
3632 struct elf_segment_map *m;
3633 Elf_Internal_Phdr *p;
3634
3635 for (m = elf_tdata (abfd)->segment_map,
3636 p = elf_tdata (abfd)->phdr;
3637 m != NULL;
3638 m = m->next, p++)
3639 {
3640 int i;
3641
3642 for (i = m->count - 1; i >= 0; i--)
3643 if (m->sections[i] == section)
3644 return p;
3645 }
3646
3647 return NULL;
3648 }
3649
3650 /* Create a mapping from a set of sections to a program segment. */
3651
3652 static struct elf_segment_map *
3653 make_mapping (bfd *abfd,
3654 asection **sections,
3655 unsigned int from,
3656 unsigned int to,
3657 bfd_boolean phdr)
3658 {
3659 struct elf_segment_map *m;
3660 unsigned int i;
3661 asection **hdrpp;
3662 bfd_size_type amt;
3663
3664 amt = sizeof (struct elf_segment_map);
3665 amt += (to - from - 1) * sizeof (asection *);
3666 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3667 if (m == NULL)
3668 return NULL;
3669 m->next = NULL;
3670 m->p_type = PT_LOAD;
3671 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3672 m->sections[i - from] = *hdrpp;
3673 m->count = to - from;
3674
3675 if (from == 0 && phdr)
3676 {
3677 /* Include the headers in the first PT_LOAD segment. */
3678 m->includes_filehdr = 1;
3679 m->includes_phdrs = 1;
3680 }
3681
3682 return m;
3683 }
3684
3685 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3686 on failure. */
3687
3688 struct elf_segment_map *
3689 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3690 {
3691 struct elf_segment_map *m;
3692
3693 m = (struct elf_segment_map *) bfd_zalloc (abfd,
3694 sizeof (struct elf_segment_map));
3695 if (m == NULL)
3696 return NULL;
3697 m->next = NULL;
3698 m->p_type = PT_DYNAMIC;
3699 m->count = 1;
3700 m->sections[0] = dynsec;
3701
3702 return m;
3703 }
3704
3705 /* Possibly add or remove segments from the segment map. */
3706
3707 static bfd_boolean
3708 elf_modify_segment_map (bfd *abfd,
3709 struct bfd_link_info *info,
3710 bfd_boolean remove_empty_load)
3711 {
3712 struct elf_segment_map **m;
3713 const struct elf_backend_data *bed;
3714
3715 /* The placement algorithm assumes that non allocated sections are
3716 not in PT_LOAD segments. We ensure this here by removing such
3717 sections from the segment map. We also remove excluded
3718 sections. Finally, any PT_LOAD segment without sections is
3719 removed. */
3720 m = &elf_tdata (abfd)->segment_map;
3721 while (*m)
3722 {
3723 unsigned int i, new_count;
3724
3725 for (new_count = 0, i = 0; i < (*m)->count; i++)
3726 {
3727 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
3728 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
3729 || (*m)->p_type != PT_LOAD))
3730 {
3731 (*m)->sections[new_count] = (*m)->sections[i];
3732 new_count++;
3733 }
3734 }
3735 (*m)->count = new_count;
3736
3737 if (remove_empty_load && (*m)->p_type == PT_LOAD && (*m)->count == 0)
3738 *m = (*m)->next;
3739 else
3740 m = &(*m)->next;
3741 }
3742
3743 bed = get_elf_backend_data (abfd);
3744 if (bed->elf_backend_modify_segment_map != NULL)
3745 {
3746 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
3747 return FALSE;
3748 }
3749
3750 return TRUE;
3751 }
3752
3753 /* Set up a mapping from BFD sections to program segments. */
3754
3755 bfd_boolean
3756 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
3757 {
3758 unsigned int count;
3759 struct elf_segment_map *m;
3760 asection **sections = NULL;
3761 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3762 bfd_boolean no_user_phdrs;
3763
3764 no_user_phdrs = elf_tdata (abfd)->segment_map == NULL;
3765
3766 if (info != NULL)
3767 info->user_phdrs = !no_user_phdrs;
3768
3769 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
3770 {
3771 asection *s;
3772 unsigned int i;
3773 struct elf_segment_map *mfirst;
3774 struct elf_segment_map **pm;
3775 asection *last_hdr;
3776 bfd_vma last_size;
3777 unsigned int phdr_index;
3778 bfd_vma maxpagesize;
3779 asection **hdrpp;
3780 bfd_boolean phdr_in_segment = TRUE;
3781 bfd_boolean writable;
3782 int tls_count = 0;
3783 asection *first_tls = NULL;
3784 asection *dynsec, *eh_frame_hdr;
3785 bfd_size_type amt;
3786 bfd_vma addr_mask, wrap_to = 0;
3787
3788 /* Select the allocated sections, and sort them. */
3789
3790 sections = (asection **) bfd_malloc2 (bfd_count_sections (abfd),
3791 sizeof (asection *));
3792 if (sections == NULL)
3793 goto error_return;
3794
3795 /* Calculate top address, avoiding undefined behaviour of shift
3796 left operator when shift count is equal to size of type
3797 being shifted. */
3798 addr_mask = ((bfd_vma) 1 << (bfd_arch_bits_per_address (abfd) - 1)) - 1;
3799 addr_mask = (addr_mask << 1) + 1;
3800
3801 i = 0;
3802 for (s = abfd->sections; s != NULL; s = s->next)
3803 {
3804 if ((s->flags & SEC_ALLOC) != 0)
3805 {
3806 sections[i] = s;
3807 ++i;
3808 /* A wrapping section potentially clashes with header. */
3809 if (((s->lma + s->size) & addr_mask) < (s->lma & addr_mask))
3810 wrap_to = (s->lma + s->size) & addr_mask;
3811 }
3812 }
3813 BFD_ASSERT (i <= bfd_count_sections (abfd));
3814 count = i;
3815
3816 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3817
3818 /* Build the mapping. */
3819
3820 mfirst = NULL;
3821 pm = &mfirst;
3822
3823 /* If we have a .interp section, then create a PT_PHDR segment for
3824 the program headers and a PT_INTERP segment for the .interp
3825 section. */
3826 s = bfd_get_section_by_name (abfd, ".interp");
3827 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3828 {
3829 amt = sizeof (struct elf_segment_map);
3830 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3831 if (m == NULL)
3832 goto error_return;
3833 m->next = NULL;
3834 m->p_type = PT_PHDR;
3835 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3836 m->p_flags = PF_R | PF_X;
3837 m->p_flags_valid = 1;
3838 m->includes_phdrs = 1;
3839
3840 *pm = m;
3841 pm = &m->next;
3842
3843 amt = sizeof (struct elf_segment_map);
3844 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3845 if (m == NULL)
3846 goto error_return;
3847 m->next = NULL;
3848 m->p_type = PT_INTERP;
3849 m->count = 1;
3850 m->sections[0] = s;
3851
3852 *pm = m;
3853 pm = &m->next;
3854 }
3855
3856 /* Look through the sections. We put sections in the same program
3857 segment when the start of the second section can be placed within
3858 a few bytes of the end of the first section. */
3859 last_hdr = NULL;
3860 last_size = 0;
3861 phdr_index = 0;
3862 maxpagesize = bed->maxpagesize;
3863 writable = FALSE;
3864 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3865 if (dynsec != NULL
3866 && (dynsec->flags & SEC_LOAD) == 0)
3867 dynsec = NULL;
3868
3869 /* Deal with -Ttext or something similar such that the first section
3870 is not adjacent to the program headers. This is an
3871 approximation, since at this point we don't know exactly how many
3872 program headers we will need. */
3873 if (count > 0)
3874 {
3875 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
3876
3877 if (phdr_size == (bfd_size_type) -1)
3878 phdr_size = get_program_header_size (abfd, info);
3879 phdr_size += bed->s->sizeof_ehdr;
3880 if ((abfd->flags & D_PAGED) == 0
3881 || (sections[0]->lma & addr_mask) < phdr_size
3882 || ((sections[0]->lma & addr_mask) % maxpagesize
3883 < phdr_size % maxpagesize)
3884 || (sections[0]->lma & addr_mask & -maxpagesize) < wrap_to)
3885 phdr_in_segment = FALSE;
3886 }
3887
3888 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3889 {
3890 asection *hdr;
3891 bfd_boolean new_segment;
3892
3893 hdr = *hdrpp;
3894
3895 /* See if this section and the last one will fit in the same
3896 segment. */
3897
3898 if (last_hdr == NULL)
3899 {
3900 /* If we don't have a segment yet, then we don't need a new
3901 one (we build the last one after this loop). */
3902 new_segment = FALSE;
3903 }
3904 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3905 {
3906 /* If this section has a different relation between the
3907 virtual address and the load address, then we need a new
3908 segment. */
3909 new_segment = TRUE;
3910 }
3911 else if (hdr->lma < last_hdr->lma + last_size
3912 || last_hdr->lma + last_size < last_hdr->lma)
3913 {
3914 /* If this section has a load address that makes it overlap
3915 the previous section, then we need a new segment. */
3916 new_segment = TRUE;
3917 }
3918 /* In the next test we have to be careful when last_hdr->lma is close
3919 to the end of the address space. If the aligned address wraps
3920 around to the start of the address space, then there are no more
3921 pages left in memory and it is OK to assume that the current
3922 section can be included in the current segment. */
3923 else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
3924 > last_hdr->lma)
3925 && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
3926 <= hdr->lma))
3927 {
3928 /* If putting this section in this segment would force us to
3929 skip a page in the segment, then we need a new segment. */
3930 new_segment = TRUE;
3931 }
3932 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
3933 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
3934 {
3935 /* We don't want to put a loadable section after a
3936 nonloadable section in the same segment.
3937 Consider .tbss sections as loadable for this purpose. */
3938 new_segment = TRUE;
3939 }
3940 else if ((abfd->flags & D_PAGED) == 0)
3941 {
3942 /* If the file is not demand paged, which means that we
3943 don't require the sections to be correctly aligned in the
3944 file, then there is no other reason for a new segment. */
3945 new_segment = FALSE;
3946 }
3947 else if (! writable
3948 && (hdr->flags & SEC_READONLY) == 0
3949 && (((last_hdr->lma + last_size - 1) & -maxpagesize)
3950 != (hdr->lma & -maxpagesize)))
3951 {
3952 /* We don't want to put a writable section in a read only
3953 segment, unless they are on the same page in memory
3954 anyhow. We already know that the last section does not
3955 bring us past the current section on the page, so the
3956 only case in which the new section is not on the same
3957 page as the previous section is when the previous section
3958 ends precisely on a page boundary. */
3959 new_segment = TRUE;
3960 }
3961 else
3962 {
3963 /* Otherwise, we can use the same segment. */
3964 new_segment = FALSE;
3965 }
3966
3967 /* Allow interested parties a chance to override our decision. */
3968 if (last_hdr != NULL
3969 && info != NULL
3970 && info->callbacks->override_segment_assignment != NULL)
3971 new_segment
3972 = info->callbacks->override_segment_assignment (info, abfd, hdr,
3973 last_hdr,
3974 new_segment);
3975
3976 if (! new_segment)
3977 {
3978 if ((hdr->flags & SEC_READONLY) == 0)
3979 writable = TRUE;
3980 last_hdr = hdr;
3981 /* .tbss sections effectively have zero size. */
3982 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
3983 != SEC_THREAD_LOCAL)
3984 last_size = hdr->size;
3985 else
3986 last_size = 0;
3987 continue;
3988 }
3989
3990 /* We need a new program segment. We must create a new program
3991 header holding all the sections from phdr_index until hdr. */
3992
3993 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3994 if (m == NULL)
3995 goto error_return;
3996
3997 *pm = m;
3998 pm = &m->next;
3999
4000 if ((hdr->flags & SEC_READONLY) == 0)
4001 writable = TRUE;
4002 else
4003 writable = FALSE;
4004
4005 last_hdr = hdr;
4006 /* .tbss sections effectively have zero size. */
4007 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
4008 last_size = hdr->size;
4009 else
4010 last_size = 0;
4011 phdr_index = i;
4012 phdr_in_segment = FALSE;
4013 }
4014
4015 /* Create a final PT_LOAD program segment, but not if it's just
4016 for .tbss. */
4017 if (last_hdr != NULL
4018 && (i - phdr_index != 1
4019 || ((last_hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
4020 != SEC_THREAD_LOCAL)))
4021 {
4022 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
4023 if (m == NULL)
4024 goto error_return;
4025
4026 *pm = m;
4027 pm = &m->next;
4028 }
4029
4030 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4031 if (dynsec != NULL)
4032 {
4033 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
4034 if (m == NULL)
4035 goto error_return;
4036 *pm = m;
4037 pm = &m->next;
4038 }
4039
4040 /* For each batch of consecutive loadable .note sections,
4041 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
4042 because if we link together nonloadable .note sections and
4043 loadable .note sections, we will generate two .note sections
4044 in the output file. FIXME: Using names for section types is
4045 bogus anyhow. */
4046 for (s = abfd->sections; s != NULL; s = s->next)
4047 {
4048 if ((s->flags & SEC_LOAD) != 0
4049 && CONST_STRNEQ (s->name, ".note"))
4050 {
4051 asection *s2;
4052
4053 count = 1;
4054 amt = sizeof (struct elf_segment_map);
4055 if (s->alignment_power == 2)
4056 for (s2 = s; s2->next != NULL; s2 = s2->next)
4057 {
4058 if (s2->next->alignment_power == 2
4059 && (s2->next->flags & SEC_LOAD) != 0
4060 && CONST_STRNEQ (s2->next->name, ".note")
4061 && align_power (s2->lma + s2->size, 2)
4062 == s2->next->lma)
4063 count++;
4064 else
4065 break;
4066 }
4067 amt += (count - 1) * sizeof (asection *);
4068 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4069 if (m == NULL)
4070 goto error_return;
4071 m->next = NULL;
4072 m->p_type = PT_NOTE;
4073 m->count = count;
4074 while (count > 1)
4075 {
4076 m->sections[m->count - count--] = s;
4077 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4078 s = s->next;
4079 }
4080 m->sections[m->count - 1] = s;
4081 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4082 *pm = m;
4083 pm = &m->next;
4084 }
4085 if (s->flags & SEC_THREAD_LOCAL)
4086 {
4087 if (! tls_count)
4088 first_tls = s;
4089 tls_count++;
4090 }
4091 }
4092
4093 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
4094 if (tls_count > 0)
4095 {
4096 amt = sizeof (struct elf_segment_map);
4097 amt += (tls_count - 1) * sizeof (asection *);
4098 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4099 if (m == NULL)
4100 goto error_return;
4101 m->next = NULL;
4102 m->p_type = PT_TLS;
4103 m->count = tls_count;
4104 /* Mandated PF_R. */
4105 m->p_flags = PF_R;
4106 m->p_flags_valid = 1;
4107 for (i = 0; i < (unsigned int) tls_count; ++i)
4108 {
4109 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
4110 m->sections[i] = first_tls;
4111 first_tls = first_tls->next;
4112 }
4113
4114 *pm = m;
4115 pm = &m->next;
4116 }
4117
4118 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
4119 segment. */
4120 eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
4121 if (eh_frame_hdr != NULL
4122 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
4123 {
4124 amt = sizeof (struct elf_segment_map);
4125 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4126 if (m == NULL)
4127 goto error_return;
4128 m->next = NULL;
4129 m->p_type = PT_GNU_EH_FRAME;
4130 m->count = 1;
4131 m->sections[0] = eh_frame_hdr->output_section;
4132
4133 *pm = m;
4134 pm = &m->next;
4135 }
4136
4137 if (elf_tdata (abfd)->stack_flags)
4138 {
4139 amt = sizeof (struct elf_segment_map);
4140 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4141 if (m == NULL)
4142 goto error_return;
4143 m->next = NULL;
4144 m->p_type = PT_GNU_STACK;
4145 m->p_flags = elf_tdata (abfd)->stack_flags;
4146 m->p_align = bed->stack_align;
4147 m->p_flags_valid = 1;
4148 m->p_align_valid = m->p_align != 0;
4149 if (info->stacksize > 0)
4150 {
4151 m->p_size = info->stacksize;
4152 m->p_size_valid = 1;
4153 }
4154
4155 *pm = m;
4156 pm = &m->next;
4157 }
4158
4159 if (info != NULL && info->relro)
4160 {
4161 for (m = mfirst; m != NULL; m = m->next)
4162 {
4163 if (m->p_type == PT_LOAD
4164 && m->count != 0
4165 && m->sections[0]->vma >= info->relro_start
4166 && m->sections[0]->vma < info->relro_end)
4167 {
4168 i = m->count;
4169 while (--i != (unsigned) -1)
4170 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS))
4171 == (SEC_LOAD | SEC_HAS_CONTENTS))
4172 break;
4173
4174 if (i == (unsigned) -1)
4175 continue;
4176
4177 if (m->sections[i]->vma + m->sections[i]->size
4178 >= info->relro_end)
4179 break;
4180 }
4181 }
4182
4183 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
4184 if (m != NULL)
4185 {
4186 amt = sizeof (struct elf_segment_map);
4187 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4188 if (m == NULL)
4189 goto error_return;
4190 m->next = NULL;
4191 m->p_type = PT_GNU_RELRO;
4192 m->p_flags = PF_R;
4193 m->p_flags_valid = 1;
4194
4195 *pm = m;
4196 pm = &m->next;
4197 }
4198 }
4199
4200 free (sections);
4201 elf_tdata (abfd)->segment_map = mfirst;
4202 }
4203
4204 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
4205 return FALSE;
4206
4207 for (count = 0, m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4208 ++count;
4209 elf_tdata (abfd)->program_header_size = count * bed->s->sizeof_phdr;
4210
4211 return TRUE;
4212
4213 error_return:
4214 if (sections != NULL)
4215 free (sections);
4216 return FALSE;
4217 }
4218
4219 /* Sort sections by address. */
4220
4221 static int
4222 elf_sort_sections (const void *arg1, const void *arg2)
4223 {
4224 const asection *sec1 = *(const asection **) arg1;
4225 const asection *sec2 = *(const asection **) arg2;
4226 bfd_size_type size1, size2;
4227
4228 /* Sort by LMA first, since this is the address used to
4229 place the section into a segment. */
4230 if (sec1->lma < sec2->lma)
4231 return -1;
4232 else if (sec1->lma > sec2->lma)
4233 return 1;
4234
4235 /* Then sort by VMA. Normally the LMA and the VMA will be
4236 the same, and this will do nothing. */
4237 if (sec1->vma < sec2->vma)
4238 return -1;
4239 else if (sec1->vma > sec2->vma)
4240 return 1;
4241
4242 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
4243
4244 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
4245
4246 if (TOEND (sec1))
4247 {
4248 if (TOEND (sec2))
4249 {
4250 /* If the indicies are the same, do not return 0
4251 here, but continue to try the next comparison. */
4252 if (sec1->target_index - sec2->target_index != 0)
4253 return sec1->target_index - sec2->target_index;
4254 }
4255 else
4256 return 1;
4257 }
4258 else if (TOEND (sec2))
4259 return -1;
4260
4261 #undef TOEND
4262
4263 /* Sort by size, to put zero sized sections
4264 before others at the same address. */
4265
4266 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
4267 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
4268
4269 if (size1 < size2)
4270 return -1;
4271 if (size1 > size2)
4272 return 1;
4273
4274 return sec1->target_index - sec2->target_index;
4275 }
4276
4277 /* Ian Lance Taylor writes:
4278
4279 We shouldn't be using % with a negative signed number. That's just
4280 not good. We have to make sure either that the number is not
4281 negative, or that the number has an unsigned type. When the types
4282 are all the same size they wind up as unsigned. When file_ptr is a
4283 larger signed type, the arithmetic winds up as signed long long,
4284 which is wrong.
4285
4286 What we're trying to say here is something like ``increase OFF by
4287 the least amount that will cause it to be equal to the VMA modulo
4288 the page size.'' */
4289 /* In other words, something like:
4290
4291 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4292 off_offset = off % bed->maxpagesize;
4293 if (vma_offset < off_offset)
4294 adjustment = vma_offset + bed->maxpagesize - off_offset;
4295 else
4296 adjustment = vma_offset - off_offset;
4297
4298 which can can be collapsed into the expression below. */
4299
4300 static file_ptr
4301 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
4302 {
4303 return ((vma - off) % maxpagesize);
4304 }
4305
4306 static void
4307 print_segment_map (const struct elf_segment_map *m)
4308 {
4309 unsigned int j;
4310 const char *pt = get_segment_type (m->p_type);
4311 char buf[32];
4312
4313 if (pt == NULL)
4314 {
4315 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
4316 sprintf (buf, "LOPROC+%7.7x",
4317 (unsigned int) (m->p_type - PT_LOPROC));
4318 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
4319 sprintf (buf, "LOOS+%7.7x",
4320 (unsigned int) (m->p_type - PT_LOOS));
4321 else
4322 snprintf (buf, sizeof (buf), "%8.8x",
4323 (unsigned int) m->p_type);
4324 pt = buf;
4325 }
4326 fflush (stdout);
4327 fprintf (stderr, "%s:", pt);
4328 for (j = 0; j < m->count; j++)
4329 fprintf (stderr, " %s", m->sections [j]->name);
4330 putc ('\n',stderr);
4331 fflush (stderr);
4332 }
4333
4334 static bfd_boolean
4335 write_zeros (bfd *abfd, file_ptr pos, bfd_size_type len)
4336 {
4337 void *buf;
4338 bfd_boolean ret;
4339
4340 if (bfd_seek (abfd, pos, SEEK_SET) != 0)
4341 return FALSE;
4342 buf = bfd_zmalloc (len);
4343 if (buf == NULL)
4344 return FALSE;
4345 ret = bfd_bwrite (buf, len, abfd) == len;
4346 free (buf);
4347 return ret;
4348 }
4349
4350 /* Assign file positions to the sections based on the mapping from
4351 sections to segments. This function also sets up some fields in
4352 the file header. */
4353
4354 static bfd_boolean
4355 assign_file_positions_for_load_sections (bfd *abfd,
4356 struct bfd_link_info *link_info)
4357 {
4358 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4359 struct elf_segment_map *m;
4360 Elf_Internal_Phdr *phdrs;
4361 Elf_Internal_Phdr *p;
4362 file_ptr off;
4363 bfd_size_type maxpagesize;
4364 unsigned int alloc;
4365 unsigned int i, j;
4366 bfd_vma header_pad = 0;
4367
4368 if (link_info == NULL
4369 && !_bfd_elf_map_sections_to_segments (abfd, link_info))
4370 return FALSE;
4371
4372 alloc = 0;
4373 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4374 {
4375 ++alloc;
4376 if (m->header_size)
4377 header_pad = m->header_size;
4378 }
4379
4380 if (alloc)
4381 {
4382 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
4383 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
4384 }
4385 else
4386 {
4387 /* PR binutils/12467. */
4388 elf_elfheader (abfd)->e_phoff = 0;
4389 elf_elfheader (abfd)->e_phentsize = 0;
4390 }
4391
4392 elf_elfheader (abfd)->e_phnum = alloc;
4393
4394 if (elf_tdata (abfd)->program_header_size == (bfd_size_type) -1)
4395 elf_tdata (abfd)->program_header_size = alloc * bed->s->sizeof_phdr;
4396 else
4397 BFD_ASSERT (elf_tdata (abfd)->program_header_size
4398 >= alloc * bed->s->sizeof_phdr);
4399
4400 if (alloc == 0)
4401 {
4402 elf_tdata (abfd)->next_file_pos = bed->s->sizeof_ehdr;
4403 return TRUE;
4404 }
4405
4406 /* We're writing the size in elf_tdata (abfd)->program_header_size,
4407 see assign_file_positions_except_relocs, so make sure we have
4408 that amount allocated, with trailing space cleared.
4409 The variable alloc contains the computed need, while elf_tdata
4410 (abfd)->program_header_size contains the size used for the
4411 layout.
4412 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
4413 where the layout is forced to according to a larger size in the
4414 last iterations for the testcase ld-elf/header. */
4415 BFD_ASSERT (elf_tdata (abfd)->program_header_size % bed->s->sizeof_phdr
4416 == 0);
4417 phdrs = (Elf_Internal_Phdr *)
4418 bfd_zalloc2 (abfd,
4419 (elf_tdata (abfd)->program_header_size / bed->s->sizeof_phdr),
4420 sizeof (Elf_Internal_Phdr));
4421 elf_tdata (abfd)->phdr = phdrs;
4422 if (phdrs == NULL)
4423 return FALSE;
4424
4425 maxpagesize = 1;
4426 if ((abfd->flags & D_PAGED) != 0)
4427 maxpagesize = bed->maxpagesize;
4428
4429 off = bed->s->sizeof_ehdr;
4430 off += alloc * bed->s->sizeof_phdr;
4431 if (header_pad < (bfd_vma) off)
4432 header_pad = 0;
4433 else
4434 header_pad -= off;
4435 off += header_pad;
4436
4437 for (m = elf_tdata (abfd)->segment_map, p = phdrs, j = 0;
4438 m != NULL;
4439 m = m->next, p++, j++)
4440 {
4441 asection **secpp;
4442 bfd_vma off_adjust;
4443 bfd_boolean no_contents;
4444
4445 /* If elf_segment_map is not from map_sections_to_segments, the
4446 sections may not be correctly ordered. NOTE: sorting should
4447 not be done to the PT_NOTE section of a corefile, which may
4448 contain several pseudo-sections artificially created by bfd.
4449 Sorting these pseudo-sections breaks things badly. */
4450 if (m->count > 1
4451 && !(elf_elfheader (abfd)->e_type == ET_CORE
4452 && m->p_type == PT_NOTE))
4453 qsort (m->sections, (size_t) m->count, sizeof (asection *),
4454 elf_sort_sections);
4455
4456 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4457 number of sections with contents contributing to both p_filesz
4458 and p_memsz, followed by a number of sections with no contents
4459 that just contribute to p_memsz. In this loop, OFF tracks next
4460 available file offset for PT_LOAD and PT_NOTE segments. */
4461 p->p_type = m->p_type;
4462 p->p_flags = m->p_flags;
4463
4464 if (m->count == 0)
4465 p->p_vaddr = 0;
4466 else
4467 p->p_vaddr = m->sections[0]->vma - m->p_vaddr_offset;
4468
4469 if (m->p_paddr_valid)
4470 p->p_paddr = m->p_paddr;
4471 else if (m->count == 0)
4472 p->p_paddr = 0;
4473 else
4474 p->p_paddr = m->sections[0]->lma - m->p_vaddr_offset;
4475
4476 if (p->p_type == PT_LOAD
4477 && (abfd->flags & D_PAGED) != 0)
4478 {
4479 /* p_align in demand paged PT_LOAD segments effectively stores
4480 the maximum page size. When copying an executable with
4481 objcopy, we set m->p_align from the input file. Use this
4482 value for maxpagesize rather than bed->maxpagesize, which
4483 may be different. Note that we use maxpagesize for PT_TLS
4484 segment alignment later in this function, so we are relying
4485 on at least one PT_LOAD segment appearing before a PT_TLS
4486 segment. */
4487 if (m->p_align_valid)
4488 maxpagesize = m->p_align;
4489
4490 p->p_align = maxpagesize;
4491 }
4492 else if (m->p_align_valid)
4493 p->p_align = m->p_align;
4494 else if (m->count == 0)
4495 p->p_align = 1 << bed->s->log_file_align;
4496 else
4497 p->p_align = 0;
4498
4499 no_contents = FALSE;
4500 off_adjust = 0;
4501 if (p->p_type == PT_LOAD
4502 && m->count > 0)
4503 {
4504 bfd_size_type align;
4505 unsigned int align_power = 0;
4506
4507 if (m->p_align_valid)
4508 align = p->p_align;
4509 else
4510 {
4511 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4512 {
4513 unsigned int secalign;
4514
4515 secalign = bfd_get_section_alignment (abfd, *secpp);
4516 if (secalign > align_power)
4517 align_power = secalign;
4518 }
4519 align = (bfd_size_type) 1 << align_power;
4520 if (align < maxpagesize)
4521 align = maxpagesize;
4522 }
4523
4524 for (i = 0; i < m->count; i++)
4525 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
4526 /* If we aren't making room for this section, then
4527 it must be SHT_NOBITS regardless of what we've
4528 set via struct bfd_elf_special_section. */
4529 elf_section_type (m->sections[i]) = SHT_NOBITS;
4530
4531 /* Find out whether this segment contains any loadable
4532 sections. */
4533 no_contents = TRUE;
4534 for (i = 0; i < m->count; i++)
4535 if (elf_section_type (m->sections[i]) != SHT_NOBITS)
4536 {
4537 no_contents = FALSE;
4538 break;
4539 }
4540
4541 off_adjust = vma_page_aligned_bias (p->p_vaddr, off, align);
4542 off += off_adjust;
4543 if (no_contents)
4544 {
4545 /* We shouldn't need to align the segment on disk since
4546 the segment doesn't need file space, but the gABI
4547 arguably requires the alignment and glibc ld.so
4548 checks it. So to comply with the alignment
4549 requirement but not waste file space, we adjust
4550 p_offset for just this segment. (OFF_ADJUST is
4551 subtracted from OFF later.) This may put p_offset
4552 past the end of file, but that shouldn't matter. */
4553 }
4554 else
4555 off_adjust = 0;
4556 }
4557 /* Make sure the .dynamic section is the first section in the
4558 PT_DYNAMIC segment. */
4559 else if (p->p_type == PT_DYNAMIC
4560 && m->count > 1
4561 && strcmp (m->sections[0]->name, ".dynamic") != 0)
4562 {
4563 _bfd_error_handler
4564 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4565 abfd);
4566 bfd_set_error (bfd_error_bad_value);
4567 return FALSE;
4568 }
4569 /* Set the note section type to SHT_NOTE. */
4570 else if (p->p_type == PT_NOTE)
4571 for (i = 0; i < m->count; i++)
4572 elf_section_type (m->sections[i]) = SHT_NOTE;
4573
4574 p->p_offset = 0;
4575 p->p_filesz = 0;
4576 p->p_memsz = 0;
4577
4578 if (m->includes_filehdr)
4579 {
4580 if (!m->p_flags_valid)
4581 p->p_flags |= PF_R;
4582 p->p_filesz = bed->s->sizeof_ehdr;
4583 p->p_memsz = bed->s->sizeof_ehdr;
4584 if (m->count > 0)
4585 {
4586 if (p->p_vaddr < (bfd_vma) off)
4587 {
4588 (*_bfd_error_handler)
4589 (_("%B: Not enough room for program headers, try linking with -N"),
4590 abfd);
4591 bfd_set_error (bfd_error_bad_value);
4592 return FALSE;
4593 }
4594
4595 p->p_vaddr -= off;
4596 if (!m->p_paddr_valid)
4597 p->p_paddr -= off;
4598 }
4599 }
4600
4601 if (m->includes_phdrs)
4602 {
4603 if (!m->p_flags_valid)
4604 p->p_flags |= PF_R;
4605
4606 if (!m->includes_filehdr)
4607 {
4608 p->p_offset = bed->s->sizeof_ehdr;
4609
4610 if (m->count > 0)
4611 {
4612 p->p_vaddr -= off - p->p_offset;
4613 if (!m->p_paddr_valid)
4614 p->p_paddr -= off - p->p_offset;
4615 }
4616 }
4617
4618 p->p_filesz += alloc * bed->s->sizeof_phdr;
4619 p->p_memsz += alloc * bed->s->sizeof_phdr;
4620 if (m->count)
4621 {
4622 p->p_filesz += header_pad;
4623 p->p_memsz += header_pad;
4624 }
4625 }
4626
4627 if (p->p_type == PT_LOAD
4628 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4629 {
4630 if (!m->includes_filehdr && !m->includes_phdrs)
4631 p->p_offset = off;
4632 else
4633 {
4634 file_ptr adjust;
4635
4636 adjust = off - (p->p_offset + p->p_filesz);
4637 if (!no_contents)
4638 p->p_filesz += adjust;
4639 p->p_memsz += adjust;
4640 }
4641 }
4642
4643 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
4644 maps. Set filepos for sections in PT_LOAD segments, and in
4645 core files, for sections in PT_NOTE segments.
4646 assign_file_positions_for_non_load_sections will set filepos
4647 for other sections and update p_filesz for other segments. */
4648 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4649 {
4650 asection *sec;
4651 bfd_size_type align;
4652 Elf_Internal_Shdr *this_hdr;
4653
4654 sec = *secpp;
4655 this_hdr = &elf_section_data (sec)->this_hdr;
4656 align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec);
4657
4658 if ((p->p_type == PT_LOAD
4659 || p->p_type == PT_TLS)
4660 && (this_hdr->sh_type != SHT_NOBITS
4661 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
4662 && ((this_hdr->sh_flags & SHF_TLS) == 0
4663 || p->p_type == PT_TLS))))
4664 {
4665 bfd_vma p_start = p->p_paddr;
4666 bfd_vma p_end = p_start + p->p_memsz;
4667 bfd_vma s_start = sec->lma;
4668 bfd_vma adjust = s_start - p_end;
4669
4670 if (adjust != 0
4671 && (s_start < p_end
4672 || p_end < p_start))
4673 {
4674 (*_bfd_error_handler)
4675 (_("%B: section %A lma %#lx adjusted to %#lx"), abfd, sec,
4676 (unsigned long) s_start, (unsigned long) p_end);
4677 adjust = 0;
4678 sec->lma = p_end;
4679 }
4680 p->p_memsz += adjust;
4681
4682 if (this_hdr->sh_type != SHT_NOBITS)
4683 {
4684 if (p->p_filesz + adjust < p->p_memsz)
4685 {
4686 /* We have a PROGBITS section following NOBITS ones.
4687 Allocate file space for the NOBITS section(s) and
4688 zero it. */
4689 adjust = p->p_memsz - p->p_filesz;
4690 if (!write_zeros (abfd, off, adjust))
4691 return FALSE;
4692 }
4693 off += adjust;
4694 p->p_filesz += adjust;
4695 }
4696 }
4697
4698 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
4699 {
4700 /* The section at i == 0 is the one that actually contains
4701 everything. */
4702 if (i == 0)
4703 {
4704 this_hdr->sh_offset = sec->filepos = off;
4705 off += this_hdr->sh_size;
4706 p->p_filesz = this_hdr->sh_size;
4707 p->p_memsz = 0;
4708 p->p_align = 1;
4709 }
4710 else
4711 {
4712 /* The rest are fake sections that shouldn't be written. */
4713 sec->filepos = 0;
4714 sec->size = 0;
4715 sec->flags = 0;
4716 continue;
4717 }
4718 }
4719 else
4720 {
4721 if (p->p_type == PT_LOAD)
4722 {
4723 this_hdr->sh_offset = sec->filepos = off;
4724 if (this_hdr->sh_type != SHT_NOBITS)
4725 off += this_hdr->sh_size;
4726 }
4727 else if (this_hdr->sh_type == SHT_NOBITS
4728 && (this_hdr->sh_flags & SHF_TLS) != 0
4729 && this_hdr->sh_offset == 0)
4730 {
4731 /* This is a .tbss section that didn't get a PT_LOAD.
4732 (See _bfd_elf_map_sections_to_segments "Create a
4733 final PT_LOAD".) Set sh_offset to the value it
4734 would have if we had created a zero p_filesz and
4735 p_memsz PT_LOAD header for the section. This
4736 also makes the PT_TLS header have the same
4737 p_offset value. */
4738 bfd_vma adjust = vma_page_aligned_bias (this_hdr->sh_addr,
4739 off, align);
4740 this_hdr->sh_offset = sec->filepos = off + adjust;
4741 }
4742
4743 if (this_hdr->sh_type != SHT_NOBITS)
4744 {
4745 p->p_filesz += this_hdr->sh_size;
4746 /* A load section without SHF_ALLOC is something like
4747 a note section in a PT_NOTE segment. These take
4748 file space but are not loaded into memory. */
4749 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4750 p->p_memsz += this_hdr->sh_size;
4751 }
4752 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4753 {
4754 if (p->p_type == PT_TLS)
4755 p->p_memsz += this_hdr->sh_size;
4756
4757 /* .tbss is special. It doesn't contribute to p_memsz of
4758 normal segments. */
4759 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
4760 p->p_memsz += this_hdr->sh_size;
4761 }
4762
4763 if (align > p->p_align
4764 && !m->p_align_valid
4765 && (p->p_type != PT_LOAD
4766 || (abfd->flags & D_PAGED) == 0))
4767 p->p_align = align;
4768 }
4769
4770 if (!m->p_flags_valid)
4771 {
4772 p->p_flags |= PF_R;
4773 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
4774 p->p_flags |= PF_X;
4775 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
4776 p->p_flags |= PF_W;
4777 }
4778 }
4779 off -= off_adjust;
4780
4781 /* Check that all sections are in a PT_LOAD segment.
4782 Don't check funky gdb generated core files. */
4783 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
4784 {
4785 bfd_boolean check_vma = TRUE;
4786
4787 for (i = 1; i < m->count; i++)
4788 if (m->sections[i]->vma == m->sections[i - 1]->vma
4789 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i])
4790 ->this_hdr), p) != 0
4791 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i - 1])
4792 ->this_hdr), p) != 0)
4793 {
4794 /* Looks like we have overlays packed into the segment. */
4795 check_vma = FALSE;
4796 break;
4797 }
4798
4799 for (i = 0; i < m->count; i++)
4800 {
4801 Elf_Internal_Shdr *this_hdr;
4802 asection *sec;
4803
4804 sec = m->sections[i];
4805 this_hdr = &(elf_section_data(sec)->this_hdr);
4806 if (!ELF_SECTION_IN_SEGMENT_1 (this_hdr, p, check_vma, 0)
4807 && !ELF_TBSS_SPECIAL (this_hdr, p))
4808 {
4809 (*_bfd_error_handler)
4810 (_("%B: section `%A' can't be allocated in segment %d"),
4811 abfd, sec, j);
4812 print_segment_map (m);
4813 }
4814 }
4815 }
4816 }
4817
4818 elf_tdata (abfd)->next_file_pos = off;
4819 return TRUE;
4820 }
4821
4822 /* Assign file positions for the other sections. */
4823
4824 static bfd_boolean
4825 assign_file_positions_for_non_load_sections (bfd *abfd,
4826 struct bfd_link_info *link_info)
4827 {
4828 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4829 Elf_Internal_Shdr **i_shdrpp;
4830 Elf_Internal_Shdr **hdrpp;
4831 Elf_Internal_Phdr *phdrs;
4832 Elf_Internal_Phdr *p;
4833 struct elf_segment_map *m;
4834 struct elf_segment_map *hdrs_segment;
4835 bfd_vma filehdr_vaddr, filehdr_paddr;
4836 bfd_vma phdrs_vaddr, phdrs_paddr;
4837 file_ptr off;
4838 unsigned int num_sec;
4839 unsigned int i;
4840 unsigned int count;
4841
4842 i_shdrpp = elf_elfsections (abfd);
4843 num_sec = elf_numsections (abfd);
4844 off = elf_tdata (abfd)->next_file_pos;
4845 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4846 {
4847 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4848 Elf_Internal_Shdr *hdr;
4849
4850 hdr = *hdrpp;
4851 if (hdr->bfd_section != NULL
4852 && (hdr->bfd_section->filepos != 0
4853 || (hdr->sh_type == SHT_NOBITS
4854 && hdr->contents == NULL)))
4855 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
4856 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4857 {
4858 if (hdr->sh_size != 0)
4859 (*_bfd_error_handler)
4860 (_("%B: warning: allocated section `%s' not in segment"),
4861 abfd,
4862 (hdr->bfd_section == NULL
4863 ? "*unknown*"
4864 : hdr->bfd_section->name));
4865 /* We don't need to page align empty sections. */
4866 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
4867 off += vma_page_aligned_bias (hdr->sh_addr, off,
4868 bed->maxpagesize);
4869 else
4870 off += vma_page_aligned_bias (hdr->sh_addr, off,
4871 hdr->sh_addralign);
4872 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4873 FALSE);
4874 }
4875 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4876 && hdr->bfd_section == NULL)
4877 || hdr == i_shdrpp[tdata->symtab_section]
4878 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4879 || hdr == i_shdrpp[tdata->strtab_section])
4880 hdr->sh_offset = -1;
4881 else
4882 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4883 }
4884
4885 /* Now that we have set the section file positions, we can set up
4886 the file positions for the non PT_LOAD segments. */
4887 count = 0;
4888 filehdr_vaddr = 0;
4889 filehdr_paddr = 0;
4890 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
4891 phdrs_paddr = 0;
4892 hdrs_segment = NULL;
4893 phdrs = elf_tdata (abfd)->phdr;
4894 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4895 m != NULL;
4896 m = m->next, p++)
4897 {
4898 ++count;
4899 if (p->p_type != PT_LOAD)
4900 continue;
4901
4902 if (m->includes_filehdr)
4903 {
4904 filehdr_vaddr = p->p_vaddr;
4905 filehdr_paddr = p->p_paddr;
4906 }
4907 if (m->includes_phdrs)
4908 {
4909 phdrs_vaddr = p->p_vaddr;
4910 phdrs_paddr = p->p_paddr;
4911 if (m->includes_filehdr)
4912 {
4913 hdrs_segment = m;
4914 phdrs_vaddr += bed->s->sizeof_ehdr;
4915 phdrs_paddr += bed->s->sizeof_ehdr;
4916 }
4917 }
4918 }
4919
4920 if (hdrs_segment != NULL && link_info != NULL)
4921 {
4922 /* There is a segment that contains both the file headers and the
4923 program headers, so provide a symbol __ehdr_start pointing there.
4924 A program can use this to examine itself robustly. */
4925
4926 struct elf_link_hash_entry *hash
4927 = elf_link_hash_lookup (elf_hash_table (link_info), "__ehdr_start",
4928 FALSE, FALSE, TRUE);
4929 /* If the symbol was referenced and not defined, define it. */
4930 if (hash != NULL
4931 && (hash->root.type == bfd_link_hash_new
4932 || hash->root.type == bfd_link_hash_undefined
4933 || hash->root.type == bfd_link_hash_undefweak
4934 || hash->root.type == bfd_link_hash_common))
4935 {
4936 asection *s = NULL;
4937 if (hdrs_segment->count != 0)
4938 /* The segment contains sections, so use the first one. */
4939 s = hdrs_segment->sections[0];
4940 else
4941 /* Use the first (i.e. lowest-addressed) section in any segment. */
4942 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4943 if (m->count != 0)
4944 {
4945 s = m->sections[0];
4946 break;
4947 }
4948
4949 if (s != NULL)
4950 {
4951 hash->root.u.def.value = filehdr_vaddr - s->vma;
4952 hash->root.u.def.section = s;
4953 }
4954 else
4955 {
4956 hash->root.u.def.value = filehdr_vaddr;
4957 hash->root.u.def.section = bfd_abs_section_ptr;
4958 }
4959
4960 hash->root.type = bfd_link_hash_defined;
4961 hash->def_regular = 1;
4962 hash->non_elf = 0;
4963 }
4964 }
4965
4966 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4967 m != NULL;
4968 m = m->next, p++)
4969 {
4970 if (p->p_type == PT_GNU_RELRO)
4971 {
4972 const Elf_Internal_Phdr *lp;
4973 struct elf_segment_map *lm;
4974
4975 if (link_info != NULL)
4976 {
4977 /* During linking the range of the RELRO segment is passed
4978 in link_info. */
4979 for (lm = elf_tdata (abfd)->segment_map, lp = phdrs;
4980 lm != NULL;
4981 lm = lm->next, lp++)
4982 {
4983 if (lp->p_type == PT_LOAD
4984 && lp->p_vaddr < link_info->relro_end
4985 && lp->p_vaddr + lp->p_filesz >= link_info->relro_end
4986 && lm->count != 0
4987 && lm->sections[0]->vma >= link_info->relro_start)
4988 break;
4989 }
4990
4991 /* PR ld/14207. If the RELRO segment doesn't fit in the
4992 LOAD segment, it should be removed. */
4993 BFD_ASSERT (lm != NULL);
4994 }
4995 else
4996 {
4997 /* Otherwise we are copying an executable or shared
4998 library, but we need to use the same linker logic. */
4999 for (lp = phdrs; lp < phdrs + count; ++lp)
5000 {
5001 if (lp->p_type == PT_LOAD
5002 && lp->p_paddr == p->p_paddr)
5003 break;
5004 }
5005 }
5006
5007 if (lp < phdrs + count)
5008 {
5009 p->p_vaddr = lp->p_vaddr;
5010 p->p_paddr = lp->p_paddr;
5011 p->p_offset = lp->p_offset;
5012 if (link_info != NULL)
5013 p->p_filesz = link_info->relro_end - lp->p_vaddr;
5014 else if (m->p_size_valid)
5015 p->p_filesz = m->p_size;
5016 else
5017 abort ();
5018 p->p_memsz = p->p_filesz;
5019 /* Preserve the alignment and flags if they are valid. The
5020 gold linker generates RW/4 for the PT_GNU_RELRO section.
5021 It is better for objcopy/strip to honor these attributes
5022 otherwise gdb will choke when using separate debug files.
5023 */
5024 if (!m->p_align_valid)
5025 p->p_align = 1;
5026 if (!m->p_flags_valid)
5027 p->p_flags = (lp->p_flags & ~PF_W);
5028 }
5029 else
5030 {
5031 memset (p, 0, sizeof *p);
5032 p->p_type = PT_NULL;
5033 }
5034 }
5035 else if (p->p_type == PT_GNU_STACK)
5036 {
5037 if (m->p_size_valid)
5038 p->p_memsz = m->p_size;
5039 }
5040 else if (m->count != 0)
5041 {
5042 if (p->p_type != PT_LOAD
5043 && (p->p_type != PT_NOTE
5044 || bfd_get_format (abfd) != bfd_core))
5045 {
5046 BFD_ASSERT (!m->includes_filehdr && !m->includes_phdrs);
5047
5048 p->p_filesz = 0;
5049 p->p_offset = m->sections[0]->filepos;
5050 for (i = m->count; i-- != 0;)
5051 {
5052 asection *sect = m->sections[i];
5053 Elf_Internal_Shdr *hdr = &elf_section_data (sect)->this_hdr;
5054 if (hdr->sh_type != SHT_NOBITS)
5055 {
5056 p->p_filesz = (sect->filepos - m->sections[0]->filepos
5057 + hdr->sh_size);
5058 break;
5059 }
5060 }
5061 }
5062 }
5063 else if (m->includes_filehdr)
5064 {
5065 p->p_vaddr = filehdr_vaddr;
5066 if (! m->p_paddr_valid)
5067 p->p_paddr = filehdr_paddr;
5068 }
5069 else if (m->includes_phdrs)
5070 {
5071 p->p_vaddr = phdrs_vaddr;
5072 if (! m->p_paddr_valid)
5073 p->p_paddr = phdrs_paddr;
5074 }
5075 }
5076
5077 elf_tdata (abfd)->next_file_pos = off;
5078
5079 return TRUE;
5080 }
5081
5082 /* Work out the file positions of all the sections. This is called by
5083 _bfd_elf_compute_section_file_positions. All the section sizes and
5084 VMAs must be known before this is called.
5085
5086 Reloc sections come in two flavours: Those processed specially as
5087 "side-channel" data attached to a section to which they apply, and
5088 those that bfd doesn't process as relocations. The latter sort are
5089 stored in a normal bfd section by bfd_section_from_shdr. We don't
5090 consider the former sort here, unless they form part of the loadable
5091 image. Reloc sections not assigned here will be handled later by
5092 assign_file_positions_for_relocs.
5093
5094 We also don't set the positions of the .symtab and .strtab here. */
5095
5096 static bfd_boolean
5097 assign_file_positions_except_relocs (bfd *abfd,
5098 struct bfd_link_info *link_info)
5099 {
5100 struct elf_obj_tdata *tdata = elf_tdata (abfd);
5101 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
5102 file_ptr off;
5103 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5104
5105 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
5106 && bfd_get_format (abfd) != bfd_core)
5107 {
5108 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
5109 unsigned int num_sec = elf_numsections (abfd);
5110 Elf_Internal_Shdr **hdrpp;
5111 unsigned int i;
5112
5113 /* Start after the ELF header. */
5114 off = i_ehdrp->e_ehsize;
5115
5116 /* We are not creating an executable, which means that we are
5117 not creating a program header, and that the actual order of
5118 the sections in the file is unimportant. */
5119 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
5120 {
5121 Elf_Internal_Shdr *hdr;
5122
5123 hdr = *hdrpp;
5124 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
5125 && hdr->bfd_section == NULL)
5126 || i == tdata->symtab_section
5127 || i == tdata->symtab_shndx_section
5128 || i == tdata->strtab_section)
5129 {
5130 hdr->sh_offset = -1;
5131 }
5132 else
5133 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
5134 }
5135 }
5136 else
5137 {
5138 unsigned int alloc;
5139
5140 /* Assign file positions for the loaded sections based on the
5141 assignment of sections to segments. */
5142 if (!assign_file_positions_for_load_sections (abfd, link_info))
5143 return FALSE;
5144
5145 /* And for non-load sections. */
5146 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
5147 return FALSE;
5148
5149 if (bed->elf_backend_modify_program_headers != NULL)
5150 {
5151 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
5152 return FALSE;
5153 }
5154
5155 /* Write out the program headers. */
5156 alloc = tdata->program_header_size / bed->s->sizeof_phdr;
5157 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
5158 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
5159 return FALSE;
5160
5161 off = tdata->next_file_pos;
5162 }
5163
5164 /* Place the section headers. */
5165 off = align_file_position (off, 1 << bed->s->log_file_align);
5166 i_ehdrp->e_shoff = off;
5167 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
5168
5169 tdata->next_file_pos = off;
5170
5171 return TRUE;
5172 }
5173
5174 static bfd_boolean
5175 prep_headers (bfd *abfd)
5176 {
5177 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form. */
5178 struct elf_strtab_hash *shstrtab;
5179 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5180
5181 i_ehdrp = elf_elfheader (abfd);
5182
5183 shstrtab = _bfd_elf_strtab_init ();
5184 if (shstrtab == NULL)
5185 return FALSE;
5186
5187 elf_shstrtab (abfd) = shstrtab;
5188
5189 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
5190 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
5191 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
5192 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
5193
5194 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
5195 i_ehdrp->e_ident[EI_DATA] =
5196 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
5197 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
5198
5199 if ((abfd->flags & DYNAMIC) != 0)
5200 i_ehdrp->e_type = ET_DYN;
5201 else if ((abfd->flags & EXEC_P) != 0)
5202 i_ehdrp->e_type = ET_EXEC;
5203 else if (bfd_get_format (abfd) == bfd_core)
5204 i_ehdrp->e_type = ET_CORE;
5205 else
5206 i_ehdrp->e_type = ET_REL;
5207
5208 switch (bfd_get_arch (abfd))
5209 {
5210 case bfd_arch_unknown:
5211 i_ehdrp->e_machine = EM_NONE;
5212 break;
5213
5214 /* There used to be a long list of cases here, each one setting
5215 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
5216 in the corresponding bfd definition. To avoid duplication,
5217 the switch was removed. Machines that need special handling
5218 can generally do it in elf_backend_final_write_processing(),
5219 unless they need the information earlier than the final write.
5220 Such need can generally be supplied by replacing the tests for
5221 e_machine with the conditions used to determine it. */
5222 default:
5223 i_ehdrp->e_machine = bed->elf_machine_code;
5224 }
5225
5226 i_ehdrp->e_version = bed->s->ev_current;
5227 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
5228
5229 /* No program header, for now. */
5230 i_ehdrp->e_phoff = 0;
5231 i_ehdrp->e_phentsize = 0;
5232 i_ehdrp->e_phnum = 0;
5233
5234 /* Each bfd section is section header entry. */
5235 i_ehdrp->e_entry = bfd_get_start_address (abfd);
5236 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
5237
5238 /* If we're building an executable, we'll need a program header table. */
5239 if (abfd->flags & EXEC_P)
5240 /* It all happens later. */
5241 ;
5242 else
5243 {
5244 i_ehdrp->e_phentsize = 0;
5245 i_ehdrp->e_phoff = 0;
5246 }
5247
5248 elf_tdata (abfd)->symtab_hdr.sh_name =
5249 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
5250 elf_tdata (abfd)->strtab_hdr.sh_name =
5251 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
5252 elf_tdata (abfd)->shstrtab_hdr.sh_name =
5253 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
5254 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
5255 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
5256 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
5257 return FALSE;
5258
5259 return TRUE;
5260 }
5261
5262 /* Assign file positions for all the reloc sections which are not part
5263 of the loadable file image. */
5264
5265 void
5266 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
5267 {
5268 file_ptr off;
5269 unsigned int i, num_sec;
5270 Elf_Internal_Shdr **shdrpp;
5271
5272 off = elf_tdata (abfd)->next_file_pos;
5273
5274 num_sec = elf_numsections (abfd);
5275 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
5276 {
5277 Elf_Internal_Shdr *shdrp;
5278
5279 shdrp = *shdrpp;
5280 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
5281 && shdrp->sh_offset == -1)
5282 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
5283 }
5284
5285 elf_tdata (abfd)->next_file_pos = off;
5286 }
5287
5288 bfd_boolean
5289 _bfd_elf_write_object_contents (bfd *abfd)
5290 {
5291 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5292 Elf_Internal_Shdr **i_shdrp;
5293 bfd_boolean failed;
5294 unsigned int count, num_sec;
5295
5296 if (! abfd->output_has_begun
5297 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
5298 return FALSE;
5299
5300 i_shdrp = elf_elfsections (abfd);
5301
5302 failed = FALSE;
5303 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
5304 if (failed)
5305 return FALSE;
5306
5307 _bfd_elf_assign_file_positions_for_relocs (abfd);
5308
5309 /* After writing the headers, we need to write the sections too... */
5310 num_sec = elf_numsections (abfd);
5311 for (count = 1; count < num_sec; count++)
5312 {
5313 if (bed->elf_backend_section_processing)
5314 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
5315 if (i_shdrp[count]->contents)
5316 {
5317 bfd_size_type amt = i_shdrp[count]->sh_size;
5318
5319 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
5320 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
5321 return FALSE;
5322 }
5323 }
5324
5325 /* Write out the section header names. */
5326 if (elf_shstrtab (abfd) != NULL
5327 && (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
5328 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
5329 return FALSE;
5330
5331 if (bed->elf_backend_final_write_processing)
5332 (*bed->elf_backend_final_write_processing) (abfd,
5333 elf_tdata (abfd)->linker);
5334
5335 if (!bed->s->write_shdrs_and_ehdr (abfd))
5336 return FALSE;
5337
5338 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
5339 if (elf_tdata (abfd)->after_write_object_contents)
5340 return (*elf_tdata (abfd)->after_write_object_contents) (abfd);
5341
5342 return TRUE;
5343 }
5344
5345 bfd_boolean
5346 _bfd_elf_write_corefile_contents (bfd *abfd)
5347 {
5348 /* Hopefully this can be done just like an object file. */
5349 return _bfd_elf_write_object_contents (abfd);
5350 }
5351
5352 /* Given a section, search the header to find them. */
5353
5354 unsigned int
5355 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
5356 {
5357 const struct elf_backend_data *bed;
5358 unsigned int sec_index;
5359
5360 if (elf_section_data (asect) != NULL
5361 && elf_section_data (asect)->this_idx != 0)
5362 return elf_section_data (asect)->this_idx;
5363
5364 if (bfd_is_abs_section (asect))
5365 sec_index = SHN_ABS;
5366 else if (bfd_is_com_section (asect))
5367 sec_index = SHN_COMMON;
5368 else if (bfd_is_und_section (asect))
5369 sec_index = SHN_UNDEF;
5370 else
5371 sec_index = SHN_BAD;
5372
5373 bed = get_elf_backend_data (abfd);
5374 if (bed->elf_backend_section_from_bfd_section)
5375 {
5376 int retval = sec_index;
5377
5378 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
5379 return retval;
5380 }
5381
5382 if (sec_index == SHN_BAD)
5383 bfd_set_error (bfd_error_nonrepresentable_section);
5384
5385 return sec_index;
5386 }
5387
5388 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
5389 on error. */
5390
5391 int
5392 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
5393 {
5394 asymbol *asym_ptr = *asym_ptr_ptr;
5395 int idx;
5396 flagword flags = asym_ptr->flags;
5397
5398 /* When gas creates relocations against local labels, it creates its
5399 own symbol for the section, but does put the symbol into the
5400 symbol chain, so udata is 0. When the linker is generating
5401 relocatable output, this section symbol may be for one of the
5402 input sections rather than the output section. */
5403 if (asym_ptr->udata.i == 0
5404 && (flags & BSF_SECTION_SYM)
5405 && asym_ptr->section)
5406 {
5407 asection *sec;
5408 int indx;
5409
5410 sec = asym_ptr->section;
5411 if (sec->owner != abfd && sec->output_section != NULL)
5412 sec = sec->output_section;
5413 if (sec->owner == abfd
5414 && (indx = sec->index) < elf_num_section_syms (abfd)
5415 && elf_section_syms (abfd)[indx] != NULL)
5416 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
5417 }
5418
5419 idx = asym_ptr->udata.i;
5420
5421 if (idx == 0)
5422 {
5423 /* This case can occur when using --strip-symbol on a symbol
5424 which is used in a relocation entry. */
5425 (*_bfd_error_handler)
5426 (_("%B: symbol `%s' required but not present"),
5427 abfd, bfd_asymbol_name (asym_ptr));
5428 bfd_set_error (bfd_error_no_symbols);
5429 return -1;
5430 }
5431
5432 #if DEBUG & 4
5433 {
5434 fprintf (stderr,
5435 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx\n",
5436 (long) asym_ptr, asym_ptr->name, idx, (long) flags);
5437 fflush (stderr);
5438 }
5439 #endif
5440
5441 return idx;
5442 }
5443
5444 /* Rewrite program header information. */
5445
5446 static bfd_boolean
5447 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
5448 {
5449 Elf_Internal_Ehdr *iehdr;
5450 struct elf_segment_map *map;
5451 struct elf_segment_map *map_first;
5452 struct elf_segment_map **pointer_to_map;
5453 Elf_Internal_Phdr *segment;
5454 asection *section;
5455 unsigned int i;
5456 unsigned int num_segments;
5457 bfd_boolean phdr_included = FALSE;
5458 bfd_boolean p_paddr_valid;
5459 bfd_vma maxpagesize;
5460 struct elf_segment_map *phdr_adjust_seg = NULL;
5461 unsigned int phdr_adjust_num = 0;
5462 const struct elf_backend_data *bed;
5463
5464 bed = get_elf_backend_data (ibfd);
5465 iehdr = elf_elfheader (ibfd);
5466
5467 map_first = NULL;
5468 pointer_to_map = &map_first;
5469
5470 num_segments = elf_elfheader (ibfd)->e_phnum;
5471 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
5472
5473 /* Returns the end address of the segment + 1. */
5474 #define SEGMENT_END(segment, start) \
5475 (start + (segment->p_memsz > segment->p_filesz \
5476 ? segment->p_memsz : segment->p_filesz))
5477
5478 #define SECTION_SIZE(section, segment) \
5479 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5480 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5481 ? section->size : 0)
5482
5483 /* Returns TRUE if the given section is contained within
5484 the given segment. VMA addresses are compared. */
5485 #define IS_CONTAINED_BY_VMA(section, segment) \
5486 (section->vma >= segment->p_vaddr \
5487 && (section->vma + SECTION_SIZE (section, segment) \
5488 <= (SEGMENT_END (segment, segment->p_vaddr))))
5489
5490 /* Returns TRUE if the given section is contained within
5491 the given segment. LMA addresses are compared. */
5492 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5493 (section->lma >= base \
5494 && (section->lma + SECTION_SIZE (section, segment) \
5495 <= SEGMENT_END (segment, base)))
5496
5497 /* Handle PT_NOTE segment. */
5498 #define IS_NOTE(p, s) \
5499 (p->p_type == PT_NOTE \
5500 && elf_section_type (s) == SHT_NOTE \
5501 && (bfd_vma) s->filepos >= p->p_offset \
5502 && ((bfd_vma) s->filepos + s->size \
5503 <= p->p_offset + p->p_filesz))
5504
5505 /* Special case: corefile "NOTE" section containing regs, prpsinfo
5506 etc. */
5507 #define IS_COREFILE_NOTE(p, s) \
5508 (IS_NOTE (p, s) \
5509 && bfd_get_format (ibfd) == bfd_core \
5510 && s->vma == 0 \
5511 && s->lma == 0)
5512
5513 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5514 linker, which generates a PT_INTERP section with p_vaddr and
5515 p_memsz set to 0. */
5516 #define IS_SOLARIS_PT_INTERP(p, s) \
5517 (p->p_vaddr == 0 \
5518 && p->p_paddr == 0 \
5519 && p->p_memsz == 0 \
5520 && p->p_filesz > 0 \
5521 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5522 && s->size > 0 \
5523 && (bfd_vma) s->filepos >= p->p_offset \
5524 && ((bfd_vma) s->filepos + s->size \
5525 <= p->p_offset + p->p_filesz))
5526
5527 /* Decide if the given section should be included in the given segment.
5528 A section will be included if:
5529 1. It is within the address space of the segment -- we use the LMA
5530 if that is set for the segment and the VMA otherwise,
5531 2. It is an allocated section or a NOTE section in a PT_NOTE
5532 segment.
5533 3. There is an output section associated with it,
5534 4. The section has not already been allocated to a previous segment.
5535 5. PT_GNU_STACK segments do not include any sections.
5536 6. PT_TLS segment includes only SHF_TLS sections.
5537 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5538 8. PT_DYNAMIC should not contain empty sections at the beginning
5539 (with the possible exception of .dynamic). */
5540 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
5541 ((((segment->p_paddr \
5542 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5543 : IS_CONTAINED_BY_VMA (section, segment)) \
5544 && (section->flags & SEC_ALLOC) != 0) \
5545 || IS_NOTE (segment, section)) \
5546 && segment->p_type != PT_GNU_STACK \
5547 && (segment->p_type != PT_TLS \
5548 || (section->flags & SEC_THREAD_LOCAL)) \
5549 && (segment->p_type == PT_LOAD \
5550 || segment->p_type == PT_TLS \
5551 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5552 && (segment->p_type != PT_DYNAMIC \
5553 || SECTION_SIZE (section, segment) > 0 \
5554 || (segment->p_paddr \
5555 ? segment->p_paddr != section->lma \
5556 : segment->p_vaddr != section->vma) \
5557 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5558 == 0)) \
5559 && !section->segment_mark)
5560
5561 /* If the output section of a section in the input segment is NULL,
5562 it is removed from the corresponding output segment. */
5563 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5564 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
5565 && section->output_section != NULL)
5566
5567 /* Returns TRUE iff seg1 starts after the end of seg2. */
5568 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5569 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5570
5571 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5572 their VMA address ranges and their LMA address ranges overlap.
5573 It is possible to have overlapping VMA ranges without overlapping LMA
5574 ranges. RedBoot images for example can have both .data and .bss mapped
5575 to the same VMA range, but with the .data section mapped to a different
5576 LMA. */
5577 #define SEGMENT_OVERLAPS(seg1, seg2) \
5578 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5579 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5580 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5581 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5582
5583 /* Initialise the segment mark field. */
5584 for (section = ibfd->sections; section != NULL; section = section->next)
5585 section->segment_mark = FALSE;
5586
5587 /* The Solaris linker creates program headers in which all the
5588 p_paddr fields are zero. When we try to objcopy or strip such a
5589 file, we get confused. Check for this case, and if we find it
5590 don't set the p_paddr_valid fields. */
5591 p_paddr_valid = FALSE;
5592 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5593 i < num_segments;
5594 i++, segment++)
5595 if (segment->p_paddr != 0)
5596 {
5597 p_paddr_valid = TRUE;
5598 break;
5599 }
5600
5601 /* Scan through the segments specified in the program header
5602 of the input BFD. For this first scan we look for overlaps
5603 in the loadable segments. These can be created by weird
5604 parameters to objcopy. Also, fix some solaris weirdness. */
5605 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5606 i < num_segments;
5607 i++, segment++)
5608 {
5609 unsigned int j;
5610 Elf_Internal_Phdr *segment2;
5611
5612 if (segment->p_type == PT_INTERP)
5613 for (section = ibfd->sections; section; section = section->next)
5614 if (IS_SOLARIS_PT_INTERP (segment, section))
5615 {
5616 /* Mininal change so that the normal section to segment
5617 assignment code will work. */
5618 segment->p_vaddr = section->vma;
5619 break;
5620 }
5621
5622 if (segment->p_type != PT_LOAD)
5623 {
5624 /* Remove PT_GNU_RELRO segment. */
5625 if (segment->p_type == PT_GNU_RELRO)
5626 segment->p_type = PT_NULL;
5627 continue;
5628 }
5629
5630 /* Determine if this segment overlaps any previous segments. */
5631 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
5632 {
5633 bfd_signed_vma extra_length;
5634
5635 if (segment2->p_type != PT_LOAD
5636 || !SEGMENT_OVERLAPS (segment, segment2))
5637 continue;
5638
5639 /* Merge the two segments together. */
5640 if (segment2->p_vaddr < segment->p_vaddr)
5641 {
5642 /* Extend SEGMENT2 to include SEGMENT and then delete
5643 SEGMENT. */
5644 extra_length = (SEGMENT_END (segment, segment->p_vaddr)
5645 - SEGMENT_END (segment2, segment2->p_vaddr));
5646
5647 if (extra_length > 0)
5648 {
5649 segment2->p_memsz += extra_length;
5650 segment2->p_filesz += extra_length;
5651 }
5652
5653 segment->p_type = PT_NULL;
5654
5655 /* Since we have deleted P we must restart the outer loop. */
5656 i = 0;
5657 segment = elf_tdata (ibfd)->phdr;
5658 break;
5659 }
5660 else
5661 {
5662 /* Extend SEGMENT to include SEGMENT2 and then delete
5663 SEGMENT2. */
5664 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
5665 - SEGMENT_END (segment, segment->p_vaddr));
5666
5667 if (extra_length > 0)
5668 {
5669 segment->p_memsz += extra_length;
5670 segment->p_filesz += extra_length;
5671 }
5672
5673 segment2->p_type = PT_NULL;
5674 }
5675 }
5676 }
5677
5678 /* The second scan attempts to assign sections to segments. */
5679 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5680 i < num_segments;
5681 i++, segment++)
5682 {
5683 unsigned int section_count;
5684 asection **sections;
5685 asection *output_section;
5686 unsigned int isec;
5687 bfd_vma matching_lma;
5688 bfd_vma suggested_lma;
5689 unsigned int j;
5690 bfd_size_type amt;
5691 asection *first_section;
5692 bfd_boolean first_matching_lma;
5693 bfd_boolean first_suggested_lma;
5694
5695 if (segment->p_type == PT_NULL)
5696 continue;
5697
5698 first_section = NULL;
5699 /* Compute how many sections might be placed into this segment. */
5700 for (section = ibfd->sections, section_count = 0;
5701 section != NULL;
5702 section = section->next)
5703 {
5704 /* Find the first section in the input segment, which may be
5705 removed from the corresponding output segment. */
5706 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
5707 {
5708 if (first_section == NULL)
5709 first_section = section;
5710 if (section->output_section != NULL)
5711 ++section_count;
5712 }
5713 }
5714
5715 /* Allocate a segment map big enough to contain
5716 all of the sections we have selected. */
5717 amt = sizeof (struct elf_segment_map);
5718 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5719 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
5720 if (map == NULL)
5721 return FALSE;
5722
5723 /* Initialise the fields of the segment map. Default to
5724 using the physical address of the segment in the input BFD. */
5725 map->next = NULL;
5726 map->p_type = segment->p_type;
5727 map->p_flags = segment->p_flags;
5728 map->p_flags_valid = 1;
5729
5730 /* If the first section in the input segment is removed, there is
5731 no need to preserve segment physical address in the corresponding
5732 output segment. */
5733 if (!first_section || first_section->output_section != NULL)
5734 {
5735 map->p_paddr = segment->p_paddr;
5736 map->p_paddr_valid = p_paddr_valid;
5737 }
5738
5739 /* Determine if this segment contains the ELF file header
5740 and if it contains the program headers themselves. */
5741 map->includes_filehdr = (segment->p_offset == 0
5742 && segment->p_filesz >= iehdr->e_ehsize);
5743 map->includes_phdrs = 0;
5744
5745 if (!phdr_included || segment->p_type != PT_LOAD)
5746 {
5747 map->includes_phdrs =
5748 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5749 && (segment->p_offset + segment->p_filesz
5750 >= ((bfd_vma) iehdr->e_phoff
5751 + iehdr->e_phnum * iehdr->e_phentsize)));
5752
5753 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5754 phdr_included = TRUE;
5755 }
5756
5757 if (section_count == 0)
5758 {
5759 /* Special segments, such as the PT_PHDR segment, may contain
5760 no sections, but ordinary, loadable segments should contain
5761 something. They are allowed by the ELF spec however, so only
5762 a warning is produced. */
5763 if (segment->p_type == PT_LOAD)
5764 (*_bfd_error_handler) (_("%B: warning: Empty loadable segment"
5765 " detected, is this intentional ?\n"),
5766 ibfd);
5767
5768 map->count = 0;
5769 *pointer_to_map = map;
5770 pointer_to_map = &map->next;
5771
5772 continue;
5773 }
5774
5775 /* Now scan the sections in the input BFD again and attempt
5776 to add their corresponding output sections to the segment map.
5777 The problem here is how to handle an output section which has
5778 been moved (ie had its LMA changed). There are four possibilities:
5779
5780 1. None of the sections have been moved.
5781 In this case we can continue to use the segment LMA from the
5782 input BFD.
5783
5784 2. All of the sections have been moved by the same amount.
5785 In this case we can change the segment's LMA to match the LMA
5786 of the first section.
5787
5788 3. Some of the sections have been moved, others have not.
5789 In this case those sections which have not been moved can be
5790 placed in the current segment which will have to have its size,
5791 and possibly its LMA changed, and a new segment or segments will
5792 have to be created to contain the other sections.
5793
5794 4. The sections have been moved, but not by the same amount.
5795 In this case we can change the segment's LMA to match the LMA
5796 of the first section and we will have to create a new segment
5797 or segments to contain the other sections.
5798
5799 In order to save time, we allocate an array to hold the section
5800 pointers that we are interested in. As these sections get assigned
5801 to a segment, they are removed from this array. */
5802
5803 sections = (asection **) bfd_malloc2 (section_count, sizeof (asection *));
5804 if (sections == NULL)
5805 return FALSE;
5806
5807 /* Step One: Scan for segment vs section LMA conflicts.
5808 Also add the sections to the section array allocated above.
5809 Also add the sections to the current segment. In the common
5810 case, where the sections have not been moved, this means that
5811 we have completely filled the segment, and there is nothing
5812 more to do. */
5813 isec = 0;
5814 matching_lma = 0;
5815 suggested_lma = 0;
5816 first_matching_lma = TRUE;
5817 first_suggested_lma = TRUE;
5818
5819 for (section = ibfd->sections;
5820 section != NULL;
5821 section = section->next)
5822 if (section == first_section)
5823 break;
5824
5825 for (j = 0; section != NULL; section = section->next)
5826 {
5827 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5828 {
5829 output_section = section->output_section;
5830
5831 sections[j++] = section;
5832
5833 /* The Solaris native linker always sets p_paddr to 0.
5834 We try to catch that case here, and set it to the
5835 correct value. Note - some backends require that
5836 p_paddr be left as zero. */
5837 if (!p_paddr_valid
5838 && segment->p_vaddr != 0
5839 && !bed->want_p_paddr_set_to_zero
5840 && isec == 0
5841 && output_section->lma != 0
5842 && output_section->vma == (segment->p_vaddr
5843 + (map->includes_filehdr
5844 ? iehdr->e_ehsize
5845 : 0)
5846 + (map->includes_phdrs
5847 ? (iehdr->e_phnum
5848 * iehdr->e_phentsize)
5849 : 0)))
5850 map->p_paddr = segment->p_vaddr;
5851
5852 /* Match up the physical address of the segment with the
5853 LMA address of the output section. */
5854 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5855 || IS_COREFILE_NOTE (segment, section)
5856 || (bed->want_p_paddr_set_to_zero
5857 && IS_CONTAINED_BY_VMA (output_section, segment)))
5858 {
5859 if (first_matching_lma || output_section->lma < matching_lma)
5860 {
5861 matching_lma = output_section->lma;
5862 first_matching_lma = FALSE;
5863 }
5864
5865 /* We assume that if the section fits within the segment
5866 then it does not overlap any other section within that
5867 segment. */
5868 map->sections[isec++] = output_section;
5869 }
5870 else if (first_suggested_lma)
5871 {
5872 suggested_lma = output_section->lma;
5873 first_suggested_lma = FALSE;
5874 }
5875
5876 if (j == section_count)
5877 break;
5878 }
5879 }
5880
5881 BFD_ASSERT (j == section_count);
5882
5883 /* Step Two: Adjust the physical address of the current segment,
5884 if necessary. */
5885 if (isec == section_count)
5886 {
5887 /* All of the sections fitted within the segment as currently
5888 specified. This is the default case. Add the segment to
5889 the list of built segments and carry on to process the next
5890 program header in the input BFD. */
5891 map->count = section_count;
5892 *pointer_to_map = map;
5893 pointer_to_map = &map->next;
5894
5895 if (p_paddr_valid
5896 && !bed->want_p_paddr_set_to_zero
5897 && matching_lma != map->p_paddr
5898 && !map->includes_filehdr
5899 && !map->includes_phdrs)
5900 /* There is some padding before the first section in the
5901 segment. So, we must account for that in the output
5902 segment's vma. */
5903 map->p_vaddr_offset = matching_lma - map->p_paddr;
5904
5905 free (sections);
5906 continue;
5907 }
5908 else
5909 {
5910 if (!first_matching_lma)
5911 {
5912 /* At least one section fits inside the current segment.
5913 Keep it, but modify its physical address to match the
5914 LMA of the first section that fitted. */
5915 map->p_paddr = matching_lma;
5916 }
5917 else
5918 {
5919 /* None of the sections fitted inside the current segment.
5920 Change the current segment's physical address to match
5921 the LMA of the first section. */
5922 map->p_paddr = suggested_lma;
5923 }
5924
5925 /* Offset the segment physical address from the lma
5926 to allow for space taken up by elf headers. */
5927 if (map->includes_filehdr)
5928 {
5929 if (map->p_paddr >= iehdr->e_ehsize)
5930 map->p_paddr -= iehdr->e_ehsize;
5931 else
5932 {
5933 map->includes_filehdr = FALSE;
5934 map->includes_phdrs = FALSE;
5935 }
5936 }
5937
5938 if (map->includes_phdrs)
5939 {
5940 if (map->p_paddr >= iehdr->e_phnum * iehdr->e_phentsize)
5941 {
5942 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
5943
5944 /* iehdr->e_phnum is just an estimate of the number
5945 of program headers that we will need. Make a note
5946 here of the number we used and the segment we chose
5947 to hold these headers, so that we can adjust the
5948 offset when we know the correct value. */
5949 phdr_adjust_num = iehdr->e_phnum;
5950 phdr_adjust_seg = map;
5951 }
5952 else
5953 map->includes_phdrs = FALSE;
5954 }
5955 }
5956
5957 /* Step Three: Loop over the sections again, this time assigning
5958 those that fit to the current segment and removing them from the
5959 sections array; but making sure not to leave large gaps. Once all
5960 possible sections have been assigned to the current segment it is
5961 added to the list of built segments and if sections still remain
5962 to be assigned, a new segment is constructed before repeating
5963 the loop. */
5964 isec = 0;
5965 do
5966 {
5967 map->count = 0;
5968 suggested_lma = 0;
5969 first_suggested_lma = TRUE;
5970
5971 /* Fill the current segment with sections that fit. */
5972 for (j = 0; j < section_count; j++)
5973 {
5974 section = sections[j];
5975
5976 if (section == NULL)
5977 continue;
5978
5979 output_section = section->output_section;
5980
5981 BFD_ASSERT (output_section != NULL);
5982
5983 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5984 || IS_COREFILE_NOTE (segment, section))
5985 {
5986 if (map->count == 0)
5987 {
5988 /* If the first section in a segment does not start at
5989 the beginning of the segment, then something is
5990 wrong. */
5991 if (output_section->lma
5992 != (map->p_paddr
5993 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
5994 + (map->includes_phdrs
5995 ? iehdr->e_phnum * iehdr->e_phentsize
5996 : 0)))
5997 abort ();
5998 }
5999 else
6000 {
6001 asection *prev_sec;
6002
6003 prev_sec = map->sections[map->count - 1];
6004
6005 /* If the gap between the end of the previous section
6006 and the start of this section is more than
6007 maxpagesize then we need to start a new segment. */
6008 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
6009 maxpagesize)
6010 < BFD_ALIGN (output_section->lma, maxpagesize))
6011 || (prev_sec->lma + prev_sec->size
6012 > output_section->lma))
6013 {
6014 if (first_suggested_lma)
6015 {
6016 suggested_lma = output_section->lma;
6017 first_suggested_lma = FALSE;
6018 }
6019
6020 continue;
6021 }
6022 }
6023
6024 map->sections[map->count++] = output_section;
6025 ++isec;
6026 sections[j] = NULL;
6027 section->segment_mark = TRUE;
6028 }
6029 else if (first_suggested_lma)
6030 {
6031 suggested_lma = output_section->lma;
6032 first_suggested_lma = FALSE;
6033 }
6034 }
6035
6036 BFD_ASSERT (map->count > 0);
6037
6038 /* Add the current segment to the list of built segments. */
6039 *pointer_to_map = map;
6040 pointer_to_map = &map->next;
6041
6042 if (isec < section_count)
6043 {
6044 /* We still have not allocated all of the sections to
6045 segments. Create a new segment here, initialise it
6046 and carry on looping. */
6047 amt = sizeof (struct elf_segment_map);
6048 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
6049 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
6050 if (map == NULL)
6051 {
6052 free (sections);
6053 return FALSE;
6054 }
6055
6056 /* Initialise the fields of the segment map. Set the physical
6057 physical address to the LMA of the first section that has
6058 not yet been assigned. */
6059 map->next = NULL;
6060 map->p_type = segment->p_type;
6061 map->p_flags = segment->p_flags;
6062 map->p_flags_valid = 1;
6063 map->p_paddr = suggested_lma;
6064 map->p_paddr_valid = p_paddr_valid;
6065 map->includes_filehdr = 0;
6066 map->includes_phdrs = 0;
6067 }
6068 }
6069 while (isec < section_count);
6070
6071 free (sections);
6072 }
6073
6074 elf_tdata (obfd)->segment_map = map_first;
6075
6076 /* If we had to estimate the number of program headers that were
6077 going to be needed, then check our estimate now and adjust
6078 the offset if necessary. */
6079 if (phdr_adjust_seg != NULL)
6080 {
6081 unsigned int count;
6082
6083 for (count = 0, map = map_first; map != NULL; map = map->next)
6084 count++;
6085
6086 if (count > phdr_adjust_num)
6087 phdr_adjust_seg->p_paddr
6088 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
6089 }
6090
6091 #undef SEGMENT_END
6092 #undef SECTION_SIZE
6093 #undef IS_CONTAINED_BY_VMA
6094 #undef IS_CONTAINED_BY_LMA
6095 #undef IS_NOTE
6096 #undef IS_COREFILE_NOTE
6097 #undef IS_SOLARIS_PT_INTERP
6098 #undef IS_SECTION_IN_INPUT_SEGMENT
6099 #undef INCLUDE_SECTION_IN_SEGMENT
6100 #undef SEGMENT_AFTER_SEGMENT
6101 #undef SEGMENT_OVERLAPS
6102 return TRUE;
6103 }
6104
6105 /* Copy ELF program header information. */
6106
6107 static bfd_boolean
6108 copy_elf_program_header (bfd *ibfd, bfd *obfd)
6109 {
6110 Elf_Internal_Ehdr *iehdr;
6111 struct elf_segment_map *map;
6112 struct elf_segment_map *map_first;
6113 struct elf_segment_map **pointer_to_map;
6114 Elf_Internal_Phdr *segment;
6115 unsigned int i;
6116 unsigned int num_segments;
6117 bfd_boolean phdr_included = FALSE;
6118 bfd_boolean p_paddr_valid;
6119
6120 iehdr = elf_elfheader (ibfd);
6121
6122 map_first = NULL;
6123 pointer_to_map = &map_first;
6124
6125 /* If all the segment p_paddr fields are zero, don't set
6126 map->p_paddr_valid. */
6127 p_paddr_valid = FALSE;
6128 num_segments = elf_elfheader (ibfd)->e_phnum;
6129 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6130 i < num_segments;
6131 i++, segment++)
6132 if (segment->p_paddr != 0)
6133 {
6134 p_paddr_valid = TRUE;
6135 break;
6136 }
6137
6138 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6139 i < num_segments;
6140 i++, segment++)
6141 {
6142 asection *section;
6143 unsigned int section_count;
6144 bfd_size_type amt;
6145 Elf_Internal_Shdr *this_hdr;
6146 asection *first_section = NULL;
6147 asection *lowest_section;
6148
6149 /* Compute how many sections are in this segment. */
6150 for (section = ibfd->sections, section_count = 0;
6151 section != NULL;
6152 section = section->next)
6153 {
6154 this_hdr = &(elf_section_data(section)->this_hdr);
6155 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6156 {
6157 if (first_section == NULL)
6158 first_section = section;
6159 section_count++;
6160 }
6161 }
6162
6163 /* Allocate a segment map big enough to contain
6164 all of the sections we have selected. */
6165 amt = sizeof (struct elf_segment_map);
6166 if (section_count != 0)
6167 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
6168 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
6169 if (map == NULL)
6170 return FALSE;
6171
6172 /* Initialize the fields of the output segment map with the
6173 input segment. */
6174 map->next = NULL;
6175 map->p_type = segment->p_type;
6176 map->p_flags = segment->p_flags;
6177 map->p_flags_valid = 1;
6178 map->p_paddr = segment->p_paddr;
6179 map->p_paddr_valid = p_paddr_valid;
6180 map->p_align = segment->p_align;
6181 map->p_align_valid = 1;
6182 map->p_vaddr_offset = 0;
6183
6184 if (map->p_type == PT_GNU_RELRO
6185 || map->p_type == PT_GNU_STACK)
6186 {
6187 /* The PT_GNU_RELRO segment may contain the first a few
6188 bytes in the .got.plt section even if the whole .got.plt
6189 section isn't in the PT_GNU_RELRO segment. We won't
6190 change the size of the PT_GNU_RELRO segment.
6191 Similarly, PT_GNU_STACK size is significant on uclinux
6192 systems. */
6193 map->p_size = segment->p_memsz;
6194 map->p_size_valid = 1;
6195 }
6196
6197 /* Determine if this segment contains the ELF file header
6198 and if it contains the program headers themselves. */
6199 map->includes_filehdr = (segment->p_offset == 0
6200 && segment->p_filesz >= iehdr->e_ehsize);
6201
6202 map->includes_phdrs = 0;
6203 if (! phdr_included || segment->p_type != PT_LOAD)
6204 {
6205 map->includes_phdrs =
6206 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
6207 && (segment->p_offset + segment->p_filesz
6208 >= ((bfd_vma) iehdr->e_phoff
6209 + iehdr->e_phnum * iehdr->e_phentsize)));
6210
6211 if (segment->p_type == PT_LOAD && map->includes_phdrs)
6212 phdr_included = TRUE;
6213 }
6214
6215 lowest_section = first_section;
6216 if (section_count != 0)
6217 {
6218 unsigned int isec = 0;
6219
6220 for (section = first_section;
6221 section != NULL;
6222 section = section->next)
6223 {
6224 this_hdr = &(elf_section_data(section)->this_hdr);
6225 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6226 {
6227 map->sections[isec++] = section->output_section;
6228 if (section->lma < lowest_section->lma)
6229 lowest_section = section;
6230 if ((section->flags & SEC_ALLOC) != 0)
6231 {
6232 bfd_vma seg_off;
6233
6234 /* Section lmas are set up from PT_LOAD header
6235 p_paddr in _bfd_elf_make_section_from_shdr.
6236 If this header has a p_paddr that disagrees
6237 with the section lma, flag the p_paddr as
6238 invalid. */
6239 if ((section->flags & SEC_LOAD) != 0)
6240 seg_off = this_hdr->sh_offset - segment->p_offset;
6241 else
6242 seg_off = this_hdr->sh_addr - segment->p_vaddr;
6243 if (section->lma - segment->p_paddr != seg_off)
6244 map->p_paddr_valid = FALSE;
6245 }
6246 if (isec == section_count)
6247 break;
6248 }
6249 }
6250 }
6251
6252 if (map->includes_filehdr && lowest_section != NULL)
6253 /* We need to keep the space used by the headers fixed. */
6254 map->header_size = lowest_section->vma - segment->p_vaddr;
6255
6256 if (!map->includes_phdrs
6257 && !map->includes_filehdr
6258 && map->p_paddr_valid)
6259 /* There is some other padding before the first section. */
6260 map->p_vaddr_offset = ((lowest_section ? lowest_section->lma : 0)
6261 - segment->p_paddr);
6262
6263 map->count = section_count;
6264 *pointer_to_map = map;
6265 pointer_to_map = &map->next;
6266 }
6267
6268 elf_tdata (obfd)->segment_map = map_first;
6269 return TRUE;
6270 }
6271
6272 /* Copy private BFD data. This copies or rewrites ELF program header
6273 information. */
6274
6275 static bfd_boolean
6276 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
6277 {
6278 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6279 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6280 return TRUE;
6281
6282 if (elf_tdata (ibfd)->phdr == NULL)
6283 return TRUE;
6284
6285 if (ibfd->xvec == obfd->xvec)
6286 {
6287 /* Check to see if any sections in the input BFD
6288 covered by ELF program header have changed. */
6289 Elf_Internal_Phdr *segment;
6290 asection *section, *osec;
6291 unsigned int i, num_segments;
6292 Elf_Internal_Shdr *this_hdr;
6293 const struct elf_backend_data *bed;
6294
6295 bed = get_elf_backend_data (ibfd);
6296
6297 /* Regenerate the segment map if p_paddr is set to 0. */
6298 if (bed->want_p_paddr_set_to_zero)
6299 goto rewrite;
6300
6301 /* Initialize the segment mark field. */
6302 for (section = obfd->sections; section != NULL;
6303 section = section->next)
6304 section->segment_mark = FALSE;
6305
6306 num_segments = elf_elfheader (ibfd)->e_phnum;
6307 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6308 i < num_segments;
6309 i++, segment++)
6310 {
6311 /* PR binutils/3535. The Solaris linker always sets the p_paddr
6312 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
6313 which severly confuses things, so always regenerate the segment
6314 map in this case. */
6315 if (segment->p_paddr == 0
6316 && segment->p_memsz == 0
6317 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
6318 goto rewrite;
6319
6320 for (section = ibfd->sections;
6321 section != NULL; section = section->next)
6322 {
6323 /* We mark the output section so that we know it comes
6324 from the input BFD. */
6325 osec = section->output_section;
6326 if (osec)
6327 osec->segment_mark = TRUE;
6328
6329 /* Check if this section is covered by the segment. */
6330 this_hdr = &(elf_section_data(section)->this_hdr);
6331 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6332 {
6333 /* FIXME: Check if its output section is changed or
6334 removed. What else do we need to check? */
6335 if (osec == NULL
6336 || section->flags != osec->flags
6337 || section->lma != osec->lma
6338 || section->vma != osec->vma
6339 || section->size != osec->size
6340 || section->rawsize != osec->rawsize
6341 || section->alignment_power != osec->alignment_power)
6342 goto rewrite;
6343 }
6344 }
6345 }
6346
6347 /* Check to see if any output section do not come from the
6348 input BFD. */
6349 for (section = obfd->sections; section != NULL;
6350 section = section->next)
6351 {
6352 if (section->segment_mark == FALSE)
6353 goto rewrite;
6354 else
6355 section->segment_mark = FALSE;
6356 }
6357
6358 return copy_elf_program_header (ibfd, obfd);
6359 }
6360
6361 rewrite:
6362 if (ibfd->xvec == obfd->xvec)
6363 {
6364 /* When rewriting program header, set the output maxpagesize to
6365 the maximum alignment of input PT_LOAD segments. */
6366 Elf_Internal_Phdr *segment;
6367 unsigned int i;
6368 unsigned int num_segments = elf_elfheader (ibfd)->e_phnum;
6369 bfd_vma maxpagesize = 0;
6370
6371 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6372 i < num_segments;
6373 i++, segment++)
6374 if (segment->p_type == PT_LOAD
6375 && maxpagesize < segment->p_align)
6376 maxpagesize = segment->p_align;
6377
6378 if (maxpagesize != get_elf_backend_data (obfd)->maxpagesize)
6379 bfd_emul_set_maxpagesize (bfd_get_target (obfd), maxpagesize);
6380 }
6381
6382 return rewrite_elf_program_header (ibfd, obfd);
6383 }
6384
6385 /* Initialize private output section information from input section. */
6386
6387 bfd_boolean
6388 _bfd_elf_init_private_section_data (bfd *ibfd,
6389 asection *isec,
6390 bfd *obfd,
6391 asection *osec,
6392 struct bfd_link_info *link_info)
6393
6394 {
6395 Elf_Internal_Shdr *ihdr, *ohdr;
6396 bfd_boolean final_link = link_info != NULL && !link_info->relocatable;
6397
6398 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6399 || obfd->xvec->flavour != bfd_target_elf_flavour)
6400 return TRUE;
6401
6402 BFD_ASSERT (elf_section_data (osec) != NULL);
6403
6404 /* For objcopy and relocatable link, don't copy the output ELF
6405 section type from input if the output BFD section flags have been
6406 set to something different. For a final link allow some flags
6407 that the linker clears to differ. */
6408 if (elf_section_type (osec) == SHT_NULL
6409 && (osec->flags == isec->flags
6410 || (final_link
6411 && ((osec->flags ^ isec->flags)
6412 & ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC)) == 0)))
6413 elf_section_type (osec) = elf_section_type (isec);
6414
6415 /* FIXME: Is this correct for all OS/PROC specific flags? */
6416 elf_section_flags (osec) |= (elf_section_flags (isec)
6417 & (SHF_MASKOS | SHF_MASKPROC));
6418
6419 /* Set things up for objcopy and relocatable link. The output
6420 SHT_GROUP section will have its elf_next_in_group pointing back
6421 to the input group members. Ignore linker created group section.
6422 See elfNN_ia64_object_p in elfxx-ia64.c. */
6423 if (!final_link)
6424 {
6425 if (elf_sec_group (isec) == NULL
6426 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
6427 {
6428 if (elf_section_flags (isec) & SHF_GROUP)
6429 elf_section_flags (osec) |= SHF_GROUP;
6430 elf_next_in_group (osec) = elf_next_in_group (isec);
6431 elf_section_data (osec)->group = elf_section_data (isec)->group;
6432 }
6433 }
6434
6435 ihdr = &elf_section_data (isec)->this_hdr;
6436
6437 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
6438 don't use the output section of the linked-to section since it
6439 may be NULL at this point. */
6440 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
6441 {
6442 ohdr = &elf_section_data (osec)->this_hdr;
6443 ohdr->sh_flags |= SHF_LINK_ORDER;
6444 elf_linked_to_section (osec) = elf_linked_to_section (isec);
6445 }
6446
6447 osec->use_rela_p = isec->use_rela_p;
6448
6449 return TRUE;
6450 }
6451
6452 /* Copy private section information. This copies over the entsize
6453 field, and sometimes the info field. */
6454
6455 bfd_boolean
6456 _bfd_elf_copy_private_section_data (bfd *ibfd,
6457 asection *isec,
6458 bfd *obfd,
6459 asection *osec)
6460 {
6461 Elf_Internal_Shdr *ihdr, *ohdr;
6462
6463 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6464 || obfd->xvec->flavour != bfd_target_elf_flavour)
6465 return TRUE;
6466
6467 ihdr = &elf_section_data (isec)->this_hdr;
6468 ohdr = &elf_section_data (osec)->this_hdr;
6469
6470 ohdr->sh_entsize = ihdr->sh_entsize;
6471
6472 if (ihdr->sh_type == SHT_SYMTAB
6473 || ihdr->sh_type == SHT_DYNSYM
6474 || ihdr->sh_type == SHT_GNU_verneed
6475 || ihdr->sh_type == SHT_GNU_verdef)
6476 ohdr->sh_info = ihdr->sh_info;
6477
6478 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
6479 NULL);
6480 }
6481
6482 /* Look at all the SHT_GROUP sections in IBFD, making any adjustments
6483 necessary if we are removing either the SHT_GROUP section or any of
6484 the group member sections. DISCARDED is the value that a section's
6485 output_section has if the section will be discarded, NULL when this
6486 function is called from objcopy, bfd_abs_section_ptr when called
6487 from the linker. */
6488
6489 bfd_boolean
6490 _bfd_elf_fixup_group_sections (bfd *ibfd, asection *discarded)
6491 {
6492 asection *isec;
6493
6494 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
6495 if (elf_section_type (isec) == SHT_GROUP)
6496 {
6497 asection *first = elf_next_in_group (isec);
6498 asection *s = first;
6499 bfd_size_type removed = 0;
6500
6501 while (s != NULL)
6502 {
6503 /* If this member section is being output but the
6504 SHT_GROUP section is not, then clear the group info
6505 set up by _bfd_elf_copy_private_section_data. */
6506 if (s->output_section != discarded
6507 && isec->output_section == discarded)
6508 {
6509 elf_section_flags (s->output_section) &= ~SHF_GROUP;
6510 elf_group_name (s->output_section) = NULL;
6511 }
6512 /* Conversely, if the member section is not being output
6513 but the SHT_GROUP section is, then adjust its size. */
6514 else if (s->output_section == discarded
6515 && isec->output_section != discarded)
6516 removed += 4;
6517 s = elf_next_in_group (s);
6518 if (s == first)
6519 break;
6520 }
6521 if (removed != 0)
6522 {
6523 if (discarded != NULL)
6524 {
6525 /* If we've been called for ld -r, then we need to
6526 adjust the input section size. This function may
6527 be called multiple times, so save the original
6528 size. */
6529 if (isec->rawsize == 0)
6530 isec->rawsize = isec->size;
6531 isec->size = isec->rawsize - removed;
6532 }
6533 else
6534 {
6535 /* Adjust the output section size when called from
6536 objcopy. */
6537 isec->output_section->size -= removed;
6538 }
6539 }
6540 }
6541
6542 return TRUE;
6543 }
6544
6545 /* Copy private header information. */
6546
6547 bfd_boolean
6548 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
6549 {
6550 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6551 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6552 return TRUE;
6553
6554 /* Copy over private BFD data if it has not already been copied.
6555 This must be done here, rather than in the copy_private_bfd_data
6556 entry point, because the latter is called after the section
6557 contents have been set, which means that the program headers have
6558 already been worked out. */
6559 if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
6560 {
6561 if (! copy_private_bfd_data (ibfd, obfd))
6562 return FALSE;
6563 }
6564
6565 return _bfd_elf_fixup_group_sections (ibfd, NULL);
6566 }
6567
6568 /* Copy private symbol information. If this symbol is in a section
6569 which we did not map into a BFD section, try to map the section
6570 index correctly. We use special macro definitions for the mapped
6571 section indices; these definitions are interpreted by the
6572 swap_out_syms function. */
6573
6574 #define MAP_ONESYMTAB (SHN_HIOS + 1)
6575 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
6576 #define MAP_STRTAB (SHN_HIOS + 3)
6577 #define MAP_SHSTRTAB (SHN_HIOS + 4)
6578 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
6579
6580 bfd_boolean
6581 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
6582 asymbol *isymarg,
6583 bfd *obfd,
6584 asymbol *osymarg)
6585 {
6586 elf_symbol_type *isym, *osym;
6587
6588 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6589 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6590 return TRUE;
6591
6592 isym = elf_symbol_from (ibfd, isymarg);
6593 osym = elf_symbol_from (obfd, osymarg);
6594
6595 if (isym != NULL
6596 && isym->internal_elf_sym.st_shndx != 0
6597 && osym != NULL
6598 && bfd_is_abs_section (isym->symbol.section))
6599 {
6600 unsigned int shndx;
6601
6602 shndx = isym->internal_elf_sym.st_shndx;
6603 if (shndx == elf_onesymtab (ibfd))
6604 shndx = MAP_ONESYMTAB;
6605 else if (shndx == elf_dynsymtab (ibfd))
6606 shndx = MAP_DYNSYMTAB;
6607 else if (shndx == elf_tdata (ibfd)->strtab_section)
6608 shndx = MAP_STRTAB;
6609 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
6610 shndx = MAP_SHSTRTAB;
6611 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
6612 shndx = MAP_SYM_SHNDX;
6613 osym->internal_elf_sym.st_shndx = shndx;
6614 }
6615
6616 return TRUE;
6617 }
6618
6619 /* Swap out the symbols. */
6620
6621 static bfd_boolean
6622 swap_out_syms (bfd *abfd,
6623 struct bfd_strtab_hash **sttp,
6624 int relocatable_p)
6625 {
6626 const struct elf_backend_data *bed;
6627 int symcount;
6628 asymbol **syms;
6629 struct bfd_strtab_hash *stt;
6630 Elf_Internal_Shdr *symtab_hdr;
6631 Elf_Internal_Shdr *symtab_shndx_hdr;
6632 Elf_Internal_Shdr *symstrtab_hdr;
6633 bfd_byte *outbound_syms;
6634 bfd_byte *outbound_shndx;
6635 int idx;
6636 bfd_size_type amt;
6637 bfd_boolean name_local_sections;
6638
6639 if (!elf_map_symbols (abfd))
6640 return FALSE;
6641
6642 /* Dump out the symtabs. */
6643 stt = _bfd_elf_stringtab_init ();
6644 if (stt == NULL)
6645 return FALSE;
6646
6647 bed = get_elf_backend_data (abfd);
6648 symcount = bfd_get_symcount (abfd);
6649 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6650 symtab_hdr->sh_type = SHT_SYMTAB;
6651 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
6652 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
6653 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
6654 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
6655
6656 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
6657 symstrtab_hdr->sh_type = SHT_STRTAB;
6658
6659 outbound_syms = (bfd_byte *) bfd_alloc2 (abfd, 1 + symcount,
6660 bed->s->sizeof_sym);
6661 if (outbound_syms == NULL)
6662 {
6663 _bfd_stringtab_free (stt);
6664 return FALSE;
6665 }
6666 symtab_hdr->contents = outbound_syms;
6667
6668 outbound_shndx = NULL;
6669 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
6670 if (symtab_shndx_hdr->sh_name != 0)
6671 {
6672 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
6673 outbound_shndx = (bfd_byte *)
6674 bfd_zalloc2 (abfd, 1 + symcount, sizeof (Elf_External_Sym_Shndx));
6675 if (outbound_shndx == NULL)
6676 {
6677 _bfd_stringtab_free (stt);
6678 return FALSE;
6679 }
6680
6681 symtab_shndx_hdr->contents = outbound_shndx;
6682 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
6683 symtab_shndx_hdr->sh_size = amt;
6684 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
6685 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
6686 }
6687
6688 /* Now generate the data (for "contents"). */
6689 {
6690 /* Fill in zeroth symbol and swap it out. */
6691 Elf_Internal_Sym sym;
6692 sym.st_name = 0;
6693 sym.st_value = 0;
6694 sym.st_size = 0;
6695 sym.st_info = 0;
6696 sym.st_other = 0;
6697 sym.st_shndx = SHN_UNDEF;
6698 sym.st_target_internal = 0;
6699 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6700 outbound_syms += bed->s->sizeof_sym;
6701 if (outbound_shndx != NULL)
6702 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6703 }
6704
6705 name_local_sections
6706 = (bed->elf_backend_name_local_section_symbols
6707 && bed->elf_backend_name_local_section_symbols (abfd));
6708
6709 syms = bfd_get_outsymbols (abfd);
6710 for (idx = 0; idx < symcount; idx++)
6711 {
6712 Elf_Internal_Sym sym;
6713 bfd_vma value = syms[idx]->value;
6714 elf_symbol_type *type_ptr;
6715 flagword flags = syms[idx]->flags;
6716 int type;
6717
6718 if (!name_local_sections
6719 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
6720 {
6721 /* Local section symbols have no name. */
6722 sym.st_name = 0;
6723 }
6724 else
6725 {
6726 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
6727 syms[idx]->name,
6728 TRUE, FALSE);
6729 if (sym.st_name == (unsigned long) -1)
6730 {
6731 _bfd_stringtab_free (stt);
6732 return FALSE;
6733 }
6734 }
6735
6736 type_ptr = elf_symbol_from (abfd, syms[idx]);
6737
6738 if ((flags & BSF_SECTION_SYM) == 0
6739 && bfd_is_com_section (syms[idx]->section))
6740 {
6741 /* ELF common symbols put the alignment into the `value' field,
6742 and the size into the `size' field. This is backwards from
6743 how BFD handles it, so reverse it here. */
6744 sym.st_size = value;
6745 if (type_ptr == NULL
6746 || type_ptr->internal_elf_sym.st_value == 0)
6747 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
6748 else
6749 sym.st_value = type_ptr->internal_elf_sym.st_value;
6750 sym.st_shndx = _bfd_elf_section_from_bfd_section
6751 (abfd, syms[idx]->section);
6752 }
6753 else
6754 {
6755 asection *sec = syms[idx]->section;
6756 unsigned int shndx;
6757
6758 if (sec->output_section)
6759 {
6760 value += sec->output_offset;
6761 sec = sec->output_section;
6762 }
6763
6764 /* Don't add in the section vma for relocatable output. */
6765 if (! relocatable_p)
6766 value += sec->vma;
6767 sym.st_value = value;
6768 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
6769
6770 if (bfd_is_abs_section (sec)
6771 && type_ptr != NULL
6772 && type_ptr->internal_elf_sym.st_shndx != 0)
6773 {
6774 /* This symbol is in a real ELF section which we did
6775 not create as a BFD section. Undo the mapping done
6776 by copy_private_symbol_data. */
6777 shndx = type_ptr->internal_elf_sym.st_shndx;
6778 switch (shndx)
6779 {
6780 case MAP_ONESYMTAB:
6781 shndx = elf_onesymtab (abfd);
6782 break;
6783 case MAP_DYNSYMTAB:
6784 shndx = elf_dynsymtab (abfd);
6785 break;
6786 case MAP_STRTAB:
6787 shndx = elf_tdata (abfd)->strtab_section;
6788 break;
6789 case MAP_SHSTRTAB:
6790 shndx = elf_tdata (abfd)->shstrtab_section;
6791 break;
6792 case MAP_SYM_SHNDX:
6793 shndx = elf_tdata (abfd)->symtab_shndx_section;
6794 break;
6795 default:
6796 shndx = SHN_ABS;
6797 break;
6798 }
6799 }
6800 else
6801 {
6802 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
6803
6804 if (shndx == SHN_BAD)
6805 {
6806 asection *sec2;
6807
6808 /* Writing this would be a hell of a lot easier if
6809 we had some decent documentation on bfd, and
6810 knew what to expect of the library, and what to
6811 demand of applications. For example, it
6812 appears that `objcopy' might not set the
6813 section of a symbol to be a section that is
6814 actually in the output file. */
6815 sec2 = bfd_get_section_by_name (abfd, sec->name);
6816 if (sec2 == NULL)
6817 {
6818 _bfd_error_handler (_("\
6819 Unable to find equivalent output section for symbol '%s' from section '%s'"),
6820 syms[idx]->name ? syms[idx]->name : "<Local sym>",
6821 sec->name);
6822 bfd_set_error (bfd_error_invalid_operation);
6823 _bfd_stringtab_free (stt);
6824 return FALSE;
6825 }
6826
6827 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
6828 BFD_ASSERT (shndx != SHN_BAD);
6829 }
6830 }
6831
6832 sym.st_shndx = shndx;
6833 }
6834
6835 if ((flags & BSF_THREAD_LOCAL) != 0)
6836 type = STT_TLS;
6837 else if ((flags & BSF_GNU_INDIRECT_FUNCTION) != 0)
6838 type = STT_GNU_IFUNC;
6839 else if ((flags & BSF_FUNCTION) != 0)
6840 type = STT_FUNC;
6841 else if ((flags & BSF_OBJECT) != 0)
6842 type = STT_OBJECT;
6843 else if ((flags & BSF_RELC) != 0)
6844 type = STT_RELC;
6845 else if ((flags & BSF_SRELC) != 0)
6846 type = STT_SRELC;
6847 else
6848 type = STT_NOTYPE;
6849
6850 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
6851 type = STT_TLS;
6852
6853 /* Processor-specific types. */
6854 if (type_ptr != NULL
6855 && bed->elf_backend_get_symbol_type)
6856 type = ((*bed->elf_backend_get_symbol_type)
6857 (&type_ptr->internal_elf_sym, type));
6858
6859 if (flags & BSF_SECTION_SYM)
6860 {
6861 if (flags & BSF_GLOBAL)
6862 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6863 else
6864 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
6865 }
6866 else if (bfd_is_com_section (syms[idx]->section))
6867 {
6868 #ifdef USE_STT_COMMON
6869 if (type == STT_OBJECT)
6870 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_COMMON);
6871 else
6872 #endif
6873 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
6874 }
6875 else if (bfd_is_und_section (syms[idx]->section))
6876 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
6877 ? STB_WEAK
6878 : STB_GLOBAL),
6879 type);
6880 else if (flags & BSF_FILE)
6881 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
6882 else
6883 {
6884 int bind = STB_LOCAL;
6885
6886 if (flags & BSF_LOCAL)
6887 bind = STB_LOCAL;
6888 else if (flags & BSF_GNU_UNIQUE)
6889 bind = STB_GNU_UNIQUE;
6890 else if (flags & BSF_WEAK)
6891 bind = STB_WEAK;
6892 else if (flags & BSF_GLOBAL)
6893 bind = STB_GLOBAL;
6894
6895 sym.st_info = ELF_ST_INFO (bind, type);
6896 }
6897
6898 if (type_ptr != NULL)
6899 {
6900 sym.st_other = type_ptr->internal_elf_sym.st_other;
6901 sym.st_target_internal
6902 = type_ptr->internal_elf_sym.st_target_internal;
6903 }
6904 else
6905 {
6906 sym.st_other = 0;
6907 sym.st_target_internal = 0;
6908 }
6909
6910 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6911 outbound_syms += bed->s->sizeof_sym;
6912 if (outbound_shndx != NULL)
6913 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6914 }
6915
6916 *sttp = stt;
6917 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
6918 symstrtab_hdr->sh_type = SHT_STRTAB;
6919
6920 symstrtab_hdr->sh_flags = 0;
6921 symstrtab_hdr->sh_addr = 0;
6922 symstrtab_hdr->sh_entsize = 0;
6923 symstrtab_hdr->sh_link = 0;
6924 symstrtab_hdr->sh_info = 0;
6925 symstrtab_hdr->sh_addralign = 1;
6926
6927 return TRUE;
6928 }
6929
6930 /* Return the number of bytes required to hold the symtab vector.
6931
6932 Note that we base it on the count plus 1, since we will null terminate
6933 the vector allocated based on this size. However, the ELF symbol table
6934 always has a dummy entry as symbol #0, so it ends up even. */
6935
6936 long
6937 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
6938 {
6939 long symcount;
6940 long symtab_size;
6941 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
6942
6943 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6944 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6945 if (symcount > 0)
6946 symtab_size -= sizeof (asymbol *);
6947
6948 return symtab_size;
6949 }
6950
6951 long
6952 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
6953 {
6954 long symcount;
6955 long symtab_size;
6956 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
6957
6958 if (elf_dynsymtab (abfd) == 0)
6959 {
6960 bfd_set_error (bfd_error_invalid_operation);
6961 return -1;
6962 }
6963
6964 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6965 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6966 if (symcount > 0)
6967 symtab_size -= sizeof (asymbol *);
6968
6969 return symtab_size;
6970 }
6971
6972 long
6973 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
6974 sec_ptr asect)
6975 {
6976 return (asect->reloc_count + 1) * sizeof (arelent *);
6977 }
6978
6979 /* Canonicalize the relocs. */
6980
6981 long
6982 _bfd_elf_canonicalize_reloc (bfd *abfd,
6983 sec_ptr section,
6984 arelent **relptr,
6985 asymbol **symbols)
6986 {
6987 arelent *tblptr;
6988 unsigned int i;
6989 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6990
6991 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
6992 return -1;
6993
6994 tblptr = section->relocation;
6995 for (i = 0; i < section->reloc_count; i++)
6996 *relptr++ = tblptr++;
6997
6998 *relptr = NULL;
6999
7000 return section->reloc_count;
7001 }
7002
7003 long
7004 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
7005 {
7006 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7007 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
7008
7009 if (symcount >= 0)
7010 bfd_get_symcount (abfd) = symcount;
7011 return symcount;
7012 }
7013
7014 long
7015 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
7016 asymbol **allocation)
7017 {
7018 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7019 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
7020
7021 if (symcount >= 0)
7022 bfd_get_dynamic_symcount (abfd) = symcount;
7023 return symcount;
7024 }
7025
7026 /* Return the size required for the dynamic reloc entries. Any loadable
7027 section that was actually installed in the BFD, and has type SHT_REL
7028 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
7029 dynamic reloc section. */
7030
7031 long
7032 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
7033 {
7034 long ret;
7035 asection *s;
7036
7037 if (elf_dynsymtab (abfd) == 0)
7038 {
7039 bfd_set_error (bfd_error_invalid_operation);
7040 return -1;
7041 }
7042
7043 ret = sizeof (arelent *);
7044 for (s = abfd->sections; s != NULL; s = s->next)
7045 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
7046 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
7047 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
7048 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
7049 * sizeof (arelent *));
7050
7051 return ret;
7052 }
7053
7054 /* Canonicalize the dynamic relocation entries. Note that we return the
7055 dynamic relocations as a single block, although they are actually
7056 associated with particular sections; the interface, which was
7057 designed for SunOS style shared libraries, expects that there is only
7058 one set of dynamic relocs. Any loadable section that was actually
7059 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
7060 dynamic symbol table, is considered to be a dynamic reloc section. */
7061
7062 long
7063 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
7064 arelent **storage,
7065 asymbol **syms)
7066 {
7067 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
7068 asection *s;
7069 long ret;
7070
7071 if (elf_dynsymtab (abfd) == 0)
7072 {
7073 bfd_set_error (bfd_error_invalid_operation);
7074 return -1;
7075 }
7076
7077 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
7078 ret = 0;
7079 for (s = abfd->sections; s != NULL; s = s->next)
7080 {
7081 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
7082 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
7083 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
7084 {
7085 arelent *p;
7086 long count, i;
7087
7088 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
7089 return -1;
7090 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
7091 p = s->relocation;
7092 for (i = 0; i < count; i++)
7093 *storage++ = p++;
7094 ret += count;
7095 }
7096 }
7097
7098 *storage = NULL;
7099
7100 return ret;
7101 }
7102 \f
7103 /* Read in the version information. */
7104
7105 bfd_boolean
7106 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
7107 {
7108 bfd_byte *contents = NULL;
7109 unsigned int freeidx = 0;
7110
7111 if (elf_dynverref (abfd) != 0)
7112 {
7113 Elf_Internal_Shdr *hdr;
7114 Elf_External_Verneed *everneed;
7115 Elf_Internal_Verneed *iverneed;
7116 unsigned int i;
7117 bfd_byte *contents_end;
7118
7119 hdr = &elf_tdata (abfd)->dynverref_hdr;
7120
7121 elf_tdata (abfd)->verref = (Elf_Internal_Verneed *)
7122 bfd_zalloc2 (abfd, hdr->sh_info, sizeof (Elf_Internal_Verneed));
7123 if (elf_tdata (abfd)->verref == NULL)
7124 goto error_return;
7125
7126 elf_tdata (abfd)->cverrefs = hdr->sh_info;
7127
7128 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
7129 if (contents == NULL)
7130 {
7131 error_return_verref:
7132 elf_tdata (abfd)->verref = NULL;
7133 elf_tdata (abfd)->cverrefs = 0;
7134 goto error_return;
7135 }
7136 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
7137 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
7138 goto error_return_verref;
7139
7140 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verneed))
7141 goto error_return_verref;
7142
7143 BFD_ASSERT (sizeof (Elf_External_Verneed)
7144 == sizeof (Elf_External_Vernaux));
7145 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
7146 everneed = (Elf_External_Verneed *) contents;
7147 iverneed = elf_tdata (abfd)->verref;
7148 for (i = 0; i < hdr->sh_info; i++, iverneed++)
7149 {
7150 Elf_External_Vernaux *evernaux;
7151 Elf_Internal_Vernaux *ivernaux;
7152 unsigned int j;
7153
7154 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
7155
7156 iverneed->vn_bfd = abfd;
7157
7158 iverneed->vn_filename =
7159 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7160 iverneed->vn_file);
7161 if (iverneed->vn_filename == NULL)
7162 goto error_return_verref;
7163
7164 if (iverneed->vn_cnt == 0)
7165 iverneed->vn_auxptr = NULL;
7166 else
7167 {
7168 iverneed->vn_auxptr = (struct elf_internal_vernaux *)
7169 bfd_alloc2 (abfd, iverneed->vn_cnt,
7170 sizeof (Elf_Internal_Vernaux));
7171 if (iverneed->vn_auxptr == NULL)
7172 goto error_return_verref;
7173 }
7174
7175 if (iverneed->vn_aux
7176 > (size_t) (contents_end - (bfd_byte *) everneed))
7177 goto error_return_verref;
7178
7179 evernaux = ((Elf_External_Vernaux *)
7180 ((bfd_byte *) everneed + iverneed->vn_aux));
7181 ivernaux = iverneed->vn_auxptr;
7182 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
7183 {
7184 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
7185
7186 ivernaux->vna_nodename =
7187 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7188 ivernaux->vna_name);
7189 if (ivernaux->vna_nodename == NULL)
7190 goto error_return_verref;
7191
7192 if (j + 1 < iverneed->vn_cnt)
7193 ivernaux->vna_nextptr = ivernaux + 1;
7194 else
7195 ivernaux->vna_nextptr = NULL;
7196
7197 if (ivernaux->vna_next
7198 > (size_t) (contents_end - (bfd_byte *) evernaux))
7199 goto error_return_verref;
7200
7201 evernaux = ((Elf_External_Vernaux *)
7202 ((bfd_byte *) evernaux + ivernaux->vna_next));
7203
7204 if (ivernaux->vna_other > freeidx)
7205 freeidx = ivernaux->vna_other;
7206 }
7207
7208 if (i + 1 < hdr->sh_info)
7209 iverneed->vn_nextref = iverneed + 1;
7210 else
7211 iverneed->vn_nextref = NULL;
7212
7213 if (iverneed->vn_next
7214 > (size_t) (contents_end - (bfd_byte *) everneed))
7215 goto error_return_verref;
7216
7217 everneed = ((Elf_External_Verneed *)
7218 ((bfd_byte *) everneed + iverneed->vn_next));
7219 }
7220
7221 free (contents);
7222 contents = NULL;
7223 }
7224
7225 if (elf_dynverdef (abfd) != 0)
7226 {
7227 Elf_Internal_Shdr *hdr;
7228 Elf_External_Verdef *everdef;
7229 Elf_Internal_Verdef *iverdef;
7230 Elf_Internal_Verdef *iverdefarr;
7231 Elf_Internal_Verdef iverdefmem;
7232 unsigned int i;
7233 unsigned int maxidx;
7234 bfd_byte *contents_end_def, *contents_end_aux;
7235
7236 hdr = &elf_tdata (abfd)->dynverdef_hdr;
7237
7238 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
7239 if (contents == NULL)
7240 goto error_return;
7241 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
7242 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
7243 goto error_return;
7244
7245 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verdef))
7246 goto error_return;
7247
7248 BFD_ASSERT (sizeof (Elf_External_Verdef)
7249 >= sizeof (Elf_External_Verdaux));
7250 contents_end_def = contents + hdr->sh_size
7251 - sizeof (Elf_External_Verdef);
7252 contents_end_aux = contents + hdr->sh_size
7253 - sizeof (Elf_External_Verdaux);
7254
7255 /* We know the number of entries in the section but not the maximum
7256 index. Therefore we have to run through all entries and find
7257 the maximum. */
7258 everdef = (Elf_External_Verdef *) contents;
7259 maxidx = 0;
7260 for (i = 0; i < hdr->sh_info; ++i)
7261 {
7262 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
7263
7264 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
7265 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
7266
7267 if (iverdefmem.vd_next
7268 > (size_t) (contents_end_def - (bfd_byte *) everdef))
7269 goto error_return;
7270
7271 everdef = ((Elf_External_Verdef *)
7272 ((bfd_byte *) everdef + iverdefmem.vd_next));
7273 }
7274
7275 if (default_imported_symver)
7276 {
7277 if (freeidx > maxidx)
7278 maxidx = ++freeidx;
7279 else
7280 freeidx = ++maxidx;
7281 }
7282 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
7283 bfd_zalloc2 (abfd, maxidx, sizeof (Elf_Internal_Verdef));
7284 if (elf_tdata (abfd)->verdef == NULL)
7285 goto error_return;
7286
7287 elf_tdata (abfd)->cverdefs = maxidx;
7288
7289 everdef = (Elf_External_Verdef *) contents;
7290 iverdefarr = elf_tdata (abfd)->verdef;
7291 for (i = 0; i < hdr->sh_info; i++)
7292 {
7293 Elf_External_Verdaux *everdaux;
7294 Elf_Internal_Verdaux *iverdaux;
7295 unsigned int j;
7296
7297 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
7298
7299 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
7300 {
7301 error_return_verdef:
7302 elf_tdata (abfd)->verdef = NULL;
7303 elf_tdata (abfd)->cverdefs = 0;
7304 goto error_return;
7305 }
7306
7307 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
7308 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
7309
7310 iverdef->vd_bfd = abfd;
7311
7312 if (iverdef->vd_cnt == 0)
7313 iverdef->vd_auxptr = NULL;
7314 else
7315 {
7316 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
7317 bfd_alloc2 (abfd, iverdef->vd_cnt,
7318 sizeof (Elf_Internal_Verdaux));
7319 if (iverdef->vd_auxptr == NULL)
7320 goto error_return_verdef;
7321 }
7322
7323 if (iverdef->vd_aux
7324 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
7325 goto error_return_verdef;
7326
7327 everdaux = ((Elf_External_Verdaux *)
7328 ((bfd_byte *) everdef + iverdef->vd_aux));
7329 iverdaux = iverdef->vd_auxptr;
7330 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
7331 {
7332 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
7333
7334 iverdaux->vda_nodename =
7335 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7336 iverdaux->vda_name);
7337 if (iverdaux->vda_nodename == NULL)
7338 goto error_return_verdef;
7339
7340 if (j + 1 < iverdef->vd_cnt)
7341 iverdaux->vda_nextptr = iverdaux + 1;
7342 else
7343 iverdaux->vda_nextptr = NULL;
7344
7345 if (iverdaux->vda_next
7346 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
7347 goto error_return_verdef;
7348
7349 everdaux = ((Elf_External_Verdaux *)
7350 ((bfd_byte *) everdaux + iverdaux->vda_next));
7351 }
7352
7353 if (iverdef->vd_cnt)
7354 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
7355
7356 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
7357 iverdef->vd_nextdef = iverdef + 1;
7358 else
7359 iverdef->vd_nextdef = NULL;
7360
7361 everdef = ((Elf_External_Verdef *)
7362 ((bfd_byte *) everdef + iverdef->vd_next));
7363 }
7364
7365 free (contents);
7366 contents = NULL;
7367 }
7368 else if (default_imported_symver)
7369 {
7370 if (freeidx < 3)
7371 freeidx = 3;
7372 else
7373 freeidx++;
7374
7375 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
7376 bfd_zalloc2 (abfd, freeidx, sizeof (Elf_Internal_Verdef));
7377 if (elf_tdata (abfd)->verdef == NULL)
7378 goto error_return;
7379
7380 elf_tdata (abfd)->cverdefs = freeidx;
7381 }
7382
7383 /* Create a default version based on the soname. */
7384 if (default_imported_symver)
7385 {
7386 Elf_Internal_Verdef *iverdef;
7387 Elf_Internal_Verdaux *iverdaux;
7388
7389 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];
7390
7391 iverdef->vd_version = VER_DEF_CURRENT;
7392 iverdef->vd_flags = 0;
7393 iverdef->vd_ndx = freeidx;
7394 iverdef->vd_cnt = 1;
7395
7396 iverdef->vd_bfd = abfd;
7397
7398 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
7399 if (iverdef->vd_nodename == NULL)
7400 goto error_return_verdef;
7401 iverdef->vd_nextdef = NULL;
7402 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
7403 bfd_alloc (abfd, sizeof (Elf_Internal_Verdaux));
7404 if (iverdef->vd_auxptr == NULL)
7405 goto error_return_verdef;
7406
7407 iverdaux = iverdef->vd_auxptr;
7408 iverdaux->vda_nodename = iverdef->vd_nodename;
7409 iverdaux->vda_nextptr = NULL;
7410 }
7411
7412 return TRUE;
7413
7414 error_return:
7415 if (contents != NULL)
7416 free (contents);
7417 return FALSE;
7418 }
7419 \f
7420 asymbol *
7421 _bfd_elf_make_empty_symbol (bfd *abfd)
7422 {
7423 elf_symbol_type *newsym;
7424 bfd_size_type amt = sizeof (elf_symbol_type);
7425
7426 newsym = (elf_symbol_type *) bfd_zalloc (abfd, amt);
7427 if (!newsym)
7428 return NULL;
7429 else
7430 {
7431 newsym->symbol.the_bfd = abfd;
7432 return &newsym->symbol;
7433 }
7434 }
7435
7436 void
7437 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
7438 asymbol *symbol,
7439 symbol_info *ret)
7440 {
7441 bfd_symbol_info (symbol, ret);
7442 }
7443
7444 /* Return whether a symbol name implies a local symbol. Most targets
7445 use this function for the is_local_label_name entry point, but some
7446 override it. */
7447
7448 bfd_boolean
7449 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
7450 const char *name)
7451 {
7452 /* Normal local symbols start with ``.L''. */
7453 if (name[0] == '.' && name[1] == 'L')
7454 return TRUE;
7455
7456 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
7457 DWARF debugging symbols starting with ``..''. */
7458 if (name[0] == '.' && name[1] == '.')
7459 return TRUE;
7460
7461 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
7462 emitting DWARF debugging output. I suspect this is actually a
7463 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
7464 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
7465 underscore to be emitted on some ELF targets). For ease of use,
7466 we treat such symbols as local. */
7467 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
7468 return TRUE;
7469
7470 return FALSE;
7471 }
7472
7473 alent *
7474 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
7475 asymbol *symbol ATTRIBUTE_UNUSED)
7476 {
7477 abort ();
7478 return NULL;
7479 }
7480
7481 bfd_boolean
7482 _bfd_elf_set_arch_mach (bfd *abfd,
7483 enum bfd_architecture arch,
7484 unsigned long machine)
7485 {
7486 /* If this isn't the right architecture for this backend, and this
7487 isn't the generic backend, fail. */
7488 if (arch != get_elf_backend_data (abfd)->arch
7489 && arch != bfd_arch_unknown
7490 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
7491 return FALSE;
7492
7493 return bfd_default_set_arch_mach (abfd, arch, machine);
7494 }
7495
7496 /* Find the function to a particular section and offset,
7497 for error reporting. */
7498
7499 static bfd_boolean
7500 elf_find_function (bfd *abfd,
7501 asection *section,
7502 asymbol **symbols,
7503 bfd_vma offset,
7504 const char **filename_ptr,
7505 const char **functionname_ptr)
7506 {
7507 static asection *last_section;
7508 static asymbol *func;
7509 static const char *filename;
7510 static bfd_size_type func_size;
7511
7512 if (symbols == NULL)
7513 return FALSE;
7514
7515 if (last_section != section
7516 || func == NULL
7517 || offset < func->value
7518 || offset >= func->value + func_size)
7519 {
7520 asymbol *file;
7521 bfd_vma low_func;
7522 asymbol **p;
7523 /* ??? Given multiple file symbols, it is impossible to reliably
7524 choose the right file name for global symbols. File symbols are
7525 local symbols, and thus all file symbols must sort before any
7526 global symbols. The ELF spec may be interpreted to say that a
7527 file symbol must sort before other local symbols, but currently
7528 ld -r doesn't do this. So, for ld -r output, it is possible to
7529 make a better choice of file name for local symbols by ignoring
7530 file symbols appearing after a given local symbol. */
7531 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
7532 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7533
7534 filename = NULL;
7535 func = NULL;
7536 file = NULL;
7537 low_func = 0;
7538 state = nothing_seen;
7539 func_size = 0;
7540 last_section = section;
7541
7542 for (p = symbols; *p != NULL; p++)
7543 {
7544 asymbol *sym = *p;
7545 bfd_vma code_off;
7546 bfd_size_type size;
7547
7548 if ((sym->flags & BSF_FILE) != 0)
7549 {
7550 file = sym;
7551 if (state == symbol_seen)
7552 state = file_after_symbol_seen;
7553 continue;
7554 }
7555
7556 size = bed->maybe_function_sym (sym, section, &code_off);
7557 if (size != 0
7558 && code_off <= offset
7559 && (code_off > low_func
7560 || (code_off == low_func
7561 && size > func_size)))
7562 {
7563 func = sym;
7564 func_size = size;
7565 low_func = code_off;
7566 filename = NULL;
7567 if (file != NULL
7568 && ((sym->flags & BSF_LOCAL) != 0
7569 || state != file_after_symbol_seen))
7570 filename = bfd_asymbol_name (file);
7571 }
7572 if (state == nothing_seen)
7573 state = symbol_seen;
7574 }
7575 }
7576
7577 if (func == NULL)
7578 return FALSE;
7579
7580 if (filename_ptr)
7581 *filename_ptr = filename;
7582 if (functionname_ptr)
7583 *functionname_ptr = bfd_asymbol_name (func);
7584
7585 return TRUE;
7586 }
7587
7588 /* Find the nearest line to a particular section and offset,
7589 for error reporting. */
7590
7591 bfd_boolean
7592 _bfd_elf_find_nearest_line (bfd *abfd,
7593 asection *section,
7594 asymbol **symbols,
7595 bfd_vma offset,
7596 const char **filename_ptr,
7597 const char **functionname_ptr,
7598 unsigned int *line_ptr)
7599 {
7600 return _bfd_elf_find_nearest_line_discriminator (abfd, section, symbols,
7601 offset, filename_ptr,
7602 functionname_ptr,
7603 line_ptr,
7604 NULL);
7605 }
7606
7607 bfd_boolean
7608 _bfd_elf_find_nearest_line_discriminator (bfd *abfd,
7609 asection *section,
7610 asymbol **symbols,
7611 bfd_vma offset,
7612 const char **filename_ptr,
7613 const char **functionname_ptr,
7614 unsigned int *line_ptr,
7615 unsigned int *discriminator_ptr)
7616 {
7617 bfd_boolean found;
7618
7619 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
7620 filename_ptr, functionname_ptr,
7621 line_ptr))
7622 {
7623 if (!*functionname_ptr)
7624 elf_find_function (abfd, section, symbols, offset,
7625 *filename_ptr ? NULL : filename_ptr,
7626 functionname_ptr);
7627
7628 return TRUE;
7629 }
7630
7631 if (_bfd_dwarf2_find_nearest_line (abfd, dwarf_debug_sections,
7632 section, symbols, offset,
7633 filename_ptr, functionname_ptr,
7634 line_ptr, discriminator_ptr, 0,
7635 &elf_tdata (abfd)->dwarf2_find_line_info))
7636 {
7637 if (!*functionname_ptr)
7638 elf_find_function (abfd, section, symbols, offset,
7639 *filename_ptr ? NULL : filename_ptr,
7640 functionname_ptr);
7641
7642 return TRUE;
7643 }
7644
7645 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
7646 &found, filename_ptr,
7647 functionname_ptr, line_ptr,
7648 &elf_tdata (abfd)->line_info))
7649 return FALSE;
7650 if (found && (*functionname_ptr || *line_ptr))
7651 return TRUE;
7652
7653 if (symbols == NULL)
7654 return FALSE;
7655
7656 if (! elf_find_function (abfd, section, symbols, offset,
7657 filename_ptr, functionname_ptr))
7658 return FALSE;
7659
7660 *line_ptr = 0;
7661 return TRUE;
7662 }
7663
7664 /* Find the line for a symbol. */
7665
7666 bfd_boolean
7667 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
7668 const char **filename_ptr, unsigned int *line_ptr)
7669 {
7670 return _bfd_elf_find_line_discriminator (abfd, symbols, symbol,
7671 filename_ptr, line_ptr,
7672 NULL);
7673 }
7674
7675 bfd_boolean
7676 _bfd_elf_find_line_discriminator (bfd *abfd, asymbol **symbols, asymbol *symbol,
7677 const char **filename_ptr,
7678 unsigned int *line_ptr,
7679 unsigned int *discriminator_ptr)
7680 {
7681 return _bfd_dwarf2_find_line (abfd, symbols, symbol,
7682 filename_ptr, line_ptr, discriminator_ptr, 0,
7683 &elf_tdata (abfd)->dwarf2_find_line_info);
7684 }
7685
7686 /* After a call to bfd_find_nearest_line, successive calls to
7687 bfd_find_inliner_info can be used to get source information about
7688 each level of function inlining that terminated at the address
7689 passed to bfd_find_nearest_line. Currently this is only supported
7690 for DWARF2 with appropriate DWARF3 extensions. */
7691
7692 bfd_boolean
7693 _bfd_elf_find_inliner_info (bfd *abfd,
7694 const char **filename_ptr,
7695 const char **functionname_ptr,
7696 unsigned int *line_ptr)
7697 {
7698 bfd_boolean found;
7699 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
7700 functionname_ptr, line_ptr,
7701 & elf_tdata (abfd)->dwarf2_find_line_info);
7702 return found;
7703 }
7704
7705 int
7706 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
7707 {
7708 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7709 int ret = bed->s->sizeof_ehdr;
7710
7711 if (!info->relocatable)
7712 {
7713 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
7714
7715 if (phdr_size == (bfd_size_type) -1)
7716 {
7717 struct elf_segment_map *m;
7718
7719 phdr_size = 0;
7720 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7721 phdr_size += bed->s->sizeof_phdr;
7722
7723 if (phdr_size == 0)
7724 phdr_size = get_program_header_size (abfd, info);
7725 }
7726
7727 elf_tdata (abfd)->program_header_size = phdr_size;
7728 ret += phdr_size;
7729 }
7730
7731 return ret;
7732 }
7733
7734 bfd_boolean
7735 _bfd_elf_set_section_contents (bfd *abfd,
7736 sec_ptr section,
7737 const void *location,
7738 file_ptr offset,
7739 bfd_size_type count)
7740 {
7741 Elf_Internal_Shdr *hdr;
7742 bfd_signed_vma pos;
7743
7744 if (! abfd->output_has_begun
7745 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
7746 return FALSE;
7747
7748 hdr = &elf_section_data (section)->this_hdr;
7749 pos = hdr->sh_offset + offset;
7750 if (bfd_seek (abfd, pos, SEEK_SET) != 0
7751 || bfd_bwrite (location, count, abfd) != count)
7752 return FALSE;
7753
7754 return TRUE;
7755 }
7756
7757 void
7758 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
7759 arelent *cache_ptr ATTRIBUTE_UNUSED,
7760 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
7761 {
7762 abort ();
7763 }
7764
7765 /* Try to convert a non-ELF reloc into an ELF one. */
7766
7767 bfd_boolean
7768 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
7769 {
7770 /* Check whether we really have an ELF howto. */
7771
7772 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
7773 {
7774 bfd_reloc_code_real_type code;
7775 reloc_howto_type *howto;
7776
7777 /* Alien reloc: Try to determine its type to replace it with an
7778 equivalent ELF reloc. */
7779
7780 if (areloc->howto->pc_relative)
7781 {
7782 switch (areloc->howto->bitsize)
7783 {
7784 case 8:
7785 code = BFD_RELOC_8_PCREL;
7786 break;
7787 case 12:
7788 code = BFD_RELOC_12_PCREL;
7789 break;
7790 case 16:
7791 code = BFD_RELOC_16_PCREL;
7792 break;
7793 case 24:
7794 code = BFD_RELOC_24_PCREL;
7795 break;
7796 case 32:
7797 code = BFD_RELOC_32_PCREL;
7798 break;
7799 case 64:
7800 code = BFD_RELOC_64_PCREL;
7801 break;
7802 default:
7803 goto fail;
7804 }
7805
7806 howto = bfd_reloc_type_lookup (abfd, code);
7807
7808 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
7809 {
7810 if (howto->pcrel_offset)
7811 areloc->addend += areloc->address;
7812 else
7813 areloc->addend -= areloc->address; /* addend is unsigned!! */
7814 }
7815 }
7816 else
7817 {
7818 switch (areloc->howto->bitsize)
7819 {
7820 case 8:
7821 code = BFD_RELOC_8;
7822 break;
7823 case 14:
7824 code = BFD_RELOC_14;
7825 break;
7826 case 16:
7827 code = BFD_RELOC_16;
7828 break;
7829 case 26:
7830 code = BFD_RELOC_26;
7831 break;
7832 case 32:
7833 code = BFD_RELOC_32;
7834 break;
7835 case 64:
7836 code = BFD_RELOC_64;
7837 break;
7838 default:
7839 goto fail;
7840 }
7841
7842 howto = bfd_reloc_type_lookup (abfd, code);
7843 }
7844
7845 if (howto)
7846 areloc->howto = howto;
7847 else
7848 goto fail;
7849 }
7850
7851 return TRUE;
7852
7853 fail:
7854 (*_bfd_error_handler)
7855 (_("%B: unsupported relocation type %s"),
7856 abfd, areloc->howto->name);
7857 bfd_set_error (bfd_error_bad_value);
7858 return FALSE;
7859 }
7860
7861 bfd_boolean
7862 _bfd_elf_close_and_cleanup (bfd *abfd)
7863 {
7864 struct elf_obj_tdata *tdata = elf_tdata (abfd);
7865 if (bfd_get_format (abfd) == bfd_object && tdata != NULL)
7866 {
7867 if (elf_shstrtab (abfd) != NULL)
7868 _bfd_elf_strtab_free (elf_shstrtab (abfd));
7869 _bfd_dwarf2_cleanup_debug_info (abfd, &tdata->dwarf2_find_line_info);
7870 }
7871
7872 return _bfd_generic_close_and_cleanup (abfd);
7873 }
7874
7875 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
7876 in the relocation's offset. Thus we cannot allow any sort of sanity
7877 range-checking to interfere. There is nothing else to do in processing
7878 this reloc. */
7879
7880 bfd_reloc_status_type
7881 _bfd_elf_rel_vtable_reloc_fn
7882 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
7883 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
7884 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
7885 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
7886 {
7887 return bfd_reloc_ok;
7888 }
7889 \f
7890 /* Elf core file support. Much of this only works on native
7891 toolchains, since we rely on knowing the
7892 machine-dependent procfs structure in order to pick
7893 out details about the corefile. */
7894
7895 #ifdef HAVE_SYS_PROCFS_H
7896 /* Needed for new procfs interface on sparc-solaris. */
7897 # define _STRUCTURED_PROC 1
7898 # include <sys/procfs.h>
7899 #endif
7900
7901 /* Return a PID that identifies a "thread" for threaded cores, or the
7902 PID of the main process for non-threaded cores. */
7903
7904 static int
7905 elfcore_make_pid (bfd *abfd)
7906 {
7907 int pid;
7908
7909 pid = elf_tdata (abfd)->core_lwpid;
7910 if (pid == 0)
7911 pid = elf_tdata (abfd)->core_pid;
7912
7913 return pid;
7914 }
7915
7916 /* If there isn't a section called NAME, make one, using
7917 data from SECT. Note, this function will generate a
7918 reference to NAME, so you shouldn't deallocate or
7919 overwrite it. */
7920
7921 static bfd_boolean
7922 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
7923 {
7924 asection *sect2;
7925
7926 if (bfd_get_section_by_name (abfd, name) != NULL)
7927 return TRUE;
7928
7929 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
7930 if (sect2 == NULL)
7931 return FALSE;
7932
7933 sect2->size = sect->size;
7934 sect2->filepos = sect->filepos;
7935 sect2->alignment_power = sect->alignment_power;
7936 return TRUE;
7937 }
7938
7939 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
7940 actually creates up to two pseudosections:
7941 - For the single-threaded case, a section named NAME, unless
7942 such a section already exists.
7943 - For the multi-threaded case, a section named "NAME/PID", where
7944 PID is elfcore_make_pid (abfd).
7945 Both pseudosections have identical contents. */
7946 bfd_boolean
7947 _bfd_elfcore_make_pseudosection (bfd *abfd,
7948 char *name,
7949 size_t size,
7950 ufile_ptr filepos)
7951 {
7952 char buf[100];
7953 char *threaded_name;
7954 size_t len;
7955 asection *sect;
7956
7957 /* Build the section name. */
7958
7959 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
7960 len = strlen (buf) + 1;
7961 threaded_name = (char *) bfd_alloc (abfd, len);
7962 if (threaded_name == NULL)
7963 return FALSE;
7964 memcpy (threaded_name, buf, len);
7965
7966 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
7967 SEC_HAS_CONTENTS);
7968 if (sect == NULL)
7969 return FALSE;
7970 sect->size = size;
7971 sect->filepos = filepos;
7972 sect->alignment_power = 2;
7973
7974 return elfcore_maybe_make_sect (abfd, name, sect);
7975 }
7976
7977 /* prstatus_t exists on:
7978 solaris 2.5+
7979 linux 2.[01] + glibc
7980 unixware 4.2
7981 */
7982
7983 #if defined (HAVE_PRSTATUS_T)
7984
7985 static bfd_boolean
7986 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
7987 {
7988 size_t size;
7989 int offset;
7990
7991 if (note->descsz == sizeof (prstatus_t))
7992 {
7993 prstatus_t prstat;
7994
7995 size = sizeof (prstat.pr_reg);
7996 offset = offsetof (prstatus_t, pr_reg);
7997 memcpy (&prstat, note->descdata, sizeof (prstat));
7998
7999 /* Do not overwrite the core signal if it
8000 has already been set by another thread. */
8001 if (elf_tdata (abfd)->core_signal == 0)
8002 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
8003 if (elf_tdata (abfd)->core_pid == 0)
8004 elf_tdata (abfd)->core_pid = prstat.pr_pid;
8005
8006 /* pr_who exists on:
8007 solaris 2.5+
8008 unixware 4.2
8009 pr_who doesn't exist on:
8010 linux 2.[01]
8011 */
8012 #if defined (HAVE_PRSTATUS_T_PR_WHO)
8013 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
8014 #else
8015 elf_tdata (abfd)->core_lwpid = prstat.pr_pid;
8016 #endif
8017 }
8018 #if defined (HAVE_PRSTATUS32_T)
8019 else if (note->descsz == sizeof (prstatus32_t))
8020 {
8021 /* 64-bit host, 32-bit corefile */
8022 prstatus32_t prstat;
8023
8024 size = sizeof (prstat.pr_reg);
8025 offset = offsetof (prstatus32_t, pr_reg);
8026 memcpy (&prstat, note->descdata, sizeof (prstat));
8027
8028 /* Do not overwrite the core signal if it
8029 has already been set by another thread. */
8030 if (elf_tdata (abfd)->core_signal == 0)
8031 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
8032 if (elf_tdata (abfd)->core_pid == 0)
8033 elf_tdata (abfd)->core_pid = prstat.pr_pid;
8034
8035 /* pr_who exists on:
8036 solaris 2.5+
8037 unixware 4.2
8038 pr_who doesn't exist on:
8039 linux 2.[01]
8040 */
8041 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
8042 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
8043 #else
8044 elf_tdata (abfd)->core_lwpid = prstat.pr_pid;
8045 #endif
8046 }
8047 #endif /* HAVE_PRSTATUS32_T */
8048 else
8049 {
8050 /* Fail - we don't know how to handle any other
8051 note size (ie. data object type). */
8052 return TRUE;
8053 }
8054
8055 /* Make a ".reg/999" section and a ".reg" section. */
8056 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
8057 size, note->descpos + offset);
8058 }
8059 #endif /* defined (HAVE_PRSTATUS_T) */
8060
8061 /* Create a pseudosection containing the exact contents of NOTE. */
8062 static bfd_boolean
8063 elfcore_make_note_pseudosection (bfd *abfd,
8064 char *name,
8065 Elf_Internal_Note *note)
8066 {
8067 return _bfd_elfcore_make_pseudosection (abfd, name,
8068 note->descsz, note->descpos);
8069 }
8070
8071 /* There isn't a consistent prfpregset_t across platforms,
8072 but it doesn't matter, because we don't have to pick this
8073 data structure apart. */
8074
8075 static bfd_boolean
8076 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
8077 {
8078 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8079 }
8080
8081 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
8082 type of NT_PRXFPREG. Just include the whole note's contents
8083 literally. */
8084
8085 static bfd_boolean
8086 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
8087 {
8088 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
8089 }
8090
8091 /* Linux dumps the Intel XSAVE extended state in a note named "LINUX"
8092 with a note type of NT_X86_XSTATE. Just include the whole note's
8093 contents literally. */
8094
8095 static bfd_boolean
8096 elfcore_grok_xstatereg (bfd *abfd, Elf_Internal_Note *note)
8097 {
8098 return elfcore_make_note_pseudosection (abfd, ".reg-xstate", note);
8099 }
8100
8101 static bfd_boolean
8102 elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
8103 {
8104 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
8105 }
8106
8107 static bfd_boolean
8108 elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note)
8109 {
8110 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note);
8111 }
8112
8113 static bfd_boolean
8114 elfcore_grok_s390_high_gprs (bfd *abfd, Elf_Internal_Note *note)
8115 {
8116 return elfcore_make_note_pseudosection (abfd, ".reg-s390-high-gprs", note);
8117 }
8118
8119 static bfd_boolean
8120 elfcore_grok_s390_timer (bfd *abfd, Elf_Internal_Note *note)
8121 {
8122 return elfcore_make_note_pseudosection (abfd, ".reg-s390-timer", note);
8123 }
8124
8125 static bfd_boolean
8126 elfcore_grok_s390_todcmp (bfd *abfd, Elf_Internal_Note *note)
8127 {
8128 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todcmp", note);
8129 }
8130
8131 static bfd_boolean
8132 elfcore_grok_s390_todpreg (bfd *abfd, Elf_Internal_Note *note)
8133 {
8134 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todpreg", note);
8135 }
8136
8137 static bfd_boolean
8138 elfcore_grok_s390_ctrs (bfd *abfd, Elf_Internal_Note *note)
8139 {
8140 return elfcore_make_note_pseudosection (abfd, ".reg-s390-ctrs", note);
8141 }
8142
8143 static bfd_boolean
8144 elfcore_grok_s390_prefix (bfd *abfd, Elf_Internal_Note *note)
8145 {
8146 return elfcore_make_note_pseudosection (abfd, ".reg-s390-prefix", note);
8147 }
8148
8149 static bfd_boolean
8150 elfcore_grok_s390_last_break (bfd *abfd, Elf_Internal_Note *note)
8151 {
8152 return elfcore_make_note_pseudosection (abfd, ".reg-s390-last-break", note);
8153 }
8154
8155 static bfd_boolean
8156 elfcore_grok_s390_system_call (bfd *abfd, Elf_Internal_Note *note)
8157 {
8158 return elfcore_make_note_pseudosection (abfd, ".reg-s390-system-call", note);
8159 }
8160
8161 static bfd_boolean
8162 elfcore_grok_arm_vfp (bfd *abfd, Elf_Internal_Note *note)
8163 {
8164 return elfcore_make_note_pseudosection (abfd, ".reg-arm-vfp", note);
8165 }
8166
8167 static bfd_boolean
8168 elfcore_grok_aarch_tls (bfd *abfd, Elf_Internal_Note *note)
8169 {
8170 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-tls", note);
8171 }
8172
8173 static bfd_boolean
8174 elfcore_grok_aarch_hw_break (bfd *abfd, Elf_Internal_Note *note)
8175 {
8176 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-break", note);
8177 }
8178
8179 static bfd_boolean
8180 elfcore_grok_aarch_hw_watch (bfd *abfd, Elf_Internal_Note *note)
8181 {
8182 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-watch", note);
8183 }
8184
8185 #if defined (HAVE_PRPSINFO_T)
8186 typedef prpsinfo_t elfcore_psinfo_t;
8187 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
8188 typedef prpsinfo32_t elfcore_psinfo32_t;
8189 #endif
8190 #endif
8191
8192 #if defined (HAVE_PSINFO_T)
8193 typedef psinfo_t elfcore_psinfo_t;
8194 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
8195 typedef psinfo32_t elfcore_psinfo32_t;
8196 #endif
8197 #endif
8198
8199 /* return a malloc'ed copy of a string at START which is at
8200 most MAX bytes long, possibly without a terminating '\0'.
8201 the copy will always have a terminating '\0'. */
8202
8203 char *
8204 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
8205 {
8206 char *dups;
8207 char *end = (char *) memchr (start, '\0', max);
8208 size_t len;
8209
8210 if (end == NULL)
8211 len = max;
8212 else
8213 len = end - start;
8214
8215 dups = (char *) bfd_alloc (abfd, len + 1);
8216 if (dups == NULL)
8217 return NULL;
8218
8219 memcpy (dups, start, len);
8220 dups[len] = '\0';
8221
8222 return dups;
8223 }
8224
8225 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8226 static bfd_boolean
8227 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
8228 {
8229 if (note->descsz == sizeof (elfcore_psinfo_t))
8230 {
8231 elfcore_psinfo_t psinfo;
8232
8233 memcpy (&psinfo, note->descdata, sizeof (psinfo));
8234
8235 #if defined (HAVE_PSINFO_T_PR_PID) || defined (HAVE_PRPSINFO_T_PR_PID)
8236 elf_tdata (abfd)->core_pid = psinfo.pr_pid;
8237 #endif
8238 elf_tdata (abfd)->core_program
8239 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
8240 sizeof (psinfo.pr_fname));
8241
8242 elf_tdata (abfd)->core_command
8243 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
8244 sizeof (psinfo.pr_psargs));
8245 }
8246 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
8247 else if (note->descsz == sizeof (elfcore_psinfo32_t))
8248 {
8249 /* 64-bit host, 32-bit corefile */
8250 elfcore_psinfo32_t psinfo;
8251
8252 memcpy (&psinfo, note->descdata, sizeof (psinfo));
8253
8254 #if defined (HAVE_PSINFO32_T_PR_PID) || defined (HAVE_PRPSINFO32_T_PR_PID)
8255 elf_tdata (abfd)->core_pid = psinfo.pr_pid;
8256 #endif
8257 elf_tdata (abfd)->core_program
8258 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
8259 sizeof (psinfo.pr_fname));
8260
8261 elf_tdata (abfd)->core_command
8262 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
8263 sizeof (psinfo.pr_psargs));
8264 }
8265 #endif
8266
8267 else
8268 {
8269 /* Fail - we don't know how to handle any other
8270 note size (ie. data object type). */
8271 return TRUE;
8272 }
8273
8274 /* Note that for some reason, a spurious space is tacked
8275 onto the end of the args in some (at least one anyway)
8276 implementations, so strip it off if it exists. */
8277
8278 {
8279 char *command = elf_tdata (abfd)->core_command;
8280 int n = strlen (command);
8281
8282 if (0 < n && command[n - 1] == ' ')
8283 command[n - 1] = '\0';
8284 }
8285
8286 return TRUE;
8287 }
8288 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
8289
8290 #if defined (HAVE_PSTATUS_T)
8291 static bfd_boolean
8292 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
8293 {
8294 if (note->descsz == sizeof (pstatus_t)
8295 #if defined (HAVE_PXSTATUS_T)
8296 || note->descsz == sizeof (pxstatus_t)
8297 #endif
8298 )
8299 {
8300 pstatus_t pstat;
8301
8302 memcpy (&pstat, note->descdata, sizeof (pstat));
8303
8304 elf_tdata (abfd)->core_pid = pstat.pr_pid;
8305 }
8306 #if defined (HAVE_PSTATUS32_T)
8307 else if (note->descsz == sizeof (pstatus32_t))
8308 {
8309 /* 64-bit host, 32-bit corefile */
8310 pstatus32_t pstat;
8311
8312 memcpy (&pstat, note->descdata, sizeof (pstat));
8313
8314 elf_tdata (abfd)->core_pid = pstat.pr_pid;
8315 }
8316 #endif
8317 /* Could grab some more details from the "representative"
8318 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
8319 NT_LWPSTATUS note, presumably. */
8320
8321 return TRUE;
8322 }
8323 #endif /* defined (HAVE_PSTATUS_T) */
8324
8325 #if defined (HAVE_LWPSTATUS_T)
8326 static bfd_boolean
8327 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
8328 {
8329 lwpstatus_t lwpstat;
8330 char buf[100];
8331 char *name;
8332 size_t len;
8333 asection *sect;
8334
8335 if (note->descsz != sizeof (lwpstat)
8336 #if defined (HAVE_LWPXSTATUS_T)
8337 && note->descsz != sizeof (lwpxstatus_t)
8338 #endif
8339 )
8340 return TRUE;
8341
8342 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
8343
8344 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
8345 /* Do not overwrite the core signal if it has already been set by
8346 another thread. */
8347 if (elf_tdata (abfd)->core_signal == 0)
8348 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
8349
8350 /* Make a ".reg/999" section. */
8351
8352 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
8353 len = strlen (buf) + 1;
8354 name = bfd_alloc (abfd, len);
8355 if (name == NULL)
8356 return FALSE;
8357 memcpy (name, buf, len);
8358
8359 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8360 if (sect == NULL)
8361 return FALSE;
8362
8363 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8364 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
8365 sect->filepos = note->descpos
8366 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
8367 #endif
8368
8369 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8370 sect->size = sizeof (lwpstat.pr_reg);
8371 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
8372 #endif
8373
8374 sect->alignment_power = 2;
8375
8376 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
8377 return FALSE;
8378
8379 /* Make a ".reg2/999" section */
8380
8381 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
8382 len = strlen (buf) + 1;
8383 name = bfd_alloc (abfd, len);
8384 if (name == NULL)
8385 return FALSE;
8386 memcpy (name, buf, len);
8387
8388 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8389 if (sect == NULL)
8390 return FALSE;
8391
8392 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8393 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
8394 sect->filepos = note->descpos
8395 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
8396 #endif
8397
8398 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
8399 sect->size = sizeof (lwpstat.pr_fpreg);
8400 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
8401 #endif
8402
8403 sect->alignment_power = 2;
8404
8405 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
8406 }
8407 #endif /* defined (HAVE_LWPSTATUS_T) */
8408
8409 static bfd_boolean
8410 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
8411 {
8412 char buf[30];
8413 char *name;
8414 size_t len;
8415 asection *sect;
8416 int type;
8417 int is_active_thread;
8418 bfd_vma base_addr;
8419
8420 if (note->descsz < 728)
8421 return TRUE;
8422
8423 if (! CONST_STRNEQ (note->namedata, "win32"))
8424 return TRUE;
8425
8426 type = bfd_get_32 (abfd, note->descdata);
8427
8428 switch (type)
8429 {
8430 case 1 /* NOTE_INFO_PROCESS */:
8431 /* FIXME: need to add ->core_command. */
8432 /* process_info.pid */
8433 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 8);
8434 /* process_info.signal */
8435 elf_tdata (abfd)->core_signal = bfd_get_32 (abfd, note->descdata + 12);
8436 break;
8437
8438 case 2 /* NOTE_INFO_THREAD */:
8439 /* Make a ".reg/999" section. */
8440 /* thread_info.tid */
8441 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 8));
8442
8443 len = strlen (buf) + 1;
8444 name = (char *) bfd_alloc (abfd, len);
8445 if (name == NULL)
8446 return FALSE;
8447
8448 memcpy (name, buf, len);
8449
8450 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8451 if (sect == NULL)
8452 return FALSE;
8453
8454 /* sizeof (thread_info.thread_context) */
8455 sect->size = 716;
8456 /* offsetof (thread_info.thread_context) */
8457 sect->filepos = note->descpos + 12;
8458 sect->alignment_power = 2;
8459
8460 /* thread_info.is_active_thread */
8461 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
8462
8463 if (is_active_thread)
8464 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
8465 return FALSE;
8466 break;
8467
8468 case 3 /* NOTE_INFO_MODULE */:
8469 /* Make a ".module/xxxxxxxx" section. */
8470 /* module_info.base_address */
8471 base_addr = bfd_get_32 (abfd, note->descdata + 4);
8472 sprintf (buf, ".module/%08lx", (unsigned long) base_addr);
8473
8474 len = strlen (buf) + 1;
8475 name = (char *) bfd_alloc (abfd, len);
8476 if (name == NULL)
8477 return FALSE;
8478
8479 memcpy (name, buf, len);
8480
8481 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8482
8483 if (sect == NULL)
8484 return FALSE;
8485
8486 sect->size = note->descsz;
8487 sect->filepos = note->descpos;
8488 sect->alignment_power = 2;
8489 break;
8490
8491 default:
8492 return TRUE;
8493 }
8494
8495 return TRUE;
8496 }
8497
8498 static bfd_boolean
8499 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
8500 {
8501 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8502
8503 switch (note->type)
8504 {
8505 default:
8506 return TRUE;
8507
8508 case NT_PRSTATUS:
8509 if (bed->elf_backend_grok_prstatus)
8510 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
8511 return TRUE;
8512 #if defined (HAVE_PRSTATUS_T)
8513 return elfcore_grok_prstatus (abfd, note);
8514 #else
8515 return TRUE;
8516 #endif
8517
8518 #if defined (HAVE_PSTATUS_T)
8519 case NT_PSTATUS:
8520 return elfcore_grok_pstatus (abfd, note);
8521 #endif
8522
8523 #if defined (HAVE_LWPSTATUS_T)
8524 case NT_LWPSTATUS:
8525 return elfcore_grok_lwpstatus (abfd, note);
8526 #endif
8527
8528 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
8529 return elfcore_grok_prfpreg (abfd, note);
8530
8531 case NT_WIN32PSTATUS:
8532 return elfcore_grok_win32pstatus (abfd, note);
8533
8534 case NT_PRXFPREG: /* Linux SSE extension */
8535 if (note->namesz == 6
8536 && strcmp (note->namedata, "LINUX") == 0)
8537 return elfcore_grok_prxfpreg (abfd, note);
8538 else
8539 return TRUE;
8540
8541 case NT_X86_XSTATE: /* Linux XSAVE extension */
8542 if (note->namesz == 6
8543 && strcmp (note->namedata, "LINUX") == 0)
8544 return elfcore_grok_xstatereg (abfd, note);
8545 else
8546 return TRUE;
8547
8548 case NT_PPC_VMX:
8549 if (note->namesz == 6
8550 && strcmp (note->namedata, "LINUX") == 0)
8551 return elfcore_grok_ppc_vmx (abfd, note);
8552 else
8553 return TRUE;
8554
8555 case NT_PPC_VSX:
8556 if (note->namesz == 6
8557 && strcmp (note->namedata, "LINUX") == 0)
8558 return elfcore_grok_ppc_vsx (abfd, note);
8559 else
8560 return TRUE;
8561
8562 case NT_S390_HIGH_GPRS:
8563 if (note->namesz == 6
8564 && strcmp (note->namedata, "LINUX") == 0)
8565 return elfcore_grok_s390_high_gprs (abfd, note);
8566 else
8567 return TRUE;
8568
8569 case NT_S390_TIMER:
8570 if (note->namesz == 6
8571 && strcmp (note->namedata, "LINUX") == 0)
8572 return elfcore_grok_s390_timer (abfd, note);
8573 else
8574 return TRUE;
8575
8576 case NT_S390_TODCMP:
8577 if (note->namesz == 6
8578 && strcmp (note->namedata, "LINUX") == 0)
8579 return elfcore_grok_s390_todcmp (abfd, note);
8580 else
8581 return TRUE;
8582
8583 case NT_S390_TODPREG:
8584 if (note->namesz == 6
8585 && strcmp (note->namedata, "LINUX") == 0)
8586 return elfcore_grok_s390_todpreg (abfd, note);
8587 else
8588 return TRUE;
8589
8590 case NT_S390_CTRS:
8591 if (note->namesz == 6
8592 && strcmp (note->namedata, "LINUX") == 0)
8593 return elfcore_grok_s390_ctrs (abfd, note);
8594 else
8595 return TRUE;
8596
8597 case NT_S390_PREFIX:
8598 if (note->namesz == 6
8599 && strcmp (note->namedata, "LINUX") == 0)
8600 return elfcore_grok_s390_prefix (abfd, note);
8601 else
8602 return TRUE;
8603
8604 case NT_S390_LAST_BREAK:
8605 if (note->namesz == 6
8606 && strcmp (note->namedata, "LINUX") == 0)
8607 return elfcore_grok_s390_last_break (abfd, note);
8608 else
8609 return TRUE;
8610
8611 case NT_S390_SYSTEM_CALL:
8612 if (note->namesz == 6
8613 && strcmp (note->namedata, "LINUX") == 0)
8614 return elfcore_grok_s390_system_call (abfd, note);
8615 else
8616 return TRUE;
8617
8618 case NT_ARM_VFP:
8619 if (note->namesz == 6
8620 && strcmp (note->namedata, "LINUX") == 0)
8621 return elfcore_grok_arm_vfp (abfd, note);
8622 else
8623 return TRUE;
8624
8625 case NT_ARM_TLS:
8626 if (note->namesz == 6
8627 && strcmp (note->namedata, "LINUX") == 0)
8628 return elfcore_grok_aarch_tls (abfd, note);
8629 else
8630 return TRUE;
8631
8632 case NT_ARM_HW_BREAK:
8633 if (note->namesz == 6
8634 && strcmp (note->namedata, "LINUX") == 0)
8635 return elfcore_grok_aarch_hw_break (abfd, note);
8636 else
8637 return TRUE;
8638
8639 case NT_ARM_HW_WATCH:
8640 if (note->namesz == 6
8641 && strcmp (note->namedata, "LINUX") == 0)
8642 return elfcore_grok_aarch_hw_watch (abfd, note);
8643 else
8644 return TRUE;
8645
8646 case NT_PRPSINFO:
8647 case NT_PSINFO:
8648 if (bed->elf_backend_grok_psinfo)
8649 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
8650 return TRUE;
8651 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8652 return elfcore_grok_psinfo (abfd, note);
8653 #else
8654 return TRUE;
8655 #endif
8656
8657 case NT_AUXV:
8658 {
8659 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
8660 SEC_HAS_CONTENTS);
8661
8662 if (sect == NULL)
8663 return FALSE;
8664 sect->size = note->descsz;
8665 sect->filepos = note->descpos;
8666 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8667
8668 return TRUE;
8669 }
8670
8671 case NT_FILE:
8672 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.file",
8673 note);
8674
8675 case NT_SIGINFO:
8676 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.siginfo",
8677 note);
8678 }
8679 }
8680
8681 static bfd_boolean
8682 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
8683 {
8684 elf_tdata (abfd)->build_id_size = note->descsz;
8685 elf_tdata (abfd)->build_id = (bfd_byte *) bfd_alloc (abfd, note->descsz);
8686 if (elf_tdata (abfd)->build_id == NULL)
8687 return FALSE;
8688
8689 memcpy (elf_tdata (abfd)->build_id, note->descdata, note->descsz);
8690
8691 return TRUE;
8692 }
8693
8694 static bfd_boolean
8695 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
8696 {
8697 switch (note->type)
8698 {
8699 default:
8700 return TRUE;
8701
8702 case NT_GNU_BUILD_ID:
8703 return elfobj_grok_gnu_build_id (abfd, note);
8704 }
8705 }
8706
8707 static bfd_boolean
8708 elfobj_grok_stapsdt_note_1 (bfd *abfd, Elf_Internal_Note *note)
8709 {
8710 struct sdt_note *cur =
8711 (struct sdt_note *) bfd_alloc (abfd, sizeof (struct sdt_note)
8712 + note->descsz);
8713
8714 cur->next = (struct sdt_note *) (elf_tdata (abfd))->sdt_note_head;
8715 cur->size = (bfd_size_type) note->descsz;
8716 memcpy (cur->data, note->descdata, note->descsz);
8717
8718 elf_tdata (abfd)->sdt_note_head = cur;
8719
8720 return TRUE;
8721 }
8722
8723 static bfd_boolean
8724 elfobj_grok_stapsdt_note (bfd *abfd, Elf_Internal_Note *note)
8725 {
8726 switch (note->type)
8727 {
8728 case NT_STAPSDT:
8729 return elfobj_grok_stapsdt_note_1 (abfd, note);
8730
8731 default:
8732 return TRUE;
8733 }
8734 }
8735
8736 static bfd_boolean
8737 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
8738 {
8739 char *cp;
8740
8741 cp = strchr (note->namedata, '@');
8742 if (cp != NULL)
8743 {
8744 *lwpidp = atoi(cp + 1);
8745 return TRUE;
8746 }
8747 return FALSE;
8748 }
8749
8750 static bfd_boolean
8751 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
8752 {
8753 /* Signal number at offset 0x08. */
8754 elf_tdata (abfd)->core_signal
8755 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
8756
8757 /* Process ID at offset 0x50. */
8758 elf_tdata (abfd)->core_pid
8759 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
8760
8761 /* Command name at 0x7c (max 32 bytes, including nul). */
8762 elf_tdata (abfd)->core_command
8763 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
8764
8765 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
8766 note);
8767 }
8768
8769 static bfd_boolean
8770 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
8771 {
8772 int lwp;
8773
8774 if (elfcore_netbsd_get_lwpid (note, &lwp))
8775 elf_tdata (abfd)->core_lwpid = lwp;
8776
8777 if (note->type == NT_NETBSDCORE_PROCINFO)
8778 {
8779 /* NetBSD-specific core "procinfo". Note that we expect to
8780 find this note before any of the others, which is fine,
8781 since the kernel writes this note out first when it
8782 creates a core file. */
8783
8784 return elfcore_grok_netbsd_procinfo (abfd, note);
8785 }
8786
8787 /* As of Jan 2002 there are no other machine-independent notes
8788 defined for NetBSD core files. If the note type is less
8789 than the start of the machine-dependent note types, we don't
8790 understand it. */
8791
8792 if (note->type < NT_NETBSDCORE_FIRSTMACH)
8793 return TRUE;
8794
8795
8796 switch (bfd_get_arch (abfd))
8797 {
8798 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
8799 PT_GETFPREGS == mach+2. */
8800
8801 case bfd_arch_alpha:
8802 case bfd_arch_sparc:
8803 switch (note->type)
8804 {
8805 case NT_NETBSDCORE_FIRSTMACH+0:
8806 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8807
8808 case NT_NETBSDCORE_FIRSTMACH+2:
8809 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8810
8811 default:
8812 return TRUE;
8813 }
8814
8815 /* On all other arch's, PT_GETREGS == mach+1 and
8816 PT_GETFPREGS == mach+3. */
8817
8818 default:
8819 switch (note->type)
8820 {
8821 case NT_NETBSDCORE_FIRSTMACH+1:
8822 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8823
8824 case NT_NETBSDCORE_FIRSTMACH+3:
8825 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8826
8827 default:
8828 return TRUE;
8829 }
8830 }
8831 /* NOTREACHED */
8832 }
8833
8834 static bfd_boolean
8835 elfcore_grok_openbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
8836 {
8837 /* Signal number at offset 0x08. */
8838 elf_tdata (abfd)->core_signal
8839 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
8840
8841 /* Process ID at offset 0x20. */
8842 elf_tdata (abfd)->core_pid
8843 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x20);
8844
8845 /* Command name at 0x48 (max 32 bytes, including nul). */
8846 elf_tdata (abfd)->core_command
8847 = _bfd_elfcore_strndup (abfd, note->descdata + 0x48, 31);
8848
8849 return TRUE;
8850 }
8851
8852 static bfd_boolean
8853 elfcore_grok_openbsd_note (bfd *abfd, Elf_Internal_Note *note)
8854 {
8855 if (note->type == NT_OPENBSD_PROCINFO)
8856 return elfcore_grok_openbsd_procinfo (abfd, note);
8857
8858 if (note->type == NT_OPENBSD_REGS)
8859 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8860
8861 if (note->type == NT_OPENBSD_FPREGS)
8862 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8863
8864 if (note->type == NT_OPENBSD_XFPREGS)
8865 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
8866
8867 if (note->type == NT_OPENBSD_AUXV)
8868 {
8869 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
8870 SEC_HAS_CONTENTS);
8871
8872 if (sect == NULL)
8873 return FALSE;
8874 sect->size = note->descsz;
8875 sect->filepos = note->descpos;
8876 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8877
8878 return TRUE;
8879 }
8880
8881 if (note->type == NT_OPENBSD_WCOOKIE)
8882 {
8883 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".wcookie",
8884 SEC_HAS_CONTENTS);
8885
8886 if (sect == NULL)
8887 return FALSE;
8888 sect->size = note->descsz;
8889 sect->filepos = note->descpos;
8890 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8891
8892 return TRUE;
8893 }
8894
8895 return TRUE;
8896 }
8897
8898 static bfd_boolean
8899 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
8900 {
8901 void *ddata = note->descdata;
8902 char buf[100];
8903 char *name;
8904 asection *sect;
8905 short sig;
8906 unsigned flags;
8907
8908 /* nto_procfs_status 'pid' field is at offset 0. */
8909 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
8910
8911 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
8912 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
8913
8914 /* nto_procfs_status 'flags' field is at offset 8. */
8915 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
8916
8917 /* nto_procfs_status 'what' field is at offset 14. */
8918 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
8919 {
8920 elf_tdata (abfd)->core_signal = sig;
8921 elf_tdata (abfd)->core_lwpid = *tid;
8922 }
8923
8924 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
8925 do not come from signals so we make sure we set the current
8926 thread just in case. */
8927 if (flags & 0x00000080)
8928 elf_tdata (abfd)->core_lwpid = *tid;
8929
8930 /* Make a ".qnx_core_status/%d" section. */
8931 sprintf (buf, ".qnx_core_status/%ld", *tid);
8932
8933 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
8934 if (name == NULL)
8935 return FALSE;
8936 strcpy (name, buf);
8937
8938 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8939 if (sect == NULL)
8940 return FALSE;
8941
8942 sect->size = note->descsz;
8943 sect->filepos = note->descpos;
8944 sect->alignment_power = 2;
8945
8946 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
8947 }
8948
8949 static bfd_boolean
8950 elfcore_grok_nto_regs (bfd *abfd,
8951 Elf_Internal_Note *note,
8952 long tid,
8953 char *base)
8954 {
8955 char buf[100];
8956 char *name;
8957 asection *sect;
8958
8959 /* Make a "(base)/%d" section. */
8960 sprintf (buf, "%s/%ld", base, tid);
8961
8962 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
8963 if (name == NULL)
8964 return FALSE;
8965 strcpy (name, buf);
8966
8967 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8968 if (sect == NULL)
8969 return FALSE;
8970
8971 sect->size = note->descsz;
8972 sect->filepos = note->descpos;
8973 sect->alignment_power = 2;
8974
8975 /* This is the current thread. */
8976 if (elf_tdata (abfd)->core_lwpid == tid)
8977 return elfcore_maybe_make_sect (abfd, base, sect);
8978
8979 return TRUE;
8980 }
8981
8982 #define BFD_QNT_CORE_INFO 7
8983 #define BFD_QNT_CORE_STATUS 8
8984 #define BFD_QNT_CORE_GREG 9
8985 #define BFD_QNT_CORE_FPREG 10
8986
8987 static bfd_boolean
8988 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
8989 {
8990 /* Every GREG section has a STATUS section before it. Store the
8991 tid from the previous call to pass down to the next gregs
8992 function. */
8993 static long tid = 1;
8994
8995 switch (note->type)
8996 {
8997 case BFD_QNT_CORE_INFO:
8998 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
8999 case BFD_QNT_CORE_STATUS:
9000 return elfcore_grok_nto_status (abfd, note, &tid);
9001 case BFD_QNT_CORE_GREG:
9002 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
9003 case BFD_QNT_CORE_FPREG:
9004 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
9005 default:
9006 return TRUE;
9007 }
9008 }
9009
9010 static bfd_boolean
9011 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
9012 {
9013 char *name;
9014 asection *sect;
9015 size_t len;
9016
9017 /* Use note name as section name. */
9018 len = note->namesz;
9019 name = (char *) bfd_alloc (abfd, len);
9020 if (name == NULL)
9021 return FALSE;
9022 memcpy (name, note->namedata, len);
9023 name[len - 1] = '\0';
9024
9025 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9026 if (sect == NULL)
9027 return FALSE;
9028
9029 sect->size = note->descsz;
9030 sect->filepos = note->descpos;
9031 sect->alignment_power = 1;
9032
9033 return TRUE;
9034 }
9035
9036 /* Function: elfcore_write_note
9037
9038 Inputs:
9039 buffer to hold note, and current size of buffer
9040 name of note
9041 type of note
9042 data for note
9043 size of data for note
9044
9045 Writes note to end of buffer. ELF64 notes are written exactly as
9046 for ELF32, despite the current (as of 2006) ELF gabi specifying
9047 that they ought to have 8-byte namesz and descsz field, and have
9048 8-byte alignment. Other writers, eg. Linux kernel, do the same.
9049
9050 Return:
9051 Pointer to realloc'd buffer, *BUFSIZ updated. */
9052
9053 char *
9054 elfcore_write_note (bfd *abfd,
9055 char *buf,
9056 int *bufsiz,
9057 const char *name,
9058 int type,
9059 const void *input,
9060 int size)
9061 {
9062 Elf_External_Note *xnp;
9063 size_t namesz;
9064 size_t newspace;
9065 char *dest;
9066
9067 namesz = 0;
9068 if (name != NULL)
9069 namesz = strlen (name) + 1;
9070
9071 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
9072
9073 buf = (char *) realloc (buf, *bufsiz + newspace);
9074 if (buf == NULL)
9075 return buf;
9076 dest = buf + *bufsiz;
9077 *bufsiz += newspace;
9078 xnp = (Elf_External_Note *) dest;
9079 H_PUT_32 (abfd, namesz, xnp->namesz);
9080 H_PUT_32 (abfd, size, xnp->descsz);
9081 H_PUT_32 (abfd, type, xnp->type);
9082 dest = xnp->name;
9083 if (name != NULL)
9084 {
9085 memcpy (dest, name, namesz);
9086 dest += namesz;
9087 while (namesz & 3)
9088 {
9089 *dest++ = '\0';
9090 ++namesz;
9091 }
9092 }
9093 memcpy (dest, input, size);
9094 dest += size;
9095 while (size & 3)
9096 {
9097 *dest++ = '\0';
9098 ++size;
9099 }
9100 return buf;
9101 }
9102
9103 char *
9104 elfcore_write_prpsinfo (bfd *abfd,
9105 char *buf,
9106 int *bufsiz,
9107 const char *fname,
9108 const char *psargs)
9109 {
9110 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9111
9112 if (bed->elf_backend_write_core_note != NULL)
9113 {
9114 char *ret;
9115 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
9116 NT_PRPSINFO, fname, psargs);
9117 if (ret != NULL)
9118 return ret;
9119 }
9120
9121 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
9122 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
9123 if (bed->s->elfclass == ELFCLASS32)
9124 {
9125 #if defined (HAVE_PSINFO32_T)
9126 psinfo32_t data;
9127 int note_type = NT_PSINFO;
9128 #else
9129 prpsinfo32_t data;
9130 int note_type = NT_PRPSINFO;
9131 #endif
9132
9133 memset (&data, 0, sizeof (data));
9134 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
9135 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
9136 return elfcore_write_note (abfd, buf, bufsiz,
9137 "CORE", note_type, &data, sizeof (data));
9138 }
9139 else
9140 #endif
9141 {
9142 #if defined (HAVE_PSINFO_T)
9143 psinfo_t data;
9144 int note_type = NT_PSINFO;
9145 #else
9146 prpsinfo_t data;
9147 int note_type = NT_PRPSINFO;
9148 #endif
9149
9150 memset (&data, 0, sizeof (data));
9151 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
9152 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
9153 return elfcore_write_note (abfd, buf, bufsiz,
9154 "CORE", note_type, &data, sizeof (data));
9155 }
9156 #endif /* PSINFO_T or PRPSINFO_T */
9157
9158 free (buf);
9159 return NULL;
9160 }
9161
9162 char *
9163 elfcore_write_linux_prpsinfo32
9164 (bfd *abfd, char *buf, int *bufsiz,
9165 const struct elf_internal_linux_prpsinfo *prpsinfo)
9166 {
9167 struct elf_external_linux_prpsinfo32 data;
9168
9169 memset (&data, 0, sizeof (data));
9170 LINUX_PRPSINFO32_SWAP_FIELDS (abfd, prpsinfo, data);
9171
9172 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
9173 &data, sizeof (data));
9174 }
9175
9176 char *
9177 elfcore_write_linux_prpsinfo64
9178 (bfd *abfd, char *buf, int *bufsiz,
9179 const struct elf_internal_linux_prpsinfo *prpsinfo)
9180 {
9181 struct elf_external_linux_prpsinfo64 data;
9182
9183 memset (&data, 0, sizeof (data));
9184 LINUX_PRPSINFO64_SWAP_FIELDS (abfd, prpsinfo, data);
9185
9186 return elfcore_write_note (abfd, buf, bufsiz,
9187 "CORE", NT_PRPSINFO, &data, sizeof (data));
9188 }
9189
9190 char *
9191 elfcore_write_prstatus (bfd *abfd,
9192 char *buf,
9193 int *bufsiz,
9194 long pid,
9195 int cursig,
9196 const void *gregs)
9197 {
9198 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9199
9200 if (bed->elf_backend_write_core_note != NULL)
9201 {
9202 char *ret;
9203 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
9204 NT_PRSTATUS,
9205 pid, cursig, gregs);
9206 if (ret != NULL)
9207 return ret;
9208 }
9209
9210 #if defined (HAVE_PRSTATUS_T)
9211 #if defined (HAVE_PRSTATUS32_T)
9212 if (bed->s->elfclass == ELFCLASS32)
9213 {
9214 prstatus32_t prstat;
9215
9216 memset (&prstat, 0, sizeof (prstat));
9217 prstat.pr_pid = pid;
9218 prstat.pr_cursig = cursig;
9219 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
9220 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
9221 NT_PRSTATUS, &prstat, sizeof (prstat));
9222 }
9223 else
9224 #endif
9225 {
9226 prstatus_t prstat;
9227
9228 memset (&prstat, 0, sizeof (prstat));
9229 prstat.pr_pid = pid;
9230 prstat.pr_cursig = cursig;
9231 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
9232 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
9233 NT_PRSTATUS, &prstat, sizeof (prstat));
9234 }
9235 #endif /* HAVE_PRSTATUS_T */
9236
9237 free (buf);
9238 return NULL;
9239 }
9240
9241 #if defined (HAVE_LWPSTATUS_T)
9242 char *
9243 elfcore_write_lwpstatus (bfd *abfd,
9244 char *buf,
9245 int *bufsiz,
9246 long pid,
9247 int cursig,
9248 const void *gregs)
9249 {
9250 lwpstatus_t lwpstat;
9251 const char *note_name = "CORE";
9252
9253 memset (&lwpstat, 0, sizeof (lwpstat));
9254 lwpstat.pr_lwpid = pid >> 16;
9255 lwpstat.pr_cursig = cursig;
9256 #if defined (HAVE_LWPSTATUS_T_PR_REG)
9257 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
9258 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9259 #if !defined(gregs)
9260 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
9261 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
9262 #else
9263 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
9264 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
9265 #endif
9266 #endif
9267 return elfcore_write_note (abfd, buf, bufsiz, note_name,
9268 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
9269 }
9270 #endif /* HAVE_LWPSTATUS_T */
9271
9272 #if defined (HAVE_PSTATUS_T)
9273 char *
9274 elfcore_write_pstatus (bfd *abfd,
9275 char *buf,
9276 int *bufsiz,
9277 long pid,
9278 int cursig ATTRIBUTE_UNUSED,
9279 const void *gregs ATTRIBUTE_UNUSED)
9280 {
9281 const char *note_name = "CORE";
9282 #if defined (HAVE_PSTATUS32_T)
9283 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9284
9285 if (bed->s->elfclass == ELFCLASS32)
9286 {
9287 pstatus32_t pstat;
9288
9289 memset (&pstat, 0, sizeof (pstat));
9290 pstat.pr_pid = pid & 0xffff;
9291 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
9292 NT_PSTATUS, &pstat, sizeof (pstat));
9293 return buf;
9294 }
9295 else
9296 #endif
9297 {
9298 pstatus_t pstat;
9299
9300 memset (&pstat, 0, sizeof (pstat));
9301 pstat.pr_pid = pid & 0xffff;
9302 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
9303 NT_PSTATUS, &pstat, sizeof (pstat));
9304 return buf;
9305 }
9306 }
9307 #endif /* HAVE_PSTATUS_T */
9308
9309 char *
9310 elfcore_write_prfpreg (bfd *abfd,
9311 char *buf,
9312 int *bufsiz,
9313 const void *fpregs,
9314 int size)
9315 {
9316 const char *note_name = "CORE";
9317 return elfcore_write_note (abfd, buf, bufsiz,
9318 note_name, NT_FPREGSET, fpregs, size);
9319 }
9320
9321 char *
9322 elfcore_write_prxfpreg (bfd *abfd,
9323 char *buf,
9324 int *bufsiz,
9325 const void *xfpregs,
9326 int size)
9327 {
9328 char *note_name = "LINUX";
9329 return elfcore_write_note (abfd, buf, bufsiz,
9330 note_name, NT_PRXFPREG, xfpregs, size);
9331 }
9332
9333 char *
9334 elfcore_write_xstatereg (bfd *abfd, char *buf, int *bufsiz,
9335 const void *xfpregs, int size)
9336 {
9337 char *note_name = "LINUX";
9338 return elfcore_write_note (abfd, buf, bufsiz,
9339 note_name, NT_X86_XSTATE, xfpregs, size);
9340 }
9341
9342 char *
9343 elfcore_write_ppc_vmx (bfd *abfd,
9344 char *buf,
9345 int *bufsiz,
9346 const void *ppc_vmx,
9347 int size)
9348 {
9349 char *note_name = "LINUX";
9350 return elfcore_write_note (abfd, buf, bufsiz,
9351 note_name, NT_PPC_VMX, ppc_vmx, size);
9352 }
9353
9354 char *
9355 elfcore_write_ppc_vsx (bfd *abfd,
9356 char *buf,
9357 int *bufsiz,
9358 const void *ppc_vsx,
9359 int size)
9360 {
9361 char *note_name = "LINUX";
9362 return elfcore_write_note (abfd, buf, bufsiz,
9363 note_name, NT_PPC_VSX, ppc_vsx, size);
9364 }
9365
9366 static char *
9367 elfcore_write_s390_high_gprs (bfd *abfd,
9368 char *buf,
9369 int *bufsiz,
9370 const void *s390_high_gprs,
9371 int size)
9372 {
9373 char *note_name = "LINUX";
9374 return elfcore_write_note (abfd, buf, bufsiz,
9375 note_name, NT_S390_HIGH_GPRS,
9376 s390_high_gprs, size);
9377 }
9378
9379 char *
9380 elfcore_write_s390_timer (bfd *abfd,
9381 char *buf,
9382 int *bufsiz,
9383 const void *s390_timer,
9384 int size)
9385 {
9386 char *note_name = "LINUX";
9387 return elfcore_write_note (abfd, buf, bufsiz,
9388 note_name, NT_S390_TIMER, s390_timer, size);
9389 }
9390
9391 char *
9392 elfcore_write_s390_todcmp (bfd *abfd,
9393 char *buf,
9394 int *bufsiz,
9395 const void *s390_todcmp,
9396 int size)
9397 {
9398 char *note_name = "LINUX";
9399 return elfcore_write_note (abfd, buf, bufsiz,
9400 note_name, NT_S390_TODCMP, s390_todcmp, size);
9401 }
9402
9403 char *
9404 elfcore_write_s390_todpreg (bfd *abfd,
9405 char *buf,
9406 int *bufsiz,
9407 const void *s390_todpreg,
9408 int size)
9409 {
9410 char *note_name = "LINUX";
9411 return elfcore_write_note (abfd, buf, bufsiz,
9412 note_name, NT_S390_TODPREG, s390_todpreg, size);
9413 }
9414
9415 char *
9416 elfcore_write_s390_ctrs (bfd *abfd,
9417 char *buf,
9418 int *bufsiz,
9419 const void *s390_ctrs,
9420 int size)
9421 {
9422 char *note_name = "LINUX";
9423 return elfcore_write_note (abfd, buf, bufsiz,
9424 note_name, NT_S390_CTRS, s390_ctrs, size);
9425 }
9426
9427 char *
9428 elfcore_write_s390_prefix (bfd *abfd,
9429 char *buf,
9430 int *bufsiz,
9431 const void *s390_prefix,
9432 int size)
9433 {
9434 char *note_name = "LINUX";
9435 return elfcore_write_note (abfd, buf, bufsiz,
9436 note_name, NT_S390_PREFIX, s390_prefix, size);
9437 }
9438
9439 char *
9440 elfcore_write_s390_last_break (bfd *abfd,
9441 char *buf,
9442 int *bufsiz,
9443 const void *s390_last_break,
9444 int size)
9445 {
9446 char *note_name = "LINUX";
9447 return elfcore_write_note (abfd, buf, bufsiz,
9448 note_name, NT_S390_LAST_BREAK,
9449 s390_last_break, size);
9450 }
9451
9452 char *
9453 elfcore_write_s390_system_call (bfd *abfd,
9454 char *buf,
9455 int *bufsiz,
9456 const void *s390_system_call,
9457 int size)
9458 {
9459 char *note_name = "LINUX";
9460 return elfcore_write_note (abfd, buf, bufsiz,
9461 note_name, NT_S390_SYSTEM_CALL,
9462 s390_system_call, size);
9463 }
9464
9465 char *
9466 elfcore_write_arm_vfp (bfd *abfd,
9467 char *buf,
9468 int *bufsiz,
9469 const void *arm_vfp,
9470 int size)
9471 {
9472 char *note_name = "LINUX";
9473 return elfcore_write_note (abfd, buf, bufsiz,
9474 note_name, NT_ARM_VFP, arm_vfp, size);
9475 }
9476
9477 char *
9478 elfcore_write_aarch_tls (bfd *abfd,
9479 char *buf,
9480 int *bufsiz,
9481 const void *aarch_tls,
9482 int size)
9483 {
9484 char *note_name = "LINUX";
9485 return elfcore_write_note (abfd, buf, bufsiz,
9486 note_name, NT_ARM_TLS, aarch_tls, size);
9487 }
9488
9489 char *
9490 elfcore_write_aarch_hw_break (bfd *abfd,
9491 char *buf,
9492 int *bufsiz,
9493 const void *aarch_hw_break,
9494 int size)
9495 {
9496 char *note_name = "LINUX";
9497 return elfcore_write_note (abfd, buf, bufsiz,
9498 note_name, NT_ARM_HW_BREAK, aarch_hw_break, size);
9499 }
9500
9501 char *
9502 elfcore_write_aarch_hw_watch (bfd *abfd,
9503 char *buf,
9504 int *bufsiz,
9505 const void *aarch_hw_watch,
9506 int size)
9507 {
9508 char *note_name = "LINUX";
9509 return elfcore_write_note (abfd, buf, bufsiz,
9510 note_name, NT_ARM_HW_WATCH, aarch_hw_watch, size);
9511 }
9512
9513 char *
9514 elfcore_write_register_note (bfd *abfd,
9515 char *buf,
9516 int *bufsiz,
9517 const char *section,
9518 const void *data,
9519 int size)
9520 {
9521 if (strcmp (section, ".reg2") == 0)
9522 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
9523 if (strcmp (section, ".reg-xfp") == 0)
9524 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
9525 if (strcmp (section, ".reg-xstate") == 0)
9526 return elfcore_write_xstatereg (abfd, buf, bufsiz, data, size);
9527 if (strcmp (section, ".reg-ppc-vmx") == 0)
9528 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
9529 if (strcmp (section, ".reg-ppc-vsx") == 0)
9530 return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size);
9531 if (strcmp (section, ".reg-s390-high-gprs") == 0)
9532 return elfcore_write_s390_high_gprs (abfd, buf, bufsiz, data, size);
9533 if (strcmp (section, ".reg-s390-timer") == 0)
9534 return elfcore_write_s390_timer (abfd, buf, bufsiz, data, size);
9535 if (strcmp (section, ".reg-s390-todcmp") == 0)
9536 return elfcore_write_s390_todcmp (abfd, buf, bufsiz, data, size);
9537 if (strcmp (section, ".reg-s390-todpreg") == 0)
9538 return elfcore_write_s390_todpreg (abfd, buf, bufsiz, data, size);
9539 if (strcmp (section, ".reg-s390-ctrs") == 0)
9540 return elfcore_write_s390_ctrs (abfd, buf, bufsiz, data, size);
9541 if (strcmp (section, ".reg-s390-prefix") == 0)
9542 return elfcore_write_s390_prefix (abfd, buf, bufsiz, data, size);
9543 if (strcmp (section, ".reg-s390-last-break") == 0)
9544 return elfcore_write_s390_last_break (abfd, buf, bufsiz, data, size);
9545 if (strcmp (section, ".reg-s390-system-call") == 0)
9546 return elfcore_write_s390_system_call (abfd, buf, bufsiz, data, size);
9547 if (strcmp (section, ".reg-arm-vfp") == 0)
9548 return elfcore_write_arm_vfp (abfd, buf, bufsiz, data, size);
9549 if (strcmp (section, ".reg-aarch-tls") == 0)
9550 return elfcore_write_aarch_tls (abfd, buf, bufsiz, data, size);
9551 if (strcmp (section, ".reg-aarch-hw-break") == 0)
9552 return elfcore_write_aarch_hw_break (abfd, buf, bufsiz, data, size);
9553 if (strcmp (section, ".reg-aarch-hw-watch") == 0)
9554 return elfcore_write_aarch_hw_watch (abfd, buf, bufsiz, data, size);
9555 return NULL;
9556 }
9557
9558 static bfd_boolean
9559 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset)
9560 {
9561 char *p;
9562
9563 p = buf;
9564 while (p < buf + size)
9565 {
9566 /* FIXME: bad alignment assumption. */
9567 Elf_External_Note *xnp = (Elf_External_Note *) p;
9568 Elf_Internal_Note in;
9569
9570 if (offsetof (Elf_External_Note, name) > buf - p + size)
9571 return FALSE;
9572
9573 in.type = H_GET_32 (abfd, xnp->type);
9574
9575 in.namesz = H_GET_32 (abfd, xnp->namesz);
9576 in.namedata = xnp->name;
9577 if (in.namesz > buf - in.namedata + size)
9578 return FALSE;
9579
9580 in.descsz = H_GET_32 (abfd, xnp->descsz);
9581 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
9582 in.descpos = offset + (in.descdata - buf);
9583 if (in.descsz != 0
9584 && (in.descdata >= buf + size
9585 || in.descsz > buf - in.descdata + size))
9586 return FALSE;
9587
9588 switch (bfd_get_format (abfd))
9589 {
9590 default:
9591 return TRUE;
9592
9593 case bfd_core:
9594 if (CONST_STRNEQ (in.namedata, "NetBSD-CORE"))
9595 {
9596 if (! elfcore_grok_netbsd_note (abfd, &in))
9597 return FALSE;
9598 }
9599 else if (CONST_STRNEQ (in.namedata, "OpenBSD"))
9600 {
9601 if (! elfcore_grok_openbsd_note (abfd, &in))
9602 return FALSE;
9603 }
9604 else if (CONST_STRNEQ (in.namedata, "QNX"))
9605 {
9606 if (! elfcore_grok_nto_note (abfd, &in))
9607 return FALSE;
9608 }
9609 else if (CONST_STRNEQ (in.namedata, "SPU/"))
9610 {
9611 if (! elfcore_grok_spu_note (abfd, &in))
9612 return FALSE;
9613 }
9614 else
9615 {
9616 if (! elfcore_grok_note (abfd, &in))
9617 return FALSE;
9618 }
9619 break;
9620
9621 case bfd_object:
9622 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
9623 {
9624 if (! elfobj_grok_gnu_note (abfd, &in))
9625 return FALSE;
9626 }
9627 else if (in.namesz == sizeof "stapsdt"
9628 && strcmp (in.namedata, "stapsdt") == 0)
9629 {
9630 if (! elfobj_grok_stapsdt_note (abfd, &in))
9631 return FALSE;
9632 }
9633 break;
9634 }
9635
9636 p = in.descdata + BFD_ALIGN (in.descsz, 4);
9637 }
9638
9639 return TRUE;
9640 }
9641
9642 static bfd_boolean
9643 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
9644 {
9645 char *buf;
9646
9647 if (size <= 0)
9648 return TRUE;
9649
9650 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
9651 return FALSE;
9652
9653 buf = (char *) bfd_malloc (size);
9654 if (buf == NULL)
9655 return FALSE;
9656
9657 if (bfd_bread (buf, size, abfd) != size
9658 || !elf_parse_notes (abfd, buf, size, offset))
9659 {
9660 free (buf);
9661 return FALSE;
9662 }
9663
9664 free (buf);
9665 return TRUE;
9666 }
9667 \f
9668 /* Providing external access to the ELF program header table. */
9669
9670 /* Return an upper bound on the number of bytes required to store a
9671 copy of ABFD's program header table entries. Return -1 if an error
9672 occurs; bfd_get_error will return an appropriate code. */
9673
9674 long
9675 bfd_get_elf_phdr_upper_bound (bfd *abfd)
9676 {
9677 if (abfd->xvec->flavour != bfd_target_elf_flavour)
9678 {
9679 bfd_set_error (bfd_error_wrong_format);
9680 return -1;
9681 }
9682
9683 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
9684 }
9685
9686 /* Copy ABFD's program header table entries to *PHDRS. The entries
9687 will be stored as an array of Elf_Internal_Phdr structures, as
9688 defined in include/elf/internal.h. To find out how large the
9689 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
9690
9691 Return the number of program header table entries read, or -1 if an
9692 error occurs; bfd_get_error will return an appropriate code. */
9693
9694 int
9695 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
9696 {
9697 int num_phdrs;
9698
9699 if (abfd->xvec->flavour != bfd_target_elf_flavour)
9700 {
9701 bfd_set_error (bfd_error_wrong_format);
9702 return -1;
9703 }
9704
9705 num_phdrs = elf_elfheader (abfd)->e_phnum;
9706 memcpy (phdrs, elf_tdata (abfd)->phdr,
9707 num_phdrs * sizeof (Elf_Internal_Phdr));
9708
9709 return num_phdrs;
9710 }
9711
9712 enum elf_reloc_type_class
9713 _bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
9714 {
9715 return reloc_class_normal;
9716 }
9717
9718 /* For RELA architectures, return the relocation value for a
9719 relocation against a local symbol. */
9720
9721 bfd_vma
9722 _bfd_elf_rela_local_sym (bfd *abfd,
9723 Elf_Internal_Sym *sym,
9724 asection **psec,
9725 Elf_Internal_Rela *rel)
9726 {
9727 asection *sec = *psec;
9728 bfd_vma relocation;
9729
9730 relocation = (sec->output_section->vma
9731 + sec->output_offset
9732 + sym->st_value);
9733 if ((sec->flags & SEC_MERGE)
9734 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
9735 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
9736 {
9737 rel->r_addend =
9738 _bfd_merged_section_offset (abfd, psec,
9739 elf_section_data (sec)->sec_info,
9740 sym->st_value + rel->r_addend);
9741 if (sec != *psec)
9742 {
9743 /* If we have changed the section, and our original section is
9744 marked with SEC_EXCLUDE, it means that the original
9745 SEC_MERGE section has been completely subsumed in some
9746 other SEC_MERGE section. In this case, we need to leave
9747 some info around for --emit-relocs. */
9748 if ((sec->flags & SEC_EXCLUDE) != 0)
9749 sec->kept_section = *psec;
9750 sec = *psec;
9751 }
9752 rel->r_addend -= relocation;
9753 rel->r_addend += sec->output_section->vma + sec->output_offset;
9754 }
9755 return relocation;
9756 }
9757
9758 bfd_vma
9759 _bfd_elf_rel_local_sym (bfd *abfd,
9760 Elf_Internal_Sym *sym,
9761 asection **psec,
9762 bfd_vma addend)
9763 {
9764 asection *sec = *psec;
9765
9766 if (sec->sec_info_type != SEC_INFO_TYPE_MERGE)
9767 return sym->st_value + addend;
9768
9769 return _bfd_merged_section_offset (abfd, psec,
9770 elf_section_data (sec)->sec_info,
9771 sym->st_value + addend);
9772 }
9773
9774 bfd_vma
9775 _bfd_elf_section_offset (bfd *abfd,
9776 struct bfd_link_info *info,
9777 asection *sec,
9778 bfd_vma offset)
9779 {
9780 switch (sec->sec_info_type)
9781 {
9782 case SEC_INFO_TYPE_STABS:
9783 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
9784 offset);
9785 case SEC_INFO_TYPE_EH_FRAME:
9786 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
9787 default:
9788 if ((sec->flags & SEC_ELF_REVERSE_COPY) != 0)
9789 {
9790 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9791 bfd_size_type address_size = bed->s->arch_size / 8;
9792 offset = sec->size - offset - address_size;
9793 }
9794 return offset;
9795 }
9796 }
9797 \f
9798 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
9799 reconstruct an ELF file by reading the segments out of remote memory
9800 based on the ELF file header at EHDR_VMA and the ELF program headers it
9801 points to. If not null, *LOADBASEP is filled in with the difference
9802 between the VMAs from which the segments were read, and the VMAs the
9803 file headers (and hence BFD's idea of each section's VMA) put them at.
9804
9805 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
9806 remote memory at target address VMA into the local buffer at MYADDR; it
9807 should return zero on success or an `errno' code on failure. TEMPL must
9808 be a BFD for an ELF target with the word size and byte order found in
9809 the remote memory. */
9810
9811 bfd *
9812 bfd_elf_bfd_from_remote_memory
9813 (bfd *templ,
9814 bfd_vma ehdr_vma,
9815 bfd_vma *loadbasep,
9816 int (*target_read_memory) (bfd_vma, bfd_byte *, bfd_size_type))
9817 {
9818 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
9819 (templ, ehdr_vma, loadbasep, target_read_memory);
9820 }
9821 \f
9822 long
9823 _bfd_elf_get_synthetic_symtab (bfd *abfd,
9824 long symcount ATTRIBUTE_UNUSED,
9825 asymbol **syms ATTRIBUTE_UNUSED,
9826 long dynsymcount,
9827 asymbol **dynsyms,
9828 asymbol **ret)
9829 {
9830 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9831 asection *relplt;
9832 asymbol *s;
9833 const char *relplt_name;
9834 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
9835 arelent *p;
9836 long count, i, n;
9837 size_t size;
9838 Elf_Internal_Shdr *hdr;
9839 char *names;
9840 asection *plt;
9841
9842 *ret = NULL;
9843
9844 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
9845 return 0;
9846
9847 if (dynsymcount <= 0)
9848 return 0;
9849
9850 if (!bed->plt_sym_val)
9851 return 0;
9852
9853 relplt_name = bed->relplt_name;
9854 if (relplt_name == NULL)
9855 relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt";
9856 relplt = bfd_get_section_by_name (abfd, relplt_name);
9857 if (relplt == NULL)
9858 return 0;
9859
9860 hdr = &elf_section_data (relplt)->this_hdr;
9861 if (hdr->sh_link != elf_dynsymtab (abfd)
9862 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
9863 return 0;
9864
9865 plt = bfd_get_section_by_name (abfd, ".plt");
9866 if (plt == NULL)
9867 return 0;
9868
9869 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
9870 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
9871 return -1;
9872
9873 count = relplt->size / hdr->sh_entsize;
9874 size = count * sizeof (asymbol);
9875 p = relplt->relocation;
9876 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
9877 {
9878 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
9879 if (p->addend != 0)
9880 {
9881 #ifdef BFD64
9882 size += sizeof ("+0x") - 1 + 8 + 8 * (bed->s->elfclass == ELFCLASS64);
9883 #else
9884 size += sizeof ("+0x") - 1 + 8;
9885 #endif
9886 }
9887 }
9888
9889 s = *ret = (asymbol *) bfd_malloc (size);
9890 if (s == NULL)
9891 return -1;
9892
9893 names = (char *) (s + count);
9894 p = relplt->relocation;
9895 n = 0;
9896 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
9897 {
9898 size_t len;
9899 bfd_vma addr;
9900
9901 addr = bed->plt_sym_val (i, plt, p);
9902 if (addr == (bfd_vma) -1)
9903 continue;
9904
9905 *s = **p->sym_ptr_ptr;
9906 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
9907 we are defining a symbol, ensure one of them is set. */
9908 if ((s->flags & BSF_LOCAL) == 0)
9909 s->flags |= BSF_GLOBAL;
9910 s->flags |= BSF_SYNTHETIC;
9911 s->section = plt;
9912 s->value = addr - plt->vma;
9913 s->name = names;
9914 s->udata.p = NULL;
9915 len = strlen ((*p->sym_ptr_ptr)->name);
9916 memcpy (names, (*p->sym_ptr_ptr)->name, len);
9917 names += len;
9918 if (p->addend != 0)
9919 {
9920 char buf[30], *a;
9921
9922 memcpy (names, "+0x", sizeof ("+0x") - 1);
9923 names += sizeof ("+0x") - 1;
9924 bfd_sprintf_vma (abfd, buf, p->addend);
9925 for (a = buf; *a == '0'; ++a)
9926 ;
9927 len = strlen (a);
9928 memcpy (names, a, len);
9929 names += len;
9930 }
9931 memcpy (names, "@plt", sizeof ("@plt"));
9932 names += sizeof ("@plt");
9933 ++s, ++n;
9934 }
9935
9936 return n;
9937 }
9938
9939 /* It is only used by x86-64 so far. */
9940 asection _bfd_elf_large_com_section
9941 = BFD_FAKE_SECTION (_bfd_elf_large_com_section,
9942 SEC_IS_COMMON, NULL, "LARGE_COMMON", 0);
9943
9944 void
9945 _bfd_elf_set_osabi (bfd * abfd,
9946 struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
9947 {
9948 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
9949
9950 i_ehdrp = elf_elfheader (abfd);
9951
9952 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
9953
9954 /* To make things simpler for the loader on Linux systems we set the
9955 osabi field to ELFOSABI_GNU if the binary contains symbols of
9956 the STT_GNU_IFUNC type or STB_GNU_UNIQUE binding. */
9957 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE
9958 && elf_tdata (abfd)->has_gnu_symbols)
9959 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_GNU;
9960 }
9961
9962
9963 /* Return TRUE for ELF symbol types that represent functions.
9964 This is the default version of this function, which is sufficient for
9965 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */
9966
9967 bfd_boolean
9968 _bfd_elf_is_function_type (unsigned int type)
9969 {
9970 return (type == STT_FUNC
9971 || type == STT_GNU_IFUNC);
9972 }
9973
9974 /* If the ELF symbol SYM might be a function in SEC, return the
9975 function size and set *CODE_OFF to the function's entry point,
9976 otherwise return zero. */
9977
9978 bfd_size_type
9979 _bfd_elf_maybe_function_sym (const asymbol *sym, asection *sec,
9980 bfd_vma *code_off)
9981 {
9982 bfd_size_type size;
9983
9984 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
9985 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0
9986 || sym->section != sec)
9987 return 0;
9988
9989 *code_off = sym->value;
9990 size = 0;
9991 if (!(sym->flags & BSF_SYNTHETIC))
9992 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
9993 if (size == 0)
9994 size = 1;
9995 return size;
9996 }