7acf1422e5d0f47d92561f424046db98a6d6f2b8
[binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
5 Free Software Foundation, Inc.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 MA 02110-1301, USA. */
23
24
25 /*
26 SECTION
27 ELF backends
28
29 BFD support for ELF formats is being worked on.
30 Currently, the best supported back ends are for sparc and i386
31 (running svr4 or Solaris 2).
32
33 Documentation of the internals of the support code still needs
34 to be written. The code is changing quickly enough that we
35 haven't bothered yet. */
36
37 /* For sparc64-cross-sparc32. */
38 #define _SYSCALL32
39 #include "sysdep.h"
40 #include "bfd.h"
41 #include "bfdlink.h"
42 #include "libbfd.h"
43 #define ARCH_SIZE 0
44 #include "elf-bfd.h"
45 #include "libiberty.h"
46 #include "safe-ctype.h"
47
48 #ifdef CORE_HEADER
49 #include CORE_HEADER
50 #endif
51
52 static int elf_sort_sections (const void *, const void *);
53 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
54 static bfd_boolean prep_headers (bfd *);
55 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
56 static bfd_boolean elf_read_notes (bfd *, file_ptr, bfd_size_type) ;
57 static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
58 file_ptr offset);
59
60 /* Swap version information in and out. The version information is
61 currently size independent. If that ever changes, this code will
62 need to move into elfcode.h. */
63
64 /* Swap in a Verdef structure. */
65
66 void
67 _bfd_elf_swap_verdef_in (bfd *abfd,
68 const Elf_External_Verdef *src,
69 Elf_Internal_Verdef *dst)
70 {
71 dst->vd_version = H_GET_16 (abfd, src->vd_version);
72 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
73 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
74 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
75 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
76 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
77 dst->vd_next = H_GET_32 (abfd, src->vd_next);
78 }
79
80 /* Swap out a Verdef structure. */
81
82 void
83 _bfd_elf_swap_verdef_out (bfd *abfd,
84 const Elf_Internal_Verdef *src,
85 Elf_External_Verdef *dst)
86 {
87 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
88 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
89 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
90 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
91 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
92 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
93 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
94 }
95
96 /* Swap in a Verdaux structure. */
97
98 void
99 _bfd_elf_swap_verdaux_in (bfd *abfd,
100 const Elf_External_Verdaux *src,
101 Elf_Internal_Verdaux *dst)
102 {
103 dst->vda_name = H_GET_32 (abfd, src->vda_name);
104 dst->vda_next = H_GET_32 (abfd, src->vda_next);
105 }
106
107 /* Swap out a Verdaux structure. */
108
109 void
110 _bfd_elf_swap_verdaux_out (bfd *abfd,
111 const Elf_Internal_Verdaux *src,
112 Elf_External_Verdaux *dst)
113 {
114 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
115 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
116 }
117
118 /* Swap in a Verneed structure. */
119
120 void
121 _bfd_elf_swap_verneed_in (bfd *abfd,
122 const Elf_External_Verneed *src,
123 Elf_Internal_Verneed *dst)
124 {
125 dst->vn_version = H_GET_16 (abfd, src->vn_version);
126 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
127 dst->vn_file = H_GET_32 (abfd, src->vn_file);
128 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
129 dst->vn_next = H_GET_32 (abfd, src->vn_next);
130 }
131
132 /* Swap out a Verneed structure. */
133
134 void
135 _bfd_elf_swap_verneed_out (bfd *abfd,
136 const Elf_Internal_Verneed *src,
137 Elf_External_Verneed *dst)
138 {
139 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
140 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
141 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
142 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
143 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
144 }
145
146 /* Swap in a Vernaux structure. */
147
148 void
149 _bfd_elf_swap_vernaux_in (bfd *abfd,
150 const Elf_External_Vernaux *src,
151 Elf_Internal_Vernaux *dst)
152 {
153 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
154 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
155 dst->vna_other = H_GET_16 (abfd, src->vna_other);
156 dst->vna_name = H_GET_32 (abfd, src->vna_name);
157 dst->vna_next = H_GET_32 (abfd, src->vna_next);
158 }
159
160 /* Swap out a Vernaux structure. */
161
162 void
163 _bfd_elf_swap_vernaux_out (bfd *abfd,
164 const Elf_Internal_Vernaux *src,
165 Elf_External_Vernaux *dst)
166 {
167 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
168 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
169 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
170 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
171 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
172 }
173
174 /* Swap in a Versym structure. */
175
176 void
177 _bfd_elf_swap_versym_in (bfd *abfd,
178 const Elf_External_Versym *src,
179 Elf_Internal_Versym *dst)
180 {
181 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
182 }
183
184 /* Swap out a Versym structure. */
185
186 void
187 _bfd_elf_swap_versym_out (bfd *abfd,
188 const Elf_Internal_Versym *src,
189 Elf_External_Versym *dst)
190 {
191 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
192 }
193
194 /* Standard ELF hash function. Do not change this function; you will
195 cause invalid hash tables to be generated. */
196
197 unsigned long
198 bfd_elf_hash (const char *namearg)
199 {
200 const unsigned char *name = (const unsigned char *) namearg;
201 unsigned long h = 0;
202 unsigned long g;
203 int ch;
204
205 while ((ch = *name++) != '\0')
206 {
207 h = (h << 4) + ch;
208 if ((g = (h & 0xf0000000)) != 0)
209 {
210 h ^= g >> 24;
211 /* The ELF ABI says `h &= ~g', but this is equivalent in
212 this case and on some machines one insn instead of two. */
213 h ^= g;
214 }
215 }
216 return h & 0xffffffff;
217 }
218
219 /* DT_GNU_HASH hash function. Do not change this function; you will
220 cause invalid hash tables to be generated. */
221
222 unsigned long
223 bfd_elf_gnu_hash (const char *namearg)
224 {
225 const unsigned char *name = (const unsigned char *) namearg;
226 unsigned long h = 5381;
227 unsigned char ch;
228
229 while ((ch = *name++) != '\0')
230 h = (h << 5) + h + ch;
231 return h & 0xffffffff;
232 }
233
234 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
235 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
236 bfd_boolean
237 bfd_elf_allocate_object (bfd *abfd,
238 size_t object_size,
239 enum elf_target_id object_id)
240 {
241 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
242 abfd->tdata.any = bfd_zalloc (abfd, object_size);
243 if (abfd->tdata.any == NULL)
244 return FALSE;
245
246 elf_object_id (abfd) = object_id;
247 elf_program_header_size (abfd) = (bfd_size_type) -1;
248 return TRUE;
249 }
250
251
252 bfd_boolean
253 bfd_elf_make_object (bfd *abfd)
254 {
255 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
256 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
257 bed->target_id);
258 }
259
260 bfd_boolean
261 bfd_elf_mkcorefile (bfd *abfd)
262 {
263 /* I think this can be done just like an object file. */
264 return abfd->xvec->_bfd_set_format[(int) bfd_object] (abfd);
265 }
266
267 static char *
268 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
269 {
270 Elf_Internal_Shdr **i_shdrp;
271 bfd_byte *shstrtab = NULL;
272 file_ptr offset;
273 bfd_size_type shstrtabsize;
274
275 i_shdrp = elf_elfsections (abfd);
276 if (i_shdrp == 0
277 || shindex >= elf_numsections (abfd)
278 || i_shdrp[shindex] == 0)
279 return NULL;
280
281 shstrtab = i_shdrp[shindex]->contents;
282 if (shstrtab == NULL)
283 {
284 /* No cached one, attempt to read, and cache what we read. */
285 offset = i_shdrp[shindex]->sh_offset;
286 shstrtabsize = i_shdrp[shindex]->sh_size;
287
288 /* Allocate and clear an extra byte at the end, to prevent crashes
289 in case the string table is not terminated. */
290 if (shstrtabsize + 1 <= 1
291 || (shstrtab = (bfd_byte *) bfd_alloc (abfd, shstrtabsize + 1)) == NULL
292 || bfd_seek (abfd, offset, SEEK_SET) != 0)
293 shstrtab = NULL;
294 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
295 {
296 if (bfd_get_error () != bfd_error_system_call)
297 bfd_set_error (bfd_error_file_truncated);
298 shstrtab = NULL;
299 /* Once we've failed to read it, make sure we don't keep
300 trying. Otherwise, we'll keep allocating space for
301 the string table over and over. */
302 i_shdrp[shindex]->sh_size = 0;
303 }
304 else
305 shstrtab[shstrtabsize] = '\0';
306 i_shdrp[shindex]->contents = shstrtab;
307 }
308 return (char *) shstrtab;
309 }
310
311 char *
312 bfd_elf_string_from_elf_section (bfd *abfd,
313 unsigned int shindex,
314 unsigned int strindex)
315 {
316 Elf_Internal_Shdr *hdr;
317
318 if (strindex == 0)
319 return "";
320
321 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
322 return NULL;
323
324 hdr = elf_elfsections (abfd)[shindex];
325
326 if (hdr->contents == NULL
327 && bfd_elf_get_str_section (abfd, shindex) == NULL)
328 return NULL;
329
330 if (strindex >= hdr->sh_size)
331 {
332 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
333 (*_bfd_error_handler)
334 (_("%B: invalid string offset %u >= %lu for section `%s'"),
335 abfd, strindex, (unsigned long) hdr->sh_size,
336 (shindex == shstrndx && strindex == hdr->sh_name
337 ? ".shstrtab"
338 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
339 return NULL;
340 }
341
342 return ((char *) hdr->contents) + strindex;
343 }
344
345 /* Read and convert symbols to internal format.
346 SYMCOUNT specifies the number of symbols to read, starting from
347 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
348 are non-NULL, they are used to store the internal symbols, external
349 symbols, and symbol section index extensions, respectively.
350 Returns a pointer to the internal symbol buffer (malloced if necessary)
351 or NULL if there were no symbols or some kind of problem. */
352
353 Elf_Internal_Sym *
354 bfd_elf_get_elf_syms (bfd *ibfd,
355 Elf_Internal_Shdr *symtab_hdr,
356 size_t symcount,
357 size_t symoffset,
358 Elf_Internal_Sym *intsym_buf,
359 void *extsym_buf,
360 Elf_External_Sym_Shndx *extshndx_buf)
361 {
362 Elf_Internal_Shdr *shndx_hdr;
363 void *alloc_ext;
364 const bfd_byte *esym;
365 Elf_External_Sym_Shndx *alloc_extshndx;
366 Elf_External_Sym_Shndx *shndx;
367 Elf_Internal_Sym *alloc_intsym;
368 Elf_Internal_Sym *isym;
369 Elf_Internal_Sym *isymend;
370 const struct elf_backend_data *bed;
371 size_t extsym_size;
372 bfd_size_type amt;
373 file_ptr pos;
374
375 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
376 abort ();
377
378 if (symcount == 0)
379 return intsym_buf;
380
381 /* Normal syms might have section extension entries. */
382 shndx_hdr = NULL;
383 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
384 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
385
386 /* Read the symbols. */
387 alloc_ext = NULL;
388 alloc_extshndx = NULL;
389 alloc_intsym = NULL;
390 bed = get_elf_backend_data (ibfd);
391 extsym_size = bed->s->sizeof_sym;
392 amt = symcount * extsym_size;
393 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
394 if (extsym_buf == NULL)
395 {
396 alloc_ext = bfd_malloc2 (symcount, extsym_size);
397 extsym_buf = alloc_ext;
398 }
399 if (extsym_buf == NULL
400 || bfd_seek (ibfd, pos, SEEK_SET) != 0
401 || bfd_bread (extsym_buf, amt, ibfd) != amt)
402 {
403 intsym_buf = NULL;
404 goto out;
405 }
406
407 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
408 extshndx_buf = NULL;
409 else
410 {
411 amt = symcount * sizeof (Elf_External_Sym_Shndx);
412 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
413 if (extshndx_buf == NULL)
414 {
415 alloc_extshndx = (Elf_External_Sym_Shndx *)
416 bfd_malloc2 (symcount, sizeof (Elf_External_Sym_Shndx));
417 extshndx_buf = alloc_extshndx;
418 }
419 if (extshndx_buf == NULL
420 || bfd_seek (ibfd, pos, SEEK_SET) != 0
421 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
422 {
423 intsym_buf = NULL;
424 goto out;
425 }
426 }
427
428 if (intsym_buf == NULL)
429 {
430 alloc_intsym = (Elf_Internal_Sym *)
431 bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
432 intsym_buf = alloc_intsym;
433 if (intsym_buf == NULL)
434 goto out;
435 }
436
437 /* Convert the symbols to internal form. */
438 isymend = intsym_buf + symcount;
439 for (esym = (const bfd_byte *) extsym_buf, isym = intsym_buf,
440 shndx = extshndx_buf;
441 isym < isymend;
442 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
443 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
444 {
445 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
446 (*_bfd_error_handler) (_("%B symbol number %lu references "
447 "nonexistent SHT_SYMTAB_SHNDX section"),
448 ibfd, (unsigned long) symoffset);
449 if (alloc_intsym != NULL)
450 free (alloc_intsym);
451 intsym_buf = NULL;
452 goto out;
453 }
454
455 out:
456 if (alloc_ext != NULL)
457 free (alloc_ext);
458 if (alloc_extshndx != NULL)
459 free (alloc_extshndx);
460
461 return intsym_buf;
462 }
463
464 /* Look up a symbol name. */
465 const char *
466 bfd_elf_sym_name (bfd *abfd,
467 Elf_Internal_Shdr *symtab_hdr,
468 Elf_Internal_Sym *isym,
469 asection *sym_sec)
470 {
471 const char *name;
472 unsigned int iname = isym->st_name;
473 unsigned int shindex = symtab_hdr->sh_link;
474
475 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
476 /* Check for a bogus st_shndx to avoid crashing. */
477 && isym->st_shndx < elf_numsections (abfd))
478 {
479 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
480 shindex = elf_elfheader (abfd)->e_shstrndx;
481 }
482
483 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
484 if (name == NULL)
485 name = "(null)";
486 else if (sym_sec && *name == '\0')
487 name = bfd_section_name (abfd, sym_sec);
488
489 return name;
490 }
491
492 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
493 sections. The first element is the flags, the rest are section
494 pointers. */
495
496 typedef union elf_internal_group {
497 Elf_Internal_Shdr *shdr;
498 unsigned int flags;
499 } Elf_Internal_Group;
500
501 /* Return the name of the group signature symbol. Why isn't the
502 signature just a string? */
503
504 static const char *
505 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
506 {
507 Elf_Internal_Shdr *hdr;
508 unsigned char esym[sizeof (Elf64_External_Sym)];
509 Elf_External_Sym_Shndx eshndx;
510 Elf_Internal_Sym isym;
511
512 /* First we need to ensure the symbol table is available. Make sure
513 that it is a symbol table section. */
514 if (ghdr->sh_link >= elf_numsections (abfd))
515 return NULL;
516 hdr = elf_elfsections (abfd) [ghdr->sh_link];
517 if (hdr->sh_type != SHT_SYMTAB
518 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
519 return NULL;
520
521 /* Go read the symbol. */
522 hdr = &elf_tdata (abfd)->symtab_hdr;
523 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
524 &isym, esym, &eshndx) == NULL)
525 return NULL;
526
527 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
528 }
529
530 /* Set next_in_group list pointer, and group name for NEWSECT. */
531
532 static bfd_boolean
533 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
534 {
535 unsigned int num_group = elf_tdata (abfd)->num_group;
536
537 /* If num_group is zero, read in all SHT_GROUP sections. The count
538 is set to -1 if there are no SHT_GROUP sections. */
539 if (num_group == 0)
540 {
541 unsigned int i, shnum;
542
543 /* First count the number of groups. If we have a SHT_GROUP
544 section with just a flag word (ie. sh_size is 4), ignore it. */
545 shnum = elf_numsections (abfd);
546 num_group = 0;
547
548 #define IS_VALID_GROUP_SECTION_HEADER(shdr) \
549 ( (shdr)->sh_type == SHT_GROUP \
550 && (shdr)->sh_size >= (2 * GRP_ENTRY_SIZE) \
551 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
552 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
553
554 for (i = 0; i < shnum; i++)
555 {
556 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
557
558 if (IS_VALID_GROUP_SECTION_HEADER (shdr))
559 num_group += 1;
560 }
561
562 if (num_group == 0)
563 {
564 num_group = (unsigned) -1;
565 elf_tdata (abfd)->num_group = num_group;
566 }
567 else
568 {
569 /* We keep a list of elf section headers for group sections,
570 so we can find them quickly. */
571 bfd_size_type amt;
572
573 elf_tdata (abfd)->num_group = num_group;
574 elf_tdata (abfd)->group_sect_ptr = (Elf_Internal_Shdr **)
575 bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
576 if (elf_tdata (abfd)->group_sect_ptr == NULL)
577 return FALSE;
578
579 num_group = 0;
580 for (i = 0; i < shnum; i++)
581 {
582 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
583
584 if (IS_VALID_GROUP_SECTION_HEADER (shdr))
585 {
586 unsigned char *src;
587 Elf_Internal_Group *dest;
588
589 /* Add to list of sections. */
590 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
591 num_group += 1;
592
593 /* Read the raw contents. */
594 BFD_ASSERT (sizeof (*dest) >= 4);
595 amt = shdr->sh_size * sizeof (*dest) / 4;
596 shdr->contents = (unsigned char *)
597 bfd_alloc2 (abfd, shdr->sh_size, sizeof (*dest) / 4);
598 /* PR binutils/4110: Handle corrupt group headers. */
599 if (shdr->contents == NULL)
600 {
601 _bfd_error_handler
602 (_("%B: Corrupt size field in group section header: 0x%lx"), abfd, shdr->sh_size);
603 bfd_set_error (bfd_error_bad_value);
604 return FALSE;
605 }
606
607 memset (shdr->contents, 0, amt);
608
609 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
610 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
611 != shdr->sh_size))
612 return FALSE;
613
614 /* Translate raw contents, a flag word followed by an
615 array of elf section indices all in target byte order,
616 to the flag word followed by an array of elf section
617 pointers. */
618 src = shdr->contents + shdr->sh_size;
619 dest = (Elf_Internal_Group *) (shdr->contents + amt);
620 while (1)
621 {
622 unsigned int idx;
623
624 src -= 4;
625 --dest;
626 idx = H_GET_32 (abfd, src);
627 if (src == shdr->contents)
628 {
629 dest->flags = idx;
630 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
631 shdr->bfd_section->flags
632 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
633 break;
634 }
635 if (idx >= shnum)
636 {
637 ((*_bfd_error_handler)
638 (_("%B: invalid SHT_GROUP entry"), abfd));
639 idx = 0;
640 }
641 dest->shdr = elf_elfsections (abfd)[idx];
642 }
643 }
644 }
645 }
646 }
647
648 if (num_group != (unsigned) -1)
649 {
650 unsigned int i;
651
652 for (i = 0; i < num_group; i++)
653 {
654 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
655 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
656 unsigned int n_elt = shdr->sh_size / 4;
657
658 /* Look through this group's sections to see if current
659 section is a member. */
660 while (--n_elt != 0)
661 if ((++idx)->shdr == hdr)
662 {
663 asection *s = NULL;
664
665 /* We are a member of this group. Go looking through
666 other members to see if any others are linked via
667 next_in_group. */
668 idx = (Elf_Internal_Group *) shdr->contents;
669 n_elt = shdr->sh_size / 4;
670 while (--n_elt != 0)
671 if ((s = (++idx)->shdr->bfd_section) != NULL
672 && elf_next_in_group (s) != NULL)
673 break;
674 if (n_elt != 0)
675 {
676 /* Snarf the group name from other member, and
677 insert current section in circular list. */
678 elf_group_name (newsect) = elf_group_name (s);
679 elf_next_in_group (newsect) = elf_next_in_group (s);
680 elf_next_in_group (s) = newsect;
681 }
682 else
683 {
684 const char *gname;
685
686 gname = group_signature (abfd, shdr);
687 if (gname == NULL)
688 return FALSE;
689 elf_group_name (newsect) = gname;
690
691 /* Start a circular list with one element. */
692 elf_next_in_group (newsect) = newsect;
693 }
694
695 /* If the group section has been created, point to the
696 new member. */
697 if (shdr->bfd_section != NULL)
698 elf_next_in_group (shdr->bfd_section) = newsect;
699
700 i = num_group - 1;
701 break;
702 }
703 }
704 }
705
706 if (elf_group_name (newsect) == NULL)
707 {
708 (*_bfd_error_handler) (_("%B: no group info for section %A"),
709 abfd, newsect);
710 }
711 return TRUE;
712 }
713
714 bfd_boolean
715 _bfd_elf_setup_sections (bfd *abfd)
716 {
717 unsigned int i;
718 unsigned int num_group = elf_tdata (abfd)->num_group;
719 bfd_boolean result = TRUE;
720 asection *s;
721
722 /* Process SHF_LINK_ORDER. */
723 for (s = abfd->sections; s != NULL; s = s->next)
724 {
725 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
726 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
727 {
728 unsigned int elfsec = this_hdr->sh_link;
729 /* FIXME: The old Intel compiler and old strip/objcopy may
730 not set the sh_link or sh_info fields. Hence we could
731 get the situation where elfsec is 0. */
732 if (elfsec == 0)
733 {
734 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
735 if (bed->link_order_error_handler)
736 bed->link_order_error_handler
737 (_("%B: warning: sh_link not set for section `%A'"),
738 abfd, s);
739 }
740 else
741 {
742 asection *linksec = NULL;
743
744 if (elfsec < elf_numsections (abfd))
745 {
746 this_hdr = elf_elfsections (abfd)[elfsec];
747 linksec = this_hdr->bfd_section;
748 }
749
750 /* PR 1991, 2008:
751 Some strip/objcopy may leave an incorrect value in
752 sh_link. We don't want to proceed. */
753 if (linksec == NULL)
754 {
755 (*_bfd_error_handler)
756 (_("%B: sh_link [%d] in section `%A' is incorrect"),
757 s->owner, s, elfsec);
758 result = FALSE;
759 }
760
761 elf_linked_to_section (s) = linksec;
762 }
763 }
764 }
765
766 /* Process section groups. */
767 if (num_group == (unsigned) -1)
768 return result;
769
770 for (i = 0; i < num_group; i++)
771 {
772 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
773 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
774 unsigned int n_elt = shdr->sh_size / 4;
775
776 while (--n_elt != 0)
777 if ((++idx)->shdr->bfd_section)
778 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
779 else if (idx->shdr->sh_type == SHT_RELA
780 || idx->shdr->sh_type == SHT_REL)
781 /* We won't include relocation sections in section groups in
782 output object files. We adjust the group section size here
783 so that relocatable link will work correctly when
784 relocation sections are in section group in input object
785 files. */
786 shdr->bfd_section->size -= 4;
787 else
788 {
789 /* There are some unknown sections in the group. */
790 (*_bfd_error_handler)
791 (_("%B: unknown [%d] section `%s' in group [%s]"),
792 abfd,
793 (unsigned int) idx->shdr->sh_type,
794 bfd_elf_string_from_elf_section (abfd,
795 (elf_elfheader (abfd)
796 ->e_shstrndx),
797 idx->shdr->sh_name),
798 shdr->bfd_section->name);
799 result = FALSE;
800 }
801 }
802 return result;
803 }
804
805 bfd_boolean
806 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
807 {
808 return elf_next_in_group (sec) != NULL;
809 }
810
811 /* Make a BFD section from an ELF section. We store a pointer to the
812 BFD section in the bfd_section field of the header. */
813
814 bfd_boolean
815 _bfd_elf_make_section_from_shdr (bfd *abfd,
816 Elf_Internal_Shdr *hdr,
817 const char *name,
818 int shindex)
819 {
820 asection *newsect;
821 flagword flags;
822 const struct elf_backend_data *bed;
823
824 if (hdr->bfd_section != NULL)
825 return TRUE;
826
827 newsect = bfd_make_section_anyway (abfd, name);
828 if (newsect == NULL)
829 return FALSE;
830
831 hdr->bfd_section = newsect;
832 elf_section_data (newsect)->this_hdr = *hdr;
833 elf_section_data (newsect)->this_idx = shindex;
834
835 /* Always use the real type/flags. */
836 elf_section_type (newsect) = hdr->sh_type;
837 elf_section_flags (newsect) = hdr->sh_flags;
838
839 newsect->filepos = hdr->sh_offset;
840
841 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
842 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
843 || ! bfd_set_section_alignment (abfd, newsect,
844 bfd_log2 (hdr->sh_addralign)))
845 return FALSE;
846
847 flags = SEC_NO_FLAGS;
848 if (hdr->sh_type != SHT_NOBITS)
849 flags |= SEC_HAS_CONTENTS;
850 if (hdr->sh_type == SHT_GROUP)
851 flags |= SEC_GROUP | SEC_EXCLUDE;
852 if ((hdr->sh_flags & SHF_ALLOC) != 0)
853 {
854 flags |= SEC_ALLOC;
855 if (hdr->sh_type != SHT_NOBITS)
856 flags |= SEC_LOAD;
857 }
858 if ((hdr->sh_flags & SHF_WRITE) == 0)
859 flags |= SEC_READONLY;
860 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
861 flags |= SEC_CODE;
862 else if ((flags & SEC_LOAD) != 0)
863 flags |= SEC_DATA;
864 if ((hdr->sh_flags & SHF_MERGE) != 0)
865 {
866 flags |= SEC_MERGE;
867 newsect->entsize = hdr->sh_entsize;
868 if ((hdr->sh_flags & SHF_STRINGS) != 0)
869 flags |= SEC_STRINGS;
870 }
871 if (hdr->sh_flags & SHF_GROUP)
872 if (!setup_group (abfd, hdr, newsect))
873 return FALSE;
874 if ((hdr->sh_flags & SHF_TLS) != 0)
875 flags |= SEC_THREAD_LOCAL;
876 if ((hdr->sh_flags & SHF_EXCLUDE) != 0)
877 flags |= SEC_EXCLUDE;
878
879 if ((flags & SEC_ALLOC) == 0)
880 {
881 /* The debugging sections appear to be recognized only by name,
882 not any sort of flag. Their SEC_ALLOC bits are cleared. */
883 static const struct
884 {
885 const char *name;
886 int len;
887 } debug_sections [] =
888 {
889 { STRING_COMMA_LEN ("debug") }, /* 'd' */
890 { NULL, 0 }, /* 'e' */
891 { NULL, 0 }, /* 'f' */
892 { STRING_COMMA_LEN ("gnu.linkonce.wi.") }, /* 'g' */
893 { NULL, 0 }, /* 'h' */
894 { NULL, 0 }, /* 'i' */
895 { NULL, 0 }, /* 'j' */
896 { NULL, 0 }, /* 'k' */
897 { STRING_COMMA_LEN ("line") }, /* 'l' */
898 { NULL, 0 }, /* 'm' */
899 { NULL, 0 }, /* 'n' */
900 { NULL, 0 }, /* 'o' */
901 { NULL, 0 }, /* 'p' */
902 { NULL, 0 }, /* 'q' */
903 { NULL, 0 }, /* 'r' */
904 { STRING_COMMA_LEN ("stab") }, /* 's' */
905 { NULL, 0 }, /* 't' */
906 { NULL, 0 }, /* 'u' */
907 { NULL, 0 }, /* 'v' */
908 { NULL, 0 }, /* 'w' */
909 { NULL, 0 }, /* 'x' */
910 { NULL, 0 }, /* 'y' */
911 { STRING_COMMA_LEN ("zdebug") } /* 'z' */
912 };
913
914 if (name [0] == '.')
915 {
916 int i = name [1] - 'd';
917 if (i >= 0
918 && i < (int) ARRAY_SIZE (debug_sections)
919 && debug_sections [i].name != NULL
920 && strncmp (&name [1], debug_sections [i].name,
921 debug_sections [i].len) == 0)
922 flags |= SEC_DEBUGGING;
923 }
924 }
925
926 /* As a GNU extension, if the name begins with .gnu.linkonce, we
927 only link a single copy of the section. This is used to support
928 g++. g++ will emit each template expansion in its own section.
929 The symbols will be defined as weak, so that multiple definitions
930 are permitted. The GNU linker extension is to actually discard
931 all but one of the sections. */
932 if (CONST_STRNEQ (name, ".gnu.linkonce")
933 && elf_next_in_group (newsect) == NULL)
934 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
935
936 bed = get_elf_backend_data (abfd);
937 if (bed->elf_backend_section_flags)
938 if (! bed->elf_backend_section_flags (&flags, hdr))
939 return FALSE;
940
941 if (! bfd_set_section_flags (abfd, newsect, flags))
942 return FALSE;
943
944 /* We do not parse the PT_NOTE segments as we are interested even in the
945 separate debug info files which may have the segments offsets corrupted.
946 PT_NOTEs from the core files are currently not parsed using BFD. */
947 if (hdr->sh_type == SHT_NOTE)
948 {
949 bfd_byte *contents;
950
951 if (!bfd_malloc_and_get_section (abfd, newsect, &contents))
952 return FALSE;
953
954 elf_parse_notes (abfd, (char *) contents, hdr->sh_size, -1);
955 free (contents);
956 }
957
958 if ((flags & SEC_ALLOC) != 0)
959 {
960 Elf_Internal_Phdr *phdr;
961 unsigned int i, nload;
962
963 /* Some ELF linkers produce binaries with all the program header
964 p_paddr fields zero. If we have such a binary with more than
965 one PT_LOAD header, then leave the section lma equal to vma
966 so that we don't create sections with overlapping lma. */
967 phdr = elf_tdata (abfd)->phdr;
968 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
969 if (phdr->p_paddr != 0)
970 break;
971 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
972 ++nload;
973 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
974 return TRUE;
975
976 phdr = elf_tdata (abfd)->phdr;
977 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
978 {
979 if (((phdr->p_type == PT_LOAD
980 && (hdr->sh_flags & SHF_TLS) == 0)
981 || phdr->p_type == PT_TLS)
982 && ELF_SECTION_IN_SEGMENT (hdr, phdr))
983 {
984 if ((flags & SEC_LOAD) == 0)
985 newsect->lma = (phdr->p_paddr
986 + hdr->sh_addr - phdr->p_vaddr);
987 else
988 /* We used to use the same adjustment for SEC_LOAD
989 sections, but that doesn't work if the segment
990 is packed with code from multiple VMAs.
991 Instead we calculate the section LMA based on
992 the segment LMA. It is assumed that the
993 segment will contain sections with contiguous
994 LMAs, even if the VMAs are not. */
995 newsect->lma = (phdr->p_paddr
996 + hdr->sh_offset - phdr->p_offset);
997
998 /* With contiguous segments, we can't tell from file
999 offsets whether a section with zero size should
1000 be placed at the end of one segment or the
1001 beginning of the next. Decide based on vaddr. */
1002 if (hdr->sh_addr >= phdr->p_vaddr
1003 && (hdr->sh_addr + hdr->sh_size
1004 <= phdr->p_vaddr + phdr->p_memsz))
1005 break;
1006 }
1007 }
1008 }
1009
1010 /* Compress/decompress DWARF debug sections with names: .debug_* and
1011 .zdebug_*, after the section flags is set. */
1012 if ((flags & SEC_DEBUGGING)
1013 && ((name[1] == 'd' && name[6] == '_')
1014 || (name[1] == 'z' && name[7] == '_')))
1015 {
1016 enum { nothing, compress, decompress } action = nothing;
1017 char *new_name;
1018
1019 if (bfd_is_section_compressed (abfd, newsect))
1020 {
1021 /* Compressed section. Check if we should decompress. */
1022 if ((abfd->flags & BFD_DECOMPRESS))
1023 action = decompress;
1024 }
1025 else
1026 {
1027 /* Normal section. Check if we should compress. */
1028 if ((abfd->flags & BFD_COMPRESS))
1029 action = compress;
1030 }
1031
1032 new_name = NULL;
1033 switch (action)
1034 {
1035 case nothing:
1036 break;
1037 case compress:
1038 if (!bfd_init_section_compress_status (abfd, newsect))
1039 {
1040 (*_bfd_error_handler)
1041 (_("%B: unable to initialize commpress status for section %s"),
1042 abfd, name);
1043 return FALSE;
1044 }
1045 if (name[1] != 'z')
1046 {
1047 unsigned int len = strlen (name);
1048
1049 new_name = bfd_alloc (abfd, len + 2);
1050 if (new_name == NULL)
1051 return FALSE;
1052 new_name[0] = '.';
1053 new_name[1] = 'z';
1054 memcpy (new_name + 2, name + 1, len);
1055 }
1056 break;
1057 case decompress:
1058 if (!bfd_init_section_decompress_status (abfd, newsect))
1059 {
1060 (*_bfd_error_handler)
1061 (_("%B: unable to initialize decommpress status for section %s"),
1062 abfd, name);
1063 return FALSE;
1064 }
1065 if (name[1] == 'z')
1066 {
1067 unsigned int len = strlen (name);
1068
1069 new_name = bfd_alloc (abfd, len);
1070 if (new_name == NULL)
1071 return FALSE;
1072 new_name[0] = '.';
1073 memcpy (new_name + 1, name + 2, len - 1);
1074 }
1075 break;
1076 }
1077 if (new_name != NULL)
1078 bfd_rename_section (abfd, newsect, new_name);
1079 }
1080
1081 return TRUE;
1082 }
1083
1084 const char *const bfd_elf_section_type_names[] = {
1085 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1086 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1087 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1088 };
1089
1090 /* ELF relocs are against symbols. If we are producing relocatable
1091 output, and the reloc is against an external symbol, and nothing
1092 has given us any additional addend, the resulting reloc will also
1093 be against the same symbol. In such a case, we don't want to
1094 change anything about the way the reloc is handled, since it will
1095 all be done at final link time. Rather than put special case code
1096 into bfd_perform_relocation, all the reloc types use this howto
1097 function. It just short circuits the reloc if producing
1098 relocatable output against an external symbol. */
1099
1100 bfd_reloc_status_type
1101 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1102 arelent *reloc_entry,
1103 asymbol *symbol,
1104 void *data ATTRIBUTE_UNUSED,
1105 asection *input_section,
1106 bfd *output_bfd,
1107 char **error_message ATTRIBUTE_UNUSED)
1108 {
1109 if (output_bfd != NULL
1110 && (symbol->flags & BSF_SECTION_SYM) == 0
1111 && (! reloc_entry->howto->partial_inplace
1112 || reloc_entry->addend == 0))
1113 {
1114 reloc_entry->address += input_section->output_offset;
1115 return bfd_reloc_ok;
1116 }
1117
1118 return bfd_reloc_continue;
1119 }
1120 \f
1121 /* Copy the program header and other data from one object module to
1122 another. */
1123
1124 bfd_boolean
1125 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1126 {
1127 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1128 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1129 return TRUE;
1130
1131 BFD_ASSERT (!elf_flags_init (obfd)
1132 || (elf_elfheader (obfd)->e_flags
1133 == elf_elfheader (ibfd)->e_flags));
1134
1135 elf_gp (obfd) = elf_gp (ibfd);
1136 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1137 elf_flags_init (obfd) = TRUE;
1138
1139 /* Copy object attributes. */
1140 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1141 return TRUE;
1142 }
1143
1144 static const char *
1145 get_segment_type (unsigned int p_type)
1146 {
1147 const char *pt;
1148 switch (p_type)
1149 {
1150 case PT_NULL: pt = "NULL"; break;
1151 case PT_LOAD: pt = "LOAD"; break;
1152 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1153 case PT_INTERP: pt = "INTERP"; break;
1154 case PT_NOTE: pt = "NOTE"; break;
1155 case PT_SHLIB: pt = "SHLIB"; break;
1156 case PT_PHDR: pt = "PHDR"; break;
1157 case PT_TLS: pt = "TLS"; break;
1158 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1159 case PT_GNU_STACK: pt = "STACK"; break;
1160 case PT_GNU_RELRO: pt = "RELRO"; break;
1161 default: pt = NULL; break;
1162 }
1163 return pt;
1164 }
1165
1166 /* Print out the program headers. */
1167
1168 bfd_boolean
1169 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1170 {
1171 FILE *f = (FILE *) farg;
1172 Elf_Internal_Phdr *p;
1173 asection *s;
1174 bfd_byte *dynbuf = NULL;
1175
1176 p = elf_tdata (abfd)->phdr;
1177 if (p != NULL)
1178 {
1179 unsigned int i, c;
1180
1181 fprintf (f, _("\nProgram Header:\n"));
1182 c = elf_elfheader (abfd)->e_phnum;
1183 for (i = 0; i < c; i++, p++)
1184 {
1185 const char *pt = get_segment_type (p->p_type);
1186 char buf[20];
1187
1188 if (pt == NULL)
1189 {
1190 sprintf (buf, "0x%lx", p->p_type);
1191 pt = buf;
1192 }
1193 fprintf (f, "%8s off 0x", pt);
1194 bfd_fprintf_vma (abfd, f, p->p_offset);
1195 fprintf (f, " vaddr 0x");
1196 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1197 fprintf (f, " paddr 0x");
1198 bfd_fprintf_vma (abfd, f, p->p_paddr);
1199 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1200 fprintf (f, " filesz 0x");
1201 bfd_fprintf_vma (abfd, f, p->p_filesz);
1202 fprintf (f, " memsz 0x");
1203 bfd_fprintf_vma (abfd, f, p->p_memsz);
1204 fprintf (f, " flags %c%c%c",
1205 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1206 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1207 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1208 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1209 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1210 fprintf (f, "\n");
1211 }
1212 }
1213
1214 s = bfd_get_section_by_name (abfd, ".dynamic");
1215 if (s != NULL)
1216 {
1217 unsigned int elfsec;
1218 unsigned long shlink;
1219 bfd_byte *extdyn, *extdynend;
1220 size_t extdynsize;
1221 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1222
1223 fprintf (f, _("\nDynamic Section:\n"));
1224
1225 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1226 goto error_return;
1227
1228 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1229 if (elfsec == SHN_BAD)
1230 goto error_return;
1231 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1232
1233 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1234 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1235
1236 extdyn = dynbuf;
1237 extdynend = extdyn + s->size;
1238 for (; extdyn < extdynend; extdyn += extdynsize)
1239 {
1240 Elf_Internal_Dyn dyn;
1241 const char *name = "";
1242 char ab[20];
1243 bfd_boolean stringp;
1244 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1245
1246 (*swap_dyn_in) (abfd, extdyn, &dyn);
1247
1248 if (dyn.d_tag == DT_NULL)
1249 break;
1250
1251 stringp = FALSE;
1252 switch (dyn.d_tag)
1253 {
1254 default:
1255 if (bed->elf_backend_get_target_dtag)
1256 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
1257
1258 if (!strcmp (name, ""))
1259 {
1260 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1261 name = ab;
1262 }
1263 break;
1264
1265 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1266 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1267 case DT_PLTGOT: name = "PLTGOT"; break;
1268 case DT_HASH: name = "HASH"; break;
1269 case DT_STRTAB: name = "STRTAB"; break;
1270 case DT_SYMTAB: name = "SYMTAB"; break;
1271 case DT_RELA: name = "RELA"; break;
1272 case DT_RELASZ: name = "RELASZ"; break;
1273 case DT_RELAENT: name = "RELAENT"; break;
1274 case DT_STRSZ: name = "STRSZ"; break;
1275 case DT_SYMENT: name = "SYMENT"; break;
1276 case DT_INIT: name = "INIT"; break;
1277 case DT_FINI: name = "FINI"; break;
1278 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1279 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1280 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1281 case DT_REL: name = "REL"; break;
1282 case DT_RELSZ: name = "RELSZ"; break;
1283 case DT_RELENT: name = "RELENT"; break;
1284 case DT_PLTREL: name = "PLTREL"; break;
1285 case DT_DEBUG: name = "DEBUG"; break;
1286 case DT_TEXTREL: name = "TEXTREL"; break;
1287 case DT_JMPREL: name = "JMPREL"; break;
1288 case DT_BIND_NOW: name = "BIND_NOW"; break;
1289 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1290 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1291 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1292 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1293 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1294 case DT_FLAGS: name = "FLAGS"; break;
1295 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1296 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1297 case DT_CHECKSUM: name = "CHECKSUM"; break;
1298 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1299 case DT_MOVEENT: name = "MOVEENT"; break;
1300 case DT_MOVESZ: name = "MOVESZ"; break;
1301 case DT_FEATURE: name = "FEATURE"; break;
1302 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1303 case DT_SYMINSZ: name = "SYMINSZ"; break;
1304 case DT_SYMINENT: name = "SYMINENT"; break;
1305 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1306 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1307 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1308 case DT_PLTPAD: name = "PLTPAD"; break;
1309 case DT_MOVETAB: name = "MOVETAB"; break;
1310 case DT_SYMINFO: name = "SYMINFO"; break;
1311 case DT_RELACOUNT: name = "RELACOUNT"; break;
1312 case DT_RELCOUNT: name = "RELCOUNT"; break;
1313 case DT_FLAGS_1: name = "FLAGS_1"; break;
1314 case DT_VERSYM: name = "VERSYM"; break;
1315 case DT_VERDEF: name = "VERDEF"; break;
1316 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1317 case DT_VERNEED: name = "VERNEED"; break;
1318 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1319 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1320 case DT_USED: name = "USED"; break;
1321 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1322 case DT_GNU_HASH: name = "GNU_HASH"; break;
1323 }
1324
1325 fprintf (f, " %-20s ", name);
1326 if (! stringp)
1327 {
1328 fprintf (f, "0x");
1329 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
1330 }
1331 else
1332 {
1333 const char *string;
1334 unsigned int tagv = dyn.d_un.d_val;
1335
1336 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1337 if (string == NULL)
1338 goto error_return;
1339 fprintf (f, "%s", string);
1340 }
1341 fprintf (f, "\n");
1342 }
1343
1344 free (dynbuf);
1345 dynbuf = NULL;
1346 }
1347
1348 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1349 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1350 {
1351 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1352 return FALSE;
1353 }
1354
1355 if (elf_dynverdef (abfd) != 0)
1356 {
1357 Elf_Internal_Verdef *t;
1358
1359 fprintf (f, _("\nVersion definitions:\n"));
1360 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1361 {
1362 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1363 t->vd_flags, t->vd_hash,
1364 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1365 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1366 {
1367 Elf_Internal_Verdaux *a;
1368
1369 fprintf (f, "\t");
1370 for (a = t->vd_auxptr->vda_nextptr;
1371 a != NULL;
1372 a = a->vda_nextptr)
1373 fprintf (f, "%s ",
1374 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1375 fprintf (f, "\n");
1376 }
1377 }
1378 }
1379
1380 if (elf_dynverref (abfd) != 0)
1381 {
1382 Elf_Internal_Verneed *t;
1383
1384 fprintf (f, _("\nVersion References:\n"));
1385 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1386 {
1387 Elf_Internal_Vernaux *a;
1388
1389 fprintf (f, _(" required from %s:\n"),
1390 t->vn_filename ? t->vn_filename : "<corrupt>");
1391 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1392 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1393 a->vna_flags, a->vna_other,
1394 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1395 }
1396 }
1397
1398 return TRUE;
1399
1400 error_return:
1401 if (dynbuf != NULL)
1402 free (dynbuf);
1403 return FALSE;
1404 }
1405
1406 /* Display ELF-specific fields of a symbol. */
1407
1408 void
1409 bfd_elf_print_symbol (bfd *abfd,
1410 void *filep,
1411 asymbol *symbol,
1412 bfd_print_symbol_type how)
1413 {
1414 FILE *file = (FILE *) filep;
1415 switch (how)
1416 {
1417 case bfd_print_symbol_name:
1418 fprintf (file, "%s", symbol->name);
1419 break;
1420 case bfd_print_symbol_more:
1421 fprintf (file, "elf ");
1422 bfd_fprintf_vma (abfd, file, symbol->value);
1423 fprintf (file, " %lx", (unsigned long) symbol->flags);
1424 break;
1425 case bfd_print_symbol_all:
1426 {
1427 const char *section_name;
1428 const char *name = NULL;
1429 const struct elf_backend_data *bed;
1430 unsigned char st_other;
1431 bfd_vma val;
1432
1433 section_name = symbol->section ? symbol->section->name : "(*none*)";
1434
1435 bed = get_elf_backend_data (abfd);
1436 if (bed->elf_backend_print_symbol_all)
1437 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1438
1439 if (name == NULL)
1440 {
1441 name = symbol->name;
1442 bfd_print_symbol_vandf (abfd, file, symbol);
1443 }
1444
1445 fprintf (file, " %s\t", section_name);
1446 /* Print the "other" value for a symbol. For common symbols,
1447 we've already printed the size; now print the alignment.
1448 For other symbols, we have no specified alignment, and
1449 we've printed the address; now print the size. */
1450 if (symbol->section && bfd_is_com_section (symbol->section))
1451 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1452 else
1453 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1454 bfd_fprintf_vma (abfd, file, val);
1455
1456 /* If we have version information, print it. */
1457 if (elf_tdata (abfd)->dynversym_section != 0
1458 && (elf_tdata (abfd)->dynverdef_section != 0
1459 || elf_tdata (abfd)->dynverref_section != 0))
1460 {
1461 unsigned int vernum;
1462 const char *version_string;
1463
1464 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1465
1466 if (vernum == 0)
1467 version_string = "";
1468 else if (vernum == 1)
1469 version_string = "Base";
1470 else if (vernum <= elf_tdata (abfd)->cverdefs)
1471 version_string =
1472 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1473 else
1474 {
1475 Elf_Internal_Verneed *t;
1476
1477 version_string = "";
1478 for (t = elf_tdata (abfd)->verref;
1479 t != NULL;
1480 t = t->vn_nextref)
1481 {
1482 Elf_Internal_Vernaux *a;
1483
1484 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1485 {
1486 if (a->vna_other == vernum)
1487 {
1488 version_string = a->vna_nodename;
1489 break;
1490 }
1491 }
1492 }
1493 }
1494
1495 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1496 fprintf (file, " %-11s", version_string);
1497 else
1498 {
1499 int i;
1500
1501 fprintf (file, " (%s)", version_string);
1502 for (i = 10 - strlen (version_string); i > 0; --i)
1503 putc (' ', file);
1504 }
1505 }
1506
1507 /* If the st_other field is not zero, print it. */
1508 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1509
1510 switch (st_other)
1511 {
1512 case 0: break;
1513 case STV_INTERNAL: fprintf (file, " .internal"); break;
1514 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1515 case STV_PROTECTED: fprintf (file, " .protected"); break;
1516 default:
1517 /* Some other non-defined flags are also present, so print
1518 everything hex. */
1519 fprintf (file, " 0x%02x", (unsigned int) st_other);
1520 }
1521
1522 fprintf (file, " %s", name);
1523 }
1524 break;
1525 }
1526 }
1527
1528 /* Allocate an ELF string table--force the first byte to be zero. */
1529
1530 struct bfd_strtab_hash *
1531 _bfd_elf_stringtab_init (void)
1532 {
1533 struct bfd_strtab_hash *ret;
1534
1535 ret = _bfd_stringtab_init ();
1536 if (ret != NULL)
1537 {
1538 bfd_size_type loc;
1539
1540 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1541 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1542 if (loc == (bfd_size_type) -1)
1543 {
1544 _bfd_stringtab_free (ret);
1545 ret = NULL;
1546 }
1547 }
1548 return ret;
1549 }
1550 \f
1551 /* ELF .o/exec file reading */
1552
1553 /* Create a new bfd section from an ELF section header. */
1554
1555 bfd_boolean
1556 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1557 {
1558 Elf_Internal_Shdr *hdr;
1559 Elf_Internal_Ehdr *ehdr;
1560 const struct elf_backend_data *bed;
1561 const char *name;
1562
1563 if (shindex >= elf_numsections (abfd))
1564 return FALSE;
1565
1566 hdr = elf_elfsections (abfd)[shindex];
1567 ehdr = elf_elfheader (abfd);
1568 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
1569 hdr->sh_name);
1570 if (name == NULL)
1571 return FALSE;
1572
1573 bed = get_elf_backend_data (abfd);
1574 switch (hdr->sh_type)
1575 {
1576 case SHT_NULL:
1577 /* Inactive section. Throw it away. */
1578 return TRUE;
1579
1580 case SHT_PROGBITS: /* Normal section with contents. */
1581 case SHT_NOBITS: /* .bss section. */
1582 case SHT_HASH: /* .hash section. */
1583 case SHT_NOTE: /* .note section. */
1584 case SHT_INIT_ARRAY: /* .init_array section. */
1585 case SHT_FINI_ARRAY: /* .fini_array section. */
1586 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1587 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1588 case SHT_GNU_HASH: /* .gnu.hash section. */
1589 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1590
1591 case SHT_DYNAMIC: /* Dynamic linking information. */
1592 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1593 return FALSE;
1594 if (hdr->sh_link > elf_numsections (abfd))
1595 {
1596 /* PR 10478: Accept Solaris binaries with a sh_link
1597 field set to SHN_BEFORE or SHN_AFTER. */
1598 switch (bfd_get_arch (abfd))
1599 {
1600 case bfd_arch_i386:
1601 case bfd_arch_sparc:
1602 if (hdr->sh_link == (SHN_LORESERVE & 0xffff) /* SHN_BEFORE */
1603 || hdr->sh_link == ((SHN_LORESERVE + 1) & 0xffff) /* SHN_AFTER */)
1604 break;
1605 /* Otherwise fall through. */
1606 default:
1607 return FALSE;
1608 }
1609 }
1610 else if (elf_elfsections (abfd)[hdr->sh_link] == NULL)
1611 return FALSE;
1612 else if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1613 {
1614 Elf_Internal_Shdr *dynsymhdr;
1615
1616 /* The shared libraries distributed with hpux11 have a bogus
1617 sh_link field for the ".dynamic" section. Find the
1618 string table for the ".dynsym" section instead. */
1619 if (elf_dynsymtab (abfd) != 0)
1620 {
1621 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1622 hdr->sh_link = dynsymhdr->sh_link;
1623 }
1624 else
1625 {
1626 unsigned int i, num_sec;
1627
1628 num_sec = elf_numsections (abfd);
1629 for (i = 1; i < num_sec; i++)
1630 {
1631 dynsymhdr = elf_elfsections (abfd)[i];
1632 if (dynsymhdr->sh_type == SHT_DYNSYM)
1633 {
1634 hdr->sh_link = dynsymhdr->sh_link;
1635 break;
1636 }
1637 }
1638 }
1639 }
1640 break;
1641
1642 case SHT_SYMTAB: /* A symbol table */
1643 if (elf_onesymtab (abfd) == shindex)
1644 return TRUE;
1645
1646 if (hdr->sh_entsize != bed->s->sizeof_sym)
1647 return FALSE;
1648 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
1649 {
1650 if (hdr->sh_size != 0)
1651 return FALSE;
1652 /* Some assemblers erroneously set sh_info to one with a
1653 zero sh_size. ld sees this as a global symbol count
1654 of (unsigned) -1. Fix it here. */
1655 hdr->sh_info = 0;
1656 return TRUE;
1657 }
1658 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1659 elf_onesymtab (abfd) = shindex;
1660 elf_tdata (abfd)->symtab_hdr = *hdr;
1661 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1662 abfd->flags |= HAS_SYMS;
1663
1664 /* Sometimes a shared object will map in the symbol table. If
1665 SHF_ALLOC is set, and this is a shared object, then we also
1666 treat this section as a BFD section. We can not base the
1667 decision purely on SHF_ALLOC, because that flag is sometimes
1668 set in a relocatable object file, which would confuse the
1669 linker. */
1670 if ((hdr->sh_flags & SHF_ALLOC) != 0
1671 && (abfd->flags & DYNAMIC) != 0
1672 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1673 shindex))
1674 return FALSE;
1675
1676 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1677 can't read symbols without that section loaded as well. It
1678 is most likely specified by the next section header. */
1679 if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
1680 {
1681 unsigned int i, num_sec;
1682
1683 num_sec = elf_numsections (abfd);
1684 for (i = shindex + 1; i < num_sec; i++)
1685 {
1686 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1687 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1688 && hdr2->sh_link == shindex)
1689 break;
1690 }
1691 if (i == num_sec)
1692 for (i = 1; i < shindex; i++)
1693 {
1694 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1695 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1696 && hdr2->sh_link == shindex)
1697 break;
1698 }
1699 if (i != shindex)
1700 return bfd_section_from_shdr (abfd, i);
1701 }
1702 return TRUE;
1703
1704 case SHT_DYNSYM: /* A dynamic symbol table */
1705 if (elf_dynsymtab (abfd) == shindex)
1706 return TRUE;
1707
1708 if (hdr->sh_entsize != bed->s->sizeof_sym)
1709 return FALSE;
1710 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
1711 {
1712 if (hdr->sh_size != 0)
1713 return FALSE;
1714 /* Some linkers erroneously set sh_info to one with a
1715 zero sh_size. ld sees this as a global symbol count
1716 of (unsigned) -1. Fix it here. */
1717 hdr->sh_info = 0;
1718 return TRUE;
1719 }
1720 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1721 elf_dynsymtab (abfd) = shindex;
1722 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1723 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1724 abfd->flags |= HAS_SYMS;
1725
1726 /* Besides being a symbol table, we also treat this as a regular
1727 section, so that objcopy can handle it. */
1728 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1729
1730 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1731 if (elf_symtab_shndx (abfd) == shindex)
1732 return TRUE;
1733
1734 BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
1735 elf_symtab_shndx (abfd) = shindex;
1736 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1737 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1738 return TRUE;
1739
1740 case SHT_STRTAB: /* A string table */
1741 if (hdr->bfd_section != NULL)
1742 return TRUE;
1743 if (ehdr->e_shstrndx == shindex)
1744 {
1745 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1746 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1747 return TRUE;
1748 }
1749 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
1750 {
1751 symtab_strtab:
1752 elf_tdata (abfd)->strtab_hdr = *hdr;
1753 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
1754 return TRUE;
1755 }
1756 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
1757 {
1758 dynsymtab_strtab:
1759 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1760 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
1761 elf_elfsections (abfd)[shindex] = hdr;
1762 /* We also treat this as a regular section, so that objcopy
1763 can handle it. */
1764 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1765 shindex);
1766 }
1767
1768 /* If the string table isn't one of the above, then treat it as a
1769 regular section. We need to scan all the headers to be sure,
1770 just in case this strtab section appeared before the above. */
1771 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
1772 {
1773 unsigned int i, num_sec;
1774
1775 num_sec = elf_numsections (abfd);
1776 for (i = 1; i < num_sec; i++)
1777 {
1778 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1779 if (hdr2->sh_link == shindex)
1780 {
1781 /* Prevent endless recursion on broken objects. */
1782 if (i == shindex)
1783 return FALSE;
1784 if (! bfd_section_from_shdr (abfd, i))
1785 return FALSE;
1786 if (elf_onesymtab (abfd) == i)
1787 goto symtab_strtab;
1788 if (elf_dynsymtab (abfd) == i)
1789 goto dynsymtab_strtab;
1790 }
1791 }
1792 }
1793 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1794
1795 case SHT_REL:
1796 case SHT_RELA:
1797 /* *These* do a lot of work -- but build no sections! */
1798 {
1799 asection *target_sect;
1800 Elf_Internal_Shdr *hdr2, **p_hdr;
1801 unsigned int num_sec = elf_numsections (abfd);
1802 struct bfd_elf_section_data *esdt;
1803 bfd_size_type amt;
1804
1805 if (hdr->sh_entsize
1806 != (bfd_size_type) (hdr->sh_type == SHT_REL
1807 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
1808 return FALSE;
1809
1810 /* Check for a bogus link to avoid crashing. */
1811 if (hdr->sh_link >= num_sec)
1812 {
1813 ((*_bfd_error_handler)
1814 (_("%B: invalid link %lu for reloc section %s (index %u)"),
1815 abfd, hdr->sh_link, name, shindex));
1816 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1817 shindex);
1818 }
1819
1820 /* For some incomprehensible reason Oracle distributes
1821 libraries for Solaris in which some of the objects have
1822 bogus sh_link fields. It would be nice if we could just
1823 reject them, but, unfortunately, some people need to use
1824 them. We scan through the section headers; if we find only
1825 one suitable symbol table, we clobber the sh_link to point
1826 to it. I hope this doesn't break anything.
1827
1828 Don't do it on executable nor shared library. */
1829 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0
1830 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
1831 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
1832 {
1833 unsigned int scan;
1834 int found;
1835
1836 found = 0;
1837 for (scan = 1; scan < num_sec; scan++)
1838 {
1839 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
1840 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
1841 {
1842 if (found != 0)
1843 {
1844 found = 0;
1845 break;
1846 }
1847 found = scan;
1848 }
1849 }
1850 if (found != 0)
1851 hdr->sh_link = found;
1852 }
1853
1854 /* Get the symbol table. */
1855 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
1856 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
1857 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
1858 return FALSE;
1859
1860 /* If this reloc section does not use the main symbol table we
1861 don't treat it as a reloc section. BFD can't adequately
1862 represent such a section, so at least for now, we don't
1863 try. We just present it as a normal section. We also
1864 can't use it as a reloc section if it points to the null
1865 section, an invalid section, another reloc section, or its
1866 sh_link points to the null section. */
1867 if (hdr->sh_link != elf_onesymtab (abfd)
1868 || hdr->sh_link == SHN_UNDEF
1869 || hdr->sh_info == SHN_UNDEF
1870 || hdr->sh_info >= num_sec
1871 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
1872 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
1873 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1874 shindex);
1875
1876 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
1877 return FALSE;
1878 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
1879 if (target_sect == NULL)
1880 return FALSE;
1881
1882 esdt = elf_section_data (target_sect);
1883 if (hdr->sh_type == SHT_RELA)
1884 p_hdr = &esdt->rela.hdr;
1885 else
1886 p_hdr = &esdt->rel.hdr;
1887
1888 BFD_ASSERT (*p_hdr == NULL);
1889 amt = sizeof (*hdr2);
1890 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, amt);
1891 if (hdr2 == NULL)
1892 return FALSE;
1893 *hdr2 = *hdr;
1894 *p_hdr = hdr2;
1895 elf_elfsections (abfd)[shindex] = hdr2;
1896 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
1897 target_sect->flags |= SEC_RELOC;
1898 target_sect->relocation = NULL;
1899 target_sect->rel_filepos = hdr->sh_offset;
1900 /* In the section to which the relocations apply, mark whether
1901 its relocations are of the REL or RELA variety. */
1902 if (hdr->sh_size != 0)
1903 {
1904 if (hdr->sh_type == SHT_RELA)
1905 target_sect->use_rela_p = 1;
1906 }
1907 abfd->flags |= HAS_RELOC;
1908 return TRUE;
1909 }
1910
1911 case SHT_GNU_verdef:
1912 elf_dynverdef (abfd) = shindex;
1913 elf_tdata (abfd)->dynverdef_hdr = *hdr;
1914 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1915
1916 case SHT_GNU_versym:
1917 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
1918 return FALSE;
1919 elf_dynversym (abfd) = shindex;
1920 elf_tdata (abfd)->dynversym_hdr = *hdr;
1921 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1922
1923 case SHT_GNU_verneed:
1924 elf_dynverref (abfd) = shindex;
1925 elf_tdata (abfd)->dynverref_hdr = *hdr;
1926 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1927
1928 case SHT_SHLIB:
1929 return TRUE;
1930
1931 case SHT_GROUP:
1932 if (! IS_VALID_GROUP_SECTION_HEADER (hdr))
1933 return FALSE;
1934 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1935 return FALSE;
1936 if (hdr->contents != NULL)
1937 {
1938 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
1939 unsigned int n_elt = hdr->sh_size / GRP_ENTRY_SIZE;
1940 asection *s;
1941
1942 if (idx->flags & GRP_COMDAT)
1943 hdr->bfd_section->flags
1944 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1945
1946 /* We try to keep the same section order as it comes in. */
1947 idx += n_elt;
1948 while (--n_elt != 0)
1949 {
1950 --idx;
1951
1952 if (idx->shdr != NULL
1953 && (s = idx->shdr->bfd_section) != NULL
1954 && elf_next_in_group (s) != NULL)
1955 {
1956 elf_next_in_group (hdr->bfd_section) = s;
1957 break;
1958 }
1959 }
1960 }
1961 break;
1962
1963 default:
1964 /* Possibly an attributes section. */
1965 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
1966 || hdr->sh_type == bed->obj_attrs_section_type)
1967 {
1968 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1969 return FALSE;
1970 _bfd_elf_parse_attributes (abfd, hdr);
1971 return TRUE;
1972 }
1973
1974 /* Check for any processor-specific section types. */
1975 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
1976 return TRUE;
1977
1978 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
1979 {
1980 if ((hdr->sh_flags & SHF_ALLOC) != 0)
1981 /* FIXME: How to properly handle allocated section reserved
1982 for applications? */
1983 (*_bfd_error_handler)
1984 (_("%B: don't know how to handle allocated, application "
1985 "specific section `%s' [0x%8x]"),
1986 abfd, name, hdr->sh_type);
1987 else
1988 /* Allow sections reserved for applications. */
1989 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1990 shindex);
1991 }
1992 else if (hdr->sh_type >= SHT_LOPROC
1993 && hdr->sh_type <= SHT_HIPROC)
1994 /* FIXME: We should handle this section. */
1995 (*_bfd_error_handler)
1996 (_("%B: don't know how to handle processor specific section "
1997 "`%s' [0x%8x]"),
1998 abfd, name, hdr->sh_type);
1999 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
2000 {
2001 /* Unrecognised OS-specific sections. */
2002 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
2003 /* SHF_OS_NONCONFORMING indicates that special knowledge is
2004 required to correctly process the section and the file should
2005 be rejected with an error message. */
2006 (*_bfd_error_handler)
2007 (_("%B: don't know how to handle OS specific section "
2008 "`%s' [0x%8x]"),
2009 abfd, name, hdr->sh_type);
2010 else
2011 /* Otherwise it should be processed. */
2012 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2013 }
2014 else
2015 /* FIXME: We should handle this section. */
2016 (*_bfd_error_handler)
2017 (_("%B: don't know how to handle section `%s' [0x%8x]"),
2018 abfd, name, hdr->sh_type);
2019
2020 return FALSE;
2021 }
2022
2023 return TRUE;
2024 }
2025
2026 /* Return the local symbol specified by ABFD, R_SYMNDX. */
2027
2028 Elf_Internal_Sym *
2029 bfd_sym_from_r_symndx (struct sym_cache *cache,
2030 bfd *abfd,
2031 unsigned long r_symndx)
2032 {
2033 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2034
2035 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
2036 {
2037 Elf_Internal_Shdr *symtab_hdr;
2038 unsigned char esym[sizeof (Elf64_External_Sym)];
2039 Elf_External_Sym_Shndx eshndx;
2040
2041 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2042 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2043 &cache->sym[ent], esym, &eshndx) == NULL)
2044 return NULL;
2045
2046 if (cache->abfd != abfd)
2047 {
2048 memset (cache->indx, -1, sizeof (cache->indx));
2049 cache->abfd = abfd;
2050 }
2051 cache->indx[ent] = r_symndx;
2052 }
2053
2054 return &cache->sym[ent];
2055 }
2056
2057 /* Given an ELF section number, retrieve the corresponding BFD
2058 section. */
2059
2060 asection *
2061 bfd_section_from_elf_index (bfd *abfd, unsigned int sec_index)
2062 {
2063 if (sec_index >= elf_numsections (abfd))
2064 return NULL;
2065 return elf_elfsections (abfd)[sec_index]->bfd_section;
2066 }
2067
2068 static const struct bfd_elf_special_section special_sections_b[] =
2069 {
2070 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2071 { NULL, 0, 0, 0, 0 }
2072 };
2073
2074 static const struct bfd_elf_special_section special_sections_c[] =
2075 {
2076 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2077 { NULL, 0, 0, 0, 0 }
2078 };
2079
2080 static const struct bfd_elf_special_section special_sections_d[] =
2081 {
2082 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2083 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2084 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2085 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2086 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2087 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2088 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2089 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2090 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2091 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2092 { NULL, 0, 0, 0, 0 }
2093 };
2094
2095 static const struct bfd_elf_special_section special_sections_f[] =
2096 {
2097 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2098 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2099 { NULL, 0, 0, 0, 0 }
2100 };
2101
2102 static const struct bfd_elf_special_section special_sections_g[] =
2103 {
2104 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2105 { STRING_COMMA_LEN (".gnu.lto_"), -1, SHT_PROGBITS, SHF_EXCLUDE },
2106 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2107 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2108 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2109 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2110 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2111 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2112 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2113 { NULL, 0, 0, 0, 0 }
2114 };
2115
2116 static const struct bfd_elf_special_section special_sections_h[] =
2117 {
2118 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2119 { NULL, 0, 0, 0, 0 }
2120 };
2121
2122 static const struct bfd_elf_special_section special_sections_i[] =
2123 {
2124 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2125 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2126 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2127 { NULL, 0, 0, 0, 0 }
2128 };
2129
2130 static const struct bfd_elf_special_section special_sections_l[] =
2131 {
2132 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2133 { NULL, 0, 0, 0, 0 }
2134 };
2135
2136 static const struct bfd_elf_special_section special_sections_n[] =
2137 {
2138 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2139 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2140 { NULL, 0, 0, 0, 0 }
2141 };
2142
2143 static const struct bfd_elf_special_section special_sections_p[] =
2144 {
2145 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2146 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2147 { NULL, 0, 0, 0, 0 }
2148 };
2149
2150 static const struct bfd_elf_special_section special_sections_r[] =
2151 {
2152 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2153 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2154 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2155 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2156 { NULL, 0, 0, 0, 0 }
2157 };
2158
2159 static const struct bfd_elf_special_section special_sections_s[] =
2160 {
2161 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2162 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2163 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2164 /* See struct bfd_elf_special_section declaration for the semantics of
2165 this special case where .prefix_length != strlen (.prefix). */
2166 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2167 { NULL, 0, 0, 0, 0 }
2168 };
2169
2170 static const struct bfd_elf_special_section special_sections_t[] =
2171 {
2172 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2173 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2174 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2175 { NULL, 0, 0, 0, 0 }
2176 };
2177
2178 static const struct bfd_elf_special_section special_sections_z[] =
2179 {
2180 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 },
2181 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 },
2182 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 },
2183 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 },
2184 { NULL, 0, 0, 0, 0 }
2185 };
2186
2187 static const struct bfd_elf_special_section * const special_sections[] =
2188 {
2189 special_sections_b, /* 'b' */
2190 special_sections_c, /* 'c' */
2191 special_sections_d, /* 'd' */
2192 NULL, /* 'e' */
2193 special_sections_f, /* 'f' */
2194 special_sections_g, /* 'g' */
2195 special_sections_h, /* 'h' */
2196 special_sections_i, /* 'i' */
2197 NULL, /* 'j' */
2198 NULL, /* 'k' */
2199 special_sections_l, /* 'l' */
2200 NULL, /* 'm' */
2201 special_sections_n, /* 'n' */
2202 NULL, /* 'o' */
2203 special_sections_p, /* 'p' */
2204 NULL, /* 'q' */
2205 special_sections_r, /* 'r' */
2206 special_sections_s, /* 's' */
2207 special_sections_t, /* 't' */
2208 NULL, /* 'u' */
2209 NULL, /* 'v' */
2210 NULL, /* 'w' */
2211 NULL, /* 'x' */
2212 NULL, /* 'y' */
2213 special_sections_z /* 'z' */
2214 };
2215
2216 const struct bfd_elf_special_section *
2217 _bfd_elf_get_special_section (const char *name,
2218 const struct bfd_elf_special_section *spec,
2219 unsigned int rela)
2220 {
2221 int i;
2222 int len;
2223
2224 len = strlen (name);
2225
2226 for (i = 0; spec[i].prefix != NULL; i++)
2227 {
2228 int suffix_len;
2229 int prefix_len = spec[i].prefix_length;
2230
2231 if (len < prefix_len)
2232 continue;
2233 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2234 continue;
2235
2236 suffix_len = spec[i].suffix_length;
2237 if (suffix_len <= 0)
2238 {
2239 if (name[prefix_len] != 0)
2240 {
2241 if (suffix_len == 0)
2242 continue;
2243 if (name[prefix_len] != '.'
2244 && (suffix_len == -2
2245 || (rela && spec[i].type == SHT_REL)))
2246 continue;
2247 }
2248 }
2249 else
2250 {
2251 if (len < prefix_len + suffix_len)
2252 continue;
2253 if (memcmp (name + len - suffix_len,
2254 spec[i].prefix + prefix_len,
2255 suffix_len) != 0)
2256 continue;
2257 }
2258 return &spec[i];
2259 }
2260
2261 return NULL;
2262 }
2263
2264 const struct bfd_elf_special_section *
2265 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2266 {
2267 int i;
2268 const struct bfd_elf_special_section *spec;
2269 const struct elf_backend_data *bed;
2270
2271 /* See if this is one of the special sections. */
2272 if (sec->name == NULL)
2273 return NULL;
2274
2275 bed = get_elf_backend_data (abfd);
2276 spec = bed->special_sections;
2277 if (spec)
2278 {
2279 spec = _bfd_elf_get_special_section (sec->name,
2280 bed->special_sections,
2281 sec->use_rela_p);
2282 if (spec != NULL)
2283 return spec;
2284 }
2285
2286 if (sec->name[0] != '.')
2287 return NULL;
2288
2289 i = sec->name[1] - 'b';
2290 if (i < 0 || i > 'z' - 'b')
2291 return NULL;
2292
2293 spec = special_sections[i];
2294
2295 if (spec == NULL)
2296 return NULL;
2297
2298 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2299 }
2300
2301 bfd_boolean
2302 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2303 {
2304 struct bfd_elf_section_data *sdata;
2305 const struct elf_backend_data *bed;
2306 const struct bfd_elf_special_section *ssect;
2307
2308 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2309 if (sdata == NULL)
2310 {
2311 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd,
2312 sizeof (*sdata));
2313 if (sdata == NULL)
2314 return FALSE;
2315 sec->used_by_bfd = sdata;
2316 }
2317
2318 /* Indicate whether or not this section should use RELA relocations. */
2319 bed = get_elf_backend_data (abfd);
2320 sec->use_rela_p = bed->default_use_rela_p;
2321
2322 /* When we read a file, we don't need to set ELF section type and
2323 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2324 anyway. We will set ELF section type and flags for all linker
2325 created sections. If user specifies BFD section flags, we will
2326 set ELF section type and flags based on BFD section flags in
2327 elf_fake_sections. Special handling for .init_array/.fini_array
2328 output sections since they may contain .ctors/.dtors input
2329 sections. We don't want _bfd_elf_init_private_section_data to
2330 copy ELF section type from .ctors/.dtors input sections. */
2331 if (abfd->direction != read_direction
2332 || (sec->flags & SEC_LINKER_CREATED) != 0)
2333 {
2334 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2335 if (ssect != NULL
2336 && (!sec->flags
2337 || (sec->flags & SEC_LINKER_CREATED) != 0
2338 || ssect->type == SHT_INIT_ARRAY
2339 || ssect->type == SHT_FINI_ARRAY))
2340 {
2341 elf_section_type (sec) = ssect->type;
2342 elf_section_flags (sec) = ssect->attr;
2343 }
2344 }
2345
2346 return _bfd_generic_new_section_hook (abfd, sec);
2347 }
2348
2349 /* Create a new bfd section from an ELF program header.
2350
2351 Since program segments have no names, we generate a synthetic name
2352 of the form segment<NUM>, where NUM is generally the index in the
2353 program header table. For segments that are split (see below) we
2354 generate the names segment<NUM>a and segment<NUM>b.
2355
2356 Note that some program segments may have a file size that is different than
2357 (less than) the memory size. All this means is that at execution the
2358 system must allocate the amount of memory specified by the memory size,
2359 but only initialize it with the first "file size" bytes read from the
2360 file. This would occur for example, with program segments consisting
2361 of combined data+bss.
2362
2363 To handle the above situation, this routine generates TWO bfd sections
2364 for the single program segment. The first has the length specified by
2365 the file size of the segment, and the second has the length specified
2366 by the difference between the two sizes. In effect, the segment is split
2367 into its initialized and uninitialized parts.
2368
2369 */
2370
2371 bfd_boolean
2372 _bfd_elf_make_section_from_phdr (bfd *abfd,
2373 Elf_Internal_Phdr *hdr,
2374 int hdr_index,
2375 const char *type_name)
2376 {
2377 asection *newsect;
2378 char *name;
2379 char namebuf[64];
2380 size_t len;
2381 int split;
2382
2383 split = ((hdr->p_memsz > 0)
2384 && (hdr->p_filesz > 0)
2385 && (hdr->p_memsz > hdr->p_filesz));
2386
2387 if (hdr->p_filesz > 0)
2388 {
2389 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "a" : "");
2390 len = strlen (namebuf) + 1;
2391 name = (char *) bfd_alloc (abfd, len);
2392 if (!name)
2393 return FALSE;
2394 memcpy (name, namebuf, len);
2395 newsect = bfd_make_section (abfd, name);
2396 if (newsect == NULL)
2397 return FALSE;
2398 newsect->vma = hdr->p_vaddr;
2399 newsect->lma = hdr->p_paddr;
2400 newsect->size = hdr->p_filesz;
2401 newsect->filepos = hdr->p_offset;
2402 newsect->flags |= SEC_HAS_CONTENTS;
2403 newsect->alignment_power = bfd_log2 (hdr->p_align);
2404 if (hdr->p_type == PT_LOAD)
2405 {
2406 newsect->flags |= SEC_ALLOC;
2407 newsect->flags |= SEC_LOAD;
2408 if (hdr->p_flags & PF_X)
2409 {
2410 /* FIXME: all we known is that it has execute PERMISSION,
2411 may be data. */
2412 newsect->flags |= SEC_CODE;
2413 }
2414 }
2415 if (!(hdr->p_flags & PF_W))
2416 {
2417 newsect->flags |= SEC_READONLY;
2418 }
2419 }
2420
2421 if (hdr->p_memsz > hdr->p_filesz)
2422 {
2423 bfd_vma align;
2424
2425 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "b" : "");
2426 len = strlen (namebuf) + 1;
2427 name = (char *) bfd_alloc (abfd, len);
2428 if (!name)
2429 return FALSE;
2430 memcpy (name, namebuf, len);
2431 newsect = bfd_make_section (abfd, name);
2432 if (newsect == NULL)
2433 return FALSE;
2434 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2435 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2436 newsect->size = hdr->p_memsz - hdr->p_filesz;
2437 newsect->filepos = hdr->p_offset + hdr->p_filesz;
2438 align = newsect->vma & -newsect->vma;
2439 if (align == 0 || align > hdr->p_align)
2440 align = hdr->p_align;
2441 newsect->alignment_power = bfd_log2 (align);
2442 if (hdr->p_type == PT_LOAD)
2443 {
2444 /* Hack for gdb. Segments that have not been modified do
2445 not have their contents written to a core file, on the
2446 assumption that a debugger can find the contents in the
2447 executable. We flag this case by setting the fake
2448 section size to zero. Note that "real" bss sections will
2449 always have their contents dumped to the core file. */
2450 if (bfd_get_format (abfd) == bfd_core)
2451 newsect->size = 0;
2452 newsect->flags |= SEC_ALLOC;
2453 if (hdr->p_flags & PF_X)
2454 newsect->flags |= SEC_CODE;
2455 }
2456 if (!(hdr->p_flags & PF_W))
2457 newsect->flags |= SEC_READONLY;
2458 }
2459
2460 return TRUE;
2461 }
2462
2463 bfd_boolean
2464 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int hdr_index)
2465 {
2466 const struct elf_backend_data *bed;
2467
2468 switch (hdr->p_type)
2469 {
2470 case PT_NULL:
2471 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "null");
2472
2473 case PT_LOAD:
2474 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "load");
2475
2476 case PT_DYNAMIC:
2477 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "dynamic");
2478
2479 case PT_INTERP:
2480 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "interp");
2481
2482 case PT_NOTE:
2483 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "note"))
2484 return FALSE;
2485 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2486 return FALSE;
2487 return TRUE;
2488
2489 case PT_SHLIB:
2490 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "shlib");
2491
2492 case PT_PHDR:
2493 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "phdr");
2494
2495 case PT_GNU_EH_FRAME:
2496 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index,
2497 "eh_frame_hdr");
2498
2499 case PT_GNU_STACK:
2500 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "stack");
2501
2502 case PT_GNU_RELRO:
2503 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "relro");
2504
2505 default:
2506 /* Check for any processor-specific program segment types. */
2507 bed = get_elf_backend_data (abfd);
2508 return bed->elf_backend_section_from_phdr (abfd, hdr, hdr_index, "proc");
2509 }
2510 }
2511
2512 /* Return the REL_HDR for SEC, assuming there is only a single one, either
2513 REL or RELA. */
2514
2515 Elf_Internal_Shdr *
2516 _bfd_elf_single_rel_hdr (asection *sec)
2517 {
2518 if (elf_section_data (sec)->rel.hdr)
2519 {
2520 BFD_ASSERT (elf_section_data (sec)->rela.hdr == NULL);
2521 return elf_section_data (sec)->rel.hdr;
2522 }
2523 else
2524 return elf_section_data (sec)->rela.hdr;
2525 }
2526
2527 /* Allocate and initialize a section-header for a new reloc section,
2528 containing relocations against ASECT. It is stored in RELDATA. If
2529 USE_RELA_P is TRUE, we use RELA relocations; otherwise, we use REL
2530 relocations. */
2531
2532 bfd_boolean
2533 _bfd_elf_init_reloc_shdr (bfd *abfd,
2534 struct bfd_elf_section_reloc_data *reldata,
2535 asection *asect,
2536 bfd_boolean use_rela_p)
2537 {
2538 Elf_Internal_Shdr *rel_hdr;
2539 char *name;
2540 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2541 bfd_size_type amt;
2542
2543 amt = sizeof (Elf_Internal_Shdr);
2544 BFD_ASSERT (reldata->hdr == NULL);
2545 rel_hdr = bfd_zalloc (abfd, amt);
2546 reldata->hdr = rel_hdr;
2547
2548 amt = sizeof ".rela" + strlen (asect->name);
2549 name = (char *) bfd_alloc (abfd, amt);
2550 if (name == NULL)
2551 return FALSE;
2552 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2553 rel_hdr->sh_name =
2554 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2555 FALSE);
2556 if (rel_hdr->sh_name == (unsigned int) -1)
2557 return FALSE;
2558 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2559 rel_hdr->sh_entsize = (use_rela_p
2560 ? bed->s->sizeof_rela
2561 : bed->s->sizeof_rel);
2562 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
2563 rel_hdr->sh_flags = 0;
2564 rel_hdr->sh_addr = 0;
2565 rel_hdr->sh_size = 0;
2566 rel_hdr->sh_offset = 0;
2567
2568 return TRUE;
2569 }
2570
2571 /* Return the default section type based on the passed in section flags. */
2572
2573 int
2574 bfd_elf_get_default_section_type (flagword flags)
2575 {
2576 if ((flags & SEC_ALLOC) != 0
2577 && (flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2578 return SHT_NOBITS;
2579 return SHT_PROGBITS;
2580 }
2581
2582 struct fake_section_arg
2583 {
2584 struct bfd_link_info *link_info;
2585 bfd_boolean failed;
2586 };
2587
2588 /* Set up an ELF internal section header for a section. */
2589
2590 static void
2591 elf_fake_sections (bfd *abfd, asection *asect, void *fsarg)
2592 {
2593 struct fake_section_arg *arg = (struct fake_section_arg *)fsarg;
2594 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2595 struct bfd_elf_section_data *esd = elf_section_data (asect);
2596 Elf_Internal_Shdr *this_hdr;
2597 unsigned int sh_type;
2598
2599 if (arg->failed)
2600 {
2601 /* We already failed; just get out of the bfd_map_over_sections
2602 loop. */
2603 return;
2604 }
2605
2606 this_hdr = &esd->this_hdr;
2607
2608 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2609 asect->name, FALSE);
2610 if (this_hdr->sh_name == (unsigned int) -1)
2611 {
2612 arg->failed = TRUE;
2613 return;
2614 }
2615
2616 /* Don't clear sh_flags. Assembler may set additional bits. */
2617
2618 if ((asect->flags & SEC_ALLOC) != 0
2619 || asect->user_set_vma)
2620 this_hdr->sh_addr = asect->vma;
2621 else
2622 this_hdr->sh_addr = 0;
2623
2624 this_hdr->sh_offset = 0;
2625 this_hdr->sh_size = asect->size;
2626 this_hdr->sh_link = 0;
2627 this_hdr->sh_addralign = (bfd_vma) 1 << asect->alignment_power;
2628 /* The sh_entsize and sh_info fields may have been set already by
2629 copy_private_section_data. */
2630
2631 this_hdr->bfd_section = asect;
2632 this_hdr->contents = NULL;
2633
2634 /* If the section type is unspecified, we set it based on
2635 asect->flags. */
2636 if ((asect->flags & SEC_GROUP) != 0)
2637 sh_type = SHT_GROUP;
2638 else
2639 sh_type = bfd_elf_get_default_section_type (asect->flags);
2640
2641 if (this_hdr->sh_type == SHT_NULL)
2642 this_hdr->sh_type = sh_type;
2643 else if (this_hdr->sh_type == SHT_NOBITS
2644 && sh_type == SHT_PROGBITS
2645 && (asect->flags & SEC_ALLOC) != 0)
2646 {
2647 /* Warn if we are changing a NOBITS section to PROGBITS, but
2648 allow the link to proceed. This can happen when users link
2649 non-bss input sections to bss output sections, or emit data
2650 to a bss output section via a linker script. */
2651 (*_bfd_error_handler)
2652 (_("warning: section `%A' type changed to PROGBITS"), asect);
2653 this_hdr->sh_type = sh_type;
2654 }
2655
2656 switch (this_hdr->sh_type)
2657 {
2658 default:
2659 break;
2660
2661 case SHT_STRTAB:
2662 case SHT_INIT_ARRAY:
2663 case SHT_FINI_ARRAY:
2664 case SHT_PREINIT_ARRAY:
2665 case SHT_NOTE:
2666 case SHT_NOBITS:
2667 case SHT_PROGBITS:
2668 break;
2669
2670 case SHT_HASH:
2671 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2672 break;
2673
2674 case SHT_DYNSYM:
2675 this_hdr->sh_entsize = bed->s->sizeof_sym;
2676 break;
2677
2678 case SHT_DYNAMIC:
2679 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2680 break;
2681
2682 case SHT_RELA:
2683 if (get_elf_backend_data (abfd)->may_use_rela_p)
2684 this_hdr->sh_entsize = bed->s->sizeof_rela;
2685 break;
2686
2687 case SHT_REL:
2688 if (get_elf_backend_data (abfd)->may_use_rel_p)
2689 this_hdr->sh_entsize = bed->s->sizeof_rel;
2690 break;
2691
2692 case SHT_GNU_versym:
2693 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2694 break;
2695
2696 case SHT_GNU_verdef:
2697 this_hdr->sh_entsize = 0;
2698 /* objcopy or strip will copy over sh_info, but may not set
2699 cverdefs. The linker will set cverdefs, but sh_info will be
2700 zero. */
2701 if (this_hdr->sh_info == 0)
2702 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2703 else
2704 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2705 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2706 break;
2707
2708 case SHT_GNU_verneed:
2709 this_hdr->sh_entsize = 0;
2710 /* objcopy or strip will copy over sh_info, but may not set
2711 cverrefs. The linker will set cverrefs, but sh_info will be
2712 zero. */
2713 if (this_hdr->sh_info == 0)
2714 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2715 else
2716 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2717 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2718 break;
2719
2720 case SHT_GROUP:
2721 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
2722 break;
2723
2724 case SHT_GNU_HASH:
2725 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
2726 break;
2727 }
2728
2729 if ((asect->flags & SEC_ALLOC) != 0)
2730 this_hdr->sh_flags |= SHF_ALLOC;
2731 if ((asect->flags & SEC_READONLY) == 0)
2732 this_hdr->sh_flags |= SHF_WRITE;
2733 if ((asect->flags & SEC_CODE) != 0)
2734 this_hdr->sh_flags |= SHF_EXECINSTR;
2735 if ((asect->flags & SEC_MERGE) != 0)
2736 {
2737 this_hdr->sh_flags |= SHF_MERGE;
2738 this_hdr->sh_entsize = asect->entsize;
2739 if ((asect->flags & SEC_STRINGS) != 0)
2740 this_hdr->sh_flags |= SHF_STRINGS;
2741 }
2742 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2743 this_hdr->sh_flags |= SHF_GROUP;
2744 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2745 {
2746 this_hdr->sh_flags |= SHF_TLS;
2747 if (asect->size == 0
2748 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2749 {
2750 struct bfd_link_order *o = asect->map_tail.link_order;
2751
2752 this_hdr->sh_size = 0;
2753 if (o != NULL)
2754 {
2755 this_hdr->sh_size = o->offset + o->size;
2756 if (this_hdr->sh_size != 0)
2757 this_hdr->sh_type = SHT_NOBITS;
2758 }
2759 }
2760 }
2761 if ((asect->flags & (SEC_GROUP | SEC_EXCLUDE)) == SEC_EXCLUDE)
2762 this_hdr->sh_flags |= SHF_EXCLUDE;
2763
2764 /* If the section has relocs, set up a section header for the
2765 SHT_REL[A] section. If two relocation sections are required for
2766 this section, it is up to the processor-specific back-end to
2767 create the other. */
2768 if ((asect->flags & SEC_RELOC) != 0)
2769 {
2770 /* When doing a relocatable link, create both REL and RELA sections if
2771 needed. */
2772 if (arg->link_info
2773 /* Do the normal setup if we wouldn't create any sections here. */
2774 && esd->rel.count + esd->rela.count > 0
2775 && (arg->link_info->relocatable || arg->link_info->emitrelocations))
2776 {
2777 if (esd->rel.count && esd->rel.hdr == NULL
2778 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rel, asect, FALSE))
2779 {
2780 arg->failed = TRUE;
2781 return;
2782 }
2783 if (esd->rela.count && esd->rela.hdr == NULL
2784 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rela, asect, TRUE))
2785 {
2786 arg->failed = TRUE;
2787 return;
2788 }
2789 }
2790 else if (!_bfd_elf_init_reloc_shdr (abfd,
2791 (asect->use_rela_p
2792 ? &esd->rela : &esd->rel),
2793 asect,
2794 asect->use_rela_p))
2795 arg->failed = TRUE;
2796 }
2797
2798 /* Check for processor-specific section types. */
2799 sh_type = this_hdr->sh_type;
2800 if (bed->elf_backend_fake_sections
2801 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2802 arg->failed = TRUE;
2803
2804 if (sh_type == SHT_NOBITS && asect->size != 0)
2805 {
2806 /* Don't change the header type from NOBITS if we are being
2807 called for objcopy --only-keep-debug. */
2808 this_hdr->sh_type = sh_type;
2809 }
2810 }
2811
2812 /* Fill in the contents of a SHT_GROUP section. Called from
2813 _bfd_elf_compute_section_file_positions for gas, objcopy, and
2814 when ELF targets use the generic linker, ld. Called for ld -r
2815 from bfd_elf_final_link. */
2816
2817 void
2818 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2819 {
2820 bfd_boolean *failedptr = (bfd_boolean *) failedptrarg;
2821 asection *elt, *first;
2822 unsigned char *loc;
2823 bfd_boolean gas;
2824
2825 /* Ignore linker created group section. See elfNN_ia64_object_p in
2826 elfxx-ia64.c. */
2827 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
2828 || *failedptr)
2829 return;
2830
2831 if (elf_section_data (sec)->this_hdr.sh_info == 0)
2832 {
2833 unsigned long symindx = 0;
2834
2835 /* elf_group_id will have been set up by objcopy and the
2836 generic linker. */
2837 if (elf_group_id (sec) != NULL)
2838 symindx = elf_group_id (sec)->udata.i;
2839
2840 if (symindx == 0)
2841 {
2842 /* If called from the assembler, swap_out_syms will have set up
2843 elf_section_syms. */
2844 BFD_ASSERT (elf_section_syms (abfd) != NULL);
2845 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2846 }
2847 elf_section_data (sec)->this_hdr.sh_info = symindx;
2848 }
2849 else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2)
2850 {
2851 /* The ELF backend linker sets sh_info to -2 when the group
2852 signature symbol is global, and thus the index can't be
2853 set until all local symbols are output. */
2854 asection *igroup = elf_sec_group (elf_next_in_group (sec));
2855 struct bfd_elf_section_data *sec_data = elf_section_data (igroup);
2856 unsigned long symndx = sec_data->this_hdr.sh_info;
2857 unsigned long extsymoff = 0;
2858 struct elf_link_hash_entry *h;
2859
2860 if (!elf_bad_symtab (igroup->owner))
2861 {
2862 Elf_Internal_Shdr *symtab_hdr;
2863
2864 symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr;
2865 extsymoff = symtab_hdr->sh_info;
2866 }
2867 h = elf_sym_hashes (igroup->owner)[symndx - extsymoff];
2868 while (h->root.type == bfd_link_hash_indirect
2869 || h->root.type == bfd_link_hash_warning)
2870 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2871
2872 elf_section_data (sec)->this_hdr.sh_info = h->indx;
2873 }
2874
2875 /* The contents won't be allocated for "ld -r" or objcopy. */
2876 gas = TRUE;
2877 if (sec->contents == NULL)
2878 {
2879 gas = FALSE;
2880 sec->contents = (unsigned char *) bfd_alloc (abfd, sec->size);
2881
2882 /* Arrange for the section to be written out. */
2883 elf_section_data (sec)->this_hdr.contents = sec->contents;
2884 if (sec->contents == NULL)
2885 {
2886 *failedptr = TRUE;
2887 return;
2888 }
2889 }
2890
2891 loc = sec->contents + sec->size;
2892
2893 /* Get the pointer to the first section in the group that gas
2894 squirreled away here. objcopy arranges for this to be set to the
2895 start of the input section group. */
2896 first = elt = elf_next_in_group (sec);
2897
2898 /* First element is a flag word. Rest of section is elf section
2899 indices for all the sections of the group. Write them backwards
2900 just to keep the group in the same order as given in .section
2901 directives, not that it matters. */
2902 while (elt != NULL)
2903 {
2904 asection *s;
2905
2906 s = elt;
2907 if (!gas)
2908 s = s->output_section;
2909 if (s != NULL
2910 && !bfd_is_abs_section (s))
2911 {
2912 unsigned int idx = elf_section_data (s)->this_idx;
2913
2914 loc -= 4;
2915 H_PUT_32 (abfd, idx, loc);
2916 }
2917 elt = elf_next_in_group (elt);
2918 if (elt == first)
2919 break;
2920 }
2921
2922 if ((loc -= 4) != sec->contents)
2923 abort ();
2924
2925 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2926 }
2927
2928 /* Assign all ELF section numbers. The dummy first section is handled here
2929 too. The link/info pointers for the standard section types are filled
2930 in here too, while we're at it. */
2931
2932 static bfd_boolean
2933 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
2934 {
2935 struct elf_obj_tdata *t = elf_tdata (abfd);
2936 asection *sec;
2937 unsigned int section_number, secn;
2938 Elf_Internal_Shdr **i_shdrp;
2939 struct bfd_elf_section_data *d;
2940 bfd_boolean need_symtab;
2941
2942 section_number = 1;
2943
2944 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2945
2946 /* SHT_GROUP sections are in relocatable files only. */
2947 if (link_info == NULL || link_info->relocatable)
2948 {
2949 /* Put SHT_GROUP sections first. */
2950 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2951 {
2952 d = elf_section_data (sec);
2953
2954 if (d->this_hdr.sh_type == SHT_GROUP)
2955 {
2956 if (sec->flags & SEC_LINKER_CREATED)
2957 {
2958 /* Remove the linker created SHT_GROUP sections. */
2959 bfd_section_list_remove (abfd, sec);
2960 abfd->section_count--;
2961 }
2962 else
2963 d->this_idx = section_number++;
2964 }
2965 }
2966 }
2967
2968 for (sec = abfd->sections; sec; sec = sec->next)
2969 {
2970 d = elf_section_data (sec);
2971
2972 if (d->this_hdr.sh_type != SHT_GROUP)
2973 d->this_idx = section_number++;
2974 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
2975 if (d->rel.hdr)
2976 {
2977 d->rel.idx = section_number++;
2978 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel.hdr->sh_name);
2979 }
2980 else
2981 d->rel.idx = 0;
2982
2983 if (d->rela.hdr)
2984 {
2985 d->rela.idx = section_number++;
2986 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rela.hdr->sh_name);
2987 }
2988 else
2989 d->rela.idx = 0;
2990 }
2991
2992 t->shstrtab_section = section_number++;
2993 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
2994 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
2995
2996 need_symtab = (bfd_get_symcount (abfd) > 0
2997 || (link_info == NULL
2998 && ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
2999 == HAS_RELOC)));
3000 if (need_symtab)
3001 {
3002 t->symtab_section = section_number++;
3003 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
3004 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
3005 {
3006 t->symtab_shndx_section = section_number++;
3007 t->symtab_shndx_hdr.sh_name
3008 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3009 ".symtab_shndx", FALSE);
3010 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
3011 return FALSE;
3012 }
3013 t->strtab_section = section_number++;
3014 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3015 }
3016
3017 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
3018 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3019
3020 elf_numsections (abfd) = section_number;
3021 elf_elfheader (abfd)->e_shnum = section_number;
3022
3023 /* Set up the list of section header pointers, in agreement with the
3024 indices. */
3025 i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc2 (abfd, section_number,
3026 sizeof (Elf_Internal_Shdr *));
3027 if (i_shdrp == NULL)
3028 return FALSE;
3029
3030 i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd,
3031 sizeof (Elf_Internal_Shdr));
3032 if (i_shdrp[0] == NULL)
3033 {
3034 bfd_release (abfd, i_shdrp);
3035 return FALSE;
3036 }
3037
3038 elf_elfsections (abfd) = i_shdrp;
3039
3040 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
3041 if (need_symtab)
3042 {
3043 i_shdrp[t->symtab_section] = &t->symtab_hdr;
3044 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
3045 {
3046 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
3047 t->symtab_shndx_hdr.sh_link = t->symtab_section;
3048 }
3049 i_shdrp[t->strtab_section] = &t->strtab_hdr;
3050 t->symtab_hdr.sh_link = t->strtab_section;
3051 }
3052
3053 for (sec = abfd->sections; sec; sec = sec->next)
3054 {
3055 asection *s;
3056 const char *name;
3057
3058 d = elf_section_data (sec);
3059
3060 i_shdrp[d->this_idx] = &d->this_hdr;
3061 if (d->rel.idx != 0)
3062 i_shdrp[d->rel.idx] = d->rel.hdr;
3063 if (d->rela.idx != 0)
3064 i_shdrp[d->rela.idx] = d->rela.hdr;
3065
3066 /* Fill in the sh_link and sh_info fields while we're at it. */
3067
3068 /* sh_link of a reloc section is the section index of the symbol
3069 table. sh_info is the section index of the section to which
3070 the relocation entries apply. */
3071 if (d->rel.idx != 0)
3072 {
3073 d->rel.hdr->sh_link = t->symtab_section;
3074 d->rel.hdr->sh_info = d->this_idx;
3075 }
3076 if (d->rela.idx != 0)
3077 {
3078 d->rela.hdr->sh_link = t->symtab_section;
3079 d->rela.hdr->sh_info = d->this_idx;
3080 }
3081
3082 /* We need to set up sh_link for SHF_LINK_ORDER. */
3083 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3084 {
3085 s = elf_linked_to_section (sec);
3086 if (s)
3087 {
3088 /* elf_linked_to_section points to the input section. */
3089 if (link_info != NULL)
3090 {
3091 /* Check discarded linkonce section. */
3092 if (discarded_section (s))
3093 {
3094 asection *kept;
3095 (*_bfd_error_handler)
3096 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
3097 abfd, d->this_hdr.bfd_section,
3098 s, s->owner);
3099 /* Point to the kept section if it has the same
3100 size as the discarded one. */
3101 kept = _bfd_elf_check_kept_section (s, link_info);
3102 if (kept == NULL)
3103 {
3104 bfd_set_error (bfd_error_bad_value);
3105 return FALSE;
3106 }
3107 s = kept;
3108 }
3109
3110 s = s->output_section;
3111 BFD_ASSERT (s != NULL);
3112 }
3113 else
3114 {
3115 /* Handle objcopy. */
3116 if (s->output_section == NULL)
3117 {
3118 (*_bfd_error_handler)
3119 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
3120 abfd, d->this_hdr.bfd_section, s, s->owner);
3121 bfd_set_error (bfd_error_bad_value);
3122 return FALSE;
3123 }
3124 s = s->output_section;
3125 }
3126 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3127 }
3128 else
3129 {
3130 /* PR 290:
3131 The Intel C compiler generates SHT_IA_64_UNWIND with
3132 SHF_LINK_ORDER. But it doesn't set the sh_link or
3133 sh_info fields. Hence we could get the situation
3134 where s is NULL. */
3135 const struct elf_backend_data *bed
3136 = get_elf_backend_data (abfd);
3137 if (bed->link_order_error_handler)
3138 bed->link_order_error_handler
3139 (_("%B: warning: sh_link not set for section `%A'"),
3140 abfd, sec);
3141 }
3142 }
3143
3144 switch (d->this_hdr.sh_type)
3145 {
3146 case SHT_REL:
3147 case SHT_RELA:
3148 /* A reloc section which we are treating as a normal BFD
3149 section. sh_link is the section index of the symbol
3150 table. sh_info is the section index of the section to
3151 which the relocation entries apply. We assume that an
3152 allocated reloc section uses the dynamic symbol table.
3153 FIXME: How can we be sure? */
3154 s = bfd_get_section_by_name (abfd, ".dynsym");
3155 if (s != NULL)
3156 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3157
3158 /* We look up the section the relocs apply to by name. */
3159 name = sec->name;
3160 if (d->this_hdr.sh_type == SHT_REL)
3161 name += 4;
3162 else
3163 name += 5;
3164 s = bfd_get_section_by_name (abfd, name);
3165 if (s != NULL)
3166 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3167 break;
3168
3169 case SHT_STRTAB:
3170 /* We assume that a section named .stab*str is a stabs
3171 string section. We look for a section with the same name
3172 but without the trailing ``str'', and set its sh_link
3173 field to point to this section. */
3174 if (CONST_STRNEQ (sec->name, ".stab")
3175 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3176 {
3177 size_t len;
3178 char *alc;
3179
3180 len = strlen (sec->name);
3181 alc = (char *) bfd_malloc (len - 2);
3182 if (alc == NULL)
3183 return FALSE;
3184 memcpy (alc, sec->name, len - 3);
3185 alc[len - 3] = '\0';
3186 s = bfd_get_section_by_name (abfd, alc);
3187 free (alc);
3188 if (s != NULL)
3189 {
3190 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3191
3192 /* This is a .stab section. */
3193 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3194 elf_section_data (s)->this_hdr.sh_entsize
3195 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3196 }
3197 }
3198 break;
3199
3200 case SHT_DYNAMIC:
3201 case SHT_DYNSYM:
3202 case SHT_GNU_verneed:
3203 case SHT_GNU_verdef:
3204 /* sh_link is the section header index of the string table
3205 used for the dynamic entries, or the symbol table, or the
3206 version strings. */
3207 s = bfd_get_section_by_name (abfd, ".dynstr");
3208 if (s != NULL)
3209 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3210 break;
3211
3212 case SHT_GNU_LIBLIST:
3213 /* sh_link is the section header index of the prelink library
3214 list used for the dynamic entries, or the symbol table, or
3215 the version strings. */
3216 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3217 ? ".dynstr" : ".gnu.libstr");
3218 if (s != NULL)
3219 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3220 break;
3221
3222 case SHT_HASH:
3223 case SHT_GNU_HASH:
3224 case SHT_GNU_versym:
3225 /* sh_link is the section header index of the symbol table
3226 this hash table or version table is for. */
3227 s = bfd_get_section_by_name (abfd, ".dynsym");
3228 if (s != NULL)
3229 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3230 break;
3231
3232 case SHT_GROUP:
3233 d->this_hdr.sh_link = t->symtab_section;
3234 }
3235 }
3236
3237 for (secn = 1; secn < section_number; ++secn)
3238 if (i_shdrp[secn] == NULL)
3239 i_shdrp[secn] = i_shdrp[0];
3240 else
3241 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
3242 i_shdrp[secn]->sh_name);
3243 return TRUE;
3244 }
3245
3246 /* Map symbol from it's internal number to the external number, moving
3247 all local symbols to be at the head of the list. */
3248
3249 static bfd_boolean
3250 sym_is_global (bfd *abfd, asymbol *sym)
3251 {
3252 /* If the backend has a special mapping, use it. */
3253 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3254 if (bed->elf_backend_sym_is_global)
3255 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3256
3257 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0
3258 || bfd_is_und_section (bfd_get_section (sym))
3259 || bfd_is_com_section (bfd_get_section (sym)));
3260 }
3261
3262 /* Don't output section symbols for sections that are not going to be
3263 output. */
3264
3265 static bfd_boolean
3266 ignore_section_sym (bfd *abfd, asymbol *sym)
3267 {
3268 return ((sym->flags & BSF_SECTION_SYM) != 0
3269 && !(sym->section->owner == abfd
3270 || (sym->section->output_section->owner == abfd
3271 && sym->section->output_offset == 0)));
3272 }
3273
3274 static bfd_boolean
3275 elf_map_symbols (bfd *abfd)
3276 {
3277 unsigned int symcount = bfd_get_symcount (abfd);
3278 asymbol **syms = bfd_get_outsymbols (abfd);
3279 asymbol **sect_syms;
3280 unsigned int num_locals = 0;
3281 unsigned int num_globals = 0;
3282 unsigned int num_locals2 = 0;
3283 unsigned int num_globals2 = 0;
3284 int max_index = 0;
3285 unsigned int idx;
3286 asection *asect;
3287 asymbol **new_syms;
3288
3289 #ifdef DEBUG
3290 fprintf (stderr, "elf_map_symbols\n");
3291 fflush (stderr);
3292 #endif
3293
3294 for (asect = abfd->sections; asect; asect = asect->next)
3295 {
3296 if (max_index < asect->index)
3297 max_index = asect->index;
3298 }
3299
3300 max_index++;
3301 sect_syms = (asymbol **) bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
3302 if (sect_syms == NULL)
3303 return FALSE;
3304 elf_section_syms (abfd) = sect_syms;
3305 elf_num_section_syms (abfd) = max_index;
3306
3307 /* Init sect_syms entries for any section symbols we have already
3308 decided to output. */
3309 for (idx = 0; idx < symcount; idx++)
3310 {
3311 asymbol *sym = syms[idx];
3312
3313 if ((sym->flags & BSF_SECTION_SYM) != 0
3314 && sym->value == 0
3315 && !ignore_section_sym (abfd, sym))
3316 {
3317 asection *sec = sym->section;
3318
3319 if (sec->owner != abfd)
3320 sec = sec->output_section;
3321
3322 sect_syms[sec->index] = syms[idx];
3323 }
3324 }
3325
3326 /* Classify all of the symbols. */
3327 for (idx = 0; idx < symcount; idx++)
3328 {
3329 if (ignore_section_sym (abfd, syms[idx]))
3330 continue;
3331 if (!sym_is_global (abfd, syms[idx]))
3332 num_locals++;
3333 else
3334 num_globals++;
3335 }
3336
3337 /* We will be adding a section symbol for each normal BFD section. Most
3338 sections will already have a section symbol in outsymbols, but
3339 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3340 at least in that case. */
3341 for (asect = abfd->sections; asect; asect = asect->next)
3342 {
3343 if (sect_syms[asect->index] == NULL)
3344 {
3345 if (!sym_is_global (abfd, asect->symbol))
3346 num_locals++;
3347 else
3348 num_globals++;
3349 }
3350 }
3351
3352 /* Now sort the symbols so the local symbols are first. */
3353 new_syms = (asymbol **) bfd_alloc2 (abfd, num_locals + num_globals,
3354 sizeof (asymbol *));
3355
3356 if (new_syms == NULL)
3357 return FALSE;
3358
3359 for (idx = 0; idx < symcount; idx++)
3360 {
3361 asymbol *sym = syms[idx];
3362 unsigned int i;
3363
3364 if (ignore_section_sym (abfd, sym))
3365 continue;
3366 if (!sym_is_global (abfd, sym))
3367 i = num_locals2++;
3368 else
3369 i = num_locals + num_globals2++;
3370 new_syms[i] = sym;
3371 sym->udata.i = i + 1;
3372 }
3373 for (asect = abfd->sections; asect; asect = asect->next)
3374 {
3375 if (sect_syms[asect->index] == NULL)
3376 {
3377 asymbol *sym = asect->symbol;
3378 unsigned int i;
3379
3380 sect_syms[asect->index] = sym;
3381 if (!sym_is_global (abfd, sym))
3382 i = num_locals2++;
3383 else
3384 i = num_locals + num_globals2++;
3385 new_syms[i] = sym;
3386 sym->udata.i = i + 1;
3387 }
3388 }
3389
3390 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3391
3392 elf_num_locals (abfd) = num_locals;
3393 elf_num_globals (abfd) = num_globals;
3394 return TRUE;
3395 }
3396
3397 /* Align to the maximum file alignment that could be required for any
3398 ELF data structure. */
3399
3400 static inline file_ptr
3401 align_file_position (file_ptr off, int align)
3402 {
3403 return (off + align - 1) & ~(align - 1);
3404 }
3405
3406 /* Assign a file position to a section, optionally aligning to the
3407 required section alignment. */
3408
3409 file_ptr
3410 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3411 file_ptr offset,
3412 bfd_boolean align)
3413 {
3414 if (align && i_shdrp->sh_addralign > 1)
3415 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
3416 i_shdrp->sh_offset = offset;
3417 if (i_shdrp->bfd_section != NULL)
3418 i_shdrp->bfd_section->filepos = offset;
3419 if (i_shdrp->sh_type != SHT_NOBITS)
3420 offset += i_shdrp->sh_size;
3421 return offset;
3422 }
3423
3424 /* Compute the file positions we are going to put the sections at, and
3425 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3426 is not NULL, this is being called by the ELF backend linker. */
3427
3428 bfd_boolean
3429 _bfd_elf_compute_section_file_positions (bfd *abfd,
3430 struct bfd_link_info *link_info)
3431 {
3432 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3433 struct fake_section_arg fsargs;
3434 bfd_boolean failed;
3435 struct bfd_strtab_hash *strtab = NULL;
3436 Elf_Internal_Shdr *shstrtab_hdr;
3437 bfd_boolean need_symtab;
3438
3439 if (abfd->output_has_begun)
3440 return TRUE;
3441
3442 /* Do any elf backend specific processing first. */
3443 if (bed->elf_backend_begin_write_processing)
3444 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3445
3446 if (! prep_headers (abfd))
3447 return FALSE;
3448
3449 /* Post process the headers if necessary. */
3450 if (bed->elf_backend_post_process_headers)
3451 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3452
3453 fsargs.failed = FALSE;
3454 fsargs.link_info = link_info;
3455 bfd_map_over_sections (abfd, elf_fake_sections, &fsargs);
3456 if (fsargs.failed)
3457 return FALSE;
3458
3459 if (!assign_section_numbers (abfd, link_info))
3460 return FALSE;
3461
3462 /* The backend linker builds symbol table information itself. */
3463 need_symtab = (link_info == NULL
3464 && (bfd_get_symcount (abfd) > 0
3465 || ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
3466 == HAS_RELOC)));
3467 if (need_symtab)
3468 {
3469 /* Non-zero if doing a relocatable link. */
3470 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3471
3472 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3473 return FALSE;
3474 }
3475
3476 failed = FALSE;
3477 if (link_info == NULL)
3478 {
3479 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3480 if (failed)
3481 return FALSE;
3482 }
3483
3484 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3485 /* sh_name was set in prep_headers. */
3486 shstrtab_hdr->sh_type = SHT_STRTAB;
3487 shstrtab_hdr->sh_flags = 0;
3488 shstrtab_hdr->sh_addr = 0;
3489 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3490 shstrtab_hdr->sh_entsize = 0;
3491 shstrtab_hdr->sh_link = 0;
3492 shstrtab_hdr->sh_info = 0;
3493 /* sh_offset is set in assign_file_positions_except_relocs. */
3494 shstrtab_hdr->sh_addralign = 1;
3495
3496 if (!assign_file_positions_except_relocs (abfd, link_info))
3497 return FALSE;
3498
3499 if (need_symtab)
3500 {
3501 file_ptr off;
3502 Elf_Internal_Shdr *hdr;
3503
3504 off = elf_tdata (abfd)->next_file_pos;
3505
3506 hdr = &elf_tdata (abfd)->symtab_hdr;
3507 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3508
3509 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3510 if (hdr->sh_size != 0)
3511 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3512
3513 hdr = &elf_tdata (abfd)->strtab_hdr;
3514 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3515
3516 elf_tdata (abfd)->next_file_pos = off;
3517
3518 /* Now that we know where the .strtab section goes, write it
3519 out. */
3520 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3521 || ! _bfd_stringtab_emit (abfd, strtab))
3522 return FALSE;
3523 _bfd_stringtab_free (strtab);
3524 }
3525
3526 abfd->output_has_begun = TRUE;
3527
3528 return TRUE;
3529 }
3530
3531 /* Make an initial estimate of the size of the program header. If we
3532 get the number wrong here, we'll redo section placement. */
3533
3534 static bfd_size_type
3535 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
3536 {
3537 size_t segs;
3538 asection *s;
3539 const struct elf_backend_data *bed;
3540
3541 /* Assume we will need exactly two PT_LOAD segments: one for text
3542 and one for data. */
3543 segs = 2;
3544
3545 s = bfd_get_section_by_name (abfd, ".interp");
3546 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3547 {
3548 /* If we have a loadable interpreter section, we need a
3549 PT_INTERP segment. In this case, assume we also need a
3550 PT_PHDR segment, although that may not be true for all
3551 targets. */
3552 segs += 2;
3553 }
3554
3555 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
3556 {
3557 /* We need a PT_DYNAMIC segment. */
3558 ++segs;
3559 }
3560
3561 if (info != NULL && info->relro)
3562 {
3563 /* We need a PT_GNU_RELRO segment. */
3564 ++segs;
3565 }
3566
3567 if (elf_tdata (abfd)->eh_frame_hdr)
3568 {
3569 /* We need a PT_GNU_EH_FRAME segment. */
3570 ++segs;
3571 }
3572
3573 if (elf_tdata (abfd)->stack_flags)
3574 {
3575 /* We need a PT_GNU_STACK segment. */
3576 ++segs;
3577 }
3578
3579 for (s = abfd->sections; s != NULL; s = s->next)
3580 {
3581 if ((s->flags & SEC_LOAD) != 0
3582 && CONST_STRNEQ (s->name, ".note"))
3583 {
3584 /* We need a PT_NOTE segment. */
3585 ++segs;
3586 /* Try to create just one PT_NOTE segment
3587 for all adjacent loadable .note* sections.
3588 gABI requires that within a PT_NOTE segment
3589 (and also inside of each SHT_NOTE section)
3590 each note is padded to a multiple of 4 size,
3591 so we check whether the sections are correctly
3592 aligned. */
3593 if (s->alignment_power == 2)
3594 while (s->next != NULL
3595 && s->next->alignment_power == 2
3596 && (s->next->flags & SEC_LOAD) != 0
3597 && CONST_STRNEQ (s->next->name, ".note"))
3598 s = s->next;
3599 }
3600 }
3601
3602 for (s = abfd->sections; s != NULL; s = s->next)
3603 {
3604 if (s->flags & SEC_THREAD_LOCAL)
3605 {
3606 /* We need a PT_TLS segment. */
3607 ++segs;
3608 break;
3609 }
3610 }
3611
3612 /* Let the backend count up any program headers it might need. */
3613 bed = get_elf_backend_data (abfd);
3614 if (bed->elf_backend_additional_program_headers)
3615 {
3616 int a;
3617
3618 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
3619 if (a == -1)
3620 abort ();
3621 segs += a;
3622 }
3623
3624 return segs * bed->s->sizeof_phdr;
3625 }
3626
3627 /* Find the segment that contains the output_section of section. */
3628
3629 Elf_Internal_Phdr *
3630 _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
3631 {
3632 struct elf_segment_map *m;
3633 Elf_Internal_Phdr *p;
3634
3635 for (m = elf_tdata (abfd)->segment_map,
3636 p = elf_tdata (abfd)->phdr;
3637 m != NULL;
3638 m = m->next, p++)
3639 {
3640 int i;
3641
3642 for (i = m->count - 1; i >= 0; i--)
3643 if (m->sections[i] == section)
3644 return p;
3645 }
3646
3647 return NULL;
3648 }
3649
3650 /* Create a mapping from a set of sections to a program segment. */
3651
3652 static struct elf_segment_map *
3653 make_mapping (bfd *abfd,
3654 asection **sections,
3655 unsigned int from,
3656 unsigned int to,
3657 bfd_boolean phdr)
3658 {
3659 struct elf_segment_map *m;
3660 unsigned int i;
3661 asection **hdrpp;
3662 bfd_size_type amt;
3663
3664 amt = sizeof (struct elf_segment_map);
3665 amt += (to - from - 1) * sizeof (asection *);
3666 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3667 if (m == NULL)
3668 return NULL;
3669 m->next = NULL;
3670 m->p_type = PT_LOAD;
3671 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3672 m->sections[i - from] = *hdrpp;
3673 m->count = to - from;
3674
3675 if (from == 0 && phdr)
3676 {
3677 /* Include the headers in the first PT_LOAD segment. */
3678 m->includes_filehdr = 1;
3679 m->includes_phdrs = 1;
3680 }
3681
3682 return m;
3683 }
3684
3685 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3686 on failure. */
3687
3688 struct elf_segment_map *
3689 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3690 {
3691 struct elf_segment_map *m;
3692
3693 m = (struct elf_segment_map *) bfd_zalloc (abfd,
3694 sizeof (struct elf_segment_map));
3695 if (m == NULL)
3696 return NULL;
3697 m->next = NULL;
3698 m->p_type = PT_DYNAMIC;
3699 m->count = 1;
3700 m->sections[0] = dynsec;
3701
3702 return m;
3703 }
3704
3705 /* Possibly add or remove segments from the segment map. */
3706
3707 static bfd_boolean
3708 elf_modify_segment_map (bfd *abfd,
3709 struct bfd_link_info *info,
3710 bfd_boolean remove_empty_load)
3711 {
3712 struct elf_segment_map **m;
3713 const struct elf_backend_data *bed;
3714
3715 /* The placement algorithm assumes that non allocated sections are
3716 not in PT_LOAD segments. We ensure this here by removing such
3717 sections from the segment map. We also remove excluded
3718 sections. Finally, any PT_LOAD segment without sections is
3719 removed. */
3720 m = &elf_tdata (abfd)->segment_map;
3721 while (*m)
3722 {
3723 unsigned int i, new_count;
3724
3725 for (new_count = 0, i = 0; i < (*m)->count; i++)
3726 {
3727 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
3728 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
3729 || (*m)->p_type != PT_LOAD))
3730 {
3731 (*m)->sections[new_count] = (*m)->sections[i];
3732 new_count++;
3733 }
3734 }
3735 (*m)->count = new_count;
3736
3737 if (remove_empty_load && (*m)->p_type == PT_LOAD && (*m)->count == 0)
3738 *m = (*m)->next;
3739 else
3740 m = &(*m)->next;
3741 }
3742
3743 bed = get_elf_backend_data (abfd);
3744 if (bed->elf_backend_modify_segment_map != NULL)
3745 {
3746 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
3747 return FALSE;
3748 }
3749
3750 return TRUE;
3751 }
3752
3753 /* Set up a mapping from BFD sections to program segments. */
3754
3755 bfd_boolean
3756 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
3757 {
3758 unsigned int count;
3759 struct elf_segment_map *m;
3760 asection **sections = NULL;
3761 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3762 bfd_boolean no_user_phdrs;
3763
3764 no_user_phdrs = elf_tdata (abfd)->segment_map == NULL;
3765
3766 if (info != NULL)
3767 info->user_phdrs = !no_user_phdrs;
3768
3769 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
3770 {
3771 asection *s;
3772 unsigned int i;
3773 struct elf_segment_map *mfirst;
3774 struct elf_segment_map **pm;
3775 asection *last_hdr;
3776 bfd_vma last_size;
3777 unsigned int phdr_index;
3778 bfd_vma maxpagesize;
3779 asection **hdrpp;
3780 bfd_boolean phdr_in_segment = TRUE;
3781 bfd_boolean writable;
3782 int tls_count = 0;
3783 asection *first_tls = NULL;
3784 asection *dynsec, *eh_frame_hdr;
3785 bfd_size_type amt;
3786 bfd_vma addr_mask, wrap_to = 0;
3787
3788 /* Select the allocated sections, and sort them. */
3789
3790 sections = (asection **) bfd_malloc2 (bfd_count_sections (abfd),
3791 sizeof (asection *));
3792 if (sections == NULL)
3793 goto error_return;
3794
3795 /* Calculate top address, avoiding undefined behaviour of shift
3796 left operator when shift count is equal to size of type
3797 being shifted. */
3798 addr_mask = ((bfd_vma) 1 << (bfd_arch_bits_per_address (abfd) - 1)) - 1;
3799 addr_mask = (addr_mask << 1) + 1;
3800
3801 i = 0;
3802 for (s = abfd->sections; s != NULL; s = s->next)
3803 {
3804 if ((s->flags & SEC_ALLOC) != 0)
3805 {
3806 sections[i] = s;
3807 ++i;
3808 /* A wrapping section potentially clashes with header. */
3809 if (((s->lma + s->size) & addr_mask) < (s->lma & addr_mask))
3810 wrap_to = (s->lma + s->size) & addr_mask;
3811 }
3812 }
3813 BFD_ASSERT (i <= bfd_count_sections (abfd));
3814 count = i;
3815
3816 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3817
3818 /* Build the mapping. */
3819
3820 mfirst = NULL;
3821 pm = &mfirst;
3822
3823 /* If we have a .interp section, then create a PT_PHDR segment for
3824 the program headers and a PT_INTERP segment for the .interp
3825 section. */
3826 s = bfd_get_section_by_name (abfd, ".interp");
3827 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3828 {
3829 amt = sizeof (struct elf_segment_map);
3830 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3831 if (m == NULL)
3832 goto error_return;
3833 m->next = NULL;
3834 m->p_type = PT_PHDR;
3835 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3836 m->p_flags = PF_R | PF_X;
3837 m->p_flags_valid = 1;
3838 m->includes_phdrs = 1;
3839
3840 *pm = m;
3841 pm = &m->next;
3842
3843 amt = sizeof (struct elf_segment_map);
3844 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3845 if (m == NULL)
3846 goto error_return;
3847 m->next = NULL;
3848 m->p_type = PT_INTERP;
3849 m->count = 1;
3850 m->sections[0] = s;
3851
3852 *pm = m;
3853 pm = &m->next;
3854 }
3855
3856 /* Look through the sections. We put sections in the same program
3857 segment when the start of the second section can be placed within
3858 a few bytes of the end of the first section. */
3859 last_hdr = NULL;
3860 last_size = 0;
3861 phdr_index = 0;
3862 maxpagesize = bed->maxpagesize;
3863 writable = FALSE;
3864 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3865 if (dynsec != NULL
3866 && (dynsec->flags & SEC_LOAD) == 0)
3867 dynsec = NULL;
3868
3869 /* Deal with -Ttext or something similar such that the first section
3870 is not adjacent to the program headers. This is an
3871 approximation, since at this point we don't know exactly how many
3872 program headers we will need. */
3873 if (count > 0)
3874 {
3875 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
3876
3877 if (phdr_size == (bfd_size_type) -1)
3878 phdr_size = get_program_header_size (abfd, info);
3879 if ((abfd->flags & D_PAGED) == 0
3880 || (sections[0]->lma & addr_mask) < phdr_size
3881 || ((sections[0]->lma & addr_mask) % maxpagesize
3882 < phdr_size % maxpagesize)
3883 || (sections[0]->lma & addr_mask & -maxpagesize) < wrap_to)
3884 phdr_in_segment = FALSE;
3885 }
3886
3887 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3888 {
3889 asection *hdr;
3890 bfd_boolean new_segment;
3891
3892 hdr = *hdrpp;
3893
3894 /* See if this section and the last one will fit in the same
3895 segment. */
3896
3897 if (last_hdr == NULL)
3898 {
3899 /* If we don't have a segment yet, then we don't need a new
3900 one (we build the last one after this loop). */
3901 new_segment = FALSE;
3902 }
3903 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3904 {
3905 /* If this section has a different relation between the
3906 virtual address and the load address, then we need a new
3907 segment. */
3908 new_segment = TRUE;
3909 }
3910 else if (hdr->lma < last_hdr->lma + last_size
3911 || last_hdr->lma + last_size < last_hdr->lma)
3912 {
3913 /* If this section has a load address that makes it overlap
3914 the previous section, then we need a new segment. */
3915 new_segment = TRUE;
3916 }
3917 /* In the next test we have to be careful when last_hdr->lma is close
3918 to the end of the address space. If the aligned address wraps
3919 around to the start of the address space, then there are no more
3920 pages left in memory and it is OK to assume that the current
3921 section can be included in the current segment. */
3922 else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
3923 > last_hdr->lma)
3924 && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
3925 <= hdr->lma))
3926 {
3927 /* If putting this section in this segment would force us to
3928 skip a page in the segment, then we need a new segment. */
3929 new_segment = TRUE;
3930 }
3931 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
3932 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
3933 {
3934 /* We don't want to put a loadable section after a
3935 nonloadable section in the same segment.
3936 Consider .tbss sections as loadable for this purpose. */
3937 new_segment = TRUE;
3938 }
3939 else if ((abfd->flags & D_PAGED) == 0)
3940 {
3941 /* If the file is not demand paged, which means that we
3942 don't require the sections to be correctly aligned in the
3943 file, then there is no other reason for a new segment. */
3944 new_segment = FALSE;
3945 }
3946 else if (! writable
3947 && (hdr->flags & SEC_READONLY) == 0
3948 && (((last_hdr->lma + last_size - 1) & -maxpagesize)
3949 != (hdr->lma & -maxpagesize)))
3950 {
3951 /* We don't want to put a writable section in a read only
3952 segment, unless they are on the same page in memory
3953 anyhow. We already know that the last section does not
3954 bring us past the current section on the page, so the
3955 only case in which the new section is not on the same
3956 page as the previous section is when the previous section
3957 ends precisely on a page boundary. */
3958 new_segment = TRUE;
3959 }
3960 else
3961 {
3962 /* Otherwise, we can use the same segment. */
3963 new_segment = FALSE;
3964 }
3965
3966 /* Allow interested parties a chance to override our decision. */
3967 if (last_hdr != NULL
3968 && info != NULL
3969 && info->callbacks->override_segment_assignment != NULL)
3970 new_segment
3971 = info->callbacks->override_segment_assignment (info, abfd, hdr,
3972 last_hdr,
3973 new_segment);
3974
3975 if (! new_segment)
3976 {
3977 if ((hdr->flags & SEC_READONLY) == 0)
3978 writable = TRUE;
3979 last_hdr = hdr;
3980 /* .tbss sections effectively have zero size. */
3981 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
3982 != SEC_THREAD_LOCAL)
3983 last_size = hdr->size;
3984 else
3985 last_size = 0;
3986 continue;
3987 }
3988
3989 /* We need a new program segment. We must create a new program
3990 header holding all the sections from phdr_index until hdr. */
3991
3992 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3993 if (m == NULL)
3994 goto error_return;
3995
3996 *pm = m;
3997 pm = &m->next;
3998
3999 if ((hdr->flags & SEC_READONLY) == 0)
4000 writable = TRUE;
4001 else
4002 writable = FALSE;
4003
4004 last_hdr = hdr;
4005 /* .tbss sections effectively have zero size. */
4006 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
4007 last_size = hdr->size;
4008 else
4009 last_size = 0;
4010 phdr_index = i;
4011 phdr_in_segment = FALSE;
4012 }
4013
4014 /* Create a final PT_LOAD program segment, but not if it's just
4015 for .tbss. */
4016 if (last_hdr != NULL
4017 && (i - phdr_index != 1
4018 || ((last_hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
4019 != SEC_THREAD_LOCAL)))
4020 {
4021 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
4022 if (m == NULL)
4023 goto error_return;
4024
4025 *pm = m;
4026 pm = &m->next;
4027 }
4028
4029 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4030 if (dynsec != NULL)
4031 {
4032 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
4033 if (m == NULL)
4034 goto error_return;
4035 *pm = m;
4036 pm = &m->next;
4037 }
4038
4039 /* For each batch of consecutive loadable .note sections,
4040 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
4041 because if we link together nonloadable .note sections and
4042 loadable .note sections, we will generate two .note sections
4043 in the output file. FIXME: Using names for section types is
4044 bogus anyhow. */
4045 for (s = abfd->sections; s != NULL; s = s->next)
4046 {
4047 if ((s->flags & SEC_LOAD) != 0
4048 && CONST_STRNEQ (s->name, ".note"))
4049 {
4050 asection *s2;
4051
4052 count = 1;
4053 amt = sizeof (struct elf_segment_map);
4054 if (s->alignment_power == 2)
4055 for (s2 = s; s2->next != NULL; s2 = s2->next)
4056 {
4057 if (s2->next->alignment_power == 2
4058 && (s2->next->flags & SEC_LOAD) != 0
4059 && CONST_STRNEQ (s2->next->name, ".note")
4060 && align_power (s2->lma + s2->size, 2)
4061 == s2->next->lma)
4062 count++;
4063 else
4064 break;
4065 }
4066 amt += (count - 1) * sizeof (asection *);
4067 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4068 if (m == NULL)
4069 goto error_return;
4070 m->next = NULL;
4071 m->p_type = PT_NOTE;
4072 m->count = count;
4073 while (count > 1)
4074 {
4075 m->sections[m->count - count--] = s;
4076 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4077 s = s->next;
4078 }
4079 m->sections[m->count - 1] = s;
4080 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4081 *pm = m;
4082 pm = &m->next;
4083 }
4084 if (s->flags & SEC_THREAD_LOCAL)
4085 {
4086 if (! tls_count)
4087 first_tls = s;
4088 tls_count++;
4089 }
4090 }
4091
4092 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
4093 if (tls_count > 0)
4094 {
4095 amt = sizeof (struct elf_segment_map);
4096 amt += (tls_count - 1) * sizeof (asection *);
4097 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4098 if (m == NULL)
4099 goto error_return;
4100 m->next = NULL;
4101 m->p_type = PT_TLS;
4102 m->count = tls_count;
4103 /* Mandated PF_R. */
4104 m->p_flags = PF_R;
4105 m->p_flags_valid = 1;
4106 for (i = 0; i < (unsigned int) tls_count; ++i)
4107 {
4108 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
4109 m->sections[i] = first_tls;
4110 first_tls = first_tls->next;
4111 }
4112
4113 *pm = m;
4114 pm = &m->next;
4115 }
4116
4117 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
4118 segment. */
4119 eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
4120 if (eh_frame_hdr != NULL
4121 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
4122 {
4123 amt = sizeof (struct elf_segment_map);
4124 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4125 if (m == NULL)
4126 goto error_return;
4127 m->next = NULL;
4128 m->p_type = PT_GNU_EH_FRAME;
4129 m->count = 1;
4130 m->sections[0] = eh_frame_hdr->output_section;
4131
4132 *pm = m;
4133 pm = &m->next;
4134 }
4135
4136 if (elf_tdata (abfd)->stack_flags)
4137 {
4138 amt = sizeof (struct elf_segment_map);
4139 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4140 if (m == NULL)
4141 goto error_return;
4142 m->next = NULL;
4143 m->p_type = PT_GNU_STACK;
4144 m->p_flags = elf_tdata (abfd)->stack_flags;
4145 m->p_flags_valid = 1;
4146
4147 *pm = m;
4148 pm = &m->next;
4149 }
4150
4151 if (info != NULL && info->relro)
4152 {
4153 for (m = mfirst; m != NULL; m = m->next)
4154 {
4155 if (m->p_type == PT_LOAD)
4156 {
4157 asection *last = m->sections[m->count - 1];
4158 bfd_vma vaddr = m->sections[0]->vma;
4159 bfd_vma filesz = last->vma - vaddr + last->size;
4160
4161 if (vaddr < info->relro_end
4162 && vaddr >= info->relro_start
4163 && (vaddr + filesz) >= info->relro_end)
4164 break;
4165 }
4166 }
4167
4168 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
4169 if (m != NULL)
4170 {
4171 amt = sizeof (struct elf_segment_map);
4172 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4173 if (m == NULL)
4174 goto error_return;
4175 m->next = NULL;
4176 m->p_type = PT_GNU_RELRO;
4177 m->p_flags = PF_R;
4178 m->p_flags_valid = 1;
4179
4180 *pm = m;
4181 pm = &m->next;
4182 }
4183 }
4184
4185 free (sections);
4186 elf_tdata (abfd)->segment_map = mfirst;
4187 }
4188
4189 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
4190 return FALSE;
4191
4192 for (count = 0, m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4193 ++count;
4194 elf_tdata (abfd)->program_header_size = count * bed->s->sizeof_phdr;
4195
4196 return TRUE;
4197
4198 error_return:
4199 if (sections != NULL)
4200 free (sections);
4201 return FALSE;
4202 }
4203
4204 /* Sort sections by address. */
4205
4206 static int
4207 elf_sort_sections (const void *arg1, const void *arg2)
4208 {
4209 const asection *sec1 = *(const asection **) arg1;
4210 const asection *sec2 = *(const asection **) arg2;
4211 bfd_size_type size1, size2;
4212
4213 /* Sort by LMA first, since this is the address used to
4214 place the section into a segment. */
4215 if (sec1->lma < sec2->lma)
4216 return -1;
4217 else if (sec1->lma > sec2->lma)
4218 return 1;
4219
4220 /* Then sort by VMA. Normally the LMA and the VMA will be
4221 the same, and this will do nothing. */
4222 if (sec1->vma < sec2->vma)
4223 return -1;
4224 else if (sec1->vma > sec2->vma)
4225 return 1;
4226
4227 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
4228
4229 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
4230
4231 if (TOEND (sec1))
4232 {
4233 if (TOEND (sec2))
4234 {
4235 /* If the indicies are the same, do not return 0
4236 here, but continue to try the next comparison. */
4237 if (sec1->target_index - sec2->target_index != 0)
4238 return sec1->target_index - sec2->target_index;
4239 }
4240 else
4241 return 1;
4242 }
4243 else if (TOEND (sec2))
4244 return -1;
4245
4246 #undef TOEND
4247
4248 /* Sort by size, to put zero sized sections
4249 before others at the same address. */
4250
4251 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
4252 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
4253
4254 if (size1 < size2)
4255 return -1;
4256 if (size1 > size2)
4257 return 1;
4258
4259 return sec1->target_index - sec2->target_index;
4260 }
4261
4262 /* Ian Lance Taylor writes:
4263
4264 We shouldn't be using % with a negative signed number. That's just
4265 not good. We have to make sure either that the number is not
4266 negative, or that the number has an unsigned type. When the types
4267 are all the same size they wind up as unsigned. When file_ptr is a
4268 larger signed type, the arithmetic winds up as signed long long,
4269 which is wrong.
4270
4271 What we're trying to say here is something like ``increase OFF by
4272 the least amount that will cause it to be equal to the VMA modulo
4273 the page size.'' */
4274 /* In other words, something like:
4275
4276 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4277 off_offset = off % bed->maxpagesize;
4278 if (vma_offset < off_offset)
4279 adjustment = vma_offset + bed->maxpagesize - off_offset;
4280 else
4281 adjustment = vma_offset - off_offset;
4282
4283 which can can be collapsed into the expression below. */
4284
4285 static file_ptr
4286 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
4287 {
4288 return ((vma - off) % maxpagesize);
4289 }
4290
4291 static void
4292 print_segment_map (const struct elf_segment_map *m)
4293 {
4294 unsigned int j;
4295 const char *pt = get_segment_type (m->p_type);
4296 char buf[32];
4297
4298 if (pt == NULL)
4299 {
4300 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
4301 sprintf (buf, "LOPROC+%7.7x",
4302 (unsigned int) (m->p_type - PT_LOPROC));
4303 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
4304 sprintf (buf, "LOOS+%7.7x",
4305 (unsigned int) (m->p_type - PT_LOOS));
4306 else
4307 snprintf (buf, sizeof (buf), "%8.8x",
4308 (unsigned int) m->p_type);
4309 pt = buf;
4310 }
4311 fflush (stdout);
4312 fprintf (stderr, "%s:", pt);
4313 for (j = 0; j < m->count; j++)
4314 fprintf (stderr, " %s", m->sections [j]->name);
4315 putc ('\n',stderr);
4316 fflush (stderr);
4317 }
4318
4319 static bfd_boolean
4320 write_zeros (bfd *abfd, file_ptr pos, bfd_size_type len)
4321 {
4322 void *buf;
4323 bfd_boolean ret;
4324
4325 if (bfd_seek (abfd, pos, SEEK_SET) != 0)
4326 return FALSE;
4327 buf = bfd_zmalloc (len);
4328 if (buf == NULL)
4329 return FALSE;
4330 ret = bfd_bwrite (buf, len, abfd) == len;
4331 free (buf);
4332 return ret;
4333 }
4334
4335 /* Assign file positions to the sections based on the mapping from
4336 sections to segments. This function also sets up some fields in
4337 the file header. */
4338
4339 static bfd_boolean
4340 assign_file_positions_for_load_sections (bfd *abfd,
4341 struct bfd_link_info *link_info)
4342 {
4343 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4344 struct elf_segment_map *m;
4345 Elf_Internal_Phdr *phdrs;
4346 Elf_Internal_Phdr *p;
4347 file_ptr off;
4348 bfd_size_type maxpagesize;
4349 unsigned int alloc;
4350 unsigned int i, j;
4351 bfd_vma header_pad = 0;
4352
4353 if (link_info == NULL
4354 && !_bfd_elf_map_sections_to_segments (abfd, link_info))
4355 return FALSE;
4356
4357 alloc = 0;
4358 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4359 {
4360 ++alloc;
4361 if (m->header_size)
4362 header_pad = m->header_size;
4363 }
4364
4365 if (alloc)
4366 {
4367 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
4368 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
4369 }
4370 else
4371 {
4372 /* PR binutils/12467. */
4373 elf_elfheader (abfd)->e_phoff = 0;
4374 elf_elfheader (abfd)->e_phentsize = 0;
4375 }
4376
4377 elf_elfheader (abfd)->e_phnum = alloc;
4378
4379 if (elf_tdata (abfd)->program_header_size == (bfd_size_type) -1)
4380 elf_tdata (abfd)->program_header_size = alloc * bed->s->sizeof_phdr;
4381 else
4382 BFD_ASSERT (elf_tdata (abfd)->program_header_size
4383 >= alloc * bed->s->sizeof_phdr);
4384
4385 if (alloc == 0)
4386 {
4387 elf_tdata (abfd)->next_file_pos = bed->s->sizeof_ehdr;
4388 return TRUE;
4389 }
4390
4391 /* We're writing the size in elf_tdata (abfd)->program_header_size,
4392 see assign_file_positions_except_relocs, so make sure we have
4393 that amount allocated, with trailing space cleared.
4394 The variable alloc contains the computed need, while elf_tdata
4395 (abfd)->program_header_size contains the size used for the
4396 layout.
4397 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
4398 where the layout is forced to according to a larger size in the
4399 last iterations for the testcase ld-elf/header. */
4400 BFD_ASSERT (elf_tdata (abfd)->program_header_size % bed->s->sizeof_phdr
4401 == 0);
4402 phdrs = (Elf_Internal_Phdr *)
4403 bfd_zalloc2 (abfd,
4404 (elf_tdata (abfd)->program_header_size / bed->s->sizeof_phdr),
4405 sizeof (Elf_Internal_Phdr));
4406 elf_tdata (abfd)->phdr = phdrs;
4407 if (phdrs == NULL)
4408 return FALSE;
4409
4410 maxpagesize = 1;
4411 if ((abfd->flags & D_PAGED) != 0)
4412 maxpagesize = bed->maxpagesize;
4413
4414 off = bed->s->sizeof_ehdr;
4415 off += alloc * bed->s->sizeof_phdr;
4416 if (header_pad < (bfd_vma) off)
4417 header_pad = 0;
4418 else
4419 header_pad -= off;
4420 off += header_pad;
4421
4422 for (m = elf_tdata (abfd)->segment_map, p = phdrs, j = 0;
4423 m != NULL;
4424 m = m->next, p++, j++)
4425 {
4426 asection **secpp;
4427 bfd_vma off_adjust;
4428 bfd_boolean no_contents;
4429
4430 /* If elf_segment_map is not from map_sections_to_segments, the
4431 sections may not be correctly ordered. NOTE: sorting should
4432 not be done to the PT_NOTE section of a corefile, which may
4433 contain several pseudo-sections artificially created by bfd.
4434 Sorting these pseudo-sections breaks things badly. */
4435 if (m->count > 1
4436 && !(elf_elfheader (abfd)->e_type == ET_CORE
4437 && m->p_type == PT_NOTE))
4438 qsort (m->sections, (size_t) m->count, sizeof (asection *),
4439 elf_sort_sections);
4440
4441 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4442 number of sections with contents contributing to both p_filesz
4443 and p_memsz, followed by a number of sections with no contents
4444 that just contribute to p_memsz. In this loop, OFF tracks next
4445 available file offset for PT_LOAD and PT_NOTE segments. */
4446 p->p_type = m->p_type;
4447 p->p_flags = m->p_flags;
4448
4449 if (m->count == 0)
4450 p->p_vaddr = 0;
4451 else
4452 p->p_vaddr = m->sections[0]->vma - m->p_vaddr_offset;
4453
4454 if (m->p_paddr_valid)
4455 p->p_paddr = m->p_paddr;
4456 else if (m->count == 0)
4457 p->p_paddr = 0;
4458 else
4459 p->p_paddr = m->sections[0]->lma - m->p_vaddr_offset;
4460
4461 if (p->p_type == PT_LOAD
4462 && (abfd->flags & D_PAGED) != 0)
4463 {
4464 /* p_align in demand paged PT_LOAD segments effectively stores
4465 the maximum page size. When copying an executable with
4466 objcopy, we set m->p_align from the input file. Use this
4467 value for maxpagesize rather than bed->maxpagesize, which
4468 may be different. Note that we use maxpagesize for PT_TLS
4469 segment alignment later in this function, so we are relying
4470 on at least one PT_LOAD segment appearing before a PT_TLS
4471 segment. */
4472 if (m->p_align_valid)
4473 maxpagesize = m->p_align;
4474
4475 p->p_align = maxpagesize;
4476 }
4477 else if (m->p_align_valid)
4478 p->p_align = m->p_align;
4479 else if (m->count == 0)
4480 p->p_align = 1 << bed->s->log_file_align;
4481 else
4482 p->p_align = 0;
4483
4484 no_contents = FALSE;
4485 off_adjust = 0;
4486 if (p->p_type == PT_LOAD
4487 && m->count > 0)
4488 {
4489 bfd_size_type align;
4490 unsigned int align_power = 0;
4491
4492 if (m->p_align_valid)
4493 align = p->p_align;
4494 else
4495 {
4496 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4497 {
4498 unsigned int secalign;
4499
4500 secalign = bfd_get_section_alignment (abfd, *secpp);
4501 if (secalign > align_power)
4502 align_power = secalign;
4503 }
4504 align = (bfd_size_type) 1 << align_power;
4505 if (align < maxpagesize)
4506 align = maxpagesize;
4507 }
4508
4509 for (i = 0; i < m->count; i++)
4510 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
4511 /* If we aren't making room for this section, then
4512 it must be SHT_NOBITS regardless of what we've
4513 set via struct bfd_elf_special_section. */
4514 elf_section_type (m->sections[i]) = SHT_NOBITS;
4515
4516 /* Find out whether this segment contains any loadable
4517 sections. */
4518 no_contents = TRUE;
4519 for (i = 0; i < m->count; i++)
4520 if (elf_section_type (m->sections[i]) != SHT_NOBITS)
4521 {
4522 no_contents = FALSE;
4523 break;
4524 }
4525
4526 off_adjust = vma_page_aligned_bias (p->p_vaddr, off, align);
4527 off += off_adjust;
4528 if (no_contents)
4529 {
4530 /* We shouldn't need to align the segment on disk since
4531 the segment doesn't need file space, but the gABI
4532 arguably requires the alignment and glibc ld.so
4533 checks it. So to comply with the alignment
4534 requirement but not waste file space, we adjust
4535 p_offset for just this segment. (OFF_ADJUST is
4536 subtracted from OFF later.) This may put p_offset
4537 past the end of file, but that shouldn't matter. */
4538 }
4539 else
4540 off_adjust = 0;
4541 }
4542 /* Make sure the .dynamic section is the first section in the
4543 PT_DYNAMIC segment. */
4544 else if (p->p_type == PT_DYNAMIC
4545 && m->count > 1
4546 && strcmp (m->sections[0]->name, ".dynamic") != 0)
4547 {
4548 _bfd_error_handler
4549 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4550 abfd);
4551 bfd_set_error (bfd_error_bad_value);
4552 return FALSE;
4553 }
4554 /* Set the note section type to SHT_NOTE. */
4555 else if (p->p_type == PT_NOTE)
4556 for (i = 0; i < m->count; i++)
4557 elf_section_type (m->sections[i]) = SHT_NOTE;
4558
4559 p->p_offset = 0;
4560 p->p_filesz = 0;
4561 p->p_memsz = 0;
4562
4563 if (m->includes_filehdr)
4564 {
4565 if (!m->p_flags_valid)
4566 p->p_flags |= PF_R;
4567 p->p_filesz = bed->s->sizeof_ehdr;
4568 p->p_memsz = bed->s->sizeof_ehdr;
4569 if (m->count > 0)
4570 {
4571 BFD_ASSERT (p->p_type == PT_LOAD);
4572
4573 if (p->p_vaddr < (bfd_vma) off)
4574 {
4575 (*_bfd_error_handler)
4576 (_("%B: Not enough room for program headers, try linking with -N"),
4577 abfd);
4578 bfd_set_error (bfd_error_bad_value);
4579 return FALSE;
4580 }
4581
4582 p->p_vaddr -= off;
4583 if (!m->p_paddr_valid)
4584 p->p_paddr -= off;
4585 }
4586 }
4587
4588 if (m->includes_phdrs)
4589 {
4590 if (!m->p_flags_valid)
4591 p->p_flags |= PF_R;
4592
4593 if (!m->includes_filehdr)
4594 {
4595 p->p_offset = bed->s->sizeof_ehdr;
4596
4597 if (m->count > 0)
4598 {
4599 BFD_ASSERT (p->p_type == PT_LOAD);
4600 p->p_vaddr -= off - p->p_offset;
4601 if (!m->p_paddr_valid)
4602 p->p_paddr -= off - p->p_offset;
4603 }
4604 }
4605
4606 p->p_filesz += alloc * bed->s->sizeof_phdr;
4607 p->p_memsz += alloc * bed->s->sizeof_phdr;
4608 if (m->count)
4609 {
4610 p->p_filesz += header_pad;
4611 p->p_memsz += header_pad;
4612 }
4613 }
4614
4615 if (p->p_type == PT_LOAD
4616 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4617 {
4618 if (!m->includes_filehdr && !m->includes_phdrs)
4619 p->p_offset = off;
4620 else
4621 {
4622 file_ptr adjust;
4623
4624 adjust = off - (p->p_offset + p->p_filesz);
4625 if (!no_contents)
4626 p->p_filesz += adjust;
4627 p->p_memsz += adjust;
4628 }
4629 }
4630
4631 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
4632 maps. Set filepos for sections in PT_LOAD segments, and in
4633 core files, for sections in PT_NOTE segments.
4634 assign_file_positions_for_non_load_sections will set filepos
4635 for other sections and update p_filesz for other segments. */
4636 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4637 {
4638 asection *sec;
4639 bfd_size_type align;
4640 Elf_Internal_Shdr *this_hdr;
4641
4642 sec = *secpp;
4643 this_hdr = &elf_section_data (sec)->this_hdr;
4644 align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec);
4645
4646 if ((p->p_type == PT_LOAD
4647 || p->p_type == PT_TLS)
4648 && (this_hdr->sh_type != SHT_NOBITS
4649 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
4650 && ((this_hdr->sh_flags & SHF_TLS) == 0
4651 || p->p_type == PT_TLS))))
4652 {
4653 bfd_vma p_start = p->p_paddr;
4654 bfd_vma p_end = p_start + p->p_memsz;
4655 bfd_vma s_start = sec->lma;
4656 bfd_vma adjust = s_start - p_end;
4657
4658 if (adjust != 0
4659 && (s_start < p_end
4660 || p_end < p_start))
4661 {
4662 (*_bfd_error_handler)
4663 (_("%B: section %A lma %#lx adjusted to %#lx"), abfd, sec,
4664 (unsigned long) s_start, (unsigned long) p_end);
4665 adjust = 0;
4666 sec->lma = p_end;
4667 }
4668 p->p_memsz += adjust;
4669
4670 if (this_hdr->sh_type != SHT_NOBITS)
4671 {
4672 if (p->p_filesz + adjust < p->p_memsz)
4673 {
4674 /* We have a PROGBITS section following NOBITS ones.
4675 Allocate file space for the NOBITS section(s) and
4676 zero it. */
4677 adjust = p->p_memsz - p->p_filesz;
4678 if (!write_zeros (abfd, off, adjust))
4679 return FALSE;
4680 }
4681 off += adjust;
4682 p->p_filesz += adjust;
4683 }
4684 }
4685
4686 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
4687 {
4688 /* The section at i == 0 is the one that actually contains
4689 everything. */
4690 if (i == 0)
4691 {
4692 this_hdr->sh_offset = sec->filepos = off;
4693 off += this_hdr->sh_size;
4694 p->p_filesz = this_hdr->sh_size;
4695 p->p_memsz = 0;
4696 p->p_align = 1;
4697 }
4698 else
4699 {
4700 /* The rest are fake sections that shouldn't be written. */
4701 sec->filepos = 0;
4702 sec->size = 0;
4703 sec->flags = 0;
4704 continue;
4705 }
4706 }
4707 else
4708 {
4709 if (p->p_type == PT_LOAD)
4710 {
4711 this_hdr->sh_offset = sec->filepos = off;
4712 if (this_hdr->sh_type != SHT_NOBITS)
4713 off += this_hdr->sh_size;
4714 }
4715 else if (this_hdr->sh_type == SHT_NOBITS
4716 && (this_hdr->sh_flags & SHF_TLS) != 0
4717 && this_hdr->sh_offset == 0)
4718 {
4719 /* This is a .tbss section that didn't get a PT_LOAD.
4720 (See _bfd_elf_map_sections_to_segments "Create a
4721 final PT_LOAD".) Set sh_offset to the value it
4722 would have if we had created a zero p_filesz and
4723 p_memsz PT_LOAD header for the section. This
4724 also makes the PT_TLS header have the same
4725 p_offset value. */
4726 bfd_vma adjust = vma_page_aligned_bias (this_hdr->sh_addr,
4727 off, align);
4728 this_hdr->sh_offset = sec->filepos = off + adjust;
4729 }
4730
4731 if (this_hdr->sh_type != SHT_NOBITS)
4732 {
4733 p->p_filesz += this_hdr->sh_size;
4734 /* A load section without SHF_ALLOC is something like
4735 a note section in a PT_NOTE segment. These take
4736 file space but are not loaded into memory. */
4737 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4738 p->p_memsz += this_hdr->sh_size;
4739 }
4740 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4741 {
4742 if (p->p_type == PT_TLS)
4743 p->p_memsz += this_hdr->sh_size;
4744
4745 /* .tbss is special. It doesn't contribute to p_memsz of
4746 normal segments. */
4747 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
4748 p->p_memsz += this_hdr->sh_size;
4749 }
4750
4751 if (align > p->p_align
4752 && !m->p_align_valid
4753 && (p->p_type != PT_LOAD
4754 || (abfd->flags & D_PAGED) == 0))
4755 p->p_align = align;
4756 }
4757
4758 if (!m->p_flags_valid)
4759 {
4760 p->p_flags |= PF_R;
4761 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
4762 p->p_flags |= PF_X;
4763 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
4764 p->p_flags |= PF_W;
4765 }
4766 }
4767 off -= off_adjust;
4768
4769 /* Check that all sections are in a PT_LOAD segment.
4770 Don't check funky gdb generated core files. */
4771 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
4772 {
4773 bfd_boolean check_vma = TRUE;
4774
4775 for (i = 1; i < m->count; i++)
4776 if (m->sections[i]->vma == m->sections[i - 1]->vma
4777 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i])
4778 ->this_hdr), p) != 0
4779 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i - 1])
4780 ->this_hdr), p) != 0)
4781 {
4782 /* Looks like we have overlays packed into the segment. */
4783 check_vma = FALSE;
4784 break;
4785 }
4786
4787 for (i = 0; i < m->count; i++)
4788 {
4789 Elf_Internal_Shdr *this_hdr;
4790 asection *sec;
4791
4792 sec = m->sections[i];
4793 this_hdr = &(elf_section_data(sec)->this_hdr);
4794 if (!ELF_SECTION_IN_SEGMENT_1 (this_hdr, p, check_vma, 0)
4795 && !ELF_TBSS_SPECIAL (this_hdr, p))
4796 {
4797 (*_bfd_error_handler)
4798 (_("%B: section `%A' can't be allocated in segment %d"),
4799 abfd, sec, j);
4800 print_segment_map (m);
4801 }
4802 }
4803 }
4804 }
4805
4806 elf_tdata (abfd)->next_file_pos = off;
4807 return TRUE;
4808 }
4809
4810 /* Assign file positions for the other sections. */
4811
4812 static bfd_boolean
4813 assign_file_positions_for_non_load_sections (bfd *abfd,
4814 struct bfd_link_info *link_info)
4815 {
4816 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4817 Elf_Internal_Shdr **i_shdrpp;
4818 Elf_Internal_Shdr **hdrpp;
4819 Elf_Internal_Phdr *phdrs;
4820 Elf_Internal_Phdr *p;
4821 struct elf_segment_map *m;
4822 bfd_vma filehdr_vaddr, filehdr_paddr;
4823 bfd_vma phdrs_vaddr, phdrs_paddr;
4824 file_ptr off;
4825 unsigned int num_sec;
4826 unsigned int i;
4827 unsigned int count;
4828
4829 i_shdrpp = elf_elfsections (abfd);
4830 num_sec = elf_numsections (abfd);
4831 off = elf_tdata (abfd)->next_file_pos;
4832 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4833 {
4834 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4835 Elf_Internal_Shdr *hdr;
4836
4837 hdr = *hdrpp;
4838 if (hdr->bfd_section != NULL
4839 && (hdr->bfd_section->filepos != 0
4840 || (hdr->sh_type == SHT_NOBITS
4841 && hdr->contents == NULL)))
4842 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
4843 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4844 {
4845 if (hdr->sh_size != 0)
4846 (*_bfd_error_handler)
4847 (_("%B: warning: allocated section `%s' not in segment"),
4848 abfd,
4849 (hdr->bfd_section == NULL
4850 ? "*unknown*"
4851 : hdr->bfd_section->name));
4852 /* We don't need to page align empty sections. */
4853 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
4854 off += vma_page_aligned_bias (hdr->sh_addr, off,
4855 bed->maxpagesize);
4856 else
4857 off += vma_page_aligned_bias (hdr->sh_addr, off,
4858 hdr->sh_addralign);
4859 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4860 FALSE);
4861 }
4862 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4863 && hdr->bfd_section == NULL)
4864 || hdr == i_shdrpp[tdata->symtab_section]
4865 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4866 || hdr == i_shdrpp[tdata->strtab_section])
4867 hdr->sh_offset = -1;
4868 else
4869 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4870 }
4871
4872 /* Now that we have set the section file positions, we can set up
4873 the file positions for the non PT_LOAD segments. */
4874 count = 0;
4875 filehdr_vaddr = 0;
4876 filehdr_paddr = 0;
4877 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
4878 phdrs_paddr = 0;
4879 phdrs = elf_tdata (abfd)->phdr;
4880 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4881 m != NULL;
4882 m = m->next, p++)
4883 {
4884 ++count;
4885 if (p->p_type != PT_LOAD)
4886 continue;
4887
4888 if (m->includes_filehdr)
4889 {
4890 filehdr_vaddr = p->p_vaddr;
4891 filehdr_paddr = p->p_paddr;
4892 }
4893 if (m->includes_phdrs)
4894 {
4895 phdrs_vaddr = p->p_vaddr;
4896 phdrs_paddr = p->p_paddr;
4897 if (m->includes_filehdr)
4898 {
4899 phdrs_vaddr += bed->s->sizeof_ehdr;
4900 phdrs_paddr += bed->s->sizeof_ehdr;
4901 }
4902 }
4903 }
4904
4905 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4906 m != NULL;
4907 m = m->next, p++)
4908 {
4909 if (p->p_type == PT_GNU_RELRO)
4910 {
4911 const Elf_Internal_Phdr *lp;
4912
4913 BFD_ASSERT (!m->includes_filehdr && !m->includes_phdrs);
4914
4915 if (link_info != NULL)
4916 {
4917 /* During linking the range of the RELRO segment is passed
4918 in link_info. */
4919 for (lp = phdrs; lp < phdrs + count; ++lp)
4920 {
4921 if (lp->p_type == PT_LOAD
4922 && lp->p_vaddr >= link_info->relro_start
4923 && lp->p_vaddr < link_info->relro_end
4924 && lp->p_vaddr + lp->p_filesz >= link_info->relro_end)
4925 break;
4926 }
4927 }
4928 else
4929 {
4930 /* Otherwise we are copying an executable or shared
4931 library, but we need to use the same linker logic. */
4932 for (lp = phdrs; lp < phdrs + count; ++lp)
4933 {
4934 if (lp->p_type == PT_LOAD
4935 && lp->p_paddr == p->p_paddr)
4936 break;
4937 }
4938 }
4939
4940 if (lp < phdrs + count)
4941 {
4942 p->p_vaddr = lp->p_vaddr;
4943 p->p_paddr = lp->p_paddr;
4944 p->p_offset = lp->p_offset;
4945 if (link_info != NULL)
4946 p->p_filesz = link_info->relro_end - lp->p_vaddr;
4947 else if (m->p_size_valid)
4948 p->p_filesz = m->p_size;
4949 else
4950 abort ();
4951 p->p_memsz = p->p_filesz;
4952 /* Preserve the alignment and flags if they are valid. The gold
4953 linker generates RW/4 for the PT_GNU_RELRO section. It is better
4954 for objcopy/strip to honor these attributes otherwise gdb will
4955 choke when using separate debug files. */
4956 if (!m->p_align_valid)
4957 p->p_align = 1;
4958 if (!m->p_flags_valid)
4959 p->p_flags = (lp->p_flags & ~PF_W);
4960 }
4961 else
4962 {
4963 memset (p, 0, sizeof *p);
4964 p->p_type = PT_NULL;
4965 }
4966 }
4967 else if (m->count != 0)
4968 {
4969 if (p->p_type != PT_LOAD
4970 && (p->p_type != PT_NOTE
4971 || bfd_get_format (abfd) != bfd_core))
4972 {
4973 BFD_ASSERT (!m->includes_filehdr && !m->includes_phdrs);
4974
4975 p->p_filesz = 0;
4976 p->p_offset = m->sections[0]->filepos;
4977 for (i = m->count; i-- != 0;)
4978 {
4979 asection *sect = m->sections[i];
4980 Elf_Internal_Shdr *hdr = &elf_section_data (sect)->this_hdr;
4981 if (hdr->sh_type != SHT_NOBITS)
4982 {
4983 p->p_filesz = (sect->filepos - m->sections[0]->filepos
4984 + hdr->sh_size);
4985 break;
4986 }
4987 }
4988 }
4989 }
4990 else if (m->includes_filehdr)
4991 {
4992 p->p_vaddr = filehdr_vaddr;
4993 if (! m->p_paddr_valid)
4994 p->p_paddr = filehdr_paddr;
4995 }
4996 else if (m->includes_phdrs)
4997 {
4998 p->p_vaddr = phdrs_vaddr;
4999 if (! m->p_paddr_valid)
5000 p->p_paddr = phdrs_paddr;
5001 }
5002 }
5003
5004 elf_tdata (abfd)->next_file_pos = off;
5005
5006 return TRUE;
5007 }
5008
5009 /* Work out the file positions of all the sections. This is called by
5010 _bfd_elf_compute_section_file_positions. All the section sizes and
5011 VMAs must be known before this is called.
5012
5013 Reloc sections come in two flavours: Those processed specially as
5014 "side-channel" data attached to a section to which they apply, and
5015 those that bfd doesn't process as relocations. The latter sort are
5016 stored in a normal bfd section by bfd_section_from_shdr. We don't
5017 consider the former sort here, unless they form part of the loadable
5018 image. Reloc sections not assigned here will be handled later by
5019 assign_file_positions_for_relocs.
5020
5021 We also don't set the positions of the .symtab and .strtab here. */
5022
5023 static bfd_boolean
5024 assign_file_positions_except_relocs (bfd *abfd,
5025 struct bfd_link_info *link_info)
5026 {
5027 struct elf_obj_tdata *tdata = elf_tdata (abfd);
5028 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
5029 file_ptr off;
5030 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5031
5032 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
5033 && bfd_get_format (abfd) != bfd_core)
5034 {
5035 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
5036 unsigned int num_sec = elf_numsections (abfd);
5037 Elf_Internal_Shdr **hdrpp;
5038 unsigned int i;
5039
5040 /* Start after the ELF header. */
5041 off = i_ehdrp->e_ehsize;
5042
5043 /* We are not creating an executable, which means that we are
5044 not creating a program header, and that the actual order of
5045 the sections in the file is unimportant. */
5046 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
5047 {
5048 Elf_Internal_Shdr *hdr;
5049
5050 hdr = *hdrpp;
5051 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
5052 && hdr->bfd_section == NULL)
5053 || i == tdata->symtab_section
5054 || i == tdata->symtab_shndx_section
5055 || i == tdata->strtab_section)
5056 {
5057 hdr->sh_offset = -1;
5058 }
5059 else
5060 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
5061 }
5062 }
5063 else
5064 {
5065 unsigned int alloc;
5066
5067 /* Assign file positions for the loaded sections based on the
5068 assignment of sections to segments. */
5069 if (!assign_file_positions_for_load_sections (abfd, link_info))
5070 return FALSE;
5071
5072 /* And for non-load sections. */
5073 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
5074 return FALSE;
5075
5076 if (bed->elf_backend_modify_program_headers != NULL)
5077 {
5078 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
5079 return FALSE;
5080 }
5081
5082 /* Write out the program headers. */
5083 alloc = tdata->program_header_size / bed->s->sizeof_phdr;
5084 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
5085 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
5086 return FALSE;
5087
5088 off = tdata->next_file_pos;
5089 }
5090
5091 /* Place the section headers. */
5092 off = align_file_position (off, 1 << bed->s->log_file_align);
5093 i_ehdrp->e_shoff = off;
5094 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
5095
5096 tdata->next_file_pos = off;
5097
5098 return TRUE;
5099 }
5100
5101 static bfd_boolean
5102 prep_headers (bfd *abfd)
5103 {
5104 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form. */
5105 struct elf_strtab_hash *shstrtab;
5106 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5107
5108 i_ehdrp = elf_elfheader (abfd);
5109
5110 shstrtab = _bfd_elf_strtab_init ();
5111 if (shstrtab == NULL)
5112 return FALSE;
5113
5114 elf_shstrtab (abfd) = shstrtab;
5115
5116 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
5117 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
5118 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
5119 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
5120
5121 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
5122 i_ehdrp->e_ident[EI_DATA] =
5123 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
5124 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
5125
5126 if ((abfd->flags & DYNAMIC) != 0)
5127 i_ehdrp->e_type = ET_DYN;
5128 else if ((abfd->flags & EXEC_P) != 0)
5129 i_ehdrp->e_type = ET_EXEC;
5130 else if (bfd_get_format (abfd) == bfd_core)
5131 i_ehdrp->e_type = ET_CORE;
5132 else
5133 i_ehdrp->e_type = ET_REL;
5134
5135 switch (bfd_get_arch (abfd))
5136 {
5137 case bfd_arch_unknown:
5138 i_ehdrp->e_machine = EM_NONE;
5139 break;
5140
5141 /* There used to be a long list of cases here, each one setting
5142 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
5143 in the corresponding bfd definition. To avoid duplication,
5144 the switch was removed. Machines that need special handling
5145 can generally do it in elf_backend_final_write_processing(),
5146 unless they need the information earlier than the final write.
5147 Such need can generally be supplied by replacing the tests for
5148 e_machine with the conditions used to determine it. */
5149 default:
5150 i_ehdrp->e_machine = bed->elf_machine_code;
5151 }
5152
5153 i_ehdrp->e_version = bed->s->ev_current;
5154 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
5155
5156 /* No program header, for now. */
5157 i_ehdrp->e_phoff = 0;
5158 i_ehdrp->e_phentsize = 0;
5159 i_ehdrp->e_phnum = 0;
5160
5161 /* Each bfd section is section header entry. */
5162 i_ehdrp->e_entry = bfd_get_start_address (abfd);
5163 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
5164
5165 /* If we're building an executable, we'll need a program header table. */
5166 if (abfd->flags & EXEC_P)
5167 /* It all happens later. */
5168 ;
5169 else
5170 {
5171 i_ehdrp->e_phentsize = 0;
5172 i_ehdrp->e_phoff = 0;
5173 }
5174
5175 elf_tdata (abfd)->symtab_hdr.sh_name =
5176 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
5177 elf_tdata (abfd)->strtab_hdr.sh_name =
5178 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
5179 elf_tdata (abfd)->shstrtab_hdr.sh_name =
5180 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
5181 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
5182 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
5183 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
5184 return FALSE;
5185
5186 return TRUE;
5187 }
5188
5189 /* Assign file positions for all the reloc sections which are not part
5190 of the loadable file image. */
5191
5192 void
5193 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
5194 {
5195 file_ptr off;
5196 unsigned int i, num_sec;
5197 Elf_Internal_Shdr **shdrpp;
5198
5199 off = elf_tdata (abfd)->next_file_pos;
5200
5201 num_sec = elf_numsections (abfd);
5202 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
5203 {
5204 Elf_Internal_Shdr *shdrp;
5205
5206 shdrp = *shdrpp;
5207 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
5208 && shdrp->sh_offset == -1)
5209 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
5210 }
5211
5212 elf_tdata (abfd)->next_file_pos = off;
5213 }
5214
5215 bfd_boolean
5216 _bfd_elf_write_object_contents (bfd *abfd)
5217 {
5218 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5219 Elf_Internal_Shdr **i_shdrp;
5220 bfd_boolean failed;
5221 unsigned int count, num_sec;
5222
5223 if (! abfd->output_has_begun
5224 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
5225 return FALSE;
5226
5227 i_shdrp = elf_elfsections (abfd);
5228
5229 failed = FALSE;
5230 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
5231 if (failed)
5232 return FALSE;
5233
5234 _bfd_elf_assign_file_positions_for_relocs (abfd);
5235
5236 /* After writing the headers, we need to write the sections too... */
5237 num_sec = elf_numsections (abfd);
5238 for (count = 1; count < num_sec; count++)
5239 {
5240 if (bed->elf_backend_section_processing)
5241 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
5242 if (i_shdrp[count]->contents)
5243 {
5244 bfd_size_type amt = i_shdrp[count]->sh_size;
5245
5246 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
5247 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
5248 return FALSE;
5249 }
5250 }
5251
5252 /* Write out the section header names. */
5253 if (elf_shstrtab (abfd) != NULL
5254 && (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
5255 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
5256 return FALSE;
5257
5258 if (bed->elf_backend_final_write_processing)
5259 (*bed->elf_backend_final_write_processing) (abfd,
5260 elf_tdata (abfd)->linker);
5261
5262 if (!bed->s->write_shdrs_and_ehdr (abfd))
5263 return FALSE;
5264
5265 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
5266 if (elf_tdata (abfd)->after_write_object_contents)
5267 return (*elf_tdata (abfd)->after_write_object_contents) (abfd);
5268
5269 return TRUE;
5270 }
5271
5272 bfd_boolean
5273 _bfd_elf_write_corefile_contents (bfd *abfd)
5274 {
5275 /* Hopefully this can be done just like an object file. */
5276 return _bfd_elf_write_object_contents (abfd);
5277 }
5278
5279 /* Given a section, search the header to find them. */
5280
5281 unsigned int
5282 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
5283 {
5284 const struct elf_backend_data *bed;
5285 unsigned int sec_index;
5286
5287 if (elf_section_data (asect) != NULL
5288 && elf_section_data (asect)->this_idx != 0)
5289 return elf_section_data (asect)->this_idx;
5290
5291 if (bfd_is_abs_section (asect))
5292 sec_index = SHN_ABS;
5293 else if (bfd_is_com_section (asect))
5294 sec_index = SHN_COMMON;
5295 else if (bfd_is_und_section (asect))
5296 sec_index = SHN_UNDEF;
5297 else
5298 sec_index = SHN_BAD;
5299
5300 bed = get_elf_backend_data (abfd);
5301 if (bed->elf_backend_section_from_bfd_section)
5302 {
5303 int retval = sec_index;
5304
5305 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
5306 return retval;
5307 }
5308
5309 if (sec_index == SHN_BAD)
5310 bfd_set_error (bfd_error_nonrepresentable_section);
5311
5312 return sec_index;
5313 }
5314
5315 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
5316 on error. */
5317
5318 int
5319 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
5320 {
5321 asymbol *asym_ptr = *asym_ptr_ptr;
5322 int idx;
5323 flagword flags = asym_ptr->flags;
5324
5325 /* When gas creates relocations against local labels, it creates its
5326 own symbol for the section, but does put the symbol into the
5327 symbol chain, so udata is 0. When the linker is generating
5328 relocatable output, this section symbol may be for one of the
5329 input sections rather than the output section. */
5330 if (asym_ptr->udata.i == 0
5331 && (flags & BSF_SECTION_SYM)
5332 && asym_ptr->section)
5333 {
5334 asection *sec;
5335 int indx;
5336
5337 sec = asym_ptr->section;
5338 if (sec->owner != abfd && sec->output_section != NULL)
5339 sec = sec->output_section;
5340 if (sec->owner == abfd
5341 && (indx = sec->index) < elf_num_section_syms (abfd)
5342 && elf_section_syms (abfd)[indx] != NULL)
5343 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
5344 }
5345
5346 idx = asym_ptr->udata.i;
5347
5348 if (idx == 0)
5349 {
5350 /* This case can occur when using --strip-symbol on a symbol
5351 which is used in a relocation entry. */
5352 (*_bfd_error_handler)
5353 (_("%B: symbol `%s' required but not present"),
5354 abfd, bfd_asymbol_name (asym_ptr));
5355 bfd_set_error (bfd_error_no_symbols);
5356 return -1;
5357 }
5358
5359 #if DEBUG & 4
5360 {
5361 fprintf (stderr,
5362 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx\n",
5363 (long) asym_ptr, asym_ptr->name, idx, (long) flags);
5364 fflush (stderr);
5365 }
5366 #endif
5367
5368 return idx;
5369 }
5370
5371 /* Rewrite program header information. */
5372
5373 static bfd_boolean
5374 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
5375 {
5376 Elf_Internal_Ehdr *iehdr;
5377 struct elf_segment_map *map;
5378 struct elf_segment_map *map_first;
5379 struct elf_segment_map **pointer_to_map;
5380 Elf_Internal_Phdr *segment;
5381 asection *section;
5382 unsigned int i;
5383 unsigned int num_segments;
5384 bfd_boolean phdr_included = FALSE;
5385 bfd_boolean p_paddr_valid;
5386 bfd_vma maxpagesize;
5387 struct elf_segment_map *phdr_adjust_seg = NULL;
5388 unsigned int phdr_adjust_num = 0;
5389 const struct elf_backend_data *bed;
5390
5391 bed = get_elf_backend_data (ibfd);
5392 iehdr = elf_elfheader (ibfd);
5393
5394 map_first = NULL;
5395 pointer_to_map = &map_first;
5396
5397 num_segments = elf_elfheader (ibfd)->e_phnum;
5398 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
5399
5400 /* Returns the end address of the segment + 1. */
5401 #define SEGMENT_END(segment, start) \
5402 (start + (segment->p_memsz > segment->p_filesz \
5403 ? segment->p_memsz : segment->p_filesz))
5404
5405 #define SECTION_SIZE(section, segment) \
5406 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5407 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5408 ? section->size : 0)
5409
5410 /* Returns TRUE if the given section is contained within
5411 the given segment. VMA addresses are compared. */
5412 #define IS_CONTAINED_BY_VMA(section, segment) \
5413 (section->vma >= segment->p_vaddr \
5414 && (section->vma + SECTION_SIZE (section, segment) \
5415 <= (SEGMENT_END (segment, segment->p_vaddr))))
5416
5417 /* Returns TRUE if the given section is contained within
5418 the given segment. LMA addresses are compared. */
5419 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5420 (section->lma >= base \
5421 && (section->lma + SECTION_SIZE (section, segment) \
5422 <= SEGMENT_END (segment, base)))
5423
5424 /* Handle PT_NOTE segment. */
5425 #define IS_NOTE(p, s) \
5426 (p->p_type == PT_NOTE \
5427 && elf_section_type (s) == SHT_NOTE \
5428 && (bfd_vma) s->filepos >= p->p_offset \
5429 && ((bfd_vma) s->filepos + s->size \
5430 <= p->p_offset + p->p_filesz))
5431
5432 /* Special case: corefile "NOTE" section containing regs, prpsinfo
5433 etc. */
5434 #define IS_COREFILE_NOTE(p, s) \
5435 (IS_NOTE (p, s) \
5436 && bfd_get_format (ibfd) == bfd_core \
5437 && s->vma == 0 \
5438 && s->lma == 0)
5439
5440 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5441 linker, which generates a PT_INTERP section with p_vaddr and
5442 p_memsz set to 0. */
5443 #define IS_SOLARIS_PT_INTERP(p, s) \
5444 (p->p_vaddr == 0 \
5445 && p->p_paddr == 0 \
5446 && p->p_memsz == 0 \
5447 && p->p_filesz > 0 \
5448 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5449 && s->size > 0 \
5450 && (bfd_vma) s->filepos >= p->p_offset \
5451 && ((bfd_vma) s->filepos + s->size \
5452 <= p->p_offset + p->p_filesz))
5453
5454 /* Decide if the given section should be included in the given segment.
5455 A section will be included if:
5456 1. It is within the address space of the segment -- we use the LMA
5457 if that is set for the segment and the VMA otherwise,
5458 2. It is an allocated section or a NOTE section in a PT_NOTE
5459 segment.
5460 3. There is an output section associated with it,
5461 4. The section has not already been allocated to a previous segment.
5462 5. PT_GNU_STACK segments do not include any sections.
5463 6. PT_TLS segment includes only SHF_TLS sections.
5464 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5465 8. PT_DYNAMIC should not contain empty sections at the beginning
5466 (with the possible exception of .dynamic). */
5467 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
5468 ((((segment->p_paddr \
5469 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5470 : IS_CONTAINED_BY_VMA (section, segment)) \
5471 && (section->flags & SEC_ALLOC) != 0) \
5472 || IS_NOTE (segment, section)) \
5473 && segment->p_type != PT_GNU_STACK \
5474 && (segment->p_type != PT_TLS \
5475 || (section->flags & SEC_THREAD_LOCAL)) \
5476 && (segment->p_type == PT_LOAD \
5477 || segment->p_type == PT_TLS \
5478 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5479 && (segment->p_type != PT_DYNAMIC \
5480 || SECTION_SIZE (section, segment) > 0 \
5481 || (segment->p_paddr \
5482 ? segment->p_paddr != section->lma \
5483 : segment->p_vaddr != section->vma) \
5484 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5485 == 0)) \
5486 && !section->segment_mark)
5487
5488 /* If the output section of a section in the input segment is NULL,
5489 it is removed from the corresponding output segment. */
5490 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5491 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
5492 && section->output_section != NULL)
5493
5494 /* Returns TRUE iff seg1 starts after the end of seg2. */
5495 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5496 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5497
5498 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5499 their VMA address ranges and their LMA address ranges overlap.
5500 It is possible to have overlapping VMA ranges without overlapping LMA
5501 ranges. RedBoot images for example can have both .data and .bss mapped
5502 to the same VMA range, but with the .data section mapped to a different
5503 LMA. */
5504 #define SEGMENT_OVERLAPS(seg1, seg2) \
5505 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5506 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5507 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5508 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5509
5510 /* Initialise the segment mark field. */
5511 for (section = ibfd->sections; section != NULL; section = section->next)
5512 section->segment_mark = FALSE;
5513
5514 /* The Solaris linker creates program headers in which all the
5515 p_paddr fields are zero. When we try to objcopy or strip such a
5516 file, we get confused. Check for this case, and if we find it
5517 don't set the p_paddr_valid fields. */
5518 p_paddr_valid = FALSE;
5519 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5520 i < num_segments;
5521 i++, segment++)
5522 if (segment->p_paddr != 0)
5523 {
5524 p_paddr_valid = TRUE;
5525 break;
5526 }
5527
5528 /* Scan through the segments specified in the program header
5529 of the input BFD. For this first scan we look for overlaps
5530 in the loadable segments. These can be created by weird
5531 parameters to objcopy. Also, fix some solaris weirdness. */
5532 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5533 i < num_segments;
5534 i++, segment++)
5535 {
5536 unsigned int j;
5537 Elf_Internal_Phdr *segment2;
5538
5539 if (segment->p_type == PT_INTERP)
5540 for (section = ibfd->sections; section; section = section->next)
5541 if (IS_SOLARIS_PT_INTERP (segment, section))
5542 {
5543 /* Mininal change so that the normal section to segment
5544 assignment code will work. */
5545 segment->p_vaddr = section->vma;
5546 break;
5547 }
5548
5549 if (segment->p_type != PT_LOAD)
5550 {
5551 /* Remove PT_GNU_RELRO segment. */
5552 if (segment->p_type == PT_GNU_RELRO)
5553 segment->p_type = PT_NULL;
5554 continue;
5555 }
5556
5557 /* Determine if this segment overlaps any previous segments. */
5558 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
5559 {
5560 bfd_signed_vma extra_length;
5561
5562 if (segment2->p_type != PT_LOAD
5563 || !SEGMENT_OVERLAPS (segment, segment2))
5564 continue;
5565
5566 /* Merge the two segments together. */
5567 if (segment2->p_vaddr < segment->p_vaddr)
5568 {
5569 /* Extend SEGMENT2 to include SEGMENT and then delete
5570 SEGMENT. */
5571 extra_length = (SEGMENT_END (segment, segment->p_vaddr)
5572 - SEGMENT_END (segment2, segment2->p_vaddr));
5573
5574 if (extra_length > 0)
5575 {
5576 segment2->p_memsz += extra_length;
5577 segment2->p_filesz += extra_length;
5578 }
5579
5580 segment->p_type = PT_NULL;
5581
5582 /* Since we have deleted P we must restart the outer loop. */
5583 i = 0;
5584 segment = elf_tdata (ibfd)->phdr;
5585 break;
5586 }
5587 else
5588 {
5589 /* Extend SEGMENT to include SEGMENT2 and then delete
5590 SEGMENT2. */
5591 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
5592 - SEGMENT_END (segment, segment->p_vaddr));
5593
5594 if (extra_length > 0)
5595 {
5596 segment->p_memsz += extra_length;
5597 segment->p_filesz += extra_length;
5598 }
5599
5600 segment2->p_type = PT_NULL;
5601 }
5602 }
5603 }
5604
5605 /* The second scan attempts to assign sections to segments. */
5606 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5607 i < num_segments;
5608 i++, segment++)
5609 {
5610 unsigned int section_count;
5611 asection **sections;
5612 asection *output_section;
5613 unsigned int isec;
5614 bfd_vma matching_lma;
5615 bfd_vma suggested_lma;
5616 unsigned int j;
5617 bfd_size_type amt;
5618 asection *first_section;
5619 bfd_boolean first_matching_lma;
5620 bfd_boolean first_suggested_lma;
5621
5622 if (segment->p_type == PT_NULL)
5623 continue;
5624
5625 first_section = NULL;
5626 /* Compute how many sections might be placed into this segment. */
5627 for (section = ibfd->sections, section_count = 0;
5628 section != NULL;
5629 section = section->next)
5630 {
5631 /* Find the first section in the input segment, which may be
5632 removed from the corresponding output segment. */
5633 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
5634 {
5635 if (first_section == NULL)
5636 first_section = section;
5637 if (section->output_section != NULL)
5638 ++section_count;
5639 }
5640 }
5641
5642 /* Allocate a segment map big enough to contain
5643 all of the sections we have selected. */
5644 amt = sizeof (struct elf_segment_map);
5645 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5646 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
5647 if (map == NULL)
5648 return FALSE;
5649
5650 /* Initialise the fields of the segment map. Default to
5651 using the physical address of the segment in the input BFD. */
5652 map->next = NULL;
5653 map->p_type = segment->p_type;
5654 map->p_flags = segment->p_flags;
5655 map->p_flags_valid = 1;
5656
5657 /* If the first section in the input segment is removed, there is
5658 no need to preserve segment physical address in the corresponding
5659 output segment. */
5660 if (!first_section || first_section->output_section != NULL)
5661 {
5662 map->p_paddr = segment->p_paddr;
5663 map->p_paddr_valid = p_paddr_valid;
5664 }
5665
5666 /* Determine if this segment contains the ELF file header
5667 and if it contains the program headers themselves. */
5668 map->includes_filehdr = (segment->p_offset == 0
5669 && segment->p_filesz >= iehdr->e_ehsize);
5670 map->includes_phdrs = 0;
5671
5672 if (!phdr_included || segment->p_type != PT_LOAD)
5673 {
5674 map->includes_phdrs =
5675 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5676 && (segment->p_offset + segment->p_filesz
5677 >= ((bfd_vma) iehdr->e_phoff
5678 + iehdr->e_phnum * iehdr->e_phentsize)));
5679
5680 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5681 phdr_included = TRUE;
5682 }
5683
5684 if (section_count == 0)
5685 {
5686 /* Special segments, such as the PT_PHDR segment, may contain
5687 no sections, but ordinary, loadable segments should contain
5688 something. They are allowed by the ELF spec however, so only
5689 a warning is produced. */
5690 if (segment->p_type == PT_LOAD)
5691 (*_bfd_error_handler) (_("%B: warning: Empty loadable segment"
5692 " detected, is this intentional ?\n"),
5693 ibfd);
5694
5695 map->count = 0;
5696 *pointer_to_map = map;
5697 pointer_to_map = &map->next;
5698
5699 continue;
5700 }
5701
5702 /* Now scan the sections in the input BFD again and attempt
5703 to add their corresponding output sections to the segment map.
5704 The problem here is how to handle an output section which has
5705 been moved (ie had its LMA changed). There are four possibilities:
5706
5707 1. None of the sections have been moved.
5708 In this case we can continue to use the segment LMA from the
5709 input BFD.
5710
5711 2. All of the sections have been moved by the same amount.
5712 In this case we can change the segment's LMA to match the LMA
5713 of the first section.
5714
5715 3. Some of the sections have been moved, others have not.
5716 In this case those sections which have not been moved can be
5717 placed in the current segment which will have to have its size,
5718 and possibly its LMA changed, and a new segment or segments will
5719 have to be created to contain the other sections.
5720
5721 4. The sections have been moved, but not by the same amount.
5722 In this case we can change the segment's LMA to match the LMA
5723 of the first section and we will have to create a new segment
5724 or segments to contain the other sections.
5725
5726 In order to save time, we allocate an array to hold the section
5727 pointers that we are interested in. As these sections get assigned
5728 to a segment, they are removed from this array. */
5729
5730 sections = (asection **) bfd_malloc2 (section_count, sizeof (asection *));
5731 if (sections == NULL)
5732 return FALSE;
5733
5734 /* Step One: Scan for segment vs section LMA conflicts.
5735 Also add the sections to the section array allocated above.
5736 Also add the sections to the current segment. In the common
5737 case, where the sections have not been moved, this means that
5738 we have completely filled the segment, and there is nothing
5739 more to do. */
5740 isec = 0;
5741 matching_lma = 0;
5742 suggested_lma = 0;
5743 first_matching_lma = TRUE;
5744 first_suggested_lma = TRUE;
5745
5746 for (section = ibfd->sections;
5747 section != NULL;
5748 section = section->next)
5749 if (section == first_section)
5750 break;
5751
5752 for (j = 0; section != NULL; section = section->next)
5753 {
5754 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5755 {
5756 output_section = section->output_section;
5757
5758 sections[j++] = section;
5759
5760 /* The Solaris native linker always sets p_paddr to 0.
5761 We try to catch that case here, and set it to the
5762 correct value. Note - some backends require that
5763 p_paddr be left as zero. */
5764 if (!p_paddr_valid
5765 && segment->p_vaddr != 0
5766 && !bed->want_p_paddr_set_to_zero
5767 && isec == 0
5768 && output_section->lma != 0
5769 && output_section->vma == (segment->p_vaddr
5770 + (map->includes_filehdr
5771 ? iehdr->e_ehsize
5772 : 0)
5773 + (map->includes_phdrs
5774 ? (iehdr->e_phnum
5775 * iehdr->e_phentsize)
5776 : 0)))
5777 map->p_paddr = segment->p_vaddr;
5778
5779 /* Match up the physical address of the segment with the
5780 LMA address of the output section. */
5781 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5782 || IS_COREFILE_NOTE (segment, section)
5783 || (bed->want_p_paddr_set_to_zero
5784 && IS_CONTAINED_BY_VMA (output_section, segment)))
5785 {
5786 if (first_matching_lma || output_section->lma < matching_lma)
5787 {
5788 matching_lma = output_section->lma;
5789 first_matching_lma = FALSE;
5790 }
5791
5792 /* We assume that if the section fits within the segment
5793 then it does not overlap any other section within that
5794 segment. */
5795 map->sections[isec++] = output_section;
5796 }
5797 else if (first_suggested_lma)
5798 {
5799 suggested_lma = output_section->lma;
5800 first_suggested_lma = FALSE;
5801 }
5802
5803 if (j == section_count)
5804 break;
5805 }
5806 }
5807
5808 BFD_ASSERT (j == section_count);
5809
5810 /* Step Two: Adjust the physical address of the current segment,
5811 if necessary. */
5812 if (isec == section_count)
5813 {
5814 /* All of the sections fitted within the segment as currently
5815 specified. This is the default case. Add the segment to
5816 the list of built segments and carry on to process the next
5817 program header in the input BFD. */
5818 map->count = section_count;
5819 *pointer_to_map = map;
5820 pointer_to_map = &map->next;
5821
5822 if (p_paddr_valid
5823 && !bed->want_p_paddr_set_to_zero
5824 && matching_lma != map->p_paddr
5825 && !map->includes_filehdr
5826 && !map->includes_phdrs)
5827 /* There is some padding before the first section in the
5828 segment. So, we must account for that in the output
5829 segment's vma. */
5830 map->p_vaddr_offset = matching_lma - map->p_paddr;
5831
5832 free (sections);
5833 continue;
5834 }
5835 else
5836 {
5837 if (!first_matching_lma)
5838 {
5839 /* At least one section fits inside the current segment.
5840 Keep it, but modify its physical address to match the
5841 LMA of the first section that fitted. */
5842 map->p_paddr = matching_lma;
5843 }
5844 else
5845 {
5846 /* None of the sections fitted inside the current segment.
5847 Change the current segment's physical address to match
5848 the LMA of the first section. */
5849 map->p_paddr = suggested_lma;
5850 }
5851
5852 /* Offset the segment physical address from the lma
5853 to allow for space taken up by elf headers. */
5854 if (map->includes_filehdr)
5855 {
5856 if (map->p_paddr >= iehdr->e_ehsize)
5857 map->p_paddr -= iehdr->e_ehsize;
5858 else
5859 {
5860 map->includes_filehdr = FALSE;
5861 map->includes_phdrs = FALSE;
5862 }
5863 }
5864
5865 if (map->includes_phdrs)
5866 {
5867 if (map->p_paddr >= iehdr->e_phnum * iehdr->e_phentsize)
5868 {
5869 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
5870
5871 /* iehdr->e_phnum is just an estimate of the number
5872 of program headers that we will need. Make a note
5873 here of the number we used and the segment we chose
5874 to hold these headers, so that we can adjust the
5875 offset when we know the correct value. */
5876 phdr_adjust_num = iehdr->e_phnum;
5877 phdr_adjust_seg = map;
5878 }
5879 else
5880 map->includes_phdrs = FALSE;
5881 }
5882 }
5883
5884 /* Step Three: Loop over the sections again, this time assigning
5885 those that fit to the current segment and removing them from the
5886 sections array; but making sure not to leave large gaps. Once all
5887 possible sections have been assigned to the current segment it is
5888 added to the list of built segments and if sections still remain
5889 to be assigned, a new segment is constructed before repeating
5890 the loop. */
5891 isec = 0;
5892 do
5893 {
5894 map->count = 0;
5895 suggested_lma = 0;
5896 first_suggested_lma = TRUE;
5897
5898 /* Fill the current segment with sections that fit. */
5899 for (j = 0; j < section_count; j++)
5900 {
5901 section = sections[j];
5902
5903 if (section == NULL)
5904 continue;
5905
5906 output_section = section->output_section;
5907
5908 BFD_ASSERT (output_section != NULL);
5909
5910 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5911 || IS_COREFILE_NOTE (segment, section))
5912 {
5913 if (map->count == 0)
5914 {
5915 /* If the first section in a segment does not start at
5916 the beginning of the segment, then something is
5917 wrong. */
5918 if (output_section->lma
5919 != (map->p_paddr
5920 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
5921 + (map->includes_phdrs
5922 ? iehdr->e_phnum * iehdr->e_phentsize
5923 : 0)))
5924 abort ();
5925 }
5926 else
5927 {
5928 asection *prev_sec;
5929
5930 prev_sec = map->sections[map->count - 1];
5931
5932 /* If the gap between the end of the previous section
5933 and the start of this section is more than
5934 maxpagesize then we need to start a new segment. */
5935 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
5936 maxpagesize)
5937 < BFD_ALIGN (output_section->lma, maxpagesize))
5938 || (prev_sec->lma + prev_sec->size
5939 > output_section->lma))
5940 {
5941 if (first_suggested_lma)
5942 {
5943 suggested_lma = output_section->lma;
5944 first_suggested_lma = FALSE;
5945 }
5946
5947 continue;
5948 }
5949 }
5950
5951 map->sections[map->count++] = output_section;
5952 ++isec;
5953 sections[j] = NULL;
5954 section->segment_mark = TRUE;
5955 }
5956 else if (first_suggested_lma)
5957 {
5958 suggested_lma = output_section->lma;
5959 first_suggested_lma = FALSE;
5960 }
5961 }
5962
5963 BFD_ASSERT (map->count > 0);
5964
5965 /* Add the current segment to the list of built segments. */
5966 *pointer_to_map = map;
5967 pointer_to_map = &map->next;
5968
5969 if (isec < section_count)
5970 {
5971 /* We still have not allocated all of the sections to
5972 segments. Create a new segment here, initialise it
5973 and carry on looping. */
5974 amt = sizeof (struct elf_segment_map);
5975 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5976 map = (struct elf_segment_map *) bfd_alloc (obfd, amt);
5977 if (map == NULL)
5978 {
5979 free (sections);
5980 return FALSE;
5981 }
5982
5983 /* Initialise the fields of the segment map. Set the physical
5984 physical address to the LMA of the first section that has
5985 not yet been assigned. */
5986 map->next = NULL;
5987 map->p_type = segment->p_type;
5988 map->p_flags = segment->p_flags;
5989 map->p_flags_valid = 1;
5990 map->p_paddr = suggested_lma;
5991 map->p_paddr_valid = p_paddr_valid;
5992 map->includes_filehdr = 0;
5993 map->includes_phdrs = 0;
5994 }
5995 }
5996 while (isec < section_count);
5997
5998 free (sections);
5999 }
6000
6001 elf_tdata (obfd)->segment_map = map_first;
6002
6003 /* If we had to estimate the number of program headers that were
6004 going to be needed, then check our estimate now and adjust
6005 the offset if necessary. */
6006 if (phdr_adjust_seg != NULL)
6007 {
6008 unsigned int count;
6009
6010 for (count = 0, map = map_first; map != NULL; map = map->next)
6011 count++;
6012
6013 if (count > phdr_adjust_num)
6014 phdr_adjust_seg->p_paddr
6015 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
6016 }
6017
6018 #undef SEGMENT_END
6019 #undef SECTION_SIZE
6020 #undef IS_CONTAINED_BY_VMA
6021 #undef IS_CONTAINED_BY_LMA
6022 #undef IS_NOTE
6023 #undef IS_COREFILE_NOTE
6024 #undef IS_SOLARIS_PT_INTERP
6025 #undef IS_SECTION_IN_INPUT_SEGMENT
6026 #undef INCLUDE_SECTION_IN_SEGMENT
6027 #undef SEGMENT_AFTER_SEGMENT
6028 #undef SEGMENT_OVERLAPS
6029 return TRUE;
6030 }
6031
6032 /* Copy ELF program header information. */
6033
6034 static bfd_boolean
6035 copy_elf_program_header (bfd *ibfd, bfd *obfd)
6036 {
6037 Elf_Internal_Ehdr *iehdr;
6038 struct elf_segment_map *map;
6039 struct elf_segment_map *map_first;
6040 struct elf_segment_map **pointer_to_map;
6041 Elf_Internal_Phdr *segment;
6042 unsigned int i;
6043 unsigned int num_segments;
6044 bfd_boolean phdr_included = FALSE;
6045 bfd_boolean p_paddr_valid;
6046
6047 iehdr = elf_elfheader (ibfd);
6048
6049 map_first = NULL;
6050 pointer_to_map = &map_first;
6051
6052 /* If all the segment p_paddr fields are zero, don't set
6053 map->p_paddr_valid. */
6054 p_paddr_valid = FALSE;
6055 num_segments = elf_elfheader (ibfd)->e_phnum;
6056 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6057 i < num_segments;
6058 i++, segment++)
6059 if (segment->p_paddr != 0)
6060 {
6061 p_paddr_valid = TRUE;
6062 break;
6063 }
6064
6065 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6066 i < num_segments;
6067 i++, segment++)
6068 {
6069 asection *section;
6070 unsigned int section_count;
6071 bfd_size_type amt;
6072 Elf_Internal_Shdr *this_hdr;
6073 asection *first_section = NULL;
6074 asection *lowest_section;
6075
6076 /* Compute how many sections are in this segment. */
6077 for (section = ibfd->sections, section_count = 0;
6078 section != NULL;
6079 section = section->next)
6080 {
6081 this_hdr = &(elf_section_data(section)->this_hdr);
6082 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6083 {
6084 if (first_section == NULL)
6085 first_section = section;
6086 section_count++;
6087 }
6088 }
6089
6090 /* Allocate a segment map big enough to contain
6091 all of the sections we have selected. */
6092 amt = sizeof (struct elf_segment_map);
6093 if (section_count != 0)
6094 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
6095 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
6096 if (map == NULL)
6097 return FALSE;
6098
6099 /* Initialize the fields of the output segment map with the
6100 input segment. */
6101 map->next = NULL;
6102 map->p_type = segment->p_type;
6103 map->p_flags = segment->p_flags;
6104 map->p_flags_valid = 1;
6105 map->p_paddr = segment->p_paddr;
6106 map->p_paddr_valid = p_paddr_valid;
6107 map->p_align = segment->p_align;
6108 map->p_align_valid = 1;
6109 map->p_vaddr_offset = 0;
6110
6111 if (map->p_type == PT_GNU_RELRO)
6112 {
6113 /* The PT_GNU_RELRO segment may contain the first a few
6114 bytes in the .got.plt section even if the whole .got.plt
6115 section isn't in the PT_GNU_RELRO segment. We won't
6116 change the size of the PT_GNU_RELRO segment. */
6117 map->p_size = segment->p_memsz;
6118 map->p_size_valid = 1;
6119 }
6120
6121 /* Determine if this segment contains the ELF file header
6122 and if it contains the program headers themselves. */
6123 map->includes_filehdr = (segment->p_offset == 0
6124 && segment->p_filesz >= iehdr->e_ehsize);
6125
6126 map->includes_phdrs = 0;
6127 if (! phdr_included || segment->p_type != PT_LOAD)
6128 {
6129 map->includes_phdrs =
6130 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
6131 && (segment->p_offset + segment->p_filesz
6132 >= ((bfd_vma) iehdr->e_phoff
6133 + iehdr->e_phnum * iehdr->e_phentsize)));
6134
6135 if (segment->p_type == PT_LOAD && map->includes_phdrs)
6136 phdr_included = TRUE;
6137 }
6138
6139 lowest_section = first_section;
6140 if (section_count != 0)
6141 {
6142 unsigned int isec = 0;
6143
6144 for (section = first_section;
6145 section != NULL;
6146 section = section->next)
6147 {
6148 this_hdr = &(elf_section_data(section)->this_hdr);
6149 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6150 {
6151 map->sections[isec++] = section->output_section;
6152 if (section->lma < lowest_section->lma)
6153 lowest_section = section;
6154 if ((section->flags & SEC_ALLOC) != 0)
6155 {
6156 bfd_vma seg_off;
6157
6158 /* Section lmas are set up from PT_LOAD header
6159 p_paddr in _bfd_elf_make_section_from_shdr.
6160 If this header has a p_paddr that disagrees
6161 with the section lma, flag the p_paddr as
6162 invalid. */
6163 if ((section->flags & SEC_LOAD) != 0)
6164 seg_off = this_hdr->sh_offset - segment->p_offset;
6165 else
6166 seg_off = this_hdr->sh_addr - segment->p_vaddr;
6167 if (section->lma - segment->p_paddr != seg_off)
6168 map->p_paddr_valid = FALSE;
6169 }
6170 if (isec == section_count)
6171 break;
6172 }
6173 }
6174 }
6175
6176 if (map->includes_filehdr && lowest_section != NULL)
6177 /* We need to keep the space used by the headers fixed. */
6178 map->header_size = lowest_section->vma - segment->p_vaddr;
6179
6180 if (!map->includes_phdrs
6181 && !map->includes_filehdr
6182 && map->p_paddr_valid)
6183 /* There is some other padding before the first section. */
6184 map->p_vaddr_offset = ((lowest_section ? lowest_section->lma : 0)
6185 - segment->p_paddr);
6186
6187 map->count = section_count;
6188 *pointer_to_map = map;
6189 pointer_to_map = &map->next;
6190 }
6191
6192 elf_tdata (obfd)->segment_map = map_first;
6193 return TRUE;
6194 }
6195
6196 /* Copy private BFD data. This copies or rewrites ELF program header
6197 information. */
6198
6199 static bfd_boolean
6200 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
6201 {
6202 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6203 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6204 return TRUE;
6205
6206 if (elf_tdata (ibfd)->phdr == NULL)
6207 return TRUE;
6208
6209 if (ibfd->xvec == obfd->xvec)
6210 {
6211 /* Check to see if any sections in the input BFD
6212 covered by ELF program header have changed. */
6213 Elf_Internal_Phdr *segment;
6214 asection *section, *osec;
6215 unsigned int i, num_segments;
6216 Elf_Internal_Shdr *this_hdr;
6217 const struct elf_backend_data *bed;
6218
6219 bed = get_elf_backend_data (ibfd);
6220
6221 /* Regenerate the segment map if p_paddr is set to 0. */
6222 if (bed->want_p_paddr_set_to_zero)
6223 goto rewrite;
6224
6225 /* Initialize the segment mark field. */
6226 for (section = obfd->sections; section != NULL;
6227 section = section->next)
6228 section->segment_mark = FALSE;
6229
6230 num_segments = elf_elfheader (ibfd)->e_phnum;
6231 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6232 i < num_segments;
6233 i++, segment++)
6234 {
6235 /* PR binutils/3535. The Solaris linker always sets the p_paddr
6236 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
6237 which severly confuses things, so always regenerate the segment
6238 map in this case. */
6239 if (segment->p_paddr == 0
6240 && segment->p_memsz == 0
6241 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
6242 goto rewrite;
6243
6244 for (section = ibfd->sections;
6245 section != NULL; section = section->next)
6246 {
6247 /* We mark the output section so that we know it comes
6248 from the input BFD. */
6249 osec = section->output_section;
6250 if (osec)
6251 osec->segment_mark = TRUE;
6252
6253 /* Check if this section is covered by the segment. */
6254 this_hdr = &(elf_section_data(section)->this_hdr);
6255 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6256 {
6257 /* FIXME: Check if its output section is changed or
6258 removed. What else do we need to check? */
6259 if (osec == NULL
6260 || section->flags != osec->flags
6261 || section->lma != osec->lma
6262 || section->vma != osec->vma
6263 || section->size != osec->size
6264 || section->rawsize != osec->rawsize
6265 || section->alignment_power != osec->alignment_power)
6266 goto rewrite;
6267 }
6268 }
6269 }
6270
6271 /* Check to see if any output section do not come from the
6272 input BFD. */
6273 for (section = obfd->sections; section != NULL;
6274 section = section->next)
6275 {
6276 if (section->segment_mark == FALSE)
6277 goto rewrite;
6278 else
6279 section->segment_mark = FALSE;
6280 }
6281
6282 return copy_elf_program_header (ibfd, obfd);
6283 }
6284
6285 rewrite:
6286 return rewrite_elf_program_header (ibfd, obfd);
6287 }
6288
6289 /* Initialize private output section information from input section. */
6290
6291 bfd_boolean
6292 _bfd_elf_init_private_section_data (bfd *ibfd,
6293 asection *isec,
6294 bfd *obfd,
6295 asection *osec,
6296 struct bfd_link_info *link_info)
6297
6298 {
6299 Elf_Internal_Shdr *ihdr, *ohdr;
6300 bfd_boolean final_link = link_info != NULL && !link_info->relocatable;
6301
6302 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6303 || obfd->xvec->flavour != bfd_target_elf_flavour)
6304 return TRUE;
6305
6306 BFD_ASSERT (elf_section_data (osec) != NULL);
6307
6308 /* For objcopy and relocatable link, don't copy the output ELF
6309 section type from input if the output BFD section flags have been
6310 set to something different. For a final link allow some flags
6311 that the linker clears to differ. */
6312 if (elf_section_type (osec) == SHT_NULL
6313 && (osec->flags == isec->flags
6314 || (final_link
6315 && ((osec->flags ^ isec->flags)
6316 & ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC)) == 0)))
6317 elf_section_type (osec) = elf_section_type (isec);
6318
6319 /* FIXME: Is this correct for all OS/PROC specific flags? */
6320 elf_section_flags (osec) |= (elf_section_flags (isec)
6321 & (SHF_MASKOS | SHF_MASKPROC));
6322
6323 /* Set things up for objcopy and relocatable link. The output
6324 SHT_GROUP section will have its elf_next_in_group pointing back
6325 to the input group members. Ignore linker created group section.
6326 See elfNN_ia64_object_p in elfxx-ia64.c. */
6327 if (!final_link)
6328 {
6329 if (elf_sec_group (isec) == NULL
6330 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
6331 {
6332 if (elf_section_flags (isec) & SHF_GROUP)
6333 elf_section_flags (osec) |= SHF_GROUP;
6334 elf_next_in_group (osec) = elf_next_in_group (isec);
6335 elf_section_data (osec)->group = elf_section_data (isec)->group;
6336 }
6337 }
6338
6339 ihdr = &elf_section_data (isec)->this_hdr;
6340
6341 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
6342 don't use the output section of the linked-to section since it
6343 may be NULL at this point. */
6344 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
6345 {
6346 ohdr = &elf_section_data (osec)->this_hdr;
6347 ohdr->sh_flags |= SHF_LINK_ORDER;
6348 elf_linked_to_section (osec) = elf_linked_to_section (isec);
6349 }
6350
6351 osec->use_rela_p = isec->use_rela_p;
6352
6353 return TRUE;
6354 }
6355
6356 /* Copy private section information. This copies over the entsize
6357 field, and sometimes the info field. */
6358
6359 bfd_boolean
6360 _bfd_elf_copy_private_section_data (bfd *ibfd,
6361 asection *isec,
6362 bfd *obfd,
6363 asection *osec)
6364 {
6365 Elf_Internal_Shdr *ihdr, *ohdr;
6366
6367 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6368 || obfd->xvec->flavour != bfd_target_elf_flavour)
6369 return TRUE;
6370
6371 ihdr = &elf_section_data (isec)->this_hdr;
6372 ohdr = &elf_section_data (osec)->this_hdr;
6373
6374 ohdr->sh_entsize = ihdr->sh_entsize;
6375
6376 if (ihdr->sh_type == SHT_SYMTAB
6377 || ihdr->sh_type == SHT_DYNSYM
6378 || ihdr->sh_type == SHT_GNU_verneed
6379 || ihdr->sh_type == SHT_GNU_verdef)
6380 ohdr->sh_info = ihdr->sh_info;
6381
6382 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
6383 NULL);
6384 }
6385
6386 /* Look at all the SHT_GROUP sections in IBFD, making any adjustments
6387 necessary if we are removing either the SHT_GROUP section or any of
6388 the group member sections. DISCARDED is the value that a section's
6389 output_section has if the section will be discarded, NULL when this
6390 function is called from objcopy, bfd_abs_section_ptr when called
6391 from the linker. */
6392
6393 bfd_boolean
6394 _bfd_elf_fixup_group_sections (bfd *ibfd, asection *discarded)
6395 {
6396 asection *isec;
6397
6398 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
6399 if (elf_section_type (isec) == SHT_GROUP)
6400 {
6401 asection *first = elf_next_in_group (isec);
6402 asection *s = first;
6403 bfd_size_type removed = 0;
6404
6405 while (s != NULL)
6406 {
6407 /* If this member section is being output but the
6408 SHT_GROUP section is not, then clear the group info
6409 set up by _bfd_elf_copy_private_section_data. */
6410 if (s->output_section != discarded
6411 && isec->output_section == discarded)
6412 {
6413 elf_section_flags (s->output_section) &= ~SHF_GROUP;
6414 elf_group_name (s->output_section) = NULL;
6415 }
6416 /* Conversely, if the member section is not being output
6417 but the SHT_GROUP section is, then adjust its size. */
6418 else if (s->output_section == discarded
6419 && isec->output_section != discarded)
6420 removed += 4;
6421 s = elf_next_in_group (s);
6422 if (s == first)
6423 break;
6424 }
6425 if (removed != 0)
6426 {
6427 if (discarded != NULL)
6428 {
6429 /* If we've been called for ld -r, then we need to
6430 adjust the input section size. This function may
6431 be called multiple times, so save the original
6432 size. */
6433 if (isec->rawsize == 0)
6434 isec->rawsize = isec->size;
6435 isec->size = isec->rawsize - removed;
6436 }
6437 else
6438 {
6439 /* Adjust the output section size when called from
6440 objcopy. */
6441 isec->output_section->size -= removed;
6442 }
6443 }
6444 }
6445
6446 return TRUE;
6447 }
6448
6449 /* Copy private header information. */
6450
6451 bfd_boolean
6452 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
6453 {
6454 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6455 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6456 return TRUE;
6457
6458 /* Copy over private BFD data if it has not already been copied.
6459 This must be done here, rather than in the copy_private_bfd_data
6460 entry point, because the latter is called after the section
6461 contents have been set, which means that the program headers have
6462 already been worked out. */
6463 if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
6464 {
6465 if (! copy_private_bfd_data (ibfd, obfd))
6466 return FALSE;
6467 }
6468
6469 return _bfd_elf_fixup_group_sections (ibfd, NULL);
6470 }
6471
6472 /* Copy private symbol information. If this symbol is in a section
6473 which we did not map into a BFD section, try to map the section
6474 index correctly. We use special macro definitions for the mapped
6475 section indices; these definitions are interpreted by the
6476 swap_out_syms function. */
6477
6478 #define MAP_ONESYMTAB (SHN_HIOS + 1)
6479 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
6480 #define MAP_STRTAB (SHN_HIOS + 3)
6481 #define MAP_SHSTRTAB (SHN_HIOS + 4)
6482 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
6483
6484 bfd_boolean
6485 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
6486 asymbol *isymarg,
6487 bfd *obfd,
6488 asymbol *osymarg)
6489 {
6490 elf_symbol_type *isym, *osym;
6491
6492 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6493 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6494 return TRUE;
6495
6496 isym = elf_symbol_from (ibfd, isymarg);
6497 osym = elf_symbol_from (obfd, osymarg);
6498
6499 if (isym != NULL
6500 && isym->internal_elf_sym.st_shndx != 0
6501 && osym != NULL
6502 && bfd_is_abs_section (isym->symbol.section))
6503 {
6504 unsigned int shndx;
6505
6506 shndx = isym->internal_elf_sym.st_shndx;
6507 if (shndx == elf_onesymtab (ibfd))
6508 shndx = MAP_ONESYMTAB;
6509 else if (shndx == elf_dynsymtab (ibfd))
6510 shndx = MAP_DYNSYMTAB;
6511 else if (shndx == elf_tdata (ibfd)->strtab_section)
6512 shndx = MAP_STRTAB;
6513 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
6514 shndx = MAP_SHSTRTAB;
6515 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
6516 shndx = MAP_SYM_SHNDX;
6517 osym->internal_elf_sym.st_shndx = shndx;
6518 }
6519
6520 return TRUE;
6521 }
6522
6523 /* Swap out the symbols. */
6524
6525 static bfd_boolean
6526 swap_out_syms (bfd *abfd,
6527 struct bfd_strtab_hash **sttp,
6528 int relocatable_p)
6529 {
6530 const struct elf_backend_data *bed;
6531 int symcount;
6532 asymbol **syms;
6533 struct bfd_strtab_hash *stt;
6534 Elf_Internal_Shdr *symtab_hdr;
6535 Elf_Internal_Shdr *symtab_shndx_hdr;
6536 Elf_Internal_Shdr *symstrtab_hdr;
6537 bfd_byte *outbound_syms;
6538 bfd_byte *outbound_shndx;
6539 int idx;
6540 bfd_size_type amt;
6541 bfd_boolean name_local_sections;
6542
6543 if (!elf_map_symbols (abfd))
6544 return FALSE;
6545
6546 /* Dump out the symtabs. */
6547 stt = _bfd_elf_stringtab_init ();
6548 if (stt == NULL)
6549 return FALSE;
6550
6551 bed = get_elf_backend_data (abfd);
6552 symcount = bfd_get_symcount (abfd);
6553 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6554 symtab_hdr->sh_type = SHT_SYMTAB;
6555 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
6556 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
6557 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
6558 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
6559
6560 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
6561 symstrtab_hdr->sh_type = SHT_STRTAB;
6562
6563 outbound_syms = (bfd_byte *) bfd_alloc2 (abfd, 1 + symcount,
6564 bed->s->sizeof_sym);
6565 if (outbound_syms == NULL)
6566 {
6567 _bfd_stringtab_free (stt);
6568 return FALSE;
6569 }
6570 symtab_hdr->contents = outbound_syms;
6571
6572 outbound_shndx = NULL;
6573 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
6574 if (symtab_shndx_hdr->sh_name != 0)
6575 {
6576 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
6577 outbound_shndx = (bfd_byte *)
6578 bfd_zalloc2 (abfd, 1 + symcount, sizeof (Elf_External_Sym_Shndx));
6579 if (outbound_shndx == NULL)
6580 {
6581 _bfd_stringtab_free (stt);
6582 return FALSE;
6583 }
6584
6585 symtab_shndx_hdr->contents = outbound_shndx;
6586 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
6587 symtab_shndx_hdr->sh_size = amt;
6588 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
6589 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
6590 }
6591
6592 /* Now generate the data (for "contents"). */
6593 {
6594 /* Fill in zeroth symbol and swap it out. */
6595 Elf_Internal_Sym sym;
6596 sym.st_name = 0;
6597 sym.st_value = 0;
6598 sym.st_size = 0;
6599 sym.st_info = 0;
6600 sym.st_other = 0;
6601 sym.st_shndx = SHN_UNDEF;
6602 sym.st_target_internal = 0;
6603 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6604 outbound_syms += bed->s->sizeof_sym;
6605 if (outbound_shndx != NULL)
6606 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6607 }
6608
6609 name_local_sections
6610 = (bed->elf_backend_name_local_section_symbols
6611 && bed->elf_backend_name_local_section_symbols (abfd));
6612
6613 syms = bfd_get_outsymbols (abfd);
6614 for (idx = 0; idx < symcount; idx++)
6615 {
6616 Elf_Internal_Sym sym;
6617 bfd_vma value = syms[idx]->value;
6618 elf_symbol_type *type_ptr;
6619 flagword flags = syms[idx]->flags;
6620 int type;
6621
6622 if (!name_local_sections
6623 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
6624 {
6625 /* Local section symbols have no name. */
6626 sym.st_name = 0;
6627 }
6628 else
6629 {
6630 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
6631 syms[idx]->name,
6632 TRUE, FALSE);
6633 if (sym.st_name == (unsigned long) -1)
6634 {
6635 _bfd_stringtab_free (stt);
6636 return FALSE;
6637 }
6638 }
6639
6640 type_ptr = elf_symbol_from (abfd, syms[idx]);
6641
6642 if ((flags & BSF_SECTION_SYM) == 0
6643 && bfd_is_com_section (syms[idx]->section))
6644 {
6645 /* ELF common symbols put the alignment into the `value' field,
6646 and the size into the `size' field. This is backwards from
6647 how BFD handles it, so reverse it here. */
6648 sym.st_size = value;
6649 if (type_ptr == NULL
6650 || type_ptr->internal_elf_sym.st_value == 0)
6651 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
6652 else
6653 sym.st_value = type_ptr->internal_elf_sym.st_value;
6654 sym.st_shndx = _bfd_elf_section_from_bfd_section
6655 (abfd, syms[idx]->section);
6656 }
6657 else
6658 {
6659 asection *sec = syms[idx]->section;
6660 unsigned int shndx;
6661
6662 if (sec->output_section)
6663 {
6664 value += sec->output_offset;
6665 sec = sec->output_section;
6666 }
6667
6668 /* Don't add in the section vma for relocatable output. */
6669 if (! relocatable_p)
6670 value += sec->vma;
6671 sym.st_value = value;
6672 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
6673
6674 if (bfd_is_abs_section (sec)
6675 && type_ptr != NULL
6676 && type_ptr->internal_elf_sym.st_shndx != 0)
6677 {
6678 /* This symbol is in a real ELF section which we did
6679 not create as a BFD section. Undo the mapping done
6680 by copy_private_symbol_data. */
6681 shndx = type_ptr->internal_elf_sym.st_shndx;
6682 switch (shndx)
6683 {
6684 case MAP_ONESYMTAB:
6685 shndx = elf_onesymtab (abfd);
6686 break;
6687 case MAP_DYNSYMTAB:
6688 shndx = elf_dynsymtab (abfd);
6689 break;
6690 case MAP_STRTAB:
6691 shndx = elf_tdata (abfd)->strtab_section;
6692 break;
6693 case MAP_SHSTRTAB:
6694 shndx = elf_tdata (abfd)->shstrtab_section;
6695 break;
6696 case MAP_SYM_SHNDX:
6697 shndx = elf_tdata (abfd)->symtab_shndx_section;
6698 break;
6699 default:
6700 break;
6701 }
6702 }
6703 else
6704 {
6705 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
6706
6707 if (shndx == SHN_BAD)
6708 {
6709 asection *sec2;
6710
6711 /* Writing this would be a hell of a lot easier if
6712 we had some decent documentation on bfd, and
6713 knew what to expect of the library, and what to
6714 demand of applications. For example, it
6715 appears that `objcopy' might not set the
6716 section of a symbol to be a section that is
6717 actually in the output file. */
6718 sec2 = bfd_get_section_by_name (abfd, sec->name);
6719 if (sec2 == NULL)
6720 {
6721 _bfd_error_handler (_("\
6722 Unable to find equivalent output section for symbol '%s' from section '%s'"),
6723 syms[idx]->name ? syms[idx]->name : "<Local sym>",
6724 sec->name);
6725 bfd_set_error (bfd_error_invalid_operation);
6726 _bfd_stringtab_free (stt);
6727 return FALSE;
6728 }
6729
6730 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
6731 BFD_ASSERT (shndx != SHN_BAD);
6732 }
6733 }
6734
6735 sym.st_shndx = shndx;
6736 }
6737
6738 if ((flags & BSF_THREAD_LOCAL) != 0)
6739 type = STT_TLS;
6740 else if ((flags & BSF_GNU_INDIRECT_FUNCTION) != 0)
6741 type = STT_GNU_IFUNC;
6742 else if ((flags & BSF_FUNCTION) != 0)
6743 type = STT_FUNC;
6744 else if ((flags & BSF_OBJECT) != 0)
6745 type = STT_OBJECT;
6746 else if ((flags & BSF_RELC) != 0)
6747 type = STT_RELC;
6748 else if ((flags & BSF_SRELC) != 0)
6749 type = STT_SRELC;
6750 else
6751 type = STT_NOTYPE;
6752
6753 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
6754 type = STT_TLS;
6755
6756 /* Processor-specific types. */
6757 if (type_ptr != NULL
6758 && bed->elf_backend_get_symbol_type)
6759 type = ((*bed->elf_backend_get_symbol_type)
6760 (&type_ptr->internal_elf_sym, type));
6761
6762 if (flags & BSF_SECTION_SYM)
6763 {
6764 if (flags & BSF_GLOBAL)
6765 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6766 else
6767 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
6768 }
6769 else if (bfd_is_com_section (syms[idx]->section))
6770 {
6771 #ifdef USE_STT_COMMON
6772 if (type == STT_OBJECT)
6773 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_COMMON);
6774 else
6775 #endif
6776 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
6777 }
6778 else if (bfd_is_und_section (syms[idx]->section))
6779 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
6780 ? STB_WEAK
6781 : STB_GLOBAL),
6782 type);
6783 else if (flags & BSF_FILE)
6784 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
6785 else
6786 {
6787 int bind = STB_LOCAL;
6788
6789 if (flags & BSF_LOCAL)
6790 bind = STB_LOCAL;
6791 else if (flags & BSF_GNU_UNIQUE)
6792 bind = STB_GNU_UNIQUE;
6793 else if (flags & BSF_WEAK)
6794 bind = STB_WEAK;
6795 else if (flags & BSF_GLOBAL)
6796 bind = STB_GLOBAL;
6797
6798 sym.st_info = ELF_ST_INFO (bind, type);
6799 }
6800
6801 if (type_ptr != NULL)
6802 {
6803 sym.st_other = type_ptr->internal_elf_sym.st_other;
6804 sym.st_target_internal
6805 = type_ptr->internal_elf_sym.st_target_internal;
6806 }
6807 else
6808 {
6809 sym.st_other = 0;
6810 sym.st_target_internal = 0;
6811 }
6812
6813 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6814 outbound_syms += bed->s->sizeof_sym;
6815 if (outbound_shndx != NULL)
6816 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6817 }
6818
6819 *sttp = stt;
6820 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
6821 symstrtab_hdr->sh_type = SHT_STRTAB;
6822
6823 symstrtab_hdr->sh_flags = 0;
6824 symstrtab_hdr->sh_addr = 0;
6825 symstrtab_hdr->sh_entsize = 0;
6826 symstrtab_hdr->sh_link = 0;
6827 symstrtab_hdr->sh_info = 0;
6828 symstrtab_hdr->sh_addralign = 1;
6829
6830 return TRUE;
6831 }
6832
6833 /* Return the number of bytes required to hold the symtab vector.
6834
6835 Note that we base it on the count plus 1, since we will null terminate
6836 the vector allocated based on this size. However, the ELF symbol table
6837 always has a dummy entry as symbol #0, so it ends up even. */
6838
6839 long
6840 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
6841 {
6842 long symcount;
6843 long symtab_size;
6844 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
6845
6846 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6847 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6848 if (symcount > 0)
6849 symtab_size -= sizeof (asymbol *);
6850
6851 return symtab_size;
6852 }
6853
6854 long
6855 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
6856 {
6857 long symcount;
6858 long symtab_size;
6859 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
6860
6861 if (elf_dynsymtab (abfd) == 0)
6862 {
6863 bfd_set_error (bfd_error_invalid_operation);
6864 return -1;
6865 }
6866
6867 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6868 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6869 if (symcount > 0)
6870 symtab_size -= sizeof (asymbol *);
6871
6872 return symtab_size;
6873 }
6874
6875 long
6876 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
6877 sec_ptr asect)
6878 {
6879 return (asect->reloc_count + 1) * sizeof (arelent *);
6880 }
6881
6882 /* Canonicalize the relocs. */
6883
6884 long
6885 _bfd_elf_canonicalize_reloc (bfd *abfd,
6886 sec_ptr section,
6887 arelent **relptr,
6888 asymbol **symbols)
6889 {
6890 arelent *tblptr;
6891 unsigned int i;
6892 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6893
6894 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
6895 return -1;
6896
6897 tblptr = section->relocation;
6898 for (i = 0; i < section->reloc_count; i++)
6899 *relptr++ = tblptr++;
6900
6901 *relptr = NULL;
6902
6903 return section->reloc_count;
6904 }
6905
6906 long
6907 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
6908 {
6909 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6910 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
6911
6912 if (symcount >= 0)
6913 bfd_get_symcount (abfd) = symcount;
6914 return symcount;
6915 }
6916
6917 long
6918 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
6919 asymbol **allocation)
6920 {
6921 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6922 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
6923
6924 if (symcount >= 0)
6925 bfd_get_dynamic_symcount (abfd) = symcount;
6926 return symcount;
6927 }
6928
6929 /* Return the size required for the dynamic reloc entries. Any loadable
6930 section that was actually installed in the BFD, and has type SHT_REL
6931 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
6932 dynamic reloc section. */
6933
6934 long
6935 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
6936 {
6937 long ret;
6938 asection *s;
6939
6940 if (elf_dynsymtab (abfd) == 0)
6941 {
6942 bfd_set_error (bfd_error_invalid_operation);
6943 return -1;
6944 }
6945
6946 ret = sizeof (arelent *);
6947 for (s = abfd->sections; s != NULL; s = s->next)
6948 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6949 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6950 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6951 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
6952 * sizeof (arelent *));
6953
6954 return ret;
6955 }
6956
6957 /* Canonicalize the dynamic relocation entries. Note that we return the
6958 dynamic relocations as a single block, although they are actually
6959 associated with particular sections; the interface, which was
6960 designed for SunOS style shared libraries, expects that there is only
6961 one set of dynamic relocs. Any loadable section that was actually
6962 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
6963 dynamic symbol table, is considered to be a dynamic reloc section. */
6964
6965 long
6966 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
6967 arelent **storage,
6968 asymbol **syms)
6969 {
6970 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
6971 asection *s;
6972 long ret;
6973
6974 if (elf_dynsymtab (abfd) == 0)
6975 {
6976 bfd_set_error (bfd_error_invalid_operation);
6977 return -1;
6978 }
6979
6980 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
6981 ret = 0;
6982 for (s = abfd->sections; s != NULL; s = s->next)
6983 {
6984 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6985 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6986 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6987 {
6988 arelent *p;
6989 long count, i;
6990
6991 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
6992 return -1;
6993 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
6994 p = s->relocation;
6995 for (i = 0; i < count; i++)
6996 *storage++ = p++;
6997 ret += count;
6998 }
6999 }
7000
7001 *storage = NULL;
7002
7003 return ret;
7004 }
7005 \f
7006 /* Read in the version information. */
7007
7008 bfd_boolean
7009 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
7010 {
7011 bfd_byte *contents = NULL;
7012 unsigned int freeidx = 0;
7013
7014 if (elf_dynverref (abfd) != 0)
7015 {
7016 Elf_Internal_Shdr *hdr;
7017 Elf_External_Verneed *everneed;
7018 Elf_Internal_Verneed *iverneed;
7019 unsigned int i;
7020 bfd_byte *contents_end;
7021
7022 hdr = &elf_tdata (abfd)->dynverref_hdr;
7023
7024 elf_tdata (abfd)->verref = (Elf_Internal_Verneed *)
7025 bfd_zalloc2 (abfd, hdr->sh_info, sizeof (Elf_Internal_Verneed));
7026 if (elf_tdata (abfd)->verref == NULL)
7027 goto error_return;
7028
7029 elf_tdata (abfd)->cverrefs = hdr->sh_info;
7030
7031 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
7032 if (contents == NULL)
7033 {
7034 error_return_verref:
7035 elf_tdata (abfd)->verref = NULL;
7036 elf_tdata (abfd)->cverrefs = 0;
7037 goto error_return;
7038 }
7039 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
7040 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
7041 goto error_return_verref;
7042
7043 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verneed))
7044 goto error_return_verref;
7045
7046 BFD_ASSERT (sizeof (Elf_External_Verneed)
7047 == sizeof (Elf_External_Vernaux));
7048 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
7049 everneed = (Elf_External_Verneed *) contents;
7050 iverneed = elf_tdata (abfd)->verref;
7051 for (i = 0; i < hdr->sh_info; i++, iverneed++)
7052 {
7053 Elf_External_Vernaux *evernaux;
7054 Elf_Internal_Vernaux *ivernaux;
7055 unsigned int j;
7056
7057 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
7058
7059 iverneed->vn_bfd = abfd;
7060
7061 iverneed->vn_filename =
7062 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7063 iverneed->vn_file);
7064 if (iverneed->vn_filename == NULL)
7065 goto error_return_verref;
7066
7067 if (iverneed->vn_cnt == 0)
7068 iverneed->vn_auxptr = NULL;
7069 else
7070 {
7071 iverneed->vn_auxptr = (struct elf_internal_vernaux *)
7072 bfd_alloc2 (abfd, iverneed->vn_cnt,
7073 sizeof (Elf_Internal_Vernaux));
7074 if (iverneed->vn_auxptr == NULL)
7075 goto error_return_verref;
7076 }
7077
7078 if (iverneed->vn_aux
7079 > (size_t) (contents_end - (bfd_byte *) everneed))
7080 goto error_return_verref;
7081
7082 evernaux = ((Elf_External_Vernaux *)
7083 ((bfd_byte *) everneed + iverneed->vn_aux));
7084 ivernaux = iverneed->vn_auxptr;
7085 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
7086 {
7087 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
7088
7089 ivernaux->vna_nodename =
7090 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7091 ivernaux->vna_name);
7092 if (ivernaux->vna_nodename == NULL)
7093 goto error_return_verref;
7094
7095 if (j + 1 < iverneed->vn_cnt)
7096 ivernaux->vna_nextptr = ivernaux + 1;
7097 else
7098 ivernaux->vna_nextptr = NULL;
7099
7100 if (ivernaux->vna_next
7101 > (size_t) (contents_end - (bfd_byte *) evernaux))
7102 goto error_return_verref;
7103
7104 evernaux = ((Elf_External_Vernaux *)
7105 ((bfd_byte *) evernaux + ivernaux->vna_next));
7106
7107 if (ivernaux->vna_other > freeidx)
7108 freeidx = ivernaux->vna_other;
7109 }
7110
7111 if (i + 1 < hdr->sh_info)
7112 iverneed->vn_nextref = iverneed + 1;
7113 else
7114 iverneed->vn_nextref = NULL;
7115
7116 if (iverneed->vn_next
7117 > (size_t) (contents_end - (bfd_byte *) everneed))
7118 goto error_return_verref;
7119
7120 everneed = ((Elf_External_Verneed *)
7121 ((bfd_byte *) everneed + iverneed->vn_next));
7122 }
7123
7124 free (contents);
7125 contents = NULL;
7126 }
7127
7128 if (elf_dynverdef (abfd) != 0)
7129 {
7130 Elf_Internal_Shdr *hdr;
7131 Elf_External_Verdef *everdef;
7132 Elf_Internal_Verdef *iverdef;
7133 Elf_Internal_Verdef *iverdefarr;
7134 Elf_Internal_Verdef iverdefmem;
7135 unsigned int i;
7136 unsigned int maxidx;
7137 bfd_byte *contents_end_def, *contents_end_aux;
7138
7139 hdr = &elf_tdata (abfd)->dynverdef_hdr;
7140
7141 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
7142 if (contents == NULL)
7143 goto error_return;
7144 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
7145 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
7146 goto error_return;
7147
7148 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verdef))
7149 goto error_return;
7150
7151 BFD_ASSERT (sizeof (Elf_External_Verdef)
7152 >= sizeof (Elf_External_Verdaux));
7153 contents_end_def = contents + hdr->sh_size
7154 - sizeof (Elf_External_Verdef);
7155 contents_end_aux = contents + hdr->sh_size
7156 - sizeof (Elf_External_Verdaux);
7157
7158 /* We know the number of entries in the section but not the maximum
7159 index. Therefore we have to run through all entries and find
7160 the maximum. */
7161 everdef = (Elf_External_Verdef *) contents;
7162 maxidx = 0;
7163 for (i = 0; i < hdr->sh_info; ++i)
7164 {
7165 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
7166
7167 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
7168 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
7169
7170 if (iverdefmem.vd_next
7171 > (size_t) (contents_end_def - (bfd_byte *) everdef))
7172 goto error_return;
7173
7174 everdef = ((Elf_External_Verdef *)
7175 ((bfd_byte *) everdef + iverdefmem.vd_next));
7176 }
7177
7178 if (default_imported_symver)
7179 {
7180 if (freeidx > maxidx)
7181 maxidx = ++freeidx;
7182 else
7183 freeidx = ++maxidx;
7184 }
7185 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
7186 bfd_zalloc2 (abfd, maxidx, sizeof (Elf_Internal_Verdef));
7187 if (elf_tdata (abfd)->verdef == NULL)
7188 goto error_return;
7189
7190 elf_tdata (abfd)->cverdefs = maxidx;
7191
7192 everdef = (Elf_External_Verdef *) contents;
7193 iverdefarr = elf_tdata (abfd)->verdef;
7194 for (i = 0; i < hdr->sh_info; i++)
7195 {
7196 Elf_External_Verdaux *everdaux;
7197 Elf_Internal_Verdaux *iverdaux;
7198 unsigned int j;
7199
7200 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
7201
7202 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
7203 {
7204 error_return_verdef:
7205 elf_tdata (abfd)->verdef = NULL;
7206 elf_tdata (abfd)->cverdefs = 0;
7207 goto error_return;
7208 }
7209
7210 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
7211 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
7212
7213 iverdef->vd_bfd = abfd;
7214
7215 if (iverdef->vd_cnt == 0)
7216 iverdef->vd_auxptr = NULL;
7217 else
7218 {
7219 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
7220 bfd_alloc2 (abfd, iverdef->vd_cnt,
7221 sizeof (Elf_Internal_Verdaux));
7222 if (iverdef->vd_auxptr == NULL)
7223 goto error_return_verdef;
7224 }
7225
7226 if (iverdef->vd_aux
7227 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
7228 goto error_return_verdef;
7229
7230 everdaux = ((Elf_External_Verdaux *)
7231 ((bfd_byte *) everdef + iverdef->vd_aux));
7232 iverdaux = iverdef->vd_auxptr;
7233 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
7234 {
7235 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
7236
7237 iverdaux->vda_nodename =
7238 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7239 iverdaux->vda_name);
7240 if (iverdaux->vda_nodename == NULL)
7241 goto error_return_verdef;
7242
7243 if (j + 1 < iverdef->vd_cnt)
7244 iverdaux->vda_nextptr = iverdaux + 1;
7245 else
7246 iverdaux->vda_nextptr = NULL;
7247
7248 if (iverdaux->vda_next
7249 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
7250 goto error_return_verdef;
7251
7252 everdaux = ((Elf_External_Verdaux *)
7253 ((bfd_byte *) everdaux + iverdaux->vda_next));
7254 }
7255
7256 if (iverdef->vd_cnt)
7257 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
7258
7259 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
7260 iverdef->vd_nextdef = iverdef + 1;
7261 else
7262 iverdef->vd_nextdef = NULL;
7263
7264 everdef = ((Elf_External_Verdef *)
7265 ((bfd_byte *) everdef + iverdef->vd_next));
7266 }
7267
7268 free (contents);
7269 contents = NULL;
7270 }
7271 else if (default_imported_symver)
7272 {
7273 if (freeidx < 3)
7274 freeidx = 3;
7275 else
7276 freeidx++;
7277
7278 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
7279 bfd_zalloc2 (abfd, freeidx, sizeof (Elf_Internal_Verdef));
7280 if (elf_tdata (abfd)->verdef == NULL)
7281 goto error_return;
7282
7283 elf_tdata (abfd)->cverdefs = freeidx;
7284 }
7285
7286 /* Create a default version based on the soname. */
7287 if (default_imported_symver)
7288 {
7289 Elf_Internal_Verdef *iverdef;
7290 Elf_Internal_Verdaux *iverdaux;
7291
7292 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];;
7293
7294 iverdef->vd_version = VER_DEF_CURRENT;
7295 iverdef->vd_flags = 0;
7296 iverdef->vd_ndx = freeidx;
7297 iverdef->vd_cnt = 1;
7298
7299 iverdef->vd_bfd = abfd;
7300
7301 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
7302 if (iverdef->vd_nodename == NULL)
7303 goto error_return_verdef;
7304 iverdef->vd_nextdef = NULL;
7305 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
7306 bfd_alloc (abfd, sizeof (Elf_Internal_Verdaux));
7307 if (iverdef->vd_auxptr == NULL)
7308 goto error_return_verdef;
7309
7310 iverdaux = iverdef->vd_auxptr;
7311 iverdaux->vda_nodename = iverdef->vd_nodename;
7312 iverdaux->vda_nextptr = NULL;
7313 }
7314
7315 return TRUE;
7316
7317 error_return:
7318 if (contents != NULL)
7319 free (contents);
7320 return FALSE;
7321 }
7322 \f
7323 asymbol *
7324 _bfd_elf_make_empty_symbol (bfd *abfd)
7325 {
7326 elf_symbol_type *newsym;
7327 bfd_size_type amt = sizeof (elf_symbol_type);
7328
7329 newsym = (elf_symbol_type *) bfd_zalloc (abfd, amt);
7330 if (!newsym)
7331 return NULL;
7332 else
7333 {
7334 newsym->symbol.the_bfd = abfd;
7335 return &newsym->symbol;
7336 }
7337 }
7338
7339 void
7340 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
7341 asymbol *symbol,
7342 symbol_info *ret)
7343 {
7344 bfd_symbol_info (symbol, ret);
7345 }
7346
7347 /* Return whether a symbol name implies a local symbol. Most targets
7348 use this function for the is_local_label_name entry point, but some
7349 override it. */
7350
7351 bfd_boolean
7352 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
7353 const char *name)
7354 {
7355 /* Normal local symbols start with ``.L''. */
7356 if (name[0] == '.' && name[1] == 'L')
7357 return TRUE;
7358
7359 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
7360 DWARF debugging symbols starting with ``..''. */
7361 if (name[0] == '.' && name[1] == '.')
7362 return TRUE;
7363
7364 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
7365 emitting DWARF debugging output. I suspect this is actually a
7366 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
7367 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
7368 underscore to be emitted on some ELF targets). For ease of use,
7369 we treat such symbols as local. */
7370 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
7371 return TRUE;
7372
7373 return FALSE;
7374 }
7375
7376 alent *
7377 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
7378 asymbol *symbol ATTRIBUTE_UNUSED)
7379 {
7380 abort ();
7381 return NULL;
7382 }
7383
7384 bfd_boolean
7385 _bfd_elf_set_arch_mach (bfd *abfd,
7386 enum bfd_architecture arch,
7387 unsigned long machine)
7388 {
7389 /* If this isn't the right architecture for this backend, and this
7390 isn't the generic backend, fail. */
7391 if (arch != get_elf_backend_data (abfd)->arch
7392 && arch != bfd_arch_unknown
7393 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
7394 return FALSE;
7395
7396 return bfd_default_set_arch_mach (abfd, arch, machine);
7397 }
7398
7399 /* Find the function to a particular section and offset,
7400 for error reporting. */
7401
7402 static bfd_boolean
7403 elf_find_function (bfd *abfd,
7404 asection *section,
7405 asymbol **symbols,
7406 bfd_vma offset,
7407 const char **filename_ptr,
7408 const char **functionname_ptr)
7409 {
7410 const char *filename;
7411 asymbol *func, *file;
7412 bfd_vma low_func;
7413 asymbol **p;
7414 /* ??? Given multiple file symbols, it is impossible to reliably
7415 choose the right file name for global symbols. File symbols are
7416 local symbols, and thus all file symbols must sort before any
7417 global symbols. The ELF spec may be interpreted to say that a
7418 file symbol must sort before other local symbols, but currently
7419 ld -r doesn't do this. So, for ld -r output, it is possible to
7420 make a better choice of file name for local symbols by ignoring
7421 file symbols appearing after a given local symbol. */
7422 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
7423 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7424
7425 if (symbols == NULL)
7426 return FALSE;
7427
7428 filename = NULL;
7429 func = NULL;
7430 file = NULL;
7431 low_func = 0;
7432 state = nothing_seen;
7433
7434 for (p = symbols; *p != NULL; p++)
7435 {
7436 asymbol *sym = *p;
7437 asection *code_sec;
7438 bfd_vma code_off;
7439
7440 if ((sym->flags & BSF_FILE) != 0)
7441 {
7442 file = sym;
7443 if (state == symbol_seen)
7444 state = file_after_symbol_seen;
7445 continue;
7446 }
7447
7448 if (bed->maybe_function_sym (sym, &code_sec, &code_off)
7449 && code_sec == section
7450 && code_off >= low_func
7451 && code_off <= offset)
7452 {
7453 func = sym;
7454 low_func = code_off;
7455 filename = NULL;
7456 if (file != NULL
7457 && ((sym->flags & BSF_LOCAL) != 0
7458 || state != file_after_symbol_seen))
7459 filename = bfd_asymbol_name (file);
7460 }
7461 if (state == nothing_seen)
7462 state = symbol_seen;
7463 }
7464
7465 if (func == NULL)
7466 return FALSE;
7467
7468 if (filename_ptr)
7469 *filename_ptr = filename;
7470 if (functionname_ptr)
7471 *functionname_ptr = bfd_asymbol_name (func);
7472
7473 return TRUE;
7474 }
7475
7476 /* Find the nearest line to a particular section and offset,
7477 for error reporting. */
7478
7479 bfd_boolean
7480 _bfd_elf_find_nearest_line (bfd *abfd,
7481 asection *section,
7482 asymbol **symbols,
7483 bfd_vma offset,
7484 const char **filename_ptr,
7485 const char **functionname_ptr,
7486 unsigned int *line_ptr)
7487 {
7488 bfd_boolean found;
7489
7490 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
7491 filename_ptr, functionname_ptr,
7492 line_ptr))
7493 {
7494 if (!*functionname_ptr)
7495 elf_find_function (abfd, section, symbols, offset,
7496 *filename_ptr ? NULL : filename_ptr,
7497 functionname_ptr);
7498
7499 return TRUE;
7500 }
7501
7502 if (_bfd_dwarf2_find_nearest_line (abfd, dwarf_debug_sections,
7503 section, symbols, offset,
7504 filename_ptr, functionname_ptr,
7505 line_ptr, 0,
7506 &elf_tdata (abfd)->dwarf2_find_line_info))
7507 {
7508 if (!*functionname_ptr)
7509 elf_find_function (abfd, section, symbols, offset,
7510 *filename_ptr ? NULL : filename_ptr,
7511 functionname_ptr);
7512
7513 return TRUE;
7514 }
7515
7516 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
7517 &found, filename_ptr,
7518 functionname_ptr, line_ptr,
7519 &elf_tdata (abfd)->line_info))
7520 return FALSE;
7521 if (found && (*functionname_ptr || *line_ptr))
7522 return TRUE;
7523
7524 if (symbols == NULL)
7525 return FALSE;
7526
7527 if (! elf_find_function (abfd, section, symbols, offset,
7528 filename_ptr, functionname_ptr))
7529 return FALSE;
7530
7531 *line_ptr = 0;
7532 return TRUE;
7533 }
7534
7535 /* Find the line for a symbol. */
7536
7537 bfd_boolean
7538 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
7539 const char **filename_ptr, unsigned int *line_ptr)
7540 {
7541 return _bfd_dwarf2_find_line (abfd, symbols, symbol,
7542 filename_ptr, line_ptr, 0,
7543 &elf_tdata (abfd)->dwarf2_find_line_info);
7544 }
7545
7546 /* After a call to bfd_find_nearest_line, successive calls to
7547 bfd_find_inliner_info can be used to get source information about
7548 each level of function inlining that terminated at the address
7549 passed to bfd_find_nearest_line. Currently this is only supported
7550 for DWARF2 with appropriate DWARF3 extensions. */
7551
7552 bfd_boolean
7553 _bfd_elf_find_inliner_info (bfd *abfd,
7554 const char **filename_ptr,
7555 const char **functionname_ptr,
7556 unsigned int *line_ptr)
7557 {
7558 bfd_boolean found;
7559 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
7560 functionname_ptr, line_ptr,
7561 & elf_tdata (abfd)->dwarf2_find_line_info);
7562 return found;
7563 }
7564
7565 int
7566 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
7567 {
7568 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7569 int ret = bed->s->sizeof_ehdr;
7570
7571 if (!info->relocatable)
7572 {
7573 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
7574
7575 if (phdr_size == (bfd_size_type) -1)
7576 {
7577 struct elf_segment_map *m;
7578
7579 phdr_size = 0;
7580 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7581 phdr_size += bed->s->sizeof_phdr;
7582
7583 if (phdr_size == 0)
7584 phdr_size = get_program_header_size (abfd, info);
7585 }
7586
7587 elf_tdata (abfd)->program_header_size = phdr_size;
7588 ret += phdr_size;
7589 }
7590
7591 return ret;
7592 }
7593
7594 bfd_boolean
7595 _bfd_elf_set_section_contents (bfd *abfd,
7596 sec_ptr section,
7597 const void *location,
7598 file_ptr offset,
7599 bfd_size_type count)
7600 {
7601 Elf_Internal_Shdr *hdr;
7602 bfd_signed_vma pos;
7603
7604 if (! abfd->output_has_begun
7605 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
7606 return FALSE;
7607
7608 hdr = &elf_section_data (section)->this_hdr;
7609 pos = hdr->sh_offset + offset;
7610 if (bfd_seek (abfd, pos, SEEK_SET) != 0
7611 || bfd_bwrite (location, count, abfd) != count)
7612 return FALSE;
7613
7614 return TRUE;
7615 }
7616
7617 void
7618 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
7619 arelent *cache_ptr ATTRIBUTE_UNUSED,
7620 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
7621 {
7622 abort ();
7623 }
7624
7625 /* Try to convert a non-ELF reloc into an ELF one. */
7626
7627 bfd_boolean
7628 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
7629 {
7630 /* Check whether we really have an ELF howto. */
7631
7632 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
7633 {
7634 bfd_reloc_code_real_type code;
7635 reloc_howto_type *howto;
7636
7637 /* Alien reloc: Try to determine its type to replace it with an
7638 equivalent ELF reloc. */
7639
7640 if (areloc->howto->pc_relative)
7641 {
7642 switch (areloc->howto->bitsize)
7643 {
7644 case 8:
7645 code = BFD_RELOC_8_PCREL;
7646 break;
7647 case 12:
7648 code = BFD_RELOC_12_PCREL;
7649 break;
7650 case 16:
7651 code = BFD_RELOC_16_PCREL;
7652 break;
7653 case 24:
7654 code = BFD_RELOC_24_PCREL;
7655 break;
7656 case 32:
7657 code = BFD_RELOC_32_PCREL;
7658 break;
7659 case 64:
7660 code = BFD_RELOC_64_PCREL;
7661 break;
7662 default:
7663 goto fail;
7664 }
7665
7666 howto = bfd_reloc_type_lookup (abfd, code);
7667
7668 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
7669 {
7670 if (howto->pcrel_offset)
7671 areloc->addend += areloc->address;
7672 else
7673 areloc->addend -= areloc->address; /* addend is unsigned!! */
7674 }
7675 }
7676 else
7677 {
7678 switch (areloc->howto->bitsize)
7679 {
7680 case 8:
7681 code = BFD_RELOC_8;
7682 break;
7683 case 14:
7684 code = BFD_RELOC_14;
7685 break;
7686 case 16:
7687 code = BFD_RELOC_16;
7688 break;
7689 case 26:
7690 code = BFD_RELOC_26;
7691 break;
7692 case 32:
7693 code = BFD_RELOC_32;
7694 break;
7695 case 64:
7696 code = BFD_RELOC_64;
7697 break;
7698 default:
7699 goto fail;
7700 }
7701
7702 howto = bfd_reloc_type_lookup (abfd, code);
7703 }
7704
7705 if (howto)
7706 areloc->howto = howto;
7707 else
7708 goto fail;
7709 }
7710
7711 return TRUE;
7712
7713 fail:
7714 (*_bfd_error_handler)
7715 (_("%B: unsupported relocation type %s"),
7716 abfd, areloc->howto->name);
7717 bfd_set_error (bfd_error_bad_value);
7718 return FALSE;
7719 }
7720
7721 bfd_boolean
7722 _bfd_elf_close_and_cleanup (bfd *abfd)
7723 {
7724 struct elf_obj_tdata *tdata = elf_tdata (abfd);
7725 if (bfd_get_format (abfd) == bfd_object && tdata != NULL)
7726 {
7727 if (elf_shstrtab (abfd) != NULL)
7728 _bfd_elf_strtab_free (elf_shstrtab (abfd));
7729 _bfd_dwarf2_cleanup_debug_info (abfd, &tdata->dwarf2_find_line_info);
7730 }
7731
7732 return _bfd_generic_close_and_cleanup (abfd);
7733 }
7734
7735 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
7736 in the relocation's offset. Thus we cannot allow any sort of sanity
7737 range-checking to interfere. There is nothing else to do in processing
7738 this reloc. */
7739
7740 bfd_reloc_status_type
7741 _bfd_elf_rel_vtable_reloc_fn
7742 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
7743 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
7744 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
7745 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
7746 {
7747 return bfd_reloc_ok;
7748 }
7749 \f
7750 /* Elf core file support. Much of this only works on native
7751 toolchains, since we rely on knowing the
7752 machine-dependent procfs structure in order to pick
7753 out details about the corefile. */
7754
7755 #ifdef HAVE_SYS_PROCFS_H
7756 /* Needed for new procfs interface on sparc-solaris. */
7757 # define _STRUCTURED_PROC 1
7758 # include <sys/procfs.h>
7759 #endif
7760
7761 /* Return a PID that identifies a "thread" for threaded cores, or the
7762 PID of the main process for non-threaded cores. */
7763
7764 static int
7765 elfcore_make_pid (bfd *abfd)
7766 {
7767 int pid;
7768
7769 pid = elf_tdata (abfd)->core_lwpid;
7770 if (pid == 0)
7771 pid = elf_tdata (abfd)->core_pid;
7772
7773 return pid;
7774 }
7775
7776 /* If there isn't a section called NAME, make one, using
7777 data from SECT. Note, this function will generate a
7778 reference to NAME, so you shouldn't deallocate or
7779 overwrite it. */
7780
7781 static bfd_boolean
7782 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
7783 {
7784 asection *sect2;
7785
7786 if (bfd_get_section_by_name (abfd, name) != NULL)
7787 return TRUE;
7788
7789 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
7790 if (sect2 == NULL)
7791 return FALSE;
7792
7793 sect2->size = sect->size;
7794 sect2->filepos = sect->filepos;
7795 sect2->alignment_power = sect->alignment_power;
7796 return TRUE;
7797 }
7798
7799 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
7800 actually creates up to two pseudosections:
7801 - For the single-threaded case, a section named NAME, unless
7802 such a section already exists.
7803 - For the multi-threaded case, a section named "NAME/PID", where
7804 PID is elfcore_make_pid (abfd).
7805 Both pseudosections have identical contents. */
7806 bfd_boolean
7807 _bfd_elfcore_make_pseudosection (bfd *abfd,
7808 char *name,
7809 size_t size,
7810 ufile_ptr filepos)
7811 {
7812 char buf[100];
7813 char *threaded_name;
7814 size_t len;
7815 asection *sect;
7816
7817 /* Build the section name. */
7818
7819 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
7820 len = strlen (buf) + 1;
7821 threaded_name = (char *) bfd_alloc (abfd, len);
7822 if (threaded_name == NULL)
7823 return FALSE;
7824 memcpy (threaded_name, buf, len);
7825
7826 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
7827 SEC_HAS_CONTENTS);
7828 if (sect == NULL)
7829 return FALSE;
7830 sect->size = size;
7831 sect->filepos = filepos;
7832 sect->alignment_power = 2;
7833
7834 return elfcore_maybe_make_sect (abfd, name, sect);
7835 }
7836
7837 /* prstatus_t exists on:
7838 solaris 2.5+
7839 linux 2.[01] + glibc
7840 unixware 4.2
7841 */
7842
7843 #if defined (HAVE_PRSTATUS_T)
7844
7845 static bfd_boolean
7846 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
7847 {
7848 size_t size;
7849 int offset;
7850
7851 if (note->descsz == sizeof (prstatus_t))
7852 {
7853 prstatus_t prstat;
7854
7855 size = sizeof (prstat.pr_reg);
7856 offset = offsetof (prstatus_t, pr_reg);
7857 memcpy (&prstat, note->descdata, sizeof (prstat));
7858
7859 /* Do not overwrite the core signal if it
7860 has already been set by another thread. */
7861 if (elf_tdata (abfd)->core_signal == 0)
7862 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7863 if (elf_tdata (abfd)->core_pid == 0)
7864 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7865
7866 /* pr_who exists on:
7867 solaris 2.5+
7868 unixware 4.2
7869 pr_who doesn't exist on:
7870 linux 2.[01]
7871 */
7872 #if defined (HAVE_PRSTATUS_T_PR_WHO)
7873 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7874 #else
7875 elf_tdata (abfd)->core_lwpid = prstat.pr_pid;
7876 #endif
7877 }
7878 #if defined (HAVE_PRSTATUS32_T)
7879 else if (note->descsz == sizeof (prstatus32_t))
7880 {
7881 /* 64-bit host, 32-bit corefile */
7882 prstatus32_t prstat;
7883
7884 size = sizeof (prstat.pr_reg);
7885 offset = offsetof (prstatus32_t, pr_reg);
7886 memcpy (&prstat, note->descdata, sizeof (prstat));
7887
7888 /* Do not overwrite the core signal if it
7889 has already been set by another thread. */
7890 if (elf_tdata (abfd)->core_signal == 0)
7891 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7892 if (elf_tdata (abfd)->core_pid == 0)
7893 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7894
7895 /* pr_who exists on:
7896 solaris 2.5+
7897 unixware 4.2
7898 pr_who doesn't exist on:
7899 linux 2.[01]
7900 */
7901 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
7902 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7903 #else
7904 elf_tdata (abfd)->core_lwpid = prstat.pr_pid;
7905 #endif
7906 }
7907 #endif /* HAVE_PRSTATUS32_T */
7908 else
7909 {
7910 /* Fail - we don't know how to handle any other
7911 note size (ie. data object type). */
7912 return TRUE;
7913 }
7914
7915 /* Make a ".reg/999" section and a ".reg" section. */
7916 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
7917 size, note->descpos + offset);
7918 }
7919 #endif /* defined (HAVE_PRSTATUS_T) */
7920
7921 /* Create a pseudosection containing the exact contents of NOTE. */
7922 static bfd_boolean
7923 elfcore_make_note_pseudosection (bfd *abfd,
7924 char *name,
7925 Elf_Internal_Note *note)
7926 {
7927 return _bfd_elfcore_make_pseudosection (abfd, name,
7928 note->descsz, note->descpos);
7929 }
7930
7931 /* There isn't a consistent prfpregset_t across platforms,
7932 but it doesn't matter, because we don't have to pick this
7933 data structure apart. */
7934
7935 static bfd_boolean
7936 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
7937 {
7938 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7939 }
7940
7941 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
7942 type of NT_PRXFPREG. Just include the whole note's contents
7943 literally. */
7944
7945 static bfd_boolean
7946 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
7947 {
7948 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
7949 }
7950
7951 /* Linux dumps the Intel XSAVE extended state in a note named "LINUX"
7952 with a note type of NT_X86_XSTATE. Just include the whole note's
7953 contents literally. */
7954
7955 static bfd_boolean
7956 elfcore_grok_xstatereg (bfd *abfd, Elf_Internal_Note *note)
7957 {
7958 return elfcore_make_note_pseudosection (abfd, ".reg-xstate", note);
7959 }
7960
7961 static bfd_boolean
7962 elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
7963 {
7964 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
7965 }
7966
7967 static bfd_boolean
7968 elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note)
7969 {
7970 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note);
7971 }
7972
7973 static bfd_boolean
7974 elfcore_grok_s390_high_gprs (bfd *abfd, Elf_Internal_Note *note)
7975 {
7976 return elfcore_make_note_pseudosection (abfd, ".reg-s390-high-gprs", note);
7977 }
7978
7979 static bfd_boolean
7980 elfcore_grok_s390_timer (bfd *abfd, Elf_Internal_Note *note)
7981 {
7982 return elfcore_make_note_pseudosection (abfd, ".reg-s390-timer", note);
7983 }
7984
7985 static bfd_boolean
7986 elfcore_grok_s390_todcmp (bfd *abfd, Elf_Internal_Note *note)
7987 {
7988 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todcmp", note);
7989 }
7990
7991 static bfd_boolean
7992 elfcore_grok_s390_todpreg (bfd *abfd, Elf_Internal_Note *note)
7993 {
7994 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todpreg", note);
7995 }
7996
7997 static bfd_boolean
7998 elfcore_grok_s390_ctrs (bfd *abfd, Elf_Internal_Note *note)
7999 {
8000 return elfcore_make_note_pseudosection (abfd, ".reg-s390-ctrs", note);
8001 }
8002
8003 static bfd_boolean
8004 elfcore_grok_s390_prefix (bfd *abfd, Elf_Internal_Note *note)
8005 {
8006 return elfcore_make_note_pseudosection (abfd, ".reg-s390-prefix", note);
8007 }
8008
8009 static bfd_boolean
8010 elfcore_grok_s390_last_break (bfd *abfd, Elf_Internal_Note *note)
8011 {
8012 return elfcore_make_note_pseudosection (abfd, ".reg-s390-last-break", note);
8013 }
8014
8015 static bfd_boolean
8016 elfcore_grok_s390_system_call (bfd *abfd, Elf_Internal_Note *note)
8017 {
8018 return elfcore_make_note_pseudosection (abfd, ".reg-s390-system-call", note);
8019 }
8020
8021 static bfd_boolean
8022 elfcore_grok_arm_vfp (bfd *abfd, Elf_Internal_Note *note)
8023 {
8024 return elfcore_make_note_pseudosection (abfd, ".reg-arm-vfp", note);
8025 }
8026
8027 #if defined (HAVE_PRPSINFO_T)
8028 typedef prpsinfo_t elfcore_psinfo_t;
8029 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
8030 typedef prpsinfo32_t elfcore_psinfo32_t;
8031 #endif
8032 #endif
8033
8034 #if defined (HAVE_PSINFO_T)
8035 typedef psinfo_t elfcore_psinfo_t;
8036 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
8037 typedef psinfo32_t elfcore_psinfo32_t;
8038 #endif
8039 #endif
8040
8041 /* return a malloc'ed copy of a string at START which is at
8042 most MAX bytes long, possibly without a terminating '\0'.
8043 the copy will always have a terminating '\0'. */
8044
8045 char *
8046 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
8047 {
8048 char *dups;
8049 char *end = (char *) memchr (start, '\0', max);
8050 size_t len;
8051
8052 if (end == NULL)
8053 len = max;
8054 else
8055 len = end - start;
8056
8057 dups = (char *) bfd_alloc (abfd, len + 1);
8058 if (dups == NULL)
8059 return NULL;
8060
8061 memcpy (dups, start, len);
8062 dups[len] = '\0';
8063
8064 return dups;
8065 }
8066
8067 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8068 static bfd_boolean
8069 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
8070 {
8071 if (note->descsz == sizeof (elfcore_psinfo_t))
8072 {
8073 elfcore_psinfo_t psinfo;
8074
8075 memcpy (&psinfo, note->descdata, sizeof (psinfo));
8076
8077 #if defined (HAVE_PSINFO_T_PR_PID) || defined (HAVE_PRPSINFO_T_PR_PID)
8078 elf_tdata (abfd)->core_pid = psinfo.pr_pid;
8079 #endif
8080 elf_tdata (abfd)->core_program
8081 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
8082 sizeof (psinfo.pr_fname));
8083
8084 elf_tdata (abfd)->core_command
8085 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
8086 sizeof (psinfo.pr_psargs));
8087 }
8088 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
8089 else if (note->descsz == sizeof (elfcore_psinfo32_t))
8090 {
8091 /* 64-bit host, 32-bit corefile */
8092 elfcore_psinfo32_t psinfo;
8093
8094 memcpy (&psinfo, note->descdata, sizeof (psinfo));
8095
8096 #if defined (HAVE_PSINFO32_T_PR_PID) || defined (HAVE_PRPSINFO32_T_PR_PID)
8097 elf_tdata (abfd)->core_pid = psinfo.pr_pid;
8098 #endif
8099 elf_tdata (abfd)->core_program
8100 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
8101 sizeof (psinfo.pr_fname));
8102
8103 elf_tdata (abfd)->core_command
8104 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
8105 sizeof (psinfo.pr_psargs));
8106 }
8107 #endif
8108
8109 else
8110 {
8111 /* Fail - we don't know how to handle any other
8112 note size (ie. data object type). */
8113 return TRUE;
8114 }
8115
8116 /* Note that for some reason, a spurious space is tacked
8117 onto the end of the args in some (at least one anyway)
8118 implementations, so strip it off if it exists. */
8119
8120 {
8121 char *command = elf_tdata (abfd)->core_command;
8122 int n = strlen (command);
8123
8124 if (0 < n && command[n - 1] == ' ')
8125 command[n - 1] = '\0';
8126 }
8127
8128 return TRUE;
8129 }
8130 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
8131
8132 #if defined (HAVE_PSTATUS_T)
8133 static bfd_boolean
8134 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
8135 {
8136 if (note->descsz == sizeof (pstatus_t)
8137 #if defined (HAVE_PXSTATUS_T)
8138 || note->descsz == sizeof (pxstatus_t)
8139 #endif
8140 )
8141 {
8142 pstatus_t pstat;
8143
8144 memcpy (&pstat, note->descdata, sizeof (pstat));
8145
8146 elf_tdata (abfd)->core_pid = pstat.pr_pid;
8147 }
8148 #if defined (HAVE_PSTATUS32_T)
8149 else if (note->descsz == sizeof (pstatus32_t))
8150 {
8151 /* 64-bit host, 32-bit corefile */
8152 pstatus32_t pstat;
8153
8154 memcpy (&pstat, note->descdata, sizeof (pstat));
8155
8156 elf_tdata (abfd)->core_pid = pstat.pr_pid;
8157 }
8158 #endif
8159 /* Could grab some more details from the "representative"
8160 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
8161 NT_LWPSTATUS note, presumably. */
8162
8163 return TRUE;
8164 }
8165 #endif /* defined (HAVE_PSTATUS_T) */
8166
8167 #if defined (HAVE_LWPSTATUS_T)
8168 static bfd_boolean
8169 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
8170 {
8171 lwpstatus_t lwpstat;
8172 char buf[100];
8173 char *name;
8174 size_t len;
8175 asection *sect;
8176
8177 if (note->descsz != sizeof (lwpstat)
8178 #if defined (HAVE_LWPXSTATUS_T)
8179 && note->descsz != sizeof (lwpxstatus_t)
8180 #endif
8181 )
8182 return TRUE;
8183
8184 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
8185
8186 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
8187 /* Do not overwrite the core signal if it has already been set by
8188 another thread. */
8189 if (elf_tdata (abfd)->core_signal == 0)
8190 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
8191
8192 /* Make a ".reg/999" section. */
8193
8194 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
8195 len = strlen (buf) + 1;
8196 name = bfd_alloc (abfd, len);
8197 if (name == NULL)
8198 return FALSE;
8199 memcpy (name, buf, len);
8200
8201 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8202 if (sect == NULL)
8203 return FALSE;
8204
8205 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8206 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
8207 sect->filepos = note->descpos
8208 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
8209 #endif
8210
8211 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8212 sect->size = sizeof (lwpstat.pr_reg);
8213 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
8214 #endif
8215
8216 sect->alignment_power = 2;
8217
8218 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
8219 return FALSE;
8220
8221 /* Make a ".reg2/999" section */
8222
8223 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
8224 len = strlen (buf) + 1;
8225 name = bfd_alloc (abfd, len);
8226 if (name == NULL)
8227 return FALSE;
8228 memcpy (name, buf, len);
8229
8230 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8231 if (sect == NULL)
8232 return FALSE;
8233
8234 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8235 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
8236 sect->filepos = note->descpos
8237 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
8238 #endif
8239
8240 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
8241 sect->size = sizeof (lwpstat.pr_fpreg);
8242 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
8243 #endif
8244
8245 sect->alignment_power = 2;
8246
8247 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
8248 }
8249 #endif /* defined (HAVE_LWPSTATUS_T) */
8250
8251 static bfd_boolean
8252 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
8253 {
8254 char buf[30];
8255 char *name;
8256 size_t len;
8257 asection *sect;
8258 int type;
8259 int is_active_thread;
8260 bfd_vma base_addr;
8261
8262 if (note->descsz < 728)
8263 return TRUE;
8264
8265 if (! CONST_STRNEQ (note->namedata, "win32"))
8266 return TRUE;
8267
8268 type = bfd_get_32 (abfd, note->descdata);
8269
8270 switch (type)
8271 {
8272 case 1 /* NOTE_INFO_PROCESS */:
8273 /* FIXME: need to add ->core_command. */
8274 /* process_info.pid */
8275 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 8);
8276 /* process_info.signal */
8277 elf_tdata (abfd)->core_signal = bfd_get_32 (abfd, note->descdata + 12);
8278 break;
8279
8280 case 2 /* NOTE_INFO_THREAD */:
8281 /* Make a ".reg/999" section. */
8282 /* thread_info.tid */
8283 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 8));
8284
8285 len = strlen (buf) + 1;
8286 name = (char *) bfd_alloc (abfd, len);
8287 if (name == NULL)
8288 return FALSE;
8289
8290 memcpy (name, buf, len);
8291
8292 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8293 if (sect == NULL)
8294 return FALSE;
8295
8296 /* sizeof (thread_info.thread_context) */
8297 sect->size = 716;
8298 /* offsetof (thread_info.thread_context) */
8299 sect->filepos = note->descpos + 12;
8300 sect->alignment_power = 2;
8301
8302 /* thread_info.is_active_thread */
8303 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
8304
8305 if (is_active_thread)
8306 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
8307 return FALSE;
8308 break;
8309
8310 case 3 /* NOTE_INFO_MODULE */:
8311 /* Make a ".module/xxxxxxxx" section. */
8312 /* module_info.base_address */
8313 base_addr = bfd_get_32 (abfd, note->descdata + 4);
8314 sprintf (buf, ".module/%08lx", (unsigned long) base_addr);
8315
8316 len = strlen (buf) + 1;
8317 name = (char *) bfd_alloc (abfd, len);
8318 if (name == NULL)
8319 return FALSE;
8320
8321 memcpy (name, buf, len);
8322
8323 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8324
8325 if (sect == NULL)
8326 return FALSE;
8327
8328 sect->size = note->descsz;
8329 sect->filepos = note->descpos;
8330 sect->alignment_power = 2;
8331 break;
8332
8333 default:
8334 return TRUE;
8335 }
8336
8337 return TRUE;
8338 }
8339
8340 static bfd_boolean
8341 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
8342 {
8343 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8344
8345 switch (note->type)
8346 {
8347 default:
8348 return TRUE;
8349
8350 case NT_PRSTATUS:
8351 if (bed->elf_backend_grok_prstatus)
8352 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
8353 return TRUE;
8354 #if defined (HAVE_PRSTATUS_T)
8355 return elfcore_grok_prstatus (abfd, note);
8356 #else
8357 return TRUE;
8358 #endif
8359
8360 #if defined (HAVE_PSTATUS_T)
8361 case NT_PSTATUS:
8362 return elfcore_grok_pstatus (abfd, note);
8363 #endif
8364
8365 #if defined (HAVE_LWPSTATUS_T)
8366 case NT_LWPSTATUS:
8367 return elfcore_grok_lwpstatus (abfd, note);
8368 #endif
8369
8370 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
8371 return elfcore_grok_prfpreg (abfd, note);
8372
8373 case NT_WIN32PSTATUS:
8374 return elfcore_grok_win32pstatus (abfd, note);
8375
8376 case NT_PRXFPREG: /* Linux SSE extension */
8377 if (note->namesz == 6
8378 && strcmp (note->namedata, "LINUX") == 0)
8379 return elfcore_grok_prxfpreg (abfd, note);
8380 else
8381 return TRUE;
8382
8383 case NT_X86_XSTATE: /* Linux XSAVE extension */
8384 if (note->namesz == 6
8385 && strcmp (note->namedata, "LINUX") == 0)
8386 return elfcore_grok_xstatereg (abfd, note);
8387 else
8388 return TRUE;
8389
8390 case NT_PPC_VMX:
8391 if (note->namesz == 6
8392 && strcmp (note->namedata, "LINUX") == 0)
8393 return elfcore_grok_ppc_vmx (abfd, note);
8394 else
8395 return TRUE;
8396
8397 case NT_PPC_VSX:
8398 if (note->namesz == 6
8399 && strcmp (note->namedata, "LINUX") == 0)
8400 return elfcore_grok_ppc_vsx (abfd, note);
8401 else
8402 return TRUE;
8403
8404 case NT_S390_HIGH_GPRS:
8405 if (note->namesz == 6
8406 && strcmp (note->namedata, "LINUX") == 0)
8407 return elfcore_grok_s390_high_gprs (abfd, note);
8408 else
8409 return TRUE;
8410
8411 case NT_S390_TIMER:
8412 if (note->namesz == 6
8413 && strcmp (note->namedata, "LINUX") == 0)
8414 return elfcore_grok_s390_timer (abfd, note);
8415 else
8416 return TRUE;
8417
8418 case NT_S390_TODCMP:
8419 if (note->namesz == 6
8420 && strcmp (note->namedata, "LINUX") == 0)
8421 return elfcore_grok_s390_todcmp (abfd, note);
8422 else
8423 return TRUE;
8424
8425 case NT_S390_TODPREG:
8426 if (note->namesz == 6
8427 && strcmp (note->namedata, "LINUX") == 0)
8428 return elfcore_grok_s390_todpreg (abfd, note);
8429 else
8430 return TRUE;
8431
8432 case NT_S390_CTRS:
8433 if (note->namesz == 6
8434 && strcmp (note->namedata, "LINUX") == 0)
8435 return elfcore_grok_s390_ctrs (abfd, note);
8436 else
8437 return TRUE;
8438
8439 case NT_S390_PREFIX:
8440 if (note->namesz == 6
8441 && strcmp (note->namedata, "LINUX") == 0)
8442 return elfcore_grok_s390_prefix (abfd, note);
8443 else
8444 return TRUE;
8445
8446 case NT_S390_LAST_BREAK:
8447 if (note->namesz == 6
8448 && strcmp (note->namedata, "LINUX") == 0)
8449 return elfcore_grok_s390_last_break (abfd, note);
8450 else
8451 return TRUE;
8452
8453 case NT_S390_SYSTEM_CALL:
8454 if (note->namesz == 6
8455 && strcmp (note->namedata, "LINUX") == 0)
8456 return elfcore_grok_s390_system_call (abfd, note);
8457 else
8458 return TRUE;
8459
8460 case NT_ARM_VFP:
8461 if (note->namesz == 6
8462 && strcmp (note->namedata, "LINUX") == 0)
8463 return elfcore_grok_arm_vfp (abfd, note);
8464 else
8465 return TRUE;
8466
8467 case NT_PRPSINFO:
8468 case NT_PSINFO:
8469 if (bed->elf_backend_grok_psinfo)
8470 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
8471 return TRUE;
8472 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8473 return elfcore_grok_psinfo (abfd, note);
8474 #else
8475 return TRUE;
8476 #endif
8477
8478 case NT_AUXV:
8479 {
8480 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
8481 SEC_HAS_CONTENTS);
8482
8483 if (sect == NULL)
8484 return FALSE;
8485 sect->size = note->descsz;
8486 sect->filepos = note->descpos;
8487 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8488
8489 return TRUE;
8490 }
8491 }
8492 }
8493
8494 static bfd_boolean
8495 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
8496 {
8497 elf_tdata (abfd)->build_id_size = note->descsz;
8498 elf_tdata (abfd)->build_id = (bfd_byte *) bfd_alloc (abfd, note->descsz);
8499 if (elf_tdata (abfd)->build_id == NULL)
8500 return FALSE;
8501
8502 memcpy (elf_tdata (abfd)->build_id, note->descdata, note->descsz);
8503
8504 return TRUE;
8505 }
8506
8507 static bfd_boolean
8508 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
8509 {
8510 switch (note->type)
8511 {
8512 default:
8513 return TRUE;
8514
8515 case NT_GNU_BUILD_ID:
8516 return elfobj_grok_gnu_build_id (abfd, note);
8517 }
8518 }
8519
8520 static bfd_boolean
8521 elfobj_grok_stapsdt_note_1 (bfd *abfd, Elf_Internal_Note *note)
8522 {
8523 struct sdt_note *cur =
8524 (struct sdt_note *) bfd_alloc (abfd, sizeof (struct sdt_note)
8525 + note->descsz);
8526
8527 cur->next = (struct sdt_note *) (elf_tdata (abfd))->sdt_note_head;
8528 cur->size = (bfd_size_type) note->descsz;
8529 memcpy (cur->data, note->descdata, note->descsz);
8530
8531 elf_tdata (abfd)->sdt_note_head = cur;
8532
8533 return TRUE;
8534 }
8535
8536 static bfd_boolean
8537 elfobj_grok_stapsdt_note (bfd *abfd, Elf_Internal_Note *note)
8538 {
8539 switch (note->type)
8540 {
8541 case NT_STAPSDT:
8542 return elfobj_grok_stapsdt_note_1 (abfd, note);
8543
8544 default:
8545 return TRUE;
8546 }
8547 }
8548
8549 static bfd_boolean
8550 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
8551 {
8552 char *cp;
8553
8554 cp = strchr (note->namedata, '@');
8555 if (cp != NULL)
8556 {
8557 *lwpidp = atoi(cp + 1);
8558 return TRUE;
8559 }
8560 return FALSE;
8561 }
8562
8563 static bfd_boolean
8564 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
8565 {
8566 /* Signal number at offset 0x08. */
8567 elf_tdata (abfd)->core_signal
8568 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
8569
8570 /* Process ID at offset 0x50. */
8571 elf_tdata (abfd)->core_pid
8572 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
8573
8574 /* Command name at 0x7c (max 32 bytes, including nul). */
8575 elf_tdata (abfd)->core_command
8576 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
8577
8578 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
8579 note);
8580 }
8581
8582 static bfd_boolean
8583 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
8584 {
8585 int lwp;
8586
8587 if (elfcore_netbsd_get_lwpid (note, &lwp))
8588 elf_tdata (abfd)->core_lwpid = lwp;
8589
8590 if (note->type == NT_NETBSDCORE_PROCINFO)
8591 {
8592 /* NetBSD-specific core "procinfo". Note that we expect to
8593 find this note before any of the others, which is fine,
8594 since the kernel writes this note out first when it
8595 creates a core file. */
8596
8597 return elfcore_grok_netbsd_procinfo (abfd, note);
8598 }
8599
8600 /* As of Jan 2002 there are no other machine-independent notes
8601 defined for NetBSD core files. If the note type is less
8602 than the start of the machine-dependent note types, we don't
8603 understand it. */
8604
8605 if (note->type < NT_NETBSDCORE_FIRSTMACH)
8606 return TRUE;
8607
8608
8609 switch (bfd_get_arch (abfd))
8610 {
8611 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
8612 PT_GETFPREGS == mach+2. */
8613
8614 case bfd_arch_alpha:
8615 case bfd_arch_sparc:
8616 switch (note->type)
8617 {
8618 case NT_NETBSDCORE_FIRSTMACH+0:
8619 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8620
8621 case NT_NETBSDCORE_FIRSTMACH+2:
8622 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8623
8624 default:
8625 return TRUE;
8626 }
8627
8628 /* On all other arch's, PT_GETREGS == mach+1 and
8629 PT_GETFPREGS == mach+3. */
8630
8631 default:
8632 switch (note->type)
8633 {
8634 case NT_NETBSDCORE_FIRSTMACH+1:
8635 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8636
8637 case NT_NETBSDCORE_FIRSTMACH+3:
8638 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8639
8640 default:
8641 return TRUE;
8642 }
8643 }
8644 /* NOTREACHED */
8645 }
8646
8647 static bfd_boolean
8648 elfcore_grok_openbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
8649 {
8650 /* Signal number at offset 0x08. */
8651 elf_tdata (abfd)->core_signal
8652 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
8653
8654 /* Process ID at offset 0x20. */
8655 elf_tdata (abfd)->core_pid
8656 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x20);
8657
8658 /* Command name at 0x48 (max 32 bytes, including nul). */
8659 elf_tdata (abfd)->core_command
8660 = _bfd_elfcore_strndup (abfd, note->descdata + 0x48, 31);
8661
8662 return TRUE;
8663 }
8664
8665 static bfd_boolean
8666 elfcore_grok_openbsd_note (bfd *abfd, Elf_Internal_Note *note)
8667 {
8668 if (note->type == NT_OPENBSD_PROCINFO)
8669 return elfcore_grok_openbsd_procinfo (abfd, note);
8670
8671 if (note->type == NT_OPENBSD_REGS)
8672 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8673
8674 if (note->type == NT_OPENBSD_FPREGS)
8675 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8676
8677 if (note->type == NT_OPENBSD_XFPREGS)
8678 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
8679
8680 if (note->type == NT_OPENBSD_AUXV)
8681 {
8682 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
8683 SEC_HAS_CONTENTS);
8684
8685 if (sect == NULL)
8686 return FALSE;
8687 sect->size = note->descsz;
8688 sect->filepos = note->descpos;
8689 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8690
8691 return TRUE;
8692 }
8693
8694 if (note->type == NT_OPENBSD_WCOOKIE)
8695 {
8696 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".wcookie",
8697 SEC_HAS_CONTENTS);
8698
8699 if (sect == NULL)
8700 return FALSE;
8701 sect->size = note->descsz;
8702 sect->filepos = note->descpos;
8703 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8704
8705 return TRUE;
8706 }
8707
8708 return TRUE;
8709 }
8710
8711 static bfd_boolean
8712 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
8713 {
8714 void *ddata = note->descdata;
8715 char buf[100];
8716 char *name;
8717 asection *sect;
8718 short sig;
8719 unsigned flags;
8720
8721 /* nto_procfs_status 'pid' field is at offset 0. */
8722 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
8723
8724 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
8725 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
8726
8727 /* nto_procfs_status 'flags' field is at offset 8. */
8728 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
8729
8730 /* nto_procfs_status 'what' field is at offset 14. */
8731 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
8732 {
8733 elf_tdata (abfd)->core_signal = sig;
8734 elf_tdata (abfd)->core_lwpid = *tid;
8735 }
8736
8737 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
8738 do not come from signals so we make sure we set the current
8739 thread just in case. */
8740 if (flags & 0x00000080)
8741 elf_tdata (abfd)->core_lwpid = *tid;
8742
8743 /* Make a ".qnx_core_status/%d" section. */
8744 sprintf (buf, ".qnx_core_status/%ld", *tid);
8745
8746 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
8747 if (name == NULL)
8748 return FALSE;
8749 strcpy (name, buf);
8750
8751 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8752 if (sect == NULL)
8753 return FALSE;
8754
8755 sect->size = note->descsz;
8756 sect->filepos = note->descpos;
8757 sect->alignment_power = 2;
8758
8759 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
8760 }
8761
8762 static bfd_boolean
8763 elfcore_grok_nto_regs (bfd *abfd,
8764 Elf_Internal_Note *note,
8765 long tid,
8766 char *base)
8767 {
8768 char buf[100];
8769 char *name;
8770 asection *sect;
8771
8772 /* Make a "(base)/%d" section. */
8773 sprintf (buf, "%s/%ld", base, tid);
8774
8775 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
8776 if (name == NULL)
8777 return FALSE;
8778 strcpy (name, buf);
8779
8780 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8781 if (sect == NULL)
8782 return FALSE;
8783
8784 sect->size = note->descsz;
8785 sect->filepos = note->descpos;
8786 sect->alignment_power = 2;
8787
8788 /* This is the current thread. */
8789 if (elf_tdata (abfd)->core_lwpid == tid)
8790 return elfcore_maybe_make_sect (abfd, base, sect);
8791
8792 return TRUE;
8793 }
8794
8795 #define BFD_QNT_CORE_INFO 7
8796 #define BFD_QNT_CORE_STATUS 8
8797 #define BFD_QNT_CORE_GREG 9
8798 #define BFD_QNT_CORE_FPREG 10
8799
8800 static bfd_boolean
8801 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
8802 {
8803 /* Every GREG section has a STATUS section before it. Store the
8804 tid from the previous call to pass down to the next gregs
8805 function. */
8806 static long tid = 1;
8807
8808 switch (note->type)
8809 {
8810 case BFD_QNT_CORE_INFO:
8811 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
8812 case BFD_QNT_CORE_STATUS:
8813 return elfcore_grok_nto_status (abfd, note, &tid);
8814 case BFD_QNT_CORE_GREG:
8815 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
8816 case BFD_QNT_CORE_FPREG:
8817 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
8818 default:
8819 return TRUE;
8820 }
8821 }
8822
8823 static bfd_boolean
8824 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
8825 {
8826 char *name;
8827 asection *sect;
8828 size_t len;
8829
8830 /* Use note name as section name. */
8831 len = note->namesz;
8832 name = (char *) bfd_alloc (abfd, len);
8833 if (name == NULL)
8834 return FALSE;
8835 memcpy (name, note->namedata, len);
8836 name[len - 1] = '\0';
8837
8838 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8839 if (sect == NULL)
8840 return FALSE;
8841
8842 sect->size = note->descsz;
8843 sect->filepos = note->descpos;
8844 sect->alignment_power = 1;
8845
8846 return TRUE;
8847 }
8848
8849 /* Function: elfcore_write_note
8850
8851 Inputs:
8852 buffer to hold note, and current size of buffer
8853 name of note
8854 type of note
8855 data for note
8856 size of data for note
8857
8858 Writes note to end of buffer. ELF64 notes are written exactly as
8859 for ELF32, despite the current (as of 2006) ELF gabi specifying
8860 that they ought to have 8-byte namesz and descsz field, and have
8861 8-byte alignment. Other writers, eg. Linux kernel, do the same.
8862
8863 Return:
8864 Pointer to realloc'd buffer, *BUFSIZ updated. */
8865
8866 char *
8867 elfcore_write_note (bfd *abfd,
8868 char *buf,
8869 int *bufsiz,
8870 const char *name,
8871 int type,
8872 const void *input,
8873 int size)
8874 {
8875 Elf_External_Note *xnp;
8876 size_t namesz;
8877 size_t newspace;
8878 char *dest;
8879
8880 namesz = 0;
8881 if (name != NULL)
8882 namesz = strlen (name) + 1;
8883
8884 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
8885
8886 buf = (char *) realloc (buf, *bufsiz + newspace);
8887 if (buf == NULL)
8888 return buf;
8889 dest = buf + *bufsiz;
8890 *bufsiz += newspace;
8891 xnp = (Elf_External_Note *) dest;
8892 H_PUT_32 (abfd, namesz, xnp->namesz);
8893 H_PUT_32 (abfd, size, xnp->descsz);
8894 H_PUT_32 (abfd, type, xnp->type);
8895 dest = xnp->name;
8896 if (name != NULL)
8897 {
8898 memcpy (dest, name, namesz);
8899 dest += namesz;
8900 while (namesz & 3)
8901 {
8902 *dest++ = '\0';
8903 ++namesz;
8904 }
8905 }
8906 memcpy (dest, input, size);
8907 dest += size;
8908 while (size & 3)
8909 {
8910 *dest++ = '\0';
8911 ++size;
8912 }
8913 return buf;
8914 }
8915
8916 char *
8917 elfcore_write_prpsinfo (bfd *abfd,
8918 char *buf,
8919 int *bufsiz,
8920 const char *fname,
8921 const char *psargs)
8922 {
8923 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8924
8925 if (bed->elf_backend_write_core_note != NULL)
8926 {
8927 char *ret;
8928 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
8929 NT_PRPSINFO, fname, psargs);
8930 if (ret != NULL)
8931 return ret;
8932 }
8933
8934 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8935 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
8936 if (bed->s->elfclass == ELFCLASS32)
8937 {
8938 #if defined (HAVE_PSINFO32_T)
8939 psinfo32_t data;
8940 int note_type = NT_PSINFO;
8941 #else
8942 prpsinfo32_t data;
8943 int note_type = NT_PRPSINFO;
8944 #endif
8945
8946 memset (&data, 0, sizeof (data));
8947 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
8948 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
8949 return elfcore_write_note (abfd, buf, bufsiz,
8950 "CORE", note_type, &data, sizeof (data));
8951 }
8952 else
8953 #endif
8954 {
8955 #if defined (HAVE_PSINFO_T)
8956 psinfo_t data;
8957 int note_type = NT_PSINFO;
8958 #else
8959 prpsinfo_t data;
8960 int note_type = NT_PRPSINFO;
8961 #endif
8962
8963 memset (&data, 0, sizeof (data));
8964 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
8965 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
8966 return elfcore_write_note (abfd, buf, bufsiz,
8967 "CORE", note_type, &data, sizeof (data));
8968 }
8969 #endif /* PSINFO_T or PRPSINFO_T */
8970
8971 free (buf);
8972 return NULL;
8973 }
8974
8975 char *
8976 elfcore_write_prstatus (bfd *abfd,
8977 char *buf,
8978 int *bufsiz,
8979 long pid,
8980 int cursig,
8981 const void *gregs)
8982 {
8983 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8984
8985 if (bed->elf_backend_write_core_note != NULL)
8986 {
8987 char *ret;
8988 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
8989 NT_PRSTATUS,
8990 pid, cursig, gregs);
8991 if (ret != NULL)
8992 return ret;
8993 }
8994
8995 #if defined (HAVE_PRSTATUS_T)
8996 #if defined (HAVE_PRSTATUS32_T)
8997 if (bed->s->elfclass == ELFCLASS32)
8998 {
8999 prstatus32_t prstat;
9000
9001 memset (&prstat, 0, sizeof (prstat));
9002 prstat.pr_pid = pid;
9003 prstat.pr_cursig = cursig;
9004 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
9005 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
9006 NT_PRSTATUS, &prstat, sizeof (prstat));
9007 }
9008 else
9009 #endif
9010 {
9011 prstatus_t prstat;
9012
9013 memset (&prstat, 0, sizeof (prstat));
9014 prstat.pr_pid = pid;
9015 prstat.pr_cursig = cursig;
9016 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
9017 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
9018 NT_PRSTATUS, &prstat, sizeof (prstat));
9019 }
9020 #endif /* HAVE_PRSTATUS_T */
9021
9022 free (buf);
9023 return NULL;
9024 }
9025
9026 #if defined (HAVE_LWPSTATUS_T)
9027 char *
9028 elfcore_write_lwpstatus (bfd *abfd,
9029 char *buf,
9030 int *bufsiz,
9031 long pid,
9032 int cursig,
9033 const void *gregs)
9034 {
9035 lwpstatus_t lwpstat;
9036 const char *note_name = "CORE";
9037
9038 memset (&lwpstat, 0, sizeof (lwpstat));
9039 lwpstat.pr_lwpid = pid >> 16;
9040 lwpstat.pr_cursig = cursig;
9041 #if defined (HAVE_LWPSTATUS_T_PR_REG)
9042 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
9043 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9044 #if !defined(gregs)
9045 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
9046 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
9047 #else
9048 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
9049 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
9050 #endif
9051 #endif
9052 return elfcore_write_note (abfd, buf, bufsiz, note_name,
9053 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
9054 }
9055 #endif /* HAVE_LWPSTATUS_T */
9056
9057 #if defined (HAVE_PSTATUS_T)
9058 char *
9059 elfcore_write_pstatus (bfd *abfd,
9060 char *buf,
9061 int *bufsiz,
9062 long pid,
9063 int cursig ATTRIBUTE_UNUSED,
9064 const void *gregs ATTRIBUTE_UNUSED)
9065 {
9066 const char *note_name = "CORE";
9067 #if defined (HAVE_PSTATUS32_T)
9068 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9069
9070 if (bed->s->elfclass == ELFCLASS32)
9071 {
9072 pstatus32_t pstat;
9073
9074 memset (&pstat, 0, sizeof (pstat));
9075 pstat.pr_pid = pid & 0xffff;
9076 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
9077 NT_PSTATUS, &pstat, sizeof (pstat));
9078 return buf;
9079 }
9080 else
9081 #endif
9082 {
9083 pstatus_t pstat;
9084
9085 memset (&pstat, 0, sizeof (pstat));
9086 pstat.pr_pid = pid & 0xffff;
9087 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
9088 NT_PSTATUS, &pstat, sizeof (pstat));
9089 return buf;
9090 }
9091 }
9092 #endif /* HAVE_PSTATUS_T */
9093
9094 char *
9095 elfcore_write_prfpreg (bfd *abfd,
9096 char *buf,
9097 int *bufsiz,
9098 const void *fpregs,
9099 int size)
9100 {
9101 const char *note_name = "CORE";
9102 return elfcore_write_note (abfd, buf, bufsiz,
9103 note_name, NT_FPREGSET, fpregs, size);
9104 }
9105
9106 char *
9107 elfcore_write_prxfpreg (bfd *abfd,
9108 char *buf,
9109 int *bufsiz,
9110 const void *xfpregs,
9111 int size)
9112 {
9113 char *note_name = "LINUX";
9114 return elfcore_write_note (abfd, buf, bufsiz,
9115 note_name, NT_PRXFPREG, xfpregs, size);
9116 }
9117
9118 char *
9119 elfcore_write_xstatereg (bfd *abfd, char *buf, int *bufsiz,
9120 const void *xfpregs, int size)
9121 {
9122 char *note_name = "LINUX";
9123 return elfcore_write_note (abfd, buf, bufsiz,
9124 note_name, NT_X86_XSTATE, xfpregs, size);
9125 }
9126
9127 char *
9128 elfcore_write_ppc_vmx (bfd *abfd,
9129 char *buf,
9130 int *bufsiz,
9131 const void *ppc_vmx,
9132 int size)
9133 {
9134 char *note_name = "LINUX";
9135 return elfcore_write_note (abfd, buf, bufsiz,
9136 note_name, NT_PPC_VMX, ppc_vmx, size);
9137 }
9138
9139 char *
9140 elfcore_write_ppc_vsx (bfd *abfd,
9141 char *buf,
9142 int *bufsiz,
9143 const void *ppc_vsx,
9144 int size)
9145 {
9146 char *note_name = "LINUX";
9147 return elfcore_write_note (abfd, buf, bufsiz,
9148 note_name, NT_PPC_VSX, ppc_vsx, size);
9149 }
9150
9151 static char *
9152 elfcore_write_s390_high_gprs (bfd *abfd,
9153 char *buf,
9154 int *bufsiz,
9155 const void *s390_high_gprs,
9156 int size)
9157 {
9158 char *note_name = "LINUX";
9159 return elfcore_write_note (abfd, buf, bufsiz,
9160 note_name, NT_S390_HIGH_GPRS,
9161 s390_high_gprs, size);
9162 }
9163
9164 char *
9165 elfcore_write_s390_timer (bfd *abfd,
9166 char *buf,
9167 int *bufsiz,
9168 const void *s390_timer,
9169 int size)
9170 {
9171 char *note_name = "LINUX";
9172 return elfcore_write_note (abfd, buf, bufsiz,
9173 note_name, NT_S390_TIMER, s390_timer, size);
9174 }
9175
9176 char *
9177 elfcore_write_s390_todcmp (bfd *abfd,
9178 char *buf,
9179 int *bufsiz,
9180 const void *s390_todcmp,
9181 int size)
9182 {
9183 char *note_name = "LINUX";
9184 return elfcore_write_note (abfd, buf, bufsiz,
9185 note_name, NT_S390_TODCMP, s390_todcmp, size);
9186 }
9187
9188 char *
9189 elfcore_write_s390_todpreg (bfd *abfd,
9190 char *buf,
9191 int *bufsiz,
9192 const void *s390_todpreg,
9193 int size)
9194 {
9195 char *note_name = "LINUX";
9196 return elfcore_write_note (abfd, buf, bufsiz,
9197 note_name, NT_S390_TODPREG, s390_todpreg, size);
9198 }
9199
9200 char *
9201 elfcore_write_s390_ctrs (bfd *abfd,
9202 char *buf,
9203 int *bufsiz,
9204 const void *s390_ctrs,
9205 int size)
9206 {
9207 char *note_name = "LINUX";
9208 return elfcore_write_note (abfd, buf, bufsiz,
9209 note_name, NT_S390_CTRS, s390_ctrs, size);
9210 }
9211
9212 char *
9213 elfcore_write_s390_prefix (bfd *abfd,
9214 char *buf,
9215 int *bufsiz,
9216 const void *s390_prefix,
9217 int size)
9218 {
9219 char *note_name = "LINUX";
9220 return elfcore_write_note (abfd, buf, bufsiz,
9221 note_name, NT_S390_PREFIX, s390_prefix, size);
9222 }
9223
9224 char *
9225 elfcore_write_s390_last_break (bfd *abfd,
9226 char *buf,
9227 int *bufsiz,
9228 const void *s390_last_break,
9229 int size)
9230 {
9231 char *note_name = "LINUX";
9232 return elfcore_write_note (abfd, buf, bufsiz,
9233 note_name, NT_S390_LAST_BREAK,
9234 s390_last_break, size);
9235 }
9236
9237 char *
9238 elfcore_write_s390_system_call (bfd *abfd,
9239 char *buf,
9240 int *bufsiz,
9241 const void *s390_system_call,
9242 int size)
9243 {
9244 char *note_name = "LINUX";
9245 return elfcore_write_note (abfd, buf, bufsiz,
9246 note_name, NT_S390_SYSTEM_CALL,
9247 s390_system_call, size);
9248 }
9249
9250 char *
9251 elfcore_write_arm_vfp (bfd *abfd,
9252 char *buf,
9253 int *bufsiz,
9254 const void *arm_vfp,
9255 int size)
9256 {
9257 char *note_name = "LINUX";
9258 return elfcore_write_note (abfd, buf, bufsiz,
9259 note_name, NT_ARM_VFP, arm_vfp, size);
9260 }
9261
9262 char *
9263 elfcore_write_register_note (bfd *abfd,
9264 char *buf,
9265 int *bufsiz,
9266 const char *section,
9267 const void *data,
9268 int size)
9269 {
9270 if (strcmp (section, ".reg2") == 0)
9271 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
9272 if (strcmp (section, ".reg-xfp") == 0)
9273 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
9274 if (strcmp (section, ".reg-xstate") == 0)
9275 return elfcore_write_xstatereg (abfd, buf, bufsiz, data, size);
9276 if (strcmp (section, ".reg-ppc-vmx") == 0)
9277 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
9278 if (strcmp (section, ".reg-ppc-vsx") == 0)
9279 return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size);
9280 if (strcmp (section, ".reg-s390-high-gprs") == 0)
9281 return elfcore_write_s390_high_gprs (abfd, buf, bufsiz, data, size);
9282 if (strcmp (section, ".reg-s390-timer") == 0)
9283 return elfcore_write_s390_timer (abfd, buf, bufsiz, data, size);
9284 if (strcmp (section, ".reg-s390-todcmp") == 0)
9285 return elfcore_write_s390_todcmp (abfd, buf, bufsiz, data, size);
9286 if (strcmp (section, ".reg-s390-todpreg") == 0)
9287 return elfcore_write_s390_todpreg (abfd, buf, bufsiz, data, size);
9288 if (strcmp (section, ".reg-s390-ctrs") == 0)
9289 return elfcore_write_s390_ctrs (abfd, buf, bufsiz, data, size);
9290 if (strcmp (section, ".reg-s390-prefix") == 0)
9291 return elfcore_write_s390_prefix (abfd, buf, bufsiz, data, size);
9292 if (strcmp (section, ".reg-s390-last-break") == 0)
9293 return elfcore_write_s390_last_break (abfd, buf, bufsiz, data, size);
9294 if (strcmp (section, ".reg-s390-system-call") == 0)
9295 return elfcore_write_s390_system_call (abfd, buf, bufsiz, data, size);
9296 if (strcmp (section, ".reg-arm-vfp") == 0)
9297 return elfcore_write_arm_vfp (abfd, buf, bufsiz, data, size);
9298 return NULL;
9299 }
9300
9301 static bfd_boolean
9302 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset)
9303 {
9304 char *p;
9305
9306 p = buf;
9307 while (p < buf + size)
9308 {
9309 /* FIXME: bad alignment assumption. */
9310 Elf_External_Note *xnp = (Elf_External_Note *) p;
9311 Elf_Internal_Note in;
9312
9313 if (offsetof (Elf_External_Note, name) > buf - p + size)
9314 return FALSE;
9315
9316 in.type = H_GET_32 (abfd, xnp->type);
9317
9318 in.namesz = H_GET_32 (abfd, xnp->namesz);
9319 in.namedata = xnp->name;
9320 if (in.namesz > buf - in.namedata + size)
9321 return FALSE;
9322
9323 in.descsz = H_GET_32 (abfd, xnp->descsz);
9324 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
9325 in.descpos = offset + (in.descdata - buf);
9326 if (in.descsz != 0
9327 && (in.descdata >= buf + size
9328 || in.descsz > buf - in.descdata + size))
9329 return FALSE;
9330
9331 switch (bfd_get_format (abfd))
9332 {
9333 default:
9334 return TRUE;
9335
9336 case bfd_core:
9337 if (CONST_STRNEQ (in.namedata, "NetBSD-CORE"))
9338 {
9339 if (! elfcore_grok_netbsd_note (abfd, &in))
9340 return FALSE;
9341 }
9342 else if (CONST_STRNEQ (in.namedata, "OpenBSD"))
9343 {
9344 if (! elfcore_grok_openbsd_note (abfd, &in))
9345 return FALSE;
9346 }
9347 else if (CONST_STRNEQ (in.namedata, "QNX"))
9348 {
9349 if (! elfcore_grok_nto_note (abfd, &in))
9350 return FALSE;
9351 }
9352 else if (CONST_STRNEQ (in.namedata, "SPU/"))
9353 {
9354 if (! elfcore_grok_spu_note (abfd, &in))
9355 return FALSE;
9356 }
9357 else
9358 {
9359 if (! elfcore_grok_note (abfd, &in))
9360 return FALSE;
9361 }
9362 break;
9363
9364 case bfd_object:
9365 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
9366 {
9367 if (! elfobj_grok_gnu_note (abfd, &in))
9368 return FALSE;
9369 }
9370 else if (in.namesz == sizeof "stapsdt"
9371 && strcmp (in.namedata, "stapsdt") == 0)
9372 {
9373 if (! elfobj_grok_stapsdt_note (abfd, &in))
9374 return FALSE;
9375 }
9376 break;
9377 }
9378
9379 p = in.descdata + BFD_ALIGN (in.descsz, 4);
9380 }
9381
9382 return TRUE;
9383 }
9384
9385 static bfd_boolean
9386 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
9387 {
9388 char *buf;
9389
9390 if (size <= 0)
9391 return TRUE;
9392
9393 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
9394 return FALSE;
9395
9396 buf = (char *) bfd_malloc (size);
9397 if (buf == NULL)
9398 return FALSE;
9399
9400 if (bfd_bread (buf, size, abfd) != size
9401 || !elf_parse_notes (abfd, buf, size, offset))
9402 {
9403 free (buf);
9404 return FALSE;
9405 }
9406
9407 free (buf);
9408 return TRUE;
9409 }
9410 \f
9411 /* Providing external access to the ELF program header table. */
9412
9413 /* Return an upper bound on the number of bytes required to store a
9414 copy of ABFD's program header table entries. Return -1 if an error
9415 occurs; bfd_get_error will return an appropriate code. */
9416
9417 long
9418 bfd_get_elf_phdr_upper_bound (bfd *abfd)
9419 {
9420 if (abfd->xvec->flavour != bfd_target_elf_flavour)
9421 {
9422 bfd_set_error (bfd_error_wrong_format);
9423 return -1;
9424 }
9425
9426 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
9427 }
9428
9429 /* Copy ABFD's program header table entries to *PHDRS. The entries
9430 will be stored as an array of Elf_Internal_Phdr structures, as
9431 defined in include/elf/internal.h. To find out how large the
9432 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
9433
9434 Return the number of program header table entries read, or -1 if an
9435 error occurs; bfd_get_error will return an appropriate code. */
9436
9437 int
9438 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
9439 {
9440 int num_phdrs;
9441
9442 if (abfd->xvec->flavour != bfd_target_elf_flavour)
9443 {
9444 bfd_set_error (bfd_error_wrong_format);
9445 return -1;
9446 }
9447
9448 num_phdrs = elf_elfheader (abfd)->e_phnum;
9449 memcpy (phdrs, elf_tdata (abfd)->phdr,
9450 num_phdrs * sizeof (Elf_Internal_Phdr));
9451
9452 return num_phdrs;
9453 }
9454
9455 enum elf_reloc_type_class
9456 _bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
9457 {
9458 return reloc_class_normal;
9459 }
9460
9461 /* For RELA architectures, return the relocation value for a
9462 relocation against a local symbol. */
9463
9464 bfd_vma
9465 _bfd_elf_rela_local_sym (bfd *abfd,
9466 Elf_Internal_Sym *sym,
9467 asection **psec,
9468 Elf_Internal_Rela *rel)
9469 {
9470 asection *sec = *psec;
9471 bfd_vma relocation;
9472
9473 relocation = (sec->output_section->vma
9474 + sec->output_offset
9475 + sym->st_value);
9476 if ((sec->flags & SEC_MERGE)
9477 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
9478 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
9479 {
9480 rel->r_addend =
9481 _bfd_merged_section_offset (abfd, psec,
9482 elf_section_data (sec)->sec_info,
9483 sym->st_value + rel->r_addend);
9484 if (sec != *psec)
9485 {
9486 /* If we have changed the section, and our original section is
9487 marked with SEC_EXCLUDE, it means that the original
9488 SEC_MERGE section has been completely subsumed in some
9489 other SEC_MERGE section. In this case, we need to leave
9490 some info around for --emit-relocs. */
9491 if ((sec->flags & SEC_EXCLUDE) != 0)
9492 sec->kept_section = *psec;
9493 sec = *psec;
9494 }
9495 rel->r_addend -= relocation;
9496 rel->r_addend += sec->output_section->vma + sec->output_offset;
9497 }
9498 return relocation;
9499 }
9500
9501 bfd_vma
9502 _bfd_elf_rel_local_sym (bfd *abfd,
9503 Elf_Internal_Sym *sym,
9504 asection **psec,
9505 bfd_vma addend)
9506 {
9507 asection *sec = *psec;
9508
9509 if (sec->sec_info_type != SEC_INFO_TYPE_MERGE)
9510 return sym->st_value + addend;
9511
9512 return _bfd_merged_section_offset (abfd, psec,
9513 elf_section_data (sec)->sec_info,
9514 sym->st_value + addend);
9515 }
9516
9517 bfd_vma
9518 _bfd_elf_section_offset (bfd *abfd,
9519 struct bfd_link_info *info,
9520 asection *sec,
9521 bfd_vma offset)
9522 {
9523 switch (sec->sec_info_type)
9524 {
9525 case SEC_INFO_TYPE_STABS:
9526 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
9527 offset);
9528 case SEC_INFO_TYPE_EH_FRAME:
9529 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
9530 default:
9531 if ((sec->flags & SEC_ELF_REVERSE_COPY) != 0)
9532 {
9533 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9534 bfd_size_type address_size = bed->s->arch_size / 8;
9535 offset = sec->size - offset - address_size;
9536 }
9537 return offset;
9538 }
9539 }
9540 \f
9541 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
9542 reconstruct an ELF file by reading the segments out of remote memory
9543 based on the ELF file header at EHDR_VMA and the ELF program headers it
9544 points to. If not null, *LOADBASEP is filled in with the difference
9545 between the VMAs from which the segments were read, and the VMAs the
9546 file headers (and hence BFD's idea of each section's VMA) put them at.
9547
9548 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
9549 remote memory at target address VMA into the local buffer at MYADDR; it
9550 should return zero on success or an `errno' code on failure. TEMPL must
9551 be a BFD for an ELF target with the word size and byte order found in
9552 the remote memory. */
9553
9554 bfd *
9555 bfd_elf_bfd_from_remote_memory
9556 (bfd *templ,
9557 bfd_vma ehdr_vma,
9558 bfd_vma *loadbasep,
9559 int (*target_read_memory) (bfd_vma, bfd_byte *, int))
9560 {
9561 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
9562 (templ, ehdr_vma, loadbasep, target_read_memory);
9563 }
9564 \f
9565 long
9566 _bfd_elf_get_synthetic_symtab (bfd *abfd,
9567 long symcount ATTRIBUTE_UNUSED,
9568 asymbol **syms ATTRIBUTE_UNUSED,
9569 long dynsymcount,
9570 asymbol **dynsyms,
9571 asymbol **ret)
9572 {
9573 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9574 asection *relplt;
9575 asymbol *s;
9576 const char *relplt_name;
9577 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
9578 arelent *p;
9579 long count, i, n;
9580 size_t size;
9581 Elf_Internal_Shdr *hdr;
9582 char *names;
9583 asection *plt;
9584
9585 *ret = NULL;
9586
9587 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
9588 return 0;
9589
9590 if (dynsymcount <= 0)
9591 return 0;
9592
9593 if (!bed->plt_sym_val)
9594 return 0;
9595
9596 relplt_name = bed->relplt_name;
9597 if (relplt_name == NULL)
9598 relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt";
9599 relplt = bfd_get_section_by_name (abfd, relplt_name);
9600 if (relplt == NULL)
9601 return 0;
9602
9603 hdr = &elf_section_data (relplt)->this_hdr;
9604 if (hdr->sh_link != elf_dynsymtab (abfd)
9605 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
9606 return 0;
9607
9608 plt = bfd_get_section_by_name (abfd, ".plt");
9609 if (plt == NULL)
9610 return 0;
9611
9612 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
9613 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
9614 return -1;
9615
9616 count = relplt->size / hdr->sh_entsize;
9617 size = count * sizeof (asymbol);
9618 p = relplt->relocation;
9619 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
9620 {
9621 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
9622 if (p->addend != 0)
9623 {
9624 #ifdef BFD64
9625 size += sizeof ("+0x") - 1 + 8 + 8 * (bed->s->elfclass == ELFCLASS64);
9626 #else
9627 size += sizeof ("+0x") - 1 + 8;
9628 #endif
9629 }
9630 }
9631
9632 s = *ret = (asymbol *) bfd_malloc (size);
9633 if (s == NULL)
9634 return -1;
9635
9636 names = (char *) (s + count);
9637 p = relplt->relocation;
9638 n = 0;
9639 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
9640 {
9641 size_t len;
9642 bfd_vma addr;
9643
9644 addr = bed->plt_sym_val (i, plt, p);
9645 if (addr == (bfd_vma) -1)
9646 continue;
9647
9648 *s = **p->sym_ptr_ptr;
9649 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
9650 we are defining a symbol, ensure one of them is set. */
9651 if ((s->flags & BSF_LOCAL) == 0)
9652 s->flags |= BSF_GLOBAL;
9653 s->flags |= BSF_SYNTHETIC;
9654 s->section = plt;
9655 s->value = addr - plt->vma;
9656 s->name = names;
9657 s->udata.p = NULL;
9658 len = strlen ((*p->sym_ptr_ptr)->name);
9659 memcpy (names, (*p->sym_ptr_ptr)->name, len);
9660 names += len;
9661 if (p->addend != 0)
9662 {
9663 char buf[30], *a;
9664
9665 memcpy (names, "+0x", sizeof ("+0x") - 1);
9666 names += sizeof ("+0x") - 1;
9667 bfd_sprintf_vma (abfd, buf, p->addend);
9668 for (a = buf; *a == '0'; ++a)
9669 ;
9670 len = strlen (a);
9671 memcpy (names, a, len);
9672 names += len;
9673 }
9674 memcpy (names, "@plt", sizeof ("@plt"));
9675 names += sizeof ("@plt");
9676 ++s, ++n;
9677 }
9678
9679 return n;
9680 }
9681
9682 /* It is only used by x86-64 so far. */
9683 asection _bfd_elf_large_com_section
9684 = BFD_FAKE_SECTION (_bfd_elf_large_com_section,
9685 SEC_IS_COMMON, NULL, "LARGE_COMMON", 0);
9686
9687 void
9688 _bfd_elf_set_osabi (bfd * abfd,
9689 struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
9690 {
9691 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
9692
9693 i_ehdrp = elf_elfheader (abfd);
9694
9695 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
9696
9697 /* To make things simpler for the loader on Linux systems we set the
9698 osabi field to ELFOSABI_GNU if the binary contains symbols of
9699 the STT_GNU_IFUNC type or STB_GNU_UNIQUE binding. */
9700 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE
9701 && elf_tdata (abfd)->has_gnu_symbols)
9702 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_GNU;
9703 }
9704
9705
9706 /* Return TRUE for ELF symbol types that represent functions.
9707 This is the default version of this function, which is sufficient for
9708 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */
9709
9710 bfd_boolean
9711 _bfd_elf_is_function_type (unsigned int type)
9712 {
9713 return (type == STT_FUNC
9714 || type == STT_GNU_IFUNC);
9715 }
9716
9717 /* Return TRUE iff the ELF symbol SYM might be a function. Set *CODE_SEC
9718 and *CODE_OFF to the function's entry point. */
9719
9720 bfd_boolean
9721 _bfd_elf_maybe_function_sym (const asymbol *sym,
9722 asection **code_sec, bfd_vma *code_off)
9723 {
9724 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
9725 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0)
9726 return FALSE;
9727
9728 *code_sec = sym->section;
9729 *code_off = sym->value;
9730 return TRUE;
9731 }