Automatic date update in version.in
[binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright (C) 1993-2021 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22
23 /*
24 SECTION
25 ELF backends
26
27 BFD support for ELF formats is being worked on.
28 Currently, the best supported back ends are for sparc and i386
29 (running svr4 or Solaris 2).
30
31 Documentation of the internals of the support code still needs
32 to be written. The code is changing quickly enough that we
33 haven't bothered yet. */
34
35 /* For sparc64-cross-sparc32. */
36 #define _SYSCALL32
37 #include "sysdep.h"
38 #include <limits.h>
39 #include "bfd.h"
40 #include "bfdlink.h"
41 #include "libbfd.h"
42 #define ARCH_SIZE 0
43 #include "elf-bfd.h"
44 #include "libiberty.h"
45 #include "safe-ctype.h"
46 #include "elf-linux-core.h"
47
48 #ifdef CORE_HEADER
49 #include CORE_HEADER
50 #endif
51
52 static int elf_sort_sections (const void *, const void *);
53 static bool assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
54 static bool swap_out_syms (bfd *, struct elf_strtab_hash **, int,
55 struct bfd_link_info *);
56 static bool elf_parse_notes (bfd *abfd, char *buf, size_t size,
57 file_ptr offset, size_t align);
58
59 /* Swap version information in and out. The version information is
60 currently size independent. If that ever changes, this code will
61 need to move into elfcode.h. */
62
63 /* Swap in a Verdef structure. */
64
65 void
66 _bfd_elf_swap_verdef_in (bfd *abfd,
67 const Elf_External_Verdef *src,
68 Elf_Internal_Verdef *dst)
69 {
70 dst->vd_version = H_GET_16 (abfd, src->vd_version);
71 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
72 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
73 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
74 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
75 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
76 dst->vd_next = H_GET_32 (abfd, src->vd_next);
77 }
78
79 /* Swap out a Verdef structure. */
80
81 void
82 _bfd_elf_swap_verdef_out (bfd *abfd,
83 const Elf_Internal_Verdef *src,
84 Elf_External_Verdef *dst)
85 {
86 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
87 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
88 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
89 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
90 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
91 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
92 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
93 }
94
95 /* Swap in a Verdaux structure. */
96
97 void
98 _bfd_elf_swap_verdaux_in (bfd *abfd,
99 const Elf_External_Verdaux *src,
100 Elf_Internal_Verdaux *dst)
101 {
102 dst->vda_name = H_GET_32 (abfd, src->vda_name);
103 dst->vda_next = H_GET_32 (abfd, src->vda_next);
104 }
105
106 /* Swap out a Verdaux structure. */
107
108 void
109 _bfd_elf_swap_verdaux_out (bfd *abfd,
110 const Elf_Internal_Verdaux *src,
111 Elf_External_Verdaux *dst)
112 {
113 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
114 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
115 }
116
117 /* Swap in a Verneed structure. */
118
119 void
120 _bfd_elf_swap_verneed_in (bfd *abfd,
121 const Elf_External_Verneed *src,
122 Elf_Internal_Verneed *dst)
123 {
124 dst->vn_version = H_GET_16 (abfd, src->vn_version);
125 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
126 dst->vn_file = H_GET_32 (abfd, src->vn_file);
127 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
128 dst->vn_next = H_GET_32 (abfd, src->vn_next);
129 }
130
131 /* Swap out a Verneed structure. */
132
133 void
134 _bfd_elf_swap_verneed_out (bfd *abfd,
135 const Elf_Internal_Verneed *src,
136 Elf_External_Verneed *dst)
137 {
138 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
139 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
140 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
141 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
142 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
143 }
144
145 /* Swap in a Vernaux structure. */
146
147 void
148 _bfd_elf_swap_vernaux_in (bfd *abfd,
149 const Elf_External_Vernaux *src,
150 Elf_Internal_Vernaux *dst)
151 {
152 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
153 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
154 dst->vna_other = H_GET_16 (abfd, src->vna_other);
155 dst->vna_name = H_GET_32 (abfd, src->vna_name);
156 dst->vna_next = H_GET_32 (abfd, src->vna_next);
157 }
158
159 /* Swap out a Vernaux structure. */
160
161 void
162 _bfd_elf_swap_vernaux_out (bfd *abfd,
163 const Elf_Internal_Vernaux *src,
164 Elf_External_Vernaux *dst)
165 {
166 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
167 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
168 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
169 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
170 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
171 }
172
173 /* Swap in a Versym structure. */
174
175 void
176 _bfd_elf_swap_versym_in (bfd *abfd,
177 const Elf_External_Versym *src,
178 Elf_Internal_Versym *dst)
179 {
180 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
181 }
182
183 /* Swap out a Versym structure. */
184
185 void
186 _bfd_elf_swap_versym_out (bfd *abfd,
187 const Elf_Internal_Versym *src,
188 Elf_External_Versym *dst)
189 {
190 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
191 }
192
193 /* Standard ELF hash function. Do not change this function; you will
194 cause invalid hash tables to be generated. */
195
196 unsigned long
197 bfd_elf_hash (const char *namearg)
198 {
199 const unsigned char *name = (const unsigned char *) namearg;
200 unsigned long h = 0;
201 unsigned long g;
202 int ch;
203
204 while ((ch = *name++) != '\0')
205 {
206 h = (h << 4) + ch;
207 if ((g = (h & 0xf0000000)) != 0)
208 {
209 h ^= g >> 24;
210 /* The ELF ABI says `h &= ~g', but this is equivalent in
211 this case and on some machines one insn instead of two. */
212 h ^= g;
213 }
214 }
215 return h & 0xffffffff;
216 }
217
218 /* DT_GNU_HASH hash function. Do not change this function; you will
219 cause invalid hash tables to be generated. */
220
221 unsigned long
222 bfd_elf_gnu_hash (const char *namearg)
223 {
224 const unsigned char *name = (const unsigned char *) namearg;
225 unsigned long h = 5381;
226 unsigned char ch;
227
228 while ((ch = *name++) != '\0')
229 h = (h << 5) + h + ch;
230 return h & 0xffffffff;
231 }
232
233 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
234 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
235 bool
236 bfd_elf_allocate_object (bfd *abfd,
237 size_t object_size,
238 enum elf_target_id object_id)
239 {
240 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
241 abfd->tdata.any = bfd_zalloc (abfd, object_size);
242 if (abfd->tdata.any == NULL)
243 return false;
244
245 elf_object_id (abfd) = object_id;
246 if (abfd->direction != read_direction)
247 {
248 struct output_elf_obj_tdata *o = bfd_zalloc (abfd, sizeof *o);
249 if (o == NULL)
250 return false;
251 elf_tdata (abfd)->o = o;
252 elf_program_header_size (abfd) = (bfd_size_type) -1;
253 }
254 return true;
255 }
256
257
258 bool
259 bfd_elf_make_object (bfd *abfd)
260 {
261 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
262 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
263 bed->target_id);
264 }
265
266 bool
267 bfd_elf_mkcorefile (bfd *abfd)
268 {
269 /* I think this can be done just like an object file. */
270 if (!abfd->xvec->_bfd_set_format[(int) bfd_object] (abfd))
271 return false;
272 elf_tdata (abfd)->core = bfd_zalloc (abfd, sizeof (*elf_tdata (abfd)->core));
273 return elf_tdata (abfd)->core != NULL;
274 }
275
276 char *
277 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
278 {
279 Elf_Internal_Shdr **i_shdrp;
280 bfd_byte *shstrtab = NULL;
281 file_ptr offset;
282 bfd_size_type shstrtabsize;
283
284 i_shdrp = elf_elfsections (abfd);
285 if (i_shdrp == 0
286 || shindex >= elf_numsections (abfd)
287 || i_shdrp[shindex] == 0)
288 return NULL;
289
290 shstrtab = i_shdrp[shindex]->contents;
291 if (shstrtab == NULL)
292 {
293 /* No cached one, attempt to read, and cache what we read. */
294 offset = i_shdrp[shindex]->sh_offset;
295 shstrtabsize = i_shdrp[shindex]->sh_size;
296
297 /* Allocate and clear an extra byte at the end, to prevent crashes
298 in case the string table is not terminated. */
299 if (shstrtabsize + 1 <= 1
300 || bfd_seek (abfd, offset, SEEK_SET) != 0
301 || (shstrtab = _bfd_alloc_and_read (abfd, shstrtabsize + 1,
302 shstrtabsize)) == NULL)
303 {
304 /* Once we've failed to read it, make sure we don't keep
305 trying. Otherwise, we'll keep allocating space for
306 the string table over and over. */
307 i_shdrp[shindex]->sh_size = 0;
308 }
309 else
310 shstrtab[shstrtabsize] = '\0';
311 i_shdrp[shindex]->contents = shstrtab;
312 }
313 return (char *) shstrtab;
314 }
315
316 char *
317 bfd_elf_string_from_elf_section (bfd *abfd,
318 unsigned int shindex,
319 unsigned int strindex)
320 {
321 Elf_Internal_Shdr *hdr;
322
323 if (strindex == 0)
324 return "";
325
326 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
327 return NULL;
328
329 hdr = elf_elfsections (abfd)[shindex];
330
331 if (hdr->contents == NULL)
332 {
333 if (hdr->sh_type != SHT_STRTAB && hdr->sh_type < SHT_LOOS)
334 {
335 /* PR 17512: file: f057ec89. */
336 /* xgettext:c-format */
337 _bfd_error_handler (_("%pB: attempt to load strings from"
338 " a non-string section (number %d)"),
339 abfd, shindex);
340 return NULL;
341 }
342
343 if (bfd_elf_get_str_section (abfd, shindex) == NULL)
344 return NULL;
345 }
346 else
347 {
348 /* PR 24273: The string section's contents may have already
349 been loaded elsewhere, eg because a corrupt file has the
350 string section index in the ELF header pointing at a group
351 section. So be paranoid, and test that the last byte of
352 the section is zero. */
353 if (hdr->sh_size == 0 || hdr->contents[hdr->sh_size - 1] != 0)
354 return NULL;
355 }
356
357 if (strindex >= hdr->sh_size)
358 {
359 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
360 _bfd_error_handler
361 /* xgettext:c-format */
362 (_("%pB: invalid string offset %u >= %" PRIu64 " for section `%s'"),
363 abfd, strindex, (uint64_t) hdr->sh_size,
364 (shindex == shstrndx && strindex == hdr->sh_name
365 ? ".shstrtab"
366 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
367 return NULL;
368 }
369
370 return ((char *) hdr->contents) + strindex;
371 }
372
373 /* Read and convert symbols to internal format.
374 SYMCOUNT specifies the number of symbols to read, starting from
375 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
376 are non-NULL, they are used to store the internal symbols, external
377 symbols, and symbol section index extensions, respectively.
378 Returns a pointer to the internal symbol buffer (malloced if necessary)
379 or NULL if there were no symbols or some kind of problem. */
380
381 Elf_Internal_Sym *
382 bfd_elf_get_elf_syms (bfd *ibfd,
383 Elf_Internal_Shdr *symtab_hdr,
384 size_t symcount,
385 size_t symoffset,
386 Elf_Internal_Sym *intsym_buf,
387 void *extsym_buf,
388 Elf_External_Sym_Shndx *extshndx_buf)
389 {
390 Elf_Internal_Shdr *shndx_hdr;
391 void *alloc_ext;
392 const bfd_byte *esym;
393 Elf_External_Sym_Shndx *alloc_extshndx;
394 Elf_External_Sym_Shndx *shndx;
395 Elf_Internal_Sym *alloc_intsym;
396 Elf_Internal_Sym *isym;
397 Elf_Internal_Sym *isymend;
398 const struct elf_backend_data *bed;
399 size_t extsym_size;
400 size_t amt;
401 file_ptr pos;
402
403 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
404 abort ();
405
406 if (symcount == 0)
407 return intsym_buf;
408
409 /* Normal syms might have section extension entries. */
410 shndx_hdr = NULL;
411 if (elf_symtab_shndx_list (ibfd) != NULL)
412 {
413 elf_section_list * entry;
414 Elf_Internal_Shdr **sections = elf_elfsections (ibfd);
415
416 /* Find an index section that is linked to this symtab section. */
417 for (entry = elf_symtab_shndx_list (ibfd); entry != NULL; entry = entry->next)
418 {
419 /* PR 20063. */
420 if (entry->hdr.sh_link >= elf_numsections (ibfd))
421 continue;
422
423 if (sections[entry->hdr.sh_link] == symtab_hdr)
424 {
425 shndx_hdr = & entry->hdr;
426 break;
427 };
428 }
429
430 if (shndx_hdr == NULL)
431 {
432 if (symtab_hdr == & elf_symtab_hdr (ibfd))
433 /* Not really accurate, but this was how the old code used to work. */
434 shndx_hdr = & elf_symtab_shndx_list (ibfd)->hdr;
435 /* Otherwise we do nothing. The assumption is that
436 the index table will not be needed. */
437 }
438 }
439
440 /* Read the symbols. */
441 alloc_ext = NULL;
442 alloc_extshndx = NULL;
443 alloc_intsym = NULL;
444 bed = get_elf_backend_data (ibfd);
445 extsym_size = bed->s->sizeof_sym;
446 if (_bfd_mul_overflow (symcount, extsym_size, &amt))
447 {
448 bfd_set_error (bfd_error_file_too_big);
449 intsym_buf = NULL;
450 goto out;
451 }
452 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
453 if (extsym_buf == NULL)
454 {
455 alloc_ext = bfd_malloc (amt);
456 extsym_buf = alloc_ext;
457 }
458 if (extsym_buf == NULL
459 || bfd_seek (ibfd, pos, SEEK_SET) != 0
460 || bfd_bread (extsym_buf, amt, ibfd) != amt)
461 {
462 intsym_buf = NULL;
463 goto out;
464 }
465
466 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
467 extshndx_buf = NULL;
468 else
469 {
470 if (_bfd_mul_overflow (symcount, sizeof (Elf_External_Sym_Shndx), &amt))
471 {
472 bfd_set_error (bfd_error_file_too_big);
473 intsym_buf = NULL;
474 goto out;
475 }
476 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
477 if (extshndx_buf == NULL)
478 {
479 alloc_extshndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
480 extshndx_buf = alloc_extshndx;
481 }
482 if (extshndx_buf == NULL
483 || bfd_seek (ibfd, pos, SEEK_SET) != 0
484 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
485 {
486 intsym_buf = NULL;
487 goto out;
488 }
489 }
490
491 if (intsym_buf == NULL)
492 {
493 if (_bfd_mul_overflow (symcount, sizeof (Elf_Internal_Sym), &amt))
494 {
495 bfd_set_error (bfd_error_file_too_big);
496 goto out;
497 }
498 alloc_intsym = (Elf_Internal_Sym *) bfd_malloc (amt);
499 intsym_buf = alloc_intsym;
500 if (intsym_buf == NULL)
501 goto out;
502 }
503
504 /* Convert the symbols to internal form. */
505 isymend = intsym_buf + symcount;
506 for (esym = (const bfd_byte *) extsym_buf, isym = intsym_buf,
507 shndx = extshndx_buf;
508 isym < isymend;
509 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
510 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
511 {
512 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
513 /* xgettext:c-format */
514 _bfd_error_handler (_("%pB symbol number %lu references"
515 " nonexistent SHT_SYMTAB_SHNDX section"),
516 ibfd, (unsigned long) symoffset);
517 free (alloc_intsym);
518 intsym_buf = NULL;
519 goto out;
520 }
521
522 out:
523 free (alloc_ext);
524 free (alloc_extshndx);
525
526 return intsym_buf;
527 }
528
529 /* Look up a symbol name. */
530 const char *
531 bfd_elf_sym_name (bfd *abfd,
532 Elf_Internal_Shdr *symtab_hdr,
533 Elf_Internal_Sym *isym,
534 asection *sym_sec)
535 {
536 const char *name;
537 unsigned int iname = isym->st_name;
538 unsigned int shindex = symtab_hdr->sh_link;
539
540 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
541 /* Check for a bogus st_shndx to avoid crashing. */
542 && isym->st_shndx < elf_numsections (abfd))
543 {
544 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
545 shindex = elf_elfheader (abfd)->e_shstrndx;
546 }
547
548 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
549 if (name == NULL)
550 name = "(null)";
551 else if (sym_sec && *name == '\0')
552 name = bfd_section_name (sym_sec);
553
554 return name;
555 }
556
557 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
558 sections. The first element is the flags, the rest are section
559 pointers. */
560
561 typedef union elf_internal_group {
562 Elf_Internal_Shdr *shdr;
563 unsigned int flags;
564 } Elf_Internal_Group;
565
566 /* Return the name of the group signature symbol. Why isn't the
567 signature just a string? */
568
569 static const char *
570 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
571 {
572 Elf_Internal_Shdr *hdr;
573 unsigned char esym[sizeof (Elf64_External_Sym)];
574 Elf_External_Sym_Shndx eshndx;
575 Elf_Internal_Sym isym;
576
577 /* First we need to ensure the symbol table is available. Make sure
578 that it is a symbol table section. */
579 if (ghdr->sh_link >= elf_numsections (abfd))
580 return NULL;
581 hdr = elf_elfsections (abfd) [ghdr->sh_link];
582 if (hdr->sh_type != SHT_SYMTAB
583 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
584 return NULL;
585
586 /* Go read the symbol. */
587 hdr = &elf_tdata (abfd)->symtab_hdr;
588 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
589 &isym, esym, &eshndx) == NULL)
590 return NULL;
591
592 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
593 }
594
595 /* Set next_in_group list pointer, and group name for NEWSECT. */
596
597 static bool
598 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
599 {
600 unsigned int num_group = elf_tdata (abfd)->num_group;
601
602 /* If num_group is zero, read in all SHT_GROUP sections. The count
603 is set to -1 if there are no SHT_GROUP sections. */
604 if (num_group == 0)
605 {
606 unsigned int i, shnum;
607
608 /* First count the number of groups. If we have a SHT_GROUP
609 section with just a flag word (ie. sh_size is 4), ignore it. */
610 shnum = elf_numsections (abfd);
611 num_group = 0;
612
613 #define IS_VALID_GROUP_SECTION_HEADER(shdr, minsize) \
614 ( (shdr)->sh_type == SHT_GROUP \
615 && (shdr)->sh_size >= minsize \
616 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
617 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
618
619 for (i = 0; i < shnum; i++)
620 {
621 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
622
623 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
624 num_group += 1;
625 }
626
627 if (num_group == 0)
628 {
629 num_group = (unsigned) -1;
630 elf_tdata (abfd)->num_group = num_group;
631 elf_tdata (abfd)->group_sect_ptr = NULL;
632 }
633 else
634 {
635 /* We keep a list of elf section headers for group sections,
636 so we can find them quickly. */
637 size_t amt;
638
639 elf_tdata (abfd)->num_group = num_group;
640 amt = num_group * sizeof (Elf_Internal_Shdr *);
641 elf_tdata (abfd)->group_sect_ptr
642 = (Elf_Internal_Shdr **) bfd_zalloc (abfd, amt);
643 if (elf_tdata (abfd)->group_sect_ptr == NULL)
644 return false;
645 num_group = 0;
646
647 for (i = 0; i < shnum; i++)
648 {
649 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
650
651 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
652 {
653 unsigned char *src;
654 Elf_Internal_Group *dest;
655
656 /* Make sure the group section has a BFD section
657 attached to it. */
658 if (!bfd_section_from_shdr (abfd, i))
659 return false;
660
661 /* Add to list of sections. */
662 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
663 num_group += 1;
664
665 /* Read the raw contents. */
666 BFD_ASSERT (sizeof (*dest) >= 4 && sizeof (*dest) % 4 == 0);
667 shdr->contents = NULL;
668 if (_bfd_mul_overflow (shdr->sh_size,
669 sizeof (*dest) / 4, &amt)
670 || bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
671 || !(shdr->contents
672 = _bfd_alloc_and_read (abfd, amt, shdr->sh_size)))
673 {
674 _bfd_error_handler
675 /* xgettext:c-format */
676 (_("%pB: invalid size field in group section"
677 " header: %#" PRIx64 ""),
678 abfd, (uint64_t) shdr->sh_size);
679 bfd_set_error (bfd_error_bad_value);
680 -- num_group;
681 continue;
682 }
683
684 /* Translate raw contents, a flag word followed by an
685 array of elf section indices all in target byte order,
686 to the flag word followed by an array of elf section
687 pointers. */
688 src = shdr->contents + shdr->sh_size;
689 dest = (Elf_Internal_Group *) (shdr->contents + amt);
690
691 while (1)
692 {
693 unsigned int idx;
694
695 src -= 4;
696 --dest;
697 idx = H_GET_32 (abfd, src);
698 if (src == shdr->contents)
699 {
700 dest->shdr = NULL;
701 dest->flags = idx;
702 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
703 shdr->bfd_section->flags
704 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
705 break;
706 }
707 if (idx < shnum)
708 {
709 dest->shdr = elf_elfsections (abfd)[idx];
710 /* PR binutils/23199: All sections in a
711 section group should be marked with
712 SHF_GROUP. But some tools generate
713 broken objects without SHF_GROUP. Fix
714 them up here. */
715 dest->shdr->sh_flags |= SHF_GROUP;
716 }
717 if (idx >= shnum
718 || dest->shdr->sh_type == SHT_GROUP)
719 {
720 _bfd_error_handler
721 (_("%pB: invalid entry in SHT_GROUP section [%u]"),
722 abfd, i);
723 dest->shdr = NULL;
724 }
725 }
726 }
727 }
728
729 /* PR 17510: Corrupt binaries might contain invalid groups. */
730 if (num_group != (unsigned) elf_tdata (abfd)->num_group)
731 {
732 elf_tdata (abfd)->num_group = num_group;
733
734 /* If all groups are invalid then fail. */
735 if (num_group == 0)
736 {
737 elf_tdata (abfd)->group_sect_ptr = NULL;
738 elf_tdata (abfd)->num_group = num_group = -1;
739 _bfd_error_handler
740 (_("%pB: no valid group sections found"), abfd);
741 bfd_set_error (bfd_error_bad_value);
742 }
743 }
744 }
745 }
746
747 if (num_group != (unsigned) -1)
748 {
749 unsigned int search_offset = elf_tdata (abfd)->group_search_offset;
750 unsigned int j;
751
752 for (j = 0; j < num_group; j++)
753 {
754 /* Begin search from previous found group. */
755 unsigned i = (j + search_offset) % num_group;
756
757 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
758 Elf_Internal_Group *idx;
759 bfd_size_type n_elt;
760
761 if (shdr == NULL)
762 continue;
763
764 idx = (Elf_Internal_Group *) shdr->contents;
765 if (idx == NULL || shdr->sh_size < 4)
766 {
767 /* See PR 21957 for a reproducer. */
768 /* xgettext:c-format */
769 _bfd_error_handler (_("%pB: group section '%pA' has no contents"),
770 abfd, shdr->bfd_section);
771 elf_tdata (abfd)->group_sect_ptr[i] = NULL;
772 bfd_set_error (bfd_error_bad_value);
773 return false;
774 }
775 n_elt = shdr->sh_size / 4;
776
777 /* Look through this group's sections to see if current
778 section is a member. */
779 while (--n_elt != 0)
780 if ((++idx)->shdr == hdr)
781 {
782 asection *s = NULL;
783
784 /* We are a member of this group. Go looking through
785 other members to see if any others are linked via
786 next_in_group. */
787 idx = (Elf_Internal_Group *) shdr->contents;
788 n_elt = shdr->sh_size / 4;
789 while (--n_elt != 0)
790 if ((++idx)->shdr != NULL
791 && (s = idx->shdr->bfd_section) != NULL
792 && elf_next_in_group (s) != NULL)
793 break;
794 if (n_elt != 0)
795 {
796 /* Snarf the group name from other member, and
797 insert current section in circular list. */
798 elf_group_name (newsect) = elf_group_name (s);
799 elf_next_in_group (newsect) = elf_next_in_group (s);
800 elf_next_in_group (s) = newsect;
801 }
802 else
803 {
804 const char *gname;
805
806 gname = group_signature (abfd, shdr);
807 if (gname == NULL)
808 return false;
809 elf_group_name (newsect) = gname;
810
811 /* Start a circular list with one element. */
812 elf_next_in_group (newsect) = newsect;
813 }
814
815 /* If the group section has been created, point to the
816 new member. */
817 if (shdr->bfd_section != NULL)
818 elf_next_in_group (shdr->bfd_section) = newsect;
819
820 elf_tdata (abfd)->group_search_offset = i;
821 j = num_group - 1;
822 break;
823 }
824 }
825 }
826
827 if (elf_group_name (newsect) == NULL)
828 {
829 /* xgettext:c-format */
830 _bfd_error_handler (_("%pB: no group info for section '%pA'"),
831 abfd, newsect);
832 return false;
833 }
834 return true;
835 }
836
837 bool
838 _bfd_elf_setup_sections (bfd *abfd)
839 {
840 unsigned int i;
841 unsigned int num_group = elf_tdata (abfd)->num_group;
842 bool result = true;
843 asection *s;
844
845 /* Process SHF_LINK_ORDER. */
846 for (s = abfd->sections; s != NULL; s = s->next)
847 {
848 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
849 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
850 {
851 unsigned int elfsec = this_hdr->sh_link;
852 /* An sh_link value of 0 is now allowed. It indicates that linked
853 to section has already been discarded, but that the current
854 section has been retained for some other reason. This linking
855 section is still a candidate for later garbage collection
856 however. */
857 if (elfsec == 0)
858 {
859 elf_linked_to_section (s) = NULL;
860 }
861 else
862 {
863 asection *linksec = NULL;
864
865 if (elfsec < elf_numsections (abfd))
866 {
867 this_hdr = elf_elfsections (abfd)[elfsec];
868 linksec = this_hdr->bfd_section;
869 }
870
871 /* PR 1991, 2008:
872 Some strip/objcopy may leave an incorrect value in
873 sh_link. We don't want to proceed. */
874 if (linksec == NULL)
875 {
876 _bfd_error_handler
877 /* xgettext:c-format */
878 (_("%pB: sh_link [%d] in section `%pA' is incorrect"),
879 s->owner, elfsec, s);
880 result = false;
881 }
882
883 elf_linked_to_section (s) = linksec;
884 }
885 }
886 else if (this_hdr->sh_type == SHT_GROUP
887 && elf_next_in_group (s) == NULL)
888 {
889 _bfd_error_handler
890 /* xgettext:c-format */
891 (_("%pB: SHT_GROUP section [index %d] has no SHF_GROUP sections"),
892 abfd, elf_section_data (s)->this_idx);
893 result = false;
894 }
895 }
896
897 /* Process section groups. */
898 if (num_group == (unsigned) -1)
899 return result;
900
901 for (i = 0; i < num_group; i++)
902 {
903 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
904 Elf_Internal_Group *idx;
905 unsigned int n_elt;
906
907 /* PR binutils/18758: Beware of corrupt binaries with invalid group data. */
908 if (shdr == NULL || shdr->bfd_section == NULL || shdr->contents == NULL)
909 {
910 _bfd_error_handler
911 /* xgettext:c-format */
912 (_("%pB: section group entry number %u is corrupt"),
913 abfd, i);
914 result = false;
915 continue;
916 }
917
918 idx = (Elf_Internal_Group *) shdr->contents;
919 n_elt = shdr->sh_size / 4;
920
921 while (--n_elt != 0)
922 {
923 ++ idx;
924
925 if (idx->shdr == NULL)
926 continue;
927 else if (idx->shdr->bfd_section)
928 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
929 else if (idx->shdr->sh_type != SHT_RELA
930 && idx->shdr->sh_type != SHT_REL)
931 {
932 /* There are some unknown sections in the group. */
933 _bfd_error_handler
934 /* xgettext:c-format */
935 (_("%pB: unknown type [%#x] section `%s' in group [%pA]"),
936 abfd,
937 idx->shdr->sh_type,
938 bfd_elf_string_from_elf_section (abfd,
939 (elf_elfheader (abfd)
940 ->e_shstrndx),
941 idx->shdr->sh_name),
942 shdr->bfd_section);
943 result = false;
944 }
945 }
946 }
947
948 return result;
949 }
950
951 bool
952 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
953 {
954 return elf_next_in_group (sec) != NULL;
955 }
956
957 const char *
958 bfd_elf_group_name (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
959 {
960 if (elf_sec_group (sec) != NULL)
961 return elf_group_name (sec);
962 return NULL;
963 }
964
965 static char *
966 convert_debug_to_zdebug (bfd *abfd, const char *name)
967 {
968 unsigned int len = strlen (name);
969 char *new_name = bfd_alloc (abfd, len + 2);
970 if (new_name == NULL)
971 return NULL;
972 new_name[0] = '.';
973 new_name[1] = 'z';
974 memcpy (new_name + 2, name + 1, len);
975 return new_name;
976 }
977
978 static char *
979 convert_zdebug_to_debug (bfd *abfd, const char *name)
980 {
981 unsigned int len = strlen (name);
982 char *new_name = bfd_alloc (abfd, len);
983 if (new_name == NULL)
984 return NULL;
985 new_name[0] = '.';
986 memcpy (new_name + 1, name + 2, len - 1);
987 return new_name;
988 }
989
990 /* This a copy of lto_section defined in GCC (lto-streamer.h). */
991
992 struct lto_section
993 {
994 int16_t major_version;
995 int16_t minor_version;
996 unsigned char slim_object;
997
998 /* Flags is a private field that is not defined publicly. */
999 uint16_t flags;
1000 };
1001
1002 /* Make a BFD section from an ELF section. We store a pointer to the
1003 BFD section in the bfd_section field of the header. */
1004
1005 bool
1006 _bfd_elf_make_section_from_shdr (bfd *abfd,
1007 Elf_Internal_Shdr *hdr,
1008 const char *name,
1009 int shindex)
1010 {
1011 asection *newsect;
1012 flagword flags;
1013 const struct elf_backend_data *bed;
1014 unsigned int opb = bfd_octets_per_byte (abfd, NULL);
1015
1016 if (hdr->bfd_section != NULL)
1017 return true;
1018
1019 newsect = bfd_make_section_anyway (abfd, name);
1020 if (newsect == NULL)
1021 return false;
1022
1023 hdr->bfd_section = newsect;
1024 elf_section_data (newsect)->this_hdr = *hdr;
1025 elf_section_data (newsect)->this_idx = shindex;
1026
1027 /* Always use the real type/flags. */
1028 elf_section_type (newsect) = hdr->sh_type;
1029 elf_section_flags (newsect) = hdr->sh_flags;
1030
1031 newsect->filepos = hdr->sh_offset;
1032
1033 flags = SEC_NO_FLAGS;
1034 if (hdr->sh_type != SHT_NOBITS)
1035 flags |= SEC_HAS_CONTENTS;
1036 if (hdr->sh_type == SHT_GROUP)
1037 flags |= SEC_GROUP;
1038 if ((hdr->sh_flags & SHF_ALLOC) != 0)
1039 {
1040 flags |= SEC_ALLOC;
1041 if (hdr->sh_type != SHT_NOBITS)
1042 flags |= SEC_LOAD;
1043 }
1044 if ((hdr->sh_flags & SHF_WRITE) == 0)
1045 flags |= SEC_READONLY;
1046 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
1047 flags |= SEC_CODE;
1048 else if ((flags & SEC_LOAD) != 0)
1049 flags |= SEC_DATA;
1050 if ((hdr->sh_flags & SHF_MERGE) != 0)
1051 {
1052 flags |= SEC_MERGE;
1053 newsect->entsize = hdr->sh_entsize;
1054 }
1055 if ((hdr->sh_flags & SHF_STRINGS) != 0)
1056 flags |= SEC_STRINGS;
1057 if (hdr->sh_flags & SHF_GROUP)
1058 if (!setup_group (abfd, hdr, newsect))
1059 return false;
1060 if ((hdr->sh_flags & SHF_TLS) != 0)
1061 flags |= SEC_THREAD_LOCAL;
1062 if ((hdr->sh_flags & SHF_EXCLUDE) != 0)
1063 flags |= SEC_EXCLUDE;
1064
1065 switch (elf_elfheader (abfd)->e_ident[EI_OSABI])
1066 {
1067 /* FIXME: We should not recognize SHF_GNU_MBIND for ELFOSABI_NONE,
1068 but binutils as of 2019-07-23 did not set the EI_OSABI header
1069 byte. */
1070 case ELFOSABI_GNU:
1071 case ELFOSABI_FREEBSD:
1072 if ((hdr->sh_flags & SHF_GNU_RETAIN) != 0)
1073 elf_tdata (abfd)->has_gnu_osabi |= elf_gnu_osabi_retain;
1074 /* Fall through */
1075 case ELFOSABI_NONE:
1076 if ((hdr->sh_flags & SHF_GNU_MBIND) != 0)
1077 elf_tdata (abfd)->has_gnu_osabi |= elf_gnu_osabi_mbind;
1078 break;
1079 }
1080
1081 if ((flags & SEC_ALLOC) == 0)
1082 {
1083 /* The debugging sections appear to be recognized only by name,
1084 not any sort of flag. Their SEC_ALLOC bits are cleared. */
1085 if (name [0] == '.')
1086 {
1087 if (startswith (name, ".debug")
1088 || startswith (name, ".gnu.debuglto_.debug_")
1089 || startswith (name, ".gnu.linkonce.wi.")
1090 || startswith (name, ".zdebug"))
1091 flags |= SEC_DEBUGGING | SEC_ELF_OCTETS;
1092 else if (startswith (name, GNU_BUILD_ATTRS_SECTION_NAME)
1093 || startswith (name, ".note.gnu"))
1094 {
1095 flags |= SEC_ELF_OCTETS;
1096 opb = 1;
1097 }
1098 else if (startswith (name, ".line")
1099 || startswith (name, ".stab")
1100 || strcmp (name, ".gdb_index") == 0)
1101 flags |= SEC_DEBUGGING;
1102 }
1103 }
1104
1105 if (!bfd_set_section_vma (newsect, hdr->sh_addr / opb)
1106 || !bfd_set_section_size (newsect, hdr->sh_size)
1107 || !bfd_set_section_alignment (newsect, bfd_log2 (hdr->sh_addralign)))
1108 return false;
1109
1110 /* As a GNU extension, if the name begins with .gnu.linkonce, we
1111 only link a single copy of the section. This is used to support
1112 g++. g++ will emit each template expansion in its own section.
1113 The symbols will be defined as weak, so that multiple definitions
1114 are permitted. The GNU linker extension is to actually discard
1115 all but one of the sections. */
1116 if (startswith (name, ".gnu.linkonce")
1117 && elf_next_in_group (newsect) == NULL)
1118 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1119
1120 if (!bfd_set_section_flags (newsect, flags))
1121 return false;
1122
1123 bed = get_elf_backend_data (abfd);
1124 if (bed->elf_backend_section_flags)
1125 if (!bed->elf_backend_section_flags (hdr))
1126 return false;
1127
1128 /* We do not parse the PT_NOTE segments as we are interested even in the
1129 separate debug info files which may have the segments offsets corrupted.
1130 PT_NOTEs from the core files are currently not parsed using BFD. */
1131 if (hdr->sh_type == SHT_NOTE)
1132 {
1133 bfd_byte *contents;
1134
1135 if (!bfd_malloc_and_get_section (abfd, newsect, &contents))
1136 return false;
1137
1138 elf_parse_notes (abfd, (char *) contents, hdr->sh_size,
1139 hdr->sh_offset, hdr->sh_addralign);
1140 free (contents);
1141 }
1142
1143 if ((newsect->flags & SEC_ALLOC) != 0)
1144 {
1145 Elf_Internal_Phdr *phdr;
1146 unsigned int i, nload;
1147
1148 /* Some ELF linkers produce binaries with all the program header
1149 p_paddr fields zero. If we have such a binary with more than
1150 one PT_LOAD header, then leave the section lma equal to vma
1151 so that we don't create sections with overlapping lma. */
1152 phdr = elf_tdata (abfd)->phdr;
1153 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1154 if (phdr->p_paddr != 0)
1155 break;
1156 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
1157 ++nload;
1158 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
1159 return true;
1160
1161 phdr = elf_tdata (abfd)->phdr;
1162 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1163 {
1164 if (((phdr->p_type == PT_LOAD
1165 && (hdr->sh_flags & SHF_TLS) == 0)
1166 || phdr->p_type == PT_TLS)
1167 && ELF_SECTION_IN_SEGMENT (hdr, phdr))
1168 {
1169 if ((newsect->flags & SEC_LOAD) == 0)
1170 newsect->lma = (phdr->p_paddr
1171 + hdr->sh_addr - phdr->p_vaddr) / opb;
1172 else
1173 /* We used to use the same adjustment for SEC_LOAD
1174 sections, but that doesn't work if the segment
1175 is packed with code from multiple VMAs.
1176 Instead we calculate the section LMA based on
1177 the segment LMA. It is assumed that the
1178 segment will contain sections with contiguous
1179 LMAs, even if the VMAs are not. */
1180 newsect->lma = (phdr->p_paddr
1181 + hdr->sh_offset - phdr->p_offset) / opb;
1182
1183 /* With contiguous segments, we can't tell from file
1184 offsets whether a section with zero size should
1185 be placed at the end of one segment or the
1186 beginning of the next. Decide based on vaddr. */
1187 if (hdr->sh_addr >= phdr->p_vaddr
1188 && (hdr->sh_addr + hdr->sh_size
1189 <= phdr->p_vaddr + phdr->p_memsz))
1190 break;
1191 }
1192 }
1193 }
1194
1195 /* Compress/decompress DWARF debug sections with names: .debug_* and
1196 .zdebug_*, after the section flags is set. */
1197 if ((newsect->flags & SEC_DEBUGGING)
1198 && ((name[1] == 'd' && name[6] == '_')
1199 || (name[1] == 'z' && name[7] == '_')))
1200 {
1201 enum { nothing, compress, decompress } action = nothing;
1202 int compression_header_size;
1203 bfd_size_type uncompressed_size;
1204 unsigned int uncompressed_align_power;
1205 bool compressed
1206 = bfd_is_section_compressed_with_header (abfd, newsect,
1207 &compression_header_size,
1208 &uncompressed_size,
1209 &uncompressed_align_power);
1210 if (compressed)
1211 {
1212 /* Compressed section. Check if we should decompress. */
1213 if ((abfd->flags & BFD_DECOMPRESS))
1214 action = decompress;
1215 }
1216
1217 /* Compress the uncompressed section or convert from/to .zdebug*
1218 section. Check if we should compress. */
1219 if (action == nothing)
1220 {
1221 if (newsect->size != 0
1222 && (abfd->flags & BFD_COMPRESS)
1223 && compression_header_size >= 0
1224 && uncompressed_size > 0
1225 && (!compressed
1226 || ((compression_header_size > 0)
1227 != ((abfd->flags & BFD_COMPRESS_GABI) != 0))))
1228 action = compress;
1229 else
1230 return true;
1231 }
1232
1233 if (action == compress)
1234 {
1235 if (!bfd_init_section_compress_status (abfd, newsect))
1236 {
1237 _bfd_error_handler
1238 /* xgettext:c-format */
1239 (_("%pB: unable to initialize compress status for section %s"),
1240 abfd, name);
1241 return false;
1242 }
1243 }
1244 else
1245 {
1246 if (!bfd_init_section_decompress_status (abfd, newsect))
1247 {
1248 _bfd_error_handler
1249 /* xgettext:c-format */
1250 (_("%pB: unable to initialize decompress status for section %s"),
1251 abfd, name);
1252 return false;
1253 }
1254 }
1255
1256 if (abfd->is_linker_input)
1257 {
1258 if (name[1] == 'z'
1259 && (action == decompress
1260 || (action == compress
1261 && (abfd->flags & BFD_COMPRESS_GABI) != 0)))
1262 {
1263 /* Convert section name from .zdebug_* to .debug_* so
1264 that linker will consider this section as a debug
1265 section. */
1266 char *new_name = convert_zdebug_to_debug (abfd, name);
1267 if (new_name == NULL)
1268 return false;
1269 bfd_rename_section (newsect, new_name);
1270 }
1271 }
1272 else
1273 /* For objdump, don't rename the section. For objcopy, delay
1274 section rename to elf_fake_sections. */
1275 newsect->flags |= SEC_ELF_RENAME;
1276 }
1277
1278 /* GCC uses .gnu.lto_.lto.<some_hash> as a LTO bytecode information
1279 section. */
1280 if (startswith (name, ".gnu.lto_.lto."))
1281 {
1282 struct lto_section lsection;
1283 if (bfd_get_section_contents (abfd, newsect, &lsection, 0,
1284 sizeof (struct lto_section)))
1285 abfd->lto_slim_object = lsection.slim_object;
1286 }
1287
1288 return true;
1289 }
1290
1291 const char *const bfd_elf_section_type_names[] =
1292 {
1293 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1294 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1295 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1296 };
1297
1298 /* ELF relocs are against symbols. If we are producing relocatable
1299 output, and the reloc is against an external symbol, and nothing
1300 has given us any additional addend, the resulting reloc will also
1301 be against the same symbol. In such a case, we don't want to
1302 change anything about the way the reloc is handled, since it will
1303 all be done at final link time. Rather than put special case code
1304 into bfd_perform_relocation, all the reloc types use this howto
1305 function, or should call this function for relocatable output. */
1306
1307 bfd_reloc_status_type
1308 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1309 arelent *reloc_entry,
1310 asymbol *symbol,
1311 void *data ATTRIBUTE_UNUSED,
1312 asection *input_section,
1313 bfd *output_bfd,
1314 char **error_message ATTRIBUTE_UNUSED)
1315 {
1316 if (output_bfd != NULL
1317 && (symbol->flags & BSF_SECTION_SYM) == 0
1318 && (! reloc_entry->howto->partial_inplace
1319 || reloc_entry->addend == 0))
1320 {
1321 reloc_entry->address += input_section->output_offset;
1322 return bfd_reloc_ok;
1323 }
1324
1325 /* In some cases the relocation should be treated as output section
1326 relative, as when linking ELF DWARF into PE COFF. Many ELF
1327 targets lack section relative relocations and instead use
1328 ordinary absolute relocations for references between DWARF
1329 sections. That is arguably a bug in those targets but it happens
1330 to work for the usual case of linking to non-loaded ELF debug
1331 sections with VMAs forced to zero. PE COFF on the other hand
1332 doesn't allow a section VMA of zero. */
1333 if (output_bfd == NULL
1334 && !reloc_entry->howto->pc_relative
1335 && (symbol->section->flags & SEC_DEBUGGING) != 0
1336 && (input_section->flags & SEC_DEBUGGING) != 0)
1337 reloc_entry->addend -= symbol->section->output_section->vma;
1338
1339 return bfd_reloc_continue;
1340 }
1341 \f
1342 /* Returns TRUE if section A matches section B.
1343 Names, addresses and links may be different, but everything else
1344 should be the same. */
1345
1346 static bool
1347 section_match (const Elf_Internal_Shdr * a,
1348 const Elf_Internal_Shdr * b)
1349 {
1350 if (a->sh_type != b->sh_type
1351 || ((a->sh_flags ^ b->sh_flags) & ~SHF_INFO_LINK) != 0
1352 || a->sh_addralign != b->sh_addralign
1353 || a->sh_entsize != b->sh_entsize)
1354 return false;
1355 if (a->sh_type == SHT_SYMTAB
1356 || a->sh_type == SHT_STRTAB)
1357 return true;
1358 return a->sh_size == b->sh_size;
1359 }
1360
1361 /* Find a section in OBFD that has the same characteristics
1362 as IHEADER. Return the index of this section or SHN_UNDEF if
1363 none can be found. Check's section HINT first, as this is likely
1364 to be the correct section. */
1365
1366 static unsigned int
1367 find_link (const bfd *obfd, const Elf_Internal_Shdr *iheader,
1368 const unsigned int hint)
1369 {
1370 Elf_Internal_Shdr ** oheaders = elf_elfsections (obfd);
1371 unsigned int i;
1372
1373 BFD_ASSERT (iheader != NULL);
1374
1375 /* See PR 20922 for a reproducer of the NULL test. */
1376 if (hint < elf_numsections (obfd)
1377 && oheaders[hint] != NULL
1378 && section_match (oheaders[hint], iheader))
1379 return hint;
1380
1381 for (i = 1; i < elf_numsections (obfd); i++)
1382 {
1383 Elf_Internal_Shdr * oheader = oheaders[i];
1384
1385 if (oheader == NULL)
1386 continue;
1387 if (section_match (oheader, iheader))
1388 /* FIXME: Do we care if there is a potential for
1389 multiple matches ? */
1390 return i;
1391 }
1392
1393 return SHN_UNDEF;
1394 }
1395
1396 /* PR 19938: Attempt to set the ELF section header fields of an OS or
1397 Processor specific section, based upon a matching input section.
1398 Returns TRUE upon success, FALSE otherwise. */
1399
1400 static bool
1401 copy_special_section_fields (const bfd *ibfd,
1402 bfd *obfd,
1403 const Elf_Internal_Shdr *iheader,
1404 Elf_Internal_Shdr *oheader,
1405 const unsigned int secnum)
1406 {
1407 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
1408 const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd);
1409 bool changed = false;
1410 unsigned int sh_link;
1411
1412 if (oheader->sh_type == SHT_NOBITS)
1413 {
1414 /* This is a feature for objcopy --only-keep-debug:
1415 When a section's type is changed to NOBITS, we preserve
1416 the sh_link and sh_info fields so that they can be
1417 matched up with the original.
1418
1419 Note: Strictly speaking these assignments are wrong.
1420 The sh_link and sh_info fields should point to the
1421 relevent sections in the output BFD, which may not be in
1422 the same location as they were in the input BFD. But
1423 the whole point of this action is to preserve the
1424 original values of the sh_link and sh_info fields, so
1425 that they can be matched up with the section headers in
1426 the original file. So strictly speaking we may be
1427 creating an invalid ELF file, but it is only for a file
1428 that just contains debug info and only for sections
1429 without any contents. */
1430 if (oheader->sh_link == 0)
1431 oheader->sh_link = iheader->sh_link;
1432 if (oheader->sh_info == 0)
1433 oheader->sh_info = iheader->sh_info;
1434 return true;
1435 }
1436
1437 /* Allow the target a chance to decide how these fields should be set. */
1438 if (bed->elf_backend_copy_special_section_fields (ibfd, obfd,
1439 iheader, oheader))
1440 return true;
1441
1442 /* We have an iheader which might match oheader, and which has non-zero
1443 sh_info and/or sh_link fields. Attempt to follow those links and find
1444 the section in the output bfd which corresponds to the linked section
1445 in the input bfd. */
1446 if (iheader->sh_link != SHN_UNDEF)
1447 {
1448 /* See PR 20931 for a reproducer. */
1449 if (iheader->sh_link >= elf_numsections (ibfd))
1450 {
1451 _bfd_error_handler
1452 /* xgettext:c-format */
1453 (_("%pB: invalid sh_link field (%d) in section number %d"),
1454 ibfd, iheader->sh_link, secnum);
1455 return false;
1456 }
1457
1458 sh_link = find_link (obfd, iheaders[iheader->sh_link], iheader->sh_link);
1459 if (sh_link != SHN_UNDEF)
1460 {
1461 oheader->sh_link = sh_link;
1462 changed = true;
1463 }
1464 else
1465 /* FIXME: Should we install iheader->sh_link
1466 if we could not find a match ? */
1467 _bfd_error_handler
1468 /* xgettext:c-format */
1469 (_("%pB: failed to find link section for section %d"), obfd, secnum);
1470 }
1471
1472 if (iheader->sh_info)
1473 {
1474 /* The sh_info field can hold arbitrary information, but if the
1475 SHF_LINK_INFO flag is set then it should be interpreted as a
1476 section index. */
1477 if (iheader->sh_flags & SHF_INFO_LINK)
1478 {
1479 sh_link = find_link (obfd, iheaders[iheader->sh_info],
1480 iheader->sh_info);
1481 if (sh_link != SHN_UNDEF)
1482 oheader->sh_flags |= SHF_INFO_LINK;
1483 }
1484 else
1485 /* No idea what it means - just copy it. */
1486 sh_link = iheader->sh_info;
1487
1488 if (sh_link != SHN_UNDEF)
1489 {
1490 oheader->sh_info = sh_link;
1491 changed = true;
1492 }
1493 else
1494 _bfd_error_handler
1495 /* xgettext:c-format */
1496 (_("%pB: failed to find info section for section %d"), obfd, secnum);
1497 }
1498
1499 return changed;
1500 }
1501
1502 /* Copy the program header and other data from one object module to
1503 another. */
1504
1505 bool
1506 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1507 {
1508 const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd);
1509 Elf_Internal_Shdr **oheaders = elf_elfsections (obfd);
1510 const struct elf_backend_data *bed;
1511 unsigned int i;
1512
1513 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1514 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1515 return true;
1516
1517 if (!elf_flags_init (obfd))
1518 {
1519 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1520 elf_flags_init (obfd) = true;
1521 }
1522
1523 elf_gp (obfd) = elf_gp (ibfd);
1524
1525 /* Also copy the EI_OSABI field. */
1526 elf_elfheader (obfd)->e_ident[EI_OSABI] =
1527 elf_elfheader (ibfd)->e_ident[EI_OSABI];
1528
1529 /* If set, copy the EI_ABIVERSION field. */
1530 if (elf_elfheader (ibfd)->e_ident[EI_ABIVERSION])
1531 elf_elfheader (obfd)->e_ident[EI_ABIVERSION]
1532 = elf_elfheader (ibfd)->e_ident[EI_ABIVERSION];
1533
1534 /* Copy object attributes. */
1535 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1536
1537 if (iheaders == NULL || oheaders == NULL)
1538 return true;
1539
1540 bed = get_elf_backend_data (obfd);
1541
1542 /* Possibly copy other fields in the section header. */
1543 for (i = 1; i < elf_numsections (obfd); i++)
1544 {
1545 unsigned int j;
1546 Elf_Internal_Shdr * oheader = oheaders[i];
1547
1548 /* Ignore ordinary sections. SHT_NOBITS sections are considered however
1549 because of a special case need for generating separate debug info
1550 files. See below for more details. */
1551 if (oheader == NULL
1552 || (oheader->sh_type != SHT_NOBITS
1553 && oheader->sh_type < SHT_LOOS))
1554 continue;
1555
1556 /* Ignore empty sections, and sections whose
1557 fields have already been initialised. */
1558 if (oheader->sh_size == 0
1559 || (oheader->sh_info != 0 && oheader->sh_link != 0))
1560 continue;
1561
1562 /* Scan for the matching section in the input bfd.
1563 First we try for a direct mapping between the input and output sections. */
1564 for (j = 1; j < elf_numsections (ibfd); j++)
1565 {
1566 const Elf_Internal_Shdr * iheader = iheaders[j];
1567
1568 if (iheader == NULL)
1569 continue;
1570
1571 if (oheader->bfd_section != NULL
1572 && iheader->bfd_section != NULL
1573 && iheader->bfd_section->output_section != NULL
1574 && iheader->bfd_section->output_section == oheader->bfd_section)
1575 {
1576 /* We have found a connection from the input section to the
1577 output section. Attempt to copy the header fields. If
1578 this fails then do not try any further sections - there
1579 should only be a one-to-one mapping between input and output. */
1580 if (! copy_special_section_fields (ibfd, obfd, iheader, oheader, i))
1581 j = elf_numsections (ibfd);
1582 break;
1583 }
1584 }
1585
1586 if (j < elf_numsections (ibfd))
1587 continue;
1588
1589 /* That failed. So try to deduce the corresponding input section.
1590 Unfortunately we cannot compare names as the output string table
1591 is empty, so instead we check size, address and type. */
1592 for (j = 1; j < elf_numsections (ibfd); j++)
1593 {
1594 const Elf_Internal_Shdr * iheader = iheaders[j];
1595
1596 if (iheader == NULL)
1597 continue;
1598
1599 /* Try matching fields in the input section's header.
1600 Since --only-keep-debug turns all non-debug sections into
1601 SHT_NOBITS sections, the output SHT_NOBITS type matches any
1602 input type. */
1603 if ((oheader->sh_type == SHT_NOBITS
1604 || iheader->sh_type == oheader->sh_type)
1605 && (iheader->sh_flags & ~ SHF_INFO_LINK)
1606 == (oheader->sh_flags & ~ SHF_INFO_LINK)
1607 && iheader->sh_addralign == oheader->sh_addralign
1608 && iheader->sh_entsize == oheader->sh_entsize
1609 && iheader->sh_size == oheader->sh_size
1610 && iheader->sh_addr == oheader->sh_addr
1611 && (iheader->sh_info != oheader->sh_info
1612 || iheader->sh_link != oheader->sh_link))
1613 {
1614 if (copy_special_section_fields (ibfd, obfd, iheader, oheader, i))
1615 break;
1616 }
1617 }
1618
1619 if (j == elf_numsections (ibfd) && oheader->sh_type >= SHT_LOOS)
1620 {
1621 /* Final attempt. Call the backend copy function
1622 with a NULL input section. */
1623 (void) bed->elf_backend_copy_special_section_fields (ibfd, obfd,
1624 NULL, oheader);
1625 }
1626 }
1627
1628 return true;
1629 }
1630
1631 static const char *
1632 get_segment_type (unsigned int p_type)
1633 {
1634 const char *pt;
1635 switch (p_type)
1636 {
1637 case PT_NULL: pt = "NULL"; break;
1638 case PT_LOAD: pt = "LOAD"; break;
1639 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1640 case PT_INTERP: pt = "INTERP"; break;
1641 case PT_NOTE: pt = "NOTE"; break;
1642 case PT_SHLIB: pt = "SHLIB"; break;
1643 case PT_PHDR: pt = "PHDR"; break;
1644 case PT_TLS: pt = "TLS"; break;
1645 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1646 case PT_GNU_STACK: pt = "STACK"; break;
1647 case PT_GNU_RELRO: pt = "RELRO"; break;
1648 default: pt = NULL; break;
1649 }
1650 return pt;
1651 }
1652
1653 /* Print out the program headers. */
1654
1655 bool
1656 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1657 {
1658 FILE *f = (FILE *) farg;
1659 Elf_Internal_Phdr *p;
1660 asection *s;
1661 bfd_byte *dynbuf = NULL;
1662
1663 p = elf_tdata (abfd)->phdr;
1664 if (p != NULL)
1665 {
1666 unsigned int i, c;
1667
1668 fprintf (f, _("\nProgram Header:\n"));
1669 c = elf_elfheader (abfd)->e_phnum;
1670 for (i = 0; i < c; i++, p++)
1671 {
1672 const char *pt = get_segment_type (p->p_type);
1673 char buf[20];
1674
1675 if (pt == NULL)
1676 {
1677 sprintf (buf, "0x%lx", p->p_type);
1678 pt = buf;
1679 }
1680 fprintf (f, "%8s off 0x", pt);
1681 bfd_fprintf_vma (abfd, f, p->p_offset);
1682 fprintf (f, " vaddr 0x");
1683 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1684 fprintf (f, " paddr 0x");
1685 bfd_fprintf_vma (abfd, f, p->p_paddr);
1686 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1687 fprintf (f, " filesz 0x");
1688 bfd_fprintf_vma (abfd, f, p->p_filesz);
1689 fprintf (f, " memsz 0x");
1690 bfd_fprintf_vma (abfd, f, p->p_memsz);
1691 fprintf (f, " flags %c%c%c",
1692 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1693 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1694 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1695 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1696 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1697 fprintf (f, "\n");
1698 }
1699 }
1700
1701 s = bfd_get_section_by_name (abfd, ".dynamic");
1702 if (s != NULL)
1703 {
1704 unsigned int elfsec;
1705 unsigned long shlink;
1706 bfd_byte *extdyn, *extdynend;
1707 size_t extdynsize;
1708 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1709
1710 fprintf (f, _("\nDynamic Section:\n"));
1711
1712 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1713 goto error_return;
1714
1715 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1716 if (elfsec == SHN_BAD)
1717 goto error_return;
1718 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1719
1720 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1721 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1722
1723 extdyn = dynbuf;
1724 /* PR 17512: file: 6f427532. */
1725 if (s->size < extdynsize)
1726 goto error_return;
1727 extdynend = extdyn + s->size;
1728 /* PR 17512: file: id:000006,sig:06,src:000000,op:flip4,pos:5664.
1729 Fix range check. */
1730 for (; extdyn <= (extdynend - extdynsize); extdyn += extdynsize)
1731 {
1732 Elf_Internal_Dyn dyn;
1733 const char *name = "";
1734 char ab[20];
1735 bool stringp;
1736 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1737
1738 (*swap_dyn_in) (abfd, extdyn, &dyn);
1739
1740 if (dyn.d_tag == DT_NULL)
1741 break;
1742
1743 stringp = false;
1744 switch (dyn.d_tag)
1745 {
1746 default:
1747 if (bed->elf_backend_get_target_dtag)
1748 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
1749
1750 if (!strcmp (name, ""))
1751 {
1752 sprintf (ab, "%#" BFD_VMA_FMT "x", dyn.d_tag);
1753 name = ab;
1754 }
1755 break;
1756
1757 case DT_NEEDED: name = "NEEDED"; stringp = true; break;
1758 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1759 case DT_PLTGOT: name = "PLTGOT"; break;
1760 case DT_HASH: name = "HASH"; break;
1761 case DT_STRTAB: name = "STRTAB"; break;
1762 case DT_SYMTAB: name = "SYMTAB"; break;
1763 case DT_RELA: name = "RELA"; break;
1764 case DT_RELASZ: name = "RELASZ"; break;
1765 case DT_RELAENT: name = "RELAENT"; break;
1766 case DT_STRSZ: name = "STRSZ"; break;
1767 case DT_SYMENT: name = "SYMENT"; break;
1768 case DT_INIT: name = "INIT"; break;
1769 case DT_FINI: name = "FINI"; break;
1770 case DT_SONAME: name = "SONAME"; stringp = true; break;
1771 case DT_RPATH: name = "RPATH"; stringp = true; break;
1772 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1773 case DT_REL: name = "REL"; break;
1774 case DT_RELSZ: name = "RELSZ"; break;
1775 case DT_RELENT: name = "RELENT"; break;
1776 case DT_RELR: name = "RELR"; break;
1777 case DT_RELRSZ: name = "RELRSZ"; break;
1778 case DT_RELRENT: name = "RELRENT"; break;
1779 case DT_PLTREL: name = "PLTREL"; break;
1780 case DT_DEBUG: name = "DEBUG"; break;
1781 case DT_TEXTREL: name = "TEXTREL"; break;
1782 case DT_JMPREL: name = "JMPREL"; break;
1783 case DT_BIND_NOW: name = "BIND_NOW"; break;
1784 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1785 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1786 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1787 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1788 case DT_RUNPATH: name = "RUNPATH"; stringp = true; break;
1789 case DT_FLAGS: name = "FLAGS"; break;
1790 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1791 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1792 case DT_CHECKSUM: name = "CHECKSUM"; break;
1793 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1794 case DT_MOVEENT: name = "MOVEENT"; break;
1795 case DT_MOVESZ: name = "MOVESZ"; break;
1796 case DT_FEATURE: name = "FEATURE"; break;
1797 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1798 case DT_SYMINSZ: name = "SYMINSZ"; break;
1799 case DT_SYMINENT: name = "SYMINENT"; break;
1800 case DT_CONFIG: name = "CONFIG"; stringp = true; break;
1801 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = true; break;
1802 case DT_AUDIT: name = "AUDIT"; stringp = true; break;
1803 case DT_PLTPAD: name = "PLTPAD"; break;
1804 case DT_MOVETAB: name = "MOVETAB"; break;
1805 case DT_SYMINFO: name = "SYMINFO"; break;
1806 case DT_RELACOUNT: name = "RELACOUNT"; break;
1807 case DT_RELCOUNT: name = "RELCOUNT"; break;
1808 case DT_FLAGS_1: name = "FLAGS_1"; break;
1809 case DT_VERSYM: name = "VERSYM"; break;
1810 case DT_VERDEF: name = "VERDEF"; break;
1811 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1812 case DT_VERNEED: name = "VERNEED"; break;
1813 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1814 case DT_AUXILIARY: name = "AUXILIARY"; stringp = true; break;
1815 case DT_USED: name = "USED"; break;
1816 case DT_FILTER: name = "FILTER"; stringp = true; break;
1817 case DT_GNU_HASH: name = "GNU_HASH"; break;
1818 }
1819
1820 fprintf (f, " %-20s ", name);
1821 if (! stringp)
1822 {
1823 fprintf (f, "0x");
1824 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
1825 }
1826 else
1827 {
1828 const char *string;
1829 unsigned int tagv = dyn.d_un.d_val;
1830
1831 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1832 if (string == NULL)
1833 goto error_return;
1834 fprintf (f, "%s", string);
1835 }
1836 fprintf (f, "\n");
1837 }
1838
1839 free (dynbuf);
1840 dynbuf = NULL;
1841 }
1842
1843 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1844 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1845 {
1846 if (! _bfd_elf_slurp_version_tables (abfd, false))
1847 return false;
1848 }
1849
1850 if (elf_dynverdef (abfd) != 0)
1851 {
1852 Elf_Internal_Verdef *t;
1853
1854 fprintf (f, _("\nVersion definitions:\n"));
1855 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1856 {
1857 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1858 t->vd_flags, t->vd_hash,
1859 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1860 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1861 {
1862 Elf_Internal_Verdaux *a;
1863
1864 fprintf (f, "\t");
1865 for (a = t->vd_auxptr->vda_nextptr;
1866 a != NULL;
1867 a = a->vda_nextptr)
1868 fprintf (f, "%s ",
1869 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1870 fprintf (f, "\n");
1871 }
1872 }
1873 }
1874
1875 if (elf_dynverref (abfd) != 0)
1876 {
1877 Elf_Internal_Verneed *t;
1878
1879 fprintf (f, _("\nVersion References:\n"));
1880 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1881 {
1882 Elf_Internal_Vernaux *a;
1883
1884 fprintf (f, _(" required from %s:\n"),
1885 t->vn_filename ? t->vn_filename : "<corrupt>");
1886 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1887 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1888 a->vna_flags, a->vna_other,
1889 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1890 }
1891 }
1892
1893 return true;
1894
1895 error_return:
1896 free (dynbuf);
1897 return false;
1898 }
1899
1900 /* Get version name. If BASE_P is TRUE, return "Base" for VER_FLG_BASE
1901 and return symbol version for symbol version itself. */
1902
1903 const char *
1904 _bfd_elf_get_symbol_version_string (bfd *abfd, asymbol *symbol,
1905 bool base_p,
1906 bool *hidden)
1907 {
1908 const char *version_string = NULL;
1909 if (elf_dynversym (abfd) != 0
1910 && (elf_dynverdef (abfd) != 0 || elf_dynverref (abfd) != 0))
1911 {
1912 unsigned int vernum = ((elf_symbol_type *) symbol)->version;
1913
1914 *hidden = (vernum & VERSYM_HIDDEN) != 0;
1915 vernum &= VERSYM_VERSION;
1916
1917 if (vernum == 0)
1918 version_string = "";
1919 else if (vernum == 1
1920 && (vernum > elf_tdata (abfd)->cverdefs
1921 || (elf_tdata (abfd)->verdef[0].vd_flags
1922 == VER_FLG_BASE)))
1923 version_string = base_p ? "Base" : "";
1924 else if (vernum <= elf_tdata (abfd)->cverdefs)
1925 {
1926 const char *nodename
1927 = elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1928 version_string = "";
1929 if (base_p
1930 || nodename == NULL
1931 || symbol->name == NULL
1932 || strcmp (symbol->name, nodename) != 0)
1933 version_string = nodename;
1934 }
1935 else
1936 {
1937 Elf_Internal_Verneed *t;
1938
1939 version_string = _("<corrupt>");
1940 for (t = elf_tdata (abfd)->verref;
1941 t != NULL;
1942 t = t->vn_nextref)
1943 {
1944 Elf_Internal_Vernaux *a;
1945
1946 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1947 {
1948 if (a->vna_other == vernum)
1949 {
1950 *hidden = true;
1951 version_string = a->vna_nodename;
1952 break;
1953 }
1954 }
1955 }
1956 }
1957 }
1958 return version_string;
1959 }
1960
1961 /* Display ELF-specific fields of a symbol. */
1962
1963 void
1964 bfd_elf_print_symbol (bfd *abfd,
1965 void *filep,
1966 asymbol *symbol,
1967 bfd_print_symbol_type how)
1968 {
1969 FILE *file = (FILE *) filep;
1970 switch (how)
1971 {
1972 case bfd_print_symbol_name:
1973 fprintf (file, "%s", symbol->name);
1974 break;
1975 case bfd_print_symbol_more:
1976 fprintf (file, "elf ");
1977 bfd_fprintf_vma (abfd, file, symbol->value);
1978 fprintf (file, " %x", symbol->flags);
1979 break;
1980 case bfd_print_symbol_all:
1981 {
1982 const char *section_name;
1983 const char *name = NULL;
1984 const struct elf_backend_data *bed;
1985 unsigned char st_other;
1986 bfd_vma val;
1987 const char *version_string;
1988 bool hidden;
1989
1990 section_name = symbol->section ? symbol->section->name : "(*none*)";
1991
1992 bed = get_elf_backend_data (abfd);
1993 if (bed->elf_backend_print_symbol_all)
1994 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1995
1996 if (name == NULL)
1997 {
1998 name = symbol->name;
1999 bfd_print_symbol_vandf (abfd, file, symbol);
2000 }
2001
2002 fprintf (file, " %s\t", section_name);
2003 /* Print the "other" value for a symbol. For common symbols,
2004 we've already printed the size; now print the alignment.
2005 For other symbols, we have no specified alignment, and
2006 we've printed the address; now print the size. */
2007 if (symbol->section && bfd_is_com_section (symbol->section))
2008 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
2009 else
2010 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
2011 bfd_fprintf_vma (abfd, file, val);
2012
2013 /* If we have version information, print it. */
2014 version_string = _bfd_elf_get_symbol_version_string (abfd,
2015 symbol,
2016 true,
2017 &hidden);
2018 if (version_string)
2019 {
2020 if (!hidden)
2021 fprintf (file, " %-11s", version_string);
2022 else
2023 {
2024 int i;
2025
2026 fprintf (file, " (%s)", version_string);
2027 for (i = 10 - strlen (version_string); i > 0; --i)
2028 putc (' ', file);
2029 }
2030 }
2031
2032 /* If the st_other field is not zero, print it. */
2033 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
2034
2035 switch (st_other)
2036 {
2037 case 0: break;
2038 case STV_INTERNAL: fprintf (file, " .internal"); break;
2039 case STV_HIDDEN: fprintf (file, " .hidden"); break;
2040 case STV_PROTECTED: fprintf (file, " .protected"); break;
2041 default:
2042 /* Some other non-defined flags are also present, so print
2043 everything hex. */
2044 fprintf (file, " 0x%02x", (unsigned int) st_other);
2045 }
2046
2047 fprintf (file, " %s", name);
2048 }
2049 break;
2050 }
2051 }
2052 \f
2053 /* ELF .o/exec file reading */
2054
2055 /* Create a new bfd section from an ELF section header. */
2056
2057 bool
2058 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
2059 {
2060 Elf_Internal_Shdr *hdr;
2061 Elf_Internal_Ehdr *ehdr;
2062 const struct elf_backend_data *bed;
2063 const char *name;
2064 bool ret = true;
2065
2066 if (shindex >= elf_numsections (abfd))
2067 return false;
2068
2069 /* PR17512: A corrupt ELF binary might contain a loop of sections via
2070 sh_link or sh_info. Detect this here, by refusing to load a
2071 section that we are already in the process of loading. */
2072 if (elf_tdata (abfd)->being_created[shindex])
2073 {
2074 _bfd_error_handler
2075 (_("%pB: warning: loop in section dependencies detected"), abfd);
2076 return false;
2077 }
2078 elf_tdata (abfd)->being_created[shindex] = true;
2079
2080 hdr = elf_elfsections (abfd)[shindex];
2081 ehdr = elf_elfheader (abfd);
2082 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
2083 hdr->sh_name);
2084 if (name == NULL)
2085 goto fail;
2086
2087 bed = get_elf_backend_data (abfd);
2088 switch (hdr->sh_type)
2089 {
2090 case SHT_NULL:
2091 /* Inactive section. Throw it away. */
2092 goto success;
2093
2094 case SHT_PROGBITS: /* Normal section with contents. */
2095 case SHT_NOBITS: /* .bss section. */
2096 case SHT_HASH: /* .hash section. */
2097 case SHT_NOTE: /* .note section. */
2098 case SHT_INIT_ARRAY: /* .init_array section. */
2099 case SHT_FINI_ARRAY: /* .fini_array section. */
2100 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
2101 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
2102 case SHT_GNU_HASH: /* .gnu.hash section. */
2103 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2104 goto success;
2105
2106 case SHT_DYNAMIC: /* Dynamic linking information. */
2107 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2108 goto fail;
2109
2110 if (hdr->sh_link > elf_numsections (abfd))
2111 {
2112 /* PR 10478: Accept Solaris binaries with a sh_link
2113 field set to SHN_BEFORE or SHN_AFTER. */
2114 switch (bfd_get_arch (abfd))
2115 {
2116 case bfd_arch_i386:
2117 case bfd_arch_sparc:
2118 if (hdr->sh_link == (SHN_LORESERVE & 0xffff) /* SHN_BEFORE */
2119 || hdr->sh_link == ((SHN_LORESERVE + 1) & 0xffff) /* SHN_AFTER */)
2120 break;
2121 /* Otherwise fall through. */
2122 default:
2123 goto fail;
2124 }
2125 }
2126 else if (elf_elfsections (abfd)[hdr->sh_link] == NULL)
2127 goto fail;
2128 else if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
2129 {
2130 Elf_Internal_Shdr *dynsymhdr;
2131
2132 /* The shared libraries distributed with hpux11 have a bogus
2133 sh_link field for the ".dynamic" section. Find the
2134 string table for the ".dynsym" section instead. */
2135 if (elf_dynsymtab (abfd) != 0)
2136 {
2137 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
2138 hdr->sh_link = dynsymhdr->sh_link;
2139 }
2140 else
2141 {
2142 unsigned int i, num_sec;
2143
2144 num_sec = elf_numsections (abfd);
2145 for (i = 1; i < num_sec; i++)
2146 {
2147 dynsymhdr = elf_elfsections (abfd)[i];
2148 if (dynsymhdr->sh_type == SHT_DYNSYM)
2149 {
2150 hdr->sh_link = dynsymhdr->sh_link;
2151 break;
2152 }
2153 }
2154 }
2155 }
2156 goto success;
2157
2158 case SHT_SYMTAB: /* A symbol table. */
2159 if (elf_onesymtab (abfd) == shindex)
2160 goto success;
2161
2162 if (hdr->sh_entsize != bed->s->sizeof_sym)
2163 goto fail;
2164
2165 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
2166 {
2167 if (hdr->sh_size != 0)
2168 goto fail;
2169 /* Some assemblers erroneously set sh_info to one with a
2170 zero sh_size. ld sees this as a global symbol count
2171 of (unsigned) -1. Fix it here. */
2172 hdr->sh_info = 0;
2173 goto success;
2174 }
2175
2176 /* PR 18854: A binary might contain more than one symbol table.
2177 Unusual, but possible. Warn, but continue. */
2178 if (elf_onesymtab (abfd) != 0)
2179 {
2180 _bfd_error_handler
2181 /* xgettext:c-format */
2182 (_("%pB: warning: multiple symbol tables detected"
2183 " - ignoring the table in section %u"),
2184 abfd, shindex);
2185 goto success;
2186 }
2187 elf_onesymtab (abfd) = shindex;
2188 elf_symtab_hdr (abfd) = *hdr;
2189 elf_elfsections (abfd)[shindex] = hdr = & elf_symtab_hdr (abfd);
2190 abfd->flags |= HAS_SYMS;
2191
2192 /* Sometimes a shared object will map in the symbol table. If
2193 SHF_ALLOC is set, and this is a shared object, then we also
2194 treat this section as a BFD section. We can not base the
2195 decision purely on SHF_ALLOC, because that flag is sometimes
2196 set in a relocatable object file, which would confuse the
2197 linker. */
2198 if ((hdr->sh_flags & SHF_ALLOC) != 0
2199 && (abfd->flags & DYNAMIC) != 0
2200 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2201 shindex))
2202 goto fail;
2203
2204 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
2205 can't read symbols without that section loaded as well. It
2206 is most likely specified by the next section header. */
2207 {
2208 elf_section_list * entry;
2209 unsigned int i, num_sec;
2210
2211 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
2212 if (entry->hdr.sh_link == shindex)
2213 goto success;
2214
2215 num_sec = elf_numsections (abfd);
2216 for (i = shindex + 1; i < num_sec; i++)
2217 {
2218 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2219
2220 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
2221 && hdr2->sh_link == shindex)
2222 break;
2223 }
2224
2225 if (i == num_sec)
2226 for (i = 1; i < shindex; i++)
2227 {
2228 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2229
2230 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
2231 && hdr2->sh_link == shindex)
2232 break;
2233 }
2234
2235 if (i != shindex)
2236 ret = bfd_section_from_shdr (abfd, i);
2237 /* else FIXME: we have failed to find the symbol table - should we issue an error ? */
2238 goto success;
2239 }
2240
2241 case SHT_DYNSYM: /* A dynamic symbol table. */
2242 if (elf_dynsymtab (abfd) == shindex)
2243 goto success;
2244
2245 if (hdr->sh_entsize != bed->s->sizeof_sym)
2246 goto fail;
2247
2248 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
2249 {
2250 if (hdr->sh_size != 0)
2251 goto fail;
2252
2253 /* Some linkers erroneously set sh_info to one with a
2254 zero sh_size. ld sees this as a global symbol count
2255 of (unsigned) -1. Fix it here. */
2256 hdr->sh_info = 0;
2257 goto success;
2258 }
2259
2260 /* PR 18854: A binary might contain more than one dynamic symbol table.
2261 Unusual, but possible. Warn, but continue. */
2262 if (elf_dynsymtab (abfd) != 0)
2263 {
2264 _bfd_error_handler
2265 /* xgettext:c-format */
2266 (_("%pB: warning: multiple dynamic symbol tables detected"
2267 " - ignoring the table in section %u"),
2268 abfd, shindex);
2269 goto success;
2270 }
2271 elf_dynsymtab (abfd) = shindex;
2272 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
2273 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2274 abfd->flags |= HAS_SYMS;
2275
2276 /* Besides being a symbol table, we also treat this as a regular
2277 section, so that objcopy can handle it. */
2278 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2279 goto success;
2280
2281 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections. */
2282 {
2283 elf_section_list * entry;
2284
2285 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
2286 if (entry->ndx == shindex)
2287 goto success;
2288
2289 entry = bfd_alloc (abfd, sizeof (*entry));
2290 if (entry == NULL)
2291 goto fail;
2292 entry->ndx = shindex;
2293 entry->hdr = * hdr;
2294 entry->next = elf_symtab_shndx_list (abfd);
2295 elf_symtab_shndx_list (abfd) = entry;
2296 elf_elfsections (abfd)[shindex] = & entry->hdr;
2297 goto success;
2298 }
2299
2300 case SHT_STRTAB: /* A string table. */
2301 if (hdr->bfd_section != NULL)
2302 goto success;
2303
2304 if (ehdr->e_shstrndx == shindex)
2305 {
2306 elf_tdata (abfd)->shstrtab_hdr = *hdr;
2307 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
2308 goto success;
2309 }
2310
2311 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
2312 {
2313 symtab_strtab:
2314 elf_tdata (abfd)->strtab_hdr = *hdr;
2315 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
2316 goto success;
2317 }
2318
2319 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
2320 {
2321 dynsymtab_strtab:
2322 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
2323 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
2324 elf_elfsections (abfd)[shindex] = hdr;
2325 /* We also treat this as a regular section, so that objcopy
2326 can handle it. */
2327 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2328 shindex);
2329 goto success;
2330 }
2331
2332 /* If the string table isn't one of the above, then treat it as a
2333 regular section. We need to scan all the headers to be sure,
2334 just in case this strtab section appeared before the above. */
2335 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
2336 {
2337 unsigned int i, num_sec;
2338
2339 num_sec = elf_numsections (abfd);
2340 for (i = 1; i < num_sec; i++)
2341 {
2342 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2343 if (hdr2->sh_link == shindex)
2344 {
2345 /* Prevent endless recursion on broken objects. */
2346 if (i == shindex)
2347 goto fail;
2348 if (! bfd_section_from_shdr (abfd, i))
2349 goto fail;
2350 if (elf_onesymtab (abfd) == i)
2351 goto symtab_strtab;
2352 if (elf_dynsymtab (abfd) == i)
2353 goto dynsymtab_strtab;
2354 }
2355 }
2356 }
2357 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2358 goto success;
2359
2360 case SHT_REL:
2361 case SHT_RELA:
2362 case SHT_RELR:
2363 /* *These* do a lot of work -- but build no sections! */
2364 {
2365 asection *target_sect;
2366 Elf_Internal_Shdr *hdr2, **p_hdr;
2367 unsigned int num_sec = elf_numsections (abfd);
2368 struct bfd_elf_section_data *esdt;
2369 bfd_size_type size;
2370
2371 if (hdr->sh_type == SHT_REL)
2372 size = bed->s->sizeof_rel;
2373 else if (hdr->sh_type == SHT_RELA)
2374 size = bed->s->sizeof_rela;
2375 else
2376 size = bed->s->arch_size / 8;
2377 if (hdr->sh_entsize != size)
2378 goto fail;
2379
2380 /* Check for a bogus link to avoid crashing. */
2381 if (hdr->sh_link >= num_sec)
2382 {
2383 _bfd_error_handler
2384 /* xgettext:c-format */
2385 (_("%pB: invalid link %u for reloc section %s (index %u)"),
2386 abfd, hdr->sh_link, name, shindex);
2387 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2388 shindex);
2389 goto success;
2390 }
2391
2392 /* Get the symbol table. */
2393 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
2394 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
2395 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
2396 goto fail;
2397
2398 /* If this is an alloc section in an executable or shared
2399 library, or the reloc section does not use the main symbol
2400 table we don't treat it as a reloc section. BFD can't
2401 adequately represent such a section, so at least for now,
2402 we don't try. We just present it as a normal section. We
2403 also can't use it as a reloc section if it points to the
2404 null section, an invalid section, another reloc section, or
2405 its sh_link points to the null section. */
2406 if (((abfd->flags & (DYNAMIC | EXEC_P)) != 0
2407 && (hdr->sh_flags & SHF_ALLOC) != 0)
2408 || hdr->sh_link == SHN_UNDEF
2409 || hdr->sh_link != elf_onesymtab (abfd)
2410 || hdr->sh_info == SHN_UNDEF
2411 || hdr->sh_info >= num_sec
2412 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
2413 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
2414 {
2415 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2416 shindex);
2417 goto success;
2418 }
2419
2420 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
2421 goto fail;
2422
2423 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
2424 if (target_sect == NULL)
2425 goto fail;
2426
2427 esdt = elf_section_data (target_sect);
2428 if (hdr->sh_type == SHT_RELA)
2429 p_hdr = &esdt->rela.hdr;
2430 else
2431 p_hdr = &esdt->rel.hdr;
2432
2433 /* PR 17512: file: 0b4f81b7.
2434 Also see PR 24456, for a file which deliberately has two reloc
2435 sections. */
2436 if (*p_hdr != NULL)
2437 {
2438 if (!bed->init_secondary_reloc_section (abfd, hdr, name, shindex))
2439 {
2440 _bfd_error_handler
2441 /* xgettext:c-format */
2442 (_("%pB: warning: secondary relocation section '%s' "
2443 "for section %pA found - ignoring"),
2444 abfd, name, target_sect);
2445 }
2446 else
2447 esdt->has_secondary_relocs = true;
2448 goto success;
2449 }
2450
2451 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, sizeof (*hdr2));
2452 if (hdr2 == NULL)
2453 goto fail;
2454 *hdr2 = *hdr;
2455 *p_hdr = hdr2;
2456 elf_elfsections (abfd)[shindex] = hdr2;
2457 target_sect->reloc_count += (NUM_SHDR_ENTRIES (hdr)
2458 * bed->s->int_rels_per_ext_rel);
2459 target_sect->flags |= SEC_RELOC;
2460 target_sect->relocation = NULL;
2461 target_sect->rel_filepos = hdr->sh_offset;
2462 /* In the section to which the relocations apply, mark whether
2463 its relocations are of the REL or RELA variety. */
2464 if (hdr->sh_size != 0)
2465 {
2466 if (hdr->sh_type == SHT_RELA)
2467 target_sect->use_rela_p = 1;
2468 }
2469 abfd->flags |= HAS_RELOC;
2470 goto success;
2471 }
2472
2473 case SHT_GNU_verdef:
2474 elf_dynverdef (abfd) = shindex;
2475 elf_tdata (abfd)->dynverdef_hdr = *hdr;
2476 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2477 goto success;
2478
2479 case SHT_GNU_versym:
2480 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
2481 goto fail;
2482
2483 elf_dynversym (abfd) = shindex;
2484 elf_tdata (abfd)->dynversym_hdr = *hdr;
2485 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2486 goto success;
2487
2488 case SHT_GNU_verneed:
2489 elf_dynverref (abfd) = shindex;
2490 elf_tdata (abfd)->dynverref_hdr = *hdr;
2491 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2492 goto success;
2493
2494 case SHT_SHLIB:
2495 goto success;
2496
2497 case SHT_GROUP:
2498 if (! IS_VALID_GROUP_SECTION_HEADER (hdr, GRP_ENTRY_SIZE))
2499 goto fail;
2500
2501 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2502 goto fail;
2503
2504 goto success;
2505
2506 default:
2507 /* Possibly an attributes section. */
2508 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
2509 || hdr->sh_type == bed->obj_attrs_section_type)
2510 {
2511 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2512 goto fail;
2513 _bfd_elf_parse_attributes (abfd, hdr);
2514 goto success;
2515 }
2516
2517 /* Check for any processor-specific section types. */
2518 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
2519 goto success;
2520
2521 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
2522 {
2523 if ((hdr->sh_flags & SHF_ALLOC) != 0)
2524 /* FIXME: How to properly handle allocated section reserved
2525 for applications? */
2526 _bfd_error_handler
2527 /* xgettext:c-format */
2528 (_("%pB: unknown type [%#x] section `%s'"),
2529 abfd, hdr->sh_type, name);
2530 else
2531 {
2532 /* Allow sections reserved for applications. */
2533 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2534 shindex);
2535 goto success;
2536 }
2537 }
2538 else if (hdr->sh_type >= SHT_LOPROC
2539 && hdr->sh_type <= SHT_HIPROC)
2540 /* FIXME: We should handle this section. */
2541 _bfd_error_handler
2542 /* xgettext:c-format */
2543 (_("%pB: unknown type [%#x] section `%s'"),
2544 abfd, hdr->sh_type, name);
2545 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
2546 {
2547 /* Unrecognised OS-specific sections. */
2548 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
2549 /* SHF_OS_NONCONFORMING indicates that special knowledge is
2550 required to correctly process the section and the file should
2551 be rejected with an error message. */
2552 _bfd_error_handler
2553 /* xgettext:c-format */
2554 (_("%pB: unknown type [%#x] section `%s'"),
2555 abfd, hdr->sh_type, name);
2556 else
2557 {
2558 /* Otherwise it should be processed. */
2559 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2560 goto success;
2561 }
2562 }
2563 else
2564 /* FIXME: We should handle this section. */
2565 _bfd_error_handler
2566 /* xgettext:c-format */
2567 (_("%pB: unknown type [%#x] section `%s'"),
2568 abfd, hdr->sh_type, name);
2569
2570 goto fail;
2571 }
2572
2573 fail:
2574 ret = false;
2575 success:
2576 elf_tdata (abfd)->being_created[shindex] = false;
2577 return ret;
2578 }
2579
2580 /* Return the local symbol specified by ABFD, R_SYMNDX. */
2581
2582 Elf_Internal_Sym *
2583 bfd_sym_from_r_symndx (struct sym_cache *cache,
2584 bfd *abfd,
2585 unsigned long r_symndx)
2586 {
2587 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2588
2589 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
2590 {
2591 Elf_Internal_Shdr *symtab_hdr;
2592 unsigned char esym[sizeof (Elf64_External_Sym)];
2593 Elf_External_Sym_Shndx eshndx;
2594
2595 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2596 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2597 &cache->sym[ent], esym, &eshndx) == NULL)
2598 return NULL;
2599
2600 if (cache->abfd != abfd)
2601 {
2602 memset (cache->indx, -1, sizeof (cache->indx));
2603 cache->abfd = abfd;
2604 }
2605 cache->indx[ent] = r_symndx;
2606 }
2607
2608 return &cache->sym[ent];
2609 }
2610
2611 /* Given an ELF section number, retrieve the corresponding BFD
2612 section. */
2613
2614 asection *
2615 bfd_section_from_elf_index (bfd *abfd, unsigned int sec_index)
2616 {
2617 if (sec_index >= elf_numsections (abfd))
2618 return NULL;
2619 return elf_elfsections (abfd)[sec_index]->bfd_section;
2620 }
2621
2622 static const struct bfd_elf_special_section special_sections_b[] =
2623 {
2624 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2625 { NULL, 0, 0, 0, 0 }
2626 };
2627
2628 static const struct bfd_elf_special_section special_sections_c[] =
2629 {
2630 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2631 { STRING_COMMA_LEN (".ctf"), 0, SHT_PROGBITS, 0 },
2632 { NULL, 0, 0, 0, 0 }
2633 };
2634
2635 static const struct bfd_elf_special_section special_sections_d[] =
2636 {
2637 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2638 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2639 /* There are more DWARF sections than these, but they needn't be added here
2640 unless you have to cope with broken compilers that don't emit section
2641 attributes or you want to help the user writing assembler. */
2642 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2643 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2644 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2645 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2646 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2647 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2648 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2649 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2650 { NULL, 0, 0, 0, 0 }
2651 };
2652
2653 static const struct bfd_elf_special_section special_sections_f[] =
2654 {
2655 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2656 { STRING_COMMA_LEN (".fini_array"), -2, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2657 { NULL, 0 , 0, 0, 0 }
2658 };
2659
2660 static const struct bfd_elf_special_section special_sections_g[] =
2661 {
2662 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2663 { STRING_COMMA_LEN (".gnu.linkonce.n"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2664 { STRING_COMMA_LEN (".gnu.linkonce.p"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2665 { STRING_COMMA_LEN (".gnu.lto_"), -1, SHT_PROGBITS, SHF_EXCLUDE },
2666 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2667 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2668 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2669 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2670 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2671 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2672 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2673 { NULL, 0, 0, 0, 0 }
2674 };
2675
2676 static const struct bfd_elf_special_section special_sections_h[] =
2677 {
2678 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2679 { NULL, 0, 0, 0, 0 }
2680 };
2681
2682 static const struct bfd_elf_special_section special_sections_i[] =
2683 {
2684 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2685 { STRING_COMMA_LEN (".init_array"), -2, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2686 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2687 { NULL, 0, 0, 0, 0 }
2688 };
2689
2690 static const struct bfd_elf_special_section special_sections_l[] =
2691 {
2692 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2693 { NULL, 0, 0, 0, 0 }
2694 };
2695
2696 static const struct bfd_elf_special_section special_sections_n[] =
2697 {
2698 { STRING_COMMA_LEN (".noinit"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2699 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2700 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2701 { NULL, 0, 0, 0, 0 }
2702 };
2703
2704 static const struct bfd_elf_special_section special_sections_p[] =
2705 {
2706 { STRING_COMMA_LEN (".persistent.bss"), 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2707 { STRING_COMMA_LEN (".persistent"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2708 { STRING_COMMA_LEN (".preinit_array"), -2, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2709 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2710 { NULL, 0, 0, 0, 0 }
2711 };
2712
2713 static const struct bfd_elf_special_section special_sections_r[] =
2714 {
2715 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2716 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2717 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2718 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2719 { NULL, 0, 0, 0, 0 }
2720 };
2721
2722 static const struct bfd_elf_special_section special_sections_s[] =
2723 {
2724 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2725 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2726 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2727 /* See struct bfd_elf_special_section declaration for the semantics of
2728 this special case where .prefix_length != strlen (.prefix). */
2729 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2730 { NULL, 0, 0, 0, 0 }
2731 };
2732
2733 static const struct bfd_elf_special_section special_sections_t[] =
2734 {
2735 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2736 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2737 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2738 { NULL, 0, 0, 0, 0 }
2739 };
2740
2741 static const struct bfd_elf_special_section special_sections_z[] =
2742 {
2743 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 },
2744 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 },
2745 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 },
2746 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 },
2747 { NULL, 0, 0, 0, 0 }
2748 };
2749
2750 static const struct bfd_elf_special_section * const special_sections[] =
2751 {
2752 special_sections_b, /* 'b' */
2753 special_sections_c, /* 'c' */
2754 special_sections_d, /* 'd' */
2755 NULL, /* 'e' */
2756 special_sections_f, /* 'f' */
2757 special_sections_g, /* 'g' */
2758 special_sections_h, /* 'h' */
2759 special_sections_i, /* 'i' */
2760 NULL, /* 'j' */
2761 NULL, /* 'k' */
2762 special_sections_l, /* 'l' */
2763 NULL, /* 'm' */
2764 special_sections_n, /* 'n' */
2765 NULL, /* 'o' */
2766 special_sections_p, /* 'p' */
2767 NULL, /* 'q' */
2768 special_sections_r, /* 'r' */
2769 special_sections_s, /* 's' */
2770 special_sections_t, /* 't' */
2771 NULL, /* 'u' */
2772 NULL, /* 'v' */
2773 NULL, /* 'w' */
2774 NULL, /* 'x' */
2775 NULL, /* 'y' */
2776 special_sections_z /* 'z' */
2777 };
2778
2779 const struct bfd_elf_special_section *
2780 _bfd_elf_get_special_section (const char *name,
2781 const struct bfd_elf_special_section *spec,
2782 unsigned int rela)
2783 {
2784 int i;
2785 int len;
2786
2787 len = strlen (name);
2788
2789 for (i = 0; spec[i].prefix != NULL; i++)
2790 {
2791 int suffix_len;
2792 int prefix_len = spec[i].prefix_length;
2793
2794 if (len < prefix_len)
2795 continue;
2796 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2797 continue;
2798
2799 suffix_len = spec[i].suffix_length;
2800 if (suffix_len <= 0)
2801 {
2802 if (name[prefix_len] != 0)
2803 {
2804 if (suffix_len == 0)
2805 continue;
2806 if (name[prefix_len] != '.'
2807 && (suffix_len == -2
2808 || (rela && spec[i].type == SHT_REL)))
2809 continue;
2810 }
2811 }
2812 else
2813 {
2814 if (len < prefix_len + suffix_len)
2815 continue;
2816 if (memcmp (name + len - suffix_len,
2817 spec[i].prefix + prefix_len,
2818 suffix_len) != 0)
2819 continue;
2820 }
2821 return &spec[i];
2822 }
2823
2824 return NULL;
2825 }
2826
2827 const struct bfd_elf_special_section *
2828 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2829 {
2830 int i;
2831 const struct bfd_elf_special_section *spec;
2832 const struct elf_backend_data *bed;
2833
2834 /* See if this is one of the special sections. */
2835 if (sec->name == NULL)
2836 return NULL;
2837
2838 bed = get_elf_backend_data (abfd);
2839 spec = bed->special_sections;
2840 if (spec)
2841 {
2842 spec = _bfd_elf_get_special_section (sec->name,
2843 bed->special_sections,
2844 sec->use_rela_p);
2845 if (spec != NULL)
2846 return spec;
2847 }
2848
2849 if (sec->name[0] != '.')
2850 return NULL;
2851
2852 i = sec->name[1] - 'b';
2853 if (i < 0 || i > 'z' - 'b')
2854 return NULL;
2855
2856 spec = special_sections[i];
2857
2858 if (spec == NULL)
2859 return NULL;
2860
2861 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2862 }
2863
2864 bool
2865 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2866 {
2867 struct bfd_elf_section_data *sdata;
2868 const struct elf_backend_data *bed;
2869 const struct bfd_elf_special_section *ssect;
2870
2871 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2872 if (sdata == NULL)
2873 {
2874 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd,
2875 sizeof (*sdata));
2876 if (sdata == NULL)
2877 return false;
2878 sec->used_by_bfd = sdata;
2879 }
2880
2881 /* Indicate whether or not this section should use RELA relocations. */
2882 bed = get_elf_backend_data (abfd);
2883 sec->use_rela_p = bed->default_use_rela_p;
2884
2885 /* Set up ELF section type and flags for newly created sections, if
2886 there is an ABI mandated section. */
2887 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2888 if (ssect != NULL)
2889 {
2890 elf_section_type (sec) = ssect->type;
2891 elf_section_flags (sec) = ssect->attr;
2892 }
2893
2894 return _bfd_generic_new_section_hook (abfd, sec);
2895 }
2896
2897 /* Create a new bfd section from an ELF program header.
2898
2899 Since program segments have no names, we generate a synthetic name
2900 of the form segment<NUM>, where NUM is generally the index in the
2901 program header table. For segments that are split (see below) we
2902 generate the names segment<NUM>a and segment<NUM>b.
2903
2904 Note that some program segments may have a file size that is different than
2905 (less than) the memory size. All this means is that at execution the
2906 system must allocate the amount of memory specified by the memory size,
2907 but only initialize it with the first "file size" bytes read from the
2908 file. This would occur for example, with program segments consisting
2909 of combined data+bss.
2910
2911 To handle the above situation, this routine generates TWO bfd sections
2912 for the single program segment. The first has the length specified by
2913 the file size of the segment, and the second has the length specified
2914 by the difference between the two sizes. In effect, the segment is split
2915 into its initialized and uninitialized parts.
2916
2917 */
2918
2919 bool
2920 _bfd_elf_make_section_from_phdr (bfd *abfd,
2921 Elf_Internal_Phdr *hdr,
2922 int hdr_index,
2923 const char *type_name)
2924 {
2925 asection *newsect;
2926 char *name;
2927 char namebuf[64];
2928 size_t len;
2929 int split;
2930 unsigned int opb = bfd_octets_per_byte (abfd, NULL);
2931
2932 split = ((hdr->p_memsz > 0)
2933 && (hdr->p_filesz > 0)
2934 && (hdr->p_memsz > hdr->p_filesz));
2935
2936 if (hdr->p_filesz > 0)
2937 {
2938 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "a" : "");
2939 len = strlen (namebuf) + 1;
2940 name = (char *) bfd_alloc (abfd, len);
2941 if (!name)
2942 return false;
2943 memcpy (name, namebuf, len);
2944 newsect = bfd_make_section (abfd, name);
2945 if (newsect == NULL)
2946 return false;
2947 newsect->vma = hdr->p_vaddr / opb;
2948 newsect->lma = hdr->p_paddr / opb;
2949 newsect->size = hdr->p_filesz;
2950 newsect->filepos = hdr->p_offset;
2951 newsect->flags |= SEC_HAS_CONTENTS;
2952 newsect->alignment_power = bfd_log2 (hdr->p_align);
2953 if (hdr->p_type == PT_LOAD)
2954 {
2955 newsect->flags |= SEC_ALLOC;
2956 newsect->flags |= SEC_LOAD;
2957 if (hdr->p_flags & PF_X)
2958 {
2959 /* FIXME: all we known is that it has execute PERMISSION,
2960 may be data. */
2961 newsect->flags |= SEC_CODE;
2962 }
2963 }
2964 if (!(hdr->p_flags & PF_W))
2965 {
2966 newsect->flags |= SEC_READONLY;
2967 }
2968 }
2969
2970 if (hdr->p_memsz > hdr->p_filesz)
2971 {
2972 bfd_vma align;
2973
2974 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "b" : "");
2975 len = strlen (namebuf) + 1;
2976 name = (char *) bfd_alloc (abfd, len);
2977 if (!name)
2978 return false;
2979 memcpy (name, namebuf, len);
2980 newsect = bfd_make_section (abfd, name);
2981 if (newsect == NULL)
2982 return false;
2983 newsect->vma = (hdr->p_vaddr + hdr->p_filesz) / opb;
2984 newsect->lma = (hdr->p_paddr + hdr->p_filesz) / opb;
2985 newsect->size = hdr->p_memsz - hdr->p_filesz;
2986 newsect->filepos = hdr->p_offset + hdr->p_filesz;
2987 align = newsect->vma & -newsect->vma;
2988 if (align == 0 || align > hdr->p_align)
2989 align = hdr->p_align;
2990 newsect->alignment_power = bfd_log2 (align);
2991 if (hdr->p_type == PT_LOAD)
2992 {
2993 newsect->flags |= SEC_ALLOC;
2994 if (hdr->p_flags & PF_X)
2995 newsect->flags |= SEC_CODE;
2996 }
2997 if (!(hdr->p_flags & PF_W))
2998 newsect->flags |= SEC_READONLY;
2999 }
3000
3001 return true;
3002 }
3003
3004 static bool
3005 _bfd_elf_core_find_build_id (bfd *templ, bfd_vma offset)
3006 {
3007 /* The return value is ignored. Build-ids are considered optional. */
3008 if (templ->xvec->flavour == bfd_target_elf_flavour)
3009 return (*get_elf_backend_data (templ)->elf_backend_core_find_build_id)
3010 (templ, offset);
3011 return false;
3012 }
3013
3014 bool
3015 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int hdr_index)
3016 {
3017 const struct elf_backend_data *bed;
3018
3019 switch (hdr->p_type)
3020 {
3021 case PT_NULL:
3022 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "null");
3023
3024 case PT_LOAD:
3025 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "load"))
3026 return false;
3027 if (bfd_get_format (abfd) == bfd_core && abfd->build_id == NULL)
3028 _bfd_elf_core_find_build_id (abfd, hdr->p_offset);
3029 return true;
3030
3031 case PT_DYNAMIC:
3032 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "dynamic");
3033
3034 case PT_INTERP:
3035 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "interp");
3036
3037 case PT_NOTE:
3038 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "note"))
3039 return false;
3040 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz,
3041 hdr->p_align))
3042 return false;
3043 return true;
3044
3045 case PT_SHLIB:
3046 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "shlib");
3047
3048 case PT_PHDR:
3049 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "phdr");
3050
3051 case PT_GNU_EH_FRAME:
3052 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index,
3053 "eh_frame_hdr");
3054
3055 case PT_GNU_STACK:
3056 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "stack");
3057
3058 case PT_GNU_RELRO:
3059 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "relro");
3060
3061 default:
3062 /* Check for any processor-specific program segment types. */
3063 bed = get_elf_backend_data (abfd);
3064 return bed->elf_backend_section_from_phdr (abfd, hdr, hdr_index, "proc");
3065 }
3066 }
3067
3068 /* Return the REL_HDR for SEC, assuming there is only a single one, either
3069 REL or RELA. */
3070
3071 Elf_Internal_Shdr *
3072 _bfd_elf_single_rel_hdr (asection *sec)
3073 {
3074 if (elf_section_data (sec)->rel.hdr)
3075 {
3076 BFD_ASSERT (elf_section_data (sec)->rela.hdr == NULL);
3077 return elf_section_data (sec)->rel.hdr;
3078 }
3079 else
3080 return elf_section_data (sec)->rela.hdr;
3081 }
3082
3083 static bool
3084 _bfd_elf_set_reloc_sh_name (bfd *abfd,
3085 Elf_Internal_Shdr *rel_hdr,
3086 const char *sec_name,
3087 bool use_rela_p)
3088 {
3089 char *name = (char *) bfd_alloc (abfd,
3090 sizeof ".rela" + strlen (sec_name));
3091 if (name == NULL)
3092 return false;
3093
3094 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", sec_name);
3095 rel_hdr->sh_name =
3096 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
3097 false);
3098 if (rel_hdr->sh_name == (unsigned int) -1)
3099 return false;
3100
3101 return true;
3102 }
3103
3104 /* Allocate and initialize a section-header for a new reloc section,
3105 containing relocations against ASECT. It is stored in RELDATA. If
3106 USE_RELA_P is TRUE, we use RELA relocations; otherwise, we use REL
3107 relocations. */
3108
3109 static bool
3110 _bfd_elf_init_reloc_shdr (bfd *abfd,
3111 struct bfd_elf_section_reloc_data *reldata,
3112 const char *sec_name,
3113 bool use_rela_p,
3114 bool delay_st_name_p)
3115 {
3116 Elf_Internal_Shdr *rel_hdr;
3117 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3118
3119 BFD_ASSERT (reldata->hdr == NULL);
3120 rel_hdr = bfd_zalloc (abfd, sizeof (*rel_hdr));
3121 reldata->hdr = rel_hdr;
3122
3123 if (delay_st_name_p)
3124 rel_hdr->sh_name = (unsigned int) -1;
3125 else if (!_bfd_elf_set_reloc_sh_name (abfd, rel_hdr, sec_name,
3126 use_rela_p))
3127 return false;
3128 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
3129 rel_hdr->sh_entsize = (use_rela_p
3130 ? bed->s->sizeof_rela
3131 : bed->s->sizeof_rel);
3132 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
3133 rel_hdr->sh_flags = 0;
3134 rel_hdr->sh_addr = 0;
3135 rel_hdr->sh_size = 0;
3136 rel_hdr->sh_offset = 0;
3137
3138 return true;
3139 }
3140
3141 /* Return the default section type based on the passed in section flags. */
3142
3143 int
3144 bfd_elf_get_default_section_type (flagword flags)
3145 {
3146 if ((flags & (SEC_ALLOC | SEC_IS_COMMON)) != 0
3147 && (flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
3148 return SHT_NOBITS;
3149 return SHT_PROGBITS;
3150 }
3151
3152 struct fake_section_arg
3153 {
3154 struct bfd_link_info *link_info;
3155 bool failed;
3156 };
3157
3158 /* Set up an ELF internal section header for a section. */
3159
3160 static void
3161 elf_fake_sections (bfd *abfd, asection *asect, void *fsarg)
3162 {
3163 struct fake_section_arg *arg = (struct fake_section_arg *)fsarg;
3164 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3165 struct bfd_elf_section_data *esd = elf_section_data (asect);
3166 Elf_Internal_Shdr *this_hdr;
3167 unsigned int sh_type;
3168 const char *name = asect->name;
3169 bool delay_st_name_p = false;
3170 bfd_vma mask;
3171
3172 if (arg->failed)
3173 {
3174 /* We already failed; just get out of the bfd_map_over_sections
3175 loop. */
3176 return;
3177 }
3178
3179 this_hdr = &esd->this_hdr;
3180
3181 if (arg->link_info)
3182 {
3183 /* ld: compress DWARF debug sections with names: .debug_*. */
3184 if ((arg->link_info->compress_debug & COMPRESS_DEBUG)
3185 && (asect->flags & SEC_DEBUGGING)
3186 && name[1] == 'd'
3187 && name[6] == '_')
3188 {
3189 /* Set SEC_ELF_COMPRESS to indicate this section should be
3190 compressed. */
3191 asect->flags |= SEC_ELF_COMPRESS;
3192 /* If this section will be compressed, delay adding section
3193 name to section name section after it is compressed in
3194 _bfd_elf_assign_file_positions_for_non_load. */
3195 delay_st_name_p = true;
3196 }
3197 }
3198 else if ((asect->flags & SEC_ELF_RENAME))
3199 {
3200 /* objcopy: rename output DWARF debug section. */
3201 if ((abfd->flags & (BFD_DECOMPRESS | BFD_COMPRESS_GABI)))
3202 {
3203 /* When we decompress or compress with SHF_COMPRESSED,
3204 convert section name from .zdebug_* to .debug_* if
3205 needed. */
3206 if (name[1] == 'z')
3207 {
3208 char *new_name = convert_zdebug_to_debug (abfd, name);
3209 if (new_name == NULL)
3210 {
3211 arg->failed = true;
3212 return;
3213 }
3214 name = new_name;
3215 }
3216 }
3217 else if (asect->compress_status == COMPRESS_SECTION_DONE)
3218 {
3219 /* PR binutils/18087: Compression does not always make a
3220 section smaller. So only rename the section when
3221 compression has actually taken place. If input section
3222 name is .zdebug_*, we should never compress it again. */
3223 char *new_name = convert_debug_to_zdebug (abfd, name);
3224 if (new_name == NULL)
3225 {
3226 arg->failed = true;
3227 return;
3228 }
3229 BFD_ASSERT (name[1] != 'z');
3230 name = new_name;
3231 }
3232 }
3233
3234 if (delay_st_name_p)
3235 this_hdr->sh_name = (unsigned int) -1;
3236 else
3237 {
3238 this_hdr->sh_name
3239 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3240 name, false);
3241 if (this_hdr->sh_name == (unsigned int) -1)
3242 {
3243 arg->failed = true;
3244 return;
3245 }
3246 }
3247
3248 /* Don't clear sh_flags. Assembler may set additional bits. */
3249
3250 if ((asect->flags & SEC_ALLOC) != 0
3251 || asect->user_set_vma)
3252 this_hdr->sh_addr = asect->vma * bfd_octets_per_byte (abfd, asect);
3253 else
3254 this_hdr->sh_addr = 0;
3255
3256 this_hdr->sh_offset = 0;
3257 this_hdr->sh_size = asect->size;
3258 this_hdr->sh_link = 0;
3259 /* PR 17512: file: 0eb809fe, 8b0535ee. */
3260 if (asect->alignment_power >= (sizeof (bfd_vma) * 8) - 1)
3261 {
3262 _bfd_error_handler
3263 /* xgettext:c-format */
3264 (_("%pB: error: alignment power %d of section `%pA' is too big"),
3265 abfd, asect->alignment_power, asect);
3266 arg->failed = true;
3267 return;
3268 }
3269 /* Set sh_addralign to the highest power of two given by alignment
3270 consistent with the section VMA. Linker scripts can force VMA. */
3271 mask = ((bfd_vma) 1 << asect->alignment_power) | this_hdr->sh_addr;
3272 this_hdr->sh_addralign = mask & -mask;
3273 /* The sh_entsize and sh_info fields may have been set already by
3274 copy_private_section_data. */
3275
3276 this_hdr->bfd_section = asect;
3277 this_hdr->contents = NULL;
3278
3279 /* If the section type is unspecified, we set it based on
3280 asect->flags. */
3281 if ((asect->flags & SEC_GROUP) != 0)
3282 sh_type = SHT_GROUP;
3283 else
3284 sh_type = bfd_elf_get_default_section_type (asect->flags);
3285
3286 if (this_hdr->sh_type == SHT_NULL)
3287 this_hdr->sh_type = sh_type;
3288 else if (this_hdr->sh_type == SHT_NOBITS
3289 && sh_type == SHT_PROGBITS
3290 && (asect->flags & SEC_ALLOC) != 0)
3291 {
3292 /* Warn if we are changing a NOBITS section to PROGBITS, but
3293 allow the link to proceed. This can happen when users link
3294 non-bss input sections to bss output sections, or emit data
3295 to a bss output section via a linker script. */
3296 _bfd_error_handler
3297 (_("warning: section `%pA' type changed to PROGBITS"), asect);
3298 this_hdr->sh_type = sh_type;
3299 }
3300
3301 switch (this_hdr->sh_type)
3302 {
3303 default:
3304 break;
3305
3306 case SHT_STRTAB:
3307 case SHT_NOTE:
3308 case SHT_NOBITS:
3309 case SHT_PROGBITS:
3310 break;
3311
3312 case SHT_INIT_ARRAY:
3313 case SHT_FINI_ARRAY:
3314 case SHT_PREINIT_ARRAY:
3315 this_hdr->sh_entsize = bed->s->arch_size / 8;
3316 break;
3317
3318 case SHT_HASH:
3319 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
3320 break;
3321
3322 case SHT_DYNSYM:
3323 this_hdr->sh_entsize = bed->s->sizeof_sym;
3324 break;
3325
3326 case SHT_DYNAMIC:
3327 this_hdr->sh_entsize = bed->s->sizeof_dyn;
3328 break;
3329
3330 case SHT_RELA:
3331 if (get_elf_backend_data (abfd)->may_use_rela_p)
3332 this_hdr->sh_entsize = bed->s->sizeof_rela;
3333 break;
3334
3335 case SHT_REL:
3336 if (get_elf_backend_data (abfd)->may_use_rel_p)
3337 this_hdr->sh_entsize = bed->s->sizeof_rel;
3338 break;
3339
3340 case SHT_GNU_versym:
3341 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
3342 break;
3343
3344 case SHT_GNU_verdef:
3345 this_hdr->sh_entsize = 0;
3346 /* objcopy or strip will copy over sh_info, but may not set
3347 cverdefs. The linker will set cverdefs, but sh_info will be
3348 zero. */
3349 if (this_hdr->sh_info == 0)
3350 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
3351 else
3352 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
3353 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
3354 break;
3355
3356 case SHT_GNU_verneed:
3357 this_hdr->sh_entsize = 0;
3358 /* objcopy or strip will copy over sh_info, but may not set
3359 cverrefs. The linker will set cverrefs, but sh_info will be
3360 zero. */
3361 if (this_hdr->sh_info == 0)
3362 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
3363 else
3364 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
3365 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
3366 break;
3367
3368 case SHT_GROUP:
3369 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
3370 break;
3371
3372 case SHT_GNU_HASH:
3373 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
3374 break;
3375 }
3376
3377 if ((asect->flags & SEC_ALLOC) != 0)
3378 this_hdr->sh_flags |= SHF_ALLOC;
3379 if ((asect->flags & SEC_READONLY) == 0)
3380 this_hdr->sh_flags |= SHF_WRITE;
3381 if ((asect->flags & SEC_CODE) != 0)
3382 this_hdr->sh_flags |= SHF_EXECINSTR;
3383 if ((asect->flags & SEC_MERGE) != 0)
3384 {
3385 this_hdr->sh_flags |= SHF_MERGE;
3386 this_hdr->sh_entsize = asect->entsize;
3387 }
3388 if ((asect->flags & SEC_STRINGS) != 0)
3389 this_hdr->sh_flags |= SHF_STRINGS;
3390 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
3391 this_hdr->sh_flags |= SHF_GROUP;
3392 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
3393 {
3394 this_hdr->sh_flags |= SHF_TLS;
3395 if (asect->size == 0
3396 && (asect->flags & SEC_HAS_CONTENTS) == 0)
3397 {
3398 struct bfd_link_order *o = asect->map_tail.link_order;
3399
3400 this_hdr->sh_size = 0;
3401 if (o != NULL)
3402 {
3403 this_hdr->sh_size = o->offset + o->size;
3404 if (this_hdr->sh_size != 0)
3405 this_hdr->sh_type = SHT_NOBITS;
3406 }
3407 }
3408 }
3409 if ((asect->flags & (SEC_GROUP | SEC_EXCLUDE)) == SEC_EXCLUDE)
3410 this_hdr->sh_flags |= SHF_EXCLUDE;
3411
3412 /* If the section has relocs, set up a section header for the
3413 SHT_REL[A] section. If two relocation sections are required for
3414 this section, it is up to the processor-specific back-end to
3415 create the other. */
3416 if ((asect->flags & SEC_RELOC) != 0)
3417 {
3418 /* When doing a relocatable link, create both REL and RELA sections if
3419 needed. */
3420 if (arg->link_info
3421 /* Do the normal setup if we wouldn't create any sections here. */
3422 && esd->rel.count + esd->rela.count > 0
3423 && (bfd_link_relocatable (arg->link_info)
3424 || arg->link_info->emitrelocations))
3425 {
3426 if (esd->rel.count && esd->rel.hdr == NULL
3427 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rel, name,
3428 false, delay_st_name_p))
3429 {
3430 arg->failed = true;
3431 return;
3432 }
3433 if (esd->rela.count && esd->rela.hdr == NULL
3434 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rela, name,
3435 true, delay_st_name_p))
3436 {
3437 arg->failed = true;
3438 return;
3439 }
3440 }
3441 else if (!_bfd_elf_init_reloc_shdr (abfd,
3442 (asect->use_rela_p
3443 ? &esd->rela : &esd->rel),
3444 name,
3445 asect->use_rela_p,
3446 delay_st_name_p))
3447 {
3448 arg->failed = true;
3449 return;
3450 }
3451 }
3452
3453 /* Check for processor-specific section types. */
3454 sh_type = this_hdr->sh_type;
3455 if (bed->elf_backend_fake_sections
3456 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
3457 {
3458 arg->failed = true;
3459 return;
3460 }
3461
3462 if (sh_type == SHT_NOBITS && asect->size != 0)
3463 {
3464 /* Don't change the header type from NOBITS if we are being
3465 called for objcopy --only-keep-debug. */
3466 this_hdr->sh_type = sh_type;
3467 }
3468 }
3469
3470 /* Fill in the contents of a SHT_GROUP section. Called from
3471 _bfd_elf_compute_section_file_positions for gas, objcopy, and
3472 when ELF targets use the generic linker, ld. Called for ld -r
3473 from bfd_elf_final_link. */
3474
3475 void
3476 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
3477 {
3478 bool *failedptr = (bool *) failedptrarg;
3479 asection *elt, *first;
3480 unsigned char *loc;
3481 bool gas;
3482
3483 /* Ignore linker created group section. See elfNN_ia64_object_p in
3484 elfxx-ia64.c. */
3485 if ((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP
3486 || sec->size == 0
3487 || *failedptr)
3488 return;
3489
3490 if (elf_section_data (sec)->this_hdr.sh_info == 0)
3491 {
3492 unsigned long symindx = 0;
3493
3494 /* elf_group_id will have been set up by objcopy and the
3495 generic linker. */
3496 if (elf_group_id (sec) != NULL)
3497 symindx = elf_group_id (sec)->udata.i;
3498
3499 if (symindx == 0)
3500 {
3501 /* If called from the assembler, swap_out_syms will have set up
3502 elf_section_syms.
3503 PR 25699: A corrupt input file could contain bogus group info. */
3504 if (sec->index >= elf_num_section_syms (abfd)
3505 || elf_section_syms (abfd)[sec->index] == NULL)
3506 {
3507 *failedptr = true;
3508 return;
3509 }
3510 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
3511 }
3512 elf_section_data (sec)->this_hdr.sh_info = symindx;
3513 }
3514 else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2)
3515 {
3516 /* The ELF backend linker sets sh_info to -2 when the group
3517 signature symbol is global, and thus the index can't be
3518 set until all local symbols are output. */
3519 asection *igroup;
3520 struct bfd_elf_section_data *sec_data;
3521 unsigned long symndx;
3522 unsigned long extsymoff;
3523 struct elf_link_hash_entry *h;
3524
3525 /* The point of this little dance to the first SHF_GROUP section
3526 then back to the SHT_GROUP section is that this gets us to
3527 the SHT_GROUP in the input object. */
3528 igroup = elf_sec_group (elf_next_in_group (sec));
3529 sec_data = elf_section_data (igroup);
3530 symndx = sec_data->this_hdr.sh_info;
3531 extsymoff = 0;
3532 if (!elf_bad_symtab (igroup->owner))
3533 {
3534 Elf_Internal_Shdr *symtab_hdr;
3535
3536 symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr;
3537 extsymoff = symtab_hdr->sh_info;
3538 }
3539 h = elf_sym_hashes (igroup->owner)[symndx - extsymoff];
3540 while (h->root.type == bfd_link_hash_indirect
3541 || h->root.type == bfd_link_hash_warning)
3542 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3543
3544 elf_section_data (sec)->this_hdr.sh_info = h->indx;
3545 }
3546
3547 /* The contents won't be allocated for "ld -r" or objcopy. */
3548 gas = true;
3549 if (sec->contents == NULL)
3550 {
3551 gas = false;
3552 sec->contents = (unsigned char *) bfd_alloc (abfd, sec->size);
3553
3554 /* Arrange for the section to be written out. */
3555 elf_section_data (sec)->this_hdr.contents = sec->contents;
3556 if (sec->contents == NULL)
3557 {
3558 *failedptr = true;
3559 return;
3560 }
3561 }
3562
3563 loc = sec->contents + sec->size;
3564
3565 /* Get the pointer to the first section in the group that gas
3566 squirreled away here. objcopy arranges for this to be set to the
3567 start of the input section group. */
3568 first = elt = elf_next_in_group (sec);
3569
3570 /* First element is a flag word. Rest of section is elf section
3571 indices for all the sections of the group. Write them backwards
3572 just to keep the group in the same order as given in .section
3573 directives, not that it matters. */
3574 while (elt != NULL)
3575 {
3576 asection *s;
3577
3578 s = elt;
3579 if (!gas)
3580 s = s->output_section;
3581 if (s != NULL
3582 && !bfd_is_abs_section (s))
3583 {
3584 struct bfd_elf_section_data *elf_sec = elf_section_data (s);
3585 struct bfd_elf_section_data *input_elf_sec = elf_section_data (elt);
3586
3587 if (elf_sec->rel.hdr != NULL
3588 && (gas
3589 || (input_elf_sec->rel.hdr != NULL
3590 && input_elf_sec->rel.hdr->sh_flags & SHF_GROUP) != 0))
3591 {
3592 elf_sec->rel.hdr->sh_flags |= SHF_GROUP;
3593 loc -= 4;
3594 H_PUT_32 (abfd, elf_sec->rel.idx, loc);
3595 }
3596 if (elf_sec->rela.hdr != NULL
3597 && (gas
3598 || (input_elf_sec->rela.hdr != NULL
3599 && input_elf_sec->rela.hdr->sh_flags & SHF_GROUP) != 0))
3600 {
3601 elf_sec->rela.hdr->sh_flags |= SHF_GROUP;
3602 loc -= 4;
3603 H_PUT_32 (abfd, elf_sec->rela.idx, loc);
3604 }
3605 loc -= 4;
3606 H_PUT_32 (abfd, elf_sec->this_idx, loc);
3607 }
3608 elt = elf_next_in_group (elt);
3609 if (elt == first)
3610 break;
3611 }
3612
3613 loc -= 4;
3614 BFD_ASSERT (loc == sec->contents);
3615
3616 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
3617 }
3618
3619 /* Given NAME, the name of a relocation section stripped of its
3620 .rel/.rela prefix, return the section in ABFD to which the
3621 relocations apply. */
3622
3623 asection *
3624 _bfd_elf_plt_get_reloc_section (bfd *abfd, const char *name)
3625 {
3626 /* If a target needs .got.plt section, relocations in rela.plt/rel.plt
3627 section likely apply to .got.plt or .got section. */
3628 if (get_elf_backend_data (abfd)->want_got_plt
3629 && strcmp (name, ".plt") == 0)
3630 {
3631 asection *sec;
3632
3633 name = ".got.plt";
3634 sec = bfd_get_section_by_name (abfd, name);
3635 if (sec != NULL)
3636 return sec;
3637 name = ".got";
3638 }
3639
3640 return bfd_get_section_by_name (abfd, name);
3641 }
3642
3643 /* Return the section to which RELOC_SEC applies. */
3644
3645 static asection *
3646 elf_get_reloc_section (asection *reloc_sec)
3647 {
3648 const char *name;
3649 unsigned int type;
3650 bfd *abfd;
3651 const struct elf_backend_data *bed;
3652
3653 type = elf_section_data (reloc_sec)->this_hdr.sh_type;
3654 if (type != SHT_REL && type != SHT_RELA)
3655 return NULL;
3656
3657 /* We look up the section the relocs apply to by name. */
3658 name = reloc_sec->name;
3659 if (!startswith (name, ".rel"))
3660 return NULL;
3661 name += 4;
3662 if (type == SHT_RELA && *name++ != 'a')
3663 return NULL;
3664
3665 abfd = reloc_sec->owner;
3666 bed = get_elf_backend_data (abfd);
3667 return bed->get_reloc_section (abfd, name);
3668 }
3669
3670 /* Assign all ELF section numbers. The dummy first section is handled here
3671 too. The link/info pointers for the standard section types are filled
3672 in here too, while we're at it. LINK_INFO will be 0 when arriving
3673 here for objcopy, and when using the generic ELF linker. */
3674
3675 static bool
3676 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
3677 {
3678 struct elf_obj_tdata *t = elf_tdata (abfd);
3679 asection *sec;
3680 unsigned int section_number;
3681 Elf_Internal_Shdr **i_shdrp;
3682 struct bfd_elf_section_data *d;
3683 bool need_symtab;
3684 size_t amt;
3685
3686 section_number = 1;
3687
3688 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
3689
3690 /* SHT_GROUP sections are in relocatable files only. */
3691 if (link_info == NULL || !link_info->resolve_section_groups)
3692 {
3693 size_t reloc_count = 0;
3694
3695 /* Put SHT_GROUP sections first. */
3696 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3697 {
3698 d = elf_section_data (sec);
3699
3700 if (d->this_hdr.sh_type == SHT_GROUP)
3701 {
3702 if (sec->flags & SEC_LINKER_CREATED)
3703 {
3704 /* Remove the linker created SHT_GROUP sections. */
3705 bfd_section_list_remove (abfd, sec);
3706 abfd->section_count--;
3707 }
3708 else
3709 d->this_idx = section_number++;
3710 }
3711
3712 /* Count relocations. */
3713 reloc_count += sec->reloc_count;
3714 }
3715
3716 /* Clear HAS_RELOC if there are no relocations. */
3717 if (reloc_count == 0)
3718 abfd->flags &= ~HAS_RELOC;
3719 }
3720
3721 for (sec = abfd->sections; sec; sec = sec->next)
3722 {
3723 d = elf_section_data (sec);
3724
3725 if (d->this_hdr.sh_type != SHT_GROUP)
3726 d->this_idx = section_number++;
3727 if (d->this_hdr.sh_name != (unsigned int) -1)
3728 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
3729 if (d->rel.hdr)
3730 {
3731 d->rel.idx = section_number++;
3732 if (d->rel.hdr->sh_name != (unsigned int) -1)
3733 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel.hdr->sh_name);
3734 }
3735 else
3736 d->rel.idx = 0;
3737
3738 if (d->rela.hdr)
3739 {
3740 d->rela.idx = section_number++;
3741 if (d->rela.hdr->sh_name != (unsigned int) -1)
3742 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rela.hdr->sh_name);
3743 }
3744 else
3745 d->rela.idx = 0;
3746 }
3747
3748 need_symtab = (bfd_get_symcount (abfd) > 0
3749 || (link_info == NULL
3750 && ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
3751 == HAS_RELOC)));
3752 if (need_symtab)
3753 {
3754 elf_onesymtab (abfd) = section_number++;
3755 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
3756 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
3757 {
3758 elf_section_list *entry;
3759
3760 BFD_ASSERT (elf_symtab_shndx_list (abfd) == NULL);
3761
3762 entry = bfd_zalloc (abfd, sizeof (*entry));
3763 entry->ndx = section_number++;
3764 elf_symtab_shndx_list (abfd) = entry;
3765 entry->hdr.sh_name
3766 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3767 ".symtab_shndx", false);
3768 if (entry->hdr.sh_name == (unsigned int) -1)
3769 return false;
3770 }
3771 elf_strtab_sec (abfd) = section_number++;
3772 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3773 }
3774
3775 elf_shstrtab_sec (abfd) = section_number++;
3776 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
3777 elf_elfheader (abfd)->e_shstrndx = elf_shstrtab_sec (abfd);
3778
3779 if (section_number >= SHN_LORESERVE)
3780 {
3781 /* xgettext:c-format */
3782 _bfd_error_handler (_("%pB: too many sections: %u"),
3783 abfd, section_number);
3784 return false;
3785 }
3786
3787 elf_numsections (abfd) = section_number;
3788 elf_elfheader (abfd)->e_shnum = section_number;
3789
3790 /* Set up the list of section header pointers, in agreement with the
3791 indices. */
3792 amt = section_number * sizeof (Elf_Internal_Shdr *);
3793 i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc (abfd, amt);
3794 if (i_shdrp == NULL)
3795 return false;
3796
3797 i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd,
3798 sizeof (Elf_Internal_Shdr));
3799 if (i_shdrp[0] == NULL)
3800 {
3801 bfd_release (abfd, i_shdrp);
3802 return false;
3803 }
3804
3805 elf_elfsections (abfd) = i_shdrp;
3806
3807 i_shdrp[elf_shstrtab_sec (abfd)] = &t->shstrtab_hdr;
3808 if (need_symtab)
3809 {
3810 i_shdrp[elf_onesymtab (abfd)] = &t->symtab_hdr;
3811 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
3812 {
3813 elf_section_list * entry = elf_symtab_shndx_list (abfd);
3814 BFD_ASSERT (entry != NULL);
3815 i_shdrp[entry->ndx] = & entry->hdr;
3816 entry->hdr.sh_link = elf_onesymtab (abfd);
3817 }
3818 i_shdrp[elf_strtab_sec (abfd)] = &t->strtab_hdr;
3819 t->symtab_hdr.sh_link = elf_strtab_sec (abfd);
3820 }
3821
3822 for (sec = abfd->sections; sec; sec = sec->next)
3823 {
3824 asection *s;
3825
3826 d = elf_section_data (sec);
3827
3828 i_shdrp[d->this_idx] = &d->this_hdr;
3829 if (d->rel.idx != 0)
3830 i_shdrp[d->rel.idx] = d->rel.hdr;
3831 if (d->rela.idx != 0)
3832 i_shdrp[d->rela.idx] = d->rela.hdr;
3833
3834 /* Fill in the sh_link and sh_info fields while we're at it. */
3835
3836 /* sh_link of a reloc section is the section index of the symbol
3837 table. sh_info is the section index of the section to which
3838 the relocation entries apply. */
3839 if (d->rel.idx != 0)
3840 {
3841 d->rel.hdr->sh_link = elf_onesymtab (abfd);
3842 d->rel.hdr->sh_info = d->this_idx;
3843 d->rel.hdr->sh_flags |= SHF_INFO_LINK;
3844 }
3845 if (d->rela.idx != 0)
3846 {
3847 d->rela.hdr->sh_link = elf_onesymtab (abfd);
3848 d->rela.hdr->sh_info = d->this_idx;
3849 d->rela.hdr->sh_flags |= SHF_INFO_LINK;
3850 }
3851
3852 /* We need to set up sh_link for SHF_LINK_ORDER. */
3853 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3854 {
3855 s = elf_linked_to_section (sec);
3856 /* We can now have a NULL linked section pointer.
3857 This happens when the sh_link field is 0, which is done
3858 when a linked to section is discarded but the linking
3859 section has been retained for some reason. */
3860 if (s)
3861 {
3862 /* Check discarded linkonce section. */
3863 if (discarded_section (s))
3864 {
3865 asection *kept;
3866 _bfd_error_handler
3867 /* xgettext:c-format */
3868 (_("%pB: sh_link of section `%pA' points to"
3869 " discarded section `%pA' of `%pB'"),
3870 abfd, d->this_hdr.bfd_section, s, s->owner);
3871 /* Point to the kept section if it has the same
3872 size as the discarded one. */
3873 kept = _bfd_elf_check_kept_section (s, link_info);
3874 if (kept == NULL)
3875 {
3876 bfd_set_error (bfd_error_bad_value);
3877 return false;
3878 }
3879 s = kept;
3880 }
3881 /* Handle objcopy. */
3882 else if (s->output_section == NULL)
3883 {
3884 _bfd_error_handler
3885 /* xgettext:c-format */
3886 (_("%pB: sh_link of section `%pA' points to"
3887 " removed section `%pA' of `%pB'"),
3888 abfd, d->this_hdr.bfd_section, s, s->owner);
3889 bfd_set_error (bfd_error_bad_value);
3890 return false;
3891 }
3892 s = s->output_section;
3893 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3894 }
3895 }
3896
3897 switch (d->this_hdr.sh_type)
3898 {
3899 case SHT_REL:
3900 case SHT_RELA:
3901 /* A reloc section which we are treating as a normal BFD
3902 section. sh_link is the section index of the symbol
3903 table. sh_info is the section index of the section to
3904 which the relocation entries apply. We assume that an
3905 allocated reloc section uses the dynamic symbol table
3906 if there is one. Otherwise we guess the normal symbol
3907 table. FIXME: How can we be sure? */
3908 if (d->this_hdr.sh_link == 0 && (sec->flags & SEC_ALLOC) != 0)
3909 {
3910 s = bfd_get_section_by_name (abfd, ".dynsym");
3911 if (s != NULL)
3912 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3913 }
3914 if (d->this_hdr.sh_link == 0)
3915 d->this_hdr.sh_link = elf_onesymtab (abfd);
3916
3917 s = elf_get_reloc_section (sec);
3918 if (s != NULL)
3919 {
3920 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3921 d->this_hdr.sh_flags |= SHF_INFO_LINK;
3922 }
3923 break;
3924
3925 case SHT_STRTAB:
3926 /* We assume that a section named .stab*str is a stabs
3927 string section. We look for a section with the same name
3928 but without the trailing ``str'', and set its sh_link
3929 field to point to this section. */
3930 if (startswith (sec->name, ".stab")
3931 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3932 {
3933 size_t len;
3934 char *alc;
3935
3936 len = strlen (sec->name);
3937 alc = (char *) bfd_malloc (len - 2);
3938 if (alc == NULL)
3939 return false;
3940 memcpy (alc, sec->name, len - 3);
3941 alc[len - 3] = '\0';
3942 s = bfd_get_section_by_name (abfd, alc);
3943 free (alc);
3944 if (s != NULL)
3945 {
3946 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3947
3948 /* This is a .stab section. */
3949 elf_section_data (s)->this_hdr.sh_entsize = 12;
3950 }
3951 }
3952 break;
3953
3954 case SHT_DYNAMIC:
3955 case SHT_DYNSYM:
3956 case SHT_GNU_verneed:
3957 case SHT_GNU_verdef:
3958 /* sh_link is the section header index of the string table
3959 used for the dynamic entries, or the symbol table, or the
3960 version strings. */
3961 s = bfd_get_section_by_name (abfd, ".dynstr");
3962 if (s != NULL)
3963 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3964 break;
3965
3966 case SHT_GNU_LIBLIST:
3967 /* sh_link is the section header index of the prelink library
3968 list used for the dynamic entries, or the symbol table, or
3969 the version strings. */
3970 s = bfd_get_section_by_name (abfd, ((sec->flags & SEC_ALLOC)
3971 ? ".dynstr" : ".gnu.libstr"));
3972 if (s != NULL)
3973 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3974 break;
3975
3976 case SHT_HASH:
3977 case SHT_GNU_HASH:
3978 case SHT_GNU_versym:
3979 /* sh_link is the section header index of the symbol table
3980 this hash table or version table is for. */
3981 s = bfd_get_section_by_name (abfd, ".dynsym");
3982 if (s != NULL)
3983 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3984 break;
3985
3986 case SHT_GROUP:
3987 d->this_hdr.sh_link = elf_onesymtab (abfd);
3988 }
3989 }
3990
3991 /* Delay setting sh_name to _bfd_elf_write_object_contents so that
3992 _bfd_elf_assign_file_positions_for_non_load can convert DWARF
3993 debug section name from .debug_* to .zdebug_* if needed. */
3994
3995 return true;
3996 }
3997
3998 static bool
3999 sym_is_global (bfd *abfd, asymbol *sym)
4000 {
4001 /* If the backend has a special mapping, use it. */
4002 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4003 if (bed->elf_backend_sym_is_global)
4004 return (*bed->elf_backend_sym_is_global) (abfd, sym);
4005
4006 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0
4007 || bfd_is_und_section (bfd_asymbol_section (sym))
4008 || bfd_is_com_section (bfd_asymbol_section (sym)));
4009 }
4010
4011 /* Filter global symbols of ABFD to include in the import library. All
4012 SYMCOUNT symbols of ABFD can be examined from their pointers in
4013 SYMS. Pointers of symbols to keep should be stored contiguously at
4014 the beginning of that array.
4015
4016 Returns the number of symbols to keep. */
4017
4018 unsigned int
4019 _bfd_elf_filter_global_symbols (bfd *abfd, struct bfd_link_info *info,
4020 asymbol **syms, long symcount)
4021 {
4022 long src_count, dst_count = 0;
4023
4024 for (src_count = 0; src_count < symcount; src_count++)
4025 {
4026 asymbol *sym = syms[src_count];
4027 char *name = (char *) bfd_asymbol_name (sym);
4028 struct bfd_link_hash_entry *h;
4029
4030 if (!sym_is_global (abfd, sym))
4031 continue;
4032
4033 h = bfd_link_hash_lookup (info->hash, name, false, false, false);
4034 if (h == NULL)
4035 continue;
4036 if (h->type != bfd_link_hash_defined && h->type != bfd_link_hash_defweak)
4037 continue;
4038 if (h->linker_def || h->ldscript_def)
4039 continue;
4040
4041 syms[dst_count++] = sym;
4042 }
4043
4044 syms[dst_count] = NULL;
4045
4046 return dst_count;
4047 }
4048
4049 /* Don't output section symbols for sections that are not going to be
4050 output, that are duplicates or there is no BFD section. */
4051
4052 static bool
4053 ignore_section_sym (bfd *abfd, asymbol *sym)
4054 {
4055 elf_symbol_type *type_ptr;
4056
4057 if (sym == NULL)
4058 return false;
4059
4060 if ((sym->flags & BSF_SECTION_SYM) == 0)
4061 return false;
4062
4063 /* Ignore the section symbol if it isn't used. */
4064 if ((sym->flags & BSF_SECTION_SYM_USED) == 0)
4065 return true;
4066
4067 if (sym->section == NULL)
4068 return true;
4069
4070 type_ptr = elf_symbol_from (sym);
4071 return ((type_ptr != NULL
4072 && type_ptr->internal_elf_sym.st_shndx != 0
4073 && bfd_is_abs_section (sym->section))
4074 || !(sym->section->owner == abfd
4075 || (sym->section->output_section != NULL
4076 && sym->section->output_section->owner == abfd
4077 && sym->section->output_offset == 0)
4078 || bfd_is_abs_section (sym->section)));
4079 }
4080
4081 /* Map symbol from it's internal number to the external number, moving
4082 all local symbols to be at the head of the list. */
4083
4084 static bool
4085 elf_map_symbols (bfd *abfd, unsigned int *pnum_locals)
4086 {
4087 unsigned int symcount = bfd_get_symcount (abfd);
4088 asymbol **syms = bfd_get_outsymbols (abfd);
4089 asymbol **sect_syms;
4090 unsigned int num_locals = 0;
4091 unsigned int num_globals = 0;
4092 unsigned int num_locals2 = 0;
4093 unsigned int num_globals2 = 0;
4094 unsigned int max_index = 0;
4095 unsigned int idx;
4096 asection *asect;
4097 asymbol **new_syms;
4098 size_t amt;
4099
4100 #ifdef DEBUG
4101 fprintf (stderr, "elf_map_symbols\n");
4102 fflush (stderr);
4103 #endif
4104
4105 for (asect = abfd->sections; asect; asect = asect->next)
4106 {
4107 if (max_index < asect->index)
4108 max_index = asect->index;
4109 }
4110
4111 max_index++;
4112 amt = max_index * sizeof (asymbol *);
4113 sect_syms = (asymbol **) bfd_zalloc (abfd, amt);
4114 if (sect_syms == NULL)
4115 return false;
4116 elf_section_syms (abfd) = sect_syms;
4117 elf_num_section_syms (abfd) = max_index;
4118
4119 /* Init sect_syms entries for any section symbols we have already
4120 decided to output. */
4121 for (idx = 0; idx < symcount; idx++)
4122 {
4123 asymbol *sym = syms[idx];
4124
4125 if ((sym->flags & BSF_SECTION_SYM) != 0
4126 && sym->value == 0
4127 && !ignore_section_sym (abfd, sym)
4128 && !bfd_is_abs_section (sym->section))
4129 {
4130 asection *sec = sym->section;
4131
4132 if (sec->owner != abfd)
4133 sec = sec->output_section;
4134
4135 sect_syms[sec->index] = syms[idx];
4136 }
4137 }
4138
4139 /* Classify all of the symbols. */
4140 for (idx = 0; idx < symcount; idx++)
4141 {
4142 if (sym_is_global (abfd, syms[idx]))
4143 num_globals++;
4144 else if (!ignore_section_sym (abfd, syms[idx]))
4145 num_locals++;
4146 }
4147
4148 /* We will be adding a section symbol for each normal BFD section. Most
4149 sections will already have a section symbol in outsymbols, but
4150 eg. SHT_GROUP sections will not, and we need the section symbol mapped
4151 at least in that case. */
4152 for (asect = abfd->sections; asect; asect = asect->next)
4153 {
4154 asymbol *sym = asect->symbol;
4155 /* Don't include ignored section symbols. */
4156 if (!ignore_section_sym (abfd, sym)
4157 && sect_syms[asect->index] == NULL)
4158 {
4159 if (!sym_is_global (abfd, asect->symbol))
4160 num_locals++;
4161 else
4162 num_globals++;
4163 }
4164 }
4165
4166 /* Now sort the symbols so the local symbols are first. */
4167 amt = (num_locals + num_globals) * sizeof (asymbol *);
4168 new_syms = (asymbol **) bfd_alloc (abfd, amt);
4169 if (new_syms == NULL)
4170 return false;
4171
4172 for (idx = 0; idx < symcount; idx++)
4173 {
4174 asymbol *sym = syms[idx];
4175 unsigned int i;
4176
4177 if (sym_is_global (abfd, sym))
4178 i = num_locals + num_globals2++;
4179 /* Don't include ignored section symbols. */
4180 else if (!ignore_section_sym (abfd, sym))
4181 i = num_locals2++;
4182 else
4183 continue;
4184 new_syms[i] = sym;
4185 sym->udata.i = i + 1;
4186 }
4187 for (asect = abfd->sections; asect; asect = asect->next)
4188 {
4189 asymbol *sym = asect->symbol;
4190 if (!ignore_section_sym (abfd, sym)
4191 && sect_syms[asect->index] == NULL)
4192 {
4193 unsigned int i;
4194
4195 sect_syms[asect->index] = sym;
4196 if (!sym_is_global (abfd, sym))
4197 i = num_locals2++;
4198 else
4199 i = num_locals + num_globals2++;
4200 new_syms[i] = sym;
4201 sym->udata.i = i + 1;
4202 }
4203 }
4204
4205 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
4206
4207 *pnum_locals = num_locals;
4208 return true;
4209 }
4210
4211 /* Align to the maximum file alignment that could be required for any
4212 ELF data structure. */
4213
4214 static inline file_ptr
4215 align_file_position (file_ptr off, int align)
4216 {
4217 return (off + align - 1) & ~(align - 1);
4218 }
4219
4220 /* Assign a file position to a section, optionally aligning to the
4221 required section alignment. */
4222
4223 file_ptr
4224 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
4225 file_ptr offset,
4226 bool align)
4227 {
4228 if (align && i_shdrp->sh_addralign > 1)
4229 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
4230 i_shdrp->sh_offset = offset;
4231 if (i_shdrp->bfd_section != NULL)
4232 i_shdrp->bfd_section->filepos = offset;
4233 if (i_shdrp->sh_type != SHT_NOBITS)
4234 offset += i_shdrp->sh_size;
4235 return offset;
4236 }
4237
4238 /* Compute the file positions we are going to put the sections at, and
4239 otherwise prepare to begin writing out the ELF file. If LINK_INFO
4240 is not NULL, this is being called by the ELF backend linker. */
4241
4242 bool
4243 _bfd_elf_compute_section_file_positions (bfd *abfd,
4244 struct bfd_link_info *link_info)
4245 {
4246 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4247 struct fake_section_arg fsargs;
4248 bool failed;
4249 struct elf_strtab_hash *strtab = NULL;
4250 Elf_Internal_Shdr *shstrtab_hdr;
4251 bool need_symtab;
4252
4253 if (abfd->output_has_begun)
4254 return true;
4255
4256 /* Do any elf backend specific processing first. */
4257 if (bed->elf_backend_begin_write_processing)
4258 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
4259
4260 if (!(*bed->elf_backend_init_file_header) (abfd, link_info))
4261 return false;
4262
4263 fsargs.failed = false;
4264 fsargs.link_info = link_info;
4265 bfd_map_over_sections (abfd, elf_fake_sections, &fsargs);
4266 if (fsargs.failed)
4267 return false;
4268
4269 if (!assign_section_numbers (abfd, link_info))
4270 return false;
4271
4272 /* The backend linker builds symbol table information itself. */
4273 need_symtab = (link_info == NULL
4274 && (bfd_get_symcount (abfd) > 0
4275 || ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
4276 == HAS_RELOC)));
4277 if (need_symtab)
4278 {
4279 /* Non-zero if doing a relocatable link. */
4280 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
4281
4282 if (! swap_out_syms (abfd, &strtab, relocatable_p, link_info))
4283 return false;
4284 }
4285
4286 failed = false;
4287 if (link_info == NULL)
4288 {
4289 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
4290 if (failed)
4291 return false;
4292 }
4293
4294 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
4295 /* sh_name was set in init_file_header. */
4296 shstrtab_hdr->sh_type = SHT_STRTAB;
4297 shstrtab_hdr->sh_flags = bed->elf_strtab_flags;
4298 shstrtab_hdr->sh_addr = 0;
4299 /* sh_size is set in _bfd_elf_assign_file_positions_for_non_load. */
4300 shstrtab_hdr->sh_entsize = 0;
4301 shstrtab_hdr->sh_link = 0;
4302 shstrtab_hdr->sh_info = 0;
4303 /* sh_offset is set in _bfd_elf_assign_file_positions_for_non_load. */
4304 shstrtab_hdr->sh_addralign = 1;
4305
4306 if (!assign_file_positions_except_relocs (abfd, link_info))
4307 return false;
4308
4309 if (need_symtab)
4310 {
4311 file_ptr off;
4312 Elf_Internal_Shdr *hdr;
4313
4314 off = elf_next_file_pos (abfd);
4315
4316 hdr = & elf_symtab_hdr (abfd);
4317 off = _bfd_elf_assign_file_position_for_section (hdr, off, true);
4318
4319 if (elf_symtab_shndx_list (abfd) != NULL)
4320 {
4321 hdr = & elf_symtab_shndx_list (abfd)->hdr;
4322 if (hdr->sh_size != 0)
4323 off = _bfd_elf_assign_file_position_for_section (hdr, off, true);
4324 /* FIXME: What about other symtab_shndx sections in the list ? */
4325 }
4326
4327 hdr = &elf_tdata (abfd)->strtab_hdr;
4328 off = _bfd_elf_assign_file_position_for_section (hdr, off, true);
4329
4330 elf_next_file_pos (abfd) = off;
4331
4332 /* Now that we know where the .strtab section goes, write it
4333 out. */
4334 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
4335 || ! _bfd_elf_strtab_emit (abfd, strtab))
4336 return false;
4337 _bfd_elf_strtab_free (strtab);
4338 }
4339
4340 abfd->output_has_begun = true;
4341
4342 return true;
4343 }
4344
4345 /* Make an initial estimate of the size of the program header. If we
4346 get the number wrong here, we'll redo section placement. */
4347
4348 static bfd_size_type
4349 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
4350 {
4351 size_t segs;
4352 asection *s;
4353 const struct elf_backend_data *bed;
4354
4355 /* Assume we will need exactly two PT_LOAD segments: one for text
4356 and one for data. */
4357 segs = 2;
4358
4359 s = bfd_get_section_by_name (abfd, ".interp");
4360 if (s != NULL && (s->flags & SEC_LOAD) != 0 && s->size != 0)
4361 {
4362 /* If we have a loadable interpreter section, we need a
4363 PT_INTERP segment. In this case, assume we also need a
4364 PT_PHDR segment, although that may not be true for all
4365 targets. */
4366 segs += 2;
4367 }
4368
4369 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4370 {
4371 /* We need a PT_DYNAMIC segment. */
4372 ++segs;
4373 }
4374
4375 if (info != NULL && info->relro)
4376 {
4377 /* We need a PT_GNU_RELRO segment. */
4378 ++segs;
4379 }
4380
4381 if (elf_eh_frame_hdr (abfd))
4382 {
4383 /* We need a PT_GNU_EH_FRAME segment. */
4384 ++segs;
4385 }
4386
4387 if (elf_stack_flags (abfd))
4388 {
4389 /* We need a PT_GNU_STACK segment. */
4390 ++segs;
4391 }
4392
4393 s = bfd_get_section_by_name (abfd,
4394 NOTE_GNU_PROPERTY_SECTION_NAME);
4395 if (s != NULL && s->size != 0)
4396 {
4397 /* We need a PT_GNU_PROPERTY segment. */
4398 ++segs;
4399 }
4400
4401 for (s = abfd->sections; s != NULL; s = s->next)
4402 {
4403 if ((s->flags & SEC_LOAD) != 0
4404 && elf_section_type (s) == SHT_NOTE)
4405 {
4406 unsigned int alignment_power;
4407 /* We need a PT_NOTE segment. */
4408 ++segs;
4409 /* Try to create just one PT_NOTE segment for all adjacent
4410 loadable SHT_NOTE sections. gABI requires that within a
4411 PT_NOTE segment (and also inside of each SHT_NOTE section)
4412 each note should have the same alignment. So we check
4413 whether the sections are correctly aligned. */
4414 alignment_power = s->alignment_power;
4415 while (s->next != NULL
4416 && s->next->alignment_power == alignment_power
4417 && (s->next->flags & SEC_LOAD) != 0
4418 && elf_section_type (s->next) == SHT_NOTE)
4419 s = s->next;
4420 }
4421 }
4422
4423 for (s = abfd->sections; s != NULL; s = s->next)
4424 {
4425 if (s->flags & SEC_THREAD_LOCAL)
4426 {
4427 /* We need a PT_TLS segment. */
4428 ++segs;
4429 break;
4430 }
4431 }
4432
4433 bed = get_elf_backend_data (abfd);
4434
4435 if ((abfd->flags & D_PAGED) != 0
4436 && (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_mbind) != 0)
4437 {
4438 /* Add a PT_GNU_MBIND segment for each mbind section. */
4439 bfd_vma commonpagesize;
4440 unsigned int page_align_power;
4441
4442 if (info != NULL)
4443 commonpagesize = info->commonpagesize;
4444 else
4445 commonpagesize = bed->commonpagesize;
4446 page_align_power = bfd_log2 (commonpagesize);
4447 for (s = abfd->sections; s != NULL; s = s->next)
4448 if (elf_section_flags (s) & SHF_GNU_MBIND)
4449 {
4450 if (elf_section_data (s)->this_hdr.sh_info > PT_GNU_MBIND_NUM)
4451 {
4452 _bfd_error_handler
4453 /* xgettext:c-format */
4454 (_("%pB: GNU_MBIND section `%pA' has invalid "
4455 "sh_info field: %d"),
4456 abfd, s, elf_section_data (s)->this_hdr.sh_info);
4457 continue;
4458 }
4459 /* Align mbind section to page size. */
4460 if (s->alignment_power < page_align_power)
4461 s->alignment_power = page_align_power;
4462 segs ++;
4463 }
4464 }
4465
4466 /* Let the backend count up any program headers it might need. */
4467 if (bed->elf_backend_additional_program_headers)
4468 {
4469 int a;
4470
4471 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
4472 if (a == -1)
4473 abort ();
4474 segs += a;
4475 }
4476
4477 return segs * bed->s->sizeof_phdr;
4478 }
4479
4480 /* Find the segment that contains the output_section of section. */
4481
4482 Elf_Internal_Phdr *
4483 _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
4484 {
4485 struct elf_segment_map *m;
4486 Elf_Internal_Phdr *p;
4487
4488 for (m = elf_seg_map (abfd), p = elf_tdata (abfd)->phdr;
4489 m != NULL;
4490 m = m->next, p++)
4491 {
4492 int i;
4493
4494 for (i = m->count - 1; i >= 0; i--)
4495 if (m->sections[i] == section)
4496 return p;
4497 }
4498
4499 return NULL;
4500 }
4501
4502 /* Create a mapping from a set of sections to a program segment. */
4503
4504 static struct elf_segment_map *
4505 make_mapping (bfd *abfd,
4506 asection **sections,
4507 unsigned int from,
4508 unsigned int to,
4509 bool phdr)
4510 {
4511 struct elf_segment_map *m;
4512 unsigned int i;
4513 asection **hdrpp;
4514 size_t amt;
4515
4516 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
4517 amt += (to - from) * sizeof (asection *);
4518 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4519 if (m == NULL)
4520 return NULL;
4521 m->next = NULL;
4522 m->p_type = PT_LOAD;
4523 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
4524 m->sections[i - from] = *hdrpp;
4525 m->count = to - from;
4526
4527 if (from == 0 && phdr)
4528 {
4529 /* Include the headers in the first PT_LOAD segment. */
4530 m->includes_filehdr = 1;
4531 m->includes_phdrs = 1;
4532 }
4533
4534 return m;
4535 }
4536
4537 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
4538 on failure. */
4539
4540 struct elf_segment_map *
4541 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
4542 {
4543 struct elf_segment_map *m;
4544
4545 m = (struct elf_segment_map *) bfd_zalloc (abfd,
4546 sizeof (struct elf_segment_map));
4547 if (m == NULL)
4548 return NULL;
4549 m->next = NULL;
4550 m->p_type = PT_DYNAMIC;
4551 m->count = 1;
4552 m->sections[0] = dynsec;
4553
4554 return m;
4555 }
4556
4557 /* Possibly add or remove segments from the segment map. */
4558
4559 static bool
4560 elf_modify_segment_map (bfd *abfd,
4561 struct bfd_link_info *info,
4562 bool remove_empty_load)
4563 {
4564 struct elf_segment_map **m;
4565 const struct elf_backend_data *bed;
4566
4567 /* The placement algorithm assumes that non allocated sections are
4568 not in PT_LOAD segments. We ensure this here by removing such
4569 sections from the segment map. We also remove excluded
4570 sections. Finally, any PT_LOAD segment without sections is
4571 removed. */
4572 m = &elf_seg_map (abfd);
4573 while (*m)
4574 {
4575 unsigned int i, new_count;
4576
4577 for (new_count = 0, i = 0; i < (*m)->count; i++)
4578 {
4579 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
4580 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
4581 || (*m)->p_type != PT_LOAD))
4582 {
4583 (*m)->sections[new_count] = (*m)->sections[i];
4584 new_count++;
4585 }
4586 }
4587 (*m)->count = new_count;
4588
4589 if (remove_empty_load
4590 && (*m)->p_type == PT_LOAD
4591 && (*m)->count == 0
4592 && !(*m)->includes_phdrs)
4593 *m = (*m)->next;
4594 else
4595 m = &(*m)->next;
4596 }
4597
4598 bed = get_elf_backend_data (abfd);
4599 if (bed->elf_backend_modify_segment_map != NULL)
4600 {
4601 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
4602 return false;
4603 }
4604
4605 return true;
4606 }
4607
4608 #define IS_TBSS(s) \
4609 ((s->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) == SEC_THREAD_LOCAL)
4610
4611 /* Set up a mapping from BFD sections to program segments. */
4612
4613 bool
4614 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
4615 {
4616 unsigned int count;
4617 struct elf_segment_map *m;
4618 asection **sections = NULL;
4619 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4620 bool no_user_phdrs;
4621
4622 no_user_phdrs = elf_seg_map (abfd) == NULL;
4623
4624 if (info != NULL)
4625 info->user_phdrs = !no_user_phdrs;
4626
4627 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
4628 {
4629 asection *s;
4630 unsigned int i;
4631 struct elf_segment_map *mfirst;
4632 struct elf_segment_map **pm;
4633 asection *last_hdr;
4634 bfd_vma last_size;
4635 unsigned int hdr_index;
4636 bfd_vma maxpagesize;
4637 asection **hdrpp;
4638 bool phdr_in_segment;
4639 bool writable;
4640 bool executable;
4641 unsigned int tls_count = 0;
4642 asection *first_tls = NULL;
4643 asection *first_mbind = NULL;
4644 asection *dynsec, *eh_frame_hdr;
4645 size_t amt;
4646 bfd_vma addr_mask, wrap_to = 0; /* Bytes. */
4647 bfd_size_type phdr_size; /* Octets/bytes. */
4648 unsigned int opb = bfd_octets_per_byte (abfd, NULL);
4649
4650 /* Select the allocated sections, and sort them. */
4651
4652 amt = bfd_count_sections (abfd) * sizeof (asection *);
4653 sections = (asection **) bfd_malloc (amt);
4654 if (sections == NULL)
4655 goto error_return;
4656
4657 /* Calculate top address, avoiding undefined behaviour of shift
4658 left operator when shift count is equal to size of type
4659 being shifted. */
4660 addr_mask = ((bfd_vma) 1 << (bfd_arch_bits_per_address (abfd) - 1)) - 1;
4661 addr_mask = (addr_mask << 1) + 1;
4662
4663 i = 0;
4664 for (s = abfd->sections; s != NULL; s = s->next)
4665 {
4666 if ((s->flags & SEC_ALLOC) != 0)
4667 {
4668 /* target_index is unused until bfd_elf_final_link
4669 starts output of section symbols. Use it to make
4670 qsort stable. */
4671 s->target_index = i;
4672 sections[i] = s;
4673 ++i;
4674 /* A wrapping section potentially clashes with header. */
4675 if (((s->lma + s->size / opb) & addr_mask) < (s->lma & addr_mask))
4676 wrap_to = (s->lma + s->size / opb) & addr_mask;
4677 }
4678 }
4679 BFD_ASSERT (i <= bfd_count_sections (abfd));
4680 count = i;
4681
4682 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
4683
4684 phdr_size = elf_program_header_size (abfd);
4685 if (phdr_size == (bfd_size_type) -1)
4686 phdr_size = get_program_header_size (abfd, info);
4687 phdr_size += bed->s->sizeof_ehdr;
4688 /* phdr_size is compared to LMA values which are in bytes. */
4689 phdr_size /= opb;
4690 if (info != NULL)
4691 maxpagesize = info->maxpagesize;
4692 else
4693 maxpagesize = bed->maxpagesize;
4694 if (maxpagesize == 0)
4695 maxpagesize = 1;
4696 phdr_in_segment = info != NULL && info->load_phdrs;
4697 if (count != 0
4698 && (((sections[0]->lma & addr_mask) & (maxpagesize - 1))
4699 >= (phdr_size & (maxpagesize - 1))))
4700 /* For compatibility with old scripts that may not be using
4701 SIZEOF_HEADERS, add headers when it looks like space has
4702 been left for them. */
4703 phdr_in_segment = true;
4704
4705 /* Build the mapping. */
4706 mfirst = NULL;
4707 pm = &mfirst;
4708
4709 /* If we have a .interp section, then create a PT_PHDR segment for
4710 the program headers and a PT_INTERP segment for the .interp
4711 section. */
4712 s = bfd_get_section_by_name (abfd, ".interp");
4713 if (s != NULL && (s->flags & SEC_LOAD) != 0 && s->size != 0)
4714 {
4715 amt = sizeof (struct elf_segment_map);
4716 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4717 if (m == NULL)
4718 goto error_return;
4719 m->next = NULL;
4720 m->p_type = PT_PHDR;
4721 m->p_flags = PF_R;
4722 m->p_flags_valid = 1;
4723 m->includes_phdrs = 1;
4724 phdr_in_segment = true;
4725 *pm = m;
4726 pm = &m->next;
4727
4728 amt = sizeof (struct elf_segment_map);
4729 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4730 if (m == NULL)
4731 goto error_return;
4732 m->next = NULL;
4733 m->p_type = PT_INTERP;
4734 m->count = 1;
4735 m->sections[0] = s;
4736
4737 *pm = m;
4738 pm = &m->next;
4739 }
4740
4741 /* Look through the sections. We put sections in the same program
4742 segment when the start of the second section can be placed within
4743 a few bytes of the end of the first section. */
4744 last_hdr = NULL;
4745 last_size = 0;
4746 hdr_index = 0;
4747 writable = false;
4748 executable = false;
4749 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
4750 if (dynsec != NULL
4751 && (dynsec->flags & SEC_LOAD) == 0)
4752 dynsec = NULL;
4753
4754 if ((abfd->flags & D_PAGED) == 0)
4755 phdr_in_segment = false;
4756
4757 /* Deal with -Ttext or something similar such that the first section
4758 is not adjacent to the program headers. This is an
4759 approximation, since at this point we don't know exactly how many
4760 program headers we will need. */
4761 if (phdr_in_segment && count > 0)
4762 {
4763 bfd_vma phdr_lma; /* Bytes. */
4764 bool separate_phdr = false;
4765
4766 phdr_lma = (sections[0]->lma - phdr_size) & addr_mask & -maxpagesize;
4767 if (info != NULL
4768 && info->separate_code
4769 && (sections[0]->flags & SEC_CODE) != 0)
4770 {
4771 /* If data sections should be separate from code and
4772 thus not executable, and the first section is
4773 executable then put the file and program headers in
4774 their own PT_LOAD. */
4775 separate_phdr = true;
4776 if ((((phdr_lma + phdr_size - 1) & addr_mask & -maxpagesize)
4777 == (sections[0]->lma & addr_mask & -maxpagesize)))
4778 {
4779 /* The file and program headers are currently on the
4780 same page as the first section. Put them on the
4781 previous page if we can. */
4782 if (phdr_lma >= maxpagesize)
4783 phdr_lma -= maxpagesize;
4784 else
4785 separate_phdr = false;
4786 }
4787 }
4788 if ((sections[0]->lma & addr_mask) < phdr_lma
4789 || (sections[0]->lma & addr_mask) < phdr_size)
4790 /* If file and program headers would be placed at the end
4791 of memory then it's probably better to omit them. */
4792 phdr_in_segment = false;
4793 else if (phdr_lma < wrap_to)
4794 /* If a section wraps around to where we'll be placing
4795 file and program headers, then the headers will be
4796 overwritten. */
4797 phdr_in_segment = false;
4798 else if (separate_phdr)
4799 {
4800 m = make_mapping (abfd, sections, 0, 0, phdr_in_segment);
4801 if (m == NULL)
4802 goto error_return;
4803 m->p_paddr = phdr_lma * opb;
4804 m->p_vaddr_offset
4805 = (sections[0]->vma - phdr_size) & addr_mask & -maxpagesize;
4806 m->p_paddr_valid = 1;
4807 *pm = m;
4808 pm = &m->next;
4809 phdr_in_segment = false;
4810 }
4811 }
4812
4813 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
4814 {
4815 asection *hdr;
4816 bool new_segment;
4817
4818 hdr = *hdrpp;
4819
4820 /* See if this section and the last one will fit in the same
4821 segment. */
4822
4823 if (last_hdr == NULL)
4824 {
4825 /* If we don't have a segment yet, then we don't need a new
4826 one (we build the last one after this loop). */
4827 new_segment = false;
4828 }
4829 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
4830 {
4831 /* If this section has a different relation between the
4832 virtual address and the load address, then we need a new
4833 segment. */
4834 new_segment = true;
4835 }
4836 else if (hdr->lma < last_hdr->lma + last_size
4837 || last_hdr->lma + last_size < last_hdr->lma)
4838 {
4839 /* If this section has a load address that makes it overlap
4840 the previous section, then we need a new segment. */
4841 new_segment = true;
4842 }
4843 else if ((abfd->flags & D_PAGED) != 0
4844 && (((last_hdr->lma + last_size - 1) & -maxpagesize)
4845 == (hdr->lma & -maxpagesize)))
4846 {
4847 /* If we are demand paged then we can't map two disk
4848 pages onto the same memory page. */
4849 new_segment = false;
4850 }
4851 /* In the next test we have to be careful when last_hdr->lma is close
4852 to the end of the address space. If the aligned address wraps
4853 around to the start of the address space, then there are no more
4854 pages left in memory and it is OK to assume that the current
4855 section can be included in the current segment. */
4856 else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
4857 + maxpagesize > last_hdr->lma)
4858 && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
4859 + maxpagesize <= hdr->lma))
4860 {
4861 /* If putting this section in this segment would force us to
4862 skip a page in the segment, then we need a new segment. */
4863 new_segment = true;
4864 }
4865 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
4866 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
4867 {
4868 /* We don't want to put a loaded section after a
4869 nonloaded (ie. bss style) section in the same segment
4870 as that will force the non-loaded section to be loaded.
4871 Consider .tbss sections as loaded for this purpose. */
4872 new_segment = true;
4873 }
4874 else if ((abfd->flags & D_PAGED) == 0)
4875 {
4876 /* If the file is not demand paged, which means that we
4877 don't require the sections to be correctly aligned in the
4878 file, then there is no other reason for a new segment. */
4879 new_segment = false;
4880 }
4881 else if (info != NULL
4882 && info->separate_code
4883 && executable != ((hdr->flags & SEC_CODE) != 0))
4884 {
4885 new_segment = true;
4886 }
4887 else if (! writable
4888 && (hdr->flags & SEC_READONLY) == 0)
4889 {
4890 /* We don't want to put a writable section in a read only
4891 segment. */
4892 new_segment = true;
4893 }
4894 else
4895 {
4896 /* Otherwise, we can use the same segment. */
4897 new_segment = false;
4898 }
4899
4900 /* Allow interested parties a chance to override our decision. */
4901 if (last_hdr != NULL
4902 && info != NULL
4903 && info->callbacks->override_segment_assignment != NULL)
4904 new_segment
4905 = info->callbacks->override_segment_assignment (info, abfd, hdr,
4906 last_hdr,
4907 new_segment);
4908
4909 if (! new_segment)
4910 {
4911 if ((hdr->flags & SEC_READONLY) == 0)
4912 writable = true;
4913 if ((hdr->flags & SEC_CODE) != 0)
4914 executable = true;
4915 last_hdr = hdr;
4916 /* .tbss sections effectively have zero size. */
4917 last_size = (!IS_TBSS (hdr) ? hdr->size : 0) / opb;
4918 continue;
4919 }
4920
4921 /* We need a new program segment. We must create a new program
4922 header holding all the sections from hdr_index until hdr. */
4923
4924 m = make_mapping (abfd, sections, hdr_index, i, phdr_in_segment);
4925 if (m == NULL)
4926 goto error_return;
4927
4928 *pm = m;
4929 pm = &m->next;
4930
4931 if ((hdr->flags & SEC_READONLY) == 0)
4932 writable = true;
4933 else
4934 writable = false;
4935
4936 if ((hdr->flags & SEC_CODE) == 0)
4937 executable = false;
4938 else
4939 executable = true;
4940
4941 last_hdr = hdr;
4942 /* .tbss sections effectively have zero size. */
4943 last_size = (!IS_TBSS (hdr) ? hdr->size : 0) / opb;
4944 hdr_index = i;
4945 phdr_in_segment = false;
4946 }
4947
4948 /* Create a final PT_LOAD program segment, but not if it's just
4949 for .tbss. */
4950 if (last_hdr != NULL
4951 && (i - hdr_index != 1
4952 || !IS_TBSS (last_hdr)))
4953 {
4954 m = make_mapping (abfd, sections, hdr_index, i, phdr_in_segment);
4955 if (m == NULL)
4956 goto error_return;
4957
4958 *pm = m;
4959 pm = &m->next;
4960 }
4961
4962 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4963 if (dynsec != NULL)
4964 {
4965 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
4966 if (m == NULL)
4967 goto error_return;
4968 *pm = m;
4969 pm = &m->next;
4970 }
4971
4972 /* For each batch of consecutive loadable SHT_NOTE sections,
4973 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
4974 because if we link together nonloadable .note sections and
4975 loadable .note sections, we will generate two .note sections
4976 in the output file. */
4977 for (s = abfd->sections; s != NULL; s = s->next)
4978 {
4979 if ((s->flags & SEC_LOAD) != 0
4980 && elf_section_type (s) == SHT_NOTE)
4981 {
4982 asection *s2;
4983 unsigned int alignment_power = s->alignment_power;
4984
4985 count = 1;
4986 for (s2 = s; s2->next != NULL; s2 = s2->next)
4987 {
4988 if (s2->next->alignment_power == alignment_power
4989 && (s2->next->flags & SEC_LOAD) != 0
4990 && elf_section_type (s2->next) == SHT_NOTE
4991 && align_power (s2->lma + s2->size / opb,
4992 alignment_power)
4993 == s2->next->lma)
4994 count++;
4995 else
4996 break;
4997 }
4998 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
4999 amt += count * sizeof (asection *);
5000 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5001 if (m == NULL)
5002 goto error_return;
5003 m->next = NULL;
5004 m->p_type = PT_NOTE;
5005 m->count = count;
5006 while (count > 1)
5007 {
5008 m->sections[m->count - count--] = s;
5009 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
5010 s = s->next;
5011 }
5012 m->sections[m->count - 1] = s;
5013 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
5014 *pm = m;
5015 pm = &m->next;
5016 }
5017 if (s->flags & SEC_THREAD_LOCAL)
5018 {
5019 if (! tls_count)
5020 first_tls = s;
5021 tls_count++;
5022 }
5023 if (first_mbind == NULL
5024 && (elf_section_flags (s) & SHF_GNU_MBIND) != 0)
5025 first_mbind = s;
5026 }
5027
5028 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
5029 if (tls_count > 0)
5030 {
5031 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
5032 amt += tls_count * sizeof (asection *);
5033 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5034 if (m == NULL)
5035 goto error_return;
5036 m->next = NULL;
5037 m->p_type = PT_TLS;
5038 m->count = tls_count;
5039 /* Mandated PF_R. */
5040 m->p_flags = PF_R;
5041 m->p_flags_valid = 1;
5042 s = first_tls;
5043 for (i = 0; i < tls_count; ++i)
5044 {
5045 if ((s->flags & SEC_THREAD_LOCAL) == 0)
5046 {
5047 _bfd_error_handler
5048 (_("%pB: TLS sections are not adjacent:"), abfd);
5049 s = first_tls;
5050 i = 0;
5051 while (i < tls_count)
5052 {
5053 if ((s->flags & SEC_THREAD_LOCAL) != 0)
5054 {
5055 _bfd_error_handler (_(" TLS: %pA"), s);
5056 i++;
5057 }
5058 else
5059 _bfd_error_handler (_(" non-TLS: %pA"), s);
5060 s = s->next;
5061 }
5062 bfd_set_error (bfd_error_bad_value);
5063 goto error_return;
5064 }
5065 m->sections[i] = s;
5066 s = s->next;
5067 }
5068
5069 *pm = m;
5070 pm = &m->next;
5071 }
5072
5073 if (first_mbind
5074 && (abfd->flags & D_PAGED) != 0
5075 && (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_mbind) != 0)
5076 for (s = first_mbind; s != NULL; s = s->next)
5077 if ((elf_section_flags (s) & SHF_GNU_MBIND) != 0
5078 && elf_section_data (s)->this_hdr.sh_info <= PT_GNU_MBIND_NUM)
5079 {
5080 /* Mandated PF_R. */
5081 unsigned long p_flags = PF_R;
5082 if ((s->flags & SEC_READONLY) == 0)
5083 p_flags |= PF_W;
5084 if ((s->flags & SEC_CODE) != 0)
5085 p_flags |= PF_X;
5086
5087 amt = sizeof (struct elf_segment_map) + sizeof (asection *);
5088 m = bfd_zalloc (abfd, amt);
5089 if (m == NULL)
5090 goto error_return;
5091 m->next = NULL;
5092 m->p_type = (PT_GNU_MBIND_LO
5093 + elf_section_data (s)->this_hdr.sh_info);
5094 m->count = 1;
5095 m->p_flags_valid = 1;
5096 m->sections[0] = s;
5097 m->p_flags = p_flags;
5098
5099 *pm = m;
5100 pm = &m->next;
5101 }
5102
5103 s = bfd_get_section_by_name (abfd,
5104 NOTE_GNU_PROPERTY_SECTION_NAME);
5105 if (s != NULL && s->size != 0)
5106 {
5107 amt = sizeof (struct elf_segment_map) + sizeof (asection *);
5108 m = bfd_zalloc (abfd, amt);
5109 if (m == NULL)
5110 goto error_return;
5111 m->next = NULL;
5112 m->p_type = PT_GNU_PROPERTY;
5113 m->count = 1;
5114 m->p_flags_valid = 1;
5115 m->sections[0] = s;
5116 m->p_flags = PF_R;
5117 *pm = m;
5118 pm = &m->next;
5119 }
5120
5121 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
5122 segment. */
5123 eh_frame_hdr = elf_eh_frame_hdr (abfd);
5124 if (eh_frame_hdr != NULL
5125 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
5126 {
5127 amt = sizeof (struct elf_segment_map);
5128 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5129 if (m == NULL)
5130 goto error_return;
5131 m->next = NULL;
5132 m->p_type = PT_GNU_EH_FRAME;
5133 m->count = 1;
5134 m->sections[0] = eh_frame_hdr->output_section;
5135
5136 *pm = m;
5137 pm = &m->next;
5138 }
5139
5140 if (elf_stack_flags (abfd))
5141 {
5142 amt = sizeof (struct elf_segment_map);
5143 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5144 if (m == NULL)
5145 goto error_return;
5146 m->next = NULL;
5147 m->p_type = PT_GNU_STACK;
5148 m->p_flags = elf_stack_flags (abfd);
5149 m->p_align = bed->stack_align;
5150 m->p_flags_valid = 1;
5151 m->p_align_valid = m->p_align != 0;
5152 if (info->stacksize > 0)
5153 {
5154 m->p_size = info->stacksize;
5155 m->p_size_valid = 1;
5156 }
5157
5158 *pm = m;
5159 pm = &m->next;
5160 }
5161
5162 if (info != NULL && info->relro)
5163 {
5164 for (m = mfirst; m != NULL; m = m->next)
5165 {
5166 if (m->p_type == PT_LOAD
5167 && m->count != 0
5168 && m->sections[0]->vma >= info->relro_start
5169 && m->sections[0]->vma < info->relro_end)
5170 {
5171 i = m->count;
5172 while (--i != (unsigned) -1)
5173 {
5174 if (m->sections[i]->size > 0
5175 && (m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS))
5176 == (SEC_LOAD | SEC_HAS_CONTENTS))
5177 break;
5178 }
5179
5180 if (i != (unsigned) -1)
5181 break;
5182 }
5183 }
5184
5185 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
5186 if (m != NULL)
5187 {
5188 amt = sizeof (struct elf_segment_map);
5189 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5190 if (m == NULL)
5191 goto error_return;
5192 m->next = NULL;
5193 m->p_type = PT_GNU_RELRO;
5194 *pm = m;
5195 pm = &m->next;
5196 }
5197 }
5198
5199 free (sections);
5200 elf_seg_map (abfd) = mfirst;
5201 }
5202
5203 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
5204 return false;
5205
5206 for (count = 0, m = elf_seg_map (abfd); m != NULL; m = m->next)
5207 ++count;
5208 elf_program_header_size (abfd) = count * bed->s->sizeof_phdr;
5209
5210 return true;
5211
5212 error_return:
5213 free (sections);
5214 return false;
5215 }
5216
5217 /* Sort sections by address. */
5218
5219 static int
5220 elf_sort_sections (const void *arg1, const void *arg2)
5221 {
5222 const asection *sec1 = *(const asection **) arg1;
5223 const asection *sec2 = *(const asection **) arg2;
5224 bfd_size_type size1, size2;
5225
5226 /* Sort by LMA first, since this is the address used to
5227 place the section into a segment. */
5228 if (sec1->lma < sec2->lma)
5229 return -1;
5230 else if (sec1->lma > sec2->lma)
5231 return 1;
5232
5233 /* Then sort by VMA. Normally the LMA and the VMA will be
5234 the same, and this will do nothing. */
5235 if (sec1->vma < sec2->vma)
5236 return -1;
5237 else if (sec1->vma > sec2->vma)
5238 return 1;
5239
5240 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
5241
5242 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0 \
5243 && (x)->size != 0)
5244
5245 if (TOEND (sec1))
5246 {
5247 if (!TOEND (sec2))
5248 return 1;
5249 }
5250 else if (TOEND (sec2))
5251 return -1;
5252
5253 #undef TOEND
5254
5255 /* Sort by size, to put zero sized sections
5256 before others at the same address. */
5257
5258 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
5259 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
5260
5261 if (size1 < size2)
5262 return -1;
5263 if (size1 > size2)
5264 return 1;
5265
5266 return sec1->target_index - sec2->target_index;
5267 }
5268
5269 /* This qsort comparison functions sorts PT_LOAD segments first and
5270 by p_paddr, for assign_file_positions_for_load_sections. */
5271
5272 static int
5273 elf_sort_segments (const void *arg1, const void *arg2)
5274 {
5275 const struct elf_segment_map *m1 = *(const struct elf_segment_map **) arg1;
5276 const struct elf_segment_map *m2 = *(const struct elf_segment_map **) arg2;
5277
5278 if (m1->p_type != m2->p_type)
5279 {
5280 if (m1->p_type == PT_NULL)
5281 return 1;
5282 if (m2->p_type == PT_NULL)
5283 return -1;
5284 return m1->p_type < m2->p_type ? -1 : 1;
5285 }
5286 if (m1->includes_filehdr != m2->includes_filehdr)
5287 return m1->includes_filehdr ? -1 : 1;
5288 if (m1->no_sort_lma != m2->no_sort_lma)
5289 return m1->no_sort_lma ? -1 : 1;
5290 if (m1->p_type == PT_LOAD && !m1->no_sort_lma)
5291 {
5292 bfd_vma lma1, lma2; /* Octets. */
5293 lma1 = 0;
5294 if (m1->p_paddr_valid)
5295 lma1 = m1->p_paddr;
5296 else if (m1->count != 0)
5297 {
5298 unsigned int opb = bfd_octets_per_byte (m1->sections[0]->owner,
5299 m1->sections[0]);
5300 lma1 = (m1->sections[0]->lma + m1->p_vaddr_offset) * opb;
5301 }
5302 lma2 = 0;
5303 if (m2->p_paddr_valid)
5304 lma2 = m2->p_paddr;
5305 else if (m2->count != 0)
5306 {
5307 unsigned int opb = bfd_octets_per_byte (m2->sections[0]->owner,
5308 m2->sections[0]);
5309 lma2 = (m2->sections[0]->lma + m2->p_vaddr_offset) * opb;
5310 }
5311 if (lma1 != lma2)
5312 return lma1 < lma2 ? -1 : 1;
5313 }
5314 if (m1->idx != m2->idx)
5315 return m1->idx < m2->idx ? -1 : 1;
5316 return 0;
5317 }
5318
5319 /* Ian Lance Taylor writes:
5320
5321 We shouldn't be using % with a negative signed number. That's just
5322 not good. We have to make sure either that the number is not
5323 negative, or that the number has an unsigned type. When the types
5324 are all the same size they wind up as unsigned. When file_ptr is a
5325 larger signed type, the arithmetic winds up as signed long long,
5326 which is wrong.
5327
5328 What we're trying to say here is something like ``increase OFF by
5329 the least amount that will cause it to be equal to the VMA modulo
5330 the page size.'' */
5331 /* In other words, something like:
5332
5333 vma_offset = m->sections[0]->vma % bed->maxpagesize;
5334 off_offset = off % bed->maxpagesize;
5335 if (vma_offset < off_offset)
5336 adjustment = vma_offset + bed->maxpagesize - off_offset;
5337 else
5338 adjustment = vma_offset - off_offset;
5339
5340 which can be collapsed into the expression below. */
5341
5342 static file_ptr
5343 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
5344 {
5345 /* PR binutils/16199: Handle an alignment of zero. */
5346 if (maxpagesize == 0)
5347 maxpagesize = 1;
5348 return ((vma - off) % maxpagesize);
5349 }
5350
5351 static void
5352 print_segment_map (const struct elf_segment_map *m)
5353 {
5354 unsigned int j;
5355 const char *pt = get_segment_type (m->p_type);
5356 char buf[32];
5357
5358 if (pt == NULL)
5359 {
5360 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
5361 sprintf (buf, "LOPROC+%7.7x",
5362 (unsigned int) (m->p_type - PT_LOPROC));
5363 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
5364 sprintf (buf, "LOOS+%7.7x",
5365 (unsigned int) (m->p_type - PT_LOOS));
5366 else
5367 snprintf (buf, sizeof (buf), "%8.8x",
5368 (unsigned int) m->p_type);
5369 pt = buf;
5370 }
5371 fflush (stdout);
5372 fprintf (stderr, "%s:", pt);
5373 for (j = 0; j < m->count; j++)
5374 fprintf (stderr, " %s", m->sections [j]->name);
5375 putc ('\n',stderr);
5376 fflush (stderr);
5377 }
5378
5379 static bool
5380 write_zeros (bfd *abfd, file_ptr pos, bfd_size_type len)
5381 {
5382 void *buf;
5383 bool ret;
5384
5385 if (bfd_seek (abfd, pos, SEEK_SET) != 0)
5386 return false;
5387 buf = bfd_zmalloc (len);
5388 if (buf == NULL)
5389 return false;
5390 ret = bfd_bwrite (buf, len, abfd) == len;
5391 free (buf);
5392 return ret;
5393 }
5394
5395 /* Assign file positions to the sections based on the mapping from
5396 sections to segments. This function also sets up some fields in
5397 the file header. */
5398
5399 static bool
5400 assign_file_positions_for_load_sections (bfd *abfd,
5401 struct bfd_link_info *link_info)
5402 {
5403 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5404 struct elf_segment_map *m;
5405 struct elf_segment_map *phdr_load_seg;
5406 Elf_Internal_Phdr *phdrs;
5407 Elf_Internal_Phdr *p;
5408 file_ptr off; /* Octets. */
5409 bfd_size_type maxpagesize;
5410 unsigned int alloc, actual;
5411 unsigned int i, j;
5412 struct elf_segment_map **sorted_seg_map;
5413 unsigned int opb = bfd_octets_per_byte (abfd, NULL);
5414
5415 if (link_info == NULL
5416 && !_bfd_elf_map_sections_to_segments (abfd, link_info))
5417 return false;
5418
5419 alloc = 0;
5420 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
5421 m->idx = alloc++;
5422
5423 if (alloc)
5424 {
5425 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
5426 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
5427 }
5428 else
5429 {
5430 /* PR binutils/12467. */
5431 elf_elfheader (abfd)->e_phoff = 0;
5432 elf_elfheader (abfd)->e_phentsize = 0;
5433 }
5434
5435 elf_elfheader (abfd)->e_phnum = alloc;
5436
5437 if (elf_program_header_size (abfd) == (bfd_size_type) -1)
5438 {
5439 actual = alloc;
5440 elf_program_header_size (abfd) = alloc * bed->s->sizeof_phdr;
5441 }
5442 else
5443 {
5444 actual = elf_program_header_size (abfd) / bed->s->sizeof_phdr;
5445 BFD_ASSERT (elf_program_header_size (abfd)
5446 == actual * bed->s->sizeof_phdr);
5447 BFD_ASSERT (actual >= alloc);
5448 }
5449
5450 if (alloc == 0)
5451 {
5452 elf_next_file_pos (abfd) = bed->s->sizeof_ehdr;
5453 return true;
5454 }
5455
5456 /* We're writing the size in elf_program_header_size (abfd),
5457 see assign_file_positions_except_relocs, so make sure we have
5458 that amount allocated, with trailing space cleared.
5459 The variable alloc contains the computed need, while
5460 elf_program_header_size (abfd) contains the size used for the
5461 layout.
5462 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
5463 where the layout is forced to according to a larger size in the
5464 last iterations for the testcase ld-elf/header. */
5465 phdrs = bfd_zalloc (abfd, (actual * sizeof (*phdrs)
5466 + alloc * sizeof (*sorted_seg_map)));
5467 sorted_seg_map = (struct elf_segment_map **) (phdrs + actual);
5468 elf_tdata (abfd)->phdr = phdrs;
5469 if (phdrs == NULL)
5470 return false;
5471
5472 for (m = elf_seg_map (abfd), j = 0; m != NULL; m = m->next, j++)
5473 {
5474 sorted_seg_map[j] = m;
5475 /* If elf_segment_map is not from map_sections_to_segments, the
5476 sections may not be correctly ordered. NOTE: sorting should
5477 not be done to the PT_NOTE section of a corefile, which may
5478 contain several pseudo-sections artificially created by bfd.
5479 Sorting these pseudo-sections breaks things badly. */
5480 if (m->count > 1
5481 && !(elf_elfheader (abfd)->e_type == ET_CORE
5482 && m->p_type == PT_NOTE))
5483 {
5484 for (i = 0; i < m->count; i++)
5485 m->sections[i]->target_index = i;
5486 qsort (m->sections, (size_t) m->count, sizeof (asection *),
5487 elf_sort_sections);
5488 }
5489 }
5490 if (alloc > 1)
5491 qsort (sorted_seg_map, alloc, sizeof (*sorted_seg_map),
5492 elf_sort_segments);
5493
5494 maxpagesize = 1;
5495 if ((abfd->flags & D_PAGED) != 0)
5496 {
5497 if (link_info != NULL)
5498 maxpagesize = link_info->maxpagesize;
5499 else
5500 maxpagesize = bed->maxpagesize;
5501 }
5502
5503 /* Sections must map to file offsets past the ELF file header. */
5504 off = bed->s->sizeof_ehdr;
5505 /* And if one of the PT_LOAD headers doesn't include the program
5506 headers then we'll be mapping program headers in the usual
5507 position after the ELF file header. */
5508 phdr_load_seg = NULL;
5509 for (j = 0; j < alloc; j++)
5510 {
5511 m = sorted_seg_map[j];
5512 if (m->p_type != PT_LOAD)
5513 break;
5514 if (m->includes_phdrs)
5515 {
5516 phdr_load_seg = m;
5517 break;
5518 }
5519 }
5520 if (phdr_load_seg == NULL)
5521 off += actual * bed->s->sizeof_phdr;
5522
5523 for (j = 0; j < alloc; j++)
5524 {
5525 asection **secpp;
5526 bfd_vma off_adjust; /* Octets. */
5527 bool no_contents;
5528
5529 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
5530 number of sections with contents contributing to both p_filesz
5531 and p_memsz, followed by a number of sections with no contents
5532 that just contribute to p_memsz. In this loop, OFF tracks next
5533 available file offset for PT_LOAD and PT_NOTE segments. */
5534 m = sorted_seg_map[j];
5535 p = phdrs + m->idx;
5536 p->p_type = m->p_type;
5537 p->p_flags = m->p_flags;
5538
5539 if (m->count == 0)
5540 p->p_vaddr = m->p_vaddr_offset * opb;
5541 else
5542 p->p_vaddr = (m->sections[0]->vma + m->p_vaddr_offset) * opb;
5543
5544 if (m->p_paddr_valid)
5545 p->p_paddr = m->p_paddr;
5546 else if (m->count == 0)
5547 p->p_paddr = 0;
5548 else
5549 p->p_paddr = (m->sections[0]->lma + m->p_vaddr_offset) * opb;
5550
5551 if (p->p_type == PT_LOAD
5552 && (abfd->flags & D_PAGED) != 0)
5553 {
5554 /* p_align in demand paged PT_LOAD segments effectively stores
5555 the maximum page size. When copying an executable with
5556 objcopy, we set m->p_align from the input file. Use this
5557 value for maxpagesize rather than bed->maxpagesize, which
5558 may be different. Note that we use maxpagesize for PT_TLS
5559 segment alignment later in this function, so we are relying
5560 on at least one PT_LOAD segment appearing before a PT_TLS
5561 segment. */
5562 if (m->p_align_valid)
5563 maxpagesize = m->p_align;
5564
5565 p->p_align = maxpagesize;
5566 }
5567 else if (m->p_align_valid)
5568 p->p_align = m->p_align;
5569 else if (m->count == 0)
5570 p->p_align = 1 << bed->s->log_file_align;
5571
5572 if (m == phdr_load_seg)
5573 {
5574 if (!m->includes_filehdr)
5575 p->p_offset = off;
5576 off += actual * bed->s->sizeof_phdr;
5577 }
5578
5579 no_contents = false;
5580 off_adjust = 0;
5581 if (p->p_type == PT_LOAD
5582 && m->count > 0)
5583 {
5584 bfd_size_type align; /* Bytes. */
5585 unsigned int align_power = 0;
5586
5587 if (m->p_align_valid)
5588 align = p->p_align;
5589 else
5590 {
5591 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
5592 {
5593 unsigned int secalign;
5594
5595 secalign = bfd_section_alignment (*secpp);
5596 if (secalign > align_power)
5597 align_power = secalign;
5598 }
5599 align = (bfd_size_type) 1 << align_power;
5600 if (align < maxpagesize)
5601 align = maxpagesize;
5602 }
5603
5604 for (i = 0; i < m->count; i++)
5605 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
5606 /* If we aren't making room for this section, then
5607 it must be SHT_NOBITS regardless of what we've
5608 set via struct bfd_elf_special_section. */
5609 elf_section_type (m->sections[i]) = SHT_NOBITS;
5610
5611 /* Find out whether this segment contains any loadable
5612 sections. */
5613 no_contents = true;
5614 for (i = 0; i < m->count; i++)
5615 if (elf_section_type (m->sections[i]) != SHT_NOBITS)
5616 {
5617 no_contents = false;
5618 break;
5619 }
5620
5621 off_adjust = vma_page_aligned_bias (p->p_vaddr, off, align * opb);
5622
5623 /* Broken hardware and/or kernel require that files do not
5624 map the same page with different permissions on some hppa
5625 processors. */
5626 if (j != 0
5627 && (abfd->flags & D_PAGED) != 0
5628 && bed->no_page_alias
5629 && (off & (maxpagesize - 1)) != 0
5630 && ((off & -maxpagesize)
5631 == ((off + off_adjust) & -maxpagesize)))
5632 off_adjust += maxpagesize;
5633 off += off_adjust;
5634 if (no_contents)
5635 {
5636 /* We shouldn't need to align the segment on disk since
5637 the segment doesn't need file space, but the gABI
5638 arguably requires the alignment and glibc ld.so
5639 checks it. So to comply with the alignment
5640 requirement but not waste file space, we adjust
5641 p_offset for just this segment. (OFF_ADJUST is
5642 subtracted from OFF later.) This may put p_offset
5643 past the end of file, but that shouldn't matter. */
5644 }
5645 else
5646 off_adjust = 0;
5647 }
5648 /* Make sure the .dynamic section is the first section in the
5649 PT_DYNAMIC segment. */
5650 else if (p->p_type == PT_DYNAMIC
5651 && m->count > 1
5652 && strcmp (m->sections[0]->name, ".dynamic") != 0)
5653 {
5654 _bfd_error_handler
5655 (_("%pB: The first section in the PT_DYNAMIC segment"
5656 " is not the .dynamic section"),
5657 abfd);
5658 bfd_set_error (bfd_error_bad_value);
5659 return false;
5660 }
5661 /* Set the note section type to SHT_NOTE. */
5662 else if (p->p_type == PT_NOTE)
5663 for (i = 0; i < m->count; i++)
5664 elf_section_type (m->sections[i]) = SHT_NOTE;
5665
5666 if (m->includes_filehdr)
5667 {
5668 if (!m->p_flags_valid)
5669 p->p_flags |= PF_R;
5670 p->p_filesz = bed->s->sizeof_ehdr;
5671 p->p_memsz = bed->s->sizeof_ehdr;
5672 if (p->p_type == PT_LOAD)
5673 {
5674 if (m->count > 0)
5675 {
5676 if (p->p_vaddr < (bfd_vma) off
5677 || (!m->p_paddr_valid
5678 && p->p_paddr < (bfd_vma) off))
5679 {
5680 _bfd_error_handler
5681 (_("%pB: not enough room for program headers,"
5682 " try linking with -N"),
5683 abfd);
5684 bfd_set_error (bfd_error_bad_value);
5685 return false;
5686 }
5687 p->p_vaddr -= off;
5688 if (!m->p_paddr_valid)
5689 p->p_paddr -= off;
5690 }
5691 }
5692 else if (sorted_seg_map[0]->includes_filehdr)
5693 {
5694 Elf_Internal_Phdr *filehdr = phdrs + sorted_seg_map[0]->idx;
5695 p->p_vaddr = filehdr->p_vaddr;
5696 if (!m->p_paddr_valid)
5697 p->p_paddr = filehdr->p_paddr;
5698 }
5699 }
5700
5701 if (m->includes_phdrs)
5702 {
5703 if (!m->p_flags_valid)
5704 p->p_flags |= PF_R;
5705 p->p_filesz += actual * bed->s->sizeof_phdr;
5706 p->p_memsz += actual * bed->s->sizeof_phdr;
5707 if (!m->includes_filehdr)
5708 {
5709 if (p->p_type == PT_LOAD)
5710 {
5711 elf_elfheader (abfd)->e_phoff = p->p_offset;
5712 if (m->count > 0)
5713 {
5714 p->p_vaddr -= off - p->p_offset;
5715 if (!m->p_paddr_valid)
5716 p->p_paddr -= off - p->p_offset;
5717 }
5718 }
5719 else if (phdr_load_seg != NULL)
5720 {
5721 Elf_Internal_Phdr *phdr = phdrs + phdr_load_seg->idx;
5722 bfd_vma phdr_off = 0; /* Octets. */
5723 if (phdr_load_seg->includes_filehdr)
5724 phdr_off = bed->s->sizeof_ehdr;
5725 p->p_vaddr = phdr->p_vaddr + phdr_off;
5726 if (!m->p_paddr_valid)
5727 p->p_paddr = phdr->p_paddr + phdr_off;
5728 p->p_offset = phdr->p_offset + phdr_off;
5729 }
5730 else
5731 p->p_offset = bed->s->sizeof_ehdr;
5732 }
5733 }
5734
5735 if (p->p_type == PT_LOAD
5736 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
5737 {
5738 if (!m->includes_filehdr && !m->includes_phdrs)
5739 {
5740 p->p_offset = off;
5741 if (no_contents)
5742 {
5743 /* Put meaningless p_offset for PT_LOAD segments
5744 without file contents somewhere within the first
5745 page, in an attempt to not point past EOF. */
5746 bfd_size_type align = maxpagesize;
5747 if (align < p->p_align)
5748 align = p->p_align;
5749 if (align < 1)
5750 align = 1;
5751 p->p_offset = off % align;
5752 }
5753 }
5754 else
5755 {
5756 file_ptr adjust; /* Octets. */
5757
5758 adjust = off - (p->p_offset + p->p_filesz);
5759 if (!no_contents)
5760 p->p_filesz += adjust;
5761 p->p_memsz += adjust;
5762 }
5763 }
5764
5765 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
5766 maps. Set filepos for sections in PT_LOAD segments, and in
5767 core files, for sections in PT_NOTE segments.
5768 assign_file_positions_for_non_load_sections will set filepos
5769 for other sections and update p_filesz for other segments. */
5770 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
5771 {
5772 asection *sec;
5773 bfd_size_type align;
5774 Elf_Internal_Shdr *this_hdr;
5775
5776 sec = *secpp;
5777 this_hdr = &elf_section_data (sec)->this_hdr;
5778 align = (bfd_size_type) 1 << bfd_section_alignment (sec);
5779
5780 if ((p->p_type == PT_LOAD
5781 || p->p_type == PT_TLS)
5782 && (this_hdr->sh_type != SHT_NOBITS
5783 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
5784 && ((this_hdr->sh_flags & SHF_TLS) == 0
5785 || p->p_type == PT_TLS))))
5786 {
5787 bfd_vma p_start = p->p_paddr; /* Octets. */
5788 bfd_vma p_end = p_start + p->p_memsz; /* Octets. */
5789 bfd_vma s_start = sec->lma * opb; /* Octets. */
5790 bfd_vma adjust = s_start - p_end; /* Octets. */
5791
5792 if (adjust != 0
5793 && (s_start < p_end
5794 || p_end < p_start))
5795 {
5796 _bfd_error_handler
5797 /* xgettext:c-format */
5798 (_("%pB: section %pA lma %#" PRIx64 " adjusted to %#" PRIx64),
5799 abfd, sec, (uint64_t) s_start / opb,
5800 (uint64_t) p_end / opb);
5801 adjust = 0;
5802 sec->lma = p_end / opb;
5803 }
5804 p->p_memsz += adjust;
5805
5806 if (p->p_type == PT_LOAD)
5807 {
5808 if (this_hdr->sh_type != SHT_NOBITS)
5809 {
5810 off_adjust = 0;
5811 if (p->p_filesz + adjust < p->p_memsz)
5812 {
5813 /* We have a PROGBITS section following NOBITS ones.
5814 Allocate file space for the NOBITS section(s) and
5815 zero it. */
5816 adjust = p->p_memsz - p->p_filesz;
5817 if (!write_zeros (abfd, off, adjust))
5818 return false;
5819 }
5820 }
5821 /* We only adjust sh_offset in SHT_NOBITS sections
5822 as would seem proper for their address when the
5823 section is first in the segment. sh_offset
5824 doesn't really have any significance for
5825 SHT_NOBITS anyway, apart from a notional position
5826 relative to other sections. Historically we
5827 didn't bother with adjusting sh_offset and some
5828 programs depend on it not being adjusted. See
5829 pr12921 and pr25662. */
5830 if (this_hdr->sh_type != SHT_NOBITS || i == 0)
5831 {
5832 off += adjust;
5833 if (this_hdr->sh_type == SHT_NOBITS)
5834 off_adjust += adjust;
5835 }
5836 }
5837 if (this_hdr->sh_type != SHT_NOBITS)
5838 p->p_filesz += adjust;
5839 }
5840
5841 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
5842 {
5843 /* The section at i == 0 is the one that actually contains
5844 everything. */
5845 if (i == 0)
5846 {
5847 this_hdr->sh_offset = sec->filepos = off;
5848 off += this_hdr->sh_size;
5849 p->p_filesz = this_hdr->sh_size;
5850 p->p_memsz = 0;
5851 p->p_align = 1;
5852 }
5853 else
5854 {
5855 /* The rest are fake sections that shouldn't be written. */
5856 sec->filepos = 0;
5857 sec->size = 0;
5858 sec->flags = 0;
5859 continue;
5860 }
5861 }
5862 else
5863 {
5864 if (p->p_type == PT_LOAD)
5865 {
5866 this_hdr->sh_offset = sec->filepos = off;
5867 if (this_hdr->sh_type != SHT_NOBITS)
5868 off += this_hdr->sh_size;
5869 }
5870 else if (this_hdr->sh_type == SHT_NOBITS
5871 && (this_hdr->sh_flags & SHF_TLS) != 0
5872 && this_hdr->sh_offset == 0)
5873 {
5874 /* This is a .tbss section that didn't get a PT_LOAD.
5875 (See _bfd_elf_map_sections_to_segments "Create a
5876 final PT_LOAD".) Set sh_offset to the value it
5877 would have if we had created a zero p_filesz and
5878 p_memsz PT_LOAD header for the section. This
5879 also makes the PT_TLS header have the same
5880 p_offset value. */
5881 bfd_vma adjust = vma_page_aligned_bias (this_hdr->sh_addr,
5882 off, align);
5883 this_hdr->sh_offset = sec->filepos = off + adjust;
5884 }
5885
5886 if (this_hdr->sh_type != SHT_NOBITS)
5887 {
5888 p->p_filesz += this_hdr->sh_size;
5889 /* A load section without SHF_ALLOC is something like
5890 a note section in a PT_NOTE segment. These take
5891 file space but are not loaded into memory. */
5892 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5893 p->p_memsz += this_hdr->sh_size;
5894 }
5895 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5896 {
5897 if (p->p_type == PT_TLS)
5898 p->p_memsz += this_hdr->sh_size;
5899
5900 /* .tbss is special. It doesn't contribute to p_memsz of
5901 normal segments. */
5902 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
5903 p->p_memsz += this_hdr->sh_size;
5904 }
5905
5906 if (align > p->p_align
5907 && !m->p_align_valid
5908 && (p->p_type != PT_LOAD
5909 || (abfd->flags & D_PAGED) == 0))
5910 p->p_align = align;
5911 }
5912
5913 if (!m->p_flags_valid)
5914 {
5915 p->p_flags |= PF_R;
5916 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
5917 p->p_flags |= PF_X;
5918 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
5919 p->p_flags |= PF_W;
5920 }
5921 }
5922
5923 off -= off_adjust;
5924
5925 /* PR ld/20815 - Check that the program header segment, if
5926 present, will be loaded into memory. */
5927 if (p->p_type == PT_PHDR
5928 && phdr_load_seg == NULL
5929 && !(bed->elf_backend_allow_non_load_phdr != NULL
5930 && bed->elf_backend_allow_non_load_phdr (abfd, phdrs, alloc)))
5931 {
5932 /* The fix for this error is usually to edit the linker script being
5933 used and set up the program headers manually. Either that or
5934 leave room for the headers at the start of the SECTIONS. */
5935 _bfd_error_handler (_("%pB: error: PHDR segment not covered"
5936 " by LOAD segment"),
5937 abfd);
5938 if (link_info == NULL)
5939 return false;
5940 /* Arrange for the linker to exit with an error, deleting
5941 the output file unless --noinhibit-exec is given. */
5942 link_info->callbacks->info ("%X");
5943 }
5944
5945 /* Check that all sections are in a PT_LOAD segment.
5946 Don't check funky gdb generated core files. */
5947 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
5948 {
5949 bool check_vma = true;
5950
5951 for (i = 1; i < m->count; i++)
5952 if (m->sections[i]->vma == m->sections[i - 1]->vma
5953 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i])
5954 ->this_hdr), p) != 0
5955 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i - 1])
5956 ->this_hdr), p) != 0)
5957 {
5958 /* Looks like we have overlays packed into the segment. */
5959 check_vma = false;
5960 break;
5961 }
5962
5963 for (i = 0; i < m->count; i++)
5964 {
5965 Elf_Internal_Shdr *this_hdr;
5966 asection *sec;
5967
5968 sec = m->sections[i];
5969 this_hdr = &(elf_section_data(sec)->this_hdr);
5970 if (!ELF_SECTION_IN_SEGMENT_1 (this_hdr, p, check_vma, 0)
5971 && !ELF_TBSS_SPECIAL (this_hdr, p))
5972 {
5973 _bfd_error_handler
5974 /* xgettext:c-format */
5975 (_("%pB: section `%pA' can't be allocated in segment %d"),
5976 abfd, sec, j);
5977 print_segment_map (m);
5978 }
5979 }
5980 }
5981 }
5982
5983 elf_next_file_pos (abfd) = off;
5984
5985 if (link_info != NULL
5986 && phdr_load_seg != NULL
5987 && phdr_load_seg->includes_filehdr)
5988 {
5989 /* There is a segment that contains both the file headers and the
5990 program headers, so provide a symbol __ehdr_start pointing there.
5991 A program can use this to examine itself robustly. */
5992
5993 struct elf_link_hash_entry *hash
5994 = elf_link_hash_lookup (elf_hash_table (link_info), "__ehdr_start",
5995 false, false, true);
5996 /* If the symbol was referenced and not defined, define it. */
5997 if (hash != NULL
5998 && (hash->root.type == bfd_link_hash_new
5999 || hash->root.type == bfd_link_hash_undefined
6000 || hash->root.type == bfd_link_hash_undefweak
6001 || hash->root.type == bfd_link_hash_common))
6002 {
6003 asection *s = NULL;
6004 bfd_vma filehdr_vaddr = phdrs[phdr_load_seg->idx].p_vaddr / opb;
6005
6006 if (phdr_load_seg->count != 0)
6007 /* The segment contains sections, so use the first one. */
6008 s = phdr_load_seg->sections[0];
6009 else
6010 /* Use the first (i.e. lowest-addressed) section in any segment. */
6011 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
6012 if (m->p_type == PT_LOAD && m->count != 0)
6013 {
6014 s = m->sections[0];
6015 break;
6016 }
6017
6018 if (s != NULL)
6019 {
6020 hash->root.u.def.value = filehdr_vaddr - s->vma;
6021 hash->root.u.def.section = s;
6022 }
6023 else
6024 {
6025 hash->root.u.def.value = filehdr_vaddr;
6026 hash->root.u.def.section = bfd_abs_section_ptr;
6027 }
6028
6029 hash->root.type = bfd_link_hash_defined;
6030 hash->def_regular = 1;
6031 hash->non_elf = 0;
6032 }
6033 }
6034
6035 return true;
6036 }
6037
6038 /* Determine if a bfd is a debuginfo file. Unfortunately there
6039 is no defined method for detecting such files, so we have to
6040 use heuristics instead. */
6041
6042 bool
6043 is_debuginfo_file (bfd *abfd)
6044 {
6045 if (abfd == NULL || bfd_get_flavour (abfd) != bfd_target_elf_flavour)
6046 return false;
6047
6048 Elf_Internal_Shdr **start_headers = elf_elfsections (abfd);
6049 Elf_Internal_Shdr **end_headers = start_headers + elf_numsections (abfd);
6050 Elf_Internal_Shdr **headerp;
6051
6052 for (headerp = start_headers; headerp < end_headers; headerp ++)
6053 {
6054 Elf_Internal_Shdr *header = * headerp;
6055
6056 /* Debuginfo files do not have any allocated SHT_PROGBITS sections.
6057 The only allocated sections are SHT_NOBITS or SHT_NOTES. */
6058 if ((header->sh_flags & SHF_ALLOC) == SHF_ALLOC
6059 && header->sh_type != SHT_NOBITS
6060 && header->sh_type != SHT_NOTE)
6061 return false;
6062 }
6063
6064 return true;
6065 }
6066
6067 /* Assign file positions for the other sections, except for compressed debugging
6068 and other sections assigned in _bfd_elf_assign_file_positions_for_non_load(). */
6069
6070 static bool
6071 assign_file_positions_for_non_load_sections (bfd *abfd,
6072 struct bfd_link_info *link_info)
6073 {
6074 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6075 Elf_Internal_Shdr **i_shdrpp;
6076 Elf_Internal_Shdr **hdrpp, **end_hdrpp;
6077 Elf_Internal_Phdr *phdrs;
6078 Elf_Internal_Phdr *p;
6079 struct elf_segment_map *m;
6080 file_ptr off;
6081 unsigned int opb = bfd_octets_per_byte (abfd, NULL);
6082 bfd_vma maxpagesize;
6083
6084 if (link_info != NULL)
6085 maxpagesize = link_info->maxpagesize;
6086 else
6087 maxpagesize = bed->maxpagesize;
6088 i_shdrpp = elf_elfsections (abfd);
6089 end_hdrpp = i_shdrpp + elf_numsections (abfd);
6090 off = elf_next_file_pos (abfd);
6091 for (hdrpp = i_shdrpp + 1; hdrpp < end_hdrpp; hdrpp++)
6092 {
6093 Elf_Internal_Shdr *hdr;
6094
6095 hdr = *hdrpp;
6096 if (hdr->bfd_section != NULL
6097 && (hdr->bfd_section->filepos != 0
6098 || (hdr->sh_type == SHT_NOBITS
6099 && hdr->contents == NULL)))
6100 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
6101 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
6102 {
6103 if (hdr->sh_size != 0
6104 /* PR 24717 - debuginfo files are known to be not strictly
6105 compliant with the ELF standard. In particular they often
6106 have .note.gnu.property sections that are outside of any
6107 loadable segment. This is not a problem for such files,
6108 so do not warn about them. */
6109 && ! is_debuginfo_file (abfd))
6110 _bfd_error_handler
6111 /* xgettext:c-format */
6112 (_("%pB: warning: allocated section `%s' not in segment"),
6113 abfd,
6114 (hdr->bfd_section == NULL
6115 ? "*unknown*"
6116 : hdr->bfd_section->name));
6117 /* We don't need to page align empty sections. */
6118 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
6119 off += vma_page_aligned_bias (hdr->sh_addr, off,
6120 maxpagesize);
6121 else
6122 off += vma_page_aligned_bias (hdr->sh_addr, off,
6123 hdr->sh_addralign);
6124 off = _bfd_elf_assign_file_position_for_section (hdr, off,
6125 false);
6126 }
6127 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
6128 && hdr->bfd_section == NULL)
6129 /* We don't know the offset of these sections yet: their size has
6130 not been decided. */
6131 || (hdr->bfd_section != NULL
6132 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS
6133 || (bfd_section_is_ctf (hdr->bfd_section)
6134 && abfd->is_linker_output)))
6135 || hdr == i_shdrpp[elf_onesymtab (abfd)]
6136 || (elf_symtab_shndx_list (abfd) != NULL
6137 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
6138 || hdr == i_shdrpp[elf_strtab_sec (abfd)]
6139 || hdr == i_shdrpp[elf_shstrtab_sec (abfd)])
6140 hdr->sh_offset = -1;
6141 else
6142 off = _bfd_elf_assign_file_position_for_section (hdr, off, true);
6143 }
6144 elf_next_file_pos (abfd) = off;
6145
6146 /* Now that we have set the section file positions, we can set up
6147 the file positions for the non PT_LOAD segments. */
6148 phdrs = elf_tdata (abfd)->phdr;
6149 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
6150 {
6151 if (p->p_type == PT_GNU_RELRO)
6152 {
6153 bfd_vma start, end; /* Bytes. */
6154 bool ok;
6155
6156 if (link_info != NULL)
6157 {
6158 /* During linking the range of the RELRO segment is passed
6159 in link_info. Note that there may be padding between
6160 relro_start and the first RELRO section. */
6161 start = link_info->relro_start;
6162 end = link_info->relro_end;
6163 }
6164 else if (m->count != 0)
6165 {
6166 if (!m->p_size_valid)
6167 abort ();
6168 start = m->sections[0]->vma;
6169 end = start + m->p_size / opb;
6170 }
6171 else
6172 {
6173 start = 0;
6174 end = 0;
6175 }
6176
6177 ok = false;
6178 if (start < end)
6179 {
6180 struct elf_segment_map *lm;
6181 const Elf_Internal_Phdr *lp;
6182 unsigned int i;
6183
6184 /* Find a LOAD segment containing a section in the RELRO
6185 segment. */
6186 for (lm = elf_seg_map (abfd), lp = phdrs;
6187 lm != NULL;
6188 lm = lm->next, lp++)
6189 {
6190 if (lp->p_type == PT_LOAD
6191 && lm->count != 0
6192 && (lm->sections[lm->count - 1]->vma
6193 + (!IS_TBSS (lm->sections[lm->count - 1])
6194 ? lm->sections[lm->count - 1]->size / opb
6195 : 0)) > start
6196 && lm->sections[0]->vma < end)
6197 break;
6198 }
6199
6200 if (lm != NULL)
6201 {
6202 /* Find the section starting the RELRO segment. */
6203 for (i = 0; i < lm->count; i++)
6204 {
6205 asection *s = lm->sections[i];
6206 if (s->vma >= start
6207 && s->vma < end
6208 && s->size != 0)
6209 break;
6210 }
6211
6212 if (i < lm->count)
6213 {
6214 p->p_vaddr = lm->sections[i]->vma * opb;
6215 p->p_paddr = lm->sections[i]->lma * opb;
6216 p->p_offset = lm->sections[i]->filepos;
6217 p->p_memsz = end * opb - p->p_vaddr;
6218 p->p_filesz = p->p_memsz;
6219
6220 /* The RELRO segment typically ends a few bytes
6221 into .got.plt but other layouts are possible.
6222 In cases where the end does not match any
6223 loaded section (for instance is in file
6224 padding), trim p_filesz back to correspond to
6225 the end of loaded section contents. */
6226 if (p->p_filesz > lp->p_vaddr + lp->p_filesz - p->p_vaddr)
6227 p->p_filesz = lp->p_vaddr + lp->p_filesz - p->p_vaddr;
6228
6229 /* Preserve the alignment and flags if they are
6230 valid. The gold linker generates RW/4 for
6231 the PT_GNU_RELRO section. It is better for
6232 objcopy/strip to honor these attributes
6233 otherwise gdb will choke when using separate
6234 debug files. */
6235 if (!m->p_align_valid)
6236 p->p_align = 1;
6237 if (!m->p_flags_valid)
6238 p->p_flags = PF_R;
6239 ok = true;
6240 }
6241 }
6242 }
6243
6244 if (!ok)
6245 {
6246 if (link_info != NULL)
6247 _bfd_error_handler
6248 (_("%pB: warning: unable to allocate any sections to PT_GNU_RELRO segment"),
6249 abfd);
6250 memset (p, 0, sizeof *p);
6251 }
6252 }
6253 else if (p->p_type == PT_GNU_STACK)
6254 {
6255 if (m->p_size_valid)
6256 p->p_memsz = m->p_size;
6257 }
6258 else if (m->count != 0)
6259 {
6260 unsigned int i;
6261
6262 if (p->p_type != PT_LOAD
6263 && (p->p_type != PT_NOTE
6264 || bfd_get_format (abfd) != bfd_core))
6265 {
6266 /* A user specified segment layout may include a PHDR
6267 segment that overlaps with a LOAD segment... */
6268 if (p->p_type == PT_PHDR)
6269 {
6270 m->count = 0;
6271 continue;
6272 }
6273
6274 if (m->includes_filehdr || m->includes_phdrs)
6275 {
6276 /* PR 17512: file: 2195325e. */
6277 _bfd_error_handler
6278 (_("%pB: error: non-load segment %d includes file header "
6279 "and/or program header"),
6280 abfd, (int) (p - phdrs));
6281 return false;
6282 }
6283
6284 p->p_filesz = 0;
6285 p->p_offset = m->sections[0]->filepos;
6286 for (i = m->count; i-- != 0;)
6287 {
6288 asection *sect = m->sections[i];
6289 Elf_Internal_Shdr *hdr = &elf_section_data (sect)->this_hdr;
6290 if (hdr->sh_type != SHT_NOBITS)
6291 {
6292 p->p_filesz = (sect->filepos - m->sections[0]->filepos
6293 + hdr->sh_size);
6294 /* NB: p_memsz of the loadable PT_NOTE segment
6295 should be the same as p_filesz. */
6296 if (p->p_type == PT_NOTE
6297 && (hdr->sh_flags & SHF_ALLOC) != 0)
6298 p->p_memsz = p->p_filesz;
6299 break;
6300 }
6301 }
6302 }
6303 }
6304 }
6305
6306 return true;
6307 }
6308
6309 static elf_section_list *
6310 find_section_in_list (unsigned int i, elf_section_list * list)
6311 {
6312 for (;list != NULL; list = list->next)
6313 if (list->ndx == i)
6314 break;
6315 return list;
6316 }
6317
6318 /* Work out the file positions of all the sections. This is called by
6319 _bfd_elf_compute_section_file_positions. All the section sizes and
6320 VMAs must be known before this is called.
6321
6322 Reloc sections come in two flavours: Those processed specially as
6323 "side-channel" data attached to a section to which they apply, and those that
6324 bfd doesn't process as relocations. The latter sort are stored in a normal
6325 bfd section by bfd_section_from_shdr. We don't consider the former sort
6326 here, unless they form part of the loadable image. Reloc sections not
6327 assigned here (and compressed debugging sections and CTF sections which
6328 nothing else in the file can rely upon) will be handled later by
6329 assign_file_positions_for_relocs.
6330
6331 We also don't set the positions of the .symtab and .strtab here. */
6332
6333 static bool
6334 assign_file_positions_except_relocs (bfd *abfd,
6335 struct bfd_link_info *link_info)
6336 {
6337 struct elf_obj_tdata *tdata = elf_tdata (abfd);
6338 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
6339 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6340 unsigned int alloc;
6341
6342 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
6343 && bfd_get_format (abfd) != bfd_core)
6344 {
6345 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
6346 unsigned int num_sec = elf_numsections (abfd);
6347 Elf_Internal_Shdr **hdrpp;
6348 unsigned int i;
6349 file_ptr off;
6350
6351 /* Start after the ELF header. */
6352 off = i_ehdrp->e_ehsize;
6353
6354 /* We are not creating an executable, which means that we are
6355 not creating a program header, and that the actual order of
6356 the sections in the file is unimportant. */
6357 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
6358 {
6359 Elf_Internal_Shdr *hdr;
6360
6361 hdr = *hdrpp;
6362 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
6363 && hdr->bfd_section == NULL)
6364 /* Do not assign offsets for these sections yet: we don't know
6365 their sizes. */
6366 || (hdr->bfd_section != NULL
6367 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS
6368 || (bfd_section_is_ctf (hdr->bfd_section)
6369 && abfd->is_linker_output)))
6370 || i == elf_onesymtab (abfd)
6371 || (elf_symtab_shndx_list (abfd) != NULL
6372 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
6373 || i == elf_strtab_sec (abfd)
6374 || i == elf_shstrtab_sec (abfd))
6375 {
6376 hdr->sh_offset = -1;
6377 }
6378 else
6379 off = _bfd_elf_assign_file_position_for_section (hdr, off, true);
6380 }
6381
6382 elf_next_file_pos (abfd) = off;
6383 elf_program_header_size (abfd) = 0;
6384 }
6385 else
6386 {
6387 /* Assign file positions for the loaded sections based on the
6388 assignment of sections to segments. */
6389 if (!assign_file_positions_for_load_sections (abfd, link_info))
6390 return false;
6391
6392 /* And for non-load sections. */
6393 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
6394 return false;
6395 }
6396
6397 if (!(*bed->elf_backend_modify_headers) (abfd, link_info))
6398 return false;
6399
6400 /* Write out the program headers. */
6401 alloc = i_ehdrp->e_phnum;
6402 if (alloc != 0)
6403 {
6404 if (bfd_seek (abfd, i_ehdrp->e_phoff, SEEK_SET) != 0
6405 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
6406 return false;
6407 }
6408
6409 return true;
6410 }
6411
6412 bool
6413 _bfd_elf_init_file_header (bfd *abfd,
6414 struct bfd_link_info *info ATTRIBUTE_UNUSED)
6415 {
6416 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form. */
6417 struct elf_strtab_hash *shstrtab;
6418 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6419
6420 i_ehdrp = elf_elfheader (abfd);
6421
6422 shstrtab = _bfd_elf_strtab_init ();
6423 if (shstrtab == NULL)
6424 return false;
6425
6426 elf_shstrtab (abfd) = shstrtab;
6427
6428 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
6429 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
6430 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
6431 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
6432
6433 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
6434 i_ehdrp->e_ident[EI_DATA] =
6435 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
6436 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
6437
6438 if ((abfd->flags & DYNAMIC) != 0)
6439 i_ehdrp->e_type = ET_DYN;
6440 else if ((abfd->flags & EXEC_P) != 0)
6441 i_ehdrp->e_type = ET_EXEC;
6442 else if (bfd_get_format (abfd) == bfd_core)
6443 i_ehdrp->e_type = ET_CORE;
6444 else
6445 i_ehdrp->e_type = ET_REL;
6446
6447 switch (bfd_get_arch (abfd))
6448 {
6449 case bfd_arch_unknown:
6450 i_ehdrp->e_machine = EM_NONE;
6451 break;
6452
6453 /* There used to be a long list of cases here, each one setting
6454 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
6455 in the corresponding bfd definition. To avoid duplication,
6456 the switch was removed. Machines that need special handling
6457 can generally do it in elf_backend_final_write_processing(),
6458 unless they need the information earlier than the final write.
6459 Such need can generally be supplied by replacing the tests for
6460 e_machine with the conditions used to determine it. */
6461 default:
6462 i_ehdrp->e_machine = bed->elf_machine_code;
6463 }
6464
6465 i_ehdrp->e_version = bed->s->ev_current;
6466 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
6467
6468 /* No program header, for now. */
6469 i_ehdrp->e_phoff = 0;
6470 i_ehdrp->e_phentsize = 0;
6471 i_ehdrp->e_phnum = 0;
6472
6473 /* Each bfd section is section header entry. */
6474 i_ehdrp->e_entry = bfd_get_start_address (abfd);
6475 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
6476
6477 elf_tdata (abfd)->symtab_hdr.sh_name =
6478 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", false);
6479 elf_tdata (abfd)->strtab_hdr.sh_name =
6480 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", false);
6481 elf_tdata (abfd)->shstrtab_hdr.sh_name =
6482 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", false);
6483 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
6484 || elf_tdata (abfd)->strtab_hdr.sh_name == (unsigned int) -1
6485 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
6486 return false;
6487
6488 return true;
6489 }
6490
6491 /* Set e_type in ELF header to ET_EXEC for -pie -Ttext-segment=.
6492
6493 FIXME: We used to have code here to sort the PT_LOAD segments into
6494 ascending order, as per the ELF spec. But this breaks some programs,
6495 including the Linux kernel. But really either the spec should be
6496 changed or the programs updated. */
6497
6498 bool
6499 _bfd_elf_modify_headers (bfd *obfd, struct bfd_link_info *link_info)
6500 {
6501 if (link_info != NULL && bfd_link_pie (link_info))
6502 {
6503 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (obfd);
6504 unsigned int num_segments = i_ehdrp->e_phnum;
6505 struct elf_obj_tdata *tdata = elf_tdata (obfd);
6506 Elf_Internal_Phdr *segment = tdata->phdr;
6507 Elf_Internal_Phdr *end_segment = &segment[num_segments];
6508
6509 /* Find the lowest p_vaddr in PT_LOAD segments. */
6510 bfd_vma p_vaddr = (bfd_vma) -1;
6511 for (; segment < end_segment; segment++)
6512 if (segment->p_type == PT_LOAD && p_vaddr > segment->p_vaddr)
6513 p_vaddr = segment->p_vaddr;
6514
6515 /* Set e_type to ET_EXEC if the lowest p_vaddr in PT_LOAD
6516 segments is non-zero. */
6517 if (p_vaddr)
6518 i_ehdrp->e_type = ET_EXEC;
6519 }
6520 return true;
6521 }
6522
6523 /* Assign file positions for all the reloc sections which are not part
6524 of the loadable file image, and the file position of section headers. */
6525
6526 static bool
6527 _bfd_elf_assign_file_positions_for_non_load (bfd *abfd)
6528 {
6529 file_ptr off;
6530 Elf_Internal_Shdr **shdrpp, **end_shdrpp;
6531 Elf_Internal_Shdr *shdrp;
6532 Elf_Internal_Ehdr *i_ehdrp;
6533 const struct elf_backend_data *bed;
6534
6535 off = elf_next_file_pos (abfd);
6536
6537 shdrpp = elf_elfsections (abfd);
6538 end_shdrpp = shdrpp + elf_numsections (abfd);
6539 for (shdrpp++; shdrpp < end_shdrpp; shdrpp++)
6540 {
6541 shdrp = *shdrpp;
6542 if (shdrp->sh_offset == -1)
6543 {
6544 asection *sec = shdrp->bfd_section;
6545 bool is_rel = (shdrp->sh_type == SHT_REL
6546 || shdrp->sh_type == SHT_RELA);
6547 bool is_ctf = sec && bfd_section_is_ctf (sec);
6548 if (is_rel
6549 || is_ctf
6550 || (sec != NULL && (sec->flags & SEC_ELF_COMPRESS)))
6551 {
6552 if (!is_rel && !is_ctf)
6553 {
6554 const char *name = sec->name;
6555 struct bfd_elf_section_data *d;
6556
6557 /* Compress DWARF debug sections. */
6558 if (!bfd_compress_section (abfd, sec,
6559 shdrp->contents))
6560 return false;
6561
6562 if (sec->compress_status == COMPRESS_SECTION_DONE
6563 && (abfd->flags & BFD_COMPRESS_GABI) == 0)
6564 {
6565 /* If section is compressed with zlib-gnu, convert
6566 section name from .debug_* to .zdebug_*. */
6567 char *new_name
6568 = convert_debug_to_zdebug (abfd, name);
6569 if (new_name == NULL)
6570 return false;
6571 name = new_name;
6572 }
6573 /* Add section name to section name section. */
6574 if (shdrp->sh_name != (unsigned int) -1)
6575 abort ();
6576 shdrp->sh_name
6577 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
6578 name, false);
6579 d = elf_section_data (sec);
6580
6581 /* Add reloc section name to section name section. */
6582 if (d->rel.hdr
6583 && !_bfd_elf_set_reloc_sh_name (abfd,
6584 d->rel.hdr,
6585 name, false))
6586 return false;
6587 if (d->rela.hdr
6588 && !_bfd_elf_set_reloc_sh_name (abfd,
6589 d->rela.hdr,
6590 name, true))
6591 return false;
6592
6593 /* Update section size and contents. */
6594 shdrp->sh_size = sec->size;
6595 shdrp->contents = sec->contents;
6596 shdrp->bfd_section->contents = NULL;
6597 }
6598 else if (is_ctf)
6599 {
6600 /* Update section size and contents. */
6601 shdrp->sh_size = sec->size;
6602 shdrp->contents = sec->contents;
6603 }
6604
6605 off = _bfd_elf_assign_file_position_for_section (shdrp,
6606 off,
6607 true);
6608 }
6609 }
6610 }
6611
6612 /* Place section name section after DWARF debug sections have been
6613 compressed. */
6614 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
6615 shdrp = &elf_tdata (abfd)->shstrtab_hdr;
6616 shdrp->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
6617 off = _bfd_elf_assign_file_position_for_section (shdrp, off, true);
6618
6619 /* Place the section headers. */
6620 i_ehdrp = elf_elfheader (abfd);
6621 bed = get_elf_backend_data (abfd);
6622 off = align_file_position (off, 1 << bed->s->log_file_align);
6623 i_ehdrp->e_shoff = off;
6624 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
6625 elf_next_file_pos (abfd) = off;
6626
6627 return true;
6628 }
6629
6630 bool
6631 _bfd_elf_write_object_contents (bfd *abfd)
6632 {
6633 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6634 Elf_Internal_Shdr **i_shdrp;
6635 bool failed;
6636 unsigned int count, num_sec;
6637 struct elf_obj_tdata *t;
6638
6639 if (! abfd->output_has_begun
6640 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
6641 return false;
6642 /* Do not rewrite ELF data when the BFD has been opened for update.
6643 abfd->output_has_begun was set to TRUE on opening, so creation of new
6644 sections, and modification of existing section sizes was restricted.
6645 This means the ELF header, program headers and section headers can't have
6646 changed.
6647 If the contents of any sections has been modified, then those changes have
6648 already been written to the BFD. */
6649 else if (abfd->direction == both_direction)
6650 {
6651 BFD_ASSERT (abfd->output_has_begun);
6652 return true;
6653 }
6654
6655 i_shdrp = elf_elfsections (abfd);
6656
6657 failed = false;
6658 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
6659 if (failed)
6660 return false;
6661
6662 if (!_bfd_elf_assign_file_positions_for_non_load (abfd))
6663 return false;
6664
6665 /* After writing the headers, we need to write the sections too... */
6666 num_sec = elf_numsections (abfd);
6667 for (count = 1; count < num_sec; count++)
6668 {
6669 i_shdrp[count]->sh_name
6670 = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
6671 i_shdrp[count]->sh_name);
6672 if (bed->elf_backend_section_processing)
6673 if (!(*bed->elf_backend_section_processing) (abfd, i_shdrp[count]))
6674 return false;
6675 if (i_shdrp[count]->contents)
6676 {
6677 bfd_size_type amt = i_shdrp[count]->sh_size;
6678
6679 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
6680 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
6681 return false;
6682 }
6683 }
6684
6685 /* Write out the section header names. */
6686 t = elf_tdata (abfd);
6687 if (elf_shstrtab (abfd) != NULL
6688 && (bfd_seek (abfd, t->shstrtab_hdr.sh_offset, SEEK_SET) != 0
6689 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
6690 return false;
6691
6692 if (!(*bed->elf_backend_final_write_processing) (abfd))
6693 return false;
6694
6695 if (!bed->s->write_shdrs_and_ehdr (abfd))
6696 return false;
6697
6698 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
6699 if (t->o->build_id.after_write_object_contents != NULL)
6700 return (*t->o->build_id.after_write_object_contents) (abfd);
6701
6702 return true;
6703 }
6704
6705 bool
6706 _bfd_elf_write_corefile_contents (bfd *abfd)
6707 {
6708 /* Hopefully this can be done just like an object file. */
6709 return _bfd_elf_write_object_contents (abfd);
6710 }
6711
6712 /* Given a section, search the header to find them. */
6713
6714 unsigned int
6715 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
6716 {
6717 const struct elf_backend_data *bed;
6718 unsigned int sec_index;
6719
6720 if (elf_section_data (asect) != NULL
6721 && elf_section_data (asect)->this_idx != 0)
6722 return elf_section_data (asect)->this_idx;
6723
6724 if (bfd_is_abs_section (asect))
6725 sec_index = SHN_ABS;
6726 else if (bfd_is_com_section (asect))
6727 sec_index = SHN_COMMON;
6728 else if (bfd_is_und_section (asect))
6729 sec_index = SHN_UNDEF;
6730 else
6731 sec_index = SHN_BAD;
6732
6733 bed = get_elf_backend_data (abfd);
6734 if (bed->elf_backend_section_from_bfd_section)
6735 {
6736 int retval = sec_index;
6737
6738 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
6739 return retval;
6740 }
6741
6742 if (sec_index == SHN_BAD)
6743 bfd_set_error (bfd_error_nonrepresentable_section);
6744
6745 return sec_index;
6746 }
6747
6748 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
6749 on error. */
6750
6751 int
6752 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
6753 {
6754 asymbol *asym_ptr = *asym_ptr_ptr;
6755 int idx;
6756 flagword flags = asym_ptr->flags;
6757
6758 /* When gas creates relocations against local labels, it creates its
6759 own symbol for the section, but does put the symbol into the
6760 symbol chain, so udata is 0. When the linker is generating
6761 relocatable output, this section symbol may be for one of the
6762 input sections rather than the output section. */
6763 if (asym_ptr->udata.i == 0
6764 && (flags & BSF_SECTION_SYM)
6765 && asym_ptr->section)
6766 {
6767 asection *sec;
6768
6769 sec = asym_ptr->section;
6770 if (sec->owner != abfd && sec->output_section != NULL)
6771 sec = sec->output_section;
6772 if (sec->owner == abfd
6773 && sec->index < elf_num_section_syms (abfd)
6774 && elf_section_syms (abfd)[sec->index] != NULL)
6775 asym_ptr->udata.i = elf_section_syms (abfd)[sec->index]->udata.i;
6776 }
6777
6778 idx = asym_ptr->udata.i;
6779
6780 if (idx == 0)
6781 {
6782 /* This case can occur when using --strip-symbol on a symbol
6783 which is used in a relocation entry. */
6784 _bfd_error_handler
6785 /* xgettext:c-format */
6786 (_("%pB: symbol `%s' required but not present"),
6787 abfd, bfd_asymbol_name (asym_ptr));
6788 bfd_set_error (bfd_error_no_symbols);
6789 return -1;
6790 }
6791
6792 #if DEBUG & 4
6793 {
6794 fprintf (stderr,
6795 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8x\n",
6796 (long) asym_ptr, asym_ptr->name, idx, flags);
6797 fflush (stderr);
6798 }
6799 #endif
6800
6801 return idx;
6802 }
6803
6804 /* Rewrite program header information. */
6805
6806 static bool
6807 rewrite_elf_program_header (bfd *ibfd, bfd *obfd, bfd_vma maxpagesize)
6808 {
6809 Elf_Internal_Ehdr *iehdr;
6810 struct elf_segment_map *map;
6811 struct elf_segment_map *map_first;
6812 struct elf_segment_map **pointer_to_map;
6813 Elf_Internal_Phdr *segment;
6814 asection *section;
6815 unsigned int i;
6816 unsigned int num_segments;
6817 bool phdr_included = false;
6818 bool p_paddr_valid;
6819 struct elf_segment_map *phdr_adjust_seg = NULL;
6820 unsigned int phdr_adjust_num = 0;
6821 const struct elf_backend_data *bed;
6822 unsigned int opb = bfd_octets_per_byte (ibfd, NULL);
6823
6824 bed = get_elf_backend_data (ibfd);
6825 iehdr = elf_elfheader (ibfd);
6826
6827 map_first = NULL;
6828 pointer_to_map = &map_first;
6829
6830 num_segments = elf_elfheader (ibfd)->e_phnum;
6831
6832 /* Returns the end address of the segment + 1. */
6833 #define SEGMENT_END(segment, start) \
6834 (start + (segment->p_memsz > segment->p_filesz \
6835 ? segment->p_memsz : segment->p_filesz))
6836
6837 #define SECTION_SIZE(section, segment) \
6838 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
6839 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
6840 ? section->size : 0)
6841
6842 /* Returns TRUE if the given section is contained within
6843 the given segment. VMA addresses are compared. */
6844 #define IS_CONTAINED_BY_VMA(section, segment, opb) \
6845 (section->vma * (opb) >= segment->p_vaddr \
6846 && (section->vma * (opb) + SECTION_SIZE (section, segment) \
6847 <= (SEGMENT_END (segment, segment->p_vaddr))))
6848
6849 /* Returns TRUE if the given section is contained within
6850 the given segment. LMA addresses are compared. */
6851 #define IS_CONTAINED_BY_LMA(section, segment, base, opb) \
6852 (section->lma * (opb) >= base \
6853 && (section->lma + SECTION_SIZE (section, segment) / (opb) >= section->lma) \
6854 && (section->lma * (opb) + SECTION_SIZE (section, segment) \
6855 <= SEGMENT_END (segment, base)))
6856
6857 /* Handle PT_NOTE segment. */
6858 #define IS_NOTE(p, s) \
6859 (p->p_type == PT_NOTE \
6860 && elf_section_type (s) == SHT_NOTE \
6861 && (bfd_vma) s->filepos >= p->p_offset \
6862 && ((bfd_vma) s->filepos + s->size \
6863 <= p->p_offset + p->p_filesz))
6864
6865 /* Special case: corefile "NOTE" section containing regs, prpsinfo
6866 etc. */
6867 #define IS_COREFILE_NOTE(p, s) \
6868 (IS_NOTE (p, s) \
6869 && bfd_get_format (ibfd) == bfd_core \
6870 && s->vma == 0 \
6871 && s->lma == 0)
6872
6873 /* The complicated case when p_vaddr is 0 is to handle the Solaris
6874 linker, which generates a PT_INTERP section with p_vaddr and
6875 p_memsz set to 0. */
6876 #define IS_SOLARIS_PT_INTERP(p, s) \
6877 (p->p_vaddr == 0 \
6878 && p->p_paddr == 0 \
6879 && p->p_memsz == 0 \
6880 && p->p_filesz > 0 \
6881 && (s->flags & SEC_HAS_CONTENTS) != 0 \
6882 && s->size > 0 \
6883 && (bfd_vma) s->filepos >= p->p_offset \
6884 && ((bfd_vma) s->filepos + s->size \
6885 <= p->p_offset + p->p_filesz))
6886
6887 /* Decide if the given section should be included in the given segment.
6888 A section will be included if:
6889 1. It is within the address space of the segment -- we use the LMA
6890 if that is set for the segment and the VMA otherwise,
6891 2. It is an allocated section or a NOTE section in a PT_NOTE
6892 segment.
6893 3. There is an output section associated with it,
6894 4. The section has not already been allocated to a previous segment.
6895 5. PT_GNU_STACK segments do not include any sections.
6896 6. PT_TLS segment includes only SHF_TLS sections.
6897 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
6898 8. PT_DYNAMIC should not contain empty sections at the beginning
6899 (with the possible exception of .dynamic). */
6900 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed, opb) \
6901 ((((segment->p_paddr \
6902 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr, opb) \
6903 : IS_CONTAINED_BY_VMA (section, segment, opb)) \
6904 && (section->flags & SEC_ALLOC) != 0) \
6905 || IS_NOTE (segment, section)) \
6906 && segment->p_type != PT_GNU_STACK \
6907 && (segment->p_type != PT_TLS \
6908 || (section->flags & SEC_THREAD_LOCAL)) \
6909 && (segment->p_type == PT_LOAD \
6910 || segment->p_type == PT_TLS \
6911 || (section->flags & SEC_THREAD_LOCAL) == 0) \
6912 && (segment->p_type != PT_DYNAMIC \
6913 || SECTION_SIZE (section, segment) > 0 \
6914 || (segment->p_paddr \
6915 ? segment->p_paddr != section->lma * (opb) \
6916 : segment->p_vaddr != section->vma * (opb)) \
6917 || (strcmp (bfd_section_name (section), ".dynamic") == 0)) \
6918 && (segment->p_type != PT_LOAD || !section->segment_mark))
6919
6920 /* If the output section of a section in the input segment is NULL,
6921 it is removed from the corresponding output segment. */
6922 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed, opb) \
6923 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed, opb) \
6924 && section->output_section != NULL)
6925
6926 /* Returns TRUE iff seg1 starts after the end of seg2. */
6927 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
6928 (seg1->field >= SEGMENT_END (seg2, seg2->field))
6929
6930 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
6931 their VMA address ranges and their LMA address ranges overlap.
6932 It is possible to have overlapping VMA ranges without overlapping LMA
6933 ranges. RedBoot images for example can have both .data and .bss mapped
6934 to the same VMA range, but with the .data section mapped to a different
6935 LMA. */
6936 #define SEGMENT_OVERLAPS(seg1, seg2) \
6937 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
6938 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
6939 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
6940 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
6941
6942 /* Initialise the segment mark field, and discard stupid alignment. */
6943 for (section = ibfd->sections; section != NULL; section = section->next)
6944 {
6945 asection *o = section->output_section;
6946 if (o != NULL && o->alignment_power >= (sizeof (bfd_vma) * 8) - 1)
6947 o->alignment_power = 0;
6948 section->segment_mark = false;
6949 }
6950
6951 /* The Solaris linker creates program headers in which all the
6952 p_paddr fields are zero. When we try to objcopy or strip such a
6953 file, we get confused. Check for this case, and if we find it
6954 don't set the p_paddr_valid fields. */
6955 p_paddr_valid = false;
6956 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6957 i < num_segments;
6958 i++, segment++)
6959 if (segment->p_paddr != 0)
6960 {
6961 p_paddr_valid = true;
6962 break;
6963 }
6964
6965 /* Scan through the segments specified in the program header
6966 of the input BFD. For this first scan we look for overlaps
6967 in the loadable segments. These can be created by weird
6968 parameters to objcopy. Also, fix some solaris weirdness. */
6969 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6970 i < num_segments;
6971 i++, segment++)
6972 {
6973 unsigned int j;
6974 Elf_Internal_Phdr *segment2;
6975
6976 if (segment->p_type == PT_INTERP)
6977 for (section = ibfd->sections; section; section = section->next)
6978 if (IS_SOLARIS_PT_INTERP (segment, section))
6979 {
6980 /* Mininal change so that the normal section to segment
6981 assignment code will work. */
6982 segment->p_vaddr = section->vma * opb;
6983 break;
6984 }
6985
6986 if (segment->p_type != PT_LOAD)
6987 {
6988 /* Remove PT_GNU_RELRO segment. */
6989 if (segment->p_type == PT_GNU_RELRO)
6990 segment->p_type = PT_NULL;
6991 continue;
6992 }
6993
6994 /* Determine if this segment overlaps any previous segments. */
6995 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
6996 {
6997 bfd_signed_vma extra_length;
6998
6999 if (segment2->p_type != PT_LOAD
7000 || !SEGMENT_OVERLAPS (segment, segment2))
7001 continue;
7002
7003 /* Merge the two segments together. */
7004 if (segment2->p_vaddr < segment->p_vaddr)
7005 {
7006 /* Extend SEGMENT2 to include SEGMENT and then delete
7007 SEGMENT. */
7008 extra_length = (SEGMENT_END (segment, segment->p_vaddr)
7009 - SEGMENT_END (segment2, segment2->p_vaddr));
7010
7011 if (extra_length > 0)
7012 {
7013 segment2->p_memsz += extra_length;
7014 segment2->p_filesz += extra_length;
7015 }
7016
7017 segment->p_type = PT_NULL;
7018
7019 /* Since we have deleted P we must restart the outer loop. */
7020 i = 0;
7021 segment = elf_tdata (ibfd)->phdr;
7022 break;
7023 }
7024 else
7025 {
7026 /* Extend SEGMENT to include SEGMENT2 and then delete
7027 SEGMENT2. */
7028 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
7029 - SEGMENT_END (segment, segment->p_vaddr));
7030
7031 if (extra_length > 0)
7032 {
7033 segment->p_memsz += extra_length;
7034 segment->p_filesz += extra_length;
7035 }
7036
7037 segment2->p_type = PT_NULL;
7038 }
7039 }
7040 }
7041
7042 /* The second scan attempts to assign sections to segments. */
7043 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7044 i < num_segments;
7045 i++, segment++)
7046 {
7047 unsigned int section_count;
7048 asection **sections;
7049 asection *output_section;
7050 unsigned int isec;
7051 asection *matching_lma;
7052 asection *suggested_lma;
7053 unsigned int j;
7054 size_t amt;
7055 asection *first_section;
7056
7057 if (segment->p_type == PT_NULL)
7058 continue;
7059
7060 first_section = NULL;
7061 /* Compute how many sections might be placed into this segment. */
7062 for (section = ibfd->sections, section_count = 0;
7063 section != NULL;
7064 section = section->next)
7065 {
7066 /* Find the first section in the input segment, which may be
7067 removed from the corresponding output segment. */
7068 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed, opb))
7069 {
7070 if (first_section == NULL)
7071 first_section = section;
7072 if (section->output_section != NULL)
7073 ++section_count;
7074 }
7075 }
7076
7077 /* Allocate a segment map big enough to contain
7078 all of the sections we have selected. */
7079 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
7080 amt += section_count * sizeof (asection *);
7081 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7082 if (map == NULL)
7083 return false;
7084
7085 /* Initialise the fields of the segment map. Default to
7086 using the physical address of the segment in the input BFD. */
7087 map->next = NULL;
7088 map->p_type = segment->p_type;
7089 map->p_flags = segment->p_flags;
7090 map->p_flags_valid = 1;
7091
7092 if (map->p_type == PT_LOAD
7093 && (ibfd->flags & D_PAGED) != 0
7094 && maxpagesize > 1
7095 && segment->p_align > 1)
7096 {
7097 map->p_align = segment->p_align;
7098 if (segment->p_align > maxpagesize)
7099 map->p_align = maxpagesize;
7100 map->p_align_valid = 1;
7101 }
7102
7103 /* If the first section in the input segment is removed, there is
7104 no need to preserve segment physical address in the corresponding
7105 output segment. */
7106 if (!first_section || first_section->output_section != NULL)
7107 {
7108 map->p_paddr = segment->p_paddr;
7109 map->p_paddr_valid = p_paddr_valid;
7110 }
7111
7112 /* Determine if this segment contains the ELF file header
7113 and if it contains the program headers themselves. */
7114 map->includes_filehdr = (segment->p_offset == 0
7115 && segment->p_filesz >= iehdr->e_ehsize);
7116 map->includes_phdrs = 0;
7117
7118 if (!phdr_included || segment->p_type != PT_LOAD)
7119 {
7120 map->includes_phdrs =
7121 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
7122 && (segment->p_offset + segment->p_filesz
7123 >= ((bfd_vma) iehdr->e_phoff
7124 + iehdr->e_phnum * iehdr->e_phentsize)));
7125
7126 if (segment->p_type == PT_LOAD && map->includes_phdrs)
7127 phdr_included = true;
7128 }
7129
7130 if (section_count == 0)
7131 {
7132 /* Special segments, such as the PT_PHDR segment, may contain
7133 no sections, but ordinary, loadable segments should contain
7134 something. They are allowed by the ELF spec however, so only
7135 a warning is produced.
7136 There is however the valid use case of embedded systems which
7137 have segments with p_filesz of 0 and a p_memsz > 0 to initialize
7138 flash memory with zeros. No warning is shown for that case. */
7139 if (segment->p_type == PT_LOAD
7140 && (segment->p_filesz > 0 || segment->p_memsz == 0))
7141 /* xgettext:c-format */
7142 _bfd_error_handler
7143 (_("%pB: warning: empty loadable segment detected"
7144 " at vaddr=%#" PRIx64 ", is this intentional?"),
7145 ibfd, (uint64_t) segment->p_vaddr);
7146
7147 map->p_vaddr_offset = segment->p_vaddr / opb;
7148 map->count = 0;
7149 *pointer_to_map = map;
7150 pointer_to_map = &map->next;
7151
7152 continue;
7153 }
7154
7155 /* Now scan the sections in the input BFD again and attempt
7156 to add their corresponding output sections to the segment map.
7157 The problem here is how to handle an output section which has
7158 been moved (ie had its LMA changed). There are four possibilities:
7159
7160 1. None of the sections have been moved.
7161 In this case we can continue to use the segment LMA from the
7162 input BFD.
7163
7164 2. All of the sections have been moved by the same amount.
7165 In this case we can change the segment's LMA to match the LMA
7166 of the first section.
7167
7168 3. Some of the sections have been moved, others have not.
7169 In this case those sections which have not been moved can be
7170 placed in the current segment which will have to have its size,
7171 and possibly its LMA changed, and a new segment or segments will
7172 have to be created to contain the other sections.
7173
7174 4. The sections have been moved, but not by the same amount.
7175 In this case we can change the segment's LMA to match the LMA
7176 of the first section and we will have to create a new segment
7177 or segments to contain the other sections.
7178
7179 In order to save time, we allocate an array to hold the section
7180 pointers that we are interested in. As these sections get assigned
7181 to a segment, they are removed from this array. */
7182
7183 amt = section_count * sizeof (asection *);
7184 sections = (asection **) bfd_malloc (amt);
7185 if (sections == NULL)
7186 return false;
7187
7188 /* Step One: Scan for segment vs section LMA conflicts.
7189 Also add the sections to the section array allocated above.
7190 Also add the sections to the current segment. In the common
7191 case, where the sections have not been moved, this means that
7192 we have completely filled the segment, and there is nothing
7193 more to do. */
7194 isec = 0;
7195 matching_lma = NULL;
7196 suggested_lma = NULL;
7197
7198 for (section = first_section, j = 0;
7199 section != NULL;
7200 section = section->next)
7201 {
7202 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed, opb))
7203 {
7204 output_section = section->output_section;
7205
7206 sections[j++] = section;
7207
7208 /* The Solaris native linker always sets p_paddr to 0.
7209 We try to catch that case here, and set it to the
7210 correct value. Note - some backends require that
7211 p_paddr be left as zero. */
7212 if (!p_paddr_valid
7213 && segment->p_vaddr != 0
7214 && !bed->want_p_paddr_set_to_zero
7215 && isec == 0
7216 && output_section->lma != 0
7217 && (align_power (segment->p_vaddr
7218 + (map->includes_filehdr
7219 ? iehdr->e_ehsize : 0)
7220 + (map->includes_phdrs
7221 ? iehdr->e_phnum * iehdr->e_phentsize
7222 : 0),
7223 output_section->alignment_power * opb)
7224 == (output_section->vma * opb)))
7225 map->p_paddr = segment->p_vaddr;
7226
7227 /* Match up the physical address of the segment with the
7228 LMA address of the output section. */
7229 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr,
7230 opb)
7231 || IS_COREFILE_NOTE (segment, section)
7232 || (bed->want_p_paddr_set_to_zero
7233 && IS_CONTAINED_BY_VMA (output_section, segment, opb)))
7234 {
7235 if (matching_lma == NULL
7236 || output_section->lma < matching_lma->lma)
7237 matching_lma = output_section;
7238
7239 /* We assume that if the section fits within the segment
7240 then it does not overlap any other section within that
7241 segment. */
7242 map->sections[isec++] = output_section;
7243 }
7244 else if (suggested_lma == NULL)
7245 suggested_lma = output_section;
7246
7247 if (j == section_count)
7248 break;
7249 }
7250 }
7251
7252 BFD_ASSERT (j == section_count);
7253
7254 /* Step Two: Adjust the physical address of the current segment,
7255 if necessary. */
7256 if (isec == section_count)
7257 {
7258 /* All of the sections fitted within the segment as currently
7259 specified. This is the default case. Add the segment to
7260 the list of built segments and carry on to process the next
7261 program header in the input BFD. */
7262 map->count = section_count;
7263 *pointer_to_map = map;
7264 pointer_to_map = &map->next;
7265
7266 if (p_paddr_valid
7267 && !bed->want_p_paddr_set_to_zero)
7268 {
7269 bfd_vma hdr_size = 0;
7270 if (map->includes_filehdr)
7271 hdr_size = iehdr->e_ehsize;
7272 if (map->includes_phdrs)
7273 hdr_size += iehdr->e_phnum * iehdr->e_phentsize;
7274
7275 /* Account for padding before the first section in the
7276 segment. */
7277 map->p_vaddr_offset = ((map->p_paddr + hdr_size) / opb
7278 - matching_lma->lma);
7279 }
7280
7281 free (sections);
7282 continue;
7283 }
7284 else
7285 {
7286 /* Change the current segment's physical address to match
7287 the LMA of the first section that fitted, or if no
7288 section fitted, the first section. */
7289 if (matching_lma == NULL)
7290 matching_lma = suggested_lma;
7291
7292 map->p_paddr = matching_lma->lma * opb;
7293
7294 /* Offset the segment physical address from the lma
7295 to allow for space taken up by elf headers. */
7296 if (map->includes_phdrs)
7297 {
7298 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
7299
7300 /* iehdr->e_phnum is just an estimate of the number
7301 of program headers that we will need. Make a note
7302 here of the number we used and the segment we chose
7303 to hold these headers, so that we can adjust the
7304 offset when we know the correct value. */
7305 phdr_adjust_num = iehdr->e_phnum;
7306 phdr_adjust_seg = map;
7307 }
7308
7309 if (map->includes_filehdr)
7310 {
7311 bfd_vma align = (bfd_vma) 1 << matching_lma->alignment_power;
7312 map->p_paddr -= iehdr->e_ehsize;
7313 /* We've subtracted off the size of headers from the
7314 first section lma, but there may have been some
7315 alignment padding before that section too. Try to
7316 account for that by adjusting the segment lma down to
7317 the same alignment. */
7318 if (segment->p_align != 0 && segment->p_align < align)
7319 align = segment->p_align;
7320 map->p_paddr &= -(align * opb);
7321 }
7322 }
7323
7324 /* Step Three: Loop over the sections again, this time assigning
7325 those that fit to the current segment and removing them from the
7326 sections array; but making sure not to leave large gaps. Once all
7327 possible sections have been assigned to the current segment it is
7328 added to the list of built segments and if sections still remain
7329 to be assigned, a new segment is constructed before repeating
7330 the loop. */
7331 isec = 0;
7332 do
7333 {
7334 map->count = 0;
7335 suggested_lma = NULL;
7336
7337 /* Fill the current segment with sections that fit. */
7338 for (j = 0; j < section_count; j++)
7339 {
7340 section = sections[j];
7341
7342 if (section == NULL)
7343 continue;
7344
7345 output_section = section->output_section;
7346
7347 BFD_ASSERT (output_section != NULL);
7348
7349 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr,
7350 opb)
7351 || IS_COREFILE_NOTE (segment, section))
7352 {
7353 if (map->count == 0)
7354 {
7355 /* If the first section in a segment does not start at
7356 the beginning of the segment, then something is
7357 wrong. */
7358 if (align_power (map->p_paddr
7359 + (map->includes_filehdr
7360 ? iehdr->e_ehsize : 0)
7361 + (map->includes_phdrs
7362 ? iehdr->e_phnum * iehdr->e_phentsize
7363 : 0),
7364 output_section->alignment_power * opb)
7365 != output_section->lma * opb)
7366 goto sorry;
7367 }
7368 else
7369 {
7370 asection *prev_sec;
7371
7372 prev_sec = map->sections[map->count - 1];
7373
7374 /* If the gap between the end of the previous section
7375 and the start of this section is more than
7376 maxpagesize then we need to start a new segment. */
7377 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
7378 maxpagesize)
7379 < BFD_ALIGN (output_section->lma, maxpagesize))
7380 || (prev_sec->lma + prev_sec->size
7381 > output_section->lma))
7382 {
7383 if (suggested_lma == NULL)
7384 suggested_lma = output_section;
7385
7386 continue;
7387 }
7388 }
7389
7390 map->sections[map->count++] = output_section;
7391 ++isec;
7392 sections[j] = NULL;
7393 if (segment->p_type == PT_LOAD)
7394 section->segment_mark = true;
7395 }
7396 else if (suggested_lma == NULL)
7397 suggested_lma = output_section;
7398 }
7399
7400 /* PR 23932. A corrupt input file may contain sections that cannot
7401 be assigned to any segment - because for example they have a
7402 negative size - or segments that do not contain any sections.
7403 But there are also valid reasons why a segment can be empty.
7404 So allow a count of zero. */
7405
7406 /* Add the current segment to the list of built segments. */
7407 *pointer_to_map = map;
7408 pointer_to_map = &map->next;
7409
7410 if (isec < section_count)
7411 {
7412 /* We still have not allocated all of the sections to
7413 segments. Create a new segment here, initialise it
7414 and carry on looping. */
7415 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
7416 amt += section_count * sizeof (asection *);
7417 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7418 if (map == NULL)
7419 {
7420 free (sections);
7421 return false;
7422 }
7423
7424 /* Initialise the fields of the segment map. Set the physical
7425 physical address to the LMA of the first section that has
7426 not yet been assigned. */
7427 map->next = NULL;
7428 map->p_type = segment->p_type;
7429 map->p_flags = segment->p_flags;
7430 map->p_flags_valid = 1;
7431 map->p_paddr = suggested_lma->lma * opb;
7432 map->p_paddr_valid = p_paddr_valid;
7433 map->includes_filehdr = 0;
7434 map->includes_phdrs = 0;
7435 }
7436
7437 continue;
7438 sorry:
7439 bfd_set_error (bfd_error_sorry);
7440 free (sections);
7441 return false;
7442 }
7443 while (isec < section_count);
7444
7445 free (sections);
7446 }
7447
7448 elf_seg_map (obfd) = map_first;
7449
7450 /* If we had to estimate the number of program headers that were
7451 going to be needed, then check our estimate now and adjust
7452 the offset if necessary. */
7453 if (phdr_adjust_seg != NULL)
7454 {
7455 unsigned int count;
7456
7457 for (count = 0, map = map_first; map != NULL; map = map->next)
7458 count++;
7459
7460 if (count > phdr_adjust_num)
7461 phdr_adjust_seg->p_paddr
7462 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
7463
7464 for (map = map_first; map != NULL; map = map->next)
7465 if (map->p_type == PT_PHDR)
7466 {
7467 bfd_vma adjust
7468 = phdr_adjust_seg->includes_filehdr ? iehdr->e_ehsize : 0;
7469 map->p_paddr = phdr_adjust_seg->p_paddr + adjust;
7470 break;
7471 }
7472 }
7473
7474 #undef SEGMENT_END
7475 #undef SECTION_SIZE
7476 #undef IS_CONTAINED_BY_VMA
7477 #undef IS_CONTAINED_BY_LMA
7478 #undef IS_NOTE
7479 #undef IS_COREFILE_NOTE
7480 #undef IS_SOLARIS_PT_INTERP
7481 #undef IS_SECTION_IN_INPUT_SEGMENT
7482 #undef INCLUDE_SECTION_IN_SEGMENT
7483 #undef SEGMENT_AFTER_SEGMENT
7484 #undef SEGMENT_OVERLAPS
7485 return true;
7486 }
7487
7488 /* Copy ELF program header information. */
7489
7490 static bool
7491 copy_elf_program_header (bfd *ibfd, bfd *obfd)
7492 {
7493 Elf_Internal_Ehdr *iehdr;
7494 struct elf_segment_map *map;
7495 struct elf_segment_map *map_first;
7496 struct elf_segment_map **pointer_to_map;
7497 Elf_Internal_Phdr *segment;
7498 unsigned int i;
7499 unsigned int num_segments;
7500 bool phdr_included = false;
7501 bool p_paddr_valid;
7502 unsigned int opb = bfd_octets_per_byte (ibfd, NULL);
7503
7504 iehdr = elf_elfheader (ibfd);
7505
7506 map_first = NULL;
7507 pointer_to_map = &map_first;
7508
7509 /* If all the segment p_paddr fields are zero, don't set
7510 map->p_paddr_valid. */
7511 p_paddr_valid = false;
7512 num_segments = elf_elfheader (ibfd)->e_phnum;
7513 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7514 i < num_segments;
7515 i++, segment++)
7516 if (segment->p_paddr != 0)
7517 {
7518 p_paddr_valid = true;
7519 break;
7520 }
7521
7522 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7523 i < num_segments;
7524 i++, segment++)
7525 {
7526 asection *section;
7527 unsigned int section_count;
7528 size_t amt;
7529 Elf_Internal_Shdr *this_hdr;
7530 asection *first_section = NULL;
7531 asection *lowest_section;
7532
7533 /* Compute how many sections are in this segment. */
7534 for (section = ibfd->sections, section_count = 0;
7535 section != NULL;
7536 section = section->next)
7537 {
7538 this_hdr = &(elf_section_data(section)->this_hdr);
7539 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7540 {
7541 if (first_section == NULL)
7542 first_section = section;
7543 section_count++;
7544 }
7545 }
7546
7547 /* Allocate a segment map big enough to contain
7548 all of the sections we have selected. */
7549 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
7550 amt += section_count * sizeof (asection *);
7551 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7552 if (map == NULL)
7553 return false;
7554
7555 /* Initialize the fields of the output segment map with the
7556 input segment. */
7557 map->next = NULL;
7558 map->p_type = segment->p_type;
7559 map->p_flags = segment->p_flags;
7560 map->p_flags_valid = 1;
7561 map->p_paddr = segment->p_paddr;
7562 map->p_paddr_valid = p_paddr_valid;
7563 map->p_align = segment->p_align;
7564 map->p_align_valid = 1;
7565 map->p_vaddr_offset = 0;
7566
7567 if (map->p_type == PT_GNU_RELRO
7568 || map->p_type == PT_GNU_STACK)
7569 {
7570 /* The PT_GNU_RELRO segment may contain the first a few
7571 bytes in the .got.plt section even if the whole .got.plt
7572 section isn't in the PT_GNU_RELRO segment. We won't
7573 change the size of the PT_GNU_RELRO segment.
7574 Similarly, PT_GNU_STACK size is significant on uclinux
7575 systems. */
7576 map->p_size = segment->p_memsz;
7577 map->p_size_valid = 1;
7578 }
7579
7580 /* Determine if this segment contains the ELF file header
7581 and if it contains the program headers themselves. */
7582 map->includes_filehdr = (segment->p_offset == 0
7583 && segment->p_filesz >= iehdr->e_ehsize);
7584
7585 map->includes_phdrs = 0;
7586 if (! phdr_included || segment->p_type != PT_LOAD)
7587 {
7588 map->includes_phdrs =
7589 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
7590 && (segment->p_offset + segment->p_filesz
7591 >= ((bfd_vma) iehdr->e_phoff
7592 + iehdr->e_phnum * iehdr->e_phentsize)));
7593
7594 if (segment->p_type == PT_LOAD && map->includes_phdrs)
7595 phdr_included = true;
7596 }
7597
7598 lowest_section = NULL;
7599 if (section_count != 0)
7600 {
7601 unsigned int isec = 0;
7602
7603 for (section = first_section;
7604 section != NULL;
7605 section = section->next)
7606 {
7607 this_hdr = &(elf_section_data(section)->this_hdr);
7608 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7609 {
7610 map->sections[isec++] = section->output_section;
7611 if ((section->flags & SEC_ALLOC) != 0)
7612 {
7613 bfd_vma seg_off;
7614
7615 if (lowest_section == NULL
7616 || section->lma < lowest_section->lma)
7617 lowest_section = section;
7618
7619 /* Section lmas are set up from PT_LOAD header
7620 p_paddr in _bfd_elf_make_section_from_shdr.
7621 If this header has a p_paddr that disagrees
7622 with the section lma, flag the p_paddr as
7623 invalid. */
7624 if ((section->flags & SEC_LOAD) != 0)
7625 seg_off = this_hdr->sh_offset - segment->p_offset;
7626 else
7627 seg_off = this_hdr->sh_addr - segment->p_vaddr;
7628 if (section->lma * opb - segment->p_paddr != seg_off)
7629 map->p_paddr_valid = false;
7630 }
7631 if (isec == section_count)
7632 break;
7633 }
7634 }
7635 }
7636
7637 if (section_count == 0)
7638 map->p_vaddr_offset = segment->p_vaddr / opb;
7639 else if (map->p_paddr_valid)
7640 {
7641 /* Account for padding before the first section in the segment. */
7642 bfd_vma hdr_size = 0;
7643 if (map->includes_filehdr)
7644 hdr_size = iehdr->e_ehsize;
7645 if (map->includes_phdrs)
7646 hdr_size += iehdr->e_phnum * iehdr->e_phentsize;
7647
7648 map->p_vaddr_offset = ((map->p_paddr + hdr_size) / opb
7649 - (lowest_section ? lowest_section->lma : 0));
7650 }
7651
7652 map->count = section_count;
7653 *pointer_to_map = map;
7654 pointer_to_map = &map->next;
7655 }
7656
7657 elf_seg_map (obfd) = map_first;
7658 return true;
7659 }
7660
7661 /* Copy private BFD data. This copies or rewrites ELF program header
7662 information. */
7663
7664 static bool
7665 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
7666 {
7667 bfd_vma maxpagesize;
7668
7669 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7670 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7671 return true;
7672
7673 if (elf_tdata (ibfd)->phdr == NULL)
7674 return true;
7675
7676 if (ibfd->xvec == obfd->xvec)
7677 {
7678 /* Check to see if any sections in the input BFD
7679 covered by ELF program header have changed. */
7680 Elf_Internal_Phdr *segment;
7681 asection *section, *osec;
7682 unsigned int i, num_segments;
7683 Elf_Internal_Shdr *this_hdr;
7684 const struct elf_backend_data *bed;
7685
7686 bed = get_elf_backend_data (ibfd);
7687
7688 /* Regenerate the segment map if p_paddr is set to 0. */
7689 if (bed->want_p_paddr_set_to_zero)
7690 goto rewrite;
7691
7692 /* Initialize the segment mark field. */
7693 for (section = obfd->sections; section != NULL;
7694 section = section->next)
7695 section->segment_mark = false;
7696
7697 num_segments = elf_elfheader (ibfd)->e_phnum;
7698 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7699 i < num_segments;
7700 i++, segment++)
7701 {
7702 /* PR binutils/3535. The Solaris linker always sets the p_paddr
7703 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
7704 which severly confuses things, so always regenerate the segment
7705 map in this case. */
7706 if (segment->p_paddr == 0
7707 && segment->p_memsz == 0
7708 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
7709 goto rewrite;
7710
7711 for (section = ibfd->sections;
7712 section != NULL; section = section->next)
7713 {
7714 /* We mark the output section so that we know it comes
7715 from the input BFD. */
7716 osec = section->output_section;
7717 if (osec)
7718 osec->segment_mark = true;
7719
7720 /* Check if this section is covered by the segment. */
7721 this_hdr = &(elf_section_data(section)->this_hdr);
7722 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7723 {
7724 /* FIXME: Check if its output section is changed or
7725 removed. What else do we need to check? */
7726 if (osec == NULL
7727 || section->flags != osec->flags
7728 || section->lma != osec->lma
7729 || section->vma != osec->vma
7730 || section->size != osec->size
7731 || section->rawsize != osec->rawsize
7732 || section->alignment_power != osec->alignment_power)
7733 goto rewrite;
7734 }
7735 }
7736 }
7737
7738 /* Check to see if any output section do not come from the
7739 input BFD. */
7740 for (section = obfd->sections; section != NULL;
7741 section = section->next)
7742 {
7743 if (!section->segment_mark)
7744 goto rewrite;
7745 else
7746 section->segment_mark = false;
7747 }
7748
7749 return copy_elf_program_header (ibfd, obfd);
7750 }
7751
7752 rewrite:
7753 maxpagesize = 0;
7754 if (ibfd->xvec == obfd->xvec)
7755 {
7756 /* When rewriting program header, set the output maxpagesize to
7757 the maximum alignment of input PT_LOAD segments. */
7758 Elf_Internal_Phdr *segment;
7759 unsigned int i;
7760 unsigned int num_segments = elf_elfheader (ibfd)->e_phnum;
7761
7762 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7763 i < num_segments;
7764 i++, segment++)
7765 if (segment->p_type == PT_LOAD
7766 && maxpagesize < segment->p_align)
7767 {
7768 /* PR 17512: file: f17299af. */
7769 if (segment->p_align > (bfd_vma) 1 << ((sizeof (bfd_vma) * 8) - 2))
7770 /* xgettext:c-format */
7771 _bfd_error_handler (_("%pB: warning: segment alignment of %#"
7772 PRIx64 " is too large"),
7773 ibfd, (uint64_t) segment->p_align);
7774 else
7775 maxpagesize = segment->p_align;
7776 }
7777 }
7778 if (maxpagesize == 0)
7779 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
7780
7781 return rewrite_elf_program_header (ibfd, obfd, maxpagesize);
7782 }
7783
7784 /* Initialize private output section information from input section. */
7785
7786 bool
7787 _bfd_elf_init_private_section_data (bfd *ibfd,
7788 asection *isec,
7789 bfd *obfd,
7790 asection *osec,
7791 struct bfd_link_info *link_info)
7792
7793 {
7794 Elf_Internal_Shdr *ihdr, *ohdr;
7795 bool final_link = (link_info != NULL
7796 && !bfd_link_relocatable (link_info));
7797
7798 if (ibfd->xvec->flavour != bfd_target_elf_flavour
7799 || obfd->xvec->flavour != bfd_target_elf_flavour)
7800 return true;
7801
7802 BFD_ASSERT (elf_section_data (osec) != NULL);
7803
7804 /* If this is a known ABI section, ELF section type and flags may
7805 have been set up when OSEC was created. For normal sections we
7806 allow the user to override the type and flags other than
7807 SHF_MASKOS and SHF_MASKPROC. */
7808 if (elf_section_type (osec) == SHT_PROGBITS
7809 || elf_section_type (osec) == SHT_NOTE
7810 || elf_section_type (osec) == SHT_NOBITS)
7811 elf_section_type (osec) = SHT_NULL;
7812 /* For objcopy and relocatable link, copy the ELF section type from
7813 the input file if the BFD section flags are the same. (If they
7814 are different the user may be doing something like
7815 "objcopy --set-section-flags .text=alloc,data".) For a final
7816 link allow some flags that the linker clears to differ. */
7817 if (elf_section_type (osec) == SHT_NULL
7818 && (osec->flags == isec->flags
7819 || (final_link
7820 && ((osec->flags ^ isec->flags)
7821 & ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC)) == 0)))
7822 elf_section_type (osec) = elf_section_type (isec);
7823
7824 /* FIXME: Is this correct for all OS/PROC specific flags? */
7825 elf_section_flags (osec) = (elf_section_flags (isec)
7826 & (SHF_MASKOS | SHF_MASKPROC));
7827
7828 /* Copy sh_info from input for mbind section. */
7829 if ((elf_tdata (ibfd)->has_gnu_osabi & elf_gnu_osabi_mbind) != 0
7830 && elf_section_flags (isec) & SHF_GNU_MBIND)
7831 elf_section_data (osec)->this_hdr.sh_info
7832 = elf_section_data (isec)->this_hdr.sh_info;
7833
7834 /* Set things up for objcopy and relocatable link. The output
7835 SHT_GROUP section will have its elf_next_in_group pointing back
7836 to the input group members. Ignore linker created group section.
7837 See elfNN_ia64_object_p in elfxx-ia64.c. */
7838 if ((link_info == NULL
7839 || !link_info->resolve_section_groups)
7840 && (elf_sec_group (isec) == NULL
7841 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0))
7842 {
7843 if (elf_section_flags (isec) & SHF_GROUP)
7844 elf_section_flags (osec) |= SHF_GROUP;
7845 elf_next_in_group (osec) = elf_next_in_group (isec);
7846 elf_section_data (osec)->group = elf_section_data (isec)->group;
7847 }
7848
7849 /* If not decompress, preserve SHF_COMPRESSED. */
7850 if (!final_link && (ibfd->flags & BFD_DECOMPRESS) == 0)
7851 elf_section_flags (osec) |= (elf_section_flags (isec)
7852 & SHF_COMPRESSED);
7853
7854 ihdr = &elf_section_data (isec)->this_hdr;
7855
7856 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
7857 don't use the output section of the linked-to section since it
7858 may be NULL at this point. */
7859 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
7860 {
7861 ohdr = &elf_section_data (osec)->this_hdr;
7862 ohdr->sh_flags |= SHF_LINK_ORDER;
7863 elf_linked_to_section (osec) = elf_linked_to_section (isec);
7864 }
7865
7866 osec->use_rela_p = isec->use_rela_p;
7867
7868 return true;
7869 }
7870
7871 /* Copy private section information. This copies over the entsize
7872 field, and sometimes the info field. */
7873
7874 bool
7875 _bfd_elf_copy_private_section_data (bfd *ibfd,
7876 asection *isec,
7877 bfd *obfd,
7878 asection *osec)
7879 {
7880 Elf_Internal_Shdr *ihdr, *ohdr;
7881
7882 if (ibfd->xvec->flavour != bfd_target_elf_flavour
7883 || obfd->xvec->flavour != bfd_target_elf_flavour)
7884 return true;
7885
7886 ihdr = &elf_section_data (isec)->this_hdr;
7887 ohdr = &elf_section_data (osec)->this_hdr;
7888
7889 ohdr->sh_entsize = ihdr->sh_entsize;
7890
7891 if (ihdr->sh_type == SHT_SYMTAB
7892 || ihdr->sh_type == SHT_DYNSYM
7893 || ihdr->sh_type == SHT_GNU_verneed
7894 || ihdr->sh_type == SHT_GNU_verdef)
7895 ohdr->sh_info = ihdr->sh_info;
7896
7897 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
7898 NULL);
7899 }
7900
7901 /* Look at all the SHT_GROUP sections in IBFD, making any adjustments
7902 necessary if we are removing either the SHT_GROUP section or any of
7903 the group member sections. DISCARDED is the value that a section's
7904 output_section has if the section will be discarded, NULL when this
7905 function is called from objcopy, bfd_abs_section_ptr when called
7906 from the linker. */
7907
7908 bool
7909 _bfd_elf_fixup_group_sections (bfd *ibfd, asection *discarded)
7910 {
7911 asection *isec;
7912
7913 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
7914 if (elf_section_type (isec) == SHT_GROUP)
7915 {
7916 asection *first = elf_next_in_group (isec);
7917 asection *s = first;
7918 bfd_size_type removed = 0;
7919
7920 while (s != NULL)
7921 {
7922 /* If this member section is being output but the
7923 SHT_GROUP section is not, then clear the group info
7924 set up by _bfd_elf_copy_private_section_data. */
7925 if (s->output_section != discarded
7926 && isec->output_section == discarded)
7927 {
7928 elf_section_flags (s->output_section) &= ~SHF_GROUP;
7929 elf_group_name (s->output_section) = NULL;
7930 }
7931 else
7932 {
7933 struct bfd_elf_section_data *elf_sec = elf_section_data (s);
7934 if (s->output_section == discarded
7935 && isec->output_section != discarded)
7936 {
7937 /* Conversely, if the member section is not being
7938 output but the SHT_GROUP section is, then adjust
7939 its size. */
7940 removed += 4;
7941 if (elf_sec->rel.hdr != NULL
7942 && (elf_sec->rel.hdr->sh_flags & SHF_GROUP) != 0)
7943 removed += 4;
7944 if (elf_sec->rela.hdr != NULL
7945 && (elf_sec->rela.hdr->sh_flags & SHF_GROUP) != 0)
7946 removed += 4;
7947 }
7948 else
7949 {
7950 /* Also adjust for zero-sized relocation member
7951 section. */
7952 if (elf_sec->rel.hdr != NULL
7953 && elf_sec->rel.hdr->sh_size == 0)
7954 removed += 4;
7955 if (elf_sec->rela.hdr != NULL
7956 && elf_sec->rela.hdr->sh_size == 0)
7957 removed += 4;
7958 }
7959 }
7960 s = elf_next_in_group (s);
7961 if (s == first)
7962 break;
7963 }
7964 if (removed != 0)
7965 {
7966 if (discarded != NULL)
7967 {
7968 /* If we've been called for ld -r, then we need to
7969 adjust the input section size. */
7970 if (isec->rawsize == 0)
7971 isec->rawsize = isec->size;
7972 isec->size = isec->rawsize - removed;
7973 if (isec->size <= 4)
7974 {
7975 isec->size = 0;
7976 isec->flags |= SEC_EXCLUDE;
7977 }
7978 }
7979 else if (isec->output_section != NULL)
7980 {
7981 /* Adjust the output section size when called from
7982 objcopy. */
7983 isec->output_section->size -= removed;
7984 if (isec->output_section->size <= 4)
7985 {
7986 isec->output_section->size = 0;
7987 isec->output_section->flags |= SEC_EXCLUDE;
7988 }
7989 }
7990 }
7991 }
7992
7993 return true;
7994 }
7995
7996 /* Copy private header information. */
7997
7998 bool
7999 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
8000 {
8001 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
8002 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
8003 return true;
8004
8005 /* Copy over private BFD data if it has not already been copied.
8006 This must be done here, rather than in the copy_private_bfd_data
8007 entry point, because the latter is called after the section
8008 contents have been set, which means that the program headers have
8009 already been worked out. */
8010 if (elf_seg_map (obfd) == NULL && elf_tdata (ibfd)->phdr != NULL)
8011 {
8012 if (! copy_private_bfd_data (ibfd, obfd))
8013 return false;
8014 }
8015
8016 return _bfd_elf_fixup_group_sections (ibfd, NULL);
8017 }
8018
8019 /* Copy private symbol information. If this symbol is in a section
8020 which we did not map into a BFD section, try to map the section
8021 index correctly. We use special macro definitions for the mapped
8022 section indices; these definitions are interpreted by the
8023 swap_out_syms function. */
8024
8025 #define MAP_ONESYMTAB (SHN_HIOS + 1)
8026 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
8027 #define MAP_STRTAB (SHN_HIOS + 3)
8028 #define MAP_SHSTRTAB (SHN_HIOS + 4)
8029 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
8030
8031 bool
8032 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
8033 asymbol *isymarg,
8034 bfd *obfd,
8035 asymbol *osymarg)
8036 {
8037 elf_symbol_type *isym, *osym;
8038
8039 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
8040 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
8041 return true;
8042
8043 isym = elf_symbol_from (isymarg);
8044 osym = elf_symbol_from (osymarg);
8045
8046 if (isym != NULL
8047 && isym->internal_elf_sym.st_shndx != 0
8048 && osym != NULL
8049 && bfd_is_abs_section (isym->symbol.section))
8050 {
8051 unsigned int shndx;
8052
8053 shndx = isym->internal_elf_sym.st_shndx;
8054 if (shndx == elf_onesymtab (ibfd))
8055 shndx = MAP_ONESYMTAB;
8056 else if (shndx == elf_dynsymtab (ibfd))
8057 shndx = MAP_DYNSYMTAB;
8058 else if (shndx == elf_strtab_sec (ibfd))
8059 shndx = MAP_STRTAB;
8060 else if (shndx == elf_shstrtab_sec (ibfd))
8061 shndx = MAP_SHSTRTAB;
8062 else if (find_section_in_list (shndx, elf_symtab_shndx_list (ibfd)))
8063 shndx = MAP_SYM_SHNDX;
8064 osym->internal_elf_sym.st_shndx = shndx;
8065 }
8066
8067 return true;
8068 }
8069
8070 /* Swap out the symbols. */
8071
8072 static bool
8073 swap_out_syms (bfd *abfd,
8074 struct elf_strtab_hash **sttp,
8075 int relocatable_p,
8076 struct bfd_link_info *info)
8077 {
8078 const struct elf_backend_data *bed;
8079 unsigned int symcount;
8080 asymbol **syms;
8081 struct elf_strtab_hash *stt;
8082 Elf_Internal_Shdr *symtab_hdr;
8083 Elf_Internal_Shdr *symtab_shndx_hdr;
8084 Elf_Internal_Shdr *symstrtab_hdr;
8085 struct elf_sym_strtab *symstrtab;
8086 bfd_byte *outbound_syms;
8087 bfd_byte *outbound_shndx;
8088 unsigned long outbound_syms_index;
8089 unsigned int idx;
8090 unsigned int num_locals;
8091 size_t amt;
8092 bool name_local_sections;
8093
8094 if (!elf_map_symbols (abfd, &num_locals))
8095 return false;
8096
8097 /* Dump out the symtabs. */
8098 stt = _bfd_elf_strtab_init ();
8099 if (stt == NULL)
8100 return false;
8101
8102 bed = get_elf_backend_data (abfd);
8103 symcount = bfd_get_symcount (abfd);
8104 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8105 symtab_hdr->sh_type = SHT_SYMTAB;
8106 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
8107 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
8108 symtab_hdr->sh_info = num_locals + 1;
8109 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
8110
8111 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
8112 symstrtab_hdr->sh_type = SHT_STRTAB;
8113
8114 /* Allocate buffer to swap out the .strtab section. */
8115 if (_bfd_mul_overflow (symcount + 1, sizeof (*symstrtab), &amt)
8116 || (symstrtab = (struct elf_sym_strtab *) bfd_malloc (amt)) == NULL)
8117 {
8118 bfd_set_error (bfd_error_no_memory);
8119 _bfd_elf_strtab_free (stt);
8120 return false;
8121 }
8122
8123 if (_bfd_mul_overflow (symcount + 1, bed->s->sizeof_sym, &amt)
8124 || (outbound_syms = (bfd_byte *) bfd_alloc (abfd, amt)) == NULL)
8125 {
8126 error_no_mem:
8127 bfd_set_error (bfd_error_no_memory);
8128 error_return:
8129 free (symstrtab);
8130 _bfd_elf_strtab_free (stt);
8131 return false;
8132 }
8133 symtab_hdr->contents = outbound_syms;
8134 outbound_syms_index = 0;
8135
8136 outbound_shndx = NULL;
8137
8138 if (elf_symtab_shndx_list (abfd))
8139 {
8140 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
8141 if (symtab_shndx_hdr->sh_name != 0)
8142 {
8143 if (_bfd_mul_overflow (symcount + 1,
8144 sizeof (Elf_External_Sym_Shndx), &amt))
8145 goto error_no_mem;
8146 outbound_shndx = (bfd_byte *) bfd_zalloc (abfd, amt);
8147 if (outbound_shndx == NULL)
8148 goto error_return;
8149
8150 symtab_shndx_hdr->contents = outbound_shndx;
8151 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
8152 symtab_shndx_hdr->sh_size = amt;
8153 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
8154 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
8155 }
8156 /* FIXME: What about any other headers in the list ? */
8157 }
8158
8159 /* Now generate the data (for "contents"). */
8160 {
8161 /* Fill in zeroth symbol and swap it out. */
8162 Elf_Internal_Sym sym;
8163 sym.st_name = 0;
8164 sym.st_value = 0;
8165 sym.st_size = 0;
8166 sym.st_info = 0;
8167 sym.st_other = 0;
8168 sym.st_shndx = SHN_UNDEF;
8169 sym.st_target_internal = 0;
8170 symstrtab[0].sym = sym;
8171 symstrtab[0].dest_index = outbound_syms_index;
8172 outbound_syms_index++;
8173 }
8174
8175 name_local_sections
8176 = (bed->elf_backend_name_local_section_symbols
8177 && bed->elf_backend_name_local_section_symbols (abfd));
8178
8179 syms = bfd_get_outsymbols (abfd);
8180 for (idx = 0; idx < symcount;)
8181 {
8182 Elf_Internal_Sym sym;
8183 bfd_vma value = syms[idx]->value;
8184 elf_symbol_type *type_ptr;
8185 flagword flags = syms[idx]->flags;
8186 int type;
8187
8188 if (!name_local_sections
8189 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
8190 {
8191 /* Local section symbols have no name. */
8192 sym.st_name = (unsigned long) -1;
8193 }
8194 else
8195 {
8196 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
8197 to get the final offset for st_name. */
8198 sym.st_name
8199 = (unsigned long) _bfd_elf_strtab_add (stt, syms[idx]->name,
8200 false);
8201 if (sym.st_name == (unsigned long) -1)
8202 goto error_return;
8203 }
8204
8205 type_ptr = elf_symbol_from (syms[idx]);
8206
8207 if ((flags & BSF_SECTION_SYM) == 0
8208 && bfd_is_com_section (syms[idx]->section))
8209 {
8210 /* ELF common symbols put the alignment into the `value' field,
8211 and the size into the `size' field. This is backwards from
8212 how BFD handles it, so reverse it here. */
8213 sym.st_size = value;
8214 if (type_ptr == NULL
8215 || type_ptr->internal_elf_sym.st_value == 0)
8216 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
8217 else
8218 sym.st_value = type_ptr->internal_elf_sym.st_value;
8219 sym.st_shndx = _bfd_elf_section_from_bfd_section
8220 (abfd, syms[idx]->section);
8221 }
8222 else
8223 {
8224 asection *sec = syms[idx]->section;
8225 unsigned int shndx;
8226
8227 if (sec->output_section)
8228 {
8229 value += sec->output_offset;
8230 sec = sec->output_section;
8231 }
8232
8233 /* Don't add in the section vma for relocatable output. */
8234 if (! relocatable_p)
8235 value += sec->vma;
8236 sym.st_value = value;
8237 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
8238
8239 if (bfd_is_abs_section (sec)
8240 && type_ptr != NULL
8241 && type_ptr->internal_elf_sym.st_shndx != 0)
8242 {
8243 /* This symbol is in a real ELF section which we did
8244 not create as a BFD section. Undo the mapping done
8245 by copy_private_symbol_data. */
8246 shndx = type_ptr->internal_elf_sym.st_shndx;
8247 switch (shndx)
8248 {
8249 case MAP_ONESYMTAB:
8250 shndx = elf_onesymtab (abfd);
8251 break;
8252 case MAP_DYNSYMTAB:
8253 shndx = elf_dynsymtab (abfd);
8254 break;
8255 case MAP_STRTAB:
8256 shndx = elf_strtab_sec (abfd);
8257 break;
8258 case MAP_SHSTRTAB:
8259 shndx = elf_shstrtab_sec (abfd);
8260 break;
8261 case MAP_SYM_SHNDX:
8262 if (elf_symtab_shndx_list (abfd))
8263 shndx = elf_symtab_shndx_list (abfd)->ndx;
8264 break;
8265 case SHN_COMMON:
8266 case SHN_ABS:
8267 shndx = SHN_ABS;
8268 break;
8269 default:
8270 if (shndx >= SHN_LOPROC && shndx <= SHN_HIOS)
8271 {
8272 if (bed->symbol_section_index)
8273 shndx = bed->symbol_section_index (abfd, type_ptr);
8274 /* Otherwise just leave the index alone. */
8275 }
8276 else
8277 {
8278 if (shndx > SHN_HIOS && shndx < SHN_HIRESERVE)
8279 _bfd_error_handler (_("%pB: \
8280 Unable to handle section index %x in ELF symbol. Using ABS instead."),
8281 abfd, shndx);
8282 shndx = SHN_ABS;
8283 }
8284 break;
8285 }
8286 }
8287 else
8288 {
8289 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
8290
8291 if (shndx == SHN_BAD)
8292 {
8293 asection *sec2;
8294
8295 /* Writing this would be a hell of a lot easier if
8296 we had some decent documentation on bfd, and
8297 knew what to expect of the library, and what to
8298 demand of applications. For example, it
8299 appears that `objcopy' might not set the
8300 section of a symbol to be a section that is
8301 actually in the output file. */
8302 sec2 = bfd_get_section_by_name (abfd, sec->name);
8303 if (sec2 != NULL)
8304 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
8305 if (shndx == SHN_BAD)
8306 {
8307 /* xgettext:c-format */
8308 _bfd_error_handler
8309 (_("unable to find equivalent output section"
8310 " for symbol '%s' from section '%s'"),
8311 syms[idx]->name ? syms[idx]->name : "<Local sym>",
8312 sec->name);
8313 bfd_set_error (bfd_error_invalid_operation);
8314 goto error_return;
8315 }
8316 }
8317 }
8318
8319 sym.st_shndx = shndx;
8320 }
8321
8322 if ((flags & BSF_THREAD_LOCAL) != 0)
8323 type = STT_TLS;
8324 else if ((flags & BSF_GNU_INDIRECT_FUNCTION) != 0)
8325 type = STT_GNU_IFUNC;
8326 else if ((flags & BSF_FUNCTION) != 0)
8327 type = STT_FUNC;
8328 else if ((flags & BSF_OBJECT) != 0)
8329 type = STT_OBJECT;
8330 else if ((flags & BSF_RELC) != 0)
8331 type = STT_RELC;
8332 else if ((flags & BSF_SRELC) != 0)
8333 type = STT_SRELC;
8334 else
8335 type = STT_NOTYPE;
8336
8337 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
8338 type = STT_TLS;
8339
8340 /* Processor-specific types. */
8341 if (type_ptr != NULL
8342 && bed->elf_backend_get_symbol_type)
8343 type = ((*bed->elf_backend_get_symbol_type)
8344 (&type_ptr->internal_elf_sym, type));
8345
8346 if (flags & BSF_SECTION_SYM)
8347 {
8348 if (flags & BSF_GLOBAL)
8349 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8350 else
8351 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
8352 }
8353 else if (bfd_is_com_section (syms[idx]->section))
8354 {
8355 if (type != STT_TLS)
8356 {
8357 if ((abfd->flags & BFD_CONVERT_ELF_COMMON))
8358 type = ((abfd->flags & BFD_USE_ELF_STT_COMMON)
8359 ? STT_COMMON : STT_OBJECT);
8360 else
8361 type = ((flags & BSF_ELF_COMMON) != 0
8362 ? STT_COMMON : STT_OBJECT);
8363 }
8364 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
8365 }
8366 else if (bfd_is_und_section (syms[idx]->section))
8367 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
8368 ? STB_WEAK
8369 : STB_GLOBAL),
8370 type);
8371 else if (flags & BSF_FILE)
8372 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
8373 else
8374 {
8375 int bind = STB_LOCAL;
8376
8377 if (flags & BSF_LOCAL)
8378 bind = STB_LOCAL;
8379 else if (flags & BSF_GNU_UNIQUE)
8380 bind = STB_GNU_UNIQUE;
8381 else if (flags & BSF_WEAK)
8382 bind = STB_WEAK;
8383 else if (flags & BSF_GLOBAL)
8384 bind = STB_GLOBAL;
8385
8386 sym.st_info = ELF_ST_INFO (bind, type);
8387 }
8388
8389 if (type_ptr != NULL)
8390 {
8391 sym.st_other = type_ptr->internal_elf_sym.st_other;
8392 sym.st_target_internal
8393 = type_ptr->internal_elf_sym.st_target_internal;
8394 }
8395 else
8396 {
8397 sym.st_other = 0;
8398 sym.st_target_internal = 0;
8399 }
8400
8401 idx++;
8402 symstrtab[idx].sym = sym;
8403 symstrtab[idx].dest_index = outbound_syms_index;
8404
8405 outbound_syms_index++;
8406 }
8407
8408 /* Finalize the .strtab section. */
8409 _bfd_elf_strtab_finalize (stt);
8410
8411 /* Swap out the .strtab section. */
8412 for (idx = 0; idx <= symcount; idx++)
8413 {
8414 struct elf_sym_strtab *elfsym = &symstrtab[idx];
8415 if (elfsym->sym.st_name == (unsigned long) -1)
8416 elfsym->sym.st_name = 0;
8417 else
8418 elfsym->sym.st_name = _bfd_elf_strtab_offset (stt,
8419 elfsym->sym.st_name);
8420 if (info && info->callbacks->ctf_new_symbol)
8421 info->callbacks->ctf_new_symbol (elfsym->dest_index,
8422 &elfsym->sym);
8423
8424 /* Inform the linker of the addition of this symbol. */
8425
8426 bed->s->swap_symbol_out (abfd, &elfsym->sym,
8427 (outbound_syms
8428 + (elfsym->dest_index
8429 * bed->s->sizeof_sym)),
8430 NPTR_ADD (outbound_shndx,
8431 (elfsym->dest_index
8432 * sizeof (Elf_External_Sym_Shndx))));
8433 }
8434 free (symstrtab);
8435
8436 *sttp = stt;
8437 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (stt);
8438 symstrtab_hdr->sh_type = SHT_STRTAB;
8439 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
8440 symstrtab_hdr->sh_addr = 0;
8441 symstrtab_hdr->sh_entsize = 0;
8442 symstrtab_hdr->sh_link = 0;
8443 symstrtab_hdr->sh_info = 0;
8444 symstrtab_hdr->sh_addralign = 1;
8445
8446 return true;
8447 }
8448
8449 /* Return the number of bytes required to hold the symtab vector.
8450
8451 Note that we base it on the count plus 1, since we will null terminate
8452 the vector allocated based on this size. However, the ELF symbol table
8453 always has a dummy entry as symbol #0, so it ends up even. */
8454
8455 long
8456 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
8457 {
8458 bfd_size_type symcount;
8459 long symtab_size;
8460 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
8461
8462 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
8463 if (symcount > LONG_MAX / sizeof (asymbol *))
8464 {
8465 bfd_set_error (bfd_error_file_too_big);
8466 return -1;
8467 }
8468 symtab_size = symcount * (sizeof (asymbol *));
8469 if (symcount == 0)
8470 symtab_size = sizeof (asymbol *);
8471 else if (!bfd_write_p (abfd))
8472 {
8473 ufile_ptr filesize = bfd_get_file_size (abfd);
8474
8475 if (filesize != 0 && (unsigned long) symtab_size > filesize)
8476 {
8477 bfd_set_error (bfd_error_file_truncated);
8478 return -1;
8479 }
8480 }
8481
8482 return symtab_size;
8483 }
8484
8485 long
8486 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
8487 {
8488 bfd_size_type symcount;
8489 long symtab_size;
8490 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
8491
8492 if (elf_dynsymtab (abfd) == 0)
8493 {
8494 bfd_set_error (bfd_error_invalid_operation);
8495 return -1;
8496 }
8497
8498 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
8499 if (symcount > LONG_MAX / sizeof (asymbol *))
8500 {
8501 bfd_set_error (bfd_error_file_too_big);
8502 return -1;
8503 }
8504 symtab_size = symcount * (sizeof (asymbol *));
8505 if (symcount == 0)
8506 symtab_size = sizeof (asymbol *);
8507 else if (!bfd_write_p (abfd))
8508 {
8509 ufile_ptr filesize = bfd_get_file_size (abfd);
8510
8511 if (filesize != 0 && (unsigned long) symtab_size > filesize)
8512 {
8513 bfd_set_error (bfd_error_file_truncated);
8514 return -1;
8515 }
8516 }
8517
8518 return symtab_size;
8519 }
8520
8521 long
8522 _bfd_elf_get_reloc_upper_bound (bfd *abfd, sec_ptr asect)
8523 {
8524 if (asect->reloc_count != 0 && !bfd_write_p (abfd))
8525 {
8526 /* Sanity check reloc section size. */
8527 struct bfd_elf_section_data *d = elf_section_data (asect);
8528 Elf_Internal_Shdr *rel_hdr = &d->this_hdr;
8529 bfd_size_type ext_rel_size = rel_hdr->sh_size;
8530 ufile_ptr filesize = bfd_get_file_size (abfd);
8531
8532 if (filesize != 0 && ext_rel_size > filesize)
8533 {
8534 bfd_set_error (bfd_error_file_truncated);
8535 return -1;
8536 }
8537 }
8538
8539 #if SIZEOF_LONG == SIZEOF_INT
8540 if (asect->reloc_count >= LONG_MAX / sizeof (arelent *))
8541 {
8542 bfd_set_error (bfd_error_file_too_big);
8543 return -1;
8544 }
8545 #endif
8546 return (asect->reloc_count + 1L) * sizeof (arelent *);
8547 }
8548
8549 /* Canonicalize the relocs. */
8550
8551 long
8552 _bfd_elf_canonicalize_reloc (bfd *abfd,
8553 sec_ptr section,
8554 arelent **relptr,
8555 asymbol **symbols)
8556 {
8557 arelent *tblptr;
8558 unsigned int i;
8559 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8560
8561 if (! bed->s->slurp_reloc_table (abfd, section, symbols, false))
8562 return -1;
8563
8564 tblptr = section->relocation;
8565 for (i = 0; i < section->reloc_count; i++)
8566 *relptr++ = tblptr++;
8567
8568 *relptr = NULL;
8569
8570 return section->reloc_count;
8571 }
8572
8573 long
8574 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
8575 {
8576 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8577 long symcount = bed->s->slurp_symbol_table (abfd, allocation, false);
8578
8579 if (symcount >= 0)
8580 abfd->symcount = symcount;
8581 return symcount;
8582 }
8583
8584 long
8585 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
8586 asymbol **allocation)
8587 {
8588 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8589 long symcount = bed->s->slurp_symbol_table (abfd, allocation, true);
8590
8591 if (symcount >= 0)
8592 abfd->dynsymcount = symcount;
8593 return symcount;
8594 }
8595
8596 /* Return the size required for the dynamic reloc entries. Any loadable
8597 section that was actually installed in the BFD, and has type SHT_REL
8598 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
8599 dynamic reloc section. */
8600
8601 long
8602 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
8603 {
8604 bfd_size_type count, ext_rel_size;
8605 asection *s;
8606
8607 if (elf_dynsymtab (abfd) == 0)
8608 {
8609 bfd_set_error (bfd_error_invalid_operation);
8610 return -1;
8611 }
8612
8613 count = 1;
8614 ext_rel_size = 0;
8615 for (s = abfd->sections; s != NULL; s = s->next)
8616 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
8617 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
8618 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
8619 {
8620 ext_rel_size += s->size;
8621 if (ext_rel_size < s->size)
8622 {
8623 bfd_set_error (bfd_error_file_truncated);
8624 return -1;
8625 }
8626 count += s->size / elf_section_data (s)->this_hdr.sh_entsize;
8627 if (count > LONG_MAX / sizeof (arelent *))
8628 {
8629 bfd_set_error (bfd_error_file_too_big);
8630 return -1;
8631 }
8632 }
8633 if (count > 1 && !bfd_write_p (abfd))
8634 {
8635 /* Sanity check reloc section sizes. */
8636 ufile_ptr filesize = bfd_get_file_size (abfd);
8637 if (filesize != 0 && ext_rel_size > filesize)
8638 {
8639 bfd_set_error (bfd_error_file_truncated);
8640 return -1;
8641 }
8642 }
8643 return count * sizeof (arelent *);
8644 }
8645
8646 /* Canonicalize the dynamic relocation entries. Note that we return the
8647 dynamic relocations as a single block, although they are actually
8648 associated with particular sections; the interface, which was
8649 designed for SunOS style shared libraries, expects that there is only
8650 one set of dynamic relocs. Any loadable section that was actually
8651 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
8652 dynamic symbol table, is considered to be a dynamic reloc section. */
8653
8654 long
8655 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
8656 arelent **storage,
8657 asymbol **syms)
8658 {
8659 bool (*slurp_relocs) (bfd *, asection *, asymbol **, bool);
8660 asection *s;
8661 long ret;
8662
8663 if (elf_dynsymtab (abfd) == 0)
8664 {
8665 bfd_set_error (bfd_error_invalid_operation);
8666 return -1;
8667 }
8668
8669 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
8670 ret = 0;
8671 for (s = abfd->sections; s != NULL; s = s->next)
8672 {
8673 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
8674 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
8675 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
8676 {
8677 arelent *p;
8678 long count, i;
8679
8680 if (! (*slurp_relocs) (abfd, s, syms, true))
8681 return -1;
8682 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
8683 p = s->relocation;
8684 for (i = 0; i < count; i++)
8685 *storage++ = p++;
8686 ret += count;
8687 }
8688 }
8689
8690 *storage = NULL;
8691
8692 return ret;
8693 }
8694 \f
8695 /* Read in the version information. */
8696
8697 bool
8698 _bfd_elf_slurp_version_tables (bfd *abfd, bool default_imported_symver)
8699 {
8700 bfd_byte *contents = NULL;
8701 unsigned int freeidx = 0;
8702 size_t amt;
8703
8704 if (elf_dynverref (abfd) != 0)
8705 {
8706 Elf_Internal_Shdr *hdr;
8707 Elf_External_Verneed *everneed;
8708 Elf_Internal_Verneed *iverneed;
8709 unsigned int i;
8710 bfd_byte *contents_end;
8711
8712 hdr = &elf_tdata (abfd)->dynverref_hdr;
8713
8714 if (hdr->sh_info == 0
8715 || hdr->sh_info > hdr->sh_size / sizeof (Elf_External_Verneed))
8716 {
8717 error_return_bad_verref:
8718 _bfd_error_handler
8719 (_("%pB: .gnu.version_r invalid entry"), abfd);
8720 bfd_set_error (bfd_error_bad_value);
8721 error_return_verref:
8722 elf_tdata (abfd)->verref = NULL;
8723 elf_tdata (abfd)->cverrefs = 0;
8724 goto error_return;
8725 }
8726
8727 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0)
8728 goto error_return_verref;
8729 contents = _bfd_malloc_and_read (abfd, hdr->sh_size, hdr->sh_size);
8730 if (contents == NULL)
8731 goto error_return_verref;
8732
8733 if (_bfd_mul_overflow (hdr->sh_info, sizeof (Elf_Internal_Verneed), &amt))
8734 {
8735 bfd_set_error (bfd_error_file_too_big);
8736 goto error_return_verref;
8737 }
8738 elf_tdata (abfd)->verref = (Elf_Internal_Verneed *) bfd_alloc (abfd, amt);
8739 if (elf_tdata (abfd)->verref == NULL)
8740 goto error_return_verref;
8741
8742 BFD_ASSERT (sizeof (Elf_External_Verneed)
8743 == sizeof (Elf_External_Vernaux));
8744 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
8745 everneed = (Elf_External_Verneed *) contents;
8746 iverneed = elf_tdata (abfd)->verref;
8747 for (i = 0; i < hdr->sh_info; i++, iverneed++)
8748 {
8749 Elf_External_Vernaux *evernaux;
8750 Elf_Internal_Vernaux *ivernaux;
8751 unsigned int j;
8752
8753 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
8754
8755 iverneed->vn_bfd = abfd;
8756
8757 iverneed->vn_filename =
8758 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8759 iverneed->vn_file);
8760 if (iverneed->vn_filename == NULL)
8761 goto error_return_bad_verref;
8762
8763 if (iverneed->vn_cnt == 0)
8764 iverneed->vn_auxptr = NULL;
8765 else
8766 {
8767 if (_bfd_mul_overflow (iverneed->vn_cnt,
8768 sizeof (Elf_Internal_Vernaux), &amt))
8769 {
8770 bfd_set_error (bfd_error_file_too_big);
8771 goto error_return_verref;
8772 }
8773 iverneed->vn_auxptr = (struct elf_internal_vernaux *)
8774 bfd_alloc (abfd, amt);
8775 if (iverneed->vn_auxptr == NULL)
8776 goto error_return_verref;
8777 }
8778
8779 if (iverneed->vn_aux
8780 > (size_t) (contents_end - (bfd_byte *) everneed))
8781 goto error_return_bad_verref;
8782
8783 evernaux = ((Elf_External_Vernaux *)
8784 ((bfd_byte *) everneed + iverneed->vn_aux));
8785 ivernaux = iverneed->vn_auxptr;
8786 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
8787 {
8788 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
8789
8790 ivernaux->vna_nodename =
8791 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8792 ivernaux->vna_name);
8793 if (ivernaux->vna_nodename == NULL)
8794 goto error_return_bad_verref;
8795
8796 if (ivernaux->vna_other > freeidx)
8797 freeidx = ivernaux->vna_other;
8798
8799 ivernaux->vna_nextptr = NULL;
8800 if (ivernaux->vna_next == 0)
8801 {
8802 iverneed->vn_cnt = j + 1;
8803 break;
8804 }
8805 if (j + 1 < iverneed->vn_cnt)
8806 ivernaux->vna_nextptr = ivernaux + 1;
8807
8808 if (ivernaux->vna_next
8809 > (size_t) (contents_end - (bfd_byte *) evernaux))
8810 goto error_return_bad_verref;
8811
8812 evernaux = ((Elf_External_Vernaux *)
8813 ((bfd_byte *) evernaux + ivernaux->vna_next));
8814 }
8815
8816 iverneed->vn_nextref = NULL;
8817 if (iverneed->vn_next == 0)
8818 break;
8819 if (i + 1 < hdr->sh_info)
8820 iverneed->vn_nextref = iverneed + 1;
8821
8822 if (iverneed->vn_next
8823 > (size_t) (contents_end - (bfd_byte *) everneed))
8824 goto error_return_bad_verref;
8825
8826 everneed = ((Elf_External_Verneed *)
8827 ((bfd_byte *) everneed + iverneed->vn_next));
8828 }
8829 elf_tdata (abfd)->cverrefs = i;
8830
8831 free (contents);
8832 contents = NULL;
8833 }
8834
8835 if (elf_dynverdef (abfd) != 0)
8836 {
8837 Elf_Internal_Shdr *hdr;
8838 Elf_External_Verdef *everdef;
8839 Elf_Internal_Verdef *iverdef;
8840 Elf_Internal_Verdef *iverdefarr;
8841 Elf_Internal_Verdef iverdefmem;
8842 unsigned int i;
8843 unsigned int maxidx;
8844 bfd_byte *contents_end_def, *contents_end_aux;
8845
8846 hdr = &elf_tdata (abfd)->dynverdef_hdr;
8847
8848 if (hdr->sh_info == 0 || hdr->sh_size < sizeof (Elf_External_Verdef))
8849 {
8850 error_return_bad_verdef:
8851 _bfd_error_handler
8852 (_("%pB: .gnu.version_d invalid entry"), abfd);
8853 bfd_set_error (bfd_error_bad_value);
8854 error_return_verdef:
8855 elf_tdata (abfd)->verdef = NULL;
8856 elf_tdata (abfd)->cverdefs = 0;
8857 goto error_return;
8858 }
8859
8860 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0)
8861 goto error_return_verdef;
8862 contents = _bfd_malloc_and_read (abfd, hdr->sh_size, hdr->sh_size);
8863 if (contents == NULL)
8864 goto error_return_verdef;
8865
8866 BFD_ASSERT (sizeof (Elf_External_Verdef)
8867 >= sizeof (Elf_External_Verdaux));
8868 contents_end_def = contents + hdr->sh_size
8869 - sizeof (Elf_External_Verdef);
8870 contents_end_aux = contents + hdr->sh_size
8871 - sizeof (Elf_External_Verdaux);
8872
8873 /* We know the number of entries in the section but not the maximum
8874 index. Therefore we have to run through all entries and find
8875 the maximum. */
8876 everdef = (Elf_External_Verdef *) contents;
8877 maxidx = 0;
8878 for (i = 0; i < hdr->sh_info; ++i)
8879 {
8880 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
8881
8882 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) == 0)
8883 goto error_return_bad_verdef;
8884 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
8885 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
8886
8887 if (iverdefmem.vd_next == 0)
8888 break;
8889
8890 if (iverdefmem.vd_next
8891 > (size_t) (contents_end_def - (bfd_byte *) everdef))
8892 goto error_return_bad_verdef;
8893
8894 everdef = ((Elf_External_Verdef *)
8895 ((bfd_byte *) everdef + iverdefmem.vd_next));
8896 }
8897
8898 if (default_imported_symver)
8899 {
8900 if (freeidx > maxidx)
8901 maxidx = ++freeidx;
8902 else
8903 freeidx = ++maxidx;
8904 }
8905 if (_bfd_mul_overflow (maxidx, sizeof (Elf_Internal_Verdef), &amt))
8906 {
8907 bfd_set_error (bfd_error_file_too_big);
8908 goto error_return_verdef;
8909 }
8910 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *) bfd_zalloc (abfd, amt);
8911 if (elf_tdata (abfd)->verdef == NULL)
8912 goto error_return_verdef;
8913
8914 elf_tdata (abfd)->cverdefs = maxidx;
8915
8916 everdef = (Elf_External_Verdef *) contents;
8917 iverdefarr = elf_tdata (abfd)->verdef;
8918 for (i = 0; i < hdr->sh_info; i++)
8919 {
8920 Elf_External_Verdaux *everdaux;
8921 Elf_Internal_Verdaux *iverdaux;
8922 unsigned int j;
8923
8924 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
8925
8926 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
8927 goto error_return_bad_verdef;
8928
8929 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
8930 memcpy (iverdef, &iverdefmem, offsetof (Elf_Internal_Verdef, vd_bfd));
8931
8932 iverdef->vd_bfd = abfd;
8933
8934 if (iverdef->vd_cnt == 0)
8935 iverdef->vd_auxptr = NULL;
8936 else
8937 {
8938 if (_bfd_mul_overflow (iverdef->vd_cnt,
8939 sizeof (Elf_Internal_Verdaux), &amt))
8940 {
8941 bfd_set_error (bfd_error_file_too_big);
8942 goto error_return_verdef;
8943 }
8944 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
8945 bfd_alloc (abfd, amt);
8946 if (iverdef->vd_auxptr == NULL)
8947 goto error_return_verdef;
8948 }
8949
8950 if (iverdef->vd_aux
8951 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
8952 goto error_return_bad_verdef;
8953
8954 everdaux = ((Elf_External_Verdaux *)
8955 ((bfd_byte *) everdef + iverdef->vd_aux));
8956 iverdaux = iverdef->vd_auxptr;
8957 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
8958 {
8959 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
8960
8961 iverdaux->vda_nodename =
8962 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8963 iverdaux->vda_name);
8964 if (iverdaux->vda_nodename == NULL)
8965 goto error_return_bad_verdef;
8966
8967 iverdaux->vda_nextptr = NULL;
8968 if (iverdaux->vda_next == 0)
8969 {
8970 iverdef->vd_cnt = j + 1;
8971 break;
8972 }
8973 if (j + 1 < iverdef->vd_cnt)
8974 iverdaux->vda_nextptr = iverdaux + 1;
8975
8976 if (iverdaux->vda_next
8977 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
8978 goto error_return_bad_verdef;
8979
8980 everdaux = ((Elf_External_Verdaux *)
8981 ((bfd_byte *) everdaux + iverdaux->vda_next));
8982 }
8983
8984 iverdef->vd_nodename = NULL;
8985 if (iverdef->vd_cnt)
8986 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
8987
8988 iverdef->vd_nextdef = NULL;
8989 if (iverdef->vd_next == 0)
8990 break;
8991 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
8992 iverdef->vd_nextdef = iverdef + 1;
8993
8994 everdef = ((Elf_External_Verdef *)
8995 ((bfd_byte *) everdef + iverdef->vd_next));
8996 }
8997
8998 free (contents);
8999 contents = NULL;
9000 }
9001 else if (default_imported_symver)
9002 {
9003 if (freeidx < 3)
9004 freeidx = 3;
9005 else
9006 freeidx++;
9007
9008 if (_bfd_mul_overflow (freeidx, sizeof (Elf_Internal_Verdef), &amt))
9009 {
9010 bfd_set_error (bfd_error_file_too_big);
9011 goto error_return;
9012 }
9013 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *) bfd_zalloc (abfd, amt);
9014 if (elf_tdata (abfd)->verdef == NULL)
9015 goto error_return;
9016
9017 elf_tdata (abfd)->cverdefs = freeidx;
9018 }
9019
9020 /* Create a default version based on the soname. */
9021 if (default_imported_symver)
9022 {
9023 Elf_Internal_Verdef *iverdef;
9024 Elf_Internal_Verdaux *iverdaux;
9025
9026 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];
9027
9028 iverdef->vd_version = VER_DEF_CURRENT;
9029 iverdef->vd_flags = 0;
9030 iverdef->vd_ndx = freeidx;
9031 iverdef->vd_cnt = 1;
9032
9033 iverdef->vd_bfd = abfd;
9034
9035 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
9036 if (iverdef->vd_nodename == NULL)
9037 goto error_return_verdef;
9038 iverdef->vd_nextdef = NULL;
9039 iverdef->vd_auxptr = ((struct elf_internal_verdaux *)
9040 bfd_zalloc (abfd, sizeof (Elf_Internal_Verdaux)));
9041 if (iverdef->vd_auxptr == NULL)
9042 goto error_return_verdef;
9043
9044 iverdaux = iverdef->vd_auxptr;
9045 iverdaux->vda_nodename = iverdef->vd_nodename;
9046 }
9047
9048 return true;
9049
9050 error_return:
9051 free (contents);
9052 return false;
9053 }
9054 \f
9055 asymbol *
9056 _bfd_elf_make_empty_symbol (bfd *abfd)
9057 {
9058 elf_symbol_type *newsym;
9059
9060 newsym = (elf_symbol_type *) bfd_zalloc (abfd, sizeof (*newsym));
9061 if (!newsym)
9062 return NULL;
9063 newsym->symbol.the_bfd = abfd;
9064 return &newsym->symbol;
9065 }
9066
9067 void
9068 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
9069 asymbol *symbol,
9070 symbol_info *ret)
9071 {
9072 bfd_symbol_info (symbol, ret);
9073 }
9074
9075 /* Return whether a symbol name implies a local symbol. Most targets
9076 use this function for the is_local_label_name entry point, but some
9077 override it. */
9078
9079 bool
9080 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
9081 const char *name)
9082 {
9083 /* Normal local symbols start with ``.L''. */
9084 if (name[0] == '.' && name[1] == 'L')
9085 return true;
9086
9087 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
9088 DWARF debugging symbols starting with ``..''. */
9089 if (name[0] == '.' && name[1] == '.')
9090 return true;
9091
9092 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
9093 emitting DWARF debugging output. I suspect this is actually a
9094 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
9095 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
9096 underscore to be emitted on some ELF targets). For ease of use,
9097 we treat such symbols as local. */
9098 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
9099 return true;
9100
9101 /* Treat assembler generated fake symbols, dollar local labels and
9102 forward-backward labels (aka local labels) as locals.
9103 These labels have the form:
9104
9105 L0^A.* (fake symbols)
9106
9107 [.]?L[0123456789]+{^A|^B}[0123456789]* (local labels)
9108
9109 Versions which start with .L will have already been matched above,
9110 so we only need to match the rest. */
9111 if (name[0] == 'L' && ISDIGIT (name[1]))
9112 {
9113 bool ret = false;
9114 const char * p;
9115 char c;
9116
9117 for (p = name + 2; (c = *p); p++)
9118 {
9119 if (c == 1 || c == 2)
9120 {
9121 if (c == 1 && p == name + 2)
9122 /* A fake symbol. */
9123 return true;
9124
9125 /* FIXME: We are being paranoid here and treating symbols like
9126 L0^Bfoo as if there were non-local, on the grounds that the
9127 assembler will never generate them. But can any symbol
9128 containing an ASCII value in the range 1-31 ever be anything
9129 other than some kind of local ? */
9130 ret = true;
9131 }
9132
9133 if (! ISDIGIT (c))
9134 {
9135 ret = false;
9136 break;
9137 }
9138 }
9139 return ret;
9140 }
9141
9142 return false;
9143 }
9144
9145 alent *
9146 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
9147 asymbol *symbol ATTRIBUTE_UNUSED)
9148 {
9149 abort ();
9150 return NULL;
9151 }
9152
9153 bool
9154 _bfd_elf_set_arch_mach (bfd *abfd,
9155 enum bfd_architecture arch,
9156 unsigned long machine)
9157 {
9158 /* If this isn't the right architecture for this backend, and this
9159 isn't the generic backend, fail. */
9160 if (arch != get_elf_backend_data (abfd)->arch
9161 && arch != bfd_arch_unknown
9162 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
9163 return false;
9164
9165 return bfd_default_set_arch_mach (abfd, arch, machine);
9166 }
9167
9168 /* Find the nearest line to a particular section and offset,
9169 for error reporting. */
9170
9171 bool
9172 _bfd_elf_find_nearest_line (bfd *abfd,
9173 asymbol **symbols,
9174 asection *section,
9175 bfd_vma offset,
9176 const char **filename_ptr,
9177 const char **functionname_ptr,
9178 unsigned int *line_ptr,
9179 unsigned int *discriminator_ptr)
9180 {
9181 bool found;
9182
9183 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
9184 filename_ptr, functionname_ptr,
9185 line_ptr, discriminator_ptr,
9186 dwarf_debug_sections,
9187 &elf_tdata (abfd)->dwarf2_find_line_info))
9188 return true;
9189
9190 if (_bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
9191 filename_ptr, functionname_ptr, line_ptr))
9192 {
9193 if (!*functionname_ptr)
9194 _bfd_elf_find_function (abfd, symbols, section, offset,
9195 *filename_ptr ? NULL : filename_ptr,
9196 functionname_ptr);
9197 return true;
9198 }
9199
9200 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
9201 &found, filename_ptr,
9202 functionname_ptr, line_ptr,
9203 &elf_tdata (abfd)->line_info))
9204 return false;
9205 if (found && (*functionname_ptr || *line_ptr))
9206 return true;
9207
9208 if (symbols == NULL)
9209 return false;
9210
9211 if (! _bfd_elf_find_function (abfd, symbols, section, offset,
9212 filename_ptr, functionname_ptr))
9213 return false;
9214
9215 *line_ptr = 0;
9216 return true;
9217 }
9218
9219 /* Find the line for a symbol. */
9220
9221 bool
9222 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
9223 const char **filename_ptr, unsigned int *line_ptr)
9224 {
9225 return _bfd_dwarf2_find_nearest_line (abfd, symbols, symbol, NULL, 0,
9226 filename_ptr, NULL, line_ptr, NULL,
9227 dwarf_debug_sections,
9228 &elf_tdata (abfd)->dwarf2_find_line_info);
9229 }
9230
9231 /* After a call to bfd_find_nearest_line, successive calls to
9232 bfd_find_inliner_info can be used to get source information about
9233 each level of function inlining that terminated at the address
9234 passed to bfd_find_nearest_line. Currently this is only supported
9235 for DWARF2 with appropriate DWARF3 extensions. */
9236
9237 bool
9238 _bfd_elf_find_inliner_info (bfd *abfd,
9239 const char **filename_ptr,
9240 const char **functionname_ptr,
9241 unsigned int *line_ptr)
9242 {
9243 bool found;
9244 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
9245 functionname_ptr, line_ptr,
9246 & elf_tdata (abfd)->dwarf2_find_line_info);
9247 return found;
9248 }
9249
9250 int
9251 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
9252 {
9253 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9254 int ret = bed->s->sizeof_ehdr;
9255
9256 if (!bfd_link_relocatable (info))
9257 {
9258 bfd_size_type phdr_size = elf_program_header_size (abfd);
9259
9260 if (phdr_size == (bfd_size_type) -1)
9261 {
9262 struct elf_segment_map *m;
9263
9264 phdr_size = 0;
9265 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
9266 phdr_size += bed->s->sizeof_phdr;
9267
9268 if (phdr_size == 0)
9269 phdr_size = get_program_header_size (abfd, info);
9270 }
9271
9272 elf_program_header_size (abfd) = phdr_size;
9273 ret += phdr_size;
9274 }
9275
9276 return ret;
9277 }
9278
9279 bool
9280 _bfd_elf_set_section_contents (bfd *abfd,
9281 sec_ptr section,
9282 const void *location,
9283 file_ptr offset,
9284 bfd_size_type count)
9285 {
9286 Elf_Internal_Shdr *hdr;
9287 file_ptr pos;
9288
9289 if (! abfd->output_has_begun
9290 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
9291 return false;
9292
9293 if (!count)
9294 return true;
9295
9296 hdr = &elf_section_data (section)->this_hdr;
9297 if (hdr->sh_offset == (file_ptr) -1)
9298 {
9299 unsigned char *contents;
9300
9301 if (bfd_section_is_ctf (section))
9302 /* Nothing to do with this section: the contents are generated
9303 later. */
9304 return true;
9305
9306 if ((section->flags & SEC_ELF_COMPRESS) == 0)
9307 {
9308 _bfd_error_handler
9309 (_("%pB:%pA: error: attempting to write into an unallocated compressed section"),
9310 abfd, section);
9311 bfd_set_error (bfd_error_invalid_operation);
9312 return false;
9313 }
9314
9315 if ((offset + count) > hdr->sh_size)
9316 {
9317 _bfd_error_handler
9318 (_("%pB:%pA: error: attempting to write over the end of the section"),
9319 abfd, section);
9320
9321 bfd_set_error (bfd_error_invalid_operation);
9322 return false;
9323 }
9324
9325 contents = hdr->contents;
9326 if (contents == NULL)
9327 {
9328 _bfd_error_handler
9329 (_("%pB:%pA: error: attempting to write section into an empty buffer"),
9330 abfd, section);
9331
9332 bfd_set_error (bfd_error_invalid_operation);
9333 return false;
9334 }
9335
9336 memcpy (contents + offset, location, count);
9337 return true;
9338 }
9339
9340 pos = hdr->sh_offset + offset;
9341 if (bfd_seek (abfd, pos, SEEK_SET) != 0
9342 || bfd_bwrite (location, count, abfd) != count)
9343 return false;
9344
9345 return true;
9346 }
9347
9348 bool
9349 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
9350 arelent *cache_ptr ATTRIBUTE_UNUSED,
9351 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
9352 {
9353 abort ();
9354 return false;
9355 }
9356
9357 /* Try to convert a non-ELF reloc into an ELF one. */
9358
9359 bool
9360 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
9361 {
9362 /* Check whether we really have an ELF howto. */
9363
9364 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
9365 {
9366 bfd_reloc_code_real_type code;
9367 reloc_howto_type *howto;
9368
9369 /* Alien reloc: Try to determine its type to replace it with an
9370 equivalent ELF reloc. */
9371
9372 if (areloc->howto->pc_relative)
9373 {
9374 switch (areloc->howto->bitsize)
9375 {
9376 case 8:
9377 code = BFD_RELOC_8_PCREL;
9378 break;
9379 case 12:
9380 code = BFD_RELOC_12_PCREL;
9381 break;
9382 case 16:
9383 code = BFD_RELOC_16_PCREL;
9384 break;
9385 case 24:
9386 code = BFD_RELOC_24_PCREL;
9387 break;
9388 case 32:
9389 code = BFD_RELOC_32_PCREL;
9390 break;
9391 case 64:
9392 code = BFD_RELOC_64_PCREL;
9393 break;
9394 default:
9395 goto fail;
9396 }
9397
9398 howto = bfd_reloc_type_lookup (abfd, code);
9399
9400 if (howto && areloc->howto->pcrel_offset != howto->pcrel_offset)
9401 {
9402 if (howto->pcrel_offset)
9403 areloc->addend += areloc->address;
9404 else
9405 areloc->addend -= areloc->address; /* addend is unsigned!! */
9406 }
9407 }
9408 else
9409 {
9410 switch (areloc->howto->bitsize)
9411 {
9412 case 8:
9413 code = BFD_RELOC_8;
9414 break;
9415 case 14:
9416 code = BFD_RELOC_14;
9417 break;
9418 case 16:
9419 code = BFD_RELOC_16;
9420 break;
9421 case 26:
9422 code = BFD_RELOC_26;
9423 break;
9424 case 32:
9425 code = BFD_RELOC_32;
9426 break;
9427 case 64:
9428 code = BFD_RELOC_64;
9429 break;
9430 default:
9431 goto fail;
9432 }
9433
9434 howto = bfd_reloc_type_lookup (abfd, code);
9435 }
9436
9437 if (howto)
9438 areloc->howto = howto;
9439 else
9440 goto fail;
9441 }
9442
9443 return true;
9444
9445 fail:
9446 /* xgettext:c-format */
9447 _bfd_error_handler (_("%pB: %s unsupported"),
9448 abfd, areloc->howto->name);
9449 bfd_set_error (bfd_error_sorry);
9450 return false;
9451 }
9452
9453 bool
9454 _bfd_elf_close_and_cleanup (bfd *abfd)
9455 {
9456 struct elf_obj_tdata *tdata = elf_tdata (abfd);
9457 if (tdata != NULL
9458 && (bfd_get_format (abfd) == bfd_object
9459 || bfd_get_format (abfd) == bfd_core))
9460 {
9461 if (elf_tdata (abfd)->o != NULL && elf_shstrtab (abfd) != NULL)
9462 _bfd_elf_strtab_free (elf_shstrtab (abfd));
9463 _bfd_dwarf2_cleanup_debug_info (abfd, &tdata->dwarf2_find_line_info);
9464 }
9465
9466 return _bfd_generic_close_and_cleanup (abfd);
9467 }
9468
9469 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
9470 in the relocation's offset. Thus we cannot allow any sort of sanity
9471 range-checking to interfere. There is nothing else to do in processing
9472 this reloc. */
9473
9474 bfd_reloc_status_type
9475 _bfd_elf_rel_vtable_reloc_fn
9476 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
9477 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
9478 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
9479 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
9480 {
9481 return bfd_reloc_ok;
9482 }
9483 \f
9484 /* Elf core file support. Much of this only works on native
9485 toolchains, since we rely on knowing the
9486 machine-dependent procfs structure in order to pick
9487 out details about the corefile. */
9488
9489 #ifdef HAVE_SYS_PROCFS_H
9490 # include <sys/procfs.h>
9491 #endif
9492
9493 /* Return a PID that identifies a "thread" for threaded cores, or the
9494 PID of the main process for non-threaded cores. */
9495
9496 static int
9497 elfcore_make_pid (bfd *abfd)
9498 {
9499 int pid;
9500
9501 pid = elf_tdata (abfd)->core->lwpid;
9502 if (pid == 0)
9503 pid = elf_tdata (abfd)->core->pid;
9504
9505 return pid;
9506 }
9507
9508 /* If there isn't a section called NAME, make one, using
9509 data from SECT. Note, this function will generate a
9510 reference to NAME, so you shouldn't deallocate or
9511 overwrite it. */
9512
9513 static bool
9514 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
9515 {
9516 asection *sect2;
9517
9518 if (bfd_get_section_by_name (abfd, name) != NULL)
9519 return true;
9520
9521 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
9522 if (sect2 == NULL)
9523 return false;
9524
9525 sect2->size = sect->size;
9526 sect2->filepos = sect->filepos;
9527 sect2->alignment_power = sect->alignment_power;
9528 return true;
9529 }
9530
9531 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
9532 actually creates up to two pseudosections:
9533 - For the single-threaded case, a section named NAME, unless
9534 such a section already exists.
9535 - For the multi-threaded case, a section named "NAME/PID", where
9536 PID is elfcore_make_pid (abfd).
9537 Both pseudosections have identical contents. */
9538 bool
9539 _bfd_elfcore_make_pseudosection (bfd *abfd,
9540 char *name,
9541 size_t size,
9542 ufile_ptr filepos)
9543 {
9544 char buf[100];
9545 char *threaded_name;
9546 size_t len;
9547 asection *sect;
9548
9549 /* Build the section name. */
9550
9551 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
9552 len = strlen (buf) + 1;
9553 threaded_name = (char *) bfd_alloc (abfd, len);
9554 if (threaded_name == NULL)
9555 return false;
9556 memcpy (threaded_name, buf, len);
9557
9558 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
9559 SEC_HAS_CONTENTS);
9560 if (sect == NULL)
9561 return false;
9562 sect->size = size;
9563 sect->filepos = filepos;
9564 sect->alignment_power = 2;
9565
9566 return elfcore_maybe_make_sect (abfd, name, sect);
9567 }
9568
9569 static bool
9570 elfcore_make_auxv_note_section (bfd *abfd, Elf_Internal_Note *note,
9571 size_t offs)
9572 {
9573 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
9574 SEC_HAS_CONTENTS);
9575
9576 if (sect == NULL)
9577 return false;
9578
9579 sect->size = note->descsz - offs;
9580 sect->filepos = note->descpos + offs;
9581 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
9582
9583 return true;
9584 }
9585
9586 /* prstatus_t exists on:
9587 solaris 2.5+
9588 linux 2.[01] + glibc
9589 unixware 4.2
9590 */
9591
9592 #if defined (HAVE_PRSTATUS_T)
9593
9594 static bool
9595 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
9596 {
9597 size_t size;
9598 int offset;
9599
9600 if (note->descsz == sizeof (prstatus_t))
9601 {
9602 prstatus_t prstat;
9603
9604 size = sizeof (prstat.pr_reg);
9605 offset = offsetof (prstatus_t, pr_reg);
9606 memcpy (&prstat, note->descdata, sizeof (prstat));
9607
9608 /* Do not overwrite the core signal if it
9609 has already been set by another thread. */
9610 if (elf_tdata (abfd)->core->signal == 0)
9611 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
9612 if (elf_tdata (abfd)->core->pid == 0)
9613 elf_tdata (abfd)->core->pid = prstat.pr_pid;
9614
9615 /* pr_who exists on:
9616 solaris 2.5+
9617 unixware 4.2
9618 pr_who doesn't exist on:
9619 linux 2.[01]
9620 */
9621 #if defined (HAVE_PRSTATUS_T_PR_WHO)
9622 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
9623 #else
9624 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
9625 #endif
9626 }
9627 #if defined (HAVE_PRSTATUS32_T)
9628 else if (note->descsz == sizeof (prstatus32_t))
9629 {
9630 /* 64-bit host, 32-bit corefile */
9631 prstatus32_t prstat;
9632
9633 size = sizeof (prstat.pr_reg);
9634 offset = offsetof (prstatus32_t, pr_reg);
9635 memcpy (&prstat, note->descdata, sizeof (prstat));
9636
9637 /* Do not overwrite the core signal if it
9638 has already been set by another thread. */
9639 if (elf_tdata (abfd)->core->signal == 0)
9640 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
9641 if (elf_tdata (abfd)->core->pid == 0)
9642 elf_tdata (abfd)->core->pid = prstat.pr_pid;
9643
9644 /* pr_who exists on:
9645 solaris 2.5+
9646 unixware 4.2
9647 pr_who doesn't exist on:
9648 linux 2.[01]
9649 */
9650 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
9651 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
9652 #else
9653 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
9654 #endif
9655 }
9656 #endif /* HAVE_PRSTATUS32_T */
9657 else
9658 {
9659 /* Fail - we don't know how to handle any other
9660 note size (ie. data object type). */
9661 return true;
9662 }
9663
9664 /* Make a ".reg/999" section and a ".reg" section. */
9665 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
9666 size, note->descpos + offset);
9667 }
9668 #endif /* defined (HAVE_PRSTATUS_T) */
9669
9670 /* Create a pseudosection containing the exact contents of NOTE. */
9671 static bool
9672 elfcore_make_note_pseudosection (bfd *abfd,
9673 char *name,
9674 Elf_Internal_Note *note)
9675 {
9676 return _bfd_elfcore_make_pseudosection (abfd, name,
9677 note->descsz, note->descpos);
9678 }
9679
9680 /* There isn't a consistent prfpregset_t across platforms,
9681 but it doesn't matter, because we don't have to pick this
9682 data structure apart. */
9683
9684 static bool
9685 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
9686 {
9687 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
9688 }
9689
9690 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
9691 type of NT_PRXFPREG. Just include the whole note's contents
9692 literally. */
9693
9694 static bool
9695 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
9696 {
9697 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
9698 }
9699
9700 /* Linux dumps the Intel XSAVE extended state in a note named "LINUX"
9701 with a note type of NT_X86_XSTATE. Just include the whole note's
9702 contents literally. */
9703
9704 static bool
9705 elfcore_grok_xstatereg (bfd *abfd, Elf_Internal_Note *note)
9706 {
9707 return elfcore_make_note_pseudosection (abfd, ".reg-xstate", note);
9708 }
9709
9710 static bool
9711 elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
9712 {
9713 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
9714 }
9715
9716 static bool
9717 elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note)
9718 {
9719 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note);
9720 }
9721
9722 static bool
9723 elfcore_grok_ppc_tar (bfd *abfd, Elf_Internal_Note *note)
9724 {
9725 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tar", note);
9726 }
9727
9728 static bool
9729 elfcore_grok_ppc_ppr (bfd *abfd, Elf_Internal_Note *note)
9730 {
9731 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-ppr", note);
9732 }
9733
9734 static bool
9735 elfcore_grok_ppc_dscr (bfd *abfd, Elf_Internal_Note *note)
9736 {
9737 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-dscr", note);
9738 }
9739
9740 static bool
9741 elfcore_grok_ppc_ebb (bfd *abfd, Elf_Internal_Note *note)
9742 {
9743 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-ebb", note);
9744 }
9745
9746 static bool
9747 elfcore_grok_ppc_pmu (bfd *abfd, Elf_Internal_Note *note)
9748 {
9749 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-pmu", note);
9750 }
9751
9752 static bool
9753 elfcore_grok_ppc_tm_cgpr (bfd *abfd, Elf_Internal_Note *note)
9754 {
9755 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cgpr", note);
9756 }
9757
9758 static bool
9759 elfcore_grok_ppc_tm_cfpr (bfd *abfd, Elf_Internal_Note *note)
9760 {
9761 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cfpr", note);
9762 }
9763
9764 static bool
9765 elfcore_grok_ppc_tm_cvmx (bfd *abfd, Elf_Internal_Note *note)
9766 {
9767 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cvmx", note);
9768 }
9769
9770 static bool
9771 elfcore_grok_ppc_tm_cvsx (bfd *abfd, Elf_Internal_Note *note)
9772 {
9773 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cvsx", note);
9774 }
9775
9776 static bool
9777 elfcore_grok_ppc_tm_spr (bfd *abfd, Elf_Internal_Note *note)
9778 {
9779 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-spr", note);
9780 }
9781
9782 static bool
9783 elfcore_grok_ppc_tm_ctar (bfd *abfd, Elf_Internal_Note *note)
9784 {
9785 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-ctar", note);
9786 }
9787
9788 static bool
9789 elfcore_grok_ppc_tm_cppr (bfd *abfd, Elf_Internal_Note *note)
9790 {
9791 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cppr", note);
9792 }
9793
9794 static bool
9795 elfcore_grok_ppc_tm_cdscr (bfd *abfd, Elf_Internal_Note *note)
9796 {
9797 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cdscr", note);
9798 }
9799
9800 static bool
9801 elfcore_grok_s390_high_gprs (bfd *abfd, Elf_Internal_Note *note)
9802 {
9803 return elfcore_make_note_pseudosection (abfd, ".reg-s390-high-gprs", note);
9804 }
9805
9806 static bool
9807 elfcore_grok_s390_timer (bfd *abfd, Elf_Internal_Note *note)
9808 {
9809 return elfcore_make_note_pseudosection (abfd, ".reg-s390-timer", note);
9810 }
9811
9812 static bool
9813 elfcore_grok_s390_todcmp (bfd *abfd, Elf_Internal_Note *note)
9814 {
9815 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todcmp", note);
9816 }
9817
9818 static bool
9819 elfcore_grok_s390_todpreg (bfd *abfd, Elf_Internal_Note *note)
9820 {
9821 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todpreg", note);
9822 }
9823
9824 static bool
9825 elfcore_grok_s390_ctrs (bfd *abfd, Elf_Internal_Note *note)
9826 {
9827 return elfcore_make_note_pseudosection (abfd, ".reg-s390-ctrs", note);
9828 }
9829
9830 static bool
9831 elfcore_grok_s390_prefix (bfd *abfd, Elf_Internal_Note *note)
9832 {
9833 return elfcore_make_note_pseudosection (abfd, ".reg-s390-prefix", note);
9834 }
9835
9836 static bool
9837 elfcore_grok_s390_last_break (bfd *abfd, Elf_Internal_Note *note)
9838 {
9839 return elfcore_make_note_pseudosection (abfd, ".reg-s390-last-break", note);
9840 }
9841
9842 static bool
9843 elfcore_grok_s390_system_call (bfd *abfd, Elf_Internal_Note *note)
9844 {
9845 return elfcore_make_note_pseudosection (abfd, ".reg-s390-system-call", note);
9846 }
9847
9848 static bool
9849 elfcore_grok_s390_tdb (bfd *abfd, Elf_Internal_Note *note)
9850 {
9851 return elfcore_make_note_pseudosection (abfd, ".reg-s390-tdb", note);
9852 }
9853
9854 static bool
9855 elfcore_grok_s390_vxrs_low (bfd *abfd, Elf_Internal_Note *note)
9856 {
9857 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-low", note);
9858 }
9859
9860 static bool
9861 elfcore_grok_s390_vxrs_high (bfd *abfd, Elf_Internal_Note *note)
9862 {
9863 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-high", note);
9864 }
9865
9866 static bool
9867 elfcore_grok_s390_gs_cb (bfd *abfd, Elf_Internal_Note *note)
9868 {
9869 return elfcore_make_note_pseudosection (abfd, ".reg-s390-gs-cb", note);
9870 }
9871
9872 static bool
9873 elfcore_grok_s390_gs_bc (bfd *abfd, Elf_Internal_Note *note)
9874 {
9875 return elfcore_make_note_pseudosection (abfd, ".reg-s390-gs-bc", note);
9876 }
9877
9878 static bool
9879 elfcore_grok_arm_vfp (bfd *abfd, Elf_Internal_Note *note)
9880 {
9881 return elfcore_make_note_pseudosection (abfd, ".reg-arm-vfp", note);
9882 }
9883
9884 static bool
9885 elfcore_grok_aarch_tls (bfd *abfd, Elf_Internal_Note *note)
9886 {
9887 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-tls", note);
9888 }
9889
9890 static bool
9891 elfcore_grok_aarch_hw_break (bfd *abfd, Elf_Internal_Note *note)
9892 {
9893 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-break", note);
9894 }
9895
9896 static bool
9897 elfcore_grok_aarch_hw_watch (bfd *abfd, Elf_Internal_Note *note)
9898 {
9899 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-watch", note);
9900 }
9901
9902 static bool
9903 elfcore_grok_aarch_sve (bfd *abfd, Elf_Internal_Note *note)
9904 {
9905 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-sve", note);
9906 }
9907
9908 static bool
9909 elfcore_grok_aarch_pauth (bfd *abfd, Elf_Internal_Note *note)
9910 {
9911 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-pauth", note);
9912 }
9913
9914 static bool
9915 elfcore_grok_aarch_mte (bfd *abfd, Elf_Internal_Note *note)
9916 {
9917 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-mte",
9918 note);
9919 }
9920
9921 static bool
9922 elfcore_grok_arc_v2 (bfd *abfd, Elf_Internal_Note *note)
9923 {
9924 return elfcore_make_note_pseudosection (abfd, ".reg-arc-v2", note);
9925 }
9926
9927 /* Convert NOTE into a bfd_section called ".reg-riscv-csr". Return TRUE if
9928 successful otherwise, return FALSE. */
9929
9930 static bool
9931 elfcore_grok_riscv_csr (bfd *abfd, Elf_Internal_Note *note)
9932 {
9933 return elfcore_make_note_pseudosection (abfd, ".reg-riscv-csr", note);
9934 }
9935
9936 /* Convert NOTE into a bfd_section called ".gdb-tdesc". Return TRUE if
9937 successful otherwise, return FALSE. */
9938
9939 static bool
9940 elfcore_grok_gdb_tdesc (bfd *abfd, Elf_Internal_Note *note)
9941 {
9942 return elfcore_make_note_pseudosection (abfd, ".gdb-tdesc", note);
9943 }
9944
9945 static bool
9946 elfcore_grok_loongarch_cpucfg (bfd *abfd, Elf_Internal_Note *note)
9947 {
9948 return elfcore_make_note_pseudosection (abfd, ".reg-loongarch-cpucfg", note);
9949 }
9950
9951 static bool
9952 elfcore_grok_loongarch_lbt (bfd *abfd, Elf_Internal_Note *note)
9953 {
9954 return elfcore_make_note_pseudosection (abfd, ".reg-loongarch-lbt", note);
9955 }
9956
9957 static bool
9958 elfcore_grok_loongarch_lsx (bfd *abfd, Elf_Internal_Note *note)
9959 {
9960 return elfcore_make_note_pseudosection (abfd, ".reg-loongarch-lsx", note);
9961 }
9962
9963 static bool
9964 elfcore_grok_loongarch_lasx (bfd *abfd, Elf_Internal_Note *note)
9965 {
9966 return elfcore_make_note_pseudosection (abfd, ".reg-loongarch-lasx", note);
9967 }
9968
9969 #if defined (HAVE_PRPSINFO_T)
9970 typedef prpsinfo_t elfcore_psinfo_t;
9971 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
9972 typedef prpsinfo32_t elfcore_psinfo32_t;
9973 #endif
9974 #endif
9975
9976 #if defined (HAVE_PSINFO_T)
9977 typedef psinfo_t elfcore_psinfo_t;
9978 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
9979 typedef psinfo32_t elfcore_psinfo32_t;
9980 #endif
9981 #endif
9982
9983 /* return a malloc'ed copy of a string at START which is at
9984 most MAX bytes long, possibly without a terminating '\0'.
9985 the copy will always have a terminating '\0'. */
9986
9987 char *
9988 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
9989 {
9990 char *dups;
9991 char *end = (char *) memchr (start, '\0', max);
9992 size_t len;
9993
9994 if (end == NULL)
9995 len = max;
9996 else
9997 len = end - start;
9998
9999 dups = (char *) bfd_alloc (abfd, len + 1);
10000 if (dups == NULL)
10001 return NULL;
10002
10003 memcpy (dups, start, len);
10004 dups[len] = '\0';
10005
10006 return dups;
10007 }
10008
10009 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
10010 static bool
10011 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
10012 {
10013 if (note->descsz == sizeof (elfcore_psinfo_t))
10014 {
10015 elfcore_psinfo_t psinfo;
10016
10017 memcpy (&psinfo, note->descdata, sizeof (psinfo));
10018
10019 #if defined (HAVE_PSINFO_T_PR_PID) || defined (HAVE_PRPSINFO_T_PR_PID)
10020 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
10021 #endif
10022 elf_tdata (abfd)->core->program
10023 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
10024 sizeof (psinfo.pr_fname));
10025
10026 elf_tdata (abfd)->core->command
10027 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
10028 sizeof (psinfo.pr_psargs));
10029 }
10030 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
10031 else if (note->descsz == sizeof (elfcore_psinfo32_t))
10032 {
10033 /* 64-bit host, 32-bit corefile */
10034 elfcore_psinfo32_t psinfo;
10035
10036 memcpy (&psinfo, note->descdata, sizeof (psinfo));
10037
10038 #if defined (HAVE_PSINFO32_T_PR_PID) || defined (HAVE_PRPSINFO32_T_PR_PID)
10039 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
10040 #endif
10041 elf_tdata (abfd)->core->program
10042 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
10043 sizeof (psinfo.pr_fname));
10044
10045 elf_tdata (abfd)->core->command
10046 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
10047 sizeof (psinfo.pr_psargs));
10048 }
10049 #endif
10050
10051 else
10052 {
10053 /* Fail - we don't know how to handle any other
10054 note size (ie. data object type). */
10055 return true;
10056 }
10057
10058 /* Note that for some reason, a spurious space is tacked
10059 onto the end of the args in some (at least one anyway)
10060 implementations, so strip it off if it exists. */
10061
10062 {
10063 char *command = elf_tdata (abfd)->core->command;
10064 int n = strlen (command);
10065
10066 if (0 < n && command[n - 1] == ' ')
10067 command[n - 1] = '\0';
10068 }
10069
10070 return true;
10071 }
10072 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
10073
10074 #if defined (HAVE_PSTATUS_T)
10075 static bool
10076 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
10077 {
10078 if (note->descsz == sizeof (pstatus_t)
10079 #if defined (HAVE_PXSTATUS_T)
10080 || note->descsz == sizeof (pxstatus_t)
10081 #endif
10082 )
10083 {
10084 pstatus_t pstat;
10085
10086 memcpy (&pstat, note->descdata, sizeof (pstat));
10087
10088 elf_tdata (abfd)->core->pid = pstat.pr_pid;
10089 }
10090 #if defined (HAVE_PSTATUS32_T)
10091 else if (note->descsz == sizeof (pstatus32_t))
10092 {
10093 /* 64-bit host, 32-bit corefile */
10094 pstatus32_t pstat;
10095
10096 memcpy (&pstat, note->descdata, sizeof (pstat));
10097
10098 elf_tdata (abfd)->core->pid = pstat.pr_pid;
10099 }
10100 #endif
10101 /* Could grab some more details from the "representative"
10102 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
10103 NT_LWPSTATUS note, presumably. */
10104
10105 return true;
10106 }
10107 #endif /* defined (HAVE_PSTATUS_T) */
10108
10109 #if defined (HAVE_LWPSTATUS_T)
10110 static bool
10111 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
10112 {
10113 lwpstatus_t lwpstat;
10114 char buf[100];
10115 char *name;
10116 size_t len;
10117 asection *sect;
10118
10119 if (note->descsz != sizeof (lwpstat)
10120 #if defined (HAVE_LWPXSTATUS_T)
10121 && note->descsz != sizeof (lwpxstatus_t)
10122 #endif
10123 )
10124 return true;
10125
10126 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
10127
10128 elf_tdata (abfd)->core->lwpid = lwpstat.pr_lwpid;
10129 /* Do not overwrite the core signal if it has already been set by
10130 another thread. */
10131 if (elf_tdata (abfd)->core->signal == 0)
10132 elf_tdata (abfd)->core->signal = lwpstat.pr_cursig;
10133
10134 /* Make a ".reg/999" section. */
10135
10136 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
10137 len = strlen (buf) + 1;
10138 name = bfd_alloc (abfd, len);
10139 if (name == NULL)
10140 return false;
10141 memcpy (name, buf, len);
10142
10143 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10144 if (sect == NULL)
10145 return false;
10146
10147 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
10148 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
10149 sect->filepos = note->descpos
10150 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
10151 #endif
10152
10153 #if defined (HAVE_LWPSTATUS_T_PR_REG)
10154 sect->size = sizeof (lwpstat.pr_reg);
10155 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
10156 #endif
10157
10158 sect->alignment_power = 2;
10159
10160 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
10161 return false;
10162
10163 /* Make a ".reg2/999" section */
10164
10165 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
10166 len = strlen (buf) + 1;
10167 name = bfd_alloc (abfd, len);
10168 if (name == NULL)
10169 return false;
10170 memcpy (name, buf, len);
10171
10172 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10173 if (sect == NULL)
10174 return false;
10175
10176 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
10177 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
10178 sect->filepos = note->descpos
10179 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
10180 #endif
10181
10182 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
10183 sect->size = sizeof (lwpstat.pr_fpreg);
10184 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
10185 #endif
10186
10187 sect->alignment_power = 2;
10188
10189 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
10190 }
10191 #endif /* defined (HAVE_LWPSTATUS_T) */
10192
10193 /* These constants, and the structure offsets used below, are defined by
10194 Cygwin's core_dump.h */
10195 #define NOTE_INFO_PROCESS 1
10196 #define NOTE_INFO_THREAD 2
10197 #define NOTE_INFO_MODULE 3
10198 #define NOTE_INFO_MODULE64 4
10199
10200 static bool
10201 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
10202 {
10203 char buf[30];
10204 char *name;
10205 size_t len;
10206 unsigned int name_size;
10207 asection *sect;
10208 unsigned int type;
10209 int is_active_thread;
10210 bfd_vma base_addr;
10211
10212 if (note->descsz < 4)
10213 return true;
10214
10215 if (! startswith (note->namedata, "win32"))
10216 return true;
10217
10218 type = bfd_get_32 (abfd, note->descdata);
10219
10220 struct
10221 {
10222 const char *type_name;
10223 unsigned long min_size;
10224 } size_check[] =
10225 {
10226 { "NOTE_INFO_PROCESS", 12 },
10227 { "NOTE_INFO_THREAD", 12 },
10228 { "NOTE_INFO_MODULE", 12 },
10229 { "NOTE_INFO_MODULE64", 16 },
10230 };
10231
10232 if (type == 0 || type > (sizeof(size_check)/sizeof(size_check[0])))
10233 return true;
10234
10235 if (note->descsz < size_check[type - 1].min_size)
10236 {
10237 _bfd_error_handler (_("%pB: warning: win32pstatus %s of size %lu bytes is too small"),
10238 abfd, size_check[type - 1].type_name, note->descsz);
10239 return true;
10240 }
10241
10242 switch (type)
10243 {
10244 case NOTE_INFO_PROCESS:
10245 /* FIXME: need to add ->core->command. */
10246 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, note->descdata + 4);
10247 elf_tdata (abfd)->core->signal = bfd_get_32 (abfd, note->descdata + 8);
10248 break;
10249
10250 case NOTE_INFO_THREAD:
10251 /* Make a ".reg/<tid>" section containing the Win32 API thread CONTEXT
10252 structure. */
10253 /* thread_info.tid */
10254 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 4));
10255
10256 len = strlen (buf) + 1;
10257 name = (char *) bfd_alloc (abfd, len);
10258 if (name == NULL)
10259 return false;
10260
10261 memcpy (name, buf, len);
10262
10263 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10264 if (sect == NULL)
10265 return false;
10266
10267 /* sizeof (thread_info.thread_context) */
10268 sect->size = note->descsz - 12;
10269 /* offsetof (thread_info.thread_context) */
10270 sect->filepos = note->descpos + 12;
10271 sect->alignment_power = 2;
10272
10273 /* thread_info.is_active_thread */
10274 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
10275
10276 if (is_active_thread)
10277 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
10278 return false;
10279 break;
10280
10281 case NOTE_INFO_MODULE:
10282 case NOTE_INFO_MODULE64:
10283 /* Make a ".module/xxxxxxxx" section. */
10284 if (type == NOTE_INFO_MODULE)
10285 {
10286 /* module_info.base_address */
10287 base_addr = bfd_get_32 (abfd, note->descdata + 4);
10288 sprintf (buf, ".module/%08lx", (unsigned long) base_addr);
10289 /* module_info.module_name_size */
10290 name_size = bfd_get_32 (abfd, note->descdata + 8);
10291 }
10292 else /* NOTE_INFO_MODULE64 */
10293 {
10294 /* module_info.base_address */
10295 base_addr = bfd_get_64 (abfd, note->descdata + 4);
10296 sprintf (buf, ".module/%016lx", (unsigned long) base_addr);
10297 /* module_info.module_name_size */
10298 name_size = bfd_get_32 (abfd, note->descdata + 12);
10299 }
10300
10301 len = strlen (buf) + 1;
10302 name = (char *) bfd_alloc (abfd, len);
10303 if (name == NULL)
10304 return false;
10305
10306 memcpy (name, buf, len);
10307
10308 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10309
10310 if (sect == NULL)
10311 return false;
10312
10313 if (note->descsz < 12 + name_size)
10314 {
10315 _bfd_error_handler (_("%pB: win32pstatus NOTE_INFO_MODULE of size %lu is too small to contain a name of size %u"),
10316 abfd, note->descsz, name_size);
10317 return true;
10318 }
10319
10320 sect->size = note->descsz;
10321 sect->filepos = note->descpos;
10322 sect->alignment_power = 2;
10323 break;
10324
10325 default:
10326 return true;
10327 }
10328
10329 return true;
10330 }
10331
10332 static bool
10333 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
10334 {
10335 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10336
10337 switch (note->type)
10338 {
10339 default:
10340 return true;
10341
10342 case NT_PRSTATUS:
10343 if (bed->elf_backend_grok_prstatus)
10344 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
10345 return true;
10346 #if defined (HAVE_PRSTATUS_T)
10347 return elfcore_grok_prstatus (abfd, note);
10348 #else
10349 return true;
10350 #endif
10351
10352 #if defined (HAVE_PSTATUS_T)
10353 case NT_PSTATUS:
10354 return elfcore_grok_pstatus (abfd, note);
10355 #endif
10356
10357 #if defined (HAVE_LWPSTATUS_T)
10358 case NT_LWPSTATUS:
10359 return elfcore_grok_lwpstatus (abfd, note);
10360 #endif
10361
10362 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
10363 return elfcore_grok_prfpreg (abfd, note);
10364
10365 case NT_WIN32PSTATUS:
10366 return elfcore_grok_win32pstatus (abfd, note);
10367
10368 case NT_PRXFPREG: /* Linux SSE extension */
10369 if (note->namesz == 6
10370 && strcmp (note->namedata, "LINUX") == 0)
10371 return elfcore_grok_prxfpreg (abfd, note);
10372 else
10373 return true;
10374
10375 case NT_X86_XSTATE: /* Linux XSAVE extension */
10376 if (note->namesz == 6
10377 && strcmp (note->namedata, "LINUX") == 0)
10378 return elfcore_grok_xstatereg (abfd, note);
10379 else
10380 return true;
10381
10382 case NT_PPC_VMX:
10383 if (note->namesz == 6
10384 && strcmp (note->namedata, "LINUX") == 0)
10385 return elfcore_grok_ppc_vmx (abfd, note);
10386 else
10387 return true;
10388
10389 case NT_PPC_VSX:
10390 if (note->namesz == 6
10391 && strcmp (note->namedata, "LINUX") == 0)
10392 return elfcore_grok_ppc_vsx (abfd, note);
10393 else
10394 return true;
10395
10396 case NT_PPC_TAR:
10397 if (note->namesz == 6
10398 && strcmp (note->namedata, "LINUX") == 0)
10399 return elfcore_grok_ppc_tar (abfd, note);
10400 else
10401 return true;
10402
10403 case NT_PPC_PPR:
10404 if (note->namesz == 6
10405 && strcmp (note->namedata, "LINUX") == 0)
10406 return elfcore_grok_ppc_ppr (abfd, note);
10407 else
10408 return true;
10409
10410 case NT_PPC_DSCR:
10411 if (note->namesz == 6
10412 && strcmp (note->namedata, "LINUX") == 0)
10413 return elfcore_grok_ppc_dscr (abfd, note);
10414 else
10415 return true;
10416
10417 case NT_PPC_EBB:
10418 if (note->namesz == 6
10419 && strcmp (note->namedata, "LINUX") == 0)
10420 return elfcore_grok_ppc_ebb (abfd, note);
10421 else
10422 return true;
10423
10424 case NT_PPC_PMU:
10425 if (note->namesz == 6
10426 && strcmp (note->namedata, "LINUX") == 0)
10427 return elfcore_grok_ppc_pmu (abfd, note);
10428 else
10429 return true;
10430
10431 case NT_PPC_TM_CGPR:
10432 if (note->namesz == 6
10433 && strcmp (note->namedata, "LINUX") == 0)
10434 return elfcore_grok_ppc_tm_cgpr (abfd, note);
10435 else
10436 return true;
10437
10438 case NT_PPC_TM_CFPR:
10439 if (note->namesz == 6
10440 && strcmp (note->namedata, "LINUX") == 0)
10441 return elfcore_grok_ppc_tm_cfpr (abfd, note);
10442 else
10443 return true;
10444
10445 case NT_PPC_TM_CVMX:
10446 if (note->namesz == 6
10447 && strcmp (note->namedata, "LINUX") == 0)
10448 return elfcore_grok_ppc_tm_cvmx (abfd, note);
10449 else
10450 return true;
10451
10452 case NT_PPC_TM_CVSX:
10453 if (note->namesz == 6
10454 && strcmp (note->namedata, "LINUX") == 0)
10455 return elfcore_grok_ppc_tm_cvsx (abfd, note);
10456 else
10457 return true;
10458
10459 case NT_PPC_TM_SPR:
10460 if (note->namesz == 6
10461 && strcmp (note->namedata, "LINUX") == 0)
10462 return elfcore_grok_ppc_tm_spr (abfd, note);
10463 else
10464 return true;
10465
10466 case NT_PPC_TM_CTAR:
10467 if (note->namesz == 6
10468 && strcmp (note->namedata, "LINUX") == 0)
10469 return elfcore_grok_ppc_tm_ctar (abfd, note);
10470 else
10471 return true;
10472
10473 case NT_PPC_TM_CPPR:
10474 if (note->namesz == 6
10475 && strcmp (note->namedata, "LINUX") == 0)
10476 return elfcore_grok_ppc_tm_cppr (abfd, note);
10477 else
10478 return true;
10479
10480 case NT_PPC_TM_CDSCR:
10481 if (note->namesz == 6
10482 && strcmp (note->namedata, "LINUX") == 0)
10483 return elfcore_grok_ppc_tm_cdscr (abfd, note);
10484 else
10485 return true;
10486
10487 case NT_S390_HIGH_GPRS:
10488 if (note->namesz == 6
10489 && strcmp (note->namedata, "LINUX") == 0)
10490 return elfcore_grok_s390_high_gprs (abfd, note);
10491 else
10492 return true;
10493
10494 case NT_S390_TIMER:
10495 if (note->namesz == 6
10496 && strcmp (note->namedata, "LINUX") == 0)
10497 return elfcore_grok_s390_timer (abfd, note);
10498 else
10499 return true;
10500
10501 case NT_S390_TODCMP:
10502 if (note->namesz == 6
10503 && strcmp (note->namedata, "LINUX") == 0)
10504 return elfcore_grok_s390_todcmp (abfd, note);
10505 else
10506 return true;
10507
10508 case NT_S390_TODPREG:
10509 if (note->namesz == 6
10510 && strcmp (note->namedata, "LINUX") == 0)
10511 return elfcore_grok_s390_todpreg (abfd, note);
10512 else
10513 return true;
10514
10515 case NT_S390_CTRS:
10516 if (note->namesz == 6
10517 && strcmp (note->namedata, "LINUX") == 0)
10518 return elfcore_grok_s390_ctrs (abfd, note);
10519 else
10520 return true;
10521
10522 case NT_S390_PREFIX:
10523 if (note->namesz == 6
10524 && strcmp (note->namedata, "LINUX") == 0)
10525 return elfcore_grok_s390_prefix (abfd, note);
10526 else
10527 return true;
10528
10529 case NT_S390_LAST_BREAK:
10530 if (note->namesz == 6
10531 && strcmp (note->namedata, "LINUX") == 0)
10532 return elfcore_grok_s390_last_break (abfd, note);
10533 else
10534 return true;
10535
10536 case NT_S390_SYSTEM_CALL:
10537 if (note->namesz == 6
10538 && strcmp (note->namedata, "LINUX") == 0)
10539 return elfcore_grok_s390_system_call (abfd, note);
10540 else
10541 return true;
10542
10543 case NT_S390_TDB:
10544 if (note->namesz == 6
10545 && strcmp (note->namedata, "LINUX") == 0)
10546 return elfcore_grok_s390_tdb (abfd, note);
10547 else
10548 return true;
10549
10550 case NT_S390_VXRS_LOW:
10551 if (note->namesz == 6
10552 && strcmp (note->namedata, "LINUX") == 0)
10553 return elfcore_grok_s390_vxrs_low (abfd, note);
10554 else
10555 return true;
10556
10557 case NT_S390_VXRS_HIGH:
10558 if (note->namesz == 6
10559 && strcmp (note->namedata, "LINUX") == 0)
10560 return elfcore_grok_s390_vxrs_high (abfd, note);
10561 else
10562 return true;
10563
10564 case NT_S390_GS_CB:
10565 if (note->namesz == 6
10566 && strcmp (note->namedata, "LINUX") == 0)
10567 return elfcore_grok_s390_gs_cb (abfd, note);
10568 else
10569 return true;
10570
10571 case NT_S390_GS_BC:
10572 if (note->namesz == 6
10573 && strcmp (note->namedata, "LINUX") == 0)
10574 return elfcore_grok_s390_gs_bc (abfd, note);
10575 else
10576 return true;
10577
10578 case NT_ARC_V2:
10579 if (note->namesz == 6
10580 && strcmp (note->namedata, "LINUX") == 0)
10581 return elfcore_grok_arc_v2 (abfd, note);
10582 else
10583 return true;
10584
10585 case NT_ARM_VFP:
10586 if (note->namesz == 6
10587 && strcmp (note->namedata, "LINUX") == 0)
10588 return elfcore_grok_arm_vfp (abfd, note);
10589 else
10590 return true;
10591
10592 case NT_ARM_TLS:
10593 if (note->namesz == 6
10594 && strcmp (note->namedata, "LINUX") == 0)
10595 return elfcore_grok_aarch_tls (abfd, note);
10596 else
10597 return true;
10598
10599 case NT_ARM_HW_BREAK:
10600 if (note->namesz == 6
10601 && strcmp (note->namedata, "LINUX") == 0)
10602 return elfcore_grok_aarch_hw_break (abfd, note);
10603 else
10604 return true;
10605
10606 case NT_ARM_HW_WATCH:
10607 if (note->namesz == 6
10608 && strcmp (note->namedata, "LINUX") == 0)
10609 return elfcore_grok_aarch_hw_watch (abfd, note);
10610 else
10611 return true;
10612
10613 case NT_ARM_SVE:
10614 if (note->namesz == 6
10615 && strcmp (note->namedata, "LINUX") == 0)
10616 return elfcore_grok_aarch_sve (abfd, note);
10617 else
10618 return true;
10619
10620 case NT_ARM_PAC_MASK:
10621 if (note->namesz == 6
10622 && strcmp (note->namedata, "LINUX") == 0)
10623 return elfcore_grok_aarch_pauth (abfd, note);
10624 else
10625 return true;
10626
10627 case NT_ARM_TAGGED_ADDR_CTRL:
10628 if (note->namesz == 6
10629 && strcmp (note->namedata, "LINUX") == 0)
10630 return elfcore_grok_aarch_mte (abfd, note);
10631 else
10632 return true;
10633
10634 case NT_GDB_TDESC:
10635 if (note->namesz == 4
10636 && strcmp (note->namedata, "GDB") == 0)
10637 return elfcore_grok_gdb_tdesc (abfd, note);
10638 else
10639 return true;
10640
10641 case NT_RISCV_CSR:
10642 if (note->namesz == 4
10643 && strcmp (note->namedata, "GDB") == 0)
10644 return elfcore_grok_riscv_csr (abfd, note);
10645 else
10646 return true;
10647
10648 case NT_LARCH_CPUCFG:
10649 if (note->namesz == 6
10650 && strcmp (note->namedata, "LINUX") == 0)
10651 return elfcore_grok_loongarch_cpucfg (abfd, note);
10652 else
10653 return true;
10654
10655 case NT_LARCH_LBT:
10656 if (note->namesz == 6
10657 && strcmp (note->namedata, "LINUX") == 0)
10658 return elfcore_grok_loongarch_lbt (abfd, note);
10659 else
10660 return true;
10661
10662 case NT_LARCH_LSX:
10663 if (note->namesz == 6
10664 && strcmp (note->namedata, "LINUX") == 0)
10665 return elfcore_grok_loongarch_lsx (abfd, note);
10666 else
10667 return true;
10668
10669 case NT_LARCH_LASX:
10670 if (note->namesz == 6
10671 && strcmp (note->namedata, "LINUX") == 0)
10672 return elfcore_grok_loongarch_lasx (abfd, note);
10673 else
10674 return true;
10675
10676 case NT_PRPSINFO:
10677 case NT_PSINFO:
10678 if (bed->elf_backend_grok_psinfo)
10679 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
10680 return true;
10681 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
10682 return elfcore_grok_psinfo (abfd, note);
10683 #else
10684 return true;
10685 #endif
10686
10687 case NT_AUXV:
10688 return elfcore_make_auxv_note_section (abfd, note, 0);
10689
10690 case NT_FILE:
10691 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.file",
10692 note);
10693
10694 case NT_SIGINFO:
10695 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.siginfo",
10696 note);
10697
10698 }
10699 }
10700
10701 static bool
10702 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
10703 {
10704 struct bfd_build_id* build_id;
10705
10706 if (note->descsz == 0)
10707 return false;
10708
10709 build_id = bfd_alloc (abfd, sizeof (struct bfd_build_id) - 1 + note->descsz);
10710 if (build_id == NULL)
10711 return false;
10712
10713 build_id->size = note->descsz;
10714 memcpy (build_id->data, note->descdata, note->descsz);
10715 abfd->build_id = build_id;
10716
10717 return true;
10718 }
10719
10720 static bool
10721 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
10722 {
10723 switch (note->type)
10724 {
10725 default:
10726 return true;
10727
10728 case NT_GNU_PROPERTY_TYPE_0:
10729 return _bfd_elf_parse_gnu_properties (abfd, note);
10730
10731 case NT_GNU_BUILD_ID:
10732 return elfobj_grok_gnu_build_id (abfd, note);
10733 }
10734 }
10735
10736 static bool
10737 elfobj_grok_stapsdt_note_1 (bfd *abfd, Elf_Internal_Note *note)
10738 {
10739 struct sdt_note *cur =
10740 (struct sdt_note *) bfd_alloc (abfd,
10741 sizeof (struct sdt_note) + note->descsz);
10742
10743 cur->next = (struct sdt_note *) (elf_tdata (abfd))->sdt_note_head;
10744 cur->size = (bfd_size_type) note->descsz;
10745 memcpy (cur->data, note->descdata, note->descsz);
10746
10747 elf_tdata (abfd)->sdt_note_head = cur;
10748
10749 return true;
10750 }
10751
10752 static bool
10753 elfobj_grok_stapsdt_note (bfd *abfd, Elf_Internal_Note *note)
10754 {
10755 switch (note->type)
10756 {
10757 case NT_STAPSDT:
10758 return elfobj_grok_stapsdt_note_1 (abfd, note);
10759
10760 default:
10761 return true;
10762 }
10763 }
10764
10765 static bool
10766 elfcore_grok_freebsd_psinfo (bfd *abfd, Elf_Internal_Note *note)
10767 {
10768 size_t offset;
10769
10770 switch (elf_elfheader (abfd)->e_ident[EI_CLASS])
10771 {
10772 case ELFCLASS32:
10773 if (note->descsz < 108)
10774 return false;
10775 break;
10776
10777 case ELFCLASS64:
10778 if (note->descsz < 120)
10779 return false;
10780 break;
10781
10782 default:
10783 return false;
10784 }
10785
10786 /* Check for version 1 in pr_version. */
10787 if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1)
10788 return false;
10789
10790 offset = 4;
10791
10792 /* Skip over pr_psinfosz. */
10793 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS32)
10794 offset += 4;
10795 else
10796 {
10797 offset += 4; /* Padding before pr_psinfosz. */
10798 offset += 8;
10799 }
10800
10801 /* pr_fname is PRFNAMESZ (16) + 1 bytes in size. */
10802 elf_tdata (abfd)->core->program
10803 = _bfd_elfcore_strndup (abfd, note->descdata + offset, 17);
10804 offset += 17;
10805
10806 /* pr_psargs is PRARGSZ (80) + 1 bytes in size. */
10807 elf_tdata (abfd)->core->command
10808 = _bfd_elfcore_strndup (abfd, note->descdata + offset, 81);
10809 offset += 81;
10810
10811 /* Padding before pr_pid. */
10812 offset += 2;
10813
10814 /* The pr_pid field was added in version "1a". */
10815 if (note->descsz < offset + 4)
10816 return true;
10817
10818 elf_tdata (abfd)->core->pid
10819 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10820
10821 return true;
10822 }
10823
10824 static bool
10825 elfcore_grok_freebsd_prstatus (bfd *abfd, Elf_Internal_Note *note)
10826 {
10827 size_t offset;
10828 size_t size;
10829 size_t min_size;
10830
10831 /* Compute offset of pr_getregsz, skipping over pr_statussz.
10832 Also compute minimum size of this note. */
10833 switch (elf_elfheader (abfd)->e_ident[EI_CLASS])
10834 {
10835 case ELFCLASS32:
10836 offset = 4 + 4;
10837 min_size = offset + (4 * 2) + 4 + 4 + 4;
10838 break;
10839
10840 case ELFCLASS64:
10841 offset = 4 + 4 + 8; /* Includes padding before pr_statussz. */
10842 min_size = offset + (8 * 2) + 4 + 4 + 4 + 4;
10843 break;
10844
10845 default:
10846 return false;
10847 }
10848
10849 if (note->descsz < min_size)
10850 return false;
10851
10852 /* Check for version 1 in pr_version. */
10853 if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1)
10854 return false;
10855
10856 /* Extract size of pr_reg from pr_gregsetsz. */
10857 /* Skip over pr_gregsetsz and pr_fpregsetsz. */
10858 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS32)
10859 {
10860 size = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10861 offset += 4 * 2;
10862 }
10863 else
10864 {
10865 size = bfd_h_get_64 (abfd, (bfd_byte *) note->descdata + offset);
10866 offset += 8 * 2;
10867 }
10868
10869 /* Skip over pr_osreldate. */
10870 offset += 4;
10871
10872 /* Read signal from pr_cursig. */
10873 if (elf_tdata (abfd)->core->signal == 0)
10874 elf_tdata (abfd)->core->signal
10875 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10876 offset += 4;
10877
10878 /* Read TID from pr_pid. */
10879 elf_tdata (abfd)->core->lwpid
10880 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10881 offset += 4;
10882
10883 /* Padding before pr_reg. */
10884 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
10885 offset += 4;
10886
10887 /* Make sure that there is enough data remaining in the note. */
10888 if ((note->descsz - offset) < size)
10889 return false;
10890
10891 /* Make a ".reg/999" section and a ".reg" section. */
10892 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
10893 size, note->descpos + offset);
10894 }
10895
10896 static bool
10897 elfcore_grok_freebsd_note (bfd *abfd, Elf_Internal_Note *note)
10898 {
10899 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10900
10901 switch (note->type)
10902 {
10903 case NT_PRSTATUS:
10904 if (bed->elf_backend_grok_freebsd_prstatus)
10905 if ((*bed->elf_backend_grok_freebsd_prstatus) (abfd, note))
10906 return true;
10907 return elfcore_grok_freebsd_prstatus (abfd, note);
10908
10909 case NT_FPREGSET:
10910 return elfcore_grok_prfpreg (abfd, note);
10911
10912 case NT_PRPSINFO:
10913 return elfcore_grok_freebsd_psinfo (abfd, note);
10914
10915 case NT_FREEBSD_THRMISC:
10916 if (note->namesz == 8)
10917 return elfcore_make_note_pseudosection (abfd, ".thrmisc", note);
10918 else
10919 return true;
10920
10921 case NT_FREEBSD_PROCSTAT_PROC:
10922 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.proc",
10923 note);
10924
10925 case NT_FREEBSD_PROCSTAT_FILES:
10926 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.files",
10927 note);
10928
10929 case NT_FREEBSD_PROCSTAT_VMMAP:
10930 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.vmmap",
10931 note);
10932
10933 case NT_FREEBSD_PROCSTAT_AUXV:
10934 return elfcore_make_auxv_note_section (abfd, note, 4);
10935
10936 case NT_X86_XSTATE:
10937 if (note->namesz == 8)
10938 return elfcore_grok_xstatereg (abfd, note);
10939 else
10940 return true;
10941
10942 case NT_FREEBSD_PTLWPINFO:
10943 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.lwpinfo",
10944 note);
10945
10946 case NT_ARM_VFP:
10947 return elfcore_grok_arm_vfp (abfd, note);
10948
10949 default:
10950 return true;
10951 }
10952 }
10953
10954 static bool
10955 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
10956 {
10957 char *cp;
10958
10959 cp = strchr (note->namedata, '@');
10960 if (cp != NULL)
10961 {
10962 *lwpidp = atoi(cp + 1);
10963 return true;
10964 }
10965 return false;
10966 }
10967
10968 static bool
10969 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
10970 {
10971 if (note->descsz <= 0x7c + 31)
10972 return false;
10973
10974 /* Signal number at offset 0x08. */
10975 elf_tdata (abfd)->core->signal
10976 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
10977
10978 /* Process ID at offset 0x50. */
10979 elf_tdata (abfd)->core->pid
10980 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
10981
10982 /* Command name at 0x7c (max 32 bytes, including nul). */
10983 elf_tdata (abfd)->core->command
10984 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
10985
10986 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
10987 note);
10988 }
10989
10990 static bool
10991 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
10992 {
10993 int lwp;
10994
10995 if (elfcore_netbsd_get_lwpid (note, &lwp))
10996 elf_tdata (abfd)->core->lwpid = lwp;
10997
10998 switch (note->type)
10999 {
11000 case NT_NETBSDCORE_PROCINFO:
11001 /* NetBSD-specific core "procinfo". Note that we expect to
11002 find this note before any of the others, which is fine,
11003 since the kernel writes this note out first when it
11004 creates a core file. */
11005 return elfcore_grok_netbsd_procinfo (abfd, note);
11006 case NT_NETBSDCORE_AUXV:
11007 /* NetBSD-specific Elf Auxiliary Vector data. */
11008 return elfcore_make_auxv_note_section (abfd, note, 4);
11009 case NT_NETBSDCORE_LWPSTATUS:
11010 return elfcore_make_note_pseudosection (abfd,
11011 ".note.netbsdcore.lwpstatus",
11012 note);
11013 default:
11014 break;
11015 }
11016
11017 /* As of March 2020 there are no other machine-independent notes
11018 defined for NetBSD core files. If the note type is less
11019 than the start of the machine-dependent note types, we don't
11020 understand it. */
11021
11022 if (note->type < NT_NETBSDCORE_FIRSTMACH)
11023 return true;
11024
11025
11026 switch (bfd_get_arch (abfd))
11027 {
11028 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
11029 PT_GETFPREGS == mach+2. */
11030
11031 case bfd_arch_aarch64:
11032 case bfd_arch_alpha:
11033 case bfd_arch_sparc:
11034 switch (note->type)
11035 {
11036 case NT_NETBSDCORE_FIRSTMACH+0:
11037 return elfcore_make_note_pseudosection (abfd, ".reg", note);
11038
11039 case NT_NETBSDCORE_FIRSTMACH+2:
11040 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
11041
11042 default:
11043 return true;
11044 }
11045
11046 /* On SuperH, PT_GETREGS == mach+3 and PT_GETFPREGS == mach+5.
11047 There's also old PT___GETREGS40 == mach + 1 for old reg
11048 structure which lacks GBR. */
11049
11050 case bfd_arch_sh:
11051 switch (note->type)
11052 {
11053 case NT_NETBSDCORE_FIRSTMACH+3:
11054 return elfcore_make_note_pseudosection (abfd, ".reg", note);
11055
11056 case NT_NETBSDCORE_FIRSTMACH+5:
11057 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
11058
11059 default:
11060 return true;
11061 }
11062
11063 /* On all other arch's, PT_GETREGS == mach+1 and
11064 PT_GETFPREGS == mach+3. */
11065
11066 default:
11067 switch (note->type)
11068 {
11069 case NT_NETBSDCORE_FIRSTMACH+1:
11070 return elfcore_make_note_pseudosection (abfd, ".reg", note);
11071
11072 case NT_NETBSDCORE_FIRSTMACH+3:
11073 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
11074
11075 default:
11076 return true;
11077 }
11078 }
11079 /* NOTREACHED */
11080 }
11081
11082 static bool
11083 elfcore_grok_openbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
11084 {
11085 if (note->descsz <= 0x48 + 31)
11086 return false;
11087
11088 /* Signal number at offset 0x08. */
11089 elf_tdata (abfd)->core->signal
11090 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
11091
11092 /* Process ID at offset 0x20. */
11093 elf_tdata (abfd)->core->pid
11094 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x20);
11095
11096 /* Command name at 0x48 (max 32 bytes, including nul). */
11097 elf_tdata (abfd)->core->command
11098 = _bfd_elfcore_strndup (abfd, note->descdata + 0x48, 31);
11099
11100 return true;
11101 }
11102
11103 /* Processes Solaris's process status note.
11104 sig_off ~ offsetof(prstatus_t, pr_cursig)
11105 pid_off ~ offsetof(prstatus_t, pr_pid)
11106 lwpid_off ~ offsetof(prstatus_t, pr_who)
11107 gregset_size ~ sizeof(gregset_t)
11108 gregset_offset ~ offsetof(prstatus_t, pr_reg) */
11109
11110 static bool
11111 elfcore_grok_solaris_prstatus (bfd *abfd, Elf_Internal_Note* note, int sig_off,
11112 int pid_off, int lwpid_off, size_t gregset_size,
11113 size_t gregset_offset)
11114 {
11115 asection *sect = NULL;
11116 elf_tdata (abfd)->core->signal
11117 = bfd_get_16 (abfd, note->descdata + sig_off);
11118 elf_tdata (abfd)->core->pid
11119 = bfd_get_32 (abfd, note->descdata + pid_off);
11120 elf_tdata (abfd)->core->lwpid
11121 = bfd_get_32 (abfd, note->descdata + lwpid_off);
11122
11123 sect = bfd_get_section_by_name (abfd, ".reg");
11124 if (sect != NULL)
11125 sect->size = gregset_size;
11126
11127 return _bfd_elfcore_make_pseudosection (abfd, ".reg", gregset_size,
11128 note->descpos + gregset_offset);
11129 }
11130
11131 /* Gets program and arguments from a core.
11132 prog_off ~ offsetof(prpsinfo | psinfo_t, pr_fname)
11133 comm_off ~ offsetof(prpsinfo | psinfo_t, pr_psargs) */
11134
11135 static bool
11136 elfcore_grok_solaris_info(bfd *abfd, Elf_Internal_Note* note,
11137 int prog_off, int comm_off)
11138 {
11139 elf_tdata (abfd)->core->program
11140 = _bfd_elfcore_strndup (abfd, note->descdata + prog_off, 16);
11141 elf_tdata (abfd)->core->command
11142 = _bfd_elfcore_strndup (abfd, note->descdata + comm_off, 80);
11143
11144 return true;
11145 }
11146
11147 /* Processes Solaris's LWP status note.
11148 gregset_size ~ sizeof(gregset_t)
11149 gregset_off ~ offsetof(lwpstatus_t, pr_reg)
11150 fpregset_size ~ sizeof(fpregset_t)
11151 fpregset_off ~ offsetof(lwpstatus_t, pr_fpreg) */
11152
11153 static bool
11154 elfcore_grok_solaris_lwpstatus (bfd *abfd, Elf_Internal_Note* note,
11155 size_t gregset_size, int gregset_off,
11156 size_t fpregset_size, int fpregset_off)
11157 {
11158 asection *sect = NULL;
11159 char reg2_section_name[16] = { 0 };
11160
11161 (void) snprintf (reg2_section_name, 16, "%s/%i", ".reg2",
11162 elf_tdata (abfd)->core->lwpid);
11163
11164 /* offsetof(lwpstatus_t, pr_lwpid) */
11165 elf_tdata (abfd)->core->lwpid
11166 = bfd_get_32 (abfd, note->descdata + 4);
11167 /* offsetof(lwpstatus_t, pr_cursig) */
11168 elf_tdata (abfd)->core->signal
11169 = bfd_get_16 (abfd, note->descdata + 12);
11170
11171 sect = bfd_get_section_by_name (abfd, ".reg");
11172 if (sect != NULL)
11173 sect->size = gregset_size;
11174 else if (!_bfd_elfcore_make_pseudosection (abfd, ".reg", gregset_size,
11175 note->descpos + gregset_off))
11176 return false;
11177
11178 sect = bfd_get_section_by_name (abfd, reg2_section_name);
11179 if (sect != NULL)
11180 {
11181 sect->size = fpregset_size;
11182 sect->filepos = note->descpos + fpregset_off;
11183 sect->alignment_power = 2;
11184 }
11185 else if (!_bfd_elfcore_make_pseudosection (abfd, ".reg2", fpregset_size,
11186 note->descpos + fpregset_off))
11187 return false;
11188
11189 return true;
11190 }
11191
11192 static bool
11193 elfcore_grok_solaris_note_impl (bfd *abfd, Elf_Internal_Note *note)
11194 {
11195 if (note == NULL)
11196 return false;
11197
11198 /* core files are identified as 32- or 64-bit, SPARC or x86,
11199 by the size of the descsz which matches the sizeof()
11200 the type appropriate for that note type (e.g., prstatus_t for
11201 SOLARIS_NT_PRSTATUS) for the corresponding architecture
11202 on Solaris. The core file bitness may differ from the bitness of
11203 gdb itself, so fixed values are used instead of sizeof().
11204 Appropriate fixed offsets are also used to obtain data from
11205 the note. */
11206
11207 switch ((int) note->type)
11208 {
11209 case SOLARIS_NT_PRSTATUS:
11210 switch (note->descsz)
11211 {
11212 case 508: /* sizeof(prstatus_t) SPARC 32-bit */
11213 return elfcore_grok_solaris_prstatus(abfd, note,
11214 136, 216, 308, 152, 356);
11215 case 904: /* sizeof(prstatus_t) SPARC 64-bit */
11216 return elfcore_grok_solaris_prstatus(abfd, note,
11217 264, 360, 520, 304, 600);
11218 case 432: /* sizeof(prstatus_t) Intel 32-bit */
11219 return elfcore_grok_solaris_prstatus(abfd, note,
11220 136, 216, 308, 76, 356);
11221 case 824: /* sizeof(prstatus_t) Intel 64-bit */
11222 return elfcore_grok_solaris_prstatus(abfd, note,
11223 264, 360, 520, 224, 600);
11224 default:
11225 return true;
11226 }
11227
11228 case SOLARIS_NT_PSINFO:
11229 case SOLARIS_NT_PRPSINFO:
11230 switch (note->descsz)
11231 {
11232 case 260: /* sizeof(prpsinfo_t) SPARC and Intel 32-bit */
11233 return elfcore_grok_solaris_info(abfd, note, 84, 100);
11234 case 328: /* sizeof(prpsinfo_t) SPARC and Intel 64-bit */
11235 return elfcore_grok_solaris_info(abfd, note, 120, 136);
11236 case 360: /* sizeof(psinfo_t) SPARC and Intel 32-bit */
11237 return elfcore_grok_solaris_info(abfd, note, 88, 104);
11238 case 440: /* sizeof(psinfo_t) SPARC and Intel 64-bit */
11239 return elfcore_grok_solaris_info(abfd, note, 136, 152);
11240 default:
11241 return true;
11242 }
11243
11244 case SOLARIS_NT_LWPSTATUS:
11245 switch (note->descsz)
11246 {
11247 case 896: /* sizeof(lwpstatus_t) SPARC 32-bit */
11248 return elfcore_grok_solaris_lwpstatus(abfd, note,
11249 152, 344, 400, 496);
11250 case 1392: /* sizeof(lwpstatus_t) SPARC 64-bit */
11251 return elfcore_grok_solaris_lwpstatus(abfd, note,
11252 304, 544, 544, 848);
11253 case 800: /* sizeof(lwpstatus_t) Intel 32-bit */
11254 return elfcore_grok_solaris_lwpstatus(abfd, note,
11255 76, 344, 380, 420);
11256 case 1296: /* sizeof(lwpstatus_t) Intel 64-bit */
11257 return elfcore_grok_solaris_lwpstatus(abfd, note,
11258 224, 544, 528, 768);
11259 default:
11260 return true;
11261 }
11262
11263 case SOLARIS_NT_LWPSINFO:
11264 /* sizeof(lwpsinfo_t) on 32- and 64-bit, respectively */
11265 if (note->descsz == 128 || note->descsz == 152)
11266 elf_tdata (abfd)->core->lwpid =
11267 bfd_get_32 (abfd, note->descdata + 4);
11268 break;
11269
11270 default:
11271 break;
11272 }
11273
11274 return true;
11275 }
11276
11277 /* For name starting with "CORE" this may be either a Solaris
11278 core file or a gdb-generated core file. Do Solaris-specific
11279 processing on selected note types first with
11280 elfcore_grok_solaris_note(), then process the note
11281 in elfcore_grok_note(). */
11282
11283 static bool
11284 elfcore_grok_solaris_note (bfd *abfd, Elf_Internal_Note *note)
11285 {
11286 if (!elfcore_grok_solaris_note_impl (abfd, note))
11287 return false;
11288
11289 return elfcore_grok_note (abfd, note);
11290 }
11291
11292 static bool
11293 elfcore_grok_openbsd_note (bfd *abfd, Elf_Internal_Note *note)
11294 {
11295 if (note->type == NT_OPENBSD_PROCINFO)
11296 return elfcore_grok_openbsd_procinfo (abfd, note);
11297
11298 if (note->type == NT_OPENBSD_REGS)
11299 return elfcore_make_note_pseudosection (abfd, ".reg", note);
11300
11301 if (note->type == NT_OPENBSD_FPREGS)
11302 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
11303
11304 if (note->type == NT_OPENBSD_XFPREGS)
11305 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
11306
11307 if (note->type == NT_OPENBSD_AUXV)
11308 return elfcore_make_auxv_note_section (abfd, note, 0);
11309
11310 if (note->type == NT_OPENBSD_WCOOKIE)
11311 {
11312 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".wcookie",
11313 SEC_HAS_CONTENTS);
11314
11315 if (sect == NULL)
11316 return false;
11317 sect->size = note->descsz;
11318 sect->filepos = note->descpos;
11319 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
11320
11321 return true;
11322 }
11323
11324 return true;
11325 }
11326
11327 static bool
11328 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
11329 {
11330 void *ddata = note->descdata;
11331 char buf[100];
11332 char *name;
11333 asection *sect;
11334 short sig;
11335 unsigned flags;
11336
11337 if (note->descsz < 16)
11338 return false;
11339
11340 /* nto_procfs_status 'pid' field is at offset 0. */
11341 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
11342
11343 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
11344 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
11345
11346 /* nto_procfs_status 'flags' field is at offset 8. */
11347 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
11348
11349 /* nto_procfs_status 'what' field is at offset 14. */
11350 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
11351 {
11352 elf_tdata (abfd)->core->signal = sig;
11353 elf_tdata (abfd)->core->lwpid = *tid;
11354 }
11355
11356 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
11357 do not come from signals so we make sure we set the current
11358 thread just in case. */
11359 if (flags & 0x00000080)
11360 elf_tdata (abfd)->core->lwpid = *tid;
11361
11362 /* Make a ".qnx_core_status/%d" section. */
11363 sprintf (buf, ".qnx_core_status/%ld", *tid);
11364
11365 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
11366 if (name == NULL)
11367 return false;
11368 strcpy (name, buf);
11369
11370 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
11371 if (sect == NULL)
11372 return false;
11373
11374 sect->size = note->descsz;
11375 sect->filepos = note->descpos;
11376 sect->alignment_power = 2;
11377
11378 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
11379 }
11380
11381 static bool
11382 elfcore_grok_nto_regs (bfd *abfd,
11383 Elf_Internal_Note *note,
11384 long tid,
11385 char *base)
11386 {
11387 char buf[100];
11388 char *name;
11389 asection *sect;
11390
11391 /* Make a "(base)/%d" section. */
11392 sprintf (buf, "%s/%ld", base, tid);
11393
11394 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
11395 if (name == NULL)
11396 return false;
11397 strcpy (name, buf);
11398
11399 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
11400 if (sect == NULL)
11401 return false;
11402
11403 sect->size = note->descsz;
11404 sect->filepos = note->descpos;
11405 sect->alignment_power = 2;
11406
11407 /* This is the current thread. */
11408 if (elf_tdata (abfd)->core->lwpid == tid)
11409 return elfcore_maybe_make_sect (abfd, base, sect);
11410
11411 return true;
11412 }
11413
11414 #define BFD_QNT_CORE_INFO 7
11415 #define BFD_QNT_CORE_STATUS 8
11416 #define BFD_QNT_CORE_GREG 9
11417 #define BFD_QNT_CORE_FPREG 10
11418
11419 static bool
11420 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
11421 {
11422 /* Every GREG section has a STATUS section before it. Store the
11423 tid from the previous call to pass down to the next gregs
11424 function. */
11425 static long tid = 1;
11426
11427 switch (note->type)
11428 {
11429 case BFD_QNT_CORE_INFO:
11430 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
11431 case BFD_QNT_CORE_STATUS:
11432 return elfcore_grok_nto_status (abfd, note, &tid);
11433 case BFD_QNT_CORE_GREG:
11434 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
11435 case BFD_QNT_CORE_FPREG:
11436 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
11437 default:
11438 return true;
11439 }
11440 }
11441
11442 static bool
11443 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
11444 {
11445 char *name;
11446 asection *sect;
11447 size_t len;
11448
11449 /* Use note name as section name. */
11450 len = note->namesz;
11451 name = (char *) bfd_alloc (abfd, len);
11452 if (name == NULL)
11453 return false;
11454 memcpy (name, note->namedata, len);
11455 name[len - 1] = '\0';
11456
11457 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
11458 if (sect == NULL)
11459 return false;
11460
11461 sect->size = note->descsz;
11462 sect->filepos = note->descpos;
11463 sect->alignment_power = 1;
11464
11465 return true;
11466 }
11467
11468 /* Function: elfcore_write_note
11469
11470 Inputs:
11471 buffer to hold note, and current size of buffer
11472 name of note
11473 type of note
11474 data for note
11475 size of data for note
11476
11477 Writes note to end of buffer. ELF64 notes are written exactly as
11478 for ELF32, despite the current (as of 2006) ELF gabi specifying
11479 that they ought to have 8-byte namesz and descsz field, and have
11480 8-byte alignment. Other writers, eg. Linux kernel, do the same.
11481
11482 Return:
11483 Pointer to realloc'd buffer, *BUFSIZ updated. */
11484
11485 char *
11486 elfcore_write_note (bfd *abfd,
11487 char *buf,
11488 int *bufsiz,
11489 const char *name,
11490 int type,
11491 const void *input,
11492 int size)
11493 {
11494 Elf_External_Note *xnp;
11495 size_t namesz;
11496 size_t newspace;
11497 char *dest;
11498
11499 namesz = 0;
11500 if (name != NULL)
11501 namesz = strlen (name) + 1;
11502
11503 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
11504
11505 buf = (char *) realloc (buf, *bufsiz + newspace);
11506 if (buf == NULL)
11507 return buf;
11508 dest = buf + *bufsiz;
11509 *bufsiz += newspace;
11510 xnp = (Elf_External_Note *) dest;
11511 H_PUT_32 (abfd, namesz, xnp->namesz);
11512 H_PUT_32 (abfd, size, xnp->descsz);
11513 H_PUT_32 (abfd, type, xnp->type);
11514 dest = xnp->name;
11515 if (name != NULL)
11516 {
11517 memcpy (dest, name, namesz);
11518 dest += namesz;
11519 while (namesz & 3)
11520 {
11521 *dest++ = '\0';
11522 ++namesz;
11523 }
11524 }
11525 memcpy (dest, input, size);
11526 dest += size;
11527 while (size & 3)
11528 {
11529 *dest++ = '\0';
11530 ++size;
11531 }
11532 return buf;
11533 }
11534
11535 /* gcc-8 warns (*) on all the strncpy calls in this function about
11536 possible string truncation. The "truncation" is not a bug. We
11537 have an external representation of structs with fields that are not
11538 necessarily NULL terminated and corresponding internal
11539 representation fields that are one larger so that they can always
11540 be NULL terminated.
11541 gcc versions between 4.2 and 4.6 do not allow pragma control of
11542 diagnostics inside functions, giving a hard error if you try to use
11543 the finer control available with later versions.
11544 gcc prior to 4.2 warns about diagnostic push and pop.
11545 gcc-5, gcc-6 and gcc-7 warn that -Wstringop-truncation is unknown,
11546 unless you also add #pragma GCC diagnostic ignored "-Wpragma".
11547 (*) Depending on your system header files! */
11548 #if GCC_VERSION >= 8000
11549 # pragma GCC diagnostic push
11550 # pragma GCC diagnostic ignored "-Wstringop-truncation"
11551 #endif
11552 char *
11553 elfcore_write_prpsinfo (bfd *abfd,
11554 char *buf,
11555 int *bufsiz,
11556 const char *fname,
11557 const char *psargs)
11558 {
11559 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11560
11561 if (bed->elf_backend_write_core_note != NULL)
11562 {
11563 char *ret;
11564 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
11565 NT_PRPSINFO, fname, psargs);
11566 if (ret != NULL)
11567 return ret;
11568 }
11569
11570 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
11571 # if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
11572 if (bed->s->elfclass == ELFCLASS32)
11573 {
11574 # if defined (HAVE_PSINFO32_T)
11575 psinfo32_t data;
11576 int note_type = NT_PSINFO;
11577 # else
11578 prpsinfo32_t data;
11579 int note_type = NT_PRPSINFO;
11580 # endif
11581
11582 memset (&data, 0, sizeof (data));
11583 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
11584 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
11585 return elfcore_write_note (abfd, buf, bufsiz,
11586 "CORE", note_type, &data, sizeof (data));
11587 }
11588 else
11589 # endif
11590 {
11591 # if defined (HAVE_PSINFO_T)
11592 psinfo_t data;
11593 int note_type = NT_PSINFO;
11594 # else
11595 prpsinfo_t data;
11596 int note_type = NT_PRPSINFO;
11597 # endif
11598
11599 memset (&data, 0, sizeof (data));
11600 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
11601 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
11602 return elfcore_write_note (abfd, buf, bufsiz,
11603 "CORE", note_type, &data, sizeof (data));
11604 }
11605 #endif /* PSINFO_T or PRPSINFO_T */
11606
11607 free (buf);
11608 return NULL;
11609 }
11610 #if GCC_VERSION >= 8000
11611 # pragma GCC diagnostic pop
11612 #endif
11613
11614 char *
11615 elfcore_write_linux_prpsinfo32
11616 (bfd *abfd, char *buf, int *bufsiz,
11617 const struct elf_internal_linux_prpsinfo *prpsinfo)
11618 {
11619 if (get_elf_backend_data (abfd)->linux_prpsinfo32_ugid16)
11620 {
11621 struct elf_external_linux_prpsinfo32_ugid16 data;
11622
11623 swap_linux_prpsinfo32_ugid16_out (abfd, prpsinfo, &data);
11624 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
11625 &data, sizeof (data));
11626 }
11627 else
11628 {
11629 struct elf_external_linux_prpsinfo32_ugid32 data;
11630
11631 swap_linux_prpsinfo32_ugid32_out (abfd, prpsinfo, &data);
11632 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
11633 &data, sizeof (data));
11634 }
11635 }
11636
11637 char *
11638 elfcore_write_linux_prpsinfo64
11639 (bfd *abfd, char *buf, int *bufsiz,
11640 const struct elf_internal_linux_prpsinfo *prpsinfo)
11641 {
11642 if (get_elf_backend_data (abfd)->linux_prpsinfo64_ugid16)
11643 {
11644 struct elf_external_linux_prpsinfo64_ugid16 data;
11645
11646 swap_linux_prpsinfo64_ugid16_out (abfd, prpsinfo, &data);
11647 return elfcore_write_note (abfd, buf, bufsiz,
11648 "CORE", NT_PRPSINFO, &data, sizeof (data));
11649 }
11650 else
11651 {
11652 struct elf_external_linux_prpsinfo64_ugid32 data;
11653
11654 swap_linux_prpsinfo64_ugid32_out (abfd, prpsinfo, &data);
11655 return elfcore_write_note (abfd, buf, bufsiz,
11656 "CORE", NT_PRPSINFO, &data, sizeof (data));
11657 }
11658 }
11659
11660 char *
11661 elfcore_write_prstatus (bfd *abfd,
11662 char *buf,
11663 int *bufsiz,
11664 long pid,
11665 int cursig,
11666 const void *gregs)
11667 {
11668 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11669
11670 if (bed->elf_backend_write_core_note != NULL)
11671 {
11672 char *ret;
11673 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
11674 NT_PRSTATUS,
11675 pid, cursig, gregs);
11676 if (ret != NULL)
11677 return ret;
11678 }
11679
11680 #if defined (HAVE_PRSTATUS_T)
11681 #if defined (HAVE_PRSTATUS32_T)
11682 if (bed->s->elfclass == ELFCLASS32)
11683 {
11684 prstatus32_t prstat;
11685
11686 memset (&prstat, 0, sizeof (prstat));
11687 prstat.pr_pid = pid;
11688 prstat.pr_cursig = cursig;
11689 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
11690 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
11691 NT_PRSTATUS, &prstat, sizeof (prstat));
11692 }
11693 else
11694 #endif
11695 {
11696 prstatus_t prstat;
11697
11698 memset (&prstat, 0, sizeof (prstat));
11699 prstat.pr_pid = pid;
11700 prstat.pr_cursig = cursig;
11701 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
11702 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
11703 NT_PRSTATUS, &prstat, sizeof (prstat));
11704 }
11705 #endif /* HAVE_PRSTATUS_T */
11706
11707 free (buf);
11708 return NULL;
11709 }
11710
11711 #if defined (HAVE_LWPSTATUS_T)
11712 char *
11713 elfcore_write_lwpstatus (bfd *abfd,
11714 char *buf,
11715 int *bufsiz,
11716 long pid,
11717 int cursig,
11718 const void *gregs)
11719 {
11720 lwpstatus_t lwpstat;
11721 const char *note_name = "CORE";
11722
11723 memset (&lwpstat, 0, sizeof (lwpstat));
11724 lwpstat.pr_lwpid = pid >> 16;
11725 lwpstat.pr_cursig = cursig;
11726 #if defined (HAVE_LWPSTATUS_T_PR_REG)
11727 memcpy (&lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
11728 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
11729 #if !defined(gregs)
11730 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
11731 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
11732 #else
11733 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
11734 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
11735 #endif
11736 #endif
11737 return elfcore_write_note (abfd, buf, bufsiz, note_name,
11738 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
11739 }
11740 #endif /* HAVE_LWPSTATUS_T */
11741
11742 #if defined (HAVE_PSTATUS_T)
11743 char *
11744 elfcore_write_pstatus (bfd *abfd,
11745 char *buf,
11746 int *bufsiz,
11747 long pid,
11748 int cursig ATTRIBUTE_UNUSED,
11749 const void *gregs ATTRIBUTE_UNUSED)
11750 {
11751 const char *note_name = "CORE";
11752 #if defined (HAVE_PSTATUS32_T)
11753 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11754
11755 if (bed->s->elfclass == ELFCLASS32)
11756 {
11757 pstatus32_t pstat;
11758
11759 memset (&pstat, 0, sizeof (pstat));
11760 pstat.pr_pid = pid & 0xffff;
11761 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
11762 NT_PSTATUS, &pstat, sizeof (pstat));
11763 return buf;
11764 }
11765 else
11766 #endif
11767 {
11768 pstatus_t pstat;
11769
11770 memset (&pstat, 0, sizeof (pstat));
11771 pstat.pr_pid = pid & 0xffff;
11772 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
11773 NT_PSTATUS, &pstat, sizeof (pstat));
11774 return buf;
11775 }
11776 }
11777 #endif /* HAVE_PSTATUS_T */
11778
11779 char *
11780 elfcore_write_prfpreg (bfd *abfd,
11781 char *buf,
11782 int *bufsiz,
11783 const void *fpregs,
11784 int size)
11785 {
11786 const char *note_name = "CORE";
11787 return elfcore_write_note (abfd, buf, bufsiz,
11788 note_name, NT_FPREGSET, fpregs, size);
11789 }
11790
11791 char *
11792 elfcore_write_prxfpreg (bfd *abfd,
11793 char *buf,
11794 int *bufsiz,
11795 const void *xfpregs,
11796 int size)
11797 {
11798 char *note_name = "LINUX";
11799 return elfcore_write_note (abfd, buf, bufsiz,
11800 note_name, NT_PRXFPREG, xfpregs, size);
11801 }
11802
11803 char *
11804 elfcore_write_xstatereg (bfd *abfd, char *buf, int *bufsiz,
11805 const void *xfpregs, int size)
11806 {
11807 char *note_name;
11808 if (get_elf_backend_data (abfd)->elf_osabi == ELFOSABI_FREEBSD)
11809 note_name = "FreeBSD";
11810 else
11811 note_name = "LINUX";
11812 return elfcore_write_note (abfd, buf, bufsiz,
11813 note_name, NT_X86_XSTATE, xfpregs, size);
11814 }
11815
11816 char *
11817 elfcore_write_ppc_vmx (bfd *abfd,
11818 char *buf,
11819 int *bufsiz,
11820 const void *ppc_vmx,
11821 int size)
11822 {
11823 char *note_name = "LINUX";
11824 return elfcore_write_note (abfd, buf, bufsiz,
11825 note_name, NT_PPC_VMX, ppc_vmx, size);
11826 }
11827
11828 char *
11829 elfcore_write_ppc_vsx (bfd *abfd,
11830 char *buf,
11831 int *bufsiz,
11832 const void *ppc_vsx,
11833 int size)
11834 {
11835 char *note_name = "LINUX";
11836 return elfcore_write_note (abfd, buf, bufsiz,
11837 note_name, NT_PPC_VSX, ppc_vsx, size);
11838 }
11839
11840 char *
11841 elfcore_write_ppc_tar (bfd *abfd,
11842 char *buf,
11843 int *bufsiz,
11844 const void *ppc_tar,
11845 int size)
11846 {
11847 char *note_name = "LINUX";
11848 return elfcore_write_note (abfd, buf, bufsiz,
11849 note_name, NT_PPC_TAR, ppc_tar, size);
11850 }
11851
11852 char *
11853 elfcore_write_ppc_ppr (bfd *abfd,
11854 char *buf,
11855 int *bufsiz,
11856 const void *ppc_ppr,
11857 int size)
11858 {
11859 char *note_name = "LINUX";
11860 return elfcore_write_note (abfd, buf, bufsiz,
11861 note_name, NT_PPC_PPR, ppc_ppr, size);
11862 }
11863
11864 char *
11865 elfcore_write_ppc_dscr (bfd *abfd,
11866 char *buf,
11867 int *bufsiz,
11868 const void *ppc_dscr,
11869 int size)
11870 {
11871 char *note_name = "LINUX";
11872 return elfcore_write_note (abfd, buf, bufsiz,
11873 note_name, NT_PPC_DSCR, ppc_dscr, size);
11874 }
11875
11876 char *
11877 elfcore_write_ppc_ebb (bfd *abfd,
11878 char *buf,
11879 int *bufsiz,
11880 const void *ppc_ebb,
11881 int size)
11882 {
11883 char *note_name = "LINUX";
11884 return elfcore_write_note (abfd, buf, bufsiz,
11885 note_name, NT_PPC_EBB, ppc_ebb, size);
11886 }
11887
11888 char *
11889 elfcore_write_ppc_pmu (bfd *abfd,
11890 char *buf,
11891 int *bufsiz,
11892 const void *ppc_pmu,
11893 int size)
11894 {
11895 char *note_name = "LINUX";
11896 return elfcore_write_note (abfd, buf, bufsiz,
11897 note_name, NT_PPC_PMU, ppc_pmu, size);
11898 }
11899
11900 char *
11901 elfcore_write_ppc_tm_cgpr (bfd *abfd,
11902 char *buf,
11903 int *bufsiz,
11904 const void *ppc_tm_cgpr,
11905 int size)
11906 {
11907 char *note_name = "LINUX";
11908 return elfcore_write_note (abfd, buf, bufsiz,
11909 note_name, NT_PPC_TM_CGPR, ppc_tm_cgpr, size);
11910 }
11911
11912 char *
11913 elfcore_write_ppc_tm_cfpr (bfd *abfd,
11914 char *buf,
11915 int *bufsiz,
11916 const void *ppc_tm_cfpr,
11917 int size)
11918 {
11919 char *note_name = "LINUX";
11920 return elfcore_write_note (abfd, buf, bufsiz,
11921 note_name, NT_PPC_TM_CFPR, ppc_tm_cfpr, size);
11922 }
11923
11924 char *
11925 elfcore_write_ppc_tm_cvmx (bfd *abfd,
11926 char *buf,
11927 int *bufsiz,
11928 const void *ppc_tm_cvmx,
11929 int size)
11930 {
11931 char *note_name = "LINUX";
11932 return elfcore_write_note (abfd, buf, bufsiz,
11933 note_name, NT_PPC_TM_CVMX, ppc_tm_cvmx, size);
11934 }
11935
11936 char *
11937 elfcore_write_ppc_tm_cvsx (bfd *abfd,
11938 char *buf,
11939 int *bufsiz,
11940 const void *ppc_tm_cvsx,
11941 int size)
11942 {
11943 char *note_name = "LINUX";
11944 return elfcore_write_note (abfd, buf, bufsiz,
11945 note_name, NT_PPC_TM_CVSX, ppc_tm_cvsx, size);
11946 }
11947
11948 char *
11949 elfcore_write_ppc_tm_spr (bfd *abfd,
11950 char *buf,
11951 int *bufsiz,
11952 const void *ppc_tm_spr,
11953 int size)
11954 {
11955 char *note_name = "LINUX";
11956 return elfcore_write_note (abfd, buf, bufsiz,
11957 note_name, NT_PPC_TM_SPR, ppc_tm_spr, size);
11958 }
11959
11960 char *
11961 elfcore_write_ppc_tm_ctar (bfd *abfd,
11962 char *buf,
11963 int *bufsiz,
11964 const void *ppc_tm_ctar,
11965 int size)
11966 {
11967 char *note_name = "LINUX";
11968 return elfcore_write_note (abfd, buf, bufsiz,
11969 note_name, NT_PPC_TM_CTAR, ppc_tm_ctar, size);
11970 }
11971
11972 char *
11973 elfcore_write_ppc_tm_cppr (bfd *abfd,
11974 char *buf,
11975 int *bufsiz,
11976 const void *ppc_tm_cppr,
11977 int size)
11978 {
11979 char *note_name = "LINUX";
11980 return elfcore_write_note (abfd, buf, bufsiz,
11981 note_name, NT_PPC_TM_CPPR, ppc_tm_cppr, size);
11982 }
11983
11984 char *
11985 elfcore_write_ppc_tm_cdscr (bfd *abfd,
11986 char *buf,
11987 int *bufsiz,
11988 const void *ppc_tm_cdscr,
11989 int size)
11990 {
11991 char *note_name = "LINUX";
11992 return elfcore_write_note (abfd, buf, bufsiz,
11993 note_name, NT_PPC_TM_CDSCR, ppc_tm_cdscr, size);
11994 }
11995
11996 static char *
11997 elfcore_write_s390_high_gprs (bfd *abfd,
11998 char *buf,
11999 int *bufsiz,
12000 const void *s390_high_gprs,
12001 int size)
12002 {
12003 char *note_name = "LINUX";
12004 return elfcore_write_note (abfd, buf, bufsiz,
12005 note_name, NT_S390_HIGH_GPRS,
12006 s390_high_gprs, size);
12007 }
12008
12009 char *
12010 elfcore_write_s390_timer (bfd *abfd,
12011 char *buf,
12012 int *bufsiz,
12013 const void *s390_timer,
12014 int size)
12015 {
12016 char *note_name = "LINUX";
12017 return elfcore_write_note (abfd, buf, bufsiz,
12018 note_name, NT_S390_TIMER, s390_timer, size);
12019 }
12020
12021 char *
12022 elfcore_write_s390_todcmp (bfd *abfd,
12023 char *buf,
12024 int *bufsiz,
12025 const void *s390_todcmp,
12026 int size)
12027 {
12028 char *note_name = "LINUX";
12029 return elfcore_write_note (abfd, buf, bufsiz,
12030 note_name, NT_S390_TODCMP, s390_todcmp, size);
12031 }
12032
12033 char *
12034 elfcore_write_s390_todpreg (bfd *abfd,
12035 char *buf,
12036 int *bufsiz,
12037 const void *s390_todpreg,
12038 int size)
12039 {
12040 char *note_name = "LINUX";
12041 return elfcore_write_note (abfd, buf, bufsiz,
12042 note_name, NT_S390_TODPREG, s390_todpreg, size);
12043 }
12044
12045 char *
12046 elfcore_write_s390_ctrs (bfd *abfd,
12047 char *buf,
12048 int *bufsiz,
12049 const void *s390_ctrs,
12050 int size)
12051 {
12052 char *note_name = "LINUX";
12053 return elfcore_write_note (abfd, buf, bufsiz,
12054 note_name, NT_S390_CTRS, s390_ctrs, size);
12055 }
12056
12057 char *
12058 elfcore_write_s390_prefix (bfd *abfd,
12059 char *buf,
12060 int *bufsiz,
12061 const void *s390_prefix,
12062 int size)
12063 {
12064 char *note_name = "LINUX";
12065 return elfcore_write_note (abfd, buf, bufsiz,
12066 note_name, NT_S390_PREFIX, s390_prefix, size);
12067 }
12068
12069 char *
12070 elfcore_write_s390_last_break (bfd *abfd,
12071 char *buf,
12072 int *bufsiz,
12073 const void *s390_last_break,
12074 int size)
12075 {
12076 char *note_name = "LINUX";
12077 return elfcore_write_note (abfd, buf, bufsiz,
12078 note_name, NT_S390_LAST_BREAK,
12079 s390_last_break, size);
12080 }
12081
12082 char *
12083 elfcore_write_s390_system_call (bfd *abfd,
12084 char *buf,
12085 int *bufsiz,
12086 const void *s390_system_call,
12087 int size)
12088 {
12089 char *note_name = "LINUX";
12090 return elfcore_write_note (abfd, buf, bufsiz,
12091 note_name, NT_S390_SYSTEM_CALL,
12092 s390_system_call, size);
12093 }
12094
12095 char *
12096 elfcore_write_s390_tdb (bfd *abfd,
12097 char *buf,
12098 int *bufsiz,
12099 const void *s390_tdb,
12100 int size)
12101 {
12102 char *note_name = "LINUX";
12103 return elfcore_write_note (abfd, buf, bufsiz,
12104 note_name, NT_S390_TDB, s390_tdb, size);
12105 }
12106
12107 char *
12108 elfcore_write_s390_vxrs_low (bfd *abfd,
12109 char *buf,
12110 int *bufsiz,
12111 const void *s390_vxrs_low,
12112 int size)
12113 {
12114 char *note_name = "LINUX";
12115 return elfcore_write_note (abfd, buf, bufsiz,
12116 note_name, NT_S390_VXRS_LOW, s390_vxrs_low, size);
12117 }
12118
12119 char *
12120 elfcore_write_s390_vxrs_high (bfd *abfd,
12121 char *buf,
12122 int *bufsiz,
12123 const void *s390_vxrs_high,
12124 int size)
12125 {
12126 char *note_name = "LINUX";
12127 return elfcore_write_note (abfd, buf, bufsiz,
12128 note_name, NT_S390_VXRS_HIGH,
12129 s390_vxrs_high, size);
12130 }
12131
12132 char *
12133 elfcore_write_s390_gs_cb (bfd *abfd,
12134 char *buf,
12135 int *bufsiz,
12136 const void *s390_gs_cb,
12137 int size)
12138 {
12139 char *note_name = "LINUX";
12140 return elfcore_write_note (abfd, buf, bufsiz,
12141 note_name, NT_S390_GS_CB,
12142 s390_gs_cb, size);
12143 }
12144
12145 char *
12146 elfcore_write_s390_gs_bc (bfd *abfd,
12147 char *buf,
12148 int *bufsiz,
12149 const void *s390_gs_bc,
12150 int size)
12151 {
12152 char *note_name = "LINUX";
12153 return elfcore_write_note (abfd, buf, bufsiz,
12154 note_name, NT_S390_GS_BC,
12155 s390_gs_bc, size);
12156 }
12157
12158 char *
12159 elfcore_write_arm_vfp (bfd *abfd,
12160 char *buf,
12161 int *bufsiz,
12162 const void *arm_vfp,
12163 int size)
12164 {
12165 char *note_name = "LINUX";
12166 return elfcore_write_note (abfd, buf, bufsiz,
12167 note_name, NT_ARM_VFP, arm_vfp, size);
12168 }
12169
12170 char *
12171 elfcore_write_aarch_tls (bfd *abfd,
12172 char *buf,
12173 int *bufsiz,
12174 const void *aarch_tls,
12175 int size)
12176 {
12177 char *note_name = "LINUX";
12178 return elfcore_write_note (abfd, buf, bufsiz,
12179 note_name, NT_ARM_TLS, aarch_tls, size);
12180 }
12181
12182 char *
12183 elfcore_write_aarch_hw_break (bfd *abfd,
12184 char *buf,
12185 int *bufsiz,
12186 const void *aarch_hw_break,
12187 int size)
12188 {
12189 char *note_name = "LINUX";
12190 return elfcore_write_note (abfd, buf, bufsiz,
12191 note_name, NT_ARM_HW_BREAK, aarch_hw_break, size);
12192 }
12193
12194 char *
12195 elfcore_write_aarch_hw_watch (bfd *abfd,
12196 char *buf,
12197 int *bufsiz,
12198 const void *aarch_hw_watch,
12199 int size)
12200 {
12201 char *note_name = "LINUX";
12202 return elfcore_write_note (abfd, buf, bufsiz,
12203 note_name, NT_ARM_HW_WATCH, aarch_hw_watch, size);
12204 }
12205
12206 char *
12207 elfcore_write_aarch_sve (bfd *abfd,
12208 char *buf,
12209 int *bufsiz,
12210 const void *aarch_sve,
12211 int size)
12212 {
12213 char *note_name = "LINUX";
12214 return elfcore_write_note (abfd, buf, bufsiz,
12215 note_name, NT_ARM_SVE, aarch_sve, size);
12216 }
12217
12218 char *
12219 elfcore_write_aarch_pauth (bfd *abfd,
12220 char *buf,
12221 int *bufsiz,
12222 const void *aarch_pauth,
12223 int size)
12224 {
12225 char *note_name = "LINUX";
12226 return elfcore_write_note (abfd, buf, bufsiz,
12227 note_name, NT_ARM_PAC_MASK, aarch_pauth, size);
12228 }
12229
12230 char *
12231 elfcore_write_aarch_mte (bfd *abfd,
12232 char *buf,
12233 int *bufsiz,
12234 const void *aarch_mte,
12235 int size)
12236 {
12237 char *note_name = "LINUX";
12238 return elfcore_write_note (abfd, buf, bufsiz,
12239 note_name, NT_ARM_TAGGED_ADDR_CTRL,
12240 aarch_mte,
12241 size);
12242 }
12243
12244 char *
12245 elfcore_write_arc_v2 (bfd *abfd,
12246 char *buf,
12247 int *bufsiz,
12248 const void *arc_v2,
12249 int size)
12250 {
12251 char *note_name = "LINUX";
12252 return elfcore_write_note (abfd, buf, bufsiz,
12253 note_name, NT_ARC_V2, arc_v2, size);
12254 }
12255
12256 char *
12257 elfcore_write_loongarch_cpucfg (bfd *abfd,
12258 char *buf,
12259 int *bufsiz,
12260 const void *loongarch_cpucfg,
12261 int size)
12262 {
12263 char *note_name = "LINUX";
12264 return elfcore_write_note (abfd, buf, bufsiz,
12265 note_name, NT_LARCH_CPUCFG,
12266 loongarch_cpucfg, size);
12267 }
12268
12269 char *
12270 elfcore_write_loongarch_lbt (bfd *abfd,
12271 char *buf,
12272 int *bufsiz,
12273 const void *loongarch_lbt,
12274 int size)
12275 {
12276 char *note_name = "LINUX";
12277 return elfcore_write_note (abfd, buf, bufsiz,
12278 note_name, NT_LARCH_LBT, loongarch_lbt, size);
12279 }
12280
12281 char *
12282 elfcore_write_loongarch_lsx (bfd *abfd,
12283 char *buf,
12284 int *bufsiz,
12285 const void *loongarch_lsx,
12286 int size)
12287 {
12288 char *note_name = "LINUX";
12289 return elfcore_write_note (abfd, buf, bufsiz,
12290 note_name, NT_LARCH_LSX, loongarch_lsx, size);
12291 }
12292
12293 char *
12294 elfcore_write_loongarch_lasx (bfd *abfd,
12295 char *buf,
12296 int *bufsiz,
12297 const void *loongarch_lasx,
12298 int size)
12299 {
12300 char *note_name = "LINUX";
12301 return elfcore_write_note (abfd, buf, bufsiz,
12302 note_name, NT_LARCH_LASX, loongarch_lasx, size);
12303 }
12304
12305 /* Write the buffer of csr values in CSRS (length SIZE) into the note
12306 buffer BUF and update *BUFSIZ. ABFD is the bfd the note is being
12307 written into. Return a pointer to the new start of the note buffer, to
12308 replace BUF which may no longer be valid. */
12309
12310 char *
12311 elfcore_write_riscv_csr (bfd *abfd,
12312 char *buf,
12313 int *bufsiz,
12314 const void *csrs,
12315 int size)
12316 {
12317 const char *note_name = "GDB";
12318 return elfcore_write_note (abfd, buf, bufsiz,
12319 note_name, NT_RISCV_CSR, csrs, size);
12320 }
12321
12322 /* Write the target description (a string) pointed to by TDESC, length
12323 SIZE, into the note buffer BUF, and update *BUFSIZ. ABFD is the bfd the
12324 note is being written into. Return a pointer to the new start of the
12325 note buffer, to replace BUF which may no longer be valid. */
12326
12327 char *
12328 elfcore_write_gdb_tdesc (bfd *abfd,
12329 char *buf,
12330 int *bufsiz,
12331 const void *tdesc,
12332 int size)
12333 {
12334 const char *note_name = "GDB";
12335 return elfcore_write_note (abfd, buf, bufsiz,
12336 note_name, NT_GDB_TDESC, tdesc, size);
12337 }
12338
12339 char *
12340 elfcore_write_register_note (bfd *abfd,
12341 char *buf,
12342 int *bufsiz,
12343 const char *section,
12344 const void *data,
12345 int size)
12346 {
12347 if (strcmp (section, ".reg2") == 0)
12348 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
12349 if (strcmp (section, ".reg-xfp") == 0)
12350 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
12351 if (strcmp (section, ".reg-xstate") == 0)
12352 return elfcore_write_xstatereg (abfd, buf, bufsiz, data, size);
12353 if (strcmp (section, ".reg-ppc-vmx") == 0)
12354 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
12355 if (strcmp (section, ".reg-ppc-vsx") == 0)
12356 return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size);
12357 if (strcmp (section, ".reg-ppc-tar") == 0)
12358 return elfcore_write_ppc_tar (abfd, buf, bufsiz, data, size);
12359 if (strcmp (section, ".reg-ppc-ppr") == 0)
12360 return elfcore_write_ppc_ppr (abfd, buf, bufsiz, data, size);
12361 if (strcmp (section, ".reg-ppc-dscr") == 0)
12362 return elfcore_write_ppc_dscr (abfd, buf, bufsiz, data, size);
12363 if (strcmp (section, ".reg-ppc-ebb") == 0)
12364 return elfcore_write_ppc_ebb (abfd, buf, bufsiz, data, size);
12365 if (strcmp (section, ".reg-ppc-pmu") == 0)
12366 return elfcore_write_ppc_pmu (abfd, buf, bufsiz, data, size);
12367 if (strcmp (section, ".reg-ppc-tm-cgpr") == 0)
12368 return elfcore_write_ppc_tm_cgpr (abfd, buf, bufsiz, data, size);
12369 if (strcmp (section, ".reg-ppc-tm-cfpr") == 0)
12370 return elfcore_write_ppc_tm_cfpr (abfd, buf, bufsiz, data, size);
12371 if (strcmp (section, ".reg-ppc-tm-cvmx") == 0)
12372 return elfcore_write_ppc_tm_cvmx (abfd, buf, bufsiz, data, size);
12373 if (strcmp (section, ".reg-ppc-tm-cvsx") == 0)
12374 return elfcore_write_ppc_tm_cvsx (abfd, buf, bufsiz, data, size);
12375 if (strcmp (section, ".reg-ppc-tm-spr") == 0)
12376 return elfcore_write_ppc_tm_spr (abfd, buf, bufsiz, data, size);
12377 if (strcmp (section, ".reg-ppc-tm-ctar") == 0)
12378 return elfcore_write_ppc_tm_ctar (abfd, buf, bufsiz, data, size);
12379 if (strcmp (section, ".reg-ppc-tm-cppr") == 0)
12380 return elfcore_write_ppc_tm_cppr (abfd, buf, bufsiz, data, size);
12381 if (strcmp (section, ".reg-ppc-tm-cdscr") == 0)
12382 return elfcore_write_ppc_tm_cdscr (abfd, buf, bufsiz, data, size);
12383 if (strcmp (section, ".reg-s390-high-gprs") == 0)
12384 return elfcore_write_s390_high_gprs (abfd, buf, bufsiz, data, size);
12385 if (strcmp (section, ".reg-s390-timer") == 0)
12386 return elfcore_write_s390_timer (abfd, buf, bufsiz, data, size);
12387 if (strcmp (section, ".reg-s390-todcmp") == 0)
12388 return elfcore_write_s390_todcmp (abfd, buf, bufsiz, data, size);
12389 if (strcmp (section, ".reg-s390-todpreg") == 0)
12390 return elfcore_write_s390_todpreg (abfd, buf, bufsiz, data, size);
12391 if (strcmp (section, ".reg-s390-ctrs") == 0)
12392 return elfcore_write_s390_ctrs (abfd, buf, bufsiz, data, size);
12393 if (strcmp (section, ".reg-s390-prefix") == 0)
12394 return elfcore_write_s390_prefix (abfd, buf, bufsiz, data, size);
12395 if (strcmp (section, ".reg-s390-last-break") == 0)
12396 return elfcore_write_s390_last_break (abfd, buf, bufsiz, data, size);
12397 if (strcmp (section, ".reg-s390-system-call") == 0)
12398 return elfcore_write_s390_system_call (abfd, buf, bufsiz, data, size);
12399 if (strcmp (section, ".reg-s390-tdb") == 0)
12400 return elfcore_write_s390_tdb (abfd, buf, bufsiz, data, size);
12401 if (strcmp (section, ".reg-s390-vxrs-low") == 0)
12402 return elfcore_write_s390_vxrs_low (abfd, buf, bufsiz, data, size);
12403 if (strcmp (section, ".reg-s390-vxrs-high") == 0)
12404 return elfcore_write_s390_vxrs_high (abfd, buf, bufsiz, data, size);
12405 if (strcmp (section, ".reg-s390-gs-cb") == 0)
12406 return elfcore_write_s390_gs_cb (abfd, buf, bufsiz, data, size);
12407 if (strcmp (section, ".reg-s390-gs-bc") == 0)
12408 return elfcore_write_s390_gs_bc (abfd, buf, bufsiz, data, size);
12409 if (strcmp (section, ".reg-arm-vfp") == 0)
12410 return elfcore_write_arm_vfp (abfd, buf, bufsiz, data, size);
12411 if (strcmp (section, ".reg-aarch-tls") == 0)
12412 return elfcore_write_aarch_tls (abfd, buf, bufsiz, data, size);
12413 if (strcmp (section, ".reg-aarch-hw-break") == 0)
12414 return elfcore_write_aarch_hw_break (abfd, buf, bufsiz, data, size);
12415 if (strcmp (section, ".reg-aarch-hw-watch") == 0)
12416 return elfcore_write_aarch_hw_watch (abfd, buf, bufsiz, data, size);
12417 if (strcmp (section, ".reg-aarch-sve") == 0)
12418 return elfcore_write_aarch_sve (abfd, buf, bufsiz, data, size);
12419 if (strcmp (section, ".reg-aarch-pauth") == 0)
12420 return elfcore_write_aarch_pauth (abfd, buf, bufsiz, data, size);
12421 if (strcmp (section, ".reg-aarch-mte") == 0)
12422 return elfcore_write_aarch_mte (abfd, buf, bufsiz, data, size);
12423 if (strcmp (section, ".reg-arc-v2") == 0)
12424 return elfcore_write_arc_v2 (abfd, buf, bufsiz, data, size);
12425 if (strcmp (section, ".gdb-tdesc") == 0)
12426 return elfcore_write_gdb_tdesc (abfd, buf, bufsiz, data, size);
12427 if (strcmp (section, ".reg-riscv-csr") == 0)
12428 return elfcore_write_riscv_csr (abfd, buf, bufsiz, data, size);
12429 if (strcmp (section, ".reg-loongarch-cpucfg") == 0)
12430 return elfcore_write_loongarch_cpucfg (abfd, buf, bufsiz, data, size);
12431 if (strcmp (section, ".reg-loongarch-lbt") == 0)
12432 return elfcore_write_loongarch_lbt (abfd, buf, bufsiz, data, size);
12433 if (strcmp (section, ".reg-loongarch-lsx") == 0)
12434 return elfcore_write_loongarch_lsx (abfd, buf, bufsiz, data, size);
12435 if (strcmp (section, ".reg-loongarch-lasx") == 0)
12436 return elfcore_write_loongarch_lasx (abfd, buf, bufsiz, data, size);
12437 return NULL;
12438 }
12439
12440 char *
12441 elfcore_write_file_note (bfd *obfd, char *note_data, int *note_size,
12442 const void *buf, int bufsiz)
12443 {
12444 return elfcore_write_note (obfd, note_data, note_size,
12445 "CORE", NT_FILE, buf, bufsiz);
12446 }
12447
12448 static bool
12449 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset,
12450 size_t align)
12451 {
12452 char *p;
12453
12454 /* NB: CORE PT_NOTE segments may have p_align values of 0 or 1.
12455 gABI specifies that PT_NOTE alignment should be aligned to 4
12456 bytes for 32-bit objects and to 8 bytes for 64-bit objects. If
12457 align is less than 4, we use 4 byte alignment. */
12458 if (align < 4)
12459 align = 4;
12460 if (align != 4 && align != 8)
12461 return false;
12462
12463 p = buf;
12464 while (p < buf + size)
12465 {
12466 Elf_External_Note *xnp = (Elf_External_Note *) p;
12467 Elf_Internal_Note in;
12468
12469 if (offsetof (Elf_External_Note, name) > buf - p + size)
12470 return false;
12471
12472 in.type = H_GET_32 (abfd, xnp->type);
12473
12474 in.namesz = H_GET_32 (abfd, xnp->namesz);
12475 in.namedata = xnp->name;
12476 if (in.namesz > buf - in.namedata + size)
12477 return false;
12478
12479 in.descsz = H_GET_32 (abfd, xnp->descsz);
12480 in.descdata = p + ELF_NOTE_DESC_OFFSET (in.namesz, align);
12481 in.descpos = offset + (in.descdata - buf);
12482 if (in.descsz != 0
12483 && (in.descdata >= buf + size
12484 || in.descsz > buf - in.descdata + size))
12485 return false;
12486
12487 switch (bfd_get_format (abfd))
12488 {
12489 default:
12490 return true;
12491
12492 case bfd_core:
12493 {
12494 #define GROKER_ELEMENT(S,F) {S, sizeof (S) - 1, F}
12495 struct
12496 {
12497 const char * string;
12498 size_t len;
12499 bool (*func) (bfd *, Elf_Internal_Note *);
12500 }
12501 grokers[] =
12502 {
12503 GROKER_ELEMENT ("", elfcore_grok_note),
12504 GROKER_ELEMENT ("FreeBSD", elfcore_grok_freebsd_note),
12505 GROKER_ELEMENT ("NetBSD-CORE", elfcore_grok_netbsd_note),
12506 GROKER_ELEMENT ("OpenBSD", elfcore_grok_openbsd_note),
12507 GROKER_ELEMENT ("QNX", elfcore_grok_nto_note),
12508 GROKER_ELEMENT ("SPU/", elfcore_grok_spu_note),
12509 GROKER_ELEMENT ("GNU", elfobj_grok_gnu_note),
12510 GROKER_ELEMENT ("CORE", elfcore_grok_solaris_note)
12511 };
12512 #undef GROKER_ELEMENT
12513 int i;
12514
12515 for (i = ARRAY_SIZE (grokers); i--;)
12516 {
12517 if (in.namesz >= grokers[i].len
12518 && strncmp (in.namedata, grokers[i].string,
12519 grokers[i].len) == 0)
12520 {
12521 if (! grokers[i].func (abfd, & in))
12522 return false;
12523 break;
12524 }
12525 }
12526 break;
12527 }
12528
12529 case bfd_object:
12530 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
12531 {
12532 if (! elfobj_grok_gnu_note (abfd, &in))
12533 return false;
12534 }
12535 else if (in.namesz == sizeof "stapsdt"
12536 && strcmp (in.namedata, "stapsdt") == 0)
12537 {
12538 if (! elfobj_grok_stapsdt_note (abfd, &in))
12539 return false;
12540 }
12541 break;
12542 }
12543
12544 p += ELF_NOTE_NEXT_OFFSET (in.namesz, in.descsz, align);
12545 }
12546
12547 return true;
12548 }
12549
12550 bool
12551 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size,
12552 size_t align)
12553 {
12554 char *buf;
12555
12556 if (size == 0 || (size + 1) == 0)
12557 return true;
12558
12559 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
12560 return false;
12561
12562 buf = (char *) _bfd_malloc_and_read (abfd, size + 1, size);
12563 if (buf == NULL)
12564 return false;
12565
12566 /* PR 17512: file: ec08f814
12567 0-termintate the buffer so that string searches will not overflow. */
12568 buf[size] = 0;
12569
12570 if (!elf_parse_notes (abfd, buf, size, offset, align))
12571 {
12572 free (buf);
12573 return false;
12574 }
12575
12576 free (buf);
12577 return true;
12578 }
12579 \f
12580 /* Providing external access to the ELF program header table. */
12581
12582 /* Return an upper bound on the number of bytes required to store a
12583 copy of ABFD's program header table entries. Return -1 if an error
12584 occurs; bfd_get_error will return an appropriate code. */
12585
12586 long
12587 bfd_get_elf_phdr_upper_bound (bfd *abfd)
12588 {
12589 if (abfd->xvec->flavour != bfd_target_elf_flavour)
12590 {
12591 bfd_set_error (bfd_error_wrong_format);
12592 return -1;
12593 }
12594
12595 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
12596 }
12597
12598 /* Copy ABFD's program header table entries to *PHDRS. The entries
12599 will be stored as an array of Elf_Internal_Phdr structures, as
12600 defined in include/elf/internal.h. To find out how large the
12601 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
12602
12603 Return the number of program header table entries read, or -1 if an
12604 error occurs; bfd_get_error will return an appropriate code. */
12605
12606 int
12607 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
12608 {
12609 int num_phdrs;
12610
12611 if (abfd->xvec->flavour != bfd_target_elf_flavour)
12612 {
12613 bfd_set_error (bfd_error_wrong_format);
12614 return -1;
12615 }
12616
12617 num_phdrs = elf_elfheader (abfd)->e_phnum;
12618 if (num_phdrs != 0)
12619 memcpy (phdrs, elf_tdata (abfd)->phdr,
12620 num_phdrs * sizeof (Elf_Internal_Phdr));
12621
12622 return num_phdrs;
12623 }
12624
12625 enum elf_reloc_type_class
12626 _bfd_elf_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
12627 const asection *rel_sec ATTRIBUTE_UNUSED,
12628 const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
12629 {
12630 return reloc_class_normal;
12631 }
12632
12633 /* For RELA architectures, return the relocation value for a
12634 relocation against a local symbol. */
12635
12636 bfd_vma
12637 _bfd_elf_rela_local_sym (bfd *abfd,
12638 Elf_Internal_Sym *sym,
12639 asection **psec,
12640 Elf_Internal_Rela *rel)
12641 {
12642 asection *sec = *psec;
12643 bfd_vma relocation;
12644
12645 relocation = (sec->output_section->vma
12646 + sec->output_offset
12647 + sym->st_value);
12648 if ((sec->flags & SEC_MERGE)
12649 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
12650 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
12651 {
12652 rel->r_addend =
12653 _bfd_merged_section_offset (abfd, psec,
12654 elf_section_data (sec)->sec_info,
12655 sym->st_value + rel->r_addend);
12656 if (sec != *psec)
12657 {
12658 /* If we have changed the section, and our original section is
12659 marked with SEC_EXCLUDE, it means that the original
12660 SEC_MERGE section has been completely subsumed in some
12661 other SEC_MERGE section. In this case, we need to leave
12662 some info around for --emit-relocs. */
12663 if ((sec->flags & SEC_EXCLUDE) != 0)
12664 sec->kept_section = *psec;
12665 sec = *psec;
12666 }
12667 rel->r_addend -= relocation;
12668 rel->r_addend += sec->output_section->vma + sec->output_offset;
12669 }
12670 return relocation;
12671 }
12672
12673 bfd_vma
12674 _bfd_elf_rel_local_sym (bfd *abfd,
12675 Elf_Internal_Sym *sym,
12676 asection **psec,
12677 bfd_vma addend)
12678 {
12679 asection *sec = *psec;
12680
12681 if (sec->sec_info_type != SEC_INFO_TYPE_MERGE)
12682 return sym->st_value + addend;
12683
12684 return _bfd_merged_section_offset (abfd, psec,
12685 elf_section_data (sec)->sec_info,
12686 sym->st_value + addend);
12687 }
12688
12689 /* Adjust an address within a section. Given OFFSET within SEC, return
12690 the new offset within the section, based upon changes made to the
12691 section. Returns -1 if the offset is now invalid.
12692 The offset (in abnd out) is in target sized bytes, however big a
12693 byte may be. */
12694
12695 bfd_vma
12696 _bfd_elf_section_offset (bfd *abfd,
12697 struct bfd_link_info *info,
12698 asection *sec,
12699 bfd_vma offset)
12700 {
12701 switch (sec->sec_info_type)
12702 {
12703 case SEC_INFO_TYPE_STABS:
12704 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
12705 offset);
12706 case SEC_INFO_TYPE_EH_FRAME:
12707 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
12708
12709 default:
12710 if ((sec->flags & SEC_ELF_REVERSE_COPY) != 0)
12711 {
12712 /* Reverse the offset. */
12713 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12714 bfd_size_type address_size = bed->s->arch_size / 8;
12715
12716 /* address_size and sec->size are in octets. Convert
12717 to bytes before subtracting the original offset. */
12718 offset = ((sec->size - address_size)
12719 / bfd_octets_per_byte (abfd, sec) - offset);
12720 }
12721 return offset;
12722 }
12723 }
12724 \f
12725 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
12726 reconstruct an ELF file by reading the segments out of remote memory
12727 based on the ELF file header at EHDR_VMA and the ELF program headers it
12728 points to. If not null, *LOADBASEP is filled in with the difference
12729 between the VMAs from which the segments were read, and the VMAs the
12730 file headers (and hence BFD's idea of each section's VMA) put them at.
12731
12732 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
12733 remote memory at target address VMA into the local buffer at MYADDR; it
12734 should return zero on success or an `errno' code on failure. TEMPL must
12735 be a BFD for an ELF target with the word size and byte order found in
12736 the remote memory. */
12737
12738 bfd *
12739 bfd_elf_bfd_from_remote_memory
12740 (bfd *templ,
12741 bfd_vma ehdr_vma,
12742 bfd_size_type size,
12743 bfd_vma *loadbasep,
12744 int (*target_read_memory) (bfd_vma, bfd_byte *, bfd_size_type))
12745 {
12746 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
12747 (templ, ehdr_vma, size, loadbasep, target_read_memory);
12748 }
12749 \f
12750 long
12751 _bfd_elf_get_synthetic_symtab (bfd *abfd,
12752 long symcount ATTRIBUTE_UNUSED,
12753 asymbol **syms ATTRIBUTE_UNUSED,
12754 long dynsymcount,
12755 asymbol **dynsyms,
12756 asymbol **ret)
12757 {
12758 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12759 asection *relplt;
12760 asymbol *s;
12761 const char *relplt_name;
12762 bool (*slurp_relocs) (bfd *, asection *, asymbol **, bool);
12763 arelent *p;
12764 long count, i, n;
12765 size_t size;
12766 Elf_Internal_Shdr *hdr;
12767 char *names;
12768 asection *plt;
12769
12770 *ret = NULL;
12771
12772 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
12773 return 0;
12774
12775 if (dynsymcount <= 0)
12776 return 0;
12777
12778 if (!bed->plt_sym_val)
12779 return 0;
12780
12781 relplt_name = bed->relplt_name;
12782 if (relplt_name == NULL)
12783 relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt";
12784 relplt = bfd_get_section_by_name (abfd, relplt_name);
12785 if (relplt == NULL)
12786 return 0;
12787
12788 hdr = &elf_section_data (relplt)->this_hdr;
12789 if (hdr->sh_link != elf_dynsymtab (abfd)
12790 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
12791 return 0;
12792
12793 plt = bfd_get_section_by_name (abfd, ".plt");
12794 if (plt == NULL)
12795 return 0;
12796
12797 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
12798 if (! (*slurp_relocs) (abfd, relplt, dynsyms, true))
12799 return -1;
12800
12801 count = relplt->size / hdr->sh_entsize;
12802 size = count * sizeof (asymbol);
12803 p = relplt->relocation;
12804 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
12805 {
12806 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
12807 if (p->addend != 0)
12808 {
12809 #ifdef BFD64
12810 size += sizeof ("+0x") - 1 + 8 + 8 * (bed->s->elfclass == ELFCLASS64);
12811 #else
12812 size += sizeof ("+0x") - 1 + 8;
12813 #endif
12814 }
12815 }
12816
12817 s = *ret = (asymbol *) bfd_malloc (size);
12818 if (s == NULL)
12819 return -1;
12820
12821 names = (char *) (s + count);
12822 p = relplt->relocation;
12823 n = 0;
12824 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
12825 {
12826 size_t len;
12827 bfd_vma addr;
12828
12829 addr = bed->plt_sym_val (i, plt, p);
12830 if (addr == (bfd_vma) -1)
12831 continue;
12832
12833 *s = **p->sym_ptr_ptr;
12834 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
12835 we are defining a symbol, ensure one of them is set. */
12836 if ((s->flags & BSF_LOCAL) == 0)
12837 s->flags |= BSF_GLOBAL;
12838 s->flags |= BSF_SYNTHETIC;
12839 s->section = plt;
12840 s->value = addr - plt->vma;
12841 s->name = names;
12842 s->udata.p = NULL;
12843 len = strlen ((*p->sym_ptr_ptr)->name);
12844 memcpy (names, (*p->sym_ptr_ptr)->name, len);
12845 names += len;
12846 if (p->addend != 0)
12847 {
12848 char buf[30], *a;
12849
12850 memcpy (names, "+0x", sizeof ("+0x") - 1);
12851 names += sizeof ("+0x") - 1;
12852 bfd_sprintf_vma (abfd, buf, p->addend);
12853 for (a = buf; *a == '0'; ++a)
12854 ;
12855 len = strlen (a);
12856 memcpy (names, a, len);
12857 names += len;
12858 }
12859 memcpy (names, "@plt", sizeof ("@plt"));
12860 names += sizeof ("@plt");
12861 ++s, ++n;
12862 }
12863
12864 return n;
12865 }
12866
12867 /* It is only used by x86-64 so far.
12868 ??? This repeats *COM* id of zero. sec->id is supposed to be unique,
12869 but current usage would allow all of _bfd_std_section to be zero. */
12870 static const asymbol lcomm_sym
12871 = GLOBAL_SYM_INIT ("LARGE_COMMON", &_bfd_elf_large_com_section);
12872 asection _bfd_elf_large_com_section
12873 = BFD_FAKE_SECTION (_bfd_elf_large_com_section, &lcomm_sym,
12874 "LARGE_COMMON", 0, SEC_IS_COMMON);
12875
12876 bool
12877 _bfd_elf_final_write_processing (bfd *abfd)
12878 {
12879 Elf_Internal_Ehdr *i_ehdrp; /* ELF file header, internal form. */
12880
12881 i_ehdrp = elf_elfheader (abfd);
12882
12883 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE)
12884 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
12885
12886 /* Set the osabi field to ELFOSABI_GNU if the binary contains
12887 SHF_GNU_MBIND or SHF_GNU_RETAIN sections or symbols of STT_GNU_IFUNC type
12888 or STB_GNU_UNIQUE binding. */
12889 if (elf_tdata (abfd)->has_gnu_osabi != 0)
12890 {
12891 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE)
12892 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_GNU;
12893 else if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_GNU
12894 && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_FREEBSD)
12895 {
12896 if (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_mbind)
12897 _bfd_error_handler (_("GNU_MBIND section is supported only by GNU "
12898 "and FreeBSD targets"));
12899 if (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_ifunc)
12900 _bfd_error_handler (_("symbol type STT_GNU_IFUNC is supported "
12901 "only by GNU and FreeBSD targets"));
12902 if (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_unique)
12903 _bfd_error_handler (_("symbol binding STB_GNU_UNIQUE is supported "
12904 "only by GNU and FreeBSD targets"));
12905 if (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_retain)
12906 _bfd_error_handler (_("GNU_RETAIN section is supported "
12907 "only by GNU and FreeBSD targets"));
12908 bfd_set_error (bfd_error_sorry);
12909 return false;
12910 }
12911 }
12912 return true;
12913 }
12914
12915
12916 /* Return TRUE for ELF symbol types that represent functions.
12917 This is the default version of this function, which is sufficient for
12918 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */
12919
12920 bool
12921 _bfd_elf_is_function_type (unsigned int type)
12922 {
12923 return (type == STT_FUNC
12924 || type == STT_GNU_IFUNC);
12925 }
12926
12927 /* If the ELF symbol SYM might be a function in SEC, return the
12928 function size and set *CODE_OFF to the function's entry point,
12929 otherwise return zero. */
12930
12931 bfd_size_type
12932 _bfd_elf_maybe_function_sym (const asymbol *sym, asection *sec,
12933 bfd_vma *code_off)
12934 {
12935 bfd_size_type size;
12936 elf_symbol_type * elf_sym = (elf_symbol_type *) sym;
12937
12938 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
12939 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0
12940 || sym->section != sec)
12941 return 0;
12942
12943 size = (sym->flags & BSF_SYNTHETIC) ? 0 : elf_sym->internal_elf_sym.st_size;
12944
12945 /* In theory we should check that the symbol's type satisfies
12946 _bfd_elf_is_function_type(), but there are some function-like
12947 symbols which would fail this test. (eg _start). Instead
12948 we check for hidden, local, notype symbols with zero size.
12949 This type of symbol is generated by the annobin plugin for gcc
12950 and clang, and should not be considered to be a function symbol. */
12951 if (size == 0
12952 && ((sym->flags & (BSF_SYNTHETIC | BSF_LOCAL)) == BSF_LOCAL)
12953 && ELF_ST_TYPE (elf_sym->internal_elf_sym.st_info) == STT_NOTYPE
12954 && ELF_ST_VISIBILITY (elf_sym->internal_elf_sym.st_other) == STV_HIDDEN)
12955 return 0;
12956
12957 *code_off = sym->value;
12958 /* Do not return 0 for the function's size. */
12959 return size ? size : 1;
12960 }
12961
12962 /* Set to non-zero to enable some debug messages. */
12963 #define DEBUG_SECONDARY_RELOCS 0
12964
12965 /* An internal-to-the-bfd-library only section type
12966 used to indicate a cached secondary reloc section. */
12967 #define SHT_SECONDARY_RELOC (SHT_LOOS + SHT_RELA)
12968
12969 /* Create a BFD section to hold a secondary reloc section. */
12970
12971 bool
12972 _bfd_elf_init_secondary_reloc_section (bfd * abfd,
12973 Elf_Internal_Shdr *hdr,
12974 const char * name,
12975 unsigned int shindex)
12976 {
12977 /* We only support RELA secondary relocs. */
12978 if (hdr->sh_type != SHT_RELA)
12979 return false;
12980
12981 #if DEBUG_SECONDARY_RELOCS
12982 fprintf (stderr, "secondary reloc section %s encountered\n", name);
12983 #endif
12984 hdr->sh_type = SHT_SECONDARY_RELOC;
12985 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
12986 }
12987
12988 /* Read in any secondary relocs associated with SEC. */
12989
12990 bool
12991 _bfd_elf_slurp_secondary_reloc_section (bfd * abfd,
12992 asection * sec,
12993 asymbol ** symbols,
12994 bool dynamic)
12995 {
12996 const struct elf_backend_data * const ebd = get_elf_backend_data (abfd);
12997 asection * relsec;
12998 bool result = true;
12999 bfd_vma (*r_sym) (bfd_vma);
13000
13001 #if BFD_DEFAULT_TARGET_SIZE > 32
13002 if (bfd_arch_bits_per_address (abfd) != 32)
13003 r_sym = elf64_r_sym;
13004 else
13005 #endif
13006 r_sym = elf32_r_sym;
13007
13008 if (!elf_section_data (sec)->has_secondary_relocs)
13009 return true;
13010
13011 /* Discover if there are any secondary reloc sections
13012 associated with SEC. */
13013 for (relsec = abfd->sections; relsec != NULL; relsec = relsec->next)
13014 {
13015 Elf_Internal_Shdr * hdr = & elf_section_data (relsec)->this_hdr;
13016
13017 if (hdr->sh_type == SHT_SECONDARY_RELOC
13018 && hdr->sh_info == (unsigned) elf_section_data (sec)->this_idx
13019 && (hdr->sh_entsize == ebd->s->sizeof_rel
13020 || hdr->sh_entsize == ebd->s->sizeof_rela))
13021 {
13022 bfd_byte * native_relocs;
13023 bfd_byte * native_reloc;
13024 arelent * internal_relocs;
13025 arelent * internal_reloc;
13026 unsigned int i;
13027 unsigned int entsize;
13028 unsigned int symcount;
13029 unsigned int reloc_count;
13030 size_t amt;
13031
13032 if (ebd->elf_info_to_howto == NULL)
13033 return false;
13034
13035 #if DEBUG_SECONDARY_RELOCS
13036 fprintf (stderr, "read secondary relocs for %s from %s\n",
13037 sec->name, relsec->name);
13038 #endif
13039 entsize = hdr->sh_entsize;
13040
13041 native_relocs = bfd_malloc (hdr->sh_size);
13042 if (native_relocs == NULL)
13043 {
13044 result = false;
13045 continue;
13046 }
13047
13048 reloc_count = NUM_SHDR_ENTRIES (hdr);
13049 if (_bfd_mul_overflow (reloc_count, sizeof (arelent), & amt))
13050 {
13051 free (native_relocs);
13052 bfd_set_error (bfd_error_file_too_big);
13053 result = false;
13054 continue;
13055 }
13056
13057 internal_relocs = (arelent *) bfd_alloc (abfd, amt);
13058 if (internal_relocs == NULL)
13059 {
13060 free (native_relocs);
13061 result = false;
13062 continue;
13063 }
13064
13065 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
13066 || (bfd_bread (native_relocs, hdr->sh_size, abfd)
13067 != hdr->sh_size))
13068 {
13069 free (native_relocs);
13070 /* The internal_relocs will be freed when
13071 the memory for the bfd is released. */
13072 result = false;
13073 continue;
13074 }
13075
13076 if (dynamic)
13077 symcount = bfd_get_dynamic_symcount (abfd);
13078 else
13079 symcount = bfd_get_symcount (abfd);
13080
13081 for (i = 0, internal_reloc = internal_relocs,
13082 native_reloc = native_relocs;
13083 i < reloc_count;
13084 i++, internal_reloc++, native_reloc += entsize)
13085 {
13086 bool res;
13087 Elf_Internal_Rela rela;
13088
13089 if (entsize == ebd->s->sizeof_rel)
13090 ebd->s->swap_reloc_in (abfd, native_reloc, & rela);
13091 else /* entsize == ebd->s->sizeof_rela */
13092 ebd->s->swap_reloca_in (abfd, native_reloc, & rela);
13093
13094 /* The address of an ELF reloc is section relative for an object
13095 file, and absolute for an executable file or shared library.
13096 The address of a normal BFD reloc is always section relative,
13097 and the address of a dynamic reloc is absolute.. */
13098 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
13099 internal_reloc->address = rela.r_offset;
13100 else
13101 internal_reloc->address = rela.r_offset - sec->vma;
13102
13103 if (r_sym (rela.r_info) == STN_UNDEF)
13104 {
13105 /* FIXME: This and the error case below mean that we
13106 have a symbol on relocs that is not elf_symbol_type. */
13107 internal_reloc->sym_ptr_ptr =
13108 bfd_abs_section_ptr->symbol_ptr_ptr;
13109 }
13110 else if (r_sym (rela.r_info) > symcount)
13111 {
13112 _bfd_error_handler
13113 /* xgettext:c-format */
13114 (_("%pB(%pA): relocation %d has invalid symbol index %ld"),
13115 abfd, sec, i, (long) r_sym (rela.r_info));
13116 bfd_set_error (bfd_error_bad_value);
13117 internal_reloc->sym_ptr_ptr =
13118 bfd_abs_section_ptr->symbol_ptr_ptr;
13119 result = false;
13120 }
13121 else
13122 {
13123 asymbol **ps;
13124
13125 ps = symbols + r_sym (rela.r_info) - 1;
13126 internal_reloc->sym_ptr_ptr = ps;
13127 /* Make sure that this symbol is not removed by strip. */
13128 (*ps)->flags |= BSF_KEEP;
13129 }
13130
13131 internal_reloc->addend = rela.r_addend;
13132
13133 res = ebd->elf_info_to_howto (abfd, internal_reloc, & rela);
13134 if (! res || internal_reloc->howto == NULL)
13135 {
13136 #if DEBUG_SECONDARY_RELOCS
13137 fprintf (stderr, "there is no howto associated with reloc %lx\n",
13138 rela.r_info);
13139 #endif
13140 result = false;
13141 }
13142 }
13143
13144 free (native_relocs);
13145 /* Store the internal relocs. */
13146 elf_section_data (relsec)->sec_info = internal_relocs;
13147 }
13148 }
13149
13150 return result;
13151 }
13152
13153 /* Set the ELF section header fields of an output secondary reloc section. */
13154
13155 bool
13156 _bfd_elf_copy_special_section_fields (const bfd * ibfd ATTRIBUTE_UNUSED,
13157 bfd * obfd ATTRIBUTE_UNUSED,
13158 const Elf_Internal_Shdr * isection,
13159 Elf_Internal_Shdr * osection)
13160 {
13161 asection * isec;
13162 asection * osec;
13163 struct bfd_elf_section_data * esd;
13164
13165 if (isection == NULL)
13166 return false;
13167
13168 if (isection->sh_type != SHT_SECONDARY_RELOC)
13169 return true;
13170
13171 isec = isection->bfd_section;
13172 if (isec == NULL)
13173 return false;
13174
13175 osec = osection->bfd_section;
13176 if (osec == NULL)
13177 return false;
13178
13179 esd = elf_section_data (osec);
13180 BFD_ASSERT (esd->sec_info == NULL);
13181 esd->sec_info = elf_section_data (isec)->sec_info;
13182 osection->sh_type = SHT_RELA;
13183 osection->sh_link = elf_onesymtab (obfd);
13184 if (osection->sh_link == 0)
13185 {
13186 /* There is no symbol table - we are hosed... */
13187 _bfd_error_handler
13188 /* xgettext:c-format */
13189 (_("%pB(%pA): link section cannot be set because the output file does not have a symbol table"),
13190 obfd, osec);
13191 bfd_set_error (bfd_error_bad_value);
13192 return false;
13193 }
13194
13195 /* Find the output section that corresponds to the isection's sh_info link. */
13196 if (isection->sh_info == 0
13197 || isection->sh_info >= elf_numsections (ibfd))
13198 {
13199 _bfd_error_handler
13200 /* xgettext:c-format */
13201 (_("%pB(%pA): info section index is invalid"),
13202 obfd, osec);
13203 bfd_set_error (bfd_error_bad_value);
13204 return false;
13205 }
13206
13207 isection = elf_elfsections (ibfd)[isection->sh_info];
13208
13209 if (isection == NULL
13210 || isection->bfd_section == NULL
13211 || isection->bfd_section->output_section == NULL)
13212 {
13213 _bfd_error_handler
13214 /* xgettext:c-format */
13215 (_("%pB(%pA): info section index cannot be set because the section is not in the output"),
13216 obfd, osec);
13217 bfd_set_error (bfd_error_bad_value);
13218 return false;
13219 }
13220
13221 esd = elf_section_data (isection->bfd_section->output_section);
13222 BFD_ASSERT (esd != NULL);
13223 osection->sh_info = esd->this_idx;
13224 esd->has_secondary_relocs = true;
13225 #if DEBUG_SECONDARY_RELOCS
13226 fprintf (stderr, "update header of %s, sh_link = %u, sh_info = %u\n",
13227 osec->name, osection->sh_link, osection->sh_info);
13228 fprintf (stderr, "mark section %s as having secondary relocs\n",
13229 bfd_section_name (isection->bfd_section->output_section));
13230 #endif
13231
13232 return true;
13233 }
13234
13235 /* Write out a secondary reloc section.
13236
13237 FIXME: Currently this function can result in a serious performance penalty
13238 for files with secondary relocs and lots of sections. The proper way to
13239 fix this is for _bfd_elf_copy_special_section_fields() to chain secondary
13240 relocs together and then to have this function just walk that chain. */
13241
13242 bool
13243 _bfd_elf_write_secondary_reloc_section (bfd *abfd, asection *sec)
13244 {
13245 const struct elf_backend_data * const ebd = get_elf_backend_data (abfd);
13246 bfd_vma addr_offset;
13247 asection * relsec;
13248 bfd_vma (*r_info) (bfd_vma, bfd_vma);
13249 bool result = true;
13250
13251 if (sec == NULL)
13252 return false;
13253
13254 #if BFD_DEFAULT_TARGET_SIZE > 32
13255 if (bfd_arch_bits_per_address (abfd) != 32)
13256 r_info = elf64_r_info;
13257 else
13258 #endif
13259 r_info = elf32_r_info;
13260
13261 /* The address of an ELF reloc is section relative for an object
13262 file, and absolute for an executable file or shared library.
13263 The address of a BFD reloc is always section relative. */
13264 addr_offset = 0;
13265 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
13266 addr_offset = sec->vma;
13267
13268 /* Discover if there are any secondary reloc sections
13269 associated with SEC. */
13270 for (relsec = abfd->sections; relsec != NULL; relsec = relsec->next)
13271 {
13272 const struct bfd_elf_section_data * const esd = elf_section_data (relsec);
13273 Elf_Internal_Shdr * const hdr = (Elf_Internal_Shdr *) & esd->this_hdr;
13274
13275 if (hdr->sh_type == SHT_RELA
13276 && hdr->sh_info == (unsigned) elf_section_data (sec)->this_idx)
13277 {
13278 asymbol * last_sym;
13279 int last_sym_idx;
13280 unsigned int reloc_count;
13281 unsigned int idx;
13282 unsigned int entsize;
13283 arelent * src_irel;
13284 bfd_byte * dst_rela;
13285
13286 if (hdr->contents != NULL)
13287 {
13288 _bfd_error_handler
13289 /* xgettext:c-format */
13290 (_("%pB(%pA): error: secondary reloc section processed twice"),
13291 abfd, relsec);
13292 bfd_set_error (bfd_error_bad_value);
13293 result = false;
13294 continue;
13295 }
13296
13297 entsize = hdr->sh_entsize;
13298 if (entsize == 0)
13299 {
13300 _bfd_error_handler
13301 /* xgettext:c-format */
13302 (_("%pB(%pA): error: secondary reloc section has zero sized entries"),
13303 abfd, relsec);
13304 bfd_set_error (bfd_error_bad_value);
13305 result = false;
13306 continue;
13307 }
13308 else if (entsize != ebd->s->sizeof_rel
13309 && entsize != ebd->s->sizeof_rela)
13310 {
13311 _bfd_error_handler
13312 /* xgettext:c-format */
13313 (_("%pB(%pA): error: secondary reloc section has non-standard sized entries"),
13314 abfd, relsec);
13315 bfd_set_error (bfd_error_bad_value);
13316 result = false;
13317 continue;
13318 }
13319
13320 reloc_count = hdr->sh_size / entsize;
13321 if (reloc_count <= 0)
13322 {
13323 _bfd_error_handler
13324 /* xgettext:c-format */
13325 (_("%pB(%pA): error: secondary reloc section is empty!"),
13326 abfd, relsec);
13327 bfd_set_error (bfd_error_bad_value);
13328 result = false;
13329 continue;
13330 }
13331
13332 hdr->contents = bfd_alloc (abfd, hdr->sh_size);
13333 if (hdr->contents == NULL)
13334 continue;
13335
13336 #if DEBUG_SECONDARY_RELOCS
13337 fprintf (stderr, "write %u secondary relocs for %s from %s\n",
13338 reloc_count, sec->name, relsec->name);
13339 #endif
13340 last_sym = NULL;
13341 last_sym_idx = 0;
13342 dst_rela = hdr->contents;
13343 src_irel = (arelent *) esd->sec_info;
13344 if (src_irel == NULL)
13345 {
13346 _bfd_error_handler
13347 /* xgettext:c-format */
13348 (_("%pB(%pA): error: internal relocs missing for secondary reloc section"),
13349 abfd, relsec);
13350 bfd_set_error (bfd_error_bad_value);
13351 result = false;
13352 continue;
13353 }
13354
13355 for (idx = 0; idx < reloc_count; idx++, dst_rela += entsize)
13356 {
13357 Elf_Internal_Rela src_rela;
13358 arelent *ptr;
13359 asymbol *sym;
13360 int n;
13361
13362 ptr = src_irel + idx;
13363 if (ptr == NULL)
13364 {
13365 _bfd_error_handler
13366 /* xgettext:c-format */
13367 (_("%pB(%pA): error: reloc table entry %u is empty"),
13368 abfd, relsec, idx);
13369 bfd_set_error (bfd_error_bad_value);
13370 result = false;
13371 break;
13372 }
13373
13374 if (ptr->sym_ptr_ptr == NULL)
13375 {
13376 /* FIXME: Is this an error ? */
13377 n = 0;
13378 }
13379 else
13380 {
13381 sym = *ptr->sym_ptr_ptr;
13382
13383 if (sym == last_sym)
13384 n = last_sym_idx;
13385 else
13386 {
13387 n = _bfd_elf_symbol_from_bfd_symbol (abfd, & sym);
13388 if (n < 0)
13389 {
13390 _bfd_error_handler
13391 /* xgettext:c-format */
13392 (_("%pB(%pA): error: secondary reloc %u references a missing symbol"),
13393 abfd, relsec, idx);
13394 bfd_set_error (bfd_error_bad_value);
13395 result = false;
13396 n = 0;
13397 }
13398
13399 last_sym = sym;
13400 last_sym_idx = n;
13401 }
13402
13403 if (sym->the_bfd != NULL
13404 && sym->the_bfd->xvec != abfd->xvec
13405 && ! _bfd_elf_validate_reloc (abfd, ptr))
13406 {
13407 _bfd_error_handler
13408 /* xgettext:c-format */
13409 (_("%pB(%pA): error: secondary reloc %u references a deleted symbol"),
13410 abfd, relsec, idx);
13411 bfd_set_error (bfd_error_bad_value);
13412 result = false;
13413 n = 0;
13414 }
13415 }
13416
13417 src_rela.r_offset = ptr->address + addr_offset;
13418 if (ptr->howto == NULL)
13419 {
13420 _bfd_error_handler
13421 /* xgettext:c-format */
13422 (_("%pB(%pA): error: secondary reloc %u is of an unknown type"),
13423 abfd, relsec, idx);
13424 bfd_set_error (bfd_error_bad_value);
13425 result = false;
13426 src_rela.r_info = r_info (0, 0);
13427 }
13428 else
13429 src_rela.r_info = r_info (n, ptr->howto->type);
13430 src_rela.r_addend = ptr->addend;
13431
13432 if (entsize == ebd->s->sizeof_rel)
13433 ebd->s->swap_reloc_out (abfd, &src_rela, dst_rela);
13434 else /* entsize == ebd->s->sizeof_rela */
13435 ebd->s->swap_reloca_out (abfd, &src_rela, dst_rela);
13436 }
13437 }
13438 }
13439
13440 return result;
13441 }