daily update
[binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
5 Free Software Foundation, Inc.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 MA 02110-1301, USA. */
23
24
25 /*
26 SECTION
27 ELF backends
28
29 BFD support for ELF formats is being worked on.
30 Currently, the best supported back ends are for sparc and i386
31 (running svr4 or Solaris 2).
32
33 Documentation of the internals of the support code still needs
34 to be written. The code is changing quickly enough that we
35 haven't bothered yet. */
36
37 /* For sparc64-cross-sparc32. */
38 #define _SYSCALL32
39 #include "sysdep.h"
40 #include "bfd.h"
41 #include "bfdlink.h"
42 #include "libbfd.h"
43 #define ARCH_SIZE 0
44 #include "elf-bfd.h"
45 #include "libiberty.h"
46 #include "safe-ctype.h"
47
48 #ifdef CORE_HEADER
49 #include CORE_HEADER
50 #endif
51
52 static int elf_sort_sections (const void *, const void *);
53 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
54 static bfd_boolean prep_headers (bfd *);
55 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
56 static bfd_boolean elf_read_notes (bfd *, file_ptr, bfd_size_type) ;
57 static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
58 file_ptr offset);
59
60 /* Swap version information in and out. The version information is
61 currently size independent. If that ever changes, this code will
62 need to move into elfcode.h. */
63
64 /* Swap in a Verdef structure. */
65
66 void
67 _bfd_elf_swap_verdef_in (bfd *abfd,
68 const Elf_External_Verdef *src,
69 Elf_Internal_Verdef *dst)
70 {
71 dst->vd_version = H_GET_16 (abfd, src->vd_version);
72 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
73 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
74 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
75 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
76 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
77 dst->vd_next = H_GET_32 (abfd, src->vd_next);
78 }
79
80 /* Swap out a Verdef structure. */
81
82 void
83 _bfd_elf_swap_verdef_out (bfd *abfd,
84 const Elf_Internal_Verdef *src,
85 Elf_External_Verdef *dst)
86 {
87 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
88 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
89 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
90 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
91 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
92 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
93 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
94 }
95
96 /* Swap in a Verdaux structure. */
97
98 void
99 _bfd_elf_swap_verdaux_in (bfd *abfd,
100 const Elf_External_Verdaux *src,
101 Elf_Internal_Verdaux *dst)
102 {
103 dst->vda_name = H_GET_32 (abfd, src->vda_name);
104 dst->vda_next = H_GET_32 (abfd, src->vda_next);
105 }
106
107 /* Swap out a Verdaux structure. */
108
109 void
110 _bfd_elf_swap_verdaux_out (bfd *abfd,
111 const Elf_Internal_Verdaux *src,
112 Elf_External_Verdaux *dst)
113 {
114 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
115 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
116 }
117
118 /* Swap in a Verneed structure. */
119
120 void
121 _bfd_elf_swap_verneed_in (bfd *abfd,
122 const Elf_External_Verneed *src,
123 Elf_Internal_Verneed *dst)
124 {
125 dst->vn_version = H_GET_16 (abfd, src->vn_version);
126 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
127 dst->vn_file = H_GET_32 (abfd, src->vn_file);
128 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
129 dst->vn_next = H_GET_32 (abfd, src->vn_next);
130 }
131
132 /* Swap out a Verneed structure. */
133
134 void
135 _bfd_elf_swap_verneed_out (bfd *abfd,
136 const Elf_Internal_Verneed *src,
137 Elf_External_Verneed *dst)
138 {
139 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
140 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
141 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
142 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
143 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
144 }
145
146 /* Swap in a Vernaux structure. */
147
148 void
149 _bfd_elf_swap_vernaux_in (bfd *abfd,
150 const Elf_External_Vernaux *src,
151 Elf_Internal_Vernaux *dst)
152 {
153 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
154 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
155 dst->vna_other = H_GET_16 (abfd, src->vna_other);
156 dst->vna_name = H_GET_32 (abfd, src->vna_name);
157 dst->vna_next = H_GET_32 (abfd, src->vna_next);
158 }
159
160 /* Swap out a Vernaux structure. */
161
162 void
163 _bfd_elf_swap_vernaux_out (bfd *abfd,
164 const Elf_Internal_Vernaux *src,
165 Elf_External_Vernaux *dst)
166 {
167 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
168 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
169 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
170 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
171 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
172 }
173
174 /* Swap in a Versym structure. */
175
176 void
177 _bfd_elf_swap_versym_in (bfd *abfd,
178 const Elf_External_Versym *src,
179 Elf_Internal_Versym *dst)
180 {
181 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
182 }
183
184 /* Swap out a Versym structure. */
185
186 void
187 _bfd_elf_swap_versym_out (bfd *abfd,
188 const Elf_Internal_Versym *src,
189 Elf_External_Versym *dst)
190 {
191 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
192 }
193
194 /* Standard ELF hash function. Do not change this function; you will
195 cause invalid hash tables to be generated. */
196
197 unsigned long
198 bfd_elf_hash (const char *namearg)
199 {
200 const unsigned char *name = (const unsigned char *) namearg;
201 unsigned long h = 0;
202 unsigned long g;
203 int ch;
204
205 while ((ch = *name++) != '\0')
206 {
207 h = (h << 4) + ch;
208 if ((g = (h & 0xf0000000)) != 0)
209 {
210 h ^= g >> 24;
211 /* The ELF ABI says `h &= ~g', but this is equivalent in
212 this case and on some machines one insn instead of two. */
213 h ^= g;
214 }
215 }
216 return h & 0xffffffff;
217 }
218
219 /* DT_GNU_HASH hash function. Do not change this function; you will
220 cause invalid hash tables to be generated. */
221
222 unsigned long
223 bfd_elf_gnu_hash (const char *namearg)
224 {
225 const unsigned char *name = (const unsigned char *) namearg;
226 unsigned long h = 5381;
227 unsigned char ch;
228
229 while ((ch = *name++) != '\0')
230 h = (h << 5) + h + ch;
231 return h & 0xffffffff;
232 }
233
234 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
235 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
236 bfd_boolean
237 bfd_elf_allocate_object (bfd *abfd,
238 size_t object_size,
239 enum elf_target_id object_id)
240 {
241 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
242 abfd->tdata.any = bfd_zalloc (abfd, object_size);
243 if (abfd->tdata.any == NULL)
244 return FALSE;
245
246 elf_object_id (abfd) = object_id;
247 elf_program_header_size (abfd) = (bfd_size_type) -1;
248 return TRUE;
249 }
250
251
252 bfd_boolean
253 bfd_elf_make_object (bfd *abfd)
254 {
255 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
256 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
257 bed->target_id);
258 }
259
260 bfd_boolean
261 bfd_elf_mkcorefile (bfd *abfd)
262 {
263 /* I think this can be done just like an object file. */
264 return abfd->xvec->_bfd_set_format[(int) bfd_object] (abfd);
265 }
266
267 static char *
268 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
269 {
270 Elf_Internal_Shdr **i_shdrp;
271 bfd_byte *shstrtab = NULL;
272 file_ptr offset;
273 bfd_size_type shstrtabsize;
274
275 i_shdrp = elf_elfsections (abfd);
276 if (i_shdrp == 0
277 || shindex >= elf_numsections (abfd)
278 || i_shdrp[shindex] == 0)
279 return NULL;
280
281 shstrtab = i_shdrp[shindex]->contents;
282 if (shstrtab == NULL)
283 {
284 /* No cached one, attempt to read, and cache what we read. */
285 offset = i_shdrp[shindex]->sh_offset;
286 shstrtabsize = i_shdrp[shindex]->sh_size;
287
288 /* Allocate and clear an extra byte at the end, to prevent crashes
289 in case the string table is not terminated. */
290 if (shstrtabsize + 1 <= 1
291 || (shstrtab = (bfd_byte *) bfd_alloc (abfd, shstrtabsize + 1)) == NULL
292 || bfd_seek (abfd, offset, SEEK_SET) != 0)
293 shstrtab = NULL;
294 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
295 {
296 if (bfd_get_error () != bfd_error_system_call)
297 bfd_set_error (bfd_error_file_truncated);
298 shstrtab = NULL;
299 /* Once we've failed to read it, make sure we don't keep
300 trying. Otherwise, we'll keep allocating space for
301 the string table over and over. */
302 i_shdrp[shindex]->sh_size = 0;
303 }
304 else
305 shstrtab[shstrtabsize] = '\0';
306 i_shdrp[shindex]->contents = shstrtab;
307 }
308 return (char *) shstrtab;
309 }
310
311 char *
312 bfd_elf_string_from_elf_section (bfd *abfd,
313 unsigned int shindex,
314 unsigned int strindex)
315 {
316 Elf_Internal_Shdr *hdr;
317
318 if (strindex == 0)
319 return "";
320
321 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
322 return NULL;
323
324 hdr = elf_elfsections (abfd)[shindex];
325
326 if (hdr->contents == NULL
327 && bfd_elf_get_str_section (abfd, shindex) == NULL)
328 return NULL;
329
330 if (strindex >= hdr->sh_size)
331 {
332 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
333 (*_bfd_error_handler)
334 (_("%B: invalid string offset %u >= %lu for section `%s'"),
335 abfd, strindex, (unsigned long) hdr->sh_size,
336 (shindex == shstrndx && strindex == hdr->sh_name
337 ? ".shstrtab"
338 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
339 return NULL;
340 }
341
342 return ((char *) hdr->contents) + strindex;
343 }
344
345 /* Read and convert symbols to internal format.
346 SYMCOUNT specifies the number of symbols to read, starting from
347 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
348 are non-NULL, they are used to store the internal symbols, external
349 symbols, and symbol section index extensions, respectively.
350 Returns a pointer to the internal symbol buffer (malloced if necessary)
351 or NULL if there were no symbols or some kind of problem. */
352
353 Elf_Internal_Sym *
354 bfd_elf_get_elf_syms (bfd *ibfd,
355 Elf_Internal_Shdr *symtab_hdr,
356 size_t symcount,
357 size_t symoffset,
358 Elf_Internal_Sym *intsym_buf,
359 void *extsym_buf,
360 Elf_External_Sym_Shndx *extshndx_buf)
361 {
362 Elf_Internal_Shdr *shndx_hdr;
363 void *alloc_ext;
364 const bfd_byte *esym;
365 Elf_External_Sym_Shndx *alloc_extshndx;
366 Elf_External_Sym_Shndx *shndx;
367 Elf_Internal_Sym *alloc_intsym;
368 Elf_Internal_Sym *isym;
369 Elf_Internal_Sym *isymend;
370 const struct elf_backend_data *bed;
371 size_t extsym_size;
372 bfd_size_type amt;
373 file_ptr pos;
374
375 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
376 abort ();
377
378 if (symcount == 0)
379 return intsym_buf;
380
381 /* Normal syms might have section extension entries. */
382 shndx_hdr = NULL;
383 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
384 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
385
386 /* Read the symbols. */
387 alloc_ext = NULL;
388 alloc_extshndx = NULL;
389 alloc_intsym = NULL;
390 bed = get_elf_backend_data (ibfd);
391 extsym_size = bed->s->sizeof_sym;
392 amt = symcount * extsym_size;
393 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
394 if (extsym_buf == NULL)
395 {
396 alloc_ext = bfd_malloc2 (symcount, extsym_size);
397 extsym_buf = alloc_ext;
398 }
399 if (extsym_buf == NULL
400 || bfd_seek (ibfd, pos, SEEK_SET) != 0
401 || bfd_bread (extsym_buf, amt, ibfd) != amt)
402 {
403 intsym_buf = NULL;
404 goto out;
405 }
406
407 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
408 extshndx_buf = NULL;
409 else
410 {
411 amt = symcount * sizeof (Elf_External_Sym_Shndx);
412 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
413 if (extshndx_buf == NULL)
414 {
415 alloc_extshndx = (Elf_External_Sym_Shndx *)
416 bfd_malloc2 (symcount, sizeof (Elf_External_Sym_Shndx));
417 extshndx_buf = alloc_extshndx;
418 }
419 if (extshndx_buf == NULL
420 || bfd_seek (ibfd, pos, SEEK_SET) != 0
421 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
422 {
423 intsym_buf = NULL;
424 goto out;
425 }
426 }
427
428 if (intsym_buf == NULL)
429 {
430 alloc_intsym = (Elf_Internal_Sym *)
431 bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
432 intsym_buf = alloc_intsym;
433 if (intsym_buf == NULL)
434 goto out;
435 }
436
437 /* Convert the symbols to internal form. */
438 isymend = intsym_buf + symcount;
439 for (esym = (const bfd_byte *) extsym_buf, isym = intsym_buf,
440 shndx = extshndx_buf;
441 isym < isymend;
442 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
443 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
444 {
445 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
446 (*_bfd_error_handler) (_("%B symbol number %lu references "
447 "nonexistent SHT_SYMTAB_SHNDX section"),
448 ibfd, (unsigned long) symoffset);
449 if (alloc_intsym != NULL)
450 free (alloc_intsym);
451 intsym_buf = NULL;
452 goto out;
453 }
454
455 out:
456 if (alloc_ext != NULL)
457 free (alloc_ext);
458 if (alloc_extshndx != NULL)
459 free (alloc_extshndx);
460
461 return intsym_buf;
462 }
463
464 /* Look up a symbol name. */
465 const char *
466 bfd_elf_sym_name (bfd *abfd,
467 Elf_Internal_Shdr *symtab_hdr,
468 Elf_Internal_Sym *isym,
469 asection *sym_sec)
470 {
471 const char *name;
472 unsigned int iname = isym->st_name;
473 unsigned int shindex = symtab_hdr->sh_link;
474
475 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
476 /* Check for a bogus st_shndx to avoid crashing. */
477 && isym->st_shndx < elf_numsections (abfd))
478 {
479 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
480 shindex = elf_elfheader (abfd)->e_shstrndx;
481 }
482
483 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
484 if (name == NULL)
485 name = "(null)";
486 else if (sym_sec && *name == '\0')
487 name = bfd_section_name (abfd, sym_sec);
488
489 return name;
490 }
491
492 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
493 sections. The first element is the flags, the rest are section
494 pointers. */
495
496 typedef union elf_internal_group {
497 Elf_Internal_Shdr *shdr;
498 unsigned int flags;
499 } Elf_Internal_Group;
500
501 /* Return the name of the group signature symbol. Why isn't the
502 signature just a string? */
503
504 static const char *
505 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
506 {
507 Elf_Internal_Shdr *hdr;
508 unsigned char esym[sizeof (Elf64_External_Sym)];
509 Elf_External_Sym_Shndx eshndx;
510 Elf_Internal_Sym isym;
511
512 /* First we need to ensure the symbol table is available. Make sure
513 that it is a symbol table section. */
514 if (ghdr->sh_link >= elf_numsections (abfd))
515 return NULL;
516 hdr = elf_elfsections (abfd) [ghdr->sh_link];
517 if (hdr->sh_type != SHT_SYMTAB
518 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
519 return NULL;
520
521 /* Go read the symbol. */
522 hdr = &elf_tdata (abfd)->symtab_hdr;
523 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
524 &isym, esym, &eshndx) == NULL)
525 return NULL;
526
527 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
528 }
529
530 /* Set next_in_group list pointer, and group name for NEWSECT. */
531
532 static bfd_boolean
533 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
534 {
535 unsigned int num_group = elf_tdata (abfd)->num_group;
536
537 /* If num_group is zero, read in all SHT_GROUP sections. The count
538 is set to -1 if there are no SHT_GROUP sections. */
539 if (num_group == 0)
540 {
541 unsigned int i, shnum;
542
543 /* First count the number of groups. If we have a SHT_GROUP
544 section with just a flag word (ie. sh_size is 4), ignore it. */
545 shnum = elf_numsections (abfd);
546 num_group = 0;
547
548 #define IS_VALID_GROUP_SECTION_HEADER(shdr, minsize) \
549 ( (shdr)->sh_type == SHT_GROUP \
550 && (shdr)->sh_size >= minsize \
551 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
552 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
553
554 for (i = 0; i < shnum; i++)
555 {
556 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
557
558 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
559 num_group += 1;
560 }
561
562 if (num_group == 0)
563 {
564 num_group = (unsigned) -1;
565 elf_tdata (abfd)->num_group = num_group;
566 }
567 else
568 {
569 /* We keep a list of elf section headers for group sections,
570 so we can find them quickly. */
571 bfd_size_type amt;
572
573 elf_tdata (abfd)->num_group = num_group;
574 elf_tdata (abfd)->group_sect_ptr = (Elf_Internal_Shdr **)
575 bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
576 if (elf_tdata (abfd)->group_sect_ptr == NULL)
577 return FALSE;
578
579 num_group = 0;
580 for (i = 0; i < shnum; i++)
581 {
582 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
583
584 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
585 {
586 unsigned char *src;
587 Elf_Internal_Group *dest;
588
589 /* Add to list of sections. */
590 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
591 num_group += 1;
592
593 /* Read the raw contents. */
594 BFD_ASSERT (sizeof (*dest) >= 4);
595 amt = shdr->sh_size * sizeof (*dest) / 4;
596 shdr->contents = (unsigned char *)
597 bfd_alloc2 (abfd, shdr->sh_size, sizeof (*dest) / 4);
598 /* PR binutils/4110: Handle corrupt group headers. */
599 if (shdr->contents == NULL)
600 {
601 _bfd_error_handler
602 (_("%B: Corrupt size field in group section header: 0x%lx"), abfd, shdr->sh_size);
603 bfd_set_error (bfd_error_bad_value);
604 return FALSE;
605 }
606
607 memset (shdr->contents, 0, amt);
608
609 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
610 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
611 != shdr->sh_size))
612 return FALSE;
613
614 /* Translate raw contents, a flag word followed by an
615 array of elf section indices all in target byte order,
616 to the flag word followed by an array of elf section
617 pointers. */
618 src = shdr->contents + shdr->sh_size;
619 dest = (Elf_Internal_Group *) (shdr->contents + amt);
620 while (1)
621 {
622 unsigned int idx;
623
624 src -= 4;
625 --dest;
626 idx = H_GET_32 (abfd, src);
627 if (src == shdr->contents)
628 {
629 dest->flags = idx;
630 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
631 shdr->bfd_section->flags
632 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
633 break;
634 }
635 if (idx >= shnum)
636 {
637 ((*_bfd_error_handler)
638 (_("%B: invalid SHT_GROUP entry"), abfd));
639 idx = 0;
640 }
641 dest->shdr = elf_elfsections (abfd)[idx];
642 }
643 }
644 }
645 }
646 }
647
648 if (num_group != (unsigned) -1)
649 {
650 unsigned int i;
651
652 for (i = 0; i < num_group; i++)
653 {
654 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
655 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
656 unsigned int n_elt = shdr->sh_size / 4;
657
658 /* Look through this group's sections to see if current
659 section is a member. */
660 while (--n_elt != 0)
661 if ((++idx)->shdr == hdr)
662 {
663 asection *s = NULL;
664
665 /* We are a member of this group. Go looking through
666 other members to see if any others are linked via
667 next_in_group. */
668 idx = (Elf_Internal_Group *) shdr->contents;
669 n_elt = shdr->sh_size / 4;
670 while (--n_elt != 0)
671 if ((s = (++idx)->shdr->bfd_section) != NULL
672 && elf_next_in_group (s) != NULL)
673 break;
674 if (n_elt != 0)
675 {
676 /* Snarf the group name from other member, and
677 insert current section in circular list. */
678 elf_group_name (newsect) = elf_group_name (s);
679 elf_next_in_group (newsect) = elf_next_in_group (s);
680 elf_next_in_group (s) = newsect;
681 }
682 else
683 {
684 const char *gname;
685
686 gname = group_signature (abfd, shdr);
687 if (gname == NULL)
688 return FALSE;
689 elf_group_name (newsect) = gname;
690
691 /* Start a circular list with one element. */
692 elf_next_in_group (newsect) = newsect;
693 }
694
695 /* If the group section has been created, point to the
696 new member. */
697 if (shdr->bfd_section != NULL)
698 elf_next_in_group (shdr->bfd_section) = newsect;
699
700 i = num_group - 1;
701 break;
702 }
703 }
704 }
705
706 if (elf_group_name (newsect) == NULL)
707 {
708 (*_bfd_error_handler) (_("%B: no group info for section %A"),
709 abfd, newsect);
710 }
711 return TRUE;
712 }
713
714 bfd_boolean
715 _bfd_elf_setup_sections (bfd *abfd)
716 {
717 unsigned int i;
718 unsigned int num_group = elf_tdata (abfd)->num_group;
719 bfd_boolean result = TRUE;
720 asection *s;
721
722 /* Process SHF_LINK_ORDER. */
723 for (s = abfd->sections; s != NULL; s = s->next)
724 {
725 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
726 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
727 {
728 unsigned int elfsec = this_hdr->sh_link;
729 /* FIXME: The old Intel compiler and old strip/objcopy may
730 not set the sh_link or sh_info fields. Hence we could
731 get the situation where elfsec is 0. */
732 if (elfsec == 0)
733 {
734 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
735 if (bed->link_order_error_handler)
736 bed->link_order_error_handler
737 (_("%B: warning: sh_link not set for section `%A'"),
738 abfd, s);
739 }
740 else
741 {
742 asection *linksec = NULL;
743
744 if (elfsec < elf_numsections (abfd))
745 {
746 this_hdr = elf_elfsections (abfd)[elfsec];
747 linksec = this_hdr->bfd_section;
748 }
749
750 /* PR 1991, 2008:
751 Some strip/objcopy may leave an incorrect value in
752 sh_link. We don't want to proceed. */
753 if (linksec == NULL)
754 {
755 (*_bfd_error_handler)
756 (_("%B: sh_link [%d] in section `%A' is incorrect"),
757 s->owner, s, elfsec);
758 result = FALSE;
759 }
760
761 elf_linked_to_section (s) = linksec;
762 }
763 }
764 }
765
766 /* Process section groups. */
767 if (num_group == (unsigned) -1)
768 return result;
769
770 for (i = 0; i < num_group; i++)
771 {
772 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
773 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
774 unsigned int n_elt = shdr->sh_size / 4;
775
776 while (--n_elt != 0)
777 if ((++idx)->shdr->bfd_section)
778 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
779 else if (idx->shdr->sh_type == SHT_RELA
780 || idx->shdr->sh_type == SHT_REL)
781 /* We won't include relocation sections in section groups in
782 output object files. We adjust the group section size here
783 so that relocatable link will work correctly when
784 relocation sections are in section group in input object
785 files. */
786 shdr->bfd_section->size -= 4;
787 else
788 {
789 /* There are some unknown sections in the group. */
790 (*_bfd_error_handler)
791 (_("%B: unknown [%d] section `%s' in group [%s]"),
792 abfd,
793 (unsigned int) idx->shdr->sh_type,
794 bfd_elf_string_from_elf_section (abfd,
795 (elf_elfheader (abfd)
796 ->e_shstrndx),
797 idx->shdr->sh_name),
798 shdr->bfd_section->name);
799 result = FALSE;
800 }
801 }
802 return result;
803 }
804
805 bfd_boolean
806 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
807 {
808 return elf_next_in_group (sec) != NULL;
809 }
810
811 /* Make a BFD section from an ELF section. We store a pointer to the
812 BFD section in the bfd_section field of the header. */
813
814 bfd_boolean
815 _bfd_elf_make_section_from_shdr (bfd *abfd,
816 Elf_Internal_Shdr *hdr,
817 const char *name,
818 int shindex)
819 {
820 asection *newsect;
821 flagword flags;
822 const struct elf_backend_data *bed;
823
824 if (hdr->bfd_section != NULL)
825 return TRUE;
826
827 newsect = bfd_make_section_anyway (abfd, name);
828 if (newsect == NULL)
829 return FALSE;
830
831 hdr->bfd_section = newsect;
832 elf_section_data (newsect)->this_hdr = *hdr;
833 elf_section_data (newsect)->this_idx = shindex;
834
835 /* Always use the real type/flags. */
836 elf_section_type (newsect) = hdr->sh_type;
837 elf_section_flags (newsect) = hdr->sh_flags;
838
839 newsect->filepos = hdr->sh_offset;
840
841 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
842 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
843 || ! bfd_set_section_alignment (abfd, newsect,
844 bfd_log2 (hdr->sh_addralign)))
845 return FALSE;
846
847 flags = SEC_NO_FLAGS;
848 if (hdr->sh_type != SHT_NOBITS)
849 flags |= SEC_HAS_CONTENTS;
850 if (hdr->sh_type == SHT_GROUP)
851 flags |= SEC_GROUP | SEC_EXCLUDE;
852 if ((hdr->sh_flags & SHF_ALLOC) != 0)
853 {
854 flags |= SEC_ALLOC;
855 if (hdr->sh_type != SHT_NOBITS)
856 flags |= SEC_LOAD;
857 }
858 if ((hdr->sh_flags & SHF_WRITE) == 0)
859 flags |= SEC_READONLY;
860 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
861 flags |= SEC_CODE;
862 else if ((flags & SEC_LOAD) != 0)
863 flags |= SEC_DATA;
864 if ((hdr->sh_flags & SHF_MERGE) != 0)
865 {
866 flags |= SEC_MERGE;
867 newsect->entsize = hdr->sh_entsize;
868 if ((hdr->sh_flags & SHF_STRINGS) != 0)
869 flags |= SEC_STRINGS;
870 }
871 if (hdr->sh_flags & SHF_GROUP)
872 if (!setup_group (abfd, hdr, newsect))
873 return FALSE;
874 if ((hdr->sh_flags & SHF_TLS) != 0)
875 flags |= SEC_THREAD_LOCAL;
876 if ((hdr->sh_flags & SHF_EXCLUDE) != 0)
877 flags |= SEC_EXCLUDE;
878
879 if ((flags & SEC_ALLOC) == 0)
880 {
881 /* The debugging sections appear to be recognized only by name,
882 not any sort of flag. Their SEC_ALLOC bits are cleared. */
883 if (name [0] == '.')
884 {
885 const char *p;
886 int n;
887 if (name[1] == 'd')
888 p = ".debug", n = 6;
889 else if (name[1] == 'g' && name[2] == 'n')
890 p = ".gnu.linkonce.wi.", n = 17;
891 else if (name[1] == 'g' && name[2] == 'd')
892 p = ".gdb_index", n = 11; /* yes we really do mean 11. */
893 else if (name[1] == 'l')
894 p = ".line", n = 5;
895 else if (name[1] == 's')
896 p = ".stab", n = 5;
897 else if (name[1] == 'z')
898 p = ".zdebug", n = 7;
899 else
900 p = NULL, n = 0;
901 if (p != NULL && strncmp (name, p, n) == 0)
902 flags |= SEC_DEBUGGING;
903 }
904 }
905
906 /* As a GNU extension, if the name begins with .gnu.linkonce, we
907 only link a single copy of the section. This is used to support
908 g++. g++ will emit each template expansion in its own section.
909 The symbols will be defined as weak, so that multiple definitions
910 are permitted. The GNU linker extension is to actually discard
911 all but one of the sections. */
912 if (CONST_STRNEQ (name, ".gnu.linkonce")
913 && elf_next_in_group (newsect) == NULL)
914 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
915
916 bed = get_elf_backend_data (abfd);
917 if (bed->elf_backend_section_flags)
918 if (! bed->elf_backend_section_flags (&flags, hdr))
919 return FALSE;
920
921 if (! bfd_set_section_flags (abfd, newsect, flags))
922 return FALSE;
923
924 /* We do not parse the PT_NOTE segments as we are interested even in the
925 separate debug info files which may have the segments offsets corrupted.
926 PT_NOTEs from the core files are currently not parsed using BFD. */
927 if (hdr->sh_type == SHT_NOTE)
928 {
929 bfd_byte *contents;
930
931 if (!bfd_malloc_and_get_section (abfd, newsect, &contents))
932 return FALSE;
933
934 elf_parse_notes (abfd, (char *) contents, hdr->sh_size, -1);
935 free (contents);
936 }
937
938 if ((flags & SEC_ALLOC) != 0)
939 {
940 Elf_Internal_Phdr *phdr;
941 unsigned int i, nload;
942
943 /* Some ELF linkers produce binaries with all the program header
944 p_paddr fields zero. If we have such a binary with more than
945 one PT_LOAD header, then leave the section lma equal to vma
946 so that we don't create sections with overlapping lma. */
947 phdr = elf_tdata (abfd)->phdr;
948 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
949 if (phdr->p_paddr != 0)
950 break;
951 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
952 ++nload;
953 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
954 return TRUE;
955
956 phdr = elf_tdata (abfd)->phdr;
957 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
958 {
959 if (((phdr->p_type == PT_LOAD
960 && (hdr->sh_flags & SHF_TLS) == 0)
961 || phdr->p_type == PT_TLS)
962 && ELF_SECTION_IN_SEGMENT (hdr, phdr))
963 {
964 if ((flags & SEC_LOAD) == 0)
965 newsect->lma = (phdr->p_paddr
966 + hdr->sh_addr - phdr->p_vaddr);
967 else
968 /* We used to use the same adjustment for SEC_LOAD
969 sections, but that doesn't work if the segment
970 is packed with code from multiple VMAs.
971 Instead we calculate the section LMA based on
972 the segment LMA. It is assumed that the
973 segment will contain sections with contiguous
974 LMAs, even if the VMAs are not. */
975 newsect->lma = (phdr->p_paddr
976 + hdr->sh_offset - phdr->p_offset);
977
978 /* With contiguous segments, we can't tell from file
979 offsets whether a section with zero size should
980 be placed at the end of one segment or the
981 beginning of the next. Decide based on vaddr. */
982 if (hdr->sh_addr >= phdr->p_vaddr
983 && (hdr->sh_addr + hdr->sh_size
984 <= phdr->p_vaddr + phdr->p_memsz))
985 break;
986 }
987 }
988 }
989
990 /* Compress/decompress DWARF debug sections with names: .debug_* and
991 .zdebug_*, after the section flags is set. */
992 if ((flags & SEC_DEBUGGING)
993 && ((name[1] == 'd' && name[6] == '_')
994 || (name[1] == 'z' && name[7] == '_')))
995 {
996 enum { nothing, compress, decompress } action = nothing;
997 char *new_name;
998
999 if (bfd_is_section_compressed (abfd, newsect))
1000 {
1001 /* Compressed section. Check if we should decompress. */
1002 if ((abfd->flags & BFD_DECOMPRESS))
1003 action = decompress;
1004 }
1005 else
1006 {
1007 /* Normal section. Check if we should compress. */
1008 if ((abfd->flags & BFD_COMPRESS) && newsect->size != 0)
1009 action = compress;
1010 }
1011
1012 new_name = NULL;
1013 switch (action)
1014 {
1015 case nothing:
1016 break;
1017 case compress:
1018 if (!bfd_init_section_compress_status (abfd, newsect))
1019 {
1020 (*_bfd_error_handler)
1021 (_("%B: unable to initialize compress status for section %s"),
1022 abfd, name);
1023 return FALSE;
1024 }
1025 if (name[1] != 'z')
1026 {
1027 unsigned int len = strlen (name);
1028
1029 new_name = bfd_alloc (abfd, len + 2);
1030 if (new_name == NULL)
1031 return FALSE;
1032 new_name[0] = '.';
1033 new_name[1] = 'z';
1034 memcpy (new_name + 2, name + 1, len);
1035 }
1036 break;
1037 case decompress:
1038 if (!bfd_init_section_decompress_status (abfd, newsect))
1039 {
1040 (*_bfd_error_handler)
1041 (_("%B: unable to initialize decompress status for section %s"),
1042 abfd, name);
1043 return FALSE;
1044 }
1045 if (name[1] == 'z')
1046 {
1047 unsigned int len = strlen (name);
1048
1049 new_name = bfd_alloc (abfd, len);
1050 if (new_name == NULL)
1051 return FALSE;
1052 new_name[0] = '.';
1053 memcpy (new_name + 1, name + 2, len - 1);
1054 }
1055 break;
1056 }
1057 if (new_name != NULL)
1058 bfd_rename_section (abfd, newsect, new_name);
1059 }
1060
1061 return TRUE;
1062 }
1063
1064 const char *const bfd_elf_section_type_names[] = {
1065 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1066 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1067 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1068 };
1069
1070 /* ELF relocs are against symbols. If we are producing relocatable
1071 output, and the reloc is against an external symbol, and nothing
1072 has given us any additional addend, the resulting reloc will also
1073 be against the same symbol. In such a case, we don't want to
1074 change anything about the way the reloc is handled, since it will
1075 all be done at final link time. Rather than put special case code
1076 into bfd_perform_relocation, all the reloc types use this howto
1077 function. It just short circuits the reloc if producing
1078 relocatable output against an external symbol. */
1079
1080 bfd_reloc_status_type
1081 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1082 arelent *reloc_entry,
1083 asymbol *symbol,
1084 void *data ATTRIBUTE_UNUSED,
1085 asection *input_section,
1086 bfd *output_bfd,
1087 char **error_message ATTRIBUTE_UNUSED)
1088 {
1089 if (output_bfd != NULL
1090 && (symbol->flags & BSF_SECTION_SYM) == 0
1091 && (! reloc_entry->howto->partial_inplace
1092 || reloc_entry->addend == 0))
1093 {
1094 reloc_entry->address += input_section->output_offset;
1095 return bfd_reloc_ok;
1096 }
1097
1098 return bfd_reloc_continue;
1099 }
1100 \f
1101 /* Copy the program header and other data from one object module to
1102 another. */
1103
1104 bfd_boolean
1105 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1106 {
1107 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1108 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1109 return TRUE;
1110
1111 BFD_ASSERT (!elf_flags_init (obfd)
1112 || (elf_elfheader (obfd)->e_flags
1113 == elf_elfheader (ibfd)->e_flags));
1114
1115 elf_gp (obfd) = elf_gp (ibfd);
1116 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1117 elf_flags_init (obfd) = TRUE;
1118
1119 /* Copy object attributes. */
1120 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1121 return TRUE;
1122 }
1123
1124 static const char *
1125 get_segment_type (unsigned int p_type)
1126 {
1127 const char *pt;
1128 switch (p_type)
1129 {
1130 case PT_NULL: pt = "NULL"; break;
1131 case PT_LOAD: pt = "LOAD"; break;
1132 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1133 case PT_INTERP: pt = "INTERP"; break;
1134 case PT_NOTE: pt = "NOTE"; break;
1135 case PT_SHLIB: pt = "SHLIB"; break;
1136 case PT_PHDR: pt = "PHDR"; break;
1137 case PT_TLS: pt = "TLS"; break;
1138 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1139 case PT_GNU_STACK: pt = "STACK"; break;
1140 case PT_GNU_RELRO: pt = "RELRO"; break;
1141 default: pt = NULL; break;
1142 }
1143 return pt;
1144 }
1145
1146 /* Print out the program headers. */
1147
1148 bfd_boolean
1149 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1150 {
1151 FILE *f = (FILE *) farg;
1152 Elf_Internal_Phdr *p;
1153 asection *s;
1154 bfd_byte *dynbuf = NULL;
1155
1156 p = elf_tdata (abfd)->phdr;
1157 if (p != NULL)
1158 {
1159 unsigned int i, c;
1160
1161 fprintf (f, _("\nProgram Header:\n"));
1162 c = elf_elfheader (abfd)->e_phnum;
1163 for (i = 0; i < c; i++, p++)
1164 {
1165 const char *pt = get_segment_type (p->p_type);
1166 char buf[20];
1167
1168 if (pt == NULL)
1169 {
1170 sprintf (buf, "0x%lx", p->p_type);
1171 pt = buf;
1172 }
1173 fprintf (f, "%8s off 0x", pt);
1174 bfd_fprintf_vma (abfd, f, p->p_offset);
1175 fprintf (f, " vaddr 0x");
1176 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1177 fprintf (f, " paddr 0x");
1178 bfd_fprintf_vma (abfd, f, p->p_paddr);
1179 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1180 fprintf (f, " filesz 0x");
1181 bfd_fprintf_vma (abfd, f, p->p_filesz);
1182 fprintf (f, " memsz 0x");
1183 bfd_fprintf_vma (abfd, f, p->p_memsz);
1184 fprintf (f, " flags %c%c%c",
1185 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1186 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1187 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1188 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1189 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1190 fprintf (f, "\n");
1191 }
1192 }
1193
1194 s = bfd_get_section_by_name (abfd, ".dynamic");
1195 if (s != NULL)
1196 {
1197 unsigned int elfsec;
1198 unsigned long shlink;
1199 bfd_byte *extdyn, *extdynend;
1200 size_t extdynsize;
1201 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1202
1203 fprintf (f, _("\nDynamic Section:\n"));
1204
1205 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1206 goto error_return;
1207
1208 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1209 if (elfsec == SHN_BAD)
1210 goto error_return;
1211 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1212
1213 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1214 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1215
1216 extdyn = dynbuf;
1217 extdynend = extdyn + s->size;
1218 for (; extdyn < extdynend; extdyn += extdynsize)
1219 {
1220 Elf_Internal_Dyn dyn;
1221 const char *name = "";
1222 char ab[20];
1223 bfd_boolean stringp;
1224 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1225
1226 (*swap_dyn_in) (abfd, extdyn, &dyn);
1227
1228 if (dyn.d_tag == DT_NULL)
1229 break;
1230
1231 stringp = FALSE;
1232 switch (dyn.d_tag)
1233 {
1234 default:
1235 if (bed->elf_backend_get_target_dtag)
1236 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
1237
1238 if (!strcmp (name, ""))
1239 {
1240 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1241 name = ab;
1242 }
1243 break;
1244
1245 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1246 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1247 case DT_PLTGOT: name = "PLTGOT"; break;
1248 case DT_HASH: name = "HASH"; break;
1249 case DT_STRTAB: name = "STRTAB"; break;
1250 case DT_SYMTAB: name = "SYMTAB"; break;
1251 case DT_RELA: name = "RELA"; break;
1252 case DT_RELASZ: name = "RELASZ"; break;
1253 case DT_RELAENT: name = "RELAENT"; break;
1254 case DT_STRSZ: name = "STRSZ"; break;
1255 case DT_SYMENT: name = "SYMENT"; break;
1256 case DT_INIT: name = "INIT"; break;
1257 case DT_FINI: name = "FINI"; break;
1258 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1259 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1260 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1261 case DT_REL: name = "REL"; break;
1262 case DT_RELSZ: name = "RELSZ"; break;
1263 case DT_RELENT: name = "RELENT"; break;
1264 case DT_PLTREL: name = "PLTREL"; break;
1265 case DT_DEBUG: name = "DEBUG"; break;
1266 case DT_TEXTREL: name = "TEXTREL"; break;
1267 case DT_JMPREL: name = "JMPREL"; break;
1268 case DT_BIND_NOW: name = "BIND_NOW"; break;
1269 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1270 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1271 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1272 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1273 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1274 case DT_FLAGS: name = "FLAGS"; break;
1275 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1276 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1277 case DT_CHECKSUM: name = "CHECKSUM"; break;
1278 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1279 case DT_MOVEENT: name = "MOVEENT"; break;
1280 case DT_MOVESZ: name = "MOVESZ"; break;
1281 case DT_FEATURE: name = "FEATURE"; break;
1282 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1283 case DT_SYMINSZ: name = "SYMINSZ"; break;
1284 case DT_SYMINENT: name = "SYMINENT"; break;
1285 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1286 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1287 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1288 case DT_PLTPAD: name = "PLTPAD"; break;
1289 case DT_MOVETAB: name = "MOVETAB"; break;
1290 case DT_SYMINFO: name = "SYMINFO"; break;
1291 case DT_RELACOUNT: name = "RELACOUNT"; break;
1292 case DT_RELCOUNT: name = "RELCOUNT"; break;
1293 case DT_FLAGS_1: name = "FLAGS_1"; break;
1294 case DT_VERSYM: name = "VERSYM"; break;
1295 case DT_VERDEF: name = "VERDEF"; break;
1296 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1297 case DT_VERNEED: name = "VERNEED"; break;
1298 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1299 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1300 case DT_USED: name = "USED"; break;
1301 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1302 case DT_GNU_HASH: name = "GNU_HASH"; break;
1303 }
1304
1305 fprintf (f, " %-20s ", name);
1306 if (! stringp)
1307 {
1308 fprintf (f, "0x");
1309 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
1310 }
1311 else
1312 {
1313 const char *string;
1314 unsigned int tagv = dyn.d_un.d_val;
1315
1316 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1317 if (string == NULL)
1318 goto error_return;
1319 fprintf (f, "%s", string);
1320 }
1321 fprintf (f, "\n");
1322 }
1323
1324 free (dynbuf);
1325 dynbuf = NULL;
1326 }
1327
1328 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1329 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1330 {
1331 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1332 return FALSE;
1333 }
1334
1335 if (elf_dynverdef (abfd) != 0)
1336 {
1337 Elf_Internal_Verdef *t;
1338
1339 fprintf (f, _("\nVersion definitions:\n"));
1340 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1341 {
1342 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1343 t->vd_flags, t->vd_hash,
1344 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1345 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1346 {
1347 Elf_Internal_Verdaux *a;
1348
1349 fprintf (f, "\t");
1350 for (a = t->vd_auxptr->vda_nextptr;
1351 a != NULL;
1352 a = a->vda_nextptr)
1353 fprintf (f, "%s ",
1354 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1355 fprintf (f, "\n");
1356 }
1357 }
1358 }
1359
1360 if (elf_dynverref (abfd) != 0)
1361 {
1362 Elf_Internal_Verneed *t;
1363
1364 fprintf (f, _("\nVersion References:\n"));
1365 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1366 {
1367 Elf_Internal_Vernaux *a;
1368
1369 fprintf (f, _(" required from %s:\n"),
1370 t->vn_filename ? t->vn_filename : "<corrupt>");
1371 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1372 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1373 a->vna_flags, a->vna_other,
1374 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1375 }
1376 }
1377
1378 return TRUE;
1379
1380 error_return:
1381 if (dynbuf != NULL)
1382 free (dynbuf);
1383 return FALSE;
1384 }
1385
1386 /* Display ELF-specific fields of a symbol. */
1387
1388 void
1389 bfd_elf_print_symbol (bfd *abfd,
1390 void *filep,
1391 asymbol *symbol,
1392 bfd_print_symbol_type how)
1393 {
1394 FILE *file = (FILE *) filep;
1395 switch (how)
1396 {
1397 case bfd_print_symbol_name:
1398 fprintf (file, "%s", symbol->name);
1399 break;
1400 case bfd_print_symbol_more:
1401 fprintf (file, "elf ");
1402 bfd_fprintf_vma (abfd, file, symbol->value);
1403 fprintf (file, " %lx", (unsigned long) symbol->flags);
1404 break;
1405 case bfd_print_symbol_all:
1406 {
1407 const char *section_name;
1408 const char *name = NULL;
1409 const struct elf_backend_data *bed;
1410 unsigned char st_other;
1411 bfd_vma val;
1412
1413 section_name = symbol->section ? symbol->section->name : "(*none*)";
1414
1415 bed = get_elf_backend_data (abfd);
1416 if (bed->elf_backend_print_symbol_all)
1417 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1418
1419 if (name == NULL)
1420 {
1421 name = symbol->name;
1422 bfd_print_symbol_vandf (abfd, file, symbol);
1423 }
1424
1425 fprintf (file, " %s\t", section_name);
1426 /* Print the "other" value for a symbol. For common symbols,
1427 we've already printed the size; now print the alignment.
1428 For other symbols, we have no specified alignment, and
1429 we've printed the address; now print the size. */
1430 if (symbol->section && bfd_is_com_section (symbol->section))
1431 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1432 else
1433 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1434 bfd_fprintf_vma (abfd, file, val);
1435
1436 /* If we have version information, print it. */
1437 if (elf_tdata (abfd)->dynversym_section != 0
1438 && (elf_tdata (abfd)->dynverdef_section != 0
1439 || elf_tdata (abfd)->dynverref_section != 0))
1440 {
1441 unsigned int vernum;
1442 const char *version_string;
1443
1444 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1445
1446 if (vernum == 0)
1447 version_string = "";
1448 else if (vernum == 1)
1449 version_string = "Base";
1450 else if (vernum <= elf_tdata (abfd)->cverdefs)
1451 version_string =
1452 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1453 else
1454 {
1455 Elf_Internal_Verneed *t;
1456
1457 version_string = "";
1458 for (t = elf_tdata (abfd)->verref;
1459 t != NULL;
1460 t = t->vn_nextref)
1461 {
1462 Elf_Internal_Vernaux *a;
1463
1464 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1465 {
1466 if (a->vna_other == vernum)
1467 {
1468 version_string = a->vna_nodename;
1469 break;
1470 }
1471 }
1472 }
1473 }
1474
1475 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1476 fprintf (file, " %-11s", version_string);
1477 else
1478 {
1479 int i;
1480
1481 fprintf (file, " (%s)", version_string);
1482 for (i = 10 - strlen (version_string); i > 0; --i)
1483 putc (' ', file);
1484 }
1485 }
1486
1487 /* If the st_other field is not zero, print it. */
1488 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1489
1490 switch (st_other)
1491 {
1492 case 0: break;
1493 case STV_INTERNAL: fprintf (file, " .internal"); break;
1494 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1495 case STV_PROTECTED: fprintf (file, " .protected"); break;
1496 default:
1497 /* Some other non-defined flags are also present, so print
1498 everything hex. */
1499 fprintf (file, " 0x%02x", (unsigned int) st_other);
1500 }
1501
1502 fprintf (file, " %s", name);
1503 }
1504 break;
1505 }
1506 }
1507
1508 /* Allocate an ELF string table--force the first byte to be zero. */
1509
1510 struct bfd_strtab_hash *
1511 _bfd_elf_stringtab_init (void)
1512 {
1513 struct bfd_strtab_hash *ret;
1514
1515 ret = _bfd_stringtab_init ();
1516 if (ret != NULL)
1517 {
1518 bfd_size_type loc;
1519
1520 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1521 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1522 if (loc == (bfd_size_type) -1)
1523 {
1524 _bfd_stringtab_free (ret);
1525 ret = NULL;
1526 }
1527 }
1528 return ret;
1529 }
1530 \f
1531 /* ELF .o/exec file reading */
1532
1533 /* Create a new bfd section from an ELF section header. */
1534
1535 bfd_boolean
1536 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1537 {
1538 Elf_Internal_Shdr *hdr;
1539 Elf_Internal_Ehdr *ehdr;
1540 const struct elf_backend_data *bed;
1541 const char *name;
1542
1543 if (shindex >= elf_numsections (abfd))
1544 return FALSE;
1545
1546 hdr = elf_elfsections (abfd)[shindex];
1547 ehdr = elf_elfheader (abfd);
1548 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
1549 hdr->sh_name);
1550 if (name == NULL)
1551 return FALSE;
1552
1553 bed = get_elf_backend_data (abfd);
1554 switch (hdr->sh_type)
1555 {
1556 case SHT_NULL:
1557 /* Inactive section. Throw it away. */
1558 return TRUE;
1559
1560 case SHT_PROGBITS: /* Normal section with contents. */
1561 case SHT_NOBITS: /* .bss section. */
1562 case SHT_HASH: /* .hash section. */
1563 case SHT_NOTE: /* .note section. */
1564 case SHT_INIT_ARRAY: /* .init_array section. */
1565 case SHT_FINI_ARRAY: /* .fini_array section. */
1566 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1567 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1568 case SHT_GNU_HASH: /* .gnu.hash section. */
1569 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1570
1571 case SHT_DYNAMIC: /* Dynamic linking information. */
1572 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1573 return FALSE;
1574 if (hdr->sh_link > elf_numsections (abfd))
1575 {
1576 /* PR 10478: Accept Solaris binaries with a sh_link
1577 field set to SHN_BEFORE or SHN_AFTER. */
1578 switch (bfd_get_arch (abfd))
1579 {
1580 case bfd_arch_i386:
1581 case bfd_arch_sparc:
1582 if (hdr->sh_link == (SHN_LORESERVE & 0xffff) /* SHN_BEFORE */
1583 || hdr->sh_link == ((SHN_LORESERVE + 1) & 0xffff) /* SHN_AFTER */)
1584 break;
1585 /* Otherwise fall through. */
1586 default:
1587 return FALSE;
1588 }
1589 }
1590 else if (elf_elfsections (abfd)[hdr->sh_link] == NULL)
1591 return FALSE;
1592 else if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1593 {
1594 Elf_Internal_Shdr *dynsymhdr;
1595
1596 /* The shared libraries distributed with hpux11 have a bogus
1597 sh_link field for the ".dynamic" section. Find the
1598 string table for the ".dynsym" section instead. */
1599 if (elf_dynsymtab (abfd) != 0)
1600 {
1601 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1602 hdr->sh_link = dynsymhdr->sh_link;
1603 }
1604 else
1605 {
1606 unsigned int i, num_sec;
1607
1608 num_sec = elf_numsections (abfd);
1609 for (i = 1; i < num_sec; i++)
1610 {
1611 dynsymhdr = elf_elfsections (abfd)[i];
1612 if (dynsymhdr->sh_type == SHT_DYNSYM)
1613 {
1614 hdr->sh_link = dynsymhdr->sh_link;
1615 break;
1616 }
1617 }
1618 }
1619 }
1620 break;
1621
1622 case SHT_SYMTAB: /* A symbol table */
1623 if (elf_onesymtab (abfd) == shindex)
1624 return TRUE;
1625
1626 if (hdr->sh_entsize != bed->s->sizeof_sym)
1627 return FALSE;
1628 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
1629 {
1630 if (hdr->sh_size != 0)
1631 return FALSE;
1632 /* Some assemblers erroneously set sh_info to one with a
1633 zero sh_size. ld sees this as a global symbol count
1634 of (unsigned) -1. Fix it here. */
1635 hdr->sh_info = 0;
1636 return TRUE;
1637 }
1638 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1639 elf_onesymtab (abfd) = shindex;
1640 elf_tdata (abfd)->symtab_hdr = *hdr;
1641 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1642 abfd->flags |= HAS_SYMS;
1643
1644 /* Sometimes a shared object will map in the symbol table. If
1645 SHF_ALLOC is set, and this is a shared object, then we also
1646 treat this section as a BFD section. We can not base the
1647 decision purely on SHF_ALLOC, because that flag is sometimes
1648 set in a relocatable object file, which would confuse the
1649 linker. */
1650 if ((hdr->sh_flags & SHF_ALLOC) != 0
1651 && (abfd->flags & DYNAMIC) != 0
1652 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1653 shindex))
1654 return FALSE;
1655
1656 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1657 can't read symbols without that section loaded as well. It
1658 is most likely specified by the next section header. */
1659 if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
1660 {
1661 unsigned int i, num_sec;
1662
1663 num_sec = elf_numsections (abfd);
1664 for (i = shindex + 1; i < num_sec; i++)
1665 {
1666 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1667 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1668 && hdr2->sh_link == shindex)
1669 break;
1670 }
1671 if (i == num_sec)
1672 for (i = 1; i < shindex; i++)
1673 {
1674 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1675 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1676 && hdr2->sh_link == shindex)
1677 break;
1678 }
1679 if (i != shindex)
1680 return bfd_section_from_shdr (abfd, i);
1681 }
1682 return TRUE;
1683
1684 case SHT_DYNSYM: /* A dynamic symbol table */
1685 if (elf_dynsymtab (abfd) == shindex)
1686 return TRUE;
1687
1688 if (hdr->sh_entsize != bed->s->sizeof_sym)
1689 return FALSE;
1690 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
1691 {
1692 if (hdr->sh_size != 0)
1693 return FALSE;
1694 /* Some linkers erroneously set sh_info to one with a
1695 zero sh_size. ld sees this as a global symbol count
1696 of (unsigned) -1. Fix it here. */
1697 hdr->sh_info = 0;
1698 return TRUE;
1699 }
1700 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1701 elf_dynsymtab (abfd) = shindex;
1702 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1703 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1704 abfd->flags |= HAS_SYMS;
1705
1706 /* Besides being a symbol table, we also treat this as a regular
1707 section, so that objcopy can handle it. */
1708 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1709
1710 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1711 if (elf_symtab_shndx (abfd) == shindex)
1712 return TRUE;
1713
1714 BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
1715 elf_symtab_shndx (abfd) = shindex;
1716 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1717 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1718 return TRUE;
1719
1720 case SHT_STRTAB: /* A string table */
1721 if (hdr->bfd_section != NULL)
1722 return TRUE;
1723 if (ehdr->e_shstrndx == shindex)
1724 {
1725 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1726 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1727 return TRUE;
1728 }
1729 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
1730 {
1731 symtab_strtab:
1732 elf_tdata (abfd)->strtab_hdr = *hdr;
1733 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
1734 return TRUE;
1735 }
1736 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
1737 {
1738 dynsymtab_strtab:
1739 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1740 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
1741 elf_elfsections (abfd)[shindex] = hdr;
1742 /* We also treat this as a regular section, so that objcopy
1743 can handle it. */
1744 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1745 shindex);
1746 }
1747
1748 /* If the string table isn't one of the above, then treat it as a
1749 regular section. We need to scan all the headers to be sure,
1750 just in case this strtab section appeared before the above. */
1751 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
1752 {
1753 unsigned int i, num_sec;
1754
1755 num_sec = elf_numsections (abfd);
1756 for (i = 1; i < num_sec; i++)
1757 {
1758 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1759 if (hdr2->sh_link == shindex)
1760 {
1761 /* Prevent endless recursion on broken objects. */
1762 if (i == shindex)
1763 return FALSE;
1764 if (! bfd_section_from_shdr (abfd, i))
1765 return FALSE;
1766 if (elf_onesymtab (abfd) == i)
1767 goto symtab_strtab;
1768 if (elf_dynsymtab (abfd) == i)
1769 goto dynsymtab_strtab;
1770 }
1771 }
1772 }
1773 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1774
1775 case SHT_REL:
1776 case SHT_RELA:
1777 /* *These* do a lot of work -- but build no sections! */
1778 {
1779 asection *target_sect;
1780 Elf_Internal_Shdr *hdr2, **p_hdr;
1781 unsigned int num_sec = elf_numsections (abfd);
1782 struct bfd_elf_section_data *esdt;
1783 bfd_size_type amt;
1784
1785 if (hdr->sh_entsize
1786 != (bfd_size_type) (hdr->sh_type == SHT_REL
1787 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
1788 return FALSE;
1789
1790 /* Check for a bogus link to avoid crashing. */
1791 if (hdr->sh_link >= num_sec)
1792 {
1793 ((*_bfd_error_handler)
1794 (_("%B: invalid link %lu for reloc section %s (index %u)"),
1795 abfd, hdr->sh_link, name, shindex));
1796 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1797 shindex);
1798 }
1799
1800 /* For some incomprehensible reason Oracle distributes
1801 libraries for Solaris in which some of the objects have
1802 bogus sh_link fields. It would be nice if we could just
1803 reject them, but, unfortunately, some people need to use
1804 them. We scan through the section headers; if we find only
1805 one suitable symbol table, we clobber the sh_link to point
1806 to it. I hope this doesn't break anything.
1807
1808 Don't do it on executable nor shared library. */
1809 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0
1810 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
1811 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
1812 {
1813 unsigned int scan;
1814 int found;
1815
1816 found = 0;
1817 for (scan = 1; scan < num_sec; scan++)
1818 {
1819 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
1820 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
1821 {
1822 if (found != 0)
1823 {
1824 found = 0;
1825 break;
1826 }
1827 found = scan;
1828 }
1829 }
1830 if (found != 0)
1831 hdr->sh_link = found;
1832 }
1833
1834 /* Get the symbol table. */
1835 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
1836 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
1837 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
1838 return FALSE;
1839
1840 /* If this reloc section does not use the main symbol table we
1841 don't treat it as a reloc section. BFD can't adequately
1842 represent such a section, so at least for now, we don't
1843 try. We just present it as a normal section. We also
1844 can't use it as a reloc section if it points to the null
1845 section, an invalid section, another reloc section, or its
1846 sh_link points to the null section. */
1847 if (hdr->sh_link != elf_onesymtab (abfd)
1848 || hdr->sh_link == SHN_UNDEF
1849 || hdr->sh_info == SHN_UNDEF
1850 || hdr->sh_info >= num_sec
1851 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
1852 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
1853 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1854 shindex);
1855
1856 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
1857 return FALSE;
1858 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
1859 if (target_sect == NULL)
1860 return FALSE;
1861
1862 esdt = elf_section_data (target_sect);
1863 if (hdr->sh_type == SHT_RELA)
1864 p_hdr = &esdt->rela.hdr;
1865 else
1866 p_hdr = &esdt->rel.hdr;
1867
1868 BFD_ASSERT (*p_hdr == NULL);
1869 amt = sizeof (*hdr2);
1870 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, amt);
1871 if (hdr2 == NULL)
1872 return FALSE;
1873 *hdr2 = *hdr;
1874 *p_hdr = hdr2;
1875 elf_elfsections (abfd)[shindex] = hdr2;
1876 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
1877 target_sect->flags |= SEC_RELOC;
1878 target_sect->relocation = NULL;
1879 target_sect->rel_filepos = hdr->sh_offset;
1880 /* In the section to which the relocations apply, mark whether
1881 its relocations are of the REL or RELA variety. */
1882 if (hdr->sh_size != 0)
1883 {
1884 if (hdr->sh_type == SHT_RELA)
1885 target_sect->use_rela_p = 1;
1886 }
1887 abfd->flags |= HAS_RELOC;
1888 return TRUE;
1889 }
1890
1891 case SHT_GNU_verdef:
1892 elf_dynverdef (abfd) = shindex;
1893 elf_tdata (abfd)->dynverdef_hdr = *hdr;
1894 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1895
1896 case SHT_GNU_versym:
1897 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
1898 return FALSE;
1899 elf_dynversym (abfd) = shindex;
1900 elf_tdata (abfd)->dynversym_hdr = *hdr;
1901 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1902
1903 case SHT_GNU_verneed:
1904 elf_dynverref (abfd) = shindex;
1905 elf_tdata (abfd)->dynverref_hdr = *hdr;
1906 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1907
1908 case SHT_SHLIB:
1909 return TRUE;
1910
1911 case SHT_GROUP:
1912 if (! IS_VALID_GROUP_SECTION_HEADER (hdr, GRP_ENTRY_SIZE))
1913 return FALSE;
1914 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1915 return FALSE;
1916 if (hdr->contents != NULL)
1917 {
1918 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
1919 unsigned int n_elt = hdr->sh_size / GRP_ENTRY_SIZE;
1920 asection *s;
1921
1922 if (idx->flags & GRP_COMDAT)
1923 hdr->bfd_section->flags
1924 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1925
1926 /* We try to keep the same section order as it comes in. */
1927 idx += n_elt;
1928 while (--n_elt != 0)
1929 {
1930 --idx;
1931
1932 if (idx->shdr != NULL
1933 && (s = idx->shdr->bfd_section) != NULL
1934 && elf_next_in_group (s) != NULL)
1935 {
1936 elf_next_in_group (hdr->bfd_section) = s;
1937 break;
1938 }
1939 }
1940 }
1941 break;
1942
1943 default:
1944 /* Possibly an attributes section. */
1945 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
1946 || hdr->sh_type == bed->obj_attrs_section_type)
1947 {
1948 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1949 return FALSE;
1950 _bfd_elf_parse_attributes (abfd, hdr);
1951 return TRUE;
1952 }
1953
1954 /* Check for any processor-specific section types. */
1955 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
1956 return TRUE;
1957
1958 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
1959 {
1960 if ((hdr->sh_flags & SHF_ALLOC) != 0)
1961 /* FIXME: How to properly handle allocated section reserved
1962 for applications? */
1963 (*_bfd_error_handler)
1964 (_("%B: don't know how to handle allocated, application "
1965 "specific section `%s' [0x%8x]"),
1966 abfd, name, hdr->sh_type);
1967 else
1968 /* Allow sections reserved for applications. */
1969 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1970 shindex);
1971 }
1972 else if (hdr->sh_type >= SHT_LOPROC
1973 && hdr->sh_type <= SHT_HIPROC)
1974 /* FIXME: We should handle this section. */
1975 (*_bfd_error_handler)
1976 (_("%B: don't know how to handle processor specific section "
1977 "`%s' [0x%8x]"),
1978 abfd, name, hdr->sh_type);
1979 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
1980 {
1981 /* Unrecognised OS-specific sections. */
1982 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
1983 /* SHF_OS_NONCONFORMING indicates that special knowledge is
1984 required to correctly process the section and the file should
1985 be rejected with an error message. */
1986 (*_bfd_error_handler)
1987 (_("%B: don't know how to handle OS specific section "
1988 "`%s' [0x%8x]"),
1989 abfd, name, hdr->sh_type);
1990 else
1991 /* Otherwise it should be processed. */
1992 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1993 }
1994 else
1995 /* FIXME: We should handle this section. */
1996 (*_bfd_error_handler)
1997 (_("%B: don't know how to handle section `%s' [0x%8x]"),
1998 abfd, name, hdr->sh_type);
1999
2000 return FALSE;
2001 }
2002
2003 return TRUE;
2004 }
2005
2006 /* Return the local symbol specified by ABFD, R_SYMNDX. */
2007
2008 Elf_Internal_Sym *
2009 bfd_sym_from_r_symndx (struct sym_cache *cache,
2010 bfd *abfd,
2011 unsigned long r_symndx)
2012 {
2013 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2014
2015 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
2016 {
2017 Elf_Internal_Shdr *symtab_hdr;
2018 unsigned char esym[sizeof (Elf64_External_Sym)];
2019 Elf_External_Sym_Shndx eshndx;
2020
2021 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2022 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2023 &cache->sym[ent], esym, &eshndx) == NULL)
2024 return NULL;
2025
2026 if (cache->abfd != abfd)
2027 {
2028 memset (cache->indx, -1, sizeof (cache->indx));
2029 cache->abfd = abfd;
2030 }
2031 cache->indx[ent] = r_symndx;
2032 }
2033
2034 return &cache->sym[ent];
2035 }
2036
2037 /* Given an ELF section number, retrieve the corresponding BFD
2038 section. */
2039
2040 asection *
2041 bfd_section_from_elf_index (bfd *abfd, unsigned int sec_index)
2042 {
2043 if (sec_index >= elf_numsections (abfd))
2044 return NULL;
2045 return elf_elfsections (abfd)[sec_index]->bfd_section;
2046 }
2047
2048 static const struct bfd_elf_special_section special_sections_b[] =
2049 {
2050 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2051 { NULL, 0, 0, 0, 0 }
2052 };
2053
2054 static const struct bfd_elf_special_section special_sections_c[] =
2055 {
2056 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2057 { NULL, 0, 0, 0, 0 }
2058 };
2059
2060 static const struct bfd_elf_special_section special_sections_d[] =
2061 {
2062 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2063 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2064 /* There are more DWARF sections than these, but they needn't be added here
2065 unless you have to cope with broken compilers that don't emit section
2066 attributes or you want to help the user writing assembler. */
2067 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2068 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2069 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2070 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2071 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2072 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2073 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2074 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2075 { NULL, 0, 0, 0, 0 }
2076 };
2077
2078 static const struct bfd_elf_special_section special_sections_f[] =
2079 {
2080 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2081 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2082 { NULL, 0, 0, 0, 0 }
2083 };
2084
2085 static const struct bfd_elf_special_section special_sections_g[] =
2086 {
2087 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2088 { STRING_COMMA_LEN (".gnu.lto_"), -1, SHT_PROGBITS, SHF_EXCLUDE },
2089 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2090 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2091 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2092 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2093 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2094 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2095 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2096 { NULL, 0, 0, 0, 0 }
2097 };
2098
2099 static const struct bfd_elf_special_section special_sections_h[] =
2100 {
2101 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2102 { NULL, 0, 0, 0, 0 }
2103 };
2104
2105 static const struct bfd_elf_special_section special_sections_i[] =
2106 {
2107 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2108 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2109 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2110 { NULL, 0, 0, 0, 0 }
2111 };
2112
2113 static const struct bfd_elf_special_section special_sections_l[] =
2114 {
2115 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2116 { NULL, 0, 0, 0, 0 }
2117 };
2118
2119 static const struct bfd_elf_special_section special_sections_n[] =
2120 {
2121 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2122 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2123 { NULL, 0, 0, 0, 0 }
2124 };
2125
2126 static const struct bfd_elf_special_section special_sections_p[] =
2127 {
2128 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2129 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2130 { NULL, 0, 0, 0, 0 }
2131 };
2132
2133 static const struct bfd_elf_special_section special_sections_r[] =
2134 {
2135 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2136 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2137 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2138 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2139 { NULL, 0, 0, 0, 0 }
2140 };
2141
2142 static const struct bfd_elf_special_section special_sections_s[] =
2143 {
2144 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2145 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2146 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2147 /* See struct bfd_elf_special_section declaration for the semantics of
2148 this special case where .prefix_length != strlen (.prefix). */
2149 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2150 { NULL, 0, 0, 0, 0 }
2151 };
2152
2153 static const struct bfd_elf_special_section special_sections_t[] =
2154 {
2155 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2156 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2157 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2158 { NULL, 0, 0, 0, 0 }
2159 };
2160
2161 static const struct bfd_elf_special_section special_sections_z[] =
2162 {
2163 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 },
2164 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 },
2165 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 },
2166 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 },
2167 { NULL, 0, 0, 0, 0 }
2168 };
2169
2170 static const struct bfd_elf_special_section * const special_sections[] =
2171 {
2172 special_sections_b, /* 'b' */
2173 special_sections_c, /* 'c' */
2174 special_sections_d, /* 'd' */
2175 NULL, /* 'e' */
2176 special_sections_f, /* 'f' */
2177 special_sections_g, /* 'g' */
2178 special_sections_h, /* 'h' */
2179 special_sections_i, /* 'i' */
2180 NULL, /* 'j' */
2181 NULL, /* 'k' */
2182 special_sections_l, /* 'l' */
2183 NULL, /* 'm' */
2184 special_sections_n, /* 'n' */
2185 NULL, /* 'o' */
2186 special_sections_p, /* 'p' */
2187 NULL, /* 'q' */
2188 special_sections_r, /* 'r' */
2189 special_sections_s, /* 's' */
2190 special_sections_t, /* 't' */
2191 NULL, /* 'u' */
2192 NULL, /* 'v' */
2193 NULL, /* 'w' */
2194 NULL, /* 'x' */
2195 NULL, /* 'y' */
2196 special_sections_z /* 'z' */
2197 };
2198
2199 const struct bfd_elf_special_section *
2200 _bfd_elf_get_special_section (const char *name,
2201 const struct bfd_elf_special_section *spec,
2202 unsigned int rela)
2203 {
2204 int i;
2205 int len;
2206
2207 len = strlen (name);
2208
2209 for (i = 0; spec[i].prefix != NULL; i++)
2210 {
2211 int suffix_len;
2212 int prefix_len = spec[i].prefix_length;
2213
2214 if (len < prefix_len)
2215 continue;
2216 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2217 continue;
2218
2219 suffix_len = spec[i].suffix_length;
2220 if (suffix_len <= 0)
2221 {
2222 if (name[prefix_len] != 0)
2223 {
2224 if (suffix_len == 0)
2225 continue;
2226 if (name[prefix_len] != '.'
2227 && (suffix_len == -2
2228 || (rela && spec[i].type == SHT_REL)))
2229 continue;
2230 }
2231 }
2232 else
2233 {
2234 if (len < prefix_len + suffix_len)
2235 continue;
2236 if (memcmp (name + len - suffix_len,
2237 spec[i].prefix + prefix_len,
2238 suffix_len) != 0)
2239 continue;
2240 }
2241 return &spec[i];
2242 }
2243
2244 return NULL;
2245 }
2246
2247 const struct bfd_elf_special_section *
2248 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2249 {
2250 int i;
2251 const struct bfd_elf_special_section *spec;
2252 const struct elf_backend_data *bed;
2253
2254 /* See if this is one of the special sections. */
2255 if (sec->name == NULL)
2256 return NULL;
2257
2258 bed = get_elf_backend_data (abfd);
2259 spec = bed->special_sections;
2260 if (spec)
2261 {
2262 spec = _bfd_elf_get_special_section (sec->name,
2263 bed->special_sections,
2264 sec->use_rela_p);
2265 if (spec != NULL)
2266 return spec;
2267 }
2268
2269 if (sec->name[0] != '.')
2270 return NULL;
2271
2272 i = sec->name[1] - 'b';
2273 if (i < 0 || i > 'z' - 'b')
2274 return NULL;
2275
2276 spec = special_sections[i];
2277
2278 if (spec == NULL)
2279 return NULL;
2280
2281 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2282 }
2283
2284 bfd_boolean
2285 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2286 {
2287 struct bfd_elf_section_data *sdata;
2288 const struct elf_backend_data *bed;
2289 const struct bfd_elf_special_section *ssect;
2290
2291 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2292 if (sdata == NULL)
2293 {
2294 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd,
2295 sizeof (*sdata));
2296 if (sdata == NULL)
2297 return FALSE;
2298 sec->used_by_bfd = sdata;
2299 }
2300
2301 /* Indicate whether or not this section should use RELA relocations. */
2302 bed = get_elf_backend_data (abfd);
2303 sec->use_rela_p = bed->default_use_rela_p;
2304
2305 /* When we read a file, we don't need to set ELF section type and
2306 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2307 anyway. We will set ELF section type and flags for all linker
2308 created sections. If user specifies BFD section flags, we will
2309 set ELF section type and flags based on BFD section flags in
2310 elf_fake_sections. Special handling for .init_array/.fini_array
2311 output sections since they may contain .ctors/.dtors input
2312 sections. We don't want _bfd_elf_init_private_section_data to
2313 copy ELF section type from .ctors/.dtors input sections. */
2314 if (abfd->direction != read_direction
2315 || (sec->flags & SEC_LINKER_CREATED) != 0)
2316 {
2317 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2318 if (ssect != NULL
2319 && (!sec->flags
2320 || (sec->flags & SEC_LINKER_CREATED) != 0
2321 || ssect->type == SHT_INIT_ARRAY
2322 || ssect->type == SHT_FINI_ARRAY))
2323 {
2324 elf_section_type (sec) = ssect->type;
2325 elf_section_flags (sec) = ssect->attr;
2326 }
2327 }
2328
2329 return _bfd_generic_new_section_hook (abfd, sec);
2330 }
2331
2332 /* Create a new bfd section from an ELF program header.
2333
2334 Since program segments have no names, we generate a synthetic name
2335 of the form segment<NUM>, where NUM is generally the index in the
2336 program header table. For segments that are split (see below) we
2337 generate the names segment<NUM>a and segment<NUM>b.
2338
2339 Note that some program segments may have a file size that is different than
2340 (less than) the memory size. All this means is that at execution the
2341 system must allocate the amount of memory specified by the memory size,
2342 but only initialize it with the first "file size" bytes read from the
2343 file. This would occur for example, with program segments consisting
2344 of combined data+bss.
2345
2346 To handle the above situation, this routine generates TWO bfd sections
2347 for the single program segment. The first has the length specified by
2348 the file size of the segment, and the second has the length specified
2349 by the difference between the two sizes. In effect, the segment is split
2350 into its initialized and uninitialized parts.
2351
2352 */
2353
2354 bfd_boolean
2355 _bfd_elf_make_section_from_phdr (bfd *abfd,
2356 Elf_Internal_Phdr *hdr,
2357 int hdr_index,
2358 const char *type_name)
2359 {
2360 asection *newsect;
2361 char *name;
2362 char namebuf[64];
2363 size_t len;
2364 int split;
2365
2366 split = ((hdr->p_memsz > 0)
2367 && (hdr->p_filesz > 0)
2368 && (hdr->p_memsz > hdr->p_filesz));
2369
2370 if (hdr->p_filesz > 0)
2371 {
2372 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "a" : "");
2373 len = strlen (namebuf) + 1;
2374 name = (char *) bfd_alloc (abfd, len);
2375 if (!name)
2376 return FALSE;
2377 memcpy (name, namebuf, len);
2378 newsect = bfd_make_section (abfd, name);
2379 if (newsect == NULL)
2380 return FALSE;
2381 newsect->vma = hdr->p_vaddr;
2382 newsect->lma = hdr->p_paddr;
2383 newsect->size = hdr->p_filesz;
2384 newsect->filepos = hdr->p_offset;
2385 newsect->flags |= SEC_HAS_CONTENTS;
2386 newsect->alignment_power = bfd_log2 (hdr->p_align);
2387 if (hdr->p_type == PT_LOAD)
2388 {
2389 newsect->flags |= SEC_ALLOC;
2390 newsect->flags |= SEC_LOAD;
2391 if (hdr->p_flags & PF_X)
2392 {
2393 /* FIXME: all we known is that it has execute PERMISSION,
2394 may be data. */
2395 newsect->flags |= SEC_CODE;
2396 }
2397 }
2398 if (!(hdr->p_flags & PF_W))
2399 {
2400 newsect->flags |= SEC_READONLY;
2401 }
2402 }
2403
2404 if (hdr->p_memsz > hdr->p_filesz)
2405 {
2406 bfd_vma align;
2407
2408 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "b" : "");
2409 len = strlen (namebuf) + 1;
2410 name = (char *) bfd_alloc (abfd, len);
2411 if (!name)
2412 return FALSE;
2413 memcpy (name, namebuf, len);
2414 newsect = bfd_make_section (abfd, name);
2415 if (newsect == NULL)
2416 return FALSE;
2417 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2418 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2419 newsect->size = hdr->p_memsz - hdr->p_filesz;
2420 newsect->filepos = hdr->p_offset + hdr->p_filesz;
2421 align = newsect->vma & -newsect->vma;
2422 if (align == 0 || align > hdr->p_align)
2423 align = hdr->p_align;
2424 newsect->alignment_power = bfd_log2 (align);
2425 if (hdr->p_type == PT_LOAD)
2426 {
2427 /* Hack for gdb. Segments that have not been modified do
2428 not have their contents written to a core file, on the
2429 assumption that a debugger can find the contents in the
2430 executable. We flag this case by setting the fake
2431 section size to zero. Note that "real" bss sections will
2432 always have their contents dumped to the core file. */
2433 if (bfd_get_format (abfd) == bfd_core)
2434 newsect->size = 0;
2435 newsect->flags |= SEC_ALLOC;
2436 if (hdr->p_flags & PF_X)
2437 newsect->flags |= SEC_CODE;
2438 }
2439 if (!(hdr->p_flags & PF_W))
2440 newsect->flags |= SEC_READONLY;
2441 }
2442
2443 return TRUE;
2444 }
2445
2446 bfd_boolean
2447 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int hdr_index)
2448 {
2449 const struct elf_backend_data *bed;
2450
2451 switch (hdr->p_type)
2452 {
2453 case PT_NULL:
2454 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "null");
2455
2456 case PT_LOAD:
2457 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "load");
2458
2459 case PT_DYNAMIC:
2460 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "dynamic");
2461
2462 case PT_INTERP:
2463 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "interp");
2464
2465 case PT_NOTE:
2466 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "note"))
2467 return FALSE;
2468 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2469 return FALSE;
2470 return TRUE;
2471
2472 case PT_SHLIB:
2473 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "shlib");
2474
2475 case PT_PHDR:
2476 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "phdr");
2477
2478 case PT_GNU_EH_FRAME:
2479 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index,
2480 "eh_frame_hdr");
2481
2482 case PT_GNU_STACK:
2483 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "stack");
2484
2485 case PT_GNU_RELRO:
2486 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "relro");
2487
2488 default:
2489 /* Check for any processor-specific program segment types. */
2490 bed = get_elf_backend_data (abfd);
2491 return bed->elf_backend_section_from_phdr (abfd, hdr, hdr_index, "proc");
2492 }
2493 }
2494
2495 /* Return the REL_HDR for SEC, assuming there is only a single one, either
2496 REL or RELA. */
2497
2498 Elf_Internal_Shdr *
2499 _bfd_elf_single_rel_hdr (asection *sec)
2500 {
2501 if (elf_section_data (sec)->rel.hdr)
2502 {
2503 BFD_ASSERT (elf_section_data (sec)->rela.hdr == NULL);
2504 return elf_section_data (sec)->rel.hdr;
2505 }
2506 else
2507 return elf_section_data (sec)->rela.hdr;
2508 }
2509
2510 /* Allocate and initialize a section-header for a new reloc section,
2511 containing relocations against ASECT. It is stored in RELDATA. If
2512 USE_RELA_P is TRUE, we use RELA relocations; otherwise, we use REL
2513 relocations. */
2514
2515 bfd_boolean
2516 _bfd_elf_init_reloc_shdr (bfd *abfd,
2517 struct bfd_elf_section_reloc_data *reldata,
2518 asection *asect,
2519 bfd_boolean use_rela_p)
2520 {
2521 Elf_Internal_Shdr *rel_hdr;
2522 char *name;
2523 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2524 bfd_size_type amt;
2525
2526 amt = sizeof (Elf_Internal_Shdr);
2527 BFD_ASSERT (reldata->hdr == NULL);
2528 rel_hdr = bfd_zalloc (abfd, amt);
2529 reldata->hdr = rel_hdr;
2530
2531 amt = sizeof ".rela" + strlen (asect->name);
2532 name = (char *) bfd_alloc (abfd, amt);
2533 if (name == NULL)
2534 return FALSE;
2535 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2536 rel_hdr->sh_name =
2537 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2538 FALSE);
2539 if (rel_hdr->sh_name == (unsigned int) -1)
2540 return FALSE;
2541 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2542 rel_hdr->sh_entsize = (use_rela_p
2543 ? bed->s->sizeof_rela
2544 : bed->s->sizeof_rel);
2545 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
2546 rel_hdr->sh_flags = 0;
2547 rel_hdr->sh_addr = 0;
2548 rel_hdr->sh_size = 0;
2549 rel_hdr->sh_offset = 0;
2550
2551 return TRUE;
2552 }
2553
2554 /* Return the default section type based on the passed in section flags. */
2555
2556 int
2557 bfd_elf_get_default_section_type (flagword flags)
2558 {
2559 if ((flags & SEC_ALLOC) != 0
2560 && (flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2561 return SHT_NOBITS;
2562 return SHT_PROGBITS;
2563 }
2564
2565 struct fake_section_arg
2566 {
2567 struct bfd_link_info *link_info;
2568 bfd_boolean failed;
2569 };
2570
2571 /* Set up an ELF internal section header for a section. */
2572
2573 static void
2574 elf_fake_sections (bfd *abfd, asection *asect, void *fsarg)
2575 {
2576 struct fake_section_arg *arg = (struct fake_section_arg *)fsarg;
2577 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2578 struct bfd_elf_section_data *esd = elf_section_data (asect);
2579 Elf_Internal_Shdr *this_hdr;
2580 unsigned int sh_type;
2581
2582 if (arg->failed)
2583 {
2584 /* We already failed; just get out of the bfd_map_over_sections
2585 loop. */
2586 return;
2587 }
2588
2589 this_hdr = &esd->this_hdr;
2590
2591 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2592 asect->name, FALSE);
2593 if (this_hdr->sh_name == (unsigned int) -1)
2594 {
2595 arg->failed = TRUE;
2596 return;
2597 }
2598
2599 /* Don't clear sh_flags. Assembler may set additional bits. */
2600
2601 if ((asect->flags & SEC_ALLOC) != 0
2602 || asect->user_set_vma)
2603 this_hdr->sh_addr = asect->vma;
2604 else
2605 this_hdr->sh_addr = 0;
2606
2607 this_hdr->sh_offset = 0;
2608 this_hdr->sh_size = asect->size;
2609 this_hdr->sh_link = 0;
2610 this_hdr->sh_addralign = (bfd_vma) 1 << asect->alignment_power;
2611 /* The sh_entsize and sh_info fields may have been set already by
2612 copy_private_section_data. */
2613
2614 this_hdr->bfd_section = asect;
2615 this_hdr->contents = NULL;
2616
2617 /* If the section type is unspecified, we set it based on
2618 asect->flags. */
2619 if ((asect->flags & SEC_GROUP) != 0)
2620 sh_type = SHT_GROUP;
2621 else
2622 sh_type = bfd_elf_get_default_section_type (asect->flags);
2623
2624 if (this_hdr->sh_type == SHT_NULL)
2625 this_hdr->sh_type = sh_type;
2626 else if (this_hdr->sh_type == SHT_NOBITS
2627 && sh_type == SHT_PROGBITS
2628 && (asect->flags & SEC_ALLOC) != 0)
2629 {
2630 /* Warn if we are changing a NOBITS section to PROGBITS, but
2631 allow the link to proceed. This can happen when users link
2632 non-bss input sections to bss output sections, or emit data
2633 to a bss output section via a linker script. */
2634 (*_bfd_error_handler)
2635 (_("warning: section `%A' type changed to PROGBITS"), asect);
2636 this_hdr->sh_type = sh_type;
2637 }
2638
2639 switch (this_hdr->sh_type)
2640 {
2641 default:
2642 break;
2643
2644 case SHT_STRTAB:
2645 case SHT_INIT_ARRAY:
2646 case SHT_FINI_ARRAY:
2647 case SHT_PREINIT_ARRAY:
2648 case SHT_NOTE:
2649 case SHT_NOBITS:
2650 case SHT_PROGBITS:
2651 break;
2652
2653 case SHT_HASH:
2654 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2655 break;
2656
2657 case SHT_DYNSYM:
2658 this_hdr->sh_entsize = bed->s->sizeof_sym;
2659 break;
2660
2661 case SHT_DYNAMIC:
2662 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2663 break;
2664
2665 case SHT_RELA:
2666 if (get_elf_backend_data (abfd)->may_use_rela_p)
2667 this_hdr->sh_entsize = bed->s->sizeof_rela;
2668 break;
2669
2670 case SHT_REL:
2671 if (get_elf_backend_data (abfd)->may_use_rel_p)
2672 this_hdr->sh_entsize = bed->s->sizeof_rel;
2673 break;
2674
2675 case SHT_GNU_versym:
2676 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2677 break;
2678
2679 case SHT_GNU_verdef:
2680 this_hdr->sh_entsize = 0;
2681 /* objcopy or strip will copy over sh_info, but may not set
2682 cverdefs. The linker will set cverdefs, but sh_info will be
2683 zero. */
2684 if (this_hdr->sh_info == 0)
2685 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2686 else
2687 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2688 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2689 break;
2690
2691 case SHT_GNU_verneed:
2692 this_hdr->sh_entsize = 0;
2693 /* objcopy or strip will copy over sh_info, but may not set
2694 cverrefs. The linker will set cverrefs, but sh_info will be
2695 zero. */
2696 if (this_hdr->sh_info == 0)
2697 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2698 else
2699 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2700 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2701 break;
2702
2703 case SHT_GROUP:
2704 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
2705 break;
2706
2707 case SHT_GNU_HASH:
2708 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
2709 break;
2710 }
2711
2712 if ((asect->flags & SEC_ALLOC) != 0)
2713 this_hdr->sh_flags |= SHF_ALLOC;
2714 if ((asect->flags & SEC_READONLY) == 0)
2715 this_hdr->sh_flags |= SHF_WRITE;
2716 if ((asect->flags & SEC_CODE) != 0)
2717 this_hdr->sh_flags |= SHF_EXECINSTR;
2718 if ((asect->flags & SEC_MERGE) != 0)
2719 {
2720 this_hdr->sh_flags |= SHF_MERGE;
2721 this_hdr->sh_entsize = asect->entsize;
2722 if ((asect->flags & SEC_STRINGS) != 0)
2723 this_hdr->sh_flags |= SHF_STRINGS;
2724 }
2725 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2726 this_hdr->sh_flags |= SHF_GROUP;
2727 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2728 {
2729 this_hdr->sh_flags |= SHF_TLS;
2730 if (asect->size == 0
2731 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2732 {
2733 struct bfd_link_order *o = asect->map_tail.link_order;
2734
2735 this_hdr->sh_size = 0;
2736 if (o != NULL)
2737 {
2738 this_hdr->sh_size = o->offset + o->size;
2739 if (this_hdr->sh_size != 0)
2740 this_hdr->sh_type = SHT_NOBITS;
2741 }
2742 }
2743 }
2744 if ((asect->flags & (SEC_GROUP | SEC_EXCLUDE)) == SEC_EXCLUDE)
2745 this_hdr->sh_flags |= SHF_EXCLUDE;
2746
2747 /* If the section has relocs, set up a section header for the
2748 SHT_REL[A] section. If two relocation sections are required for
2749 this section, it is up to the processor-specific back-end to
2750 create the other. */
2751 if ((asect->flags & SEC_RELOC) != 0)
2752 {
2753 /* When doing a relocatable link, create both REL and RELA sections if
2754 needed. */
2755 if (arg->link_info
2756 /* Do the normal setup if we wouldn't create any sections here. */
2757 && esd->rel.count + esd->rela.count > 0
2758 && (arg->link_info->relocatable || arg->link_info->emitrelocations))
2759 {
2760 if (esd->rel.count && esd->rel.hdr == NULL
2761 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rel, asect, FALSE))
2762 {
2763 arg->failed = TRUE;
2764 return;
2765 }
2766 if (esd->rela.count && esd->rela.hdr == NULL
2767 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rela, asect, TRUE))
2768 {
2769 arg->failed = TRUE;
2770 return;
2771 }
2772 }
2773 else if (!_bfd_elf_init_reloc_shdr (abfd,
2774 (asect->use_rela_p
2775 ? &esd->rela : &esd->rel),
2776 asect,
2777 asect->use_rela_p))
2778 arg->failed = TRUE;
2779 }
2780
2781 /* Check for processor-specific section types. */
2782 sh_type = this_hdr->sh_type;
2783 if (bed->elf_backend_fake_sections
2784 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2785 arg->failed = TRUE;
2786
2787 if (sh_type == SHT_NOBITS && asect->size != 0)
2788 {
2789 /* Don't change the header type from NOBITS if we are being
2790 called for objcopy --only-keep-debug. */
2791 this_hdr->sh_type = sh_type;
2792 }
2793 }
2794
2795 /* Fill in the contents of a SHT_GROUP section. Called from
2796 _bfd_elf_compute_section_file_positions for gas, objcopy, and
2797 when ELF targets use the generic linker, ld. Called for ld -r
2798 from bfd_elf_final_link. */
2799
2800 void
2801 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2802 {
2803 bfd_boolean *failedptr = (bfd_boolean *) failedptrarg;
2804 asection *elt, *first;
2805 unsigned char *loc;
2806 bfd_boolean gas;
2807
2808 /* Ignore linker created group section. See elfNN_ia64_object_p in
2809 elfxx-ia64.c. */
2810 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
2811 || *failedptr)
2812 return;
2813
2814 if (elf_section_data (sec)->this_hdr.sh_info == 0)
2815 {
2816 unsigned long symindx = 0;
2817
2818 /* elf_group_id will have been set up by objcopy and the
2819 generic linker. */
2820 if (elf_group_id (sec) != NULL)
2821 symindx = elf_group_id (sec)->udata.i;
2822
2823 if (symindx == 0)
2824 {
2825 /* If called from the assembler, swap_out_syms will have set up
2826 elf_section_syms. */
2827 BFD_ASSERT (elf_section_syms (abfd) != NULL);
2828 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2829 }
2830 elf_section_data (sec)->this_hdr.sh_info = symindx;
2831 }
2832 else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2)
2833 {
2834 /* The ELF backend linker sets sh_info to -2 when the group
2835 signature symbol is global, and thus the index can't be
2836 set until all local symbols are output. */
2837 asection *igroup = elf_sec_group (elf_next_in_group (sec));
2838 struct bfd_elf_section_data *sec_data = elf_section_data (igroup);
2839 unsigned long symndx = sec_data->this_hdr.sh_info;
2840 unsigned long extsymoff = 0;
2841 struct elf_link_hash_entry *h;
2842
2843 if (!elf_bad_symtab (igroup->owner))
2844 {
2845 Elf_Internal_Shdr *symtab_hdr;
2846
2847 symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr;
2848 extsymoff = symtab_hdr->sh_info;
2849 }
2850 h = elf_sym_hashes (igroup->owner)[symndx - extsymoff];
2851 while (h->root.type == bfd_link_hash_indirect
2852 || h->root.type == bfd_link_hash_warning)
2853 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2854
2855 elf_section_data (sec)->this_hdr.sh_info = h->indx;
2856 }
2857
2858 /* The contents won't be allocated for "ld -r" or objcopy. */
2859 gas = TRUE;
2860 if (sec->contents == NULL)
2861 {
2862 gas = FALSE;
2863 sec->contents = (unsigned char *) bfd_alloc (abfd, sec->size);
2864
2865 /* Arrange for the section to be written out. */
2866 elf_section_data (sec)->this_hdr.contents = sec->contents;
2867 if (sec->contents == NULL)
2868 {
2869 *failedptr = TRUE;
2870 return;
2871 }
2872 }
2873
2874 loc = sec->contents + sec->size;
2875
2876 /* Get the pointer to the first section in the group that gas
2877 squirreled away here. objcopy arranges for this to be set to the
2878 start of the input section group. */
2879 first = elt = elf_next_in_group (sec);
2880
2881 /* First element is a flag word. Rest of section is elf section
2882 indices for all the sections of the group. Write them backwards
2883 just to keep the group in the same order as given in .section
2884 directives, not that it matters. */
2885 while (elt != NULL)
2886 {
2887 asection *s;
2888
2889 s = elt;
2890 if (!gas)
2891 s = s->output_section;
2892 if (s != NULL
2893 && !bfd_is_abs_section (s))
2894 {
2895 unsigned int idx = elf_section_data (s)->this_idx;
2896
2897 loc -= 4;
2898 H_PUT_32 (abfd, idx, loc);
2899 }
2900 elt = elf_next_in_group (elt);
2901 if (elt == first)
2902 break;
2903 }
2904
2905 if ((loc -= 4) != sec->contents)
2906 abort ();
2907
2908 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2909 }
2910
2911 /* Assign all ELF section numbers. The dummy first section is handled here
2912 too. The link/info pointers for the standard section types are filled
2913 in here too, while we're at it. */
2914
2915 static bfd_boolean
2916 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
2917 {
2918 struct elf_obj_tdata *t = elf_tdata (abfd);
2919 asection *sec;
2920 unsigned int section_number, secn;
2921 Elf_Internal_Shdr **i_shdrp;
2922 struct bfd_elf_section_data *d;
2923 bfd_boolean need_symtab;
2924
2925 section_number = 1;
2926
2927 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2928
2929 /* SHT_GROUP sections are in relocatable files only. */
2930 if (link_info == NULL || link_info->relocatable)
2931 {
2932 /* Put SHT_GROUP sections first. */
2933 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2934 {
2935 d = elf_section_data (sec);
2936
2937 if (d->this_hdr.sh_type == SHT_GROUP)
2938 {
2939 if (sec->flags & SEC_LINKER_CREATED)
2940 {
2941 /* Remove the linker created SHT_GROUP sections. */
2942 bfd_section_list_remove (abfd, sec);
2943 abfd->section_count--;
2944 }
2945 else
2946 d->this_idx = section_number++;
2947 }
2948 }
2949 }
2950
2951 for (sec = abfd->sections; sec; sec = sec->next)
2952 {
2953 d = elf_section_data (sec);
2954
2955 if (d->this_hdr.sh_type != SHT_GROUP)
2956 d->this_idx = section_number++;
2957 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
2958 if (d->rel.hdr)
2959 {
2960 d->rel.idx = section_number++;
2961 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel.hdr->sh_name);
2962 }
2963 else
2964 d->rel.idx = 0;
2965
2966 if (d->rela.hdr)
2967 {
2968 d->rela.idx = section_number++;
2969 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rela.hdr->sh_name);
2970 }
2971 else
2972 d->rela.idx = 0;
2973 }
2974
2975 t->shstrtab_section = section_number++;
2976 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
2977 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
2978
2979 need_symtab = (bfd_get_symcount (abfd) > 0
2980 || (link_info == NULL
2981 && ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
2982 == HAS_RELOC)));
2983 if (need_symtab)
2984 {
2985 t->symtab_section = section_number++;
2986 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
2987 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
2988 {
2989 t->symtab_shndx_section = section_number++;
2990 t->symtab_shndx_hdr.sh_name
2991 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2992 ".symtab_shndx", FALSE);
2993 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
2994 return FALSE;
2995 }
2996 t->strtab_section = section_number++;
2997 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
2998 }
2999
3000 if (section_number >= SHN_LORESERVE)
3001 {
3002 _bfd_error_handler (_("%B: too many sections: %u"),
3003 abfd, section_number);
3004 return FALSE;
3005 }
3006
3007 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
3008 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3009
3010 elf_numsections (abfd) = section_number;
3011 elf_elfheader (abfd)->e_shnum = section_number;
3012
3013 /* Set up the list of section header pointers, in agreement with the
3014 indices. */
3015 i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc2 (abfd, section_number,
3016 sizeof (Elf_Internal_Shdr *));
3017 if (i_shdrp == NULL)
3018 return FALSE;
3019
3020 i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd,
3021 sizeof (Elf_Internal_Shdr));
3022 if (i_shdrp[0] == NULL)
3023 {
3024 bfd_release (abfd, i_shdrp);
3025 return FALSE;
3026 }
3027
3028 elf_elfsections (abfd) = i_shdrp;
3029
3030 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
3031 if (need_symtab)
3032 {
3033 i_shdrp[t->symtab_section] = &t->symtab_hdr;
3034 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
3035 {
3036 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
3037 t->symtab_shndx_hdr.sh_link = t->symtab_section;
3038 }
3039 i_shdrp[t->strtab_section] = &t->strtab_hdr;
3040 t->symtab_hdr.sh_link = t->strtab_section;
3041 }
3042
3043 for (sec = abfd->sections; sec; sec = sec->next)
3044 {
3045 asection *s;
3046 const char *name;
3047
3048 d = elf_section_data (sec);
3049
3050 i_shdrp[d->this_idx] = &d->this_hdr;
3051 if (d->rel.idx != 0)
3052 i_shdrp[d->rel.idx] = d->rel.hdr;
3053 if (d->rela.idx != 0)
3054 i_shdrp[d->rela.idx] = d->rela.hdr;
3055
3056 /* Fill in the sh_link and sh_info fields while we're at it. */
3057
3058 /* sh_link of a reloc section is the section index of the symbol
3059 table. sh_info is the section index of the section to which
3060 the relocation entries apply. */
3061 if (d->rel.idx != 0)
3062 {
3063 d->rel.hdr->sh_link = t->symtab_section;
3064 d->rel.hdr->sh_info = d->this_idx;
3065 }
3066 if (d->rela.idx != 0)
3067 {
3068 d->rela.hdr->sh_link = t->symtab_section;
3069 d->rela.hdr->sh_info = d->this_idx;
3070 }
3071
3072 /* We need to set up sh_link for SHF_LINK_ORDER. */
3073 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3074 {
3075 s = elf_linked_to_section (sec);
3076 if (s)
3077 {
3078 /* elf_linked_to_section points to the input section. */
3079 if (link_info != NULL)
3080 {
3081 /* Check discarded linkonce section. */
3082 if (discarded_section (s))
3083 {
3084 asection *kept;
3085 (*_bfd_error_handler)
3086 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
3087 abfd, d->this_hdr.bfd_section,
3088 s, s->owner);
3089 /* Point to the kept section if it has the same
3090 size as the discarded one. */
3091 kept = _bfd_elf_check_kept_section (s, link_info);
3092 if (kept == NULL)
3093 {
3094 bfd_set_error (bfd_error_bad_value);
3095 return FALSE;
3096 }
3097 s = kept;
3098 }
3099
3100 s = s->output_section;
3101 BFD_ASSERT (s != NULL);
3102 }
3103 else
3104 {
3105 /* Handle objcopy. */
3106 if (s->output_section == NULL)
3107 {
3108 (*_bfd_error_handler)
3109 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
3110 abfd, d->this_hdr.bfd_section, s, s->owner);
3111 bfd_set_error (bfd_error_bad_value);
3112 return FALSE;
3113 }
3114 s = s->output_section;
3115 }
3116 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3117 }
3118 else
3119 {
3120 /* PR 290:
3121 The Intel C compiler generates SHT_IA_64_UNWIND with
3122 SHF_LINK_ORDER. But it doesn't set the sh_link or
3123 sh_info fields. Hence we could get the situation
3124 where s is NULL. */
3125 const struct elf_backend_data *bed
3126 = get_elf_backend_data (abfd);
3127 if (bed->link_order_error_handler)
3128 bed->link_order_error_handler
3129 (_("%B: warning: sh_link not set for section `%A'"),
3130 abfd, sec);
3131 }
3132 }
3133
3134 switch (d->this_hdr.sh_type)
3135 {
3136 case SHT_REL:
3137 case SHT_RELA:
3138 /* A reloc section which we are treating as a normal BFD
3139 section. sh_link is the section index of the symbol
3140 table. sh_info is the section index of the section to
3141 which the relocation entries apply. We assume that an
3142 allocated reloc section uses the dynamic symbol table.
3143 FIXME: How can we be sure? */
3144 s = bfd_get_section_by_name (abfd, ".dynsym");
3145 if (s != NULL)
3146 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3147
3148 /* We look up the section the relocs apply to by name. */
3149 name = sec->name;
3150 if (d->this_hdr.sh_type == SHT_REL)
3151 name += 4;
3152 else
3153 name += 5;
3154 s = bfd_get_section_by_name (abfd, name);
3155 if (s != NULL)
3156 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3157 break;
3158
3159 case SHT_STRTAB:
3160 /* We assume that a section named .stab*str is a stabs
3161 string section. We look for a section with the same name
3162 but without the trailing ``str'', and set its sh_link
3163 field to point to this section. */
3164 if (CONST_STRNEQ (sec->name, ".stab")
3165 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3166 {
3167 size_t len;
3168 char *alc;
3169
3170 len = strlen (sec->name);
3171 alc = (char *) bfd_malloc (len - 2);
3172 if (alc == NULL)
3173 return FALSE;
3174 memcpy (alc, sec->name, len - 3);
3175 alc[len - 3] = '\0';
3176 s = bfd_get_section_by_name (abfd, alc);
3177 free (alc);
3178 if (s != NULL)
3179 {
3180 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3181
3182 /* This is a .stab section. */
3183 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3184 elf_section_data (s)->this_hdr.sh_entsize
3185 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3186 }
3187 }
3188 break;
3189
3190 case SHT_DYNAMIC:
3191 case SHT_DYNSYM:
3192 case SHT_GNU_verneed:
3193 case SHT_GNU_verdef:
3194 /* sh_link is the section header index of the string table
3195 used for the dynamic entries, or the symbol table, or the
3196 version strings. */
3197 s = bfd_get_section_by_name (abfd, ".dynstr");
3198 if (s != NULL)
3199 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3200 break;
3201
3202 case SHT_GNU_LIBLIST:
3203 /* sh_link is the section header index of the prelink library
3204 list used for the dynamic entries, or the symbol table, or
3205 the version strings. */
3206 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3207 ? ".dynstr" : ".gnu.libstr");
3208 if (s != NULL)
3209 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3210 break;
3211
3212 case SHT_HASH:
3213 case SHT_GNU_HASH:
3214 case SHT_GNU_versym:
3215 /* sh_link is the section header index of the symbol table
3216 this hash table or version table is for. */
3217 s = bfd_get_section_by_name (abfd, ".dynsym");
3218 if (s != NULL)
3219 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3220 break;
3221
3222 case SHT_GROUP:
3223 d->this_hdr.sh_link = t->symtab_section;
3224 }
3225 }
3226
3227 for (secn = 1; secn < section_number; ++secn)
3228 if (i_shdrp[secn] == NULL)
3229 i_shdrp[secn] = i_shdrp[0];
3230 else
3231 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
3232 i_shdrp[secn]->sh_name);
3233 return TRUE;
3234 }
3235
3236 static bfd_boolean
3237 sym_is_global (bfd *abfd, asymbol *sym)
3238 {
3239 /* If the backend has a special mapping, use it. */
3240 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3241 if (bed->elf_backend_sym_is_global)
3242 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3243
3244 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0
3245 || bfd_is_und_section (bfd_get_section (sym))
3246 || bfd_is_com_section (bfd_get_section (sym)));
3247 }
3248
3249 /* Don't output section symbols for sections that are not going to be
3250 output, that are duplicates or there is no BFD section. */
3251
3252 static bfd_boolean
3253 ignore_section_sym (bfd *abfd, asymbol *sym)
3254 {
3255 elf_symbol_type *type_ptr;
3256
3257 if ((sym->flags & BSF_SECTION_SYM) == 0)
3258 return FALSE;
3259
3260 type_ptr = elf_symbol_from (abfd, sym);
3261 return ((type_ptr != NULL
3262 && type_ptr->internal_elf_sym.st_shndx != 0
3263 && bfd_is_abs_section (sym->section))
3264 || !(sym->section->owner == abfd
3265 || (sym->section->output_section->owner == abfd
3266 && sym->section->output_offset == 0)
3267 || bfd_is_abs_section (sym->section)));
3268 }
3269
3270 /* Map symbol from it's internal number to the external number, moving
3271 all local symbols to be at the head of the list. */
3272
3273 static bfd_boolean
3274 elf_map_symbols (bfd *abfd)
3275 {
3276 unsigned int symcount = bfd_get_symcount (abfd);
3277 asymbol **syms = bfd_get_outsymbols (abfd);
3278 asymbol **sect_syms;
3279 unsigned int num_locals = 0;
3280 unsigned int num_globals = 0;
3281 unsigned int num_locals2 = 0;
3282 unsigned int num_globals2 = 0;
3283 int max_index = 0;
3284 unsigned int idx;
3285 asection *asect;
3286 asymbol **new_syms;
3287
3288 #ifdef DEBUG
3289 fprintf (stderr, "elf_map_symbols\n");
3290 fflush (stderr);
3291 #endif
3292
3293 for (asect = abfd->sections; asect; asect = asect->next)
3294 {
3295 if (max_index < asect->index)
3296 max_index = asect->index;
3297 }
3298
3299 max_index++;
3300 sect_syms = (asymbol **) bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
3301 if (sect_syms == NULL)
3302 return FALSE;
3303 elf_section_syms (abfd) = sect_syms;
3304 elf_num_section_syms (abfd) = max_index;
3305
3306 /* Init sect_syms entries for any section symbols we have already
3307 decided to output. */
3308 for (idx = 0; idx < symcount; idx++)
3309 {
3310 asymbol *sym = syms[idx];
3311
3312 if ((sym->flags & BSF_SECTION_SYM) != 0
3313 && sym->value == 0
3314 && !ignore_section_sym (abfd, sym)
3315 && !bfd_is_abs_section (sym->section))
3316 {
3317 asection *sec = sym->section;
3318
3319 if (sec->owner != abfd)
3320 sec = sec->output_section;
3321
3322 sect_syms[sec->index] = syms[idx];
3323 }
3324 }
3325
3326 /* Classify all of the symbols. */
3327 for (idx = 0; idx < symcount; idx++)
3328 {
3329 if (sym_is_global (abfd, syms[idx]))
3330 num_globals++;
3331 else if (!ignore_section_sym (abfd, syms[idx]))
3332 num_locals++;
3333 }
3334
3335 /* We will be adding a section symbol for each normal BFD section. Most
3336 sections will already have a section symbol in outsymbols, but
3337 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3338 at least in that case. */
3339 for (asect = abfd->sections; asect; asect = asect->next)
3340 {
3341 if (sect_syms[asect->index] == NULL)
3342 {
3343 if (!sym_is_global (abfd, asect->symbol))
3344 num_locals++;
3345 else
3346 num_globals++;
3347 }
3348 }
3349
3350 /* Now sort the symbols so the local symbols are first. */
3351 new_syms = (asymbol **) bfd_alloc2 (abfd, num_locals + num_globals,
3352 sizeof (asymbol *));
3353
3354 if (new_syms == NULL)
3355 return FALSE;
3356
3357 for (idx = 0; idx < symcount; idx++)
3358 {
3359 asymbol *sym = syms[idx];
3360 unsigned int i;
3361
3362 if (sym_is_global (abfd, sym))
3363 i = num_locals + num_globals2++;
3364 else if (!ignore_section_sym (abfd, sym))
3365 i = num_locals2++;
3366 else
3367 continue;
3368 new_syms[i] = sym;
3369 sym->udata.i = i + 1;
3370 }
3371 for (asect = abfd->sections; asect; asect = asect->next)
3372 {
3373 if (sect_syms[asect->index] == NULL)
3374 {
3375 asymbol *sym = asect->symbol;
3376 unsigned int i;
3377
3378 sect_syms[asect->index] = sym;
3379 if (!sym_is_global (abfd, sym))
3380 i = num_locals2++;
3381 else
3382 i = num_locals + num_globals2++;
3383 new_syms[i] = sym;
3384 sym->udata.i = i + 1;
3385 }
3386 }
3387
3388 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3389
3390 elf_num_locals (abfd) = num_locals;
3391 elf_num_globals (abfd) = num_globals;
3392 return TRUE;
3393 }
3394
3395 /* Align to the maximum file alignment that could be required for any
3396 ELF data structure. */
3397
3398 static inline file_ptr
3399 align_file_position (file_ptr off, int align)
3400 {
3401 return (off + align - 1) & ~(align - 1);
3402 }
3403
3404 /* Assign a file position to a section, optionally aligning to the
3405 required section alignment. */
3406
3407 file_ptr
3408 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3409 file_ptr offset,
3410 bfd_boolean align)
3411 {
3412 if (align && i_shdrp->sh_addralign > 1)
3413 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
3414 i_shdrp->sh_offset = offset;
3415 if (i_shdrp->bfd_section != NULL)
3416 i_shdrp->bfd_section->filepos = offset;
3417 if (i_shdrp->sh_type != SHT_NOBITS)
3418 offset += i_shdrp->sh_size;
3419 return offset;
3420 }
3421
3422 /* Compute the file positions we are going to put the sections at, and
3423 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3424 is not NULL, this is being called by the ELF backend linker. */
3425
3426 bfd_boolean
3427 _bfd_elf_compute_section_file_positions (bfd *abfd,
3428 struct bfd_link_info *link_info)
3429 {
3430 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3431 struct fake_section_arg fsargs;
3432 bfd_boolean failed;
3433 struct bfd_strtab_hash *strtab = NULL;
3434 Elf_Internal_Shdr *shstrtab_hdr;
3435 bfd_boolean need_symtab;
3436
3437 if (abfd->output_has_begun)
3438 return TRUE;
3439
3440 /* Do any elf backend specific processing first. */
3441 if (bed->elf_backend_begin_write_processing)
3442 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3443
3444 if (! prep_headers (abfd))
3445 return FALSE;
3446
3447 /* Post process the headers if necessary. */
3448 if (bed->elf_backend_post_process_headers)
3449 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3450
3451 fsargs.failed = FALSE;
3452 fsargs.link_info = link_info;
3453 bfd_map_over_sections (abfd, elf_fake_sections, &fsargs);
3454 if (fsargs.failed)
3455 return FALSE;
3456
3457 if (!assign_section_numbers (abfd, link_info))
3458 return FALSE;
3459
3460 /* The backend linker builds symbol table information itself. */
3461 need_symtab = (link_info == NULL
3462 && (bfd_get_symcount (abfd) > 0
3463 || ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
3464 == HAS_RELOC)));
3465 if (need_symtab)
3466 {
3467 /* Non-zero if doing a relocatable link. */
3468 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3469
3470 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3471 return FALSE;
3472 }
3473
3474 failed = FALSE;
3475 if (link_info == NULL)
3476 {
3477 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3478 if (failed)
3479 return FALSE;
3480 }
3481
3482 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3483 /* sh_name was set in prep_headers. */
3484 shstrtab_hdr->sh_type = SHT_STRTAB;
3485 shstrtab_hdr->sh_flags = 0;
3486 shstrtab_hdr->sh_addr = 0;
3487 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3488 shstrtab_hdr->sh_entsize = 0;
3489 shstrtab_hdr->sh_link = 0;
3490 shstrtab_hdr->sh_info = 0;
3491 /* sh_offset is set in assign_file_positions_except_relocs. */
3492 shstrtab_hdr->sh_addralign = 1;
3493
3494 if (!assign_file_positions_except_relocs (abfd, link_info))
3495 return FALSE;
3496
3497 if (need_symtab)
3498 {
3499 file_ptr off;
3500 Elf_Internal_Shdr *hdr;
3501
3502 off = elf_tdata (abfd)->next_file_pos;
3503
3504 hdr = &elf_tdata (abfd)->symtab_hdr;
3505 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3506
3507 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3508 if (hdr->sh_size != 0)
3509 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3510
3511 hdr = &elf_tdata (abfd)->strtab_hdr;
3512 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3513
3514 elf_tdata (abfd)->next_file_pos = off;
3515
3516 /* Now that we know where the .strtab section goes, write it
3517 out. */
3518 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3519 || ! _bfd_stringtab_emit (abfd, strtab))
3520 return FALSE;
3521 _bfd_stringtab_free (strtab);
3522 }
3523
3524 abfd->output_has_begun = TRUE;
3525
3526 return TRUE;
3527 }
3528
3529 /* Make an initial estimate of the size of the program header. If we
3530 get the number wrong here, we'll redo section placement. */
3531
3532 static bfd_size_type
3533 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
3534 {
3535 size_t segs;
3536 asection *s;
3537 const struct elf_backend_data *bed;
3538
3539 /* Assume we will need exactly two PT_LOAD segments: one for text
3540 and one for data. */
3541 segs = 2;
3542
3543 s = bfd_get_section_by_name (abfd, ".interp");
3544 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3545 {
3546 /* If we have a loadable interpreter section, we need a
3547 PT_INTERP segment. In this case, assume we also need a
3548 PT_PHDR segment, although that may not be true for all
3549 targets. */
3550 segs += 2;
3551 }
3552
3553 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
3554 {
3555 /* We need a PT_DYNAMIC segment. */
3556 ++segs;
3557 }
3558
3559 if (info != NULL && info->relro)
3560 {
3561 /* We need a PT_GNU_RELRO segment. */
3562 ++segs;
3563 }
3564
3565 if (elf_tdata (abfd)->eh_frame_hdr)
3566 {
3567 /* We need a PT_GNU_EH_FRAME segment. */
3568 ++segs;
3569 }
3570
3571 if (elf_tdata (abfd)->stack_flags)
3572 {
3573 /* We need a PT_GNU_STACK segment. */
3574 ++segs;
3575 }
3576
3577 for (s = abfd->sections; s != NULL; s = s->next)
3578 {
3579 if ((s->flags & SEC_LOAD) != 0
3580 && CONST_STRNEQ (s->name, ".note"))
3581 {
3582 /* We need a PT_NOTE segment. */
3583 ++segs;
3584 /* Try to create just one PT_NOTE segment
3585 for all adjacent loadable .note* sections.
3586 gABI requires that within a PT_NOTE segment
3587 (and also inside of each SHT_NOTE section)
3588 each note is padded to a multiple of 4 size,
3589 so we check whether the sections are correctly
3590 aligned. */
3591 if (s->alignment_power == 2)
3592 while (s->next != NULL
3593 && s->next->alignment_power == 2
3594 && (s->next->flags & SEC_LOAD) != 0
3595 && CONST_STRNEQ (s->next->name, ".note"))
3596 s = s->next;
3597 }
3598 }
3599
3600 for (s = abfd->sections; s != NULL; s = s->next)
3601 {
3602 if (s->flags & SEC_THREAD_LOCAL)
3603 {
3604 /* We need a PT_TLS segment. */
3605 ++segs;
3606 break;
3607 }
3608 }
3609
3610 /* Let the backend count up any program headers it might need. */
3611 bed = get_elf_backend_data (abfd);
3612 if (bed->elf_backend_additional_program_headers)
3613 {
3614 int a;
3615
3616 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
3617 if (a == -1)
3618 abort ();
3619 segs += a;
3620 }
3621
3622 return segs * bed->s->sizeof_phdr;
3623 }
3624
3625 /* Find the segment that contains the output_section of section. */
3626
3627 Elf_Internal_Phdr *
3628 _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
3629 {
3630 struct elf_segment_map *m;
3631 Elf_Internal_Phdr *p;
3632
3633 for (m = elf_tdata (abfd)->segment_map,
3634 p = elf_tdata (abfd)->phdr;
3635 m != NULL;
3636 m = m->next, p++)
3637 {
3638 int i;
3639
3640 for (i = m->count - 1; i >= 0; i--)
3641 if (m->sections[i] == section)
3642 return p;
3643 }
3644
3645 return NULL;
3646 }
3647
3648 /* Create a mapping from a set of sections to a program segment. */
3649
3650 static struct elf_segment_map *
3651 make_mapping (bfd *abfd,
3652 asection **sections,
3653 unsigned int from,
3654 unsigned int to,
3655 bfd_boolean phdr)
3656 {
3657 struct elf_segment_map *m;
3658 unsigned int i;
3659 asection **hdrpp;
3660 bfd_size_type amt;
3661
3662 amt = sizeof (struct elf_segment_map);
3663 amt += (to - from - 1) * sizeof (asection *);
3664 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3665 if (m == NULL)
3666 return NULL;
3667 m->next = NULL;
3668 m->p_type = PT_LOAD;
3669 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3670 m->sections[i - from] = *hdrpp;
3671 m->count = to - from;
3672
3673 if (from == 0 && phdr)
3674 {
3675 /* Include the headers in the first PT_LOAD segment. */
3676 m->includes_filehdr = 1;
3677 m->includes_phdrs = 1;
3678 }
3679
3680 return m;
3681 }
3682
3683 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3684 on failure. */
3685
3686 struct elf_segment_map *
3687 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3688 {
3689 struct elf_segment_map *m;
3690
3691 m = (struct elf_segment_map *) bfd_zalloc (abfd,
3692 sizeof (struct elf_segment_map));
3693 if (m == NULL)
3694 return NULL;
3695 m->next = NULL;
3696 m->p_type = PT_DYNAMIC;
3697 m->count = 1;
3698 m->sections[0] = dynsec;
3699
3700 return m;
3701 }
3702
3703 /* Possibly add or remove segments from the segment map. */
3704
3705 static bfd_boolean
3706 elf_modify_segment_map (bfd *abfd,
3707 struct bfd_link_info *info,
3708 bfd_boolean remove_empty_load)
3709 {
3710 struct elf_segment_map **m;
3711 const struct elf_backend_data *bed;
3712
3713 /* The placement algorithm assumes that non allocated sections are
3714 not in PT_LOAD segments. We ensure this here by removing such
3715 sections from the segment map. We also remove excluded
3716 sections. Finally, any PT_LOAD segment without sections is
3717 removed. */
3718 m = &elf_tdata (abfd)->segment_map;
3719 while (*m)
3720 {
3721 unsigned int i, new_count;
3722
3723 for (new_count = 0, i = 0; i < (*m)->count; i++)
3724 {
3725 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
3726 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
3727 || (*m)->p_type != PT_LOAD))
3728 {
3729 (*m)->sections[new_count] = (*m)->sections[i];
3730 new_count++;
3731 }
3732 }
3733 (*m)->count = new_count;
3734
3735 if (remove_empty_load && (*m)->p_type == PT_LOAD && (*m)->count == 0)
3736 *m = (*m)->next;
3737 else
3738 m = &(*m)->next;
3739 }
3740
3741 bed = get_elf_backend_data (abfd);
3742 if (bed->elf_backend_modify_segment_map != NULL)
3743 {
3744 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
3745 return FALSE;
3746 }
3747
3748 return TRUE;
3749 }
3750
3751 /* Set up a mapping from BFD sections to program segments. */
3752
3753 bfd_boolean
3754 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
3755 {
3756 unsigned int count;
3757 struct elf_segment_map *m;
3758 asection **sections = NULL;
3759 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3760 bfd_boolean no_user_phdrs;
3761
3762 no_user_phdrs = elf_tdata (abfd)->segment_map == NULL;
3763
3764 if (info != NULL)
3765 info->user_phdrs = !no_user_phdrs;
3766
3767 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
3768 {
3769 asection *s;
3770 unsigned int i;
3771 struct elf_segment_map *mfirst;
3772 struct elf_segment_map **pm;
3773 asection *last_hdr;
3774 bfd_vma last_size;
3775 unsigned int phdr_index;
3776 bfd_vma maxpagesize;
3777 asection **hdrpp;
3778 bfd_boolean phdr_in_segment = TRUE;
3779 bfd_boolean writable;
3780 int tls_count = 0;
3781 asection *first_tls = NULL;
3782 asection *dynsec, *eh_frame_hdr;
3783 bfd_size_type amt;
3784 bfd_vma addr_mask, wrap_to = 0;
3785
3786 /* Select the allocated sections, and sort them. */
3787
3788 sections = (asection **) bfd_malloc2 (bfd_count_sections (abfd),
3789 sizeof (asection *));
3790 if (sections == NULL)
3791 goto error_return;
3792
3793 /* Calculate top address, avoiding undefined behaviour of shift
3794 left operator when shift count is equal to size of type
3795 being shifted. */
3796 addr_mask = ((bfd_vma) 1 << (bfd_arch_bits_per_address (abfd) - 1)) - 1;
3797 addr_mask = (addr_mask << 1) + 1;
3798
3799 i = 0;
3800 for (s = abfd->sections; s != NULL; s = s->next)
3801 {
3802 if ((s->flags & SEC_ALLOC) != 0)
3803 {
3804 sections[i] = s;
3805 ++i;
3806 /* A wrapping section potentially clashes with header. */
3807 if (((s->lma + s->size) & addr_mask) < (s->lma & addr_mask))
3808 wrap_to = (s->lma + s->size) & addr_mask;
3809 }
3810 }
3811 BFD_ASSERT (i <= bfd_count_sections (abfd));
3812 count = i;
3813
3814 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3815
3816 /* Build the mapping. */
3817
3818 mfirst = NULL;
3819 pm = &mfirst;
3820
3821 /* If we have a .interp section, then create a PT_PHDR segment for
3822 the program headers and a PT_INTERP segment for the .interp
3823 section. */
3824 s = bfd_get_section_by_name (abfd, ".interp");
3825 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3826 {
3827 amt = sizeof (struct elf_segment_map);
3828 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3829 if (m == NULL)
3830 goto error_return;
3831 m->next = NULL;
3832 m->p_type = PT_PHDR;
3833 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3834 m->p_flags = PF_R | PF_X;
3835 m->p_flags_valid = 1;
3836 m->includes_phdrs = 1;
3837
3838 *pm = m;
3839 pm = &m->next;
3840
3841 amt = sizeof (struct elf_segment_map);
3842 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3843 if (m == NULL)
3844 goto error_return;
3845 m->next = NULL;
3846 m->p_type = PT_INTERP;
3847 m->count = 1;
3848 m->sections[0] = s;
3849
3850 *pm = m;
3851 pm = &m->next;
3852 }
3853
3854 /* Look through the sections. We put sections in the same program
3855 segment when the start of the second section can be placed within
3856 a few bytes of the end of the first section. */
3857 last_hdr = NULL;
3858 last_size = 0;
3859 phdr_index = 0;
3860 maxpagesize = bed->maxpagesize;
3861 writable = FALSE;
3862 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3863 if (dynsec != NULL
3864 && (dynsec->flags & SEC_LOAD) == 0)
3865 dynsec = NULL;
3866
3867 /* Deal with -Ttext or something similar such that the first section
3868 is not adjacent to the program headers. This is an
3869 approximation, since at this point we don't know exactly how many
3870 program headers we will need. */
3871 if (count > 0)
3872 {
3873 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
3874
3875 if (phdr_size == (bfd_size_type) -1)
3876 phdr_size = get_program_header_size (abfd, info);
3877 if ((abfd->flags & D_PAGED) == 0
3878 || (sections[0]->lma & addr_mask) < phdr_size
3879 || ((sections[0]->lma & addr_mask) % maxpagesize
3880 < phdr_size % maxpagesize)
3881 || (sections[0]->lma & addr_mask & -maxpagesize) < wrap_to)
3882 phdr_in_segment = FALSE;
3883 }
3884
3885 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3886 {
3887 asection *hdr;
3888 bfd_boolean new_segment;
3889
3890 hdr = *hdrpp;
3891
3892 /* See if this section and the last one will fit in the same
3893 segment. */
3894
3895 if (last_hdr == NULL)
3896 {
3897 /* If we don't have a segment yet, then we don't need a new
3898 one (we build the last one after this loop). */
3899 new_segment = FALSE;
3900 }
3901 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3902 {
3903 /* If this section has a different relation between the
3904 virtual address and the load address, then we need a new
3905 segment. */
3906 new_segment = TRUE;
3907 }
3908 else if (hdr->lma < last_hdr->lma + last_size
3909 || last_hdr->lma + last_size < last_hdr->lma)
3910 {
3911 /* If this section has a load address that makes it overlap
3912 the previous section, then we need a new segment. */
3913 new_segment = TRUE;
3914 }
3915 /* In the next test we have to be careful when last_hdr->lma is close
3916 to the end of the address space. If the aligned address wraps
3917 around to the start of the address space, then there are no more
3918 pages left in memory and it is OK to assume that the current
3919 section can be included in the current segment. */
3920 else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
3921 > last_hdr->lma)
3922 && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
3923 <= hdr->lma))
3924 {
3925 /* If putting this section in this segment would force us to
3926 skip a page in the segment, then we need a new segment. */
3927 new_segment = TRUE;
3928 }
3929 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
3930 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
3931 {
3932 /* We don't want to put a loadable section after a
3933 nonloadable section in the same segment.
3934 Consider .tbss sections as loadable for this purpose. */
3935 new_segment = TRUE;
3936 }
3937 else if ((abfd->flags & D_PAGED) == 0)
3938 {
3939 /* If the file is not demand paged, which means that we
3940 don't require the sections to be correctly aligned in the
3941 file, then there is no other reason for a new segment. */
3942 new_segment = FALSE;
3943 }
3944 else if (! writable
3945 && (hdr->flags & SEC_READONLY) == 0
3946 && (((last_hdr->lma + last_size - 1) & -maxpagesize)
3947 != (hdr->lma & -maxpagesize)))
3948 {
3949 /* We don't want to put a writable section in a read only
3950 segment, unless they are on the same page in memory
3951 anyhow. We already know that the last section does not
3952 bring us past the current section on the page, so the
3953 only case in which the new section is not on the same
3954 page as the previous section is when the previous section
3955 ends precisely on a page boundary. */
3956 new_segment = TRUE;
3957 }
3958 else
3959 {
3960 /* Otherwise, we can use the same segment. */
3961 new_segment = FALSE;
3962 }
3963
3964 /* Allow interested parties a chance to override our decision. */
3965 if (last_hdr != NULL
3966 && info != NULL
3967 && info->callbacks->override_segment_assignment != NULL)
3968 new_segment
3969 = info->callbacks->override_segment_assignment (info, abfd, hdr,
3970 last_hdr,
3971 new_segment);
3972
3973 if (! new_segment)
3974 {
3975 if ((hdr->flags & SEC_READONLY) == 0)
3976 writable = TRUE;
3977 last_hdr = hdr;
3978 /* .tbss sections effectively have zero size. */
3979 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
3980 != SEC_THREAD_LOCAL)
3981 last_size = hdr->size;
3982 else
3983 last_size = 0;
3984 continue;
3985 }
3986
3987 /* We need a new program segment. We must create a new program
3988 header holding all the sections from phdr_index until hdr. */
3989
3990 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3991 if (m == NULL)
3992 goto error_return;
3993
3994 *pm = m;
3995 pm = &m->next;
3996
3997 if ((hdr->flags & SEC_READONLY) == 0)
3998 writable = TRUE;
3999 else
4000 writable = FALSE;
4001
4002 last_hdr = hdr;
4003 /* .tbss sections effectively have zero size. */
4004 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
4005 last_size = hdr->size;
4006 else
4007 last_size = 0;
4008 phdr_index = i;
4009 phdr_in_segment = FALSE;
4010 }
4011
4012 /* Create a final PT_LOAD program segment, but not if it's just
4013 for .tbss. */
4014 if (last_hdr != NULL
4015 && (i - phdr_index != 1
4016 || ((last_hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
4017 != SEC_THREAD_LOCAL)))
4018 {
4019 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
4020 if (m == NULL)
4021 goto error_return;
4022
4023 *pm = m;
4024 pm = &m->next;
4025 }
4026
4027 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4028 if (dynsec != NULL)
4029 {
4030 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
4031 if (m == NULL)
4032 goto error_return;
4033 *pm = m;
4034 pm = &m->next;
4035 }
4036
4037 /* For each batch of consecutive loadable .note sections,
4038 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
4039 because if we link together nonloadable .note sections and
4040 loadable .note sections, we will generate two .note sections
4041 in the output file. FIXME: Using names for section types is
4042 bogus anyhow. */
4043 for (s = abfd->sections; s != NULL; s = s->next)
4044 {
4045 if ((s->flags & SEC_LOAD) != 0
4046 && CONST_STRNEQ (s->name, ".note"))
4047 {
4048 asection *s2;
4049
4050 count = 1;
4051 amt = sizeof (struct elf_segment_map);
4052 if (s->alignment_power == 2)
4053 for (s2 = s; s2->next != NULL; s2 = s2->next)
4054 {
4055 if (s2->next->alignment_power == 2
4056 && (s2->next->flags & SEC_LOAD) != 0
4057 && CONST_STRNEQ (s2->next->name, ".note")
4058 && align_power (s2->lma + s2->size, 2)
4059 == s2->next->lma)
4060 count++;
4061 else
4062 break;
4063 }
4064 amt += (count - 1) * sizeof (asection *);
4065 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4066 if (m == NULL)
4067 goto error_return;
4068 m->next = NULL;
4069 m->p_type = PT_NOTE;
4070 m->count = count;
4071 while (count > 1)
4072 {
4073 m->sections[m->count - count--] = s;
4074 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4075 s = s->next;
4076 }
4077 m->sections[m->count - 1] = s;
4078 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4079 *pm = m;
4080 pm = &m->next;
4081 }
4082 if (s->flags & SEC_THREAD_LOCAL)
4083 {
4084 if (! tls_count)
4085 first_tls = s;
4086 tls_count++;
4087 }
4088 }
4089
4090 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
4091 if (tls_count > 0)
4092 {
4093 amt = sizeof (struct elf_segment_map);
4094 amt += (tls_count - 1) * sizeof (asection *);
4095 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4096 if (m == NULL)
4097 goto error_return;
4098 m->next = NULL;
4099 m->p_type = PT_TLS;
4100 m->count = tls_count;
4101 /* Mandated PF_R. */
4102 m->p_flags = PF_R;
4103 m->p_flags_valid = 1;
4104 for (i = 0; i < (unsigned int) tls_count; ++i)
4105 {
4106 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
4107 m->sections[i] = first_tls;
4108 first_tls = first_tls->next;
4109 }
4110
4111 *pm = m;
4112 pm = &m->next;
4113 }
4114
4115 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
4116 segment. */
4117 eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
4118 if (eh_frame_hdr != NULL
4119 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
4120 {
4121 amt = sizeof (struct elf_segment_map);
4122 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4123 if (m == NULL)
4124 goto error_return;
4125 m->next = NULL;
4126 m->p_type = PT_GNU_EH_FRAME;
4127 m->count = 1;
4128 m->sections[0] = eh_frame_hdr->output_section;
4129
4130 *pm = m;
4131 pm = &m->next;
4132 }
4133
4134 if (elf_tdata (abfd)->stack_flags)
4135 {
4136 amt = sizeof (struct elf_segment_map);
4137 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4138 if (m == NULL)
4139 goto error_return;
4140 m->next = NULL;
4141 m->p_type = PT_GNU_STACK;
4142 m->p_flags = elf_tdata (abfd)->stack_flags;
4143 m->p_align = bed->stack_align;
4144 m->p_flags_valid = 1;
4145 m->p_align_valid = m->p_align != 0;
4146 if (info->stacksize > 0)
4147 {
4148 m->p_size = info->stacksize;
4149 m->p_size_valid = 1;
4150 }
4151
4152 *pm = m;
4153 pm = &m->next;
4154 }
4155
4156 if (info != NULL && info->relro)
4157 {
4158 for (m = mfirst; m != NULL; m = m->next)
4159 {
4160 if (m->p_type == PT_LOAD
4161 && m->count != 0
4162 && m->sections[0]->vma >= info->relro_start
4163 && m->sections[0]->vma < info->relro_end)
4164 {
4165 i = m->count;
4166 while (--i != (unsigned) -1)
4167 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS))
4168 == (SEC_LOAD | SEC_HAS_CONTENTS))
4169 break;
4170
4171 if (i == (unsigned) -1)
4172 continue;
4173
4174 if (m->sections[i]->vma + m->sections[i]->size
4175 >= info->relro_end)
4176 break;
4177 }
4178 }
4179
4180 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
4181 if (m != NULL)
4182 {
4183 amt = sizeof (struct elf_segment_map);
4184 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4185 if (m == NULL)
4186 goto error_return;
4187 m->next = NULL;
4188 m->p_type = PT_GNU_RELRO;
4189 m->p_flags = PF_R;
4190 m->p_flags_valid = 1;
4191
4192 *pm = m;
4193 pm = &m->next;
4194 }
4195 }
4196
4197 free (sections);
4198 elf_tdata (abfd)->segment_map = mfirst;
4199 }
4200
4201 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
4202 return FALSE;
4203
4204 for (count = 0, m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4205 ++count;
4206 elf_tdata (abfd)->program_header_size = count * bed->s->sizeof_phdr;
4207
4208 return TRUE;
4209
4210 error_return:
4211 if (sections != NULL)
4212 free (sections);
4213 return FALSE;
4214 }
4215
4216 /* Sort sections by address. */
4217
4218 static int
4219 elf_sort_sections (const void *arg1, const void *arg2)
4220 {
4221 const asection *sec1 = *(const asection **) arg1;
4222 const asection *sec2 = *(const asection **) arg2;
4223 bfd_size_type size1, size2;
4224
4225 /* Sort by LMA first, since this is the address used to
4226 place the section into a segment. */
4227 if (sec1->lma < sec2->lma)
4228 return -1;
4229 else if (sec1->lma > sec2->lma)
4230 return 1;
4231
4232 /* Then sort by VMA. Normally the LMA and the VMA will be
4233 the same, and this will do nothing. */
4234 if (sec1->vma < sec2->vma)
4235 return -1;
4236 else if (sec1->vma > sec2->vma)
4237 return 1;
4238
4239 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
4240
4241 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
4242
4243 if (TOEND (sec1))
4244 {
4245 if (TOEND (sec2))
4246 {
4247 /* If the indicies are the same, do not return 0
4248 here, but continue to try the next comparison. */
4249 if (sec1->target_index - sec2->target_index != 0)
4250 return sec1->target_index - sec2->target_index;
4251 }
4252 else
4253 return 1;
4254 }
4255 else if (TOEND (sec2))
4256 return -1;
4257
4258 #undef TOEND
4259
4260 /* Sort by size, to put zero sized sections
4261 before others at the same address. */
4262
4263 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
4264 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
4265
4266 if (size1 < size2)
4267 return -1;
4268 if (size1 > size2)
4269 return 1;
4270
4271 return sec1->target_index - sec2->target_index;
4272 }
4273
4274 /* Ian Lance Taylor writes:
4275
4276 We shouldn't be using % with a negative signed number. That's just
4277 not good. We have to make sure either that the number is not
4278 negative, or that the number has an unsigned type. When the types
4279 are all the same size they wind up as unsigned. When file_ptr is a
4280 larger signed type, the arithmetic winds up as signed long long,
4281 which is wrong.
4282
4283 What we're trying to say here is something like ``increase OFF by
4284 the least amount that will cause it to be equal to the VMA modulo
4285 the page size.'' */
4286 /* In other words, something like:
4287
4288 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4289 off_offset = off % bed->maxpagesize;
4290 if (vma_offset < off_offset)
4291 adjustment = vma_offset + bed->maxpagesize - off_offset;
4292 else
4293 adjustment = vma_offset - off_offset;
4294
4295 which can can be collapsed into the expression below. */
4296
4297 static file_ptr
4298 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
4299 {
4300 return ((vma - off) % maxpagesize);
4301 }
4302
4303 static void
4304 print_segment_map (const struct elf_segment_map *m)
4305 {
4306 unsigned int j;
4307 const char *pt = get_segment_type (m->p_type);
4308 char buf[32];
4309
4310 if (pt == NULL)
4311 {
4312 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
4313 sprintf (buf, "LOPROC+%7.7x",
4314 (unsigned int) (m->p_type - PT_LOPROC));
4315 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
4316 sprintf (buf, "LOOS+%7.7x",
4317 (unsigned int) (m->p_type - PT_LOOS));
4318 else
4319 snprintf (buf, sizeof (buf), "%8.8x",
4320 (unsigned int) m->p_type);
4321 pt = buf;
4322 }
4323 fflush (stdout);
4324 fprintf (stderr, "%s:", pt);
4325 for (j = 0; j < m->count; j++)
4326 fprintf (stderr, " %s", m->sections [j]->name);
4327 putc ('\n',stderr);
4328 fflush (stderr);
4329 }
4330
4331 static bfd_boolean
4332 write_zeros (bfd *abfd, file_ptr pos, bfd_size_type len)
4333 {
4334 void *buf;
4335 bfd_boolean ret;
4336
4337 if (bfd_seek (abfd, pos, SEEK_SET) != 0)
4338 return FALSE;
4339 buf = bfd_zmalloc (len);
4340 if (buf == NULL)
4341 return FALSE;
4342 ret = bfd_bwrite (buf, len, abfd) == len;
4343 free (buf);
4344 return ret;
4345 }
4346
4347 /* Assign file positions to the sections based on the mapping from
4348 sections to segments. This function also sets up some fields in
4349 the file header. */
4350
4351 static bfd_boolean
4352 assign_file_positions_for_load_sections (bfd *abfd,
4353 struct bfd_link_info *link_info)
4354 {
4355 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4356 struct elf_segment_map *m;
4357 Elf_Internal_Phdr *phdrs;
4358 Elf_Internal_Phdr *p;
4359 file_ptr off;
4360 bfd_size_type maxpagesize;
4361 unsigned int alloc;
4362 unsigned int i, j;
4363 bfd_vma header_pad = 0;
4364
4365 if (link_info == NULL
4366 && !_bfd_elf_map_sections_to_segments (abfd, link_info))
4367 return FALSE;
4368
4369 alloc = 0;
4370 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4371 {
4372 ++alloc;
4373 if (m->header_size)
4374 header_pad = m->header_size;
4375 }
4376
4377 if (alloc)
4378 {
4379 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
4380 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
4381 }
4382 else
4383 {
4384 /* PR binutils/12467. */
4385 elf_elfheader (abfd)->e_phoff = 0;
4386 elf_elfheader (abfd)->e_phentsize = 0;
4387 }
4388
4389 elf_elfheader (abfd)->e_phnum = alloc;
4390
4391 if (elf_tdata (abfd)->program_header_size == (bfd_size_type) -1)
4392 elf_tdata (abfd)->program_header_size = alloc * bed->s->sizeof_phdr;
4393 else
4394 BFD_ASSERT (elf_tdata (abfd)->program_header_size
4395 >= alloc * bed->s->sizeof_phdr);
4396
4397 if (alloc == 0)
4398 {
4399 elf_tdata (abfd)->next_file_pos = bed->s->sizeof_ehdr;
4400 return TRUE;
4401 }
4402
4403 /* We're writing the size in elf_tdata (abfd)->program_header_size,
4404 see assign_file_positions_except_relocs, so make sure we have
4405 that amount allocated, with trailing space cleared.
4406 The variable alloc contains the computed need, while elf_tdata
4407 (abfd)->program_header_size contains the size used for the
4408 layout.
4409 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
4410 where the layout is forced to according to a larger size in the
4411 last iterations for the testcase ld-elf/header. */
4412 BFD_ASSERT (elf_tdata (abfd)->program_header_size % bed->s->sizeof_phdr
4413 == 0);
4414 phdrs = (Elf_Internal_Phdr *)
4415 bfd_zalloc2 (abfd,
4416 (elf_tdata (abfd)->program_header_size / bed->s->sizeof_phdr),
4417 sizeof (Elf_Internal_Phdr));
4418 elf_tdata (abfd)->phdr = phdrs;
4419 if (phdrs == NULL)
4420 return FALSE;
4421
4422 maxpagesize = 1;
4423 if ((abfd->flags & D_PAGED) != 0)
4424 maxpagesize = bed->maxpagesize;
4425
4426 off = bed->s->sizeof_ehdr;
4427 off += alloc * bed->s->sizeof_phdr;
4428 if (header_pad < (bfd_vma) off)
4429 header_pad = 0;
4430 else
4431 header_pad -= off;
4432 off += header_pad;
4433
4434 for (m = elf_tdata (abfd)->segment_map, p = phdrs, j = 0;
4435 m != NULL;
4436 m = m->next, p++, j++)
4437 {
4438 asection **secpp;
4439 bfd_vma off_adjust;
4440 bfd_boolean no_contents;
4441
4442 /* If elf_segment_map is not from map_sections_to_segments, the
4443 sections may not be correctly ordered. NOTE: sorting should
4444 not be done to the PT_NOTE section of a corefile, which may
4445 contain several pseudo-sections artificially created by bfd.
4446 Sorting these pseudo-sections breaks things badly. */
4447 if (m->count > 1
4448 && !(elf_elfheader (abfd)->e_type == ET_CORE
4449 && m->p_type == PT_NOTE))
4450 qsort (m->sections, (size_t) m->count, sizeof (asection *),
4451 elf_sort_sections);
4452
4453 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4454 number of sections with contents contributing to both p_filesz
4455 and p_memsz, followed by a number of sections with no contents
4456 that just contribute to p_memsz. In this loop, OFF tracks next
4457 available file offset for PT_LOAD and PT_NOTE segments. */
4458 p->p_type = m->p_type;
4459 p->p_flags = m->p_flags;
4460
4461 if (m->count == 0)
4462 p->p_vaddr = 0;
4463 else
4464 p->p_vaddr = m->sections[0]->vma - m->p_vaddr_offset;
4465
4466 if (m->p_paddr_valid)
4467 p->p_paddr = m->p_paddr;
4468 else if (m->count == 0)
4469 p->p_paddr = 0;
4470 else
4471 p->p_paddr = m->sections[0]->lma - m->p_vaddr_offset;
4472
4473 if (p->p_type == PT_LOAD
4474 && (abfd->flags & D_PAGED) != 0)
4475 {
4476 /* p_align in demand paged PT_LOAD segments effectively stores
4477 the maximum page size. When copying an executable with
4478 objcopy, we set m->p_align from the input file. Use this
4479 value for maxpagesize rather than bed->maxpagesize, which
4480 may be different. Note that we use maxpagesize for PT_TLS
4481 segment alignment later in this function, so we are relying
4482 on at least one PT_LOAD segment appearing before a PT_TLS
4483 segment. */
4484 if (m->p_align_valid)
4485 maxpagesize = m->p_align;
4486
4487 p->p_align = maxpagesize;
4488 }
4489 else if (m->p_align_valid)
4490 p->p_align = m->p_align;
4491 else if (m->count == 0)
4492 p->p_align = 1 << bed->s->log_file_align;
4493 else
4494 p->p_align = 0;
4495
4496 no_contents = FALSE;
4497 off_adjust = 0;
4498 if (p->p_type == PT_LOAD
4499 && m->count > 0)
4500 {
4501 bfd_size_type align;
4502 unsigned int align_power = 0;
4503
4504 if (m->p_align_valid)
4505 align = p->p_align;
4506 else
4507 {
4508 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4509 {
4510 unsigned int secalign;
4511
4512 secalign = bfd_get_section_alignment (abfd, *secpp);
4513 if (secalign > align_power)
4514 align_power = secalign;
4515 }
4516 align = (bfd_size_type) 1 << align_power;
4517 if (align < maxpagesize)
4518 align = maxpagesize;
4519 }
4520
4521 for (i = 0; i < m->count; i++)
4522 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
4523 /* If we aren't making room for this section, then
4524 it must be SHT_NOBITS regardless of what we've
4525 set via struct bfd_elf_special_section. */
4526 elf_section_type (m->sections[i]) = SHT_NOBITS;
4527
4528 /* Find out whether this segment contains any loadable
4529 sections. */
4530 no_contents = TRUE;
4531 for (i = 0; i < m->count; i++)
4532 if (elf_section_type (m->sections[i]) != SHT_NOBITS)
4533 {
4534 no_contents = FALSE;
4535 break;
4536 }
4537
4538 off_adjust = vma_page_aligned_bias (p->p_vaddr, off, align);
4539 off += off_adjust;
4540 if (no_contents)
4541 {
4542 /* We shouldn't need to align the segment on disk since
4543 the segment doesn't need file space, but the gABI
4544 arguably requires the alignment and glibc ld.so
4545 checks it. So to comply with the alignment
4546 requirement but not waste file space, we adjust
4547 p_offset for just this segment. (OFF_ADJUST is
4548 subtracted from OFF later.) This may put p_offset
4549 past the end of file, but that shouldn't matter. */
4550 }
4551 else
4552 off_adjust = 0;
4553 }
4554 /* Make sure the .dynamic section is the first section in the
4555 PT_DYNAMIC segment. */
4556 else if (p->p_type == PT_DYNAMIC
4557 && m->count > 1
4558 && strcmp (m->sections[0]->name, ".dynamic") != 0)
4559 {
4560 _bfd_error_handler
4561 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4562 abfd);
4563 bfd_set_error (bfd_error_bad_value);
4564 return FALSE;
4565 }
4566 /* Set the note section type to SHT_NOTE. */
4567 else if (p->p_type == PT_NOTE)
4568 for (i = 0; i < m->count; i++)
4569 elf_section_type (m->sections[i]) = SHT_NOTE;
4570
4571 p->p_offset = 0;
4572 p->p_filesz = 0;
4573 p->p_memsz = 0;
4574
4575 if (m->includes_filehdr)
4576 {
4577 if (!m->p_flags_valid)
4578 p->p_flags |= PF_R;
4579 p->p_filesz = bed->s->sizeof_ehdr;
4580 p->p_memsz = bed->s->sizeof_ehdr;
4581 if (m->count > 0)
4582 {
4583 if (p->p_vaddr < (bfd_vma) off)
4584 {
4585 (*_bfd_error_handler)
4586 (_("%B: Not enough room for program headers, try linking with -N"),
4587 abfd);
4588 bfd_set_error (bfd_error_bad_value);
4589 return FALSE;
4590 }
4591
4592 p->p_vaddr -= off;
4593 if (!m->p_paddr_valid)
4594 p->p_paddr -= off;
4595 }
4596 }
4597
4598 if (m->includes_phdrs)
4599 {
4600 if (!m->p_flags_valid)
4601 p->p_flags |= PF_R;
4602
4603 if (!m->includes_filehdr)
4604 {
4605 p->p_offset = bed->s->sizeof_ehdr;
4606
4607 if (m->count > 0)
4608 {
4609 p->p_vaddr -= off - p->p_offset;
4610 if (!m->p_paddr_valid)
4611 p->p_paddr -= off - p->p_offset;
4612 }
4613 }
4614
4615 p->p_filesz += alloc * bed->s->sizeof_phdr;
4616 p->p_memsz += alloc * bed->s->sizeof_phdr;
4617 if (m->count)
4618 {
4619 p->p_filesz += header_pad;
4620 p->p_memsz += header_pad;
4621 }
4622 }
4623
4624 if (p->p_type == PT_LOAD
4625 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4626 {
4627 if (!m->includes_filehdr && !m->includes_phdrs)
4628 p->p_offset = off;
4629 else
4630 {
4631 file_ptr adjust;
4632
4633 adjust = off - (p->p_offset + p->p_filesz);
4634 if (!no_contents)
4635 p->p_filesz += adjust;
4636 p->p_memsz += adjust;
4637 }
4638 }
4639
4640 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
4641 maps. Set filepos for sections in PT_LOAD segments, and in
4642 core files, for sections in PT_NOTE segments.
4643 assign_file_positions_for_non_load_sections will set filepos
4644 for other sections and update p_filesz for other segments. */
4645 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4646 {
4647 asection *sec;
4648 bfd_size_type align;
4649 Elf_Internal_Shdr *this_hdr;
4650
4651 sec = *secpp;
4652 this_hdr = &elf_section_data (sec)->this_hdr;
4653 align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec);
4654
4655 if ((p->p_type == PT_LOAD
4656 || p->p_type == PT_TLS)
4657 && (this_hdr->sh_type != SHT_NOBITS
4658 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
4659 && ((this_hdr->sh_flags & SHF_TLS) == 0
4660 || p->p_type == PT_TLS))))
4661 {
4662 bfd_vma p_start = p->p_paddr;
4663 bfd_vma p_end = p_start + p->p_memsz;
4664 bfd_vma s_start = sec->lma;
4665 bfd_vma adjust = s_start - p_end;
4666
4667 if (adjust != 0
4668 && (s_start < p_end
4669 || p_end < p_start))
4670 {
4671 (*_bfd_error_handler)
4672 (_("%B: section %A lma %#lx adjusted to %#lx"), abfd, sec,
4673 (unsigned long) s_start, (unsigned long) p_end);
4674 adjust = 0;
4675 sec->lma = p_end;
4676 }
4677 p->p_memsz += adjust;
4678
4679 if (this_hdr->sh_type != SHT_NOBITS)
4680 {
4681 if (p->p_filesz + adjust < p->p_memsz)
4682 {
4683 /* We have a PROGBITS section following NOBITS ones.
4684 Allocate file space for the NOBITS section(s) and
4685 zero it. */
4686 adjust = p->p_memsz - p->p_filesz;
4687 if (!write_zeros (abfd, off, adjust))
4688 return FALSE;
4689 }
4690 off += adjust;
4691 p->p_filesz += adjust;
4692 }
4693 }
4694
4695 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
4696 {
4697 /* The section at i == 0 is the one that actually contains
4698 everything. */
4699 if (i == 0)
4700 {
4701 this_hdr->sh_offset = sec->filepos = off;
4702 off += this_hdr->sh_size;
4703 p->p_filesz = this_hdr->sh_size;
4704 p->p_memsz = 0;
4705 p->p_align = 1;
4706 }
4707 else
4708 {
4709 /* The rest are fake sections that shouldn't be written. */
4710 sec->filepos = 0;
4711 sec->size = 0;
4712 sec->flags = 0;
4713 continue;
4714 }
4715 }
4716 else
4717 {
4718 if (p->p_type == PT_LOAD)
4719 {
4720 this_hdr->sh_offset = sec->filepos = off;
4721 if (this_hdr->sh_type != SHT_NOBITS)
4722 off += this_hdr->sh_size;
4723 }
4724 else if (this_hdr->sh_type == SHT_NOBITS
4725 && (this_hdr->sh_flags & SHF_TLS) != 0
4726 && this_hdr->sh_offset == 0)
4727 {
4728 /* This is a .tbss section that didn't get a PT_LOAD.
4729 (See _bfd_elf_map_sections_to_segments "Create a
4730 final PT_LOAD".) Set sh_offset to the value it
4731 would have if we had created a zero p_filesz and
4732 p_memsz PT_LOAD header for the section. This
4733 also makes the PT_TLS header have the same
4734 p_offset value. */
4735 bfd_vma adjust = vma_page_aligned_bias (this_hdr->sh_addr,
4736 off, align);
4737 this_hdr->sh_offset = sec->filepos = off + adjust;
4738 }
4739
4740 if (this_hdr->sh_type != SHT_NOBITS)
4741 {
4742 p->p_filesz += this_hdr->sh_size;
4743 /* A load section without SHF_ALLOC is something like
4744 a note section in a PT_NOTE segment. These take
4745 file space but are not loaded into memory. */
4746 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4747 p->p_memsz += this_hdr->sh_size;
4748 }
4749 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4750 {
4751 if (p->p_type == PT_TLS)
4752 p->p_memsz += this_hdr->sh_size;
4753
4754 /* .tbss is special. It doesn't contribute to p_memsz of
4755 normal segments. */
4756 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
4757 p->p_memsz += this_hdr->sh_size;
4758 }
4759
4760 if (align > p->p_align
4761 && !m->p_align_valid
4762 && (p->p_type != PT_LOAD
4763 || (abfd->flags & D_PAGED) == 0))
4764 p->p_align = align;
4765 }
4766
4767 if (!m->p_flags_valid)
4768 {
4769 p->p_flags |= PF_R;
4770 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
4771 p->p_flags |= PF_X;
4772 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
4773 p->p_flags |= PF_W;
4774 }
4775 }
4776 off -= off_adjust;
4777
4778 /* Check that all sections are in a PT_LOAD segment.
4779 Don't check funky gdb generated core files. */
4780 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
4781 {
4782 bfd_boolean check_vma = TRUE;
4783
4784 for (i = 1; i < m->count; i++)
4785 if (m->sections[i]->vma == m->sections[i - 1]->vma
4786 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i])
4787 ->this_hdr), p) != 0
4788 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i - 1])
4789 ->this_hdr), p) != 0)
4790 {
4791 /* Looks like we have overlays packed into the segment. */
4792 check_vma = FALSE;
4793 break;
4794 }
4795
4796 for (i = 0; i < m->count; i++)
4797 {
4798 Elf_Internal_Shdr *this_hdr;
4799 asection *sec;
4800
4801 sec = m->sections[i];
4802 this_hdr = &(elf_section_data(sec)->this_hdr);
4803 if (!ELF_SECTION_IN_SEGMENT_1 (this_hdr, p, check_vma, 0)
4804 && !ELF_TBSS_SPECIAL (this_hdr, p))
4805 {
4806 (*_bfd_error_handler)
4807 (_("%B: section `%A' can't be allocated in segment %d"),
4808 abfd, sec, j);
4809 print_segment_map (m);
4810 }
4811 }
4812 }
4813 }
4814
4815 elf_tdata (abfd)->next_file_pos = off;
4816 return TRUE;
4817 }
4818
4819 /* Assign file positions for the other sections. */
4820
4821 static bfd_boolean
4822 assign_file_positions_for_non_load_sections (bfd *abfd,
4823 struct bfd_link_info *link_info)
4824 {
4825 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4826 Elf_Internal_Shdr **i_shdrpp;
4827 Elf_Internal_Shdr **hdrpp;
4828 Elf_Internal_Phdr *phdrs;
4829 Elf_Internal_Phdr *p;
4830 struct elf_segment_map *m;
4831 struct elf_segment_map *hdrs_segment;
4832 bfd_vma filehdr_vaddr, filehdr_paddr;
4833 bfd_vma phdrs_vaddr, phdrs_paddr;
4834 file_ptr off;
4835 unsigned int num_sec;
4836 unsigned int i;
4837 unsigned int count;
4838
4839 i_shdrpp = elf_elfsections (abfd);
4840 num_sec = elf_numsections (abfd);
4841 off = elf_tdata (abfd)->next_file_pos;
4842 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4843 {
4844 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4845 Elf_Internal_Shdr *hdr;
4846
4847 hdr = *hdrpp;
4848 if (hdr->bfd_section != NULL
4849 && (hdr->bfd_section->filepos != 0
4850 || (hdr->sh_type == SHT_NOBITS
4851 && hdr->contents == NULL)))
4852 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
4853 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4854 {
4855 if (hdr->sh_size != 0)
4856 (*_bfd_error_handler)
4857 (_("%B: warning: allocated section `%s' not in segment"),
4858 abfd,
4859 (hdr->bfd_section == NULL
4860 ? "*unknown*"
4861 : hdr->bfd_section->name));
4862 /* We don't need to page align empty sections. */
4863 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
4864 off += vma_page_aligned_bias (hdr->sh_addr, off,
4865 bed->maxpagesize);
4866 else
4867 off += vma_page_aligned_bias (hdr->sh_addr, off,
4868 hdr->sh_addralign);
4869 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4870 FALSE);
4871 }
4872 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4873 && hdr->bfd_section == NULL)
4874 || hdr == i_shdrpp[tdata->symtab_section]
4875 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4876 || hdr == i_shdrpp[tdata->strtab_section])
4877 hdr->sh_offset = -1;
4878 else
4879 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4880 }
4881
4882 /* Now that we have set the section file positions, we can set up
4883 the file positions for the non PT_LOAD segments. */
4884 count = 0;
4885 filehdr_vaddr = 0;
4886 filehdr_paddr = 0;
4887 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
4888 phdrs_paddr = 0;
4889 hdrs_segment = NULL;
4890 phdrs = elf_tdata (abfd)->phdr;
4891 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4892 m != NULL;
4893 m = m->next, p++)
4894 {
4895 ++count;
4896 if (p->p_type != PT_LOAD)
4897 continue;
4898
4899 if (m->includes_filehdr)
4900 {
4901 filehdr_vaddr = p->p_vaddr;
4902 filehdr_paddr = p->p_paddr;
4903 }
4904 if (m->includes_phdrs)
4905 {
4906 phdrs_vaddr = p->p_vaddr;
4907 phdrs_paddr = p->p_paddr;
4908 if (m->includes_filehdr)
4909 {
4910 hdrs_segment = m;
4911 phdrs_vaddr += bed->s->sizeof_ehdr;
4912 phdrs_paddr += bed->s->sizeof_ehdr;
4913 }
4914 }
4915 }
4916
4917 if (hdrs_segment != NULL && link_info != NULL)
4918 {
4919 /* There is a segment that contains both the file headers and the
4920 program headers, so provide a symbol __ehdr_start pointing there.
4921 A program can use this to examine itself robustly. */
4922
4923 struct elf_link_hash_entry *hash
4924 = elf_link_hash_lookup (elf_hash_table (link_info), "__ehdr_start",
4925 FALSE, FALSE, TRUE);
4926 /* If the symbol was referenced and not defined, define it. */
4927 if (hash != NULL
4928 && (hash->root.type == bfd_link_hash_new
4929 || hash->root.type == bfd_link_hash_undefined
4930 || hash->root.type == bfd_link_hash_undefweak
4931 || hash->root.type == bfd_link_hash_common))
4932 {
4933 asection *s = NULL;
4934 if (hdrs_segment->count != 0)
4935 /* The segment contains sections, so use the first one. */
4936 s = hdrs_segment->sections[0];
4937 else
4938 /* Use the first (i.e. lowest-addressed) section in any segment. */
4939 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4940 if (m->count != 0)
4941 {
4942 s = m->sections[0];
4943 break;
4944 }
4945
4946 if (s != NULL)
4947 {
4948 hash->root.u.def.value = filehdr_vaddr - s->vma;
4949 hash->root.u.def.section = s;
4950 }
4951 else
4952 {
4953 hash->root.u.def.value = filehdr_vaddr;
4954 hash->root.u.def.section = bfd_abs_section_ptr;
4955 }
4956
4957 hash->root.type = bfd_link_hash_defined;
4958 hash->def_regular = 1;
4959 hash->non_elf = 0;
4960 }
4961 }
4962
4963 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4964 m != NULL;
4965 m = m->next, p++)
4966 {
4967 if (p->p_type == PT_GNU_RELRO)
4968 {
4969 const Elf_Internal_Phdr *lp;
4970 struct elf_segment_map *lm;
4971
4972 if (link_info != NULL)
4973 {
4974 /* During linking the range of the RELRO segment is passed
4975 in link_info. */
4976 for (lm = elf_tdata (abfd)->segment_map, lp = phdrs;
4977 lm != NULL;
4978 lm = lm->next, lp++)
4979 {
4980 if (lp->p_type == PT_LOAD
4981 && lp->p_vaddr < link_info->relro_end
4982 && lp->p_vaddr + lp->p_filesz >= link_info->relro_end
4983 && lm->count != 0
4984 && lm->sections[0]->vma >= link_info->relro_start)
4985 break;
4986 }
4987
4988 /* PR ld/14207. If the RELRO segment doesn't fit in the
4989 LOAD segment, it should be removed. */
4990 BFD_ASSERT (lm != NULL);
4991 }
4992 else
4993 {
4994 /* Otherwise we are copying an executable or shared
4995 library, but we need to use the same linker logic. */
4996 for (lp = phdrs; lp < phdrs + count; ++lp)
4997 {
4998 if (lp->p_type == PT_LOAD
4999 && lp->p_paddr == p->p_paddr)
5000 break;
5001 }
5002 }
5003
5004 if (lp < phdrs + count)
5005 {
5006 p->p_vaddr = lp->p_vaddr;
5007 p->p_paddr = lp->p_paddr;
5008 p->p_offset = lp->p_offset;
5009 if (link_info != NULL)
5010 p->p_filesz = link_info->relro_end - lp->p_vaddr;
5011 else if (m->p_size_valid)
5012 p->p_filesz = m->p_size;
5013 else
5014 abort ();
5015 p->p_memsz = p->p_filesz;
5016 /* Preserve the alignment and flags if they are valid. The
5017 gold linker generates RW/4 for the PT_GNU_RELRO section.
5018 It is better for objcopy/strip to honor these attributes
5019 otherwise gdb will choke when using separate debug files.
5020 */
5021 if (!m->p_align_valid)
5022 p->p_align = 1;
5023 if (!m->p_flags_valid)
5024 p->p_flags = (lp->p_flags & ~PF_W);
5025 }
5026 else
5027 {
5028 memset (p, 0, sizeof *p);
5029 p->p_type = PT_NULL;
5030 }
5031 }
5032 else if (p->p_type == PT_GNU_STACK)
5033 {
5034 if (m->p_size_valid)
5035 p->p_memsz = m->p_size;
5036 }
5037 else if (m->count != 0)
5038 {
5039 if (p->p_type != PT_LOAD
5040 && (p->p_type != PT_NOTE
5041 || bfd_get_format (abfd) != bfd_core))
5042 {
5043 BFD_ASSERT (!m->includes_filehdr && !m->includes_phdrs);
5044
5045 p->p_filesz = 0;
5046 p->p_offset = m->sections[0]->filepos;
5047 for (i = m->count; i-- != 0;)
5048 {
5049 asection *sect = m->sections[i];
5050 Elf_Internal_Shdr *hdr = &elf_section_data (sect)->this_hdr;
5051 if (hdr->sh_type != SHT_NOBITS)
5052 {
5053 p->p_filesz = (sect->filepos - m->sections[0]->filepos
5054 + hdr->sh_size);
5055 break;
5056 }
5057 }
5058 }
5059 }
5060 else if (m->includes_filehdr)
5061 {
5062 p->p_vaddr = filehdr_vaddr;
5063 if (! m->p_paddr_valid)
5064 p->p_paddr = filehdr_paddr;
5065 }
5066 else if (m->includes_phdrs)
5067 {
5068 p->p_vaddr = phdrs_vaddr;
5069 if (! m->p_paddr_valid)
5070 p->p_paddr = phdrs_paddr;
5071 }
5072 }
5073
5074 elf_tdata (abfd)->next_file_pos = off;
5075
5076 return TRUE;
5077 }
5078
5079 /* Work out the file positions of all the sections. This is called by
5080 _bfd_elf_compute_section_file_positions. All the section sizes and
5081 VMAs must be known before this is called.
5082
5083 Reloc sections come in two flavours: Those processed specially as
5084 "side-channel" data attached to a section to which they apply, and
5085 those that bfd doesn't process as relocations. The latter sort are
5086 stored in a normal bfd section by bfd_section_from_shdr. We don't
5087 consider the former sort here, unless they form part of the loadable
5088 image. Reloc sections not assigned here will be handled later by
5089 assign_file_positions_for_relocs.
5090
5091 We also don't set the positions of the .symtab and .strtab here. */
5092
5093 static bfd_boolean
5094 assign_file_positions_except_relocs (bfd *abfd,
5095 struct bfd_link_info *link_info)
5096 {
5097 struct elf_obj_tdata *tdata = elf_tdata (abfd);
5098 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
5099 file_ptr off;
5100 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5101
5102 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
5103 && bfd_get_format (abfd) != bfd_core)
5104 {
5105 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
5106 unsigned int num_sec = elf_numsections (abfd);
5107 Elf_Internal_Shdr **hdrpp;
5108 unsigned int i;
5109
5110 /* Start after the ELF header. */
5111 off = i_ehdrp->e_ehsize;
5112
5113 /* We are not creating an executable, which means that we are
5114 not creating a program header, and that the actual order of
5115 the sections in the file is unimportant. */
5116 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
5117 {
5118 Elf_Internal_Shdr *hdr;
5119
5120 hdr = *hdrpp;
5121 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
5122 && hdr->bfd_section == NULL)
5123 || i == tdata->symtab_section
5124 || i == tdata->symtab_shndx_section
5125 || i == tdata->strtab_section)
5126 {
5127 hdr->sh_offset = -1;
5128 }
5129 else
5130 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
5131 }
5132 }
5133 else
5134 {
5135 unsigned int alloc;
5136
5137 /* Assign file positions for the loaded sections based on the
5138 assignment of sections to segments. */
5139 if (!assign_file_positions_for_load_sections (abfd, link_info))
5140 return FALSE;
5141
5142 /* And for non-load sections. */
5143 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
5144 return FALSE;
5145
5146 if (bed->elf_backend_modify_program_headers != NULL)
5147 {
5148 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
5149 return FALSE;
5150 }
5151
5152 /* Write out the program headers. */
5153 alloc = tdata->program_header_size / bed->s->sizeof_phdr;
5154 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
5155 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
5156 return FALSE;
5157
5158 off = tdata->next_file_pos;
5159 }
5160
5161 /* Place the section headers. */
5162 off = align_file_position (off, 1 << bed->s->log_file_align);
5163 i_ehdrp->e_shoff = off;
5164 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
5165
5166 tdata->next_file_pos = off;
5167
5168 return TRUE;
5169 }
5170
5171 static bfd_boolean
5172 prep_headers (bfd *abfd)
5173 {
5174 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form. */
5175 struct elf_strtab_hash *shstrtab;
5176 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5177
5178 i_ehdrp = elf_elfheader (abfd);
5179
5180 shstrtab = _bfd_elf_strtab_init ();
5181 if (shstrtab == NULL)
5182 return FALSE;
5183
5184 elf_shstrtab (abfd) = shstrtab;
5185
5186 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
5187 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
5188 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
5189 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
5190
5191 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
5192 i_ehdrp->e_ident[EI_DATA] =
5193 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
5194 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
5195
5196 if ((abfd->flags & DYNAMIC) != 0)
5197 i_ehdrp->e_type = ET_DYN;
5198 else if ((abfd->flags & EXEC_P) != 0)
5199 i_ehdrp->e_type = ET_EXEC;
5200 else if (bfd_get_format (abfd) == bfd_core)
5201 i_ehdrp->e_type = ET_CORE;
5202 else
5203 i_ehdrp->e_type = ET_REL;
5204
5205 switch (bfd_get_arch (abfd))
5206 {
5207 case bfd_arch_unknown:
5208 i_ehdrp->e_machine = EM_NONE;
5209 break;
5210
5211 /* There used to be a long list of cases here, each one setting
5212 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
5213 in the corresponding bfd definition. To avoid duplication,
5214 the switch was removed. Machines that need special handling
5215 can generally do it in elf_backend_final_write_processing(),
5216 unless they need the information earlier than the final write.
5217 Such need can generally be supplied by replacing the tests for
5218 e_machine with the conditions used to determine it. */
5219 default:
5220 i_ehdrp->e_machine = bed->elf_machine_code;
5221 }
5222
5223 i_ehdrp->e_version = bed->s->ev_current;
5224 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
5225
5226 /* No program header, for now. */
5227 i_ehdrp->e_phoff = 0;
5228 i_ehdrp->e_phentsize = 0;
5229 i_ehdrp->e_phnum = 0;
5230
5231 /* Each bfd section is section header entry. */
5232 i_ehdrp->e_entry = bfd_get_start_address (abfd);
5233 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
5234
5235 /* If we're building an executable, we'll need a program header table. */
5236 if (abfd->flags & EXEC_P)
5237 /* It all happens later. */
5238 ;
5239 else
5240 {
5241 i_ehdrp->e_phentsize = 0;
5242 i_ehdrp->e_phoff = 0;
5243 }
5244
5245 elf_tdata (abfd)->symtab_hdr.sh_name =
5246 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
5247 elf_tdata (abfd)->strtab_hdr.sh_name =
5248 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
5249 elf_tdata (abfd)->shstrtab_hdr.sh_name =
5250 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
5251 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
5252 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
5253 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
5254 return FALSE;
5255
5256 return TRUE;
5257 }
5258
5259 /* Assign file positions for all the reloc sections which are not part
5260 of the loadable file image. */
5261
5262 void
5263 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
5264 {
5265 file_ptr off;
5266 unsigned int i, num_sec;
5267 Elf_Internal_Shdr **shdrpp;
5268
5269 off = elf_tdata (abfd)->next_file_pos;
5270
5271 num_sec = elf_numsections (abfd);
5272 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
5273 {
5274 Elf_Internal_Shdr *shdrp;
5275
5276 shdrp = *shdrpp;
5277 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
5278 && shdrp->sh_offset == -1)
5279 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
5280 }
5281
5282 elf_tdata (abfd)->next_file_pos = off;
5283 }
5284
5285 bfd_boolean
5286 _bfd_elf_write_object_contents (bfd *abfd)
5287 {
5288 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5289 Elf_Internal_Shdr **i_shdrp;
5290 bfd_boolean failed;
5291 unsigned int count, num_sec;
5292
5293 if (! abfd->output_has_begun
5294 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
5295 return FALSE;
5296
5297 i_shdrp = elf_elfsections (abfd);
5298
5299 failed = FALSE;
5300 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
5301 if (failed)
5302 return FALSE;
5303
5304 _bfd_elf_assign_file_positions_for_relocs (abfd);
5305
5306 /* After writing the headers, we need to write the sections too... */
5307 num_sec = elf_numsections (abfd);
5308 for (count = 1; count < num_sec; count++)
5309 {
5310 if (bed->elf_backend_section_processing)
5311 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
5312 if (i_shdrp[count]->contents)
5313 {
5314 bfd_size_type amt = i_shdrp[count]->sh_size;
5315
5316 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
5317 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
5318 return FALSE;
5319 }
5320 }
5321
5322 /* Write out the section header names. */
5323 if (elf_shstrtab (abfd) != NULL
5324 && (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
5325 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
5326 return FALSE;
5327
5328 if (bed->elf_backend_final_write_processing)
5329 (*bed->elf_backend_final_write_processing) (abfd,
5330 elf_tdata (abfd)->linker);
5331
5332 if (!bed->s->write_shdrs_and_ehdr (abfd))
5333 return FALSE;
5334
5335 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
5336 if (elf_tdata (abfd)->after_write_object_contents)
5337 return (*elf_tdata (abfd)->after_write_object_contents) (abfd);
5338
5339 return TRUE;
5340 }
5341
5342 bfd_boolean
5343 _bfd_elf_write_corefile_contents (bfd *abfd)
5344 {
5345 /* Hopefully this can be done just like an object file. */
5346 return _bfd_elf_write_object_contents (abfd);
5347 }
5348
5349 /* Given a section, search the header to find them. */
5350
5351 unsigned int
5352 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
5353 {
5354 const struct elf_backend_data *bed;
5355 unsigned int sec_index;
5356
5357 if (elf_section_data (asect) != NULL
5358 && elf_section_data (asect)->this_idx != 0)
5359 return elf_section_data (asect)->this_idx;
5360
5361 if (bfd_is_abs_section (asect))
5362 sec_index = SHN_ABS;
5363 else if (bfd_is_com_section (asect))
5364 sec_index = SHN_COMMON;
5365 else if (bfd_is_und_section (asect))
5366 sec_index = SHN_UNDEF;
5367 else
5368 sec_index = SHN_BAD;
5369
5370 bed = get_elf_backend_data (abfd);
5371 if (bed->elf_backend_section_from_bfd_section)
5372 {
5373 int retval = sec_index;
5374
5375 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
5376 return retval;
5377 }
5378
5379 if (sec_index == SHN_BAD)
5380 bfd_set_error (bfd_error_nonrepresentable_section);
5381
5382 return sec_index;
5383 }
5384
5385 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
5386 on error. */
5387
5388 int
5389 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
5390 {
5391 asymbol *asym_ptr = *asym_ptr_ptr;
5392 int idx;
5393 flagword flags = asym_ptr->flags;
5394
5395 /* When gas creates relocations against local labels, it creates its
5396 own symbol for the section, but does put the symbol into the
5397 symbol chain, so udata is 0. When the linker is generating
5398 relocatable output, this section symbol may be for one of the
5399 input sections rather than the output section. */
5400 if (asym_ptr->udata.i == 0
5401 && (flags & BSF_SECTION_SYM)
5402 && asym_ptr->section)
5403 {
5404 asection *sec;
5405 int indx;
5406
5407 sec = asym_ptr->section;
5408 if (sec->owner != abfd && sec->output_section != NULL)
5409 sec = sec->output_section;
5410 if (sec->owner == abfd
5411 && (indx = sec->index) < elf_num_section_syms (abfd)
5412 && elf_section_syms (abfd)[indx] != NULL)
5413 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
5414 }
5415
5416 idx = asym_ptr->udata.i;
5417
5418 if (idx == 0)
5419 {
5420 /* This case can occur when using --strip-symbol on a symbol
5421 which is used in a relocation entry. */
5422 (*_bfd_error_handler)
5423 (_("%B: symbol `%s' required but not present"),
5424 abfd, bfd_asymbol_name (asym_ptr));
5425 bfd_set_error (bfd_error_no_symbols);
5426 return -1;
5427 }
5428
5429 #if DEBUG & 4
5430 {
5431 fprintf (stderr,
5432 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx\n",
5433 (long) asym_ptr, asym_ptr->name, idx, (long) flags);
5434 fflush (stderr);
5435 }
5436 #endif
5437
5438 return idx;
5439 }
5440
5441 /* Rewrite program header information. */
5442
5443 static bfd_boolean
5444 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
5445 {
5446 Elf_Internal_Ehdr *iehdr;
5447 struct elf_segment_map *map;
5448 struct elf_segment_map *map_first;
5449 struct elf_segment_map **pointer_to_map;
5450 Elf_Internal_Phdr *segment;
5451 asection *section;
5452 unsigned int i;
5453 unsigned int num_segments;
5454 bfd_boolean phdr_included = FALSE;
5455 bfd_boolean p_paddr_valid;
5456 bfd_vma maxpagesize;
5457 struct elf_segment_map *phdr_adjust_seg = NULL;
5458 unsigned int phdr_adjust_num = 0;
5459 const struct elf_backend_data *bed;
5460
5461 bed = get_elf_backend_data (ibfd);
5462 iehdr = elf_elfheader (ibfd);
5463
5464 map_first = NULL;
5465 pointer_to_map = &map_first;
5466
5467 num_segments = elf_elfheader (ibfd)->e_phnum;
5468 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
5469
5470 /* Returns the end address of the segment + 1. */
5471 #define SEGMENT_END(segment, start) \
5472 (start + (segment->p_memsz > segment->p_filesz \
5473 ? segment->p_memsz : segment->p_filesz))
5474
5475 #define SECTION_SIZE(section, segment) \
5476 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5477 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5478 ? section->size : 0)
5479
5480 /* Returns TRUE if the given section is contained within
5481 the given segment. VMA addresses are compared. */
5482 #define IS_CONTAINED_BY_VMA(section, segment) \
5483 (section->vma >= segment->p_vaddr \
5484 && (section->vma + SECTION_SIZE (section, segment) \
5485 <= (SEGMENT_END (segment, segment->p_vaddr))))
5486
5487 /* Returns TRUE if the given section is contained within
5488 the given segment. LMA addresses are compared. */
5489 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5490 (section->lma >= base \
5491 && (section->lma + SECTION_SIZE (section, segment) \
5492 <= SEGMENT_END (segment, base)))
5493
5494 /* Handle PT_NOTE segment. */
5495 #define IS_NOTE(p, s) \
5496 (p->p_type == PT_NOTE \
5497 && elf_section_type (s) == SHT_NOTE \
5498 && (bfd_vma) s->filepos >= p->p_offset \
5499 && ((bfd_vma) s->filepos + s->size \
5500 <= p->p_offset + p->p_filesz))
5501
5502 /* Special case: corefile "NOTE" section containing regs, prpsinfo
5503 etc. */
5504 #define IS_COREFILE_NOTE(p, s) \
5505 (IS_NOTE (p, s) \
5506 && bfd_get_format (ibfd) == bfd_core \
5507 && s->vma == 0 \
5508 && s->lma == 0)
5509
5510 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5511 linker, which generates a PT_INTERP section with p_vaddr and
5512 p_memsz set to 0. */
5513 #define IS_SOLARIS_PT_INTERP(p, s) \
5514 (p->p_vaddr == 0 \
5515 && p->p_paddr == 0 \
5516 && p->p_memsz == 0 \
5517 && p->p_filesz > 0 \
5518 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5519 && s->size > 0 \
5520 && (bfd_vma) s->filepos >= p->p_offset \
5521 && ((bfd_vma) s->filepos + s->size \
5522 <= p->p_offset + p->p_filesz))
5523
5524 /* Decide if the given section should be included in the given segment.
5525 A section will be included if:
5526 1. It is within the address space of the segment -- we use the LMA
5527 if that is set for the segment and the VMA otherwise,
5528 2. It is an allocated section or a NOTE section in a PT_NOTE
5529 segment.
5530 3. There is an output section associated with it,
5531 4. The section has not already been allocated to a previous segment.
5532 5. PT_GNU_STACK segments do not include any sections.
5533 6. PT_TLS segment includes only SHF_TLS sections.
5534 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5535 8. PT_DYNAMIC should not contain empty sections at the beginning
5536 (with the possible exception of .dynamic). */
5537 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
5538 ((((segment->p_paddr \
5539 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5540 : IS_CONTAINED_BY_VMA (section, segment)) \
5541 && (section->flags & SEC_ALLOC) != 0) \
5542 || IS_NOTE (segment, section)) \
5543 && segment->p_type != PT_GNU_STACK \
5544 && (segment->p_type != PT_TLS \
5545 || (section->flags & SEC_THREAD_LOCAL)) \
5546 && (segment->p_type == PT_LOAD \
5547 || segment->p_type == PT_TLS \
5548 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5549 && (segment->p_type != PT_DYNAMIC \
5550 || SECTION_SIZE (section, segment) > 0 \
5551 || (segment->p_paddr \
5552 ? segment->p_paddr != section->lma \
5553 : segment->p_vaddr != section->vma) \
5554 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5555 == 0)) \
5556 && !section->segment_mark)
5557
5558 /* If the output section of a section in the input segment is NULL,
5559 it is removed from the corresponding output segment. */
5560 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5561 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
5562 && section->output_section != NULL)
5563
5564 /* Returns TRUE iff seg1 starts after the end of seg2. */
5565 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5566 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5567
5568 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5569 their VMA address ranges and their LMA address ranges overlap.
5570 It is possible to have overlapping VMA ranges without overlapping LMA
5571 ranges. RedBoot images for example can have both .data and .bss mapped
5572 to the same VMA range, but with the .data section mapped to a different
5573 LMA. */
5574 #define SEGMENT_OVERLAPS(seg1, seg2) \
5575 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5576 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5577 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5578 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5579
5580 /* Initialise the segment mark field. */
5581 for (section = ibfd->sections; section != NULL; section = section->next)
5582 section->segment_mark = FALSE;
5583
5584 /* The Solaris linker creates program headers in which all the
5585 p_paddr fields are zero. When we try to objcopy or strip such a
5586 file, we get confused. Check for this case, and if we find it
5587 don't set the p_paddr_valid fields. */
5588 p_paddr_valid = FALSE;
5589 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5590 i < num_segments;
5591 i++, segment++)
5592 if (segment->p_paddr != 0)
5593 {
5594 p_paddr_valid = TRUE;
5595 break;
5596 }
5597
5598 /* Scan through the segments specified in the program header
5599 of the input BFD. For this first scan we look for overlaps
5600 in the loadable segments. These can be created by weird
5601 parameters to objcopy. Also, fix some solaris weirdness. */
5602 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5603 i < num_segments;
5604 i++, segment++)
5605 {
5606 unsigned int j;
5607 Elf_Internal_Phdr *segment2;
5608
5609 if (segment->p_type == PT_INTERP)
5610 for (section = ibfd->sections; section; section = section->next)
5611 if (IS_SOLARIS_PT_INTERP (segment, section))
5612 {
5613 /* Mininal change so that the normal section to segment
5614 assignment code will work. */
5615 segment->p_vaddr = section->vma;
5616 break;
5617 }
5618
5619 if (segment->p_type != PT_LOAD)
5620 {
5621 /* Remove PT_GNU_RELRO segment. */
5622 if (segment->p_type == PT_GNU_RELRO)
5623 segment->p_type = PT_NULL;
5624 continue;
5625 }
5626
5627 /* Determine if this segment overlaps any previous segments. */
5628 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
5629 {
5630 bfd_signed_vma extra_length;
5631
5632 if (segment2->p_type != PT_LOAD
5633 || !SEGMENT_OVERLAPS (segment, segment2))
5634 continue;
5635
5636 /* Merge the two segments together. */
5637 if (segment2->p_vaddr < segment->p_vaddr)
5638 {
5639 /* Extend SEGMENT2 to include SEGMENT and then delete
5640 SEGMENT. */
5641 extra_length = (SEGMENT_END (segment, segment->p_vaddr)
5642 - SEGMENT_END (segment2, segment2->p_vaddr));
5643
5644 if (extra_length > 0)
5645 {
5646 segment2->p_memsz += extra_length;
5647 segment2->p_filesz += extra_length;
5648 }
5649
5650 segment->p_type = PT_NULL;
5651
5652 /* Since we have deleted P we must restart the outer loop. */
5653 i = 0;
5654 segment = elf_tdata (ibfd)->phdr;
5655 break;
5656 }
5657 else
5658 {
5659 /* Extend SEGMENT to include SEGMENT2 and then delete
5660 SEGMENT2. */
5661 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
5662 - SEGMENT_END (segment, segment->p_vaddr));
5663
5664 if (extra_length > 0)
5665 {
5666 segment->p_memsz += extra_length;
5667 segment->p_filesz += extra_length;
5668 }
5669
5670 segment2->p_type = PT_NULL;
5671 }
5672 }
5673 }
5674
5675 /* The second scan attempts to assign sections to segments. */
5676 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5677 i < num_segments;
5678 i++, segment++)
5679 {
5680 unsigned int section_count;
5681 asection **sections;
5682 asection *output_section;
5683 unsigned int isec;
5684 bfd_vma matching_lma;
5685 bfd_vma suggested_lma;
5686 unsigned int j;
5687 bfd_size_type amt;
5688 asection *first_section;
5689 bfd_boolean first_matching_lma;
5690 bfd_boolean first_suggested_lma;
5691
5692 if (segment->p_type == PT_NULL)
5693 continue;
5694
5695 first_section = NULL;
5696 /* Compute how many sections might be placed into this segment. */
5697 for (section = ibfd->sections, section_count = 0;
5698 section != NULL;
5699 section = section->next)
5700 {
5701 /* Find the first section in the input segment, which may be
5702 removed from the corresponding output segment. */
5703 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
5704 {
5705 if (first_section == NULL)
5706 first_section = section;
5707 if (section->output_section != NULL)
5708 ++section_count;
5709 }
5710 }
5711
5712 /* Allocate a segment map big enough to contain
5713 all of the sections we have selected. */
5714 amt = sizeof (struct elf_segment_map);
5715 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5716 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
5717 if (map == NULL)
5718 return FALSE;
5719
5720 /* Initialise the fields of the segment map. Default to
5721 using the physical address of the segment in the input BFD. */
5722 map->next = NULL;
5723 map->p_type = segment->p_type;
5724 map->p_flags = segment->p_flags;
5725 map->p_flags_valid = 1;
5726
5727 /* If the first section in the input segment is removed, there is
5728 no need to preserve segment physical address in the corresponding
5729 output segment. */
5730 if (!first_section || first_section->output_section != NULL)
5731 {
5732 map->p_paddr = segment->p_paddr;
5733 map->p_paddr_valid = p_paddr_valid;
5734 }
5735
5736 /* Determine if this segment contains the ELF file header
5737 and if it contains the program headers themselves. */
5738 map->includes_filehdr = (segment->p_offset == 0
5739 && segment->p_filesz >= iehdr->e_ehsize);
5740 map->includes_phdrs = 0;
5741
5742 if (!phdr_included || segment->p_type != PT_LOAD)
5743 {
5744 map->includes_phdrs =
5745 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5746 && (segment->p_offset + segment->p_filesz
5747 >= ((bfd_vma) iehdr->e_phoff
5748 + iehdr->e_phnum * iehdr->e_phentsize)));
5749
5750 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5751 phdr_included = TRUE;
5752 }
5753
5754 if (section_count == 0)
5755 {
5756 /* Special segments, such as the PT_PHDR segment, may contain
5757 no sections, but ordinary, loadable segments should contain
5758 something. They are allowed by the ELF spec however, so only
5759 a warning is produced. */
5760 if (segment->p_type == PT_LOAD)
5761 (*_bfd_error_handler) (_("%B: warning: Empty loadable segment"
5762 " detected, is this intentional ?\n"),
5763 ibfd);
5764
5765 map->count = 0;
5766 *pointer_to_map = map;
5767 pointer_to_map = &map->next;
5768
5769 continue;
5770 }
5771
5772 /* Now scan the sections in the input BFD again and attempt
5773 to add their corresponding output sections to the segment map.
5774 The problem here is how to handle an output section which has
5775 been moved (ie had its LMA changed). There are four possibilities:
5776
5777 1. None of the sections have been moved.
5778 In this case we can continue to use the segment LMA from the
5779 input BFD.
5780
5781 2. All of the sections have been moved by the same amount.
5782 In this case we can change the segment's LMA to match the LMA
5783 of the first section.
5784
5785 3. Some of the sections have been moved, others have not.
5786 In this case those sections which have not been moved can be
5787 placed in the current segment which will have to have its size,
5788 and possibly its LMA changed, and a new segment or segments will
5789 have to be created to contain the other sections.
5790
5791 4. The sections have been moved, but not by the same amount.
5792 In this case we can change the segment's LMA to match the LMA
5793 of the first section and we will have to create a new segment
5794 or segments to contain the other sections.
5795
5796 In order to save time, we allocate an array to hold the section
5797 pointers that we are interested in. As these sections get assigned
5798 to a segment, they are removed from this array. */
5799
5800 sections = (asection **) bfd_malloc2 (section_count, sizeof (asection *));
5801 if (sections == NULL)
5802 return FALSE;
5803
5804 /* Step One: Scan for segment vs section LMA conflicts.
5805 Also add the sections to the section array allocated above.
5806 Also add the sections to the current segment. In the common
5807 case, where the sections have not been moved, this means that
5808 we have completely filled the segment, and there is nothing
5809 more to do. */
5810 isec = 0;
5811 matching_lma = 0;
5812 suggested_lma = 0;
5813 first_matching_lma = TRUE;
5814 first_suggested_lma = TRUE;
5815
5816 for (section = ibfd->sections;
5817 section != NULL;
5818 section = section->next)
5819 if (section == first_section)
5820 break;
5821
5822 for (j = 0; section != NULL; section = section->next)
5823 {
5824 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5825 {
5826 output_section = section->output_section;
5827
5828 sections[j++] = section;
5829
5830 /* The Solaris native linker always sets p_paddr to 0.
5831 We try to catch that case here, and set it to the
5832 correct value. Note - some backends require that
5833 p_paddr be left as zero. */
5834 if (!p_paddr_valid
5835 && segment->p_vaddr != 0
5836 && !bed->want_p_paddr_set_to_zero
5837 && isec == 0
5838 && output_section->lma != 0
5839 && output_section->vma == (segment->p_vaddr
5840 + (map->includes_filehdr
5841 ? iehdr->e_ehsize
5842 : 0)
5843 + (map->includes_phdrs
5844 ? (iehdr->e_phnum
5845 * iehdr->e_phentsize)
5846 : 0)))
5847 map->p_paddr = segment->p_vaddr;
5848
5849 /* Match up the physical address of the segment with the
5850 LMA address of the output section. */
5851 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5852 || IS_COREFILE_NOTE (segment, section)
5853 || (bed->want_p_paddr_set_to_zero
5854 && IS_CONTAINED_BY_VMA (output_section, segment)))
5855 {
5856 if (first_matching_lma || output_section->lma < matching_lma)
5857 {
5858 matching_lma = output_section->lma;
5859 first_matching_lma = FALSE;
5860 }
5861
5862 /* We assume that if the section fits within the segment
5863 then it does not overlap any other section within that
5864 segment. */
5865 map->sections[isec++] = output_section;
5866 }
5867 else if (first_suggested_lma)
5868 {
5869 suggested_lma = output_section->lma;
5870 first_suggested_lma = FALSE;
5871 }
5872
5873 if (j == section_count)
5874 break;
5875 }
5876 }
5877
5878 BFD_ASSERT (j == section_count);
5879
5880 /* Step Two: Adjust the physical address of the current segment,
5881 if necessary. */
5882 if (isec == section_count)
5883 {
5884 /* All of the sections fitted within the segment as currently
5885 specified. This is the default case. Add the segment to
5886 the list of built segments and carry on to process the next
5887 program header in the input BFD. */
5888 map->count = section_count;
5889 *pointer_to_map = map;
5890 pointer_to_map = &map->next;
5891
5892 if (p_paddr_valid
5893 && !bed->want_p_paddr_set_to_zero
5894 && matching_lma != map->p_paddr
5895 && !map->includes_filehdr
5896 && !map->includes_phdrs)
5897 /* There is some padding before the first section in the
5898 segment. So, we must account for that in the output
5899 segment's vma. */
5900 map->p_vaddr_offset = matching_lma - map->p_paddr;
5901
5902 free (sections);
5903 continue;
5904 }
5905 else
5906 {
5907 if (!first_matching_lma)
5908 {
5909 /* At least one section fits inside the current segment.
5910 Keep it, but modify its physical address to match the
5911 LMA of the first section that fitted. */
5912 map->p_paddr = matching_lma;
5913 }
5914 else
5915 {
5916 /* None of the sections fitted inside the current segment.
5917 Change the current segment's physical address to match
5918 the LMA of the first section. */
5919 map->p_paddr = suggested_lma;
5920 }
5921
5922 /* Offset the segment physical address from the lma
5923 to allow for space taken up by elf headers. */
5924 if (map->includes_filehdr)
5925 {
5926 if (map->p_paddr >= iehdr->e_ehsize)
5927 map->p_paddr -= iehdr->e_ehsize;
5928 else
5929 {
5930 map->includes_filehdr = FALSE;
5931 map->includes_phdrs = FALSE;
5932 }
5933 }
5934
5935 if (map->includes_phdrs)
5936 {
5937 if (map->p_paddr >= iehdr->e_phnum * iehdr->e_phentsize)
5938 {
5939 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
5940
5941 /* iehdr->e_phnum is just an estimate of the number
5942 of program headers that we will need. Make a note
5943 here of the number we used and the segment we chose
5944 to hold these headers, so that we can adjust the
5945 offset when we know the correct value. */
5946 phdr_adjust_num = iehdr->e_phnum;
5947 phdr_adjust_seg = map;
5948 }
5949 else
5950 map->includes_phdrs = FALSE;
5951 }
5952 }
5953
5954 /* Step Three: Loop over the sections again, this time assigning
5955 those that fit to the current segment and removing them from the
5956 sections array; but making sure not to leave large gaps. Once all
5957 possible sections have been assigned to the current segment it is
5958 added to the list of built segments and if sections still remain
5959 to be assigned, a new segment is constructed before repeating
5960 the loop. */
5961 isec = 0;
5962 do
5963 {
5964 map->count = 0;
5965 suggested_lma = 0;
5966 first_suggested_lma = TRUE;
5967
5968 /* Fill the current segment with sections that fit. */
5969 for (j = 0; j < section_count; j++)
5970 {
5971 section = sections[j];
5972
5973 if (section == NULL)
5974 continue;
5975
5976 output_section = section->output_section;
5977
5978 BFD_ASSERT (output_section != NULL);
5979
5980 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5981 || IS_COREFILE_NOTE (segment, section))
5982 {
5983 if (map->count == 0)
5984 {
5985 /* If the first section in a segment does not start at
5986 the beginning of the segment, then something is
5987 wrong. */
5988 if (output_section->lma
5989 != (map->p_paddr
5990 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
5991 + (map->includes_phdrs
5992 ? iehdr->e_phnum * iehdr->e_phentsize
5993 : 0)))
5994 abort ();
5995 }
5996 else
5997 {
5998 asection *prev_sec;
5999
6000 prev_sec = map->sections[map->count - 1];
6001
6002 /* If the gap between the end of the previous section
6003 and the start of this section is more than
6004 maxpagesize then we need to start a new segment. */
6005 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
6006 maxpagesize)
6007 < BFD_ALIGN (output_section->lma, maxpagesize))
6008 || (prev_sec->lma + prev_sec->size
6009 > output_section->lma))
6010 {
6011 if (first_suggested_lma)
6012 {
6013 suggested_lma = output_section->lma;
6014 first_suggested_lma = FALSE;
6015 }
6016
6017 continue;
6018 }
6019 }
6020
6021 map->sections[map->count++] = output_section;
6022 ++isec;
6023 sections[j] = NULL;
6024 section->segment_mark = TRUE;
6025 }
6026 else if (first_suggested_lma)
6027 {
6028 suggested_lma = output_section->lma;
6029 first_suggested_lma = FALSE;
6030 }
6031 }
6032
6033 BFD_ASSERT (map->count > 0);
6034
6035 /* Add the current segment to the list of built segments. */
6036 *pointer_to_map = map;
6037 pointer_to_map = &map->next;
6038
6039 if (isec < section_count)
6040 {
6041 /* We still have not allocated all of the sections to
6042 segments. Create a new segment here, initialise it
6043 and carry on looping. */
6044 amt = sizeof (struct elf_segment_map);
6045 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
6046 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
6047 if (map == NULL)
6048 {
6049 free (sections);
6050 return FALSE;
6051 }
6052
6053 /* Initialise the fields of the segment map. Set the physical
6054 physical address to the LMA of the first section that has
6055 not yet been assigned. */
6056 map->next = NULL;
6057 map->p_type = segment->p_type;
6058 map->p_flags = segment->p_flags;
6059 map->p_flags_valid = 1;
6060 map->p_paddr = suggested_lma;
6061 map->p_paddr_valid = p_paddr_valid;
6062 map->includes_filehdr = 0;
6063 map->includes_phdrs = 0;
6064 }
6065 }
6066 while (isec < section_count);
6067
6068 free (sections);
6069 }
6070
6071 elf_tdata (obfd)->segment_map = map_first;
6072
6073 /* If we had to estimate the number of program headers that were
6074 going to be needed, then check our estimate now and adjust
6075 the offset if necessary. */
6076 if (phdr_adjust_seg != NULL)
6077 {
6078 unsigned int count;
6079
6080 for (count = 0, map = map_first; map != NULL; map = map->next)
6081 count++;
6082
6083 if (count > phdr_adjust_num)
6084 phdr_adjust_seg->p_paddr
6085 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
6086 }
6087
6088 #undef SEGMENT_END
6089 #undef SECTION_SIZE
6090 #undef IS_CONTAINED_BY_VMA
6091 #undef IS_CONTAINED_BY_LMA
6092 #undef IS_NOTE
6093 #undef IS_COREFILE_NOTE
6094 #undef IS_SOLARIS_PT_INTERP
6095 #undef IS_SECTION_IN_INPUT_SEGMENT
6096 #undef INCLUDE_SECTION_IN_SEGMENT
6097 #undef SEGMENT_AFTER_SEGMENT
6098 #undef SEGMENT_OVERLAPS
6099 return TRUE;
6100 }
6101
6102 /* Copy ELF program header information. */
6103
6104 static bfd_boolean
6105 copy_elf_program_header (bfd *ibfd, bfd *obfd)
6106 {
6107 Elf_Internal_Ehdr *iehdr;
6108 struct elf_segment_map *map;
6109 struct elf_segment_map *map_first;
6110 struct elf_segment_map **pointer_to_map;
6111 Elf_Internal_Phdr *segment;
6112 unsigned int i;
6113 unsigned int num_segments;
6114 bfd_boolean phdr_included = FALSE;
6115 bfd_boolean p_paddr_valid;
6116
6117 iehdr = elf_elfheader (ibfd);
6118
6119 map_first = NULL;
6120 pointer_to_map = &map_first;
6121
6122 /* If all the segment p_paddr fields are zero, don't set
6123 map->p_paddr_valid. */
6124 p_paddr_valid = FALSE;
6125 num_segments = elf_elfheader (ibfd)->e_phnum;
6126 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6127 i < num_segments;
6128 i++, segment++)
6129 if (segment->p_paddr != 0)
6130 {
6131 p_paddr_valid = TRUE;
6132 break;
6133 }
6134
6135 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6136 i < num_segments;
6137 i++, segment++)
6138 {
6139 asection *section;
6140 unsigned int section_count;
6141 bfd_size_type amt;
6142 Elf_Internal_Shdr *this_hdr;
6143 asection *first_section = NULL;
6144 asection *lowest_section;
6145
6146 /* Compute how many sections are in this segment. */
6147 for (section = ibfd->sections, section_count = 0;
6148 section != NULL;
6149 section = section->next)
6150 {
6151 this_hdr = &(elf_section_data(section)->this_hdr);
6152 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6153 {
6154 if (first_section == NULL)
6155 first_section = section;
6156 section_count++;
6157 }
6158 }
6159
6160 /* Allocate a segment map big enough to contain
6161 all of the sections we have selected. */
6162 amt = sizeof (struct elf_segment_map);
6163 if (section_count != 0)
6164 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
6165 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
6166 if (map == NULL)
6167 return FALSE;
6168
6169 /* Initialize the fields of the output segment map with the
6170 input segment. */
6171 map->next = NULL;
6172 map->p_type = segment->p_type;
6173 map->p_flags = segment->p_flags;
6174 map->p_flags_valid = 1;
6175 map->p_paddr = segment->p_paddr;
6176 map->p_paddr_valid = p_paddr_valid;
6177 map->p_align = segment->p_align;
6178 map->p_align_valid = 1;
6179 map->p_vaddr_offset = 0;
6180
6181 if (map->p_type == PT_GNU_RELRO
6182 || map->p_type == PT_GNU_STACK)
6183 {
6184 /* The PT_GNU_RELRO segment may contain the first a few
6185 bytes in the .got.plt section even if the whole .got.plt
6186 section isn't in the PT_GNU_RELRO segment. We won't
6187 change the size of the PT_GNU_RELRO segment.
6188 Similarly, PT_GNU_STACK size is significant on uclinux
6189 systems. */
6190 map->p_size = segment->p_memsz;
6191 map->p_size_valid = 1;
6192 }
6193
6194 /* Determine if this segment contains the ELF file header
6195 and if it contains the program headers themselves. */
6196 map->includes_filehdr = (segment->p_offset == 0
6197 && segment->p_filesz >= iehdr->e_ehsize);
6198
6199 map->includes_phdrs = 0;
6200 if (! phdr_included || segment->p_type != PT_LOAD)
6201 {
6202 map->includes_phdrs =
6203 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
6204 && (segment->p_offset + segment->p_filesz
6205 >= ((bfd_vma) iehdr->e_phoff
6206 + iehdr->e_phnum * iehdr->e_phentsize)));
6207
6208 if (segment->p_type == PT_LOAD && map->includes_phdrs)
6209 phdr_included = TRUE;
6210 }
6211
6212 lowest_section = first_section;
6213 if (section_count != 0)
6214 {
6215 unsigned int isec = 0;
6216
6217 for (section = first_section;
6218 section != NULL;
6219 section = section->next)
6220 {
6221 this_hdr = &(elf_section_data(section)->this_hdr);
6222 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6223 {
6224 map->sections[isec++] = section->output_section;
6225 if (section->lma < lowest_section->lma)
6226 lowest_section = section;
6227 if ((section->flags & SEC_ALLOC) != 0)
6228 {
6229 bfd_vma seg_off;
6230
6231 /* Section lmas are set up from PT_LOAD header
6232 p_paddr in _bfd_elf_make_section_from_shdr.
6233 If this header has a p_paddr that disagrees
6234 with the section lma, flag the p_paddr as
6235 invalid. */
6236 if ((section->flags & SEC_LOAD) != 0)
6237 seg_off = this_hdr->sh_offset - segment->p_offset;
6238 else
6239 seg_off = this_hdr->sh_addr - segment->p_vaddr;
6240 if (section->lma - segment->p_paddr != seg_off)
6241 map->p_paddr_valid = FALSE;
6242 }
6243 if (isec == section_count)
6244 break;
6245 }
6246 }
6247 }
6248
6249 if (map->includes_filehdr && lowest_section != NULL)
6250 /* We need to keep the space used by the headers fixed. */
6251 map->header_size = lowest_section->vma - segment->p_vaddr;
6252
6253 if (!map->includes_phdrs
6254 && !map->includes_filehdr
6255 && map->p_paddr_valid)
6256 /* There is some other padding before the first section. */
6257 map->p_vaddr_offset = ((lowest_section ? lowest_section->lma : 0)
6258 - segment->p_paddr);
6259
6260 map->count = section_count;
6261 *pointer_to_map = map;
6262 pointer_to_map = &map->next;
6263 }
6264
6265 elf_tdata (obfd)->segment_map = map_first;
6266 return TRUE;
6267 }
6268
6269 /* Copy private BFD data. This copies or rewrites ELF program header
6270 information. */
6271
6272 static bfd_boolean
6273 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
6274 {
6275 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6276 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6277 return TRUE;
6278
6279 if (elf_tdata (ibfd)->phdr == NULL)
6280 return TRUE;
6281
6282 if (ibfd->xvec == obfd->xvec)
6283 {
6284 /* Check to see if any sections in the input BFD
6285 covered by ELF program header have changed. */
6286 Elf_Internal_Phdr *segment;
6287 asection *section, *osec;
6288 unsigned int i, num_segments;
6289 Elf_Internal_Shdr *this_hdr;
6290 const struct elf_backend_data *bed;
6291
6292 bed = get_elf_backend_data (ibfd);
6293
6294 /* Regenerate the segment map if p_paddr is set to 0. */
6295 if (bed->want_p_paddr_set_to_zero)
6296 goto rewrite;
6297
6298 /* Initialize the segment mark field. */
6299 for (section = obfd->sections; section != NULL;
6300 section = section->next)
6301 section->segment_mark = FALSE;
6302
6303 num_segments = elf_elfheader (ibfd)->e_phnum;
6304 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6305 i < num_segments;
6306 i++, segment++)
6307 {
6308 /* PR binutils/3535. The Solaris linker always sets the p_paddr
6309 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
6310 which severly confuses things, so always regenerate the segment
6311 map in this case. */
6312 if (segment->p_paddr == 0
6313 && segment->p_memsz == 0
6314 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
6315 goto rewrite;
6316
6317 for (section = ibfd->sections;
6318 section != NULL; section = section->next)
6319 {
6320 /* We mark the output section so that we know it comes
6321 from the input BFD. */
6322 osec = section->output_section;
6323 if (osec)
6324 osec->segment_mark = TRUE;
6325
6326 /* Check if this section is covered by the segment. */
6327 this_hdr = &(elf_section_data(section)->this_hdr);
6328 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6329 {
6330 /* FIXME: Check if its output section is changed or
6331 removed. What else do we need to check? */
6332 if (osec == NULL
6333 || section->flags != osec->flags
6334 || section->lma != osec->lma
6335 || section->vma != osec->vma
6336 || section->size != osec->size
6337 || section->rawsize != osec->rawsize
6338 || section->alignment_power != osec->alignment_power)
6339 goto rewrite;
6340 }
6341 }
6342 }
6343
6344 /* Check to see if any output section do not come from the
6345 input BFD. */
6346 for (section = obfd->sections; section != NULL;
6347 section = section->next)
6348 {
6349 if (section->segment_mark == FALSE)
6350 goto rewrite;
6351 else
6352 section->segment_mark = FALSE;
6353 }
6354
6355 return copy_elf_program_header (ibfd, obfd);
6356 }
6357
6358 rewrite:
6359 return rewrite_elf_program_header (ibfd, obfd);
6360 }
6361
6362 /* Initialize private output section information from input section. */
6363
6364 bfd_boolean
6365 _bfd_elf_init_private_section_data (bfd *ibfd,
6366 asection *isec,
6367 bfd *obfd,
6368 asection *osec,
6369 struct bfd_link_info *link_info)
6370
6371 {
6372 Elf_Internal_Shdr *ihdr, *ohdr;
6373 bfd_boolean final_link = link_info != NULL && !link_info->relocatable;
6374
6375 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6376 || obfd->xvec->flavour != bfd_target_elf_flavour)
6377 return TRUE;
6378
6379 BFD_ASSERT (elf_section_data (osec) != NULL);
6380
6381 /* For objcopy and relocatable link, don't copy the output ELF
6382 section type from input if the output BFD section flags have been
6383 set to something different. For a final link allow some flags
6384 that the linker clears to differ. */
6385 if (elf_section_type (osec) == SHT_NULL
6386 && (osec->flags == isec->flags
6387 || (final_link
6388 && ((osec->flags ^ isec->flags)
6389 & ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC)) == 0)))
6390 elf_section_type (osec) = elf_section_type (isec);
6391
6392 /* FIXME: Is this correct for all OS/PROC specific flags? */
6393 elf_section_flags (osec) |= (elf_section_flags (isec)
6394 & (SHF_MASKOS | SHF_MASKPROC));
6395
6396 /* Set things up for objcopy and relocatable link. The output
6397 SHT_GROUP section will have its elf_next_in_group pointing back
6398 to the input group members. Ignore linker created group section.
6399 See elfNN_ia64_object_p in elfxx-ia64.c. */
6400 if (!final_link)
6401 {
6402 if (elf_sec_group (isec) == NULL
6403 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
6404 {
6405 if (elf_section_flags (isec) & SHF_GROUP)
6406 elf_section_flags (osec) |= SHF_GROUP;
6407 elf_next_in_group (osec) = elf_next_in_group (isec);
6408 elf_section_data (osec)->group = elf_section_data (isec)->group;
6409 }
6410 }
6411
6412 ihdr = &elf_section_data (isec)->this_hdr;
6413
6414 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
6415 don't use the output section of the linked-to section since it
6416 may be NULL at this point. */
6417 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
6418 {
6419 ohdr = &elf_section_data (osec)->this_hdr;
6420 ohdr->sh_flags |= SHF_LINK_ORDER;
6421 elf_linked_to_section (osec) = elf_linked_to_section (isec);
6422 }
6423
6424 osec->use_rela_p = isec->use_rela_p;
6425
6426 return TRUE;
6427 }
6428
6429 /* Copy private section information. This copies over the entsize
6430 field, and sometimes the info field. */
6431
6432 bfd_boolean
6433 _bfd_elf_copy_private_section_data (bfd *ibfd,
6434 asection *isec,
6435 bfd *obfd,
6436 asection *osec)
6437 {
6438 Elf_Internal_Shdr *ihdr, *ohdr;
6439
6440 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6441 || obfd->xvec->flavour != bfd_target_elf_flavour)
6442 return TRUE;
6443
6444 ihdr = &elf_section_data (isec)->this_hdr;
6445 ohdr = &elf_section_data (osec)->this_hdr;
6446
6447 ohdr->sh_entsize = ihdr->sh_entsize;
6448
6449 if (ihdr->sh_type == SHT_SYMTAB
6450 || ihdr->sh_type == SHT_DYNSYM
6451 || ihdr->sh_type == SHT_GNU_verneed
6452 || ihdr->sh_type == SHT_GNU_verdef)
6453 ohdr->sh_info = ihdr->sh_info;
6454
6455 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
6456 NULL);
6457 }
6458
6459 /* Look at all the SHT_GROUP sections in IBFD, making any adjustments
6460 necessary if we are removing either the SHT_GROUP section or any of
6461 the group member sections. DISCARDED is the value that a section's
6462 output_section has if the section will be discarded, NULL when this
6463 function is called from objcopy, bfd_abs_section_ptr when called
6464 from the linker. */
6465
6466 bfd_boolean
6467 _bfd_elf_fixup_group_sections (bfd *ibfd, asection *discarded)
6468 {
6469 asection *isec;
6470
6471 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
6472 if (elf_section_type (isec) == SHT_GROUP)
6473 {
6474 asection *first = elf_next_in_group (isec);
6475 asection *s = first;
6476 bfd_size_type removed = 0;
6477
6478 while (s != NULL)
6479 {
6480 /* If this member section is being output but the
6481 SHT_GROUP section is not, then clear the group info
6482 set up by _bfd_elf_copy_private_section_data. */
6483 if (s->output_section != discarded
6484 && isec->output_section == discarded)
6485 {
6486 elf_section_flags (s->output_section) &= ~SHF_GROUP;
6487 elf_group_name (s->output_section) = NULL;
6488 }
6489 /* Conversely, if the member section is not being output
6490 but the SHT_GROUP section is, then adjust its size. */
6491 else if (s->output_section == discarded
6492 && isec->output_section != discarded)
6493 removed += 4;
6494 s = elf_next_in_group (s);
6495 if (s == first)
6496 break;
6497 }
6498 if (removed != 0)
6499 {
6500 if (discarded != NULL)
6501 {
6502 /* If we've been called for ld -r, then we need to
6503 adjust the input section size. This function may
6504 be called multiple times, so save the original
6505 size. */
6506 if (isec->rawsize == 0)
6507 isec->rawsize = isec->size;
6508 isec->size = isec->rawsize - removed;
6509 }
6510 else
6511 {
6512 /* Adjust the output section size when called from
6513 objcopy. */
6514 isec->output_section->size -= removed;
6515 }
6516 }
6517 }
6518
6519 return TRUE;
6520 }
6521
6522 /* Copy private header information. */
6523
6524 bfd_boolean
6525 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
6526 {
6527 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6528 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6529 return TRUE;
6530
6531 /* Copy over private BFD data if it has not already been copied.
6532 This must be done here, rather than in the copy_private_bfd_data
6533 entry point, because the latter is called after the section
6534 contents have been set, which means that the program headers have
6535 already been worked out. */
6536 if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
6537 {
6538 if (! copy_private_bfd_data (ibfd, obfd))
6539 return FALSE;
6540 }
6541
6542 return _bfd_elf_fixup_group_sections (ibfd, NULL);
6543 }
6544
6545 /* Copy private symbol information. If this symbol is in a section
6546 which we did not map into a BFD section, try to map the section
6547 index correctly. We use special macro definitions for the mapped
6548 section indices; these definitions are interpreted by the
6549 swap_out_syms function. */
6550
6551 #define MAP_ONESYMTAB (SHN_HIOS + 1)
6552 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
6553 #define MAP_STRTAB (SHN_HIOS + 3)
6554 #define MAP_SHSTRTAB (SHN_HIOS + 4)
6555 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
6556
6557 bfd_boolean
6558 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
6559 asymbol *isymarg,
6560 bfd *obfd,
6561 asymbol *osymarg)
6562 {
6563 elf_symbol_type *isym, *osym;
6564
6565 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6566 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6567 return TRUE;
6568
6569 isym = elf_symbol_from (ibfd, isymarg);
6570 osym = elf_symbol_from (obfd, osymarg);
6571
6572 if (isym != NULL
6573 && isym->internal_elf_sym.st_shndx != 0
6574 && osym != NULL
6575 && bfd_is_abs_section (isym->symbol.section))
6576 {
6577 unsigned int shndx;
6578
6579 shndx = isym->internal_elf_sym.st_shndx;
6580 if (shndx == elf_onesymtab (ibfd))
6581 shndx = MAP_ONESYMTAB;
6582 else if (shndx == elf_dynsymtab (ibfd))
6583 shndx = MAP_DYNSYMTAB;
6584 else if (shndx == elf_tdata (ibfd)->strtab_section)
6585 shndx = MAP_STRTAB;
6586 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
6587 shndx = MAP_SHSTRTAB;
6588 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
6589 shndx = MAP_SYM_SHNDX;
6590 osym->internal_elf_sym.st_shndx = shndx;
6591 }
6592
6593 return TRUE;
6594 }
6595
6596 /* Swap out the symbols. */
6597
6598 static bfd_boolean
6599 swap_out_syms (bfd *abfd,
6600 struct bfd_strtab_hash **sttp,
6601 int relocatable_p)
6602 {
6603 const struct elf_backend_data *bed;
6604 int symcount;
6605 asymbol **syms;
6606 struct bfd_strtab_hash *stt;
6607 Elf_Internal_Shdr *symtab_hdr;
6608 Elf_Internal_Shdr *symtab_shndx_hdr;
6609 Elf_Internal_Shdr *symstrtab_hdr;
6610 bfd_byte *outbound_syms;
6611 bfd_byte *outbound_shndx;
6612 int idx;
6613 bfd_size_type amt;
6614 bfd_boolean name_local_sections;
6615
6616 if (!elf_map_symbols (abfd))
6617 return FALSE;
6618
6619 /* Dump out the symtabs. */
6620 stt = _bfd_elf_stringtab_init ();
6621 if (stt == NULL)
6622 return FALSE;
6623
6624 bed = get_elf_backend_data (abfd);
6625 symcount = bfd_get_symcount (abfd);
6626 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6627 symtab_hdr->sh_type = SHT_SYMTAB;
6628 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
6629 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
6630 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
6631 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
6632
6633 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
6634 symstrtab_hdr->sh_type = SHT_STRTAB;
6635
6636 outbound_syms = (bfd_byte *) bfd_alloc2 (abfd, 1 + symcount,
6637 bed->s->sizeof_sym);
6638 if (outbound_syms == NULL)
6639 {
6640 _bfd_stringtab_free (stt);
6641 return FALSE;
6642 }
6643 symtab_hdr->contents = outbound_syms;
6644
6645 outbound_shndx = NULL;
6646 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
6647 if (symtab_shndx_hdr->sh_name != 0)
6648 {
6649 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
6650 outbound_shndx = (bfd_byte *)
6651 bfd_zalloc2 (abfd, 1 + symcount, sizeof (Elf_External_Sym_Shndx));
6652 if (outbound_shndx == NULL)
6653 {
6654 _bfd_stringtab_free (stt);
6655 return FALSE;
6656 }
6657
6658 symtab_shndx_hdr->contents = outbound_shndx;
6659 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
6660 symtab_shndx_hdr->sh_size = amt;
6661 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
6662 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
6663 }
6664
6665 /* Now generate the data (for "contents"). */
6666 {
6667 /* Fill in zeroth symbol and swap it out. */
6668 Elf_Internal_Sym sym;
6669 sym.st_name = 0;
6670 sym.st_value = 0;
6671 sym.st_size = 0;
6672 sym.st_info = 0;
6673 sym.st_other = 0;
6674 sym.st_shndx = SHN_UNDEF;
6675 sym.st_target_internal = 0;
6676 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6677 outbound_syms += bed->s->sizeof_sym;
6678 if (outbound_shndx != NULL)
6679 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6680 }
6681
6682 name_local_sections
6683 = (bed->elf_backend_name_local_section_symbols
6684 && bed->elf_backend_name_local_section_symbols (abfd));
6685
6686 syms = bfd_get_outsymbols (abfd);
6687 for (idx = 0; idx < symcount; idx++)
6688 {
6689 Elf_Internal_Sym sym;
6690 bfd_vma value = syms[idx]->value;
6691 elf_symbol_type *type_ptr;
6692 flagword flags = syms[idx]->flags;
6693 int type;
6694
6695 if (!name_local_sections
6696 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
6697 {
6698 /* Local section symbols have no name. */
6699 sym.st_name = 0;
6700 }
6701 else
6702 {
6703 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
6704 syms[idx]->name,
6705 TRUE, FALSE);
6706 if (sym.st_name == (unsigned long) -1)
6707 {
6708 _bfd_stringtab_free (stt);
6709 return FALSE;
6710 }
6711 }
6712
6713 type_ptr = elf_symbol_from (abfd, syms[idx]);
6714
6715 if ((flags & BSF_SECTION_SYM) == 0
6716 && bfd_is_com_section (syms[idx]->section))
6717 {
6718 /* ELF common symbols put the alignment into the `value' field,
6719 and the size into the `size' field. This is backwards from
6720 how BFD handles it, so reverse it here. */
6721 sym.st_size = value;
6722 if (type_ptr == NULL
6723 || type_ptr->internal_elf_sym.st_value == 0)
6724 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
6725 else
6726 sym.st_value = type_ptr->internal_elf_sym.st_value;
6727 sym.st_shndx = _bfd_elf_section_from_bfd_section
6728 (abfd, syms[idx]->section);
6729 }
6730 else
6731 {
6732 asection *sec = syms[idx]->section;
6733 unsigned int shndx;
6734
6735 if (sec->output_section)
6736 {
6737 value += sec->output_offset;
6738 sec = sec->output_section;
6739 }
6740
6741 /* Don't add in the section vma for relocatable output. */
6742 if (! relocatable_p)
6743 value += sec->vma;
6744 sym.st_value = value;
6745 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
6746
6747 if (bfd_is_abs_section (sec)
6748 && type_ptr != NULL
6749 && type_ptr->internal_elf_sym.st_shndx != 0)
6750 {
6751 /* This symbol is in a real ELF section which we did
6752 not create as a BFD section. Undo the mapping done
6753 by copy_private_symbol_data. */
6754 shndx = type_ptr->internal_elf_sym.st_shndx;
6755 switch (shndx)
6756 {
6757 case MAP_ONESYMTAB:
6758 shndx = elf_onesymtab (abfd);
6759 break;
6760 case MAP_DYNSYMTAB:
6761 shndx = elf_dynsymtab (abfd);
6762 break;
6763 case MAP_STRTAB:
6764 shndx = elf_tdata (abfd)->strtab_section;
6765 break;
6766 case MAP_SHSTRTAB:
6767 shndx = elf_tdata (abfd)->shstrtab_section;
6768 break;
6769 case MAP_SYM_SHNDX:
6770 shndx = elf_tdata (abfd)->symtab_shndx_section;
6771 break;
6772 default:
6773 break;
6774 }
6775 }
6776 else
6777 {
6778 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
6779
6780 if (shndx == SHN_BAD)
6781 {
6782 asection *sec2;
6783
6784 /* Writing this would be a hell of a lot easier if
6785 we had some decent documentation on bfd, and
6786 knew what to expect of the library, and what to
6787 demand of applications. For example, it
6788 appears that `objcopy' might not set the
6789 section of a symbol to be a section that is
6790 actually in the output file. */
6791 sec2 = bfd_get_section_by_name (abfd, sec->name);
6792 if (sec2 == NULL)
6793 {
6794 _bfd_error_handler (_("\
6795 Unable to find equivalent output section for symbol '%s' from section '%s'"),
6796 syms[idx]->name ? syms[idx]->name : "<Local sym>",
6797 sec->name);
6798 bfd_set_error (bfd_error_invalid_operation);
6799 _bfd_stringtab_free (stt);
6800 return FALSE;
6801 }
6802
6803 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
6804 BFD_ASSERT (shndx != SHN_BAD);
6805 }
6806 }
6807
6808 sym.st_shndx = shndx;
6809 }
6810
6811 if ((flags & BSF_THREAD_LOCAL) != 0)
6812 type = STT_TLS;
6813 else if ((flags & BSF_GNU_INDIRECT_FUNCTION) != 0)
6814 type = STT_GNU_IFUNC;
6815 else if ((flags & BSF_FUNCTION) != 0)
6816 type = STT_FUNC;
6817 else if ((flags & BSF_OBJECT) != 0)
6818 type = STT_OBJECT;
6819 else if ((flags & BSF_RELC) != 0)
6820 type = STT_RELC;
6821 else if ((flags & BSF_SRELC) != 0)
6822 type = STT_SRELC;
6823 else
6824 type = STT_NOTYPE;
6825
6826 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
6827 type = STT_TLS;
6828
6829 /* Processor-specific types. */
6830 if (type_ptr != NULL
6831 && bed->elf_backend_get_symbol_type)
6832 type = ((*bed->elf_backend_get_symbol_type)
6833 (&type_ptr->internal_elf_sym, type));
6834
6835 if (flags & BSF_SECTION_SYM)
6836 {
6837 if (flags & BSF_GLOBAL)
6838 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6839 else
6840 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
6841 }
6842 else if (bfd_is_com_section (syms[idx]->section))
6843 {
6844 #ifdef USE_STT_COMMON
6845 if (type == STT_OBJECT)
6846 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_COMMON);
6847 else
6848 #endif
6849 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
6850 }
6851 else if (bfd_is_und_section (syms[idx]->section))
6852 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
6853 ? STB_WEAK
6854 : STB_GLOBAL),
6855 type);
6856 else if (flags & BSF_FILE)
6857 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
6858 else
6859 {
6860 int bind = STB_LOCAL;
6861
6862 if (flags & BSF_LOCAL)
6863 bind = STB_LOCAL;
6864 else if (flags & BSF_GNU_UNIQUE)
6865 bind = STB_GNU_UNIQUE;
6866 else if (flags & BSF_WEAK)
6867 bind = STB_WEAK;
6868 else if (flags & BSF_GLOBAL)
6869 bind = STB_GLOBAL;
6870
6871 sym.st_info = ELF_ST_INFO (bind, type);
6872 }
6873
6874 if (type_ptr != NULL)
6875 {
6876 sym.st_other = type_ptr->internal_elf_sym.st_other;
6877 sym.st_target_internal
6878 = type_ptr->internal_elf_sym.st_target_internal;
6879 }
6880 else
6881 {
6882 sym.st_other = 0;
6883 sym.st_target_internal = 0;
6884 }
6885
6886 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6887 outbound_syms += bed->s->sizeof_sym;
6888 if (outbound_shndx != NULL)
6889 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6890 }
6891
6892 *sttp = stt;
6893 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
6894 symstrtab_hdr->sh_type = SHT_STRTAB;
6895
6896 symstrtab_hdr->sh_flags = 0;
6897 symstrtab_hdr->sh_addr = 0;
6898 symstrtab_hdr->sh_entsize = 0;
6899 symstrtab_hdr->sh_link = 0;
6900 symstrtab_hdr->sh_info = 0;
6901 symstrtab_hdr->sh_addralign = 1;
6902
6903 return TRUE;
6904 }
6905
6906 /* Return the number of bytes required to hold the symtab vector.
6907
6908 Note that we base it on the count plus 1, since we will null terminate
6909 the vector allocated based on this size. However, the ELF symbol table
6910 always has a dummy entry as symbol #0, so it ends up even. */
6911
6912 long
6913 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
6914 {
6915 long symcount;
6916 long symtab_size;
6917 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
6918
6919 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6920 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6921 if (symcount > 0)
6922 symtab_size -= sizeof (asymbol *);
6923
6924 return symtab_size;
6925 }
6926
6927 long
6928 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
6929 {
6930 long symcount;
6931 long symtab_size;
6932 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
6933
6934 if (elf_dynsymtab (abfd) == 0)
6935 {
6936 bfd_set_error (bfd_error_invalid_operation);
6937 return -1;
6938 }
6939
6940 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6941 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6942 if (symcount > 0)
6943 symtab_size -= sizeof (asymbol *);
6944
6945 return symtab_size;
6946 }
6947
6948 long
6949 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
6950 sec_ptr asect)
6951 {
6952 return (asect->reloc_count + 1) * sizeof (arelent *);
6953 }
6954
6955 /* Canonicalize the relocs. */
6956
6957 long
6958 _bfd_elf_canonicalize_reloc (bfd *abfd,
6959 sec_ptr section,
6960 arelent **relptr,
6961 asymbol **symbols)
6962 {
6963 arelent *tblptr;
6964 unsigned int i;
6965 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6966
6967 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
6968 return -1;
6969
6970 tblptr = section->relocation;
6971 for (i = 0; i < section->reloc_count; i++)
6972 *relptr++ = tblptr++;
6973
6974 *relptr = NULL;
6975
6976 return section->reloc_count;
6977 }
6978
6979 long
6980 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
6981 {
6982 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6983 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
6984
6985 if (symcount >= 0)
6986 bfd_get_symcount (abfd) = symcount;
6987 return symcount;
6988 }
6989
6990 long
6991 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
6992 asymbol **allocation)
6993 {
6994 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6995 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
6996
6997 if (symcount >= 0)
6998 bfd_get_dynamic_symcount (abfd) = symcount;
6999 return symcount;
7000 }
7001
7002 /* Return the size required for the dynamic reloc entries. Any loadable
7003 section that was actually installed in the BFD, and has type SHT_REL
7004 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
7005 dynamic reloc section. */
7006
7007 long
7008 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
7009 {
7010 long ret;
7011 asection *s;
7012
7013 if (elf_dynsymtab (abfd) == 0)
7014 {
7015 bfd_set_error (bfd_error_invalid_operation);
7016 return -1;
7017 }
7018
7019 ret = sizeof (arelent *);
7020 for (s = abfd->sections; s != NULL; s = s->next)
7021 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
7022 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
7023 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
7024 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
7025 * sizeof (arelent *));
7026
7027 return ret;
7028 }
7029
7030 /* Canonicalize the dynamic relocation entries. Note that we return the
7031 dynamic relocations as a single block, although they are actually
7032 associated with particular sections; the interface, which was
7033 designed for SunOS style shared libraries, expects that there is only
7034 one set of dynamic relocs. Any loadable section that was actually
7035 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
7036 dynamic symbol table, is considered to be a dynamic reloc section. */
7037
7038 long
7039 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
7040 arelent **storage,
7041 asymbol **syms)
7042 {
7043 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
7044 asection *s;
7045 long ret;
7046
7047 if (elf_dynsymtab (abfd) == 0)
7048 {
7049 bfd_set_error (bfd_error_invalid_operation);
7050 return -1;
7051 }
7052
7053 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
7054 ret = 0;
7055 for (s = abfd->sections; s != NULL; s = s->next)
7056 {
7057 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
7058 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
7059 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
7060 {
7061 arelent *p;
7062 long count, i;
7063
7064 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
7065 return -1;
7066 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
7067 p = s->relocation;
7068 for (i = 0; i < count; i++)
7069 *storage++ = p++;
7070 ret += count;
7071 }
7072 }
7073
7074 *storage = NULL;
7075
7076 return ret;
7077 }
7078 \f
7079 /* Read in the version information. */
7080
7081 bfd_boolean
7082 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
7083 {
7084 bfd_byte *contents = NULL;
7085 unsigned int freeidx = 0;
7086
7087 if (elf_dynverref (abfd) != 0)
7088 {
7089 Elf_Internal_Shdr *hdr;
7090 Elf_External_Verneed *everneed;
7091 Elf_Internal_Verneed *iverneed;
7092 unsigned int i;
7093 bfd_byte *contents_end;
7094
7095 hdr = &elf_tdata (abfd)->dynverref_hdr;
7096
7097 elf_tdata (abfd)->verref = (Elf_Internal_Verneed *)
7098 bfd_zalloc2 (abfd, hdr->sh_info, sizeof (Elf_Internal_Verneed));
7099 if (elf_tdata (abfd)->verref == NULL)
7100 goto error_return;
7101
7102 elf_tdata (abfd)->cverrefs = hdr->sh_info;
7103
7104 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
7105 if (contents == NULL)
7106 {
7107 error_return_verref:
7108 elf_tdata (abfd)->verref = NULL;
7109 elf_tdata (abfd)->cverrefs = 0;
7110 goto error_return;
7111 }
7112 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
7113 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
7114 goto error_return_verref;
7115
7116 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verneed))
7117 goto error_return_verref;
7118
7119 BFD_ASSERT (sizeof (Elf_External_Verneed)
7120 == sizeof (Elf_External_Vernaux));
7121 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
7122 everneed = (Elf_External_Verneed *) contents;
7123 iverneed = elf_tdata (abfd)->verref;
7124 for (i = 0; i < hdr->sh_info; i++, iverneed++)
7125 {
7126 Elf_External_Vernaux *evernaux;
7127 Elf_Internal_Vernaux *ivernaux;
7128 unsigned int j;
7129
7130 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
7131
7132 iverneed->vn_bfd = abfd;
7133
7134 iverneed->vn_filename =
7135 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7136 iverneed->vn_file);
7137 if (iverneed->vn_filename == NULL)
7138 goto error_return_verref;
7139
7140 if (iverneed->vn_cnt == 0)
7141 iverneed->vn_auxptr = NULL;
7142 else
7143 {
7144 iverneed->vn_auxptr = (struct elf_internal_vernaux *)
7145 bfd_alloc2 (abfd, iverneed->vn_cnt,
7146 sizeof (Elf_Internal_Vernaux));
7147 if (iverneed->vn_auxptr == NULL)
7148 goto error_return_verref;
7149 }
7150
7151 if (iverneed->vn_aux
7152 > (size_t) (contents_end - (bfd_byte *) everneed))
7153 goto error_return_verref;
7154
7155 evernaux = ((Elf_External_Vernaux *)
7156 ((bfd_byte *) everneed + iverneed->vn_aux));
7157 ivernaux = iverneed->vn_auxptr;
7158 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
7159 {
7160 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
7161
7162 ivernaux->vna_nodename =
7163 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7164 ivernaux->vna_name);
7165 if (ivernaux->vna_nodename == NULL)
7166 goto error_return_verref;
7167
7168 if (j + 1 < iverneed->vn_cnt)
7169 ivernaux->vna_nextptr = ivernaux + 1;
7170 else
7171 ivernaux->vna_nextptr = NULL;
7172
7173 if (ivernaux->vna_next
7174 > (size_t) (contents_end - (bfd_byte *) evernaux))
7175 goto error_return_verref;
7176
7177 evernaux = ((Elf_External_Vernaux *)
7178 ((bfd_byte *) evernaux + ivernaux->vna_next));
7179
7180 if (ivernaux->vna_other > freeidx)
7181 freeidx = ivernaux->vna_other;
7182 }
7183
7184 if (i + 1 < hdr->sh_info)
7185 iverneed->vn_nextref = iverneed + 1;
7186 else
7187 iverneed->vn_nextref = NULL;
7188
7189 if (iverneed->vn_next
7190 > (size_t) (contents_end - (bfd_byte *) everneed))
7191 goto error_return_verref;
7192
7193 everneed = ((Elf_External_Verneed *)
7194 ((bfd_byte *) everneed + iverneed->vn_next));
7195 }
7196
7197 free (contents);
7198 contents = NULL;
7199 }
7200
7201 if (elf_dynverdef (abfd) != 0)
7202 {
7203 Elf_Internal_Shdr *hdr;
7204 Elf_External_Verdef *everdef;
7205 Elf_Internal_Verdef *iverdef;
7206 Elf_Internal_Verdef *iverdefarr;
7207 Elf_Internal_Verdef iverdefmem;
7208 unsigned int i;
7209 unsigned int maxidx;
7210 bfd_byte *contents_end_def, *contents_end_aux;
7211
7212 hdr = &elf_tdata (abfd)->dynverdef_hdr;
7213
7214 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
7215 if (contents == NULL)
7216 goto error_return;
7217 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
7218 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
7219 goto error_return;
7220
7221 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verdef))
7222 goto error_return;
7223
7224 BFD_ASSERT (sizeof (Elf_External_Verdef)
7225 >= sizeof (Elf_External_Verdaux));
7226 contents_end_def = contents + hdr->sh_size
7227 - sizeof (Elf_External_Verdef);
7228 contents_end_aux = contents + hdr->sh_size
7229 - sizeof (Elf_External_Verdaux);
7230
7231 /* We know the number of entries in the section but not the maximum
7232 index. Therefore we have to run through all entries and find
7233 the maximum. */
7234 everdef = (Elf_External_Verdef *) contents;
7235 maxidx = 0;
7236 for (i = 0; i < hdr->sh_info; ++i)
7237 {
7238 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
7239
7240 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
7241 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
7242
7243 if (iverdefmem.vd_next
7244 > (size_t) (contents_end_def - (bfd_byte *) everdef))
7245 goto error_return;
7246
7247 everdef = ((Elf_External_Verdef *)
7248 ((bfd_byte *) everdef + iverdefmem.vd_next));
7249 }
7250
7251 if (default_imported_symver)
7252 {
7253 if (freeidx > maxidx)
7254 maxidx = ++freeidx;
7255 else
7256 freeidx = ++maxidx;
7257 }
7258 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
7259 bfd_zalloc2 (abfd, maxidx, sizeof (Elf_Internal_Verdef));
7260 if (elf_tdata (abfd)->verdef == NULL)
7261 goto error_return;
7262
7263 elf_tdata (abfd)->cverdefs = maxidx;
7264
7265 everdef = (Elf_External_Verdef *) contents;
7266 iverdefarr = elf_tdata (abfd)->verdef;
7267 for (i = 0; i < hdr->sh_info; i++)
7268 {
7269 Elf_External_Verdaux *everdaux;
7270 Elf_Internal_Verdaux *iverdaux;
7271 unsigned int j;
7272
7273 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
7274
7275 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
7276 {
7277 error_return_verdef:
7278 elf_tdata (abfd)->verdef = NULL;
7279 elf_tdata (abfd)->cverdefs = 0;
7280 goto error_return;
7281 }
7282
7283 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
7284 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
7285
7286 iverdef->vd_bfd = abfd;
7287
7288 if (iverdef->vd_cnt == 0)
7289 iverdef->vd_auxptr = NULL;
7290 else
7291 {
7292 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
7293 bfd_alloc2 (abfd, iverdef->vd_cnt,
7294 sizeof (Elf_Internal_Verdaux));
7295 if (iverdef->vd_auxptr == NULL)
7296 goto error_return_verdef;
7297 }
7298
7299 if (iverdef->vd_aux
7300 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
7301 goto error_return_verdef;
7302
7303 everdaux = ((Elf_External_Verdaux *)
7304 ((bfd_byte *) everdef + iverdef->vd_aux));
7305 iverdaux = iverdef->vd_auxptr;
7306 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
7307 {
7308 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
7309
7310 iverdaux->vda_nodename =
7311 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7312 iverdaux->vda_name);
7313 if (iverdaux->vda_nodename == NULL)
7314 goto error_return_verdef;
7315
7316 if (j + 1 < iverdef->vd_cnt)
7317 iverdaux->vda_nextptr = iverdaux + 1;
7318 else
7319 iverdaux->vda_nextptr = NULL;
7320
7321 if (iverdaux->vda_next
7322 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
7323 goto error_return_verdef;
7324
7325 everdaux = ((Elf_External_Verdaux *)
7326 ((bfd_byte *) everdaux + iverdaux->vda_next));
7327 }
7328
7329 if (iverdef->vd_cnt)
7330 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
7331
7332 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
7333 iverdef->vd_nextdef = iverdef + 1;
7334 else
7335 iverdef->vd_nextdef = NULL;
7336
7337 everdef = ((Elf_External_Verdef *)
7338 ((bfd_byte *) everdef + iverdef->vd_next));
7339 }
7340
7341 free (contents);
7342 contents = NULL;
7343 }
7344 else if (default_imported_symver)
7345 {
7346 if (freeidx < 3)
7347 freeidx = 3;
7348 else
7349 freeidx++;
7350
7351 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
7352 bfd_zalloc2 (abfd, freeidx, sizeof (Elf_Internal_Verdef));
7353 if (elf_tdata (abfd)->verdef == NULL)
7354 goto error_return;
7355
7356 elf_tdata (abfd)->cverdefs = freeidx;
7357 }
7358
7359 /* Create a default version based on the soname. */
7360 if (default_imported_symver)
7361 {
7362 Elf_Internal_Verdef *iverdef;
7363 Elf_Internal_Verdaux *iverdaux;
7364
7365 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];
7366
7367 iverdef->vd_version = VER_DEF_CURRENT;
7368 iverdef->vd_flags = 0;
7369 iverdef->vd_ndx = freeidx;
7370 iverdef->vd_cnt = 1;
7371
7372 iverdef->vd_bfd = abfd;
7373
7374 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
7375 if (iverdef->vd_nodename == NULL)
7376 goto error_return_verdef;
7377 iverdef->vd_nextdef = NULL;
7378 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
7379 bfd_alloc (abfd, sizeof (Elf_Internal_Verdaux));
7380 if (iverdef->vd_auxptr == NULL)
7381 goto error_return_verdef;
7382
7383 iverdaux = iverdef->vd_auxptr;
7384 iverdaux->vda_nodename = iverdef->vd_nodename;
7385 iverdaux->vda_nextptr = NULL;
7386 }
7387
7388 return TRUE;
7389
7390 error_return:
7391 if (contents != NULL)
7392 free (contents);
7393 return FALSE;
7394 }
7395 \f
7396 asymbol *
7397 _bfd_elf_make_empty_symbol (bfd *abfd)
7398 {
7399 elf_symbol_type *newsym;
7400 bfd_size_type amt = sizeof (elf_symbol_type);
7401
7402 newsym = (elf_symbol_type *) bfd_zalloc (abfd, amt);
7403 if (!newsym)
7404 return NULL;
7405 else
7406 {
7407 newsym->symbol.the_bfd = abfd;
7408 return &newsym->symbol;
7409 }
7410 }
7411
7412 void
7413 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
7414 asymbol *symbol,
7415 symbol_info *ret)
7416 {
7417 bfd_symbol_info (symbol, ret);
7418 }
7419
7420 /* Return whether a symbol name implies a local symbol. Most targets
7421 use this function for the is_local_label_name entry point, but some
7422 override it. */
7423
7424 bfd_boolean
7425 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
7426 const char *name)
7427 {
7428 /* Normal local symbols start with ``.L''. */
7429 if (name[0] == '.' && name[1] == 'L')
7430 return TRUE;
7431
7432 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
7433 DWARF debugging symbols starting with ``..''. */
7434 if (name[0] == '.' && name[1] == '.')
7435 return TRUE;
7436
7437 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
7438 emitting DWARF debugging output. I suspect this is actually a
7439 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
7440 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
7441 underscore to be emitted on some ELF targets). For ease of use,
7442 we treat such symbols as local. */
7443 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
7444 return TRUE;
7445
7446 return FALSE;
7447 }
7448
7449 alent *
7450 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
7451 asymbol *symbol ATTRIBUTE_UNUSED)
7452 {
7453 abort ();
7454 return NULL;
7455 }
7456
7457 bfd_boolean
7458 _bfd_elf_set_arch_mach (bfd *abfd,
7459 enum bfd_architecture arch,
7460 unsigned long machine)
7461 {
7462 /* If this isn't the right architecture for this backend, and this
7463 isn't the generic backend, fail. */
7464 if (arch != get_elf_backend_data (abfd)->arch
7465 && arch != bfd_arch_unknown
7466 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
7467 return FALSE;
7468
7469 return bfd_default_set_arch_mach (abfd, arch, machine);
7470 }
7471
7472 /* Find the function to a particular section and offset,
7473 for error reporting. */
7474
7475 static bfd_boolean
7476 elf_find_function (bfd *abfd,
7477 asection *section,
7478 asymbol **symbols,
7479 bfd_vma offset,
7480 const char **filename_ptr,
7481 const char **functionname_ptr)
7482 {
7483 static asection *last_section;
7484 static asymbol *func;
7485 static const char *filename;
7486 static bfd_size_type func_size;
7487
7488 if (symbols == NULL)
7489 return FALSE;
7490
7491 if (last_section != section
7492 || func == NULL
7493 || offset < func->value
7494 || offset >= func->value + func_size)
7495 {
7496 asymbol *file;
7497 bfd_vma low_func;
7498 asymbol **p;
7499 /* ??? Given multiple file symbols, it is impossible to reliably
7500 choose the right file name for global symbols. File symbols are
7501 local symbols, and thus all file symbols must sort before any
7502 global symbols. The ELF spec may be interpreted to say that a
7503 file symbol must sort before other local symbols, but currently
7504 ld -r doesn't do this. So, for ld -r output, it is possible to
7505 make a better choice of file name for local symbols by ignoring
7506 file symbols appearing after a given local symbol. */
7507 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
7508 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7509
7510 filename = NULL;
7511 func = NULL;
7512 file = NULL;
7513 low_func = 0;
7514 state = nothing_seen;
7515 func_size = 0;
7516 last_section = section;
7517
7518 for (p = symbols; *p != NULL; p++)
7519 {
7520 asymbol *sym = *p;
7521 bfd_vma code_off;
7522 bfd_size_type size;
7523
7524 if ((sym->flags & BSF_FILE) != 0)
7525 {
7526 file = sym;
7527 if (state == symbol_seen)
7528 state = file_after_symbol_seen;
7529 continue;
7530 }
7531
7532 size = bed->maybe_function_sym (sym, section, &code_off);
7533 if (size != 0
7534 && code_off <= offset
7535 && (code_off > low_func
7536 || (code_off == low_func
7537 && size > func_size)))
7538 {
7539 func = sym;
7540 func_size = size;
7541 low_func = code_off;
7542 filename = NULL;
7543 if (file != NULL
7544 && ((sym->flags & BSF_LOCAL) != 0
7545 || state != file_after_symbol_seen))
7546 filename = bfd_asymbol_name (file);
7547 }
7548 if (state == nothing_seen)
7549 state = symbol_seen;
7550 }
7551 }
7552
7553 if (func == NULL)
7554 return FALSE;
7555
7556 if (filename_ptr)
7557 *filename_ptr = filename;
7558 if (functionname_ptr)
7559 *functionname_ptr = bfd_asymbol_name (func);
7560
7561 return TRUE;
7562 }
7563
7564 /* Find the nearest line to a particular section and offset,
7565 for error reporting. */
7566
7567 bfd_boolean
7568 _bfd_elf_find_nearest_line (bfd *abfd,
7569 asection *section,
7570 asymbol **symbols,
7571 bfd_vma offset,
7572 const char **filename_ptr,
7573 const char **functionname_ptr,
7574 unsigned int *line_ptr)
7575 {
7576 return _bfd_elf_find_nearest_line_discriminator (abfd, section, symbols,
7577 offset, filename_ptr,
7578 functionname_ptr,
7579 line_ptr,
7580 NULL);
7581 }
7582
7583 bfd_boolean
7584 _bfd_elf_find_nearest_line_discriminator (bfd *abfd,
7585 asection *section,
7586 asymbol **symbols,
7587 bfd_vma offset,
7588 const char **filename_ptr,
7589 const char **functionname_ptr,
7590 unsigned int *line_ptr,
7591 unsigned int *discriminator_ptr)
7592 {
7593 bfd_boolean found;
7594
7595 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
7596 filename_ptr, functionname_ptr,
7597 line_ptr))
7598 {
7599 if (!*functionname_ptr)
7600 elf_find_function (abfd, section, symbols, offset,
7601 *filename_ptr ? NULL : filename_ptr,
7602 functionname_ptr);
7603
7604 return TRUE;
7605 }
7606
7607 if (_bfd_dwarf2_find_nearest_line (abfd, dwarf_debug_sections,
7608 section, symbols, offset,
7609 filename_ptr, functionname_ptr,
7610 line_ptr, discriminator_ptr, 0,
7611 &elf_tdata (abfd)->dwarf2_find_line_info))
7612 {
7613 if (!*functionname_ptr)
7614 elf_find_function (abfd, section, symbols, offset,
7615 *filename_ptr ? NULL : filename_ptr,
7616 functionname_ptr);
7617
7618 return TRUE;
7619 }
7620
7621 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
7622 &found, filename_ptr,
7623 functionname_ptr, line_ptr,
7624 &elf_tdata (abfd)->line_info))
7625 return FALSE;
7626 if (found && (*functionname_ptr || *line_ptr))
7627 return TRUE;
7628
7629 if (symbols == NULL)
7630 return FALSE;
7631
7632 if (! elf_find_function (abfd, section, symbols, offset,
7633 filename_ptr, functionname_ptr))
7634 return FALSE;
7635
7636 *line_ptr = 0;
7637 return TRUE;
7638 }
7639
7640 /* Find the line for a symbol. */
7641
7642 bfd_boolean
7643 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
7644 const char **filename_ptr, unsigned int *line_ptr)
7645 {
7646 return _bfd_elf_find_line_discriminator (abfd, symbols, symbol,
7647 filename_ptr, line_ptr,
7648 NULL);
7649 }
7650
7651 bfd_boolean
7652 _bfd_elf_find_line_discriminator (bfd *abfd, asymbol **symbols, asymbol *symbol,
7653 const char **filename_ptr,
7654 unsigned int *line_ptr,
7655 unsigned int *discriminator_ptr)
7656 {
7657 return _bfd_dwarf2_find_line (abfd, symbols, symbol,
7658 filename_ptr, line_ptr, discriminator_ptr, 0,
7659 &elf_tdata (abfd)->dwarf2_find_line_info);
7660 }
7661
7662 /* After a call to bfd_find_nearest_line, successive calls to
7663 bfd_find_inliner_info can be used to get source information about
7664 each level of function inlining that terminated at the address
7665 passed to bfd_find_nearest_line. Currently this is only supported
7666 for DWARF2 with appropriate DWARF3 extensions. */
7667
7668 bfd_boolean
7669 _bfd_elf_find_inliner_info (bfd *abfd,
7670 const char **filename_ptr,
7671 const char **functionname_ptr,
7672 unsigned int *line_ptr)
7673 {
7674 bfd_boolean found;
7675 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
7676 functionname_ptr, line_ptr,
7677 & elf_tdata (abfd)->dwarf2_find_line_info);
7678 return found;
7679 }
7680
7681 int
7682 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
7683 {
7684 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7685 int ret = bed->s->sizeof_ehdr;
7686
7687 if (!info->relocatable)
7688 {
7689 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
7690
7691 if (phdr_size == (bfd_size_type) -1)
7692 {
7693 struct elf_segment_map *m;
7694
7695 phdr_size = 0;
7696 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7697 phdr_size += bed->s->sizeof_phdr;
7698
7699 if (phdr_size == 0)
7700 phdr_size = get_program_header_size (abfd, info);
7701 }
7702
7703 elf_tdata (abfd)->program_header_size = phdr_size;
7704 ret += phdr_size;
7705 }
7706
7707 return ret;
7708 }
7709
7710 bfd_boolean
7711 _bfd_elf_set_section_contents (bfd *abfd,
7712 sec_ptr section,
7713 const void *location,
7714 file_ptr offset,
7715 bfd_size_type count)
7716 {
7717 Elf_Internal_Shdr *hdr;
7718 bfd_signed_vma pos;
7719
7720 if (! abfd->output_has_begun
7721 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
7722 return FALSE;
7723
7724 hdr = &elf_section_data (section)->this_hdr;
7725 pos = hdr->sh_offset + offset;
7726 if (bfd_seek (abfd, pos, SEEK_SET) != 0
7727 || bfd_bwrite (location, count, abfd) != count)
7728 return FALSE;
7729
7730 return TRUE;
7731 }
7732
7733 void
7734 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
7735 arelent *cache_ptr ATTRIBUTE_UNUSED,
7736 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
7737 {
7738 abort ();
7739 }
7740
7741 /* Try to convert a non-ELF reloc into an ELF one. */
7742
7743 bfd_boolean
7744 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
7745 {
7746 /* Check whether we really have an ELF howto. */
7747
7748 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
7749 {
7750 bfd_reloc_code_real_type code;
7751 reloc_howto_type *howto;
7752
7753 /* Alien reloc: Try to determine its type to replace it with an
7754 equivalent ELF reloc. */
7755
7756 if (areloc->howto->pc_relative)
7757 {
7758 switch (areloc->howto->bitsize)
7759 {
7760 case 8:
7761 code = BFD_RELOC_8_PCREL;
7762 break;
7763 case 12:
7764 code = BFD_RELOC_12_PCREL;
7765 break;
7766 case 16:
7767 code = BFD_RELOC_16_PCREL;
7768 break;
7769 case 24:
7770 code = BFD_RELOC_24_PCREL;
7771 break;
7772 case 32:
7773 code = BFD_RELOC_32_PCREL;
7774 break;
7775 case 64:
7776 code = BFD_RELOC_64_PCREL;
7777 break;
7778 default:
7779 goto fail;
7780 }
7781
7782 howto = bfd_reloc_type_lookup (abfd, code);
7783
7784 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
7785 {
7786 if (howto->pcrel_offset)
7787 areloc->addend += areloc->address;
7788 else
7789 areloc->addend -= areloc->address; /* addend is unsigned!! */
7790 }
7791 }
7792 else
7793 {
7794 switch (areloc->howto->bitsize)
7795 {
7796 case 8:
7797 code = BFD_RELOC_8;
7798 break;
7799 case 14:
7800 code = BFD_RELOC_14;
7801 break;
7802 case 16:
7803 code = BFD_RELOC_16;
7804 break;
7805 case 26:
7806 code = BFD_RELOC_26;
7807 break;
7808 case 32:
7809 code = BFD_RELOC_32;
7810 break;
7811 case 64:
7812 code = BFD_RELOC_64;
7813 break;
7814 default:
7815 goto fail;
7816 }
7817
7818 howto = bfd_reloc_type_lookup (abfd, code);
7819 }
7820
7821 if (howto)
7822 areloc->howto = howto;
7823 else
7824 goto fail;
7825 }
7826
7827 return TRUE;
7828
7829 fail:
7830 (*_bfd_error_handler)
7831 (_("%B: unsupported relocation type %s"),
7832 abfd, areloc->howto->name);
7833 bfd_set_error (bfd_error_bad_value);
7834 return FALSE;
7835 }
7836
7837 bfd_boolean
7838 _bfd_elf_close_and_cleanup (bfd *abfd)
7839 {
7840 struct elf_obj_tdata *tdata = elf_tdata (abfd);
7841 if (bfd_get_format (abfd) == bfd_object && tdata != NULL)
7842 {
7843 if (elf_shstrtab (abfd) != NULL)
7844 _bfd_elf_strtab_free (elf_shstrtab (abfd));
7845 _bfd_dwarf2_cleanup_debug_info (abfd, &tdata->dwarf2_find_line_info);
7846 }
7847
7848 return _bfd_generic_close_and_cleanup (abfd);
7849 }
7850
7851 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
7852 in the relocation's offset. Thus we cannot allow any sort of sanity
7853 range-checking to interfere. There is nothing else to do in processing
7854 this reloc. */
7855
7856 bfd_reloc_status_type
7857 _bfd_elf_rel_vtable_reloc_fn
7858 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
7859 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
7860 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
7861 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
7862 {
7863 return bfd_reloc_ok;
7864 }
7865 \f
7866 /* Elf core file support. Much of this only works on native
7867 toolchains, since we rely on knowing the
7868 machine-dependent procfs structure in order to pick
7869 out details about the corefile. */
7870
7871 #ifdef HAVE_SYS_PROCFS_H
7872 /* Needed for new procfs interface on sparc-solaris. */
7873 # define _STRUCTURED_PROC 1
7874 # include <sys/procfs.h>
7875 #endif
7876
7877 /* Return a PID that identifies a "thread" for threaded cores, or the
7878 PID of the main process for non-threaded cores. */
7879
7880 static int
7881 elfcore_make_pid (bfd *abfd)
7882 {
7883 int pid;
7884
7885 pid = elf_tdata (abfd)->core_lwpid;
7886 if (pid == 0)
7887 pid = elf_tdata (abfd)->core_pid;
7888
7889 return pid;
7890 }
7891
7892 /* If there isn't a section called NAME, make one, using
7893 data from SECT. Note, this function will generate a
7894 reference to NAME, so you shouldn't deallocate or
7895 overwrite it. */
7896
7897 static bfd_boolean
7898 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
7899 {
7900 asection *sect2;
7901
7902 if (bfd_get_section_by_name (abfd, name) != NULL)
7903 return TRUE;
7904
7905 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
7906 if (sect2 == NULL)
7907 return FALSE;
7908
7909 sect2->size = sect->size;
7910 sect2->filepos = sect->filepos;
7911 sect2->alignment_power = sect->alignment_power;
7912 return TRUE;
7913 }
7914
7915 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
7916 actually creates up to two pseudosections:
7917 - For the single-threaded case, a section named NAME, unless
7918 such a section already exists.
7919 - For the multi-threaded case, a section named "NAME/PID", where
7920 PID is elfcore_make_pid (abfd).
7921 Both pseudosections have identical contents. */
7922 bfd_boolean
7923 _bfd_elfcore_make_pseudosection (bfd *abfd,
7924 char *name,
7925 size_t size,
7926 ufile_ptr filepos)
7927 {
7928 char buf[100];
7929 char *threaded_name;
7930 size_t len;
7931 asection *sect;
7932
7933 /* Build the section name. */
7934
7935 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
7936 len = strlen (buf) + 1;
7937 threaded_name = (char *) bfd_alloc (abfd, len);
7938 if (threaded_name == NULL)
7939 return FALSE;
7940 memcpy (threaded_name, buf, len);
7941
7942 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
7943 SEC_HAS_CONTENTS);
7944 if (sect == NULL)
7945 return FALSE;
7946 sect->size = size;
7947 sect->filepos = filepos;
7948 sect->alignment_power = 2;
7949
7950 return elfcore_maybe_make_sect (abfd, name, sect);
7951 }
7952
7953 /* prstatus_t exists on:
7954 solaris 2.5+
7955 linux 2.[01] + glibc
7956 unixware 4.2
7957 */
7958
7959 #if defined (HAVE_PRSTATUS_T)
7960
7961 static bfd_boolean
7962 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
7963 {
7964 size_t size;
7965 int offset;
7966
7967 if (note->descsz == sizeof (prstatus_t))
7968 {
7969 prstatus_t prstat;
7970
7971 size = sizeof (prstat.pr_reg);
7972 offset = offsetof (prstatus_t, pr_reg);
7973 memcpy (&prstat, note->descdata, sizeof (prstat));
7974
7975 /* Do not overwrite the core signal if it
7976 has already been set by another thread. */
7977 if (elf_tdata (abfd)->core_signal == 0)
7978 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7979 if (elf_tdata (abfd)->core_pid == 0)
7980 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7981
7982 /* pr_who exists on:
7983 solaris 2.5+
7984 unixware 4.2
7985 pr_who doesn't exist on:
7986 linux 2.[01]
7987 */
7988 #if defined (HAVE_PRSTATUS_T_PR_WHO)
7989 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7990 #else
7991 elf_tdata (abfd)->core_lwpid = prstat.pr_pid;
7992 #endif
7993 }
7994 #if defined (HAVE_PRSTATUS32_T)
7995 else if (note->descsz == sizeof (prstatus32_t))
7996 {
7997 /* 64-bit host, 32-bit corefile */
7998 prstatus32_t prstat;
7999
8000 size = sizeof (prstat.pr_reg);
8001 offset = offsetof (prstatus32_t, pr_reg);
8002 memcpy (&prstat, note->descdata, sizeof (prstat));
8003
8004 /* Do not overwrite the core signal if it
8005 has already been set by another thread. */
8006 if (elf_tdata (abfd)->core_signal == 0)
8007 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
8008 if (elf_tdata (abfd)->core_pid == 0)
8009 elf_tdata (abfd)->core_pid = prstat.pr_pid;
8010
8011 /* pr_who exists on:
8012 solaris 2.5+
8013 unixware 4.2
8014 pr_who doesn't exist on:
8015 linux 2.[01]
8016 */
8017 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
8018 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
8019 #else
8020 elf_tdata (abfd)->core_lwpid = prstat.pr_pid;
8021 #endif
8022 }
8023 #endif /* HAVE_PRSTATUS32_T */
8024 else
8025 {
8026 /* Fail - we don't know how to handle any other
8027 note size (ie. data object type). */
8028 return TRUE;
8029 }
8030
8031 /* Make a ".reg/999" section and a ".reg" section. */
8032 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
8033 size, note->descpos + offset);
8034 }
8035 #endif /* defined (HAVE_PRSTATUS_T) */
8036
8037 /* Create a pseudosection containing the exact contents of NOTE. */
8038 static bfd_boolean
8039 elfcore_make_note_pseudosection (bfd *abfd,
8040 char *name,
8041 Elf_Internal_Note *note)
8042 {
8043 return _bfd_elfcore_make_pseudosection (abfd, name,
8044 note->descsz, note->descpos);
8045 }
8046
8047 /* There isn't a consistent prfpregset_t across platforms,
8048 but it doesn't matter, because we don't have to pick this
8049 data structure apart. */
8050
8051 static bfd_boolean
8052 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
8053 {
8054 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8055 }
8056
8057 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
8058 type of NT_PRXFPREG. Just include the whole note's contents
8059 literally. */
8060
8061 static bfd_boolean
8062 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
8063 {
8064 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
8065 }
8066
8067 /* Linux dumps the Intel XSAVE extended state in a note named "LINUX"
8068 with a note type of NT_X86_XSTATE. Just include the whole note's
8069 contents literally. */
8070
8071 static bfd_boolean
8072 elfcore_grok_xstatereg (bfd *abfd, Elf_Internal_Note *note)
8073 {
8074 return elfcore_make_note_pseudosection (abfd, ".reg-xstate", note);
8075 }
8076
8077 static bfd_boolean
8078 elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
8079 {
8080 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
8081 }
8082
8083 static bfd_boolean
8084 elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note)
8085 {
8086 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note);
8087 }
8088
8089 static bfd_boolean
8090 elfcore_grok_s390_high_gprs (bfd *abfd, Elf_Internal_Note *note)
8091 {
8092 return elfcore_make_note_pseudosection (abfd, ".reg-s390-high-gprs", note);
8093 }
8094
8095 static bfd_boolean
8096 elfcore_grok_s390_timer (bfd *abfd, Elf_Internal_Note *note)
8097 {
8098 return elfcore_make_note_pseudosection (abfd, ".reg-s390-timer", note);
8099 }
8100
8101 static bfd_boolean
8102 elfcore_grok_s390_todcmp (bfd *abfd, Elf_Internal_Note *note)
8103 {
8104 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todcmp", note);
8105 }
8106
8107 static bfd_boolean
8108 elfcore_grok_s390_todpreg (bfd *abfd, Elf_Internal_Note *note)
8109 {
8110 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todpreg", note);
8111 }
8112
8113 static bfd_boolean
8114 elfcore_grok_s390_ctrs (bfd *abfd, Elf_Internal_Note *note)
8115 {
8116 return elfcore_make_note_pseudosection (abfd, ".reg-s390-ctrs", note);
8117 }
8118
8119 static bfd_boolean
8120 elfcore_grok_s390_prefix (bfd *abfd, Elf_Internal_Note *note)
8121 {
8122 return elfcore_make_note_pseudosection (abfd, ".reg-s390-prefix", note);
8123 }
8124
8125 static bfd_boolean
8126 elfcore_grok_s390_last_break (bfd *abfd, Elf_Internal_Note *note)
8127 {
8128 return elfcore_make_note_pseudosection (abfd, ".reg-s390-last-break", note);
8129 }
8130
8131 static bfd_boolean
8132 elfcore_grok_s390_system_call (bfd *abfd, Elf_Internal_Note *note)
8133 {
8134 return elfcore_make_note_pseudosection (abfd, ".reg-s390-system-call", note);
8135 }
8136
8137 static bfd_boolean
8138 elfcore_grok_arm_vfp (bfd *abfd, Elf_Internal_Note *note)
8139 {
8140 return elfcore_make_note_pseudosection (abfd, ".reg-arm-vfp", note);
8141 }
8142
8143 #if defined (HAVE_PRPSINFO_T)
8144 typedef prpsinfo_t elfcore_psinfo_t;
8145 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
8146 typedef prpsinfo32_t elfcore_psinfo32_t;
8147 #endif
8148 #endif
8149
8150 #if defined (HAVE_PSINFO_T)
8151 typedef psinfo_t elfcore_psinfo_t;
8152 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
8153 typedef psinfo32_t elfcore_psinfo32_t;
8154 #endif
8155 #endif
8156
8157 /* return a malloc'ed copy of a string at START which is at
8158 most MAX bytes long, possibly without a terminating '\0'.
8159 the copy will always have a terminating '\0'. */
8160
8161 char *
8162 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
8163 {
8164 char *dups;
8165 char *end = (char *) memchr (start, '\0', max);
8166 size_t len;
8167
8168 if (end == NULL)
8169 len = max;
8170 else
8171 len = end - start;
8172
8173 dups = (char *) bfd_alloc (abfd, len + 1);
8174 if (dups == NULL)
8175 return NULL;
8176
8177 memcpy (dups, start, len);
8178 dups[len] = '\0';
8179
8180 return dups;
8181 }
8182
8183 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8184 static bfd_boolean
8185 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
8186 {
8187 if (note->descsz == sizeof (elfcore_psinfo_t))
8188 {
8189 elfcore_psinfo_t psinfo;
8190
8191 memcpy (&psinfo, note->descdata, sizeof (psinfo));
8192
8193 #if defined (HAVE_PSINFO_T_PR_PID) || defined (HAVE_PRPSINFO_T_PR_PID)
8194 elf_tdata (abfd)->core_pid = psinfo.pr_pid;
8195 #endif
8196 elf_tdata (abfd)->core_program
8197 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
8198 sizeof (psinfo.pr_fname));
8199
8200 elf_tdata (abfd)->core_command
8201 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
8202 sizeof (psinfo.pr_psargs));
8203 }
8204 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
8205 else if (note->descsz == sizeof (elfcore_psinfo32_t))
8206 {
8207 /* 64-bit host, 32-bit corefile */
8208 elfcore_psinfo32_t psinfo;
8209
8210 memcpy (&psinfo, note->descdata, sizeof (psinfo));
8211
8212 #if defined (HAVE_PSINFO32_T_PR_PID) || defined (HAVE_PRPSINFO32_T_PR_PID)
8213 elf_tdata (abfd)->core_pid = psinfo.pr_pid;
8214 #endif
8215 elf_tdata (abfd)->core_program
8216 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
8217 sizeof (psinfo.pr_fname));
8218
8219 elf_tdata (abfd)->core_command
8220 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
8221 sizeof (psinfo.pr_psargs));
8222 }
8223 #endif
8224
8225 else
8226 {
8227 /* Fail - we don't know how to handle any other
8228 note size (ie. data object type). */
8229 return TRUE;
8230 }
8231
8232 /* Note that for some reason, a spurious space is tacked
8233 onto the end of the args in some (at least one anyway)
8234 implementations, so strip it off if it exists. */
8235
8236 {
8237 char *command = elf_tdata (abfd)->core_command;
8238 int n = strlen (command);
8239
8240 if (0 < n && command[n - 1] == ' ')
8241 command[n - 1] = '\0';
8242 }
8243
8244 return TRUE;
8245 }
8246 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
8247
8248 #if defined (HAVE_PSTATUS_T)
8249 static bfd_boolean
8250 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
8251 {
8252 if (note->descsz == sizeof (pstatus_t)
8253 #if defined (HAVE_PXSTATUS_T)
8254 || note->descsz == sizeof (pxstatus_t)
8255 #endif
8256 )
8257 {
8258 pstatus_t pstat;
8259
8260 memcpy (&pstat, note->descdata, sizeof (pstat));
8261
8262 elf_tdata (abfd)->core_pid = pstat.pr_pid;
8263 }
8264 #if defined (HAVE_PSTATUS32_T)
8265 else if (note->descsz == sizeof (pstatus32_t))
8266 {
8267 /* 64-bit host, 32-bit corefile */
8268 pstatus32_t pstat;
8269
8270 memcpy (&pstat, note->descdata, sizeof (pstat));
8271
8272 elf_tdata (abfd)->core_pid = pstat.pr_pid;
8273 }
8274 #endif
8275 /* Could grab some more details from the "representative"
8276 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
8277 NT_LWPSTATUS note, presumably. */
8278
8279 return TRUE;
8280 }
8281 #endif /* defined (HAVE_PSTATUS_T) */
8282
8283 #if defined (HAVE_LWPSTATUS_T)
8284 static bfd_boolean
8285 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
8286 {
8287 lwpstatus_t lwpstat;
8288 char buf[100];
8289 char *name;
8290 size_t len;
8291 asection *sect;
8292
8293 if (note->descsz != sizeof (lwpstat)
8294 #if defined (HAVE_LWPXSTATUS_T)
8295 && note->descsz != sizeof (lwpxstatus_t)
8296 #endif
8297 )
8298 return TRUE;
8299
8300 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
8301
8302 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
8303 /* Do not overwrite the core signal if it has already been set by
8304 another thread. */
8305 if (elf_tdata (abfd)->core_signal == 0)
8306 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
8307
8308 /* Make a ".reg/999" section. */
8309
8310 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
8311 len = strlen (buf) + 1;
8312 name = bfd_alloc (abfd, len);
8313 if (name == NULL)
8314 return FALSE;
8315 memcpy (name, buf, len);
8316
8317 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8318 if (sect == NULL)
8319 return FALSE;
8320
8321 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8322 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
8323 sect->filepos = note->descpos
8324 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
8325 #endif
8326
8327 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8328 sect->size = sizeof (lwpstat.pr_reg);
8329 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
8330 #endif
8331
8332 sect->alignment_power = 2;
8333
8334 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
8335 return FALSE;
8336
8337 /* Make a ".reg2/999" section */
8338
8339 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
8340 len = strlen (buf) + 1;
8341 name = bfd_alloc (abfd, len);
8342 if (name == NULL)
8343 return FALSE;
8344 memcpy (name, buf, len);
8345
8346 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8347 if (sect == NULL)
8348 return FALSE;
8349
8350 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8351 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
8352 sect->filepos = note->descpos
8353 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
8354 #endif
8355
8356 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
8357 sect->size = sizeof (lwpstat.pr_fpreg);
8358 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
8359 #endif
8360
8361 sect->alignment_power = 2;
8362
8363 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
8364 }
8365 #endif /* defined (HAVE_LWPSTATUS_T) */
8366
8367 static bfd_boolean
8368 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
8369 {
8370 char buf[30];
8371 char *name;
8372 size_t len;
8373 asection *sect;
8374 int type;
8375 int is_active_thread;
8376 bfd_vma base_addr;
8377
8378 if (note->descsz < 728)
8379 return TRUE;
8380
8381 if (! CONST_STRNEQ (note->namedata, "win32"))
8382 return TRUE;
8383
8384 type = bfd_get_32 (abfd, note->descdata);
8385
8386 switch (type)
8387 {
8388 case 1 /* NOTE_INFO_PROCESS */:
8389 /* FIXME: need to add ->core_command. */
8390 /* process_info.pid */
8391 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 8);
8392 /* process_info.signal */
8393 elf_tdata (abfd)->core_signal = bfd_get_32 (abfd, note->descdata + 12);
8394 break;
8395
8396 case 2 /* NOTE_INFO_THREAD */:
8397 /* Make a ".reg/999" section. */
8398 /* thread_info.tid */
8399 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 8));
8400
8401 len = strlen (buf) + 1;
8402 name = (char *) bfd_alloc (abfd, len);
8403 if (name == NULL)
8404 return FALSE;
8405
8406 memcpy (name, buf, len);
8407
8408 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8409 if (sect == NULL)
8410 return FALSE;
8411
8412 /* sizeof (thread_info.thread_context) */
8413 sect->size = 716;
8414 /* offsetof (thread_info.thread_context) */
8415 sect->filepos = note->descpos + 12;
8416 sect->alignment_power = 2;
8417
8418 /* thread_info.is_active_thread */
8419 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
8420
8421 if (is_active_thread)
8422 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
8423 return FALSE;
8424 break;
8425
8426 case 3 /* NOTE_INFO_MODULE */:
8427 /* Make a ".module/xxxxxxxx" section. */
8428 /* module_info.base_address */
8429 base_addr = bfd_get_32 (abfd, note->descdata + 4);
8430 sprintf (buf, ".module/%08lx", (unsigned long) base_addr);
8431
8432 len = strlen (buf) + 1;
8433 name = (char *) bfd_alloc (abfd, len);
8434 if (name == NULL)
8435 return FALSE;
8436
8437 memcpy (name, buf, len);
8438
8439 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8440
8441 if (sect == NULL)
8442 return FALSE;
8443
8444 sect->size = note->descsz;
8445 sect->filepos = note->descpos;
8446 sect->alignment_power = 2;
8447 break;
8448
8449 default:
8450 return TRUE;
8451 }
8452
8453 return TRUE;
8454 }
8455
8456 static bfd_boolean
8457 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
8458 {
8459 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8460
8461 switch (note->type)
8462 {
8463 default:
8464 return TRUE;
8465
8466 case NT_PRSTATUS:
8467 if (bed->elf_backend_grok_prstatus)
8468 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
8469 return TRUE;
8470 #if defined (HAVE_PRSTATUS_T)
8471 return elfcore_grok_prstatus (abfd, note);
8472 #else
8473 return TRUE;
8474 #endif
8475
8476 #if defined (HAVE_PSTATUS_T)
8477 case NT_PSTATUS:
8478 return elfcore_grok_pstatus (abfd, note);
8479 #endif
8480
8481 #if defined (HAVE_LWPSTATUS_T)
8482 case NT_LWPSTATUS:
8483 return elfcore_grok_lwpstatus (abfd, note);
8484 #endif
8485
8486 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
8487 return elfcore_grok_prfpreg (abfd, note);
8488
8489 case NT_WIN32PSTATUS:
8490 return elfcore_grok_win32pstatus (abfd, note);
8491
8492 case NT_PRXFPREG: /* Linux SSE extension */
8493 if (note->namesz == 6
8494 && strcmp (note->namedata, "LINUX") == 0)
8495 return elfcore_grok_prxfpreg (abfd, note);
8496 else
8497 return TRUE;
8498
8499 case NT_X86_XSTATE: /* Linux XSAVE extension */
8500 if (note->namesz == 6
8501 && strcmp (note->namedata, "LINUX") == 0)
8502 return elfcore_grok_xstatereg (abfd, note);
8503 else
8504 return TRUE;
8505
8506 case NT_PPC_VMX:
8507 if (note->namesz == 6
8508 && strcmp (note->namedata, "LINUX") == 0)
8509 return elfcore_grok_ppc_vmx (abfd, note);
8510 else
8511 return TRUE;
8512
8513 case NT_PPC_VSX:
8514 if (note->namesz == 6
8515 && strcmp (note->namedata, "LINUX") == 0)
8516 return elfcore_grok_ppc_vsx (abfd, note);
8517 else
8518 return TRUE;
8519
8520 case NT_S390_HIGH_GPRS:
8521 if (note->namesz == 6
8522 && strcmp (note->namedata, "LINUX") == 0)
8523 return elfcore_grok_s390_high_gprs (abfd, note);
8524 else
8525 return TRUE;
8526
8527 case NT_S390_TIMER:
8528 if (note->namesz == 6
8529 && strcmp (note->namedata, "LINUX") == 0)
8530 return elfcore_grok_s390_timer (abfd, note);
8531 else
8532 return TRUE;
8533
8534 case NT_S390_TODCMP:
8535 if (note->namesz == 6
8536 && strcmp (note->namedata, "LINUX") == 0)
8537 return elfcore_grok_s390_todcmp (abfd, note);
8538 else
8539 return TRUE;
8540
8541 case NT_S390_TODPREG:
8542 if (note->namesz == 6
8543 && strcmp (note->namedata, "LINUX") == 0)
8544 return elfcore_grok_s390_todpreg (abfd, note);
8545 else
8546 return TRUE;
8547
8548 case NT_S390_CTRS:
8549 if (note->namesz == 6
8550 && strcmp (note->namedata, "LINUX") == 0)
8551 return elfcore_grok_s390_ctrs (abfd, note);
8552 else
8553 return TRUE;
8554
8555 case NT_S390_PREFIX:
8556 if (note->namesz == 6
8557 && strcmp (note->namedata, "LINUX") == 0)
8558 return elfcore_grok_s390_prefix (abfd, note);
8559 else
8560 return TRUE;
8561
8562 case NT_S390_LAST_BREAK:
8563 if (note->namesz == 6
8564 && strcmp (note->namedata, "LINUX") == 0)
8565 return elfcore_grok_s390_last_break (abfd, note);
8566 else
8567 return TRUE;
8568
8569 case NT_S390_SYSTEM_CALL:
8570 if (note->namesz == 6
8571 && strcmp (note->namedata, "LINUX") == 0)
8572 return elfcore_grok_s390_system_call (abfd, note);
8573 else
8574 return TRUE;
8575
8576 case NT_ARM_VFP:
8577 if (note->namesz == 6
8578 && strcmp (note->namedata, "LINUX") == 0)
8579 return elfcore_grok_arm_vfp (abfd, note);
8580 else
8581 return TRUE;
8582
8583 case NT_PRPSINFO:
8584 case NT_PSINFO:
8585 if (bed->elf_backend_grok_psinfo)
8586 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
8587 return TRUE;
8588 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8589 return elfcore_grok_psinfo (abfd, note);
8590 #else
8591 return TRUE;
8592 #endif
8593
8594 case NT_AUXV:
8595 {
8596 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
8597 SEC_HAS_CONTENTS);
8598
8599 if (sect == NULL)
8600 return FALSE;
8601 sect->size = note->descsz;
8602 sect->filepos = note->descpos;
8603 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8604
8605 return TRUE;
8606 }
8607
8608 case NT_SIGINFO:
8609 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.siginfo",
8610 note);
8611 }
8612 }
8613
8614 static bfd_boolean
8615 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
8616 {
8617 elf_tdata (abfd)->build_id_size = note->descsz;
8618 elf_tdata (abfd)->build_id = (bfd_byte *) bfd_alloc (abfd, note->descsz);
8619 if (elf_tdata (abfd)->build_id == NULL)
8620 return FALSE;
8621
8622 memcpy (elf_tdata (abfd)->build_id, note->descdata, note->descsz);
8623
8624 return TRUE;
8625 }
8626
8627 static bfd_boolean
8628 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
8629 {
8630 switch (note->type)
8631 {
8632 default:
8633 return TRUE;
8634
8635 case NT_GNU_BUILD_ID:
8636 return elfobj_grok_gnu_build_id (abfd, note);
8637 }
8638 }
8639
8640 static bfd_boolean
8641 elfobj_grok_stapsdt_note_1 (bfd *abfd, Elf_Internal_Note *note)
8642 {
8643 struct sdt_note *cur =
8644 (struct sdt_note *) bfd_alloc (abfd, sizeof (struct sdt_note)
8645 + note->descsz);
8646
8647 cur->next = (struct sdt_note *) (elf_tdata (abfd))->sdt_note_head;
8648 cur->size = (bfd_size_type) note->descsz;
8649 memcpy (cur->data, note->descdata, note->descsz);
8650
8651 elf_tdata (abfd)->sdt_note_head = cur;
8652
8653 return TRUE;
8654 }
8655
8656 static bfd_boolean
8657 elfobj_grok_stapsdt_note (bfd *abfd, Elf_Internal_Note *note)
8658 {
8659 switch (note->type)
8660 {
8661 case NT_STAPSDT:
8662 return elfobj_grok_stapsdt_note_1 (abfd, note);
8663
8664 default:
8665 return TRUE;
8666 }
8667 }
8668
8669 static bfd_boolean
8670 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
8671 {
8672 char *cp;
8673
8674 cp = strchr (note->namedata, '@');
8675 if (cp != NULL)
8676 {
8677 *lwpidp = atoi(cp + 1);
8678 return TRUE;
8679 }
8680 return FALSE;
8681 }
8682
8683 static bfd_boolean
8684 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
8685 {
8686 /* Signal number at offset 0x08. */
8687 elf_tdata (abfd)->core_signal
8688 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
8689
8690 /* Process ID at offset 0x50. */
8691 elf_tdata (abfd)->core_pid
8692 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
8693
8694 /* Command name at 0x7c (max 32 bytes, including nul). */
8695 elf_tdata (abfd)->core_command
8696 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
8697
8698 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
8699 note);
8700 }
8701
8702 static bfd_boolean
8703 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
8704 {
8705 int lwp;
8706
8707 if (elfcore_netbsd_get_lwpid (note, &lwp))
8708 elf_tdata (abfd)->core_lwpid = lwp;
8709
8710 if (note->type == NT_NETBSDCORE_PROCINFO)
8711 {
8712 /* NetBSD-specific core "procinfo". Note that we expect to
8713 find this note before any of the others, which is fine,
8714 since the kernel writes this note out first when it
8715 creates a core file. */
8716
8717 return elfcore_grok_netbsd_procinfo (abfd, note);
8718 }
8719
8720 /* As of Jan 2002 there are no other machine-independent notes
8721 defined for NetBSD core files. If the note type is less
8722 than the start of the machine-dependent note types, we don't
8723 understand it. */
8724
8725 if (note->type < NT_NETBSDCORE_FIRSTMACH)
8726 return TRUE;
8727
8728
8729 switch (bfd_get_arch (abfd))
8730 {
8731 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
8732 PT_GETFPREGS == mach+2. */
8733
8734 case bfd_arch_alpha:
8735 case bfd_arch_sparc:
8736 switch (note->type)
8737 {
8738 case NT_NETBSDCORE_FIRSTMACH+0:
8739 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8740
8741 case NT_NETBSDCORE_FIRSTMACH+2:
8742 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8743
8744 default:
8745 return TRUE;
8746 }
8747
8748 /* On all other arch's, PT_GETREGS == mach+1 and
8749 PT_GETFPREGS == mach+3. */
8750
8751 default:
8752 switch (note->type)
8753 {
8754 case NT_NETBSDCORE_FIRSTMACH+1:
8755 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8756
8757 case NT_NETBSDCORE_FIRSTMACH+3:
8758 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8759
8760 default:
8761 return TRUE;
8762 }
8763 }
8764 /* NOTREACHED */
8765 }
8766
8767 static bfd_boolean
8768 elfcore_grok_openbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
8769 {
8770 /* Signal number at offset 0x08. */
8771 elf_tdata (abfd)->core_signal
8772 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
8773
8774 /* Process ID at offset 0x20. */
8775 elf_tdata (abfd)->core_pid
8776 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x20);
8777
8778 /* Command name at 0x48 (max 32 bytes, including nul). */
8779 elf_tdata (abfd)->core_command
8780 = _bfd_elfcore_strndup (abfd, note->descdata + 0x48, 31);
8781
8782 return TRUE;
8783 }
8784
8785 static bfd_boolean
8786 elfcore_grok_openbsd_note (bfd *abfd, Elf_Internal_Note *note)
8787 {
8788 if (note->type == NT_OPENBSD_PROCINFO)
8789 return elfcore_grok_openbsd_procinfo (abfd, note);
8790
8791 if (note->type == NT_OPENBSD_REGS)
8792 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8793
8794 if (note->type == NT_OPENBSD_FPREGS)
8795 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8796
8797 if (note->type == NT_OPENBSD_XFPREGS)
8798 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
8799
8800 if (note->type == NT_OPENBSD_AUXV)
8801 {
8802 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
8803 SEC_HAS_CONTENTS);
8804
8805 if (sect == NULL)
8806 return FALSE;
8807 sect->size = note->descsz;
8808 sect->filepos = note->descpos;
8809 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8810
8811 return TRUE;
8812 }
8813
8814 if (note->type == NT_OPENBSD_WCOOKIE)
8815 {
8816 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".wcookie",
8817 SEC_HAS_CONTENTS);
8818
8819 if (sect == NULL)
8820 return FALSE;
8821 sect->size = note->descsz;
8822 sect->filepos = note->descpos;
8823 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8824
8825 return TRUE;
8826 }
8827
8828 return TRUE;
8829 }
8830
8831 static bfd_boolean
8832 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
8833 {
8834 void *ddata = note->descdata;
8835 char buf[100];
8836 char *name;
8837 asection *sect;
8838 short sig;
8839 unsigned flags;
8840
8841 /* nto_procfs_status 'pid' field is at offset 0. */
8842 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
8843
8844 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
8845 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
8846
8847 /* nto_procfs_status 'flags' field is at offset 8. */
8848 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
8849
8850 /* nto_procfs_status 'what' field is at offset 14. */
8851 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
8852 {
8853 elf_tdata (abfd)->core_signal = sig;
8854 elf_tdata (abfd)->core_lwpid = *tid;
8855 }
8856
8857 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
8858 do not come from signals so we make sure we set the current
8859 thread just in case. */
8860 if (flags & 0x00000080)
8861 elf_tdata (abfd)->core_lwpid = *tid;
8862
8863 /* Make a ".qnx_core_status/%d" section. */
8864 sprintf (buf, ".qnx_core_status/%ld", *tid);
8865
8866 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
8867 if (name == NULL)
8868 return FALSE;
8869 strcpy (name, buf);
8870
8871 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8872 if (sect == NULL)
8873 return FALSE;
8874
8875 sect->size = note->descsz;
8876 sect->filepos = note->descpos;
8877 sect->alignment_power = 2;
8878
8879 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
8880 }
8881
8882 static bfd_boolean
8883 elfcore_grok_nto_regs (bfd *abfd,
8884 Elf_Internal_Note *note,
8885 long tid,
8886 char *base)
8887 {
8888 char buf[100];
8889 char *name;
8890 asection *sect;
8891
8892 /* Make a "(base)/%d" section. */
8893 sprintf (buf, "%s/%ld", base, tid);
8894
8895 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
8896 if (name == NULL)
8897 return FALSE;
8898 strcpy (name, buf);
8899
8900 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8901 if (sect == NULL)
8902 return FALSE;
8903
8904 sect->size = note->descsz;
8905 sect->filepos = note->descpos;
8906 sect->alignment_power = 2;
8907
8908 /* This is the current thread. */
8909 if (elf_tdata (abfd)->core_lwpid == tid)
8910 return elfcore_maybe_make_sect (abfd, base, sect);
8911
8912 return TRUE;
8913 }
8914
8915 #define BFD_QNT_CORE_INFO 7
8916 #define BFD_QNT_CORE_STATUS 8
8917 #define BFD_QNT_CORE_GREG 9
8918 #define BFD_QNT_CORE_FPREG 10
8919
8920 static bfd_boolean
8921 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
8922 {
8923 /* Every GREG section has a STATUS section before it. Store the
8924 tid from the previous call to pass down to the next gregs
8925 function. */
8926 static long tid = 1;
8927
8928 switch (note->type)
8929 {
8930 case BFD_QNT_CORE_INFO:
8931 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
8932 case BFD_QNT_CORE_STATUS:
8933 return elfcore_grok_nto_status (abfd, note, &tid);
8934 case BFD_QNT_CORE_GREG:
8935 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
8936 case BFD_QNT_CORE_FPREG:
8937 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
8938 default:
8939 return TRUE;
8940 }
8941 }
8942
8943 static bfd_boolean
8944 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
8945 {
8946 char *name;
8947 asection *sect;
8948 size_t len;
8949
8950 /* Use note name as section name. */
8951 len = note->namesz;
8952 name = (char *) bfd_alloc (abfd, len);
8953 if (name == NULL)
8954 return FALSE;
8955 memcpy (name, note->namedata, len);
8956 name[len - 1] = '\0';
8957
8958 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8959 if (sect == NULL)
8960 return FALSE;
8961
8962 sect->size = note->descsz;
8963 sect->filepos = note->descpos;
8964 sect->alignment_power = 1;
8965
8966 return TRUE;
8967 }
8968
8969 /* Function: elfcore_write_note
8970
8971 Inputs:
8972 buffer to hold note, and current size of buffer
8973 name of note
8974 type of note
8975 data for note
8976 size of data for note
8977
8978 Writes note to end of buffer. ELF64 notes are written exactly as
8979 for ELF32, despite the current (as of 2006) ELF gabi specifying
8980 that they ought to have 8-byte namesz and descsz field, and have
8981 8-byte alignment. Other writers, eg. Linux kernel, do the same.
8982
8983 Return:
8984 Pointer to realloc'd buffer, *BUFSIZ updated. */
8985
8986 char *
8987 elfcore_write_note (bfd *abfd,
8988 char *buf,
8989 int *bufsiz,
8990 const char *name,
8991 int type,
8992 const void *input,
8993 int size)
8994 {
8995 Elf_External_Note *xnp;
8996 size_t namesz;
8997 size_t newspace;
8998 char *dest;
8999
9000 namesz = 0;
9001 if (name != NULL)
9002 namesz = strlen (name) + 1;
9003
9004 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
9005
9006 buf = (char *) realloc (buf, *bufsiz + newspace);
9007 if (buf == NULL)
9008 return buf;
9009 dest = buf + *bufsiz;
9010 *bufsiz += newspace;
9011 xnp = (Elf_External_Note *) dest;
9012 H_PUT_32 (abfd, namesz, xnp->namesz);
9013 H_PUT_32 (abfd, size, xnp->descsz);
9014 H_PUT_32 (abfd, type, xnp->type);
9015 dest = xnp->name;
9016 if (name != NULL)
9017 {
9018 memcpy (dest, name, namesz);
9019 dest += namesz;
9020 while (namesz & 3)
9021 {
9022 *dest++ = '\0';
9023 ++namesz;
9024 }
9025 }
9026 memcpy (dest, input, size);
9027 dest += size;
9028 while (size & 3)
9029 {
9030 *dest++ = '\0';
9031 ++size;
9032 }
9033 return buf;
9034 }
9035
9036 char *
9037 elfcore_write_prpsinfo (bfd *abfd,
9038 char *buf,
9039 int *bufsiz,
9040 const char *fname,
9041 const char *psargs)
9042 {
9043 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9044
9045 if (bed->elf_backend_write_core_note != NULL)
9046 {
9047 char *ret;
9048 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
9049 NT_PRPSINFO, fname, psargs);
9050 if (ret != NULL)
9051 return ret;
9052 }
9053
9054 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
9055 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
9056 if (bed->s->elfclass == ELFCLASS32)
9057 {
9058 #if defined (HAVE_PSINFO32_T)
9059 psinfo32_t data;
9060 int note_type = NT_PSINFO;
9061 #else
9062 prpsinfo32_t data;
9063 int note_type = NT_PRPSINFO;
9064 #endif
9065
9066 memset (&data, 0, sizeof (data));
9067 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
9068 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
9069 return elfcore_write_note (abfd, buf, bufsiz,
9070 "CORE", note_type, &data, sizeof (data));
9071 }
9072 else
9073 #endif
9074 {
9075 #if defined (HAVE_PSINFO_T)
9076 psinfo_t data;
9077 int note_type = NT_PSINFO;
9078 #else
9079 prpsinfo_t data;
9080 int note_type = NT_PRPSINFO;
9081 #endif
9082
9083 memset (&data, 0, sizeof (data));
9084 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
9085 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
9086 return elfcore_write_note (abfd, buf, bufsiz,
9087 "CORE", note_type, &data, sizeof (data));
9088 }
9089 #endif /* PSINFO_T or PRPSINFO_T */
9090
9091 free (buf);
9092 return NULL;
9093 }
9094
9095 char *
9096 elfcore_write_prstatus (bfd *abfd,
9097 char *buf,
9098 int *bufsiz,
9099 long pid,
9100 int cursig,
9101 const void *gregs)
9102 {
9103 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9104
9105 if (bed->elf_backend_write_core_note != NULL)
9106 {
9107 char *ret;
9108 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
9109 NT_PRSTATUS,
9110 pid, cursig, gregs);
9111 if (ret != NULL)
9112 return ret;
9113 }
9114
9115 #if defined (HAVE_PRSTATUS_T)
9116 #if defined (HAVE_PRSTATUS32_T)
9117 if (bed->s->elfclass == ELFCLASS32)
9118 {
9119 prstatus32_t prstat;
9120
9121 memset (&prstat, 0, sizeof (prstat));
9122 prstat.pr_pid = pid;
9123 prstat.pr_cursig = cursig;
9124 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
9125 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
9126 NT_PRSTATUS, &prstat, sizeof (prstat));
9127 }
9128 else
9129 #endif
9130 {
9131 prstatus_t prstat;
9132
9133 memset (&prstat, 0, sizeof (prstat));
9134 prstat.pr_pid = pid;
9135 prstat.pr_cursig = cursig;
9136 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
9137 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
9138 NT_PRSTATUS, &prstat, sizeof (prstat));
9139 }
9140 #endif /* HAVE_PRSTATUS_T */
9141
9142 free (buf);
9143 return NULL;
9144 }
9145
9146 #if defined (HAVE_LWPSTATUS_T)
9147 char *
9148 elfcore_write_lwpstatus (bfd *abfd,
9149 char *buf,
9150 int *bufsiz,
9151 long pid,
9152 int cursig,
9153 const void *gregs)
9154 {
9155 lwpstatus_t lwpstat;
9156 const char *note_name = "CORE";
9157
9158 memset (&lwpstat, 0, sizeof (lwpstat));
9159 lwpstat.pr_lwpid = pid >> 16;
9160 lwpstat.pr_cursig = cursig;
9161 #if defined (HAVE_LWPSTATUS_T_PR_REG)
9162 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
9163 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9164 #if !defined(gregs)
9165 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
9166 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
9167 #else
9168 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
9169 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
9170 #endif
9171 #endif
9172 return elfcore_write_note (abfd, buf, bufsiz, note_name,
9173 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
9174 }
9175 #endif /* HAVE_LWPSTATUS_T */
9176
9177 #if defined (HAVE_PSTATUS_T)
9178 char *
9179 elfcore_write_pstatus (bfd *abfd,
9180 char *buf,
9181 int *bufsiz,
9182 long pid,
9183 int cursig ATTRIBUTE_UNUSED,
9184 const void *gregs ATTRIBUTE_UNUSED)
9185 {
9186 const char *note_name = "CORE";
9187 #if defined (HAVE_PSTATUS32_T)
9188 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9189
9190 if (bed->s->elfclass == ELFCLASS32)
9191 {
9192 pstatus32_t pstat;
9193
9194 memset (&pstat, 0, sizeof (pstat));
9195 pstat.pr_pid = pid & 0xffff;
9196 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
9197 NT_PSTATUS, &pstat, sizeof (pstat));
9198 return buf;
9199 }
9200 else
9201 #endif
9202 {
9203 pstatus_t pstat;
9204
9205 memset (&pstat, 0, sizeof (pstat));
9206 pstat.pr_pid = pid & 0xffff;
9207 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
9208 NT_PSTATUS, &pstat, sizeof (pstat));
9209 return buf;
9210 }
9211 }
9212 #endif /* HAVE_PSTATUS_T */
9213
9214 char *
9215 elfcore_write_prfpreg (bfd *abfd,
9216 char *buf,
9217 int *bufsiz,
9218 const void *fpregs,
9219 int size)
9220 {
9221 const char *note_name = "CORE";
9222 return elfcore_write_note (abfd, buf, bufsiz,
9223 note_name, NT_FPREGSET, fpregs, size);
9224 }
9225
9226 char *
9227 elfcore_write_prxfpreg (bfd *abfd,
9228 char *buf,
9229 int *bufsiz,
9230 const void *xfpregs,
9231 int size)
9232 {
9233 char *note_name = "LINUX";
9234 return elfcore_write_note (abfd, buf, bufsiz,
9235 note_name, NT_PRXFPREG, xfpregs, size);
9236 }
9237
9238 char *
9239 elfcore_write_xstatereg (bfd *abfd, char *buf, int *bufsiz,
9240 const void *xfpregs, int size)
9241 {
9242 char *note_name = "LINUX";
9243 return elfcore_write_note (abfd, buf, bufsiz,
9244 note_name, NT_X86_XSTATE, xfpregs, size);
9245 }
9246
9247 char *
9248 elfcore_write_ppc_vmx (bfd *abfd,
9249 char *buf,
9250 int *bufsiz,
9251 const void *ppc_vmx,
9252 int size)
9253 {
9254 char *note_name = "LINUX";
9255 return elfcore_write_note (abfd, buf, bufsiz,
9256 note_name, NT_PPC_VMX, ppc_vmx, size);
9257 }
9258
9259 char *
9260 elfcore_write_ppc_vsx (bfd *abfd,
9261 char *buf,
9262 int *bufsiz,
9263 const void *ppc_vsx,
9264 int size)
9265 {
9266 char *note_name = "LINUX";
9267 return elfcore_write_note (abfd, buf, bufsiz,
9268 note_name, NT_PPC_VSX, ppc_vsx, size);
9269 }
9270
9271 static char *
9272 elfcore_write_s390_high_gprs (bfd *abfd,
9273 char *buf,
9274 int *bufsiz,
9275 const void *s390_high_gprs,
9276 int size)
9277 {
9278 char *note_name = "LINUX";
9279 return elfcore_write_note (abfd, buf, bufsiz,
9280 note_name, NT_S390_HIGH_GPRS,
9281 s390_high_gprs, size);
9282 }
9283
9284 char *
9285 elfcore_write_s390_timer (bfd *abfd,
9286 char *buf,
9287 int *bufsiz,
9288 const void *s390_timer,
9289 int size)
9290 {
9291 char *note_name = "LINUX";
9292 return elfcore_write_note (abfd, buf, bufsiz,
9293 note_name, NT_S390_TIMER, s390_timer, size);
9294 }
9295
9296 char *
9297 elfcore_write_s390_todcmp (bfd *abfd,
9298 char *buf,
9299 int *bufsiz,
9300 const void *s390_todcmp,
9301 int size)
9302 {
9303 char *note_name = "LINUX";
9304 return elfcore_write_note (abfd, buf, bufsiz,
9305 note_name, NT_S390_TODCMP, s390_todcmp, size);
9306 }
9307
9308 char *
9309 elfcore_write_s390_todpreg (bfd *abfd,
9310 char *buf,
9311 int *bufsiz,
9312 const void *s390_todpreg,
9313 int size)
9314 {
9315 char *note_name = "LINUX";
9316 return elfcore_write_note (abfd, buf, bufsiz,
9317 note_name, NT_S390_TODPREG, s390_todpreg, size);
9318 }
9319
9320 char *
9321 elfcore_write_s390_ctrs (bfd *abfd,
9322 char *buf,
9323 int *bufsiz,
9324 const void *s390_ctrs,
9325 int size)
9326 {
9327 char *note_name = "LINUX";
9328 return elfcore_write_note (abfd, buf, bufsiz,
9329 note_name, NT_S390_CTRS, s390_ctrs, size);
9330 }
9331
9332 char *
9333 elfcore_write_s390_prefix (bfd *abfd,
9334 char *buf,
9335 int *bufsiz,
9336 const void *s390_prefix,
9337 int size)
9338 {
9339 char *note_name = "LINUX";
9340 return elfcore_write_note (abfd, buf, bufsiz,
9341 note_name, NT_S390_PREFIX, s390_prefix, size);
9342 }
9343
9344 char *
9345 elfcore_write_s390_last_break (bfd *abfd,
9346 char *buf,
9347 int *bufsiz,
9348 const void *s390_last_break,
9349 int size)
9350 {
9351 char *note_name = "LINUX";
9352 return elfcore_write_note (abfd, buf, bufsiz,
9353 note_name, NT_S390_LAST_BREAK,
9354 s390_last_break, size);
9355 }
9356
9357 char *
9358 elfcore_write_s390_system_call (bfd *abfd,
9359 char *buf,
9360 int *bufsiz,
9361 const void *s390_system_call,
9362 int size)
9363 {
9364 char *note_name = "LINUX";
9365 return elfcore_write_note (abfd, buf, bufsiz,
9366 note_name, NT_S390_SYSTEM_CALL,
9367 s390_system_call, size);
9368 }
9369
9370 char *
9371 elfcore_write_arm_vfp (bfd *abfd,
9372 char *buf,
9373 int *bufsiz,
9374 const void *arm_vfp,
9375 int size)
9376 {
9377 char *note_name = "LINUX";
9378 return elfcore_write_note (abfd, buf, bufsiz,
9379 note_name, NT_ARM_VFP, arm_vfp, size);
9380 }
9381
9382 char *
9383 elfcore_write_register_note (bfd *abfd,
9384 char *buf,
9385 int *bufsiz,
9386 const char *section,
9387 const void *data,
9388 int size)
9389 {
9390 if (strcmp (section, ".reg2") == 0)
9391 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
9392 if (strcmp (section, ".reg-xfp") == 0)
9393 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
9394 if (strcmp (section, ".reg-xstate") == 0)
9395 return elfcore_write_xstatereg (abfd, buf, bufsiz, data, size);
9396 if (strcmp (section, ".reg-ppc-vmx") == 0)
9397 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
9398 if (strcmp (section, ".reg-ppc-vsx") == 0)
9399 return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size);
9400 if (strcmp (section, ".reg-s390-high-gprs") == 0)
9401 return elfcore_write_s390_high_gprs (abfd, buf, bufsiz, data, size);
9402 if (strcmp (section, ".reg-s390-timer") == 0)
9403 return elfcore_write_s390_timer (abfd, buf, bufsiz, data, size);
9404 if (strcmp (section, ".reg-s390-todcmp") == 0)
9405 return elfcore_write_s390_todcmp (abfd, buf, bufsiz, data, size);
9406 if (strcmp (section, ".reg-s390-todpreg") == 0)
9407 return elfcore_write_s390_todpreg (abfd, buf, bufsiz, data, size);
9408 if (strcmp (section, ".reg-s390-ctrs") == 0)
9409 return elfcore_write_s390_ctrs (abfd, buf, bufsiz, data, size);
9410 if (strcmp (section, ".reg-s390-prefix") == 0)
9411 return elfcore_write_s390_prefix (abfd, buf, bufsiz, data, size);
9412 if (strcmp (section, ".reg-s390-last-break") == 0)
9413 return elfcore_write_s390_last_break (abfd, buf, bufsiz, data, size);
9414 if (strcmp (section, ".reg-s390-system-call") == 0)
9415 return elfcore_write_s390_system_call (abfd, buf, bufsiz, data, size);
9416 if (strcmp (section, ".reg-arm-vfp") == 0)
9417 return elfcore_write_arm_vfp (abfd, buf, bufsiz, data, size);
9418 return NULL;
9419 }
9420
9421 static bfd_boolean
9422 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset)
9423 {
9424 char *p;
9425
9426 p = buf;
9427 while (p < buf + size)
9428 {
9429 /* FIXME: bad alignment assumption. */
9430 Elf_External_Note *xnp = (Elf_External_Note *) p;
9431 Elf_Internal_Note in;
9432
9433 if (offsetof (Elf_External_Note, name) > buf - p + size)
9434 return FALSE;
9435
9436 in.type = H_GET_32 (abfd, xnp->type);
9437
9438 in.namesz = H_GET_32 (abfd, xnp->namesz);
9439 in.namedata = xnp->name;
9440 if (in.namesz > buf - in.namedata + size)
9441 return FALSE;
9442
9443 in.descsz = H_GET_32 (abfd, xnp->descsz);
9444 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
9445 in.descpos = offset + (in.descdata - buf);
9446 if (in.descsz != 0
9447 && (in.descdata >= buf + size
9448 || in.descsz > buf - in.descdata + size))
9449 return FALSE;
9450
9451 switch (bfd_get_format (abfd))
9452 {
9453 default:
9454 return TRUE;
9455
9456 case bfd_core:
9457 if (CONST_STRNEQ (in.namedata, "NetBSD-CORE"))
9458 {
9459 if (! elfcore_grok_netbsd_note (abfd, &in))
9460 return FALSE;
9461 }
9462 else if (CONST_STRNEQ (in.namedata, "OpenBSD"))
9463 {
9464 if (! elfcore_grok_openbsd_note (abfd, &in))
9465 return FALSE;
9466 }
9467 else if (CONST_STRNEQ (in.namedata, "QNX"))
9468 {
9469 if (! elfcore_grok_nto_note (abfd, &in))
9470 return FALSE;
9471 }
9472 else if (CONST_STRNEQ (in.namedata, "SPU/"))
9473 {
9474 if (! elfcore_grok_spu_note (abfd, &in))
9475 return FALSE;
9476 }
9477 else
9478 {
9479 if (! elfcore_grok_note (abfd, &in))
9480 return FALSE;
9481 }
9482 break;
9483
9484 case bfd_object:
9485 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
9486 {
9487 if (! elfobj_grok_gnu_note (abfd, &in))
9488 return FALSE;
9489 }
9490 else if (in.namesz == sizeof "stapsdt"
9491 && strcmp (in.namedata, "stapsdt") == 0)
9492 {
9493 if (! elfobj_grok_stapsdt_note (abfd, &in))
9494 return FALSE;
9495 }
9496 break;
9497 }
9498
9499 p = in.descdata + BFD_ALIGN (in.descsz, 4);
9500 }
9501
9502 return TRUE;
9503 }
9504
9505 static bfd_boolean
9506 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
9507 {
9508 char *buf;
9509
9510 if (size <= 0)
9511 return TRUE;
9512
9513 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
9514 return FALSE;
9515
9516 buf = (char *) bfd_malloc (size);
9517 if (buf == NULL)
9518 return FALSE;
9519
9520 if (bfd_bread (buf, size, abfd) != size
9521 || !elf_parse_notes (abfd, buf, size, offset))
9522 {
9523 free (buf);
9524 return FALSE;
9525 }
9526
9527 free (buf);
9528 return TRUE;
9529 }
9530 \f
9531 /* Providing external access to the ELF program header table. */
9532
9533 /* Return an upper bound on the number of bytes required to store a
9534 copy of ABFD's program header table entries. Return -1 if an error
9535 occurs; bfd_get_error will return an appropriate code. */
9536
9537 long
9538 bfd_get_elf_phdr_upper_bound (bfd *abfd)
9539 {
9540 if (abfd->xvec->flavour != bfd_target_elf_flavour)
9541 {
9542 bfd_set_error (bfd_error_wrong_format);
9543 return -1;
9544 }
9545
9546 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
9547 }
9548
9549 /* Copy ABFD's program header table entries to *PHDRS. The entries
9550 will be stored as an array of Elf_Internal_Phdr structures, as
9551 defined in include/elf/internal.h. To find out how large the
9552 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
9553
9554 Return the number of program header table entries read, or -1 if an
9555 error occurs; bfd_get_error will return an appropriate code. */
9556
9557 int
9558 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
9559 {
9560 int num_phdrs;
9561
9562 if (abfd->xvec->flavour != bfd_target_elf_flavour)
9563 {
9564 bfd_set_error (bfd_error_wrong_format);
9565 return -1;
9566 }
9567
9568 num_phdrs = elf_elfheader (abfd)->e_phnum;
9569 memcpy (phdrs, elf_tdata (abfd)->phdr,
9570 num_phdrs * sizeof (Elf_Internal_Phdr));
9571
9572 return num_phdrs;
9573 }
9574
9575 enum elf_reloc_type_class
9576 _bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
9577 {
9578 return reloc_class_normal;
9579 }
9580
9581 /* For RELA architectures, return the relocation value for a
9582 relocation against a local symbol. */
9583
9584 bfd_vma
9585 _bfd_elf_rela_local_sym (bfd *abfd,
9586 Elf_Internal_Sym *sym,
9587 asection **psec,
9588 Elf_Internal_Rela *rel)
9589 {
9590 asection *sec = *psec;
9591 bfd_vma relocation;
9592
9593 relocation = (sec->output_section->vma
9594 + sec->output_offset
9595 + sym->st_value);
9596 if ((sec->flags & SEC_MERGE)
9597 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
9598 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
9599 {
9600 rel->r_addend =
9601 _bfd_merged_section_offset (abfd, psec,
9602 elf_section_data (sec)->sec_info,
9603 sym->st_value + rel->r_addend);
9604 if (sec != *psec)
9605 {
9606 /* If we have changed the section, and our original section is
9607 marked with SEC_EXCLUDE, it means that the original
9608 SEC_MERGE section has been completely subsumed in some
9609 other SEC_MERGE section. In this case, we need to leave
9610 some info around for --emit-relocs. */
9611 if ((sec->flags & SEC_EXCLUDE) != 0)
9612 sec->kept_section = *psec;
9613 sec = *psec;
9614 }
9615 rel->r_addend -= relocation;
9616 rel->r_addend += sec->output_section->vma + sec->output_offset;
9617 }
9618 return relocation;
9619 }
9620
9621 bfd_vma
9622 _bfd_elf_rel_local_sym (bfd *abfd,
9623 Elf_Internal_Sym *sym,
9624 asection **psec,
9625 bfd_vma addend)
9626 {
9627 asection *sec = *psec;
9628
9629 if (sec->sec_info_type != SEC_INFO_TYPE_MERGE)
9630 return sym->st_value + addend;
9631
9632 return _bfd_merged_section_offset (abfd, psec,
9633 elf_section_data (sec)->sec_info,
9634 sym->st_value + addend);
9635 }
9636
9637 bfd_vma
9638 _bfd_elf_section_offset (bfd *abfd,
9639 struct bfd_link_info *info,
9640 asection *sec,
9641 bfd_vma offset)
9642 {
9643 switch (sec->sec_info_type)
9644 {
9645 case SEC_INFO_TYPE_STABS:
9646 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
9647 offset);
9648 case SEC_INFO_TYPE_EH_FRAME:
9649 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
9650 default:
9651 if ((sec->flags & SEC_ELF_REVERSE_COPY) != 0)
9652 {
9653 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9654 bfd_size_type address_size = bed->s->arch_size / 8;
9655 offset = sec->size - offset - address_size;
9656 }
9657 return offset;
9658 }
9659 }
9660 \f
9661 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
9662 reconstruct an ELF file by reading the segments out of remote memory
9663 based on the ELF file header at EHDR_VMA and the ELF program headers it
9664 points to. If not null, *LOADBASEP is filled in with the difference
9665 between the VMAs from which the segments were read, and the VMAs the
9666 file headers (and hence BFD's idea of each section's VMA) put them at.
9667
9668 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
9669 remote memory at target address VMA into the local buffer at MYADDR; it
9670 should return zero on success or an `errno' code on failure. TEMPL must
9671 be a BFD for an ELF target with the word size and byte order found in
9672 the remote memory. */
9673
9674 bfd *
9675 bfd_elf_bfd_from_remote_memory
9676 (bfd *templ,
9677 bfd_vma ehdr_vma,
9678 bfd_vma *loadbasep,
9679 int (*target_read_memory) (bfd_vma, bfd_byte *, bfd_size_type))
9680 {
9681 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
9682 (templ, ehdr_vma, loadbasep, target_read_memory);
9683 }
9684 \f
9685 long
9686 _bfd_elf_get_synthetic_symtab (bfd *abfd,
9687 long symcount ATTRIBUTE_UNUSED,
9688 asymbol **syms ATTRIBUTE_UNUSED,
9689 long dynsymcount,
9690 asymbol **dynsyms,
9691 asymbol **ret)
9692 {
9693 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9694 asection *relplt;
9695 asymbol *s;
9696 const char *relplt_name;
9697 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
9698 arelent *p;
9699 long count, i, n;
9700 size_t size;
9701 Elf_Internal_Shdr *hdr;
9702 char *names;
9703 asection *plt;
9704
9705 *ret = NULL;
9706
9707 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
9708 return 0;
9709
9710 if (dynsymcount <= 0)
9711 return 0;
9712
9713 if (!bed->plt_sym_val)
9714 return 0;
9715
9716 relplt_name = bed->relplt_name;
9717 if (relplt_name == NULL)
9718 relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt";
9719 relplt = bfd_get_section_by_name (abfd, relplt_name);
9720 if (relplt == NULL)
9721 return 0;
9722
9723 hdr = &elf_section_data (relplt)->this_hdr;
9724 if (hdr->sh_link != elf_dynsymtab (abfd)
9725 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
9726 return 0;
9727
9728 plt = bfd_get_section_by_name (abfd, ".plt");
9729 if (plt == NULL)
9730 return 0;
9731
9732 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
9733 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
9734 return -1;
9735
9736 count = relplt->size / hdr->sh_entsize;
9737 size = count * sizeof (asymbol);
9738 p = relplt->relocation;
9739 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
9740 {
9741 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
9742 if (p->addend != 0)
9743 {
9744 #ifdef BFD64
9745 size += sizeof ("+0x") - 1 + 8 + 8 * (bed->s->elfclass == ELFCLASS64);
9746 #else
9747 size += sizeof ("+0x") - 1 + 8;
9748 #endif
9749 }
9750 }
9751
9752 s = *ret = (asymbol *) bfd_malloc (size);
9753 if (s == NULL)
9754 return -1;
9755
9756 names = (char *) (s + count);
9757 p = relplt->relocation;
9758 n = 0;
9759 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
9760 {
9761 size_t len;
9762 bfd_vma addr;
9763
9764 addr = bed->plt_sym_val (i, plt, p);
9765 if (addr == (bfd_vma) -1)
9766 continue;
9767
9768 *s = **p->sym_ptr_ptr;
9769 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
9770 we are defining a symbol, ensure one of them is set. */
9771 if ((s->flags & BSF_LOCAL) == 0)
9772 s->flags |= BSF_GLOBAL;
9773 s->flags |= BSF_SYNTHETIC;
9774 s->section = plt;
9775 s->value = addr - plt->vma;
9776 s->name = names;
9777 s->udata.p = NULL;
9778 len = strlen ((*p->sym_ptr_ptr)->name);
9779 memcpy (names, (*p->sym_ptr_ptr)->name, len);
9780 names += len;
9781 if (p->addend != 0)
9782 {
9783 char buf[30], *a;
9784
9785 memcpy (names, "+0x", sizeof ("+0x") - 1);
9786 names += sizeof ("+0x") - 1;
9787 bfd_sprintf_vma (abfd, buf, p->addend);
9788 for (a = buf; *a == '0'; ++a)
9789 ;
9790 len = strlen (a);
9791 memcpy (names, a, len);
9792 names += len;
9793 }
9794 memcpy (names, "@plt", sizeof ("@plt"));
9795 names += sizeof ("@plt");
9796 ++s, ++n;
9797 }
9798
9799 return n;
9800 }
9801
9802 /* It is only used by x86-64 so far. */
9803 asection _bfd_elf_large_com_section
9804 = BFD_FAKE_SECTION (_bfd_elf_large_com_section,
9805 SEC_IS_COMMON, NULL, "LARGE_COMMON", 0);
9806
9807 void
9808 _bfd_elf_set_osabi (bfd * abfd,
9809 struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
9810 {
9811 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
9812
9813 i_ehdrp = elf_elfheader (abfd);
9814
9815 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
9816
9817 /* To make things simpler for the loader on Linux systems we set the
9818 osabi field to ELFOSABI_GNU if the binary contains symbols of
9819 the STT_GNU_IFUNC type or STB_GNU_UNIQUE binding. */
9820 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE
9821 && elf_tdata (abfd)->has_gnu_symbols)
9822 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_GNU;
9823 }
9824
9825
9826 /* Return TRUE for ELF symbol types that represent functions.
9827 This is the default version of this function, which is sufficient for
9828 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */
9829
9830 bfd_boolean
9831 _bfd_elf_is_function_type (unsigned int type)
9832 {
9833 return (type == STT_FUNC
9834 || type == STT_GNU_IFUNC);
9835 }
9836
9837 /* If the ELF symbol SYM might be a function in SEC, return the
9838 function size and set *CODE_OFF to the function's entry point,
9839 otherwise return zero. */
9840
9841 bfd_size_type
9842 _bfd_elf_maybe_function_sym (const asymbol *sym, asection *sec,
9843 bfd_vma *code_off)
9844 {
9845 bfd_size_type size;
9846
9847 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
9848 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0
9849 || sym->section != sec)
9850 return 0;
9851
9852 *code_off = sym->value;
9853 size = 0;
9854 if (!(sym->flags & BSF_SYNTHETIC))
9855 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
9856 if (size == 0)
9857 size = 1;
9858 return size;
9859 }