2006-11-24 H.J. Lu <hongjiu.lu@intel.com>
[binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
21
22 /*
23 SECTION
24 ELF backends
25
26 BFD support for ELF formats is being worked on.
27 Currently, the best supported back ends are for sparc and i386
28 (running svr4 or Solaris 2).
29
30 Documentation of the internals of the support code still needs
31 to be written. The code is changing quickly enough that we
32 haven't bothered yet. */
33
34 /* For sparc64-cross-sparc32. */
35 #define _SYSCALL32
36 #include "bfd.h"
37 #include "sysdep.h"
38 #include "bfdlink.h"
39 #include "libbfd.h"
40 #define ARCH_SIZE 0
41 #include "elf-bfd.h"
42 #include "libiberty.h"
43
44 static int elf_sort_sections (const void *, const void *);
45 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
46 static bfd_boolean prep_headers (bfd *);
47 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
48 static bfd_boolean elfcore_read_notes (bfd *, file_ptr, bfd_size_type) ;
49
50 /* Swap version information in and out. The version information is
51 currently size independent. If that ever changes, this code will
52 need to move into elfcode.h. */
53
54 /* Swap in a Verdef structure. */
55
56 void
57 _bfd_elf_swap_verdef_in (bfd *abfd,
58 const Elf_External_Verdef *src,
59 Elf_Internal_Verdef *dst)
60 {
61 dst->vd_version = H_GET_16 (abfd, src->vd_version);
62 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
63 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
64 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
65 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
66 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
67 dst->vd_next = H_GET_32 (abfd, src->vd_next);
68 }
69
70 /* Swap out a Verdef structure. */
71
72 void
73 _bfd_elf_swap_verdef_out (bfd *abfd,
74 const Elf_Internal_Verdef *src,
75 Elf_External_Verdef *dst)
76 {
77 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
78 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
79 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
80 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
81 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
82 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
83 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
84 }
85
86 /* Swap in a Verdaux structure. */
87
88 void
89 _bfd_elf_swap_verdaux_in (bfd *abfd,
90 const Elf_External_Verdaux *src,
91 Elf_Internal_Verdaux *dst)
92 {
93 dst->vda_name = H_GET_32 (abfd, src->vda_name);
94 dst->vda_next = H_GET_32 (abfd, src->vda_next);
95 }
96
97 /* Swap out a Verdaux structure. */
98
99 void
100 _bfd_elf_swap_verdaux_out (bfd *abfd,
101 const Elf_Internal_Verdaux *src,
102 Elf_External_Verdaux *dst)
103 {
104 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
105 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
106 }
107
108 /* Swap in a Verneed structure. */
109
110 void
111 _bfd_elf_swap_verneed_in (bfd *abfd,
112 const Elf_External_Verneed *src,
113 Elf_Internal_Verneed *dst)
114 {
115 dst->vn_version = H_GET_16 (abfd, src->vn_version);
116 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
117 dst->vn_file = H_GET_32 (abfd, src->vn_file);
118 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
119 dst->vn_next = H_GET_32 (abfd, src->vn_next);
120 }
121
122 /* Swap out a Verneed structure. */
123
124 void
125 _bfd_elf_swap_verneed_out (bfd *abfd,
126 const Elf_Internal_Verneed *src,
127 Elf_External_Verneed *dst)
128 {
129 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
130 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
131 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
132 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
133 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
134 }
135
136 /* Swap in a Vernaux structure. */
137
138 void
139 _bfd_elf_swap_vernaux_in (bfd *abfd,
140 const Elf_External_Vernaux *src,
141 Elf_Internal_Vernaux *dst)
142 {
143 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
144 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
145 dst->vna_other = H_GET_16 (abfd, src->vna_other);
146 dst->vna_name = H_GET_32 (abfd, src->vna_name);
147 dst->vna_next = H_GET_32 (abfd, src->vna_next);
148 }
149
150 /* Swap out a Vernaux structure. */
151
152 void
153 _bfd_elf_swap_vernaux_out (bfd *abfd,
154 const Elf_Internal_Vernaux *src,
155 Elf_External_Vernaux *dst)
156 {
157 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
158 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
159 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
160 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
161 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
162 }
163
164 /* Swap in a Versym structure. */
165
166 void
167 _bfd_elf_swap_versym_in (bfd *abfd,
168 const Elf_External_Versym *src,
169 Elf_Internal_Versym *dst)
170 {
171 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
172 }
173
174 /* Swap out a Versym structure. */
175
176 void
177 _bfd_elf_swap_versym_out (bfd *abfd,
178 const Elf_Internal_Versym *src,
179 Elf_External_Versym *dst)
180 {
181 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
182 }
183
184 /* Standard ELF hash function. Do not change this function; you will
185 cause invalid hash tables to be generated. */
186
187 unsigned long
188 bfd_elf_hash (const char *namearg)
189 {
190 const unsigned char *name = (const unsigned char *) namearg;
191 unsigned long h = 0;
192 unsigned long g;
193 int ch;
194
195 while ((ch = *name++) != '\0')
196 {
197 h = (h << 4) + ch;
198 if ((g = (h & 0xf0000000)) != 0)
199 {
200 h ^= g >> 24;
201 /* The ELF ABI says `h &= ~g', but this is equivalent in
202 this case and on some machines one insn instead of two. */
203 h ^= g;
204 }
205 }
206 return h & 0xffffffff;
207 }
208
209 /* DT_GNU_HASH hash function. Do not change this function; you will
210 cause invalid hash tables to be generated. */
211
212 unsigned long
213 bfd_elf_gnu_hash (const char *namearg)
214 {
215 const unsigned char *name = (const unsigned char *) namearg;
216 unsigned long h = 5381;
217 unsigned char ch;
218
219 while ((ch = *name++) != '\0')
220 h = (h << 5) + h + ch;
221 return h & 0xffffffff;
222 }
223
224 bfd_boolean
225 bfd_elf_mkobject (bfd *abfd)
226 {
227 if (abfd->tdata.any == NULL)
228 {
229 abfd->tdata.any = bfd_zalloc (abfd, sizeof (struct elf_obj_tdata));
230 if (abfd->tdata.any == NULL)
231 return FALSE;
232 }
233
234 elf_tdata (abfd)->program_header_size = (bfd_size_type) -1;
235
236 return TRUE;
237 }
238
239 bfd_boolean
240 bfd_elf_mkcorefile (bfd *abfd)
241 {
242 /* I think this can be done just like an object file. */
243 return bfd_elf_mkobject (abfd);
244 }
245
246 char *
247 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
248 {
249 Elf_Internal_Shdr **i_shdrp;
250 bfd_byte *shstrtab = NULL;
251 file_ptr offset;
252 bfd_size_type shstrtabsize;
253
254 i_shdrp = elf_elfsections (abfd);
255 if (i_shdrp == 0 || i_shdrp[shindex] == 0)
256 return NULL;
257
258 shstrtab = i_shdrp[shindex]->contents;
259 if (shstrtab == NULL)
260 {
261 /* No cached one, attempt to read, and cache what we read. */
262 offset = i_shdrp[shindex]->sh_offset;
263 shstrtabsize = i_shdrp[shindex]->sh_size;
264
265 /* Allocate and clear an extra byte at the end, to prevent crashes
266 in case the string table is not terminated. */
267 if (shstrtabsize + 1 == 0
268 || (shstrtab = bfd_alloc (abfd, shstrtabsize + 1)) == NULL
269 || bfd_seek (abfd, offset, SEEK_SET) != 0)
270 shstrtab = NULL;
271 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
272 {
273 if (bfd_get_error () != bfd_error_system_call)
274 bfd_set_error (bfd_error_file_truncated);
275 shstrtab = NULL;
276 }
277 else
278 shstrtab[shstrtabsize] = '\0';
279 i_shdrp[shindex]->contents = shstrtab;
280 }
281 return (char *) shstrtab;
282 }
283
284 char *
285 bfd_elf_string_from_elf_section (bfd *abfd,
286 unsigned int shindex,
287 unsigned int strindex)
288 {
289 Elf_Internal_Shdr *hdr;
290
291 if (strindex == 0)
292 return "";
293
294 hdr = elf_elfsections (abfd)[shindex];
295
296 if (hdr->contents == NULL
297 && bfd_elf_get_str_section (abfd, shindex) == NULL)
298 return NULL;
299
300 if (strindex >= hdr->sh_size)
301 {
302 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
303 (*_bfd_error_handler)
304 (_("%B: invalid string offset %u >= %lu for section `%s'"),
305 abfd, strindex, (unsigned long) hdr->sh_size,
306 (shindex == shstrndx && strindex == hdr->sh_name
307 ? ".shstrtab"
308 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
309 return "";
310 }
311
312 return ((char *) hdr->contents) + strindex;
313 }
314
315 /* Read and convert symbols to internal format.
316 SYMCOUNT specifies the number of symbols to read, starting from
317 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
318 are non-NULL, they are used to store the internal symbols, external
319 symbols, and symbol section index extensions, respectively. */
320
321 Elf_Internal_Sym *
322 bfd_elf_get_elf_syms (bfd *ibfd,
323 Elf_Internal_Shdr *symtab_hdr,
324 size_t symcount,
325 size_t symoffset,
326 Elf_Internal_Sym *intsym_buf,
327 void *extsym_buf,
328 Elf_External_Sym_Shndx *extshndx_buf)
329 {
330 Elf_Internal_Shdr *shndx_hdr;
331 void *alloc_ext;
332 const bfd_byte *esym;
333 Elf_External_Sym_Shndx *alloc_extshndx;
334 Elf_External_Sym_Shndx *shndx;
335 Elf_Internal_Sym *isym;
336 Elf_Internal_Sym *isymend;
337 const struct elf_backend_data *bed;
338 size_t extsym_size;
339 bfd_size_type amt;
340 file_ptr pos;
341
342 if (symcount == 0)
343 return intsym_buf;
344
345 /* Normal syms might have section extension entries. */
346 shndx_hdr = NULL;
347 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
348 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
349
350 /* Read the symbols. */
351 alloc_ext = NULL;
352 alloc_extshndx = NULL;
353 bed = get_elf_backend_data (ibfd);
354 extsym_size = bed->s->sizeof_sym;
355 amt = symcount * extsym_size;
356 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
357 if (extsym_buf == NULL)
358 {
359 alloc_ext = bfd_malloc2 (symcount, extsym_size);
360 extsym_buf = alloc_ext;
361 }
362 if (extsym_buf == NULL
363 || bfd_seek (ibfd, pos, SEEK_SET) != 0
364 || bfd_bread (extsym_buf, amt, ibfd) != amt)
365 {
366 intsym_buf = NULL;
367 goto out;
368 }
369
370 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
371 extshndx_buf = NULL;
372 else
373 {
374 amt = symcount * sizeof (Elf_External_Sym_Shndx);
375 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
376 if (extshndx_buf == NULL)
377 {
378 alloc_extshndx = bfd_malloc2 (symcount,
379 sizeof (Elf_External_Sym_Shndx));
380 extshndx_buf = alloc_extshndx;
381 }
382 if (extshndx_buf == NULL
383 || bfd_seek (ibfd, pos, SEEK_SET) != 0
384 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
385 {
386 intsym_buf = NULL;
387 goto out;
388 }
389 }
390
391 if (intsym_buf == NULL)
392 {
393 intsym_buf = bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
394 if (intsym_buf == NULL)
395 goto out;
396 }
397
398 /* Convert the symbols to internal form. */
399 isymend = intsym_buf + symcount;
400 for (esym = extsym_buf, isym = intsym_buf, shndx = extshndx_buf;
401 isym < isymend;
402 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
403 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
404 {
405 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
406 (*_bfd_error_handler) (_("%B symbol number %lu references "
407 "nonexistent SHT_SYMTAB_SHNDX section"),
408 ibfd, (unsigned long) symoffset);
409 intsym_buf = NULL;
410 goto out;
411 }
412
413 out:
414 if (alloc_ext != NULL)
415 free (alloc_ext);
416 if (alloc_extshndx != NULL)
417 free (alloc_extshndx);
418
419 return intsym_buf;
420 }
421
422 /* Look up a symbol name. */
423 const char *
424 bfd_elf_sym_name (bfd *abfd,
425 Elf_Internal_Shdr *symtab_hdr,
426 Elf_Internal_Sym *isym,
427 asection *sym_sec)
428 {
429 const char *name;
430 unsigned int iname = isym->st_name;
431 unsigned int shindex = symtab_hdr->sh_link;
432
433 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
434 /* Check for a bogus st_shndx to avoid crashing. */
435 && isym->st_shndx < elf_numsections (abfd)
436 && !(isym->st_shndx >= SHN_LORESERVE && isym->st_shndx <= SHN_HIRESERVE))
437 {
438 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
439 shindex = elf_elfheader (abfd)->e_shstrndx;
440 }
441
442 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
443 if (name == NULL)
444 name = "(null)";
445 else if (sym_sec && *name == '\0')
446 name = bfd_section_name (abfd, sym_sec);
447
448 return name;
449 }
450
451 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
452 sections. The first element is the flags, the rest are section
453 pointers. */
454
455 typedef union elf_internal_group {
456 Elf_Internal_Shdr *shdr;
457 unsigned int flags;
458 } Elf_Internal_Group;
459
460 /* Return the name of the group signature symbol. Why isn't the
461 signature just a string? */
462
463 static const char *
464 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
465 {
466 Elf_Internal_Shdr *hdr;
467 unsigned char esym[sizeof (Elf64_External_Sym)];
468 Elf_External_Sym_Shndx eshndx;
469 Elf_Internal_Sym isym;
470
471 /* First we need to ensure the symbol table is available. Make sure
472 that it is a symbol table section. */
473 hdr = elf_elfsections (abfd) [ghdr->sh_link];
474 if (hdr->sh_type != SHT_SYMTAB
475 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
476 return NULL;
477
478 /* Go read the symbol. */
479 hdr = &elf_tdata (abfd)->symtab_hdr;
480 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
481 &isym, esym, &eshndx) == NULL)
482 return NULL;
483
484 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
485 }
486
487 /* Set next_in_group list pointer, and group name for NEWSECT. */
488
489 static bfd_boolean
490 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
491 {
492 unsigned int num_group = elf_tdata (abfd)->num_group;
493
494 /* If num_group is zero, read in all SHT_GROUP sections. The count
495 is set to -1 if there are no SHT_GROUP sections. */
496 if (num_group == 0)
497 {
498 unsigned int i, shnum;
499
500 /* First count the number of groups. If we have a SHT_GROUP
501 section with just a flag word (ie. sh_size is 4), ignore it. */
502 shnum = elf_numsections (abfd);
503 num_group = 0;
504 for (i = 0; i < shnum; i++)
505 {
506 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
507 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
508 num_group += 1;
509 }
510
511 if (num_group == 0)
512 {
513 num_group = (unsigned) -1;
514 elf_tdata (abfd)->num_group = num_group;
515 }
516 else
517 {
518 /* We keep a list of elf section headers for group sections,
519 so we can find them quickly. */
520 bfd_size_type amt;
521
522 elf_tdata (abfd)->num_group = num_group;
523 elf_tdata (abfd)->group_sect_ptr
524 = bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
525 if (elf_tdata (abfd)->group_sect_ptr == NULL)
526 return FALSE;
527
528 num_group = 0;
529 for (i = 0; i < shnum; i++)
530 {
531 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
532 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
533 {
534 unsigned char *src;
535 Elf_Internal_Group *dest;
536
537 /* Add to list of sections. */
538 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
539 num_group += 1;
540
541 /* Read the raw contents. */
542 BFD_ASSERT (sizeof (*dest) >= 4);
543 amt = shdr->sh_size * sizeof (*dest) / 4;
544 shdr->contents = bfd_alloc2 (abfd, shdr->sh_size,
545 sizeof (*dest) / 4);
546 if (shdr->contents == NULL
547 || bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
548 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
549 != shdr->sh_size))
550 return FALSE;
551
552 /* Translate raw contents, a flag word followed by an
553 array of elf section indices all in target byte order,
554 to the flag word followed by an array of elf section
555 pointers. */
556 src = shdr->contents + shdr->sh_size;
557 dest = (Elf_Internal_Group *) (shdr->contents + amt);
558 while (1)
559 {
560 unsigned int idx;
561
562 src -= 4;
563 --dest;
564 idx = H_GET_32 (abfd, src);
565 if (src == shdr->contents)
566 {
567 dest->flags = idx;
568 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
569 shdr->bfd_section->flags
570 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
571 break;
572 }
573 if (idx >= shnum)
574 {
575 ((*_bfd_error_handler)
576 (_("%B: invalid SHT_GROUP entry"), abfd));
577 idx = 0;
578 }
579 dest->shdr = elf_elfsections (abfd)[idx];
580 }
581 }
582 }
583 }
584 }
585
586 if (num_group != (unsigned) -1)
587 {
588 unsigned int i;
589
590 for (i = 0; i < num_group; i++)
591 {
592 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
593 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
594 unsigned int n_elt = shdr->sh_size / 4;
595
596 /* Look through this group's sections to see if current
597 section is a member. */
598 while (--n_elt != 0)
599 if ((++idx)->shdr == hdr)
600 {
601 asection *s = NULL;
602
603 /* We are a member of this group. Go looking through
604 other members to see if any others are linked via
605 next_in_group. */
606 idx = (Elf_Internal_Group *) shdr->contents;
607 n_elt = shdr->sh_size / 4;
608 while (--n_elt != 0)
609 if ((s = (++idx)->shdr->bfd_section) != NULL
610 && elf_next_in_group (s) != NULL)
611 break;
612 if (n_elt != 0)
613 {
614 /* Snarf the group name from other member, and
615 insert current section in circular list. */
616 elf_group_name (newsect) = elf_group_name (s);
617 elf_next_in_group (newsect) = elf_next_in_group (s);
618 elf_next_in_group (s) = newsect;
619 }
620 else
621 {
622 const char *gname;
623
624 gname = group_signature (abfd, shdr);
625 if (gname == NULL)
626 return FALSE;
627 elf_group_name (newsect) = gname;
628
629 /* Start a circular list with one element. */
630 elf_next_in_group (newsect) = newsect;
631 }
632
633 /* If the group section has been created, point to the
634 new member. */
635 if (shdr->bfd_section != NULL)
636 elf_next_in_group (shdr->bfd_section) = newsect;
637
638 i = num_group - 1;
639 break;
640 }
641 }
642 }
643
644 if (elf_group_name (newsect) == NULL)
645 {
646 (*_bfd_error_handler) (_("%B: no group info for section %A"),
647 abfd, newsect);
648 }
649 return TRUE;
650 }
651
652 bfd_boolean
653 _bfd_elf_setup_sections (bfd *abfd)
654 {
655 unsigned int i;
656 unsigned int num_group = elf_tdata (abfd)->num_group;
657 bfd_boolean result = TRUE;
658 asection *s;
659
660 /* Process SHF_LINK_ORDER. */
661 for (s = abfd->sections; s != NULL; s = s->next)
662 {
663 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
664 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
665 {
666 unsigned int elfsec = this_hdr->sh_link;
667 /* FIXME: The old Intel compiler and old strip/objcopy may
668 not set the sh_link or sh_info fields. Hence we could
669 get the situation where elfsec is 0. */
670 if (elfsec == 0)
671 {
672 const struct elf_backend_data *bed
673 = get_elf_backend_data (abfd);
674 if (bed->link_order_error_handler)
675 bed->link_order_error_handler
676 (_("%B: warning: sh_link not set for section `%A'"),
677 abfd, s);
678 }
679 else
680 {
681 asection *link;
682
683 this_hdr = elf_elfsections (abfd)[elfsec];
684
685 /* PR 1991, 2008:
686 Some strip/objcopy may leave an incorrect value in
687 sh_link. We don't want to proceed. */
688 link = this_hdr->bfd_section;
689 if (link == NULL)
690 {
691 (*_bfd_error_handler)
692 (_("%B: sh_link [%d] in section `%A' is incorrect"),
693 s->owner, s, elfsec);
694 result = FALSE;
695 }
696
697 elf_linked_to_section (s) = link;
698 }
699 }
700 }
701
702 /* Process section groups. */
703 if (num_group == (unsigned) -1)
704 return result;
705
706 for (i = 0; i < num_group; i++)
707 {
708 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
709 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
710 unsigned int n_elt = shdr->sh_size / 4;
711
712 while (--n_elt != 0)
713 if ((++idx)->shdr->bfd_section)
714 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
715 else if (idx->shdr->sh_type == SHT_RELA
716 || idx->shdr->sh_type == SHT_REL)
717 /* We won't include relocation sections in section groups in
718 output object files. We adjust the group section size here
719 so that relocatable link will work correctly when
720 relocation sections are in section group in input object
721 files. */
722 shdr->bfd_section->size -= 4;
723 else
724 {
725 /* There are some unknown sections in the group. */
726 (*_bfd_error_handler)
727 (_("%B: unknown [%d] section `%s' in group [%s]"),
728 abfd,
729 (unsigned int) idx->shdr->sh_type,
730 bfd_elf_string_from_elf_section (abfd,
731 (elf_elfheader (abfd)
732 ->e_shstrndx),
733 idx->shdr->sh_name),
734 shdr->bfd_section->name);
735 result = FALSE;
736 }
737 }
738 return result;
739 }
740
741 bfd_boolean
742 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
743 {
744 return elf_next_in_group (sec) != NULL;
745 }
746
747 /* Make a BFD section from an ELF section. We store a pointer to the
748 BFD section in the bfd_section field of the header. */
749
750 bfd_boolean
751 _bfd_elf_make_section_from_shdr (bfd *abfd,
752 Elf_Internal_Shdr *hdr,
753 const char *name,
754 int shindex)
755 {
756 asection *newsect;
757 flagword flags;
758 const struct elf_backend_data *bed;
759
760 if (hdr->bfd_section != NULL)
761 {
762 BFD_ASSERT (strcmp (name,
763 bfd_get_section_name (abfd, hdr->bfd_section)) == 0);
764 return TRUE;
765 }
766
767 newsect = bfd_make_section_anyway (abfd, name);
768 if (newsect == NULL)
769 return FALSE;
770
771 hdr->bfd_section = newsect;
772 elf_section_data (newsect)->this_hdr = *hdr;
773 elf_section_data (newsect)->this_idx = shindex;
774
775 /* Always use the real type/flags. */
776 elf_section_type (newsect) = hdr->sh_type;
777 elf_section_flags (newsect) = hdr->sh_flags;
778
779 newsect->filepos = hdr->sh_offset;
780
781 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
782 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
783 || ! bfd_set_section_alignment (abfd, newsect,
784 bfd_log2 ((bfd_vma) hdr->sh_addralign)))
785 return FALSE;
786
787 flags = SEC_NO_FLAGS;
788 if (hdr->sh_type != SHT_NOBITS)
789 flags |= SEC_HAS_CONTENTS;
790 if (hdr->sh_type == SHT_GROUP)
791 flags |= SEC_GROUP | SEC_EXCLUDE;
792 if ((hdr->sh_flags & SHF_ALLOC) != 0)
793 {
794 flags |= SEC_ALLOC;
795 if (hdr->sh_type != SHT_NOBITS)
796 flags |= SEC_LOAD;
797 }
798 if ((hdr->sh_flags & SHF_WRITE) == 0)
799 flags |= SEC_READONLY;
800 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
801 flags |= SEC_CODE;
802 else if ((flags & SEC_LOAD) != 0)
803 flags |= SEC_DATA;
804 if ((hdr->sh_flags & SHF_MERGE) != 0)
805 {
806 flags |= SEC_MERGE;
807 newsect->entsize = hdr->sh_entsize;
808 if ((hdr->sh_flags & SHF_STRINGS) != 0)
809 flags |= SEC_STRINGS;
810 }
811 if (hdr->sh_flags & SHF_GROUP)
812 if (!setup_group (abfd, hdr, newsect))
813 return FALSE;
814 if ((hdr->sh_flags & SHF_TLS) != 0)
815 flags |= SEC_THREAD_LOCAL;
816
817 if ((flags & SEC_ALLOC) == 0)
818 {
819 /* The debugging sections appear to be recognized only by name,
820 not any sort of flag. Their SEC_ALLOC bits are cleared. */
821 static const struct
822 {
823 const char *name;
824 int len;
825 } debug_sections [] =
826 {
827 { STRING_COMMA_LEN ("debug") }, /* 'd' */
828 { NULL, 0 }, /* 'e' */
829 { NULL, 0 }, /* 'f' */
830 { STRING_COMMA_LEN ("gnu.linkonce.wi.") }, /* 'g' */
831 { NULL, 0 }, /* 'h' */
832 { NULL, 0 }, /* 'i' */
833 { NULL, 0 }, /* 'j' */
834 { NULL, 0 }, /* 'k' */
835 { STRING_COMMA_LEN ("line") }, /* 'l' */
836 { NULL, 0 }, /* 'm' */
837 { NULL, 0 }, /* 'n' */
838 { NULL, 0 }, /* 'o' */
839 { NULL, 0 }, /* 'p' */
840 { NULL, 0 }, /* 'q' */
841 { NULL, 0 }, /* 'r' */
842 { STRING_COMMA_LEN ("stab") } /* 's' */
843 };
844
845 if (name [0] == '.')
846 {
847 int i = name [1] - 'd';
848 if (i >= 0
849 && i < (int) ARRAY_SIZE (debug_sections)
850 && debug_sections [i].name != NULL
851 && strncmp (&name [1], debug_sections [i].name,
852 debug_sections [i].len) == 0)
853 flags |= SEC_DEBUGGING;
854 }
855 }
856
857 /* As a GNU extension, if the name begins with .gnu.linkonce, we
858 only link a single copy of the section. This is used to support
859 g++. g++ will emit each template expansion in its own section.
860 The symbols will be defined as weak, so that multiple definitions
861 are permitted. The GNU linker extension is to actually discard
862 all but one of the sections. */
863 if (CONST_STRNEQ (name, ".gnu.linkonce")
864 && elf_next_in_group (newsect) == NULL)
865 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
866
867 bed = get_elf_backend_data (abfd);
868 if (bed->elf_backend_section_flags)
869 if (! bed->elf_backend_section_flags (&flags, hdr))
870 return FALSE;
871
872 if (! bfd_set_section_flags (abfd, newsect, flags))
873 return FALSE;
874
875 if ((flags & SEC_ALLOC) != 0)
876 {
877 Elf_Internal_Phdr *phdr;
878 unsigned int i;
879
880 /* Look through the phdrs to see if we need to adjust the lma.
881 If all the p_paddr fields are zero, we ignore them, since
882 some ELF linkers produce such output. */
883 phdr = elf_tdata (abfd)->phdr;
884 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
885 {
886 if (phdr->p_paddr != 0)
887 break;
888 }
889 if (i < elf_elfheader (abfd)->e_phnum)
890 {
891 phdr = elf_tdata (abfd)->phdr;
892 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
893 {
894 /* This section is part of this segment if its file
895 offset plus size lies within the segment's memory
896 span and, if the section is loaded, the extent of the
897 loaded data lies within the extent of the segment.
898
899 Note - we used to check the p_paddr field as well, and
900 refuse to set the LMA if it was 0. This is wrong
901 though, as a perfectly valid initialised segment can
902 have a p_paddr of zero. Some architectures, eg ARM,
903 place special significance on the address 0 and
904 executables need to be able to have a segment which
905 covers this address. */
906 if (phdr->p_type == PT_LOAD
907 && (bfd_vma) hdr->sh_offset >= phdr->p_offset
908 && (hdr->sh_offset + hdr->sh_size
909 <= phdr->p_offset + phdr->p_memsz)
910 && ((flags & SEC_LOAD) == 0
911 || (hdr->sh_offset + hdr->sh_size
912 <= phdr->p_offset + phdr->p_filesz)))
913 {
914 if ((flags & SEC_LOAD) == 0)
915 newsect->lma = (phdr->p_paddr
916 + hdr->sh_addr - phdr->p_vaddr);
917 else
918 /* We used to use the same adjustment for SEC_LOAD
919 sections, but that doesn't work if the segment
920 is packed with code from multiple VMAs.
921 Instead we calculate the section LMA based on
922 the segment LMA. It is assumed that the
923 segment will contain sections with contiguous
924 LMAs, even if the VMAs are not. */
925 newsect->lma = (phdr->p_paddr
926 + hdr->sh_offset - phdr->p_offset);
927
928 /* With contiguous segments, we can't tell from file
929 offsets whether a section with zero size should
930 be placed at the end of one segment or the
931 beginning of the next. Decide based on vaddr. */
932 if (hdr->sh_addr >= phdr->p_vaddr
933 && (hdr->sh_addr + hdr->sh_size
934 <= phdr->p_vaddr + phdr->p_memsz))
935 break;
936 }
937 }
938 }
939 }
940
941 return TRUE;
942 }
943
944 /*
945 INTERNAL_FUNCTION
946 bfd_elf_find_section
947
948 SYNOPSIS
949 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
950
951 DESCRIPTION
952 Helper functions for GDB to locate the string tables.
953 Since BFD hides string tables from callers, GDB needs to use an
954 internal hook to find them. Sun's .stabstr, in particular,
955 isn't even pointed to by the .stab section, so ordinary
956 mechanisms wouldn't work to find it, even if we had some.
957 */
958
959 struct elf_internal_shdr *
960 bfd_elf_find_section (bfd *abfd, char *name)
961 {
962 Elf_Internal_Shdr **i_shdrp;
963 char *shstrtab;
964 unsigned int max;
965 unsigned int i;
966
967 i_shdrp = elf_elfsections (abfd);
968 if (i_shdrp != NULL)
969 {
970 shstrtab = bfd_elf_get_str_section (abfd,
971 elf_elfheader (abfd)->e_shstrndx);
972 if (shstrtab != NULL)
973 {
974 max = elf_numsections (abfd);
975 for (i = 1; i < max; i++)
976 if (!strcmp (&shstrtab[i_shdrp[i]->sh_name], name))
977 return i_shdrp[i];
978 }
979 }
980 return 0;
981 }
982
983 const char *const bfd_elf_section_type_names[] = {
984 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
985 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
986 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
987 };
988
989 /* ELF relocs are against symbols. If we are producing relocatable
990 output, and the reloc is against an external symbol, and nothing
991 has given us any additional addend, the resulting reloc will also
992 be against the same symbol. In such a case, we don't want to
993 change anything about the way the reloc is handled, since it will
994 all be done at final link time. Rather than put special case code
995 into bfd_perform_relocation, all the reloc types use this howto
996 function. It just short circuits the reloc if producing
997 relocatable output against an external symbol. */
998
999 bfd_reloc_status_type
1000 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1001 arelent *reloc_entry,
1002 asymbol *symbol,
1003 void *data ATTRIBUTE_UNUSED,
1004 asection *input_section,
1005 bfd *output_bfd,
1006 char **error_message ATTRIBUTE_UNUSED)
1007 {
1008 if (output_bfd != NULL
1009 && (symbol->flags & BSF_SECTION_SYM) == 0
1010 && (! reloc_entry->howto->partial_inplace
1011 || reloc_entry->addend == 0))
1012 {
1013 reloc_entry->address += input_section->output_offset;
1014 return bfd_reloc_ok;
1015 }
1016
1017 return bfd_reloc_continue;
1018 }
1019 \f
1020 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
1021
1022 static void
1023 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
1024 asection *sec)
1025 {
1026 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
1027 sec->sec_info_type = ELF_INFO_TYPE_NONE;
1028 }
1029
1030 /* Finish SHF_MERGE section merging. */
1031
1032 bfd_boolean
1033 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
1034 {
1035 bfd *ibfd;
1036 asection *sec;
1037
1038 if (!is_elf_hash_table (info->hash))
1039 return FALSE;
1040
1041 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
1042 if ((ibfd->flags & DYNAMIC) == 0)
1043 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
1044 if ((sec->flags & SEC_MERGE) != 0
1045 && !bfd_is_abs_section (sec->output_section))
1046 {
1047 struct bfd_elf_section_data *secdata;
1048
1049 secdata = elf_section_data (sec);
1050 if (! _bfd_add_merge_section (abfd,
1051 &elf_hash_table (info)->merge_info,
1052 sec, &secdata->sec_info))
1053 return FALSE;
1054 else if (secdata->sec_info)
1055 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
1056 }
1057
1058 if (elf_hash_table (info)->merge_info != NULL)
1059 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
1060 merge_sections_remove_hook);
1061 return TRUE;
1062 }
1063
1064 void
1065 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
1066 {
1067 sec->output_section = bfd_abs_section_ptr;
1068 sec->output_offset = sec->vma;
1069 if (!is_elf_hash_table (info->hash))
1070 return;
1071
1072 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
1073 }
1074 \f
1075 /* Copy the program header and other data from one object module to
1076 another. */
1077
1078 bfd_boolean
1079 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1080 {
1081 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1082 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1083 return TRUE;
1084
1085 BFD_ASSERT (!elf_flags_init (obfd)
1086 || (elf_elfheader (obfd)->e_flags
1087 == elf_elfheader (ibfd)->e_flags));
1088
1089 elf_gp (obfd) = elf_gp (ibfd);
1090 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1091 elf_flags_init (obfd) = TRUE;
1092 return TRUE;
1093 }
1094
1095 static const char *
1096 get_segment_type (unsigned int p_type)
1097 {
1098 const char *pt;
1099 switch (p_type)
1100 {
1101 case PT_NULL: pt = "NULL"; break;
1102 case PT_LOAD: pt = "LOAD"; break;
1103 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1104 case PT_INTERP: pt = "INTERP"; break;
1105 case PT_NOTE: pt = "NOTE"; break;
1106 case PT_SHLIB: pt = "SHLIB"; break;
1107 case PT_PHDR: pt = "PHDR"; break;
1108 case PT_TLS: pt = "TLS"; break;
1109 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1110 case PT_GNU_STACK: pt = "STACK"; break;
1111 case PT_GNU_RELRO: pt = "RELRO"; break;
1112 default: pt = NULL; break;
1113 }
1114 return pt;
1115 }
1116
1117 /* Print out the program headers. */
1118
1119 bfd_boolean
1120 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1121 {
1122 FILE *f = farg;
1123 Elf_Internal_Phdr *p;
1124 asection *s;
1125 bfd_byte *dynbuf = NULL;
1126
1127 p = elf_tdata (abfd)->phdr;
1128 if (p != NULL)
1129 {
1130 unsigned int i, c;
1131
1132 fprintf (f, _("\nProgram Header:\n"));
1133 c = elf_elfheader (abfd)->e_phnum;
1134 for (i = 0; i < c; i++, p++)
1135 {
1136 const char *pt = get_segment_type (p->p_type);
1137 char buf[20];
1138
1139 if (pt == NULL)
1140 {
1141 sprintf (buf, "0x%lx", p->p_type);
1142 pt = buf;
1143 }
1144 fprintf (f, "%8s off 0x", pt);
1145 bfd_fprintf_vma (abfd, f, p->p_offset);
1146 fprintf (f, " vaddr 0x");
1147 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1148 fprintf (f, " paddr 0x");
1149 bfd_fprintf_vma (abfd, f, p->p_paddr);
1150 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1151 fprintf (f, " filesz 0x");
1152 bfd_fprintf_vma (abfd, f, p->p_filesz);
1153 fprintf (f, " memsz 0x");
1154 bfd_fprintf_vma (abfd, f, p->p_memsz);
1155 fprintf (f, " flags %c%c%c",
1156 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1157 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1158 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1159 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1160 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1161 fprintf (f, "\n");
1162 }
1163 }
1164
1165 s = bfd_get_section_by_name (abfd, ".dynamic");
1166 if (s != NULL)
1167 {
1168 int elfsec;
1169 unsigned long shlink;
1170 bfd_byte *extdyn, *extdynend;
1171 size_t extdynsize;
1172 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1173
1174 fprintf (f, _("\nDynamic Section:\n"));
1175
1176 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1177 goto error_return;
1178
1179 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1180 if (elfsec == -1)
1181 goto error_return;
1182 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1183
1184 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1185 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1186
1187 extdyn = dynbuf;
1188 extdynend = extdyn + s->size;
1189 for (; extdyn < extdynend; extdyn += extdynsize)
1190 {
1191 Elf_Internal_Dyn dyn;
1192 const char *name;
1193 char ab[20];
1194 bfd_boolean stringp;
1195
1196 (*swap_dyn_in) (abfd, extdyn, &dyn);
1197
1198 if (dyn.d_tag == DT_NULL)
1199 break;
1200
1201 stringp = FALSE;
1202 switch (dyn.d_tag)
1203 {
1204 default:
1205 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1206 name = ab;
1207 break;
1208
1209 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1210 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1211 case DT_PLTGOT: name = "PLTGOT"; break;
1212 case DT_HASH: name = "HASH"; break;
1213 case DT_STRTAB: name = "STRTAB"; break;
1214 case DT_SYMTAB: name = "SYMTAB"; break;
1215 case DT_RELA: name = "RELA"; break;
1216 case DT_RELASZ: name = "RELASZ"; break;
1217 case DT_RELAENT: name = "RELAENT"; break;
1218 case DT_STRSZ: name = "STRSZ"; break;
1219 case DT_SYMENT: name = "SYMENT"; break;
1220 case DT_INIT: name = "INIT"; break;
1221 case DT_FINI: name = "FINI"; break;
1222 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1223 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1224 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1225 case DT_REL: name = "REL"; break;
1226 case DT_RELSZ: name = "RELSZ"; break;
1227 case DT_RELENT: name = "RELENT"; break;
1228 case DT_PLTREL: name = "PLTREL"; break;
1229 case DT_DEBUG: name = "DEBUG"; break;
1230 case DT_TEXTREL: name = "TEXTREL"; break;
1231 case DT_JMPREL: name = "JMPREL"; break;
1232 case DT_BIND_NOW: name = "BIND_NOW"; break;
1233 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1234 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1235 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1236 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1237 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1238 case DT_FLAGS: name = "FLAGS"; break;
1239 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1240 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1241 case DT_CHECKSUM: name = "CHECKSUM"; break;
1242 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1243 case DT_MOVEENT: name = "MOVEENT"; break;
1244 case DT_MOVESZ: name = "MOVESZ"; break;
1245 case DT_FEATURE: name = "FEATURE"; break;
1246 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1247 case DT_SYMINSZ: name = "SYMINSZ"; break;
1248 case DT_SYMINENT: name = "SYMINENT"; break;
1249 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1250 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1251 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1252 case DT_PLTPAD: name = "PLTPAD"; break;
1253 case DT_MOVETAB: name = "MOVETAB"; break;
1254 case DT_SYMINFO: name = "SYMINFO"; break;
1255 case DT_RELACOUNT: name = "RELACOUNT"; break;
1256 case DT_RELCOUNT: name = "RELCOUNT"; break;
1257 case DT_FLAGS_1: name = "FLAGS_1"; break;
1258 case DT_VERSYM: name = "VERSYM"; break;
1259 case DT_VERDEF: name = "VERDEF"; break;
1260 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1261 case DT_VERNEED: name = "VERNEED"; break;
1262 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1263 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1264 case DT_USED: name = "USED"; break;
1265 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1266 case DT_GNU_HASH: name = "GNU_HASH"; break;
1267 }
1268
1269 fprintf (f, " %-11s ", name);
1270 if (! stringp)
1271 fprintf (f, "0x%lx", (unsigned long) dyn.d_un.d_val);
1272 else
1273 {
1274 const char *string;
1275 unsigned int tagv = dyn.d_un.d_val;
1276
1277 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1278 if (string == NULL)
1279 goto error_return;
1280 fprintf (f, "%s", string);
1281 }
1282 fprintf (f, "\n");
1283 }
1284
1285 free (dynbuf);
1286 dynbuf = NULL;
1287 }
1288
1289 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1290 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1291 {
1292 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1293 return FALSE;
1294 }
1295
1296 if (elf_dynverdef (abfd) != 0)
1297 {
1298 Elf_Internal_Verdef *t;
1299
1300 fprintf (f, _("\nVersion definitions:\n"));
1301 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1302 {
1303 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1304 t->vd_flags, t->vd_hash,
1305 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1306 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1307 {
1308 Elf_Internal_Verdaux *a;
1309
1310 fprintf (f, "\t");
1311 for (a = t->vd_auxptr->vda_nextptr;
1312 a != NULL;
1313 a = a->vda_nextptr)
1314 fprintf (f, "%s ",
1315 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1316 fprintf (f, "\n");
1317 }
1318 }
1319 }
1320
1321 if (elf_dynverref (abfd) != 0)
1322 {
1323 Elf_Internal_Verneed *t;
1324
1325 fprintf (f, _("\nVersion References:\n"));
1326 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1327 {
1328 Elf_Internal_Vernaux *a;
1329
1330 fprintf (f, _(" required from %s:\n"),
1331 t->vn_filename ? t->vn_filename : "<corrupt>");
1332 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1333 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1334 a->vna_flags, a->vna_other,
1335 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1336 }
1337 }
1338
1339 return TRUE;
1340
1341 error_return:
1342 if (dynbuf != NULL)
1343 free (dynbuf);
1344 return FALSE;
1345 }
1346
1347 /* Display ELF-specific fields of a symbol. */
1348
1349 void
1350 bfd_elf_print_symbol (bfd *abfd,
1351 void *filep,
1352 asymbol *symbol,
1353 bfd_print_symbol_type how)
1354 {
1355 FILE *file = filep;
1356 switch (how)
1357 {
1358 case bfd_print_symbol_name:
1359 fprintf (file, "%s", symbol->name);
1360 break;
1361 case bfd_print_symbol_more:
1362 fprintf (file, "elf ");
1363 bfd_fprintf_vma (abfd, file, symbol->value);
1364 fprintf (file, " %lx", (long) symbol->flags);
1365 break;
1366 case bfd_print_symbol_all:
1367 {
1368 const char *section_name;
1369 const char *name = NULL;
1370 const struct elf_backend_data *bed;
1371 unsigned char st_other;
1372 bfd_vma val;
1373
1374 section_name = symbol->section ? symbol->section->name : "(*none*)";
1375
1376 bed = get_elf_backend_data (abfd);
1377 if (bed->elf_backend_print_symbol_all)
1378 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1379
1380 if (name == NULL)
1381 {
1382 name = symbol->name;
1383 bfd_print_symbol_vandf (abfd, file, symbol);
1384 }
1385
1386 fprintf (file, " %s\t", section_name);
1387 /* Print the "other" value for a symbol. For common symbols,
1388 we've already printed the size; now print the alignment.
1389 For other symbols, we have no specified alignment, and
1390 we've printed the address; now print the size. */
1391 if (bfd_is_com_section (symbol->section))
1392 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1393 else
1394 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1395 bfd_fprintf_vma (abfd, file, val);
1396
1397 /* If we have version information, print it. */
1398 if (elf_tdata (abfd)->dynversym_section != 0
1399 && (elf_tdata (abfd)->dynverdef_section != 0
1400 || elf_tdata (abfd)->dynverref_section != 0))
1401 {
1402 unsigned int vernum;
1403 const char *version_string;
1404
1405 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1406
1407 if (vernum == 0)
1408 version_string = "";
1409 else if (vernum == 1)
1410 version_string = "Base";
1411 else if (vernum <= elf_tdata (abfd)->cverdefs)
1412 version_string =
1413 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1414 else
1415 {
1416 Elf_Internal_Verneed *t;
1417
1418 version_string = "";
1419 for (t = elf_tdata (abfd)->verref;
1420 t != NULL;
1421 t = t->vn_nextref)
1422 {
1423 Elf_Internal_Vernaux *a;
1424
1425 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1426 {
1427 if (a->vna_other == vernum)
1428 {
1429 version_string = a->vna_nodename;
1430 break;
1431 }
1432 }
1433 }
1434 }
1435
1436 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1437 fprintf (file, " %-11s", version_string);
1438 else
1439 {
1440 int i;
1441
1442 fprintf (file, " (%s)", version_string);
1443 for (i = 10 - strlen (version_string); i > 0; --i)
1444 putc (' ', file);
1445 }
1446 }
1447
1448 /* If the st_other field is not zero, print it. */
1449 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1450
1451 switch (st_other)
1452 {
1453 case 0: break;
1454 case STV_INTERNAL: fprintf (file, " .internal"); break;
1455 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1456 case STV_PROTECTED: fprintf (file, " .protected"); break;
1457 default:
1458 /* Some other non-defined flags are also present, so print
1459 everything hex. */
1460 fprintf (file, " 0x%02x", (unsigned int) st_other);
1461 }
1462
1463 fprintf (file, " %s", name);
1464 }
1465 break;
1466 }
1467 }
1468 \f
1469 /* Create an entry in an ELF linker hash table. */
1470
1471 struct bfd_hash_entry *
1472 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1473 struct bfd_hash_table *table,
1474 const char *string)
1475 {
1476 /* Allocate the structure if it has not already been allocated by a
1477 subclass. */
1478 if (entry == NULL)
1479 {
1480 entry = bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
1481 if (entry == NULL)
1482 return entry;
1483 }
1484
1485 /* Call the allocation method of the superclass. */
1486 entry = _bfd_link_hash_newfunc (entry, table, string);
1487 if (entry != NULL)
1488 {
1489 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
1490 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
1491
1492 /* Set local fields. */
1493 ret->indx = -1;
1494 ret->dynindx = -1;
1495 ret->got = htab->init_got_refcount;
1496 ret->plt = htab->init_plt_refcount;
1497 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
1498 - offsetof (struct elf_link_hash_entry, size)));
1499 /* Assume that we have been called by a non-ELF symbol reader.
1500 This flag is then reset by the code which reads an ELF input
1501 file. This ensures that a symbol created by a non-ELF symbol
1502 reader will have the flag set correctly. */
1503 ret->non_elf = 1;
1504 }
1505
1506 return entry;
1507 }
1508
1509 /* Copy data from an indirect symbol to its direct symbol, hiding the
1510 old indirect symbol. Also used for copying flags to a weakdef. */
1511
1512 void
1513 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
1514 struct elf_link_hash_entry *dir,
1515 struct elf_link_hash_entry *ind)
1516 {
1517 struct elf_link_hash_table *htab;
1518
1519 /* Copy down any references that we may have already seen to the
1520 symbol which just became indirect. */
1521
1522 dir->ref_dynamic |= ind->ref_dynamic;
1523 dir->ref_regular |= ind->ref_regular;
1524 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
1525 dir->non_got_ref |= ind->non_got_ref;
1526 dir->needs_plt |= ind->needs_plt;
1527 dir->pointer_equality_needed |= ind->pointer_equality_needed;
1528
1529 if (ind->root.type != bfd_link_hash_indirect)
1530 return;
1531
1532 /* Copy over the global and procedure linkage table refcount entries.
1533 These may have been already set up by a check_relocs routine. */
1534 htab = elf_hash_table (info);
1535 if (ind->got.refcount > htab->init_got_refcount.refcount)
1536 {
1537 if (dir->got.refcount < 0)
1538 dir->got.refcount = 0;
1539 dir->got.refcount += ind->got.refcount;
1540 ind->got.refcount = htab->init_got_refcount.refcount;
1541 }
1542
1543 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
1544 {
1545 if (dir->plt.refcount < 0)
1546 dir->plt.refcount = 0;
1547 dir->plt.refcount += ind->plt.refcount;
1548 ind->plt.refcount = htab->init_plt_refcount.refcount;
1549 }
1550
1551 if (ind->dynindx != -1)
1552 {
1553 if (dir->dynindx != -1)
1554 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
1555 dir->dynindx = ind->dynindx;
1556 dir->dynstr_index = ind->dynstr_index;
1557 ind->dynindx = -1;
1558 ind->dynstr_index = 0;
1559 }
1560 }
1561
1562 void
1563 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
1564 struct elf_link_hash_entry *h,
1565 bfd_boolean force_local)
1566 {
1567 h->plt = elf_hash_table (info)->init_plt_offset;
1568 h->needs_plt = 0;
1569 if (force_local)
1570 {
1571 h->forced_local = 1;
1572 if (h->dynindx != -1)
1573 {
1574 h->dynindx = -1;
1575 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1576 h->dynstr_index);
1577 }
1578 }
1579 }
1580
1581 /* Initialize an ELF linker hash table. */
1582
1583 bfd_boolean
1584 _bfd_elf_link_hash_table_init
1585 (struct elf_link_hash_table *table,
1586 bfd *abfd,
1587 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
1588 struct bfd_hash_table *,
1589 const char *),
1590 unsigned int entsize)
1591 {
1592 bfd_boolean ret;
1593 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
1594
1595 table->dynamic_sections_created = FALSE;
1596 table->dynobj = NULL;
1597 table->init_got_refcount.refcount = can_refcount - 1;
1598 table->init_plt_refcount.refcount = can_refcount - 1;
1599 table->init_got_offset.offset = -(bfd_vma) 1;
1600 table->init_plt_offset.offset = -(bfd_vma) 1;
1601 /* The first dynamic symbol is a dummy. */
1602 table->dynsymcount = 1;
1603 table->dynstr = NULL;
1604 table->bucketcount = 0;
1605 table->needed = NULL;
1606 table->hgot = NULL;
1607 table->hplt = NULL;
1608 table->merge_info = NULL;
1609 memset (&table->stab_info, 0, sizeof (table->stab_info));
1610 memset (&table->eh_info, 0, sizeof (table->eh_info));
1611 table->dynlocal = NULL;
1612 table->runpath = NULL;
1613 table->tls_sec = NULL;
1614 table->tls_size = 0;
1615 table->loaded = NULL;
1616 table->is_relocatable_executable = FALSE;
1617
1618 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
1619 table->root.type = bfd_link_elf_hash_table;
1620
1621 return ret;
1622 }
1623
1624 /* Create an ELF linker hash table. */
1625
1626 struct bfd_link_hash_table *
1627 _bfd_elf_link_hash_table_create (bfd *abfd)
1628 {
1629 struct elf_link_hash_table *ret;
1630 bfd_size_type amt = sizeof (struct elf_link_hash_table);
1631
1632 ret = bfd_malloc (amt);
1633 if (ret == NULL)
1634 return NULL;
1635
1636 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
1637 sizeof (struct elf_link_hash_entry)))
1638 {
1639 free (ret);
1640 return NULL;
1641 }
1642
1643 return &ret->root;
1644 }
1645
1646 /* This is a hook for the ELF emulation code in the generic linker to
1647 tell the backend linker what file name to use for the DT_NEEDED
1648 entry for a dynamic object. */
1649
1650 void
1651 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
1652 {
1653 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1654 && bfd_get_format (abfd) == bfd_object)
1655 elf_dt_name (abfd) = name;
1656 }
1657
1658 int
1659 bfd_elf_get_dyn_lib_class (bfd *abfd)
1660 {
1661 int lib_class;
1662 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1663 && bfd_get_format (abfd) == bfd_object)
1664 lib_class = elf_dyn_lib_class (abfd);
1665 else
1666 lib_class = 0;
1667 return lib_class;
1668 }
1669
1670 void
1671 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
1672 {
1673 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1674 && bfd_get_format (abfd) == bfd_object)
1675 elf_dyn_lib_class (abfd) = lib_class;
1676 }
1677
1678 /* Get the list of DT_NEEDED entries for a link. This is a hook for
1679 the linker ELF emulation code. */
1680
1681 struct bfd_link_needed_list *
1682 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
1683 struct bfd_link_info *info)
1684 {
1685 if (! is_elf_hash_table (info->hash))
1686 return NULL;
1687 return elf_hash_table (info)->needed;
1688 }
1689
1690 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
1691 hook for the linker ELF emulation code. */
1692
1693 struct bfd_link_needed_list *
1694 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
1695 struct bfd_link_info *info)
1696 {
1697 if (! is_elf_hash_table (info->hash))
1698 return NULL;
1699 return elf_hash_table (info)->runpath;
1700 }
1701
1702 /* Get the name actually used for a dynamic object for a link. This
1703 is the SONAME entry if there is one. Otherwise, it is the string
1704 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
1705
1706 const char *
1707 bfd_elf_get_dt_soname (bfd *abfd)
1708 {
1709 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1710 && bfd_get_format (abfd) == bfd_object)
1711 return elf_dt_name (abfd);
1712 return NULL;
1713 }
1714
1715 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
1716 the ELF linker emulation code. */
1717
1718 bfd_boolean
1719 bfd_elf_get_bfd_needed_list (bfd *abfd,
1720 struct bfd_link_needed_list **pneeded)
1721 {
1722 asection *s;
1723 bfd_byte *dynbuf = NULL;
1724 int elfsec;
1725 unsigned long shlink;
1726 bfd_byte *extdyn, *extdynend;
1727 size_t extdynsize;
1728 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1729
1730 *pneeded = NULL;
1731
1732 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
1733 || bfd_get_format (abfd) != bfd_object)
1734 return TRUE;
1735
1736 s = bfd_get_section_by_name (abfd, ".dynamic");
1737 if (s == NULL || s->size == 0)
1738 return TRUE;
1739
1740 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1741 goto error_return;
1742
1743 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1744 if (elfsec == -1)
1745 goto error_return;
1746
1747 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1748
1749 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1750 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1751
1752 extdyn = dynbuf;
1753 extdynend = extdyn + s->size;
1754 for (; extdyn < extdynend; extdyn += extdynsize)
1755 {
1756 Elf_Internal_Dyn dyn;
1757
1758 (*swap_dyn_in) (abfd, extdyn, &dyn);
1759
1760 if (dyn.d_tag == DT_NULL)
1761 break;
1762
1763 if (dyn.d_tag == DT_NEEDED)
1764 {
1765 const char *string;
1766 struct bfd_link_needed_list *l;
1767 unsigned int tagv = dyn.d_un.d_val;
1768 bfd_size_type amt;
1769
1770 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1771 if (string == NULL)
1772 goto error_return;
1773
1774 amt = sizeof *l;
1775 l = bfd_alloc (abfd, amt);
1776 if (l == NULL)
1777 goto error_return;
1778
1779 l->by = abfd;
1780 l->name = string;
1781 l->next = *pneeded;
1782 *pneeded = l;
1783 }
1784 }
1785
1786 free (dynbuf);
1787
1788 return TRUE;
1789
1790 error_return:
1791 if (dynbuf != NULL)
1792 free (dynbuf);
1793 return FALSE;
1794 }
1795 \f
1796 /* Allocate an ELF string table--force the first byte to be zero. */
1797
1798 struct bfd_strtab_hash *
1799 _bfd_elf_stringtab_init (void)
1800 {
1801 struct bfd_strtab_hash *ret;
1802
1803 ret = _bfd_stringtab_init ();
1804 if (ret != NULL)
1805 {
1806 bfd_size_type loc;
1807
1808 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1809 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1810 if (loc == (bfd_size_type) -1)
1811 {
1812 _bfd_stringtab_free (ret);
1813 ret = NULL;
1814 }
1815 }
1816 return ret;
1817 }
1818 \f
1819 /* ELF .o/exec file reading */
1820
1821 /* Create a new bfd section from an ELF section header. */
1822
1823 bfd_boolean
1824 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1825 {
1826 Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[shindex];
1827 Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
1828 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1829 const char *name;
1830
1831 name = bfd_elf_string_from_elf_section (abfd,
1832 elf_elfheader (abfd)->e_shstrndx,
1833 hdr->sh_name);
1834 if (name == NULL)
1835 return FALSE;
1836
1837 switch (hdr->sh_type)
1838 {
1839 case SHT_NULL:
1840 /* Inactive section. Throw it away. */
1841 return TRUE;
1842
1843 case SHT_PROGBITS: /* Normal section with contents. */
1844 case SHT_NOBITS: /* .bss section. */
1845 case SHT_HASH: /* .hash section. */
1846 case SHT_NOTE: /* .note section. */
1847 case SHT_INIT_ARRAY: /* .init_array section. */
1848 case SHT_FINI_ARRAY: /* .fini_array section. */
1849 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1850 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1851 case SHT_GNU_HASH: /* .gnu.hash section. */
1852 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1853
1854 case SHT_DYNAMIC: /* Dynamic linking information. */
1855 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1856 return FALSE;
1857 if (hdr->sh_link > elf_numsections (abfd)
1858 || elf_elfsections (abfd)[hdr->sh_link] == NULL)
1859 return FALSE;
1860 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1861 {
1862 Elf_Internal_Shdr *dynsymhdr;
1863
1864 /* The shared libraries distributed with hpux11 have a bogus
1865 sh_link field for the ".dynamic" section. Find the
1866 string table for the ".dynsym" section instead. */
1867 if (elf_dynsymtab (abfd) != 0)
1868 {
1869 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1870 hdr->sh_link = dynsymhdr->sh_link;
1871 }
1872 else
1873 {
1874 unsigned int i, num_sec;
1875
1876 num_sec = elf_numsections (abfd);
1877 for (i = 1; i < num_sec; i++)
1878 {
1879 dynsymhdr = elf_elfsections (abfd)[i];
1880 if (dynsymhdr->sh_type == SHT_DYNSYM)
1881 {
1882 hdr->sh_link = dynsymhdr->sh_link;
1883 break;
1884 }
1885 }
1886 }
1887 }
1888 break;
1889
1890 case SHT_SYMTAB: /* A symbol table */
1891 if (elf_onesymtab (abfd) == shindex)
1892 return TRUE;
1893
1894 if (hdr->sh_entsize != bed->s->sizeof_sym)
1895 return FALSE;
1896 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1897 elf_onesymtab (abfd) = shindex;
1898 elf_tdata (abfd)->symtab_hdr = *hdr;
1899 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1900 abfd->flags |= HAS_SYMS;
1901
1902 /* Sometimes a shared object will map in the symbol table. If
1903 SHF_ALLOC is set, and this is a shared object, then we also
1904 treat this section as a BFD section. We can not base the
1905 decision purely on SHF_ALLOC, because that flag is sometimes
1906 set in a relocatable object file, which would confuse the
1907 linker. */
1908 if ((hdr->sh_flags & SHF_ALLOC) != 0
1909 && (abfd->flags & DYNAMIC) != 0
1910 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1911 shindex))
1912 return FALSE;
1913
1914 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1915 can't read symbols without that section loaded as well. It
1916 is most likely specified by the next section header. */
1917 if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
1918 {
1919 unsigned int i, num_sec;
1920
1921 num_sec = elf_numsections (abfd);
1922 for (i = shindex + 1; i < num_sec; i++)
1923 {
1924 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1925 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1926 && hdr2->sh_link == shindex)
1927 break;
1928 }
1929 if (i == num_sec)
1930 for (i = 1; i < shindex; i++)
1931 {
1932 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1933 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1934 && hdr2->sh_link == shindex)
1935 break;
1936 }
1937 if (i != shindex)
1938 return bfd_section_from_shdr (abfd, i);
1939 }
1940 return TRUE;
1941
1942 case SHT_DYNSYM: /* A dynamic symbol table */
1943 if (elf_dynsymtab (abfd) == shindex)
1944 return TRUE;
1945
1946 if (hdr->sh_entsize != bed->s->sizeof_sym)
1947 return FALSE;
1948 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1949 elf_dynsymtab (abfd) = shindex;
1950 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1951 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1952 abfd->flags |= HAS_SYMS;
1953
1954 /* Besides being a symbol table, we also treat this as a regular
1955 section, so that objcopy can handle it. */
1956 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1957
1958 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1959 if (elf_symtab_shndx (abfd) == shindex)
1960 return TRUE;
1961
1962 BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
1963 elf_symtab_shndx (abfd) = shindex;
1964 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1965 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1966 return TRUE;
1967
1968 case SHT_STRTAB: /* A string table */
1969 if (hdr->bfd_section != NULL)
1970 return TRUE;
1971 if (ehdr->e_shstrndx == shindex)
1972 {
1973 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1974 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1975 return TRUE;
1976 }
1977 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
1978 {
1979 symtab_strtab:
1980 elf_tdata (abfd)->strtab_hdr = *hdr;
1981 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
1982 return TRUE;
1983 }
1984 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
1985 {
1986 dynsymtab_strtab:
1987 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1988 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
1989 elf_elfsections (abfd)[shindex] = hdr;
1990 /* We also treat this as a regular section, so that objcopy
1991 can handle it. */
1992 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1993 shindex);
1994 }
1995
1996 /* If the string table isn't one of the above, then treat it as a
1997 regular section. We need to scan all the headers to be sure,
1998 just in case this strtab section appeared before the above. */
1999 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
2000 {
2001 unsigned int i, num_sec;
2002
2003 num_sec = elf_numsections (abfd);
2004 for (i = 1; i < num_sec; i++)
2005 {
2006 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2007 if (hdr2->sh_link == shindex)
2008 {
2009 /* Prevent endless recursion on broken objects. */
2010 if (i == shindex)
2011 return FALSE;
2012 if (! bfd_section_from_shdr (abfd, i))
2013 return FALSE;
2014 if (elf_onesymtab (abfd) == i)
2015 goto symtab_strtab;
2016 if (elf_dynsymtab (abfd) == i)
2017 goto dynsymtab_strtab;
2018 }
2019 }
2020 }
2021 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2022
2023 case SHT_REL:
2024 case SHT_RELA:
2025 /* *These* do a lot of work -- but build no sections! */
2026 {
2027 asection *target_sect;
2028 Elf_Internal_Shdr *hdr2;
2029 unsigned int num_sec = elf_numsections (abfd);
2030
2031 if (hdr->sh_entsize
2032 != (bfd_size_type) (hdr->sh_type == SHT_REL
2033 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
2034 return FALSE;
2035
2036 /* Check for a bogus link to avoid crashing. */
2037 if ((hdr->sh_link >= SHN_LORESERVE && hdr->sh_link <= SHN_HIRESERVE)
2038 || hdr->sh_link >= num_sec)
2039 {
2040 ((*_bfd_error_handler)
2041 (_("%B: invalid link %lu for reloc section %s (index %u)"),
2042 abfd, hdr->sh_link, name, shindex));
2043 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2044 shindex);
2045 }
2046
2047 /* For some incomprehensible reason Oracle distributes
2048 libraries for Solaris in which some of the objects have
2049 bogus sh_link fields. It would be nice if we could just
2050 reject them, but, unfortunately, some people need to use
2051 them. We scan through the section headers; if we find only
2052 one suitable symbol table, we clobber the sh_link to point
2053 to it. I hope this doesn't break anything. */
2054 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
2055 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
2056 {
2057 unsigned int scan;
2058 int found;
2059
2060 found = 0;
2061 for (scan = 1; scan < num_sec; scan++)
2062 {
2063 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
2064 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
2065 {
2066 if (found != 0)
2067 {
2068 found = 0;
2069 break;
2070 }
2071 found = scan;
2072 }
2073 }
2074 if (found != 0)
2075 hdr->sh_link = found;
2076 }
2077
2078 /* Get the symbol table. */
2079 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
2080 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
2081 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
2082 return FALSE;
2083
2084 /* If this reloc section does not use the main symbol table we
2085 don't treat it as a reloc section. BFD can't adequately
2086 represent such a section, so at least for now, we don't
2087 try. We just present it as a normal section. We also
2088 can't use it as a reloc section if it points to the null
2089 section, an invalid section, or another reloc section. */
2090 if (hdr->sh_link != elf_onesymtab (abfd)
2091 || hdr->sh_info == SHN_UNDEF
2092 || (hdr->sh_info >= SHN_LORESERVE && hdr->sh_info <= SHN_HIRESERVE)
2093 || hdr->sh_info >= num_sec
2094 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
2095 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
2096 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2097 shindex);
2098
2099 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
2100 return FALSE;
2101 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
2102 if (target_sect == NULL)
2103 return FALSE;
2104
2105 if ((target_sect->flags & SEC_RELOC) == 0
2106 || target_sect->reloc_count == 0)
2107 hdr2 = &elf_section_data (target_sect)->rel_hdr;
2108 else
2109 {
2110 bfd_size_type amt;
2111 BFD_ASSERT (elf_section_data (target_sect)->rel_hdr2 == NULL);
2112 amt = sizeof (*hdr2);
2113 hdr2 = bfd_alloc (abfd, amt);
2114 elf_section_data (target_sect)->rel_hdr2 = hdr2;
2115 }
2116 *hdr2 = *hdr;
2117 elf_elfsections (abfd)[shindex] = hdr2;
2118 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
2119 target_sect->flags |= SEC_RELOC;
2120 target_sect->relocation = NULL;
2121 target_sect->rel_filepos = hdr->sh_offset;
2122 /* In the section to which the relocations apply, mark whether
2123 its relocations are of the REL or RELA variety. */
2124 if (hdr->sh_size != 0)
2125 target_sect->use_rela_p = hdr->sh_type == SHT_RELA;
2126 abfd->flags |= HAS_RELOC;
2127 return TRUE;
2128 }
2129
2130 case SHT_GNU_verdef:
2131 elf_dynverdef (abfd) = shindex;
2132 elf_tdata (abfd)->dynverdef_hdr = *hdr;
2133 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2134
2135 case SHT_GNU_versym:
2136 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
2137 return FALSE;
2138 elf_dynversym (abfd) = shindex;
2139 elf_tdata (abfd)->dynversym_hdr = *hdr;
2140 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2141
2142 case SHT_GNU_verneed:
2143 elf_dynverref (abfd) = shindex;
2144 elf_tdata (abfd)->dynverref_hdr = *hdr;
2145 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2146
2147 case SHT_SHLIB:
2148 return TRUE;
2149
2150 case SHT_GROUP:
2151 /* We need a BFD section for objcopy and relocatable linking,
2152 and it's handy to have the signature available as the section
2153 name. */
2154 if (hdr->sh_entsize != GRP_ENTRY_SIZE)
2155 return FALSE;
2156 name = group_signature (abfd, hdr);
2157 if (name == NULL)
2158 return FALSE;
2159 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2160 return FALSE;
2161 if (hdr->contents != NULL)
2162 {
2163 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
2164 unsigned int n_elt = hdr->sh_size / 4;
2165 asection *s;
2166
2167 if (idx->flags & GRP_COMDAT)
2168 hdr->bfd_section->flags
2169 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
2170
2171 /* We try to keep the same section order as it comes in. */
2172 idx += n_elt;
2173 while (--n_elt != 0)
2174 if ((s = (--idx)->shdr->bfd_section) != NULL
2175 && elf_next_in_group (s) != NULL)
2176 {
2177 elf_next_in_group (hdr->bfd_section) = s;
2178 break;
2179 }
2180 }
2181 break;
2182
2183 default:
2184 /* Check for any processor-specific section types. */
2185 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
2186 return TRUE;
2187
2188 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
2189 {
2190 if ((hdr->sh_flags & SHF_ALLOC) != 0)
2191 /* FIXME: How to properly handle allocated section reserved
2192 for applications? */
2193 (*_bfd_error_handler)
2194 (_("%B: don't know how to handle allocated, application "
2195 "specific section `%s' [0x%8x]"),
2196 abfd, name, hdr->sh_type);
2197 else
2198 /* Allow sections reserved for applications. */
2199 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2200 shindex);
2201 }
2202 else if (hdr->sh_type >= SHT_LOPROC
2203 && hdr->sh_type <= SHT_HIPROC)
2204 /* FIXME: We should handle this section. */
2205 (*_bfd_error_handler)
2206 (_("%B: don't know how to handle processor specific section "
2207 "`%s' [0x%8x]"),
2208 abfd, name, hdr->sh_type);
2209 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
2210 {
2211 /* Unrecognised OS-specific sections. */
2212 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
2213 /* SHF_OS_NONCONFORMING indicates that special knowledge is
2214 required to correctly process the section and the file should
2215 be rejected with an error message. */
2216 (*_bfd_error_handler)
2217 (_("%B: don't know how to handle OS specific section "
2218 "`%s' [0x%8x]"),
2219 abfd, name, hdr->sh_type);
2220 else
2221 /* Otherwise it should be processed. */
2222 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2223 }
2224 else
2225 /* FIXME: We should handle this section. */
2226 (*_bfd_error_handler)
2227 (_("%B: don't know how to handle section `%s' [0x%8x]"),
2228 abfd, name, hdr->sh_type);
2229
2230 return FALSE;
2231 }
2232
2233 return TRUE;
2234 }
2235
2236 /* Return the section for the local symbol specified by ABFD, R_SYMNDX.
2237 Return SEC for sections that have no elf section, and NULL on error. */
2238
2239 asection *
2240 bfd_section_from_r_symndx (bfd *abfd,
2241 struct sym_sec_cache *cache,
2242 asection *sec,
2243 unsigned long r_symndx)
2244 {
2245 Elf_Internal_Shdr *symtab_hdr;
2246 unsigned char esym[sizeof (Elf64_External_Sym)];
2247 Elf_External_Sym_Shndx eshndx;
2248 Elf_Internal_Sym isym;
2249 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2250
2251 if (cache->abfd == abfd && cache->indx[ent] == r_symndx)
2252 return cache->sec[ent];
2253
2254 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2255 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2256 &isym, esym, &eshndx) == NULL)
2257 return NULL;
2258
2259 if (cache->abfd != abfd)
2260 {
2261 memset (cache->indx, -1, sizeof (cache->indx));
2262 cache->abfd = abfd;
2263 }
2264 cache->indx[ent] = r_symndx;
2265 cache->sec[ent] = sec;
2266 if ((isym.st_shndx != SHN_UNDEF && isym.st_shndx < SHN_LORESERVE)
2267 || isym.st_shndx > SHN_HIRESERVE)
2268 {
2269 asection *s;
2270 s = bfd_section_from_elf_index (abfd, isym.st_shndx);
2271 if (s != NULL)
2272 cache->sec[ent] = s;
2273 }
2274 return cache->sec[ent];
2275 }
2276
2277 /* Given an ELF section number, retrieve the corresponding BFD
2278 section. */
2279
2280 asection *
2281 bfd_section_from_elf_index (bfd *abfd, unsigned int index)
2282 {
2283 if (index >= elf_numsections (abfd))
2284 return NULL;
2285 return elf_elfsections (abfd)[index]->bfd_section;
2286 }
2287
2288 static const struct bfd_elf_special_section special_sections_b[] =
2289 {
2290 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2291 { NULL, 0, 0, 0, 0 }
2292 };
2293
2294 static const struct bfd_elf_special_section special_sections_c[] =
2295 {
2296 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2297 { NULL, 0, 0, 0, 0 }
2298 };
2299
2300 static const struct bfd_elf_special_section special_sections_d[] =
2301 {
2302 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2303 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2304 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2305 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2306 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2307 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2308 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2309 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2310 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2311 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2312 { NULL, 0, 0, 0, 0 }
2313 };
2314
2315 static const struct bfd_elf_special_section special_sections_f[] =
2316 {
2317 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2318 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2319 { NULL, 0, 0, 0, 0 }
2320 };
2321
2322 static const struct bfd_elf_special_section special_sections_g[] =
2323 {
2324 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2325 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2326 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2327 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2328 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2329 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2330 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2331 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2332 { NULL, 0, 0, 0, 0 }
2333 };
2334
2335 static const struct bfd_elf_special_section special_sections_h[] =
2336 {
2337 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2338 { NULL, 0, 0, 0, 0 }
2339 };
2340
2341 static const struct bfd_elf_special_section special_sections_i[] =
2342 {
2343 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2344 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2345 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2346 { NULL, 0, 0, 0, 0 }
2347 };
2348
2349 static const struct bfd_elf_special_section special_sections_l[] =
2350 {
2351 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2352 { NULL, 0, 0, 0, 0 }
2353 };
2354
2355 static const struct bfd_elf_special_section special_sections_n[] =
2356 {
2357 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2358 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2359 { NULL, 0, 0, 0, 0 }
2360 };
2361
2362 static const struct bfd_elf_special_section special_sections_p[] =
2363 {
2364 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2365 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2366 { NULL, 0, 0, 0, 0 }
2367 };
2368
2369 static const struct bfd_elf_special_section special_sections_r[] =
2370 {
2371 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2372 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2373 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2374 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2375 { NULL, 0, 0, 0, 0 }
2376 };
2377
2378 static const struct bfd_elf_special_section special_sections_s[] =
2379 {
2380 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2381 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2382 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2383 /* See struct bfd_elf_special_section declaration for the semantics of
2384 this special case where .prefix_length != strlen (.prefix). */
2385 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2386 { NULL, 0, 0, 0, 0 }
2387 };
2388
2389 static const struct bfd_elf_special_section special_sections_t[] =
2390 {
2391 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2392 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2393 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2394 { NULL, 0, 0, 0, 0 }
2395 };
2396
2397 static const struct bfd_elf_special_section *special_sections[] =
2398 {
2399 special_sections_b, /* 'b' */
2400 special_sections_c, /* 'b' */
2401 special_sections_d, /* 'd' */
2402 NULL, /* 'e' */
2403 special_sections_f, /* 'f' */
2404 special_sections_g, /* 'g' */
2405 special_sections_h, /* 'h' */
2406 special_sections_i, /* 'i' */
2407 NULL, /* 'j' */
2408 NULL, /* 'k' */
2409 special_sections_l, /* 'l' */
2410 NULL, /* 'm' */
2411 special_sections_n, /* 'n' */
2412 NULL, /* 'o' */
2413 special_sections_p, /* 'p' */
2414 NULL, /* 'q' */
2415 special_sections_r, /* 'r' */
2416 special_sections_s, /* 's' */
2417 special_sections_t, /* 't' */
2418 };
2419
2420 const struct bfd_elf_special_section *
2421 _bfd_elf_get_special_section (const char *name,
2422 const struct bfd_elf_special_section *spec,
2423 unsigned int rela)
2424 {
2425 int i;
2426 int len;
2427
2428 len = strlen (name);
2429
2430 for (i = 0; spec[i].prefix != NULL; i++)
2431 {
2432 int suffix_len;
2433 int prefix_len = spec[i].prefix_length;
2434
2435 if (len < prefix_len)
2436 continue;
2437 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2438 continue;
2439
2440 suffix_len = spec[i].suffix_length;
2441 if (suffix_len <= 0)
2442 {
2443 if (name[prefix_len] != 0)
2444 {
2445 if (suffix_len == 0)
2446 continue;
2447 if (name[prefix_len] != '.'
2448 && (suffix_len == -2
2449 || (rela && spec[i].type == SHT_REL)))
2450 continue;
2451 }
2452 }
2453 else
2454 {
2455 if (len < prefix_len + suffix_len)
2456 continue;
2457 if (memcmp (name + len - suffix_len,
2458 spec[i].prefix + prefix_len,
2459 suffix_len) != 0)
2460 continue;
2461 }
2462 return &spec[i];
2463 }
2464
2465 return NULL;
2466 }
2467
2468 const struct bfd_elf_special_section *
2469 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2470 {
2471 int i;
2472 const struct bfd_elf_special_section *spec;
2473 const struct elf_backend_data *bed;
2474
2475 /* See if this is one of the special sections. */
2476 if (sec->name == NULL)
2477 return NULL;
2478
2479 bed = get_elf_backend_data (abfd);
2480 spec = bed->special_sections;
2481 if (spec)
2482 {
2483 spec = _bfd_elf_get_special_section (sec->name,
2484 bed->special_sections,
2485 sec->use_rela_p);
2486 if (spec != NULL)
2487 return spec;
2488 }
2489
2490 if (sec->name[0] != '.')
2491 return NULL;
2492
2493 i = sec->name[1] - 'b';
2494 if (i < 0 || i > 't' - 'b')
2495 return NULL;
2496
2497 spec = special_sections[i];
2498
2499 if (spec == NULL)
2500 return NULL;
2501
2502 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2503 }
2504
2505 bfd_boolean
2506 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2507 {
2508 struct bfd_elf_section_data *sdata;
2509 const struct elf_backend_data *bed;
2510 const struct bfd_elf_special_section *ssect;
2511
2512 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2513 if (sdata == NULL)
2514 {
2515 sdata = bfd_zalloc (abfd, sizeof (*sdata));
2516 if (sdata == NULL)
2517 return FALSE;
2518 sec->used_by_bfd = sdata;
2519 }
2520
2521 /* Indicate whether or not this section should use RELA relocations. */
2522 bed = get_elf_backend_data (abfd);
2523 sec->use_rela_p = bed->default_use_rela_p;
2524
2525 /* When we read a file, we don't need to set ELF section type and
2526 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2527 anyway. We will set ELF section type and flags for all linker
2528 created sections. If user specifies BFD section flags, we will
2529 set ELF section type and flags based on BFD section flags in
2530 elf_fake_sections. */
2531 if ((!sec->flags && abfd->direction != read_direction)
2532 || (sec->flags & SEC_LINKER_CREATED) != 0)
2533 {
2534 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2535 if (ssect != NULL)
2536 {
2537 elf_section_type (sec) = ssect->type;
2538 elf_section_flags (sec) = ssect->attr;
2539 }
2540 }
2541
2542 return _bfd_generic_new_section_hook (abfd, sec);
2543 }
2544
2545 /* Create a new bfd section from an ELF program header.
2546
2547 Since program segments have no names, we generate a synthetic name
2548 of the form segment<NUM>, where NUM is generally the index in the
2549 program header table. For segments that are split (see below) we
2550 generate the names segment<NUM>a and segment<NUM>b.
2551
2552 Note that some program segments may have a file size that is different than
2553 (less than) the memory size. All this means is that at execution the
2554 system must allocate the amount of memory specified by the memory size,
2555 but only initialize it with the first "file size" bytes read from the
2556 file. This would occur for example, with program segments consisting
2557 of combined data+bss.
2558
2559 To handle the above situation, this routine generates TWO bfd sections
2560 for the single program segment. The first has the length specified by
2561 the file size of the segment, and the second has the length specified
2562 by the difference between the two sizes. In effect, the segment is split
2563 into it's initialized and uninitialized parts.
2564
2565 */
2566
2567 bfd_boolean
2568 _bfd_elf_make_section_from_phdr (bfd *abfd,
2569 Elf_Internal_Phdr *hdr,
2570 int index,
2571 const char *typename)
2572 {
2573 asection *newsect;
2574 char *name;
2575 char namebuf[64];
2576 size_t len;
2577 int split;
2578
2579 split = ((hdr->p_memsz > 0)
2580 && (hdr->p_filesz > 0)
2581 && (hdr->p_memsz > hdr->p_filesz));
2582 sprintf (namebuf, "%s%d%s", typename, index, split ? "a" : "");
2583 len = strlen (namebuf) + 1;
2584 name = bfd_alloc (abfd, len);
2585 if (!name)
2586 return FALSE;
2587 memcpy (name, namebuf, len);
2588 newsect = bfd_make_section (abfd, name);
2589 if (newsect == NULL)
2590 return FALSE;
2591 newsect->vma = hdr->p_vaddr;
2592 newsect->lma = hdr->p_paddr;
2593 newsect->size = hdr->p_filesz;
2594 newsect->filepos = hdr->p_offset;
2595 newsect->flags |= SEC_HAS_CONTENTS;
2596 newsect->alignment_power = bfd_log2 (hdr->p_align);
2597 if (hdr->p_type == PT_LOAD)
2598 {
2599 newsect->flags |= SEC_ALLOC;
2600 newsect->flags |= SEC_LOAD;
2601 if (hdr->p_flags & PF_X)
2602 {
2603 /* FIXME: all we known is that it has execute PERMISSION,
2604 may be data. */
2605 newsect->flags |= SEC_CODE;
2606 }
2607 }
2608 if (!(hdr->p_flags & PF_W))
2609 {
2610 newsect->flags |= SEC_READONLY;
2611 }
2612
2613 if (split)
2614 {
2615 sprintf (namebuf, "%s%db", typename, index);
2616 len = strlen (namebuf) + 1;
2617 name = bfd_alloc (abfd, len);
2618 if (!name)
2619 return FALSE;
2620 memcpy (name, namebuf, len);
2621 newsect = bfd_make_section (abfd, name);
2622 if (newsect == NULL)
2623 return FALSE;
2624 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2625 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2626 newsect->size = hdr->p_memsz - hdr->p_filesz;
2627 if (hdr->p_type == PT_LOAD)
2628 {
2629 newsect->flags |= SEC_ALLOC;
2630 if (hdr->p_flags & PF_X)
2631 newsect->flags |= SEC_CODE;
2632 }
2633 if (!(hdr->p_flags & PF_W))
2634 newsect->flags |= SEC_READONLY;
2635 }
2636
2637 return TRUE;
2638 }
2639
2640 bfd_boolean
2641 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index)
2642 {
2643 const struct elf_backend_data *bed;
2644
2645 switch (hdr->p_type)
2646 {
2647 case PT_NULL:
2648 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "null");
2649
2650 case PT_LOAD:
2651 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "load");
2652
2653 case PT_DYNAMIC:
2654 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "dynamic");
2655
2656 case PT_INTERP:
2657 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "interp");
2658
2659 case PT_NOTE:
2660 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, index, "note"))
2661 return FALSE;
2662 if (! elfcore_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2663 return FALSE;
2664 return TRUE;
2665
2666 case PT_SHLIB:
2667 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "shlib");
2668
2669 case PT_PHDR:
2670 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "phdr");
2671
2672 case PT_GNU_EH_FRAME:
2673 return _bfd_elf_make_section_from_phdr (abfd, hdr, index,
2674 "eh_frame_hdr");
2675
2676 case PT_GNU_STACK:
2677 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "stack");
2678
2679 case PT_GNU_RELRO:
2680 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "relro");
2681
2682 default:
2683 /* Check for any processor-specific program segment types. */
2684 bed = get_elf_backend_data (abfd);
2685 return bed->elf_backend_section_from_phdr (abfd, hdr, index, "proc");
2686 }
2687 }
2688
2689 /* Initialize REL_HDR, the section-header for new section, containing
2690 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2691 relocations; otherwise, we use REL relocations. */
2692
2693 bfd_boolean
2694 _bfd_elf_init_reloc_shdr (bfd *abfd,
2695 Elf_Internal_Shdr *rel_hdr,
2696 asection *asect,
2697 bfd_boolean use_rela_p)
2698 {
2699 char *name;
2700 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2701 bfd_size_type amt = sizeof ".rela" + strlen (asect->name);
2702
2703 name = bfd_alloc (abfd, amt);
2704 if (name == NULL)
2705 return FALSE;
2706 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2707 rel_hdr->sh_name =
2708 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2709 FALSE);
2710 if (rel_hdr->sh_name == (unsigned int) -1)
2711 return FALSE;
2712 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2713 rel_hdr->sh_entsize = (use_rela_p
2714 ? bed->s->sizeof_rela
2715 : bed->s->sizeof_rel);
2716 rel_hdr->sh_addralign = 1 << bed->s->log_file_align;
2717 rel_hdr->sh_flags = 0;
2718 rel_hdr->sh_addr = 0;
2719 rel_hdr->sh_size = 0;
2720 rel_hdr->sh_offset = 0;
2721
2722 return TRUE;
2723 }
2724
2725 /* Set up an ELF internal section header for a section. */
2726
2727 static void
2728 elf_fake_sections (bfd *abfd, asection *asect, void *failedptrarg)
2729 {
2730 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2731 bfd_boolean *failedptr = failedptrarg;
2732 Elf_Internal_Shdr *this_hdr;
2733
2734 if (*failedptr)
2735 {
2736 /* We already failed; just get out of the bfd_map_over_sections
2737 loop. */
2738 return;
2739 }
2740
2741 this_hdr = &elf_section_data (asect)->this_hdr;
2742
2743 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2744 asect->name, FALSE);
2745 if (this_hdr->sh_name == (unsigned int) -1)
2746 {
2747 *failedptr = TRUE;
2748 return;
2749 }
2750
2751 /* Don't clear sh_flags. Assembler may set additional bits. */
2752
2753 if ((asect->flags & SEC_ALLOC) != 0
2754 || asect->user_set_vma)
2755 this_hdr->sh_addr = asect->vma;
2756 else
2757 this_hdr->sh_addr = 0;
2758
2759 this_hdr->sh_offset = 0;
2760 this_hdr->sh_size = asect->size;
2761 this_hdr->sh_link = 0;
2762 this_hdr->sh_addralign = 1 << asect->alignment_power;
2763 /* The sh_entsize and sh_info fields may have been set already by
2764 copy_private_section_data. */
2765
2766 this_hdr->bfd_section = asect;
2767 this_hdr->contents = NULL;
2768
2769 /* If the section type is unspecified, we set it based on
2770 asect->flags. */
2771 if (this_hdr->sh_type == SHT_NULL)
2772 {
2773 if ((asect->flags & SEC_GROUP) != 0)
2774 this_hdr->sh_type = SHT_GROUP;
2775 else if ((asect->flags & SEC_ALLOC) != 0
2776 && (((asect->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2777 || (asect->flags & SEC_NEVER_LOAD) != 0))
2778 this_hdr->sh_type = SHT_NOBITS;
2779 else
2780 this_hdr->sh_type = SHT_PROGBITS;
2781 }
2782
2783 switch (this_hdr->sh_type)
2784 {
2785 default:
2786 break;
2787
2788 case SHT_STRTAB:
2789 case SHT_INIT_ARRAY:
2790 case SHT_FINI_ARRAY:
2791 case SHT_PREINIT_ARRAY:
2792 case SHT_NOTE:
2793 case SHT_NOBITS:
2794 case SHT_PROGBITS:
2795 break;
2796
2797 case SHT_HASH:
2798 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2799 break;
2800
2801 case SHT_DYNSYM:
2802 this_hdr->sh_entsize = bed->s->sizeof_sym;
2803 break;
2804
2805 case SHT_DYNAMIC:
2806 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2807 break;
2808
2809 case SHT_RELA:
2810 if (get_elf_backend_data (abfd)->may_use_rela_p)
2811 this_hdr->sh_entsize = bed->s->sizeof_rela;
2812 break;
2813
2814 case SHT_REL:
2815 if (get_elf_backend_data (abfd)->may_use_rel_p)
2816 this_hdr->sh_entsize = bed->s->sizeof_rel;
2817 break;
2818
2819 case SHT_GNU_versym:
2820 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2821 break;
2822
2823 case SHT_GNU_verdef:
2824 this_hdr->sh_entsize = 0;
2825 /* objcopy or strip will copy over sh_info, but may not set
2826 cverdefs. The linker will set cverdefs, but sh_info will be
2827 zero. */
2828 if (this_hdr->sh_info == 0)
2829 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2830 else
2831 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2832 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2833 break;
2834
2835 case SHT_GNU_verneed:
2836 this_hdr->sh_entsize = 0;
2837 /* objcopy or strip will copy over sh_info, but may not set
2838 cverrefs. The linker will set cverrefs, but sh_info will be
2839 zero. */
2840 if (this_hdr->sh_info == 0)
2841 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2842 else
2843 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2844 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2845 break;
2846
2847 case SHT_GROUP:
2848 this_hdr->sh_entsize = 4;
2849 break;
2850
2851 case SHT_GNU_HASH:
2852 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
2853 break;
2854 }
2855
2856 if ((asect->flags & SEC_ALLOC) != 0)
2857 this_hdr->sh_flags |= SHF_ALLOC;
2858 if ((asect->flags & SEC_READONLY) == 0)
2859 this_hdr->sh_flags |= SHF_WRITE;
2860 if ((asect->flags & SEC_CODE) != 0)
2861 this_hdr->sh_flags |= SHF_EXECINSTR;
2862 if ((asect->flags & SEC_MERGE) != 0)
2863 {
2864 this_hdr->sh_flags |= SHF_MERGE;
2865 this_hdr->sh_entsize = asect->entsize;
2866 if ((asect->flags & SEC_STRINGS) != 0)
2867 this_hdr->sh_flags |= SHF_STRINGS;
2868 }
2869 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2870 this_hdr->sh_flags |= SHF_GROUP;
2871 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2872 {
2873 this_hdr->sh_flags |= SHF_TLS;
2874 if (asect->size == 0
2875 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2876 {
2877 struct bfd_link_order *o = asect->map_tail.link_order;
2878
2879 this_hdr->sh_size = 0;
2880 if (o != NULL)
2881 {
2882 this_hdr->sh_size = o->offset + o->size;
2883 if (this_hdr->sh_size != 0)
2884 this_hdr->sh_type = SHT_NOBITS;
2885 }
2886 }
2887 }
2888
2889 /* Check for processor-specific section types. */
2890 if (bed->elf_backend_fake_sections
2891 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2892 *failedptr = TRUE;
2893
2894 /* If the section has relocs, set up a section header for the
2895 SHT_REL[A] section. If two relocation sections are required for
2896 this section, it is up to the processor-specific back-end to
2897 create the other. */
2898 if ((asect->flags & SEC_RELOC) != 0
2899 && !_bfd_elf_init_reloc_shdr (abfd,
2900 &elf_section_data (asect)->rel_hdr,
2901 asect,
2902 asect->use_rela_p))
2903 *failedptr = TRUE;
2904 }
2905
2906 /* Fill in the contents of a SHT_GROUP section. */
2907
2908 void
2909 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2910 {
2911 bfd_boolean *failedptr = failedptrarg;
2912 unsigned long symindx;
2913 asection *elt, *first;
2914 unsigned char *loc;
2915 bfd_boolean gas;
2916
2917 /* Ignore linker created group section. See elfNN_ia64_object_p in
2918 elfxx-ia64.c. */
2919 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
2920 || *failedptr)
2921 return;
2922
2923 symindx = 0;
2924 if (elf_group_id (sec) != NULL)
2925 symindx = elf_group_id (sec)->udata.i;
2926
2927 if (symindx == 0)
2928 {
2929 /* If called from the assembler, swap_out_syms will have set up
2930 elf_section_syms; If called for "ld -r", use target_index. */
2931 if (elf_section_syms (abfd) != NULL)
2932 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2933 else
2934 symindx = sec->target_index;
2935 }
2936 elf_section_data (sec)->this_hdr.sh_info = symindx;
2937
2938 /* The contents won't be allocated for "ld -r" or objcopy. */
2939 gas = TRUE;
2940 if (sec->contents == NULL)
2941 {
2942 gas = FALSE;
2943 sec->contents = bfd_alloc (abfd, sec->size);
2944
2945 /* Arrange for the section to be written out. */
2946 elf_section_data (sec)->this_hdr.contents = sec->contents;
2947 if (sec->contents == NULL)
2948 {
2949 *failedptr = TRUE;
2950 return;
2951 }
2952 }
2953
2954 loc = sec->contents + sec->size;
2955
2956 /* Get the pointer to the first section in the group that gas
2957 squirreled away here. objcopy arranges for this to be set to the
2958 start of the input section group. */
2959 first = elt = elf_next_in_group (sec);
2960
2961 /* First element is a flag word. Rest of section is elf section
2962 indices for all the sections of the group. Write them backwards
2963 just to keep the group in the same order as given in .section
2964 directives, not that it matters. */
2965 while (elt != NULL)
2966 {
2967 asection *s;
2968 unsigned int idx;
2969
2970 loc -= 4;
2971 s = elt;
2972 if (!gas)
2973 s = s->output_section;
2974 idx = 0;
2975 if (s != NULL)
2976 idx = elf_section_data (s)->this_idx;
2977 H_PUT_32 (abfd, idx, loc);
2978 elt = elf_next_in_group (elt);
2979 if (elt == first)
2980 break;
2981 }
2982
2983 if ((loc -= 4) != sec->contents)
2984 abort ();
2985
2986 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2987 }
2988
2989 /* Assign all ELF section numbers. The dummy first section is handled here
2990 too. The link/info pointers for the standard section types are filled
2991 in here too, while we're at it. */
2992
2993 static bfd_boolean
2994 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
2995 {
2996 struct elf_obj_tdata *t = elf_tdata (abfd);
2997 asection *sec;
2998 unsigned int section_number, secn;
2999 Elf_Internal_Shdr **i_shdrp;
3000 struct bfd_elf_section_data *d;
3001
3002 section_number = 1;
3003
3004 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
3005
3006 /* SHT_GROUP sections are in relocatable files only. */
3007 if (link_info == NULL || link_info->relocatable)
3008 {
3009 /* Put SHT_GROUP sections first. */
3010 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3011 {
3012 d = elf_section_data (sec);
3013
3014 if (d->this_hdr.sh_type == SHT_GROUP)
3015 {
3016 if (sec->flags & SEC_LINKER_CREATED)
3017 {
3018 /* Remove the linker created SHT_GROUP sections. */
3019 bfd_section_list_remove (abfd, sec);
3020 abfd->section_count--;
3021 }
3022 else
3023 {
3024 if (section_number == SHN_LORESERVE)
3025 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3026 d->this_idx = section_number++;
3027 }
3028 }
3029 }
3030 }
3031
3032 for (sec = abfd->sections; sec; sec = sec->next)
3033 {
3034 d = elf_section_data (sec);
3035
3036 if (d->this_hdr.sh_type != SHT_GROUP)
3037 {
3038 if (section_number == SHN_LORESERVE)
3039 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3040 d->this_idx = section_number++;
3041 }
3042 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
3043 if ((sec->flags & SEC_RELOC) == 0)
3044 d->rel_idx = 0;
3045 else
3046 {
3047 if (section_number == SHN_LORESERVE)
3048 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3049 d->rel_idx = section_number++;
3050 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr.sh_name);
3051 }
3052
3053 if (d->rel_hdr2)
3054 {
3055 if (section_number == SHN_LORESERVE)
3056 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3057 d->rel_idx2 = section_number++;
3058 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr2->sh_name);
3059 }
3060 else
3061 d->rel_idx2 = 0;
3062 }
3063
3064 if (section_number == SHN_LORESERVE)
3065 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3066 t->shstrtab_section = section_number++;
3067 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
3068 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
3069
3070 if (bfd_get_symcount (abfd) > 0)
3071 {
3072 if (section_number == SHN_LORESERVE)
3073 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3074 t->symtab_section = section_number++;
3075 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
3076 if (section_number > SHN_LORESERVE - 2)
3077 {
3078 if (section_number == SHN_LORESERVE)
3079 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3080 t->symtab_shndx_section = section_number++;
3081 t->symtab_shndx_hdr.sh_name
3082 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3083 ".symtab_shndx", FALSE);
3084 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
3085 return FALSE;
3086 }
3087 if (section_number == SHN_LORESERVE)
3088 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3089 t->strtab_section = section_number++;
3090 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3091 }
3092
3093 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
3094 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3095
3096 elf_numsections (abfd) = section_number;
3097 elf_elfheader (abfd)->e_shnum = section_number;
3098 if (section_number > SHN_LORESERVE)
3099 elf_elfheader (abfd)->e_shnum -= SHN_HIRESERVE + 1 - SHN_LORESERVE;
3100
3101 /* Set up the list of section header pointers, in agreement with the
3102 indices. */
3103 i_shdrp = bfd_zalloc2 (abfd, section_number, sizeof (Elf_Internal_Shdr *));
3104 if (i_shdrp == NULL)
3105 return FALSE;
3106
3107 i_shdrp[0] = bfd_zalloc (abfd, sizeof (Elf_Internal_Shdr));
3108 if (i_shdrp[0] == NULL)
3109 {
3110 bfd_release (abfd, i_shdrp);
3111 return FALSE;
3112 }
3113
3114 elf_elfsections (abfd) = i_shdrp;
3115
3116 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
3117 if (bfd_get_symcount (abfd) > 0)
3118 {
3119 i_shdrp[t->symtab_section] = &t->symtab_hdr;
3120 if (elf_numsections (abfd) > SHN_LORESERVE)
3121 {
3122 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
3123 t->symtab_shndx_hdr.sh_link = t->symtab_section;
3124 }
3125 i_shdrp[t->strtab_section] = &t->strtab_hdr;
3126 t->symtab_hdr.sh_link = t->strtab_section;
3127 }
3128
3129 for (sec = abfd->sections; sec; sec = sec->next)
3130 {
3131 struct bfd_elf_section_data *d = elf_section_data (sec);
3132 asection *s;
3133 const char *name;
3134
3135 i_shdrp[d->this_idx] = &d->this_hdr;
3136 if (d->rel_idx != 0)
3137 i_shdrp[d->rel_idx] = &d->rel_hdr;
3138 if (d->rel_idx2 != 0)
3139 i_shdrp[d->rel_idx2] = d->rel_hdr2;
3140
3141 /* Fill in the sh_link and sh_info fields while we're at it. */
3142
3143 /* sh_link of a reloc section is the section index of the symbol
3144 table. sh_info is the section index of the section to which
3145 the relocation entries apply. */
3146 if (d->rel_idx != 0)
3147 {
3148 d->rel_hdr.sh_link = t->symtab_section;
3149 d->rel_hdr.sh_info = d->this_idx;
3150 }
3151 if (d->rel_idx2 != 0)
3152 {
3153 d->rel_hdr2->sh_link = t->symtab_section;
3154 d->rel_hdr2->sh_info = d->this_idx;
3155 }
3156
3157 /* We need to set up sh_link for SHF_LINK_ORDER. */
3158 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3159 {
3160 s = elf_linked_to_section (sec);
3161 if (s)
3162 {
3163 /* elf_linked_to_section points to the input section. */
3164 if (link_info != NULL)
3165 {
3166 /* Check discarded linkonce section. */
3167 if (elf_discarded_section (s))
3168 {
3169 asection *kept;
3170 (*_bfd_error_handler)
3171 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
3172 abfd, d->this_hdr.bfd_section,
3173 s, s->owner);
3174 /* Point to the kept section if it has the same
3175 size as the discarded one. */
3176 kept = _bfd_elf_check_kept_section (s, link_info);
3177 if (kept == NULL)
3178 {
3179 bfd_set_error (bfd_error_bad_value);
3180 return FALSE;
3181 }
3182 s = kept;
3183 }
3184
3185 s = s->output_section;
3186 BFD_ASSERT (s != NULL);
3187 }
3188 else
3189 {
3190 /* Handle objcopy. */
3191 if (s->output_section == NULL)
3192 {
3193 (*_bfd_error_handler)
3194 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
3195 abfd, d->this_hdr.bfd_section, s, s->owner);
3196 bfd_set_error (bfd_error_bad_value);
3197 return FALSE;
3198 }
3199 s = s->output_section;
3200 }
3201 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3202 }
3203 else
3204 {
3205 /* PR 290:
3206 The Intel C compiler generates SHT_IA_64_UNWIND with
3207 SHF_LINK_ORDER. But it doesn't set the sh_link or
3208 sh_info fields. Hence we could get the situation
3209 where s is NULL. */
3210 const struct elf_backend_data *bed
3211 = get_elf_backend_data (abfd);
3212 if (bed->link_order_error_handler)
3213 bed->link_order_error_handler
3214 (_("%B: warning: sh_link not set for section `%A'"),
3215 abfd, sec);
3216 }
3217 }
3218
3219 switch (d->this_hdr.sh_type)
3220 {
3221 case SHT_REL:
3222 case SHT_RELA:
3223 /* A reloc section which we are treating as a normal BFD
3224 section. sh_link is the section index of the symbol
3225 table. sh_info is the section index of the section to
3226 which the relocation entries apply. We assume that an
3227 allocated reloc section uses the dynamic symbol table.
3228 FIXME: How can we be sure? */
3229 s = bfd_get_section_by_name (abfd, ".dynsym");
3230 if (s != NULL)
3231 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3232
3233 /* We look up the section the relocs apply to by name. */
3234 name = sec->name;
3235 if (d->this_hdr.sh_type == SHT_REL)
3236 name += 4;
3237 else
3238 name += 5;
3239 s = bfd_get_section_by_name (abfd, name);
3240 if (s != NULL)
3241 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3242 break;
3243
3244 case SHT_STRTAB:
3245 /* We assume that a section named .stab*str is a stabs
3246 string section. We look for a section with the same name
3247 but without the trailing ``str'', and set its sh_link
3248 field to point to this section. */
3249 if (CONST_STRNEQ (sec->name, ".stab")
3250 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3251 {
3252 size_t len;
3253 char *alc;
3254
3255 len = strlen (sec->name);
3256 alc = bfd_malloc (len - 2);
3257 if (alc == NULL)
3258 return FALSE;
3259 memcpy (alc, sec->name, len - 3);
3260 alc[len - 3] = '\0';
3261 s = bfd_get_section_by_name (abfd, alc);
3262 free (alc);
3263 if (s != NULL)
3264 {
3265 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3266
3267 /* This is a .stab section. */
3268 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3269 elf_section_data (s)->this_hdr.sh_entsize
3270 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3271 }
3272 }
3273 break;
3274
3275 case SHT_DYNAMIC:
3276 case SHT_DYNSYM:
3277 case SHT_GNU_verneed:
3278 case SHT_GNU_verdef:
3279 /* sh_link is the section header index of the string table
3280 used for the dynamic entries, or the symbol table, or the
3281 version strings. */
3282 s = bfd_get_section_by_name (abfd, ".dynstr");
3283 if (s != NULL)
3284 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3285 break;
3286
3287 case SHT_GNU_LIBLIST:
3288 /* sh_link is the section header index of the prelink library
3289 list
3290 used for the dynamic entries, or the symbol table, or the
3291 version strings. */
3292 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3293 ? ".dynstr" : ".gnu.libstr");
3294 if (s != NULL)
3295 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3296 break;
3297
3298 case SHT_HASH:
3299 case SHT_GNU_HASH:
3300 case SHT_GNU_versym:
3301 /* sh_link is the section header index of the symbol table
3302 this hash table or version table is for. */
3303 s = bfd_get_section_by_name (abfd, ".dynsym");
3304 if (s != NULL)
3305 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3306 break;
3307
3308 case SHT_GROUP:
3309 d->this_hdr.sh_link = t->symtab_section;
3310 }
3311 }
3312
3313 for (secn = 1; secn < section_number; ++secn)
3314 if (i_shdrp[secn] == NULL)
3315 i_shdrp[secn] = i_shdrp[0];
3316 else
3317 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
3318 i_shdrp[secn]->sh_name);
3319 return TRUE;
3320 }
3321
3322 /* Map symbol from it's internal number to the external number, moving
3323 all local symbols to be at the head of the list. */
3324
3325 static bfd_boolean
3326 sym_is_global (bfd *abfd, asymbol *sym)
3327 {
3328 /* If the backend has a special mapping, use it. */
3329 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3330 if (bed->elf_backend_sym_is_global)
3331 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3332
3333 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
3334 || bfd_is_und_section (bfd_get_section (sym))
3335 || bfd_is_com_section (bfd_get_section (sym)));
3336 }
3337
3338 /* Don't output section symbols for sections that are not going to be
3339 output. Also, don't output section symbols for reloc and other
3340 special sections. */
3341
3342 static bfd_boolean
3343 ignore_section_sym (bfd *abfd, asymbol *sym)
3344 {
3345 return ((sym->flags & BSF_SECTION_SYM) != 0
3346 && (sym->value != 0
3347 || (sym->section->owner != abfd
3348 && (sym->section->output_section->owner != abfd
3349 || sym->section->output_offset != 0))));
3350 }
3351
3352 static bfd_boolean
3353 elf_map_symbols (bfd *abfd)
3354 {
3355 unsigned int symcount = bfd_get_symcount (abfd);
3356 asymbol **syms = bfd_get_outsymbols (abfd);
3357 asymbol **sect_syms;
3358 unsigned int num_locals = 0;
3359 unsigned int num_globals = 0;
3360 unsigned int num_locals2 = 0;
3361 unsigned int num_globals2 = 0;
3362 int max_index = 0;
3363 unsigned int idx;
3364 asection *asect;
3365 asymbol **new_syms;
3366
3367 #ifdef DEBUG
3368 fprintf (stderr, "elf_map_symbols\n");
3369 fflush (stderr);
3370 #endif
3371
3372 for (asect = abfd->sections; asect; asect = asect->next)
3373 {
3374 if (max_index < asect->index)
3375 max_index = asect->index;
3376 }
3377
3378 max_index++;
3379 sect_syms = bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
3380 if (sect_syms == NULL)
3381 return FALSE;
3382 elf_section_syms (abfd) = sect_syms;
3383 elf_num_section_syms (abfd) = max_index;
3384
3385 /* Init sect_syms entries for any section symbols we have already
3386 decided to output. */
3387 for (idx = 0; idx < symcount; idx++)
3388 {
3389 asymbol *sym = syms[idx];
3390
3391 if ((sym->flags & BSF_SECTION_SYM) != 0
3392 && !ignore_section_sym (abfd, sym))
3393 {
3394 asection *sec = sym->section;
3395
3396 if (sec->owner != abfd)
3397 sec = sec->output_section;
3398
3399 sect_syms[sec->index] = syms[idx];
3400 }
3401 }
3402
3403 /* Classify all of the symbols. */
3404 for (idx = 0; idx < symcount; idx++)
3405 {
3406 if (ignore_section_sym (abfd, syms[idx]))
3407 continue;
3408 if (!sym_is_global (abfd, syms[idx]))
3409 num_locals++;
3410 else
3411 num_globals++;
3412 }
3413
3414 /* We will be adding a section symbol for each normal BFD section. Most
3415 sections will already have a section symbol in outsymbols, but
3416 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3417 at least in that case. */
3418 for (asect = abfd->sections; asect; asect = asect->next)
3419 {
3420 if (sect_syms[asect->index] == NULL)
3421 {
3422 if (!sym_is_global (abfd, asect->symbol))
3423 num_locals++;
3424 else
3425 num_globals++;
3426 }
3427 }
3428
3429 /* Now sort the symbols so the local symbols are first. */
3430 new_syms = bfd_alloc2 (abfd, num_locals + num_globals, sizeof (asymbol *));
3431
3432 if (new_syms == NULL)
3433 return FALSE;
3434
3435 for (idx = 0; idx < symcount; idx++)
3436 {
3437 asymbol *sym = syms[idx];
3438 unsigned int i;
3439
3440 if (ignore_section_sym (abfd, sym))
3441 continue;
3442 if (!sym_is_global (abfd, sym))
3443 i = num_locals2++;
3444 else
3445 i = num_locals + num_globals2++;
3446 new_syms[i] = sym;
3447 sym->udata.i = i + 1;
3448 }
3449 for (asect = abfd->sections; asect; asect = asect->next)
3450 {
3451 if (sect_syms[asect->index] == NULL)
3452 {
3453 asymbol *sym = asect->symbol;
3454 unsigned int i;
3455
3456 sect_syms[asect->index] = sym;
3457 if (!sym_is_global (abfd, sym))
3458 i = num_locals2++;
3459 else
3460 i = num_locals + num_globals2++;
3461 new_syms[i] = sym;
3462 sym->udata.i = i + 1;
3463 }
3464 }
3465
3466 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3467
3468 elf_num_locals (abfd) = num_locals;
3469 elf_num_globals (abfd) = num_globals;
3470 return TRUE;
3471 }
3472
3473 /* Align to the maximum file alignment that could be required for any
3474 ELF data structure. */
3475
3476 static inline file_ptr
3477 align_file_position (file_ptr off, int align)
3478 {
3479 return (off + align - 1) & ~(align - 1);
3480 }
3481
3482 /* Assign a file position to a section, optionally aligning to the
3483 required section alignment. */
3484
3485 file_ptr
3486 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3487 file_ptr offset,
3488 bfd_boolean align)
3489 {
3490 if (align)
3491 {
3492 unsigned int al;
3493
3494 al = i_shdrp->sh_addralign;
3495 if (al > 1)
3496 offset = BFD_ALIGN (offset, al);
3497 }
3498 i_shdrp->sh_offset = offset;
3499 if (i_shdrp->bfd_section != NULL)
3500 i_shdrp->bfd_section->filepos = offset;
3501 if (i_shdrp->sh_type != SHT_NOBITS)
3502 offset += i_shdrp->sh_size;
3503 return offset;
3504 }
3505
3506 /* Compute the file positions we are going to put the sections at, and
3507 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3508 is not NULL, this is being called by the ELF backend linker. */
3509
3510 bfd_boolean
3511 _bfd_elf_compute_section_file_positions (bfd *abfd,
3512 struct bfd_link_info *link_info)
3513 {
3514 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3515 bfd_boolean failed;
3516 struct bfd_strtab_hash *strtab = NULL;
3517 Elf_Internal_Shdr *shstrtab_hdr;
3518
3519 if (abfd->output_has_begun)
3520 return TRUE;
3521
3522 /* Do any elf backend specific processing first. */
3523 if (bed->elf_backend_begin_write_processing)
3524 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3525
3526 if (! prep_headers (abfd))
3527 return FALSE;
3528
3529 /* Post process the headers if necessary. */
3530 if (bed->elf_backend_post_process_headers)
3531 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3532
3533 failed = FALSE;
3534 bfd_map_over_sections (abfd, elf_fake_sections, &failed);
3535 if (failed)
3536 return FALSE;
3537
3538 if (!assign_section_numbers (abfd, link_info))
3539 return FALSE;
3540
3541 /* The backend linker builds symbol table information itself. */
3542 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3543 {
3544 /* Non-zero if doing a relocatable link. */
3545 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3546
3547 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3548 return FALSE;
3549 }
3550
3551 if (link_info == NULL)
3552 {
3553 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3554 if (failed)
3555 return FALSE;
3556 }
3557
3558 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3559 /* sh_name was set in prep_headers. */
3560 shstrtab_hdr->sh_type = SHT_STRTAB;
3561 shstrtab_hdr->sh_flags = 0;
3562 shstrtab_hdr->sh_addr = 0;
3563 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3564 shstrtab_hdr->sh_entsize = 0;
3565 shstrtab_hdr->sh_link = 0;
3566 shstrtab_hdr->sh_info = 0;
3567 /* sh_offset is set in assign_file_positions_except_relocs. */
3568 shstrtab_hdr->sh_addralign = 1;
3569
3570 if (!assign_file_positions_except_relocs (abfd, link_info))
3571 return FALSE;
3572
3573 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3574 {
3575 file_ptr off;
3576 Elf_Internal_Shdr *hdr;
3577
3578 off = elf_tdata (abfd)->next_file_pos;
3579
3580 hdr = &elf_tdata (abfd)->symtab_hdr;
3581 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3582
3583 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3584 if (hdr->sh_size != 0)
3585 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3586
3587 hdr = &elf_tdata (abfd)->strtab_hdr;
3588 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3589
3590 elf_tdata (abfd)->next_file_pos = off;
3591
3592 /* Now that we know where the .strtab section goes, write it
3593 out. */
3594 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3595 || ! _bfd_stringtab_emit (abfd, strtab))
3596 return FALSE;
3597 _bfd_stringtab_free (strtab);
3598 }
3599
3600 abfd->output_has_begun = TRUE;
3601
3602 return TRUE;
3603 }
3604
3605 /* Make an initial estimate of the size of the program header. If we
3606 get the number wrong here, we'll redo section placement. */
3607
3608 static bfd_size_type
3609 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
3610 {
3611 size_t segs;
3612 asection *s;
3613 const struct elf_backend_data *bed;
3614
3615 /* Assume we will need exactly two PT_LOAD segments: one for text
3616 and one for data. */
3617 segs = 2;
3618
3619 s = bfd_get_section_by_name (abfd, ".interp");
3620 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3621 {
3622 /* If we have a loadable interpreter section, we need a
3623 PT_INTERP segment. In this case, assume we also need a
3624 PT_PHDR segment, although that may not be true for all
3625 targets. */
3626 segs += 2;
3627 }
3628
3629 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
3630 {
3631 /* We need a PT_DYNAMIC segment. */
3632 ++segs;
3633
3634 if (elf_tdata (abfd)->relro)
3635 {
3636 /* We need a PT_GNU_RELRO segment only when there is a
3637 PT_DYNAMIC segment. */
3638 ++segs;
3639 }
3640 }
3641
3642 if (elf_tdata (abfd)->eh_frame_hdr)
3643 {
3644 /* We need a PT_GNU_EH_FRAME segment. */
3645 ++segs;
3646 }
3647
3648 if (elf_tdata (abfd)->stack_flags)
3649 {
3650 /* We need a PT_GNU_STACK segment. */
3651 ++segs;
3652 }
3653
3654 for (s = abfd->sections; s != NULL; s = s->next)
3655 {
3656 if ((s->flags & SEC_LOAD) != 0
3657 && CONST_STRNEQ (s->name, ".note"))
3658 {
3659 /* We need a PT_NOTE segment. */
3660 ++segs;
3661 }
3662 }
3663
3664 for (s = abfd->sections; s != NULL; s = s->next)
3665 {
3666 if (s->flags & SEC_THREAD_LOCAL)
3667 {
3668 /* We need a PT_TLS segment. */
3669 ++segs;
3670 break;
3671 }
3672 }
3673
3674 /* Let the backend count up any program headers it might need. */
3675 bed = get_elf_backend_data (abfd);
3676 if (bed->elf_backend_additional_program_headers)
3677 {
3678 int a;
3679
3680 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
3681 if (a == -1)
3682 abort ();
3683 segs += a;
3684 }
3685
3686 return segs * bed->s->sizeof_phdr;
3687 }
3688
3689 /* Create a mapping from a set of sections to a program segment. */
3690
3691 static struct elf_segment_map *
3692 make_mapping (bfd *abfd,
3693 asection **sections,
3694 unsigned int from,
3695 unsigned int to,
3696 bfd_boolean phdr)
3697 {
3698 struct elf_segment_map *m;
3699 unsigned int i;
3700 asection **hdrpp;
3701 bfd_size_type amt;
3702
3703 amt = sizeof (struct elf_segment_map);
3704 amt += (to - from - 1) * sizeof (asection *);
3705 m = bfd_zalloc (abfd, amt);
3706 if (m == NULL)
3707 return NULL;
3708 m->next = NULL;
3709 m->p_type = PT_LOAD;
3710 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3711 m->sections[i - from] = *hdrpp;
3712 m->count = to - from;
3713
3714 if (from == 0 && phdr)
3715 {
3716 /* Include the headers in the first PT_LOAD segment. */
3717 m->includes_filehdr = 1;
3718 m->includes_phdrs = 1;
3719 }
3720
3721 return m;
3722 }
3723
3724 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3725 on failure. */
3726
3727 struct elf_segment_map *
3728 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3729 {
3730 struct elf_segment_map *m;
3731
3732 m = bfd_zalloc (abfd, sizeof (struct elf_segment_map));
3733 if (m == NULL)
3734 return NULL;
3735 m->next = NULL;
3736 m->p_type = PT_DYNAMIC;
3737 m->count = 1;
3738 m->sections[0] = dynsec;
3739
3740 return m;
3741 }
3742
3743 /* Possibly add or remove segments from the segment map. */
3744
3745 static bfd_boolean
3746 elf_modify_segment_map (bfd *abfd, struct bfd_link_info *info)
3747 {
3748 struct elf_segment_map **m;
3749 const struct elf_backend_data *bed;
3750
3751 /* The placement algorithm assumes that non allocated sections are
3752 not in PT_LOAD segments. We ensure this here by removing such
3753 sections from the segment map. We also remove excluded
3754 sections. Finally, any PT_LOAD segment without sections is
3755 removed. */
3756 m = &elf_tdata (abfd)->segment_map;
3757 while (*m)
3758 {
3759 unsigned int i, new_count;
3760
3761 for (new_count = 0, i = 0; i < (*m)->count; i++)
3762 {
3763 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
3764 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
3765 || (*m)->p_type != PT_LOAD))
3766 {
3767 (*m)->sections[new_count] = (*m)->sections[i];
3768 new_count++;
3769 }
3770 }
3771 (*m)->count = new_count;
3772
3773 if ((*m)->p_type == PT_LOAD && (*m)->count == 0)
3774 *m = (*m)->next;
3775 else
3776 m = &(*m)->next;
3777 }
3778
3779 bed = get_elf_backend_data (abfd);
3780 if (bed->elf_backend_modify_segment_map != NULL)
3781 {
3782 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
3783 return FALSE;
3784 }
3785
3786 return TRUE;
3787 }
3788
3789 /* Set up a mapping from BFD sections to program segments. */
3790
3791 bfd_boolean
3792 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
3793 {
3794 unsigned int count;
3795 struct elf_segment_map *m;
3796 asection **sections = NULL;
3797 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3798
3799 if (elf_tdata (abfd)->segment_map == NULL
3800 && bfd_count_sections (abfd) != 0)
3801 {
3802 asection *s;
3803 unsigned int i;
3804 struct elf_segment_map *mfirst;
3805 struct elf_segment_map **pm;
3806 asection *last_hdr;
3807 bfd_vma last_size;
3808 unsigned int phdr_index;
3809 bfd_vma maxpagesize;
3810 asection **hdrpp;
3811 bfd_boolean phdr_in_segment = TRUE;
3812 bfd_boolean writable;
3813 int tls_count = 0;
3814 asection *first_tls = NULL;
3815 asection *dynsec, *eh_frame_hdr;
3816 bfd_size_type amt;
3817
3818 /* Select the allocated sections, and sort them. */
3819
3820 sections = bfd_malloc2 (bfd_count_sections (abfd), sizeof (asection *));
3821 if (sections == NULL)
3822 goto error_return;
3823
3824 i = 0;
3825 for (s = abfd->sections; s != NULL; s = s->next)
3826 {
3827 if ((s->flags & SEC_ALLOC) != 0)
3828 {
3829 sections[i] = s;
3830 ++i;
3831 }
3832 }
3833 BFD_ASSERT (i <= bfd_count_sections (abfd));
3834 count = i;
3835
3836 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3837
3838 /* Build the mapping. */
3839
3840 mfirst = NULL;
3841 pm = &mfirst;
3842
3843 /* If we have a .interp section, then create a PT_PHDR segment for
3844 the program headers and a PT_INTERP segment for the .interp
3845 section. */
3846 s = bfd_get_section_by_name (abfd, ".interp");
3847 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3848 {
3849 amt = sizeof (struct elf_segment_map);
3850 m = bfd_zalloc (abfd, amt);
3851 if (m == NULL)
3852 goto error_return;
3853 m->next = NULL;
3854 m->p_type = PT_PHDR;
3855 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3856 m->p_flags = PF_R | PF_X;
3857 m->p_flags_valid = 1;
3858 m->includes_phdrs = 1;
3859
3860 *pm = m;
3861 pm = &m->next;
3862
3863 amt = sizeof (struct elf_segment_map);
3864 m = bfd_zalloc (abfd, amt);
3865 if (m == NULL)
3866 goto error_return;
3867 m->next = NULL;
3868 m->p_type = PT_INTERP;
3869 m->count = 1;
3870 m->sections[0] = s;
3871
3872 *pm = m;
3873 pm = &m->next;
3874 }
3875
3876 /* Look through the sections. We put sections in the same program
3877 segment when the start of the second section can be placed within
3878 a few bytes of the end of the first section. */
3879 last_hdr = NULL;
3880 last_size = 0;
3881 phdr_index = 0;
3882 maxpagesize = bed->maxpagesize;
3883 writable = FALSE;
3884 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3885 if (dynsec != NULL
3886 && (dynsec->flags & SEC_LOAD) == 0)
3887 dynsec = NULL;
3888
3889 /* Deal with -Ttext or something similar such that the first section
3890 is not adjacent to the program headers. This is an
3891 approximation, since at this point we don't know exactly how many
3892 program headers we will need. */
3893 if (count > 0)
3894 {
3895 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
3896
3897 if (phdr_size == (bfd_size_type) -1)
3898 phdr_size = get_program_header_size (abfd, info);
3899 if ((abfd->flags & D_PAGED) == 0
3900 || sections[0]->lma < phdr_size
3901 || sections[0]->lma % maxpagesize < phdr_size % maxpagesize)
3902 phdr_in_segment = FALSE;
3903 }
3904
3905 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3906 {
3907 asection *hdr;
3908 bfd_boolean new_segment;
3909
3910 hdr = *hdrpp;
3911
3912 /* See if this section and the last one will fit in the same
3913 segment. */
3914
3915 if (last_hdr == NULL)
3916 {
3917 /* If we don't have a segment yet, then we don't need a new
3918 one (we build the last one after this loop). */
3919 new_segment = FALSE;
3920 }
3921 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3922 {
3923 /* If this section has a different relation between the
3924 virtual address and the load address, then we need a new
3925 segment. */
3926 new_segment = TRUE;
3927 }
3928 else if (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
3929 < BFD_ALIGN (hdr->lma, maxpagesize))
3930 {
3931 /* If putting this section in this segment would force us to
3932 skip a page in the segment, then we need a new segment. */
3933 new_segment = TRUE;
3934 }
3935 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
3936 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
3937 {
3938 /* We don't want to put a loadable section after a
3939 nonloadable section in the same segment.
3940 Consider .tbss sections as loadable for this purpose. */
3941 new_segment = TRUE;
3942 }
3943 else if ((abfd->flags & D_PAGED) == 0)
3944 {
3945 /* If the file is not demand paged, which means that we
3946 don't require the sections to be correctly aligned in the
3947 file, then there is no other reason for a new segment. */
3948 new_segment = FALSE;
3949 }
3950 else if (! writable
3951 && (hdr->flags & SEC_READONLY) == 0
3952 && (((last_hdr->lma + last_size - 1)
3953 & ~(maxpagesize - 1))
3954 != (hdr->lma & ~(maxpagesize - 1))))
3955 {
3956 /* We don't want to put a writable section in a read only
3957 segment, unless they are on the same page in memory
3958 anyhow. We already know that the last section does not
3959 bring us past the current section on the page, so the
3960 only case in which the new section is not on the same
3961 page as the previous section is when the previous section
3962 ends precisely on a page boundary. */
3963 new_segment = TRUE;
3964 }
3965 else
3966 {
3967 /* Otherwise, we can use the same segment. */
3968 new_segment = FALSE;
3969 }
3970
3971 if (! new_segment)
3972 {
3973 if ((hdr->flags & SEC_READONLY) == 0)
3974 writable = TRUE;
3975 last_hdr = hdr;
3976 /* .tbss sections effectively have zero size. */
3977 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
3978 != SEC_THREAD_LOCAL)
3979 last_size = hdr->size;
3980 else
3981 last_size = 0;
3982 continue;
3983 }
3984
3985 /* We need a new program segment. We must create a new program
3986 header holding all the sections from phdr_index until hdr. */
3987
3988 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3989 if (m == NULL)
3990 goto error_return;
3991
3992 *pm = m;
3993 pm = &m->next;
3994
3995 if ((hdr->flags & SEC_READONLY) == 0)
3996 writable = TRUE;
3997 else
3998 writable = FALSE;
3999
4000 last_hdr = hdr;
4001 /* .tbss sections effectively have zero size. */
4002 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
4003 last_size = hdr->size;
4004 else
4005 last_size = 0;
4006 phdr_index = i;
4007 phdr_in_segment = FALSE;
4008 }
4009
4010 /* Create a final PT_LOAD program segment. */
4011 if (last_hdr != NULL)
4012 {
4013 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
4014 if (m == NULL)
4015 goto error_return;
4016
4017 *pm = m;
4018 pm = &m->next;
4019 }
4020
4021 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4022 if (dynsec != NULL)
4023 {
4024 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
4025 if (m == NULL)
4026 goto error_return;
4027 *pm = m;
4028 pm = &m->next;
4029 }
4030
4031 /* For each loadable .note section, add a PT_NOTE segment. We don't
4032 use bfd_get_section_by_name, because if we link together
4033 nonloadable .note sections and loadable .note sections, we will
4034 generate two .note sections in the output file. FIXME: Using
4035 names for section types is bogus anyhow. */
4036 for (s = abfd->sections; s != NULL; s = s->next)
4037 {
4038 if ((s->flags & SEC_LOAD) != 0
4039 && CONST_STRNEQ (s->name, ".note"))
4040 {
4041 amt = sizeof (struct elf_segment_map);
4042 m = bfd_zalloc (abfd, amt);
4043 if (m == NULL)
4044 goto error_return;
4045 m->next = NULL;
4046 m->p_type = PT_NOTE;
4047 m->count = 1;
4048 m->sections[0] = s;
4049
4050 *pm = m;
4051 pm = &m->next;
4052 }
4053 if (s->flags & SEC_THREAD_LOCAL)
4054 {
4055 if (! tls_count)
4056 first_tls = s;
4057 tls_count++;
4058 }
4059 }
4060
4061 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
4062 if (tls_count > 0)
4063 {
4064 int i;
4065
4066 amt = sizeof (struct elf_segment_map);
4067 amt += (tls_count - 1) * sizeof (asection *);
4068 m = bfd_zalloc (abfd, amt);
4069 if (m == NULL)
4070 goto error_return;
4071 m->next = NULL;
4072 m->p_type = PT_TLS;
4073 m->count = tls_count;
4074 /* Mandated PF_R. */
4075 m->p_flags = PF_R;
4076 m->p_flags_valid = 1;
4077 for (i = 0; i < tls_count; ++i)
4078 {
4079 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
4080 m->sections[i] = first_tls;
4081 first_tls = first_tls->next;
4082 }
4083
4084 *pm = m;
4085 pm = &m->next;
4086 }
4087
4088 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
4089 segment. */
4090 eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
4091 if (eh_frame_hdr != NULL
4092 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
4093 {
4094 amt = sizeof (struct elf_segment_map);
4095 m = bfd_zalloc (abfd, amt);
4096 if (m == NULL)
4097 goto error_return;
4098 m->next = NULL;
4099 m->p_type = PT_GNU_EH_FRAME;
4100 m->count = 1;
4101 m->sections[0] = eh_frame_hdr->output_section;
4102
4103 *pm = m;
4104 pm = &m->next;
4105 }
4106
4107 if (elf_tdata (abfd)->stack_flags)
4108 {
4109 amt = sizeof (struct elf_segment_map);
4110 m = bfd_zalloc (abfd, amt);
4111 if (m == NULL)
4112 goto error_return;
4113 m->next = NULL;
4114 m->p_type = PT_GNU_STACK;
4115 m->p_flags = elf_tdata (abfd)->stack_flags;
4116 m->p_flags_valid = 1;
4117
4118 *pm = m;
4119 pm = &m->next;
4120 }
4121
4122 if (dynsec != NULL && elf_tdata (abfd)->relro)
4123 {
4124 /* We make a PT_GNU_RELRO segment only when there is a
4125 PT_DYNAMIC segment. */
4126 amt = sizeof (struct elf_segment_map);
4127 m = bfd_zalloc (abfd, amt);
4128 if (m == NULL)
4129 goto error_return;
4130 m->next = NULL;
4131 m->p_type = PT_GNU_RELRO;
4132 m->p_flags = PF_R;
4133 m->p_flags_valid = 1;
4134
4135 *pm = m;
4136 pm = &m->next;
4137 }
4138
4139 free (sections);
4140 elf_tdata (abfd)->segment_map = mfirst;
4141 }
4142
4143 if (!elf_modify_segment_map (abfd, info))
4144 return FALSE;
4145
4146 for (count = 0, m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4147 ++count;
4148 elf_tdata (abfd)->program_header_size = count * bed->s->sizeof_phdr;
4149
4150 return TRUE;
4151
4152 error_return:
4153 if (sections != NULL)
4154 free (sections);
4155 return FALSE;
4156 }
4157
4158 /* Sort sections by address. */
4159
4160 static int
4161 elf_sort_sections (const void *arg1, const void *arg2)
4162 {
4163 const asection *sec1 = *(const asection **) arg1;
4164 const asection *sec2 = *(const asection **) arg2;
4165 bfd_size_type size1, size2;
4166
4167 /* Sort by LMA first, since this is the address used to
4168 place the section into a segment. */
4169 if (sec1->lma < sec2->lma)
4170 return -1;
4171 else if (sec1->lma > sec2->lma)
4172 return 1;
4173
4174 /* Then sort by VMA. Normally the LMA and the VMA will be
4175 the same, and this will do nothing. */
4176 if (sec1->vma < sec2->vma)
4177 return -1;
4178 else if (sec1->vma > sec2->vma)
4179 return 1;
4180
4181 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
4182
4183 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
4184
4185 if (TOEND (sec1))
4186 {
4187 if (TOEND (sec2))
4188 {
4189 /* If the indicies are the same, do not return 0
4190 here, but continue to try the next comparison. */
4191 if (sec1->target_index - sec2->target_index != 0)
4192 return sec1->target_index - sec2->target_index;
4193 }
4194 else
4195 return 1;
4196 }
4197 else if (TOEND (sec2))
4198 return -1;
4199
4200 #undef TOEND
4201
4202 /* Sort by size, to put zero sized sections
4203 before others at the same address. */
4204
4205 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
4206 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
4207
4208 if (size1 < size2)
4209 return -1;
4210 if (size1 > size2)
4211 return 1;
4212
4213 return sec1->target_index - sec2->target_index;
4214 }
4215
4216 /* Ian Lance Taylor writes:
4217
4218 We shouldn't be using % with a negative signed number. That's just
4219 not good. We have to make sure either that the number is not
4220 negative, or that the number has an unsigned type. When the types
4221 are all the same size they wind up as unsigned. When file_ptr is a
4222 larger signed type, the arithmetic winds up as signed long long,
4223 which is wrong.
4224
4225 What we're trying to say here is something like ``increase OFF by
4226 the least amount that will cause it to be equal to the VMA modulo
4227 the page size.'' */
4228 /* In other words, something like:
4229
4230 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4231 off_offset = off % bed->maxpagesize;
4232 if (vma_offset < off_offset)
4233 adjustment = vma_offset + bed->maxpagesize - off_offset;
4234 else
4235 adjustment = vma_offset - off_offset;
4236
4237 which can can be collapsed into the expression below. */
4238
4239 static file_ptr
4240 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
4241 {
4242 return ((vma - off) % maxpagesize);
4243 }
4244
4245 /* Assign file positions to the sections based on the mapping from
4246 sections to segments. This function also sets up some fields in
4247 the file header. */
4248
4249 static bfd_boolean
4250 assign_file_positions_for_load_sections (bfd *abfd,
4251 struct bfd_link_info *link_info)
4252 {
4253 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4254 struct elf_segment_map *m;
4255 Elf_Internal_Phdr *phdrs;
4256 Elf_Internal_Phdr *p;
4257 file_ptr off, voff;
4258 bfd_size_type maxpagesize;
4259 unsigned int alloc;
4260 unsigned int i;
4261
4262 if (link_info == NULL
4263 && !elf_modify_segment_map (abfd, link_info))
4264 return FALSE;
4265
4266 alloc = 0;
4267 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4268 ++alloc;
4269
4270 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
4271 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
4272 elf_elfheader (abfd)->e_phnum = alloc;
4273
4274 if (elf_tdata (abfd)->program_header_size == (bfd_size_type) -1)
4275 elf_tdata (abfd)->program_header_size = alloc * bed->s->sizeof_phdr;
4276 else
4277 BFD_ASSERT (elf_tdata (abfd)->program_header_size
4278 == alloc * bed->s->sizeof_phdr);
4279
4280 if (alloc == 0)
4281 {
4282 elf_tdata (abfd)->next_file_pos = bed->s->sizeof_ehdr;
4283 return TRUE;
4284 }
4285
4286 phdrs = bfd_alloc2 (abfd, alloc, sizeof (Elf_Internal_Phdr));
4287 elf_tdata (abfd)->phdr = phdrs;
4288 if (phdrs == NULL)
4289 return FALSE;
4290
4291 maxpagesize = 1;
4292 if ((abfd->flags & D_PAGED) != 0)
4293 maxpagesize = bed->maxpagesize;
4294
4295 off = bed->s->sizeof_ehdr;
4296 off += alloc * bed->s->sizeof_phdr;
4297
4298 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4299 m != NULL;
4300 m = m->next, p++)
4301 {
4302 asection **secpp;
4303
4304 /* If elf_segment_map is not from map_sections_to_segments, the
4305 sections may not be correctly ordered. NOTE: sorting should
4306 not be done to the PT_NOTE section of a corefile, which may
4307 contain several pseudo-sections artificially created by bfd.
4308 Sorting these pseudo-sections breaks things badly. */
4309 if (m->count > 1
4310 && !(elf_elfheader (abfd)->e_type == ET_CORE
4311 && m->p_type == PT_NOTE))
4312 qsort (m->sections, (size_t) m->count, sizeof (asection *),
4313 elf_sort_sections);
4314
4315 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4316 number of sections with contents contributing to both p_filesz
4317 and p_memsz, followed by a number of sections with no contents
4318 that just contribute to p_memsz. In this loop, OFF tracks next
4319 available file offset for PT_LOAD and PT_NOTE segments. VOFF is
4320 an adjustment we use for segments that have no file contents
4321 but need zero filled memory allocation. */
4322 voff = 0;
4323 p->p_type = m->p_type;
4324 p->p_flags = m->p_flags;
4325
4326 if (m->count == 0)
4327 p->p_vaddr = 0;
4328 else
4329 p->p_vaddr = m->sections[0]->vma;
4330
4331 if (m->p_paddr_valid)
4332 p->p_paddr = m->p_paddr;
4333 else if (m->count == 0)
4334 p->p_paddr = 0;
4335 else
4336 p->p_paddr = m->sections[0]->lma;
4337
4338 if (p->p_type == PT_LOAD
4339 && (abfd->flags & D_PAGED) != 0)
4340 {
4341 /* p_align in demand paged PT_LOAD segments effectively stores
4342 the maximum page size. When copying an executable with
4343 objcopy, we set m->p_align from the input file. Use this
4344 value for maxpagesize rather than bed->maxpagesize, which
4345 may be different. Note that we use maxpagesize for PT_TLS
4346 segment alignment later in this function, so we are relying
4347 on at least one PT_LOAD segment appearing before a PT_TLS
4348 segment. */
4349 if (m->p_align_valid)
4350 maxpagesize = m->p_align;
4351
4352 p->p_align = maxpagesize;
4353 }
4354 else if (m->count == 0)
4355 p->p_align = 1 << bed->s->log_file_align;
4356 else
4357 p->p_align = 0;
4358
4359 if (p->p_type == PT_LOAD
4360 && m->count > 0)
4361 {
4362 bfd_size_type align;
4363 bfd_vma adjust;
4364 unsigned int align_power = 0;
4365
4366 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4367 {
4368 unsigned int secalign;
4369
4370 secalign = bfd_get_section_alignment (abfd, *secpp);
4371 if (secalign > align_power)
4372 align_power = secalign;
4373 }
4374 align = (bfd_size_type) 1 << align_power;
4375
4376 if (align < maxpagesize)
4377 align = maxpagesize;
4378
4379 adjust = vma_page_aligned_bias (m->sections[0]->vma, off, align);
4380 off += adjust;
4381 if (adjust != 0
4382 && !m->includes_filehdr
4383 && !m->includes_phdrs
4384 && (ufile_ptr) off >= align)
4385 {
4386 /* If the first section isn't loadable, the same holds for
4387 any other sections. Since the segment won't need file
4388 space, we can make p_offset overlap some prior segment.
4389 However, .tbss is special. If a segment starts with
4390 .tbss, we need to look at the next section to decide
4391 whether the segment has any loadable sections. */
4392 i = 0;
4393 while ((m->sections[i]->flags & SEC_LOAD) == 0
4394 && (m->sections[i]->flags & SEC_HAS_CONTENTS) == 0)
4395 {
4396 if ((m->sections[i]->flags & SEC_THREAD_LOCAL) == 0
4397 || ++i >= m->count)
4398 {
4399 off -= adjust;
4400 voff = adjust - align;
4401 break;
4402 }
4403 }
4404 }
4405 }
4406 /* Make sure the .dynamic section is the first section in the
4407 PT_DYNAMIC segment. */
4408 else if (p->p_type == PT_DYNAMIC
4409 && m->count > 1
4410 && strcmp (m->sections[0]->name, ".dynamic") != 0)
4411 {
4412 _bfd_error_handler
4413 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4414 abfd);
4415 bfd_set_error (bfd_error_bad_value);
4416 return FALSE;
4417 }
4418
4419 p->p_offset = 0;
4420 p->p_filesz = 0;
4421 p->p_memsz = 0;
4422
4423 if (m->includes_filehdr)
4424 {
4425 if (! m->p_flags_valid)
4426 p->p_flags |= PF_R;
4427 p->p_offset = 0;
4428 p->p_filesz = bed->s->sizeof_ehdr;
4429 p->p_memsz = bed->s->sizeof_ehdr;
4430 if (m->count > 0)
4431 {
4432 BFD_ASSERT (p->p_type == PT_LOAD);
4433
4434 if (p->p_vaddr < (bfd_vma) off)
4435 {
4436 (*_bfd_error_handler)
4437 (_("%B: Not enough room for program headers, try linking with -N"),
4438 abfd);
4439 bfd_set_error (bfd_error_bad_value);
4440 return FALSE;
4441 }
4442
4443 p->p_vaddr -= off;
4444 if (! m->p_paddr_valid)
4445 p->p_paddr -= off;
4446 }
4447 }
4448
4449 if (m->includes_phdrs)
4450 {
4451 if (! m->p_flags_valid)
4452 p->p_flags |= PF_R;
4453
4454 if (!m->includes_filehdr)
4455 {
4456 p->p_offset = bed->s->sizeof_ehdr;
4457
4458 if (m->count > 0)
4459 {
4460 BFD_ASSERT (p->p_type == PT_LOAD);
4461 p->p_vaddr -= off - p->p_offset;
4462 if (! m->p_paddr_valid)
4463 p->p_paddr -= off - p->p_offset;
4464 }
4465 }
4466
4467 p->p_filesz += alloc * bed->s->sizeof_phdr;
4468 p->p_memsz += alloc * bed->s->sizeof_phdr;
4469 }
4470
4471 if (p->p_type == PT_LOAD
4472 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4473 {
4474 if (! m->includes_filehdr && ! m->includes_phdrs)
4475 p->p_offset = off + voff;
4476 else
4477 {
4478 file_ptr adjust;
4479
4480 adjust = off - (p->p_offset + p->p_filesz);
4481 p->p_filesz += adjust;
4482 p->p_memsz += adjust;
4483 }
4484 }
4485
4486 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
4487 maps. Set filepos for sections in PT_LOAD segments, and in
4488 core files, for sections in PT_NOTE segments.
4489 assign_file_positions_for_non_load_sections will set filepos
4490 for other sections and update p_filesz for other segments. */
4491 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4492 {
4493 asection *sec;
4494 flagword flags;
4495 bfd_size_type align;
4496
4497 sec = *secpp;
4498 flags = sec->flags;
4499 align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec);
4500
4501 if (p->p_type == PT_LOAD
4502 || p->p_type == PT_TLS)
4503 {
4504 bfd_signed_vma adjust;
4505
4506 if ((flags & SEC_LOAD) != 0)
4507 {
4508 adjust = sec->lma - (p->p_paddr + p->p_filesz);
4509 if (adjust < 0)
4510 {
4511 (*_bfd_error_handler)
4512 (_("%B: section %A lma 0x%lx overlaps previous sections"),
4513 abfd, sec, (unsigned long) sec->lma);
4514 adjust = 0;
4515 }
4516 off += adjust;
4517 p->p_filesz += adjust;
4518 p->p_memsz += adjust;
4519 }
4520 /* .tbss is special. It doesn't contribute to p_memsz of
4521 normal segments. */
4522 else if ((flags & SEC_ALLOC) != 0
4523 && ((flags & SEC_THREAD_LOCAL) == 0
4524 || p->p_type == PT_TLS))
4525 {
4526 /* The section VMA must equal the file position
4527 modulo the page size. */
4528 bfd_size_type page = align;
4529 if (page < maxpagesize)
4530 page = maxpagesize;
4531 adjust = vma_page_aligned_bias (sec->vma,
4532 p->p_vaddr + p->p_memsz,
4533 page);
4534 p->p_memsz += adjust;
4535 }
4536 }
4537
4538 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
4539 {
4540 /* The section at i == 0 is the one that actually contains
4541 everything. */
4542 if (i == 0)
4543 {
4544 sec->filepos = off;
4545 off += sec->size;
4546 p->p_filesz = sec->size;
4547 p->p_memsz = 0;
4548 p->p_align = 1;
4549 }
4550 else
4551 {
4552 /* The rest are fake sections that shouldn't be written. */
4553 sec->filepos = 0;
4554 sec->size = 0;
4555 sec->flags = 0;
4556 continue;
4557 }
4558 }
4559 else
4560 {
4561 if (p->p_type == PT_LOAD)
4562 {
4563 sec->filepos = off + voff;
4564 /* FIXME: The SEC_HAS_CONTENTS test here dates back to
4565 1997, and the exact reason for it isn't clear. One
4566 plausible explanation is that it is to work around
4567 a problem we have with linker scripts using data
4568 statements in NOLOAD sections. I don't think it
4569 makes a great deal of sense to have such a section
4570 assigned to a PT_LOAD segment, but apparently
4571 people do this. The data statement results in a
4572 bfd_data_link_order being built, and these need
4573 section contents to write into. Eventually, we get
4574 to _bfd_elf_write_object_contents which writes any
4575 section with contents to the output. Make room
4576 here for the write, so that following segments are
4577 not trashed. */
4578 if ((flags & SEC_LOAD) != 0
4579 || (flags & SEC_HAS_CONTENTS) != 0)
4580 off += sec->size;
4581 }
4582
4583 if ((flags & SEC_LOAD) != 0)
4584 {
4585 p->p_filesz += sec->size;
4586 p->p_memsz += sec->size;
4587 }
4588
4589 /* .tbss is special. It doesn't contribute to p_memsz of
4590 normal segments. */
4591 else if ((flags & SEC_ALLOC) != 0
4592 && ((flags & SEC_THREAD_LOCAL) == 0
4593 || p->p_type == PT_TLS))
4594 p->p_memsz += sec->size;
4595
4596 if (p->p_type == PT_TLS
4597 && sec->size == 0
4598 && (sec->flags & SEC_HAS_CONTENTS) == 0)
4599 {
4600 struct bfd_link_order *o = sec->map_tail.link_order;
4601 if (o != NULL)
4602 p->p_memsz += o->offset + o->size;
4603 }
4604
4605 if (p->p_type == PT_GNU_RELRO)
4606 p->p_align = 1;
4607 else if (align > p->p_align
4608 && (p->p_type != PT_LOAD
4609 || (abfd->flags & D_PAGED) == 0))
4610 p->p_align = align;
4611 }
4612
4613 if (! m->p_flags_valid)
4614 {
4615 p->p_flags |= PF_R;
4616 if ((flags & SEC_CODE) != 0)
4617 p->p_flags |= PF_X;
4618 if ((flags & SEC_READONLY) == 0)
4619 p->p_flags |= PF_W;
4620 }
4621 }
4622 }
4623
4624 elf_tdata (abfd)->next_file_pos = off;
4625 return TRUE;
4626 }
4627
4628 /* Assign file positions for the other sections. */
4629
4630 static bfd_boolean
4631 assign_file_positions_for_non_load_sections (bfd *abfd,
4632 struct bfd_link_info *link_info)
4633 {
4634 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4635 Elf_Internal_Shdr **i_shdrpp;
4636 Elf_Internal_Shdr **hdrpp;
4637 Elf_Internal_Phdr *phdrs;
4638 Elf_Internal_Phdr *p;
4639 struct elf_segment_map *m;
4640 bfd_vma filehdr_vaddr, filehdr_paddr;
4641 bfd_vma phdrs_vaddr, phdrs_paddr;
4642 file_ptr off;
4643 unsigned int num_sec;
4644 unsigned int i;
4645 unsigned int count;
4646
4647 i_shdrpp = elf_elfsections (abfd);
4648 num_sec = elf_numsections (abfd);
4649 off = elf_tdata (abfd)->next_file_pos;
4650 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4651 {
4652 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4653 Elf_Internal_Shdr *hdr;
4654
4655 hdr = *hdrpp;
4656 if (hdr->bfd_section != NULL
4657 && (hdr->bfd_section->filepos != 0
4658 || (hdr->sh_type == SHT_NOBITS
4659 && hdr->contents == NULL)))
4660 hdr->sh_offset = hdr->bfd_section->filepos;
4661 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4662 {
4663 if (hdr->sh_size != 0)
4664 ((*_bfd_error_handler)
4665 (_("%B: warning: allocated section `%s' not in segment"),
4666 abfd,
4667 (hdr->bfd_section == NULL
4668 ? "*unknown*"
4669 : hdr->bfd_section->name)));
4670 /* We don't need to page align empty sections. */
4671 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
4672 off += vma_page_aligned_bias (hdr->sh_addr, off,
4673 bed->maxpagesize);
4674 else
4675 off += vma_page_aligned_bias (hdr->sh_addr, off,
4676 hdr->sh_addralign);
4677 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4678 FALSE);
4679 }
4680 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4681 && hdr->bfd_section == NULL)
4682 || hdr == i_shdrpp[tdata->symtab_section]
4683 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4684 || hdr == i_shdrpp[tdata->strtab_section])
4685 hdr->sh_offset = -1;
4686 else
4687 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4688
4689 if (i == SHN_LORESERVE - 1)
4690 {
4691 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4692 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4693 }
4694 }
4695
4696 /* Now that we have set the section file positions, we can set up
4697 the file positions for the non PT_LOAD segments. */
4698 count = 0;
4699 filehdr_vaddr = 0;
4700 filehdr_paddr = 0;
4701 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
4702 phdrs_paddr = 0;
4703 phdrs = elf_tdata (abfd)->phdr;
4704 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4705 m != NULL;
4706 m = m->next, p++)
4707 {
4708 ++count;
4709 if (p->p_type != PT_LOAD)
4710 continue;
4711
4712 if (m->includes_filehdr)
4713 {
4714 filehdr_vaddr = p->p_vaddr;
4715 filehdr_paddr = p->p_paddr;
4716 }
4717 if (m->includes_phdrs)
4718 {
4719 phdrs_vaddr = p->p_vaddr;
4720 phdrs_paddr = p->p_paddr;
4721 if (m->includes_filehdr)
4722 {
4723 phdrs_vaddr += bed->s->sizeof_ehdr;
4724 phdrs_paddr += bed->s->sizeof_ehdr;
4725 }
4726 }
4727 }
4728
4729 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4730 m != NULL;
4731 m = m->next, p++)
4732 {
4733 if (m->count != 0)
4734 {
4735 if (p->p_type != PT_LOAD
4736 && (p->p_type != PT_NOTE || bfd_get_format (abfd) != bfd_core))
4737 {
4738 Elf_Internal_Shdr *hdr;
4739 BFD_ASSERT (!m->includes_filehdr && !m->includes_phdrs);
4740
4741 hdr = &elf_section_data (m->sections[m->count - 1])->this_hdr;
4742 p->p_filesz = (m->sections[m->count - 1]->filepos
4743 - m->sections[0]->filepos);
4744 if (hdr->sh_type != SHT_NOBITS)
4745 p->p_filesz += hdr->sh_size;
4746
4747 p->p_offset = m->sections[0]->filepos;
4748 }
4749 }
4750 else
4751 {
4752 if (m->includes_filehdr)
4753 {
4754 p->p_vaddr = filehdr_vaddr;
4755 if (! m->p_paddr_valid)
4756 p->p_paddr = filehdr_paddr;
4757 }
4758 else if (m->includes_phdrs)
4759 {
4760 p->p_vaddr = phdrs_vaddr;
4761 if (! m->p_paddr_valid)
4762 p->p_paddr = phdrs_paddr;
4763 }
4764 else if (p->p_type == PT_GNU_RELRO)
4765 {
4766 Elf_Internal_Phdr *lp;
4767
4768 for (lp = phdrs; lp < phdrs + count; ++lp)
4769 {
4770 if (lp->p_type == PT_LOAD
4771 && lp->p_vaddr <= link_info->relro_end
4772 && lp->p_vaddr >= link_info->relro_start
4773 && (lp->p_vaddr + lp->p_filesz
4774 >= link_info->relro_end))
4775 break;
4776 }
4777
4778 if (lp < phdrs + count
4779 && link_info->relro_end > lp->p_vaddr)
4780 {
4781 p->p_vaddr = lp->p_vaddr;
4782 p->p_paddr = lp->p_paddr;
4783 p->p_offset = lp->p_offset;
4784 p->p_filesz = link_info->relro_end - lp->p_vaddr;
4785 p->p_memsz = p->p_filesz;
4786 p->p_align = 1;
4787 p->p_flags = (lp->p_flags & ~PF_W);
4788 }
4789 else
4790 {
4791 memset (p, 0, sizeof *p);
4792 p->p_type = PT_NULL;
4793 }
4794 }
4795 }
4796 }
4797
4798 elf_tdata (abfd)->next_file_pos = off;
4799
4800 return TRUE;
4801 }
4802
4803 /* Work out the file positions of all the sections. This is called by
4804 _bfd_elf_compute_section_file_positions. All the section sizes and
4805 VMAs must be known before this is called.
4806
4807 Reloc sections come in two flavours: Those processed specially as
4808 "side-channel" data attached to a section to which they apply, and
4809 those that bfd doesn't process as relocations. The latter sort are
4810 stored in a normal bfd section by bfd_section_from_shdr. We don't
4811 consider the former sort here, unless they form part of the loadable
4812 image. Reloc sections not assigned here will be handled later by
4813 assign_file_positions_for_relocs.
4814
4815 We also don't set the positions of the .symtab and .strtab here. */
4816
4817 static bfd_boolean
4818 assign_file_positions_except_relocs (bfd *abfd,
4819 struct bfd_link_info *link_info)
4820 {
4821 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4822 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
4823 file_ptr off;
4824 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4825
4826 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
4827 && bfd_get_format (abfd) != bfd_core)
4828 {
4829 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4830 unsigned int num_sec = elf_numsections (abfd);
4831 Elf_Internal_Shdr **hdrpp;
4832 unsigned int i;
4833
4834 /* Start after the ELF header. */
4835 off = i_ehdrp->e_ehsize;
4836
4837 /* We are not creating an executable, which means that we are
4838 not creating a program header, and that the actual order of
4839 the sections in the file is unimportant. */
4840 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4841 {
4842 Elf_Internal_Shdr *hdr;
4843
4844 hdr = *hdrpp;
4845 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4846 && hdr->bfd_section == NULL)
4847 || i == tdata->symtab_section
4848 || i == tdata->symtab_shndx_section
4849 || i == tdata->strtab_section)
4850 {
4851 hdr->sh_offset = -1;
4852 }
4853 else
4854 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4855
4856 if (i == SHN_LORESERVE - 1)
4857 {
4858 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4859 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4860 }
4861 }
4862 }
4863 else
4864 {
4865 unsigned int alloc;
4866
4867 /* Assign file positions for the loaded sections based on the
4868 assignment of sections to segments. */
4869 if (!assign_file_positions_for_load_sections (abfd, link_info))
4870 return FALSE;
4871
4872 /* And for non-load sections. */
4873 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
4874 return FALSE;
4875
4876 if (bed->elf_backend_modify_program_headers != NULL)
4877 {
4878 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
4879 return FALSE;
4880 }
4881
4882 /* Write out the program headers. */
4883 alloc = tdata->program_header_size / bed->s->sizeof_phdr;
4884 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
4885 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
4886 return FALSE;
4887
4888 off = tdata->next_file_pos;
4889 }
4890
4891 /* Place the section headers. */
4892 off = align_file_position (off, 1 << bed->s->log_file_align);
4893 i_ehdrp->e_shoff = off;
4894 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
4895
4896 tdata->next_file_pos = off;
4897
4898 return TRUE;
4899 }
4900
4901 static bfd_boolean
4902 prep_headers (bfd *abfd)
4903 {
4904 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
4905 Elf_Internal_Phdr *i_phdrp = 0; /* Program header table, internal form */
4906 Elf_Internal_Shdr **i_shdrp; /* Section header table, internal form */
4907 struct elf_strtab_hash *shstrtab;
4908 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4909
4910 i_ehdrp = elf_elfheader (abfd);
4911 i_shdrp = elf_elfsections (abfd);
4912
4913 shstrtab = _bfd_elf_strtab_init ();
4914 if (shstrtab == NULL)
4915 return FALSE;
4916
4917 elf_shstrtab (abfd) = shstrtab;
4918
4919 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
4920 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
4921 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
4922 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
4923
4924 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
4925 i_ehdrp->e_ident[EI_DATA] =
4926 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
4927 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
4928
4929 if ((abfd->flags & DYNAMIC) != 0)
4930 i_ehdrp->e_type = ET_DYN;
4931 else if ((abfd->flags & EXEC_P) != 0)
4932 i_ehdrp->e_type = ET_EXEC;
4933 else if (bfd_get_format (abfd) == bfd_core)
4934 i_ehdrp->e_type = ET_CORE;
4935 else
4936 i_ehdrp->e_type = ET_REL;
4937
4938 switch (bfd_get_arch (abfd))
4939 {
4940 case bfd_arch_unknown:
4941 i_ehdrp->e_machine = EM_NONE;
4942 break;
4943
4944 /* There used to be a long list of cases here, each one setting
4945 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4946 in the corresponding bfd definition. To avoid duplication,
4947 the switch was removed. Machines that need special handling
4948 can generally do it in elf_backend_final_write_processing(),
4949 unless they need the information earlier than the final write.
4950 Such need can generally be supplied by replacing the tests for
4951 e_machine with the conditions used to determine it. */
4952 default:
4953 i_ehdrp->e_machine = bed->elf_machine_code;
4954 }
4955
4956 i_ehdrp->e_version = bed->s->ev_current;
4957 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
4958
4959 /* No program header, for now. */
4960 i_ehdrp->e_phoff = 0;
4961 i_ehdrp->e_phentsize = 0;
4962 i_ehdrp->e_phnum = 0;
4963
4964 /* Each bfd section is section header entry. */
4965 i_ehdrp->e_entry = bfd_get_start_address (abfd);
4966 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
4967
4968 /* If we're building an executable, we'll need a program header table. */
4969 if (abfd->flags & EXEC_P)
4970 /* It all happens later. */
4971 ;
4972 else
4973 {
4974 i_ehdrp->e_phentsize = 0;
4975 i_phdrp = 0;
4976 i_ehdrp->e_phoff = 0;
4977 }
4978
4979 elf_tdata (abfd)->symtab_hdr.sh_name =
4980 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
4981 elf_tdata (abfd)->strtab_hdr.sh_name =
4982 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
4983 elf_tdata (abfd)->shstrtab_hdr.sh_name =
4984 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
4985 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4986 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4987 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
4988 return FALSE;
4989
4990 return TRUE;
4991 }
4992
4993 /* Assign file positions for all the reloc sections which are not part
4994 of the loadable file image. */
4995
4996 void
4997 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
4998 {
4999 file_ptr off;
5000 unsigned int i, num_sec;
5001 Elf_Internal_Shdr **shdrpp;
5002
5003 off = elf_tdata (abfd)->next_file_pos;
5004
5005 num_sec = elf_numsections (abfd);
5006 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
5007 {
5008 Elf_Internal_Shdr *shdrp;
5009
5010 shdrp = *shdrpp;
5011 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
5012 && shdrp->sh_offset == -1)
5013 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
5014 }
5015
5016 elf_tdata (abfd)->next_file_pos = off;
5017 }
5018
5019 bfd_boolean
5020 _bfd_elf_write_object_contents (bfd *abfd)
5021 {
5022 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5023 Elf_Internal_Ehdr *i_ehdrp;
5024 Elf_Internal_Shdr **i_shdrp;
5025 bfd_boolean failed;
5026 unsigned int count, num_sec;
5027
5028 if (! abfd->output_has_begun
5029 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
5030 return FALSE;
5031
5032 i_shdrp = elf_elfsections (abfd);
5033 i_ehdrp = elf_elfheader (abfd);
5034
5035 failed = FALSE;
5036 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
5037 if (failed)
5038 return FALSE;
5039
5040 _bfd_elf_assign_file_positions_for_relocs (abfd);
5041
5042 /* After writing the headers, we need to write the sections too... */
5043 num_sec = elf_numsections (abfd);
5044 for (count = 1; count < num_sec; count++)
5045 {
5046 if (bed->elf_backend_section_processing)
5047 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
5048 if (i_shdrp[count]->contents)
5049 {
5050 bfd_size_type amt = i_shdrp[count]->sh_size;
5051
5052 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
5053 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
5054 return FALSE;
5055 }
5056 if (count == SHN_LORESERVE - 1)
5057 count += SHN_HIRESERVE + 1 - SHN_LORESERVE;
5058 }
5059
5060 /* Write out the section header names. */
5061 if (elf_shstrtab (abfd) != NULL
5062 && (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
5063 || ! _bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
5064 return FALSE;
5065
5066 if (bed->elf_backend_final_write_processing)
5067 (*bed->elf_backend_final_write_processing) (abfd,
5068 elf_tdata (abfd)->linker);
5069
5070 return bed->s->write_shdrs_and_ehdr (abfd);
5071 }
5072
5073 bfd_boolean
5074 _bfd_elf_write_corefile_contents (bfd *abfd)
5075 {
5076 /* Hopefully this can be done just like an object file. */
5077 return _bfd_elf_write_object_contents (abfd);
5078 }
5079
5080 /* Given a section, search the header to find them. */
5081
5082 int
5083 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
5084 {
5085 const struct elf_backend_data *bed;
5086 int index;
5087
5088 if (elf_section_data (asect) != NULL
5089 && elf_section_data (asect)->this_idx != 0)
5090 return elf_section_data (asect)->this_idx;
5091
5092 if (bfd_is_abs_section (asect))
5093 index = SHN_ABS;
5094 else if (bfd_is_com_section (asect))
5095 index = SHN_COMMON;
5096 else if (bfd_is_und_section (asect))
5097 index = SHN_UNDEF;
5098 else
5099 index = -1;
5100
5101 bed = get_elf_backend_data (abfd);
5102 if (bed->elf_backend_section_from_bfd_section)
5103 {
5104 int retval = index;
5105
5106 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
5107 return retval;
5108 }
5109
5110 if (index == -1)
5111 bfd_set_error (bfd_error_nonrepresentable_section);
5112
5113 return index;
5114 }
5115
5116 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
5117 on error. */
5118
5119 int
5120 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
5121 {
5122 asymbol *asym_ptr = *asym_ptr_ptr;
5123 int idx;
5124 flagword flags = asym_ptr->flags;
5125
5126 /* When gas creates relocations against local labels, it creates its
5127 own symbol for the section, but does put the symbol into the
5128 symbol chain, so udata is 0. When the linker is generating
5129 relocatable output, this section symbol may be for one of the
5130 input sections rather than the output section. */
5131 if (asym_ptr->udata.i == 0
5132 && (flags & BSF_SECTION_SYM)
5133 && asym_ptr->section)
5134 {
5135 asection *sec;
5136 int indx;
5137
5138 sec = asym_ptr->section;
5139 if (sec->owner != abfd && sec->output_section != NULL)
5140 sec = sec->output_section;
5141 if (sec->owner == abfd
5142 && (indx = sec->index) < elf_num_section_syms (abfd)
5143 && elf_section_syms (abfd)[indx] != NULL)
5144 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
5145 }
5146
5147 idx = asym_ptr->udata.i;
5148
5149 if (idx == 0)
5150 {
5151 /* This case can occur when using --strip-symbol on a symbol
5152 which is used in a relocation entry. */
5153 (*_bfd_error_handler)
5154 (_("%B: symbol `%s' required but not present"),
5155 abfd, bfd_asymbol_name (asym_ptr));
5156 bfd_set_error (bfd_error_no_symbols);
5157 return -1;
5158 }
5159
5160 #if DEBUG & 4
5161 {
5162 fprintf (stderr,
5163 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
5164 (long) asym_ptr, asym_ptr->name, idx, flags,
5165 elf_symbol_flags (flags));
5166 fflush (stderr);
5167 }
5168 #endif
5169
5170 return idx;
5171 }
5172
5173 /* Rewrite program header information. */
5174
5175 static bfd_boolean
5176 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
5177 {
5178 Elf_Internal_Ehdr *iehdr;
5179 struct elf_segment_map *map;
5180 struct elf_segment_map *map_first;
5181 struct elf_segment_map **pointer_to_map;
5182 Elf_Internal_Phdr *segment;
5183 asection *section;
5184 unsigned int i;
5185 unsigned int num_segments;
5186 bfd_boolean phdr_included = FALSE;
5187 bfd_vma maxpagesize;
5188 struct elf_segment_map *phdr_adjust_seg = NULL;
5189 unsigned int phdr_adjust_num = 0;
5190 const struct elf_backend_data *bed;
5191
5192 bed = get_elf_backend_data (ibfd);
5193 iehdr = elf_elfheader (ibfd);
5194
5195 map_first = NULL;
5196 pointer_to_map = &map_first;
5197
5198 num_segments = elf_elfheader (ibfd)->e_phnum;
5199 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
5200
5201 /* Returns the end address of the segment + 1. */
5202 #define SEGMENT_END(segment, start) \
5203 (start + (segment->p_memsz > segment->p_filesz \
5204 ? segment->p_memsz : segment->p_filesz))
5205
5206 #define SECTION_SIZE(section, segment) \
5207 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5208 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5209 ? section->size : 0)
5210
5211 /* Returns TRUE if the given section is contained within
5212 the given segment. VMA addresses are compared. */
5213 #define IS_CONTAINED_BY_VMA(section, segment) \
5214 (section->vma >= segment->p_vaddr \
5215 && (section->vma + SECTION_SIZE (section, segment) \
5216 <= (SEGMENT_END (segment, segment->p_vaddr))))
5217
5218 /* Returns TRUE if the given section is contained within
5219 the given segment. LMA addresses are compared. */
5220 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5221 (section->lma >= base \
5222 && (section->lma + SECTION_SIZE (section, segment) \
5223 <= SEGMENT_END (segment, base)))
5224
5225 /* Special case: corefile "NOTE" section containing regs, prpsinfo etc. */
5226 #define IS_COREFILE_NOTE(p, s) \
5227 (p->p_type == PT_NOTE \
5228 && bfd_get_format (ibfd) == bfd_core \
5229 && s->vma == 0 && s->lma == 0 \
5230 && (bfd_vma) s->filepos >= p->p_offset \
5231 && ((bfd_vma) s->filepos + s->size \
5232 <= p->p_offset + p->p_filesz))
5233
5234 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5235 linker, which generates a PT_INTERP section with p_vaddr and
5236 p_memsz set to 0. */
5237 #define IS_SOLARIS_PT_INTERP(p, s) \
5238 (p->p_vaddr == 0 \
5239 && p->p_paddr == 0 \
5240 && p->p_memsz == 0 \
5241 && p->p_filesz > 0 \
5242 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5243 && s->size > 0 \
5244 && (bfd_vma) s->filepos >= p->p_offset \
5245 && ((bfd_vma) s->filepos + s->size \
5246 <= p->p_offset + p->p_filesz))
5247
5248 /* Decide if the given section should be included in the given segment.
5249 A section will be included if:
5250 1. It is within the address space of the segment -- we use the LMA
5251 if that is set for the segment and the VMA otherwise,
5252 2. It is an allocated segment,
5253 3. There is an output section associated with it,
5254 4. The section has not already been allocated to a previous segment.
5255 5. PT_GNU_STACK segments do not include any sections.
5256 6. PT_TLS segment includes only SHF_TLS sections.
5257 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5258 8. PT_DYNAMIC should not contain empty sections at the beginning
5259 (with the possible exception of .dynamic). */
5260 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
5261 ((((segment->p_paddr \
5262 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5263 : IS_CONTAINED_BY_VMA (section, segment)) \
5264 && (section->flags & SEC_ALLOC) != 0) \
5265 || IS_COREFILE_NOTE (segment, section)) \
5266 && segment->p_type != PT_GNU_STACK \
5267 && (segment->p_type != PT_TLS \
5268 || (section->flags & SEC_THREAD_LOCAL)) \
5269 && (segment->p_type == PT_LOAD \
5270 || segment->p_type == PT_TLS \
5271 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5272 && (segment->p_type != PT_DYNAMIC \
5273 || SECTION_SIZE (section, segment) > 0 \
5274 || (segment->p_paddr \
5275 ? segment->p_paddr != section->lma \
5276 : segment->p_vaddr != section->vma) \
5277 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5278 == 0)) \
5279 && ! section->segment_mark)
5280
5281 /* If the output section of a section in the input segment is NULL,
5282 it is removed from the corresponding output segment. */
5283 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5284 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
5285 && section->output_section != NULL)
5286
5287 /* Returns TRUE iff seg1 starts after the end of seg2. */
5288 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5289 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5290
5291 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5292 their VMA address ranges and their LMA address ranges overlap.
5293 It is possible to have overlapping VMA ranges without overlapping LMA
5294 ranges. RedBoot images for example can have both .data and .bss mapped
5295 to the same VMA range, but with the .data section mapped to a different
5296 LMA. */
5297 #define SEGMENT_OVERLAPS(seg1, seg2) \
5298 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5299 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5300 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5301 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5302
5303 /* Initialise the segment mark field. */
5304 for (section = ibfd->sections; section != NULL; section = section->next)
5305 section->segment_mark = FALSE;
5306
5307 /* Scan through the segments specified in the program header
5308 of the input BFD. For this first scan we look for overlaps
5309 in the loadable segments. These can be created by weird
5310 parameters to objcopy. Also, fix some solaris weirdness. */
5311 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5312 i < num_segments;
5313 i++, segment++)
5314 {
5315 unsigned int j;
5316 Elf_Internal_Phdr *segment2;
5317
5318 if (segment->p_type == PT_INTERP)
5319 for (section = ibfd->sections; section; section = section->next)
5320 if (IS_SOLARIS_PT_INTERP (segment, section))
5321 {
5322 /* Mininal change so that the normal section to segment
5323 assignment code will work. */
5324 segment->p_vaddr = section->vma;
5325 break;
5326 }
5327
5328 if (segment->p_type != PT_LOAD)
5329 continue;
5330
5331 /* Determine if this segment overlaps any previous segments. */
5332 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2 ++)
5333 {
5334 bfd_signed_vma extra_length;
5335
5336 if (segment2->p_type != PT_LOAD
5337 || ! SEGMENT_OVERLAPS (segment, segment2))
5338 continue;
5339
5340 /* Merge the two segments together. */
5341 if (segment2->p_vaddr < segment->p_vaddr)
5342 {
5343 /* Extend SEGMENT2 to include SEGMENT and then delete
5344 SEGMENT. */
5345 extra_length =
5346 SEGMENT_END (segment, segment->p_vaddr)
5347 - SEGMENT_END (segment2, segment2->p_vaddr);
5348
5349 if (extra_length > 0)
5350 {
5351 segment2->p_memsz += extra_length;
5352 segment2->p_filesz += extra_length;
5353 }
5354
5355 segment->p_type = PT_NULL;
5356
5357 /* Since we have deleted P we must restart the outer loop. */
5358 i = 0;
5359 segment = elf_tdata (ibfd)->phdr;
5360 break;
5361 }
5362 else
5363 {
5364 /* Extend SEGMENT to include SEGMENT2 and then delete
5365 SEGMENT2. */
5366 extra_length =
5367 SEGMENT_END (segment2, segment2->p_vaddr)
5368 - SEGMENT_END (segment, segment->p_vaddr);
5369
5370 if (extra_length > 0)
5371 {
5372 segment->p_memsz += extra_length;
5373 segment->p_filesz += extra_length;
5374 }
5375
5376 segment2->p_type = PT_NULL;
5377 }
5378 }
5379 }
5380
5381 /* The second scan attempts to assign sections to segments. */
5382 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5383 i < num_segments;
5384 i ++, segment ++)
5385 {
5386 unsigned int section_count;
5387 asection ** sections;
5388 asection * output_section;
5389 unsigned int isec;
5390 bfd_vma matching_lma;
5391 bfd_vma suggested_lma;
5392 unsigned int j;
5393 bfd_size_type amt;
5394 asection * first_section;
5395
5396 if (segment->p_type == PT_NULL)
5397 continue;
5398
5399 first_section = NULL;
5400 /* Compute how many sections might be placed into this segment. */
5401 for (section = ibfd->sections, section_count = 0;
5402 section != NULL;
5403 section = section->next)
5404 {
5405 /* Find the first section in the input segment, which may be
5406 removed from the corresponding output segment. */
5407 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
5408 {
5409 if (first_section == NULL)
5410 first_section = section;
5411 if (section->output_section != NULL)
5412 ++section_count;
5413 }
5414 }
5415
5416 /* Allocate a segment map big enough to contain
5417 all of the sections we have selected. */
5418 amt = sizeof (struct elf_segment_map);
5419 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5420 map = bfd_zalloc (obfd, amt);
5421 if (map == NULL)
5422 return FALSE;
5423
5424 /* Initialise the fields of the segment map. Default to
5425 using the physical address of the segment in the input BFD. */
5426 map->next = NULL;
5427 map->p_type = segment->p_type;
5428 map->p_flags = segment->p_flags;
5429 map->p_flags_valid = 1;
5430 /* If the first section in the input segment is removed, there is
5431 no need to preserve segment physical address in the corresponding
5432 output segment. */
5433 if (first_section->output_section != NULL)
5434 {
5435 map->p_paddr = segment->p_paddr;
5436 map->p_paddr_valid = 1;
5437 }
5438
5439 /* Determine if this segment contains the ELF file header
5440 and if it contains the program headers themselves. */
5441 map->includes_filehdr = (segment->p_offset == 0
5442 && segment->p_filesz >= iehdr->e_ehsize);
5443
5444 map->includes_phdrs = 0;
5445
5446 if (! phdr_included || segment->p_type != PT_LOAD)
5447 {
5448 map->includes_phdrs =
5449 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5450 && (segment->p_offset + segment->p_filesz
5451 >= ((bfd_vma) iehdr->e_phoff
5452 + iehdr->e_phnum * iehdr->e_phentsize)));
5453
5454 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5455 phdr_included = TRUE;
5456 }
5457
5458 if (section_count == 0)
5459 {
5460 /* Special segments, such as the PT_PHDR segment, may contain
5461 no sections, but ordinary, loadable segments should contain
5462 something. They are allowed by the ELF spec however, so only
5463 a warning is produced. */
5464 if (segment->p_type == PT_LOAD)
5465 (*_bfd_error_handler)
5466 (_("%B: warning: Empty loadable segment detected, is this intentional ?\n"),
5467 ibfd);
5468
5469 map->count = 0;
5470 *pointer_to_map = map;
5471 pointer_to_map = &map->next;
5472
5473 continue;
5474 }
5475
5476 /* Now scan the sections in the input BFD again and attempt
5477 to add their corresponding output sections to the segment map.
5478 The problem here is how to handle an output section which has
5479 been moved (ie had its LMA changed). There are four possibilities:
5480
5481 1. None of the sections have been moved.
5482 In this case we can continue to use the segment LMA from the
5483 input BFD.
5484
5485 2. All of the sections have been moved by the same amount.
5486 In this case we can change the segment's LMA to match the LMA
5487 of the first section.
5488
5489 3. Some of the sections have been moved, others have not.
5490 In this case those sections which have not been moved can be
5491 placed in the current segment which will have to have its size,
5492 and possibly its LMA changed, and a new segment or segments will
5493 have to be created to contain the other sections.
5494
5495 4. The sections have been moved, but not by the same amount.
5496 In this case we can change the segment's LMA to match the LMA
5497 of the first section and we will have to create a new segment
5498 or segments to contain the other sections.
5499
5500 In order to save time, we allocate an array to hold the section
5501 pointers that we are interested in. As these sections get assigned
5502 to a segment, they are removed from this array. */
5503
5504 /* Gcc 2.96 miscompiles this code on mips. Don't do casting here
5505 to work around this long long bug. */
5506 sections = bfd_malloc2 (section_count, sizeof (asection *));
5507 if (sections == NULL)
5508 return FALSE;
5509
5510 /* Step One: Scan for segment vs section LMA conflicts.
5511 Also add the sections to the section array allocated above.
5512 Also add the sections to the current segment. In the common
5513 case, where the sections have not been moved, this means that
5514 we have completely filled the segment, and there is nothing
5515 more to do. */
5516 isec = 0;
5517 matching_lma = 0;
5518 suggested_lma = 0;
5519
5520 for (j = 0, section = ibfd->sections;
5521 section != NULL;
5522 section = section->next)
5523 {
5524 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5525 {
5526 output_section = section->output_section;
5527
5528 sections[j ++] = section;
5529
5530 /* The Solaris native linker always sets p_paddr to 0.
5531 We try to catch that case here, and set it to the
5532 correct value. Note - some backends require that
5533 p_paddr be left as zero. */
5534 if (segment->p_paddr == 0
5535 && segment->p_vaddr != 0
5536 && (! bed->want_p_paddr_set_to_zero)
5537 && isec == 0
5538 && output_section->lma != 0
5539 && (output_section->vma == (segment->p_vaddr
5540 + (map->includes_filehdr
5541 ? iehdr->e_ehsize
5542 : 0)
5543 + (map->includes_phdrs
5544 ? (iehdr->e_phnum
5545 * iehdr->e_phentsize)
5546 : 0))))
5547 map->p_paddr = segment->p_vaddr;
5548
5549 /* Match up the physical address of the segment with the
5550 LMA address of the output section. */
5551 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5552 || IS_COREFILE_NOTE (segment, section)
5553 || (bed->want_p_paddr_set_to_zero &&
5554 IS_CONTAINED_BY_VMA (output_section, segment))
5555 )
5556 {
5557 if (matching_lma == 0)
5558 matching_lma = output_section->lma;
5559
5560 /* We assume that if the section fits within the segment
5561 then it does not overlap any other section within that
5562 segment. */
5563 map->sections[isec ++] = output_section;
5564 }
5565 else if (suggested_lma == 0)
5566 suggested_lma = output_section->lma;
5567 }
5568 }
5569
5570 BFD_ASSERT (j == section_count);
5571
5572 /* Step Two: Adjust the physical address of the current segment,
5573 if necessary. */
5574 if (isec == section_count)
5575 {
5576 /* All of the sections fitted within the segment as currently
5577 specified. This is the default case. Add the segment to
5578 the list of built segments and carry on to process the next
5579 program header in the input BFD. */
5580 map->count = section_count;
5581 *pointer_to_map = map;
5582 pointer_to_map = &map->next;
5583
5584 free (sections);
5585 continue;
5586 }
5587 else
5588 {
5589 if (matching_lma != 0)
5590 {
5591 /* At least one section fits inside the current segment.
5592 Keep it, but modify its physical address to match the
5593 LMA of the first section that fitted. */
5594 map->p_paddr = matching_lma;
5595 }
5596 else
5597 {
5598 /* None of the sections fitted inside the current segment.
5599 Change the current segment's physical address to match
5600 the LMA of the first section. */
5601 map->p_paddr = suggested_lma;
5602 }
5603
5604 /* Offset the segment physical address from the lma
5605 to allow for space taken up by elf headers. */
5606 if (map->includes_filehdr)
5607 map->p_paddr -= iehdr->e_ehsize;
5608
5609 if (map->includes_phdrs)
5610 {
5611 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
5612
5613 /* iehdr->e_phnum is just an estimate of the number
5614 of program headers that we will need. Make a note
5615 here of the number we used and the segment we chose
5616 to hold these headers, so that we can adjust the
5617 offset when we know the correct value. */
5618 phdr_adjust_num = iehdr->e_phnum;
5619 phdr_adjust_seg = map;
5620 }
5621 }
5622
5623 /* Step Three: Loop over the sections again, this time assigning
5624 those that fit to the current segment and removing them from the
5625 sections array; but making sure not to leave large gaps. Once all
5626 possible sections have been assigned to the current segment it is
5627 added to the list of built segments and if sections still remain
5628 to be assigned, a new segment is constructed before repeating
5629 the loop. */
5630 isec = 0;
5631 do
5632 {
5633 map->count = 0;
5634 suggested_lma = 0;
5635
5636 /* Fill the current segment with sections that fit. */
5637 for (j = 0; j < section_count; j++)
5638 {
5639 section = sections[j];
5640
5641 if (section == NULL)
5642 continue;
5643
5644 output_section = section->output_section;
5645
5646 BFD_ASSERT (output_section != NULL);
5647
5648 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5649 || IS_COREFILE_NOTE (segment, section))
5650 {
5651 if (map->count == 0)
5652 {
5653 /* If the first section in a segment does not start at
5654 the beginning of the segment, then something is
5655 wrong. */
5656 if (output_section->lma !=
5657 (map->p_paddr
5658 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
5659 + (map->includes_phdrs
5660 ? iehdr->e_phnum * iehdr->e_phentsize
5661 : 0)))
5662 abort ();
5663 }
5664 else
5665 {
5666 asection * prev_sec;
5667
5668 prev_sec = map->sections[map->count - 1];
5669
5670 /* If the gap between the end of the previous section
5671 and the start of this section is more than
5672 maxpagesize then we need to start a new segment. */
5673 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
5674 maxpagesize)
5675 < BFD_ALIGN (output_section->lma, maxpagesize))
5676 || ((prev_sec->lma + prev_sec->size)
5677 > output_section->lma))
5678 {
5679 if (suggested_lma == 0)
5680 suggested_lma = output_section->lma;
5681
5682 continue;
5683 }
5684 }
5685
5686 map->sections[map->count++] = output_section;
5687 ++isec;
5688 sections[j] = NULL;
5689 section->segment_mark = TRUE;
5690 }
5691 else if (suggested_lma == 0)
5692 suggested_lma = output_section->lma;
5693 }
5694
5695 BFD_ASSERT (map->count > 0);
5696
5697 /* Add the current segment to the list of built segments. */
5698 *pointer_to_map = map;
5699 pointer_to_map = &map->next;
5700
5701 if (isec < section_count)
5702 {
5703 /* We still have not allocated all of the sections to
5704 segments. Create a new segment here, initialise it
5705 and carry on looping. */
5706 amt = sizeof (struct elf_segment_map);
5707 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5708 map = bfd_alloc (obfd, amt);
5709 if (map == NULL)
5710 {
5711 free (sections);
5712 return FALSE;
5713 }
5714
5715 /* Initialise the fields of the segment map. Set the physical
5716 physical address to the LMA of the first section that has
5717 not yet been assigned. */
5718 map->next = NULL;
5719 map->p_type = segment->p_type;
5720 map->p_flags = segment->p_flags;
5721 map->p_flags_valid = 1;
5722 map->p_paddr = suggested_lma;
5723 map->p_paddr_valid = 1;
5724 map->includes_filehdr = 0;
5725 map->includes_phdrs = 0;
5726 }
5727 }
5728 while (isec < section_count);
5729
5730 free (sections);
5731 }
5732
5733 /* The Solaris linker creates program headers in which all the
5734 p_paddr fields are zero. When we try to objcopy or strip such a
5735 file, we get confused. Check for this case, and if we find it
5736 reset the p_paddr_valid fields. */
5737 for (map = map_first; map != NULL; map = map->next)
5738 if (map->p_paddr != 0)
5739 break;
5740 if (map == NULL)
5741 for (map = map_first; map != NULL; map = map->next)
5742 map->p_paddr_valid = 0;
5743
5744 elf_tdata (obfd)->segment_map = map_first;
5745
5746 /* If we had to estimate the number of program headers that were
5747 going to be needed, then check our estimate now and adjust
5748 the offset if necessary. */
5749 if (phdr_adjust_seg != NULL)
5750 {
5751 unsigned int count;
5752
5753 for (count = 0, map = map_first; map != NULL; map = map->next)
5754 count++;
5755
5756 if (count > phdr_adjust_num)
5757 phdr_adjust_seg->p_paddr
5758 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
5759 }
5760
5761 #undef SEGMENT_END
5762 #undef SECTION_SIZE
5763 #undef IS_CONTAINED_BY_VMA
5764 #undef IS_CONTAINED_BY_LMA
5765 #undef IS_COREFILE_NOTE
5766 #undef IS_SOLARIS_PT_INTERP
5767 #undef IS_SECTION_IN_INPUT_SEGMENT
5768 #undef INCLUDE_SECTION_IN_SEGMENT
5769 #undef SEGMENT_AFTER_SEGMENT
5770 #undef SEGMENT_OVERLAPS
5771 return TRUE;
5772 }
5773
5774 /* Copy ELF program header information. */
5775
5776 static bfd_boolean
5777 copy_elf_program_header (bfd *ibfd, bfd *obfd)
5778 {
5779 Elf_Internal_Ehdr *iehdr;
5780 struct elf_segment_map *map;
5781 struct elf_segment_map *map_first;
5782 struct elf_segment_map **pointer_to_map;
5783 Elf_Internal_Phdr *segment;
5784 unsigned int i;
5785 unsigned int num_segments;
5786 bfd_boolean phdr_included = FALSE;
5787
5788 iehdr = elf_elfheader (ibfd);
5789
5790 map_first = NULL;
5791 pointer_to_map = &map_first;
5792
5793 num_segments = elf_elfheader (ibfd)->e_phnum;
5794 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5795 i < num_segments;
5796 i++, segment++)
5797 {
5798 asection *section;
5799 unsigned int section_count;
5800 bfd_size_type amt;
5801 Elf_Internal_Shdr *this_hdr;
5802
5803 /* FIXME: Do we need to copy PT_NULL segment? */
5804 if (segment->p_type == PT_NULL)
5805 continue;
5806
5807 /* Compute how many sections are in this segment. */
5808 for (section = ibfd->sections, section_count = 0;
5809 section != NULL;
5810 section = section->next)
5811 {
5812 this_hdr = &(elf_section_data(section)->this_hdr);
5813 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5814 section_count++;
5815 }
5816
5817 /* Allocate a segment map big enough to contain
5818 all of the sections we have selected. */
5819 amt = sizeof (struct elf_segment_map);
5820 if (section_count != 0)
5821 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5822 map = bfd_zalloc (obfd, amt);
5823 if (map == NULL)
5824 return FALSE;
5825
5826 /* Initialize the fields of the output segment map with the
5827 input segment. */
5828 map->next = NULL;
5829 map->p_type = segment->p_type;
5830 map->p_flags = segment->p_flags;
5831 map->p_flags_valid = 1;
5832 map->p_paddr = segment->p_paddr;
5833 map->p_paddr_valid = 1;
5834 map->p_align = segment->p_align;
5835 map->p_align_valid = 1;
5836
5837 /* Determine if this segment contains the ELF file header
5838 and if it contains the program headers themselves. */
5839 map->includes_filehdr = (segment->p_offset == 0
5840 && segment->p_filesz >= iehdr->e_ehsize);
5841
5842 map->includes_phdrs = 0;
5843 if (! phdr_included || segment->p_type != PT_LOAD)
5844 {
5845 map->includes_phdrs =
5846 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5847 && (segment->p_offset + segment->p_filesz
5848 >= ((bfd_vma) iehdr->e_phoff
5849 + iehdr->e_phnum * iehdr->e_phentsize)));
5850
5851 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5852 phdr_included = TRUE;
5853 }
5854
5855 if (section_count != 0)
5856 {
5857 unsigned int isec = 0;
5858
5859 for (section = ibfd->sections;
5860 section != NULL;
5861 section = section->next)
5862 {
5863 this_hdr = &(elf_section_data(section)->this_hdr);
5864 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5865 map->sections[isec++] = section->output_section;
5866 }
5867 }
5868
5869 map->count = section_count;
5870 *pointer_to_map = map;
5871 pointer_to_map = &map->next;
5872 }
5873
5874 elf_tdata (obfd)->segment_map = map_first;
5875 return TRUE;
5876 }
5877
5878 /* Copy private BFD data. This copies or rewrites ELF program header
5879 information. */
5880
5881 static bfd_boolean
5882 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
5883 {
5884 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5885 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5886 return TRUE;
5887
5888 if (elf_tdata (ibfd)->phdr == NULL)
5889 return TRUE;
5890
5891 if (ibfd->xvec == obfd->xvec)
5892 {
5893 /* Check if any sections in the input BFD covered by ELF program
5894 header are changed. */
5895 Elf_Internal_Phdr *segment;
5896 asection *section, *osec;
5897 unsigned int i, num_segments;
5898 Elf_Internal_Shdr *this_hdr;
5899
5900 /* Initialize the segment mark field. */
5901 for (section = obfd->sections; section != NULL;
5902 section = section->next)
5903 section->segment_mark = FALSE;
5904
5905 num_segments = elf_elfheader (ibfd)->e_phnum;
5906 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5907 i < num_segments;
5908 i++, segment++)
5909 {
5910 for (section = ibfd->sections;
5911 section != NULL; section = section->next)
5912 {
5913 /* We mark the output section so that we know it comes
5914 from the input BFD. */
5915 osec = section->output_section;
5916 if (osec)
5917 osec->segment_mark = TRUE;
5918
5919 /* Check if this section is covered by the segment. */
5920 this_hdr = &(elf_section_data(section)->this_hdr);
5921 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5922 {
5923 /* FIXME: Check if its output section is changed or
5924 removed. What else do we need to check? */
5925 if (osec == NULL
5926 || section->flags != osec->flags
5927 || section->lma != osec->lma
5928 || section->vma != osec->vma
5929 || section->size != osec->size
5930 || section->rawsize != osec->rawsize
5931 || section->alignment_power != osec->alignment_power)
5932 goto rewrite;
5933 }
5934 }
5935 }
5936
5937 /* Check to see if any output section doesn't come from the
5938 input BFD. */
5939 for (section = obfd->sections; section != NULL;
5940 section = section->next)
5941 {
5942 if (section->segment_mark == FALSE)
5943 goto rewrite;
5944 else
5945 section->segment_mark = FALSE;
5946 }
5947
5948 return copy_elf_program_header (ibfd, obfd);
5949 }
5950
5951 rewrite:
5952 return rewrite_elf_program_header (ibfd, obfd);
5953 }
5954
5955 /* Initialize private output section information from input section. */
5956
5957 bfd_boolean
5958 _bfd_elf_init_private_section_data (bfd *ibfd,
5959 asection *isec,
5960 bfd *obfd,
5961 asection *osec,
5962 struct bfd_link_info *link_info)
5963
5964 {
5965 Elf_Internal_Shdr *ihdr, *ohdr;
5966 bfd_boolean need_group = link_info == NULL || link_info->relocatable;
5967
5968 if (ibfd->xvec->flavour != bfd_target_elf_flavour
5969 || obfd->xvec->flavour != bfd_target_elf_flavour)
5970 return TRUE;
5971
5972 /* Don't copy the output ELF section type from input if the
5973 output BFD section flags have been set to something different.
5974 elf_fake_sections will set ELF section type based on BFD
5975 section flags. */
5976 if (osec->flags == isec->flags || !osec->flags)
5977 {
5978 BFD_ASSERT (osec->flags == isec->flags
5979 || (!osec->flags
5980 && elf_section_type (osec) == SHT_NULL));
5981 elf_section_type (osec) = elf_section_type (isec);
5982 }
5983
5984 /* FIXME: Is this correct for all OS/PROC specific flags? */
5985 elf_section_flags (osec) |= (elf_section_flags (isec)
5986 & (SHF_MASKOS | SHF_MASKPROC));
5987
5988 /* Set things up for objcopy and relocatable link. The output
5989 SHT_GROUP section will have its elf_next_in_group pointing back
5990 to the input group members. Ignore linker created group section.
5991 See elfNN_ia64_object_p in elfxx-ia64.c. */
5992 if (need_group)
5993 {
5994 if (elf_sec_group (isec) == NULL
5995 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
5996 {
5997 if (elf_section_flags (isec) & SHF_GROUP)
5998 elf_section_flags (osec) |= SHF_GROUP;
5999 elf_next_in_group (osec) = elf_next_in_group (isec);
6000 elf_group_name (osec) = elf_group_name (isec);
6001 }
6002 }
6003
6004 ihdr = &elf_section_data (isec)->this_hdr;
6005
6006 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
6007 don't use the output section of the linked-to section since it
6008 may be NULL at this point. */
6009 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
6010 {
6011 ohdr = &elf_section_data (osec)->this_hdr;
6012 ohdr->sh_flags |= SHF_LINK_ORDER;
6013 elf_linked_to_section (osec) = elf_linked_to_section (isec);
6014 }
6015
6016 osec->use_rela_p = isec->use_rela_p;
6017
6018 return TRUE;
6019 }
6020
6021 /* Copy private section information. This copies over the entsize
6022 field, and sometimes the info field. */
6023
6024 bfd_boolean
6025 _bfd_elf_copy_private_section_data (bfd *ibfd,
6026 asection *isec,
6027 bfd *obfd,
6028 asection *osec)
6029 {
6030 Elf_Internal_Shdr *ihdr, *ohdr;
6031
6032 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6033 || obfd->xvec->flavour != bfd_target_elf_flavour)
6034 return TRUE;
6035
6036 ihdr = &elf_section_data (isec)->this_hdr;
6037 ohdr = &elf_section_data (osec)->this_hdr;
6038
6039 ohdr->sh_entsize = ihdr->sh_entsize;
6040
6041 if (ihdr->sh_type == SHT_SYMTAB
6042 || ihdr->sh_type == SHT_DYNSYM
6043 || ihdr->sh_type == SHT_GNU_verneed
6044 || ihdr->sh_type == SHT_GNU_verdef)
6045 ohdr->sh_info = ihdr->sh_info;
6046
6047 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
6048 NULL);
6049 }
6050
6051 /* Copy private header information. */
6052
6053 bfd_boolean
6054 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
6055 {
6056 asection *isec;
6057
6058 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6059 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6060 return TRUE;
6061
6062 /* Copy over private BFD data if it has not already been copied.
6063 This must be done here, rather than in the copy_private_bfd_data
6064 entry point, because the latter is called after the section
6065 contents have been set, which means that the program headers have
6066 already been worked out. */
6067 if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
6068 {
6069 if (! copy_private_bfd_data (ibfd, obfd))
6070 return FALSE;
6071 }
6072
6073 /* _bfd_elf_copy_private_section_data copied over the SHF_GROUP flag
6074 but this might be wrong if we deleted the group section. */
6075 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
6076 if (elf_section_type (isec) == SHT_GROUP
6077 && isec->output_section == NULL)
6078 {
6079 asection *first = elf_next_in_group (isec);
6080 asection *s = first;
6081 while (s != NULL)
6082 {
6083 if (s->output_section != NULL)
6084 {
6085 elf_section_flags (s->output_section) &= ~SHF_GROUP;
6086 elf_group_name (s->output_section) = NULL;
6087 }
6088 s = elf_next_in_group (s);
6089 if (s == first)
6090 break;
6091 }
6092 }
6093
6094 return TRUE;
6095 }
6096
6097 /* Copy private symbol information. If this symbol is in a section
6098 which we did not map into a BFD section, try to map the section
6099 index correctly. We use special macro definitions for the mapped
6100 section indices; these definitions are interpreted by the
6101 swap_out_syms function. */
6102
6103 #define MAP_ONESYMTAB (SHN_HIOS + 1)
6104 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
6105 #define MAP_STRTAB (SHN_HIOS + 3)
6106 #define MAP_SHSTRTAB (SHN_HIOS + 4)
6107 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
6108
6109 bfd_boolean
6110 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
6111 asymbol *isymarg,
6112 bfd *obfd,
6113 asymbol *osymarg)
6114 {
6115 elf_symbol_type *isym, *osym;
6116
6117 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6118 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6119 return TRUE;
6120
6121 isym = elf_symbol_from (ibfd, isymarg);
6122 osym = elf_symbol_from (obfd, osymarg);
6123
6124 if (isym != NULL
6125 && osym != NULL
6126 && bfd_is_abs_section (isym->symbol.section))
6127 {
6128 unsigned int shndx;
6129
6130 shndx = isym->internal_elf_sym.st_shndx;
6131 if (shndx == elf_onesymtab (ibfd))
6132 shndx = MAP_ONESYMTAB;
6133 else if (shndx == elf_dynsymtab (ibfd))
6134 shndx = MAP_DYNSYMTAB;
6135 else if (shndx == elf_tdata (ibfd)->strtab_section)
6136 shndx = MAP_STRTAB;
6137 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
6138 shndx = MAP_SHSTRTAB;
6139 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
6140 shndx = MAP_SYM_SHNDX;
6141 osym->internal_elf_sym.st_shndx = shndx;
6142 }
6143
6144 return TRUE;
6145 }
6146
6147 /* Swap out the symbols. */
6148
6149 static bfd_boolean
6150 swap_out_syms (bfd *abfd,
6151 struct bfd_strtab_hash **sttp,
6152 int relocatable_p)
6153 {
6154 const struct elf_backend_data *bed;
6155 int symcount;
6156 asymbol **syms;
6157 struct bfd_strtab_hash *stt;
6158 Elf_Internal_Shdr *symtab_hdr;
6159 Elf_Internal_Shdr *symtab_shndx_hdr;
6160 Elf_Internal_Shdr *symstrtab_hdr;
6161 bfd_byte *outbound_syms;
6162 bfd_byte *outbound_shndx;
6163 int idx;
6164 bfd_size_type amt;
6165 bfd_boolean name_local_sections;
6166
6167 if (!elf_map_symbols (abfd))
6168 return FALSE;
6169
6170 /* Dump out the symtabs. */
6171 stt = _bfd_elf_stringtab_init ();
6172 if (stt == NULL)
6173 return FALSE;
6174
6175 bed = get_elf_backend_data (abfd);
6176 symcount = bfd_get_symcount (abfd);
6177 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6178 symtab_hdr->sh_type = SHT_SYMTAB;
6179 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
6180 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
6181 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
6182 symtab_hdr->sh_addralign = 1 << bed->s->log_file_align;
6183
6184 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
6185 symstrtab_hdr->sh_type = SHT_STRTAB;
6186
6187 outbound_syms = bfd_alloc2 (abfd, 1 + symcount, bed->s->sizeof_sym);
6188 if (outbound_syms == NULL)
6189 {
6190 _bfd_stringtab_free (stt);
6191 return FALSE;
6192 }
6193 symtab_hdr->contents = outbound_syms;
6194
6195 outbound_shndx = NULL;
6196 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
6197 if (symtab_shndx_hdr->sh_name != 0)
6198 {
6199 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
6200 outbound_shndx = bfd_zalloc2 (abfd, 1 + symcount,
6201 sizeof (Elf_External_Sym_Shndx));
6202 if (outbound_shndx == NULL)
6203 {
6204 _bfd_stringtab_free (stt);
6205 return FALSE;
6206 }
6207
6208 symtab_shndx_hdr->contents = outbound_shndx;
6209 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
6210 symtab_shndx_hdr->sh_size = amt;
6211 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
6212 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
6213 }
6214
6215 /* Now generate the data (for "contents"). */
6216 {
6217 /* Fill in zeroth symbol and swap it out. */
6218 Elf_Internal_Sym sym;
6219 sym.st_name = 0;
6220 sym.st_value = 0;
6221 sym.st_size = 0;
6222 sym.st_info = 0;
6223 sym.st_other = 0;
6224 sym.st_shndx = SHN_UNDEF;
6225 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6226 outbound_syms += bed->s->sizeof_sym;
6227 if (outbound_shndx != NULL)
6228 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6229 }
6230
6231 name_local_sections
6232 = (bed->elf_backend_name_local_section_symbols
6233 && bed->elf_backend_name_local_section_symbols (abfd));
6234
6235 syms = bfd_get_outsymbols (abfd);
6236 for (idx = 0; idx < symcount; idx++)
6237 {
6238 Elf_Internal_Sym sym;
6239 bfd_vma value = syms[idx]->value;
6240 elf_symbol_type *type_ptr;
6241 flagword flags = syms[idx]->flags;
6242 int type;
6243
6244 if (!name_local_sections
6245 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
6246 {
6247 /* Local section symbols have no name. */
6248 sym.st_name = 0;
6249 }
6250 else
6251 {
6252 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
6253 syms[idx]->name,
6254 TRUE, FALSE);
6255 if (sym.st_name == (unsigned long) -1)
6256 {
6257 _bfd_stringtab_free (stt);
6258 return FALSE;
6259 }
6260 }
6261
6262 type_ptr = elf_symbol_from (abfd, syms[idx]);
6263
6264 if ((flags & BSF_SECTION_SYM) == 0
6265 && bfd_is_com_section (syms[idx]->section))
6266 {
6267 /* ELF common symbols put the alignment into the `value' field,
6268 and the size into the `size' field. This is backwards from
6269 how BFD handles it, so reverse it here. */
6270 sym.st_size = value;
6271 if (type_ptr == NULL
6272 || type_ptr->internal_elf_sym.st_value == 0)
6273 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
6274 else
6275 sym.st_value = type_ptr->internal_elf_sym.st_value;
6276 sym.st_shndx = _bfd_elf_section_from_bfd_section
6277 (abfd, syms[idx]->section);
6278 }
6279 else
6280 {
6281 asection *sec = syms[idx]->section;
6282 int shndx;
6283
6284 if (sec->output_section)
6285 {
6286 value += sec->output_offset;
6287 sec = sec->output_section;
6288 }
6289
6290 /* Don't add in the section vma for relocatable output. */
6291 if (! relocatable_p)
6292 value += sec->vma;
6293 sym.st_value = value;
6294 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
6295
6296 if (bfd_is_abs_section (sec)
6297 && type_ptr != NULL
6298 && type_ptr->internal_elf_sym.st_shndx != 0)
6299 {
6300 /* This symbol is in a real ELF section which we did
6301 not create as a BFD section. Undo the mapping done
6302 by copy_private_symbol_data. */
6303 shndx = type_ptr->internal_elf_sym.st_shndx;
6304 switch (shndx)
6305 {
6306 case MAP_ONESYMTAB:
6307 shndx = elf_onesymtab (abfd);
6308 break;
6309 case MAP_DYNSYMTAB:
6310 shndx = elf_dynsymtab (abfd);
6311 break;
6312 case MAP_STRTAB:
6313 shndx = elf_tdata (abfd)->strtab_section;
6314 break;
6315 case MAP_SHSTRTAB:
6316 shndx = elf_tdata (abfd)->shstrtab_section;
6317 break;
6318 case MAP_SYM_SHNDX:
6319 shndx = elf_tdata (abfd)->symtab_shndx_section;
6320 break;
6321 default:
6322 break;
6323 }
6324 }
6325 else
6326 {
6327 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
6328
6329 if (shndx == -1)
6330 {
6331 asection *sec2;
6332
6333 /* Writing this would be a hell of a lot easier if
6334 we had some decent documentation on bfd, and
6335 knew what to expect of the library, and what to
6336 demand of applications. For example, it
6337 appears that `objcopy' might not set the
6338 section of a symbol to be a section that is
6339 actually in the output file. */
6340 sec2 = bfd_get_section_by_name (abfd, sec->name);
6341 if (sec2 == NULL)
6342 {
6343 _bfd_error_handler (_("\
6344 Unable to find equivalent output section for symbol '%s' from section '%s'"),
6345 syms[idx]->name ? syms[idx]->name : "<Local sym>",
6346 sec->name);
6347 bfd_set_error (bfd_error_invalid_operation);
6348 _bfd_stringtab_free (stt);
6349 return FALSE;
6350 }
6351
6352 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
6353 BFD_ASSERT (shndx != -1);
6354 }
6355 }
6356
6357 sym.st_shndx = shndx;
6358 }
6359
6360 if ((flags & BSF_THREAD_LOCAL) != 0)
6361 type = STT_TLS;
6362 else if ((flags & BSF_FUNCTION) != 0)
6363 type = STT_FUNC;
6364 else if ((flags & BSF_OBJECT) != 0)
6365 type = STT_OBJECT;
6366 else
6367 type = STT_NOTYPE;
6368
6369 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
6370 type = STT_TLS;
6371
6372 /* Processor-specific types. */
6373 if (type_ptr != NULL
6374 && bed->elf_backend_get_symbol_type)
6375 type = ((*bed->elf_backend_get_symbol_type)
6376 (&type_ptr->internal_elf_sym, type));
6377
6378 if (flags & BSF_SECTION_SYM)
6379 {
6380 if (flags & BSF_GLOBAL)
6381 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6382 else
6383 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
6384 }
6385 else if (bfd_is_com_section (syms[idx]->section))
6386 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
6387 else if (bfd_is_und_section (syms[idx]->section))
6388 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
6389 ? STB_WEAK
6390 : STB_GLOBAL),
6391 type);
6392 else if (flags & BSF_FILE)
6393 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
6394 else
6395 {
6396 int bind = STB_LOCAL;
6397
6398 if (flags & BSF_LOCAL)
6399 bind = STB_LOCAL;
6400 else if (flags & BSF_WEAK)
6401 bind = STB_WEAK;
6402 else if (flags & BSF_GLOBAL)
6403 bind = STB_GLOBAL;
6404
6405 sym.st_info = ELF_ST_INFO (bind, type);
6406 }
6407
6408 if (type_ptr != NULL)
6409 sym.st_other = type_ptr->internal_elf_sym.st_other;
6410 else
6411 sym.st_other = 0;
6412
6413 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6414 outbound_syms += bed->s->sizeof_sym;
6415 if (outbound_shndx != NULL)
6416 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6417 }
6418
6419 *sttp = stt;
6420 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
6421 symstrtab_hdr->sh_type = SHT_STRTAB;
6422
6423 symstrtab_hdr->sh_flags = 0;
6424 symstrtab_hdr->sh_addr = 0;
6425 symstrtab_hdr->sh_entsize = 0;
6426 symstrtab_hdr->sh_link = 0;
6427 symstrtab_hdr->sh_info = 0;
6428 symstrtab_hdr->sh_addralign = 1;
6429
6430 return TRUE;
6431 }
6432
6433 /* Return the number of bytes required to hold the symtab vector.
6434
6435 Note that we base it on the count plus 1, since we will null terminate
6436 the vector allocated based on this size. However, the ELF symbol table
6437 always has a dummy entry as symbol #0, so it ends up even. */
6438
6439 long
6440 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
6441 {
6442 long symcount;
6443 long symtab_size;
6444 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
6445
6446 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6447 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6448 if (symcount > 0)
6449 symtab_size -= sizeof (asymbol *);
6450
6451 return symtab_size;
6452 }
6453
6454 long
6455 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
6456 {
6457 long symcount;
6458 long symtab_size;
6459 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
6460
6461 if (elf_dynsymtab (abfd) == 0)
6462 {
6463 bfd_set_error (bfd_error_invalid_operation);
6464 return -1;
6465 }
6466
6467 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6468 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6469 if (symcount > 0)
6470 symtab_size -= sizeof (asymbol *);
6471
6472 return symtab_size;
6473 }
6474
6475 long
6476 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
6477 sec_ptr asect)
6478 {
6479 return (asect->reloc_count + 1) * sizeof (arelent *);
6480 }
6481
6482 /* Canonicalize the relocs. */
6483
6484 long
6485 _bfd_elf_canonicalize_reloc (bfd *abfd,
6486 sec_ptr section,
6487 arelent **relptr,
6488 asymbol **symbols)
6489 {
6490 arelent *tblptr;
6491 unsigned int i;
6492 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6493
6494 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
6495 return -1;
6496
6497 tblptr = section->relocation;
6498 for (i = 0; i < section->reloc_count; i++)
6499 *relptr++ = tblptr++;
6500
6501 *relptr = NULL;
6502
6503 return section->reloc_count;
6504 }
6505
6506 long
6507 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
6508 {
6509 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6510 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
6511
6512 if (symcount >= 0)
6513 bfd_get_symcount (abfd) = symcount;
6514 return symcount;
6515 }
6516
6517 long
6518 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
6519 asymbol **allocation)
6520 {
6521 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6522 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
6523
6524 if (symcount >= 0)
6525 bfd_get_dynamic_symcount (abfd) = symcount;
6526 return symcount;
6527 }
6528
6529 /* Return the size required for the dynamic reloc entries. Any loadable
6530 section that was actually installed in the BFD, and has type SHT_REL
6531 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
6532 dynamic reloc section. */
6533
6534 long
6535 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
6536 {
6537 long ret;
6538 asection *s;
6539
6540 if (elf_dynsymtab (abfd) == 0)
6541 {
6542 bfd_set_error (bfd_error_invalid_operation);
6543 return -1;
6544 }
6545
6546 ret = sizeof (arelent *);
6547 for (s = abfd->sections; s != NULL; s = s->next)
6548 if ((s->flags & SEC_LOAD) != 0
6549 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6550 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6551 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6552 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
6553 * sizeof (arelent *));
6554
6555 return ret;
6556 }
6557
6558 /* Canonicalize the dynamic relocation entries. Note that we return the
6559 dynamic relocations as a single block, although they are actually
6560 associated with particular sections; the interface, which was
6561 designed for SunOS style shared libraries, expects that there is only
6562 one set of dynamic relocs. Any loadable section that was actually
6563 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
6564 dynamic symbol table, is considered to be a dynamic reloc section. */
6565
6566 long
6567 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
6568 arelent **storage,
6569 asymbol **syms)
6570 {
6571 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
6572 asection *s;
6573 long ret;
6574
6575 if (elf_dynsymtab (abfd) == 0)
6576 {
6577 bfd_set_error (bfd_error_invalid_operation);
6578 return -1;
6579 }
6580
6581 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
6582 ret = 0;
6583 for (s = abfd->sections; s != NULL; s = s->next)
6584 {
6585 if ((s->flags & SEC_LOAD) != 0
6586 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6587 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6588 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6589 {
6590 arelent *p;
6591 long count, i;
6592
6593 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
6594 return -1;
6595 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
6596 p = s->relocation;
6597 for (i = 0; i < count; i++)
6598 *storage++ = p++;
6599 ret += count;
6600 }
6601 }
6602
6603 *storage = NULL;
6604
6605 return ret;
6606 }
6607 \f
6608 /* Read in the version information. */
6609
6610 bfd_boolean
6611 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
6612 {
6613 bfd_byte *contents = NULL;
6614 unsigned int freeidx = 0;
6615
6616 if (elf_dynverref (abfd) != 0)
6617 {
6618 Elf_Internal_Shdr *hdr;
6619 Elf_External_Verneed *everneed;
6620 Elf_Internal_Verneed *iverneed;
6621 unsigned int i;
6622 bfd_byte *contents_end;
6623
6624 hdr = &elf_tdata (abfd)->dynverref_hdr;
6625
6626 elf_tdata (abfd)->verref = bfd_zalloc2 (abfd, hdr->sh_info,
6627 sizeof (Elf_Internal_Verneed));
6628 if (elf_tdata (abfd)->verref == NULL)
6629 goto error_return;
6630
6631 elf_tdata (abfd)->cverrefs = hdr->sh_info;
6632
6633 contents = bfd_malloc (hdr->sh_size);
6634 if (contents == NULL)
6635 {
6636 error_return_verref:
6637 elf_tdata (abfd)->verref = NULL;
6638 elf_tdata (abfd)->cverrefs = 0;
6639 goto error_return;
6640 }
6641 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6642 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6643 goto error_return_verref;
6644
6645 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verneed))
6646 goto error_return_verref;
6647
6648 BFD_ASSERT (sizeof (Elf_External_Verneed)
6649 == sizeof (Elf_External_Vernaux));
6650 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
6651 everneed = (Elf_External_Verneed *) contents;
6652 iverneed = elf_tdata (abfd)->verref;
6653 for (i = 0; i < hdr->sh_info; i++, iverneed++)
6654 {
6655 Elf_External_Vernaux *evernaux;
6656 Elf_Internal_Vernaux *ivernaux;
6657 unsigned int j;
6658
6659 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
6660
6661 iverneed->vn_bfd = abfd;
6662
6663 iverneed->vn_filename =
6664 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6665 iverneed->vn_file);
6666 if (iverneed->vn_filename == NULL)
6667 goto error_return_verref;
6668
6669 if (iverneed->vn_cnt == 0)
6670 iverneed->vn_auxptr = NULL;
6671 else
6672 {
6673 iverneed->vn_auxptr = bfd_alloc2 (abfd, iverneed->vn_cnt,
6674 sizeof (Elf_Internal_Vernaux));
6675 if (iverneed->vn_auxptr == NULL)
6676 goto error_return_verref;
6677 }
6678
6679 if (iverneed->vn_aux
6680 > (size_t) (contents_end - (bfd_byte *) everneed))
6681 goto error_return_verref;
6682
6683 evernaux = ((Elf_External_Vernaux *)
6684 ((bfd_byte *) everneed + iverneed->vn_aux));
6685 ivernaux = iverneed->vn_auxptr;
6686 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
6687 {
6688 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
6689
6690 ivernaux->vna_nodename =
6691 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6692 ivernaux->vna_name);
6693 if (ivernaux->vna_nodename == NULL)
6694 goto error_return_verref;
6695
6696 if (j + 1 < iverneed->vn_cnt)
6697 ivernaux->vna_nextptr = ivernaux + 1;
6698 else
6699 ivernaux->vna_nextptr = NULL;
6700
6701 if (ivernaux->vna_next
6702 > (size_t) (contents_end - (bfd_byte *) evernaux))
6703 goto error_return_verref;
6704
6705 evernaux = ((Elf_External_Vernaux *)
6706 ((bfd_byte *) evernaux + ivernaux->vna_next));
6707
6708 if (ivernaux->vna_other > freeidx)
6709 freeidx = ivernaux->vna_other;
6710 }
6711
6712 if (i + 1 < hdr->sh_info)
6713 iverneed->vn_nextref = iverneed + 1;
6714 else
6715 iverneed->vn_nextref = NULL;
6716
6717 if (iverneed->vn_next
6718 > (size_t) (contents_end - (bfd_byte *) everneed))
6719 goto error_return_verref;
6720
6721 everneed = ((Elf_External_Verneed *)
6722 ((bfd_byte *) everneed + iverneed->vn_next));
6723 }
6724
6725 free (contents);
6726 contents = NULL;
6727 }
6728
6729 if (elf_dynverdef (abfd) != 0)
6730 {
6731 Elf_Internal_Shdr *hdr;
6732 Elf_External_Verdef *everdef;
6733 Elf_Internal_Verdef *iverdef;
6734 Elf_Internal_Verdef *iverdefarr;
6735 Elf_Internal_Verdef iverdefmem;
6736 unsigned int i;
6737 unsigned int maxidx;
6738 bfd_byte *contents_end_def, *contents_end_aux;
6739
6740 hdr = &elf_tdata (abfd)->dynverdef_hdr;
6741
6742 contents = bfd_malloc (hdr->sh_size);
6743 if (contents == NULL)
6744 goto error_return;
6745 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6746 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6747 goto error_return;
6748
6749 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verdef))
6750 goto error_return;
6751
6752 BFD_ASSERT (sizeof (Elf_External_Verdef)
6753 >= sizeof (Elf_External_Verdaux));
6754 contents_end_def = contents + hdr->sh_size
6755 - sizeof (Elf_External_Verdef);
6756 contents_end_aux = contents + hdr->sh_size
6757 - sizeof (Elf_External_Verdaux);
6758
6759 /* We know the number of entries in the section but not the maximum
6760 index. Therefore we have to run through all entries and find
6761 the maximum. */
6762 everdef = (Elf_External_Verdef *) contents;
6763 maxidx = 0;
6764 for (i = 0; i < hdr->sh_info; ++i)
6765 {
6766 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6767
6768 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
6769 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
6770
6771 if (iverdefmem.vd_next
6772 > (size_t) (contents_end_def - (bfd_byte *) everdef))
6773 goto error_return;
6774
6775 everdef = ((Elf_External_Verdef *)
6776 ((bfd_byte *) everdef + iverdefmem.vd_next));
6777 }
6778
6779 if (default_imported_symver)
6780 {
6781 if (freeidx > maxidx)
6782 maxidx = ++freeidx;
6783 else
6784 freeidx = ++maxidx;
6785 }
6786 elf_tdata (abfd)->verdef = bfd_zalloc2 (abfd, maxidx,
6787 sizeof (Elf_Internal_Verdef));
6788 if (elf_tdata (abfd)->verdef == NULL)
6789 goto error_return;
6790
6791 elf_tdata (abfd)->cverdefs = maxidx;
6792
6793 everdef = (Elf_External_Verdef *) contents;
6794 iverdefarr = elf_tdata (abfd)->verdef;
6795 for (i = 0; i < hdr->sh_info; i++)
6796 {
6797 Elf_External_Verdaux *everdaux;
6798 Elf_Internal_Verdaux *iverdaux;
6799 unsigned int j;
6800
6801 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6802
6803 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
6804 {
6805 error_return_verdef:
6806 elf_tdata (abfd)->verdef = NULL;
6807 elf_tdata (abfd)->cverdefs = 0;
6808 goto error_return;
6809 }
6810
6811 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
6812 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
6813
6814 iverdef->vd_bfd = abfd;
6815
6816 if (iverdef->vd_cnt == 0)
6817 iverdef->vd_auxptr = NULL;
6818 else
6819 {
6820 iverdef->vd_auxptr = bfd_alloc2 (abfd, iverdef->vd_cnt,
6821 sizeof (Elf_Internal_Verdaux));
6822 if (iverdef->vd_auxptr == NULL)
6823 goto error_return_verdef;
6824 }
6825
6826 if (iverdef->vd_aux
6827 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
6828 goto error_return_verdef;
6829
6830 everdaux = ((Elf_External_Verdaux *)
6831 ((bfd_byte *) everdef + iverdef->vd_aux));
6832 iverdaux = iverdef->vd_auxptr;
6833 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
6834 {
6835 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
6836
6837 iverdaux->vda_nodename =
6838 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6839 iverdaux->vda_name);
6840 if (iverdaux->vda_nodename == NULL)
6841 goto error_return_verdef;
6842
6843 if (j + 1 < iverdef->vd_cnt)
6844 iverdaux->vda_nextptr = iverdaux + 1;
6845 else
6846 iverdaux->vda_nextptr = NULL;
6847
6848 if (iverdaux->vda_next
6849 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
6850 goto error_return_verdef;
6851
6852 everdaux = ((Elf_External_Verdaux *)
6853 ((bfd_byte *) everdaux + iverdaux->vda_next));
6854 }
6855
6856 if (iverdef->vd_cnt)
6857 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
6858
6859 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
6860 iverdef->vd_nextdef = iverdef + 1;
6861 else
6862 iverdef->vd_nextdef = NULL;
6863
6864 everdef = ((Elf_External_Verdef *)
6865 ((bfd_byte *) everdef + iverdef->vd_next));
6866 }
6867
6868 free (contents);
6869 contents = NULL;
6870 }
6871 else if (default_imported_symver)
6872 {
6873 if (freeidx < 3)
6874 freeidx = 3;
6875 else
6876 freeidx++;
6877
6878 elf_tdata (abfd)->verdef = bfd_zalloc2 (abfd, freeidx,
6879 sizeof (Elf_Internal_Verdef));
6880 if (elf_tdata (abfd)->verdef == NULL)
6881 goto error_return;
6882
6883 elf_tdata (abfd)->cverdefs = freeidx;
6884 }
6885
6886 /* Create a default version based on the soname. */
6887 if (default_imported_symver)
6888 {
6889 Elf_Internal_Verdef *iverdef;
6890 Elf_Internal_Verdaux *iverdaux;
6891
6892 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];;
6893
6894 iverdef->vd_version = VER_DEF_CURRENT;
6895 iverdef->vd_flags = 0;
6896 iverdef->vd_ndx = freeidx;
6897 iverdef->vd_cnt = 1;
6898
6899 iverdef->vd_bfd = abfd;
6900
6901 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
6902 if (iverdef->vd_nodename == NULL)
6903 goto error_return_verdef;
6904 iverdef->vd_nextdef = NULL;
6905 iverdef->vd_auxptr = bfd_alloc (abfd, sizeof (Elf_Internal_Verdaux));
6906 if (iverdef->vd_auxptr == NULL)
6907 goto error_return_verdef;
6908
6909 iverdaux = iverdef->vd_auxptr;
6910 iverdaux->vda_nodename = iverdef->vd_nodename;
6911 iverdaux->vda_nextptr = NULL;
6912 }
6913
6914 return TRUE;
6915
6916 error_return:
6917 if (contents != NULL)
6918 free (contents);
6919 return FALSE;
6920 }
6921 \f
6922 asymbol *
6923 _bfd_elf_make_empty_symbol (bfd *abfd)
6924 {
6925 elf_symbol_type *newsym;
6926 bfd_size_type amt = sizeof (elf_symbol_type);
6927
6928 newsym = bfd_zalloc (abfd, amt);
6929 if (!newsym)
6930 return NULL;
6931 else
6932 {
6933 newsym->symbol.the_bfd = abfd;
6934 return &newsym->symbol;
6935 }
6936 }
6937
6938 void
6939 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
6940 asymbol *symbol,
6941 symbol_info *ret)
6942 {
6943 bfd_symbol_info (symbol, ret);
6944 }
6945
6946 /* Return whether a symbol name implies a local symbol. Most targets
6947 use this function for the is_local_label_name entry point, but some
6948 override it. */
6949
6950 bfd_boolean
6951 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
6952 const char *name)
6953 {
6954 /* Normal local symbols start with ``.L''. */
6955 if (name[0] == '.' && name[1] == 'L')
6956 return TRUE;
6957
6958 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
6959 DWARF debugging symbols starting with ``..''. */
6960 if (name[0] == '.' && name[1] == '.')
6961 return TRUE;
6962
6963 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
6964 emitting DWARF debugging output. I suspect this is actually a
6965 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
6966 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
6967 underscore to be emitted on some ELF targets). For ease of use,
6968 we treat such symbols as local. */
6969 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
6970 return TRUE;
6971
6972 return FALSE;
6973 }
6974
6975 alent *
6976 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
6977 asymbol *symbol ATTRIBUTE_UNUSED)
6978 {
6979 abort ();
6980 return NULL;
6981 }
6982
6983 bfd_boolean
6984 _bfd_elf_set_arch_mach (bfd *abfd,
6985 enum bfd_architecture arch,
6986 unsigned long machine)
6987 {
6988 /* If this isn't the right architecture for this backend, and this
6989 isn't the generic backend, fail. */
6990 if (arch != get_elf_backend_data (abfd)->arch
6991 && arch != bfd_arch_unknown
6992 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
6993 return FALSE;
6994
6995 return bfd_default_set_arch_mach (abfd, arch, machine);
6996 }
6997
6998 /* Find the function to a particular section and offset,
6999 for error reporting. */
7000
7001 static bfd_boolean
7002 elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
7003 asection *section,
7004 asymbol **symbols,
7005 bfd_vma offset,
7006 const char **filename_ptr,
7007 const char **functionname_ptr)
7008 {
7009 const char *filename;
7010 asymbol *func, *file;
7011 bfd_vma low_func;
7012 asymbol **p;
7013 /* ??? Given multiple file symbols, it is impossible to reliably
7014 choose the right file name for global symbols. File symbols are
7015 local symbols, and thus all file symbols must sort before any
7016 global symbols. The ELF spec may be interpreted to say that a
7017 file symbol must sort before other local symbols, but currently
7018 ld -r doesn't do this. So, for ld -r output, it is possible to
7019 make a better choice of file name for local symbols by ignoring
7020 file symbols appearing after a given local symbol. */
7021 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
7022
7023 filename = NULL;
7024 func = NULL;
7025 file = NULL;
7026 low_func = 0;
7027 state = nothing_seen;
7028
7029 for (p = symbols; *p != NULL; p++)
7030 {
7031 elf_symbol_type *q;
7032
7033 q = (elf_symbol_type *) *p;
7034
7035 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
7036 {
7037 default:
7038 break;
7039 case STT_FILE:
7040 file = &q->symbol;
7041 if (state == symbol_seen)
7042 state = file_after_symbol_seen;
7043 continue;
7044 case STT_NOTYPE:
7045 case STT_FUNC:
7046 if (bfd_get_section (&q->symbol) == section
7047 && q->symbol.value >= low_func
7048 && q->symbol.value <= offset)
7049 {
7050 func = (asymbol *) q;
7051 low_func = q->symbol.value;
7052 filename = NULL;
7053 if (file != NULL
7054 && (ELF_ST_BIND (q->internal_elf_sym.st_info) == STB_LOCAL
7055 || state != file_after_symbol_seen))
7056 filename = bfd_asymbol_name (file);
7057 }
7058 break;
7059 }
7060 if (state == nothing_seen)
7061 state = symbol_seen;
7062 }
7063
7064 if (func == NULL)
7065 return FALSE;
7066
7067 if (filename_ptr)
7068 *filename_ptr = filename;
7069 if (functionname_ptr)
7070 *functionname_ptr = bfd_asymbol_name (func);
7071
7072 return TRUE;
7073 }
7074
7075 /* Find the nearest line to a particular section and offset,
7076 for error reporting. */
7077
7078 bfd_boolean
7079 _bfd_elf_find_nearest_line (bfd *abfd,
7080 asection *section,
7081 asymbol **symbols,
7082 bfd_vma offset,
7083 const char **filename_ptr,
7084 const char **functionname_ptr,
7085 unsigned int *line_ptr)
7086 {
7087 bfd_boolean found;
7088
7089 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
7090 filename_ptr, functionname_ptr,
7091 line_ptr))
7092 {
7093 if (!*functionname_ptr)
7094 elf_find_function (abfd, section, symbols, offset,
7095 *filename_ptr ? NULL : filename_ptr,
7096 functionname_ptr);
7097
7098 return TRUE;
7099 }
7100
7101 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
7102 filename_ptr, functionname_ptr,
7103 line_ptr, 0,
7104 &elf_tdata (abfd)->dwarf2_find_line_info))
7105 {
7106 if (!*functionname_ptr)
7107 elf_find_function (abfd, section, symbols, offset,
7108 *filename_ptr ? NULL : filename_ptr,
7109 functionname_ptr);
7110
7111 return TRUE;
7112 }
7113
7114 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
7115 &found, filename_ptr,
7116 functionname_ptr, line_ptr,
7117 &elf_tdata (abfd)->line_info))
7118 return FALSE;
7119 if (found && (*functionname_ptr || *line_ptr))
7120 return TRUE;
7121
7122 if (symbols == NULL)
7123 return FALSE;
7124
7125 if (! elf_find_function (abfd, section, symbols, offset,
7126 filename_ptr, functionname_ptr))
7127 return FALSE;
7128
7129 *line_ptr = 0;
7130 return TRUE;
7131 }
7132
7133 /* Find the line for a symbol. */
7134
7135 bfd_boolean
7136 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
7137 const char **filename_ptr, unsigned int *line_ptr)
7138 {
7139 return _bfd_dwarf2_find_line (abfd, symbols, symbol,
7140 filename_ptr, line_ptr, 0,
7141 &elf_tdata (abfd)->dwarf2_find_line_info);
7142 }
7143
7144 /* After a call to bfd_find_nearest_line, successive calls to
7145 bfd_find_inliner_info can be used to get source information about
7146 each level of function inlining that terminated at the address
7147 passed to bfd_find_nearest_line. Currently this is only supported
7148 for DWARF2 with appropriate DWARF3 extensions. */
7149
7150 bfd_boolean
7151 _bfd_elf_find_inliner_info (bfd *abfd,
7152 const char **filename_ptr,
7153 const char **functionname_ptr,
7154 unsigned int *line_ptr)
7155 {
7156 bfd_boolean found;
7157 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
7158 functionname_ptr, line_ptr,
7159 & elf_tdata (abfd)->dwarf2_find_line_info);
7160 return found;
7161 }
7162
7163 int
7164 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
7165 {
7166 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7167 int ret = bed->s->sizeof_ehdr;
7168
7169 if (!info->relocatable)
7170 {
7171 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
7172
7173 if (phdr_size == (bfd_size_type) -1)
7174 {
7175 struct elf_segment_map *m;
7176
7177 phdr_size = 0;
7178 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7179 phdr_size += bed->s->sizeof_phdr;
7180
7181 if (phdr_size == 0)
7182 phdr_size = get_program_header_size (abfd, info);
7183 }
7184
7185 elf_tdata (abfd)->program_header_size = phdr_size;
7186 ret += phdr_size;
7187 }
7188
7189 return ret;
7190 }
7191
7192 bfd_boolean
7193 _bfd_elf_set_section_contents (bfd *abfd,
7194 sec_ptr section,
7195 const void *location,
7196 file_ptr offset,
7197 bfd_size_type count)
7198 {
7199 Elf_Internal_Shdr *hdr;
7200 bfd_signed_vma pos;
7201
7202 if (! abfd->output_has_begun
7203 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
7204 return FALSE;
7205
7206 hdr = &elf_section_data (section)->this_hdr;
7207 pos = hdr->sh_offset + offset;
7208 if (bfd_seek (abfd, pos, SEEK_SET) != 0
7209 || bfd_bwrite (location, count, abfd) != count)
7210 return FALSE;
7211
7212 return TRUE;
7213 }
7214
7215 void
7216 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
7217 arelent *cache_ptr ATTRIBUTE_UNUSED,
7218 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
7219 {
7220 abort ();
7221 }
7222
7223 /* Try to convert a non-ELF reloc into an ELF one. */
7224
7225 bfd_boolean
7226 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
7227 {
7228 /* Check whether we really have an ELF howto. */
7229
7230 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
7231 {
7232 bfd_reloc_code_real_type code;
7233 reloc_howto_type *howto;
7234
7235 /* Alien reloc: Try to determine its type to replace it with an
7236 equivalent ELF reloc. */
7237
7238 if (areloc->howto->pc_relative)
7239 {
7240 switch (areloc->howto->bitsize)
7241 {
7242 case 8:
7243 code = BFD_RELOC_8_PCREL;
7244 break;
7245 case 12:
7246 code = BFD_RELOC_12_PCREL;
7247 break;
7248 case 16:
7249 code = BFD_RELOC_16_PCREL;
7250 break;
7251 case 24:
7252 code = BFD_RELOC_24_PCREL;
7253 break;
7254 case 32:
7255 code = BFD_RELOC_32_PCREL;
7256 break;
7257 case 64:
7258 code = BFD_RELOC_64_PCREL;
7259 break;
7260 default:
7261 goto fail;
7262 }
7263
7264 howto = bfd_reloc_type_lookup (abfd, code);
7265
7266 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
7267 {
7268 if (howto->pcrel_offset)
7269 areloc->addend += areloc->address;
7270 else
7271 areloc->addend -= areloc->address; /* addend is unsigned!! */
7272 }
7273 }
7274 else
7275 {
7276 switch (areloc->howto->bitsize)
7277 {
7278 case 8:
7279 code = BFD_RELOC_8;
7280 break;
7281 case 14:
7282 code = BFD_RELOC_14;
7283 break;
7284 case 16:
7285 code = BFD_RELOC_16;
7286 break;
7287 case 26:
7288 code = BFD_RELOC_26;
7289 break;
7290 case 32:
7291 code = BFD_RELOC_32;
7292 break;
7293 case 64:
7294 code = BFD_RELOC_64;
7295 break;
7296 default:
7297 goto fail;
7298 }
7299
7300 howto = bfd_reloc_type_lookup (abfd, code);
7301 }
7302
7303 if (howto)
7304 areloc->howto = howto;
7305 else
7306 goto fail;
7307 }
7308
7309 return TRUE;
7310
7311 fail:
7312 (*_bfd_error_handler)
7313 (_("%B: unsupported relocation type %s"),
7314 abfd, areloc->howto->name);
7315 bfd_set_error (bfd_error_bad_value);
7316 return FALSE;
7317 }
7318
7319 bfd_boolean
7320 _bfd_elf_close_and_cleanup (bfd *abfd)
7321 {
7322 if (bfd_get_format (abfd) == bfd_object)
7323 {
7324 if (elf_tdata (abfd) != NULL && elf_shstrtab (abfd) != NULL)
7325 _bfd_elf_strtab_free (elf_shstrtab (abfd));
7326 _bfd_dwarf2_cleanup_debug_info (abfd);
7327 }
7328
7329 return _bfd_generic_close_and_cleanup (abfd);
7330 }
7331
7332 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
7333 in the relocation's offset. Thus we cannot allow any sort of sanity
7334 range-checking to interfere. There is nothing else to do in processing
7335 this reloc. */
7336
7337 bfd_reloc_status_type
7338 _bfd_elf_rel_vtable_reloc_fn
7339 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
7340 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
7341 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
7342 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
7343 {
7344 return bfd_reloc_ok;
7345 }
7346 \f
7347 /* Elf core file support. Much of this only works on native
7348 toolchains, since we rely on knowing the
7349 machine-dependent procfs structure in order to pick
7350 out details about the corefile. */
7351
7352 #ifdef HAVE_SYS_PROCFS_H
7353 # include <sys/procfs.h>
7354 #endif
7355
7356 /* FIXME: this is kinda wrong, but it's what gdb wants. */
7357
7358 static int
7359 elfcore_make_pid (bfd *abfd)
7360 {
7361 return ((elf_tdata (abfd)->core_lwpid << 16)
7362 + (elf_tdata (abfd)->core_pid));
7363 }
7364
7365 /* If there isn't a section called NAME, make one, using
7366 data from SECT. Note, this function will generate a
7367 reference to NAME, so you shouldn't deallocate or
7368 overwrite it. */
7369
7370 static bfd_boolean
7371 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
7372 {
7373 asection *sect2;
7374
7375 if (bfd_get_section_by_name (abfd, name) != NULL)
7376 return TRUE;
7377
7378 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
7379 if (sect2 == NULL)
7380 return FALSE;
7381
7382 sect2->size = sect->size;
7383 sect2->filepos = sect->filepos;
7384 sect2->alignment_power = sect->alignment_power;
7385 return TRUE;
7386 }
7387
7388 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
7389 actually creates up to two pseudosections:
7390 - For the single-threaded case, a section named NAME, unless
7391 such a section already exists.
7392 - For the multi-threaded case, a section named "NAME/PID", where
7393 PID is elfcore_make_pid (abfd).
7394 Both pseudosections have identical contents. */
7395 bfd_boolean
7396 _bfd_elfcore_make_pseudosection (bfd *abfd,
7397 char *name,
7398 size_t size,
7399 ufile_ptr filepos)
7400 {
7401 char buf[100];
7402 char *threaded_name;
7403 size_t len;
7404 asection *sect;
7405
7406 /* Build the section name. */
7407
7408 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
7409 len = strlen (buf) + 1;
7410 threaded_name = bfd_alloc (abfd, len);
7411 if (threaded_name == NULL)
7412 return FALSE;
7413 memcpy (threaded_name, buf, len);
7414
7415 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
7416 SEC_HAS_CONTENTS);
7417 if (sect == NULL)
7418 return FALSE;
7419 sect->size = size;
7420 sect->filepos = filepos;
7421 sect->alignment_power = 2;
7422
7423 return elfcore_maybe_make_sect (abfd, name, sect);
7424 }
7425
7426 /* prstatus_t exists on:
7427 solaris 2.5+
7428 linux 2.[01] + glibc
7429 unixware 4.2
7430 */
7431
7432 #if defined (HAVE_PRSTATUS_T)
7433
7434 static bfd_boolean
7435 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
7436 {
7437 size_t size;
7438 int offset;
7439
7440 if (note->descsz == sizeof (prstatus_t))
7441 {
7442 prstatus_t prstat;
7443
7444 size = sizeof (prstat.pr_reg);
7445 offset = offsetof (prstatus_t, pr_reg);
7446 memcpy (&prstat, note->descdata, sizeof (prstat));
7447
7448 /* Do not overwrite the core signal if it
7449 has already been set by another thread. */
7450 if (elf_tdata (abfd)->core_signal == 0)
7451 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7452 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7453
7454 /* pr_who exists on:
7455 solaris 2.5+
7456 unixware 4.2
7457 pr_who doesn't exist on:
7458 linux 2.[01]
7459 */
7460 #if defined (HAVE_PRSTATUS_T_PR_WHO)
7461 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7462 #endif
7463 }
7464 #if defined (HAVE_PRSTATUS32_T)
7465 else if (note->descsz == sizeof (prstatus32_t))
7466 {
7467 /* 64-bit host, 32-bit corefile */
7468 prstatus32_t prstat;
7469
7470 size = sizeof (prstat.pr_reg);
7471 offset = offsetof (prstatus32_t, pr_reg);
7472 memcpy (&prstat, note->descdata, sizeof (prstat));
7473
7474 /* Do not overwrite the core signal if it
7475 has already been set by another thread. */
7476 if (elf_tdata (abfd)->core_signal == 0)
7477 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7478 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7479
7480 /* pr_who exists on:
7481 solaris 2.5+
7482 unixware 4.2
7483 pr_who doesn't exist on:
7484 linux 2.[01]
7485 */
7486 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
7487 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7488 #endif
7489 }
7490 #endif /* HAVE_PRSTATUS32_T */
7491 else
7492 {
7493 /* Fail - we don't know how to handle any other
7494 note size (ie. data object type). */
7495 return TRUE;
7496 }
7497
7498 /* Make a ".reg/999" section and a ".reg" section. */
7499 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
7500 size, note->descpos + offset);
7501 }
7502 #endif /* defined (HAVE_PRSTATUS_T) */
7503
7504 /* Create a pseudosection containing the exact contents of NOTE. */
7505 static bfd_boolean
7506 elfcore_make_note_pseudosection (bfd *abfd,
7507 char *name,
7508 Elf_Internal_Note *note)
7509 {
7510 return _bfd_elfcore_make_pseudosection (abfd, name,
7511 note->descsz, note->descpos);
7512 }
7513
7514 /* There isn't a consistent prfpregset_t across platforms,
7515 but it doesn't matter, because we don't have to pick this
7516 data structure apart. */
7517
7518 static bfd_boolean
7519 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
7520 {
7521 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7522 }
7523
7524 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
7525 type of 5 (NT_PRXFPREG). Just include the whole note's contents
7526 literally. */
7527
7528 static bfd_boolean
7529 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
7530 {
7531 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
7532 }
7533
7534 #if defined (HAVE_PRPSINFO_T)
7535 typedef prpsinfo_t elfcore_psinfo_t;
7536 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
7537 typedef prpsinfo32_t elfcore_psinfo32_t;
7538 #endif
7539 #endif
7540
7541 #if defined (HAVE_PSINFO_T)
7542 typedef psinfo_t elfcore_psinfo_t;
7543 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
7544 typedef psinfo32_t elfcore_psinfo32_t;
7545 #endif
7546 #endif
7547
7548 /* return a malloc'ed copy of a string at START which is at
7549 most MAX bytes long, possibly without a terminating '\0'.
7550 the copy will always have a terminating '\0'. */
7551
7552 char *
7553 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
7554 {
7555 char *dups;
7556 char *end = memchr (start, '\0', max);
7557 size_t len;
7558
7559 if (end == NULL)
7560 len = max;
7561 else
7562 len = end - start;
7563
7564 dups = bfd_alloc (abfd, len + 1);
7565 if (dups == NULL)
7566 return NULL;
7567
7568 memcpy (dups, start, len);
7569 dups[len] = '\0';
7570
7571 return dups;
7572 }
7573
7574 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7575 static bfd_boolean
7576 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
7577 {
7578 if (note->descsz == sizeof (elfcore_psinfo_t))
7579 {
7580 elfcore_psinfo_t psinfo;
7581
7582 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7583
7584 elf_tdata (abfd)->core_program
7585 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7586 sizeof (psinfo.pr_fname));
7587
7588 elf_tdata (abfd)->core_command
7589 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7590 sizeof (psinfo.pr_psargs));
7591 }
7592 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
7593 else if (note->descsz == sizeof (elfcore_psinfo32_t))
7594 {
7595 /* 64-bit host, 32-bit corefile */
7596 elfcore_psinfo32_t psinfo;
7597
7598 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7599
7600 elf_tdata (abfd)->core_program
7601 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7602 sizeof (psinfo.pr_fname));
7603
7604 elf_tdata (abfd)->core_command
7605 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7606 sizeof (psinfo.pr_psargs));
7607 }
7608 #endif
7609
7610 else
7611 {
7612 /* Fail - we don't know how to handle any other
7613 note size (ie. data object type). */
7614 return TRUE;
7615 }
7616
7617 /* Note that for some reason, a spurious space is tacked
7618 onto the end of the args in some (at least one anyway)
7619 implementations, so strip it off if it exists. */
7620
7621 {
7622 char *command = elf_tdata (abfd)->core_command;
7623 int n = strlen (command);
7624
7625 if (0 < n && command[n - 1] == ' ')
7626 command[n - 1] = '\0';
7627 }
7628
7629 return TRUE;
7630 }
7631 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
7632
7633 #if defined (HAVE_PSTATUS_T)
7634 static bfd_boolean
7635 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
7636 {
7637 if (note->descsz == sizeof (pstatus_t)
7638 #if defined (HAVE_PXSTATUS_T)
7639 || note->descsz == sizeof (pxstatus_t)
7640 #endif
7641 )
7642 {
7643 pstatus_t pstat;
7644
7645 memcpy (&pstat, note->descdata, sizeof (pstat));
7646
7647 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7648 }
7649 #if defined (HAVE_PSTATUS32_T)
7650 else if (note->descsz == sizeof (pstatus32_t))
7651 {
7652 /* 64-bit host, 32-bit corefile */
7653 pstatus32_t pstat;
7654
7655 memcpy (&pstat, note->descdata, sizeof (pstat));
7656
7657 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7658 }
7659 #endif
7660 /* Could grab some more details from the "representative"
7661 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
7662 NT_LWPSTATUS note, presumably. */
7663
7664 return TRUE;
7665 }
7666 #endif /* defined (HAVE_PSTATUS_T) */
7667
7668 #if defined (HAVE_LWPSTATUS_T)
7669 static bfd_boolean
7670 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
7671 {
7672 lwpstatus_t lwpstat;
7673 char buf[100];
7674 char *name;
7675 size_t len;
7676 asection *sect;
7677
7678 if (note->descsz != sizeof (lwpstat)
7679 #if defined (HAVE_LWPXSTATUS_T)
7680 && note->descsz != sizeof (lwpxstatus_t)
7681 #endif
7682 )
7683 return TRUE;
7684
7685 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
7686
7687 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
7688 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
7689
7690 /* Make a ".reg/999" section. */
7691
7692 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
7693 len = strlen (buf) + 1;
7694 name = bfd_alloc (abfd, len);
7695 if (name == NULL)
7696 return FALSE;
7697 memcpy (name, buf, len);
7698
7699 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7700 if (sect == NULL)
7701 return FALSE;
7702
7703 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7704 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
7705 sect->filepos = note->descpos
7706 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
7707 #endif
7708
7709 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7710 sect->size = sizeof (lwpstat.pr_reg);
7711 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
7712 #endif
7713
7714 sect->alignment_power = 2;
7715
7716 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
7717 return FALSE;
7718
7719 /* Make a ".reg2/999" section */
7720
7721 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
7722 len = strlen (buf) + 1;
7723 name = bfd_alloc (abfd, len);
7724 if (name == NULL)
7725 return FALSE;
7726 memcpy (name, buf, len);
7727
7728 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7729 if (sect == NULL)
7730 return FALSE;
7731
7732 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7733 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
7734 sect->filepos = note->descpos
7735 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
7736 #endif
7737
7738 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
7739 sect->size = sizeof (lwpstat.pr_fpreg);
7740 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
7741 #endif
7742
7743 sect->alignment_power = 2;
7744
7745 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
7746 }
7747 #endif /* defined (HAVE_LWPSTATUS_T) */
7748
7749 #if defined (HAVE_WIN32_PSTATUS_T)
7750 static bfd_boolean
7751 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
7752 {
7753 char buf[30];
7754 char *name;
7755 size_t len;
7756 asection *sect;
7757 win32_pstatus_t pstatus;
7758
7759 if (note->descsz < sizeof (pstatus))
7760 return TRUE;
7761
7762 memcpy (&pstatus, note->descdata, sizeof (pstatus));
7763
7764 switch (pstatus.data_type)
7765 {
7766 case NOTE_INFO_PROCESS:
7767 /* FIXME: need to add ->core_command. */
7768 elf_tdata (abfd)->core_signal = pstatus.data.process_info.signal;
7769 elf_tdata (abfd)->core_pid = pstatus.data.process_info.pid;
7770 break;
7771
7772 case NOTE_INFO_THREAD:
7773 /* Make a ".reg/999" section. */
7774 sprintf (buf, ".reg/%ld", (long) pstatus.data.thread_info.tid);
7775
7776 len = strlen (buf) + 1;
7777 name = bfd_alloc (abfd, len);
7778 if (name == NULL)
7779 return FALSE;
7780
7781 memcpy (name, buf, len);
7782
7783 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7784 if (sect == NULL)
7785 return FALSE;
7786
7787 sect->size = sizeof (pstatus.data.thread_info.thread_context);
7788 sect->filepos = (note->descpos
7789 + offsetof (struct win32_pstatus,
7790 data.thread_info.thread_context));
7791 sect->alignment_power = 2;
7792
7793 if (pstatus.data.thread_info.is_active_thread)
7794 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
7795 return FALSE;
7796 break;
7797
7798 case NOTE_INFO_MODULE:
7799 /* Make a ".module/xxxxxxxx" section. */
7800 sprintf (buf, ".module/%08lx",
7801 (long) pstatus.data.module_info.base_address);
7802
7803 len = strlen (buf) + 1;
7804 name = bfd_alloc (abfd, len);
7805 if (name == NULL)
7806 return FALSE;
7807
7808 memcpy (name, buf, len);
7809
7810 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7811
7812 if (sect == NULL)
7813 return FALSE;
7814
7815 sect->size = note->descsz;
7816 sect->filepos = note->descpos;
7817 sect->alignment_power = 2;
7818 break;
7819
7820 default:
7821 return TRUE;
7822 }
7823
7824 return TRUE;
7825 }
7826 #endif /* HAVE_WIN32_PSTATUS_T */
7827
7828 static bfd_boolean
7829 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
7830 {
7831 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7832
7833 switch (note->type)
7834 {
7835 default:
7836 return TRUE;
7837
7838 case NT_PRSTATUS:
7839 if (bed->elf_backend_grok_prstatus)
7840 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
7841 return TRUE;
7842 #if defined (HAVE_PRSTATUS_T)
7843 return elfcore_grok_prstatus (abfd, note);
7844 #else
7845 return TRUE;
7846 #endif
7847
7848 #if defined (HAVE_PSTATUS_T)
7849 case NT_PSTATUS:
7850 return elfcore_grok_pstatus (abfd, note);
7851 #endif
7852
7853 #if defined (HAVE_LWPSTATUS_T)
7854 case NT_LWPSTATUS:
7855 return elfcore_grok_lwpstatus (abfd, note);
7856 #endif
7857
7858 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
7859 return elfcore_grok_prfpreg (abfd, note);
7860
7861 #if defined (HAVE_WIN32_PSTATUS_T)
7862 case NT_WIN32PSTATUS:
7863 return elfcore_grok_win32pstatus (abfd, note);
7864 #endif
7865
7866 case NT_PRXFPREG: /* Linux SSE extension */
7867 if (note->namesz == 6
7868 && strcmp (note->namedata, "LINUX") == 0)
7869 return elfcore_grok_prxfpreg (abfd, note);
7870 else
7871 return TRUE;
7872
7873 case NT_PRPSINFO:
7874 case NT_PSINFO:
7875 if (bed->elf_backend_grok_psinfo)
7876 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
7877 return TRUE;
7878 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7879 return elfcore_grok_psinfo (abfd, note);
7880 #else
7881 return TRUE;
7882 #endif
7883
7884 case NT_AUXV:
7885 {
7886 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
7887 SEC_HAS_CONTENTS);
7888
7889 if (sect == NULL)
7890 return FALSE;
7891 sect->size = note->descsz;
7892 sect->filepos = note->descpos;
7893 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
7894
7895 return TRUE;
7896 }
7897 }
7898 }
7899
7900 static bfd_boolean
7901 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
7902 {
7903 char *cp;
7904
7905 cp = strchr (note->namedata, '@');
7906 if (cp != NULL)
7907 {
7908 *lwpidp = atoi(cp + 1);
7909 return TRUE;
7910 }
7911 return FALSE;
7912 }
7913
7914 static bfd_boolean
7915 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
7916 {
7917
7918 /* Signal number at offset 0x08. */
7919 elf_tdata (abfd)->core_signal
7920 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
7921
7922 /* Process ID at offset 0x50. */
7923 elf_tdata (abfd)->core_pid
7924 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
7925
7926 /* Command name at 0x7c (max 32 bytes, including nul). */
7927 elf_tdata (abfd)->core_command
7928 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
7929
7930 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
7931 note);
7932 }
7933
7934 static bfd_boolean
7935 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
7936 {
7937 int lwp;
7938
7939 if (elfcore_netbsd_get_lwpid (note, &lwp))
7940 elf_tdata (abfd)->core_lwpid = lwp;
7941
7942 if (note->type == NT_NETBSDCORE_PROCINFO)
7943 {
7944 /* NetBSD-specific core "procinfo". Note that we expect to
7945 find this note before any of the others, which is fine,
7946 since the kernel writes this note out first when it
7947 creates a core file. */
7948
7949 return elfcore_grok_netbsd_procinfo (abfd, note);
7950 }
7951
7952 /* As of Jan 2002 there are no other machine-independent notes
7953 defined for NetBSD core files. If the note type is less
7954 than the start of the machine-dependent note types, we don't
7955 understand it. */
7956
7957 if (note->type < NT_NETBSDCORE_FIRSTMACH)
7958 return TRUE;
7959
7960
7961 switch (bfd_get_arch (abfd))
7962 {
7963 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
7964 PT_GETFPREGS == mach+2. */
7965
7966 case bfd_arch_alpha:
7967 case bfd_arch_sparc:
7968 switch (note->type)
7969 {
7970 case NT_NETBSDCORE_FIRSTMACH+0:
7971 return elfcore_make_note_pseudosection (abfd, ".reg", note);
7972
7973 case NT_NETBSDCORE_FIRSTMACH+2:
7974 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7975
7976 default:
7977 return TRUE;
7978 }
7979
7980 /* On all other arch's, PT_GETREGS == mach+1 and
7981 PT_GETFPREGS == mach+3. */
7982
7983 default:
7984 switch (note->type)
7985 {
7986 case NT_NETBSDCORE_FIRSTMACH+1:
7987 return elfcore_make_note_pseudosection (abfd, ".reg", note);
7988
7989 case NT_NETBSDCORE_FIRSTMACH+3:
7990 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7991
7992 default:
7993 return TRUE;
7994 }
7995 }
7996 /* NOTREACHED */
7997 }
7998
7999 static bfd_boolean
8000 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
8001 {
8002 void *ddata = note->descdata;
8003 char buf[100];
8004 char *name;
8005 asection *sect;
8006 short sig;
8007 unsigned flags;
8008
8009 /* nto_procfs_status 'pid' field is at offset 0. */
8010 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
8011
8012 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
8013 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
8014
8015 /* nto_procfs_status 'flags' field is at offset 8. */
8016 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
8017
8018 /* nto_procfs_status 'what' field is at offset 14. */
8019 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
8020 {
8021 elf_tdata (abfd)->core_signal = sig;
8022 elf_tdata (abfd)->core_lwpid = *tid;
8023 }
8024
8025 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
8026 do not come from signals so we make sure we set the current
8027 thread just in case. */
8028 if (flags & 0x00000080)
8029 elf_tdata (abfd)->core_lwpid = *tid;
8030
8031 /* Make a ".qnx_core_status/%d" section. */
8032 sprintf (buf, ".qnx_core_status/%ld", *tid);
8033
8034 name = bfd_alloc (abfd, strlen (buf) + 1);
8035 if (name == NULL)
8036 return FALSE;
8037 strcpy (name, buf);
8038
8039 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8040 if (sect == NULL)
8041 return FALSE;
8042
8043 sect->size = note->descsz;
8044 sect->filepos = note->descpos;
8045 sect->alignment_power = 2;
8046
8047 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
8048 }
8049
8050 static bfd_boolean
8051 elfcore_grok_nto_regs (bfd *abfd,
8052 Elf_Internal_Note *note,
8053 long tid,
8054 char *base)
8055 {
8056 char buf[100];
8057 char *name;
8058 asection *sect;
8059
8060 /* Make a "(base)/%d" section. */
8061 sprintf (buf, "%s/%ld", base, tid);
8062
8063 name = bfd_alloc (abfd, strlen (buf) + 1);
8064 if (name == NULL)
8065 return FALSE;
8066 strcpy (name, buf);
8067
8068 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8069 if (sect == NULL)
8070 return FALSE;
8071
8072 sect->size = note->descsz;
8073 sect->filepos = note->descpos;
8074 sect->alignment_power = 2;
8075
8076 /* This is the current thread. */
8077 if (elf_tdata (abfd)->core_lwpid == tid)
8078 return elfcore_maybe_make_sect (abfd, base, sect);
8079
8080 return TRUE;
8081 }
8082
8083 #define BFD_QNT_CORE_INFO 7
8084 #define BFD_QNT_CORE_STATUS 8
8085 #define BFD_QNT_CORE_GREG 9
8086 #define BFD_QNT_CORE_FPREG 10
8087
8088 static bfd_boolean
8089 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
8090 {
8091 /* Every GREG section has a STATUS section before it. Store the
8092 tid from the previous call to pass down to the next gregs
8093 function. */
8094 static long tid = 1;
8095
8096 switch (note->type)
8097 {
8098 case BFD_QNT_CORE_INFO:
8099 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
8100 case BFD_QNT_CORE_STATUS:
8101 return elfcore_grok_nto_status (abfd, note, &tid);
8102 case BFD_QNT_CORE_GREG:
8103 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
8104 case BFD_QNT_CORE_FPREG:
8105 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
8106 default:
8107 return TRUE;
8108 }
8109 }
8110
8111 /* Function: elfcore_write_note
8112
8113 Inputs:
8114 buffer to hold note, and current size of buffer
8115 name of note
8116 type of note
8117 data for note
8118 size of data for note
8119
8120 Writes note to end of buffer. ELF64 notes are written exactly as
8121 for ELF32, despite the current (as of 2006) ELF gabi specifying
8122 that they ought to have 8-byte namesz and descsz field, and have
8123 8-byte alignment. Other writers, eg. Linux kernel, do the same.
8124
8125 Return:
8126 Pointer to realloc'd buffer, *BUFSIZ updated. */
8127
8128 char *
8129 elfcore_write_note (bfd *abfd,
8130 char *buf,
8131 int *bufsiz,
8132 const char *name,
8133 int type,
8134 const void *input,
8135 int size)
8136 {
8137 Elf_External_Note *xnp;
8138 size_t namesz;
8139 size_t newspace;
8140 char *dest;
8141
8142 namesz = 0;
8143 if (name != NULL)
8144 namesz = strlen (name) + 1;
8145
8146 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
8147
8148 buf = realloc (buf, *bufsiz + newspace);
8149 dest = buf + *bufsiz;
8150 *bufsiz += newspace;
8151 xnp = (Elf_External_Note *) dest;
8152 H_PUT_32 (abfd, namesz, xnp->namesz);
8153 H_PUT_32 (abfd, size, xnp->descsz);
8154 H_PUT_32 (abfd, type, xnp->type);
8155 dest = xnp->name;
8156 if (name != NULL)
8157 {
8158 memcpy (dest, name, namesz);
8159 dest += namesz;
8160 while (namesz & 3)
8161 {
8162 *dest++ = '\0';
8163 ++namesz;
8164 }
8165 }
8166 memcpy (dest, input, size);
8167 dest += size;
8168 while (size & 3)
8169 {
8170 *dest++ = '\0';
8171 ++size;
8172 }
8173 return buf;
8174 }
8175
8176 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8177 char *
8178 elfcore_write_prpsinfo (bfd *abfd,
8179 char *buf,
8180 int *bufsiz,
8181 const char *fname,
8182 const char *psargs)
8183 {
8184 int note_type;
8185 char *note_name = "CORE";
8186
8187 #if defined (HAVE_PSINFO_T)
8188 psinfo_t data;
8189 note_type = NT_PSINFO;
8190 #else
8191 prpsinfo_t data;
8192 note_type = NT_PRPSINFO;
8193 #endif
8194
8195 memset (&data, 0, sizeof (data));
8196 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
8197 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
8198 return elfcore_write_note (abfd, buf, bufsiz,
8199 note_name, note_type, &data, sizeof (data));
8200 }
8201 #endif /* PSINFO_T or PRPSINFO_T */
8202
8203 #if defined (HAVE_PRSTATUS_T)
8204 char *
8205 elfcore_write_prstatus (bfd *abfd,
8206 char *buf,
8207 int *bufsiz,
8208 long pid,
8209 int cursig,
8210 const void *gregs)
8211 {
8212 prstatus_t prstat;
8213 char *note_name = "CORE";
8214
8215 memset (&prstat, 0, sizeof (prstat));
8216 prstat.pr_pid = pid;
8217 prstat.pr_cursig = cursig;
8218 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
8219 return elfcore_write_note (abfd, buf, bufsiz,
8220 note_name, NT_PRSTATUS, &prstat, sizeof (prstat));
8221 }
8222 #endif /* HAVE_PRSTATUS_T */
8223
8224 #if defined (HAVE_LWPSTATUS_T)
8225 char *
8226 elfcore_write_lwpstatus (bfd *abfd,
8227 char *buf,
8228 int *bufsiz,
8229 long pid,
8230 int cursig,
8231 const void *gregs)
8232 {
8233 lwpstatus_t lwpstat;
8234 char *note_name = "CORE";
8235
8236 memset (&lwpstat, 0, sizeof (lwpstat));
8237 lwpstat.pr_lwpid = pid >> 16;
8238 lwpstat.pr_cursig = cursig;
8239 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8240 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
8241 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8242 #if !defined(gregs)
8243 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
8244 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
8245 #else
8246 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
8247 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
8248 #endif
8249 #endif
8250 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8251 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
8252 }
8253 #endif /* HAVE_LWPSTATUS_T */
8254
8255 #if defined (HAVE_PSTATUS_T)
8256 char *
8257 elfcore_write_pstatus (bfd *abfd,
8258 char *buf,
8259 int *bufsiz,
8260 long pid,
8261 int cursig ATTRIBUTE_UNUSED,
8262 const void *gregs ATTRIBUTE_UNUSED)
8263 {
8264 pstatus_t pstat;
8265 char *note_name = "CORE";
8266
8267 memset (&pstat, 0, sizeof (pstat));
8268 pstat.pr_pid = pid & 0xffff;
8269 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
8270 NT_PSTATUS, &pstat, sizeof (pstat));
8271 return buf;
8272 }
8273 #endif /* HAVE_PSTATUS_T */
8274
8275 char *
8276 elfcore_write_prfpreg (bfd *abfd,
8277 char *buf,
8278 int *bufsiz,
8279 const void *fpregs,
8280 int size)
8281 {
8282 char *note_name = "CORE";
8283 return elfcore_write_note (abfd, buf, bufsiz,
8284 note_name, NT_FPREGSET, fpregs, size);
8285 }
8286
8287 char *
8288 elfcore_write_prxfpreg (bfd *abfd,
8289 char *buf,
8290 int *bufsiz,
8291 const void *xfpregs,
8292 int size)
8293 {
8294 char *note_name = "LINUX";
8295 return elfcore_write_note (abfd, buf, bufsiz,
8296 note_name, NT_PRXFPREG, xfpregs, size);
8297 }
8298
8299 static bfd_boolean
8300 elfcore_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
8301 {
8302 char *buf;
8303 char *p;
8304
8305 if (size <= 0)
8306 return TRUE;
8307
8308 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
8309 return FALSE;
8310
8311 buf = bfd_malloc (size);
8312 if (buf == NULL)
8313 return FALSE;
8314
8315 if (bfd_bread (buf, size, abfd) != size)
8316 {
8317 error:
8318 free (buf);
8319 return FALSE;
8320 }
8321
8322 p = buf;
8323 while (p < buf + size)
8324 {
8325 /* FIXME: bad alignment assumption. */
8326 Elf_External_Note *xnp = (Elf_External_Note *) p;
8327 Elf_Internal_Note in;
8328
8329 in.type = H_GET_32 (abfd, xnp->type);
8330
8331 in.namesz = H_GET_32 (abfd, xnp->namesz);
8332 in.namedata = xnp->name;
8333
8334 in.descsz = H_GET_32 (abfd, xnp->descsz);
8335 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
8336 in.descpos = offset + (in.descdata - buf);
8337
8338 if (CONST_STRNEQ (in.namedata, "NetBSD-CORE"))
8339 {
8340 if (! elfcore_grok_netbsd_note (abfd, &in))
8341 goto error;
8342 }
8343 else if (CONST_STRNEQ (in.namedata, "QNX"))
8344 {
8345 if (! elfcore_grok_nto_note (abfd, &in))
8346 goto error;
8347 }
8348 else
8349 {
8350 if (! elfcore_grok_note (abfd, &in))
8351 goto error;
8352 }
8353
8354 p = in.descdata + BFD_ALIGN (in.descsz, 4);
8355 }
8356
8357 free (buf);
8358 return TRUE;
8359 }
8360 \f
8361 /* Providing external access to the ELF program header table. */
8362
8363 /* Return an upper bound on the number of bytes required to store a
8364 copy of ABFD's program header table entries. Return -1 if an error
8365 occurs; bfd_get_error will return an appropriate code. */
8366
8367 long
8368 bfd_get_elf_phdr_upper_bound (bfd *abfd)
8369 {
8370 if (abfd->xvec->flavour != bfd_target_elf_flavour)
8371 {
8372 bfd_set_error (bfd_error_wrong_format);
8373 return -1;
8374 }
8375
8376 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
8377 }
8378
8379 /* Copy ABFD's program header table entries to *PHDRS. The entries
8380 will be stored as an array of Elf_Internal_Phdr structures, as
8381 defined in include/elf/internal.h. To find out how large the
8382 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
8383
8384 Return the number of program header table entries read, or -1 if an
8385 error occurs; bfd_get_error will return an appropriate code. */
8386
8387 int
8388 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
8389 {
8390 int num_phdrs;
8391
8392 if (abfd->xvec->flavour != bfd_target_elf_flavour)
8393 {
8394 bfd_set_error (bfd_error_wrong_format);
8395 return -1;
8396 }
8397
8398 num_phdrs = elf_elfheader (abfd)->e_phnum;
8399 memcpy (phdrs, elf_tdata (abfd)->phdr,
8400 num_phdrs * sizeof (Elf_Internal_Phdr));
8401
8402 return num_phdrs;
8403 }
8404
8405 void
8406 _bfd_elf_sprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, char *buf, bfd_vma value)
8407 {
8408 #ifdef BFD64
8409 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
8410
8411 i_ehdrp = elf_elfheader (abfd);
8412 if (i_ehdrp == NULL)
8413 sprintf_vma (buf, value);
8414 else
8415 {
8416 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
8417 {
8418 #if BFD_HOST_64BIT_LONG
8419 sprintf (buf, "%016lx", value);
8420 #else
8421 sprintf (buf, "%08lx%08lx", _bfd_int64_high (value),
8422 _bfd_int64_low (value));
8423 #endif
8424 }
8425 else
8426 sprintf (buf, "%08lx", (unsigned long) (value & 0xffffffff));
8427 }
8428 #else
8429 sprintf_vma (buf, value);
8430 #endif
8431 }
8432
8433 void
8434 _bfd_elf_fprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, void *stream, bfd_vma value)
8435 {
8436 #ifdef BFD64
8437 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
8438
8439 i_ehdrp = elf_elfheader (abfd);
8440 if (i_ehdrp == NULL)
8441 fprintf_vma ((FILE *) stream, value);
8442 else
8443 {
8444 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
8445 {
8446 #if BFD_HOST_64BIT_LONG
8447 fprintf ((FILE *) stream, "%016lx", value);
8448 #else
8449 fprintf ((FILE *) stream, "%08lx%08lx",
8450 _bfd_int64_high (value), _bfd_int64_low (value));
8451 #endif
8452 }
8453 else
8454 fprintf ((FILE *) stream, "%08lx",
8455 (unsigned long) (value & 0xffffffff));
8456 }
8457 #else
8458 fprintf_vma ((FILE *) stream, value);
8459 #endif
8460 }
8461
8462 enum elf_reloc_type_class
8463 _bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
8464 {
8465 return reloc_class_normal;
8466 }
8467
8468 /* For RELA architectures, return the relocation value for a
8469 relocation against a local symbol. */
8470
8471 bfd_vma
8472 _bfd_elf_rela_local_sym (bfd *abfd,
8473 Elf_Internal_Sym *sym,
8474 asection **psec,
8475 Elf_Internal_Rela *rel)
8476 {
8477 asection *sec = *psec;
8478 bfd_vma relocation;
8479
8480 relocation = (sec->output_section->vma
8481 + sec->output_offset
8482 + sym->st_value);
8483 if ((sec->flags & SEC_MERGE)
8484 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
8485 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
8486 {
8487 rel->r_addend =
8488 _bfd_merged_section_offset (abfd, psec,
8489 elf_section_data (sec)->sec_info,
8490 sym->st_value + rel->r_addend);
8491 if (sec != *psec)
8492 {
8493 /* If we have changed the section, and our original section is
8494 marked with SEC_EXCLUDE, it means that the original
8495 SEC_MERGE section has been completely subsumed in some
8496 other SEC_MERGE section. In this case, we need to leave
8497 some info around for --emit-relocs. */
8498 if ((sec->flags & SEC_EXCLUDE) != 0)
8499 sec->kept_section = *psec;
8500 sec = *psec;
8501 }
8502 rel->r_addend -= relocation;
8503 rel->r_addend += sec->output_section->vma + sec->output_offset;
8504 }
8505 return relocation;
8506 }
8507
8508 bfd_vma
8509 _bfd_elf_rel_local_sym (bfd *abfd,
8510 Elf_Internal_Sym *sym,
8511 asection **psec,
8512 bfd_vma addend)
8513 {
8514 asection *sec = *psec;
8515
8516 if (sec->sec_info_type != ELF_INFO_TYPE_MERGE)
8517 return sym->st_value + addend;
8518
8519 return _bfd_merged_section_offset (abfd, psec,
8520 elf_section_data (sec)->sec_info,
8521 sym->st_value + addend);
8522 }
8523
8524 bfd_vma
8525 _bfd_elf_section_offset (bfd *abfd,
8526 struct bfd_link_info *info,
8527 asection *sec,
8528 bfd_vma offset)
8529 {
8530 switch (sec->sec_info_type)
8531 {
8532 case ELF_INFO_TYPE_STABS:
8533 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
8534 offset);
8535 case ELF_INFO_TYPE_EH_FRAME:
8536 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
8537 default:
8538 return offset;
8539 }
8540 }
8541 \f
8542 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
8543 reconstruct an ELF file by reading the segments out of remote memory
8544 based on the ELF file header at EHDR_VMA and the ELF program headers it
8545 points to. If not null, *LOADBASEP is filled in with the difference
8546 between the VMAs from which the segments were read, and the VMAs the
8547 file headers (and hence BFD's idea of each section's VMA) put them at.
8548
8549 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
8550 remote memory at target address VMA into the local buffer at MYADDR; it
8551 should return zero on success or an `errno' code on failure. TEMPL must
8552 be a BFD for an ELF target with the word size and byte order found in
8553 the remote memory. */
8554
8555 bfd *
8556 bfd_elf_bfd_from_remote_memory
8557 (bfd *templ,
8558 bfd_vma ehdr_vma,
8559 bfd_vma *loadbasep,
8560 int (*target_read_memory) (bfd_vma, bfd_byte *, int))
8561 {
8562 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
8563 (templ, ehdr_vma, loadbasep, target_read_memory);
8564 }
8565 \f
8566 long
8567 _bfd_elf_get_synthetic_symtab (bfd *abfd,
8568 long symcount ATTRIBUTE_UNUSED,
8569 asymbol **syms ATTRIBUTE_UNUSED,
8570 long dynsymcount,
8571 asymbol **dynsyms,
8572 asymbol **ret)
8573 {
8574 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8575 asection *relplt;
8576 asymbol *s;
8577 const char *relplt_name;
8578 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
8579 arelent *p;
8580 long count, i, n;
8581 size_t size;
8582 Elf_Internal_Shdr *hdr;
8583 char *names;
8584 asection *plt;
8585
8586 *ret = NULL;
8587
8588 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
8589 return 0;
8590
8591 if (dynsymcount <= 0)
8592 return 0;
8593
8594 if (!bed->plt_sym_val)
8595 return 0;
8596
8597 relplt_name = bed->relplt_name;
8598 if (relplt_name == NULL)
8599 relplt_name = bed->default_use_rela_p ? ".rela.plt" : ".rel.plt";
8600 relplt = bfd_get_section_by_name (abfd, relplt_name);
8601 if (relplt == NULL)
8602 return 0;
8603
8604 hdr = &elf_section_data (relplt)->this_hdr;
8605 if (hdr->sh_link != elf_dynsymtab (abfd)
8606 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
8607 return 0;
8608
8609 plt = bfd_get_section_by_name (abfd, ".plt");
8610 if (plt == NULL)
8611 return 0;
8612
8613 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
8614 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
8615 return -1;
8616
8617 count = relplt->size / hdr->sh_entsize;
8618 size = count * sizeof (asymbol);
8619 p = relplt->relocation;
8620 for (i = 0; i < count; i++, s++, p++)
8621 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
8622
8623 s = *ret = bfd_malloc (size);
8624 if (s == NULL)
8625 return -1;
8626
8627 names = (char *) (s + count);
8628 p = relplt->relocation;
8629 n = 0;
8630 for (i = 0; i < count; i++, s++, p++)
8631 {
8632 size_t len;
8633 bfd_vma addr;
8634
8635 addr = bed->plt_sym_val (i, plt, p);
8636 if (addr == (bfd_vma) -1)
8637 continue;
8638
8639 *s = **p->sym_ptr_ptr;
8640 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
8641 we are defining a symbol, ensure one of them is set. */
8642 if ((s->flags & BSF_LOCAL) == 0)
8643 s->flags |= BSF_GLOBAL;
8644 s->section = plt;
8645 s->value = addr - plt->vma;
8646 s->name = names;
8647 len = strlen ((*p->sym_ptr_ptr)->name);
8648 memcpy (names, (*p->sym_ptr_ptr)->name, len);
8649 names += len;
8650 memcpy (names, "@plt", sizeof ("@plt"));
8651 names += sizeof ("@plt");
8652 ++n;
8653 }
8654
8655 return n;
8656 }
8657
8658 /* Sort symbol by binding and section. We want to put definitions
8659 sorted by section at the beginning. */
8660
8661 static int
8662 elf_sort_elf_symbol (const void *arg1, const void *arg2)
8663 {
8664 const Elf_Internal_Sym *s1;
8665 const Elf_Internal_Sym *s2;
8666 int shndx;
8667
8668 /* Make sure that undefined symbols are at the end. */
8669 s1 = (const Elf_Internal_Sym *) arg1;
8670 if (s1->st_shndx == SHN_UNDEF)
8671 return 1;
8672 s2 = (const Elf_Internal_Sym *) arg2;
8673 if (s2->st_shndx == SHN_UNDEF)
8674 return -1;
8675
8676 /* Sorted by section index. */
8677 shndx = s1->st_shndx - s2->st_shndx;
8678 if (shndx != 0)
8679 return shndx;
8680
8681 /* Sorted by binding. */
8682 return ELF_ST_BIND (s1->st_info) - ELF_ST_BIND (s2->st_info);
8683 }
8684
8685 struct elf_symbol
8686 {
8687 Elf_Internal_Sym *sym;
8688 const char *name;
8689 };
8690
8691 static int
8692 elf_sym_name_compare (const void *arg1, const void *arg2)
8693 {
8694 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
8695 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
8696 return strcmp (s1->name, s2->name);
8697 }
8698
8699 /* Check if 2 sections define the same set of local and global
8700 symbols. */
8701
8702 bfd_boolean
8703 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
8704 struct bfd_link_info *info)
8705 {
8706 bfd *bfd1, *bfd2;
8707 const struct elf_backend_data *bed1, *bed2;
8708 Elf_Internal_Shdr *hdr1, *hdr2;
8709 bfd_size_type symcount1, symcount2;
8710 Elf_Internal_Sym *isymbuf1, *isymbuf2;
8711 Elf_Internal_Sym *isymstart1 = NULL, *isymstart2 = NULL, *isym;
8712 Elf_Internal_Sym *isymend;
8713 struct elf_symbol *symp, *symtable1 = NULL, *symtable2 = NULL;
8714 bfd_size_type count1, count2, i;
8715 int shndx1, shndx2;
8716 bfd_boolean result;
8717
8718 bfd1 = sec1->owner;
8719 bfd2 = sec2->owner;
8720
8721 /* If both are .gnu.linkonce sections, they have to have the same
8722 section name. */
8723 if (CONST_STRNEQ (sec1->name, ".gnu.linkonce")
8724 && CONST_STRNEQ (sec2->name, ".gnu.linkonce"))
8725 return strcmp (sec1->name + sizeof ".gnu.linkonce",
8726 sec2->name + sizeof ".gnu.linkonce") == 0;
8727
8728 /* Both sections have to be in ELF. */
8729 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
8730 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
8731 return FALSE;
8732
8733 if (elf_section_type (sec1) != elf_section_type (sec2))
8734 return FALSE;
8735
8736 if ((elf_section_flags (sec1) & SHF_GROUP) != 0
8737 && (elf_section_flags (sec2) & SHF_GROUP) != 0)
8738 {
8739 /* If both are members of section groups, they have to have the
8740 same group name. */
8741 if (strcmp (elf_group_name (sec1), elf_group_name (sec2)) != 0)
8742 return FALSE;
8743 }
8744
8745 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
8746 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
8747 if (shndx1 == -1 || shndx2 == -1)
8748 return FALSE;
8749
8750 bed1 = get_elf_backend_data (bfd1);
8751 bed2 = get_elf_backend_data (bfd2);
8752 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
8753 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
8754 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
8755 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
8756
8757 if (symcount1 == 0 || symcount2 == 0)
8758 return FALSE;
8759
8760 result = FALSE;
8761 isymbuf1 = elf_tdata (bfd1)->symbuf;
8762 isymbuf2 = elf_tdata (bfd2)->symbuf;
8763
8764 if (isymbuf1 == NULL)
8765 {
8766 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
8767 NULL, NULL, NULL);
8768 if (isymbuf1 == NULL)
8769 goto done;
8770 /* Sort symbols by binding and section. Global definitions are at
8771 the beginning. */
8772 qsort (isymbuf1, symcount1, sizeof (Elf_Internal_Sym),
8773 elf_sort_elf_symbol);
8774 if (!info->reduce_memory_overheads)
8775 elf_tdata (bfd1)->symbuf = isymbuf1;
8776 }
8777
8778 if (isymbuf2 == NULL)
8779 {
8780 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
8781 NULL, NULL, NULL);
8782 if (isymbuf2 == NULL)
8783 goto done;
8784 /* Sort symbols by binding and section. Global definitions are at
8785 the beginning. */
8786 qsort (isymbuf2, symcount2, sizeof (Elf_Internal_Sym),
8787 elf_sort_elf_symbol);
8788 if (!info->reduce_memory_overheads)
8789 elf_tdata (bfd2)->symbuf = isymbuf2;
8790 }
8791
8792 /* Count definitions in the section. */
8793 count1 = 0;
8794 for (isym = isymbuf1, isymend = isym + symcount1;
8795 isym < isymend; isym++)
8796 {
8797 if (isym->st_shndx == (unsigned int) shndx1)
8798 {
8799 if (count1 == 0)
8800 isymstart1 = isym;
8801 count1++;
8802 }
8803
8804 if (count1 && isym->st_shndx != (unsigned int) shndx1)
8805 break;
8806 }
8807
8808 count2 = 0;
8809 for (isym = isymbuf2, isymend = isym + symcount2;
8810 isym < isymend; isym++)
8811 {
8812 if (isym->st_shndx == (unsigned int) shndx2)
8813 {
8814 if (count2 == 0)
8815 isymstart2 = isym;
8816 count2++;
8817 }
8818
8819 if (count2 && isym->st_shndx != (unsigned int) shndx2)
8820 break;
8821 }
8822
8823 if (count1 == 0 || count2 == 0 || count1 != count2)
8824 goto done;
8825
8826 symtable1 = bfd_malloc (count1 * sizeof (struct elf_symbol));
8827 symtable2 = bfd_malloc (count1 * sizeof (struct elf_symbol));
8828
8829 if (symtable1 == NULL || symtable2 == NULL)
8830 goto done;
8831
8832 symp = symtable1;
8833 for (isym = isymstart1, isymend = isym + count1;
8834 isym < isymend; isym++)
8835 {
8836 symp->sym = isym;
8837 symp->name = bfd_elf_string_from_elf_section (bfd1,
8838 hdr1->sh_link,
8839 isym->st_name);
8840 symp++;
8841 }
8842
8843 symp = symtable2;
8844 for (isym = isymstart2, isymend = isym + count1;
8845 isym < isymend; isym++)
8846 {
8847 symp->sym = isym;
8848 symp->name = bfd_elf_string_from_elf_section (bfd2,
8849 hdr2->sh_link,
8850 isym->st_name);
8851 symp++;
8852 }
8853
8854 /* Sort symbol by name. */
8855 qsort (symtable1, count1, sizeof (struct elf_symbol),
8856 elf_sym_name_compare);
8857 qsort (symtable2, count1, sizeof (struct elf_symbol),
8858 elf_sym_name_compare);
8859
8860 for (i = 0; i < count1; i++)
8861 /* Two symbols must have the same binding, type and name. */
8862 if (symtable1 [i].sym->st_info != symtable2 [i].sym->st_info
8863 || symtable1 [i].sym->st_other != symtable2 [i].sym->st_other
8864 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
8865 goto done;
8866
8867 result = TRUE;
8868
8869 done:
8870 if (symtable1)
8871 free (symtable1);
8872 if (symtable2)
8873 free (symtable2);
8874 if (info->reduce_memory_overheads)
8875 {
8876 if (isymbuf1)
8877 free (isymbuf1);
8878 if (isymbuf2)
8879 free (isymbuf2);
8880 }
8881
8882 return result;
8883 }
8884
8885 /* It is only used by x86-64 so far. */
8886 asection _bfd_elf_large_com_section
8887 = BFD_FAKE_SECTION (_bfd_elf_large_com_section,
8888 SEC_IS_COMMON, NULL, "LARGE_COMMON", 0);
8889
8890 /* Return TRUE if 2 section types are compatible. */
8891
8892 bfd_boolean
8893 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
8894 bfd *bbfd, const asection *bsec)
8895 {
8896 if (asec == NULL
8897 || bsec == NULL
8898 || abfd->xvec->flavour != bfd_target_elf_flavour
8899 || bbfd->xvec->flavour != bfd_target_elf_flavour)
8900 return TRUE;
8901
8902 return elf_section_type (asec) == elf_section_type (bsec);
8903 }