* elf.c (_bfd_elf_init_private_section_data): Don't change
[binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
21
22 /*
23 SECTION
24 ELF backends
25
26 BFD support for ELF formats is being worked on.
27 Currently, the best supported back ends are for sparc and i386
28 (running svr4 or Solaris 2).
29
30 Documentation of the internals of the support code still needs
31 to be written. The code is changing quickly enough that we
32 haven't bothered yet. */
33
34 /* For sparc64-cross-sparc32. */
35 #define _SYSCALL32
36 #include "bfd.h"
37 #include "sysdep.h"
38 #include "bfdlink.h"
39 #include "libbfd.h"
40 #define ARCH_SIZE 0
41 #include "elf-bfd.h"
42 #include "libiberty.h"
43
44 static int elf_sort_sections (const void *, const void *);
45 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
46 static bfd_boolean prep_headers (bfd *);
47 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
48 static bfd_boolean elfcore_read_notes (bfd *, file_ptr, bfd_size_type) ;
49
50 /* Swap version information in and out. The version information is
51 currently size independent. If that ever changes, this code will
52 need to move into elfcode.h. */
53
54 /* Swap in a Verdef structure. */
55
56 void
57 _bfd_elf_swap_verdef_in (bfd *abfd,
58 const Elf_External_Verdef *src,
59 Elf_Internal_Verdef *dst)
60 {
61 dst->vd_version = H_GET_16 (abfd, src->vd_version);
62 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
63 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
64 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
65 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
66 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
67 dst->vd_next = H_GET_32 (abfd, src->vd_next);
68 }
69
70 /* Swap out a Verdef structure. */
71
72 void
73 _bfd_elf_swap_verdef_out (bfd *abfd,
74 const Elf_Internal_Verdef *src,
75 Elf_External_Verdef *dst)
76 {
77 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
78 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
79 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
80 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
81 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
82 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
83 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
84 }
85
86 /* Swap in a Verdaux structure. */
87
88 void
89 _bfd_elf_swap_verdaux_in (bfd *abfd,
90 const Elf_External_Verdaux *src,
91 Elf_Internal_Verdaux *dst)
92 {
93 dst->vda_name = H_GET_32 (abfd, src->vda_name);
94 dst->vda_next = H_GET_32 (abfd, src->vda_next);
95 }
96
97 /* Swap out a Verdaux structure. */
98
99 void
100 _bfd_elf_swap_verdaux_out (bfd *abfd,
101 const Elf_Internal_Verdaux *src,
102 Elf_External_Verdaux *dst)
103 {
104 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
105 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
106 }
107
108 /* Swap in a Verneed structure. */
109
110 void
111 _bfd_elf_swap_verneed_in (bfd *abfd,
112 const Elf_External_Verneed *src,
113 Elf_Internal_Verneed *dst)
114 {
115 dst->vn_version = H_GET_16 (abfd, src->vn_version);
116 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
117 dst->vn_file = H_GET_32 (abfd, src->vn_file);
118 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
119 dst->vn_next = H_GET_32 (abfd, src->vn_next);
120 }
121
122 /* Swap out a Verneed structure. */
123
124 void
125 _bfd_elf_swap_verneed_out (bfd *abfd,
126 const Elf_Internal_Verneed *src,
127 Elf_External_Verneed *dst)
128 {
129 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
130 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
131 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
132 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
133 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
134 }
135
136 /* Swap in a Vernaux structure. */
137
138 void
139 _bfd_elf_swap_vernaux_in (bfd *abfd,
140 const Elf_External_Vernaux *src,
141 Elf_Internal_Vernaux *dst)
142 {
143 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
144 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
145 dst->vna_other = H_GET_16 (abfd, src->vna_other);
146 dst->vna_name = H_GET_32 (abfd, src->vna_name);
147 dst->vna_next = H_GET_32 (abfd, src->vna_next);
148 }
149
150 /* Swap out a Vernaux structure. */
151
152 void
153 _bfd_elf_swap_vernaux_out (bfd *abfd,
154 const Elf_Internal_Vernaux *src,
155 Elf_External_Vernaux *dst)
156 {
157 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
158 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
159 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
160 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
161 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
162 }
163
164 /* Swap in a Versym structure. */
165
166 void
167 _bfd_elf_swap_versym_in (bfd *abfd,
168 const Elf_External_Versym *src,
169 Elf_Internal_Versym *dst)
170 {
171 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
172 }
173
174 /* Swap out a Versym structure. */
175
176 void
177 _bfd_elf_swap_versym_out (bfd *abfd,
178 const Elf_Internal_Versym *src,
179 Elf_External_Versym *dst)
180 {
181 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
182 }
183
184 /* Standard ELF hash function. Do not change this function; you will
185 cause invalid hash tables to be generated. */
186
187 unsigned long
188 bfd_elf_hash (const char *namearg)
189 {
190 const unsigned char *name = (const unsigned char *) namearg;
191 unsigned long h = 0;
192 unsigned long g;
193 int ch;
194
195 while ((ch = *name++) != '\0')
196 {
197 h = (h << 4) + ch;
198 if ((g = (h & 0xf0000000)) != 0)
199 {
200 h ^= g >> 24;
201 /* The ELF ABI says `h &= ~g', but this is equivalent in
202 this case and on some machines one insn instead of two. */
203 h ^= g;
204 }
205 }
206 return h & 0xffffffff;
207 }
208
209 bfd_boolean
210 bfd_elf_mkobject (bfd *abfd)
211 {
212 /* This just does initialization. */
213 /* coff_mkobject zalloc's space for tdata.coff_obj_data ... */
214 elf_tdata (abfd) = bfd_zalloc (abfd, sizeof (struct elf_obj_tdata));
215 if (elf_tdata (abfd) == 0)
216 return FALSE;
217 /* Since everything is done at close time, do we need any
218 initialization? */
219
220 return TRUE;
221 }
222
223 bfd_boolean
224 bfd_elf_mkcorefile (bfd *abfd)
225 {
226 /* I think this can be done just like an object file. */
227 return bfd_elf_mkobject (abfd);
228 }
229
230 char *
231 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
232 {
233 Elf_Internal_Shdr **i_shdrp;
234 bfd_byte *shstrtab = NULL;
235 file_ptr offset;
236 bfd_size_type shstrtabsize;
237
238 i_shdrp = elf_elfsections (abfd);
239 if (i_shdrp == 0 || i_shdrp[shindex] == 0)
240 return NULL;
241
242 shstrtab = i_shdrp[shindex]->contents;
243 if (shstrtab == NULL)
244 {
245 /* No cached one, attempt to read, and cache what we read. */
246 offset = i_shdrp[shindex]->sh_offset;
247 shstrtabsize = i_shdrp[shindex]->sh_size;
248
249 /* Allocate and clear an extra byte at the end, to prevent crashes
250 in case the string table is not terminated. */
251 if (shstrtabsize + 1 == 0
252 || (shstrtab = bfd_alloc (abfd, shstrtabsize + 1)) == NULL
253 || bfd_seek (abfd, offset, SEEK_SET) != 0)
254 shstrtab = NULL;
255 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
256 {
257 if (bfd_get_error () != bfd_error_system_call)
258 bfd_set_error (bfd_error_file_truncated);
259 shstrtab = NULL;
260 }
261 else
262 shstrtab[shstrtabsize] = '\0';
263 i_shdrp[shindex]->contents = shstrtab;
264 }
265 return (char *) shstrtab;
266 }
267
268 char *
269 bfd_elf_string_from_elf_section (bfd *abfd,
270 unsigned int shindex,
271 unsigned int strindex)
272 {
273 Elf_Internal_Shdr *hdr;
274
275 if (strindex == 0)
276 return "";
277
278 hdr = elf_elfsections (abfd)[shindex];
279
280 if (hdr->contents == NULL
281 && bfd_elf_get_str_section (abfd, shindex) == NULL)
282 return NULL;
283
284 if (strindex >= hdr->sh_size)
285 {
286 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
287 (*_bfd_error_handler)
288 (_("%B: invalid string offset %u >= %lu for section `%s'"),
289 abfd, strindex, (unsigned long) hdr->sh_size,
290 (shindex == shstrndx && strindex == hdr->sh_name
291 ? ".shstrtab"
292 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
293 return "";
294 }
295
296 return ((char *) hdr->contents) + strindex;
297 }
298
299 /* Read and convert symbols to internal format.
300 SYMCOUNT specifies the number of symbols to read, starting from
301 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
302 are non-NULL, they are used to store the internal symbols, external
303 symbols, and symbol section index extensions, respectively. */
304
305 Elf_Internal_Sym *
306 bfd_elf_get_elf_syms (bfd *ibfd,
307 Elf_Internal_Shdr *symtab_hdr,
308 size_t symcount,
309 size_t symoffset,
310 Elf_Internal_Sym *intsym_buf,
311 void *extsym_buf,
312 Elf_External_Sym_Shndx *extshndx_buf)
313 {
314 Elf_Internal_Shdr *shndx_hdr;
315 void *alloc_ext;
316 const bfd_byte *esym;
317 Elf_External_Sym_Shndx *alloc_extshndx;
318 Elf_External_Sym_Shndx *shndx;
319 Elf_Internal_Sym *isym;
320 Elf_Internal_Sym *isymend;
321 const struct elf_backend_data *bed;
322 size_t extsym_size;
323 bfd_size_type amt;
324 file_ptr pos;
325
326 if (symcount == 0)
327 return intsym_buf;
328
329 /* Normal syms might have section extension entries. */
330 shndx_hdr = NULL;
331 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
332 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
333
334 /* Read the symbols. */
335 alloc_ext = NULL;
336 alloc_extshndx = NULL;
337 bed = get_elf_backend_data (ibfd);
338 extsym_size = bed->s->sizeof_sym;
339 amt = symcount * extsym_size;
340 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
341 if (extsym_buf == NULL)
342 {
343 alloc_ext = bfd_malloc2 (symcount, extsym_size);
344 extsym_buf = alloc_ext;
345 }
346 if (extsym_buf == NULL
347 || bfd_seek (ibfd, pos, SEEK_SET) != 0
348 || bfd_bread (extsym_buf, amt, ibfd) != amt)
349 {
350 intsym_buf = NULL;
351 goto out;
352 }
353
354 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
355 extshndx_buf = NULL;
356 else
357 {
358 amt = symcount * sizeof (Elf_External_Sym_Shndx);
359 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
360 if (extshndx_buf == NULL)
361 {
362 alloc_extshndx = bfd_malloc2 (symcount,
363 sizeof (Elf_External_Sym_Shndx));
364 extshndx_buf = alloc_extshndx;
365 }
366 if (extshndx_buf == NULL
367 || bfd_seek (ibfd, pos, SEEK_SET) != 0
368 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
369 {
370 intsym_buf = NULL;
371 goto out;
372 }
373 }
374
375 if (intsym_buf == NULL)
376 {
377 intsym_buf = bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
378 if (intsym_buf == NULL)
379 goto out;
380 }
381
382 /* Convert the symbols to internal form. */
383 isymend = intsym_buf + symcount;
384 for (esym = extsym_buf, isym = intsym_buf, shndx = extshndx_buf;
385 isym < isymend;
386 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
387 (*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym);
388
389 out:
390 if (alloc_ext != NULL)
391 free (alloc_ext);
392 if (alloc_extshndx != NULL)
393 free (alloc_extshndx);
394
395 return intsym_buf;
396 }
397
398 /* Look up a symbol name. */
399 const char *
400 bfd_elf_sym_name (bfd *abfd,
401 Elf_Internal_Shdr *symtab_hdr,
402 Elf_Internal_Sym *isym,
403 asection *sym_sec)
404 {
405 const char *name;
406 unsigned int iname = isym->st_name;
407 unsigned int shindex = symtab_hdr->sh_link;
408
409 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
410 /* Check for a bogus st_shndx to avoid crashing. */
411 && isym->st_shndx < elf_numsections (abfd)
412 && !(isym->st_shndx >= SHN_LORESERVE && isym->st_shndx <= SHN_HIRESERVE))
413 {
414 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
415 shindex = elf_elfheader (abfd)->e_shstrndx;
416 }
417
418 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
419 if (name == NULL)
420 name = "(null)";
421 else if (sym_sec && *name == '\0')
422 name = bfd_section_name (abfd, sym_sec);
423
424 return name;
425 }
426
427 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
428 sections. The first element is the flags, the rest are section
429 pointers. */
430
431 typedef union elf_internal_group {
432 Elf_Internal_Shdr *shdr;
433 unsigned int flags;
434 } Elf_Internal_Group;
435
436 /* Return the name of the group signature symbol. Why isn't the
437 signature just a string? */
438
439 static const char *
440 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
441 {
442 Elf_Internal_Shdr *hdr;
443 unsigned char esym[sizeof (Elf64_External_Sym)];
444 Elf_External_Sym_Shndx eshndx;
445 Elf_Internal_Sym isym;
446
447 /* First we need to ensure the symbol table is available. Make sure
448 that it is a symbol table section. */
449 hdr = elf_elfsections (abfd) [ghdr->sh_link];
450 if (hdr->sh_type != SHT_SYMTAB
451 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
452 return NULL;
453
454 /* Go read the symbol. */
455 hdr = &elf_tdata (abfd)->symtab_hdr;
456 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
457 &isym, esym, &eshndx) == NULL)
458 return NULL;
459
460 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
461 }
462
463 /* Set next_in_group list pointer, and group name for NEWSECT. */
464
465 static bfd_boolean
466 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
467 {
468 unsigned int num_group = elf_tdata (abfd)->num_group;
469
470 /* If num_group is zero, read in all SHT_GROUP sections. The count
471 is set to -1 if there are no SHT_GROUP sections. */
472 if (num_group == 0)
473 {
474 unsigned int i, shnum;
475
476 /* First count the number of groups. If we have a SHT_GROUP
477 section with just a flag word (ie. sh_size is 4), ignore it. */
478 shnum = elf_numsections (abfd);
479 num_group = 0;
480 for (i = 0; i < shnum; i++)
481 {
482 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
483 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
484 num_group += 1;
485 }
486
487 if (num_group == 0)
488 {
489 num_group = (unsigned) -1;
490 elf_tdata (abfd)->num_group = num_group;
491 }
492 else
493 {
494 /* We keep a list of elf section headers for group sections,
495 so we can find them quickly. */
496 bfd_size_type amt;
497
498 elf_tdata (abfd)->num_group = num_group;
499 elf_tdata (abfd)->group_sect_ptr
500 = bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
501 if (elf_tdata (abfd)->group_sect_ptr == NULL)
502 return FALSE;
503
504 num_group = 0;
505 for (i = 0; i < shnum; i++)
506 {
507 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
508 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
509 {
510 unsigned char *src;
511 Elf_Internal_Group *dest;
512
513 /* Add to list of sections. */
514 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
515 num_group += 1;
516
517 /* Read the raw contents. */
518 BFD_ASSERT (sizeof (*dest) >= 4);
519 amt = shdr->sh_size * sizeof (*dest) / 4;
520 shdr->contents = bfd_alloc2 (abfd, shdr->sh_size,
521 sizeof (*dest) / 4);
522 if (shdr->contents == NULL
523 || bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
524 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
525 != shdr->sh_size))
526 return FALSE;
527
528 /* Translate raw contents, a flag word followed by an
529 array of elf section indices all in target byte order,
530 to the flag word followed by an array of elf section
531 pointers. */
532 src = shdr->contents + shdr->sh_size;
533 dest = (Elf_Internal_Group *) (shdr->contents + amt);
534 while (1)
535 {
536 unsigned int idx;
537
538 src -= 4;
539 --dest;
540 idx = H_GET_32 (abfd, src);
541 if (src == shdr->contents)
542 {
543 dest->flags = idx;
544 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
545 shdr->bfd_section->flags
546 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
547 break;
548 }
549 if (idx >= shnum)
550 {
551 ((*_bfd_error_handler)
552 (_("%B: invalid SHT_GROUP entry"), abfd));
553 idx = 0;
554 }
555 dest->shdr = elf_elfsections (abfd)[idx];
556 }
557 }
558 }
559 }
560 }
561
562 if (num_group != (unsigned) -1)
563 {
564 unsigned int i;
565
566 for (i = 0; i < num_group; i++)
567 {
568 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
569 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
570 unsigned int n_elt = shdr->sh_size / 4;
571
572 /* Look through this group's sections to see if current
573 section is a member. */
574 while (--n_elt != 0)
575 if ((++idx)->shdr == hdr)
576 {
577 asection *s = NULL;
578
579 /* We are a member of this group. Go looking through
580 other members to see if any others are linked via
581 next_in_group. */
582 idx = (Elf_Internal_Group *) shdr->contents;
583 n_elt = shdr->sh_size / 4;
584 while (--n_elt != 0)
585 if ((s = (++idx)->shdr->bfd_section) != NULL
586 && elf_next_in_group (s) != NULL)
587 break;
588 if (n_elt != 0)
589 {
590 /* Snarf the group name from other member, and
591 insert current section in circular list. */
592 elf_group_name (newsect) = elf_group_name (s);
593 elf_next_in_group (newsect) = elf_next_in_group (s);
594 elf_next_in_group (s) = newsect;
595 }
596 else
597 {
598 const char *gname;
599
600 gname = group_signature (abfd, shdr);
601 if (gname == NULL)
602 return FALSE;
603 elf_group_name (newsect) = gname;
604
605 /* Start a circular list with one element. */
606 elf_next_in_group (newsect) = newsect;
607 }
608
609 /* If the group section has been created, point to the
610 new member. */
611 if (shdr->bfd_section != NULL)
612 elf_next_in_group (shdr->bfd_section) = newsect;
613
614 i = num_group - 1;
615 break;
616 }
617 }
618 }
619
620 if (elf_group_name (newsect) == NULL)
621 {
622 (*_bfd_error_handler) (_("%B: no group info for section %A"),
623 abfd, newsect);
624 }
625 return TRUE;
626 }
627
628 bfd_boolean
629 _bfd_elf_setup_sections (bfd *abfd)
630 {
631 unsigned int i;
632 unsigned int num_group = elf_tdata (abfd)->num_group;
633 bfd_boolean result = TRUE;
634 asection *s;
635
636 /* Process SHF_LINK_ORDER. */
637 for (s = abfd->sections; s != NULL; s = s->next)
638 {
639 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
640 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
641 {
642 unsigned int elfsec = this_hdr->sh_link;
643 /* FIXME: The old Intel compiler and old strip/objcopy may
644 not set the sh_link or sh_info fields. Hence we could
645 get the situation where elfsec is 0. */
646 if (elfsec == 0)
647 {
648 const struct elf_backend_data *bed
649 = get_elf_backend_data (abfd);
650 if (bed->link_order_error_handler)
651 bed->link_order_error_handler
652 (_("%B: warning: sh_link not set for section `%A'"),
653 abfd, s);
654 }
655 else
656 {
657 asection *link;
658
659 this_hdr = elf_elfsections (abfd)[elfsec];
660
661 /* PR 1991, 2008:
662 Some strip/objcopy may leave an incorrect value in
663 sh_link. We don't want to proceed. */
664 link = this_hdr->bfd_section;
665 if (link == NULL)
666 {
667 (*_bfd_error_handler)
668 (_("%B: sh_link [%d] in section `%A' is incorrect"),
669 s->owner, s, elfsec);
670 result = FALSE;
671 }
672
673 elf_linked_to_section (s) = link;
674 }
675 }
676 }
677
678 /* Process section groups. */
679 if (num_group == (unsigned) -1)
680 return result;
681
682 for (i = 0; i < num_group; i++)
683 {
684 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
685 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
686 unsigned int n_elt = shdr->sh_size / 4;
687
688 while (--n_elt != 0)
689 if ((++idx)->shdr->bfd_section)
690 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
691 else if (idx->shdr->sh_type == SHT_RELA
692 || idx->shdr->sh_type == SHT_REL)
693 /* We won't include relocation sections in section groups in
694 output object files. We adjust the group section size here
695 so that relocatable link will work correctly when
696 relocation sections are in section group in input object
697 files. */
698 shdr->bfd_section->size -= 4;
699 else
700 {
701 /* There are some unknown sections in the group. */
702 (*_bfd_error_handler)
703 (_("%B: unknown [%d] section `%s' in group [%s]"),
704 abfd,
705 (unsigned int) idx->shdr->sh_type,
706 bfd_elf_string_from_elf_section (abfd,
707 (elf_elfheader (abfd)
708 ->e_shstrndx),
709 idx->shdr->sh_name),
710 shdr->bfd_section->name);
711 result = FALSE;
712 }
713 }
714 return result;
715 }
716
717 bfd_boolean
718 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
719 {
720 return elf_next_in_group (sec) != NULL;
721 }
722
723 /* Make a BFD section from an ELF section. We store a pointer to the
724 BFD section in the bfd_section field of the header. */
725
726 bfd_boolean
727 _bfd_elf_make_section_from_shdr (bfd *abfd,
728 Elf_Internal_Shdr *hdr,
729 const char *name,
730 int shindex)
731 {
732 asection *newsect;
733 flagword flags;
734 const struct elf_backend_data *bed;
735
736 if (hdr->bfd_section != NULL)
737 {
738 BFD_ASSERT (strcmp (name,
739 bfd_get_section_name (abfd, hdr->bfd_section)) == 0);
740 return TRUE;
741 }
742
743 newsect = bfd_make_section_anyway (abfd, name);
744 if (newsect == NULL)
745 return FALSE;
746
747 hdr->bfd_section = newsect;
748 elf_section_data (newsect)->this_hdr = *hdr;
749 elf_section_data (newsect)->this_idx = shindex;
750
751 /* Always use the real type/flags. */
752 elf_section_type (newsect) = hdr->sh_type;
753 elf_section_flags (newsect) = hdr->sh_flags;
754
755 newsect->filepos = hdr->sh_offset;
756
757 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
758 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
759 || ! bfd_set_section_alignment (abfd, newsect,
760 bfd_log2 ((bfd_vma) hdr->sh_addralign)))
761 return FALSE;
762
763 flags = SEC_NO_FLAGS;
764 if (hdr->sh_type != SHT_NOBITS)
765 flags |= SEC_HAS_CONTENTS;
766 if (hdr->sh_type == SHT_GROUP)
767 flags |= SEC_GROUP | SEC_EXCLUDE;
768 if ((hdr->sh_flags & SHF_ALLOC) != 0)
769 {
770 flags |= SEC_ALLOC;
771 if (hdr->sh_type != SHT_NOBITS)
772 flags |= SEC_LOAD;
773 }
774 if ((hdr->sh_flags & SHF_WRITE) == 0)
775 flags |= SEC_READONLY;
776 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
777 flags |= SEC_CODE;
778 else if ((flags & SEC_LOAD) != 0)
779 flags |= SEC_DATA;
780 if ((hdr->sh_flags & SHF_MERGE) != 0)
781 {
782 flags |= SEC_MERGE;
783 newsect->entsize = hdr->sh_entsize;
784 if ((hdr->sh_flags & SHF_STRINGS) != 0)
785 flags |= SEC_STRINGS;
786 }
787 if (hdr->sh_flags & SHF_GROUP)
788 if (!setup_group (abfd, hdr, newsect))
789 return FALSE;
790 if ((hdr->sh_flags & SHF_TLS) != 0)
791 flags |= SEC_THREAD_LOCAL;
792
793 if ((flags & SEC_ALLOC) == 0)
794 {
795 /* The debugging sections appear to be recognized only by name,
796 not any sort of flag. Their SEC_ALLOC bits are cleared. */
797 static const struct
798 {
799 const char *name;
800 int len;
801 } debug_sections [] =
802 {
803 { "debug", 5 }, /* 'd' */
804 { NULL, 0 }, /* 'e' */
805 { NULL, 0 }, /* 'f' */
806 { "gnu.linkonce.wi.", 17 }, /* 'g' */
807 { NULL, 0 }, /* 'h' */
808 { NULL, 0 }, /* 'i' */
809 { NULL, 0 }, /* 'j' */
810 { NULL, 0 }, /* 'k' */
811 { "line", 4 }, /* 'l' */
812 { NULL, 0 }, /* 'm' */
813 { NULL, 0 }, /* 'n' */
814 { NULL, 0 }, /* 'o' */
815 { NULL, 0 }, /* 'p' */
816 { NULL, 0 }, /* 'q' */
817 { NULL, 0 }, /* 'r' */
818 { "stab", 4 } /* 's' */
819 };
820
821 if (name [0] == '.')
822 {
823 int i = name [1] - 'd';
824 if (i >= 0
825 && i < (int) ARRAY_SIZE (debug_sections)
826 && debug_sections [i].name != NULL
827 && strncmp (&name [1], debug_sections [i].name,
828 debug_sections [i].len) == 0)
829 flags |= SEC_DEBUGGING;
830 }
831 }
832
833 /* As a GNU extension, if the name begins with .gnu.linkonce, we
834 only link a single copy of the section. This is used to support
835 g++. g++ will emit each template expansion in its own section.
836 The symbols will be defined as weak, so that multiple definitions
837 are permitted. The GNU linker extension is to actually discard
838 all but one of the sections. */
839 if (strncmp (name, ".gnu.linkonce", sizeof ".gnu.linkonce" - 1) == 0
840 && elf_next_in_group (newsect) == NULL)
841 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
842
843 bed = get_elf_backend_data (abfd);
844 if (bed->elf_backend_section_flags)
845 if (! bed->elf_backend_section_flags (&flags, hdr))
846 return FALSE;
847
848 if (! bfd_set_section_flags (abfd, newsect, flags))
849 return FALSE;
850
851 if ((flags & SEC_ALLOC) != 0)
852 {
853 Elf_Internal_Phdr *phdr;
854 unsigned int i;
855
856 /* Look through the phdrs to see if we need to adjust the lma.
857 If all the p_paddr fields are zero, we ignore them, since
858 some ELF linkers produce such output. */
859 phdr = elf_tdata (abfd)->phdr;
860 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
861 {
862 if (phdr->p_paddr != 0)
863 break;
864 }
865 if (i < elf_elfheader (abfd)->e_phnum)
866 {
867 phdr = elf_tdata (abfd)->phdr;
868 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
869 {
870 /* This section is part of this segment if its file
871 offset plus size lies within the segment's memory
872 span and, if the section is loaded, the extent of the
873 loaded data lies within the extent of the segment.
874
875 Note - we used to check the p_paddr field as well, and
876 refuse to set the LMA if it was 0. This is wrong
877 though, as a perfectly valid initialised segment can
878 have a p_paddr of zero. Some architectures, eg ARM,
879 place special significance on the address 0 and
880 executables need to be able to have a segment which
881 covers this address. */
882 if (phdr->p_type == PT_LOAD
883 && (bfd_vma) hdr->sh_offset >= phdr->p_offset
884 && (hdr->sh_offset + hdr->sh_size
885 <= phdr->p_offset + phdr->p_memsz)
886 && ((flags & SEC_LOAD) == 0
887 || (hdr->sh_offset + hdr->sh_size
888 <= phdr->p_offset + phdr->p_filesz)))
889 {
890 if ((flags & SEC_LOAD) == 0)
891 newsect->lma = (phdr->p_paddr
892 + hdr->sh_addr - phdr->p_vaddr);
893 else
894 /* We used to use the same adjustment for SEC_LOAD
895 sections, but that doesn't work if the segment
896 is packed with code from multiple VMAs.
897 Instead we calculate the section LMA based on
898 the segment LMA. It is assumed that the
899 segment will contain sections with contiguous
900 LMAs, even if the VMAs are not. */
901 newsect->lma = (phdr->p_paddr
902 + hdr->sh_offset - phdr->p_offset);
903
904 /* With contiguous segments, we can't tell from file
905 offsets whether a section with zero size should
906 be placed at the end of one segment or the
907 beginning of the next. Decide based on vaddr. */
908 if (hdr->sh_addr >= phdr->p_vaddr
909 && (hdr->sh_addr + hdr->sh_size
910 <= phdr->p_vaddr + phdr->p_memsz))
911 break;
912 }
913 }
914 }
915 }
916
917 return TRUE;
918 }
919
920 /*
921 INTERNAL_FUNCTION
922 bfd_elf_find_section
923
924 SYNOPSIS
925 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
926
927 DESCRIPTION
928 Helper functions for GDB to locate the string tables.
929 Since BFD hides string tables from callers, GDB needs to use an
930 internal hook to find them. Sun's .stabstr, in particular,
931 isn't even pointed to by the .stab section, so ordinary
932 mechanisms wouldn't work to find it, even if we had some.
933 */
934
935 struct elf_internal_shdr *
936 bfd_elf_find_section (bfd *abfd, char *name)
937 {
938 Elf_Internal_Shdr **i_shdrp;
939 char *shstrtab;
940 unsigned int max;
941 unsigned int i;
942
943 i_shdrp = elf_elfsections (abfd);
944 if (i_shdrp != NULL)
945 {
946 shstrtab = bfd_elf_get_str_section (abfd,
947 elf_elfheader (abfd)->e_shstrndx);
948 if (shstrtab != NULL)
949 {
950 max = elf_numsections (abfd);
951 for (i = 1; i < max; i++)
952 if (!strcmp (&shstrtab[i_shdrp[i]->sh_name], name))
953 return i_shdrp[i];
954 }
955 }
956 return 0;
957 }
958
959 const char *const bfd_elf_section_type_names[] = {
960 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
961 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
962 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
963 };
964
965 /* ELF relocs are against symbols. If we are producing relocatable
966 output, and the reloc is against an external symbol, and nothing
967 has given us any additional addend, the resulting reloc will also
968 be against the same symbol. In such a case, we don't want to
969 change anything about the way the reloc is handled, since it will
970 all be done at final link time. Rather than put special case code
971 into bfd_perform_relocation, all the reloc types use this howto
972 function. It just short circuits the reloc if producing
973 relocatable output against an external symbol. */
974
975 bfd_reloc_status_type
976 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
977 arelent *reloc_entry,
978 asymbol *symbol,
979 void *data ATTRIBUTE_UNUSED,
980 asection *input_section,
981 bfd *output_bfd,
982 char **error_message ATTRIBUTE_UNUSED)
983 {
984 if (output_bfd != NULL
985 && (symbol->flags & BSF_SECTION_SYM) == 0
986 && (! reloc_entry->howto->partial_inplace
987 || reloc_entry->addend == 0))
988 {
989 reloc_entry->address += input_section->output_offset;
990 return bfd_reloc_ok;
991 }
992
993 return bfd_reloc_continue;
994 }
995 \f
996 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
997
998 static void
999 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
1000 asection *sec)
1001 {
1002 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
1003 sec->sec_info_type = ELF_INFO_TYPE_NONE;
1004 }
1005
1006 /* Finish SHF_MERGE section merging. */
1007
1008 bfd_boolean
1009 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
1010 {
1011 bfd *ibfd;
1012 asection *sec;
1013
1014 if (!is_elf_hash_table (info->hash))
1015 return FALSE;
1016
1017 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
1018 if ((ibfd->flags & DYNAMIC) == 0)
1019 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
1020 if ((sec->flags & SEC_MERGE) != 0
1021 && !bfd_is_abs_section (sec->output_section))
1022 {
1023 struct bfd_elf_section_data *secdata;
1024
1025 secdata = elf_section_data (sec);
1026 if (! _bfd_add_merge_section (abfd,
1027 &elf_hash_table (info)->merge_info,
1028 sec, &secdata->sec_info))
1029 return FALSE;
1030 else if (secdata->sec_info)
1031 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
1032 }
1033
1034 if (elf_hash_table (info)->merge_info != NULL)
1035 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
1036 merge_sections_remove_hook);
1037 return TRUE;
1038 }
1039
1040 void
1041 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
1042 {
1043 sec->output_section = bfd_abs_section_ptr;
1044 sec->output_offset = sec->vma;
1045 if (!is_elf_hash_table (info->hash))
1046 return;
1047
1048 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
1049 }
1050 \f
1051 /* Copy the program header and other data from one object module to
1052 another. */
1053
1054 bfd_boolean
1055 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1056 {
1057 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1058 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1059 return TRUE;
1060
1061 BFD_ASSERT (!elf_flags_init (obfd)
1062 || (elf_elfheader (obfd)->e_flags
1063 == elf_elfheader (ibfd)->e_flags));
1064
1065 elf_gp (obfd) = elf_gp (ibfd);
1066 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1067 elf_flags_init (obfd) = TRUE;
1068 return TRUE;
1069 }
1070
1071 static const char *
1072 get_segment_type (unsigned int p_type)
1073 {
1074 const char *pt;
1075 switch (p_type)
1076 {
1077 case PT_NULL: pt = "NULL"; break;
1078 case PT_LOAD: pt = "LOAD"; break;
1079 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1080 case PT_INTERP: pt = "INTERP"; break;
1081 case PT_NOTE: pt = "NOTE"; break;
1082 case PT_SHLIB: pt = "SHLIB"; break;
1083 case PT_PHDR: pt = "PHDR"; break;
1084 case PT_TLS: pt = "TLS"; break;
1085 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1086 case PT_GNU_STACK: pt = "STACK"; break;
1087 case PT_GNU_RELRO: pt = "RELRO"; break;
1088 default: pt = NULL; break;
1089 }
1090 return pt;
1091 }
1092
1093 /* Print out the program headers. */
1094
1095 bfd_boolean
1096 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1097 {
1098 FILE *f = farg;
1099 Elf_Internal_Phdr *p;
1100 asection *s;
1101 bfd_byte *dynbuf = NULL;
1102
1103 p = elf_tdata (abfd)->phdr;
1104 if (p != NULL)
1105 {
1106 unsigned int i, c;
1107
1108 fprintf (f, _("\nProgram Header:\n"));
1109 c = elf_elfheader (abfd)->e_phnum;
1110 for (i = 0; i < c; i++, p++)
1111 {
1112 const char *pt = get_segment_type (p->p_type);
1113 char buf[20];
1114
1115 if (pt == NULL)
1116 {
1117 sprintf (buf, "0x%lx", p->p_type);
1118 pt = buf;
1119 }
1120 fprintf (f, "%8s off 0x", pt);
1121 bfd_fprintf_vma (abfd, f, p->p_offset);
1122 fprintf (f, " vaddr 0x");
1123 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1124 fprintf (f, " paddr 0x");
1125 bfd_fprintf_vma (abfd, f, p->p_paddr);
1126 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1127 fprintf (f, " filesz 0x");
1128 bfd_fprintf_vma (abfd, f, p->p_filesz);
1129 fprintf (f, " memsz 0x");
1130 bfd_fprintf_vma (abfd, f, p->p_memsz);
1131 fprintf (f, " flags %c%c%c",
1132 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1133 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1134 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1135 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1136 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1137 fprintf (f, "\n");
1138 }
1139 }
1140
1141 s = bfd_get_section_by_name (abfd, ".dynamic");
1142 if (s != NULL)
1143 {
1144 int elfsec;
1145 unsigned long shlink;
1146 bfd_byte *extdyn, *extdynend;
1147 size_t extdynsize;
1148 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1149
1150 fprintf (f, _("\nDynamic Section:\n"));
1151
1152 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1153 goto error_return;
1154
1155 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1156 if (elfsec == -1)
1157 goto error_return;
1158 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1159
1160 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1161 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1162
1163 extdyn = dynbuf;
1164 extdynend = extdyn + s->size;
1165 for (; extdyn < extdynend; extdyn += extdynsize)
1166 {
1167 Elf_Internal_Dyn dyn;
1168 const char *name;
1169 char ab[20];
1170 bfd_boolean stringp;
1171
1172 (*swap_dyn_in) (abfd, extdyn, &dyn);
1173
1174 if (dyn.d_tag == DT_NULL)
1175 break;
1176
1177 stringp = FALSE;
1178 switch (dyn.d_tag)
1179 {
1180 default:
1181 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1182 name = ab;
1183 break;
1184
1185 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1186 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1187 case DT_PLTGOT: name = "PLTGOT"; break;
1188 case DT_HASH: name = "HASH"; break;
1189 case DT_STRTAB: name = "STRTAB"; break;
1190 case DT_SYMTAB: name = "SYMTAB"; break;
1191 case DT_RELA: name = "RELA"; break;
1192 case DT_RELASZ: name = "RELASZ"; break;
1193 case DT_RELAENT: name = "RELAENT"; break;
1194 case DT_STRSZ: name = "STRSZ"; break;
1195 case DT_SYMENT: name = "SYMENT"; break;
1196 case DT_INIT: name = "INIT"; break;
1197 case DT_FINI: name = "FINI"; break;
1198 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1199 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1200 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1201 case DT_REL: name = "REL"; break;
1202 case DT_RELSZ: name = "RELSZ"; break;
1203 case DT_RELENT: name = "RELENT"; break;
1204 case DT_PLTREL: name = "PLTREL"; break;
1205 case DT_DEBUG: name = "DEBUG"; break;
1206 case DT_TEXTREL: name = "TEXTREL"; break;
1207 case DT_JMPREL: name = "JMPREL"; break;
1208 case DT_BIND_NOW: name = "BIND_NOW"; break;
1209 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1210 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1211 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1212 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1213 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1214 case DT_FLAGS: name = "FLAGS"; break;
1215 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1216 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1217 case DT_CHECKSUM: name = "CHECKSUM"; break;
1218 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1219 case DT_MOVEENT: name = "MOVEENT"; break;
1220 case DT_MOVESZ: name = "MOVESZ"; break;
1221 case DT_FEATURE: name = "FEATURE"; break;
1222 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1223 case DT_SYMINSZ: name = "SYMINSZ"; break;
1224 case DT_SYMINENT: name = "SYMINENT"; break;
1225 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1226 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1227 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1228 case DT_PLTPAD: name = "PLTPAD"; break;
1229 case DT_MOVETAB: name = "MOVETAB"; break;
1230 case DT_SYMINFO: name = "SYMINFO"; break;
1231 case DT_RELACOUNT: name = "RELACOUNT"; break;
1232 case DT_RELCOUNT: name = "RELCOUNT"; break;
1233 case DT_FLAGS_1: name = "FLAGS_1"; break;
1234 case DT_VERSYM: name = "VERSYM"; break;
1235 case DT_VERDEF: name = "VERDEF"; break;
1236 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1237 case DT_VERNEED: name = "VERNEED"; break;
1238 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1239 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1240 case DT_USED: name = "USED"; break;
1241 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1242 }
1243
1244 fprintf (f, " %-11s ", name);
1245 if (! stringp)
1246 fprintf (f, "0x%lx", (unsigned long) dyn.d_un.d_val);
1247 else
1248 {
1249 const char *string;
1250 unsigned int tagv = dyn.d_un.d_val;
1251
1252 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1253 if (string == NULL)
1254 goto error_return;
1255 fprintf (f, "%s", string);
1256 }
1257 fprintf (f, "\n");
1258 }
1259
1260 free (dynbuf);
1261 dynbuf = NULL;
1262 }
1263
1264 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1265 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1266 {
1267 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1268 return FALSE;
1269 }
1270
1271 if (elf_dynverdef (abfd) != 0)
1272 {
1273 Elf_Internal_Verdef *t;
1274
1275 fprintf (f, _("\nVersion definitions:\n"));
1276 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1277 {
1278 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1279 t->vd_flags, t->vd_hash,
1280 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1281 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1282 {
1283 Elf_Internal_Verdaux *a;
1284
1285 fprintf (f, "\t");
1286 for (a = t->vd_auxptr->vda_nextptr;
1287 a != NULL;
1288 a = a->vda_nextptr)
1289 fprintf (f, "%s ",
1290 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1291 fprintf (f, "\n");
1292 }
1293 }
1294 }
1295
1296 if (elf_dynverref (abfd) != 0)
1297 {
1298 Elf_Internal_Verneed *t;
1299
1300 fprintf (f, _("\nVersion References:\n"));
1301 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1302 {
1303 Elf_Internal_Vernaux *a;
1304
1305 fprintf (f, _(" required from %s:\n"),
1306 t->vn_filename ? t->vn_filename : "<corrupt>");
1307 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1308 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1309 a->vna_flags, a->vna_other,
1310 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1311 }
1312 }
1313
1314 return TRUE;
1315
1316 error_return:
1317 if (dynbuf != NULL)
1318 free (dynbuf);
1319 return FALSE;
1320 }
1321
1322 /* Display ELF-specific fields of a symbol. */
1323
1324 void
1325 bfd_elf_print_symbol (bfd *abfd,
1326 void *filep,
1327 asymbol *symbol,
1328 bfd_print_symbol_type how)
1329 {
1330 FILE *file = filep;
1331 switch (how)
1332 {
1333 case bfd_print_symbol_name:
1334 fprintf (file, "%s", symbol->name);
1335 break;
1336 case bfd_print_symbol_more:
1337 fprintf (file, "elf ");
1338 bfd_fprintf_vma (abfd, file, symbol->value);
1339 fprintf (file, " %lx", (long) symbol->flags);
1340 break;
1341 case bfd_print_symbol_all:
1342 {
1343 const char *section_name;
1344 const char *name = NULL;
1345 const struct elf_backend_data *bed;
1346 unsigned char st_other;
1347 bfd_vma val;
1348
1349 section_name = symbol->section ? symbol->section->name : "(*none*)";
1350
1351 bed = get_elf_backend_data (abfd);
1352 if (bed->elf_backend_print_symbol_all)
1353 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1354
1355 if (name == NULL)
1356 {
1357 name = symbol->name;
1358 bfd_print_symbol_vandf (abfd, file, symbol);
1359 }
1360
1361 fprintf (file, " %s\t", section_name);
1362 /* Print the "other" value for a symbol. For common symbols,
1363 we've already printed the size; now print the alignment.
1364 For other symbols, we have no specified alignment, and
1365 we've printed the address; now print the size. */
1366 if (bfd_is_com_section (symbol->section))
1367 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1368 else
1369 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1370 bfd_fprintf_vma (abfd, file, val);
1371
1372 /* If we have version information, print it. */
1373 if (elf_tdata (abfd)->dynversym_section != 0
1374 && (elf_tdata (abfd)->dynverdef_section != 0
1375 || elf_tdata (abfd)->dynverref_section != 0))
1376 {
1377 unsigned int vernum;
1378 const char *version_string;
1379
1380 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1381
1382 if (vernum == 0)
1383 version_string = "";
1384 else if (vernum == 1)
1385 version_string = "Base";
1386 else if (vernum <= elf_tdata (abfd)->cverdefs)
1387 version_string =
1388 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1389 else
1390 {
1391 Elf_Internal_Verneed *t;
1392
1393 version_string = "";
1394 for (t = elf_tdata (abfd)->verref;
1395 t != NULL;
1396 t = t->vn_nextref)
1397 {
1398 Elf_Internal_Vernaux *a;
1399
1400 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1401 {
1402 if (a->vna_other == vernum)
1403 {
1404 version_string = a->vna_nodename;
1405 break;
1406 }
1407 }
1408 }
1409 }
1410
1411 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1412 fprintf (file, " %-11s", version_string);
1413 else
1414 {
1415 int i;
1416
1417 fprintf (file, " (%s)", version_string);
1418 for (i = 10 - strlen (version_string); i > 0; --i)
1419 putc (' ', file);
1420 }
1421 }
1422
1423 /* If the st_other field is not zero, print it. */
1424 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1425
1426 switch (st_other)
1427 {
1428 case 0: break;
1429 case STV_INTERNAL: fprintf (file, " .internal"); break;
1430 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1431 case STV_PROTECTED: fprintf (file, " .protected"); break;
1432 default:
1433 /* Some other non-defined flags are also present, so print
1434 everything hex. */
1435 fprintf (file, " 0x%02x", (unsigned int) st_other);
1436 }
1437
1438 fprintf (file, " %s", name);
1439 }
1440 break;
1441 }
1442 }
1443 \f
1444 /* Create an entry in an ELF linker hash table. */
1445
1446 struct bfd_hash_entry *
1447 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1448 struct bfd_hash_table *table,
1449 const char *string)
1450 {
1451 /* Allocate the structure if it has not already been allocated by a
1452 subclass. */
1453 if (entry == NULL)
1454 {
1455 entry = bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
1456 if (entry == NULL)
1457 return entry;
1458 }
1459
1460 /* Call the allocation method of the superclass. */
1461 entry = _bfd_link_hash_newfunc (entry, table, string);
1462 if (entry != NULL)
1463 {
1464 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
1465 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
1466
1467 /* Set local fields. */
1468 ret->indx = -1;
1469 ret->dynindx = -1;
1470 ret->got = htab->init_got_refcount;
1471 ret->plt = htab->init_plt_refcount;
1472 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
1473 - offsetof (struct elf_link_hash_entry, size)));
1474 /* Assume that we have been called by a non-ELF symbol reader.
1475 This flag is then reset by the code which reads an ELF input
1476 file. This ensures that a symbol created by a non-ELF symbol
1477 reader will have the flag set correctly. */
1478 ret->non_elf = 1;
1479 }
1480
1481 return entry;
1482 }
1483
1484 /* Copy data from an indirect symbol to its direct symbol, hiding the
1485 old indirect symbol. Also used for copying flags to a weakdef. */
1486
1487 void
1488 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
1489 struct elf_link_hash_entry *dir,
1490 struct elf_link_hash_entry *ind)
1491 {
1492 struct elf_link_hash_table *htab;
1493
1494 /* Copy down any references that we may have already seen to the
1495 symbol which just became indirect. */
1496
1497 dir->ref_dynamic |= ind->ref_dynamic;
1498 dir->ref_regular |= ind->ref_regular;
1499 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
1500 dir->non_got_ref |= ind->non_got_ref;
1501 dir->needs_plt |= ind->needs_plt;
1502 dir->pointer_equality_needed |= ind->pointer_equality_needed;
1503
1504 if (ind->root.type != bfd_link_hash_indirect)
1505 return;
1506
1507 /* Copy over the global and procedure linkage table refcount entries.
1508 These may have been already set up by a check_relocs routine. */
1509 htab = elf_hash_table (info);
1510 if (ind->got.refcount > htab->init_got_refcount.refcount)
1511 {
1512 if (dir->got.refcount < 0)
1513 dir->got.refcount = 0;
1514 dir->got.refcount += ind->got.refcount;
1515 ind->got.refcount = htab->init_got_refcount.refcount;
1516 }
1517
1518 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
1519 {
1520 if (dir->plt.refcount < 0)
1521 dir->plt.refcount = 0;
1522 dir->plt.refcount += ind->plt.refcount;
1523 ind->plt.refcount = htab->init_plt_refcount.refcount;
1524 }
1525
1526 if (ind->dynindx != -1)
1527 {
1528 if (dir->dynindx != -1)
1529 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
1530 dir->dynindx = ind->dynindx;
1531 dir->dynstr_index = ind->dynstr_index;
1532 ind->dynindx = -1;
1533 ind->dynstr_index = 0;
1534 }
1535 }
1536
1537 void
1538 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
1539 struct elf_link_hash_entry *h,
1540 bfd_boolean force_local)
1541 {
1542 h->plt = elf_hash_table (info)->init_plt_offset;
1543 h->needs_plt = 0;
1544 if (force_local)
1545 {
1546 h->forced_local = 1;
1547 if (h->dynindx != -1)
1548 {
1549 h->dynindx = -1;
1550 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1551 h->dynstr_index);
1552 }
1553 }
1554 }
1555
1556 /* Initialize an ELF linker hash table. */
1557
1558 bfd_boolean
1559 _bfd_elf_link_hash_table_init
1560 (struct elf_link_hash_table *table,
1561 bfd *abfd,
1562 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
1563 struct bfd_hash_table *,
1564 const char *),
1565 unsigned int entsize)
1566 {
1567 bfd_boolean ret;
1568 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
1569
1570 table->dynamic_sections_created = FALSE;
1571 table->dynobj = NULL;
1572 table->init_got_refcount.refcount = can_refcount - 1;
1573 table->init_plt_refcount.refcount = can_refcount - 1;
1574 table->init_got_offset.offset = -(bfd_vma) 1;
1575 table->init_plt_offset.offset = -(bfd_vma) 1;
1576 /* The first dynamic symbol is a dummy. */
1577 table->dynsymcount = 1;
1578 table->dynstr = NULL;
1579 table->bucketcount = 0;
1580 table->needed = NULL;
1581 table->hgot = NULL;
1582 table->merge_info = NULL;
1583 memset (&table->stab_info, 0, sizeof (table->stab_info));
1584 memset (&table->eh_info, 0, sizeof (table->eh_info));
1585 table->dynlocal = NULL;
1586 table->runpath = NULL;
1587 table->tls_sec = NULL;
1588 table->tls_size = 0;
1589 table->loaded = NULL;
1590 table->is_relocatable_executable = FALSE;
1591
1592 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
1593 table->root.type = bfd_link_elf_hash_table;
1594
1595 return ret;
1596 }
1597
1598 /* Create an ELF linker hash table. */
1599
1600 struct bfd_link_hash_table *
1601 _bfd_elf_link_hash_table_create (bfd *abfd)
1602 {
1603 struct elf_link_hash_table *ret;
1604 bfd_size_type amt = sizeof (struct elf_link_hash_table);
1605
1606 ret = bfd_malloc (amt);
1607 if (ret == NULL)
1608 return NULL;
1609
1610 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
1611 sizeof (struct elf_link_hash_entry)))
1612 {
1613 free (ret);
1614 return NULL;
1615 }
1616
1617 return &ret->root;
1618 }
1619
1620 /* This is a hook for the ELF emulation code in the generic linker to
1621 tell the backend linker what file name to use for the DT_NEEDED
1622 entry for a dynamic object. */
1623
1624 void
1625 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
1626 {
1627 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1628 && bfd_get_format (abfd) == bfd_object)
1629 elf_dt_name (abfd) = name;
1630 }
1631
1632 int
1633 bfd_elf_get_dyn_lib_class (bfd *abfd)
1634 {
1635 int lib_class;
1636 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1637 && bfd_get_format (abfd) == bfd_object)
1638 lib_class = elf_dyn_lib_class (abfd);
1639 else
1640 lib_class = 0;
1641 return lib_class;
1642 }
1643
1644 void
1645 bfd_elf_set_dyn_lib_class (bfd *abfd, int lib_class)
1646 {
1647 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1648 && bfd_get_format (abfd) == bfd_object)
1649 elf_dyn_lib_class (abfd) = lib_class;
1650 }
1651
1652 /* Get the list of DT_NEEDED entries for a link. This is a hook for
1653 the linker ELF emulation code. */
1654
1655 struct bfd_link_needed_list *
1656 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
1657 struct bfd_link_info *info)
1658 {
1659 if (! is_elf_hash_table (info->hash))
1660 return NULL;
1661 return elf_hash_table (info)->needed;
1662 }
1663
1664 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
1665 hook for the linker ELF emulation code. */
1666
1667 struct bfd_link_needed_list *
1668 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
1669 struct bfd_link_info *info)
1670 {
1671 if (! is_elf_hash_table (info->hash))
1672 return NULL;
1673 return elf_hash_table (info)->runpath;
1674 }
1675
1676 /* Get the name actually used for a dynamic object for a link. This
1677 is the SONAME entry if there is one. Otherwise, it is the string
1678 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
1679
1680 const char *
1681 bfd_elf_get_dt_soname (bfd *abfd)
1682 {
1683 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1684 && bfd_get_format (abfd) == bfd_object)
1685 return elf_dt_name (abfd);
1686 return NULL;
1687 }
1688
1689 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
1690 the ELF linker emulation code. */
1691
1692 bfd_boolean
1693 bfd_elf_get_bfd_needed_list (bfd *abfd,
1694 struct bfd_link_needed_list **pneeded)
1695 {
1696 asection *s;
1697 bfd_byte *dynbuf = NULL;
1698 int elfsec;
1699 unsigned long shlink;
1700 bfd_byte *extdyn, *extdynend;
1701 size_t extdynsize;
1702 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1703
1704 *pneeded = NULL;
1705
1706 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
1707 || bfd_get_format (abfd) != bfd_object)
1708 return TRUE;
1709
1710 s = bfd_get_section_by_name (abfd, ".dynamic");
1711 if (s == NULL || s->size == 0)
1712 return TRUE;
1713
1714 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1715 goto error_return;
1716
1717 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1718 if (elfsec == -1)
1719 goto error_return;
1720
1721 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1722
1723 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1724 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1725
1726 extdyn = dynbuf;
1727 extdynend = extdyn + s->size;
1728 for (; extdyn < extdynend; extdyn += extdynsize)
1729 {
1730 Elf_Internal_Dyn dyn;
1731
1732 (*swap_dyn_in) (abfd, extdyn, &dyn);
1733
1734 if (dyn.d_tag == DT_NULL)
1735 break;
1736
1737 if (dyn.d_tag == DT_NEEDED)
1738 {
1739 const char *string;
1740 struct bfd_link_needed_list *l;
1741 unsigned int tagv = dyn.d_un.d_val;
1742 bfd_size_type amt;
1743
1744 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1745 if (string == NULL)
1746 goto error_return;
1747
1748 amt = sizeof *l;
1749 l = bfd_alloc (abfd, amt);
1750 if (l == NULL)
1751 goto error_return;
1752
1753 l->by = abfd;
1754 l->name = string;
1755 l->next = *pneeded;
1756 *pneeded = l;
1757 }
1758 }
1759
1760 free (dynbuf);
1761
1762 return TRUE;
1763
1764 error_return:
1765 if (dynbuf != NULL)
1766 free (dynbuf);
1767 return FALSE;
1768 }
1769 \f
1770 /* Allocate an ELF string table--force the first byte to be zero. */
1771
1772 struct bfd_strtab_hash *
1773 _bfd_elf_stringtab_init (void)
1774 {
1775 struct bfd_strtab_hash *ret;
1776
1777 ret = _bfd_stringtab_init ();
1778 if (ret != NULL)
1779 {
1780 bfd_size_type loc;
1781
1782 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1783 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1784 if (loc == (bfd_size_type) -1)
1785 {
1786 _bfd_stringtab_free (ret);
1787 ret = NULL;
1788 }
1789 }
1790 return ret;
1791 }
1792 \f
1793 /* ELF .o/exec file reading */
1794
1795 /* Create a new bfd section from an ELF section header. */
1796
1797 bfd_boolean
1798 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1799 {
1800 Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[shindex];
1801 Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
1802 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1803 const char *name;
1804
1805 name = bfd_elf_string_from_elf_section (abfd,
1806 elf_elfheader (abfd)->e_shstrndx,
1807 hdr->sh_name);
1808 if (name == NULL)
1809 return FALSE;
1810
1811 switch (hdr->sh_type)
1812 {
1813 case SHT_NULL:
1814 /* Inactive section. Throw it away. */
1815 return TRUE;
1816
1817 case SHT_PROGBITS: /* Normal section with contents. */
1818 case SHT_NOBITS: /* .bss section. */
1819 case SHT_HASH: /* .hash section. */
1820 case SHT_NOTE: /* .note section. */
1821 case SHT_INIT_ARRAY: /* .init_array section. */
1822 case SHT_FINI_ARRAY: /* .fini_array section. */
1823 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1824 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1825 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1826
1827 case SHT_DYNAMIC: /* Dynamic linking information. */
1828 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1829 return FALSE;
1830 if (hdr->sh_link > elf_numsections (abfd)
1831 || elf_elfsections (abfd)[hdr->sh_link] == NULL)
1832 return FALSE;
1833 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1834 {
1835 Elf_Internal_Shdr *dynsymhdr;
1836
1837 /* The shared libraries distributed with hpux11 have a bogus
1838 sh_link field for the ".dynamic" section. Find the
1839 string table for the ".dynsym" section instead. */
1840 if (elf_dynsymtab (abfd) != 0)
1841 {
1842 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1843 hdr->sh_link = dynsymhdr->sh_link;
1844 }
1845 else
1846 {
1847 unsigned int i, num_sec;
1848
1849 num_sec = elf_numsections (abfd);
1850 for (i = 1; i < num_sec; i++)
1851 {
1852 dynsymhdr = elf_elfsections (abfd)[i];
1853 if (dynsymhdr->sh_type == SHT_DYNSYM)
1854 {
1855 hdr->sh_link = dynsymhdr->sh_link;
1856 break;
1857 }
1858 }
1859 }
1860 }
1861 break;
1862
1863 case SHT_SYMTAB: /* A symbol table */
1864 if (elf_onesymtab (abfd) == shindex)
1865 return TRUE;
1866
1867 if (hdr->sh_entsize != bed->s->sizeof_sym)
1868 return FALSE;
1869 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1870 elf_onesymtab (abfd) = shindex;
1871 elf_tdata (abfd)->symtab_hdr = *hdr;
1872 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1873 abfd->flags |= HAS_SYMS;
1874
1875 /* Sometimes a shared object will map in the symbol table. If
1876 SHF_ALLOC is set, and this is a shared object, then we also
1877 treat this section as a BFD section. We can not base the
1878 decision purely on SHF_ALLOC, because that flag is sometimes
1879 set in a relocatable object file, which would confuse the
1880 linker. */
1881 if ((hdr->sh_flags & SHF_ALLOC) != 0
1882 && (abfd->flags & DYNAMIC) != 0
1883 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1884 shindex))
1885 return FALSE;
1886
1887 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1888 can't read symbols without that section loaded as well. It
1889 is most likely specified by the next section header. */
1890 if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
1891 {
1892 unsigned int i, num_sec;
1893
1894 num_sec = elf_numsections (abfd);
1895 for (i = shindex + 1; i < num_sec; i++)
1896 {
1897 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1898 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1899 && hdr2->sh_link == shindex)
1900 break;
1901 }
1902 if (i == num_sec)
1903 for (i = 1; i < shindex; i++)
1904 {
1905 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1906 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1907 && hdr2->sh_link == shindex)
1908 break;
1909 }
1910 if (i != shindex)
1911 return bfd_section_from_shdr (abfd, i);
1912 }
1913 return TRUE;
1914
1915 case SHT_DYNSYM: /* A dynamic symbol table */
1916 if (elf_dynsymtab (abfd) == shindex)
1917 return TRUE;
1918
1919 if (hdr->sh_entsize != bed->s->sizeof_sym)
1920 return FALSE;
1921 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1922 elf_dynsymtab (abfd) = shindex;
1923 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1924 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1925 abfd->flags |= HAS_SYMS;
1926
1927 /* Besides being a symbol table, we also treat this as a regular
1928 section, so that objcopy can handle it. */
1929 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1930
1931 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1932 if (elf_symtab_shndx (abfd) == shindex)
1933 return TRUE;
1934
1935 BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
1936 elf_symtab_shndx (abfd) = shindex;
1937 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1938 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1939 return TRUE;
1940
1941 case SHT_STRTAB: /* A string table */
1942 if (hdr->bfd_section != NULL)
1943 return TRUE;
1944 if (ehdr->e_shstrndx == shindex)
1945 {
1946 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1947 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1948 return TRUE;
1949 }
1950 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
1951 {
1952 symtab_strtab:
1953 elf_tdata (abfd)->strtab_hdr = *hdr;
1954 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
1955 return TRUE;
1956 }
1957 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
1958 {
1959 dynsymtab_strtab:
1960 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1961 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
1962 elf_elfsections (abfd)[shindex] = hdr;
1963 /* We also treat this as a regular section, so that objcopy
1964 can handle it. */
1965 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1966 shindex);
1967 }
1968
1969 /* If the string table isn't one of the above, then treat it as a
1970 regular section. We need to scan all the headers to be sure,
1971 just in case this strtab section appeared before the above. */
1972 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
1973 {
1974 unsigned int i, num_sec;
1975
1976 num_sec = elf_numsections (abfd);
1977 for (i = 1; i < num_sec; i++)
1978 {
1979 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1980 if (hdr2->sh_link == shindex)
1981 {
1982 /* Prevent endless recursion on broken objects. */
1983 if (i == shindex)
1984 return FALSE;
1985 if (! bfd_section_from_shdr (abfd, i))
1986 return FALSE;
1987 if (elf_onesymtab (abfd) == i)
1988 goto symtab_strtab;
1989 if (elf_dynsymtab (abfd) == i)
1990 goto dynsymtab_strtab;
1991 }
1992 }
1993 }
1994 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1995
1996 case SHT_REL:
1997 case SHT_RELA:
1998 /* *These* do a lot of work -- but build no sections! */
1999 {
2000 asection *target_sect;
2001 Elf_Internal_Shdr *hdr2;
2002 unsigned int num_sec = elf_numsections (abfd);
2003
2004 if (hdr->sh_entsize
2005 != (bfd_size_type) (hdr->sh_type == SHT_REL
2006 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
2007 return FALSE;
2008
2009 /* Check for a bogus link to avoid crashing. */
2010 if ((hdr->sh_link >= SHN_LORESERVE && hdr->sh_link <= SHN_HIRESERVE)
2011 || hdr->sh_link >= num_sec)
2012 {
2013 ((*_bfd_error_handler)
2014 (_("%B: invalid link %lu for reloc section %s (index %u)"),
2015 abfd, hdr->sh_link, name, shindex));
2016 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2017 shindex);
2018 }
2019
2020 /* For some incomprehensible reason Oracle distributes
2021 libraries for Solaris in which some of the objects have
2022 bogus sh_link fields. It would be nice if we could just
2023 reject them, but, unfortunately, some people need to use
2024 them. We scan through the section headers; if we find only
2025 one suitable symbol table, we clobber the sh_link to point
2026 to it. I hope this doesn't break anything. */
2027 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
2028 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
2029 {
2030 unsigned int scan;
2031 int found;
2032
2033 found = 0;
2034 for (scan = 1; scan < num_sec; scan++)
2035 {
2036 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
2037 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
2038 {
2039 if (found != 0)
2040 {
2041 found = 0;
2042 break;
2043 }
2044 found = scan;
2045 }
2046 }
2047 if (found != 0)
2048 hdr->sh_link = found;
2049 }
2050
2051 /* Get the symbol table. */
2052 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
2053 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
2054 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
2055 return FALSE;
2056
2057 /* If this reloc section does not use the main symbol table we
2058 don't treat it as a reloc section. BFD can't adequately
2059 represent such a section, so at least for now, we don't
2060 try. We just present it as a normal section. We also
2061 can't use it as a reloc section if it points to the null
2062 section, an invalid section, or another reloc section. */
2063 if (hdr->sh_link != elf_onesymtab (abfd)
2064 || hdr->sh_info == SHN_UNDEF
2065 || (hdr->sh_info >= SHN_LORESERVE && hdr->sh_info <= SHN_HIRESERVE)
2066 || hdr->sh_info >= num_sec
2067 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
2068 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
2069 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2070 shindex);
2071
2072 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
2073 return FALSE;
2074 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
2075 if (target_sect == NULL)
2076 return FALSE;
2077
2078 if ((target_sect->flags & SEC_RELOC) == 0
2079 || target_sect->reloc_count == 0)
2080 hdr2 = &elf_section_data (target_sect)->rel_hdr;
2081 else
2082 {
2083 bfd_size_type amt;
2084 BFD_ASSERT (elf_section_data (target_sect)->rel_hdr2 == NULL);
2085 amt = sizeof (*hdr2);
2086 hdr2 = bfd_alloc (abfd, amt);
2087 elf_section_data (target_sect)->rel_hdr2 = hdr2;
2088 }
2089 *hdr2 = *hdr;
2090 elf_elfsections (abfd)[shindex] = hdr2;
2091 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
2092 target_sect->flags |= SEC_RELOC;
2093 target_sect->relocation = NULL;
2094 target_sect->rel_filepos = hdr->sh_offset;
2095 /* In the section to which the relocations apply, mark whether
2096 its relocations are of the REL or RELA variety. */
2097 if (hdr->sh_size != 0)
2098 target_sect->use_rela_p = hdr->sh_type == SHT_RELA;
2099 abfd->flags |= HAS_RELOC;
2100 return TRUE;
2101 }
2102 break;
2103
2104 case SHT_GNU_verdef:
2105 elf_dynverdef (abfd) = shindex;
2106 elf_tdata (abfd)->dynverdef_hdr = *hdr;
2107 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2108 break;
2109
2110 case SHT_GNU_versym:
2111 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
2112 return FALSE;
2113 elf_dynversym (abfd) = shindex;
2114 elf_tdata (abfd)->dynversym_hdr = *hdr;
2115 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2116
2117 case SHT_GNU_verneed:
2118 elf_dynverref (abfd) = shindex;
2119 elf_tdata (abfd)->dynverref_hdr = *hdr;
2120 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2121
2122 case SHT_SHLIB:
2123 return TRUE;
2124
2125 case SHT_GROUP:
2126 /* We need a BFD section for objcopy and relocatable linking,
2127 and it's handy to have the signature available as the section
2128 name. */
2129 if (hdr->sh_entsize != GRP_ENTRY_SIZE)
2130 return FALSE;
2131 name = group_signature (abfd, hdr);
2132 if (name == NULL)
2133 return FALSE;
2134 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2135 return FALSE;
2136 if (hdr->contents != NULL)
2137 {
2138 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
2139 unsigned int n_elt = hdr->sh_size / 4;
2140 asection *s;
2141
2142 if (idx->flags & GRP_COMDAT)
2143 hdr->bfd_section->flags
2144 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
2145
2146 /* We try to keep the same section order as it comes in. */
2147 idx += n_elt;
2148 while (--n_elt != 0)
2149 if ((s = (--idx)->shdr->bfd_section) != NULL
2150 && elf_next_in_group (s) != NULL)
2151 {
2152 elf_next_in_group (hdr->bfd_section) = s;
2153 break;
2154 }
2155 }
2156 break;
2157
2158 default:
2159 /* Check for any processor-specific section types. */
2160 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
2161 return TRUE;
2162
2163 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
2164 {
2165 if ((hdr->sh_flags & SHF_ALLOC) != 0)
2166 /* FIXME: How to properly handle allocated section reserved
2167 for applications? */
2168 (*_bfd_error_handler)
2169 (_("%B: don't know how to handle allocated, application "
2170 "specific section `%s' [0x%8x]"),
2171 abfd, name, hdr->sh_type);
2172 else
2173 /* Allow sections reserved for applications. */
2174 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2175 shindex);
2176 }
2177 else if (hdr->sh_type >= SHT_LOPROC
2178 && hdr->sh_type <= SHT_HIPROC)
2179 /* FIXME: We should handle this section. */
2180 (*_bfd_error_handler)
2181 (_("%B: don't know how to handle processor specific section "
2182 "`%s' [0x%8x]"),
2183 abfd, name, hdr->sh_type);
2184 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
2185 /* FIXME: We should handle this section. */
2186 (*_bfd_error_handler)
2187 (_("%B: don't know how to handle OS specific section "
2188 "`%s' [0x%8x]"),
2189 abfd, name, hdr->sh_type);
2190 else
2191 /* FIXME: We should handle this section. */
2192 (*_bfd_error_handler)
2193 (_("%B: don't know how to handle section `%s' [0x%8x]"),
2194 abfd, name, hdr->sh_type);
2195
2196 return FALSE;
2197 }
2198
2199 return TRUE;
2200 }
2201
2202 /* Return the section for the local symbol specified by ABFD, R_SYMNDX.
2203 Return SEC for sections that have no elf section, and NULL on error. */
2204
2205 asection *
2206 bfd_section_from_r_symndx (bfd *abfd,
2207 struct sym_sec_cache *cache,
2208 asection *sec,
2209 unsigned long r_symndx)
2210 {
2211 Elf_Internal_Shdr *symtab_hdr;
2212 unsigned char esym[sizeof (Elf64_External_Sym)];
2213 Elf_External_Sym_Shndx eshndx;
2214 Elf_Internal_Sym isym;
2215 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2216
2217 if (cache->abfd == abfd && cache->indx[ent] == r_symndx)
2218 return cache->sec[ent];
2219
2220 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2221 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2222 &isym, esym, &eshndx) == NULL)
2223 return NULL;
2224
2225 if (cache->abfd != abfd)
2226 {
2227 memset (cache->indx, -1, sizeof (cache->indx));
2228 cache->abfd = abfd;
2229 }
2230 cache->indx[ent] = r_symndx;
2231 cache->sec[ent] = sec;
2232 if ((isym.st_shndx != SHN_UNDEF && isym.st_shndx < SHN_LORESERVE)
2233 || isym.st_shndx > SHN_HIRESERVE)
2234 {
2235 asection *s;
2236 s = bfd_section_from_elf_index (abfd, isym.st_shndx);
2237 if (s != NULL)
2238 cache->sec[ent] = s;
2239 }
2240 return cache->sec[ent];
2241 }
2242
2243 /* Given an ELF section number, retrieve the corresponding BFD
2244 section. */
2245
2246 asection *
2247 bfd_section_from_elf_index (bfd *abfd, unsigned int index)
2248 {
2249 if (index >= elf_numsections (abfd))
2250 return NULL;
2251 return elf_elfsections (abfd)[index]->bfd_section;
2252 }
2253
2254 static const struct bfd_elf_special_section special_sections_b[] =
2255 {
2256 { ".bss", 4, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2257 { NULL, 0, 0, 0, 0 }
2258 };
2259
2260 static const struct bfd_elf_special_section special_sections_c[] =
2261 {
2262 { ".comment", 8, 0, SHT_PROGBITS, 0 },
2263 { NULL, 0, 0, 0, 0 }
2264 };
2265
2266 static const struct bfd_elf_special_section special_sections_d[] =
2267 {
2268 { ".data", 5, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2269 { ".data1", 6, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2270 { ".debug", 6, 0, SHT_PROGBITS, 0 },
2271 { ".debug_line", 11, 0, SHT_PROGBITS, 0 },
2272 { ".debug_info", 11, 0, SHT_PROGBITS, 0 },
2273 { ".debug_abbrev", 13, 0, SHT_PROGBITS, 0 },
2274 { ".debug_aranges", 14, 0, SHT_PROGBITS, 0 },
2275 { ".dynamic", 8, 0, SHT_DYNAMIC, SHF_ALLOC },
2276 { ".dynstr", 7, 0, SHT_STRTAB, SHF_ALLOC },
2277 { ".dynsym", 7, 0, SHT_DYNSYM, SHF_ALLOC },
2278 { NULL, 0, 0, 0, 0 }
2279 };
2280
2281 static const struct bfd_elf_special_section special_sections_f[] =
2282 {
2283 { ".fini", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2284 { ".fini_array", 11, 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2285 { NULL, 0, 0, 0, 0 }
2286 };
2287
2288 static const struct bfd_elf_special_section special_sections_g[] =
2289 {
2290 { ".gnu.linkonce.b",15, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2291 { ".got", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2292 { ".gnu.version", 12, 0, SHT_GNU_versym, 0 },
2293 { ".gnu.version_d", 14, 0, SHT_GNU_verdef, 0 },
2294 { ".gnu.version_r", 14, 0, SHT_GNU_verneed, 0 },
2295 { ".gnu.liblist", 12, 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2296 { ".gnu.conflict", 13, 0, SHT_RELA, SHF_ALLOC },
2297 { NULL, 0, 0, 0, 0 }
2298 };
2299
2300 static const struct bfd_elf_special_section special_sections_h[] =
2301 {
2302 { ".hash", 5, 0, SHT_HASH, SHF_ALLOC },
2303 { NULL, 0, 0, 0, 0 }
2304 };
2305
2306 static const struct bfd_elf_special_section special_sections_i[] =
2307 {
2308 { ".init", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2309 { ".init_array", 11, 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2310 { ".interp", 7, 0, SHT_PROGBITS, 0 },
2311 { NULL, 0, 0, 0, 0 }
2312 };
2313
2314 static const struct bfd_elf_special_section special_sections_l[] =
2315 {
2316 { ".line", 5, 0, SHT_PROGBITS, 0 },
2317 { NULL, 0, 0, 0, 0 }
2318 };
2319
2320 static const struct bfd_elf_special_section special_sections_n[] =
2321 {
2322 { ".note.GNU-stack",15, 0, SHT_PROGBITS, 0 },
2323 { ".note", 5, -1, SHT_NOTE, 0 },
2324 { NULL, 0, 0, 0, 0 }
2325 };
2326
2327 static const struct bfd_elf_special_section special_sections_p[] =
2328 {
2329 { ".preinit_array", 14, 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2330 { ".plt", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2331 { NULL, 0, 0, 0, 0 }
2332 };
2333
2334 static const struct bfd_elf_special_section special_sections_r[] =
2335 {
2336 { ".rodata", 7, -2, SHT_PROGBITS, SHF_ALLOC },
2337 { ".rodata1", 8, 0, SHT_PROGBITS, SHF_ALLOC },
2338 { ".rela", 5, -1, SHT_RELA, 0 },
2339 { ".rel", 4, -1, SHT_REL, 0 },
2340 { NULL, 0, 0, 0, 0 }
2341 };
2342
2343 static const struct bfd_elf_special_section special_sections_s[] =
2344 {
2345 { ".shstrtab", 9, 0, SHT_STRTAB, 0 },
2346 { ".strtab", 7, 0, SHT_STRTAB, 0 },
2347 { ".symtab", 7, 0, SHT_SYMTAB, 0 },
2348 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2349 { NULL, 0, 0, 0, 0 }
2350 };
2351
2352 static const struct bfd_elf_special_section special_sections_t[] =
2353 {
2354 { ".text", 5, -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2355 { ".tbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2356 { ".tdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2357 { NULL, 0, 0, 0, 0 }
2358 };
2359
2360 static const struct bfd_elf_special_section *special_sections[] =
2361 {
2362 special_sections_b, /* 'b' */
2363 special_sections_c, /* 'b' */
2364 special_sections_d, /* 'd' */
2365 NULL, /* 'e' */
2366 special_sections_f, /* 'f' */
2367 special_sections_g, /* 'g' */
2368 special_sections_h, /* 'h' */
2369 special_sections_i, /* 'i' */
2370 NULL, /* 'j' */
2371 NULL, /* 'k' */
2372 special_sections_l, /* 'l' */
2373 NULL, /* 'm' */
2374 special_sections_n, /* 'n' */
2375 NULL, /* 'o' */
2376 special_sections_p, /* 'p' */
2377 NULL, /* 'q' */
2378 special_sections_r, /* 'r' */
2379 special_sections_s, /* 's' */
2380 special_sections_t, /* 't' */
2381 };
2382
2383 const struct bfd_elf_special_section *
2384 _bfd_elf_get_special_section (const char *name,
2385 const struct bfd_elf_special_section *spec,
2386 unsigned int rela)
2387 {
2388 int i;
2389 int len;
2390
2391 len = strlen (name);
2392
2393 for (i = 0; spec[i].prefix != NULL; i++)
2394 {
2395 int suffix_len;
2396 int prefix_len = spec[i].prefix_length;
2397
2398 if (len < prefix_len)
2399 continue;
2400 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2401 continue;
2402
2403 suffix_len = spec[i].suffix_length;
2404 if (suffix_len <= 0)
2405 {
2406 if (name[prefix_len] != 0)
2407 {
2408 if (suffix_len == 0)
2409 continue;
2410 if (name[prefix_len] != '.'
2411 && (suffix_len == -2
2412 || (rela && spec[i].type == SHT_REL)))
2413 continue;
2414 }
2415 }
2416 else
2417 {
2418 if (len < prefix_len + suffix_len)
2419 continue;
2420 if (memcmp (name + len - suffix_len,
2421 spec[i].prefix + prefix_len,
2422 suffix_len) != 0)
2423 continue;
2424 }
2425 return &spec[i];
2426 }
2427
2428 return NULL;
2429 }
2430
2431 const struct bfd_elf_special_section *
2432 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2433 {
2434 int i;
2435 const struct bfd_elf_special_section *spec;
2436 const struct elf_backend_data *bed;
2437
2438 /* See if this is one of the special sections. */
2439 if (sec->name == NULL)
2440 return NULL;
2441
2442 bed = get_elf_backend_data (abfd);
2443 spec = bed->special_sections;
2444 if (spec)
2445 {
2446 spec = _bfd_elf_get_special_section (sec->name,
2447 bed->special_sections,
2448 sec->use_rela_p);
2449 if (spec != NULL)
2450 return spec;
2451 }
2452
2453 if (sec->name[0] != '.')
2454 return NULL;
2455
2456 i = sec->name[1] - 'b';
2457 if (i < 0 || i > 't' - 'b')
2458 return NULL;
2459
2460 spec = special_sections[i];
2461
2462 if (spec == NULL)
2463 return NULL;
2464
2465 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2466 }
2467
2468 bfd_boolean
2469 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2470 {
2471 struct bfd_elf_section_data *sdata;
2472 const struct elf_backend_data *bed;
2473 const struct bfd_elf_special_section *ssect;
2474
2475 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2476 if (sdata == NULL)
2477 {
2478 sdata = bfd_zalloc (abfd, sizeof (*sdata));
2479 if (sdata == NULL)
2480 return FALSE;
2481 sec->used_by_bfd = sdata;
2482 }
2483
2484 /* Indicate whether or not this section should use RELA relocations. */
2485 bed = get_elf_backend_data (abfd);
2486 sec->use_rela_p = bed->default_use_rela_p;
2487
2488 /* When we read a file, we don't need to set ELF section type and
2489 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2490 anyway. We will set ELF section type and flags for all linker
2491 created sections. If user specifies BFD section flags, we will
2492 set ELF section type and flags based on BFD section flags in
2493 elf_fake_sections. */
2494 if ((!sec->flags && abfd->direction != read_direction)
2495 || (sec->flags & SEC_LINKER_CREATED) != 0)
2496 {
2497 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2498 if (ssect != NULL)
2499 {
2500 elf_section_type (sec) = ssect->type;
2501 elf_section_flags (sec) = ssect->attr;
2502 }
2503 }
2504
2505 return _bfd_generic_new_section_hook (abfd, sec);
2506 }
2507
2508 /* Create a new bfd section from an ELF program header.
2509
2510 Since program segments have no names, we generate a synthetic name
2511 of the form segment<NUM>, where NUM is generally the index in the
2512 program header table. For segments that are split (see below) we
2513 generate the names segment<NUM>a and segment<NUM>b.
2514
2515 Note that some program segments may have a file size that is different than
2516 (less than) the memory size. All this means is that at execution the
2517 system must allocate the amount of memory specified by the memory size,
2518 but only initialize it with the first "file size" bytes read from the
2519 file. This would occur for example, with program segments consisting
2520 of combined data+bss.
2521
2522 To handle the above situation, this routine generates TWO bfd sections
2523 for the single program segment. The first has the length specified by
2524 the file size of the segment, and the second has the length specified
2525 by the difference between the two sizes. In effect, the segment is split
2526 into it's initialized and uninitialized parts.
2527
2528 */
2529
2530 bfd_boolean
2531 _bfd_elf_make_section_from_phdr (bfd *abfd,
2532 Elf_Internal_Phdr *hdr,
2533 int index,
2534 const char *typename)
2535 {
2536 asection *newsect;
2537 char *name;
2538 char namebuf[64];
2539 size_t len;
2540 int split;
2541
2542 split = ((hdr->p_memsz > 0)
2543 && (hdr->p_filesz > 0)
2544 && (hdr->p_memsz > hdr->p_filesz));
2545 sprintf (namebuf, "%s%d%s", typename, index, split ? "a" : "");
2546 len = strlen (namebuf) + 1;
2547 name = bfd_alloc (abfd, len);
2548 if (!name)
2549 return FALSE;
2550 memcpy (name, namebuf, len);
2551 newsect = bfd_make_section (abfd, name);
2552 if (newsect == NULL)
2553 return FALSE;
2554 newsect->vma = hdr->p_vaddr;
2555 newsect->lma = hdr->p_paddr;
2556 newsect->size = hdr->p_filesz;
2557 newsect->filepos = hdr->p_offset;
2558 newsect->flags |= SEC_HAS_CONTENTS;
2559 newsect->alignment_power = bfd_log2 (hdr->p_align);
2560 if (hdr->p_type == PT_LOAD)
2561 {
2562 newsect->flags |= SEC_ALLOC;
2563 newsect->flags |= SEC_LOAD;
2564 if (hdr->p_flags & PF_X)
2565 {
2566 /* FIXME: all we known is that it has execute PERMISSION,
2567 may be data. */
2568 newsect->flags |= SEC_CODE;
2569 }
2570 }
2571 if (!(hdr->p_flags & PF_W))
2572 {
2573 newsect->flags |= SEC_READONLY;
2574 }
2575
2576 if (split)
2577 {
2578 sprintf (namebuf, "%s%db", typename, index);
2579 len = strlen (namebuf) + 1;
2580 name = bfd_alloc (abfd, len);
2581 if (!name)
2582 return FALSE;
2583 memcpy (name, namebuf, len);
2584 newsect = bfd_make_section (abfd, name);
2585 if (newsect == NULL)
2586 return FALSE;
2587 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2588 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2589 newsect->size = hdr->p_memsz - hdr->p_filesz;
2590 if (hdr->p_type == PT_LOAD)
2591 {
2592 newsect->flags |= SEC_ALLOC;
2593 if (hdr->p_flags & PF_X)
2594 newsect->flags |= SEC_CODE;
2595 }
2596 if (!(hdr->p_flags & PF_W))
2597 newsect->flags |= SEC_READONLY;
2598 }
2599
2600 return TRUE;
2601 }
2602
2603 bfd_boolean
2604 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index)
2605 {
2606 const struct elf_backend_data *bed;
2607
2608 switch (hdr->p_type)
2609 {
2610 case PT_NULL:
2611 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "null");
2612
2613 case PT_LOAD:
2614 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "load");
2615
2616 case PT_DYNAMIC:
2617 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "dynamic");
2618
2619 case PT_INTERP:
2620 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "interp");
2621
2622 case PT_NOTE:
2623 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, index, "note"))
2624 return FALSE;
2625 if (! elfcore_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2626 return FALSE;
2627 return TRUE;
2628
2629 case PT_SHLIB:
2630 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "shlib");
2631
2632 case PT_PHDR:
2633 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "phdr");
2634
2635 case PT_GNU_EH_FRAME:
2636 return _bfd_elf_make_section_from_phdr (abfd, hdr, index,
2637 "eh_frame_hdr");
2638
2639 case PT_GNU_STACK:
2640 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "stack");
2641
2642 case PT_GNU_RELRO:
2643 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "relro");
2644
2645 default:
2646 /* Check for any processor-specific program segment types. */
2647 bed = get_elf_backend_data (abfd);
2648 return bed->elf_backend_section_from_phdr (abfd, hdr, index, "proc");
2649 }
2650 }
2651
2652 /* Initialize REL_HDR, the section-header for new section, containing
2653 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2654 relocations; otherwise, we use REL relocations. */
2655
2656 bfd_boolean
2657 _bfd_elf_init_reloc_shdr (bfd *abfd,
2658 Elf_Internal_Shdr *rel_hdr,
2659 asection *asect,
2660 bfd_boolean use_rela_p)
2661 {
2662 char *name;
2663 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2664 bfd_size_type amt = sizeof ".rela" + strlen (asect->name);
2665
2666 name = bfd_alloc (abfd, amt);
2667 if (name == NULL)
2668 return FALSE;
2669 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2670 rel_hdr->sh_name =
2671 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2672 FALSE);
2673 if (rel_hdr->sh_name == (unsigned int) -1)
2674 return FALSE;
2675 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2676 rel_hdr->sh_entsize = (use_rela_p
2677 ? bed->s->sizeof_rela
2678 : bed->s->sizeof_rel);
2679 rel_hdr->sh_addralign = 1 << bed->s->log_file_align;
2680 rel_hdr->sh_flags = 0;
2681 rel_hdr->sh_addr = 0;
2682 rel_hdr->sh_size = 0;
2683 rel_hdr->sh_offset = 0;
2684
2685 return TRUE;
2686 }
2687
2688 /* Set up an ELF internal section header for a section. */
2689
2690 static void
2691 elf_fake_sections (bfd *abfd, asection *asect, void *failedptrarg)
2692 {
2693 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2694 bfd_boolean *failedptr = failedptrarg;
2695 Elf_Internal_Shdr *this_hdr;
2696
2697 if (*failedptr)
2698 {
2699 /* We already failed; just get out of the bfd_map_over_sections
2700 loop. */
2701 return;
2702 }
2703
2704 this_hdr = &elf_section_data (asect)->this_hdr;
2705
2706 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2707 asect->name, FALSE);
2708 if (this_hdr->sh_name == (unsigned int) -1)
2709 {
2710 *failedptr = TRUE;
2711 return;
2712 }
2713
2714 /* Don't clear sh_flags. Assembler may set additional bits. */
2715
2716 if ((asect->flags & SEC_ALLOC) != 0
2717 || asect->user_set_vma)
2718 this_hdr->sh_addr = asect->vma;
2719 else
2720 this_hdr->sh_addr = 0;
2721
2722 this_hdr->sh_offset = 0;
2723 this_hdr->sh_size = asect->size;
2724 this_hdr->sh_link = 0;
2725 this_hdr->sh_addralign = 1 << asect->alignment_power;
2726 /* The sh_entsize and sh_info fields may have been set already by
2727 copy_private_section_data. */
2728
2729 this_hdr->bfd_section = asect;
2730 this_hdr->contents = NULL;
2731
2732 /* If the section type is unspecified, we set it based on
2733 asect->flags. */
2734 if (this_hdr->sh_type == SHT_NULL)
2735 {
2736 if ((asect->flags & SEC_GROUP) != 0)
2737 this_hdr->sh_type = SHT_GROUP;
2738 else if ((asect->flags & SEC_ALLOC) != 0
2739 && (((asect->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2740 || (asect->flags & SEC_NEVER_LOAD) != 0))
2741 this_hdr->sh_type = SHT_NOBITS;
2742 else
2743 this_hdr->sh_type = SHT_PROGBITS;
2744 }
2745
2746 switch (this_hdr->sh_type)
2747 {
2748 default:
2749 break;
2750
2751 case SHT_STRTAB:
2752 case SHT_INIT_ARRAY:
2753 case SHT_FINI_ARRAY:
2754 case SHT_PREINIT_ARRAY:
2755 case SHT_NOTE:
2756 case SHT_NOBITS:
2757 case SHT_PROGBITS:
2758 break;
2759
2760 case SHT_HASH:
2761 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2762 break;
2763
2764 case SHT_DYNSYM:
2765 this_hdr->sh_entsize = bed->s->sizeof_sym;
2766 break;
2767
2768 case SHT_DYNAMIC:
2769 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2770 break;
2771
2772 case SHT_RELA:
2773 if (get_elf_backend_data (abfd)->may_use_rela_p)
2774 this_hdr->sh_entsize = bed->s->sizeof_rela;
2775 break;
2776
2777 case SHT_REL:
2778 if (get_elf_backend_data (abfd)->may_use_rel_p)
2779 this_hdr->sh_entsize = bed->s->sizeof_rel;
2780 break;
2781
2782 case SHT_GNU_versym:
2783 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2784 break;
2785
2786 case SHT_GNU_verdef:
2787 this_hdr->sh_entsize = 0;
2788 /* objcopy or strip will copy over sh_info, but may not set
2789 cverdefs. The linker will set cverdefs, but sh_info will be
2790 zero. */
2791 if (this_hdr->sh_info == 0)
2792 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2793 else
2794 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2795 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2796 break;
2797
2798 case SHT_GNU_verneed:
2799 this_hdr->sh_entsize = 0;
2800 /* objcopy or strip will copy over sh_info, but may not set
2801 cverrefs. The linker will set cverrefs, but sh_info will be
2802 zero. */
2803 if (this_hdr->sh_info == 0)
2804 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2805 else
2806 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2807 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2808 break;
2809
2810 case SHT_GROUP:
2811 this_hdr->sh_entsize = 4;
2812 break;
2813 }
2814
2815 if ((asect->flags & SEC_ALLOC) != 0)
2816 this_hdr->sh_flags |= SHF_ALLOC;
2817 if ((asect->flags & SEC_READONLY) == 0)
2818 this_hdr->sh_flags |= SHF_WRITE;
2819 if ((asect->flags & SEC_CODE) != 0)
2820 this_hdr->sh_flags |= SHF_EXECINSTR;
2821 if ((asect->flags & SEC_MERGE) != 0)
2822 {
2823 this_hdr->sh_flags |= SHF_MERGE;
2824 this_hdr->sh_entsize = asect->entsize;
2825 if ((asect->flags & SEC_STRINGS) != 0)
2826 this_hdr->sh_flags |= SHF_STRINGS;
2827 }
2828 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2829 this_hdr->sh_flags |= SHF_GROUP;
2830 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2831 {
2832 this_hdr->sh_flags |= SHF_TLS;
2833 if (asect->size == 0
2834 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2835 {
2836 struct bfd_link_order *o = asect->map_tail.link_order;
2837
2838 this_hdr->sh_size = 0;
2839 if (o != NULL)
2840 {
2841 this_hdr->sh_size = o->offset + o->size;
2842 if (this_hdr->sh_size != 0)
2843 this_hdr->sh_type = SHT_NOBITS;
2844 }
2845 }
2846 }
2847
2848 /* Check for processor-specific section types. */
2849 if (bed->elf_backend_fake_sections
2850 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2851 *failedptr = TRUE;
2852
2853 /* If the section has relocs, set up a section header for the
2854 SHT_REL[A] section. If two relocation sections are required for
2855 this section, it is up to the processor-specific back-end to
2856 create the other. */
2857 if ((asect->flags & SEC_RELOC) != 0
2858 && !_bfd_elf_init_reloc_shdr (abfd,
2859 &elf_section_data (asect)->rel_hdr,
2860 asect,
2861 asect->use_rela_p))
2862 *failedptr = TRUE;
2863 }
2864
2865 /* Fill in the contents of a SHT_GROUP section. */
2866
2867 void
2868 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2869 {
2870 bfd_boolean *failedptr = failedptrarg;
2871 unsigned long symindx;
2872 asection *elt, *first;
2873 unsigned char *loc;
2874 bfd_boolean gas;
2875
2876 /* Ignore linker created group section. See elfNN_ia64_object_p in
2877 elfxx-ia64.c. */
2878 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
2879 || *failedptr)
2880 return;
2881
2882 symindx = 0;
2883 if (elf_group_id (sec) != NULL)
2884 symindx = elf_group_id (sec)->udata.i;
2885
2886 if (symindx == 0)
2887 {
2888 /* If called from the assembler, swap_out_syms will have set up
2889 elf_section_syms; If called for "ld -r", use target_index. */
2890 if (elf_section_syms (abfd) != NULL)
2891 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2892 else
2893 symindx = sec->target_index;
2894 }
2895 elf_section_data (sec)->this_hdr.sh_info = symindx;
2896
2897 /* The contents won't be allocated for "ld -r" or objcopy. */
2898 gas = TRUE;
2899 if (sec->contents == NULL)
2900 {
2901 gas = FALSE;
2902 sec->contents = bfd_alloc (abfd, sec->size);
2903
2904 /* Arrange for the section to be written out. */
2905 elf_section_data (sec)->this_hdr.contents = sec->contents;
2906 if (sec->contents == NULL)
2907 {
2908 *failedptr = TRUE;
2909 return;
2910 }
2911 }
2912
2913 loc = sec->contents + sec->size;
2914
2915 /* Get the pointer to the first section in the group that gas
2916 squirreled away here. objcopy arranges for this to be set to the
2917 start of the input section group. */
2918 first = elt = elf_next_in_group (sec);
2919
2920 /* First element is a flag word. Rest of section is elf section
2921 indices for all the sections of the group. Write them backwards
2922 just to keep the group in the same order as given in .section
2923 directives, not that it matters. */
2924 while (elt != NULL)
2925 {
2926 asection *s;
2927 unsigned int idx;
2928
2929 loc -= 4;
2930 s = elt;
2931 if (!gas)
2932 s = s->output_section;
2933 idx = 0;
2934 if (s != NULL)
2935 idx = elf_section_data (s)->this_idx;
2936 H_PUT_32 (abfd, idx, loc);
2937 elt = elf_next_in_group (elt);
2938 if (elt == first)
2939 break;
2940 }
2941
2942 if ((loc -= 4) != sec->contents)
2943 abort ();
2944
2945 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2946 }
2947
2948 /* Assign all ELF section numbers. The dummy first section is handled here
2949 too. The link/info pointers for the standard section types are filled
2950 in here too, while we're at it. */
2951
2952 static bfd_boolean
2953 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
2954 {
2955 struct elf_obj_tdata *t = elf_tdata (abfd);
2956 asection *sec;
2957 unsigned int section_number, secn;
2958 Elf_Internal_Shdr **i_shdrp;
2959 struct bfd_elf_section_data *d;
2960
2961 section_number = 1;
2962
2963 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2964
2965 /* SHT_GROUP sections are in relocatable files only. */
2966 if (link_info == NULL || link_info->relocatable)
2967 {
2968 /* Put SHT_GROUP sections first. */
2969 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2970 {
2971 d = elf_section_data (sec);
2972
2973 if (d->this_hdr.sh_type == SHT_GROUP)
2974 {
2975 if (sec->flags & SEC_LINKER_CREATED)
2976 {
2977 /* Remove the linker created SHT_GROUP sections. */
2978 bfd_section_list_remove (abfd, sec);
2979 abfd->section_count--;
2980 }
2981 else
2982 {
2983 if (section_number == SHN_LORESERVE)
2984 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2985 d->this_idx = section_number++;
2986 }
2987 }
2988 }
2989 }
2990
2991 for (sec = abfd->sections; sec; sec = sec->next)
2992 {
2993 d = elf_section_data (sec);
2994
2995 if (d->this_hdr.sh_type != SHT_GROUP)
2996 {
2997 if (section_number == SHN_LORESERVE)
2998 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2999 d->this_idx = section_number++;
3000 }
3001 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
3002 if ((sec->flags & SEC_RELOC) == 0)
3003 d->rel_idx = 0;
3004 else
3005 {
3006 if (section_number == SHN_LORESERVE)
3007 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3008 d->rel_idx = section_number++;
3009 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr.sh_name);
3010 }
3011
3012 if (d->rel_hdr2)
3013 {
3014 if (section_number == SHN_LORESERVE)
3015 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3016 d->rel_idx2 = section_number++;
3017 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr2->sh_name);
3018 }
3019 else
3020 d->rel_idx2 = 0;
3021 }
3022
3023 if (section_number == SHN_LORESERVE)
3024 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3025 t->shstrtab_section = section_number++;
3026 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
3027 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
3028
3029 if (bfd_get_symcount (abfd) > 0)
3030 {
3031 if (section_number == SHN_LORESERVE)
3032 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3033 t->symtab_section = section_number++;
3034 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
3035 if (section_number > SHN_LORESERVE - 2)
3036 {
3037 if (section_number == SHN_LORESERVE)
3038 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3039 t->symtab_shndx_section = section_number++;
3040 t->symtab_shndx_hdr.sh_name
3041 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3042 ".symtab_shndx", FALSE);
3043 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
3044 return FALSE;
3045 }
3046 if (section_number == SHN_LORESERVE)
3047 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3048 t->strtab_section = section_number++;
3049 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3050 }
3051
3052 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
3053 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3054
3055 elf_numsections (abfd) = section_number;
3056 elf_elfheader (abfd)->e_shnum = section_number;
3057 if (section_number > SHN_LORESERVE)
3058 elf_elfheader (abfd)->e_shnum -= SHN_HIRESERVE + 1 - SHN_LORESERVE;
3059
3060 /* Set up the list of section header pointers, in agreement with the
3061 indices. */
3062 i_shdrp = bfd_zalloc2 (abfd, section_number, sizeof (Elf_Internal_Shdr *));
3063 if (i_shdrp == NULL)
3064 return FALSE;
3065
3066 i_shdrp[0] = bfd_zalloc (abfd, sizeof (Elf_Internal_Shdr));
3067 if (i_shdrp[0] == NULL)
3068 {
3069 bfd_release (abfd, i_shdrp);
3070 return FALSE;
3071 }
3072
3073 elf_elfsections (abfd) = i_shdrp;
3074
3075 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
3076 if (bfd_get_symcount (abfd) > 0)
3077 {
3078 i_shdrp[t->symtab_section] = &t->symtab_hdr;
3079 if (elf_numsections (abfd) > SHN_LORESERVE)
3080 {
3081 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
3082 t->symtab_shndx_hdr.sh_link = t->symtab_section;
3083 }
3084 i_shdrp[t->strtab_section] = &t->strtab_hdr;
3085 t->symtab_hdr.sh_link = t->strtab_section;
3086 }
3087
3088 for (sec = abfd->sections; sec; sec = sec->next)
3089 {
3090 struct bfd_elf_section_data *d = elf_section_data (sec);
3091 asection *s;
3092 const char *name;
3093
3094 i_shdrp[d->this_idx] = &d->this_hdr;
3095 if (d->rel_idx != 0)
3096 i_shdrp[d->rel_idx] = &d->rel_hdr;
3097 if (d->rel_idx2 != 0)
3098 i_shdrp[d->rel_idx2] = d->rel_hdr2;
3099
3100 /* Fill in the sh_link and sh_info fields while we're at it. */
3101
3102 /* sh_link of a reloc section is the section index of the symbol
3103 table. sh_info is the section index of the section to which
3104 the relocation entries apply. */
3105 if (d->rel_idx != 0)
3106 {
3107 d->rel_hdr.sh_link = t->symtab_section;
3108 d->rel_hdr.sh_info = d->this_idx;
3109 }
3110 if (d->rel_idx2 != 0)
3111 {
3112 d->rel_hdr2->sh_link = t->symtab_section;
3113 d->rel_hdr2->sh_info = d->this_idx;
3114 }
3115
3116 /* We need to set up sh_link for SHF_LINK_ORDER. */
3117 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3118 {
3119 s = elf_linked_to_section (sec);
3120 if (s)
3121 {
3122 /* elf_linked_to_section points to the input section. */
3123 if (link_info != NULL)
3124 {
3125 /* Check discarded linkonce section. */
3126 if (elf_discarded_section (s))
3127 {
3128 asection *kept;
3129 (*_bfd_error_handler)
3130 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
3131 abfd, d->this_hdr.bfd_section,
3132 s, s->owner);
3133 /* Point to the kept section if it has the same
3134 size as the discarded one. */
3135 kept = _bfd_elf_check_kept_section (s);
3136 if (kept == NULL)
3137 {
3138 bfd_set_error (bfd_error_bad_value);
3139 return FALSE;
3140 }
3141 s = kept;
3142 }
3143
3144 s = s->output_section;
3145 BFD_ASSERT (s != NULL);
3146 }
3147 else
3148 {
3149 /* Handle objcopy. */
3150 if (s->output_section == NULL)
3151 {
3152 (*_bfd_error_handler)
3153 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
3154 abfd, d->this_hdr.bfd_section, s, s->owner);
3155 bfd_set_error (bfd_error_bad_value);
3156 return FALSE;
3157 }
3158 s = s->output_section;
3159 }
3160 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3161 }
3162 else
3163 {
3164 /* PR 290:
3165 The Intel C compiler generates SHT_IA_64_UNWIND with
3166 SHF_LINK_ORDER. But it doesn't set the sh_link or
3167 sh_info fields. Hence we could get the situation
3168 where s is NULL. */
3169 const struct elf_backend_data *bed
3170 = get_elf_backend_data (abfd);
3171 if (bed->link_order_error_handler)
3172 bed->link_order_error_handler
3173 (_("%B: warning: sh_link not set for section `%A'"),
3174 abfd, sec);
3175 }
3176 }
3177
3178 switch (d->this_hdr.sh_type)
3179 {
3180 case SHT_REL:
3181 case SHT_RELA:
3182 /* A reloc section which we are treating as a normal BFD
3183 section. sh_link is the section index of the symbol
3184 table. sh_info is the section index of the section to
3185 which the relocation entries apply. We assume that an
3186 allocated reloc section uses the dynamic symbol table.
3187 FIXME: How can we be sure? */
3188 s = bfd_get_section_by_name (abfd, ".dynsym");
3189 if (s != NULL)
3190 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3191
3192 /* We look up the section the relocs apply to by name. */
3193 name = sec->name;
3194 if (d->this_hdr.sh_type == SHT_REL)
3195 name += 4;
3196 else
3197 name += 5;
3198 s = bfd_get_section_by_name (abfd, name);
3199 if (s != NULL)
3200 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3201 break;
3202
3203 case SHT_STRTAB:
3204 /* We assume that a section named .stab*str is a stabs
3205 string section. We look for a section with the same name
3206 but without the trailing ``str'', and set its sh_link
3207 field to point to this section. */
3208 if (strncmp (sec->name, ".stab", sizeof ".stab" - 1) == 0
3209 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3210 {
3211 size_t len;
3212 char *alc;
3213
3214 len = strlen (sec->name);
3215 alc = bfd_malloc (len - 2);
3216 if (alc == NULL)
3217 return FALSE;
3218 memcpy (alc, sec->name, len - 3);
3219 alc[len - 3] = '\0';
3220 s = bfd_get_section_by_name (abfd, alc);
3221 free (alc);
3222 if (s != NULL)
3223 {
3224 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3225
3226 /* This is a .stab section. */
3227 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3228 elf_section_data (s)->this_hdr.sh_entsize
3229 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3230 }
3231 }
3232 break;
3233
3234 case SHT_DYNAMIC:
3235 case SHT_DYNSYM:
3236 case SHT_GNU_verneed:
3237 case SHT_GNU_verdef:
3238 /* sh_link is the section header index of the string table
3239 used for the dynamic entries, or the symbol table, or the
3240 version strings. */
3241 s = bfd_get_section_by_name (abfd, ".dynstr");
3242 if (s != NULL)
3243 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3244 break;
3245
3246 case SHT_GNU_LIBLIST:
3247 /* sh_link is the section header index of the prelink library
3248 list
3249 used for the dynamic entries, or the symbol table, or the
3250 version strings. */
3251 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3252 ? ".dynstr" : ".gnu.libstr");
3253 if (s != NULL)
3254 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3255 break;
3256
3257 case SHT_HASH:
3258 case SHT_GNU_versym:
3259 /* sh_link is the section header index of the symbol table
3260 this hash table or version table is for. */
3261 s = bfd_get_section_by_name (abfd, ".dynsym");
3262 if (s != NULL)
3263 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3264 break;
3265
3266 case SHT_GROUP:
3267 d->this_hdr.sh_link = t->symtab_section;
3268 }
3269 }
3270
3271 for (secn = 1; secn < section_number; ++secn)
3272 if (i_shdrp[secn] == NULL)
3273 i_shdrp[secn] = i_shdrp[0];
3274 else
3275 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
3276 i_shdrp[secn]->sh_name);
3277 return TRUE;
3278 }
3279
3280 /* Map symbol from it's internal number to the external number, moving
3281 all local symbols to be at the head of the list. */
3282
3283 static int
3284 sym_is_global (bfd *abfd, asymbol *sym)
3285 {
3286 /* If the backend has a special mapping, use it. */
3287 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3288 if (bed->elf_backend_sym_is_global)
3289 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3290
3291 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
3292 || bfd_is_und_section (bfd_get_section (sym))
3293 || bfd_is_com_section (bfd_get_section (sym)));
3294 }
3295
3296 static bfd_boolean
3297 elf_map_symbols (bfd *abfd)
3298 {
3299 unsigned int symcount = bfd_get_symcount (abfd);
3300 asymbol **syms = bfd_get_outsymbols (abfd);
3301 asymbol **sect_syms;
3302 unsigned int num_locals = 0;
3303 unsigned int num_globals = 0;
3304 unsigned int num_locals2 = 0;
3305 unsigned int num_globals2 = 0;
3306 int max_index = 0;
3307 unsigned int idx;
3308 asection *asect;
3309 asymbol **new_syms;
3310
3311 #ifdef DEBUG
3312 fprintf (stderr, "elf_map_symbols\n");
3313 fflush (stderr);
3314 #endif
3315
3316 for (asect = abfd->sections; asect; asect = asect->next)
3317 {
3318 if (max_index < asect->index)
3319 max_index = asect->index;
3320 }
3321
3322 max_index++;
3323 sect_syms = bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
3324 if (sect_syms == NULL)
3325 return FALSE;
3326 elf_section_syms (abfd) = sect_syms;
3327 elf_num_section_syms (abfd) = max_index;
3328
3329 /* Init sect_syms entries for any section symbols we have already
3330 decided to output. */
3331 for (idx = 0; idx < symcount; idx++)
3332 {
3333 asymbol *sym = syms[idx];
3334
3335 if ((sym->flags & BSF_SECTION_SYM) != 0
3336 && sym->value == 0)
3337 {
3338 asection *sec;
3339
3340 sec = sym->section;
3341
3342 if (sec->owner != NULL)
3343 {
3344 if (sec->owner != abfd)
3345 {
3346 if (sec->output_offset != 0)
3347 continue;
3348
3349 sec = sec->output_section;
3350
3351 /* Empty sections in the input files may have had a
3352 section symbol created for them. (See the comment
3353 near the end of _bfd_generic_link_output_symbols in
3354 linker.c). If the linker script discards such
3355 sections then we will reach this point. Since we know
3356 that we cannot avoid this case, we detect it and skip
3357 the abort and the assignment to the sect_syms array.
3358 To reproduce this particular case try running the
3359 linker testsuite test ld-scripts/weak.exp for an ELF
3360 port that uses the generic linker. */
3361 if (sec->owner == NULL)
3362 continue;
3363
3364 BFD_ASSERT (sec->owner == abfd);
3365 }
3366 sect_syms[sec->index] = syms[idx];
3367 }
3368 }
3369 }
3370
3371 /* Classify all of the symbols. */
3372 for (idx = 0; idx < symcount; idx++)
3373 {
3374 if (!sym_is_global (abfd, syms[idx]))
3375 num_locals++;
3376 else
3377 num_globals++;
3378 }
3379
3380 /* We will be adding a section symbol for each BFD section. Most normal
3381 sections will already have a section symbol in outsymbols, but
3382 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3383 at least in that case. */
3384 for (asect = abfd->sections; asect; asect = asect->next)
3385 {
3386 if (sect_syms[asect->index] == NULL)
3387 {
3388 if (!sym_is_global (abfd, asect->symbol))
3389 num_locals++;
3390 else
3391 num_globals++;
3392 }
3393 }
3394
3395 /* Now sort the symbols so the local symbols are first. */
3396 new_syms = bfd_alloc2 (abfd, num_locals + num_globals, sizeof (asymbol *));
3397
3398 if (new_syms == NULL)
3399 return FALSE;
3400
3401 for (idx = 0; idx < symcount; idx++)
3402 {
3403 asymbol *sym = syms[idx];
3404 unsigned int i;
3405
3406 if (!sym_is_global (abfd, sym))
3407 i = num_locals2++;
3408 else
3409 i = num_locals + num_globals2++;
3410 new_syms[i] = sym;
3411 sym->udata.i = i + 1;
3412 }
3413 for (asect = abfd->sections; asect; asect = asect->next)
3414 {
3415 if (sect_syms[asect->index] == NULL)
3416 {
3417 asymbol *sym = asect->symbol;
3418 unsigned int i;
3419
3420 sect_syms[asect->index] = sym;
3421 if (!sym_is_global (abfd, sym))
3422 i = num_locals2++;
3423 else
3424 i = num_locals + num_globals2++;
3425 new_syms[i] = sym;
3426 sym->udata.i = i + 1;
3427 }
3428 }
3429
3430 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3431
3432 elf_num_locals (abfd) = num_locals;
3433 elf_num_globals (abfd) = num_globals;
3434 return TRUE;
3435 }
3436
3437 /* Align to the maximum file alignment that could be required for any
3438 ELF data structure. */
3439
3440 static inline file_ptr
3441 align_file_position (file_ptr off, int align)
3442 {
3443 return (off + align - 1) & ~(align - 1);
3444 }
3445
3446 /* Assign a file position to a section, optionally aligning to the
3447 required section alignment. */
3448
3449 file_ptr
3450 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3451 file_ptr offset,
3452 bfd_boolean align)
3453 {
3454 if (align)
3455 {
3456 unsigned int al;
3457
3458 al = i_shdrp->sh_addralign;
3459 if (al > 1)
3460 offset = BFD_ALIGN (offset, al);
3461 }
3462 i_shdrp->sh_offset = offset;
3463 if (i_shdrp->bfd_section != NULL)
3464 i_shdrp->bfd_section->filepos = offset;
3465 if (i_shdrp->sh_type != SHT_NOBITS)
3466 offset += i_shdrp->sh_size;
3467 return offset;
3468 }
3469
3470 /* Compute the file positions we are going to put the sections at, and
3471 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3472 is not NULL, this is being called by the ELF backend linker. */
3473
3474 bfd_boolean
3475 _bfd_elf_compute_section_file_positions (bfd *abfd,
3476 struct bfd_link_info *link_info)
3477 {
3478 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3479 bfd_boolean failed;
3480 struct bfd_strtab_hash *strtab = NULL;
3481 Elf_Internal_Shdr *shstrtab_hdr;
3482
3483 if (abfd->output_has_begun)
3484 return TRUE;
3485
3486 /* Do any elf backend specific processing first. */
3487 if (bed->elf_backend_begin_write_processing)
3488 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3489
3490 if (! prep_headers (abfd))
3491 return FALSE;
3492
3493 /* Post process the headers if necessary. */
3494 if (bed->elf_backend_post_process_headers)
3495 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3496
3497 failed = FALSE;
3498 bfd_map_over_sections (abfd, elf_fake_sections, &failed);
3499 if (failed)
3500 return FALSE;
3501
3502 if (!assign_section_numbers (abfd, link_info))
3503 return FALSE;
3504
3505 /* The backend linker builds symbol table information itself. */
3506 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3507 {
3508 /* Non-zero if doing a relocatable link. */
3509 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3510
3511 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3512 return FALSE;
3513 }
3514
3515 if (link_info == NULL)
3516 {
3517 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3518 if (failed)
3519 return FALSE;
3520 }
3521
3522 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3523 /* sh_name was set in prep_headers. */
3524 shstrtab_hdr->sh_type = SHT_STRTAB;
3525 shstrtab_hdr->sh_flags = 0;
3526 shstrtab_hdr->sh_addr = 0;
3527 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3528 shstrtab_hdr->sh_entsize = 0;
3529 shstrtab_hdr->sh_link = 0;
3530 shstrtab_hdr->sh_info = 0;
3531 /* sh_offset is set in assign_file_positions_except_relocs. */
3532 shstrtab_hdr->sh_addralign = 1;
3533
3534 if (!assign_file_positions_except_relocs (abfd, link_info))
3535 return FALSE;
3536
3537 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3538 {
3539 file_ptr off;
3540 Elf_Internal_Shdr *hdr;
3541
3542 off = elf_tdata (abfd)->next_file_pos;
3543
3544 hdr = &elf_tdata (abfd)->symtab_hdr;
3545 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3546
3547 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3548 if (hdr->sh_size != 0)
3549 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3550
3551 hdr = &elf_tdata (abfd)->strtab_hdr;
3552 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3553
3554 elf_tdata (abfd)->next_file_pos = off;
3555
3556 /* Now that we know where the .strtab section goes, write it
3557 out. */
3558 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3559 || ! _bfd_stringtab_emit (abfd, strtab))
3560 return FALSE;
3561 _bfd_stringtab_free (strtab);
3562 }
3563
3564 abfd->output_has_begun = TRUE;
3565
3566 return TRUE;
3567 }
3568
3569 /* Create a mapping from a set of sections to a program segment. */
3570
3571 static struct elf_segment_map *
3572 make_mapping (bfd *abfd,
3573 asection **sections,
3574 unsigned int from,
3575 unsigned int to,
3576 bfd_boolean phdr)
3577 {
3578 struct elf_segment_map *m;
3579 unsigned int i;
3580 asection **hdrpp;
3581 bfd_size_type amt;
3582
3583 amt = sizeof (struct elf_segment_map);
3584 amt += (to - from - 1) * sizeof (asection *);
3585 m = bfd_zalloc (abfd, amt);
3586 if (m == NULL)
3587 return NULL;
3588 m->next = NULL;
3589 m->p_type = PT_LOAD;
3590 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3591 m->sections[i - from] = *hdrpp;
3592 m->count = to - from;
3593
3594 if (from == 0 && phdr)
3595 {
3596 /* Include the headers in the first PT_LOAD segment. */
3597 m->includes_filehdr = 1;
3598 m->includes_phdrs = 1;
3599 }
3600
3601 return m;
3602 }
3603
3604 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3605 on failure. */
3606
3607 struct elf_segment_map *
3608 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3609 {
3610 struct elf_segment_map *m;
3611
3612 m = bfd_zalloc (abfd, sizeof (struct elf_segment_map));
3613 if (m == NULL)
3614 return NULL;
3615 m->next = NULL;
3616 m->p_type = PT_DYNAMIC;
3617 m->count = 1;
3618 m->sections[0] = dynsec;
3619
3620 return m;
3621 }
3622
3623 /* Set up a mapping from BFD sections to program segments. */
3624
3625 static bfd_boolean
3626 map_sections_to_segments (bfd *abfd)
3627 {
3628 asection **sections = NULL;
3629 asection *s;
3630 unsigned int i;
3631 unsigned int count;
3632 struct elf_segment_map *mfirst;
3633 struct elf_segment_map **pm;
3634 struct elf_segment_map *m;
3635 asection *last_hdr;
3636 bfd_vma last_size;
3637 unsigned int phdr_index;
3638 bfd_vma maxpagesize;
3639 asection **hdrpp;
3640 bfd_boolean phdr_in_segment = TRUE;
3641 bfd_boolean writable;
3642 int tls_count = 0;
3643 asection *first_tls = NULL;
3644 asection *dynsec, *eh_frame_hdr;
3645 bfd_size_type amt;
3646
3647 if (elf_tdata (abfd)->segment_map != NULL)
3648 return TRUE;
3649
3650 if (bfd_count_sections (abfd) == 0)
3651 return TRUE;
3652
3653 /* Select the allocated sections, and sort them. */
3654
3655 sections = bfd_malloc2 (bfd_count_sections (abfd), sizeof (asection *));
3656 if (sections == NULL)
3657 goto error_return;
3658
3659 i = 0;
3660 for (s = abfd->sections; s != NULL; s = s->next)
3661 {
3662 if ((s->flags & SEC_ALLOC) != 0)
3663 {
3664 sections[i] = s;
3665 ++i;
3666 }
3667 }
3668 BFD_ASSERT (i <= bfd_count_sections (abfd));
3669 count = i;
3670
3671 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3672
3673 /* Build the mapping. */
3674
3675 mfirst = NULL;
3676 pm = &mfirst;
3677
3678 /* If we have a .interp section, then create a PT_PHDR segment for
3679 the program headers and a PT_INTERP segment for the .interp
3680 section. */
3681 s = bfd_get_section_by_name (abfd, ".interp");
3682 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3683 {
3684 amt = sizeof (struct elf_segment_map);
3685 m = bfd_zalloc (abfd, amt);
3686 if (m == NULL)
3687 goto error_return;
3688 m->next = NULL;
3689 m->p_type = PT_PHDR;
3690 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3691 m->p_flags = PF_R | PF_X;
3692 m->p_flags_valid = 1;
3693 m->includes_phdrs = 1;
3694
3695 *pm = m;
3696 pm = &m->next;
3697
3698 amt = sizeof (struct elf_segment_map);
3699 m = bfd_zalloc (abfd, amt);
3700 if (m == NULL)
3701 goto error_return;
3702 m->next = NULL;
3703 m->p_type = PT_INTERP;
3704 m->count = 1;
3705 m->sections[0] = s;
3706
3707 *pm = m;
3708 pm = &m->next;
3709 }
3710
3711 /* Look through the sections. We put sections in the same program
3712 segment when the start of the second section can be placed within
3713 a few bytes of the end of the first section. */
3714 last_hdr = NULL;
3715 last_size = 0;
3716 phdr_index = 0;
3717 maxpagesize = get_elf_backend_data (abfd)->maxpagesize;
3718 writable = FALSE;
3719 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3720 if (dynsec != NULL
3721 && (dynsec->flags & SEC_LOAD) == 0)
3722 dynsec = NULL;
3723
3724 /* Deal with -Ttext or something similar such that the first section
3725 is not adjacent to the program headers. This is an
3726 approximation, since at this point we don't know exactly how many
3727 program headers we will need. */
3728 if (count > 0)
3729 {
3730 bfd_size_type phdr_size;
3731
3732 phdr_size = elf_tdata (abfd)->program_header_size;
3733 if (phdr_size == 0)
3734 phdr_size = get_elf_backend_data (abfd)->s->sizeof_phdr;
3735 if ((abfd->flags & D_PAGED) == 0
3736 || sections[0]->lma < phdr_size
3737 || sections[0]->lma % maxpagesize < phdr_size % maxpagesize)
3738 phdr_in_segment = FALSE;
3739 }
3740
3741 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3742 {
3743 asection *hdr;
3744 bfd_boolean new_segment;
3745
3746 hdr = *hdrpp;
3747
3748 /* See if this section and the last one will fit in the same
3749 segment. */
3750
3751 if (last_hdr == NULL)
3752 {
3753 /* If we don't have a segment yet, then we don't need a new
3754 one (we build the last one after this loop). */
3755 new_segment = FALSE;
3756 }
3757 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3758 {
3759 /* If this section has a different relation between the
3760 virtual address and the load address, then we need a new
3761 segment. */
3762 new_segment = TRUE;
3763 }
3764 else if (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
3765 < BFD_ALIGN (hdr->lma, maxpagesize))
3766 {
3767 /* If putting this section in this segment would force us to
3768 skip a page in the segment, then we need a new segment. */
3769 new_segment = TRUE;
3770 }
3771 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
3772 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
3773 {
3774 /* We don't want to put a loadable section after a
3775 nonloadable section in the same segment.
3776 Consider .tbss sections as loadable for this purpose. */
3777 new_segment = TRUE;
3778 }
3779 else if ((abfd->flags & D_PAGED) == 0)
3780 {
3781 /* If the file is not demand paged, which means that we
3782 don't require the sections to be correctly aligned in the
3783 file, then there is no other reason for a new segment. */
3784 new_segment = FALSE;
3785 }
3786 else if (! writable
3787 && (hdr->flags & SEC_READONLY) == 0
3788 && (((last_hdr->lma + last_size - 1)
3789 & ~(maxpagesize - 1))
3790 != (hdr->lma & ~(maxpagesize - 1))))
3791 {
3792 /* We don't want to put a writable section in a read only
3793 segment, unless they are on the same page in memory
3794 anyhow. We already know that the last section does not
3795 bring us past the current section on the page, so the
3796 only case in which the new section is not on the same
3797 page as the previous section is when the previous section
3798 ends precisely on a page boundary. */
3799 new_segment = TRUE;
3800 }
3801 else
3802 {
3803 /* Otherwise, we can use the same segment. */
3804 new_segment = FALSE;
3805 }
3806
3807 if (! new_segment)
3808 {
3809 if ((hdr->flags & SEC_READONLY) == 0)
3810 writable = TRUE;
3811 last_hdr = hdr;
3812 /* .tbss sections effectively have zero size. */
3813 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3814 last_size = hdr->size;
3815 else
3816 last_size = 0;
3817 continue;
3818 }
3819
3820 /* We need a new program segment. We must create a new program
3821 header holding all the sections from phdr_index until hdr. */
3822
3823 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3824 if (m == NULL)
3825 goto error_return;
3826
3827 *pm = m;
3828 pm = &m->next;
3829
3830 if ((hdr->flags & SEC_READONLY) == 0)
3831 writable = TRUE;
3832 else
3833 writable = FALSE;
3834
3835 last_hdr = hdr;
3836 /* .tbss sections effectively have zero size. */
3837 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3838 last_size = hdr->size;
3839 else
3840 last_size = 0;
3841 phdr_index = i;
3842 phdr_in_segment = FALSE;
3843 }
3844
3845 /* Create a final PT_LOAD program segment. */
3846 if (last_hdr != NULL)
3847 {
3848 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3849 if (m == NULL)
3850 goto error_return;
3851
3852 *pm = m;
3853 pm = &m->next;
3854 }
3855
3856 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
3857 if (dynsec != NULL)
3858 {
3859 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
3860 if (m == NULL)
3861 goto error_return;
3862 *pm = m;
3863 pm = &m->next;
3864 }
3865
3866 /* For each loadable .note section, add a PT_NOTE segment. We don't
3867 use bfd_get_section_by_name, because if we link together
3868 nonloadable .note sections and loadable .note sections, we will
3869 generate two .note sections in the output file. FIXME: Using
3870 names for section types is bogus anyhow. */
3871 for (s = abfd->sections; s != NULL; s = s->next)
3872 {
3873 if ((s->flags & SEC_LOAD) != 0
3874 && strncmp (s->name, ".note", 5) == 0)
3875 {
3876 amt = sizeof (struct elf_segment_map);
3877 m = bfd_zalloc (abfd, amt);
3878 if (m == NULL)
3879 goto error_return;
3880 m->next = NULL;
3881 m->p_type = PT_NOTE;
3882 m->count = 1;
3883 m->sections[0] = s;
3884
3885 *pm = m;
3886 pm = &m->next;
3887 }
3888 if (s->flags & SEC_THREAD_LOCAL)
3889 {
3890 if (! tls_count)
3891 first_tls = s;
3892 tls_count++;
3893 }
3894 }
3895
3896 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
3897 if (tls_count > 0)
3898 {
3899 int i;
3900
3901 amt = sizeof (struct elf_segment_map);
3902 amt += (tls_count - 1) * sizeof (asection *);
3903 m = bfd_zalloc (abfd, amt);
3904 if (m == NULL)
3905 goto error_return;
3906 m->next = NULL;
3907 m->p_type = PT_TLS;
3908 m->count = tls_count;
3909 /* Mandated PF_R. */
3910 m->p_flags = PF_R;
3911 m->p_flags_valid = 1;
3912 for (i = 0; i < tls_count; ++i)
3913 {
3914 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
3915 m->sections[i] = first_tls;
3916 first_tls = first_tls->next;
3917 }
3918
3919 *pm = m;
3920 pm = &m->next;
3921 }
3922
3923 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
3924 segment. */
3925 eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
3926 if (eh_frame_hdr != NULL
3927 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
3928 {
3929 amt = sizeof (struct elf_segment_map);
3930 m = bfd_zalloc (abfd, amt);
3931 if (m == NULL)
3932 goto error_return;
3933 m->next = NULL;
3934 m->p_type = PT_GNU_EH_FRAME;
3935 m->count = 1;
3936 m->sections[0] = eh_frame_hdr->output_section;
3937
3938 *pm = m;
3939 pm = &m->next;
3940 }
3941
3942 if (elf_tdata (abfd)->stack_flags)
3943 {
3944 amt = sizeof (struct elf_segment_map);
3945 m = bfd_zalloc (abfd, amt);
3946 if (m == NULL)
3947 goto error_return;
3948 m->next = NULL;
3949 m->p_type = PT_GNU_STACK;
3950 m->p_flags = elf_tdata (abfd)->stack_flags;
3951 m->p_flags_valid = 1;
3952
3953 *pm = m;
3954 pm = &m->next;
3955 }
3956
3957 if (elf_tdata (abfd)->relro)
3958 {
3959 amt = sizeof (struct elf_segment_map);
3960 m = bfd_zalloc (abfd, amt);
3961 if (m == NULL)
3962 goto error_return;
3963 m->next = NULL;
3964 m->p_type = PT_GNU_RELRO;
3965 m->p_flags = PF_R;
3966 m->p_flags_valid = 1;
3967
3968 *pm = m;
3969 pm = &m->next;
3970 }
3971
3972 free (sections);
3973 sections = NULL;
3974
3975 elf_tdata (abfd)->segment_map = mfirst;
3976 return TRUE;
3977
3978 error_return:
3979 if (sections != NULL)
3980 free (sections);
3981 return FALSE;
3982 }
3983
3984 /* Sort sections by address. */
3985
3986 static int
3987 elf_sort_sections (const void *arg1, const void *arg2)
3988 {
3989 const asection *sec1 = *(const asection **) arg1;
3990 const asection *sec2 = *(const asection **) arg2;
3991 bfd_size_type size1, size2;
3992
3993 /* Sort by LMA first, since this is the address used to
3994 place the section into a segment. */
3995 if (sec1->lma < sec2->lma)
3996 return -1;
3997 else if (sec1->lma > sec2->lma)
3998 return 1;
3999
4000 /* Then sort by VMA. Normally the LMA and the VMA will be
4001 the same, and this will do nothing. */
4002 if (sec1->vma < sec2->vma)
4003 return -1;
4004 else if (sec1->vma > sec2->vma)
4005 return 1;
4006
4007 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
4008
4009 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
4010
4011 if (TOEND (sec1))
4012 {
4013 if (TOEND (sec2))
4014 {
4015 /* If the indicies are the same, do not return 0
4016 here, but continue to try the next comparison. */
4017 if (sec1->target_index - sec2->target_index != 0)
4018 return sec1->target_index - sec2->target_index;
4019 }
4020 else
4021 return 1;
4022 }
4023 else if (TOEND (sec2))
4024 return -1;
4025
4026 #undef TOEND
4027
4028 /* Sort by size, to put zero sized sections
4029 before others at the same address. */
4030
4031 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
4032 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
4033
4034 if (size1 < size2)
4035 return -1;
4036 if (size1 > size2)
4037 return 1;
4038
4039 return sec1->target_index - sec2->target_index;
4040 }
4041
4042 /* Ian Lance Taylor writes:
4043
4044 We shouldn't be using % with a negative signed number. That's just
4045 not good. We have to make sure either that the number is not
4046 negative, or that the number has an unsigned type. When the types
4047 are all the same size they wind up as unsigned. When file_ptr is a
4048 larger signed type, the arithmetic winds up as signed long long,
4049 which is wrong.
4050
4051 What we're trying to say here is something like ``increase OFF by
4052 the least amount that will cause it to be equal to the VMA modulo
4053 the page size.'' */
4054 /* In other words, something like:
4055
4056 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4057 off_offset = off % bed->maxpagesize;
4058 if (vma_offset < off_offset)
4059 adjustment = vma_offset + bed->maxpagesize - off_offset;
4060 else
4061 adjustment = vma_offset - off_offset;
4062
4063 which can can be collapsed into the expression below. */
4064
4065 static file_ptr
4066 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
4067 {
4068 return ((vma - off) % maxpagesize);
4069 }
4070
4071 static void
4072 print_segment_map (bfd *abfd)
4073 {
4074 struct elf_segment_map *m;
4075 unsigned int i, j;
4076
4077 fprintf (stderr, _(" Section to Segment mapping:\n"));
4078 fprintf (stderr, _(" Segment Sections...\n"));
4079
4080 for (i= 0, m = elf_tdata (abfd)->segment_map;
4081 m != NULL;
4082 i++, m = m->next)
4083 {
4084 const char *pt = get_segment_type (m->p_type);
4085 char buf[32];
4086
4087 if (pt == NULL)
4088 {
4089 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
4090 sprintf (buf, "LOPROC+%7.7x",
4091 (unsigned int) (m->p_type - PT_LOPROC));
4092 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
4093 sprintf (buf, "LOOS+%7.7x",
4094 (unsigned int) (m->p_type - PT_LOOS));
4095 else
4096 snprintf (buf, sizeof (buf), "%8.8x",
4097 (unsigned int) m->p_type);
4098 pt = buf;
4099 }
4100 fprintf (stderr, " %2.2d: %14.14s: ", i, pt);
4101 for (j = 0; j < m->count; j++)
4102 fprintf (stderr, "%s ", m->sections [j]->name);
4103 putc ('\n',stderr);
4104 }
4105 }
4106
4107 /* Assign file positions to the sections based on the mapping from
4108 sections to segments. This function also sets up some fields in
4109 the file header, and writes out the program headers. */
4110
4111 static bfd_boolean
4112 assign_file_positions_for_segments (bfd *abfd, struct bfd_link_info *link_info)
4113 {
4114 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4115 unsigned int count;
4116 struct elf_segment_map *m;
4117 unsigned int alloc;
4118 Elf_Internal_Phdr *phdrs;
4119 file_ptr off, voff;
4120 bfd_vma filehdr_vaddr, filehdr_paddr;
4121 bfd_vma phdrs_vaddr, phdrs_paddr;
4122 Elf_Internal_Phdr *p;
4123 Elf_Internal_Shdr **i_shdrpp;
4124 Elf_Internal_Shdr **hdrpp;
4125 unsigned int i;
4126 unsigned int num_sec;
4127
4128 if (elf_tdata (abfd)->segment_map == NULL)
4129 {
4130 if (! map_sections_to_segments (abfd))
4131 return FALSE;
4132 }
4133 else
4134 {
4135 /* The placement algorithm assumes that non allocated sections are
4136 not in PT_LOAD segments. We ensure this here by removing such
4137 sections from the segment map. We also remove excluded
4138 sections. */
4139 for (m = elf_tdata (abfd)->segment_map;
4140 m != NULL;
4141 m = m->next)
4142 {
4143 unsigned int new_count;
4144
4145 new_count = 0;
4146 for (i = 0; i < m->count; i ++)
4147 {
4148 if ((m->sections[i]->flags & SEC_EXCLUDE) == 0
4149 && ((m->sections[i]->flags & SEC_ALLOC) != 0
4150 || m->p_type != PT_LOAD))
4151 {
4152 if (i != new_count)
4153 m->sections[new_count] = m->sections[i];
4154
4155 new_count ++;
4156 }
4157 }
4158
4159 if (new_count != m->count)
4160 m->count = new_count;
4161 }
4162 }
4163
4164 if (bed->elf_backend_modify_segment_map)
4165 {
4166 if (! (*bed->elf_backend_modify_segment_map) (abfd, link_info))
4167 return FALSE;
4168 }
4169
4170 count = 0;
4171 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4172 ++count;
4173
4174 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
4175 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
4176 elf_elfheader (abfd)->e_phnum = count;
4177
4178 if (count == 0)
4179 {
4180 elf_tdata (abfd)->next_file_pos = bed->s->sizeof_ehdr;
4181 return TRUE;
4182 }
4183
4184 /* If we already counted the number of program segments, make sure
4185 that we allocated enough space. This happens when SIZEOF_HEADERS
4186 is used in a linker script. */
4187 alloc = elf_tdata (abfd)->program_header_size / bed->s->sizeof_phdr;
4188 if (alloc != 0 && count > alloc)
4189 {
4190 ((*_bfd_error_handler)
4191 (_("%B: Not enough room for program headers (allocated %u, need %u)"),
4192 abfd, alloc, count));
4193 print_segment_map (abfd);
4194 bfd_set_error (bfd_error_bad_value);
4195 return FALSE;
4196 }
4197
4198 if (alloc == 0)
4199 alloc = count;
4200
4201 phdrs = bfd_alloc2 (abfd, alloc, sizeof (Elf_Internal_Phdr));
4202 if (phdrs == NULL)
4203 return FALSE;
4204
4205 off = bed->s->sizeof_ehdr;
4206 off += alloc * bed->s->sizeof_phdr;
4207
4208 filehdr_vaddr = 0;
4209 filehdr_paddr = 0;
4210 phdrs_vaddr = 0;
4211 phdrs_paddr = 0;
4212
4213 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4214 m != NULL;
4215 m = m->next, p++)
4216 {
4217 asection **secpp;
4218
4219 /* If elf_segment_map is not from map_sections_to_segments, the
4220 sections may not be correctly ordered. NOTE: sorting should
4221 not be done to the PT_NOTE section of a corefile, which may
4222 contain several pseudo-sections artificially created by bfd.
4223 Sorting these pseudo-sections breaks things badly. */
4224 if (m->count > 1
4225 && !(elf_elfheader (abfd)->e_type == ET_CORE
4226 && m->p_type == PT_NOTE))
4227 qsort (m->sections, (size_t) m->count, sizeof (asection *),
4228 elf_sort_sections);
4229
4230 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4231 number of sections with contents contributing to both p_filesz
4232 and p_memsz, followed by a number of sections with no contents
4233 that just contribute to p_memsz. In this loop, OFF tracks next
4234 available file offset for PT_LOAD and PT_NOTE segments. VOFF is
4235 an adjustment we use for segments that have no file contents
4236 but need zero filled memory allocation. */
4237 voff = 0;
4238 p->p_type = m->p_type;
4239 p->p_flags = m->p_flags;
4240
4241 if (p->p_type == PT_LOAD
4242 && m->count > 0)
4243 {
4244 bfd_size_type align;
4245 bfd_vma adjust;
4246 unsigned int align_power = 0;
4247
4248 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4249 {
4250 unsigned int secalign;
4251
4252 secalign = bfd_get_section_alignment (abfd, *secpp);
4253 if (secalign > align_power)
4254 align_power = secalign;
4255 }
4256 align = (bfd_size_type) 1 << align_power;
4257
4258 if ((abfd->flags & D_PAGED) != 0 && bed->maxpagesize > align)
4259 align = bed->maxpagesize;
4260
4261 adjust = vma_page_aligned_bias (m->sections[0]->vma, off, align);
4262 off += adjust;
4263 if (adjust != 0
4264 && !m->includes_filehdr
4265 && !m->includes_phdrs
4266 && (ufile_ptr) off >= align)
4267 {
4268 /* If the first section isn't loadable, the same holds for
4269 any other sections. Since the segment won't need file
4270 space, we can make p_offset overlap some prior segment.
4271 However, .tbss is special. If a segment starts with
4272 .tbss, we need to look at the next section to decide
4273 whether the segment has any loadable sections. */
4274 i = 0;
4275 while ((m->sections[i]->flags & SEC_LOAD) == 0)
4276 {
4277 if ((m->sections[i]->flags & SEC_THREAD_LOCAL) == 0
4278 || ++i >= m->count)
4279 {
4280 off -= adjust;
4281 voff = adjust - align;
4282 break;
4283 }
4284 }
4285 }
4286 }
4287 /* Make sure the .dynamic section is the first section in the
4288 PT_DYNAMIC segment. */
4289 else if (p->p_type == PT_DYNAMIC
4290 && m->count > 1
4291 && strcmp (m->sections[0]->name, ".dynamic") != 0)
4292 {
4293 _bfd_error_handler
4294 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4295 abfd);
4296 bfd_set_error (bfd_error_bad_value);
4297 return FALSE;
4298 }
4299
4300 if (m->count == 0)
4301 p->p_vaddr = 0;
4302 else
4303 p->p_vaddr = m->sections[0]->vma;
4304
4305 if (m->p_paddr_valid)
4306 p->p_paddr = m->p_paddr;
4307 else if (m->count == 0)
4308 p->p_paddr = 0;
4309 else
4310 p->p_paddr = m->sections[0]->lma;
4311
4312 if (p->p_type == PT_LOAD
4313 && (abfd->flags & D_PAGED) != 0)
4314 p->p_align = bed->maxpagesize;
4315 else if (m->count == 0)
4316 p->p_align = 1 << bed->s->log_file_align;
4317 else
4318 p->p_align = 0;
4319
4320 p->p_offset = 0;
4321 p->p_filesz = 0;
4322 p->p_memsz = 0;
4323
4324 if (m->includes_filehdr)
4325 {
4326 if (! m->p_flags_valid)
4327 p->p_flags |= PF_R;
4328 p->p_offset = 0;
4329 p->p_filesz = bed->s->sizeof_ehdr;
4330 p->p_memsz = bed->s->sizeof_ehdr;
4331 if (m->count > 0)
4332 {
4333 BFD_ASSERT (p->p_type == PT_LOAD);
4334
4335 if (p->p_vaddr < (bfd_vma) off)
4336 {
4337 (*_bfd_error_handler)
4338 (_("%B: Not enough room for program headers, try linking with -N"),
4339 abfd);
4340 bfd_set_error (bfd_error_bad_value);
4341 return FALSE;
4342 }
4343
4344 p->p_vaddr -= off;
4345 if (! m->p_paddr_valid)
4346 p->p_paddr -= off;
4347 }
4348 if (p->p_type == PT_LOAD)
4349 {
4350 filehdr_vaddr = p->p_vaddr;
4351 filehdr_paddr = p->p_paddr;
4352 }
4353 }
4354
4355 if (m->includes_phdrs)
4356 {
4357 if (! m->p_flags_valid)
4358 p->p_flags |= PF_R;
4359
4360 if (m->includes_filehdr)
4361 {
4362 if (p->p_type == PT_LOAD)
4363 {
4364 phdrs_vaddr = p->p_vaddr + bed->s->sizeof_ehdr;
4365 phdrs_paddr = p->p_paddr + bed->s->sizeof_ehdr;
4366 }
4367 }
4368 else
4369 {
4370 p->p_offset = bed->s->sizeof_ehdr;
4371
4372 if (m->count > 0)
4373 {
4374 BFD_ASSERT (p->p_type == PT_LOAD);
4375 p->p_vaddr -= off - p->p_offset;
4376 if (! m->p_paddr_valid)
4377 p->p_paddr -= off - p->p_offset;
4378 }
4379
4380 if (p->p_type == PT_LOAD)
4381 {
4382 phdrs_vaddr = p->p_vaddr;
4383 phdrs_paddr = p->p_paddr;
4384 }
4385 else
4386 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
4387 }
4388
4389 p->p_filesz += alloc * bed->s->sizeof_phdr;
4390 p->p_memsz += alloc * bed->s->sizeof_phdr;
4391 }
4392
4393 if (p->p_type == PT_LOAD
4394 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4395 {
4396 if (! m->includes_filehdr && ! m->includes_phdrs)
4397 p->p_offset = off + voff;
4398 else
4399 {
4400 file_ptr adjust;
4401
4402 adjust = off - (p->p_offset + p->p_filesz);
4403 p->p_filesz += adjust;
4404 p->p_memsz += adjust;
4405 }
4406 }
4407
4408 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4409 {
4410 asection *sec;
4411 flagword flags;
4412 bfd_size_type align;
4413
4414 sec = *secpp;
4415 flags = sec->flags;
4416 align = 1 << bfd_get_section_alignment (abfd, sec);
4417
4418 if (p->p_type == PT_LOAD
4419 || p->p_type == PT_TLS)
4420 {
4421 bfd_signed_vma adjust;
4422
4423 if ((flags & SEC_LOAD) != 0)
4424 {
4425 adjust = sec->lma - (p->p_paddr + p->p_filesz);
4426 if (adjust < 0)
4427 {
4428 (*_bfd_error_handler)
4429 (_("%B: section %A lma 0x%lx overlaps previous sections"),
4430 abfd, sec, (unsigned long) sec->lma);
4431 adjust = 0;
4432 }
4433 off += adjust;
4434 p->p_filesz += adjust;
4435 p->p_memsz += adjust;
4436 }
4437 /* .tbss is special. It doesn't contribute to p_memsz of
4438 normal segments. */
4439 else if ((flags & SEC_THREAD_LOCAL) == 0
4440 || p->p_type == PT_TLS)
4441 {
4442 /* The section VMA must equal the file position
4443 modulo the page size. */
4444 bfd_size_type page = align;
4445 if ((abfd->flags & D_PAGED) != 0 && bed->maxpagesize > page)
4446 page = bed->maxpagesize;
4447 adjust = vma_page_aligned_bias (sec->vma,
4448 p->p_vaddr + p->p_memsz,
4449 page);
4450 p->p_memsz += adjust;
4451 }
4452 }
4453
4454 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
4455 {
4456 /* The section at i == 0 is the one that actually contains
4457 everything. */
4458 if (i == 0)
4459 {
4460 sec->filepos = off;
4461 off += sec->size;
4462 p->p_filesz = sec->size;
4463 p->p_memsz = 0;
4464 p->p_align = 1;
4465 }
4466 else
4467 {
4468 /* The rest are fake sections that shouldn't be written. */
4469 sec->filepos = 0;
4470 sec->size = 0;
4471 sec->flags = 0;
4472 continue;
4473 }
4474 }
4475 else
4476 {
4477 if (p->p_type == PT_LOAD)
4478 {
4479 sec->filepos = off;
4480 /* FIXME: The SEC_HAS_CONTENTS test here dates back to
4481 1997, and the exact reason for it isn't clear. One
4482 plausible explanation is that it is to work around
4483 a problem we have with linker scripts using data
4484 statements in NOLOAD sections. I don't think it
4485 makes a great deal of sense to have such a section
4486 assigned to a PT_LOAD segment, but apparently
4487 people do this. The data statement results in a
4488 bfd_data_link_order being built, and these need
4489 section contents to write into. Eventually, we get
4490 to _bfd_elf_write_object_contents which writes any
4491 section with contents to the output. Make room
4492 here for the write, so that following segments are
4493 not trashed. */
4494 if ((flags & SEC_LOAD) != 0
4495 || (flags & SEC_HAS_CONTENTS) != 0)
4496 off += sec->size;
4497 }
4498
4499 if ((flags & SEC_LOAD) != 0)
4500 {
4501 p->p_filesz += sec->size;
4502 p->p_memsz += sec->size;
4503 }
4504 /* PR ld/594: Sections in note segments which are not loaded
4505 contribute to the file size but not the in-memory size. */
4506 else if (p->p_type == PT_NOTE
4507 && (flags & SEC_HAS_CONTENTS) != 0)
4508 p->p_filesz += sec->size;
4509
4510 /* .tbss is special. It doesn't contribute to p_memsz of
4511 normal segments. */
4512 else if ((flags & SEC_THREAD_LOCAL) == 0
4513 || p->p_type == PT_TLS)
4514 p->p_memsz += sec->size;
4515
4516 if (p->p_type == PT_TLS
4517 && sec->size == 0
4518 && (sec->flags & SEC_HAS_CONTENTS) == 0)
4519 {
4520 struct bfd_link_order *o = sec->map_tail.link_order;
4521 if (o != NULL)
4522 p->p_memsz += o->offset + o->size;
4523 }
4524
4525 if (align > p->p_align
4526 && (p->p_type != PT_LOAD || (abfd->flags & D_PAGED) == 0))
4527 p->p_align = align;
4528 }
4529
4530 if (! m->p_flags_valid)
4531 {
4532 p->p_flags |= PF_R;
4533 if ((flags & SEC_CODE) != 0)
4534 p->p_flags |= PF_X;
4535 if ((flags & SEC_READONLY) == 0)
4536 p->p_flags |= PF_W;
4537 }
4538 }
4539 }
4540
4541 /* Assign file positions for the other sections. */
4542 i_shdrpp = elf_elfsections (abfd);
4543 num_sec = elf_numsections (abfd);
4544 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4545 {
4546 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4547 Elf_Internal_Shdr *hdr;
4548
4549 hdr = *hdrpp;
4550 if (hdr->bfd_section != NULL
4551 && hdr->bfd_section->filepos != 0)
4552 hdr->sh_offset = hdr->bfd_section->filepos;
4553 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4554 {
4555 ((*_bfd_error_handler)
4556 (_("%B: warning: allocated section `%s' not in segment"),
4557 abfd,
4558 (hdr->bfd_section == NULL
4559 ? "*unknown*"
4560 : hdr->bfd_section->name)));
4561 if ((abfd->flags & D_PAGED) != 0)
4562 off += vma_page_aligned_bias (hdr->sh_addr, off,
4563 bed->maxpagesize);
4564 else
4565 off += vma_page_aligned_bias (hdr->sh_addr, off,
4566 hdr->sh_addralign);
4567 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4568 FALSE);
4569 }
4570 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4571 && hdr->bfd_section == NULL)
4572 || hdr == i_shdrpp[tdata->symtab_section]
4573 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4574 || hdr == i_shdrpp[tdata->strtab_section])
4575 hdr->sh_offset = -1;
4576 else
4577 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4578
4579 if (i == SHN_LORESERVE - 1)
4580 {
4581 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4582 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4583 }
4584 }
4585
4586 /* Now that we have set the section file positions, we can set up
4587 the file positions for the non PT_LOAD segments. */
4588 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4589 m != NULL;
4590 m = m->next, p++)
4591 {
4592 if (p->p_type != PT_LOAD && m->count > 0)
4593 {
4594 BFD_ASSERT (! m->includes_filehdr && ! m->includes_phdrs);
4595 /* If the section has not yet been assigned a file position,
4596 do so now. The ARM BPABI requires that .dynamic section
4597 not be marked SEC_ALLOC because it is not part of any
4598 PT_LOAD segment, so it will not be processed above. */
4599 if (p->p_type == PT_DYNAMIC && m->sections[0]->filepos == 0)
4600 {
4601 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4602
4603 i = 1;
4604 while (i_shdrpp[i]->bfd_section != m->sections[0])
4605 ++i;
4606 off = (_bfd_elf_assign_file_position_for_section
4607 (i_shdrpp[i], off, TRUE));
4608 p->p_filesz = m->sections[0]->size;
4609 }
4610 p->p_offset = m->sections[0]->filepos;
4611 }
4612 if (m->count == 0)
4613 {
4614 if (m->includes_filehdr)
4615 {
4616 p->p_vaddr = filehdr_vaddr;
4617 if (! m->p_paddr_valid)
4618 p->p_paddr = filehdr_paddr;
4619 }
4620 else if (m->includes_phdrs)
4621 {
4622 p->p_vaddr = phdrs_vaddr;
4623 if (! m->p_paddr_valid)
4624 p->p_paddr = phdrs_paddr;
4625 }
4626 else if (p->p_type == PT_GNU_RELRO)
4627 {
4628 Elf_Internal_Phdr *lp;
4629
4630 for (lp = phdrs; lp < phdrs + count; ++lp)
4631 {
4632 if (lp->p_type == PT_LOAD
4633 && lp->p_vaddr <= link_info->relro_end
4634 && lp->p_vaddr >= link_info->relro_start
4635 && lp->p_vaddr + lp->p_filesz
4636 >= link_info->relro_end)
4637 break;
4638 }
4639
4640 if (lp < phdrs + count
4641 && link_info->relro_end > lp->p_vaddr)
4642 {
4643 p->p_vaddr = lp->p_vaddr;
4644 p->p_paddr = lp->p_paddr;
4645 p->p_offset = lp->p_offset;
4646 p->p_filesz = link_info->relro_end - lp->p_vaddr;
4647 p->p_memsz = p->p_filesz;
4648 p->p_align = 1;
4649 p->p_flags = (lp->p_flags & ~PF_W);
4650 }
4651 else
4652 {
4653 memset (p, 0, sizeof *p);
4654 p->p_type = PT_NULL;
4655 }
4656 }
4657 }
4658 }
4659
4660 /* Clear out any program headers we allocated but did not use. */
4661 for (; count < alloc; count++, p++)
4662 {
4663 memset (p, 0, sizeof *p);
4664 p->p_type = PT_NULL;
4665 }
4666
4667 elf_tdata (abfd)->phdr = phdrs;
4668
4669 elf_tdata (abfd)->next_file_pos = off;
4670
4671 /* Write out the program headers. */
4672 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
4673 || bed->s->write_out_phdrs (abfd, phdrs, alloc) != 0)
4674 return FALSE;
4675
4676 return TRUE;
4677 }
4678
4679 /* Get the size of the program header.
4680
4681 If this is called by the linker before any of the section VMA's are set, it
4682 can't calculate the correct value for a strange memory layout. This only
4683 happens when SIZEOF_HEADERS is used in a linker script. In this case,
4684 SORTED_HDRS is NULL and we assume the normal scenario of one text and one
4685 data segment (exclusive of .interp and .dynamic).
4686
4687 ??? User written scripts must either not use SIZEOF_HEADERS, or assume there
4688 will be two segments. */
4689
4690 static bfd_size_type
4691 get_program_header_size (bfd *abfd)
4692 {
4693 size_t segs;
4694 asection *s;
4695 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4696
4697 /* We can't return a different result each time we're called. */
4698 if (elf_tdata (abfd)->program_header_size != 0)
4699 return elf_tdata (abfd)->program_header_size;
4700
4701 if (elf_tdata (abfd)->segment_map != NULL)
4702 {
4703 struct elf_segment_map *m;
4704
4705 segs = 0;
4706 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4707 ++segs;
4708 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
4709 return elf_tdata (abfd)->program_header_size;
4710 }
4711
4712 /* Assume we will need exactly two PT_LOAD segments: one for text
4713 and one for data. */
4714 segs = 2;
4715
4716 s = bfd_get_section_by_name (abfd, ".interp");
4717 if (s != NULL && (s->flags & SEC_LOAD) != 0)
4718 {
4719 /* If we have a loadable interpreter section, we need a
4720 PT_INTERP segment. In this case, assume we also need a
4721 PT_PHDR segment, although that may not be true for all
4722 targets. */
4723 segs += 2;
4724 }
4725
4726 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4727 {
4728 /* We need a PT_DYNAMIC segment. */
4729 ++segs;
4730 }
4731
4732 if (elf_tdata (abfd)->eh_frame_hdr)
4733 {
4734 /* We need a PT_GNU_EH_FRAME segment. */
4735 ++segs;
4736 }
4737
4738 if (elf_tdata (abfd)->stack_flags)
4739 {
4740 /* We need a PT_GNU_STACK segment. */
4741 ++segs;
4742 }
4743
4744 if (elf_tdata (abfd)->relro)
4745 {
4746 /* We need a PT_GNU_RELRO segment. */
4747 ++segs;
4748 }
4749
4750 for (s = abfd->sections; s != NULL; s = s->next)
4751 {
4752 if ((s->flags & SEC_LOAD) != 0
4753 && strncmp (s->name, ".note", 5) == 0)
4754 {
4755 /* We need a PT_NOTE segment. */
4756 ++segs;
4757 }
4758 }
4759
4760 for (s = abfd->sections; s != NULL; s = s->next)
4761 {
4762 if (s->flags & SEC_THREAD_LOCAL)
4763 {
4764 /* We need a PT_TLS segment. */
4765 ++segs;
4766 break;
4767 }
4768 }
4769
4770 /* Let the backend count up any program headers it might need. */
4771 if (bed->elf_backend_additional_program_headers)
4772 {
4773 int a;
4774
4775 a = (*bed->elf_backend_additional_program_headers) (abfd);
4776 if (a == -1)
4777 abort ();
4778 segs += a;
4779 }
4780
4781 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
4782 return elf_tdata (abfd)->program_header_size;
4783 }
4784
4785 /* Work out the file positions of all the sections. This is called by
4786 _bfd_elf_compute_section_file_positions. All the section sizes and
4787 VMAs must be known before this is called.
4788
4789 Reloc sections come in two flavours: Those processed specially as
4790 "side-channel" data attached to a section to which they apply, and
4791 those that bfd doesn't process as relocations. The latter sort are
4792 stored in a normal bfd section by bfd_section_from_shdr. We don't
4793 consider the former sort here, unless they form part of the loadable
4794 image. Reloc sections not assigned here will be handled later by
4795 assign_file_positions_for_relocs.
4796
4797 We also don't set the positions of the .symtab and .strtab here. */
4798
4799 static bfd_boolean
4800 assign_file_positions_except_relocs (bfd *abfd,
4801 struct bfd_link_info *link_info)
4802 {
4803 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4804 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
4805 file_ptr off;
4806 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4807
4808 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
4809 && bfd_get_format (abfd) != bfd_core)
4810 {
4811 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4812 unsigned int num_sec = elf_numsections (abfd);
4813 Elf_Internal_Shdr **hdrpp;
4814 unsigned int i;
4815
4816 /* Start after the ELF header. */
4817 off = i_ehdrp->e_ehsize;
4818
4819 /* We are not creating an executable, which means that we are
4820 not creating a program header, and that the actual order of
4821 the sections in the file is unimportant. */
4822 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4823 {
4824 Elf_Internal_Shdr *hdr;
4825
4826 hdr = *hdrpp;
4827 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4828 && hdr->bfd_section == NULL)
4829 || i == tdata->symtab_section
4830 || i == tdata->symtab_shndx_section
4831 || i == tdata->strtab_section)
4832 {
4833 hdr->sh_offset = -1;
4834 }
4835 else
4836 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4837
4838 if (i == SHN_LORESERVE - 1)
4839 {
4840 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4841 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4842 }
4843 }
4844 }
4845 else
4846 {
4847 /* Assign file positions for the loaded sections based on the
4848 assignment of sections to segments. */
4849 if (! assign_file_positions_for_segments (abfd, link_info))
4850 return FALSE;
4851
4852 off = tdata->next_file_pos;
4853 }
4854
4855 /* Place the section headers. */
4856 off = align_file_position (off, 1 << bed->s->log_file_align);
4857 i_ehdrp->e_shoff = off;
4858 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
4859
4860 tdata->next_file_pos = off;
4861
4862 return TRUE;
4863 }
4864
4865 static bfd_boolean
4866 prep_headers (bfd *abfd)
4867 {
4868 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
4869 Elf_Internal_Phdr *i_phdrp = 0; /* Program header table, internal form */
4870 Elf_Internal_Shdr **i_shdrp; /* Section header table, internal form */
4871 struct elf_strtab_hash *shstrtab;
4872 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4873
4874 i_ehdrp = elf_elfheader (abfd);
4875 i_shdrp = elf_elfsections (abfd);
4876
4877 shstrtab = _bfd_elf_strtab_init ();
4878 if (shstrtab == NULL)
4879 return FALSE;
4880
4881 elf_shstrtab (abfd) = shstrtab;
4882
4883 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
4884 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
4885 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
4886 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
4887
4888 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
4889 i_ehdrp->e_ident[EI_DATA] =
4890 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
4891 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
4892
4893 if ((abfd->flags & DYNAMIC) != 0)
4894 i_ehdrp->e_type = ET_DYN;
4895 else if ((abfd->flags & EXEC_P) != 0)
4896 i_ehdrp->e_type = ET_EXEC;
4897 else if (bfd_get_format (abfd) == bfd_core)
4898 i_ehdrp->e_type = ET_CORE;
4899 else
4900 i_ehdrp->e_type = ET_REL;
4901
4902 switch (bfd_get_arch (abfd))
4903 {
4904 case bfd_arch_unknown:
4905 i_ehdrp->e_machine = EM_NONE;
4906 break;
4907
4908 /* There used to be a long list of cases here, each one setting
4909 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4910 in the corresponding bfd definition. To avoid duplication,
4911 the switch was removed. Machines that need special handling
4912 can generally do it in elf_backend_final_write_processing(),
4913 unless they need the information earlier than the final write.
4914 Such need can generally be supplied by replacing the tests for
4915 e_machine with the conditions used to determine it. */
4916 default:
4917 i_ehdrp->e_machine = bed->elf_machine_code;
4918 }
4919
4920 i_ehdrp->e_version = bed->s->ev_current;
4921 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
4922
4923 /* No program header, for now. */
4924 i_ehdrp->e_phoff = 0;
4925 i_ehdrp->e_phentsize = 0;
4926 i_ehdrp->e_phnum = 0;
4927
4928 /* Each bfd section is section header entry. */
4929 i_ehdrp->e_entry = bfd_get_start_address (abfd);
4930 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
4931
4932 /* If we're building an executable, we'll need a program header table. */
4933 if (abfd->flags & EXEC_P)
4934 /* It all happens later. */
4935 ;
4936 else
4937 {
4938 i_ehdrp->e_phentsize = 0;
4939 i_phdrp = 0;
4940 i_ehdrp->e_phoff = 0;
4941 }
4942
4943 elf_tdata (abfd)->symtab_hdr.sh_name =
4944 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
4945 elf_tdata (abfd)->strtab_hdr.sh_name =
4946 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
4947 elf_tdata (abfd)->shstrtab_hdr.sh_name =
4948 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
4949 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4950 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4951 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
4952 return FALSE;
4953
4954 return TRUE;
4955 }
4956
4957 /* Assign file positions for all the reloc sections which are not part
4958 of the loadable file image. */
4959
4960 void
4961 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
4962 {
4963 file_ptr off;
4964 unsigned int i, num_sec;
4965 Elf_Internal_Shdr **shdrpp;
4966
4967 off = elf_tdata (abfd)->next_file_pos;
4968
4969 num_sec = elf_numsections (abfd);
4970 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
4971 {
4972 Elf_Internal_Shdr *shdrp;
4973
4974 shdrp = *shdrpp;
4975 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
4976 && shdrp->sh_offset == -1)
4977 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
4978 }
4979
4980 elf_tdata (abfd)->next_file_pos = off;
4981 }
4982
4983 bfd_boolean
4984 _bfd_elf_write_object_contents (bfd *abfd)
4985 {
4986 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4987 Elf_Internal_Ehdr *i_ehdrp;
4988 Elf_Internal_Shdr **i_shdrp;
4989 bfd_boolean failed;
4990 unsigned int count, num_sec;
4991
4992 if (! abfd->output_has_begun
4993 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
4994 return FALSE;
4995
4996 i_shdrp = elf_elfsections (abfd);
4997 i_ehdrp = elf_elfheader (abfd);
4998
4999 failed = FALSE;
5000 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
5001 if (failed)
5002 return FALSE;
5003
5004 _bfd_elf_assign_file_positions_for_relocs (abfd);
5005
5006 /* After writing the headers, we need to write the sections too... */
5007 num_sec = elf_numsections (abfd);
5008 for (count = 1; count < num_sec; count++)
5009 {
5010 if (bed->elf_backend_section_processing)
5011 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
5012 if (i_shdrp[count]->contents)
5013 {
5014 bfd_size_type amt = i_shdrp[count]->sh_size;
5015
5016 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
5017 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
5018 return FALSE;
5019 }
5020 if (count == SHN_LORESERVE - 1)
5021 count += SHN_HIRESERVE + 1 - SHN_LORESERVE;
5022 }
5023
5024 /* Write out the section header names. */
5025 if (elf_shstrtab (abfd) != NULL
5026 && (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
5027 || ! _bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
5028 return FALSE;
5029
5030 if (bed->elf_backend_final_write_processing)
5031 (*bed->elf_backend_final_write_processing) (abfd,
5032 elf_tdata (abfd)->linker);
5033
5034 return bed->s->write_shdrs_and_ehdr (abfd);
5035 }
5036
5037 bfd_boolean
5038 _bfd_elf_write_corefile_contents (bfd *abfd)
5039 {
5040 /* Hopefully this can be done just like an object file. */
5041 return _bfd_elf_write_object_contents (abfd);
5042 }
5043
5044 /* Given a section, search the header to find them. */
5045
5046 int
5047 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
5048 {
5049 const struct elf_backend_data *bed;
5050 int index;
5051
5052 if (elf_section_data (asect) != NULL
5053 && elf_section_data (asect)->this_idx != 0)
5054 return elf_section_data (asect)->this_idx;
5055
5056 if (bfd_is_abs_section (asect))
5057 index = SHN_ABS;
5058 else if (bfd_is_com_section (asect))
5059 index = SHN_COMMON;
5060 else if (bfd_is_und_section (asect))
5061 index = SHN_UNDEF;
5062 else
5063 index = -1;
5064
5065 bed = get_elf_backend_data (abfd);
5066 if (bed->elf_backend_section_from_bfd_section)
5067 {
5068 int retval = index;
5069
5070 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
5071 return retval;
5072 }
5073
5074 if (index == -1)
5075 bfd_set_error (bfd_error_nonrepresentable_section);
5076
5077 return index;
5078 }
5079
5080 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
5081 on error. */
5082
5083 int
5084 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
5085 {
5086 asymbol *asym_ptr = *asym_ptr_ptr;
5087 int idx;
5088 flagword flags = asym_ptr->flags;
5089
5090 /* When gas creates relocations against local labels, it creates its
5091 own symbol for the section, but does put the symbol into the
5092 symbol chain, so udata is 0. When the linker is generating
5093 relocatable output, this section symbol may be for one of the
5094 input sections rather than the output section. */
5095 if (asym_ptr->udata.i == 0
5096 && (flags & BSF_SECTION_SYM)
5097 && asym_ptr->section)
5098 {
5099 int indx;
5100
5101 if (asym_ptr->section->output_section != NULL)
5102 indx = asym_ptr->section->output_section->index;
5103 else
5104 indx = asym_ptr->section->index;
5105 if (indx < elf_num_section_syms (abfd)
5106 && elf_section_syms (abfd)[indx] != NULL)
5107 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
5108 }
5109
5110 idx = asym_ptr->udata.i;
5111
5112 if (idx == 0)
5113 {
5114 /* This case can occur when using --strip-symbol on a symbol
5115 which is used in a relocation entry. */
5116 (*_bfd_error_handler)
5117 (_("%B: symbol `%s' required but not present"),
5118 abfd, bfd_asymbol_name (asym_ptr));
5119 bfd_set_error (bfd_error_no_symbols);
5120 return -1;
5121 }
5122
5123 #if DEBUG & 4
5124 {
5125 fprintf (stderr,
5126 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
5127 (long) asym_ptr, asym_ptr->name, idx, flags,
5128 elf_symbol_flags (flags));
5129 fflush (stderr);
5130 }
5131 #endif
5132
5133 return idx;
5134 }
5135
5136 /* Rewrite program header information. */
5137
5138 static bfd_boolean
5139 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
5140 {
5141 Elf_Internal_Ehdr *iehdr;
5142 struct elf_segment_map *map;
5143 struct elf_segment_map *map_first;
5144 struct elf_segment_map **pointer_to_map;
5145 Elf_Internal_Phdr *segment;
5146 asection *section;
5147 unsigned int i;
5148 unsigned int num_segments;
5149 bfd_boolean phdr_included = FALSE;
5150 bfd_vma maxpagesize;
5151 struct elf_segment_map *phdr_adjust_seg = NULL;
5152 unsigned int phdr_adjust_num = 0;
5153 const struct elf_backend_data *bed;
5154
5155 bed = get_elf_backend_data (ibfd);
5156 iehdr = elf_elfheader (ibfd);
5157
5158 map_first = NULL;
5159 pointer_to_map = &map_first;
5160
5161 num_segments = elf_elfheader (ibfd)->e_phnum;
5162 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
5163
5164 /* Returns the end address of the segment + 1. */
5165 #define SEGMENT_END(segment, start) \
5166 (start + (segment->p_memsz > segment->p_filesz \
5167 ? segment->p_memsz : segment->p_filesz))
5168
5169 #define SECTION_SIZE(section, segment) \
5170 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5171 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5172 ? section->size : 0)
5173
5174 /* Returns TRUE if the given section is contained within
5175 the given segment. VMA addresses are compared. */
5176 #define IS_CONTAINED_BY_VMA(section, segment) \
5177 (section->vma >= segment->p_vaddr \
5178 && (section->vma + SECTION_SIZE (section, segment) \
5179 <= (SEGMENT_END (segment, segment->p_vaddr))))
5180
5181 /* Returns TRUE if the given section is contained within
5182 the given segment. LMA addresses are compared. */
5183 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5184 (section->lma >= base \
5185 && (section->lma + SECTION_SIZE (section, segment) \
5186 <= SEGMENT_END (segment, base)))
5187
5188 /* Special case: corefile "NOTE" section containing regs, prpsinfo etc. */
5189 #define IS_COREFILE_NOTE(p, s) \
5190 (p->p_type == PT_NOTE \
5191 && bfd_get_format (ibfd) == bfd_core \
5192 && s->vma == 0 && s->lma == 0 \
5193 && (bfd_vma) s->filepos >= p->p_offset \
5194 && ((bfd_vma) s->filepos + s->size \
5195 <= p->p_offset + p->p_filesz))
5196
5197 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5198 linker, which generates a PT_INTERP section with p_vaddr and
5199 p_memsz set to 0. */
5200 #define IS_SOLARIS_PT_INTERP(p, s) \
5201 (p->p_vaddr == 0 \
5202 && p->p_paddr == 0 \
5203 && p->p_memsz == 0 \
5204 && p->p_filesz > 0 \
5205 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5206 && s->size > 0 \
5207 && (bfd_vma) s->filepos >= p->p_offset \
5208 && ((bfd_vma) s->filepos + s->size \
5209 <= p->p_offset + p->p_filesz))
5210
5211 /* Decide if the given section should be included in the given segment.
5212 A section will be included if:
5213 1. It is within the address space of the segment -- we use the LMA
5214 if that is set for the segment and the VMA otherwise,
5215 2. It is an allocated segment,
5216 3. There is an output section associated with it,
5217 4. The section has not already been allocated to a previous segment.
5218 5. PT_GNU_STACK segments do not include any sections.
5219 6. PT_TLS segment includes only SHF_TLS sections.
5220 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5221 8. PT_DYNAMIC should not contain empty sections at the beginning
5222 (with the possible exception of .dynamic). */
5223 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5224 ((((segment->p_paddr \
5225 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5226 : IS_CONTAINED_BY_VMA (section, segment)) \
5227 && (section->flags & SEC_ALLOC) != 0) \
5228 || IS_COREFILE_NOTE (segment, section)) \
5229 && section->output_section != NULL \
5230 && segment->p_type != PT_GNU_STACK \
5231 && (segment->p_type != PT_TLS \
5232 || (section->flags & SEC_THREAD_LOCAL)) \
5233 && (segment->p_type == PT_LOAD \
5234 || segment->p_type == PT_TLS \
5235 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5236 && (segment->p_type != PT_DYNAMIC \
5237 || SECTION_SIZE (section, segment) > 0 \
5238 || (segment->p_paddr \
5239 ? segment->p_paddr != section->lma \
5240 : segment->p_vaddr != section->vma) \
5241 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5242 == 0)) \
5243 && ! section->segment_mark)
5244
5245 /* Returns TRUE iff seg1 starts after the end of seg2. */
5246 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5247 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5248
5249 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5250 their VMA address ranges and their LMA address ranges overlap.
5251 It is possible to have overlapping VMA ranges without overlapping LMA
5252 ranges. RedBoot images for example can have both .data and .bss mapped
5253 to the same VMA range, but with the .data section mapped to a different
5254 LMA. */
5255 #define SEGMENT_OVERLAPS(seg1, seg2) \
5256 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5257 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5258 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5259 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5260
5261 /* Initialise the segment mark field. */
5262 for (section = ibfd->sections; section != NULL; section = section->next)
5263 section->segment_mark = FALSE;
5264
5265 /* Scan through the segments specified in the program header
5266 of the input BFD. For this first scan we look for overlaps
5267 in the loadable segments. These can be created by weird
5268 parameters to objcopy. Also, fix some solaris weirdness. */
5269 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5270 i < num_segments;
5271 i++, segment++)
5272 {
5273 unsigned int j;
5274 Elf_Internal_Phdr *segment2;
5275
5276 if (segment->p_type == PT_INTERP)
5277 for (section = ibfd->sections; section; section = section->next)
5278 if (IS_SOLARIS_PT_INTERP (segment, section))
5279 {
5280 /* Mininal change so that the normal section to segment
5281 assignment code will work. */
5282 segment->p_vaddr = section->vma;
5283 break;
5284 }
5285
5286 if (segment->p_type != PT_LOAD)
5287 continue;
5288
5289 /* Determine if this segment overlaps any previous segments. */
5290 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2 ++)
5291 {
5292 bfd_signed_vma extra_length;
5293
5294 if (segment2->p_type != PT_LOAD
5295 || ! SEGMENT_OVERLAPS (segment, segment2))
5296 continue;
5297
5298 /* Merge the two segments together. */
5299 if (segment2->p_vaddr < segment->p_vaddr)
5300 {
5301 /* Extend SEGMENT2 to include SEGMENT and then delete
5302 SEGMENT. */
5303 extra_length =
5304 SEGMENT_END (segment, segment->p_vaddr)
5305 - SEGMENT_END (segment2, segment2->p_vaddr);
5306
5307 if (extra_length > 0)
5308 {
5309 segment2->p_memsz += extra_length;
5310 segment2->p_filesz += extra_length;
5311 }
5312
5313 segment->p_type = PT_NULL;
5314
5315 /* Since we have deleted P we must restart the outer loop. */
5316 i = 0;
5317 segment = elf_tdata (ibfd)->phdr;
5318 break;
5319 }
5320 else
5321 {
5322 /* Extend SEGMENT to include SEGMENT2 and then delete
5323 SEGMENT2. */
5324 extra_length =
5325 SEGMENT_END (segment2, segment2->p_vaddr)
5326 - SEGMENT_END (segment, segment->p_vaddr);
5327
5328 if (extra_length > 0)
5329 {
5330 segment->p_memsz += extra_length;
5331 segment->p_filesz += extra_length;
5332 }
5333
5334 segment2->p_type = PT_NULL;
5335 }
5336 }
5337 }
5338
5339 /* The second scan attempts to assign sections to segments. */
5340 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5341 i < num_segments;
5342 i ++, segment ++)
5343 {
5344 unsigned int section_count;
5345 asection ** sections;
5346 asection * output_section;
5347 unsigned int isec;
5348 bfd_vma matching_lma;
5349 bfd_vma suggested_lma;
5350 unsigned int j;
5351 bfd_size_type amt;
5352
5353 if (segment->p_type == PT_NULL)
5354 continue;
5355
5356 /* Compute how many sections might be placed into this segment. */
5357 for (section = ibfd->sections, section_count = 0;
5358 section != NULL;
5359 section = section->next)
5360 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5361 ++section_count;
5362
5363 /* Allocate a segment map big enough to contain
5364 all of the sections we have selected. */
5365 amt = sizeof (struct elf_segment_map);
5366 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5367 map = bfd_alloc (obfd, amt);
5368 if (map == NULL)
5369 return FALSE;
5370
5371 /* Initialise the fields of the segment map. Default to
5372 using the physical address of the segment in the input BFD. */
5373 map->next = NULL;
5374 map->p_type = segment->p_type;
5375 map->p_flags = segment->p_flags;
5376 map->p_flags_valid = 1;
5377 map->p_paddr = segment->p_paddr;
5378 map->p_paddr_valid = 1;
5379
5380 /* Determine if this segment contains the ELF file header
5381 and if it contains the program headers themselves. */
5382 map->includes_filehdr = (segment->p_offset == 0
5383 && segment->p_filesz >= iehdr->e_ehsize);
5384
5385 map->includes_phdrs = 0;
5386
5387 if (! phdr_included || segment->p_type != PT_LOAD)
5388 {
5389 map->includes_phdrs =
5390 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5391 && (segment->p_offset + segment->p_filesz
5392 >= ((bfd_vma) iehdr->e_phoff
5393 + iehdr->e_phnum * iehdr->e_phentsize)));
5394
5395 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5396 phdr_included = TRUE;
5397 }
5398
5399 if (section_count == 0)
5400 {
5401 /* Special segments, such as the PT_PHDR segment, may contain
5402 no sections, but ordinary, loadable segments should contain
5403 something. They are allowed by the ELF spec however, so only
5404 a warning is produced. */
5405 if (segment->p_type == PT_LOAD)
5406 (*_bfd_error_handler)
5407 (_("%B: warning: Empty loadable segment detected, is this intentional ?\n"),
5408 ibfd);
5409
5410 map->count = 0;
5411 *pointer_to_map = map;
5412 pointer_to_map = &map->next;
5413
5414 continue;
5415 }
5416
5417 /* Now scan the sections in the input BFD again and attempt
5418 to add their corresponding output sections to the segment map.
5419 The problem here is how to handle an output section which has
5420 been moved (ie had its LMA changed). There are four possibilities:
5421
5422 1. None of the sections have been moved.
5423 In this case we can continue to use the segment LMA from the
5424 input BFD.
5425
5426 2. All of the sections have been moved by the same amount.
5427 In this case we can change the segment's LMA to match the LMA
5428 of the first section.
5429
5430 3. Some of the sections have been moved, others have not.
5431 In this case those sections which have not been moved can be
5432 placed in the current segment which will have to have its size,
5433 and possibly its LMA changed, and a new segment or segments will
5434 have to be created to contain the other sections.
5435
5436 4. The sections have been moved, but not by the same amount.
5437 In this case we can change the segment's LMA to match the LMA
5438 of the first section and we will have to create a new segment
5439 or segments to contain the other sections.
5440
5441 In order to save time, we allocate an array to hold the section
5442 pointers that we are interested in. As these sections get assigned
5443 to a segment, they are removed from this array. */
5444
5445 /* Gcc 2.96 miscompiles this code on mips. Don't do casting here
5446 to work around this long long bug. */
5447 sections = bfd_malloc2 (section_count, sizeof (asection *));
5448 if (sections == NULL)
5449 return FALSE;
5450
5451 /* Step One: Scan for segment vs section LMA conflicts.
5452 Also add the sections to the section array allocated above.
5453 Also add the sections to the current segment. In the common
5454 case, where the sections have not been moved, this means that
5455 we have completely filled the segment, and there is nothing
5456 more to do. */
5457 isec = 0;
5458 matching_lma = 0;
5459 suggested_lma = 0;
5460
5461 for (j = 0, section = ibfd->sections;
5462 section != NULL;
5463 section = section->next)
5464 {
5465 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5466 {
5467 output_section = section->output_section;
5468
5469 sections[j ++] = section;
5470
5471 /* The Solaris native linker always sets p_paddr to 0.
5472 We try to catch that case here, and set it to the
5473 correct value. Note - some backends require that
5474 p_paddr be left as zero. */
5475 if (segment->p_paddr == 0
5476 && segment->p_vaddr != 0
5477 && (! bed->want_p_paddr_set_to_zero)
5478 && isec == 0
5479 && output_section->lma != 0
5480 && (output_section->vma == (segment->p_vaddr
5481 + (map->includes_filehdr
5482 ? iehdr->e_ehsize
5483 : 0)
5484 + (map->includes_phdrs
5485 ? (iehdr->e_phnum
5486 * iehdr->e_phentsize)
5487 : 0))))
5488 map->p_paddr = segment->p_vaddr;
5489
5490 /* Match up the physical address of the segment with the
5491 LMA address of the output section. */
5492 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5493 || IS_COREFILE_NOTE (segment, section)
5494 || (bed->want_p_paddr_set_to_zero &&
5495 IS_CONTAINED_BY_VMA (output_section, segment))
5496 )
5497 {
5498 if (matching_lma == 0)
5499 matching_lma = output_section->lma;
5500
5501 /* We assume that if the section fits within the segment
5502 then it does not overlap any other section within that
5503 segment. */
5504 map->sections[isec ++] = output_section;
5505 }
5506 else if (suggested_lma == 0)
5507 suggested_lma = output_section->lma;
5508 }
5509 }
5510
5511 BFD_ASSERT (j == section_count);
5512
5513 /* Step Two: Adjust the physical address of the current segment,
5514 if necessary. */
5515 if (isec == section_count)
5516 {
5517 /* All of the sections fitted within the segment as currently
5518 specified. This is the default case. Add the segment to
5519 the list of built segments and carry on to process the next
5520 program header in the input BFD. */
5521 map->count = section_count;
5522 *pointer_to_map = map;
5523 pointer_to_map = &map->next;
5524
5525 free (sections);
5526 continue;
5527 }
5528 else
5529 {
5530 if (matching_lma != 0)
5531 {
5532 /* At least one section fits inside the current segment.
5533 Keep it, but modify its physical address to match the
5534 LMA of the first section that fitted. */
5535 map->p_paddr = matching_lma;
5536 }
5537 else
5538 {
5539 /* None of the sections fitted inside the current segment.
5540 Change the current segment's physical address to match
5541 the LMA of the first section. */
5542 map->p_paddr = suggested_lma;
5543 }
5544
5545 /* Offset the segment physical address from the lma
5546 to allow for space taken up by elf headers. */
5547 if (map->includes_filehdr)
5548 map->p_paddr -= iehdr->e_ehsize;
5549
5550 if (map->includes_phdrs)
5551 {
5552 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
5553
5554 /* iehdr->e_phnum is just an estimate of the number
5555 of program headers that we will need. Make a note
5556 here of the number we used and the segment we chose
5557 to hold these headers, so that we can adjust the
5558 offset when we know the correct value. */
5559 phdr_adjust_num = iehdr->e_phnum;
5560 phdr_adjust_seg = map;
5561 }
5562 }
5563
5564 /* Step Three: Loop over the sections again, this time assigning
5565 those that fit to the current segment and removing them from the
5566 sections array; but making sure not to leave large gaps. Once all
5567 possible sections have been assigned to the current segment it is
5568 added to the list of built segments and if sections still remain
5569 to be assigned, a new segment is constructed before repeating
5570 the loop. */
5571 isec = 0;
5572 do
5573 {
5574 map->count = 0;
5575 suggested_lma = 0;
5576
5577 /* Fill the current segment with sections that fit. */
5578 for (j = 0; j < section_count; j++)
5579 {
5580 section = sections[j];
5581
5582 if (section == NULL)
5583 continue;
5584
5585 output_section = section->output_section;
5586
5587 BFD_ASSERT (output_section != NULL);
5588
5589 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5590 || IS_COREFILE_NOTE (segment, section))
5591 {
5592 if (map->count == 0)
5593 {
5594 /* If the first section in a segment does not start at
5595 the beginning of the segment, then something is
5596 wrong. */
5597 if (output_section->lma !=
5598 (map->p_paddr
5599 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
5600 + (map->includes_phdrs
5601 ? iehdr->e_phnum * iehdr->e_phentsize
5602 : 0)))
5603 abort ();
5604 }
5605 else
5606 {
5607 asection * prev_sec;
5608
5609 prev_sec = map->sections[map->count - 1];
5610
5611 /* If the gap between the end of the previous section
5612 and the start of this section is more than
5613 maxpagesize then we need to start a new segment. */
5614 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
5615 maxpagesize)
5616 < BFD_ALIGN (output_section->lma, maxpagesize))
5617 || ((prev_sec->lma + prev_sec->size)
5618 > output_section->lma))
5619 {
5620 if (suggested_lma == 0)
5621 suggested_lma = output_section->lma;
5622
5623 continue;
5624 }
5625 }
5626
5627 map->sections[map->count++] = output_section;
5628 ++isec;
5629 sections[j] = NULL;
5630 section->segment_mark = TRUE;
5631 }
5632 else if (suggested_lma == 0)
5633 suggested_lma = output_section->lma;
5634 }
5635
5636 BFD_ASSERT (map->count > 0);
5637
5638 /* Add the current segment to the list of built segments. */
5639 *pointer_to_map = map;
5640 pointer_to_map = &map->next;
5641
5642 if (isec < section_count)
5643 {
5644 /* We still have not allocated all of the sections to
5645 segments. Create a new segment here, initialise it
5646 and carry on looping. */
5647 amt = sizeof (struct elf_segment_map);
5648 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5649 map = bfd_alloc (obfd, amt);
5650 if (map == NULL)
5651 {
5652 free (sections);
5653 return FALSE;
5654 }
5655
5656 /* Initialise the fields of the segment map. Set the physical
5657 physical address to the LMA of the first section that has
5658 not yet been assigned. */
5659 map->next = NULL;
5660 map->p_type = segment->p_type;
5661 map->p_flags = segment->p_flags;
5662 map->p_flags_valid = 1;
5663 map->p_paddr = suggested_lma;
5664 map->p_paddr_valid = 1;
5665 map->includes_filehdr = 0;
5666 map->includes_phdrs = 0;
5667 }
5668 }
5669 while (isec < section_count);
5670
5671 free (sections);
5672 }
5673
5674 /* The Solaris linker creates program headers in which all the
5675 p_paddr fields are zero. When we try to objcopy or strip such a
5676 file, we get confused. Check for this case, and if we find it
5677 reset the p_paddr_valid fields. */
5678 for (map = map_first; map != NULL; map = map->next)
5679 if (map->p_paddr != 0)
5680 break;
5681 if (map == NULL)
5682 for (map = map_first; map != NULL; map = map->next)
5683 map->p_paddr_valid = 0;
5684
5685 elf_tdata (obfd)->segment_map = map_first;
5686
5687 /* If we had to estimate the number of program headers that were
5688 going to be needed, then check our estimate now and adjust
5689 the offset if necessary. */
5690 if (phdr_adjust_seg != NULL)
5691 {
5692 unsigned int count;
5693
5694 for (count = 0, map = map_first; map != NULL; map = map->next)
5695 count++;
5696
5697 if (count > phdr_adjust_num)
5698 phdr_adjust_seg->p_paddr
5699 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
5700 }
5701
5702 #undef SEGMENT_END
5703 #undef SECTION_SIZE
5704 #undef IS_CONTAINED_BY_VMA
5705 #undef IS_CONTAINED_BY_LMA
5706 #undef IS_COREFILE_NOTE
5707 #undef IS_SOLARIS_PT_INTERP
5708 #undef INCLUDE_SECTION_IN_SEGMENT
5709 #undef SEGMENT_AFTER_SEGMENT
5710 #undef SEGMENT_OVERLAPS
5711 return TRUE;
5712 }
5713
5714 /* Copy ELF program header information. */
5715
5716 static bfd_boolean
5717 copy_elf_program_header (bfd *ibfd, bfd *obfd)
5718 {
5719 Elf_Internal_Ehdr *iehdr;
5720 struct elf_segment_map *map;
5721 struct elf_segment_map *map_first;
5722 struct elf_segment_map **pointer_to_map;
5723 Elf_Internal_Phdr *segment;
5724 unsigned int i;
5725 unsigned int num_segments;
5726 bfd_boolean phdr_included = FALSE;
5727
5728 iehdr = elf_elfheader (ibfd);
5729
5730 map_first = NULL;
5731 pointer_to_map = &map_first;
5732
5733 num_segments = elf_elfheader (ibfd)->e_phnum;
5734 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5735 i < num_segments;
5736 i++, segment++)
5737 {
5738 asection *section;
5739 unsigned int section_count;
5740 bfd_size_type amt;
5741 Elf_Internal_Shdr *this_hdr;
5742
5743 /* FIXME: Do we need to copy PT_NULL segment? */
5744 if (segment->p_type == PT_NULL)
5745 continue;
5746
5747 /* Compute how many sections are in this segment. */
5748 for (section = ibfd->sections, section_count = 0;
5749 section != NULL;
5750 section = section->next)
5751 {
5752 this_hdr = &(elf_section_data(section)->this_hdr);
5753 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5754 section_count++;
5755 }
5756
5757 /* Allocate a segment map big enough to contain
5758 all of the sections we have selected. */
5759 amt = sizeof (struct elf_segment_map);
5760 if (section_count != 0)
5761 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5762 map = bfd_alloc (obfd, amt);
5763 if (map == NULL)
5764 return FALSE;
5765
5766 /* Initialize the fields of the output segment map with the
5767 input segment. */
5768 map->next = NULL;
5769 map->p_type = segment->p_type;
5770 map->p_flags = segment->p_flags;
5771 map->p_flags_valid = 1;
5772 map->p_paddr = segment->p_paddr;
5773 map->p_paddr_valid = 1;
5774
5775 /* Determine if this segment contains the ELF file header
5776 and if it contains the program headers themselves. */
5777 map->includes_filehdr = (segment->p_offset == 0
5778 && segment->p_filesz >= iehdr->e_ehsize);
5779
5780 map->includes_phdrs = 0;
5781 if (! phdr_included || segment->p_type != PT_LOAD)
5782 {
5783 map->includes_phdrs =
5784 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5785 && (segment->p_offset + segment->p_filesz
5786 >= ((bfd_vma) iehdr->e_phoff
5787 + iehdr->e_phnum * iehdr->e_phentsize)));
5788
5789 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5790 phdr_included = TRUE;
5791 }
5792
5793 if (section_count != 0)
5794 {
5795 unsigned int isec = 0;
5796
5797 for (section = ibfd->sections;
5798 section != NULL;
5799 section = section->next)
5800 {
5801 this_hdr = &(elf_section_data(section)->this_hdr);
5802 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5803 map->sections[isec++] = section->output_section;
5804 }
5805 }
5806
5807 map->count = section_count;
5808 *pointer_to_map = map;
5809 pointer_to_map = &map->next;
5810 }
5811
5812 elf_tdata (obfd)->segment_map = map_first;
5813 return TRUE;
5814 }
5815
5816 /* Copy private BFD data. This copies or rewrites ELF program header
5817 information. */
5818
5819 static bfd_boolean
5820 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
5821 {
5822 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5823 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5824 return TRUE;
5825
5826 if (elf_tdata (ibfd)->phdr == NULL)
5827 return TRUE;
5828
5829 if (ibfd->xvec == obfd->xvec)
5830 {
5831 /* Check if any sections in the input BFD covered by ELF program
5832 header are changed. */
5833 Elf_Internal_Phdr *segment;
5834 asection *section, *osec;
5835 unsigned int i, num_segments;
5836 Elf_Internal_Shdr *this_hdr;
5837
5838 /* Initialize the segment mark field. */
5839 for (section = obfd->sections; section != NULL;
5840 section = section->next)
5841 section->segment_mark = FALSE;
5842
5843 num_segments = elf_elfheader (ibfd)->e_phnum;
5844 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5845 i < num_segments;
5846 i++, segment++)
5847 {
5848 for (section = ibfd->sections;
5849 section != NULL; section = section->next)
5850 {
5851 /* We mark the output section so that we know it comes
5852 from the input BFD. */
5853 osec = section->output_section;
5854 if (osec)
5855 osec->segment_mark = TRUE;
5856
5857 /* Check if this section is covered by the segment. */
5858 this_hdr = &(elf_section_data(section)->this_hdr);
5859 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5860 {
5861 /* FIXME: Check if its output section is changed or
5862 removed. What else do we need to check? */
5863 if (osec == NULL
5864 || section->flags != osec->flags
5865 || section->lma != osec->lma
5866 || section->vma != osec->vma
5867 || section->size != osec->size
5868 || section->rawsize != osec->rawsize
5869 || section->alignment_power != osec->alignment_power)
5870 goto rewrite;
5871 }
5872 }
5873 }
5874
5875 /* Check to see if any output section doesn't come from the
5876 input BFD. */
5877 for (section = obfd->sections; section != NULL;
5878 section = section->next)
5879 {
5880 if (section->segment_mark == FALSE)
5881 goto rewrite;
5882 else
5883 section->segment_mark = FALSE;
5884 }
5885
5886 return copy_elf_program_header (ibfd, obfd);
5887 }
5888
5889 rewrite:
5890 return rewrite_elf_program_header (ibfd, obfd);
5891 }
5892
5893 /* Initialize private output section information from input section. */
5894
5895 bfd_boolean
5896 _bfd_elf_init_private_section_data (bfd *ibfd,
5897 asection *isec,
5898 bfd *obfd,
5899 asection *osec,
5900 struct bfd_link_info *link_info)
5901
5902 {
5903 Elf_Internal_Shdr *ihdr, *ohdr;
5904 bfd_boolean need_group = link_info == NULL || link_info->relocatable;
5905
5906 if (ibfd->xvec->flavour != bfd_target_elf_flavour
5907 || obfd->xvec->flavour != bfd_target_elf_flavour)
5908 return TRUE;
5909
5910 /* Don't copy the output ELF section type from input if the
5911 output BFD section flags has been set to something different.
5912 elf_fake_sections will set ELF section type based on BFD
5913 section flags. */
5914 if (osec->flags == isec->flags
5915 || (osec->flags == 0 && elf_section_type (osec) == SHT_NULL))
5916 elf_section_type (osec) = elf_section_type (isec);
5917
5918 /* Set things up for objcopy and relocatable link. The output
5919 SHT_GROUP section will have its elf_next_in_group pointing back
5920 to the input group members. Ignore linker created group section.
5921 See elfNN_ia64_object_p in elfxx-ia64.c. */
5922
5923 if (need_group)
5924 {
5925 if (elf_sec_group (isec) == NULL
5926 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
5927 {
5928 if (elf_section_flags (isec) & SHF_GROUP)
5929 elf_section_flags (osec) |= SHF_GROUP;
5930 elf_next_in_group (osec) = elf_next_in_group (isec);
5931 elf_group_name (osec) = elf_group_name (isec);
5932 }
5933 }
5934
5935 ihdr = &elf_section_data (isec)->this_hdr;
5936
5937 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
5938 don't use the output section of the linked-to section since it
5939 may be NULL at this point. */
5940 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
5941 {
5942 ohdr = &elf_section_data (osec)->this_hdr;
5943 ohdr->sh_flags |= SHF_LINK_ORDER;
5944 elf_linked_to_section (osec) = elf_linked_to_section (isec);
5945 }
5946
5947 osec->use_rela_p = isec->use_rela_p;
5948
5949 return TRUE;
5950 }
5951
5952 /* Copy private section information. This copies over the entsize
5953 field, and sometimes the info field. */
5954
5955 bfd_boolean
5956 _bfd_elf_copy_private_section_data (bfd *ibfd,
5957 asection *isec,
5958 bfd *obfd,
5959 asection *osec)
5960 {
5961 Elf_Internal_Shdr *ihdr, *ohdr;
5962
5963 if (ibfd->xvec->flavour != bfd_target_elf_flavour
5964 || obfd->xvec->flavour != bfd_target_elf_flavour)
5965 return TRUE;
5966
5967 ihdr = &elf_section_data (isec)->this_hdr;
5968 ohdr = &elf_section_data (osec)->this_hdr;
5969
5970 ohdr->sh_entsize = ihdr->sh_entsize;
5971
5972 if (ihdr->sh_type == SHT_SYMTAB
5973 || ihdr->sh_type == SHT_DYNSYM
5974 || ihdr->sh_type == SHT_GNU_verneed
5975 || ihdr->sh_type == SHT_GNU_verdef)
5976 ohdr->sh_info = ihdr->sh_info;
5977
5978 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
5979 NULL);
5980 }
5981
5982 /* Copy private header information. */
5983
5984 bfd_boolean
5985 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
5986 {
5987 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5988 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5989 return TRUE;
5990
5991 /* Copy over private BFD data if it has not already been copied.
5992 This must be done here, rather than in the copy_private_bfd_data
5993 entry point, because the latter is called after the section
5994 contents have been set, which means that the program headers have
5995 already been worked out. */
5996 if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
5997 {
5998 if (! copy_private_bfd_data (ibfd, obfd))
5999 return FALSE;
6000 }
6001
6002 return TRUE;
6003 }
6004
6005 /* Copy private symbol information. If this symbol is in a section
6006 which we did not map into a BFD section, try to map the section
6007 index correctly. We use special macro definitions for the mapped
6008 section indices; these definitions are interpreted by the
6009 swap_out_syms function. */
6010
6011 #define MAP_ONESYMTAB (SHN_HIOS + 1)
6012 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
6013 #define MAP_STRTAB (SHN_HIOS + 3)
6014 #define MAP_SHSTRTAB (SHN_HIOS + 4)
6015 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
6016
6017 bfd_boolean
6018 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
6019 asymbol *isymarg,
6020 bfd *obfd,
6021 asymbol *osymarg)
6022 {
6023 elf_symbol_type *isym, *osym;
6024
6025 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6026 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6027 return TRUE;
6028
6029 isym = elf_symbol_from (ibfd, isymarg);
6030 osym = elf_symbol_from (obfd, osymarg);
6031
6032 if (isym != NULL
6033 && osym != NULL
6034 && bfd_is_abs_section (isym->symbol.section))
6035 {
6036 unsigned int shndx;
6037
6038 shndx = isym->internal_elf_sym.st_shndx;
6039 if (shndx == elf_onesymtab (ibfd))
6040 shndx = MAP_ONESYMTAB;
6041 else if (shndx == elf_dynsymtab (ibfd))
6042 shndx = MAP_DYNSYMTAB;
6043 else if (shndx == elf_tdata (ibfd)->strtab_section)
6044 shndx = MAP_STRTAB;
6045 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
6046 shndx = MAP_SHSTRTAB;
6047 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
6048 shndx = MAP_SYM_SHNDX;
6049 osym->internal_elf_sym.st_shndx = shndx;
6050 }
6051
6052 return TRUE;
6053 }
6054
6055 /* Swap out the symbols. */
6056
6057 static bfd_boolean
6058 swap_out_syms (bfd *abfd,
6059 struct bfd_strtab_hash **sttp,
6060 int relocatable_p)
6061 {
6062 const struct elf_backend_data *bed;
6063 int symcount;
6064 asymbol **syms;
6065 struct bfd_strtab_hash *stt;
6066 Elf_Internal_Shdr *symtab_hdr;
6067 Elf_Internal_Shdr *symtab_shndx_hdr;
6068 Elf_Internal_Shdr *symstrtab_hdr;
6069 bfd_byte *outbound_syms;
6070 bfd_byte *outbound_shndx;
6071 int idx;
6072 bfd_size_type amt;
6073 bfd_boolean name_local_sections;
6074
6075 if (!elf_map_symbols (abfd))
6076 return FALSE;
6077
6078 /* Dump out the symtabs. */
6079 stt = _bfd_elf_stringtab_init ();
6080 if (stt == NULL)
6081 return FALSE;
6082
6083 bed = get_elf_backend_data (abfd);
6084 symcount = bfd_get_symcount (abfd);
6085 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6086 symtab_hdr->sh_type = SHT_SYMTAB;
6087 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
6088 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
6089 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
6090 symtab_hdr->sh_addralign = 1 << bed->s->log_file_align;
6091
6092 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
6093 symstrtab_hdr->sh_type = SHT_STRTAB;
6094
6095 outbound_syms = bfd_alloc2 (abfd, 1 + symcount, bed->s->sizeof_sym);
6096 if (outbound_syms == NULL)
6097 {
6098 _bfd_stringtab_free (stt);
6099 return FALSE;
6100 }
6101 symtab_hdr->contents = outbound_syms;
6102
6103 outbound_shndx = NULL;
6104 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
6105 if (symtab_shndx_hdr->sh_name != 0)
6106 {
6107 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
6108 outbound_shndx = bfd_zalloc2 (abfd, 1 + symcount,
6109 sizeof (Elf_External_Sym_Shndx));
6110 if (outbound_shndx == NULL)
6111 {
6112 _bfd_stringtab_free (stt);
6113 return FALSE;
6114 }
6115
6116 symtab_shndx_hdr->contents = outbound_shndx;
6117 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
6118 symtab_shndx_hdr->sh_size = amt;
6119 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
6120 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
6121 }
6122
6123 /* Now generate the data (for "contents"). */
6124 {
6125 /* Fill in zeroth symbol and swap it out. */
6126 Elf_Internal_Sym sym;
6127 sym.st_name = 0;
6128 sym.st_value = 0;
6129 sym.st_size = 0;
6130 sym.st_info = 0;
6131 sym.st_other = 0;
6132 sym.st_shndx = SHN_UNDEF;
6133 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6134 outbound_syms += bed->s->sizeof_sym;
6135 if (outbound_shndx != NULL)
6136 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6137 }
6138
6139 name_local_sections
6140 = (bed->elf_backend_name_local_section_symbols
6141 && bed->elf_backend_name_local_section_symbols (abfd));
6142
6143 syms = bfd_get_outsymbols (abfd);
6144 for (idx = 0; idx < symcount; idx++)
6145 {
6146 Elf_Internal_Sym sym;
6147 bfd_vma value = syms[idx]->value;
6148 elf_symbol_type *type_ptr;
6149 flagword flags = syms[idx]->flags;
6150 int type;
6151
6152 if (!name_local_sections
6153 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
6154 {
6155 /* Local section symbols have no name. */
6156 sym.st_name = 0;
6157 }
6158 else
6159 {
6160 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
6161 syms[idx]->name,
6162 TRUE, FALSE);
6163 if (sym.st_name == (unsigned long) -1)
6164 {
6165 _bfd_stringtab_free (stt);
6166 return FALSE;
6167 }
6168 }
6169
6170 type_ptr = elf_symbol_from (abfd, syms[idx]);
6171
6172 if ((flags & BSF_SECTION_SYM) == 0
6173 && bfd_is_com_section (syms[idx]->section))
6174 {
6175 /* ELF common symbols put the alignment into the `value' field,
6176 and the size into the `size' field. This is backwards from
6177 how BFD handles it, so reverse it here. */
6178 sym.st_size = value;
6179 if (type_ptr == NULL
6180 || type_ptr->internal_elf_sym.st_value == 0)
6181 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
6182 else
6183 sym.st_value = type_ptr->internal_elf_sym.st_value;
6184 sym.st_shndx = _bfd_elf_section_from_bfd_section
6185 (abfd, syms[idx]->section);
6186 }
6187 else
6188 {
6189 asection *sec = syms[idx]->section;
6190 int shndx;
6191
6192 if (sec->output_section)
6193 {
6194 value += sec->output_offset;
6195 sec = sec->output_section;
6196 }
6197
6198 /* Don't add in the section vma for relocatable output. */
6199 if (! relocatable_p)
6200 value += sec->vma;
6201 sym.st_value = value;
6202 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
6203
6204 if (bfd_is_abs_section (sec)
6205 && type_ptr != NULL
6206 && type_ptr->internal_elf_sym.st_shndx != 0)
6207 {
6208 /* This symbol is in a real ELF section which we did
6209 not create as a BFD section. Undo the mapping done
6210 by copy_private_symbol_data. */
6211 shndx = type_ptr->internal_elf_sym.st_shndx;
6212 switch (shndx)
6213 {
6214 case MAP_ONESYMTAB:
6215 shndx = elf_onesymtab (abfd);
6216 break;
6217 case MAP_DYNSYMTAB:
6218 shndx = elf_dynsymtab (abfd);
6219 break;
6220 case MAP_STRTAB:
6221 shndx = elf_tdata (abfd)->strtab_section;
6222 break;
6223 case MAP_SHSTRTAB:
6224 shndx = elf_tdata (abfd)->shstrtab_section;
6225 break;
6226 case MAP_SYM_SHNDX:
6227 shndx = elf_tdata (abfd)->symtab_shndx_section;
6228 break;
6229 default:
6230 break;
6231 }
6232 }
6233 else
6234 {
6235 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
6236
6237 if (shndx == -1)
6238 {
6239 asection *sec2;
6240
6241 /* Writing this would be a hell of a lot easier if
6242 we had some decent documentation on bfd, and
6243 knew what to expect of the library, and what to
6244 demand of applications. For example, it
6245 appears that `objcopy' might not set the
6246 section of a symbol to be a section that is
6247 actually in the output file. */
6248 sec2 = bfd_get_section_by_name (abfd, sec->name);
6249 if (sec2 == NULL)
6250 {
6251 _bfd_error_handler (_("\
6252 Unable to find equivalent output section for symbol '%s' from section '%s'"),
6253 syms[idx]->name ? syms[idx]->name : "<Local sym>",
6254 sec->name);
6255 bfd_set_error (bfd_error_invalid_operation);
6256 _bfd_stringtab_free (stt);
6257 return FALSE;
6258 }
6259
6260 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
6261 BFD_ASSERT (shndx != -1);
6262 }
6263 }
6264
6265 sym.st_shndx = shndx;
6266 }
6267
6268 if ((flags & BSF_THREAD_LOCAL) != 0)
6269 type = STT_TLS;
6270 else if ((flags & BSF_FUNCTION) != 0)
6271 type = STT_FUNC;
6272 else if ((flags & BSF_OBJECT) != 0)
6273 type = STT_OBJECT;
6274 else
6275 type = STT_NOTYPE;
6276
6277 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
6278 type = STT_TLS;
6279
6280 /* Processor-specific types. */
6281 if (type_ptr != NULL
6282 && bed->elf_backend_get_symbol_type)
6283 type = ((*bed->elf_backend_get_symbol_type)
6284 (&type_ptr->internal_elf_sym, type));
6285
6286 if (flags & BSF_SECTION_SYM)
6287 {
6288 if (flags & BSF_GLOBAL)
6289 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6290 else
6291 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
6292 }
6293 else if (bfd_is_com_section (syms[idx]->section))
6294 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
6295 else if (bfd_is_und_section (syms[idx]->section))
6296 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
6297 ? STB_WEAK
6298 : STB_GLOBAL),
6299 type);
6300 else if (flags & BSF_FILE)
6301 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
6302 else
6303 {
6304 int bind = STB_LOCAL;
6305
6306 if (flags & BSF_LOCAL)
6307 bind = STB_LOCAL;
6308 else if (flags & BSF_WEAK)
6309 bind = STB_WEAK;
6310 else if (flags & BSF_GLOBAL)
6311 bind = STB_GLOBAL;
6312
6313 sym.st_info = ELF_ST_INFO (bind, type);
6314 }
6315
6316 if (type_ptr != NULL)
6317 sym.st_other = type_ptr->internal_elf_sym.st_other;
6318 else
6319 sym.st_other = 0;
6320
6321 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6322 outbound_syms += bed->s->sizeof_sym;
6323 if (outbound_shndx != NULL)
6324 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6325 }
6326
6327 *sttp = stt;
6328 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
6329 symstrtab_hdr->sh_type = SHT_STRTAB;
6330
6331 symstrtab_hdr->sh_flags = 0;
6332 symstrtab_hdr->sh_addr = 0;
6333 symstrtab_hdr->sh_entsize = 0;
6334 symstrtab_hdr->sh_link = 0;
6335 symstrtab_hdr->sh_info = 0;
6336 symstrtab_hdr->sh_addralign = 1;
6337
6338 return TRUE;
6339 }
6340
6341 /* Return the number of bytes required to hold the symtab vector.
6342
6343 Note that we base it on the count plus 1, since we will null terminate
6344 the vector allocated based on this size. However, the ELF symbol table
6345 always has a dummy entry as symbol #0, so it ends up even. */
6346
6347 long
6348 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
6349 {
6350 long symcount;
6351 long symtab_size;
6352 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
6353
6354 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6355 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6356 if (symcount > 0)
6357 symtab_size -= sizeof (asymbol *);
6358
6359 return symtab_size;
6360 }
6361
6362 long
6363 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
6364 {
6365 long symcount;
6366 long symtab_size;
6367 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
6368
6369 if (elf_dynsymtab (abfd) == 0)
6370 {
6371 bfd_set_error (bfd_error_invalid_operation);
6372 return -1;
6373 }
6374
6375 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6376 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6377 if (symcount > 0)
6378 symtab_size -= sizeof (asymbol *);
6379
6380 return symtab_size;
6381 }
6382
6383 long
6384 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
6385 sec_ptr asect)
6386 {
6387 return (asect->reloc_count + 1) * sizeof (arelent *);
6388 }
6389
6390 /* Canonicalize the relocs. */
6391
6392 long
6393 _bfd_elf_canonicalize_reloc (bfd *abfd,
6394 sec_ptr section,
6395 arelent **relptr,
6396 asymbol **symbols)
6397 {
6398 arelent *tblptr;
6399 unsigned int i;
6400 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6401
6402 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
6403 return -1;
6404
6405 tblptr = section->relocation;
6406 for (i = 0; i < section->reloc_count; i++)
6407 *relptr++ = tblptr++;
6408
6409 *relptr = NULL;
6410
6411 return section->reloc_count;
6412 }
6413
6414 long
6415 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
6416 {
6417 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6418 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
6419
6420 if (symcount >= 0)
6421 bfd_get_symcount (abfd) = symcount;
6422 return symcount;
6423 }
6424
6425 long
6426 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
6427 asymbol **allocation)
6428 {
6429 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6430 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
6431
6432 if (symcount >= 0)
6433 bfd_get_dynamic_symcount (abfd) = symcount;
6434 return symcount;
6435 }
6436
6437 /* Return the size required for the dynamic reloc entries. Any loadable
6438 section that was actually installed in the BFD, and has type SHT_REL
6439 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
6440 dynamic reloc section. */
6441
6442 long
6443 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
6444 {
6445 long ret;
6446 asection *s;
6447
6448 if (elf_dynsymtab (abfd) == 0)
6449 {
6450 bfd_set_error (bfd_error_invalid_operation);
6451 return -1;
6452 }
6453
6454 ret = sizeof (arelent *);
6455 for (s = abfd->sections; s != NULL; s = s->next)
6456 if ((s->flags & SEC_LOAD) != 0
6457 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6458 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6459 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6460 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
6461 * sizeof (arelent *));
6462
6463 return ret;
6464 }
6465
6466 /* Canonicalize the dynamic relocation entries. Note that we return the
6467 dynamic relocations as a single block, although they are actually
6468 associated with particular sections; the interface, which was
6469 designed for SunOS style shared libraries, expects that there is only
6470 one set of dynamic relocs. Any loadable section that was actually
6471 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
6472 dynamic symbol table, is considered to be a dynamic reloc section. */
6473
6474 long
6475 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
6476 arelent **storage,
6477 asymbol **syms)
6478 {
6479 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
6480 asection *s;
6481 long ret;
6482
6483 if (elf_dynsymtab (abfd) == 0)
6484 {
6485 bfd_set_error (bfd_error_invalid_operation);
6486 return -1;
6487 }
6488
6489 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
6490 ret = 0;
6491 for (s = abfd->sections; s != NULL; s = s->next)
6492 {
6493 if ((s->flags & SEC_LOAD) != 0
6494 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6495 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6496 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6497 {
6498 arelent *p;
6499 long count, i;
6500
6501 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
6502 return -1;
6503 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
6504 p = s->relocation;
6505 for (i = 0; i < count; i++)
6506 *storage++ = p++;
6507 ret += count;
6508 }
6509 }
6510
6511 *storage = NULL;
6512
6513 return ret;
6514 }
6515 \f
6516 /* Read in the version information. */
6517
6518 bfd_boolean
6519 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
6520 {
6521 bfd_byte *contents = NULL;
6522 unsigned int freeidx = 0;
6523
6524 if (elf_dynverref (abfd) != 0)
6525 {
6526 Elf_Internal_Shdr *hdr;
6527 Elf_External_Verneed *everneed;
6528 Elf_Internal_Verneed *iverneed;
6529 unsigned int i;
6530 bfd_byte *contents_end;
6531
6532 hdr = &elf_tdata (abfd)->dynverref_hdr;
6533
6534 elf_tdata (abfd)->verref = bfd_zalloc2 (abfd, hdr->sh_info,
6535 sizeof (Elf_Internal_Verneed));
6536 if (elf_tdata (abfd)->verref == NULL)
6537 goto error_return;
6538
6539 elf_tdata (abfd)->cverrefs = hdr->sh_info;
6540
6541 contents = bfd_malloc (hdr->sh_size);
6542 if (contents == NULL)
6543 {
6544 error_return_verref:
6545 elf_tdata (abfd)->verref = NULL;
6546 elf_tdata (abfd)->cverrefs = 0;
6547 goto error_return;
6548 }
6549 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6550 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6551 goto error_return_verref;
6552
6553 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verneed))
6554 goto error_return_verref;
6555
6556 BFD_ASSERT (sizeof (Elf_External_Verneed)
6557 == sizeof (Elf_External_Vernaux));
6558 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
6559 everneed = (Elf_External_Verneed *) contents;
6560 iverneed = elf_tdata (abfd)->verref;
6561 for (i = 0; i < hdr->sh_info; i++, iverneed++)
6562 {
6563 Elf_External_Vernaux *evernaux;
6564 Elf_Internal_Vernaux *ivernaux;
6565 unsigned int j;
6566
6567 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
6568
6569 iverneed->vn_bfd = abfd;
6570
6571 iverneed->vn_filename =
6572 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6573 iverneed->vn_file);
6574 if (iverneed->vn_filename == NULL)
6575 goto error_return_verref;
6576
6577 if (iverneed->vn_cnt == 0)
6578 iverneed->vn_auxptr = NULL;
6579 else
6580 {
6581 iverneed->vn_auxptr = bfd_alloc2 (abfd, iverneed->vn_cnt,
6582 sizeof (Elf_Internal_Vernaux));
6583 if (iverneed->vn_auxptr == NULL)
6584 goto error_return_verref;
6585 }
6586
6587 if (iverneed->vn_aux
6588 > (size_t) (contents_end - (bfd_byte *) everneed))
6589 goto error_return_verref;
6590
6591 evernaux = ((Elf_External_Vernaux *)
6592 ((bfd_byte *) everneed + iverneed->vn_aux));
6593 ivernaux = iverneed->vn_auxptr;
6594 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
6595 {
6596 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
6597
6598 ivernaux->vna_nodename =
6599 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6600 ivernaux->vna_name);
6601 if (ivernaux->vna_nodename == NULL)
6602 goto error_return_verref;
6603
6604 if (j + 1 < iverneed->vn_cnt)
6605 ivernaux->vna_nextptr = ivernaux + 1;
6606 else
6607 ivernaux->vna_nextptr = NULL;
6608
6609 if (ivernaux->vna_next
6610 > (size_t) (contents_end - (bfd_byte *) evernaux))
6611 goto error_return_verref;
6612
6613 evernaux = ((Elf_External_Vernaux *)
6614 ((bfd_byte *) evernaux + ivernaux->vna_next));
6615
6616 if (ivernaux->vna_other > freeidx)
6617 freeidx = ivernaux->vna_other;
6618 }
6619
6620 if (i + 1 < hdr->sh_info)
6621 iverneed->vn_nextref = iverneed + 1;
6622 else
6623 iverneed->vn_nextref = NULL;
6624
6625 if (iverneed->vn_next
6626 > (size_t) (contents_end - (bfd_byte *) everneed))
6627 goto error_return_verref;
6628
6629 everneed = ((Elf_External_Verneed *)
6630 ((bfd_byte *) everneed + iverneed->vn_next));
6631 }
6632
6633 free (contents);
6634 contents = NULL;
6635 }
6636
6637 if (elf_dynverdef (abfd) != 0)
6638 {
6639 Elf_Internal_Shdr *hdr;
6640 Elf_External_Verdef *everdef;
6641 Elf_Internal_Verdef *iverdef;
6642 Elf_Internal_Verdef *iverdefarr;
6643 Elf_Internal_Verdef iverdefmem;
6644 unsigned int i;
6645 unsigned int maxidx;
6646 bfd_byte *contents_end_def, *contents_end_aux;
6647
6648 hdr = &elf_tdata (abfd)->dynverdef_hdr;
6649
6650 contents = bfd_malloc (hdr->sh_size);
6651 if (contents == NULL)
6652 goto error_return;
6653 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6654 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6655 goto error_return;
6656
6657 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verdef))
6658 goto error_return;
6659
6660 BFD_ASSERT (sizeof (Elf_External_Verdef)
6661 >= sizeof (Elf_External_Verdaux));
6662 contents_end_def = contents + hdr->sh_size
6663 - sizeof (Elf_External_Verdef);
6664 contents_end_aux = contents + hdr->sh_size
6665 - sizeof (Elf_External_Verdaux);
6666
6667 /* We know the number of entries in the section but not the maximum
6668 index. Therefore we have to run through all entries and find
6669 the maximum. */
6670 everdef = (Elf_External_Verdef *) contents;
6671 maxidx = 0;
6672 for (i = 0; i < hdr->sh_info; ++i)
6673 {
6674 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6675
6676 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
6677 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
6678
6679 if (iverdefmem.vd_next
6680 > (size_t) (contents_end_def - (bfd_byte *) everdef))
6681 goto error_return;
6682
6683 everdef = ((Elf_External_Verdef *)
6684 ((bfd_byte *) everdef + iverdefmem.vd_next));
6685 }
6686
6687 if (default_imported_symver)
6688 {
6689 if (freeidx > maxidx)
6690 maxidx = ++freeidx;
6691 else
6692 freeidx = ++maxidx;
6693 }
6694 elf_tdata (abfd)->verdef = bfd_zalloc2 (abfd, maxidx,
6695 sizeof (Elf_Internal_Verdef));
6696 if (elf_tdata (abfd)->verdef == NULL)
6697 goto error_return;
6698
6699 elf_tdata (abfd)->cverdefs = maxidx;
6700
6701 everdef = (Elf_External_Verdef *) contents;
6702 iverdefarr = elf_tdata (abfd)->verdef;
6703 for (i = 0; i < hdr->sh_info; i++)
6704 {
6705 Elf_External_Verdaux *everdaux;
6706 Elf_Internal_Verdaux *iverdaux;
6707 unsigned int j;
6708
6709 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6710
6711 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
6712 {
6713 error_return_verdef:
6714 elf_tdata (abfd)->verdef = NULL;
6715 elf_tdata (abfd)->cverdefs = 0;
6716 goto error_return;
6717 }
6718
6719 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
6720 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
6721
6722 iverdef->vd_bfd = abfd;
6723
6724 if (iverdef->vd_cnt == 0)
6725 iverdef->vd_auxptr = NULL;
6726 else
6727 {
6728 iverdef->vd_auxptr = bfd_alloc2 (abfd, iverdef->vd_cnt,
6729 sizeof (Elf_Internal_Verdaux));
6730 if (iverdef->vd_auxptr == NULL)
6731 goto error_return_verdef;
6732 }
6733
6734 if (iverdef->vd_aux
6735 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
6736 goto error_return_verdef;
6737
6738 everdaux = ((Elf_External_Verdaux *)
6739 ((bfd_byte *) everdef + iverdef->vd_aux));
6740 iverdaux = iverdef->vd_auxptr;
6741 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
6742 {
6743 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
6744
6745 iverdaux->vda_nodename =
6746 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6747 iverdaux->vda_name);
6748 if (iverdaux->vda_nodename == NULL)
6749 goto error_return_verdef;
6750
6751 if (j + 1 < iverdef->vd_cnt)
6752 iverdaux->vda_nextptr = iverdaux + 1;
6753 else
6754 iverdaux->vda_nextptr = NULL;
6755
6756 if (iverdaux->vda_next
6757 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
6758 goto error_return_verdef;
6759
6760 everdaux = ((Elf_External_Verdaux *)
6761 ((bfd_byte *) everdaux + iverdaux->vda_next));
6762 }
6763
6764 if (iverdef->vd_cnt)
6765 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
6766
6767 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
6768 iverdef->vd_nextdef = iverdef + 1;
6769 else
6770 iverdef->vd_nextdef = NULL;
6771
6772 everdef = ((Elf_External_Verdef *)
6773 ((bfd_byte *) everdef + iverdef->vd_next));
6774 }
6775
6776 free (contents);
6777 contents = NULL;
6778 }
6779 else if (default_imported_symver)
6780 {
6781 if (freeidx < 3)
6782 freeidx = 3;
6783 else
6784 freeidx++;
6785
6786 elf_tdata (abfd)->verdef = bfd_zalloc2 (abfd, freeidx,
6787 sizeof (Elf_Internal_Verdef));
6788 if (elf_tdata (abfd)->verdef == NULL)
6789 goto error_return;
6790
6791 elf_tdata (abfd)->cverdefs = freeidx;
6792 }
6793
6794 /* Create a default version based on the soname. */
6795 if (default_imported_symver)
6796 {
6797 Elf_Internal_Verdef *iverdef;
6798 Elf_Internal_Verdaux *iverdaux;
6799
6800 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];;
6801
6802 iverdef->vd_version = VER_DEF_CURRENT;
6803 iverdef->vd_flags = 0;
6804 iverdef->vd_ndx = freeidx;
6805 iverdef->vd_cnt = 1;
6806
6807 iverdef->vd_bfd = abfd;
6808
6809 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
6810 if (iverdef->vd_nodename == NULL)
6811 goto error_return_verdef;
6812 iverdef->vd_nextdef = NULL;
6813 iverdef->vd_auxptr = bfd_alloc (abfd, sizeof (Elf_Internal_Verdaux));
6814 if (iverdef->vd_auxptr == NULL)
6815 goto error_return_verdef;
6816
6817 iverdaux = iverdef->vd_auxptr;
6818 iverdaux->vda_nodename = iverdef->vd_nodename;
6819 iverdaux->vda_nextptr = NULL;
6820 }
6821
6822 return TRUE;
6823
6824 error_return:
6825 if (contents != NULL)
6826 free (contents);
6827 return FALSE;
6828 }
6829 \f
6830 asymbol *
6831 _bfd_elf_make_empty_symbol (bfd *abfd)
6832 {
6833 elf_symbol_type *newsym;
6834 bfd_size_type amt = sizeof (elf_symbol_type);
6835
6836 newsym = bfd_zalloc (abfd, amt);
6837 if (!newsym)
6838 return NULL;
6839 else
6840 {
6841 newsym->symbol.the_bfd = abfd;
6842 return &newsym->symbol;
6843 }
6844 }
6845
6846 void
6847 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
6848 asymbol *symbol,
6849 symbol_info *ret)
6850 {
6851 bfd_symbol_info (symbol, ret);
6852 }
6853
6854 /* Return whether a symbol name implies a local symbol. Most targets
6855 use this function for the is_local_label_name entry point, but some
6856 override it. */
6857
6858 bfd_boolean
6859 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
6860 const char *name)
6861 {
6862 /* Normal local symbols start with ``.L''. */
6863 if (name[0] == '.' && name[1] == 'L')
6864 return TRUE;
6865
6866 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
6867 DWARF debugging symbols starting with ``..''. */
6868 if (name[0] == '.' && name[1] == '.')
6869 return TRUE;
6870
6871 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
6872 emitting DWARF debugging output. I suspect this is actually a
6873 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
6874 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
6875 underscore to be emitted on some ELF targets). For ease of use,
6876 we treat such symbols as local. */
6877 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
6878 return TRUE;
6879
6880 return FALSE;
6881 }
6882
6883 alent *
6884 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
6885 asymbol *symbol ATTRIBUTE_UNUSED)
6886 {
6887 abort ();
6888 return NULL;
6889 }
6890
6891 bfd_boolean
6892 _bfd_elf_set_arch_mach (bfd *abfd,
6893 enum bfd_architecture arch,
6894 unsigned long machine)
6895 {
6896 /* If this isn't the right architecture for this backend, and this
6897 isn't the generic backend, fail. */
6898 if (arch != get_elf_backend_data (abfd)->arch
6899 && arch != bfd_arch_unknown
6900 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
6901 return FALSE;
6902
6903 return bfd_default_set_arch_mach (abfd, arch, machine);
6904 }
6905
6906 /* Find the function to a particular section and offset,
6907 for error reporting. */
6908
6909 static bfd_boolean
6910 elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
6911 asection *section,
6912 asymbol **symbols,
6913 bfd_vma offset,
6914 const char **filename_ptr,
6915 const char **functionname_ptr)
6916 {
6917 const char *filename;
6918 asymbol *func, *file;
6919 bfd_vma low_func;
6920 asymbol **p;
6921 /* ??? Given multiple file symbols, it is impossible to reliably
6922 choose the right file name for global symbols. File symbols are
6923 local symbols, and thus all file symbols must sort before any
6924 global symbols. The ELF spec may be interpreted to say that a
6925 file symbol must sort before other local symbols, but currently
6926 ld -r doesn't do this. So, for ld -r output, it is possible to
6927 make a better choice of file name for local symbols by ignoring
6928 file symbols appearing after a given local symbol. */
6929 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
6930
6931 filename = NULL;
6932 func = NULL;
6933 file = NULL;
6934 low_func = 0;
6935 state = nothing_seen;
6936
6937 for (p = symbols; *p != NULL; p++)
6938 {
6939 elf_symbol_type *q;
6940
6941 q = (elf_symbol_type *) *p;
6942
6943 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
6944 {
6945 default:
6946 break;
6947 case STT_FILE:
6948 file = &q->symbol;
6949 if (state == symbol_seen)
6950 state = file_after_symbol_seen;
6951 continue;
6952 case STT_NOTYPE:
6953 case STT_FUNC:
6954 if (bfd_get_section (&q->symbol) == section
6955 && q->symbol.value >= low_func
6956 && q->symbol.value <= offset)
6957 {
6958 func = (asymbol *) q;
6959 low_func = q->symbol.value;
6960 filename = NULL;
6961 if (file != NULL
6962 && (ELF_ST_BIND (q->internal_elf_sym.st_info) == STB_LOCAL
6963 || state != file_after_symbol_seen))
6964 filename = bfd_asymbol_name (file);
6965 }
6966 break;
6967 }
6968 if (state == nothing_seen)
6969 state = symbol_seen;
6970 }
6971
6972 if (func == NULL)
6973 return FALSE;
6974
6975 if (filename_ptr)
6976 *filename_ptr = filename;
6977 if (functionname_ptr)
6978 *functionname_ptr = bfd_asymbol_name (func);
6979
6980 return TRUE;
6981 }
6982
6983 /* Find the nearest line to a particular section and offset,
6984 for error reporting. */
6985
6986 bfd_boolean
6987 _bfd_elf_find_nearest_line (bfd *abfd,
6988 asection *section,
6989 asymbol **symbols,
6990 bfd_vma offset,
6991 const char **filename_ptr,
6992 const char **functionname_ptr,
6993 unsigned int *line_ptr)
6994 {
6995 bfd_boolean found;
6996
6997 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
6998 filename_ptr, functionname_ptr,
6999 line_ptr))
7000 {
7001 if (!*functionname_ptr)
7002 elf_find_function (abfd, section, symbols, offset,
7003 *filename_ptr ? NULL : filename_ptr,
7004 functionname_ptr);
7005
7006 return TRUE;
7007 }
7008
7009 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
7010 filename_ptr, functionname_ptr,
7011 line_ptr, 0,
7012 &elf_tdata (abfd)->dwarf2_find_line_info))
7013 {
7014 if (!*functionname_ptr)
7015 elf_find_function (abfd, section, symbols, offset,
7016 *filename_ptr ? NULL : filename_ptr,
7017 functionname_ptr);
7018
7019 return TRUE;
7020 }
7021
7022 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
7023 &found, filename_ptr,
7024 functionname_ptr, line_ptr,
7025 &elf_tdata (abfd)->line_info))
7026 return FALSE;
7027 if (found && (*functionname_ptr || *line_ptr))
7028 return TRUE;
7029
7030 if (symbols == NULL)
7031 return FALSE;
7032
7033 if (! elf_find_function (abfd, section, symbols, offset,
7034 filename_ptr, functionname_ptr))
7035 return FALSE;
7036
7037 *line_ptr = 0;
7038 return TRUE;
7039 }
7040
7041 /* Find the line for a symbol. */
7042
7043 bfd_boolean
7044 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
7045 const char **filename_ptr, unsigned int *line_ptr)
7046 {
7047 return _bfd_dwarf2_find_line (abfd, symbols, symbol,
7048 filename_ptr, line_ptr, 0,
7049 &elf_tdata (abfd)->dwarf2_find_line_info);
7050 }
7051
7052 /* After a call to bfd_find_nearest_line, successive calls to
7053 bfd_find_inliner_info can be used to get source information about
7054 each level of function inlining that terminated at the address
7055 passed to bfd_find_nearest_line. Currently this is only supported
7056 for DWARF2 with appropriate DWARF3 extensions. */
7057
7058 bfd_boolean
7059 _bfd_elf_find_inliner_info (bfd *abfd,
7060 const char **filename_ptr,
7061 const char **functionname_ptr,
7062 unsigned int *line_ptr)
7063 {
7064 bfd_boolean found;
7065 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
7066 functionname_ptr, line_ptr,
7067 & elf_tdata (abfd)->dwarf2_find_line_info);
7068 return found;
7069 }
7070
7071 int
7072 _bfd_elf_sizeof_headers (bfd *abfd, bfd_boolean reloc)
7073 {
7074 int ret;
7075
7076 ret = get_elf_backend_data (abfd)->s->sizeof_ehdr;
7077 if (! reloc)
7078 ret += get_program_header_size (abfd);
7079 return ret;
7080 }
7081
7082 bfd_boolean
7083 _bfd_elf_set_section_contents (bfd *abfd,
7084 sec_ptr section,
7085 const void *location,
7086 file_ptr offset,
7087 bfd_size_type count)
7088 {
7089 Elf_Internal_Shdr *hdr;
7090 bfd_signed_vma pos;
7091
7092 if (! abfd->output_has_begun
7093 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
7094 return FALSE;
7095
7096 hdr = &elf_section_data (section)->this_hdr;
7097 pos = hdr->sh_offset + offset;
7098 if (bfd_seek (abfd, pos, SEEK_SET) != 0
7099 || bfd_bwrite (location, count, abfd) != count)
7100 return FALSE;
7101
7102 return TRUE;
7103 }
7104
7105 void
7106 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
7107 arelent *cache_ptr ATTRIBUTE_UNUSED,
7108 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
7109 {
7110 abort ();
7111 }
7112
7113 /* Try to convert a non-ELF reloc into an ELF one. */
7114
7115 bfd_boolean
7116 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
7117 {
7118 /* Check whether we really have an ELF howto. */
7119
7120 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
7121 {
7122 bfd_reloc_code_real_type code;
7123 reloc_howto_type *howto;
7124
7125 /* Alien reloc: Try to determine its type to replace it with an
7126 equivalent ELF reloc. */
7127
7128 if (areloc->howto->pc_relative)
7129 {
7130 switch (areloc->howto->bitsize)
7131 {
7132 case 8:
7133 code = BFD_RELOC_8_PCREL;
7134 break;
7135 case 12:
7136 code = BFD_RELOC_12_PCREL;
7137 break;
7138 case 16:
7139 code = BFD_RELOC_16_PCREL;
7140 break;
7141 case 24:
7142 code = BFD_RELOC_24_PCREL;
7143 break;
7144 case 32:
7145 code = BFD_RELOC_32_PCREL;
7146 break;
7147 case 64:
7148 code = BFD_RELOC_64_PCREL;
7149 break;
7150 default:
7151 goto fail;
7152 }
7153
7154 howto = bfd_reloc_type_lookup (abfd, code);
7155
7156 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
7157 {
7158 if (howto->pcrel_offset)
7159 areloc->addend += areloc->address;
7160 else
7161 areloc->addend -= areloc->address; /* addend is unsigned!! */
7162 }
7163 }
7164 else
7165 {
7166 switch (areloc->howto->bitsize)
7167 {
7168 case 8:
7169 code = BFD_RELOC_8;
7170 break;
7171 case 14:
7172 code = BFD_RELOC_14;
7173 break;
7174 case 16:
7175 code = BFD_RELOC_16;
7176 break;
7177 case 26:
7178 code = BFD_RELOC_26;
7179 break;
7180 case 32:
7181 code = BFD_RELOC_32;
7182 break;
7183 case 64:
7184 code = BFD_RELOC_64;
7185 break;
7186 default:
7187 goto fail;
7188 }
7189
7190 howto = bfd_reloc_type_lookup (abfd, code);
7191 }
7192
7193 if (howto)
7194 areloc->howto = howto;
7195 else
7196 goto fail;
7197 }
7198
7199 return TRUE;
7200
7201 fail:
7202 (*_bfd_error_handler)
7203 (_("%B: unsupported relocation type %s"),
7204 abfd, areloc->howto->name);
7205 bfd_set_error (bfd_error_bad_value);
7206 return FALSE;
7207 }
7208
7209 bfd_boolean
7210 _bfd_elf_close_and_cleanup (bfd *abfd)
7211 {
7212 if (bfd_get_format (abfd) == bfd_object)
7213 {
7214 if (elf_tdata (abfd) != NULL && elf_shstrtab (abfd) != NULL)
7215 _bfd_elf_strtab_free (elf_shstrtab (abfd));
7216 _bfd_dwarf2_cleanup_debug_info (abfd);
7217 }
7218
7219 return _bfd_generic_close_and_cleanup (abfd);
7220 }
7221
7222 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
7223 in the relocation's offset. Thus we cannot allow any sort of sanity
7224 range-checking to interfere. There is nothing else to do in processing
7225 this reloc. */
7226
7227 bfd_reloc_status_type
7228 _bfd_elf_rel_vtable_reloc_fn
7229 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
7230 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
7231 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
7232 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
7233 {
7234 return bfd_reloc_ok;
7235 }
7236 \f
7237 /* Elf core file support. Much of this only works on native
7238 toolchains, since we rely on knowing the
7239 machine-dependent procfs structure in order to pick
7240 out details about the corefile. */
7241
7242 #ifdef HAVE_SYS_PROCFS_H
7243 # include <sys/procfs.h>
7244 #endif
7245
7246 /* FIXME: this is kinda wrong, but it's what gdb wants. */
7247
7248 static int
7249 elfcore_make_pid (bfd *abfd)
7250 {
7251 return ((elf_tdata (abfd)->core_lwpid << 16)
7252 + (elf_tdata (abfd)->core_pid));
7253 }
7254
7255 /* If there isn't a section called NAME, make one, using
7256 data from SECT. Note, this function will generate a
7257 reference to NAME, so you shouldn't deallocate or
7258 overwrite it. */
7259
7260 static bfd_boolean
7261 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
7262 {
7263 asection *sect2;
7264
7265 if (bfd_get_section_by_name (abfd, name) != NULL)
7266 return TRUE;
7267
7268 sect2 = bfd_make_section (abfd, name);
7269 if (sect2 == NULL)
7270 return FALSE;
7271
7272 sect2->size = sect->size;
7273 sect2->filepos = sect->filepos;
7274 sect2->flags = sect->flags;
7275 sect2->alignment_power = sect->alignment_power;
7276 return TRUE;
7277 }
7278
7279 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
7280 actually creates up to two pseudosections:
7281 - For the single-threaded case, a section named NAME, unless
7282 such a section already exists.
7283 - For the multi-threaded case, a section named "NAME/PID", where
7284 PID is elfcore_make_pid (abfd).
7285 Both pseudosections have identical contents. */
7286 bfd_boolean
7287 _bfd_elfcore_make_pseudosection (bfd *abfd,
7288 char *name,
7289 size_t size,
7290 ufile_ptr filepos)
7291 {
7292 char buf[100];
7293 char *threaded_name;
7294 size_t len;
7295 asection *sect;
7296
7297 /* Build the section name. */
7298
7299 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
7300 len = strlen (buf) + 1;
7301 threaded_name = bfd_alloc (abfd, len);
7302 if (threaded_name == NULL)
7303 return FALSE;
7304 memcpy (threaded_name, buf, len);
7305
7306 sect = bfd_make_section_anyway (abfd, threaded_name);
7307 if (sect == NULL)
7308 return FALSE;
7309 sect->size = size;
7310 sect->filepos = filepos;
7311 sect->flags = SEC_HAS_CONTENTS;
7312 sect->alignment_power = 2;
7313
7314 return elfcore_maybe_make_sect (abfd, name, sect);
7315 }
7316
7317 /* prstatus_t exists on:
7318 solaris 2.5+
7319 linux 2.[01] + glibc
7320 unixware 4.2
7321 */
7322
7323 #if defined (HAVE_PRSTATUS_T)
7324
7325 static bfd_boolean
7326 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
7327 {
7328 size_t size;
7329 int offset;
7330
7331 if (note->descsz == sizeof (prstatus_t))
7332 {
7333 prstatus_t prstat;
7334
7335 size = sizeof (prstat.pr_reg);
7336 offset = offsetof (prstatus_t, pr_reg);
7337 memcpy (&prstat, note->descdata, sizeof (prstat));
7338
7339 /* Do not overwrite the core signal if it
7340 has already been set by another thread. */
7341 if (elf_tdata (abfd)->core_signal == 0)
7342 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7343 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7344
7345 /* pr_who exists on:
7346 solaris 2.5+
7347 unixware 4.2
7348 pr_who doesn't exist on:
7349 linux 2.[01]
7350 */
7351 #if defined (HAVE_PRSTATUS_T_PR_WHO)
7352 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7353 #endif
7354 }
7355 #if defined (HAVE_PRSTATUS32_T)
7356 else if (note->descsz == sizeof (prstatus32_t))
7357 {
7358 /* 64-bit host, 32-bit corefile */
7359 prstatus32_t prstat;
7360
7361 size = sizeof (prstat.pr_reg);
7362 offset = offsetof (prstatus32_t, pr_reg);
7363 memcpy (&prstat, note->descdata, sizeof (prstat));
7364
7365 /* Do not overwrite the core signal if it
7366 has already been set by another thread. */
7367 if (elf_tdata (abfd)->core_signal == 0)
7368 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7369 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7370
7371 /* pr_who exists on:
7372 solaris 2.5+
7373 unixware 4.2
7374 pr_who doesn't exist on:
7375 linux 2.[01]
7376 */
7377 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
7378 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7379 #endif
7380 }
7381 #endif /* HAVE_PRSTATUS32_T */
7382 else
7383 {
7384 /* Fail - we don't know how to handle any other
7385 note size (ie. data object type). */
7386 return TRUE;
7387 }
7388
7389 /* Make a ".reg/999" section and a ".reg" section. */
7390 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
7391 size, note->descpos + offset);
7392 }
7393 #endif /* defined (HAVE_PRSTATUS_T) */
7394
7395 /* Create a pseudosection containing the exact contents of NOTE. */
7396 static bfd_boolean
7397 elfcore_make_note_pseudosection (bfd *abfd,
7398 char *name,
7399 Elf_Internal_Note *note)
7400 {
7401 return _bfd_elfcore_make_pseudosection (abfd, name,
7402 note->descsz, note->descpos);
7403 }
7404
7405 /* There isn't a consistent prfpregset_t across platforms,
7406 but it doesn't matter, because we don't have to pick this
7407 data structure apart. */
7408
7409 static bfd_boolean
7410 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
7411 {
7412 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7413 }
7414
7415 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
7416 type of 5 (NT_PRXFPREG). Just include the whole note's contents
7417 literally. */
7418
7419 static bfd_boolean
7420 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
7421 {
7422 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
7423 }
7424
7425 #if defined (HAVE_PRPSINFO_T)
7426 typedef prpsinfo_t elfcore_psinfo_t;
7427 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
7428 typedef prpsinfo32_t elfcore_psinfo32_t;
7429 #endif
7430 #endif
7431
7432 #if defined (HAVE_PSINFO_T)
7433 typedef psinfo_t elfcore_psinfo_t;
7434 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
7435 typedef psinfo32_t elfcore_psinfo32_t;
7436 #endif
7437 #endif
7438
7439 /* return a malloc'ed copy of a string at START which is at
7440 most MAX bytes long, possibly without a terminating '\0'.
7441 the copy will always have a terminating '\0'. */
7442
7443 char *
7444 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
7445 {
7446 char *dups;
7447 char *end = memchr (start, '\0', max);
7448 size_t len;
7449
7450 if (end == NULL)
7451 len = max;
7452 else
7453 len = end - start;
7454
7455 dups = bfd_alloc (abfd, len + 1);
7456 if (dups == NULL)
7457 return NULL;
7458
7459 memcpy (dups, start, len);
7460 dups[len] = '\0';
7461
7462 return dups;
7463 }
7464
7465 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7466 static bfd_boolean
7467 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
7468 {
7469 if (note->descsz == sizeof (elfcore_psinfo_t))
7470 {
7471 elfcore_psinfo_t psinfo;
7472
7473 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7474
7475 elf_tdata (abfd)->core_program
7476 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7477 sizeof (psinfo.pr_fname));
7478
7479 elf_tdata (abfd)->core_command
7480 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7481 sizeof (psinfo.pr_psargs));
7482 }
7483 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
7484 else if (note->descsz == sizeof (elfcore_psinfo32_t))
7485 {
7486 /* 64-bit host, 32-bit corefile */
7487 elfcore_psinfo32_t psinfo;
7488
7489 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7490
7491 elf_tdata (abfd)->core_program
7492 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7493 sizeof (psinfo.pr_fname));
7494
7495 elf_tdata (abfd)->core_command
7496 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7497 sizeof (psinfo.pr_psargs));
7498 }
7499 #endif
7500
7501 else
7502 {
7503 /* Fail - we don't know how to handle any other
7504 note size (ie. data object type). */
7505 return TRUE;
7506 }
7507
7508 /* Note that for some reason, a spurious space is tacked
7509 onto the end of the args in some (at least one anyway)
7510 implementations, so strip it off if it exists. */
7511
7512 {
7513 char *command = elf_tdata (abfd)->core_command;
7514 int n = strlen (command);
7515
7516 if (0 < n && command[n - 1] == ' ')
7517 command[n - 1] = '\0';
7518 }
7519
7520 return TRUE;
7521 }
7522 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
7523
7524 #if defined (HAVE_PSTATUS_T)
7525 static bfd_boolean
7526 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
7527 {
7528 if (note->descsz == sizeof (pstatus_t)
7529 #if defined (HAVE_PXSTATUS_T)
7530 || note->descsz == sizeof (pxstatus_t)
7531 #endif
7532 )
7533 {
7534 pstatus_t pstat;
7535
7536 memcpy (&pstat, note->descdata, sizeof (pstat));
7537
7538 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7539 }
7540 #if defined (HAVE_PSTATUS32_T)
7541 else if (note->descsz == sizeof (pstatus32_t))
7542 {
7543 /* 64-bit host, 32-bit corefile */
7544 pstatus32_t pstat;
7545
7546 memcpy (&pstat, note->descdata, sizeof (pstat));
7547
7548 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7549 }
7550 #endif
7551 /* Could grab some more details from the "representative"
7552 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
7553 NT_LWPSTATUS note, presumably. */
7554
7555 return TRUE;
7556 }
7557 #endif /* defined (HAVE_PSTATUS_T) */
7558
7559 #if defined (HAVE_LWPSTATUS_T)
7560 static bfd_boolean
7561 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
7562 {
7563 lwpstatus_t lwpstat;
7564 char buf[100];
7565 char *name;
7566 size_t len;
7567 asection *sect;
7568
7569 if (note->descsz != sizeof (lwpstat)
7570 #if defined (HAVE_LWPXSTATUS_T)
7571 && note->descsz != sizeof (lwpxstatus_t)
7572 #endif
7573 )
7574 return TRUE;
7575
7576 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
7577
7578 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
7579 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
7580
7581 /* Make a ".reg/999" section. */
7582
7583 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
7584 len = strlen (buf) + 1;
7585 name = bfd_alloc (abfd, len);
7586 if (name == NULL)
7587 return FALSE;
7588 memcpy (name, buf, len);
7589
7590 sect = bfd_make_section_anyway (abfd, name);
7591 if (sect == NULL)
7592 return FALSE;
7593
7594 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7595 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
7596 sect->filepos = note->descpos
7597 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
7598 #endif
7599
7600 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7601 sect->size = sizeof (lwpstat.pr_reg);
7602 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
7603 #endif
7604
7605 sect->flags = SEC_HAS_CONTENTS;
7606 sect->alignment_power = 2;
7607
7608 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
7609 return FALSE;
7610
7611 /* Make a ".reg2/999" section */
7612
7613 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
7614 len = strlen (buf) + 1;
7615 name = bfd_alloc (abfd, len);
7616 if (name == NULL)
7617 return FALSE;
7618 memcpy (name, buf, len);
7619
7620 sect = bfd_make_section_anyway (abfd, name);
7621 if (sect == NULL)
7622 return FALSE;
7623
7624 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7625 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
7626 sect->filepos = note->descpos
7627 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
7628 #endif
7629
7630 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
7631 sect->size = sizeof (lwpstat.pr_fpreg);
7632 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
7633 #endif
7634
7635 sect->flags = SEC_HAS_CONTENTS;
7636 sect->alignment_power = 2;
7637
7638 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
7639 }
7640 #endif /* defined (HAVE_LWPSTATUS_T) */
7641
7642 #if defined (HAVE_WIN32_PSTATUS_T)
7643 static bfd_boolean
7644 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
7645 {
7646 char buf[30];
7647 char *name;
7648 size_t len;
7649 asection *sect;
7650 win32_pstatus_t pstatus;
7651
7652 if (note->descsz < sizeof (pstatus))
7653 return TRUE;
7654
7655 memcpy (&pstatus, note->descdata, sizeof (pstatus));
7656
7657 switch (pstatus.data_type)
7658 {
7659 case NOTE_INFO_PROCESS:
7660 /* FIXME: need to add ->core_command. */
7661 elf_tdata (abfd)->core_signal = pstatus.data.process_info.signal;
7662 elf_tdata (abfd)->core_pid = pstatus.data.process_info.pid;
7663 break;
7664
7665 case NOTE_INFO_THREAD:
7666 /* Make a ".reg/999" section. */
7667 sprintf (buf, ".reg/%ld", (long) pstatus.data.thread_info.tid);
7668
7669 len = strlen (buf) + 1;
7670 name = bfd_alloc (abfd, len);
7671 if (name == NULL)
7672 return FALSE;
7673
7674 memcpy (name, buf, len);
7675
7676 sect = bfd_make_section_anyway (abfd, name);
7677 if (sect == NULL)
7678 return FALSE;
7679
7680 sect->size = sizeof (pstatus.data.thread_info.thread_context);
7681 sect->filepos = (note->descpos
7682 + offsetof (struct win32_pstatus,
7683 data.thread_info.thread_context));
7684 sect->flags = SEC_HAS_CONTENTS;
7685 sect->alignment_power = 2;
7686
7687 if (pstatus.data.thread_info.is_active_thread)
7688 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
7689 return FALSE;
7690 break;
7691
7692 case NOTE_INFO_MODULE:
7693 /* Make a ".module/xxxxxxxx" section. */
7694 sprintf (buf, ".module/%08lx",
7695 (long) pstatus.data.module_info.base_address);
7696
7697 len = strlen (buf) + 1;
7698 name = bfd_alloc (abfd, len);
7699 if (name == NULL)
7700 return FALSE;
7701
7702 memcpy (name, buf, len);
7703
7704 sect = bfd_make_section_anyway (abfd, name);
7705
7706 if (sect == NULL)
7707 return FALSE;
7708
7709 sect->size = note->descsz;
7710 sect->filepos = note->descpos;
7711 sect->flags = SEC_HAS_CONTENTS;
7712 sect->alignment_power = 2;
7713 break;
7714
7715 default:
7716 return TRUE;
7717 }
7718
7719 return TRUE;
7720 }
7721 #endif /* HAVE_WIN32_PSTATUS_T */
7722
7723 static bfd_boolean
7724 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
7725 {
7726 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7727
7728 switch (note->type)
7729 {
7730 default:
7731 return TRUE;
7732
7733 case NT_PRSTATUS:
7734 if (bed->elf_backend_grok_prstatus)
7735 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
7736 return TRUE;
7737 #if defined (HAVE_PRSTATUS_T)
7738 return elfcore_grok_prstatus (abfd, note);
7739 #else
7740 return TRUE;
7741 #endif
7742
7743 #if defined (HAVE_PSTATUS_T)
7744 case NT_PSTATUS:
7745 return elfcore_grok_pstatus (abfd, note);
7746 #endif
7747
7748 #if defined (HAVE_LWPSTATUS_T)
7749 case NT_LWPSTATUS:
7750 return elfcore_grok_lwpstatus (abfd, note);
7751 #endif
7752
7753 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
7754 return elfcore_grok_prfpreg (abfd, note);
7755
7756 #if defined (HAVE_WIN32_PSTATUS_T)
7757 case NT_WIN32PSTATUS:
7758 return elfcore_grok_win32pstatus (abfd, note);
7759 #endif
7760
7761 case NT_PRXFPREG: /* Linux SSE extension */
7762 if (note->namesz == 6
7763 && strcmp (note->namedata, "LINUX") == 0)
7764 return elfcore_grok_prxfpreg (abfd, note);
7765 else
7766 return TRUE;
7767
7768 case NT_PRPSINFO:
7769 case NT_PSINFO:
7770 if (bed->elf_backend_grok_psinfo)
7771 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
7772 return TRUE;
7773 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7774 return elfcore_grok_psinfo (abfd, note);
7775 #else
7776 return TRUE;
7777 #endif
7778
7779 case NT_AUXV:
7780 {
7781 asection *sect = bfd_make_section_anyway (abfd, ".auxv");
7782
7783 if (sect == NULL)
7784 return FALSE;
7785 sect->size = note->descsz;
7786 sect->filepos = note->descpos;
7787 sect->flags = SEC_HAS_CONTENTS;
7788 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
7789
7790 return TRUE;
7791 }
7792 }
7793 }
7794
7795 static bfd_boolean
7796 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
7797 {
7798 char *cp;
7799
7800 cp = strchr (note->namedata, '@');
7801 if (cp != NULL)
7802 {
7803 *lwpidp = atoi(cp + 1);
7804 return TRUE;
7805 }
7806 return FALSE;
7807 }
7808
7809 static bfd_boolean
7810 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
7811 {
7812
7813 /* Signal number at offset 0x08. */
7814 elf_tdata (abfd)->core_signal
7815 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
7816
7817 /* Process ID at offset 0x50. */
7818 elf_tdata (abfd)->core_pid
7819 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
7820
7821 /* Command name at 0x7c (max 32 bytes, including nul). */
7822 elf_tdata (abfd)->core_command
7823 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
7824
7825 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
7826 note);
7827 }
7828
7829 static bfd_boolean
7830 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
7831 {
7832 int lwp;
7833
7834 if (elfcore_netbsd_get_lwpid (note, &lwp))
7835 elf_tdata (abfd)->core_lwpid = lwp;
7836
7837 if (note->type == NT_NETBSDCORE_PROCINFO)
7838 {
7839 /* NetBSD-specific core "procinfo". Note that we expect to
7840 find this note before any of the others, which is fine,
7841 since the kernel writes this note out first when it
7842 creates a core file. */
7843
7844 return elfcore_grok_netbsd_procinfo (abfd, note);
7845 }
7846
7847 /* As of Jan 2002 there are no other machine-independent notes
7848 defined for NetBSD core files. If the note type is less
7849 than the start of the machine-dependent note types, we don't
7850 understand it. */
7851
7852 if (note->type < NT_NETBSDCORE_FIRSTMACH)
7853 return TRUE;
7854
7855
7856 switch (bfd_get_arch (abfd))
7857 {
7858 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
7859 PT_GETFPREGS == mach+2. */
7860
7861 case bfd_arch_alpha:
7862 case bfd_arch_sparc:
7863 switch (note->type)
7864 {
7865 case NT_NETBSDCORE_FIRSTMACH+0:
7866 return elfcore_make_note_pseudosection (abfd, ".reg", note);
7867
7868 case NT_NETBSDCORE_FIRSTMACH+2:
7869 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7870
7871 default:
7872 return TRUE;
7873 }
7874
7875 /* On all other arch's, PT_GETREGS == mach+1 and
7876 PT_GETFPREGS == mach+3. */
7877
7878 default:
7879 switch (note->type)
7880 {
7881 case NT_NETBSDCORE_FIRSTMACH+1:
7882 return elfcore_make_note_pseudosection (abfd, ".reg", note);
7883
7884 case NT_NETBSDCORE_FIRSTMACH+3:
7885 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7886
7887 default:
7888 return TRUE;
7889 }
7890 }
7891 /* NOTREACHED */
7892 }
7893
7894 static bfd_boolean
7895 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, pid_t *tid)
7896 {
7897 void *ddata = note->descdata;
7898 char buf[100];
7899 char *name;
7900 asection *sect;
7901 short sig;
7902 unsigned flags;
7903
7904 /* nto_procfs_status 'pid' field is at offset 0. */
7905 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
7906
7907 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
7908 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
7909
7910 /* nto_procfs_status 'flags' field is at offset 8. */
7911 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
7912
7913 /* nto_procfs_status 'what' field is at offset 14. */
7914 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
7915 {
7916 elf_tdata (abfd)->core_signal = sig;
7917 elf_tdata (abfd)->core_lwpid = *tid;
7918 }
7919
7920 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
7921 do not come from signals so we make sure we set the current
7922 thread just in case. */
7923 if (flags & 0x00000080)
7924 elf_tdata (abfd)->core_lwpid = *tid;
7925
7926 /* Make a ".qnx_core_status/%d" section. */
7927 sprintf (buf, ".qnx_core_status/%ld", (long) *tid);
7928
7929 name = bfd_alloc (abfd, strlen (buf) + 1);
7930 if (name == NULL)
7931 return FALSE;
7932 strcpy (name, buf);
7933
7934 sect = bfd_make_section_anyway (abfd, name);
7935 if (sect == NULL)
7936 return FALSE;
7937
7938 sect->size = note->descsz;
7939 sect->filepos = note->descpos;
7940 sect->flags = SEC_HAS_CONTENTS;
7941 sect->alignment_power = 2;
7942
7943 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
7944 }
7945
7946 static bfd_boolean
7947 elfcore_grok_nto_regs (bfd *abfd,
7948 Elf_Internal_Note *note,
7949 pid_t tid,
7950 char *base)
7951 {
7952 char buf[100];
7953 char *name;
7954 asection *sect;
7955
7956 /* Make a "(base)/%d" section. */
7957 sprintf (buf, "%s/%ld", base, (long) tid);
7958
7959 name = bfd_alloc (abfd, strlen (buf) + 1);
7960 if (name == NULL)
7961 return FALSE;
7962 strcpy (name, buf);
7963
7964 sect = bfd_make_section_anyway (abfd, name);
7965 if (sect == NULL)
7966 return FALSE;
7967
7968 sect->size = note->descsz;
7969 sect->filepos = note->descpos;
7970 sect->flags = SEC_HAS_CONTENTS;
7971 sect->alignment_power = 2;
7972
7973 /* This is the current thread. */
7974 if (elf_tdata (abfd)->core_lwpid == tid)
7975 return elfcore_maybe_make_sect (abfd, base, sect);
7976
7977 return TRUE;
7978 }
7979
7980 #define BFD_QNT_CORE_INFO 7
7981 #define BFD_QNT_CORE_STATUS 8
7982 #define BFD_QNT_CORE_GREG 9
7983 #define BFD_QNT_CORE_FPREG 10
7984
7985 static bfd_boolean
7986 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
7987 {
7988 /* Every GREG section has a STATUS section before it. Store the
7989 tid from the previous call to pass down to the next gregs
7990 function. */
7991 static pid_t tid = 1;
7992
7993 switch (note->type)
7994 {
7995 case BFD_QNT_CORE_INFO:
7996 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
7997 case BFD_QNT_CORE_STATUS:
7998 return elfcore_grok_nto_status (abfd, note, &tid);
7999 case BFD_QNT_CORE_GREG:
8000 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
8001 case BFD_QNT_CORE_FPREG:
8002 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
8003 default:
8004 return TRUE;
8005 }
8006 }
8007
8008 /* Function: elfcore_write_note
8009
8010 Inputs:
8011 buffer to hold note
8012 name of note
8013 type of note
8014 data for note
8015 size of data for note
8016
8017 Return:
8018 End of buffer containing note. */
8019
8020 char *
8021 elfcore_write_note (bfd *abfd,
8022 char *buf,
8023 int *bufsiz,
8024 const char *name,
8025 int type,
8026 const void *input,
8027 int size)
8028 {
8029 Elf_External_Note *xnp;
8030 size_t namesz;
8031 size_t pad;
8032 size_t newspace;
8033 char *p, *dest;
8034
8035 namesz = 0;
8036 pad = 0;
8037 if (name != NULL)
8038 {
8039 const struct elf_backend_data *bed;
8040
8041 namesz = strlen (name) + 1;
8042 bed = get_elf_backend_data (abfd);
8043 pad = -namesz & ((1 << bed->s->log_file_align) - 1);
8044 }
8045
8046 newspace = 12 + namesz + pad + size;
8047
8048 p = realloc (buf, *bufsiz + newspace);
8049 dest = p + *bufsiz;
8050 *bufsiz += newspace;
8051 xnp = (Elf_External_Note *) dest;
8052 H_PUT_32 (abfd, namesz, xnp->namesz);
8053 H_PUT_32 (abfd, size, xnp->descsz);
8054 H_PUT_32 (abfd, type, xnp->type);
8055 dest = xnp->name;
8056 if (name != NULL)
8057 {
8058 memcpy (dest, name, namesz);
8059 dest += namesz;
8060 while (pad != 0)
8061 {
8062 *dest++ = '\0';
8063 --pad;
8064 }
8065 }
8066 memcpy (dest, input, size);
8067 return p;
8068 }
8069
8070 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8071 char *
8072 elfcore_write_prpsinfo (bfd *abfd,
8073 char *buf,
8074 int *bufsiz,
8075 const char *fname,
8076 const char *psargs)
8077 {
8078 int note_type;
8079 char *note_name = "CORE";
8080
8081 #if defined (HAVE_PSINFO_T)
8082 psinfo_t data;
8083 note_type = NT_PSINFO;
8084 #else
8085 prpsinfo_t data;
8086 note_type = NT_PRPSINFO;
8087 #endif
8088
8089 memset (&data, 0, sizeof (data));
8090 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
8091 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
8092 return elfcore_write_note (abfd, buf, bufsiz,
8093 note_name, note_type, &data, sizeof (data));
8094 }
8095 #endif /* PSINFO_T or PRPSINFO_T */
8096
8097 #if defined (HAVE_PRSTATUS_T)
8098 char *
8099 elfcore_write_prstatus (bfd *abfd,
8100 char *buf,
8101 int *bufsiz,
8102 long pid,
8103 int cursig,
8104 const void *gregs)
8105 {
8106 prstatus_t prstat;
8107 char *note_name = "CORE";
8108
8109 memset (&prstat, 0, sizeof (prstat));
8110 prstat.pr_pid = pid;
8111 prstat.pr_cursig = cursig;
8112 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
8113 return elfcore_write_note (abfd, buf, bufsiz,
8114 note_name, NT_PRSTATUS, &prstat, sizeof (prstat));
8115 }
8116 #endif /* HAVE_PRSTATUS_T */
8117
8118 #if defined (HAVE_LWPSTATUS_T)
8119 char *
8120 elfcore_write_lwpstatus (bfd *abfd,
8121 char *buf,
8122 int *bufsiz,
8123 long pid,
8124 int cursig,
8125 const void *gregs)
8126 {
8127 lwpstatus_t lwpstat;
8128 char *note_name = "CORE";
8129
8130 memset (&lwpstat, 0, sizeof (lwpstat));
8131 lwpstat.pr_lwpid = pid >> 16;
8132 lwpstat.pr_cursig = cursig;
8133 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8134 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
8135 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8136 #if !defined(gregs)
8137 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
8138 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
8139 #else
8140 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
8141 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
8142 #endif
8143 #endif
8144 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8145 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
8146 }
8147 #endif /* HAVE_LWPSTATUS_T */
8148
8149 #if defined (HAVE_PSTATUS_T)
8150 char *
8151 elfcore_write_pstatus (bfd *abfd,
8152 char *buf,
8153 int *bufsiz,
8154 long pid,
8155 int cursig ATTRIBUTE_UNUSED,
8156 const void *gregs ATTRIBUTE_UNUSED)
8157 {
8158 pstatus_t pstat;
8159 char *note_name = "CORE";
8160
8161 memset (&pstat, 0, sizeof (pstat));
8162 pstat.pr_pid = pid & 0xffff;
8163 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
8164 NT_PSTATUS, &pstat, sizeof (pstat));
8165 return buf;
8166 }
8167 #endif /* HAVE_PSTATUS_T */
8168
8169 char *
8170 elfcore_write_prfpreg (bfd *abfd,
8171 char *buf,
8172 int *bufsiz,
8173 const void *fpregs,
8174 int size)
8175 {
8176 char *note_name = "CORE";
8177 return elfcore_write_note (abfd, buf, bufsiz,
8178 note_name, NT_FPREGSET, fpregs, size);
8179 }
8180
8181 char *
8182 elfcore_write_prxfpreg (bfd *abfd,
8183 char *buf,
8184 int *bufsiz,
8185 const void *xfpregs,
8186 int size)
8187 {
8188 char *note_name = "LINUX";
8189 return elfcore_write_note (abfd, buf, bufsiz,
8190 note_name, NT_PRXFPREG, xfpregs, size);
8191 }
8192
8193 static bfd_boolean
8194 elfcore_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
8195 {
8196 char *buf;
8197 char *p;
8198
8199 if (size <= 0)
8200 return TRUE;
8201
8202 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
8203 return FALSE;
8204
8205 buf = bfd_malloc (size);
8206 if (buf == NULL)
8207 return FALSE;
8208
8209 if (bfd_bread (buf, size, abfd) != size)
8210 {
8211 error:
8212 free (buf);
8213 return FALSE;
8214 }
8215
8216 p = buf;
8217 while (p < buf + size)
8218 {
8219 /* FIXME: bad alignment assumption. */
8220 Elf_External_Note *xnp = (Elf_External_Note *) p;
8221 Elf_Internal_Note in;
8222
8223 in.type = H_GET_32 (abfd, xnp->type);
8224
8225 in.namesz = H_GET_32 (abfd, xnp->namesz);
8226 in.namedata = xnp->name;
8227
8228 in.descsz = H_GET_32 (abfd, xnp->descsz);
8229 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
8230 in.descpos = offset + (in.descdata - buf);
8231
8232 if (strncmp (in.namedata, "NetBSD-CORE", 11) == 0)
8233 {
8234 if (! elfcore_grok_netbsd_note (abfd, &in))
8235 goto error;
8236 }
8237 else if (strncmp (in.namedata, "QNX", 3) == 0)
8238 {
8239 if (! elfcore_grok_nto_note (abfd, &in))
8240 goto error;
8241 }
8242 else
8243 {
8244 if (! elfcore_grok_note (abfd, &in))
8245 goto error;
8246 }
8247
8248 p = in.descdata + BFD_ALIGN (in.descsz, 4);
8249 }
8250
8251 free (buf);
8252 return TRUE;
8253 }
8254 \f
8255 /* Providing external access to the ELF program header table. */
8256
8257 /* Return an upper bound on the number of bytes required to store a
8258 copy of ABFD's program header table entries. Return -1 if an error
8259 occurs; bfd_get_error will return an appropriate code. */
8260
8261 long
8262 bfd_get_elf_phdr_upper_bound (bfd *abfd)
8263 {
8264 if (abfd->xvec->flavour != bfd_target_elf_flavour)
8265 {
8266 bfd_set_error (bfd_error_wrong_format);
8267 return -1;
8268 }
8269
8270 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
8271 }
8272
8273 /* Copy ABFD's program header table entries to *PHDRS. The entries
8274 will be stored as an array of Elf_Internal_Phdr structures, as
8275 defined in include/elf/internal.h. To find out how large the
8276 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
8277
8278 Return the number of program header table entries read, or -1 if an
8279 error occurs; bfd_get_error will return an appropriate code. */
8280
8281 int
8282 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
8283 {
8284 int num_phdrs;
8285
8286 if (abfd->xvec->flavour != bfd_target_elf_flavour)
8287 {
8288 bfd_set_error (bfd_error_wrong_format);
8289 return -1;
8290 }
8291
8292 num_phdrs = elf_elfheader (abfd)->e_phnum;
8293 memcpy (phdrs, elf_tdata (abfd)->phdr,
8294 num_phdrs * sizeof (Elf_Internal_Phdr));
8295
8296 return num_phdrs;
8297 }
8298
8299 void
8300 _bfd_elf_sprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, char *buf, bfd_vma value)
8301 {
8302 #ifdef BFD64
8303 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
8304
8305 i_ehdrp = elf_elfheader (abfd);
8306 if (i_ehdrp == NULL)
8307 sprintf_vma (buf, value);
8308 else
8309 {
8310 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
8311 {
8312 #if BFD_HOST_64BIT_LONG
8313 sprintf (buf, "%016lx", value);
8314 #else
8315 sprintf (buf, "%08lx%08lx", _bfd_int64_high (value),
8316 _bfd_int64_low (value));
8317 #endif
8318 }
8319 else
8320 sprintf (buf, "%08lx", (unsigned long) (value & 0xffffffff));
8321 }
8322 #else
8323 sprintf_vma (buf, value);
8324 #endif
8325 }
8326
8327 void
8328 _bfd_elf_fprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, void *stream, bfd_vma value)
8329 {
8330 #ifdef BFD64
8331 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
8332
8333 i_ehdrp = elf_elfheader (abfd);
8334 if (i_ehdrp == NULL)
8335 fprintf_vma ((FILE *) stream, value);
8336 else
8337 {
8338 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
8339 {
8340 #if BFD_HOST_64BIT_LONG
8341 fprintf ((FILE *) stream, "%016lx", value);
8342 #else
8343 fprintf ((FILE *) stream, "%08lx%08lx",
8344 _bfd_int64_high (value), _bfd_int64_low (value));
8345 #endif
8346 }
8347 else
8348 fprintf ((FILE *) stream, "%08lx",
8349 (unsigned long) (value & 0xffffffff));
8350 }
8351 #else
8352 fprintf_vma ((FILE *) stream, value);
8353 #endif
8354 }
8355
8356 enum elf_reloc_type_class
8357 _bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
8358 {
8359 return reloc_class_normal;
8360 }
8361
8362 /* For RELA architectures, return the relocation value for a
8363 relocation against a local symbol. */
8364
8365 bfd_vma
8366 _bfd_elf_rela_local_sym (bfd *abfd,
8367 Elf_Internal_Sym *sym,
8368 asection **psec,
8369 Elf_Internal_Rela *rel)
8370 {
8371 asection *sec = *psec;
8372 bfd_vma relocation;
8373
8374 relocation = (sec->output_section->vma
8375 + sec->output_offset
8376 + sym->st_value);
8377 if ((sec->flags & SEC_MERGE)
8378 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
8379 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
8380 {
8381 rel->r_addend =
8382 _bfd_merged_section_offset (abfd, psec,
8383 elf_section_data (sec)->sec_info,
8384 sym->st_value + rel->r_addend);
8385 if (sec != *psec)
8386 {
8387 /* If we have changed the section, and our original section is
8388 marked with SEC_EXCLUDE, it means that the original
8389 SEC_MERGE section has been completely subsumed in some
8390 other SEC_MERGE section. In this case, we need to leave
8391 some info around for --emit-relocs. */
8392 if ((sec->flags & SEC_EXCLUDE) != 0)
8393 sec->kept_section = *psec;
8394 sec = *psec;
8395 }
8396 rel->r_addend -= relocation;
8397 rel->r_addend += sec->output_section->vma + sec->output_offset;
8398 }
8399 return relocation;
8400 }
8401
8402 bfd_vma
8403 _bfd_elf_rel_local_sym (bfd *abfd,
8404 Elf_Internal_Sym *sym,
8405 asection **psec,
8406 bfd_vma addend)
8407 {
8408 asection *sec = *psec;
8409
8410 if (sec->sec_info_type != ELF_INFO_TYPE_MERGE)
8411 return sym->st_value + addend;
8412
8413 return _bfd_merged_section_offset (abfd, psec,
8414 elf_section_data (sec)->sec_info,
8415 sym->st_value + addend);
8416 }
8417
8418 bfd_vma
8419 _bfd_elf_section_offset (bfd *abfd,
8420 struct bfd_link_info *info,
8421 asection *sec,
8422 bfd_vma offset)
8423 {
8424 switch (sec->sec_info_type)
8425 {
8426 case ELF_INFO_TYPE_STABS:
8427 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
8428 offset);
8429 case ELF_INFO_TYPE_EH_FRAME:
8430 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
8431 default:
8432 return offset;
8433 }
8434 }
8435 \f
8436 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
8437 reconstruct an ELF file by reading the segments out of remote memory
8438 based on the ELF file header at EHDR_VMA and the ELF program headers it
8439 points to. If not null, *LOADBASEP is filled in with the difference
8440 between the VMAs from which the segments were read, and the VMAs the
8441 file headers (and hence BFD's idea of each section's VMA) put them at.
8442
8443 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
8444 remote memory at target address VMA into the local buffer at MYADDR; it
8445 should return zero on success or an `errno' code on failure. TEMPL must
8446 be a BFD for an ELF target with the word size and byte order found in
8447 the remote memory. */
8448
8449 bfd *
8450 bfd_elf_bfd_from_remote_memory
8451 (bfd *templ,
8452 bfd_vma ehdr_vma,
8453 bfd_vma *loadbasep,
8454 int (*target_read_memory) (bfd_vma, bfd_byte *, int))
8455 {
8456 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
8457 (templ, ehdr_vma, loadbasep, target_read_memory);
8458 }
8459 \f
8460 long
8461 _bfd_elf_get_synthetic_symtab (bfd *abfd,
8462 long symcount ATTRIBUTE_UNUSED,
8463 asymbol **syms ATTRIBUTE_UNUSED,
8464 long dynsymcount,
8465 asymbol **dynsyms,
8466 asymbol **ret)
8467 {
8468 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8469 asection *relplt;
8470 asymbol *s;
8471 const char *relplt_name;
8472 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
8473 arelent *p;
8474 long count, i, n;
8475 size_t size;
8476 Elf_Internal_Shdr *hdr;
8477 char *names;
8478 asection *plt;
8479
8480 *ret = NULL;
8481
8482 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
8483 return 0;
8484
8485 if (dynsymcount <= 0)
8486 return 0;
8487
8488 if (!bed->plt_sym_val)
8489 return 0;
8490
8491 relplt_name = bed->relplt_name;
8492 if (relplt_name == NULL)
8493 relplt_name = bed->default_use_rela_p ? ".rela.plt" : ".rel.plt";
8494 relplt = bfd_get_section_by_name (abfd, relplt_name);
8495 if (relplt == NULL)
8496 return 0;
8497
8498 hdr = &elf_section_data (relplt)->this_hdr;
8499 if (hdr->sh_link != elf_dynsymtab (abfd)
8500 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
8501 return 0;
8502
8503 plt = bfd_get_section_by_name (abfd, ".plt");
8504 if (plt == NULL)
8505 return 0;
8506
8507 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
8508 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
8509 return -1;
8510
8511 count = relplt->size / hdr->sh_entsize;
8512 size = count * sizeof (asymbol);
8513 p = relplt->relocation;
8514 for (i = 0; i < count; i++, s++, p++)
8515 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
8516
8517 s = *ret = bfd_malloc (size);
8518 if (s == NULL)
8519 return -1;
8520
8521 names = (char *) (s + count);
8522 p = relplt->relocation;
8523 n = 0;
8524 for (i = 0; i < count; i++, s++, p++)
8525 {
8526 size_t len;
8527 bfd_vma addr;
8528
8529 addr = bed->plt_sym_val (i, plt, p);
8530 if (addr == (bfd_vma) -1)
8531 continue;
8532
8533 *s = **p->sym_ptr_ptr;
8534 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
8535 we are defining a symbol, ensure one of them is set. */
8536 if ((s->flags & BSF_LOCAL) == 0)
8537 s->flags |= BSF_GLOBAL;
8538 s->section = plt;
8539 s->value = addr - plt->vma;
8540 s->name = names;
8541 len = strlen ((*p->sym_ptr_ptr)->name);
8542 memcpy (names, (*p->sym_ptr_ptr)->name, len);
8543 names += len;
8544 memcpy (names, "@plt", sizeof ("@plt"));
8545 names += sizeof ("@plt");
8546 ++n;
8547 }
8548
8549 return n;
8550 }
8551
8552 /* Sort symbol by binding and section. We want to put definitions
8553 sorted by section at the beginning. */
8554
8555 static int
8556 elf_sort_elf_symbol (const void *arg1, const void *arg2)
8557 {
8558 const Elf_Internal_Sym *s1;
8559 const Elf_Internal_Sym *s2;
8560 int shndx;
8561
8562 /* Make sure that undefined symbols are at the end. */
8563 s1 = (const Elf_Internal_Sym *) arg1;
8564 if (s1->st_shndx == SHN_UNDEF)
8565 return 1;
8566 s2 = (const Elf_Internal_Sym *) arg2;
8567 if (s2->st_shndx == SHN_UNDEF)
8568 return -1;
8569
8570 /* Sorted by section index. */
8571 shndx = s1->st_shndx - s2->st_shndx;
8572 if (shndx != 0)
8573 return shndx;
8574
8575 /* Sorted by binding. */
8576 return ELF_ST_BIND (s1->st_info) - ELF_ST_BIND (s2->st_info);
8577 }
8578
8579 struct elf_symbol
8580 {
8581 Elf_Internal_Sym *sym;
8582 const char *name;
8583 };
8584
8585 static int
8586 elf_sym_name_compare (const void *arg1, const void *arg2)
8587 {
8588 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
8589 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
8590 return strcmp (s1->name, s2->name);
8591 }
8592
8593 /* Check if 2 sections define the same set of local and global
8594 symbols. */
8595
8596 bfd_boolean
8597 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2)
8598 {
8599 bfd *bfd1, *bfd2;
8600 const struct elf_backend_data *bed1, *bed2;
8601 Elf_Internal_Shdr *hdr1, *hdr2;
8602 bfd_size_type symcount1, symcount2;
8603 Elf_Internal_Sym *isymbuf1, *isymbuf2;
8604 Elf_Internal_Sym *isymstart1 = NULL, *isymstart2 = NULL, *isym;
8605 Elf_Internal_Sym *isymend;
8606 struct elf_symbol *symp, *symtable1 = NULL, *symtable2 = NULL;
8607 bfd_size_type count1, count2, i;
8608 int shndx1, shndx2;
8609 bfd_boolean result;
8610
8611 bfd1 = sec1->owner;
8612 bfd2 = sec2->owner;
8613
8614 /* If both are .gnu.linkonce sections, they have to have the same
8615 section name. */
8616 if (strncmp (sec1->name, ".gnu.linkonce",
8617 sizeof ".gnu.linkonce" - 1) == 0
8618 && strncmp (sec2->name, ".gnu.linkonce",
8619 sizeof ".gnu.linkonce" - 1) == 0)
8620 return strcmp (sec1->name + sizeof ".gnu.linkonce",
8621 sec2->name + sizeof ".gnu.linkonce") == 0;
8622
8623 /* Both sections have to be in ELF. */
8624 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
8625 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
8626 return FALSE;
8627
8628 if (elf_section_type (sec1) != elf_section_type (sec2))
8629 return FALSE;
8630
8631 if ((elf_section_flags (sec1) & SHF_GROUP) != 0
8632 && (elf_section_flags (sec2) & SHF_GROUP) != 0)
8633 {
8634 /* If both are members of section groups, they have to have the
8635 same group name. */
8636 if (strcmp (elf_group_name (sec1), elf_group_name (sec2)) != 0)
8637 return FALSE;
8638 }
8639
8640 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
8641 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
8642 if (shndx1 == -1 || shndx2 == -1)
8643 return FALSE;
8644
8645 bed1 = get_elf_backend_data (bfd1);
8646 bed2 = get_elf_backend_data (bfd2);
8647 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
8648 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
8649 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
8650 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
8651
8652 if (symcount1 == 0 || symcount2 == 0)
8653 return FALSE;
8654
8655 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
8656 NULL, NULL, NULL);
8657 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
8658 NULL, NULL, NULL);
8659
8660 result = FALSE;
8661 if (isymbuf1 == NULL || isymbuf2 == NULL)
8662 goto done;
8663
8664 /* Sort symbols by binding and section. Global definitions are at
8665 the beginning. */
8666 qsort (isymbuf1, symcount1, sizeof (Elf_Internal_Sym),
8667 elf_sort_elf_symbol);
8668 qsort (isymbuf2, symcount2, sizeof (Elf_Internal_Sym),
8669 elf_sort_elf_symbol);
8670
8671 /* Count definitions in the section. */
8672 count1 = 0;
8673 for (isym = isymbuf1, isymend = isym + symcount1;
8674 isym < isymend; isym++)
8675 {
8676 if (isym->st_shndx == (unsigned int) shndx1)
8677 {
8678 if (count1 == 0)
8679 isymstart1 = isym;
8680 count1++;
8681 }
8682
8683 if (count1 && isym->st_shndx != (unsigned int) shndx1)
8684 break;
8685 }
8686
8687 count2 = 0;
8688 for (isym = isymbuf2, isymend = isym + symcount2;
8689 isym < isymend; isym++)
8690 {
8691 if (isym->st_shndx == (unsigned int) shndx2)
8692 {
8693 if (count2 == 0)
8694 isymstart2 = isym;
8695 count2++;
8696 }
8697
8698 if (count2 && isym->st_shndx != (unsigned int) shndx2)
8699 break;
8700 }
8701
8702 if (count1 == 0 || count2 == 0 || count1 != count2)
8703 goto done;
8704
8705 symtable1 = bfd_malloc (count1 * sizeof (struct elf_symbol));
8706 symtable2 = bfd_malloc (count1 * sizeof (struct elf_symbol));
8707
8708 if (symtable1 == NULL || symtable2 == NULL)
8709 goto done;
8710
8711 symp = symtable1;
8712 for (isym = isymstart1, isymend = isym + count1;
8713 isym < isymend; isym++)
8714 {
8715 symp->sym = isym;
8716 symp->name = bfd_elf_string_from_elf_section (bfd1,
8717 hdr1->sh_link,
8718 isym->st_name);
8719 symp++;
8720 }
8721
8722 symp = symtable2;
8723 for (isym = isymstart2, isymend = isym + count1;
8724 isym < isymend; isym++)
8725 {
8726 symp->sym = isym;
8727 symp->name = bfd_elf_string_from_elf_section (bfd2,
8728 hdr2->sh_link,
8729 isym->st_name);
8730 symp++;
8731 }
8732
8733 /* Sort symbol by name. */
8734 qsort (symtable1, count1, sizeof (struct elf_symbol),
8735 elf_sym_name_compare);
8736 qsort (symtable2, count1, sizeof (struct elf_symbol),
8737 elf_sym_name_compare);
8738
8739 for (i = 0; i < count1; i++)
8740 /* Two symbols must have the same binding, type and name. */
8741 if (symtable1 [i].sym->st_info != symtable2 [i].sym->st_info
8742 || symtable1 [i].sym->st_other != symtable2 [i].sym->st_other
8743 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
8744 goto done;
8745
8746 result = TRUE;
8747
8748 done:
8749 if (symtable1)
8750 free (symtable1);
8751 if (symtable2)
8752 free (symtable2);
8753 if (isymbuf1)
8754 free (isymbuf1);
8755 if (isymbuf2)
8756 free (isymbuf2);
8757
8758 return result;
8759 }
8760
8761 /* It is only used by x86-64 so far. */
8762 asection _bfd_elf_large_com_section
8763 = BFD_FAKE_SECTION (_bfd_elf_large_com_section,
8764 SEC_IS_COMMON, NULL, "LARGE_COMMON", 0);
8765
8766 /* Return TRUE if 2 section types are compatible. */
8767
8768 bfd_boolean
8769 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
8770 bfd *bbfd, const asection *bsec)
8771 {
8772 if (asec == NULL
8773 || bsec == NULL
8774 || abfd->xvec->flavour != bfd_target_elf_flavour
8775 || bbfd->xvec->flavour != bfd_target_elf_flavour)
8776 return TRUE;
8777
8778 return elf_section_type (asec) == elf_section_type (bsec);
8779 }