8a725c39edf36e61a8c08842877e9ff6a10f9b97
[binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
21
22 /*
23 SECTION
24 ELF backends
25
26 BFD support for ELF formats is being worked on.
27 Currently, the best supported back ends are for sparc and i386
28 (running svr4 or Solaris 2).
29
30 Documentation of the internals of the support code still needs
31 to be written. The code is changing quickly enough that we
32 haven't bothered yet. */
33
34 /* For sparc64-cross-sparc32. */
35 #define _SYSCALL32
36 #include "bfd.h"
37 #include "sysdep.h"
38 #include "bfdlink.h"
39 #include "libbfd.h"
40 #define ARCH_SIZE 0
41 #include "elf-bfd.h"
42 #include "libiberty.h"
43
44 static int elf_sort_sections (const void *, const void *);
45 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
46 static bfd_boolean prep_headers (bfd *);
47 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
48 static bfd_boolean elfcore_read_notes (bfd *, file_ptr, bfd_size_type) ;
49
50 /* Swap version information in and out. The version information is
51 currently size independent. If that ever changes, this code will
52 need to move into elfcode.h. */
53
54 /* Swap in a Verdef structure. */
55
56 void
57 _bfd_elf_swap_verdef_in (bfd *abfd,
58 const Elf_External_Verdef *src,
59 Elf_Internal_Verdef *dst)
60 {
61 dst->vd_version = H_GET_16 (abfd, src->vd_version);
62 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
63 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
64 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
65 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
66 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
67 dst->vd_next = H_GET_32 (abfd, src->vd_next);
68 }
69
70 /* Swap out a Verdef structure. */
71
72 void
73 _bfd_elf_swap_verdef_out (bfd *abfd,
74 const Elf_Internal_Verdef *src,
75 Elf_External_Verdef *dst)
76 {
77 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
78 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
79 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
80 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
81 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
82 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
83 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
84 }
85
86 /* Swap in a Verdaux structure. */
87
88 void
89 _bfd_elf_swap_verdaux_in (bfd *abfd,
90 const Elf_External_Verdaux *src,
91 Elf_Internal_Verdaux *dst)
92 {
93 dst->vda_name = H_GET_32 (abfd, src->vda_name);
94 dst->vda_next = H_GET_32 (abfd, src->vda_next);
95 }
96
97 /* Swap out a Verdaux structure. */
98
99 void
100 _bfd_elf_swap_verdaux_out (bfd *abfd,
101 const Elf_Internal_Verdaux *src,
102 Elf_External_Verdaux *dst)
103 {
104 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
105 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
106 }
107
108 /* Swap in a Verneed structure. */
109
110 void
111 _bfd_elf_swap_verneed_in (bfd *abfd,
112 const Elf_External_Verneed *src,
113 Elf_Internal_Verneed *dst)
114 {
115 dst->vn_version = H_GET_16 (abfd, src->vn_version);
116 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
117 dst->vn_file = H_GET_32 (abfd, src->vn_file);
118 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
119 dst->vn_next = H_GET_32 (abfd, src->vn_next);
120 }
121
122 /* Swap out a Verneed structure. */
123
124 void
125 _bfd_elf_swap_verneed_out (bfd *abfd,
126 const Elf_Internal_Verneed *src,
127 Elf_External_Verneed *dst)
128 {
129 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
130 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
131 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
132 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
133 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
134 }
135
136 /* Swap in a Vernaux structure. */
137
138 void
139 _bfd_elf_swap_vernaux_in (bfd *abfd,
140 const Elf_External_Vernaux *src,
141 Elf_Internal_Vernaux *dst)
142 {
143 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
144 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
145 dst->vna_other = H_GET_16 (abfd, src->vna_other);
146 dst->vna_name = H_GET_32 (abfd, src->vna_name);
147 dst->vna_next = H_GET_32 (abfd, src->vna_next);
148 }
149
150 /* Swap out a Vernaux structure. */
151
152 void
153 _bfd_elf_swap_vernaux_out (bfd *abfd,
154 const Elf_Internal_Vernaux *src,
155 Elf_External_Vernaux *dst)
156 {
157 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
158 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
159 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
160 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
161 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
162 }
163
164 /* Swap in a Versym structure. */
165
166 void
167 _bfd_elf_swap_versym_in (bfd *abfd,
168 const Elf_External_Versym *src,
169 Elf_Internal_Versym *dst)
170 {
171 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
172 }
173
174 /* Swap out a Versym structure. */
175
176 void
177 _bfd_elf_swap_versym_out (bfd *abfd,
178 const Elf_Internal_Versym *src,
179 Elf_External_Versym *dst)
180 {
181 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
182 }
183
184 /* Standard ELF hash function. Do not change this function; you will
185 cause invalid hash tables to be generated. */
186
187 unsigned long
188 bfd_elf_hash (const char *namearg)
189 {
190 const unsigned char *name = (const unsigned char *) namearg;
191 unsigned long h = 0;
192 unsigned long g;
193 int ch;
194
195 while ((ch = *name++) != '\0')
196 {
197 h = (h << 4) + ch;
198 if ((g = (h & 0xf0000000)) != 0)
199 {
200 h ^= g >> 24;
201 /* The ELF ABI says `h &= ~g', but this is equivalent in
202 this case and on some machines one insn instead of two. */
203 h ^= g;
204 }
205 }
206 return h & 0xffffffff;
207 }
208
209 bfd_boolean
210 bfd_elf_mkobject (bfd *abfd)
211 {
212 /* This just does initialization. */
213 /* coff_mkobject zalloc's space for tdata.coff_obj_data ... */
214 elf_tdata (abfd) = bfd_zalloc (abfd, sizeof (struct elf_obj_tdata));
215 if (elf_tdata (abfd) == 0)
216 return FALSE;
217 /* Since everything is done at close time, do we need any
218 initialization? */
219
220 return TRUE;
221 }
222
223 bfd_boolean
224 bfd_elf_mkcorefile (bfd *abfd)
225 {
226 /* I think this can be done just like an object file. */
227 return bfd_elf_mkobject (abfd);
228 }
229
230 char *
231 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
232 {
233 Elf_Internal_Shdr **i_shdrp;
234 bfd_byte *shstrtab = NULL;
235 file_ptr offset;
236 bfd_size_type shstrtabsize;
237
238 i_shdrp = elf_elfsections (abfd);
239 if (i_shdrp == 0 || i_shdrp[shindex] == 0)
240 return NULL;
241
242 shstrtab = i_shdrp[shindex]->contents;
243 if (shstrtab == NULL)
244 {
245 /* No cached one, attempt to read, and cache what we read. */
246 offset = i_shdrp[shindex]->sh_offset;
247 shstrtabsize = i_shdrp[shindex]->sh_size;
248
249 /* Allocate and clear an extra byte at the end, to prevent crashes
250 in case the string table is not terminated. */
251 if (shstrtabsize + 1 == 0
252 || (shstrtab = bfd_alloc (abfd, shstrtabsize + 1)) == NULL
253 || bfd_seek (abfd, offset, SEEK_SET) != 0)
254 shstrtab = NULL;
255 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
256 {
257 if (bfd_get_error () != bfd_error_system_call)
258 bfd_set_error (bfd_error_file_truncated);
259 shstrtab = NULL;
260 }
261 else
262 shstrtab[shstrtabsize] = '\0';
263 i_shdrp[shindex]->contents = shstrtab;
264 }
265 return (char *) shstrtab;
266 }
267
268 char *
269 bfd_elf_string_from_elf_section (bfd *abfd,
270 unsigned int shindex,
271 unsigned int strindex)
272 {
273 Elf_Internal_Shdr *hdr;
274
275 if (strindex == 0)
276 return "";
277
278 hdr = elf_elfsections (abfd)[shindex];
279
280 if (hdr->contents == NULL
281 && bfd_elf_get_str_section (abfd, shindex) == NULL)
282 return NULL;
283
284 if (strindex >= hdr->sh_size)
285 {
286 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
287 (*_bfd_error_handler)
288 (_("%B: invalid string offset %u >= %lu for section `%s'"),
289 abfd, strindex, (unsigned long) hdr->sh_size,
290 (shindex == shstrndx && strindex == hdr->sh_name
291 ? ".shstrtab"
292 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
293 return "";
294 }
295
296 return ((char *) hdr->contents) + strindex;
297 }
298
299 /* Read and convert symbols to internal format.
300 SYMCOUNT specifies the number of symbols to read, starting from
301 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
302 are non-NULL, they are used to store the internal symbols, external
303 symbols, and symbol section index extensions, respectively. */
304
305 Elf_Internal_Sym *
306 bfd_elf_get_elf_syms (bfd *ibfd,
307 Elf_Internal_Shdr *symtab_hdr,
308 size_t symcount,
309 size_t symoffset,
310 Elf_Internal_Sym *intsym_buf,
311 void *extsym_buf,
312 Elf_External_Sym_Shndx *extshndx_buf)
313 {
314 Elf_Internal_Shdr *shndx_hdr;
315 void *alloc_ext;
316 const bfd_byte *esym;
317 Elf_External_Sym_Shndx *alloc_extshndx;
318 Elf_External_Sym_Shndx *shndx;
319 Elf_Internal_Sym *isym;
320 Elf_Internal_Sym *isymend;
321 const struct elf_backend_data *bed;
322 size_t extsym_size;
323 bfd_size_type amt;
324 file_ptr pos;
325
326 if (symcount == 0)
327 return intsym_buf;
328
329 /* Normal syms might have section extension entries. */
330 shndx_hdr = NULL;
331 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
332 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
333
334 /* Read the symbols. */
335 alloc_ext = NULL;
336 alloc_extshndx = NULL;
337 bed = get_elf_backend_data (ibfd);
338 extsym_size = bed->s->sizeof_sym;
339 amt = symcount * extsym_size;
340 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
341 if (extsym_buf == NULL)
342 {
343 alloc_ext = bfd_malloc2 (symcount, extsym_size);
344 extsym_buf = alloc_ext;
345 }
346 if (extsym_buf == NULL
347 || bfd_seek (ibfd, pos, SEEK_SET) != 0
348 || bfd_bread (extsym_buf, amt, ibfd) != amt)
349 {
350 intsym_buf = NULL;
351 goto out;
352 }
353
354 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
355 extshndx_buf = NULL;
356 else
357 {
358 amt = symcount * sizeof (Elf_External_Sym_Shndx);
359 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
360 if (extshndx_buf == NULL)
361 {
362 alloc_extshndx = bfd_malloc2 (symcount,
363 sizeof (Elf_External_Sym_Shndx));
364 extshndx_buf = alloc_extshndx;
365 }
366 if (extshndx_buf == NULL
367 || bfd_seek (ibfd, pos, SEEK_SET) != 0
368 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
369 {
370 intsym_buf = NULL;
371 goto out;
372 }
373 }
374
375 if (intsym_buf == NULL)
376 {
377 intsym_buf = bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
378 if (intsym_buf == NULL)
379 goto out;
380 }
381
382 /* Convert the symbols to internal form. */
383 isymend = intsym_buf + symcount;
384 for (esym = extsym_buf, isym = intsym_buf, shndx = extshndx_buf;
385 isym < isymend;
386 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
387 (*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym);
388
389 out:
390 if (alloc_ext != NULL)
391 free (alloc_ext);
392 if (alloc_extshndx != NULL)
393 free (alloc_extshndx);
394
395 return intsym_buf;
396 }
397
398 /* Look up a symbol name. */
399 const char *
400 bfd_elf_sym_name (bfd *abfd,
401 Elf_Internal_Shdr *symtab_hdr,
402 Elf_Internal_Sym *isym,
403 asection *sym_sec)
404 {
405 const char *name;
406 unsigned int iname = isym->st_name;
407 unsigned int shindex = symtab_hdr->sh_link;
408
409 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
410 /* Check for a bogus st_shndx to avoid crashing. */
411 && isym->st_shndx < elf_numsections (abfd)
412 && !(isym->st_shndx >= SHN_LORESERVE && isym->st_shndx <= SHN_HIRESERVE))
413 {
414 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
415 shindex = elf_elfheader (abfd)->e_shstrndx;
416 }
417
418 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
419 if (name == NULL)
420 name = "(null)";
421 else if (sym_sec && *name == '\0')
422 name = bfd_section_name (abfd, sym_sec);
423
424 return name;
425 }
426
427 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
428 sections. The first element is the flags, the rest are section
429 pointers. */
430
431 typedef union elf_internal_group {
432 Elf_Internal_Shdr *shdr;
433 unsigned int flags;
434 } Elf_Internal_Group;
435
436 /* Return the name of the group signature symbol. Why isn't the
437 signature just a string? */
438
439 static const char *
440 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
441 {
442 Elf_Internal_Shdr *hdr;
443 unsigned char esym[sizeof (Elf64_External_Sym)];
444 Elf_External_Sym_Shndx eshndx;
445 Elf_Internal_Sym isym;
446
447 /* First we need to ensure the symbol table is available. Make sure
448 that it is a symbol table section. */
449 hdr = elf_elfsections (abfd) [ghdr->sh_link];
450 if (hdr->sh_type != SHT_SYMTAB
451 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
452 return NULL;
453
454 /* Go read the symbol. */
455 hdr = &elf_tdata (abfd)->symtab_hdr;
456 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
457 &isym, esym, &eshndx) == NULL)
458 return NULL;
459
460 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
461 }
462
463 /* Set next_in_group list pointer, and group name for NEWSECT. */
464
465 static bfd_boolean
466 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
467 {
468 unsigned int num_group = elf_tdata (abfd)->num_group;
469
470 /* If num_group is zero, read in all SHT_GROUP sections. The count
471 is set to -1 if there are no SHT_GROUP sections. */
472 if (num_group == 0)
473 {
474 unsigned int i, shnum;
475
476 /* First count the number of groups. If we have a SHT_GROUP
477 section with just a flag word (ie. sh_size is 4), ignore it. */
478 shnum = elf_numsections (abfd);
479 num_group = 0;
480 for (i = 0; i < shnum; i++)
481 {
482 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
483 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
484 num_group += 1;
485 }
486
487 if (num_group == 0)
488 {
489 num_group = (unsigned) -1;
490 elf_tdata (abfd)->num_group = num_group;
491 }
492 else
493 {
494 /* We keep a list of elf section headers for group sections,
495 so we can find them quickly. */
496 bfd_size_type amt;
497
498 elf_tdata (abfd)->num_group = num_group;
499 elf_tdata (abfd)->group_sect_ptr
500 = bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
501 if (elf_tdata (abfd)->group_sect_ptr == NULL)
502 return FALSE;
503
504 num_group = 0;
505 for (i = 0; i < shnum; i++)
506 {
507 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
508 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
509 {
510 unsigned char *src;
511 Elf_Internal_Group *dest;
512
513 /* Add to list of sections. */
514 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
515 num_group += 1;
516
517 /* Read the raw contents. */
518 BFD_ASSERT (sizeof (*dest) >= 4);
519 amt = shdr->sh_size * sizeof (*dest) / 4;
520 shdr->contents = bfd_alloc2 (abfd, shdr->sh_size,
521 sizeof (*dest) / 4);
522 if (shdr->contents == NULL
523 || bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
524 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
525 != shdr->sh_size))
526 return FALSE;
527
528 /* Translate raw contents, a flag word followed by an
529 array of elf section indices all in target byte order,
530 to the flag word followed by an array of elf section
531 pointers. */
532 src = shdr->contents + shdr->sh_size;
533 dest = (Elf_Internal_Group *) (shdr->contents + amt);
534 while (1)
535 {
536 unsigned int idx;
537
538 src -= 4;
539 --dest;
540 idx = H_GET_32 (abfd, src);
541 if (src == shdr->contents)
542 {
543 dest->flags = idx;
544 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
545 shdr->bfd_section->flags
546 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
547 break;
548 }
549 if (idx >= shnum)
550 {
551 ((*_bfd_error_handler)
552 (_("%B: invalid SHT_GROUP entry"), abfd));
553 idx = 0;
554 }
555 dest->shdr = elf_elfsections (abfd)[idx];
556 }
557 }
558 }
559 }
560 }
561
562 if (num_group != (unsigned) -1)
563 {
564 unsigned int i;
565
566 for (i = 0; i < num_group; i++)
567 {
568 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
569 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
570 unsigned int n_elt = shdr->sh_size / 4;
571
572 /* Look through this group's sections to see if current
573 section is a member. */
574 while (--n_elt != 0)
575 if ((++idx)->shdr == hdr)
576 {
577 asection *s = NULL;
578
579 /* We are a member of this group. Go looking through
580 other members to see if any others are linked via
581 next_in_group. */
582 idx = (Elf_Internal_Group *) shdr->contents;
583 n_elt = shdr->sh_size / 4;
584 while (--n_elt != 0)
585 if ((s = (++idx)->shdr->bfd_section) != NULL
586 && elf_next_in_group (s) != NULL)
587 break;
588 if (n_elt != 0)
589 {
590 /* Snarf the group name from other member, and
591 insert current section in circular list. */
592 elf_group_name (newsect) = elf_group_name (s);
593 elf_next_in_group (newsect) = elf_next_in_group (s);
594 elf_next_in_group (s) = newsect;
595 }
596 else
597 {
598 const char *gname;
599
600 gname = group_signature (abfd, shdr);
601 if (gname == NULL)
602 return FALSE;
603 elf_group_name (newsect) = gname;
604
605 /* Start a circular list with one element. */
606 elf_next_in_group (newsect) = newsect;
607 }
608
609 /* If the group section has been created, point to the
610 new member. */
611 if (shdr->bfd_section != NULL)
612 elf_next_in_group (shdr->bfd_section) = newsect;
613
614 i = num_group - 1;
615 break;
616 }
617 }
618 }
619
620 if (elf_group_name (newsect) == NULL)
621 {
622 (*_bfd_error_handler) (_("%B: no group info for section %A"),
623 abfd, newsect);
624 }
625 return TRUE;
626 }
627
628 bfd_boolean
629 _bfd_elf_setup_sections (bfd *abfd)
630 {
631 unsigned int i;
632 unsigned int num_group = elf_tdata (abfd)->num_group;
633 bfd_boolean result = TRUE;
634 asection *s;
635
636 /* Process SHF_LINK_ORDER. */
637 for (s = abfd->sections; s != NULL; s = s->next)
638 {
639 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
640 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
641 {
642 unsigned int elfsec = this_hdr->sh_link;
643 /* FIXME: The old Intel compiler and old strip/objcopy may
644 not set the sh_link or sh_info fields. Hence we could
645 get the situation where elfsec is 0. */
646 if (elfsec == 0)
647 {
648 const struct elf_backend_data *bed
649 = get_elf_backend_data (abfd);
650 if (bed->link_order_error_handler)
651 bed->link_order_error_handler
652 (_("%B: warning: sh_link not set for section `%A'"),
653 abfd, s);
654 }
655 else
656 {
657 asection *link;
658
659 this_hdr = elf_elfsections (abfd)[elfsec];
660
661 /* PR 1991, 2008:
662 Some strip/objcopy may leave an incorrect value in
663 sh_link. We don't want to proceed. */
664 link = this_hdr->bfd_section;
665 if (link == NULL)
666 {
667 (*_bfd_error_handler)
668 (_("%B: sh_link [%d] in section `%A' is incorrect"),
669 s->owner, s, elfsec);
670 result = FALSE;
671 }
672
673 elf_linked_to_section (s) = link;
674 }
675 }
676 }
677
678 /* Process section groups. */
679 if (num_group == (unsigned) -1)
680 return result;
681
682 for (i = 0; i < num_group; i++)
683 {
684 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
685 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
686 unsigned int n_elt = shdr->sh_size / 4;
687
688 while (--n_elt != 0)
689 if ((++idx)->shdr->bfd_section)
690 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
691 else if (idx->shdr->sh_type == SHT_RELA
692 || idx->shdr->sh_type == SHT_REL)
693 /* We won't include relocation sections in section groups in
694 output object files. We adjust the group section size here
695 so that relocatable link will work correctly when
696 relocation sections are in section group in input object
697 files. */
698 shdr->bfd_section->size -= 4;
699 else
700 {
701 /* There are some unknown sections in the group. */
702 (*_bfd_error_handler)
703 (_("%B: unknown [%d] section `%s' in group [%s]"),
704 abfd,
705 (unsigned int) idx->shdr->sh_type,
706 bfd_elf_string_from_elf_section (abfd,
707 (elf_elfheader (abfd)
708 ->e_shstrndx),
709 idx->shdr->sh_name),
710 shdr->bfd_section->name);
711 result = FALSE;
712 }
713 }
714 return result;
715 }
716
717 bfd_boolean
718 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
719 {
720 return elf_next_in_group (sec) != NULL;
721 }
722
723 /* Make a BFD section from an ELF section. We store a pointer to the
724 BFD section in the bfd_section field of the header. */
725
726 bfd_boolean
727 _bfd_elf_make_section_from_shdr (bfd *abfd,
728 Elf_Internal_Shdr *hdr,
729 const char *name,
730 int shindex)
731 {
732 asection *newsect;
733 flagword flags;
734 const struct elf_backend_data *bed;
735
736 if (hdr->bfd_section != NULL)
737 {
738 BFD_ASSERT (strcmp (name,
739 bfd_get_section_name (abfd, hdr->bfd_section)) == 0);
740 return TRUE;
741 }
742
743 newsect = bfd_make_section_anyway (abfd, name);
744 if (newsect == NULL)
745 return FALSE;
746
747 hdr->bfd_section = newsect;
748 elf_section_data (newsect)->this_hdr = *hdr;
749 elf_section_data (newsect)->this_idx = shindex;
750
751 /* Always use the real type/flags. */
752 elf_section_type (newsect) = hdr->sh_type;
753 elf_section_flags (newsect) = hdr->sh_flags;
754
755 newsect->filepos = hdr->sh_offset;
756
757 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
758 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
759 || ! bfd_set_section_alignment (abfd, newsect,
760 bfd_log2 ((bfd_vma) hdr->sh_addralign)))
761 return FALSE;
762
763 flags = SEC_NO_FLAGS;
764 if (hdr->sh_type != SHT_NOBITS)
765 flags |= SEC_HAS_CONTENTS;
766 if (hdr->sh_type == SHT_GROUP)
767 flags |= SEC_GROUP | SEC_EXCLUDE;
768 if ((hdr->sh_flags & SHF_ALLOC) != 0)
769 {
770 flags |= SEC_ALLOC;
771 if (hdr->sh_type != SHT_NOBITS)
772 flags |= SEC_LOAD;
773 }
774 if ((hdr->sh_flags & SHF_WRITE) == 0)
775 flags |= SEC_READONLY;
776 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
777 flags |= SEC_CODE;
778 else if ((flags & SEC_LOAD) != 0)
779 flags |= SEC_DATA;
780 if ((hdr->sh_flags & SHF_MERGE) != 0)
781 {
782 flags |= SEC_MERGE;
783 newsect->entsize = hdr->sh_entsize;
784 if ((hdr->sh_flags & SHF_STRINGS) != 0)
785 flags |= SEC_STRINGS;
786 }
787 if (hdr->sh_flags & SHF_GROUP)
788 if (!setup_group (abfd, hdr, newsect))
789 return FALSE;
790 if ((hdr->sh_flags & SHF_TLS) != 0)
791 flags |= SEC_THREAD_LOCAL;
792
793 if ((flags & SEC_ALLOC) == 0)
794 {
795 /* The debugging sections appear to be recognized only by name,
796 not any sort of flag. Their SEC_ALLOC bits are cleared. */
797 static const struct
798 {
799 const char *name;
800 int len;
801 } debug_sections [] =
802 {
803 { "debug", 5 }, /* 'd' */
804 { NULL, 0 }, /* 'e' */
805 { NULL, 0 }, /* 'f' */
806 { "gnu.linkonce.wi.", 17 }, /* 'g' */
807 { NULL, 0 }, /* 'h' */
808 { NULL, 0 }, /* 'i' */
809 { NULL, 0 }, /* 'j' */
810 { NULL, 0 }, /* 'k' */
811 { "line", 4 }, /* 'l' */
812 { NULL, 0 }, /* 'm' */
813 { NULL, 0 }, /* 'n' */
814 { NULL, 0 }, /* 'o' */
815 { NULL, 0 }, /* 'p' */
816 { NULL, 0 }, /* 'q' */
817 { NULL, 0 }, /* 'r' */
818 { "stab", 4 } /* 's' */
819 };
820
821 if (name [0] == '.')
822 {
823 int i = name [1] - 'd';
824 if (i >= 0
825 && i < (int) ARRAY_SIZE (debug_sections)
826 && debug_sections [i].name != NULL
827 && strncmp (&name [1], debug_sections [i].name,
828 debug_sections [i].len) == 0)
829 flags |= SEC_DEBUGGING;
830 }
831 }
832
833 /* As a GNU extension, if the name begins with .gnu.linkonce, we
834 only link a single copy of the section. This is used to support
835 g++. g++ will emit each template expansion in its own section.
836 The symbols will be defined as weak, so that multiple definitions
837 are permitted. The GNU linker extension is to actually discard
838 all but one of the sections. */
839 if (strncmp (name, ".gnu.linkonce", sizeof ".gnu.linkonce" - 1) == 0
840 && elf_next_in_group (newsect) == NULL)
841 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
842
843 bed = get_elf_backend_data (abfd);
844 if (bed->elf_backend_section_flags)
845 if (! bed->elf_backend_section_flags (&flags, hdr))
846 return FALSE;
847
848 if (! bfd_set_section_flags (abfd, newsect, flags))
849 return FALSE;
850
851 if ((flags & SEC_ALLOC) != 0)
852 {
853 Elf_Internal_Phdr *phdr;
854 unsigned int i;
855
856 /* Look through the phdrs to see if we need to adjust the lma.
857 If all the p_paddr fields are zero, we ignore them, since
858 some ELF linkers produce such output. */
859 phdr = elf_tdata (abfd)->phdr;
860 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
861 {
862 if (phdr->p_paddr != 0)
863 break;
864 }
865 if (i < elf_elfheader (abfd)->e_phnum)
866 {
867 phdr = elf_tdata (abfd)->phdr;
868 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
869 {
870 /* This section is part of this segment if its file
871 offset plus size lies within the segment's memory
872 span and, if the section is loaded, the extent of the
873 loaded data lies within the extent of the segment.
874
875 Note - we used to check the p_paddr field as well, and
876 refuse to set the LMA if it was 0. This is wrong
877 though, as a perfectly valid initialised segment can
878 have a p_paddr of zero. Some architectures, eg ARM,
879 place special significance on the address 0 and
880 executables need to be able to have a segment which
881 covers this address. */
882 if (phdr->p_type == PT_LOAD
883 && (bfd_vma) hdr->sh_offset >= phdr->p_offset
884 && (hdr->sh_offset + hdr->sh_size
885 <= phdr->p_offset + phdr->p_memsz)
886 && ((flags & SEC_LOAD) == 0
887 || (hdr->sh_offset + hdr->sh_size
888 <= phdr->p_offset + phdr->p_filesz)))
889 {
890 if ((flags & SEC_LOAD) == 0)
891 newsect->lma = (phdr->p_paddr
892 + hdr->sh_addr - phdr->p_vaddr);
893 else
894 /* We used to use the same adjustment for SEC_LOAD
895 sections, but that doesn't work if the segment
896 is packed with code from multiple VMAs.
897 Instead we calculate the section LMA based on
898 the segment LMA. It is assumed that the
899 segment will contain sections with contiguous
900 LMAs, even if the VMAs are not. */
901 newsect->lma = (phdr->p_paddr
902 + hdr->sh_offset - phdr->p_offset);
903
904 /* With contiguous segments, we can't tell from file
905 offsets whether a section with zero size should
906 be placed at the end of one segment or the
907 beginning of the next. Decide based on vaddr. */
908 if (hdr->sh_addr >= phdr->p_vaddr
909 && (hdr->sh_addr + hdr->sh_size
910 <= phdr->p_vaddr + phdr->p_memsz))
911 break;
912 }
913 }
914 }
915 }
916
917 return TRUE;
918 }
919
920 /*
921 INTERNAL_FUNCTION
922 bfd_elf_find_section
923
924 SYNOPSIS
925 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
926
927 DESCRIPTION
928 Helper functions for GDB to locate the string tables.
929 Since BFD hides string tables from callers, GDB needs to use an
930 internal hook to find them. Sun's .stabstr, in particular,
931 isn't even pointed to by the .stab section, so ordinary
932 mechanisms wouldn't work to find it, even if we had some.
933 */
934
935 struct elf_internal_shdr *
936 bfd_elf_find_section (bfd *abfd, char *name)
937 {
938 Elf_Internal_Shdr **i_shdrp;
939 char *shstrtab;
940 unsigned int max;
941 unsigned int i;
942
943 i_shdrp = elf_elfsections (abfd);
944 if (i_shdrp != NULL)
945 {
946 shstrtab = bfd_elf_get_str_section (abfd,
947 elf_elfheader (abfd)->e_shstrndx);
948 if (shstrtab != NULL)
949 {
950 max = elf_numsections (abfd);
951 for (i = 1; i < max; i++)
952 if (!strcmp (&shstrtab[i_shdrp[i]->sh_name], name))
953 return i_shdrp[i];
954 }
955 }
956 return 0;
957 }
958
959 const char *const bfd_elf_section_type_names[] = {
960 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
961 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
962 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
963 };
964
965 /* ELF relocs are against symbols. If we are producing relocatable
966 output, and the reloc is against an external symbol, and nothing
967 has given us any additional addend, the resulting reloc will also
968 be against the same symbol. In such a case, we don't want to
969 change anything about the way the reloc is handled, since it will
970 all be done at final link time. Rather than put special case code
971 into bfd_perform_relocation, all the reloc types use this howto
972 function. It just short circuits the reloc if producing
973 relocatable output against an external symbol. */
974
975 bfd_reloc_status_type
976 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
977 arelent *reloc_entry,
978 asymbol *symbol,
979 void *data ATTRIBUTE_UNUSED,
980 asection *input_section,
981 bfd *output_bfd,
982 char **error_message ATTRIBUTE_UNUSED)
983 {
984 if (output_bfd != NULL
985 && (symbol->flags & BSF_SECTION_SYM) == 0
986 && (! reloc_entry->howto->partial_inplace
987 || reloc_entry->addend == 0))
988 {
989 reloc_entry->address += input_section->output_offset;
990 return bfd_reloc_ok;
991 }
992
993 return bfd_reloc_continue;
994 }
995 \f
996 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
997
998 static void
999 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
1000 asection *sec)
1001 {
1002 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
1003 sec->sec_info_type = ELF_INFO_TYPE_NONE;
1004 }
1005
1006 /* Finish SHF_MERGE section merging. */
1007
1008 bfd_boolean
1009 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
1010 {
1011 bfd *ibfd;
1012 asection *sec;
1013
1014 if (!is_elf_hash_table (info->hash))
1015 return FALSE;
1016
1017 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
1018 if ((ibfd->flags & DYNAMIC) == 0)
1019 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
1020 if ((sec->flags & SEC_MERGE) != 0
1021 && !bfd_is_abs_section (sec->output_section))
1022 {
1023 struct bfd_elf_section_data *secdata;
1024
1025 secdata = elf_section_data (sec);
1026 if (! _bfd_add_merge_section (abfd,
1027 &elf_hash_table (info)->merge_info,
1028 sec, &secdata->sec_info))
1029 return FALSE;
1030 else if (secdata->sec_info)
1031 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
1032 }
1033
1034 if (elf_hash_table (info)->merge_info != NULL)
1035 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
1036 merge_sections_remove_hook);
1037 return TRUE;
1038 }
1039
1040 void
1041 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
1042 {
1043 sec->output_section = bfd_abs_section_ptr;
1044 sec->output_offset = sec->vma;
1045 if (!is_elf_hash_table (info->hash))
1046 return;
1047
1048 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
1049 }
1050 \f
1051 /* Copy the program header and other data from one object module to
1052 another. */
1053
1054 bfd_boolean
1055 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1056 {
1057 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1058 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1059 return TRUE;
1060
1061 BFD_ASSERT (!elf_flags_init (obfd)
1062 || (elf_elfheader (obfd)->e_flags
1063 == elf_elfheader (ibfd)->e_flags));
1064
1065 elf_gp (obfd) = elf_gp (ibfd);
1066 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1067 elf_flags_init (obfd) = TRUE;
1068 return TRUE;
1069 }
1070
1071 static const char *
1072 get_segment_type (unsigned int p_type)
1073 {
1074 const char *pt;
1075 switch (p_type)
1076 {
1077 case PT_NULL: pt = "NULL"; break;
1078 case PT_LOAD: pt = "LOAD"; break;
1079 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1080 case PT_INTERP: pt = "INTERP"; break;
1081 case PT_NOTE: pt = "NOTE"; break;
1082 case PT_SHLIB: pt = "SHLIB"; break;
1083 case PT_PHDR: pt = "PHDR"; break;
1084 case PT_TLS: pt = "TLS"; break;
1085 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1086 case PT_GNU_STACK: pt = "STACK"; break;
1087 case PT_GNU_RELRO: pt = "RELRO"; break;
1088 default: pt = NULL; break;
1089 }
1090 return pt;
1091 }
1092
1093 /* Print out the program headers. */
1094
1095 bfd_boolean
1096 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1097 {
1098 FILE *f = farg;
1099 Elf_Internal_Phdr *p;
1100 asection *s;
1101 bfd_byte *dynbuf = NULL;
1102
1103 p = elf_tdata (abfd)->phdr;
1104 if (p != NULL)
1105 {
1106 unsigned int i, c;
1107
1108 fprintf (f, _("\nProgram Header:\n"));
1109 c = elf_elfheader (abfd)->e_phnum;
1110 for (i = 0; i < c; i++, p++)
1111 {
1112 const char *pt = get_segment_type (p->p_type);
1113 char buf[20];
1114
1115 if (pt == NULL)
1116 {
1117 sprintf (buf, "0x%lx", p->p_type);
1118 pt = buf;
1119 }
1120 fprintf (f, "%8s off 0x", pt);
1121 bfd_fprintf_vma (abfd, f, p->p_offset);
1122 fprintf (f, " vaddr 0x");
1123 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1124 fprintf (f, " paddr 0x");
1125 bfd_fprintf_vma (abfd, f, p->p_paddr);
1126 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1127 fprintf (f, " filesz 0x");
1128 bfd_fprintf_vma (abfd, f, p->p_filesz);
1129 fprintf (f, " memsz 0x");
1130 bfd_fprintf_vma (abfd, f, p->p_memsz);
1131 fprintf (f, " flags %c%c%c",
1132 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1133 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1134 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1135 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1136 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1137 fprintf (f, "\n");
1138 }
1139 }
1140
1141 s = bfd_get_section_by_name (abfd, ".dynamic");
1142 if (s != NULL)
1143 {
1144 int elfsec;
1145 unsigned long shlink;
1146 bfd_byte *extdyn, *extdynend;
1147 size_t extdynsize;
1148 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1149
1150 fprintf (f, _("\nDynamic Section:\n"));
1151
1152 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1153 goto error_return;
1154
1155 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1156 if (elfsec == -1)
1157 goto error_return;
1158 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1159
1160 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1161 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1162
1163 extdyn = dynbuf;
1164 extdynend = extdyn + s->size;
1165 for (; extdyn < extdynend; extdyn += extdynsize)
1166 {
1167 Elf_Internal_Dyn dyn;
1168 const char *name;
1169 char ab[20];
1170 bfd_boolean stringp;
1171
1172 (*swap_dyn_in) (abfd, extdyn, &dyn);
1173
1174 if (dyn.d_tag == DT_NULL)
1175 break;
1176
1177 stringp = FALSE;
1178 switch (dyn.d_tag)
1179 {
1180 default:
1181 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1182 name = ab;
1183 break;
1184
1185 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1186 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1187 case DT_PLTGOT: name = "PLTGOT"; break;
1188 case DT_HASH: name = "HASH"; break;
1189 case DT_STRTAB: name = "STRTAB"; break;
1190 case DT_SYMTAB: name = "SYMTAB"; break;
1191 case DT_RELA: name = "RELA"; break;
1192 case DT_RELASZ: name = "RELASZ"; break;
1193 case DT_RELAENT: name = "RELAENT"; break;
1194 case DT_STRSZ: name = "STRSZ"; break;
1195 case DT_SYMENT: name = "SYMENT"; break;
1196 case DT_INIT: name = "INIT"; break;
1197 case DT_FINI: name = "FINI"; break;
1198 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1199 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1200 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1201 case DT_REL: name = "REL"; break;
1202 case DT_RELSZ: name = "RELSZ"; break;
1203 case DT_RELENT: name = "RELENT"; break;
1204 case DT_PLTREL: name = "PLTREL"; break;
1205 case DT_DEBUG: name = "DEBUG"; break;
1206 case DT_TEXTREL: name = "TEXTREL"; break;
1207 case DT_JMPREL: name = "JMPREL"; break;
1208 case DT_BIND_NOW: name = "BIND_NOW"; break;
1209 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1210 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1211 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1212 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1213 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1214 case DT_FLAGS: name = "FLAGS"; break;
1215 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1216 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1217 case DT_CHECKSUM: name = "CHECKSUM"; break;
1218 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1219 case DT_MOVEENT: name = "MOVEENT"; break;
1220 case DT_MOVESZ: name = "MOVESZ"; break;
1221 case DT_FEATURE: name = "FEATURE"; break;
1222 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1223 case DT_SYMINSZ: name = "SYMINSZ"; break;
1224 case DT_SYMINENT: name = "SYMINENT"; break;
1225 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1226 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1227 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1228 case DT_PLTPAD: name = "PLTPAD"; break;
1229 case DT_MOVETAB: name = "MOVETAB"; break;
1230 case DT_SYMINFO: name = "SYMINFO"; break;
1231 case DT_RELACOUNT: name = "RELACOUNT"; break;
1232 case DT_RELCOUNT: name = "RELCOUNT"; break;
1233 case DT_FLAGS_1: name = "FLAGS_1"; break;
1234 case DT_VERSYM: name = "VERSYM"; break;
1235 case DT_VERDEF: name = "VERDEF"; break;
1236 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1237 case DT_VERNEED: name = "VERNEED"; break;
1238 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1239 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1240 case DT_USED: name = "USED"; break;
1241 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1242 }
1243
1244 fprintf (f, " %-11s ", name);
1245 if (! stringp)
1246 fprintf (f, "0x%lx", (unsigned long) dyn.d_un.d_val);
1247 else
1248 {
1249 const char *string;
1250 unsigned int tagv = dyn.d_un.d_val;
1251
1252 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1253 if (string == NULL)
1254 goto error_return;
1255 fprintf (f, "%s", string);
1256 }
1257 fprintf (f, "\n");
1258 }
1259
1260 free (dynbuf);
1261 dynbuf = NULL;
1262 }
1263
1264 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1265 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1266 {
1267 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1268 return FALSE;
1269 }
1270
1271 if (elf_dynverdef (abfd) != 0)
1272 {
1273 Elf_Internal_Verdef *t;
1274
1275 fprintf (f, _("\nVersion definitions:\n"));
1276 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1277 {
1278 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1279 t->vd_flags, t->vd_hash,
1280 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1281 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1282 {
1283 Elf_Internal_Verdaux *a;
1284
1285 fprintf (f, "\t");
1286 for (a = t->vd_auxptr->vda_nextptr;
1287 a != NULL;
1288 a = a->vda_nextptr)
1289 fprintf (f, "%s ",
1290 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1291 fprintf (f, "\n");
1292 }
1293 }
1294 }
1295
1296 if (elf_dynverref (abfd) != 0)
1297 {
1298 Elf_Internal_Verneed *t;
1299
1300 fprintf (f, _("\nVersion References:\n"));
1301 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1302 {
1303 Elf_Internal_Vernaux *a;
1304
1305 fprintf (f, _(" required from %s:\n"),
1306 t->vn_filename ? t->vn_filename : "<corrupt>");
1307 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1308 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1309 a->vna_flags, a->vna_other,
1310 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1311 }
1312 }
1313
1314 return TRUE;
1315
1316 error_return:
1317 if (dynbuf != NULL)
1318 free (dynbuf);
1319 return FALSE;
1320 }
1321
1322 /* Display ELF-specific fields of a symbol. */
1323
1324 void
1325 bfd_elf_print_symbol (bfd *abfd,
1326 void *filep,
1327 asymbol *symbol,
1328 bfd_print_symbol_type how)
1329 {
1330 FILE *file = filep;
1331 switch (how)
1332 {
1333 case bfd_print_symbol_name:
1334 fprintf (file, "%s", symbol->name);
1335 break;
1336 case bfd_print_symbol_more:
1337 fprintf (file, "elf ");
1338 bfd_fprintf_vma (abfd, file, symbol->value);
1339 fprintf (file, " %lx", (long) symbol->flags);
1340 break;
1341 case bfd_print_symbol_all:
1342 {
1343 const char *section_name;
1344 const char *name = NULL;
1345 const struct elf_backend_data *bed;
1346 unsigned char st_other;
1347 bfd_vma val;
1348
1349 section_name = symbol->section ? symbol->section->name : "(*none*)";
1350
1351 bed = get_elf_backend_data (abfd);
1352 if (bed->elf_backend_print_symbol_all)
1353 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1354
1355 if (name == NULL)
1356 {
1357 name = symbol->name;
1358 bfd_print_symbol_vandf (abfd, file, symbol);
1359 }
1360
1361 fprintf (file, " %s\t", section_name);
1362 /* Print the "other" value for a symbol. For common symbols,
1363 we've already printed the size; now print the alignment.
1364 For other symbols, we have no specified alignment, and
1365 we've printed the address; now print the size. */
1366 if (bfd_is_com_section (symbol->section))
1367 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1368 else
1369 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1370 bfd_fprintf_vma (abfd, file, val);
1371
1372 /* If we have version information, print it. */
1373 if (elf_tdata (abfd)->dynversym_section != 0
1374 && (elf_tdata (abfd)->dynverdef_section != 0
1375 || elf_tdata (abfd)->dynverref_section != 0))
1376 {
1377 unsigned int vernum;
1378 const char *version_string;
1379
1380 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1381
1382 if (vernum == 0)
1383 version_string = "";
1384 else if (vernum == 1)
1385 version_string = "Base";
1386 else if (vernum <= elf_tdata (abfd)->cverdefs)
1387 version_string =
1388 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1389 else
1390 {
1391 Elf_Internal_Verneed *t;
1392
1393 version_string = "";
1394 for (t = elf_tdata (abfd)->verref;
1395 t != NULL;
1396 t = t->vn_nextref)
1397 {
1398 Elf_Internal_Vernaux *a;
1399
1400 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1401 {
1402 if (a->vna_other == vernum)
1403 {
1404 version_string = a->vna_nodename;
1405 break;
1406 }
1407 }
1408 }
1409 }
1410
1411 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1412 fprintf (file, " %-11s", version_string);
1413 else
1414 {
1415 int i;
1416
1417 fprintf (file, " (%s)", version_string);
1418 for (i = 10 - strlen (version_string); i > 0; --i)
1419 putc (' ', file);
1420 }
1421 }
1422
1423 /* If the st_other field is not zero, print it. */
1424 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1425
1426 switch (st_other)
1427 {
1428 case 0: break;
1429 case STV_INTERNAL: fprintf (file, " .internal"); break;
1430 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1431 case STV_PROTECTED: fprintf (file, " .protected"); break;
1432 default:
1433 /* Some other non-defined flags are also present, so print
1434 everything hex. */
1435 fprintf (file, " 0x%02x", (unsigned int) st_other);
1436 }
1437
1438 fprintf (file, " %s", name);
1439 }
1440 break;
1441 }
1442 }
1443 \f
1444 /* Create an entry in an ELF linker hash table. */
1445
1446 struct bfd_hash_entry *
1447 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1448 struct bfd_hash_table *table,
1449 const char *string)
1450 {
1451 /* Allocate the structure if it has not already been allocated by a
1452 subclass. */
1453 if (entry == NULL)
1454 {
1455 entry = bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
1456 if (entry == NULL)
1457 return entry;
1458 }
1459
1460 /* Call the allocation method of the superclass. */
1461 entry = _bfd_link_hash_newfunc (entry, table, string);
1462 if (entry != NULL)
1463 {
1464 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
1465 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
1466
1467 /* Set local fields. */
1468 ret->indx = -1;
1469 ret->dynindx = -1;
1470 ret->got = htab->init_got_refcount;
1471 ret->plt = htab->init_plt_refcount;
1472 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
1473 - offsetof (struct elf_link_hash_entry, size)));
1474 /* Assume that we have been called by a non-ELF symbol reader.
1475 This flag is then reset by the code which reads an ELF input
1476 file. This ensures that a symbol created by a non-ELF symbol
1477 reader will have the flag set correctly. */
1478 ret->non_elf = 1;
1479 }
1480
1481 return entry;
1482 }
1483
1484 /* Copy data from an indirect symbol to its direct symbol, hiding the
1485 old indirect symbol. Also used for copying flags to a weakdef. */
1486
1487 void
1488 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
1489 struct elf_link_hash_entry *dir,
1490 struct elf_link_hash_entry *ind)
1491 {
1492 struct elf_link_hash_table *htab;
1493
1494 /* Copy down any references that we may have already seen to the
1495 symbol which just became indirect. */
1496
1497 dir->ref_dynamic |= ind->ref_dynamic;
1498 dir->ref_regular |= ind->ref_regular;
1499 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
1500 dir->non_got_ref |= ind->non_got_ref;
1501 dir->needs_plt |= ind->needs_plt;
1502 dir->pointer_equality_needed |= ind->pointer_equality_needed;
1503
1504 if (ind->root.type != bfd_link_hash_indirect)
1505 return;
1506
1507 /* Copy over the global and procedure linkage table refcount entries.
1508 These may have been already set up by a check_relocs routine. */
1509 htab = elf_hash_table (info);
1510 if (ind->got.refcount > htab->init_got_refcount.refcount)
1511 {
1512 if (dir->got.refcount < 0)
1513 dir->got.refcount = 0;
1514 dir->got.refcount += ind->got.refcount;
1515 ind->got.refcount = htab->init_got_refcount.refcount;
1516 }
1517
1518 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
1519 {
1520 if (dir->plt.refcount < 0)
1521 dir->plt.refcount = 0;
1522 dir->plt.refcount += ind->plt.refcount;
1523 ind->plt.refcount = htab->init_plt_refcount.refcount;
1524 }
1525
1526 if (ind->dynindx != -1)
1527 {
1528 if (dir->dynindx != -1)
1529 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
1530 dir->dynindx = ind->dynindx;
1531 dir->dynstr_index = ind->dynstr_index;
1532 ind->dynindx = -1;
1533 ind->dynstr_index = 0;
1534 }
1535 }
1536
1537 void
1538 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
1539 struct elf_link_hash_entry *h,
1540 bfd_boolean force_local)
1541 {
1542 h->plt = elf_hash_table (info)->init_plt_offset;
1543 h->needs_plt = 0;
1544 if (force_local)
1545 {
1546 h->forced_local = 1;
1547 if (h->dynindx != -1)
1548 {
1549 h->dynindx = -1;
1550 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1551 h->dynstr_index);
1552 }
1553 }
1554 }
1555
1556 /* Initialize an ELF linker hash table. */
1557
1558 bfd_boolean
1559 _bfd_elf_link_hash_table_init
1560 (struct elf_link_hash_table *table,
1561 bfd *abfd,
1562 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
1563 struct bfd_hash_table *,
1564 const char *),
1565 unsigned int entsize)
1566 {
1567 bfd_boolean ret;
1568 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
1569
1570 table->dynamic_sections_created = FALSE;
1571 table->dynobj = NULL;
1572 table->init_got_refcount.refcount = can_refcount - 1;
1573 table->init_plt_refcount.refcount = can_refcount - 1;
1574 table->init_got_offset.offset = -(bfd_vma) 1;
1575 table->init_plt_offset.offset = -(bfd_vma) 1;
1576 /* The first dynamic symbol is a dummy. */
1577 table->dynsymcount = 1;
1578 table->dynstr = NULL;
1579 table->bucketcount = 0;
1580 table->needed = NULL;
1581 table->hgot = NULL;
1582 table->hplt = NULL;
1583 table->merge_info = NULL;
1584 memset (&table->stab_info, 0, sizeof (table->stab_info));
1585 memset (&table->eh_info, 0, sizeof (table->eh_info));
1586 table->dynlocal = NULL;
1587 table->runpath = NULL;
1588 table->tls_sec = NULL;
1589 table->tls_size = 0;
1590 table->loaded = NULL;
1591 table->is_relocatable_executable = FALSE;
1592
1593 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
1594 table->root.type = bfd_link_elf_hash_table;
1595
1596 return ret;
1597 }
1598
1599 /* Create an ELF linker hash table. */
1600
1601 struct bfd_link_hash_table *
1602 _bfd_elf_link_hash_table_create (bfd *abfd)
1603 {
1604 struct elf_link_hash_table *ret;
1605 bfd_size_type amt = sizeof (struct elf_link_hash_table);
1606
1607 ret = bfd_malloc (amt);
1608 if (ret == NULL)
1609 return NULL;
1610
1611 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
1612 sizeof (struct elf_link_hash_entry)))
1613 {
1614 free (ret);
1615 return NULL;
1616 }
1617
1618 return &ret->root;
1619 }
1620
1621 /* This is a hook for the ELF emulation code in the generic linker to
1622 tell the backend linker what file name to use for the DT_NEEDED
1623 entry for a dynamic object. */
1624
1625 void
1626 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
1627 {
1628 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1629 && bfd_get_format (abfd) == bfd_object)
1630 elf_dt_name (abfd) = name;
1631 }
1632
1633 int
1634 bfd_elf_get_dyn_lib_class (bfd *abfd)
1635 {
1636 int lib_class;
1637 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1638 && bfd_get_format (abfd) == bfd_object)
1639 lib_class = elf_dyn_lib_class (abfd);
1640 else
1641 lib_class = 0;
1642 return lib_class;
1643 }
1644
1645 void
1646 bfd_elf_set_dyn_lib_class (bfd *abfd, int lib_class)
1647 {
1648 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1649 && bfd_get_format (abfd) == bfd_object)
1650 elf_dyn_lib_class (abfd) = lib_class;
1651 }
1652
1653 /* Get the list of DT_NEEDED entries for a link. This is a hook for
1654 the linker ELF emulation code. */
1655
1656 struct bfd_link_needed_list *
1657 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
1658 struct bfd_link_info *info)
1659 {
1660 if (! is_elf_hash_table (info->hash))
1661 return NULL;
1662 return elf_hash_table (info)->needed;
1663 }
1664
1665 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
1666 hook for the linker ELF emulation code. */
1667
1668 struct bfd_link_needed_list *
1669 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
1670 struct bfd_link_info *info)
1671 {
1672 if (! is_elf_hash_table (info->hash))
1673 return NULL;
1674 return elf_hash_table (info)->runpath;
1675 }
1676
1677 /* Get the name actually used for a dynamic object for a link. This
1678 is the SONAME entry if there is one. Otherwise, it is the string
1679 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
1680
1681 const char *
1682 bfd_elf_get_dt_soname (bfd *abfd)
1683 {
1684 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1685 && bfd_get_format (abfd) == bfd_object)
1686 return elf_dt_name (abfd);
1687 return NULL;
1688 }
1689
1690 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
1691 the ELF linker emulation code. */
1692
1693 bfd_boolean
1694 bfd_elf_get_bfd_needed_list (bfd *abfd,
1695 struct bfd_link_needed_list **pneeded)
1696 {
1697 asection *s;
1698 bfd_byte *dynbuf = NULL;
1699 int elfsec;
1700 unsigned long shlink;
1701 bfd_byte *extdyn, *extdynend;
1702 size_t extdynsize;
1703 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1704
1705 *pneeded = NULL;
1706
1707 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
1708 || bfd_get_format (abfd) != bfd_object)
1709 return TRUE;
1710
1711 s = bfd_get_section_by_name (abfd, ".dynamic");
1712 if (s == NULL || s->size == 0)
1713 return TRUE;
1714
1715 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1716 goto error_return;
1717
1718 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1719 if (elfsec == -1)
1720 goto error_return;
1721
1722 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1723
1724 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1725 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1726
1727 extdyn = dynbuf;
1728 extdynend = extdyn + s->size;
1729 for (; extdyn < extdynend; extdyn += extdynsize)
1730 {
1731 Elf_Internal_Dyn dyn;
1732
1733 (*swap_dyn_in) (abfd, extdyn, &dyn);
1734
1735 if (dyn.d_tag == DT_NULL)
1736 break;
1737
1738 if (dyn.d_tag == DT_NEEDED)
1739 {
1740 const char *string;
1741 struct bfd_link_needed_list *l;
1742 unsigned int tagv = dyn.d_un.d_val;
1743 bfd_size_type amt;
1744
1745 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1746 if (string == NULL)
1747 goto error_return;
1748
1749 amt = sizeof *l;
1750 l = bfd_alloc (abfd, amt);
1751 if (l == NULL)
1752 goto error_return;
1753
1754 l->by = abfd;
1755 l->name = string;
1756 l->next = *pneeded;
1757 *pneeded = l;
1758 }
1759 }
1760
1761 free (dynbuf);
1762
1763 return TRUE;
1764
1765 error_return:
1766 if (dynbuf != NULL)
1767 free (dynbuf);
1768 return FALSE;
1769 }
1770 \f
1771 /* Allocate an ELF string table--force the first byte to be zero. */
1772
1773 struct bfd_strtab_hash *
1774 _bfd_elf_stringtab_init (void)
1775 {
1776 struct bfd_strtab_hash *ret;
1777
1778 ret = _bfd_stringtab_init ();
1779 if (ret != NULL)
1780 {
1781 bfd_size_type loc;
1782
1783 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1784 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1785 if (loc == (bfd_size_type) -1)
1786 {
1787 _bfd_stringtab_free (ret);
1788 ret = NULL;
1789 }
1790 }
1791 return ret;
1792 }
1793 \f
1794 /* ELF .o/exec file reading */
1795
1796 /* Create a new bfd section from an ELF section header. */
1797
1798 bfd_boolean
1799 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1800 {
1801 Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[shindex];
1802 Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
1803 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1804 const char *name;
1805
1806 name = bfd_elf_string_from_elf_section (abfd,
1807 elf_elfheader (abfd)->e_shstrndx,
1808 hdr->sh_name);
1809 if (name == NULL)
1810 return FALSE;
1811
1812 switch (hdr->sh_type)
1813 {
1814 case SHT_NULL:
1815 /* Inactive section. Throw it away. */
1816 return TRUE;
1817
1818 case SHT_PROGBITS: /* Normal section with contents. */
1819 case SHT_NOBITS: /* .bss section. */
1820 case SHT_HASH: /* .hash section. */
1821 case SHT_NOTE: /* .note section. */
1822 case SHT_INIT_ARRAY: /* .init_array section. */
1823 case SHT_FINI_ARRAY: /* .fini_array section. */
1824 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1825 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1826 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1827
1828 case SHT_DYNAMIC: /* Dynamic linking information. */
1829 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1830 return FALSE;
1831 if (hdr->sh_link > elf_numsections (abfd)
1832 || elf_elfsections (abfd)[hdr->sh_link] == NULL)
1833 return FALSE;
1834 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1835 {
1836 Elf_Internal_Shdr *dynsymhdr;
1837
1838 /* The shared libraries distributed with hpux11 have a bogus
1839 sh_link field for the ".dynamic" section. Find the
1840 string table for the ".dynsym" section instead. */
1841 if (elf_dynsymtab (abfd) != 0)
1842 {
1843 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1844 hdr->sh_link = dynsymhdr->sh_link;
1845 }
1846 else
1847 {
1848 unsigned int i, num_sec;
1849
1850 num_sec = elf_numsections (abfd);
1851 for (i = 1; i < num_sec; i++)
1852 {
1853 dynsymhdr = elf_elfsections (abfd)[i];
1854 if (dynsymhdr->sh_type == SHT_DYNSYM)
1855 {
1856 hdr->sh_link = dynsymhdr->sh_link;
1857 break;
1858 }
1859 }
1860 }
1861 }
1862 break;
1863
1864 case SHT_SYMTAB: /* A symbol table */
1865 if (elf_onesymtab (abfd) == shindex)
1866 return TRUE;
1867
1868 if (hdr->sh_entsize != bed->s->sizeof_sym)
1869 return FALSE;
1870 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1871 elf_onesymtab (abfd) = shindex;
1872 elf_tdata (abfd)->symtab_hdr = *hdr;
1873 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1874 abfd->flags |= HAS_SYMS;
1875
1876 /* Sometimes a shared object will map in the symbol table. If
1877 SHF_ALLOC is set, and this is a shared object, then we also
1878 treat this section as a BFD section. We can not base the
1879 decision purely on SHF_ALLOC, because that flag is sometimes
1880 set in a relocatable object file, which would confuse the
1881 linker. */
1882 if ((hdr->sh_flags & SHF_ALLOC) != 0
1883 && (abfd->flags & DYNAMIC) != 0
1884 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1885 shindex))
1886 return FALSE;
1887
1888 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1889 can't read symbols without that section loaded as well. It
1890 is most likely specified by the next section header. */
1891 if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
1892 {
1893 unsigned int i, num_sec;
1894
1895 num_sec = elf_numsections (abfd);
1896 for (i = shindex + 1; i < num_sec; i++)
1897 {
1898 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1899 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1900 && hdr2->sh_link == shindex)
1901 break;
1902 }
1903 if (i == num_sec)
1904 for (i = 1; i < shindex; i++)
1905 {
1906 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1907 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1908 && hdr2->sh_link == shindex)
1909 break;
1910 }
1911 if (i != shindex)
1912 return bfd_section_from_shdr (abfd, i);
1913 }
1914 return TRUE;
1915
1916 case SHT_DYNSYM: /* A dynamic symbol table */
1917 if (elf_dynsymtab (abfd) == shindex)
1918 return TRUE;
1919
1920 if (hdr->sh_entsize != bed->s->sizeof_sym)
1921 return FALSE;
1922 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1923 elf_dynsymtab (abfd) = shindex;
1924 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1925 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1926 abfd->flags |= HAS_SYMS;
1927
1928 /* Besides being a symbol table, we also treat this as a regular
1929 section, so that objcopy can handle it. */
1930 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1931
1932 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1933 if (elf_symtab_shndx (abfd) == shindex)
1934 return TRUE;
1935
1936 BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
1937 elf_symtab_shndx (abfd) = shindex;
1938 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1939 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1940 return TRUE;
1941
1942 case SHT_STRTAB: /* A string table */
1943 if (hdr->bfd_section != NULL)
1944 return TRUE;
1945 if (ehdr->e_shstrndx == shindex)
1946 {
1947 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1948 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1949 return TRUE;
1950 }
1951 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
1952 {
1953 symtab_strtab:
1954 elf_tdata (abfd)->strtab_hdr = *hdr;
1955 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
1956 return TRUE;
1957 }
1958 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
1959 {
1960 dynsymtab_strtab:
1961 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1962 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
1963 elf_elfsections (abfd)[shindex] = hdr;
1964 /* We also treat this as a regular section, so that objcopy
1965 can handle it. */
1966 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1967 shindex);
1968 }
1969
1970 /* If the string table isn't one of the above, then treat it as a
1971 regular section. We need to scan all the headers to be sure,
1972 just in case this strtab section appeared before the above. */
1973 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
1974 {
1975 unsigned int i, num_sec;
1976
1977 num_sec = elf_numsections (abfd);
1978 for (i = 1; i < num_sec; i++)
1979 {
1980 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1981 if (hdr2->sh_link == shindex)
1982 {
1983 /* Prevent endless recursion on broken objects. */
1984 if (i == shindex)
1985 return FALSE;
1986 if (! bfd_section_from_shdr (abfd, i))
1987 return FALSE;
1988 if (elf_onesymtab (abfd) == i)
1989 goto symtab_strtab;
1990 if (elf_dynsymtab (abfd) == i)
1991 goto dynsymtab_strtab;
1992 }
1993 }
1994 }
1995 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1996
1997 case SHT_REL:
1998 case SHT_RELA:
1999 /* *These* do a lot of work -- but build no sections! */
2000 {
2001 asection *target_sect;
2002 Elf_Internal_Shdr *hdr2;
2003 unsigned int num_sec = elf_numsections (abfd);
2004
2005 if (hdr->sh_entsize
2006 != (bfd_size_type) (hdr->sh_type == SHT_REL
2007 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
2008 return FALSE;
2009
2010 /* Check for a bogus link to avoid crashing. */
2011 if ((hdr->sh_link >= SHN_LORESERVE && hdr->sh_link <= SHN_HIRESERVE)
2012 || hdr->sh_link >= num_sec)
2013 {
2014 ((*_bfd_error_handler)
2015 (_("%B: invalid link %lu for reloc section %s (index %u)"),
2016 abfd, hdr->sh_link, name, shindex));
2017 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2018 shindex);
2019 }
2020
2021 /* For some incomprehensible reason Oracle distributes
2022 libraries for Solaris in which some of the objects have
2023 bogus sh_link fields. It would be nice if we could just
2024 reject them, but, unfortunately, some people need to use
2025 them. We scan through the section headers; if we find only
2026 one suitable symbol table, we clobber the sh_link to point
2027 to it. I hope this doesn't break anything. */
2028 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
2029 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
2030 {
2031 unsigned int scan;
2032 int found;
2033
2034 found = 0;
2035 for (scan = 1; scan < num_sec; scan++)
2036 {
2037 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
2038 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
2039 {
2040 if (found != 0)
2041 {
2042 found = 0;
2043 break;
2044 }
2045 found = scan;
2046 }
2047 }
2048 if (found != 0)
2049 hdr->sh_link = found;
2050 }
2051
2052 /* Get the symbol table. */
2053 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
2054 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
2055 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
2056 return FALSE;
2057
2058 /* If this reloc section does not use the main symbol table we
2059 don't treat it as a reloc section. BFD can't adequately
2060 represent such a section, so at least for now, we don't
2061 try. We just present it as a normal section. We also
2062 can't use it as a reloc section if it points to the null
2063 section, an invalid section, or another reloc section. */
2064 if (hdr->sh_link != elf_onesymtab (abfd)
2065 || hdr->sh_info == SHN_UNDEF
2066 || (hdr->sh_info >= SHN_LORESERVE && hdr->sh_info <= SHN_HIRESERVE)
2067 || hdr->sh_info >= num_sec
2068 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
2069 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
2070 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2071 shindex);
2072
2073 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
2074 return FALSE;
2075 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
2076 if (target_sect == NULL)
2077 return FALSE;
2078
2079 if ((target_sect->flags & SEC_RELOC) == 0
2080 || target_sect->reloc_count == 0)
2081 hdr2 = &elf_section_data (target_sect)->rel_hdr;
2082 else
2083 {
2084 bfd_size_type amt;
2085 BFD_ASSERT (elf_section_data (target_sect)->rel_hdr2 == NULL);
2086 amt = sizeof (*hdr2);
2087 hdr2 = bfd_alloc (abfd, amt);
2088 elf_section_data (target_sect)->rel_hdr2 = hdr2;
2089 }
2090 *hdr2 = *hdr;
2091 elf_elfsections (abfd)[shindex] = hdr2;
2092 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
2093 target_sect->flags |= SEC_RELOC;
2094 target_sect->relocation = NULL;
2095 target_sect->rel_filepos = hdr->sh_offset;
2096 /* In the section to which the relocations apply, mark whether
2097 its relocations are of the REL or RELA variety. */
2098 if (hdr->sh_size != 0)
2099 target_sect->use_rela_p = hdr->sh_type == SHT_RELA;
2100 abfd->flags |= HAS_RELOC;
2101 return TRUE;
2102 }
2103 break;
2104
2105 case SHT_GNU_verdef:
2106 elf_dynverdef (abfd) = shindex;
2107 elf_tdata (abfd)->dynverdef_hdr = *hdr;
2108 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2109 break;
2110
2111 case SHT_GNU_versym:
2112 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
2113 return FALSE;
2114 elf_dynversym (abfd) = shindex;
2115 elf_tdata (abfd)->dynversym_hdr = *hdr;
2116 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2117
2118 case SHT_GNU_verneed:
2119 elf_dynverref (abfd) = shindex;
2120 elf_tdata (abfd)->dynverref_hdr = *hdr;
2121 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2122
2123 case SHT_SHLIB:
2124 return TRUE;
2125
2126 case SHT_GROUP:
2127 /* We need a BFD section for objcopy and relocatable linking,
2128 and it's handy to have the signature available as the section
2129 name. */
2130 if (hdr->sh_entsize != GRP_ENTRY_SIZE)
2131 return FALSE;
2132 name = group_signature (abfd, hdr);
2133 if (name == NULL)
2134 return FALSE;
2135 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2136 return FALSE;
2137 if (hdr->contents != NULL)
2138 {
2139 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
2140 unsigned int n_elt = hdr->sh_size / 4;
2141 asection *s;
2142
2143 if (idx->flags & GRP_COMDAT)
2144 hdr->bfd_section->flags
2145 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
2146
2147 /* We try to keep the same section order as it comes in. */
2148 idx += n_elt;
2149 while (--n_elt != 0)
2150 if ((s = (--idx)->shdr->bfd_section) != NULL
2151 && elf_next_in_group (s) != NULL)
2152 {
2153 elf_next_in_group (hdr->bfd_section) = s;
2154 break;
2155 }
2156 }
2157 break;
2158
2159 default:
2160 /* Check for any processor-specific section types. */
2161 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
2162 return TRUE;
2163
2164 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
2165 {
2166 if ((hdr->sh_flags & SHF_ALLOC) != 0)
2167 /* FIXME: How to properly handle allocated section reserved
2168 for applications? */
2169 (*_bfd_error_handler)
2170 (_("%B: don't know how to handle allocated, application "
2171 "specific section `%s' [0x%8x]"),
2172 abfd, name, hdr->sh_type);
2173 else
2174 /* Allow sections reserved for applications. */
2175 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2176 shindex);
2177 }
2178 else if (hdr->sh_type >= SHT_LOPROC
2179 && hdr->sh_type <= SHT_HIPROC)
2180 /* FIXME: We should handle this section. */
2181 (*_bfd_error_handler)
2182 (_("%B: don't know how to handle processor specific section "
2183 "`%s' [0x%8x]"),
2184 abfd, name, hdr->sh_type);
2185 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
2186 /* FIXME: We should handle this section. */
2187 (*_bfd_error_handler)
2188 (_("%B: don't know how to handle OS specific section "
2189 "`%s' [0x%8x]"),
2190 abfd, name, hdr->sh_type);
2191 else
2192 /* FIXME: We should handle this section. */
2193 (*_bfd_error_handler)
2194 (_("%B: don't know how to handle section `%s' [0x%8x]"),
2195 abfd, name, hdr->sh_type);
2196
2197 return FALSE;
2198 }
2199
2200 return TRUE;
2201 }
2202
2203 /* Return the section for the local symbol specified by ABFD, R_SYMNDX.
2204 Return SEC for sections that have no elf section, and NULL on error. */
2205
2206 asection *
2207 bfd_section_from_r_symndx (bfd *abfd,
2208 struct sym_sec_cache *cache,
2209 asection *sec,
2210 unsigned long r_symndx)
2211 {
2212 Elf_Internal_Shdr *symtab_hdr;
2213 unsigned char esym[sizeof (Elf64_External_Sym)];
2214 Elf_External_Sym_Shndx eshndx;
2215 Elf_Internal_Sym isym;
2216 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2217
2218 if (cache->abfd == abfd && cache->indx[ent] == r_symndx)
2219 return cache->sec[ent];
2220
2221 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2222 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2223 &isym, esym, &eshndx) == NULL)
2224 return NULL;
2225
2226 if (cache->abfd != abfd)
2227 {
2228 memset (cache->indx, -1, sizeof (cache->indx));
2229 cache->abfd = abfd;
2230 }
2231 cache->indx[ent] = r_symndx;
2232 cache->sec[ent] = sec;
2233 if ((isym.st_shndx != SHN_UNDEF && isym.st_shndx < SHN_LORESERVE)
2234 || isym.st_shndx > SHN_HIRESERVE)
2235 {
2236 asection *s;
2237 s = bfd_section_from_elf_index (abfd, isym.st_shndx);
2238 if (s != NULL)
2239 cache->sec[ent] = s;
2240 }
2241 return cache->sec[ent];
2242 }
2243
2244 /* Given an ELF section number, retrieve the corresponding BFD
2245 section. */
2246
2247 asection *
2248 bfd_section_from_elf_index (bfd *abfd, unsigned int index)
2249 {
2250 if (index >= elf_numsections (abfd))
2251 return NULL;
2252 return elf_elfsections (abfd)[index]->bfd_section;
2253 }
2254
2255 static const struct bfd_elf_special_section special_sections_b[] =
2256 {
2257 { ".bss", 4, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2258 { NULL, 0, 0, 0, 0 }
2259 };
2260
2261 static const struct bfd_elf_special_section special_sections_c[] =
2262 {
2263 { ".comment", 8, 0, SHT_PROGBITS, 0 },
2264 { NULL, 0, 0, 0, 0 }
2265 };
2266
2267 static const struct bfd_elf_special_section special_sections_d[] =
2268 {
2269 { ".data", 5, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2270 { ".data1", 6, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2271 { ".debug", 6, 0, SHT_PROGBITS, 0 },
2272 { ".debug_line", 11, 0, SHT_PROGBITS, 0 },
2273 { ".debug_info", 11, 0, SHT_PROGBITS, 0 },
2274 { ".debug_abbrev", 13, 0, SHT_PROGBITS, 0 },
2275 { ".debug_aranges", 14, 0, SHT_PROGBITS, 0 },
2276 { ".dynamic", 8, 0, SHT_DYNAMIC, SHF_ALLOC },
2277 { ".dynstr", 7, 0, SHT_STRTAB, SHF_ALLOC },
2278 { ".dynsym", 7, 0, SHT_DYNSYM, SHF_ALLOC },
2279 { NULL, 0, 0, 0, 0 }
2280 };
2281
2282 static const struct bfd_elf_special_section special_sections_f[] =
2283 {
2284 { ".fini", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2285 { ".fini_array", 11, 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2286 { NULL, 0, 0, 0, 0 }
2287 };
2288
2289 static const struct bfd_elf_special_section special_sections_g[] =
2290 {
2291 { ".gnu.linkonce.b",15, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2292 { ".got", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2293 { ".gnu.version", 12, 0, SHT_GNU_versym, 0 },
2294 { ".gnu.version_d", 14, 0, SHT_GNU_verdef, 0 },
2295 { ".gnu.version_r", 14, 0, SHT_GNU_verneed, 0 },
2296 { ".gnu.liblist", 12, 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2297 { ".gnu.conflict", 13, 0, SHT_RELA, SHF_ALLOC },
2298 { NULL, 0, 0, 0, 0 }
2299 };
2300
2301 static const struct bfd_elf_special_section special_sections_h[] =
2302 {
2303 { ".hash", 5, 0, SHT_HASH, SHF_ALLOC },
2304 { NULL, 0, 0, 0, 0 }
2305 };
2306
2307 static const struct bfd_elf_special_section special_sections_i[] =
2308 {
2309 { ".init", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2310 { ".init_array", 11, 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2311 { ".interp", 7, 0, SHT_PROGBITS, 0 },
2312 { NULL, 0, 0, 0, 0 }
2313 };
2314
2315 static const struct bfd_elf_special_section special_sections_l[] =
2316 {
2317 { ".line", 5, 0, SHT_PROGBITS, 0 },
2318 { NULL, 0, 0, 0, 0 }
2319 };
2320
2321 static const struct bfd_elf_special_section special_sections_n[] =
2322 {
2323 { ".note.GNU-stack",15, 0, SHT_PROGBITS, 0 },
2324 { ".note", 5, -1, SHT_NOTE, 0 },
2325 { NULL, 0, 0, 0, 0 }
2326 };
2327
2328 static const struct bfd_elf_special_section special_sections_p[] =
2329 {
2330 { ".preinit_array", 14, 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2331 { ".plt", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2332 { NULL, 0, 0, 0, 0 }
2333 };
2334
2335 static const struct bfd_elf_special_section special_sections_r[] =
2336 {
2337 { ".rodata", 7, -2, SHT_PROGBITS, SHF_ALLOC },
2338 { ".rodata1", 8, 0, SHT_PROGBITS, SHF_ALLOC },
2339 { ".rela", 5, -1, SHT_RELA, 0 },
2340 { ".rel", 4, -1, SHT_REL, 0 },
2341 { NULL, 0, 0, 0, 0 }
2342 };
2343
2344 static const struct bfd_elf_special_section special_sections_s[] =
2345 {
2346 { ".shstrtab", 9, 0, SHT_STRTAB, 0 },
2347 { ".strtab", 7, 0, SHT_STRTAB, 0 },
2348 { ".symtab", 7, 0, SHT_SYMTAB, 0 },
2349 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2350 { NULL, 0, 0, 0, 0 }
2351 };
2352
2353 static const struct bfd_elf_special_section special_sections_t[] =
2354 {
2355 { ".text", 5, -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2356 { ".tbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2357 { ".tdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2358 { NULL, 0, 0, 0, 0 }
2359 };
2360
2361 static const struct bfd_elf_special_section *special_sections[] =
2362 {
2363 special_sections_b, /* 'b' */
2364 special_sections_c, /* 'b' */
2365 special_sections_d, /* 'd' */
2366 NULL, /* 'e' */
2367 special_sections_f, /* 'f' */
2368 special_sections_g, /* 'g' */
2369 special_sections_h, /* 'h' */
2370 special_sections_i, /* 'i' */
2371 NULL, /* 'j' */
2372 NULL, /* 'k' */
2373 special_sections_l, /* 'l' */
2374 NULL, /* 'm' */
2375 special_sections_n, /* 'n' */
2376 NULL, /* 'o' */
2377 special_sections_p, /* 'p' */
2378 NULL, /* 'q' */
2379 special_sections_r, /* 'r' */
2380 special_sections_s, /* 's' */
2381 special_sections_t, /* 't' */
2382 };
2383
2384 const struct bfd_elf_special_section *
2385 _bfd_elf_get_special_section (const char *name,
2386 const struct bfd_elf_special_section *spec,
2387 unsigned int rela)
2388 {
2389 int i;
2390 int len;
2391
2392 len = strlen (name);
2393
2394 for (i = 0; spec[i].prefix != NULL; i++)
2395 {
2396 int suffix_len;
2397 int prefix_len = spec[i].prefix_length;
2398
2399 if (len < prefix_len)
2400 continue;
2401 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2402 continue;
2403
2404 suffix_len = spec[i].suffix_length;
2405 if (suffix_len <= 0)
2406 {
2407 if (name[prefix_len] != 0)
2408 {
2409 if (suffix_len == 0)
2410 continue;
2411 if (name[prefix_len] != '.'
2412 && (suffix_len == -2
2413 || (rela && spec[i].type == SHT_REL)))
2414 continue;
2415 }
2416 }
2417 else
2418 {
2419 if (len < prefix_len + suffix_len)
2420 continue;
2421 if (memcmp (name + len - suffix_len,
2422 spec[i].prefix + prefix_len,
2423 suffix_len) != 0)
2424 continue;
2425 }
2426 return &spec[i];
2427 }
2428
2429 return NULL;
2430 }
2431
2432 const struct bfd_elf_special_section *
2433 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2434 {
2435 int i;
2436 const struct bfd_elf_special_section *spec;
2437 const struct elf_backend_data *bed;
2438
2439 /* See if this is one of the special sections. */
2440 if (sec->name == NULL)
2441 return NULL;
2442
2443 bed = get_elf_backend_data (abfd);
2444 spec = bed->special_sections;
2445 if (spec)
2446 {
2447 spec = _bfd_elf_get_special_section (sec->name,
2448 bed->special_sections,
2449 sec->use_rela_p);
2450 if (spec != NULL)
2451 return spec;
2452 }
2453
2454 if (sec->name[0] != '.')
2455 return NULL;
2456
2457 i = sec->name[1] - 'b';
2458 if (i < 0 || i > 't' - 'b')
2459 return NULL;
2460
2461 spec = special_sections[i];
2462
2463 if (spec == NULL)
2464 return NULL;
2465
2466 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2467 }
2468
2469 bfd_boolean
2470 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2471 {
2472 struct bfd_elf_section_data *sdata;
2473 const struct elf_backend_data *bed;
2474 const struct bfd_elf_special_section *ssect;
2475
2476 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2477 if (sdata == NULL)
2478 {
2479 sdata = bfd_zalloc (abfd, sizeof (*sdata));
2480 if (sdata == NULL)
2481 return FALSE;
2482 sec->used_by_bfd = sdata;
2483 }
2484
2485 /* Indicate whether or not this section should use RELA relocations. */
2486 bed = get_elf_backend_data (abfd);
2487 sec->use_rela_p = bed->default_use_rela_p;
2488
2489 /* When we read a file, we don't need to set ELF section type and
2490 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2491 anyway. We will set ELF section type and flags for all linker
2492 created sections. If user specifies BFD section flags, we will
2493 set ELF section type and flags based on BFD section flags in
2494 elf_fake_sections. */
2495 if ((!sec->flags && abfd->direction != read_direction)
2496 || (sec->flags & SEC_LINKER_CREATED) != 0)
2497 {
2498 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2499 if (ssect != NULL)
2500 {
2501 elf_section_type (sec) = ssect->type;
2502 elf_section_flags (sec) = ssect->attr;
2503 }
2504 }
2505
2506 return _bfd_generic_new_section_hook (abfd, sec);
2507 }
2508
2509 /* Create a new bfd section from an ELF program header.
2510
2511 Since program segments have no names, we generate a synthetic name
2512 of the form segment<NUM>, where NUM is generally the index in the
2513 program header table. For segments that are split (see below) we
2514 generate the names segment<NUM>a and segment<NUM>b.
2515
2516 Note that some program segments may have a file size that is different than
2517 (less than) the memory size. All this means is that at execution the
2518 system must allocate the amount of memory specified by the memory size,
2519 but only initialize it with the first "file size" bytes read from the
2520 file. This would occur for example, with program segments consisting
2521 of combined data+bss.
2522
2523 To handle the above situation, this routine generates TWO bfd sections
2524 for the single program segment. The first has the length specified by
2525 the file size of the segment, and the second has the length specified
2526 by the difference between the two sizes. In effect, the segment is split
2527 into it's initialized and uninitialized parts.
2528
2529 */
2530
2531 bfd_boolean
2532 _bfd_elf_make_section_from_phdr (bfd *abfd,
2533 Elf_Internal_Phdr *hdr,
2534 int index,
2535 const char *typename)
2536 {
2537 asection *newsect;
2538 char *name;
2539 char namebuf[64];
2540 size_t len;
2541 int split;
2542
2543 split = ((hdr->p_memsz > 0)
2544 && (hdr->p_filesz > 0)
2545 && (hdr->p_memsz > hdr->p_filesz));
2546 sprintf (namebuf, "%s%d%s", typename, index, split ? "a" : "");
2547 len = strlen (namebuf) + 1;
2548 name = bfd_alloc (abfd, len);
2549 if (!name)
2550 return FALSE;
2551 memcpy (name, namebuf, len);
2552 newsect = bfd_make_section (abfd, name);
2553 if (newsect == NULL)
2554 return FALSE;
2555 newsect->vma = hdr->p_vaddr;
2556 newsect->lma = hdr->p_paddr;
2557 newsect->size = hdr->p_filesz;
2558 newsect->filepos = hdr->p_offset;
2559 newsect->flags |= SEC_HAS_CONTENTS;
2560 newsect->alignment_power = bfd_log2 (hdr->p_align);
2561 if (hdr->p_type == PT_LOAD)
2562 {
2563 newsect->flags |= SEC_ALLOC;
2564 newsect->flags |= SEC_LOAD;
2565 if (hdr->p_flags & PF_X)
2566 {
2567 /* FIXME: all we known is that it has execute PERMISSION,
2568 may be data. */
2569 newsect->flags |= SEC_CODE;
2570 }
2571 }
2572 if (!(hdr->p_flags & PF_W))
2573 {
2574 newsect->flags |= SEC_READONLY;
2575 }
2576
2577 if (split)
2578 {
2579 sprintf (namebuf, "%s%db", typename, index);
2580 len = strlen (namebuf) + 1;
2581 name = bfd_alloc (abfd, len);
2582 if (!name)
2583 return FALSE;
2584 memcpy (name, namebuf, len);
2585 newsect = bfd_make_section (abfd, name);
2586 if (newsect == NULL)
2587 return FALSE;
2588 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2589 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2590 newsect->size = hdr->p_memsz - hdr->p_filesz;
2591 if (hdr->p_type == PT_LOAD)
2592 {
2593 newsect->flags |= SEC_ALLOC;
2594 if (hdr->p_flags & PF_X)
2595 newsect->flags |= SEC_CODE;
2596 }
2597 if (!(hdr->p_flags & PF_W))
2598 newsect->flags |= SEC_READONLY;
2599 }
2600
2601 return TRUE;
2602 }
2603
2604 bfd_boolean
2605 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index)
2606 {
2607 const struct elf_backend_data *bed;
2608
2609 switch (hdr->p_type)
2610 {
2611 case PT_NULL:
2612 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "null");
2613
2614 case PT_LOAD:
2615 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "load");
2616
2617 case PT_DYNAMIC:
2618 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "dynamic");
2619
2620 case PT_INTERP:
2621 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "interp");
2622
2623 case PT_NOTE:
2624 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, index, "note"))
2625 return FALSE;
2626 if (! elfcore_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2627 return FALSE;
2628 return TRUE;
2629
2630 case PT_SHLIB:
2631 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "shlib");
2632
2633 case PT_PHDR:
2634 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "phdr");
2635
2636 case PT_GNU_EH_FRAME:
2637 return _bfd_elf_make_section_from_phdr (abfd, hdr, index,
2638 "eh_frame_hdr");
2639
2640 case PT_GNU_STACK:
2641 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "stack");
2642
2643 case PT_GNU_RELRO:
2644 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "relro");
2645
2646 default:
2647 /* Check for any processor-specific program segment types. */
2648 bed = get_elf_backend_data (abfd);
2649 return bed->elf_backend_section_from_phdr (abfd, hdr, index, "proc");
2650 }
2651 }
2652
2653 /* Initialize REL_HDR, the section-header for new section, containing
2654 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2655 relocations; otherwise, we use REL relocations. */
2656
2657 bfd_boolean
2658 _bfd_elf_init_reloc_shdr (bfd *abfd,
2659 Elf_Internal_Shdr *rel_hdr,
2660 asection *asect,
2661 bfd_boolean use_rela_p)
2662 {
2663 char *name;
2664 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2665 bfd_size_type amt = sizeof ".rela" + strlen (asect->name);
2666
2667 name = bfd_alloc (abfd, amt);
2668 if (name == NULL)
2669 return FALSE;
2670 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2671 rel_hdr->sh_name =
2672 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2673 FALSE);
2674 if (rel_hdr->sh_name == (unsigned int) -1)
2675 return FALSE;
2676 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2677 rel_hdr->sh_entsize = (use_rela_p
2678 ? bed->s->sizeof_rela
2679 : bed->s->sizeof_rel);
2680 rel_hdr->sh_addralign = 1 << bed->s->log_file_align;
2681 rel_hdr->sh_flags = 0;
2682 rel_hdr->sh_addr = 0;
2683 rel_hdr->sh_size = 0;
2684 rel_hdr->sh_offset = 0;
2685
2686 return TRUE;
2687 }
2688
2689 /* Set up an ELF internal section header for a section. */
2690
2691 static void
2692 elf_fake_sections (bfd *abfd, asection *asect, void *failedptrarg)
2693 {
2694 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2695 bfd_boolean *failedptr = failedptrarg;
2696 Elf_Internal_Shdr *this_hdr;
2697
2698 if (*failedptr)
2699 {
2700 /* We already failed; just get out of the bfd_map_over_sections
2701 loop. */
2702 return;
2703 }
2704
2705 this_hdr = &elf_section_data (asect)->this_hdr;
2706
2707 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2708 asect->name, FALSE);
2709 if (this_hdr->sh_name == (unsigned int) -1)
2710 {
2711 *failedptr = TRUE;
2712 return;
2713 }
2714
2715 /* Don't clear sh_flags. Assembler may set additional bits. */
2716
2717 if ((asect->flags & SEC_ALLOC) != 0
2718 || asect->user_set_vma)
2719 this_hdr->sh_addr = asect->vma;
2720 else
2721 this_hdr->sh_addr = 0;
2722
2723 this_hdr->sh_offset = 0;
2724 this_hdr->sh_size = asect->size;
2725 this_hdr->sh_link = 0;
2726 this_hdr->sh_addralign = 1 << asect->alignment_power;
2727 /* The sh_entsize and sh_info fields may have been set already by
2728 copy_private_section_data. */
2729
2730 this_hdr->bfd_section = asect;
2731 this_hdr->contents = NULL;
2732
2733 /* If the section type is unspecified, we set it based on
2734 asect->flags. */
2735 if (this_hdr->sh_type == SHT_NULL)
2736 {
2737 if ((asect->flags & SEC_GROUP) != 0)
2738 this_hdr->sh_type = SHT_GROUP;
2739 else if ((asect->flags & SEC_ALLOC) != 0
2740 && (((asect->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2741 || (asect->flags & SEC_NEVER_LOAD) != 0))
2742 this_hdr->sh_type = SHT_NOBITS;
2743 else
2744 this_hdr->sh_type = SHT_PROGBITS;
2745 }
2746
2747 switch (this_hdr->sh_type)
2748 {
2749 default:
2750 break;
2751
2752 case SHT_STRTAB:
2753 case SHT_INIT_ARRAY:
2754 case SHT_FINI_ARRAY:
2755 case SHT_PREINIT_ARRAY:
2756 case SHT_NOTE:
2757 case SHT_NOBITS:
2758 case SHT_PROGBITS:
2759 break;
2760
2761 case SHT_HASH:
2762 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2763 break;
2764
2765 case SHT_DYNSYM:
2766 this_hdr->sh_entsize = bed->s->sizeof_sym;
2767 break;
2768
2769 case SHT_DYNAMIC:
2770 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2771 break;
2772
2773 case SHT_RELA:
2774 if (get_elf_backend_data (abfd)->may_use_rela_p)
2775 this_hdr->sh_entsize = bed->s->sizeof_rela;
2776 break;
2777
2778 case SHT_REL:
2779 if (get_elf_backend_data (abfd)->may_use_rel_p)
2780 this_hdr->sh_entsize = bed->s->sizeof_rel;
2781 break;
2782
2783 case SHT_GNU_versym:
2784 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2785 break;
2786
2787 case SHT_GNU_verdef:
2788 this_hdr->sh_entsize = 0;
2789 /* objcopy or strip will copy over sh_info, but may not set
2790 cverdefs. The linker will set cverdefs, but sh_info will be
2791 zero. */
2792 if (this_hdr->sh_info == 0)
2793 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2794 else
2795 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2796 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2797 break;
2798
2799 case SHT_GNU_verneed:
2800 this_hdr->sh_entsize = 0;
2801 /* objcopy or strip will copy over sh_info, but may not set
2802 cverrefs. The linker will set cverrefs, but sh_info will be
2803 zero. */
2804 if (this_hdr->sh_info == 0)
2805 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2806 else
2807 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2808 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2809 break;
2810
2811 case SHT_GROUP:
2812 this_hdr->sh_entsize = 4;
2813 break;
2814 }
2815
2816 if ((asect->flags & SEC_ALLOC) != 0)
2817 this_hdr->sh_flags |= SHF_ALLOC;
2818 if ((asect->flags & SEC_READONLY) == 0)
2819 this_hdr->sh_flags |= SHF_WRITE;
2820 if ((asect->flags & SEC_CODE) != 0)
2821 this_hdr->sh_flags |= SHF_EXECINSTR;
2822 if ((asect->flags & SEC_MERGE) != 0)
2823 {
2824 this_hdr->sh_flags |= SHF_MERGE;
2825 this_hdr->sh_entsize = asect->entsize;
2826 if ((asect->flags & SEC_STRINGS) != 0)
2827 this_hdr->sh_flags |= SHF_STRINGS;
2828 }
2829 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2830 this_hdr->sh_flags |= SHF_GROUP;
2831 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2832 {
2833 this_hdr->sh_flags |= SHF_TLS;
2834 if (asect->size == 0
2835 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2836 {
2837 struct bfd_link_order *o = asect->map_tail.link_order;
2838
2839 this_hdr->sh_size = 0;
2840 if (o != NULL)
2841 {
2842 this_hdr->sh_size = o->offset + o->size;
2843 if (this_hdr->sh_size != 0)
2844 this_hdr->sh_type = SHT_NOBITS;
2845 }
2846 }
2847 }
2848
2849 /* Check for processor-specific section types. */
2850 if (bed->elf_backend_fake_sections
2851 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2852 *failedptr = TRUE;
2853
2854 /* If the section has relocs, set up a section header for the
2855 SHT_REL[A] section. If two relocation sections are required for
2856 this section, it is up to the processor-specific back-end to
2857 create the other. */
2858 if ((asect->flags & SEC_RELOC) != 0
2859 && !_bfd_elf_init_reloc_shdr (abfd,
2860 &elf_section_data (asect)->rel_hdr,
2861 asect,
2862 asect->use_rela_p))
2863 *failedptr = TRUE;
2864 }
2865
2866 /* Fill in the contents of a SHT_GROUP section. */
2867
2868 void
2869 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2870 {
2871 bfd_boolean *failedptr = failedptrarg;
2872 unsigned long symindx;
2873 asection *elt, *first;
2874 unsigned char *loc;
2875 bfd_boolean gas;
2876
2877 /* Ignore linker created group section. See elfNN_ia64_object_p in
2878 elfxx-ia64.c. */
2879 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
2880 || *failedptr)
2881 return;
2882
2883 symindx = 0;
2884 if (elf_group_id (sec) != NULL)
2885 symindx = elf_group_id (sec)->udata.i;
2886
2887 if (symindx == 0)
2888 {
2889 /* If called from the assembler, swap_out_syms will have set up
2890 elf_section_syms; If called for "ld -r", use target_index. */
2891 if (elf_section_syms (abfd) != NULL)
2892 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2893 else
2894 symindx = sec->target_index;
2895 }
2896 elf_section_data (sec)->this_hdr.sh_info = symindx;
2897
2898 /* The contents won't be allocated for "ld -r" or objcopy. */
2899 gas = TRUE;
2900 if (sec->contents == NULL)
2901 {
2902 gas = FALSE;
2903 sec->contents = bfd_alloc (abfd, sec->size);
2904
2905 /* Arrange for the section to be written out. */
2906 elf_section_data (sec)->this_hdr.contents = sec->contents;
2907 if (sec->contents == NULL)
2908 {
2909 *failedptr = TRUE;
2910 return;
2911 }
2912 }
2913
2914 loc = sec->contents + sec->size;
2915
2916 /* Get the pointer to the first section in the group that gas
2917 squirreled away here. objcopy arranges for this to be set to the
2918 start of the input section group. */
2919 first = elt = elf_next_in_group (sec);
2920
2921 /* First element is a flag word. Rest of section is elf section
2922 indices for all the sections of the group. Write them backwards
2923 just to keep the group in the same order as given in .section
2924 directives, not that it matters. */
2925 while (elt != NULL)
2926 {
2927 asection *s;
2928 unsigned int idx;
2929
2930 loc -= 4;
2931 s = elt;
2932 if (!gas)
2933 s = s->output_section;
2934 idx = 0;
2935 if (s != NULL)
2936 idx = elf_section_data (s)->this_idx;
2937 H_PUT_32 (abfd, idx, loc);
2938 elt = elf_next_in_group (elt);
2939 if (elt == first)
2940 break;
2941 }
2942
2943 if ((loc -= 4) != sec->contents)
2944 abort ();
2945
2946 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2947 }
2948
2949 /* Assign all ELF section numbers. The dummy first section is handled here
2950 too. The link/info pointers for the standard section types are filled
2951 in here too, while we're at it. */
2952
2953 static bfd_boolean
2954 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
2955 {
2956 struct elf_obj_tdata *t = elf_tdata (abfd);
2957 asection *sec;
2958 unsigned int section_number, secn;
2959 Elf_Internal_Shdr **i_shdrp;
2960 struct bfd_elf_section_data *d;
2961
2962 section_number = 1;
2963
2964 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2965
2966 /* SHT_GROUP sections are in relocatable files only. */
2967 if (link_info == NULL || link_info->relocatable)
2968 {
2969 /* Put SHT_GROUP sections first. */
2970 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2971 {
2972 d = elf_section_data (sec);
2973
2974 if (d->this_hdr.sh_type == SHT_GROUP)
2975 {
2976 if (sec->flags & SEC_LINKER_CREATED)
2977 {
2978 /* Remove the linker created SHT_GROUP sections. */
2979 bfd_section_list_remove (abfd, sec);
2980 abfd->section_count--;
2981 }
2982 else
2983 {
2984 if (section_number == SHN_LORESERVE)
2985 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2986 d->this_idx = section_number++;
2987 }
2988 }
2989 }
2990 }
2991
2992 for (sec = abfd->sections; sec; sec = sec->next)
2993 {
2994 d = elf_section_data (sec);
2995
2996 if (d->this_hdr.sh_type != SHT_GROUP)
2997 {
2998 if (section_number == SHN_LORESERVE)
2999 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3000 d->this_idx = section_number++;
3001 }
3002 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
3003 if ((sec->flags & SEC_RELOC) == 0)
3004 d->rel_idx = 0;
3005 else
3006 {
3007 if (section_number == SHN_LORESERVE)
3008 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3009 d->rel_idx = section_number++;
3010 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr.sh_name);
3011 }
3012
3013 if (d->rel_hdr2)
3014 {
3015 if (section_number == SHN_LORESERVE)
3016 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3017 d->rel_idx2 = section_number++;
3018 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr2->sh_name);
3019 }
3020 else
3021 d->rel_idx2 = 0;
3022 }
3023
3024 if (section_number == SHN_LORESERVE)
3025 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3026 t->shstrtab_section = section_number++;
3027 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
3028 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
3029
3030 if (bfd_get_symcount (abfd) > 0)
3031 {
3032 if (section_number == SHN_LORESERVE)
3033 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3034 t->symtab_section = section_number++;
3035 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
3036 if (section_number > SHN_LORESERVE - 2)
3037 {
3038 if (section_number == SHN_LORESERVE)
3039 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3040 t->symtab_shndx_section = section_number++;
3041 t->symtab_shndx_hdr.sh_name
3042 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3043 ".symtab_shndx", FALSE);
3044 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
3045 return FALSE;
3046 }
3047 if (section_number == SHN_LORESERVE)
3048 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3049 t->strtab_section = section_number++;
3050 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3051 }
3052
3053 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
3054 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3055
3056 elf_numsections (abfd) = section_number;
3057 elf_elfheader (abfd)->e_shnum = section_number;
3058 if (section_number > SHN_LORESERVE)
3059 elf_elfheader (abfd)->e_shnum -= SHN_HIRESERVE + 1 - SHN_LORESERVE;
3060
3061 /* Set up the list of section header pointers, in agreement with the
3062 indices. */
3063 i_shdrp = bfd_zalloc2 (abfd, section_number, sizeof (Elf_Internal_Shdr *));
3064 if (i_shdrp == NULL)
3065 return FALSE;
3066
3067 i_shdrp[0] = bfd_zalloc (abfd, sizeof (Elf_Internal_Shdr));
3068 if (i_shdrp[0] == NULL)
3069 {
3070 bfd_release (abfd, i_shdrp);
3071 return FALSE;
3072 }
3073
3074 elf_elfsections (abfd) = i_shdrp;
3075
3076 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
3077 if (bfd_get_symcount (abfd) > 0)
3078 {
3079 i_shdrp[t->symtab_section] = &t->symtab_hdr;
3080 if (elf_numsections (abfd) > SHN_LORESERVE)
3081 {
3082 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
3083 t->symtab_shndx_hdr.sh_link = t->symtab_section;
3084 }
3085 i_shdrp[t->strtab_section] = &t->strtab_hdr;
3086 t->symtab_hdr.sh_link = t->strtab_section;
3087 }
3088
3089 for (sec = abfd->sections; sec; sec = sec->next)
3090 {
3091 struct bfd_elf_section_data *d = elf_section_data (sec);
3092 asection *s;
3093 const char *name;
3094
3095 i_shdrp[d->this_idx] = &d->this_hdr;
3096 if (d->rel_idx != 0)
3097 i_shdrp[d->rel_idx] = &d->rel_hdr;
3098 if (d->rel_idx2 != 0)
3099 i_shdrp[d->rel_idx2] = d->rel_hdr2;
3100
3101 /* Fill in the sh_link and sh_info fields while we're at it. */
3102
3103 /* sh_link of a reloc section is the section index of the symbol
3104 table. sh_info is the section index of the section to which
3105 the relocation entries apply. */
3106 if (d->rel_idx != 0)
3107 {
3108 d->rel_hdr.sh_link = t->symtab_section;
3109 d->rel_hdr.sh_info = d->this_idx;
3110 }
3111 if (d->rel_idx2 != 0)
3112 {
3113 d->rel_hdr2->sh_link = t->symtab_section;
3114 d->rel_hdr2->sh_info = d->this_idx;
3115 }
3116
3117 /* We need to set up sh_link for SHF_LINK_ORDER. */
3118 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3119 {
3120 s = elf_linked_to_section (sec);
3121 if (s)
3122 {
3123 /* elf_linked_to_section points to the input section. */
3124 if (link_info != NULL)
3125 {
3126 /* Check discarded linkonce section. */
3127 if (elf_discarded_section (s))
3128 {
3129 asection *kept;
3130 (*_bfd_error_handler)
3131 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
3132 abfd, d->this_hdr.bfd_section,
3133 s, s->owner);
3134 /* Point to the kept section if it has the same
3135 size as the discarded one. */
3136 kept = _bfd_elf_check_kept_section (s);
3137 if (kept == NULL)
3138 {
3139 bfd_set_error (bfd_error_bad_value);
3140 return FALSE;
3141 }
3142 s = kept;
3143 }
3144
3145 s = s->output_section;
3146 BFD_ASSERT (s != NULL);
3147 }
3148 else
3149 {
3150 /* Handle objcopy. */
3151 if (s->output_section == NULL)
3152 {
3153 (*_bfd_error_handler)
3154 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
3155 abfd, d->this_hdr.bfd_section, s, s->owner);
3156 bfd_set_error (bfd_error_bad_value);
3157 return FALSE;
3158 }
3159 s = s->output_section;
3160 }
3161 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3162 }
3163 else
3164 {
3165 /* PR 290:
3166 The Intel C compiler generates SHT_IA_64_UNWIND with
3167 SHF_LINK_ORDER. But it doesn't set the sh_link or
3168 sh_info fields. Hence we could get the situation
3169 where s is NULL. */
3170 const struct elf_backend_data *bed
3171 = get_elf_backend_data (abfd);
3172 if (bed->link_order_error_handler)
3173 bed->link_order_error_handler
3174 (_("%B: warning: sh_link not set for section `%A'"),
3175 abfd, sec);
3176 }
3177 }
3178
3179 switch (d->this_hdr.sh_type)
3180 {
3181 case SHT_REL:
3182 case SHT_RELA:
3183 /* A reloc section which we are treating as a normal BFD
3184 section. sh_link is the section index of the symbol
3185 table. sh_info is the section index of the section to
3186 which the relocation entries apply. We assume that an
3187 allocated reloc section uses the dynamic symbol table.
3188 FIXME: How can we be sure? */
3189 s = bfd_get_section_by_name (abfd, ".dynsym");
3190 if (s != NULL)
3191 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3192
3193 /* We look up the section the relocs apply to by name. */
3194 name = sec->name;
3195 if (d->this_hdr.sh_type == SHT_REL)
3196 name += 4;
3197 else
3198 name += 5;
3199 s = bfd_get_section_by_name (abfd, name);
3200 if (s != NULL)
3201 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3202 break;
3203
3204 case SHT_STRTAB:
3205 /* We assume that a section named .stab*str is a stabs
3206 string section. We look for a section with the same name
3207 but without the trailing ``str'', and set its sh_link
3208 field to point to this section. */
3209 if (strncmp (sec->name, ".stab", sizeof ".stab" - 1) == 0
3210 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3211 {
3212 size_t len;
3213 char *alc;
3214
3215 len = strlen (sec->name);
3216 alc = bfd_malloc (len - 2);
3217 if (alc == NULL)
3218 return FALSE;
3219 memcpy (alc, sec->name, len - 3);
3220 alc[len - 3] = '\0';
3221 s = bfd_get_section_by_name (abfd, alc);
3222 free (alc);
3223 if (s != NULL)
3224 {
3225 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3226
3227 /* This is a .stab section. */
3228 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3229 elf_section_data (s)->this_hdr.sh_entsize
3230 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3231 }
3232 }
3233 break;
3234
3235 case SHT_DYNAMIC:
3236 case SHT_DYNSYM:
3237 case SHT_GNU_verneed:
3238 case SHT_GNU_verdef:
3239 /* sh_link is the section header index of the string table
3240 used for the dynamic entries, or the symbol table, or the
3241 version strings. */
3242 s = bfd_get_section_by_name (abfd, ".dynstr");
3243 if (s != NULL)
3244 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3245 break;
3246
3247 case SHT_GNU_LIBLIST:
3248 /* sh_link is the section header index of the prelink library
3249 list
3250 used for the dynamic entries, or the symbol table, or the
3251 version strings. */
3252 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3253 ? ".dynstr" : ".gnu.libstr");
3254 if (s != NULL)
3255 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3256 break;
3257
3258 case SHT_HASH:
3259 case SHT_GNU_versym:
3260 /* sh_link is the section header index of the symbol table
3261 this hash table or version table is for. */
3262 s = bfd_get_section_by_name (abfd, ".dynsym");
3263 if (s != NULL)
3264 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3265 break;
3266
3267 case SHT_GROUP:
3268 d->this_hdr.sh_link = t->symtab_section;
3269 }
3270 }
3271
3272 for (secn = 1; secn < section_number; ++secn)
3273 if (i_shdrp[secn] == NULL)
3274 i_shdrp[secn] = i_shdrp[0];
3275 else
3276 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
3277 i_shdrp[secn]->sh_name);
3278 return TRUE;
3279 }
3280
3281 /* Map symbol from it's internal number to the external number, moving
3282 all local symbols to be at the head of the list. */
3283
3284 static bfd_boolean
3285 sym_is_global (bfd *abfd, asymbol *sym)
3286 {
3287 /* If the backend has a special mapping, use it. */
3288 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3289 if (bed->elf_backend_sym_is_global)
3290 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3291
3292 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
3293 || bfd_is_und_section (bfd_get_section (sym))
3294 || bfd_is_com_section (bfd_get_section (sym)));
3295 }
3296
3297 /* Don't output section symbols for sections that are not going to be
3298 output. Also, don't output section symbols for reloc and other
3299 special sections. */
3300
3301 static bfd_boolean
3302 ignore_section_sym (bfd *abfd, asymbol *sym)
3303 {
3304 return ((sym->flags & BSF_SECTION_SYM) != 0
3305 && (sym->value != 0
3306 || (sym->section->owner != abfd
3307 && (sym->section->output_section->owner != abfd
3308 || sym->section->output_offset != 0))));
3309 }
3310
3311 static bfd_boolean
3312 elf_map_symbols (bfd *abfd)
3313 {
3314 unsigned int symcount = bfd_get_symcount (abfd);
3315 asymbol **syms = bfd_get_outsymbols (abfd);
3316 asymbol **sect_syms;
3317 unsigned int num_locals = 0;
3318 unsigned int num_globals = 0;
3319 unsigned int num_locals2 = 0;
3320 unsigned int num_globals2 = 0;
3321 int max_index = 0;
3322 unsigned int idx;
3323 asection *asect;
3324 asymbol **new_syms;
3325
3326 #ifdef DEBUG
3327 fprintf (stderr, "elf_map_symbols\n");
3328 fflush (stderr);
3329 #endif
3330
3331 for (asect = abfd->sections; asect; asect = asect->next)
3332 {
3333 if (max_index < asect->index)
3334 max_index = asect->index;
3335 }
3336
3337 max_index++;
3338 sect_syms = bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
3339 if (sect_syms == NULL)
3340 return FALSE;
3341 elf_section_syms (abfd) = sect_syms;
3342 elf_num_section_syms (abfd) = max_index;
3343
3344 /* Init sect_syms entries for any section symbols we have already
3345 decided to output. */
3346 for (idx = 0; idx < symcount; idx++)
3347 {
3348 asymbol *sym = syms[idx];
3349
3350 if ((sym->flags & BSF_SECTION_SYM) != 0
3351 && !ignore_section_sym (abfd, sym))
3352 {
3353 asection *sec = sym->section;
3354
3355 if (sec->owner != abfd)
3356 sec = sec->output_section;
3357
3358 sect_syms[sec->index] = syms[idx];
3359 }
3360 }
3361
3362 /* Classify all of the symbols. */
3363 for (idx = 0; idx < symcount; idx++)
3364 {
3365 if (ignore_section_sym (abfd, syms[idx]))
3366 continue;
3367 if (!sym_is_global (abfd, syms[idx]))
3368 num_locals++;
3369 else
3370 num_globals++;
3371 }
3372
3373 /* We will be adding a section symbol for each normal BFD section. Most
3374 sections will already have a section symbol in outsymbols, but
3375 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3376 at least in that case. */
3377 for (asect = abfd->sections; asect; asect = asect->next)
3378 {
3379 if (sect_syms[asect->index] == NULL)
3380 {
3381 if (!sym_is_global (abfd, asect->symbol))
3382 num_locals++;
3383 else
3384 num_globals++;
3385 }
3386 }
3387
3388 /* Now sort the symbols so the local symbols are first. */
3389 new_syms = bfd_alloc2 (abfd, num_locals + num_globals, sizeof (asymbol *));
3390
3391 if (new_syms == NULL)
3392 return FALSE;
3393
3394 for (idx = 0; idx < symcount; idx++)
3395 {
3396 asymbol *sym = syms[idx];
3397 unsigned int i;
3398
3399 if (ignore_section_sym (abfd, sym))
3400 continue;
3401 if (!sym_is_global (abfd, sym))
3402 i = num_locals2++;
3403 else
3404 i = num_locals + num_globals2++;
3405 new_syms[i] = sym;
3406 sym->udata.i = i + 1;
3407 }
3408 for (asect = abfd->sections; asect; asect = asect->next)
3409 {
3410 if (sect_syms[asect->index] == NULL)
3411 {
3412 asymbol *sym = asect->symbol;
3413 unsigned int i;
3414
3415 sect_syms[asect->index] = sym;
3416 if (!sym_is_global (abfd, sym))
3417 i = num_locals2++;
3418 else
3419 i = num_locals + num_globals2++;
3420 new_syms[i] = sym;
3421 sym->udata.i = i + 1;
3422 }
3423 }
3424
3425 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3426
3427 elf_num_locals (abfd) = num_locals;
3428 elf_num_globals (abfd) = num_globals;
3429 return TRUE;
3430 }
3431
3432 /* Align to the maximum file alignment that could be required for any
3433 ELF data structure. */
3434
3435 static inline file_ptr
3436 align_file_position (file_ptr off, int align)
3437 {
3438 return (off + align - 1) & ~(align - 1);
3439 }
3440
3441 /* Assign a file position to a section, optionally aligning to the
3442 required section alignment. */
3443
3444 file_ptr
3445 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3446 file_ptr offset,
3447 bfd_boolean align)
3448 {
3449 if (align)
3450 {
3451 unsigned int al;
3452
3453 al = i_shdrp->sh_addralign;
3454 if (al > 1)
3455 offset = BFD_ALIGN (offset, al);
3456 }
3457 i_shdrp->sh_offset = offset;
3458 if (i_shdrp->bfd_section != NULL)
3459 i_shdrp->bfd_section->filepos = offset;
3460 if (i_shdrp->sh_type != SHT_NOBITS)
3461 offset += i_shdrp->sh_size;
3462 return offset;
3463 }
3464
3465 /* Compute the file positions we are going to put the sections at, and
3466 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3467 is not NULL, this is being called by the ELF backend linker. */
3468
3469 bfd_boolean
3470 _bfd_elf_compute_section_file_positions (bfd *abfd,
3471 struct bfd_link_info *link_info)
3472 {
3473 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3474 bfd_boolean failed;
3475 struct bfd_strtab_hash *strtab = NULL;
3476 Elf_Internal_Shdr *shstrtab_hdr;
3477
3478 if (abfd->output_has_begun)
3479 return TRUE;
3480
3481 /* Do any elf backend specific processing first. */
3482 if (bed->elf_backend_begin_write_processing)
3483 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3484
3485 if (! prep_headers (abfd))
3486 return FALSE;
3487
3488 /* Post process the headers if necessary. */
3489 if (bed->elf_backend_post_process_headers)
3490 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3491
3492 failed = FALSE;
3493 bfd_map_over_sections (abfd, elf_fake_sections, &failed);
3494 if (failed)
3495 return FALSE;
3496
3497 if (!assign_section_numbers (abfd, link_info))
3498 return FALSE;
3499
3500 /* The backend linker builds symbol table information itself. */
3501 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3502 {
3503 /* Non-zero if doing a relocatable link. */
3504 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3505
3506 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3507 return FALSE;
3508 }
3509
3510 if (link_info == NULL)
3511 {
3512 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3513 if (failed)
3514 return FALSE;
3515 }
3516
3517 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3518 /* sh_name was set in prep_headers. */
3519 shstrtab_hdr->sh_type = SHT_STRTAB;
3520 shstrtab_hdr->sh_flags = 0;
3521 shstrtab_hdr->sh_addr = 0;
3522 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3523 shstrtab_hdr->sh_entsize = 0;
3524 shstrtab_hdr->sh_link = 0;
3525 shstrtab_hdr->sh_info = 0;
3526 /* sh_offset is set in assign_file_positions_except_relocs. */
3527 shstrtab_hdr->sh_addralign = 1;
3528
3529 if (!assign_file_positions_except_relocs (abfd, link_info))
3530 return FALSE;
3531
3532 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3533 {
3534 file_ptr off;
3535 Elf_Internal_Shdr *hdr;
3536
3537 off = elf_tdata (abfd)->next_file_pos;
3538
3539 hdr = &elf_tdata (abfd)->symtab_hdr;
3540 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3541
3542 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3543 if (hdr->sh_size != 0)
3544 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3545
3546 hdr = &elf_tdata (abfd)->strtab_hdr;
3547 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3548
3549 elf_tdata (abfd)->next_file_pos = off;
3550
3551 /* Now that we know where the .strtab section goes, write it
3552 out. */
3553 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3554 || ! _bfd_stringtab_emit (abfd, strtab))
3555 return FALSE;
3556 _bfd_stringtab_free (strtab);
3557 }
3558
3559 abfd->output_has_begun = TRUE;
3560
3561 return TRUE;
3562 }
3563
3564 /* Make an initial estimate of the size of the program header. If we
3565 get the number wrong here, we'll redo section placement. */
3566
3567 static bfd_size_type
3568 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
3569 {
3570 size_t segs;
3571 asection *s;
3572 const struct elf_backend_data *bed;
3573
3574 /* Assume we will need exactly two PT_LOAD segments: one for text
3575 and one for data. */
3576 segs = 2;
3577
3578 s = bfd_get_section_by_name (abfd, ".interp");
3579 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3580 {
3581 /* If we have a loadable interpreter section, we need a
3582 PT_INTERP segment. In this case, assume we also need a
3583 PT_PHDR segment, although that may not be true for all
3584 targets. */
3585 segs += 2;
3586 }
3587
3588 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
3589 {
3590 /* We need a PT_DYNAMIC segment. */
3591 ++segs;
3592 }
3593
3594 if (elf_tdata (abfd)->eh_frame_hdr)
3595 {
3596 /* We need a PT_GNU_EH_FRAME segment. */
3597 ++segs;
3598 }
3599
3600 if (elf_tdata (abfd)->stack_flags)
3601 {
3602 /* We need a PT_GNU_STACK segment. */
3603 ++segs;
3604 }
3605
3606 if (elf_tdata (abfd)->relro)
3607 {
3608 /* We need a PT_GNU_RELRO segment. */
3609 ++segs;
3610 }
3611
3612 for (s = abfd->sections; s != NULL; s = s->next)
3613 {
3614 if ((s->flags & SEC_LOAD) != 0
3615 && strncmp (s->name, ".note", 5) == 0)
3616 {
3617 /* We need a PT_NOTE segment. */
3618 ++segs;
3619 }
3620 }
3621
3622 for (s = abfd->sections; s != NULL; s = s->next)
3623 {
3624 if (s->flags & SEC_THREAD_LOCAL)
3625 {
3626 /* We need a PT_TLS segment. */
3627 ++segs;
3628 break;
3629 }
3630 }
3631
3632 /* Let the backend count up any program headers it might need. */
3633 bed = get_elf_backend_data (abfd);
3634 if (bed->elf_backend_additional_program_headers)
3635 {
3636 int a;
3637
3638 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
3639 if (a == -1)
3640 abort ();
3641 segs += a;
3642 }
3643
3644 return segs * bed->s->sizeof_phdr;
3645 }
3646
3647 /* Create a mapping from a set of sections to a program segment. */
3648
3649 static struct elf_segment_map *
3650 make_mapping (bfd *abfd,
3651 asection **sections,
3652 unsigned int from,
3653 unsigned int to,
3654 bfd_boolean phdr)
3655 {
3656 struct elf_segment_map *m;
3657 unsigned int i;
3658 asection **hdrpp;
3659 bfd_size_type amt;
3660
3661 amt = sizeof (struct elf_segment_map);
3662 amt += (to - from - 1) * sizeof (asection *);
3663 m = bfd_zalloc (abfd, amt);
3664 if (m == NULL)
3665 return NULL;
3666 m->next = NULL;
3667 m->p_type = PT_LOAD;
3668 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3669 m->sections[i - from] = *hdrpp;
3670 m->count = to - from;
3671
3672 if (from == 0 && phdr)
3673 {
3674 /* Include the headers in the first PT_LOAD segment. */
3675 m->includes_filehdr = 1;
3676 m->includes_phdrs = 1;
3677 }
3678
3679 return m;
3680 }
3681
3682 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3683 on failure. */
3684
3685 struct elf_segment_map *
3686 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3687 {
3688 struct elf_segment_map *m;
3689
3690 m = bfd_zalloc (abfd, sizeof (struct elf_segment_map));
3691 if (m == NULL)
3692 return NULL;
3693 m->next = NULL;
3694 m->p_type = PT_DYNAMIC;
3695 m->count = 1;
3696 m->sections[0] = dynsec;
3697
3698 return m;
3699 }
3700
3701 /* Possibly add or remove segments from the segment map. */
3702
3703 static bfd_boolean
3704 elf_modify_segment_map (bfd *abfd, struct bfd_link_info *info)
3705 {
3706 struct elf_segment_map *m;
3707 const struct elf_backend_data *bed;
3708
3709 /* The placement algorithm assumes that non allocated sections are
3710 not in PT_LOAD segments. We ensure this here by removing such
3711 sections from the segment map. We also remove excluded
3712 sections. */
3713 for (m = elf_tdata (abfd)->segment_map;
3714 m != NULL;
3715 m = m->next)
3716 {
3717 unsigned int i, new_count;
3718
3719 new_count = 0;
3720 for (i = 0; i < m->count; i ++)
3721 {
3722 if ((m->sections[i]->flags & SEC_EXCLUDE) == 0
3723 && ((m->sections[i]->flags & SEC_ALLOC) != 0
3724 || m->p_type != PT_LOAD))
3725 {
3726 if (i != new_count)
3727 m->sections[new_count] = m->sections[i];
3728
3729 new_count ++;
3730 }
3731 }
3732
3733 if (new_count != m->count)
3734 m->count = new_count;
3735 }
3736
3737 bed = get_elf_backend_data (abfd);
3738 if (bed->elf_backend_modify_segment_map != NULL)
3739 {
3740 if (! (*bed->elf_backend_modify_segment_map) (abfd, info))
3741 return FALSE;
3742 }
3743
3744 return TRUE;
3745 }
3746
3747 /* Set up a mapping from BFD sections to program segments. */
3748
3749 bfd_boolean
3750 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
3751 {
3752 unsigned int count;
3753 struct elf_segment_map *m;
3754 asection **sections = NULL;
3755 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3756
3757 if (elf_tdata (abfd)->segment_map == NULL
3758 && bfd_count_sections (abfd) != 0)
3759 {
3760 asection *s;
3761 unsigned int i;
3762 struct elf_segment_map *mfirst;
3763 struct elf_segment_map **pm;
3764 asection *last_hdr;
3765 bfd_vma last_size;
3766 unsigned int phdr_index;
3767 bfd_vma maxpagesize;
3768 asection **hdrpp;
3769 bfd_boolean phdr_in_segment = TRUE;
3770 bfd_boolean writable;
3771 int tls_count = 0;
3772 asection *first_tls = NULL;
3773 asection *dynsec, *eh_frame_hdr;
3774 bfd_size_type amt;
3775
3776 /* Select the allocated sections, and sort them. */
3777
3778 sections = bfd_malloc2 (bfd_count_sections (abfd), sizeof (asection *));
3779 if (sections == NULL)
3780 goto error_return;
3781
3782 i = 0;
3783 for (s = abfd->sections; s != NULL; s = s->next)
3784 {
3785 if ((s->flags & SEC_ALLOC) != 0)
3786 {
3787 sections[i] = s;
3788 ++i;
3789 }
3790 }
3791 BFD_ASSERT (i <= bfd_count_sections (abfd));
3792 count = i;
3793
3794 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3795
3796 /* Build the mapping. */
3797
3798 mfirst = NULL;
3799 pm = &mfirst;
3800
3801 /* If we have a .interp section, then create a PT_PHDR segment for
3802 the program headers and a PT_INTERP segment for the .interp
3803 section. */
3804 s = bfd_get_section_by_name (abfd, ".interp");
3805 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3806 {
3807 amt = sizeof (struct elf_segment_map);
3808 m = bfd_zalloc (abfd, amt);
3809 if (m == NULL)
3810 goto error_return;
3811 m->next = NULL;
3812 m->p_type = PT_PHDR;
3813 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3814 m->p_flags = PF_R | PF_X;
3815 m->p_flags_valid = 1;
3816 m->includes_phdrs = 1;
3817
3818 *pm = m;
3819 pm = &m->next;
3820
3821 amt = sizeof (struct elf_segment_map);
3822 m = bfd_zalloc (abfd, amt);
3823 if (m == NULL)
3824 goto error_return;
3825 m->next = NULL;
3826 m->p_type = PT_INTERP;
3827 m->count = 1;
3828 m->sections[0] = s;
3829
3830 *pm = m;
3831 pm = &m->next;
3832 }
3833
3834 /* Look through the sections. We put sections in the same program
3835 segment when the start of the second section can be placed within
3836 a few bytes of the end of the first section. */
3837 last_hdr = NULL;
3838 last_size = 0;
3839 phdr_index = 0;
3840 maxpagesize = bed->maxpagesize;
3841 writable = FALSE;
3842 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3843 if (dynsec != NULL
3844 && (dynsec->flags & SEC_LOAD) == 0)
3845 dynsec = NULL;
3846
3847 /* Deal with -Ttext or something similar such that the first section
3848 is not adjacent to the program headers. This is an
3849 approximation, since at this point we don't know exactly how many
3850 program headers we will need. */
3851 if (count > 0)
3852 {
3853 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
3854
3855 if (phdr_size == 0)
3856 phdr_size = get_program_header_size (abfd, info);
3857 if ((abfd->flags & D_PAGED) == 0
3858 || sections[0]->lma < phdr_size
3859 || sections[0]->lma % maxpagesize < phdr_size % maxpagesize)
3860 phdr_in_segment = FALSE;
3861 }
3862
3863 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3864 {
3865 asection *hdr;
3866 bfd_boolean new_segment;
3867
3868 hdr = *hdrpp;
3869
3870 /* See if this section and the last one will fit in the same
3871 segment. */
3872
3873 if (last_hdr == NULL)
3874 {
3875 /* If we don't have a segment yet, then we don't need a new
3876 one (we build the last one after this loop). */
3877 new_segment = FALSE;
3878 }
3879 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3880 {
3881 /* If this section has a different relation between the
3882 virtual address and the load address, then we need a new
3883 segment. */
3884 new_segment = TRUE;
3885 }
3886 else if (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
3887 < BFD_ALIGN (hdr->lma, maxpagesize))
3888 {
3889 /* If putting this section in this segment would force us to
3890 skip a page in the segment, then we need a new segment. */
3891 new_segment = TRUE;
3892 }
3893 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
3894 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
3895 {
3896 /* We don't want to put a loadable section after a
3897 nonloadable section in the same segment.
3898 Consider .tbss sections as loadable for this purpose. */
3899 new_segment = TRUE;
3900 }
3901 else if ((abfd->flags & D_PAGED) == 0)
3902 {
3903 /* If the file is not demand paged, which means that we
3904 don't require the sections to be correctly aligned in the
3905 file, then there is no other reason for a new segment. */
3906 new_segment = FALSE;
3907 }
3908 else if (! writable
3909 && (hdr->flags & SEC_READONLY) == 0
3910 && (((last_hdr->lma + last_size - 1)
3911 & ~(maxpagesize - 1))
3912 != (hdr->lma & ~(maxpagesize - 1))))
3913 {
3914 /* We don't want to put a writable section in a read only
3915 segment, unless they are on the same page in memory
3916 anyhow. We already know that the last section does not
3917 bring us past the current section on the page, so the
3918 only case in which the new section is not on the same
3919 page as the previous section is when the previous section
3920 ends precisely on a page boundary. */
3921 new_segment = TRUE;
3922 }
3923 else
3924 {
3925 /* Otherwise, we can use the same segment. */
3926 new_segment = FALSE;
3927 }
3928
3929 if (! new_segment)
3930 {
3931 if ((hdr->flags & SEC_READONLY) == 0)
3932 writable = TRUE;
3933 last_hdr = hdr;
3934 /* .tbss sections effectively have zero size. */
3935 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
3936 != SEC_THREAD_LOCAL)
3937 last_size = hdr->size;
3938 else
3939 last_size = 0;
3940 continue;
3941 }
3942
3943 /* We need a new program segment. We must create a new program
3944 header holding all the sections from phdr_index until hdr. */
3945
3946 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3947 if (m == NULL)
3948 goto error_return;
3949
3950 *pm = m;
3951 pm = &m->next;
3952
3953 if ((hdr->flags & SEC_READONLY) == 0)
3954 writable = TRUE;
3955 else
3956 writable = FALSE;
3957
3958 last_hdr = hdr;
3959 /* .tbss sections effectively have zero size. */
3960 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3961 last_size = hdr->size;
3962 else
3963 last_size = 0;
3964 phdr_index = i;
3965 phdr_in_segment = FALSE;
3966 }
3967
3968 /* Create a final PT_LOAD program segment. */
3969 if (last_hdr != NULL)
3970 {
3971 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3972 if (m == NULL)
3973 goto error_return;
3974
3975 *pm = m;
3976 pm = &m->next;
3977 }
3978
3979 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
3980 if (dynsec != NULL)
3981 {
3982 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
3983 if (m == NULL)
3984 goto error_return;
3985 *pm = m;
3986 pm = &m->next;
3987 }
3988
3989 /* For each loadable .note section, add a PT_NOTE segment. We don't
3990 use bfd_get_section_by_name, because if we link together
3991 nonloadable .note sections and loadable .note sections, we will
3992 generate two .note sections in the output file. FIXME: Using
3993 names for section types is bogus anyhow. */
3994 for (s = abfd->sections; s != NULL; s = s->next)
3995 {
3996 if ((s->flags & SEC_LOAD) != 0
3997 && strncmp (s->name, ".note", 5) == 0)
3998 {
3999 amt = sizeof (struct elf_segment_map);
4000 m = bfd_zalloc (abfd, amt);
4001 if (m == NULL)
4002 goto error_return;
4003 m->next = NULL;
4004 m->p_type = PT_NOTE;
4005 m->count = 1;
4006 m->sections[0] = s;
4007
4008 *pm = m;
4009 pm = &m->next;
4010 }
4011 if (s->flags & SEC_THREAD_LOCAL)
4012 {
4013 if (! tls_count)
4014 first_tls = s;
4015 tls_count++;
4016 }
4017 }
4018
4019 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
4020 if (tls_count > 0)
4021 {
4022 int i;
4023
4024 amt = sizeof (struct elf_segment_map);
4025 amt += (tls_count - 1) * sizeof (asection *);
4026 m = bfd_zalloc (abfd, amt);
4027 if (m == NULL)
4028 goto error_return;
4029 m->next = NULL;
4030 m->p_type = PT_TLS;
4031 m->count = tls_count;
4032 /* Mandated PF_R. */
4033 m->p_flags = PF_R;
4034 m->p_flags_valid = 1;
4035 for (i = 0; i < tls_count; ++i)
4036 {
4037 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
4038 m->sections[i] = first_tls;
4039 first_tls = first_tls->next;
4040 }
4041
4042 *pm = m;
4043 pm = &m->next;
4044 }
4045
4046 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
4047 segment. */
4048 eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
4049 if (eh_frame_hdr != NULL
4050 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
4051 {
4052 amt = sizeof (struct elf_segment_map);
4053 m = bfd_zalloc (abfd, amt);
4054 if (m == NULL)
4055 goto error_return;
4056 m->next = NULL;
4057 m->p_type = PT_GNU_EH_FRAME;
4058 m->count = 1;
4059 m->sections[0] = eh_frame_hdr->output_section;
4060
4061 *pm = m;
4062 pm = &m->next;
4063 }
4064
4065 if (elf_tdata (abfd)->stack_flags)
4066 {
4067 amt = sizeof (struct elf_segment_map);
4068 m = bfd_zalloc (abfd, amt);
4069 if (m == NULL)
4070 goto error_return;
4071 m->next = NULL;
4072 m->p_type = PT_GNU_STACK;
4073 m->p_flags = elf_tdata (abfd)->stack_flags;
4074 m->p_flags_valid = 1;
4075
4076 *pm = m;
4077 pm = &m->next;
4078 }
4079
4080 if (elf_tdata (abfd)->relro)
4081 {
4082 amt = sizeof (struct elf_segment_map);
4083 m = bfd_zalloc (abfd, amt);
4084 if (m == NULL)
4085 goto error_return;
4086 m->next = NULL;
4087 m->p_type = PT_GNU_RELRO;
4088 m->p_flags = PF_R;
4089 m->p_flags_valid = 1;
4090
4091 *pm = m;
4092 pm = &m->next;
4093 }
4094
4095 free (sections);
4096 elf_tdata (abfd)->segment_map = mfirst;
4097 }
4098
4099 if (!elf_modify_segment_map (abfd, info))
4100 return FALSE;
4101
4102 for (count = 0, m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4103 ++count;
4104 elf_tdata (abfd)->program_header_size = count * bed->s->sizeof_phdr;
4105
4106 return TRUE;
4107
4108 error_return:
4109 if (sections != NULL)
4110 free (sections);
4111 return FALSE;
4112 }
4113
4114 /* Sort sections by address. */
4115
4116 static int
4117 elf_sort_sections (const void *arg1, const void *arg2)
4118 {
4119 const asection *sec1 = *(const asection **) arg1;
4120 const asection *sec2 = *(const asection **) arg2;
4121 bfd_size_type size1, size2;
4122
4123 /* Sort by LMA first, since this is the address used to
4124 place the section into a segment. */
4125 if (sec1->lma < sec2->lma)
4126 return -1;
4127 else if (sec1->lma > sec2->lma)
4128 return 1;
4129
4130 /* Then sort by VMA. Normally the LMA and the VMA will be
4131 the same, and this will do nothing. */
4132 if (sec1->vma < sec2->vma)
4133 return -1;
4134 else if (sec1->vma > sec2->vma)
4135 return 1;
4136
4137 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
4138
4139 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
4140
4141 if (TOEND (sec1))
4142 {
4143 if (TOEND (sec2))
4144 {
4145 /* If the indicies are the same, do not return 0
4146 here, but continue to try the next comparison. */
4147 if (sec1->target_index - sec2->target_index != 0)
4148 return sec1->target_index - sec2->target_index;
4149 }
4150 else
4151 return 1;
4152 }
4153 else if (TOEND (sec2))
4154 return -1;
4155
4156 #undef TOEND
4157
4158 /* Sort by size, to put zero sized sections
4159 before others at the same address. */
4160
4161 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
4162 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
4163
4164 if (size1 < size2)
4165 return -1;
4166 if (size1 > size2)
4167 return 1;
4168
4169 return sec1->target_index - sec2->target_index;
4170 }
4171
4172 /* Ian Lance Taylor writes:
4173
4174 We shouldn't be using % with a negative signed number. That's just
4175 not good. We have to make sure either that the number is not
4176 negative, or that the number has an unsigned type. When the types
4177 are all the same size they wind up as unsigned. When file_ptr is a
4178 larger signed type, the arithmetic winds up as signed long long,
4179 which is wrong.
4180
4181 What we're trying to say here is something like ``increase OFF by
4182 the least amount that will cause it to be equal to the VMA modulo
4183 the page size.'' */
4184 /* In other words, something like:
4185
4186 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4187 off_offset = off % bed->maxpagesize;
4188 if (vma_offset < off_offset)
4189 adjustment = vma_offset + bed->maxpagesize - off_offset;
4190 else
4191 adjustment = vma_offset - off_offset;
4192
4193 which can can be collapsed into the expression below. */
4194
4195 static file_ptr
4196 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
4197 {
4198 return ((vma - off) % maxpagesize);
4199 }
4200
4201 /* Assign file positions to the sections based on the mapping from
4202 sections to segments. This function also sets up some fields in
4203 the file header. */
4204
4205 static bfd_boolean
4206 assign_file_positions_for_load_sections (bfd *abfd,
4207 struct bfd_link_info *link_info)
4208 {
4209 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4210 struct elf_segment_map *m;
4211 Elf_Internal_Phdr *phdrs;
4212 Elf_Internal_Phdr *p;
4213 file_ptr off, voff;
4214 bfd_size_type maxpagesize;
4215 unsigned int alloc;
4216 unsigned int i;
4217
4218 if (link_info == NULL
4219 && !elf_modify_segment_map (abfd, link_info))
4220 return FALSE;
4221
4222 alloc = 0;
4223 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4224 ++alloc;
4225
4226 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
4227 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
4228 elf_elfheader (abfd)->e_phnum = alloc;
4229
4230 if (elf_tdata (abfd)->program_header_size == 0)
4231 elf_tdata (abfd)->program_header_size = alloc * bed->s->sizeof_phdr;
4232 else
4233 BFD_ASSERT (elf_tdata (abfd)->program_header_size
4234 == alloc * bed->s->sizeof_phdr);
4235
4236 if (alloc == 0)
4237 {
4238 elf_tdata (abfd)->next_file_pos = bed->s->sizeof_ehdr;
4239 return TRUE;
4240 }
4241
4242 phdrs = bfd_alloc2 (abfd, alloc, sizeof (Elf_Internal_Phdr));
4243 elf_tdata (abfd)->phdr = phdrs;
4244 if (phdrs == NULL)
4245 return FALSE;
4246
4247 maxpagesize = 1;
4248 if ((abfd->flags & D_PAGED) != 0)
4249 maxpagesize = bed->maxpagesize;
4250
4251 off = bed->s->sizeof_ehdr;
4252 off += alloc * bed->s->sizeof_phdr;
4253
4254 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4255 m != NULL;
4256 m = m->next, p++)
4257 {
4258 asection **secpp;
4259
4260 /* If elf_segment_map is not from map_sections_to_segments, the
4261 sections may not be correctly ordered. NOTE: sorting should
4262 not be done to the PT_NOTE section of a corefile, which may
4263 contain several pseudo-sections artificially created by bfd.
4264 Sorting these pseudo-sections breaks things badly. */
4265 if (m->count > 1
4266 && !(elf_elfheader (abfd)->e_type == ET_CORE
4267 && m->p_type == PT_NOTE))
4268 qsort (m->sections, (size_t) m->count, sizeof (asection *),
4269 elf_sort_sections);
4270
4271 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4272 number of sections with contents contributing to both p_filesz
4273 and p_memsz, followed by a number of sections with no contents
4274 that just contribute to p_memsz. In this loop, OFF tracks next
4275 available file offset for PT_LOAD and PT_NOTE segments. VOFF is
4276 an adjustment we use for segments that have no file contents
4277 but need zero filled memory allocation. */
4278 voff = 0;
4279 p->p_type = m->p_type;
4280 p->p_flags = m->p_flags;
4281
4282 if (m->count == 0)
4283 p->p_vaddr = 0;
4284 else
4285 p->p_vaddr = m->sections[0]->vma;
4286
4287 if (m->p_paddr_valid)
4288 p->p_paddr = m->p_paddr;
4289 else if (m->count == 0)
4290 p->p_paddr = 0;
4291 else
4292 p->p_paddr = m->sections[0]->lma;
4293
4294 if (p->p_type == PT_LOAD
4295 && (abfd->flags & D_PAGED) != 0)
4296 {
4297 /* p_align in demand paged PT_LOAD segments effectively stores
4298 the maximum page size. When copying an executable with
4299 objcopy, we set m->p_align from the input file. Use this
4300 value for maxpagesize rather than bed->maxpagesize, which
4301 may be different. Note that we use maxpagesize for PT_TLS
4302 segment alignment later in this function, so we are relying
4303 on at least one PT_LOAD segment appearing before a PT_TLS
4304 segment. */
4305 if (m->p_align_valid)
4306 maxpagesize = m->p_align;
4307
4308 p->p_align = maxpagesize;
4309 }
4310 else if (m->count == 0)
4311 p->p_align = 1 << bed->s->log_file_align;
4312 else
4313 p->p_align = 0;
4314
4315 if (p->p_type == PT_LOAD
4316 && m->count > 0)
4317 {
4318 bfd_size_type align;
4319 bfd_vma adjust;
4320 unsigned int align_power = 0;
4321
4322 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4323 {
4324 unsigned int secalign;
4325
4326 secalign = bfd_get_section_alignment (abfd, *secpp);
4327 if (secalign > align_power)
4328 align_power = secalign;
4329 }
4330 align = (bfd_size_type) 1 << align_power;
4331
4332 if (align < maxpagesize)
4333 align = maxpagesize;
4334
4335 adjust = vma_page_aligned_bias (m->sections[0]->vma, off, align);
4336 off += adjust;
4337 if (adjust != 0
4338 && !m->includes_filehdr
4339 && !m->includes_phdrs
4340 && (ufile_ptr) off >= align)
4341 {
4342 /* If the first section isn't loadable, the same holds for
4343 any other sections. Since the segment won't need file
4344 space, we can make p_offset overlap some prior segment.
4345 However, .tbss is special. If a segment starts with
4346 .tbss, we need to look at the next section to decide
4347 whether the segment has any loadable sections. */
4348 i = 0;
4349 while ((m->sections[i]->flags & SEC_LOAD) == 0)
4350 {
4351 if ((m->sections[i]->flags & SEC_THREAD_LOCAL) == 0
4352 || ++i >= m->count)
4353 {
4354 off -= adjust;
4355 voff = adjust - align;
4356 break;
4357 }
4358 }
4359 }
4360 }
4361 /* Make sure the .dynamic section is the first section in the
4362 PT_DYNAMIC segment. */
4363 else if (p->p_type == PT_DYNAMIC
4364 && m->count > 1
4365 && strcmp (m->sections[0]->name, ".dynamic") != 0)
4366 {
4367 _bfd_error_handler
4368 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4369 abfd);
4370 bfd_set_error (bfd_error_bad_value);
4371 return FALSE;
4372 }
4373
4374 p->p_offset = 0;
4375 p->p_filesz = 0;
4376 p->p_memsz = 0;
4377
4378 if (m->includes_filehdr)
4379 {
4380 if (! m->p_flags_valid)
4381 p->p_flags |= PF_R;
4382 p->p_offset = 0;
4383 p->p_filesz = bed->s->sizeof_ehdr;
4384 p->p_memsz = bed->s->sizeof_ehdr;
4385 if (m->count > 0)
4386 {
4387 BFD_ASSERT (p->p_type == PT_LOAD);
4388
4389 if (p->p_vaddr < (bfd_vma) off)
4390 {
4391 (*_bfd_error_handler)
4392 (_("%B: Not enough room for program headers, try linking with -N"),
4393 abfd);
4394 bfd_set_error (bfd_error_bad_value);
4395 return FALSE;
4396 }
4397
4398 p->p_vaddr -= off;
4399 if (! m->p_paddr_valid)
4400 p->p_paddr -= off;
4401 }
4402 }
4403
4404 if (m->includes_phdrs)
4405 {
4406 if (! m->p_flags_valid)
4407 p->p_flags |= PF_R;
4408
4409 if (!m->includes_filehdr)
4410 {
4411 p->p_offset = bed->s->sizeof_ehdr;
4412
4413 if (m->count > 0)
4414 {
4415 BFD_ASSERT (p->p_type == PT_LOAD);
4416 p->p_vaddr -= off - p->p_offset;
4417 if (! m->p_paddr_valid)
4418 p->p_paddr -= off - p->p_offset;
4419 }
4420 }
4421
4422 p->p_filesz += alloc * bed->s->sizeof_phdr;
4423 p->p_memsz += alloc * bed->s->sizeof_phdr;
4424 }
4425
4426 if (p->p_type == PT_LOAD
4427 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4428 {
4429 if (! m->includes_filehdr && ! m->includes_phdrs)
4430 p->p_offset = off + voff;
4431 else
4432 {
4433 file_ptr adjust;
4434
4435 adjust = off - (p->p_offset + p->p_filesz);
4436 p->p_filesz += adjust;
4437 p->p_memsz += adjust;
4438 }
4439 }
4440
4441 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
4442 maps. Set filepos for sections in PT_LOAD segments, and in
4443 core files, for sections in PT_NOTE segments.
4444 assign_file_positions_for_non_load_sections will set filepos
4445 for other sections and update p_filesz for other segments. */
4446 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4447 {
4448 asection *sec;
4449 flagword flags;
4450 bfd_size_type align;
4451
4452 sec = *secpp;
4453 flags = sec->flags;
4454 align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec);
4455
4456 if (p->p_type == PT_LOAD
4457 || p->p_type == PT_TLS)
4458 {
4459 bfd_signed_vma adjust;
4460
4461 if ((flags & SEC_LOAD) != 0)
4462 {
4463 adjust = sec->lma - (p->p_paddr + p->p_filesz);
4464 if (adjust < 0)
4465 {
4466 (*_bfd_error_handler)
4467 (_("%B: section %A lma 0x%lx overlaps previous sections"),
4468 abfd, sec, (unsigned long) sec->lma);
4469 adjust = 0;
4470 }
4471 off += adjust;
4472 p->p_filesz += adjust;
4473 p->p_memsz += adjust;
4474 }
4475 /* .tbss is special. It doesn't contribute to p_memsz of
4476 normal segments. */
4477 else if ((flags & SEC_ALLOC) != 0
4478 && ((flags & SEC_THREAD_LOCAL) == 0
4479 || p->p_type == PT_TLS))
4480 {
4481 /* The section VMA must equal the file position
4482 modulo the page size. */
4483 bfd_size_type page = align;
4484 if (page < maxpagesize)
4485 page = maxpagesize;
4486 adjust = vma_page_aligned_bias (sec->vma,
4487 p->p_vaddr + p->p_memsz,
4488 page);
4489 p->p_memsz += adjust;
4490 }
4491 }
4492
4493 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
4494 {
4495 /* The section at i == 0 is the one that actually contains
4496 everything. */
4497 if (i == 0)
4498 {
4499 sec->filepos = off;
4500 off += sec->size;
4501 p->p_filesz = sec->size;
4502 p->p_memsz = 0;
4503 p->p_align = 1;
4504 }
4505 else
4506 {
4507 /* The rest are fake sections that shouldn't be written. */
4508 sec->filepos = 0;
4509 sec->size = 0;
4510 sec->flags = 0;
4511 continue;
4512 }
4513 }
4514 else
4515 {
4516 if (p->p_type == PT_LOAD)
4517 {
4518 sec->filepos = off;
4519 /* FIXME: The SEC_HAS_CONTENTS test here dates back to
4520 1997, and the exact reason for it isn't clear. One
4521 plausible explanation is that it is to work around
4522 a problem we have with linker scripts using data
4523 statements in NOLOAD sections. I don't think it
4524 makes a great deal of sense to have such a section
4525 assigned to a PT_LOAD segment, but apparently
4526 people do this. The data statement results in a
4527 bfd_data_link_order being built, and these need
4528 section contents to write into. Eventually, we get
4529 to _bfd_elf_write_object_contents which writes any
4530 section with contents to the output. Make room
4531 here for the write, so that following segments are
4532 not trashed. */
4533 if ((flags & SEC_LOAD) != 0
4534 || (flags & SEC_HAS_CONTENTS) != 0)
4535 off += sec->size;
4536 }
4537
4538 if ((flags & SEC_LOAD) != 0)
4539 {
4540 p->p_filesz += sec->size;
4541 p->p_memsz += sec->size;
4542 }
4543
4544 /* .tbss is special. It doesn't contribute to p_memsz of
4545 normal segments. */
4546 else if ((flags & SEC_ALLOC) != 0
4547 && ((flags & SEC_THREAD_LOCAL) == 0
4548 || p->p_type == PT_TLS))
4549 p->p_memsz += sec->size;
4550
4551 if (p->p_type == PT_TLS
4552 && sec->size == 0
4553 && (sec->flags & SEC_HAS_CONTENTS) == 0)
4554 {
4555 struct bfd_link_order *o = sec->map_tail.link_order;
4556 if (o != NULL)
4557 p->p_memsz += o->offset + o->size;
4558 }
4559
4560 if (align > p->p_align
4561 && (p->p_type != PT_LOAD
4562 || (abfd->flags & D_PAGED) == 0))
4563 p->p_align = align;
4564 }
4565
4566 if (! m->p_flags_valid)
4567 {
4568 p->p_flags |= PF_R;
4569 if ((flags & SEC_CODE) != 0)
4570 p->p_flags |= PF_X;
4571 if ((flags & SEC_READONLY) == 0)
4572 p->p_flags |= PF_W;
4573 }
4574 }
4575 }
4576
4577 elf_tdata (abfd)->next_file_pos = off;
4578 return TRUE;
4579 }
4580
4581 /* Assign file positions for the other sections. */
4582
4583 static bfd_boolean
4584 assign_file_positions_for_non_load_sections (bfd *abfd,
4585 struct bfd_link_info *link_info)
4586 {
4587 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4588 Elf_Internal_Shdr **i_shdrpp;
4589 Elf_Internal_Shdr **hdrpp;
4590 Elf_Internal_Phdr *phdrs;
4591 Elf_Internal_Phdr *p;
4592 struct elf_segment_map *m;
4593 bfd_vma filehdr_vaddr, filehdr_paddr;
4594 bfd_vma phdrs_vaddr, phdrs_paddr;
4595 file_ptr off;
4596 unsigned int num_sec;
4597 unsigned int i;
4598 unsigned int count;
4599
4600 i_shdrpp = elf_elfsections (abfd);
4601 num_sec = elf_numsections (abfd);
4602 off = elf_tdata (abfd)->next_file_pos;
4603 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4604 {
4605 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4606 Elf_Internal_Shdr *hdr;
4607
4608 hdr = *hdrpp;
4609 if (hdr->bfd_section != NULL
4610 && hdr->bfd_section->filepos != 0)
4611 hdr->sh_offset = hdr->bfd_section->filepos;
4612 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4613 {
4614 ((*_bfd_error_handler)
4615 (_("%B: warning: allocated section `%s' not in segment"),
4616 abfd,
4617 (hdr->bfd_section == NULL
4618 ? "*unknown*"
4619 : hdr->bfd_section->name)));
4620 if ((abfd->flags & D_PAGED) != 0)
4621 off += vma_page_aligned_bias (hdr->sh_addr, off,
4622 bed->maxpagesize);
4623 else
4624 off += vma_page_aligned_bias (hdr->sh_addr, off,
4625 hdr->sh_addralign);
4626 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4627 FALSE);
4628 }
4629 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4630 && hdr->bfd_section == NULL)
4631 || hdr == i_shdrpp[tdata->symtab_section]
4632 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4633 || hdr == i_shdrpp[tdata->strtab_section])
4634 hdr->sh_offset = -1;
4635 else
4636 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4637
4638 if (i == SHN_LORESERVE - 1)
4639 {
4640 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4641 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4642 }
4643 }
4644
4645 /* Now that we have set the section file positions, we can set up
4646 the file positions for the non PT_LOAD segments. */
4647 count = 0;
4648 filehdr_vaddr = 0;
4649 filehdr_paddr = 0;
4650 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
4651 phdrs_paddr = 0;
4652 phdrs = elf_tdata (abfd)->phdr;
4653 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4654 m != NULL;
4655 m = m->next, p++)
4656 {
4657 ++count;
4658 if (p->p_type != PT_LOAD)
4659 continue;
4660
4661 if (m->includes_filehdr)
4662 {
4663 filehdr_vaddr = p->p_vaddr;
4664 filehdr_paddr = p->p_paddr;
4665 }
4666 if (m->includes_phdrs)
4667 {
4668 phdrs_vaddr = p->p_vaddr;
4669 phdrs_paddr = p->p_paddr;
4670 if (m->includes_filehdr)
4671 {
4672 phdrs_vaddr += bed->s->sizeof_ehdr;
4673 phdrs_paddr += bed->s->sizeof_ehdr;
4674 }
4675 }
4676 }
4677
4678 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4679 m != NULL;
4680 m = m->next, p++)
4681 {
4682 if (m->count != 0)
4683 {
4684 if (p->p_type != PT_LOAD
4685 && (p->p_type != PT_NOTE || bfd_get_format (abfd) != bfd_core))
4686 {
4687 Elf_Internal_Shdr *hdr;
4688 BFD_ASSERT (!m->includes_filehdr && !m->includes_phdrs);
4689
4690 hdr = &elf_section_data (m->sections[m->count - 1])->this_hdr;
4691 p->p_filesz = (m->sections[m->count - 1]->filepos
4692 - m->sections[0]->filepos);
4693 if (hdr->sh_type != SHT_NOBITS)
4694 p->p_filesz += hdr->sh_size;
4695
4696 p->p_offset = m->sections[0]->filepos;
4697 }
4698 }
4699 else
4700 {
4701 if (m->includes_filehdr)
4702 {
4703 p->p_vaddr = filehdr_vaddr;
4704 if (! m->p_paddr_valid)
4705 p->p_paddr = filehdr_paddr;
4706 }
4707 else if (m->includes_phdrs)
4708 {
4709 p->p_vaddr = phdrs_vaddr;
4710 if (! m->p_paddr_valid)
4711 p->p_paddr = phdrs_paddr;
4712 }
4713 else if (p->p_type == PT_GNU_RELRO)
4714 {
4715 Elf_Internal_Phdr *lp;
4716
4717 for (lp = phdrs; lp < phdrs + count; ++lp)
4718 {
4719 if (lp->p_type == PT_LOAD
4720 && lp->p_vaddr <= link_info->relro_end
4721 && lp->p_vaddr >= link_info->relro_start
4722 && (lp->p_vaddr + lp->p_filesz
4723 >= link_info->relro_end))
4724 break;
4725 }
4726
4727 if (lp < phdrs + count
4728 && link_info->relro_end > lp->p_vaddr)
4729 {
4730 p->p_vaddr = lp->p_vaddr;
4731 p->p_paddr = lp->p_paddr;
4732 p->p_offset = lp->p_offset;
4733 p->p_filesz = link_info->relro_end - lp->p_vaddr;
4734 p->p_memsz = p->p_filesz;
4735 p->p_align = 1;
4736 p->p_flags = (lp->p_flags & ~PF_W);
4737 }
4738 else
4739 {
4740 memset (p, 0, sizeof *p);
4741 p->p_type = PT_NULL;
4742 }
4743 }
4744 }
4745 }
4746
4747 elf_tdata (abfd)->next_file_pos = off;
4748
4749 return TRUE;
4750 }
4751
4752 /* Work out the file positions of all the sections. This is called by
4753 _bfd_elf_compute_section_file_positions. All the section sizes and
4754 VMAs must be known before this is called.
4755
4756 Reloc sections come in two flavours: Those processed specially as
4757 "side-channel" data attached to a section to which they apply, and
4758 those that bfd doesn't process as relocations. The latter sort are
4759 stored in a normal bfd section by bfd_section_from_shdr. We don't
4760 consider the former sort here, unless they form part of the loadable
4761 image. Reloc sections not assigned here will be handled later by
4762 assign_file_positions_for_relocs.
4763
4764 We also don't set the positions of the .symtab and .strtab here. */
4765
4766 static bfd_boolean
4767 assign_file_positions_except_relocs (bfd *abfd,
4768 struct bfd_link_info *link_info)
4769 {
4770 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4771 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
4772 file_ptr off;
4773 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4774
4775 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
4776 && bfd_get_format (abfd) != bfd_core)
4777 {
4778 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4779 unsigned int num_sec = elf_numsections (abfd);
4780 Elf_Internal_Shdr **hdrpp;
4781 unsigned int i;
4782
4783 /* Start after the ELF header. */
4784 off = i_ehdrp->e_ehsize;
4785
4786 /* We are not creating an executable, which means that we are
4787 not creating a program header, and that the actual order of
4788 the sections in the file is unimportant. */
4789 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4790 {
4791 Elf_Internal_Shdr *hdr;
4792
4793 hdr = *hdrpp;
4794 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4795 && hdr->bfd_section == NULL)
4796 || i == tdata->symtab_section
4797 || i == tdata->symtab_shndx_section
4798 || i == tdata->strtab_section)
4799 {
4800 hdr->sh_offset = -1;
4801 }
4802 else
4803 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4804
4805 if (i == SHN_LORESERVE - 1)
4806 {
4807 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4808 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4809 }
4810 }
4811 }
4812 else
4813 {
4814 unsigned int alloc;
4815
4816 /* Assign file positions for the loaded sections based on the
4817 assignment of sections to segments. */
4818 if (!assign_file_positions_for_load_sections (abfd, link_info))
4819 return FALSE;
4820
4821 /* And for non-load sections. */
4822 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
4823 return FALSE;
4824
4825 if (bed->elf_backend_modify_program_headers != NULL)
4826 {
4827 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
4828 return FALSE;
4829 }
4830
4831 /* Write out the program headers. */
4832 alloc = tdata->program_header_size / bed->s->sizeof_phdr;
4833 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
4834 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
4835 return FALSE;
4836
4837 off = tdata->next_file_pos;
4838 }
4839
4840 /* Place the section headers. */
4841 off = align_file_position (off, 1 << bed->s->log_file_align);
4842 i_ehdrp->e_shoff = off;
4843 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
4844
4845 tdata->next_file_pos = off;
4846
4847 return TRUE;
4848 }
4849
4850 static bfd_boolean
4851 prep_headers (bfd *abfd)
4852 {
4853 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
4854 Elf_Internal_Phdr *i_phdrp = 0; /* Program header table, internal form */
4855 Elf_Internal_Shdr **i_shdrp; /* Section header table, internal form */
4856 struct elf_strtab_hash *shstrtab;
4857 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4858
4859 i_ehdrp = elf_elfheader (abfd);
4860 i_shdrp = elf_elfsections (abfd);
4861
4862 shstrtab = _bfd_elf_strtab_init ();
4863 if (shstrtab == NULL)
4864 return FALSE;
4865
4866 elf_shstrtab (abfd) = shstrtab;
4867
4868 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
4869 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
4870 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
4871 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
4872
4873 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
4874 i_ehdrp->e_ident[EI_DATA] =
4875 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
4876 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
4877
4878 if ((abfd->flags & DYNAMIC) != 0)
4879 i_ehdrp->e_type = ET_DYN;
4880 else if ((abfd->flags & EXEC_P) != 0)
4881 i_ehdrp->e_type = ET_EXEC;
4882 else if (bfd_get_format (abfd) == bfd_core)
4883 i_ehdrp->e_type = ET_CORE;
4884 else
4885 i_ehdrp->e_type = ET_REL;
4886
4887 switch (bfd_get_arch (abfd))
4888 {
4889 case bfd_arch_unknown:
4890 i_ehdrp->e_machine = EM_NONE;
4891 break;
4892
4893 /* There used to be a long list of cases here, each one setting
4894 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4895 in the corresponding bfd definition. To avoid duplication,
4896 the switch was removed. Machines that need special handling
4897 can generally do it in elf_backend_final_write_processing(),
4898 unless they need the information earlier than the final write.
4899 Such need can generally be supplied by replacing the tests for
4900 e_machine with the conditions used to determine it. */
4901 default:
4902 i_ehdrp->e_machine = bed->elf_machine_code;
4903 }
4904
4905 i_ehdrp->e_version = bed->s->ev_current;
4906 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
4907
4908 /* No program header, for now. */
4909 i_ehdrp->e_phoff = 0;
4910 i_ehdrp->e_phentsize = 0;
4911 i_ehdrp->e_phnum = 0;
4912
4913 /* Each bfd section is section header entry. */
4914 i_ehdrp->e_entry = bfd_get_start_address (abfd);
4915 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
4916
4917 /* If we're building an executable, we'll need a program header table. */
4918 if (abfd->flags & EXEC_P)
4919 /* It all happens later. */
4920 ;
4921 else
4922 {
4923 i_ehdrp->e_phentsize = 0;
4924 i_phdrp = 0;
4925 i_ehdrp->e_phoff = 0;
4926 }
4927
4928 elf_tdata (abfd)->symtab_hdr.sh_name =
4929 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
4930 elf_tdata (abfd)->strtab_hdr.sh_name =
4931 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
4932 elf_tdata (abfd)->shstrtab_hdr.sh_name =
4933 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
4934 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4935 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4936 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
4937 return FALSE;
4938
4939 return TRUE;
4940 }
4941
4942 /* Assign file positions for all the reloc sections which are not part
4943 of the loadable file image. */
4944
4945 void
4946 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
4947 {
4948 file_ptr off;
4949 unsigned int i, num_sec;
4950 Elf_Internal_Shdr **shdrpp;
4951
4952 off = elf_tdata (abfd)->next_file_pos;
4953
4954 num_sec = elf_numsections (abfd);
4955 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
4956 {
4957 Elf_Internal_Shdr *shdrp;
4958
4959 shdrp = *shdrpp;
4960 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
4961 && shdrp->sh_offset == -1)
4962 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
4963 }
4964
4965 elf_tdata (abfd)->next_file_pos = off;
4966 }
4967
4968 bfd_boolean
4969 _bfd_elf_write_object_contents (bfd *abfd)
4970 {
4971 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4972 Elf_Internal_Ehdr *i_ehdrp;
4973 Elf_Internal_Shdr **i_shdrp;
4974 bfd_boolean failed;
4975 unsigned int count, num_sec;
4976
4977 if (! abfd->output_has_begun
4978 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
4979 return FALSE;
4980
4981 i_shdrp = elf_elfsections (abfd);
4982 i_ehdrp = elf_elfheader (abfd);
4983
4984 failed = FALSE;
4985 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
4986 if (failed)
4987 return FALSE;
4988
4989 _bfd_elf_assign_file_positions_for_relocs (abfd);
4990
4991 /* After writing the headers, we need to write the sections too... */
4992 num_sec = elf_numsections (abfd);
4993 for (count = 1; count < num_sec; count++)
4994 {
4995 if (bed->elf_backend_section_processing)
4996 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
4997 if (i_shdrp[count]->contents)
4998 {
4999 bfd_size_type amt = i_shdrp[count]->sh_size;
5000
5001 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
5002 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
5003 return FALSE;
5004 }
5005 if (count == SHN_LORESERVE - 1)
5006 count += SHN_HIRESERVE + 1 - SHN_LORESERVE;
5007 }
5008
5009 /* Write out the section header names. */
5010 if (elf_shstrtab (abfd) != NULL
5011 && (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
5012 || ! _bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
5013 return FALSE;
5014
5015 if (bed->elf_backend_final_write_processing)
5016 (*bed->elf_backend_final_write_processing) (abfd,
5017 elf_tdata (abfd)->linker);
5018
5019 return bed->s->write_shdrs_and_ehdr (abfd);
5020 }
5021
5022 bfd_boolean
5023 _bfd_elf_write_corefile_contents (bfd *abfd)
5024 {
5025 /* Hopefully this can be done just like an object file. */
5026 return _bfd_elf_write_object_contents (abfd);
5027 }
5028
5029 /* Given a section, search the header to find them. */
5030
5031 int
5032 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
5033 {
5034 const struct elf_backend_data *bed;
5035 int index;
5036
5037 if (elf_section_data (asect) != NULL
5038 && elf_section_data (asect)->this_idx != 0)
5039 return elf_section_data (asect)->this_idx;
5040
5041 if (bfd_is_abs_section (asect))
5042 index = SHN_ABS;
5043 else if (bfd_is_com_section (asect))
5044 index = SHN_COMMON;
5045 else if (bfd_is_und_section (asect))
5046 index = SHN_UNDEF;
5047 else
5048 index = -1;
5049
5050 bed = get_elf_backend_data (abfd);
5051 if (bed->elf_backend_section_from_bfd_section)
5052 {
5053 int retval = index;
5054
5055 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
5056 return retval;
5057 }
5058
5059 if (index == -1)
5060 bfd_set_error (bfd_error_nonrepresentable_section);
5061
5062 return index;
5063 }
5064
5065 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
5066 on error. */
5067
5068 int
5069 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
5070 {
5071 asymbol *asym_ptr = *asym_ptr_ptr;
5072 int idx;
5073 flagword flags = asym_ptr->flags;
5074
5075 /* When gas creates relocations against local labels, it creates its
5076 own symbol for the section, but does put the symbol into the
5077 symbol chain, so udata is 0. When the linker is generating
5078 relocatable output, this section symbol may be for one of the
5079 input sections rather than the output section. */
5080 if (asym_ptr->udata.i == 0
5081 && (flags & BSF_SECTION_SYM)
5082 && asym_ptr->section)
5083 {
5084 asection *sec;
5085 int indx;
5086
5087 sec = asym_ptr->section;
5088 if (sec->owner != abfd && sec->output_section != NULL)
5089 sec = sec->output_section;
5090 if (sec->owner == abfd
5091 && (indx = sec->index) < elf_num_section_syms (abfd)
5092 && elf_section_syms (abfd)[indx] != NULL)
5093 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
5094 }
5095
5096 idx = asym_ptr->udata.i;
5097
5098 if (idx == 0)
5099 {
5100 /* This case can occur when using --strip-symbol on a symbol
5101 which is used in a relocation entry. */
5102 (*_bfd_error_handler)
5103 (_("%B: symbol `%s' required but not present"),
5104 abfd, bfd_asymbol_name (asym_ptr));
5105 bfd_set_error (bfd_error_no_symbols);
5106 return -1;
5107 }
5108
5109 #if DEBUG & 4
5110 {
5111 fprintf (stderr,
5112 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
5113 (long) asym_ptr, asym_ptr->name, idx, flags,
5114 elf_symbol_flags (flags));
5115 fflush (stderr);
5116 }
5117 #endif
5118
5119 return idx;
5120 }
5121
5122 /* Rewrite program header information. */
5123
5124 static bfd_boolean
5125 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
5126 {
5127 Elf_Internal_Ehdr *iehdr;
5128 struct elf_segment_map *map;
5129 struct elf_segment_map *map_first;
5130 struct elf_segment_map **pointer_to_map;
5131 Elf_Internal_Phdr *segment;
5132 asection *section;
5133 unsigned int i;
5134 unsigned int num_segments;
5135 bfd_boolean phdr_included = FALSE;
5136 bfd_vma maxpagesize;
5137 struct elf_segment_map *phdr_adjust_seg = NULL;
5138 unsigned int phdr_adjust_num = 0;
5139 const struct elf_backend_data *bed;
5140
5141 bed = get_elf_backend_data (ibfd);
5142 iehdr = elf_elfheader (ibfd);
5143
5144 map_first = NULL;
5145 pointer_to_map = &map_first;
5146
5147 num_segments = elf_elfheader (ibfd)->e_phnum;
5148 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
5149
5150 /* Returns the end address of the segment + 1. */
5151 #define SEGMENT_END(segment, start) \
5152 (start + (segment->p_memsz > segment->p_filesz \
5153 ? segment->p_memsz : segment->p_filesz))
5154
5155 #define SECTION_SIZE(section, segment) \
5156 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5157 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5158 ? section->size : 0)
5159
5160 /* Returns TRUE if the given section is contained within
5161 the given segment. VMA addresses are compared. */
5162 #define IS_CONTAINED_BY_VMA(section, segment) \
5163 (section->vma >= segment->p_vaddr \
5164 && (section->vma + SECTION_SIZE (section, segment) \
5165 <= (SEGMENT_END (segment, segment->p_vaddr))))
5166
5167 /* Returns TRUE if the given section is contained within
5168 the given segment. LMA addresses are compared. */
5169 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5170 (section->lma >= base \
5171 && (section->lma + SECTION_SIZE (section, segment) \
5172 <= SEGMENT_END (segment, base)))
5173
5174 /* Special case: corefile "NOTE" section containing regs, prpsinfo etc. */
5175 #define IS_COREFILE_NOTE(p, s) \
5176 (p->p_type == PT_NOTE \
5177 && bfd_get_format (ibfd) == bfd_core \
5178 && s->vma == 0 && s->lma == 0 \
5179 && (bfd_vma) s->filepos >= p->p_offset \
5180 && ((bfd_vma) s->filepos + s->size \
5181 <= p->p_offset + p->p_filesz))
5182
5183 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5184 linker, which generates a PT_INTERP section with p_vaddr and
5185 p_memsz set to 0. */
5186 #define IS_SOLARIS_PT_INTERP(p, s) \
5187 (p->p_vaddr == 0 \
5188 && p->p_paddr == 0 \
5189 && p->p_memsz == 0 \
5190 && p->p_filesz > 0 \
5191 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5192 && s->size > 0 \
5193 && (bfd_vma) s->filepos >= p->p_offset \
5194 && ((bfd_vma) s->filepos + s->size \
5195 <= p->p_offset + p->p_filesz))
5196
5197 /* Decide if the given section should be included in the given segment.
5198 A section will be included if:
5199 1. It is within the address space of the segment -- we use the LMA
5200 if that is set for the segment and the VMA otherwise,
5201 2. It is an allocated segment,
5202 3. There is an output section associated with it,
5203 4. The section has not already been allocated to a previous segment.
5204 5. PT_GNU_STACK segments do not include any sections.
5205 6. PT_TLS segment includes only SHF_TLS sections.
5206 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5207 8. PT_DYNAMIC should not contain empty sections at the beginning
5208 (with the possible exception of .dynamic). */
5209 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5210 ((((segment->p_paddr \
5211 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5212 : IS_CONTAINED_BY_VMA (section, segment)) \
5213 && (section->flags & SEC_ALLOC) != 0) \
5214 || IS_COREFILE_NOTE (segment, section)) \
5215 && section->output_section != NULL \
5216 && segment->p_type != PT_GNU_STACK \
5217 && (segment->p_type != PT_TLS \
5218 || (section->flags & SEC_THREAD_LOCAL)) \
5219 && (segment->p_type == PT_LOAD \
5220 || segment->p_type == PT_TLS \
5221 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5222 && (segment->p_type != PT_DYNAMIC \
5223 || SECTION_SIZE (section, segment) > 0 \
5224 || (segment->p_paddr \
5225 ? segment->p_paddr != section->lma \
5226 : segment->p_vaddr != section->vma) \
5227 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5228 == 0)) \
5229 && ! section->segment_mark)
5230
5231 /* Returns TRUE iff seg1 starts after the end of seg2. */
5232 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5233 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5234
5235 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5236 their VMA address ranges and their LMA address ranges overlap.
5237 It is possible to have overlapping VMA ranges without overlapping LMA
5238 ranges. RedBoot images for example can have both .data and .bss mapped
5239 to the same VMA range, but with the .data section mapped to a different
5240 LMA. */
5241 #define SEGMENT_OVERLAPS(seg1, seg2) \
5242 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5243 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5244 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5245 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5246
5247 /* Initialise the segment mark field. */
5248 for (section = ibfd->sections; section != NULL; section = section->next)
5249 section->segment_mark = FALSE;
5250
5251 /* Scan through the segments specified in the program header
5252 of the input BFD. For this first scan we look for overlaps
5253 in the loadable segments. These can be created by weird
5254 parameters to objcopy. Also, fix some solaris weirdness. */
5255 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5256 i < num_segments;
5257 i++, segment++)
5258 {
5259 unsigned int j;
5260 Elf_Internal_Phdr *segment2;
5261
5262 if (segment->p_type == PT_INTERP)
5263 for (section = ibfd->sections; section; section = section->next)
5264 if (IS_SOLARIS_PT_INTERP (segment, section))
5265 {
5266 /* Mininal change so that the normal section to segment
5267 assignment code will work. */
5268 segment->p_vaddr = section->vma;
5269 break;
5270 }
5271
5272 if (segment->p_type != PT_LOAD)
5273 continue;
5274
5275 /* Determine if this segment overlaps any previous segments. */
5276 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2 ++)
5277 {
5278 bfd_signed_vma extra_length;
5279
5280 if (segment2->p_type != PT_LOAD
5281 || ! SEGMENT_OVERLAPS (segment, segment2))
5282 continue;
5283
5284 /* Merge the two segments together. */
5285 if (segment2->p_vaddr < segment->p_vaddr)
5286 {
5287 /* Extend SEGMENT2 to include SEGMENT and then delete
5288 SEGMENT. */
5289 extra_length =
5290 SEGMENT_END (segment, segment->p_vaddr)
5291 - SEGMENT_END (segment2, segment2->p_vaddr);
5292
5293 if (extra_length > 0)
5294 {
5295 segment2->p_memsz += extra_length;
5296 segment2->p_filesz += extra_length;
5297 }
5298
5299 segment->p_type = PT_NULL;
5300
5301 /* Since we have deleted P we must restart the outer loop. */
5302 i = 0;
5303 segment = elf_tdata (ibfd)->phdr;
5304 break;
5305 }
5306 else
5307 {
5308 /* Extend SEGMENT to include SEGMENT2 and then delete
5309 SEGMENT2. */
5310 extra_length =
5311 SEGMENT_END (segment2, segment2->p_vaddr)
5312 - SEGMENT_END (segment, segment->p_vaddr);
5313
5314 if (extra_length > 0)
5315 {
5316 segment->p_memsz += extra_length;
5317 segment->p_filesz += extra_length;
5318 }
5319
5320 segment2->p_type = PT_NULL;
5321 }
5322 }
5323 }
5324
5325 /* The second scan attempts to assign sections to segments. */
5326 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5327 i < num_segments;
5328 i ++, segment ++)
5329 {
5330 unsigned int section_count;
5331 asection ** sections;
5332 asection * output_section;
5333 unsigned int isec;
5334 bfd_vma matching_lma;
5335 bfd_vma suggested_lma;
5336 unsigned int j;
5337 bfd_size_type amt;
5338
5339 if (segment->p_type == PT_NULL)
5340 continue;
5341
5342 /* Compute how many sections might be placed into this segment. */
5343 for (section = ibfd->sections, section_count = 0;
5344 section != NULL;
5345 section = section->next)
5346 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5347 ++section_count;
5348
5349 /* Allocate a segment map big enough to contain
5350 all of the sections we have selected. */
5351 amt = sizeof (struct elf_segment_map);
5352 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5353 map = bfd_alloc (obfd, amt);
5354 if (map == NULL)
5355 return FALSE;
5356
5357 /* Initialise the fields of the segment map. Default to
5358 using the physical address of the segment in the input BFD. */
5359 map->next = NULL;
5360 map->p_type = segment->p_type;
5361 map->p_flags = segment->p_flags;
5362 map->p_flags_valid = 1;
5363 map->p_paddr = segment->p_paddr;
5364 map->p_paddr_valid = 1;
5365
5366 /* Determine if this segment contains the ELF file header
5367 and if it contains the program headers themselves. */
5368 map->includes_filehdr = (segment->p_offset == 0
5369 && segment->p_filesz >= iehdr->e_ehsize);
5370
5371 map->includes_phdrs = 0;
5372
5373 if (! phdr_included || segment->p_type != PT_LOAD)
5374 {
5375 map->includes_phdrs =
5376 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5377 && (segment->p_offset + segment->p_filesz
5378 >= ((bfd_vma) iehdr->e_phoff
5379 + iehdr->e_phnum * iehdr->e_phentsize)));
5380
5381 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5382 phdr_included = TRUE;
5383 }
5384
5385 if (section_count == 0)
5386 {
5387 /* Special segments, such as the PT_PHDR segment, may contain
5388 no sections, but ordinary, loadable segments should contain
5389 something. They are allowed by the ELF spec however, so only
5390 a warning is produced. */
5391 if (segment->p_type == PT_LOAD)
5392 (*_bfd_error_handler)
5393 (_("%B: warning: Empty loadable segment detected, is this intentional ?\n"),
5394 ibfd);
5395
5396 map->count = 0;
5397 *pointer_to_map = map;
5398 pointer_to_map = &map->next;
5399
5400 continue;
5401 }
5402
5403 /* Now scan the sections in the input BFD again and attempt
5404 to add their corresponding output sections to the segment map.
5405 The problem here is how to handle an output section which has
5406 been moved (ie had its LMA changed). There are four possibilities:
5407
5408 1. None of the sections have been moved.
5409 In this case we can continue to use the segment LMA from the
5410 input BFD.
5411
5412 2. All of the sections have been moved by the same amount.
5413 In this case we can change the segment's LMA to match the LMA
5414 of the first section.
5415
5416 3. Some of the sections have been moved, others have not.
5417 In this case those sections which have not been moved can be
5418 placed in the current segment which will have to have its size,
5419 and possibly its LMA changed, and a new segment or segments will
5420 have to be created to contain the other sections.
5421
5422 4. The sections have been moved, but not by the same amount.
5423 In this case we can change the segment's LMA to match the LMA
5424 of the first section and we will have to create a new segment
5425 or segments to contain the other sections.
5426
5427 In order to save time, we allocate an array to hold the section
5428 pointers that we are interested in. As these sections get assigned
5429 to a segment, they are removed from this array. */
5430
5431 /* Gcc 2.96 miscompiles this code on mips. Don't do casting here
5432 to work around this long long bug. */
5433 sections = bfd_malloc2 (section_count, sizeof (asection *));
5434 if (sections == NULL)
5435 return FALSE;
5436
5437 /* Step One: Scan for segment vs section LMA conflicts.
5438 Also add the sections to the section array allocated above.
5439 Also add the sections to the current segment. In the common
5440 case, where the sections have not been moved, this means that
5441 we have completely filled the segment, and there is nothing
5442 more to do. */
5443 isec = 0;
5444 matching_lma = 0;
5445 suggested_lma = 0;
5446
5447 for (j = 0, section = ibfd->sections;
5448 section != NULL;
5449 section = section->next)
5450 {
5451 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5452 {
5453 output_section = section->output_section;
5454
5455 sections[j ++] = section;
5456
5457 /* The Solaris native linker always sets p_paddr to 0.
5458 We try to catch that case here, and set it to the
5459 correct value. Note - some backends require that
5460 p_paddr be left as zero. */
5461 if (segment->p_paddr == 0
5462 && segment->p_vaddr != 0
5463 && (! bed->want_p_paddr_set_to_zero)
5464 && isec == 0
5465 && output_section->lma != 0
5466 && (output_section->vma == (segment->p_vaddr
5467 + (map->includes_filehdr
5468 ? iehdr->e_ehsize
5469 : 0)
5470 + (map->includes_phdrs
5471 ? (iehdr->e_phnum
5472 * iehdr->e_phentsize)
5473 : 0))))
5474 map->p_paddr = segment->p_vaddr;
5475
5476 /* Match up the physical address of the segment with the
5477 LMA address of the output section. */
5478 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5479 || IS_COREFILE_NOTE (segment, section)
5480 || (bed->want_p_paddr_set_to_zero &&
5481 IS_CONTAINED_BY_VMA (output_section, segment))
5482 )
5483 {
5484 if (matching_lma == 0)
5485 matching_lma = output_section->lma;
5486
5487 /* We assume that if the section fits within the segment
5488 then it does not overlap any other section within that
5489 segment. */
5490 map->sections[isec ++] = output_section;
5491 }
5492 else if (suggested_lma == 0)
5493 suggested_lma = output_section->lma;
5494 }
5495 }
5496
5497 BFD_ASSERT (j == section_count);
5498
5499 /* Step Two: Adjust the physical address of the current segment,
5500 if necessary. */
5501 if (isec == section_count)
5502 {
5503 /* All of the sections fitted within the segment as currently
5504 specified. This is the default case. Add the segment to
5505 the list of built segments and carry on to process the next
5506 program header in the input BFD. */
5507 map->count = section_count;
5508 *pointer_to_map = map;
5509 pointer_to_map = &map->next;
5510
5511 free (sections);
5512 continue;
5513 }
5514 else
5515 {
5516 if (matching_lma != 0)
5517 {
5518 /* At least one section fits inside the current segment.
5519 Keep it, but modify its physical address to match the
5520 LMA of the first section that fitted. */
5521 map->p_paddr = matching_lma;
5522 }
5523 else
5524 {
5525 /* None of the sections fitted inside the current segment.
5526 Change the current segment's physical address to match
5527 the LMA of the first section. */
5528 map->p_paddr = suggested_lma;
5529 }
5530
5531 /* Offset the segment physical address from the lma
5532 to allow for space taken up by elf headers. */
5533 if (map->includes_filehdr)
5534 map->p_paddr -= iehdr->e_ehsize;
5535
5536 if (map->includes_phdrs)
5537 {
5538 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
5539
5540 /* iehdr->e_phnum is just an estimate of the number
5541 of program headers that we will need. Make a note
5542 here of the number we used and the segment we chose
5543 to hold these headers, so that we can adjust the
5544 offset when we know the correct value. */
5545 phdr_adjust_num = iehdr->e_phnum;
5546 phdr_adjust_seg = map;
5547 }
5548 }
5549
5550 /* Step Three: Loop over the sections again, this time assigning
5551 those that fit to the current segment and removing them from the
5552 sections array; but making sure not to leave large gaps. Once all
5553 possible sections have been assigned to the current segment it is
5554 added to the list of built segments and if sections still remain
5555 to be assigned, a new segment is constructed before repeating
5556 the loop. */
5557 isec = 0;
5558 do
5559 {
5560 map->count = 0;
5561 suggested_lma = 0;
5562
5563 /* Fill the current segment with sections that fit. */
5564 for (j = 0; j < section_count; j++)
5565 {
5566 section = sections[j];
5567
5568 if (section == NULL)
5569 continue;
5570
5571 output_section = section->output_section;
5572
5573 BFD_ASSERT (output_section != NULL);
5574
5575 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5576 || IS_COREFILE_NOTE (segment, section))
5577 {
5578 if (map->count == 0)
5579 {
5580 /* If the first section in a segment does not start at
5581 the beginning of the segment, then something is
5582 wrong. */
5583 if (output_section->lma !=
5584 (map->p_paddr
5585 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
5586 + (map->includes_phdrs
5587 ? iehdr->e_phnum * iehdr->e_phentsize
5588 : 0)))
5589 abort ();
5590 }
5591 else
5592 {
5593 asection * prev_sec;
5594
5595 prev_sec = map->sections[map->count - 1];
5596
5597 /* If the gap between the end of the previous section
5598 and the start of this section is more than
5599 maxpagesize then we need to start a new segment. */
5600 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
5601 maxpagesize)
5602 < BFD_ALIGN (output_section->lma, maxpagesize))
5603 || ((prev_sec->lma + prev_sec->size)
5604 > output_section->lma))
5605 {
5606 if (suggested_lma == 0)
5607 suggested_lma = output_section->lma;
5608
5609 continue;
5610 }
5611 }
5612
5613 map->sections[map->count++] = output_section;
5614 ++isec;
5615 sections[j] = NULL;
5616 section->segment_mark = TRUE;
5617 }
5618 else if (suggested_lma == 0)
5619 suggested_lma = output_section->lma;
5620 }
5621
5622 BFD_ASSERT (map->count > 0);
5623
5624 /* Add the current segment to the list of built segments. */
5625 *pointer_to_map = map;
5626 pointer_to_map = &map->next;
5627
5628 if (isec < section_count)
5629 {
5630 /* We still have not allocated all of the sections to
5631 segments. Create a new segment here, initialise it
5632 and carry on looping. */
5633 amt = sizeof (struct elf_segment_map);
5634 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5635 map = bfd_alloc (obfd, amt);
5636 if (map == NULL)
5637 {
5638 free (sections);
5639 return FALSE;
5640 }
5641
5642 /* Initialise the fields of the segment map. Set the physical
5643 physical address to the LMA of the first section that has
5644 not yet been assigned. */
5645 map->next = NULL;
5646 map->p_type = segment->p_type;
5647 map->p_flags = segment->p_flags;
5648 map->p_flags_valid = 1;
5649 map->p_paddr = suggested_lma;
5650 map->p_paddr_valid = 1;
5651 map->includes_filehdr = 0;
5652 map->includes_phdrs = 0;
5653 }
5654 }
5655 while (isec < section_count);
5656
5657 free (sections);
5658 }
5659
5660 /* The Solaris linker creates program headers in which all the
5661 p_paddr fields are zero. When we try to objcopy or strip such a
5662 file, we get confused. Check for this case, and if we find it
5663 reset the p_paddr_valid fields. */
5664 for (map = map_first; map != NULL; map = map->next)
5665 if (map->p_paddr != 0)
5666 break;
5667 if (map == NULL)
5668 for (map = map_first; map != NULL; map = map->next)
5669 map->p_paddr_valid = 0;
5670
5671 elf_tdata (obfd)->segment_map = map_first;
5672
5673 /* If we had to estimate the number of program headers that were
5674 going to be needed, then check our estimate now and adjust
5675 the offset if necessary. */
5676 if (phdr_adjust_seg != NULL)
5677 {
5678 unsigned int count;
5679
5680 for (count = 0, map = map_first; map != NULL; map = map->next)
5681 count++;
5682
5683 if (count > phdr_adjust_num)
5684 phdr_adjust_seg->p_paddr
5685 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
5686 }
5687
5688 #undef SEGMENT_END
5689 #undef SECTION_SIZE
5690 #undef IS_CONTAINED_BY_VMA
5691 #undef IS_CONTAINED_BY_LMA
5692 #undef IS_COREFILE_NOTE
5693 #undef IS_SOLARIS_PT_INTERP
5694 #undef INCLUDE_SECTION_IN_SEGMENT
5695 #undef SEGMENT_AFTER_SEGMENT
5696 #undef SEGMENT_OVERLAPS
5697 return TRUE;
5698 }
5699
5700 /* Copy ELF program header information. */
5701
5702 static bfd_boolean
5703 copy_elf_program_header (bfd *ibfd, bfd *obfd)
5704 {
5705 Elf_Internal_Ehdr *iehdr;
5706 struct elf_segment_map *map;
5707 struct elf_segment_map *map_first;
5708 struct elf_segment_map **pointer_to_map;
5709 Elf_Internal_Phdr *segment;
5710 unsigned int i;
5711 unsigned int num_segments;
5712 bfd_boolean phdr_included = FALSE;
5713
5714 iehdr = elf_elfheader (ibfd);
5715
5716 map_first = NULL;
5717 pointer_to_map = &map_first;
5718
5719 num_segments = elf_elfheader (ibfd)->e_phnum;
5720 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5721 i < num_segments;
5722 i++, segment++)
5723 {
5724 asection *section;
5725 unsigned int section_count;
5726 bfd_size_type amt;
5727 Elf_Internal_Shdr *this_hdr;
5728
5729 /* FIXME: Do we need to copy PT_NULL segment? */
5730 if (segment->p_type == PT_NULL)
5731 continue;
5732
5733 /* Compute how many sections are in this segment. */
5734 for (section = ibfd->sections, section_count = 0;
5735 section != NULL;
5736 section = section->next)
5737 {
5738 this_hdr = &(elf_section_data(section)->this_hdr);
5739 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5740 section_count++;
5741 }
5742
5743 /* Allocate a segment map big enough to contain
5744 all of the sections we have selected. */
5745 amt = sizeof (struct elf_segment_map);
5746 if (section_count != 0)
5747 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5748 map = bfd_alloc (obfd, amt);
5749 if (map == NULL)
5750 return FALSE;
5751
5752 /* Initialize the fields of the output segment map with the
5753 input segment. */
5754 map->next = NULL;
5755 map->p_type = segment->p_type;
5756 map->p_flags = segment->p_flags;
5757 map->p_flags_valid = 1;
5758 map->p_paddr = segment->p_paddr;
5759 map->p_paddr_valid = 1;
5760 map->p_align = segment->p_align;
5761 map->p_align_valid = 1;
5762
5763 /* Determine if this segment contains the ELF file header
5764 and if it contains the program headers themselves. */
5765 map->includes_filehdr = (segment->p_offset == 0
5766 && segment->p_filesz >= iehdr->e_ehsize);
5767
5768 map->includes_phdrs = 0;
5769 if (! phdr_included || segment->p_type != PT_LOAD)
5770 {
5771 map->includes_phdrs =
5772 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5773 && (segment->p_offset + segment->p_filesz
5774 >= ((bfd_vma) iehdr->e_phoff
5775 + iehdr->e_phnum * iehdr->e_phentsize)));
5776
5777 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5778 phdr_included = TRUE;
5779 }
5780
5781 if (section_count != 0)
5782 {
5783 unsigned int isec = 0;
5784
5785 for (section = ibfd->sections;
5786 section != NULL;
5787 section = section->next)
5788 {
5789 this_hdr = &(elf_section_data(section)->this_hdr);
5790 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5791 map->sections[isec++] = section->output_section;
5792 }
5793 }
5794
5795 map->count = section_count;
5796 *pointer_to_map = map;
5797 pointer_to_map = &map->next;
5798 }
5799
5800 elf_tdata (obfd)->segment_map = map_first;
5801 return TRUE;
5802 }
5803
5804 /* Copy private BFD data. This copies or rewrites ELF program header
5805 information. */
5806
5807 static bfd_boolean
5808 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
5809 {
5810 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5811 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5812 return TRUE;
5813
5814 if (elf_tdata (ibfd)->phdr == NULL)
5815 return TRUE;
5816
5817 if (ibfd->xvec == obfd->xvec)
5818 {
5819 /* Check if any sections in the input BFD covered by ELF program
5820 header are changed. */
5821 Elf_Internal_Phdr *segment;
5822 asection *section, *osec;
5823 unsigned int i, num_segments;
5824 Elf_Internal_Shdr *this_hdr;
5825
5826 /* Initialize the segment mark field. */
5827 for (section = obfd->sections; section != NULL;
5828 section = section->next)
5829 section->segment_mark = FALSE;
5830
5831 num_segments = elf_elfheader (ibfd)->e_phnum;
5832 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5833 i < num_segments;
5834 i++, segment++)
5835 {
5836 for (section = ibfd->sections;
5837 section != NULL; section = section->next)
5838 {
5839 /* We mark the output section so that we know it comes
5840 from the input BFD. */
5841 osec = section->output_section;
5842 if (osec)
5843 osec->segment_mark = TRUE;
5844
5845 /* Check if this section is covered by the segment. */
5846 this_hdr = &(elf_section_data(section)->this_hdr);
5847 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5848 {
5849 /* FIXME: Check if its output section is changed or
5850 removed. What else do we need to check? */
5851 if (osec == NULL
5852 || section->flags != osec->flags
5853 || section->lma != osec->lma
5854 || section->vma != osec->vma
5855 || section->size != osec->size
5856 || section->rawsize != osec->rawsize
5857 || section->alignment_power != osec->alignment_power)
5858 goto rewrite;
5859 }
5860 }
5861 }
5862
5863 /* Check to see if any output section doesn't come from the
5864 input BFD. */
5865 for (section = obfd->sections; section != NULL;
5866 section = section->next)
5867 {
5868 if (section->segment_mark == FALSE)
5869 goto rewrite;
5870 else
5871 section->segment_mark = FALSE;
5872 }
5873
5874 return copy_elf_program_header (ibfd, obfd);
5875 }
5876
5877 rewrite:
5878 return rewrite_elf_program_header (ibfd, obfd);
5879 }
5880
5881 /* Initialize private output section information from input section. */
5882
5883 bfd_boolean
5884 _bfd_elf_init_private_section_data (bfd *ibfd,
5885 asection *isec,
5886 bfd *obfd,
5887 asection *osec,
5888 struct bfd_link_info *link_info)
5889
5890 {
5891 Elf_Internal_Shdr *ihdr, *ohdr;
5892 bfd_boolean need_group = link_info == NULL || link_info->relocatable;
5893
5894 if (ibfd->xvec->flavour != bfd_target_elf_flavour
5895 || obfd->xvec->flavour != bfd_target_elf_flavour)
5896 return TRUE;
5897
5898 /* Don't copy the output ELF section type from input if the
5899 output BFD section flags have been set to something different.
5900 elf_fake_sections will set ELF section type based on BFD
5901 section flags. */
5902 if (osec->flags == isec->flags
5903 || (osec->flags == 0 && elf_section_type (osec) == SHT_NULL))
5904 elf_section_type (osec) = elf_section_type (isec);
5905
5906 /* Set things up for objcopy and relocatable link. The output
5907 SHT_GROUP section will have its elf_next_in_group pointing back
5908 to the input group members. Ignore linker created group section.
5909 See elfNN_ia64_object_p in elfxx-ia64.c. */
5910 if (need_group)
5911 {
5912 if (elf_sec_group (isec) == NULL
5913 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
5914 {
5915 if (elf_section_flags (isec) & SHF_GROUP)
5916 elf_section_flags (osec) |= SHF_GROUP;
5917 elf_next_in_group (osec) = elf_next_in_group (isec);
5918 elf_group_name (osec) = elf_group_name (isec);
5919 }
5920 }
5921
5922 ihdr = &elf_section_data (isec)->this_hdr;
5923
5924 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
5925 don't use the output section of the linked-to section since it
5926 may be NULL at this point. */
5927 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
5928 {
5929 ohdr = &elf_section_data (osec)->this_hdr;
5930 ohdr->sh_flags |= SHF_LINK_ORDER;
5931 elf_linked_to_section (osec) = elf_linked_to_section (isec);
5932 }
5933
5934 osec->use_rela_p = isec->use_rela_p;
5935
5936 return TRUE;
5937 }
5938
5939 /* Copy private section information. This copies over the entsize
5940 field, and sometimes the info field. */
5941
5942 bfd_boolean
5943 _bfd_elf_copy_private_section_data (bfd *ibfd,
5944 asection *isec,
5945 bfd *obfd,
5946 asection *osec)
5947 {
5948 Elf_Internal_Shdr *ihdr, *ohdr;
5949
5950 if (ibfd->xvec->flavour != bfd_target_elf_flavour
5951 || obfd->xvec->flavour != bfd_target_elf_flavour)
5952 return TRUE;
5953
5954 ihdr = &elf_section_data (isec)->this_hdr;
5955 ohdr = &elf_section_data (osec)->this_hdr;
5956
5957 ohdr->sh_entsize = ihdr->sh_entsize;
5958
5959 if (ihdr->sh_type == SHT_SYMTAB
5960 || ihdr->sh_type == SHT_DYNSYM
5961 || ihdr->sh_type == SHT_GNU_verneed
5962 || ihdr->sh_type == SHT_GNU_verdef)
5963 ohdr->sh_info = ihdr->sh_info;
5964
5965 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
5966 NULL);
5967 }
5968
5969 /* Copy private header information. */
5970
5971 bfd_boolean
5972 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
5973 {
5974 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5975 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5976 return TRUE;
5977
5978 /* Copy over private BFD data if it has not already been copied.
5979 This must be done here, rather than in the copy_private_bfd_data
5980 entry point, because the latter is called after the section
5981 contents have been set, which means that the program headers have
5982 already been worked out. */
5983 if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
5984 {
5985 if (! copy_private_bfd_data (ibfd, obfd))
5986 return FALSE;
5987 }
5988
5989 return TRUE;
5990 }
5991
5992 /* Copy private symbol information. If this symbol is in a section
5993 which we did not map into a BFD section, try to map the section
5994 index correctly. We use special macro definitions for the mapped
5995 section indices; these definitions are interpreted by the
5996 swap_out_syms function. */
5997
5998 #define MAP_ONESYMTAB (SHN_HIOS + 1)
5999 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
6000 #define MAP_STRTAB (SHN_HIOS + 3)
6001 #define MAP_SHSTRTAB (SHN_HIOS + 4)
6002 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
6003
6004 bfd_boolean
6005 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
6006 asymbol *isymarg,
6007 bfd *obfd,
6008 asymbol *osymarg)
6009 {
6010 elf_symbol_type *isym, *osym;
6011
6012 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6013 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6014 return TRUE;
6015
6016 isym = elf_symbol_from (ibfd, isymarg);
6017 osym = elf_symbol_from (obfd, osymarg);
6018
6019 if (isym != NULL
6020 && osym != NULL
6021 && bfd_is_abs_section (isym->symbol.section))
6022 {
6023 unsigned int shndx;
6024
6025 shndx = isym->internal_elf_sym.st_shndx;
6026 if (shndx == elf_onesymtab (ibfd))
6027 shndx = MAP_ONESYMTAB;
6028 else if (shndx == elf_dynsymtab (ibfd))
6029 shndx = MAP_DYNSYMTAB;
6030 else if (shndx == elf_tdata (ibfd)->strtab_section)
6031 shndx = MAP_STRTAB;
6032 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
6033 shndx = MAP_SHSTRTAB;
6034 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
6035 shndx = MAP_SYM_SHNDX;
6036 osym->internal_elf_sym.st_shndx = shndx;
6037 }
6038
6039 return TRUE;
6040 }
6041
6042 /* Swap out the symbols. */
6043
6044 static bfd_boolean
6045 swap_out_syms (bfd *abfd,
6046 struct bfd_strtab_hash **sttp,
6047 int relocatable_p)
6048 {
6049 const struct elf_backend_data *bed;
6050 int symcount;
6051 asymbol **syms;
6052 struct bfd_strtab_hash *stt;
6053 Elf_Internal_Shdr *symtab_hdr;
6054 Elf_Internal_Shdr *symtab_shndx_hdr;
6055 Elf_Internal_Shdr *symstrtab_hdr;
6056 bfd_byte *outbound_syms;
6057 bfd_byte *outbound_shndx;
6058 int idx;
6059 bfd_size_type amt;
6060 bfd_boolean name_local_sections;
6061
6062 if (!elf_map_symbols (abfd))
6063 return FALSE;
6064
6065 /* Dump out the symtabs. */
6066 stt = _bfd_elf_stringtab_init ();
6067 if (stt == NULL)
6068 return FALSE;
6069
6070 bed = get_elf_backend_data (abfd);
6071 symcount = bfd_get_symcount (abfd);
6072 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6073 symtab_hdr->sh_type = SHT_SYMTAB;
6074 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
6075 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
6076 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
6077 symtab_hdr->sh_addralign = 1 << bed->s->log_file_align;
6078
6079 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
6080 symstrtab_hdr->sh_type = SHT_STRTAB;
6081
6082 outbound_syms = bfd_alloc2 (abfd, 1 + symcount, bed->s->sizeof_sym);
6083 if (outbound_syms == NULL)
6084 {
6085 _bfd_stringtab_free (stt);
6086 return FALSE;
6087 }
6088 symtab_hdr->contents = outbound_syms;
6089
6090 outbound_shndx = NULL;
6091 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
6092 if (symtab_shndx_hdr->sh_name != 0)
6093 {
6094 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
6095 outbound_shndx = bfd_zalloc2 (abfd, 1 + symcount,
6096 sizeof (Elf_External_Sym_Shndx));
6097 if (outbound_shndx == NULL)
6098 {
6099 _bfd_stringtab_free (stt);
6100 return FALSE;
6101 }
6102
6103 symtab_shndx_hdr->contents = outbound_shndx;
6104 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
6105 symtab_shndx_hdr->sh_size = amt;
6106 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
6107 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
6108 }
6109
6110 /* Now generate the data (for "contents"). */
6111 {
6112 /* Fill in zeroth symbol and swap it out. */
6113 Elf_Internal_Sym sym;
6114 sym.st_name = 0;
6115 sym.st_value = 0;
6116 sym.st_size = 0;
6117 sym.st_info = 0;
6118 sym.st_other = 0;
6119 sym.st_shndx = SHN_UNDEF;
6120 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6121 outbound_syms += bed->s->sizeof_sym;
6122 if (outbound_shndx != NULL)
6123 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6124 }
6125
6126 name_local_sections
6127 = (bed->elf_backend_name_local_section_symbols
6128 && bed->elf_backend_name_local_section_symbols (abfd));
6129
6130 syms = bfd_get_outsymbols (abfd);
6131 for (idx = 0; idx < symcount; idx++)
6132 {
6133 Elf_Internal_Sym sym;
6134 bfd_vma value = syms[idx]->value;
6135 elf_symbol_type *type_ptr;
6136 flagword flags = syms[idx]->flags;
6137 int type;
6138
6139 if (!name_local_sections
6140 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
6141 {
6142 /* Local section symbols have no name. */
6143 sym.st_name = 0;
6144 }
6145 else
6146 {
6147 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
6148 syms[idx]->name,
6149 TRUE, FALSE);
6150 if (sym.st_name == (unsigned long) -1)
6151 {
6152 _bfd_stringtab_free (stt);
6153 return FALSE;
6154 }
6155 }
6156
6157 type_ptr = elf_symbol_from (abfd, syms[idx]);
6158
6159 if ((flags & BSF_SECTION_SYM) == 0
6160 && bfd_is_com_section (syms[idx]->section))
6161 {
6162 /* ELF common symbols put the alignment into the `value' field,
6163 and the size into the `size' field. This is backwards from
6164 how BFD handles it, so reverse it here. */
6165 sym.st_size = value;
6166 if (type_ptr == NULL
6167 || type_ptr->internal_elf_sym.st_value == 0)
6168 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
6169 else
6170 sym.st_value = type_ptr->internal_elf_sym.st_value;
6171 sym.st_shndx = _bfd_elf_section_from_bfd_section
6172 (abfd, syms[idx]->section);
6173 }
6174 else
6175 {
6176 asection *sec = syms[idx]->section;
6177 int shndx;
6178
6179 if (sec->output_section)
6180 {
6181 value += sec->output_offset;
6182 sec = sec->output_section;
6183 }
6184
6185 /* Don't add in the section vma for relocatable output. */
6186 if (! relocatable_p)
6187 value += sec->vma;
6188 sym.st_value = value;
6189 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
6190
6191 if (bfd_is_abs_section (sec)
6192 && type_ptr != NULL
6193 && type_ptr->internal_elf_sym.st_shndx != 0)
6194 {
6195 /* This symbol is in a real ELF section which we did
6196 not create as a BFD section. Undo the mapping done
6197 by copy_private_symbol_data. */
6198 shndx = type_ptr->internal_elf_sym.st_shndx;
6199 switch (shndx)
6200 {
6201 case MAP_ONESYMTAB:
6202 shndx = elf_onesymtab (abfd);
6203 break;
6204 case MAP_DYNSYMTAB:
6205 shndx = elf_dynsymtab (abfd);
6206 break;
6207 case MAP_STRTAB:
6208 shndx = elf_tdata (abfd)->strtab_section;
6209 break;
6210 case MAP_SHSTRTAB:
6211 shndx = elf_tdata (abfd)->shstrtab_section;
6212 break;
6213 case MAP_SYM_SHNDX:
6214 shndx = elf_tdata (abfd)->symtab_shndx_section;
6215 break;
6216 default:
6217 break;
6218 }
6219 }
6220 else
6221 {
6222 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
6223
6224 if (shndx == -1)
6225 {
6226 asection *sec2;
6227
6228 /* Writing this would be a hell of a lot easier if
6229 we had some decent documentation on bfd, and
6230 knew what to expect of the library, and what to
6231 demand of applications. For example, it
6232 appears that `objcopy' might not set the
6233 section of a symbol to be a section that is
6234 actually in the output file. */
6235 sec2 = bfd_get_section_by_name (abfd, sec->name);
6236 if (sec2 == NULL)
6237 {
6238 _bfd_error_handler (_("\
6239 Unable to find equivalent output section for symbol '%s' from section '%s'"),
6240 syms[idx]->name ? syms[idx]->name : "<Local sym>",
6241 sec->name);
6242 bfd_set_error (bfd_error_invalid_operation);
6243 _bfd_stringtab_free (stt);
6244 return FALSE;
6245 }
6246
6247 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
6248 BFD_ASSERT (shndx != -1);
6249 }
6250 }
6251
6252 sym.st_shndx = shndx;
6253 }
6254
6255 if ((flags & BSF_THREAD_LOCAL) != 0)
6256 type = STT_TLS;
6257 else if ((flags & BSF_FUNCTION) != 0)
6258 type = STT_FUNC;
6259 else if ((flags & BSF_OBJECT) != 0)
6260 type = STT_OBJECT;
6261 else
6262 type = STT_NOTYPE;
6263
6264 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
6265 type = STT_TLS;
6266
6267 /* Processor-specific types. */
6268 if (type_ptr != NULL
6269 && bed->elf_backend_get_symbol_type)
6270 type = ((*bed->elf_backend_get_symbol_type)
6271 (&type_ptr->internal_elf_sym, type));
6272
6273 if (flags & BSF_SECTION_SYM)
6274 {
6275 if (flags & BSF_GLOBAL)
6276 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6277 else
6278 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
6279 }
6280 else if (bfd_is_com_section (syms[idx]->section))
6281 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
6282 else if (bfd_is_und_section (syms[idx]->section))
6283 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
6284 ? STB_WEAK
6285 : STB_GLOBAL),
6286 type);
6287 else if (flags & BSF_FILE)
6288 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
6289 else
6290 {
6291 int bind = STB_LOCAL;
6292
6293 if (flags & BSF_LOCAL)
6294 bind = STB_LOCAL;
6295 else if (flags & BSF_WEAK)
6296 bind = STB_WEAK;
6297 else if (flags & BSF_GLOBAL)
6298 bind = STB_GLOBAL;
6299
6300 sym.st_info = ELF_ST_INFO (bind, type);
6301 }
6302
6303 if (type_ptr != NULL)
6304 sym.st_other = type_ptr->internal_elf_sym.st_other;
6305 else
6306 sym.st_other = 0;
6307
6308 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6309 outbound_syms += bed->s->sizeof_sym;
6310 if (outbound_shndx != NULL)
6311 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6312 }
6313
6314 *sttp = stt;
6315 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
6316 symstrtab_hdr->sh_type = SHT_STRTAB;
6317
6318 symstrtab_hdr->sh_flags = 0;
6319 symstrtab_hdr->sh_addr = 0;
6320 symstrtab_hdr->sh_entsize = 0;
6321 symstrtab_hdr->sh_link = 0;
6322 symstrtab_hdr->sh_info = 0;
6323 symstrtab_hdr->sh_addralign = 1;
6324
6325 return TRUE;
6326 }
6327
6328 /* Return the number of bytes required to hold the symtab vector.
6329
6330 Note that we base it on the count plus 1, since we will null terminate
6331 the vector allocated based on this size. However, the ELF symbol table
6332 always has a dummy entry as symbol #0, so it ends up even. */
6333
6334 long
6335 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
6336 {
6337 long symcount;
6338 long symtab_size;
6339 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
6340
6341 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6342 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6343 if (symcount > 0)
6344 symtab_size -= sizeof (asymbol *);
6345
6346 return symtab_size;
6347 }
6348
6349 long
6350 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
6351 {
6352 long symcount;
6353 long symtab_size;
6354 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
6355
6356 if (elf_dynsymtab (abfd) == 0)
6357 {
6358 bfd_set_error (bfd_error_invalid_operation);
6359 return -1;
6360 }
6361
6362 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6363 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6364 if (symcount > 0)
6365 symtab_size -= sizeof (asymbol *);
6366
6367 return symtab_size;
6368 }
6369
6370 long
6371 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
6372 sec_ptr asect)
6373 {
6374 return (asect->reloc_count + 1) * sizeof (arelent *);
6375 }
6376
6377 /* Canonicalize the relocs. */
6378
6379 long
6380 _bfd_elf_canonicalize_reloc (bfd *abfd,
6381 sec_ptr section,
6382 arelent **relptr,
6383 asymbol **symbols)
6384 {
6385 arelent *tblptr;
6386 unsigned int i;
6387 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6388
6389 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
6390 return -1;
6391
6392 tblptr = section->relocation;
6393 for (i = 0; i < section->reloc_count; i++)
6394 *relptr++ = tblptr++;
6395
6396 *relptr = NULL;
6397
6398 return section->reloc_count;
6399 }
6400
6401 long
6402 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
6403 {
6404 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6405 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
6406
6407 if (symcount >= 0)
6408 bfd_get_symcount (abfd) = symcount;
6409 return symcount;
6410 }
6411
6412 long
6413 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
6414 asymbol **allocation)
6415 {
6416 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6417 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
6418
6419 if (symcount >= 0)
6420 bfd_get_dynamic_symcount (abfd) = symcount;
6421 return symcount;
6422 }
6423
6424 /* Return the size required for the dynamic reloc entries. Any loadable
6425 section that was actually installed in the BFD, and has type SHT_REL
6426 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
6427 dynamic reloc section. */
6428
6429 long
6430 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
6431 {
6432 long ret;
6433 asection *s;
6434
6435 if (elf_dynsymtab (abfd) == 0)
6436 {
6437 bfd_set_error (bfd_error_invalid_operation);
6438 return -1;
6439 }
6440
6441 ret = sizeof (arelent *);
6442 for (s = abfd->sections; s != NULL; s = s->next)
6443 if ((s->flags & SEC_LOAD) != 0
6444 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6445 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6446 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6447 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
6448 * sizeof (arelent *));
6449
6450 return ret;
6451 }
6452
6453 /* Canonicalize the dynamic relocation entries. Note that we return the
6454 dynamic relocations as a single block, although they are actually
6455 associated with particular sections; the interface, which was
6456 designed for SunOS style shared libraries, expects that there is only
6457 one set of dynamic relocs. Any loadable section that was actually
6458 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
6459 dynamic symbol table, is considered to be a dynamic reloc section. */
6460
6461 long
6462 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
6463 arelent **storage,
6464 asymbol **syms)
6465 {
6466 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
6467 asection *s;
6468 long ret;
6469
6470 if (elf_dynsymtab (abfd) == 0)
6471 {
6472 bfd_set_error (bfd_error_invalid_operation);
6473 return -1;
6474 }
6475
6476 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
6477 ret = 0;
6478 for (s = abfd->sections; s != NULL; s = s->next)
6479 {
6480 if ((s->flags & SEC_LOAD) != 0
6481 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6482 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6483 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6484 {
6485 arelent *p;
6486 long count, i;
6487
6488 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
6489 return -1;
6490 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
6491 p = s->relocation;
6492 for (i = 0; i < count; i++)
6493 *storage++ = p++;
6494 ret += count;
6495 }
6496 }
6497
6498 *storage = NULL;
6499
6500 return ret;
6501 }
6502 \f
6503 /* Read in the version information. */
6504
6505 bfd_boolean
6506 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
6507 {
6508 bfd_byte *contents = NULL;
6509 unsigned int freeidx = 0;
6510
6511 if (elf_dynverref (abfd) != 0)
6512 {
6513 Elf_Internal_Shdr *hdr;
6514 Elf_External_Verneed *everneed;
6515 Elf_Internal_Verneed *iverneed;
6516 unsigned int i;
6517 bfd_byte *contents_end;
6518
6519 hdr = &elf_tdata (abfd)->dynverref_hdr;
6520
6521 elf_tdata (abfd)->verref = bfd_zalloc2 (abfd, hdr->sh_info,
6522 sizeof (Elf_Internal_Verneed));
6523 if (elf_tdata (abfd)->verref == NULL)
6524 goto error_return;
6525
6526 elf_tdata (abfd)->cverrefs = hdr->sh_info;
6527
6528 contents = bfd_malloc (hdr->sh_size);
6529 if (contents == NULL)
6530 {
6531 error_return_verref:
6532 elf_tdata (abfd)->verref = NULL;
6533 elf_tdata (abfd)->cverrefs = 0;
6534 goto error_return;
6535 }
6536 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6537 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6538 goto error_return_verref;
6539
6540 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verneed))
6541 goto error_return_verref;
6542
6543 BFD_ASSERT (sizeof (Elf_External_Verneed)
6544 == sizeof (Elf_External_Vernaux));
6545 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
6546 everneed = (Elf_External_Verneed *) contents;
6547 iverneed = elf_tdata (abfd)->verref;
6548 for (i = 0; i < hdr->sh_info; i++, iverneed++)
6549 {
6550 Elf_External_Vernaux *evernaux;
6551 Elf_Internal_Vernaux *ivernaux;
6552 unsigned int j;
6553
6554 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
6555
6556 iverneed->vn_bfd = abfd;
6557
6558 iverneed->vn_filename =
6559 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6560 iverneed->vn_file);
6561 if (iverneed->vn_filename == NULL)
6562 goto error_return_verref;
6563
6564 if (iverneed->vn_cnt == 0)
6565 iverneed->vn_auxptr = NULL;
6566 else
6567 {
6568 iverneed->vn_auxptr = bfd_alloc2 (abfd, iverneed->vn_cnt,
6569 sizeof (Elf_Internal_Vernaux));
6570 if (iverneed->vn_auxptr == NULL)
6571 goto error_return_verref;
6572 }
6573
6574 if (iverneed->vn_aux
6575 > (size_t) (contents_end - (bfd_byte *) everneed))
6576 goto error_return_verref;
6577
6578 evernaux = ((Elf_External_Vernaux *)
6579 ((bfd_byte *) everneed + iverneed->vn_aux));
6580 ivernaux = iverneed->vn_auxptr;
6581 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
6582 {
6583 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
6584
6585 ivernaux->vna_nodename =
6586 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6587 ivernaux->vna_name);
6588 if (ivernaux->vna_nodename == NULL)
6589 goto error_return_verref;
6590
6591 if (j + 1 < iverneed->vn_cnt)
6592 ivernaux->vna_nextptr = ivernaux + 1;
6593 else
6594 ivernaux->vna_nextptr = NULL;
6595
6596 if (ivernaux->vna_next
6597 > (size_t) (contents_end - (bfd_byte *) evernaux))
6598 goto error_return_verref;
6599
6600 evernaux = ((Elf_External_Vernaux *)
6601 ((bfd_byte *) evernaux + ivernaux->vna_next));
6602
6603 if (ivernaux->vna_other > freeidx)
6604 freeidx = ivernaux->vna_other;
6605 }
6606
6607 if (i + 1 < hdr->sh_info)
6608 iverneed->vn_nextref = iverneed + 1;
6609 else
6610 iverneed->vn_nextref = NULL;
6611
6612 if (iverneed->vn_next
6613 > (size_t) (contents_end - (bfd_byte *) everneed))
6614 goto error_return_verref;
6615
6616 everneed = ((Elf_External_Verneed *)
6617 ((bfd_byte *) everneed + iverneed->vn_next));
6618 }
6619
6620 free (contents);
6621 contents = NULL;
6622 }
6623
6624 if (elf_dynverdef (abfd) != 0)
6625 {
6626 Elf_Internal_Shdr *hdr;
6627 Elf_External_Verdef *everdef;
6628 Elf_Internal_Verdef *iverdef;
6629 Elf_Internal_Verdef *iverdefarr;
6630 Elf_Internal_Verdef iverdefmem;
6631 unsigned int i;
6632 unsigned int maxidx;
6633 bfd_byte *contents_end_def, *contents_end_aux;
6634
6635 hdr = &elf_tdata (abfd)->dynverdef_hdr;
6636
6637 contents = bfd_malloc (hdr->sh_size);
6638 if (contents == NULL)
6639 goto error_return;
6640 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6641 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6642 goto error_return;
6643
6644 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verdef))
6645 goto error_return;
6646
6647 BFD_ASSERT (sizeof (Elf_External_Verdef)
6648 >= sizeof (Elf_External_Verdaux));
6649 contents_end_def = contents + hdr->sh_size
6650 - sizeof (Elf_External_Verdef);
6651 contents_end_aux = contents + hdr->sh_size
6652 - sizeof (Elf_External_Verdaux);
6653
6654 /* We know the number of entries in the section but not the maximum
6655 index. Therefore we have to run through all entries and find
6656 the maximum. */
6657 everdef = (Elf_External_Verdef *) contents;
6658 maxidx = 0;
6659 for (i = 0; i < hdr->sh_info; ++i)
6660 {
6661 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6662
6663 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
6664 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
6665
6666 if (iverdefmem.vd_next
6667 > (size_t) (contents_end_def - (bfd_byte *) everdef))
6668 goto error_return;
6669
6670 everdef = ((Elf_External_Verdef *)
6671 ((bfd_byte *) everdef + iverdefmem.vd_next));
6672 }
6673
6674 if (default_imported_symver)
6675 {
6676 if (freeidx > maxidx)
6677 maxidx = ++freeidx;
6678 else
6679 freeidx = ++maxidx;
6680 }
6681 elf_tdata (abfd)->verdef = bfd_zalloc2 (abfd, maxidx,
6682 sizeof (Elf_Internal_Verdef));
6683 if (elf_tdata (abfd)->verdef == NULL)
6684 goto error_return;
6685
6686 elf_tdata (abfd)->cverdefs = maxidx;
6687
6688 everdef = (Elf_External_Verdef *) contents;
6689 iverdefarr = elf_tdata (abfd)->verdef;
6690 for (i = 0; i < hdr->sh_info; i++)
6691 {
6692 Elf_External_Verdaux *everdaux;
6693 Elf_Internal_Verdaux *iverdaux;
6694 unsigned int j;
6695
6696 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6697
6698 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
6699 {
6700 error_return_verdef:
6701 elf_tdata (abfd)->verdef = NULL;
6702 elf_tdata (abfd)->cverdefs = 0;
6703 goto error_return;
6704 }
6705
6706 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
6707 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
6708
6709 iverdef->vd_bfd = abfd;
6710
6711 if (iverdef->vd_cnt == 0)
6712 iverdef->vd_auxptr = NULL;
6713 else
6714 {
6715 iverdef->vd_auxptr = bfd_alloc2 (abfd, iverdef->vd_cnt,
6716 sizeof (Elf_Internal_Verdaux));
6717 if (iverdef->vd_auxptr == NULL)
6718 goto error_return_verdef;
6719 }
6720
6721 if (iverdef->vd_aux
6722 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
6723 goto error_return_verdef;
6724
6725 everdaux = ((Elf_External_Verdaux *)
6726 ((bfd_byte *) everdef + iverdef->vd_aux));
6727 iverdaux = iverdef->vd_auxptr;
6728 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
6729 {
6730 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
6731
6732 iverdaux->vda_nodename =
6733 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6734 iverdaux->vda_name);
6735 if (iverdaux->vda_nodename == NULL)
6736 goto error_return_verdef;
6737
6738 if (j + 1 < iverdef->vd_cnt)
6739 iverdaux->vda_nextptr = iverdaux + 1;
6740 else
6741 iverdaux->vda_nextptr = NULL;
6742
6743 if (iverdaux->vda_next
6744 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
6745 goto error_return_verdef;
6746
6747 everdaux = ((Elf_External_Verdaux *)
6748 ((bfd_byte *) everdaux + iverdaux->vda_next));
6749 }
6750
6751 if (iverdef->vd_cnt)
6752 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
6753
6754 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
6755 iverdef->vd_nextdef = iverdef + 1;
6756 else
6757 iverdef->vd_nextdef = NULL;
6758
6759 everdef = ((Elf_External_Verdef *)
6760 ((bfd_byte *) everdef + iverdef->vd_next));
6761 }
6762
6763 free (contents);
6764 contents = NULL;
6765 }
6766 else if (default_imported_symver)
6767 {
6768 if (freeidx < 3)
6769 freeidx = 3;
6770 else
6771 freeidx++;
6772
6773 elf_tdata (abfd)->verdef = bfd_zalloc2 (abfd, freeidx,
6774 sizeof (Elf_Internal_Verdef));
6775 if (elf_tdata (abfd)->verdef == NULL)
6776 goto error_return;
6777
6778 elf_tdata (abfd)->cverdefs = freeidx;
6779 }
6780
6781 /* Create a default version based on the soname. */
6782 if (default_imported_symver)
6783 {
6784 Elf_Internal_Verdef *iverdef;
6785 Elf_Internal_Verdaux *iverdaux;
6786
6787 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];;
6788
6789 iverdef->vd_version = VER_DEF_CURRENT;
6790 iverdef->vd_flags = 0;
6791 iverdef->vd_ndx = freeidx;
6792 iverdef->vd_cnt = 1;
6793
6794 iverdef->vd_bfd = abfd;
6795
6796 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
6797 if (iverdef->vd_nodename == NULL)
6798 goto error_return_verdef;
6799 iverdef->vd_nextdef = NULL;
6800 iverdef->vd_auxptr = bfd_alloc (abfd, sizeof (Elf_Internal_Verdaux));
6801 if (iverdef->vd_auxptr == NULL)
6802 goto error_return_verdef;
6803
6804 iverdaux = iverdef->vd_auxptr;
6805 iverdaux->vda_nodename = iverdef->vd_nodename;
6806 iverdaux->vda_nextptr = NULL;
6807 }
6808
6809 return TRUE;
6810
6811 error_return:
6812 if (contents != NULL)
6813 free (contents);
6814 return FALSE;
6815 }
6816 \f
6817 asymbol *
6818 _bfd_elf_make_empty_symbol (bfd *abfd)
6819 {
6820 elf_symbol_type *newsym;
6821 bfd_size_type amt = sizeof (elf_symbol_type);
6822
6823 newsym = bfd_zalloc (abfd, amt);
6824 if (!newsym)
6825 return NULL;
6826 else
6827 {
6828 newsym->symbol.the_bfd = abfd;
6829 return &newsym->symbol;
6830 }
6831 }
6832
6833 void
6834 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
6835 asymbol *symbol,
6836 symbol_info *ret)
6837 {
6838 bfd_symbol_info (symbol, ret);
6839 }
6840
6841 /* Return whether a symbol name implies a local symbol. Most targets
6842 use this function for the is_local_label_name entry point, but some
6843 override it. */
6844
6845 bfd_boolean
6846 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
6847 const char *name)
6848 {
6849 /* Normal local symbols start with ``.L''. */
6850 if (name[0] == '.' && name[1] == 'L')
6851 return TRUE;
6852
6853 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
6854 DWARF debugging symbols starting with ``..''. */
6855 if (name[0] == '.' && name[1] == '.')
6856 return TRUE;
6857
6858 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
6859 emitting DWARF debugging output. I suspect this is actually a
6860 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
6861 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
6862 underscore to be emitted on some ELF targets). For ease of use,
6863 we treat such symbols as local. */
6864 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
6865 return TRUE;
6866
6867 return FALSE;
6868 }
6869
6870 alent *
6871 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
6872 asymbol *symbol ATTRIBUTE_UNUSED)
6873 {
6874 abort ();
6875 return NULL;
6876 }
6877
6878 bfd_boolean
6879 _bfd_elf_set_arch_mach (bfd *abfd,
6880 enum bfd_architecture arch,
6881 unsigned long machine)
6882 {
6883 /* If this isn't the right architecture for this backend, and this
6884 isn't the generic backend, fail. */
6885 if (arch != get_elf_backend_data (abfd)->arch
6886 && arch != bfd_arch_unknown
6887 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
6888 return FALSE;
6889
6890 return bfd_default_set_arch_mach (abfd, arch, machine);
6891 }
6892
6893 /* Find the function to a particular section and offset,
6894 for error reporting. */
6895
6896 static bfd_boolean
6897 elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
6898 asection *section,
6899 asymbol **symbols,
6900 bfd_vma offset,
6901 const char **filename_ptr,
6902 const char **functionname_ptr)
6903 {
6904 const char *filename;
6905 asymbol *func, *file;
6906 bfd_vma low_func;
6907 asymbol **p;
6908 /* ??? Given multiple file symbols, it is impossible to reliably
6909 choose the right file name for global symbols. File symbols are
6910 local symbols, and thus all file symbols must sort before any
6911 global symbols. The ELF spec may be interpreted to say that a
6912 file symbol must sort before other local symbols, but currently
6913 ld -r doesn't do this. So, for ld -r output, it is possible to
6914 make a better choice of file name for local symbols by ignoring
6915 file symbols appearing after a given local symbol. */
6916 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
6917
6918 filename = NULL;
6919 func = NULL;
6920 file = NULL;
6921 low_func = 0;
6922 state = nothing_seen;
6923
6924 for (p = symbols; *p != NULL; p++)
6925 {
6926 elf_symbol_type *q;
6927
6928 q = (elf_symbol_type *) *p;
6929
6930 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
6931 {
6932 default:
6933 break;
6934 case STT_FILE:
6935 file = &q->symbol;
6936 if (state == symbol_seen)
6937 state = file_after_symbol_seen;
6938 continue;
6939 case STT_NOTYPE:
6940 case STT_FUNC:
6941 if (bfd_get_section (&q->symbol) == section
6942 && q->symbol.value >= low_func
6943 && q->symbol.value <= offset)
6944 {
6945 func = (asymbol *) q;
6946 low_func = q->symbol.value;
6947 filename = NULL;
6948 if (file != NULL
6949 && (ELF_ST_BIND (q->internal_elf_sym.st_info) == STB_LOCAL
6950 || state != file_after_symbol_seen))
6951 filename = bfd_asymbol_name (file);
6952 }
6953 break;
6954 }
6955 if (state == nothing_seen)
6956 state = symbol_seen;
6957 }
6958
6959 if (func == NULL)
6960 return FALSE;
6961
6962 if (filename_ptr)
6963 *filename_ptr = filename;
6964 if (functionname_ptr)
6965 *functionname_ptr = bfd_asymbol_name (func);
6966
6967 return TRUE;
6968 }
6969
6970 /* Find the nearest line to a particular section and offset,
6971 for error reporting. */
6972
6973 bfd_boolean
6974 _bfd_elf_find_nearest_line (bfd *abfd,
6975 asection *section,
6976 asymbol **symbols,
6977 bfd_vma offset,
6978 const char **filename_ptr,
6979 const char **functionname_ptr,
6980 unsigned int *line_ptr)
6981 {
6982 bfd_boolean found;
6983
6984 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
6985 filename_ptr, functionname_ptr,
6986 line_ptr))
6987 {
6988 if (!*functionname_ptr)
6989 elf_find_function (abfd, section, symbols, offset,
6990 *filename_ptr ? NULL : filename_ptr,
6991 functionname_ptr);
6992
6993 return TRUE;
6994 }
6995
6996 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
6997 filename_ptr, functionname_ptr,
6998 line_ptr, 0,
6999 &elf_tdata (abfd)->dwarf2_find_line_info))
7000 {
7001 if (!*functionname_ptr)
7002 elf_find_function (abfd, section, symbols, offset,
7003 *filename_ptr ? NULL : filename_ptr,
7004 functionname_ptr);
7005
7006 return TRUE;
7007 }
7008
7009 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
7010 &found, filename_ptr,
7011 functionname_ptr, line_ptr,
7012 &elf_tdata (abfd)->line_info))
7013 return FALSE;
7014 if (found && (*functionname_ptr || *line_ptr))
7015 return TRUE;
7016
7017 if (symbols == NULL)
7018 return FALSE;
7019
7020 if (! elf_find_function (abfd, section, symbols, offset,
7021 filename_ptr, functionname_ptr))
7022 return FALSE;
7023
7024 *line_ptr = 0;
7025 return TRUE;
7026 }
7027
7028 /* Find the line for a symbol. */
7029
7030 bfd_boolean
7031 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
7032 const char **filename_ptr, unsigned int *line_ptr)
7033 {
7034 return _bfd_dwarf2_find_line (abfd, symbols, symbol,
7035 filename_ptr, line_ptr, 0,
7036 &elf_tdata (abfd)->dwarf2_find_line_info);
7037 }
7038
7039 /* After a call to bfd_find_nearest_line, successive calls to
7040 bfd_find_inliner_info can be used to get source information about
7041 each level of function inlining that terminated at the address
7042 passed to bfd_find_nearest_line. Currently this is only supported
7043 for DWARF2 with appropriate DWARF3 extensions. */
7044
7045 bfd_boolean
7046 _bfd_elf_find_inliner_info (bfd *abfd,
7047 const char **filename_ptr,
7048 const char **functionname_ptr,
7049 unsigned int *line_ptr)
7050 {
7051 bfd_boolean found;
7052 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
7053 functionname_ptr, line_ptr,
7054 & elf_tdata (abfd)->dwarf2_find_line_info);
7055 return found;
7056 }
7057
7058 int
7059 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
7060 {
7061 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7062 int ret = bed->s->sizeof_ehdr;
7063
7064 if (!info->relocatable)
7065 {
7066 struct elf_segment_map *m;
7067 bfd_size_type phdr_size = 0;
7068
7069 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7070 phdr_size += bed->s->sizeof_phdr;
7071
7072 if (phdr_size == 0)
7073 phdr_size = get_program_header_size (abfd, info);
7074
7075 elf_tdata (abfd)->program_header_size = phdr_size;
7076 ret += phdr_size;
7077 }
7078
7079 return ret;
7080 }
7081
7082 bfd_boolean
7083 _bfd_elf_set_section_contents (bfd *abfd,
7084 sec_ptr section,
7085 const void *location,
7086 file_ptr offset,
7087 bfd_size_type count)
7088 {
7089 Elf_Internal_Shdr *hdr;
7090 bfd_signed_vma pos;
7091
7092 if (! abfd->output_has_begun
7093 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
7094 return FALSE;
7095
7096 hdr = &elf_section_data (section)->this_hdr;
7097 pos = hdr->sh_offset + offset;
7098 if (bfd_seek (abfd, pos, SEEK_SET) != 0
7099 || bfd_bwrite (location, count, abfd) != count)
7100 return FALSE;
7101
7102 return TRUE;
7103 }
7104
7105 void
7106 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
7107 arelent *cache_ptr ATTRIBUTE_UNUSED,
7108 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
7109 {
7110 abort ();
7111 }
7112
7113 /* Try to convert a non-ELF reloc into an ELF one. */
7114
7115 bfd_boolean
7116 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
7117 {
7118 /* Check whether we really have an ELF howto. */
7119
7120 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
7121 {
7122 bfd_reloc_code_real_type code;
7123 reloc_howto_type *howto;
7124
7125 /* Alien reloc: Try to determine its type to replace it with an
7126 equivalent ELF reloc. */
7127
7128 if (areloc->howto->pc_relative)
7129 {
7130 switch (areloc->howto->bitsize)
7131 {
7132 case 8:
7133 code = BFD_RELOC_8_PCREL;
7134 break;
7135 case 12:
7136 code = BFD_RELOC_12_PCREL;
7137 break;
7138 case 16:
7139 code = BFD_RELOC_16_PCREL;
7140 break;
7141 case 24:
7142 code = BFD_RELOC_24_PCREL;
7143 break;
7144 case 32:
7145 code = BFD_RELOC_32_PCREL;
7146 break;
7147 case 64:
7148 code = BFD_RELOC_64_PCREL;
7149 break;
7150 default:
7151 goto fail;
7152 }
7153
7154 howto = bfd_reloc_type_lookup (abfd, code);
7155
7156 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
7157 {
7158 if (howto->pcrel_offset)
7159 areloc->addend += areloc->address;
7160 else
7161 areloc->addend -= areloc->address; /* addend is unsigned!! */
7162 }
7163 }
7164 else
7165 {
7166 switch (areloc->howto->bitsize)
7167 {
7168 case 8:
7169 code = BFD_RELOC_8;
7170 break;
7171 case 14:
7172 code = BFD_RELOC_14;
7173 break;
7174 case 16:
7175 code = BFD_RELOC_16;
7176 break;
7177 case 26:
7178 code = BFD_RELOC_26;
7179 break;
7180 case 32:
7181 code = BFD_RELOC_32;
7182 break;
7183 case 64:
7184 code = BFD_RELOC_64;
7185 break;
7186 default:
7187 goto fail;
7188 }
7189
7190 howto = bfd_reloc_type_lookup (abfd, code);
7191 }
7192
7193 if (howto)
7194 areloc->howto = howto;
7195 else
7196 goto fail;
7197 }
7198
7199 return TRUE;
7200
7201 fail:
7202 (*_bfd_error_handler)
7203 (_("%B: unsupported relocation type %s"),
7204 abfd, areloc->howto->name);
7205 bfd_set_error (bfd_error_bad_value);
7206 return FALSE;
7207 }
7208
7209 bfd_boolean
7210 _bfd_elf_close_and_cleanup (bfd *abfd)
7211 {
7212 if (bfd_get_format (abfd) == bfd_object)
7213 {
7214 if (elf_tdata (abfd) != NULL && elf_shstrtab (abfd) != NULL)
7215 _bfd_elf_strtab_free (elf_shstrtab (abfd));
7216 _bfd_dwarf2_cleanup_debug_info (abfd);
7217 }
7218
7219 return _bfd_generic_close_and_cleanup (abfd);
7220 }
7221
7222 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
7223 in the relocation's offset. Thus we cannot allow any sort of sanity
7224 range-checking to interfere. There is nothing else to do in processing
7225 this reloc. */
7226
7227 bfd_reloc_status_type
7228 _bfd_elf_rel_vtable_reloc_fn
7229 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
7230 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
7231 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
7232 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
7233 {
7234 return bfd_reloc_ok;
7235 }
7236 \f
7237 /* Elf core file support. Much of this only works on native
7238 toolchains, since we rely on knowing the
7239 machine-dependent procfs structure in order to pick
7240 out details about the corefile. */
7241
7242 #ifdef HAVE_SYS_PROCFS_H
7243 # include <sys/procfs.h>
7244 #endif
7245
7246 /* FIXME: this is kinda wrong, but it's what gdb wants. */
7247
7248 static int
7249 elfcore_make_pid (bfd *abfd)
7250 {
7251 return ((elf_tdata (abfd)->core_lwpid << 16)
7252 + (elf_tdata (abfd)->core_pid));
7253 }
7254
7255 /* If there isn't a section called NAME, make one, using
7256 data from SECT. Note, this function will generate a
7257 reference to NAME, so you shouldn't deallocate or
7258 overwrite it. */
7259
7260 static bfd_boolean
7261 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
7262 {
7263 asection *sect2;
7264
7265 if (bfd_get_section_by_name (abfd, name) != NULL)
7266 return TRUE;
7267
7268 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
7269 if (sect2 == NULL)
7270 return FALSE;
7271
7272 sect2->size = sect->size;
7273 sect2->filepos = sect->filepos;
7274 sect2->alignment_power = sect->alignment_power;
7275 return TRUE;
7276 }
7277
7278 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
7279 actually creates up to two pseudosections:
7280 - For the single-threaded case, a section named NAME, unless
7281 such a section already exists.
7282 - For the multi-threaded case, a section named "NAME/PID", where
7283 PID is elfcore_make_pid (abfd).
7284 Both pseudosections have identical contents. */
7285 bfd_boolean
7286 _bfd_elfcore_make_pseudosection (bfd *abfd,
7287 char *name,
7288 size_t size,
7289 ufile_ptr filepos)
7290 {
7291 char buf[100];
7292 char *threaded_name;
7293 size_t len;
7294 asection *sect;
7295
7296 /* Build the section name. */
7297
7298 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
7299 len = strlen (buf) + 1;
7300 threaded_name = bfd_alloc (abfd, len);
7301 if (threaded_name == NULL)
7302 return FALSE;
7303 memcpy (threaded_name, buf, len);
7304
7305 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
7306 SEC_HAS_CONTENTS);
7307 if (sect == NULL)
7308 return FALSE;
7309 sect->size = size;
7310 sect->filepos = filepos;
7311 sect->alignment_power = 2;
7312
7313 return elfcore_maybe_make_sect (abfd, name, sect);
7314 }
7315
7316 /* prstatus_t exists on:
7317 solaris 2.5+
7318 linux 2.[01] + glibc
7319 unixware 4.2
7320 */
7321
7322 #if defined (HAVE_PRSTATUS_T)
7323
7324 static bfd_boolean
7325 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
7326 {
7327 size_t size;
7328 int offset;
7329
7330 if (note->descsz == sizeof (prstatus_t))
7331 {
7332 prstatus_t prstat;
7333
7334 size = sizeof (prstat.pr_reg);
7335 offset = offsetof (prstatus_t, pr_reg);
7336 memcpy (&prstat, note->descdata, sizeof (prstat));
7337
7338 /* Do not overwrite the core signal if it
7339 has already been set by another thread. */
7340 if (elf_tdata (abfd)->core_signal == 0)
7341 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7342 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7343
7344 /* pr_who exists on:
7345 solaris 2.5+
7346 unixware 4.2
7347 pr_who doesn't exist on:
7348 linux 2.[01]
7349 */
7350 #if defined (HAVE_PRSTATUS_T_PR_WHO)
7351 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7352 #endif
7353 }
7354 #if defined (HAVE_PRSTATUS32_T)
7355 else if (note->descsz == sizeof (prstatus32_t))
7356 {
7357 /* 64-bit host, 32-bit corefile */
7358 prstatus32_t prstat;
7359
7360 size = sizeof (prstat.pr_reg);
7361 offset = offsetof (prstatus32_t, pr_reg);
7362 memcpy (&prstat, note->descdata, sizeof (prstat));
7363
7364 /* Do not overwrite the core signal if it
7365 has already been set by another thread. */
7366 if (elf_tdata (abfd)->core_signal == 0)
7367 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7368 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7369
7370 /* pr_who exists on:
7371 solaris 2.5+
7372 unixware 4.2
7373 pr_who doesn't exist on:
7374 linux 2.[01]
7375 */
7376 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
7377 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7378 #endif
7379 }
7380 #endif /* HAVE_PRSTATUS32_T */
7381 else
7382 {
7383 /* Fail - we don't know how to handle any other
7384 note size (ie. data object type). */
7385 return TRUE;
7386 }
7387
7388 /* Make a ".reg/999" section and a ".reg" section. */
7389 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
7390 size, note->descpos + offset);
7391 }
7392 #endif /* defined (HAVE_PRSTATUS_T) */
7393
7394 /* Create a pseudosection containing the exact contents of NOTE. */
7395 static bfd_boolean
7396 elfcore_make_note_pseudosection (bfd *abfd,
7397 char *name,
7398 Elf_Internal_Note *note)
7399 {
7400 return _bfd_elfcore_make_pseudosection (abfd, name,
7401 note->descsz, note->descpos);
7402 }
7403
7404 /* There isn't a consistent prfpregset_t across platforms,
7405 but it doesn't matter, because we don't have to pick this
7406 data structure apart. */
7407
7408 static bfd_boolean
7409 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
7410 {
7411 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7412 }
7413
7414 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
7415 type of 5 (NT_PRXFPREG). Just include the whole note's contents
7416 literally. */
7417
7418 static bfd_boolean
7419 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
7420 {
7421 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
7422 }
7423
7424 #if defined (HAVE_PRPSINFO_T)
7425 typedef prpsinfo_t elfcore_psinfo_t;
7426 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
7427 typedef prpsinfo32_t elfcore_psinfo32_t;
7428 #endif
7429 #endif
7430
7431 #if defined (HAVE_PSINFO_T)
7432 typedef psinfo_t elfcore_psinfo_t;
7433 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
7434 typedef psinfo32_t elfcore_psinfo32_t;
7435 #endif
7436 #endif
7437
7438 /* return a malloc'ed copy of a string at START which is at
7439 most MAX bytes long, possibly without a terminating '\0'.
7440 the copy will always have a terminating '\0'. */
7441
7442 char *
7443 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
7444 {
7445 char *dups;
7446 char *end = memchr (start, '\0', max);
7447 size_t len;
7448
7449 if (end == NULL)
7450 len = max;
7451 else
7452 len = end - start;
7453
7454 dups = bfd_alloc (abfd, len + 1);
7455 if (dups == NULL)
7456 return NULL;
7457
7458 memcpy (dups, start, len);
7459 dups[len] = '\0';
7460
7461 return dups;
7462 }
7463
7464 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7465 static bfd_boolean
7466 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
7467 {
7468 if (note->descsz == sizeof (elfcore_psinfo_t))
7469 {
7470 elfcore_psinfo_t psinfo;
7471
7472 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7473
7474 elf_tdata (abfd)->core_program
7475 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7476 sizeof (psinfo.pr_fname));
7477
7478 elf_tdata (abfd)->core_command
7479 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7480 sizeof (psinfo.pr_psargs));
7481 }
7482 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
7483 else if (note->descsz == sizeof (elfcore_psinfo32_t))
7484 {
7485 /* 64-bit host, 32-bit corefile */
7486 elfcore_psinfo32_t psinfo;
7487
7488 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7489
7490 elf_tdata (abfd)->core_program
7491 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7492 sizeof (psinfo.pr_fname));
7493
7494 elf_tdata (abfd)->core_command
7495 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7496 sizeof (psinfo.pr_psargs));
7497 }
7498 #endif
7499
7500 else
7501 {
7502 /* Fail - we don't know how to handle any other
7503 note size (ie. data object type). */
7504 return TRUE;
7505 }
7506
7507 /* Note that for some reason, a spurious space is tacked
7508 onto the end of the args in some (at least one anyway)
7509 implementations, so strip it off if it exists. */
7510
7511 {
7512 char *command = elf_tdata (abfd)->core_command;
7513 int n = strlen (command);
7514
7515 if (0 < n && command[n - 1] == ' ')
7516 command[n - 1] = '\0';
7517 }
7518
7519 return TRUE;
7520 }
7521 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
7522
7523 #if defined (HAVE_PSTATUS_T)
7524 static bfd_boolean
7525 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
7526 {
7527 if (note->descsz == sizeof (pstatus_t)
7528 #if defined (HAVE_PXSTATUS_T)
7529 || note->descsz == sizeof (pxstatus_t)
7530 #endif
7531 )
7532 {
7533 pstatus_t pstat;
7534
7535 memcpy (&pstat, note->descdata, sizeof (pstat));
7536
7537 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7538 }
7539 #if defined (HAVE_PSTATUS32_T)
7540 else if (note->descsz == sizeof (pstatus32_t))
7541 {
7542 /* 64-bit host, 32-bit corefile */
7543 pstatus32_t pstat;
7544
7545 memcpy (&pstat, note->descdata, sizeof (pstat));
7546
7547 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7548 }
7549 #endif
7550 /* Could grab some more details from the "representative"
7551 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
7552 NT_LWPSTATUS note, presumably. */
7553
7554 return TRUE;
7555 }
7556 #endif /* defined (HAVE_PSTATUS_T) */
7557
7558 #if defined (HAVE_LWPSTATUS_T)
7559 static bfd_boolean
7560 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
7561 {
7562 lwpstatus_t lwpstat;
7563 char buf[100];
7564 char *name;
7565 size_t len;
7566 asection *sect;
7567
7568 if (note->descsz != sizeof (lwpstat)
7569 #if defined (HAVE_LWPXSTATUS_T)
7570 && note->descsz != sizeof (lwpxstatus_t)
7571 #endif
7572 )
7573 return TRUE;
7574
7575 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
7576
7577 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
7578 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
7579
7580 /* Make a ".reg/999" section. */
7581
7582 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
7583 len = strlen (buf) + 1;
7584 name = bfd_alloc (abfd, len);
7585 if (name == NULL)
7586 return FALSE;
7587 memcpy (name, buf, len);
7588
7589 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7590 if (sect == NULL)
7591 return FALSE;
7592
7593 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7594 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
7595 sect->filepos = note->descpos
7596 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
7597 #endif
7598
7599 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7600 sect->size = sizeof (lwpstat.pr_reg);
7601 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
7602 #endif
7603
7604 sect->alignment_power = 2;
7605
7606 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
7607 return FALSE;
7608
7609 /* Make a ".reg2/999" section */
7610
7611 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
7612 len = strlen (buf) + 1;
7613 name = bfd_alloc (abfd, len);
7614 if (name == NULL)
7615 return FALSE;
7616 memcpy (name, buf, len);
7617
7618 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7619 if (sect == NULL)
7620 return FALSE;
7621
7622 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7623 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
7624 sect->filepos = note->descpos
7625 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
7626 #endif
7627
7628 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
7629 sect->size = sizeof (lwpstat.pr_fpreg);
7630 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
7631 #endif
7632
7633 sect->alignment_power = 2;
7634
7635 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
7636 }
7637 #endif /* defined (HAVE_LWPSTATUS_T) */
7638
7639 #if defined (HAVE_WIN32_PSTATUS_T)
7640 static bfd_boolean
7641 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
7642 {
7643 char buf[30];
7644 char *name;
7645 size_t len;
7646 asection *sect;
7647 win32_pstatus_t pstatus;
7648
7649 if (note->descsz < sizeof (pstatus))
7650 return TRUE;
7651
7652 memcpy (&pstatus, note->descdata, sizeof (pstatus));
7653
7654 switch (pstatus.data_type)
7655 {
7656 case NOTE_INFO_PROCESS:
7657 /* FIXME: need to add ->core_command. */
7658 elf_tdata (abfd)->core_signal = pstatus.data.process_info.signal;
7659 elf_tdata (abfd)->core_pid = pstatus.data.process_info.pid;
7660 break;
7661
7662 case NOTE_INFO_THREAD:
7663 /* Make a ".reg/999" section. */
7664 sprintf (buf, ".reg/%ld", (long) pstatus.data.thread_info.tid);
7665
7666 len = strlen (buf) + 1;
7667 name = bfd_alloc (abfd, len);
7668 if (name == NULL)
7669 return FALSE;
7670
7671 memcpy (name, buf, len);
7672
7673 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7674 if (sect == NULL)
7675 return FALSE;
7676
7677 sect->size = sizeof (pstatus.data.thread_info.thread_context);
7678 sect->filepos = (note->descpos
7679 + offsetof (struct win32_pstatus,
7680 data.thread_info.thread_context));
7681 sect->alignment_power = 2;
7682
7683 if (pstatus.data.thread_info.is_active_thread)
7684 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
7685 return FALSE;
7686 break;
7687
7688 case NOTE_INFO_MODULE:
7689 /* Make a ".module/xxxxxxxx" section. */
7690 sprintf (buf, ".module/%08lx",
7691 (long) pstatus.data.module_info.base_address);
7692
7693 len = strlen (buf) + 1;
7694 name = bfd_alloc (abfd, len);
7695 if (name == NULL)
7696 return FALSE;
7697
7698 memcpy (name, buf, len);
7699
7700 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7701
7702 if (sect == NULL)
7703 return FALSE;
7704
7705 sect->size = note->descsz;
7706 sect->filepos = note->descpos;
7707 sect->alignment_power = 2;
7708 break;
7709
7710 default:
7711 return TRUE;
7712 }
7713
7714 return TRUE;
7715 }
7716 #endif /* HAVE_WIN32_PSTATUS_T */
7717
7718 static bfd_boolean
7719 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
7720 {
7721 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7722
7723 switch (note->type)
7724 {
7725 default:
7726 return TRUE;
7727
7728 case NT_PRSTATUS:
7729 if (bed->elf_backend_grok_prstatus)
7730 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
7731 return TRUE;
7732 #if defined (HAVE_PRSTATUS_T)
7733 return elfcore_grok_prstatus (abfd, note);
7734 #else
7735 return TRUE;
7736 #endif
7737
7738 #if defined (HAVE_PSTATUS_T)
7739 case NT_PSTATUS:
7740 return elfcore_grok_pstatus (abfd, note);
7741 #endif
7742
7743 #if defined (HAVE_LWPSTATUS_T)
7744 case NT_LWPSTATUS:
7745 return elfcore_grok_lwpstatus (abfd, note);
7746 #endif
7747
7748 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
7749 return elfcore_grok_prfpreg (abfd, note);
7750
7751 #if defined (HAVE_WIN32_PSTATUS_T)
7752 case NT_WIN32PSTATUS:
7753 return elfcore_grok_win32pstatus (abfd, note);
7754 #endif
7755
7756 case NT_PRXFPREG: /* Linux SSE extension */
7757 if (note->namesz == 6
7758 && strcmp (note->namedata, "LINUX") == 0)
7759 return elfcore_grok_prxfpreg (abfd, note);
7760 else
7761 return TRUE;
7762
7763 case NT_PRPSINFO:
7764 case NT_PSINFO:
7765 if (bed->elf_backend_grok_psinfo)
7766 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
7767 return TRUE;
7768 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7769 return elfcore_grok_psinfo (abfd, note);
7770 #else
7771 return TRUE;
7772 #endif
7773
7774 case NT_AUXV:
7775 {
7776 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
7777 SEC_HAS_CONTENTS);
7778
7779 if (sect == NULL)
7780 return FALSE;
7781 sect->size = note->descsz;
7782 sect->filepos = note->descpos;
7783 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
7784
7785 return TRUE;
7786 }
7787 }
7788 }
7789
7790 static bfd_boolean
7791 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
7792 {
7793 char *cp;
7794
7795 cp = strchr (note->namedata, '@');
7796 if (cp != NULL)
7797 {
7798 *lwpidp = atoi(cp + 1);
7799 return TRUE;
7800 }
7801 return FALSE;
7802 }
7803
7804 static bfd_boolean
7805 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
7806 {
7807
7808 /* Signal number at offset 0x08. */
7809 elf_tdata (abfd)->core_signal
7810 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
7811
7812 /* Process ID at offset 0x50. */
7813 elf_tdata (abfd)->core_pid
7814 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
7815
7816 /* Command name at 0x7c (max 32 bytes, including nul). */
7817 elf_tdata (abfd)->core_command
7818 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
7819
7820 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
7821 note);
7822 }
7823
7824 static bfd_boolean
7825 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
7826 {
7827 int lwp;
7828
7829 if (elfcore_netbsd_get_lwpid (note, &lwp))
7830 elf_tdata (abfd)->core_lwpid = lwp;
7831
7832 if (note->type == NT_NETBSDCORE_PROCINFO)
7833 {
7834 /* NetBSD-specific core "procinfo". Note that we expect to
7835 find this note before any of the others, which is fine,
7836 since the kernel writes this note out first when it
7837 creates a core file. */
7838
7839 return elfcore_grok_netbsd_procinfo (abfd, note);
7840 }
7841
7842 /* As of Jan 2002 there are no other machine-independent notes
7843 defined for NetBSD core files. If the note type is less
7844 than the start of the machine-dependent note types, we don't
7845 understand it. */
7846
7847 if (note->type < NT_NETBSDCORE_FIRSTMACH)
7848 return TRUE;
7849
7850
7851 switch (bfd_get_arch (abfd))
7852 {
7853 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
7854 PT_GETFPREGS == mach+2. */
7855
7856 case bfd_arch_alpha:
7857 case bfd_arch_sparc:
7858 switch (note->type)
7859 {
7860 case NT_NETBSDCORE_FIRSTMACH+0:
7861 return elfcore_make_note_pseudosection (abfd, ".reg", note);
7862
7863 case NT_NETBSDCORE_FIRSTMACH+2:
7864 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7865
7866 default:
7867 return TRUE;
7868 }
7869
7870 /* On all other arch's, PT_GETREGS == mach+1 and
7871 PT_GETFPREGS == mach+3. */
7872
7873 default:
7874 switch (note->type)
7875 {
7876 case NT_NETBSDCORE_FIRSTMACH+1:
7877 return elfcore_make_note_pseudosection (abfd, ".reg", note);
7878
7879 case NT_NETBSDCORE_FIRSTMACH+3:
7880 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7881
7882 default:
7883 return TRUE;
7884 }
7885 }
7886 /* NOTREACHED */
7887 }
7888
7889 static bfd_boolean
7890 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
7891 {
7892 void *ddata = note->descdata;
7893 char buf[100];
7894 char *name;
7895 asection *sect;
7896 short sig;
7897 unsigned flags;
7898
7899 /* nto_procfs_status 'pid' field is at offset 0. */
7900 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
7901
7902 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
7903 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
7904
7905 /* nto_procfs_status 'flags' field is at offset 8. */
7906 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
7907
7908 /* nto_procfs_status 'what' field is at offset 14. */
7909 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
7910 {
7911 elf_tdata (abfd)->core_signal = sig;
7912 elf_tdata (abfd)->core_lwpid = *tid;
7913 }
7914
7915 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
7916 do not come from signals so we make sure we set the current
7917 thread just in case. */
7918 if (flags & 0x00000080)
7919 elf_tdata (abfd)->core_lwpid = *tid;
7920
7921 /* Make a ".qnx_core_status/%d" section. */
7922 sprintf (buf, ".qnx_core_status/%ld", *tid);
7923
7924 name = bfd_alloc (abfd, strlen (buf) + 1);
7925 if (name == NULL)
7926 return FALSE;
7927 strcpy (name, buf);
7928
7929 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7930 if (sect == NULL)
7931 return FALSE;
7932
7933 sect->size = note->descsz;
7934 sect->filepos = note->descpos;
7935 sect->alignment_power = 2;
7936
7937 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
7938 }
7939
7940 static bfd_boolean
7941 elfcore_grok_nto_regs (bfd *abfd,
7942 Elf_Internal_Note *note,
7943 long tid,
7944 char *base)
7945 {
7946 char buf[100];
7947 char *name;
7948 asection *sect;
7949
7950 /* Make a "(base)/%d" section. */
7951 sprintf (buf, "%s/%ld", base, tid);
7952
7953 name = bfd_alloc (abfd, strlen (buf) + 1);
7954 if (name == NULL)
7955 return FALSE;
7956 strcpy (name, buf);
7957
7958 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7959 if (sect == NULL)
7960 return FALSE;
7961
7962 sect->size = note->descsz;
7963 sect->filepos = note->descpos;
7964 sect->alignment_power = 2;
7965
7966 /* This is the current thread. */
7967 if (elf_tdata (abfd)->core_lwpid == tid)
7968 return elfcore_maybe_make_sect (abfd, base, sect);
7969
7970 return TRUE;
7971 }
7972
7973 #define BFD_QNT_CORE_INFO 7
7974 #define BFD_QNT_CORE_STATUS 8
7975 #define BFD_QNT_CORE_GREG 9
7976 #define BFD_QNT_CORE_FPREG 10
7977
7978 static bfd_boolean
7979 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
7980 {
7981 /* Every GREG section has a STATUS section before it. Store the
7982 tid from the previous call to pass down to the next gregs
7983 function. */
7984 static long tid = 1;
7985
7986 switch (note->type)
7987 {
7988 case BFD_QNT_CORE_INFO:
7989 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
7990 case BFD_QNT_CORE_STATUS:
7991 return elfcore_grok_nto_status (abfd, note, &tid);
7992 case BFD_QNT_CORE_GREG:
7993 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
7994 case BFD_QNT_CORE_FPREG:
7995 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
7996 default:
7997 return TRUE;
7998 }
7999 }
8000
8001 /* Function: elfcore_write_note
8002
8003 Inputs:
8004 buffer to hold note
8005 name of note
8006 type of note
8007 data for note
8008 size of data for note
8009
8010 Return:
8011 End of buffer containing note. */
8012
8013 char *
8014 elfcore_write_note (bfd *abfd,
8015 char *buf,
8016 int *bufsiz,
8017 const char *name,
8018 int type,
8019 const void *input,
8020 int size)
8021 {
8022 Elf_External_Note *xnp;
8023 size_t namesz;
8024 size_t pad;
8025 size_t newspace;
8026 char *p, *dest;
8027
8028 namesz = 0;
8029 pad = 0;
8030 if (name != NULL)
8031 {
8032 const struct elf_backend_data *bed;
8033
8034 namesz = strlen (name) + 1;
8035 bed = get_elf_backend_data (abfd);
8036 pad = -namesz & ((1 << bed->s->log_file_align) - 1);
8037 }
8038
8039 newspace = 12 + namesz + pad + size;
8040
8041 p = realloc (buf, *bufsiz + newspace);
8042 dest = p + *bufsiz;
8043 *bufsiz += newspace;
8044 xnp = (Elf_External_Note *) dest;
8045 H_PUT_32 (abfd, namesz, xnp->namesz);
8046 H_PUT_32 (abfd, size, xnp->descsz);
8047 H_PUT_32 (abfd, type, xnp->type);
8048 dest = xnp->name;
8049 if (name != NULL)
8050 {
8051 memcpy (dest, name, namesz);
8052 dest += namesz;
8053 while (pad != 0)
8054 {
8055 *dest++ = '\0';
8056 --pad;
8057 }
8058 }
8059 memcpy (dest, input, size);
8060 return p;
8061 }
8062
8063 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8064 char *
8065 elfcore_write_prpsinfo (bfd *abfd,
8066 char *buf,
8067 int *bufsiz,
8068 const char *fname,
8069 const char *psargs)
8070 {
8071 int note_type;
8072 char *note_name = "CORE";
8073
8074 #if defined (HAVE_PSINFO_T)
8075 psinfo_t data;
8076 note_type = NT_PSINFO;
8077 #else
8078 prpsinfo_t data;
8079 note_type = NT_PRPSINFO;
8080 #endif
8081
8082 memset (&data, 0, sizeof (data));
8083 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
8084 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
8085 return elfcore_write_note (abfd, buf, bufsiz,
8086 note_name, note_type, &data, sizeof (data));
8087 }
8088 #endif /* PSINFO_T or PRPSINFO_T */
8089
8090 #if defined (HAVE_PRSTATUS_T)
8091 char *
8092 elfcore_write_prstatus (bfd *abfd,
8093 char *buf,
8094 int *bufsiz,
8095 long pid,
8096 int cursig,
8097 const void *gregs)
8098 {
8099 prstatus_t prstat;
8100 char *note_name = "CORE";
8101
8102 memset (&prstat, 0, sizeof (prstat));
8103 prstat.pr_pid = pid;
8104 prstat.pr_cursig = cursig;
8105 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
8106 return elfcore_write_note (abfd, buf, bufsiz,
8107 note_name, NT_PRSTATUS, &prstat, sizeof (prstat));
8108 }
8109 #endif /* HAVE_PRSTATUS_T */
8110
8111 #if defined (HAVE_LWPSTATUS_T)
8112 char *
8113 elfcore_write_lwpstatus (bfd *abfd,
8114 char *buf,
8115 int *bufsiz,
8116 long pid,
8117 int cursig,
8118 const void *gregs)
8119 {
8120 lwpstatus_t lwpstat;
8121 char *note_name = "CORE";
8122
8123 memset (&lwpstat, 0, sizeof (lwpstat));
8124 lwpstat.pr_lwpid = pid >> 16;
8125 lwpstat.pr_cursig = cursig;
8126 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8127 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
8128 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8129 #if !defined(gregs)
8130 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
8131 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
8132 #else
8133 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
8134 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
8135 #endif
8136 #endif
8137 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8138 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
8139 }
8140 #endif /* HAVE_LWPSTATUS_T */
8141
8142 #if defined (HAVE_PSTATUS_T)
8143 char *
8144 elfcore_write_pstatus (bfd *abfd,
8145 char *buf,
8146 int *bufsiz,
8147 long pid,
8148 int cursig ATTRIBUTE_UNUSED,
8149 const void *gregs ATTRIBUTE_UNUSED)
8150 {
8151 pstatus_t pstat;
8152 char *note_name = "CORE";
8153
8154 memset (&pstat, 0, sizeof (pstat));
8155 pstat.pr_pid = pid & 0xffff;
8156 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
8157 NT_PSTATUS, &pstat, sizeof (pstat));
8158 return buf;
8159 }
8160 #endif /* HAVE_PSTATUS_T */
8161
8162 char *
8163 elfcore_write_prfpreg (bfd *abfd,
8164 char *buf,
8165 int *bufsiz,
8166 const void *fpregs,
8167 int size)
8168 {
8169 char *note_name = "CORE";
8170 return elfcore_write_note (abfd, buf, bufsiz,
8171 note_name, NT_FPREGSET, fpregs, size);
8172 }
8173
8174 char *
8175 elfcore_write_prxfpreg (bfd *abfd,
8176 char *buf,
8177 int *bufsiz,
8178 const void *xfpregs,
8179 int size)
8180 {
8181 char *note_name = "LINUX";
8182 return elfcore_write_note (abfd, buf, bufsiz,
8183 note_name, NT_PRXFPREG, xfpregs, size);
8184 }
8185
8186 static bfd_boolean
8187 elfcore_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
8188 {
8189 char *buf;
8190 char *p;
8191
8192 if (size <= 0)
8193 return TRUE;
8194
8195 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
8196 return FALSE;
8197
8198 buf = bfd_malloc (size);
8199 if (buf == NULL)
8200 return FALSE;
8201
8202 if (bfd_bread (buf, size, abfd) != size)
8203 {
8204 error:
8205 free (buf);
8206 return FALSE;
8207 }
8208
8209 p = buf;
8210 while (p < buf + size)
8211 {
8212 /* FIXME: bad alignment assumption. */
8213 Elf_External_Note *xnp = (Elf_External_Note *) p;
8214 Elf_Internal_Note in;
8215
8216 in.type = H_GET_32 (abfd, xnp->type);
8217
8218 in.namesz = H_GET_32 (abfd, xnp->namesz);
8219 in.namedata = xnp->name;
8220
8221 in.descsz = H_GET_32 (abfd, xnp->descsz);
8222 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
8223 in.descpos = offset + (in.descdata - buf);
8224
8225 if (strncmp (in.namedata, "NetBSD-CORE", 11) == 0)
8226 {
8227 if (! elfcore_grok_netbsd_note (abfd, &in))
8228 goto error;
8229 }
8230 else if (strncmp (in.namedata, "QNX", 3) == 0)
8231 {
8232 if (! elfcore_grok_nto_note (abfd, &in))
8233 goto error;
8234 }
8235 else
8236 {
8237 if (! elfcore_grok_note (abfd, &in))
8238 goto error;
8239 }
8240
8241 p = in.descdata + BFD_ALIGN (in.descsz, 4);
8242 }
8243
8244 free (buf);
8245 return TRUE;
8246 }
8247 \f
8248 /* Providing external access to the ELF program header table. */
8249
8250 /* Return an upper bound on the number of bytes required to store a
8251 copy of ABFD's program header table entries. Return -1 if an error
8252 occurs; bfd_get_error will return an appropriate code. */
8253
8254 long
8255 bfd_get_elf_phdr_upper_bound (bfd *abfd)
8256 {
8257 if (abfd->xvec->flavour != bfd_target_elf_flavour)
8258 {
8259 bfd_set_error (bfd_error_wrong_format);
8260 return -1;
8261 }
8262
8263 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
8264 }
8265
8266 /* Copy ABFD's program header table entries to *PHDRS. The entries
8267 will be stored as an array of Elf_Internal_Phdr structures, as
8268 defined in include/elf/internal.h. To find out how large the
8269 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
8270
8271 Return the number of program header table entries read, or -1 if an
8272 error occurs; bfd_get_error will return an appropriate code. */
8273
8274 int
8275 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
8276 {
8277 int num_phdrs;
8278
8279 if (abfd->xvec->flavour != bfd_target_elf_flavour)
8280 {
8281 bfd_set_error (bfd_error_wrong_format);
8282 return -1;
8283 }
8284
8285 num_phdrs = elf_elfheader (abfd)->e_phnum;
8286 memcpy (phdrs, elf_tdata (abfd)->phdr,
8287 num_phdrs * sizeof (Elf_Internal_Phdr));
8288
8289 return num_phdrs;
8290 }
8291
8292 void
8293 _bfd_elf_sprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, char *buf, bfd_vma value)
8294 {
8295 #ifdef BFD64
8296 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
8297
8298 i_ehdrp = elf_elfheader (abfd);
8299 if (i_ehdrp == NULL)
8300 sprintf_vma (buf, value);
8301 else
8302 {
8303 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
8304 {
8305 #if BFD_HOST_64BIT_LONG
8306 sprintf (buf, "%016lx", value);
8307 #else
8308 sprintf (buf, "%08lx%08lx", _bfd_int64_high (value),
8309 _bfd_int64_low (value));
8310 #endif
8311 }
8312 else
8313 sprintf (buf, "%08lx", (unsigned long) (value & 0xffffffff));
8314 }
8315 #else
8316 sprintf_vma (buf, value);
8317 #endif
8318 }
8319
8320 void
8321 _bfd_elf_fprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, void *stream, bfd_vma value)
8322 {
8323 #ifdef BFD64
8324 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
8325
8326 i_ehdrp = elf_elfheader (abfd);
8327 if (i_ehdrp == NULL)
8328 fprintf_vma ((FILE *) stream, value);
8329 else
8330 {
8331 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
8332 {
8333 #if BFD_HOST_64BIT_LONG
8334 fprintf ((FILE *) stream, "%016lx", value);
8335 #else
8336 fprintf ((FILE *) stream, "%08lx%08lx",
8337 _bfd_int64_high (value), _bfd_int64_low (value));
8338 #endif
8339 }
8340 else
8341 fprintf ((FILE *) stream, "%08lx",
8342 (unsigned long) (value & 0xffffffff));
8343 }
8344 #else
8345 fprintf_vma ((FILE *) stream, value);
8346 #endif
8347 }
8348
8349 enum elf_reloc_type_class
8350 _bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
8351 {
8352 return reloc_class_normal;
8353 }
8354
8355 /* For RELA architectures, return the relocation value for a
8356 relocation against a local symbol. */
8357
8358 bfd_vma
8359 _bfd_elf_rela_local_sym (bfd *abfd,
8360 Elf_Internal_Sym *sym,
8361 asection **psec,
8362 Elf_Internal_Rela *rel)
8363 {
8364 asection *sec = *psec;
8365 bfd_vma relocation;
8366
8367 relocation = (sec->output_section->vma
8368 + sec->output_offset
8369 + sym->st_value);
8370 if ((sec->flags & SEC_MERGE)
8371 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
8372 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
8373 {
8374 rel->r_addend =
8375 _bfd_merged_section_offset (abfd, psec,
8376 elf_section_data (sec)->sec_info,
8377 sym->st_value + rel->r_addend);
8378 if (sec != *psec)
8379 {
8380 /* If we have changed the section, and our original section is
8381 marked with SEC_EXCLUDE, it means that the original
8382 SEC_MERGE section has been completely subsumed in some
8383 other SEC_MERGE section. In this case, we need to leave
8384 some info around for --emit-relocs. */
8385 if ((sec->flags & SEC_EXCLUDE) != 0)
8386 sec->kept_section = *psec;
8387 sec = *psec;
8388 }
8389 rel->r_addend -= relocation;
8390 rel->r_addend += sec->output_section->vma + sec->output_offset;
8391 }
8392 return relocation;
8393 }
8394
8395 bfd_vma
8396 _bfd_elf_rel_local_sym (bfd *abfd,
8397 Elf_Internal_Sym *sym,
8398 asection **psec,
8399 bfd_vma addend)
8400 {
8401 asection *sec = *psec;
8402
8403 if (sec->sec_info_type != ELF_INFO_TYPE_MERGE)
8404 return sym->st_value + addend;
8405
8406 return _bfd_merged_section_offset (abfd, psec,
8407 elf_section_data (sec)->sec_info,
8408 sym->st_value + addend);
8409 }
8410
8411 bfd_vma
8412 _bfd_elf_section_offset (bfd *abfd,
8413 struct bfd_link_info *info,
8414 asection *sec,
8415 bfd_vma offset)
8416 {
8417 switch (sec->sec_info_type)
8418 {
8419 case ELF_INFO_TYPE_STABS:
8420 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
8421 offset);
8422 case ELF_INFO_TYPE_EH_FRAME:
8423 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
8424 default:
8425 return offset;
8426 }
8427 }
8428 \f
8429 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
8430 reconstruct an ELF file by reading the segments out of remote memory
8431 based on the ELF file header at EHDR_VMA and the ELF program headers it
8432 points to. If not null, *LOADBASEP is filled in with the difference
8433 between the VMAs from which the segments were read, and the VMAs the
8434 file headers (and hence BFD's idea of each section's VMA) put them at.
8435
8436 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
8437 remote memory at target address VMA into the local buffer at MYADDR; it
8438 should return zero on success or an `errno' code on failure. TEMPL must
8439 be a BFD for an ELF target with the word size and byte order found in
8440 the remote memory. */
8441
8442 bfd *
8443 bfd_elf_bfd_from_remote_memory
8444 (bfd *templ,
8445 bfd_vma ehdr_vma,
8446 bfd_vma *loadbasep,
8447 int (*target_read_memory) (bfd_vma, bfd_byte *, int))
8448 {
8449 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
8450 (templ, ehdr_vma, loadbasep, target_read_memory);
8451 }
8452 \f
8453 long
8454 _bfd_elf_get_synthetic_symtab (bfd *abfd,
8455 long symcount ATTRIBUTE_UNUSED,
8456 asymbol **syms ATTRIBUTE_UNUSED,
8457 long dynsymcount,
8458 asymbol **dynsyms,
8459 asymbol **ret)
8460 {
8461 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8462 asection *relplt;
8463 asymbol *s;
8464 const char *relplt_name;
8465 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
8466 arelent *p;
8467 long count, i, n;
8468 size_t size;
8469 Elf_Internal_Shdr *hdr;
8470 char *names;
8471 asection *plt;
8472
8473 *ret = NULL;
8474
8475 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
8476 return 0;
8477
8478 if (dynsymcount <= 0)
8479 return 0;
8480
8481 if (!bed->plt_sym_val)
8482 return 0;
8483
8484 relplt_name = bed->relplt_name;
8485 if (relplt_name == NULL)
8486 relplt_name = bed->default_use_rela_p ? ".rela.plt" : ".rel.plt";
8487 relplt = bfd_get_section_by_name (abfd, relplt_name);
8488 if (relplt == NULL)
8489 return 0;
8490
8491 hdr = &elf_section_data (relplt)->this_hdr;
8492 if (hdr->sh_link != elf_dynsymtab (abfd)
8493 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
8494 return 0;
8495
8496 plt = bfd_get_section_by_name (abfd, ".plt");
8497 if (plt == NULL)
8498 return 0;
8499
8500 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
8501 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
8502 return -1;
8503
8504 count = relplt->size / hdr->sh_entsize;
8505 size = count * sizeof (asymbol);
8506 p = relplt->relocation;
8507 for (i = 0; i < count; i++, s++, p++)
8508 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
8509
8510 s = *ret = bfd_malloc (size);
8511 if (s == NULL)
8512 return -1;
8513
8514 names = (char *) (s + count);
8515 p = relplt->relocation;
8516 n = 0;
8517 for (i = 0; i < count; i++, s++, p++)
8518 {
8519 size_t len;
8520 bfd_vma addr;
8521
8522 addr = bed->plt_sym_val (i, plt, p);
8523 if (addr == (bfd_vma) -1)
8524 continue;
8525
8526 *s = **p->sym_ptr_ptr;
8527 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
8528 we are defining a symbol, ensure one of them is set. */
8529 if ((s->flags & BSF_LOCAL) == 0)
8530 s->flags |= BSF_GLOBAL;
8531 s->section = plt;
8532 s->value = addr - plt->vma;
8533 s->name = names;
8534 len = strlen ((*p->sym_ptr_ptr)->name);
8535 memcpy (names, (*p->sym_ptr_ptr)->name, len);
8536 names += len;
8537 memcpy (names, "@plt", sizeof ("@plt"));
8538 names += sizeof ("@plt");
8539 ++n;
8540 }
8541
8542 return n;
8543 }
8544
8545 /* Sort symbol by binding and section. We want to put definitions
8546 sorted by section at the beginning. */
8547
8548 static int
8549 elf_sort_elf_symbol (const void *arg1, const void *arg2)
8550 {
8551 const Elf_Internal_Sym *s1;
8552 const Elf_Internal_Sym *s2;
8553 int shndx;
8554
8555 /* Make sure that undefined symbols are at the end. */
8556 s1 = (const Elf_Internal_Sym *) arg1;
8557 if (s1->st_shndx == SHN_UNDEF)
8558 return 1;
8559 s2 = (const Elf_Internal_Sym *) arg2;
8560 if (s2->st_shndx == SHN_UNDEF)
8561 return -1;
8562
8563 /* Sorted by section index. */
8564 shndx = s1->st_shndx - s2->st_shndx;
8565 if (shndx != 0)
8566 return shndx;
8567
8568 /* Sorted by binding. */
8569 return ELF_ST_BIND (s1->st_info) - ELF_ST_BIND (s2->st_info);
8570 }
8571
8572 struct elf_symbol
8573 {
8574 Elf_Internal_Sym *sym;
8575 const char *name;
8576 };
8577
8578 static int
8579 elf_sym_name_compare (const void *arg1, const void *arg2)
8580 {
8581 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
8582 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
8583 return strcmp (s1->name, s2->name);
8584 }
8585
8586 /* Check if 2 sections define the same set of local and global
8587 symbols. */
8588
8589 bfd_boolean
8590 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2)
8591 {
8592 bfd *bfd1, *bfd2;
8593 const struct elf_backend_data *bed1, *bed2;
8594 Elf_Internal_Shdr *hdr1, *hdr2;
8595 bfd_size_type symcount1, symcount2;
8596 Elf_Internal_Sym *isymbuf1, *isymbuf2;
8597 Elf_Internal_Sym *isymstart1 = NULL, *isymstart2 = NULL, *isym;
8598 Elf_Internal_Sym *isymend;
8599 struct elf_symbol *symp, *symtable1 = NULL, *symtable2 = NULL;
8600 bfd_size_type count1, count2, i;
8601 int shndx1, shndx2;
8602 bfd_boolean result;
8603
8604 bfd1 = sec1->owner;
8605 bfd2 = sec2->owner;
8606
8607 /* If both are .gnu.linkonce sections, they have to have the same
8608 section name. */
8609 if (strncmp (sec1->name, ".gnu.linkonce",
8610 sizeof ".gnu.linkonce" - 1) == 0
8611 && strncmp (sec2->name, ".gnu.linkonce",
8612 sizeof ".gnu.linkonce" - 1) == 0)
8613 return strcmp (sec1->name + sizeof ".gnu.linkonce",
8614 sec2->name + sizeof ".gnu.linkonce") == 0;
8615
8616 /* Both sections have to be in ELF. */
8617 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
8618 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
8619 return FALSE;
8620
8621 if (elf_section_type (sec1) != elf_section_type (sec2))
8622 return FALSE;
8623
8624 if ((elf_section_flags (sec1) & SHF_GROUP) != 0
8625 && (elf_section_flags (sec2) & SHF_GROUP) != 0)
8626 {
8627 /* If both are members of section groups, they have to have the
8628 same group name. */
8629 if (strcmp (elf_group_name (sec1), elf_group_name (sec2)) != 0)
8630 return FALSE;
8631 }
8632
8633 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
8634 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
8635 if (shndx1 == -1 || shndx2 == -1)
8636 return FALSE;
8637
8638 bed1 = get_elf_backend_data (bfd1);
8639 bed2 = get_elf_backend_data (bfd2);
8640 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
8641 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
8642 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
8643 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
8644
8645 if (symcount1 == 0 || symcount2 == 0)
8646 return FALSE;
8647
8648 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
8649 NULL, NULL, NULL);
8650 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
8651 NULL, NULL, NULL);
8652
8653 result = FALSE;
8654 if (isymbuf1 == NULL || isymbuf2 == NULL)
8655 goto done;
8656
8657 /* Sort symbols by binding and section. Global definitions are at
8658 the beginning. */
8659 qsort (isymbuf1, symcount1, sizeof (Elf_Internal_Sym),
8660 elf_sort_elf_symbol);
8661 qsort (isymbuf2, symcount2, sizeof (Elf_Internal_Sym),
8662 elf_sort_elf_symbol);
8663
8664 /* Count definitions in the section. */
8665 count1 = 0;
8666 for (isym = isymbuf1, isymend = isym + symcount1;
8667 isym < isymend; isym++)
8668 {
8669 if (isym->st_shndx == (unsigned int) shndx1)
8670 {
8671 if (count1 == 0)
8672 isymstart1 = isym;
8673 count1++;
8674 }
8675
8676 if (count1 && isym->st_shndx != (unsigned int) shndx1)
8677 break;
8678 }
8679
8680 count2 = 0;
8681 for (isym = isymbuf2, isymend = isym + symcount2;
8682 isym < isymend; isym++)
8683 {
8684 if (isym->st_shndx == (unsigned int) shndx2)
8685 {
8686 if (count2 == 0)
8687 isymstart2 = isym;
8688 count2++;
8689 }
8690
8691 if (count2 && isym->st_shndx != (unsigned int) shndx2)
8692 break;
8693 }
8694
8695 if (count1 == 0 || count2 == 0 || count1 != count2)
8696 goto done;
8697
8698 symtable1 = bfd_malloc (count1 * sizeof (struct elf_symbol));
8699 symtable2 = bfd_malloc (count1 * sizeof (struct elf_symbol));
8700
8701 if (symtable1 == NULL || symtable2 == NULL)
8702 goto done;
8703
8704 symp = symtable1;
8705 for (isym = isymstart1, isymend = isym + count1;
8706 isym < isymend; isym++)
8707 {
8708 symp->sym = isym;
8709 symp->name = bfd_elf_string_from_elf_section (bfd1,
8710 hdr1->sh_link,
8711 isym->st_name);
8712 symp++;
8713 }
8714
8715 symp = symtable2;
8716 for (isym = isymstart2, isymend = isym + count1;
8717 isym < isymend; isym++)
8718 {
8719 symp->sym = isym;
8720 symp->name = bfd_elf_string_from_elf_section (bfd2,
8721 hdr2->sh_link,
8722 isym->st_name);
8723 symp++;
8724 }
8725
8726 /* Sort symbol by name. */
8727 qsort (symtable1, count1, sizeof (struct elf_symbol),
8728 elf_sym_name_compare);
8729 qsort (symtable2, count1, sizeof (struct elf_symbol),
8730 elf_sym_name_compare);
8731
8732 for (i = 0; i < count1; i++)
8733 /* Two symbols must have the same binding, type and name. */
8734 if (symtable1 [i].sym->st_info != symtable2 [i].sym->st_info
8735 || symtable1 [i].sym->st_other != symtable2 [i].sym->st_other
8736 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
8737 goto done;
8738
8739 result = TRUE;
8740
8741 done:
8742 if (symtable1)
8743 free (symtable1);
8744 if (symtable2)
8745 free (symtable2);
8746 if (isymbuf1)
8747 free (isymbuf1);
8748 if (isymbuf2)
8749 free (isymbuf2);
8750
8751 return result;
8752 }
8753
8754 /* It is only used by x86-64 so far. */
8755 asection _bfd_elf_large_com_section
8756 = BFD_FAKE_SECTION (_bfd_elf_large_com_section,
8757 SEC_IS_COMMON, NULL, "LARGE_COMMON", 0);
8758
8759 /* Return TRUE if 2 section types are compatible. */
8760
8761 bfd_boolean
8762 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
8763 bfd *bbfd, const asection *bsec)
8764 {
8765 if (asec == NULL
8766 || bsec == NULL
8767 || abfd->xvec->flavour != bfd_target_elf_flavour
8768 || bbfd->xvec->flavour != bfd_target_elf_flavour)
8769 return TRUE;
8770
8771 return elf_section_type (asec) == elf_section_type (bsec);
8772 }