2012-01-10 Tristan Gingold <gingold@adacore.com>
[binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
5 Free Software Foundation, Inc.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 MA 02110-1301, USA. */
23
24
25 /*
26 SECTION
27 ELF backends
28
29 BFD support for ELF formats is being worked on.
30 Currently, the best supported back ends are for sparc and i386
31 (running svr4 or Solaris 2).
32
33 Documentation of the internals of the support code still needs
34 to be written. The code is changing quickly enough that we
35 haven't bothered yet. */
36
37 /* For sparc64-cross-sparc32. */
38 #define _SYSCALL32
39 #include "sysdep.h"
40 #include "bfd.h"
41 #include "bfdlink.h"
42 #include "libbfd.h"
43 #define ARCH_SIZE 0
44 #include "elf-bfd.h"
45 #include "libiberty.h"
46 #include "safe-ctype.h"
47
48 #ifdef CORE_HEADER
49 #include CORE_HEADER
50 #endif
51
52 static int elf_sort_sections (const void *, const void *);
53 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
54 static bfd_boolean prep_headers (bfd *);
55 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
56 static bfd_boolean elf_read_notes (bfd *, file_ptr, bfd_size_type) ;
57 static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
58 file_ptr offset);
59
60 /* Swap version information in and out. The version information is
61 currently size independent. If that ever changes, this code will
62 need to move into elfcode.h. */
63
64 /* Swap in a Verdef structure. */
65
66 void
67 _bfd_elf_swap_verdef_in (bfd *abfd,
68 const Elf_External_Verdef *src,
69 Elf_Internal_Verdef *dst)
70 {
71 dst->vd_version = H_GET_16 (abfd, src->vd_version);
72 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
73 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
74 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
75 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
76 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
77 dst->vd_next = H_GET_32 (abfd, src->vd_next);
78 }
79
80 /* Swap out a Verdef structure. */
81
82 void
83 _bfd_elf_swap_verdef_out (bfd *abfd,
84 const Elf_Internal_Verdef *src,
85 Elf_External_Verdef *dst)
86 {
87 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
88 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
89 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
90 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
91 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
92 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
93 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
94 }
95
96 /* Swap in a Verdaux structure. */
97
98 void
99 _bfd_elf_swap_verdaux_in (bfd *abfd,
100 const Elf_External_Verdaux *src,
101 Elf_Internal_Verdaux *dst)
102 {
103 dst->vda_name = H_GET_32 (abfd, src->vda_name);
104 dst->vda_next = H_GET_32 (abfd, src->vda_next);
105 }
106
107 /* Swap out a Verdaux structure. */
108
109 void
110 _bfd_elf_swap_verdaux_out (bfd *abfd,
111 const Elf_Internal_Verdaux *src,
112 Elf_External_Verdaux *dst)
113 {
114 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
115 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
116 }
117
118 /* Swap in a Verneed structure. */
119
120 void
121 _bfd_elf_swap_verneed_in (bfd *abfd,
122 const Elf_External_Verneed *src,
123 Elf_Internal_Verneed *dst)
124 {
125 dst->vn_version = H_GET_16 (abfd, src->vn_version);
126 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
127 dst->vn_file = H_GET_32 (abfd, src->vn_file);
128 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
129 dst->vn_next = H_GET_32 (abfd, src->vn_next);
130 }
131
132 /* Swap out a Verneed structure. */
133
134 void
135 _bfd_elf_swap_verneed_out (bfd *abfd,
136 const Elf_Internal_Verneed *src,
137 Elf_External_Verneed *dst)
138 {
139 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
140 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
141 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
142 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
143 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
144 }
145
146 /* Swap in a Vernaux structure. */
147
148 void
149 _bfd_elf_swap_vernaux_in (bfd *abfd,
150 const Elf_External_Vernaux *src,
151 Elf_Internal_Vernaux *dst)
152 {
153 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
154 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
155 dst->vna_other = H_GET_16 (abfd, src->vna_other);
156 dst->vna_name = H_GET_32 (abfd, src->vna_name);
157 dst->vna_next = H_GET_32 (abfd, src->vna_next);
158 }
159
160 /* Swap out a Vernaux structure. */
161
162 void
163 _bfd_elf_swap_vernaux_out (bfd *abfd,
164 const Elf_Internal_Vernaux *src,
165 Elf_External_Vernaux *dst)
166 {
167 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
168 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
169 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
170 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
171 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
172 }
173
174 /* Swap in a Versym structure. */
175
176 void
177 _bfd_elf_swap_versym_in (bfd *abfd,
178 const Elf_External_Versym *src,
179 Elf_Internal_Versym *dst)
180 {
181 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
182 }
183
184 /* Swap out a Versym structure. */
185
186 void
187 _bfd_elf_swap_versym_out (bfd *abfd,
188 const Elf_Internal_Versym *src,
189 Elf_External_Versym *dst)
190 {
191 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
192 }
193
194 /* Standard ELF hash function. Do not change this function; you will
195 cause invalid hash tables to be generated. */
196
197 unsigned long
198 bfd_elf_hash (const char *namearg)
199 {
200 const unsigned char *name = (const unsigned char *) namearg;
201 unsigned long h = 0;
202 unsigned long g;
203 int ch;
204
205 while ((ch = *name++) != '\0')
206 {
207 h = (h << 4) + ch;
208 if ((g = (h & 0xf0000000)) != 0)
209 {
210 h ^= g >> 24;
211 /* The ELF ABI says `h &= ~g', but this is equivalent in
212 this case and on some machines one insn instead of two. */
213 h ^= g;
214 }
215 }
216 return h & 0xffffffff;
217 }
218
219 /* DT_GNU_HASH hash function. Do not change this function; you will
220 cause invalid hash tables to be generated. */
221
222 unsigned long
223 bfd_elf_gnu_hash (const char *namearg)
224 {
225 const unsigned char *name = (const unsigned char *) namearg;
226 unsigned long h = 5381;
227 unsigned char ch;
228
229 while ((ch = *name++) != '\0')
230 h = (h << 5) + h + ch;
231 return h & 0xffffffff;
232 }
233
234 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
235 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
236 bfd_boolean
237 bfd_elf_allocate_object (bfd *abfd,
238 size_t object_size,
239 enum elf_target_id object_id)
240 {
241 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
242 abfd->tdata.any = bfd_zalloc (abfd, object_size);
243 if (abfd->tdata.any == NULL)
244 return FALSE;
245
246 elf_object_id (abfd) = object_id;
247 elf_program_header_size (abfd) = (bfd_size_type) -1;
248 return TRUE;
249 }
250
251
252 bfd_boolean
253 bfd_elf_make_object (bfd *abfd)
254 {
255 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
256 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
257 bed->target_id);
258 }
259
260 bfd_boolean
261 bfd_elf_mkcorefile (bfd *abfd)
262 {
263 /* I think this can be done just like an object file. */
264 return abfd->xvec->_bfd_set_format[(int) bfd_object] (abfd);
265 }
266
267 static char *
268 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
269 {
270 Elf_Internal_Shdr **i_shdrp;
271 bfd_byte *shstrtab = NULL;
272 file_ptr offset;
273 bfd_size_type shstrtabsize;
274
275 i_shdrp = elf_elfsections (abfd);
276 if (i_shdrp == 0
277 || shindex >= elf_numsections (abfd)
278 || i_shdrp[shindex] == 0)
279 return NULL;
280
281 shstrtab = i_shdrp[shindex]->contents;
282 if (shstrtab == NULL)
283 {
284 /* No cached one, attempt to read, and cache what we read. */
285 offset = i_shdrp[shindex]->sh_offset;
286 shstrtabsize = i_shdrp[shindex]->sh_size;
287
288 /* Allocate and clear an extra byte at the end, to prevent crashes
289 in case the string table is not terminated. */
290 if (shstrtabsize + 1 <= 1
291 || (shstrtab = (bfd_byte *) bfd_alloc (abfd, shstrtabsize + 1)) == NULL
292 || bfd_seek (abfd, offset, SEEK_SET) != 0)
293 shstrtab = NULL;
294 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
295 {
296 if (bfd_get_error () != bfd_error_system_call)
297 bfd_set_error (bfd_error_file_truncated);
298 shstrtab = NULL;
299 /* Once we've failed to read it, make sure we don't keep
300 trying. Otherwise, we'll keep allocating space for
301 the string table over and over. */
302 i_shdrp[shindex]->sh_size = 0;
303 }
304 else
305 shstrtab[shstrtabsize] = '\0';
306 i_shdrp[shindex]->contents = shstrtab;
307 }
308 return (char *) shstrtab;
309 }
310
311 char *
312 bfd_elf_string_from_elf_section (bfd *abfd,
313 unsigned int shindex,
314 unsigned int strindex)
315 {
316 Elf_Internal_Shdr *hdr;
317
318 if (strindex == 0)
319 return "";
320
321 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
322 return NULL;
323
324 hdr = elf_elfsections (abfd)[shindex];
325
326 if (hdr->contents == NULL
327 && bfd_elf_get_str_section (abfd, shindex) == NULL)
328 return NULL;
329
330 if (strindex >= hdr->sh_size)
331 {
332 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
333 (*_bfd_error_handler)
334 (_("%B: invalid string offset %u >= %lu for section `%s'"),
335 abfd, strindex, (unsigned long) hdr->sh_size,
336 (shindex == shstrndx && strindex == hdr->sh_name
337 ? ".shstrtab"
338 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
339 return NULL;
340 }
341
342 return ((char *) hdr->contents) + strindex;
343 }
344
345 /* Read and convert symbols to internal format.
346 SYMCOUNT specifies the number of symbols to read, starting from
347 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
348 are non-NULL, they are used to store the internal symbols, external
349 symbols, and symbol section index extensions, respectively.
350 Returns a pointer to the internal symbol buffer (malloced if necessary)
351 or NULL if there were no symbols or some kind of problem. */
352
353 Elf_Internal_Sym *
354 bfd_elf_get_elf_syms (bfd *ibfd,
355 Elf_Internal_Shdr *symtab_hdr,
356 size_t symcount,
357 size_t symoffset,
358 Elf_Internal_Sym *intsym_buf,
359 void *extsym_buf,
360 Elf_External_Sym_Shndx *extshndx_buf)
361 {
362 Elf_Internal_Shdr *shndx_hdr;
363 void *alloc_ext;
364 const bfd_byte *esym;
365 Elf_External_Sym_Shndx *alloc_extshndx;
366 Elf_External_Sym_Shndx *shndx;
367 Elf_Internal_Sym *alloc_intsym;
368 Elf_Internal_Sym *isym;
369 Elf_Internal_Sym *isymend;
370 const struct elf_backend_data *bed;
371 size_t extsym_size;
372 bfd_size_type amt;
373 file_ptr pos;
374
375 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
376 abort ();
377
378 if (symcount == 0)
379 return intsym_buf;
380
381 /* Normal syms might have section extension entries. */
382 shndx_hdr = NULL;
383 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
384 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
385
386 /* Read the symbols. */
387 alloc_ext = NULL;
388 alloc_extshndx = NULL;
389 alloc_intsym = NULL;
390 bed = get_elf_backend_data (ibfd);
391 extsym_size = bed->s->sizeof_sym;
392 amt = symcount * extsym_size;
393 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
394 if (extsym_buf == NULL)
395 {
396 alloc_ext = bfd_malloc2 (symcount, extsym_size);
397 extsym_buf = alloc_ext;
398 }
399 if (extsym_buf == NULL
400 || bfd_seek (ibfd, pos, SEEK_SET) != 0
401 || bfd_bread (extsym_buf, amt, ibfd) != amt)
402 {
403 intsym_buf = NULL;
404 goto out;
405 }
406
407 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
408 extshndx_buf = NULL;
409 else
410 {
411 amt = symcount * sizeof (Elf_External_Sym_Shndx);
412 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
413 if (extshndx_buf == NULL)
414 {
415 alloc_extshndx = (Elf_External_Sym_Shndx *)
416 bfd_malloc2 (symcount, sizeof (Elf_External_Sym_Shndx));
417 extshndx_buf = alloc_extshndx;
418 }
419 if (extshndx_buf == NULL
420 || bfd_seek (ibfd, pos, SEEK_SET) != 0
421 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
422 {
423 intsym_buf = NULL;
424 goto out;
425 }
426 }
427
428 if (intsym_buf == NULL)
429 {
430 alloc_intsym = (Elf_Internal_Sym *)
431 bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
432 intsym_buf = alloc_intsym;
433 if (intsym_buf == NULL)
434 goto out;
435 }
436
437 /* Convert the symbols to internal form. */
438 isymend = intsym_buf + symcount;
439 for (esym = (const bfd_byte *) extsym_buf, isym = intsym_buf,
440 shndx = extshndx_buf;
441 isym < isymend;
442 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
443 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
444 {
445 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
446 (*_bfd_error_handler) (_("%B symbol number %lu references "
447 "nonexistent SHT_SYMTAB_SHNDX section"),
448 ibfd, (unsigned long) symoffset);
449 if (alloc_intsym != NULL)
450 free (alloc_intsym);
451 intsym_buf = NULL;
452 goto out;
453 }
454
455 out:
456 if (alloc_ext != NULL)
457 free (alloc_ext);
458 if (alloc_extshndx != NULL)
459 free (alloc_extshndx);
460
461 return intsym_buf;
462 }
463
464 /* Look up a symbol name. */
465 const char *
466 bfd_elf_sym_name (bfd *abfd,
467 Elf_Internal_Shdr *symtab_hdr,
468 Elf_Internal_Sym *isym,
469 asection *sym_sec)
470 {
471 const char *name;
472 unsigned int iname = isym->st_name;
473 unsigned int shindex = symtab_hdr->sh_link;
474
475 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
476 /* Check for a bogus st_shndx to avoid crashing. */
477 && isym->st_shndx < elf_numsections (abfd))
478 {
479 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
480 shindex = elf_elfheader (abfd)->e_shstrndx;
481 }
482
483 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
484 if (name == NULL)
485 name = "(null)";
486 else if (sym_sec && *name == '\0')
487 name = bfd_section_name (abfd, sym_sec);
488
489 return name;
490 }
491
492 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
493 sections. The first element is the flags, the rest are section
494 pointers. */
495
496 typedef union elf_internal_group {
497 Elf_Internal_Shdr *shdr;
498 unsigned int flags;
499 } Elf_Internal_Group;
500
501 /* Return the name of the group signature symbol. Why isn't the
502 signature just a string? */
503
504 static const char *
505 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
506 {
507 Elf_Internal_Shdr *hdr;
508 unsigned char esym[sizeof (Elf64_External_Sym)];
509 Elf_External_Sym_Shndx eshndx;
510 Elf_Internal_Sym isym;
511
512 /* First we need to ensure the symbol table is available. Make sure
513 that it is a symbol table section. */
514 if (ghdr->sh_link >= elf_numsections (abfd))
515 return NULL;
516 hdr = elf_elfsections (abfd) [ghdr->sh_link];
517 if (hdr->sh_type != SHT_SYMTAB
518 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
519 return NULL;
520
521 /* Go read the symbol. */
522 hdr = &elf_tdata (abfd)->symtab_hdr;
523 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
524 &isym, esym, &eshndx) == NULL)
525 return NULL;
526
527 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
528 }
529
530 /* Set next_in_group list pointer, and group name for NEWSECT. */
531
532 static bfd_boolean
533 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
534 {
535 unsigned int num_group = elf_tdata (abfd)->num_group;
536
537 /* If num_group is zero, read in all SHT_GROUP sections. The count
538 is set to -1 if there are no SHT_GROUP sections. */
539 if (num_group == 0)
540 {
541 unsigned int i, shnum;
542
543 /* First count the number of groups. If we have a SHT_GROUP
544 section with just a flag word (ie. sh_size is 4), ignore it. */
545 shnum = elf_numsections (abfd);
546 num_group = 0;
547
548 #define IS_VALID_GROUP_SECTION_HEADER(shdr) \
549 ( (shdr)->sh_type == SHT_GROUP \
550 && (shdr)->sh_size >= (2 * GRP_ENTRY_SIZE) \
551 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
552 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
553
554 for (i = 0; i < shnum; i++)
555 {
556 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
557
558 if (IS_VALID_GROUP_SECTION_HEADER (shdr))
559 num_group += 1;
560 }
561
562 if (num_group == 0)
563 {
564 num_group = (unsigned) -1;
565 elf_tdata (abfd)->num_group = num_group;
566 }
567 else
568 {
569 /* We keep a list of elf section headers for group sections,
570 so we can find them quickly. */
571 bfd_size_type amt;
572
573 elf_tdata (abfd)->num_group = num_group;
574 elf_tdata (abfd)->group_sect_ptr = (Elf_Internal_Shdr **)
575 bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
576 if (elf_tdata (abfd)->group_sect_ptr == NULL)
577 return FALSE;
578
579 num_group = 0;
580 for (i = 0; i < shnum; i++)
581 {
582 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
583
584 if (IS_VALID_GROUP_SECTION_HEADER (shdr))
585 {
586 unsigned char *src;
587 Elf_Internal_Group *dest;
588
589 /* Add to list of sections. */
590 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
591 num_group += 1;
592
593 /* Read the raw contents. */
594 BFD_ASSERT (sizeof (*dest) >= 4);
595 amt = shdr->sh_size * sizeof (*dest) / 4;
596 shdr->contents = (unsigned char *)
597 bfd_alloc2 (abfd, shdr->sh_size, sizeof (*dest) / 4);
598 /* PR binutils/4110: Handle corrupt group headers. */
599 if (shdr->contents == NULL)
600 {
601 _bfd_error_handler
602 (_("%B: Corrupt size field in group section header: 0x%lx"), abfd, shdr->sh_size);
603 bfd_set_error (bfd_error_bad_value);
604 return FALSE;
605 }
606
607 memset (shdr->contents, 0, amt);
608
609 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
610 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
611 != shdr->sh_size))
612 return FALSE;
613
614 /* Translate raw contents, a flag word followed by an
615 array of elf section indices all in target byte order,
616 to the flag word followed by an array of elf section
617 pointers. */
618 src = shdr->contents + shdr->sh_size;
619 dest = (Elf_Internal_Group *) (shdr->contents + amt);
620 while (1)
621 {
622 unsigned int idx;
623
624 src -= 4;
625 --dest;
626 idx = H_GET_32 (abfd, src);
627 if (src == shdr->contents)
628 {
629 dest->flags = idx;
630 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
631 shdr->bfd_section->flags
632 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
633 break;
634 }
635 if (idx >= shnum)
636 {
637 ((*_bfd_error_handler)
638 (_("%B: invalid SHT_GROUP entry"), abfd));
639 idx = 0;
640 }
641 dest->shdr = elf_elfsections (abfd)[idx];
642 }
643 }
644 }
645 }
646 }
647
648 if (num_group != (unsigned) -1)
649 {
650 unsigned int i;
651
652 for (i = 0; i < num_group; i++)
653 {
654 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
655 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
656 unsigned int n_elt = shdr->sh_size / 4;
657
658 /* Look through this group's sections to see if current
659 section is a member. */
660 while (--n_elt != 0)
661 if ((++idx)->shdr == hdr)
662 {
663 asection *s = NULL;
664
665 /* We are a member of this group. Go looking through
666 other members to see if any others are linked via
667 next_in_group. */
668 idx = (Elf_Internal_Group *) shdr->contents;
669 n_elt = shdr->sh_size / 4;
670 while (--n_elt != 0)
671 if ((s = (++idx)->shdr->bfd_section) != NULL
672 && elf_next_in_group (s) != NULL)
673 break;
674 if (n_elt != 0)
675 {
676 /* Snarf the group name from other member, and
677 insert current section in circular list. */
678 elf_group_name (newsect) = elf_group_name (s);
679 elf_next_in_group (newsect) = elf_next_in_group (s);
680 elf_next_in_group (s) = newsect;
681 }
682 else
683 {
684 const char *gname;
685
686 gname = group_signature (abfd, shdr);
687 if (gname == NULL)
688 return FALSE;
689 elf_group_name (newsect) = gname;
690
691 /* Start a circular list with one element. */
692 elf_next_in_group (newsect) = newsect;
693 }
694
695 /* If the group section has been created, point to the
696 new member. */
697 if (shdr->bfd_section != NULL)
698 elf_next_in_group (shdr->bfd_section) = newsect;
699
700 i = num_group - 1;
701 break;
702 }
703 }
704 }
705
706 if (elf_group_name (newsect) == NULL)
707 {
708 (*_bfd_error_handler) (_("%B: no group info for section %A"),
709 abfd, newsect);
710 }
711 return TRUE;
712 }
713
714 bfd_boolean
715 _bfd_elf_setup_sections (bfd *abfd)
716 {
717 unsigned int i;
718 unsigned int num_group = elf_tdata (abfd)->num_group;
719 bfd_boolean result = TRUE;
720 asection *s;
721
722 /* Process SHF_LINK_ORDER. */
723 for (s = abfd->sections; s != NULL; s = s->next)
724 {
725 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
726 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
727 {
728 unsigned int elfsec = this_hdr->sh_link;
729 /* FIXME: The old Intel compiler and old strip/objcopy may
730 not set the sh_link or sh_info fields. Hence we could
731 get the situation where elfsec is 0. */
732 if (elfsec == 0)
733 {
734 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
735 if (bed->link_order_error_handler)
736 bed->link_order_error_handler
737 (_("%B: warning: sh_link not set for section `%A'"),
738 abfd, s);
739 }
740 else
741 {
742 asection *linksec = NULL;
743
744 if (elfsec < elf_numsections (abfd))
745 {
746 this_hdr = elf_elfsections (abfd)[elfsec];
747 linksec = this_hdr->bfd_section;
748 }
749
750 /* PR 1991, 2008:
751 Some strip/objcopy may leave an incorrect value in
752 sh_link. We don't want to proceed. */
753 if (linksec == NULL)
754 {
755 (*_bfd_error_handler)
756 (_("%B: sh_link [%d] in section `%A' is incorrect"),
757 s->owner, s, elfsec);
758 result = FALSE;
759 }
760
761 elf_linked_to_section (s) = linksec;
762 }
763 }
764 }
765
766 /* Process section groups. */
767 if (num_group == (unsigned) -1)
768 return result;
769
770 for (i = 0; i < num_group; i++)
771 {
772 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
773 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
774 unsigned int n_elt = shdr->sh_size / 4;
775
776 while (--n_elt != 0)
777 if ((++idx)->shdr->bfd_section)
778 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
779 else if (idx->shdr->sh_type == SHT_RELA
780 || idx->shdr->sh_type == SHT_REL)
781 /* We won't include relocation sections in section groups in
782 output object files. We adjust the group section size here
783 so that relocatable link will work correctly when
784 relocation sections are in section group in input object
785 files. */
786 shdr->bfd_section->size -= 4;
787 else
788 {
789 /* There are some unknown sections in the group. */
790 (*_bfd_error_handler)
791 (_("%B: unknown [%d] section `%s' in group [%s]"),
792 abfd,
793 (unsigned int) idx->shdr->sh_type,
794 bfd_elf_string_from_elf_section (abfd,
795 (elf_elfheader (abfd)
796 ->e_shstrndx),
797 idx->shdr->sh_name),
798 shdr->bfd_section->name);
799 result = FALSE;
800 }
801 }
802 return result;
803 }
804
805 bfd_boolean
806 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
807 {
808 return elf_next_in_group (sec) != NULL;
809 }
810
811 /* Make a BFD section from an ELF section. We store a pointer to the
812 BFD section in the bfd_section field of the header. */
813
814 bfd_boolean
815 _bfd_elf_make_section_from_shdr (bfd *abfd,
816 Elf_Internal_Shdr *hdr,
817 const char *name,
818 int shindex)
819 {
820 asection *newsect;
821 flagword flags;
822 const struct elf_backend_data *bed;
823
824 if (hdr->bfd_section != NULL)
825 return TRUE;
826
827 newsect = bfd_make_section_anyway (abfd, name);
828 if (newsect == NULL)
829 return FALSE;
830
831 hdr->bfd_section = newsect;
832 elf_section_data (newsect)->this_hdr = *hdr;
833 elf_section_data (newsect)->this_idx = shindex;
834
835 /* Always use the real type/flags. */
836 elf_section_type (newsect) = hdr->sh_type;
837 elf_section_flags (newsect) = hdr->sh_flags;
838
839 newsect->filepos = hdr->sh_offset;
840
841 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
842 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
843 || ! bfd_set_section_alignment (abfd, newsect,
844 bfd_log2 (hdr->sh_addralign)))
845 return FALSE;
846
847 flags = SEC_NO_FLAGS;
848 if (hdr->sh_type != SHT_NOBITS)
849 flags |= SEC_HAS_CONTENTS;
850 if (hdr->sh_type == SHT_GROUP)
851 flags |= SEC_GROUP | SEC_EXCLUDE;
852 if ((hdr->sh_flags & SHF_ALLOC) != 0)
853 {
854 flags |= SEC_ALLOC;
855 if (hdr->sh_type != SHT_NOBITS)
856 flags |= SEC_LOAD;
857 }
858 if ((hdr->sh_flags & SHF_WRITE) == 0)
859 flags |= SEC_READONLY;
860 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
861 flags |= SEC_CODE;
862 else if ((flags & SEC_LOAD) != 0)
863 flags |= SEC_DATA;
864 if ((hdr->sh_flags & SHF_MERGE) != 0)
865 {
866 flags |= SEC_MERGE;
867 newsect->entsize = hdr->sh_entsize;
868 if ((hdr->sh_flags & SHF_STRINGS) != 0)
869 flags |= SEC_STRINGS;
870 }
871 if (hdr->sh_flags & SHF_GROUP)
872 if (!setup_group (abfd, hdr, newsect))
873 return FALSE;
874 if ((hdr->sh_flags & SHF_TLS) != 0)
875 flags |= SEC_THREAD_LOCAL;
876 if ((hdr->sh_flags & SHF_EXCLUDE) != 0)
877 flags |= SEC_EXCLUDE;
878
879 if ((flags & SEC_ALLOC) == 0)
880 {
881 /* The debugging sections appear to be recognized only by name,
882 not any sort of flag. Their SEC_ALLOC bits are cleared. */
883 static const struct
884 {
885 const char *name;
886 int len;
887 } debug_sections [] =
888 {
889 { STRING_COMMA_LEN ("debug") }, /* 'd' */
890 { NULL, 0 }, /* 'e' */
891 { NULL, 0 }, /* 'f' */
892 { STRING_COMMA_LEN ("gnu.linkonce.wi.") }, /* 'g' */
893 { NULL, 0 }, /* 'h' */
894 { NULL, 0 }, /* 'i' */
895 { NULL, 0 }, /* 'j' */
896 { NULL, 0 }, /* 'k' */
897 { STRING_COMMA_LEN ("line") }, /* 'l' */
898 { NULL, 0 }, /* 'm' */
899 { NULL, 0 }, /* 'n' */
900 { NULL, 0 }, /* 'o' */
901 { NULL, 0 }, /* 'p' */
902 { NULL, 0 }, /* 'q' */
903 { NULL, 0 }, /* 'r' */
904 { STRING_COMMA_LEN ("stab") }, /* 's' */
905 { NULL, 0 }, /* 't' */
906 { NULL, 0 }, /* 'u' */
907 { NULL, 0 }, /* 'v' */
908 { NULL, 0 }, /* 'w' */
909 { NULL, 0 }, /* 'x' */
910 { NULL, 0 }, /* 'y' */
911 { STRING_COMMA_LEN ("zdebug") } /* 'z' */
912 };
913
914 if (name [0] == '.')
915 {
916 int i = name [1] - 'd';
917 if (i >= 0
918 && i < (int) ARRAY_SIZE (debug_sections)
919 && debug_sections [i].name != NULL
920 && strncmp (&name [1], debug_sections [i].name,
921 debug_sections [i].len) == 0)
922 flags |= SEC_DEBUGGING;
923 }
924 }
925
926 /* As a GNU extension, if the name begins with .gnu.linkonce, we
927 only link a single copy of the section. This is used to support
928 g++. g++ will emit each template expansion in its own section.
929 The symbols will be defined as weak, so that multiple definitions
930 are permitted. The GNU linker extension is to actually discard
931 all but one of the sections. */
932 if (CONST_STRNEQ (name, ".gnu.linkonce")
933 && elf_next_in_group (newsect) == NULL)
934 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
935
936 bed = get_elf_backend_data (abfd);
937 if (bed->elf_backend_section_flags)
938 if (! bed->elf_backend_section_flags (&flags, hdr))
939 return FALSE;
940
941 if (! bfd_set_section_flags (abfd, newsect, flags))
942 return FALSE;
943
944 /* We do not parse the PT_NOTE segments as we are interested even in the
945 separate debug info files which may have the segments offsets corrupted.
946 PT_NOTEs from the core files are currently not parsed using BFD. */
947 if (hdr->sh_type == SHT_NOTE)
948 {
949 bfd_byte *contents;
950
951 if (!bfd_malloc_and_get_section (abfd, newsect, &contents))
952 return FALSE;
953
954 elf_parse_notes (abfd, (char *) contents, hdr->sh_size, -1);
955 free (contents);
956 }
957
958 if ((flags & SEC_ALLOC) != 0)
959 {
960 Elf_Internal_Phdr *phdr;
961 unsigned int i, nload;
962
963 /* Some ELF linkers produce binaries with all the program header
964 p_paddr fields zero. If we have such a binary with more than
965 one PT_LOAD header, then leave the section lma equal to vma
966 so that we don't create sections with overlapping lma. */
967 phdr = elf_tdata (abfd)->phdr;
968 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
969 if (phdr->p_paddr != 0)
970 break;
971 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
972 ++nload;
973 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
974 return TRUE;
975
976 phdr = elf_tdata (abfd)->phdr;
977 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
978 {
979 if (((phdr->p_type == PT_LOAD
980 && (hdr->sh_flags & SHF_TLS) == 0)
981 || phdr->p_type == PT_TLS)
982 && ELF_SECTION_IN_SEGMENT (hdr, phdr))
983 {
984 if ((flags & SEC_LOAD) == 0)
985 newsect->lma = (phdr->p_paddr
986 + hdr->sh_addr - phdr->p_vaddr);
987 else
988 /* We used to use the same adjustment for SEC_LOAD
989 sections, but that doesn't work if the segment
990 is packed with code from multiple VMAs.
991 Instead we calculate the section LMA based on
992 the segment LMA. It is assumed that the
993 segment will contain sections with contiguous
994 LMAs, even if the VMAs are not. */
995 newsect->lma = (phdr->p_paddr
996 + hdr->sh_offset - phdr->p_offset);
997
998 /* With contiguous segments, we can't tell from file
999 offsets whether a section with zero size should
1000 be placed at the end of one segment or the
1001 beginning of the next. Decide based on vaddr. */
1002 if (hdr->sh_addr >= phdr->p_vaddr
1003 && (hdr->sh_addr + hdr->sh_size
1004 <= phdr->p_vaddr + phdr->p_memsz))
1005 break;
1006 }
1007 }
1008 }
1009
1010 /* Compress/decompress DWARF debug sections with names: .debug_* and
1011 .zdebug_*, after the section flags is set. */
1012 if ((flags & SEC_DEBUGGING)
1013 && ((name[1] == 'd' && name[6] == '_')
1014 || (name[1] == 'z' && name[7] == '_')))
1015 {
1016 enum { nothing, compress, decompress } action = nothing;
1017 char *new_name;
1018
1019 if (bfd_is_section_compressed (abfd, newsect))
1020 {
1021 /* Compressed section. Check if we should decompress. */
1022 if ((abfd->flags & BFD_DECOMPRESS))
1023 action = decompress;
1024 }
1025 else
1026 {
1027 /* Normal section. Check if we should compress. */
1028 if ((abfd->flags & BFD_COMPRESS))
1029 action = compress;
1030 }
1031
1032 new_name = NULL;
1033 switch (action)
1034 {
1035 case nothing:
1036 break;
1037 case compress:
1038 if (!bfd_init_section_compress_status (abfd, newsect))
1039 {
1040 (*_bfd_error_handler)
1041 (_("%B: unable to initialize commpress status for section %s"),
1042 abfd, name);
1043 return FALSE;
1044 }
1045 if (name[1] != 'z')
1046 {
1047 unsigned int len = strlen (name);
1048
1049 new_name = bfd_alloc (abfd, len + 2);
1050 if (new_name == NULL)
1051 return FALSE;
1052 new_name[0] = '.';
1053 new_name[1] = 'z';
1054 memcpy (new_name + 2, name + 1, len);
1055 }
1056 break;
1057 case decompress:
1058 if (!bfd_init_section_decompress_status (abfd, newsect))
1059 {
1060 (*_bfd_error_handler)
1061 (_("%B: unable to initialize decommpress status for section %s"),
1062 abfd, name);
1063 return FALSE;
1064 }
1065 if (name[1] == 'z')
1066 {
1067 unsigned int len = strlen (name);
1068
1069 new_name = bfd_alloc (abfd, len);
1070 if (new_name == NULL)
1071 return FALSE;
1072 new_name[0] = '.';
1073 memcpy (new_name + 1, name + 2, len - 1);
1074 }
1075 break;
1076 }
1077 if (new_name != NULL)
1078 bfd_rename_section (abfd, newsect, new_name);
1079 }
1080
1081 return TRUE;
1082 }
1083
1084 const char *const bfd_elf_section_type_names[] = {
1085 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1086 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1087 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1088 };
1089
1090 /* ELF relocs are against symbols. If we are producing relocatable
1091 output, and the reloc is against an external symbol, and nothing
1092 has given us any additional addend, the resulting reloc will also
1093 be against the same symbol. In such a case, we don't want to
1094 change anything about the way the reloc is handled, since it will
1095 all be done at final link time. Rather than put special case code
1096 into bfd_perform_relocation, all the reloc types use this howto
1097 function. It just short circuits the reloc if producing
1098 relocatable output against an external symbol. */
1099
1100 bfd_reloc_status_type
1101 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1102 arelent *reloc_entry,
1103 asymbol *symbol,
1104 void *data ATTRIBUTE_UNUSED,
1105 asection *input_section,
1106 bfd *output_bfd,
1107 char **error_message ATTRIBUTE_UNUSED)
1108 {
1109 if (output_bfd != NULL
1110 && (symbol->flags & BSF_SECTION_SYM) == 0
1111 && (! reloc_entry->howto->partial_inplace
1112 || reloc_entry->addend == 0))
1113 {
1114 reloc_entry->address += input_section->output_offset;
1115 return bfd_reloc_ok;
1116 }
1117
1118 return bfd_reloc_continue;
1119 }
1120 \f
1121 /* Copy the program header and other data from one object module to
1122 another. */
1123
1124 bfd_boolean
1125 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1126 {
1127 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1128 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1129 return TRUE;
1130
1131 BFD_ASSERT (!elf_flags_init (obfd)
1132 || (elf_elfheader (obfd)->e_flags
1133 == elf_elfheader (ibfd)->e_flags));
1134
1135 elf_gp (obfd) = elf_gp (ibfd);
1136 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1137 elf_flags_init (obfd) = TRUE;
1138
1139 /* Copy object attributes. */
1140 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1141 return TRUE;
1142 }
1143
1144 static const char *
1145 get_segment_type (unsigned int p_type)
1146 {
1147 const char *pt;
1148 switch (p_type)
1149 {
1150 case PT_NULL: pt = "NULL"; break;
1151 case PT_LOAD: pt = "LOAD"; break;
1152 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1153 case PT_INTERP: pt = "INTERP"; break;
1154 case PT_NOTE: pt = "NOTE"; break;
1155 case PT_SHLIB: pt = "SHLIB"; break;
1156 case PT_PHDR: pt = "PHDR"; break;
1157 case PT_TLS: pt = "TLS"; break;
1158 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1159 case PT_GNU_STACK: pt = "STACK"; break;
1160 case PT_GNU_RELRO: pt = "RELRO"; break;
1161 default: pt = NULL; break;
1162 }
1163 return pt;
1164 }
1165
1166 /* Print out the program headers. */
1167
1168 bfd_boolean
1169 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1170 {
1171 FILE *f = (FILE *) farg;
1172 Elf_Internal_Phdr *p;
1173 asection *s;
1174 bfd_byte *dynbuf = NULL;
1175
1176 p = elf_tdata (abfd)->phdr;
1177 if (p != NULL)
1178 {
1179 unsigned int i, c;
1180
1181 fprintf (f, _("\nProgram Header:\n"));
1182 c = elf_elfheader (abfd)->e_phnum;
1183 for (i = 0; i < c; i++, p++)
1184 {
1185 const char *pt = get_segment_type (p->p_type);
1186 char buf[20];
1187
1188 if (pt == NULL)
1189 {
1190 sprintf (buf, "0x%lx", p->p_type);
1191 pt = buf;
1192 }
1193 fprintf (f, "%8s off 0x", pt);
1194 bfd_fprintf_vma (abfd, f, p->p_offset);
1195 fprintf (f, " vaddr 0x");
1196 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1197 fprintf (f, " paddr 0x");
1198 bfd_fprintf_vma (abfd, f, p->p_paddr);
1199 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1200 fprintf (f, " filesz 0x");
1201 bfd_fprintf_vma (abfd, f, p->p_filesz);
1202 fprintf (f, " memsz 0x");
1203 bfd_fprintf_vma (abfd, f, p->p_memsz);
1204 fprintf (f, " flags %c%c%c",
1205 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1206 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1207 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1208 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1209 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1210 fprintf (f, "\n");
1211 }
1212 }
1213
1214 s = bfd_get_section_by_name (abfd, ".dynamic");
1215 if (s != NULL)
1216 {
1217 unsigned int elfsec;
1218 unsigned long shlink;
1219 bfd_byte *extdyn, *extdynend;
1220 size_t extdynsize;
1221 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1222
1223 fprintf (f, _("\nDynamic Section:\n"));
1224
1225 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1226 goto error_return;
1227
1228 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1229 if (elfsec == SHN_BAD)
1230 goto error_return;
1231 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1232
1233 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1234 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1235
1236 extdyn = dynbuf;
1237 extdynend = extdyn + s->size;
1238 for (; extdyn < extdynend; extdyn += extdynsize)
1239 {
1240 Elf_Internal_Dyn dyn;
1241 const char *name = "";
1242 char ab[20];
1243 bfd_boolean stringp;
1244 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1245
1246 (*swap_dyn_in) (abfd, extdyn, &dyn);
1247
1248 if (dyn.d_tag == DT_NULL)
1249 break;
1250
1251 stringp = FALSE;
1252 switch (dyn.d_tag)
1253 {
1254 default:
1255 if (bed->elf_backend_get_target_dtag)
1256 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
1257
1258 if (!strcmp (name, ""))
1259 {
1260 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1261 name = ab;
1262 }
1263 break;
1264
1265 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1266 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1267 case DT_PLTGOT: name = "PLTGOT"; break;
1268 case DT_HASH: name = "HASH"; break;
1269 case DT_STRTAB: name = "STRTAB"; break;
1270 case DT_SYMTAB: name = "SYMTAB"; break;
1271 case DT_RELA: name = "RELA"; break;
1272 case DT_RELASZ: name = "RELASZ"; break;
1273 case DT_RELAENT: name = "RELAENT"; break;
1274 case DT_STRSZ: name = "STRSZ"; break;
1275 case DT_SYMENT: name = "SYMENT"; break;
1276 case DT_INIT: name = "INIT"; break;
1277 case DT_FINI: name = "FINI"; break;
1278 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1279 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1280 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1281 case DT_REL: name = "REL"; break;
1282 case DT_RELSZ: name = "RELSZ"; break;
1283 case DT_RELENT: name = "RELENT"; break;
1284 case DT_PLTREL: name = "PLTREL"; break;
1285 case DT_DEBUG: name = "DEBUG"; break;
1286 case DT_TEXTREL: name = "TEXTREL"; break;
1287 case DT_JMPREL: name = "JMPREL"; break;
1288 case DT_BIND_NOW: name = "BIND_NOW"; break;
1289 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1290 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1291 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1292 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1293 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1294 case DT_FLAGS: name = "FLAGS"; break;
1295 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1296 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1297 case DT_CHECKSUM: name = "CHECKSUM"; break;
1298 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1299 case DT_MOVEENT: name = "MOVEENT"; break;
1300 case DT_MOVESZ: name = "MOVESZ"; break;
1301 case DT_FEATURE: name = "FEATURE"; break;
1302 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1303 case DT_SYMINSZ: name = "SYMINSZ"; break;
1304 case DT_SYMINENT: name = "SYMINENT"; break;
1305 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1306 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1307 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1308 case DT_PLTPAD: name = "PLTPAD"; break;
1309 case DT_MOVETAB: name = "MOVETAB"; break;
1310 case DT_SYMINFO: name = "SYMINFO"; break;
1311 case DT_RELACOUNT: name = "RELACOUNT"; break;
1312 case DT_RELCOUNT: name = "RELCOUNT"; break;
1313 case DT_FLAGS_1: name = "FLAGS_1"; break;
1314 case DT_VERSYM: name = "VERSYM"; break;
1315 case DT_VERDEF: name = "VERDEF"; break;
1316 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1317 case DT_VERNEED: name = "VERNEED"; break;
1318 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1319 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1320 case DT_USED: name = "USED"; break;
1321 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1322 case DT_GNU_HASH: name = "GNU_HASH"; break;
1323 }
1324
1325 fprintf (f, " %-20s ", name);
1326 if (! stringp)
1327 {
1328 fprintf (f, "0x");
1329 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
1330 }
1331 else
1332 {
1333 const char *string;
1334 unsigned int tagv = dyn.d_un.d_val;
1335
1336 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1337 if (string == NULL)
1338 goto error_return;
1339 fprintf (f, "%s", string);
1340 }
1341 fprintf (f, "\n");
1342 }
1343
1344 free (dynbuf);
1345 dynbuf = NULL;
1346 }
1347
1348 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1349 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1350 {
1351 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1352 return FALSE;
1353 }
1354
1355 if (elf_dynverdef (abfd) != 0)
1356 {
1357 Elf_Internal_Verdef *t;
1358
1359 fprintf (f, _("\nVersion definitions:\n"));
1360 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1361 {
1362 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1363 t->vd_flags, t->vd_hash,
1364 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1365 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1366 {
1367 Elf_Internal_Verdaux *a;
1368
1369 fprintf (f, "\t");
1370 for (a = t->vd_auxptr->vda_nextptr;
1371 a != NULL;
1372 a = a->vda_nextptr)
1373 fprintf (f, "%s ",
1374 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1375 fprintf (f, "\n");
1376 }
1377 }
1378 }
1379
1380 if (elf_dynverref (abfd) != 0)
1381 {
1382 Elf_Internal_Verneed *t;
1383
1384 fprintf (f, _("\nVersion References:\n"));
1385 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1386 {
1387 Elf_Internal_Vernaux *a;
1388
1389 fprintf (f, _(" required from %s:\n"),
1390 t->vn_filename ? t->vn_filename : "<corrupt>");
1391 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1392 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1393 a->vna_flags, a->vna_other,
1394 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1395 }
1396 }
1397
1398 return TRUE;
1399
1400 error_return:
1401 if (dynbuf != NULL)
1402 free (dynbuf);
1403 return FALSE;
1404 }
1405
1406 /* Display ELF-specific fields of a symbol. */
1407
1408 void
1409 bfd_elf_print_symbol (bfd *abfd,
1410 void *filep,
1411 asymbol *symbol,
1412 bfd_print_symbol_type how)
1413 {
1414 FILE *file = (FILE *) filep;
1415 switch (how)
1416 {
1417 case bfd_print_symbol_name:
1418 fprintf (file, "%s", symbol->name);
1419 break;
1420 case bfd_print_symbol_more:
1421 fprintf (file, "elf ");
1422 bfd_fprintf_vma (abfd, file, symbol->value);
1423 fprintf (file, " %lx", (unsigned long) symbol->flags);
1424 break;
1425 case bfd_print_symbol_all:
1426 {
1427 const char *section_name;
1428 const char *name = NULL;
1429 const struct elf_backend_data *bed;
1430 unsigned char st_other;
1431 bfd_vma val;
1432
1433 section_name = symbol->section ? symbol->section->name : "(*none*)";
1434
1435 bed = get_elf_backend_data (abfd);
1436 if (bed->elf_backend_print_symbol_all)
1437 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1438
1439 if (name == NULL)
1440 {
1441 name = symbol->name;
1442 bfd_print_symbol_vandf (abfd, file, symbol);
1443 }
1444
1445 fprintf (file, " %s\t", section_name);
1446 /* Print the "other" value for a symbol. For common symbols,
1447 we've already printed the size; now print the alignment.
1448 For other symbols, we have no specified alignment, and
1449 we've printed the address; now print the size. */
1450 if (symbol->section && bfd_is_com_section (symbol->section))
1451 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1452 else
1453 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1454 bfd_fprintf_vma (abfd, file, val);
1455
1456 /* If we have version information, print it. */
1457 if (elf_tdata (abfd)->dynversym_section != 0
1458 && (elf_tdata (abfd)->dynverdef_section != 0
1459 || elf_tdata (abfd)->dynverref_section != 0))
1460 {
1461 unsigned int vernum;
1462 const char *version_string;
1463
1464 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1465
1466 if (vernum == 0)
1467 version_string = "";
1468 else if (vernum == 1)
1469 version_string = "Base";
1470 else if (vernum <= elf_tdata (abfd)->cverdefs)
1471 version_string =
1472 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1473 else
1474 {
1475 Elf_Internal_Verneed *t;
1476
1477 version_string = "";
1478 for (t = elf_tdata (abfd)->verref;
1479 t != NULL;
1480 t = t->vn_nextref)
1481 {
1482 Elf_Internal_Vernaux *a;
1483
1484 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1485 {
1486 if (a->vna_other == vernum)
1487 {
1488 version_string = a->vna_nodename;
1489 break;
1490 }
1491 }
1492 }
1493 }
1494
1495 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1496 fprintf (file, " %-11s", version_string);
1497 else
1498 {
1499 int i;
1500
1501 fprintf (file, " (%s)", version_string);
1502 for (i = 10 - strlen (version_string); i > 0; --i)
1503 putc (' ', file);
1504 }
1505 }
1506
1507 /* If the st_other field is not zero, print it. */
1508 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1509
1510 switch (st_other)
1511 {
1512 case 0: break;
1513 case STV_INTERNAL: fprintf (file, " .internal"); break;
1514 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1515 case STV_PROTECTED: fprintf (file, " .protected"); break;
1516 default:
1517 /* Some other non-defined flags are also present, so print
1518 everything hex. */
1519 fprintf (file, " 0x%02x", (unsigned int) st_other);
1520 }
1521
1522 fprintf (file, " %s", name);
1523 }
1524 break;
1525 }
1526 }
1527
1528 /* Allocate an ELF string table--force the first byte to be zero. */
1529
1530 struct bfd_strtab_hash *
1531 _bfd_elf_stringtab_init (void)
1532 {
1533 struct bfd_strtab_hash *ret;
1534
1535 ret = _bfd_stringtab_init ();
1536 if (ret != NULL)
1537 {
1538 bfd_size_type loc;
1539
1540 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1541 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1542 if (loc == (bfd_size_type) -1)
1543 {
1544 _bfd_stringtab_free (ret);
1545 ret = NULL;
1546 }
1547 }
1548 return ret;
1549 }
1550 \f
1551 /* ELF .o/exec file reading */
1552
1553 /* Create a new bfd section from an ELF section header. */
1554
1555 bfd_boolean
1556 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1557 {
1558 Elf_Internal_Shdr *hdr;
1559 Elf_Internal_Ehdr *ehdr;
1560 const struct elf_backend_data *bed;
1561 const char *name;
1562
1563 if (shindex >= elf_numsections (abfd))
1564 return FALSE;
1565
1566 hdr = elf_elfsections (abfd)[shindex];
1567 ehdr = elf_elfheader (abfd);
1568 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
1569 hdr->sh_name);
1570 if (name == NULL)
1571 return FALSE;
1572
1573 bed = get_elf_backend_data (abfd);
1574 switch (hdr->sh_type)
1575 {
1576 case SHT_NULL:
1577 /* Inactive section. Throw it away. */
1578 return TRUE;
1579
1580 case SHT_PROGBITS: /* Normal section with contents. */
1581 case SHT_NOBITS: /* .bss section. */
1582 case SHT_HASH: /* .hash section. */
1583 case SHT_NOTE: /* .note section. */
1584 case SHT_INIT_ARRAY: /* .init_array section. */
1585 case SHT_FINI_ARRAY: /* .fini_array section. */
1586 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1587 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1588 case SHT_GNU_HASH: /* .gnu.hash section. */
1589 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1590
1591 case SHT_DYNAMIC: /* Dynamic linking information. */
1592 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1593 return FALSE;
1594 if (hdr->sh_link > elf_numsections (abfd))
1595 {
1596 /* PR 10478: Accept Solaris binaries with a sh_link
1597 field set to SHN_BEFORE or SHN_AFTER. */
1598 switch (bfd_get_arch (abfd))
1599 {
1600 case bfd_arch_i386:
1601 case bfd_arch_sparc:
1602 if (hdr->sh_link == (SHN_LORESERVE & 0xffff) /* SHN_BEFORE */
1603 || hdr->sh_link == ((SHN_LORESERVE + 1) & 0xffff) /* SHN_AFTER */)
1604 break;
1605 /* Otherwise fall through. */
1606 default:
1607 return FALSE;
1608 }
1609 }
1610 else if (elf_elfsections (abfd)[hdr->sh_link] == NULL)
1611 return FALSE;
1612 else if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1613 {
1614 Elf_Internal_Shdr *dynsymhdr;
1615
1616 /* The shared libraries distributed with hpux11 have a bogus
1617 sh_link field for the ".dynamic" section. Find the
1618 string table for the ".dynsym" section instead. */
1619 if (elf_dynsymtab (abfd) != 0)
1620 {
1621 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1622 hdr->sh_link = dynsymhdr->sh_link;
1623 }
1624 else
1625 {
1626 unsigned int i, num_sec;
1627
1628 num_sec = elf_numsections (abfd);
1629 for (i = 1; i < num_sec; i++)
1630 {
1631 dynsymhdr = elf_elfsections (abfd)[i];
1632 if (dynsymhdr->sh_type == SHT_DYNSYM)
1633 {
1634 hdr->sh_link = dynsymhdr->sh_link;
1635 break;
1636 }
1637 }
1638 }
1639 }
1640 break;
1641
1642 case SHT_SYMTAB: /* A symbol table */
1643 if (elf_onesymtab (abfd) == shindex)
1644 return TRUE;
1645
1646 if (hdr->sh_entsize != bed->s->sizeof_sym)
1647 return FALSE;
1648 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
1649 return FALSE;
1650 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1651 elf_onesymtab (abfd) = shindex;
1652 elf_tdata (abfd)->symtab_hdr = *hdr;
1653 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1654 abfd->flags |= HAS_SYMS;
1655
1656 /* Sometimes a shared object will map in the symbol table. If
1657 SHF_ALLOC is set, and this is a shared object, then we also
1658 treat this section as a BFD section. We can not base the
1659 decision purely on SHF_ALLOC, because that flag is sometimes
1660 set in a relocatable object file, which would confuse the
1661 linker. */
1662 if ((hdr->sh_flags & SHF_ALLOC) != 0
1663 && (abfd->flags & DYNAMIC) != 0
1664 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1665 shindex))
1666 return FALSE;
1667
1668 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1669 can't read symbols without that section loaded as well. It
1670 is most likely specified by the next section header. */
1671 if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
1672 {
1673 unsigned int i, num_sec;
1674
1675 num_sec = elf_numsections (abfd);
1676 for (i = shindex + 1; i < num_sec; i++)
1677 {
1678 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1679 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1680 && hdr2->sh_link == shindex)
1681 break;
1682 }
1683 if (i == num_sec)
1684 for (i = 1; i < shindex; i++)
1685 {
1686 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1687 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1688 && hdr2->sh_link == shindex)
1689 break;
1690 }
1691 if (i != shindex)
1692 return bfd_section_from_shdr (abfd, i);
1693 }
1694 return TRUE;
1695
1696 case SHT_DYNSYM: /* A dynamic symbol table */
1697 if (elf_dynsymtab (abfd) == shindex)
1698 return TRUE;
1699
1700 if (hdr->sh_entsize != bed->s->sizeof_sym)
1701 return FALSE;
1702 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1703 elf_dynsymtab (abfd) = shindex;
1704 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1705 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1706 abfd->flags |= HAS_SYMS;
1707
1708 /* Besides being a symbol table, we also treat this as a regular
1709 section, so that objcopy can handle it. */
1710 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1711
1712 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1713 if (elf_symtab_shndx (abfd) == shindex)
1714 return TRUE;
1715
1716 BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
1717 elf_symtab_shndx (abfd) = shindex;
1718 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1719 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1720 return TRUE;
1721
1722 case SHT_STRTAB: /* A string table */
1723 if (hdr->bfd_section != NULL)
1724 return TRUE;
1725 if (ehdr->e_shstrndx == shindex)
1726 {
1727 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1728 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1729 return TRUE;
1730 }
1731 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
1732 {
1733 symtab_strtab:
1734 elf_tdata (abfd)->strtab_hdr = *hdr;
1735 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
1736 return TRUE;
1737 }
1738 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
1739 {
1740 dynsymtab_strtab:
1741 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1742 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
1743 elf_elfsections (abfd)[shindex] = hdr;
1744 /* We also treat this as a regular section, so that objcopy
1745 can handle it. */
1746 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1747 shindex);
1748 }
1749
1750 /* If the string table isn't one of the above, then treat it as a
1751 regular section. We need to scan all the headers to be sure,
1752 just in case this strtab section appeared before the above. */
1753 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
1754 {
1755 unsigned int i, num_sec;
1756
1757 num_sec = elf_numsections (abfd);
1758 for (i = 1; i < num_sec; i++)
1759 {
1760 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1761 if (hdr2->sh_link == shindex)
1762 {
1763 /* Prevent endless recursion on broken objects. */
1764 if (i == shindex)
1765 return FALSE;
1766 if (! bfd_section_from_shdr (abfd, i))
1767 return FALSE;
1768 if (elf_onesymtab (abfd) == i)
1769 goto symtab_strtab;
1770 if (elf_dynsymtab (abfd) == i)
1771 goto dynsymtab_strtab;
1772 }
1773 }
1774 }
1775 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1776
1777 case SHT_REL:
1778 case SHT_RELA:
1779 /* *These* do a lot of work -- but build no sections! */
1780 {
1781 asection *target_sect;
1782 Elf_Internal_Shdr *hdr2, **p_hdr;
1783 unsigned int num_sec = elf_numsections (abfd);
1784 struct bfd_elf_section_data *esdt;
1785 bfd_size_type amt;
1786
1787 if (hdr->sh_entsize
1788 != (bfd_size_type) (hdr->sh_type == SHT_REL
1789 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
1790 return FALSE;
1791
1792 /* Check for a bogus link to avoid crashing. */
1793 if (hdr->sh_link >= num_sec)
1794 {
1795 ((*_bfd_error_handler)
1796 (_("%B: invalid link %lu for reloc section %s (index %u)"),
1797 abfd, hdr->sh_link, name, shindex));
1798 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1799 shindex);
1800 }
1801
1802 /* For some incomprehensible reason Oracle distributes
1803 libraries for Solaris in which some of the objects have
1804 bogus sh_link fields. It would be nice if we could just
1805 reject them, but, unfortunately, some people need to use
1806 them. We scan through the section headers; if we find only
1807 one suitable symbol table, we clobber the sh_link to point
1808 to it. I hope this doesn't break anything.
1809
1810 Don't do it on executable nor shared library. */
1811 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0
1812 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
1813 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
1814 {
1815 unsigned int scan;
1816 int found;
1817
1818 found = 0;
1819 for (scan = 1; scan < num_sec; scan++)
1820 {
1821 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
1822 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
1823 {
1824 if (found != 0)
1825 {
1826 found = 0;
1827 break;
1828 }
1829 found = scan;
1830 }
1831 }
1832 if (found != 0)
1833 hdr->sh_link = found;
1834 }
1835
1836 /* Get the symbol table. */
1837 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
1838 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
1839 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
1840 return FALSE;
1841
1842 /* If this reloc section does not use the main symbol table we
1843 don't treat it as a reloc section. BFD can't adequately
1844 represent such a section, so at least for now, we don't
1845 try. We just present it as a normal section. We also
1846 can't use it as a reloc section if it points to the null
1847 section, an invalid section, another reloc section, or its
1848 sh_link points to the null section. */
1849 if (hdr->sh_link != elf_onesymtab (abfd)
1850 || hdr->sh_link == SHN_UNDEF
1851 || hdr->sh_info == SHN_UNDEF
1852 || hdr->sh_info >= num_sec
1853 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
1854 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
1855 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1856 shindex);
1857
1858 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
1859 return FALSE;
1860 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
1861 if (target_sect == NULL)
1862 return FALSE;
1863
1864 esdt = elf_section_data (target_sect);
1865 if (hdr->sh_type == SHT_RELA)
1866 p_hdr = &esdt->rela.hdr;
1867 else
1868 p_hdr = &esdt->rel.hdr;
1869
1870 BFD_ASSERT (*p_hdr == NULL);
1871 amt = sizeof (*hdr2);
1872 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, amt);
1873 if (hdr2 == NULL)
1874 return FALSE;
1875 *hdr2 = *hdr;
1876 *p_hdr = hdr2;
1877 elf_elfsections (abfd)[shindex] = hdr2;
1878 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
1879 target_sect->flags |= SEC_RELOC;
1880 target_sect->relocation = NULL;
1881 target_sect->rel_filepos = hdr->sh_offset;
1882 /* In the section to which the relocations apply, mark whether
1883 its relocations are of the REL or RELA variety. */
1884 if (hdr->sh_size != 0)
1885 {
1886 if (hdr->sh_type == SHT_RELA)
1887 target_sect->use_rela_p = 1;
1888 }
1889 abfd->flags |= HAS_RELOC;
1890 return TRUE;
1891 }
1892
1893 case SHT_GNU_verdef:
1894 elf_dynverdef (abfd) = shindex;
1895 elf_tdata (abfd)->dynverdef_hdr = *hdr;
1896 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1897
1898 case SHT_GNU_versym:
1899 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
1900 return FALSE;
1901 elf_dynversym (abfd) = shindex;
1902 elf_tdata (abfd)->dynversym_hdr = *hdr;
1903 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1904
1905 case SHT_GNU_verneed:
1906 elf_dynverref (abfd) = shindex;
1907 elf_tdata (abfd)->dynverref_hdr = *hdr;
1908 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1909
1910 case SHT_SHLIB:
1911 return TRUE;
1912
1913 case SHT_GROUP:
1914 if (! IS_VALID_GROUP_SECTION_HEADER (hdr))
1915 return FALSE;
1916 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1917 return FALSE;
1918 if (hdr->contents != NULL)
1919 {
1920 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
1921 unsigned int n_elt = hdr->sh_size / GRP_ENTRY_SIZE;
1922 asection *s;
1923
1924 if (idx->flags & GRP_COMDAT)
1925 hdr->bfd_section->flags
1926 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1927
1928 /* We try to keep the same section order as it comes in. */
1929 idx += n_elt;
1930 while (--n_elt != 0)
1931 {
1932 --idx;
1933
1934 if (idx->shdr != NULL
1935 && (s = idx->shdr->bfd_section) != NULL
1936 && elf_next_in_group (s) != NULL)
1937 {
1938 elf_next_in_group (hdr->bfd_section) = s;
1939 break;
1940 }
1941 }
1942 }
1943 break;
1944
1945 default:
1946 /* Possibly an attributes section. */
1947 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
1948 || hdr->sh_type == bed->obj_attrs_section_type)
1949 {
1950 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1951 return FALSE;
1952 _bfd_elf_parse_attributes (abfd, hdr);
1953 return TRUE;
1954 }
1955
1956 /* Check for any processor-specific section types. */
1957 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
1958 return TRUE;
1959
1960 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
1961 {
1962 if ((hdr->sh_flags & SHF_ALLOC) != 0)
1963 /* FIXME: How to properly handle allocated section reserved
1964 for applications? */
1965 (*_bfd_error_handler)
1966 (_("%B: don't know how to handle allocated, application "
1967 "specific section `%s' [0x%8x]"),
1968 abfd, name, hdr->sh_type);
1969 else
1970 /* Allow sections reserved for applications. */
1971 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1972 shindex);
1973 }
1974 else if (hdr->sh_type >= SHT_LOPROC
1975 && hdr->sh_type <= SHT_HIPROC)
1976 /* FIXME: We should handle this section. */
1977 (*_bfd_error_handler)
1978 (_("%B: don't know how to handle processor specific section "
1979 "`%s' [0x%8x]"),
1980 abfd, name, hdr->sh_type);
1981 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
1982 {
1983 /* Unrecognised OS-specific sections. */
1984 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
1985 /* SHF_OS_NONCONFORMING indicates that special knowledge is
1986 required to correctly process the section and the file should
1987 be rejected with an error message. */
1988 (*_bfd_error_handler)
1989 (_("%B: don't know how to handle OS specific section "
1990 "`%s' [0x%8x]"),
1991 abfd, name, hdr->sh_type);
1992 else
1993 /* Otherwise it should be processed. */
1994 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1995 }
1996 else
1997 /* FIXME: We should handle this section. */
1998 (*_bfd_error_handler)
1999 (_("%B: don't know how to handle section `%s' [0x%8x]"),
2000 abfd, name, hdr->sh_type);
2001
2002 return FALSE;
2003 }
2004
2005 return TRUE;
2006 }
2007
2008 /* Return the local symbol specified by ABFD, R_SYMNDX. */
2009
2010 Elf_Internal_Sym *
2011 bfd_sym_from_r_symndx (struct sym_cache *cache,
2012 bfd *abfd,
2013 unsigned long r_symndx)
2014 {
2015 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2016
2017 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
2018 {
2019 Elf_Internal_Shdr *symtab_hdr;
2020 unsigned char esym[sizeof (Elf64_External_Sym)];
2021 Elf_External_Sym_Shndx eshndx;
2022
2023 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2024 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2025 &cache->sym[ent], esym, &eshndx) == NULL)
2026 return NULL;
2027
2028 if (cache->abfd != abfd)
2029 {
2030 memset (cache->indx, -1, sizeof (cache->indx));
2031 cache->abfd = abfd;
2032 }
2033 cache->indx[ent] = r_symndx;
2034 }
2035
2036 return &cache->sym[ent];
2037 }
2038
2039 /* Given an ELF section number, retrieve the corresponding BFD
2040 section. */
2041
2042 asection *
2043 bfd_section_from_elf_index (bfd *abfd, unsigned int sec_index)
2044 {
2045 if (sec_index >= elf_numsections (abfd))
2046 return NULL;
2047 return elf_elfsections (abfd)[sec_index]->bfd_section;
2048 }
2049
2050 static const struct bfd_elf_special_section special_sections_b[] =
2051 {
2052 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2053 { NULL, 0, 0, 0, 0 }
2054 };
2055
2056 static const struct bfd_elf_special_section special_sections_c[] =
2057 {
2058 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2059 { NULL, 0, 0, 0, 0 }
2060 };
2061
2062 static const struct bfd_elf_special_section special_sections_d[] =
2063 {
2064 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2065 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2066 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2067 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2068 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2069 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2070 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2071 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2072 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2073 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2074 { NULL, 0, 0, 0, 0 }
2075 };
2076
2077 static const struct bfd_elf_special_section special_sections_f[] =
2078 {
2079 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2080 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2081 { NULL, 0, 0, 0, 0 }
2082 };
2083
2084 static const struct bfd_elf_special_section special_sections_g[] =
2085 {
2086 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2087 { STRING_COMMA_LEN (".gnu.lto_"), -1, SHT_PROGBITS, SHF_EXCLUDE },
2088 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2089 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2090 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2091 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2092 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2093 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2094 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2095 { NULL, 0, 0, 0, 0 }
2096 };
2097
2098 static const struct bfd_elf_special_section special_sections_h[] =
2099 {
2100 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2101 { NULL, 0, 0, 0, 0 }
2102 };
2103
2104 static const struct bfd_elf_special_section special_sections_i[] =
2105 {
2106 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2107 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2108 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2109 { NULL, 0, 0, 0, 0 }
2110 };
2111
2112 static const struct bfd_elf_special_section special_sections_l[] =
2113 {
2114 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2115 { NULL, 0, 0, 0, 0 }
2116 };
2117
2118 static const struct bfd_elf_special_section special_sections_n[] =
2119 {
2120 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2121 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2122 { NULL, 0, 0, 0, 0 }
2123 };
2124
2125 static const struct bfd_elf_special_section special_sections_p[] =
2126 {
2127 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2128 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2129 { NULL, 0, 0, 0, 0 }
2130 };
2131
2132 static const struct bfd_elf_special_section special_sections_r[] =
2133 {
2134 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2135 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2136 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2137 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2138 { NULL, 0, 0, 0, 0 }
2139 };
2140
2141 static const struct bfd_elf_special_section special_sections_s[] =
2142 {
2143 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2144 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2145 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2146 /* See struct bfd_elf_special_section declaration for the semantics of
2147 this special case where .prefix_length != strlen (.prefix). */
2148 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2149 { NULL, 0, 0, 0, 0 }
2150 };
2151
2152 static const struct bfd_elf_special_section special_sections_t[] =
2153 {
2154 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2155 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2156 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2157 { NULL, 0, 0, 0, 0 }
2158 };
2159
2160 static const struct bfd_elf_special_section special_sections_z[] =
2161 {
2162 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 },
2163 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 },
2164 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 },
2165 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 },
2166 { NULL, 0, 0, 0, 0 }
2167 };
2168
2169 static const struct bfd_elf_special_section * const special_sections[] =
2170 {
2171 special_sections_b, /* 'b' */
2172 special_sections_c, /* 'c' */
2173 special_sections_d, /* 'd' */
2174 NULL, /* 'e' */
2175 special_sections_f, /* 'f' */
2176 special_sections_g, /* 'g' */
2177 special_sections_h, /* 'h' */
2178 special_sections_i, /* 'i' */
2179 NULL, /* 'j' */
2180 NULL, /* 'k' */
2181 special_sections_l, /* 'l' */
2182 NULL, /* 'm' */
2183 special_sections_n, /* 'n' */
2184 NULL, /* 'o' */
2185 special_sections_p, /* 'p' */
2186 NULL, /* 'q' */
2187 special_sections_r, /* 'r' */
2188 special_sections_s, /* 's' */
2189 special_sections_t, /* 't' */
2190 NULL, /* 'u' */
2191 NULL, /* 'v' */
2192 NULL, /* 'w' */
2193 NULL, /* 'x' */
2194 NULL, /* 'y' */
2195 special_sections_z /* 'z' */
2196 };
2197
2198 const struct bfd_elf_special_section *
2199 _bfd_elf_get_special_section (const char *name,
2200 const struct bfd_elf_special_section *spec,
2201 unsigned int rela)
2202 {
2203 int i;
2204 int len;
2205
2206 len = strlen (name);
2207
2208 for (i = 0; spec[i].prefix != NULL; i++)
2209 {
2210 int suffix_len;
2211 int prefix_len = spec[i].prefix_length;
2212
2213 if (len < prefix_len)
2214 continue;
2215 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2216 continue;
2217
2218 suffix_len = spec[i].suffix_length;
2219 if (suffix_len <= 0)
2220 {
2221 if (name[prefix_len] != 0)
2222 {
2223 if (suffix_len == 0)
2224 continue;
2225 if (name[prefix_len] != '.'
2226 && (suffix_len == -2
2227 || (rela && spec[i].type == SHT_REL)))
2228 continue;
2229 }
2230 }
2231 else
2232 {
2233 if (len < prefix_len + suffix_len)
2234 continue;
2235 if (memcmp (name + len - suffix_len,
2236 spec[i].prefix + prefix_len,
2237 suffix_len) != 0)
2238 continue;
2239 }
2240 return &spec[i];
2241 }
2242
2243 return NULL;
2244 }
2245
2246 const struct bfd_elf_special_section *
2247 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2248 {
2249 int i;
2250 const struct bfd_elf_special_section *spec;
2251 const struct elf_backend_data *bed;
2252
2253 /* See if this is one of the special sections. */
2254 if (sec->name == NULL)
2255 return NULL;
2256
2257 bed = get_elf_backend_data (abfd);
2258 spec = bed->special_sections;
2259 if (spec)
2260 {
2261 spec = _bfd_elf_get_special_section (sec->name,
2262 bed->special_sections,
2263 sec->use_rela_p);
2264 if (spec != NULL)
2265 return spec;
2266 }
2267
2268 if (sec->name[0] != '.')
2269 return NULL;
2270
2271 i = sec->name[1] - 'b';
2272 if (i < 0 || i > 'z' - 'b')
2273 return NULL;
2274
2275 spec = special_sections[i];
2276
2277 if (spec == NULL)
2278 return NULL;
2279
2280 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2281 }
2282
2283 bfd_boolean
2284 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2285 {
2286 struct bfd_elf_section_data *sdata;
2287 const struct elf_backend_data *bed;
2288 const struct bfd_elf_special_section *ssect;
2289
2290 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2291 if (sdata == NULL)
2292 {
2293 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd,
2294 sizeof (*sdata));
2295 if (sdata == NULL)
2296 return FALSE;
2297 sec->used_by_bfd = sdata;
2298 }
2299
2300 /* Indicate whether or not this section should use RELA relocations. */
2301 bed = get_elf_backend_data (abfd);
2302 sec->use_rela_p = bed->default_use_rela_p;
2303
2304 /* When we read a file, we don't need to set ELF section type and
2305 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2306 anyway. We will set ELF section type and flags for all linker
2307 created sections. If user specifies BFD section flags, we will
2308 set ELF section type and flags based on BFD section flags in
2309 elf_fake_sections. Special handling for .init_array/.fini_array
2310 output sections since they may contain .ctors/.dtors input
2311 sections. We don't want _bfd_elf_init_private_section_data to
2312 copy ELF section type from .ctors/.dtors input sections. */
2313 if (abfd->direction != read_direction
2314 || (sec->flags & SEC_LINKER_CREATED) != 0)
2315 {
2316 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2317 if (ssect != NULL
2318 && (!sec->flags
2319 || (sec->flags & SEC_LINKER_CREATED) != 0
2320 || ssect->type == SHT_INIT_ARRAY
2321 || ssect->type == SHT_FINI_ARRAY))
2322 {
2323 elf_section_type (sec) = ssect->type;
2324 elf_section_flags (sec) = ssect->attr;
2325 }
2326 }
2327
2328 return _bfd_generic_new_section_hook (abfd, sec);
2329 }
2330
2331 /* Create a new bfd section from an ELF program header.
2332
2333 Since program segments have no names, we generate a synthetic name
2334 of the form segment<NUM>, where NUM is generally the index in the
2335 program header table. For segments that are split (see below) we
2336 generate the names segment<NUM>a and segment<NUM>b.
2337
2338 Note that some program segments may have a file size that is different than
2339 (less than) the memory size. All this means is that at execution the
2340 system must allocate the amount of memory specified by the memory size,
2341 but only initialize it with the first "file size" bytes read from the
2342 file. This would occur for example, with program segments consisting
2343 of combined data+bss.
2344
2345 To handle the above situation, this routine generates TWO bfd sections
2346 for the single program segment. The first has the length specified by
2347 the file size of the segment, and the second has the length specified
2348 by the difference between the two sizes. In effect, the segment is split
2349 into its initialized and uninitialized parts.
2350
2351 */
2352
2353 bfd_boolean
2354 _bfd_elf_make_section_from_phdr (bfd *abfd,
2355 Elf_Internal_Phdr *hdr,
2356 int hdr_index,
2357 const char *type_name)
2358 {
2359 asection *newsect;
2360 char *name;
2361 char namebuf[64];
2362 size_t len;
2363 int split;
2364
2365 split = ((hdr->p_memsz > 0)
2366 && (hdr->p_filesz > 0)
2367 && (hdr->p_memsz > hdr->p_filesz));
2368
2369 if (hdr->p_filesz > 0)
2370 {
2371 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "a" : "");
2372 len = strlen (namebuf) + 1;
2373 name = (char *) bfd_alloc (abfd, len);
2374 if (!name)
2375 return FALSE;
2376 memcpy (name, namebuf, len);
2377 newsect = bfd_make_section (abfd, name);
2378 if (newsect == NULL)
2379 return FALSE;
2380 newsect->vma = hdr->p_vaddr;
2381 newsect->lma = hdr->p_paddr;
2382 newsect->size = hdr->p_filesz;
2383 newsect->filepos = hdr->p_offset;
2384 newsect->flags |= SEC_HAS_CONTENTS;
2385 newsect->alignment_power = bfd_log2 (hdr->p_align);
2386 if (hdr->p_type == PT_LOAD)
2387 {
2388 newsect->flags |= SEC_ALLOC;
2389 newsect->flags |= SEC_LOAD;
2390 if (hdr->p_flags & PF_X)
2391 {
2392 /* FIXME: all we known is that it has execute PERMISSION,
2393 may be data. */
2394 newsect->flags |= SEC_CODE;
2395 }
2396 }
2397 if (!(hdr->p_flags & PF_W))
2398 {
2399 newsect->flags |= SEC_READONLY;
2400 }
2401 }
2402
2403 if (hdr->p_memsz > hdr->p_filesz)
2404 {
2405 bfd_vma align;
2406
2407 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "b" : "");
2408 len = strlen (namebuf) + 1;
2409 name = (char *) bfd_alloc (abfd, len);
2410 if (!name)
2411 return FALSE;
2412 memcpy (name, namebuf, len);
2413 newsect = bfd_make_section (abfd, name);
2414 if (newsect == NULL)
2415 return FALSE;
2416 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2417 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2418 newsect->size = hdr->p_memsz - hdr->p_filesz;
2419 newsect->filepos = hdr->p_offset + hdr->p_filesz;
2420 align = newsect->vma & -newsect->vma;
2421 if (align == 0 || align > hdr->p_align)
2422 align = hdr->p_align;
2423 newsect->alignment_power = bfd_log2 (align);
2424 if (hdr->p_type == PT_LOAD)
2425 {
2426 /* Hack for gdb. Segments that have not been modified do
2427 not have their contents written to a core file, on the
2428 assumption that a debugger can find the contents in the
2429 executable. We flag this case by setting the fake
2430 section size to zero. Note that "real" bss sections will
2431 always have their contents dumped to the core file. */
2432 if (bfd_get_format (abfd) == bfd_core)
2433 newsect->size = 0;
2434 newsect->flags |= SEC_ALLOC;
2435 if (hdr->p_flags & PF_X)
2436 newsect->flags |= SEC_CODE;
2437 }
2438 if (!(hdr->p_flags & PF_W))
2439 newsect->flags |= SEC_READONLY;
2440 }
2441
2442 return TRUE;
2443 }
2444
2445 bfd_boolean
2446 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int hdr_index)
2447 {
2448 const struct elf_backend_data *bed;
2449
2450 switch (hdr->p_type)
2451 {
2452 case PT_NULL:
2453 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "null");
2454
2455 case PT_LOAD:
2456 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "load");
2457
2458 case PT_DYNAMIC:
2459 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "dynamic");
2460
2461 case PT_INTERP:
2462 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "interp");
2463
2464 case PT_NOTE:
2465 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "note"))
2466 return FALSE;
2467 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2468 return FALSE;
2469 return TRUE;
2470
2471 case PT_SHLIB:
2472 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "shlib");
2473
2474 case PT_PHDR:
2475 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "phdr");
2476
2477 case PT_GNU_EH_FRAME:
2478 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index,
2479 "eh_frame_hdr");
2480
2481 case PT_GNU_STACK:
2482 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "stack");
2483
2484 case PT_GNU_RELRO:
2485 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "relro");
2486
2487 default:
2488 /* Check for any processor-specific program segment types. */
2489 bed = get_elf_backend_data (abfd);
2490 return bed->elf_backend_section_from_phdr (abfd, hdr, hdr_index, "proc");
2491 }
2492 }
2493
2494 /* Return the REL_HDR for SEC, assuming there is only a single one, either
2495 REL or RELA. */
2496
2497 Elf_Internal_Shdr *
2498 _bfd_elf_single_rel_hdr (asection *sec)
2499 {
2500 if (elf_section_data (sec)->rel.hdr)
2501 {
2502 BFD_ASSERT (elf_section_data (sec)->rela.hdr == NULL);
2503 return elf_section_data (sec)->rel.hdr;
2504 }
2505 else
2506 return elf_section_data (sec)->rela.hdr;
2507 }
2508
2509 /* Allocate and initialize a section-header for a new reloc section,
2510 containing relocations against ASECT. It is stored in RELDATA. If
2511 USE_RELA_P is TRUE, we use RELA relocations; otherwise, we use REL
2512 relocations. */
2513
2514 bfd_boolean
2515 _bfd_elf_init_reloc_shdr (bfd *abfd,
2516 struct bfd_elf_section_reloc_data *reldata,
2517 asection *asect,
2518 bfd_boolean use_rela_p)
2519 {
2520 Elf_Internal_Shdr *rel_hdr;
2521 char *name;
2522 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2523 bfd_size_type amt;
2524
2525 amt = sizeof (Elf_Internal_Shdr);
2526 BFD_ASSERT (reldata->hdr == NULL);
2527 rel_hdr = bfd_zalloc (abfd, amt);
2528 reldata->hdr = rel_hdr;
2529
2530 amt = sizeof ".rela" + strlen (asect->name);
2531 name = (char *) bfd_alloc (abfd, amt);
2532 if (name == NULL)
2533 return FALSE;
2534 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2535 rel_hdr->sh_name =
2536 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2537 FALSE);
2538 if (rel_hdr->sh_name == (unsigned int) -1)
2539 return FALSE;
2540 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2541 rel_hdr->sh_entsize = (use_rela_p
2542 ? bed->s->sizeof_rela
2543 : bed->s->sizeof_rel);
2544 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
2545 rel_hdr->sh_flags = 0;
2546 rel_hdr->sh_addr = 0;
2547 rel_hdr->sh_size = 0;
2548 rel_hdr->sh_offset = 0;
2549
2550 return TRUE;
2551 }
2552
2553 /* Return the default section type based on the passed in section flags. */
2554
2555 int
2556 bfd_elf_get_default_section_type (flagword flags)
2557 {
2558 if ((flags & SEC_ALLOC) != 0
2559 && (flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2560 return SHT_NOBITS;
2561 return SHT_PROGBITS;
2562 }
2563
2564 struct fake_section_arg
2565 {
2566 struct bfd_link_info *link_info;
2567 bfd_boolean failed;
2568 };
2569
2570 /* Set up an ELF internal section header for a section. */
2571
2572 static void
2573 elf_fake_sections (bfd *abfd, asection *asect, void *fsarg)
2574 {
2575 struct fake_section_arg *arg = (struct fake_section_arg *)fsarg;
2576 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2577 struct bfd_elf_section_data *esd = elf_section_data (asect);
2578 Elf_Internal_Shdr *this_hdr;
2579 unsigned int sh_type;
2580
2581 if (arg->failed)
2582 {
2583 /* We already failed; just get out of the bfd_map_over_sections
2584 loop. */
2585 return;
2586 }
2587
2588 this_hdr = &esd->this_hdr;
2589
2590 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2591 asect->name, FALSE);
2592 if (this_hdr->sh_name == (unsigned int) -1)
2593 {
2594 arg->failed = TRUE;
2595 return;
2596 }
2597
2598 /* Don't clear sh_flags. Assembler may set additional bits. */
2599
2600 if ((asect->flags & SEC_ALLOC) != 0
2601 || asect->user_set_vma)
2602 this_hdr->sh_addr = asect->vma;
2603 else
2604 this_hdr->sh_addr = 0;
2605
2606 this_hdr->sh_offset = 0;
2607 this_hdr->sh_size = asect->size;
2608 this_hdr->sh_link = 0;
2609 this_hdr->sh_addralign = (bfd_vma) 1 << asect->alignment_power;
2610 /* The sh_entsize and sh_info fields may have been set already by
2611 copy_private_section_data. */
2612
2613 this_hdr->bfd_section = asect;
2614 this_hdr->contents = NULL;
2615
2616 /* If the section type is unspecified, we set it based on
2617 asect->flags. */
2618 if ((asect->flags & SEC_GROUP) != 0)
2619 sh_type = SHT_GROUP;
2620 else
2621 sh_type = bfd_elf_get_default_section_type (asect->flags);
2622
2623 if (this_hdr->sh_type == SHT_NULL)
2624 this_hdr->sh_type = sh_type;
2625 else if (this_hdr->sh_type == SHT_NOBITS
2626 && sh_type == SHT_PROGBITS
2627 && (asect->flags & SEC_ALLOC) != 0)
2628 {
2629 /* Warn if we are changing a NOBITS section to PROGBITS, but
2630 allow the link to proceed. This can happen when users link
2631 non-bss input sections to bss output sections, or emit data
2632 to a bss output section via a linker script. */
2633 (*_bfd_error_handler)
2634 (_("warning: section `%A' type changed to PROGBITS"), asect);
2635 this_hdr->sh_type = sh_type;
2636 }
2637
2638 switch (this_hdr->sh_type)
2639 {
2640 default:
2641 break;
2642
2643 case SHT_STRTAB:
2644 case SHT_INIT_ARRAY:
2645 case SHT_FINI_ARRAY:
2646 case SHT_PREINIT_ARRAY:
2647 case SHT_NOTE:
2648 case SHT_NOBITS:
2649 case SHT_PROGBITS:
2650 break;
2651
2652 case SHT_HASH:
2653 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2654 break;
2655
2656 case SHT_DYNSYM:
2657 this_hdr->sh_entsize = bed->s->sizeof_sym;
2658 break;
2659
2660 case SHT_DYNAMIC:
2661 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2662 break;
2663
2664 case SHT_RELA:
2665 if (get_elf_backend_data (abfd)->may_use_rela_p)
2666 this_hdr->sh_entsize = bed->s->sizeof_rela;
2667 break;
2668
2669 case SHT_REL:
2670 if (get_elf_backend_data (abfd)->may_use_rel_p)
2671 this_hdr->sh_entsize = bed->s->sizeof_rel;
2672 break;
2673
2674 case SHT_GNU_versym:
2675 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2676 break;
2677
2678 case SHT_GNU_verdef:
2679 this_hdr->sh_entsize = 0;
2680 /* objcopy or strip will copy over sh_info, but may not set
2681 cverdefs. The linker will set cverdefs, but sh_info will be
2682 zero. */
2683 if (this_hdr->sh_info == 0)
2684 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2685 else
2686 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2687 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2688 break;
2689
2690 case SHT_GNU_verneed:
2691 this_hdr->sh_entsize = 0;
2692 /* objcopy or strip will copy over sh_info, but may not set
2693 cverrefs. The linker will set cverrefs, but sh_info will be
2694 zero. */
2695 if (this_hdr->sh_info == 0)
2696 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2697 else
2698 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2699 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2700 break;
2701
2702 case SHT_GROUP:
2703 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
2704 break;
2705
2706 case SHT_GNU_HASH:
2707 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
2708 break;
2709 }
2710
2711 if ((asect->flags & SEC_ALLOC) != 0)
2712 this_hdr->sh_flags |= SHF_ALLOC;
2713 if ((asect->flags & SEC_READONLY) == 0)
2714 this_hdr->sh_flags |= SHF_WRITE;
2715 if ((asect->flags & SEC_CODE) != 0)
2716 this_hdr->sh_flags |= SHF_EXECINSTR;
2717 if ((asect->flags & SEC_MERGE) != 0)
2718 {
2719 this_hdr->sh_flags |= SHF_MERGE;
2720 this_hdr->sh_entsize = asect->entsize;
2721 if ((asect->flags & SEC_STRINGS) != 0)
2722 this_hdr->sh_flags |= SHF_STRINGS;
2723 }
2724 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2725 this_hdr->sh_flags |= SHF_GROUP;
2726 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2727 {
2728 this_hdr->sh_flags |= SHF_TLS;
2729 if (asect->size == 0
2730 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2731 {
2732 struct bfd_link_order *o = asect->map_tail.link_order;
2733
2734 this_hdr->sh_size = 0;
2735 if (o != NULL)
2736 {
2737 this_hdr->sh_size = o->offset + o->size;
2738 if (this_hdr->sh_size != 0)
2739 this_hdr->sh_type = SHT_NOBITS;
2740 }
2741 }
2742 }
2743 if ((asect->flags & (SEC_GROUP | SEC_EXCLUDE)) == SEC_EXCLUDE)
2744 this_hdr->sh_flags |= SHF_EXCLUDE;
2745
2746 /* If the section has relocs, set up a section header for the
2747 SHT_REL[A] section. If two relocation sections are required for
2748 this section, it is up to the processor-specific back-end to
2749 create the other. */
2750 if ((asect->flags & SEC_RELOC) != 0)
2751 {
2752 /* When doing a relocatable link, create both REL and RELA sections if
2753 needed. */
2754 if (arg->link_info
2755 /* Do the normal setup if we wouldn't create any sections here. */
2756 && esd->rel.count + esd->rela.count > 0
2757 && (arg->link_info->relocatable || arg->link_info->emitrelocations))
2758 {
2759 if (esd->rel.count && esd->rel.hdr == NULL
2760 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rel, asect, FALSE))
2761 {
2762 arg->failed = TRUE;
2763 return;
2764 }
2765 if (esd->rela.count && esd->rela.hdr == NULL
2766 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rela, asect, TRUE))
2767 {
2768 arg->failed = TRUE;
2769 return;
2770 }
2771 }
2772 else if (!_bfd_elf_init_reloc_shdr (abfd,
2773 (asect->use_rela_p
2774 ? &esd->rela : &esd->rel),
2775 asect,
2776 asect->use_rela_p))
2777 arg->failed = TRUE;
2778 }
2779
2780 /* Check for processor-specific section types. */
2781 sh_type = this_hdr->sh_type;
2782 if (bed->elf_backend_fake_sections
2783 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2784 arg->failed = TRUE;
2785
2786 if (sh_type == SHT_NOBITS && asect->size != 0)
2787 {
2788 /* Don't change the header type from NOBITS if we are being
2789 called for objcopy --only-keep-debug. */
2790 this_hdr->sh_type = sh_type;
2791 }
2792 }
2793
2794 /* Fill in the contents of a SHT_GROUP section. Called from
2795 _bfd_elf_compute_section_file_positions for gas, objcopy, and
2796 when ELF targets use the generic linker, ld. Called for ld -r
2797 from bfd_elf_final_link. */
2798
2799 void
2800 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2801 {
2802 bfd_boolean *failedptr = (bfd_boolean *) failedptrarg;
2803 asection *elt, *first;
2804 unsigned char *loc;
2805 bfd_boolean gas;
2806
2807 /* Ignore linker created group section. See elfNN_ia64_object_p in
2808 elfxx-ia64.c. */
2809 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
2810 || *failedptr)
2811 return;
2812
2813 if (elf_section_data (sec)->this_hdr.sh_info == 0)
2814 {
2815 unsigned long symindx = 0;
2816
2817 /* elf_group_id will have been set up by objcopy and the
2818 generic linker. */
2819 if (elf_group_id (sec) != NULL)
2820 symindx = elf_group_id (sec)->udata.i;
2821
2822 if (symindx == 0)
2823 {
2824 /* If called from the assembler, swap_out_syms will have set up
2825 elf_section_syms. */
2826 BFD_ASSERT (elf_section_syms (abfd) != NULL);
2827 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2828 }
2829 elf_section_data (sec)->this_hdr.sh_info = symindx;
2830 }
2831 else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2)
2832 {
2833 /* The ELF backend linker sets sh_info to -2 when the group
2834 signature symbol is global, and thus the index can't be
2835 set until all local symbols are output. */
2836 asection *igroup = elf_sec_group (elf_next_in_group (sec));
2837 struct bfd_elf_section_data *sec_data = elf_section_data (igroup);
2838 unsigned long symndx = sec_data->this_hdr.sh_info;
2839 unsigned long extsymoff = 0;
2840 struct elf_link_hash_entry *h;
2841
2842 if (!elf_bad_symtab (igroup->owner))
2843 {
2844 Elf_Internal_Shdr *symtab_hdr;
2845
2846 symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr;
2847 extsymoff = symtab_hdr->sh_info;
2848 }
2849 h = elf_sym_hashes (igroup->owner)[symndx - extsymoff];
2850 while (h->root.type == bfd_link_hash_indirect
2851 || h->root.type == bfd_link_hash_warning)
2852 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2853
2854 elf_section_data (sec)->this_hdr.sh_info = h->indx;
2855 }
2856
2857 /* The contents won't be allocated for "ld -r" or objcopy. */
2858 gas = TRUE;
2859 if (sec->contents == NULL)
2860 {
2861 gas = FALSE;
2862 sec->contents = (unsigned char *) bfd_alloc (abfd, sec->size);
2863
2864 /* Arrange for the section to be written out. */
2865 elf_section_data (sec)->this_hdr.contents = sec->contents;
2866 if (sec->contents == NULL)
2867 {
2868 *failedptr = TRUE;
2869 return;
2870 }
2871 }
2872
2873 loc = sec->contents + sec->size;
2874
2875 /* Get the pointer to the first section in the group that gas
2876 squirreled away here. objcopy arranges for this to be set to the
2877 start of the input section group. */
2878 first = elt = elf_next_in_group (sec);
2879
2880 /* First element is a flag word. Rest of section is elf section
2881 indices for all the sections of the group. Write them backwards
2882 just to keep the group in the same order as given in .section
2883 directives, not that it matters. */
2884 while (elt != NULL)
2885 {
2886 asection *s;
2887
2888 s = elt;
2889 if (!gas)
2890 s = s->output_section;
2891 if (s != NULL
2892 && !bfd_is_abs_section (s))
2893 {
2894 unsigned int idx = elf_section_data (s)->this_idx;
2895
2896 loc -= 4;
2897 H_PUT_32 (abfd, idx, loc);
2898 }
2899 elt = elf_next_in_group (elt);
2900 if (elt == first)
2901 break;
2902 }
2903
2904 if ((loc -= 4) != sec->contents)
2905 abort ();
2906
2907 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2908 }
2909
2910 /* Assign all ELF section numbers. The dummy first section is handled here
2911 too. The link/info pointers for the standard section types are filled
2912 in here too, while we're at it. */
2913
2914 static bfd_boolean
2915 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
2916 {
2917 struct elf_obj_tdata *t = elf_tdata (abfd);
2918 asection *sec;
2919 unsigned int section_number, secn;
2920 Elf_Internal_Shdr **i_shdrp;
2921 struct bfd_elf_section_data *d;
2922 bfd_boolean need_symtab;
2923
2924 section_number = 1;
2925
2926 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2927
2928 /* SHT_GROUP sections are in relocatable files only. */
2929 if (link_info == NULL || link_info->relocatable)
2930 {
2931 /* Put SHT_GROUP sections first. */
2932 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2933 {
2934 d = elf_section_data (sec);
2935
2936 if (d->this_hdr.sh_type == SHT_GROUP)
2937 {
2938 if (sec->flags & SEC_LINKER_CREATED)
2939 {
2940 /* Remove the linker created SHT_GROUP sections. */
2941 bfd_section_list_remove (abfd, sec);
2942 abfd->section_count--;
2943 }
2944 else
2945 d->this_idx = section_number++;
2946 }
2947 }
2948 }
2949
2950 for (sec = abfd->sections; sec; sec = sec->next)
2951 {
2952 d = elf_section_data (sec);
2953
2954 if (d->this_hdr.sh_type != SHT_GROUP)
2955 d->this_idx = section_number++;
2956 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
2957 if (d->rel.hdr)
2958 {
2959 d->rel.idx = section_number++;
2960 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel.hdr->sh_name);
2961 }
2962 else
2963 d->rel.idx = 0;
2964
2965 if (d->rela.hdr)
2966 {
2967 d->rela.idx = section_number++;
2968 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rela.hdr->sh_name);
2969 }
2970 else
2971 d->rela.idx = 0;
2972 }
2973
2974 t->shstrtab_section = section_number++;
2975 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
2976 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
2977
2978 need_symtab = (bfd_get_symcount (abfd) > 0
2979 || (link_info == NULL
2980 && ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
2981 == HAS_RELOC)));
2982 if (need_symtab)
2983 {
2984 t->symtab_section = section_number++;
2985 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
2986 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
2987 {
2988 t->symtab_shndx_section = section_number++;
2989 t->symtab_shndx_hdr.sh_name
2990 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2991 ".symtab_shndx", FALSE);
2992 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
2993 return FALSE;
2994 }
2995 t->strtab_section = section_number++;
2996 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
2997 }
2998
2999 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
3000 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3001
3002 elf_numsections (abfd) = section_number;
3003 elf_elfheader (abfd)->e_shnum = section_number;
3004
3005 /* Set up the list of section header pointers, in agreement with the
3006 indices. */
3007 i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc2 (abfd, section_number,
3008 sizeof (Elf_Internal_Shdr *));
3009 if (i_shdrp == NULL)
3010 return FALSE;
3011
3012 i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd,
3013 sizeof (Elf_Internal_Shdr));
3014 if (i_shdrp[0] == NULL)
3015 {
3016 bfd_release (abfd, i_shdrp);
3017 return FALSE;
3018 }
3019
3020 elf_elfsections (abfd) = i_shdrp;
3021
3022 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
3023 if (need_symtab)
3024 {
3025 i_shdrp[t->symtab_section] = &t->symtab_hdr;
3026 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
3027 {
3028 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
3029 t->symtab_shndx_hdr.sh_link = t->symtab_section;
3030 }
3031 i_shdrp[t->strtab_section] = &t->strtab_hdr;
3032 t->symtab_hdr.sh_link = t->strtab_section;
3033 }
3034
3035 for (sec = abfd->sections; sec; sec = sec->next)
3036 {
3037 asection *s;
3038 const char *name;
3039
3040 d = elf_section_data (sec);
3041
3042 i_shdrp[d->this_idx] = &d->this_hdr;
3043 if (d->rel.idx != 0)
3044 i_shdrp[d->rel.idx] = d->rel.hdr;
3045 if (d->rela.idx != 0)
3046 i_shdrp[d->rela.idx] = d->rela.hdr;
3047
3048 /* Fill in the sh_link and sh_info fields while we're at it. */
3049
3050 /* sh_link of a reloc section is the section index of the symbol
3051 table. sh_info is the section index of the section to which
3052 the relocation entries apply. */
3053 if (d->rel.idx != 0)
3054 {
3055 d->rel.hdr->sh_link = t->symtab_section;
3056 d->rel.hdr->sh_info = d->this_idx;
3057 }
3058 if (d->rela.idx != 0)
3059 {
3060 d->rela.hdr->sh_link = t->symtab_section;
3061 d->rela.hdr->sh_info = d->this_idx;
3062 }
3063
3064 /* We need to set up sh_link for SHF_LINK_ORDER. */
3065 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3066 {
3067 s = elf_linked_to_section (sec);
3068 if (s)
3069 {
3070 /* elf_linked_to_section points to the input section. */
3071 if (link_info != NULL)
3072 {
3073 /* Check discarded linkonce section. */
3074 if (elf_discarded_section (s))
3075 {
3076 asection *kept;
3077 (*_bfd_error_handler)
3078 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
3079 abfd, d->this_hdr.bfd_section,
3080 s, s->owner);
3081 /* Point to the kept section if it has the same
3082 size as the discarded one. */
3083 kept = _bfd_elf_check_kept_section (s, link_info);
3084 if (kept == NULL)
3085 {
3086 bfd_set_error (bfd_error_bad_value);
3087 return FALSE;
3088 }
3089 s = kept;
3090 }
3091
3092 s = s->output_section;
3093 BFD_ASSERT (s != NULL);
3094 }
3095 else
3096 {
3097 /* Handle objcopy. */
3098 if (s->output_section == NULL)
3099 {
3100 (*_bfd_error_handler)
3101 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
3102 abfd, d->this_hdr.bfd_section, s, s->owner);
3103 bfd_set_error (bfd_error_bad_value);
3104 return FALSE;
3105 }
3106 s = s->output_section;
3107 }
3108 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3109 }
3110 else
3111 {
3112 /* PR 290:
3113 The Intel C compiler generates SHT_IA_64_UNWIND with
3114 SHF_LINK_ORDER. But it doesn't set the sh_link or
3115 sh_info fields. Hence we could get the situation
3116 where s is NULL. */
3117 const struct elf_backend_data *bed
3118 = get_elf_backend_data (abfd);
3119 if (bed->link_order_error_handler)
3120 bed->link_order_error_handler
3121 (_("%B: warning: sh_link not set for section `%A'"),
3122 abfd, sec);
3123 }
3124 }
3125
3126 switch (d->this_hdr.sh_type)
3127 {
3128 case SHT_REL:
3129 case SHT_RELA:
3130 /* A reloc section which we are treating as a normal BFD
3131 section. sh_link is the section index of the symbol
3132 table. sh_info is the section index of the section to
3133 which the relocation entries apply. We assume that an
3134 allocated reloc section uses the dynamic symbol table.
3135 FIXME: How can we be sure? */
3136 s = bfd_get_section_by_name (abfd, ".dynsym");
3137 if (s != NULL)
3138 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3139
3140 /* We look up the section the relocs apply to by name. */
3141 name = sec->name;
3142 if (d->this_hdr.sh_type == SHT_REL)
3143 name += 4;
3144 else
3145 name += 5;
3146 s = bfd_get_section_by_name (abfd, name);
3147 if (s != NULL)
3148 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3149 break;
3150
3151 case SHT_STRTAB:
3152 /* We assume that a section named .stab*str is a stabs
3153 string section. We look for a section with the same name
3154 but without the trailing ``str'', and set its sh_link
3155 field to point to this section. */
3156 if (CONST_STRNEQ (sec->name, ".stab")
3157 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3158 {
3159 size_t len;
3160 char *alc;
3161
3162 len = strlen (sec->name);
3163 alc = (char *) bfd_malloc (len - 2);
3164 if (alc == NULL)
3165 return FALSE;
3166 memcpy (alc, sec->name, len - 3);
3167 alc[len - 3] = '\0';
3168 s = bfd_get_section_by_name (abfd, alc);
3169 free (alc);
3170 if (s != NULL)
3171 {
3172 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3173
3174 /* This is a .stab section. */
3175 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3176 elf_section_data (s)->this_hdr.sh_entsize
3177 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3178 }
3179 }
3180 break;
3181
3182 case SHT_DYNAMIC:
3183 case SHT_DYNSYM:
3184 case SHT_GNU_verneed:
3185 case SHT_GNU_verdef:
3186 /* sh_link is the section header index of the string table
3187 used for the dynamic entries, or the symbol table, or the
3188 version strings. */
3189 s = bfd_get_section_by_name (abfd, ".dynstr");
3190 if (s != NULL)
3191 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3192 break;
3193
3194 case SHT_GNU_LIBLIST:
3195 /* sh_link is the section header index of the prelink library
3196 list used for the dynamic entries, or the symbol table, or
3197 the version strings. */
3198 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3199 ? ".dynstr" : ".gnu.libstr");
3200 if (s != NULL)
3201 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3202 break;
3203
3204 case SHT_HASH:
3205 case SHT_GNU_HASH:
3206 case SHT_GNU_versym:
3207 /* sh_link is the section header index of the symbol table
3208 this hash table or version table is for. */
3209 s = bfd_get_section_by_name (abfd, ".dynsym");
3210 if (s != NULL)
3211 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3212 break;
3213
3214 case SHT_GROUP:
3215 d->this_hdr.sh_link = t->symtab_section;
3216 }
3217 }
3218
3219 for (secn = 1; secn < section_number; ++secn)
3220 if (i_shdrp[secn] == NULL)
3221 i_shdrp[secn] = i_shdrp[0];
3222 else
3223 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
3224 i_shdrp[secn]->sh_name);
3225 return TRUE;
3226 }
3227
3228 /* Map symbol from it's internal number to the external number, moving
3229 all local symbols to be at the head of the list. */
3230
3231 static bfd_boolean
3232 sym_is_global (bfd *abfd, asymbol *sym)
3233 {
3234 /* If the backend has a special mapping, use it. */
3235 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3236 if (bed->elf_backend_sym_is_global)
3237 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3238
3239 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0
3240 || bfd_is_und_section (bfd_get_section (sym))
3241 || bfd_is_com_section (bfd_get_section (sym)));
3242 }
3243
3244 /* Don't output section symbols for sections that are not going to be
3245 output. */
3246
3247 static bfd_boolean
3248 ignore_section_sym (bfd *abfd, asymbol *sym)
3249 {
3250 return ((sym->flags & BSF_SECTION_SYM) != 0
3251 && !(sym->section->owner == abfd
3252 || (sym->section->output_section->owner == abfd
3253 && sym->section->output_offset == 0)));
3254 }
3255
3256 static bfd_boolean
3257 elf_map_symbols (bfd *abfd)
3258 {
3259 unsigned int symcount = bfd_get_symcount (abfd);
3260 asymbol **syms = bfd_get_outsymbols (abfd);
3261 asymbol **sect_syms;
3262 unsigned int num_locals = 0;
3263 unsigned int num_globals = 0;
3264 unsigned int num_locals2 = 0;
3265 unsigned int num_globals2 = 0;
3266 int max_index = 0;
3267 unsigned int idx;
3268 asection *asect;
3269 asymbol **new_syms;
3270
3271 #ifdef DEBUG
3272 fprintf (stderr, "elf_map_symbols\n");
3273 fflush (stderr);
3274 #endif
3275
3276 for (asect = abfd->sections; asect; asect = asect->next)
3277 {
3278 if (max_index < asect->index)
3279 max_index = asect->index;
3280 }
3281
3282 max_index++;
3283 sect_syms = (asymbol **) bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
3284 if (sect_syms == NULL)
3285 return FALSE;
3286 elf_section_syms (abfd) = sect_syms;
3287 elf_num_section_syms (abfd) = max_index;
3288
3289 /* Init sect_syms entries for any section symbols we have already
3290 decided to output. */
3291 for (idx = 0; idx < symcount; idx++)
3292 {
3293 asymbol *sym = syms[idx];
3294
3295 if ((sym->flags & BSF_SECTION_SYM) != 0
3296 && sym->value == 0
3297 && !ignore_section_sym (abfd, sym))
3298 {
3299 asection *sec = sym->section;
3300
3301 if (sec->owner != abfd)
3302 sec = sec->output_section;
3303
3304 sect_syms[sec->index] = syms[idx];
3305 }
3306 }
3307
3308 /* Classify all of the symbols. */
3309 for (idx = 0; idx < symcount; idx++)
3310 {
3311 if (ignore_section_sym (abfd, syms[idx]))
3312 continue;
3313 if (!sym_is_global (abfd, syms[idx]))
3314 num_locals++;
3315 else
3316 num_globals++;
3317 }
3318
3319 /* We will be adding a section symbol for each normal BFD section. Most
3320 sections will already have a section symbol in outsymbols, but
3321 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3322 at least in that case. */
3323 for (asect = abfd->sections; asect; asect = asect->next)
3324 {
3325 if (sect_syms[asect->index] == NULL)
3326 {
3327 if (!sym_is_global (abfd, asect->symbol))
3328 num_locals++;
3329 else
3330 num_globals++;
3331 }
3332 }
3333
3334 /* Now sort the symbols so the local symbols are first. */
3335 new_syms = (asymbol **) bfd_alloc2 (abfd, num_locals + num_globals,
3336 sizeof (asymbol *));
3337
3338 if (new_syms == NULL)
3339 return FALSE;
3340
3341 for (idx = 0; idx < symcount; idx++)
3342 {
3343 asymbol *sym = syms[idx];
3344 unsigned int i;
3345
3346 if (ignore_section_sym (abfd, sym))
3347 continue;
3348 if (!sym_is_global (abfd, sym))
3349 i = num_locals2++;
3350 else
3351 i = num_locals + num_globals2++;
3352 new_syms[i] = sym;
3353 sym->udata.i = i + 1;
3354 }
3355 for (asect = abfd->sections; asect; asect = asect->next)
3356 {
3357 if (sect_syms[asect->index] == NULL)
3358 {
3359 asymbol *sym = asect->symbol;
3360 unsigned int i;
3361
3362 sect_syms[asect->index] = sym;
3363 if (!sym_is_global (abfd, sym))
3364 i = num_locals2++;
3365 else
3366 i = num_locals + num_globals2++;
3367 new_syms[i] = sym;
3368 sym->udata.i = i + 1;
3369 }
3370 }
3371
3372 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3373
3374 elf_num_locals (abfd) = num_locals;
3375 elf_num_globals (abfd) = num_globals;
3376 return TRUE;
3377 }
3378
3379 /* Align to the maximum file alignment that could be required for any
3380 ELF data structure. */
3381
3382 static inline file_ptr
3383 align_file_position (file_ptr off, int align)
3384 {
3385 return (off + align - 1) & ~(align - 1);
3386 }
3387
3388 /* Assign a file position to a section, optionally aligning to the
3389 required section alignment. */
3390
3391 file_ptr
3392 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3393 file_ptr offset,
3394 bfd_boolean align)
3395 {
3396 if (align && i_shdrp->sh_addralign > 1)
3397 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
3398 i_shdrp->sh_offset = offset;
3399 if (i_shdrp->bfd_section != NULL)
3400 i_shdrp->bfd_section->filepos = offset;
3401 if (i_shdrp->sh_type != SHT_NOBITS)
3402 offset += i_shdrp->sh_size;
3403 return offset;
3404 }
3405
3406 /* Compute the file positions we are going to put the sections at, and
3407 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3408 is not NULL, this is being called by the ELF backend linker. */
3409
3410 bfd_boolean
3411 _bfd_elf_compute_section_file_positions (bfd *abfd,
3412 struct bfd_link_info *link_info)
3413 {
3414 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3415 struct fake_section_arg fsargs;
3416 bfd_boolean failed;
3417 struct bfd_strtab_hash *strtab = NULL;
3418 Elf_Internal_Shdr *shstrtab_hdr;
3419 bfd_boolean need_symtab;
3420
3421 if (abfd->output_has_begun)
3422 return TRUE;
3423
3424 /* Do any elf backend specific processing first. */
3425 if (bed->elf_backend_begin_write_processing)
3426 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3427
3428 if (! prep_headers (abfd))
3429 return FALSE;
3430
3431 /* Post process the headers if necessary. */
3432 if (bed->elf_backend_post_process_headers)
3433 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3434
3435 fsargs.failed = FALSE;
3436 fsargs.link_info = link_info;
3437 bfd_map_over_sections (abfd, elf_fake_sections, &fsargs);
3438 if (fsargs.failed)
3439 return FALSE;
3440
3441 if (!assign_section_numbers (abfd, link_info))
3442 return FALSE;
3443
3444 /* The backend linker builds symbol table information itself. */
3445 need_symtab = (link_info == NULL
3446 && (bfd_get_symcount (abfd) > 0
3447 || ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
3448 == HAS_RELOC)));
3449 if (need_symtab)
3450 {
3451 /* Non-zero if doing a relocatable link. */
3452 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3453
3454 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3455 return FALSE;
3456 }
3457
3458 failed = FALSE;
3459 if (link_info == NULL)
3460 {
3461 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3462 if (failed)
3463 return FALSE;
3464 }
3465
3466 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3467 /* sh_name was set in prep_headers. */
3468 shstrtab_hdr->sh_type = SHT_STRTAB;
3469 shstrtab_hdr->sh_flags = 0;
3470 shstrtab_hdr->sh_addr = 0;
3471 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3472 shstrtab_hdr->sh_entsize = 0;
3473 shstrtab_hdr->sh_link = 0;
3474 shstrtab_hdr->sh_info = 0;
3475 /* sh_offset is set in assign_file_positions_except_relocs. */
3476 shstrtab_hdr->sh_addralign = 1;
3477
3478 if (!assign_file_positions_except_relocs (abfd, link_info))
3479 return FALSE;
3480
3481 if (need_symtab)
3482 {
3483 file_ptr off;
3484 Elf_Internal_Shdr *hdr;
3485
3486 off = elf_tdata (abfd)->next_file_pos;
3487
3488 hdr = &elf_tdata (abfd)->symtab_hdr;
3489 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3490
3491 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3492 if (hdr->sh_size != 0)
3493 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3494
3495 hdr = &elf_tdata (abfd)->strtab_hdr;
3496 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3497
3498 elf_tdata (abfd)->next_file_pos = off;
3499
3500 /* Now that we know where the .strtab section goes, write it
3501 out. */
3502 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3503 || ! _bfd_stringtab_emit (abfd, strtab))
3504 return FALSE;
3505 _bfd_stringtab_free (strtab);
3506 }
3507
3508 abfd->output_has_begun = TRUE;
3509
3510 return TRUE;
3511 }
3512
3513 /* Make an initial estimate of the size of the program header. If we
3514 get the number wrong here, we'll redo section placement. */
3515
3516 static bfd_size_type
3517 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
3518 {
3519 size_t segs;
3520 asection *s;
3521 const struct elf_backend_data *bed;
3522
3523 /* Assume we will need exactly two PT_LOAD segments: one for text
3524 and one for data. */
3525 segs = 2;
3526
3527 s = bfd_get_section_by_name (abfd, ".interp");
3528 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3529 {
3530 /* If we have a loadable interpreter section, we need a
3531 PT_INTERP segment. In this case, assume we also need a
3532 PT_PHDR segment, although that may not be true for all
3533 targets. */
3534 segs += 2;
3535 }
3536
3537 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
3538 {
3539 /* We need a PT_DYNAMIC segment. */
3540 ++segs;
3541 }
3542
3543 if (info != NULL && info->relro)
3544 {
3545 /* We need a PT_GNU_RELRO segment. */
3546 ++segs;
3547 }
3548
3549 if (elf_tdata (abfd)->eh_frame_hdr)
3550 {
3551 /* We need a PT_GNU_EH_FRAME segment. */
3552 ++segs;
3553 }
3554
3555 if (elf_tdata (abfd)->stack_flags)
3556 {
3557 /* We need a PT_GNU_STACK segment. */
3558 ++segs;
3559 }
3560
3561 for (s = abfd->sections; s != NULL; s = s->next)
3562 {
3563 if ((s->flags & SEC_LOAD) != 0
3564 && CONST_STRNEQ (s->name, ".note"))
3565 {
3566 /* We need a PT_NOTE segment. */
3567 ++segs;
3568 /* Try to create just one PT_NOTE segment
3569 for all adjacent loadable .note* sections.
3570 gABI requires that within a PT_NOTE segment
3571 (and also inside of each SHT_NOTE section)
3572 each note is padded to a multiple of 4 size,
3573 so we check whether the sections are correctly
3574 aligned. */
3575 if (s->alignment_power == 2)
3576 while (s->next != NULL
3577 && s->next->alignment_power == 2
3578 && (s->next->flags & SEC_LOAD) != 0
3579 && CONST_STRNEQ (s->next->name, ".note"))
3580 s = s->next;
3581 }
3582 }
3583
3584 for (s = abfd->sections; s != NULL; s = s->next)
3585 {
3586 if (s->flags & SEC_THREAD_LOCAL)
3587 {
3588 /* We need a PT_TLS segment. */
3589 ++segs;
3590 break;
3591 }
3592 }
3593
3594 /* Let the backend count up any program headers it might need. */
3595 bed = get_elf_backend_data (abfd);
3596 if (bed->elf_backend_additional_program_headers)
3597 {
3598 int a;
3599
3600 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
3601 if (a == -1)
3602 abort ();
3603 segs += a;
3604 }
3605
3606 return segs * bed->s->sizeof_phdr;
3607 }
3608
3609 /* Find the segment that contains the output_section of section. */
3610
3611 Elf_Internal_Phdr *
3612 _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
3613 {
3614 struct elf_segment_map *m;
3615 Elf_Internal_Phdr *p;
3616
3617 for (m = elf_tdata (abfd)->segment_map,
3618 p = elf_tdata (abfd)->phdr;
3619 m != NULL;
3620 m = m->next, p++)
3621 {
3622 int i;
3623
3624 for (i = m->count - 1; i >= 0; i--)
3625 if (m->sections[i] == section)
3626 return p;
3627 }
3628
3629 return NULL;
3630 }
3631
3632 /* Create a mapping from a set of sections to a program segment. */
3633
3634 static struct elf_segment_map *
3635 make_mapping (bfd *abfd,
3636 asection **sections,
3637 unsigned int from,
3638 unsigned int to,
3639 bfd_boolean phdr)
3640 {
3641 struct elf_segment_map *m;
3642 unsigned int i;
3643 asection **hdrpp;
3644 bfd_size_type amt;
3645
3646 amt = sizeof (struct elf_segment_map);
3647 amt += (to - from - 1) * sizeof (asection *);
3648 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3649 if (m == NULL)
3650 return NULL;
3651 m->next = NULL;
3652 m->p_type = PT_LOAD;
3653 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3654 m->sections[i - from] = *hdrpp;
3655 m->count = to - from;
3656
3657 if (from == 0 && phdr)
3658 {
3659 /* Include the headers in the first PT_LOAD segment. */
3660 m->includes_filehdr = 1;
3661 m->includes_phdrs = 1;
3662 }
3663
3664 return m;
3665 }
3666
3667 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3668 on failure. */
3669
3670 struct elf_segment_map *
3671 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3672 {
3673 struct elf_segment_map *m;
3674
3675 m = (struct elf_segment_map *) bfd_zalloc (abfd,
3676 sizeof (struct elf_segment_map));
3677 if (m == NULL)
3678 return NULL;
3679 m->next = NULL;
3680 m->p_type = PT_DYNAMIC;
3681 m->count = 1;
3682 m->sections[0] = dynsec;
3683
3684 return m;
3685 }
3686
3687 /* Possibly add or remove segments from the segment map. */
3688
3689 static bfd_boolean
3690 elf_modify_segment_map (bfd *abfd,
3691 struct bfd_link_info *info,
3692 bfd_boolean remove_empty_load)
3693 {
3694 struct elf_segment_map **m;
3695 const struct elf_backend_data *bed;
3696
3697 /* The placement algorithm assumes that non allocated sections are
3698 not in PT_LOAD segments. We ensure this here by removing such
3699 sections from the segment map. We also remove excluded
3700 sections. Finally, any PT_LOAD segment without sections is
3701 removed. */
3702 m = &elf_tdata (abfd)->segment_map;
3703 while (*m)
3704 {
3705 unsigned int i, new_count;
3706
3707 for (new_count = 0, i = 0; i < (*m)->count; i++)
3708 {
3709 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
3710 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
3711 || (*m)->p_type != PT_LOAD))
3712 {
3713 (*m)->sections[new_count] = (*m)->sections[i];
3714 new_count++;
3715 }
3716 }
3717 (*m)->count = new_count;
3718
3719 if (remove_empty_load && (*m)->p_type == PT_LOAD && (*m)->count == 0)
3720 *m = (*m)->next;
3721 else
3722 m = &(*m)->next;
3723 }
3724
3725 bed = get_elf_backend_data (abfd);
3726 if (bed->elf_backend_modify_segment_map != NULL)
3727 {
3728 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
3729 return FALSE;
3730 }
3731
3732 return TRUE;
3733 }
3734
3735 /* Set up a mapping from BFD sections to program segments. */
3736
3737 bfd_boolean
3738 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
3739 {
3740 unsigned int count;
3741 struct elf_segment_map *m;
3742 asection **sections = NULL;
3743 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3744 bfd_boolean no_user_phdrs;
3745
3746 no_user_phdrs = elf_tdata (abfd)->segment_map == NULL;
3747 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
3748 {
3749 asection *s;
3750 unsigned int i;
3751 struct elf_segment_map *mfirst;
3752 struct elf_segment_map **pm;
3753 asection *last_hdr;
3754 bfd_vma last_size;
3755 unsigned int phdr_index;
3756 bfd_vma maxpagesize;
3757 asection **hdrpp;
3758 bfd_boolean phdr_in_segment = TRUE;
3759 bfd_boolean writable;
3760 int tls_count = 0;
3761 asection *first_tls = NULL;
3762 asection *dynsec, *eh_frame_hdr;
3763 bfd_size_type amt;
3764 bfd_vma addr_mask, wrap_to = 0;
3765
3766 /* Select the allocated sections, and sort them. */
3767
3768 sections = (asection **) bfd_malloc2 (bfd_count_sections (abfd),
3769 sizeof (asection *));
3770 if (sections == NULL)
3771 goto error_return;
3772
3773 /* Calculate top address, avoiding undefined behaviour of shift
3774 left operator when shift count is equal to size of type
3775 being shifted. */
3776 addr_mask = ((bfd_vma) 1 << (bfd_arch_bits_per_address (abfd) - 1)) - 1;
3777 addr_mask = (addr_mask << 1) + 1;
3778
3779 i = 0;
3780 for (s = abfd->sections; s != NULL; s = s->next)
3781 {
3782 if ((s->flags & SEC_ALLOC) != 0)
3783 {
3784 sections[i] = s;
3785 ++i;
3786 /* A wrapping section potentially clashes with header. */
3787 if (((s->lma + s->size) & addr_mask) < (s->lma & addr_mask))
3788 wrap_to = (s->lma + s->size) & addr_mask;
3789 }
3790 }
3791 BFD_ASSERT (i <= bfd_count_sections (abfd));
3792 count = i;
3793
3794 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3795
3796 /* Build the mapping. */
3797
3798 mfirst = NULL;
3799 pm = &mfirst;
3800
3801 /* If we have a .interp section, then create a PT_PHDR segment for
3802 the program headers and a PT_INTERP segment for the .interp
3803 section. */
3804 s = bfd_get_section_by_name (abfd, ".interp");
3805 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3806 {
3807 amt = sizeof (struct elf_segment_map);
3808 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3809 if (m == NULL)
3810 goto error_return;
3811 m->next = NULL;
3812 m->p_type = PT_PHDR;
3813 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3814 m->p_flags = PF_R | PF_X;
3815 m->p_flags_valid = 1;
3816 m->includes_phdrs = 1;
3817
3818 *pm = m;
3819 pm = &m->next;
3820
3821 amt = sizeof (struct elf_segment_map);
3822 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3823 if (m == NULL)
3824 goto error_return;
3825 m->next = NULL;
3826 m->p_type = PT_INTERP;
3827 m->count = 1;
3828 m->sections[0] = s;
3829
3830 *pm = m;
3831 pm = &m->next;
3832 }
3833
3834 /* Look through the sections. We put sections in the same program
3835 segment when the start of the second section can be placed within
3836 a few bytes of the end of the first section. */
3837 last_hdr = NULL;
3838 last_size = 0;
3839 phdr_index = 0;
3840 maxpagesize = bed->maxpagesize;
3841 writable = FALSE;
3842 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3843 if (dynsec != NULL
3844 && (dynsec->flags & SEC_LOAD) == 0)
3845 dynsec = NULL;
3846
3847 /* Deal with -Ttext or something similar such that the first section
3848 is not adjacent to the program headers. This is an
3849 approximation, since at this point we don't know exactly how many
3850 program headers we will need. */
3851 if (count > 0)
3852 {
3853 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
3854
3855 if (phdr_size == (bfd_size_type) -1)
3856 phdr_size = get_program_header_size (abfd, info);
3857 if ((abfd->flags & D_PAGED) == 0
3858 || (sections[0]->lma & addr_mask) < phdr_size
3859 || ((sections[0]->lma & addr_mask) % maxpagesize
3860 < phdr_size % maxpagesize)
3861 || (sections[0]->lma & addr_mask & -maxpagesize) < wrap_to)
3862 phdr_in_segment = FALSE;
3863 }
3864
3865 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3866 {
3867 asection *hdr;
3868 bfd_boolean new_segment;
3869
3870 hdr = *hdrpp;
3871
3872 /* See if this section and the last one will fit in the same
3873 segment. */
3874
3875 if (last_hdr == NULL)
3876 {
3877 /* If we don't have a segment yet, then we don't need a new
3878 one (we build the last one after this loop). */
3879 new_segment = FALSE;
3880 }
3881 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3882 {
3883 /* If this section has a different relation between the
3884 virtual address and the load address, then we need a new
3885 segment. */
3886 new_segment = TRUE;
3887 }
3888 else if (hdr->lma < last_hdr->lma + last_size
3889 || last_hdr->lma + last_size < last_hdr->lma)
3890 {
3891 /* If this section has a load address that makes it overlap
3892 the previous section, then we need a new segment. */
3893 new_segment = TRUE;
3894 }
3895 /* In the next test we have to be careful when last_hdr->lma is close
3896 to the end of the address space. If the aligned address wraps
3897 around to the start of the address space, then there are no more
3898 pages left in memory and it is OK to assume that the current
3899 section can be included in the current segment. */
3900 else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
3901 > last_hdr->lma)
3902 && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
3903 <= hdr->lma))
3904 {
3905 /* If putting this section in this segment would force us to
3906 skip a page in the segment, then we need a new segment. */
3907 new_segment = TRUE;
3908 }
3909 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
3910 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
3911 {
3912 /* We don't want to put a loadable section after a
3913 nonloadable section in the same segment.
3914 Consider .tbss sections as loadable for this purpose. */
3915 new_segment = TRUE;
3916 }
3917 else if ((abfd->flags & D_PAGED) == 0)
3918 {
3919 /* If the file is not demand paged, which means that we
3920 don't require the sections to be correctly aligned in the
3921 file, then there is no other reason for a new segment. */
3922 new_segment = FALSE;
3923 }
3924 else if (! writable
3925 && (hdr->flags & SEC_READONLY) == 0
3926 && (((last_hdr->lma + last_size - 1) & -maxpagesize)
3927 != (hdr->lma & -maxpagesize)))
3928 {
3929 /* We don't want to put a writable section in a read only
3930 segment, unless they are on the same page in memory
3931 anyhow. We already know that the last section does not
3932 bring us past the current section on the page, so the
3933 only case in which the new section is not on the same
3934 page as the previous section is when the previous section
3935 ends precisely on a page boundary. */
3936 new_segment = TRUE;
3937 }
3938 else
3939 {
3940 /* Otherwise, we can use the same segment. */
3941 new_segment = FALSE;
3942 }
3943
3944 /* Allow interested parties a chance to override our decision. */
3945 if (last_hdr != NULL
3946 && info != NULL
3947 && info->callbacks->override_segment_assignment != NULL)
3948 new_segment
3949 = info->callbacks->override_segment_assignment (info, abfd, hdr,
3950 last_hdr,
3951 new_segment);
3952
3953 if (! new_segment)
3954 {
3955 if ((hdr->flags & SEC_READONLY) == 0)
3956 writable = TRUE;
3957 last_hdr = hdr;
3958 /* .tbss sections effectively have zero size. */
3959 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
3960 != SEC_THREAD_LOCAL)
3961 last_size = hdr->size;
3962 else
3963 last_size = 0;
3964 continue;
3965 }
3966
3967 /* We need a new program segment. We must create a new program
3968 header holding all the sections from phdr_index until hdr. */
3969
3970 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3971 if (m == NULL)
3972 goto error_return;
3973
3974 *pm = m;
3975 pm = &m->next;
3976
3977 if ((hdr->flags & SEC_READONLY) == 0)
3978 writable = TRUE;
3979 else
3980 writable = FALSE;
3981
3982 last_hdr = hdr;
3983 /* .tbss sections effectively have zero size. */
3984 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3985 last_size = hdr->size;
3986 else
3987 last_size = 0;
3988 phdr_index = i;
3989 phdr_in_segment = FALSE;
3990 }
3991
3992 /* Create a final PT_LOAD program segment, but not if it's just
3993 for .tbss. */
3994 if (last_hdr != NULL
3995 && (i - phdr_index != 1
3996 || ((last_hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
3997 != SEC_THREAD_LOCAL)))
3998 {
3999 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
4000 if (m == NULL)
4001 goto error_return;
4002
4003 *pm = m;
4004 pm = &m->next;
4005 }
4006
4007 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4008 if (dynsec != NULL)
4009 {
4010 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
4011 if (m == NULL)
4012 goto error_return;
4013 *pm = m;
4014 pm = &m->next;
4015 }
4016
4017 /* For each batch of consecutive loadable .note sections,
4018 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
4019 because if we link together nonloadable .note sections and
4020 loadable .note sections, we will generate two .note sections
4021 in the output file. FIXME: Using names for section types is
4022 bogus anyhow. */
4023 for (s = abfd->sections; s != NULL; s = s->next)
4024 {
4025 if ((s->flags & SEC_LOAD) != 0
4026 && CONST_STRNEQ (s->name, ".note"))
4027 {
4028 asection *s2;
4029
4030 count = 1;
4031 amt = sizeof (struct elf_segment_map);
4032 if (s->alignment_power == 2)
4033 for (s2 = s; s2->next != NULL; s2 = s2->next)
4034 {
4035 if (s2->next->alignment_power == 2
4036 && (s2->next->flags & SEC_LOAD) != 0
4037 && CONST_STRNEQ (s2->next->name, ".note")
4038 && align_power (s2->lma + s2->size, 2)
4039 == s2->next->lma)
4040 count++;
4041 else
4042 break;
4043 }
4044 amt += (count - 1) * sizeof (asection *);
4045 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4046 if (m == NULL)
4047 goto error_return;
4048 m->next = NULL;
4049 m->p_type = PT_NOTE;
4050 m->count = count;
4051 while (count > 1)
4052 {
4053 m->sections[m->count - count--] = s;
4054 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4055 s = s->next;
4056 }
4057 m->sections[m->count - 1] = s;
4058 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4059 *pm = m;
4060 pm = &m->next;
4061 }
4062 if (s->flags & SEC_THREAD_LOCAL)
4063 {
4064 if (! tls_count)
4065 first_tls = s;
4066 tls_count++;
4067 }
4068 }
4069
4070 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
4071 if (tls_count > 0)
4072 {
4073 amt = sizeof (struct elf_segment_map);
4074 amt += (tls_count - 1) * sizeof (asection *);
4075 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4076 if (m == NULL)
4077 goto error_return;
4078 m->next = NULL;
4079 m->p_type = PT_TLS;
4080 m->count = tls_count;
4081 /* Mandated PF_R. */
4082 m->p_flags = PF_R;
4083 m->p_flags_valid = 1;
4084 for (i = 0; i < (unsigned int) tls_count; ++i)
4085 {
4086 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
4087 m->sections[i] = first_tls;
4088 first_tls = first_tls->next;
4089 }
4090
4091 *pm = m;
4092 pm = &m->next;
4093 }
4094
4095 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
4096 segment. */
4097 eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
4098 if (eh_frame_hdr != NULL
4099 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
4100 {
4101 amt = sizeof (struct elf_segment_map);
4102 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4103 if (m == NULL)
4104 goto error_return;
4105 m->next = NULL;
4106 m->p_type = PT_GNU_EH_FRAME;
4107 m->count = 1;
4108 m->sections[0] = eh_frame_hdr->output_section;
4109
4110 *pm = m;
4111 pm = &m->next;
4112 }
4113
4114 if (elf_tdata (abfd)->stack_flags)
4115 {
4116 amt = sizeof (struct elf_segment_map);
4117 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4118 if (m == NULL)
4119 goto error_return;
4120 m->next = NULL;
4121 m->p_type = PT_GNU_STACK;
4122 m->p_flags = elf_tdata (abfd)->stack_flags;
4123 m->p_flags_valid = 1;
4124
4125 *pm = m;
4126 pm = &m->next;
4127 }
4128
4129 if (info != NULL && info->relro)
4130 {
4131 for (m = mfirst; m != NULL; m = m->next)
4132 {
4133 if (m->p_type == PT_LOAD)
4134 {
4135 asection *last = m->sections[m->count - 1];
4136 bfd_vma vaddr = m->sections[0]->vma;
4137 bfd_vma filesz = last->vma - vaddr + last->size;
4138
4139 if (vaddr < info->relro_end
4140 && vaddr >= info->relro_start
4141 && (vaddr + filesz) >= info->relro_end)
4142 break;
4143 }
4144 }
4145
4146 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
4147 if (m != NULL)
4148 {
4149 amt = sizeof (struct elf_segment_map);
4150 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4151 if (m == NULL)
4152 goto error_return;
4153 m->next = NULL;
4154 m->p_type = PT_GNU_RELRO;
4155 m->p_flags = PF_R;
4156 m->p_flags_valid = 1;
4157
4158 *pm = m;
4159 pm = &m->next;
4160 }
4161 }
4162
4163 free (sections);
4164 elf_tdata (abfd)->segment_map = mfirst;
4165 }
4166
4167 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
4168 return FALSE;
4169
4170 for (count = 0, m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4171 ++count;
4172 elf_tdata (abfd)->program_header_size = count * bed->s->sizeof_phdr;
4173
4174 return TRUE;
4175
4176 error_return:
4177 if (sections != NULL)
4178 free (sections);
4179 return FALSE;
4180 }
4181
4182 /* Sort sections by address. */
4183
4184 static int
4185 elf_sort_sections (const void *arg1, const void *arg2)
4186 {
4187 const asection *sec1 = *(const asection **) arg1;
4188 const asection *sec2 = *(const asection **) arg2;
4189 bfd_size_type size1, size2;
4190
4191 /* Sort by LMA first, since this is the address used to
4192 place the section into a segment. */
4193 if (sec1->lma < sec2->lma)
4194 return -1;
4195 else if (sec1->lma > sec2->lma)
4196 return 1;
4197
4198 /* Then sort by VMA. Normally the LMA and the VMA will be
4199 the same, and this will do nothing. */
4200 if (sec1->vma < sec2->vma)
4201 return -1;
4202 else if (sec1->vma > sec2->vma)
4203 return 1;
4204
4205 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
4206
4207 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
4208
4209 if (TOEND (sec1))
4210 {
4211 if (TOEND (sec2))
4212 {
4213 /* If the indicies are the same, do not return 0
4214 here, but continue to try the next comparison. */
4215 if (sec1->target_index - sec2->target_index != 0)
4216 return sec1->target_index - sec2->target_index;
4217 }
4218 else
4219 return 1;
4220 }
4221 else if (TOEND (sec2))
4222 return -1;
4223
4224 #undef TOEND
4225
4226 /* Sort by size, to put zero sized sections
4227 before others at the same address. */
4228
4229 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
4230 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
4231
4232 if (size1 < size2)
4233 return -1;
4234 if (size1 > size2)
4235 return 1;
4236
4237 return sec1->target_index - sec2->target_index;
4238 }
4239
4240 /* Ian Lance Taylor writes:
4241
4242 We shouldn't be using % with a negative signed number. That's just
4243 not good. We have to make sure either that the number is not
4244 negative, or that the number has an unsigned type. When the types
4245 are all the same size they wind up as unsigned. When file_ptr is a
4246 larger signed type, the arithmetic winds up as signed long long,
4247 which is wrong.
4248
4249 What we're trying to say here is something like ``increase OFF by
4250 the least amount that will cause it to be equal to the VMA modulo
4251 the page size.'' */
4252 /* In other words, something like:
4253
4254 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4255 off_offset = off % bed->maxpagesize;
4256 if (vma_offset < off_offset)
4257 adjustment = vma_offset + bed->maxpagesize - off_offset;
4258 else
4259 adjustment = vma_offset - off_offset;
4260
4261 which can can be collapsed into the expression below. */
4262
4263 static file_ptr
4264 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
4265 {
4266 return ((vma - off) % maxpagesize);
4267 }
4268
4269 static void
4270 print_segment_map (const struct elf_segment_map *m)
4271 {
4272 unsigned int j;
4273 const char *pt = get_segment_type (m->p_type);
4274 char buf[32];
4275
4276 if (pt == NULL)
4277 {
4278 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
4279 sprintf (buf, "LOPROC+%7.7x",
4280 (unsigned int) (m->p_type - PT_LOPROC));
4281 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
4282 sprintf (buf, "LOOS+%7.7x",
4283 (unsigned int) (m->p_type - PT_LOOS));
4284 else
4285 snprintf (buf, sizeof (buf), "%8.8x",
4286 (unsigned int) m->p_type);
4287 pt = buf;
4288 }
4289 fflush (stdout);
4290 fprintf (stderr, "%s:", pt);
4291 for (j = 0; j < m->count; j++)
4292 fprintf (stderr, " %s", m->sections [j]->name);
4293 putc ('\n',stderr);
4294 fflush (stderr);
4295 }
4296
4297 static bfd_boolean
4298 write_zeros (bfd *abfd, file_ptr pos, bfd_size_type len)
4299 {
4300 void *buf;
4301 bfd_boolean ret;
4302
4303 if (bfd_seek (abfd, pos, SEEK_SET) != 0)
4304 return FALSE;
4305 buf = bfd_zmalloc (len);
4306 if (buf == NULL)
4307 return FALSE;
4308 ret = bfd_bwrite (buf, len, abfd) == len;
4309 free (buf);
4310 return ret;
4311 }
4312
4313 /* Assign file positions to the sections based on the mapping from
4314 sections to segments. This function also sets up some fields in
4315 the file header. */
4316
4317 static bfd_boolean
4318 assign_file_positions_for_load_sections (bfd *abfd,
4319 struct bfd_link_info *link_info)
4320 {
4321 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4322 struct elf_segment_map *m;
4323 Elf_Internal_Phdr *phdrs;
4324 Elf_Internal_Phdr *p;
4325 file_ptr off;
4326 bfd_size_type maxpagesize;
4327 unsigned int alloc;
4328 unsigned int i, j;
4329 bfd_vma header_pad = 0;
4330
4331 if (link_info == NULL
4332 && !_bfd_elf_map_sections_to_segments (abfd, link_info))
4333 return FALSE;
4334
4335 alloc = 0;
4336 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4337 {
4338 ++alloc;
4339 if (m->header_size)
4340 header_pad = m->header_size;
4341 }
4342
4343 if (alloc)
4344 {
4345 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
4346 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
4347 }
4348 else
4349 {
4350 /* PR binutils/12467. */
4351 elf_elfheader (abfd)->e_phoff = 0;
4352 elf_elfheader (abfd)->e_phentsize = 0;
4353 }
4354
4355 elf_elfheader (abfd)->e_phnum = alloc;
4356
4357 if (elf_tdata (abfd)->program_header_size == (bfd_size_type) -1)
4358 elf_tdata (abfd)->program_header_size = alloc * bed->s->sizeof_phdr;
4359 else
4360 BFD_ASSERT (elf_tdata (abfd)->program_header_size
4361 >= alloc * bed->s->sizeof_phdr);
4362
4363 if (alloc == 0)
4364 {
4365 elf_tdata (abfd)->next_file_pos = bed->s->sizeof_ehdr;
4366 return TRUE;
4367 }
4368
4369 /* We're writing the size in elf_tdata (abfd)->program_header_size,
4370 see assign_file_positions_except_relocs, so make sure we have
4371 that amount allocated, with trailing space cleared.
4372 The variable alloc contains the computed need, while elf_tdata
4373 (abfd)->program_header_size contains the size used for the
4374 layout.
4375 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
4376 where the layout is forced to according to a larger size in the
4377 last iterations for the testcase ld-elf/header. */
4378 BFD_ASSERT (elf_tdata (abfd)->program_header_size % bed->s->sizeof_phdr
4379 == 0);
4380 phdrs = (Elf_Internal_Phdr *)
4381 bfd_zalloc2 (abfd,
4382 (elf_tdata (abfd)->program_header_size / bed->s->sizeof_phdr),
4383 sizeof (Elf_Internal_Phdr));
4384 elf_tdata (abfd)->phdr = phdrs;
4385 if (phdrs == NULL)
4386 return FALSE;
4387
4388 maxpagesize = 1;
4389 if ((abfd->flags & D_PAGED) != 0)
4390 maxpagesize = bed->maxpagesize;
4391
4392 off = bed->s->sizeof_ehdr;
4393 off += alloc * bed->s->sizeof_phdr;
4394 if (header_pad < (bfd_vma) off)
4395 header_pad = 0;
4396 else
4397 header_pad -= off;
4398 off += header_pad;
4399
4400 for (m = elf_tdata (abfd)->segment_map, p = phdrs, j = 0;
4401 m != NULL;
4402 m = m->next, p++, j++)
4403 {
4404 asection **secpp;
4405 bfd_vma off_adjust;
4406 bfd_boolean no_contents;
4407
4408 /* If elf_segment_map is not from map_sections_to_segments, the
4409 sections may not be correctly ordered. NOTE: sorting should
4410 not be done to the PT_NOTE section of a corefile, which may
4411 contain several pseudo-sections artificially created by bfd.
4412 Sorting these pseudo-sections breaks things badly. */
4413 if (m->count > 1
4414 && !(elf_elfheader (abfd)->e_type == ET_CORE
4415 && m->p_type == PT_NOTE))
4416 qsort (m->sections, (size_t) m->count, sizeof (asection *),
4417 elf_sort_sections);
4418
4419 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4420 number of sections with contents contributing to both p_filesz
4421 and p_memsz, followed by a number of sections with no contents
4422 that just contribute to p_memsz. In this loop, OFF tracks next
4423 available file offset for PT_LOAD and PT_NOTE segments. */
4424 p->p_type = m->p_type;
4425 p->p_flags = m->p_flags;
4426
4427 if (m->count == 0)
4428 p->p_vaddr = 0;
4429 else
4430 p->p_vaddr = m->sections[0]->vma - m->p_vaddr_offset;
4431
4432 if (m->p_paddr_valid)
4433 p->p_paddr = m->p_paddr;
4434 else if (m->count == 0)
4435 p->p_paddr = 0;
4436 else
4437 p->p_paddr = m->sections[0]->lma - m->p_vaddr_offset;
4438
4439 if (p->p_type == PT_LOAD
4440 && (abfd->flags & D_PAGED) != 0)
4441 {
4442 /* p_align in demand paged PT_LOAD segments effectively stores
4443 the maximum page size. When copying an executable with
4444 objcopy, we set m->p_align from the input file. Use this
4445 value for maxpagesize rather than bed->maxpagesize, which
4446 may be different. Note that we use maxpagesize for PT_TLS
4447 segment alignment later in this function, so we are relying
4448 on at least one PT_LOAD segment appearing before a PT_TLS
4449 segment. */
4450 if (m->p_align_valid)
4451 maxpagesize = m->p_align;
4452
4453 p->p_align = maxpagesize;
4454 }
4455 else if (m->p_align_valid)
4456 p->p_align = m->p_align;
4457 else if (m->count == 0)
4458 p->p_align = 1 << bed->s->log_file_align;
4459 else
4460 p->p_align = 0;
4461
4462 no_contents = FALSE;
4463 off_adjust = 0;
4464 if (p->p_type == PT_LOAD
4465 && m->count > 0)
4466 {
4467 bfd_size_type align;
4468 unsigned int align_power = 0;
4469
4470 if (m->p_align_valid)
4471 align = p->p_align;
4472 else
4473 {
4474 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4475 {
4476 unsigned int secalign;
4477
4478 secalign = bfd_get_section_alignment (abfd, *secpp);
4479 if (secalign > align_power)
4480 align_power = secalign;
4481 }
4482 align = (bfd_size_type) 1 << align_power;
4483 if (align < maxpagesize)
4484 align = maxpagesize;
4485 }
4486
4487 for (i = 0; i < m->count; i++)
4488 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
4489 /* If we aren't making room for this section, then
4490 it must be SHT_NOBITS regardless of what we've
4491 set via struct bfd_elf_special_section. */
4492 elf_section_type (m->sections[i]) = SHT_NOBITS;
4493
4494 /* Find out whether this segment contains any loadable
4495 sections. */
4496 no_contents = TRUE;
4497 for (i = 0; i < m->count; i++)
4498 if (elf_section_type (m->sections[i]) != SHT_NOBITS)
4499 {
4500 no_contents = FALSE;
4501 break;
4502 }
4503
4504 off_adjust = vma_page_aligned_bias (p->p_vaddr, off, align);
4505 off += off_adjust;
4506 if (no_contents)
4507 {
4508 /* We shouldn't need to align the segment on disk since
4509 the segment doesn't need file space, but the gABI
4510 arguably requires the alignment and glibc ld.so
4511 checks it. So to comply with the alignment
4512 requirement but not waste file space, we adjust
4513 p_offset for just this segment. (OFF_ADJUST is
4514 subtracted from OFF later.) This may put p_offset
4515 past the end of file, but that shouldn't matter. */
4516 }
4517 else
4518 off_adjust = 0;
4519 }
4520 /* Make sure the .dynamic section is the first section in the
4521 PT_DYNAMIC segment. */
4522 else if (p->p_type == PT_DYNAMIC
4523 && m->count > 1
4524 && strcmp (m->sections[0]->name, ".dynamic") != 0)
4525 {
4526 _bfd_error_handler
4527 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4528 abfd);
4529 bfd_set_error (bfd_error_bad_value);
4530 return FALSE;
4531 }
4532 /* Set the note section type to SHT_NOTE. */
4533 else if (p->p_type == PT_NOTE)
4534 for (i = 0; i < m->count; i++)
4535 elf_section_type (m->sections[i]) = SHT_NOTE;
4536
4537 p->p_offset = 0;
4538 p->p_filesz = 0;
4539 p->p_memsz = 0;
4540
4541 if (m->includes_filehdr)
4542 {
4543 if (!m->p_flags_valid)
4544 p->p_flags |= PF_R;
4545 p->p_filesz = bed->s->sizeof_ehdr;
4546 p->p_memsz = bed->s->sizeof_ehdr;
4547 if (m->count > 0)
4548 {
4549 BFD_ASSERT (p->p_type == PT_LOAD);
4550
4551 if (p->p_vaddr < (bfd_vma) off)
4552 {
4553 (*_bfd_error_handler)
4554 (_("%B: Not enough room for program headers, try linking with -N"),
4555 abfd);
4556 bfd_set_error (bfd_error_bad_value);
4557 return FALSE;
4558 }
4559
4560 p->p_vaddr -= off;
4561 if (!m->p_paddr_valid)
4562 p->p_paddr -= off;
4563 }
4564 }
4565
4566 if (m->includes_phdrs)
4567 {
4568 if (!m->p_flags_valid)
4569 p->p_flags |= PF_R;
4570
4571 if (!m->includes_filehdr)
4572 {
4573 p->p_offset = bed->s->sizeof_ehdr;
4574
4575 if (m->count > 0)
4576 {
4577 BFD_ASSERT (p->p_type == PT_LOAD);
4578 p->p_vaddr -= off - p->p_offset;
4579 if (!m->p_paddr_valid)
4580 p->p_paddr -= off - p->p_offset;
4581 }
4582 }
4583
4584 p->p_filesz += alloc * bed->s->sizeof_phdr;
4585 p->p_memsz += alloc * bed->s->sizeof_phdr;
4586 if (m->count)
4587 {
4588 p->p_filesz += header_pad;
4589 p->p_memsz += header_pad;
4590 }
4591 }
4592
4593 if (p->p_type == PT_LOAD
4594 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4595 {
4596 if (!m->includes_filehdr && !m->includes_phdrs)
4597 p->p_offset = off;
4598 else
4599 {
4600 file_ptr adjust;
4601
4602 adjust = off - (p->p_offset + p->p_filesz);
4603 if (!no_contents)
4604 p->p_filesz += adjust;
4605 p->p_memsz += adjust;
4606 }
4607 }
4608
4609 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
4610 maps. Set filepos for sections in PT_LOAD segments, and in
4611 core files, for sections in PT_NOTE segments.
4612 assign_file_positions_for_non_load_sections will set filepos
4613 for other sections and update p_filesz for other segments. */
4614 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4615 {
4616 asection *sec;
4617 bfd_size_type align;
4618 Elf_Internal_Shdr *this_hdr;
4619
4620 sec = *secpp;
4621 this_hdr = &elf_section_data (sec)->this_hdr;
4622 align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec);
4623
4624 if ((p->p_type == PT_LOAD
4625 || p->p_type == PT_TLS)
4626 && (this_hdr->sh_type != SHT_NOBITS
4627 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
4628 && ((this_hdr->sh_flags & SHF_TLS) == 0
4629 || p->p_type == PT_TLS))))
4630 {
4631 bfd_vma p_start = p->p_paddr;
4632 bfd_vma p_end = p_start + p->p_memsz;
4633 bfd_vma s_start = sec->lma;
4634 bfd_vma adjust = s_start - p_end;
4635
4636 if (adjust != 0
4637 && (s_start < p_end
4638 || p_end < p_start))
4639 {
4640 (*_bfd_error_handler)
4641 (_("%B: section %A lma %#lx adjusted to %#lx"), abfd, sec,
4642 (unsigned long) s_start, (unsigned long) p_end);
4643 adjust = 0;
4644 sec->lma = p_end;
4645 }
4646 p->p_memsz += adjust;
4647
4648 if (this_hdr->sh_type != SHT_NOBITS)
4649 {
4650 if (p->p_filesz + adjust < p->p_memsz)
4651 {
4652 /* We have a PROGBITS section following NOBITS ones.
4653 Allocate file space for the NOBITS section(s) and
4654 zero it. */
4655 adjust = p->p_memsz - p->p_filesz;
4656 if (!write_zeros (abfd, off, adjust))
4657 return FALSE;
4658 }
4659 off += adjust;
4660 p->p_filesz += adjust;
4661 }
4662 }
4663
4664 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
4665 {
4666 /* The section at i == 0 is the one that actually contains
4667 everything. */
4668 if (i == 0)
4669 {
4670 this_hdr->sh_offset = sec->filepos = off;
4671 off += this_hdr->sh_size;
4672 p->p_filesz = this_hdr->sh_size;
4673 p->p_memsz = 0;
4674 p->p_align = 1;
4675 }
4676 else
4677 {
4678 /* The rest are fake sections that shouldn't be written. */
4679 sec->filepos = 0;
4680 sec->size = 0;
4681 sec->flags = 0;
4682 continue;
4683 }
4684 }
4685 else
4686 {
4687 if (p->p_type == PT_LOAD)
4688 {
4689 this_hdr->sh_offset = sec->filepos = off;
4690 if (this_hdr->sh_type != SHT_NOBITS)
4691 off += this_hdr->sh_size;
4692 }
4693 else if (this_hdr->sh_type == SHT_NOBITS
4694 && (this_hdr->sh_flags & SHF_TLS) != 0
4695 && this_hdr->sh_offset == 0)
4696 {
4697 /* This is a .tbss section that didn't get a PT_LOAD.
4698 (See _bfd_elf_map_sections_to_segments "Create a
4699 final PT_LOAD".) Set sh_offset to the value it
4700 would have if we had created a zero p_filesz and
4701 p_memsz PT_LOAD header for the section. This
4702 also makes the PT_TLS header have the same
4703 p_offset value. */
4704 bfd_vma adjust = vma_page_aligned_bias (this_hdr->sh_addr,
4705 off, align);
4706 this_hdr->sh_offset = sec->filepos = off + adjust;
4707 }
4708
4709 if (this_hdr->sh_type != SHT_NOBITS)
4710 {
4711 p->p_filesz += this_hdr->sh_size;
4712 /* A load section without SHF_ALLOC is something like
4713 a note section in a PT_NOTE segment. These take
4714 file space but are not loaded into memory. */
4715 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4716 p->p_memsz += this_hdr->sh_size;
4717 }
4718 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4719 {
4720 if (p->p_type == PT_TLS)
4721 p->p_memsz += this_hdr->sh_size;
4722
4723 /* .tbss is special. It doesn't contribute to p_memsz of
4724 normal segments. */
4725 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
4726 p->p_memsz += this_hdr->sh_size;
4727 }
4728
4729 if (align > p->p_align
4730 && !m->p_align_valid
4731 && (p->p_type != PT_LOAD
4732 || (abfd->flags & D_PAGED) == 0))
4733 p->p_align = align;
4734 }
4735
4736 if (!m->p_flags_valid)
4737 {
4738 p->p_flags |= PF_R;
4739 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
4740 p->p_flags |= PF_X;
4741 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
4742 p->p_flags |= PF_W;
4743 }
4744 }
4745 off -= off_adjust;
4746
4747 /* Check that all sections are in a PT_LOAD segment.
4748 Don't check funky gdb generated core files. */
4749 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
4750 {
4751 bfd_boolean check_vma = TRUE;
4752
4753 for (i = 1; i < m->count; i++)
4754 if (m->sections[i]->vma == m->sections[i - 1]->vma
4755 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i])
4756 ->this_hdr), p) != 0
4757 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i - 1])
4758 ->this_hdr), p) != 0)
4759 {
4760 /* Looks like we have overlays packed into the segment. */
4761 check_vma = FALSE;
4762 break;
4763 }
4764
4765 for (i = 0; i < m->count; i++)
4766 {
4767 Elf_Internal_Shdr *this_hdr;
4768 asection *sec;
4769
4770 sec = m->sections[i];
4771 this_hdr = &(elf_section_data(sec)->this_hdr);
4772 if (!ELF_SECTION_IN_SEGMENT_1 (this_hdr, p, check_vma, 0)
4773 && !ELF_TBSS_SPECIAL (this_hdr, p))
4774 {
4775 (*_bfd_error_handler)
4776 (_("%B: section `%A' can't be allocated in segment %d"),
4777 abfd, sec, j);
4778 print_segment_map (m);
4779 }
4780 }
4781 }
4782 }
4783
4784 elf_tdata (abfd)->next_file_pos = off;
4785 return TRUE;
4786 }
4787
4788 /* Assign file positions for the other sections. */
4789
4790 static bfd_boolean
4791 assign_file_positions_for_non_load_sections (bfd *abfd,
4792 struct bfd_link_info *link_info)
4793 {
4794 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4795 Elf_Internal_Shdr **i_shdrpp;
4796 Elf_Internal_Shdr **hdrpp;
4797 Elf_Internal_Phdr *phdrs;
4798 Elf_Internal_Phdr *p;
4799 struct elf_segment_map *m;
4800 bfd_vma filehdr_vaddr, filehdr_paddr;
4801 bfd_vma phdrs_vaddr, phdrs_paddr;
4802 file_ptr off;
4803 unsigned int num_sec;
4804 unsigned int i;
4805 unsigned int count;
4806
4807 i_shdrpp = elf_elfsections (abfd);
4808 num_sec = elf_numsections (abfd);
4809 off = elf_tdata (abfd)->next_file_pos;
4810 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4811 {
4812 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4813 Elf_Internal_Shdr *hdr;
4814
4815 hdr = *hdrpp;
4816 if (hdr->bfd_section != NULL
4817 && (hdr->bfd_section->filepos != 0
4818 || (hdr->sh_type == SHT_NOBITS
4819 && hdr->contents == NULL)))
4820 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
4821 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4822 {
4823 (*_bfd_error_handler)
4824 (_("%B: warning: allocated section `%s' not in segment"),
4825 abfd,
4826 (hdr->bfd_section == NULL
4827 ? "*unknown*"
4828 : hdr->bfd_section->name));
4829 /* We don't need to page align empty sections. */
4830 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
4831 off += vma_page_aligned_bias (hdr->sh_addr, off,
4832 bed->maxpagesize);
4833 else
4834 off += vma_page_aligned_bias (hdr->sh_addr, off,
4835 hdr->sh_addralign);
4836 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4837 FALSE);
4838 }
4839 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4840 && hdr->bfd_section == NULL)
4841 || hdr == i_shdrpp[tdata->symtab_section]
4842 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4843 || hdr == i_shdrpp[tdata->strtab_section])
4844 hdr->sh_offset = -1;
4845 else
4846 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4847 }
4848
4849 /* Now that we have set the section file positions, we can set up
4850 the file positions for the non PT_LOAD segments. */
4851 count = 0;
4852 filehdr_vaddr = 0;
4853 filehdr_paddr = 0;
4854 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
4855 phdrs_paddr = 0;
4856 phdrs = elf_tdata (abfd)->phdr;
4857 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4858 m != NULL;
4859 m = m->next, p++)
4860 {
4861 ++count;
4862 if (p->p_type != PT_LOAD)
4863 continue;
4864
4865 if (m->includes_filehdr)
4866 {
4867 filehdr_vaddr = p->p_vaddr;
4868 filehdr_paddr = p->p_paddr;
4869 }
4870 if (m->includes_phdrs)
4871 {
4872 phdrs_vaddr = p->p_vaddr;
4873 phdrs_paddr = p->p_paddr;
4874 if (m->includes_filehdr)
4875 {
4876 phdrs_vaddr += bed->s->sizeof_ehdr;
4877 phdrs_paddr += bed->s->sizeof_ehdr;
4878 }
4879 }
4880 }
4881
4882 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4883 m != NULL;
4884 m = m->next, p++)
4885 {
4886 if (p->p_type == PT_GNU_RELRO)
4887 {
4888 const Elf_Internal_Phdr *lp;
4889
4890 BFD_ASSERT (!m->includes_filehdr && !m->includes_phdrs);
4891
4892 if (link_info != NULL)
4893 {
4894 /* During linking the range of the RELRO segment is passed
4895 in link_info. */
4896 for (lp = phdrs; lp < phdrs + count; ++lp)
4897 {
4898 if (lp->p_type == PT_LOAD
4899 && lp->p_vaddr >= link_info->relro_start
4900 && lp->p_vaddr < link_info->relro_end
4901 && lp->p_vaddr + lp->p_filesz >= link_info->relro_end)
4902 break;
4903 }
4904 }
4905 else
4906 {
4907 /* Otherwise we are copying an executable or shared
4908 library, but we need to use the same linker logic. */
4909 for (lp = phdrs; lp < phdrs + count; ++lp)
4910 {
4911 if (lp->p_type == PT_LOAD
4912 && lp->p_paddr == p->p_paddr)
4913 break;
4914 }
4915 }
4916
4917 if (lp < phdrs + count)
4918 {
4919 p->p_vaddr = lp->p_vaddr;
4920 p->p_paddr = lp->p_paddr;
4921 p->p_offset = lp->p_offset;
4922 if (link_info != NULL)
4923 p->p_filesz = link_info->relro_end - lp->p_vaddr;
4924 else if (m->p_size_valid)
4925 p->p_filesz = m->p_size;
4926 else
4927 abort ();
4928 p->p_memsz = p->p_filesz;
4929 p->p_align = 1;
4930 p->p_flags = (lp->p_flags & ~PF_W);
4931 }
4932 else
4933 {
4934 memset (p, 0, sizeof *p);
4935 p->p_type = PT_NULL;
4936 }
4937 }
4938 else if (m->count != 0)
4939 {
4940 if (p->p_type != PT_LOAD
4941 && (p->p_type != PT_NOTE
4942 || bfd_get_format (abfd) != bfd_core))
4943 {
4944 BFD_ASSERT (!m->includes_filehdr && !m->includes_phdrs);
4945
4946 p->p_filesz = 0;
4947 p->p_offset = m->sections[0]->filepos;
4948 for (i = m->count; i-- != 0;)
4949 {
4950 asection *sect = m->sections[i];
4951 Elf_Internal_Shdr *hdr = &elf_section_data (sect)->this_hdr;
4952 if (hdr->sh_type != SHT_NOBITS)
4953 {
4954 p->p_filesz = (sect->filepos - m->sections[0]->filepos
4955 + hdr->sh_size);
4956 break;
4957 }
4958 }
4959 }
4960 }
4961 else if (m->includes_filehdr)
4962 {
4963 p->p_vaddr = filehdr_vaddr;
4964 if (! m->p_paddr_valid)
4965 p->p_paddr = filehdr_paddr;
4966 }
4967 else if (m->includes_phdrs)
4968 {
4969 p->p_vaddr = phdrs_vaddr;
4970 if (! m->p_paddr_valid)
4971 p->p_paddr = phdrs_paddr;
4972 }
4973 }
4974
4975 elf_tdata (abfd)->next_file_pos = off;
4976
4977 return TRUE;
4978 }
4979
4980 /* Work out the file positions of all the sections. This is called by
4981 _bfd_elf_compute_section_file_positions. All the section sizes and
4982 VMAs must be known before this is called.
4983
4984 Reloc sections come in two flavours: Those processed specially as
4985 "side-channel" data attached to a section to which they apply, and
4986 those that bfd doesn't process as relocations. The latter sort are
4987 stored in a normal bfd section by bfd_section_from_shdr. We don't
4988 consider the former sort here, unless they form part of the loadable
4989 image. Reloc sections not assigned here will be handled later by
4990 assign_file_positions_for_relocs.
4991
4992 We also don't set the positions of the .symtab and .strtab here. */
4993
4994 static bfd_boolean
4995 assign_file_positions_except_relocs (bfd *abfd,
4996 struct bfd_link_info *link_info)
4997 {
4998 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4999 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
5000 file_ptr off;
5001 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5002
5003 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
5004 && bfd_get_format (abfd) != bfd_core)
5005 {
5006 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
5007 unsigned int num_sec = elf_numsections (abfd);
5008 Elf_Internal_Shdr **hdrpp;
5009 unsigned int i;
5010
5011 /* Start after the ELF header. */
5012 off = i_ehdrp->e_ehsize;
5013
5014 /* We are not creating an executable, which means that we are
5015 not creating a program header, and that the actual order of
5016 the sections in the file is unimportant. */
5017 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
5018 {
5019 Elf_Internal_Shdr *hdr;
5020
5021 hdr = *hdrpp;
5022 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
5023 && hdr->bfd_section == NULL)
5024 || i == tdata->symtab_section
5025 || i == tdata->symtab_shndx_section
5026 || i == tdata->strtab_section)
5027 {
5028 hdr->sh_offset = -1;
5029 }
5030 else
5031 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
5032 }
5033 }
5034 else
5035 {
5036 unsigned int alloc;
5037
5038 /* Assign file positions for the loaded sections based on the
5039 assignment of sections to segments. */
5040 if (!assign_file_positions_for_load_sections (abfd, link_info))
5041 return FALSE;
5042
5043 /* And for non-load sections. */
5044 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
5045 return FALSE;
5046
5047 if (bed->elf_backend_modify_program_headers != NULL)
5048 {
5049 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
5050 return FALSE;
5051 }
5052
5053 /* Write out the program headers. */
5054 alloc = tdata->program_header_size / bed->s->sizeof_phdr;
5055 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
5056 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
5057 return FALSE;
5058
5059 off = tdata->next_file_pos;
5060 }
5061
5062 /* Place the section headers. */
5063 off = align_file_position (off, 1 << bed->s->log_file_align);
5064 i_ehdrp->e_shoff = off;
5065 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
5066
5067 tdata->next_file_pos = off;
5068
5069 return TRUE;
5070 }
5071
5072 static bfd_boolean
5073 prep_headers (bfd *abfd)
5074 {
5075 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form. */
5076 struct elf_strtab_hash *shstrtab;
5077 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5078
5079 i_ehdrp = elf_elfheader (abfd);
5080
5081 shstrtab = _bfd_elf_strtab_init ();
5082 if (shstrtab == NULL)
5083 return FALSE;
5084
5085 elf_shstrtab (abfd) = shstrtab;
5086
5087 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
5088 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
5089 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
5090 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
5091
5092 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
5093 i_ehdrp->e_ident[EI_DATA] =
5094 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
5095 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
5096
5097 if ((abfd->flags & DYNAMIC) != 0)
5098 i_ehdrp->e_type = ET_DYN;
5099 else if ((abfd->flags & EXEC_P) != 0)
5100 i_ehdrp->e_type = ET_EXEC;
5101 else if (bfd_get_format (abfd) == bfd_core)
5102 i_ehdrp->e_type = ET_CORE;
5103 else
5104 i_ehdrp->e_type = ET_REL;
5105
5106 switch (bfd_get_arch (abfd))
5107 {
5108 case bfd_arch_unknown:
5109 i_ehdrp->e_machine = EM_NONE;
5110 break;
5111
5112 /* There used to be a long list of cases here, each one setting
5113 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
5114 in the corresponding bfd definition. To avoid duplication,
5115 the switch was removed. Machines that need special handling
5116 can generally do it in elf_backend_final_write_processing(),
5117 unless they need the information earlier than the final write.
5118 Such need can generally be supplied by replacing the tests for
5119 e_machine with the conditions used to determine it. */
5120 default:
5121 i_ehdrp->e_machine = bed->elf_machine_code;
5122 }
5123
5124 i_ehdrp->e_version = bed->s->ev_current;
5125 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
5126
5127 /* No program header, for now. */
5128 i_ehdrp->e_phoff = 0;
5129 i_ehdrp->e_phentsize = 0;
5130 i_ehdrp->e_phnum = 0;
5131
5132 /* Each bfd section is section header entry. */
5133 i_ehdrp->e_entry = bfd_get_start_address (abfd);
5134 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
5135
5136 /* If we're building an executable, we'll need a program header table. */
5137 if (abfd->flags & EXEC_P)
5138 /* It all happens later. */
5139 ;
5140 else
5141 {
5142 i_ehdrp->e_phentsize = 0;
5143 i_ehdrp->e_phoff = 0;
5144 }
5145
5146 elf_tdata (abfd)->symtab_hdr.sh_name =
5147 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
5148 elf_tdata (abfd)->strtab_hdr.sh_name =
5149 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
5150 elf_tdata (abfd)->shstrtab_hdr.sh_name =
5151 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
5152 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
5153 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
5154 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
5155 return FALSE;
5156
5157 return TRUE;
5158 }
5159
5160 /* Assign file positions for all the reloc sections which are not part
5161 of the loadable file image. */
5162
5163 void
5164 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
5165 {
5166 file_ptr off;
5167 unsigned int i, num_sec;
5168 Elf_Internal_Shdr **shdrpp;
5169
5170 off = elf_tdata (abfd)->next_file_pos;
5171
5172 num_sec = elf_numsections (abfd);
5173 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
5174 {
5175 Elf_Internal_Shdr *shdrp;
5176
5177 shdrp = *shdrpp;
5178 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
5179 && shdrp->sh_offset == -1)
5180 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
5181 }
5182
5183 elf_tdata (abfd)->next_file_pos = off;
5184 }
5185
5186 bfd_boolean
5187 _bfd_elf_write_object_contents (bfd *abfd)
5188 {
5189 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5190 Elf_Internal_Shdr **i_shdrp;
5191 bfd_boolean failed;
5192 unsigned int count, num_sec;
5193
5194 if (! abfd->output_has_begun
5195 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
5196 return FALSE;
5197
5198 i_shdrp = elf_elfsections (abfd);
5199
5200 failed = FALSE;
5201 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
5202 if (failed)
5203 return FALSE;
5204
5205 _bfd_elf_assign_file_positions_for_relocs (abfd);
5206
5207 /* After writing the headers, we need to write the sections too... */
5208 num_sec = elf_numsections (abfd);
5209 for (count = 1; count < num_sec; count++)
5210 {
5211 if (bed->elf_backend_section_processing)
5212 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
5213 if (i_shdrp[count]->contents)
5214 {
5215 bfd_size_type amt = i_shdrp[count]->sh_size;
5216
5217 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
5218 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
5219 return FALSE;
5220 }
5221 }
5222
5223 /* Write out the section header names. */
5224 if (elf_shstrtab (abfd) != NULL
5225 && (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
5226 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
5227 return FALSE;
5228
5229 if (bed->elf_backend_final_write_processing)
5230 (*bed->elf_backend_final_write_processing) (abfd,
5231 elf_tdata (abfd)->linker);
5232
5233 if (!bed->s->write_shdrs_and_ehdr (abfd))
5234 return FALSE;
5235
5236 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
5237 if (elf_tdata (abfd)->after_write_object_contents)
5238 return (*elf_tdata (abfd)->after_write_object_contents) (abfd);
5239
5240 return TRUE;
5241 }
5242
5243 bfd_boolean
5244 _bfd_elf_write_corefile_contents (bfd *abfd)
5245 {
5246 /* Hopefully this can be done just like an object file. */
5247 return _bfd_elf_write_object_contents (abfd);
5248 }
5249
5250 /* Given a section, search the header to find them. */
5251
5252 unsigned int
5253 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
5254 {
5255 const struct elf_backend_data *bed;
5256 unsigned int sec_index;
5257
5258 if (elf_section_data (asect) != NULL
5259 && elf_section_data (asect)->this_idx != 0)
5260 return elf_section_data (asect)->this_idx;
5261
5262 if (bfd_is_abs_section (asect))
5263 sec_index = SHN_ABS;
5264 else if (bfd_is_com_section (asect))
5265 sec_index = SHN_COMMON;
5266 else if (bfd_is_und_section (asect))
5267 sec_index = SHN_UNDEF;
5268 else
5269 sec_index = SHN_BAD;
5270
5271 bed = get_elf_backend_data (abfd);
5272 if (bed->elf_backend_section_from_bfd_section)
5273 {
5274 int retval = sec_index;
5275
5276 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
5277 return retval;
5278 }
5279
5280 if (sec_index == SHN_BAD)
5281 bfd_set_error (bfd_error_nonrepresentable_section);
5282
5283 return sec_index;
5284 }
5285
5286 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
5287 on error. */
5288
5289 int
5290 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
5291 {
5292 asymbol *asym_ptr = *asym_ptr_ptr;
5293 int idx;
5294 flagword flags = asym_ptr->flags;
5295
5296 /* When gas creates relocations against local labels, it creates its
5297 own symbol for the section, but does put the symbol into the
5298 symbol chain, so udata is 0. When the linker is generating
5299 relocatable output, this section symbol may be for one of the
5300 input sections rather than the output section. */
5301 if (asym_ptr->udata.i == 0
5302 && (flags & BSF_SECTION_SYM)
5303 && asym_ptr->section)
5304 {
5305 asection *sec;
5306 int indx;
5307
5308 sec = asym_ptr->section;
5309 if (sec->owner != abfd && sec->output_section != NULL)
5310 sec = sec->output_section;
5311 if (sec->owner == abfd
5312 && (indx = sec->index) < elf_num_section_syms (abfd)
5313 && elf_section_syms (abfd)[indx] != NULL)
5314 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
5315 }
5316
5317 idx = asym_ptr->udata.i;
5318
5319 if (idx == 0)
5320 {
5321 /* This case can occur when using --strip-symbol on a symbol
5322 which is used in a relocation entry. */
5323 (*_bfd_error_handler)
5324 (_("%B: symbol `%s' required but not present"),
5325 abfd, bfd_asymbol_name (asym_ptr));
5326 bfd_set_error (bfd_error_no_symbols);
5327 return -1;
5328 }
5329
5330 #if DEBUG & 4
5331 {
5332 fprintf (stderr,
5333 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx\n",
5334 (long) asym_ptr, asym_ptr->name, idx, (long) flags);
5335 fflush (stderr);
5336 }
5337 #endif
5338
5339 return idx;
5340 }
5341
5342 /* Rewrite program header information. */
5343
5344 static bfd_boolean
5345 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
5346 {
5347 Elf_Internal_Ehdr *iehdr;
5348 struct elf_segment_map *map;
5349 struct elf_segment_map *map_first;
5350 struct elf_segment_map **pointer_to_map;
5351 Elf_Internal_Phdr *segment;
5352 asection *section;
5353 unsigned int i;
5354 unsigned int num_segments;
5355 bfd_boolean phdr_included = FALSE;
5356 bfd_boolean p_paddr_valid;
5357 bfd_vma maxpagesize;
5358 struct elf_segment_map *phdr_adjust_seg = NULL;
5359 unsigned int phdr_adjust_num = 0;
5360 const struct elf_backend_data *bed;
5361
5362 bed = get_elf_backend_data (ibfd);
5363 iehdr = elf_elfheader (ibfd);
5364
5365 map_first = NULL;
5366 pointer_to_map = &map_first;
5367
5368 num_segments = elf_elfheader (ibfd)->e_phnum;
5369 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
5370
5371 /* Returns the end address of the segment + 1. */
5372 #define SEGMENT_END(segment, start) \
5373 (start + (segment->p_memsz > segment->p_filesz \
5374 ? segment->p_memsz : segment->p_filesz))
5375
5376 #define SECTION_SIZE(section, segment) \
5377 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5378 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5379 ? section->size : 0)
5380
5381 /* Returns TRUE if the given section is contained within
5382 the given segment. VMA addresses are compared. */
5383 #define IS_CONTAINED_BY_VMA(section, segment) \
5384 (section->vma >= segment->p_vaddr \
5385 && (section->vma + SECTION_SIZE (section, segment) \
5386 <= (SEGMENT_END (segment, segment->p_vaddr))))
5387
5388 /* Returns TRUE if the given section is contained within
5389 the given segment. LMA addresses are compared. */
5390 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5391 (section->lma >= base \
5392 && (section->lma + SECTION_SIZE (section, segment) \
5393 <= SEGMENT_END (segment, base)))
5394
5395 /* Handle PT_NOTE segment. */
5396 #define IS_NOTE(p, s) \
5397 (p->p_type == PT_NOTE \
5398 && elf_section_type (s) == SHT_NOTE \
5399 && (bfd_vma) s->filepos >= p->p_offset \
5400 && ((bfd_vma) s->filepos + s->size \
5401 <= p->p_offset + p->p_filesz))
5402
5403 /* Special case: corefile "NOTE" section containing regs, prpsinfo
5404 etc. */
5405 #define IS_COREFILE_NOTE(p, s) \
5406 (IS_NOTE (p, s) \
5407 && bfd_get_format (ibfd) == bfd_core \
5408 && s->vma == 0 \
5409 && s->lma == 0)
5410
5411 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5412 linker, which generates a PT_INTERP section with p_vaddr and
5413 p_memsz set to 0. */
5414 #define IS_SOLARIS_PT_INTERP(p, s) \
5415 (p->p_vaddr == 0 \
5416 && p->p_paddr == 0 \
5417 && p->p_memsz == 0 \
5418 && p->p_filesz > 0 \
5419 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5420 && s->size > 0 \
5421 && (bfd_vma) s->filepos >= p->p_offset \
5422 && ((bfd_vma) s->filepos + s->size \
5423 <= p->p_offset + p->p_filesz))
5424
5425 /* Decide if the given section should be included in the given segment.
5426 A section will be included if:
5427 1. It is within the address space of the segment -- we use the LMA
5428 if that is set for the segment and the VMA otherwise,
5429 2. It is an allocated section or a NOTE section in a PT_NOTE
5430 segment.
5431 3. There is an output section associated with it,
5432 4. The section has not already been allocated to a previous segment.
5433 5. PT_GNU_STACK segments do not include any sections.
5434 6. PT_TLS segment includes only SHF_TLS sections.
5435 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5436 8. PT_DYNAMIC should not contain empty sections at the beginning
5437 (with the possible exception of .dynamic). */
5438 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
5439 ((((segment->p_paddr \
5440 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5441 : IS_CONTAINED_BY_VMA (section, segment)) \
5442 && (section->flags & SEC_ALLOC) != 0) \
5443 || IS_NOTE (segment, section)) \
5444 && segment->p_type != PT_GNU_STACK \
5445 && (segment->p_type != PT_TLS \
5446 || (section->flags & SEC_THREAD_LOCAL)) \
5447 && (segment->p_type == PT_LOAD \
5448 || segment->p_type == PT_TLS \
5449 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5450 && (segment->p_type != PT_DYNAMIC \
5451 || SECTION_SIZE (section, segment) > 0 \
5452 || (segment->p_paddr \
5453 ? segment->p_paddr != section->lma \
5454 : segment->p_vaddr != section->vma) \
5455 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5456 == 0)) \
5457 && !section->segment_mark)
5458
5459 /* If the output section of a section in the input segment is NULL,
5460 it is removed from the corresponding output segment. */
5461 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5462 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
5463 && section->output_section != NULL)
5464
5465 /* Returns TRUE iff seg1 starts after the end of seg2. */
5466 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5467 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5468
5469 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5470 their VMA address ranges and their LMA address ranges overlap.
5471 It is possible to have overlapping VMA ranges without overlapping LMA
5472 ranges. RedBoot images for example can have both .data and .bss mapped
5473 to the same VMA range, but with the .data section mapped to a different
5474 LMA. */
5475 #define SEGMENT_OVERLAPS(seg1, seg2) \
5476 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5477 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5478 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5479 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5480
5481 /* Initialise the segment mark field. */
5482 for (section = ibfd->sections; section != NULL; section = section->next)
5483 section->segment_mark = FALSE;
5484
5485 /* The Solaris linker creates program headers in which all the
5486 p_paddr fields are zero. When we try to objcopy or strip such a
5487 file, we get confused. Check for this case, and if we find it
5488 don't set the p_paddr_valid fields. */
5489 p_paddr_valid = FALSE;
5490 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5491 i < num_segments;
5492 i++, segment++)
5493 if (segment->p_paddr != 0)
5494 {
5495 p_paddr_valid = TRUE;
5496 break;
5497 }
5498
5499 /* Scan through the segments specified in the program header
5500 of the input BFD. For this first scan we look for overlaps
5501 in the loadable segments. These can be created by weird
5502 parameters to objcopy. Also, fix some solaris weirdness. */
5503 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5504 i < num_segments;
5505 i++, segment++)
5506 {
5507 unsigned int j;
5508 Elf_Internal_Phdr *segment2;
5509
5510 if (segment->p_type == PT_INTERP)
5511 for (section = ibfd->sections; section; section = section->next)
5512 if (IS_SOLARIS_PT_INTERP (segment, section))
5513 {
5514 /* Mininal change so that the normal section to segment
5515 assignment code will work. */
5516 segment->p_vaddr = section->vma;
5517 break;
5518 }
5519
5520 if (segment->p_type != PT_LOAD)
5521 {
5522 /* Remove PT_GNU_RELRO segment. */
5523 if (segment->p_type == PT_GNU_RELRO)
5524 segment->p_type = PT_NULL;
5525 continue;
5526 }
5527
5528 /* Determine if this segment overlaps any previous segments. */
5529 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
5530 {
5531 bfd_signed_vma extra_length;
5532
5533 if (segment2->p_type != PT_LOAD
5534 || !SEGMENT_OVERLAPS (segment, segment2))
5535 continue;
5536
5537 /* Merge the two segments together. */
5538 if (segment2->p_vaddr < segment->p_vaddr)
5539 {
5540 /* Extend SEGMENT2 to include SEGMENT and then delete
5541 SEGMENT. */
5542 extra_length = (SEGMENT_END (segment, segment->p_vaddr)
5543 - SEGMENT_END (segment2, segment2->p_vaddr));
5544
5545 if (extra_length > 0)
5546 {
5547 segment2->p_memsz += extra_length;
5548 segment2->p_filesz += extra_length;
5549 }
5550
5551 segment->p_type = PT_NULL;
5552
5553 /* Since we have deleted P we must restart the outer loop. */
5554 i = 0;
5555 segment = elf_tdata (ibfd)->phdr;
5556 break;
5557 }
5558 else
5559 {
5560 /* Extend SEGMENT to include SEGMENT2 and then delete
5561 SEGMENT2. */
5562 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
5563 - SEGMENT_END (segment, segment->p_vaddr));
5564
5565 if (extra_length > 0)
5566 {
5567 segment->p_memsz += extra_length;
5568 segment->p_filesz += extra_length;
5569 }
5570
5571 segment2->p_type = PT_NULL;
5572 }
5573 }
5574 }
5575
5576 /* The second scan attempts to assign sections to segments. */
5577 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5578 i < num_segments;
5579 i++, segment++)
5580 {
5581 unsigned int section_count;
5582 asection **sections;
5583 asection *output_section;
5584 unsigned int isec;
5585 bfd_vma matching_lma;
5586 bfd_vma suggested_lma;
5587 unsigned int j;
5588 bfd_size_type amt;
5589 asection *first_section;
5590 bfd_boolean first_matching_lma;
5591 bfd_boolean first_suggested_lma;
5592
5593 if (segment->p_type == PT_NULL)
5594 continue;
5595
5596 first_section = NULL;
5597 /* Compute how many sections might be placed into this segment. */
5598 for (section = ibfd->sections, section_count = 0;
5599 section != NULL;
5600 section = section->next)
5601 {
5602 /* Find the first section in the input segment, which may be
5603 removed from the corresponding output segment. */
5604 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
5605 {
5606 if (first_section == NULL)
5607 first_section = section;
5608 if (section->output_section != NULL)
5609 ++section_count;
5610 }
5611 }
5612
5613 /* Allocate a segment map big enough to contain
5614 all of the sections we have selected. */
5615 amt = sizeof (struct elf_segment_map);
5616 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5617 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
5618 if (map == NULL)
5619 return FALSE;
5620
5621 /* Initialise the fields of the segment map. Default to
5622 using the physical address of the segment in the input BFD. */
5623 map->next = NULL;
5624 map->p_type = segment->p_type;
5625 map->p_flags = segment->p_flags;
5626 map->p_flags_valid = 1;
5627
5628 /* If the first section in the input segment is removed, there is
5629 no need to preserve segment physical address in the corresponding
5630 output segment. */
5631 if (!first_section || first_section->output_section != NULL)
5632 {
5633 map->p_paddr = segment->p_paddr;
5634 map->p_paddr_valid = p_paddr_valid;
5635 }
5636
5637 /* Determine if this segment contains the ELF file header
5638 and if it contains the program headers themselves. */
5639 map->includes_filehdr = (segment->p_offset == 0
5640 && segment->p_filesz >= iehdr->e_ehsize);
5641 map->includes_phdrs = 0;
5642
5643 if (!phdr_included || segment->p_type != PT_LOAD)
5644 {
5645 map->includes_phdrs =
5646 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5647 && (segment->p_offset + segment->p_filesz
5648 >= ((bfd_vma) iehdr->e_phoff
5649 + iehdr->e_phnum * iehdr->e_phentsize)));
5650
5651 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5652 phdr_included = TRUE;
5653 }
5654
5655 if (section_count == 0)
5656 {
5657 /* Special segments, such as the PT_PHDR segment, may contain
5658 no sections, but ordinary, loadable segments should contain
5659 something. They are allowed by the ELF spec however, so only
5660 a warning is produced. */
5661 if (segment->p_type == PT_LOAD)
5662 (*_bfd_error_handler) (_("%B: warning: Empty loadable segment"
5663 " detected, is this intentional ?\n"),
5664 ibfd);
5665
5666 map->count = 0;
5667 *pointer_to_map = map;
5668 pointer_to_map = &map->next;
5669
5670 continue;
5671 }
5672
5673 /* Now scan the sections in the input BFD again and attempt
5674 to add their corresponding output sections to the segment map.
5675 The problem here is how to handle an output section which has
5676 been moved (ie had its LMA changed). There are four possibilities:
5677
5678 1. None of the sections have been moved.
5679 In this case we can continue to use the segment LMA from the
5680 input BFD.
5681
5682 2. All of the sections have been moved by the same amount.
5683 In this case we can change the segment's LMA to match the LMA
5684 of the first section.
5685
5686 3. Some of the sections have been moved, others have not.
5687 In this case those sections which have not been moved can be
5688 placed in the current segment which will have to have its size,
5689 and possibly its LMA changed, and a new segment or segments will
5690 have to be created to contain the other sections.
5691
5692 4. The sections have been moved, but not by the same amount.
5693 In this case we can change the segment's LMA to match the LMA
5694 of the first section and we will have to create a new segment
5695 or segments to contain the other sections.
5696
5697 In order to save time, we allocate an array to hold the section
5698 pointers that we are interested in. As these sections get assigned
5699 to a segment, they are removed from this array. */
5700
5701 sections = (asection **) bfd_malloc2 (section_count, sizeof (asection *));
5702 if (sections == NULL)
5703 return FALSE;
5704
5705 /* Step One: Scan for segment vs section LMA conflicts.
5706 Also add the sections to the section array allocated above.
5707 Also add the sections to the current segment. In the common
5708 case, where the sections have not been moved, this means that
5709 we have completely filled the segment, and there is nothing
5710 more to do. */
5711 isec = 0;
5712 matching_lma = 0;
5713 suggested_lma = 0;
5714 first_matching_lma = TRUE;
5715 first_suggested_lma = TRUE;
5716
5717 for (section = ibfd->sections;
5718 section != NULL;
5719 section = section->next)
5720 if (section == first_section)
5721 break;
5722
5723 for (j = 0; section != NULL; section = section->next)
5724 {
5725 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5726 {
5727 output_section = section->output_section;
5728
5729 sections[j++] = section;
5730
5731 /* The Solaris native linker always sets p_paddr to 0.
5732 We try to catch that case here, and set it to the
5733 correct value. Note - some backends require that
5734 p_paddr be left as zero. */
5735 if (!p_paddr_valid
5736 && segment->p_vaddr != 0
5737 && !bed->want_p_paddr_set_to_zero
5738 && isec == 0
5739 && output_section->lma != 0
5740 && output_section->vma == (segment->p_vaddr
5741 + (map->includes_filehdr
5742 ? iehdr->e_ehsize
5743 : 0)
5744 + (map->includes_phdrs
5745 ? (iehdr->e_phnum
5746 * iehdr->e_phentsize)
5747 : 0)))
5748 map->p_paddr = segment->p_vaddr;
5749
5750 /* Match up the physical address of the segment with the
5751 LMA address of the output section. */
5752 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5753 || IS_COREFILE_NOTE (segment, section)
5754 || (bed->want_p_paddr_set_to_zero
5755 && IS_CONTAINED_BY_VMA (output_section, segment)))
5756 {
5757 if (first_matching_lma || output_section->lma < matching_lma)
5758 {
5759 matching_lma = output_section->lma;
5760 first_matching_lma = FALSE;
5761 }
5762
5763 /* We assume that if the section fits within the segment
5764 then it does not overlap any other section within that
5765 segment. */
5766 map->sections[isec++] = output_section;
5767 }
5768 else if (first_suggested_lma)
5769 {
5770 suggested_lma = output_section->lma;
5771 first_suggested_lma = FALSE;
5772 }
5773
5774 if (j == section_count)
5775 break;
5776 }
5777 }
5778
5779 BFD_ASSERT (j == section_count);
5780
5781 /* Step Two: Adjust the physical address of the current segment,
5782 if necessary. */
5783 if (isec == section_count)
5784 {
5785 /* All of the sections fitted within the segment as currently
5786 specified. This is the default case. Add the segment to
5787 the list of built segments and carry on to process the next
5788 program header in the input BFD. */
5789 map->count = section_count;
5790 *pointer_to_map = map;
5791 pointer_to_map = &map->next;
5792
5793 if (p_paddr_valid
5794 && !bed->want_p_paddr_set_to_zero
5795 && matching_lma != map->p_paddr
5796 && !map->includes_filehdr
5797 && !map->includes_phdrs)
5798 /* There is some padding before the first section in the
5799 segment. So, we must account for that in the output
5800 segment's vma. */
5801 map->p_vaddr_offset = matching_lma - map->p_paddr;
5802
5803 free (sections);
5804 continue;
5805 }
5806 else
5807 {
5808 if (!first_matching_lma)
5809 {
5810 /* At least one section fits inside the current segment.
5811 Keep it, but modify its physical address to match the
5812 LMA of the first section that fitted. */
5813 map->p_paddr = matching_lma;
5814 }
5815 else
5816 {
5817 /* None of the sections fitted inside the current segment.
5818 Change the current segment's physical address to match
5819 the LMA of the first section. */
5820 map->p_paddr = suggested_lma;
5821 }
5822
5823 /* Offset the segment physical address from the lma
5824 to allow for space taken up by elf headers. */
5825 if (map->includes_filehdr)
5826 {
5827 if (map->p_paddr >= iehdr->e_ehsize)
5828 map->p_paddr -= iehdr->e_ehsize;
5829 else
5830 {
5831 map->includes_filehdr = FALSE;
5832 map->includes_phdrs = FALSE;
5833 }
5834 }
5835
5836 if (map->includes_phdrs)
5837 {
5838 if (map->p_paddr >= iehdr->e_phnum * iehdr->e_phentsize)
5839 {
5840 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
5841
5842 /* iehdr->e_phnum is just an estimate of the number
5843 of program headers that we will need. Make a note
5844 here of the number we used and the segment we chose
5845 to hold these headers, so that we can adjust the
5846 offset when we know the correct value. */
5847 phdr_adjust_num = iehdr->e_phnum;
5848 phdr_adjust_seg = map;
5849 }
5850 else
5851 map->includes_phdrs = FALSE;
5852 }
5853 }
5854
5855 /* Step Three: Loop over the sections again, this time assigning
5856 those that fit to the current segment and removing them from the
5857 sections array; but making sure not to leave large gaps. Once all
5858 possible sections have been assigned to the current segment it is
5859 added to the list of built segments and if sections still remain
5860 to be assigned, a new segment is constructed before repeating
5861 the loop. */
5862 isec = 0;
5863 do
5864 {
5865 map->count = 0;
5866 suggested_lma = 0;
5867 first_suggested_lma = TRUE;
5868
5869 /* Fill the current segment with sections that fit. */
5870 for (j = 0; j < section_count; j++)
5871 {
5872 section = sections[j];
5873
5874 if (section == NULL)
5875 continue;
5876
5877 output_section = section->output_section;
5878
5879 BFD_ASSERT (output_section != NULL);
5880
5881 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5882 || IS_COREFILE_NOTE (segment, section))
5883 {
5884 if (map->count == 0)
5885 {
5886 /* If the first section in a segment does not start at
5887 the beginning of the segment, then something is
5888 wrong. */
5889 if (output_section->lma
5890 != (map->p_paddr
5891 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
5892 + (map->includes_phdrs
5893 ? iehdr->e_phnum * iehdr->e_phentsize
5894 : 0)))
5895 abort ();
5896 }
5897 else
5898 {
5899 asection *prev_sec;
5900
5901 prev_sec = map->sections[map->count - 1];
5902
5903 /* If the gap between the end of the previous section
5904 and the start of this section is more than
5905 maxpagesize then we need to start a new segment. */
5906 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
5907 maxpagesize)
5908 < BFD_ALIGN (output_section->lma, maxpagesize))
5909 || (prev_sec->lma + prev_sec->size
5910 > output_section->lma))
5911 {
5912 if (first_suggested_lma)
5913 {
5914 suggested_lma = output_section->lma;
5915 first_suggested_lma = FALSE;
5916 }
5917
5918 continue;
5919 }
5920 }
5921
5922 map->sections[map->count++] = output_section;
5923 ++isec;
5924 sections[j] = NULL;
5925 section->segment_mark = TRUE;
5926 }
5927 else if (first_suggested_lma)
5928 {
5929 suggested_lma = output_section->lma;
5930 first_suggested_lma = FALSE;
5931 }
5932 }
5933
5934 BFD_ASSERT (map->count > 0);
5935
5936 /* Add the current segment to the list of built segments. */
5937 *pointer_to_map = map;
5938 pointer_to_map = &map->next;
5939
5940 if (isec < section_count)
5941 {
5942 /* We still have not allocated all of the sections to
5943 segments. Create a new segment here, initialise it
5944 and carry on looping. */
5945 amt = sizeof (struct elf_segment_map);
5946 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5947 map = (struct elf_segment_map *) bfd_alloc (obfd, amt);
5948 if (map == NULL)
5949 {
5950 free (sections);
5951 return FALSE;
5952 }
5953
5954 /* Initialise the fields of the segment map. Set the physical
5955 physical address to the LMA of the first section that has
5956 not yet been assigned. */
5957 map->next = NULL;
5958 map->p_type = segment->p_type;
5959 map->p_flags = segment->p_flags;
5960 map->p_flags_valid = 1;
5961 map->p_paddr = suggested_lma;
5962 map->p_paddr_valid = p_paddr_valid;
5963 map->includes_filehdr = 0;
5964 map->includes_phdrs = 0;
5965 }
5966 }
5967 while (isec < section_count);
5968
5969 free (sections);
5970 }
5971
5972 elf_tdata (obfd)->segment_map = map_first;
5973
5974 /* If we had to estimate the number of program headers that were
5975 going to be needed, then check our estimate now and adjust
5976 the offset if necessary. */
5977 if (phdr_adjust_seg != NULL)
5978 {
5979 unsigned int count;
5980
5981 for (count = 0, map = map_first; map != NULL; map = map->next)
5982 count++;
5983
5984 if (count > phdr_adjust_num)
5985 phdr_adjust_seg->p_paddr
5986 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
5987 }
5988
5989 #undef SEGMENT_END
5990 #undef SECTION_SIZE
5991 #undef IS_CONTAINED_BY_VMA
5992 #undef IS_CONTAINED_BY_LMA
5993 #undef IS_NOTE
5994 #undef IS_COREFILE_NOTE
5995 #undef IS_SOLARIS_PT_INTERP
5996 #undef IS_SECTION_IN_INPUT_SEGMENT
5997 #undef INCLUDE_SECTION_IN_SEGMENT
5998 #undef SEGMENT_AFTER_SEGMENT
5999 #undef SEGMENT_OVERLAPS
6000 return TRUE;
6001 }
6002
6003 /* Copy ELF program header information. */
6004
6005 static bfd_boolean
6006 copy_elf_program_header (bfd *ibfd, bfd *obfd)
6007 {
6008 Elf_Internal_Ehdr *iehdr;
6009 struct elf_segment_map *map;
6010 struct elf_segment_map *map_first;
6011 struct elf_segment_map **pointer_to_map;
6012 Elf_Internal_Phdr *segment;
6013 unsigned int i;
6014 unsigned int num_segments;
6015 bfd_boolean phdr_included = FALSE;
6016 bfd_boolean p_paddr_valid;
6017
6018 iehdr = elf_elfheader (ibfd);
6019
6020 map_first = NULL;
6021 pointer_to_map = &map_first;
6022
6023 /* If all the segment p_paddr fields are zero, don't set
6024 map->p_paddr_valid. */
6025 p_paddr_valid = FALSE;
6026 num_segments = elf_elfheader (ibfd)->e_phnum;
6027 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6028 i < num_segments;
6029 i++, segment++)
6030 if (segment->p_paddr != 0)
6031 {
6032 p_paddr_valid = TRUE;
6033 break;
6034 }
6035
6036 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6037 i < num_segments;
6038 i++, segment++)
6039 {
6040 asection *section;
6041 unsigned int section_count;
6042 bfd_size_type amt;
6043 Elf_Internal_Shdr *this_hdr;
6044 asection *first_section = NULL;
6045 asection *lowest_section;
6046
6047 /* Compute how many sections are in this segment. */
6048 for (section = ibfd->sections, section_count = 0;
6049 section != NULL;
6050 section = section->next)
6051 {
6052 this_hdr = &(elf_section_data(section)->this_hdr);
6053 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6054 {
6055 if (first_section == NULL)
6056 first_section = section;
6057 section_count++;
6058 }
6059 }
6060
6061 /* Allocate a segment map big enough to contain
6062 all of the sections we have selected. */
6063 amt = sizeof (struct elf_segment_map);
6064 if (section_count != 0)
6065 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
6066 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
6067 if (map == NULL)
6068 return FALSE;
6069
6070 /* Initialize the fields of the output segment map with the
6071 input segment. */
6072 map->next = NULL;
6073 map->p_type = segment->p_type;
6074 map->p_flags = segment->p_flags;
6075 map->p_flags_valid = 1;
6076 map->p_paddr = segment->p_paddr;
6077 map->p_paddr_valid = p_paddr_valid;
6078 map->p_align = segment->p_align;
6079 map->p_align_valid = 1;
6080 map->p_vaddr_offset = 0;
6081
6082 if (map->p_type == PT_GNU_RELRO)
6083 {
6084 /* The PT_GNU_RELRO segment may contain the first a few
6085 bytes in the .got.plt section even if the whole .got.plt
6086 section isn't in the PT_GNU_RELRO segment. We won't
6087 change the size of the PT_GNU_RELRO segment. */
6088 map->p_size = segment->p_memsz;
6089 map->p_size_valid = 1;
6090 }
6091
6092 /* Determine if this segment contains the ELF file header
6093 and if it contains the program headers themselves. */
6094 map->includes_filehdr = (segment->p_offset == 0
6095 && segment->p_filesz >= iehdr->e_ehsize);
6096
6097 map->includes_phdrs = 0;
6098 if (! phdr_included || segment->p_type != PT_LOAD)
6099 {
6100 map->includes_phdrs =
6101 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
6102 && (segment->p_offset + segment->p_filesz
6103 >= ((bfd_vma) iehdr->e_phoff
6104 + iehdr->e_phnum * iehdr->e_phentsize)));
6105
6106 if (segment->p_type == PT_LOAD && map->includes_phdrs)
6107 phdr_included = TRUE;
6108 }
6109
6110 lowest_section = first_section;
6111 if (section_count != 0)
6112 {
6113 unsigned int isec = 0;
6114
6115 for (section = first_section;
6116 section != NULL;
6117 section = section->next)
6118 {
6119 this_hdr = &(elf_section_data(section)->this_hdr);
6120 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6121 {
6122 map->sections[isec++] = section->output_section;
6123 if (section->lma < lowest_section->lma)
6124 lowest_section = section;
6125 if ((section->flags & SEC_ALLOC) != 0)
6126 {
6127 bfd_vma seg_off;
6128
6129 /* Section lmas are set up from PT_LOAD header
6130 p_paddr in _bfd_elf_make_section_from_shdr.
6131 If this header has a p_paddr that disagrees
6132 with the section lma, flag the p_paddr as
6133 invalid. */
6134 if ((section->flags & SEC_LOAD) != 0)
6135 seg_off = this_hdr->sh_offset - segment->p_offset;
6136 else
6137 seg_off = this_hdr->sh_addr - segment->p_vaddr;
6138 if (section->lma - segment->p_paddr != seg_off)
6139 map->p_paddr_valid = FALSE;
6140 }
6141 if (isec == section_count)
6142 break;
6143 }
6144 }
6145 }
6146
6147 if (map->includes_filehdr && lowest_section != NULL)
6148 /* We need to keep the space used by the headers fixed. */
6149 map->header_size = lowest_section->vma - segment->p_vaddr;
6150
6151 if (!map->includes_phdrs
6152 && !map->includes_filehdr
6153 && map->p_paddr_valid)
6154 /* There is some other padding before the first section. */
6155 map->p_vaddr_offset = ((lowest_section ? lowest_section->lma : 0)
6156 - segment->p_paddr);
6157
6158 map->count = section_count;
6159 *pointer_to_map = map;
6160 pointer_to_map = &map->next;
6161 }
6162
6163 elf_tdata (obfd)->segment_map = map_first;
6164 return TRUE;
6165 }
6166
6167 /* Copy private BFD data. This copies or rewrites ELF program header
6168 information. */
6169
6170 static bfd_boolean
6171 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
6172 {
6173 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6174 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6175 return TRUE;
6176
6177 if (elf_tdata (ibfd)->phdr == NULL)
6178 return TRUE;
6179
6180 if (ibfd->xvec == obfd->xvec)
6181 {
6182 /* Check to see if any sections in the input BFD
6183 covered by ELF program header have changed. */
6184 Elf_Internal_Phdr *segment;
6185 asection *section, *osec;
6186 unsigned int i, num_segments;
6187 Elf_Internal_Shdr *this_hdr;
6188 const struct elf_backend_data *bed;
6189
6190 bed = get_elf_backend_data (ibfd);
6191
6192 /* Regenerate the segment map if p_paddr is set to 0. */
6193 if (bed->want_p_paddr_set_to_zero)
6194 goto rewrite;
6195
6196 /* Initialize the segment mark field. */
6197 for (section = obfd->sections; section != NULL;
6198 section = section->next)
6199 section->segment_mark = FALSE;
6200
6201 num_segments = elf_elfheader (ibfd)->e_phnum;
6202 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6203 i < num_segments;
6204 i++, segment++)
6205 {
6206 /* PR binutils/3535. The Solaris linker always sets the p_paddr
6207 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
6208 which severly confuses things, so always regenerate the segment
6209 map in this case. */
6210 if (segment->p_paddr == 0
6211 && segment->p_memsz == 0
6212 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
6213 goto rewrite;
6214
6215 for (section = ibfd->sections;
6216 section != NULL; section = section->next)
6217 {
6218 /* We mark the output section so that we know it comes
6219 from the input BFD. */
6220 osec = section->output_section;
6221 if (osec)
6222 osec->segment_mark = TRUE;
6223
6224 /* Check if this section is covered by the segment. */
6225 this_hdr = &(elf_section_data(section)->this_hdr);
6226 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6227 {
6228 /* FIXME: Check if its output section is changed or
6229 removed. What else do we need to check? */
6230 if (osec == NULL
6231 || section->flags != osec->flags
6232 || section->lma != osec->lma
6233 || section->vma != osec->vma
6234 || section->size != osec->size
6235 || section->rawsize != osec->rawsize
6236 || section->alignment_power != osec->alignment_power)
6237 goto rewrite;
6238 }
6239 }
6240 }
6241
6242 /* Check to see if any output section do not come from the
6243 input BFD. */
6244 for (section = obfd->sections; section != NULL;
6245 section = section->next)
6246 {
6247 if (section->segment_mark == FALSE)
6248 goto rewrite;
6249 else
6250 section->segment_mark = FALSE;
6251 }
6252
6253 return copy_elf_program_header (ibfd, obfd);
6254 }
6255
6256 rewrite:
6257 return rewrite_elf_program_header (ibfd, obfd);
6258 }
6259
6260 /* Initialize private output section information from input section. */
6261
6262 bfd_boolean
6263 _bfd_elf_init_private_section_data (bfd *ibfd,
6264 asection *isec,
6265 bfd *obfd,
6266 asection *osec,
6267 struct bfd_link_info *link_info)
6268
6269 {
6270 Elf_Internal_Shdr *ihdr, *ohdr;
6271 bfd_boolean final_link = link_info != NULL && !link_info->relocatable;
6272
6273 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6274 || obfd->xvec->flavour != bfd_target_elf_flavour)
6275 return TRUE;
6276
6277 BFD_ASSERT (elf_section_data (osec) != NULL);
6278
6279 /* For objcopy and relocatable link, don't copy the output ELF
6280 section type from input if the output BFD section flags have been
6281 set to something different. For a final link allow some flags
6282 that the linker clears to differ. */
6283 if (elf_section_type (osec) == SHT_NULL
6284 && (osec->flags == isec->flags
6285 || (final_link
6286 && ((osec->flags ^ isec->flags)
6287 & ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC)) == 0)))
6288 elf_section_type (osec) = elf_section_type (isec);
6289
6290 /* FIXME: Is this correct for all OS/PROC specific flags? */
6291 elf_section_flags (osec) |= (elf_section_flags (isec)
6292 & (SHF_MASKOS | SHF_MASKPROC));
6293
6294 /* Set things up for objcopy and relocatable link. The output
6295 SHT_GROUP section will have its elf_next_in_group pointing back
6296 to the input group members. Ignore linker created group section.
6297 See elfNN_ia64_object_p in elfxx-ia64.c. */
6298 if (!final_link)
6299 {
6300 if (elf_sec_group (isec) == NULL
6301 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
6302 {
6303 if (elf_section_flags (isec) & SHF_GROUP)
6304 elf_section_flags (osec) |= SHF_GROUP;
6305 elf_next_in_group (osec) = elf_next_in_group (isec);
6306 elf_section_data (osec)->group = elf_section_data (isec)->group;
6307 }
6308 }
6309
6310 ihdr = &elf_section_data (isec)->this_hdr;
6311
6312 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
6313 don't use the output section of the linked-to section since it
6314 may be NULL at this point. */
6315 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
6316 {
6317 ohdr = &elf_section_data (osec)->this_hdr;
6318 ohdr->sh_flags |= SHF_LINK_ORDER;
6319 elf_linked_to_section (osec) = elf_linked_to_section (isec);
6320 }
6321
6322 osec->use_rela_p = isec->use_rela_p;
6323
6324 return TRUE;
6325 }
6326
6327 /* Copy private section information. This copies over the entsize
6328 field, and sometimes the info field. */
6329
6330 bfd_boolean
6331 _bfd_elf_copy_private_section_data (bfd *ibfd,
6332 asection *isec,
6333 bfd *obfd,
6334 asection *osec)
6335 {
6336 Elf_Internal_Shdr *ihdr, *ohdr;
6337
6338 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6339 || obfd->xvec->flavour != bfd_target_elf_flavour)
6340 return TRUE;
6341
6342 ihdr = &elf_section_data (isec)->this_hdr;
6343 ohdr = &elf_section_data (osec)->this_hdr;
6344
6345 ohdr->sh_entsize = ihdr->sh_entsize;
6346
6347 if (ihdr->sh_type == SHT_SYMTAB
6348 || ihdr->sh_type == SHT_DYNSYM
6349 || ihdr->sh_type == SHT_GNU_verneed
6350 || ihdr->sh_type == SHT_GNU_verdef)
6351 ohdr->sh_info = ihdr->sh_info;
6352
6353 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
6354 NULL);
6355 }
6356
6357 /* Look at all the SHT_GROUP sections in IBFD, making any adjustments
6358 necessary if we are removing either the SHT_GROUP section or any of
6359 the group member sections. DISCARDED is the value that a section's
6360 output_section has if the section will be discarded, NULL when this
6361 function is called from objcopy, bfd_abs_section_ptr when called
6362 from the linker. */
6363
6364 bfd_boolean
6365 _bfd_elf_fixup_group_sections (bfd *ibfd, asection *discarded)
6366 {
6367 asection *isec;
6368
6369 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
6370 if (elf_section_type (isec) == SHT_GROUP)
6371 {
6372 asection *first = elf_next_in_group (isec);
6373 asection *s = first;
6374 bfd_size_type removed = 0;
6375
6376 while (s != NULL)
6377 {
6378 /* If this member section is being output but the
6379 SHT_GROUP section is not, then clear the group info
6380 set up by _bfd_elf_copy_private_section_data. */
6381 if (s->output_section != discarded
6382 && isec->output_section == discarded)
6383 {
6384 elf_section_flags (s->output_section) &= ~SHF_GROUP;
6385 elf_group_name (s->output_section) = NULL;
6386 }
6387 /* Conversely, if the member section is not being output
6388 but the SHT_GROUP section is, then adjust its size. */
6389 else if (s->output_section == discarded
6390 && isec->output_section != discarded)
6391 removed += 4;
6392 s = elf_next_in_group (s);
6393 if (s == first)
6394 break;
6395 }
6396 if (removed != 0)
6397 {
6398 if (discarded != NULL)
6399 {
6400 /* If we've been called for ld -r, then we need to
6401 adjust the input section size. This function may
6402 be called multiple times, so save the original
6403 size. */
6404 if (isec->rawsize == 0)
6405 isec->rawsize = isec->size;
6406 isec->size = isec->rawsize - removed;
6407 }
6408 else
6409 {
6410 /* Adjust the output section size when called from
6411 objcopy. */
6412 isec->output_section->size -= removed;
6413 }
6414 }
6415 }
6416
6417 return TRUE;
6418 }
6419
6420 /* Copy private header information. */
6421
6422 bfd_boolean
6423 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
6424 {
6425 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6426 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6427 return TRUE;
6428
6429 /* Copy over private BFD data if it has not already been copied.
6430 This must be done here, rather than in the copy_private_bfd_data
6431 entry point, because the latter is called after the section
6432 contents have been set, which means that the program headers have
6433 already been worked out. */
6434 if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
6435 {
6436 if (! copy_private_bfd_data (ibfd, obfd))
6437 return FALSE;
6438 }
6439
6440 return _bfd_elf_fixup_group_sections (ibfd, NULL);
6441 }
6442
6443 /* Copy private symbol information. If this symbol is in a section
6444 which we did not map into a BFD section, try to map the section
6445 index correctly. We use special macro definitions for the mapped
6446 section indices; these definitions are interpreted by the
6447 swap_out_syms function. */
6448
6449 #define MAP_ONESYMTAB (SHN_HIOS + 1)
6450 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
6451 #define MAP_STRTAB (SHN_HIOS + 3)
6452 #define MAP_SHSTRTAB (SHN_HIOS + 4)
6453 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
6454
6455 bfd_boolean
6456 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
6457 asymbol *isymarg,
6458 bfd *obfd,
6459 asymbol *osymarg)
6460 {
6461 elf_symbol_type *isym, *osym;
6462
6463 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6464 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6465 return TRUE;
6466
6467 isym = elf_symbol_from (ibfd, isymarg);
6468 osym = elf_symbol_from (obfd, osymarg);
6469
6470 if (isym != NULL
6471 && isym->internal_elf_sym.st_shndx != 0
6472 && osym != NULL
6473 && bfd_is_abs_section (isym->symbol.section))
6474 {
6475 unsigned int shndx;
6476
6477 shndx = isym->internal_elf_sym.st_shndx;
6478 if (shndx == elf_onesymtab (ibfd))
6479 shndx = MAP_ONESYMTAB;
6480 else if (shndx == elf_dynsymtab (ibfd))
6481 shndx = MAP_DYNSYMTAB;
6482 else if (shndx == elf_tdata (ibfd)->strtab_section)
6483 shndx = MAP_STRTAB;
6484 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
6485 shndx = MAP_SHSTRTAB;
6486 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
6487 shndx = MAP_SYM_SHNDX;
6488 osym->internal_elf_sym.st_shndx = shndx;
6489 }
6490
6491 return TRUE;
6492 }
6493
6494 /* Swap out the symbols. */
6495
6496 static bfd_boolean
6497 swap_out_syms (bfd *abfd,
6498 struct bfd_strtab_hash **sttp,
6499 int relocatable_p)
6500 {
6501 const struct elf_backend_data *bed;
6502 int symcount;
6503 asymbol **syms;
6504 struct bfd_strtab_hash *stt;
6505 Elf_Internal_Shdr *symtab_hdr;
6506 Elf_Internal_Shdr *symtab_shndx_hdr;
6507 Elf_Internal_Shdr *symstrtab_hdr;
6508 bfd_byte *outbound_syms;
6509 bfd_byte *outbound_shndx;
6510 int idx;
6511 bfd_size_type amt;
6512 bfd_boolean name_local_sections;
6513
6514 if (!elf_map_symbols (abfd))
6515 return FALSE;
6516
6517 /* Dump out the symtabs. */
6518 stt = _bfd_elf_stringtab_init ();
6519 if (stt == NULL)
6520 return FALSE;
6521
6522 bed = get_elf_backend_data (abfd);
6523 symcount = bfd_get_symcount (abfd);
6524 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6525 symtab_hdr->sh_type = SHT_SYMTAB;
6526 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
6527 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
6528 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
6529 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
6530
6531 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
6532 symstrtab_hdr->sh_type = SHT_STRTAB;
6533
6534 outbound_syms = (bfd_byte *) bfd_alloc2 (abfd, 1 + symcount,
6535 bed->s->sizeof_sym);
6536 if (outbound_syms == NULL)
6537 {
6538 _bfd_stringtab_free (stt);
6539 return FALSE;
6540 }
6541 symtab_hdr->contents = outbound_syms;
6542
6543 outbound_shndx = NULL;
6544 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
6545 if (symtab_shndx_hdr->sh_name != 0)
6546 {
6547 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
6548 outbound_shndx = (bfd_byte *)
6549 bfd_zalloc2 (abfd, 1 + symcount, sizeof (Elf_External_Sym_Shndx));
6550 if (outbound_shndx == NULL)
6551 {
6552 _bfd_stringtab_free (stt);
6553 return FALSE;
6554 }
6555
6556 symtab_shndx_hdr->contents = outbound_shndx;
6557 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
6558 symtab_shndx_hdr->sh_size = amt;
6559 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
6560 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
6561 }
6562
6563 /* Now generate the data (for "contents"). */
6564 {
6565 /* Fill in zeroth symbol and swap it out. */
6566 Elf_Internal_Sym sym;
6567 sym.st_name = 0;
6568 sym.st_value = 0;
6569 sym.st_size = 0;
6570 sym.st_info = 0;
6571 sym.st_other = 0;
6572 sym.st_shndx = SHN_UNDEF;
6573 sym.st_target_internal = 0;
6574 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6575 outbound_syms += bed->s->sizeof_sym;
6576 if (outbound_shndx != NULL)
6577 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6578 }
6579
6580 name_local_sections
6581 = (bed->elf_backend_name_local_section_symbols
6582 && bed->elf_backend_name_local_section_symbols (abfd));
6583
6584 syms = bfd_get_outsymbols (abfd);
6585 for (idx = 0; idx < symcount; idx++)
6586 {
6587 Elf_Internal_Sym sym;
6588 bfd_vma value = syms[idx]->value;
6589 elf_symbol_type *type_ptr;
6590 flagword flags = syms[idx]->flags;
6591 int type;
6592
6593 if (!name_local_sections
6594 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
6595 {
6596 /* Local section symbols have no name. */
6597 sym.st_name = 0;
6598 }
6599 else
6600 {
6601 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
6602 syms[idx]->name,
6603 TRUE, FALSE);
6604 if (sym.st_name == (unsigned long) -1)
6605 {
6606 _bfd_stringtab_free (stt);
6607 return FALSE;
6608 }
6609 }
6610
6611 type_ptr = elf_symbol_from (abfd, syms[idx]);
6612
6613 if ((flags & BSF_SECTION_SYM) == 0
6614 && bfd_is_com_section (syms[idx]->section))
6615 {
6616 /* ELF common symbols put the alignment into the `value' field,
6617 and the size into the `size' field. This is backwards from
6618 how BFD handles it, so reverse it here. */
6619 sym.st_size = value;
6620 if (type_ptr == NULL
6621 || type_ptr->internal_elf_sym.st_value == 0)
6622 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
6623 else
6624 sym.st_value = type_ptr->internal_elf_sym.st_value;
6625 sym.st_shndx = _bfd_elf_section_from_bfd_section
6626 (abfd, syms[idx]->section);
6627 }
6628 else
6629 {
6630 asection *sec = syms[idx]->section;
6631 unsigned int shndx;
6632
6633 if (sec->output_section)
6634 {
6635 value += sec->output_offset;
6636 sec = sec->output_section;
6637 }
6638
6639 /* Don't add in the section vma for relocatable output. */
6640 if (! relocatable_p)
6641 value += sec->vma;
6642 sym.st_value = value;
6643 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
6644
6645 if (bfd_is_abs_section (sec)
6646 && type_ptr != NULL
6647 && type_ptr->internal_elf_sym.st_shndx != 0)
6648 {
6649 /* This symbol is in a real ELF section which we did
6650 not create as a BFD section. Undo the mapping done
6651 by copy_private_symbol_data. */
6652 shndx = type_ptr->internal_elf_sym.st_shndx;
6653 switch (shndx)
6654 {
6655 case MAP_ONESYMTAB:
6656 shndx = elf_onesymtab (abfd);
6657 break;
6658 case MAP_DYNSYMTAB:
6659 shndx = elf_dynsymtab (abfd);
6660 break;
6661 case MAP_STRTAB:
6662 shndx = elf_tdata (abfd)->strtab_section;
6663 break;
6664 case MAP_SHSTRTAB:
6665 shndx = elf_tdata (abfd)->shstrtab_section;
6666 break;
6667 case MAP_SYM_SHNDX:
6668 shndx = elf_tdata (abfd)->symtab_shndx_section;
6669 break;
6670 default:
6671 break;
6672 }
6673 }
6674 else
6675 {
6676 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
6677
6678 if (shndx == SHN_BAD)
6679 {
6680 asection *sec2;
6681
6682 /* Writing this would be a hell of a lot easier if
6683 we had some decent documentation on bfd, and
6684 knew what to expect of the library, and what to
6685 demand of applications. For example, it
6686 appears that `objcopy' might not set the
6687 section of a symbol to be a section that is
6688 actually in the output file. */
6689 sec2 = bfd_get_section_by_name (abfd, sec->name);
6690 if (sec2 == NULL)
6691 {
6692 _bfd_error_handler (_("\
6693 Unable to find equivalent output section for symbol '%s' from section '%s'"),
6694 syms[idx]->name ? syms[idx]->name : "<Local sym>",
6695 sec->name);
6696 bfd_set_error (bfd_error_invalid_operation);
6697 _bfd_stringtab_free (stt);
6698 return FALSE;
6699 }
6700
6701 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
6702 BFD_ASSERT (shndx != SHN_BAD);
6703 }
6704 }
6705
6706 sym.st_shndx = shndx;
6707 }
6708
6709 if ((flags & BSF_THREAD_LOCAL) != 0)
6710 type = STT_TLS;
6711 else if ((flags & BSF_GNU_INDIRECT_FUNCTION) != 0)
6712 type = STT_GNU_IFUNC;
6713 else if ((flags & BSF_FUNCTION) != 0)
6714 type = STT_FUNC;
6715 else if ((flags & BSF_OBJECT) != 0)
6716 type = STT_OBJECT;
6717 else if ((flags & BSF_RELC) != 0)
6718 type = STT_RELC;
6719 else if ((flags & BSF_SRELC) != 0)
6720 type = STT_SRELC;
6721 else
6722 type = STT_NOTYPE;
6723
6724 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
6725 type = STT_TLS;
6726
6727 /* Processor-specific types. */
6728 if (type_ptr != NULL
6729 && bed->elf_backend_get_symbol_type)
6730 type = ((*bed->elf_backend_get_symbol_type)
6731 (&type_ptr->internal_elf_sym, type));
6732
6733 if (flags & BSF_SECTION_SYM)
6734 {
6735 if (flags & BSF_GLOBAL)
6736 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6737 else
6738 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
6739 }
6740 else if (bfd_is_com_section (syms[idx]->section))
6741 {
6742 #ifdef USE_STT_COMMON
6743 if (type == STT_OBJECT)
6744 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_COMMON);
6745 else
6746 #endif
6747 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
6748 }
6749 else if (bfd_is_und_section (syms[idx]->section))
6750 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
6751 ? STB_WEAK
6752 : STB_GLOBAL),
6753 type);
6754 else if (flags & BSF_FILE)
6755 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
6756 else
6757 {
6758 int bind = STB_LOCAL;
6759
6760 if (flags & BSF_LOCAL)
6761 bind = STB_LOCAL;
6762 else if (flags & BSF_GNU_UNIQUE)
6763 bind = STB_GNU_UNIQUE;
6764 else if (flags & BSF_WEAK)
6765 bind = STB_WEAK;
6766 else if (flags & BSF_GLOBAL)
6767 bind = STB_GLOBAL;
6768
6769 sym.st_info = ELF_ST_INFO (bind, type);
6770 }
6771
6772 if (type_ptr != NULL)
6773 {
6774 sym.st_other = type_ptr->internal_elf_sym.st_other;
6775 sym.st_target_internal
6776 = type_ptr->internal_elf_sym.st_target_internal;
6777 }
6778 else
6779 {
6780 sym.st_other = 0;
6781 sym.st_target_internal = 0;
6782 }
6783
6784 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6785 outbound_syms += bed->s->sizeof_sym;
6786 if (outbound_shndx != NULL)
6787 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6788 }
6789
6790 *sttp = stt;
6791 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
6792 symstrtab_hdr->sh_type = SHT_STRTAB;
6793
6794 symstrtab_hdr->sh_flags = 0;
6795 symstrtab_hdr->sh_addr = 0;
6796 symstrtab_hdr->sh_entsize = 0;
6797 symstrtab_hdr->sh_link = 0;
6798 symstrtab_hdr->sh_info = 0;
6799 symstrtab_hdr->sh_addralign = 1;
6800
6801 return TRUE;
6802 }
6803
6804 /* Return the number of bytes required to hold the symtab vector.
6805
6806 Note that we base it on the count plus 1, since we will null terminate
6807 the vector allocated based on this size. However, the ELF symbol table
6808 always has a dummy entry as symbol #0, so it ends up even. */
6809
6810 long
6811 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
6812 {
6813 long symcount;
6814 long symtab_size;
6815 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
6816
6817 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6818 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6819 if (symcount > 0)
6820 symtab_size -= sizeof (asymbol *);
6821
6822 return symtab_size;
6823 }
6824
6825 long
6826 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
6827 {
6828 long symcount;
6829 long symtab_size;
6830 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
6831
6832 if (elf_dynsymtab (abfd) == 0)
6833 {
6834 bfd_set_error (bfd_error_invalid_operation);
6835 return -1;
6836 }
6837
6838 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6839 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6840 if (symcount > 0)
6841 symtab_size -= sizeof (asymbol *);
6842
6843 return symtab_size;
6844 }
6845
6846 long
6847 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
6848 sec_ptr asect)
6849 {
6850 return (asect->reloc_count + 1) * sizeof (arelent *);
6851 }
6852
6853 /* Canonicalize the relocs. */
6854
6855 long
6856 _bfd_elf_canonicalize_reloc (bfd *abfd,
6857 sec_ptr section,
6858 arelent **relptr,
6859 asymbol **symbols)
6860 {
6861 arelent *tblptr;
6862 unsigned int i;
6863 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6864
6865 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
6866 return -1;
6867
6868 tblptr = section->relocation;
6869 for (i = 0; i < section->reloc_count; i++)
6870 *relptr++ = tblptr++;
6871
6872 *relptr = NULL;
6873
6874 return section->reloc_count;
6875 }
6876
6877 long
6878 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
6879 {
6880 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6881 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
6882
6883 if (symcount >= 0)
6884 bfd_get_symcount (abfd) = symcount;
6885 return symcount;
6886 }
6887
6888 long
6889 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
6890 asymbol **allocation)
6891 {
6892 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6893 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
6894
6895 if (symcount >= 0)
6896 bfd_get_dynamic_symcount (abfd) = symcount;
6897 return symcount;
6898 }
6899
6900 /* Return the size required for the dynamic reloc entries. Any loadable
6901 section that was actually installed in the BFD, and has type SHT_REL
6902 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
6903 dynamic reloc section. */
6904
6905 long
6906 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
6907 {
6908 long ret;
6909 asection *s;
6910
6911 if (elf_dynsymtab (abfd) == 0)
6912 {
6913 bfd_set_error (bfd_error_invalid_operation);
6914 return -1;
6915 }
6916
6917 ret = sizeof (arelent *);
6918 for (s = abfd->sections; s != NULL; s = s->next)
6919 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6920 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6921 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6922 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
6923 * sizeof (arelent *));
6924
6925 return ret;
6926 }
6927
6928 /* Canonicalize the dynamic relocation entries. Note that we return the
6929 dynamic relocations as a single block, although they are actually
6930 associated with particular sections; the interface, which was
6931 designed for SunOS style shared libraries, expects that there is only
6932 one set of dynamic relocs. Any loadable section that was actually
6933 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
6934 dynamic symbol table, is considered to be a dynamic reloc section. */
6935
6936 long
6937 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
6938 arelent **storage,
6939 asymbol **syms)
6940 {
6941 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
6942 asection *s;
6943 long ret;
6944
6945 if (elf_dynsymtab (abfd) == 0)
6946 {
6947 bfd_set_error (bfd_error_invalid_operation);
6948 return -1;
6949 }
6950
6951 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
6952 ret = 0;
6953 for (s = abfd->sections; s != NULL; s = s->next)
6954 {
6955 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6956 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6957 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6958 {
6959 arelent *p;
6960 long count, i;
6961
6962 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
6963 return -1;
6964 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
6965 p = s->relocation;
6966 for (i = 0; i < count; i++)
6967 *storage++ = p++;
6968 ret += count;
6969 }
6970 }
6971
6972 *storage = NULL;
6973
6974 return ret;
6975 }
6976 \f
6977 /* Read in the version information. */
6978
6979 bfd_boolean
6980 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
6981 {
6982 bfd_byte *contents = NULL;
6983 unsigned int freeidx = 0;
6984
6985 if (elf_dynverref (abfd) != 0)
6986 {
6987 Elf_Internal_Shdr *hdr;
6988 Elf_External_Verneed *everneed;
6989 Elf_Internal_Verneed *iverneed;
6990 unsigned int i;
6991 bfd_byte *contents_end;
6992
6993 hdr = &elf_tdata (abfd)->dynverref_hdr;
6994
6995 elf_tdata (abfd)->verref = (Elf_Internal_Verneed *)
6996 bfd_zalloc2 (abfd, hdr->sh_info, sizeof (Elf_Internal_Verneed));
6997 if (elf_tdata (abfd)->verref == NULL)
6998 goto error_return;
6999
7000 elf_tdata (abfd)->cverrefs = hdr->sh_info;
7001
7002 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
7003 if (contents == NULL)
7004 {
7005 error_return_verref:
7006 elf_tdata (abfd)->verref = NULL;
7007 elf_tdata (abfd)->cverrefs = 0;
7008 goto error_return;
7009 }
7010 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
7011 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
7012 goto error_return_verref;
7013
7014 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verneed))
7015 goto error_return_verref;
7016
7017 BFD_ASSERT (sizeof (Elf_External_Verneed)
7018 == sizeof (Elf_External_Vernaux));
7019 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
7020 everneed = (Elf_External_Verneed *) contents;
7021 iverneed = elf_tdata (abfd)->verref;
7022 for (i = 0; i < hdr->sh_info; i++, iverneed++)
7023 {
7024 Elf_External_Vernaux *evernaux;
7025 Elf_Internal_Vernaux *ivernaux;
7026 unsigned int j;
7027
7028 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
7029
7030 iverneed->vn_bfd = abfd;
7031
7032 iverneed->vn_filename =
7033 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7034 iverneed->vn_file);
7035 if (iverneed->vn_filename == NULL)
7036 goto error_return_verref;
7037
7038 if (iverneed->vn_cnt == 0)
7039 iverneed->vn_auxptr = NULL;
7040 else
7041 {
7042 iverneed->vn_auxptr = (struct elf_internal_vernaux *)
7043 bfd_alloc2 (abfd, iverneed->vn_cnt,
7044 sizeof (Elf_Internal_Vernaux));
7045 if (iverneed->vn_auxptr == NULL)
7046 goto error_return_verref;
7047 }
7048
7049 if (iverneed->vn_aux
7050 > (size_t) (contents_end - (bfd_byte *) everneed))
7051 goto error_return_verref;
7052
7053 evernaux = ((Elf_External_Vernaux *)
7054 ((bfd_byte *) everneed + iverneed->vn_aux));
7055 ivernaux = iverneed->vn_auxptr;
7056 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
7057 {
7058 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
7059
7060 ivernaux->vna_nodename =
7061 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7062 ivernaux->vna_name);
7063 if (ivernaux->vna_nodename == NULL)
7064 goto error_return_verref;
7065
7066 if (j + 1 < iverneed->vn_cnt)
7067 ivernaux->vna_nextptr = ivernaux + 1;
7068 else
7069 ivernaux->vna_nextptr = NULL;
7070
7071 if (ivernaux->vna_next
7072 > (size_t) (contents_end - (bfd_byte *) evernaux))
7073 goto error_return_verref;
7074
7075 evernaux = ((Elf_External_Vernaux *)
7076 ((bfd_byte *) evernaux + ivernaux->vna_next));
7077
7078 if (ivernaux->vna_other > freeidx)
7079 freeidx = ivernaux->vna_other;
7080 }
7081
7082 if (i + 1 < hdr->sh_info)
7083 iverneed->vn_nextref = iverneed + 1;
7084 else
7085 iverneed->vn_nextref = NULL;
7086
7087 if (iverneed->vn_next
7088 > (size_t) (contents_end - (bfd_byte *) everneed))
7089 goto error_return_verref;
7090
7091 everneed = ((Elf_External_Verneed *)
7092 ((bfd_byte *) everneed + iverneed->vn_next));
7093 }
7094
7095 free (contents);
7096 contents = NULL;
7097 }
7098
7099 if (elf_dynverdef (abfd) != 0)
7100 {
7101 Elf_Internal_Shdr *hdr;
7102 Elf_External_Verdef *everdef;
7103 Elf_Internal_Verdef *iverdef;
7104 Elf_Internal_Verdef *iverdefarr;
7105 Elf_Internal_Verdef iverdefmem;
7106 unsigned int i;
7107 unsigned int maxidx;
7108 bfd_byte *contents_end_def, *contents_end_aux;
7109
7110 hdr = &elf_tdata (abfd)->dynverdef_hdr;
7111
7112 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
7113 if (contents == NULL)
7114 goto error_return;
7115 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
7116 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
7117 goto error_return;
7118
7119 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verdef))
7120 goto error_return;
7121
7122 BFD_ASSERT (sizeof (Elf_External_Verdef)
7123 >= sizeof (Elf_External_Verdaux));
7124 contents_end_def = contents + hdr->sh_size
7125 - sizeof (Elf_External_Verdef);
7126 contents_end_aux = contents + hdr->sh_size
7127 - sizeof (Elf_External_Verdaux);
7128
7129 /* We know the number of entries in the section but not the maximum
7130 index. Therefore we have to run through all entries and find
7131 the maximum. */
7132 everdef = (Elf_External_Verdef *) contents;
7133 maxidx = 0;
7134 for (i = 0; i < hdr->sh_info; ++i)
7135 {
7136 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
7137
7138 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
7139 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
7140
7141 if (iverdefmem.vd_next
7142 > (size_t) (contents_end_def - (bfd_byte *) everdef))
7143 goto error_return;
7144
7145 everdef = ((Elf_External_Verdef *)
7146 ((bfd_byte *) everdef + iverdefmem.vd_next));
7147 }
7148
7149 if (default_imported_symver)
7150 {
7151 if (freeidx > maxidx)
7152 maxidx = ++freeidx;
7153 else
7154 freeidx = ++maxidx;
7155 }
7156 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
7157 bfd_zalloc2 (abfd, maxidx, sizeof (Elf_Internal_Verdef));
7158 if (elf_tdata (abfd)->verdef == NULL)
7159 goto error_return;
7160
7161 elf_tdata (abfd)->cverdefs = maxidx;
7162
7163 everdef = (Elf_External_Verdef *) contents;
7164 iverdefarr = elf_tdata (abfd)->verdef;
7165 for (i = 0; i < hdr->sh_info; i++)
7166 {
7167 Elf_External_Verdaux *everdaux;
7168 Elf_Internal_Verdaux *iverdaux;
7169 unsigned int j;
7170
7171 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
7172
7173 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
7174 {
7175 error_return_verdef:
7176 elf_tdata (abfd)->verdef = NULL;
7177 elf_tdata (abfd)->cverdefs = 0;
7178 goto error_return;
7179 }
7180
7181 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
7182 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
7183
7184 iverdef->vd_bfd = abfd;
7185
7186 if (iverdef->vd_cnt == 0)
7187 iverdef->vd_auxptr = NULL;
7188 else
7189 {
7190 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
7191 bfd_alloc2 (abfd, iverdef->vd_cnt,
7192 sizeof (Elf_Internal_Verdaux));
7193 if (iverdef->vd_auxptr == NULL)
7194 goto error_return_verdef;
7195 }
7196
7197 if (iverdef->vd_aux
7198 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
7199 goto error_return_verdef;
7200
7201 everdaux = ((Elf_External_Verdaux *)
7202 ((bfd_byte *) everdef + iverdef->vd_aux));
7203 iverdaux = iverdef->vd_auxptr;
7204 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
7205 {
7206 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
7207
7208 iverdaux->vda_nodename =
7209 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7210 iverdaux->vda_name);
7211 if (iverdaux->vda_nodename == NULL)
7212 goto error_return_verdef;
7213
7214 if (j + 1 < iverdef->vd_cnt)
7215 iverdaux->vda_nextptr = iverdaux + 1;
7216 else
7217 iverdaux->vda_nextptr = NULL;
7218
7219 if (iverdaux->vda_next
7220 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
7221 goto error_return_verdef;
7222
7223 everdaux = ((Elf_External_Verdaux *)
7224 ((bfd_byte *) everdaux + iverdaux->vda_next));
7225 }
7226
7227 if (iverdef->vd_cnt)
7228 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
7229
7230 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
7231 iverdef->vd_nextdef = iverdef + 1;
7232 else
7233 iverdef->vd_nextdef = NULL;
7234
7235 everdef = ((Elf_External_Verdef *)
7236 ((bfd_byte *) everdef + iverdef->vd_next));
7237 }
7238
7239 free (contents);
7240 contents = NULL;
7241 }
7242 else if (default_imported_symver)
7243 {
7244 if (freeidx < 3)
7245 freeidx = 3;
7246 else
7247 freeidx++;
7248
7249 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
7250 bfd_zalloc2 (abfd, freeidx, sizeof (Elf_Internal_Verdef));
7251 if (elf_tdata (abfd)->verdef == NULL)
7252 goto error_return;
7253
7254 elf_tdata (abfd)->cverdefs = freeidx;
7255 }
7256
7257 /* Create a default version based on the soname. */
7258 if (default_imported_symver)
7259 {
7260 Elf_Internal_Verdef *iverdef;
7261 Elf_Internal_Verdaux *iverdaux;
7262
7263 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];;
7264
7265 iverdef->vd_version = VER_DEF_CURRENT;
7266 iverdef->vd_flags = 0;
7267 iverdef->vd_ndx = freeidx;
7268 iverdef->vd_cnt = 1;
7269
7270 iverdef->vd_bfd = abfd;
7271
7272 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
7273 if (iverdef->vd_nodename == NULL)
7274 goto error_return_verdef;
7275 iverdef->vd_nextdef = NULL;
7276 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
7277 bfd_alloc (abfd, sizeof (Elf_Internal_Verdaux));
7278 if (iverdef->vd_auxptr == NULL)
7279 goto error_return_verdef;
7280
7281 iverdaux = iverdef->vd_auxptr;
7282 iverdaux->vda_nodename = iverdef->vd_nodename;
7283 iverdaux->vda_nextptr = NULL;
7284 }
7285
7286 return TRUE;
7287
7288 error_return:
7289 if (contents != NULL)
7290 free (contents);
7291 return FALSE;
7292 }
7293 \f
7294 asymbol *
7295 _bfd_elf_make_empty_symbol (bfd *abfd)
7296 {
7297 elf_symbol_type *newsym;
7298 bfd_size_type amt = sizeof (elf_symbol_type);
7299
7300 newsym = (elf_symbol_type *) bfd_zalloc (abfd, amt);
7301 if (!newsym)
7302 return NULL;
7303 else
7304 {
7305 newsym->symbol.the_bfd = abfd;
7306 return &newsym->symbol;
7307 }
7308 }
7309
7310 void
7311 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
7312 asymbol *symbol,
7313 symbol_info *ret)
7314 {
7315 bfd_symbol_info (symbol, ret);
7316 }
7317
7318 /* Return whether a symbol name implies a local symbol. Most targets
7319 use this function for the is_local_label_name entry point, but some
7320 override it. */
7321
7322 bfd_boolean
7323 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
7324 const char *name)
7325 {
7326 /* Normal local symbols start with ``.L''. */
7327 if (name[0] == '.' && name[1] == 'L')
7328 return TRUE;
7329
7330 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
7331 DWARF debugging symbols starting with ``..''. */
7332 if (name[0] == '.' && name[1] == '.')
7333 return TRUE;
7334
7335 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
7336 emitting DWARF debugging output. I suspect this is actually a
7337 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
7338 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
7339 underscore to be emitted on some ELF targets). For ease of use,
7340 we treat such symbols as local. */
7341 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
7342 return TRUE;
7343
7344 return FALSE;
7345 }
7346
7347 alent *
7348 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
7349 asymbol *symbol ATTRIBUTE_UNUSED)
7350 {
7351 abort ();
7352 return NULL;
7353 }
7354
7355 bfd_boolean
7356 _bfd_elf_set_arch_mach (bfd *abfd,
7357 enum bfd_architecture arch,
7358 unsigned long machine)
7359 {
7360 /* If this isn't the right architecture for this backend, and this
7361 isn't the generic backend, fail. */
7362 if (arch != get_elf_backend_data (abfd)->arch
7363 && arch != bfd_arch_unknown
7364 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
7365 return FALSE;
7366
7367 return bfd_default_set_arch_mach (abfd, arch, machine);
7368 }
7369
7370 /* Find the function to a particular section and offset,
7371 for error reporting. */
7372
7373 static bfd_boolean
7374 elf_find_function (bfd *abfd,
7375 asection *section,
7376 asymbol **symbols,
7377 bfd_vma offset,
7378 const char **filename_ptr,
7379 const char **functionname_ptr)
7380 {
7381 const char *filename;
7382 asymbol *func, *file;
7383 bfd_vma low_func;
7384 asymbol **p;
7385 /* ??? Given multiple file symbols, it is impossible to reliably
7386 choose the right file name for global symbols. File symbols are
7387 local symbols, and thus all file symbols must sort before any
7388 global symbols. The ELF spec may be interpreted to say that a
7389 file symbol must sort before other local symbols, but currently
7390 ld -r doesn't do this. So, for ld -r output, it is possible to
7391 make a better choice of file name for local symbols by ignoring
7392 file symbols appearing after a given local symbol. */
7393 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
7394 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7395
7396 if (symbols == NULL)
7397 return FALSE;
7398
7399 filename = NULL;
7400 func = NULL;
7401 file = NULL;
7402 low_func = 0;
7403 state = nothing_seen;
7404
7405 for (p = symbols; *p != NULL; p++)
7406 {
7407 elf_symbol_type *q;
7408 unsigned int type;
7409
7410 q = (elf_symbol_type *) *p;
7411
7412 type = ELF_ST_TYPE (q->internal_elf_sym.st_info);
7413 switch (type)
7414 {
7415 case STT_FILE:
7416 file = &q->symbol;
7417 if (state == symbol_seen)
7418 state = file_after_symbol_seen;
7419 continue;
7420 default:
7421 if (!bed->is_function_type (type))
7422 break;
7423 case STT_NOTYPE:
7424 if (bfd_get_section (&q->symbol) == section
7425 && q->symbol.value >= low_func
7426 && q->symbol.value <= offset)
7427 {
7428 func = (asymbol *) q;
7429 low_func = q->symbol.value;
7430 filename = NULL;
7431 if (file != NULL
7432 && (ELF_ST_BIND (q->internal_elf_sym.st_info) == STB_LOCAL
7433 || state != file_after_symbol_seen))
7434 filename = bfd_asymbol_name (file);
7435 }
7436 break;
7437 }
7438 if (state == nothing_seen)
7439 state = symbol_seen;
7440 }
7441
7442 if (func == NULL)
7443 return FALSE;
7444
7445 if (filename_ptr)
7446 *filename_ptr = filename;
7447 if (functionname_ptr)
7448 *functionname_ptr = bfd_asymbol_name (func);
7449
7450 return TRUE;
7451 }
7452
7453 /* Find the nearest line to a particular section and offset,
7454 for error reporting. */
7455
7456 bfd_boolean
7457 _bfd_elf_find_nearest_line (bfd *abfd,
7458 asection *section,
7459 asymbol **symbols,
7460 bfd_vma offset,
7461 const char **filename_ptr,
7462 const char **functionname_ptr,
7463 unsigned int *line_ptr)
7464 {
7465 bfd_boolean found;
7466
7467 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
7468 filename_ptr, functionname_ptr,
7469 line_ptr))
7470 {
7471 if (!*functionname_ptr)
7472 elf_find_function (abfd, section, symbols, offset,
7473 *filename_ptr ? NULL : filename_ptr,
7474 functionname_ptr);
7475
7476 return TRUE;
7477 }
7478
7479 if (_bfd_dwarf2_find_nearest_line (abfd, dwarf_debug_sections,
7480 section, symbols, offset,
7481 filename_ptr, functionname_ptr,
7482 line_ptr, 0,
7483 &elf_tdata (abfd)->dwarf2_find_line_info))
7484 {
7485 if (!*functionname_ptr)
7486 elf_find_function (abfd, section, symbols, offset,
7487 *filename_ptr ? NULL : filename_ptr,
7488 functionname_ptr);
7489
7490 return TRUE;
7491 }
7492
7493 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
7494 &found, filename_ptr,
7495 functionname_ptr, line_ptr,
7496 &elf_tdata (abfd)->line_info))
7497 return FALSE;
7498 if (found && (*functionname_ptr || *line_ptr))
7499 return TRUE;
7500
7501 if (symbols == NULL)
7502 return FALSE;
7503
7504 if (! elf_find_function (abfd, section, symbols, offset,
7505 filename_ptr, functionname_ptr))
7506 return FALSE;
7507
7508 *line_ptr = 0;
7509 return TRUE;
7510 }
7511
7512 /* Find the line for a symbol. */
7513
7514 bfd_boolean
7515 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
7516 const char **filename_ptr, unsigned int *line_ptr)
7517 {
7518 return _bfd_dwarf2_find_line (abfd, symbols, symbol,
7519 filename_ptr, line_ptr, 0,
7520 &elf_tdata (abfd)->dwarf2_find_line_info);
7521 }
7522
7523 /* After a call to bfd_find_nearest_line, successive calls to
7524 bfd_find_inliner_info can be used to get source information about
7525 each level of function inlining that terminated at the address
7526 passed to bfd_find_nearest_line. Currently this is only supported
7527 for DWARF2 with appropriate DWARF3 extensions. */
7528
7529 bfd_boolean
7530 _bfd_elf_find_inliner_info (bfd *abfd,
7531 const char **filename_ptr,
7532 const char **functionname_ptr,
7533 unsigned int *line_ptr)
7534 {
7535 bfd_boolean found;
7536 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
7537 functionname_ptr, line_ptr,
7538 & elf_tdata (abfd)->dwarf2_find_line_info);
7539 return found;
7540 }
7541
7542 int
7543 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
7544 {
7545 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7546 int ret = bed->s->sizeof_ehdr;
7547
7548 if (!info->relocatable)
7549 {
7550 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
7551
7552 if (phdr_size == (bfd_size_type) -1)
7553 {
7554 struct elf_segment_map *m;
7555
7556 phdr_size = 0;
7557 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7558 phdr_size += bed->s->sizeof_phdr;
7559
7560 if (phdr_size == 0)
7561 phdr_size = get_program_header_size (abfd, info);
7562 }
7563
7564 elf_tdata (abfd)->program_header_size = phdr_size;
7565 ret += phdr_size;
7566 }
7567
7568 return ret;
7569 }
7570
7571 bfd_boolean
7572 _bfd_elf_set_section_contents (bfd *abfd,
7573 sec_ptr section,
7574 const void *location,
7575 file_ptr offset,
7576 bfd_size_type count)
7577 {
7578 Elf_Internal_Shdr *hdr;
7579 bfd_signed_vma pos;
7580
7581 if (! abfd->output_has_begun
7582 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
7583 return FALSE;
7584
7585 hdr = &elf_section_data (section)->this_hdr;
7586 pos = hdr->sh_offset + offset;
7587 if (bfd_seek (abfd, pos, SEEK_SET) != 0
7588 || bfd_bwrite (location, count, abfd) != count)
7589 return FALSE;
7590
7591 return TRUE;
7592 }
7593
7594 void
7595 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
7596 arelent *cache_ptr ATTRIBUTE_UNUSED,
7597 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
7598 {
7599 abort ();
7600 }
7601
7602 /* Try to convert a non-ELF reloc into an ELF one. */
7603
7604 bfd_boolean
7605 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
7606 {
7607 /* Check whether we really have an ELF howto. */
7608
7609 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
7610 {
7611 bfd_reloc_code_real_type code;
7612 reloc_howto_type *howto;
7613
7614 /* Alien reloc: Try to determine its type to replace it with an
7615 equivalent ELF reloc. */
7616
7617 if (areloc->howto->pc_relative)
7618 {
7619 switch (areloc->howto->bitsize)
7620 {
7621 case 8:
7622 code = BFD_RELOC_8_PCREL;
7623 break;
7624 case 12:
7625 code = BFD_RELOC_12_PCREL;
7626 break;
7627 case 16:
7628 code = BFD_RELOC_16_PCREL;
7629 break;
7630 case 24:
7631 code = BFD_RELOC_24_PCREL;
7632 break;
7633 case 32:
7634 code = BFD_RELOC_32_PCREL;
7635 break;
7636 case 64:
7637 code = BFD_RELOC_64_PCREL;
7638 break;
7639 default:
7640 goto fail;
7641 }
7642
7643 howto = bfd_reloc_type_lookup (abfd, code);
7644
7645 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
7646 {
7647 if (howto->pcrel_offset)
7648 areloc->addend += areloc->address;
7649 else
7650 areloc->addend -= areloc->address; /* addend is unsigned!! */
7651 }
7652 }
7653 else
7654 {
7655 switch (areloc->howto->bitsize)
7656 {
7657 case 8:
7658 code = BFD_RELOC_8;
7659 break;
7660 case 14:
7661 code = BFD_RELOC_14;
7662 break;
7663 case 16:
7664 code = BFD_RELOC_16;
7665 break;
7666 case 26:
7667 code = BFD_RELOC_26;
7668 break;
7669 case 32:
7670 code = BFD_RELOC_32;
7671 break;
7672 case 64:
7673 code = BFD_RELOC_64;
7674 break;
7675 default:
7676 goto fail;
7677 }
7678
7679 howto = bfd_reloc_type_lookup (abfd, code);
7680 }
7681
7682 if (howto)
7683 areloc->howto = howto;
7684 else
7685 goto fail;
7686 }
7687
7688 return TRUE;
7689
7690 fail:
7691 (*_bfd_error_handler)
7692 (_("%B: unsupported relocation type %s"),
7693 abfd, areloc->howto->name);
7694 bfd_set_error (bfd_error_bad_value);
7695 return FALSE;
7696 }
7697
7698 bfd_boolean
7699 _bfd_elf_close_and_cleanup (bfd *abfd)
7700 {
7701 struct elf_obj_tdata *tdata = elf_tdata (abfd);
7702 if (bfd_get_format (abfd) == bfd_object && tdata != NULL)
7703 {
7704 if (elf_shstrtab (abfd) != NULL)
7705 _bfd_elf_strtab_free (elf_shstrtab (abfd));
7706 _bfd_dwarf2_cleanup_debug_info (abfd, &tdata->dwarf2_find_line_info);
7707 }
7708
7709 return _bfd_generic_close_and_cleanup (abfd);
7710 }
7711
7712 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
7713 in the relocation's offset. Thus we cannot allow any sort of sanity
7714 range-checking to interfere. There is nothing else to do in processing
7715 this reloc. */
7716
7717 bfd_reloc_status_type
7718 _bfd_elf_rel_vtable_reloc_fn
7719 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
7720 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
7721 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
7722 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
7723 {
7724 return bfd_reloc_ok;
7725 }
7726 \f
7727 /* Elf core file support. Much of this only works on native
7728 toolchains, since we rely on knowing the
7729 machine-dependent procfs structure in order to pick
7730 out details about the corefile. */
7731
7732 #ifdef HAVE_SYS_PROCFS_H
7733 /* Needed for new procfs interface on sparc-solaris. */
7734 # define _STRUCTURED_PROC 1
7735 # include <sys/procfs.h>
7736 #endif
7737
7738 /* Return a PID that identifies a "thread" for threaded cores, or the
7739 PID of the main process for non-threaded cores. */
7740
7741 static int
7742 elfcore_make_pid (bfd *abfd)
7743 {
7744 int pid;
7745
7746 pid = elf_tdata (abfd)->core_lwpid;
7747 if (pid == 0)
7748 pid = elf_tdata (abfd)->core_pid;
7749
7750 return pid;
7751 }
7752
7753 /* If there isn't a section called NAME, make one, using
7754 data from SECT. Note, this function will generate a
7755 reference to NAME, so you shouldn't deallocate or
7756 overwrite it. */
7757
7758 static bfd_boolean
7759 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
7760 {
7761 asection *sect2;
7762
7763 if (bfd_get_section_by_name (abfd, name) != NULL)
7764 return TRUE;
7765
7766 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
7767 if (sect2 == NULL)
7768 return FALSE;
7769
7770 sect2->size = sect->size;
7771 sect2->filepos = sect->filepos;
7772 sect2->alignment_power = sect->alignment_power;
7773 return TRUE;
7774 }
7775
7776 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
7777 actually creates up to two pseudosections:
7778 - For the single-threaded case, a section named NAME, unless
7779 such a section already exists.
7780 - For the multi-threaded case, a section named "NAME/PID", where
7781 PID is elfcore_make_pid (abfd).
7782 Both pseudosections have identical contents. */
7783 bfd_boolean
7784 _bfd_elfcore_make_pseudosection (bfd *abfd,
7785 char *name,
7786 size_t size,
7787 ufile_ptr filepos)
7788 {
7789 char buf[100];
7790 char *threaded_name;
7791 size_t len;
7792 asection *sect;
7793
7794 /* Build the section name. */
7795
7796 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
7797 len = strlen (buf) + 1;
7798 threaded_name = (char *) bfd_alloc (abfd, len);
7799 if (threaded_name == NULL)
7800 return FALSE;
7801 memcpy (threaded_name, buf, len);
7802
7803 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
7804 SEC_HAS_CONTENTS);
7805 if (sect == NULL)
7806 return FALSE;
7807 sect->size = size;
7808 sect->filepos = filepos;
7809 sect->alignment_power = 2;
7810
7811 return elfcore_maybe_make_sect (abfd, name, sect);
7812 }
7813
7814 /* prstatus_t exists on:
7815 solaris 2.5+
7816 linux 2.[01] + glibc
7817 unixware 4.2
7818 */
7819
7820 #if defined (HAVE_PRSTATUS_T)
7821
7822 static bfd_boolean
7823 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
7824 {
7825 size_t size;
7826 int offset;
7827
7828 if (note->descsz == sizeof (prstatus_t))
7829 {
7830 prstatus_t prstat;
7831
7832 size = sizeof (prstat.pr_reg);
7833 offset = offsetof (prstatus_t, pr_reg);
7834 memcpy (&prstat, note->descdata, sizeof (prstat));
7835
7836 /* Do not overwrite the core signal if it
7837 has already been set by another thread. */
7838 if (elf_tdata (abfd)->core_signal == 0)
7839 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7840 if (elf_tdata (abfd)->core_pid == 0)
7841 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7842
7843 /* pr_who exists on:
7844 solaris 2.5+
7845 unixware 4.2
7846 pr_who doesn't exist on:
7847 linux 2.[01]
7848 */
7849 #if defined (HAVE_PRSTATUS_T_PR_WHO)
7850 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7851 #else
7852 elf_tdata (abfd)->core_lwpid = prstat.pr_pid;
7853 #endif
7854 }
7855 #if defined (HAVE_PRSTATUS32_T)
7856 else if (note->descsz == sizeof (prstatus32_t))
7857 {
7858 /* 64-bit host, 32-bit corefile */
7859 prstatus32_t prstat;
7860
7861 size = sizeof (prstat.pr_reg);
7862 offset = offsetof (prstatus32_t, pr_reg);
7863 memcpy (&prstat, note->descdata, sizeof (prstat));
7864
7865 /* Do not overwrite the core signal if it
7866 has already been set by another thread. */
7867 if (elf_tdata (abfd)->core_signal == 0)
7868 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7869 if (elf_tdata (abfd)->core_pid == 0)
7870 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7871
7872 /* pr_who exists on:
7873 solaris 2.5+
7874 unixware 4.2
7875 pr_who doesn't exist on:
7876 linux 2.[01]
7877 */
7878 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
7879 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7880 #else
7881 elf_tdata (abfd)->core_lwpid = prstat.pr_pid;
7882 #endif
7883 }
7884 #endif /* HAVE_PRSTATUS32_T */
7885 else
7886 {
7887 /* Fail - we don't know how to handle any other
7888 note size (ie. data object type). */
7889 return TRUE;
7890 }
7891
7892 /* Make a ".reg/999" section and a ".reg" section. */
7893 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
7894 size, note->descpos + offset);
7895 }
7896 #endif /* defined (HAVE_PRSTATUS_T) */
7897
7898 /* Create a pseudosection containing the exact contents of NOTE. */
7899 static bfd_boolean
7900 elfcore_make_note_pseudosection (bfd *abfd,
7901 char *name,
7902 Elf_Internal_Note *note)
7903 {
7904 return _bfd_elfcore_make_pseudosection (abfd, name,
7905 note->descsz, note->descpos);
7906 }
7907
7908 /* There isn't a consistent prfpregset_t across platforms,
7909 but it doesn't matter, because we don't have to pick this
7910 data structure apart. */
7911
7912 static bfd_boolean
7913 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
7914 {
7915 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7916 }
7917
7918 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
7919 type of NT_PRXFPREG. Just include the whole note's contents
7920 literally. */
7921
7922 static bfd_boolean
7923 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
7924 {
7925 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
7926 }
7927
7928 /* Linux dumps the Intel XSAVE extended state in a note named "LINUX"
7929 with a note type of NT_X86_XSTATE. Just include the whole note's
7930 contents literally. */
7931
7932 static bfd_boolean
7933 elfcore_grok_xstatereg (bfd *abfd, Elf_Internal_Note *note)
7934 {
7935 return elfcore_make_note_pseudosection (abfd, ".reg-xstate", note);
7936 }
7937
7938 static bfd_boolean
7939 elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
7940 {
7941 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
7942 }
7943
7944 static bfd_boolean
7945 elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note)
7946 {
7947 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note);
7948 }
7949
7950 static bfd_boolean
7951 elfcore_grok_s390_high_gprs (bfd *abfd, Elf_Internal_Note *note)
7952 {
7953 return elfcore_make_note_pseudosection (abfd, ".reg-s390-high-gprs", note);
7954 }
7955
7956 static bfd_boolean
7957 elfcore_grok_s390_timer (bfd *abfd, Elf_Internal_Note *note)
7958 {
7959 return elfcore_make_note_pseudosection (abfd, ".reg-s390-timer", note);
7960 }
7961
7962 static bfd_boolean
7963 elfcore_grok_s390_todcmp (bfd *abfd, Elf_Internal_Note *note)
7964 {
7965 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todcmp", note);
7966 }
7967
7968 static bfd_boolean
7969 elfcore_grok_s390_todpreg (bfd *abfd, Elf_Internal_Note *note)
7970 {
7971 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todpreg", note);
7972 }
7973
7974 static bfd_boolean
7975 elfcore_grok_s390_ctrs (bfd *abfd, Elf_Internal_Note *note)
7976 {
7977 return elfcore_make_note_pseudosection (abfd, ".reg-s390-ctrs", note);
7978 }
7979
7980 static bfd_boolean
7981 elfcore_grok_s390_prefix (bfd *abfd, Elf_Internal_Note *note)
7982 {
7983 return elfcore_make_note_pseudosection (abfd, ".reg-s390-prefix", note);
7984 }
7985
7986 static bfd_boolean
7987 elfcore_grok_s390_last_break (bfd *abfd, Elf_Internal_Note *note)
7988 {
7989 return elfcore_make_note_pseudosection (abfd, ".reg-s390-last-break", note);
7990 }
7991
7992 static bfd_boolean
7993 elfcore_grok_s390_system_call (bfd *abfd, Elf_Internal_Note *note)
7994 {
7995 return elfcore_make_note_pseudosection (abfd, ".reg-s390-system-call", note);
7996 }
7997
7998 static bfd_boolean
7999 elfcore_grok_arm_vfp (bfd *abfd, Elf_Internal_Note *note)
8000 {
8001 return elfcore_make_note_pseudosection (abfd, ".reg-arm-vfp", note);
8002 }
8003
8004 #if defined (HAVE_PRPSINFO_T)
8005 typedef prpsinfo_t elfcore_psinfo_t;
8006 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
8007 typedef prpsinfo32_t elfcore_psinfo32_t;
8008 #endif
8009 #endif
8010
8011 #if defined (HAVE_PSINFO_T)
8012 typedef psinfo_t elfcore_psinfo_t;
8013 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
8014 typedef psinfo32_t elfcore_psinfo32_t;
8015 #endif
8016 #endif
8017
8018 /* return a malloc'ed copy of a string at START which is at
8019 most MAX bytes long, possibly without a terminating '\0'.
8020 the copy will always have a terminating '\0'. */
8021
8022 char *
8023 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
8024 {
8025 char *dups;
8026 char *end = (char *) memchr (start, '\0', max);
8027 size_t len;
8028
8029 if (end == NULL)
8030 len = max;
8031 else
8032 len = end - start;
8033
8034 dups = (char *) bfd_alloc (abfd, len + 1);
8035 if (dups == NULL)
8036 return NULL;
8037
8038 memcpy (dups, start, len);
8039 dups[len] = '\0';
8040
8041 return dups;
8042 }
8043
8044 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8045 static bfd_boolean
8046 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
8047 {
8048 if (note->descsz == sizeof (elfcore_psinfo_t))
8049 {
8050 elfcore_psinfo_t psinfo;
8051
8052 memcpy (&psinfo, note->descdata, sizeof (psinfo));
8053
8054 #if defined (HAVE_PSINFO_T_PR_PID) || defined (HAVE_PRPSINFO_T_PR_PID)
8055 elf_tdata (abfd)->core_pid = psinfo.pr_pid;
8056 #endif
8057 elf_tdata (abfd)->core_program
8058 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
8059 sizeof (psinfo.pr_fname));
8060
8061 elf_tdata (abfd)->core_command
8062 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
8063 sizeof (psinfo.pr_psargs));
8064 }
8065 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
8066 else if (note->descsz == sizeof (elfcore_psinfo32_t))
8067 {
8068 /* 64-bit host, 32-bit corefile */
8069 elfcore_psinfo32_t psinfo;
8070
8071 memcpy (&psinfo, note->descdata, sizeof (psinfo));
8072
8073 #if defined (HAVE_PSINFO32_T_PR_PID) || defined (HAVE_PRPSINFO32_T_PR_PID)
8074 elf_tdata (abfd)->core_pid = psinfo.pr_pid;
8075 #endif
8076 elf_tdata (abfd)->core_program
8077 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
8078 sizeof (psinfo.pr_fname));
8079
8080 elf_tdata (abfd)->core_command
8081 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
8082 sizeof (psinfo.pr_psargs));
8083 }
8084 #endif
8085
8086 else
8087 {
8088 /* Fail - we don't know how to handle any other
8089 note size (ie. data object type). */
8090 return TRUE;
8091 }
8092
8093 /* Note that for some reason, a spurious space is tacked
8094 onto the end of the args in some (at least one anyway)
8095 implementations, so strip it off if it exists. */
8096
8097 {
8098 char *command = elf_tdata (abfd)->core_command;
8099 int n = strlen (command);
8100
8101 if (0 < n && command[n - 1] == ' ')
8102 command[n - 1] = '\0';
8103 }
8104
8105 return TRUE;
8106 }
8107 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
8108
8109 #if defined (HAVE_PSTATUS_T)
8110 static bfd_boolean
8111 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
8112 {
8113 if (note->descsz == sizeof (pstatus_t)
8114 #if defined (HAVE_PXSTATUS_T)
8115 || note->descsz == sizeof (pxstatus_t)
8116 #endif
8117 )
8118 {
8119 pstatus_t pstat;
8120
8121 memcpy (&pstat, note->descdata, sizeof (pstat));
8122
8123 elf_tdata (abfd)->core_pid = pstat.pr_pid;
8124 }
8125 #if defined (HAVE_PSTATUS32_T)
8126 else if (note->descsz == sizeof (pstatus32_t))
8127 {
8128 /* 64-bit host, 32-bit corefile */
8129 pstatus32_t pstat;
8130
8131 memcpy (&pstat, note->descdata, sizeof (pstat));
8132
8133 elf_tdata (abfd)->core_pid = pstat.pr_pid;
8134 }
8135 #endif
8136 /* Could grab some more details from the "representative"
8137 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
8138 NT_LWPSTATUS note, presumably. */
8139
8140 return TRUE;
8141 }
8142 #endif /* defined (HAVE_PSTATUS_T) */
8143
8144 #if defined (HAVE_LWPSTATUS_T)
8145 static bfd_boolean
8146 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
8147 {
8148 lwpstatus_t lwpstat;
8149 char buf[100];
8150 char *name;
8151 size_t len;
8152 asection *sect;
8153
8154 if (note->descsz != sizeof (lwpstat)
8155 #if defined (HAVE_LWPXSTATUS_T)
8156 && note->descsz != sizeof (lwpxstatus_t)
8157 #endif
8158 )
8159 return TRUE;
8160
8161 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
8162
8163 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
8164 /* Do not overwrite the core signal if it has already been set by
8165 another thread. */
8166 if (elf_tdata (abfd)->core_signal == 0)
8167 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
8168
8169 /* Make a ".reg/999" section. */
8170
8171 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
8172 len = strlen (buf) + 1;
8173 name = bfd_alloc (abfd, len);
8174 if (name == NULL)
8175 return FALSE;
8176 memcpy (name, buf, len);
8177
8178 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8179 if (sect == NULL)
8180 return FALSE;
8181
8182 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8183 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
8184 sect->filepos = note->descpos
8185 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
8186 #endif
8187
8188 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8189 sect->size = sizeof (lwpstat.pr_reg);
8190 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
8191 #endif
8192
8193 sect->alignment_power = 2;
8194
8195 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
8196 return FALSE;
8197
8198 /* Make a ".reg2/999" section */
8199
8200 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
8201 len = strlen (buf) + 1;
8202 name = bfd_alloc (abfd, len);
8203 if (name == NULL)
8204 return FALSE;
8205 memcpy (name, buf, len);
8206
8207 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8208 if (sect == NULL)
8209 return FALSE;
8210
8211 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8212 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
8213 sect->filepos = note->descpos
8214 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
8215 #endif
8216
8217 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
8218 sect->size = sizeof (lwpstat.pr_fpreg);
8219 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
8220 #endif
8221
8222 sect->alignment_power = 2;
8223
8224 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
8225 }
8226 #endif /* defined (HAVE_LWPSTATUS_T) */
8227
8228 static bfd_boolean
8229 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
8230 {
8231 char buf[30];
8232 char *name;
8233 size_t len;
8234 asection *sect;
8235 int type;
8236 int is_active_thread;
8237 bfd_vma base_addr;
8238
8239 if (note->descsz < 728)
8240 return TRUE;
8241
8242 if (! CONST_STRNEQ (note->namedata, "win32"))
8243 return TRUE;
8244
8245 type = bfd_get_32 (abfd, note->descdata);
8246
8247 switch (type)
8248 {
8249 case 1 /* NOTE_INFO_PROCESS */:
8250 /* FIXME: need to add ->core_command. */
8251 /* process_info.pid */
8252 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 8);
8253 /* process_info.signal */
8254 elf_tdata (abfd)->core_signal = bfd_get_32 (abfd, note->descdata + 12);
8255 break;
8256
8257 case 2 /* NOTE_INFO_THREAD */:
8258 /* Make a ".reg/999" section. */
8259 /* thread_info.tid */
8260 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 8));
8261
8262 len = strlen (buf) + 1;
8263 name = (char *) bfd_alloc (abfd, len);
8264 if (name == NULL)
8265 return FALSE;
8266
8267 memcpy (name, buf, len);
8268
8269 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8270 if (sect == NULL)
8271 return FALSE;
8272
8273 /* sizeof (thread_info.thread_context) */
8274 sect->size = 716;
8275 /* offsetof (thread_info.thread_context) */
8276 sect->filepos = note->descpos + 12;
8277 sect->alignment_power = 2;
8278
8279 /* thread_info.is_active_thread */
8280 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
8281
8282 if (is_active_thread)
8283 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
8284 return FALSE;
8285 break;
8286
8287 case 3 /* NOTE_INFO_MODULE */:
8288 /* Make a ".module/xxxxxxxx" section. */
8289 /* module_info.base_address */
8290 base_addr = bfd_get_32 (abfd, note->descdata + 4);
8291 sprintf (buf, ".module/%08lx", (unsigned long) base_addr);
8292
8293 len = strlen (buf) + 1;
8294 name = (char *) bfd_alloc (abfd, len);
8295 if (name == NULL)
8296 return FALSE;
8297
8298 memcpy (name, buf, len);
8299
8300 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8301
8302 if (sect == NULL)
8303 return FALSE;
8304
8305 sect->size = note->descsz;
8306 sect->filepos = note->descpos;
8307 sect->alignment_power = 2;
8308 break;
8309
8310 default:
8311 return TRUE;
8312 }
8313
8314 return TRUE;
8315 }
8316
8317 static bfd_boolean
8318 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
8319 {
8320 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8321
8322 switch (note->type)
8323 {
8324 default:
8325 return TRUE;
8326
8327 case NT_PRSTATUS:
8328 if (bed->elf_backend_grok_prstatus)
8329 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
8330 return TRUE;
8331 #if defined (HAVE_PRSTATUS_T)
8332 return elfcore_grok_prstatus (abfd, note);
8333 #else
8334 return TRUE;
8335 #endif
8336
8337 #if defined (HAVE_PSTATUS_T)
8338 case NT_PSTATUS:
8339 return elfcore_grok_pstatus (abfd, note);
8340 #endif
8341
8342 #if defined (HAVE_LWPSTATUS_T)
8343 case NT_LWPSTATUS:
8344 return elfcore_grok_lwpstatus (abfd, note);
8345 #endif
8346
8347 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
8348 return elfcore_grok_prfpreg (abfd, note);
8349
8350 case NT_WIN32PSTATUS:
8351 return elfcore_grok_win32pstatus (abfd, note);
8352
8353 case NT_PRXFPREG: /* Linux SSE extension */
8354 if (note->namesz == 6
8355 && strcmp (note->namedata, "LINUX") == 0)
8356 return elfcore_grok_prxfpreg (abfd, note);
8357 else
8358 return TRUE;
8359
8360 case NT_X86_XSTATE: /* Linux XSAVE extension */
8361 if (note->namesz == 6
8362 && strcmp (note->namedata, "LINUX") == 0)
8363 return elfcore_grok_xstatereg (abfd, note);
8364 else
8365 return TRUE;
8366
8367 case NT_PPC_VMX:
8368 if (note->namesz == 6
8369 && strcmp (note->namedata, "LINUX") == 0)
8370 return elfcore_grok_ppc_vmx (abfd, note);
8371 else
8372 return TRUE;
8373
8374 case NT_PPC_VSX:
8375 if (note->namesz == 6
8376 && strcmp (note->namedata, "LINUX") == 0)
8377 return elfcore_grok_ppc_vsx (abfd, note);
8378 else
8379 return TRUE;
8380
8381 case NT_S390_HIGH_GPRS:
8382 if (note->namesz == 6
8383 && strcmp (note->namedata, "LINUX") == 0)
8384 return elfcore_grok_s390_high_gprs (abfd, note);
8385 else
8386 return TRUE;
8387
8388 case NT_S390_TIMER:
8389 if (note->namesz == 6
8390 && strcmp (note->namedata, "LINUX") == 0)
8391 return elfcore_grok_s390_timer (abfd, note);
8392 else
8393 return TRUE;
8394
8395 case NT_S390_TODCMP:
8396 if (note->namesz == 6
8397 && strcmp (note->namedata, "LINUX") == 0)
8398 return elfcore_grok_s390_todcmp (abfd, note);
8399 else
8400 return TRUE;
8401
8402 case NT_S390_TODPREG:
8403 if (note->namesz == 6
8404 && strcmp (note->namedata, "LINUX") == 0)
8405 return elfcore_grok_s390_todpreg (abfd, note);
8406 else
8407 return TRUE;
8408
8409 case NT_S390_CTRS:
8410 if (note->namesz == 6
8411 && strcmp (note->namedata, "LINUX") == 0)
8412 return elfcore_grok_s390_ctrs (abfd, note);
8413 else
8414 return TRUE;
8415
8416 case NT_S390_PREFIX:
8417 if (note->namesz == 6
8418 && strcmp (note->namedata, "LINUX") == 0)
8419 return elfcore_grok_s390_prefix (abfd, note);
8420 else
8421 return TRUE;
8422
8423 case NT_S390_LAST_BREAK:
8424 if (note->namesz == 6
8425 && strcmp (note->namedata, "LINUX") == 0)
8426 return elfcore_grok_s390_last_break (abfd, note);
8427 else
8428 return TRUE;
8429
8430 case NT_S390_SYSTEM_CALL:
8431 if (note->namesz == 6
8432 && strcmp (note->namedata, "LINUX") == 0)
8433 return elfcore_grok_s390_system_call (abfd, note);
8434 else
8435 return TRUE;
8436
8437 case NT_ARM_VFP:
8438 if (note->namesz == 6
8439 && strcmp (note->namedata, "LINUX") == 0)
8440 return elfcore_grok_arm_vfp (abfd, note);
8441 else
8442 return TRUE;
8443
8444 case NT_PRPSINFO:
8445 case NT_PSINFO:
8446 if (bed->elf_backend_grok_psinfo)
8447 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
8448 return TRUE;
8449 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8450 return elfcore_grok_psinfo (abfd, note);
8451 #else
8452 return TRUE;
8453 #endif
8454
8455 case NT_AUXV:
8456 {
8457 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
8458 SEC_HAS_CONTENTS);
8459
8460 if (sect == NULL)
8461 return FALSE;
8462 sect->size = note->descsz;
8463 sect->filepos = note->descpos;
8464 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8465
8466 return TRUE;
8467 }
8468 }
8469 }
8470
8471 static bfd_boolean
8472 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
8473 {
8474 elf_tdata (abfd)->build_id_size = note->descsz;
8475 elf_tdata (abfd)->build_id = (bfd_byte *) bfd_alloc (abfd, note->descsz);
8476 if (elf_tdata (abfd)->build_id == NULL)
8477 return FALSE;
8478
8479 memcpy (elf_tdata (abfd)->build_id, note->descdata, note->descsz);
8480
8481 return TRUE;
8482 }
8483
8484 static bfd_boolean
8485 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
8486 {
8487 switch (note->type)
8488 {
8489 default:
8490 return TRUE;
8491
8492 case NT_GNU_BUILD_ID:
8493 return elfobj_grok_gnu_build_id (abfd, note);
8494 }
8495 }
8496
8497 static bfd_boolean
8498 elfobj_grok_stapsdt_note_1 (bfd *abfd, Elf_Internal_Note *note)
8499 {
8500 struct sdt_note *cur =
8501 (struct sdt_note *) bfd_alloc (abfd, sizeof (struct sdt_note)
8502 + note->descsz);
8503
8504 cur->next = (struct sdt_note *) (elf_tdata (abfd))->sdt_note_head;
8505 cur->size = (bfd_size_type) note->descsz;
8506 memcpy (cur->data, note->descdata, note->descsz);
8507
8508 elf_tdata (abfd)->sdt_note_head = cur;
8509
8510 return TRUE;
8511 }
8512
8513 static bfd_boolean
8514 elfobj_grok_stapsdt_note (bfd *abfd, Elf_Internal_Note *note)
8515 {
8516 switch (note->type)
8517 {
8518 case NT_STAPSDT:
8519 return elfobj_grok_stapsdt_note_1 (abfd, note);
8520
8521 default:
8522 return TRUE;
8523 }
8524 }
8525
8526 static bfd_boolean
8527 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
8528 {
8529 char *cp;
8530
8531 cp = strchr (note->namedata, '@');
8532 if (cp != NULL)
8533 {
8534 *lwpidp = atoi(cp + 1);
8535 return TRUE;
8536 }
8537 return FALSE;
8538 }
8539
8540 static bfd_boolean
8541 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
8542 {
8543 /* Signal number at offset 0x08. */
8544 elf_tdata (abfd)->core_signal
8545 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
8546
8547 /* Process ID at offset 0x50. */
8548 elf_tdata (abfd)->core_pid
8549 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
8550
8551 /* Command name at 0x7c (max 32 bytes, including nul). */
8552 elf_tdata (abfd)->core_command
8553 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
8554
8555 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
8556 note);
8557 }
8558
8559 static bfd_boolean
8560 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
8561 {
8562 int lwp;
8563
8564 if (elfcore_netbsd_get_lwpid (note, &lwp))
8565 elf_tdata (abfd)->core_lwpid = lwp;
8566
8567 if (note->type == NT_NETBSDCORE_PROCINFO)
8568 {
8569 /* NetBSD-specific core "procinfo". Note that we expect to
8570 find this note before any of the others, which is fine,
8571 since the kernel writes this note out first when it
8572 creates a core file. */
8573
8574 return elfcore_grok_netbsd_procinfo (abfd, note);
8575 }
8576
8577 /* As of Jan 2002 there are no other machine-independent notes
8578 defined for NetBSD core files. If the note type is less
8579 than the start of the machine-dependent note types, we don't
8580 understand it. */
8581
8582 if (note->type < NT_NETBSDCORE_FIRSTMACH)
8583 return TRUE;
8584
8585
8586 switch (bfd_get_arch (abfd))
8587 {
8588 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
8589 PT_GETFPREGS == mach+2. */
8590
8591 case bfd_arch_alpha:
8592 case bfd_arch_sparc:
8593 switch (note->type)
8594 {
8595 case NT_NETBSDCORE_FIRSTMACH+0:
8596 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8597
8598 case NT_NETBSDCORE_FIRSTMACH+2:
8599 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8600
8601 default:
8602 return TRUE;
8603 }
8604
8605 /* On all other arch's, PT_GETREGS == mach+1 and
8606 PT_GETFPREGS == mach+3. */
8607
8608 default:
8609 switch (note->type)
8610 {
8611 case NT_NETBSDCORE_FIRSTMACH+1:
8612 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8613
8614 case NT_NETBSDCORE_FIRSTMACH+3:
8615 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8616
8617 default:
8618 return TRUE;
8619 }
8620 }
8621 /* NOTREACHED */
8622 }
8623
8624 static bfd_boolean
8625 elfcore_grok_openbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
8626 {
8627 /* Signal number at offset 0x08. */
8628 elf_tdata (abfd)->core_signal
8629 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
8630
8631 /* Process ID at offset 0x20. */
8632 elf_tdata (abfd)->core_pid
8633 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x20);
8634
8635 /* Command name at 0x48 (max 32 bytes, including nul). */
8636 elf_tdata (abfd)->core_command
8637 = _bfd_elfcore_strndup (abfd, note->descdata + 0x48, 31);
8638
8639 return TRUE;
8640 }
8641
8642 static bfd_boolean
8643 elfcore_grok_openbsd_note (bfd *abfd, Elf_Internal_Note *note)
8644 {
8645 if (note->type == NT_OPENBSD_PROCINFO)
8646 return elfcore_grok_openbsd_procinfo (abfd, note);
8647
8648 if (note->type == NT_OPENBSD_REGS)
8649 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8650
8651 if (note->type == NT_OPENBSD_FPREGS)
8652 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8653
8654 if (note->type == NT_OPENBSD_XFPREGS)
8655 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
8656
8657 if (note->type == NT_OPENBSD_AUXV)
8658 {
8659 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
8660 SEC_HAS_CONTENTS);
8661
8662 if (sect == NULL)
8663 return FALSE;
8664 sect->size = note->descsz;
8665 sect->filepos = note->descpos;
8666 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8667
8668 return TRUE;
8669 }
8670
8671 if (note->type == NT_OPENBSD_WCOOKIE)
8672 {
8673 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".wcookie",
8674 SEC_HAS_CONTENTS);
8675
8676 if (sect == NULL)
8677 return FALSE;
8678 sect->size = note->descsz;
8679 sect->filepos = note->descpos;
8680 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8681
8682 return TRUE;
8683 }
8684
8685 return TRUE;
8686 }
8687
8688 static bfd_boolean
8689 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
8690 {
8691 void *ddata = note->descdata;
8692 char buf[100];
8693 char *name;
8694 asection *sect;
8695 short sig;
8696 unsigned flags;
8697
8698 /* nto_procfs_status 'pid' field is at offset 0. */
8699 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
8700
8701 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
8702 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
8703
8704 /* nto_procfs_status 'flags' field is at offset 8. */
8705 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
8706
8707 /* nto_procfs_status 'what' field is at offset 14. */
8708 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
8709 {
8710 elf_tdata (abfd)->core_signal = sig;
8711 elf_tdata (abfd)->core_lwpid = *tid;
8712 }
8713
8714 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
8715 do not come from signals so we make sure we set the current
8716 thread just in case. */
8717 if (flags & 0x00000080)
8718 elf_tdata (abfd)->core_lwpid = *tid;
8719
8720 /* Make a ".qnx_core_status/%d" section. */
8721 sprintf (buf, ".qnx_core_status/%ld", *tid);
8722
8723 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
8724 if (name == NULL)
8725 return FALSE;
8726 strcpy (name, buf);
8727
8728 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8729 if (sect == NULL)
8730 return FALSE;
8731
8732 sect->size = note->descsz;
8733 sect->filepos = note->descpos;
8734 sect->alignment_power = 2;
8735
8736 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
8737 }
8738
8739 static bfd_boolean
8740 elfcore_grok_nto_regs (bfd *abfd,
8741 Elf_Internal_Note *note,
8742 long tid,
8743 char *base)
8744 {
8745 char buf[100];
8746 char *name;
8747 asection *sect;
8748
8749 /* Make a "(base)/%d" section. */
8750 sprintf (buf, "%s/%ld", base, tid);
8751
8752 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
8753 if (name == NULL)
8754 return FALSE;
8755 strcpy (name, buf);
8756
8757 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8758 if (sect == NULL)
8759 return FALSE;
8760
8761 sect->size = note->descsz;
8762 sect->filepos = note->descpos;
8763 sect->alignment_power = 2;
8764
8765 /* This is the current thread. */
8766 if (elf_tdata (abfd)->core_lwpid == tid)
8767 return elfcore_maybe_make_sect (abfd, base, sect);
8768
8769 return TRUE;
8770 }
8771
8772 #define BFD_QNT_CORE_INFO 7
8773 #define BFD_QNT_CORE_STATUS 8
8774 #define BFD_QNT_CORE_GREG 9
8775 #define BFD_QNT_CORE_FPREG 10
8776
8777 static bfd_boolean
8778 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
8779 {
8780 /* Every GREG section has a STATUS section before it. Store the
8781 tid from the previous call to pass down to the next gregs
8782 function. */
8783 static long tid = 1;
8784
8785 switch (note->type)
8786 {
8787 case BFD_QNT_CORE_INFO:
8788 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
8789 case BFD_QNT_CORE_STATUS:
8790 return elfcore_grok_nto_status (abfd, note, &tid);
8791 case BFD_QNT_CORE_GREG:
8792 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
8793 case BFD_QNT_CORE_FPREG:
8794 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
8795 default:
8796 return TRUE;
8797 }
8798 }
8799
8800 static bfd_boolean
8801 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
8802 {
8803 char *name;
8804 asection *sect;
8805 size_t len;
8806
8807 /* Use note name as section name. */
8808 len = note->namesz;
8809 name = (char *) bfd_alloc (abfd, len);
8810 if (name == NULL)
8811 return FALSE;
8812 memcpy (name, note->namedata, len);
8813 name[len - 1] = '\0';
8814
8815 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8816 if (sect == NULL)
8817 return FALSE;
8818
8819 sect->size = note->descsz;
8820 sect->filepos = note->descpos;
8821 sect->alignment_power = 1;
8822
8823 return TRUE;
8824 }
8825
8826 /* Function: elfcore_write_note
8827
8828 Inputs:
8829 buffer to hold note, and current size of buffer
8830 name of note
8831 type of note
8832 data for note
8833 size of data for note
8834
8835 Writes note to end of buffer. ELF64 notes are written exactly as
8836 for ELF32, despite the current (as of 2006) ELF gabi specifying
8837 that they ought to have 8-byte namesz and descsz field, and have
8838 8-byte alignment. Other writers, eg. Linux kernel, do the same.
8839
8840 Return:
8841 Pointer to realloc'd buffer, *BUFSIZ updated. */
8842
8843 char *
8844 elfcore_write_note (bfd *abfd,
8845 char *buf,
8846 int *bufsiz,
8847 const char *name,
8848 int type,
8849 const void *input,
8850 int size)
8851 {
8852 Elf_External_Note *xnp;
8853 size_t namesz;
8854 size_t newspace;
8855 char *dest;
8856
8857 namesz = 0;
8858 if (name != NULL)
8859 namesz = strlen (name) + 1;
8860
8861 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
8862
8863 buf = (char *) realloc (buf, *bufsiz + newspace);
8864 if (buf == NULL)
8865 return buf;
8866 dest = buf + *bufsiz;
8867 *bufsiz += newspace;
8868 xnp = (Elf_External_Note *) dest;
8869 H_PUT_32 (abfd, namesz, xnp->namesz);
8870 H_PUT_32 (abfd, size, xnp->descsz);
8871 H_PUT_32 (abfd, type, xnp->type);
8872 dest = xnp->name;
8873 if (name != NULL)
8874 {
8875 memcpy (dest, name, namesz);
8876 dest += namesz;
8877 while (namesz & 3)
8878 {
8879 *dest++ = '\0';
8880 ++namesz;
8881 }
8882 }
8883 memcpy (dest, input, size);
8884 dest += size;
8885 while (size & 3)
8886 {
8887 *dest++ = '\0';
8888 ++size;
8889 }
8890 return buf;
8891 }
8892
8893 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8894 char *
8895 elfcore_write_prpsinfo (bfd *abfd,
8896 char *buf,
8897 int *bufsiz,
8898 const char *fname,
8899 const char *psargs)
8900 {
8901 const char *note_name = "CORE";
8902 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8903
8904 if (bed->elf_backend_write_core_note != NULL)
8905 {
8906 char *ret;
8907 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
8908 NT_PRPSINFO, fname, psargs);
8909 if (ret != NULL)
8910 return ret;
8911 }
8912
8913 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
8914 if (bed->s->elfclass == ELFCLASS32)
8915 {
8916 #if defined (HAVE_PSINFO32_T)
8917 psinfo32_t data;
8918 int note_type = NT_PSINFO;
8919 #else
8920 prpsinfo32_t data;
8921 int note_type = NT_PRPSINFO;
8922 #endif
8923
8924 memset (&data, 0, sizeof (data));
8925 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
8926 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
8927 return elfcore_write_note (abfd, buf, bufsiz,
8928 note_name, note_type, &data, sizeof (data));
8929 }
8930 else
8931 #endif
8932 {
8933 #if defined (HAVE_PSINFO_T)
8934 psinfo_t data;
8935 int note_type = NT_PSINFO;
8936 #else
8937 prpsinfo_t data;
8938 int note_type = NT_PRPSINFO;
8939 #endif
8940
8941 memset (&data, 0, sizeof (data));
8942 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
8943 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
8944 return elfcore_write_note (abfd, buf, bufsiz,
8945 note_name, note_type, &data, sizeof (data));
8946 }
8947 }
8948 #endif /* PSINFO_T or PRPSINFO_T */
8949
8950 #if defined (HAVE_PRSTATUS_T)
8951 char *
8952 elfcore_write_prstatus (bfd *abfd,
8953 char *buf,
8954 int *bufsiz,
8955 long pid,
8956 int cursig,
8957 const void *gregs)
8958 {
8959 const char *note_name = "CORE";
8960 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8961
8962 if (bed->elf_backend_write_core_note != NULL)
8963 {
8964 char *ret;
8965 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
8966 NT_PRSTATUS,
8967 pid, cursig, gregs);
8968 if (ret != NULL)
8969 return ret;
8970 }
8971
8972 #if defined (HAVE_PRSTATUS32_T)
8973 if (bed->s->elfclass == ELFCLASS32)
8974 {
8975 prstatus32_t prstat;
8976
8977 memset (&prstat, 0, sizeof (prstat));
8978 prstat.pr_pid = pid;
8979 prstat.pr_cursig = cursig;
8980 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
8981 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8982 NT_PRSTATUS, &prstat, sizeof (prstat));
8983 }
8984 else
8985 #endif
8986 {
8987 prstatus_t prstat;
8988
8989 memset (&prstat, 0, sizeof (prstat));
8990 prstat.pr_pid = pid;
8991 prstat.pr_cursig = cursig;
8992 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
8993 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8994 NT_PRSTATUS, &prstat, sizeof (prstat));
8995 }
8996 }
8997 #endif /* HAVE_PRSTATUS_T */
8998
8999 #if defined (HAVE_LWPSTATUS_T)
9000 char *
9001 elfcore_write_lwpstatus (bfd *abfd,
9002 char *buf,
9003 int *bufsiz,
9004 long pid,
9005 int cursig,
9006 const void *gregs)
9007 {
9008 lwpstatus_t lwpstat;
9009 const char *note_name = "CORE";
9010
9011 memset (&lwpstat, 0, sizeof (lwpstat));
9012 lwpstat.pr_lwpid = pid >> 16;
9013 lwpstat.pr_cursig = cursig;
9014 #if defined (HAVE_LWPSTATUS_T_PR_REG)
9015 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
9016 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9017 #if !defined(gregs)
9018 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
9019 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
9020 #else
9021 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
9022 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
9023 #endif
9024 #endif
9025 return elfcore_write_note (abfd, buf, bufsiz, note_name,
9026 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
9027 }
9028 #endif /* HAVE_LWPSTATUS_T */
9029
9030 #if defined (HAVE_PSTATUS_T)
9031 char *
9032 elfcore_write_pstatus (bfd *abfd,
9033 char *buf,
9034 int *bufsiz,
9035 long pid,
9036 int cursig ATTRIBUTE_UNUSED,
9037 const void *gregs ATTRIBUTE_UNUSED)
9038 {
9039 const char *note_name = "CORE";
9040 #if defined (HAVE_PSTATUS32_T)
9041 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9042
9043 if (bed->s->elfclass == ELFCLASS32)
9044 {
9045 pstatus32_t pstat;
9046
9047 memset (&pstat, 0, sizeof (pstat));
9048 pstat.pr_pid = pid & 0xffff;
9049 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
9050 NT_PSTATUS, &pstat, sizeof (pstat));
9051 return buf;
9052 }
9053 else
9054 #endif
9055 {
9056 pstatus_t pstat;
9057
9058 memset (&pstat, 0, sizeof (pstat));
9059 pstat.pr_pid = pid & 0xffff;
9060 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
9061 NT_PSTATUS, &pstat, sizeof (pstat));
9062 return buf;
9063 }
9064 }
9065 #endif /* HAVE_PSTATUS_T */
9066
9067 char *
9068 elfcore_write_prfpreg (bfd *abfd,
9069 char *buf,
9070 int *bufsiz,
9071 const void *fpregs,
9072 int size)
9073 {
9074 const char *note_name = "CORE";
9075 return elfcore_write_note (abfd, buf, bufsiz,
9076 note_name, NT_FPREGSET, fpregs, size);
9077 }
9078
9079 char *
9080 elfcore_write_prxfpreg (bfd *abfd,
9081 char *buf,
9082 int *bufsiz,
9083 const void *xfpregs,
9084 int size)
9085 {
9086 char *note_name = "LINUX";
9087 return elfcore_write_note (abfd, buf, bufsiz,
9088 note_name, NT_PRXFPREG, xfpregs, size);
9089 }
9090
9091 char *
9092 elfcore_write_xstatereg (bfd *abfd, char *buf, int *bufsiz,
9093 const void *xfpregs, int size)
9094 {
9095 char *note_name = "LINUX";
9096 return elfcore_write_note (abfd, buf, bufsiz,
9097 note_name, NT_X86_XSTATE, xfpregs, size);
9098 }
9099
9100 char *
9101 elfcore_write_ppc_vmx (bfd *abfd,
9102 char *buf,
9103 int *bufsiz,
9104 const void *ppc_vmx,
9105 int size)
9106 {
9107 char *note_name = "LINUX";
9108 return elfcore_write_note (abfd, buf, bufsiz,
9109 note_name, NT_PPC_VMX, ppc_vmx, size);
9110 }
9111
9112 char *
9113 elfcore_write_ppc_vsx (bfd *abfd,
9114 char *buf,
9115 int *bufsiz,
9116 const void *ppc_vsx,
9117 int size)
9118 {
9119 char *note_name = "LINUX";
9120 return elfcore_write_note (abfd, buf, bufsiz,
9121 note_name, NT_PPC_VSX, ppc_vsx, size);
9122 }
9123
9124 static char *
9125 elfcore_write_s390_high_gprs (bfd *abfd,
9126 char *buf,
9127 int *bufsiz,
9128 const void *s390_high_gprs,
9129 int size)
9130 {
9131 char *note_name = "LINUX";
9132 return elfcore_write_note (abfd, buf, bufsiz,
9133 note_name, NT_S390_HIGH_GPRS,
9134 s390_high_gprs, size);
9135 }
9136
9137 char *
9138 elfcore_write_s390_timer (bfd *abfd,
9139 char *buf,
9140 int *bufsiz,
9141 const void *s390_timer,
9142 int size)
9143 {
9144 char *note_name = "LINUX";
9145 return elfcore_write_note (abfd, buf, bufsiz,
9146 note_name, NT_S390_TIMER, s390_timer, size);
9147 }
9148
9149 char *
9150 elfcore_write_s390_todcmp (bfd *abfd,
9151 char *buf,
9152 int *bufsiz,
9153 const void *s390_todcmp,
9154 int size)
9155 {
9156 char *note_name = "LINUX";
9157 return elfcore_write_note (abfd, buf, bufsiz,
9158 note_name, NT_S390_TODCMP, s390_todcmp, size);
9159 }
9160
9161 char *
9162 elfcore_write_s390_todpreg (bfd *abfd,
9163 char *buf,
9164 int *bufsiz,
9165 const void *s390_todpreg,
9166 int size)
9167 {
9168 char *note_name = "LINUX";
9169 return elfcore_write_note (abfd, buf, bufsiz,
9170 note_name, NT_S390_TODPREG, s390_todpreg, size);
9171 }
9172
9173 char *
9174 elfcore_write_s390_ctrs (bfd *abfd,
9175 char *buf,
9176 int *bufsiz,
9177 const void *s390_ctrs,
9178 int size)
9179 {
9180 char *note_name = "LINUX";
9181 return elfcore_write_note (abfd, buf, bufsiz,
9182 note_name, NT_S390_CTRS, s390_ctrs, size);
9183 }
9184
9185 char *
9186 elfcore_write_s390_prefix (bfd *abfd,
9187 char *buf,
9188 int *bufsiz,
9189 const void *s390_prefix,
9190 int size)
9191 {
9192 char *note_name = "LINUX";
9193 return elfcore_write_note (abfd, buf, bufsiz,
9194 note_name, NT_S390_PREFIX, s390_prefix, size);
9195 }
9196
9197 char *
9198 elfcore_write_s390_last_break (bfd *abfd,
9199 char *buf,
9200 int *bufsiz,
9201 const void *s390_last_break,
9202 int size)
9203 {
9204 char *note_name = "LINUX";
9205 return elfcore_write_note (abfd, buf, bufsiz,
9206 note_name, NT_S390_LAST_BREAK,
9207 s390_last_break, size);
9208 }
9209
9210 char *
9211 elfcore_write_s390_system_call (bfd *abfd,
9212 char *buf,
9213 int *bufsiz,
9214 const void *s390_system_call,
9215 int size)
9216 {
9217 char *note_name = "LINUX";
9218 return elfcore_write_note (abfd, buf, bufsiz,
9219 note_name, NT_S390_SYSTEM_CALL,
9220 s390_system_call, size);
9221 }
9222
9223 char *
9224 elfcore_write_arm_vfp (bfd *abfd,
9225 char *buf,
9226 int *bufsiz,
9227 const void *arm_vfp,
9228 int size)
9229 {
9230 char *note_name = "LINUX";
9231 return elfcore_write_note (abfd, buf, bufsiz,
9232 note_name, NT_ARM_VFP, arm_vfp, size);
9233 }
9234
9235 char *
9236 elfcore_write_register_note (bfd *abfd,
9237 char *buf,
9238 int *bufsiz,
9239 const char *section,
9240 const void *data,
9241 int size)
9242 {
9243 if (strcmp (section, ".reg2") == 0)
9244 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
9245 if (strcmp (section, ".reg-xfp") == 0)
9246 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
9247 if (strcmp (section, ".reg-xstate") == 0)
9248 return elfcore_write_xstatereg (abfd, buf, bufsiz, data, size);
9249 if (strcmp (section, ".reg-ppc-vmx") == 0)
9250 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
9251 if (strcmp (section, ".reg-ppc-vsx") == 0)
9252 return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size);
9253 if (strcmp (section, ".reg-s390-high-gprs") == 0)
9254 return elfcore_write_s390_high_gprs (abfd, buf, bufsiz, data, size);
9255 if (strcmp (section, ".reg-s390-timer") == 0)
9256 return elfcore_write_s390_timer (abfd, buf, bufsiz, data, size);
9257 if (strcmp (section, ".reg-s390-todcmp") == 0)
9258 return elfcore_write_s390_todcmp (abfd, buf, bufsiz, data, size);
9259 if (strcmp (section, ".reg-s390-todpreg") == 0)
9260 return elfcore_write_s390_todpreg (abfd, buf, bufsiz, data, size);
9261 if (strcmp (section, ".reg-s390-ctrs") == 0)
9262 return elfcore_write_s390_ctrs (abfd, buf, bufsiz, data, size);
9263 if (strcmp (section, ".reg-s390-prefix") == 0)
9264 return elfcore_write_s390_prefix (abfd, buf, bufsiz, data, size);
9265 if (strcmp (section, ".reg-s390-last-break") == 0)
9266 return elfcore_write_s390_last_break (abfd, buf, bufsiz, data, size);
9267 if (strcmp (section, ".reg-s390-system-call") == 0)
9268 return elfcore_write_s390_system_call (abfd, buf, bufsiz, data, size);
9269 if (strcmp (section, ".reg-arm-vfp") == 0)
9270 return elfcore_write_arm_vfp (abfd, buf, bufsiz, data, size);
9271 return NULL;
9272 }
9273
9274 static bfd_boolean
9275 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset)
9276 {
9277 char *p;
9278
9279 p = buf;
9280 while (p < buf + size)
9281 {
9282 /* FIXME: bad alignment assumption. */
9283 Elf_External_Note *xnp = (Elf_External_Note *) p;
9284 Elf_Internal_Note in;
9285
9286 if (offsetof (Elf_External_Note, name) > buf - p + size)
9287 return FALSE;
9288
9289 in.type = H_GET_32 (abfd, xnp->type);
9290
9291 in.namesz = H_GET_32 (abfd, xnp->namesz);
9292 in.namedata = xnp->name;
9293 if (in.namesz > buf - in.namedata + size)
9294 return FALSE;
9295
9296 in.descsz = H_GET_32 (abfd, xnp->descsz);
9297 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
9298 in.descpos = offset + (in.descdata - buf);
9299 if (in.descsz != 0
9300 && (in.descdata >= buf + size
9301 || in.descsz > buf - in.descdata + size))
9302 return FALSE;
9303
9304 switch (bfd_get_format (abfd))
9305 {
9306 default:
9307 return TRUE;
9308
9309 case bfd_core:
9310 if (CONST_STRNEQ (in.namedata, "NetBSD-CORE"))
9311 {
9312 if (! elfcore_grok_netbsd_note (abfd, &in))
9313 return FALSE;
9314 }
9315 else if (CONST_STRNEQ (in.namedata, "OpenBSD"))
9316 {
9317 if (! elfcore_grok_openbsd_note (abfd, &in))
9318 return FALSE;
9319 }
9320 else if (CONST_STRNEQ (in.namedata, "QNX"))
9321 {
9322 if (! elfcore_grok_nto_note (abfd, &in))
9323 return FALSE;
9324 }
9325 else if (CONST_STRNEQ (in.namedata, "SPU/"))
9326 {
9327 if (! elfcore_grok_spu_note (abfd, &in))
9328 return FALSE;
9329 }
9330 else
9331 {
9332 if (! elfcore_grok_note (abfd, &in))
9333 return FALSE;
9334 }
9335 break;
9336
9337 case bfd_object:
9338 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
9339 {
9340 if (! elfobj_grok_gnu_note (abfd, &in))
9341 return FALSE;
9342 }
9343 else if (in.namesz == sizeof "stapsdt"
9344 && strcmp (in.namedata, "stapsdt") == 0)
9345 {
9346 if (! elfobj_grok_stapsdt_note (abfd, &in))
9347 return FALSE;
9348 }
9349 break;
9350 }
9351
9352 p = in.descdata + BFD_ALIGN (in.descsz, 4);
9353 }
9354
9355 return TRUE;
9356 }
9357
9358 static bfd_boolean
9359 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
9360 {
9361 char *buf;
9362
9363 if (size <= 0)
9364 return TRUE;
9365
9366 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
9367 return FALSE;
9368
9369 buf = (char *) bfd_malloc (size);
9370 if (buf == NULL)
9371 return FALSE;
9372
9373 if (bfd_bread (buf, size, abfd) != size
9374 || !elf_parse_notes (abfd, buf, size, offset))
9375 {
9376 free (buf);
9377 return FALSE;
9378 }
9379
9380 free (buf);
9381 return TRUE;
9382 }
9383 \f
9384 /* Providing external access to the ELF program header table. */
9385
9386 /* Return an upper bound on the number of bytes required to store a
9387 copy of ABFD's program header table entries. Return -1 if an error
9388 occurs; bfd_get_error will return an appropriate code. */
9389
9390 long
9391 bfd_get_elf_phdr_upper_bound (bfd *abfd)
9392 {
9393 if (abfd->xvec->flavour != bfd_target_elf_flavour)
9394 {
9395 bfd_set_error (bfd_error_wrong_format);
9396 return -1;
9397 }
9398
9399 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
9400 }
9401
9402 /* Copy ABFD's program header table entries to *PHDRS. The entries
9403 will be stored as an array of Elf_Internal_Phdr structures, as
9404 defined in include/elf/internal.h. To find out how large the
9405 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
9406
9407 Return the number of program header table entries read, or -1 if an
9408 error occurs; bfd_get_error will return an appropriate code. */
9409
9410 int
9411 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
9412 {
9413 int num_phdrs;
9414
9415 if (abfd->xvec->flavour != bfd_target_elf_flavour)
9416 {
9417 bfd_set_error (bfd_error_wrong_format);
9418 return -1;
9419 }
9420
9421 num_phdrs = elf_elfheader (abfd)->e_phnum;
9422 memcpy (phdrs, elf_tdata (abfd)->phdr,
9423 num_phdrs * sizeof (Elf_Internal_Phdr));
9424
9425 return num_phdrs;
9426 }
9427
9428 enum elf_reloc_type_class
9429 _bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
9430 {
9431 return reloc_class_normal;
9432 }
9433
9434 /* For RELA architectures, return the relocation value for a
9435 relocation against a local symbol. */
9436
9437 bfd_vma
9438 _bfd_elf_rela_local_sym (bfd *abfd,
9439 Elf_Internal_Sym *sym,
9440 asection **psec,
9441 Elf_Internal_Rela *rel)
9442 {
9443 asection *sec = *psec;
9444 bfd_vma relocation;
9445
9446 relocation = (sec->output_section->vma
9447 + sec->output_offset
9448 + sym->st_value);
9449 if ((sec->flags & SEC_MERGE)
9450 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
9451 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
9452 {
9453 rel->r_addend =
9454 _bfd_merged_section_offset (abfd, psec,
9455 elf_section_data (sec)->sec_info,
9456 sym->st_value + rel->r_addend);
9457 if (sec != *psec)
9458 {
9459 /* If we have changed the section, and our original section is
9460 marked with SEC_EXCLUDE, it means that the original
9461 SEC_MERGE section has been completely subsumed in some
9462 other SEC_MERGE section. In this case, we need to leave
9463 some info around for --emit-relocs. */
9464 if ((sec->flags & SEC_EXCLUDE) != 0)
9465 sec->kept_section = *psec;
9466 sec = *psec;
9467 }
9468 rel->r_addend -= relocation;
9469 rel->r_addend += sec->output_section->vma + sec->output_offset;
9470 }
9471 return relocation;
9472 }
9473
9474 bfd_vma
9475 _bfd_elf_rel_local_sym (bfd *abfd,
9476 Elf_Internal_Sym *sym,
9477 asection **psec,
9478 bfd_vma addend)
9479 {
9480 asection *sec = *psec;
9481
9482 if (sec->sec_info_type != ELF_INFO_TYPE_MERGE)
9483 return sym->st_value + addend;
9484
9485 return _bfd_merged_section_offset (abfd, psec,
9486 elf_section_data (sec)->sec_info,
9487 sym->st_value + addend);
9488 }
9489
9490 bfd_vma
9491 _bfd_elf_section_offset (bfd *abfd,
9492 struct bfd_link_info *info,
9493 asection *sec,
9494 bfd_vma offset)
9495 {
9496 switch (sec->sec_info_type)
9497 {
9498 case ELF_INFO_TYPE_STABS:
9499 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
9500 offset);
9501 case ELF_INFO_TYPE_EH_FRAME:
9502 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
9503 default:
9504 if ((sec->flags & SEC_ELF_REVERSE_COPY) != 0)
9505 {
9506 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9507 bfd_size_type address_size = bed->s->arch_size / 8;
9508 offset = sec->size - offset - address_size;
9509 }
9510 return offset;
9511 }
9512 }
9513 \f
9514 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
9515 reconstruct an ELF file by reading the segments out of remote memory
9516 based on the ELF file header at EHDR_VMA and the ELF program headers it
9517 points to. If not null, *LOADBASEP is filled in with the difference
9518 between the VMAs from which the segments were read, and the VMAs the
9519 file headers (and hence BFD's idea of each section's VMA) put them at.
9520
9521 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
9522 remote memory at target address VMA into the local buffer at MYADDR; it
9523 should return zero on success or an `errno' code on failure. TEMPL must
9524 be a BFD for an ELF target with the word size and byte order found in
9525 the remote memory. */
9526
9527 bfd *
9528 bfd_elf_bfd_from_remote_memory
9529 (bfd *templ,
9530 bfd_vma ehdr_vma,
9531 bfd_vma *loadbasep,
9532 int (*target_read_memory) (bfd_vma, bfd_byte *, int))
9533 {
9534 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
9535 (templ, ehdr_vma, loadbasep, target_read_memory);
9536 }
9537 \f
9538 long
9539 _bfd_elf_get_synthetic_symtab (bfd *abfd,
9540 long symcount ATTRIBUTE_UNUSED,
9541 asymbol **syms ATTRIBUTE_UNUSED,
9542 long dynsymcount,
9543 asymbol **dynsyms,
9544 asymbol **ret)
9545 {
9546 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9547 asection *relplt;
9548 asymbol *s;
9549 const char *relplt_name;
9550 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
9551 arelent *p;
9552 long count, i, n;
9553 size_t size;
9554 Elf_Internal_Shdr *hdr;
9555 char *names;
9556 asection *plt;
9557
9558 *ret = NULL;
9559
9560 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
9561 return 0;
9562
9563 if (dynsymcount <= 0)
9564 return 0;
9565
9566 if (!bed->plt_sym_val)
9567 return 0;
9568
9569 relplt_name = bed->relplt_name;
9570 if (relplt_name == NULL)
9571 relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt";
9572 relplt = bfd_get_section_by_name (abfd, relplt_name);
9573 if (relplt == NULL)
9574 return 0;
9575
9576 hdr = &elf_section_data (relplt)->this_hdr;
9577 if (hdr->sh_link != elf_dynsymtab (abfd)
9578 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
9579 return 0;
9580
9581 plt = bfd_get_section_by_name (abfd, ".plt");
9582 if (plt == NULL)
9583 return 0;
9584
9585 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
9586 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
9587 return -1;
9588
9589 count = relplt->size / hdr->sh_entsize;
9590 size = count * sizeof (asymbol);
9591 p = relplt->relocation;
9592 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
9593 {
9594 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
9595 if (p->addend != 0)
9596 {
9597 #ifdef BFD64
9598 size += sizeof ("+0x") - 1 + 8 + 8 * (bed->s->elfclass == ELFCLASS64);
9599 #else
9600 size += sizeof ("+0x") - 1 + 8;
9601 #endif
9602 }
9603 }
9604
9605 s = *ret = (asymbol *) bfd_malloc (size);
9606 if (s == NULL)
9607 return -1;
9608
9609 names = (char *) (s + count);
9610 p = relplt->relocation;
9611 n = 0;
9612 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
9613 {
9614 size_t len;
9615 bfd_vma addr;
9616
9617 addr = bed->plt_sym_val (i, plt, p);
9618 if (addr == (bfd_vma) -1)
9619 continue;
9620
9621 *s = **p->sym_ptr_ptr;
9622 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
9623 we are defining a symbol, ensure one of them is set. */
9624 if ((s->flags & BSF_LOCAL) == 0)
9625 s->flags |= BSF_GLOBAL;
9626 s->flags |= BSF_SYNTHETIC;
9627 s->section = plt;
9628 s->value = addr - plt->vma;
9629 s->name = names;
9630 s->udata.p = NULL;
9631 len = strlen ((*p->sym_ptr_ptr)->name);
9632 memcpy (names, (*p->sym_ptr_ptr)->name, len);
9633 names += len;
9634 if (p->addend != 0)
9635 {
9636 char buf[30], *a;
9637
9638 memcpy (names, "+0x", sizeof ("+0x") - 1);
9639 names += sizeof ("+0x") - 1;
9640 bfd_sprintf_vma (abfd, buf, p->addend);
9641 for (a = buf; *a == '0'; ++a)
9642 ;
9643 len = strlen (a);
9644 memcpy (names, a, len);
9645 names += len;
9646 }
9647 memcpy (names, "@plt", sizeof ("@plt"));
9648 names += sizeof ("@plt");
9649 ++s, ++n;
9650 }
9651
9652 return n;
9653 }
9654
9655 /* It is only used by x86-64 so far. */
9656 asection _bfd_elf_large_com_section
9657 = BFD_FAKE_SECTION (_bfd_elf_large_com_section,
9658 SEC_IS_COMMON, NULL, "LARGE_COMMON", 0);
9659
9660 void
9661 _bfd_elf_set_osabi (bfd * abfd,
9662 struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
9663 {
9664 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
9665
9666 i_ehdrp = elf_elfheader (abfd);
9667
9668 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
9669
9670 /* To make things simpler for the loader on Linux systems we set the
9671 osabi field to ELFOSABI_GNU if the binary contains symbols of
9672 the STT_GNU_IFUNC type or STB_GNU_UNIQUE binding. */
9673 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE
9674 && elf_tdata (abfd)->has_gnu_symbols)
9675 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_GNU;
9676 }
9677
9678
9679 /* Return TRUE for ELF symbol types that represent functions.
9680 This is the default version of this function, which is sufficient for
9681 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */
9682
9683 bfd_boolean
9684 _bfd_elf_is_function_type (unsigned int type)
9685 {
9686 return (type == STT_FUNC
9687 || type == STT_GNU_IFUNC);
9688 }