Set sh_link for reloc sections created as normal sections
[binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright (C) 1993-2021 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22
23 /*
24 SECTION
25 ELF backends
26
27 BFD support for ELF formats is being worked on.
28 Currently, the best supported back ends are for sparc and i386
29 (running svr4 or Solaris 2).
30
31 Documentation of the internals of the support code still needs
32 to be written. The code is changing quickly enough that we
33 haven't bothered yet. */
34
35 /* For sparc64-cross-sparc32. */
36 #define _SYSCALL32
37 #include "sysdep.h"
38 #include <limits.h>
39 #include "bfd.h"
40 #include "bfdlink.h"
41 #include "libbfd.h"
42 #define ARCH_SIZE 0
43 #include "elf-bfd.h"
44 #include "libiberty.h"
45 #include "safe-ctype.h"
46 #include "elf-linux-core.h"
47
48 #ifdef CORE_HEADER
49 #include CORE_HEADER
50 #endif
51
52 static int elf_sort_sections (const void *, const void *);
53 static bool assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
54 static bool swap_out_syms (bfd *, struct elf_strtab_hash **, int,
55 struct bfd_link_info *);
56 static bool elf_parse_notes (bfd *abfd, char *buf, size_t size,
57 file_ptr offset, size_t align);
58
59 /* Swap version information in and out. The version information is
60 currently size independent. If that ever changes, this code will
61 need to move into elfcode.h. */
62
63 /* Swap in a Verdef structure. */
64
65 void
66 _bfd_elf_swap_verdef_in (bfd *abfd,
67 const Elf_External_Verdef *src,
68 Elf_Internal_Verdef *dst)
69 {
70 dst->vd_version = H_GET_16 (abfd, src->vd_version);
71 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
72 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
73 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
74 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
75 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
76 dst->vd_next = H_GET_32 (abfd, src->vd_next);
77 }
78
79 /* Swap out a Verdef structure. */
80
81 void
82 _bfd_elf_swap_verdef_out (bfd *abfd,
83 const Elf_Internal_Verdef *src,
84 Elf_External_Verdef *dst)
85 {
86 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
87 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
88 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
89 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
90 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
91 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
92 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
93 }
94
95 /* Swap in a Verdaux structure. */
96
97 void
98 _bfd_elf_swap_verdaux_in (bfd *abfd,
99 const Elf_External_Verdaux *src,
100 Elf_Internal_Verdaux *dst)
101 {
102 dst->vda_name = H_GET_32 (abfd, src->vda_name);
103 dst->vda_next = H_GET_32 (abfd, src->vda_next);
104 }
105
106 /* Swap out a Verdaux structure. */
107
108 void
109 _bfd_elf_swap_verdaux_out (bfd *abfd,
110 const Elf_Internal_Verdaux *src,
111 Elf_External_Verdaux *dst)
112 {
113 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
114 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
115 }
116
117 /* Swap in a Verneed structure. */
118
119 void
120 _bfd_elf_swap_verneed_in (bfd *abfd,
121 const Elf_External_Verneed *src,
122 Elf_Internal_Verneed *dst)
123 {
124 dst->vn_version = H_GET_16 (abfd, src->vn_version);
125 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
126 dst->vn_file = H_GET_32 (abfd, src->vn_file);
127 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
128 dst->vn_next = H_GET_32 (abfd, src->vn_next);
129 }
130
131 /* Swap out a Verneed structure. */
132
133 void
134 _bfd_elf_swap_verneed_out (bfd *abfd,
135 const Elf_Internal_Verneed *src,
136 Elf_External_Verneed *dst)
137 {
138 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
139 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
140 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
141 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
142 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
143 }
144
145 /* Swap in a Vernaux structure. */
146
147 void
148 _bfd_elf_swap_vernaux_in (bfd *abfd,
149 const Elf_External_Vernaux *src,
150 Elf_Internal_Vernaux *dst)
151 {
152 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
153 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
154 dst->vna_other = H_GET_16 (abfd, src->vna_other);
155 dst->vna_name = H_GET_32 (abfd, src->vna_name);
156 dst->vna_next = H_GET_32 (abfd, src->vna_next);
157 }
158
159 /* Swap out a Vernaux structure. */
160
161 void
162 _bfd_elf_swap_vernaux_out (bfd *abfd,
163 const Elf_Internal_Vernaux *src,
164 Elf_External_Vernaux *dst)
165 {
166 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
167 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
168 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
169 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
170 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
171 }
172
173 /* Swap in a Versym structure. */
174
175 void
176 _bfd_elf_swap_versym_in (bfd *abfd,
177 const Elf_External_Versym *src,
178 Elf_Internal_Versym *dst)
179 {
180 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
181 }
182
183 /* Swap out a Versym structure. */
184
185 void
186 _bfd_elf_swap_versym_out (bfd *abfd,
187 const Elf_Internal_Versym *src,
188 Elf_External_Versym *dst)
189 {
190 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
191 }
192
193 /* Standard ELF hash function. Do not change this function; you will
194 cause invalid hash tables to be generated. */
195
196 unsigned long
197 bfd_elf_hash (const char *namearg)
198 {
199 const unsigned char *name = (const unsigned char *) namearg;
200 unsigned long h = 0;
201 unsigned long g;
202 int ch;
203
204 while ((ch = *name++) != '\0')
205 {
206 h = (h << 4) + ch;
207 if ((g = (h & 0xf0000000)) != 0)
208 {
209 h ^= g >> 24;
210 /* The ELF ABI says `h &= ~g', but this is equivalent in
211 this case and on some machines one insn instead of two. */
212 h ^= g;
213 }
214 }
215 return h & 0xffffffff;
216 }
217
218 /* DT_GNU_HASH hash function. Do not change this function; you will
219 cause invalid hash tables to be generated. */
220
221 unsigned long
222 bfd_elf_gnu_hash (const char *namearg)
223 {
224 const unsigned char *name = (const unsigned char *) namearg;
225 unsigned long h = 5381;
226 unsigned char ch;
227
228 while ((ch = *name++) != '\0')
229 h = (h << 5) + h + ch;
230 return h & 0xffffffff;
231 }
232
233 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
234 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
235 bool
236 bfd_elf_allocate_object (bfd *abfd,
237 size_t object_size,
238 enum elf_target_id object_id)
239 {
240 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
241 abfd->tdata.any = bfd_zalloc (abfd, object_size);
242 if (abfd->tdata.any == NULL)
243 return false;
244
245 elf_object_id (abfd) = object_id;
246 if (abfd->direction != read_direction)
247 {
248 struct output_elf_obj_tdata *o = bfd_zalloc (abfd, sizeof *o);
249 if (o == NULL)
250 return false;
251 elf_tdata (abfd)->o = o;
252 elf_program_header_size (abfd) = (bfd_size_type) -1;
253 }
254 return true;
255 }
256
257
258 bool
259 bfd_elf_make_object (bfd *abfd)
260 {
261 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
262 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
263 bed->target_id);
264 }
265
266 bool
267 bfd_elf_mkcorefile (bfd *abfd)
268 {
269 /* I think this can be done just like an object file. */
270 if (!abfd->xvec->_bfd_set_format[(int) bfd_object] (abfd))
271 return false;
272 elf_tdata (abfd)->core = bfd_zalloc (abfd, sizeof (*elf_tdata (abfd)->core));
273 return elf_tdata (abfd)->core != NULL;
274 }
275
276 char *
277 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
278 {
279 Elf_Internal_Shdr **i_shdrp;
280 bfd_byte *shstrtab = NULL;
281 file_ptr offset;
282 bfd_size_type shstrtabsize;
283
284 i_shdrp = elf_elfsections (abfd);
285 if (i_shdrp == 0
286 || shindex >= elf_numsections (abfd)
287 || i_shdrp[shindex] == 0)
288 return NULL;
289
290 shstrtab = i_shdrp[shindex]->contents;
291 if (shstrtab == NULL)
292 {
293 /* No cached one, attempt to read, and cache what we read. */
294 offset = i_shdrp[shindex]->sh_offset;
295 shstrtabsize = i_shdrp[shindex]->sh_size;
296
297 /* Allocate and clear an extra byte at the end, to prevent crashes
298 in case the string table is not terminated. */
299 if (shstrtabsize + 1 <= 1
300 || bfd_seek (abfd, offset, SEEK_SET) != 0
301 || (shstrtab = _bfd_alloc_and_read (abfd, shstrtabsize + 1,
302 shstrtabsize)) == NULL)
303 {
304 /* Once we've failed to read it, make sure we don't keep
305 trying. Otherwise, we'll keep allocating space for
306 the string table over and over. */
307 i_shdrp[shindex]->sh_size = 0;
308 }
309 else
310 shstrtab[shstrtabsize] = '\0';
311 i_shdrp[shindex]->contents = shstrtab;
312 }
313 return (char *) shstrtab;
314 }
315
316 char *
317 bfd_elf_string_from_elf_section (bfd *abfd,
318 unsigned int shindex,
319 unsigned int strindex)
320 {
321 Elf_Internal_Shdr *hdr;
322
323 if (strindex == 0)
324 return "";
325
326 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
327 return NULL;
328
329 hdr = elf_elfsections (abfd)[shindex];
330
331 if (hdr->contents == NULL)
332 {
333 if (hdr->sh_type != SHT_STRTAB && hdr->sh_type < SHT_LOOS)
334 {
335 /* PR 17512: file: f057ec89. */
336 /* xgettext:c-format */
337 _bfd_error_handler (_("%pB: attempt to load strings from"
338 " a non-string section (number %d)"),
339 abfd, shindex);
340 return NULL;
341 }
342
343 if (bfd_elf_get_str_section (abfd, shindex) == NULL)
344 return NULL;
345 }
346 else
347 {
348 /* PR 24273: The string section's contents may have already
349 been loaded elsewhere, eg because a corrupt file has the
350 string section index in the ELF header pointing at a group
351 section. So be paranoid, and test that the last byte of
352 the section is zero. */
353 if (hdr->sh_size == 0 || hdr->contents[hdr->sh_size - 1] != 0)
354 return NULL;
355 }
356
357 if (strindex >= hdr->sh_size)
358 {
359 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
360 _bfd_error_handler
361 /* xgettext:c-format */
362 (_("%pB: invalid string offset %u >= %" PRIu64 " for section `%s'"),
363 abfd, strindex, (uint64_t) hdr->sh_size,
364 (shindex == shstrndx && strindex == hdr->sh_name
365 ? ".shstrtab"
366 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
367 return NULL;
368 }
369
370 return ((char *) hdr->contents) + strindex;
371 }
372
373 /* Read and convert symbols to internal format.
374 SYMCOUNT specifies the number of symbols to read, starting from
375 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
376 are non-NULL, they are used to store the internal symbols, external
377 symbols, and symbol section index extensions, respectively.
378 Returns a pointer to the internal symbol buffer (malloced if necessary)
379 or NULL if there were no symbols or some kind of problem. */
380
381 Elf_Internal_Sym *
382 bfd_elf_get_elf_syms (bfd *ibfd,
383 Elf_Internal_Shdr *symtab_hdr,
384 size_t symcount,
385 size_t symoffset,
386 Elf_Internal_Sym *intsym_buf,
387 void *extsym_buf,
388 Elf_External_Sym_Shndx *extshndx_buf)
389 {
390 Elf_Internal_Shdr *shndx_hdr;
391 void *alloc_ext;
392 const bfd_byte *esym;
393 Elf_External_Sym_Shndx *alloc_extshndx;
394 Elf_External_Sym_Shndx *shndx;
395 Elf_Internal_Sym *alloc_intsym;
396 Elf_Internal_Sym *isym;
397 Elf_Internal_Sym *isymend;
398 const struct elf_backend_data *bed;
399 size_t extsym_size;
400 size_t amt;
401 file_ptr pos;
402
403 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
404 abort ();
405
406 if (symcount == 0)
407 return intsym_buf;
408
409 /* Normal syms might have section extension entries. */
410 shndx_hdr = NULL;
411 if (elf_symtab_shndx_list (ibfd) != NULL)
412 {
413 elf_section_list * entry;
414 Elf_Internal_Shdr **sections = elf_elfsections (ibfd);
415
416 /* Find an index section that is linked to this symtab section. */
417 for (entry = elf_symtab_shndx_list (ibfd); entry != NULL; entry = entry->next)
418 {
419 /* PR 20063. */
420 if (entry->hdr.sh_link >= elf_numsections (ibfd))
421 continue;
422
423 if (sections[entry->hdr.sh_link] == symtab_hdr)
424 {
425 shndx_hdr = & entry->hdr;
426 break;
427 };
428 }
429
430 if (shndx_hdr == NULL)
431 {
432 if (symtab_hdr == & elf_symtab_hdr (ibfd))
433 /* Not really accurate, but this was how the old code used to work. */
434 shndx_hdr = & elf_symtab_shndx_list (ibfd)->hdr;
435 /* Otherwise we do nothing. The assumption is that
436 the index table will not be needed. */
437 }
438 }
439
440 /* Read the symbols. */
441 alloc_ext = NULL;
442 alloc_extshndx = NULL;
443 alloc_intsym = NULL;
444 bed = get_elf_backend_data (ibfd);
445 extsym_size = bed->s->sizeof_sym;
446 if (_bfd_mul_overflow (symcount, extsym_size, &amt))
447 {
448 bfd_set_error (bfd_error_file_too_big);
449 intsym_buf = NULL;
450 goto out;
451 }
452 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
453 if (extsym_buf == NULL)
454 {
455 alloc_ext = bfd_malloc (amt);
456 extsym_buf = alloc_ext;
457 }
458 if (extsym_buf == NULL
459 || bfd_seek (ibfd, pos, SEEK_SET) != 0
460 || bfd_bread (extsym_buf, amt, ibfd) != amt)
461 {
462 intsym_buf = NULL;
463 goto out;
464 }
465
466 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
467 extshndx_buf = NULL;
468 else
469 {
470 if (_bfd_mul_overflow (symcount, sizeof (Elf_External_Sym_Shndx), &amt))
471 {
472 bfd_set_error (bfd_error_file_too_big);
473 intsym_buf = NULL;
474 goto out;
475 }
476 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
477 if (extshndx_buf == NULL)
478 {
479 alloc_extshndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
480 extshndx_buf = alloc_extshndx;
481 }
482 if (extshndx_buf == NULL
483 || bfd_seek (ibfd, pos, SEEK_SET) != 0
484 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
485 {
486 intsym_buf = NULL;
487 goto out;
488 }
489 }
490
491 if (intsym_buf == NULL)
492 {
493 if (_bfd_mul_overflow (symcount, sizeof (Elf_Internal_Sym), &amt))
494 {
495 bfd_set_error (bfd_error_file_too_big);
496 goto out;
497 }
498 alloc_intsym = (Elf_Internal_Sym *) bfd_malloc (amt);
499 intsym_buf = alloc_intsym;
500 if (intsym_buf == NULL)
501 goto out;
502 }
503
504 /* Convert the symbols to internal form. */
505 isymend = intsym_buf + symcount;
506 for (esym = (const bfd_byte *) extsym_buf, isym = intsym_buf,
507 shndx = extshndx_buf;
508 isym < isymend;
509 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
510 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
511 {
512 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
513 /* xgettext:c-format */
514 _bfd_error_handler (_("%pB symbol number %lu references"
515 " nonexistent SHT_SYMTAB_SHNDX section"),
516 ibfd, (unsigned long) symoffset);
517 free (alloc_intsym);
518 intsym_buf = NULL;
519 goto out;
520 }
521
522 out:
523 free (alloc_ext);
524 free (alloc_extshndx);
525
526 return intsym_buf;
527 }
528
529 /* Look up a symbol name. */
530 const char *
531 bfd_elf_sym_name (bfd *abfd,
532 Elf_Internal_Shdr *symtab_hdr,
533 Elf_Internal_Sym *isym,
534 asection *sym_sec)
535 {
536 const char *name;
537 unsigned int iname = isym->st_name;
538 unsigned int shindex = symtab_hdr->sh_link;
539
540 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
541 /* Check for a bogus st_shndx to avoid crashing. */
542 && isym->st_shndx < elf_numsections (abfd))
543 {
544 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
545 shindex = elf_elfheader (abfd)->e_shstrndx;
546 }
547
548 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
549 if (name == NULL)
550 name = "(null)";
551 else if (sym_sec && *name == '\0')
552 name = bfd_section_name (sym_sec);
553
554 return name;
555 }
556
557 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
558 sections. The first element is the flags, the rest are section
559 pointers. */
560
561 typedef union elf_internal_group {
562 Elf_Internal_Shdr *shdr;
563 unsigned int flags;
564 } Elf_Internal_Group;
565
566 /* Return the name of the group signature symbol. Why isn't the
567 signature just a string? */
568
569 static const char *
570 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
571 {
572 Elf_Internal_Shdr *hdr;
573 unsigned char esym[sizeof (Elf64_External_Sym)];
574 Elf_External_Sym_Shndx eshndx;
575 Elf_Internal_Sym isym;
576
577 /* First we need to ensure the symbol table is available. Make sure
578 that it is a symbol table section. */
579 if (ghdr->sh_link >= elf_numsections (abfd))
580 return NULL;
581 hdr = elf_elfsections (abfd) [ghdr->sh_link];
582 if (hdr->sh_type != SHT_SYMTAB
583 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
584 return NULL;
585
586 /* Go read the symbol. */
587 hdr = &elf_tdata (abfd)->symtab_hdr;
588 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
589 &isym, esym, &eshndx) == NULL)
590 return NULL;
591
592 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
593 }
594
595 /* Set next_in_group list pointer, and group name for NEWSECT. */
596
597 static bool
598 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
599 {
600 unsigned int num_group = elf_tdata (abfd)->num_group;
601
602 /* If num_group is zero, read in all SHT_GROUP sections. The count
603 is set to -1 if there are no SHT_GROUP sections. */
604 if (num_group == 0)
605 {
606 unsigned int i, shnum;
607
608 /* First count the number of groups. If we have a SHT_GROUP
609 section with just a flag word (ie. sh_size is 4), ignore it. */
610 shnum = elf_numsections (abfd);
611 num_group = 0;
612
613 #define IS_VALID_GROUP_SECTION_HEADER(shdr, minsize) \
614 ( (shdr)->sh_type == SHT_GROUP \
615 && (shdr)->sh_size >= minsize \
616 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
617 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
618
619 for (i = 0; i < shnum; i++)
620 {
621 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
622
623 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
624 num_group += 1;
625 }
626
627 if (num_group == 0)
628 {
629 num_group = (unsigned) -1;
630 elf_tdata (abfd)->num_group = num_group;
631 elf_tdata (abfd)->group_sect_ptr = NULL;
632 }
633 else
634 {
635 /* We keep a list of elf section headers for group sections,
636 so we can find them quickly. */
637 size_t amt;
638
639 elf_tdata (abfd)->num_group = num_group;
640 amt = num_group * sizeof (Elf_Internal_Shdr *);
641 elf_tdata (abfd)->group_sect_ptr
642 = (Elf_Internal_Shdr **) bfd_zalloc (abfd, amt);
643 if (elf_tdata (abfd)->group_sect_ptr == NULL)
644 return false;
645 num_group = 0;
646
647 for (i = 0; i < shnum; i++)
648 {
649 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
650
651 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
652 {
653 unsigned char *src;
654 Elf_Internal_Group *dest;
655
656 /* Make sure the group section has a BFD section
657 attached to it. */
658 if (!bfd_section_from_shdr (abfd, i))
659 return false;
660
661 /* Add to list of sections. */
662 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
663 num_group += 1;
664
665 /* Read the raw contents. */
666 BFD_ASSERT (sizeof (*dest) >= 4 && sizeof (*dest) % 4 == 0);
667 shdr->contents = NULL;
668 if (_bfd_mul_overflow (shdr->sh_size,
669 sizeof (*dest) / 4, &amt)
670 || bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
671 || !(shdr->contents
672 = _bfd_alloc_and_read (abfd, amt, shdr->sh_size)))
673 {
674 _bfd_error_handler
675 /* xgettext:c-format */
676 (_("%pB: invalid size field in group section"
677 " header: %#" PRIx64 ""),
678 abfd, (uint64_t) shdr->sh_size);
679 bfd_set_error (bfd_error_bad_value);
680 -- num_group;
681 continue;
682 }
683
684 /* Translate raw contents, a flag word followed by an
685 array of elf section indices all in target byte order,
686 to the flag word followed by an array of elf section
687 pointers. */
688 src = shdr->contents + shdr->sh_size;
689 dest = (Elf_Internal_Group *) (shdr->contents + amt);
690
691 while (1)
692 {
693 unsigned int idx;
694
695 src -= 4;
696 --dest;
697 idx = H_GET_32 (abfd, src);
698 if (src == shdr->contents)
699 {
700 dest->shdr = NULL;
701 dest->flags = idx;
702 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
703 shdr->bfd_section->flags
704 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
705 break;
706 }
707 if (idx < shnum)
708 {
709 dest->shdr = elf_elfsections (abfd)[idx];
710 /* PR binutils/23199: All sections in a
711 section group should be marked with
712 SHF_GROUP. But some tools generate
713 broken objects without SHF_GROUP. Fix
714 them up here. */
715 dest->shdr->sh_flags |= SHF_GROUP;
716 }
717 if (idx >= shnum
718 || dest->shdr->sh_type == SHT_GROUP)
719 {
720 _bfd_error_handler
721 (_("%pB: invalid entry in SHT_GROUP section [%u]"),
722 abfd, i);
723 dest->shdr = NULL;
724 }
725 }
726 }
727 }
728
729 /* PR 17510: Corrupt binaries might contain invalid groups. */
730 if (num_group != (unsigned) elf_tdata (abfd)->num_group)
731 {
732 elf_tdata (abfd)->num_group = num_group;
733
734 /* If all groups are invalid then fail. */
735 if (num_group == 0)
736 {
737 elf_tdata (abfd)->group_sect_ptr = NULL;
738 elf_tdata (abfd)->num_group = num_group = -1;
739 _bfd_error_handler
740 (_("%pB: no valid group sections found"), abfd);
741 bfd_set_error (bfd_error_bad_value);
742 }
743 }
744 }
745 }
746
747 if (num_group != (unsigned) -1)
748 {
749 unsigned int search_offset = elf_tdata (abfd)->group_search_offset;
750 unsigned int j;
751
752 for (j = 0; j < num_group; j++)
753 {
754 /* Begin search from previous found group. */
755 unsigned i = (j + search_offset) % num_group;
756
757 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
758 Elf_Internal_Group *idx;
759 bfd_size_type n_elt;
760
761 if (shdr == NULL)
762 continue;
763
764 idx = (Elf_Internal_Group *) shdr->contents;
765 if (idx == NULL || shdr->sh_size < 4)
766 {
767 /* See PR 21957 for a reproducer. */
768 /* xgettext:c-format */
769 _bfd_error_handler (_("%pB: group section '%pA' has no contents"),
770 abfd, shdr->bfd_section);
771 elf_tdata (abfd)->group_sect_ptr[i] = NULL;
772 bfd_set_error (bfd_error_bad_value);
773 return false;
774 }
775 n_elt = shdr->sh_size / 4;
776
777 /* Look through this group's sections to see if current
778 section is a member. */
779 while (--n_elt != 0)
780 if ((++idx)->shdr == hdr)
781 {
782 asection *s = NULL;
783
784 /* We are a member of this group. Go looking through
785 other members to see if any others are linked via
786 next_in_group. */
787 idx = (Elf_Internal_Group *) shdr->contents;
788 n_elt = shdr->sh_size / 4;
789 while (--n_elt != 0)
790 if ((++idx)->shdr != NULL
791 && (s = idx->shdr->bfd_section) != NULL
792 && elf_next_in_group (s) != NULL)
793 break;
794 if (n_elt != 0)
795 {
796 /* Snarf the group name from other member, and
797 insert current section in circular list. */
798 elf_group_name (newsect) = elf_group_name (s);
799 elf_next_in_group (newsect) = elf_next_in_group (s);
800 elf_next_in_group (s) = newsect;
801 }
802 else
803 {
804 const char *gname;
805
806 gname = group_signature (abfd, shdr);
807 if (gname == NULL)
808 return false;
809 elf_group_name (newsect) = gname;
810
811 /* Start a circular list with one element. */
812 elf_next_in_group (newsect) = newsect;
813 }
814
815 /* If the group section has been created, point to the
816 new member. */
817 if (shdr->bfd_section != NULL)
818 elf_next_in_group (shdr->bfd_section) = newsect;
819
820 elf_tdata (abfd)->group_search_offset = i;
821 j = num_group - 1;
822 break;
823 }
824 }
825 }
826
827 if (elf_group_name (newsect) == NULL)
828 {
829 /* xgettext:c-format */
830 _bfd_error_handler (_("%pB: no group info for section '%pA'"),
831 abfd, newsect);
832 return false;
833 }
834 return true;
835 }
836
837 bool
838 _bfd_elf_setup_sections (bfd *abfd)
839 {
840 unsigned int i;
841 unsigned int num_group = elf_tdata (abfd)->num_group;
842 bool result = true;
843 asection *s;
844
845 /* Process SHF_LINK_ORDER. */
846 for (s = abfd->sections; s != NULL; s = s->next)
847 {
848 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
849 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
850 {
851 unsigned int elfsec = this_hdr->sh_link;
852 /* An sh_link value of 0 is now allowed. It indicates that linked
853 to section has already been discarded, but that the current
854 section has been retained for some other reason. This linking
855 section is still a candidate for later garbage collection
856 however. */
857 if (elfsec == 0)
858 {
859 elf_linked_to_section (s) = NULL;
860 }
861 else
862 {
863 asection *linksec = NULL;
864
865 if (elfsec < elf_numsections (abfd))
866 {
867 this_hdr = elf_elfsections (abfd)[elfsec];
868 linksec = this_hdr->bfd_section;
869 }
870
871 /* PR 1991, 2008:
872 Some strip/objcopy may leave an incorrect value in
873 sh_link. We don't want to proceed. */
874 if (linksec == NULL)
875 {
876 _bfd_error_handler
877 /* xgettext:c-format */
878 (_("%pB: sh_link [%d] in section `%pA' is incorrect"),
879 s->owner, elfsec, s);
880 result = false;
881 }
882
883 elf_linked_to_section (s) = linksec;
884 }
885 }
886 else if (this_hdr->sh_type == SHT_GROUP
887 && elf_next_in_group (s) == NULL)
888 {
889 _bfd_error_handler
890 /* xgettext:c-format */
891 (_("%pB: SHT_GROUP section [index %d] has no SHF_GROUP sections"),
892 abfd, elf_section_data (s)->this_idx);
893 result = false;
894 }
895 }
896
897 /* Process section groups. */
898 if (num_group == (unsigned) -1)
899 return result;
900
901 for (i = 0; i < num_group; i++)
902 {
903 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
904 Elf_Internal_Group *idx;
905 unsigned int n_elt;
906
907 /* PR binutils/18758: Beware of corrupt binaries with invalid group data. */
908 if (shdr == NULL || shdr->bfd_section == NULL || shdr->contents == NULL)
909 {
910 _bfd_error_handler
911 /* xgettext:c-format */
912 (_("%pB: section group entry number %u is corrupt"),
913 abfd, i);
914 result = false;
915 continue;
916 }
917
918 idx = (Elf_Internal_Group *) shdr->contents;
919 n_elt = shdr->sh_size / 4;
920
921 while (--n_elt != 0)
922 {
923 ++ idx;
924
925 if (idx->shdr == NULL)
926 continue;
927 else if (idx->shdr->bfd_section)
928 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
929 else if (idx->shdr->sh_type != SHT_RELA
930 && idx->shdr->sh_type != SHT_REL)
931 {
932 /* There are some unknown sections in the group. */
933 _bfd_error_handler
934 /* xgettext:c-format */
935 (_("%pB: unknown type [%#x] section `%s' in group [%pA]"),
936 abfd,
937 idx->shdr->sh_type,
938 bfd_elf_string_from_elf_section (abfd,
939 (elf_elfheader (abfd)
940 ->e_shstrndx),
941 idx->shdr->sh_name),
942 shdr->bfd_section);
943 result = false;
944 }
945 }
946 }
947
948 return result;
949 }
950
951 bool
952 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
953 {
954 return elf_next_in_group (sec) != NULL;
955 }
956
957 const char *
958 bfd_elf_group_name (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
959 {
960 if (elf_sec_group (sec) != NULL)
961 return elf_group_name (sec);
962 return NULL;
963 }
964
965 static char *
966 convert_debug_to_zdebug (bfd *abfd, const char *name)
967 {
968 unsigned int len = strlen (name);
969 char *new_name = bfd_alloc (abfd, len + 2);
970 if (new_name == NULL)
971 return NULL;
972 new_name[0] = '.';
973 new_name[1] = 'z';
974 memcpy (new_name + 2, name + 1, len);
975 return new_name;
976 }
977
978 static char *
979 convert_zdebug_to_debug (bfd *abfd, const char *name)
980 {
981 unsigned int len = strlen (name);
982 char *new_name = bfd_alloc (abfd, len);
983 if (new_name == NULL)
984 return NULL;
985 new_name[0] = '.';
986 memcpy (new_name + 1, name + 2, len - 1);
987 return new_name;
988 }
989
990 /* This a copy of lto_section defined in GCC (lto-streamer.h). */
991
992 struct lto_section
993 {
994 int16_t major_version;
995 int16_t minor_version;
996 unsigned char slim_object;
997
998 /* Flags is a private field that is not defined publicly. */
999 uint16_t flags;
1000 };
1001
1002 /* Make a BFD section from an ELF section. We store a pointer to the
1003 BFD section in the bfd_section field of the header. */
1004
1005 bool
1006 _bfd_elf_make_section_from_shdr (bfd *abfd,
1007 Elf_Internal_Shdr *hdr,
1008 const char *name,
1009 int shindex)
1010 {
1011 asection *newsect;
1012 flagword flags;
1013 const struct elf_backend_data *bed;
1014 unsigned int opb = bfd_octets_per_byte (abfd, NULL);
1015
1016 if (hdr->bfd_section != NULL)
1017 return true;
1018
1019 newsect = bfd_make_section_anyway (abfd, name);
1020 if (newsect == NULL)
1021 return false;
1022
1023 hdr->bfd_section = newsect;
1024 elf_section_data (newsect)->this_hdr = *hdr;
1025 elf_section_data (newsect)->this_idx = shindex;
1026
1027 /* Always use the real type/flags. */
1028 elf_section_type (newsect) = hdr->sh_type;
1029 elf_section_flags (newsect) = hdr->sh_flags;
1030
1031 newsect->filepos = hdr->sh_offset;
1032
1033 flags = SEC_NO_FLAGS;
1034 if (hdr->sh_type != SHT_NOBITS)
1035 flags |= SEC_HAS_CONTENTS;
1036 if (hdr->sh_type == SHT_GROUP)
1037 flags |= SEC_GROUP;
1038 if ((hdr->sh_flags & SHF_ALLOC) != 0)
1039 {
1040 flags |= SEC_ALLOC;
1041 if (hdr->sh_type != SHT_NOBITS)
1042 flags |= SEC_LOAD;
1043 }
1044 if ((hdr->sh_flags & SHF_WRITE) == 0)
1045 flags |= SEC_READONLY;
1046 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
1047 flags |= SEC_CODE;
1048 else if ((flags & SEC_LOAD) != 0)
1049 flags |= SEC_DATA;
1050 if ((hdr->sh_flags & SHF_MERGE) != 0)
1051 {
1052 flags |= SEC_MERGE;
1053 newsect->entsize = hdr->sh_entsize;
1054 }
1055 if ((hdr->sh_flags & SHF_STRINGS) != 0)
1056 flags |= SEC_STRINGS;
1057 if (hdr->sh_flags & SHF_GROUP)
1058 if (!setup_group (abfd, hdr, newsect))
1059 return false;
1060 if ((hdr->sh_flags & SHF_TLS) != 0)
1061 flags |= SEC_THREAD_LOCAL;
1062 if ((hdr->sh_flags & SHF_EXCLUDE) != 0)
1063 flags |= SEC_EXCLUDE;
1064
1065 switch (elf_elfheader (abfd)->e_ident[EI_OSABI])
1066 {
1067 /* FIXME: We should not recognize SHF_GNU_MBIND for ELFOSABI_NONE,
1068 but binutils as of 2019-07-23 did not set the EI_OSABI header
1069 byte. */
1070 case ELFOSABI_GNU:
1071 case ELFOSABI_FREEBSD:
1072 if ((hdr->sh_flags & SHF_GNU_RETAIN) != 0)
1073 elf_tdata (abfd)->has_gnu_osabi |= elf_gnu_osabi_retain;
1074 /* Fall through */
1075 case ELFOSABI_NONE:
1076 if ((hdr->sh_flags & SHF_GNU_MBIND) != 0)
1077 elf_tdata (abfd)->has_gnu_osabi |= elf_gnu_osabi_mbind;
1078 break;
1079 }
1080
1081 if ((flags & SEC_ALLOC) == 0)
1082 {
1083 /* The debugging sections appear to be recognized only by name,
1084 not any sort of flag. Their SEC_ALLOC bits are cleared. */
1085 if (name [0] == '.')
1086 {
1087 if (startswith (name, ".debug")
1088 || startswith (name, ".gnu.debuglto_.debug_")
1089 || startswith (name, ".gnu.linkonce.wi.")
1090 || startswith (name, ".zdebug"))
1091 flags |= SEC_DEBUGGING | SEC_ELF_OCTETS;
1092 else if (startswith (name, GNU_BUILD_ATTRS_SECTION_NAME)
1093 || startswith (name, ".note.gnu"))
1094 {
1095 flags |= SEC_ELF_OCTETS;
1096 opb = 1;
1097 }
1098 else if (startswith (name, ".line")
1099 || startswith (name, ".stab")
1100 || strcmp (name, ".gdb_index") == 0)
1101 flags |= SEC_DEBUGGING;
1102 }
1103 }
1104
1105 if (!bfd_set_section_vma (newsect, hdr->sh_addr / opb)
1106 || !bfd_set_section_size (newsect, hdr->sh_size)
1107 || !bfd_set_section_alignment (newsect, bfd_log2 (hdr->sh_addralign)))
1108 return false;
1109
1110 /* As a GNU extension, if the name begins with .gnu.linkonce, we
1111 only link a single copy of the section. This is used to support
1112 g++. g++ will emit each template expansion in its own section.
1113 The symbols will be defined as weak, so that multiple definitions
1114 are permitted. The GNU linker extension is to actually discard
1115 all but one of the sections. */
1116 if (startswith (name, ".gnu.linkonce")
1117 && elf_next_in_group (newsect) == NULL)
1118 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1119
1120 if (!bfd_set_section_flags (newsect, flags))
1121 return false;
1122
1123 bed = get_elf_backend_data (abfd);
1124 if (bed->elf_backend_section_flags)
1125 if (!bed->elf_backend_section_flags (hdr))
1126 return false;
1127
1128 /* We do not parse the PT_NOTE segments as we are interested even in the
1129 separate debug info files which may have the segments offsets corrupted.
1130 PT_NOTEs from the core files are currently not parsed using BFD. */
1131 if (hdr->sh_type == SHT_NOTE)
1132 {
1133 bfd_byte *contents;
1134
1135 if (!bfd_malloc_and_get_section (abfd, newsect, &contents))
1136 return false;
1137
1138 elf_parse_notes (abfd, (char *) contents, hdr->sh_size,
1139 hdr->sh_offset, hdr->sh_addralign);
1140 free (contents);
1141 }
1142
1143 if ((newsect->flags & SEC_ALLOC) != 0)
1144 {
1145 Elf_Internal_Phdr *phdr;
1146 unsigned int i, nload;
1147
1148 /* Some ELF linkers produce binaries with all the program header
1149 p_paddr fields zero. If we have such a binary with more than
1150 one PT_LOAD header, then leave the section lma equal to vma
1151 so that we don't create sections with overlapping lma. */
1152 phdr = elf_tdata (abfd)->phdr;
1153 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1154 if (phdr->p_paddr != 0)
1155 break;
1156 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
1157 ++nload;
1158 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
1159 return true;
1160
1161 phdr = elf_tdata (abfd)->phdr;
1162 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1163 {
1164 if (((phdr->p_type == PT_LOAD
1165 && (hdr->sh_flags & SHF_TLS) == 0)
1166 || phdr->p_type == PT_TLS)
1167 && ELF_SECTION_IN_SEGMENT (hdr, phdr))
1168 {
1169 if ((newsect->flags & SEC_LOAD) == 0)
1170 newsect->lma = (phdr->p_paddr
1171 + hdr->sh_addr - phdr->p_vaddr) / opb;
1172 else
1173 /* We used to use the same adjustment for SEC_LOAD
1174 sections, but that doesn't work if the segment
1175 is packed with code from multiple VMAs.
1176 Instead we calculate the section LMA based on
1177 the segment LMA. It is assumed that the
1178 segment will contain sections with contiguous
1179 LMAs, even if the VMAs are not. */
1180 newsect->lma = (phdr->p_paddr
1181 + hdr->sh_offset - phdr->p_offset) / opb;
1182
1183 /* With contiguous segments, we can't tell from file
1184 offsets whether a section with zero size should
1185 be placed at the end of one segment or the
1186 beginning of the next. Decide based on vaddr. */
1187 if (hdr->sh_addr >= phdr->p_vaddr
1188 && (hdr->sh_addr + hdr->sh_size
1189 <= phdr->p_vaddr + phdr->p_memsz))
1190 break;
1191 }
1192 }
1193 }
1194
1195 /* Compress/decompress DWARF debug sections with names: .debug_* and
1196 .zdebug_*, after the section flags is set. */
1197 if ((newsect->flags & SEC_DEBUGGING)
1198 && ((name[1] == 'd' && name[6] == '_')
1199 || (name[1] == 'z' && name[7] == '_')))
1200 {
1201 enum { nothing, compress, decompress } action = nothing;
1202 int compression_header_size;
1203 bfd_size_type uncompressed_size;
1204 unsigned int uncompressed_align_power;
1205 bool compressed
1206 = bfd_is_section_compressed_with_header (abfd, newsect,
1207 &compression_header_size,
1208 &uncompressed_size,
1209 &uncompressed_align_power);
1210 if (compressed)
1211 {
1212 /* Compressed section. Check if we should decompress. */
1213 if ((abfd->flags & BFD_DECOMPRESS))
1214 action = decompress;
1215 }
1216
1217 /* Compress the uncompressed section or convert from/to .zdebug*
1218 section. Check if we should compress. */
1219 if (action == nothing)
1220 {
1221 if (newsect->size != 0
1222 && (abfd->flags & BFD_COMPRESS)
1223 && compression_header_size >= 0
1224 && uncompressed_size > 0
1225 && (!compressed
1226 || ((compression_header_size > 0)
1227 != ((abfd->flags & BFD_COMPRESS_GABI) != 0))))
1228 action = compress;
1229 else
1230 return true;
1231 }
1232
1233 if (action == compress)
1234 {
1235 if (!bfd_init_section_compress_status (abfd, newsect))
1236 {
1237 _bfd_error_handler
1238 /* xgettext:c-format */
1239 (_("%pB: unable to initialize compress status for section %s"),
1240 abfd, name);
1241 return false;
1242 }
1243 }
1244 else
1245 {
1246 if (!bfd_init_section_decompress_status (abfd, newsect))
1247 {
1248 _bfd_error_handler
1249 /* xgettext:c-format */
1250 (_("%pB: unable to initialize decompress status for section %s"),
1251 abfd, name);
1252 return false;
1253 }
1254 }
1255
1256 if (abfd->is_linker_input)
1257 {
1258 if (name[1] == 'z'
1259 && (action == decompress
1260 || (action == compress
1261 && (abfd->flags & BFD_COMPRESS_GABI) != 0)))
1262 {
1263 /* Convert section name from .zdebug_* to .debug_* so
1264 that linker will consider this section as a debug
1265 section. */
1266 char *new_name = convert_zdebug_to_debug (abfd, name);
1267 if (new_name == NULL)
1268 return false;
1269 bfd_rename_section (newsect, new_name);
1270 }
1271 }
1272 else
1273 /* For objdump, don't rename the section. For objcopy, delay
1274 section rename to elf_fake_sections. */
1275 newsect->flags |= SEC_ELF_RENAME;
1276 }
1277
1278 /* GCC uses .gnu.lto_.lto.<some_hash> as a LTO bytecode information
1279 section. */
1280 if (startswith (name, ".gnu.lto_.lto."))
1281 {
1282 struct lto_section lsection;
1283 if (bfd_get_section_contents (abfd, newsect, &lsection, 0,
1284 sizeof (struct lto_section)))
1285 abfd->lto_slim_object = lsection.slim_object;
1286 }
1287
1288 return true;
1289 }
1290
1291 const char *const bfd_elf_section_type_names[] =
1292 {
1293 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1294 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1295 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1296 };
1297
1298 /* ELF relocs are against symbols. If we are producing relocatable
1299 output, and the reloc is against an external symbol, and nothing
1300 has given us any additional addend, the resulting reloc will also
1301 be against the same symbol. In such a case, we don't want to
1302 change anything about the way the reloc is handled, since it will
1303 all be done at final link time. Rather than put special case code
1304 into bfd_perform_relocation, all the reloc types use this howto
1305 function, or should call this function for relocatable output. */
1306
1307 bfd_reloc_status_type
1308 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1309 arelent *reloc_entry,
1310 asymbol *symbol,
1311 void *data ATTRIBUTE_UNUSED,
1312 asection *input_section,
1313 bfd *output_bfd,
1314 char **error_message ATTRIBUTE_UNUSED)
1315 {
1316 if (output_bfd != NULL
1317 && (symbol->flags & BSF_SECTION_SYM) == 0
1318 && (! reloc_entry->howto->partial_inplace
1319 || reloc_entry->addend == 0))
1320 {
1321 reloc_entry->address += input_section->output_offset;
1322 return bfd_reloc_ok;
1323 }
1324
1325 /* In some cases the relocation should be treated as output section
1326 relative, as when linking ELF DWARF into PE COFF. Many ELF
1327 targets lack section relative relocations and instead use
1328 ordinary absolute relocations for references between DWARF
1329 sections. That is arguably a bug in those targets but it happens
1330 to work for the usual case of linking to non-loaded ELF debug
1331 sections with VMAs forced to zero. PE COFF on the other hand
1332 doesn't allow a section VMA of zero. */
1333 if (output_bfd == NULL
1334 && !reloc_entry->howto->pc_relative
1335 && (symbol->section->flags & SEC_DEBUGGING) != 0
1336 && (input_section->flags & SEC_DEBUGGING) != 0)
1337 reloc_entry->addend -= symbol->section->output_section->vma;
1338
1339 return bfd_reloc_continue;
1340 }
1341 \f
1342 /* Returns TRUE if section A matches section B.
1343 Names, addresses and links may be different, but everything else
1344 should be the same. */
1345
1346 static bool
1347 section_match (const Elf_Internal_Shdr * a,
1348 const Elf_Internal_Shdr * b)
1349 {
1350 if (a->sh_type != b->sh_type
1351 || ((a->sh_flags ^ b->sh_flags) & ~SHF_INFO_LINK) != 0
1352 || a->sh_addralign != b->sh_addralign
1353 || a->sh_entsize != b->sh_entsize)
1354 return false;
1355 if (a->sh_type == SHT_SYMTAB
1356 || a->sh_type == SHT_STRTAB)
1357 return true;
1358 return a->sh_size == b->sh_size;
1359 }
1360
1361 /* Find a section in OBFD that has the same characteristics
1362 as IHEADER. Return the index of this section or SHN_UNDEF if
1363 none can be found. Check's section HINT first, as this is likely
1364 to be the correct section. */
1365
1366 static unsigned int
1367 find_link (const bfd *obfd, const Elf_Internal_Shdr *iheader,
1368 const unsigned int hint)
1369 {
1370 Elf_Internal_Shdr ** oheaders = elf_elfsections (obfd);
1371 unsigned int i;
1372
1373 BFD_ASSERT (iheader != NULL);
1374
1375 /* See PR 20922 for a reproducer of the NULL test. */
1376 if (hint < elf_numsections (obfd)
1377 && oheaders[hint] != NULL
1378 && section_match (oheaders[hint], iheader))
1379 return hint;
1380
1381 for (i = 1; i < elf_numsections (obfd); i++)
1382 {
1383 Elf_Internal_Shdr * oheader = oheaders[i];
1384
1385 if (oheader == NULL)
1386 continue;
1387 if (section_match (oheader, iheader))
1388 /* FIXME: Do we care if there is a potential for
1389 multiple matches ? */
1390 return i;
1391 }
1392
1393 return SHN_UNDEF;
1394 }
1395
1396 /* PR 19938: Attempt to set the ELF section header fields of an OS or
1397 Processor specific section, based upon a matching input section.
1398 Returns TRUE upon success, FALSE otherwise. */
1399
1400 static bool
1401 copy_special_section_fields (const bfd *ibfd,
1402 bfd *obfd,
1403 const Elf_Internal_Shdr *iheader,
1404 Elf_Internal_Shdr *oheader,
1405 const unsigned int secnum)
1406 {
1407 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
1408 const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd);
1409 bool changed = false;
1410 unsigned int sh_link;
1411
1412 if (oheader->sh_type == SHT_NOBITS)
1413 {
1414 /* This is a feature for objcopy --only-keep-debug:
1415 When a section's type is changed to NOBITS, we preserve
1416 the sh_link and sh_info fields so that they can be
1417 matched up with the original.
1418
1419 Note: Strictly speaking these assignments are wrong.
1420 The sh_link and sh_info fields should point to the
1421 relevent sections in the output BFD, which may not be in
1422 the same location as they were in the input BFD. But
1423 the whole point of this action is to preserve the
1424 original values of the sh_link and sh_info fields, so
1425 that they can be matched up with the section headers in
1426 the original file. So strictly speaking we may be
1427 creating an invalid ELF file, but it is only for a file
1428 that just contains debug info and only for sections
1429 without any contents. */
1430 if (oheader->sh_link == 0)
1431 oheader->sh_link = iheader->sh_link;
1432 if (oheader->sh_info == 0)
1433 oheader->sh_info = iheader->sh_info;
1434 return true;
1435 }
1436
1437 /* Allow the target a chance to decide how these fields should be set. */
1438 if (bed->elf_backend_copy_special_section_fields (ibfd, obfd,
1439 iheader, oheader))
1440 return true;
1441
1442 /* We have an iheader which might match oheader, and which has non-zero
1443 sh_info and/or sh_link fields. Attempt to follow those links and find
1444 the section in the output bfd which corresponds to the linked section
1445 in the input bfd. */
1446 if (iheader->sh_link != SHN_UNDEF)
1447 {
1448 /* See PR 20931 for a reproducer. */
1449 if (iheader->sh_link >= elf_numsections (ibfd))
1450 {
1451 _bfd_error_handler
1452 /* xgettext:c-format */
1453 (_("%pB: invalid sh_link field (%d) in section number %d"),
1454 ibfd, iheader->sh_link, secnum);
1455 return false;
1456 }
1457
1458 sh_link = find_link (obfd, iheaders[iheader->sh_link], iheader->sh_link);
1459 if (sh_link != SHN_UNDEF)
1460 {
1461 oheader->sh_link = sh_link;
1462 changed = true;
1463 }
1464 else
1465 /* FIXME: Should we install iheader->sh_link
1466 if we could not find a match ? */
1467 _bfd_error_handler
1468 /* xgettext:c-format */
1469 (_("%pB: failed to find link section for section %d"), obfd, secnum);
1470 }
1471
1472 if (iheader->sh_info)
1473 {
1474 /* The sh_info field can hold arbitrary information, but if the
1475 SHF_LINK_INFO flag is set then it should be interpreted as a
1476 section index. */
1477 if (iheader->sh_flags & SHF_INFO_LINK)
1478 {
1479 sh_link = find_link (obfd, iheaders[iheader->sh_info],
1480 iheader->sh_info);
1481 if (sh_link != SHN_UNDEF)
1482 oheader->sh_flags |= SHF_INFO_LINK;
1483 }
1484 else
1485 /* No idea what it means - just copy it. */
1486 sh_link = iheader->sh_info;
1487
1488 if (sh_link != SHN_UNDEF)
1489 {
1490 oheader->sh_info = sh_link;
1491 changed = true;
1492 }
1493 else
1494 _bfd_error_handler
1495 /* xgettext:c-format */
1496 (_("%pB: failed to find info section for section %d"), obfd, secnum);
1497 }
1498
1499 return changed;
1500 }
1501
1502 /* Copy the program header and other data from one object module to
1503 another. */
1504
1505 bool
1506 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1507 {
1508 const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd);
1509 Elf_Internal_Shdr **oheaders = elf_elfsections (obfd);
1510 const struct elf_backend_data *bed;
1511 unsigned int i;
1512
1513 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1514 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1515 return true;
1516
1517 if (!elf_flags_init (obfd))
1518 {
1519 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1520 elf_flags_init (obfd) = true;
1521 }
1522
1523 elf_gp (obfd) = elf_gp (ibfd);
1524
1525 /* Also copy the EI_OSABI field. */
1526 elf_elfheader (obfd)->e_ident[EI_OSABI] =
1527 elf_elfheader (ibfd)->e_ident[EI_OSABI];
1528
1529 /* If set, copy the EI_ABIVERSION field. */
1530 if (elf_elfheader (ibfd)->e_ident[EI_ABIVERSION])
1531 elf_elfheader (obfd)->e_ident[EI_ABIVERSION]
1532 = elf_elfheader (ibfd)->e_ident[EI_ABIVERSION];
1533
1534 /* Copy object attributes. */
1535 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1536
1537 if (iheaders == NULL || oheaders == NULL)
1538 return true;
1539
1540 bed = get_elf_backend_data (obfd);
1541
1542 /* Possibly copy other fields in the section header. */
1543 for (i = 1; i < elf_numsections (obfd); i++)
1544 {
1545 unsigned int j;
1546 Elf_Internal_Shdr * oheader = oheaders[i];
1547
1548 /* Ignore ordinary sections. SHT_NOBITS sections are considered however
1549 because of a special case need for generating separate debug info
1550 files. See below for more details. */
1551 if (oheader == NULL
1552 || (oheader->sh_type != SHT_NOBITS
1553 && oheader->sh_type < SHT_LOOS))
1554 continue;
1555
1556 /* Ignore empty sections, and sections whose
1557 fields have already been initialised. */
1558 if (oheader->sh_size == 0
1559 || (oheader->sh_info != 0 && oheader->sh_link != 0))
1560 continue;
1561
1562 /* Scan for the matching section in the input bfd.
1563 First we try for a direct mapping between the input and output sections. */
1564 for (j = 1; j < elf_numsections (ibfd); j++)
1565 {
1566 const Elf_Internal_Shdr * iheader = iheaders[j];
1567
1568 if (iheader == NULL)
1569 continue;
1570
1571 if (oheader->bfd_section != NULL
1572 && iheader->bfd_section != NULL
1573 && iheader->bfd_section->output_section != NULL
1574 && iheader->bfd_section->output_section == oheader->bfd_section)
1575 {
1576 /* We have found a connection from the input section to the
1577 output section. Attempt to copy the header fields. If
1578 this fails then do not try any further sections - there
1579 should only be a one-to-one mapping between input and output. */
1580 if (! copy_special_section_fields (ibfd, obfd, iheader, oheader, i))
1581 j = elf_numsections (ibfd);
1582 break;
1583 }
1584 }
1585
1586 if (j < elf_numsections (ibfd))
1587 continue;
1588
1589 /* That failed. So try to deduce the corresponding input section.
1590 Unfortunately we cannot compare names as the output string table
1591 is empty, so instead we check size, address and type. */
1592 for (j = 1; j < elf_numsections (ibfd); j++)
1593 {
1594 const Elf_Internal_Shdr * iheader = iheaders[j];
1595
1596 if (iheader == NULL)
1597 continue;
1598
1599 /* Try matching fields in the input section's header.
1600 Since --only-keep-debug turns all non-debug sections into
1601 SHT_NOBITS sections, the output SHT_NOBITS type matches any
1602 input type. */
1603 if ((oheader->sh_type == SHT_NOBITS
1604 || iheader->sh_type == oheader->sh_type)
1605 && (iheader->sh_flags & ~ SHF_INFO_LINK)
1606 == (oheader->sh_flags & ~ SHF_INFO_LINK)
1607 && iheader->sh_addralign == oheader->sh_addralign
1608 && iheader->sh_entsize == oheader->sh_entsize
1609 && iheader->sh_size == oheader->sh_size
1610 && iheader->sh_addr == oheader->sh_addr
1611 && (iheader->sh_info != oheader->sh_info
1612 || iheader->sh_link != oheader->sh_link))
1613 {
1614 if (copy_special_section_fields (ibfd, obfd, iheader, oheader, i))
1615 break;
1616 }
1617 }
1618
1619 if (j == elf_numsections (ibfd) && oheader->sh_type >= SHT_LOOS)
1620 {
1621 /* Final attempt. Call the backend copy function
1622 with a NULL input section. */
1623 (void) bed->elf_backend_copy_special_section_fields (ibfd, obfd,
1624 NULL, oheader);
1625 }
1626 }
1627
1628 return true;
1629 }
1630
1631 static const char *
1632 get_segment_type (unsigned int p_type)
1633 {
1634 const char *pt;
1635 switch (p_type)
1636 {
1637 case PT_NULL: pt = "NULL"; break;
1638 case PT_LOAD: pt = "LOAD"; break;
1639 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1640 case PT_INTERP: pt = "INTERP"; break;
1641 case PT_NOTE: pt = "NOTE"; break;
1642 case PT_SHLIB: pt = "SHLIB"; break;
1643 case PT_PHDR: pt = "PHDR"; break;
1644 case PT_TLS: pt = "TLS"; break;
1645 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1646 case PT_GNU_STACK: pt = "STACK"; break;
1647 case PT_GNU_RELRO: pt = "RELRO"; break;
1648 default: pt = NULL; break;
1649 }
1650 return pt;
1651 }
1652
1653 /* Print out the program headers. */
1654
1655 bool
1656 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1657 {
1658 FILE *f = (FILE *) farg;
1659 Elf_Internal_Phdr *p;
1660 asection *s;
1661 bfd_byte *dynbuf = NULL;
1662
1663 p = elf_tdata (abfd)->phdr;
1664 if (p != NULL)
1665 {
1666 unsigned int i, c;
1667
1668 fprintf (f, _("\nProgram Header:\n"));
1669 c = elf_elfheader (abfd)->e_phnum;
1670 for (i = 0; i < c; i++, p++)
1671 {
1672 const char *pt = get_segment_type (p->p_type);
1673 char buf[20];
1674
1675 if (pt == NULL)
1676 {
1677 sprintf (buf, "0x%lx", p->p_type);
1678 pt = buf;
1679 }
1680 fprintf (f, "%8s off 0x", pt);
1681 bfd_fprintf_vma (abfd, f, p->p_offset);
1682 fprintf (f, " vaddr 0x");
1683 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1684 fprintf (f, " paddr 0x");
1685 bfd_fprintf_vma (abfd, f, p->p_paddr);
1686 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1687 fprintf (f, " filesz 0x");
1688 bfd_fprintf_vma (abfd, f, p->p_filesz);
1689 fprintf (f, " memsz 0x");
1690 bfd_fprintf_vma (abfd, f, p->p_memsz);
1691 fprintf (f, " flags %c%c%c",
1692 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1693 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1694 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1695 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1696 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1697 fprintf (f, "\n");
1698 }
1699 }
1700
1701 s = bfd_get_section_by_name (abfd, ".dynamic");
1702 if (s != NULL)
1703 {
1704 unsigned int elfsec;
1705 unsigned long shlink;
1706 bfd_byte *extdyn, *extdynend;
1707 size_t extdynsize;
1708 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1709
1710 fprintf (f, _("\nDynamic Section:\n"));
1711
1712 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1713 goto error_return;
1714
1715 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1716 if (elfsec == SHN_BAD)
1717 goto error_return;
1718 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1719
1720 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1721 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1722
1723 extdyn = dynbuf;
1724 /* PR 17512: file: 6f427532. */
1725 if (s->size < extdynsize)
1726 goto error_return;
1727 extdynend = extdyn + s->size;
1728 /* PR 17512: file: id:000006,sig:06,src:000000,op:flip4,pos:5664.
1729 Fix range check. */
1730 for (; extdyn <= (extdynend - extdynsize); extdyn += extdynsize)
1731 {
1732 Elf_Internal_Dyn dyn;
1733 const char *name = "";
1734 char ab[20];
1735 bool stringp;
1736 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1737
1738 (*swap_dyn_in) (abfd, extdyn, &dyn);
1739
1740 if (dyn.d_tag == DT_NULL)
1741 break;
1742
1743 stringp = false;
1744 switch (dyn.d_tag)
1745 {
1746 default:
1747 if (bed->elf_backend_get_target_dtag)
1748 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
1749
1750 if (!strcmp (name, ""))
1751 {
1752 sprintf (ab, "%#" BFD_VMA_FMT "x", dyn.d_tag);
1753 name = ab;
1754 }
1755 break;
1756
1757 case DT_NEEDED: name = "NEEDED"; stringp = true; break;
1758 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1759 case DT_PLTGOT: name = "PLTGOT"; break;
1760 case DT_HASH: name = "HASH"; break;
1761 case DT_STRTAB: name = "STRTAB"; break;
1762 case DT_SYMTAB: name = "SYMTAB"; break;
1763 case DT_RELA: name = "RELA"; break;
1764 case DT_RELASZ: name = "RELASZ"; break;
1765 case DT_RELAENT: name = "RELAENT"; break;
1766 case DT_STRSZ: name = "STRSZ"; break;
1767 case DT_SYMENT: name = "SYMENT"; break;
1768 case DT_INIT: name = "INIT"; break;
1769 case DT_FINI: name = "FINI"; break;
1770 case DT_SONAME: name = "SONAME"; stringp = true; break;
1771 case DT_RPATH: name = "RPATH"; stringp = true; break;
1772 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1773 case DT_REL: name = "REL"; break;
1774 case DT_RELSZ: name = "RELSZ"; break;
1775 case DT_RELENT: name = "RELENT"; break;
1776 case DT_RELR: name = "RELR"; break;
1777 case DT_RELRSZ: name = "RELRSZ"; break;
1778 case DT_RELRENT: name = "RELRENT"; break;
1779 case DT_PLTREL: name = "PLTREL"; break;
1780 case DT_DEBUG: name = "DEBUG"; break;
1781 case DT_TEXTREL: name = "TEXTREL"; break;
1782 case DT_JMPREL: name = "JMPREL"; break;
1783 case DT_BIND_NOW: name = "BIND_NOW"; break;
1784 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1785 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1786 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1787 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1788 case DT_RUNPATH: name = "RUNPATH"; stringp = true; break;
1789 case DT_FLAGS: name = "FLAGS"; break;
1790 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1791 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1792 case DT_CHECKSUM: name = "CHECKSUM"; break;
1793 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1794 case DT_MOVEENT: name = "MOVEENT"; break;
1795 case DT_MOVESZ: name = "MOVESZ"; break;
1796 case DT_FEATURE: name = "FEATURE"; break;
1797 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1798 case DT_SYMINSZ: name = "SYMINSZ"; break;
1799 case DT_SYMINENT: name = "SYMINENT"; break;
1800 case DT_CONFIG: name = "CONFIG"; stringp = true; break;
1801 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = true; break;
1802 case DT_AUDIT: name = "AUDIT"; stringp = true; break;
1803 case DT_PLTPAD: name = "PLTPAD"; break;
1804 case DT_MOVETAB: name = "MOVETAB"; break;
1805 case DT_SYMINFO: name = "SYMINFO"; break;
1806 case DT_RELACOUNT: name = "RELACOUNT"; break;
1807 case DT_RELCOUNT: name = "RELCOUNT"; break;
1808 case DT_FLAGS_1: name = "FLAGS_1"; break;
1809 case DT_VERSYM: name = "VERSYM"; break;
1810 case DT_VERDEF: name = "VERDEF"; break;
1811 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1812 case DT_VERNEED: name = "VERNEED"; break;
1813 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1814 case DT_AUXILIARY: name = "AUXILIARY"; stringp = true; break;
1815 case DT_USED: name = "USED"; break;
1816 case DT_FILTER: name = "FILTER"; stringp = true; break;
1817 case DT_GNU_HASH: name = "GNU_HASH"; break;
1818 }
1819
1820 fprintf (f, " %-20s ", name);
1821 if (! stringp)
1822 {
1823 fprintf (f, "0x");
1824 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
1825 }
1826 else
1827 {
1828 const char *string;
1829 unsigned int tagv = dyn.d_un.d_val;
1830
1831 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1832 if (string == NULL)
1833 goto error_return;
1834 fprintf (f, "%s", string);
1835 }
1836 fprintf (f, "\n");
1837 }
1838
1839 free (dynbuf);
1840 dynbuf = NULL;
1841 }
1842
1843 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1844 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1845 {
1846 if (! _bfd_elf_slurp_version_tables (abfd, false))
1847 return false;
1848 }
1849
1850 if (elf_dynverdef (abfd) != 0)
1851 {
1852 Elf_Internal_Verdef *t;
1853
1854 fprintf (f, _("\nVersion definitions:\n"));
1855 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1856 {
1857 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1858 t->vd_flags, t->vd_hash,
1859 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1860 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1861 {
1862 Elf_Internal_Verdaux *a;
1863
1864 fprintf (f, "\t");
1865 for (a = t->vd_auxptr->vda_nextptr;
1866 a != NULL;
1867 a = a->vda_nextptr)
1868 fprintf (f, "%s ",
1869 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1870 fprintf (f, "\n");
1871 }
1872 }
1873 }
1874
1875 if (elf_dynverref (abfd) != 0)
1876 {
1877 Elf_Internal_Verneed *t;
1878
1879 fprintf (f, _("\nVersion References:\n"));
1880 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1881 {
1882 Elf_Internal_Vernaux *a;
1883
1884 fprintf (f, _(" required from %s:\n"),
1885 t->vn_filename ? t->vn_filename : "<corrupt>");
1886 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1887 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1888 a->vna_flags, a->vna_other,
1889 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1890 }
1891 }
1892
1893 return true;
1894
1895 error_return:
1896 free (dynbuf);
1897 return false;
1898 }
1899
1900 /* Get version name. If BASE_P is TRUE, return "Base" for VER_FLG_BASE
1901 and return symbol version for symbol version itself. */
1902
1903 const char *
1904 _bfd_elf_get_symbol_version_string (bfd *abfd, asymbol *symbol,
1905 bool base_p,
1906 bool *hidden)
1907 {
1908 const char *version_string = NULL;
1909 if (elf_dynversym (abfd) != 0
1910 && (elf_dynverdef (abfd) != 0 || elf_dynverref (abfd) != 0))
1911 {
1912 unsigned int vernum = ((elf_symbol_type *) symbol)->version;
1913
1914 *hidden = (vernum & VERSYM_HIDDEN) != 0;
1915 vernum &= VERSYM_VERSION;
1916
1917 if (vernum == 0)
1918 version_string = "";
1919 else if (vernum == 1
1920 && (vernum > elf_tdata (abfd)->cverdefs
1921 || (elf_tdata (abfd)->verdef[0].vd_flags
1922 == VER_FLG_BASE)))
1923 version_string = base_p ? "Base" : "";
1924 else if (vernum <= elf_tdata (abfd)->cverdefs)
1925 {
1926 const char *nodename
1927 = elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1928 version_string = "";
1929 if (base_p
1930 || nodename == NULL
1931 || symbol->name == NULL
1932 || strcmp (symbol->name, nodename) != 0)
1933 version_string = nodename;
1934 }
1935 else
1936 {
1937 Elf_Internal_Verneed *t;
1938
1939 version_string = _("<corrupt>");
1940 for (t = elf_tdata (abfd)->verref;
1941 t != NULL;
1942 t = t->vn_nextref)
1943 {
1944 Elf_Internal_Vernaux *a;
1945
1946 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1947 {
1948 if (a->vna_other == vernum)
1949 {
1950 *hidden = true;
1951 version_string = a->vna_nodename;
1952 break;
1953 }
1954 }
1955 }
1956 }
1957 }
1958 return version_string;
1959 }
1960
1961 /* Display ELF-specific fields of a symbol. */
1962
1963 void
1964 bfd_elf_print_symbol (bfd *abfd,
1965 void *filep,
1966 asymbol *symbol,
1967 bfd_print_symbol_type how)
1968 {
1969 FILE *file = (FILE *) filep;
1970 switch (how)
1971 {
1972 case bfd_print_symbol_name:
1973 fprintf (file, "%s", symbol->name);
1974 break;
1975 case bfd_print_symbol_more:
1976 fprintf (file, "elf ");
1977 bfd_fprintf_vma (abfd, file, symbol->value);
1978 fprintf (file, " %x", symbol->flags);
1979 break;
1980 case bfd_print_symbol_all:
1981 {
1982 const char *section_name;
1983 const char *name = NULL;
1984 const struct elf_backend_data *bed;
1985 unsigned char st_other;
1986 bfd_vma val;
1987 const char *version_string;
1988 bool hidden;
1989
1990 section_name = symbol->section ? symbol->section->name : "(*none*)";
1991
1992 bed = get_elf_backend_data (abfd);
1993 if (bed->elf_backend_print_symbol_all)
1994 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1995
1996 if (name == NULL)
1997 {
1998 name = symbol->name;
1999 bfd_print_symbol_vandf (abfd, file, symbol);
2000 }
2001
2002 fprintf (file, " %s\t", section_name);
2003 /* Print the "other" value for a symbol. For common symbols,
2004 we've already printed the size; now print the alignment.
2005 For other symbols, we have no specified alignment, and
2006 we've printed the address; now print the size. */
2007 if (symbol->section && bfd_is_com_section (symbol->section))
2008 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
2009 else
2010 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
2011 bfd_fprintf_vma (abfd, file, val);
2012
2013 /* If we have version information, print it. */
2014 version_string = _bfd_elf_get_symbol_version_string (abfd,
2015 symbol,
2016 true,
2017 &hidden);
2018 if (version_string)
2019 {
2020 if (!hidden)
2021 fprintf (file, " %-11s", version_string);
2022 else
2023 {
2024 int i;
2025
2026 fprintf (file, " (%s)", version_string);
2027 for (i = 10 - strlen (version_string); i > 0; --i)
2028 putc (' ', file);
2029 }
2030 }
2031
2032 /* If the st_other field is not zero, print it. */
2033 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
2034
2035 switch (st_other)
2036 {
2037 case 0: break;
2038 case STV_INTERNAL: fprintf (file, " .internal"); break;
2039 case STV_HIDDEN: fprintf (file, " .hidden"); break;
2040 case STV_PROTECTED: fprintf (file, " .protected"); break;
2041 default:
2042 /* Some other non-defined flags are also present, so print
2043 everything hex. */
2044 fprintf (file, " 0x%02x", (unsigned int) st_other);
2045 }
2046
2047 fprintf (file, " %s", name);
2048 }
2049 break;
2050 }
2051 }
2052 \f
2053 /* ELF .o/exec file reading */
2054
2055 /* Create a new bfd section from an ELF section header. */
2056
2057 bool
2058 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
2059 {
2060 Elf_Internal_Shdr *hdr;
2061 Elf_Internal_Ehdr *ehdr;
2062 const struct elf_backend_data *bed;
2063 const char *name;
2064 bool ret = true;
2065
2066 if (shindex >= elf_numsections (abfd))
2067 return false;
2068
2069 /* PR17512: A corrupt ELF binary might contain a loop of sections via
2070 sh_link or sh_info. Detect this here, by refusing to load a
2071 section that we are already in the process of loading. */
2072 if (elf_tdata (abfd)->being_created[shindex])
2073 {
2074 _bfd_error_handler
2075 (_("%pB: warning: loop in section dependencies detected"), abfd);
2076 return false;
2077 }
2078 elf_tdata (abfd)->being_created[shindex] = true;
2079
2080 hdr = elf_elfsections (abfd)[shindex];
2081 ehdr = elf_elfheader (abfd);
2082 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
2083 hdr->sh_name);
2084 if (name == NULL)
2085 goto fail;
2086
2087 bed = get_elf_backend_data (abfd);
2088 switch (hdr->sh_type)
2089 {
2090 case SHT_NULL:
2091 /* Inactive section. Throw it away. */
2092 goto success;
2093
2094 case SHT_PROGBITS: /* Normal section with contents. */
2095 case SHT_NOBITS: /* .bss section. */
2096 case SHT_HASH: /* .hash section. */
2097 case SHT_NOTE: /* .note section. */
2098 case SHT_INIT_ARRAY: /* .init_array section. */
2099 case SHT_FINI_ARRAY: /* .fini_array section. */
2100 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
2101 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
2102 case SHT_GNU_HASH: /* .gnu.hash section. */
2103 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2104 goto success;
2105
2106 case SHT_DYNAMIC: /* Dynamic linking information. */
2107 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2108 goto fail;
2109
2110 if (hdr->sh_link > elf_numsections (abfd))
2111 {
2112 /* PR 10478: Accept Solaris binaries with a sh_link
2113 field set to SHN_BEFORE or SHN_AFTER. */
2114 switch (bfd_get_arch (abfd))
2115 {
2116 case bfd_arch_i386:
2117 case bfd_arch_sparc:
2118 if (hdr->sh_link == (SHN_LORESERVE & 0xffff) /* SHN_BEFORE */
2119 || hdr->sh_link == ((SHN_LORESERVE + 1) & 0xffff) /* SHN_AFTER */)
2120 break;
2121 /* Otherwise fall through. */
2122 default:
2123 goto fail;
2124 }
2125 }
2126 else if (elf_elfsections (abfd)[hdr->sh_link] == NULL)
2127 goto fail;
2128 else if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
2129 {
2130 Elf_Internal_Shdr *dynsymhdr;
2131
2132 /* The shared libraries distributed with hpux11 have a bogus
2133 sh_link field for the ".dynamic" section. Find the
2134 string table for the ".dynsym" section instead. */
2135 if (elf_dynsymtab (abfd) != 0)
2136 {
2137 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
2138 hdr->sh_link = dynsymhdr->sh_link;
2139 }
2140 else
2141 {
2142 unsigned int i, num_sec;
2143
2144 num_sec = elf_numsections (abfd);
2145 for (i = 1; i < num_sec; i++)
2146 {
2147 dynsymhdr = elf_elfsections (abfd)[i];
2148 if (dynsymhdr->sh_type == SHT_DYNSYM)
2149 {
2150 hdr->sh_link = dynsymhdr->sh_link;
2151 break;
2152 }
2153 }
2154 }
2155 }
2156 goto success;
2157
2158 case SHT_SYMTAB: /* A symbol table. */
2159 if (elf_onesymtab (abfd) == shindex)
2160 goto success;
2161
2162 if (hdr->sh_entsize != bed->s->sizeof_sym)
2163 goto fail;
2164
2165 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
2166 {
2167 if (hdr->sh_size != 0)
2168 goto fail;
2169 /* Some assemblers erroneously set sh_info to one with a
2170 zero sh_size. ld sees this as a global symbol count
2171 of (unsigned) -1. Fix it here. */
2172 hdr->sh_info = 0;
2173 goto success;
2174 }
2175
2176 /* PR 18854: A binary might contain more than one symbol table.
2177 Unusual, but possible. Warn, but continue. */
2178 if (elf_onesymtab (abfd) != 0)
2179 {
2180 _bfd_error_handler
2181 /* xgettext:c-format */
2182 (_("%pB: warning: multiple symbol tables detected"
2183 " - ignoring the table in section %u"),
2184 abfd, shindex);
2185 goto success;
2186 }
2187 elf_onesymtab (abfd) = shindex;
2188 elf_symtab_hdr (abfd) = *hdr;
2189 elf_elfsections (abfd)[shindex] = hdr = & elf_symtab_hdr (abfd);
2190 abfd->flags |= HAS_SYMS;
2191
2192 /* Sometimes a shared object will map in the symbol table. If
2193 SHF_ALLOC is set, and this is a shared object, then we also
2194 treat this section as a BFD section. We can not base the
2195 decision purely on SHF_ALLOC, because that flag is sometimes
2196 set in a relocatable object file, which would confuse the
2197 linker. */
2198 if ((hdr->sh_flags & SHF_ALLOC) != 0
2199 && (abfd->flags & DYNAMIC) != 0
2200 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2201 shindex))
2202 goto fail;
2203
2204 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
2205 can't read symbols without that section loaded as well. It
2206 is most likely specified by the next section header. */
2207 {
2208 elf_section_list * entry;
2209 unsigned int i, num_sec;
2210
2211 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
2212 if (entry->hdr.sh_link == shindex)
2213 goto success;
2214
2215 num_sec = elf_numsections (abfd);
2216 for (i = shindex + 1; i < num_sec; i++)
2217 {
2218 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2219
2220 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
2221 && hdr2->sh_link == shindex)
2222 break;
2223 }
2224
2225 if (i == num_sec)
2226 for (i = 1; i < shindex; i++)
2227 {
2228 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2229
2230 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
2231 && hdr2->sh_link == shindex)
2232 break;
2233 }
2234
2235 if (i != shindex)
2236 ret = bfd_section_from_shdr (abfd, i);
2237 /* else FIXME: we have failed to find the symbol table - should we issue an error ? */
2238 goto success;
2239 }
2240
2241 case SHT_DYNSYM: /* A dynamic symbol table. */
2242 if (elf_dynsymtab (abfd) == shindex)
2243 goto success;
2244
2245 if (hdr->sh_entsize != bed->s->sizeof_sym)
2246 goto fail;
2247
2248 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
2249 {
2250 if (hdr->sh_size != 0)
2251 goto fail;
2252
2253 /* Some linkers erroneously set sh_info to one with a
2254 zero sh_size. ld sees this as a global symbol count
2255 of (unsigned) -1. Fix it here. */
2256 hdr->sh_info = 0;
2257 goto success;
2258 }
2259
2260 /* PR 18854: A binary might contain more than one dynamic symbol table.
2261 Unusual, but possible. Warn, but continue. */
2262 if (elf_dynsymtab (abfd) != 0)
2263 {
2264 _bfd_error_handler
2265 /* xgettext:c-format */
2266 (_("%pB: warning: multiple dynamic symbol tables detected"
2267 " - ignoring the table in section %u"),
2268 abfd, shindex);
2269 goto success;
2270 }
2271 elf_dynsymtab (abfd) = shindex;
2272 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
2273 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2274 abfd->flags |= HAS_SYMS;
2275
2276 /* Besides being a symbol table, we also treat this as a regular
2277 section, so that objcopy can handle it. */
2278 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2279 goto success;
2280
2281 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections. */
2282 {
2283 elf_section_list * entry;
2284
2285 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
2286 if (entry->ndx == shindex)
2287 goto success;
2288
2289 entry = bfd_alloc (abfd, sizeof (*entry));
2290 if (entry == NULL)
2291 goto fail;
2292 entry->ndx = shindex;
2293 entry->hdr = * hdr;
2294 entry->next = elf_symtab_shndx_list (abfd);
2295 elf_symtab_shndx_list (abfd) = entry;
2296 elf_elfsections (abfd)[shindex] = & entry->hdr;
2297 goto success;
2298 }
2299
2300 case SHT_STRTAB: /* A string table. */
2301 if (hdr->bfd_section != NULL)
2302 goto success;
2303
2304 if (ehdr->e_shstrndx == shindex)
2305 {
2306 elf_tdata (abfd)->shstrtab_hdr = *hdr;
2307 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
2308 goto success;
2309 }
2310
2311 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
2312 {
2313 symtab_strtab:
2314 elf_tdata (abfd)->strtab_hdr = *hdr;
2315 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
2316 goto success;
2317 }
2318
2319 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
2320 {
2321 dynsymtab_strtab:
2322 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
2323 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
2324 elf_elfsections (abfd)[shindex] = hdr;
2325 /* We also treat this as a regular section, so that objcopy
2326 can handle it. */
2327 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2328 shindex);
2329 goto success;
2330 }
2331
2332 /* If the string table isn't one of the above, then treat it as a
2333 regular section. We need to scan all the headers to be sure,
2334 just in case this strtab section appeared before the above. */
2335 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
2336 {
2337 unsigned int i, num_sec;
2338
2339 num_sec = elf_numsections (abfd);
2340 for (i = 1; i < num_sec; i++)
2341 {
2342 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2343 if (hdr2->sh_link == shindex)
2344 {
2345 /* Prevent endless recursion on broken objects. */
2346 if (i == shindex)
2347 goto fail;
2348 if (! bfd_section_from_shdr (abfd, i))
2349 goto fail;
2350 if (elf_onesymtab (abfd) == i)
2351 goto symtab_strtab;
2352 if (elf_dynsymtab (abfd) == i)
2353 goto dynsymtab_strtab;
2354 }
2355 }
2356 }
2357 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2358 goto success;
2359
2360 case SHT_REL:
2361 case SHT_RELA:
2362 case SHT_RELR:
2363 /* *These* do a lot of work -- but build no sections! */
2364 {
2365 asection *target_sect;
2366 Elf_Internal_Shdr *hdr2, **p_hdr;
2367 unsigned int num_sec = elf_numsections (abfd);
2368 struct bfd_elf_section_data *esdt;
2369 bfd_size_type size;
2370
2371 if (hdr->sh_type == SHT_REL)
2372 size = bed->s->sizeof_rel;
2373 else if (hdr->sh_type == SHT_RELA)
2374 size = bed->s->sizeof_rela;
2375 else
2376 size = bed->s->arch_size / 8;
2377 if (hdr->sh_entsize != size)
2378 goto fail;
2379
2380 /* Check for a bogus link to avoid crashing. */
2381 if (hdr->sh_link >= num_sec)
2382 {
2383 _bfd_error_handler
2384 /* xgettext:c-format */
2385 (_("%pB: invalid link %u for reloc section %s (index %u)"),
2386 abfd, hdr->sh_link, name, shindex);
2387 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2388 shindex);
2389 goto success;
2390 }
2391
2392 /* For some incomprehensible reason Oracle distributes
2393 libraries for Solaris in which some of the objects have
2394 bogus sh_link fields. It would be nice if we could just
2395 reject them, but, unfortunately, some people need to use
2396 them. We scan through the section headers; if we find only
2397 one suitable symbol table, we clobber the sh_link to point
2398 to it. I hope this doesn't break anything.
2399
2400 Don't do it on executable nor shared library. */
2401 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0
2402 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
2403 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
2404 {
2405 unsigned int scan;
2406 int found;
2407
2408 found = 0;
2409 for (scan = 1; scan < num_sec; scan++)
2410 {
2411 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
2412 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
2413 {
2414 if (found != 0)
2415 {
2416 found = 0;
2417 break;
2418 }
2419 found = scan;
2420 }
2421 }
2422 if (found != 0)
2423 hdr->sh_link = found;
2424 }
2425
2426 /* Get the symbol table. */
2427 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
2428 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
2429 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
2430 goto fail;
2431
2432 /* If this is an alloc section in an executable or shared
2433 library, or the reloc section does not use the main symbol
2434 table we don't treat it as a reloc section. BFD can't
2435 adequately represent such a section, so at least for now,
2436 we don't try. We just present it as a normal section. We
2437 also can't use it as a reloc section if it points to the
2438 null section, an invalid section, another reloc section, or
2439 its sh_link points to the null section. */
2440 if (((abfd->flags & (DYNAMIC | EXEC_P)) != 0
2441 && (hdr->sh_flags & SHF_ALLOC) != 0)
2442 || hdr->sh_link == SHN_UNDEF
2443 || hdr->sh_link != elf_onesymtab (abfd)
2444 || hdr->sh_info == SHN_UNDEF
2445 || hdr->sh_info >= num_sec
2446 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
2447 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
2448 {
2449 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2450 shindex);
2451 goto success;
2452 }
2453
2454 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
2455 goto fail;
2456
2457 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
2458 if (target_sect == NULL)
2459 goto fail;
2460
2461 esdt = elf_section_data (target_sect);
2462 if (hdr->sh_type == SHT_RELA)
2463 p_hdr = &esdt->rela.hdr;
2464 else
2465 p_hdr = &esdt->rel.hdr;
2466
2467 /* PR 17512: file: 0b4f81b7.
2468 Also see PR 24456, for a file which deliberately has two reloc
2469 sections. */
2470 if (*p_hdr != NULL)
2471 {
2472 if (!bed->init_secondary_reloc_section (abfd, hdr, name, shindex))
2473 {
2474 _bfd_error_handler
2475 /* xgettext:c-format */
2476 (_("%pB: warning: secondary relocation section '%s' "
2477 "for section %pA found - ignoring"),
2478 abfd, name, target_sect);
2479 }
2480 else
2481 esdt->has_secondary_relocs = true;
2482 goto success;
2483 }
2484
2485 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, sizeof (*hdr2));
2486 if (hdr2 == NULL)
2487 goto fail;
2488 *hdr2 = *hdr;
2489 *p_hdr = hdr2;
2490 elf_elfsections (abfd)[shindex] = hdr2;
2491 target_sect->reloc_count += (NUM_SHDR_ENTRIES (hdr)
2492 * bed->s->int_rels_per_ext_rel);
2493 target_sect->flags |= SEC_RELOC;
2494 target_sect->relocation = NULL;
2495 target_sect->rel_filepos = hdr->sh_offset;
2496 /* In the section to which the relocations apply, mark whether
2497 its relocations are of the REL or RELA variety. */
2498 if (hdr->sh_size != 0)
2499 {
2500 if (hdr->sh_type == SHT_RELA)
2501 target_sect->use_rela_p = 1;
2502 }
2503 abfd->flags |= HAS_RELOC;
2504 goto success;
2505 }
2506
2507 case SHT_GNU_verdef:
2508 elf_dynverdef (abfd) = shindex;
2509 elf_tdata (abfd)->dynverdef_hdr = *hdr;
2510 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2511 goto success;
2512
2513 case SHT_GNU_versym:
2514 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
2515 goto fail;
2516
2517 elf_dynversym (abfd) = shindex;
2518 elf_tdata (abfd)->dynversym_hdr = *hdr;
2519 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2520 goto success;
2521
2522 case SHT_GNU_verneed:
2523 elf_dynverref (abfd) = shindex;
2524 elf_tdata (abfd)->dynverref_hdr = *hdr;
2525 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2526 goto success;
2527
2528 case SHT_SHLIB:
2529 goto success;
2530
2531 case SHT_GROUP:
2532 if (! IS_VALID_GROUP_SECTION_HEADER (hdr, GRP_ENTRY_SIZE))
2533 goto fail;
2534
2535 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2536 goto fail;
2537
2538 goto success;
2539
2540 default:
2541 /* Possibly an attributes section. */
2542 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
2543 || hdr->sh_type == bed->obj_attrs_section_type)
2544 {
2545 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2546 goto fail;
2547 _bfd_elf_parse_attributes (abfd, hdr);
2548 goto success;
2549 }
2550
2551 /* Check for any processor-specific section types. */
2552 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
2553 goto success;
2554
2555 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
2556 {
2557 if ((hdr->sh_flags & SHF_ALLOC) != 0)
2558 /* FIXME: How to properly handle allocated section reserved
2559 for applications? */
2560 _bfd_error_handler
2561 /* xgettext:c-format */
2562 (_("%pB: unknown type [%#x] section `%s'"),
2563 abfd, hdr->sh_type, name);
2564 else
2565 {
2566 /* Allow sections reserved for applications. */
2567 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2568 shindex);
2569 goto success;
2570 }
2571 }
2572 else if (hdr->sh_type >= SHT_LOPROC
2573 && hdr->sh_type <= SHT_HIPROC)
2574 /* FIXME: We should handle this section. */
2575 _bfd_error_handler
2576 /* xgettext:c-format */
2577 (_("%pB: unknown type [%#x] section `%s'"),
2578 abfd, hdr->sh_type, name);
2579 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
2580 {
2581 /* Unrecognised OS-specific sections. */
2582 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
2583 /* SHF_OS_NONCONFORMING indicates that special knowledge is
2584 required to correctly process the section and the file should
2585 be rejected with an error message. */
2586 _bfd_error_handler
2587 /* xgettext:c-format */
2588 (_("%pB: unknown type [%#x] section `%s'"),
2589 abfd, hdr->sh_type, name);
2590 else
2591 {
2592 /* Otherwise it should be processed. */
2593 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2594 goto success;
2595 }
2596 }
2597 else
2598 /* FIXME: We should handle this section. */
2599 _bfd_error_handler
2600 /* xgettext:c-format */
2601 (_("%pB: unknown type [%#x] section `%s'"),
2602 abfd, hdr->sh_type, name);
2603
2604 goto fail;
2605 }
2606
2607 fail:
2608 ret = false;
2609 success:
2610 elf_tdata (abfd)->being_created[shindex] = false;
2611 return ret;
2612 }
2613
2614 /* Return the local symbol specified by ABFD, R_SYMNDX. */
2615
2616 Elf_Internal_Sym *
2617 bfd_sym_from_r_symndx (struct sym_cache *cache,
2618 bfd *abfd,
2619 unsigned long r_symndx)
2620 {
2621 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2622
2623 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
2624 {
2625 Elf_Internal_Shdr *symtab_hdr;
2626 unsigned char esym[sizeof (Elf64_External_Sym)];
2627 Elf_External_Sym_Shndx eshndx;
2628
2629 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2630 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2631 &cache->sym[ent], esym, &eshndx) == NULL)
2632 return NULL;
2633
2634 if (cache->abfd != abfd)
2635 {
2636 memset (cache->indx, -1, sizeof (cache->indx));
2637 cache->abfd = abfd;
2638 }
2639 cache->indx[ent] = r_symndx;
2640 }
2641
2642 return &cache->sym[ent];
2643 }
2644
2645 /* Given an ELF section number, retrieve the corresponding BFD
2646 section. */
2647
2648 asection *
2649 bfd_section_from_elf_index (bfd *abfd, unsigned int sec_index)
2650 {
2651 if (sec_index >= elf_numsections (abfd))
2652 return NULL;
2653 return elf_elfsections (abfd)[sec_index]->bfd_section;
2654 }
2655
2656 static const struct bfd_elf_special_section special_sections_b[] =
2657 {
2658 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2659 { NULL, 0, 0, 0, 0 }
2660 };
2661
2662 static const struct bfd_elf_special_section special_sections_c[] =
2663 {
2664 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2665 { STRING_COMMA_LEN (".ctf"), 0, SHT_PROGBITS, 0 },
2666 { NULL, 0, 0, 0, 0 }
2667 };
2668
2669 static const struct bfd_elf_special_section special_sections_d[] =
2670 {
2671 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2672 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2673 /* There are more DWARF sections than these, but they needn't be added here
2674 unless you have to cope with broken compilers that don't emit section
2675 attributes or you want to help the user writing assembler. */
2676 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2677 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2678 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2679 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2680 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2681 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2682 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2683 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2684 { NULL, 0, 0, 0, 0 }
2685 };
2686
2687 static const struct bfd_elf_special_section special_sections_f[] =
2688 {
2689 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2690 { STRING_COMMA_LEN (".fini_array"), -2, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2691 { NULL, 0 , 0, 0, 0 }
2692 };
2693
2694 static const struct bfd_elf_special_section special_sections_g[] =
2695 {
2696 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2697 { STRING_COMMA_LEN (".gnu.linkonce.n"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2698 { STRING_COMMA_LEN (".gnu.linkonce.p"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2699 { STRING_COMMA_LEN (".gnu.lto_"), -1, SHT_PROGBITS, SHF_EXCLUDE },
2700 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2701 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2702 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2703 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2704 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2705 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2706 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2707 { NULL, 0, 0, 0, 0 }
2708 };
2709
2710 static const struct bfd_elf_special_section special_sections_h[] =
2711 {
2712 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2713 { NULL, 0, 0, 0, 0 }
2714 };
2715
2716 static const struct bfd_elf_special_section special_sections_i[] =
2717 {
2718 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2719 { STRING_COMMA_LEN (".init_array"), -2, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2720 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2721 { NULL, 0, 0, 0, 0 }
2722 };
2723
2724 static const struct bfd_elf_special_section special_sections_l[] =
2725 {
2726 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2727 { NULL, 0, 0, 0, 0 }
2728 };
2729
2730 static const struct bfd_elf_special_section special_sections_n[] =
2731 {
2732 { STRING_COMMA_LEN (".noinit"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2733 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2734 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2735 { NULL, 0, 0, 0, 0 }
2736 };
2737
2738 static const struct bfd_elf_special_section special_sections_p[] =
2739 {
2740 { STRING_COMMA_LEN (".persistent.bss"), 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2741 { STRING_COMMA_LEN (".persistent"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2742 { STRING_COMMA_LEN (".preinit_array"), -2, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2743 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2744 { NULL, 0, 0, 0, 0 }
2745 };
2746
2747 static const struct bfd_elf_special_section special_sections_r[] =
2748 {
2749 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2750 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2751 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2752 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2753 { NULL, 0, 0, 0, 0 }
2754 };
2755
2756 static const struct bfd_elf_special_section special_sections_s[] =
2757 {
2758 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2759 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2760 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2761 /* See struct bfd_elf_special_section declaration for the semantics of
2762 this special case where .prefix_length != strlen (.prefix). */
2763 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2764 { NULL, 0, 0, 0, 0 }
2765 };
2766
2767 static const struct bfd_elf_special_section special_sections_t[] =
2768 {
2769 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2770 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2771 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2772 { NULL, 0, 0, 0, 0 }
2773 };
2774
2775 static const struct bfd_elf_special_section special_sections_z[] =
2776 {
2777 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 },
2778 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 },
2779 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 },
2780 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 },
2781 { NULL, 0, 0, 0, 0 }
2782 };
2783
2784 static const struct bfd_elf_special_section * const special_sections[] =
2785 {
2786 special_sections_b, /* 'b' */
2787 special_sections_c, /* 'c' */
2788 special_sections_d, /* 'd' */
2789 NULL, /* 'e' */
2790 special_sections_f, /* 'f' */
2791 special_sections_g, /* 'g' */
2792 special_sections_h, /* 'h' */
2793 special_sections_i, /* 'i' */
2794 NULL, /* 'j' */
2795 NULL, /* 'k' */
2796 special_sections_l, /* 'l' */
2797 NULL, /* 'm' */
2798 special_sections_n, /* 'n' */
2799 NULL, /* 'o' */
2800 special_sections_p, /* 'p' */
2801 NULL, /* 'q' */
2802 special_sections_r, /* 'r' */
2803 special_sections_s, /* 's' */
2804 special_sections_t, /* 't' */
2805 NULL, /* 'u' */
2806 NULL, /* 'v' */
2807 NULL, /* 'w' */
2808 NULL, /* 'x' */
2809 NULL, /* 'y' */
2810 special_sections_z /* 'z' */
2811 };
2812
2813 const struct bfd_elf_special_section *
2814 _bfd_elf_get_special_section (const char *name,
2815 const struct bfd_elf_special_section *spec,
2816 unsigned int rela)
2817 {
2818 int i;
2819 int len;
2820
2821 len = strlen (name);
2822
2823 for (i = 0; spec[i].prefix != NULL; i++)
2824 {
2825 int suffix_len;
2826 int prefix_len = spec[i].prefix_length;
2827
2828 if (len < prefix_len)
2829 continue;
2830 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2831 continue;
2832
2833 suffix_len = spec[i].suffix_length;
2834 if (suffix_len <= 0)
2835 {
2836 if (name[prefix_len] != 0)
2837 {
2838 if (suffix_len == 0)
2839 continue;
2840 if (name[prefix_len] != '.'
2841 && (suffix_len == -2
2842 || (rela && spec[i].type == SHT_REL)))
2843 continue;
2844 }
2845 }
2846 else
2847 {
2848 if (len < prefix_len + suffix_len)
2849 continue;
2850 if (memcmp (name + len - suffix_len,
2851 spec[i].prefix + prefix_len,
2852 suffix_len) != 0)
2853 continue;
2854 }
2855 return &spec[i];
2856 }
2857
2858 return NULL;
2859 }
2860
2861 const struct bfd_elf_special_section *
2862 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2863 {
2864 int i;
2865 const struct bfd_elf_special_section *spec;
2866 const struct elf_backend_data *bed;
2867
2868 /* See if this is one of the special sections. */
2869 if (sec->name == NULL)
2870 return NULL;
2871
2872 bed = get_elf_backend_data (abfd);
2873 spec = bed->special_sections;
2874 if (spec)
2875 {
2876 spec = _bfd_elf_get_special_section (sec->name,
2877 bed->special_sections,
2878 sec->use_rela_p);
2879 if (spec != NULL)
2880 return spec;
2881 }
2882
2883 if (sec->name[0] != '.')
2884 return NULL;
2885
2886 i = sec->name[1] - 'b';
2887 if (i < 0 || i > 'z' - 'b')
2888 return NULL;
2889
2890 spec = special_sections[i];
2891
2892 if (spec == NULL)
2893 return NULL;
2894
2895 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2896 }
2897
2898 bool
2899 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2900 {
2901 struct bfd_elf_section_data *sdata;
2902 const struct elf_backend_data *bed;
2903 const struct bfd_elf_special_section *ssect;
2904
2905 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2906 if (sdata == NULL)
2907 {
2908 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd,
2909 sizeof (*sdata));
2910 if (sdata == NULL)
2911 return false;
2912 sec->used_by_bfd = sdata;
2913 }
2914
2915 /* Indicate whether or not this section should use RELA relocations. */
2916 bed = get_elf_backend_data (abfd);
2917 sec->use_rela_p = bed->default_use_rela_p;
2918
2919 /* Set up ELF section type and flags for newly created sections, if
2920 there is an ABI mandated section. */
2921 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2922 if (ssect != NULL)
2923 {
2924 elf_section_type (sec) = ssect->type;
2925 elf_section_flags (sec) = ssect->attr;
2926 }
2927
2928 return _bfd_generic_new_section_hook (abfd, sec);
2929 }
2930
2931 /* Create a new bfd section from an ELF program header.
2932
2933 Since program segments have no names, we generate a synthetic name
2934 of the form segment<NUM>, where NUM is generally the index in the
2935 program header table. For segments that are split (see below) we
2936 generate the names segment<NUM>a and segment<NUM>b.
2937
2938 Note that some program segments may have a file size that is different than
2939 (less than) the memory size. All this means is that at execution the
2940 system must allocate the amount of memory specified by the memory size,
2941 but only initialize it with the first "file size" bytes read from the
2942 file. This would occur for example, with program segments consisting
2943 of combined data+bss.
2944
2945 To handle the above situation, this routine generates TWO bfd sections
2946 for the single program segment. The first has the length specified by
2947 the file size of the segment, and the second has the length specified
2948 by the difference between the two sizes. In effect, the segment is split
2949 into its initialized and uninitialized parts.
2950
2951 */
2952
2953 bool
2954 _bfd_elf_make_section_from_phdr (bfd *abfd,
2955 Elf_Internal_Phdr *hdr,
2956 int hdr_index,
2957 const char *type_name)
2958 {
2959 asection *newsect;
2960 char *name;
2961 char namebuf[64];
2962 size_t len;
2963 int split;
2964 unsigned int opb = bfd_octets_per_byte (abfd, NULL);
2965
2966 split = ((hdr->p_memsz > 0)
2967 && (hdr->p_filesz > 0)
2968 && (hdr->p_memsz > hdr->p_filesz));
2969
2970 if (hdr->p_filesz > 0)
2971 {
2972 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "a" : "");
2973 len = strlen (namebuf) + 1;
2974 name = (char *) bfd_alloc (abfd, len);
2975 if (!name)
2976 return false;
2977 memcpy (name, namebuf, len);
2978 newsect = bfd_make_section (abfd, name);
2979 if (newsect == NULL)
2980 return false;
2981 newsect->vma = hdr->p_vaddr / opb;
2982 newsect->lma = hdr->p_paddr / opb;
2983 newsect->size = hdr->p_filesz;
2984 newsect->filepos = hdr->p_offset;
2985 newsect->flags |= SEC_HAS_CONTENTS;
2986 newsect->alignment_power = bfd_log2 (hdr->p_align);
2987 if (hdr->p_type == PT_LOAD)
2988 {
2989 newsect->flags |= SEC_ALLOC;
2990 newsect->flags |= SEC_LOAD;
2991 if (hdr->p_flags & PF_X)
2992 {
2993 /* FIXME: all we known is that it has execute PERMISSION,
2994 may be data. */
2995 newsect->flags |= SEC_CODE;
2996 }
2997 }
2998 if (!(hdr->p_flags & PF_W))
2999 {
3000 newsect->flags |= SEC_READONLY;
3001 }
3002 }
3003
3004 if (hdr->p_memsz > hdr->p_filesz)
3005 {
3006 bfd_vma align;
3007
3008 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "b" : "");
3009 len = strlen (namebuf) + 1;
3010 name = (char *) bfd_alloc (abfd, len);
3011 if (!name)
3012 return false;
3013 memcpy (name, namebuf, len);
3014 newsect = bfd_make_section (abfd, name);
3015 if (newsect == NULL)
3016 return false;
3017 newsect->vma = (hdr->p_vaddr + hdr->p_filesz) / opb;
3018 newsect->lma = (hdr->p_paddr + hdr->p_filesz) / opb;
3019 newsect->size = hdr->p_memsz - hdr->p_filesz;
3020 newsect->filepos = hdr->p_offset + hdr->p_filesz;
3021 align = newsect->vma & -newsect->vma;
3022 if (align == 0 || align > hdr->p_align)
3023 align = hdr->p_align;
3024 newsect->alignment_power = bfd_log2 (align);
3025 if (hdr->p_type == PT_LOAD)
3026 {
3027 newsect->flags |= SEC_ALLOC;
3028 if (hdr->p_flags & PF_X)
3029 newsect->flags |= SEC_CODE;
3030 }
3031 if (!(hdr->p_flags & PF_W))
3032 newsect->flags |= SEC_READONLY;
3033 }
3034
3035 return true;
3036 }
3037
3038 static bool
3039 _bfd_elf_core_find_build_id (bfd *templ, bfd_vma offset)
3040 {
3041 /* The return value is ignored. Build-ids are considered optional. */
3042 if (templ->xvec->flavour == bfd_target_elf_flavour)
3043 return (*get_elf_backend_data (templ)->elf_backend_core_find_build_id)
3044 (templ, offset);
3045 return false;
3046 }
3047
3048 bool
3049 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int hdr_index)
3050 {
3051 const struct elf_backend_data *bed;
3052
3053 switch (hdr->p_type)
3054 {
3055 case PT_NULL:
3056 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "null");
3057
3058 case PT_LOAD:
3059 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "load"))
3060 return false;
3061 if (bfd_get_format (abfd) == bfd_core && abfd->build_id == NULL)
3062 _bfd_elf_core_find_build_id (abfd, hdr->p_offset);
3063 return true;
3064
3065 case PT_DYNAMIC:
3066 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "dynamic");
3067
3068 case PT_INTERP:
3069 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "interp");
3070
3071 case PT_NOTE:
3072 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "note"))
3073 return false;
3074 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz,
3075 hdr->p_align))
3076 return false;
3077 return true;
3078
3079 case PT_SHLIB:
3080 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "shlib");
3081
3082 case PT_PHDR:
3083 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "phdr");
3084
3085 case PT_GNU_EH_FRAME:
3086 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index,
3087 "eh_frame_hdr");
3088
3089 case PT_GNU_STACK:
3090 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "stack");
3091
3092 case PT_GNU_RELRO:
3093 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "relro");
3094
3095 default:
3096 /* Check for any processor-specific program segment types. */
3097 bed = get_elf_backend_data (abfd);
3098 return bed->elf_backend_section_from_phdr (abfd, hdr, hdr_index, "proc");
3099 }
3100 }
3101
3102 /* Return the REL_HDR for SEC, assuming there is only a single one, either
3103 REL or RELA. */
3104
3105 Elf_Internal_Shdr *
3106 _bfd_elf_single_rel_hdr (asection *sec)
3107 {
3108 if (elf_section_data (sec)->rel.hdr)
3109 {
3110 BFD_ASSERT (elf_section_data (sec)->rela.hdr == NULL);
3111 return elf_section_data (sec)->rel.hdr;
3112 }
3113 else
3114 return elf_section_data (sec)->rela.hdr;
3115 }
3116
3117 static bool
3118 _bfd_elf_set_reloc_sh_name (bfd *abfd,
3119 Elf_Internal_Shdr *rel_hdr,
3120 const char *sec_name,
3121 bool use_rela_p)
3122 {
3123 char *name = (char *) bfd_alloc (abfd,
3124 sizeof ".rela" + strlen (sec_name));
3125 if (name == NULL)
3126 return false;
3127
3128 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", sec_name);
3129 rel_hdr->sh_name =
3130 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
3131 false);
3132 if (rel_hdr->sh_name == (unsigned int) -1)
3133 return false;
3134
3135 return true;
3136 }
3137
3138 /* Allocate and initialize a section-header for a new reloc section,
3139 containing relocations against ASECT. It is stored in RELDATA. If
3140 USE_RELA_P is TRUE, we use RELA relocations; otherwise, we use REL
3141 relocations. */
3142
3143 static bool
3144 _bfd_elf_init_reloc_shdr (bfd *abfd,
3145 struct bfd_elf_section_reloc_data *reldata,
3146 const char *sec_name,
3147 bool use_rela_p,
3148 bool delay_st_name_p)
3149 {
3150 Elf_Internal_Shdr *rel_hdr;
3151 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3152
3153 BFD_ASSERT (reldata->hdr == NULL);
3154 rel_hdr = bfd_zalloc (abfd, sizeof (*rel_hdr));
3155 reldata->hdr = rel_hdr;
3156
3157 if (delay_st_name_p)
3158 rel_hdr->sh_name = (unsigned int) -1;
3159 else if (!_bfd_elf_set_reloc_sh_name (abfd, rel_hdr, sec_name,
3160 use_rela_p))
3161 return false;
3162 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
3163 rel_hdr->sh_entsize = (use_rela_p
3164 ? bed->s->sizeof_rela
3165 : bed->s->sizeof_rel);
3166 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
3167 rel_hdr->sh_flags = 0;
3168 rel_hdr->sh_addr = 0;
3169 rel_hdr->sh_size = 0;
3170 rel_hdr->sh_offset = 0;
3171
3172 return true;
3173 }
3174
3175 /* Return the default section type based on the passed in section flags. */
3176
3177 int
3178 bfd_elf_get_default_section_type (flagword flags)
3179 {
3180 if ((flags & (SEC_ALLOC | SEC_IS_COMMON)) != 0
3181 && (flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
3182 return SHT_NOBITS;
3183 return SHT_PROGBITS;
3184 }
3185
3186 struct fake_section_arg
3187 {
3188 struct bfd_link_info *link_info;
3189 bool failed;
3190 };
3191
3192 /* Set up an ELF internal section header for a section. */
3193
3194 static void
3195 elf_fake_sections (bfd *abfd, asection *asect, void *fsarg)
3196 {
3197 struct fake_section_arg *arg = (struct fake_section_arg *)fsarg;
3198 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3199 struct bfd_elf_section_data *esd = elf_section_data (asect);
3200 Elf_Internal_Shdr *this_hdr;
3201 unsigned int sh_type;
3202 const char *name = asect->name;
3203 bool delay_st_name_p = false;
3204 bfd_vma mask;
3205
3206 if (arg->failed)
3207 {
3208 /* We already failed; just get out of the bfd_map_over_sections
3209 loop. */
3210 return;
3211 }
3212
3213 this_hdr = &esd->this_hdr;
3214
3215 if (arg->link_info)
3216 {
3217 /* ld: compress DWARF debug sections with names: .debug_*. */
3218 if ((arg->link_info->compress_debug & COMPRESS_DEBUG)
3219 && (asect->flags & SEC_DEBUGGING)
3220 && name[1] == 'd'
3221 && name[6] == '_')
3222 {
3223 /* Set SEC_ELF_COMPRESS to indicate this section should be
3224 compressed. */
3225 asect->flags |= SEC_ELF_COMPRESS;
3226 /* If this section will be compressed, delay adding section
3227 name to section name section after it is compressed in
3228 _bfd_elf_assign_file_positions_for_non_load. */
3229 delay_st_name_p = true;
3230 }
3231 }
3232 else if ((asect->flags & SEC_ELF_RENAME))
3233 {
3234 /* objcopy: rename output DWARF debug section. */
3235 if ((abfd->flags & (BFD_DECOMPRESS | BFD_COMPRESS_GABI)))
3236 {
3237 /* When we decompress or compress with SHF_COMPRESSED,
3238 convert section name from .zdebug_* to .debug_* if
3239 needed. */
3240 if (name[1] == 'z')
3241 {
3242 char *new_name = convert_zdebug_to_debug (abfd, name);
3243 if (new_name == NULL)
3244 {
3245 arg->failed = true;
3246 return;
3247 }
3248 name = new_name;
3249 }
3250 }
3251 else if (asect->compress_status == COMPRESS_SECTION_DONE)
3252 {
3253 /* PR binutils/18087: Compression does not always make a
3254 section smaller. So only rename the section when
3255 compression has actually taken place. If input section
3256 name is .zdebug_*, we should never compress it again. */
3257 char *new_name = convert_debug_to_zdebug (abfd, name);
3258 if (new_name == NULL)
3259 {
3260 arg->failed = true;
3261 return;
3262 }
3263 BFD_ASSERT (name[1] != 'z');
3264 name = new_name;
3265 }
3266 }
3267
3268 if (delay_st_name_p)
3269 this_hdr->sh_name = (unsigned int) -1;
3270 else
3271 {
3272 this_hdr->sh_name
3273 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3274 name, false);
3275 if (this_hdr->sh_name == (unsigned int) -1)
3276 {
3277 arg->failed = true;
3278 return;
3279 }
3280 }
3281
3282 /* Don't clear sh_flags. Assembler may set additional bits. */
3283
3284 if ((asect->flags & SEC_ALLOC) != 0
3285 || asect->user_set_vma)
3286 this_hdr->sh_addr = asect->vma * bfd_octets_per_byte (abfd, asect);
3287 else
3288 this_hdr->sh_addr = 0;
3289
3290 this_hdr->sh_offset = 0;
3291 this_hdr->sh_size = asect->size;
3292 this_hdr->sh_link = 0;
3293 /* PR 17512: file: 0eb809fe, 8b0535ee. */
3294 if (asect->alignment_power >= (sizeof (bfd_vma) * 8) - 1)
3295 {
3296 _bfd_error_handler
3297 /* xgettext:c-format */
3298 (_("%pB: error: alignment power %d of section `%pA' is too big"),
3299 abfd, asect->alignment_power, asect);
3300 arg->failed = true;
3301 return;
3302 }
3303 /* Set sh_addralign to the highest power of two given by alignment
3304 consistent with the section VMA. Linker scripts can force VMA. */
3305 mask = ((bfd_vma) 1 << asect->alignment_power) | this_hdr->sh_addr;
3306 this_hdr->sh_addralign = mask & -mask;
3307 /* The sh_entsize and sh_info fields may have been set already by
3308 copy_private_section_data. */
3309
3310 this_hdr->bfd_section = asect;
3311 this_hdr->contents = NULL;
3312
3313 /* If the section type is unspecified, we set it based on
3314 asect->flags. */
3315 if ((asect->flags & SEC_GROUP) != 0)
3316 sh_type = SHT_GROUP;
3317 else
3318 sh_type = bfd_elf_get_default_section_type (asect->flags);
3319
3320 if (this_hdr->sh_type == SHT_NULL)
3321 this_hdr->sh_type = sh_type;
3322 else if (this_hdr->sh_type == SHT_NOBITS
3323 && sh_type == SHT_PROGBITS
3324 && (asect->flags & SEC_ALLOC) != 0)
3325 {
3326 /* Warn if we are changing a NOBITS section to PROGBITS, but
3327 allow the link to proceed. This can happen when users link
3328 non-bss input sections to bss output sections, or emit data
3329 to a bss output section via a linker script. */
3330 _bfd_error_handler
3331 (_("warning: section `%pA' type changed to PROGBITS"), asect);
3332 this_hdr->sh_type = sh_type;
3333 }
3334
3335 switch (this_hdr->sh_type)
3336 {
3337 default:
3338 break;
3339
3340 case SHT_STRTAB:
3341 case SHT_NOTE:
3342 case SHT_NOBITS:
3343 case SHT_PROGBITS:
3344 break;
3345
3346 case SHT_INIT_ARRAY:
3347 case SHT_FINI_ARRAY:
3348 case SHT_PREINIT_ARRAY:
3349 this_hdr->sh_entsize = bed->s->arch_size / 8;
3350 break;
3351
3352 case SHT_HASH:
3353 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
3354 break;
3355
3356 case SHT_DYNSYM:
3357 this_hdr->sh_entsize = bed->s->sizeof_sym;
3358 break;
3359
3360 case SHT_DYNAMIC:
3361 this_hdr->sh_entsize = bed->s->sizeof_dyn;
3362 break;
3363
3364 case SHT_RELA:
3365 if (get_elf_backend_data (abfd)->may_use_rela_p)
3366 this_hdr->sh_entsize = bed->s->sizeof_rela;
3367 break;
3368
3369 case SHT_REL:
3370 if (get_elf_backend_data (abfd)->may_use_rel_p)
3371 this_hdr->sh_entsize = bed->s->sizeof_rel;
3372 break;
3373
3374 case SHT_GNU_versym:
3375 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
3376 break;
3377
3378 case SHT_GNU_verdef:
3379 this_hdr->sh_entsize = 0;
3380 /* objcopy or strip will copy over sh_info, but may not set
3381 cverdefs. The linker will set cverdefs, but sh_info will be
3382 zero. */
3383 if (this_hdr->sh_info == 0)
3384 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
3385 else
3386 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
3387 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
3388 break;
3389
3390 case SHT_GNU_verneed:
3391 this_hdr->sh_entsize = 0;
3392 /* objcopy or strip will copy over sh_info, but may not set
3393 cverrefs. The linker will set cverrefs, but sh_info will be
3394 zero. */
3395 if (this_hdr->sh_info == 0)
3396 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
3397 else
3398 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
3399 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
3400 break;
3401
3402 case SHT_GROUP:
3403 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
3404 break;
3405
3406 case SHT_GNU_HASH:
3407 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
3408 break;
3409 }
3410
3411 if ((asect->flags & SEC_ALLOC) != 0)
3412 this_hdr->sh_flags |= SHF_ALLOC;
3413 if ((asect->flags & SEC_READONLY) == 0)
3414 this_hdr->sh_flags |= SHF_WRITE;
3415 if ((asect->flags & SEC_CODE) != 0)
3416 this_hdr->sh_flags |= SHF_EXECINSTR;
3417 if ((asect->flags & SEC_MERGE) != 0)
3418 {
3419 this_hdr->sh_flags |= SHF_MERGE;
3420 this_hdr->sh_entsize = asect->entsize;
3421 }
3422 if ((asect->flags & SEC_STRINGS) != 0)
3423 this_hdr->sh_flags |= SHF_STRINGS;
3424 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
3425 this_hdr->sh_flags |= SHF_GROUP;
3426 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
3427 {
3428 this_hdr->sh_flags |= SHF_TLS;
3429 if (asect->size == 0
3430 && (asect->flags & SEC_HAS_CONTENTS) == 0)
3431 {
3432 struct bfd_link_order *o = asect->map_tail.link_order;
3433
3434 this_hdr->sh_size = 0;
3435 if (o != NULL)
3436 {
3437 this_hdr->sh_size = o->offset + o->size;
3438 if (this_hdr->sh_size != 0)
3439 this_hdr->sh_type = SHT_NOBITS;
3440 }
3441 }
3442 }
3443 if ((asect->flags & (SEC_GROUP | SEC_EXCLUDE)) == SEC_EXCLUDE)
3444 this_hdr->sh_flags |= SHF_EXCLUDE;
3445
3446 /* If the section has relocs, set up a section header for the
3447 SHT_REL[A] section. If two relocation sections are required for
3448 this section, it is up to the processor-specific back-end to
3449 create the other. */
3450 if ((asect->flags & SEC_RELOC) != 0)
3451 {
3452 /* When doing a relocatable link, create both REL and RELA sections if
3453 needed. */
3454 if (arg->link_info
3455 /* Do the normal setup if we wouldn't create any sections here. */
3456 && esd->rel.count + esd->rela.count > 0
3457 && (bfd_link_relocatable (arg->link_info)
3458 || arg->link_info->emitrelocations))
3459 {
3460 if (esd->rel.count && esd->rel.hdr == NULL
3461 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rel, name,
3462 false, delay_st_name_p))
3463 {
3464 arg->failed = true;
3465 return;
3466 }
3467 if (esd->rela.count && esd->rela.hdr == NULL
3468 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rela, name,
3469 true, delay_st_name_p))
3470 {
3471 arg->failed = true;
3472 return;
3473 }
3474 }
3475 else if (!_bfd_elf_init_reloc_shdr (abfd,
3476 (asect->use_rela_p
3477 ? &esd->rela : &esd->rel),
3478 name,
3479 asect->use_rela_p,
3480 delay_st_name_p))
3481 {
3482 arg->failed = true;
3483 return;
3484 }
3485 }
3486
3487 /* Check for processor-specific section types. */
3488 sh_type = this_hdr->sh_type;
3489 if (bed->elf_backend_fake_sections
3490 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
3491 {
3492 arg->failed = true;
3493 return;
3494 }
3495
3496 if (sh_type == SHT_NOBITS && asect->size != 0)
3497 {
3498 /* Don't change the header type from NOBITS if we are being
3499 called for objcopy --only-keep-debug. */
3500 this_hdr->sh_type = sh_type;
3501 }
3502 }
3503
3504 /* Fill in the contents of a SHT_GROUP section. Called from
3505 _bfd_elf_compute_section_file_positions for gas, objcopy, and
3506 when ELF targets use the generic linker, ld. Called for ld -r
3507 from bfd_elf_final_link. */
3508
3509 void
3510 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
3511 {
3512 bool *failedptr = (bool *) failedptrarg;
3513 asection *elt, *first;
3514 unsigned char *loc;
3515 bool gas;
3516
3517 /* Ignore linker created group section. See elfNN_ia64_object_p in
3518 elfxx-ia64.c. */
3519 if ((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP
3520 || sec->size == 0
3521 || *failedptr)
3522 return;
3523
3524 if (elf_section_data (sec)->this_hdr.sh_info == 0)
3525 {
3526 unsigned long symindx = 0;
3527
3528 /* elf_group_id will have been set up by objcopy and the
3529 generic linker. */
3530 if (elf_group_id (sec) != NULL)
3531 symindx = elf_group_id (sec)->udata.i;
3532
3533 if (symindx == 0)
3534 {
3535 /* If called from the assembler, swap_out_syms will have set up
3536 elf_section_syms.
3537 PR 25699: A corrupt input file could contain bogus group info. */
3538 if (elf_section_syms (abfd) == NULL)
3539 {
3540 *failedptr = true;
3541 return;
3542 }
3543 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
3544 }
3545 elf_section_data (sec)->this_hdr.sh_info = symindx;
3546 }
3547 else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2)
3548 {
3549 /* The ELF backend linker sets sh_info to -2 when the group
3550 signature symbol is global, and thus the index can't be
3551 set until all local symbols are output. */
3552 asection *igroup;
3553 struct bfd_elf_section_data *sec_data;
3554 unsigned long symndx;
3555 unsigned long extsymoff;
3556 struct elf_link_hash_entry *h;
3557
3558 /* The point of this little dance to the first SHF_GROUP section
3559 then back to the SHT_GROUP section is that this gets us to
3560 the SHT_GROUP in the input object. */
3561 igroup = elf_sec_group (elf_next_in_group (sec));
3562 sec_data = elf_section_data (igroup);
3563 symndx = sec_data->this_hdr.sh_info;
3564 extsymoff = 0;
3565 if (!elf_bad_symtab (igroup->owner))
3566 {
3567 Elf_Internal_Shdr *symtab_hdr;
3568
3569 symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr;
3570 extsymoff = symtab_hdr->sh_info;
3571 }
3572 h = elf_sym_hashes (igroup->owner)[symndx - extsymoff];
3573 while (h->root.type == bfd_link_hash_indirect
3574 || h->root.type == bfd_link_hash_warning)
3575 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3576
3577 elf_section_data (sec)->this_hdr.sh_info = h->indx;
3578 }
3579
3580 /* The contents won't be allocated for "ld -r" or objcopy. */
3581 gas = true;
3582 if (sec->contents == NULL)
3583 {
3584 gas = false;
3585 sec->contents = (unsigned char *) bfd_alloc (abfd, sec->size);
3586
3587 /* Arrange for the section to be written out. */
3588 elf_section_data (sec)->this_hdr.contents = sec->contents;
3589 if (sec->contents == NULL)
3590 {
3591 *failedptr = true;
3592 return;
3593 }
3594 }
3595
3596 loc = sec->contents + sec->size;
3597
3598 /* Get the pointer to the first section in the group that gas
3599 squirreled away here. objcopy arranges for this to be set to the
3600 start of the input section group. */
3601 first = elt = elf_next_in_group (sec);
3602
3603 /* First element is a flag word. Rest of section is elf section
3604 indices for all the sections of the group. Write them backwards
3605 just to keep the group in the same order as given in .section
3606 directives, not that it matters. */
3607 while (elt != NULL)
3608 {
3609 asection *s;
3610
3611 s = elt;
3612 if (!gas)
3613 s = s->output_section;
3614 if (s != NULL
3615 && !bfd_is_abs_section (s))
3616 {
3617 struct bfd_elf_section_data *elf_sec = elf_section_data (s);
3618 struct bfd_elf_section_data *input_elf_sec = elf_section_data (elt);
3619
3620 if (elf_sec->rel.hdr != NULL
3621 && (gas
3622 || (input_elf_sec->rel.hdr != NULL
3623 && input_elf_sec->rel.hdr->sh_flags & SHF_GROUP) != 0))
3624 {
3625 elf_sec->rel.hdr->sh_flags |= SHF_GROUP;
3626 loc -= 4;
3627 H_PUT_32 (abfd, elf_sec->rel.idx, loc);
3628 }
3629 if (elf_sec->rela.hdr != NULL
3630 && (gas
3631 || (input_elf_sec->rela.hdr != NULL
3632 && input_elf_sec->rela.hdr->sh_flags & SHF_GROUP) != 0))
3633 {
3634 elf_sec->rela.hdr->sh_flags |= SHF_GROUP;
3635 loc -= 4;
3636 H_PUT_32 (abfd, elf_sec->rela.idx, loc);
3637 }
3638 loc -= 4;
3639 H_PUT_32 (abfd, elf_sec->this_idx, loc);
3640 }
3641 elt = elf_next_in_group (elt);
3642 if (elt == first)
3643 break;
3644 }
3645
3646 loc -= 4;
3647 BFD_ASSERT (loc == sec->contents);
3648
3649 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
3650 }
3651
3652 /* Given NAME, the name of a relocation section stripped of its
3653 .rel/.rela prefix, return the section in ABFD to which the
3654 relocations apply. */
3655
3656 asection *
3657 _bfd_elf_plt_get_reloc_section (bfd *abfd, const char *name)
3658 {
3659 /* If a target needs .got.plt section, relocations in rela.plt/rel.plt
3660 section likely apply to .got.plt or .got section. */
3661 if (get_elf_backend_data (abfd)->want_got_plt
3662 && strcmp (name, ".plt") == 0)
3663 {
3664 asection *sec;
3665
3666 name = ".got.plt";
3667 sec = bfd_get_section_by_name (abfd, name);
3668 if (sec != NULL)
3669 return sec;
3670 name = ".got";
3671 }
3672
3673 return bfd_get_section_by_name (abfd, name);
3674 }
3675
3676 /* Return the section to which RELOC_SEC applies. */
3677
3678 static asection *
3679 elf_get_reloc_section (asection *reloc_sec)
3680 {
3681 const char *name;
3682 unsigned int type;
3683 bfd *abfd;
3684 const struct elf_backend_data *bed;
3685
3686 type = elf_section_data (reloc_sec)->this_hdr.sh_type;
3687 if (type != SHT_REL && type != SHT_RELA)
3688 return NULL;
3689
3690 /* We look up the section the relocs apply to by name. */
3691 name = reloc_sec->name;
3692 if (!startswith (name, ".rel"))
3693 return NULL;
3694 name += 4;
3695 if (type == SHT_RELA && *name++ != 'a')
3696 return NULL;
3697
3698 abfd = reloc_sec->owner;
3699 bed = get_elf_backend_data (abfd);
3700 return bed->get_reloc_section (abfd, name);
3701 }
3702
3703 /* Assign all ELF section numbers. The dummy first section is handled here
3704 too. The link/info pointers for the standard section types are filled
3705 in here too, while we're at it. LINK_INFO will be 0 when arriving
3706 here for objcopy, and when using the generic ELF linker. */
3707
3708 static bool
3709 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
3710 {
3711 struct elf_obj_tdata *t = elf_tdata (abfd);
3712 asection *sec;
3713 unsigned int section_number;
3714 Elf_Internal_Shdr **i_shdrp;
3715 struct bfd_elf_section_data *d;
3716 bool need_symtab;
3717 size_t amt;
3718
3719 section_number = 1;
3720
3721 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
3722
3723 /* SHT_GROUP sections are in relocatable files only. */
3724 if (link_info == NULL || !link_info->resolve_section_groups)
3725 {
3726 size_t reloc_count = 0;
3727
3728 /* Put SHT_GROUP sections first. */
3729 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3730 {
3731 d = elf_section_data (sec);
3732
3733 if (d->this_hdr.sh_type == SHT_GROUP)
3734 {
3735 if (sec->flags & SEC_LINKER_CREATED)
3736 {
3737 /* Remove the linker created SHT_GROUP sections. */
3738 bfd_section_list_remove (abfd, sec);
3739 abfd->section_count--;
3740 }
3741 else
3742 d->this_idx = section_number++;
3743 }
3744
3745 /* Count relocations. */
3746 reloc_count += sec->reloc_count;
3747 }
3748
3749 /* Clear HAS_RELOC if there are no relocations. */
3750 if (reloc_count == 0)
3751 abfd->flags &= ~HAS_RELOC;
3752 }
3753
3754 for (sec = abfd->sections; sec; sec = sec->next)
3755 {
3756 d = elf_section_data (sec);
3757
3758 if (d->this_hdr.sh_type != SHT_GROUP)
3759 d->this_idx = section_number++;
3760 if (d->this_hdr.sh_name != (unsigned int) -1)
3761 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
3762 if (d->rel.hdr)
3763 {
3764 d->rel.idx = section_number++;
3765 if (d->rel.hdr->sh_name != (unsigned int) -1)
3766 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel.hdr->sh_name);
3767 }
3768 else
3769 d->rel.idx = 0;
3770
3771 if (d->rela.hdr)
3772 {
3773 d->rela.idx = section_number++;
3774 if (d->rela.hdr->sh_name != (unsigned int) -1)
3775 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rela.hdr->sh_name);
3776 }
3777 else
3778 d->rela.idx = 0;
3779 }
3780
3781 need_symtab = (bfd_get_symcount (abfd) > 0
3782 || (link_info == NULL
3783 && ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
3784 == HAS_RELOC)));
3785 if (need_symtab)
3786 {
3787 elf_onesymtab (abfd) = section_number++;
3788 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
3789 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
3790 {
3791 elf_section_list *entry;
3792
3793 BFD_ASSERT (elf_symtab_shndx_list (abfd) == NULL);
3794
3795 entry = bfd_zalloc (abfd, sizeof (*entry));
3796 entry->ndx = section_number++;
3797 elf_symtab_shndx_list (abfd) = entry;
3798 entry->hdr.sh_name
3799 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3800 ".symtab_shndx", false);
3801 if (entry->hdr.sh_name == (unsigned int) -1)
3802 return false;
3803 }
3804 elf_strtab_sec (abfd) = section_number++;
3805 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3806 }
3807
3808 elf_shstrtab_sec (abfd) = section_number++;
3809 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
3810 elf_elfheader (abfd)->e_shstrndx = elf_shstrtab_sec (abfd);
3811
3812 if (section_number >= SHN_LORESERVE)
3813 {
3814 /* xgettext:c-format */
3815 _bfd_error_handler (_("%pB: too many sections: %u"),
3816 abfd, section_number);
3817 return false;
3818 }
3819
3820 elf_numsections (abfd) = section_number;
3821 elf_elfheader (abfd)->e_shnum = section_number;
3822
3823 /* Set up the list of section header pointers, in agreement with the
3824 indices. */
3825 amt = section_number * sizeof (Elf_Internal_Shdr *);
3826 i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc (abfd, amt);
3827 if (i_shdrp == NULL)
3828 return false;
3829
3830 i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd,
3831 sizeof (Elf_Internal_Shdr));
3832 if (i_shdrp[0] == NULL)
3833 {
3834 bfd_release (abfd, i_shdrp);
3835 return false;
3836 }
3837
3838 elf_elfsections (abfd) = i_shdrp;
3839
3840 i_shdrp[elf_shstrtab_sec (abfd)] = &t->shstrtab_hdr;
3841 if (need_symtab)
3842 {
3843 i_shdrp[elf_onesymtab (abfd)] = &t->symtab_hdr;
3844 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
3845 {
3846 elf_section_list * entry = elf_symtab_shndx_list (abfd);
3847 BFD_ASSERT (entry != NULL);
3848 i_shdrp[entry->ndx] = & entry->hdr;
3849 entry->hdr.sh_link = elf_onesymtab (abfd);
3850 }
3851 i_shdrp[elf_strtab_sec (abfd)] = &t->strtab_hdr;
3852 t->symtab_hdr.sh_link = elf_strtab_sec (abfd);
3853 }
3854
3855 for (sec = abfd->sections; sec; sec = sec->next)
3856 {
3857 asection *s;
3858
3859 d = elf_section_data (sec);
3860
3861 i_shdrp[d->this_idx] = &d->this_hdr;
3862 if (d->rel.idx != 0)
3863 i_shdrp[d->rel.idx] = d->rel.hdr;
3864 if (d->rela.idx != 0)
3865 i_shdrp[d->rela.idx] = d->rela.hdr;
3866
3867 /* Fill in the sh_link and sh_info fields while we're at it. */
3868
3869 /* sh_link of a reloc section is the section index of the symbol
3870 table. sh_info is the section index of the section to which
3871 the relocation entries apply. */
3872 if (d->rel.idx != 0)
3873 {
3874 d->rel.hdr->sh_link = elf_onesymtab (abfd);
3875 d->rel.hdr->sh_info = d->this_idx;
3876 d->rel.hdr->sh_flags |= SHF_INFO_LINK;
3877 }
3878 if (d->rela.idx != 0)
3879 {
3880 d->rela.hdr->sh_link = elf_onesymtab (abfd);
3881 d->rela.hdr->sh_info = d->this_idx;
3882 d->rela.hdr->sh_flags |= SHF_INFO_LINK;
3883 }
3884
3885 /* We need to set up sh_link for SHF_LINK_ORDER. */
3886 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3887 {
3888 s = elf_linked_to_section (sec);
3889 /* We can now have a NULL linked section pointer.
3890 This happens when the sh_link field is 0, which is done
3891 when a linked to section is discarded but the linking
3892 section has been retained for some reason. */
3893 if (s)
3894 {
3895 /* Check discarded linkonce section. */
3896 if (discarded_section (s))
3897 {
3898 asection *kept;
3899 _bfd_error_handler
3900 /* xgettext:c-format */
3901 (_("%pB: sh_link of section `%pA' points to"
3902 " discarded section `%pA' of `%pB'"),
3903 abfd, d->this_hdr.bfd_section, s, s->owner);
3904 /* Point to the kept section if it has the same
3905 size as the discarded one. */
3906 kept = _bfd_elf_check_kept_section (s, link_info);
3907 if (kept == NULL)
3908 {
3909 bfd_set_error (bfd_error_bad_value);
3910 return false;
3911 }
3912 s = kept;
3913 }
3914 /* Handle objcopy. */
3915 else if (s->output_section == NULL)
3916 {
3917 _bfd_error_handler
3918 /* xgettext:c-format */
3919 (_("%pB: sh_link of section `%pA' points to"
3920 " removed section `%pA' of `%pB'"),
3921 abfd, d->this_hdr.bfd_section, s, s->owner);
3922 bfd_set_error (bfd_error_bad_value);
3923 return false;
3924 }
3925 s = s->output_section;
3926 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3927 }
3928 }
3929
3930 switch (d->this_hdr.sh_type)
3931 {
3932 case SHT_REL:
3933 case SHT_RELA:
3934 /* A reloc section which we are treating as a normal BFD
3935 section. sh_link is the section index of the symbol
3936 table. sh_info is the section index of the section to
3937 which the relocation entries apply. We assume that an
3938 allocated reloc section uses the dynamic symbol table
3939 if there is one. Otherwise we guess the normal symbol
3940 table. FIXME: How can we be sure? */
3941 if (d->this_hdr.sh_link == 0 && (sec->flags & SEC_ALLOC) != 0)
3942 {
3943 s = bfd_get_section_by_name (abfd, ".dynsym");
3944 if (s != NULL)
3945 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3946 }
3947 if (d->this_hdr.sh_link == 0)
3948 d->this_hdr.sh_link = elf_onesymtab (abfd);
3949
3950 s = elf_get_reloc_section (sec);
3951 if (s != NULL)
3952 {
3953 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3954 d->this_hdr.sh_flags |= SHF_INFO_LINK;
3955 }
3956 break;
3957
3958 case SHT_STRTAB:
3959 /* We assume that a section named .stab*str is a stabs
3960 string section. We look for a section with the same name
3961 but without the trailing ``str'', and set its sh_link
3962 field to point to this section. */
3963 if (startswith (sec->name, ".stab")
3964 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3965 {
3966 size_t len;
3967 char *alc;
3968
3969 len = strlen (sec->name);
3970 alc = (char *) bfd_malloc (len - 2);
3971 if (alc == NULL)
3972 return false;
3973 memcpy (alc, sec->name, len - 3);
3974 alc[len - 3] = '\0';
3975 s = bfd_get_section_by_name (abfd, alc);
3976 free (alc);
3977 if (s != NULL)
3978 {
3979 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3980
3981 /* This is a .stab section. */
3982 elf_section_data (s)->this_hdr.sh_entsize = 12;
3983 }
3984 }
3985 break;
3986
3987 case SHT_DYNAMIC:
3988 case SHT_DYNSYM:
3989 case SHT_GNU_verneed:
3990 case SHT_GNU_verdef:
3991 /* sh_link is the section header index of the string table
3992 used for the dynamic entries, or the symbol table, or the
3993 version strings. */
3994 s = bfd_get_section_by_name (abfd, ".dynstr");
3995 if (s != NULL)
3996 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3997 break;
3998
3999 case SHT_GNU_LIBLIST:
4000 /* sh_link is the section header index of the prelink library
4001 list used for the dynamic entries, or the symbol table, or
4002 the version strings. */
4003 s = bfd_get_section_by_name (abfd, ((sec->flags & SEC_ALLOC)
4004 ? ".dynstr" : ".gnu.libstr"));
4005 if (s != NULL)
4006 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
4007 break;
4008
4009 case SHT_HASH:
4010 case SHT_GNU_HASH:
4011 case SHT_GNU_versym:
4012 /* sh_link is the section header index of the symbol table
4013 this hash table or version table is for. */
4014 s = bfd_get_section_by_name (abfd, ".dynsym");
4015 if (s != NULL)
4016 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
4017 break;
4018
4019 case SHT_GROUP:
4020 d->this_hdr.sh_link = elf_onesymtab (abfd);
4021 }
4022 }
4023
4024 /* Delay setting sh_name to _bfd_elf_write_object_contents so that
4025 _bfd_elf_assign_file_positions_for_non_load can convert DWARF
4026 debug section name from .debug_* to .zdebug_* if needed. */
4027
4028 return true;
4029 }
4030
4031 static bool
4032 sym_is_global (bfd *abfd, asymbol *sym)
4033 {
4034 /* If the backend has a special mapping, use it. */
4035 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4036 if (bed->elf_backend_sym_is_global)
4037 return (*bed->elf_backend_sym_is_global) (abfd, sym);
4038
4039 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0
4040 || bfd_is_und_section (bfd_asymbol_section (sym))
4041 || bfd_is_com_section (bfd_asymbol_section (sym)));
4042 }
4043
4044 /* Filter global symbols of ABFD to include in the import library. All
4045 SYMCOUNT symbols of ABFD can be examined from their pointers in
4046 SYMS. Pointers of symbols to keep should be stored contiguously at
4047 the beginning of that array.
4048
4049 Returns the number of symbols to keep. */
4050
4051 unsigned int
4052 _bfd_elf_filter_global_symbols (bfd *abfd, struct bfd_link_info *info,
4053 asymbol **syms, long symcount)
4054 {
4055 long src_count, dst_count = 0;
4056
4057 for (src_count = 0; src_count < symcount; src_count++)
4058 {
4059 asymbol *sym = syms[src_count];
4060 char *name = (char *) bfd_asymbol_name (sym);
4061 struct bfd_link_hash_entry *h;
4062
4063 if (!sym_is_global (abfd, sym))
4064 continue;
4065
4066 h = bfd_link_hash_lookup (info->hash, name, false, false, false);
4067 if (h == NULL)
4068 continue;
4069 if (h->type != bfd_link_hash_defined && h->type != bfd_link_hash_defweak)
4070 continue;
4071 if (h->linker_def || h->ldscript_def)
4072 continue;
4073
4074 syms[dst_count++] = sym;
4075 }
4076
4077 syms[dst_count] = NULL;
4078
4079 return dst_count;
4080 }
4081
4082 /* Don't output section symbols for sections that are not going to be
4083 output, that are duplicates or there is no BFD section. */
4084
4085 static bool
4086 ignore_section_sym (bfd *abfd, asymbol *sym)
4087 {
4088 elf_symbol_type *type_ptr;
4089
4090 if (sym == NULL)
4091 return false;
4092
4093 if ((sym->flags & BSF_SECTION_SYM) == 0)
4094 return false;
4095
4096 /* Ignore the section symbol if it isn't used. */
4097 if ((sym->flags & BSF_SECTION_SYM_USED) == 0)
4098 return true;
4099
4100 if (sym->section == NULL)
4101 return true;
4102
4103 type_ptr = elf_symbol_from (sym);
4104 return ((type_ptr != NULL
4105 && type_ptr->internal_elf_sym.st_shndx != 0
4106 && bfd_is_abs_section (sym->section))
4107 || !(sym->section->owner == abfd
4108 || (sym->section->output_section != NULL
4109 && sym->section->output_section->owner == abfd
4110 && sym->section->output_offset == 0)
4111 || bfd_is_abs_section (sym->section)));
4112 }
4113
4114 /* Map symbol from it's internal number to the external number, moving
4115 all local symbols to be at the head of the list. */
4116
4117 static bool
4118 elf_map_symbols (bfd *abfd, unsigned int *pnum_locals)
4119 {
4120 unsigned int symcount = bfd_get_symcount (abfd);
4121 asymbol **syms = bfd_get_outsymbols (abfd);
4122 asymbol **sect_syms;
4123 unsigned int num_locals = 0;
4124 unsigned int num_globals = 0;
4125 unsigned int num_locals2 = 0;
4126 unsigned int num_globals2 = 0;
4127 unsigned int max_index = 0;
4128 unsigned int idx;
4129 asection *asect;
4130 asymbol **new_syms;
4131 size_t amt;
4132
4133 #ifdef DEBUG
4134 fprintf (stderr, "elf_map_symbols\n");
4135 fflush (stderr);
4136 #endif
4137
4138 for (asect = abfd->sections; asect; asect = asect->next)
4139 {
4140 if (max_index < asect->index)
4141 max_index = asect->index;
4142 }
4143
4144 max_index++;
4145 amt = max_index * sizeof (asymbol *);
4146 sect_syms = (asymbol **) bfd_zalloc (abfd, amt);
4147 if (sect_syms == NULL)
4148 return false;
4149 elf_section_syms (abfd) = sect_syms;
4150 elf_num_section_syms (abfd) = max_index;
4151
4152 /* Init sect_syms entries for any section symbols we have already
4153 decided to output. */
4154 for (idx = 0; idx < symcount; idx++)
4155 {
4156 asymbol *sym = syms[idx];
4157
4158 if ((sym->flags & BSF_SECTION_SYM) != 0
4159 && sym->value == 0
4160 && !ignore_section_sym (abfd, sym)
4161 && !bfd_is_abs_section (sym->section))
4162 {
4163 asection *sec = sym->section;
4164
4165 if (sec->owner != abfd)
4166 sec = sec->output_section;
4167
4168 sect_syms[sec->index] = syms[idx];
4169 }
4170 }
4171
4172 /* Classify all of the symbols. */
4173 for (idx = 0; idx < symcount; idx++)
4174 {
4175 if (sym_is_global (abfd, syms[idx]))
4176 num_globals++;
4177 else if (!ignore_section_sym (abfd, syms[idx]))
4178 num_locals++;
4179 }
4180
4181 /* We will be adding a section symbol for each normal BFD section. Most
4182 sections will already have a section symbol in outsymbols, but
4183 eg. SHT_GROUP sections will not, and we need the section symbol mapped
4184 at least in that case. */
4185 for (asect = abfd->sections; asect; asect = asect->next)
4186 {
4187 asymbol *sym = asect->symbol;
4188 /* Don't include ignored section symbols. */
4189 if (!ignore_section_sym (abfd, sym)
4190 && sect_syms[asect->index] == NULL)
4191 {
4192 if (!sym_is_global (abfd, asect->symbol))
4193 num_locals++;
4194 else
4195 num_globals++;
4196 }
4197 }
4198
4199 /* Now sort the symbols so the local symbols are first. */
4200 amt = (num_locals + num_globals) * sizeof (asymbol *);
4201 new_syms = (asymbol **) bfd_alloc (abfd, amt);
4202 if (new_syms == NULL)
4203 return false;
4204
4205 for (idx = 0; idx < symcount; idx++)
4206 {
4207 asymbol *sym = syms[idx];
4208 unsigned int i;
4209
4210 if (sym_is_global (abfd, sym))
4211 i = num_locals + num_globals2++;
4212 /* Don't include ignored section symbols. */
4213 else if (!ignore_section_sym (abfd, sym))
4214 i = num_locals2++;
4215 else
4216 continue;
4217 new_syms[i] = sym;
4218 sym->udata.i = i + 1;
4219 }
4220 for (asect = abfd->sections; asect; asect = asect->next)
4221 {
4222 asymbol *sym = asect->symbol;
4223 if (!ignore_section_sym (abfd, sym)
4224 && sect_syms[asect->index] == NULL)
4225 {
4226 unsigned int i;
4227
4228 sect_syms[asect->index] = sym;
4229 if (!sym_is_global (abfd, sym))
4230 i = num_locals2++;
4231 else
4232 i = num_locals + num_globals2++;
4233 new_syms[i] = sym;
4234 sym->udata.i = i + 1;
4235 }
4236 }
4237
4238 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
4239
4240 *pnum_locals = num_locals;
4241 return true;
4242 }
4243
4244 /* Align to the maximum file alignment that could be required for any
4245 ELF data structure. */
4246
4247 static inline file_ptr
4248 align_file_position (file_ptr off, int align)
4249 {
4250 return (off + align - 1) & ~(align - 1);
4251 }
4252
4253 /* Assign a file position to a section, optionally aligning to the
4254 required section alignment. */
4255
4256 file_ptr
4257 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
4258 file_ptr offset,
4259 bool align)
4260 {
4261 if (align && i_shdrp->sh_addralign > 1)
4262 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
4263 i_shdrp->sh_offset = offset;
4264 if (i_shdrp->bfd_section != NULL)
4265 i_shdrp->bfd_section->filepos = offset;
4266 if (i_shdrp->sh_type != SHT_NOBITS)
4267 offset += i_shdrp->sh_size;
4268 return offset;
4269 }
4270
4271 /* Compute the file positions we are going to put the sections at, and
4272 otherwise prepare to begin writing out the ELF file. If LINK_INFO
4273 is not NULL, this is being called by the ELF backend linker. */
4274
4275 bool
4276 _bfd_elf_compute_section_file_positions (bfd *abfd,
4277 struct bfd_link_info *link_info)
4278 {
4279 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4280 struct fake_section_arg fsargs;
4281 bool failed;
4282 struct elf_strtab_hash *strtab = NULL;
4283 Elf_Internal_Shdr *shstrtab_hdr;
4284 bool need_symtab;
4285
4286 if (abfd->output_has_begun)
4287 return true;
4288
4289 /* Do any elf backend specific processing first. */
4290 if (bed->elf_backend_begin_write_processing)
4291 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
4292
4293 if (!(*bed->elf_backend_init_file_header) (abfd, link_info))
4294 return false;
4295
4296 fsargs.failed = false;
4297 fsargs.link_info = link_info;
4298 bfd_map_over_sections (abfd, elf_fake_sections, &fsargs);
4299 if (fsargs.failed)
4300 return false;
4301
4302 if (!assign_section_numbers (abfd, link_info))
4303 return false;
4304
4305 /* The backend linker builds symbol table information itself. */
4306 need_symtab = (link_info == NULL
4307 && (bfd_get_symcount (abfd) > 0
4308 || ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
4309 == HAS_RELOC)));
4310 if (need_symtab)
4311 {
4312 /* Non-zero if doing a relocatable link. */
4313 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
4314
4315 if (! swap_out_syms (abfd, &strtab, relocatable_p, link_info))
4316 return false;
4317 }
4318
4319 failed = false;
4320 if (link_info == NULL)
4321 {
4322 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
4323 if (failed)
4324 return false;
4325 }
4326
4327 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
4328 /* sh_name was set in init_file_header. */
4329 shstrtab_hdr->sh_type = SHT_STRTAB;
4330 shstrtab_hdr->sh_flags = bed->elf_strtab_flags;
4331 shstrtab_hdr->sh_addr = 0;
4332 /* sh_size is set in _bfd_elf_assign_file_positions_for_non_load. */
4333 shstrtab_hdr->sh_entsize = 0;
4334 shstrtab_hdr->sh_link = 0;
4335 shstrtab_hdr->sh_info = 0;
4336 /* sh_offset is set in _bfd_elf_assign_file_positions_for_non_load. */
4337 shstrtab_hdr->sh_addralign = 1;
4338
4339 if (!assign_file_positions_except_relocs (abfd, link_info))
4340 return false;
4341
4342 if (need_symtab)
4343 {
4344 file_ptr off;
4345 Elf_Internal_Shdr *hdr;
4346
4347 off = elf_next_file_pos (abfd);
4348
4349 hdr = & elf_symtab_hdr (abfd);
4350 off = _bfd_elf_assign_file_position_for_section (hdr, off, true);
4351
4352 if (elf_symtab_shndx_list (abfd) != NULL)
4353 {
4354 hdr = & elf_symtab_shndx_list (abfd)->hdr;
4355 if (hdr->sh_size != 0)
4356 off = _bfd_elf_assign_file_position_for_section (hdr, off, true);
4357 /* FIXME: What about other symtab_shndx sections in the list ? */
4358 }
4359
4360 hdr = &elf_tdata (abfd)->strtab_hdr;
4361 off = _bfd_elf_assign_file_position_for_section (hdr, off, true);
4362
4363 elf_next_file_pos (abfd) = off;
4364
4365 /* Now that we know where the .strtab section goes, write it
4366 out. */
4367 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
4368 || ! _bfd_elf_strtab_emit (abfd, strtab))
4369 return false;
4370 _bfd_elf_strtab_free (strtab);
4371 }
4372
4373 abfd->output_has_begun = true;
4374
4375 return true;
4376 }
4377
4378 /* Make an initial estimate of the size of the program header. If we
4379 get the number wrong here, we'll redo section placement. */
4380
4381 static bfd_size_type
4382 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
4383 {
4384 size_t segs;
4385 asection *s;
4386 const struct elf_backend_data *bed;
4387
4388 /* Assume we will need exactly two PT_LOAD segments: one for text
4389 and one for data. */
4390 segs = 2;
4391
4392 s = bfd_get_section_by_name (abfd, ".interp");
4393 if (s != NULL && (s->flags & SEC_LOAD) != 0 && s->size != 0)
4394 {
4395 /* If we have a loadable interpreter section, we need a
4396 PT_INTERP segment. In this case, assume we also need a
4397 PT_PHDR segment, although that may not be true for all
4398 targets. */
4399 segs += 2;
4400 }
4401
4402 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4403 {
4404 /* We need a PT_DYNAMIC segment. */
4405 ++segs;
4406 }
4407
4408 if (info != NULL && info->relro)
4409 {
4410 /* We need a PT_GNU_RELRO segment. */
4411 ++segs;
4412 }
4413
4414 if (elf_eh_frame_hdr (abfd))
4415 {
4416 /* We need a PT_GNU_EH_FRAME segment. */
4417 ++segs;
4418 }
4419
4420 if (elf_stack_flags (abfd))
4421 {
4422 /* We need a PT_GNU_STACK segment. */
4423 ++segs;
4424 }
4425
4426 s = bfd_get_section_by_name (abfd,
4427 NOTE_GNU_PROPERTY_SECTION_NAME);
4428 if (s != NULL && s->size != 0)
4429 {
4430 /* We need a PT_GNU_PROPERTY segment. */
4431 ++segs;
4432 }
4433
4434 for (s = abfd->sections; s != NULL; s = s->next)
4435 {
4436 if ((s->flags & SEC_LOAD) != 0
4437 && elf_section_type (s) == SHT_NOTE)
4438 {
4439 unsigned int alignment_power;
4440 /* We need a PT_NOTE segment. */
4441 ++segs;
4442 /* Try to create just one PT_NOTE segment for all adjacent
4443 loadable SHT_NOTE sections. gABI requires that within a
4444 PT_NOTE segment (and also inside of each SHT_NOTE section)
4445 each note should have the same alignment. So we check
4446 whether the sections are correctly aligned. */
4447 alignment_power = s->alignment_power;
4448 while (s->next != NULL
4449 && s->next->alignment_power == alignment_power
4450 && (s->next->flags & SEC_LOAD) != 0
4451 && elf_section_type (s->next) == SHT_NOTE)
4452 s = s->next;
4453 }
4454 }
4455
4456 for (s = abfd->sections; s != NULL; s = s->next)
4457 {
4458 if (s->flags & SEC_THREAD_LOCAL)
4459 {
4460 /* We need a PT_TLS segment. */
4461 ++segs;
4462 break;
4463 }
4464 }
4465
4466 bed = get_elf_backend_data (abfd);
4467
4468 if ((abfd->flags & D_PAGED) != 0
4469 && (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_mbind) != 0)
4470 {
4471 /* Add a PT_GNU_MBIND segment for each mbind section. */
4472 bfd_vma commonpagesize;
4473 unsigned int page_align_power;
4474
4475 if (info != NULL)
4476 commonpagesize = info->commonpagesize;
4477 else
4478 commonpagesize = bed->commonpagesize;
4479 page_align_power = bfd_log2 (commonpagesize);
4480 for (s = abfd->sections; s != NULL; s = s->next)
4481 if (elf_section_flags (s) & SHF_GNU_MBIND)
4482 {
4483 if (elf_section_data (s)->this_hdr.sh_info > PT_GNU_MBIND_NUM)
4484 {
4485 _bfd_error_handler
4486 /* xgettext:c-format */
4487 (_("%pB: GNU_MBIND section `%pA' has invalid "
4488 "sh_info field: %d"),
4489 abfd, s, elf_section_data (s)->this_hdr.sh_info);
4490 continue;
4491 }
4492 /* Align mbind section to page size. */
4493 if (s->alignment_power < page_align_power)
4494 s->alignment_power = page_align_power;
4495 segs ++;
4496 }
4497 }
4498
4499 /* Let the backend count up any program headers it might need. */
4500 if (bed->elf_backend_additional_program_headers)
4501 {
4502 int a;
4503
4504 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
4505 if (a == -1)
4506 abort ();
4507 segs += a;
4508 }
4509
4510 return segs * bed->s->sizeof_phdr;
4511 }
4512
4513 /* Find the segment that contains the output_section of section. */
4514
4515 Elf_Internal_Phdr *
4516 _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
4517 {
4518 struct elf_segment_map *m;
4519 Elf_Internal_Phdr *p;
4520
4521 for (m = elf_seg_map (abfd), p = elf_tdata (abfd)->phdr;
4522 m != NULL;
4523 m = m->next, p++)
4524 {
4525 int i;
4526
4527 for (i = m->count - 1; i >= 0; i--)
4528 if (m->sections[i] == section)
4529 return p;
4530 }
4531
4532 return NULL;
4533 }
4534
4535 /* Create a mapping from a set of sections to a program segment. */
4536
4537 static struct elf_segment_map *
4538 make_mapping (bfd *abfd,
4539 asection **sections,
4540 unsigned int from,
4541 unsigned int to,
4542 bool phdr)
4543 {
4544 struct elf_segment_map *m;
4545 unsigned int i;
4546 asection **hdrpp;
4547 size_t amt;
4548
4549 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
4550 amt += (to - from) * sizeof (asection *);
4551 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4552 if (m == NULL)
4553 return NULL;
4554 m->next = NULL;
4555 m->p_type = PT_LOAD;
4556 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
4557 m->sections[i - from] = *hdrpp;
4558 m->count = to - from;
4559
4560 if (from == 0 && phdr)
4561 {
4562 /* Include the headers in the first PT_LOAD segment. */
4563 m->includes_filehdr = 1;
4564 m->includes_phdrs = 1;
4565 }
4566
4567 return m;
4568 }
4569
4570 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
4571 on failure. */
4572
4573 struct elf_segment_map *
4574 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
4575 {
4576 struct elf_segment_map *m;
4577
4578 m = (struct elf_segment_map *) bfd_zalloc (abfd,
4579 sizeof (struct elf_segment_map));
4580 if (m == NULL)
4581 return NULL;
4582 m->next = NULL;
4583 m->p_type = PT_DYNAMIC;
4584 m->count = 1;
4585 m->sections[0] = dynsec;
4586
4587 return m;
4588 }
4589
4590 /* Possibly add or remove segments from the segment map. */
4591
4592 static bool
4593 elf_modify_segment_map (bfd *abfd,
4594 struct bfd_link_info *info,
4595 bool remove_empty_load)
4596 {
4597 struct elf_segment_map **m;
4598 const struct elf_backend_data *bed;
4599
4600 /* The placement algorithm assumes that non allocated sections are
4601 not in PT_LOAD segments. We ensure this here by removing such
4602 sections from the segment map. We also remove excluded
4603 sections. Finally, any PT_LOAD segment without sections is
4604 removed. */
4605 m = &elf_seg_map (abfd);
4606 while (*m)
4607 {
4608 unsigned int i, new_count;
4609
4610 for (new_count = 0, i = 0; i < (*m)->count; i++)
4611 {
4612 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
4613 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
4614 || (*m)->p_type != PT_LOAD))
4615 {
4616 (*m)->sections[new_count] = (*m)->sections[i];
4617 new_count++;
4618 }
4619 }
4620 (*m)->count = new_count;
4621
4622 if (remove_empty_load
4623 && (*m)->p_type == PT_LOAD
4624 && (*m)->count == 0
4625 && !(*m)->includes_phdrs)
4626 *m = (*m)->next;
4627 else
4628 m = &(*m)->next;
4629 }
4630
4631 bed = get_elf_backend_data (abfd);
4632 if (bed->elf_backend_modify_segment_map != NULL)
4633 {
4634 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
4635 return false;
4636 }
4637
4638 return true;
4639 }
4640
4641 #define IS_TBSS(s) \
4642 ((s->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) == SEC_THREAD_LOCAL)
4643
4644 /* Set up a mapping from BFD sections to program segments. */
4645
4646 bool
4647 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
4648 {
4649 unsigned int count;
4650 struct elf_segment_map *m;
4651 asection **sections = NULL;
4652 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4653 bool no_user_phdrs;
4654
4655 no_user_phdrs = elf_seg_map (abfd) == NULL;
4656
4657 if (info != NULL)
4658 info->user_phdrs = !no_user_phdrs;
4659
4660 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
4661 {
4662 asection *s;
4663 unsigned int i;
4664 struct elf_segment_map *mfirst;
4665 struct elf_segment_map **pm;
4666 asection *last_hdr;
4667 bfd_vma last_size;
4668 unsigned int hdr_index;
4669 bfd_vma maxpagesize;
4670 asection **hdrpp;
4671 bool phdr_in_segment;
4672 bool writable;
4673 bool executable;
4674 unsigned int tls_count = 0;
4675 asection *first_tls = NULL;
4676 asection *first_mbind = NULL;
4677 asection *dynsec, *eh_frame_hdr;
4678 size_t amt;
4679 bfd_vma addr_mask, wrap_to = 0; /* Bytes. */
4680 bfd_size_type phdr_size; /* Octets/bytes. */
4681 unsigned int opb = bfd_octets_per_byte (abfd, NULL);
4682
4683 /* Select the allocated sections, and sort them. */
4684
4685 amt = bfd_count_sections (abfd) * sizeof (asection *);
4686 sections = (asection **) bfd_malloc (amt);
4687 if (sections == NULL)
4688 goto error_return;
4689
4690 /* Calculate top address, avoiding undefined behaviour of shift
4691 left operator when shift count is equal to size of type
4692 being shifted. */
4693 addr_mask = ((bfd_vma) 1 << (bfd_arch_bits_per_address (abfd) - 1)) - 1;
4694 addr_mask = (addr_mask << 1) + 1;
4695
4696 i = 0;
4697 for (s = abfd->sections; s != NULL; s = s->next)
4698 {
4699 if ((s->flags & SEC_ALLOC) != 0)
4700 {
4701 /* target_index is unused until bfd_elf_final_link
4702 starts output of section symbols. Use it to make
4703 qsort stable. */
4704 s->target_index = i;
4705 sections[i] = s;
4706 ++i;
4707 /* A wrapping section potentially clashes with header. */
4708 if (((s->lma + s->size / opb) & addr_mask) < (s->lma & addr_mask))
4709 wrap_to = (s->lma + s->size / opb) & addr_mask;
4710 }
4711 }
4712 BFD_ASSERT (i <= bfd_count_sections (abfd));
4713 count = i;
4714
4715 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
4716
4717 phdr_size = elf_program_header_size (abfd);
4718 if (phdr_size == (bfd_size_type) -1)
4719 phdr_size = get_program_header_size (abfd, info);
4720 phdr_size += bed->s->sizeof_ehdr;
4721 /* phdr_size is compared to LMA values which are in bytes. */
4722 phdr_size /= opb;
4723 if (info != NULL)
4724 maxpagesize = info->maxpagesize;
4725 else
4726 maxpagesize = bed->maxpagesize;
4727 if (maxpagesize == 0)
4728 maxpagesize = 1;
4729 phdr_in_segment = info != NULL && info->load_phdrs;
4730 if (count != 0
4731 && (((sections[0]->lma & addr_mask) & (maxpagesize - 1))
4732 >= (phdr_size & (maxpagesize - 1))))
4733 /* For compatibility with old scripts that may not be using
4734 SIZEOF_HEADERS, add headers when it looks like space has
4735 been left for them. */
4736 phdr_in_segment = true;
4737
4738 /* Build the mapping. */
4739 mfirst = NULL;
4740 pm = &mfirst;
4741
4742 /* If we have a .interp section, then create a PT_PHDR segment for
4743 the program headers and a PT_INTERP segment for the .interp
4744 section. */
4745 s = bfd_get_section_by_name (abfd, ".interp");
4746 if (s != NULL && (s->flags & SEC_LOAD) != 0 && s->size != 0)
4747 {
4748 amt = sizeof (struct elf_segment_map);
4749 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4750 if (m == NULL)
4751 goto error_return;
4752 m->next = NULL;
4753 m->p_type = PT_PHDR;
4754 m->p_flags = PF_R;
4755 m->p_flags_valid = 1;
4756 m->includes_phdrs = 1;
4757 phdr_in_segment = true;
4758 *pm = m;
4759 pm = &m->next;
4760
4761 amt = sizeof (struct elf_segment_map);
4762 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4763 if (m == NULL)
4764 goto error_return;
4765 m->next = NULL;
4766 m->p_type = PT_INTERP;
4767 m->count = 1;
4768 m->sections[0] = s;
4769
4770 *pm = m;
4771 pm = &m->next;
4772 }
4773
4774 /* Look through the sections. We put sections in the same program
4775 segment when the start of the second section can be placed within
4776 a few bytes of the end of the first section. */
4777 last_hdr = NULL;
4778 last_size = 0;
4779 hdr_index = 0;
4780 writable = false;
4781 executable = false;
4782 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
4783 if (dynsec != NULL
4784 && (dynsec->flags & SEC_LOAD) == 0)
4785 dynsec = NULL;
4786
4787 if ((abfd->flags & D_PAGED) == 0)
4788 phdr_in_segment = false;
4789
4790 /* Deal with -Ttext or something similar such that the first section
4791 is not adjacent to the program headers. This is an
4792 approximation, since at this point we don't know exactly how many
4793 program headers we will need. */
4794 if (phdr_in_segment && count > 0)
4795 {
4796 bfd_vma phdr_lma; /* Bytes. */
4797 bool separate_phdr = false;
4798
4799 phdr_lma = (sections[0]->lma - phdr_size) & addr_mask & -maxpagesize;
4800 if (info != NULL
4801 && info->separate_code
4802 && (sections[0]->flags & SEC_CODE) != 0)
4803 {
4804 /* If data sections should be separate from code and
4805 thus not executable, and the first section is
4806 executable then put the file and program headers in
4807 their own PT_LOAD. */
4808 separate_phdr = true;
4809 if ((((phdr_lma + phdr_size - 1) & addr_mask & -maxpagesize)
4810 == (sections[0]->lma & addr_mask & -maxpagesize)))
4811 {
4812 /* The file and program headers are currently on the
4813 same page as the first section. Put them on the
4814 previous page if we can. */
4815 if (phdr_lma >= maxpagesize)
4816 phdr_lma -= maxpagesize;
4817 else
4818 separate_phdr = false;
4819 }
4820 }
4821 if ((sections[0]->lma & addr_mask) < phdr_lma
4822 || (sections[0]->lma & addr_mask) < phdr_size)
4823 /* If file and program headers would be placed at the end
4824 of memory then it's probably better to omit them. */
4825 phdr_in_segment = false;
4826 else if (phdr_lma < wrap_to)
4827 /* If a section wraps around to where we'll be placing
4828 file and program headers, then the headers will be
4829 overwritten. */
4830 phdr_in_segment = false;
4831 else if (separate_phdr)
4832 {
4833 m = make_mapping (abfd, sections, 0, 0, phdr_in_segment);
4834 if (m == NULL)
4835 goto error_return;
4836 m->p_paddr = phdr_lma * opb;
4837 m->p_vaddr_offset
4838 = (sections[0]->vma - phdr_size) & addr_mask & -maxpagesize;
4839 m->p_paddr_valid = 1;
4840 *pm = m;
4841 pm = &m->next;
4842 phdr_in_segment = false;
4843 }
4844 }
4845
4846 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
4847 {
4848 asection *hdr;
4849 bool new_segment;
4850
4851 hdr = *hdrpp;
4852
4853 /* See if this section and the last one will fit in the same
4854 segment. */
4855
4856 if (last_hdr == NULL)
4857 {
4858 /* If we don't have a segment yet, then we don't need a new
4859 one (we build the last one after this loop). */
4860 new_segment = false;
4861 }
4862 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
4863 {
4864 /* If this section has a different relation between the
4865 virtual address and the load address, then we need a new
4866 segment. */
4867 new_segment = true;
4868 }
4869 else if (hdr->lma < last_hdr->lma + last_size
4870 || last_hdr->lma + last_size < last_hdr->lma)
4871 {
4872 /* If this section has a load address that makes it overlap
4873 the previous section, then we need a new segment. */
4874 new_segment = true;
4875 }
4876 else if ((abfd->flags & D_PAGED) != 0
4877 && (((last_hdr->lma + last_size - 1) & -maxpagesize)
4878 == (hdr->lma & -maxpagesize)))
4879 {
4880 /* If we are demand paged then we can't map two disk
4881 pages onto the same memory page. */
4882 new_segment = false;
4883 }
4884 /* In the next test we have to be careful when last_hdr->lma is close
4885 to the end of the address space. If the aligned address wraps
4886 around to the start of the address space, then there are no more
4887 pages left in memory and it is OK to assume that the current
4888 section can be included in the current segment. */
4889 else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
4890 + maxpagesize > last_hdr->lma)
4891 && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
4892 + maxpagesize <= hdr->lma))
4893 {
4894 /* If putting this section in this segment would force us to
4895 skip a page in the segment, then we need a new segment. */
4896 new_segment = true;
4897 }
4898 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
4899 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
4900 {
4901 /* We don't want to put a loaded section after a
4902 nonloaded (ie. bss style) section in the same segment
4903 as that will force the non-loaded section to be loaded.
4904 Consider .tbss sections as loaded for this purpose. */
4905 new_segment = true;
4906 }
4907 else if ((abfd->flags & D_PAGED) == 0)
4908 {
4909 /* If the file is not demand paged, which means that we
4910 don't require the sections to be correctly aligned in the
4911 file, then there is no other reason for a new segment. */
4912 new_segment = false;
4913 }
4914 else if (info != NULL
4915 && info->separate_code
4916 && executable != ((hdr->flags & SEC_CODE) != 0))
4917 {
4918 new_segment = true;
4919 }
4920 else if (! writable
4921 && (hdr->flags & SEC_READONLY) == 0)
4922 {
4923 /* We don't want to put a writable section in a read only
4924 segment. */
4925 new_segment = true;
4926 }
4927 else
4928 {
4929 /* Otherwise, we can use the same segment. */
4930 new_segment = false;
4931 }
4932
4933 /* Allow interested parties a chance to override our decision. */
4934 if (last_hdr != NULL
4935 && info != NULL
4936 && info->callbacks->override_segment_assignment != NULL)
4937 new_segment
4938 = info->callbacks->override_segment_assignment (info, abfd, hdr,
4939 last_hdr,
4940 new_segment);
4941
4942 if (! new_segment)
4943 {
4944 if ((hdr->flags & SEC_READONLY) == 0)
4945 writable = true;
4946 if ((hdr->flags & SEC_CODE) != 0)
4947 executable = true;
4948 last_hdr = hdr;
4949 /* .tbss sections effectively have zero size. */
4950 last_size = (!IS_TBSS (hdr) ? hdr->size : 0) / opb;
4951 continue;
4952 }
4953
4954 /* We need a new program segment. We must create a new program
4955 header holding all the sections from hdr_index until hdr. */
4956
4957 m = make_mapping (abfd, sections, hdr_index, i, phdr_in_segment);
4958 if (m == NULL)
4959 goto error_return;
4960
4961 *pm = m;
4962 pm = &m->next;
4963
4964 if ((hdr->flags & SEC_READONLY) == 0)
4965 writable = true;
4966 else
4967 writable = false;
4968
4969 if ((hdr->flags & SEC_CODE) == 0)
4970 executable = false;
4971 else
4972 executable = true;
4973
4974 last_hdr = hdr;
4975 /* .tbss sections effectively have zero size. */
4976 last_size = (!IS_TBSS (hdr) ? hdr->size : 0) / opb;
4977 hdr_index = i;
4978 phdr_in_segment = false;
4979 }
4980
4981 /* Create a final PT_LOAD program segment, but not if it's just
4982 for .tbss. */
4983 if (last_hdr != NULL
4984 && (i - hdr_index != 1
4985 || !IS_TBSS (last_hdr)))
4986 {
4987 m = make_mapping (abfd, sections, hdr_index, i, phdr_in_segment);
4988 if (m == NULL)
4989 goto error_return;
4990
4991 *pm = m;
4992 pm = &m->next;
4993 }
4994
4995 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4996 if (dynsec != NULL)
4997 {
4998 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
4999 if (m == NULL)
5000 goto error_return;
5001 *pm = m;
5002 pm = &m->next;
5003 }
5004
5005 /* For each batch of consecutive loadable SHT_NOTE sections,
5006 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
5007 because if we link together nonloadable .note sections and
5008 loadable .note sections, we will generate two .note sections
5009 in the output file. */
5010 for (s = abfd->sections; s != NULL; s = s->next)
5011 {
5012 if ((s->flags & SEC_LOAD) != 0
5013 && elf_section_type (s) == SHT_NOTE)
5014 {
5015 asection *s2;
5016 unsigned int alignment_power = s->alignment_power;
5017
5018 count = 1;
5019 for (s2 = s; s2->next != NULL; s2 = s2->next)
5020 {
5021 if (s2->next->alignment_power == alignment_power
5022 && (s2->next->flags & SEC_LOAD) != 0
5023 && elf_section_type (s2->next) == SHT_NOTE
5024 && align_power (s2->lma + s2->size / opb,
5025 alignment_power)
5026 == s2->next->lma)
5027 count++;
5028 else
5029 break;
5030 }
5031 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
5032 amt += count * sizeof (asection *);
5033 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5034 if (m == NULL)
5035 goto error_return;
5036 m->next = NULL;
5037 m->p_type = PT_NOTE;
5038 m->count = count;
5039 while (count > 1)
5040 {
5041 m->sections[m->count - count--] = s;
5042 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
5043 s = s->next;
5044 }
5045 m->sections[m->count - 1] = s;
5046 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
5047 *pm = m;
5048 pm = &m->next;
5049 }
5050 if (s->flags & SEC_THREAD_LOCAL)
5051 {
5052 if (! tls_count)
5053 first_tls = s;
5054 tls_count++;
5055 }
5056 if (first_mbind == NULL
5057 && (elf_section_flags (s) & SHF_GNU_MBIND) != 0)
5058 first_mbind = s;
5059 }
5060
5061 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
5062 if (tls_count > 0)
5063 {
5064 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
5065 amt += tls_count * sizeof (asection *);
5066 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5067 if (m == NULL)
5068 goto error_return;
5069 m->next = NULL;
5070 m->p_type = PT_TLS;
5071 m->count = tls_count;
5072 /* Mandated PF_R. */
5073 m->p_flags = PF_R;
5074 m->p_flags_valid = 1;
5075 s = first_tls;
5076 for (i = 0; i < tls_count; ++i)
5077 {
5078 if ((s->flags & SEC_THREAD_LOCAL) == 0)
5079 {
5080 _bfd_error_handler
5081 (_("%pB: TLS sections are not adjacent:"), abfd);
5082 s = first_tls;
5083 i = 0;
5084 while (i < tls_count)
5085 {
5086 if ((s->flags & SEC_THREAD_LOCAL) != 0)
5087 {
5088 _bfd_error_handler (_(" TLS: %pA"), s);
5089 i++;
5090 }
5091 else
5092 _bfd_error_handler (_(" non-TLS: %pA"), s);
5093 s = s->next;
5094 }
5095 bfd_set_error (bfd_error_bad_value);
5096 goto error_return;
5097 }
5098 m->sections[i] = s;
5099 s = s->next;
5100 }
5101
5102 *pm = m;
5103 pm = &m->next;
5104 }
5105
5106 if (first_mbind
5107 && (abfd->flags & D_PAGED) != 0
5108 && (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_mbind) != 0)
5109 for (s = first_mbind; s != NULL; s = s->next)
5110 if ((elf_section_flags (s) & SHF_GNU_MBIND) != 0
5111 && elf_section_data (s)->this_hdr.sh_info <= PT_GNU_MBIND_NUM)
5112 {
5113 /* Mandated PF_R. */
5114 unsigned long p_flags = PF_R;
5115 if ((s->flags & SEC_READONLY) == 0)
5116 p_flags |= PF_W;
5117 if ((s->flags & SEC_CODE) != 0)
5118 p_flags |= PF_X;
5119
5120 amt = sizeof (struct elf_segment_map) + sizeof (asection *);
5121 m = bfd_zalloc (abfd, amt);
5122 if (m == NULL)
5123 goto error_return;
5124 m->next = NULL;
5125 m->p_type = (PT_GNU_MBIND_LO
5126 + elf_section_data (s)->this_hdr.sh_info);
5127 m->count = 1;
5128 m->p_flags_valid = 1;
5129 m->sections[0] = s;
5130 m->p_flags = p_flags;
5131
5132 *pm = m;
5133 pm = &m->next;
5134 }
5135
5136 s = bfd_get_section_by_name (abfd,
5137 NOTE_GNU_PROPERTY_SECTION_NAME);
5138 if (s != NULL && s->size != 0)
5139 {
5140 amt = sizeof (struct elf_segment_map) + sizeof (asection *);
5141 m = bfd_zalloc (abfd, amt);
5142 if (m == NULL)
5143 goto error_return;
5144 m->next = NULL;
5145 m->p_type = PT_GNU_PROPERTY;
5146 m->count = 1;
5147 m->p_flags_valid = 1;
5148 m->sections[0] = s;
5149 m->p_flags = PF_R;
5150 *pm = m;
5151 pm = &m->next;
5152 }
5153
5154 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
5155 segment. */
5156 eh_frame_hdr = elf_eh_frame_hdr (abfd);
5157 if (eh_frame_hdr != NULL
5158 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
5159 {
5160 amt = sizeof (struct elf_segment_map);
5161 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5162 if (m == NULL)
5163 goto error_return;
5164 m->next = NULL;
5165 m->p_type = PT_GNU_EH_FRAME;
5166 m->count = 1;
5167 m->sections[0] = eh_frame_hdr->output_section;
5168
5169 *pm = m;
5170 pm = &m->next;
5171 }
5172
5173 if (elf_stack_flags (abfd))
5174 {
5175 amt = sizeof (struct elf_segment_map);
5176 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5177 if (m == NULL)
5178 goto error_return;
5179 m->next = NULL;
5180 m->p_type = PT_GNU_STACK;
5181 m->p_flags = elf_stack_flags (abfd);
5182 m->p_align = bed->stack_align;
5183 m->p_flags_valid = 1;
5184 m->p_align_valid = m->p_align != 0;
5185 if (info->stacksize > 0)
5186 {
5187 m->p_size = info->stacksize;
5188 m->p_size_valid = 1;
5189 }
5190
5191 *pm = m;
5192 pm = &m->next;
5193 }
5194
5195 if (info != NULL && info->relro)
5196 {
5197 for (m = mfirst; m != NULL; m = m->next)
5198 {
5199 if (m->p_type == PT_LOAD
5200 && m->count != 0
5201 && m->sections[0]->vma >= info->relro_start
5202 && m->sections[0]->vma < info->relro_end)
5203 {
5204 i = m->count;
5205 while (--i != (unsigned) -1)
5206 {
5207 if (m->sections[i]->size > 0
5208 && (m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS))
5209 == (SEC_LOAD | SEC_HAS_CONTENTS))
5210 break;
5211 }
5212
5213 if (i != (unsigned) -1)
5214 break;
5215 }
5216 }
5217
5218 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
5219 if (m != NULL)
5220 {
5221 amt = sizeof (struct elf_segment_map);
5222 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5223 if (m == NULL)
5224 goto error_return;
5225 m->next = NULL;
5226 m->p_type = PT_GNU_RELRO;
5227 *pm = m;
5228 pm = &m->next;
5229 }
5230 }
5231
5232 free (sections);
5233 elf_seg_map (abfd) = mfirst;
5234 }
5235
5236 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
5237 return false;
5238
5239 for (count = 0, m = elf_seg_map (abfd); m != NULL; m = m->next)
5240 ++count;
5241 elf_program_header_size (abfd) = count * bed->s->sizeof_phdr;
5242
5243 return true;
5244
5245 error_return:
5246 free (sections);
5247 return false;
5248 }
5249
5250 /* Sort sections by address. */
5251
5252 static int
5253 elf_sort_sections (const void *arg1, const void *arg2)
5254 {
5255 const asection *sec1 = *(const asection **) arg1;
5256 const asection *sec2 = *(const asection **) arg2;
5257 bfd_size_type size1, size2;
5258
5259 /* Sort by LMA first, since this is the address used to
5260 place the section into a segment. */
5261 if (sec1->lma < sec2->lma)
5262 return -1;
5263 else if (sec1->lma > sec2->lma)
5264 return 1;
5265
5266 /* Then sort by VMA. Normally the LMA and the VMA will be
5267 the same, and this will do nothing. */
5268 if (sec1->vma < sec2->vma)
5269 return -1;
5270 else if (sec1->vma > sec2->vma)
5271 return 1;
5272
5273 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
5274
5275 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0 \
5276 && (x)->size != 0)
5277
5278 if (TOEND (sec1))
5279 {
5280 if (!TOEND (sec2))
5281 return 1;
5282 }
5283 else if (TOEND (sec2))
5284 return -1;
5285
5286 #undef TOEND
5287
5288 /* Sort by size, to put zero sized sections
5289 before others at the same address. */
5290
5291 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
5292 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
5293
5294 if (size1 < size2)
5295 return -1;
5296 if (size1 > size2)
5297 return 1;
5298
5299 return sec1->target_index - sec2->target_index;
5300 }
5301
5302 /* This qsort comparison functions sorts PT_LOAD segments first and
5303 by p_paddr, for assign_file_positions_for_load_sections. */
5304
5305 static int
5306 elf_sort_segments (const void *arg1, const void *arg2)
5307 {
5308 const struct elf_segment_map *m1 = *(const struct elf_segment_map **) arg1;
5309 const struct elf_segment_map *m2 = *(const struct elf_segment_map **) arg2;
5310
5311 if (m1->p_type != m2->p_type)
5312 {
5313 if (m1->p_type == PT_NULL)
5314 return 1;
5315 if (m2->p_type == PT_NULL)
5316 return -1;
5317 return m1->p_type < m2->p_type ? -1 : 1;
5318 }
5319 if (m1->includes_filehdr != m2->includes_filehdr)
5320 return m1->includes_filehdr ? -1 : 1;
5321 if (m1->no_sort_lma != m2->no_sort_lma)
5322 return m1->no_sort_lma ? -1 : 1;
5323 if (m1->p_type == PT_LOAD && !m1->no_sort_lma)
5324 {
5325 bfd_vma lma1, lma2; /* Octets. */
5326 lma1 = 0;
5327 if (m1->p_paddr_valid)
5328 lma1 = m1->p_paddr;
5329 else if (m1->count != 0)
5330 {
5331 unsigned int opb = bfd_octets_per_byte (m1->sections[0]->owner,
5332 m1->sections[0]);
5333 lma1 = (m1->sections[0]->lma + m1->p_vaddr_offset) * opb;
5334 }
5335 lma2 = 0;
5336 if (m2->p_paddr_valid)
5337 lma2 = m2->p_paddr;
5338 else if (m2->count != 0)
5339 {
5340 unsigned int opb = bfd_octets_per_byte (m2->sections[0]->owner,
5341 m2->sections[0]);
5342 lma2 = (m2->sections[0]->lma + m2->p_vaddr_offset) * opb;
5343 }
5344 if (lma1 != lma2)
5345 return lma1 < lma2 ? -1 : 1;
5346 }
5347 if (m1->idx != m2->idx)
5348 return m1->idx < m2->idx ? -1 : 1;
5349 return 0;
5350 }
5351
5352 /* Ian Lance Taylor writes:
5353
5354 We shouldn't be using % with a negative signed number. That's just
5355 not good. We have to make sure either that the number is not
5356 negative, or that the number has an unsigned type. When the types
5357 are all the same size they wind up as unsigned. When file_ptr is a
5358 larger signed type, the arithmetic winds up as signed long long,
5359 which is wrong.
5360
5361 What we're trying to say here is something like ``increase OFF by
5362 the least amount that will cause it to be equal to the VMA modulo
5363 the page size.'' */
5364 /* In other words, something like:
5365
5366 vma_offset = m->sections[0]->vma % bed->maxpagesize;
5367 off_offset = off % bed->maxpagesize;
5368 if (vma_offset < off_offset)
5369 adjustment = vma_offset + bed->maxpagesize - off_offset;
5370 else
5371 adjustment = vma_offset - off_offset;
5372
5373 which can be collapsed into the expression below. */
5374
5375 static file_ptr
5376 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
5377 {
5378 /* PR binutils/16199: Handle an alignment of zero. */
5379 if (maxpagesize == 0)
5380 maxpagesize = 1;
5381 return ((vma - off) % maxpagesize);
5382 }
5383
5384 static void
5385 print_segment_map (const struct elf_segment_map *m)
5386 {
5387 unsigned int j;
5388 const char *pt = get_segment_type (m->p_type);
5389 char buf[32];
5390
5391 if (pt == NULL)
5392 {
5393 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
5394 sprintf (buf, "LOPROC+%7.7x",
5395 (unsigned int) (m->p_type - PT_LOPROC));
5396 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
5397 sprintf (buf, "LOOS+%7.7x",
5398 (unsigned int) (m->p_type - PT_LOOS));
5399 else
5400 snprintf (buf, sizeof (buf), "%8.8x",
5401 (unsigned int) m->p_type);
5402 pt = buf;
5403 }
5404 fflush (stdout);
5405 fprintf (stderr, "%s:", pt);
5406 for (j = 0; j < m->count; j++)
5407 fprintf (stderr, " %s", m->sections [j]->name);
5408 putc ('\n',stderr);
5409 fflush (stderr);
5410 }
5411
5412 static bool
5413 write_zeros (bfd *abfd, file_ptr pos, bfd_size_type len)
5414 {
5415 void *buf;
5416 bool ret;
5417
5418 if (bfd_seek (abfd, pos, SEEK_SET) != 0)
5419 return false;
5420 buf = bfd_zmalloc (len);
5421 if (buf == NULL)
5422 return false;
5423 ret = bfd_bwrite (buf, len, abfd) == len;
5424 free (buf);
5425 return ret;
5426 }
5427
5428 /* Assign file positions to the sections based on the mapping from
5429 sections to segments. This function also sets up some fields in
5430 the file header. */
5431
5432 static bool
5433 assign_file_positions_for_load_sections (bfd *abfd,
5434 struct bfd_link_info *link_info)
5435 {
5436 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5437 struct elf_segment_map *m;
5438 struct elf_segment_map *phdr_load_seg;
5439 Elf_Internal_Phdr *phdrs;
5440 Elf_Internal_Phdr *p;
5441 file_ptr off; /* Octets. */
5442 bfd_size_type maxpagesize;
5443 unsigned int alloc, actual;
5444 unsigned int i, j;
5445 struct elf_segment_map **sorted_seg_map;
5446 unsigned int opb = bfd_octets_per_byte (abfd, NULL);
5447
5448 if (link_info == NULL
5449 && !_bfd_elf_map_sections_to_segments (abfd, link_info))
5450 return false;
5451
5452 alloc = 0;
5453 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
5454 m->idx = alloc++;
5455
5456 if (alloc)
5457 {
5458 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
5459 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
5460 }
5461 else
5462 {
5463 /* PR binutils/12467. */
5464 elf_elfheader (abfd)->e_phoff = 0;
5465 elf_elfheader (abfd)->e_phentsize = 0;
5466 }
5467
5468 elf_elfheader (abfd)->e_phnum = alloc;
5469
5470 if (elf_program_header_size (abfd) == (bfd_size_type) -1)
5471 {
5472 actual = alloc;
5473 elf_program_header_size (abfd) = alloc * bed->s->sizeof_phdr;
5474 }
5475 else
5476 {
5477 actual = elf_program_header_size (abfd) / bed->s->sizeof_phdr;
5478 BFD_ASSERT (elf_program_header_size (abfd)
5479 == actual * bed->s->sizeof_phdr);
5480 BFD_ASSERT (actual >= alloc);
5481 }
5482
5483 if (alloc == 0)
5484 {
5485 elf_next_file_pos (abfd) = bed->s->sizeof_ehdr;
5486 return true;
5487 }
5488
5489 /* We're writing the size in elf_program_header_size (abfd),
5490 see assign_file_positions_except_relocs, so make sure we have
5491 that amount allocated, with trailing space cleared.
5492 The variable alloc contains the computed need, while
5493 elf_program_header_size (abfd) contains the size used for the
5494 layout.
5495 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
5496 where the layout is forced to according to a larger size in the
5497 last iterations for the testcase ld-elf/header. */
5498 phdrs = bfd_zalloc (abfd, (actual * sizeof (*phdrs)
5499 + alloc * sizeof (*sorted_seg_map)));
5500 sorted_seg_map = (struct elf_segment_map **) (phdrs + actual);
5501 elf_tdata (abfd)->phdr = phdrs;
5502 if (phdrs == NULL)
5503 return false;
5504
5505 for (m = elf_seg_map (abfd), j = 0; m != NULL; m = m->next, j++)
5506 {
5507 sorted_seg_map[j] = m;
5508 /* If elf_segment_map is not from map_sections_to_segments, the
5509 sections may not be correctly ordered. NOTE: sorting should
5510 not be done to the PT_NOTE section of a corefile, which may
5511 contain several pseudo-sections artificially created by bfd.
5512 Sorting these pseudo-sections breaks things badly. */
5513 if (m->count > 1
5514 && !(elf_elfheader (abfd)->e_type == ET_CORE
5515 && m->p_type == PT_NOTE))
5516 {
5517 for (i = 0; i < m->count; i++)
5518 m->sections[i]->target_index = i;
5519 qsort (m->sections, (size_t) m->count, sizeof (asection *),
5520 elf_sort_sections);
5521 }
5522 }
5523 if (alloc > 1)
5524 qsort (sorted_seg_map, alloc, sizeof (*sorted_seg_map),
5525 elf_sort_segments);
5526
5527 maxpagesize = 1;
5528 if ((abfd->flags & D_PAGED) != 0)
5529 {
5530 if (link_info != NULL)
5531 maxpagesize = link_info->maxpagesize;
5532 else
5533 maxpagesize = bed->maxpagesize;
5534 }
5535
5536 /* Sections must map to file offsets past the ELF file header. */
5537 off = bed->s->sizeof_ehdr;
5538 /* And if one of the PT_LOAD headers doesn't include the program
5539 headers then we'll be mapping program headers in the usual
5540 position after the ELF file header. */
5541 phdr_load_seg = NULL;
5542 for (j = 0; j < alloc; j++)
5543 {
5544 m = sorted_seg_map[j];
5545 if (m->p_type != PT_LOAD)
5546 break;
5547 if (m->includes_phdrs)
5548 {
5549 phdr_load_seg = m;
5550 break;
5551 }
5552 }
5553 if (phdr_load_seg == NULL)
5554 off += actual * bed->s->sizeof_phdr;
5555
5556 for (j = 0; j < alloc; j++)
5557 {
5558 asection **secpp;
5559 bfd_vma off_adjust; /* Octets. */
5560 bool no_contents;
5561
5562 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
5563 number of sections with contents contributing to both p_filesz
5564 and p_memsz, followed by a number of sections with no contents
5565 that just contribute to p_memsz. In this loop, OFF tracks next
5566 available file offset for PT_LOAD and PT_NOTE segments. */
5567 m = sorted_seg_map[j];
5568 p = phdrs + m->idx;
5569 p->p_type = m->p_type;
5570 p->p_flags = m->p_flags;
5571
5572 if (m->count == 0)
5573 p->p_vaddr = m->p_vaddr_offset * opb;
5574 else
5575 p->p_vaddr = (m->sections[0]->vma + m->p_vaddr_offset) * opb;
5576
5577 if (m->p_paddr_valid)
5578 p->p_paddr = m->p_paddr;
5579 else if (m->count == 0)
5580 p->p_paddr = 0;
5581 else
5582 p->p_paddr = (m->sections[0]->lma + m->p_vaddr_offset) * opb;
5583
5584 if (p->p_type == PT_LOAD
5585 && (abfd->flags & D_PAGED) != 0)
5586 {
5587 /* p_align in demand paged PT_LOAD segments effectively stores
5588 the maximum page size. When copying an executable with
5589 objcopy, we set m->p_align from the input file. Use this
5590 value for maxpagesize rather than bed->maxpagesize, which
5591 may be different. Note that we use maxpagesize for PT_TLS
5592 segment alignment later in this function, so we are relying
5593 on at least one PT_LOAD segment appearing before a PT_TLS
5594 segment. */
5595 if (m->p_align_valid)
5596 maxpagesize = m->p_align;
5597
5598 p->p_align = maxpagesize;
5599 }
5600 else if (m->p_align_valid)
5601 p->p_align = m->p_align;
5602 else if (m->count == 0)
5603 p->p_align = 1 << bed->s->log_file_align;
5604
5605 if (m == phdr_load_seg)
5606 {
5607 if (!m->includes_filehdr)
5608 p->p_offset = off;
5609 off += actual * bed->s->sizeof_phdr;
5610 }
5611
5612 no_contents = false;
5613 off_adjust = 0;
5614 if (p->p_type == PT_LOAD
5615 && m->count > 0)
5616 {
5617 bfd_size_type align; /* Bytes. */
5618 unsigned int align_power = 0;
5619
5620 if (m->p_align_valid)
5621 align = p->p_align;
5622 else
5623 {
5624 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
5625 {
5626 unsigned int secalign;
5627
5628 secalign = bfd_section_alignment (*secpp);
5629 if (secalign > align_power)
5630 align_power = secalign;
5631 }
5632 align = (bfd_size_type) 1 << align_power;
5633 if (align < maxpagesize)
5634 align = maxpagesize;
5635 }
5636
5637 for (i = 0; i < m->count; i++)
5638 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
5639 /* If we aren't making room for this section, then
5640 it must be SHT_NOBITS regardless of what we've
5641 set via struct bfd_elf_special_section. */
5642 elf_section_type (m->sections[i]) = SHT_NOBITS;
5643
5644 /* Find out whether this segment contains any loadable
5645 sections. */
5646 no_contents = true;
5647 for (i = 0; i < m->count; i++)
5648 if (elf_section_type (m->sections[i]) != SHT_NOBITS)
5649 {
5650 no_contents = false;
5651 break;
5652 }
5653
5654 off_adjust = vma_page_aligned_bias (p->p_vaddr, off, align * opb);
5655
5656 /* Broken hardware and/or kernel require that files do not
5657 map the same page with different permissions on some hppa
5658 processors. */
5659 if (j != 0
5660 && (abfd->flags & D_PAGED) != 0
5661 && bed->no_page_alias
5662 && (off & (maxpagesize - 1)) != 0
5663 && ((off & -maxpagesize)
5664 == ((off + off_adjust) & -maxpagesize)))
5665 off_adjust += maxpagesize;
5666 off += off_adjust;
5667 if (no_contents)
5668 {
5669 /* We shouldn't need to align the segment on disk since
5670 the segment doesn't need file space, but the gABI
5671 arguably requires the alignment and glibc ld.so
5672 checks it. So to comply with the alignment
5673 requirement but not waste file space, we adjust
5674 p_offset for just this segment. (OFF_ADJUST is
5675 subtracted from OFF later.) This may put p_offset
5676 past the end of file, but that shouldn't matter. */
5677 }
5678 else
5679 off_adjust = 0;
5680 }
5681 /* Make sure the .dynamic section is the first section in the
5682 PT_DYNAMIC segment. */
5683 else if (p->p_type == PT_DYNAMIC
5684 && m->count > 1
5685 && strcmp (m->sections[0]->name, ".dynamic") != 0)
5686 {
5687 _bfd_error_handler
5688 (_("%pB: The first section in the PT_DYNAMIC segment"
5689 " is not the .dynamic section"),
5690 abfd);
5691 bfd_set_error (bfd_error_bad_value);
5692 return false;
5693 }
5694 /* Set the note section type to SHT_NOTE. */
5695 else if (p->p_type == PT_NOTE)
5696 for (i = 0; i < m->count; i++)
5697 elf_section_type (m->sections[i]) = SHT_NOTE;
5698
5699 if (m->includes_filehdr)
5700 {
5701 if (!m->p_flags_valid)
5702 p->p_flags |= PF_R;
5703 p->p_filesz = bed->s->sizeof_ehdr;
5704 p->p_memsz = bed->s->sizeof_ehdr;
5705 if (p->p_type == PT_LOAD)
5706 {
5707 if (m->count > 0)
5708 {
5709 if (p->p_vaddr < (bfd_vma) off
5710 || (!m->p_paddr_valid
5711 && p->p_paddr < (bfd_vma) off))
5712 {
5713 _bfd_error_handler
5714 (_("%pB: not enough room for program headers,"
5715 " try linking with -N"),
5716 abfd);
5717 bfd_set_error (bfd_error_bad_value);
5718 return false;
5719 }
5720 p->p_vaddr -= off;
5721 if (!m->p_paddr_valid)
5722 p->p_paddr -= off;
5723 }
5724 }
5725 else if (sorted_seg_map[0]->includes_filehdr)
5726 {
5727 Elf_Internal_Phdr *filehdr = phdrs + sorted_seg_map[0]->idx;
5728 p->p_vaddr = filehdr->p_vaddr;
5729 if (!m->p_paddr_valid)
5730 p->p_paddr = filehdr->p_paddr;
5731 }
5732 }
5733
5734 if (m->includes_phdrs)
5735 {
5736 if (!m->p_flags_valid)
5737 p->p_flags |= PF_R;
5738 p->p_filesz += actual * bed->s->sizeof_phdr;
5739 p->p_memsz += actual * bed->s->sizeof_phdr;
5740 if (!m->includes_filehdr)
5741 {
5742 if (p->p_type == PT_LOAD)
5743 {
5744 elf_elfheader (abfd)->e_phoff = p->p_offset;
5745 if (m->count > 0)
5746 {
5747 p->p_vaddr -= off - p->p_offset;
5748 if (!m->p_paddr_valid)
5749 p->p_paddr -= off - p->p_offset;
5750 }
5751 }
5752 else if (phdr_load_seg != NULL)
5753 {
5754 Elf_Internal_Phdr *phdr = phdrs + phdr_load_seg->idx;
5755 bfd_vma phdr_off = 0; /* Octets. */
5756 if (phdr_load_seg->includes_filehdr)
5757 phdr_off = bed->s->sizeof_ehdr;
5758 p->p_vaddr = phdr->p_vaddr + phdr_off;
5759 if (!m->p_paddr_valid)
5760 p->p_paddr = phdr->p_paddr + phdr_off;
5761 p->p_offset = phdr->p_offset + phdr_off;
5762 }
5763 else
5764 p->p_offset = bed->s->sizeof_ehdr;
5765 }
5766 }
5767
5768 if (p->p_type == PT_LOAD
5769 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
5770 {
5771 if (!m->includes_filehdr && !m->includes_phdrs)
5772 {
5773 p->p_offset = off;
5774 if (no_contents)
5775 {
5776 /* Put meaningless p_offset for PT_LOAD segments
5777 without file contents somewhere within the first
5778 page, in an attempt to not point past EOF. */
5779 bfd_size_type align = maxpagesize;
5780 if (align < p->p_align)
5781 align = p->p_align;
5782 if (align < 1)
5783 align = 1;
5784 p->p_offset = off % align;
5785 }
5786 }
5787 else
5788 {
5789 file_ptr adjust; /* Octets. */
5790
5791 adjust = off - (p->p_offset + p->p_filesz);
5792 if (!no_contents)
5793 p->p_filesz += adjust;
5794 p->p_memsz += adjust;
5795 }
5796 }
5797
5798 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
5799 maps. Set filepos for sections in PT_LOAD segments, and in
5800 core files, for sections in PT_NOTE segments.
5801 assign_file_positions_for_non_load_sections will set filepos
5802 for other sections and update p_filesz for other segments. */
5803 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
5804 {
5805 asection *sec;
5806 bfd_size_type align;
5807 Elf_Internal_Shdr *this_hdr;
5808
5809 sec = *secpp;
5810 this_hdr = &elf_section_data (sec)->this_hdr;
5811 align = (bfd_size_type) 1 << bfd_section_alignment (sec);
5812
5813 if ((p->p_type == PT_LOAD
5814 || p->p_type == PT_TLS)
5815 && (this_hdr->sh_type != SHT_NOBITS
5816 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
5817 && ((this_hdr->sh_flags & SHF_TLS) == 0
5818 || p->p_type == PT_TLS))))
5819 {
5820 bfd_vma p_start = p->p_paddr; /* Octets. */
5821 bfd_vma p_end = p_start + p->p_memsz; /* Octets. */
5822 bfd_vma s_start = sec->lma * opb; /* Octets. */
5823 bfd_vma adjust = s_start - p_end; /* Octets. */
5824
5825 if (adjust != 0
5826 && (s_start < p_end
5827 || p_end < p_start))
5828 {
5829 _bfd_error_handler
5830 /* xgettext:c-format */
5831 (_("%pB: section %pA lma %#" PRIx64 " adjusted to %#" PRIx64),
5832 abfd, sec, (uint64_t) s_start / opb,
5833 (uint64_t) p_end / opb);
5834 adjust = 0;
5835 sec->lma = p_end / opb;
5836 }
5837 p->p_memsz += adjust;
5838
5839 if (p->p_type == PT_LOAD)
5840 {
5841 if (this_hdr->sh_type != SHT_NOBITS)
5842 {
5843 off_adjust = 0;
5844 if (p->p_filesz + adjust < p->p_memsz)
5845 {
5846 /* We have a PROGBITS section following NOBITS ones.
5847 Allocate file space for the NOBITS section(s) and
5848 zero it. */
5849 adjust = p->p_memsz - p->p_filesz;
5850 if (!write_zeros (abfd, off, adjust))
5851 return false;
5852 }
5853 }
5854 /* We only adjust sh_offset in SHT_NOBITS sections
5855 as would seem proper for their address when the
5856 section is first in the segment. sh_offset
5857 doesn't really have any significance for
5858 SHT_NOBITS anyway, apart from a notional position
5859 relative to other sections. Historically we
5860 didn't bother with adjusting sh_offset and some
5861 programs depend on it not being adjusted. See
5862 pr12921 and pr25662. */
5863 if (this_hdr->sh_type != SHT_NOBITS || i == 0)
5864 {
5865 off += adjust;
5866 if (this_hdr->sh_type == SHT_NOBITS)
5867 off_adjust += adjust;
5868 }
5869 }
5870 if (this_hdr->sh_type != SHT_NOBITS)
5871 p->p_filesz += adjust;
5872 }
5873
5874 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
5875 {
5876 /* The section at i == 0 is the one that actually contains
5877 everything. */
5878 if (i == 0)
5879 {
5880 this_hdr->sh_offset = sec->filepos = off;
5881 off += this_hdr->sh_size;
5882 p->p_filesz = this_hdr->sh_size;
5883 p->p_memsz = 0;
5884 p->p_align = 1;
5885 }
5886 else
5887 {
5888 /* The rest are fake sections that shouldn't be written. */
5889 sec->filepos = 0;
5890 sec->size = 0;
5891 sec->flags = 0;
5892 continue;
5893 }
5894 }
5895 else
5896 {
5897 if (p->p_type == PT_LOAD)
5898 {
5899 this_hdr->sh_offset = sec->filepos = off;
5900 if (this_hdr->sh_type != SHT_NOBITS)
5901 off += this_hdr->sh_size;
5902 }
5903 else if (this_hdr->sh_type == SHT_NOBITS
5904 && (this_hdr->sh_flags & SHF_TLS) != 0
5905 && this_hdr->sh_offset == 0)
5906 {
5907 /* This is a .tbss section that didn't get a PT_LOAD.
5908 (See _bfd_elf_map_sections_to_segments "Create a
5909 final PT_LOAD".) Set sh_offset to the value it
5910 would have if we had created a zero p_filesz and
5911 p_memsz PT_LOAD header for the section. This
5912 also makes the PT_TLS header have the same
5913 p_offset value. */
5914 bfd_vma adjust = vma_page_aligned_bias (this_hdr->sh_addr,
5915 off, align);
5916 this_hdr->sh_offset = sec->filepos = off + adjust;
5917 }
5918
5919 if (this_hdr->sh_type != SHT_NOBITS)
5920 {
5921 p->p_filesz += this_hdr->sh_size;
5922 /* A load section without SHF_ALLOC is something like
5923 a note section in a PT_NOTE segment. These take
5924 file space but are not loaded into memory. */
5925 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5926 p->p_memsz += this_hdr->sh_size;
5927 }
5928 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5929 {
5930 if (p->p_type == PT_TLS)
5931 p->p_memsz += this_hdr->sh_size;
5932
5933 /* .tbss is special. It doesn't contribute to p_memsz of
5934 normal segments. */
5935 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
5936 p->p_memsz += this_hdr->sh_size;
5937 }
5938
5939 if (align > p->p_align
5940 && !m->p_align_valid
5941 && (p->p_type != PT_LOAD
5942 || (abfd->flags & D_PAGED) == 0))
5943 p->p_align = align;
5944 }
5945
5946 if (!m->p_flags_valid)
5947 {
5948 p->p_flags |= PF_R;
5949 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
5950 p->p_flags |= PF_X;
5951 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
5952 p->p_flags |= PF_W;
5953 }
5954 }
5955
5956 off -= off_adjust;
5957
5958 /* PR ld/20815 - Check that the program header segment, if
5959 present, will be loaded into memory. */
5960 if (p->p_type == PT_PHDR
5961 && phdr_load_seg == NULL
5962 && !(bed->elf_backend_allow_non_load_phdr != NULL
5963 && bed->elf_backend_allow_non_load_phdr (abfd, phdrs, alloc)))
5964 {
5965 /* The fix for this error is usually to edit the linker script being
5966 used and set up the program headers manually. Either that or
5967 leave room for the headers at the start of the SECTIONS. */
5968 _bfd_error_handler (_("%pB: error: PHDR segment not covered"
5969 " by LOAD segment"),
5970 abfd);
5971 if (link_info == NULL)
5972 return false;
5973 /* Arrange for the linker to exit with an error, deleting
5974 the output file unless --noinhibit-exec is given. */
5975 link_info->callbacks->info ("%X");
5976 }
5977
5978 /* Check that all sections are in a PT_LOAD segment.
5979 Don't check funky gdb generated core files. */
5980 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
5981 {
5982 bool check_vma = true;
5983
5984 for (i = 1; i < m->count; i++)
5985 if (m->sections[i]->vma == m->sections[i - 1]->vma
5986 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i])
5987 ->this_hdr), p) != 0
5988 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i - 1])
5989 ->this_hdr), p) != 0)
5990 {
5991 /* Looks like we have overlays packed into the segment. */
5992 check_vma = false;
5993 break;
5994 }
5995
5996 for (i = 0; i < m->count; i++)
5997 {
5998 Elf_Internal_Shdr *this_hdr;
5999 asection *sec;
6000
6001 sec = m->sections[i];
6002 this_hdr = &(elf_section_data(sec)->this_hdr);
6003 if (!ELF_SECTION_IN_SEGMENT_1 (this_hdr, p, check_vma, 0)
6004 && !ELF_TBSS_SPECIAL (this_hdr, p))
6005 {
6006 _bfd_error_handler
6007 /* xgettext:c-format */
6008 (_("%pB: section `%pA' can't be allocated in segment %d"),
6009 abfd, sec, j);
6010 print_segment_map (m);
6011 }
6012 }
6013 }
6014 }
6015
6016 elf_next_file_pos (abfd) = off;
6017
6018 if (link_info != NULL
6019 && phdr_load_seg != NULL
6020 && phdr_load_seg->includes_filehdr)
6021 {
6022 /* There is a segment that contains both the file headers and the
6023 program headers, so provide a symbol __ehdr_start pointing there.
6024 A program can use this to examine itself robustly. */
6025
6026 struct elf_link_hash_entry *hash
6027 = elf_link_hash_lookup (elf_hash_table (link_info), "__ehdr_start",
6028 false, false, true);
6029 /* If the symbol was referenced and not defined, define it. */
6030 if (hash != NULL
6031 && (hash->root.type == bfd_link_hash_new
6032 || hash->root.type == bfd_link_hash_undefined
6033 || hash->root.type == bfd_link_hash_undefweak
6034 || hash->root.type == bfd_link_hash_common))
6035 {
6036 asection *s = NULL;
6037 bfd_vma filehdr_vaddr = phdrs[phdr_load_seg->idx].p_vaddr / opb;
6038
6039 if (phdr_load_seg->count != 0)
6040 /* The segment contains sections, so use the first one. */
6041 s = phdr_load_seg->sections[0];
6042 else
6043 /* Use the first (i.e. lowest-addressed) section in any segment. */
6044 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
6045 if (m->p_type == PT_LOAD && m->count != 0)
6046 {
6047 s = m->sections[0];
6048 break;
6049 }
6050
6051 if (s != NULL)
6052 {
6053 hash->root.u.def.value = filehdr_vaddr - s->vma;
6054 hash->root.u.def.section = s;
6055 }
6056 else
6057 {
6058 hash->root.u.def.value = filehdr_vaddr;
6059 hash->root.u.def.section = bfd_abs_section_ptr;
6060 }
6061
6062 hash->root.type = bfd_link_hash_defined;
6063 hash->def_regular = 1;
6064 hash->non_elf = 0;
6065 }
6066 }
6067
6068 return true;
6069 }
6070
6071 /* Determine if a bfd is a debuginfo file. Unfortunately there
6072 is no defined method for detecting such files, so we have to
6073 use heuristics instead. */
6074
6075 bool
6076 is_debuginfo_file (bfd *abfd)
6077 {
6078 if (abfd == NULL || bfd_get_flavour (abfd) != bfd_target_elf_flavour)
6079 return false;
6080
6081 Elf_Internal_Shdr **start_headers = elf_elfsections (abfd);
6082 Elf_Internal_Shdr **end_headers = start_headers + elf_numsections (abfd);
6083 Elf_Internal_Shdr **headerp;
6084
6085 for (headerp = start_headers; headerp < end_headers; headerp ++)
6086 {
6087 Elf_Internal_Shdr *header = * headerp;
6088
6089 /* Debuginfo files do not have any allocated SHT_PROGBITS sections.
6090 The only allocated sections are SHT_NOBITS or SHT_NOTES. */
6091 if ((header->sh_flags & SHF_ALLOC) == SHF_ALLOC
6092 && header->sh_type != SHT_NOBITS
6093 && header->sh_type != SHT_NOTE)
6094 return false;
6095 }
6096
6097 return true;
6098 }
6099
6100 /* Assign file positions for the other sections, except for compressed debugging
6101 and other sections assigned in _bfd_elf_assign_file_positions_for_non_load(). */
6102
6103 static bool
6104 assign_file_positions_for_non_load_sections (bfd *abfd,
6105 struct bfd_link_info *link_info)
6106 {
6107 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6108 Elf_Internal_Shdr **i_shdrpp;
6109 Elf_Internal_Shdr **hdrpp, **end_hdrpp;
6110 Elf_Internal_Phdr *phdrs;
6111 Elf_Internal_Phdr *p;
6112 struct elf_segment_map *m;
6113 file_ptr off;
6114 unsigned int opb = bfd_octets_per_byte (abfd, NULL);
6115 bfd_vma maxpagesize;
6116
6117 if (link_info != NULL)
6118 maxpagesize = link_info->maxpagesize;
6119 else
6120 maxpagesize = bed->maxpagesize;
6121 i_shdrpp = elf_elfsections (abfd);
6122 end_hdrpp = i_shdrpp + elf_numsections (abfd);
6123 off = elf_next_file_pos (abfd);
6124 for (hdrpp = i_shdrpp + 1; hdrpp < end_hdrpp; hdrpp++)
6125 {
6126 Elf_Internal_Shdr *hdr;
6127
6128 hdr = *hdrpp;
6129 if (hdr->bfd_section != NULL
6130 && (hdr->bfd_section->filepos != 0
6131 || (hdr->sh_type == SHT_NOBITS
6132 && hdr->contents == NULL)))
6133 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
6134 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
6135 {
6136 if (hdr->sh_size != 0
6137 /* PR 24717 - debuginfo files are known to be not strictly
6138 compliant with the ELF standard. In particular they often
6139 have .note.gnu.property sections that are outside of any
6140 loadable segment. This is not a problem for such files,
6141 so do not warn about them. */
6142 && ! is_debuginfo_file (abfd))
6143 _bfd_error_handler
6144 /* xgettext:c-format */
6145 (_("%pB: warning: allocated section `%s' not in segment"),
6146 abfd,
6147 (hdr->bfd_section == NULL
6148 ? "*unknown*"
6149 : hdr->bfd_section->name));
6150 /* We don't need to page align empty sections. */
6151 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
6152 off += vma_page_aligned_bias (hdr->sh_addr, off,
6153 maxpagesize);
6154 else
6155 off += vma_page_aligned_bias (hdr->sh_addr, off,
6156 hdr->sh_addralign);
6157 off = _bfd_elf_assign_file_position_for_section (hdr, off,
6158 false);
6159 }
6160 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
6161 && hdr->bfd_section == NULL)
6162 /* We don't know the offset of these sections yet: their size has
6163 not been decided. */
6164 || (hdr->bfd_section != NULL
6165 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS
6166 || (bfd_section_is_ctf (hdr->bfd_section)
6167 && abfd->is_linker_output)))
6168 || hdr == i_shdrpp[elf_onesymtab (abfd)]
6169 || (elf_symtab_shndx_list (abfd) != NULL
6170 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
6171 || hdr == i_shdrpp[elf_strtab_sec (abfd)]
6172 || hdr == i_shdrpp[elf_shstrtab_sec (abfd)])
6173 hdr->sh_offset = -1;
6174 else
6175 off = _bfd_elf_assign_file_position_for_section (hdr, off, true);
6176 }
6177 elf_next_file_pos (abfd) = off;
6178
6179 /* Now that we have set the section file positions, we can set up
6180 the file positions for the non PT_LOAD segments. */
6181 phdrs = elf_tdata (abfd)->phdr;
6182 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
6183 {
6184 if (p->p_type == PT_GNU_RELRO)
6185 {
6186 bfd_vma start, end; /* Bytes. */
6187 bool ok;
6188
6189 if (link_info != NULL)
6190 {
6191 /* During linking the range of the RELRO segment is passed
6192 in link_info. Note that there may be padding between
6193 relro_start and the first RELRO section. */
6194 start = link_info->relro_start;
6195 end = link_info->relro_end;
6196 }
6197 else if (m->count != 0)
6198 {
6199 if (!m->p_size_valid)
6200 abort ();
6201 start = m->sections[0]->vma;
6202 end = start + m->p_size / opb;
6203 }
6204 else
6205 {
6206 start = 0;
6207 end = 0;
6208 }
6209
6210 ok = false;
6211 if (start < end)
6212 {
6213 struct elf_segment_map *lm;
6214 const Elf_Internal_Phdr *lp;
6215 unsigned int i;
6216
6217 /* Find a LOAD segment containing a section in the RELRO
6218 segment. */
6219 for (lm = elf_seg_map (abfd), lp = phdrs;
6220 lm != NULL;
6221 lm = lm->next, lp++)
6222 {
6223 if (lp->p_type == PT_LOAD
6224 && lm->count != 0
6225 && (lm->sections[lm->count - 1]->vma
6226 + (!IS_TBSS (lm->sections[lm->count - 1])
6227 ? lm->sections[lm->count - 1]->size / opb
6228 : 0)) > start
6229 && lm->sections[0]->vma < end)
6230 break;
6231 }
6232
6233 if (lm != NULL)
6234 {
6235 /* Find the section starting the RELRO segment. */
6236 for (i = 0; i < lm->count; i++)
6237 {
6238 asection *s = lm->sections[i];
6239 if (s->vma >= start
6240 && s->vma < end
6241 && s->size != 0)
6242 break;
6243 }
6244
6245 if (i < lm->count)
6246 {
6247 p->p_vaddr = lm->sections[i]->vma * opb;
6248 p->p_paddr = lm->sections[i]->lma * opb;
6249 p->p_offset = lm->sections[i]->filepos;
6250 p->p_memsz = end * opb - p->p_vaddr;
6251 p->p_filesz = p->p_memsz;
6252
6253 /* The RELRO segment typically ends a few bytes
6254 into .got.plt but other layouts are possible.
6255 In cases where the end does not match any
6256 loaded section (for instance is in file
6257 padding), trim p_filesz back to correspond to
6258 the end of loaded section contents. */
6259 if (p->p_filesz > lp->p_vaddr + lp->p_filesz - p->p_vaddr)
6260 p->p_filesz = lp->p_vaddr + lp->p_filesz - p->p_vaddr;
6261
6262 /* Preserve the alignment and flags if they are
6263 valid. The gold linker generates RW/4 for
6264 the PT_GNU_RELRO section. It is better for
6265 objcopy/strip to honor these attributes
6266 otherwise gdb will choke when using separate
6267 debug files. */
6268 if (!m->p_align_valid)
6269 p->p_align = 1;
6270 if (!m->p_flags_valid)
6271 p->p_flags = PF_R;
6272 ok = true;
6273 }
6274 }
6275 }
6276
6277 if (!ok)
6278 {
6279 if (link_info != NULL)
6280 _bfd_error_handler
6281 (_("%pB: warning: unable to allocate any sections to PT_GNU_RELRO segment"),
6282 abfd);
6283 memset (p, 0, sizeof *p);
6284 }
6285 }
6286 else if (p->p_type == PT_GNU_STACK)
6287 {
6288 if (m->p_size_valid)
6289 p->p_memsz = m->p_size;
6290 }
6291 else if (m->count != 0)
6292 {
6293 unsigned int i;
6294
6295 if (p->p_type != PT_LOAD
6296 && (p->p_type != PT_NOTE
6297 || bfd_get_format (abfd) != bfd_core))
6298 {
6299 /* A user specified segment layout may include a PHDR
6300 segment that overlaps with a LOAD segment... */
6301 if (p->p_type == PT_PHDR)
6302 {
6303 m->count = 0;
6304 continue;
6305 }
6306
6307 if (m->includes_filehdr || m->includes_phdrs)
6308 {
6309 /* PR 17512: file: 2195325e. */
6310 _bfd_error_handler
6311 (_("%pB: error: non-load segment %d includes file header "
6312 "and/or program header"),
6313 abfd, (int) (p - phdrs));
6314 return false;
6315 }
6316
6317 p->p_filesz = 0;
6318 p->p_offset = m->sections[0]->filepos;
6319 for (i = m->count; i-- != 0;)
6320 {
6321 asection *sect = m->sections[i];
6322 Elf_Internal_Shdr *hdr = &elf_section_data (sect)->this_hdr;
6323 if (hdr->sh_type != SHT_NOBITS)
6324 {
6325 p->p_filesz = (sect->filepos - m->sections[0]->filepos
6326 + hdr->sh_size);
6327 /* NB: p_memsz of the loadable PT_NOTE segment
6328 should be the same as p_filesz. */
6329 if (p->p_type == PT_NOTE
6330 && (hdr->sh_flags & SHF_ALLOC) != 0)
6331 p->p_memsz = p->p_filesz;
6332 break;
6333 }
6334 }
6335 }
6336 }
6337 }
6338
6339 return true;
6340 }
6341
6342 static elf_section_list *
6343 find_section_in_list (unsigned int i, elf_section_list * list)
6344 {
6345 for (;list != NULL; list = list->next)
6346 if (list->ndx == i)
6347 break;
6348 return list;
6349 }
6350
6351 /* Work out the file positions of all the sections. This is called by
6352 _bfd_elf_compute_section_file_positions. All the section sizes and
6353 VMAs must be known before this is called.
6354
6355 Reloc sections come in two flavours: Those processed specially as
6356 "side-channel" data attached to a section to which they apply, and those that
6357 bfd doesn't process as relocations. The latter sort are stored in a normal
6358 bfd section by bfd_section_from_shdr. We don't consider the former sort
6359 here, unless they form part of the loadable image. Reloc sections not
6360 assigned here (and compressed debugging sections and CTF sections which
6361 nothing else in the file can rely upon) will be handled later by
6362 assign_file_positions_for_relocs.
6363
6364 We also don't set the positions of the .symtab and .strtab here. */
6365
6366 static bool
6367 assign_file_positions_except_relocs (bfd *abfd,
6368 struct bfd_link_info *link_info)
6369 {
6370 struct elf_obj_tdata *tdata = elf_tdata (abfd);
6371 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
6372 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6373 unsigned int alloc;
6374
6375 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
6376 && bfd_get_format (abfd) != bfd_core)
6377 {
6378 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
6379 unsigned int num_sec = elf_numsections (abfd);
6380 Elf_Internal_Shdr **hdrpp;
6381 unsigned int i;
6382 file_ptr off;
6383
6384 /* Start after the ELF header. */
6385 off = i_ehdrp->e_ehsize;
6386
6387 /* We are not creating an executable, which means that we are
6388 not creating a program header, and that the actual order of
6389 the sections in the file is unimportant. */
6390 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
6391 {
6392 Elf_Internal_Shdr *hdr;
6393
6394 hdr = *hdrpp;
6395 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
6396 && hdr->bfd_section == NULL)
6397 /* Do not assign offsets for these sections yet: we don't know
6398 their sizes. */
6399 || (hdr->bfd_section != NULL
6400 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS
6401 || (bfd_section_is_ctf (hdr->bfd_section)
6402 && abfd->is_linker_output)))
6403 || i == elf_onesymtab (abfd)
6404 || (elf_symtab_shndx_list (abfd) != NULL
6405 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
6406 || i == elf_strtab_sec (abfd)
6407 || i == elf_shstrtab_sec (abfd))
6408 {
6409 hdr->sh_offset = -1;
6410 }
6411 else
6412 off = _bfd_elf_assign_file_position_for_section (hdr, off, true);
6413 }
6414
6415 elf_next_file_pos (abfd) = off;
6416 elf_program_header_size (abfd) = 0;
6417 }
6418 else
6419 {
6420 /* Assign file positions for the loaded sections based on the
6421 assignment of sections to segments. */
6422 if (!assign_file_positions_for_load_sections (abfd, link_info))
6423 return false;
6424
6425 /* And for non-load sections. */
6426 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
6427 return false;
6428 }
6429
6430 if (!(*bed->elf_backend_modify_headers) (abfd, link_info))
6431 return false;
6432
6433 /* Write out the program headers. */
6434 alloc = i_ehdrp->e_phnum;
6435 if (alloc != 0)
6436 {
6437 if (bfd_seek (abfd, i_ehdrp->e_phoff, SEEK_SET) != 0
6438 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
6439 return false;
6440 }
6441
6442 return true;
6443 }
6444
6445 bool
6446 _bfd_elf_init_file_header (bfd *abfd,
6447 struct bfd_link_info *info ATTRIBUTE_UNUSED)
6448 {
6449 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form. */
6450 struct elf_strtab_hash *shstrtab;
6451 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6452
6453 i_ehdrp = elf_elfheader (abfd);
6454
6455 shstrtab = _bfd_elf_strtab_init ();
6456 if (shstrtab == NULL)
6457 return false;
6458
6459 elf_shstrtab (abfd) = shstrtab;
6460
6461 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
6462 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
6463 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
6464 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
6465
6466 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
6467 i_ehdrp->e_ident[EI_DATA] =
6468 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
6469 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
6470
6471 if ((abfd->flags & DYNAMIC) != 0)
6472 i_ehdrp->e_type = ET_DYN;
6473 else if ((abfd->flags & EXEC_P) != 0)
6474 i_ehdrp->e_type = ET_EXEC;
6475 else if (bfd_get_format (abfd) == bfd_core)
6476 i_ehdrp->e_type = ET_CORE;
6477 else
6478 i_ehdrp->e_type = ET_REL;
6479
6480 switch (bfd_get_arch (abfd))
6481 {
6482 case bfd_arch_unknown:
6483 i_ehdrp->e_machine = EM_NONE;
6484 break;
6485
6486 /* There used to be a long list of cases here, each one setting
6487 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
6488 in the corresponding bfd definition. To avoid duplication,
6489 the switch was removed. Machines that need special handling
6490 can generally do it in elf_backend_final_write_processing(),
6491 unless they need the information earlier than the final write.
6492 Such need can generally be supplied by replacing the tests for
6493 e_machine with the conditions used to determine it. */
6494 default:
6495 i_ehdrp->e_machine = bed->elf_machine_code;
6496 }
6497
6498 i_ehdrp->e_version = bed->s->ev_current;
6499 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
6500
6501 /* No program header, for now. */
6502 i_ehdrp->e_phoff = 0;
6503 i_ehdrp->e_phentsize = 0;
6504 i_ehdrp->e_phnum = 0;
6505
6506 /* Each bfd section is section header entry. */
6507 i_ehdrp->e_entry = bfd_get_start_address (abfd);
6508 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
6509
6510 elf_tdata (abfd)->symtab_hdr.sh_name =
6511 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", false);
6512 elf_tdata (abfd)->strtab_hdr.sh_name =
6513 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", false);
6514 elf_tdata (abfd)->shstrtab_hdr.sh_name =
6515 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", false);
6516 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
6517 || elf_tdata (abfd)->strtab_hdr.sh_name == (unsigned int) -1
6518 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
6519 return false;
6520
6521 return true;
6522 }
6523
6524 /* Set e_type in ELF header to ET_EXEC for -pie -Ttext-segment=.
6525
6526 FIXME: We used to have code here to sort the PT_LOAD segments into
6527 ascending order, as per the ELF spec. But this breaks some programs,
6528 including the Linux kernel. But really either the spec should be
6529 changed or the programs updated. */
6530
6531 bool
6532 _bfd_elf_modify_headers (bfd *obfd, struct bfd_link_info *link_info)
6533 {
6534 if (link_info != NULL && bfd_link_pie (link_info))
6535 {
6536 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (obfd);
6537 unsigned int num_segments = i_ehdrp->e_phnum;
6538 struct elf_obj_tdata *tdata = elf_tdata (obfd);
6539 Elf_Internal_Phdr *segment = tdata->phdr;
6540 Elf_Internal_Phdr *end_segment = &segment[num_segments];
6541
6542 /* Find the lowest p_vaddr in PT_LOAD segments. */
6543 bfd_vma p_vaddr = (bfd_vma) -1;
6544 for (; segment < end_segment; segment++)
6545 if (segment->p_type == PT_LOAD && p_vaddr > segment->p_vaddr)
6546 p_vaddr = segment->p_vaddr;
6547
6548 /* Set e_type to ET_EXEC if the lowest p_vaddr in PT_LOAD
6549 segments is non-zero. */
6550 if (p_vaddr)
6551 i_ehdrp->e_type = ET_EXEC;
6552 }
6553 return true;
6554 }
6555
6556 /* Assign file positions for all the reloc sections which are not part
6557 of the loadable file image, and the file position of section headers. */
6558
6559 static bool
6560 _bfd_elf_assign_file_positions_for_non_load (bfd *abfd)
6561 {
6562 file_ptr off;
6563 Elf_Internal_Shdr **shdrpp, **end_shdrpp;
6564 Elf_Internal_Shdr *shdrp;
6565 Elf_Internal_Ehdr *i_ehdrp;
6566 const struct elf_backend_data *bed;
6567
6568 off = elf_next_file_pos (abfd);
6569
6570 shdrpp = elf_elfsections (abfd);
6571 end_shdrpp = shdrpp + elf_numsections (abfd);
6572 for (shdrpp++; shdrpp < end_shdrpp; shdrpp++)
6573 {
6574 shdrp = *shdrpp;
6575 if (shdrp->sh_offset == -1)
6576 {
6577 asection *sec = shdrp->bfd_section;
6578 bool is_rel = (shdrp->sh_type == SHT_REL
6579 || shdrp->sh_type == SHT_RELA);
6580 bool is_ctf = sec && bfd_section_is_ctf (sec);
6581 if (is_rel
6582 || is_ctf
6583 || (sec != NULL && (sec->flags & SEC_ELF_COMPRESS)))
6584 {
6585 if (!is_rel && !is_ctf)
6586 {
6587 const char *name = sec->name;
6588 struct bfd_elf_section_data *d;
6589
6590 /* Compress DWARF debug sections. */
6591 if (!bfd_compress_section (abfd, sec,
6592 shdrp->contents))
6593 return false;
6594
6595 if (sec->compress_status == COMPRESS_SECTION_DONE
6596 && (abfd->flags & BFD_COMPRESS_GABI) == 0)
6597 {
6598 /* If section is compressed with zlib-gnu, convert
6599 section name from .debug_* to .zdebug_*. */
6600 char *new_name
6601 = convert_debug_to_zdebug (abfd, name);
6602 if (new_name == NULL)
6603 return false;
6604 name = new_name;
6605 }
6606 /* Add section name to section name section. */
6607 if (shdrp->sh_name != (unsigned int) -1)
6608 abort ();
6609 shdrp->sh_name
6610 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
6611 name, false);
6612 d = elf_section_data (sec);
6613
6614 /* Add reloc section name to section name section. */
6615 if (d->rel.hdr
6616 && !_bfd_elf_set_reloc_sh_name (abfd,
6617 d->rel.hdr,
6618 name, false))
6619 return false;
6620 if (d->rela.hdr
6621 && !_bfd_elf_set_reloc_sh_name (abfd,
6622 d->rela.hdr,
6623 name, true))
6624 return false;
6625
6626 /* Update section size and contents. */
6627 shdrp->sh_size = sec->size;
6628 shdrp->contents = sec->contents;
6629 shdrp->bfd_section->contents = NULL;
6630 }
6631 else if (is_ctf)
6632 {
6633 /* Update section size and contents. */
6634 shdrp->sh_size = sec->size;
6635 shdrp->contents = sec->contents;
6636 }
6637
6638 off = _bfd_elf_assign_file_position_for_section (shdrp,
6639 off,
6640 true);
6641 }
6642 }
6643 }
6644
6645 /* Place section name section after DWARF debug sections have been
6646 compressed. */
6647 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
6648 shdrp = &elf_tdata (abfd)->shstrtab_hdr;
6649 shdrp->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
6650 off = _bfd_elf_assign_file_position_for_section (shdrp, off, true);
6651
6652 /* Place the section headers. */
6653 i_ehdrp = elf_elfheader (abfd);
6654 bed = get_elf_backend_data (abfd);
6655 off = align_file_position (off, 1 << bed->s->log_file_align);
6656 i_ehdrp->e_shoff = off;
6657 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
6658 elf_next_file_pos (abfd) = off;
6659
6660 return true;
6661 }
6662
6663 bool
6664 _bfd_elf_write_object_contents (bfd *abfd)
6665 {
6666 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6667 Elf_Internal_Shdr **i_shdrp;
6668 bool failed;
6669 unsigned int count, num_sec;
6670 struct elf_obj_tdata *t;
6671
6672 if (! abfd->output_has_begun
6673 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
6674 return false;
6675 /* Do not rewrite ELF data when the BFD has been opened for update.
6676 abfd->output_has_begun was set to TRUE on opening, so creation of new
6677 sections, and modification of existing section sizes was restricted.
6678 This means the ELF header, program headers and section headers can't have
6679 changed.
6680 If the contents of any sections has been modified, then those changes have
6681 already been written to the BFD. */
6682 else if (abfd->direction == both_direction)
6683 {
6684 BFD_ASSERT (abfd->output_has_begun);
6685 return true;
6686 }
6687
6688 i_shdrp = elf_elfsections (abfd);
6689
6690 failed = false;
6691 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
6692 if (failed)
6693 return false;
6694
6695 if (!_bfd_elf_assign_file_positions_for_non_load (abfd))
6696 return false;
6697
6698 /* After writing the headers, we need to write the sections too... */
6699 num_sec = elf_numsections (abfd);
6700 for (count = 1; count < num_sec; count++)
6701 {
6702 i_shdrp[count]->sh_name
6703 = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
6704 i_shdrp[count]->sh_name);
6705 if (bed->elf_backend_section_processing)
6706 if (!(*bed->elf_backend_section_processing) (abfd, i_shdrp[count]))
6707 return false;
6708 if (i_shdrp[count]->contents)
6709 {
6710 bfd_size_type amt = i_shdrp[count]->sh_size;
6711
6712 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
6713 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
6714 return false;
6715 }
6716 }
6717
6718 /* Write out the section header names. */
6719 t = elf_tdata (abfd);
6720 if (elf_shstrtab (abfd) != NULL
6721 && (bfd_seek (abfd, t->shstrtab_hdr.sh_offset, SEEK_SET) != 0
6722 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
6723 return false;
6724
6725 if (!(*bed->elf_backend_final_write_processing) (abfd))
6726 return false;
6727
6728 if (!bed->s->write_shdrs_and_ehdr (abfd))
6729 return false;
6730
6731 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
6732 if (t->o->build_id.after_write_object_contents != NULL)
6733 return (*t->o->build_id.after_write_object_contents) (abfd);
6734
6735 return true;
6736 }
6737
6738 bool
6739 _bfd_elf_write_corefile_contents (bfd *abfd)
6740 {
6741 /* Hopefully this can be done just like an object file. */
6742 return _bfd_elf_write_object_contents (abfd);
6743 }
6744
6745 /* Given a section, search the header to find them. */
6746
6747 unsigned int
6748 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
6749 {
6750 const struct elf_backend_data *bed;
6751 unsigned int sec_index;
6752
6753 if (elf_section_data (asect) != NULL
6754 && elf_section_data (asect)->this_idx != 0)
6755 return elf_section_data (asect)->this_idx;
6756
6757 if (bfd_is_abs_section (asect))
6758 sec_index = SHN_ABS;
6759 else if (bfd_is_com_section (asect))
6760 sec_index = SHN_COMMON;
6761 else if (bfd_is_und_section (asect))
6762 sec_index = SHN_UNDEF;
6763 else
6764 sec_index = SHN_BAD;
6765
6766 bed = get_elf_backend_data (abfd);
6767 if (bed->elf_backend_section_from_bfd_section)
6768 {
6769 int retval = sec_index;
6770
6771 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
6772 return retval;
6773 }
6774
6775 if (sec_index == SHN_BAD)
6776 bfd_set_error (bfd_error_nonrepresentable_section);
6777
6778 return sec_index;
6779 }
6780
6781 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
6782 on error. */
6783
6784 int
6785 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
6786 {
6787 asymbol *asym_ptr = *asym_ptr_ptr;
6788 int idx;
6789 flagword flags = asym_ptr->flags;
6790
6791 /* When gas creates relocations against local labels, it creates its
6792 own symbol for the section, but does put the symbol into the
6793 symbol chain, so udata is 0. When the linker is generating
6794 relocatable output, this section symbol may be for one of the
6795 input sections rather than the output section. */
6796 if (asym_ptr->udata.i == 0
6797 && (flags & BSF_SECTION_SYM)
6798 && asym_ptr->section)
6799 {
6800 asection *sec;
6801 int indx;
6802
6803 sec = asym_ptr->section;
6804 if (sec->owner != abfd && sec->output_section != NULL)
6805 sec = sec->output_section;
6806 if (sec->owner == abfd
6807 && (indx = sec->index) < elf_num_section_syms (abfd)
6808 && elf_section_syms (abfd)[indx] != NULL)
6809 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
6810 }
6811
6812 idx = asym_ptr->udata.i;
6813
6814 if (idx == 0)
6815 {
6816 /* This case can occur when using --strip-symbol on a symbol
6817 which is used in a relocation entry. */
6818 _bfd_error_handler
6819 /* xgettext:c-format */
6820 (_("%pB: symbol `%s' required but not present"),
6821 abfd, bfd_asymbol_name (asym_ptr));
6822 bfd_set_error (bfd_error_no_symbols);
6823 return -1;
6824 }
6825
6826 #if DEBUG & 4
6827 {
6828 fprintf (stderr,
6829 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8x\n",
6830 (long) asym_ptr, asym_ptr->name, idx, flags);
6831 fflush (stderr);
6832 }
6833 #endif
6834
6835 return idx;
6836 }
6837
6838 /* Rewrite program header information. */
6839
6840 static bool
6841 rewrite_elf_program_header (bfd *ibfd, bfd *obfd, bfd_vma maxpagesize)
6842 {
6843 Elf_Internal_Ehdr *iehdr;
6844 struct elf_segment_map *map;
6845 struct elf_segment_map *map_first;
6846 struct elf_segment_map **pointer_to_map;
6847 Elf_Internal_Phdr *segment;
6848 asection *section;
6849 unsigned int i;
6850 unsigned int num_segments;
6851 bool phdr_included = false;
6852 bool p_paddr_valid;
6853 struct elf_segment_map *phdr_adjust_seg = NULL;
6854 unsigned int phdr_adjust_num = 0;
6855 const struct elf_backend_data *bed;
6856 unsigned int opb = bfd_octets_per_byte (ibfd, NULL);
6857
6858 bed = get_elf_backend_data (ibfd);
6859 iehdr = elf_elfheader (ibfd);
6860
6861 map_first = NULL;
6862 pointer_to_map = &map_first;
6863
6864 num_segments = elf_elfheader (ibfd)->e_phnum;
6865
6866 /* Returns the end address of the segment + 1. */
6867 #define SEGMENT_END(segment, start) \
6868 (start + (segment->p_memsz > segment->p_filesz \
6869 ? segment->p_memsz : segment->p_filesz))
6870
6871 #define SECTION_SIZE(section, segment) \
6872 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
6873 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
6874 ? section->size : 0)
6875
6876 /* Returns TRUE if the given section is contained within
6877 the given segment. VMA addresses are compared. */
6878 #define IS_CONTAINED_BY_VMA(section, segment, opb) \
6879 (section->vma * (opb) >= segment->p_vaddr \
6880 && (section->vma * (opb) + SECTION_SIZE (section, segment) \
6881 <= (SEGMENT_END (segment, segment->p_vaddr))))
6882
6883 /* Returns TRUE if the given section is contained within
6884 the given segment. LMA addresses are compared. */
6885 #define IS_CONTAINED_BY_LMA(section, segment, base, opb) \
6886 (section->lma * (opb) >= base \
6887 && (section->lma + SECTION_SIZE (section, segment) / (opb) >= section->lma) \
6888 && (section->lma * (opb) + SECTION_SIZE (section, segment) \
6889 <= SEGMENT_END (segment, base)))
6890
6891 /* Handle PT_NOTE segment. */
6892 #define IS_NOTE(p, s) \
6893 (p->p_type == PT_NOTE \
6894 && elf_section_type (s) == SHT_NOTE \
6895 && (bfd_vma) s->filepos >= p->p_offset \
6896 && ((bfd_vma) s->filepos + s->size \
6897 <= p->p_offset + p->p_filesz))
6898
6899 /* Special case: corefile "NOTE" section containing regs, prpsinfo
6900 etc. */
6901 #define IS_COREFILE_NOTE(p, s) \
6902 (IS_NOTE (p, s) \
6903 && bfd_get_format (ibfd) == bfd_core \
6904 && s->vma == 0 \
6905 && s->lma == 0)
6906
6907 /* The complicated case when p_vaddr is 0 is to handle the Solaris
6908 linker, which generates a PT_INTERP section with p_vaddr and
6909 p_memsz set to 0. */
6910 #define IS_SOLARIS_PT_INTERP(p, s) \
6911 (p->p_vaddr == 0 \
6912 && p->p_paddr == 0 \
6913 && p->p_memsz == 0 \
6914 && p->p_filesz > 0 \
6915 && (s->flags & SEC_HAS_CONTENTS) != 0 \
6916 && s->size > 0 \
6917 && (bfd_vma) s->filepos >= p->p_offset \
6918 && ((bfd_vma) s->filepos + s->size \
6919 <= p->p_offset + p->p_filesz))
6920
6921 /* Decide if the given section should be included in the given segment.
6922 A section will be included if:
6923 1. It is within the address space of the segment -- we use the LMA
6924 if that is set for the segment and the VMA otherwise,
6925 2. It is an allocated section or a NOTE section in a PT_NOTE
6926 segment.
6927 3. There is an output section associated with it,
6928 4. The section has not already been allocated to a previous segment.
6929 5. PT_GNU_STACK segments do not include any sections.
6930 6. PT_TLS segment includes only SHF_TLS sections.
6931 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
6932 8. PT_DYNAMIC should not contain empty sections at the beginning
6933 (with the possible exception of .dynamic). */
6934 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed, opb) \
6935 ((((segment->p_paddr \
6936 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr, opb) \
6937 : IS_CONTAINED_BY_VMA (section, segment, opb)) \
6938 && (section->flags & SEC_ALLOC) != 0) \
6939 || IS_NOTE (segment, section)) \
6940 && segment->p_type != PT_GNU_STACK \
6941 && (segment->p_type != PT_TLS \
6942 || (section->flags & SEC_THREAD_LOCAL)) \
6943 && (segment->p_type == PT_LOAD \
6944 || segment->p_type == PT_TLS \
6945 || (section->flags & SEC_THREAD_LOCAL) == 0) \
6946 && (segment->p_type != PT_DYNAMIC \
6947 || SECTION_SIZE (section, segment) > 0 \
6948 || (segment->p_paddr \
6949 ? segment->p_paddr != section->lma * (opb) \
6950 : segment->p_vaddr != section->vma * (opb)) \
6951 || (strcmp (bfd_section_name (section), ".dynamic") == 0)) \
6952 && (segment->p_type != PT_LOAD || !section->segment_mark))
6953
6954 /* If the output section of a section in the input segment is NULL,
6955 it is removed from the corresponding output segment. */
6956 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed, opb) \
6957 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed, opb) \
6958 && section->output_section != NULL)
6959
6960 /* Returns TRUE iff seg1 starts after the end of seg2. */
6961 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
6962 (seg1->field >= SEGMENT_END (seg2, seg2->field))
6963
6964 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
6965 their VMA address ranges and their LMA address ranges overlap.
6966 It is possible to have overlapping VMA ranges without overlapping LMA
6967 ranges. RedBoot images for example can have both .data and .bss mapped
6968 to the same VMA range, but with the .data section mapped to a different
6969 LMA. */
6970 #define SEGMENT_OVERLAPS(seg1, seg2) \
6971 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
6972 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
6973 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
6974 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
6975
6976 /* Initialise the segment mark field, and discard stupid alignment. */
6977 for (section = ibfd->sections; section != NULL; section = section->next)
6978 {
6979 asection *o = section->output_section;
6980 if (o != NULL && o->alignment_power >= (sizeof (bfd_vma) * 8) - 1)
6981 o->alignment_power = 0;
6982 section->segment_mark = false;
6983 }
6984
6985 /* The Solaris linker creates program headers in which all the
6986 p_paddr fields are zero. When we try to objcopy or strip such a
6987 file, we get confused. Check for this case, and if we find it
6988 don't set the p_paddr_valid fields. */
6989 p_paddr_valid = false;
6990 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6991 i < num_segments;
6992 i++, segment++)
6993 if (segment->p_paddr != 0)
6994 {
6995 p_paddr_valid = true;
6996 break;
6997 }
6998
6999 /* Scan through the segments specified in the program header
7000 of the input BFD. For this first scan we look for overlaps
7001 in the loadable segments. These can be created by weird
7002 parameters to objcopy. Also, fix some solaris weirdness. */
7003 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7004 i < num_segments;
7005 i++, segment++)
7006 {
7007 unsigned int j;
7008 Elf_Internal_Phdr *segment2;
7009
7010 if (segment->p_type == PT_INTERP)
7011 for (section = ibfd->sections; section; section = section->next)
7012 if (IS_SOLARIS_PT_INTERP (segment, section))
7013 {
7014 /* Mininal change so that the normal section to segment
7015 assignment code will work. */
7016 segment->p_vaddr = section->vma * opb;
7017 break;
7018 }
7019
7020 if (segment->p_type != PT_LOAD)
7021 {
7022 /* Remove PT_GNU_RELRO segment. */
7023 if (segment->p_type == PT_GNU_RELRO)
7024 segment->p_type = PT_NULL;
7025 continue;
7026 }
7027
7028 /* Determine if this segment overlaps any previous segments. */
7029 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
7030 {
7031 bfd_signed_vma extra_length;
7032
7033 if (segment2->p_type != PT_LOAD
7034 || !SEGMENT_OVERLAPS (segment, segment2))
7035 continue;
7036
7037 /* Merge the two segments together. */
7038 if (segment2->p_vaddr < segment->p_vaddr)
7039 {
7040 /* Extend SEGMENT2 to include SEGMENT and then delete
7041 SEGMENT. */
7042 extra_length = (SEGMENT_END (segment, segment->p_vaddr)
7043 - SEGMENT_END (segment2, segment2->p_vaddr));
7044
7045 if (extra_length > 0)
7046 {
7047 segment2->p_memsz += extra_length;
7048 segment2->p_filesz += extra_length;
7049 }
7050
7051 segment->p_type = PT_NULL;
7052
7053 /* Since we have deleted P we must restart the outer loop. */
7054 i = 0;
7055 segment = elf_tdata (ibfd)->phdr;
7056 break;
7057 }
7058 else
7059 {
7060 /* Extend SEGMENT to include SEGMENT2 and then delete
7061 SEGMENT2. */
7062 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
7063 - SEGMENT_END (segment, segment->p_vaddr));
7064
7065 if (extra_length > 0)
7066 {
7067 segment->p_memsz += extra_length;
7068 segment->p_filesz += extra_length;
7069 }
7070
7071 segment2->p_type = PT_NULL;
7072 }
7073 }
7074 }
7075
7076 /* The second scan attempts to assign sections to segments. */
7077 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7078 i < num_segments;
7079 i++, segment++)
7080 {
7081 unsigned int section_count;
7082 asection **sections;
7083 asection *output_section;
7084 unsigned int isec;
7085 asection *matching_lma;
7086 asection *suggested_lma;
7087 unsigned int j;
7088 size_t amt;
7089 asection *first_section;
7090
7091 if (segment->p_type == PT_NULL)
7092 continue;
7093
7094 first_section = NULL;
7095 /* Compute how many sections might be placed into this segment. */
7096 for (section = ibfd->sections, section_count = 0;
7097 section != NULL;
7098 section = section->next)
7099 {
7100 /* Find the first section in the input segment, which may be
7101 removed from the corresponding output segment. */
7102 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed, opb))
7103 {
7104 if (first_section == NULL)
7105 first_section = section;
7106 if (section->output_section != NULL)
7107 ++section_count;
7108 }
7109 }
7110
7111 /* Allocate a segment map big enough to contain
7112 all of the sections we have selected. */
7113 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
7114 amt += section_count * sizeof (asection *);
7115 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7116 if (map == NULL)
7117 return false;
7118
7119 /* Initialise the fields of the segment map. Default to
7120 using the physical address of the segment in the input BFD. */
7121 map->next = NULL;
7122 map->p_type = segment->p_type;
7123 map->p_flags = segment->p_flags;
7124 map->p_flags_valid = 1;
7125
7126 if (map->p_type == PT_LOAD
7127 && (ibfd->flags & D_PAGED) != 0
7128 && maxpagesize > 1
7129 && segment->p_align > 1)
7130 {
7131 map->p_align = segment->p_align;
7132 if (segment->p_align > maxpagesize)
7133 map->p_align = maxpagesize;
7134 map->p_align_valid = 1;
7135 }
7136
7137 /* If the first section in the input segment is removed, there is
7138 no need to preserve segment physical address in the corresponding
7139 output segment. */
7140 if (!first_section || first_section->output_section != NULL)
7141 {
7142 map->p_paddr = segment->p_paddr;
7143 map->p_paddr_valid = p_paddr_valid;
7144 }
7145
7146 /* Determine if this segment contains the ELF file header
7147 and if it contains the program headers themselves. */
7148 map->includes_filehdr = (segment->p_offset == 0
7149 && segment->p_filesz >= iehdr->e_ehsize);
7150 map->includes_phdrs = 0;
7151
7152 if (!phdr_included || segment->p_type != PT_LOAD)
7153 {
7154 map->includes_phdrs =
7155 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
7156 && (segment->p_offset + segment->p_filesz
7157 >= ((bfd_vma) iehdr->e_phoff
7158 + iehdr->e_phnum * iehdr->e_phentsize)));
7159
7160 if (segment->p_type == PT_LOAD && map->includes_phdrs)
7161 phdr_included = true;
7162 }
7163
7164 if (section_count == 0)
7165 {
7166 /* Special segments, such as the PT_PHDR segment, may contain
7167 no sections, but ordinary, loadable segments should contain
7168 something. They are allowed by the ELF spec however, so only
7169 a warning is produced.
7170 There is however the valid use case of embedded systems which
7171 have segments with p_filesz of 0 and a p_memsz > 0 to initialize
7172 flash memory with zeros. No warning is shown for that case. */
7173 if (segment->p_type == PT_LOAD
7174 && (segment->p_filesz > 0 || segment->p_memsz == 0))
7175 /* xgettext:c-format */
7176 _bfd_error_handler
7177 (_("%pB: warning: empty loadable segment detected"
7178 " at vaddr=%#" PRIx64 ", is this intentional?"),
7179 ibfd, (uint64_t) segment->p_vaddr);
7180
7181 map->p_vaddr_offset = segment->p_vaddr / opb;
7182 map->count = 0;
7183 *pointer_to_map = map;
7184 pointer_to_map = &map->next;
7185
7186 continue;
7187 }
7188
7189 /* Now scan the sections in the input BFD again and attempt
7190 to add their corresponding output sections to the segment map.
7191 The problem here is how to handle an output section which has
7192 been moved (ie had its LMA changed). There are four possibilities:
7193
7194 1. None of the sections have been moved.
7195 In this case we can continue to use the segment LMA from the
7196 input BFD.
7197
7198 2. All of the sections have been moved by the same amount.
7199 In this case we can change the segment's LMA to match the LMA
7200 of the first section.
7201
7202 3. Some of the sections have been moved, others have not.
7203 In this case those sections which have not been moved can be
7204 placed in the current segment which will have to have its size,
7205 and possibly its LMA changed, and a new segment or segments will
7206 have to be created to contain the other sections.
7207
7208 4. The sections have been moved, but not by the same amount.
7209 In this case we can change the segment's LMA to match the LMA
7210 of the first section and we will have to create a new segment
7211 or segments to contain the other sections.
7212
7213 In order to save time, we allocate an array to hold the section
7214 pointers that we are interested in. As these sections get assigned
7215 to a segment, they are removed from this array. */
7216
7217 amt = section_count * sizeof (asection *);
7218 sections = (asection **) bfd_malloc (amt);
7219 if (sections == NULL)
7220 return false;
7221
7222 /* Step One: Scan for segment vs section LMA conflicts.
7223 Also add the sections to the section array allocated above.
7224 Also add the sections to the current segment. In the common
7225 case, where the sections have not been moved, this means that
7226 we have completely filled the segment, and there is nothing
7227 more to do. */
7228 isec = 0;
7229 matching_lma = NULL;
7230 suggested_lma = NULL;
7231
7232 for (section = first_section, j = 0;
7233 section != NULL;
7234 section = section->next)
7235 {
7236 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed, opb))
7237 {
7238 output_section = section->output_section;
7239
7240 sections[j++] = section;
7241
7242 /* The Solaris native linker always sets p_paddr to 0.
7243 We try to catch that case here, and set it to the
7244 correct value. Note - some backends require that
7245 p_paddr be left as zero. */
7246 if (!p_paddr_valid
7247 && segment->p_vaddr != 0
7248 && !bed->want_p_paddr_set_to_zero
7249 && isec == 0
7250 && output_section->lma != 0
7251 && (align_power (segment->p_vaddr
7252 + (map->includes_filehdr
7253 ? iehdr->e_ehsize : 0)
7254 + (map->includes_phdrs
7255 ? iehdr->e_phnum * iehdr->e_phentsize
7256 : 0),
7257 output_section->alignment_power * opb)
7258 == (output_section->vma * opb)))
7259 map->p_paddr = segment->p_vaddr;
7260
7261 /* Match up the physical address of the segment with the
7262 LMA address of the output section. */
7263 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr,
7264 opb)
7265 || IS_COREFILE_NOTE (segment, section)
7266 || (bed->want_p_paddr_set_to_zero
7267 && IS_CONTAINED_BY_VMA (output_section, segment, opb)))
7268 {
7269 if (matching_lma == NULL
7270 || output_section->lma < matching_lma->lma)
7271 matching_lma = output_section;
7272
7273 /* We assume that if the section fits within the segment
7274 then it does not overlap any other section within that
7275 segment. */
7276 map->sections[isec++] = output_section;
7277 }
7278 else if (suggested_lma == NULL)
7279 suggested_lma = output_section;
7280
7281 if (j == section_count)
7282 break;
7283 }
7284 }
7285
7286 BFD_ASSERT (j == section_count);
7287
7288 /* Step Two: Adjust the physical address of the current segment,
7289 if necessary. */
7290 if (isec == section_count)
7291 {
7292 /* All of the sections fitted within the segment as currently
7293 specified. This is the default case. Add the segment to
7294 the list of built segments and carry on to process the next
7295 program header in the input BFD. */
7296 map->count = section_count;
7297 *pointer_to_map = map;
7298 pointer_to_map = &map->next;
7299
7300 if (p_paddr_valid
7301 && !bed->want_p_paddr_set_to_zero)
7302 {
7303 bfd_vma hdr_size = 0;
7304 if (map->includes_filehdr)
7305 hdr_size = iehdr->e_ehsize;
7306 if (map->includes_phdrs)
7307 hdr_size += iehdr->e_phnum * iehdr->e_phentsize;
7308
7309 /* Account for padding before the first section in the
7310 segment. */
7311 map->p_vaddr_offset = ((map->p_paddr + hdr_size) / opb
7312 - matching_lma->lma);
7313 }
7314
7315 free (sections);
7316 continue;
7317 }
7318 else
7319 {
7320 /* Change the current segment's physical address to match
7321 the LMA of the first section that fitted, or if no
7322 section fitted, the first section. */
7323 if (matching_lma == NULL)
7324 matching_lma = suggested_lma;
7325
7326 map->p_paddr = matching_lma->lma * opb;
7327
7328 /* Offset the segment physical address from the lma
7329 to allow for space taken up by elf headers. */
7330 if (map->includes_phdrs)
7331 {
7332 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
7333
7334 /* iehdr->e_phnum is just an estimate of the number
7335 of program headers that we will need. Make a note
7336 here of the number we used and the segment we chose
7337 to hold these headers, so that we can adjust the
7338 offset when we know the correct value. */
7339 phdr_adjust_num = iehdr->e_phnum;
7340 phdr_adjust_seg = map;
7341 }
7342
7343 if (map->includes_filehdr)
7344 {
7345 bfd_vma align = (bfd_vma) 1 << matching_lma->alignment_power;
7346 map->p_paddr -= iehdr->e_ehsize;
7347 /* We've subtracted off the size of headers from the
7348 first section lma, but there may have been some
7349 alignment padding before that section too. Try to
7350 account for that by adjusting the segment lma down to
7351 the same alignment. */
7352 if (segment->p_align != 0 && segment->p_align < align)
7353 align = segment->p_align;
7354 map->p_paddr &= -(align * opb);
7355 }
7356 }
7357
7358 /* Step Three: Loop over the sections again, this time assigning
7359 those that fit to the current segment and removing them from the
7360 sections array; but making sure not to leave large gaps. Once all
7361 possible sections have been assigned to the current segment it is
7362 added to the list of built segments and if sections still remain
7363 to be assigned, a new segment is constructed before repeating
7364 the loop. */
7365 isec = 0;
7366 do
7367 {
7368 map->count = 0;
7369 suggested_lma = NULL;
7370
7371 /* Fill the current segment with sections that fit. */
7372 for (j = 0; j < section_count; j++)
7373 {
7374 section = sections[j];
7375
7376 if (section == NULL)
7377 continue;
7378
7379 output_section = section->output_section;
7380
7381 BFD_ASSERT (output_section != NULL);
7382
7383 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr,
7384 opb)
7385 || IS_COREFILE_NOTE (segment, section))
7386 {
7387 if (map->count == 0)
7388 {
7389 /* If the first section in a segment does not start at
7390 the beginning of the segment, then something is
7391 wrong. */
7392 if (align_power (map->p_paddr
7393 + (map->includes_filehdr
7394 ? iehdr->e_ehsize : 0)
7395 + (map->includes_phdrs
7396 ? iehdr->e_phnum * iehdr->e_phentsize
7397 : 0),
7398 output_section->alignment_power * opb)
7399 != output_section->lma * opb)
7400 goto sorry;
7401 }
7402 else
7403 {
7404 asection *prev_sec;
7405
7406 prev_sec = map->sections[map->count - 1];
7407
7408 /* If the gap between the end of the previous section
7409 and the start of this section is more than
7410 maxpagesize then we need to start a new segment. */
7411 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
7412 maxpagesize)
7413 < BFD_ALIGN (output_section->lma, maxpagesize))
7414 || (prev_sec->lma + prev_sec->size
7415 > output_section->lma))
7416 {
7417 if (suggested_lma == NULL)
7418 suggested_lma = output_section;
7419
7420 continue;
7421 }
7422 }
7423
7424 map->sections[map->count++] = output_section;
7425 ++isec;
7426 sections[j] = NULL;
7427 if (segment->p_type == PT_LOAD)
7428 section->segment_mark = true;
7429 }
7430 else if (suggested_lma == NULL)
7431 suggested_lma = output_section;
7432 }
7433
7434 /* PR 23932. A corrupt input file may contain sections that cannot
7435 be assigned to any segment - because for example they have a
7436 negative size - or segments that do not contain any sections.
7437 But there are also valid reasons why a segment can be empty.
7438 So allow a count of zero. */
7439
7440 /* Add the current segment to the list of built segments. */
7441 *pointer_to_map = map;
7442 pointer_to_map = &map->next;
7443
7444 if (isec < section_count)
7445 {
7446 /* We still have not allocated all of the sections to
7447 segments. Create a new segment here, initialise it
7448 and carry on looping. */
7449 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
7450 amt += section_count * sizeof (asection *);
7451 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7452 if (map == NULL)
7453 {
7454 free (sections);
7455 return false;
7456 }
7457
7458 /* Initialise the fields of the segment map. Set the physical
7459 physical address to the LMA of the first section that has
7460 not yet been assigned. */
7461 map->next = NULL;
7462 map->p_type = segment->p_type;
7463 map->p_flags = segment->p_flags;
7464 map->p_flags_valid = 1;
7465 map->p_paddr = suggested_lma->lma * opb;
7466 map->p_paddr_valid = p_paddr_valid;
7467 map->includes_filehdr = 0;
7468 map->includes_phdrs = 0;
7469 }
7470
7471 continue;
7472 sorry:
7473 bfd_set_error (bfd_error_sorry);
7474 free (sections);
7475 return false;
7476 }
7477 while (isec < section_count);
7478
7479 free (sections);
7480 }
7481
7482 elf_seg_map (obfd) = map_first;
7483
7484 /* If we had to estimate the number of program headers that were
7485 going to be needed, then check our estimate now and adjust
7486 the offset if necessary. */
7487 if (phdr_adjust_seg != NULL)
7488 {
7489 unsigned int count;
7490
7491 for (count = 0, map = map_first; map != NULL; map = map->next)
7492 count++;
7493
7494 if (count > phdr_adjust_num)
7495 phdr_adjust_seg->p_paddr
7496 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
7497
7498 for (map = map_first; map != NULL; map = map->next)
7499 if (map->p_type == PT_PHDR)
7500 {
7501 bfd_vma adjust
7502 = phdr_adjust_seg->includes_filehdr ? iehdr->e_ehsize : 0;
7503 map->p_paddr = phdr_adjust_seg->p_paddr + adjust;
7504 break;
7505 }
7506 }
7507
7508 #undef SEGMENT_END
7509 #undef SECTION_SIZE
7510 #undef IS_CONTAINED_BY_VMA
7511 #undef IS_CONTAINED_BY_LMA
7512 #undef IS_NOTE
7513 #undef IS_COREFILE_NOTE
7514 #undef IS_SOLARIS_PT_INTERP
7515 #undef IS_SECTION_IN_INPUT_SEGMENT
7516 #undef INCLUDE_SECTION_IN_SEGMENT
7517 #undef SEGMENT_AFTER_SEGMENT
7518 #undef SEGMENT_OVERLAPS
7519 return true;
7520 }
7521
7522 /* Copy ELF program header information. */
7523
7524 static bool
7525 copy_elf_program_header (bfd *ibfd, bfd *obfd)
7526 {
7527 Elf_Internal_Ehdr *iehdr;
7528 struct elf_segment_map *map;
7529 struct elf_segment_map *map_first;
7530 struct elf_segment_map **pointer_to_map;
7531 Elf_Internal_Phdr *segment;
7532 unsigned int i;
7533 unsigned int num_segments;
7534 bool phdr_included = false;
7535 bool p_paddr_valid;
7536 unsigned int opb = bfd_octets_per_byte (ibfd, NULL);
7537
7538 iehdr = elf_elfheader (ibfd);
7539
7540 map_first = NULL;
7541 pointer_to_map = &map_first;
7542
7543 /* If all the segment p_paddr fields are zero, don't set
7544 map->p_paddr_valid. */
7545 p_paddr_valid = false;
7546 num_segments = elf_elfheader (ibfd)->e_phnum;
7547 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7548 i < num_segments;
7549 i++, segment++)
7550 if (segment->p_paddr != 0)
7551 {
7552 p_paddr_valid = true;
7553 break;
7554 }
7555
7556 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7557 i < num_segments;
7558 i++, segment++)
7559 {
7560 asection *section;
7561 unsigned int section_count;
7562 size_t amt;
7563 Elf_Internal_Shdr *this_hdr;
7564 asection *first_section = NULL;
7565 asection *lowest_section;
7566
7567 /* Compute how many sections are in this segment. */
7568 for (section = ibfd->sections, section_count = 0;
7569 section != NULL;
7570 section = section->next)
7571 {
7572 this_hdr = &(elf_section_data(section)->this_hdr);
7573 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7574 {
7575 if (first_section == NULL)
7576 first_section = section;
7577 section_count++;
7578 }
7579 }
7580
7581 /* Allocate a segment map big enough to contain
7582 all of the sections we have selected. */
7583 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
7584 amt += section_count * sizeof (asection *);
7585 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7586 if (map == NULL)
7587 return false;
7588
7589 /* Initialize the fields of the output segment map with the
7590 input segment. */
7591 map->next = NULL;
7592 map->p_type = segment->p_type;
7593 map->p_flags = segment->p_flags;
7594 map->p_flags_valid = 1;
7595 map->p_paddr = segment->p_paddr;
7596 map->p_paddr_valid = p_paddr_valid;
7597 map->p_align = segment->p_align;
7598 map->p_align_valid = 1;
7599 map->p_vaddr_offset = 0;
7600
7601 if (map->p_type == PT_GNU_RELRO
7602 || map->p_type == PT_GNU_STACK)
7603 {
7604 /* The PT_GNU_RELRO segment may contain the first a few
7605 bytes in the .got.plt section even if the whole .got.plt
7606 section isn't in the PT_GNU_RELRO segment. We won't
7607 change the size of the PT_GNU_RELRO segment.
7608 Similarly, PT_GNU_STACK size is significant on uclinux
7609 systems. */
7610 map->p_size = segment->p_memsz;
7611 map->p_size_valid = 1;
7612 }
7613
7614 /* Determine if this segment contains the ELF file header
7615 and if it contains the program headers themselves. */
7616 map->includes_filehdr = (segment->p_offset == 0
7617 && segment->p_filesz >= iehdr->e_ehsize);
7618
7619 map->includes_phdrs = 0;
7620 if (! phdr_included || segment->p_type != PT_LOAD)
7621 {
7622 map->includes_phdrs =
7623 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
7624 && (segment->p_offset + segment->p_filesz
7625 >= ((bfd_vma) iehdr->e_phoff
7626 + iehdr->e_phnum * iehdr->e_phentsize)));
7627
7628 if (segment->p_type == PT_LOAD && map->includes_phdrs)
7629 phdr_included = true;
7630 }
7631
7632 lowest_section = NULL;
7633 if (section_count != 0)
7634 {
7635 unsigned int isec = 0;
7636
7637 for (section = first_section;
7638 section != NULL;
7639 section = section->next)
7640 {
7641 this_hdr = &(elf_section_data(section)->this_hdr);
7642 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7643 {
7644 map->sections[isec++] = section->output_section;
7645 if ((section->flags & SEC_ALLOC) != 0)
7646 {
7647 bfd_vma seg_off;
7648
7649 if (lowest_section == NULL
7650 || section->lma < lowest_section->lma)
7651 lowest_section = section;
7652
7653 /* Section lmas are set up from PT_LOAD header
7654 p_paddr in _bfd_elf_make_section_from_shdr.
7655 If this header has a p_paddr that disagrees
7656 with the section lma, flag the p_paddr as
7657 invalid. */
7658 if ((section->flags & SEC_LOAD) != 0)
7659 seg_off = this_hdr->sh_offset - segment->p_offset;
7660 else
7661 seg_off = this_hdr->sh_addr - segment->p_vaddr;
7662 if (section->lma * opb - segment->p_paddr != seg_off)
7663 map->p_paddr_valid = false;
7664 }
7665 if (isec == section_count)
7666 break;
7667 }
7668 }
7669 }
7670
7671 if (section_count == 0)
7672 map->p_vaddr_offset = segment->p_vaddr / opb;
7673 else if (map->p_paddr_valid)
7674 {
7675 /* Account for padding before the first section in the segment. */
7676 bfd_vma hdr_size = 0;
7677 if (map->includes_filehdr)
7678 hdr_size = iehdr->e_ehsize;
7679 if (map->includes_phdrs)
7680 hdr_size += iehdr->e_phnum * iehdr->e_phentsize;
7681
7682 map->p_vaddr_offset = ((map->p_paddr + hdr_size) / opb
7683 - (lowest_section ? lowest_section->lma : 0));
7684 }
7685
7686 map->count = section_count;
7687 *pointer_to_map = map;
7688 pointer_to_map = &map->next;
7689 }
7690
7691 elf_seg_map (obfd) = map_first;
7692 return true;
7693 }
7694
7695 /* Copy private BFD data. This copies or rewrites ELF program header
7696 information. */
7697
7698 static bool
7699 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
7700 {
7701 bfd_vma maxpagesize;
7702
7703 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7704 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7705 return true;
7706
7707 if (elf_tdata (ibfd)->phdr == NULL)
7708 return true;
7709
7710 if (ibfd->xvec == obfd->xvec)
7711 {
7712 /* Check to see if any sections in the input BFD
7713 covered by ELF program header have changed. */
7714 Elf_Internal_Phdr *segment;
7715 asection *section, *osec;
7716 unsigned int i, num_segments;
7717 Elf_Internal_Shdr *this_hdr;
7718 const struct elf_backend_data *bed;
7719
7720 bed = get_elf_backend_data (ibfd);
7721
7722 /* Regenerate the segment map if p_paddr is set to 0. */
7723 if (bed->want_p_paddr_set_to_zero)
7724 goto rewrite;
7725
7726 /* Initialize the segment mark field. */
7727 for (section = obfd->sections; section != NULL;
7728 section = section->next)
7729 section->segment_mark = false;
7730
7731 num_segments = elf_elfheader (ibfd)->e_phnum;
7732 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7733 i < num_segments;
7734 i++, segment++)
7735 {
7736 /* PR binutils/3535. The Solaris linker always sets the p_paddr
7737 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
7738 which severly confuses things, so always regenerate the segment
7739 map in this case. */
7740 if (segment->p_paddr == 0
7741 && segment->p_memsz == 0
7742 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
7743 goto rewrite;
7744
7745 for (section = ibfd->sections;
7746 section != NULL; section = section->next)
7747 {
7748 /* We mark the output section so that we know it comes
7749 from the input BFD. */
7750 osec = section->output_section;
7751 if (osec)
7752 osec->segment_mark = true;
7753
7754 /* Check if this section is covered by the segment. */
7755 this_hdr = &(elf_section_data(section)->this_hdr);
7756 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7757 {
7758 /* FIXME: Check if its output section is changed or
7759 removed. What else do we need to check? */
7760 if (osec == NULL
7761 || section->flags != osec->flags
7762 || section->lma != osec->lma
7763 || section->vma != osec->vma
7764 || section->size != osec->size
7765 || section->rawsize != osec->rawsize
7766 || section->alignment_power != osec->alignment_power)
7767 goto rewrite;
7768 }
7769 }
7770 }
7771
7772 /* Check to see if any output section do not come from the
7773 input BFD. */
7774 for (section = obfd->sections; section != NULL;
7775 section = section->next)
7776 {
7777 if (!section->segment_mark)
7778 goto rewrite;
7779 else
7780 section->segment_mark = false;
7781 }
7782
7783 return copy_elf_program_header (ibfd, obfd);
7784 }
7785
7786 rewrite:
7787 maxpagesize = 0;
7788 if (ibfd->xvec == obfd->xvec)
7789 {
7790 /* When rewriting program header, set the output maxpagesize to
7791 the maximum alignment of input PT_LOAD segments. */
7792 Elf_Internal_Phdr *segment;
7793 unsigned int i;
7794 unsigned int num_segments = elf_elfheader (ibfd)->e_phnum;
7795
7796 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7797 i < num_segments;
7798 i++, segment++)
7799 if (segment->p_type == PT_LOAD
7800 && maxpagesize < segment->p_align)
7801 {
7802 /* PR 17512: file: f17299af. */
7803 if (segment->p_align > (bfd_vma) 1 << ((sizeof (bfd_vma) * 8) - 2))
7804 /* xgettext:c-format */
7805 _bfd_error_handler (_("%pB: warning: segment alignment of %#"
7806 PRIx64 " is too large"),
7807 ibfd, (uint64_t) segment->p_align);
7808 else
7809 maxpagesize = segment->p_align;
7810 }
7811 }
7812 if (maxpagesize == 0)
7813 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
7814
7815 return rewrite_elf_program_header (ibfd, obfd, maxpagesize);
7816 }
7817
7818 /* Initialize private output section information from input section. */
7819
7820 bool
7821 _bfd_elf_init_private_section_data (bfd *ibfd,
7822 asection *isec,
7823 bfd *obfd,
7824 asection *osec,
7825 struct bfd_link_info *link_info)
7826
7827 {
7828 Elf_Internal_Shdr *ihdr, *ohdr;
7829 bool final_link = (link_info != NULL
7830 && !bfd_link_relocatable (link_info));
7831
7832 if (ibfd->xvec->flavour != bfd_target_elf_flavour
7833 || obfd->xvec->flavour != bfd_target_elf_flavour)
7834 return true;
7835
7836 BFD_ASSERT (elf_section_data (osec) != NULL);
7837
7838 /* If this is a known ABI section, ELF section type and flags may
7839 have been set up when OSEC was created. For normal sections we
7840 allow the user to override the type and flags other than
7841 SHF_MASKOS and SHF_MASKPROC. */
7842 if (elf_section_type (osec) == SHT_PROGBITS
7843 || elf_section_type (osec) == SHT_NOTE
7844 || elf_section_type (osec) == SHT_NOBITS)
7845 elf_section_type (osec) = SHT_NULL;
7846 /* For objcopy and relocatable link, copy the ELF section type from
7847 the input file if the BFD section flags are the same. (If they
7848 are different the user may be doing something like
7849 "objcopy --set-section-flags .text=alloc,data".) For a final
7850 link allow some flags that the linker clears to differ. */
7851 if (elf_section_type (osec) == SHT_NULL
7852 && (osec->flags == isec->flags
7853 || (final_link
7854 && ((osec->flags ^ isec->flags)
7855 & ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC)) == 0)))
7856 elf_section_type (osec) = elf_section_type (isec);
7857
7858 /* FIXME: Is this correct for all OS/PROC specific flags? */
7859 elf_section_flags (osec) = (elf_section_flags (isec)
7860 & (SHF_MASKOS | SHF_MASKPROC));
7861
7862 /* Copy sh_info from input for mbind section. */
7863 if ((elf_tdata (ibfd)->has_gnu_osabi & elf_gnu_osabi_mbind) != 0
7864 && elf_section_flags (isec) & SHF_GNU_MBIND)
7865 elf_section_data (osec)->this_hdr.sh_info
7866 = elf_section_data (isec)->this_hdr.sh_info;
7867
7868 /* Set things up for objcopy and relocatable link. The output
7869 SHT_GROUP section will have its elf_next_in_group pointing back
7870 to the input group members. Ignore linker created group section.
7871 See elfNN_ia64_object_p in elfxx-ia64.c. */
7872 if ((link_info == NULL
7873 || !link_info->resolve_section_groups)
7874 && (elf_sec_group (isec) == NULL
7875 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0))
7876 {
7877 if (elf_section_flags (isec) & SHF_GROUP)
7878 elf_section_flags (osec) |= SHF_GROUP;
7879 elf_next_in_group (osec) = elf_next_in_group (isec);
7880 elf_section_data (osec)->group = elf_section_data (isec)->group;
7881 }
7882
7883 /* If not decompress, preserve SHF_COMPRESSED. */
7884 if (!final_link && (ibfd->flags & BFD_DECOMPRESS) == 0)
7885 elf_section_flags (osec) |= (elf_section_flags (isec)
7886 & SHF_COMPRESSED);
7887
7888 ihdr = &elf_section_data (isec)->this_hdr;
7889
7890 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
7891 don't use the output section of the linked-to section since it
7892 may be NULL at this point. */
7893 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
7894 {
7895 ohdr = &elf_section_data (osec)->this_hdr;
7896 ohdr->sh_flags |= SHF_LINK_ORDER;
7897 elf_linked_to_section (osec) = elf_linked_to_section (isec);
7898 }
7899
7900 osec->use_rela_p = isec->use_rela_p;
7901
7902 return true;
7903 }
7904
7905 /* Copy private section information. This copies over the entsize
7906 field, and sometimes the info field. */
7907
7908 bool
7909 _bfd_elf_copy_private_section_data (bfd *ibfd,
7910 asection *isec,
7911 bfd *obfd,
7912 asection *osec)
7913 {
7914 Elf_Internal_Shdr *ihdr, *ohdr;
7915
7916 if (ibfd->xvec->flavour != bfd_target_elf_flavour
7917 || obfd->xvec->flavour != bfd_target_elf_flavour)
7918 return true;
7919
7920 ihdr = &elf_section_data (isec)->this_hdr;
7921 ohdr = &elf_section_data (osec)->this_hdr;
7922
7923 ohdr->sh_entsize = ihdr->sh_entsize;
7924
7925 if (ihdr->sh_type == SHT_SYMTAB
7926 || ihdr->sh_type == SHT_DYNSYM
7927 || ihdr->sh_type == SHT_GNU_verneed
7928 || ihdr->sh_type == SHT_GNU_verdef)
7929 ohdr->sh_info = ihdr->sh_info;
7930
7931 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
7932 NULL);
7933 }
7934
7935 /* Look at all the SHT_GROUP sections in IBFD, making any adjustments
7936 necessary if we are removing either the SHT_GROUP section or any of
7937 the group member sections. DISCARDED is the value that a section's
7938 output_section has if the section will be discarded, NULL when this
7939 function is called from objcopy, bfd_abs_section_ptr when called
7940 from the linker. */
7941
7942 bool
7943 _bfd_elf_fixup_group_sections (bfd *ibfd, asection *discarded)
7944 {
7945 asection *isec;
7946
7947 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
7948 if (elf_section_type (isec) == SHT_GROUP)
7949 {
7950 asection *first = elf_next_in_group (isec);
7951 asection *s = first;
7952 bfd_size_type removed = 0;
7953
7954 while (s != NULL)
7955 {
7956 /* If this member section is being output but the
7957 SHT_GROUP section is not, then clear the group info
7958 set up by _bfd_elf_copy_private_section_data. */
7959 if (s->output_section != discarded
7960 && isec->output_section == discarded)
7961 {
7962 elf_section_flags (s->output_section) &= ~SHF_GROUP;
7963 elf_group_name (s->output_section) = NULL;
7964 }
7965 else
7966 {
7967 struct bfd_elf_section_data *elf_sec = elf_section_data (s);
7968 if (s->output_section == discarded
7969 && isec->output_section != discarded)
7970 {
7971 /* Conversely, if the member section is not being
7972 output but the SHT_GROUP section is, then adjust
7973 its size. */
7974 removed += 4;
7975 if (elf_sec->rel.hdr != NULL
7976 && (elf_sec->rel.hdr->sh_flags & SHF_GROUP) != 0)
7977 removed += 4;
7978 if (elf_sec->rela.hdr != NULL
7979 && (elf_sec->rela.hdr->sh_flags & SHF_GROUP) != 0)
7980 removed += 4;
7981 }
7982 else
7983 {
7984 /* Also adjust for zero-sized relocation member
7985 section. */
7986 if (elf_sec->rel.hdr != NULL
7987 && elf_sec->rel.hdr->sh_size == 0)
7988 removed += 4;
7989 if (elf_sec->rela.hdr != NULL
7990 && elf_sec->rela.hdr->sh_size == 0)
7991 removed += 4;
7992 }
7993 }
7994 s = elf_next_in_group (s);
7995 if (s == first)
7996 break;
7997 }
7998 if (removed != 0)
7999 {
8000 if (discarded != NULL)
8001 {
8002 /* If we've been called for ld -r, then we need to
8003 adjust the input section size. */
8004 if (isec->rawsize == 0)
8005 isec->rawsize = isec->size;
8006 isec->size = isec->rawsize - removed;
8007 if (isec->size <= 4)
8008 {
8009 isec->size = 0;
8010 isec->flags |= SEC_EXCLUDE;
8011 }
8012 }
8013 else if (isec->output_section != NULL)
8014 {
8015 /* Adjust the output section size when called from
8016 objcopy. */
8017 isec->output_section->size -= removed;
8018 if (isec->output_section->size <= 4)
8019 {
8020 isec->output_section->size = 0;
8021 isec->output_section->flags |= SEC_EXCLUDE;
8022 }
8023 }
8024 }
8025 }
8026
8027 return true;
8028 }
8029
8030 /* Copy private header information. */
8031
8032 bool
8033 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
8034 {
8035 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
8036 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
8037 return true;
8038
8039 /* Copy over private BFD data if it has not already been copied.
8040 This must be done here, rather than in the copy_private_bfd_data
8041 entry point, because the latter is called after the section
8042 contents have been set, which means that the program headers have
8043 already been worked out. */
8044 if (elf_seg_map (obfd) == NULL && elf_tdata (ibfd)->phdr != NULL)
8045 {
8046 if (! copy_private_bfd_data (ibfd, obfd))
8047 return false;
8048 }
8049
8050 return _bfd_elf_fixup_group_sections (ibfd, NULL);
8051 }
8052
8053 /* Copy private symbol information. If this symbol is in a section
8054 which we did not map into a BFD section, try to map the section
8055 index correctly. We use special macro definitions for the mapped
8056 section indices; these definitions are interpreted by the
8057 swap_out_syms function. */
8058
8059 #define MAP_ONESYMTAB (SHN_HIOS + 1)
8060 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
8061 #define MAP_STRTAB (SHN_HIOS + 3)
8062 #define MAP_SHSTRTAB (SHN_HIOS + 4)
8063 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
8064
8065 bool
8066 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
8067 asymbol *isymarg,
8068 bfd *obfd,
8069 asymbol *osymarg)
8070 {
8071 elf_symbol_type *isym, *osym;
8072
8073 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
8074 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
8075 return true;
8076
8077 isym = elf_symbol_from (isymarg);
8078 osym = elf_symbol_from (osymarg);
8079
8080 if (isym != NULL
8081 && isym->internal_elf_sym.st_shndx != 0
8082 && osym != NULL
8083 && bfd_is_abs_section (isym->symbol.section))
8084 {
8085 unsigned int shndx;
8086
8087 shndx = isym->internal_elf_sym.st_shndx;
8088 if (shndx == elf_onesymtab (ibfd))
8089 shndx = MAP_ONESYMTAB;
8090 else if (shndx == elf_dynsymtab (ibfd))
8091 shndx = MAP_DYNSYMTAB;
8092 else if (shndx == elf_strtab_sec (ibfd))
8093 shndx = MAP_STRTAB;
8094 else if (shndx == elf_shstrtab_sec (ibfd))
8095 shndx = MAP_SHSTRTAB;
8096 else if (find_section_in_list (shndx, elf_symtab_shndx_list (ibfd)))
8097 shndx = MAP_SYM_SHNDX;
8098 osym->internal_elf_sym.st_shndx = shndx;
8099 }
8100
8101 return true;
8102 }
8103
8104 /* Swap out the symbols. */
8105
8106 static bool
8107 swap_out_syms (bfd *abfd,
8108 struct elf_strtab_hash **sttp,
8109 int relocatable_p,
8110 struct bfd_link_info *info)
8111 {
8112 const struct elf_backend_data *bed;
8113 unsigned int symcount;
8114 asymbol **syms;
8115 struct elf_strtab_hash *stt;
8116 Elf_Internal_Shdr *symtab_hdr;
8117 Elf_Internal_Shdr *symtab_shndx_hdr;
8118 Elf_Internal_Shdr *symstrtab_hdr;
8119 struct elf_sym_strtab *symstrtab;
8120 bfd_byte *outbound_syms;
8121 bfd_byte *outbound_shndx;
8122 unsigned long outbound_syms_index;
8123 unsigned int idx;
8124 unsigned int num_locals;
8125 size_t amt;
8126 bool name_local_sections;
8127
8128 if (!elf_map_symbols (abfd, &num_locals))
8129 return false;
8130
8131 /* Dump out the symtabs. */
8132 stt = _bfd_elf_strtab_init ();
8133 if (stt == NULL)
8134 return false;
8135
8136 bed = get_elf_backend_data (abfd);
8137 symcount = bfd_get_symcount (abfd);
8138 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8139 symtab_hdr->sh_type = SHT_SYMTAB;
8140 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
8141 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
8142 symtab_hdr->sh_info = num_locals + 1;
8143 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
8144
8145 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
8146 symstrtab_hdr->sh_type = SHT_STRTAB;
8147
8148 /* Allocate buffer to swap out the .strtab section. */
8149 if (_bfd_mul_overflow (symcount + 1, sizeof (*symstrtab), &amt)
8150 || (symstrtab = (struct elf_sym_strtab *) bfd_malloc (amt)) == NULL)
8151 {
8152 bfd_set_error (bfd_error_no_memory);
8153 _bfd_elf_strtab_free (stt);
8154 return false;
8155 }
8156
8157 if (_bfd_mul_overflow (symcount + 1, bed->s->sizeof_sym, &amt)
8158 || (outbound_syms = (bfd_byte *) bfd_alloc (abfd, amt)) == NULL)
8159 {
8160 error_no_mem:
8161 bfd_set_error (bfd_error_no_memory);
8162 error_return:
8163 free (symstrtab);
8164 _bfd_elf_strtab_free (stt);
8165 return false;
8166 }
8167 symtab_hdr->contents = outbound_syms;
8168 outbound_syms_index = 0;
8169
8170 outbound_shndx = NULL;
8171
8172 if (elf_symtab_shndx_list (abfd))
8173 {
8174 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
8175 if (symtab_shndx_hdr->sh_name != 0)
8176 {
8177 if (_bfd_mul_overflow (symcount + 1,
8178 sizeof (Elf_External_Sym_Shndx), &amt))
8179 goto error_no_mem;
8180 outbound_shndx = (bfd_byte *) bfd_zalloc (abfd, amt);
8181 if (outbound_shndx == NULL)
8182 goto error_return;
8183
8184 symtab_shndx_hdr->contents = outbound_shndx;
8185 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
8186 symtab_shndx_hdr->sh_size = amt;
8187 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
8188 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
8189 }
8190 /* FIXME: What about any other headers in the list ? */
8191 }
8192
8193 /* Now generate the data (for "contents"). */
8194 {
8195 /* Fill in zeroth symbol and swap it out. */
8196 Elf_Internal_Sym sym;
8197 sym.st_name = 0;
8198 sym.st_value = 0;
8199 sym.st_size = 0;
8200 sym.st_info = 0;
8201 sym.st_other = 0;
8202 sym.st_shndx = SHN_UNDEF;
8203 sym.st_target_internal = 0;
8204 symstrtab[0].sym = sym;
8205 symstrtab[0].dest_index = outbound_syms_index;
8206 outbound_syms_index++;
8207 }
8208
8209 name_local_sections
8210 = (bed->elf_backend_name_local_section_symbols
8211 && bed->elf_backend_name_local_section_symbols (abfd));
8212
8213 syms = bfd_get_outsymbols (abfd);
8214 for (idx = 0; idx < symcount;)
8215 {
8216 Elf_Internal_Sym sym;
8217 bfd_vma value = syms[idx]->value;
8218 elf_symbol_type *type_ptr;
8219 flagword flags = syms[idx]->flags;
8220 int type;
8221
8222 if (!name_local_sections
8223 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
8224 {
8225 /* Local section symbols have no name. */
8226 sym.st_name = (unsigned long) -1;
8227 }
8228 else
8229 {
8230 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
8231 to get the final offset for st_name. */
8232 sym.st_name
8233 = (unsigned long) _bfd_elf_strtab_add (stt, syms[idx]->name,
8234 false);
8235 if (sym.st_name == (unsigned long) -1)
8236 goto error_return;
8237 }
8238
8239 type_ptr = elf_symbol_from (syms[idx]);
8240
8241 if ((flags & BSF_SECTION_SYM) == 0
8242 && bfd_is_com_section (syms[idx]->section))
8243 {
8244 /* ELF common symbols put the alignment into the `value' field,
8245 and the size into the `size' field. This is backwards from
8246 how BFD handles it, so reverse it here. */
8247 sym.st_size = value;
8248 if (type_ptr == NULL
8249 || type_ptr->internal_elf_sym.st_value == 0)
8250 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
8251 else
8252 sym.st_value = type_ptr->internal_elf_sym.st_value;
8253 sym.st_shndx = _bfd_elf_section_from_bfd_section
8254 (abfd, syms[idx]->section);
8255 }
8256 else
8257 {
8258 asection *sec = syms[idx]->section;
8259 unsigned int shndx;
8260
8261 if (sec->output_section)
8262 {
8263 value += sec->output_offset;
8264 sec = sec->output_section;
8265 }
8266
8267 /* Don't add in the section vma for relocatable output. */
8268 if (! relocatable_p)
8269 value += sec->vma;
8270 sym.st_value = value;
8271 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
8272
8273 if (bfd_is_abs_section (sec)
8274 && type_ptr != NULL
8275 && type_ptr->internal_elf_sym.st_shndx != 0)
8276 {
8277 /* This symbol is in a real ELF section which we did
8278 not create as a BFD section. Undo the mapping done
8279 by copy_private_symbol_data. */
8280 shndx = type_ptr->internal_elf_sym.st_shndx;
8281 switch (shndx)
8282 {
8283 case MAP_ONESYMTAB:
8284 shndx = elf_onesymtab (abfd);
8285 break;
8286 case MAP_DYNSYMTAB:
8287 shndx = elf_dynsymtab (abfd);
8288 break;
8289 case MAP_STRTAB:
8290 shndx = elf_strtab_sec (abfd);
8291 break;
8292 case MAP_SHSTRTAB:
8293 shndx = elf_shstrtab_sec (abfd);
8294 break;
8295 case MAP_SYM_SHNDX:
8296 if (elf_symtab_shndx_list (abfd))
8297 shndx = elf_symtab_shndx_list (abfd)->ndx;
8298 break;
8299 case SHN_COMMON:
8300 case SHN_ABS:
8301 shndx = SHN_ABS;
8302 break;
8303 default:
8304 if (shndx >= SHN_LOPROC && shndx <= SHN_HIOS)
8305 {
8306 if (bed->symbol_section_index)
8307 shndx = bed->symbol_section_index (abfd, type_ptr);
8308 /* Otherwise just leave the index alone. */
8309 }
8310 else
8311 {
8312 if (shndx > SHN_HIOS && shndx < SHN_HIRESERVE)
8313 _bfd_error_handler (_("%pB: \
8314 Unable to handle section index %x in ELF symbol. Using ABS instead."),
8315 abfd, shndx);
8316 shndx = SHN_ABS;
8317 }
8318 break;
8319 }
8320 }
8321 else
8322 {
8323 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
8324
8325 if (shndx == SHN_BAD)
8326 {
8327 asection *sec2;
8328
8329 /* Writing this would be a hell of a lot easier if
8330 we had some decent documentation on bfd, and
8331 knew what to expect of the library, and what to
8332 demand of applications. For example, it
8333 appears that `objcopy' might not set the
8334 section of a symbol to be a section that is
8335 actually in the output file. */
8336 sec2 = bfd_get_section_by_name (abfd, sec->name);
8337 if (sec2 != NULL)
8338 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
8339 if (shndx == SHN_BAD)
8340 {
8341 /* xgettext:c-format */
8342 _bfd_error_handler
8343 (_("unable to find equivalent output section"
8344 " for symbol '%s' from section '%s'"),
8345 syms[idx]->name ? syms[idx]->name : "<Local sym>",
8346 sec->name);
8347 bfd_set_error (bfd_error_invalid_operation);
8348 goto error_return;
8349 }
8350 }
8351 }
8352
8353 sym.st_shndx = shndx;
8354 }
8355
8356 if ((flags & BSF_THREAD_LOCAL) != 0)
8357 type = STT_TLS;
8358 else if ((flags & BSF_GNU_INDIRECT_FUNCTION) != 0)
8359 type = STT_GNU_IFUNC;
8360 else if ((flags & BSF_FUNCTION) != 0)
8361 type = STT_FUNC;
8362 else if ((flags & BSF_OBJECT) != 0)
8363 type = STT_OBJECT;
8364 else if ((flags & BSF_RELC) != 0)
8365 type = STT_RELC;
8366 else if ((flags & BSF_SRELC) != 0)
8367 type = STT_SRELC;
8368 else
8369 type = STT_NOTYPE;
8370
8371 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
8372 type = STT_TLS;
8373
8374 /* Processor-specific types. */
8375 if (type_ptr != NULL
8376 && bed->elf_backend_get_symbol_type)
8377 type = ((*bed->elf_backend_get_symbol_type)
8378 (&type_ptr->internal_elf_sym, type));
8379
8380 if (flags & BSF_SECTION_SYM)
8381 {
8382 if (flags & BSF_GLOBAL)
8383 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8384 else
8385 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
8386 }
8387 else if (bfd_is_com_section (syms[idx]->section))
8388 {
8389 if (type != STT_TLS)
8390 {
8391 if ((abfd->flags & BFD_CONVERT_ELF_COMMON))
8392 type = ((abfd->flags & BFD_USE_ELF_STT_COMMON)
8393 ? STT_COMMON : STT_OBJECT);
8394 else
8395 type = ((flags & BSF_ELF_COMMON) != 0
8396 ? STT_COMMON : STT_OBJECT);
8397 }
8398 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
8399 }
8400 else if (bfd_is_und_section (syms[idx]->section))
8401 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
8402 ? STB_WEAK
8403 : STB_GLOBAL),
8404 type);
8405 else if (flags & BSF_FILE)
8406 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
8407 else
8408 {
8409 int bind = STB_LOCAL;
8410
8411 if (flags & BSF_LOCAL)
8412 bind = STB_LOCAL;
8413 else if (flags & BSF_GNU_UNIQUE)
8414 bind = STB_GNU_UNIQUE;
8415 else if (flags & BSF_WEAK)
8416 bind = STB_WEAK;
8417 else if (flags & BSF_GLOBAL)
8418 bind = STB_GLOBAL;
8419
8420 sym.st_info = ELF_ST_INFO (bind, type);
8421 }
8422
8423 if (type_ptr != NULL)
8424 {
8425 sym.st_other = type_ptr->internal_elf_sym.st_other;
8426 sym.st_target_internal
8427 = type_ptr->internal_elf_sym.st_target_internal;
8428 }
8429 else
8430 {
8431 sym.st_other = 0;
8432 sym.st_target_internal = 0;
8433 }
8434
8435 idx++;
8436 symstrtab[idx].sym = sym;
8437 symstrtab[idx].dest_index = outbound_syms_index;
8438
8439 outbound_syms_index++;
8440 }
8441
8442 /* Finalize the .strtab section. */
8443 _bfd_elf_strtab_finalize (stt);
8444
8445 /* Swap out the .strtab section. */
8446 for (idx = 0; idx <= symcount; idx++)
8447 {
8448 struct elf_sym_strtab *elfsym = &symstrtab[idx];
8449 if (elfsym->sym.st_name == (unsigned long) -1)
8450 elfsym->sym.st_name = 0;
8451 else
8452 elfsym->sym.st_name = _bfd_elf_strtab_offset (stt,
8453 elfsym->sym.st_name);
8454 if (info && info->callbacks->ctf_new_symbol)
8455 info->callbacks->ctf_new_symbol (elfsym->dest_index,
8456 &elfsym->sym);
8457
8458 /* Inform the linker of the addition of this symbol. */
8459
8460 bed->s->swap_symbol_out (abfd, &elfsym->sym,
8461 (outbound_syms
8462 + (elfsym->dest_index
8463 * bed->s->sizeof_sym)),
8464 NPTR_ADD (outbound_shndx,
8465 (elfsym->dest_index
8466 * sizeof (Elf_External_Sym_Shndx))));
8467 }
8468 free (symstrtab);
8469
8470 *sttp = stt;
8471 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (stt);
8472 symstrtab_hdr->sh_type = SHT_STRTAB;
8473 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
8474 symstrtab_hdr->sh_addr = 0;
8475 symstrtab_hdr->sh_entsize = 0;
8476 symstrtab_hdr->sh_link = 0;
8477 symstrtab_hdr->sh_info = 0;
8478 symstrtab_hdr->sh_addralign = 1;
8479
8480 return true;
8481 }
8482
8483 /* Return the number of bytes required to hold the symtab vector.
8484
8485 Note that we base it on the count plus 1, since we will null terminate
8486 the vector allocated based on this size. However, the ELF symbol table
8487 always has a dummy entry as symbol #0, so it ends up even. */
8488
8489 long
8490 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
8491 {
8492 bfd_size_type symcount;
8493 long symtab_size;
8494 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
8495
8496 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
8497 if (symcount > LONG_MAX / sizeof (asymbol *))
8498 {
8499 bfd_set_error (bfd_error_file_too_big);
8500 return -1;
8501 }
8502 symtab_size = symcount * (sizeof (asymbol *));
8503 if (symcount == 0)
8504 symtab_size = sizeof (asymbol *);
8505 else if (!bfd_write_p (abfd))
8506 {
8507 ufile_ptr filesize = bfd_get_file_size (abfd);
8508
8509 if (filesize != 0 && (unsigned long) symtab_size > filesize)
8510 {
8511 bfd_set_error (bfd_error_file_truncated);
8512 return -1;
8513 }
8514 }
8515
8516 return symtab_size;
8517 }
8518
8519 long
8520 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
8521 {
8522 bfd_size_type symcount;
8523 long symtab_size;
8524 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
8525
8526 if (elf_dynsymtab (abfd) == 0)
8527 {
8528 bfd_set_error (bfd_error_invalid_operation);
8529 return -1;
8530 }
8531
8532 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
8533 if (symcount > LONG_MAX / sizeof (asymbol *))
8534 {
8535 bfd_set_error (bfd_error_file_too_big);
8536 return -1;
8537 }
8538 symtab_size = symcount * (sizeof (asymbol *));
8539 if (symcount == 0)
8540 symtab_size = sizeof (asymbol *);
8541 else if (!bfd_write_p (abfd))
8542 {
8543 ufile_ptr filesize = bfd_get_file_size (abfd);
8544
8545 if (filesize != 0 && (unsigned long) symtab_size > filesize)
8546 {
8547 bfd_set_error (bfd_error_file_truncated);
8548 return -1;
8549 }
8550 }
8551
8552 return symtab_size;
8553 }
8554
8555 long
8556 _bfd_elf_get_reloc_upper_bound (bfd *abfd, sec_ptr asect)
8557 {
8558 if (asect->reloc_count != 0 && !bfd_write_p (abfd))
8559 {
8560 /* Sanity check reloc section size. */
8561 struct bfd_elf_section_data *d = elf_section_data (asect);
8562 Elf_Internal_Shdr *rel_hdr = &d->this_hdr;
8563 bfd_size_type ext_rel_size = rel_hdr->sh_size;
8564 ufile_ptr filesize = bfd_get_file_size (abfd);
8565
8566 if (filesize != 0 && ext_rel_size > filesize)
8567 {
8568 bfd_set_error (bfd_error_file_truncated);
8569 return -1;
8570 }
8571 }
8572
8573 #if SIZEOF_LONG == SIZEOF_INT
8574 if (asect->reloc_count >= LONG_MAX / sizeof (arelent *))
8575 {
8576 bfd_set_error (bfd_error_file_too_big);
8577 return -1;
8578 }
8579 #endif
8580 return (asect->reloc_count + 1L) * sizeof (arelent *);
8581 }
8582
8583 /* Canonicalize the relocs. */
8584
8585 long
8586 _bfd_elf_canonicalize_reloc (bfd *abfd,
8587 sec_ptr section,
8588 arelent **relptr,
8589 asymbol **symbols)
8590 {
8591 arelent *tblptr;
8592 unsigned int i;
8593 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8594
8595 if (! bed->s->slurp_reloc_table (abfd, section, symbols, false))
8596 return -1;
8597
8598 tblptr = section->relocation;
8599 for (i = 0; i < section->reloc_count; i++)
8600 *relptr++ = tblptr++;
8601
8602 *relptr = NULL;
8603
8604 return section->reloc_count;
8605 }
8606
8607 long
8608 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
8609 {
8610 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8611 long symcount = bed->s->slurp_symbol_table (abfd, allocation, false);
8612
8613 if (symcount >= 0)
8614 abfd->symcount = symcount;
8615 return symcount;
8616 }
8617
8618 long
8619 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
8620 asymbol **allocation)
8621 {
8622 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8623 long symcount = bed->s->slurp_symbol_table (abfd, allocation, true);
8624
8625 if (symcount >= 0)
8626 abfd->dynsymcount = symcount;
8627 return symcount;
8628 }
8629
8630 /* Return the size required for the dynamic reloc entries. Any loadable
8631 section that was actually installed in the BFD, and has type SHT_REL
8632 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
8633 dynamic reloc section. */
8634
8635 long
8636 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
8637 {
8638 bfd_size_type count, ext_rel_size;
8639 asection *s;
8640
8641 if (elf_dynsymtab (abfd) == 0)
8642 {
8643 bfd_set_error (bfd_error_invalid_operation);
8644 return -1;
8645 }
8646
8647 count = 1;
8648 ext_rel_size = 0;
8649 for (s = abfd->sections; s != NULL; s = s->next)
8650 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
8651 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
8652 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
8653 {
8654 ext_rel_size += s->size;
8655 if (ext_rel_size < s->size)
8656 {
8657 bfd_set_error (bfd_error_file_truncated);
8658 return -1;
8659 }
8660 count += s->size / elf_section_data (s)->this_hdr.sh_entsize;
8661 if (count > LONG_MAX / sizeof (arelent *))
8662 {
8663 bfd_set_error (bfd_error_file_too_big);
8664 return -1;
8665 }
8666 }
8667 if (count > 1 && !bfd_write_p (abfd))
8668 {
8669 /* Sanity check reloc section sizes. */
8670 ufile_ptr filesize = bfd_get_file_size (abfd);
8671 if (filesize != 0 && ext_rel_size > filesize)
8672 {
8673 bfd_set_error (bfd_error_file_truncated);
8674 return -1;
8675 }
8676 }
8677 return count * sizeof (arelent *);
8678 }
8679
8680 /* Canonicalize the dynamic relocation entries. Note that we return the
8681 dynamic relocations as a single block, although they are actually
8682 associated with particular sections; the interface, which was
8683 designed for SunOS style shared libraries, expects that there is only
8684 one set of dynamic relocs. Any loadable section that was actually
8685 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
8686 dynamic symbol table, is considered to be a dynamic reloc section. */
8687
8688 long
8689 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
8690 arelent **storage,
8691 asymbol **syms)
8692 {
8693 bool (*slurp_relocs) (bfd *, asection *, asymbol **, bool);
8694 asection *s;
8695 long ret;
8696
8697 if (elf_dynsymtab (abfd) == 0)
8698 {
8699 bfd_set_error (bfd_error_invalid_operation);
8700 return -1;
8701 }
8702
8703 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
8704 ret = 0;
8705 for (s = abfd->sections; s != NULL; s = s->next)
8706 {
8707 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
8708 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
8709 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
8710 {
8711 arelent *p;
8712 long count, i;
8713
8714 if (! (*slurp_relocs) (abfd, s, syms, true))
8715 return -1;
8716 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
8717 p = s->relocation;
8718 for (i = 0; i < count; i++)
8719 *storage++ = p++;
8720 ret += count;
8721 }
8722 }
8723
8724 *storage = NULL;
8725
8726 return ret;
8727 }
8728 \f
8729 /* Read in the version information. */
8730
8731 bool
8732 _bfd_elf_slurp_version_tables (bfd *abfd, bool default_imported_symver)
8733 {
8734 bfd_byte *contents = NULL;
8735 unsigned int freeidx = 0;
8736 size_t amt;
8737
8738 if (elf_dynverref (abfd) != 0)
8739 {
8740 Elf_Internal_Shdr *hdr;
8741 Elf_External_Verneed *everneed;
8742 Elf_Internal_Verneed *iverneed;
8743 unsigned int i;
8744 bfd_byte *contents_end;
8745
8746 hdr = &elf_tdata (abfd)->dynverref_hdr;
8747
8748 if (hdr->sh_info == 0
8749 || hdr->sh_info > hdr->sh_size / sizeof (Elf_External_Verneed))
8750 {
8751 error_return_bad_verref:
8752 _bfd_error_handler
8753 (_("%pB: .gnu.version_r invalid entry"), abfd);
8754 bfd_set_error (bfd_error_bad_value);
8755 error_return_verref:
8756 elf_tdata (abfd)->verref = NULL;
8757 elf_tdata (abfd)->cverrefs = 0;
8758 goto error_return;
8759 }
8760
8761 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0)
8762 goto error_return_verref;
8763 contents = _bfd_malloc_and_read (abfd, hdr->sh_size, hdr->sh_size);
8764 if (contents == NULL)
8765 goto error_return_verref;
8766
8767 if (_bfd_mul_overflow (hdr->sh_info, sizeof (Elf_Internal_Verneed), &amt))
8768 {
8769 bfd_set_error (bfd_error_file_too_big);
8770 goto error_return_verref;
8771 }
8772 elf_tdata (abfd)->verref = (Elf_Internal_Verneed *) bfd_alloc (abfd, amt);
8773 if (elf_tdata (abfd)->verref == NULL)
8774 goto error_return_verref;
8775
8776 BFD_ASSERT (sizeof (Elf_External_Verneed)
8777 == sizeof (Elf_External_Vernaux));
8778 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
8779 everneed = (Elf_External_Verneed *) contents;
8780 iverneed = elf_tdata (abfd)->verref;
8781 for (i = 0; i < hdr->sh_info; i++, iverneed++)
8782 {
8783 Elf_External_Vernaux *evernaux;
8784 Elf_Internal_Vernaux *ivernaux;
8785 unsigned int j;
8786
8787 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
8788
8789 iverneed->vn_bfd = abfd;
8790
8791 iverneed->vn_filename =
8792 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8793 iverneed->vn_file);
8794 if (iverneed->vn_filename == NULL)
8795 goto error_return_bad_verref;
8796
8797 if (iverneed->vn_cnt == 0)
8798 iverneed->vn_auxptr = NULL;
8799 else
8800 {
8801 if (_bfd_mul_overflow (iverneed->vn_cnt,
8802 sizeof (Elf_Internal_Vernaux), &amt))
8803 {
8804 bfd_set_error (bfd_error_file_too_big);
8805 goto error_return_verref;
8806 }
8807 iverneed->vn_auxptr = (struct elf_internal_vernaux *)
8808 bfd_alloc (abfd, amt);
8809 if (iverneed->vn_auxptr == NULL)
8810 goto error_return_verref;
8811 }
8812
8813 if (iverneed->vn_aux
8814 > (size_t) (contents_end - (bfd_byte *) everneed))
8815 goto error_return_bad_verref;
8816
8817 evernaux = ((Elf_External_Vernaux *)
8818 ((bfd_byte *) everneed + iverneed->vn_aux));
8819 ivernaux = iverneed->vn_auxptr;
8820 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
8821 {
8822 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
8823
8824 ivernaux->vna_nodename =
8825 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8826 ivernaux->vna_name);
8827 if (ivernaux->vna_nodename == NULL)
8828 goto error_return_bad_verref;
8829
8830 if (ivernaux->vna_other > freeidx)
8831 freeidx = ivernaux->vna_other;
8832
8833 ivernaux->vna_nextptr = NULL;
8834 if (ivernaux->vna_next == 0)
8835 {
8836 iverneed->vn_cnt = j + 1;
8837 break;
8838 }
8839 if (j + 1 < iverneed->vn_cnt)
8840 ivernaux->vna_nextptr = ivernaux + 1;
8841
8842 if (ivernaux->vna_next
8843 > (size_t) (contents_end - (bfd_byte *) evernaux))
8844 goto error_return_bad_verref;
8845
8846 evernaux = ((Elf_External_Vernaux *)
8847 ((bfd_byte *) evernaux + ivernaux->vna_next));
8848 }
8849
8850 iverneed->vn_nextref = NULL;
8851 if (iverneed->vn_next == 0)
8852 break;
8853 if (i + 1 < hdr->sh_info)
8854 iverneed->vn_nextref = iverneed + 1;
8855
8856 if (iverneed->vn_next
8857 > (size_t) (contents_end - (bfd_byte *) everneed))
8858 goto error_return_bad_verref;
8859
8860 everneed = ((Elf_External_Verneed *)
8861 ((bfd_byte *) everneed + iverneed->vn_next));
8862 }
8863 elf_tdata (abfd)->cverrefs = i;
8864
8865 free (contents);
8866 contents = NULL;
8867 }
8868
8869 if (elf_dynverdef (abfd) != 0)
8870 {
8871 Elf_Internal_Shdr *hdr;
8872 Elf_External_Verdef *everdef;
8873 Elf_Internal_Verdef *iverdef;
8874 Elf_Internal_Verdef *iverdefarr;
8875 Elf_Internal_Verdef iverdefmem;
8876 unsigned int i;
8877 unsigned int maxidx;
8878 bfd_byte *contents_end_def, *contents_end_aux;
8879
8880 hdr = &elf_tdata (abfd)->dynverdef_hdr;
8881
8882 if (hdr->sh_info == 0 || hdr->sh_size < sizeof (Elf_External_Verdef))
8883 {
8884 error_return_bad_verdef:
8885 _bfd_error_handler
8886 (_("%pB: .gnu.version_d invalid entry"), abfd);
8887 bfd_set_error (bfd_error_bad_value);
8888 error_return_verdef:
8889 elf_tdata (abfd)->verdef = NULL;
8890 elf_tdata (abfd)->cverdefs = 0;
8891 goto error_return;
8892 }
8893
8894 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0)
8895 goto error_return_verdef;
8896 contents = _bfd_malloc_and_read (abfd, hdr->sh_size, hdr->sh_size);
8897 if (contents == NULL)
8898 goto error_return_verdef;
8899
8900 BFD_ASSERT (sizeof (Elf_External_Verdef)
8901 >= sizeof (Elf_External_Verdaux));
8902 contents_end_def = contents + hdr->sh_size
8903 - sizeof (Elf_External_Verdef);
8904 contents_end_aux = contents + hdr->sh_size
8905 - sizeof (Elf_External_Verdaux);
8906
8907 /* We know the number of entries in the section but not the maximum
8908 index. Therefore we have to run through all entries and find
8909 the maximum. */
8910 everdef = (Elf_External_Verdef *) contents;
8911 maxidx = 0;
8912 for (i = 0; i < hdr->sh_info; ++i)
8913 {
8914 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
8915
8916 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) == 0)
8917 goto error_return_bad_verdef;
8918 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
8919 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
8920
8921 if (iverdefmem.vd_next == 0)
8922 break;
8923
8924 if (iverdefmem.vd_next
8925 > (size_t) (contents_end_def - (bfd_byte *) everdef))
8926 goto error_return_bad_verdef;
8927
8928 everdef = ((Elf_External_Verdef *)
8929 ((bfd_byte *) everdef + iverdefmem.vd_next));
8930 }
8931
8932 if (default_imported_symver)
8933 {
8934 if (freeidx > maxidx)
8935 maxidx = ++freeidx;
8936 else
8937 freeidx = ++maxidx;
8938 }
8939 if (_bfd_mul_overflow (maxidx, sizeof (Elf_Internal_Verdef), &amt))
8940 {
8941 bfd_set_error (bfd_error_file_too_big);
8942 goto error_return_verdef;
8943 }
8944 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *) bfd_zalloc (abfd, amt);
8945 if (elf_tdata (abfd)->verdef == NULL)
8946 goto error_return_verdef;
8947
8948 elf_tdata (abfd)->cverdefs = maxidx;
8949
8950 everdef = (Elf_External_Verdef *) contents;
8951 iverdefarr = elf_tdata (abfd)->verdef;
8952 for (i = 0; i < hdr->sh_info; i++)
8953 {
8954 Elf_External_Verdaux *everdaux;
8955 Elf_Internal_Verdaux *iverdaux;
8956 unsigned int j;
8957
8958 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
8959
8960 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
8961 goto error_return_bad_verdef;
8962
8963 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
8964 memcpy (iverdef, &iverdefmem, offsetof (Elf_Internal_Verdef, vd_bfd));
8965
8966 iverdef->vd_bfd = abfd;
8967
8968 if (iverdef->vd_cnt == 0)
8969 iverdef->vd_auxptr = NULL;
8970 else
8971 {
8972 if (_bfd_mul_overflow (iverdef->vd_cnt,
8973 sizeof (Elf_Internal_Verdaux), &amt))
8974 {
8975 bfd_set_error (bfd_error_file_too_big);
8976 goto error_return_verdef;
8977 }
8978 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
8979 bfd_alloc (abfd, amt);
8980 if (iverdef->vd_auxptr == NULL)
8981 goto error_return_verdef;
8982 }
8983
8984 if (iverdef->vd_aux
8985 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
8986 goto error_return_bad_verdef;
8987
8988 everdaux = ((Elf_External_Verdaux *)
8989 ((bfd_byte *) everdef + iverdef->vd_aux));
8990 iverdaux = iverdef->vd_auxptr;
8991 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
8992 {
8993 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
8994
8995 iverdaux->vda_nodename =
8996 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8997 iverdaux->vda_name);
8998 if (iverdaux->vda_nodename == NULL)
8999 goto error_return_bad_verdef;
9000
9001 iverdaux->vda_nextptr = NULL;
9002 if (iverdaux->vda_next == 0)
9003 {
9004 iverdef->vd_cnt = j + 1;
9005 break;
9006 }
9007 if (j + 1 < iverdef->vd_cnt)
9008 iverdaux->vda_nextptr = iverdaux + 1;
9009
9010 if (iverdaux->vda_next
9011 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
9012 goto error_return_bad_verdef;
9013
9014 everdaux = ((Elf_External_Verdaux *)
9015 ((bfd_byte *) everdaux + iverdaux->vda_next));
9016 }
9017
9018 iverdef->vd_nodename = NULL;
9019 if (iverdef->vd_cnt)
9020 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
9021
9022 iverdef->vd_nextdef = NULL;
9023 if (iverdef->vd_next == 0)
9024 break;
9025 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
9026 iverdef->vd_nextdef = iverdef + 1;
9027
9028 everdef = ((Elf_External_Verdef *)
9029 ((bfd_byte *) everdef + iverdef->vd_next));
9030 }
9031
9032 free (contents);
9033 contents = NULL;
9034 }
9035 else if (default_imported_symver)
9036 {
9037 if (freeidx < 3)
9038 freeidx = 3;
9039 else
9040 freeidx++;
9041
9042 if (_bfd_mul_overflow (freeidx, sizeof (Elf_Internal_Verdef), &amt))
9043 {
9044 bfd_set_error (bfd_error_file_too_big);
9045 goto error_return;
9046 }
9047 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *) bfd_zalloc (abfd, amt);
9048 if (elf_tdata (abfd)->verdef == NULL)
9049 goto error_return;
9050
9051 elf_tdata (abfd)->cverdefs = freeidx;
9052 }
9053
9054 /* Create a default version based on the soname. */
9055 if (default_imported_symver)
9056 {
9057 Elf_Internal_Verdef *iverdef;
9058 Elf_Internal_Verdaux *iverdaux;
9059
9060 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];
9061
9062 iverdef->vd_version = VER_DEF_CURRENT;
9063 iverdef->vd_flags = 0;
9064 iverdef->vd_ndx = freeidx;
9065 iverdef->vd_cnt = 1;
9066
9067 iverdef->vd_bfd = abfd;
9068
9069 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
9070 if (iverdef->vd_nodename == NULL)
9071 goto error_return_verdef;
9072 iverdef->vd_nextdef = NULL;
9073 iverdef->vd_auxptr = ((struct elf_internal_verdaux *)
9074 bfd_zalloc (abfd, sizeof (Elf_Internal_Verdaux)));
9075 if (iverdef->vd_auxptr == NULL)
9076 goto error_return_verdef;
9077
9078 iverdaux = iverdef->vd_auxptr;
9079 iverdaux->vda_nodename = iverdef->vd_nodename;
9080 }
9081
9082 return true;
9083
9084 error_return:
9085 free (contents);
9086 return false;
9087 }
9088 \f
9089 asymbol *
9090 _bfd_elf_make_empty_symbol (bfd *abfd)
9091 {
9092 elf_symbol_type *newsym;
9093
9094 newsym = (elf_symbol_type *) bfd_zalloc (abfd, sizeof (*newsym));
9095 if (!newsym)
9096 return NULL;
9097 newsym->symbol.the_bfd = abfd;
9098 return &newsym->symbol;
9099 }
9100
9101 void
9102 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
9103 asymbol *symbol,
9104 symbol_info *ret)
9105 {
9106 bfd_symbol_info (symbol, ret);
9107 }
9108
9109 /* Return whether a symbol name implies a local symbol. Most targets
9110 use this function for the is_local_label_name entry point, but some
9111 override it. */
9112
9113 bool
9114 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
9115 const char *name)
9116 {
9117 /* Normal local symbols start with ``.L''. */
9118 if (name[0] == '.' && name[1] == 'L')
9119 return true;
9120
9121 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
9122 DWARF debugging symbols starting with ``..''. */
9123 if (name[0] == '.' && name[1] == '.')
9124 return true;
9125
9126 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
9127 emitting DWARF debugging output. I suspect this is actually a
9128 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
9129 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
9130 underscore to be emitted on some ELF targets). For ease of use,
9131 we treat such symbols as local. */
9132 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
9133 return true;
9134
9135 /* Treat assembler generated fake symbols, dollar local labels and
9136 forward-backward labels (aka local labels) as locals.
9137 These labels have the form:
9138
9139 L0^A.* (fake symbols)
9140
9141 [.]?L[0123456789]+{^A|^B}[0123456789]* (local labels)
9142
9143 Versions which start with .L will have already been matched above,
9144 so we only need to match the rest. */
9145 if (name[0] == 'L' && ISDIGIT (name[1]))
9146 {
9147 bool ret = false;
9148 const char * p;
9149 char c;
9150
9151 for (p = name + 2; (c = *p); p++)
9152 {
9153 if (c == 1 || c == 2)
9154 {
9155 if (c == 1 && p == name + 2)
9156 /* A fake symbol. */
9157 return true;
9158
9159 /* FIXME: We are being paranoid here and treating symbols like
9160 L0^Bfoo as if there were non-local, on the grounds that the
9161 assembler will never generate them. But can any symbol
9162 containing an ASCII value in the range 1-31 ever be anything
9163 other than some kind of local ? */
9164 ret = true;
9165 }
9166
9167 if (! ISDIGIT (c))
9168 {
9169 ret = false;
9170 break;
9171 }
9172 }
9173 return ret;
9174 }
9175
9176 return false;
9177 }
9178
9179 alent *
9180 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
9181 asymbol *symbol ATTRIBUTE_UNUSED)
9182 {
9183 abort ();
9184 return NULL;
9185 }
9186
9187 bool
9188 _bfd_elf_set_arch_mach (bfd *abfd,
9189 enum bfd_architecture arch,
9190 unsigned long machine)
9191 {
9192 /* If this isn't the right architecture for this backend, and this
9193 isn't the generic backend, fail. */
9194 if (arch != get_elf_backend_data (abfd)->arch
9195 && arch != bfd_arch_unknown
9196 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
9197 return false;
9198
9199 return bfd_default_set_arch_mach (abfd, arch, machine);
9200 }
9201
9202 /* Find the nearest line to a particular section and offset,
9203 for error reporting. */
9204
9205 bool
9206 _bfd_elf_find_nearest_line (bfd *abfd,
9207 asymbol **symbols,
9208 asection *section,
9209 bfd_vma offset,
9210 const char **filename_ptr,
9211 const char **functionname_ptr,
9212 unsigned int *line_ptr,
9213 unsigned int *discriminator_ptr)
9214 {
9215 bool found;
9216
9217 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
9218 filename_ptr, functionname_ptr,
9219 line_ptr, discriminator_ptr,
9220 dwarf_debug_sections,
9221 &elf_tdata (abfd)->dwarf2_find_line_info))
9222 return true;
9223
9224 if (_bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
9225 filename_ptr, functionname_ptr, line_ptr))
9226 {
9227 if (!*functionname_ptr)
9228 _bfd_elf_find_function (abfd, symbols, section, offset,
9229 *filename_ptr ? NULL : filename_ptr,
9230 functionname_ptr);
9231 return true;
9232 }
9233
9234 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
9235 &found, filename_ptr,
9236 functionname_ptr, line_ptr,
9237 &elf_tdata (abfd)->line_info))
9238 return false;
9239 if (found && (*functionname_ptr || *line_ptr))
9240 return true;
9241
9242 if (symbols == NULL)
9243 return false;
9244
9245 if (! _bfd_elf_find_function (abfd, symbols, section, offset,
9246 filename_ptr, functionname_ptr))
9247 return false;
9248
9249 *line_ptr = 0;
9250 return true;
9251 }
9252
9253 /* Find the line for a symbol. */
9254
9255 bool
9256 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
9257 const char **filename_ptr, unsigned int *line_ptr)
9258 {
9259 return _bfd_dwarf2_find_nearest_line (abfd, symbols, symbol, NULL, 0,
9260 filename_ptr, NULL, line_ptr, NULL,
9261 dwarf_debug_sections,
9262 &elf_tdata (abfd)->dwarf2_find_line_info);
9263 }
9264
9265 /* After a call to bfd_find_nearest_line, successive calls to
9266 bfd_find_inliner_info can be used to get source information about
9267 each level of function inlining that terminated at the address
9268 passed to bfd_find_nearest_line. Currently this is only supported
9269 for DWARF2 with appropriate DWARF3 extensions. */
9270
9271 bool
9272 _bfd_elf_find_inliner_info (bfd *abfd,
9273 const char **filename_ptr,
9274 const char **functionname_ptr,
9275 unsigned int *line_ptr)
9276 {
9277 bool found;
9278 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
9279 functionname_ptr, line_ptr,
9280 & elf_tdata (abfd)->dwarf2_find_line_info);
9281 return found;
9282 }
9283
9284 int
9285 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
9286 {
9287 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9288 int ret = bed->s->sizeof_ehdr;
9289
9290 if (!bfd_link_relocatable (info))
9291 {
9292 bfd_size_type phdr_size = elf_program_header_size (abfd);
9293
9294 if (phdr_size == (bfd_size_type) -1)
9295 {
9296 struct elf_segment_map *m;
9297
9298 phdr_size = 0;
9299 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
9300 phdr_size += bed->s->sizeof_phdr;
9301
9302 if (phdr_size == 0)
9303 phdr_size = get_program_header_size (abfd, info);
9304 }
9305
9306 elf_program_header_size (abfd) = phdr_size;
9307 ret += phdr_size;
9308 }
9309
9310 return ret;
9311 }
9312
9313 bool
9314 _bfd_elf_set_section_contents (bfd *abfd,
9315 sec_ptr section,
9316 const void *location,
9317 file_ptr offset,
9318 bfd_size_type count)
9319 {
9320 Elf_Internal_Shdr *hdr;
9321 file_ptr pos;
9322
9323 if (! abfd->output_has_begun
9324 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
9325 return false;
9326
9327 if (!count)
9328 return true;
9329
9330 hdr = &elf_section_data (section)->this_hdr;
9331 if (hdr->sh_offset == (file_ptr) -1)
9332 {
9333 unsigned char *contents;
9334
9335 if (bfd_section_is_ctf (section))
9336 /* Nothing to do with this section: the contents are generated
9337 later. */
9338 return true;
9339
9340 if ((section->flags & SEC_ELF_COMPRESS) == 0)
9341 {
9342 _bfd_error_handler
9343 (_("%pB:%pA: error: attempting to write into an unallocated compressed section"),
9344 abfd, section);
9345 bfd_set_error (bfd_error_invalid_operation);
9346 return false;
9347 }
9348
9349 if ((offset + count) > hdr->sh_size)
9350 {
9351 _bfd_error_handler
9352 (_("%pB:%pA: error: attempting to write over the end of the section"),
9353 abfd, section);
9354
9355 bfd_set_error (bfd_error_invalid_operation);
9356 return false;
9357 }
9358
9359 contents = hdr->contents;
9360 if (contents == NULL)
9361 {
9362 _bfd_error_handler
9363 (_("%pB:%pA: error: attempting to write section into an empty buffer"),
9364 abfd, section);
9365
9366 bfd_set_error (bfd_error_invalid_operation);
9367 return false;
9368 }
9369
9370 memcpy (contents + offset, location, count);
9371 return true;
9372 }
9373
9374 pos = hdr->sh_offset + offset;
9375 if (bfd_seek (abfd, pos, SEEK_SET) != 0
9376 || bfd_bwrite (location, count, abfd) != count)
9377 return false;
9378
9379 return true;
9380 }
9381
9382 bool
9383 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
9384 arelent *cache_ptr ATTRIBUTE_UNUSED,
9385 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
9386 {
9387 abort ();
9388 return false;
9389 }
9390
9391 /* Try to convert a non-ELF reloc into an ELF one. */
9392
9393 bool
9394 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
9395 {
9396 /* Check whether we really have an ELF howto. */
9397
9398 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
9399 {
9400 bfd_reloc_code_real_type code;
9401 reloc_howto_type *howto;
9402
9403 /* Alien reloc: Try to determine its type to replace it with an
9404 equivalent ELF reloc. */
9405
9406 if (areloc->howto->pc_relative)
9407 {
9408 switch (areloc->howto->bitsize)
9409 {
9410 case 8:
9411 code = BFD_RELOC_8_PCREL;
9412 break;
9413 case 12:
9414 code = BFD_RELOC_12_PCREL;
9415 break;
9416 case 16:
9417 code = BFD_RELOC_16_PCREL;
9418 break;
9419 case 24:
9420 code = BFD_RELOC_24_PCREL;
9421 break;
9422 case 32:
9423 code = BFD_RELOC_32_PCREL;
9424 break;
9425 case 64:
9426 code = BFD_RELOC_64_PCREL;
9427 break;
9428 default:
9429 goto fail;
9430 }
9431
9432 howto = bfd_reloc_type_lookup (abfd, code);
9433
9434 if (howto && areloc->howto->pcrel_offset != howto->pcrel_offset)
9435 {
9436 if (howto->pcrel_offset)
9437 areloc->addend += areloc->address;
9438 else
9439 areloc->addend -= areloc->address; /* addend is unsigned!! */
9440 }
9441 }
9442 else
9443 {
9444 switch (areloc->howto->bitsize)
9445 {
9446 case 8:
9447 code = BFD_RELOC_8;
9448 break;
9449 case 14:
9450 code = BFD_RELOC_14;
9451 break;
9452 case 16:
9453 code = BFD_RELOC_16;
9454 break;
9455 case 26:
9456 code = BFD_RELOC_26;
9457 break;
9458 case 32:
9459 code = BFD_RELOC_32;
9460 break;
9461 case 64:
9462 code = BFD_RELOC_64;
9463 break;
9464 default:
9465 goto fail;
9466 }
9467
9468 howto = bfd_reloc_type_lookup (abfd, code);
9469 }
9470
9471 if (howto)
9472 areloc->howto = howto;
9473 else
9474 goto fail;
9475 }
9476
9477 return true;
9478
9479 fail:
9480 /* xgettext:c-format */
9481 _bfd_error_handler (_("%pB: %s unsupported"),
9482 abfd, areloc->howto->name);
9483 bfd_set_error (bfd_error_sorry);
9484 return false;
9485 }
9486
9487 bool
9488 _bfd_elf_close_and_cleanup (bfd *abfd)
9489 {
9490 struct elf_obj_tdata *tdata = elf_tdata (abfd);
9491 if (tdata != NULL
9492 && (bfd_get_format (abfd) == bfd_object
9493 || bfd_get_format (abfd) == bfd_core))
9494 {
9495 if (elf_tdata (abfd)->o != NULL && elf_shstrtab (abfd) != NULL)
9496 _bfd_elf_strtab_free (elf_shstrtab (abfd));
9497 _bfd_dwarf2_cleanup_debug_info (abfd, &tdata->dwarf2_find_line_info);
9498 }
9499
9500 return _bfd_generic_close_and_cleanup (abfd);
9501 }
9502
9503 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
9504 in the relocation's offset. Thus we cannot allow any sort of sanity
9505 range-checking to interfere. There is nothing else to do in processing
9506 this reloc. */
9507
9508 bfd_reloc_status_type
9509 _bfd_elf_rel_vtable_reloc_fn
9510 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
9511 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
9512 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
9513 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
9514 {
9515 return bfd_reloc_ok;
9516 }
9517 \f
9518 /* Elf core file support. Much of this only works on native
9519 toolchains, since we rely on knowing the
9520 machine-dependent procfs structure in order to pick
9521 out details about the corefile. */
9522
9523 #ifdef HAVE_SYS_PROCFS_H
9524 # include <sys/procfs.h>
9525 #endif
9526
9527 /* Return a PID that identifies a "thread" for threaded cores, or the
9528 PID of the main process for non-threaded cores. */
9529
9530 static int
9531 elfcore_make_pid (bfd *abfd)
9532 {
9533 int pid;
9534
9535 pid = elf_tdata (abfd)->core->lwpid;
9536 if (pid == 0)
9537 pid = elf_tdata (abfd)->core->pid;
9538
9539 return pid;
9540 }
9541
9542 /* If there isn't a section called NAME, make one, using
9543 data from SECT. Note, this function will generate a
9544 reference to NAME, so you shouldn't deallocate or
9545 overwrite it. */
9546
9547 static bool
9548 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
9549 {
9550 asection *sect2;
9551
9552 if (bfd_get_section_by_name (abfd, name) != NULL)
9553 return true;
9554
9555 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
9556 if (sect2 == NULL)
9557 return false;
9558
9559 sect2->size = sect->size;
9560 sect2->filepos = sect->filepos;
9561 sect2->alignment_power = sect->alignment_power;
9562 return true;
9563 }
9564
9565 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
9566 actually creates up to two pseudosections:
9567 - For the single-threaded case, a section named NAME, unless
9568 such a section already exists.
9569 - For the multi-threaded case, a section named "NAME/PID", where
9570 PID is elfcore_make_pid (abfd).
9571 Both pseudosections have identical contents. */
9572 bool
9573 _bfd_elfcore_make_pseudosection (bfd *abfd,
9574 char *name,
9575 size_t size,
9576 ufile_ptr filepos)
9577 {
9578 char buf[100];
9579 char *threaded_name;
9580 size_t len;
9581 asection *sect;
9582
9583 /* Build the section name. */
9584
9585 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
9586 len = strlen (buf) + 1;
9587 threaded_name = (char *) bfd_alloc (abfd, len);
9588 if (threaded_name == NULL)
9589 return false;
9590 memcpy (threaded_name, buf, len);
9591
9592 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
9593 SEC_HAS_CONTENTS);
9594 if (sect == NULL)
9595 return false;
9596 sect->size = size;
9597 sect->filepos = filepos;
9598 sect->alignment_power = 2;
9599
9600 return elfcore_maybe_make_sect (abfd, name, sect);
9601 }
9602
9603 static bool
9604 elfcore_make_auxv_note_section (bfd *abfd, Elf_Internal_Note *note,
9605 size_t offs)
9606 {
9607 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
9608 SEC_HAS_CONTENTS);
9609
9610 if (sect == NULL)
9611 return false;
9612
9613 sect->size = note->descsz - offs;
9614 sect->filepos = note->descpos + offs;
9615 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
9616
9617 return true;
9618 }
9619
9620 /* prstatus_t exists on:
9621 solaris 2.5+
9622 linux 2.[01] + glibc
9623 unixware 4.2
9624 */
9625
9626 #if defined (HAVE_PRSTATUS_T)
9627
9628 static bool
9629 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
9630 {
9631 size_t size;
9632 int offset;
9633
9634 if (note->descsz == sizeof (prstatus_t))
9635 {
9636 prstatus_t prstat;
9637
9638 size = sizeof (prstat.pr_reg);
9639 offset = offsetof (prstatus_t, pr_reg);
9640 memcpy (&prstat, note->descdata, sizeof (prstat));
9641
9642 /* Do not overwrite the core signal if it
9643 has already been set by another thread. */
9644 if (elf_tdata (abfd)->core->signal == 0)
9645 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
9646 if (elf_tdata (abfd)->core->pid == 0)
9647 elf_tdata (abfd)->core->pid = prstat.pr_pid;
9648
9649 /* pr_who exists on:
9650 solaris 2.5+
9651 unixware 4.2
9652 pr_who doesn't exist on:
9653 linux 2.[01]
9654 */
9655 #if defined (HAVE_PRSTATUS_T_PR_WHO)
9656 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
9657 #else
9658 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
9659 #endif
9660 }
9661 #if defined (HAVE_PRSTATUS32_T)
9662 else if (note->descsz == sizeof (prstatus32_t))
9663 {
9664 /* 64-bit host, 32-bit corefile */
9665 prstatus32_t prstat;
9666
9667 size = sizeof (prstat.pr_reg);
9668 offset = offsetof (prstatus32_t, pr_reg);
9669 memcpy (&prstat, note->descdata, sizeof (prstat));
9670
9671 /* Do not overwrite the core signal if it
9672 has already been set by another thread. */
9673 if (elf_tdata (abfd)->core->signal == 0)
9674 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
9675 if (elf_tdata (abfd)->core->pid == 0)
9676 elf_tdata (abfd)->core->pid = prstat.pr_pid;
9677
9678 /* pr_who exists on:
9679 solaris 2.5+
9680 unixware 4.2
9681 pr_who doesn't exist on:
9682 linux 2.[01]
9683 */
9684 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
9685 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
9686 #else
9687 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
9688 #endif
9689 }
9690 #endif /* HAVE_PRSTATUS32_T */
9691 else
9692 {
9693 /* Fail - we don't know how to handle any other
9694 note size (ie. data object type). */
9695 return true;
9696 }
9697
9698 /* Make a ".reg/999" section and a ".reg" section. */
9699 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
9700 size, note->descpos + offset);
9701 }
9702 #endif /* defined (HAVE_PRSTATUS_T) */
9703
9704 /* Create a pseudosection containing the exact contents of NOTE. */
9705 static bool
9706 elfcore_make_note_pseudosection (bfd *abfd,
9707 char *name,
9708 Elf_Internal_Note *note)
9709 {
9710 return _bfd_elfcore_make_pseudosection (abfd, name,
9711 note->descsz, note->descpos);
9712 }
9713
9714 /* There isn't a consistent prfpregset_t across platforms,
9715 but it doesn't matter, because we don't have to pick this
9716 data structure apart. */
9717
9718 static bool
9719 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
9720 {
9721 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
9722 }
9723
9724 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
9725 type of NT_PRXFPREG. Just include the whole note's contents
9726 literally. */
9727
9728 static bool
9729 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
9730 {
9731 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
9732 }
9733
9734 /* Linux dumps the Intel XSAVE extended state in a note named "LINUX"
9735 with a note type of NT_X86_XSTATE. Just include the whole note's
9736 contents literally. */
9737
9738 static bool
9739 elfcore_grok_xstatereg (bfd *abfd, Elf_Internal_Note *note)
9740 {
9741 return elfcore_make_note_pseudosection (abfd, ".reg-xstate", note);
9742 }
9743
9744 static bool
9745 elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
9746 {
9747 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
9748 }
9749
9750 static bool
9751 elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note)
9752 {
9753 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note);
9754 }
9755
9756 static bool
9757 elfcore_grok_ppc_tar (bfd *abfd, Elf_Internal_Note *note)
9758 {
9759 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tar", note);
9760 }
9761
9762 static bool
9763 elfcore_grok_ppc_ppr (bfd *abfd, Elf_Internal_Note *note)
9764 {
9765 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-ppr", note);
9766 }
9767
9768 static bool
9769 elfcore_grok_ppc_dscr (bfd *abfd, Elf_Internal_Note *note)
9770 {
9771 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-dscr", note);
9772 }
9773
9774 static bool
9775 elfcore_grok_ppc_ebb (bfd *abfd, Elf_Internal_Note *note)
9776 {
9777 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-ebb", note);
9778 }
9779
9780 static bool
9781 elfcore_grok_ppc_pmu (bfd *abfd, Elf_Internal_Note *note)
9782 {
9783 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-pmu", note);
9784 }
9785
9786 static bool
9787 elfcore_grok_ppc_tm_cgpr (bfd *abfd, Elf_Internal_Note *note)
9788 {
9789 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cgpr", note);
9790 }
9791
9792 static bool
9793 elfcore_grok_ppc_tm_cfpr (bfd *abfd, Elf_Internal_Note *note)
9794 {
9795 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cfpr", note);
9796 }
9797
9798 static bool
9799 elfcore_grok_ppc_tm_cvmx (bfd *abfd, Elf_Internal_Note *note)
9800 {
9801 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cvmx", note);
9802 }
9803
9804 static bool
9805 elfcore_grok_ppc_tm_cvsx (bfd *abfd, Elf_Internal_Note *note)
9806 {
9807 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cvsx", note);
9808 }
9809
9810 static bool
9811 elfcore_grok_ppc_tm_spr (bfd *abfd, Elf_Internal_Note *note)
9812 {
9813 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-spr", note);
9814 }
9815
9816 static bool
9817 elfcore_grok_ppc_tm_ctar (bfd *abfd, Elf_Internal_Note *note)
9818 {
9819 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-ctar", note);
9820 }
9821
9822 static bool
9823 elfcore_grok_ppc_tm_cppr (bfd *abfd, Elf_Internal_Note *note)
9824 {
9825 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cppr", note);
9826 }
9827
9828 static bool
9829 elfcore_grok_ppc_tm_cdscr (bfd *abfd, Elf_Internal_Note *note)
9830 {
9831 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cdscr", note);
9832 }
9833
9834 static bool
9835 elfcore_grok_s390_high_gprs (bfd *abfd, Elf_Internal_Note *note)
9836 {
9837 return elfcore_make_note_pseudosection (abfd, ".reg-s390-high-gprs", note);
9838 }
9839
9840 static bool
9841 elfcore_grok_s390_timer (bfd *abfd, Elf_Internal_Note *note)
9842 {
9843 return elfcore_make_note_pseudosection (abfd, ".reg-s390-timer", note);
9844 }
9845
9846 static bool
9847 elfcore_grok_s390_todcmp (bfd *abfd, Elf_Internal_Note *note)
9848 {
9849 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todcmp", note);
9850 }
9851
9852 static bool
9853 elfcore_grok_s390_todpreg (bfd *abfd, Elf_Internal_Note *note)
9854 {
9855 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todpreg", note);
9856 }
9857
9858 static bool
9859 elfcore_grok_s390_ctrs (bfd *abfd, Elf_Internal_Note *note)
9860 {
9861 return elfcore_make_note_pseudosection (abfd, ".reg-s390-ctrs", note);
9862 }
9863
9864 static bool
9865 elfcore_grok_s390_prefix (bfd *abfd, Elf_Internal_Note *note)
9866 {
9867 return elfcore_make_note_pseudosection (abfd, ".reg-s390-prefix", note);
9868 }
9869
9870 static bool
9871 elfcore_grok_s390_last_break (bfd *abfd, Elf_Internal_Note *note)
9872 {
9873 return elfcore_make_note_pseudosection (abfd, ".reg-s390-last-break", note);
9874 }
9875
9876 static bool
9877 elfcore_grok_s390_system_call (bfd *abfd, Elf_Internal_Note *note)
9878 {
9879 return elfcore_make_note_pseudosection (abfd, ".reg-s390-system-call", note);
9880 }
9881
9882 static bool
9883 elfcore_grok_s390_tdb (bfd *abfd, Elf_Internal_Note *note)
9884 {
9885 return elfcore_make_note_pseudosection (abfd, ".reg-s390-tdb", note);
9886 }
9887
9888 static bool
9889 elfcore_grok_s390_vxrs_low (bfd *abfd, Elf_Internal_Note *note)
9890 {
9891 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-low", note);
9892 }
9893
9894 static bool
9895 elfcore_grok_s390_vxrs_high (bfd *abfd, Elf_Internal_Note *note)
9896 {
9897 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-high", note);
9898 }
9899
9900 static bool
9901 elfcore_grok_s390_gs_cb (bfd *abfd, Elf_Internal_Note *note)
9902 {
9903 return elfcore_make_note_pseudosection (abfd, ".reg-s390-gs-cb", note);
9904 }
9905
9906 static bool
9907 elfcore_grok_s390_gs_bc (bfd *abfd, Elf_Internal_Note *note)
9908 {
9909 return elfcore_make_note_pseudosection (abfd, ".reg-s390-gs-bc", note);
9910 }
9911
9912 static bool
9913 elfcore_grok_arm_vfp (bfd *abfd, Elf_Internal_Note *note)
9914 {
9915 return elfcore_make_note_pseudosection (abfd, ".reg-arm-vfp", note);
9916 }
9917
9918 static bool
9919 elfcore_grok_aarch_tls (bfd *abfd, Elf_Internal_Note *note)
9920 {
9921 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-tls", note);
9922 }
9923
9924 static bool
9925 elfcore_grok_aarch_hw_break (bfd *abfd, Elf_Internal_Note *note)
9926 {
9927 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-break", note);
9928 }
9929
9930 static bool
9931 elfcore_grok_aarch_hw_watch (bfd *abfd, Elf_Internal_Note *note)
9932 {
9933 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-watch", note);
9934 }
9935
9936 static bool
9937 elfcore_grok_aarch_sve (bfd *abfd, Elf_Internal_Note *note)
9938 {
9939 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-sve", note);
9940 }
9941
9942 static bool
9943 elfcore_grok_aarch_pauth (bfd *abfd, Elf_Internal_Note *note)
9944 {
9945 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-pauth", note);
9946 }
9947
9948 static bool
9949 elfcore_grok_aarch_mte (bfd *abfd, Elf_Internal_Note *note)
9950 {
9951 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-mte",
9952 note);
9953 }
9954
9955 static bool
9956 elfcore_grok_arc_v2 (bfd *abfd, Elf_Internal_Note *note)
9957 {
9958 return elfcore_make_note_pseudosection (abfd, ".reg-arc-v2", note);
9959 }
9960
9961 /* Convert NOTE into a bfd_section called ".reg-riscv-csr". Return TRUE if
9962 successful otherwise, return FALSE. */
9963
9964 static bool
9965 elfcore_grok_riscv_csr (bfd *abfd, Elf_Internal_Note *note)
9966 {
9967 return elfcore_make_note_pseudosection (abfd, ".reg-riscv-csr", note);
9968 }
9969
9970 /* Convert NOTE into a bfd_section called ".gdb-tdesc". Return TRUE if
9971 successful otherwise, return FALSE. */
9972
9973 static bool
9974 elfcore_grok_gdb_tdesc (bfd *abfd, Elf_Internal_Note *note)
9975 {
9976 return elfcore_make_note_pseudosection (abfd, ".gdb-tdesc", note);
9977 }
9978
9979 static bool
9980 elfcore_grok_loongarch_cpucfg (bfd *abfd, Elf_Internal_Note *note)
9981 {
9982 return elfcore_make_note_pseudosection (abfd, ".reg-loongarch-cpucfg", note);
9983 }
9984
9985 static bool
9986 elfcore_grok_loongarch_lbt (bfd *abfd, Elf_Internal_Note *note)
9987 {
9988 return elfcore_make_note_pseudosection (abfd, ".reg-loongarch-lbt", note);
9989 }
9990
9991 static bool
9992 elfcore_grok_loongarch_lsx (bfd *abfd, Elf_Internal_Note *note)
9993 {
9994 return elfcore_make_note_pseudosection (abfd, ".reg-loongarch-lsx", note);
9995 }
9996
9997 static bool
9998 elfcore_grok_loongarch_lasx (bfd *abfd, Elf_Internal_Note *note)
9999 {
10000 return elfcore_make_note_pseudosection (abfd, ".reg-loongarch-lasx", note);
10001 }
10002
10003 #if defined (HAVE_PRPSINFO_T)
10004 typedef prpsinfo_t elfcore_psinfo_t;
10005 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
10006 typedef prpsinfo32_t elfcore_psinfo32_t;
10007 #endif
10008 #endif
10009
10010 #if defined (HAVE_PSINFO_T)
10011 typedef psinfo_t elfcore_psinfo_t;
10012 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
10013 typedef psinfo32_t elfcore_psinfo32_t;
10014 #endif
10015 #endif
10016
10017 /* return a malloc'ed copy of a string at START which is at
10018 most MAX bytes long, possibly without a terminating '\0'.
10019 the copy will always have a terminating '\0'. */
10020
10021 char *
10022 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
10023 {
10024 char *dups;
10025 char *end = (char *) memchr (start, '\0', max);
10026 size_t len;
10027
10028 if (end == NULL)
10029 len = max;
10030 else
10031 len = end - start;
10032
10033 dups = (char *) bfd_alloc (abfd, len + 1);
10034 if (dups == NULL)
10035 return NULL;
10036
10037 memcpy (dups, start, len);
10038 dups[len] = '\0';
10039
10040 return dups;
10041 }
10042
10043 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
10044 static bool
10045 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
10046 {
10047 if (note->descsz == sizeof (elfcore_psinfo_t))
10048 {
10049 elfcore_psinfo_t psinfo;
10050
10051 memcpy (&psinfo, note->descdata, sizeof (psinfo));
10052
10053 #if defined (HAVE_PSINFO_T_PR_PID) || defined (HAVE_PRPSINFO_T_PR_PID)
10054 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
10055 #endif
10056 elf_tdata (abfd)->core->program
10057 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
10058 sizeof (psinfo.pr_fname));
10059
10060 elf_tdata (abfd)->core->command
10061 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
10062 sizeof (psinfo.pr_psargs));
10063 }
10064 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
10065 else if (note->descsz == sizeof (elfcore_psinfo32_t))
10066 {
10067 /* 64-bit host, 32-bit corefile */
10068 elfcore_psinfo32_t psinfo;
10069
10070 memcpy (&psinfo, note->descdata, sizeof (psinfo));
10071
10072 #if defined (HAVE_PSINFO32_T_PR_PID) || defined (HAVE_PRPSINFO32_T_PR_PID)
10073 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
10074 #endif
10075 elf_tdata (abfd)->core->program
10076 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
10077 sizeof (psinfo.pr_fname));
10078
10079 elf_tdata (abfd)->core->command
10080 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
10081 sizeof (psinfo.pr_psargs));
10082 }
10083 #endif
10084
10085 else
10086 {
10087 /* Fail - we don't know how to handle any other
10088 note size (ie. data object type). */
10089 return true;
10090 }
10091
10092 /* Note that for some reason, a spurious space is tacked
10093 onto the end of the args in some (at least one anyway)
10094 implementations, so strip it off if it exists. */
10095
10096 {
10097 char *command = elf_tdata (abfd)->core->command;
10098 int n = strlen (command);
10099
10100 if (0 < n && command[n - 1] == ' ')
10101 command[n - 1] = '\0';
10102 }
10103
10104 return true;
10105 }
10106 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
10107
10108 #if defined (HAVE_PSTATUS_T)
10109 static bool
10110 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
10111 {
10112 if (note->descsz == sizeof (pstatus_t)
10113 #if defined (HAVE_PXSTATUS_T)
10114 || note->descsz == sizeof (pxstatus_t)
10115 #endif
10116 )
10117 {
10118 pstatus_t pstat;
10119
10120 memcpy (&pstat, note->descdata, sizeof (pstat));
10121
10122 elf_tdata (abfd)->core->pid = pstat.pr_pid;
10123 }
10124 #if defined (HAVE_PSTATUS32_T)
10125 else if (note->descsz == sizeof (pstatus32_t))
10126 {
10127 /* 64-bit host, 32-bit corefile */
10128 pstatus32_t pstat;
10129
10130 memcpy (&pstat, note->descdata, sizeof (pstat));
10131
10132 elf_tdata (abfd)->core->pid = pstat.pr_pid;
10133 }
10134 #endif
10135 /* Could grab some more details from the "representative"
10136 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
10137 NT_LWPSTATUS note, presumably. */
10138
10139 return true;
10140 }
10141 #endif /* defined (HAVE_PSTATUS_T) */
10142
10143 #if defined (HAVE_LWPSTATUS_T)
10144 static bool
10145 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
10146 {
10147 lwpstatus_t lwpstat;
10148 char buf[100];
10149 char *name;
10150 size_t len;
10151 asection *sect;
10152
10153 if (note->descsz != sizeof (lwpstat)
10154 #if defined (HAVE_LWPXSTATUS_T)
10155 && note->descsz != sizeof (lwpxstatus_t)
10156 #endif
10157 )
10158 return true;
10159
10160 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
10161
10162 elf_tdata (abfd)->core->lwpid = lwpstat.pr_lwpid;
10163 /* Do not overwrite the core signal if it has already been set by
10164 another thread. */
10165 if (elf_tdata (abfd)->core->signal == 0)
10166 elf_tdata (abfd)->core->signal = lwpstat.pr_cursig;
10167
10168 /* Make a ".reg/999" section. */
10169
10170 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
10171 len = strlen (buf) + 1;
10172 name = bfd_alloc (abfd, len);
10173 if (name == NULL)
10174 return false;
10175 memcpy (name, buf, len);
10176
10177 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10178 if (sect == NULL)
10179 return false;
10180
10181 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
10182 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
10183 sect->filepos = note->descpos
10184 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
10185 #endif
10186
10187 #if defined (HAVE_LWPSTATUS_T_PR_REG)
10188 sect->size = sizeof (lwpstat.pr_reg);
10189 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
10190 #endif
10191
10192 sect->alignment_power = 2;
10193
10194 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
10195 return false;
10196
10197 /* Make a ".reg2/999" section */
10198
10199 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
10200 len = strlen (buf) + 1;
10201 name = bfd_alloc (abfd, len);
10202 if (name == NULL)
10203 return false;
10204 memcpy (name, buf, len);
10205
10206 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10207 if (sect == NULL)
10208 return false;
10209
10210 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
10211 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
10212 sect->filepos = note->descpos
10213 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
10214 #endif
10215
10216 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
10217 sect->size = sizeof (lwpstat.pr_fpreg);
10218 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
10219 #endif
10220
10221 sect->alignment_power = 2;
10222
10223 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
10224 }
10225 #endif /* defined (HAVE_LWPSTATUS_T) */
10226
10227 /* These constants, and the structure offsets used below, are defined by
10228 Cygwin's core_dump.h */
10229 #define NOTE_INFO_PROCESS 1
10230 #define NOTE_INFO_THREAD 2
10231 #define NOTE_INFO_MODULE 3
10232 #define NOTE_INFO_MODULE64 4
10233
10234 static bool
10235 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
10236 {
10237 char buf[30];
10238 char *name;
10239 size_t len;
10240 unsigned int name_size;
10241 asection *sect;
10242 unsigned int type;
10243 int is_active_thread;
10244 bfd_vma base_addr;
10245
10246 if (note->descsz < 4)
10247 return true;
10248
10249 if (! startswith (note->namedata, "win32"))
10250 return true;
10251
10252 type = bfd_get_32 (abfd, note->descdata);
10253
10254 struct
10255 {
10256 const char *type_name;
10257 unsigned long min_size;
10258 } size_check[] =
10259 {
10260 { "NOTE_INFO_PROCESS", 12 },
10261 { "NOTE_INFO_THREAD", 12 },
10262 { "NOTE_INFO_MODULE", 12 },
10263 { "NOTE_INFO_MODULE64", 16 },
10264 };
10265
10266 if (type == 0 || type > (sizeof(size_check)/sizeof(size_check[0])))
10267 return true;
10268
10269 if (note->descsz < size_check[type - 1].min_size)
10270 {
10271 _bfd_error_handler (_("%pB: warning: win32pstatus %s of size %lu bytes is too small"),
10272 abfd, size_check[type - 1].type_name, note->descsz);
10273 return true;
10274 }
10275
10276 switch (type)
10277 {
10278 case NOTE_INFO_PROCESS:
10279 /* FIXME: need to add ->core->command. */
10280 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, note->descdata + 4);
10281 elf_tdata (abfd)->core->signal = bfd_get_32 (abfd, note->descdata + 8);
10282 break;
10283
10284 case NOTE_INFO_THREAD:
10285 /* Make a ".reg/<tid>" section containing the Win32 API thread CONTEXT
10286 structure. */
10287 /* thread_info.tid */
10288 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 4));
10289
10290 len = strlen (buf) + 1;
10291 name = (char *) bfd_alloc (abfd, len);
10292 if (name == NULL)
10293 return false;
10294
10295 memcpy (name, buf, len);
10296
10297 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10298 if (sect == NULL)
10299 return false;
10300
10301 /* sizeof (thread_info.thread_context) */
10302 sect->size = note->descsz - 12;
10303 /* offsetof (thread_info.thread_context) */
10304 sect->filepos = note->descpos + 12;
10305 sect->alignment_power = 2;
10306
10307 /* thread_info.is_active_thread */
10308 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
10309
10310 if (is_active_thread)
10311 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
10312 return false;
10313 break;
10314
10315 case NOTE_INFO_MODULE:
10316 case NOTE_INFO_MODULE64:
10317 /* Make a ".module/xxxxxxxx" section. */
10318 if (type == NOTE_INFO_MODULE)
10319 {
10320 /* module_info.base_address */
10321 base_addr = bfd_get_32 (abfd, note->descdata + 4);
10322 sprintf (buf, ".module/%08lx", (unsigned long) base_addr);
10323 /* module_info.module_name_size */
10324 name_size = bfd_get_32 (abfd, note->descdata + 8);
10325 }
10326 else /* NOTE_INFO_MODULE64 */
10327 {
10328 /* module_info.base_address */
10329 base_addr = bfd_get_64 (abfd, note->descdata + 4);
10330 sprintf (buf, ".module/%016lx", (unsigned long) base_addr);
10331 /* module_info.module_name_size */
10332 name_size = bfd_get_32 (abfd, note->descdata + 12);
10333 }
10334
10335 len = strlen (buf) + 1;
10336 name = (char *) bfd_alloc (abfd, len);
10337 if (name == NULL)
10338 return false;
10339
10340 memcpy (name, buf, len);
10341
10342 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10343
10344 if (sect == NULL)
10345 return false;
10346
10347 if (note->descsz < 12 + name_size)
10348 {
10349 _bfd_error_handler (_("%pB: win32pstatus NOTE_INFO_MODULE of size %lu is too small to contain a name of size %u"),
10350 abfd, note->descsz, name_size);
10351 return true;
10352 }
10353
10354 sect->size = note->descsz;
10355 sect->filepos = note->descpos;
10356 sect->alignment_power = 2;
10357 break;
10358
10359 default:
10360 return true;
10361 }
10362
10363 return true;
10364 }
10365
10366 static bool
10367 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
10368 {
10369 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10370
10371 switch (note->type)
10372 {
10373 default:
10374 return true;
10375
10376 case NT_PRSTATUS:
10377 if (bed->elf_backend_grok_prstatus)
10378 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
10379 return true;
10380 #if defined (HAVE_PRSTATUS_T)
10381 return elfcore_grok_prstatus (abfd, note);
10382 #else
10383 return true;
10384 #endif
10385
10386 #if defined (HAVE_PSTATUS_T)
10387 case NT_PSTATUS:
10388 return elfcore_grok_pstatus (abfd, note);
10389 #endif
10390
10391 #if defined (HAVE_LWPSTATUS_T)
10392 case NT_LWPSTATUS:
10393 return elfcore_grok_lwpstatus (abfd, note);
10394 #endif
10395
10396 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
10397 return elfcore_grok_prfpreg (abfd, note);
10398
10399 case NT_WIN32PSTATUS:
10400 return elfcore_grok_win32pstatus (abfd, note);
10401
10402 case NT_PRXFPREG: /* Linux SSE extension */
10403 if (note->namesz == 6
10404 && strcmp (note->namedata, "LINUX") == 0)
10405 return elfcore_grok_prxfpreg (abfd, note);
10406 else
10407 return true;
10408
10409 case NT_X86_XSTATE: /* Linux XSAVE extension */
10410 if (note->namesz == 6
10411 && strcmp (note->namedata, "LINUX") == 0)
10412 return elfcore_grok_xstatereg (abfd, note);
10413 else
10414 return true;
10415
10416 case NT_PPC_VMX:
10417 if (note->namesz == 6
10418 && strcmp (note->namedata, "LINUX") == 0)
10419 return elfcore_grok_ppc_vmx (abfd, note);
10420 else
10421 return true;
10422
10423 case NT_PPC_VSX:
10424 if (note->namesz == 6
10425 && strcmp (note->namedata, "LINUX") == 0)
10426 return elfcore_grok_ppc_vsx (abfd, note);
10427 else
10428 return true;
10429
10430 case NT_PPC_TAR:
10431 if (note->namesz == 6
10432 && strcmp (note->namedata, "LINUX") == 0)
10433 return elfcore_grok_ppc_tar (abfd, note);
10434 else
10435 return true;
10436
10437 case NT_PPC_PPR:
10438 if (note->namesz == 6
10439 && strcmp (note->namedata, "LINUX") == 0)
10440 return elfcore_grok_ppc_ppr (abfd, note);
10441 else
10442 return true;
10443
10444 case NT_PPC_DSCR:
10445 if (note->namesz == 6
10446 && strcmp (note->namedata, "LINUX") == 0)
10447 return elfcore_grok_ppc_dscr (abfd, note);
10448 else
10449 return true;
10450
10451 case NT_PPC_EBB:
10452 if (note->namesz == 6
10453 && strcmp (note->namedata, "LINUX") == 0)
10454 return elfcore_grok_ppc_ebb (abfd, note);
10455 else
10456 return true;
10457
10458 case NT_PPC_PMU:
10459 if (note->namesz == 6
10460 && strcmp (note->namedata, "LINUX") == 0)
10461 return elfcore_grok_ppc_pmu (abfd, note);
10462 else
10463 return true;
10464
10465 case NT_PPC_TM_CGPR:
10466 if (note->namesz == 6
10467 && strcmp (note->namedata, "LINUX") == 0)
10468 return elfcore_grok_ppc_tm_cgpr (abfd, note);
10469 else
10470 return true;
10471
10472 case NT_PPC_TM_CFPR:
10473 if (note->namesz == 6
10474 && strcmp (note->namedata, "LINUX") == 0)
10475 return elfcore_grok_ppc_tm_cfpr (abfd, note);
10476 else
10477 return true;
10478
10479 case NT_PPC_TM_CVMX:
10480 if (note->namesz == 6
10481 && strcmp (note->namedata, "LINUX") == 0)
10482 return elfcore_grok_ppc_tm_cvmx (abfd, note);
10483 else
10484 return true;
10485
10486 case NT_PPC_TM_CVSX:
10487 if (note->namesz == 6
10488 && strcmp (note->namedata, "LINUX") == 0)
10489 return elfcore_grok_ppc_tm_cvsx (abfd, note);
10490 else
10491 return true;
10492
10493 case NT_PPC_TM_SPR:
10494 if (note->namesz == 6
10495 && strcmp (note->namedata, "LINUX") == 0)
10496 return elfcore_grok_ppc_tm_spr (abfd, note);
10497 else
10498 return true;
10499
10500 case NT_PPC_TM_CTAR:
10501 if (note->namesz == 6
10502 && strcmp (note->namedata, "LINUX") == 0)
10503 return elfcore_grok_ppc_tm_ctar (abfd, note);
10504 else
10505 return true;
10506
10507 case NT_PPC_TM_CPPR:
10508 if (note->namesz == 6
10509 && strcmp (note->namedata, "LINUX") == 0)
10510 return elfcore_grok_ppc_tm_cppr (abfd, note);
10511 else
10512 return true;
10513
10514 case NT_PPC_TM_CDSCR:
10515 if (note->namesz == 6
10516 && strcmp (note->namedata, "LINUX") == 0)
10517 return elfcore_grok_ppc_tm_cdscr (abfd, note);
10518 else
10519 return true;
10520
10521 case NT_S390_HIGH_GPRS:
10522 if (note->namesz == 6
10523 && strcmp (note->namedata, "LINUX") == 0)
10524 return elfcore_grok_s390_high_gprs (abfd, note);
10525 else
10526 return true;
10527
10528 case NT_S390_TIMER:
10529 if (note->namesz == 6
10530 && strcmp (note->namedata, "LINUX") == 0)
10531 return elfcore_grok_s390_timer (abfd, note);
10532 else
10533 return true;
10534
10535 case NT_S390_TODCMP:
10536 if (note->namesz == 6
10537 && strcmp (note->namedata, "LINUX") == 0)
10538 return elfcore_grok_s390_todcmp (abfd, note);
10539 else
10540 return true;
10541
10542 case NT_S390_TODPREG:
10543 if (note->namesz == 6
10544 && strcmp (note->namedata, "LINUX") == 0)
10545 return elfcore_grok_s390_todpreg (abfd, note);
10546 else
10547 return true;
10548
10549 case NT_S390_CTRS:
10550 if (note->namesz == 6
10551 && strcmp (note->namedata, "LINUX") == 0)
10552 return elfcore_grok_s390_ctrs (abfd, note);
10553 else
10554 return true;
10555
10556 case NT_S390_PREFIX:
10557 if (note->namesz == 6
10558 && strcmp (note->namedata, "LINUX") == 0)
10559 return elfcore_grok_s390_prefix (abfd, note);
10560 else
10561 return true;
10562
10563 case NT_S390_LAST_BREAK:
10564 if (note->namesz == 6
10565 && strcmp (note->namedata, "LINUX") == 0)
10566 return elfcore_grok_s390_last_break (abfd, note);
10567 else
10568 return true;
10569
10570 case NT_S390_SYSTEM_CALL:
10571 if (note->namesz == 6
10572 && strcmp (note->namedata, "LINUX") == 0)
10573 return elfcore_grok_s390_system_call (abfd, note);
10574 else
10575 return true;
10576
10577 case NT_S390_TDB:
10578 if (note->namesz == 6
10579 && strcmp (note->namedata, "LINUX") == 0)
10580 return elfcore_grok_s390_tdb (abfd, note);
10581 else
10582 return true;
10583
10584 case NT_S390_VXRS_LOW:
10585 if (note->namesz == 6
10586 && strcmp (note->namedata, "LINUX") == 0)
10587 return elfcore_grok_s390_vxrs_low (abfd, note);
10588 else
10589 return true;
10590
10591 case NT_S390_VXRS_HIGH:
10592 if (note->namesz == 6
10593 && strcmp (note->namedata, "LINUX") == 0)
10594 return elfcore_grok_s390_vxrs_high (abfd, note);
10595 else
10596 return true;
10597
10598 case NT_S390_GS_CB:
10599 if (note->namesz == 6
10600 && strcmp (note->namedata, "LINUX") == 0)
10601 return elfcore_grok_s390_gs_cb (abfd, note);
10602 else
10603 return true;
10604
10605 case NT_S390_GS_BC:
10606 if (note->namesz == 6
10607 && strcmp (note->namedata, "LINUX") == 0)
10608 return elfcore_grok_s390_gs_bc (abfd, note);
10609 else
10610 return true;
10611
10612 case NT_ARC_V2:
10613 if (note->namesz == 6
10614 && strcmp (note->namedata, "LINUX") == 0)
10615 return elfcore_grok_arc_v2 (abfd, note);
10616 else
10617 return true;
10618
10619 case NT_ARM_VFP:
10620 if (note->namesz == 6
10621 && strcmp (note->namedata, "LINUX") == 0)
10622 return elfcore_grok_arm_vfp (abfd, note);
10623 else
10624 return true;
10625
10626 case NT_ARM_TLS:
10627 if (note->namesz == 6
10628 && strcmp (note->namedata, "LINUX") == 0)
10629 return elfcore_grok_aarch_tls (abfd, note);
10630 else
10631 return true;
10632
10633 case NT_ARM_HW_BREAK:
10634 if (note->namesz == 6
10635 && strcmp (note->namedata, "LINUX") == 0)
10636 return elfcore_grok_aarch_hw_break (abfd, note);
10637 else
10638 return true;
10639
10640 case NT_ARM_HW_WATCH:
10641 if (note->namesz == 6
10642 && strcmp (note->namedata, "LINUX") == 0)
10643 return elfcore_grok_aarch_hw_watch (abfd, note);
10644 else
10645 return true;
10646
10647 case NT_ARM_SVE:
10648 if (note->namesz == 6
10649 && strcmp (note->namedata, "LINUX") == 0)
10650 return elfcore_grok_aarch_sve (abfd, note);
10651 else
10652 return true;
10653
10654 case NT_ARM_PAC_MASK:
10655 if (note->namesz == 6
10656 && strcmp (note->namedata, "LINUX") == 0)
10657 return elfcore_grok_aarch_pauth (abfd, note);
10658 else
10659 return true;
10660
10661 case NT_ARM_TAGGED_ADDR_CTRL:
10662 if (note->namesz == 6
10663 && strcmp (note->namedata, "LINUX") == 0)
10664 return elfcore_grok_aarch_mte (abfd, note);
10665 else
10666 return true;
10667
10668 case NT_GDB_TDESC:
10669 if (note->namesz == 4
10670 && strcmp (note->namedata, "GDB") == 0)
10671 return elfcore_grok_gdb_tdesc (abfd, note);
10672 else
10673 return true;
10674
10675 case NT_RISCV_CSR:
10676 if (note->namesz == 4
10677 && strcmp (note->namedata, "GDB") == 0)
10678 return elfcore_grok_riscv_csr (abfd, note);
10679 else
10680 return true;
10681
10682 case NT_LARCH_CPUCFG:
10683 if (note->namesz == 6
10684 && strcmp (note->namedata, "LINUX") == 0)
10685 return elfcore_grok_loongarch_cpucfg (abfd, note);
10686 else
10687 return true;
10688
10689 case NT_LARCH_LBT:
10690 if (note->namesz == 6
10691 && strcmp (note->namedata, "LINUX") == 0)
10692 return elfcore_grok_loongarch_lbt (abfd, note);
10693 else
10694 return true;
10695
10696 case NT_LARCH_LSX:
10697 if (note->namesz == 6
10698 && strcmp (note->namedata, "LINUX") == 0)
10699 return elfcore_grok_loongarch_lsx (abfd, note);
10700 else
10701 return true;
10702
10703 case NT_LARCH_LASX:
10704 if (note->namesz == 6
10705 && strcmp (note->namedata, "LINUX") == 0)
10706 return elfcore_grok_loongarch_lasx (abfd, note);
10707 else
10708 return true;
10709
10710 case NT_PRPSINFO:
10711 case NT_PSINFO:
10712 if (bed->elf_backend_grok_psinfo)
10713 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
10714 return true;
10715 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
10716 return elfcore_grok_psinfo (abfd, note);
10717 #else
10718 return true;
10719 #endif
10720
10721 case NT_AUXV:
10722 return elfcore_make_auxv_note_section (abfd, note, 0);
10723
10724 case NT_FILE:
10725 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.file",
10726 note);
10727
10728 case NT_SIGINFO:
10729 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.siginfo",
10730 note);
10731
10732 }
10733 }
10734
10735 static bool
10736 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
10737 {
10738 struct bfd_build_id* build_id;
10739
10740 if (note->descsz == 0)
10741 return false;
10742
10743 build_id = bfd_alloc (abfd, sizeof (struct bfd_build_id) - 1 + note->descsz);
10744 if (build_id == NULL)
10745 return false;
10746
10747 build_id->size = note->descsz;
10748 memcpy (build_id->data, note->descdata, note->descsz);
10749 abfd->build_id = build_id;
10750
10751 return true;
10752 }
10753
10754 static bool
10755 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
10756 {
10757 switch (note->type)
10758 {
10759 default:
10760 return true;
10761
10762 case NT_GNU_PROPERTY_TYPE_0:
10763 return _bfd_elf_parse_gnu_properties (abfd, note);
10764
10765 case NT_GNU_BUILD_ID:
10766 return elfobj_grok_gnu_build_id (abfd, note);
10767 }
10768 }
10769
10770 static bool
10771 elfobj_grok_stapsdt_note_1 (bfd *abfd, Elf_Internal_Note *note)
10772 {
10773 struct sdt_note *cur =
10774 (struct sdt_note *) bfd_alloc (abfd,
10775 sizeof (struct sdt_note) + note->descsz);
10776
10777 cur->next = (struct sdt_note *) (elf_tdata (abfd))->sdt_note_head;
10778 cur->size = (bfd_size_type) note->descsz;
10779 memcpy (cur->data, note->descdata, note->descsz);
10780
10781 elf_tdata (abfd)->sdt_note_head = cur;
10782
10783 return true;
10784 }
10785
10786 static bool
10787 elfobj_grok_stapsdt_note (bfd *abfd, Elf_Internal_Note *note)
10788 {
10789 switch (note->type)
10790 {
10791 case NT_STAPSDT:
10792 return elfobj_grok_stapsdt_note_1 (abfd, note);
10793
10794 default:
10795 return true;
10796 }
10797 }
10798
10799 static bool
10800 elfcore_grok_freebsd_psinfo (bfd *abfd, Elf_Internal_Note *note)
10801 {
10802 size_t offset;
10803
10804 switch (elf_elfheader (abfd)->e_ident[EI_CLASS])
10805 {
10806 case ELFCLASS32:
10807 if (note->descsz < 108)
10808 return false;
10809 break;
10810
10811 case ELFCLASS64:
10812 if (note->descsz < 120)
10813 return false;
10814 break;
10815
10816 default:
10817 return false;
10818 }
10819
10820 /* Check for version 1 in pr_version. */
10821 if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1)
10822 return false;
10823
10824 offset = 4;
10825
10826 /* Skip over pr_psinfosz. */
10827 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS32)
10828 offset += 4;
10829 else
10830 {
10831 offset += 4; /* Padding before pr_psinfosz. */
10832 offset += 8;
10833 }
10834
10835 /* pr_fname is PRFNAMESZ (16) + 1 bytes in size. */
10836 elf_tdata (abfd)->core->program
10837 = _bfd_elfcore_strndup (abfd, note->descdata + offset, 17);
10838 offset += 17;
10839
10840 /* pr_psargs is PRARGSZ (80) + 1 bytes in size. */
10841 elf_tdata (abfd)->core->command
10842 = _bfd_elfcore_strndup (abfd, note->descdata + offset, 81);
10843 offset += 81;
10844
10845 /* Padding before pr_pid. */
10846 offset += 2;
10847
10848 /* The pr_pid field was added in version "1a". */
10849 if (note->descsz < offset + 4)
10850 return true;
10851
10852 elf_tdata (abfd)->core->pid
10853 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10854
10855 return true;
10856 }
10857
10858 static bool
10859 elfcore_grok_freebsd_prstatus (bfd *abfd, Elf_Internal_Note *note)
10860 {
10861 size_t offset;
10862 size_t size;
10863 size_t min_size;
10864
10865 /* Compute offset of pr_getregsz, skipping over pr_statussz.
10866 Also compute minimum size of this note. */
10867 switch (elf_elfheader (abfd)->e_ident[EI_CLASS])
10868 {
10869 case ELFCLASS32:
10870 offset = 4 + 4;
10871 min_size = offset + (4 * 2) + 4 + 4 + 4;
10872 break;
10873
10874 case ELFCLASS64:
10875 offset = 4 + 4 + 8; /* Includes padding before pr_statussz. */
10876 min_size = offset + (8 * 2) + 4 + 4 + 4 + 4;
10877 break;
10878
10879 default:
10880 return false;
10881 }
10882
10883 if (note->descsz < min_size)
10884 return false;
10885
10886 /* Check for version 1 in pr_version. */
10887 if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1)
10888 return false;
10889
10890 /* Extract size of pr_reg from pr_gregsetsz. */
10891 /* Skip over pr_gregsetsz and pr_fpregsetsz. */
10892 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS32)
10893 {
10894 size = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10895 offset += 4 * 2;
10896 }
10897 else
10898 {
10899 size = bfd_h_get_64 (abfd, (bfd_byte *) note->descdata + offset);
10900 offset += 8 * 2;
10901 }
10902
10903 /* Skip over pr_osreldate. */
10904 offset += 4;
10905
10906 /* Read signal from pr_cursig. */
10907 if (elf_tdata (abfd)->core->signal == 0)
10908 elf_tdata (abfd)->core->signal
10909 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10910 offset += 4;
10911
10912 /* Read TID from pr_pid. */
10913 elf_tdata (abfd)->core->lwpid
10914 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10915 offset += 4;
10916
10917 /* Padding before pr_reg. */
10918 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
10919 offset += 4;
10920
10921 /* Make sure that there is enough data remaining in the note. */
10922 if ((note->descsz - offset) < size)
10923 return false;
10924
10925 /* Make a ".reg/999" section and a ".reg" section. */
10926 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
10927 size, note->descpos + offset);
10928 }
10929
10930 static bool
10931 elfcore_grok_freebsd_note (bfd *abfd, Elf_Internal_Note *note)
10932 {
10933 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10934
10935 switch (note->type)
10936 {
10937 case NT_PRSTATUS:
10938 if (bed->elf_backend_grok_freebsd_prstatus)
10939 if ((*bed->elf_backend_grok_freebsd_prstatus) (abfd, note))
10940 return true;
10941 return elfcore_grok_freebsd_prstatus (abfd, note);
10942
10943 case NT_FPREGSET:
10944 return elfcore_grok_prfpreg (abfd, note);
10945
10946 case NT_PRPSINFO:
10947 return elfcore_grok_freebsd_psinfo (abfd, note);
10948
10949 case NT_FREEBSD_THRMISC:
10950 if (note->namesz == 8)
10951 return elfcore_make_note_pseudosection (abfd, ".thrmisc", note);
10952 else
10953 return true;
10954
10955 case NT_FREEBSD_PROCSTAT_PROC:
10956 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.proc",
10957 note);
10958
10959 case NT_FREEBSD_PROCSTAT_FILES:
10960 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.files",
10961 note);
10962
10963 case NT_FREEBSD_PROCSTAT_VMMAP:
10964 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.vmmap",
10965 note);
10966
10967 case NT_FREEBSD_PROCSTAT_AUXV:
10968 return elfcore_make_auxv_note_section (abfd, note, 4);
10969
10970 case NT_X86_XSTATE:
10971 if (note->namesz == 8)
10972 return elfcore_grok_xstatereg (abfd, note);
10973 else
10974 return true;
10975
10976 case NT_FREEBSD_PTLWPINFO:
10977 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.lwpinfo",
10978 note);
10979
10980 case NT_ARM_VFP:
10981 return elfcore_grok_arm_vfp (abfd, note);
10982
10983 default:
10984 return true;
10985 }
10986 }
10987
10988 static bool
10989 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
10990 {
10991 char *cp;
10992
10993 cp = strchr (note->namedata, '@');
10994 if (cp != NULL)
10995 {
10996 *lwpidp = atoi(cp + 1);
10997 return true;
10998 }
10999 return false;
11000 }
11001
11002 static bool
11003 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
11004 {
11005 if (note->descsz <= 0x7c + 31)
11006 return false;
11007
11008 /* Signal number at offset 0x08. */
11009 elf_tdata (abfd)->core->signal
11010 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
11011
11012 /* Process ID at offset 0x50. */
11013 elf_tdata (abfd)->core->pid
11014 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
11015
11016 /* Command name at 0x7c (max 32 bytes, including nul). */
11017 elf_tdata (abfd)->core->command
11018 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
11019
11020 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
11021 note);
11022 }
11023
11024 static bool
11025 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
11026 {
11027 int lwp;
11028
11029 if (elfcore_netbsd_get_lwpid (note, &lwp))
11030 elf_tdata (abfd)->core->lwpid = lwp;
11031
11032 switch (note->type)
11033 {
11034 case NT_NETBSDCORE_PROCINFO:
11035 /* NetBSD-specific core "procinfo". Note that we expect to
11036 find this note before any of the others, which is fine,
11037 since the kernel writes this note out first when it
11038 creates a core file. */
11039 return elfcore_grok_netbsd_procinfo (abfd, note);
11040 case NT_NETBSDCORE_AUXV:
11041 /* NetBSD-specific Elf Auxiliary Vector data. */
11042 return elfcore_make_auxv_note_section (abfd, note, 4);
11043 case NT_NETBSDCORE_LWPSTATUS:
11044 return elfcore_make_note_pseudosection (abfd,
11045 ".note.netbsdcore.lwpstatus",
11046 note);
11047 default:
11048 break;
11049 }
11050
11051 /* As of March 2020 there are no other machine-independent notes
11052 defined for NetBSD core files. If the note type is less
11053 than the start of the machine-dependent note types, we don't
11054 understand it. */
11055
11056 if (note->type < NT_NETBSDCORE_FIRSTMACH)
11057 return true;
11058
11059
11060 switch (bfd_get_arch (abfd))
11061 {
11062 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
11063 PT_GETFPREGS == mach+2. */
11064
11065 case bfd_arch_aarch64:
11066 case bfd_arch_alpha:
11067 case bfd_arch_sparc:
11068 switch (note->type)
11069 {
11070 case NT_NETBSDCORE_FIRSTMACH+0:
11071 return elfcore_make_note_pseudosection (abfd, ".reg", note);
11072
11073 case NT_NETBSDCORE_FIRSTMACH+2:
11074 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
11075
11076 default:
11077 return true;
11078 }
11079
11080 /* On SuperH, PT_GETREGS == mach+3 and PT_GETFPREGS == mach+5.
11081 There's also old PT___GETREGS40 == mach + 1 for old reg
11082 structure which lacks GBR. */
11083
11084 case bfd_arch_sh:
11085 switch (note->type)
11086 {
11087 case NT_NETBSDCORE_FIRSTMACH+3:
11088 return elfcore_make_note_pseudosection (abfd, ".reg", note);
11089
11090 case NT_NETBSDCORE_FIRSTMACH+5:
11091 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
11092
11093 default:
11094 return true;
11095 }
11096
11097 /* On all other arch's, PT_GETREGS == mach+1 and
11098 PT_GETFPREGS == mach+3. */
11099
11100 default:
11101 switch (note->type)
11102 {
11103 case NT_NETBSDCORE_FIRSTMACH+1:
11104 return elfcore_make_note_pseudosection (abfd, ".reg", note);
11105
11106 case NT_NETBSDCORE_FIRSTMACH+3:
11107 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
11108
11109 default:
11110 return true;
11111 }
11112 }
11113 /* NOTREACHED */
11114 }
11115
11116 static bool
11117 elfcore_grok_openbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
11118 {
11119 if (note->descsz <= 0x48 + 31)
11120 return false;
11121
11122 /* Signal number at offset 0x08. */
11123 elf_tdata (abfd)->core->signal
11124 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
11125
11126 /* Process ID at offset 0x20. */
11127 elf_tdata (abfd)->core->pid
11128 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x20);
11129
11130 /* Command name at 0x48 (max 32 bytes, including nul). */
11131 elf_tdata (abfd)->core->command
11132 = _bfd_elfcore_strndup (abfd, note->descdata + 0x48, 31);
11133
11134 return true;
11135 }
11136
11137 /* Processes Solaris's process status note.
11138 sig_off ~ offsetof(prstatus_t, pr_cursig)
11139 pid_off ~ offsetof(prstatus_t, pr_pid)
11140 lwpid_off ~ offsetof(prstatus_t, pr_who)
11141 gregset_size ~ sizeof(gregset_t)
11142 gregset_offset ~ offsetof(prstatus_t, pr_reg) */
11143
11144 static bool
11145 elfcore_grok_solaris_prstatus (bfd *abfd, Elf_Internal_Note* note, int sig_off,
11146 int pid_off, int lwpid_off, size_t gregset_size,
11147 size_t gregset_offset)
11148 {
11149 asection *sect = NULL;
11150 elf_tdata (abfd)->core->signal
11151 = bfd_get_16 (abfd, note->descdata + sig_off);
11152 elf_tdata (abfd)->core->pid
11153 = bfd_get_32 (abfd, note->descdata + pid_off);
11154 elf_tdata (abfd)->core->lwpid
11155 = bfd_get_32 (abfd, note->descdata + lwpid_off);
11156
11157 sect = bfd_get_section_by_name (abfd, ".reg");
11158 if (sect != NULL)
11159 sect->size = gregset_size;
11160
11161 return _bfd_elfcore_make_pseudosection (abfd, ".reg", gregset_size,
11162 note->descpos + gregset_offset);
11163 }
11164
11165 /* Gets program and arguments from a core.
11166 prog_off ~ offsetof(prpsinfo | psinfo_t, pr_fname)
11167 comm_off ~ offsetof(prpsinfo | psinfo_t, pr_psargs) */
11168
11169 static bool
11170 elfcore_grok_solaris_info(bfd *abfd, Elf_Internal_Note* note,
11171 int prog_off, int comm_off)
11172 {
11173 elf_tdata (abfd)->core->program
11174 = _bfd_elfcore_strndup (abfd, note->descdata + prog_off, 16);
11175 elf_tdata (abfd)->core->command
11176 = _bfd_elfcore_strndup (abfd, note->descdata + comm_off, 80);
11177
11178 return true;
11179 }
11180
11181 /* Processes Solaris's LWP status note.
11182 gregset_size ~ sizeof(gregset_t)
11183 gregset_off ~ offsetof(lwpstatus_t, pr_reg)
11184 fpregset_size ~ sizeof(fpregset_t)
11185 fpregset_off ~ offsetof(lwpstatus_t, pr_fpreg) */
11186
11187 static bool
11188 elfcore_grok_solaris_lwpstatus (bfd *abfd, Elf_Internal_Note* note,
11189 size_t gregset_size, int gregset_off,
11190 size_t fpregset_size, int fpregset_off)
11191 {
11192 asection *sect = NULL;
11193 char reg2_section_name[16] = { 0 };
11194
11195 (void) snprintf (reg2_section_name, 16, "%s/%i", ".reg2",
11196 elf_tdata (abfd)->core->lwpid);
11197
11198 /* offsetof(lwpstatus_t, pr_lwpid) */
11199 elf_tdata (abfd)->core->lwpid
11200 = bfd_get_32 (abfd, note->descdata + 4);
11201 /* offsetof(lwpstatus_t, pr_cursig) */
11202 elf_tdata (abfd)->core->signal
11203 = bfd_get_16 (abfd, note->descdata + 12);
11204
11205 sect = bfd_get_section_by_name (abfd, ".reg");
11206 if (sect != NULL)
11207 sect->size = gregset_size;
11208 else if (!_bfd_elfcore_make_pseudosection (abfd, ".reg", gregset_size,
11209 note->descpos + gregset_off))
11210 return false;
11211
11212 sect = bfd_get_section_by_name (abfd, reg2_section_name);
11213 if (sect != NULL)
11214 {
11215 sect->size = fpregset_size;
11216 sect->filepos = note->descpos + fpregset_off;
11217 sect->alignment_power = 2;
11218 }
11219 else if (!_bfd_elfcore_make_pseudosection (abfd, ".reg2", fpregset_size,
11220 note->descpos + fpregset_off))
11221 return false;
11222
11223 return true;
11224 }
11225
11226 static bool
11227 elfcore_grok_solaris_note_impl (bfd *abfd, Elf_Internal_Note *note)
11228 {
11229 if (note == NULL)
11230 return false;
11231
11232 /* core files are identified as 32- or 64-bit, SPARC or x86,
11233 by the size of the descsz which matches the sizeof()
11234 the type appropriate for that note type (e.g., prstatus_t for
11235 SOLARIS_NT_PRSTATUS) for the corresponding architecture
11236 on Solaris. The core file bitness may differ from the bitness of
11237 gdb itself, so fixed values are used instead of sizeof().
11238 Appropriate fixed offsets are also used to obtain data from
11239 the note. */
11240
11241 switch ((int) note->type)
11242 {
11243 case SOLARIS_NT_PRSTATUS:
11244 switch (note->descsz)
11245 {
11246 case 508: /* sizeof(prstatus_t) SPARC 32-bit */
11247 return elfcore_grok_solaris_prstatus(abfd, note,
11248 136, 216, 308, 152, 356);
11249 case 904: /* sizeof(prstatus_t) SPARC 64-bit */
11250 return elfcore_grok_solaris_prstatus(abfd, note,
11251 264, 360, 520, 304, 600);
11252 case 432: /* sizeof(prstatus_t) Intel 32-bit */
11253 return elfcore_grok_solaris_prstatus(abfd, note,
11254 136, 216, 308, 76, 356);
11255 case 824: /* sizeof(prstatus_t) Intel 64-bit */
11256 return elfcore_grok_solaris_prstatus(abfd, note,
11257 264, 360, 520, 224, 600);
11258 default:
11259 return true;
11260 }
11261
11262 case SOLARIS_NT_PSINFO:
11263 case SOLARIS_NT_PRPSINFO:
11264 switch (note->descsz)
11265 {
11266 case 260: /* sizeof(prpsinfo_t) SPARC and Intel 32-bit */
11267 return elfcore_grok_solaris_info(abfd, note, 84, 100);
11268 case 328: /* sizeof(prpsinfo_t) SPARC and Intel 64-bit */
11269 return elfcore_grok_solaris_info(abfd, note, 120, 136);
11270 case 360: /* sizeof(psinfo_t) SPARC and Intel 32-bit */
11271 return elfcore_grok_solaris_info(abfd, note, 88, 104);
11272 case 440: /* sizeof(psinfo_t) SPARC and Intel 64-bit */
11273 return elfcore_grok_solaris_info(abfd, note, 136, 152);
11274 default:
11275 return true;
11276 }
11277
11278 case SOLARIS_NT_LWPSTATUS:
11279 switch (note->descsz)
11280 {
11281 case 896: /* sizeof(lwpstatus_t) SPARC 32-bit */
11282 return elfcore_grok_solaris_lwpstatus(abfd, note,
11283 152, 344, 400, 496);
11284 case 1392: /* sizeof(lwpstatus_t) SPARC 64-bit */
11285 return elfcore_grok_solaris_lwpstatus(abfd, note,
11286 304, 544, 544, 848);
11287 case 800: /* sizeof(lwpstatus_t) Intel 32-bit */
11288 return elfcore_grok_solaris_lwpstatus(abfd, note,
11289 76, 344, 380, 420);
11290 case 1296: /* sizeof(lwpstatus_t) Intel 64-bit */
11291 return elfcore_grok_solaris_lwpstatus(abfd, note,
11292 224, 544, 528, 768);
11293 default:
11294 return true;
11295 }
11296
11297 case SOLARIS_NT_LWPSINFO:
11298 /* sizeof(lwpsinfo_t) on 32- and 64-bit, respectively */
11299 if (note->descsz == 128 || note->descsz == 152)
11300 elf_tdata (abfd)->core->lwpid =
11301 bfd_get_32 (abfd, note->descdata + 4);
11302 break;
11303
11304 default:
11305 break;
11306 }
11307
11308 return true;
11309 }
11310
11311 /* For name starting with "CORE" this may be either a Solaris
11312 core file or a gdb-generated core file. Do Solaris-specific
11313 processing on selected note types first with
11314 elfcore_grok_solaris_note(), then process the note
11315 in elfcore_grok_note(). */
11316
11317 static bool
11318 elfcore_grok_solaris_note (bfd *abfd, Elf_Internal_Note *note)
11319 {
11320 if (!elfcore_grok_solaris_note_impl (abfd, note))
11321 return false;
11322
11323 return elfcore_grok_note (abfd, note);
11324 }
11325
11326 static bool
11327 elfcore_grok_openbsd_note (bfd *abfd, Elf_Internal_Note *note)
11328 {
11329 if (note->type == NT_OPENBSD_PROCINFO)
11330 return elfcore_grok_openbsd_procinfo (abfd, note);
11331
11332 if (note->type == NT_OPENBSD_REGS)
11333 return elfcore_make_note_pseudosection (abfd, ".reg", note);
11334
11335 if (note->type == NT_OPENBSD_FPREGS)
11336 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
11337
11338 if (note->type == NT_OPENBSD_XFPREGS)
11339 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
11340
11341 if (note->type == NT_OPENBSD_AUXV)
11342 return elfcore_make_auxv_note_section (abfd, note, 0);
11343
11344 if (note->type == NT_OPENBSD_WCOOKIE)
11345 {
11346 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".wcookie",
11347 SEC_HAS_CONTENTS);
11348
11349 if (sect == NULL)
11350 return false;
11351 sect->size = note->descsz;
11352 sect->filepos = note->descpos;
11353 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
11354
11355 return true;
11356 }
11357
11358 return true;
11359 }
11360
11361 static bool
11362 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
11363 {
11364 void *ddata = note->descdata;
11365 char buf[100];
11366 char *name;
11367 asection *sect;
11368 short sig;
11369 unsigned flags;
11370
11371 if (note->descsz < 16)
11372 return false;
11373
11374 /* nto_procfs_status 'pid' field is at offset 0. */
11375 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
11376
11377 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
11378 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
11379
11380 /* nto_procfs_status 'flags' field is at offset 8. */
11381 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
11382
11383 /* nto_procfs_status 'what' field is at offset 14. */
11384 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
11385 {
11386 elf_tdata (abfd)->core->signal = sig;
11387 elf_tdata (abfd)->core->lwpid = *tid;
11388 }
11389
11390 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
11391 do not come from signals so we make sure we set the current
11392 thread just in case. */
11393 if (flags & 0x00000080)
11394 elf_tdata (abfd)->core->lwpid = *tid;
11395
11396 /* Make a ".qnx_core_status/%d" section. */
11397 sprintf (buf, ".qnx_core_status/%ld", *tid);
11398
11399 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
11400 if (name == NULL)
11401 return false;
11402 strcpy (name, buf);
11403
11404 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
11405 if (sect == NULL)
11406 return false;
11407
11408 sect->size = note->descsz;
11409 sect->filepos = note->descpos;
11410 sect->alignment_power = 2;
11411
11412 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
11413 }
11414
11415 static bool
11416 elfcore_grok_nto_regs (bfd *abfd,
11417 Elf_Internal_Note *note,
11418 long tid,
11419 char *base)
11420 {
11421 char buf[100];
11422 char *name;
11423 asection *sect;
11424
11425 /* Make a "(base)/%d" section. */
11426 sprintf (buf, "%s/%ld", base, tid);
11427
11428 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
11429 if (name == NULL)
11430 return false;
11431 strcpy (name, buf);
11432
11433 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
11434 if (sect == NULL)
11435 return false;
11436
11437 sect->size = note->descsz;
11438 sect->filepos = note->descpos;
11439 sect->alignment_power = 2;
11440
11441 /* This is the current thread. */
11442 if (elf_tdata (abfd)->core->lwpid == tid)
11443 return elfcore_maybe_make_sect (abfd, base, sect);
11444
11445 return true;
11446 }
11447
11448 #define BFD_QNT_CORE_INFO 7
11449 #define BFD_QNT_CORE_STATUS 8
11450 #define BFD_QNT_CORE_GREG 9
11451 #define BFD_QNT_CORE_FPREG 10
11452
11453 static bool
11454 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
11455 {
11456 /* Every GREG section has a STATUS section before it. Store the
11457 tid from the previous call to pass down to the next gregs
11458 function. */
11459 static long tid = 1;
11460
11461 switch (note->type)
11462 {
11463 case BFD_QNT_CORE_INFO:
11464 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
11465 case BFD_QNT_CORE_STATUS:
11466 return elfcore_grok_nto_status (abfd, note, &tid);
11467 case BFD_QNT_CORE_GREG:
11468 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
11469 case BFD_QNT_CORE_FPREG:
11470 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
11471 default:
11472 return true;
11473 }
11474 }
11475
11476 static bool
11477 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
11478 {
11479 char *name;
11480 asection *sect;
11481 size_t len;
11482
11483 /* Use note name as section name. */
11484 len = note->namesz;
11485 name = (char *) bfd_alloc (abfd, len);
11486 if (name == NULL)
11487 return false;
11488 memcpy (name, note->namedata, len);
11489 name[len - 1] = '\0';
11490
11491 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
11492 if (sect == NULL)
11493 return false;
11494
11495 sect->size = note->descsz;
11496 sect->filepos = note->descpos;
11497 sect->alignment_power = 1;
11498
11499 return true;
11500 }
11501
11502 /* Function: elfcore_write_note
11503
11504 Inputs:
11505 buffer to hold note, and current size of buffer
11506 name of note
11507 type of note
11508 data for note
11509 size of data for note
11510
11511 Writes note to end of buffer. ELF64 notes are written exactly as
11512 for ELF32, despite the current (as of 2006) ELF gabi specifying
11513 that they ought to have 8-byte namesz and descsz field, and have
11514 8-byte alignment. Other writers, eg. Linux kernel, do the same.
11515
11516 Return:
11517 Pointer to realloc'd buffer, *BUFSIZ updated. */
11518
11519 char *
11520 elfcore_write_note (bfd *abfd,
11521 char *buf,
11522 int *bufsiz,
11523 const char *name,
11524 int type,
11525 const void *input,
11526 int size)
11527 {
11528 Elf_External_Note *xnp;
11529 size_t namesz;
11530 size_t newspace;
11531 char *dest;
11532
11533 namesz = 0;
11534 if (name != NULL)
11535 namesz = strlen (name) + 1;
11536
11537 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
11538
11539 buf = (char *) realloc (buf, *bufsiz + newspace);
11540 if (buf == NULL)
11541 return buf;
11542 dest = buf + *bufsiz;
11543 *bufsiz += newspace;
11544 xnp = (Elf_External_Note *) dest;
11545 H_PUT_32 (abfd, namesz, xnp->namesz);
11546 H_PUT_32 (abfd, size, xnp->descsz);
11547 H_PUT_32 (abfd, type, xnp->type);
11548 dest = xnp->name;
11549 if (name != NULL)
11550 {
11551 memcpy (dest, name, namesz);
11552 dest += namesz;
11553 while (namesz & 3)
11554 {
11555 *dest++ = '\0';
11556 ++namesz;
11557 }
11558 }
11559 memcpy (dest, input, size);
11560 dest += size;
11561 while (size & 3)
11562 {
11563 *dest++ = '\0';
11564 ++size;
11565 }
11566 return buf;
11567 }
11568
11569 /* gcc-8 warns (*) on all the strncpy calls in this function about
11570 possible string truncation. The "truncation" is not a bug. We
11571 have an external representation of structs with fields that are not
11572 necessarily NULL terminated and corresponding internal
11573 representation fields that are one larger so that they can always
11574 be NULL terminated.
11575 gcc versions between 4.2 and 4.6 do not allow pragma control of
11576 diagnostics inside functions, giving a hard error if you try to use
11577 the finer control available with later versions.
11578 gcc prior to 4.2 warns about diagnostic push and pop.
11579 gcc-5, gcc-6 and gcc-7 warn that -Wstringop-truncation is unknown,
11580 unless you also add #pragma GCC diagnostic ignored "-Wpragma".
11581 (*) Depending on your system header files! */
11582 #if GCC_VERSION >= 8000
11583 # pragma GCC diagnostic push
11584 # pragma GCC diagnostic ignored "-Wstringop-truncation"
11585 #endif
11586 char *
11587 elfcore_write_prpsinfo (bfd *abfd,
11588 char *buf,
11589 int *bufsiz,
11590 const char *fname,
11591 const char *psargs)
11592 {
11593 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11594
11595 if (bed->elf_backend_write_core_note != NULL)
11596 {
11597 char *ret;
11598 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
11599 NT_PRPSINFO, fname, psargs);
11600 if (ret != NULL)
11601 return ret;
11602 }
11603
11604 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
11605 # if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
11606 if (bed->s->elfclass == ELFCLASS32)
11607 {
11608 # if defined (HAVE_PSINFO32_T)
11609 psinfo32_t data;
11610 int note_type = NT_PSINFO;
11611 # else
11612 prpsinfo32_t data;
11613 int note_type = NT_PRPSINFO;
11614 # endif
11615
11616 memset (&data, 0, sizeof (data));
11617 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
11618 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
11619 return elfcore_write_note (abfd, buf, bufsiz,
11620 "CORE", note_type, &data, sizeof (data));
11621 }
11622 else
11623 # endif
11624 {
11625 # if defined (HAVE_PSINFO_T)
11626 psinfo_t data;
11627 int note_type = NT_PSINFO;
11628 # else
11629 prpsinfo_t data;
11630 int note_type = NT_PRPSINFO;
11631 # endif
11632
11633 memset (&data, 0, sizeof (data));
11634 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
11635 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
11636 return elfcore_write_note (abfd, buf, bufsiz,
11637 "CORE", note_type, &data, sizeof (data));
11638 }
11639 #endif /* PSINFO_T or PRPSINFO_T */
11640
11641 free (buf);
11642 return NULL;
11643 }
11644 #if GCC_VERSION >= 8000
11645 # pragma GCC diagnostic pop
11646 #endif
11647
11648 char *
11649 elfcore_write_linux_prpsinfo32
11650 (bfd *abfd, char *buf, int *bufsiz,
11651 const struct elf_internal_linux_prpsinfo *prpsinfo)
11652 {
11653 if (get_elf_backend_data (abfd)->linux_prpsinfo32_ugid16)
11654 {
11655 struct elf_external_linux_prpsinfo32_ugid16 data;
11656
11657 swap_linux_prpsinfo32_ugid16_out (abfd, prpsinfo, &data);
11658 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
11659 &data, sizeof (data));
11660 }
11661 else
11662 {
11663 struct elf_external_linux_prpsinfo32_ugid32 data;
11664
11665 swap_linux_prpsinfo32_ugid32_out (abfd, prpsinfo, &data);
11666 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
11667 &data, sizeof (data));
11668 }
11669 }
11670
11671 char *
11672 elfcore_write_linux_prpsinfo64
11673 (bfd *abfd, char *buf, int *bufsiz,
11674 const struct elf_internal_linux_prpsinfo *prpsinfo)
11675 {
11676 if (get_elf_backend_data (abfd)->linux_prpsinfo64_ugid16)
11677 {
11678 struct elf_external_linux_prpsinfo64_ugid16 data;
11679
11680 swap_linux_prpsinfo64_ugid16_out (abfd, prpsinfo, &data);
11681 return elfcore_write_note (abfd, buf, bufsiz,
11682 "CORE", NT_PRPSINFO, &data, sizeof (data));
11683 }
11684 else
11685 {
11686 struct elf_external_linux_prpsinfo64_ugid32 data;
11687
11688 swap_linux_prpsinfo64_ugid32_out (abfd, prpsinfo, &data);
11689 return elfcore_write_note (abfd, buf, bufsiz,
11690 "CORE", NT_PRPSINFO, &data, sizeof (data));
11691 }
11692 }
11693
11694 char *
11695 elfcore_write_prstatus (bfd *abfd,
11696 char *buf,
11697 int *bufsiz,
11698 long pid,
11699 int cursig,
11700 const void *gregs)
11701 {
11702 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11703
11704 if (bed->elf_backend_write_core_note != NULL)
11705 {
11706 char *ret;
11707 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
11708 NT_PRSTATUS,
11709 pid, cursig, gregs);
11710 if (ret != NULL)
11711 return ret;
11712 }
11713
11714 #if defined (HAVE_PRSTATUS_T)
11715 #if defined (HAVE_PRSTATUS32_T)
11716 if (bed->s->elfclass == ELFCLASS32)
11717 {
11718 prstatus32_t prstat;
11719
11720 memset (&prstat, 0, sizeof (prstat));
11721 prstat.pr_pid = pid;
11722 prstat.pr_cursig = cursig;
11723 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
11724 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
11725 NT_PRSTATUS, &prstat, sizeof (prstat));
11726 }
11727 else
11728 #endif
11729 {
11730 prstatus_t prstat;
11731
11732 memset (&prstat, 0, sizeof (prstat));
11733 prstat.pr_pid = pid;
11734 prstat.pr_cursig = cursig;
11735 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
11736 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
11737 NT_PRSTATUS, &prstat, sizeof (prstat));
11738 }
11739 #endif /* HAVE_PRSTATUS_T */
11740
11741 free (buf);
11742 return NULL;
11743 }
11744
11745 #if defined (HAVE_LWPSTATUS_T)
11746 char *
11747 elfcore_write_lwpstatus (bfd *abfd,
11748 char *buf,
11749 int *bufsiz,
11750 long pid,
11751 int cursig,
11752 const void *gregs)
11753 {
11754 lwpstatus_t lwpstat;
11755 const char *note_name = "CORE";
11756
11757 memset (&lwpstat, 0, sizeof (lwpstat));
11758 lwpstat.pr_lwpid = pid >> 16;
11759 lwpstat.pr_cursig = cursig;
11760 #if defined (HAVE_LWPSTATUS_T_PR_REG)
11761 memcpy (&lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
11762 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
11763 #if !defined(gregs)
11764 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
11765 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
11766 #else
11767 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
11768 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
11769 #endif
11770 #endif
11771 return elfcore_write_note (abfd, buf, bufsiz, note_name,
11772 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
11773 }
11774 #endif /* HAVE_LWPSTATUS_T */
11775
11776 #if defined (HAVE_PSTATUS_T)
11777 char *
11778 elfcore_write_pstatus (bfd *abfd,
11779 char *buf,
11780 int *bufsiz,
11781 long pid,
11782 int cursig ATTRIBUTE_UNUSED,
11783 const void *gregs ATTRIBUTE_UNUSED)
11784 {
11785 const char *note_name = "CORE";
11786 #if defined (HAVE_PSTATUS32_T)
11787 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11788
11789 if (bed->s->elfclass == ELFCLASS32)
11790 {
11791 pstatus32_t pstat;
11792
11793 memset (&pstat, 0, sizeof (pstat));
11794 pstat.pr_pid = pid & 0xffff;
11795 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
11796 NT_PSTATUS, &pstat, sizeof (pstat));
11797 return buf;
11798 }
11799 else
11800 #endif
11801 {
11802 pstatus_t pstat;
11803
11804 memset (&pstat, 0, sizeof (pstat));
11805 pstat.pr_pid = pid & 0xffff;
11806 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
11807 NT_PSTATUS, &pstat, sizeof (pstat));
11808 return buf;
11809 }
11810 }
11811 #endif /* HAVE_PSTATUS_T */
11812
11813 char *
11814 elfcore_write_prfpreg (bfd *abfd,
11815 char *buf,
11816 int *bufsiz,
11817 const void *fpregs,
11818 int size)
11819 {
11820 const char *note_name = "CORE";
11821 return elfcore_write_note (abfd, buf, bufsiz,
11822 note_name, NT_FPREGSET, fpregs, size);
11823 }
11824
11825 char *
11826 elfcore_write_prxfpreg (bfd *abfd,
11827 char *buf,
11828 int *bufsiz,
11829 const void *xfpregs,
11830 int size)
11831 {
11832 char *note_name = "LINUX";
11833 return elfcore_write_note (abfd, buf, bufsiz,
11834 note_name, NT_PRXFPREG, xfpregs, size);
11835 }
11836
11837 char *
11838 elfcore_write_xstatereg (bfd *abfd, char *buf, int *bufsiz,
11839 const void *xfpregs, int size)
11840 {
11841 char *note_name;
11842 if (get_elf_backend_data (abfd)->elf_osabi == ELFOSABI_FREEBSD)
11843 note_name = "FreeBSD";
11844 else
11845 note_name = "LINUX";
11846 return elfcore_write_note (abfd, buf, bufsiz,
11847 note_name, NT_X86_XSTATE, xfpregs, size);
11848 }
11849
11850 char *
11851 elfcore_write_ppc_vmx (bfd *abfd,
11852 char *buf,
11853 int *bufsiz,
11854 const void *ppc_vmx,
11855 int size)
11856 {
11857 char *note_name = "LINUX";
11858 return elfcore_write_note (abfd, buf, bufsiz,
11859 note_name, NT_PPC_VMX, ppc_vmx, size);
11860 }
11861
11862 char *
11863 elfcore_write_ppc_vsx (bfd *abfd,
11864 char *buf,
11865 int *bufsiz,
11866 const void *ppc_vsx,
11867 int size)
11868 {
11869 char *note_name = "LINUX";
11870 return elfcore_write_note (abfd, buf, bufsiz,
11871 note_name, NT_PPC_VSX, ppc_vsx, size);
11872 }
11873
11874 char *
11875 elfcore_write_ppc_tar (bfd *abfd,
11876 char *buf,
11877 int *bufsiz,
11878 const void *ppc_tar,
11879 int size)
11880 {
11881 char *note_name = "LINUX";
11882 return elfcore_write_note (abfd, buf, bufsiz,
11883 note_name, NT_PPC_TAR, ppc_tar, size);
11884 }
11885
11886 char *
11887 elfcore_write_ppc_ppr (bfd *abfd,
11888 char *buf,
11889 int *bufsiz,
11890 const void *ppc_ppr,
11891 int size)
11892 {
11893 char *note_name = "LINUX";
11894 return elfcore_write_note (abfd, buf, bufsiz,
11895 note_name, NT_PPC_PPR, ppc_ppr, size);
11896 }
11897
11898 char *
11899 elfcore_write_ppc_dscr (bfd *abfd,
11900 char *buf,
11901 int *bufsiz,
11902 const void *ppc_dscr,
11903 int size)
11904 {
11905 char *note_name = "LINUX";
11906 return elfcore_write_note (abfd, buf, bufsiz,
11907 note_name, NT_PPC_DSCR, ppc_dscr, size);
11908 }
11909
11910 char *
11911 elfcore_write_ppc_ebb (bfd *abfd,
11912 char *buf,
11913 int *bufsiz,
11914 const void *ppc_ebb,
11915 int size)
11916 {
11917 char *note_name = "LINUX";
11918 return elfcore_write_note (abfd, buf, bufsiz,
11919 note_name, NT_PPC_EBB, ppc_ebb, size);
11920 }
11921
11922 char *
11923 elfcore_write_ppc_pmu (bfd *abfd,
11924 char *buf,
11925 int *bufsiz,
11926 const void *ppc_pmu,
11927 int size)
11928 {
11929 char *note_name = "LINUX";
11930 return elfcore_write_note (abfd, buf, bufsiz,
11931 note_name, NT_PPC_PMU, ppc_pmu, size);
11932 }
11933
11934 char *
11935 elfcore_write_ppc_tm_cgpr (bfd *abfd,
11936 char *buf,
11937 int *bufsiz,
11938 const void *ppc_tm_cgpr,
11939 int size)
11940 {
11941 char *note_name = "LINUX";
11942 return elfcore_write_note (abfd, buf, bufsiz,
11943 note_name, NT_PPC_TM_CGPR, ppc_tm_cgpr, size);
11944 }
11945
11946 char *
11947 elfcore_write_ppc_tm_cfpr (bfd *abfd,
11948 char *buf,
11949 int *bufsiz,
11950 const void *ppc_tm_cfpr,
11951 int size)
11952 {
11953 char *note_name = "LINUX";
11954 return elfcore_write_note (abfd, buf, bufsiz,
11955 note_name, NT_PPC_TM_CFPR, ppc_tm_cfpr, size);
11956 }
11957
11958 char *
11959 elfcore_write_ppc_tm_cvmx (bfd *abfd,
11960 char *buf,
11961 int *bufsiz,
11962 const void *ppc_tm_cvmx,
11963 int size)
11964 {
11965 char *note_name = "LINUX";
11966 return elfcore_write_note (abfd, buf, bufsiz,
11967 note_name, NT_PPC_TM_CVMX, ppc_tm_cvmx, size);
11968 }
11969
11970 char *
11971 elfcore_write_ppc_tm_cvsx (bfd *abfd,
11972 char *buf,
11973 int *bufsiz,
11974 const void *ppc_tm_cvsx,
11975 int size)
11976 {
11977 char *note_name = "LINUX";
11978 return elfcore_write_note (abfd, buf, bufsiz,
11979 note_name, NT_PPC_TM_CVSX, ppc_tm_cvsx, size);
11980 }
11981
11982 char *
11983 elfcore_write_ppc_tm_spr (bfd *abfd,
11984 char *buf,
11985 int *bufsiz,
11986 const void *ppc_tm_spr,
11987 int size)
11988 {
11989 char *note_name = "LINUX";
11990 return elfcore_write_note (abfd, buf, bufsiz,
11991 note_name, NT_PPC_TM_SPR, ppc_tm_spr, size);
11992 }
11993
11994 char *
11995 elfcore_write_ppc_tm_ctar (bfd *abfd,
11996 char *buf,
11997 int *bufsiz,
11998 const void *ppc_tm_ctar,
11999 int size)
12000 {
12001 char *note_name = "LINUX";
12002 return elfcore_write_note (abfd, buf, bufsiz,
12003 note_name, NT_PPC_TM_CTAR, ppc_tm_ctar, size);
12004 }
12005
12006 char *
12007 elfcore_write_ppc_tm_cppr (bfd *abfd,
12008 char *buf,
12009 int *bufsiz,
12010 const void *ppc_tm_cppr,
12011 int size)
12012 {
12013 char *note_name = "LINUX";
12014 return elfcore_write_note (abfd, buf, bufsiz,
12015 note_name, NT_PPC_TM_CPPR, ppc_tm_cppr, size);
12016 }
12017
12018 char *
12019 elfcore_write_ppc_tm_cdscr (bfd *abfd,
12020 char *buf,
12021 int *bufsiz,
12022 const void *ppc_tm_cdscr,
12023 int size)
12024 {
12025 char *note_name = "LINUX";
12026 return elfcore_write_note (abfd, buf, bufsiz,
12027 note_name, NT_PPC_TM_CDSCR, ppc_tm_cdscr, size);
12028 }
12029
12030 static char *
12031 elfcore_write_s390_high_gprs (bfd *abfd,
12032 char *buf,
12033 int *bufsiz,
12034 const void *s390_high_gprs,
12035 int size)
12036 {
12037 char *note_name = "LINUX";
12038 return elfcore_write_note (abfd, buf, bufsiz,
12039 note_name, NT_S390_HIGH_GPRS,
12040 s390_high_gprs, size);
12041 }
12042
12043 char *
12044 elfcore_write_s390_timer (bfd *abfd,
12045 char *buf,
12046 int *bufsiz,
12047 const void *s390_timer,
12048 int size)
12049 {
12050 char *note_name = "LINUX";
12051 return elfcore_write_note (abfd, buf, bufsiz,
12052 note_name, NT_S390_TIMER, s390_timer, size);
12053 }
12054
12055 char *
12056 elfcore_write_s390_todcmp (bfd *abfd,
12057 char *buf,
12058 int *bufsiz,
12059 const void *s390_todcmp,
12060 int size)
12061 {
12062 char *note_name = "LINUX";
12063 return elfcore_write_note (abfd, buf, bufsiz,
12064 note_name, NT_S390_TODCMP, s390_todcmp, size);
12065 }
12066
12067 char *
12068 elfcore_write_s390_todpreg (bfd *abfd,
12069 char *buf,
12070 int *bufsiz,
12071 const void *s390_todpreg,
12072 int size)
12073 {
12074 char *note_name = "LINUX";
12075 return elfcore_write_note (abfd, buf, bufsiz,
12076 note_name, NT_S390_TODPREG, s390_todpreg, size);
12077 }
12078
12079 char *
12080 elfcore_write_s390_ctrs (bfd *abfd,
12081 char *buf,
12082 int *bufsiz,
12083 const void *s390_ctrs,
12084 int size)
12085 {
12086 char *note_name = "LINUX";
12087 return elfcore_write_note (abfd, buf, bufsiz,
12088 note_name, NT_S390_CTRS, s390_ctrs, size);
12089 }
12090
12091 char *
12092 elfcore_write_s390_prefix (bfd *abfd,
12093 char *buf,
12094 int *bufsiz,
12095 const void *s390_prefix,
12096 int size)
12097 {
12098 char *note_name = "LINUX";
12099 return elfcore_write_note (abfd, buf, bufsiz,
12100 note_name, NT_S390_PREFIX, s390_prefix, size);
12101 }
12102
12103 char *
12104 elfcore_write_s390_last_break (bfd *abfd,
12105 char *buf,
12106 int *bufsiz,
12107 const void *s390_last_break,
12108 int size)
12109 {
12110 char *note_name = "LINUX";
12111 return elfcore_write_note (abfd, buf, bufsiz,
12112 note_name, NT_S390_LAST_BREAK,
12113 s390_last_break, size);
12114 }
12115
12116 char *
12117 elfcore_write_s390_system_call (bfd *abfd,
12118 char *buf,
12119 int *bufsiz,
12120 const void *s390_system_call,
12121 int size)
12122 {
12123 char *note_name = "LINUX";
12124 return elfcore_write_note (abfd, buf, bufsiz,
12125 note_name, NT_S390_SYSTEM_CALL,
12126 s390_system_call, size);
12127 }
12128
12129 char *
12130 elfcore_write_s390_tdb (bfd *abfd,
12131 char *buf,
12132 int *bufsiz,
12133 const void *s390_tdb,
12134 int size)
12135 {
12136 char *note_name = "LINUX";
12137 return elfcore_write_note (abfd, buf, bufsiz,
12138 note_name, NT_S390_TDB, s390_tdb, size);
12139 }
12140
12141 char *
12142 elfcore_write_s390_vxrs_low (bfd *abfd,
12143 char *buf,
12144 int *bufsiz,
12145 const void *s390_vxrs_low,
12146 int size)
12147 {
12148 char *note_name = "LINUX";
12149 return elfcore_write_note (abfd, buf, bufsiz,
12150 note_name, NT_S390_VXRS_LOW, s390_vxrs_low, size);
12151 }
12152
12153 char *
12154 elfcore_write_s390_vxrs_high (bfd *abfd,
12155 char *buf,
12156 int *bufsiz,
12157 const void *s390_vxrs_high,
12158 int size)
12159 {
12160 char *note_name = "LINUX";
12161 return elfcore_write_note (abfd, buf, bufsiz,
12162 note_name, NT_S390_VXRS_HIGH,
12163 s390_vxrs_high, size);
12164 }
12165
12166 char *
12167 elfcore_write_s390_gs_cb (bfd *abfd,
12168 char *buf,
12169 int *bufsiz,
12170 const void *s390_gs_cb,
12171 int size)
12172 {
12173 char *note_name = "LINUX";
12174 return elfcore_write_note (abfd, buf, bufsiz,
12175 note_name, NT_S390_GS_CB,
12176 s390_gs_cb, size);
12177 }
12178
12179 char *
12180 elfcore_write_s390_gs_bc (bfd *abfd,
12181 char *buf,
12182 int *bufsiz,
12183 const void *s390_gs_bc,
12184 int size)
12185 {
12186 char *note_name = "LINUX";
12187 return elfcore_write_note (abfd, buf, bufsiz,
12188 note_name, NT_S390_GS_BC,
12189 s390_gs_bc, size);
12190 }
12191
12192 char *
12193 elfcore_write_arm_vfp (bfd *abfd,
12194 char *buf,
12195 int *bufsiz,
12196 const void *arm_vfp,
12197 int size)
12198 {
12199 char *note_name = "LINUX";
12200 return elfcore_write_note (abfd, buf, bufsiz,
12201 note_name, NT_ARM_VFP, arm_vfp, size);
12202 }
12203
12204 char *
12205 elfcore_write_aarch_tls (bfd *abfd,
12206 char *buf,
12207 int *bufsiz,
12208 const void *aarch_tls,
12209 int size)
12210 {
12211 char *note_name = "LINUX";
12212 return elfcore_write_note (abfd, buf, bufsiz,
12213 note_name, NT_ARM_TLS, aarch_tls, size);
12214 }
12215
12216 char *
12217 elfcore_write_aarch_hw_break (bfd *abfd,
12218 char *buf,
12219 int *bufsiz,
12220 const void *aarch_hw_break,
12221 int size)
12222 {
12223 char *note_name = "LINUX";
12224 return elfcore_write_note (abfd, buf, bufsiz,
12225 note_name, NT_ARM_HW_BREAK, aarch_hw_break, size);
12226 }
12227
12228 char *
12229 elfcore_write_aarch_hw_watch (bfd *abfd,
12230 char *buf,
12231 int *bufsiz,
12232 const void *aarch_hw_watch,
12233 int size)
12234 {
12235 char *note_name = "LINUX";
12236 return elfcore_write_note (abfd, buf, bufsiz,
12237 note_name, NT_ARM_HW_WATCH, aarch_hw_watch, size);
12238 }
12239
12240 char *
12241 elfcore_write_aarch_sve (bfd *abfd,
12242 char *buf,
12243 int *bufsiz,
12244 const void *aarch_sve,
12245 int size)
12246 {
12247 char *note_name = "LINUX";
12248 return elfcore_write_note (abfd, buf, bufsiz,
12249 note_name, NT_ARM_SVE, aarch_sve, size);
12250 }
12251
12252 char *
12253 elfcore_write_aarch_pauth (bfd *abfd,
12254 char *buf,
12255 int *bufsiz,
12256 const void *aarch_pauth,
12257 int size)
12258 {
12259 char *note_name = "LINUX";
12260 return elfcore_write_note (abfd, buf, bufsiz,
12261 note_name, NT_ARM_PAC_MASK, aarch_pauth, size);
12262 }
12263
12264 char *
12265 elfcore_write_aarch_mte (bfd *abfd,
12266 char *buf,
12267 int *bufsiz,
12268 const void *aarch_mte,
12269 int size)
12270 {
12271 char *note_name = "LINUX";
12272 return elfcore_write_note (abfd, buf, bufsiz,
12273 note_name, NT_ARM_TAGGED_ADDR_CTRL,
12274 aarch_mte,
12275 size);
12276 }
12277
12278 char *
12279 elfcore_write_arc_v2 (bfd *abfd,
12280 char *buf,
12281 int *bufsiz,
12282 const void *arc_v2,
12283 int size)
12284 {
12285 char *note_name = "LINUX";
12286 return elfcore_write_note (abfd, buf, bufsiz,
12287 note_name, NT_ARC_V2, arc_v2, size);
12288 }
12289
12290 char *
12291 elfcore_write_loongarch_cpucfg (bfd *abfd,
12292 char *buf,
12293 int *bufsiz,
12294 const void *loongarch_cpucfg,
12295 int size)
12296 {
12297 char *note_name = "LINUX";
12298 return elfcore_write_note (abfd, buf, bufsiz,
12299 note_name, NT_LARCH_CPUCFG,
12300 loongarch_cpucfg, size);
12301 }
12302
12303 char *
12304 elfcore_write_loongarch_lbt (bfd *abfd,
12305 char *buf,
12306 int *bufsiz,
12307 const void *loongarch_lbt,
12308 int size)
12309 {
12310 char *note_name = "LINUX";
12311 return elfcore_write_note (abfd, buf, bufsiz,
12312 note_name, NT_LARCH_LBT, loongarch_lbt, size);
12313 }
12314
12315 char *
12316 elfcore_write_loongarch_lsx (bfd *abfd,
12317 char *buf,
12318 int *bufsiz,
12319 const void *loongarch_lsx,
12320 int size)
12321 {
12322 char *note_name = "LINUX";
12323 return elfcore_write_note (abfd, buf, bufsiz,
12324 note_name, NT_LARCH_LSX, loongarch_lsx, size);
12325 }
12326
12327 char *
12328 elfcore_write_loongarch_lasx (bfd *abfd,
12329 char *buf,
12330 int *bufsiz,
12331 const void *loongarch_lasx,
12332 int size)
12333 {
12334 char *note_name = "LINUX";
12335 return elfcore_write_note (abfd, buf, bufsiz,
12336 note_name, NT_LARCH_LASX, loongarch_lasx, size);
12337 }
12338
12339 /* Write the buffer of csr values in CSRS (length SIZE) into the note
12340 buffer BUF and update *BUFSIZ. ABFD is the bfd the note is being
12341 written into. Return a pointer to the new start of the note buffer, to
12342 replace BUF which may no longer be valid. */
12343
12344 char *
12345 elfcore_write_riscv_csr (bfd *abfd,
12346 char *buf,
12347 int *bufsiz,
12348 const void *csrs,
12349 int size)
12350 {
12351 const char *note_name = "GDB";
12352 return elfcore_write_note (abfd, buf, bufsiz,
12353 note_name, NT_RISCV_CSR, csrs, size);
12354 }
12355
12356 /* Write the target description (a string) pointed to by TDESC, length
12357 SIZE, into the note buffer BUF, and update *BUFSIZ. ABFD is the bfd the
12358 note is being written into. Return a pointer to the new start of the
12359 note buffer, to replace BUF which may no longer be valid. */
12360
12361 char *
12362 elfcore_write_gdb_tdesc (bfd *abfd,
12363 char *buf,
12364 int *bufsiz,
12365 const void *tdesc,
12366 int size)
12367 {
12368 const char *note_name = "GDB";
12369 return elfcore_write_note (abfd, buf, bufsiz,
12370 note_name, NT_GDB_TDESC, tdesc, size);
12371 }
12372
12373 char *
12374 elfcore_write_register_note (bfd *abfd,
12375 char *buf,
12376 int *bufsiz,
12377 const char *section,
12378 const void *data,
12379 int size)
12380 {
12381 if (strcmp (section, ".reg2") == 0)
12382 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
12383 if (strcmp (section, ".reg-xfp") == 0)
12384 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
12385 if (strcmp (section, ".reg-xstate") == 0)
12386 return elfcore_write_xstatereg (abfd, buf, bufsiz, data, size);
12387 if (strcmp (section, ".reg-ppc-vmx") == 0)
12388 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
12389 if (strcmp (section, ".reg-ppc-vsx") == 0)
12390 return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size);
12391 if (strcmp (section, ".reg-ppc-tar") == 0)
12392 return elfcore_write_ppc_tar (abfd, buf, bufsiz, data, size);
12393 if (strcmp (section, ".reg-ppc-ppr") == 0)
12394 return elfcore_write_ppc_ppr (abfd, buf, bufsiz, data, size);
12395 if (strcmp (section, ".reg-ppc-dscr") == 0)
12396 return elfcore_write_ppc_dscr (abfd, buf, bufsiz, data, size);
12397 if (strcmp (section, ".reg-ppc-ebb") == 0)
12398 return elfcore_write_ppc_ebb (abfd, buf, bufsiz, data, size);
12399 if (strcmp (section, ".reg-ppc-pmu") == 0)
12400 return elfcore_write_ppc_pmu (abfd, buf, bufsiz, data, size);
12401 if (strcmp (section, ".reg-ppc-tm-cgpr") == 0)
12402 return elfcore_write_ppc_tm_cgpr (abfd, buf, bufsiz, data, size);
12403 if (strcmp (section, ".reg-ppc-tm-cfpr") == 0)
12404 return elfcore_write_ppc_tm_cfpr (abfd, buf, bufsiz, data, size);
12405 if (strcmp (section, ".reg-ppc-tm-cvmx") == 0)
12406 return elfcore_write_ppc_tm_cvmx (abfd, buf, bufsiz, data, size);
12407 if (strcmp (section, ".reg-ppc-tm-cvsx") == 0)
12408 return elfcore_write_ppc_tm_cvsx (abfd, buf, bufsiz, data, size);
12409 if (strcmp (section, ".reg-ppc-tm-spr") == 0)
12410 return elfcore_write_ppc_tm_spr (abfd, buf, bufsiz, data, size);
12411 if (strcmp (section, ".reg-ppc-tm-ctar") == 0)
12412 return elfcore_write_ppc_tm_ctar (abfd, buf, bufsiz, data, size);
12413 if (strcmp (section, ".reg-ppc-tm-cppr") == 0)
12414 return elfcore_write_ppc_tm_cppr (abfd, buf, bufsiz, data, size);
12415 if (strcmp (section, ".reg-ppc-tm-cdscr") == 0)
12416 return elfcore_write_ppc_tm_cdscr (abfd, buf, bufsiz, data, size);
12417 if (strcmp (section, ".reg-s390-high-gprs") == 0)
12418 return elfcore_write_s390_high_gprs (abfd, buf, bufsiz, data, size);
12419 if (strcmp (section, ".reg-s390-timer") == 0)
12420 return elfcore_write_s390_timer (abfd, buf, bufsiz, data, size);
12421 if (strcmp (section, ".reg-s390-todcmp") == 0)
12422 return elfcore_write_s390_todcmp (abfd, buf, bufsiz, data, size);
12423 if (strcmp (section, ".reg-s390-todpreg") == 0)
12424 return elfcore_write_s390_todpreg (abfd, buf, bufsiz, data, size);
12425 if (strcmp (section, ".reg-s390-ctrs") == 0)
12426 return elfcore_write_s390_ctrs (abfd, buf, bufsiz, data, size);
12427 if (strcmp (section, ".reg-s390-prefix") == 0)
12428 return elfcore_write_s390_prefix (abfd, buf, bufsiz, data, size);
12429 if (strcmp (section, ".reg-s390-last-break") == 0)
12430 return elfcore_write_s390_last_break (abfd, buf, bufsiz, data, size);
12431 if (strcmp (section, ".reg-s390-system-call") == 0)
12432 return elfcore_write_s390_system_call (abfd, buf, bufsiz, data, size);
12433 if (strcmp (section, ".reg-s390-tdb") == 0)
12434 return elfcore_write_s390_tdb (abfd, buf, bufsiz, data, size);
12435 if (strcmp (section, ".reg-s390-vxrs-low") == 0)
12436 return elfcore_write_s390_vxrs_low (abfd, buf, bufsiz, data, size);
12437 if (strcmp (section, ".reg-s390-vxrs-high") == 0)
12438 return elfcore_write_s390_vxrs_high (abfd, buf, bufsiz, data, size);
12439 if (strcmp (section, ".reg-s390-gs-cb") == 0)
12440 return elfcore_write_s390_gs_cb (abfd, buf, bufsiz, data, size);
12441 if (strcmp (section, ".reg-s390-gs-bc") == 0)
12442 return elfcore_write_s390_gs_bc (abfd, buf, bufsiz, data, size);
12443 if (strcmp (section, ".reg-arm-vfp") == 0)
12444 return elfcore_write_arm_vfp (abfd, buf, bufsiz, data, size);
12445 if (strcmp (section, ".reg-aarch-tls") == 0)
12446 return elfcore_write_aarch_tls (abfd, buf, bufsiz, data, size);
12447 if (strcmp (section, ".reg-aarch-hw-break") == 0)
12448 return elfcore_write_aarch_hw_break (abfd, buf, bufsiz, data, size);
12449 if (strcmp (section, ".reg-aarch-hw-watch") == 0)
12450 return elfcore_write_aarch_hw_watch (abfd, buf, bufsiz, data, size);
12451 if (strcmp (section, ".reg-aarch-sve") == 0)
12452 return elfcore_write_aarch_sve (abfd, buf, bufsiz, data, size);
12453 if (strcmp (section, ".reg-aarch-pauth") == 0)
12454 return elfcore_write_aarch_pauth (abfd, buf, bufsiz, data, size);
12455 if (strcmp (section, ".reg-aarch-mte") == 0)
12456 return elfcore_write_aarch_mte (abfd, buf, bufsiz, data, size);
12457 if (strcmp (section, ".reg-arc-v2") == 0)
12458 return elfcore_write_arc_v2 (abfd, buf, bufsiz, data, size);
12459 if (strcmp (section, ".gdb-tdesc") == 0)
12460 return elfcore_write_gdb_tdesc (abfd, buf, bufsiz, data, size);
12461 if (strcmp (section, ".reg-riscv-csr") == 0)
12462 return elfcore_write_riscv_csr (abfd, buf, bufsiz, data, size);
12463 if (strcmp (section, ".reg-loongarch-cpucfg") == 0)
12464 return elfcore_write_loongarch_cpucfg (abfd, buf, bufsiz, data, size);
12465 if (strcmp (section, ".reg-loongarch-lbt") == 0)
12466 return elfcore_write_loongarch_lbt (abfd, buf, bufsiz, data, size);
12467 if (strcmp (section, ".reg-loongarch-lsx") == 0)
12468 return elfcore_write_loongarch_lsx (abfd, buf, bufsiz, data, size);
12469 if (strcmp (section, ".reg-loongarch-lasx") == 0)
12470 return elfcore_write_loongarch_lasx (abfd, buf, bufsiz, data, size);
12471 return NULL;
12472 }
12473
12474 char *
12475 elfcore_write_file_note (bfd *obfd, char *note_data, int *note_size,
12476 const void *buf, int bufsiz)
12477 {
12478 return elfcore_write_note (obfd, note_data, note_size,
12479 "CORE", NT_FILE, buf, bufsiz);
12480 }
12481
12482 static bool
12483 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset,
12484 size_t align)
12485 {
12486 char *p;
12487
12488 /* NB: CORE PT_NOTE segments may have p_align values of 0 or 1.
12489 gABI specifies that PT_NOTE alignment should be aligned to 4
12490 bytes for 32-bit objects and to 8 bytes for 64-bit objects. If
12491 align is less than 4, we use 4 byte alignment. */
12492 if (align < 4)
12493 align = 4;
12494 if (align != 4 && align != 8)
12495 return false;
12496
12497 p = buf;
12498 while (p < buf + size)
12499 {
12500 Elf_External_Note *xnp = (Elf_External_Note *) p;
12501 Elf_Internal_Note in;
12502
12503 if (offsetof (Elf_External_Note, name) > buf - p + size)
12504 return false;
12505
12506 in.type = H_GET_32 (abfd, xnp->type);
12507
12508 in.namesz = H_GET_32 (abfd, xnp->namesz);
12509 in.namedata = xnp->name;
12510 if (in.namesz > buf - in.namedata + size)
12511 return false;
12512
12513 in.descsz = H_GET_32 (abfd, xnp->descsz);
12514 in.descdata = p + ELF_NOTE_DESC_OFFSET (in.namesz, align);
12515 in.descpos = offset + (in.descdata - buf);
12516 if (in.descsz != 0
12517 && (in.descdata >= buf + size
12518 || in.descsz > buf - in.descdata + size))
12519 return false;
12520
12521 switch (bfd_get_format (abfd))
12522 {
12523 default:
12524 return true;
12525
12526 case bfd_core:
12527 {
12528 #define GROKER_ELEMENT(S,F) {S, sizeof (S) - 1, F}
12529 struct
12530 {
12531 const char * string;
12532 size_t len;
12533 bool (*func) (bfd *, Elf_Internal_Note *);
12534 }
12535 grokers[] =
12536 {
12537 GROKER_ELEMENT ("", elfcore_grok_note),
12538 GROKER_ELEMENT ("FreeBSD", elfcore_grok_freebsd_note),
12539 GROKER_ELEMENT ("NetBSD-CORE", elfcore_grok_netbsd_note),
12540 GROKER_ELEMENT ("OpenBSD", elfcore_grok_openbsd_note),
12541 GROKER_ELEMENT ("QNX", elfcore_grok_nto_note),
12542 GROKER_ELEMENT ("SPU/", elfcore_grok_spu_note),
12543 GROKER_ELEMENT ("GNU", elfobj_grok_gnu_note),
12544 GROKER_ELEMENT ("CORE", elfcore_grok_solaris_note)
12545 };
12546 #undef GROKER_ELEMENT
12547 int i;
12548
12549 for (i = ARRAY_SIZE (grokers); i--;)
12550 {
12551 if (in.namesz >= grokers[i].len
12552 && strncmp (in.namedata, grokers[i].string,
12553 grokers[i].len) == 0)
12554 {
12555 if (! grokers[i].func (abfd, & in))
12556 return false;
12557 break;
12558 }
12559 }
12560 break;
12561 }
12562
12563 case bfd_object:
12564 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
12565 {
12566 if (! elfobj_grok_gnu_note (abfd, &in))
12567 return false;
12568 }
12569 else if (in.namesz == sizeof "stapsdt"
12570 && strcmp (in.namedata, "stapsdt") == 0)
12571 {
12572 if (! elfobj_grok_stapsdt_note (abfd, &in))
12573 return false;
12574 }
12575 break;
12576 }
12577
12578 p += ELF_NOTE_NEXT_OFFSET (in.namesz, in.descsz, align);
12579 }
12580
12581 return true;
12582 }
12583
12584 bool
12585 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size,
12586 size_t align)
12587 {
12588 char *buf;
12589
12590 if (size == 0 || (size + 1) == 0)
12591 return true;
12592
12593 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
12594 return false;
12595
12596 buf = (char *) _bfd_malloc_and_read (abfd, size + 1, size);
12597 if (buf == NULL)
12598 return false;
12599
12600 /* PR 17512: file: ec08f814
12601 0-termintate the buffer so that string searches will not overflow. */
12602 buf[size] = 0;
12603
12604 if (!elf_parse_notes (abfd, buf, size, offset, align))
12605 {
12606 free (buf);
12607 return false;
12608 }
12609
12610 free (buf);
12611 return true;
12612 }
12613 \f
12614 /* Providing external access to the ELF program header table. */
12615
12616 /* Return an upper bound on the number of bytes required to store a
12617 copy of ABFD's program header table entries. Return -1 if an error
12618 occurs; bfd_get_error will return an appropriate code. */
12619
12620 long
12621 bfd_get_elf_phdr_upper_bound (bfd *abfd)
12622 {
12623 if (abfd->xvec->flavour != bfd_target_elf_flavour)
12624 {
12625 bfd_set_error (bfd_error_wrong_format);
12626 return -1;
12627 }
12628
12629 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
12630 }
12631
12632 /* Copy ABFD's program header table entries to *PHDRS. The entries
12633 will be stored as an array of Elf_Internal_Phdr structures, as
12634 defined in include/elf/internal.h. To find out how large the
12635 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
12636
12637 Return the number of program header table entries read, or -1 if an
12638 error occurs; bfd_get_error will return an appropriate code. */
12639
12640 int
12641 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
12642 {
12643 int num_phdrs;
12644
12645 if (abfd->xvec->flavour != bfd_target_elf_flavour)
12646 {
12647 bfd_set_error (bfd_error_wrong_format);
12648 return -1;
12649 }
12650
12651 num_phdrs = elf_elfheader (abfd)->e_phnum;
12652 if (num_phdrs != 0)
12653 memcpy (phdrs, elf_tdata (abfd)->phdr,
12654 num_phdrs * sizeof (Elf_Internal_Phdr));
12655
12656 return num_phdrs;
12657 }
12658
12659 enum elf_reloc_type_class
12660 _bfd_elf_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
12661 const asection *rel_sec ATTRIBUTE_UNUSED,
12662 const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
12663 {
12664 return reloc_class_normal;
12665 }
12666
12667 /* For RELA architectures, return the relocation value for a
12668 relocation against a local symbol. */
12669
12670 bfd_vma
12671 _bfd_elf_rela_local_sym (bfd *abfd,
12672 Elf_Internal_Sym *sym,
12673 asection **psec,
12674 Elf_Internal_Rela *rel)
12675 {
12676 asection *sec = *psec;
12677 bfd_vma relocation;
12678
12679 relocation = (sec->output_section->vma
12680 + sec->output_offset
12681 + sym->st_value);
12682 if ((sec->flags & SEC_MERGE)
12683 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
12684 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
12685 {
12686 rel->r_addend =
12687 _bfd_merged_section_offset (abfd, psec,
12688 elf_section_data (sec)->sec_info,
12689 sym->st_value + rel->r_addend);
12690 if (sec != *psec)
12691 {
12692 /* If we have changed the section, and our original section is
12693 marked with SEC_EXCLUDE, it means that the original
12694 SEC_MERGE section has been completely subsumed in some
12695 other SEC_MERGE section. In this case, we need to leave
12696 some info around for --emit-relocs. */
12697 if ((sec->flags & SEC_EXCLUDE) != 0)
12698 sec->kept_section = *psec;
12699 sec = *psec;
12700 }
12701 rel->r_addend -= relocation;
12702 rel->r_addend += sec->output_section->vma + sec->output_offset;
12703 }
12704 return relocation;
12705 }
12706
12707 bfd_vma
12708 _bfd_elf_rel_local_sym (bfd *abfd,
12709 Elf_Internal_Sym *sym,
12710 asection **psec,
12711 bfd_vma addend)
12712 {
12713 asection *sec = *psec;
12714
12715 if (sec->sec_info_type != SEC_INFO_TYPE_MERGE)
12716 return sym->st_value + addend;
12717
12718 return _bfd_merged_section_offset (abfd, psec,
12719 elf_section_data (sec)->sec_info,
12720 sym->st_value + addend);
12721 }
12722
12723 /* Adjust an address within a section. Given OFFSET within SEC, return
12724 the new offset within the section, based upon changes made to the
12725 section. Returns -1 if the offset is now invalid.
12726 The offset (in abnd out) is in target sized bytes, however big a
12727 byte may be. */
12728
12729 bfd_vma
12730 _bfd_elf_section_offset (bfd *abfd,
12731 struct bfd_link_info *info,
12732 asection *sec,
12733 bfd_vma offset)
12734 {
12735 switch (sec->sec_info_type)
12736 {
12737 case SEC_INFO_TYPE_STABS:
12738 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
12739 offset);
12740 case SEC_INFO_TYPE_EH_FRAME:
12741 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
12742
12743 default:
12744 if ((sec->flags & SEC_ELF_REVERSE_COPY) != 0)
12745 {
12746 /* Reverse the offset. */
12747 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12748 bfd_size_type address_size = bed->s->arch_size / 8;
12749
12750 /* address_size and sec->size are in octets. Convert
12751 to bytes before subtracting the original offset. */
12752 offset = ((sec->size - address_size)
12753 / bfd_octets_per_byte (abfd, sec) - offset);
12754 }
12755 return offset;
12756 }
12757 }
12758 \f
12759 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
12760 reconstruct an ELF file by reading the segments out of remote memory
12761 based on the ELF file header at EHDR_VMA and the ELF program headers it
12762 points to. If not null, *LOADBASEP is filled in with the difference
12763 between the VMAs from which the segments were read, and the VMAs the
12764 file headers (and hence BFD's idea of each section's VMA) put them at.
12765
12766 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
12767 remote memory at target address VMA into the local buffer at MYADDR; it
12768 should return zero on success or an `errno' code on failure. TEMPL must
12769 be a BFD for an ELF target with the word size and byte order found in
12770 the remote memory. */
12771
12772 bfd *
12773 bfd_elf_bfd_from_remote_memory
12774 (bfd *templ,
12775 bfd_vma ehdr_vma,
12776 bfd_size_type size,
12777 bfd_vma *loadbasep,
12778 int (*target_read_memory) (bfd_vma, bfd_byte *, bfd_size_type))
12779 {
12780 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
12781 (templ, ehdr_vma, size, loadbasep, target_read_memory);
12782 }
12783 \f
12784 long
12785 _bfd_elf_get_synthetic_symtab (bfd *abfd,
12786 long symcount ATTRIBUTE_UNUSED,
12787 asymbol **syms ATTRIBUTE_UNUSED,
12788 long dynsymcount,
12789 asymbol **dynsyms,
12790 asymbol **ret)
12791 {
12792 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12793 asection *relplt;
12794 asymbol *s;
12795 const char *relplt_name;
12796 bool (*slurp_relocs) (bfd *, asection *, asymbol **, bool);
12797 arelent *p;
12798 long count, i, n;
12799 size_t size;
12800 Elf_Internal_Shdr *hdr;
12801 char *names;
12802 asection *plt;
12803
12804 *ret = NULL;
12805
12806 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
12807 return 0;
12808
12809 if (dynsymcount <= 0)
12810 return 0;
12811
12812 if (!bed->plt_sym_val)
12813 return 0;
12814
12815 relplt_name = bed->relplt_name;
12816 if (relplt_name == NULL)
12817 relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt";
12818 relplt = bfd_get_section_by_name (abfd, relplt_name);
12819 if (relplt == NULL)
12820 return 0;
12821
12822 hdr = &elf_section_data (relplt)->this_hdr;
12823 if (hdr->sh_link != elf_dynsymtab (abfd)
12824 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
12825 return 0;
12826
12827 plt = bfd_get_section_by_name (abfd, ".plt");
12828 if (plt == NULL)
12829 return 0;
12830
12831 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
12832 if (! (*slurp_relocs) (abfd, relplt, dynsyms, true))
12833 return -1;
12834
12835 count = relplt->size / hdr->sh_entsize;
12836 size = count * sizeof (asymbol);
12837 p = relplt->relocation;
12838 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
12839 {
12840 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
12841 if (p->addend != 0)
12842 {
12843 #ifdef BFD64
12844 size += sizeof ("+0x") - 1 + 8 + 8 * (bed->s->elfclass == ELFCLASS64);
12845 #else
12846 size += sizeof ("+0x") - 1 + 8;
12847 #endif
12848 }
12849 }
12850
12851 s = *ret = (asymbol *) bfd_malloc (size);
12852 if (s == NULL)
12853 return -1;
12854
12855 names = (char *) (s + count);
12856 p = relplt->relocation;
12857 n = 0;
12858 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
12859 {
12860 size_t len;
12861 bfd_vma addr;
12862
12863 addr = bed->plt_sym_val (i, plt, p);
12864 if (addr == (bfd_vma) -1)
12865 continue;
12866
12867 *s = **p->sym_ptr_ptr;
12868 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
12869 we are defining a symbol, ensure one of them is set. */
12870 if ((s->flags & BSF_LOCAL) == 0)
12871 s->flags |= BSF_GLOBAL;
12872 s->flags |= BSF_SYNTHETIC;
12873 s->section = plt;
12874 s->value = addr - plt->vma;
12875 s->name = names;
12876 s->udata.p = NULL;
12877 len = strlen ((*p->sym_ptr_ptr)->name);
12878 memcpy (names, (*p->sym_ptr_ptr)->name, len);
12879 names += len;
12880 if (p->addend != 0)
12881 {
12882 char buf[30], *a;
12883
12884 memcpy (names, "+0x", sizeof ("+0x") - 1);
12885 names += sizeof ("+0x") - 1;
12886 bfd_sprintf_vma (abfd, buf, p->addend);
12887 for (a = buf; *a == '0'; ++a)
12888 ;
12889 len = strlen (a);
12890 memcpy (names, a, len);
12891 names += len;
12892 }
12893 memcpy (names, "@plt", sizeof ("@plt"));
12894 names += sizeof ("@plt");
12895 ++s, ++n;
12896 }
12897
12898 return n;
12899 }
12900
12901 /* It is only used by x86-64 so far.
12902 ??? This repeats *COM* id of zero. sec->id is supposed to be unique,
12903 but current usage would allow all of _bfd_std_section to be zero. */
12904 static const asymbol lcomm_sym
12905 = GLOBAL_SYM_INIT ("LARGE_COMMON", &_bfd_elf_large_com_section);
12906 asection _bfd_elf_large_com_section
12907 = BFD_FAKE_SECTION (_bfd_elf_large_com_section, &lcomm_sym,
12908 "LARGE_COMMON", 0, SEC_IS_COMMON);
12909
12910 bool
12911 _bfd_elf_final_write_processing (bfd *abfd)
12912 {
12913 Elf_Internal_Ehdr *i_ehdrp; /* ELF file header, internal form. */
12914
12915 i_ehdrp = elf_elfheader (abfd);
12916
12917 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE)
12918 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
12919
12920 /* Set the osabi field to ELFOSABI_GNU if the binary contains
12921 SHF_GNU_MBIND or SHF_GNU_RETAIN sections or symbols of STT_GNU_IFUNC type
12922 or STB_GNU_UNIQUE binding. */
12923 if (elf_tdata (abfd)->has_gnu_osabi != 0)
12924 {
12925 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE)
12926 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_GNU;
12927 else if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_GNU
12928 && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_FREEBSD)
12929 {
12930 if (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_mbind)
12931 _bfd_error_handler (_("GNU_MBIND section is supported only by GNU "
12932 "and FreeBSD targets"));
12933 if (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_ifunc)
12934 _bfd_error_handler (_("symbol type STT_GNU_IFUNC is supported "
12935 "only by GNU and FreeBSD targets"));
12936 if (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_unique)
12937 _bfd_error_handler (_("symbol binding STB_GNU_UNIQUE is supported "
12938 "only by GNU and FreeBSD targets"));
12939 if (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_retain)
12940 _bfd_error_handler (_("GNU_RETAIN section is supported "
12941 "only by GNU and FreeBSD targets"));
12942 bfd_set_error (bfd_error_sorry);
12943 return false;
12944 }
12945 }
12946 return true;
12947 }
12948
12949
12950 /* Return TRUE for ELF symbol types that represent functions.
12951 This is the default version of this function, which is sufficient for
12952 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */
12953
12954 bool
12955 _bfd_elf_is_function_type (unsigned int type)
12956 {
12957 return (type == STT_FUNC
12958 || type == STT_GNU_IFUNC);
12959 }
12960
12961 /* If the ELF symbol SYM might be a function in SEC, return the
12962 function size and set *CODE_OFF to the function's entry point,
12963 otherwise return zero. */
12964
12965 bfd_size_type
12966 _bfd_elf_maybe_function_sym (const asymbol *sym, asection *sec,
12967 bfd_vma *code_off)
12968 {
12969 bfd_size_type size;
12970 elf_symbol_type * elf_sym = (elf_symbol_type *) sym;
12971
12972 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
12973 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0
12974 || sym->section != sec)
12975 return 0;
12976
12977 size = (sym->flags & BSF_SYNTHETIC) ? 0 : elf_sym->internal_elf_sym.st_size;
12978
12979 /* In theory we should check that the symbol's type satisfies
12980 _bfd_elf_is_function_type(), but there are some function-like
12981 symbols which would fail this test. (eg _start). Instead
12982 we check for hidden, local, notype symbols with zero size.
12983 This type of symbol is generated by the annobin plugin for gcc
12984 and clang, and should not be considered to be a function symbol. */
12985 if (size == 0
12986 && ((sym->flags & (BSF_SYNTHETIC | BSF_LOCAL)) == BSF_LOCAL)
12987 && ELF_ST_TYPE (elf_sym->internal_elf_sym.st_info) == STT_NOTYPE
12988 && ELF_ST_VISIBILITY (elf_sym->internal_elf_sym.st_other) == STV_HIDDEN)
12989 return 0;
12990
12991 *code_off = sym->value;
12992 /* Do not return 0 for the function's size. */
12993 return size ? size : 1;
12994 }
12995
12996 /* Set to non-zero to enable some debug messages. */
12997 #define DEBUG_SECONDARY_RELOCS 0
12998
12999 /* An internal-to-the-bfd-library only section type
13000 used to indicate a cached secondary reloc section. */
13001 #define SHT_SECONDARY_RELOC (SHT_LOOS + SHT_RELA)
13002
13003 /* Create a BFD section to hold a secondary reloc section. */
13004
13005 bool
13006 _bfd_elf_init_secondary_reloc_section (bfd * abfd,
13007 Elf_Internal_Shdr *hdr,
13008 const char * name,
13009 unsigned int shindex)
13010 {
13011 /* We only support RELA secondary relocs. */
13012 if (hdr->sh_type != SHT_RELA)
13013 return false;
13014
13015 #if DEBUG_SECONDARY_RELOCS
13016 fprintf (stderr, "secondary reloc section %s encountered\n", name);
13017 #endif
13018 hdr->sh_type = SHT_SECONDARY_RELOC;
13019 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
13020 }
13021
13022 /* Read in any secondary relocs associated with SEC. */
13023
13024 bool
13025 _bfd_elf_slurp_secondary_reloc_section (bfd * abfd,
13026 asection * sec,
13027 asymbol ** symbols,
13028 bool dynamic)
13029 {
13030 const struct elf_backend_data * const ebd = get_elf_backend_data (abfd);
13031 asection * relsec;
13032 bool result = true;
13033 bfd_vma (*r_sym) (bfd_vma);
13034
13035 #if BFD_DEFAULT_TARGET_SIZE > 32
13036 if (bfd_arch_bits_per_address (abfd) != 32)
13037 r_sym = elf64_r_sym;
13038 else
13039 #endif
13040 r_sym = elf32_r_sym;
13041
13042 if (!elf_section_data (sec)->has_secondary_relocs)
13043 return true;
13044
13045 /* Discover if there are any secondary reloc sections
13046 associated with SEC. */
13047 for (relsec = abfd->sections; relsec != NULL; relsec = relsec->next)
13048 {
13049 Elf_Internal_Shdr * hdr = & elf_section_data (relsec)->this_hdr;
13050
13051 if (hdr->sh_type == SHT_SECONDARY_RELOC
13052 && hdr->sh_info == (unsigned) elf_section_data (sec)->this_idx
13053 && (hdr->sh_entsize == ebd->s->sizeof_rel
13054 || hdr->sh_entsize == ebd->s->sizeof_rela))
13055 {
13056 bfd_byte * native_relocs;
13057 bfd_byte * native_reloc;
13058 arelent * internal_relocs;
13059 arelent * internal_reloc;
13060 unsigned int i;
13061 unsigned int entsize;
13062 unsigned int symcount;
13063 unsigned int reloc_count;
13064 size_t amt;
13065
13066 if (ebd->elf_info_to_howto == NULL)
13067 return false;
13068
13069 #if DEBUG_SECONDARY_RELOCS
13070 fprintf (stderr, "read secondary relocs for %s from %s\n",
13071 sec->name, relsec->name);
13072 #endif
13073 entsize = hdr->sh_entsize;
13074
13075 native_relocs = bfd_malloc (hdr->sh_size);
13076 if (native_relocs == NULL)
13077 {
13078 result = false;
13079 continue;
13080 }
13081
13082 reloc_count = NUM_SHDR_ENTRIES (hdr);
13083 if (_bfd_mul_overflow (reloc_count, sizeof (arelent), & amt))
13084 {
13085 free (native_relocs);
13086 bfd_set_error (bfd_error_file_too_big);
13087 result = false;
13088 continue;
13089 }
13090
13091 internal_relocs = (arelent *) bfd_alloc (abfd, amt);
13092 if (internal_relocs == NULL)
13093 {
13094 free (native_relocs);
13095 result = false;
13096 continue;
13097 }
13098
13099 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
13100 || (bfd_bread (native_relocs, hdr->sh_size, abfd)
13101 != hdr->sh_size))
13102 {
13103 free (native_relocs);
13104 /* The internal_relocs will be freed when
13105 the memory for the bfd is released. */
13106 result = false;
13107 continue;
13108 }
13109
13110 if (dynamic)
13111 symcount = bfd_get_dynamic_symcount (abfd);
13112 else
13113 symcount = bfd_get_symcount (abfd);
13114
13115 for (i = 0, internal_reloc = internal_relocs,
13116 native_reloc = native_relocs;
13117 i < reloc_count;
13118 i++, internal_reloc++, native_reloc += entsize)
13119 {
13120 bool res;
13121 Elf_Internal_Rela rela;
13122
13123 if (entsize == ebd->s->sizeof_rel)
13124 ebd->s->swap_reloc_in (abfd, native_reloc, & rela);
13125 else /* entsize == ebd->s->sizeof_rela */
13126 ebd->s->swap_reloca_in (abfd, native_reloc, & rela);
13127
13128 /* The address of an ELF reloc is section relative for an object
13129 file, and absolute for an executable file or shared library.
13130 The address of a normal BFD reloc is always section relative,
13131 and the address of a dynamic reloc is absolute.. */
13132 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
13133 internal_reloc->address = rela.r_offset;
13134 else
13135 internal_reloc->address = rela.r_offset - sec->vma;
13136
13137 if (r_sym (rela.r_info) == STN_UNDEF)
13138 {
13139 /* FIXME: This and the error case below mean that we
13140 have a symbol on relocs that is not elf_symbol_type. */
13141 internal_reloc->sym_ptr_ptr =
13142 bfd_abs_section_ptr->symbol_ptr_ptr;
13143 }
13144 else if (r_sym (rela.r_info) > symcount)
13145 {
13146 _bfd_error_handler
13147 /* xgettext:c-format */
13148 (_("%pB(%pA): relocation %d has invalid symbol index %ld"),
13149 abfd, sec, i, (long) r_sym (rela.r_info));
13150 bfd_set_error (bfd_error_bad_value);
13151 internal_reloc->sym_ptr_ptr =
13152 bfd_abs_section_ptr->symbol_ptr_ptr;
13153 result = false;
13154 }
13155 else
13156 {
13157 asymbol **ps;
13158
13159 ps = symbols + r_sym (rela.r_info) - 1;
13160 internal_reloc->sym_ptr_ptr = ps;
13161 /* Make sure that this symbol is not removed by strip. */
13162 (*ps)->flags |= BSF_KEEP;
13163 }
13164
13165 internal_reloc->addend = rela.r_addend;
13166
13167 res = ebd->elf_info_to_howto (abfd, internal_reloc, & rela);
13168 if (! res || internal_reloc->howto == NULL)
13169 {
13170 #if DEBUG_SECONDARY_RELOCS
13171 fprintf (stderr, "there is no howto associated with reloc %lx\n",
13172 rela.r_info);
13173 #endif
13174 result = false;
13175 }
13176 }
13177
13178 free (native_relocs);
13179 /* Store the internal relocs. */
13180 elf_section_data (relsec)->sec_info = internal_relocs;
13181 }
13182 }
13183
13184 return result;
13185 }
13186
13187 /* Set the ELF section header fields of an output secondary reloc section. */
13188
13189 bool
13190 _bfd_elf_copy_special_section_fields (const bfd * ibfd ATTRIBUTE_UNUSED,
13191 bfd * obfd ATTRIBUTE_UNUSED,
13192 const Elf_Internal_Shdr * isection,
13193 Elf_Internal_Shdr * osection)
13194 {
13195 asection * isec;
13196 asection * osec;
13197 struct bfd_elf_section_data * esd;
13198
13199 if (isection == NULL)
13200 return false;
13201
13202 if (isection->sh_type != SHT_SECONDARY_RELOC)
13203 return true;
13204
13205 isec = isection->bfd_section;
13206 if (isec == NULL)
13207 return false;
13208
13209 osec = osection->bfd_section;
13210 if (osec == NULL)
13211 return false;
13212
13213 esd = elf_section_data (osec);
13214 BFD_ASSERT (esd->sec_info == NULL);
13215 esd->sec_info = elf_section_data (isec)->sec_info;
13216 osection->sh_type = SHT_RELA;
13217 osection->sh_link = elf_onesymtab (obfd);
13218 if (osection->sh_link == 0)
13219 {
13220 /* There is no symbol table - we are hosed... */
13221 _bfd_error_handler
13222 /* xgettext:c-format */
13223 (_("%pB(%pA): link section cannot be set because the output file does not have a symbol table"),
13224 obfd, osec);
13225 bfd_set_error (bfd_error_bad_value);
13226 return false;
13227 }
13228
13229 /* Find the output section that corresponds to the isection's sh_info link. */
13230 if (isection->sh_info == 0
13231 || isection->sh_info >= elf_numsections (ibfd))
13232 {
13233 _bfd_error_handler
13234 /* xgettext:c-format */
13235 (_("%pB(%pA): info section index is invalid"),
13236 obfd, osec);
13237 bfd_set_error (bfd_error_bad_value);
13238 return false;
13239 }
13240
13241 isection = elf_elfsections (ibfd)[isection->sh_info];
13242
13243 if (isection == NULL
13244 || isection->bfd_section == NULL
13245 || isection->bfd_section->output_section == NULL)
13246 {
13247 _bfd_error_handler
13248 /* xgettext:c-format */
13249 (_("%pB(%pA): info section index cannot be set because the section is not in the output"),
13250 obfd, osec);
13251 bfd_set_error (bfd_error_bad_value);
13252 return false;
13253 }
13254
13255 esd = elf_section_data (isection->bfd_section->output_section);
13256 BFD_ASSERT (esd != NULL);
13257 osection->sh_info = esd->this_idx;
13258 esd->has_secondary_relocs = true;
13259 #if DEBUG_SECONDARY_RELOCS
13260 fprintf (stderr, "update header of %s, sh_link = %u, sh_info = %u\n",
13261 osec->name, osection->sh_link, osection->sh_info);
13262 fprintf (stderr, "mark section %s as having secondary relocs\n",
13263 bfd_section_name (isection->bfd_section->output_section));
13264 #endif
13265
13266 return true;
13267 }
13268
13269 /* Write out a secondary reloc section.
13270
13271 FIXME: Currently this function can result in a serious performance penalty
13272 for files with secondary relocs and lots of sections. The proper way to
13273 fix this is for _bfd_elf_copy_special_section_fields() to chain secondary
13274 relocs together and then to have this function just walk that chain. */
13275
13276 bool
13277 _bfd_elf_write_secondary_reloc_section (bfd *abfd, asection *sec)
13278 {
13279 const struct elf_backend_data * const ebd = get_elf_backend_data (abfd);
13280 bfd_vma addr_offset;
13281 asection * relsec;
13282 bfd_vma (*r_info) (bfd_vma, bfd_vma);
13283 bool result = true;
13284
13285 if (sec == NULL)
13286 return false;
13287
13288 #if BFD_DEFAULT_TARGET_SIZE > 32
13289 if (bfd_arch_bits_per_address (abfd) != 32)
13290 r_info = elf64_r_info;
13291 else
13292 #endif
13293 r_info = elf32_r_info;
13294
13295 /* The address of an ELF reloc is section relative for an object
13296 file, and absolute for an executable file or shared library.
13297 The address of a BFD reloc is always section relative. */
13298 addr_offset = 0;
13299 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
13300 addr_offset = sec->vma;
13301
13302 /* Discover if there are any secondary reloc sections
13303 associated with SEC. */
13304 for (relsec = abfd->sections; relsec != NULL; relsec = relsec->next)
13305 {
13306 const struct bfd_elf_section_data * const esd = elf_section_data (relsec);
13307 Elf_Internal_Shdr * const hdr = (Elf_Internal_Shdr *) & esd->this_hdr;
13308
13309 if (hdr->sh_type == SHT_RELA
13310 && hdr->sh_info == (unsigned) elf_section_data (sec)->this_idx)
13311 {
13312 asymbol * last_sym;
13313 int last_sym_idx;
13314 unsigned int reloc_count;
13315 unsigned int idx;
13316 unsigned int entsize;
13317 arelent * src_irel;
13318 bfd_byte * dst_rela;
13319
13320 if (hdr->contents != NULL)
13321 {
13322 _bfd_error_handler
13323 /* xgettext:c-format */
13324 (_("%pB(%pA): error: secondary reloc section processed twice"),
13325 abfd, relsec);
13326 bfd_set_error (bfd_error_bad_value);
13327 result = false;
13328 continue;
13329 }
13330
13331 entsize = hdr->sh_entsize;
13332 if (entsize == 0)
13333 {
13334 _bfd_error_handler
13335 /* xgettext:c-format */
13336 (_("%pB(%pA): error: secondary reloc section has zero sized entries"),
13337 abfd, relsec);
13338 bfd_set_error (bfd_error_bad_value);
13339 result = false;
13340 continue;
13341 }
13342 else if (entsize != ebd->s->sizeof_rel
13343 && entsize != ebd->s->sizeof_rela)
13344 {
13345 _bfd_error_handler
13346 /* xgettext:c-format */
13347 (_("%pB(%pA): error: secondary reloc section has non-standard sized entries"),
13348 abfd, relsec);
13349 bfd_set_error (bfd_error_bad_value);
13350 result = false;
13351 continue;
13352 }
13353
13354 reloc_count = hdr->sh_size / entsize;
13355 if (reloc_count <= 0)
13356 {
13357 _bfd_error_handler
13358 /* xgettext:c-format */
13359 (_("%pB(%pA): error: secondary reloc section is empty!"),
13360 abfd, relsec);
13361 bfd_set_error (bfd_error_bad_value);
13362 result = false;
13363 continue;
13364 }
13365
13366 hdr->contents = bfd_alloc (abfd, hdr->sh_size);
13367 if (hdr->contents == NULL)
13368 continue;
13369
13370 #if DEBUG_SECONDARY_RELOCS
13371 fprintf (stderr, "write %u secondary relocs for %s from %s\n",
13372 reloc_count, sec->name, relsec->name);
13373 #endif
13374 last_sym = NULL;
13375 last_sym_idx = 0;
13376 dst_rela = hdr->contents;
13377 src_irel = (arelent *) esd->sec_info;
13378 if (src_irel == NULL)
13379 {
13380 _bfd_error_handler
13381 /* xgettext:c-format */
13382 (_("%pB(%pA): error: internal relocs missing for secondary reloc section"),
13383 abfd, relsec);
13384 bfd_set_error (bfd_error_bad_value);
13385 result = false;
13386 continue;
13387 }
13388
13389 for (idx = 0; idx < reloc_count; idx++, dst_rela += entsize)
13390 {
13391 Elf_Internal_Rela src_rela;
13392 arelent *ptr;
13393 asymbol *sym;
13394 int n;
13395
13396 ptr = src_irel + idx;
13397 if (ptr == NULL)
13398 {
13399 _bfd_error_handler
13400 /* xgettext:c-format */
13401 (_("%pB(%pA): error: reloc table entry %u is empty"),
13402 abfd, relsec, idx);
13403 bfd_set_error (bfd_error_bad_value);
13404 result = false;
13405 break;
13406 }
13407
13408 if (ptr->sym_ptr_ptr == NULL)
13409 {
13410 /* FIXME: Is this an error ? */
13411 n = 0;
13412 }
13413 else
13414 {
13415 sym = *ptr->sym_ptr_ptr;
13416
13417 if (sym == last_sym)
13418 n = last_sym_idx;
13419 else
13420 {
13421 n = _bfd_elf_symbol_from_bfd_symbol (abfd, & sym);
13422 if (n < 0)
13423 {
13424 _bfd_error_handler
13425 /* xgettext:c-format */
13426 (_("%pB(%pA): error: secondary reloc %u references a missing symbol"),
13427 abfd, relsec, idx);
13428 bfd_set_error (bfd_error_bad_value);
13429 result = false;
13430 n = 0;
13431 }
13432
13433 last_sym = sym;
13434 last_sym_idx = n;
13435 }
13436
13437 if (sym->the_bfd != NULL
13438 && sym->the_bfd->xvec != abfd->xvec
13439 && ! _bfd_elf_validate_reloc (abfd, ptr))
13440 {
13441 _bfd_error_handler
13442 /* xgettext:c-format */
13443 (_("%pB(%pA): error: secondary reloc %u references a deleted symbol"),
13444 abfd, relsec, idx);
13445 bfd_set_error (bfd_error_bad_value);
13446 result = false;
13447 n = 0;
13448 }
13449 }
13450
13451 src_rela.r_offset = ptr->address + addr_offset;
13452 if (ptr->howto == NULL)
13453 {
13454 _bfd_error_handler
13455 /* xgettext:c-format */
13456 (_("%pB(%pA): error: secondary reloc %u is of an unknown type"),
13457 abfd, relsec, idx);
13458 bfd_set_error (bfd_error_bad_value);
13459 result = false;
13460 src_rela.r_info = r_info (0, 0);
13461 }
13462 else
13463 src_rela.r_info = r_info (n, ptr->howto->type);
13464 src_rela.r_addend = ptr->addend;
13465
13466 if (entsize == ebd->s->sizeof_rel)
13467 ebd->s->swap_reloc_out (abfd, &src_rela, dst_rela);
13468 else /* entsize == ebd->s->sizeof_rela */
13469 ebd->s->swap_reloca_out (abfd, &src_rela, dst_rela);
13470 }
13471 }
13472 }
13473
13474 return result;
13475 }