daily update
[binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
5 Free Software Foundation, Inc.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 MA 02110-1301, USA. */
23
24
25 /*
26 SECTION
27 ELF backends
28
29 BFD support for ELF formats is being worked on.
30 Currently, the best supported back ends are for sparc and i386
31 (running svr4 or Solaris 2).
32
33 Documentation of the internals of the support code still needs
34 to be written. The code is changing quickly enough that we
35 haven't bothered yet. */
36
37 /* For sparc64-cross-sparc32. */
38 #define _SYSCALL32
39 #include "sysdep.h"
40 #include "bfd.h"
41 #include "bfdlink.h"
42 #include "libbfd.h"
43 #define ARCH_SIZE 0
44 #include "elf-bfd.h"
45 #include "libiberty.h"
46 #include "safe-ctype.h"
47
48 #ifdef CORE_HEADER
49 #include CORE_HEADER
50 #endif
51
52 static int elf_sort_sections (const void *, const void *);
53 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
54 static bfd_boolean prep_headers (bfd *);
55 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
56 static bfd_boolean elf_read_notes (bfd *, file_ptr, bfd_size_type) ;
57 static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
58 file_ptr offset);
59
60 /* Swap version information in and out. The version information is
61 currently size independent. If that ever changes, this code will
62 need to move into elfcode.h. */
63
64 /* Swap in a Verdef structure. */
65
66 void
67 _bfd_elf_swap_verdef_in (bfd *abfd,
68 const Elf_External_Verdef *src,
69 Elf_Internal_Verdef *dst)
70 {
71 dst->vd_version = H_GET_16 (abfd, src->vd_version);
72 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
73 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
74 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
75 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
76 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
77 dst->vd_next = H_GET_32 (abfd, src->vd_next);
78 }
79
80 /* Swap out a Verdef structure. */
81
82 void
83 _bfd_elf_swap_verdef_out (bfd *abfd,
84 const Elf_Internal_Verdef *src,
85 Elf_External_Verdef *dst)
86 {
87 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
88 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
89 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
90 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
91 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
92 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
93 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
94 }
95
96 /* Swap in a Verdaux structure. */
97
98 void
99 _bfd_elf_swap_verdaux_in (bfd *abfd,
100 const Elf_External_Verdaux *src,
101 Elf_Internal_Verdaux *dst)
102 {
103 dst->vda_name = H_GET_32 (abfd, src->vda_name);
104 dst->vda_next = H_GET_32 (abfd, src->vda_next);
105 }
106
107 /* Swap out a Verdaux structure. */
108
109 void
110 _bfd_elf_swap_verdaux_out (bfd *abfd,
111 const Elf_Internal_Verdaux *src,
112 Elf_External_Verdaux *dst)
113 {
114 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
115 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
116 }
117
118 /* Swap in a Verneed structure. */
119
120 void
121 _bfd_elf_swap_verneed_in (bfd *abfd,
122 const Elf_External_Verneed *src,
123 Elf_Internal_Verneed *dst)
124 {
125 dst->vn_version = H_GET_16 (abfd, src->vn_version);
126 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
127 dst->vn_file = H_GET_32 (abfd, src->vn_file);
128 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
129 dst->vn_next = H_GET_32 (abfd, src->vn_next);
130 }
131
132 /* Swap out a Verneed structure. */
133
134 void
135 _bfd_elf_swap_verneed_out (bfd *abfd,
136 const Elf_Internal_Verneed *src,
137 Elf_External_Verneed *dst)
138 {
139 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
140 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
141 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
142 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
143 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
144 }
145
146 /* Swap in a Vernaux structure. */
147
148 void
149 _bfd_elf_swap_vernaux_in (bfd *abfd,
150 const Elf_External_Vernaux *src,
151 Elf_Internal_Vernaux *dst)
152 {
153 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
154 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
155 dst->vna_other = H_GET_16 (abfd, src->vna_other);
156 dst->vna_name = H_GET_32 (abfd, src->vna_name);
157 dst->vna_next = H_GET_32 (abfd, src->vna_next);
158 }
159
160 /* Swap out a Vernaux structure. */
161
162 void
163 _bfd_elf_swap_vernaux_out (bfd *abfd,
164 const Elf_Internal_Vernaux *src,
165 Elf_External_Vernaux *dst)
166 {
167 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
168 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
169 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
170 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
171 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
172 }
173
174 /* Swap in a Versym structure. */
175
176 void
177 _bfd_elf_swap_versym_in (bfd *abfd,
178 const Elf_External_Versym *src,
179 Elf_Internal_Versym *dst)
180 {
181 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
182 }
183
184 /* Swap out a Versym structure. */
185
186 void
187 _bfd_elf_swap_versym_out (bfd *abfd,
188 const Elf_Internal_Versym *src,
189 Elf_External_Versym *dst)
190 {
191 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
192 }
193
194 /* Standard ELF hash function. Do not change this function; you will
195 cause invalid hash tables to be generated. */
196
197 unsigned long
198 bfd_elf_hash (const char *namearg)
199 {
200 const unsigned char *name = (const unsigned char *) namearg;
201 unsigned long h = 0;
202 unsigned long g;
203 int ch;
204
205 while ((ch = *name++) != '\0')
206 {
207 h = (h << 4) + ch;
208 if ((g = (h & 0xf0000000)) != 0)
209 {
210 h ^= g >> 24;
211 /* The ELF ABI says `h &= ~g', but this is equivalent in
212 this case and on some machines one insn instead of two. */
213 h ^= g;
214 }
215 }
216 return h & 0xffffffff;
217 }
218
219 /* DT_GNU_HASH hash function. Do not change this function; you will
220 cause invalid hash tables to be generated. */
221
222 unsigned long
223 bfd_elf_gnu_hash (const char *namearg)
224 {
225 const unsigned char *name = (const unsigned char *) namearg;
226 unsigned long h = 5381;
227 unsigned char ch;
228
229 while ((ch = *name++) != '\0')
230 h = (h << 5) + h + ch;
231 return h & 0xffffffff;
232 }
233
234 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
235 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
236 bfd_boolean
237 bfd_elf_allocate_object (bfd *abfd,
238 size_t object_size,
239 enum elf_target_id object_id)
240 {
241 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
242 abfd->tdata.any = bfd_zalloc (abfd, object_size);
243 if (abfd->tdata.any == NULL)
244 return FALSE;
245
246 elf_object_id (abfd) = object_id;
247 elf_program_header_size (abfd) = (bfd_size_type) -1;
248 return TRUE;
249 }
250
251
252 bfd_boolean
253 bfd_elf_make_object (bfd *abfd)
254 {
255 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
256 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
257 bed->target_id);
258 }
259
260 bfd_boolean
261 bfd_elf_mkcorefile (bfd *abfd)
262 {
263 /* I think this can be done just like an object file. */
264 return abfd->xvec->_bfd_set_format[(int) bfd_object] (abfd);
265 }
266
267 static char *
268 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
269 {
270 Elf_Internal_Shdr **i_shdrp;
271 bfd_byte *shstrtab = NULL;
272 file_ptr offset;
273 bfd_size_type shstrtabsize;
274
275 i_shdrp = elf_elfsections (abfd);
276 if (i_shdrp == 0
277 || shindex >= elf_numsections (abfd)
278 || i_shdrp[shindex] == 0)
279 return NULL;
280
281 shstrtab = i_shdrp[shindex]->contents;
282 if (shstrtab == NULL)
283 {
284 /* No cached one, attempt to read, and cache what we read. */
285 offset = i_shdrp[shindex]->sh_offset;
286 shstrtabsize = i_shdrp[shindex]->sh_size;
287
288 /* Allocate and clear an extra byte at the end, to prevent crashes
289 in case the string table is not terminated. */
290 if (shstrtabsize + 1 <= 1
291 || (shstrtab = (bfd_byte *) bfd_alloc (abfd, shstrtabsize + 1)) == NULL
292 || bfd_seek (abfd, offset, SEEK_SET) != 0)
293 shstrtab = NULL;
294 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
295 {
296 if (bfd_get_error () != bfd_error_system_call)
297 bfd_set_error (bfd_error_file_truncated);
298 shstrtab = NULL;
299 /* Once we've failed to read it, make sure we don't keep
300 trying. Otherwise, we'll keep allocating space for
301 the string table over and over. */
302 i_shdrp[shindex]->sh_size = 0;
303 }
304 else
305 shstrtab[shstrtabsize] = '\0';
306 i_shdrp[shindex]->contents = shstrtab;
307 }
308 return (char *) shstrtab;
309 }
310
311 char *
312 bfd_elf_string_from_elf_section (bfd *abfd,
313 unsigned int shindex,
314 unsigned int strindex)
315 {
316 Elf_Internal_Shdr *hdr;
317
318 if (strindex == 0)
319 return "";
320
321 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
322 return NULL;
323
324 hdr = elf_elfsections (abfd)[shindex];
325
326 if (hdr->contents == NULL
327 && bfd_elf_get_str_section (abfd, shindex) == NULL)
328 return NULL;
329
330 if (strindex >= hdr->sh_size)
331 {
332 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
333 (*_bfd_error_handler)
334 (_("%B: invalid string offset %u >= %lu for section `%s'"),
335 abfd, strindex, (unsigned long) hdr->sh_size,
336 (shindex == shstrndx && strindex == hdr->sh_name
337 ? ".shstrtab"
338 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
339 return NULL;
340 }
341
342 return ((char *) hdr->contents) + strindex;
343 }
344
345 /* Read and convert symbols to internal format.
346 SYMCOUNT specifies the number of symbols to read, starting from
347 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
348 are non-NULL, they are used to store the internal symbols, external
349 symbols, and symbol section index extensions, respectively.
350 Returns a pointer to the internal symbol buffer (malloced if necessary)
351 or NULL if there were no symbols or some kind of problem. */
352
353 Elf_Internal_Sym *
354 bfd_elf_get_elf_syms (bfd *ibfd,
355 Elf_Internal_Shdr *symtab_hdr,
356 size_t symcount,
357 size_t symoffset,
358 Elf_Internal_Sym *intsym_buf,
359 void *extsym_buf,
360 Elf_External_Sym_Shndx *extshndx_buf)
361 {
362 Elf_Internal_Shdr *shndx_hdr;
363 void *alloc_ext;
364 const bfd_byte *esym;
365 Elf_External_Sym_Shndx *alloc_extshndx;
366 Elf_External_Sym_Shndx *shndx;
367 Elf_Internal_Sym *alloc_intsym;
368 Elf_Internal_Sym *isym;
369 Elf_Internal_Sym *isymend;
370 const struct elf_backend_data *bed;
371 size_t extsym_size;
372 bfd_size_type amt;
373 file_ptr pos;
374
375 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
376 abort ();
377
378 if (symcount == 0)
379 return intsym_buf;
380
381 /* Normal syms might have section extension entries. */
382 shndx_hdr = NULL;
383 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
384 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
385
386 /* Read the symbols. */
387 alloc_ext = NULL;
388 alloc_extshndx = NULL;
389 alloc_intsym = NULL;
390 bed = get_elf_backend_data (ibfd);
391 extsym_size = bed->s->sizeof_sym;
392 amt = symcount * extsym_size;
393 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
394 if (extsym_buf == NULL)
395 {
396 alloc_ext = bfd_malloc2 (symcount, extsym_size);
397 extsym_buf = alloc_ext;
398 }
399 if (extsym_buf == NULL
400 || bfd_seek (ibfd, pos, SEEK_SET) != 0
401 || bfd_bread (extsym_buf, amt, ibfd) != amt)
402 {
403 intsym_buf = NULL;
404 goto out;
405 }
406
407 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
408 extshndx_buf = NULL;
409 else
410 {
411 amt = symcount * sizeof (Elf_External_Sym_Shndx);
412 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
413 if (extshndx_buf == NULL)
414 {
415 alloc_extshndx = (Elf_External_Sym_Shndx *)
416 bfd_malloc2 (symcount, sizeof (Elf_External_Sym_Shndx));
417 extshndx_buf = alloc_extshndx;
418 }
419 if (extshndx_buf == NULL
420 || bfd_seek (ibfd, pos, SEEK_SET) != 0
421 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
422 {
423 intsym_buf = NULL;
424 goto out;
425 }
426 }
427
428 if (intsym_buf == NULL)
429 {
430 alloc_intsym = (Elf_Internal_Sym *)
431 bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
432 intsym_buf = alloc_intsym;
433 if (intsym_buf == NULL)
434 goto out;
435 }
436
437 /* Convert the symbols to internal form. */
438 isymend = intsym_buf + symcount;
439 for (esym = (const bfd_byte *) extsym_buf, isym = intsym_buf,
440 shndx = extshndx_buf;
441 isym < isymend;
442 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
443 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
444 {
445 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
446 (*_bfd_error_handler) (_("%B symbol number %lu references "
447 "nonexistent SHT_SYMTAB_SHNDX section"),
448 ibfd, (unsigned long) symoffset);
449 if (alloc_intsym != NULL)
450 free (alloc_intsym);
451 intsym_buf = NULL;
452 goto out;
453 }
454
455 out:
456 if (alloc_ext != NULL)
457 free (alloc_ext);
458 if (alloc_extshndx != NULL)
459 free (alloc_extshndx);
460
461 return intsym_buf;
462 }
463
464 /* Look up a symbol name. */
465 const char *
466 bfd_elf_sym_name (bfd *abfd,
467 Elf_Internal_Shdr *symtab_hdr,
468 Elf_Internal_Sym *isym,
469 asection *sym_sec)
470 {
471 const char *name;
472 unsigned int iname = isym->st_name;
473 unsigned int shindex = symtab_hdr->sh_link;
474
475 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
476 /* Check for a bogus st_shndx to avoid crashing. */
477 && isym->st_shndx < elf_numsections (abfd))
478 {
479 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
480 shindex = elf_elfheader (abfd)->e_shstrndx;
481 }
482
483 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
484 if (name == NULL)
485 name = "(null)";
486 else if (sym_sec && *name == '\0')
487 name = bfd_section_name (abfd, sym_sec);
488
489 return name;
490 }
491
492 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
493 sections. The first element is the flags, the rest are section
494 pointers. */
495
496 typedef union elf_internal_group {
497 Elf_Internal_Shdr *shdr;
498 unsigned int flags;
499 } Elf_Internal_Group;
500
501 /* Return the name of the group signature symbol. Why isn't the
502 signature just a string? */
503
504 static const char *
505 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
506 {
507 Elf_Internal_Shdr *hdr;
508 unsigned char esym[sizeof (Elf64_External_Sym)];
509 Elf_External_Sym_Shndx eshndx;
510 Elf_Internal_Sym isym;
511
512 /* First we need to ensure the symbol table is available. Make sure
513 that it is a symbol table section. */
514 if (ghdr->sh_link >= elf_numsections (abfd))
515 return NULL;
516 hdr = elf_elfsections (abfd) [ghdr->sh_link];
517 if (hdr->sh_type != SHT_SYMTAB
518 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
519 return NULL;
520
521 /* Go read the symbol. */
522 hdr = &elf_tdata (abfd)->symtab_hdr;
523 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
524 &isym, esym, &eshndx) == NULL)
525 return NULL;
526
527 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
528 }
529
530 /* Set next_in_group list pointer, and group name for NEWSECT. */
531
532 static bfd_boolean
533 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
534 {
535 unsigned int num_group = elf_tdata (abfd)->num_group;
536
537 /* If num_group is zero, read in all SHT_GROUP sections. The count
538 is set to -1 if there are no SHT_GROUP sections. */
539 if (num_group == 0)
540 {
541 unsigned int i, shnum;
542
543 /* First count the number of groups. If we have a SHT_GROUP
544 section with just a flag word (ie. sh_size is 4), ignore it. */
545 shnum = elf_numsections (abfd);
546 num_group = 0;
547
548 #define IS_VALID_GROUP_SECTION_HEADER(shdr, minsize) \
549 ( (shdr)->sh_type == SHT_GROUP \
550 && (shdr)->sh_size >= minsize \
551 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
552 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
553
554 for (i = 0; i < shnum; i++)
555 {
556 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
557
558 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
559 num_group += 1;
560 }
561
562 if (num_group == 0)
563 {
564 num_group = (unsigned) -1;
565 elf_tdata (abfd)->num_group = num_group;
566 }
567 else
568 {
569 /* We keep a list of elf section headers for group sections,
570 so we can find them quickly. */
571 bfd_size_type amt;
572
573 elf_tdata (abfd)->num_group = num_group;
574 elf_tdata (abfd)->group_sect_ptr = (Elf_Internal_Shdr **)
575 bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
576 if (elf_tdata (abfd)->group_sect_ptr == NULL)
577 return FALSE;
578
579 num_group = 0;
580 for (i = 0; i < shnum; i++)
581 {
582 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
583
584 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
585 {
586 unsigned char *src;
587 Elf_Internal_Group *dest;
588
589 /* Add to list of sections. */
590 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
591 num_group += 1;
592
593 /* Read the raw contents. */
594 BFD_ASSERT (sizeof (*dest) >= 4);
595 amt = shdr->sh_size * sizeof (*dest) / 4;
596 shdr->contents = (unsigned char *)
597 bfd_alloc2 (abfd, shdr->sh_size, sizeof (*dest) / 4);
598 /* PR binutils/4110: Handle corrupt group headers. */
599 if (shdr->contents == NULL)
600 {
601 _bfd_error_handler
602 (_("%B: Corrupt size field in group section header: 0x%lx"), abfd, shdr->sh_size);
603 bfd_set_error (bfd_error_bad_value);
604 return FALSE;
605 }
606
607 memset (shdr->contents, 0, amt);
608
609 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
610 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
611 != shdr->sh_size))
612 return FALSE;
613
614 /* Translate raw contents, a flag word followed by an
615 array of elf section indices all in target byte order,
616 to the flag word followed by an array of elf section
617 pointers. */
618 src = shdr->contents + shdr->sh_size;
619 dest = (Elf_Internal_Group *) (shdr->contents + amt);
620 while (1)
621 {
622 unsigned int idx;
623
624 src -= 4;
625 --dest;
626 idx = H_GET_32 (abfd, src);
627 if (src == shdr->contents)
628 {
629 dest->flags = idx;
630 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
631 shdr->bfd_section->flags
632 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
633 break;
634 }
635 if (idx >= shnum)
636 {
637 ((*_bfd_error_handler)
638 (_("%B: invalid SHT_GROUP entry"), abfd));
639 idx = 0;
640 }
641 dest->shdr = elf_elfsections (abfd)[idx];
642 }
643 }
644 }
645 }
646 }
647
648 if (num_group != (unsigned) -1)
649 {
650 unsigned int i;
651
652 for (i = 0; i < num_group; i++)
653 {
654 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
655 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
656 unsigned int n_elt = shdr->sh_size / 4;
657
658 /* Look through this group's sections to see if current
659 section is a member. */
660 while (--n_elt != 0)
661 if ((++idx)->shdr == hdr)
662 {
663 asection *s = NULL;
664
665 /* We are a member of this group. Go looking through
666 other members to see if any others are linked via
667 next_in_group. */
668 idx = (Elf_Internal_Group *) shdr->contents;
669 n_elt = shdr->sh_size / 4;
670 while (--n_elt != 0)
671 if ((s = (++idx)->shdr->bfd_section) != NULL
672 && elf_next_in_group (s) != NULL)
673 break;
674 if (n_elt != 0)
675 {
676 /* Snarf the group name from other member, and
677 insert current section in circular list. */
678 elf_group_name (newsect) = elf_group_name (s);
679 elf_next_in_group (newsect) = elf_next_in_group (s);
680 elf_next_in_group (s) = newsect;
681 }
682 else
683 {
684 const char *gname;
685
686 gname = group_signature (abfd, shdr);
687 if (gname == NULL)
688 return FALSE;
689 elf_group_name (newsect) = gname;
690
691 /* Start a circular list with one element. */
692 elf_next_in_group (newsect) = newsect;
693 }
694
695 /* If the group section has been created, point to the
696 new member. */
697 if (shdr->bfd_section != NULL)
698 elf_next_in_group (shdr->bfd_section) = newsect;
699
700 i = num_group - 1;
701 break;
702 }
703 }
704 }
705
706 if (elf_group_name (newsect) == NULL)
707 {
708 (*_bfd_error_handler) (_("%B: no group info for section %A"),
709 abfd, newsect);
710 }
711 return TRUE;
712 }
713
714 bfd_boolean
715 _bfd_elf_setup_sections (bfd *abfd)
716 {
717 unsigned int i;
718 unsigned int num_group = elf_tdata (abfd)->num_group;
719 bfd_boolean result = TRUE;
720 asection *s;
721
722 /* Process SHF_LINK_ORDER. */
723 for (s = abfd->sections; s != NULL; s = s->next)
724 {
725 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
726 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
727 {
728 unsigned int elfsec = this_hdr->sh_link;
729 /* FIXME: The old Intel compiler and old strip/objcopy may
730 not set the sh_link or sh_info fields. Hence we could
731 get the situation where elfsec is 0. */
732 if (elfsec == 0)
733 {
734 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
735 if (bed->link_order_error_handler)
736 bed->link_order_error_handler
737 (_("%B: warning: sh_link not set for section `%A'"),
738 abfd, s);
739 }
740 else
741 {
742 asection *linksec = NULL;
743
744 if (elfsec < elf_numsections (abfd))
745 {
746 this_hdr = elf_elfsections (abfd)[elfsec];
747 linksec = this_hdr->bfd_section;
748 }
749
750 /* PR 1991, 2008:
751 Some strip/objcopy may leave an incorrect value in
752 sh_link. We don't want to proceed. */
753 if (linksec == NULL)
754 {
755 (*_bfd_error_handler)
756 (_("%B: sh_link [%d] in section `%A' is incorrect"),
757 s->owner, s, elfsec);
758 result = FALSE;
759 }
760
761 elf_linked_to_section (s) = linksec;
762 }
763 }
764 }
765
766 /* Process section groups. */
767 if (num_group == (unsigned) -1)
768 return result;
769
770 for (i = 0; i < num_group; i++)
771 {
772 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
773 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
774 unsigned int n_elt = shdr->sh_size / 4;
775
776 while (--n_elt != 0)
777 if ((++idx)->shdr->bfd_section)
778 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
779 else if (idx->shdr->sh_type == SHT_RELA
780 || idx->shdr->sh_type == SHT_REL)
781 /* We won't include relocation sections in section groups in
782 output object files. We adjust the group section size here
783 so that relocatable link will work correctly when
784 relocation sections are in section group in input object
785 files. */
786 shdr->bfd_section->size -= 4;
787 else
788 {
789 /* There are some unknown sections in the group. */
790 (*_bfd_error_handler)
791 (_("%B: unknown [%d] section `%s' in group [%s]"),
792 abfd,
793 (unsigned int) idx->shdr->sh_type,
794 bfd_elf_string_from_elf_section (abfd,
795 (elf_elfheader (abfd)
796 ->e_shstrndx),
797 idx->shdr->sh_name),
798 shdr->bfd_section->name);
799 result = FALSE;
800 }
801 }
802 return result;
803 }
804
805 bfd_boolean
806 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
807 {
808 return elf_next_in_group (sec) != NULL;
809 }
810
811 /* Make a BFD section from an ELF section. We store a pointer to the
812 BFD section in the bfd_section field of the header. */
813
814 bfd_boolean
815 _bfd_elf_make_section_from_shdr (bfd *abfd,
816 Elf_Internal_Shdr *hdr,
817 const char *name,
818 int shindex)
819 {
820 asection *newsect;
821 flagword flags;
822 const struct elf_backend_data *bed;
823
824 if (hdr->bfd_section != NULL)
825 return TRUE;
826
827 newsect = bfd_make_section_anyway (abfd, name);
828 if (newsect == NULL)
829 return FALSE;
830
831 hdr->bfd_section = newsect;
832 elf_section_data (newsect)->this_hdr = *hdr;
833 elf_section_data (newsect)->this_idx = shindex;
834
835 /* Always use the real type/flags. */
836 elf_section_type (newsect) = hdr->sh_type;
837 elf_section_flags (newsect) = hdr->sh_flags;
838
839 newsect->filepos = hdr->sh_offset;
840
841 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
842 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
843 || ! bfd_set_section_alignment (abfd, newsect,
844 bfd_log2 (hdr->sh_addralign)))
845 return FALSE;
846
847 flags = SEC_NO_FLAGS;
848 if (hdr->sh_type != SHT_NOBITS)
849 flags |= SEC_HAS_CONTENTS;
850 if (hdr->sh_type == SHT_GROUP)
851 flags |= SEC_GROUP | SEC_EXCLUDE;
852 if ((hdr->sh_flags & SHF_ALLOC) != 0)
853 {
854 flags |= SEC_ALLOC;
855 if (hdr->sh_type != SHT_NOBITS)
856 flags |= SEC_LOAD;
857 }
858 if ((hdr->sh_flags & SHF_WRITE) == 0)
859 flags |= SEC_READONLY;
860 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
861 flags |= SEC_CODE;
862 else if ((flags & SEC_LOAD) != 0)
863 flags |= SEC_DATA;
864 if ((hdr->sh_flags & SHF_MERGE) != 0)
865 {
866 flags |= SEC_MERGE;
867 newsect->entsize = hdr->sh_entsize;
868 if ((hdr->sh_flags & SHF_STRINGS) != 0)
869 flags |= SEC_STRINGS;
870 }
871 if (hdr->sh_flags & SHF_GROUP)
872 if (!setup_group (abfd, hdr, newsect))
873 return FALSE;
874 if ((hdr->sh_flags & SHF_TLS) != 0)
875 flags |= SEC_THREAD_LOCAL;
876 if ((hdr->sh_flags & SHF_EXCLUDE) != 0)
877 flags |= SEC_EXCLUDE;
878
879 if ((flags & SEC_ALLOC) == 0)
880 {
881 /* The debugging sections appear to be recognized only by name,
882 not any sort of flag. Their SEC_ALLOC bits are cleared. */
883 if (name [0] == '.')
884 {
885 const char *p;
886 int n;
887 if (name[1] == 'd')
888 p = ".debug", n = 6;
889 else if (name[1] == 'g' && name[2] == 'n')
890 p = ".gnu.linkonce.wi.", n = 17;
891 else if (name[1] == 'g' && name[2] == 'd')
892 p = ".gdb_index", n = 11; /* yes we really do mean 11. */
893 else if (name[1] == 'l')
894 p = ".line", n = 5;
895 else if (name[1] == 's')
896 p = ".stab", n = 5;
897 else if (name[1] == 'z')
898 p = ".zdebug", n = 7;
899 else
900 p = NULL, n = 0;
901 if (p != NULL && strncmp (name, p, n) == 0)
902 flags |= SEC_DEBUGGING;
903 }
904 }
905
906 /* As a GNU extension, if the name begins with .gnu.linkonce, we
907 only link a single copy of the section. This is used to support
908 g++. g++ will emit each template expansion in its own section.
909 The symbols will be defined as weak, so that multiple definitions
910 are permitted. The GNU linker extension is to actually discard
911 all but one of the sections. */
912 if (CONST_STRNEQ (name, ".gnu.linkonce")
913 && elf_next_in_group (newsect) == NULL)
914 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
915
916 bed = get_elf_backend_data (abfd);
917 if (bed->elf_backend_section_flags)
918 if (! bed->elf_backend_section_flags (&flags, hdr))
919 return FALSE;
920
921 if (! bfd_set_section_flags (abfd, newsect, flags))
922 return FALSE;
923
924 /* We do not parse the PT_NOTE segments as we are interested even in the
925 separate debug info files which may have the segments offsets corrupted.
926 PT_NOTEs from the core files are currently not parsed using BFD. */
927 if (hdr->sh_type == SHT_NOTE)
928 {
929 bfd_byte *contents;
930
931 if (!bfd_malloc_and_get_section (abfd, newsect, &contents))
932 return FALSE;
933
934 elf_parse_notes (abfd, (char *) contents, hdr->sh_size, -1);
935 free (contents);
936 }
937
938 if ((flags & SEC_ALLOC) != 0)
939 {
940 Elf_Internal_Phdr *phdr;
941 unsigned int i, nload;
942
943 /* Some ELF linkers produce binaries with all the program header
944 p_paddr fields zero. If we have such a binary with more than
945 one PT_LOAD header, then leave the section lma equal to vma
946 so that we don't create sections with overlapping lma. */
947 phdr = elf_tdata (abfd)->phdr;
948 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
949 if (phdr->p_paddr != 0)
950 break;
951 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
952 ++nload;
953 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
954 return TRUE;
955
956 phdr = elf_tdata (abfd)->phdr;
957 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
958 {
959 if (((phdr->p_type == PT_LOAD
960 && (hdr->sh_flags & SHF_TLS) == 0)
961 || phdr->p_type == PT_TLS)
962 && ELF_SECTION_IN_SEGMENT (hdr, phdr))
963 {
964 if ((flags & SEC_LOAD) == 0)
965 newsect->lma = (phdr->p_paddr
966 + hdr->sh_addr - phdr->p_vaddr);
967 else
968 /* We used to use the same adjustment for SEC_LOAD
969 sections, but that doesn't work if the segment
970 is packed with code from multiple VMAs.
971 Instead we calculate the section LMA based on
972 the segment LMA. It is assumed that the
973 segment will contain sections with contiguous
974 LMAs, even if the VMAs are not. */
975 newsect->lma = (phdr->p_paddr
976 + hdr->sh_offset - phdr->p_offset);
977
978 /* With contiguous segments, we can't tell from file
979 offsets whether a section with zero size should
980 be placed at the end of one segment or the
981 beginning of the next. Decide based on vaddr. */
982 if (hdr->sh_addr >= phdr->p_vaddr
983 && (hdr->sh_addr + hdr->sh_size
984 <= phdr->p_vaddr + phdr->p_memsz))
985 break;
986 }
987 }
988 }
989
990 /* Compress/decompress DWARF debug sections with names: .debug_* and
991 .zdebug_*, after the section flags is set. */
992 if ((flags & SEC_DEBUGGING)
993 && ((name[1] == 'd' && name[6] == '_')
994 || (name[1] == 'z' && name[7] == '_')))
995 {
996 enum { nothing, compress, decompress } action = nothing;
997 char *new_name;
998
999 if (bfd_is_section_compressed (abfd, newsect))
1000 {
1001 /* Compressed section. Check if we should decompress. */
1002 if ((abfd->flags & BFD_DECOMPRESS))
1003 action = decompress;
1004 }
1005 else
1006 {
1007 /* Normal section. Check if we should compress. */
1008 if ((abfd->flags & BFD_COMPRESS) && newsect->size != 0)
1009 action = compress;
1010 }
1011
1012 new_name = NULL;
1013 switch (action)
1014 {
1015 case nothing:
1016 break;
1017 case compress:
1018 if (!bfd_init_section_compress_status (abfd, newsect))
1019 {
1020 (*_bfd_error_handler)
1021 (_("%B: unable to initialize compress status for section %s"),
1022 abfd, name);
1023 return FALSE;
1024 }
1025 if (name[1] != 'z')
1026 {
1027 unsigned int len = strlen (name);
1028
1029 new_name = bfd_alloc (abfd, len + 2);
1030 if (new_name == NULL)
1031 return FALSE;
1032 new_name[0] = '.';
1033 new_name[1] = 'z';
1034 memcpy (new_name + 2, name + 1, len);
1035 }
1036 break;
1037 case decompress:
1038 if (!bfd_init_section_decompress_status (abfd, newsect))
1039 {
1040 (*_bfd_error_handler)
1041 (_("%B: unable to initialize decompress status for section %s"),
1042 abfd, name);
1043 return FALSE;
1044 }
1045 if (name[1] == 'z')
1046 {
1047 unsigned int len = strlen (name);
1048
1049 new_name = bfd_alloc (abfd, len);
1050 if (new_name == NULL)
1051 return FALSE;
1052 new_name[0] = '.';
1053 memcpy (new_name + 1, name + 2, len - 1);
1054 }
1055 break;
1056 }
1057 if (new_name != NULL)
1058 bfd_rename_section (abfd, newsect, new_name);
1059 }
1060
1061 return TRUE;
1062 }
1063
1064 const char *const bfd_elf_section_type_names[] = {
1065 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1066 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1067 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1068 };
1069
1070 /* ELF relocs are against symbols. If we are producing relocatable
1071 output, and the reloc is against an external symbol, and nothing
1072 has given us any additional addend, the resulting reloc will also
1073 be against the same symbol. In such a case, we don't want to
1074 change anything about the way the reloc is handled, since it will
1075 all be done at final link time. Rather than put special case code
1076 into bfd_perform_relocation, all the reloc types use this howto
1077 function. It just short circuits the reloc if producing
1078 relocatable output against an external symbol. */
1079
1080 bfd_reloc_status_type
1081 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1082 arelent *reloc_entry,
1083 asymbol *symbol,
1084 void *data ATTRIBUTE_UNUSED,
1085 asection *input_section,
1086 bfd *output_bfd,
1087 char **error_message ATTRIBUTE_UNUSED)
1088 {
1089 if (output_bfd != NULL
1090 && (symbol->flags & BSF_SECTION_SYM) == 0
1091 && (! reloc_entry->howto->partial_inplace
1092 || reloc_entry->addend == 0))
1093 {
1094 reloc_entry->address += input_section->output_offset;
1095 return bfd_reloc_ok;
1096 }
1097
1098 return bfd_reloc_continue;
1099 }
1100 \f
1101 /* Copy the program header and other data from one object module to
1102 another. */
1103
1104 bfd_boolean
1105 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1106 {
1107 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1108 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1109 return TRUE;
1110
1111 BFD_ASSERT (!elf_flags_init (obfd)
1112 || (elf_elfheader (obfd)->e_flags
1113 == elf_elfheader (ibfd)->e_flags));
1114
1115 elf_gp (obfd) = elf_gp (ibfd);
1116 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1117 elf_flags_init (obfd) = TRUE;
1118
1119 /* Copy object attributes. */
1120 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1121 return TRUE;
1122 }
1123
1124 static const char *
1125 get_segment_type (unsigned int p_type)
1126 {
1127 const char *pt;
1128 switch (p_type)
1129 {
1130 case PT_NULL: pt = "NULL"; break;
1131 case PT_LOAD: pt = "LOAD"; break;
1132 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1133 case PT_INTERP: pt = "INTERP"; break;
1134 case PT_NOTE: pt = "NOTE"; break;
1135 case PT_SHLIB: pt = "SHLIB"; break;
1136 case PT_PHDR: pt = "PHDR"; break;
1137 case PT_TLS: pt = "TLS"; break;
1138 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1139 case PT_GNU_STACK: pt = "STACK"; break;
1140 case PT_GNU_RELRO: pt = "RELRO"; break;
1141 default: pt = NULL; break;
1142 }
1143 return pt;
1144 }
1145
1146 /* Print out the program headers. */
1147
1148 bfd_boolean
1149 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1150 {
1151 FILE *f = (FILE *) farg;
1152 Elf_Internal_Phdr *p;
1153 asection *s;
1154 bfd_byte *dynbuf = NULL;
1155
1156 p = elf_tdata (abfd)->phdr;
1157 if (p != NULL)
1158 {
1159 unsigned int i, c;
1160
1161 fprintf (f, _("\nProgram Header:\n"));
1162 c = elf_elfheader (abfd)->e_phnum;
1163 for (i = 0; i < c; i++, p++)
1164 {
1165 const char *pt = get_segment_type (p->p_type);
1166 char buf[20];
1167
1168 if (pt == NULL)
1169 {
1170 sprintf (buf, "0x%lx", p->p_type);
1171 pt = buf;
1172 }
1173 fprintf (f, "%8s off 0x", pt);
1174 bfd_fprintf_vma (abfd, f, p->p_offset);
1175 fprintf (f, " vaddr 0x");
1176 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1177 fprintf (f, " paddr 0x");
1178 bfd_fprintf_vma (abfd, f, p->p_paddr);
1179 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1180 fprintf (f, " filesz 0x");
1181 bfd_fprintf_vma (abfd, f, p->p_filesz);
1182 fprintf (f, " memsz 0x");
1183 bfd_fprintf_vma (abfd, f, p->p_memsz);
1184 fprintf (f, " flags %c%c%c",
1185 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1186 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1187 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1188 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1189 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1190 fprintf (f, "\n");
1191 }
1192 }
1193
1194 s = bfd_get_section_by_name (abfd, ".dynamic");
1195 if (s != NULL)
1196 {
1197 unsigned int elfsec;
1198 unsigned long shlink;
1199 bfd_byte *extdyn, *extdynend;
1200 size_t extdynsize;
1201 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1202
1203 fprintf (f, _("\nDynamic Section:\n"));
1204
1205 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1206 goto error_return;
1207
1208 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1209 if (elfsec == SHN_BAD)
1210 goto error_return;
1211 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1212
1213 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1214 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1215
1216 extdyn = dynbuf;
1217 extdynend = extdyn + s->size;
1218 for (; extdyn < extdynend; extdyn += extdynsize)
1219 {
1220 Elf_Internal_Dyn dyn;
1221 const char *name = "";
1222 char ab[20];
1223 bfd_boolean stringp;
1224 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1225
1226 (*swap_dyn_in) (abfd, extdyn, &dyn);
1227
1228 if (dyn.d_tag == DT_NULL)
1229 break;
1230
1231 stringp = FALSE;
1232 switch (dyn.d_tag)
1233 {
1234 default:
1235 if (bed->elf_backend_get_target_dtag)
1236 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
1237
1238 if (!strcmp (name, ""))
1239 {
1240 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1241 name = ab;
1242 }
1243 break;
1244
1245 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1246 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1247 case DT_PLTGOT: name = "PLTGOT"; break;
1248 case DT_HASH: name = "HASH"; break;
1249 case DT_STRTAB: name = "STRTAB"; break;
1250 case DT_SYMTAB: name = "SYMTAB"; break;
1251 case DT_RELA: name = "RELA"; break;
1252 case DT_RELASZ: name = "RELASZ"; break;
1253 case DT_RELAENT: name = "RELAENT"; break;
1254 case DT_STRSZ: name = "STRSZ"; break;
1255 case DT_SYMENT: name = "SYMENT"; break;
1256 case DT_INIT: name = "INIT"; break;
1257 case DT_FINI: name = "FINI"; break;
1258 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1259 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1260 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1261 case DT_REL: name = "REL"; break;
1262 case DT_RELSZ: name = "RELSZ"; break;
1263 case DT_RELENT: name = "RELENT"; break;
1264 case DT_PLTREL: name = "PLTREL"; break;
1265 case DT_DEBUG: name = "DEBUG"; break;
1266 case DT_TEXTREL: name = "TEXTREL"; break;
1267 case DT_JMPREL: name = "JMPREL"; break;
1268 case DT_BIND_NOW: name = "BIND_NOW"; break;
1269 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1270 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1271 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1272 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1273 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1274 case DT_FLAGS: name = "FLAGS"; break;
1275 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1276 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1277 case DT_CHECKSUM: name = "CHECKSUM"; break;
1278 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1279 case DT_MOVEENT: name = "MOVEENT"; break;
1280 case DT_MOVESZ: name = "MOVESZ"; break;
1281 case DT_FEATURE: name = "FEATURE"; break;
1282 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1283 case DT_SYMINSZ: name = "SYMINSZ"; break;
1284 case DT_SYMINENT: name = "SYMINENT"; break;
1285 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1286 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1287 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1288 case DT_PLTPAD: name = "PLTPAD"; break;
1289 case DT_MOVETAB: name = "MOVETAB"; break;
1290 case DT_SYMINFO: name = "SYMINFO"; break;
1291 case DT_RELACOUNT: name = "RELACOUNT"; break;
1292 case DT_RELCOUNT: name = "RELCOUNT"; break;
1293 case DT_FLAGS_1: name = "FLAGS_1"; break;
1294 case DT_VERSYM: name = "VERSYM"; break;
1295 case DT_VERDEF: name = "VERDEF"; break;
1296 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1297 case DT_VERNEED: name = "VERNEED"; break;
1298 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1299 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1300 case DT_USED: name = "USED"; break;
1301 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1302 case DT_GNU_HASH: name = "GNU_HASH"; break;
1303 }
1304
1305 fprintf (f, " %-20s ", name);
1306 if (! stringp)
1307 {
1308 fprintf (f, "0x");
1309 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
1310 }
1311 else
1312 {
1313 const char *string;
1314 unsigned int tagv = dyn.d_un.d_val;
1315
1316 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1317 if (string == NULL)
1318 goto error_return;
1319 fprintf (f, "%s", string);
1320 }
1321 fprintf (f, "\n");
1322 }
1323
1324 free (dynbuf);
1325 dynbuf = NULL;
1326 }
1327
1328 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1329 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1330 {
1331 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1332 return FALSE;
1333 }
1334
1335 if (elf_dynverdef (abfd) != 0)
1336 {
1337 Elf_Internal_Verdef *t;
1338
1339 fprintf (f, _("\nVersion definitions:\n"));
1340 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1341 {
1342 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1343 t->vd_flags, t->vd_hash,
1344 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1345 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1346 {
1347 Elf_Internal_Verdaux *a;
1348
1349 fprintf (f, "\t");
1350 for (a = t->vd_auxptr->vda_nextptr;
1351 a != NULL;
1352 a = a->vda_nextptr)
1353 fprintf (f, "%s ",
1354 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1355 fprintf (f, "\n");
1356 }
1357 }
1358 }
1359
1360 if (elf_dynverref (abfd) != 0)
1361 {
1362 Elf_Internal_Verneed *t;
1363
1364 fprintf (f, _("\nVersion References:\n"));
1365 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1366 {
1367 Elf_Internal_Vernaux *a;
1368
1369 fprintf (f, _(" required from %s:\n"),
1370 t->vn_filename ? t->vn_filename : "<corrupt>");
1371 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1372 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1373 a->vna_flags, a->vna_other,
1374 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1375 }
1376 }
1377
1378 return TRUE;
1379
1380 error_return:
1381 if (dynbuf != NULL)
1382 free (dynbuf);
1383 return FALSE;
1384 }
1385
1386 /* Display ELF-specific fields of a symbol. */
1387
1388 void
1389 bfd_elf_print_symbol (bfd *abfd,
1390 void *filep,
1391 asymbol *symbol,
1392 bfd_print_symbol_type how)
1393 {
1394 FILE *file = (FILE *) filep;
1395 switch (how)
1396 {
1397 case bfd_print_symbol_name:
1398 fprintf (file, "%s", symbol->name);
1399 break;
1400 case bfd_print_symbol_more:
1401 fprintf (file, "elf ");
1402 bfd_fprintf_vma (abfd, file, symbol->value);
1403 fprintf (file, " %lx", (unsigned long) symbol->flags);
1404 break;
1405 case bfd_print_symbol_all:
1406 {
1407 const char *section_name;
1408 const char *name = NULL;
1409 const struct elf_backend_data *bed;
1410 unsigned char st_other;
1411 bfd_vma val;
1412
1413 section_name = symbol->section ? symbol->section->name : "(*none*)";
1414
1415 bed = get_elf_backend_data (abfd);
1416 if (bed->elf_backend_print_symbol_all)
1417 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1418
1419 if (name == NULL)
1420 {
1421 name = symbol->name;
1422 bfd_print_symbol_vandf (abfd, file, symbol);
1423 }
1424
1425 fprintf (file, " %s\t", section_name);
1426 /* Print the "other" value for a symbol. For common symbols,
1427 we've already printed the size; now print the alignment.
1428 For other symbols, we have no specified alignment, and
1429 we've printed the address; now print the size. */
1430 if (symbol->section && bfd_is_com_section (symbol->section))
1431 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1432 else
1433 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1434 bfd_fprintf_vma (abfd, file, val);
1435
1436 /* If we have version information, print it. */
1437 if (elf_tdata (abfd)->dynversym_section != 0
1438 && (elf_tdata (abfd)->dynverdef_section != 0
1439 || elf_tdata (abfd)->dynverref_section != 0))
1440 {
1441 unsigned int vernum;
1442 const char *version_string;
1443
1444 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1445
1446 if (vernum == 0)
1447 version_string = "";
1448 else if (vernum == 1)
1449 version_string = "Base";
1450 else if (vernum <= elf_tdata (abfd)->cverdefs)
1451 version_string =
1452 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1453 else
1454 {
1455 Elf_Internal_Verneed *t;
1456
1457 version_string = "";
1458 for (t = elf_tdata (abfd)->verref;
1459 t != NULL;
1460 t = t->vn_nextref)
1461 {
1462 Elf_Internal_Vernaux *a;
1463
1464 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1465 {
1466 if (a->vna_other == vernum)
1467 {
1468 version_string = a->vna_nodename;
1469 break;
1470 }
1471 }
1472 }
1473 }
1474
1475 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1476 fprintf (file, " %-11s", version_string);
1477 else
1478 {
1479 int i;
1480
1481 fprintf (file, " (%s)", version_string);
1482 for (i = 10 - strlen (version_string); i > 0; --i)
1483 putc (' ', file);
1484 }
1485 }
1486
1487 /* If the st_other field is not zero, print it. */
1488 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1489
1490 switch (st_other)
1491 {
1492 case 0: break;
1493 case STV_INTERNAL: fprintf (file, " .internal"); break;
1494 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1495 case STV_PROTECTED: fprintf (file, " .protected"); break;
1496 default:
1497 /* Some other non-defined flags are also present, so print
1498 everything hex. */
1499 fprintf (file, " 0x%02x", (unsigned int) st_other);
1500 }
1501
1502 fprintf (file, " %s", name);
1503 }
1504 break;
1505 }
1506 }
1507
1508 /* Allocate an ELF string table--force the first byte to be zero. */
1509
1510 struct bfd_strtab_hash *
1511 _bfd_elf_stringtab_init (void)
1512 {
1513 struct bfd_strtab_hash *ret;
1514
1515 ret = _bfd_stringtab_init ();
1516 if (ret != NULL)
1517 {
1518 bfd_size_type loc;
1519
1520 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1521 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1522 if (loc == (bfd_size_type) -1)
1523 {
1524 _bfd_stringtab_free (ret);
1525 ret = NULL;
1526 }
1527 }
1528 return ret;
1529 }
1530 \f
1531 /* ELF .o/exec file reading */
1532
1533 /* Create a new bfd section from an ELF section header. */
1534
1535 bfd_boolean
1536 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1537 {
1538 Elf_Internal_Shdr *hdr;
1539 Elf_Internal_Ehdr *ehdr;
1540 const struct elf_backend_data *bed;
1541 const char *name;
1542
1543 if (shindex >= elf_numsections (abfd))
1544 return FALSE;
1545
1546 hdr = elf_elfsections (abfd)[shindex];
1547 ehdr = elf_elfheader (abfd);
1548 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
1549 hdr->sh_name);
1550 if (name == NULL)
1551 return FALSE;
1552
1553 bed = get_elf_backend_data (abfd);
1554 switch (hdr->sh_type)
1555 {
1556 case SHT_NULL:
1557 /* Inactive section. Throw it away. */
1558 return TRUE;
1559
1560 case SHT_PROGBITS: /* Normal section with contents. */
1561 case SHT_NOBITS: /* .bss section. */
1562 case SHT_HASH: /* .hash section. */
1563 case SHT_NOTE: /* .note section. */
1564 case SHT_INIT_ARRAY: /* .init_array section. */
1565 case SHT_FINI_ARRAY: /* .fini_array section. */
1566 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1567 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1568 case SHT_GNU_HASH: /* .gnu.hash section. */
1569 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1570
1571 case SHT_DYNAMIC: /* Dynamic linking information. */
1572 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1573 return FALSE;
1574 if (hdr->sh_link > elf_numsections (abfd))
1575 {
1576 /* PR 10478: Accept Solaris binaries with a sh_link
1577 field set to SHN_BEFORE or SHN_AFTER. */
1578 switch (bfd_get_arch (abfd))
1579 {
1580 case bfd_arch_i386:
1581 case bfd_arch_sparc:
1582 if (hdr->sh_link == (SHN_LORESERVE & 0xffff) /* SHN_BEFORE */
1583 || hdr->sh_link == ((SHN_LORESERVE + 1) & 0xffff) /* SHN_AFTER */)
1584 break;
1585 /* Otherwise fall through. */
1586 default:
1587 return FALSE;
1588 }
1589 }
1590 else if (elf_elfsections (abfd)[hdr->sh_link] == NULL)
1591 return FALSE;
1592 else if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1593 {
1594 Elf_Internal_Shdr *dynsymhdr;
1595
1596 /* The shared libraries distributed with hpux11 have a bogus
1597 sh_link field for the ".dynamic" section. Find the
1598 string table for the ".dynsym" section instead. */
1599 if (elf_dynsymtab (abfd) != 0)
1600 {
1601 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1602 hdr->sh_link = dynsymhdr->sh_link;
1603 }
1604 else
1605 {
1606 unsigned int i, num_sec;
1607
1608 num_sec = elf_numsections (abfd);
1609 for (i = 1; i < num_sec; i++)
1610 {
1611 dynsymhdr = elf_elfsections (abfd)[i];
1612 if (dynsymhdr->sh_type == SHT_DYNSYM)
1613 {
1614 hdr->sh_link = dynsymhdr->sh_link;
1615 break;
1616 }
1617 }
1618 }
1619 }
1620 break;
1621
1622 case SHT_SYMTAB: /* A symbol table */
1623 if (elf_onesymtab (abfd) == shindex)
1624 return TRUE;
1625
1626 if (hdr->sh_entsize != bed->s->sizeof_sym)
1627 return FALSE;
1628 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
1629 {
1630 if (hdr->sh_size != 0)
1631 return FALSE;
1632 /* Some assemblers erroneously set sh_info to one with a
1633 zero sh_size. ld sees this as a global symbol count
1634 of (unsigned) -1. Fix it here. */
1635 hdr->sh_info = 0;
1636 return TRUE;
1637 }
1638 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1639 elf_onesymtab (abfd) = shindex;
1640 elf_tdata (abfd)->symtab_hdr = *hdr;
1641 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1642 abfd->flags |= HAS_SYMS;
1643
1644 /* Sometimes a shared object will map in the symbol table. If
1645 SHF_ALLOC is set, and this is a shared object, then we also
1646 treat this section as a BFD section. We can not base the
1647 decision purely on SHF_ALLOC, because that flag is sometimes
1648 set in a relocatable object file, which would confuse the
1649 linker. */
1650 if ((hdr->sh_flags & SHF_ALLOC) != 0
1651 && (abfd->flags & DYNAMIC) != 0
1652 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1653 shindex))
1654 return FALSE;
1655
1656 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1657 can't read symbols without that section loaded as well. It
1658 is most likely specified by the next section header. */
1659 if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
1660 {
1661 unsigned int i, num_sec;
1662
1663 num_sec = elf_numsections (abfd);
1664 for (i = shindex + 1; i < num_sec; i++)
1665 {
1666 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1667 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1668 && hdr2->sh_link == shindex)
1669 break;
1670 }
1671 if (i == num_sec)
1672 for (i = 1; i < shindex; i++)
1673 {
1674 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1675 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1676 && hdr2->sh_link == shindex)
1677 break;
1678 }
1679 if (i != shindex)
1680 return bfd_section_from_shdr (abfd, i);
1681 }
1682 return TRUE;
1683
1684 case SHT_DYNSYM: /* A dynamic symbol table */
1685 if (elf_dynsymtab (abfd) == shindex)
1686 return TRUE;
1687
1688 if (hdr->sh_entsize != bed->s->sizeof_sym)
1689 return FALSE;
1690 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
1691 {
1692 if (hdr->sh_size != 0)
1693 return FALSE;
1694 /* Some linkers erroneously set sh_info to one with a
1695 zero sh_size. ld sees this as a global symbol count
1696 of (unsigned) -1. Fix it here. */
1697 hdr->sh_info = 0;
1698 return TRUE;
1699 }
1700 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1701 elf_dynsymtab (abfd) = shindex;
1702 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1703 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1704 abfd->flags |= HAS_SYMS;
1705
1706 /* Besides being a symbol table, we also treat this as a regular
1707 section, so that objcopy can handle it. */
1708 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1709
1710 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1711 if (elf_symtab_shndx (abfd) == shindex)
1712 return TRUE;
1713
1714 BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
1715 elf_symtab_shndx (abfd) = shindex;
1716 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1717 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1718 return TRUE;
1719
1720 case SHT_STRTAB: /* A string table */
1721 if (hdr->bfd_section != NULL)
1722 return TRUE;
1723 if (ehdr->e_shstrndx == shindex)
1724 {
1725 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1726 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1727 return TRUE;
1728 }
1729 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
1730 {
1731 symtab_strtab:
1732 elf_tdata (abfd)->strtab_hdr = *hdr;
1733 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
1734 return TRUE;
1735 }
1736 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
1737 {
1738 dynsymtab_strtab:
1739 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1740 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
1741 elf_elfsections (abfd)[shindex] = hdr;
1742 /* We also treat this as a regular section, so that objcopy
1743 can handle it. */
1744 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1745 shindex);
1746 }
1747
1748 /* If the string table isn't one of the above, then treat it as a
1749 regular section. We need to scan all the headers to be sure,
1750 just in case this strtab section appeared before the above. */
1751 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
1752 {
1753 unsigned int i, num_sec;
1754
1755 num_sec = elf_numsections (abfd);
1756 for (i = 1; i < num_sec; i++)
1757 {
1758 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1759 if (hdr2->sh_link == shindex)
1760 {
1761 /* Prevent endless recursion on broken objects. */
1762 if (i == shindex)
1763 return FALSE;
1764 if (! bfd_section_from_shdr (abfd, i))
1765 return FALSE;
1766 if (elf_onesymtab (abfd) == i)
1767 goto symtab_strtab;
1768 if (elf_dynsymtab (abfd) == i)
1769 goto dynsymtab_strtab;
1770 }
1771 }
1772 }
1773 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1774
1775 case SHT_REL:
1776 case SHT_RELA:
1777 /* *These* do a lot of work -- but build no sections! */
1778 {
1779 asection *target_sect;
1780 Elf_Internal_Shdr *hdr2, **p_hdr;
1781 unsigned int num_sec = elf_numsections (abfd);
1782 struct bfd_elf_section_data *esdt;
1783 bfd_size_type amt;
1784
1785 if (hdr->sh_entsize
1786 != (bfd_size_type) (hdr->sh_type == SHT_REL
1787 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
1788 return FALSE;
1789
1790 /* Check for a bogus link to avoid crashing. */
1791 if (hdr->sh_link >= num_sec)
1792 {
1793 ((*_bfd_error_handler)
1794 (_("%B: invalid link %lu for reloc section %s (index %u)"),
1795 abfd, hdr->sh_link, name, shindex));
1796 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1797 shindex);
1798 }
1799
1800 /* For some incomprehensible reason Oracle distributes
1801 libraries for Solaris in which some of the objects have
1802 bogus sh_link fields. It would be nice if we could just
1803 reject them, but, unfortunately, some people need to use
1804 them. We scan through the section headers; if we find only
1805 one suitable symbol table, we clobber the sh_link to point
1806 to it. I hope this doesn't break anything.
1807
1808 Don't do it on executable nor shared library. */
1809 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0
1810 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
1811 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
1812 {
1813 unsigned int scan;
1814 int found;
1815
1816 found = 0;
1817 for (scan = 1; scan < num_sec; scan++)
1818 {
1819 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
1820 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
1821 {
1822 if (found != 0)
1823 {
1824 found = 0;
1825 break;
1826 }
1827 found = scan;
1828 }
1829 }
1830 if (found != 0)
1831 hdr->sh_link = found;
1832 }
1833
1834 /* Get the symbol table. */
1835 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
1836 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
1837 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
1838 return FALSE;
1839
1840 /* If this reloc section does not use the main symbol table we
1841 don't treat it as a reloc section. BFD can't adequately
1842 represent such a section, so at least for now, we don't
1843 try. We just present it as a normal section. We also
1844 can't use it as a reloc section if it points to the null
1845 section, an invalid section, another reloc section, or its
1846 sh_link points to the null section. */
1847 if (hdr->sh_link != elf_onesymtab (abfd)
1848 || hdr->sh_link == SHN_UNDEF
1849 || hdr->sh_info == SHN_UNDEF
1850 || hdr->sh_info >= num_sec
1851 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
1852 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
1853 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1854 shindex);
1855
1856 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
1857 return FALSE;
1858 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
1859 if (target_sect == NULL)
1860 return FALSE;
1861
1862 esdt = elf_section_data (target_sect);
1863 if (hdr->sh_type == SHT_RELA)
1864 p_hdr = &esdt->rela.hdr;
1865 else
1866 p_hdr = &esdt->rel.hdr;
1867
1868 BFD_ASSERT (*p_hdr == NULL);
1869 amt = sizeof (*hdr2);
1870 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, amt);
1871 if (hdr2 == NULL)
1872 return FALSE;
1873 *hdr2 = *hdr;
1874 *p_hdr = hdr2;
1875 elf_elfsections (abfd)[shindex] = hdr2;
1876 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
1877 target_sect->flags |= SEC_RELOC;
1878 target_sect->relocation = NULL;
1879 target_sect->rel_filepos = hdr->sh_offset;
1880 /* In the section to which the relocations apply, mark whether
1881 its relocations are of the REL or RELA variety. */
1882 if (hdr->sh_size != 0)
1883 {
1884 if (hdr->sh_type == SHT_RELA)
1885 target_sect->use_rela_p = 1;
1886 }
1887 abfd->flags |= HAS_RELOC;
1888 return TRUE;
1889 }
1890
1891 case SHT_GNU_verdef:
1892 elf_dynverdef (abfd) = shindex;
1893 elf_tdata (abfd)->dynverdef_hdr = *hdr;
1894 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1895
1896 case SHT_GNU_versym:
1897 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
1898 return FALSE;
1899 elf_dynversym (abfd) = shindex;
1900 elf_tdata (abfd)->dynversym_hdr = *hdr;
1901 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1902
1903 case SHT_GNU_verneed:
1904 elf_dynverref (abfd) = shindex;
1905 elf_tdata (abfd)->dynverref_hdr = *hdr;
1906 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1907
1908 case SHT_SHLIB:
1909 return TRUE;
1910
1911 case SHT_GROUP:
1912 if (! IS_VALID_GROUP_SECTION_HEADER (hdr, GRP_ENTRY_SIZE))
1913 return FALSE;
1914 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1915 return FALSE;
1916 if (hdr->contents != NULL)
1917 {
1918 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
1919 unsigned int n_elt = hdr->sh_size / GRP_ENTRY_SIZE;
1920 asection *s;
1921
1922 if (idx->flags & GRP_COMDAT)
1923 hdr->bfd_section->flags
1924 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1925
1926 /* We try to keep the same section order as it comes in. */
1927 idx += n_elt;
1928 while (--n_elt != 0)
1929 {
1930 --idx;
1931
1932 if (idx->shdr != NULL
1933 && (s = idx->shdr->bfd_section) != NULL
1934 && elf_next_in_group (s) != NULL)
1935 {
1936 elf_next_in_group (hdr->bfd_section) = s;
1937 break;
1938 }
1939 }
1940 }
1941 break;
1942
1943 default:
1944 /* Possibly an attributes section. */
1945 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
1946 || hdr->sh_type == bed->obj_attrs_section_type)
1947 {
1948 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1949 return FALSE;
1950 _bfd_elf_parse_attributes (abfd, hdr);
1951 return TRUE;
1952 }
1953
1954 /* Check for any processor-specific section types. */
1955 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
1956 return TRUE;
1957
1958 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
1959 {
1960 if ((hdr->sh_flags & SHF_ALLOC) != 0)
1961 /* FIXME: How to properly handle allocated section reserved
1962 for applications? */
1963 (*_bfd_error_handler)
1964 (_("%B: don't know how to handle allocated, application "
1965 "specific section `%s' [0x%8x]"),
1966 abfd, name, hdr->sh_type);
1967 else
1968 /* Allow sections reserved for applications. */
1969 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1970 shindex);
1971 }
1972 else if (hdr->sh_type >= SHT_LOPROC
1973 && hdr->sh_type <= SHT_HIPROC)
1974 /* FIXME: We should handle this section. */
1975 (*_bfd_error_handler)
1976 (_("%B: don't know how to handle processor specific section "
1977 "`%s' [0x%8x]"),
1978 abfd, name, hdr->sh_type);
1979 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
1980 {
1981 /* Unrecognised OS-specific sections. */
1982 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
1983 /* SHF_OS_NONCONFORMING indicates that special knowledge is
1984 required to correctly process the section and the file should
1985 be rejected with an error message. */
1986 (*_bfd_error_handler)
1987 (_("%B: don't know how to handle OS specific section "
1988 "`%s' [0x%8x]"),
1989 abfd, name, hdr->sh_type);
1990 else
1991 /* Otherwise it should be processed. */
1992 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1993 }
1994 else
1995 /* FIXME: We should handle this section. */
1996 (*_bfd_error_handler)
1997 (_("%B: don't know how to handle section `%s' [0x%8x]"),
1998 abfd, name, hdr->sh_type);
1999
2000 return FALSE;
2001 }
2002
2003 return TRUE;
2004 }
2005
2006 /* Return the local symbol specified by ABFD, R_SYMNDX. */
2007
2008 Elf_Internal_Sym *
2009 bfd_sym_from_r_symndx (struct sym_cache *cache,
2010 bfd *abfd,
2011 unsigned long r_symndx)
2012 {
2013 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2014
2015 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
2016 {
2017 Elf_Internal_Shdr *symtab_hdr;
2018 unsigned char esym[sizeof (Elf64_External_Sym)];
2019 Elf_External_Sym_Shndx eshndx;
2020
2021 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2022 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2023 &cache->sym[ent], esym, &eshndx) == NULL)
2024 return NULL;
2025
2026 if (cache->abfd != abfd)
2027 {
2028 memset (cache->indx, -1, sizeof (cache->indx));
2029 cache->abfd = abfd;
2030 }
2031 cache->indx[ent] = r_symndx;
2032 }
2033
2034 return &cache->sym[ent];
2035 }
2036
2037 /* Given an ELF section number, retrieve the corresponding BFD
2038 section. */
2039
2040 asection *
2041 bfd_section_from_elf_index (bfd *abfd, unsigned int sec_index)
2042 {
2043 if (sec_index >= elf_numsections (abfd))
2044 return NULL;
2045 return elf_elfsections (abfd)[sec_index]->bfd_section;
2046 }
2047
2048 static const struct bfd_elf_special_section special_sections_b[] =
2049 {
2050 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2051 { NULL, 0, 0, 0, 0 }
2052 };
2053
2054 static const struct bfd_elf_special_section special_sections_c[] =
2055 {
2056 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2057 { NULL, 0, 0, 0, 0 }
2058 };
2059
2060 static const struct bfd_elf_special_section special_sections_d[] =
2061 {
2062 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2063 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2064 /* There are more DWARF sections than these, but they needn't be added here
2065 unless you have to cope with broken compilers that don't emit section
2066 attributes or you want to help the user writing assembler. */
2067 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2068 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2069 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2070 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2071 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2072 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2073 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2074 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2075 { NULL, 0, 0, 0, 0 }
2076 };
2077
2078 static const struct bfd_elf_special_section special_sections_f[] =
2079 {
2080 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2081 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2082 { NULL, 0, 0, 0, 0 }
2083 };
2084
2085 static const struct bfd_elf_special_section special_sections_g[] =
2086 {
2087 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2088 { STRING_COMMA_LEN (".gnu.lto_"), -1, SHT_PROGBITS, SHF_EXCLUDE },
2089 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2090 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2091 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2092 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2093 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2094 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2095 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2096 { NULL, 0, 0, 0, 0 }
2097 };
2098
2099 static const struct bfd_elf_special_section special_sections_h[] =
2100 {
2101 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2102 { NULL, 0, 0, 0, 0 }
2103 };
2104
2105 static const struct bfd_elf_special_section special_sections_i[] =
2106 {
2107 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2108 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2109 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2110 { NULL, 0, 0, 0, 0 }
2111 };
2112
2113 static const struct bfd_elf_special_section special_sections_l[] =
2114 {
2115 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2116 { NULL, 0, 0, 0, 0 }
2117 };
2118
2119 static const struct bfd_elf_special_section special_sections_n[] =
2120 {
2121 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2122 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2123 { NULL, 0, 0, 0, 0 }
2124 };
2125
2126 static const struct bfd_elf_special_section special_sections_p[] =
2127 {
2128 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2129 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2130 { NULL, 0, 0, 0, 0 }
2131 };
2132
2133 static const struct bfd_elf_special_section special_sections_r[] =
2134 {
2135 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2136 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2137 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2138 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2139 { NULL, 0, 0, 0, 0 }
2140 };
2141
2142 static const struct bfd_elf_special_section special_sections_s[] =
2143 {
2144 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2145 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2146 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2147 /* See struct bfd_elf_special_section declaration for the semantics of
2148 this special case where .prefix_length != strlen (.prefix). */
2149 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2150 { NULL, 0, 0, 0, 0 }
2151 };
2152
2153 static const struct bfd_elf_special_section special_sections_t[] =
2154 {
2155 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2156 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2157 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2158 { NULL, 0, 0, 0, 0 }
2159 };
2160
2161 static const struct bfd_elf_special_section special_sections_z[] =
2162 {
2163 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 },
2164 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 },
2165 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 },
2166 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 },
2167 { NULL, 0, 0, 0, 0 }
2168 };
2169
2170 static const struct bfd_elf_special_section * const special_sections[] =
2171 {
2172 special_sections_b, /* 'b' */
2173 special_sections_c, /* 'c' */
2174 special_sections_d, /* 'd' */
2175 NULL, /* 'e' */
2176 special_sections_f, /* 'f' */
2177 special_sections_g, /* 'g' */
2178 special_sections_h, /* 'h' */
2179 special_sections_i, /* 'i' */
2180 NULL, /* 'j' */
2181 NULL, /* 'k' */
2182 special_sections_l, /* 'l' */
2183 NULL, /* 'm' */
2184 special_sections_n, /* 'n' */
2185 NULL, /* 'o' */
2186 special_sections_p, /* 'p' */
2187 NULL, /* 'q' */
2188 special_sections_r, /* 'r' */
2189 special_sections_s, /* 's' */
2190 special_sections_t, /* 't' */
2191 NULL, /* 'u' */
2192 NULL, /* 'v' */
2193 NULL, /* 'w' */
2194 NULL, /* 'x' */
2195 NULL, /* 'y' */
2196 special_sections_z /* 'z' */
2197 };
2198
2199 const struct bfd_elf_special_section *
2200 _bfd_elf_get_special_section (const char *name,
2201 const struct bfd_elf_special_section *spec,
2202 unsigned int rela)
2203 {
2204 int i;
2205 int len;
2206
2207 len = strlen (name);
2208
2209 for (i = 0; spec[i].prefix != NULL; i++)
2210 {
2211 int suffix_len;
2212 int prefix_len = spec[i].prefix_length;
2213
2214 if (len < prefix_len)
2215 continue;
2216 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2217 continue;
2218
2219 suffix_len = spec[i].suffix_length;
2220 if (suffix_len <= 0)
2221 {
2222 if (name[prefix_len] != 0)
2223 {
2224 if (suffix_len == 0)
2225 continue;
2226 if (name[prefix_len] != '.'
2227 && (suffix_len == -2
2228 || (rela && spec[i].type == SHT_REL)))
2229 continue;
2230 }
2231 }
2232 else
2233 {
2234 if (len < prefix_len + suffix_len)
2235 continue;
2236 if (memcmp (name + len - suffix_len,
2237 spec[i].prefix + prefix_len,
2238 suffix_len) != 0)
2239 continue;
2240 }
2241 return &spec[i];
2242 }
2243
2244 return NULL;
2245 }
2246
2247 const struct bfd_elf_special_section *
2248 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2249 {
2250 int i;
2251 const struct bfd_elf_special_section *spec;
2252 const struct elf_backend_data *bed;
2253
2254 /* See if this is one of the special sections. */
2255 if (sec->name == NULL)
2256 return NULL;
2257
2258 bed = get_elf_backend_data (abfd);
2259 spec = bed->special_sections;
2260 if (spec)
2261 {
2262 spec = _bfd_elf_get_special_section (sec->name,
2263 bed->special_sections,
2264 sec->use_rela_p);
2265 if (spec != NULL)
2266 return spec;
2267 }
2268
2269 if (sec->name[0] != '.')
2270 return NULL;
2271
2272 i = sec->name[1] - 'b';
2273 if (i < 0 || i > 'z' - 'b')
2274 return NULL;
2275
2276 spec = special_sections[i];
2277
2278 if (spec == NULL)
2279 return NULL;
2280
2281 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2282 }
2283
2284 bfd_boolean
2285 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2286 {
2287 struct bfd_elf_section_data *sdata;
2288 const struct elf_backend_data *bed;
2289 const struct bfd_elf_special_section *ssect;
2290
2291 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2292 if (sdata == NULL)
2293 {
2294 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd,
2295 sizeof (*sdata));
2296 if (sdata == NULL)
2297 return FALSE;
2298 sec->used_by_bfd = sdata;
2299 }
2300
2301 /* Indicate whether or not this section should use RELA relocations. */
2302 bed = get_elf_backend_data (abfd);
2303 sec->use_rela_p = bed->default_use_rela_p;
2304
2305 /* When we read a file, we don't need to set ELF section type and
2306 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2307 anyway. We will set ELF section type and flags for all linker
2308 created sections. If user specifies BFD section flags, we will
2309 set ELF section type and flags based on BFD section flags in
2310 elf_fake_sections. Special handling for .init_array/.fini_array
2311 output sections since they may contain .ctors/.dtors input
2312 sections. We don't want _bfd_elf_init_private_section_data to
2313 copy ELF section type from .ctors/.dtors input sections. */
2314 if (abfd->direction != read_direction
2315 || (sec->flags & SEC_LINKER_CREATED) != 0)
2316 {
2317 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2318 if (ssect != NULL
2319 && (!sec->flags
2320 || (sec->flags & SEC_LINKER_CREATED) != 0
2321 || ssect->type == SHT_INIT_ARRAY
2322 || ssect->type == SHT_FINI_ARRAY))
2323 {
2324 elf_section_type (sec) = ssect->type;
2325 elf_section_flags (sec) = ssect->attr;
2326 }
2327 }
2328
2329 return _bfd_generic_new_section_hook (abfd, sec);
2330 }
2331
2332 /* Create a new bfd section from an ELF program header.
2333
2334 Since program segments have no names, we generate a synthetic name
2335 of the form segment<NUM>, where NUM is generally the index in the
2336 program header table. For segments that are split (see below) we
2337 generate the names segment<NUM>a and segment<NUM>b.
2338
2339 Note that some program segments may have a file size that is different than
2340 (less than) the memory size. All this means is that at execution the
2341 system must allocate the amount of memory specified by the memory size,
2342 but only initialize it with the first "file size" bytes read from the
2343 file. This would occur for example, with program segments consisting
2344 of combined data+bss.
2345
2346 To handle the above situation, this routine generates TWO bfd sections
2347 for the single program segment. The first has the length specified by
2348 the file size of the segment, and the second has the length specified
2349 by the difference between the two sizes. In effect, the segment is split
2350 into its initialized and uninitialized parts.
2351
2352 */
2353
2354 bfd_boolean
2355 _bfd_elf_make_section_from_phdr (bfd *abfd,
2356 Elf_Internal_Phdr *hdr,
2357 int hdr_index,
2358 const char *type_name)
2359 {
2360 asection *newsect;
2361 char *name;
2362 char namebuf[64];
2363 size_t len;
2364 int split;
2365
2366 split = ((hdr->p_memsz > 0)
2367 && (hdr->p_filesz > 0)
2368 && (hdr->p_memsz > hdr->p_filesz));
2369
2370 if (hdr->p_filesz > 0)
2371 {
2372 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "a" : "");
2373 len = strlen (namebuf) + 1;
2374 name = (char *) bfd_alloc (abfd, len);
2375 if (!name)
2376 return FALSE;
2377 memcpy (name, namebuf, len);
2378 newsect = bfd_make_section (abfd, name);
2379 if (newsect == NULL)
2380 return FALSE;
2381 newsect->vma = hdr->p_vaddr;
2382 newsect->lma = hdr->p_paddr;
2383 newsect->size = hdr->p_filesz;
2384 newsect->filepos = hdr->p_offset;
2385 newsect->flags |= SEC_HAS_CONTENTS;
2386 newsect->alignment_power = bfd_log2 (hdr->p_align);
2387 if (hdr->p_type == PT_LOAD)
2388 {
2389 newsect->flags |= SEC_ALLOC;
2390 newsect->flags |= SEC_LOAD;
2391 if (hdr->p_flags & PF_X)
2392 {
2393 /* FIXME: all we known is that it has execute PERMISSION,
2394 may be data. */
2395 newsect->flags |= SEC_CODE;
2396 }
2397 }
2398 if (!(hdr->p_flags & PF_W))
2399 {
2400 newsect->flags |= SEC_READONLY;
2401 }
2402 }
2403
2404 if (hdr->p_memsz > hdr->p_filesz)
2405 {
2406 bfd_vma align;
2407
2408 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "b" : "");
2409 len = strlen (namebuf) + 1;
2410 name = (char *) bfd_alloc (abfd, len);
2411 if (!name)
2412 return FALSE;
2413 memcpy (name, namebuf, len);
2414 newsect = bfd_make_section (abfd, name);
2415 if (newsect == NULL)
2416 return FALSE;
2417 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2418 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2419 newsect->size = hdr->p_memsz - hdr->p_filesz;
2420 newsect->filepos = hdr->p_offset + hdr->p_filesz;
2421 align = newsect->vma & -newsect->vma;
2422 if (align == 0 || align > hdr->p_align)
2423 align = hdr->p_align;
2424 newsect->alignment_power = bfd_log2 (align);
2425 if (hdr->p_type == PT_LOAD)
2426 {
2427 /* Hack for gdb. Segments that have not been modified do
2428 not have their contents written to a core file, on the
2429 assumption that a debugger can find the contents in the
2430 executable. We flag this case by setting the fake
2431 section size to zero. Note that "real" bss sections will
2432 always have their contents dumped to the core file. */
2433 if (bfd_get_format (abfd) == bfd_core)
2434 newsect->size = 0;
2435 newsect->flags |= SEC_ALLOC;
2436 if (hdr->p_flags & PF_X)
2437 newsect->flags |= SEC_CODE;
2438 }
2439 if (!(hdr->p_flags & PF_W))
2440 newsect->flags |= SEC_READONLY;
2441 }
2442
2443 return TRUE;
2444 }
2445
2446 bfd_boolean
2447 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int hdr_index)
2448 {
2449 const struct elf_backend_data *bed;
2450
2451 switch (hdr->p_type)
2452 {
2453 case PT_NULL:
2454 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "null");
2455
2456 case PT_LOAD:
2457 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "load");
2458
2459 case PT_DYNAMIC:
2460 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "dynamic");
2461
2462 case PT_INTERP:
2463 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "interp");
2464
2465 case PT_NOTE:
2466 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "note"))
2467 return FALSE;
2468 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2469 return FALSE;
2470 return TRUE;
2471
2472 case PT_SHLIB:
2473 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "shlib");
2474
2475 case PT_PHDR:
2476 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "phdr");
2477
2478 case PT_GNU_EH_FRAME:
2479 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index,
2480 "eh_frame_hdr");
2481
2482 case PT_GNU_STACK:
2483 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "stack");
2484
2485 case PT_GNU_RELRO:
2486 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "relro");
2487
2488 default:
2489 /* Check for any processor-specific program segment types. */
2490 bed = get_elf_backend_data (abfd);
2491 return bed->elf_backend_section_from_phdr (abfd, hdr, hdr_index, "proc");
2492 }
2493 }
2494
2495 /* Return the REL_HDR for SEC, assuming there is only a single one, either
2496 REL or RELA. */
2497
2498 Elf_Internal_Shdr *
2499 _bfd_elf_single_rel_hdr (asection *sec)
2500 {
2501 if (elf_section_data (sec)->rel.hdr)
2502 {
2503 BFD_ASSERT (elf_section_data (sec)->rela.hdr == NULL);
2504 return elf_section_data (sec)->rel.hdr;
2505 }
2506 else
2507 return elf_section_data (sec)->rela.hdr;
2508 }
2509
2510 /* Allocate and initialize a section-header for a new reloc section,
2511 containing relocations against ASECT. It is stored in RELDATA. If
2512 USE_RELA_P is TRUE, we use RELA relocations; otherwise, we use REL
2513 relocations. */
2514
2515 bfd_boolean
2516 _bfd_elf_init_reloc_shdr (bfd *abfd,
2517 struct bfd_elf_section_reloc_data *reldata,
2518 asection *asect,
2519 bfd_boolean use_rela_p)
2520 {
2521 Elf_Internal_Shdr *rel_hdr;
2522 char *name;
2523 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2524 bfd_size_type amt;
2525
2526 amt = sizeof (Elf_Internal_Shdr);
2527 BFD_ASSERT (reldata->hdr == NULL);
2528 rel_hdr = bfd_zalloc (abfd, amt);
2529 reldata->hdr = rel_hdr;
2530
2531 amt = sizeof ".rela" + strlen (asect->name);
2532 name = (char *) bfd_alloc (abfd, amt);
2533 if (name == NULL)
2534 return FALSE;
2535 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2536 rel_hdr->sh_name =
2537 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2538 FALSE);
2539 if (rel_hdr->sh_name == (unsigned int) -1)
2540 return FALSE;
2541 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2542 rel_hdr->sh_entsize = (use_rela_p
2543 ? bed->s->sizeof_rela
2544 : bed->s->sizeof_rel);
2545 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
2546 rel_hdr->sh_flags = 0;
2547 rel_hdr->sh_addr = 0;
2548 rel_hdr->sh_size = 0;
2549 rel_hdr->sh_offset = 0;
2550
2551 return TRUE;
2552 }
2553
2554 /* Return the default section type based on the passed in section flags. */
2555
2556 int
2557 bfd_elf_get_default_section_type (flagword flags)
2558 {
2559 if ((flags & SEC_ALLOC) != 0
2560 && (flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2561 return SHT_NOBITS;
2562 return SHT_PROGBITS;
2563 }
2564
2565 struct fake_section_arg
2566 {
2567 struct bfd_link_info *link_info;
2568 bfd_boolean failed;
2569 };
2570
2571 /* Set up an ELF internal section header for a section. */
2572
2573 static void
2574 elf_fake_sections (bfd *abfd, asection *asect, void *fsarg)
2575 {
2576 struct fake_section_arg *arg = (struct fake_section_arg *)fsarg;
2577 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2578 struct bfd_elf_section_data *esd = elf_section_data (asect);
2579 Elf_Internal_Shdr *this_hdr;
2580 unsigned int sh_type;
2581
2582 if (arg->failed)
2583 {
2584 /* We already failed; just get out of the bfd_map_over_sections
2585 loop. */
2586 return;
2587 }
2588
2589 this_hdr = &esd->this_hdr;
2590
2591 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2592 asect->name, FALSE);
2593 if (this_hdr->sh_name == (unsigned int) -1)
2594 {
2595 arg->failed = TRUE;
2596 return;
2597 }
2598
2599 /* Don't clear sh_flags. Assembler may set additional bits. */
2600
2601 if ((asect->flags & SEC_ALLOC) != 0
2602 || asect->user_set_vma)
2603 this_hdr->sh_addr = asect->vma;
2604 else
2605 this_hdr->sh_addr = 0;
2606
2607 this_hdr->sh_offset = 0;
2608 this_hdr->sh_size = asect->size;
2609 this_hdr->sh_link = 0;
2610 this_hdr->sh_addralign = (bfd_vma) 1 << asect->alignment_power;
2611 /* The sh_entsize and sh_info fields may have been set already by
2612 copy_private_section_data. */
2613
2614 this_hdr->bfd_section = asect;
2615 this_hdr->contents = NULL;
2616
2617 /* If the section type is unspecified, we set it based on
2618 asect->flags. */
2619 if ((asect->flags & SEC_GROUP) != 0)
2620 sh_type = SHT_GROUP;
2621 else
2622 sh_type = bfd_elf_get_default_section_type (asect->flags);
2623
2624 if (this_hdr->sh_type == SHT_NULL)
2625 this_hdr->sh_type = sh_type;
2626 else if (this_hdr->sh_type == SHT_NOBITS
2627 && sh_type == SHT_PROGBITS
2628 && (asect->flags & SEC_ALLOC) != 0)
2629 {
2630 /* Warn if we are changing a NOBITS section to PROGBITS, but
2631 allow the link to proceed. This can happen when users link
2632 non-bss input sections to bss output sections, or emit data
2633 to a bss output section via a linker script. */
2634 (*_bfd_error_handler)
2635 (_("warning: section `%A' type changed to PROGBITS"), asect);
2636 this_hdr->sh_type = sh_type;
2637 }
2638
2639 switch (this_hdr->sh_type)
2640 {
2641 default:
2642 break;
2643
2644 case SHT_STRTAB:
2645 case SHT_INIT_ARRAY:
2646 case SHT_FINI_ARRAY:
2647 case SHT_PREINIT_ARRAY:
2648 case SHT_NOTE:
2649 case SHT_NOBITS:
2650 case SHT_PROGBITS:
2651 break;
2652
2653 case SHT_HASH:
2654 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2655 break;
2656
2657 case SHT_DYNSYM:
2658 this_hdr->sh_entsize = bed->s->sizeof_sym;
2659 break;
2660
2661 case SHT_DYNAMIC:
2662 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2663 break;
2664
2665 case SHT_RELA:
2666 if (get_elf_backend_data (abfd)->may_use_rela_p)
2667 this_hdr->sh_entsize = bed->s->sizeof_rela;
2668 break;
2669
2670 case SHT_REL:
2671 if (get_elf_backend_data (abfd)->may_use_rel_p)
2672 this_hdr->sh_entsize = bed->s->sizeof_rel;
2673 break;
2674
2675 case SHT_GNU_versym:
2676 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2677 break;
2678
2679 case SHT_GNU_verdef:
2680 this_hdr->sh_entsize = 0;
2681 /* objcopy or strip will copy over sh_info, but may not set
2682 cverdefs. The linker will set cverdefs, but sh_info will be
2683 zero. */
2684 if (this_hdr->sh_info == 0)
2685 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2686 else
2687 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2688 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2689 break;
2690
2691 case SHT_GNU_verneed:
2692 this_hdr->sh_entsize = 0;
2693 /* objcopy or strip will copy over sh_info, but may not set
2694 cverrefs. The linker will set cverrefs, but sh_info will be
2695 zero. */
2696 if (this_hdr->sh_info == 0)
2697 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2698 else
2699 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2700 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2701 break;
2702
2703 case SHT_GROUP:
2704 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
2705 break;
2706
2707 case SHT_GNU_HASH:
2708 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
2709 break;
2710 }
2711
2712 if ((asect->flags & SEC_ALLOC) != 0)
2713 this_hdr->sh_flags |= SHF_ALLOC;
2714 if ((asect->flags & SEC_READONLY) == 0)
2715 this_hdr->sh_flags |= SHF_WRITE;
2716 if ((asect->flags & SEC_CODE) != 0)
2717 this_hdr->sh_flags |= SHF_EXECINSTR;
2718 if ((asect->flags & SEC_MERGE) != 0)
2719 {
2720 this_hdr->sh_flags |= SHF_MERGE;
2721 this_hdr->sh_entsize = asect->entsize;
2722 if ((asect->flags & SEC_STRINGS) != 0)
2723 this_hdr->sh_flags |= SHF_STRINGS;
2724 }
2725 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2726 this_hdr->sh_flags |= SHF_GROUP;
2727 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2728 {
2729 this_hdr->sh_flags |= SHF_TLS;
2730 if (asect->size == 0
2731 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2732 {
2733 struct bfd_link_order *o = asect->map_tail.link_order;
2734
2735 this_hdr->sh_size = 0;
2736 if (o != NULL)
2737 {
2738 this_hdr->sh_size = o->offset + o->size;
2739 if (this_hdr->sh_size != 0)
2740 this_hdr->sh_type = SHT_NOBITS;
2741 }
2742 }
2743 }
2744 if ((asect->flags & (SEC_GROUP | SEC_EXCLUDE)) == SEC_EXCLUDE)
2745 this_hdr->sh_flags |= SHF_EXCLUDE;
2746
2747 /* If the section has relocs, set up a section header for the
2748 SHT_REL[A] section. If two relocation sections are required for
2749 this section, it is up to the processor-specific back-end to
2750 create the other. */
2751 if ((asect->flags & SEC_RELOC) != 0)
2752 {
2753 /* When doing a relocatable link, create both REL and RELA sections if
2754 needed. */
2755 if (arg->link_info
2756 /* Do the normal setup if we wouldn't create any sections here. */
2757 && esd->rel.count + esd->rela.count > 0
2758 && (arg->link_info->relocatable || arg->link_info->emitrelocations))
2759 {
2760 if (esd->rel.count && esd->rel.hdr == NULL
2761 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rel, asect, FALSE))
2762 {
2763 arg->failed = TRUE;
2764 return;
2765 }
2766 if (esd->rela.count && esd->rela.hdr == NULL
2767 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rela, asect, TRUE))
2768 {
2769 arg->failed = TRUE;
2770 return;
2771 }
2772 }
2773 else if (!_bfd_elf_init_reloc_shdr (abfd,
2774 (asect->use_rela_p
2775 ? &esd->rela : &esd->rel),
2776 asect,
2777 asect->use_rela_p))
2778 arg->failed = TRUE;
2779 }
2780
2781 /* Check for processor-specific section types. */
2782 sh_type = this_hdr->sh_type;
2783 if (bed->elf_backend_fake_sections
2784 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2785 arg->failed = TRUE;
2786
2787 if (sh_type == SHT_NOBITS && asect->size != 0)
2788 {
2789 /* Don't change the header type from NOBITS if we are being
2790 called for objcopy --only-keep-debug. */
2791 this_hdr->sh_type = sh_type;
2792 }
2793 }
2794
2795 /* Fill in the contents of a SHT_GROUP section. Called from
2796 _bfd_elf_compute_section_file_positions for gas, objcopy, and
2797 when ELF targets use the generic linker, ld. Called for ld -r
2798 from bfd_elf_final_link. */
2799
2800 void
2801 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2802 {
2803 bfd_boolean *failedptr = (bfd_boolean *) failedptrarg;
2804 asection *elt, *first;
2805 unsigned char *loc;
2806 bfd_boolean gas;
2807
2808 /* Ignore linker created group section. See elfNN_ia64_object_p in
2809 elfxx-ia64.c. */
2810 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
2811 || *failedptr)
2812 return;
2813
2814 if (elf_section_data (sec)->this_hdr.sh_info == 0)
2815 {
2816 unsigned long symindx = 0;
2817
2818 /* elf_group_id will have been set up by objcopy and the
2819 generic linker. */
2820 if (elf_group_id (sec) != NULL)
2821 symindx = elf_group_id (sec)->udata.i;
2822
2823 if (symindx == 0)
2824 {
2825 /* If called from the assembler, swap_out_syms will have set up
2826 elf_section_syms. */
2827 BFD_ASSERT (elf_section_syms (abfd) != NULL);
2828 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2829 }
2830 elf_section_data (sec)->this_hdr.sh_info = symindx;
2831 }
2832 else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2)
2833 {
2834 /* The ELF backend linker sets sh_info to -2 when the group
2835 signature symbol is global, and thus the index can't be
2836 set until all local symbols are output. */
2837 asection *igroup = elf_sec_group (elf_next_in_group (sec));
2838 struct bfd_elf_section_data *sec_data = elf_section_data (igroup);
2839 unsigned long symndx = sec_data->this_hdr.sh_info;
2840 unsigned long extsymoff = 0;
2841 struct elf_link_hash_entry *h;
2842
2843 if (!elf_bad_symtab (igroup->owner))
2844 {
2845 Elf_Internal_Shdr *symtab_hdr;
2846
2847 symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr;
2848 extsymoff = symtab_hdr->sh_info;
2849 }
2850 h = elf_sym_hashes (igroup->owner)[symndx - extsymoff];
2851 while (h->root.type == bfd_link_hash_indirect
2852 || h->root.type == bfd_link_hash_warning)
2853 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2854
2855 elf_section_data (sec)->this_hdr.sh_info = h->indx;
2856 }
2857
2858 /* The contents won't be allocated for "ld -r" or objcopy. */
2859 gas = TRUE;
2860 if (sec->contents == NULL)
2861 {
2862 gas = FALSE;
2863 sec->contents = (unsigned char *) bfd_alloc (abfd, sec->size);
2864
2865 /* Arrange for the section to be written out. */
2866 elf_section_data (sec)->this_hdr.contents = sec->contents;
2867 if (sec->contents == NULL)
2868 {
2869 *failedptr = TRUE;
2870 return;
2871 }
2872 }
2873
2874 loc = sec->contents + sec->size;
2875
2876 /* Get the pointer to the first section in the group that gas
2877 squirreled away here. objcopy arranges for this to be set to the
2878 start of the input section group. */
2879 first = elt = elf_next_in_group (sec);
2880
2881 /* First element is a flag word. Rest of section is elf section
2882 indices for all the sections of the group. Write them backwards
2883 just to keep the group in the same order as given in .section
2884 directives, not that it matters. */
2885 while (elt != NULL)
2886 {
2887 asection *s;
2888
2889 s = elt;
2890 if (!gas)
2891 s = s->output_section;
2892 if (s != NULL
2893 && !bfd_is_abs_section (s))
2894 {
2895 unsigned int idx = elf_section_data (s)->this_idx;
2896
2897 loc -= 4;
2898 H_PUT_32 (abfd, idx, loc);
2899 }
2900 elt = elf_next_in_group (elt);
2901 if (elt == first)
2902 break;
2903 }
2904
2905 if ((loc -= 4) != sec->contents)
2906 abort ();
2907
2908 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2909 }
2910
2911 /* Assign all ELF section numbers. The dummy first section is handled here
2912 too. The link/info pointers for the standard section types are filled
2913 in here too, while we're at it. */
2914
2915 static bfd_boolean
2916 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
2917 {
2918 struct elf_obj_tdata *t = elf_tdata (abfd);
2919 asection *sec;
2920 unsigned int section_number, secn;
2921 Elf_Internal_Shdr **i_shdrp;
2922 struct bfd_elf_section_data *d;
2923 bfd_boolean need_symtab;
2924
2925 section_number = 1;
2926
2927 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2928
2929 /* SHT_GROUP sections are in relocatable files only. */
2930 if (link_info == NULL || link_info->relocatable)
2931 {
2932 /* Put SHT_GROUP sections first. */
2933 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2934 {
2935 d = elf_section_data (sec);
2936
2937 if (d->this_hdr.sh_type == SHT_GROUP)
2938 {
2939 if (sec->flags & SEC_LINKER_CREATED)
2940 {
2941 /* Remove the linker created SHT_GROUP sections. */
2942 bfd_section_list_remove (abfd, sec);
2943 abfd->section_count--;
2944 }
2945 else
2946 d->this_idx = section_number++;
2947 }
2948 }
2949 }
2950
2951 for (sec = abfd->sections; sec; sec = sec->next)
2952 {
2953 d = elf_section_data (sec);
2954
2955 if (d->this_hdr.sh_type != SHT_GROUP)
2956 d->this_idx = section_number++;
2957 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
2958 if (d->rel.hdr)
2959 {
2960 d->rel.idx = section_number++;
2961 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel.hdr->sh_name);
2962 }
2963 else
2964 d->rel.idx = 0;
2965
2966 if (d->rela.hdr)
2967 {
2968 d->rela.idx = section_number++;
2969 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rela.hdr->sh_name);
2970 }
2971 else
2972 d->rela.idx = 0;
2973 }
2974
2975 t->shstrtab_section = section_number++;
2976 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
2977 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
2978
2979 need_symtab = (bfd_get_symcount (abfd) > 0
2980 || (link_info == NULL
2981 && ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
2982 == HAS_RELOC)));
2983 if (need_symtab)
2984 {
2985 t->symtab_section = section_number++;
2986 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
2987 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
2988 {
2989 t->symtab_shndx_section = section_number++;
2990 t->symtab_shndx_hdr.sh_name
2991 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2992 ".symtab_shndx", FALSE);
2993 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
2994 return FALSE;
2995 }
2996 t->strtab_section = section_number++;
2997 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
2998 }
2999
3000 if (section_number >= SHN_LORESERVE)
3001 {
3002 _bfd_error_handler (_("%B: too many sections: %u"),
3003 abfd, section_number);
3004 return FALSE;
3005 }
3006
3007 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
3008 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3009
3010 elf_numsections (abfd) = section_number;
3011 elf_elfheader (abfd)->e_shnum = section_number;
3012
3013 /* Set up the list of section header pointers, in agreement with the
3014 indices. */
3015 i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc2 (abfd, section_number,
3016 sizeof (Elf_Internal_Shdr *));
3017 if (i_shdrp == NULL)
3018 return FALSE;
3019
3020 i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd,
3021 sizeof (Elf_Internal_Shdr));
3022 if (i_shdrp[0] == NULL)
3023 {
3024 bfd_release (abfd, i_shdrp);
3025 return FALSE;
3026 }
3027
3028 elf_elfsections (abfd) = i_shdrp;
3029
3030 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
3031 if (need_symtab)
3032 {
3033 i_shdrp[t->symtab_section] = &t->symtab_hdr;
3034 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
3035 {
3036 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
3037 t->symtab_shndx_hdr.sh_link = t->symtab_section;
3038 }
3039 i_shdrp[t->strtab_section] = &t->strtab_hdr;
3040 t->symtab_hdr.sh_link = t->strtab_section;
3041 }
3042
3043 for (sec = abfd->sections; sec; sec = sec->next)
3044 {
3045 asection *s;
3046 const char *name;
3047
3048 d = elf_section_data (sec);
3049
3050 i_shdrp[d->this_idx] = &d->this_hdr;
3051 if (d->rel.idx != 0)
3052 i_shdrp[d->rel.idx] = d->rel.hdr;
3053 if (d->rela.idx != 0)
3054 i_shdrp[d->rela.idx] = d->rela.hdr;
3055
3056 /* Fill in the sh_link and sh_info fields while we're at it. */
3057
3058 /* sh_link of a reloc section is the section index of the symbol
3059 table. sh_info is the section index of the section to which
3060 the relocation entries apply. */
3061 if (d->rel.idx != 0)
3062 {
3063 d->rel.hdr->sh_link = t->symtab_section;
3064 d->rel.hdr->sh_info = d->this_idx;
3065 }
3066 if (d->rela.idx != 0)
3067 {
3068 d->rela.hdr->sh_link = t->symtab_section;
3069 d->rela.hdr->sh_info = d->this_idx;
3070 }
3071
3072 /* We need to set up sh_link for SHF_LINK_ORDER. */
3073 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3074 {
3075 s = elf_linked_to_section (sec);
3076 if (s)
3077 {
3078 /* elf_linked_to_section points to the input section. */
3079 if (link_info != NULL)
3080 {
3081 /* Check discarded linkonce section. */
3082 if (discarded_section (s))
3083 {
3084 asection *kept;
3085 (*_bfd_error_handler)
3086 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
3087 abfd, d->this_hdr.bfd_section,
3088 s, s->owner);
3089 /* Point to the kept section if it has the same
3090 size as the discarded one. */
3091 kept = _bfd_elf_check_kept_section (s, link_info);
3092 if (kept == NULL)
3093 {
3094 bfd_set_error (bfd_error_bad_value);
3095 return FALSE;
3096 }
3097 s = kept;
3098 }
3099
3100 s = s->output_section;
3101 BFD_ASSERT (s != NULL);
3102 }
3103 else
3104 {
3105 /* Handle objcopy. */
3106 if (s->output_section == NULL)
3107 {
3108 (*_bfd_error_handler)
3109 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
3110 abfd, d->this_hdr.bfd_section, s, s->owner);
3111 bfd_set_error (bfd_error_bad_value);
3112 return FALSE;
3113 }
3114 s = s->output_section;
3115 }
3116 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3117 }
3118 else
3119 {
3120 /* PR 290:
3121 The Intel C compiler generates SHT_IA_64_UNWIND with
3122 SHF_LINK_ORDER. But it doesn't set the sh_link or
3123 sh_info fields. Hence we could get the situation
3124 where s is NULL. */
3125 const struct elf_backend_data *bed
3126 = get_elf_backend_data (abfd);
3127 if (bed->link_order_error_handler)
3128 bed->link_order_error_handler
3129 (_("%B: warning: sh_link not set for section `%A'"),
3130 abfd, sec);
3131 }
3132 }
3133
3134 switch (d->this_hdr.sh_type)
3135 {
3136 case SHT_REL:
3137 case SHT_RELA:
3138 /* A reloc section which we are treating as a normal BFD
3139 section. sh_link is the section index of the symbol
3140 table. sh_info is the section index of the section to
3141 which the relocation entries apply. We assume that an
3142 allocated reloc section uses the dynamic symbol table.
3143 FIXME: How can we be sure? */
3144 s = bfd_get_section_by_name (abfd, ".dynsym");
3145 if (s != NULL)
3146 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3147
3148 /* We look up the section the relocs apply to by name. */
3149 name = sec->name;
3150 if (d->this_hdr.sh_type == SHT_REL)
3151 name += 4;
3152 else
3153 name += 5;
3154 s = bfd_get_section_by_name (abfd, name);
3155 if (s != NULL)
3156 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3157 break;
3158
3159 case SHT_STRTAB:
3160 /* We assume that a section named .stab*str is a stabs
3161 string section. We look for a section with the same name
3162 but without the trailing ``str'', and set its sh_link
3163 field to point to this section. */
3164 if (CONST_STRNEQ (sec->name, ".stab")
3165 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3166 {
3167 size_t len;
3168 char *alc;
3169
3170 len = strlen (sec->name);
3171 alc = (char *) bfd_malloc (len - 2);
3172 if (alc == NULL)
3173 return FALSE;
3174 memcpy (alc, sec->name, len - 3);
3175 alc[len - 3] = '\0';
3176 s = bfd_get_section_by_name (abfd, alc);
3177 free (alc);
3178 if (s != NULL)
3179 {
3180 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3181
3182 /* This is a .stab section. */
3183 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3184 elf_section_data (s)->this_hdr.sh_entsize
3185 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3186 }
3187 }
3188 break;
3189
3190 case SHT_DYNAMIC:
3191 case SHT_DYNSYM:
3192 case SHT_GNU_verneed:
3193 case SHT_GNU_verdef:
3194 /* sh_link is the section header index of the string table
3195 used for the dynamic entries, or the symbol table, or the
3196 version strings. */
3197 s = bfd_get_section_by_name (abfd, ".dynstr");
3198 if (s != NULL)
3199 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3200 break;
3201
3202 case SHT_GNU_LIBLIST:
3203 /* sh_link is the section header index of the prelink library
3204 list used for the dynamic entries, or the symbol table, or
3205 the version strings. */
3206 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3207 ? ".dynstr" : ".gnu.libstr");
3208 if (s != NULL)
3209 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3210 break;
3211
3212 case SHT_HASH:
3213 case SHT_GNU_HASH:
3214 case SHT_GNU_versym:
3215 /* sh_link is the section header index of the symbol table
3216 this hash table or version table is for. */
3217 s = bfd_get_section_by_name (abfd, ".dynsym");
3218 if (s != NULL)
3219 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3220 break;
3221
3222 case SHT_GROUP:
3223 d->this_hdr.sh_link = t->symtab_section;
3224 }
3225 }
3226
3227 for (secn = 1; secn < section_number; ++secn)
3228 if (i_shdrp[secn] == NULL)
3229 i_shdrp[secn] = i_shdrp[0];
3230 else
3231 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
3232 i_shdrp[secn]->sh_name);
3233 return TRUE;
3234 }
3235
3236 static bfd_boolean
3237 sym_is_global (bfd *abfd, asymbol *sym)
3238 {
3239 /* If the backend has a special mapping, use it. */
3240 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3241 if (bed->elf_backend_sym_is_global)
3242 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3243
3244 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0
3245 || bfd_is_und_section (bfd_get_section (sym))
3246 || bfd_is_com_section (bfd_get_section (sym)));
3247 }
3248
3249 /* Don't output section symbols for sections that are not going to be
3250 output, that are duplicates or there is no BFD section. */
3251
3252 static bfd_boolean
3253 ignore_section_sym (bfd *abfd, asymbol *sym)
3254 {
3255 elf_symbol_type *type_ptr;
3256
3257 if ((sym->flags & BSF_SECTION_SYM) == 0)
3258 return FALSE;
3259
3260 type_ptr = elf_symbol_from (abfd, sym);
3261 return ((type_ptr != NULL
3262 && type_ptr->internal_elf_sym.st_shndx != 0
3263 && bfd_is_abs_section (sym->section))
3264 || !(sym->section->owner == abfd
3265 || (sym->section->output_section->owner == abfd
3266 && sym->section->output_offset == 0)
3267 || bfd_is_abs_section (sym->section)));
3268 }
3269
3270 /* Map symbol from it's internal number to the external number, moving
3271 all local symbols to be at the head of the list. */
3272
3273 static bfd_boolean
3274 elf_map_symbols (bfd *abfd)
3275 {
3276 unsigned int symcount = bfd_get_symcount (abfd);
3277 asymbol **syms = bfd_get_outsymbols (abfd);
3278 asymbol **sect_syms;
3279 unsigned int num_locals = 0;
3280 unsigned int num_globals = 0;
3281 unsigned int num_locals2 = 0;
3282 unsigned int num_globals2 = 0;
3283 int max_index = 0;
3284 unsigned int idx;
3285 asection *asect;
3286 asymbol **new_syms;
3287
3288 #ifdef DEBUG
3289 fprintf (stderr, "elf_map_symbols\n");
3290 fflush (stderr);
3291 #endif
3292
3293 for (asect = abfd->sections; asect; asect = asect->next)
3294 {
3295 if (max_index < asect->index)
3296 max_index = asect->index;
3297 }
3298
3299 max_index++;
3300 sect_syms = (asymbol **) bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
3301 if (sect_syms == NULL)
3302 return FALSE;
3303 elf_section_syms (abfd) = sect_syms;
3304 elf_num_section_syms (abfd) = max_index;
3305
3306 /* Init sect_syms entries for any section symbols we have already
3307 decided to output. */
3308 for (idx = 0; idx < symcount; idx++)
3309 {
3310 asymbol *sym = syms[idx];
3311
3312 if ((sym->flags & BSF_SECTION_SYM) != 0
3313 && sym->value == 0
3314 && !ignore_section_sym (abfd, sym)
3315 && !bfd_is_abs_section (sym->section))
3316 {
3317 asection *sec = sym->section;
3318
3319 if (sec->owner != abfd)
3320 sec = sec->output_section;
3321
3322 sect_syms[sec->index] = syms[idx];
3323 }
3324 }
3325
3326 /* Classify all of the symbols. */
3327 for (idx = 0; idx < symcount; idx++)
3328 {
3329 if (sym_is_global (abfd, syms[idx]))
3330 num_globals++;
3331 else if (!ignore_section_sym (abfd, syms[idx]))
3332 num_locals++;
3333 }
3334
3335 /* We will be adding a section symbol for each normal BFD section. Most
3336 sections will already have a section symbol in outsymbols, but
3337 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3338 at least in that case. */
3339 for (asect = abfd->sections; asect; asect = asect->next)
3340 {
3341 if (sect_syms[asect->index] == NULL)
3342 {
3343 if (!sym_is_global (abfd, asect->symbol))
3344 num_locals++;
3345 else
3346 num_globals++;
3347 }
3348 }
3349
3350 /* Now sort the symbols so the local symbols are first. */
3351 new_syms = (asymbol **) bfd_alloc2 (abfd, num_locals + num_globals,
3352 sizeof (asymbol *));
3353
3354 if (new_syms == NULL)
3355 return FALSE;
3356
3357 for (idx = 0; idx < symcount; idx++)
3358 {
3359 asymbol *sym = syms[idx];
3360 unsigned int i;
3361
3362 if (sym_is_global (abfd, sym))
3363 i = num_locals + num_globals2++;
3364 else if (!ignore_section_sym (abfd, sym))
3365 i = num_locals2++;
3366 else
3367 continue;
3368 new_syms[i] = sym;
3369 sym->udata.i = i + 1;
3370 }
3371 for (asect = abfd->sections; asect; asect = asect->next)
3372 {
3373 if (sect_syms[asect->index] == NULL)
3374 {
3375 asymbol *sym = asect->symbol;
3376 unsigned int i;
3377
3378 sect_syms[asect->index] = sym;
3379 if (!sym_is_global (abfd, sym))
3380 i = num_locals2++;
3381 else
3382 i = num_locals + num_globals2++;
3383 new_syms[i] = sym;
3384 sym->udata.i = i + 1;
3385 }
3386 }
3387
3388 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3389
3390 elf_num_locals (abfd) = num_locals;
3391 elf_num_globals (abfd) = num_globals;
3392 return TRUE;
3393 }
3394
3395 /* Align to the maximum file alignment that could be required for any
3396 ELF data structure. */
3397
3398 static inline file_ptr
3399 align_file_position (file_ptr off, int align)
3400 {
3401 return (off + align - 1) & ~(align - 1);
3402 }
3403
3404 /* Assign a file position to a section, optionally aligning to the
3405 required section alignment. */
3406
3407 file_ptr
3408 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3409 file_ptr offset,
3410 bfd_boolean align)
3411 {
3412 if (align && i_shdrp->sh_addralign > 1)
3413 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
3414 i_shdrp->sh_offset = offset;
3415 if (i_shdrp->bfd_section != NULL)
3416 i_shdrp->bfd_section->filepos = offset;
3417 if (i_shdrp->sh_type != SHT_NOBITS)
3418 offset += i_shdrp->sh_size;
3419 return offset;
3420 }
3421
3422 /* Compute the file positions we are going to put the sections at, and
3423 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3424 is not NULL, this is being called by the ELF backend linker. */
3425
3426 bfd_boolean
3427 _bfd_elf_compute_section_file_positions (bfd *abfd,
3428 struct bfd_link_info *link_info)
3429 {
3430 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3431 struct fake_section_arg fsargs;
3432 bfd_boolean failed;
3433 struct bfd_strtab_hash *strtab = NULL;
3434 Elf_Internal_Shdr *shstrtab_hdr;
3435 bfd_boolean need_symtab;
3436
3437 if (abfd->output_has_begun)
3438 return TRUE;
3439
3440 /* Do any elf backend specific processing first. */
3441 if (bed->elf_backend_begin_write_processing)
3442 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3443
3444 if (! prep_headers (abfd))
3445 return FALSE;
3446
3447 /* Post process the headers if necessary. */
3448 if (bed->elf_backend_post_process_headers)
3449 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3450
3451 fsargs.failed = FALSE;
3452 fsargs.link_info = link_info;
3453 bfd_map_over_sections (abfd, elf_fake_sections, &fsargs);
3454 if (fsargs.failed)
3455 return FALSE;
3456
3457 if (!assign_section_numbers (abfd, link_info))
3458 return FALSE;
3459
3460 /* The backend linker builds symbol table information itself. */
3461 need_symtab = (link_info == NULL
3462 && (bfd_get_symcount (abfd) > 0
3463 || ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
3464 == HAS_RELOC)));
3465 if (need_symtab)
3466 {
3467 /* Non-zero if doing a relocatable link. */
3468 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3469
3470 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3471 return FALSE;
3472 }
3473
3474 failed = FALSE;
3475 if (link_info == NULL)
3476 {
3477 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3478 if (failed)
3479 return FALSE;
3480 }
3481
3482 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3483 /* sh_name was set in prep_headers. */
3484 shstrtab_hdr->sh_type = SHT_STRTAB;
3485 shstrtab_hdr->sh_flags = 0;
3486 shstrtab_hdr->sh_addr = 0;
3487 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3488 shstrtab_hdr->sh_entsize = 0;
3489 shstrtab_hdr->sh_link = 0;
3490 shstrtab_hdr->sh_info = 0;
3491 /* sh_offset is set in assign_file_positions_except_relocs. */
3492 shstrtab_hdr->sh_addralign = 1;
3493
3494 if (!assign_file_positions_except_relocs (abfd, link_info))
3495 return FALSE;
3496
3497 if (need_symtab)
3498 {
3499 file_ptr off;
3500 Elf_Internal_Shdr *hdr;
3501
3502 off = elf_tdata (abfd)->next_file_pos;
3503
3504 hdr = &elf_tdata (abfd)->symtab_hdr;
3505 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3506
3507 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3508 if (hdr->sh_size != 0)
3509 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3510
3511 hdr = &elf_tdata (abfd)->strtab_hdr;
3512 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3513
3514 elf_tdata (abfd)->next_file_pos = off;
3515
3516 /* Now that we know where the .strtab section goes, write it
3517 out. */
3518 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3519 || ! _bfd_stringtab_emit (abfd, strtab))
3520 return FALSE;
3521 _bfd_stringtab_free (strtab);
3522 }
3523
3524 abfd->output_has_begun = TRUE;
3525
3526 return TRUE;
3527 }
3528
3529 /* Make an initial estimate of the size of the program header. If we
3530 get the number wrong here, we'll redo section placement. */
3531
3532 static bfd_size_type
3533 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
3534 {
3535 size_t segs;
3536 asection *s;
3537 const struct elf_backend_data *bed;
3538
3539 /* Assume we will need exactly two PT_LOAD segments: one for text
3540 and one for data. */
3541 segs = 2;
3542
3543 s = bfd_get_section_by_name (abfd, ".interp");
3544 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3545 {
3546 /* If we have a loadable interpreter section, we need a
3547 PT_INTERP segment. In this case, assume we also need a
3548 PT_PHDR segment, although that may not be true for all
3549 targets. */
3550 segs += 2;
3551 }
3552
3553 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
3554 {
3555 /* We need a PT_DYNAMIC segment. */
3556 ++segs;
3557 }
3558
3559 if (info != NULL && info->relro)
3560 {
3561 /* We need a PT_GNU_RELRO segment. */
3562 ++segs;
3563 }
3564
3565 if (elf_tdata (abfd)->eh_frame_hdr)
3566 {
3567 /* We need a PT_GNU_EH_FRAME segment. */
3568 ++segs;
3569 }
3570
3571 if (elf_tdata (abfd)->stack_flags)
3572 {
3573 /* We need a PT_GNU_STACK segment. */
3574 ++segs;
3575 }
3576
3577 for (s = abfd->sections; s != NULL; s = s->next)
3578 {
3579 if ((s->flags & SEC_LOAD) != 0
3580 && CONST_STRNEQ (s->name, ".note"))
3581 {
3582 /* We need a PT_NOTE segment. */
3583 ++segs;
3584 /* Try to create just one PT_NOTE segment
3585 for all adjacent loadable .note* sections.
3586 gABI requires that within a PT_NOTE segment
3587 (and also inside of each SHT_NOTE section)
3588 each note is padded to a multiple of 4 size,
3589 so we check whether the sections are correctly
3590 aligned. */
3591 if (s->alignment_power == 2)
3592 while (s->next != NULL
3593 && s->next->alignment_power == 2
3594 && (s->next->flags & SEC_LOAD) != 0
3595 && CONST_STRNEQ (s->next->name, ".note"))
3596 s = s->next;
3597 }
3598 }
3599
3600 for (s = abfd->sections; s != NULL; s = s->next)
3601 {
3602 if (s->flags & SEC_THREAD_LOCAL)
3603 {
3604 /* We need a PT_TLS segment. */
3605 ++segs;
3606 break;
3607 }
3608 }
3609
3610 /* Let the backend count up any program headers it might need. */
3611 bed = get_elf_backend_data (abfd);
3612 if (bed->elf_backend_additional_program_headers)
3613 {
3614 int a;
3615
3616 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
3617 if (a == -1)
3618 abort ();
3619 segs += a;
3620 }
3621
3622 return segs * bed->s->sizeof_phdr;
3623 }
3624
3625 /* Find the segment that contains the output_section of section. */
3626
3627 Elf_Internal_Phdr *
3628 _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
3629 {
3630 struct elf_segment_map *m;
3631 Elf_Internal_Phdr *p;
3632
3633 for (m = elf_tdata (abfd)->segment_map,
3634 p = elf_tdata (abfd)->phdr;
3635 m != NULL;
3636 m = m->next, p++)
3637 {
3638 int i;
3639
3640 for (i = m->count - 1; i >= 0; i--)
3641 if (m->sections[i] == section)
3642 return p;
3643 }
3644
3645 return NULL;
3646 }
3647
3648 /* Create a mapping from a set of sections to a program segment. */
3649
3650 static struct elf_segment_map *
3651 make_mapping (bfd *abfd,
3652 asection **sections,
3653 unsigned int from,
3654 unsigned int to,
3655 bfd_boolean phdr)
3656 {
3657 struct elf_segment_map *m;
3658 unsigned int i;
3659 asection **hdrpp;
3660 bfd_size_type amt;
3661
3662 amt = sizeof (struct elf_segment_map);
3663 amt += (to - from - 1) * sizeof (asection *);
3664 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3665 if (m == NULL)
3666 return NULL;
3667 m->next = NULL;
3668 m->p_type = PT_LOAD;
3669 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3670 m->sections[i - from] = *hdrpp;
3671 m->count = to - from;
3672
3673 if (from == 0 && phdr)
3674 {
3675 /* Include the headers in the first PT_LOAD segment. */
3676 m->includes_filehdr = 1;
3677 m->includes_phdrs = 1;
3678 }
3679
3680 return m;
3681 }
3682
3683 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3684 on failure. */
3685
3686 struct elf_segment_map *
3687 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3688 {
3689 struct elf_segment_map *m;
3690
3691 m = (struct elf_segment_map *) bfd_zalloc (abfd,
3692 sizeof (struct elf_segment_map));
3693 if (m == NULL)
3694 return NULL;
3695 m->next = NULL;
3696 m->p_type = PT_DYNAMIC;
3697 m->count = 1;
3698 m->sections[0] = dynsec;
3699
3700 return m;
3701 }
3702
3703 /* Possibly add or remove segments from the segment map. */
3704
3705 static bfd_boolean
3706 elf_modify_segment_map (bfd *abfd,
3707 struct bfd_link_info *info,
3708 bfd_boolean remove_empty_load)
3709 {
3710 struct elf_segment_map **m;
3711 const struct elf_backend_data *bed;
3712
3713 /* The placement algorithm assumes that non allocated sections are
3714 not in PT_LOAD segments. We ensure this here by removing such
3715 sections from the segment map. We also remove excluded
3716 sections. Finally, any PT_LOAD segment without sections is
3717 removed. */
3718 m = &elf_tdata (abfd)->segment_map;
3719 while (*m)
3720 {
3721 unsigned int i, new_count;
3722
3723 for (new_count = 0, i = 0; i < (*m)->count; i++)
3724 {
3725 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
3726 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
3727 || (*m)->p_type != PT_LOAD))
3728 {
3729 (*m)->sections[new_count] = (*m)->sections[i];
3730 new_count++;
3731 }
3732 }
3733 (*m)->count = new_count;
3734
3735 if (remove_empty_load && (*m)->p_type == PT_LOAD && (*m)->count == 0)
3736 *m = (*m)->next;
3737 else
3738 m = &(*m)->next;
3739 }
3740
3741 bed = get_elf_backend_data (abfd);
3742 if (bed->elf_backend_modify_segment_map != NULL)
3743 {
3744 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
3745 return FALSE;
3746 }
3747
3748 return TRUE;
3749 }
3750
3751 /* Set up a mapping from BFD sections to program segments. */
3752
3753 bfd_boolean
3754 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
3755 {
3756 unsigned int count;
3757 struct elf_segment_map *m;
3758 asection **sections = NULL;
3759 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3760 bfd_boolean no_user_phdrs;
3761
3762 no_user_phdrs = elf_tdata (abfd)->segment_map == NULL;
3763
3764 if (info != NULL)
3765 info->user_phdrs = !no_user_phdrs;
3766
3767 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
3768 {
3769 asection *s;
3770 unsigned int i;
3771 struct elf_segment_map *mfirst;
3772 struct elf_segment_map **pm;
3773 asection *last_hdr;
3774 bfd_vma last_size;
3775 unsigned int phdr_index;
3776 bfd_vma maxpagesize;
3777 asection **hdrpp;
3778 bfd_boolean phdr_in_segment = TRUE;
3779 bfd_boolean writable;
3780 int tls_count = 0;
3781 asection *first_tls = NULL;
3782 asection *dynsec, *eh_frame_hdr;
3783 bfd_size_type amt;
3784 bfd_vma addr_mask, wrap_to = 0;
3785
3786 /* Select the allocated sections, and sort them. */
3787
3788 sections = (asection **) bfd_malloc2 (bfd_count_sections (abfd),
3789 sizeof (asection *));
3790 if (sections == NULL)
3791 goto error_return;
3792
3793 /* Calculate top address, avoiding undefined behaviour of shift
3794 left operator when shift count is equal to size of type
3795 being shifted. */
3796 addr_mask = ((bfd_vma) 1 << (bfd_arch_bits_per_address (abfd) - 1)) - 1;
3797 addr_mask = (addr_mask << 1) + 1;
3798
3799 i = 0;
3800 for (s = abfd->sections; s != NULL; s = s->next)
3801 {
3802 if ((s->flags & SEC_ALLOC) != 0)
3803 {
3804 sections[i] = s;
3805 ++i;
3806 /* A wrapping section potentially clashes with header. */
3807 if (((s->lma + s->size) & addr_mask) < (s->lma & addr_mask))
3808 wrap_to = (s->lma + s->size) & addr_mask;
3809 }
3810 }
3811 BFD_ASSERT (i <= bfd_count_sections (abfd));
3812 count = i;
3813
3814 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3815
3816 /* Build the mapping. */
3817
3818 mfirst = NULL;
3819 pm = &mfirst;
3820
3821 /* If we have a .interp section, then create a PT_PHDR segment for
3822 the program headers and a PT_INTERP segment for the .interp
3823 section. */
3824 s = bfd_get_section_by_name (abfd, ".interp");
3825 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3826 {
3827 amt = sizeof (struct elf_segment_map);
3828 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3829 if (m == NULL)
3830 goto error_return;
3831 m->next = NULL;
3832 m->p_type = PT_PHDR;
3833 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3834 m->p_flags = PF_R | PF_X;
3835 m->p_flags_valid = 1;
3836 m->includes_phdrs = 1;
3837
3838 *pm = m;
3839 pm = &m->next;
3840
3841 amt = sizeof (struct elf_segment_map);
3842 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3843 if (m == NULL)
3844 goto error_return;
3845 m->next = NULL;
3846 m->p_type = PT_INTERP;
3847 m->count = 1;
3848 m->sections[0] = s;
3849
3850 *pm = m;
3851 pm = &m->next;
3852 }
3853
3854 /* Look through the sections. We put sections in the same program
3855 segment when the start of the second section can be placed within
3856 a few bytes of the end of the first section. */
3857 last_hdr = NULL;
3858 last_size = 0;
3859 phdr_index = 0;
3860 maxpagesize = bed->maxpagesize;
3861 writable = FALSE;
3862 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3863 if (dynsec != NULL
3864 && (dynsec->flags & SEC_LOAD) == 0)
3865 dynsec = NULL;
3866
3867 /* Deal with -Ttext or something similar such that the first section
3868 is not adjacent to the program headers. This is an
3869 approximation, since at this point we don't know exactly how many
3870 program headers we will need. */
3871 if (count > 0)
3872 {
3873 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
3874
3875 if (phdr_size == (bfd_size_type) -1)
3876 phdr_size = get_program_header_size (abfd, info);
3877 if ((abfd->flags & D_PAGED) == 0
3878 || (sections[0]->lma & addr_mask) < phdr_size
3879 || ((sections[0]->lma & addr_mask) % maxpagesize
3880 < phdr_size % maxpagesize)
3881 || (sections[0]->lma & addr_mask & -maxpagesize) < wrap_to)
3882 phdr_in_segment = FALSE;
3883 }
3884
3885 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3886 {
3887 asection *hdr;
3888 bfd_boolean new_segment;
3889
3890 hdr = *hdrpp;
3891
3892 /* See if this section and the last one will fit in the same
3893 segment. */
3894
3895 if (last_hdr == NULL)
3896 {
3897 /* If we don't have a segment yet, then we don't need a new
3898 one (we build the last one after this loop). */
3899 new_segment = FALSE;
3900 }
3901 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3902 {
3903 /* If this section has a different relation between the
3904 virtual address and the load address, then we need a new
3905 segment. */
3906 new_segment = TRUE;
3907 }
3908 else if (hdr->lma < last_hdr->lma + last_size
3909 || last_hdr->lma + last_size < last_hdr->lma)
3910 {
3911 /* If this section has a load address that makes it overlap
3912 the previous section, then we need a new segment. */
3913 new_segment = TRUE;
3914 }
3915 /* In the next test we have to be careful when last_hdr->lma is close
3916 to the end of the address space. If the aligned address wraps
3917 around to the start of the address space, then there are no more
3918 pages left in memory and it is OK to assume that the current
3919 section can be included in the current segment. */
3920 else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
3921 > last_hdr->lma)
3922 && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
3923 <= hdr->lma))
3924 {
3925 /* If putting this section in this segment would force us to
3926 skip a page in the segment, then we need a new segment. */
3927 new_segment = TRUE;
3928 }
3929 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
3930 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
3931 {
3932 /* We don't want to put a loadable section after a
3933 nonloadable section in the same segment.
3934 Consider .tbss sections as loadable for this purpose. */
3935 new_segment = TRUE;
3936 }
3937 else if ((abfd->flags & D_PAGED) == 0)
3938 {
3939 /* If the file is not demand paged, which means that we
3940 don't require the sections to be correctly aligned in the
3941 file, then there is no other reason for a new segment. */
3942 new_segment = FALSE;
3943 }
3944 else if (! writable
3945 && (hdr->flags & SEC_READONLY) == 0
3946 && (((last_hdr->lma + last_size - 1) & -maxpagesize)
3947 != (hdr->lma & -maxpagesize)))
3948 {
3949 /* We don't want to put a writable section in a read only
3950 segment, unless they are on the same page in memory
3951 anyhow. We already know that the last section does not
3952 bring us past the current section on the page, so the
3953 only case in which the new section is not on the same
3954 page as the previous section is when the previous section
3955 ends precisely on a page boundary. */
3956 new_segment = TRUE;
3957 }
3958 else
3959 {
3960 /* Otherwise, we can use the same segment. */
3961 new_segment = FALSE;
3962 }
3963
3964 /* Allow interested parties a chance to override our decision. */
3965 if (last_hdr != NULL
3966 && info != NULL
3967 && info->callbacks->override_segment_assignment != NULL)
3968 new_segment
3969 = info->callbacks->override_segment_assignment (info, abfd, hdr,
3970 last_hdr,
3971 new_segment);
3972
3973 if (! new_segment)
3974 {
3975 if ((hdr->flags & SEC_READONLY) == 0)
3976 writable = TRUE;
3977 last_hdr = hdr;
3978 /* .tbss sections effectively have zero size. */
3979 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
3980 != SEC_THREAD_LOCAL)
3981 last_size = hdr->size;
3982 else
3983 last_size = 0;
3984 continue;
3985 }
3986
3987 /* We need a new program segment. We must create a new program
3988 header holding all the sections from phdr_index until hdr. */
3989
3990 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3991 if (m == NULL)
3992 goto error_return;
3993
3994 *pm = m;
3995 pm = &m->next;
3996
3997 if ((hdr->flags & SEC_READONLY) == 0)
3998 writable = TRUE;
3999 else
4000 writable = FALSE;
4001
4002 last_hdr = hdr;
4003 /* .tbss sections effectively have zero size. */
4004 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
4005 last_size = hdr->size;
4006 else
4007 last_size = 0;
4008 phdr_index = i;
4009 phdr_in_segment = FALSE;
4010 }
4011
4012 /* Create a final PT_LOAD program segment, but not if it's just
4013 for .tbss. */
4014 if (last_hdr != NULL
4015 && (i - phdr_index != 1
4016 || ((last_hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
4017 != SEC_THREAD_LOCAL)))
4018 {
4019 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
4020 if (m == NULL)
4021 goto error_return;
4022
4023 *pm = m;
4024 pm = &m->next;
4025 }
4026
4027 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4028 if (dynsec != NULL)
4029 {
4030 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
4031 if (m == NULL)
4032 goto error_return;
4033 *pm = m;
4034 pm = &m->next;
4035 }
4036
4037 /* For each batch of consecutive loadable .note sections,
4038 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
4039 because if we link together nonloadable .note sections and
4040 loadable .note sections, we will generate two .note sections
4041 in the output file. FIXME: Using names for section types is
4042 bogus anyhow. */
4043 for (s = abfd->sections; s != NULL; s = s->next)
4044 {
4045 if ((s->flags & SEC_LOAD) != 0
4046 && CONST_STRNEQ (s->name, ".note"))
4047 {
4048 asection *s2;
4049
4050 count = 1;
4051 amt = sizeof (struct elf_segment_map);
4052 if (s->alignment_power == 2)
4053 for (s2 = s; s2->next != NULL; s2 = s2->next)
4054 {
4055 if (s2->next->alignment_power == 2
4056 && (s2->next->flags & SEC_LOAD) != 0
4057 && CONST_STRNEQ (s2->next->name, ".note")
4058 && align_power (s2->lma + s2->size, 2)
4059 == s2->next->lma)
4060 count++;
4061 else
4062 break;
4063 }
4064 amt += (count - 1) * sizeof (asection *);
4065 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4066 if (m == NULL)
4067 goto error_return;
4068 m->next = NULL;
4069 m->p_type = PT_NOTE;
4070 m->count = count;
4071 while (count > 1)
4072 {
4073 m->sections[m->count - count--] = s;
4074 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4075 s = s->next;
4076 }
4077 m->sections[m->count - 1] = s;
4078 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4079 *pm = m;
4080 pm = &m->next;
4081 }
4082 if (s->flags & SEC_THREAD_LOCAL)
4083 {
4084 if (! tls_count)
4085 first_tls = s;
4086 tls_count++;
4087 }
4088 }
4089
4090 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
4091 if (tls_count > 0)
4092 {
4093 amt = sizeof (struct elf_segment_map);
4094 amt += (tls_count - 1) * sizeof (asection *);
4095 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4096 if (m == NULL)
4097 goto error_return;
4098 m->next = NULL;
4099 m->p_type = PT_TLS;
4100 m->count = tls_count;
4101 /* Mandated PF_R. */
4102 m->p_flags = PF_R;
4103 m->p_flags_valid = 1;
4104 for (i = 0; i < (unsigned int) tls_count; ++i)
4105 {
4106 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
4107 m->sections[i] = first_tls;
4108 first_tls = first_tls->next;
4109 }
4110
4111 *pm = m;
4112 pm = &m->next;
4113 }
4114
4115 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
4116 segment. */
4117 eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
4118 if (eh_frame_hdr != NULL
4119 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
4120 {
4121 amt = sizeof (struct elf_segment_map);
4122 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4123 if (m == NULL)
4124 goto error_return;
4125 m->next = NULL;
4126 m->p_type = PT_GNU_EH_FRAME;
4127 m->count = 1;
4128 m->sections[0] = eh_frame_hdr->output_section;
4129
4130 *pm = m;
4131 pm = &m->next;
4132 }
4133
4134 if (elf_tdata (abfd)->stack_flags)
4135 {
4136 amt = sizeof (struct elf_segment_map);
4137 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4138 if (m == NULL)
4139 goto error_return;
4140 m->next = NULL;
4141 m->p_type = PT_GNU_STACK;
4142 m->p_flags = elf_tdata (abfd)->stack_flags;
4143 m->p_align = bed->stack_align;
4144 m->p_flags_valid = 1;
4145 m->p_align_valid = m->p_align != 0;
4146 if (info->stacksize > 0)
4147 {
4148 m->p_size = info->stacksize;
4149 m->p_size_valid = 1;
4150 }
4151
4152 *pm = m;
4153 pm = &m->next;
4154 }
4155
4156 if (info != NULL && info->relro)
4157 {
4158 for (m = mfirst; m != NULL; m = m->next)
4159 {
4160 if (m->p_type == PT_LOAD
4161 && m->count != 0
4162 && m->sections[0]->vma >= info->relro_start
4163 && m->sections[0]->vma < info->relro_end)
4164 {
4165 i = m->count;
4166 while (--i != (unsigned) -1)
4167 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS))
4168 == (SEC_LOAD | SEC_HAS_CONTENTS))
4169 break;
4170
4171 if (i == (unsigned) -1)
4172 continue;
4173
4174 if (m->sections[i]->vma + m->sections[i]->size
4175 >= info->relro_end)
4176 break;
4177 }
4178 }
4179
4180 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
4181 if (m != NULL)
4182 {
4183 amt = sizeof (struct elf_segment_map);
4184 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4185 if (m == NULL)
4186 goto error_return;
4187 m->next = NULL;
4188 m->p_type = PT_GNU_RELRO;
4189 m->p_flags = PF_R;
4190 m->p_flags_valid = 1;
4191
4192 *pm = m;
4193 pm = &m->next;
4194 }
4195 }
4196
4197 free (sections);
4198 elf_tdata (abfd)->segment_map = mfirst;
4199 }
4200
4201 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
4202 return FALSE;
4203
4204 for (count = 0, m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4205 ++count;
4206 elf_tdata (abfd)->program_header_size = count * bed->s->sizeof_phdr;
4207
4208 return TRUE;
4209
4210 error_return:
4211 if (sections != NULL)
4212 free (sections);
4213 return FALSE;
4214 }
4215
4216 /* Sort sections by address. */
4217
4218 static int
4219 elf_sort_sections (const void *arg1, const void *arg2)
4220 {
4221 const asection *sec1 = *(const asection **) arg1;
4222 const asection *sec2 = *(const asection **) arg2;
4223 bfd_size_type size1, size2;
4224
4225 /* Sort by LMA first, since this is the address used to
4226 place the section into a segment. */
4227 if (sec1->lma < sec2->lma)
4228 return -1;
4229 else if (sec1->lma > sec2->lma)
4230 return 1;
4231
4232 /* Then sort by VMA. Normally the LMA and the VMA will be
4233 the same, and this will do nothing. */
4234 if (sec1->vma < sec2->vma)
4235 return -1;
4236 else if (sec1->vma > sec2->vma)
4237 return 1;
4238
4239 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
4240
4241 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
4242
4243 if (TOEND (sec1))
4244 {
4245 if (TOEND (sec2))
4246 {
4247 /* If the indicies are the same, do not return 0
4248 here, but continue to try the next comparison. */
4249 if (sec1->target_index - sec2->target_index != 0)
4250 return sec1->target_index - sec2->target_index;
4251 }
4252 else
4253 return 1;
4254 }
4255 else if (TOEND (sec2))
4256 return -1;
4257
4258 #undef TOEND
4259
4260 /* Sort by size, to put zero sized sections
4261 before others at the same address. */
4262
4263 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
4264 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
4265
4266 if (size1 < size2)
4267 return -1;
4268 if (size1 > size2)
4269 return 1;
4270
4271 return sec1->target_index - sec2->target_index;
4272 }
4273
4274 /* Ian Lance Taylor writes:
4275
4276 We shouldn't be using % with a negative signed number. That's just
4277 not good. We have to make sure either that the number is not
4278 negative, or that the number has an unsigned type. When the types
4279 are all the same size they wind up as unsigned. When file_ptr is a
4280 larger signed type, the arithmetic winds up as signed long long,
4281 which is wrong.
4282
4283 What we're trying to say here is something like ``increase OFF by
4284 the least amount that will cause it to be equal to the VMA modulo
4285 the page size.'' */
4286 /* In other words, something like:
4287
4288 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4289 off_offset = off % bed->maxpagesize;
4290 if (vma_offset < off_offset)
4291 adjustment = vma_offset + bed->maxpagesize - off_offset;
4292 else
4293 adjustment = vma_offset - off_offset;
4294
4295 which can can be collapsed into the expression below. */
4296
4297 static file_ptr
4298 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
4299 {
4300 return ((vma - off) % maxpagesize);
4301 }
4302
4303 static void
4304 print_segment_map (const struct elf_segment_map *m)
4305 {
4306 unsigned int j;
4307 const char *pt = get_segment_type (m->p_type);
4308 char buf[32];
4309
4310 if (pt == NULL)
4311 {
4312 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
4313 sprintf (buf, "LOPROC+%7.7x",
4314 (unsigned int) (m->p_type - PT_LOPROC));
4315 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
4316 sprintf (buf, "LOOS+%7.7x",
4317 (unsigned int) (m->p_type - PT_LOOS));
4318 else
4319 snprintf (buf, sizeof (buf), "%8.8x",
4320 (unsigned int) m->p_type);
4321 pt = buf;
4322 }
4323 fflush (stdout);
4324 fprintf (stderr, "%s:", pt);
4325 for (j = 0; j < m->count; j++)
4326 fprintf (stderr, " %s", m->sections [j]->name);
4327 putc ('\n',stderr);
4328 fflush (stderr);
4329 }
4330
4331 static bfd_boolean
4332 write_zeros (bfd *abfd, file_ptr pos, bfd_size_type len)
4333 {
4334 void *buf;
4335 bfd_boolean ret;
4336
4337 if (bfd_seek (abfd, pos, SEEK_SET) != 0)
4338 return FALSE;
4339 buf = bfd_zmalloc (len);
4340 if (buf == NULL)
4341 return FALSE;
4342 ret = bfd_bwrite (buf, len, abfd) == len;
4343 free (buf);
4344 return ret;
4345 }
4346
4347 /* Assign file positions to the sections based on the mapping from
4348 sections to segments. This function also sets up some fields in
4349 the file header. */
4350
4351 static bfd_boolean
4352 assign_file_positions_for_load_sections (bfd *abfd,
4353 struct bfd_link_info *link_info)
4354 {
4355 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4356 struct elf_segment_map *m;
4357 Elf_Internal_Phdr *phdrs;
4358 Elf_Internal_Phdr *p;
4359 file_ptr off;
4360 bfd_size_type maxpagesize;
4361 unsigned int alloc;
4362 unsigned int i, j;
4363 bfd_vma header_pad = 0;
4364
4365 if (link_info == NULL
4366 && !_bfd_elf_map_sections_to_segments (abfd, link_info))
4367 return FALSE;
4368
4369 alloc = 0;
4370 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4371 {
4372 ++alloc;
4373 if (m->header_size)
4374 header_pad = m->header_size;
4375 }
4376
4377 if (alloc)
4378 {
4379 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
4380 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
4381 }
4382 else
4383 {
4384 /* PR binutils/12467. */
4385 elf_elfheader (abfd)->e_phoff = 0;
4386 elf_elfheader (abfd)->e_phentsize = 0;
4387 }
4388
4389 elf_elfheader (abfd)->e_phnum = alloc;
4390
4391 if (elf_tdata (abfd)->program_header_size == (bfd_size_type) -1)
4392 elf_tdata (abfd)->program_header_size = alloc * bed->s->sizeof_phdr;
4393 else
4394 BFD_ASSERT (elf_tdata (abfd)->program_header_size
4395 >= alloc * bed->s->sizeof_phdr);
4396
4397 if (alloc == 0)
4398 {
4399 elf_tdata (abfd)->next_file_pos = bed->s->sizeof_ehdr;
4400 return TRUE;
4401 }
4402
4403 /* We're writing the size in elf_tdata (abfd)->program_header_size,
4404 see assign_file_positions_except_relocs, so make sure we have
4405 that amount allocated, with trailing space cleared.
4406 The variable alloc contains the computed need, while elf_tdata
4407 (abfd)->program_header_size contains the size used for the
4408 layout.
4409 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
4410 where the layout is forced to according to a larger size in the
4411 last iterations for the testcase ld-elf/header. */
4412 BFD_ASSERT (elf_tdata (abfd)->program_header_size % bed->s->sizeof_phdr
4413 == 0);
4414 phdrs = (Elf_Internal_Phdr *)
4415 bfd_zalloc2 (abfd,
4416 (elf_tdata (abfd)->program_header_size / bed->s->sizeof_phdr),
4417 sizeof (Elf_Internal_Phdr));
4418 elf_tdata (abfd)->phdr = phdrs;
4419 if (phdrs == NULL)
4420 return FALSE;
4421
4422 maxpagesize = 1;
4423 if ((abfd->flags & D_PAGED) != 0)
4424 maxpagesize = bed->maxpagesize;
4425
4426 off = bed->s->sizeof_ehdr;
4427 off += alloc * bed->s->sizeof_phdr;
4428 if (header_pad < (bfd_vma) off)
4429 header_pad = 0;
4430 else
4431 header_pad -= off;
4432 off += header_pad;
4433
4434 for (m = elf_tdata (abfd)->segment_map, p = phdrs, j = 0;
4435 m != NULL;
4436 m = m->next, p++, j++)
4437 {
4438 asection **secpp;
4439 bfd_vma off_adjust;
4440 bfd_boolean no_contents;
4441
4442 /* If elf_segment_map is not from map_sections_to_segments, the
4443 sections may not be correctly ordered. NOTE: sorting should
4444 not be done to the PT_NOTE section of a corefile, which may
4445 contain several pseudo-sections artificially created by bfd.
4446 Sorting these pseudo-sections breaks things badly. */
4447 if (m->count > 1
4448 && !(elf_elfheader (abfd)->e_type == ET_CORE
4449 && m->p_type == PT_NOTE))
4450 qsort (m->sections, (size_t) m->count, sizeof (asection *),
4451 elf_sort_sections);
4452
4453 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4454 number of sections with contents contributing to both p_filesz
4455 and p_memsz, followed by a number of sections with no contents
4456 that just contribute to p_memsz. In this loop, OFF tracks next
4457 available file offset for PT_LOAD and PT_NOTE segments. */
4458 p->p_type = m->p_type;
4459 p->p_flags = m->p_flags;
4460
4461 if (m->count == 0)
4462 p->p_vaddr = 0;
4463 else
4464 p->p_vaddr = m->sections[0]->vma - m->p_vaddr_offset;
4465
4466 if (m->p_paddr_valid)
4467 p->p_paddr = m->p_paddr;
4468 else if (m->count == 0)
4469 p->p_paddr = 0;
4470 else
4471 p->p_paddr = m->sections[0]->lma - m->p_vaddr_offset;
4472
4473 if (p->p_type == PT_LOAD
4474 && (abfd->flags & D_PAGED) != 0)
4475 {
4476 /* p_align in demand paged PT_LOAD segments effectively stores
4477 the maximum page size. When copying an executable with
4478 objcopy, we set m->p_align from the input file. Use this
4479 value for maxpagesize rather than bed->maxpagesize, which
4480 may be different. Note that we use maxpagesize for PT_TLS
4481 segment alignment later in this function, so we are relying
4482 on at least one PT_LOAD segment appearing before a PT_TLS
4483 segment. */
4484 if (m->p_align_valid)
4485 maxpagesize = m->p_align;
4486
4487 p->p_align = maxpagesize;
4488 }
4489 else if (m->p_align_valid)
4490 p->p_align = m->p_align;
4491 else if (m->count == 0)
4492 p->p_align = 1 << bed->s->log_file_align;
4493 else
4494 p->p_align = 0;
4495
4496 no_contents = FALSE;
4497 off_adjust = 0;
4498 if (p->p_type == PT_LOAD
4499 && m->count > 0)
4500 {
4501 bfd_size_type align;
4502 unsigned int align_power = 0;
4503
4504 if (m->p_align_valid)
4505 align = p->p_align;
4506 else
4507 {
4508 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4509 {
4510 unsigned int secalign;
4511
4512 secalign = bfd_get_section_alignment (abfd, *secpp);
4513 if (secalign > align_power)
4514 align_power = secalign;
4515 }
4516 align = (bfd_size_type) 1 << align_power;
4517 if (align < maxpagesize)
4518 align = maxpagesize;
4519 }
4520
4521 for (i = 0; i < m->count; i++)
4522 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
4523 /* If we aren't making room for this section, then
4524 it must be SHT_NOBITS regardless of what we've
4525 set via struct bfd_elf_special_section. */
4526 elf_section_type (m->sections[i]) = SHT_NOBITS;
4527
4528 /* Find out whether this segment contains any loadable
4529 sections. */
4530 no_contents = TRUE;
4531 for (i = 0; i < m->count; i++)
4532 if (elf_section_type (m->sections[i]) != SHT_NOBITS)
4533 {
4534 no_contents = FALSE;
4535 break;
4536 }
4537
4538 off_adjust = vma_page_aligned_bias (p->p_vaddr, off, align);
4539 off += off_adjust;
4540 if (no_contents)
4541 {
4542 /* We shouldn't need to align the segment on disk since
4543 the segment doesn't need file space, but the gABI
4544 arguably requires the alignment and glibc ld.so
4545 checks it. So to comply with the alignment
4546 requirement but not waste file space, we adjust
4547 p_offset for just this segment. (OFF_ADJUST is
4548 subtracted from OFF later.) This may put p_offset
4549 past the end of file, but that shouldn't matter. */
4550 }
4551 else
4552 off_adjust = 0;
4553 }
4554 /* Make sure the .dynamic section is the first section in the
4555 PT_DYNAMIC segment. */
4556 else if (p->p_type == PT_DYNAMIC
4557 && m->count > 1
4558 && strcmp (m->sections[0]->name, ".dynamic") != 0)
4559 {
4560 _bfd_error_handler
4561 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4562 abfd);
4563 bfd_set_error (bfd_error_bad_value);
4564 return FALSE;
4565 }
4566 /* Set the note section type to SHT_NOTE. */
4567 else if (p->p_type == PT_NOTE)
4568 for (i = 0; i < m->count; i++)
4569 elf_section_type (m->sections[i]) = SHT_NOTE;
4570
4571 p->p_offset = 0;
4572 p->p_filesz = 0;
4573 p->p_memsz = 0;
4574
4575 if (m->includes_filehdr)
4576 {
4577 if (!m->p_flags_valid)
4578 p->p_flags |= PF_R;
4579 p->p_filesz = bed->s->sizeof_ehdr;
4580 p->p_memsz = bed->s->sizeof_ehdr;
4581 if (m->count > 0)
4582 {
4583 if (p->p_vaddr < (bfd_vma) off)
4584 {
4585 (*_bfd_error_handler)
4586 (_("%B: Not enough room for program headers, try linking with -N"),
4587 abfd);
4588 bfd_set_error (bfd_error_bad_value);
4589 return FALSE;
4590 }
4591
4592 p->p_vaddr -= off;
4593 if (!m->p_paddr_valid)
4594 p->p_paddr -= off;
4595 }
4596 }
4597
4598 if (m->includes_phdrs)
4599 {
4600 if (!m->p_flags_valid)
4601 p->p_flags |= PF_R;
4602
4603 if (!m->includes_filehdr)
4604 {
4605 p->p_offset = bed->s->sizeof_ehdr;
4606
4607 if (m->count > 0)
4608 {
4609 p->p_vaddr -= off - p->p_offset;
4610 if (!m->p_paddr_valid)
4611 p->p_paddr -= off - p->p_offset;
4612 }
4613 }
4614
4615 p->p_filesz += alloc * bed->s->sizeof_phdr;
4616 p->p_memsz += alloc * bed->s->sizeof_phdr;
4617 if (m->count)
4618 {
4619 p->p_filesz += header_pad;
4620 p->p_memsz += header_pad;
4621 }
4622 }
4623
4624 if (p->p_type == PT_LOAD
4625 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4626 {
4627 if (!m->includes_filehdr && !m->includes_phdrs)
4628 p->p_offset = off;
4629 else
4630 {
4631 file_ptr adjust;
4632
4633 adjust = off - (p->p_offset + p->p_filesz);
4634 if (!no_contents)
4635 p->p_filesz += adjust;
4636 p->p_memsz += adjust;
4637 }
4638 }
4639
4640 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
4641 maps. Set filepos for sections in PT_LOAD segments, and in
4642 core files, for sections in PT_NOTE segments.
4643 assign_file_positions_for_non_load_sections will set filepos
4644 for other sections and update p_filesz for other segments. */
4645 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4646 {
4647 asection *sec;
4648 bfd_size_type align;
4649 Elf_Internal_Shdr *this_hdr;
4650
4651 sec = *secpp;
4652 this_hdr = &elf_section_data (sec)->this_hdr;
4653 align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec);
4654
4655 if ((p->p_type == PT_LOAD
4656 || p->p_type == PT_TLS)
4657 && (this_hdr->sh_type != SHT_NOBITS
4658 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
4659 && ((this_hdr->sh_flags & SHF_TLS) == 0
4660 || p->p_type == PT_TLS))))
4661 {
4662 bfd_vma p_start = p->p_paddr;
4663 bfd_vma p_end = p_start + p->p_memsz;
4664 bfd_vma s_start = sec->lma;
4665 bfd_vma adjust = s_start - p_end;
4666
4667 if (adjust != 0
4668 && (s_start < p_end
4669 || p_end < p_start))
4670 {
4671 (*_bfd_error_handler)
4672 (_("%B: section %A lma %#lx adjusted to %#lx"), abfd, sec,
4673 (unsigned long) s_start, (unsigned long) p_end);
4674 adjust = 0;
4675 sec->lma = p_end;
4676 }
4677 p->p_memsz += adjust;
4678
4679 if (this_hdr->sh_type != SHT_NOBITS)
4680 {
4681 if (p->p_filesz + adjust < p->p_memsz)
4682 {
4683 /* We have a PROGBITS section following NOBITS ones.
4684 Allocate file space for the NOBITS section(s) and
4685 zero it. */
4686 adjust = p->p_memsz - p->p_filesz;
4687 if (!write_zeros (abfd, off, adjust))
4688 return FALSE;
4689 }
4690 off += adjust;
4691 p->p_filesz += adjust;
4692 }
4693 }
4694
4695 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
4696 {
4697 /* The section at i == 0 is the one that actually contains
4698 everything. */
4699 if (i == 0)
4700 {
4701 this_hdr->sh_offset = sec->filepos = off;
4702 off += this_hdr->sh_size;
4703 p->p_filesz = this_hdr->sh_size;
4704 p->p_memsz = 0;
4705 p->p_align = 1;
4706 }
4707 else
4708 {
4709 /* The rest are fake sections that shouldn't be written. */
4710 sec->filepos = 0;
4711 sec->size = 0;
4712 sec->flags = 0;
4713 continue;
4714 }
4715 }
4716 else
4717 {
4718 if (p->p_type == PT_LOAD)
4719 {
4720 this_hdr->sh_offset = sec->filepos = off;
4721 if (this_hdr->sh_type != SHT_NOBITS)
4722 off += this_hdr->sh_size;
4723 }
4724 else if (this_hdr->sh_type == SHT_NOBITS
4725 && (this_hdr->sh_flags & SHF_TLS) != 0
4726 && this_hdr->sh_offset == 0)
4727 {
4728 /* This is a .tbss section that didn't get a PT_LOAD.
4729 (See _bfd_elf_map_sections_to_segments "Create a
4730 final PT_LOAD".) Set sh_offset to the value it
4731 would have if we had created a zero p_filesz and
4732 p_memsz PT_LOAD header for the section. This
4733 also makes the PT_TLS header have the same
4734 p_offset value. */
4735 bfd_vma adjust = vma_page_aligned_bias (this_hdr->sh_addr,
4736 off, align);
4737 this_hdr->sh_offset = sec->filepos = off + adjust;
4738 }
4739
4740 if (this_hdr->sh_type != SHT_NOBITS)
4741 {
4742 p->p_filesz += this_hdr->sh_size;
4743 /* A load section without SHF_ALLOC is something like
4744 a note section in a PT_NOTE segment. These take
4745 file space but are not loaded into memory. */
4746 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4747 p->p_memsz += this_hdr->sh_size;
4748 }
4749 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4750 {
4751 if (p->p_type == PT_TLS)
4752 p->p_memsz += this_hdr->sh_size;
4753
4754 /* .tbss is special. It doesn't contribute to p_memsz of
4755 normal segments. */
4756 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
4757 p->p_memsz += this_hdr->sh_size;
4758 }
4759
4760 if (align > p->p_align
4761 && !m->p_align_valid
4762 && (p->p_type != PT_LOAD
4763 || (abfd->flags & D_PAGED) == 0))
4764 p->p_align = align;
4765 }
4766
4767 if (!m->p_flags_valid)
4768 {
4769 p->p_flags |= PF_R;
4770 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
4771 p->p_flags |= PF_X;
4772 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
4773 p->p_flags |= PF_W;
4774 }
4775 }
4776 off -= off_adjust;
4777
4778 /* Check that all sections are in a PT_LOAD segment.
4779 Don't check funky gdb generated core files. */
4780 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
4781 {
4782 bfd_boolean check_vma = TRUE;
4783
4784 for (i = 1; i < m->count; i++)
4785 if (m->sections[i]->vma == m->sections[i - 1]->vma
4786 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i])
4787 ->this_hdr), p) != 0
4788 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i - 1])
4789 ->this_hdr), p) != 0)
4790 {
4791 /* Looks like we have overlays packed into the segment. */
4792 check_vma = FALSE;
4793 break;
4794 }
4795
4796 for (i = 0; i < m->count; i++)
4797 {
4798 Elf_Internal_Shdr *this_hdr;
4799 asection *sec;
4800
4801 sec = m->sections[i];
4802 this_hdr = &(elf_section_data(sec)->this_hdr);
4803 if (!ELF_SECTION_IN_SEGMENT_1 (this_hdr, p, check_vma, 0)
4804 && !ELF_TBSS_SPECIAL (this_hdr, p))
4805 {
4806 (*_bfd_error_handler)
4807 (_("%B: section `%A' can't be allocated in segment %d"),
4808 abfd, sec, j);
4809 print_segment_map (m);
4810 }
4811 }
4812 }
4813 }
4814
4815 elf_tdata (abfd)->next_file_pos = off;
4816 return TRUE;
4817 }
4818
4819 /* Assign file positions for the other sections. */
4820
4821 static bfd_boolean
4822 assign_file_positions_for_non_load_sections (bfd *abfd,
4823 struct bfd_link_info *link_info)
4824 {
4825 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4826 Elf_Internal_Shdr **i_shdrpp;
4827 Elf_Internal_Shdr **hdrpp;
4828 Elf_Internal_Phdr *phdrs;
4829 Elf_Internal_Phdr *p;
4830 struct elf_segment_map *m;
4831 struct elf_segment_map *hdrs_segment;
4832 bfd_vma filehdr_vaddr, filehdr_paddr;
4833 bfd_vma phdrs_vaddr, phdrs_paddr;
4834 file_ptr off;
4835 unsigned int num_sec;
4836 unsigned int i;
4837 unsigned int count;
4838
4839 i_shdrpp = elf_elfsections (abfd);
4840 num_sec = elf_numsections (abfd);
4841 off = elf_tdata (abfd)->next_file_pos;
4842 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4843 {
4844 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4845 Elf_Internal_Shdr *hdr;
4846
4847 hdr = *hdrpp;
4848 if (hdr->bfd_section != NULL
4849 && (hdr->bfd_section->filepos != 0
4850 || (hdr->sh_type == SHT_NOBITS
4851 && hdr->contents == NULL)))
4852 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
4853 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4854 {
4855 if (hdr->sh_size != 0)
4856 (*_bfd_error_handler)
4857 (_("%B: warning: allocated section `%s' not in segment"),
4858 abfd,
4859 (hdr->bfd_section == NULL
4860 ? "*unknown*"
4861 : hdr->bfd_section->name));
4862 /* We don't need to page align empty sections. */
4863 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
4864 off += vma_page_aligned_bias (hdr->sh_addr, off,
4865 bed->maxpagesize);
4866 else
4867 off += vma_page_aligned_bias (hdr->sh_addr, off,
4868 hdr->sh_addralign);
4869 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4870 FALSE);
4871 }
4872 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4873 && hdr->bfd_section == NULL)
4874 || hdr == i_shdrpp[tdata->symtab_section]
4875 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4876 || hdr == i_shdrpp[tdata->strtab_section])
4877 hdr->sh_offset = -1;
4878 else
4879 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4880 }
4881
4882 /* Now that we have set the section file positions, we can set up
4883 the file positions for the non PT_LOAD segments. */
4884 count = 0;
4885 filehdr_vaddr = 0;
4886 filehdr_paddr = 0;
4887 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
4888 phdrs_paddr = 0;
4889 hdrs_segment = NULL;
4890 phdrs = elf_tdata (abfd)->phdr;
4891 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4892 m != NULL;
4893 m = m->next, p++)
4894 {
4895 ++count;
4896 if (p->p_type != PT_LOAD)
4897 continue;
4898
4899 if (m->includes_filehdr)
4900 {
4901 filehdr_vaddr = p->p_vaddr;
4902 filehdr_paddr = p->p_paddr;
4903 }
4904 if (m->includes_phdrs)
4905 {
4906 phdrs_vaddr = p->p_vaddr;
4907 phdrs_paddr = p->p_paddr;
4908 if (m->includes_filehdr)
4909 {
4910 hdrs_segment = m;
4911 phdrs_vaddr += bed->s->sizeof_ehdr;
4912 phdrs_paddr += bed->s->sizeof_ehdr;
4913 }
4914 }
4915 }
4916
4917 if (hdrs_segment != NULL && link_info != NULL)
4918 {
4919 /* There is a segment that contains both the file headers and the
4920 program headers, so provide a symbol __ehdr_start pointing there.
4921 A program can use this to examine itself robustly. */
4922
4923 struct elf_link_hash_entry *hash
4924 = elf_link_hash_lookup (elf_hash_table (link_info), "__ehdr_start",
4925 FALSE, FALSE, TRUE);
4926 /* If the symbol was referenced and not defined, define it. */
4927 if (hash != NULL
4928 && (hash->root.type == bfd_link_hash_new
4929 || hash->root.type == bfd_link_hash_undefined
4930 || hash->root.type == bfd_link_hash_undefweak
4931 || hash->root.type == bfd_link_hash_common))
4932 {
4933 asection *s = NULL;
4934 if (hdrs_segment->count != 0)
4935 /* The segment contains sections, so use the first one. */
4936 s = hdrs_segment->sections[0];
4937 else
4938 /* Use the first (i.e. lowest-addressed) section in any segment. */
4939 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4940 if (m->count != 0)
4941 {
4942 s = m->sections[0];
4943 break;
4944 }
4945
4946 if (s != NULL)
4947 {
4948 hash->root.u.def.value = filehdr_vaddr - s->vma;
4949 hash->root.u.def.section = s;
4950 }
4951 else
4952 {
4953 hash->root.u.def.value = filehdr_vaddr;
4954 hash->root.u.def.section = bfd_abs_section_ptr;
4955 }
4956
4957 hash->root.type = bfd_link_hash_defined;
4958 hash->def_regular = 1;
4959 hash->non_elf = 0;
4960 }
4961 }
4962
4963 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4964 m != NULL;
4965 m = m->next, p++)
4966 {
4967 if (p->p_type == PT_GNU_RELRO)
4968 {
4969 const Elf_Internal_Phdr *lp;
4970 struct elf_segment_map *lm;
4971
4972 if (link_info != NULL)
4973 {
4974 /* During linking the range of the RELRO segment is passed
4975 in link_info. */
4976 for (lm = elf_tdata (abfd)->segment_map, lp = phdrs;
4977 lm != NULL;
4978 lm = lm->next, lp++)
4979 {
4980 if (lp->p_type == PT_LOAD
4981 && lp->p_vaddr < link_info->relro_end
4982 && lp->p_vaddr + lp->p_filesz >= link_info->relro_end
4983 && lm->count != 0
4984 && lm->sections[0]->vma >= link_info->relro_start)
4985 break;
4986 }
4987
4988 /* PR ld/14207. If the RELRO segment doesn't fit in the
4989 LOAD segment, it should be removed. */
4990 BFD_ASSERT (lm != NULL);
4991 }
4992 else
4993 {
4994 /* Otherwise we are copying an executable or shared
4995 library, but we need to use the same linker logic. */
4996 for (lp = phdrs; lp < phdrs + count; ++lp)
4997 {
4998 if (lp->p_type == PT_LOAD
4999 && lp->p_paddr == p->p_paddr)
5000 break;
5001 }
5002 }
5003
5004 if (lp < phdrs + count)
5005 {
5006 p->p_vaddr = lp->p_vaddr;
5007 p->p_paddr = lp->p_paddr;
5008 p->p_offset = lp->p_offset;
5009 if (link_info != NULL)
5010 p->p_filesz = link_info->relro_end - lp->p_vaddr;
5011 else if (m->p_size_valid)
5012 p->p_filesz = m->p_size;
5013 else
5014 abort ();
5015 p->p_memsz = p->p_filesz;
5016 /* Preserve the alignment and flags if they are valid. The
5017 gold linker generates RW/4 for the PT_GNU_RELRO section.
5018 It is better for objcopy/strip to honor these attributes
5019 otherwise gdb will choke when using separate debug files.
5020 */
5021 if (!m->p_align_valid)
5022 p->p_align = 1;
5023 if (!m->p_flags_valid)
5024 p->p_flags = (lp->p_flags & ~PF_W);
5025 }
5026 else
5027 {
5028 memset (p, 0, sizeof *p);
5029 p->p_type = PT_NULL;
5030 }
5031 }
5032 else if (p->p_type == PT_GNU_STACK)
5033 {
5034 if (m->p_size_valid)
5035 p->p_memsz = m->p_size;
5036 }
5037 else if (m->count != 0)
5038 {
5039 if (p->p_type != PT_LOAD
5040 && (p->p_type != PT_NOTE
5041 || bfd_get_format (abfd) != bfd_core))
5042 {
5043 BFD_ASSERT (!m->includes_filehdr && !m->includes_phdrs);
5044
5045 p->p_filesz = 0;
5046 p->p_offset = m->sections[0]->filepos;
5047 for (i = m->count; i-- != 0;)
5048 {
5049 asection *sect = m->sections[i];
5050 Elf_Internal_Shdr *hdr = &elf_section_data (sect)->this_hdr;
5051 if (hdr->sh_type != SHT_NOBITS)
5052 {
5053 p->p_filesz = (sect->filepos - m->sections[0]->filepos
5054 + hdr->sh_size);
5055 break;
5056 }
5057 }
5058 }
5059 }
5060 else if (m->includes_filehdr)
5061 {
5062 p->p_vaddr = filehdr_vaddr;
5063 if (! m->p_paddr_valid)
5064 p->p_paddr = filehdr_paddr;
5065 }
5066 else if (m->includes_phdrs)
5067 {
5068 p->p_vaddr = phdrs_vaddr;
5069 if (! m->p_paddr_valid)
5070 p->p_paddr = phdrs_paddr;
5071 }
5072 }
5073
5074 elf_tdata (abfd)->next_file_pos = off;
5075
5076 return TRUE;
5077 }
5078
5079 /* Work out the file positions of all the sections. This is called by
5080 _bfd_elf_compute_section_file_positions. All the section sizes and
5081 VMAs must be known before this is called.
5082
5083 Reloc sections come in two flavours: Those processed specially as
5084 "side-channel" data attached to a section to which they apply, and
5085 those that bfd doesn't process as relocations. The latter sort are
5086 stored in a normal bfd section by bfd_section_from_shdr. We don't
5087 consider the former sort here, unless they form part of the loadable
5088 image. Reloc sections not assigned here will be handled later by
5089 assign_file_positions_for_relocs.
5090
5091 We also don't set the positions of the .symtab and .strtab here. */
5092
5093 static bfd_boolean
5094 assign_file_positions_except_relocs (bfd *abfd,
5095 struct bfd_link_info *link_info)
5096 {
5097 struct elf_obj_tdata *tdata = elf_tdata (abfd);
5098 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
5099 file_ptr off;
5100 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5101
5102 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
5103 && bfd_get_format (abfd) != bfd_core)
5104 {
5105 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
5106 unsigned int num_sec = elf_numsections (abfd);
5107 Elf_Internal_Shdr **hdrpp;
5108 unsigned int i;
5109
5110 /* Start after the ELF header. */
5111 off = i_ehdrp->e_ehsize;
5112
5113 /* We are not creating an executable, which means that we are
5114 not creating a program header, and that the actual order of
5115 the sections in the file is unimportant. */
5116 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
5117 {
5118 Elf_Internal_Shdr *hdr;
5119
5120 hdr = *hdrpp;
5121 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
5122 && hdr->bfd_section == NULL)
5123 || i == tdata->symtab_section
5124 || i == tdata->symtab_shndx_section
5125 || i == tdata->strtab_section)
5126 {
5127 hdr->sh_offset = -1;
5128 }
5129 else
5130 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
5131 }
5132 }
5133 else
5134 {
5135 unsigned int alloc;
5136
5137 /* Assign file positions for the loaded sections based on the
5138 assignment of sections to segments. */
5139 if (!assign_file_positions_for_load_sections (abfd, link_info))
5140 return FALSE;
5141
5142 /* And for non-load sections. */
5143 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
5144 return FALSE;
5145
5146 if (bed->elf_backend_modify_program_headers != NULL)
5147 {
5148 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
5149 return FALSE;
5150 }
5151
5152 /* Write out the program headers. */
5153 alloc = tdata->program_header_size / bed->s->sizeof_phdr;
5154 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
5155 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
5156 return FALSE;
5157
5158 off = tdata->next_file_pos;
5159 }
5160
5161 /* Place the section headers. */
5162 off = align_file_position (off, 1 << bed->s->log_file_align);
5163 i_ehdrp->e_shoff = off;
5164 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
5165
5166 tdata->next_file_pos = off;
5167
5168 return TRUE;
5169 }
5170
5171 static bfd_boolean
5172 prep_headers (bfd *abfd)
5173 {
5174 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form. */
5175 struct elf_strtab_hash *shstrtab;
5176 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5177
5178 i_ehdrp = elf_elfheader (abfd);
5179
5180 shstrtab = _bfd_elf_strtab_init ();
5181 if (shstrtab == NULL)
5182 return FALSE;
5183
5184 elf_shstrtab (abfd) = shstrtab;
5185
5186 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
5187 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
5188 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
5189 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
5190
5191 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
5192 i_ehdrp->e_ident[EI_DATA] =
5193 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
5194 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
5195
5196 if ((abfd->flags & DYNAMIC) != 0)
5197 i_ehdrp->e_type = ET_DYN;
5198 else if ((abfd->flags & EXEC_P) != 0)
5199 i_ehdrp->e_type = ET_EXEC;
5200 else if (bfd_get_format (abfd) == bfd_core)
5201 i_ehdrp->e_type = ET_CORE;
5202 else
5203 i_ehdrp->e_type = ET_REL;
5204
5205 switch (bfd_get_arch (abfd))
5206 {
5207 case bfd_arch_unknown:
5208 i_ehdrp->e_machine = EM_NONE;
5209 break;
5210
5211 /* There used to be a long list of cases here, each one setting
5212 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
5213 in the corresponding bfd definition. To avoid duplication,
5214 the switch was removed. Machines that need special handling
5215 can generally do it in elf_backend_final_write_processing(),
5216 unless they need the information earlier than the final write.
5217 Such need can generally be supplied by replacing the tests for
5218 e_machine with the conditions used to determine it. */
5219 default:
5220 i_ehdrp->e_machine = bed->elf_machine_code;
5221 }
5222
5223 i_ehdrp->e_version = bed->s->ev_current;
5224 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
5225
5226 /* No program header, for now. */
5227 i_ehdrp->e_phoff = 0;
5228 i_ehdrp->e_phentsize = 0;
5229 i_ehdrp->e_phnum = 0;
5230
5231 /* Each bfd section is section header entry. */
5232 i_ehdrp->e_entry = bfd_get_start_address (abfd);
5233 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
5234
5235 /* If we're building an executable, we'll need a program header table. */
5236 if (abfd->flags & EXEC_P)
5237 /* It all happens later. */
5238 ;
5239 else
5240 {
5241 i_ehdrp->e_phentsize = 0;
5242 i_ehdrp->e_phoff = 0;
5243 }
5244
5245 elf_tdata (abfd)->symtab_hdr.sh_name =
5246 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
5247 elf_tdata (abfd)->strtab_hdr.sh_name =
5248 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
5249 elf_tdata (abfd)->shstrtab_hdr.sh_name =
5250 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
5251 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
5252 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
5253 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
5254 return FALSE;
5255
5256 return TRUE;
5257 }
5258
5259 /* Assign file positions for all the reloc sections which are not part
5260 of the loadable file image. */
5261
5262 void
5263 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
5264 {
5265 file_ptr off;
5266 unsigned int i, num_sec;
5267 Elf_Internal_Shdr **shdrpp;
5268
5269 off = elf_tdata (abfd)->next_file_pos;
5270
5271 num_sec = elf_numsections (abfd);
5272 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
5273 {
5274 Elf_Internal_Shdr *shdrp;
5275
5276 shdrp = *shdrpp;
5277 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
5278 && shdrp->sh_offset == -1)
5279 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
5280 }
5281
5282 elf_tdata (abfd)->next_file_pos = off;
5283 }
5284
5285 bfd_boolean
5286 _bfd_elf_write_object_contents (bfd *abfd)
5287 {
5288 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5289 Elf_Internal_Shdr **i_shdrp;
5290 bfd_boolean failed;
5291 unsigned int count, num_sec;
5292
5293 if (! abfd->output_has_begun
5294 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
5295 return FALSE;
5296
5297 i_shdrp = elf_elfsections (abfd);
5298
5299 failed = FALSE;
5300 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
5301 if (failed)
5302 return FALSE;
5303
5304 _bfd_elf_assign_file_positions_for_relocs (abfd);
5305
5306 /* After writing the headers, we need to write the sections too... */
5307 num_sec = elf_numsections (abfd);
5308 for (count = 1; count < num_sec; count++)
5309 {
5310 if (bed->elf_backend_section_processing)
5311 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
5312 if (i_shdrp[count]->contents)
5313 {
5314 bfd_size_type amt = i_shdrp[count]->sh_size;
5315
5316 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
5317 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
5318 return FALSE;
5319 }
5320 }
5321
5322 /* Write out the section header names. */
5323 if (elf_shstrtab (abfd) != NULL
5324 && (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
5325 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
5326 return FALSE;
5327
5328 if (bed->elf_backend_final_write_processing)
5329 (*bed->elf_backend_final_write_processing) (abfd,
5330 elf_tdata (abfd)->linker);
5331
5332 if (!bed->s->write_shdrs_and_ehdr (abfd))
5333 return FALSE;
5334
5335 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
5336 if (elf_tdata (abfd)->after_write_object_contents)
5337 return (*elf_tdata (abfd)->after_write_object_contents) (abfd);
5338
5339 return TRUE;
5340 }
5341
5342 bfd_boolean
5343 _bfd_elf_write_corefile_contents (bfd *abfd)
5344 {
5345 /* Hopefully this can be done just like an object file. */
5346 return _bfd_elf_write_object_contents (abfd);
5347 }
5348
5349 /* Given a section, search the header to find them. */
5350
5351 unsigned int
5352 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
5353 {
5354 const struct elf_backend_data *bed;
5355 unsigned int sec_index;
5356
5357 if (elf_section_data (asect) != NULL
5358 && elf_section_data (asect)->this_idx != 0)
5359 return elf_section_data (asect)->this_idx;
5360
5361 if (bfd_is_abs_section (asect))
5362 sec_index = SHN_ABS;
5363 else if (bfd_is_com_section (asect))
5364 sec_index = SHN_COMMON;
5365 else if (bfd_is_und_section (asect))
5366 sec_index = SHN_UNDEF;
5367 else
5368 sec_index = SHN_BAD;
5369
5370 bed = get_elf_backend_data (abfd);
5371 if (bed->elf_backend_section_from_bfd_section)
5372 {
5373 int retval = sec_index;
5374
5375 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
5376 return retval;
5377 }
5378
5379 if (sec_index == SHN_BAD)
5380 bfd_set_error (bfd_error_nonrepresentable_section);
5381
5382 return sec_index;
5383 }
5384
5385 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
5386 on error. */
5387
5388 int
5389 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
5390 {
5391 asymbol *asym_ptr = *asym_ptr_ptr;
5392 int idx;
5393 flagword flags = asym_ptr->flags;
5394
5395 /* When gas creates relocations against local labels, it creates its
5396 own symbol for the section, but does put the symbol into the
5397 symbol chain, so udata is 0. When the linker is generating
5398 relocatable output, this section symbol may be for one of the
5399 input sections rather than the output section. */
5400 if (asym_ptr->udata.i == 0
5401 && (flags & BSF_SECTION_SYM)
5402 && asym_ptr->section)
5403 {
5404 asection *sec;
5405 int indx;
5406
5407 sec = asym_ptr->section;
5408 if (sec->owner != abfd && sec->output_section != NULL)
5409 sec = sec->output_section;
5410 if (sec->owner == abfd
5411 && (indx = sec->index) < elf_num_section_syms (abfd)
5412 && elf_section_syms (abfd)[indx] != NULL)
5413 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
5414 }
5415
5416 idx = asym_ptr->udata.i;
5417
5418 if (idx == 0)
5419 {
5420 /* This case can occur when using --strip-symbol on a symbol
5421 which is used in a relocation entry. */
5422 (*_bfd_error_handler)
5423 (_("%B: symbol `%s' required but not present"),
5424 abfd, bfd_asymbol_name (asym_ptr));
5425 bfd_set_error (bfd_error_no_symbols);
5426 return -1;
5427 }
5428
5429 #if DEBUG & 4
5430 {
5431 fprintf (stderr,
5432 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx\n",
5433 (long) asym_ptr, asym_ptr->name, idx, (long) flags);
5434 fflush (stderr);
5435 }
5436 #endif
5437
5438 return idx;
5439 }
5440
5441 /* Rewrite program header information. */
5442
5443 static bfd_boolean
5444 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
5445 {
5446 Elf_Internal_Ehdr *iehdr;
5447 struct elf_segment_map *map;
5448 struct elf_segment_map *map_first;
5449 struct elf_segment_map **pointer_to_map;
5450 Elf_Internal_Phdr *segment;
5451 asection *section;
5452 unsigned int i;
5453 unsigned int num_segments;
5454 bfd_boolean phdr_included = FALSE;
5455 bfd_boolean p_paddr_valid;
5456 bfd_vma maxpagesize;
5457 struct elf_segment_map *phdr_adjust_seg = NULL;
5458 unsigned int phdr_adjust_num = 0;
5459 const struct elf_backend_data *bed;
5460
5461 bed = get_elf_backend_data (ibfd);
5462 iehdr = elf_elfheader (ibfd);
5463
5464 map_first = NULL;
5465 pointer_to_map = &map_first;
5466
5467 num_segments = elf_elfheader (ibfd)->e_phnum;
5468 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
5469
5470 /* Returns the end address of the segment + 1. */
5471 #define SEGMENT_END(segment, start) \
5472 (start + (segment->p_memsz > segment->p_filesz \
5473 ? segment->p_memsz : segment->p_filesz))
5474
5475 #define SECTION_SIZE(section, segment) \
5476 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5477 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5478 ? section->size : 0)
5479
5480 /* Returns TRUE if the given section is contained within
5481 the given segment. VMA addresses are compared. */
5482 #define IS_CONTAINED_BY_VMA(section, segment) \
5483 (section->vma >= segment->p_vaddr \
5484 && (section->vma + SECTION_SIZE (section, segment) \
5485 <= (SEGMENT_END (segment, segment->p_vaddr))))
5486
5487 /* Returns TRUE if the given section is contained within
5488 the given segment. LMA addresses are compared. */
5489 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5490 (section->lma >= base \
5491 && (section->lma + SECTION_SIZE (section, segment) \
5492 <= SEGMENT_END (segment, base)))
5493
5494 /* Handle PT_NOTE segment. */
5495 #define IS_NOTE(p, s) \
5496 (p->p_type == PT_NOTE \
5497 && elf_section_type (s) == SHT_NOTE \
5498 && (bfd_vma) s->filepos >= p->p_offset \
5499 && ((bfd_vma) s->filepos + s->size \
5500 <= p->p_offset + p->p_filesz))
5501
5502 /* Special case: corefile "NOTE" section containing regs, prpsinfo
5503 etc. */
5504 #define IS_COREFILE_NOTE(p, s) \
5505 (IS_NOTE (p, s) \
5506 && bfd_get_format (ibfd) == bfd_core \
5507 && s->vma == 0 \
5508 && s->lma == 0)
5509
5510 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5511 linker, which generates a PT_INTERP section with p_vaddr and
5512 p_memsz set to 0. */
5513 #define IS_SOLARIS_PT_INTERP(p, s) \
5514 (p->p_vaddr == 0 \
5515 && p->p_paddr == 0 \
5516 && p->p_memsz == 0 \
5517 && p->p_filesz > 0 \
5518 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5519 && s->size > 0 \
5520 && (bfd_vma) s->filepos >= p->p_offset \
5521 && ((bfd_vma) s->filepos + s->size \
5522 <= p->p_offset + p->p_filesz))
5523
5524 /* Decide if the given section should be included in the given segment.
5525 A section will be included if:
5526 1. It is within the address space of the segment -- we use the LMA
5527 if that is set for the segment and the VMA otherwise,
5528 2. It is an allocated section or a NOTE section in a PT_NOTE
5529 segment.
5530 3. There is an output section associated with it,
5531 4. The section has not already been allocated to a previous segment.
5532 5. PT_GNU_STACK segments do not include any sections.
5533 6. PT_TLS segment includes only SHF_TLS sections.
5534 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5535 8. PT_DYNAMIC should not contain empty sections at the beginning
5536 (with the possible exception of .dynamic). */
5537 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
5538 ((((segment->p_paddr \
5539 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5540 : IS_CONTAINED_BY_VMA (section, segment)) \
5541 && (section->flags & SEC_ALLOC) != 0) \
5542 || IS_NOTE (segment, section)) \
5543 && segment->p_type != PT_GNU_STACK \
5544 && (segment->p_type != PT_TLS \
5545 || (section->flags & SEC_THREAD_LOCAL)) \
5546 && (segment->p_type == PT_LOAD \
5547 || segment->p_type == PT_TLS \
5548 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5549 && (segment->p_type != PT_DYNAMIC \
5550 || SECTION_SIZE (section, segment) > 0 \
5551 || (segment->p_paddr \
5552 ? segment->p_paddr != section->lma \
5553 : segment->p_vaddr != section->vma) \
5554 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5555 == 0)) \
5556 && !section->segment_mark)
5557
5558 /* If the output section of a section in the input segment is NULL,
5559 it is removed from the corresponding output segment. */
5560 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5561 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
5562 && section->output_section != NULL)
5563
5564 /* Returns TRUE iff seg1 starts after the end of seg2. */
5565 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5566 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5567
5568 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5569 their VMA address ranges and their LMA address ranges overlap.
5570 It is possible to have overlapping VMA ranges without overlapping LMA
5571 ranges. RedBoot images for example can have both .data and .bss mapped
5572 to the same VMA range, but with the .data section mapped to a different
5573 LMA. */
5574 #define SEGMENT_OVERLAPS(seg1, seg2) \
5575 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5576 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5577 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5578 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5579
5580 /* Initialise the segment mark field. */
5581 for (section = ibfd->sections; section != NULL; section = section->next)
5582 section->segment_mark = FALSE;
5583
5584 /* The Solaris linker creates program headers in which all the
5585 p_paddr fields are zero. When we try to objcopy or strip such a
5586 file, we get confused. Check for this case, and if we find it
5587 don't set the p_paddr_valid fields. */
5588 p_paddr_valid = FALSE;
5589 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5590 i < num_segments;
5591 i++, segment++)
5592 if (segment->p_paddr != 0)
5593 {
5594 p_paddr_valid = TRUE;
5595 break;
5596 }
5597
5598 /* Scan through the segments specified in the program header
5599 of the input BFD. For this first scan we look for overlaps
5600 in the loadable segments. These can be created by weird
5601 parameters to objcopy. Also, fix some solaris weirdness. */
5602 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5603 i < num_segments;
5604 i++, segment++)
5605 {
5606 unsigned int j;
5607 Elf_Internal_Phdr *segment2;
5608
5609 if (segment->p_type == PT_INTERP)
5610 for (section = ibfd->sections; section; section = section->next)
5611 if (IS_SOLARIS_PT_INTERP (segment, section))
5612 {
5613 /* Mininal change so that the normal section to segment
5614 assignment code will work. */
5615 segment->p_vaddr = section->vma;
5616 break;
5617 }
5618
5619 if (segment->p_type != PT_LOAD)
5620 {
5621 /* Remove PT_GNU_RELRO segment. */
5622 if (segment->p_type == PT_GNU_RELRO)
5623 segment->p_type = PT_NULL;
5624 continue;
5625 }
5626
5627 /* Determine if this segment overlaps any previous segments. */
5628 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
5629 {
5630 bfd_signed_vma extra_length;
5631
5632 if (segment2->p_type != PT_LOAD
5633 || !SEGMENT_OVERLAPS (segment, segment2))
5634 continue;
5635
5636 /* Merge the two segments together. */
5637 if (segment2->p_vaddr < segment->p_vaddr)
5638 {
5639 /* Extend SEGMENT2 to include SEGMENT and then delete
5640 SEGMENT. */
5641 extra_length = (SEGMENT_END (segment, segment->p_vaddr)
5642 - SEGMENT_END (segment2, segment2->p_vaddr));
5643
5644 if (extra_length > 0)
5645 {
5646 segment2->p_memsz += extra_length;
5647 segment2->p_filesz += extra_length;
5648 }
5649
5650 segment->p_type = PT_NULL;
5651
5652 /* Since we have deleted P we must restart the outer loop. */
5653 i = 0;
5654 segment = elf_tdata (ibfd)->phdr;
5655 break;
5656 }
5657 else
5658 {
5659 /* Extend SEGMENT to include SEGMENT2 and then delete
5660 SEGMENT2. */
5661 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
5662 - SEGMENT_END (segment, segment->p_vaddr));
5663
5664 if (extra_length > 0)
5665 {
5666 segment->p_memsz += extra_length;
5667 segment->p_filesz += extra_length;
5668 }
5669
5670 segment2->p_type = PT_NULL;
5671 }
5672 }
5673 }
5674
5675 /* The second scan attempts to assign sections to segments. */
5676 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5677 i < num_segments;
5678 i++, segment++)
5679 {
5680 unsigned int section_count;
5681 asection **sections;
5682 asection *output_section;
5683 unsigned int isec;
5684 bfd_vma matching_lma;
5685 bfd_vma suggested_lma;
5686 unsigned int j;
5687 bfd_size_type amt;
5688 asection *first_section;
5689 bfd_boolean first_matching_lma;
5690 bfd_boolean first_suggested_lma;
5691
5692 if (segment->p_type == PT_NULL)
5693 continue;
5694
5695 first_section = NULL;
5696 /* Compute how many sections might be placed into this segment. */
5697 for (section = ibfd->sections, section_count = 0;
5698 section != NULL;
5699 section = section->next)
5700 {
5701 /* Find the first section in the input segment, which may be
5702 removed from the corresponding output segment. */
5703 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
5704 {
5705 if (first_section == NULL)
5706 first_section = section;
5707 if (section->output_section != NULL)
5708 ++section_count;
5709 }
5710 }
5711
5712 /* Allocate a segment map big enough to contain
5713 all of the sections we have selected. */
5714 amt = sizeof (struct elf_segment_map);
5715 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5716 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
5717 if (map == NULL)
5718 return FALSE;
5719
5720 /* Initialise the fields of the segment map. Default to
5721 using the physical address of the segment in the input BFD. */
5722 map->next = NULL;
5723 map->p_type = segment->p_type;
5724 map->p_flags = segment->p_flags;
5725 map->p_flags_valid = 1;
5726
5727 /* If the first section in the input segment is removed, there is
5728 no need to preserve segment physical address in the corresponding
5729 output segment. */
5730 if (!first_section || first_section->output_section != NULL)
5731 {
5732 map->p_paddr = segment->p_paddr;
5733 map->p_paddr_valid = p_paddr_valid;
5734 }
5735
5736 /* Determine if this segment contains the ELF file header
5737 and if it contains the program headers themselves. */
5738 map->includes_filehdr = (segment->p_offset == 0
5739 && segment->p_filesz >= iehdr->e_ehsize);
5740 map->includes_phdrs = 0;
5741
5742 if (!phdr_included || segment->p_type != PT_LOAD)
5743 {
5744 map->includes_phdrs =
5745 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5746 && (segment->p_offset + segment->p_filesz
5747 >= ((bfd_vma) iehdr->e_phoff
5748 + iehdr->e_phnum * iehdr->e_phentsize)));
5749
5750 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5751 phdr_included = TRUE;
5752 }
5753
5754 if (section_count == 0)
5755 {
5756 /* Special segments, such as the PT_PHDR segment, may contain
5757 no sections, but ordinary, loadable segments should contain
5758 something. They are allowed by the ELF spec however, so only
5759 a warning is produced. */
5760 if (segment->p_type == PT_LOAD)
5761 (*_bfd_error_handler) (_("%B: warning: Empty loadable segment"
5762 " detected, is this intentional ?\n"),
5763 ibfd);
5764
5765 map->count = 0;
5766 *pointer_to_map = map;
5767 pointer_to_map = &map->next;
5768
5769 continue;
5770 }
5771
5772 /* Now scan the sections in the input BFD again and attempt
5773 to add their corresponding output sections to the segment map.
5774 The problem here is how to handle an output section which has
5775 been moved (ie had its LMA changed). There are four possibilities:
5776
5777 1. None of the sections have been moved.
5778 In this case we can continue to use the segment LMA from the
5779 input BFD.
5780
5781 2. All of the sections have been moved by the same amount.
5782 In this case we can change the segment's LMA to match the LMA
5783 of the first section.
5784
5785 3. Some of the sections have been moved, others have not.
5786 In this case those sections which have not been moved can be
5787 placed in the current segment which will have to have its size,
5788 and possibly its LMA changed, and a new segment or segments will
5789 have to be created to contain the other sections.
5790
5791 4. The sections have been moved, but not by the same amount.
5792 In this case we can change the segment's LMA to match the LMA
5793 of the first section and we will have to create a new segment
5794 or segments to contain the other sections.
5795
5796 In order to save time, we allocate an array to hold the section
5797 pointers that we are interested in. As these sections get assigned
5798 to a segment, they are removed from this array. */
5799
5800 sections = (asection **) bfd_malloc2 (section_count, sizeof (asection *));
5801 if (sections == NULL)
5802 return FALSE;
5803
5804 /* Step One: Scan for segment vs section LMA conflicts.
5805 Also add the sections to the section array allocated above.
5806 Also add the sections to the current segment. In the common
5807 case, where the sections have not been moved, this means that
5808 we have completely filled the segment, and there is nothing
5809 more to do. */
5810 isec = 0;
5811 matching_lma = 0;
5812 suggested_lma = 0;
5813 first_matching_lma = TRUE;
5814 first_suggested_lma = TRUE;
5815
5816 for (section = ibfd->sections;
5817 section != NULL;
5818 section = section->next)
5819 if (section == first_section)
5820 break;
5821
5822 for (j = 0; section != NULL; section = section->next)
5823 {
5824 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5825 {
5826 output_section = section->output_section;
5827
5828 sections[j++] = section;
5829
5830 /* The Solaris native linker always sets p_paddr to 0.
5831 We try to catch that case here, and set it to the
5832 correct value. Note - some backends require that
5833 p_paddr be left as zero. */
5834 if (!p_paddr_valid
5835 && segment->p_vaddr != 0
5836 && !bed->want_p_paddr_set_to_zero
5837 && isec == 0
5838 && output_section->lma != 0
5839 && output_section->vma == (segment->p_vaddr
5840 + (map->includes_filehdr
5841 ? iehdr->e_ehsize
5842 : 0)
5843 + (map->includes_phdrs
5844 ? (iehdr->e_phnum
5845 * iehdr->e_phentsize)
5846 : 0)))
5847 map->p_paddr = segment->p_vaddr;
5848
5849 /* Match up the physical address of the segment with the
5850 LMA address of the output section. */
5851 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5852 || IS_COREFILE_NOTE (segment, section)
5853 || (bed->want_p_paddr_set_to_zero
5854 && IS_CONTAINED_BY_VMA (output_section, segment)))
5855 {
5856 if (first_matching_lma || output_section->lma < matching_lma)
5857 {
5858 matching_lma = output_section->lma;
5859 first_matching_lma = FALSE;
5860 }
5861
5862 /* We assume that if the section fits within the segment
5863 then it does not overlap any other section within that
5864 segment. */
5865 map->sections[isec++] = output_section;
5866 }
5867 else if (first_suggested_lma)
5868 {
5869 suggested_lma = output_section->lma;
5870 first_suggested_lma = FALSE;
5871 }
5872
5873 if (j == section_count)
5874 break;
5875 }
5876 }
5877
5878 BFD_ASSERT (j == section_count);
5879
5880 /* Step Two: Adjust the physical address of the current segment,
5881 if necessary. */
5882 if (isec == section_count)
5883 {
5884 /* All of the sections fitted within the segment as currently
5885 specified. This is the default case. Add the segment to
5886 the list of built segments and carry on to process the next
5887 program header in the input BFD. */
5888 map->count = section_count;
5889 *pointer_to_map = map;
5890 pointer_to_map = &map->next;
5891
5892 if (p_paddr_valid
5893 && !bed->want_p_paddr_set_to_zero
5894 && matching_lma != map->p_paddr
5895 && !map->includes_filehdr
5896 && !map->includes_phdrs)
5897 /* There is some padding before the first section in the
5898 segment. So, we must account for that in the output
5899 segment's vma. */
5900 map->p_vaddr_offset = matching_lma - map->p_paddr;
5901
5902 free (sections);
5903 continue;
5904 }
5905 else
5906 {
5907 if (!first_matching_lma)
5908 {
5909 /* At least one section fits inside the current segment.
5910 Keep it, but modify its physical address to match the
5911 LMA of the first section that fitted. */
5912 map->p_paddr = matching_lma;
5913 }
5914 else
5915 {
5916 /* None of the sections fitted inside the current segment.
5917 Change the current segment's physical address to match
5918 the LMA of the first section. */
5919 map->p_paddr = suggested_lma;
5920 }
5921
5922 /* Offset the segment physical address from the lma
5923 to allow for space taken up by elf headers. */
5924 if (map->includes_filehdr)
5925 {
5926 if (map->p_paddr >= iehdr->e_ehsize)
5927 map->p_paddr -= iehdr->e_ehsize;
5928 else
5929 {
5930 map->includes_filehdr = FALSE;
5931 map->includes_phdrs = FALSE;
5932 }
5933 }
5934
5935 if (map->includes_phdrs)
5936 {
5937 if (map->p_paddr >= iehdr->e_phnum * iehdr->e_phentsize)
5938 {
5939 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
5940
5941 /* iehdr->e_phnum is just an estimate of the number
5942 of program headers that we will need. Make a note
5943 here of the number we used and the segment we chose
5944 to hold these headers, so that we can adjust the
5945 offset when we know the correct value. */
5946 phdr_adjust_num = iehdr->e_phnum;
5947 phdr_adjust_seg = map;
5948 }
5949 else
5950 map->includes_phdrs = FALSE;
5951 }
5952 }
5953
5954 /* Step Three: Loop over the sections again, this time assigning
5955 those that fit to the current segment and removing them from the
5956 sections array; but making sure not to leave large gaps. Once all
5957 possible sections have been assigned to the current segment it is
5958 added to the list of built segments and if sections still remain
5959 to be assigned, a new segment is constructed before repeating
5960 the loop. */
5961 isec = 0;
5962 do
5963 {
5964 map->count = 0;
5965 suggested_lma = 0;
5966 first_suggested_lma = TRUE;
5967
5968 /* Fill the current segment with sections that fit. */
5969 for (j = 0; j < section_count; j++)
5970 {
5971 section = sections[j];
5972
5973 if (section == NULL)
5974 continue;
5975
5976 output_section = section->output_section;
5977
5978 BFD_ASSERT (output_section != NULL);
5979
5980 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5981 || IS_COREFILE_NOTE (segment, section))
5982 {
5983 if (map->count == 0)
5984 {
5985 /* If the first section in a segment does not start at
5986 the beginning of the segment, then something is
5987 wrong. */
5988 if (output_section->lma
5989 != (map->p_paddr
5990 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
5991 + (map->includes_phdrs
5992 ? iehdr->e_phnum * iehdr->e_phentsize
5993 : 0)))
5994 abort ();
5995 }
5996 else
5997 {
5998 asection *prev_sec;
5999
6000 prev_sec = map->sections[map->count - 1];
6001
6002 /* If the gap between the end of the previous section
6003 and the start of this section is more than
6004 maxpagesize then we need to start a new segment. */
6005 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
6006 maxpagesize)
6007 < BFD_ALIGN (output_section->lma, maxpagesize))
6008 || (prev_sec->lma + prev_sec->size
6009 > output_section->lma))
6010 {
6011 if (first_suggested_lma)
6012 {
6013 suggested_lma = output_section->lma;
6014 first_suggested_lma = FALSE;
6015 }
6016
6017 continue;
6018 }
6019 }
6020
6021 map->sections[map->count++] = output_section;
6022 ++isec;
6023 sections[j] = NULL;
6024 section->segment_mark = TRUE;
6025 }
6026 else if (first_suggested_lma)
6027 {
6028 suggested_lma = output_section->lma;
6029 first_suggested_lma = FALSE;
6030 }
6031 }
6032
6033 BFD_ASSERT (map->count > 0);
6034
6035 /* Add the current segment to the list of built segments. */
6036 *pointer_to_map = map;
6037 pointer_to_map = &map->next;
6038
6039 if (isec < section_count)
6040 {
6041 /* We still have not allocated all of the sections to
6042 segments. Create a new segment here, initialise it
6043 and carry on looping. */
6044 amt = sizeof (struct elf_segment_map);
6045 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
6046 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
6047 if (map == NULL)
6048 {
6049 free (sections);
6050 return FALSE;
6051 }
6052
6053 /* Initialise the fields of the segment map. Set the physical
6054 physical address to the LMA of the first section that has
6055 not yet been assigned. */
6056 map->next = NULL;
6057 map->p_type = segment->p_type;
6058 map->p_flags = segment->p_flags;
6059 map->p_flags_valid = 1;
6060 map->p_paddr = suggested_lma;
6061 map->p_paddr_valid = p_paddr_valid;
6062 map->includes_filehdr = 0;
6063 map->includes_phdrs = 0;
6064 }
6065 }
6066 while (isec < section_count);
6067
6068 free (sections);
6069 }
6070
6071 elf_tdata (obfd)->segment_map = map_first;
6072
6073 /* If we had to estimate the number of program headers that were
6074 going to be needed, then check our estimate now and adjust
6075 the offset if necessary. */
6076 if (phdr_adjust_seg != NULL)
6077 {
6078 unsigned int count;
6079
6080 for (count = 0, map = map_first; map != NULL; map = map->next)
6081 count++;
6082
6083 if (count > phdr_adjust_num)
6084 phdr_adjust_seg->p_paddr
6085 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
6086 }
6087
6088 #undef SEGMENT_END
6089 #undef SECTION_SIZE
6090 #undef IS_CONTAINED_BY_VMA
6091 #undef IS_CONTAINED_BY_LMA
6092 #undef IS_NOTE
6093 #undef IS_COREFILE_NOTE
6094 #undef IS_SOLARIS_PT_INTERP
6095 #undef IS_SECTION_IN_INPUT_SEGMENT
6096 #undef INCLUDE_SECTION_IN_SEGMENT
6097 #undef SEGMENT_AFTER_SEGMENT
6098 #undef SEGMENT_OVERLAPS
6099 return TRUE;
6100 }
6101
6102 /* Copy ELF program header information. */
6103
6104 static bfd_boolean
6105 copy_elf_program_header (bfd *ibfd, bfd *obfd)
6106 {
6107 Elf_Internal_Ehdr *iehdr;
6108 struct elf_segment_map *map;
6109 struct elf_segment_map *map_first;
6110 struct elf_segment_map **pointer_to_map;
6111 Elf_Internal_Phdr *segment;
6112 unsigned int i;
6113 unsigned int num_segments;
6114 bfd_boolean phdr_included = FALSE;
6115 bfd_boolean p_paddr_valid;
6116
6117 iehdr = elf_elfheader (ibfd);
6118
6119 map_first = NULL;
6120 pointer_to_map = &map_first;
6121
6122 /* If all the segment p_paddr fields are zero, don't set
6123 map->p_paddr_valid. */
6124 p_paddr_valid = FALSE;
6125 num_segments = elf_elfheader (ibfd)->e_phnum;
6126 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6127 i < num_segments;
6128 i++, segment++)
6129 if (segment->p_paddr != 0)
6130 {
6131 p_paddr_valid = TRUE;
6132 break;
6133 }
6134
6135 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6136 i < num_segments;
6137 i++, segment++)
6138 {
6139 asection *section;
6140 unsigned int section_count;
6141 bfd_size_type amt;
6142 Elf_Internal_Shdr *this_hdr;
6143 asection *first_section = NULL;
6144 asection *lowest_section;
6145
6146 /* Compute how many sections are in this segment. */
6147 for (section = ibfd->sections, section_count = 0;
6148 section != NULL;
6149 section = section->next)
6150 {
6151 this_hdr = &(elf_section_data(section)->this_hdr);
6152 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6153 {
6154 if (first_section == NULL)
6155 first_section = section;
6156 section_count++;
6157 }
6158 }
6159
6160 /* Allocate a segment map big enough to contain
6161 all of the sections we have selected. */
6162 amt = sizeof (struct elf_segment_map);
6163 if (section_count != 0)
6164 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
6165 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
6166 if (map == NULL)
6167 return FALSE;
6168
6169 /* Initialize the fields of the output segment map with the
6170 input segment. */
6171 map->next = NULL;
6172 map->p_type = segment->p_type;
6173 map->p_flags = segment->p_flags;
6174 map->p_flags_valid = 1;
6175 map->p_paddr = segment->p_paddr;
6176 map->p_paddr_valid = p_paddr_valid;
6177 map->p_align = segment->p_align;
6178 map->p_align_valid = 1;
6179 map->p_vaddr_offset = 0;
6180
6181 if (map->p_type == PT_GNU_RELRO
6182 || map->p_type == PT_GNU_STACK)
6183 {
6184 /* The PT_GNU_RELRO segment may contain the first a few
6185 bytes in the .got.plt section even if the whole .got.plt
6186 section isn't in the PT_GNU_RELRO segment. We won't
6187 change the size of the PT_GNU_RELRO segment.
6188 Similarly, PT_GNU_STACK size is significant on uclinux
6189 systems. */
6190 map->p_size = segment->p_memsz;
6191 map->p_size_valid = 1;
6192 }
6193
6194 /* Determine if this segment contains the ELF file header
6195 and if it contains the program headers themselves. */
6196 map->includes_filehdr = (segment->p_offset == 0
6197 && segment->p_filesz >= iehdr->e_ehsize);
6198
6199 map->includes_phdrs = 0;
6200 if (! phdr_included || segment->p_type != PT_LOAD)
6201 {
6202 map->includes_phdrs =
6203 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
6204 && (segment->p_offset + segment->p_filesz
6205 >= ((bfd_vma) iehdr->e_phoff
6206 + iehdr->e_phnum * iehdr->e_phentsize)));
6207
6208 if (segment->p_type == PT_LOAD && map->includes_phdrs)
6209 phdr_included = TRUE;
6210 }
6211
6212 lowest_section = first_section;
6213 if (section_count != 0)
6214 {
6215 unsigned int isec = 0;
6216
6217 for (section = first_section;
6218 section != NULL;
6219 section = section->next)
6220 {
6221 this_hdr = &(elf_section_data(section)->this_hdr);
6222 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6223 {
6224 map->sections[isec++] = section->output_section;
6225 if (section->lma < lowest_section->lma)
6226 lowest_section = section;
6227 if ((section->flags & SEC_ALLOC) != 0)
6228 {
6229 bfd_vma seg_off;
6230
6231 /* Section lmas are set up from PT_LOAD header
6232 p_paddr in _bfd_elf_make_section_from_shdr.
6233 If this header has a p_paddr that disagrees
6234 with the section lma, flag the p_paddr as
6235 invalid. */
6236 if ((section->flags & SEC_LOAD) != 0)
6237 seg_off = this_hdr->sh_offset - segment->p_offset;
6238 else
6239 seg_off = this_hdr->sh_addr - segment->p_vaddr;
6240 if (section->lma - segment->p_paddr != seg_off)
6241 map->p_paddr_valid = FALSE;
6242 }
6243 if (isec == section_count)
6244 break;
6245 }
6246 }
6247 }
6248
6249 if (map->includes_filehdr && lowest_section != NULL)
6250 /* We need to keep the space used by the headers fixed. */
6251 map->header_size = lowest_section->vma - segment->p_vaddr;
6252
6253 if (!map->includes_phdrs
6254 && !map->includes_filehdr
6255 && map->p_paddr_valid)
6256 /* There is some other padding before the first section. */
6257 map->p_vaddr_offset = ((lowest_section ? lowest_section->lma : 0)
6258 - segment->p_paddr);
6259
6260 map->count = section_count;
6261 *pointer_to_map = map;
6262 pointer_to_map = &map->next;
6263 }
6264
6265 elf_tdata (obfd)->segment_map = map_first;
6266 return TRUE;
6267 }
6268
6269 /* Copy private BFD data. This copies or rewrites ELF program header
6270 information. */
6271
6272 static bfd_boolean
6273 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
6274 {
6275 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6276 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6277 return TRUE;
6278
6279 if (elf_tdata (ibfd)->phdr == NULL)
6280 return TRUE;
6281
6282 if (ibfd->xvec == obfd->xvec)
6283 {
6284 /* Check to see if any sections in the input BFD
6285 covered by ELF program header have changed. */
6286 Elf_Internal_Phdr *segment;
6287 asection *section, *osec;
6288 unsigned int i, num_segments;
6289 Elf_Internal_Shdr *this_hdr;
6290 const struct elf_backend_data *bed;
6291
6292 bed = get_elf_backend_data (ibfd);
6293
6294 /* Regenerate the segment map if p_paddr is set to 0. */
6295 if (bed->want_p_paddr_set_to_zero)
6296 goto rewrite;
6297
6298 /* Initialize the segment mark field. */
6299 for (section = obfd->sections; section != NULL;
6300 section = section->next)
6301 section->segment_mark = FALSE;
6302
6303 num_segments = elf_elfheader (ibfd)->e_phnum;
6304 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6305 i < num_segments;
6306 i++, segment++)
6307 {
6308 /* PR binutils/3535. The Solaris linker always sets the p_paddr
6309 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
6310 which severly confuses things, so always regenerate the segment
6311 map in this case. */
6312 if (segment->p_paddr == 0
6313 && segment->p_memsz == 0
6314 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
6315 goto rewrite;
6316
6317 for (section = ibfd->sections;
6318 section != NULL; section = section->next)
6319 {
6320 /* We mark the output section so that we know it comes
6321 from the input BFD. */
6322 osec = section->output_section;
6323 if (osec)
6324 osec->segment_mark = TRUE;
6325
6326 /* Check if this section is covered by the segment. */
6327 this_hdr = &(elf_section_data(section)->this_hdr);
6328 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6329 {
6330 /* FIXME: Check if its output section is changed or
6331 removed. What else do we need to check? */
6332 if (osec == NULL
6333 || section->flags != osec->flags
6334 || section->lma != osec->lma
6335 || section->vma != osec->vma
6336 || section->size != osec->size
6337 || section->rawsize != osec->rawsize
6338 || section->alignment_power != osec->alignment_power)
6339 goto rewrite;
6340 }
6341 }
6342 }
6343
6344 /* Check to see if any output section do not come from the
6345 input BFD. */
6346 for (section = obfd->sections; section != NULL;
6347 section = section->next)
6348 {
6349 if (section->segment_mark == FALSE)
6350 goto rewrite;
6351 else
6352 section->segment_mark = FALSE;
6353 }
6354
6355 return copy_elf_program_header (ibfd, obfd);
6356 }
6357
6358 rewrite:
6359 if (ibfd->xvec == obfd->xvec)
6360 {
6361 /* When rewriting program header, set the output maxpagesize to
6362 the maximum alignment of input PT_LOAD segments. */
6363 Elf_Internal_Phdr *segment;
6364 unsigned int i;
6365 unsigned int num_segments = elf_elfheader (ibfd)->e_phnum;
6366 bfd_vma maxpagesize = 0;
6367
6368 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6369 i < num_segments;
6370 i++, segment++)
6371 if (segment->p_type == PT_LOAD
6372 && maxpagesize < segment->p_align)
6373 maxpagesize = segment->p_align;
6374
6375 if (maxpagesize != get_elf_backend_data (obfd)->maxpagesize)
6376 bfd_emul_set_maxpagesize (bfd_get_target (obfd), maxpagesize);
6377 }
6378
6379 return rewrite_elf_program_header (ibfd, obfd);
6380 }
6381
6382 /* Initialize private output section information from input section. */
6383
6384 bfd_boolean
6385 _bfd_elf_init_private_section_data (bfd *ibfd,
6386 asection *isec,
6387 bfd *obfd,
6388 asection *osec,
6389 struct bfd_link_info *link_info)
6390
6391 {
6392 Elf_Internal_Shdr *ihdr, *ohdr;
6393 bfd_boolean final_link = link_info != NULL && !link_info->relocatable;
6394
6395 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6396 || obfd->xvec->flavour != bfd_target_elf_flavour)
6397 return TRUE;
6398
6399 BFD_ASSERT (elf_section_data (osec) != NULL);
6400
6401 /* For objcopy and relocatable link, don't copy the output ELF
6402 section type from input if the output BFD section flags have been
6403 set to something different. For a final link allow some flags
6404 that the linker clears to differ. */
6405 if (elf_section_type (osec) == SHT_NULL
6406 && (osec->flags == isec->flags
6407 || (final_link
6408 && ((osec->flags ^ isec->flags)
6409 & ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC)) == 0)))
6410 elf_section_type (osec) = elf_section_type (isec);
6411
6412 /* FIXME: Is this correct for all OS/PROC specific flags? */
6413 elf_section_flags (osec) |= (elf_section_flags (isec)
6414 & (SHF_MASKOS | SHF_MASKPROC));
6415
6416 /* Set things up for objcopy and relocatable link. The output
6417 SHT_GROUP section will have its elf_next_in_group pointing back
6418 to the input group members. Ignore linker created group section.
6419 See elfNN_ia64_object_p in elfxx-ia64.c. */
6420 if (!final_link)
6421 {
6422 if (elf_sec_group (isec) == NULL
6423 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
6424 {
6425 if (elf_section_flags (isec) & SHF_GROUP)
6426 elf_section_flags (osec) |= SHF_GROUP;
6427 elf_next_in_group (osec) = elf_next_in_group (isec);
6428 elf_section_data (osec)->group = elf_section_data (isec)->group;
6429 }
6430 }
6431
6432 ihdr = &elf_section_data (isec)->this_hdr;
6433
6434 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
6435 don't use the output section of the linked-to section since it
6436 may be NULL at this point. */
6437 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
6438 {
6439 ohdr = &elf_section_data (osec)->this_hdr;
6440 ohdr->sh_flags |= SHF_LINK_ORDER;
6441 elf_linked_to_section (osec) = elf_linked_to_section (isec);
6442 }
6443
6444 osec->use_rela_p = isec->use_rela_p;
6445
6446 return TRUE;
6447 }
6448
6449 /* Copy private section information. This copies over the entsize
6450 field, and sometimes the info field. */
6451
6452 bfd_boolean
6453 _bfd_elf_copy_private_section_data (bfd *ibfd,
6454 asection *isec,
6455 bfd *obfd,
6456 asection *osec)
6457 {
6458 Elf_Internal_Shdr *ihdr, *ohdr;
6459
6460 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6461 || obfd->xvec->flavour != bfd_target_elf_flavour)
6462 return TRUE;
6463
6464 ihdr = &elf_section_data (isec)->this_hdr;
6465 ohdr = &elf_section_data (osec)->this_hdr;
6466
6467 ohdr->sh_entsize = ihdr->sh_entsize;
6468
6469 if (ihdr->sh_type == SHT_SYMTAB
6470 || ihdr->sh_type == SHT_DYNSYM
6471 || ihdr->sh_type == SHT_GNU_verneed
6472 || ihdr->sh_type == SHT_GNU_verdef)
6473 ohdr->sh_info = ihdr->sh_info;
6474
6475 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
6476 NULL);
6477 }
6478
6479 /* Look at all the SHT_GROUP sections in IBFD, making any adjustments
6480 necessary if we are removing either the SHT_GROUP section or any of
6481 the group member sections. DISCARDED is the value that a section's
6482 output_section has if the section will be discarded, NULL when this
6483 function is called from objcopy, bfd_abs_section_ptr when called
6484 from the linker. */
6485
6486 bfd_boolean
6487 _bfd_elf_fixup_group_sections (bfd *ibfd, asection *discarded)
6488 {
6489 asection *isec;
6490
6491 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
6492 if (elf_section_type (isec) == SHT_GROUP)
6493 {
6494 asection *first = elf_next_in_group (isec);
6495 asection *s = first;
6496 bfd_size_type removed = 0;
6497
6498 while (s != NULL)
6499 {
6500 /* If this member section is being output but the
6501 SHT_GROUP section is not, then clear the group info
6502 set up by _bfd_elf_copy_private_section_data. */
6503 if (s->output_section != discarded
6504 && isec->output_section == discarded)
6505 {
6506 elf_section_flags (s->output_section) &= ~SHF_GROUP;
6507 elf_group_name (s->output_section) = NULL;
6508 }
6509 /* Conversely, if the member section is not being output
6510 but the SHT_GROUP section is, then adjust its size. */
6511 else if (s->output_section == discarded
6512 && isec->output_section != discarded)
6513 removed += 4;
6514 s = elf_next_in_group (s);
6515 if (s == first)
6516 break;
6517 }
6518 if (removed != 0)
6519 {
6520 if (discarded != NULL)
6521 {
6522 /* If we've been called for ld -r, then we need to
6523 adjust the input section size. This function may
6524 be called multiple times, so save the original
6525 size. */
6526 if (isec->rawsize == 0)
6527 isec->rawsize = isec->size;
6528 isec->size = isec->rawsize - removed;
6529 }
6530 else
6531 {
6532 /* Adjust the output section size when called from
6533 objcopy. */
6534 isec->output_section->size -= removed;
6535 }
6536 }
6537 }
6538
6539 return TRUE;
6540 }
6541
6542 /* Copy private header information. */
6543
6544 bfd_boolean
6545 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
6546 {
6547 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6548 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6549 return TRUE;
6550
6551 /* Copy over private BFD data if it has not already been copied.
6552 This must be done here, rather than in the copy_private_bfd_data
6553 entry point, because the latter is called after the section
6554 contents have been set, which means that the program headers have
6555 already been worked out. */
6556 if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
6557 {
6558 if (! copy_private_bfd_data (ibfd, obfd))
6559 return FALSE;
6560 }
6561
6562 return _bfd_elf_fixup_group_sections (ibfd, NULL);
6563 }
6564
6565 /* Copy private symbol information. If this symbol is in a section
6566 which we did not map into a BFD section, try to map the section
6567 index correctly. We use special macro definitions for the mapped
6568 section indices; these definitions are interpreted by the
6569 swap_out_syms function. */
6570
6571 #define MAP_ONESYMTAB (SHN_HIOS + 1)
6572 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
6573 #define MAP_STRTAB (SHN_HIOS + 3)
6574 #define MAP_SHSTRTAB (SHN_HIOS + 4)
6575 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
6576
6577 bfd_boolean
6578 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
6579 asymbol *isymarg,
6580 bfd *obfd,
6581 asymbol *osymarg)
6582 {
6583 elf_symbol_type *isym, *osym;
6584
6585 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6586 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6587 return TRUE;
6588
6589 isym = elf_symbol_from (ibfd, isymarg);
6590 osym = elf_symbol_from (obfd, osymarg);
6591
6592 if (isym != NULL
6593 && isym->internal_elf_sym.st_shndx != 0
6594 && osym != NULL
6595 && bfd_is_abs_section (isym->symbol.section))
6596 {
6597 unsigned int shndx;
6598
6599 shndx = isym->internal_elf_sym.st_shndx;
6600 if (shndx == elf_onesymtab (ibfd))
6601 shndx = MAP_ONESYMTAB;
6602 else if (shndx == elf_dynsymtab (ibfd))
6603 shndx = MAP_DYNSYMTAB;
6604 else if (shndx == elf_tdata (ibfd)->strtab_section)
6605 shndx = MAP_STRTAB;
6606 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
6607 shndx = MAP_SHSTRTAB;
6608 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
6609 shndx = MAP_SYM_SHNDX;
6610 osym->internal_elf_sym.st_shndx = shndx;
6611 }
6612
6613 return TRUE;
6614 }
6615
6616 /* Swap out the symbols. */
6617
6618 static bfd_boolean
6619 swap_out_syms (bfd *abfd,
6620 struct bfd_strtab_hash **sttp,
6621 int relocatable_p)
6622 {
6623 const struct elf_backend_data *bed;
6624 int symcount;
6625 asymbol **syms;
6626 struct bfd_strtab_hash *stt;
6627 Elf_Internal_Shdr *symtab_hdr;
6628 Elf_Internal_Shdr *symtab_shndx_hdr;
6629 Elf_Internal_Shdr *symstrtab_hdr;
6630 bfd_byte *outbound_syms;
6631 bfd_byte *outbound_shndx;
6632 int idx;
6633 bfd_size_type amt;
6634 bfd_boolean name_local_sections;
6635
6636 if (!elf_map_symbols (abfd))
6637 return FALSE;
6638
6639 /* Dump out the symtabs. */
6640 stt = _bfd_elf_stringtab_init ();
6641 if (stt == NULL)
6642 return FALSE;
6643
6644 bed = get_elf_backend_data (abfd);
6645 symcount = bfd_get_symcount (abfd);
6646 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6647 symtab_hdr->sh_type = SHT_SYMTAB;
6648 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
6649 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
6650 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
6651 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
6652
6653 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
6654 symstrtab_hdr->sh_type = SHT_STRTAB;
6655
6656 outbound_syms = (bfd_byte *) bfd_alloc2 (abfd, 1 + symcount,
6657 bed->s->sizeof_sym);
6658 if (outbound_syms == NULL)
6659 {
6660 _bfd_stringtab_free (stt);
6661 return FALSE;
6662 }
6663 symtab_hdr->contents = outbound_syms;
6664
6665 outbound_shndx = NULL;
6666 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
6667 if (symtab_shndx_hdr->sh_name != 0)
6668 {
6669 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
6670 outbound_shndx = (bfd_byte *)
6671 bfd_zalloc2 (abfd, 1 + symcount, sizeof (Elf_External_Sym_Shndx));
6672 if (outbound_shndx == NULL)
6673 {
6674 _bfd_stringtab_free (stt);
6675 return FALSE;
6676 }
6677
6678 symtab_shndx_hdr->contents = outbound_shndx;
6679 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
6680 symtab_shndx_hdr->sh_size = amt;
6681 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
6682 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
6683 }
6684
6685 /* Now generate the data (for "contents"). */
6686 {
6687 /* Fill in zeroth symbol and swap it out. */
6688 Elf_Internal_Sym sym;
6689 sym.st_name = 0;
6690 sym.st_value = 0;
6691 sym.st_size = 0;
6692 sym.st_info = 0;
6693 sym.st_other = 0;
6694 sym.st_shndx = SHN_UNDEF;
6695 sym.st_target_internal = 0;
6696 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6697 outbound_syms += bed->s->sizeof_sym;
6698 if (outbound_shndx != NULL)
6699 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6700 }
6701
6702 name_local_sections
6703 = (bed->elf_backend_name_local_section_symbols
6704 && bed->elf_backend_name_local_section_symbols (abfd));
6705
6706 syms = bfd_get_outsymbols (abfd);
6707 for (idx = 0; idx < symcount; idx++)
6708 {
6709 Elf_Internal_Sym sym;
6710 bfd_vma value = syms[idx]->value;
6711 elf_symbol_type *type_ptr;
6712 flagword flags = syms[idx]->flags;
6713 int type;
6714
6715 if (!name_local_sections
6716 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
6717 {
6718 /* Local section symbols have no name. */
6719 sym.st_name = 0;
6720 }
6721 else
6722 {
6723 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
6724 syms[idx]->name,
6725 TRUE, FALSE);
6726 if (sym.st_name == (unsigned long) -1)
6727 {
6728 _bfd_stringtab_free (stt);
6729 return FALSE;
6730 }
6731 }
6732
6733 type_ptr = elf_symbol_from (abfd, syms[idx]);
6734
6735 if ((flags & BSF_SECTION_SYM) == 0
6736 && bfd_is_com_section (syms[idx]->section))
6737 {
6738 /* ELF common symbols put the alignment into the `value' field,
6739 and the size into the `size' field. This is backwards from
6740 how BFD handles it, so reverse it here. */
6741 sym.st_size = value;
6742 if (type_ptr == NULL
6743 || type_ptr->internal_elf_sym.st_value == 0)
6744 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
6745 else
6746 sym.st_value = type_ptr->internal_elf_sym.st_value;
6747 sym.st_shndx = _bfd_elf_section_from_bfd_section
6748 (abfd, syms[idx]->section);
6749 }
6750 else
6751 {
6752 asection *sec = syms[idx]->section;
6753 unsigned int shndx;
6754
6755 if (sec->output_section)
6756 {
6757 value += sec->output_offset;
6758 sec = sec->output_section;
6759 }
6760
6761 /* Don't add in the section vma for relocatable output. */
6762 if (! relocatable_p)
6763 value += sec->vma;
6764 sym.st_value = value;
6765 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
6766
6767 if (bfd_is_abs_section (sec)
6768 && type_ptr != NULL
6769 && type_ptr->internal_elf_sym.st_shndx != 0)
6770 {
6771 /* This symbol is in a real ELF section which we did
6772 not create as a BFD section. Undo the mapping done
6773 by copy_private_symbol_data. */
6774 shndx = type_ptr->internal_elf_sym.st_shndx;
6775 switch (shndx)
6776 {
6777 case MAP_ONESYMTAB:
6778 shndx = elf_onesymtab (abfd);
6779 break;
6780 case MAP_DYNSYMTAB:
6781 shndx = elf_dynsymtab (abfd);
6782 break;
6783 case MAP_STRTAB:
6784 shndx = elf_tdata (abfd)->strtab_section;
6785 break;
6786 case MAP_SHSTRTAB:
6787 shndx = elf_tdata (abfd)->shstrtab_section;
6788 break;
6789 case MAP_SYM_SHNDX:
6790 shndx = elf_tdata (abfd)->symtab_shndx_section;
6791 break;
6792 default:
6793 break;
6794 }
6795 }
6796 else
6797 {
6798 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
6799
6800 if (shndx == SHN_BAD)
6801 {
6802 asection *sec2;
6803
6804 /* Writing this would be a hell of a lot easier if
6805 we had some decent documentation on bfd, and
6806 knew what to expect of the library, and what to
6807 demand of applications. For example, it
6808 appears that `objcopy' might not set the
6809 section of a symbol to be a section that is
6810 actually in the output file. */
6811 sec2 = bfd_get_section_by_name (abfd, sec->name);
6812 if (sec2 == NULL)
6813 {
6814 _bfd_error_handler (_("\
6815 Unable to find equivalent output section for symbol '%s' from section '%s'"),
6816 syms[idx]->name ? syms[idx]->name : "<Local sym>",
6817 sec->name);
6818 bfd_set_error (bfd_error_invalid_operation);
6819 _bfd_stringtab_free (stt);
6820 return FALSE;
6821 }
6822
6823 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
6824 BFD_ASSERT (shndx != SHN_BAD);
6825 }
6826 }
6827
6828 sym.st_shndx = shndx;
6829 }
6830
6831 if ((flags & BSF_THREAD_LOCAL) != 0)
6832 type = STT_TLS;
6833 else if ((flags & BSF_GNU_INDIRECT_FUNCTION) != 0)
6834 type = STT_GNU_IFUNC;
6835 else if ((flags & BSF_FUNCTION) != 0)
6836 type = STT_FUNC;
6837 else if ((flags & BSF_OBJECT) != 0)
6838 type = STT_OBJECT;
6839 else if ((flags & BSF_RELC) != 0)
6840 type = STT_RELC;
6841 else if ((flags & BSF_SRELC) != 0)
6842 type = STT_SRELC;
6843 else
6844 type = STT_NOTYPE;
6845
6846 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
6847 type = STT_TLS;
6848
6849 /* Processor-specific types. */
6850 if (type_ptr != NULL
6851 && bed->elf_backend_get_symbol_type)
6852 type = ((*bed->elf_backend_get_symbol_type)
6853 (&type_ptr->internal_elf_sym, type));
6854
6855 if (flags & BSF_SECTION_SYM)
6856 {
6857 if (flags & BSF_GLOBAL)
6858 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6859 else
6860 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
6861 }
6862 else if (bfd_is_com_section (syms[idx]->section))
6863 {
6864 #ifdef USE_STT_COMMON
6865 if (type == STT_OBJECT)
6866 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_COMMON);
6867 else
6868 #endif
6869 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
6870 }
6871 else if (bfd_is_und_section (syms[idx]->section))
6872 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
6873 ? STB_WEAK
6874 : STB_GLOBAL),
6875 type);
6876 else if (flags & BSF_FILE)
6877 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
6878 else
6879 {
6880 int bind = STB_LOCAL;
6881
6882 if (flags & BSF_LOCAL)
6883 bind = STB_LOCAL;
6884 else if (flags & BSF_GNU_UNIQUE)
6885 bind = STB_GNU_UNIQUE;
6886 else if (flags & BSF_WEAK)
6887 bind = STB_WEAK;
6888 else if (flags & BSF_GLOBAL)
6889 bind = STB_GLOBAL;
6890
6891 sym.st_info = ELF_ST_INFO (bind, type);
6892 }
6893
6894 if (type_ptr != NULL)
6895 {
6896 sym.st_other = type_ptr->internal_elf_sym.st_other;
6897 sym.st_target_internal
6898 = type_ptr->internal_elf_sym.st_target_internal;
6899 }
6900 else
6901 {
6902 sym.st_other = 0;
6903 sym.st_target_internal = 0;
6904 }
6905
6906 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6907 outbound_syms += bed->s->sizeof_sym;
6908 if (outbound_shndx != NULL)
6909 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6910 }
6911
6912 *sttp = stt;
6913 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
6914 symstrtab_hdr->sh_type = SHT_STRTAB;
6915
6916 symstrtab_hdr->sh_flags = 0;
6917 symstrtab_hdr->sh_addr = 0;
6918 symstrtab_hdr->sh_entsize = 0;
6919 symstrtab_hdr->sh_link = 0;
6920 symstrtab_hdr->sh_info = 0;
6921 symstrtab_hdr->sh_addralign = 1;
6922
6923 return TRUE;
6924 }
6925
6926 /* Return the number of bytes required to hold the symtab vector.
6927
6928 Note that we base it on the count plus 1, since we will null terminate
6929 the vector allocated based on this size. However, the ELF symbol table
6930 always has a dummy entry as symbol #0, so it ends up even. */
6931
6932 long
6933 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
6934 {
6935 long symcount;
6936 long symtab_size;
6937 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
6938
6939 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6940 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6941 if (symcount > 0)
6942 symtab_size -= sizeof (asymbol *);
6943
6944 return symtab_size;
6945 }
6946
6947 long
6948 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
6949 {
6950 long symcount;
6951 long symtab_size;
6952 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
6953
6954 if (elf_dynsymtab (abfd) == 0)
6955 {
6956 bfd_set_error (bfd_error_invalid_operation);
6957 return -1;
6958 }
6959
6960 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6961 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6962 if (symcount > 0)
6963 symtab_size -= sizeof (asymbol *);
6964
6965 return symtab_size;
6966 }
6967
6968 long
6969 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
6970 sec_ptr asect)
6971 {
6972 return (asect->reloc_count + 1) * sizeof (arelent *);
6973 }
6974
6975 /* Canonicalize the relocs. */
6976
6977 long
6978 _bfd_elf_canonicalize_reloc (bfd *abfd,
6979 sec_ptr section,
6980 arelent **relptr,
6981 asymbol **symbols)
6982 {
6983 arelent *tblptr;
6984 unsigned int i;
6985 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6986
6987 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
6988 return -1;
6989
6990 tblptr = section->relocation;
6991 for (i = 0; i < section->reloc_count; i++)
6992 *relptr++ = tblptr++;
6993
6994 *relptr = NULL;
6995
6996 return section->reloc_count;
6997 }
6998
6999 long
7000 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
7001 {
7002 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7003 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
7004
7005 if (symcount >= 0)
7006 bfd_get_symcount (abfd) = symcount;
7007 return symcount;
7008 }
7009
7010 long
7011 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
7012 asymbol **allocation)
7013 {
7014 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7015 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
7016
7017 if (symcount >= 0)
7018 bfd_get_dynamic_symcount (abfd) = symcount;
7019 return symcount;
7020 }
7021
7022 /* Return the size required for the dynamic reloc entries. Any loadable
7023 section that was actually installed in the BFD, and has type SHT_REL
7024 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
7025 dynamic reloc section. */
7026
7027 long
7028 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
7029 {
7030 long ret;
7031 asection *s;
7032
7033 if (elf_dynsymtab (abfd) == 0)
7034 {
7035 bfd_set_error (bfd_error_invalid_operation);
7036 return -1;
7037 }
7038
7039 ret = sizeof (arelent *);
7040 for (s = abfd->sections; s != NULL; s = s->next)
7041 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
7042 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
7043 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
7044 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
7045 * sizeof (arelent *));
7046
7047 return ret;
7048 }
7049
7050 /* Canonicalize the dynamic relocation entries. Note that we return the
7051 dynamic relocations as a single block, although they are actually
7052 associated with particular sections; the interface, which was
7053 designed for SunOS style shared libraries, expects that there is only
7054 one set of dynamic relocs. Any loadable section that was actually
7055 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
7056 dynamic symbol table, is considered to be a dynamic reloc section. */
7057
7058 long
7059 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
7060 arelent **storage,
7061 asymbol **syms)
7062 {
7063 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
7064 asection *s;
7065 long ret;
7066
7067 if (elf_dynsymtab (abfd) == 0)
7068 {
7069 bfd_set_error (bfd_error_invalid_operation);
7070 return -1;
7071 }
7072
7073 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
7074 ret = 0;
7075 for (s = abfd->sections; s != NULL; s = s->next)
7076 {
7077 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
7078 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
7079 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
7080 {
7081 arelent *p;
7082 long count, i;
7083
7084 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
7085 return -1;
7086 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
7087 p = s->relocation;
7088 for (i = 0; i < count; i++)
7089 *storage++ = p++;
7090 ret += count;
7091 }
7092 }
7093
7094 *storage = NULL;
7095
7096 return ret;
7097 }
7098 \f
7099 /* Read in the version information. */
7100
7101 bfd_boolean
7102 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
7103 {
7104 bfd_byte *contents = NULL;
7105 unsigned int freeidx = 0;
7106
7107 if (elf_dynverref (abfd) != 0)
7108 {
7109 Elf_Internal_Shdr *hdr;
7110 Elf_External_Verneed *everneed;
7111 Elf_Internal_Verneed *iverneed;
7112 unsigned int i;
7113 bfd_byte *contents_end;
7114
7115 hdr = &elf_tdata (abfd)->dynverref_hdr;
7116
7117 elf_tdata (abfd)->verref = (Elf_Internal_Verneed *)
7118 bfd_zalloc2 (abfd, hdr->sh_info, sizeof (Elf_Internal_Verneed));
7119 if (elf_tdata (abfd)->verref == NULL)
7120 goto error_return;
7121
7122 elf_tdata (abfd)->cverrefs = hdr->sh_info;
7123
7124 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
7125 if (contents == NULL)
7126 {
7127 error_return_verref:
7128 elf_tdata (abfd)->verref = NULL;
7129 elf_tdata (abfd)->cverrefs = 0;
7130 goto error_return;
7131 }
7132 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
7133 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
7134 goto error_return_verref;
7135
7136 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verneed))
7137 goto error_return_verref;
7138
7139 BFD_ASSERT (sizeof (Elf_External_Verneed)
7140 == sizeof (Elf_External_Vernaux));
7141 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
7142 everneed = (Elf_External_Verneed *) contents;
7143 iverneed = elf_tdata (abfd)->verref;
7144 for (i = 0; i < hdr->sh_info; i++, iverneed++)
7145 {
7146 Elf_External_Vernaux *evernaux;
7147 Elf_Internal_Vernaux *ivernaux;
7148 unsigned int j;
7149
7150 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
7151
7152 iverneed->vn_bfd = abfd;
7153
7154 iverneed->vn_filename =
7155 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7156 iverneed->vn_file);
7157 if (iverneed->vn_filename == NULL)
7158 goto error_return_verref;
7159
7160 if (iverneed->vn_cnt == 0)
7161 iverneed->vn_auxptr = NULL;
7162 else
7163 {
7164 iverneed->vn_auxptr = (struct elf_internal_vernaux *)
7165 bfd_alloc2 (abfd, iverneed->vn_cnt,
7166 sizeof (Elf_Internal_Vernaux));
7167 if (iverneed->vn_auxptr == NULL)
7168 goto error_return_verref;
7169 }
7170
7171 if (iverneed->vn_aux
7172 > (size_t) (contents_end - (bfd_byte *) everneed))
7173 goto error_return_verref;
7174
7175 evernaux = ((Elf_External_Vernaux *)
7176 ((bfd_byte *) everneed + iverneed->vn_aux));
7177 ivernaux = iverneed->vn_auxptr;
7178 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
7179 {
7180 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
7181
7182 ivernaux->vna_nodename =
7183 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7184 ivernaux->vna_name);
7185 if (ivernaux->vna_nodename == NULL)
7186 goto error_return_verref;
7187
7188 if (j + 1 < iverneed->vn_cnt)
7189 ivernaux->vna_nextptr = ivernaux + 1;
7190 else
7191 ivernaux->vna_nextptr = NULL;
7192
7193 if (ivernaux->vna_next
7194 > (size_t) (contents_end - (bfd_byte *) evernaux))
7195 goto error_return_verref;
7196
7197 evernaux = ((Elf_External_Vernaux *)
7198 ((bfd_byte *) evernaux + ivernaux->vna_next));
7199
7200 if (ivernaux->vna_other > freeidx)
7201 freeidx = ivernaux->vna_other;
7202 }
7203
7204 if (i + 1 < hdr->sh_info)
7205 iverneed->vn_nextref = iverneed + 1;
7206 else
7207 iverneed->vn_nextref = NULL;
7208
7209 if (iverneed->vn_next
7210 > (size_t) (contents_end - (bfd_byte *) everneed))
7211 goto error_return_verref;
7212
7213 everneed = ((Elf_External_Verneed *)
7214 ((bfd_byte *) everneed + iverneed->vn_next));
7215 }
7216
7217 free (contents);
7218 contents = NULL;
7219 }
7220
7221 if (elf_dynverdef (abfd) != 0)
7222 {
7223 Elf_Internal_Shdr *hdr;
7224 Elf_External_Verdef *everdef;
7225 Elf_Internal_Verdef *iverdef;
7226 Elf_Internal_Verdef *iverdefarr;
7227 Elf_Internal_Verdef iverdefmem;
7228 unsigned int i;
7229 unsigned int maxidx;
7230 bfd_byte *contents_end_def, *contents_end_aux;
7231
7232 hdr = &elf_tdata (abfd)->dynverdef_hdr;
7233
7234 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
7235 if (contents == NULL)
7236 goto error_return;
7237 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
7238 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
7239 goto error_return;
7240
7241 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verdef))
7242 goto error_return;
7243
7244 BFD_ASSERT (sizeof (Elf_External_Verdef)
7245 >= sizeof (Elf_External_Verdaux));
7246 contents_end_def = contents + hdr->sh_size
7247 - sizeof (Elf_External_Verdef);
7248 contents_end_aux = contents + hdr->sh_size
7249 - sizeof (Elf_External_Verdaux);
7250
7251 /* We know the number of entries in the section but not the maximum
7252 index. Therefore we have to run through all entries and find
7253 the maximum. */
7254 everdef = (Elf_External_Verdef *) contents;
7255 maxidx = 0;
7256 for (i = 0; i < hdr->sh_info; ++i)
7257 {
7258 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
7259
7260 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
7261 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
7262
7263 if (iverdefmem.vd_next
7264 > (size_t) (contents_end_def - (bfd_byte *) everdef))
7265 goto error_return;
7266
7267 everdef = ((Elf_External_Verdef *)
7268 ((bfd_byte *) everdef + iverdefmem.vd_next));
7269 }
7270
7271 if (default_imported_symver)
7272 {
7273 if (freeidx > maxidx)
7274 maxidx = ++freeidx;
7275 else
7276 freeidx = ++maxidx;
7277 }
7278 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
7279 bfd_zalloc2 (abfd, maxidx, sizeof (Elf_Internal_Verdef));
7280 if (elf_tdata (abfd)->verdef == NULL)
7281 goto error_return;
7282
7283 elf_tdata (abfd)->cverdefs = maxidx;
7284
7285 everdef = (Elf_External_Verdef *) contents;
7286 iverdefarr = elf_tdata (abfd)->verdef;
7287 for (i = 0; i < hdr->sh_info; i++)
7288 {
7289 Elf_External_Verdaux *everdaux;
7290 Elf_Internal_Verdaux *iverdaux;
7291 unsigned int j;
7292
7293 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
7294
7295 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
7296 {
7297 error_return_verdef:
7298 elf_tdata (abfd)->verdef = NULL;
7299 elf_tdata (abfd)->cverdefs = 0;
7300 goto error_return;
7301 }
7302
7303 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
7304 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
7305
7306 iverdef->vd_bfd = abfd;
7307
7308 if (iverdef->vd_cnt == 0)
7309 iverdef->vd_auxptr = NULL;
7310 else
7311 {
7312 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
7313 bfd_alloc2 (abfd, iverdef->vd_cnt,
7314 sizeof (Elf_Internal_Verdaux));
7315 if (iverdef->vd_auxptr == NULL)
7316 goto error_return_verdef;
7317 }
7318
7319 if (iverdef->vd_aux
7320 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
7321 goto error_return_verdef;
7322
7323 everdaux = ((Elf_External_Verdaux *)
7324 ((bfd_byte *) everdef + iverdef->vd_aux));
7325 iverdaux = iverdef->vd_auxptr;
7326 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
7327 {
7328 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
7329
7330 iverdaux->vda_nodename =
7331 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7332 iverdaux->vda_name);
7333 if (iverdaux->vda_nodename == NULL)
7334 goto error_return_verdef;
7335
7336 if (j + 1 < iverdef->vd_cnt)
7337 iverdaux->vda_nextptr = iverdaux + 1;
7338 else
7339 iverdaux->vda_nextptr = NULL;
7340
7341 if (iverdaux->vda_next
7342 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
7343 goto error_return_verdef;
7344
7345 everdaux = ((Elf_External_Verdaux *)
7346 ((bfd_byte *) everdaux + iverdaux->vda_next));
7347 }
7348
7349 if (iverdef->vd_cnt)
7350 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
7351
7352 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
7353 iverdef->vd_nextdef = iverdef + 1;
7354 else
7355 iverdef->vd_nextdef = NULL;
7356
7357 everdef = ((Elf_External_Verdef *)
7358 ((bfd_byte *) everdef + iverdef->vd_next));
7359 }
7360
7361 free (contents);
7362 contents = NULL;
7363 }
7364 else if (default_imported_symver)
7365 {
7366 if (freeidx < 3)
7367 freeidx = 3;
7368 else
7369 freeidx++;
7370
7371 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
7372 bfd_zalloc2 (abfd, freeidx, sizeof (Elf_Internal_Verdef));
7373 if (elf_tdata (abfd)->verdef == NULL)
7374 goto error_return;
7375
7376 elf_tdata (abfd)->cverdefs = freeidx;
7377 }
7378
7379 /* Create a default version based on the soname. */
7380 if (default_imported_symver)
7381 {
7382 Elf_Internal_Verdef *iverdef;
7383 Elf_Internal_Verdaux *iverdaux;
7384
7385 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];
7386
7387 iverdef->vd_version = VER_DEF_CURRENT;
7388 iverdef->vd_flags = 0;
7389 iverdef->vd_ndx = freeidx;
7390 iverdef->vd_cnt = 1;
7391
7392 iverdef->vd_bfd = abfd;
7393
7394 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
7395 if (iverdef->vd_nodename == NULL)
7396 goto error_return_verdef;
7397 iverdef->vd_nextdef = NULL;
7398 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
7399 bfd_alloc (abfd, sizeof (Elf_Internal_Verdaux));
7400 if (iverdef->vd_auxptr == NULL)
7401 goto error_return_verdef;
7402
7403 iverdaux = iverdef->vd_auxptr;
7404 iverdaux->vda_nodename = iverdef->vd_nodename;
7405 iverdaux->vda_nextptr = NULL;
7406 }
7407
7408 return TRUE;
7409
7410 error_return:
7411 if (contents != NULL)
7412 free (contents);
7413 return FALSE;
7414 }
7415 \f
7416 asymbol *
7417 _bfd_elf_make_empty_symbol (bfd *abfd)
7418 {
7419 elf_symbol_type *newsym;
7420 bfd_size_type amt = sizeof (elf_symbol_type);
7421
7422 newsym = (elf_symbol_type *) bfd_zalloc (abfd, amt);
7423 if (!newsym)
7424 return NULL;
7425 else
7426 {
7427 newsym->symbol.the_bfd = abfd;
7428 return &newsym->symbol;
7429 }
7430 }
7431
7432 void
7433 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
7434 asymbol *symbol,
7435 symbol_info *ret)
7436 {
7437 bfd_symbol_info (symbol, ret);
7438 }
7439
7440 /* Return whether a symbol name implies a local symbol. Most targets
7441 use this function for the is_local_label_name entry point, but some
7442 override it. */
7443
7444 bfd_boolean
7445 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
7446 const char *name)
7447 {
7448 /* Normal local symbols start with ``.L''. */
7449 if (name[0] == '.' && name[1] == 'L')
7450 return TRUE;
7451
7452 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
7453 DWARF debugging symbols starting with ``..''. */
7454 if (name[0] == '.' && name[1] == '.')
7455 return TRUE;
7456
7457 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
7458 emitting DWARF debugging output. I suspect this is actually a
7459 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
7460 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
7461 underscore to be emitted on some ELF targets). For ease of use,
7462 we treat such symbols as local. */
7463 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
7464 return TRUE;
7465
7466 return FALSE;
7467 }
7468
7469 alent *
7470 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
7471 asymbol *symbol ATTRIBUTE_UNUSED)
7472 {
7473 abort ();
7474 return NULL;
7475 }
7476
7477 bfd_boolean
7478 _bfd_elf_set_arch_mach (bfd *abfd,
7479 enum bfd_architecture arch,
7480 unsigned long machine)
7481 {
7482 /* If this isn't the right architecture for this backend, and this
7483 isn't the generic backend, fail. */
7484 if (arch != get_elf_backend_data (abfd)->arch
7485 && arch != bfd_arch_unknown
7486 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
7487 return FALSE;
7488
7489 return bfd_default_set_arch_mach (abfd, arch, machine);
7490 }
7491
7492 /* Find the function to a particular section and offset,
7493 for error reporting. */
7494
7495 static bfd_boolean
7496 elf_find_function (bfd *abfd,
7497 asection *section,
7498 asymbol **symbols,
7499 bfd_vma offset,
7500 const char **filename_ptr,
7501 const char **functionname_ptr)
7502 {
7503 static asection *last_section;
7504 static asymbol *func;
7505 static const char *filename;
7506 static bfd_size_type func_size;
7507
7508 if (symbols == NULL)
7509 return FALSE;
7510
7511 if (last_section != section
7512 || func == NULL
7513 || offset < func->value
7514 || offset >= func->value + func_size)
7515 {
7516 asymbol *file;
7517 bfd_vma low_func;
7518 asymbol **p;
7519 /* ??? Given multiple file symbols, it is impossible to reliably
7520 choose the right file name for global symbols. File symbols are
7521 local symbols, and thus all file symbols must sort before any
7522 global symbols. The ELF spec may be interpreted to say that a
7523 file symbol must sort before other local symbols, but currently
7524 ld -r doesn't do this. So, for ld -r output, it is possible to
7525 make a better choice of file name for local symbols by ignoring
7526 file symbols appearing after a given local symbol. */
7527 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
7528 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7529
7530 filename = NULL;
7531 func = NULL;
7532 file = NULL;
7533 low_func = 0;
7534 state = nothing_seen;
7535 func_size = 0;
7536 last_section = section;
7537
7538 for (p = symbols; *p != NULL; p++)
7539 {
7540 asymbol *sym = *p;
7541 bfd_vma code_off;
7542 bfd_size_type size;
7543
7544 if ((sym->flags & BSF_FILE) != 0)
7545 {
7546 file = sym;
7547 if (state == symbol_seen)
7548 state = file_after_symbol_seen;
7549 continue;
7550 }
7551
7552 size = bed->maybe_function_sym (sym, section, &code_off);
7553 if (size != 0
7554 && code_off <= offset
7555 && (code_off > low_func
7556 || (code_off == low_func
7557 && size > func_size)))
7558 {
7559 func = sym;
7560 func_size = size;
7561 low_func = code_off;
7562 filename = NULL;
7563 if (file != NULL
7564 && ((sym->flags & BSF_LOCAL) != 0
7565 || state != file_after_symbol_seen))
7566 filename = bfd_asymbol_name (file);
7567 }
7568 if (state == nothing_seen)
7569 state = symbol_seen;
7570 }
7571 }
7572
7573 if (func == NULL)
7574 return FALSE;
7575
7576 if (filename_ptr)
7577 *filename_ptr = filename;
7578 if (functionname_ptr)
7579 *functionname_ptr = bfd_asymbol_name (func);
7580
7581 return TRUE;
7582 }
7583
7584 /* Find the nearest line to a particular section and offset,
7585 for error reporting. */
7586
7587 bfd_boolean
7588 _bfd_elf_find_nearest_line (bfd *abfd,
7589 asection *section,
7590 asymbol **symbols,
7591 bfd_vma offset,
7592 const char **filename_ptr,
7593 const char **functionname_ptr,
7594 unsigned int *line_ptr)
7595 {
7596 return _bfd_elf_find_nearest_line_discriminator (abfd, section, symbols,
7597 offset, filename_ptr,
7598 functionname_ptr,
7599 line_ptr,
7600 NULL);
7601 }
7602
7603 bfd_boolean
7604 _bfd_elf_find_nearest_line_discriminator (bfd *abfd,
7605 asection *section,
7606 asymbol **symbols,
7607 bfd_vma offset,
7608 const char **filename_ptr,
7609 const char **functionname_ptr,
7610 unsigned int *line_ptr,
7611 unsigned int *discriminator_ptr)
7612 {
7613 bfd_boolean found;
7614
7615 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
7616 filename_ptr, functionname_ptr,
7617 line_ptr))
7618 {
7619 if (!*functionname_ptr)
7620 elf_find_function (abfd, section, symbols, offset,
7621 *filename_ptr ? NULL : filename_ptr,
7622 functionname_ptr);
7623
7624 return TRUE;
7625 }
7626
7627 if (_bfd_dwarf2_find_nearest_line (abfd, dwarf_debug_sections,
7628 section, symbols, offset,
7629 filename_ptr, functionname_ptr,
7630 line_ptr, discriminator_ptr, 0,
7631 &elf_tdata (abfd)->dwarf2_find_line_info))
7632 {
7633 if (!*functionname_ptr)
7634 elf_find_function (abfd, section, symbols, offset,
7635 *filename_ptr ? NULL : filename_ptr,
7636 functionname_ptr);
7637
7638 return TRUE;
7639 }
7640
7641 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
7642 &found, filename_ptr,
7643 functionname_ptr, line_ptr,
7644 &elf_tdata (abfd)->line_info))
7645 return FALSE;
7646 if (found && (*functionname_ptr || *line_ptr))
7647 return TRUE;
7648
7649 if (symbols == NULL)
7650 return FALSE;
7651
7652 if (! elf_find_function (abfd, section, symbols, offset,
7653 filename_ptr, functionname_ptr))
7654 return FALSE;
7655
7656 *line_ptr = 0;
7657 return TRUE;
7658 }
7659
7660 /* Find the line for a symbol. */
7661
7662 bfd_boolean
7663 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
7664 const char **filename_ptr, unsigned int *line_ptr)
7665 {
7666 return _bfd_elf_find_line_discriminator (abfd, symbols, symbol,
7667 filename_ptr, line_ptr,
7668 NULL);
7669 }
7670
7671 bfd_boolean
7672 _bfd_elf_find_line_discriminator (bfd *abfd, asymbol **symbols, asymbol *symbol,
7673 const char **filename_ptr,
7674 unsigned int *line_ptr,
7675 unsigned int *discriminator_ptr)
7676 {
7677 return _bfd_dwarf2_find_line (abfd, symbols, symbol,
7678 filename_ptr, line_ptr, discriminator_ptr, 0,
7679 &elf_tdata (abfd)->dwarf2_find_line_info);
7680 }
7681
7682 /* After a call to bfd_find_nearest_line, successive calls to
7683 bfd_find_inliner_info can be used to get source information about
7684 each level of function inlining that terminated at the address
7685 passed to bfd_find_nearest_line. Currently this is only supported
7686 for DWARF2 with appropriate DWARF3 extensions. */
7687
7688 bfd_boolean
7689 _bfd_elf_find_inliner_info (bfd *abfd,
7690 const char **filename_ptr,
7691 const char **functionname_ptr,
7692 unsigned int *line_ptr)
7693 {
7694 bfd_boolean found;
7695 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
7696 functionname_ptr, line_ptr,
7697 & elf_tdata (abfd)->dwarf2_find_line_info);
7698 return found;
7699 }
7700
7701 int
7702 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
7703 {
7704 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7705 int ret = bed->s->sizeof_ehdr;
7706
7707 if (!info->relocatable)
7708 {
7709 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
7710
7711 if (phdr_size == (bfd_size_type) -1)
7712 {
7713 struct elf_segment_map *m;
7714
7715 phdr_size = 0;
7716 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7717 phdr_size += bed->s->sizeof_phdr;
7718
7719 if (phdr_size == 0)
7720 phdr_size = get_program_header_size (abfd, info);
7721 }
7722
7723 elf_tdata (abfd)->program_header_size = phdr_size;
7724 ret += phdr_size;
7725 }
7726
7727 return ret;
7728 }
7729
7730 bfd_boolean
7731 _bfd_elf_set_section_contents (bfd *abfd,
7732 sec_ptr section,
7733 const void *location,
7734 file_ptr offset,
7735 bfd_size_type count)
7736 {
7737 Elf_Internal_Shdr *hdr;
7738 bfd_signed_vma pos;
7739
7740 if (! abfd->output_has_begun
7741 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
7742 return FALSE;
7743
7744 hdr = &elf_section_data (section)->this_hdr;
7745 pos = hdr->sh_offset + offset;
7746 if (bfd_seek (abfd, pos, SEEK_SET) != 0
7747 || bfd_bwrite (location, count, abfd) != count)
7748 return FALSE;
7749
7750 return TRUE;
7751 }
7752
7753 void
7754 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
7755 arelent *cache_ptr ATTRIBUTE_UNUSED,
7756 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
7757 {
7758 abort ();
7759 }
7760
7761 /* Try to convert a non-ELF reloc into an ELF one. */
7762
7763 bfd_boolean
7764 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
7765 {
7766 /* Check whether we really have an ELF howto. */
7767
7768 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
7769 {
7770 bfd_reloc_code_real_type code;
7771 reloc_howto_type *howto;
7772
7773 /* Alien reloc: Try to determine its type to replace it with an
7774 equivalent ELF reloc. */
7775
7776 if (areloc->howto->pc_relative)
7777 {
7778 switch (areloc->howto->bitsize)
7779 {
7780 case 8:
7781 code = BFD_RELOC_8_PCREL;
7782 break;
7783 case 12:
7784 code = BFD_RELOC_12_PCREL;
7785 break;
7786 case 16:
7787 code = BFD_RELOC_16_PCREL;
7788 break;
7789 case 24:
7790 code = BFD_RELOC_24_PCREL;
7791 break;
7792 case 32:
7793 code = BFD_RELOC_32_PCREL;
7794 break;
7795 case 64:
7796 code = BFD_RELOC_64_PCREL;
7797 break;
7798 default:
7799 goto fail;
7800 }
7801
7802 howto = bfd_reloc_type_lookup (abfd, code);
7803
7804 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
7805 {
7806 if (howto->pcrel_offset)
7807 areloc->addend += areloc->address;
7808 else
7809 areloc->addend -= areloc->address; /* addend is unsigned!! */
7810 }
7811 }
7812 else
7813 {
7814 switch (areloc->howto->bitsize)
7815 {
7816 case 8:
7817 code = BFD_RELOC_8;
7818 break;
7819 case 14:
7820 code = BFD_RELOC_14;
7821 break;
7822 case 16:
7823 code = BFD_RELOC_16;
7824 break;
7825 case 26:
7826 code = BFD_RELOC_26;
7827 break;
7828 case 32:
7829 code = BFD_RELOC_32;
7830 break;
7831 case 64:
7832 code = BFD_RELOC_64;
7833 break;
7834 default:
7835 goto fail;
7836 }
7837
7838 howto = bfd_reloc_type_lookup (abfd, code);
7839 }
7840
7841 if (howto)
7842 areloc->howto = howto;
7843 else
7844 goto fail;
7845 }
7846
7847 return TRUE;
7848
7849 fail:
7850 (*_bfd_error_handler)
7851 (_("%B: unsupported relocation type %s"),
7852 abfd, areloc->howto->name);
7853 bfd_set_error (bfd_error_bad_value);
7854 return FALSE;
7855 }
7856
7857 bfd_boolean
7858 _bfd_elf_close_and_cleanup (bfd *abfd)
7859 {
7860 struct elf_obj_tdata *tdata = elf_tdata (abfd);
7861 if (bfd_get_format (abfd) == bfd_object && tdata != NULL)
7862 {
7863 if (elf_shstrtab (abfd) != NULL)
7864 _bfd_elf_strtab_free (elf_shstrtab (abfd));
7865 _bfd_dwarf2_cleanup_debug_info (abfd, &tdata->dwarf2_find_line_info);
7866 }
7867
7868 return _bfd_generic_close_and_cleanup (abfd);
7869 }
7870
7871 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
7872 in the relocation's offset. Thus we cannot allow any sort of sanity
7873 range-checking to interfere. There is nothing else to do in processing
7874 this reloc. */
7875
7876 bfd_reloc_status_type
7877 _bfd_elf_rel_vtable_reloc_fn
7878 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
7879 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
7880 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
7881 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
7882 {
7883 return bfd_reloc_ok;
7884 }
7885 \f
7886 /* Elf core file support. Much of this only works on native
7887 toolchains, since we rely on knowing the
7888 machine-dependent procfs structure in order to pick
7889 out details about the corefile. */
7890
7891 #ifdef HAVE_SYS_PROCFS_H
7892 /* Needed for new procfs interface on sparc-solaris. */
7893 # define _STRUCTURED_PROC 1
7894 # include <sys/procfs.h>
7895 #endif
7896
7897 /* Return a PID that identifies a "thread" for threaded cores, or the
7898 PID of the main process for non-threaded cores. */
7899
7900 static int
7901 elfcore_make_pid (bfd *abfd)
7902 {
7903 int pid;
7904
7905 pid = elf_tdata (abfd)->core_lwpid;
7906 if (pid == 0)
7907 pid = elf_tdata (abfd)->core_pid;
7908
7909 return pid;
7910 }
7911
7912 /* If there isn't a section called NAME, make one, using
7913 data from SECT. Note, this function will generate a
7914 reference to NAME, so you shouldn't deallocate or
7915 overwrite it. */
7916
7917 static bfd_boolean
7918 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
7919 {
7920 asection *sect2;
7921
7922 if (bfd_get_section_by_name (abfd, name) != NULL)
7923 return TRUE;
7924
7925 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
7926 if (sect2 == NULL)
7927 return FALSE;
7928
7929 sect2->size = sect->size;
7930 sect2->filepos = sect->filepos;
7931 sect2->alignment_power = sect->alignment_power;
7932 return TRUE;
7933 }
7934
7935 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
7936 actually creates up to two pseudosections:
7937 - For the single-threaded case, a section named NAME, unless
7938 such a section already exists.
7939 - For the multi-threaded case, a section named "NAME/PID", where
7940 PID is elfcore_make_pid (abfd).
7941 Both pseudosections have identical contents. */
7942 bfd_boolean
7943 _bfd_elfcore_make_pseudosection (bfd *abfd,
7944 char *name,
7945 size_t size,
7946 ufile_ptr filepos)
7947 {
7948 char buf[100];
7949 char *threaded_name;
7950 size_t len;
7951 asection *sect;
7952
7953 /* Build the section name. */
7954
7955 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
7956 len = strlen (buf) + 1;
7957 threaded_name = (char *) bfd_alloc (abfd, len);
7958 if (threaded_name == NULL)
7959 return FALSE;
7960 memcpy (threaded_name, buf, len);
7961
7962 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
7963 SEC_HAS_CONTENTS);
7964 if (sect == NULL)
7965 return FALSE;
7966 sect->size = size;
7967 sect->filepos = filepos;
7968 sect->alignment_power = 2;
7969
7970 return elfcore_maybe_make_sect (abfd, name, sect);
7971 }
7972
7973 /* prstatus_t exists on:
7974 solaris 2.5+
7975 linux 2.[01] + glibc
7976 unixware 4.2
7977 */
7978
7979 #if defined (HAVE_PRSTATUS_T)
7980
7981 static bfd_boolean
7982 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
7983 {
7984 size_t size;
7985 int offset;
7986
7987 if (note->descsz == sizeof (prstatus_t))
7988 {
7989 prstatus_t prstat;
7990
7991 size = sizeof (prstat.pr_reg);
7992 offset = offsetof (prstatus_t, pr_reg);
7993 memcpy (&prstat, note->descdata, sizeof (prstat));
7994
7995 /* Do not overwrite the core signal if it
7996 has already been set by another thread. */
7997 if (elf_tdata (abfd)->core_signal == 0)
7998 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7999 if (elf_tdata (abfd)->core_pid == 0)
8000 elf_tdata (abfd)->core_pid = prstat.pr_pid;
8001
8002 /* pr_who exists on:
8003 solaris 2.5+
8004 unixware 4.2
8005 pr_who doesn't exist on:
8006 linux 2.[01]
8007 */
8008 #if defined (HAVE_PRSTATUS_T_PR_WHO)
8009 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
8010 #else
8011 elf_tdata (abfd)->core_lwpid = prstat.pr_pid;
8012 #endif
8013 }
8014 #if defined (HAVE_PRSTATUS32_T)
8015 else if (note->descsz == sizeof (prstatus32_t))
8016 {
8017 /* 64-bit host, 32-bit corefile */
8018 prstatus32_t prstat;
8019
8020 size = sizeof (prstat.pr_reg);
8021 offset = offsetof (prstatus32_t, pr_reg);
8022 memcpy (&prstat, note->descdata, sizeof (prstat));
8023
8024 /* Do not overwrite the core signal if it
8025 has already been set by another thread. */
8026 if (elf_tdata (abfd)->core_signal == 0)
8027 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
8028 if (elf_tdata (abfd)->core_pid == 0)
8029 elf_tdata (abfd)->core_pid = prstat.pr_pid;
8030
8031 /* pr_who exists on:
8032 solaris 2.5+
8033 unixware 4.2
8034 pr_who doesn't exist on:
8035 linux 2.[01]
8036 */
8037 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
8038 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
8039 #else
8040 elf_tdata (abfd)->core_lwpid = prstat.pr_pid;
8041 #endif
8042 }
8043 #endif /* HAVE_PRSTATUS32_T */
8044 else
8045 {
8046 /* Fail - we don't know how to handle any other
8047 note size (ie. data object type). */
8048 return TRUE;
8049 }
8050
8051 /* Make a ".reg/999" section and a ".reg" section. */
8052 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
8053 size, note->descpos + offset);
8054 }
8055 #endif /* defined (HAVE_PRSTATUS_T) */
8056
8057 /* Create a pseudosection containing the exact contents of NOTE. */
8058 static bfd_boolean
8059 elfcore_make_note_pseudosection (bfd *abfd,
8060 char *name,
8061 Elf_Internal_Note *note)
8062 {
8063 return _bfd_elfcore_make_pseudosection (abfd, name,
8064 note->descsz, note->descpos);
8065 }
8066
8067 /* There isn't a consistent prfpregset_t across platforms,
8068 but it doesn't matter, because we don't have to pick this
8069 data structure apart. */
8070
8071 static bfd_boolean
8072 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
8073 {
8074 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8075 }
8076
8077 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
8078 type of NT_PRXFPREG. Just include the whole note's contents
8079 literally. */
8080
8081 static bfd_boolean
8082 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
8083 {
8084 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
8085 }
8086
8087 /* Linux dumps the Intel XSAVE extended state in a note named "LINUX"
8088 with a note type of NT_X86_XSTATE. Just include the whole note's
8089 contents literally. */
8090
8091 static bfd_boolean
8092 elfcore_grok_xstatereg (bfd *abfd, Elf_Internal_Note *note)
8093 {
8094 return elfcore_make_note_pseudosection (abfd, ".reg-xstate", note);
8095 }
8096
8097 static bfd_boolean
8098 elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
8099 {
8100 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
8101 }
8102
8103 static bfd_boolean
8104 elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note)
8105 {
8106 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note);
8107 }
8108
8109 static bfd_boolean
8110 elfcore_grok_s390_high_gprs (bfd *abfd, Elf_Internal_Note *note)
8111 {
8112 return elfcore_make_note_pseudosection (abfd, ".reg-s390-high-gprs", note);
8113 }
8114
8115 static bfd_boolean
8116 elfcore_grok_s390_timer (bfd *abfd, Elf_Internal_Note *note)
8117 {
8118 return elfcore_make_note_pseudosection (abfd, ".reg-s390-timer", note);
8119 }
8120
8121 static bfd_boolean
8122 elfcore_grok_s390_todcmp (bfd *abfd, Elf_Internal_Note *note)
8123 {
8124 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todcmp", note);
8125 }
8126
8127 static bfd_boolean
8128 elfcore_grok_s390_todpreg (bfd *abfd, Elf_Internal_Note *note)
8129 {
8130 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todpreg", note);
8131 }
8132
8133 static bfd_boolean
8134 elfcore_grok_s390_ctrs (bfd *abfd, Elf_Internal_Note *note)
8135 {
8136 return elfcore_make_note_pseudosection (abfd, ".reg-s390-ctrs", note);
8137 }
8138
8139 static bfd_boolean
8140 elfcore_grok_s390_prefix (bfd *abfd, Elf_Internal_Note *note)
8141 {
8142 return elfcore_make_note_pseudosection (abfd, ".reg-s390-prefix", note);
8143 }
8144
8145 static bfd_boolean
8146 elfcore_grok_s390_last_break (bfd *abfd, Elf_Internal_Note *note)
8147 {
8148 return elfcore_make_note_pseudosection (abfd, ".reg-s390-last-break", note);
8149 }
8150
8151 static bfd_boolean
8152 elfcore_grok_s390_system_call (bfd *abfd, Elf_Internal_Note *note)
8153 {
8154 return elfcore_make_note_pseudosection (abfd, ".reg-s390-system-call", note);
8155 }
8156
8157 static bfd_boolean
8158 elfcore_grok_arm_vfp (bfd *abfd, Elf_Internal_Note *note)
8159 {
8160 return elfcore_make_note_pseudosection (abfd, ".reg-arm-vfp", note);
8161 }
8162
8163 #if defined (HAVE_PRPSINFO_T)
8164 typedef prpsinfo_t elfcore_psinfo_t;
8165 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
8166 typedef prpsinfo32_t elfcore_psinfo32_t;
8167 #endif
8168 #endif
8169
8170 #if defined (HAVE_PSINFO_T)
8171 typedef psinfo_t elfcore_psinfo_t;
8172 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
8173 typedef psinfo32_t elfcore_psinfo32_t;
8174 #endif
8175 #endif
8176
8177 /* return a malloc'ed copy of a string at START which is at
8178 most MAX bytes long, possibly without a terminating '\0'.
8179 the copy will always have a terminating '\0'. */
8180
8181 char *
8182 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
8183 {
8184 char *dups;
8185 char *end = (char *) memchr (start, '\0', max);
8186 size_t len;
8187
8188 if (end == NULL)
8189 len = max;
8190 else
8191 len = end - start;
8192
8193 dups = (char *) bfd_alloc (abfd, len + 1);
8194 if (dups == NULL)
8195 return NULL;
8196
8197 memcpy (dups, start, len);
8198 dups[len] = '\0';
8199
8200 return dups;
8201 }
8202
8203 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8204 static bfd_boolean
8205 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
8206 {
8207 if (note->descsz == sizeof (elfcore_psinfo_t))
8208 {
8209 elfcore_psinfo_t psinfo;
8210
8211 memcpy (&psinfo, note->descdata, sizeof (psinfo));
8212
8213 #if defined (HAVE_PSINFO_T_PR_PID) || defined (HAVE_PRPSINFO_T_PR_PID)
8214 elf_tdata (abfd)->core_pid = psinfo.pr_pid;
8215 #endif
8216 elf_tdata (abfd)->core_program
8217 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
8218 sizeof (psinfo.pr_fname));
8219
8220 elf_tdata (abfd)->core_command
8221 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
8222 sizeof (psinfo.pr_psargs));
8223 }
8224 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
8225 else if (note->descsz == sizeof (elfcore_psinfo32_t))
8226 {
8227 /* 64-bit host, 32-bit corefile */
8228 elfcore_psinfo32_t psinfo;
8229
8230 memcpy (&psinfo, note->descdata, sizeof (psinfo));
8231
8232 #if defined (HAVE_PSINFO32_T_PR_PID) || defined (HAVE_PRPSINFO32_T_PR_PID)
8233 elf_tdata (abfd)->core_pid = psinfo.pr_pid;
8234 #endif
8235 elf_tdata (abfd)->core_program
8236 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
8237 sizeof (psinfo.pr_fname));
8238
8239 elf_tdata (abfd)->core_command
8240 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
8241 sizeof (psinfo.pr_psargs));
8242 }
8243 #endif
8244
8245 else
8246 {
8247 /* Fail - we don't know how to handle any other
8248 note size (ie. data object type). */
8249 return TRUE;
8250 }
8251
8252 /* Note that for some reason, a spurious space is tacked
8253 onto the end of the args in some (at least one anyway)
8254 implementations, so strip it off if it exists. */
8255
8256 {
8257 char *command = elf_tdata (abfd)->core_command;
8258 int n = strlen (command);
8259
8260 if (0 < n && command[n - 1] == ' ')
8261 command[n - 1] = '\0';
8262 }
8263
8264 return TRUE;
8265 }
8266 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
8267
8268 #if defined (HAVE_PSTATUS_T)
8269 static bfd_boolean
8270 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
8271 {
8272 if (note->descsz == sizeof (pstatus_t)
8273 #if defined (HAVE_PXSTATUS_T)
8274 || note->descsz == sizeof (pxstatus_t)
8275 #endif
8276 )
8277 {
8278 pstatus_t pstat;
8279
8280 memcpy (&pstat, note->descdata, sizeof (pstat));
8281
8282 elf_tdata (abfd)->core_pid = pstat.pr_pid;
8283 }
8284 #if defined (HAVE_PSTATUS32_T)
8285 else if (note->descsz == sizeof (pstatus32_t))
8286 {
8287 /* 64-bit host, 32-bit corefile */
8288 pstatus32_t pstat;
8289
8290 memcpy (&pstat, note->descdata, sizeof (pstat));
8291
8292 elf_tdata (abfd)->core_pid = pstat.pr_pid;
8293 }
8294 #endif
8295 /* Could grab some more details from the "representative"
8296 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
8297 NT_LWPSTATUS note, presumably. */
8298
8299 return TRUE;
8300 }
8301 #endif /* defined (HAVE_PSTATUS_T) */
8302
8303 #if defined (HAVE_LWPSTATUS_T)
8304 static bfd_boolean
8305 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
8306 {
8307 lwpstatus_t lwpstat;
8308 char buf[100];
8309 char *name;
8310 size_t len;
8311 asection *sect;
8312
8313 if (note->descsz != sizeof (lwpstat)
8314 #if defined (HAVE_LWPXSTATUS_T)
8315 && note->descsz != sizeof (lwpxstatus_t)
8316 #endif
8317 )
8318 return TRUE;
8319
8320 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
8321
8322 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
8323 /* Do not overwrite the core signal if it has already been set by
8324 another thread. */
8325 if (elf_tdata (abfd)->core_signal == 0)
8326 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
8327
8328 /* Make a ".reg/999" section. */
8329
8330 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
8331 len = strlen (buf) + 1;
8332 name = bfd_alloc (abfd, len);
8333 if (name == NULL)
8334 return FALSE;
8335 memcpy (name, buf, len);
8336
8337 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8338 if (sect == NULL)
8339 return FALSE;
8340
8341 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8342 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
8343 sect->filepos = note->descpos
8344 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
8345 #endif
8346
8347 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8348 sect->size = sizeof (lwpstat.pr_reg);
8349 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
8350 #endif
8351
8352 sect->alignment_power = 2;
8353
8354 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
8355 return FALSE;
8356
8357 /* Make a ".reg2/999" section */
8358
8359 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
8360 len = strlen (buf) + 1;
8361 name = bfd_alloc (abfd, len);
8362 if (name == NULL)
8363 return FALSE;
8364 memcpy (name, buf, len);
8365
8366 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8367 if (sect == NULL)
8368 return FALSE;
8369
8370 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8371 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
8372 sect->filepos = note->descpos
8373 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
8374 #endif
8375
8376 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
8377 sect->size = sizeof (lwpstat.pr_fpreg);
8378 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
8379 #endif
8380
8381 sect->alignment_power = 2;
8382
8383 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
8384 }
8385 #endif /* defined (HAVE_LWPSTATUS_T) */
8386
8387 static bfd_boolean
8388 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
8389 {
8390 char buf[30];
8391 char *name;
8392 size_t len;
8393 asection *sect;
8394 int type;
8395 int is_active_thread;
8396 bfd_vma base_addr;
8397
8398 if (note->descsz < 728)
8399 return TRUE;
8400
8401 if (! CONST_STRNEQ (note->namedata, "win32"))
8402 return TRUE;
8403
8404 type = bfd_get_32 (abfd, note->descdata);
8405
8406 switch (type)
8407 {
8408 case 1 /* NOTE_INFO_PROCESS */:
8409 /* FIXME: need to add ->core_command. */
8410 /* process_info.pid */
8411 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 8);
8412 /* process_info.signal */
8413 elf_tdata (abfd)->core_signal = bfd_get_32 (abfd, note->descdata + 12);
8414 break;
8415
8416 case 2 /* NOTE_INFO_THREAD */:
8417 /* Make a ".reg/999" section. */
8418 /* thread_info.tid */
8419 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 8));
8420
8421 len = strlen (buf) + 1;
8422 name = (char *) bfd_alloc (abfd, len);
8423 if (name == NULL)
8424 return FALSE;
8425
8426 memcpy (name, buf, len);
8427
8428 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8429 if (sect == NULL)
8430 return FALSE;
8431
8432 /* sizeof (thread_info.thread_context) */
8433 sect->size = 716;
8434 /* offsetof (thread_info.thread_context) */
8435 sect->filepos = note->descpos + 12;
8436 sect->alignment_power = 2;
8437
8438 /* thread_info.is_active_thread */
8439 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
8440
8441 if (is_active_thread)
8442 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
8443 return FALSE;
8444 break;
8445
8446 case 3 /* NOTE_INFO_MODULE */:
8447 /* Make a ".module/xxxxxxxx" section. */
8448 /* module_info.base_address */
8449 base_addr = bfd_get_32 (abfd, note->descdata + 4);
8450 sprintf (buf, ".module/%08lx", (unsigned long) base_addr);
8451
8452 len = strlen (buf) + 1;
8453 name = (char *) bfd_alloc (abfd, len);
8454 if (name == NULL)
8455 return FALSE;
8456
8457 memcpy (name, buf, len);
8458
8459 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8460
8461 if (sect == NULL)
8462 return FALSE;
8463
8464 sect->size = note->descsz;
8465 sect->filepos = note->descpos;
8466 sect->alignment_power = 2;
8467 break;
8468
8469 default:
8470 return TRUE;
8471 }
8472
8473 return TRUE;
8474 }
8475
8476 static bfd_boolean
8477 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
8478 {
8479 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8480
8481 switch (note->type)
8482 {
8483 default:
8484 return TRUE;
8485
8486 case NT_PRSTATUS:
8487 if (bed->elf_backend_grok_prstatus)
8488 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
8489 return TRUE;
8490 #if defined (HAVE_PRSTATUS_T)
8491 return elfcore_grok_prstatus (abfd, note);
8492 #else
8493 return TRUE;
8494 #endif
8495
8496 #if defined (HAVE_PSTATUS_T)
8497 case NT_PSTATUS:
8498 return elfcore_grok_pstatus (abfd, note);
8499 #endif
8500
8501 #if defined (HAVE_LWPSTATUS_T)
8502 case NT_LWPSTATUS:
8503 return elfcore_grok_lwpstatus (abfd, note);
8504 #endif
8505
8506 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
8507 return elfcore_grok_prfpreg (abfd, note);
8508
8509 case NT_WIN32PSTATUS:
8510 return elfcore_grok_win32pstatus (abfd, note);
8511
8512 case NT_PRXFPREG: /* Linux SSE extension */
8513 if (note->namesz == 6
8514 && strcmp (note->namedata, "LINUX") == 0)
8515 return elfcore_grok_prxfpreg (abfd, note);
8516 else
8517 return TRUE;
8518
8519 case NT_X86_XSTATE: /* Linux XSAVE extension */
8520 if (note->namesz == 6
8521 && strcmp (note->namedata, "LINUX") == 0)
8522 return elfcore_grok_xstatereg (abfd, note);
8523 else
8524 return TRUE;
8525
8526 case NT_PPC_VMX:
8527 if (note->namesz == 6
8528 && strcmp (note->namedata, "LINUX") == 0)
8529 return elfcore_grok_ppc_vmx (abfd, note);
8530 else
8531 return TRUE;
8532
8533 case NT_PPC_VSX:
8534 if (note->namesz == 6
8535 && strcmp (note->namedata, "LINUX") == 0)
8536 return elfcore_grok_ppc_vsx (abfd, note);
8537 else
8538 return TRUE;
8539
8540 case NT_S390_HIGH_GPRS:
8541 if (note->namesz == 6
8542 && strcmp (note->namedata, "LINUX") == 0)
8543 return elfcore_grok_s390_high_gprs (abfd, note);
8544 else
8545 return TRUE;
8546
8547 case NT_S390_TIMER:
8548 if (note->namesz == 6
8549 && strcmp (note->namedata, "LINUX") == 0)
8550 return elfcore_grok_s390_timer (abfd, note);
8551 else
8552 return TRUE;
8553
8554 case NT_S390_TODCMP:
8555 if (note->namesz == 6
8556 && strcmp (note->namedata, "LINUX") == 0)
8557 return elfcore_grok_s390_todcmp (abfd, note);
8558 else
8559 return TRUE;
8560
8561 case NT_S390_TODPREG:
8562 if (note->namesz == 6
8563 && strcmp (note->namedata, "LINUX") == 0)
8564 return elfcore_grok_s390_todpreg (abfd, note);
8565 else
8566 return TRUE;
8567
8568 case NT_S390_CTRS:
8569 if (note->namesz == 6
8570 && strcmp (note->namedata, "LINUX") == 0)
8571 return elfcore_grok_s390_ctrs (abfd, note);
8572 else
8573 return TRUE;
8574
8575 case NT_S390_PREFIX:
8576 if (note->namesz == 6
8577 && strcmp (note->namedata, "LINUX") == 0)
8578 return elfcore_grok_s390_prefix (abfd, note);
8579 else
8580 return TRUE;
8581
8582 case NT_S390_LAST_BREAK:
8583 if (note->namesz == 6
8584 && strcmp (note->namedata, "LINUX") == 0)
8585 return elfcore_grok_s390_last_break (abfd, note);
8586 else
8587 return TRUE;
8588
8589 case NT_S390_SYSTEM_CALL:
8590 if (note->namesz == 6
8591 && strcmp (note->namedata, "LINUX") == 0)
8592 return elfcore_grok_s390_system_call (abfd, note);
8593 else
8594 return TRUE;
8595
8596 case NT_ARM_VFP:
8597 if (note->namesz == 6
8598 && strcmp (note->namedata, "LINUX") == 0)
8599 return elfcore_grok_arm_vfp (abfd, note);
8600 else
8601 return TRUE;
8602
8603 case NT_PRPSINFO:
8604 case NT_PSINFO:
8605 if (bed->elf_backend_grok_psinfo)
8606 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
8607 return TRUE;
8608 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8609 return elfcore_grok_psinfo (abfd, note);
8610 #else
8611 return TRUE;
8612 #endif
8613
8614 case NT_AUXV:
8615 {
8616 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
8617 SEC_HAS_CONTENTS);
8618
8619 if (sect == NULL)
8620 return FALSE;
8621 sect->size = note->descsz;
8622 sect->filepos = note->descpos;
8623 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8624
8625 return TRUE;
8626 }
8627
8628 case NT_SIGINFO:
8629 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.siginfo",
8630 note);
8631 }
8632 }
8633
8634 static bfd_boolean
8635 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
8636 {
8637 elf_tdata (abfd)->build_id_size = note->descsz;
8638 elf_tdata (abfd)->build_id = (bfd_byte *) bfd_alloc (abfd, note->descsz);
8639 if (elf_tdata (abfd)->build_id == NULL)
8640 return FALSE;
8641
8642 memcpy (elf_tdata (abfd)->build_id, note->descdata, note->descsz);
8643
8644 return TRUE;
8645 }
8646
8647 static bfd_boolean
8648 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
8649 {
8650 switch (note->type)
8651 {
8652 default:
8653 return TRUE;
8654
8655 case NT_GNU_BUILD_ID:
8656 return elfobj_grok_gnu_build_id (abfd, note);
8657 }
8658 }
8659
8660 static bfd_boolean
8661 elfobj_grok_stapsdt_note_1 (bfd *abfd, Elf_Internal_Note *note)
8662 {
8663 struct sdt_note *cur =
8664 (struct sdt_note *) bfd_alloc (abfd, sizeof (struct sdt_note)
8665 + note->descsz);
8666
8667 cur->next = (struct sdt_note *) (elf_tdata (abfd))->sdt_note_head;
8668 cur->size = (bfd_size_type) note->descsz;
8669 memcpy (cur->data, note->descdata, note->descsz);
8670
8671 elf_tdata (abfd)->sdt_note_head = cur;
8672
8673 return TRUE;
8674 }
8675
8676 static bfd_boolean
8677 elfobj_grok_stapsdt_note (bfd *abfd, Elf_Internal_Note *note)
8678 {
8679 switch (note->type)
8680 {
8681 case NT_STAPSDT:
8682 return elfobj_grok_stapsdt_note_1 (abfd, note);
8683
8684 default:
8685 return TRUE;
8686 }
8687 }
8688
8689 static bfd_boolean
8690 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
8691 {
8692 char *cp;
8693
8694 cp = strchr (note->namedata, '@');
8695 if (cp != NULL)
8696 {
8697 *lwpidp = atoi(cp + 1);
8698 return TRUE;
8699 }
8700 return FALSE;
8701 }
8702
8703 static bfd_boolean
8704 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
8705 {
8706 /* Signal number at offset 0x08. */
8707 elf_tdata (abfd)->core_signal
8708 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
8709
8710 /* Process ID at offset 0x50. */
8711 elf_tdata (abfd)->core_pid
8712 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
8713
8714 /* Command name at 0x7c (max 32 bytes, including nul). */
8715 elf_tdata (abfd)->core_command
8716 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
8717
8718 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
8719 note);
8720 }
8721
8722 static bfd_boolean
8723 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
8724 {
8725 int lwp;
8726
8727 if (elfcore_netbsd_get_lwpid (note, &lwp))
8728 elf_tdata (abfd)->core_lwpid = lwp;
8729
8730 if (note->type == NT_NETBSDCORE_PROCINFO)
8731 {
8732 /* NetBSD-specific core "procinfo". Note that we expect to
8733 find this note before any of the others, which is fine,
8734 since the kernel writes this note out first when it
8735 creates a core file. */
8736
8737 return elfcore_grok_netbsd_procinfo (abfd, note);
8738 }
8739
8740 /* As of Jan 2002 there are no other machine-independent notes
8741 defined for NetBSD core files. If the note type is less
8742 than the start of the machine-dependent note types, we don't
8743 understand it. */
8744
8745 if (note->type < NT_NETBSDCORE_FIRSTMACH)
8746 return TRUE;
8747
8748
8749 switch (bfd_get_arch (abfd))
8750 {
8751 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
8752 PT_GETFPREGS == mach+2. */
8753
8754 case bfd_arch_alpha:
8755 case bfd_arch_sparc:
8756 switch (note->type)
8757 {
8758 case NT_NETBSDCORE_FIRSTMACH+0:
8759 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8760
8761 case NT_NETBSDCORE_FIRSTMACH+2:
8762 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8763
8764 default:
8765 return TRUE;
8766 }
8767
8768 /* On all other arch's, PT_GETREGS == mach+1 and
8769 PT_GETFPREGS == mach+3. */
8770
8771 default:
8772 switch (note->type)
8773 {
8774 case NT_NETBSDCORE_FIRSTMACH+1:
8775 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8776
8777 case NT_NETBSDCORE_FIRSTMACH+3:
8778 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8779
8780 default:
8781 return TRUE;
8782 }
8783 }
8784 /* NOTREACHED */
8785 }
8786
8787 static bfd_boolean
8788 elfcore_grok_openbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
8789 {
8790 /* Signal number at offset 0x08. */
8791 elf_tdata (abfd)->core_signal
8792 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
8793
8794 /* Process ID at offset 0x20. */
8795 elf_tdata (abfd)->core_pid
8796 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x20);
8797
8798 /* Command name at 0x48 (max 32 bytes, including nul). */
8799 elf_tdata (abfd)->core_command
8800 = _bfd_elfcore_strndup (abfd, note->descdata + 0x48, 31);
8801
8802 return TRUE;
8803 }
8804
8805 static bfd_boolean
8806 elfcore_grok_openbsd_note (bfd *abfd, Elf_Internal_Note *note)
8807 {
8808 if (note->type == NT_OPENBSD_PROCINFO)
8809 return elfcore_grok_openbsd_procinfo (abfd, note);
8810
8811 if (note->type == NT_OPENBSD_REGS)
8812 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8813
8814 if (note->type == NT_OPENBSD_FPREGS)
8815 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8816
8817 if (note->type == NT_OPENBSD_XFPREGS)
8818 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
8819
8820 if (note->type == NT_OPENBSD_AUXV)
8821 {
8822 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
8823 SEC_HAS_CONTENTS);
8824
8825 if (sect == NULL)
8826 return FALSE;
8827 sect->size = note->descsz;
8828 sect->filepos = note->descpos;
8829 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8830
8831 return TRUE;
8832 }
8833
8834 if (note->type == NT_OPENBSD_WCOOKIE)
8835 {
8836 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".wcookie",
8837 SEC_HAS_CONTENTS);
8838
8839 if (sect == NULL)
8840 return FALSE;
8841 sect->size = note->descsz;
8842 sect->filepos = note->descpos;
8843 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8844
8845 return TRUE;
8846 }
8847
8848 return TRUE;
8849 }
8850
8851 static bfd_boolean
8852 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
8853 {
8854 void *ddata = note->descdata;
8855 char buf[100];
8856 char *name;
8857 asection *sect;
8858 short sig;
8859 unsigned flags;
8860
8861 /* nto_procfs_status 'pid' field is at offset 0. */
8862 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
8863
8864 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
8865 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
8866
8867 /* nto_procfs_status 'flags' field is at offset 8. */
8868 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
8869
8870 /* nto_procfs_status 'what' field is at offset 14. */
8871 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
8872 {
8873 elf_tdata (abfd)->core_signal = sig;
8874 elf_tdata (abfd)->core_lwpid = *tid;
8875 }
8876
8877 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
8878 do not come from signals so we make sure we set the current
8879 thread just in case. */
8880 if (flags & 0x00000080)
8881 elf_tdata (abfd)->core_lwpid = *tid;
8882
8883 /* Make a ".qnx_core_status/%d" section. */
8884 sprintf (buf, ".qnx_core_status/%ld", *tid);
8885
8886 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
8887 if (name == NULL)
8888 return FALSE;
8889 strcpy (name, buf);
8890
8891 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8892 if (sect == NULL)
8893 return FALSE;
8894
8895 sect->size = note->descsz;
8896 sect->filepos = note->descpos;
8897 sect->alignment_power = 2;
8898
8899 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
8900 }
8901
8902 static bfd_boolean
8903 elfcore_grok_nto_regs (bfd *abfd,
8904 Elf_Internal_Note *note,
8905 long tid,
8906 char *base)
8907 {
8908 char buf[100];
8909 char *name;
8910 asection *sect;
8911
8912 /* Make a "(base)/%d" section. */
8913 sprintf (buf, "%s/%ld", base, tid);
8914
8915 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
8916 if (name == NULL)
8917 return FALSE;
8918 strcpy (name, buf);
8919
8920 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8921 if (sect == NULL)
8922 return FALSE;
8923
8924 sect->size = note->descsz;
8925 sect->filepos = note->descpos;
8926 sect->alignment_power = 2;
8927
8928 /* This is the current thread. */
8929 if (elf_tdata (abfd)->core_lwpid == tid)
8930 return elfcore_maybe_make_sect (abfd, base, sect);
8931
8932 return TRUE;
8933 }
8934
8935 #define BFD_QNT_CORE_INFO 7
8936 #define BFD_QNT_CORE_STATUS 8
8937 #define BFD_QNT_CORE_GREG 9
8938 #define BFD_QNT_CORE_FPREG 10
8939
8940 static bfd_boolean
8941 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
8942 {
8943 /* Every GREG section has a STATUS section before it. Store the
8944 tid from the previous call to pass down to the next gregs
8945 function. */
8946 static long tid = 1;
8947
8948 switch (note->type)
8949 {
8950 case BFD_QNT_CORE_INFO:
8951 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
8952 case BFD_QNT_CORE_STATUS:
8953 return elfcore_grok_nto_status (abfd, note, &tid);
8954 case BFD_QNT_CORE_GREG:
8955 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
8956 case BFD_QNT_CORE_FPREG:
8957 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
8958 default:
8959 return TRUE;
8960 }
8961 }
8962
8963 static bfd_boolean
8964 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
8965 {
8966 char *name;
8967 asection *sect;
8968 size_t len;
8969
8970 /* Use note name as section name. */
8971 len = note->namesz;
8972 name = (char *) bfd_alloc (abfd, len);
8973 if (name == NULL)
8974 return FALSE;
8975 memcpy (name, note->namedata, len);
8976 name[len - 1] = '\0';
8977
8978 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8979 if (sect == NULL)
8980 return FALSE;
8981
8982 sect->size = note->descsz;
8983 sect->filepos = note->descpos;
8984 sect->alignment_power = 1;
8985
8986 return TRUE;
8987 }
8988
8989 /* Function: elfcore_write_note
8990
8991 Inputs:
8992 buffer to hold note, and current size of buffer
8993 name of note
8994 type of note
8995 data for note
8996 size of data for note
8997
8998 Writes note to end of buffer. ELF64 notes are written exactly as
8999 for ELF32, despite the current (as of 2006) ELF gabi specifying
9000 that they ought to have 8-byte namesz and descsz field, and have
9001 8-byte alignment. Other writers, eg. Linux kernel, do the same.
9002
9003 Return:
9004 Pointer to realloc'd buffer, *BUFSIZ updated. */
9005
9006 char *
9007 elfcore_write_note (bfd *abfd,
9008 char *buf,
9009 int *bufsiz,
9010 const char *name,
9011 int type,
9012 const void *input,
9013 int size)
9014 {
9015 Elf_External_Note *xnp;
9016 size_t namesz;
9017 size_t newspace;
9018 char *dest;
9019
9020 namesz = 0;
9021 if (name != NULL)
9022 namesz = strlen (name) + 1;
9023
9024 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
9025
9026 buf = (char *) realloc (buf, *bufsiz + newspace);
9027 if (buf == NULL)
9028 return buf;
9029 dest = buf + *bufsiz;
9030 *bufsiz += newspace;
9031 xnp = (Elf_External_Note *) dest;
9032 H_PUT_32 (abfd, namesz, xnp->namesz);
9033 H_PUT_32 (abfd, size, xnp->descsz);
9034 H_PUT_32 (abfd, type, xnp->type);
9035 dest = xnp->name;
9036 if (name != NULL)
9037 {
9038 memcpy (dest, name, namesz);
9039 dest += namesz;
9040 while (namesz & 3)
9041 {
9042 *dest++ = '\0';
9043 ++namesz;
9044 }
9045 }
9046 memcpy (dest, input, size);
9047 dest += size;
9048 while (size & 3)
9049 {
9050 *dest++ = '\0';
9051 ++size;
9052 }
9053 return buf;
9054 }
9055
9056 char *
9057 elfcore_write_prpsinfo (bfd *abfd,
9058 char *buf,
9059 int *bufsiz,
9060 const char *fname,
9061 const char *psargs)
9062 {
9063 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9064
9065 if (bed->elf_backend_write_core_note != NULL)
9066 {
9067 char *ret;
9068 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
9069 NT_PRPSINFO, fname, psargs);
9070 if (ret != NULL)
9071 return ret;
9072 }
9073
9074 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
9075 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
9076 if (bed->s->elfclass == ELFCLASS32)
9077 {
9078 #if defined (HAVE_PSINFO32_T)
9079 psinfo32_t data;
9080 int note_type = NT_PSINFO;
9081 #else
9082 prpsinfo32_t data;
9083 int note_type = NT_PRPSINFO;
9084 #endif
9085
9086 memset (&data, 0, sizeof (data));
9087 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
9088 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
9089 return elfcore_write_note (abfd, buf, bufsiz,
9090 "CORE", note_type, &data, sizeof (data));
9091 }
9092 else
9093 #endif
9094 {
9095 #if defined (HAVE_PSINFO_T)
9096 psinfo_t data;
9097 int note_type = NT_PSINFO;
9098 #else
9099 prpsinfo_t data;
9100 int note_type = NT_PRPSINFO;
9101 #endif
9102
9103 memset (&data, 0, sizeof (data));
9104 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
9105 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
9106 return elfcore_write_note (abfd, buf, bufsiz,
9107 "CORE", note_type, &data, sizeof (data));
9108 }
9109 #endif /* PSINFO_T or PRPSINFO_T */
9110
9111 free (buf);
9112 return NULL;
9113 }
9114
9115 char *
9116 elfcore_write_prstatus (bfd *abfd,
9117 char *buf,
9118 int *bufsiz,
9119 long pid,
9120 int cursig,
9121 const void *gregs)
9122 {
9123 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9124
9125 if (bed->elf_backend_write_core_note != NULL)
9126 {
9127 char *ret;
9128 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
9129 NT_PRSTATUS,
9130 pid, cursig, gregs);
9131 if (ret != NULL)
9132 return ret;
9133 }
9134
9135 #if defined (HAVE_PRSTATUS_T)
9136 #if defined (HAVE_PRSTATUS32_T)
9137 if (bed->s->elfclass == ELFCLASS32)
9138 {
9139 prstatus32_t prstat;
9140
9141 memset (&prstat, 0, sizeof (prstat));
9142 prstat.pr_pid = pid;
9143 prstat.pr_cursig = cursig;
9144 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
9145 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
9146 NT_PRSTATUS, &prstat, sizeof (prstat));
9147 }
9148 else
9149 #endif
9150 {
9151 prstatus_t prstat;
9152
9153 memset (&prstat, 0, sizeof (prstat));
9154 prstat.pr_pid = pid;
9155 prstat.pr_cursig = cursig;
9156 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
9157 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
9158 NT_PRSTATUS, &prstat, sizeof (prstat));
9159 }
9160 #endif /* HAVE_PRSTATUS_T */
9161
9162 free (buf);
9163 return NULL;
9164 }
9165
9166 #if defined (HAVE_LWPSTATUS_T)
9167 char *
9168 elfcore_write_lwpstatus (bfd *abfd,
9169 char *buf,
9170 int *bufsiz,
9171 long pid,
9172 int cursig,
9173 const void *gregs)
9174 {
9175 lwpstatus_t lwpstat;
9176 const char *note_name = "CORE";
9177
9178 memset (&lwpstat, 0, sizeof (lwpstat));
9179 lwpstat.pr_lwpid = pid >> 16;
9180 lwpstat.pr_cursig = cursig;
9181 #if defined (HAVE_LWPSTATUS_T_PR_REG)
9182 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
9183 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9184 #if !defined(gregs)
9185 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
9186 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
9187 #else
9188 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
9189 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
9190 #endif
9191 #endif
9192 return elfcore_write_note (abfd, buf, bufsiz, note_name,
9193 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
9194 }
9195 #endif /* HAVE_LWPSTATUS_T */
9196
9197 #if defined (HAVE_PSTATUS_T)
9198 char *
9199 elfcore_write_pstatus (bfd *abfd,
9200 char *buf,
9201 int *bufsiz,
9202 long pid,
9203 int cursig ATTRIBUTE_UNUSED,
9204 const void *gregs ATTRIBUTE_UNUSED)
9205 {
9206 const char *note_name = "CORE";
9207 #if defined (HAVE_PSTATUS32_T)
9208 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9209
9210 if (bed->s->elfclass == ELFCLASS32)
9211 {
9212 pstatus32_t pstat;
9213
9214 memset (&pstat, 0, sizeof (pstat));
9215 pstat.pr_pid = pid & 0xffff;
9216 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
9217 NT_PSTATUS, &pstat, sizeof (pstat));
9218 return buf;
9219 }
9220 else
9221 #endif
9222 {
9223 pstatus_t pstat;
9224
9225 memset (&pstat, 0, sizeof (pstat));
9226 pstat.pr_pid = pid & 0xffff;
9227 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
9228 NT_PSTATUS, &pstat, sizeof (pstat));
9229 return buf;
9230 }
9231 }
9232 #endif /* HAVE_PSTATUS_T */
9233
9234 char *
9235 elfcore_write_prfpreg (bfd *abfd,
9236 char *buf,
9237 int *bufsiz,
9238 const void *fpregs,
9239 int size)
9240 {
9241 const char *note_name = "CORE";
9242 return elfcore_write_note (abfd, buf, bufsiz,
9243 note_name, NT_FPREGSET, fpregs, size);
9244 }
9245
9246 char *
9247 elfcore_write_prxfpreg (bfd *abfd,
9248 char *buf,
9249 int *bufsiz,
9250 const void *xfpregs,
9251 int size)
9252 {
9253 char *note_name = "LINUX";
9254 return elfcore_write_note (abfd, buf, bufsiz,
9255 note_name, NT_PRXFPREG, xfpregs, size);
9256 }
9257
9258 char *
9259 elfcore_write_xstatereg (bfd *abfd, char *buf, int *bufsiz,
9260 const void *xfpregs, int size)
9261 {
9262 char *note_name = "LINUX";
9263 return elfcore_write_note (abfd, buf, bufsiz,
9264 note_name, NT_X86_XSTATE, xfpregs, size);
9265 }
9266
9267 char *
9268 elfcore_write_ppc_vmx (bfd *abfd,
9269 char *buf,
9270 int *bufsiz,
9271 const void *ppc_vmx,
9272 int size)
9273 {
9274 char *note_name = "LINUX";
9275 return elfcore_write_note (abfd, buf, bufsiz,
9276 note_name, NT_PPC_VMX, ppc_vmx, size);
9277 }
9278
9279 char *
9280 elfcore_write_ppc_vsx (bfd *abfd,
9281 char *buf,
9282 int *bufsiz,
9283 const void *ppc_vsx,
9284 int size)
9285 {
9286 char *note_name = "LINUX";
9287 return elfcore_write_note (abfd, buf, bufsiz,
9288 note_name, NT_PPC_VSX, ppc_vsx, size);
9289 }
9290
9291 static char *
9292 elfcore_write_s390_high_gprs (bfd *abfd,
9293 char *buf,
9294 int *bufsiz,
9295 const void *s390_high_gprs,
9296 int size)
9297 {
9298 char *note_name = "LINUX";
9299 return elfcore_write_note (abfd, buf, bufsiz,
9300 note_name, NT_S390_HIGH_GPRS,
9301 s390_high_gprs, size);
9302 }
9303
9304 char *
9305 elfcore_write_s390_timer (bfd *abfd,
9306 char *buf,
9307 int *bufsiz,
9308 const void *s390_timer,
9309 int size)
9310 {
9311 char *note_name = "LINUX";
9312 return elfcore_write_note (abfd, buf, bufsiz,
9313 note_name, NT_S390_TIMER, s390_timer, size);
9314 }
9315
9316 char *
9317 elfcore_write_s390_todcmp (bfd *abfd,
9318 char *buf,
9319 int *bufsiz,
9320 const void *s390_todcmp,
9321 int size)
9322 {
9323 char *note_name = "LINUX";
9324 return elfcore_write_note (abfd, buf, bufsiz,
9325 note_name, NT_S390_TODCMP, s390_todcmp, size);
9326 }
9327
9328 char *
9329 elfcore_write_s390_todpreg (bfd *abfd,
9330 char *buf,
9331 int *bufsiz,
9332 const void *s390_todpreg,
9333 int size)
9334 {
9335 char *note_name = "LINUX";
9336 return elfcore_write_note (abfd, buf, bufsiz,
9337 note_name, NT_S390_TODPREG, s390_todpreg, size);
9338 }
9339
9340 char *
9341 elfcore_write_s390_ctrs (bfd *abfd,
9342 char *buf,
9343 int *bufsiz,
9344 const void *s390_ctrs,
9345 int size)
9346 {
9347 char *note_name = "LINUX";
9348 return elfcore_write_note (abfd, buf, bufsiz,
9349 note_name, NT_S390_CTRS, s390_ctrs, size);
9350 }
9351
9352 char *
9353 elfcore_write_s390_prefix (bfd *abfd,
9354 char *buf,
9355 int *bufsiz,
9356 const void *s390_prefix,
9357 int size)
9358 {
9359 char *note_name = "LINUX";
9360 return elfcore_write_note (abfd, buf, bufsiz,
9361 note_name, NT_S390_PREFIX, s390_prefix, size);
9362 }
9363
9364 char *
9365 elfcore_write_s390_last_break (bfd *abfd,
9366 char *buf,
9367 int *bufsiz,
9368 const void *s390_last_break,
9369 int size)
9370 {
9371 char *note_name = "LINUX";
9372 return elfcore_write_note (abfd, buf, bufsiz,
9373 note_name, NT_S390_LAST_BREAK,
9374 s390_last_break, size);
9375 }
9376
9377 char *
9378 elfcore_write_s390_system_call (bfd *abfd,
9379 char *buf,
9380 int *bufsiz,
9381 const void *s390_system_call,
9382 int size)
9383 {
9384 char *note_name = "LINUX";
9385 return elfcore_write_note (abfd, buf, bufsiz,
9386 note_name, NT_S390_SYSTEM_CALL,
9387 s390_system_call, size);
9388 }
9389
9390 char *
9391 elfcore_write_arm_vfp (bfd *abfd,
9392 char *buf,
9393 int *bufsiz,
9394 const void *arm_vfp,
9395 int size)
9396 {
9397 char *note_name = "LINUX";
9398 return elfcore_write_note (abfd, buf, bufsiz,
9399 note_name, NT_ARM_VFP, arm_vfp, size);
9400 }
9401
9402 char *
9403 elfcore_write_register_note (bfd *abfd,
9404 char *buf,
9405 int *bufsiz,
9406 const char *section,
9407 const void *data,
9408 int size)
9409 {
9410 if (strcmp (section, ".reg2") == 0)
9411 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
9412 if (strcmp (section, ".reg-xfp") == 0)
9413 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
9414 if (strcmp (section, ".reg-xstate") == 0)
9415 return elfcore_write_xstatereg (abfd, buf, bufsiz, data, size);
9416 if (strcmp (section, ".reg-ppc-vmx") == 0)
9417 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
9418 if (strcmp (section, ".reg-ppc-vsx") == 0)
9419 return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size);
9420 if (strcmp (section, ".reg-s390-high-gprs") == 0)
9421 return elfcore_write_s390_high_gprs (abfd, buf, bufsiz, data, size);
9422 if (strcmp (section, ".reg-s390-timer") == 0)
9423 return elfcore_write_s390_timer (abfd, buf, bufsiz, data, size);
9424 if (strcmp (section, ".reg-s390-todcmp") == 0)
9425 return elfcore_write_s390_todcmp (abfd, buf, bufsiz, data, size);
9426 if (strcmp (section, ".reg-s390-todpreg") == 0)
9427 return elfcore_write_s390_todpreg (abfd, buf, bufsiz, data, size);
9428 if (strcmp (section, ".reg-s390-ctrs") == 0)
9429 return elfcore_write_s390_ctrs (abfd, buf, bufsiz, data, size);
9430 if (strcmp (section, ".reg-s390-prefix") == 0)
9431 return elfcore_write_s390_prefix (abfd, buf, bufsiz, data, size);
9432 if (strcmp (section, ".reg-s390-last-break") == 0)
9433 return elfcore_write_s390_last_break (abfd, buf, bufsiz, data, size);
9434 if (strcmp (section, ".reg-s390-system-call") == 0)
9435 return elfcore_write_s390_system_call (abfd, buf, bufsiz, data, size);
9436 if (strcmp (section, ".reg-arm-vfp") == 0)
9437 return elfcore_write_arm_vfp (abfd, buf, bufsiz, data, size);
9438 return NULL;
9439 }
9440
9441 static bfd_boolean
9442 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset)
9443 {
9444 char *p;
9445
9446 p = buf;
9447 while (p < buf + size)
9448 {
9449 /* FIXME: bad alignment assumption. */
9450 Elf_External_Note *xnp = (Elf_External_Note *) p;
9451 Elf_Internal_Note in;
9452
9453 if (offsetof (Elf_External_Note, name) > buf - p + size)
9454 return FALSE;
9455
9456 in.type = H_GET_32 (abfd, xnp->type);
9457
9458 in.namesz = H_GET_32 (abfd, xnp->namesz);
9459 in.namedata = xnp->name;
9460 if (in.namesz > buf - in.namedata + size)
9461 return FALSE;
9462
9463 in.descsz = H_GET_32 (abfd, xnp->descsz);
9464 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
9465 in.descpos = offset + (in.descdata - buf);
9466 if (in.descsz != 0
9467 && (in.descdata >= buf + size
9468 || in.descsz > buf - in.descdata + size))
9469 return FALSE;
9470
9471 switch (bfd_get_format (abfd))
9472 {
9473 default:
9474 return TRUE;
9475
9476 case bfd_core:
9477 if (CONST_STRNEQ (in.namedata, "NetBSD-CORE"))
9478 {
9479 if (! elfcore_grok_netbsd_note (abfd, &in))
9480 return FALSE;
9481 }
9482 else if (CONST_STRNEQ (in.namedata, "OpenBSD"))
9483 {
9484 if (! elfcore_grok_openbsd_note (abfd, &in))
9485 return FALSE;
9486 }
9487 else if (CONST_STRNEQ (in.namedata, "QNX"))
9488 {
9489 if (! elfcore_grok_nto_note (abfd, &in))
9490 return FALSE;
9491 }
9492 else if (CONST_STRNEQ (in.namedata, "SPU/"))
9493 {
9494 if (! elfcore_grok_spu_note (abfd, &in))
9495 return FALSE;
9496 }
9497 else
9498 {
9499 if (! elfcore_grok_note (abfd, &in))
9500 return FALSE;
9501 }
9502 break;
9503
9504 case bfd_object:
9505 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
9506 {
9507 if (! elfobj_grok_gnu_note (abfd, &in))
9508 return FALSE;
9509 }
9510 else if (in.namesz == sizeof "stapsdt"
9511 && strcmp (in.namedata, "stapsdt") == 0)
9512 {
9513 if (! elfobj_grok_stapsdt_note (abfd, &in))
9514 return FALSE;
9515 }
9516 break;
9517 }
9518
9519 p = in.descdata + BFD_ALIGN (in.descsz, 4);
9520 }
9521
9522 return TRUE;
9523 }
9524
9525 static bfd_boolean
9526 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
9527 {
9528 char *buf;
9529
9530 if (size <= 0)
9531 return TRUE;
9532
9533 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
9534 return FALSE;
9535
9536 buf = (char *) bfd_malloc (size);
9537 if (buf == NULL)
9538 return FALSE;
9539
9540 if (bfd_bread (buf, size, abfd) != size
9541 || !elf_parse_notes (abfd, buf, size, offset))
9542 {
9543 free (buf);
9544 return FALSE;
9545 }
9546
9547 free (buf);
9548 return TRUE;
9549 }
9550 \f
9551 /* Providing external access to the ELF program header table. */
9552
9553 /* Return an upper bound on the number of bytes required to store a
9554 copy of ABFD's program header table entries. Return -1 if an error
9555 occurs; bfd_get_error will return an appropriate code. */
9556
9557 long
9558 bfd_get_elf_phdr_upper_bound (bfd *abfd)
9559 {
9560 if (abfd->xvec->flavour != bfd_target_elf_flavour)
9561 {
9562 bfd_set_error (bfd_error_wrong_format);
9563 return -1;
9564 }
9565
9566 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
9567 }
9568
9569 /* Copy ABFD's program header table entries to *PHDRS. The entries
9570 will be stored as an array of Elf_Internal_Phdr structures, as
9571 defined in include/elf/internal.h. To find out how large the
9572 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
9573
9574 Return the number of program header table entries read, or -1 if an
9575 error occurs; bfd_get_error will return an appropriate code. */
9576
9577 int
9578 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
9579 {
9580 int num_phdrs;
9581
9582 if (abfd->xvec->flavour != bfd_target_elf_flavour)
9583 {
9584 bfd_set_error (bfd_error_wrong_format);
9585 return -1;
9586 }
9587
9588 num_phdrs = elf_elfheader (abfd)->e_phnum;
9589 memcpy (phdrs, elf_tdata (abfd)->phdr,
9590 num_phdrs * sizeof (Elf_Internal_Phdr));
9591
9592 return num_phdrs;
9593 }
9594
9595 enum elf_reloc_type_class
9596 _bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
9597 {
9598 return reloc_class_normal;
9599 }
9600
9601 /* For RELA architectures, return the relocation value for a
9602 relocation against a local symbol. */
9603
9604 bfd_vma
9605 _bfd_elf_rela_local_sym (bfd *abfd,
9606 Elf_Internal_Sym *sym,
9607 asection **psec,
9608 Elf_Internal_Rela *rel)
9609 {
9610 asection *sec = *psec;
9611 bfd_vma relocation;
9612
9613 relocation = (sec->output_section->vma
9614 + sec->output_offset
9615 + sym->st_value);
9616 if ((sec->flags & SEC_MERGE)
9617 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
9618 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
9619 {
9620 rel->r_addend =
9621 _bfd_merged_section_offset (abfd, psec,
9622 elf_section_data (sec)->sec_info,
9623 sym->st_value + rel->r_addend);
9624 if (sec != *psec)
9625 {
9626 /* If we have changed the section, and our original section is
9627 marked with SEC_EXCLUDE, it means that the original
9628 SEC_MERGE section has been completely subsumed in some
9629 other SEC_MERGE section. In this case, we need to leave
9630 some info around for --emit-relocs. */
9631 if ((sec->flags & SEC_EXCLUDE) != 0)
9632 sec->kept_section = *psec;
9633 sec = *psec;
9634 }
9635 rel->r_addend -= relocation;
9636 rel->r_addend += sec->output_section->vma + sec->output_offset;
9637 }
9638 return relocation;
9639 }
9640
9641 bfd_vma
9642 _bfd_elf_rel_local_sym (bfd *abfd,
9643 Elf_Internal_Sym *sym,
9644 asection **psec,
9645 bfd_vma addend)
9646 {
9647 asection *sec = *psec;
9648
9649 if (sec->sec_info_type != SEC_INFO_TYPE_MERGE)
9650 return sym->st_value + addend;
9651
9652 return _bfd_merged_section_offset (abfd, psec,
9653 elf_section_data (sec)->sec_info,
9654 sym->st_value + addend);
9655 }
9656
9657 bfd_vma
9658 _bfd_elf_section_offset (bfd *abfd,
9659 struct bfd_link_info *info,
9660 asection *sec,
9661 bfd_vma offset)
9662 {
9663 switch (sec->sec_info_type)
9664 {
9665 case SEC_INFO_TYPE_STABS:
9666 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
9667 offset);
9668 case SEC_INFO_TYPE_EH_FRAME:
9669 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
9670 default:
9671 if ((sec->flags & SEC_ELF_REVERSE_COPY) != 0)
9672 {
9673 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9674 bfd_size_type address_size = bed->s->arch_size / 8;
9675 offset = sec->size - offset - address_size;
9676 }
9677 return offset;
9678 }
9679 }
9680 \f
9681 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
9682 reconstruct an ELF file by reading the segments out of remote memory
9683 based on the ELF file header at EHDR_VMA and the ELF program headers it
9684 points to. If not null, *LOADBASEP is filled in with the difference
9685 between the VMAs from which the segments were read, and the VMAs the
9686 file headers (and hence BFD's idea of each section's VMA) put them at.
9687
9688 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
9689 remote memory at target address VMA into the local buffer at MYADDR; it
9690 should return zero on success or an `errno' code on failure. TEMPL must
9691 be a BFD for an ELF target with the word size and byte order found in
9692 the remote memory. */
9693
9694 bfd *
9695 bfd_elf_bfd_from_remote_memory
9696 (bfd *templ,
9697 bfd_vma ehdr_vma,
9698 bfd_vma *loadbasep,
9699 int (*target_read_memory) (bfd_vma, bfd_byte *, bfd_size_type))
9700 {
9701 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
9702 (templ, ehdr_vma, loadbasep, target_read_memory);
9703 }
9704 \f
9705 long
9706 _bfd_elf_get_synthetic_symtab (bfd *abfd,
9707 long symcount ATTRIBUTE_UNUSED,
9708 asymbol **syms ATTRIBUTE_UNUSED,
9709 long dynsymcount,
9710 asymbol **dynsyms,
9711 asymbol **ret)
9712 {
9713 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9714 asection *relplt;
9715 asymbol *s;
9716 const char *relplt_name;
9717 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
9718 arelent *p;
9719 long count, i, n;
9720 size_t size;
9721 Elf_Internal_Shdr *hdr;
9722 char *names;
9723 asection *plt;
9724
9725 *ret = NULL;
9726
9727 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
9728 return 0;
9729
9730 if (dynsymcount <= 0)
9731 return 0;
9732
9733 if (!bed->plt_sym_val)
9734 return 0;
9735
9736 relplt_name = bed->relplt_name;
9737 if (relplt_name == NULL)
9738 relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt";
9739 relplt = bfd_get_section_by_name (abfd, relplt_name);
9740 if (relplt == NULL)
9741 return 0;
9742
9743 hdr = &elf_section_data (relplt)->this_hdr;
9744 if (hdr->sh_link != elf_dynsymtab (abfd)
9745 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
9746 return 0;
9747
9748 plt = bfd_get_section_by_name (abfd, ".plt");
9749 if (plt == NULL)
9750 return 0;
9751
9752 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
9753 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
9754 return -1;
9755
9756 count = relplt->size / hdr->sh_entsize;
9757 size = count * sizeof (asymbol);
9758 p = relplt->relocation;
9759 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
9760 {
9761 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
9762 if (p->addend != 0)
9763 {
9764 #ifdef BFD64
9765 size += sizeof ("+0x") - 1 + 8 + 8 * (bed->s->elfclass == ELFCLASS64);
9766 #else
9767 size += sizeof ("+0x") - 1 + 8;
9768 #endif
9769 }
9770 }
9771
9772 s = *ret = (asymbol *) bfd_malloc (size);
9773 if (s == NULL)
9774 return -1;
9775
9776 names = (char *) (s + count);
9777 p = relplt->relocation;
9778 n = 0;
9779 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
9780 {
9781 size_t len;
9782 bfd_vma addr;
9783
9784 addr = bed->plt_sym_val (i, plt, p);
9785 if (addr == (bfd_vma) -1)
9786 continue;
9787
9788 *s = **p->sym_ptr_ptr;
9789 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
9790 we are defining a symbol, ensure one of them is set. */
9791 if ((s->flags & BSF_LOCAL) == 0)
9792 s->flags |= BSF_GLOBAL;
9793 s->flags |= BSF_SYNTHETIC;
9794 s->section = plt;
9795 s->value = addr - plt->vma;
9796 s->name = names;
9797 s->udata.p = NULL;
9798 len = strlen ((*p->sym_ptr_ptr)->name);
9799 memcpy (names, (*p->sym_ptr_ptr)->name, len);
9800 names += len;
9801 if (p->addend != 0)
9802 {
9803 char buf[30], *a;
9804
9805 memcpy (names, "+0x", sizeof ("+0x") - 1);
9806 names += sizeof ("+0x") - 1;
9807 bfd_sprintf_vma (abfd, buf, p->addend);
9808 for (a = buf; *a == '0'; ++a)
9809 ;
9810 len = strlen (a);
9811 memcpy (names, a, len);
9812 names += len;
9813 }
9814 memcpy (names, "@plt", sizeof ("@plt"));
9815 names += sizeof ("@plt");
9816 ++s, ++n;
9817 }
9818
9819 return n;
9820 }
9821
9822 /* It is only used by x86-64 so far. */
9823 asection _bfd_elf_large_com_section
9824 = BFD_FAKE_SECTION (_bfd_elf_large_com_section,
9825 SEC_IS_COMMON, NULL, "LARGE_COMMON", 0);
9826
9827 void
9828 _bfd_elf_set_osabi (bfd * abfd,
9829 struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
9830 {
9831 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
9832
9833 i_ehdrp = elf_elfheader (abfd);
9834
9835 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
9836
9837 /* To make things simpler for the loader on Linux systems we set the
9838 osabi field to ELFOSABI_GNU if the binary contains symbols of
9839 the STT_GNU_IFUNC type or STB_GNU_UNIQUE binding. */
9840 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE
9841 && elf_tdata (abfd)->has_gnu_symbols)
9842 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_GNU;
9843 }
9844
9845
9846 /* Return TRUE for ELF symbol types that represent functions.
9847 This is the default version of this function, which is sufficient for
9848 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */
9849
9850 bfd_boolean
9851 _bfd_elf_is_function_type (unsigned int type)
9852 {
9853 return (type == STT_FUNC
9854 || type == STT_GNU_IFUNC);
9855 }
9856
9857 /* If the ELF symbol SYM might be a function in SEC, return the
9858 function size and set *CODE_OFF to the function's entry point,
9859 otherwise return zero. */
9860
9861 bfd_size_type
9862 _bfd_elf_maybe_function_sym (const asymbol *sym, asection *sec,
9863 bfd_vma *code_off)
9864 {
9865 bfd_size_type size;
9866
9867 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
9868 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0
9869 || sym->section != sec)
9870 return 0;
9871
9872 *code_off = sym->value;
9873 size = 0;
9874 if (!(sym->flags & BSF_SYNTHETIC))
9875 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
9876 if (size == 0)
9877 size = 1;
9878 return size;
9879 }