Add startswith function and use it instead of CONST_STRNEQ.
[binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright (C) 1993-2021 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22
23 /*
24 SECTION
25 ELF backends
26
27 BFD support for ELF formats is being worked on.
28 Currently, the best supported back ends are for sparc and i386
29 (running svr4 or Solaris 2).
30
31 Documentation of the internals of the support code still needs
32 to be written. The code is changing quickly enough that we
33 haven't bothered yet. */
34
35 /* For sparc64-cross-sparc32. */
36 #define _SYSCALL32
37 #include "sysdep.h"
38 #include <limits.h>
39 #include "bfd.h"
40 #include "bfdlink.h"
41 #include "libbfd.h"
42 #define ARCH_SIZE 0
43 #include "elf-bfd.h"
44 #include "libiberty.h"
45 #include "safe-ctype.h"
46 #include "elf-linux-core.h"
47
48 #ifdef CORE_HEADER
49 #include CORE_HEADER
50 #endif
51
52 static int elf_sort_sections (const void *, const void *);
53 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
54 static bfd_boolean swap_out_syms (bfd *, struct elf_strtab_hash **, int,
55 struct bfd_link_info *);
56 static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
57 file_ptr offset, size_t align);
58
59 /* Swap version information in and out. The version information is
60 currently size independent. If that ever changes, this code will
61 need to move into elfcode.h. */
62
63 /* Swap in a Verdef structure. */
64
65 void
66 _bfd_elf_swap_verdef_in (bfd *abfd,
67 const Elf_External_Verdef *src,
68 Elf_Internal_Verdef *dst)
69 {
70 dst->vd_version = H_GET_16 (abfd, src->vd_version);
71 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
72 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
73 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
74 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
75 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
76 dst->vd_next = H_GET_32 (abfd, src->vd_next);
77 }
78
79 /* Swap out a Verdef structure. */
80
81 void
82 _bfd_elf_swap_verdef_out (bfd *abfd,
83 const Elf_Internal_Verdef *src,
84 Elf_External_Verdef *dst)
85 {
86 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
87 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
88 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
89 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
90 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
91 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
92 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
93 }
94
95 /* Swap in a Verdaux structure. */
96
97 void
98 _bfd_elf_swap_verdaux_in (bfd *abfd,
99 const Elf_External_Verdaux *src,
100 Elf_Internal_Verdaux *dst)
101 {
102 dst->vda_name = H_GET_32 (abfd, src->vda_name);
103 dst->vda_next = H_GET_32 (abfd, src->vda_next);
104 }
105
106 /* Swap out a Verdaux structure. */
107
108 void
109 _bfd_elf_swap_verdaux_out (bfd *abfd,
110 const Elf_Internal_Verdaux *src,
111 Elf_External_Verdaux *dst)
112 {
113 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
114 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
115 }
116
117 /* Swap in a Verneed structure. */
118
119 void
120 _bfd_elf_swap_verneed_in (bfd *abfd,
121 const Elf_External_Verneed *src,
122 Elf_Internal_Verneed *dst)
123 {
124 dst->vn_version = H_GET_16 (abfd, src->vn_version);
125 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
126 dst->vn_file = H_GET_32 (abfd, src->vn_file);
127 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
128 dst->vn_next = H_GET_32 (abfd, src->vn_next);
129 }
130
131 /* Swap out a Verneed structure. */
132
133 void
134 _bfd_elf_swap_verneed_out (bfd *abfd,
135 const Elf_Internal_Verneed *src,
136 Elf_External_Verneed *dst)
137 {
138 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
139 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
140 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
141 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
142 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
143 }
144
145 /* Swap in a Vernaux structure. */
146
147 void
148 _bfd_elf_swap_vernaux_in (bfd *abfd,
149 const Elf_External_Vernaux *src,
150 Elf_Internal_Vernaux *dst)
151 {
152 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
153 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
154 dst->vna_other = H_GET_16 (abfd, src->vna_other);
155 dst->vna_name = H_GET_32 (abfd, src->vna_name);
156 dst->vna_next = H_GET_32 (abfd, src->vna_next);
157 }
158
159 /* Swap out a Vernaux structure. */
160
161 void
162 _bfd_elf_swap_vernaux_out (bfd *abfd,
163 const Elf_Internal_Vernaux *src,
164 Elf_External_Vernaux *dst)
165 {
166 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
167 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
168 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
169 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
170 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
171 }
172
173 /* Swap in a Versym structure. */
174
175 void
176 _bfd_elf_swap_versym_in (bfd *abfd,
177 const Elf_External_Versym *src,
178 Elf_Internal_Versym *dst)
179 {
180 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
181 }
182
183 /* Swap out a Versym structure. */
184
185 void
186 _bfd_elf_swap_versym_out (bfd *abfd,
187 const Elf_Internal_Versym *src,
188 Elf_External_Versym *dst)
189 {
190 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
191 }
192
193 /* Standard ELF hash function. Do not change this function; you will
194 cause invalid hash tables to be generated. */
195
196 unsigned long
197 bfd_elf_hash (const char *namearg)
198 {
199 const unsigned char *name = (const unsigned char *) namearg;
200 unsigned long h = 0;
201 unsigned long g;
202 int ch;
203
204 while ((ch = *name++) != '\0')
205 {
206 h = (h << 4) + ch;
207 if ((g = (h & 0xf0000000)) != 0)
208 {
209 h ^= g >> 24;
210 /* The ELF ABI says `h &= ~g', but this is equivalent in
211 this case and on some machines one insn instead of two. */
212 h ^= g;
213 }
214 }
215 return h & 0xffffffff;
216 }
217
218 /* DT_GNU_HASH hash function. Do not change this function; you will
219 cause invalid hash tables to be generated. */
220
221 unsigned long
222 bfd_elf_gnu_hash (const char *namearg)
223 {
224 const unsigned char *name = (const unsigned char *) namearg;
225 unsigned long h = 5381;
226 unsigned char ch;
227
228 while ((ch = *name++) != '\0')
229 h = (h << 5) + h + ch;
230 return h & 0xffffffff;
231 }
232
233 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
234 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
235 bfd_boolean
236 bfd_elf_allocate_object (bfd *abfd,
237 size_t object_size,
238 enum elf_target_id object_id)
239 {
240 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
241 abfd->tdata.any = bfd_zalloc (abfd, object_size);
242 if (abfd->tdata.any == NULL)
243 return FALSE;
244
245 elf_object_id (abfd) = object_id;
246 if (abfd->direction != read_direction)
247 {
248 struct output_elf_obj_tdata *o = bfd_zalloc (abfd, sizeof *o);
249 if (o == NULL)
250 return FALSE;
251 elf_tdata (abfd)->o = o;
252 elf_program_header_size (abfd) = (bfd_size_type) -1;
253 }
254 return TRUE;
255 }
256
257
258 bfd_boolean
259 bfd_elf_make_object (bfd *abfd)
260 {
261 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
262 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
263 bed->target_id);
264 }
265
266 bfd_boolean
267 bfd_elf_mkcorefile (bfd *abfd)
268 {
269 /* I think this can be done just like an object file. */
270 if (!abfd->xvec->_bfd_set_format[(int) bfd_object] (abfd))
271 return FALSE;
272 elf_tdata (abfd)->core = bfd_zalloc (abfd, sizeof (*elf_tdata (abfd)->core));
273 return elf_tdata (abfd)->core != NULL;
274 }
275
276 char *
277 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
278 {
279 Elf_Internal_Shdr **i_shdrp;
280 bfd_byte *shstrtab = NULL;
281 file_ptr offset;
282 bfd_size_type shstrtabsize;
283
284 i_shdrp = elf_elfsections (abfd);
285 if (i_shdrp == 0
286 || shindex >= elf_numsections (abfd)
287 || i_shdrp[shindex] == 0)
288 return NULL;
289
290 shstrtab = i_shdrp[shindex]->contents;
291 if (shstrtab == NULL)
292 {
293 /* No cached one, attempt to read, and cache what we read. */
294 offset = i_shdrp[shindex]->sh_offset;
295 shstrtabsize = i_shdrp[shindex]->sh_size;
296
297 /* Allocate and clear an extra byte at the end, to prevent crashes
298 in case the string table is not terminated. */
299 if (shstrtabsize + 1 <= 1
300 || bfd_seek (abfd, offset, SEEK_SET) != 0
301 || (shstrtab = _bfd_alloc_and_read (abfd, shstrtabsize + 1,
302 shstrtabsize)) == NULL)
303 {
304 /* Once we've failed to read it, make sure we don't keep
305 trying. Otherwise, we'll keep allocating space for
306 the string table over and over. */
307 i_shdrp[shindex]->sh_size = 0;
308 }
309 else
310 shstrtab[shstrtabsize] = '\0';
311 i_shdrp[shindex]->contents = shstrtab;
312 }
313 return (char *) shstrtab;
314 }
315
316 char *
317 bfd_elf_string_from_elf_section (bfd *abfd,
318 unsigned int shindex,
319 unsigned int strindex)
320 {
321 Elf_Internal_Shdr *hdr;
322
323 if (strindex == 0)
324 return "";
325
326 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
327 return NULL;
328
329 hdr = elf_elfsections (abfd)[shindex];
330
331 if (hdr->contents == NULL)
332 {
333 if (hdr->sh_type != SHT_STRTAB && hdr->sh_type < SHT_LOOS)
334 {
335 /* PR 17512: file: f057ec89. */
336 /* xgettext:c-format */
337 _bfd_error_handler (_("%pB: attempt to load strings from"
338 " a non-string section (number %d)"),
339 abfd, shindex);
340 return NULL;
341 }
342
343 if (bfd_elf_get_str_section (abfd, shindex) == NULL)
344 return NULL;
345 }
346 else
347 {
348 /* PR 24273: The string section's contents may have already
349 been loaded elsewhere, eg because a corrupt file has the
350 string section index in the ELF header pointing at a group
351 section. So be paranoid, and test that the last byte of
352 the section is zero. */
353 if (hdr->sh_size == 0 || hdr->contents[hdr->sh_size - 1] != 0)
354 return NULL;
355 }
356
357 if (strindex >= hdr->sh_size)
358 {
359 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
360 _bfd_error_handler
361 /* xgettext:c-format */
362 (_("%pB: invalid string offset %u >= %" PRIu64 " for section `%s'"),
363 abfd, strindex, (uint64_t) hdr->sh_size,
364 (shindex == shstrndx && strindex == hdr->sh_name
365 ? ".shstrtab"
366 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
367 return NULL;
368 }
369
370 return ((char *) hdr->contents) + strindex;
371 }
372
373 /* Read and convert symbols to internal format.
374 SYMCOUNT specifies the number of symbols to read, starting from
375 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
376 are non-NULL, they are used to store the internal symbols, external
377 symbols, and symbol section index extensions, respectively.
378 Returns a pointer to the internal symbol buffer (malloced if necessary)
379 or NULL if there were no symbols or some kind of problem. */
380
381 Elf_Internal_Sym *
382 bfd_elf_get_elf_syms (bfd *ibfd,
383 Elf_Internal_Shdr *symtab_hdr,
384 size_t symcount,
385 size_t symoffset,
386 Elf_Internal_Sym *intsym_buf,
387 void *extsym_buf,
388 Elf_External_Sym_Shndx *extshndx_buf)
389 {
390 Elf_Internal_Shdr *shndx_hdr;
391 void *alloc_ext;
392 const bfd_byte *esym;
393 Elf_External_Sym_Shndx *alloc_extshndx;
394 Elf_External_Sym_Shndx *shndx;
395 Elf_Internal_Sym *alloc_intsym;
396 Elf_Internal_Sym *isym;
397 Elf_Internal_Sym *isymend;
398 const struct elf_backend_data *bed;
399 size_t extsym_size;
400 size_t amt;
401 file_ptr pos;
402
403 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
404 abort ();
405
406 if (symcount == 0)
407 return intsym_buf;
408
409 /* Normal syms might have section extension entries. */
410 shndx_hdr = NULL;
411 if (elf_symtab_shndx_list (ibfd) != NULL)
412 {
413 elf_section_list * entry;
414 Elf_Internal_Shdr **sections = elf_elfsections (ibfd);
415
416 /* Find an index section that is linked to this symtab section. */
417 for (entry = elf_symtab_shndx_list (ibfd); entry != NULL; entry = entry->next)
418 {
419 /* PR 20063. */
420 if (entry->hdr.sh_link >= elf_numsections (ibfd))
421 continue;
422
423 if (sections[entry->hdr.sh_link] == symtab_hdr)
424 {
425 shndx_hdr = & entry->hdr;
426 break;
427 };
428 }
429
430 if (shndx_hdr == NULL)
431 {
432 if (symtab_hdr == & elf_symtab_hdr (ibfd))
433 /* Not really accurate, but this was how the old code used to work. */
434 shndx_hdr = & elf_symtab_shndx_list (ibfd)->hdr;
435 /* Otherwise we do nothing. The assumption is that
436 the index table will not be needed. */
437 }
438 }
439
440 /* Read the symbols. */
441 alloc_ext = NULL;
442 alloc_extshndx = NULL;
443 alloc_intsym = NULL;
444 bed = get_elf_backend_data (ibfd);
445 extsym_size = bed->s->sizeof_sym;
446 if (_bfd_mul_overflow (symcount, extsym_size, &amt))
447 {
448 bfd_set_error (bfd_error_file_too_big);
449 intsym_buf = NULL;
450 goto out;
451 }
452 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
453 if (extsym_buf == NULL)
454 {
455 alloc_ext = bfd_malloc (amt);
456 extsym_buf = alloc_ext;
457 }
458 if (extsym_buf == NULL
459 || bfd_seek (ibfd, pos, SEEK_SET) != 0
460 || bfd_bread (extsym_buf, amt, ibfd) != amt)
461 {
462 intsym_buf = NULL;
463 goto out;
464 }
465
466 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
467 extshndx_buf = NULL;
468 else
469 {
470 if (_bfd_mul_overflow (symcount, sizeof (Elf_External_Sym_Shndx), &amt))
471 {
472 bfd_set_error (bfd_error_file_too_big);
473 intsym_buf = NULL;
474 goto out;
475 }
476 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
477 if (extshndx_buf == NULL)
478 {
479 alloc_extshndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
480 extshndx_buf = alloc_extshndx;
481 }
482 if (extshndx_buf == NULL
483 || bfd_seek (ibfd, pos, SEEK_SET) != 0
484 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
485 {
486 intsym_buf = NULL;
487 goto out;
488 }
489 }
490
491 if (intsym_buf == NULL)
492 {
493 if (_bfd_mul_overflow (symcount, sizeof (Elf_Internal_Sym), &amt))
494 {
495 bfd_set_error (bfd_error_file_too_big);
496 goto out;
497 }
498 alloc_intsym = (Elf_Internal_Sym *) bfd_malloc (amt);
499 intsym_buf = alloc_intsym;
500 if (intsym_buf == NULL)
501 goto out;
502 }
503
504 /* Convert the symbols to internal form. */
505 isymend = intsym_buf + symcount;
506 for (esym = (const bfd_byte *) extsym_buf, isym = intsym_buf,
507 shndx = extshndx_buf;
508 isym < isymend;
509 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
510 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
511 {
512 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
513 /* xgettext:c-format */
514 _bfd_error_handler (_("%pB symbol number %lu references"
515 " nonexistent SHT_SYMTAB_SHNDX section"),
516 ibfd, (unsigned long) symoffset);
517 free (alloc_intsym);
518 intsym_buf = NULL;
519 goto out;
520 }
521
522 out:
523 free (alloc_ext);
524 free (alloc_extshndx);
525
526 return intsym_buf;
527 }
528
529 /* Look up a symbol name. */
530 const char *
531 bfd_elf_sym_name (bfd *abfd,
532 Elf_Internal_Shdr *symtab_hdr,
533 Elf_Internal_Sym *isym,
534 asection *sym_sec)
535 {
536 const char *name;
537 unsigned int iname = isym->st_name;
538 unsigned int shindex = symtab_hdr->sh_link;
539
540 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
541 /* Check for a bogus st_shndx to avoid crashing. */
542 && isym->st_shndx < elf_numsections (abfd))
543 {
544 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
545 shindex = elf_elfheader (abfd)->e_shstrndx;
546 }
547
548 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
549 if (name == NULL)
550 name = "(null)";
551 else if (sym_sec && *name == '\0')
552 name = bfd_section_name (sym_sec);
553
554 return name;
555 }
556
557 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
558 sections. The first element is the flags, the rest are section
559 pointers. */
560
561 typedef union elf_internal_group {
562 Elf_Internal_Shdr *shdr;
563 unsigned int flags;
564 } Elf_Internal_Group;
565
566 /* Return the name of the group signature symbol. Why isn't the
567 signature just a string? */
568
569 static const char *
570 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
571 {
572 Elf_Internal_Shdr *hdr;
573 unsigned char esym[sizeof (Elf64_External_Sym)];
574 Elf_External_Sym_Shndx eshndx;
575 Elf_Internal_Sym isym;
576
577 /* First we need to ensure the symbol table is available. Make sure
578 that it is a symbol table section. */
579 if (ghdr->sh_link >= elf_numsections (abfd))
580 return NULL;
581 hdr = elf_elfsections (abfd) [ghdr->sh_link];
582 if (hdr->sh_type != SHT_SYMTAB
583 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
584 return NULL;
585
586 /* Go read the symbol. */
587 hdr = &elf_tdata (abfd)->symtab_hdr;
588 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
589 &isym, esym, &eshndx) == NULL)
590 return NULL;
591
592 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
593 }
594
595 /* Set next_in_group list pointer, and group name for NEWSECT. */
596
597 static bfd_boolean
598 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
599 {
600 unsigned int num_group = elf_tdata (abfd)->num_group;
601
602 /* If num_group is zero, read in all SHT_GROUP sections. The count
603 is set to -1 if there are no SHT_GROUP sections. */
604 if (num_group == 0)
605 {
606 unsigned int i, shnum;
607
608 /* First count the number of groups. If we have a SHT_GROUP
609 section with just a flag word (ie. sh_size is 4), ignore it. */
610 shnum = elf_numsections (abfd);
611 num_group = 0;
612
613 #define IS_VALID_GROUP_SECTION_HEADER(shdr, minsize) \
614 ( (shdr)->sh_type == SHT_GROUP \
615 && (shdr)->sh_size >= minsize \
616 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
617 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
618
619 for (i = 0; i < shnum; i++)
620 {
621 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
622
623 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
624 num_group += 1;
625 }
626
627 if (num_group == 0)
628 {
629 num_group = (unsigned) -1;
630 elf_tdata (abfd)->num_group = num_group;
631 elf_tdata (abfd)->group_sect_ptr = NULL;
632 }
633 else
634 {
635 /* We keep a list of elf section headers for group sections,
636 so we can find them quickly. */
637 size_t amt;
638
639 elf_tdata (abfd)->num_group = num_group;
640 amt = num_group * sizeof (Elf_Internal_Shdr *);
641 elf_tdata (abfd)->group_sect_ptr
642 = (Elf_Internal_Shdr **) bfd_zalloc (abfd, amt);
643 if (elf_tdata (abfd)->group_sect_ptr == NULL)
644 return FALSE;
645 num_group = 0;
646
647 for (i = 0; i < shnum; i++)
648 {
649 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
650
651 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
652 {
653 unsigned char *src;
654 Elf_Internal_Group *dest;
655
656 /* Make sure the group section has a BFD section
657 attached to it. */
658 if (!bfd_section_from_shdr (abfd, i))
659 return FALSE;
660
661 /* Add to list of sections. */
662 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
663 num_group += 1;
664
665 /* Read the raw contents. */
666 BFD_ASSERT (sizeof (*dest) >= 4 && sizeof (*dest) % 4 == 0);
667 shdr->contents = NULL;
668 if (_bfd_mul_overflow (shdr->sh_size,
669 sizeof (*dest) / 4, &amt)
670 || bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
671 || !(shdr->contents
672 = _bfd_alloc_and_read (abfd, amt, shdr->sh_size)))
673 {
674 _bfd_error_handler
675 /* xgettext:c-format */
676 (_("%pB: invalid size field in group section"
677 " header: %#" PRIx64 ""),
678 abfd, (uint64_t) shdr->sh_size);
679 bfd_set_error (bfd_error_bad_value);
680 -- num_group;
681 continue;
682 }
683
684 /* Translate raw contents, a flag word followed by an
685 array of elf section indices all in target byte order,
686 to the flag word followed by an array of elf section
687 pointers. */
688 src = shdr->contents + shdr->sh_size;
689 dest = (Elf_Internal_Group *) (shdr->contents + amt);
690
691 while (1)
692 {
693 unsigned int idx;
694
695 src -= 4;
696 --dest;
697 idx = H_GET_32 (abfd, src);
698 if (src == shdr->contents)
699 {
700 dest->shdr = NULL;
701 dest->flags = idx;
702 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
703 shdr->bfd_section->flags
704 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
705 break;
706 }
707 if (idx < shnum)
708 {
709 dest->shdr = elf_elfsections (abfd)[idx];
710 /* PR binutils/23199: All sections in a
711 section group should be marked with
712 SHF_GROUP. But some tools generate
713 broken objects without SHF_GROUP. Fix
714 them up here. */
715 dest->shdr->sh_flags |= SHF_GROUP;
716 }
717 if (idx >= shnum
718 || dest->shdr->sh_type == SHT_GROUP)
719 {
720 _bfd_error_handler
721 (_("%pB: invalid entry in SHT_GROUP section [%u]"),
722 abfd, i);
723 dest->shdr = NULL;
724 }
725 }
726 }
727 }
728
729 /* PR 17510: Corrupt binaries might contain invalid groups. */
730 if (num_group != (unsigned) elf_tdata (abfd)->num_group)
731 {
732 elf_tdata (abfd)->num_group = num_group;
733
734 /* If all groups are invalid then fail. */
735 if (num_group == 0)
736 {
737 elf_tdata (abfd)->group_sect_ptr = NULL;
738 elf_tdata (abfd)->num_group = num_group = -1;
739 _bfd_error_handler
740 (_("%pB: no valid group sections found"), abfd);
741 bfd_set_error (bfd_error_bad_value);
742 }
743 }
744 }
745 }
746
747 if (num_group != (unsigned) -1)
748 {
749 unsigned int search_offset = elf_tdata (abfd)->group_search_offset;
750 unsigned int j;
751
752 for (j = 0; j < num_group; j++)
753 {
754 /* Begin search from previous found group. */
755 unsigned i = (j + search_offset) % num_group;
756
757 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
758 Elf_Internal_Group *idx;
759 bfd_size_type n_elt;
760
761 if (shdr == NULL)
762 continue;
763
764 idx = (Elf_Internal_Group *) shdr->contents;
765 if (idx == NULL || shdr->sh_size < 4)
766 {
767 /* See PR 21957 for a reproducer. */
768 /* xgettext:c-format */
769 _bfd_error_handler (_("%pB: group section '%pA' has no contents"),
770 abfd, shdr->bfd_section);
771 elf_tdata (abfd)->group_sect_ptr[i] = NULL;
772 bfd_set_error (bfd_error_bad_value);
773 return FALSE;
774 }
775 n_elt = shdr->sh_size / 4;
776
777 /* Look through this group's sections to see if current
778 section is a member. */
779 while (--n_elt != 0)
780 if ((++idx)->shdr == hdr)
781 {
782 asection *s = NULL;
783
784 /* We are a member of this group. Go looking through
785 other members to see if any others are linked via
786 next_in_group. */
787 idx = (Elf_Internal_Group *) shdr->contents;
788 n_elt = shdr->sh_size / 4;
789 while (--n_elt != 0)
790 if ((++idx)->shdr != NULL
791 && (s = idx->shdr->bfd_section) != NULL
792 && elf_next_in_group (s) != NULL)
793 break;
794 if (n_elt != 0)
795 {
796 /* Snarf the group name from other member, and
797 insert current section in circular list. */
798 elf_group_name (newsect) = elf_group_name (s);
799 elf_next_in_group (newsect) = elf_next_in_group (s);
800 elf_next_in_group (s) = newsect;
801 }
802 else
803 {
804 const char *gname;
805
806 gname = group_signature (abfd, shdr);
807 if (gname == NULL)
808 return FALSE;
809 elf_group_name (newsect) = gname;
810
811 /* Start a circular list with one element. */
812 elf_next_in_group (newsect) = newsect;
813 }
814
815 /* If the group section has been created, point to the
816 new member. */
817 if (shdr->bfd_section != NULL)
818 elf_next_in_group (shdr->bfd_section) = newsect;
819
820 elf_tdata (abfd)->group_search_offset = i;
821 j = num_group - 1;
822 break;
823 }
824 }
825 }
826
827 if (elf_group_name (newsect) == NULL)
828 {
829 /* xgettext:c-format */
830 _bfd_error_handler (_("%pB: no group info for section '%pA'"),
831 abfd, newsect);
832 return FALSE;
833 }
834 return TRUE;
835 }
836
837 bfd_boolean
838 _bfd_elf_setup_sections (bfd *abfd)
839 {
840 unsigned int i;
841 unsigned int num_group = elf_tdata (abfd)->num_group;
842 bfd_boolean result = TRUE;
843 asection *s;
844
845 /* Process SHF_LINK_ORDER. */
846 for (s = abfd->sections; s != NULL; s = s->next)
847 {
848 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
849 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
850 {
851 unsigned int elfsec = this_hdr->sh_link;
852 /* An sh_link value of 0 is now allowed. It indicates that linked
853 to section has already been discarded, but that the current
854 section has been retained for some other reason. This linking
855 section is still a candidate for later garbage collection
856 however. */
857 if (elfsec == 0)
858 {
859 elf_linked_to_section (s) = NULL;
860 }
861 else
862 {
863 asection *linksec = NULL;
864
865 if (elfsec < elf_numsections (abfd))
866 {
867 this_hdr = elf_elfsections (abfd)[elfsec];
868 linksec = this_hdr->bfd_section;
869 }
870
871 /* PR 1991, 2008:
872 Some strip/objcopy may leave an incorrect value in
873 sh_link. We don't want to proceed. */
874 if (linksec == NULL)
875 {
876 _bfd_error_handler
877 /* xgettext:c-format */
878 (_("%pB: sh_link [%d] in section `%pA' is incorrect"),
879 s->owner, elfsec, s);
880 result = FALSE;
881 }
882
883 elf_linked_to_section (s) = linksec;
884 }
885 }
886 else if (this_hdr->sh_type == SHT_GROUP
887 && elf_next_in_group (s) == NULL)
888 {
889 _bfd_error_handler
890 /* xgettext:c-format */
891 (_("%pB: SHT_GROUP section [index %d] has no SHF_GROUP sections"),
892 abfd, elf_section_data (s)->this_idx);
893 result = FALSE;
894 }
895 }
896
897 /* Process section groups. */
898 if (num_group == (unsigned) -1)
899 return result;
900
901 for (i = 0; i < num_group; i++)
902 {
903 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
904 Elf_Internal_Group *idx;
905 unsigned int n_elt;
906
907 /* PR binutils/18758: Beware of corrupt binaries with invalid group data. */
908 if (shdr == NULL || shdr->bfd_section == NULL || shdr->contents == NULL)
909 {
910 _bfd_error_handler
911 /* xgettext:c-format */
912 (_("%pB: section group entry number %u is corrupt"),
913 abfd, i);
914 result = FALSE;
915 continue;
916 }
917
918 idx = (Elf_Internal_Group *) shdr->contents;
919 n_elt = shdr->sh_size / 4;
920
921 while (--n_elt != 0)
922 {
923 ++ idx;
924
925 if (idx->shdr == NULL)
926 continue;
927 else if (idx->shdr->bfd_section)
928 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
929 else if (idx->shdr->sh_type != SHT_RELA
930 && idx->shdr->sh_type != SHT_REL)
931 {
932 /* There are some unknown sections in the group. */
933 _bfd_error_handler
934 /* xgettext:c-format */
935 (_("%pB: unknown type [%#x] section `%s' in group [%pA]"),
936 abfd,
937 idx->shdr->sh_type,
938 bfd_elf_string_from_elf_section (abfd,
939 (elf_elfheader (abfd)
940 ->e_shstrndx),
941 idx->shdr->sh_name),
942 shdr->bfd_section);
943 result = FALSE;
944 }
945 }
946 }
947
948 return result;
949 }
950
951 bfd_boolean
952 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
953 {
954 return elf_next_in_group (sec) != NULL;
955 }
956
957 const char *
958 bfd_elf_group_name (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
959 {
960 if (elf_sec_group (sec) != NULL)
961 return elf_group_name (sec);
962 return NULL;
963 }
964
965 static char *
966 convert_debug_to_zdebug (bfd *abfd, const char *name)
967 {
968 unsigned int len = strlen (name);
969 char *new_name = bfd_alloc (abfd, len + 2);
970 if (new_name == NULL)
971 return NULL;
972 new_name[0] = '.';
973 new_name[1] = 'z';
974 memcpy (new_name + 2, name + 1, len);
975 return new_name;
976 }
977
978 static char *
979 convert_zdebug_to_debug (bfd *abfd, const char *name)
980 {
981 unsigned int len = strlen (name);
982 char *new_name = bfd_alloc (abfd, len);
983 if (new_name == NULL)
984 return NULL;
985 new_name[0] = '.';
986 memcpy (new_name + 1, name + 2, len - 1);
987 return new_name;
988 }
989
990 /* This a copy of lto_section defined in GCC (lto-streamer.h). */
991
992 struct lto_section
993 {
994 int16_t major_version;
995 int16_t minor_version;
996 unsigned char slim_object;
997
998 /* Flags is a private field that is not defined publicly. */
999 uint16_t flags;
1000 };
1001
1002 /* Make a BFD section from an ELF section. We store a pointer to the
1003 BFD section in the bfd_section field of the header. */
1004
1005 bfd_boolean
1006 _bfd_elf_make_section_from_shdr (bfd *abfd,
1007 Elf_Internal_Shdr *hdr,
1008 const char *name,
1009 int shindex)
1010 {
1011 asection *newsect;
1012 flagword flags;
1013 const struct elf_backend_data *bed;
1014 unsigned int opb = bfd_octets_per_byte (abfd, NULL);
1015
1016 if (hdr->bfd_section != NULL)
1017 return TRUE;
1018
1019 newsect = bfd_make_section_anyway (abfd, name);
1020 if (newsect == NULL)
1021 return FALSE;
1022
1023 hdr->bfd_section = newsect;
1024 elf_section_data (newsect)->this_hdr = *hdr;
1025 elf_section_data (newsect)->this_idx = shindex;
1026
1027 /* Always use the real type/flags. */
1028 elf_section_type (newsect) = hdr->sh_type;
1029 elf_section_flags (newsect) = hdr->sh_flags;
1030
1031 newsect->filepos = hdr->sh_offset;
1032
1033 flags = SEC_NO_FLAGS;
1034 if (hdr->sh_type != SHT_NOBITS)
1035 flags |= SEC_HAS_CONTENTS;
1036 if (hdr->sh_type == SHT_GROUP)
1037 flags |= SEC_GROUP;
1038 if ((hdr->sh_flags & SHF_ALLOC) != 0)
1039 {
1040 flags |= SEC_ALLOC;
1041 if (hdr->sh_type != SHT_NOBITS)
1042 flags |= SEC_LOAD;
1043 }
1044 if ((hdr->sh_flags & SHF_WRITE) == 0)
1045 flags |= SEC_READONLY;
1046 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
1047 flags |= SEC_CODE;
1048 else if ((flags & SEC_LOAD) != 0)
1049 flags |= SEC_DATA;
1050 if ((hdr->sh_flags & SHF_MERGE) != 0)
1051 {
1052 flags |= SEC_MERGE;
1053 newsect->entsize = hdr->sh_entsize;
1054 }
1055 if ((hdr->sh_flags & SHF_STRINGS) != 0)
1056 flags |= SEC_STRINGS;
1057 if (hdr->sh_flags & SHF_GROUP)
1058 if (!setup_group (abfd, hdr, newsect))
1059 return FALSE;
1060 if ((hdr->sh_flags & SHF_TLS) != 0)
1061 flags |= SEC_THREAD_LOCAL;
1062 if ((hdr->sh_flags & SHF_EXCLUDE) != 0)
1063 flags |= SEC_EXCLUDE;
1064
1065 switch (elf_elfheader (abfd)->e_ident[EI_OSABI])
1066 {
1067 /* FIXME: We should not recognize SHF_GNU_MBIND for ELFOSABI_NONE,
1068 but binutils as of 2019-07-23 did not set the EI_OSABI header
1069 byte. */
1070 case ELFOSABI_GNU:
1071 case ELFOSABI_FREEBSD:
1072 if ((hdr->sh_flags & SHF_GNU_RETAIN) != 0)
1073 elf_tdata (abfd)->has_gnu_osabi |= elf_gnu_osabi_retain;
1074 /* Fall through */
1075 case ELFOSABI_NONE:
1076 if ((hdr->sh_flags & SHF_GNU_MBIND) != 0)
1077 elf_tdata (abfd)->has_gnu_osabi |= elf_gnu_osabi_mbind;
1078 break;
1079 }
1080
1081 if ((flags & SEC_ALLOC) == 0)
1082 {
1083 /* The debugging sections appear to be recognized only by name,
1084 not any sort of flag. Their SEC_ALLOC bits are cleared. */
1085 if (name [0] == '.')
1086 {
1087 if (strncmp (name, ".debug", 6) == 0
1088 || strncmp (name, ".gnu.debuglto_.debug_", 21) == 0
1089 || strncmp (name, ".gnu.linkonce.wi.", 17) == 0
1090 || strncmp (name, ".zdebug", 7) == 0)
1091 flags |= SEC_DEBUGGING | SEC_ELF_OCTETS;
1092 else if (strncmp (name, GNU_BUILD_ATTRS_SECTION_NAME, 21) == 0
1093 || strncmp (name, ".note.gnu", 9) == 0)
1094 {
1095 flags |= SEC_ELF_OCTETS;
1096 opb = 1;
1097 }
1098 else if (strncmp (name, ".line", 5) == 0
1099 || strncmp (name, ".stab", 5) == 0
1100 || strcmp (name, ".gdb_index") == 0)
1101 flags |= SEC_DEBUGGING;
1102 }
1103 }
1104
1105 if (!bfd_set_section_vma (newsect, hdr->sh_addr / opb)
1106 || !bfd_set_section_size (newsect, hdr->sh_size)
1107 || !bfd_set_section_alignment (newsect, bfd_log2 (hdr->sh_addralign)))
1108 return FALSE;
1109
1110 /* As a GNU extension, if the name begins with .gnu.linkonce, we
1111 only link a single copy of the section. This is used to support
1112 g++. g++ will emit each template expansion in its own section.
1113 The symbols will be defined as weak, so that multiple definitions
1114 are permitted. The GNU linker extension is to actually discard
1115 all but one of the sections. */
1116 if (startswith (name, ".gnu.linkonce")
1117 && elf_next_in_group (newsect) == NULL)
1118 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1119
1120 if (!bfd_set_section_flags (newsect, flags))
1121 return FALSE;
1122
1123 bed = get_elf_backend_data (abfd);
1124 if (bed->elf_backend_section_flags)
1125 if (!bed->elf_backend_section_flags (hdr))
1126 return FALSE;
1127
1128 /* We do not parse the PT_NOTE segments as we are interested even in the
1129 separate debug info files which may have the segments offsets corrupted.
1130 PT_NOTEs from the core files are currently not parsed using BFD. */
1131 if (hdr->sh_type == SHT_NOTE)
1132 {
1133 bfd_byte *contents;
1134
1135 if (!bfd_malloc_and_get_section (abfd, newsect, &contents))
1136 return FALSE;
1137
1138 elf_parse_notes (abfd, (char *) contents, hdr->sh_size,
1139 hdr->sh_offset, hdr->sh_addralign);
1140 free (contents);
1141 }
1142
1143 if ((newsect->flags & SEC_ALLOC) != 0)
1144 {
1145 Elf_Internal_Phdr *phdr;
1146 unsigned int i, nload;
1147
1148 /* Some ELF linkers produce binaries with all the program header
1149 p_paddr fields zero. If we have such a binary with more than
1150 one PT_LOAD header, then leave the section lma equal to vma
1151 so that we don't create sections with overlapping lma. */
1152 phdr = elf_tdata (abfd)->phdr;
1153 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1154 if (phdr->p_paddr != 0)
1155 break;
1156 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
1157 ++nload;
1158 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
1159 return TRUE;
1160
1161 phdr = elf_tdata (abfd)->phdr;
1162 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1163 {
1164 if (((phdr->p_type == PT_LOAD
1165 && (hdr->sh_flags & SHF_TLS) == 0)
1166 || phdr->p_type == PT_TLS)
1167 && ELF_SECTION_IN_SEGMENT (hdr, phdr))
1168 {
1169 if ((newsect->flags & SEC_LOAD) == 0)
1170 newsect->lma = (phdr->p_paddr
1171 + hdr->sh_addr - phdr->p_vaddr) / opb;
1172 else
1173 /* We used to use the same adjustment for SEC_LOAD
1174 sections, but that doesn't work if the segment
1175 is packed with code from multiple VMAs.
1176 Instead we calculate the section LMA based on
1177 the segment LMA. It is assumed that the
1178 segment will contain sections with contiguous
1179 LMAs, even if the VMAs are not. */
1180 newsect->lma = (phdr->p_paddr
1181 + hdr->sh_offset - phdr->p_offset) / opb;
1182
1183 /* With contiguous segments, we can't tell from file
1184 offsets whether a section with zero size should
1185 be placed at the end of one segment or the
1186 beginning of the next. Decide based on vaddr. */
1187 if (hdr->sh_addr >= phdr->p_vaddr
1188 && (hdr->sh_addr + hdr->sh_size
1189 <= phdr->p_vaddr + phdr->p_memsz))
1190 break;
1191 }
1192 }
1193 }
1194
1195 /* Compress/decompress DWARF debug sections with names: .debug_* and
1196 .zdebug_*, after the section flags is set. */
1197 if ((newsect->flags & SEC_DEBUGGING)
1198 && ((name[1] == 'd' && name[6] == '_')
1199 || (name[1] == 'z' && name[7] == '_')))
1200 {
1201 enum { nothing, compress, decompress } action = nothing;
1202 int compression_header_size;
1203 bfd_size_type uncompressed_size;
1204 unsigned int uncompressed_align_power;
1205 bfd_boolean compressed
1206 = bfd_is_section_compressed_with_header (abfd, newsect,
1207 &compression_header_size,
1208 &uncompressed_size,
1209 &uncompressed_align_power);
1210 if (compressed)
1211 {
1212 /* Compressed section. Check if we should decompress. */
1213 if ((abfd->flags & BFD_DECOMPRESS))
1214 action = decompress;
1215 }
1216
1217 /* Compress the uncompressed section or convert from/to .zdebug*
1218 section. Check if we should compress. */
1219 if (action == nothing)
1220 {
1221 if (newsect->size != 0
1222 && (abfd->flags & BFD_COMPRESS)
1223 && compression_header_size >= 0
1224 && uncompressed_size > 0
1225 && (!compressed
1226 || ((compression_header_size > 0)
1227 != ((abfd->flags & BFD_COMPRESS_GABI) != 0))))
1228 action = compress;
1229 else
1230 return TRUE;
1231 }
1232
1233 if (action == compress)
1234 {
1235 if (!bfd_init_section_compress_status (abfd, newsect))
1236 {
1237 _bfd_error_handler
1238 /* xgettext:c-format */
1239 (_("%pB: unable to initialize compress status for section %s"),
1240 abfd, name);
1241 return FALSE;
1242 }
1243 }
1244 else
1245 {
1246 if (!bfd_init_section_decompress_status (abfd, newsect))
1247 {
1248 _bfd_error_handler
1249 /* xgettext:c-format */
1250 (_("%pB: unable to initialize decompress status for section %s"),
1251 abfd, name);
1252 return FALSE;
1253 }
1254 }
1255
1256 if (abfd->is_linker_input)
1257 {
1258 if (name[1] == 'z'
1259 && (action == decompress
1260 || (action == compress
1261 && (abfd->flags & BFD_COMPRESS_GABI) != 0)))
1262 {
1263 /* Convert section name from .zdebug_* to .debug_* so
1264 that linker will consider this section as a debug
1265 section. */
1266 char *new_name = convert_zdebug_to_debug (abfd, name);
1267 if (new_name == NULL)
1268 return FALSE;
1269 bfd_rename_section (newsect, new_name);
1270 }
1271 }
1272 else
1273 /* For objdump, don't rename the section. For objcopy, delay
1274 section rename to elf_fake_sections. */
1275 newsect->flags |= SEC_ELF_RENAME;
1276 }
1277
1278 /* GCC uses .gnu.lto_.lto.<some_hash> as a LTO bytecode information
1279 section. */
1280 const char *lto_section_name = ".gnu.lto_.lto.";
1281 if (strncmp (name, lto_section_name, strlen (lto_section_name)) == 0)
1282 {
1283 struct lto_section lsection;
1284 if (bfd_get_section_contents (abfd, newsect, &lsection, 0,
1285 sizeof (struct lto_section)))
1286 abfd->lto_slim_object = lsection.slim_object;
1287 }
1288
1289 return TRUE;
1290 }
1291
1292 const char *const bfd_elf_section_type_names[] =
1293 {
1294 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1295 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1296 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1297 };
1298
1299 /* ELF relocs are against symbols. If we are producing relocatable
1300 output, and the reloc is against an external symbol, and nothing
1301 has given us any additional addend, the resulting reloc will also
1302 be against the same symbol. In such a case, we don't want to
1303 change anything about the way the reloc is handled, since it will
1304 all be done at final link time. Rather than put special case code
1305 into bfd_perform_relocation, all the reloc types use this howto
1306 function, or should call this function for relocatable output. */
1307
1308 bfd_reloc_status_type
1309 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1310 arelent *reloc_entry,
1311 asymbol *symbol,
1312 void *data ATTRIBUTE_UNUSED,
1313 asection *input_section,
1314 bfd *output_bfd,
1315 char **error_message ATTRIBUTE_UNUSED)
1316 {
1317 if (output_bfd != NULL
1318 && (symbol->flags & BSF_SECTION_SYM) == 0
1319 && (! reloc_entry->howto->partial_inplace
1320 || reloc_entry->addend == 0))
1321 {
1322 reloc_entry->address += input_section->output_offset;
1323 return bfd_reloc_ok;
1324 }
1325
1326 /* In some cases the relocation should be treated as output section
1327 relative, as when linking ELF DWARF into PE COFF. Many ELF
1328 targets lack section relative relocations and instead use
1329 ordinary absolute relocations for references between DWARF
1330 sections. That is arguably a bug in those targets but it happens
1331 to work for the usual case of linking to non-loaded ELF debug
1332 sections with VMAs forced to zero. PE COFF on the other hand
1333 doesn't allow a section VMA of zero. */
1334 if (output_bfd == NULL
1335 && !reloc_entry->howto->pc_relative
1336 && (symbol->section->flags & SEC_DEBUGGING) != 0
1337 && (input_section->flags & SEC_DEBUGGING) != 0)
1338 reloc_entry->addend -= symbol->section->output_section->vma;
1339
1340 return bfd_reloc_continue;
1341 }
1342 \f
1343 /* Returns TRUE if section A matches section B.
1344 Names, addresses and links may be different, but everything else
1345 should be the same. */
1346
1347 static bfd_boolean
1348 section_match (const Elf_Internal_Shdr * a,
1349 const Elf_Internal_Shdr * b)
1350 {
1351 if (a->sh_type != b->sh_type
1352 || ((a->sh_flags ^ b->sh_flags) & ~SHF_INFO_LINK) != 0
1353 || a->sh_addralign != b->sh_addralign
1354 || a->sh_entsize != b->sh_entsize)
1355 return FALSE;
1356 if (a->sh_type == SHT_SYMTAB
1357 || a->sh_type == SHT_STRTAB)
1358 return TRUE;
1359 return a->sh_size == b->sh_size;
1360 }
1361
1362 /* Find a section in OBFD that has the same characteristics
1363 as IHEADER. Return the index of this section or SHN_UNDEF if
1364 none can be found. Check's section HINT first, as this is likely
1365 to be the correct section. */
1366
1367 static unsigned int
1368 find_link (const bfd *obfd, const Elf_Internal_Shdr *iheader,
1369 const unsigned int hint)
1370 {
1371 Elf_Internal_Shdr ** oheaders = elf_elfsections (obfd);
1372 unsigned int i;
1373
1374 BFD_ASSERT (iheader != NULL);
1375
1376 /* See PR 20922 for a reproducer of the NULL test. */
1377 if (hint < elf_numsections (obfd)
1378 && oheaders[hint] != NULL
1379 && section_match (oheaders[hint], iheader))
1380 return hint;
1381
1382 for (i = 1; i < elf_numsections (obfd); i++)
1383 {
1384 Elf_Internal_Shdr * oheader = oheaders[i];
1385
1386 if (oheader == NULL)
1387 continue;
1388 if (section_match (oheader, iheader))
1389 /* FIXME: Do we care if there is a potential for
1390 multiple matches ? */
1391 return i;
1392 }
1393
1394 return SHN_UNDEF;
1395 }
1396
1397 /* PR 19938: Attempt to set the ELF section header fields of an OS or
1398 Processor specific section, based upon a matching input section.
1399 Returns TRUE upon success, FALSE otherwise. */
1400
1401 static bfd_boolean
1402 copy_special_section_fields (const bfd *ibfd,
1403 bfd *obfd,
1404 const Elf_Internal_Shdr *iheader,
1405 Elf_Internal_Shdr *oheader,
1406 const unsigned int secnum)
1407 {
1408 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
1409 const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd);
1410 bfd_boolean changed = FALSE;
1411 unsigned int sh_link;
1412
1413 if (oheader->sh_type == SHT_NOBITS)
1414 {
1415 /* This is a feature for objcopy --only-keep-debug:
1416 When a section's type is changed to NOBITS, we preserve
1417 the sh_link and sh_info fields so that they can be
1418 matched up with the original.
1419
1420 Note: Strictly speaking these assignments are wrong.
1421 The sh_link and sh_info fields should point to the
1422 relevent sections in the output BFD, which may not be in
1423 the same location as they were in the input BFD. But
1424 the whole point of this action is to preserve the
1425 original values of the sh_link and sh_info fields, so
1426 that they can be matched up with the section headers in
1427 the original file. So strictly speaking we may be
1428 creating an invalid ELF file, but it is only for a file
1429 that just contains debug info and only for sections
1430 without any contents. */
1431 if (oheader->sh_link == 0)
1432 oheader->sh_link = iheader->sh_link;
1433 if (oheader->sh_info == 0)
1434 oheader->sh_info = iheader->sh_info;
1435 return TRUE;
1436 }
1437
1438 /* Allow the target a chance to decide how these fields should be set. */
1439 if (bed->elf_backend_copy_special_section_fields (ibfd, obfd,
1440 iheader, oheader))
1441 return TRUE;
1442
1443 /* We have an iheader which might match oheader, and which has non-zero
1444 sh_info and/or sh_link fields. Attempt to follow those links and find
1445 the section in the output bfd which corresponds to the linked section
1446 in the input bfd. */
1447 if (iheader->sh_link != SHN_UNDEF)
1448 {
1449 /* See PR 20931 for a reproducer. */
1450 if (iheader->sh_link >= elf_numsections (ibfd))
1451 {
1452 _bfd_error_handler
1453 /* xgettext:c-format */
1454 (_("%pB: invalid sh_link field (%d) in section number %d"),
1455 ibfd, iheader->sh_link, secnum);
1456 return FALSE;
1457 }
1458
1459 sh_link = find_link (obfd, iheaders[iheader->sh_link], iheader->sh_link);
1460 if (sh_link != SHN_UNDEF)
1461 {
1462 oheader->sh_link = sh_link;
1463 changed = TRUE;
1464 }
1465 else
1466 /* FIXME: Should we install iheader->sh_link
1467 if we could not find a match ? */
1468 _bfd_error_handler
1469 /* xgettext:c-format */
1470 (_("%pB: failed to find link section for section %d"), obfd, secnum);
1471 }
1472
1473 if (iheader->sh_info)
1474 {
1475 /* The sh_info field can hold arbitrary information, but if the
1476 SHF_LINK_INFO flag is set then it should be interpreted as a
1477 section index. */
1478 if (iheader->sh_flags & SHF_INFO_LINK)
1479 {
1480 sh_link = find_link (obfd, iheaders[iheader->sh_info],
1481 iheader->sh_info);
1482 if (sh_link != SHN_UNDEF)
1483 oheader->sh_flags |= SHF_INFO_LINK;
1484 }
1485 else
1486 /* No idea what it means - just copy it. */
1487 sh_link = iheader->sh_info;
1488
1489 if (sh_link != SHN_UNDEF)
1490 {
1491 oheader->sh_info = sh_link;
1492 changed = TRUE;
1493 }
1494 else
1495 _bfd_error_handler
1496 /* xgettext:c-format */
1497 (_("%pB: failed to find info section for section %d"), obfd, secnum);
1498 }
1499
1500 return changed;
1501 }
1502
1503 /* Copy the program header and other data from one object module to
1504 another. */
1505
1506 bfd_boolean
1507 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1508 {
1509 const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd);
1510 Elf_Internal_Shdr **oheaders = elf_elfsections (obfd);
1511 const struct elf_backend_data *bed;
1512 unsigned int i;
1513
1514 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1515 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1516 return TRUE;
1517
1518 if (!elf_flags_init (obfd))
1519 {
1520 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1521 elf_flags_init (obfd) = TRUE;
1522 }
1523
1524 elf_gp (obfd) = elf_gp (ibfd);
1525
1526 /* Also copy the EI_OSABI field. */
1527 elf_elfheader (obfd)->e_ident[EI_OSABI] =
1528 elf_elfheader (ibfd)->e_ident[EI_OSABI];
1529
1530 /* If set, copy the EI_ABIVERSION field. */
1531 if (elf_elfheader (ibfd)->e_ident[EI_ABIVERSION])
1532 elf_elfheader (obfd)->e_ident[EI_ABIVERSION]
1533 = elf_elfheader (ibfd)->e_ident[EI_ABIVERSION];
1534
1535 /* Copy object attributes. */
1536 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1537
1538 if (iheaders == NULL || oheaders == NULL)
1539 return TRUE;
1540
1541 bed = get_elf_backend_data (obfd);
1542
1543 /* Possibly copy other fields in the section header. */
1544 for (i = 1; i < elf_numsections (obfd); i++)
1545 {
1546 unsigned int j;
1547 Elf_Internal_Shdr * oheader = oheaders[i];
1548
1549 /* Ignore ordinary sections. SHT_NOBITS sections are considered however
1550 because of a special case need for generating separate debug info
1551 files. See below for more details. */
1552 if (oheader == NULL
1553 || (oheader->sh_type != SHT_NOBITS
1554 && oheader->sh_type < SHT_LOOS))
1555 continue;
1556
1557 /* Ignore empty sections, and sections whose
1558 fields have already been initialised. */
1559 if (oheader->sh_size == 0
1560 || (oheader->sh_info != 0 && oheader->sh_link != 0))
1561 continue;
1562
1563 /* Scan for the matching section in the input bfd.
1564 First we try for a direct mapping between the input and output sections. */
1565 for (j = 1; j < elf_numsections (ibfd); j++)
1566 {
1567 const Elf_Internal_Shdr * iheader = iheaders[j];
1568
1569 if (iheader == NULL)
1570 continue;
1571
1572 if (oheader->bfd_section != NULL
1573 && iheader->bfd_section != NULL
1574 && iheader->bfd_section->output_section != NULL
1575 && iheader->bfd_section->output_section == oheader->bfd_section)
1576 {
1577 /* We have found a connection from the input section to the
1578 output section. Attempt to copy the header fields. If
1579 this fails then do not try any further sections - there
1580 should only be a one-to-one mapping between input and output. */
1581 if (! copy_special_section_fields (ibfd, obfd, iheader, oheader, i))
1582 j = elf_numsections (ibfd);
1583 break;
1584 }
1585 }
1586
1587 if (j < elf_numsections (ibfd))
1588 continue;
1589
1590 /* That failed. So try to deduce the corresponding input section.
1591 Unfortunately we cannot compare names as the output string table
1592 is empty, so instead we check size, address and type. */
1593 for (j = 1; j < elf_numsections (ibfd); j++)
1594 {
1595 const Elf_Internal_Shdr * iheader = iheaders[j];
1596
1597 if (iheader == NULL)
1598 continue;
1599
1600 /* Try matching fields in the input section's header.
1601 Since --only-keep-debug turns all non-debug sections into
1602 SHT_NOBITS sections, the output SHT_NOBITS type matches any
1603 input type. */
1604 if ((oheader->sh_type == SHT_NOBITS
1605 || iheader->sh_type == oheader->sh_type)
1606 && (iheader->sh_flags & ~ SHF_INFO_LINK)
1607 == (oheader->sh_flags & ~ SHF_INFO_LINK)
1608 && iheader->sh_addralign == oheader->sh_addralign
1609 && iheader->sh_entsize == oheader->sh_entsize
1610 && iheader->sh_size == oheader->sh_size
1611 && iheader->sh_addr == oheader->sh_addr
1612 && (iheader->sh_info != oheader->sh_info
1613 || iheader->sh_link != oheader->sh_link))
1614 {
1615 if (copy_special_section_fields (ibfd, obfd, iheader, oheader, i))
1616 break;
1617 }
1618 }
1619
1620 if (j == elf_numsections (ibfd) && oheader->sh_type >= SHT_LOOS)
1621 {
1622 /* Final attempt. Call the backend copy function
1623 with a NULL input section. */
1624 (void) bed->elf_backend_copy_special_section_fields (ibfd, obfd,
1625 NULL, oheader);
1626 }
1627 }
1628
1629 return TRUE;
1630 }
1631
1632 static const char *
1633 get_segment_type (unsigned int p_type)
1634 {
1635 const char *pt;
1636 switch (p_type)
1637 {
1638 case PT_NULL: pt = "NULL"; break;
1639 case PT_LOAD: pt = "LOAD"; break;
1640 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1641 case PT_INTERP: pt = "INTERP"; break;
1642 case PT_NOTE: pt = "NOTE"; break;
1643 case PT_SHLIB: pt = "SHLIB"; break;
1644 case PT_PHDR: pt = "PHDR"; break;
1645 case PT_TLS: pt = "TLS"; break;
1646 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1647 case PT_GNU_STACK: pt = "STACK"; break;
1648 case PT_GNU_RELRO: pt = "RELRO"; break;
1649 default: pt = NULL; break;
1650 }
1651 return pt;
1652 }
1653
1654 /* Print out the program headers. */
1655
1656 bfd_boolean
1657 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1658 {
1659 FILE *f = (FILE *) farg;
1660 Elf_Internal_Phdr *p;
1661 asection *s;
1662 bfd_byte *dynbuf = NULL;
1663
1664 p = elf_tdata (abfd)->phdr;
1665 if (p != NULL)
1666 {
1667 unsigned int i, c;
1668
1669 fprintf (f, _("\nProgram Header:\n"));
1670 c = elf_elfheader (abfd)->e_phnum;
1671 for (i = 0; i < c; i++, p++)
1672 {
1673 const char *pt = get_segment_type (p->p_type);
1674 char buf[20];
1675
1676 if (pt == NULL)
1677 {
1678 sprintf (buf, "0x%lx", p->p_type);
1679 pt = buf;
1680 }
1681 fprintf (f, "%8s off 0x", pt);
1682 bfd_fprintf_vma (abfd, f, p->p_offset);
1683 fprintf (f, " vaddr 0x");
1684 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1685 fprintf (f, " paddr 0x");
1686 bfd_fprintf_vma (abfd, f, p->p_paddr);
1687 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1688 fprintf (f, " filesz 0x");
1689 bfd_fprintf_vma (abfd, f, p->p_filesz);
1690 fprintf (f, " memsz 0x");
1691 bfd_fprintf_vma (abfd, f, p->p_memsz);
1692 fprintf (f, " flags %c%c%c",
1693 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1694 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1695 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1696 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1697 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1698 fprintf (f, "\n");
1699 }
1700 }
1701
1702 s = bfd_get_section_by_name (abfd, ".dynamic");
1703 if (s != NULL)
1704 {
1705 unsigned int elfsec;
1706 unsigned long shlink;
1707 bfd_byte *extdyn, *extdynend;
1708 size_t extdynsize;
1709 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1710
1711 fprintf (f, _("\nDynamic Section:\n"));
1712
1713 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1714 goto error_return;
1715
1716 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1717 if (elfsec == SHN_BAD)
1718 goto error_return;
1719 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1720
1721 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1722 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1723
1724 extdyn = dynbuf;
1725 /* PR 17512: file: 6f427532. */
1726 if (s->size < extdynsize)
1727 goto error_return;
1728 extdynend = extdyn + s->size;
1729 /* PR 17512: file: id:000006,sig:06,src:000000,op:flip4,pos:5664.
1730 Fix range check. */
1731 for (; extdyn <= (extdynend - extdynsize); extdyn += extdynsize)
1732 {
1733 Elf_Internal_Dyn dyn;
1734 const char *name = "";
1735 char ab[20];
1736 bfd_boolean stringp;
1737 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1738
1739 (*swap_dyn_in) (abfd, extdyn, &dyn);
1740
1741 if (dyn.d_tag == DT_NULL)
1742 break;
1743
1744 stringp = FALSE;
1745 switch (dyn.d_tag)
1746 {
1747 default:
1748 if (bed->elf_backend_get_target_dtag)
1749 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
1750
1751 if (!strcmp (name, ""))
1752 {
1753 sprintf (ab, "%#" BFD_VMA_FMT "x", dyn.d_tag);
1754 name = ab;
1755 }
1756 break;
1757
1758 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1759 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1760 case DT_PLTGOT: name = "PLTGOT"; break;
1761 case DT_HASH: name = "HASH"; break;
1762 case DT_STRTAB: name = "STRTAB"; break;
1763 case DT_SYMTAB: name = "SYMTAB"; break;
1764 case DT_RELA: name = "RELA"; break;
1765 case DT_RELASZ: name = "RELASZ"; break;
1766 case DT_RELAENT: name = "RELAENT"; break;
1767 case DT_STRSZ: name = "STRSZ"; break;
1768 case DT_SYMENT: name = "SYMENT"; break;
1769 case DT_INIT: name = "INIT"; break;
1770 case DT_FINI: name = "FINI"; break;
1771 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1772 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1773 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1774 case DT_REL: name = "REL"; break;
1775 case DT_RELSZ: name = "RELSZ"; break;
1776 case DT_RELENT: name = "RELENT"; break;
1777 case DT_PLTREL: name = "PLTREL"; break;
1778 case DT_DEBUG: name = "DEBUG"; break;
1779 case DT_TEXTREL: name = "TEXTREL"; break;
1780 case DT_JMPREL: name = "JMPREL"; break;
1781 case DT_BIND_NOW: name = "BIND_NOW"; break;
1782 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1783 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1784 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1785 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1786 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1787 case DT_FLAGS: name = "FLAGS"; break;
1788 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1789 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1790 case DT_CHECKSUM: name = "CHECKSUM"; break;
1791 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1792 case DT_MOVEENT: name = "MOVEENT"; break;
1793 case DT_MOVESZ: name = "MOVESZ"; break;
1794 case DT_FEATURE: name = "FEATURE"; break;
1795 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1796 case DT_SYMINSZ: name = "SYMINSZ"; break;
1797 case DT_SYMINENT: name = "SYMINENT"; break;
1798 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1799 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1800 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1801 case DT_PLTPAD: name = "PLTPAD"; break;
1802 case DT_MOVETAB: name = "MOVETAB"; break;
1803 case DT_SYMINFO: name = "SYMINFO"; break;
1804 case DT_RELACOUNT: name = "RELACOUNT"; break;
1805 case DT_RELCOUNT: name = "RELCOUNT"; break;
1806 case DT_FLAGS_1: name = "FLAGS_1"; break;
1807 case DT_VERSYM: name = "VERSYM"; break;
1808 case DT_VERDEF: name = "VERDEF"; break;
1809 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1810 case DT_VERNEED: name = "VERNEED"; break;
1811 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1812 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1813 case DT_USED: name = "USED"; break;
1814 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1815 case DT_GNU_HASH: name = "GNU_HASH"; break;
1816 }
1817
1818 fprintf (f, " %-20s ", name);
1819 if (! stringp)
1820 {
1821 fprintf (f, "0x");
1822 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
1823 }
1824 else
1825 {
1826 const char *string;
1827 unsigned int tagv = dyn.d_un.d_val;
1828
1829 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1830 if (string == NULL)
1831 goto error_return;
1832 fprintf (f, "%s", string);
1833 }
1834 fprintf (f, "\n");
1835 }
1836
1837 free (dynbuf);
1838 dynbuf = NULL;
1839 }
1840
1841 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1842 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1843 {
1844 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1845 return FALSE;
1846 }
1847
1848 if (elf_dynverdef (abfd) != 0)
1849 {
1850 Elf_Internal_Verdef *t;
1851
1852 fprintf (f, _("\nVersion definitions:\n"));
1853 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1854 {
1855 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1856 t->vd_flags, t->vd_hash,
1857 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1858 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1859 {
1860 Elf_Internal_Verdaux *a;
1861
1862 fprintf (f, "\t");
1863 for (a = t->vd_auxptr->vda_nextptr;
1864 a != NULL;
1865 a = a->vda_nextptr)
1866 fprintf (f, "%s ",
1867 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1868 fprintf (f, "\n");
1869 }
1870 }
1871 }
1872
1873 if (elf_dynverref (abfd) != 0)
1874 {
1875 Elf_Internal_Verneed *t;
1876
1877 fprintf (f, _("\nVersion References:\n"));
1878 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1879 {
1880 Elf_Internal_Vernaux *a;
1881
1882 fprintf (f, _(" required from %s:\n"),
1883 t->vn_filename ? t->vn_filename : "<corrupt>");
1884 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1885 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1886 a->vna_flags, a->vna_other,
1887 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1888 }
1889 }
1890
1891 return TRUE;
1892
1893 error_return:
1894 free (dynbuf);
1895 return FALSE;
1896 }
1897
1898 /* Get version name. If BASE_P is TRUE, return "Base" for VER_FLG_BASE
1899 and return symbol version for symbol version itself. */
1900
1901 const char *
1902 _bfd_elf_get_symbol_version_string (bfd *abfd, asymbol *symbol,
1903 bfd_boolean base_p,
1904 bfd_boolean *hidden)
1905 {
1906 const char *version_string = NULL;
1907 if (elf_dynversym (abfd) != 0
1908 && (elf_dynverdef (abfd) != 0 || elf_dynverref (abfd) != 0))
1909 {
1910 unsigned int vernum = ((elf_symbol_type *) symbol)->version;
1911
1912 *hidden = (vernum & VERSYM_HIDDEN) != 0;
1913 vernum &= VERSYM_VERSION;
1914
1915 if (vernum == 0)
1916 version_string = "";
1917 else if (vernum == 1
1918 && (vernum > elf_tdata (abfd)->cverdefs
1919 || (elf_tdata (abfd)->verdef[0].vd_flags
1920 == VER_FLG_BASE)))
1921 version_string = base_p ? "Base" : "";
1922 else if (vernum <= elf_tdata (abfd)->cverdefs)
1923 {
1924 const char *nodename
1925 = elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1926 version_string = "";
1927 if (base_p
1928 || nodename == NULL
1929 || symbol->name == NULL
1930 || strcmp (symbol->name, nodename) != 0)
1931 version_string = nodename;
1932 }
1933 else
1934 {
1935 Elf_Internal_Verneed *t;
1936
1937 version_string = _("<corrupt>");
1938 for (t = elf_tdata (abfd)->verref;
1939 t != NULL;
1940 t = t->vn_nextref)
1941 {
1942 Elf_Internal_Vernaux *a;
1943
1944 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1945 {
1946 if (a->vna_other == vernum)
1947 {
1948 version_string = a->vna_nodename;
1949 break;
1950 }
1951 }
1952 }
1953 }
1954 }
1955 return version_string;
1956 }
1957
1958 /* Display ELF-specific fields of a symbol. */
1959
1960 void
1961 bfd_elf_print_symbol (bfd *abfd,
1962 void *filep,
1963 asymbol *symbol,
1964 bfd_print_symbol_type how)
1965 {
1966 FILE *file = (FILE *) filep;
1967 switch (how)
1968 {
1969 case bfd_print_symbol_name:
1970 fprintf (file, "%s", symbol->name);
1971 break;
1972 case bfd_print_symbol_more:
1973 fprintf (file, "elf ");
1974 bfd_fprintf_vma (abfd, file, symbol->value);
1975 fprintf (file, " %x", symbol->flags);
1976 break;
1977 case bfd_print_symbol_all:
1978 {
1979 const char *section_name;
1980 const char *name = NULL;
1981 const struct elf_backend_data *bed;
1982 unsigned char st_other;
1983 bfd_vma val;
1984 const char *version_string;
1985 bfd_boolean hidden;
1986
1987 section_name = symbol->section ? symbol->section->name : "(*none*)";
1988
1989 bed = get_elf_backend_data (abfd);
1990 if (bed->elf_backend_print_symbol_all)
1991 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1992
1993 if (name == NULL)
1994 {
1995 name = symbol->name;
1996 bfd_print_symbol_vandf (abfd, file, symbol);
1997 }
1998
1999 fprintf (file, " %s\t", section_name);
2000 /* Print the "other" value for a symbol. For common symbols,
2001 we've already printed the size; now print the alignment.
2002 For other symbols, we have no specified alignment, and
2003 we've printed the address; now print the size. */
2004 if (symbol->section && bfd_is_com_section (symbol->section))
2005 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
2006 else
2007 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
2008 bfd_fprintf_vma (abfd, file, val);
2009
2010 /* If we have version information, print it. */
2011 version_string = _bfd_elf_get_symbol_version_string (abfd,
2012 symbol,
2013 TRUE,
2014 &hidden);
2015 if (version_string)
2016 {
2017 if (!hidden)
2018 fprintf (file, " %-11s", version_string);
2019 else
2020 {
2021 int i;
2022
2023 fprintf (file, " (%s)", version_string);
2024 for (i = 10 - strlen (version_string); i > 0; --i)
2025 putc (' ', file);
2026 }
2027 }
2028
2029 /* If the st_other field is not zero, print it. */
2030 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
2031
2032 switch (st_other)
2033 {
2034 case 0: break;
2035 case STV_INTERNAL: fprintf (file, " .internal"); break;
2036 case STV_HIDDEN: fprintf (file, " .hidden"); break;
2037 case STV_PROTECTED: fprintf (file, " .protected"); break;
2038 default:
2039 /* Some other non-defined flags are also present, so print
2040 everything hex. */
2041 fprintf (file, " 0x%02x", (unsigned int) st_other);
2042 }
2043
2044 fprintf (file, " %s", name);
2045 }
2046 break;
2047 }
2048 }
2049 \f
2050 /* ELF .o/exec file reading */
2051
2052 /* Create a new bfd section from an ELF section header. */
2053
2054 bfd_boolean
2055 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
2056 {
2057 Elf_Internal_Shdr *hdr;
2058 Elf_Internal_Ehdr *ehdr;
2059 const struct elf_backend_data *bed;
2060 const char *name;
2061 bfd_boolean ret = TRUE;
2062
2063 if (shindex >= elf_numsections (abfd))
2064 return FALSE;
2065
2066 /* PR17512: A corrupt ELF binary might contain a loop of sections via
2067 sh_link or sh_info. Detect this here, by refusing to load a
2068 section that we are already in the process of loading. */
2069 if (elf_tdata (abfd)->being_created[shindex])
2070 {
2071 _bfd_error_handler
2072 (_("%pB: warning: loop in section dependencies detected"), abfd);
2073 return FALSE;
2074 }
2075 elf_tdata (abfd)->being_created[shindex] = TRUE;
2076
2077 hdr = elf_elfsections (abfd)[shindex];
2078 ehdr = elf_elfheader (abfd);
2079 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
2080 hdr->sh_name);
2081 if (name == NULL)
2082 goto fail;
2083
2084 bed = get_elf_backend_data (abfd);
2085 switch (hdr->sh_type)
2086 {
2087 case SHT_NULL:
2088 /* Inactive section. Throw it away. */
2089 goto success;
2090
2091 case SHT_PROGBITS: /* Normal section with contents. */
2092 case SHT_NOBITS: /* .bss section. */
2093 case SHT_HASH: /* .hash section. */
2094 case SHT_NOTE: /* .note section. */
2095 case SHT_INIT_ARRAY: /* .init_array section. */
2096 case SHT_FINI_ARRAY: /* .fini_array section. */
2097 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
2098 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
2099 case SHT_GNU_HASH: /* .gnu.hash section. */
2100 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2101 goto success;
2102
2103 case SHT_DYNAMIC: /* Dynamic linking information. */
2104 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2105 goto fail;
2106
2107 if (hdr->sh_link > elf_numsections (abfd))
2108 {
2109 /* PR 10478: Accept Solaris binaries with a sh_link
2110 field set to SHN_BEFORE or SHN_AFTER. */
2111 switch (bfd_get_arch (abfd))
2112 {
2113 case bfd_arch_i386:
2114 case bfd_arch_sparc:
2115 if (hdr->sh_link == (SHN_LORESERVE & 0xffff) /* SHN_BEFORE */
2116 || hdr->sh_link == ((SHN_LORESERVE + 1) & 0xffff) /* SHN_AFTER */)
2117 break;
2118 /* Otherwise fall through. */
2119 default:
2120 goto fail;
2121 }
2122 }
2123 else if (elf_elfsections (abfd)[hdr->sh_link] == NULL)
2124 goto fail;
2125 else if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
2126 {
2127 Elf_Internal_Shdr *dynsymhdr;
2128
2129 /* The shared libraries distributed with hpux11 have a bogus
2130 sh_link field for the ".dynamic" section. Find the
2131 string table for the ".dynsym" section instead. */
2132 if (elf_dynsymtab (abfd) != 0)
2133 {
2134 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
2135 hdr->sh_link = dynsymhdr->sh_link;
2136 }
2137 else
2138 {
2139 unsigned int i, num_sec;
2140
2141 num_sec = elf_numsections (abfd);
2142 for (i = 1; i < num_sec; i++)
2143 {
2144 dynsymhdr = elf_elfsections (abfd)[i];
2145 if (dynsymhdr->sh_type == SHT_DYNSYM)
2146 {
2147 hdr->sh_link = dynsymhdr->sh_link;
2148 break;
2149 }
2150 }
2151 }
2152 }
2153 goto success;
2154
2155 case SHT_SYMTAB: /* A symbol table. */
2156 if (elf_onesymtab (abfd) == shindex)
2157 goto success;
2158
2159 if (hdr->sh_entsize != bed->s->sizeof_sym)
2160 goto fail;
2161
2162 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
2163 {
2164 if (hdr->sh_size != 0)
2165 goto fail;
2166 /* Some assemblers erroneously set sh_info to one with a
2167 zero sh_size. ld sees this as a global symbol count
2168 of (unsigned) -1. Fix it here. */
2169 hdr->sh_info = 0;
2170 goto success;
2171 }
2172
2173 /* PR 18854: A binary might contain more than one symbol table.
2174 Unusual, but possible. Warn, but continue. */
2175 if (elf_onesymtab (abfd) != 0)
2176 {
2177 _bfd_error_handler
2178 /* xgettext:c-format */
2179 (_("%pB: warning: multiple symbol tables detected"
2180 " - ignoring the table in section %u"),
2181 abfd, shindex);
2182 goto success;
2183 }
2184 elf_onesymtab (abfd) = shindex;
2185 elf_symtab_hdr (abfd) = *hdr;
2186 elf_elfsections (abfd)[shindex] = hdr = & elf_symtab_hdr (abfd);
2187 abfd->flags |= HAS_SYMS;
2188
2189 /* Sometimes a shared object will map in the symbol table. If
2190 SHF_ALLOC is set, and this is a shared object, then we also
2191 treat this section as a BFD section. We can not base the
2192 decision purely on SHF_ALLOC, because that flag is sometimes
2193 set in a relocatable object file, which would confuse the
2194 linker. */
2195 if ((hdr->sh_flags & SHF_ALLOC) != 0
2196 && (abfd->flags & DYNAMIC) != 0
2197 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2198 shindex))
2199 goto fail;
2200
2201 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
2202 can't read symbols without that section loaded as well. It
2203 is most likely specified by the next section header. */
2204 {
2205 elf_section_list * entry;
2206 unsigned int i, num_sec;
2207
2208 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
2209 if (entry->hdr.sh_link == shindex)
2210 goto success;
2211
2212 num_sec = elf_numsections (abfd);
2213 for (i = shindex + 1; i < num_sec; i++)
2214 {
2215 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2216
2217 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
2218 && hdr2->sh_link == shindex)
2219 break;
2220 }
2221
2222 if (i == num_sec)
2223 for (i = 1; i < shindex; i++)
2224 {
2225 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2226
2227 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
2228 && hdr2->sh_link == shindex)
2229 break;
2230 }
2231
2232 if (i != shindex)
2233 ret = bfd_section_from_shdr (abfd, i);
2234 /* else FIXME: we have failed to find the symbol table - should we issue an error ? */
2235 goto success;
2236 }
2237
2238 case SHT_DYNSYM: /* A dynamic symbol table. */
2239 if (elf_dynsymtab (abfd) == shindex)
2240 goto success;
2241
2242 if (hdr->sh_entsize != bed->s->sizeof_sym)
2243 goto fail;
2244
2245 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
2246 {
2247 if (hdr->sh_size != 0)
2248 goto fail;
2249
2250 /* Some linkers erroneously set sh_info to one with a
2251 zero sh_size. ld sees this as a global symbol count
2252 of (unsigned) -1. Fix it here. */
2253 hdr->sh_info = 0;
2254 goto success;
2255 }
2256
2257 /* PR 18854: A binary might contain more than one dynamic symbol table.
2258 Unusual, but possible. Warn, but continue. */
2259 if (elf_dynsymtab (abfd) != 0)
2260 {
2261 _bfd_error_handler
2262 /* xgettext:c-format */
2263 (_("%pB: warning: multiple dynamic symbol tables detected"
2264 " - ignoring the table in section %u"),
2265 abfd, shindex);
2266 goto success;
2267 }
2268 elf_dynsymtab (abfd) = shindex;
2269 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
2270 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2271 abfd->flags |= HAS_SYMS;
2272
2273 /* Besides being a symbol table, we also treat this as a regular
2274 section, so that objcopy can handle it. */
2275 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2276 goto success;
2277
2278 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections. */
2279 {
2280 elf_section_list * entry;
2281
2282 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
2283 if (entry->ndx == shindex)
2284 goto success;
2285
2286 entry = bfd_alloc (abfd, sizeof (*entry));
2287 if (entry == NULL)
2288 goto fail;
2289 entry->ndx = shindex;
2290 entry->hdr = * hdr;
2291 entry->next = elf_symtab_shndx_list (abfd);
2292 elf_symtab_shndx_list (abfd) = entry;
2293 elf_elfsections (abfd)[shindex] = & entry->hdr;
2294 goto success;
2295 }
2296
2297 case SHT_STRTAB: /* A string table. */
2298 if (hdr->bfd_section != NULL)
2299 goto success;
2300
2301 if (ehdr->e_shstrndx == shindex)
2302 {
2303 elf_tdata (abfd)->shstrtab_hdr = *hdr;
2304 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
2305 goto success;
2306 }
2307
2308 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
2309 {
2310 symtab_strtab:
2311 elf_tdata (abfd)->strtab_hdr = *hdr;
2312 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
2313 goto success;
2314 }
2315
2316 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
2317 {
2318 dynsymtab_strtab:
2319 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
2320 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
2321 elf_elfsections (abfd)[shindex] = hdr;
2322 /* We also treat this as a regular section, so that objcopy
2323 can handle it. */
2324 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2325 shindex);
2326 goto success;
2327 }
2328
2329 /* If the string table isn't one of the above, then treat it as a
2330 regular section. We need to scan all the headers to be sure,
2331 just in case this strtab section appeared before the above. */
2332 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
2333 {
2334 unsigned int i, num_sec;
2335
2336 num_sec = elf_numsections (abfd);
2337 for (i = 1; i < num_sec; i++)
2338 {
2339 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2340 if (hdr2->sh_link == shindex)
2341 {
2342 /* Prevent endless recursion on broken objects. */
2343 if (i == shindex)
2344 goto fail;
2345 if (! bfd_section_from_shdr (abfd, i))
2346 goto fail;
2347 if (elf_onesymtab (abfd) == i)
2348 goto symtab_strtab;
2349 if (elf_dynsymtab (abfd) == i)
2350 goto dynsymtab_strtab;
2351 }
2352 }
2353 }
2354 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2355 goto success;
2356
2357 case SHT_REL:
2358 case SHT_RELA:
2359 /* *These* do a lot of work -- but build no sections! */
2360 {
2361 asection *target_sect;
2362 Elf_Internal_Shdr *hdr2, **p_hdr;
2363 unsigned int num_sec = elf_numsections (abfd);
2364 struct bfd_elf_section_data *esdt;
2365
2366 if (hdr->sh_entsize
2367 != (bfd_size_type) (hdr->sh_type == SHT_REL
2368 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
2369 goto fail;
2370
2371 /* Check for a bogus link to avoid crashing. */
2372 if (hdr->sh_link >= num_sec)
2373 {
2374 _bfd_error_handler
2375 /* xgettext:c-format */
2376 (_("%pB: invalid link %u for reloc section %s (index %u)"),
2377 abfd, hdr->sh_link, name, shindex);
2378 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2379 shindex);
2380 goto success;
2381 }
2382
2383 /* For some incomprehensible reason Oracle distributes
2384 libraries for Solaris in which some of the objects have
2385 bogus sh_link fields. It would be nice if we could just
2386 reject them, but, unfortunately, some people need to use
2387 them. We scan through the section headers; if we find only
2388 one suitable symbol table, we clobber the sh_link to point
2389 to it. I hope this doesn't break anything.
2390
2391 Don't do it on executable nor shared library. */
2392 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0
2393 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
2394 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
2395 {
2396 unsigned int scan;
2397 int found;
2398
2399 found = 0;
2400 for (scan = 1; scan < num_sec; scan++)
2401 {
2402 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
2403 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
2404 {
2405 if (found != 0)
2406 {
2407 found = 0;
2408 break;
2409 }
2410 found = scan;
2411 }
2412 }
2413 if (found != 0)
2414 hdr->sh_link = found;
2415 }
2416
2417 /* Get the symbol table. */
2418 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
2419 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
2420 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
2421 goto fail;
2422
2423 /* If this is an alloc section in an executable or shared
2424 library, or the reloc section does not use the main symbol
2425 table we don't treat it as a reloc section. BFD can't
2426 adequately represent such a section, so at least for now,
2427 we don't try. We just present it as a normal section. We
2428 also can't use it as a reloc section if it points to the
2429 null section, an invalid section, another reloc section, or
2430 its sh_link points to the null section. */
2431 if (((abfd->flags & (DYNAMIC | EXEC_P)) != 0
2432 && (hdr->sh_flags & SHF_ALLOC) != 0)
2433 || hdr->sh_link == SHN_UNDEF
2434 || hdr->sh_link != elf_onesymtab (abfd)
2435 || hdr->sh_info == SHN_UNDEF
2436 || hdr->sh_info >= num_sec
2437 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
2438 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
2439 {
2440 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2441 shindex);
2442 goto success;
2443 }
2444
2445 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
2446 goto fail;
2447
2448 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
2449 if (target_sect == NULL)
2450 goto fail;
2451
2452 esdt = elf_section_data (target_sect);
2453 if (hdr->sh_type == SHT_RELA)
2454 p_hdr = &esdt->rela.hdr;
2455 else
2456 p_hdr = &esdt->rel.hdr;
2457
2458 /* PR 17512: file: 0b4f81b7.
2459 Also see PR 24456, for a file which deliberately has two reloc
2460 sections. */
2461 if (*p_hdr != NULL)
2462 {
2463 if (!bed->init_secondary_reloc_section (abfd, hdr, name, shindex))
2464 {
2465 _bfd_error_handler
2466 /* xgettext:c-format */
2467 (_("%pB: warning: secondary relocation section '%s' "
2468 "for section %pA found - ignoring"),
2469 abfd, name, target_sect);
2470 }
2471 goto success;
2472 }
2473
2474 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, sizeof (*hdr2));
2475 if (hdr2 == NULL)
2476 goto fail;
2477 *hdr2 = *hdr;
2478 *p_hdr = hdr2;
2479 elf_elfsections (abfd)[shindex] = hdr2;
2480 target_sect->reloc_count += (NUM_SHDR_ENTRIES (hdr)
2481 * bed->s->int_rels_per_ext_rel);
2482 target_sect->flags |= SEC_RELOC;
2483 target_sect->relocation = NULL;
2484 target_sect->rel_filepos = hdr->sh_offset;
2485 /* In the section to which the relocations apply, mark whether
2486 its relocations are of the REL or RELA variety. */
2487 if (hdr->sh_size != 0)
2488 {
2489 if (hdr->sh_type == SHT_RELA)
2490 target_sect->use_rela_p = 1;
2491 }
2492 abfd->flags |= HAS_RELOC;
2493 goto success;
2494 }
2495
2496 case SHT_GNU_verdef:
2497 elf_dynverdef (abfd) = shindex;
2498 elf_tdata (abfd)->dynverdef_hdr = *hdr;
2499 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2500 goto success;
2501
2502 case SHT_GNU_versym:
2503 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
2504 goto fail;
2505
2506 elf_dynversym (abfd) = shindex;
2507 elf_tdata (abfd)->dynversym_hdr = *hdr;
2508 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2509 goto success;
2510
2511 case SHT_GNU_verneed:
2512 elf_dynverref (abfd) = shindex;
2513 elf_tdata (abfd)->dynverref_hdr = *hdr;
2514 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2515 goto success;
2516
2517 case SHT_SHLIB:
2518 goto success;
2519
2520 case SHT_GROUP:
2521 if (! IS_VALID_GROUP_SECTION_HEADER (hdr, GRP_ENTRY_SIZE))
2522 goto fail;
2523
2524 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2525 goto fail;
2526
2527 goto success;
2528
2529 default:
2530 /* Possibly an attributes section. */
2531 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
2532 || hdr->sh_type == bed->obj_attrs_section_type)
2533 {
2534 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2535 goto fail;
2536 _bfd_elf_parse_attributes (abfd, hdr);
2537 goto success;
2538 }
2539
2540 /* Check for any processor-specific section types. */
2541 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
2542 goto success;
2543
2544 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
2545 {
2546 if ((hdr->sh_flags & SHF_ALLOC) != 0)
2547 /* FIXME: How to properly handle allocated section reserved
2548 for applications? */
2549 _bfd_error_handler
2550 /* xgettext:c-format */
2551 (_("%pB: unknown type [%#x] section `%s'"),
2552 abfd, hdr->sh_type, name);
2553 else
2554 {
2555 /* Allow sections reserved for applications. */
2556 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2557 shindex);
2558 goto success;
2559 }
2560 }
2561 else if (hdr->sh_type >= SHT_LOPROC
2562 && hdr->sh_type <= SHT_HIPROC)
2563 /* FIXME: We should handle this section. */
2564 _bfd_error_handler
2565 /* xgettext:c-format */
2566 (_("%pB: unknown type [%#x] section `%s'"),
2567 abfd, hdr->sh_type, name);
2568 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
2569 {
2570 /* Unrecognised OS-specific sections. */
2571 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
2572 /* SHF_OS_NONCONFORMING indicates that special knowledge is
2573 required to correctly process the section and the file should
2574 be rejected with an error message. */
2575 _bfd_error_handler
2576 /* xgettext:c-format */
2577 (_("%pB: unknown type [%#x] section `%s'"),
2578 abfd, hdr->sh_type, name);
2579 else
2580 {
2581 /* Otherwise it should be processed. */
2582 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2583 goto success;
2584 }
2585 }
2586 else
2587 /* FIXME: We should handle this section. */
2588 _bfd_error_handler
2589 /* xgettext:c-format */
2590 (_("%pB: unknown type [%#x] section `%s'"),
2591 abfd, hdr->sh_type, name);
2592
2593 goto fail;
2594 }
2595
2596 fail:
2597 ret = FALSE;
2598 success:
2599 elf_tdata (abfd)->being_created[shindex] = FALSE;
2600 return ret;
2601 }
2602
2603 /* Return the local symbol specified by ABFD, R_SYMNDX. */
2604
2605 Elf_Internal_Sym *
2606 bfd_sym_from_r_symndx (struct sym_cache *cache,
2607 bfd *abfd,
2608 unsigned long r_symndx)
2609 {
2610 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2611
2612 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
2613 {
2614 Elf_Internal_Shdr *symtab_hdr;
2615 unsigned char esym[sizeof (Elf64_External_Sym)];
2616 Elf_External_Sym_Shndx eshndx;
2617
2618 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2619 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2620 &cache->sym[ent], esym, &eshndx) == NULL)
2621 return NULL;
2622
2623 if (cache->abfd != abfd)
2624 {
2625 memset (cache->indx, -1, sizeof (cache->indx));
2626 cache->abfd = abfd;
2627 }
2628 cache->indx[ent] = r_symndx;
2629 }
2630
2631 return &cache->sym[ent];
2632 }
2633
2634 /* Given an ELF section number, retrieve the corresponding BFD
2635 section. */
2636
2637 asection *
2638 bfd_section_from_elf_index (bfd *abfd, unsigned int sec_index)
2639 {
2640 if (sec_index >= elf_numsections (abfd))
2641 return NULL;
2642 return elf_elfsections (abfd)[sec_index]->bfd_section;
2643 }
2644
2645 static const struct bfd_elf_special_section special_sections_b[] =
2646 {
2647 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2648 { NULL, 0, 0, 0, 0 }
2649 };
2650
2651 static const struct bfd_elf_special_section special_sections_c[] =
2652 {
2653 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2654 { STRING_COMMA_LEN (".ctf"), 0, SHT_PROGBITS, 0 },
2655 { NULL, 0, 0, 0, 0 }
2656 };
2657
2658 static const struct bfd_elf_special_section special_sections_d[] =
2659 {
2660 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2661 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2662 /* There are more DWARF sections than these, but they needn't be added here
2663 unless you have to cope with broken compilers that don't emit section
2664 attributes or you want to help the user writing assembler. */
2665 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2666 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2667 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2668 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2669 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2670 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2671 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2672 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2673 { NULL, 0, 0, 0, 0 }
2674 };
2675
2676 static const struct bfd_elf_special_section special_sections_f[] =
2677 {
2678 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2679 { STRING_COMMA_LEN (".fini_array"), -2, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2680 { NULL, 0 , 0, 0, 0 }
2681 };
2682
2683 static const struct bfd_elf_special_section special_sections_g[] =
2684 {
2685 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2686 { STRING_COMMA_LEN (".gnu.linkonce.n"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2687 { STRING_COMMA_LEN (".gnu.linkonce.p"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2688 { STRING_COMMA_LEN (".gnu.lto_"), -1, SHT_PROGBITS, SHF_EXCLUDE },
2689 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2690 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2691 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2692 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2693 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2694 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2695 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2696 { NULL, 0, 0, 0, 0 }
2697 };
2698
2699 static const struct bfd_elf_special_section special_sections_h[] =
2700 {
2701 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2702 { NULL, 0, 0, 0, 0 }
2703 };
2704
2705 static const struct bfd_elf_special_section special_sections_i[] =
2706 {
2707 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2708 { STRING_COMMA_LEN (".init_array"), -2, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2709 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2710 { NULL, 0, 0, 0, 0 }
2711 };
2712
2713 static const struct bfd_elf_special_section special_sections_l[] =
2714 {
2715 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2716 { NULL, 0, 0, 0, 0 }
2717 };
2718
2719 static const struct bfd_elf_special_section special_sections_n[] =
2720 {
2721 { STRING_COMMA_LEN (".noinit"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2722 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2723 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2724 { NULL, 0, 0, 0, 0 }
2725 };
2726
2727 static const struct bfd_elf_special_section special_sections_p[] =
2728 {
2729 { STRING_COMMA_LEN (".persistent"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2730 { STRING_COMMA_LEN (".preinit_array"), -2, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2731 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2732 { NULL, 0, 0, 0, 0 }
2733 };
2734
2735 static const struct bfd_elf_special_section special_sections_r[] =
2736 {
2737 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2738 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2739 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2740 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2741 { NULL, 0, 0, 0, 0 }
2742 };
2743
2744 static const struct bfd_elf_special_section special_sections_s[] =
2745 {
2746 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2747 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2748 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2749 /* See struct bfd_elf_special_section declaration for the semantics of
2750 this special case where .prefix_length != strlen (.prefix). */
2751 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2752 { NULL, 0, 0, 0, 0 }
2753 };
2754
2755 static const struct bfd_elf_special_section special_sections_t[] =
2756 {
2757 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2758 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2759 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2760 { NULL, 0, 0, 0, 0 }
2761 };
2762
2763 static const struct bfd_elf_special_section special_sections_z[] =
2764 {
2765 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 },
2766 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 },
2767 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 },
2768 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 },
2769 { NULL, 0, 0, 0, 0 }
2770 };
2771
2772 static const struct bfd_elf_special_section * const special_sections[] =
2773 {
2774 special_sections_b, /* 'b' */
2775 special_sections_c, /* 'c' */
2776 special_sections_d, /* 'd' */
2777 NULL, /* 'e' */
2778 special_sections_f, /* 'f' */
2779 special_sections_g, /* 'g' */
2780 special_sections_h, /* 'h' */
2781 special_sections_i, /* 'i' */
2782 NULL, /* 'j' */
2783 NULL, /* 'k' */
2784 special_sections_l, /* 'l' */
2785 NULL, /* 'm' */
2786 special_sections_n, /* 'n' */
2787 NULL, /* 'o' */
2788 special_sections_p, /* 'p' */
2789 NULL, /* 'q' */
2790 special_sections_r, /* 'r' */
2791 special_sections_s, /* 's' */
2792 special_sections_t, /* 't' */
2793 NULL, /* 'u' */
2794 NULL, /* 'v' */
2795 NULL, /* 'w' */
2796 NULL, /* 'x' */
2797 NULL, /* 'y' */
2798 special_sections_z /* 'z' */
2799 };
2800
2801 const struct bfd_elf_special_section *
2802 _bfd_elf_get_special_section (const char *name,
2803 const struct bfd_elf_special_section *spec,
2804 unsigned int rela)
2805 {
2806 int i;
2807 int len;
2808
2809 len = strlen (name);
2810
2811 for (i = 0; spec[i].prefix != NULL; i++)
2812 {
2813 int suffix_len;
2814 int prefix_len = spec[i].prefix_length;
2815
2816 if (len < prefix_len)
2817 continue;
2818 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2819 continue;
2820
2821 suffix_len = spec[i].suffix_length;
2822 if (suffix_len <= 0)
2823 {
2824 if (name[prefix_len] != 0)
2825 {
2826 if (suffix_len == 0)
2827 continue;
2828 if (name[prefix_len] != '.'
2829 && (suffix_len == -2
2830 || (rela && spec[i].type == SHT_REL)))
2831 continue;
2832 }
2833 }
2834 else
2835 {
2836 if (len < prefix_len + suffix_len)
2837 continue;
2838 if (memcmp (name + len - suffix_len,
2839 spec[i].prefix + prefix_len,
2840 suffix_len) != 0)
2841 continue;
2842 }
2843 return &spec[i];
2844 }
2845
2846 return NULL;
2847 }
2848
2849 const struct bfd_elf_special_section *
2850 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2851 {
2852 int i;
2853 const struct bfd_elf_special_section *spec;
2854 const struct elf_backend_data *bed;
2855
2856 /* See if this is one of the special sections. */
2857 if (sec->name == NULL)
2858 return NULL;
2859
2860 bed = get_elf_backend_data (abfd);
2861 spec = bed->special_sections;
2862 if (spec)
2863 {
2864 spec = _bfd_elf_get_special_section (sec->name,
2865 bed->special_sections,
2866 sec->use_rela_p);
2867 if (spec != NULL)
2868 return spec;
2869 }
2870
2871 if (sec->name[0] != '.')
2872 return NULL;
2873
2874 i = sec->name[1] - 'b';
2875 if (i < 0 || i > 'z' - 'b')
2876 return NULL;
2877
2878 spec = special_sections[i];
2879
2880 if (spec == NULL)
2881 return NULL;
2882
2883 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2884 }
2885
2886 bfd_boolean
2887 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2888 {
2889 struct bfd_elf_section_data *sdata;
2890 const struct elf_backend_data *bed;
2891 const struct bfd_elf_special_section *ssect;
2892
2893 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2894 if (sdata == NULL)
2895 {
2896 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd,
2897 sizeof (*sdata));
2898 if (sdata == NULL)
2899 return FALSE;
2900 sec->used_by_bfd = sdata;
2901 }
2902
2903 /* Indicate whether or not this section should use RELA relocations. */
2904 bed = get_elf_backend_data (abfd);
2905 sec->use_rela_p = bed->default_use_rela_p;
2906
2907 /* Set up ELF section type and flags for newly created sections, if
2908 there is an ABI mandated section. */
2909 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2910 if (ssect != NULL)
2911 {
2912 elf_section_type (sec) = ssect->type;
2913 elf_section_flags (sec) = ssect->attr;
2914 }
2915
2916 return _bfd_generic_new_section_hook (abfd, sec);
2917 }
2918
2919 /* Create a new bfd section from an ELF program header.
2920
2921 Since program segments have no names, we generate a synthetic name
2922 of the form segment<NUM>, where NUM is generally the index in the
2923 program header table. For segments that are split (see below) we
2924 generate the names segment<NUM>a and segment<NUM>b.
2925
2926 Note that some program segments may have a file size that is different than
2927 (less than) the memory size. All this means is that at execution the
2928 system must allocate the amount of memory specified by the memory size,
2929 but only initialize it with the first "file size" bytes read from the
2930 file. This would occur for example, with program segments consisting
2931 of combined data+bss.
2932
2933 To handle the above situation, this routine generates TWO bfd sections
2934 for the single program segment. The first has the length specified by
2935 the file size of the segment, and the second has the length specified
2936 by the difference between the two sizes. In effect, the segment is split
2937 into its initialized and uninitialized parts.
2938
2939 */
2940
2941 bfd_boolean
2942 _bfd_elf_make_section_from_phdr (bfd *abfd,
2943 Elf_Internal_Phdr *hdr,
2944 int hdr_index,
2945 const char *type_name)
2946 {
2947 asection *newsect;
2948 char *name;
2949 char namebuf[64];
2950 size_t len;
2951 int split;
2952 unsigned int opb = bfd_octets_per_byte (abfd, NULL);
2953
2954 split = ((hdr->p_memsz > 0)
2955 && (hdr->p_filesz > 0)
2956 && (hdr->p_memsz > hdr->p_filesz));
2957
2958 if (hdr->p_filesz > 0)
2959 {
2960 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "a" : "");
2961 len = strlen (namebuf) + 1;
2962 name = (char *) bfd_alloc (abfd, len);
2963 if (!name)
2964 return FALSE;
2965 memcpy (name, namebuf, len);
2966 newsect = bfd_make_section (abfd, name);
2967 if (newsect == NULL)
2968 return FALSE;
2969 newsect->vma = hdr->p_vaddr / opb;
2970 newsect->lma = hdr->p_paddr / opb;
2971 newsect->size = hdr->p_filesz;
2972 newsect->filepos = hdr->p_offset;
2973 newsect->flags |= SEC_HAS_CONTENTS;
2974 newsect->alignment_power = bfd_log2 (hdr->p_align);
2975 if (hdr->p_type == PT_LOAD)
2976 {
2977 newsect->flags |= SEC_ALLOC;
2978 newsect->flags |= SEC_LOAD;
2979 if (hdr->p_flags & PF_X)
2980 {
2981 /* FIXME: all we known is that it has execute PERMISSION,
2982 may be data. */
2983 newsect->flags |= SEC_CODE;
2984 }
2985 }
2986 if (!(hdr->p_flags & PF_W))
2987 {
2988 newsect->flags |= SEC_READONLY;
2989 }
2990 }
2991
2992 if (hdr->p_memsz > hdr->p_filesz)
2993 {
2994 bfd_vma align;
2995
2996 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "b" : "");
2997 len = strlen (namebuf) + 1;
2998 name = (char *) bfd_alloc (abfd, len);
2999 if (!name)
3000 return FALSE;
3001 memcpy (name, namebuf, len);
3002 newsect = bfd_make_section (abfd, name);
3003 if (newsect == NULL)
3004 return FALSE;
3005 newsect->vma = (hdr->p_vaddr + hdr->p_filesz) / opb;
3006 newsect->lma = (hdr->p_paddr + hdr->p_filesz) / opb;
3007 newsect->size = hdr->p_memsz - hdr->p_filesz;
3008 newsect->filepos = hdr->p_offset + hdr->p_filesz;
3009 align = newsect->vma & -newsect->vma;
3010 if (align == 0 || align > hdr->p_align)
3011 align = hdr->p_align;
3012 newsect->alignment_power = bfd_log2 (align);
3013 if (hdr->p_type == PT_LOAD)
3014 {
3015 newsect->flags |= SEC_ALLOC;
3016 if (hdr->p_flags & PF_X)
3017 newsect->flags |= SEC_CODE;
3018 }
3019 if (!(hdr->p_flags & PF_W))
3020 newsect->flags |= SEC_READONLY;
3021 }
3022
3023 return TRUE;
3024 }
3025
3026 static bfd_boolean
3027 _bfd_elf_core_find_build_id (bfd *templ, bfd_vma offset)
3028 {
3029 /* The return value is ignored. Build-ids are considered optional. */
3030 if (templ->xvec->flavour == bfd_target_elf_flavour)
3031 return (*get_elf_backend_data (templ)->elf_backend_core_find_build_id)
3032 (templ, offset);
3033 return FALSE;
3034 }
3035
3036 bfd_boolean
3037 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int hdr_index)
3038 {
3039 const struct elf_backend_data *bed;
3040
3041 switch (hdr->p_type)
3042 {
3043 case PT_NULL:
3044 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "null");
3045
3046 case PT_LOAD:
3047 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "load"))
3048 return FALSE;
3049 if (bfd_get_format (abfd) == bfd_core && abfd->build_id == NULL)
3050 _bfd_elf_core_find_build_id (abfd, hdr->p_offset);
3051 return TRUE;
3052
3053 case PT_DYNAMIC:
3054 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "dynamic");
3055
3056 case PT_INTERP:
3057 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "interp");
3058
3059 case PT_NOTE:
3060 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "note"))
3061 return FALSE;
3062 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz,
3063 hdr->p_align))
3064 return FALSE;
3065 return TRUE;
3066
3067 case PT_SHLIB:
3068 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "shlib");
3069
3070 case PT_PHDR:
3071 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "phdr");
3072
3073 case PT_GNU_EH_FRAME:
3074 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index,
3075 "eh_frame_hdr");
3076
3077 case PT_GNU_STACK:
3078 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "stack");
3079
3080 case PT_GNU_RELRO:
3081 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "relro");
3082
3083 default:
3084 /* Check for any processor-specific program segment types. */
3085 bed = get_elf_backend_data (abfd);
3086 return bed->elf_backend_section_from_phdr (abfd, hdr, hdr_index, "proc");
3087 }
3088 }
3089
3090 /* Return the REL_HDR for SEC, assuming there is only a single one, either
3091 REL or RELA. */
3092
3093 Elf_Internal_Shdr *
3094 _bfd_elf_single_rel_hdr (asection *sec)
3095 {
3096 if (elf_section_data (sec)->rel.hdr)
3097 {
3098 BFD_ASSERT (elf_section_data (sec)->rela.hdr == NULL);
3099 return elf_section_data (sec)->rel.hdr;
3100 }
3101 else
3102 return elf_section_data (sec)->rela.hdr;
3103 }
3104
3105 static bfd_boolean
3106 _bfd_elf_set_reloc_sh_name (bfd *abfd,
3107 Elf_Internal_Shdr *rel_hdr,
3108 const char *sec_name,
3109 bfd_boolean use_rela_p)
3110 {
3111 char *name = (char *) bfd_alloc (abfd,
3112 sizeof ".rela" + strlen (sec_name));
3113 if (name == NULL)
3114 return FALSE;
3115
3116 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", sec_name);
3117 rel_hdr->sh_name =
3118 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
3119 FALSE);
3120 if (rel_hdr->sh_name == (unsigned int) -1)
3121 return FALSE;
3122
3123 return TRUE;
3124 }
3125
3126 /* Allocate and initialize a section-header for a new reloc section,
3127 containing relocations against ASECT. It is stored in RELDATA. If
3128 USE_RELA_P is TRUE, we use RELA relocations; otherwise, we use REL
3129 relocations. */
3130
3131 static bfd_boolean
3132 _bfd_elf_init_reloc_shdr (bfd *abfd,
3133 struct bfd_elf_section_reloc_data *reldata,
3134 const char *sec_name,
3135 bfd_boolean use_rela_p,
3136 bfd_boolean delay_st_name_p)
3137 {
3138 Elf_Internal_Shdr *rel_hdr;
3139 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3140
3141 BFD_ASSERT (reldata->hdr == NULL);
3142 rel_hdr = bfd_zalloc (abfd, sizeof (*rel_hdr));
3143 reldata->hdr = rel_hdr;
3144
3145 if (delay_st_name_p)
3146 rel_hdr->sh_name = (unsigned int) -1;
3147 else if (!_bfd_elf_set_reloc_sh_name (abfd, rel_hdr, sec_name,
3148 use_rela_p))
3149 return FALSE;
3150 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
3151 rel_hdr->sh_entsize = (use_rela_p
3152 ? bed->s->sizeof_rela
3153 : bed->s->sizeof_rel);
3154 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
3155 rel_hdr->sh_flags = 0;
3156 rel_hdr->sh_addr = 0;
3157 rel_hdr->sh_size = 0;
3158 rel_hdr->sh_offset = 0;
3159
3160 return TRUE;
3161 }
3162
3163 /* Return the default section type based on the passed in section flags. */
3164
3165 int
3166 bfd_elf_get_default_section_type (flagword flags)
3167 {
3168 if ((flags & (SEC_ALLOC | SEC_IS_COMMON)) != 0
3169 && (flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
3170 return SHT_NOBITS;
3171 return SHT_PROGBITS;
3172 }
3173
3174 struct fake_section_arg
3175 {
3176 struct bfd_link_info *link_info;
3177 bfd_boolean failed;
3178 };
3179
3180 /* Set up an ELF internal section header for a section. */
3181
3182 static void
3183 elf_fake_sections (bfd *abfd, asection *asect, void *fsarg)
3184 {
3185 struct fake_section_arg *arg = (struct fake_section_arg *)fsarg;
3186 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3187 struct bfd_elf_section_data *esd = elf_section_data (asect);
3188 Elf_Internal_Shdr *this_hdr;
3189 unsigned int sh_type;
3190 const char *name = asect->name;
3191 bfd_boolean delay_st_name_p = FALSE;
3192 bfd_vma mask;
3193
3194 if (arg->failed)
3195 {
3196 /* We already failed; just get out of the bfd_map_over_sections
3197 loop. */
3198 return;
3199 }
3200
3201 this_hdr = &esd->this_hdr;
3202
3203 if (arg->link_info)
3204 {
3205 /* ld: compress DWARF debug sections with names: .debug_*. */
3206 if ((arg->link_info->compress_debug & COMPRESS_DEBUG)
3207 && (asect->flags & SEC_DEBUGGING)
3208 && name[1] == 'd'
3209 && name[6] == '_')
3210 {
3211 /* Set SEC_ELF_COMPRESS to indicate this section should be
3212 compressed. */
3213 asect->flags |= SEC_ELF_COMPRESS;
3214 /* If this section will be compressed, delay adding section
3215 name to section name section after it is compressed in
3216 _bfd_elf_assign_file_positions_for_non_load. */
3217 delay_st_name_p = TRUE;
3218 }
3219 }
3220 else if ((asect->flags & SEC_ELF_RENAME))
3221 {
3222 /* objcopy: rename output DWARF debug section. */
3223 if ((abfd->flags & (BFD_DECOMPRESS | BFD_COMPRESS_GABI)))
3224 {
3225 /* When we decompress or compress with SHF_COMPRESSED,
3226 convert section name from .zdebug_* to .debug_* if
3227 needed. */
3228 if (name[1] == 'z')
3229 {
3230 char *new_name = convert_zdebug_to_debug (abfd, name);
3231 if (new_name == NULL)
3232 {
3233 arg->failed = TRUE;
3234 return;
3235 }
3236 name = new_name;
3237 }
3238 }
3239 else if (asect->compress_status == COMPRESS_SECTION_DONE)
3240 {
3241 /* PR binutils/18087: Compression does not always make a
3242 section smaller. So only rename the section when
3243 compression has actually taken place. If input section
3244 name is .zdebug_*, we should never compress it again. */
3245 char *new_name = convert_debug_to_zdebug (abfd, name);
3246 if (new_name == NULL)
3247 {
3248 arg->failed = TRUE;
3249 return;
3250 }
3251 BFD_ASSERT (name[1] != 'z');
3252 name = new_name;
3253 }
3254 }
3255
3256 if (delay_st_name_p)
3257 this_hdr->sh_name = (unsigned int) -1;
3258 else
3259 {
3260 this_hdr->sh_name
3261 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3262 name, FALSE);
3263 if (this_hdr->sh_name == (unsigned int) -1)
3264 {
3265 arg->failed = TRUE;
3266 return;
3267 }
3268 }
3269
3270 /* Don't clear sh_flags. Assembler may set additional bits. */
3271
3272 if ((asect->flags & SEC_ALLOC) != 0
3273 || asect->user_set_vma)
3274 this_hdr->sh_addr = asect->vma * bfd_octets_per_byte (abfd, asect);
3275 else
3276 this_hdr->sh_addr = 0;
3277
3278 this_hdr->sh_offset = 0;
3279 this_hdr->sh_size = asect->size;
3280 this_hdr->sh_link = 0;
3281 /* PR 17512: file: 0eb809fe, 8b0535ee. */
3282 if (asect->alignment_power >= (sizeof (bfd_vma) * 8) - 1)
3283 {
3284 _bfd_error_handler
3285 /* xgettext:c-format */
3286 (_("%pB: error: alignment power %d of section `%pA' is too big"),
3287 abfd, asect->alignment_power, asect);
3288 arg->failed = TRUE;
3289 return;
3290 }
3291 /* Set sh_addralign to the highest power of two given by alignment
3292 consistent with the section VMA. Linker scripts can force VMA. */
3293 mask = ((bfd_vma) 1 << asect->alignment_power) | this_hdr->sh_addr;
3294 this_hdr->sh_addralign = mask & -mask;
3295 /* The sh_entsize and sh_info fields may have been set already by
3296 copy_private_section_data. */
3297
3298 this_hdr->bfd_section = asect;
3299 this_hdr->contents = NULL;
3300
3301 /* If the section type is unspecified, we set it based on
3302 asect->flags. */
3303 if ((asect->flags & SEC_GROUP) != 0)
3304 sh_type = SHT_GROUP;
3305 else
3306 sh_type = bfd_elf_get_default_section_type (asect->flags);
3307
3308 if (this_hdr->sh_type == SHT_NULL)
3309 this_hdr->sh_type = sh_type;
3310 else if (this_hdr->sh_type == SHT_NOBITS
3311 && sh_type == SHT_PROGBITS
3312 && (asect->flags & SEC_ALLOC) != 0)
3313 {
3314 /* Warn if we are changing a NOBITS section to PROGBITS, but
3315 allow the link to proceed. This can happen when users link
3316 non-bss input sections to bss output sections, or emit data
3317 to a bss output section via a linker script. */
3318 _bfd_error_handler
3319 (_("warning: section `%pA' type changed to PROGBITS"), asect);
3320 this_hdr->sh_type = sh_type;
3321 }
3322
3323 switch (this_hdr->sh_type)
3324 {
3325 default:
3326 break;
3327
3328 case SHT_STRTAB:
3329 case SHT_NOTE:
3330 case SHT_NOBITS:
3331 case SHT_PROGBITS:
3332 break;
3333
3334 case SHT_INIT_ARRAY:
3335 case SHT_FINI_ARRAY:
3336 case SHT_PREINIT_ARRAY:
3337 this_hdr->sh_entsize = bed->s->arch_size / 8;
3338 break;
3339
3340 case SHT_HASH:
3341 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
3342 break;
3343
3344 case SHT_DYNSYM:
3345 this_hdr->sh_entsize = bed->s->sizeof_sym;
3346 break;
3347
3348 case SHT_DYNAMIC:
3349 this_hdr->sh_entsize = bed->s->sizeof_dyn;
3350 break;
3351
3352 case SHT_RELA:
3353 if (get_elf_backend_data (abfd)->may_use_rela_p)
3354 this_hdr->sh_entsize = bed->s->sizeof_rela;
3355 break;
3356
3357 case SHT_REL:
3358 if (get_elf_backend_data (abfd)->may_use_rel_p)
3359 this_hdr->sh_entsize = bed->s->sizeof_rel;
3360 break;
3361
3362 case SHT_GNU_versym:
3363 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
3364 break;
3365
3366 case SHT_GNU_verdef:
3367 this_hdr->sh_entsize = 0;
3368 /* objcopy or strip will copy over sh_info, but may not set
3369 cverdefs. The linker will set cverdefs, but sh_info will be
3370 zero. */
3371 if (this_hdr->sh_info == 0)
3372 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
3373 else
3374 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
3375 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
3376 break;
3377
3378 case SHT_GNU_verneed:
3379 this_hdr->sh_entsize = 0;
3380 /* objcopy or strip will copy over sh_info, but may not set
3381 cverrefs. The linker will set cverrefs, but sh_info will be
3382 zero. */
3383 if (this_hdr->sh_info == 0)
3384 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
3385 else
3386 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
3387 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
3388 break;
3389
3390 case SHT_GROUP:
3391 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
3392 break;
3393
3394 case SHT_GNU_HASH:
3395 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
3396 break;
3397 }
3398
3399 if ((asect->flags & SEC_ALLOC) != 0)
3400 this_hdr->sh_flags |= SHF_ALLOC;
3401 if ((asect->flags & SEC_READONLY) == 0)
3402 this_hdr->sh_flags |= SHF_WRITE;
3403 if ((asect->flags & SEC_CODE) != 0)
3404 this_hdr->sh_flags |= SHF_EXECINSTR;
3405 if ((asect->flags & SEC_MERGE) != 0)
3406 {
3407 this_hdr->sh_flags |= SHF_MERGE;
3408 this_hdr->sh_entsize = asect->entsize;
3409 }
3410 if ((asect->flags & SEC_STRINGS) != 0)
3411 this_hdr->sh_flags |= SHF_STRINGS;
3412 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
3413 this_hdr->sh_flags |= SHF_GROUP;
3414 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
3415 {
3416 this_hdr->sh_flags |= SHF_TLS;
3417 if (asect->size == 0
3418 && (asect->flags & SEC_HAS_CONTENTS) == 0)
3419 {
3420 struct bfd_link_order *o = asect->map_tail.link_order;
3421
3422 this_hdr->sh_size = 0;
3423 if (o != NULL)
3424 {
3425 this_hdr->sh_size = o->offset + o->size;
3426 if (this_hdr->sh_size != 0)
3427 this_hdr->sh_type = SHT_NOBITS;
3428 }
3429 }
3430 }
3431 if ((asect->flags & (SEC_GROUP | SEC_EXCLUDE)) == SEC_EXCLUDE)
3432 this_hdr->sh_flags |= SHF_EXCLUDE;
3433
3434 /* If the section has relocs, set up a section header for the
3435 SHT_REL[A] section. If two relocation sections are required for
3436 this section, it is up to the processor-specific back-end to
3437 create the other. */
3438 if ((asect->flags & SEC_RELOC) != 0)
3439 {
3440 /* When doing a relocatable link, create both REL and RELA sections if
3441 needed. */
3442 if (arg->link_info
3443 /* Do the normal setup if we wouldn't create any sections here. */
3444 && esd->rel.count + esd->rela.count > 0
3445 && (bfd_link_relocatable (arg->link_info)
3446 || arg->link_info->emitrelocations))
3447 {
3448 if (esd->rel.count && esd->rel.hdr == NULL
3449 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rel, name,
3450 FALSE, delay_st_name_p))
3451 {
3452 arg->failed = TRUE;
3453 return;
3454 }
3455 if (esd->rela.count && esd->rela.hdr == NULL
3456 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rela, name,
3457 TRUE, delay_st_name_p))
3458 {
3459 arg->failed = TRUE;
3460 return;
3461 }
3462 }
3463 else if (!_bfd_elf_init_reloc_shdr (abfd,
3464 (asect->use_rela_p
3465 ? &esd->rela : &esd->rel),
3466 name,
3467 asect->use_rela_p,
3468 delay_st_name_p))
3469 {
3470 arg->failed = TRUE;
3471 return;
3472 }
3473 }
3474
3475 /* Check for processor-specific section types. */
3476 sh_type = this_hdr->sh_type;
3477 if (bed->elf_backend_fake_sections
3478 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
3479 {
3480 arg->failed = TRUE;
3481 return;
3482 }
3483
3484 if (sh_type == SHT_NOBITS && asect->size != 0)
3485 {
3486 /* Don't change the header type from NOBITS if we are being
3487 called for objcopy --only-keep-debug. */
3488 this_hdr->sh_type = sh_type;
3489 }
3490 }
3491
3492 /* Fill in the contents of a SHT_GROUP section. Called from
3493 _bfd_elf_compute_section_file_positions for gas, objcopy, and
3494 when ELF targets use the generic linker, ld. Called for ld -r
3495 from bfd_elf_final_link. */
3496
3497 void
3498 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
3499 {
3500 bfd_boolean *failedptr = (bfd_boolean *) failedptrarg;
3501 asection *elt, *first;
3502 unsigned char *loc;
3503 bfd_boolean gas;
3504
3505 /* Ignore linker created group section. See elfNN_ia64_object_p in
3506 elfxx-ia64.c. */
3507 if ((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP
3508 || sec->size == 0
3509 || *failedptr)
3510 return;
3511
3512 if (elf_section_data (sec)->this_hdr.sh_info == 0)
3513 {
3514 unsigned long symindx = 0;
3515
3516 /* elf_group_id will have been set up by objcopy and the
3517 generic linker. */
3518 if (elf_group_id (sec) != NULL)
3519 symindx = elf_group_id (sec)->udata.i;
3520
3521 if (symindx == 0)
3522 {
3523 /* If called from the assembler, swap_out_syms will have set up
3524 elf_section_syms.
3525 PR 25699: A corrupt input file could contain bogus group info. */
3526 if (elf_section_syms (abfd) == NULL)
3527 {
3528 *failedptr = TRUE;
3529 return;
3530 }
3531 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
3532 }
3533 elf_section_data (sec)->this_hdr.sh_info = symindx;
3534 }
3535 else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2)
3536 {
3537 /* The ELF backend linker sets sh_info to -2 when the group
3538 signature symbol is global, and thus the index can't be
3539 set until all local symbols are output. */
3540 asection *igroup;
3541 struct bfd_elf_section_data *sec_data;
3542 unsigned long symndx;
3543 unsigned long extsymoff;
3544 struct elf_link_hash_entry *h;
3545
3546 /* The point of this little dance to the first SHF_GROUP section
3547 then back to the SHT_GROUP section is that this gets us to
3548 the SHT_GROUP in the input object. */
3549 igroup = elf_sec_group (elf_next_in_group (sec));
3550 sec_data = elf_section_data (igroup);
3551 symndx = sec_data->this_hdr.sh_info;
3552 extsymoff = 0;
3553 if (!elf_bad_symtab (igroup->owner))
3554 {
3555 Elf_Internal_Shdr *symtab_hdr;
3556
3557 symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr;
3558 extsymoff = symtab_hdr->sh_info;
3559 }
3560 h = elf_sym_hashes (igroup->owner)[symndx - extsymoff];
3561 while (h->root.type == bfd_link_hash_indirect
3562 || h->root.type == bfd_link_hash_warning)
3563 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3564
3565 elf_section_data (sec)->this_hdr.sh_info = h->indx;
3566 }
3567
3568 /* The contents won't be allocated for "ld -r" or objcopy. */
3569 gas = TRUE;
3570 if (sec->contents == NULL)
3571 {
3572 gas = FALSE;
3573 sec->contents = (unsigned char *) bfd_alloc (abfd, sec->size);
3574
3575 /* Arrange for the section to be written out. */
3576 elf_section_data (sec)->this_hdr.contents = sec->contents;
3577 if (sec->contents == NULL)
3578 {
3579 *failedptr = TRUE;
3580 return;
3581 }
3582 }
3583
3584 loc = sec->contents + sec->size;
3585
3586 /* Get the pointer to the first section in the group that gas
3587 squirreled away here. objcopy arranges for this to be set to the
3588 start of the input section group. */
3589 first = elt = elf_next_in_group (sec);
3590
3591 /* First element is a flag word. Rest of section is elf section
3592 indices for all the sections of the group. Write them backwards
3593 just to keep the group in the same order as given in .section
3594 directives, not that it matters. */
3595 while (elt != NULL)
3596 {
3597 asection *s;
3598
3599 s = elt;
3600 if (!gas)
3601 s = s->output_section;
3602 if (s != NULL
3603 && !bfd_is_abs_section (s))
3604 {
3605 struct bfd_elf_section_data *elf_sec = elf_section_data (s);
3606 struct bfd_elf_section_data *input_elf_sec = elf_section_data (elt);
3607
3608 if (elf_sec->rel.hdr != NULL
3609 && (gas
3610 || (input_elf_sec->rel.hdr != NULL
3611 && input_elf_sec->rel.hdr->sh_flags & SHF_GROUP) != 0))
3612 {
3613 elf_sec->rel.hdr->sh_flags |= SHF_GROUP;
3614 loc -= 4;
3615 H_PUT_32 (abfd, elf_sec->rel.idx, loc);
3616 }
3617 if (elf_sec->rela.hdr != NULL
3618 && (gas
3619 || (input_elf_sec->rela.hdr != NULL
3620 && input_elf_sec->rela.hdr->sh_flags & SHF_GROUP) != 0))
3621 {
3622 elf_sec->rela.hdr->sh_flags |= SHF_GROUP;
3623 loc -= 4;
3624 H_PUT_32 (abfd, elf_sec->rela.idx, loc);
3625 }
3626 loc -= 4;
3627 H_PUT_32 (abfd, elf_sec->this_idx, loc);
3628 }
3629 elt = elf_next_in_group (elt);
3630 if (elt == first)
3631 break;
3632 }
3633
3634 loc -= 4;
3635 BFD_ASSERT (loc == sec->contents);
3636
3637 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
3638 }
3639
3640 /* Given NAME, the name of a relocation section stripped of its
3641 .rel/.rela prefix, return the section in ABFD to which the
3642 relocations apply. */
3643
3644 asection *
3645 _bfd_elf_plt_get_reloc_section (bfd *abfd, const char *name)
3646 {
3647 /* If a target needs .got.plt section, relocations in rela.plt/rel.plt
3648 section likely apply to .got.plt or .got section. */
3649 if (get_elf_backend_data (abfd)->want_got_plt
3650 && strcmp (name, ".plt") == 0)
3651 {
3652 asection *sec;
3653
3654 name = ".got.plt";
3655 sec = bfd_get_section_by_name (abfd, name);
3656 if (sec != NULL)
3657 return sec;
3658 name = ".got";
3659 }
3660
3661 return bfd_get_section_by_name (abfd, name);
3662 }
3663
3664 /* Return the section to which RELOC_SEC applies. */
3665
3666 static asection *
3667 elf_get_reloc_section (asection *reloc_sec)
3668 {
3669 const char *name;
3670 unsigned int type;
3671 bfd *abfd;
3672 const struct elf_backend_data *bed;
3673
3674 type = elf_section_data (reloc_sec)->this_hdr.sh_type;
3675 if (type != SHT_REL && type != SHT_RELA)
3676 return NULL;
3677
3678 /* We look up the section the relocs apply to by name. */
3679 name = reloc_sec->name;
3680 if (strncmp (name, ".rel", 4) != 0)
3681 return NULL;
3682 name += 4;
3683 if (type == SHT_RELA && *name++ != 'a')
3684 return NULL;
3685
3686 abfd = reloc_sec->owner;
3687 bed = get_elf_backend_data (abfd);
3688 return bed->get_reloc_section (abfd, name);
3689 }
3690
3691 /* Assign all ELF section numbers. The dummy first section is handled here
3692 too. The link/info pointers for the standard section types are filled
3693 in here too, while we're at it. LINK_INFO will be 0 when arriving
3694 here for objcopy, and when using the generic ELF linker. */
3695
3696 static bfd_boolean
3697 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
3698 {
3699 struct elf_obj_tdata *t = elf_tdata (abfd);
3700 asection *sec;
3701 unsigned int section_number;
3702 Elf_Internal_Shdr **i_shdrp;
3703 struct bfd_elf_section_data *d;
3704 bfd_boolean need_symtab;
3705 size_t amt;
3706
3707 section_number = 1;
3708
3709 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
3710
3711 /* SHT_GROUP sections are in relocatable files only. */
3712 if (link_info == NULL || !link_info->resolve_section_groups)
3713 {
3714 size_t reloc_count = 0;
3715
3716 /* Put SHT_GROUP sections first. */
3717 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3718 {
3719 d = elf_section_data (sec);
3720
3721 if (d->this_hdr.sh_type == SHT_GROUP)
3722 {
3723 if (sec->flags & SEC_LINKER_CREATED)
3724 {
3725 /* Remove the linker created SHT_GROUP sections. */
3726 bfd_section_list_remove (abfd, sec);
3727 abfd->section_count--;
3728 }
3729 else
3730 d->this_idx = section_number++;
3731 }
3732
3733 /* Count relocations. */
3734 reloc_count += sec->reloc_count;
3735 }
3736
3737 /* Clear HAS_RELOC if there are no relocations. */
3738 if (reloc_count == 0)
3739 abfd->flags &= ~HAS_RELOC;
3740 }
3741
3742 for (sec = abfd->sections; sec; sec = sec->next)
3743 {
3744 d = elf_section_data (sec);
3745
3746 if (d->this_hdr.sh_type != SHT_GROUP)
3747 d->this_idx = section_number++;
3748 if (d->this_hdr.sh_name != (unsigned int) -1)
3749 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
3750 if (d->rel.hdr)
3751 {
3752 d->rel.idx = section_number++;
3753 if (d->rel.hdr->sh_name != (unsigned int) -1)
3754 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel.hdr->sh_name);
3755 }
3756 else
3757 d->rel.idx = 0;
3758
3759 if (d->rela.hdr)
3760 {
3761 d->rela.idx = section_number++;
3762 if (d->rela.hdr->sh_name != (unsigned int) -1)
3763 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rela.hdr->sh_name);
3764 }
3765 else
3766 d->rela.idx = 0;
3767 }
3768
3769 need_symtab = (bfd_get_symcount (abfd) > 0
3770 || (link_info == NULL
3771 && ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
3772 == HAS_RELOC)));
3773 if (need_symtab)
3774 {
3775 elf_onesymtab (abfd) = section_number++;
3776 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
3777 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
3778 {
3779 elf_section_list *entry;
3780
3781 BFD_ASSERT (elf_symtab_shndx_list (abfd) == NULL);
3782
3783 entry = bfd_zalloc (abfd, sizeof (*entry));
3784 entry->ndx = section_number++;
3785 elf_symtab_shndx_list (abfd) = entry;
3786 entry->hdr.sh_name
3787 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3788 ".symtab_shndx", FALSE);
3789 if (entry->hdr.sh_name == (unsigned int) -1)
3790 return FALSE;
3791 }
3792 elf_strtab_sec (abfd) = section_number++;
3793 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3794 }
3795
3796 elf_shstrtab_sec (abfd) = section_number++;
3797 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
3798 elf_elfheader (abfd)->e_shstrndx = elf_shstrtab_sec (abfd);
3799
3800 if (section_number >= SHN_LORESERVE)
3801 {
3802 /* xgettext:c-format */
3803 _bfd_error_handler (_("%pB: too many sections: %u"),
3804 abfd, section_number);
3805 return FALSE;
3806 }
3807
3808 elf_numsections (abfd) = section_number;
3809 elf_elfheader (abfd)->e_shnum = section_number;
3810
3811 /* Set up the list of section header pointers, in agreement with the
3812 indices. */
3813 amt = section_number * sizeof (Elf_Internal_Shdr *);
3814 i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc (abfd, amt);
3815 if (i_shdrp == NULL)
3816 return FALSE;
3817
3818 i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd,
3819 sizeof (Elf_Internal_Shdr));
3820 if (i_shdrp[0] == NULL)
3821 {
3822 bfd_release (abfd, i_shdrp);
3823 return FALSE;
3824 }
3825
3826 elf_elfsections (abfd) = i_shdrp;
3827
3828 i_shdrp[elf_shstrtab_sec (abfd)] = &t->shstrtab_hdr;
3829 if (need_symtab)
3830 {
3831 i_shdrp[elf_onesymtab (abfd)] = &t->symtab_hdr;
3832 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
3833 {
3834 elf_section_list * entry = elf_symtab_shndx_list (abfd);
3835 BFD_ASSERT (entry != NULL);
3836 i_shdrp[entry->ndx] = & entry->hdr;
3837 entry->hdr.sh_link = elf_onesymtab (abfd);
3838 }
3839 i_shdrp[elf_strtab_sec (abfd)] = &t->strtab_hdr;
3840 t->symtab_hdr.sh_link = elf_strtab_sec (abfd);
3841 }
3842
3843 for (sec = abfd->sections; sec; sec = sec->next)
3844 {
3845 asection *s;
3846
3847 d = elf_section_data (sec);
3848
3849 i_shdrp[d->this_idx] = &d->this_hdr;
3850 if (d->rel.idx != 0)
3851 i_shdrp[d->rel.idx] = d->rel.hdr;
3852 if (d->rela.idx != 0)
3853 i_shdrp[d->rela.idx] = d->rela.hdr;
3854
3855 /* Fill in the sh_link and sh_info fields while we're at it. */
3856
3857 /* sh_link of a reloc section is the section index of the symbol
3858 table. sh_info is the section index of the section to which
3859 the relocation entries apply. */
3860 if (d->rel.idx != 0)
3861 {
3862 d->rel.hdr->sh_link = elf_onesymtab (abfd);
3863 d->rel.hdr->sh_info = d->this_idx;
3864 d->rel.hdr->sh_flags |= SHF_INFO_LINK;
3865 }
3866 if (d->rela.idx != 0)
3867 {
3868 d->rela.hdr->sh_link = elf_onesymtab (abfd);
3869 d->rela.hdr->sh_info = d->this_idx;
3870 d->rela.hdr->sh_flags |= SHF_INFO_LINK;
3871 }
3872
3873 /* We need to set up sh_link for SHF_LINK_ORDER. */
3874 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3875 {
3876 s = elf_linked_to_section (sec);
3877 /* We can now have a NULL linked section pointer.
3878 This happens when the sh_link field is 0, which is done
3879 when a linked to section is discarded but the linking
3880 section has been retained for some reason. */
3881 if (s)
3882 {
3883 /* Check discarded linkonce section. */
3884 if (discarded_section (s))
3885 {
3886 asection *kept;
3887 _bfd_error_handler
3888 /* xgettext:c-format */
3889 (_("%pB: sh_link of section `%pA' points to"
3890 " discarded section `%pA' of `%pB'"),
3891 abfd, d->this_hdr.bfd_section, s, s->owner);
3892 /* Point to the kept section if it has the same
3893 size as the discarded one. */
3894 kept = _bfd_elf_check_kept_section (s, link_info);
3895 if (kept == NULL)
3896 {
3897 bfd_set_error (bfd_error_bad_value);
3898 return FALSE;
3899 }
3900 s = kept;
3901 }
3902 /* Handle objcopy. */
3903 else if (s->output_section == NULL)
3904 {
3905 _bfd_error_handler
3906 /* xgettext:c-format */
3907 (_("%pB: sh_link of section `%pA' points to"
3908 " removed section `%pA' of `%pB'"),
3909 abfd, d->this_hdr.bfd_section, s, s->owner);
3910 bfd_set_error (bfd_error_bad_value);
3911 return FALSE;
3912 }
3913 s = s->output_section;
3914 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3915 }
3916 }
3917
3918 switch (d->this_hdr.sh_type)
3919 {
3920 case SHT_REL:
3921 case SHT_RELA:
3922 /* A reloc section which we are treating as a normal BFD
3923 section. sh_link is the section index of the symbol
3924 table. sh_info is the section index of the section to
3925 which the relocation entries apply. We assume that an
3926 allocated reloc section uses the dynamic symbol table.
3927 FIXME: How can we be sure? */
3928 s = bfd_get_section_by_name (abfd, ".dynsym");
3929 if (s != NULL)
3930 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3931
3932 s = elf_get_reloc_section (sec);
3933 if (s != NULL)
3934 {
3935 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3936 d->this_hdr.sh_flags |= SHF_INFO_LINK;
3937 }
3938 break;
3939
3940 case SHT_STRTAB:
3941 /* We assume that a section named .stab*str is a stabs
3942 string section. We look for a section with the same name
3943 but without the trailing ``str'', and set its sh_link
3944 field to point to this section. */
3945 if (startswith (sec->name, ".stab")
3946 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3947 {
3948 size_t len;
3949 char *alc;
3950
3951 len = strlen (sec->name);
3952 alc = (char *) bfd_malloc (len - 2);
3953 if (alc == NULL)
3954 return FALSE;
3955 memcpy (alc, sec->name, len - 3);
3956 alc[len - 3] = '\0';
3957 s = bfd_get_section_by_name (abfd, alc);
3958 free (alc);
3959 if (s != NULL)
3960 {
3961 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3962
3963 /* This is a .stab section. */
3964 elf_section_data (s)->this_hdr.sh_entsize = 12;
3965 }
3966 }
3967 break;
3968
3969 case SHT_DYNAMIC:
3970 case SHT_DYNSYM:
3971 case SHT_GNU_verneed:
3972 case SHT_GNU_verdef:
3973 /* sh_link is the section header index of the string table
3974 used for the dynamic entries, or the symbol table, or the
3975 version strings. */
3976 s = bfd_get_section_by_name (abfd, ".dynstr");
3977 if (s != NULL)
3978 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3979 break;
3980
3981 case SHT_GNU_LIBLIST:
3982 /* sh_link is the section header index of the prelink library
3983 list used for the dynamic entries, or the symbol table, or
3984 the version strings. */
3985 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3986 ? ".dynstr" : ".gnu.libstr");
3987 if (s != NULL)
3988 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3989 break;
3990
3991 case SHT_HASH:
3992 case SHT_GNU_HASH:
3993 case SHT_GNU_versym:
3994 /* sh_link is the section header index of the symbol table
3995 this hash table or version table is for. */
3996 s = bfd_get_section_by_name (abfd, ".dynsym");
3997 if (s != NULL)
3998 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3999 break;
4000
4001 case SHT_GROUP:
4002 d->this_hdr.sh_link = elf_onesymtab (abfd);
4003 }
4004 }
4005
4006 /* Delay setting sh_name to _bfd_elf_write_object_contents so that
4007 _bfd_elf_assign_file_positions_for_non_load can convert DWARF
4008 debug section name from .debug_* to .zdebug_* if needed. */
4009
4010 return TRUE;
4011 }
4012
4013 static bfd_boolean
4014 sym_is_global (bfd *abfd, asymbol *sym)
4015 {
4016 /* If the backend has a special mapping, use it. */
4017 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4018 if (bed->elf_backend_sym_is_global)
4019 return (*bed->elf_backend_sym_is_global) (abfd, sym);
4020
4021 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0
4022 || bfd_is_und_section (bfd_asymbol_section (sym))
4023 || bfd_is_com_section (bfd_asymbol_section (sym)));
4024 }
4025
4026 /* Filter global symbols of ABFD to include in the import library. All
4027 SYMCOUNT symbols of ABFD can be examined from their pointers in
4028 SYMS. Pointers of symbols to keep should be stored contiguously at
4029 the beginning of that array.
4030
4031 Returns the number of symbols to keep. */
4032
4033 unsigned int
4034 _bfd_elf_filter_global_symbols (bfd *abfd, struct bfd_link_info *info,
4035 asymbol **syms, long symcount)
4036 {
4037 long src_count, dst_count = 0;
4038
4039 for (src_count = 0; src_count < symcount; src_count++)
4040 {
4041 asymbol *sym = syms[src_count];
4042 char *name = (char *) bfd_asymbol_name (sym);
4043 struct bfd_link_hash_entry *h;
4044
4045 if (!sym_is_global (abfd, sym))
4046 continue;
4047
4048 h = bfd_link_hash_lookup (info->hash, name, FALSE, FALSE, FALSE);
4049 if (h == NULL)
4050 continue;
4051 if (h->type != bfd_link_hash_defined && h->type != bfd_link_hash_defweak)
4052 continue;
4053 if (h->linker_def || h->ldscript_def)
4054 continue;
4055
4056 syms[dst_count++] = sym;
4057 }
4058
4059 syms[dst_count] = NULL;
4060
4061 return dst_count;
4062 }
4063
4064 /* Don't output section symbols for sections that are not going to be
4065 output, that are duplicates or there is no BFD section. */
4066
4067 static bfd_boolean
4068 ignore_section_sym (bfd *abfd, asymbol *sym)
4069 {
4070 elf_symbol_type *type_ptr;
4071
4072 if (sym == NULL)
4073 return FALSE;
4074
4075 if ((sym->flags & BSF_SECTION_SYM) == 0)
4076 return FALSE;
4077
4078 /* Ignore the section symbol if it isn't used. */
4079 if ((sym->flags & BSF_SECTION_SYM_USED) == 0)
4080 return TRUE;
4081
4082 if (sym->section == NULL)
4083 return TRUE;
4084
4085 type_ptr = elf_symbol_from (sym);
4086 return ((type_ptr != NULL
4087 && type_ptr->internal_elf_sym.st_shndx != 0
4088 && bfd_is_abs_section (sym->section))
4089 || !(sym->section->owner == abfd
4090 || (sym->section->output_section != NULL
4091 && sym->section->output_section->owner == abfd
4092 && sym->section->output_offset == 0)
4093 || bfd_is_abs_section (sym->section)));
4094 }
4095
4096 /* Map symbol from it's internal number to the external number, moving
4097 all local symbols to be at the head of the list. */
4098
4099 static bfd_boolean
4100 elf_map_symbols (bfd *abfd, unsigned int *pnum_locals)
4101 {
4102 unsigned int symcount = bfd_get_symcount (abfd);
4103 asymbol **syms = bfd_get_outsymbols (abfd);
4104 asymbol **sect_syms;
4105 unsigned int num_locals = 0;
4106 unsigned int num_globals = 0;
4107 unsigned int num_locals2 = 0;
4108 unsigned int num_globals2 = 0;
4109 unsigned int max_index = 0;
4110 unsigned int idx;
4111 asection *asect;
4112 asymbol **new_syms;
4113 size_t amt;
4114
4115 #ifdef DEBUG
4116 fprintf (stderr, "elf_map_symbols\n");
4117 fflush (stderr);
4118 #endif
4119
4120 for (asect = abfd->sections; asect; asect = asect->next)
4121 {
4122 if (max_index < asect->index)
4123 max_index = asect->index;
4124 }
4125
4126 max_index++;
4127 amt = max_index * sizeof (asymbol *);
4128 sect_syms = (asymbol **) bfd_zalloc (abfd, amt);
4129 if (sect_syms == NULL)
4130 return FALSE;
4131 elf_section_syms (abfd) = sect_syms;
4132 elf_num_section_syms (abfd) = max_index;
4133
4134 /* Init sect_syms entries for any section symbols we have already
4135 decided to output. */
4136 for (idx = 0; idx < symcount; idx++)
4137 {
4138 asymbol *sym = syms[idx];
4139
4140 if ((sym->flags & BSF_SECTION_SYM) != 0
4141 && sym->value == 0
4142 && !ignore_section_sym (abfd, sym)
4143 && !bfd_is_abs_section (sym->section))
4144 {
4145 asection *sec = sym->section;
4146
4147 if (sec->owner != abfd)
4148 sec = sec->output_section;
4149
4150 sect_syms[sec->index] = syms[idx];
4151 }
4152 }
4153
4154 /* Classify all of the symbols. */
4155 for (idx = 0; idx < symcount; idx++)
4156 {
4157 if (sym_is_global (abfd, syms[idx]))
4158 num_globals++;
4159 else if (!ignore_section_sym (abfd, syms[idx]))
4160 num_locals++;
4161 }
4162
4163 /* We will be adding a section symbol for each normal BFD section. Most
4164 sections will already have a section symbol in outsymbols, but
4165 eg. SHT_GROUP sections will not, and we need the section symbol mapped
4166 at least in that case. */
4167 for (asect = abfd->sections; asect; asect = asect->next)
4168 {
4169 asymbol *sym = asect->symbol;
4170 /* Don't include ignored section symbols. */
4171 if (!ignore_section_sym (abfd, sym)
4172 && sect_syms[asect->index] == NULL)
4173 {
4174 if (!sym_is_global (abfd, asect->symbol))
4175 num_locals++;
4176 else
4177 num_globals++;
4178 }
4179 }
4180
4181 /* Now sort the symbols so the local symbols are first. */
4182 amt = (num_locals + num_globals) * sizeof (asymbol *);
4183 new_syms = (asymbol **) bfd_alloc (abfd, amt);
4184 if (new_syms == NULL)
4185 return FALSE;
4186
4187 for (idx = 0; idx < symcount; idx++)
4188 {
4189 asymbol *sym = syms[idx];
4190 unsigned int i;
4191
4192 if (sym_is_global (abfd, sym))
4193 i = num_locals + num_globals2++;
4194 /* Don't include ignored section symbols. */
4195 else if (!ignore_section_sym (abfd, sym))
4196 i = num_locals2++;
4197 else
4198 continue;
4199 new_syms[i] = sym;
4200 sym->udata.i = i + 1;
4201 }
4202 for (asect = abfd->sections; asect; asect = asect->next)
4203 {
4204 asymbol *sym = asect->symbol;
4205 if (!ignore_section_sym (abfd, sym)
4206 && sect_syms[asect->index] == NULL)
4207 {
4208 unsigned int i;
4209
4210 sect_syms[asect->index] = sym;
4211 if (!sym_is_global (abfd, sym))
4212 i = num_locals2++;
4213 else
4214 i = num_locals + num_globals2++;
4215 new_syms[i] = sym;
4216 sym->udata.i = i + 1;
4217 }
4218 }
4219
4220 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
4221
4222 *pnum_locals = num_locals;
4223 return TRUE;
4224 }
4225
4226 /* Align to the maximum file alignment that could be required for any
4227 ELF data structure. */
4228
4229 static inline file_ptr
4230 align_file_position (file_ptr off, int align)
4231 {
4232 return (off + align - 1) & ~(align - 1);
4233 }
4234
4235 /* Assign a file position to a section, optionally aligning to the
4236 required section alignment. */
4237
4238 file_ptr
4239 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
4240 file_ptr offset,
4241 bfd_boolean align)
4242 {
4243 if (align && i_shdrp->sh_addralign > 1)
4244 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
4245 i_shdrp->sh_offset = offset;
4246 if (i_shdrp->bfd_section != NULL)
4247 i_shdrp->bfd_section->filepos = offset;
4248 if (i_shdrp->sh_type != SHT_NOBITS)
4249 offset += i_shdrp->sh_size;
4250 return offset;
4251 }
4252
4253 /* Compute the file positions we are going to put the sections at, and
4254 otherwise prepare to begin writing out the ELF file. If LINK_INFO
4255 is not NULL, this is being called by the ELF backend linker. */
4256
4257 bfd_boolean
4258 _bfd_elf_compute_section_file_positions (bfd *abfd,
4259 struct bfd_link_info *link_info)
4260 {
4261 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4262 struct fake_section_arg fsargs;
4263 bfd_boolean failed;
4264 struct elf_strtab_hash *strtab = NULL;
4265 Elf_Internal_Shdr *shstrtab_hdr;
4266 bfd_boolean need_symtab;
4267
4268 if (abfd->output_has_begun)
4269 return TRUE;
4270
4271 /* Do any elf backend specific processing first. */
4272 if (bed->elf_backend_begin_write_processing)
4273 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
4274
4275 if (!(*bed->elf_backend_init_file_header) (abfd, link_info))
4276 return FALSE;
4277
4278 fsargs.failed = FALSE;
4279 fsargs.link_info = link_info;
4280 bfd_map_over_sections (abfd, elf_fake_sections, &fsargs);
4281 if (fsargs.failed)
4282 return FALSE;
4283
4284 if (!assign_section_numbers (abfd, link_info))
4285 return FALSE;
4286
4287 /* The backend linker builds symbol table information itself. */
4288 need_symtab = (link_info == NULL
4289 && (bfd_get_symcount (abfd) > 0
4290 || ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
4291 == HAS_RELOC)));
4292 if (need_symtab)
4293 {
4294 /* Non-zero if doing a relocatable link. */
4295 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
4296
4297 if (! swap_out_syms (abfd, &strtab, relocatable_p, link_info))
4298 return FALSE;
4299 }
4300
4301 failed = FALSE;
4302 if (link_info == NULL)
4303 {
4304 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
4305 if (failed)
4306 return FALSE;
4307 }
4308
4309 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
4310 /* sh_name was set in init_file_header. */
4311 shstrtab_hdr->sh_type = SHT_STRTAB;
4312 shstrtab_hdr->sh_flags = bed->elf_strtab_flags;
4313 shstrtab_hdr->sh_addr = 0;
4314 /* sh_size is set in _bfd_elf_assign_file_positions_for_non_load. */
4315 shstrtab_hdr->sh_entsize = 0;
4316 shstrtab_hdr->sh_link = 0;
4317 shstrtab_hdr->sh_info = 0;
4318 /* sh_offset is set in _bfd_elf_assign_file_positions_for_non_load. */
4319 shstrtab_hdr->sh_addralign = 1;
4320
4321 if (!assign_file_positions_except_relocs (abfd, link_info))
4322 return FALSE;
4323
4324 if (need_symtab)
4325 {
4326 file_ptr off;
4327 Elf_Internal_Shdr *hdr;
4328
4329 off = elf_next_file_pos (abfd);
4330
4331 hdr = & elf_symtab_hdr (abfd);
4332 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4333
4334 if (elf_symtab_shndx_list (abfd) != NULL)
4335 {
4336 hdr = & elf_symtab_shndx_list (abfd)->hdr;
4337 if (hdr->sh_size != 0)
4338 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4339 /* FIXME: What about other symtab_shndx sections in the list ? */
4340 }
4341
4342 hdr = &elf_tdata (abfd)->strtab_hdr;
4343 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4344
4345 elf_next_file_pos (abfd) = off;
4346
4347 /* Now that we know where the .strtab section goes, write it
4348 out. */
4349 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
4350 || ! _bfd_elf_strtab_emit (abfd, strtab))
4351 return FALSE;
4352 _bfd_elf_strtab_free (strtab);
4353 }
4354
4355 abfd->output_has_begun = TRUE;
4356
4357 return TRUE;
4358 }
4359
4360 /* Make an initial estimate of the size of the program header. If we
4361 get the number wrong here, we'll redo section placement. */
4362
4363 static bfd_size_type
4364 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
4365 {
4366 size_t segs;
4367 asection *s;
4368 const struct elf_backend_data *bed;
4369
4370 /* Assume we will need exactly two PT_LOAD segments: one for text
4371 and one for data. */
4372 segs = 2;
4373
4374 s = bfd_get_section_by_name (abfd, ".interp");
4375 if (s != NULL && (s->flags & SEC_LOAD) != 0 && s->size != 0)
4376 {
4377 /* If we have a loadable interpreter section, we need a
4378 PT_INTERP segment. In this case, assume we also need a
4379 PT_PHDR segment, although that may not be true for all
4380 targets. */
4381 segs += 2;
4382 }
4383
4384 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4385 {
4386 /* We need a PT_DYNAMIC segment. */
4387 ++segs;
4388 }
4389
4390 if (info != NULL && info->relro)
4391 {
4392 /* We need a PT_GNU_RELRO segment. */
4393 ++segs;
4394 }
4395
4396 if (elf_eh_frame_hdr (abfd))
4397 {
4398 /* We need a PT_GNU_EH_FRAME segment. */
4399 ++segs;
4400 }
4401
4402 if (elf_stack_flags (abfd))
4403 {
4404 /* We need a PT_GNU_STACK segment. */
4405 ++segs;
4406 }
4407
4408 s = bfd_get_section_by_name (abfd,
4409 NOTE_GNU_PROPERTY_SECTION_NAME);
4410 if (s != NULL && s->size != 0)
4411 {
4412 /* We need a PT_GNU_PROPERTY segment. */
4413 ++segs;
4414 }
4415
4416 for (s = abfd->sections; s != NULL; s = s->next)
4417 {
4418 if ((s->flags & SEC_LOAD) != 0
4419 && elf_section_type (s) == SHT_NOTE)
4420 {
4421 unsigned int alignment_power;
4422 /* We need a PT_NOTE segment. */
4423 ++segs;
4424 /* Try to create just one PT_NOTE segment for all adjacent
4425 loadable SHT_NOTE sections. gABI requires that within a
4426 PT_NOTE segment (and also inside of each SHT_NOTE section)
4427 each note should have the same alignment. So we check
4428 whether the sections are correctly aligned. */
4429 alignment_power = s->alignment_power;
4430 while (s->next != NULL
4431 && s->next->alignment_power == alignment_power
4432 && (s->next->flags & SEC_LOAD) != 0
4433 && elf_section_type (s->next) == SHT_NOTE)
4434 s = s->next;
4435 }
4436 }
4437
4438 for (s = abfd->sections; s != NULL; s = s->next)
4439 {
4440 if (s->flags & SEC_THREAD_LOCAL)
4441 {
4442 /* We need a PT_TLS segment. */
4443 ++segs;
4444 break;
4445 }
4446 }
4447
4448 bed = get_elf_backend_data (abfd);
4449
4450 if ((abfd->flags & D_PAGED) != 0
4451 && (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_mbind) != 0)
4452 {
4453 /* Add a PT_GNU_MBIND segment for each mbind section. */
4454 bfd_vma commonpagesize;
4455 unsigned int page_align_power;
4456
4457 if (info != NULL)
4458 commonpagesize = info->commonpagesize;
4459 else
4460 commonpagesize = bed->commonpagesize;
4461 page_align_power = bfd_log2 (commonpagesize);
4462 for (s = abfd->sections; s != NULL; s = s->next)
4463 if (elf_section_flags (s) & SHF_GNU_MBIND)
4464 {
4465 if (elf_section_data (s)->this_hdr.sh_info > PT_GNU_MBIND_NUM)
4466 {
4467 _bfd_error_handler
4468 /* xgettext:c-format */
4469 (_("%pB: GNU_MBIND section `%pA' has invalid "
4470 "sh_info field: %d"),
4471 abfd, s, elf_section_data (s)->this_hdr.sh_info);
4472 continue;
4473 }
4474 /* Align mbind section to page size. */
4475 if (s->alignment_power < page_align_power)
4476 s->alignment_power = page_align_power;
4477 segs ++;
4478 }
4479 }
4480
4481 /* Let the backend count up any program headers it might need. */
4482 if (bed->elf_backend_additional_program_headers)
4483 {
4484 int a;
4485
4486 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
4487 if (a == -1)
4488 abort ();
4489 segs += a;
4490 }
4491
4492 return segs * bed->s->sizeof_phdr;
4493 }
4494
4495 /* Find the segment that contains the output_section of section. */
4496
4497 Elf_Internal_Phdr *
4498 _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
4499 {
4500 struct elf_segment_map *m;
4501 Elf_Internal_Phdr *p;
4502
4503 for (m = elf_seg_map (abfd), p = elf_tdata (abfd)->phdr;
4504 m != NULL;
4505 m = m->next, p++)
4506 {
4507 int i;
4508
4509 for (i = m->count - 1; i >= 0; i--)
4510 if (m->sections[i] == section)
4511 return p;
4512 }
4513
4514 return NULL;
4515 }
4516
4517 /* Create a mapping from a set of sections to a program segment. */
4518
4519 static struct elf_segment_map *
4520 make_mapping (bfd *abfd,
4521 asection **sections,
4522 unsigned int from,
4523 unsigned int to,
4524 bfd_boolean phdr)
4525 {
4526 struct elf_segment_map *m;
4527 unsigned int i;
4528 asection **hdrpp;
4529 size_t amt;
4530
4531 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
4532 amt += (to - from) * sizeof (asection *);
4533 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4534 if (m == NULL)
4535 return NULL;
4536 m->next = NULL;
4537 m->p_type = PT_LOAD;
4538 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
4539 m->sections[i - from] = *hdrpp;
4540 m->count = to - from;
4541
4542 if (from == 0 && phdr)
4543 {
4544 /* Include the headers in the first PT_LOAD segment. */
4545 m->includes_filehdr = 1;
4546 m->includes_phdrs = 1;
4547 }
4548
4549 return m;
4550 }
4551
4552 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
4553 on failure. */
4554
4555 struct elf_segment_map *
4556 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
4557 {
4558 struct elf_segment_map *m;
4559
4560 m = (struct elf_segment_map *) bfd_zalloc (abfd,
4561 sizeof (struct elf_segment_map));
4562 if (m == NULL)
4563 return NULL;
4564 m->next = NULL;
4565 m->p_type = PT_DYNAMIC;
4566 m->count = 1;
4567 m->sections[0] = dynsec;
4568
4569 return m;
4570 }
4571
4572 /* Possibly add or remove segments from the segment map. */
4573
4574 static bfd_boolean
4575 elf_modify_segment_map (bfd *abfd,
4576 struct bfd_link_info *info,
4577 bfd_boolean remove_empty_load)
4578 {
4579 struct elf_segment_map **m;
4580 const struct elf_backend_data *bed;
4581
4582 /* The placement algorithm assumes that non allocated sections are
4583 not in PT_LOAD segments. We ensure this here by removing such
4584 sections from the segment map. We also remove excluded
4585 sections. Finally, any PT_LOAD segment without sections is
4586 removed. */
4587 m = &elf_seg_map (abfd);
4588 while (*m)
4589 {
4590 unsigned int i, new_count;
4591
4592 for (new_count = 0, i = 0; i < (*m)->count; i++)
4593 {
4594 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
4595 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
4596 || (*m)->p_type != PT_LOAD))
4597 {
4598 (*m)->sections[new_count] = (*m)->sections[i];
4599 new_count++;
4600 }
4601 }
4602 (*m)->count = new_count;
4603
4604 if (remove_empty_load
4605 && (*m)->p_type == PT_LOAD
4606 && (*m)->count == 0
4607 && !(*m)->includes_phdrs)
4608 *m = (*m)->next;
4609 else
4610 m = &(*m)->next;
4611 }
4612
4613 bed = get_elf_backend_data (abfd);
4614 if (bed->elf_backend_modify_segment_map != NULL)
4615 {
4616 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
4617 return FALSE;
4618 }
4619
4620 return TRUE;
4621 }
4622
4623 #define IS_TBSS(s) \
4624 ((s->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) == SEC_THREAD_LOCAL)
4625
4626 /* Set up a mapping from BFD sections to program segments. */
4627
4628 bfd_boolean
4629 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
4630 {
4631 unsigned int count;
4632 struct elf_segment_map *m;
4633 asection **sections = NULL;
4634 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4635 bfd_boolean no_user_phdrs;
4636
4637 no_user_phdrs = elf_seg_map (abfd) == NULL;
4638
4639 if (info != NULL)
4640 info->user_phdrs = !no_user_phdrs;
4641
4642 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
4643 {
4644 asection *s;
4645 unsigned int i;
4646 struct elf_segment_map *mfirst;
4647 struct elf_segment_map **pm;
4648 asection *last_hdr;
4649 bfd_vma last_size;
4650 unsigned int hdr_index;
4651 bfd_vma maxpagesize;
4652 asection **hdrpp;
4653 bfd_boolean phdr_in_segment;
4654 bfd_boolean writable;
4655 bfd_boolean executable;
4656 unsigned int tls_count = 0;
4657 asection *first_tls = NULL;
4658 asection *first_mbind = NULL;
4659 asection *dynsec, *eh_frame_hdr;
4660 size_t amt;
4661 bfd_vma addr_mask, wrap_to = 0; /* Bytes. */
4662 bfd_size_type phdr_size; /* Octets/bytes. */
4663 unsigned int opb = bfd_octets_per_byte (abfd, NULL);
4664
4665 /* Select the allocated sections, and sort them. */
4666
4667 amt = bfd_count_sections (abfd) * sizeof (asection *);
4668 sections = (asection **) bfd_malloc (amt);
4669 if (sections == NULL)
4670 goto error_return;
4671
4672 /* Calculate top address, avoiding undefined behaviour of shift
4673 left operator when shift count is equal to size of type
4674 being shifted. */
4675 addr_mask = ((bfd_vma) 1 << (bfd_arch_bits_per_address (abfd) - 1)) - 1;
4676 addr_mask = (addr_mask << 1) + 1;
4677
4678 i = 0;
4679 for (s = abfd->sections; s != NULL; s = s->next)
4680 {
4681 if ((s->flags & SEC_ALLOC) != 0)
4682 {
4683 /* target_index is unused until bfd_elf_final_link
4684 starts output of section symbols. Use it to make
4685 qsort stable. */
4686 s->target_index = i;
4687 sections[i] = s;
4688 ++i;
4689 /* A wrapping section potentially clashes with header. */
4690 if (((s->lma + s->size / opb) & addr_mask) < (s->lma & addr_mask))
4691 wrap_to = (s->lma + s->size / opb) & addr_mask;
4692 }
4693 }
4694 BFD_ASSERT (i <= bfd_count_sections (abfd));
4695 count = i;
4696
4697 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
4698
4699 phdr_size = elf_program_header_size (abfd);
4700 if (phdr_size == (bfd_size_type) -1)
4701 phdr_size = get_program_header_size (abfd, info);
4702 phdr_size += bed->s->sizeof_ehdr;
4703 /* phdr_size is compared to LMA values which are in bytes. */
4704 phdr_size /= opb;
4705 if (info != NULL)
4706 maxpagesize = info->maxpagesize;
4707 else
4708 maxpagesize = bed->maxpagesize;
4709 if (maxpagesize == 0)
4710 maxpagesize = 1;
4711 phdr_in_segment = info != NULL && info->load_phdrs;
4712 if (count != 0
4713 && (((sections[0]->lma & addr_mask) & (maxpagesize - 1))
4714 >= (phdr_size & (maxpagesize - 1))))
4715 /* For compatibility with old scripts that may not be using
4716 SIZEOF_HEADERS, add headers when it looks like space has
4717 been left for them. */
4718 phdr_in_segment = TRUE;
4719
4720 /* Build the mapping. */
4721 mfirst = NULL;
4722 pm = &mfirst;
4723
4724 /* If we have a .interp section, then create a PT_PHDR segment for
4725 the program headers and a PT_INTERP segment for the .interp
4726 section. */
4727 s = bfd_get_section_by_name (abfd, ".interp");
4728 if (s != NULL && (s->flags & SEC_LOAD) != 0 && s->size != 0)
4729 {
4730 amt = sizeof (struct elf_segment_map);
4731 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4732 if (m == NULL)
4733 goto error_return;
4734 m->next = NULL;
4735 m->p_type = PT_PHDR;
4736 m->p_flags = PF_R;
4737 m->p_flags_valid = 1;
4738 m->includes_phdrs = 1;
4739 phdr_in_segment = TRUE;
4740 *pm = m;
4741 pm = &m->next;
4742
4743 amt = sizeof (struct elf_segment_map);
4744 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4745 if (m == NULL)
4746 goto error_return;
4747 m->next = NULL;
4748 m->p_type = PT_INTERP;
4749 m->count = 1;
4750 m->sections[0] = s;
4751
4752 *pm = m;
4753 pm = &m->next;
4754 }
4755
4756 /* Look through the sections. We put sections in the same program
4757 segment when the start of the second section can be placed within
4758 a few bytes of the end of the first section. */
4759 last_hdr = NULL;
4760 last_size = 0;
4761 hdr_index = 0;
4762 writable = FALSE;
4763 executable = FALSE;
4764 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
4765 if (dynsec != NULL
4766 && (dynsec->flags & SEC_LOAD) == 0)
4767 dynsec = NULL;
4768
4769 if ((abfd->flags & D_PAGED) == 0)
4770 phdr_in_segment = FALSE;
4771
4772 /* Deal with -Ttext or something similar such that the first section
4773 is not adjacent to the program headers. This is an
4774 approximation, since at this point we don't know exactly how many
4775 program headers we will need. */
4776 if (phdr_in_segment && count > 0)
4777 {
4778 bfd_vma phdr_lma; /* Bytes. */
4779 bfd_boolean separate_phdr = FALSE;
4780
4781 phdr_lma = (sections[0]->lma - phdr_size) & addr_mask & -maxpagesize;
4782 if (info != NULL
4783 && info->separate_code
4784 && (sections[0]->flags & SEC_CODE) != 0)
4785 {
4786 /* If data sections should be separate from code and
4787 thus not executable, and the first section is
4788 executable then put the file and program headers in
4789 their own PT_LOAD. */
4790 separate_phdr = TRUE;
4791 if ((((phdr_lma + phdr_size - 1) & addr_mask & -maxpagesize)
4792 == (sections[0]->lma & addr_mask & -maxpagesize)))
4793 {
4794 /* The file and program headers are currently on the
4795 same page as the first section. Put them on the
4796 previous page if we can. */
4797 if (phdr_lma >= maxpagesize)
4798 phdr_lma -= maxpagesize;
4799 else
4800 separate_phdr = FALSE;
4801 }
4802 }
4803 if ((sections[0]->lma & addr_mask) < phdr_lma
4804 || (sections[0]->lma & addr_mask) < phdr_size)
4805 /* If file and program headers would be placed at the end
4806 of memory then it's probably better to omit them. */
4807 phdr_in_segment = FALSE;
4808 else if (phdr_lma < wrap_to)
4809 /* If a section wraps around to where we'll be placing
4810 file and program headers, then the headers will be
4811 overwritten. */
4812 phdr_in_segment = FALSE;
4813 else if (separate_phdr)
4814 {
4815 m = make_mapping (abfd, sections, 0, 0, phdr_in_segment);
4816 if (m == NULL)
4817 goto error_return;
4818 m->p_paddr = phdr_lma * opb;
4819 m->p_vaddr_offset
4820 = (sections[0]->vma - phdr_size) & addr_mask & -maxpagesize;
4821 m->p_paddr_valid = 1;
4822 *pm = m;
4823 pm = &m->next;
4824 phdr_in_segment = FALSE;
4825 }
4826 }
4827
4828 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
4829 {
4830 asection *hdr;
4831 bfd_boolean new_segment;
4832
4833 hdr = *hdrpp;
4834
4835 /* See if this section and the last one will fit in the same
4836 segment. */
4837
4838 if (last_hdr == NULL)
4839 {
4840 /* If we don't have a segment yet, then we don't need a new
4841 one (we build the last one after this loop). */
4842 new_segment = FALSE;
4843 }
4844 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
4845 {
4846 /* If this section has a different relation between the
4847 virtual address and the load address, then we need a new
4848 segment. */
4849 new_segment = TRUE;
4850 }
4851 else if (hdr->lma < last_hdr->lma + last_size
4852 || last_hdr->lma + last_size < last_hdr->lma)
4853 {
4854 /* If this section has a load address that makes it overlap
4855 the previous section, then we need a new segment. */
4856 new_segment = TRUE;
4857 }
4858 else if ((abfd->flags & D_PAGED) != 0
4859 && (((last_hdr->lma + last_size - 1) & -maxpagesize)
4860 == (hdr->lma & -maxpagesize)))
4861 {
4862 /* If we are demand paged then we can't map two disk
4863 pages onto the same memory page. */
4864 new_segment = FALSE;
4865 }
4866 /* In the next test we have to be careful when last_hdr->lma is close
4867 to the end of the address space. If the aligned address wraps
4868 around to the start of the address space, then there are no more
4869 pages left in memory and it is OK to assume that the current
4870 section can be included in the current segment. */
4871 else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
4872 + maxpagesize > last_hdr->lma)
4873 && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
4874 + maxpagesize <= hdr->lma))
4875 {
4876 /* If putting this section in this segment would force us to
4877 skip a page in the segment, then we need a new segment. */
4878 new_segment = TRUE;
4879 }
4880 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
4881 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
4882 {
4883 /* We don't want to put a loaded section after a
4884 nonloaded (ie. bss style) section in the same segment
4885 as that will force the non-loaded section to be loaded.
4886 Consider .tbss sections as loaded for this purpose. */
4887 new_segment = TRUE;
4888 }
4889 else if ((abfd->flags & D_PAGED) == 0)
4890 {
4891 /* If the file is not demand paged, which means that we
4892 don't require the sections to be correctly aligned in the
4893 file, then there is no other reason for a new segment. */
4894 new_segment = FALSE;
4895 }
4896 else if (info != NULL
4897 && info->separate_code
4898 && executable != ((hdr->flags & SEC_CODE) != 0))
4899 {
4900 new_segment = TRUE;
4901 }
4902 else if (! writable
4903 && (hdr->flags & SEC_READONLY) == 0)
4904 {
4905 /* We don't want to put a writable section in a read only
4906 segment. */
4907 new_segment = TRUE;
4908 }
4909 else
4910 {
4911 /* Otherwise, we can use the same segment. */
4912 new_segment = FALSE;
4913 }
4914
4915 /* Allow interested parties a chance to override our decision. */
4916 if (last_hdr != NULL
4917 && info != NULL
4918 && info->callbacks->override_segment_assignment != NULL)
4919 new_segment
4920 = info->callbacks->override_segment_assignment (info, abfd, hdr,
4921 last_hdr,
4922 new_segment);
4923
4924 if (! new_segment)
4925 {
4926 if ((hdr->flags & SEC_READONLY) == 0)
4927 writable = TRUE;
4928 if ((hdr->flags & SEC_CODE) != 0)
4929 executable = TRUE;
4930 last_hdr = hdr;
4931 /* .tbss sections effectively have zero size. */
4932 last_size = (!IS_TBSS (hdr) ? hdr->size : 0) / opb;
4933 continue;
4934 }
4935
4936 /* We need a new program segment. We must create a new program
4937 header holding all the sections from hdr_index until hdr. */
4938
4939 m = make_mapping (abfd, sections, hdr_index, i, phdr_in_segment);
4940 if (m == NULL)
4941 goto error_return;
4942
4943 *pm = m;
4944 pm = &m->next;
4945
4946 if ((hdr->flags & SEC_READONLY) == 0)
4947 writable = TRUE;
4948 else
4949 writable = FALSE;
4950
4951 if ((hdr->flags & SEC_CODE) == 0)
4952 executable = FALSE;
4953 else
4954 executable = TRUE;
4955
4956 last_hdr = hdr;
4957 /* .tbss sections effectively have zero size. */
4958 last_size = (!IS_TBSS (hdr) ? hdr->size : 0) / opb;
4959 hdr_index = i;
4960 phdr_in_segment = FALSE;
4961 }
4962
4963 /* Create a final PT_LOAD program segment, but not if it's just
4964 for .tbss. */
4965 if (last_hdr != NULL
4966 && (i - hdr_index != 1
4967 || !IS_TBSS (last_hdr)))
4968 {
4969 m = make_mapping (abfd, sections, hdr_index, i, phdr_in_segment);
4970 if (m == NULL)
4971 goto error_return;
4972
4973 *pm = m;
4974 pm = &m->next;
4975 }
4976
4977 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4978 if (dynsec != NULL)
4979 {
4980 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
4981 if (m == NULL)
4982 goto error_return;
4983 *pm = m;
4984 pm = &m->next;
4985 }
4986
4987 /* For each batch of consecutive loadable SHT_NOTE sections,
4988 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
4989 because if we link together nonloadable .note sections and
4990 loadable .note sections, we will generate two .note sections
4991 in the output file. */
4992 for (s = abfd->sections; s != NULL; s = s->next)
4993 {
4994 if ((s->flags & SEC_LOAD) != 0
4995 && elf_section_type (s) == SHT_NOTE)
4996 {
4997 asection *s2;
4998 unsigned int alignment_power = s->alignment_power;
4999
5000 count = 1;
5001 for (s2 = s; s2->next != NULL; s2 = s2->next)
5002 {
5003 if (s2->next->alignment_power == alignment_power
5004 && (s2->next->flags & SEC_LOAD) != 0
5005 && elf_section_type (s2->next) == SHT_NOTE
5006 && align_power (s2->lma + s2->size / opb,
5007 alignment_power)
5008 == s2->next->lma)
5009 count++;
5010 else
5011 break;
5012 }
5013 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
5014 amt += count * sizeof (asection *);
5015 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5016 if (m == NULL)
5017 goto error_return;
5018 m->next = NULL;
5019 m->p_type = PT_NOTE;
5020 m->count = count;
5021 while (count > 1)
5022 {
5023 m->sections[m->count - count--] = s;
5024 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
5025 s = s->next;
5026 }
5027 m->sections[m->count - 1] = s;
5028 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
5029 *pm = m;
5030 pm = &m->next;
5031 }
5032 if (s->flags & SEC_THREAD_LOCAL)
5033 {
5034 if (! tls_count)
5035 first_tls = s;
5036 tls_count++;
5037 }
5038 if (first_mbind == NULL
5039 && (elf_section_flags (s) & SHF_GNU_MBIND) != 0)
5040 first_mbind = s;
5041 }
5042
5043 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
5044 if (tls_count > 0)
5045 {
5046 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
5047 amt += tls_count * sizeof (asection *);
5048 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5049 if (m == NULL)
5050 goto error_return;
5051 m->next = NULL;
5052 m->p_type = PT_TLS;
5053 m->count = tls_count;
5054 /* Mandated PF_R. */
5055 m->p_flags = PF_R;
5056 m->p_flags_valid = 1;
5057 s = first_tls;
5058 for (i = 0; i < tls_count; ++i)
5059 {
5060 if ((s->flags & SEC_THREAD_LOCAL) == 0)
5061 {
5062 _bfd_error_handler
5063 (_("%pB: TLS sections are not adjacent:"), abfd);
5064 s = first_tls;
5065 i = 0;
5066 while (i < tls_count)
5067 {
5068 if ((s->flags & SEC_THREAD_LOCAL) != 0)
5069 {
5070 _bfd_error_handler (_(" TLS: %pA"), s);
5071 i++;
5072 }
5073 else
5074 _bfd_error_handler (_(" non-TLS: %pA"), s);
5075 s = s->next;
5076 }
5077 bfd_set_error (bfd_error_bad_value);
5078 goto error_return;
5079 }
5080 m->sections[i] = s;
5081 s = s->next;
5082 }
5083
5084 *pm = m;
5085 pm = &m->next;
5086 }
5087
5088 if (first_mbind
5089 && (abfd->flags & D_PAGED) != 0
5090 && (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_mbind) != 0)
5091 for (s = first_mbind; s != NULL; s = s->next)
5092 if ((elf_section_flags (s) & SHF_GNU_MBIND) != 0
5093 && elf_section_data (s)->this_hdr.sh_info <= PT_GNU_MBIND_NUM)
5094 {
5095 /* Mandated PF_R. */
5096 unsigned long p_flags = PF_R;
5097 if ((s->flags & SEC_READONLY) == 0)
5098 p_flags |= PF_W;
5099 if ((s->flags & SEC_CODE) != 0)
5100 p_flags |= PF_X;
5101
5102 amt = sizeof (struct elf_segment_map) + sizeof (asection *);
5103 m = bfd_zalloc (abfd, amt);
5104 if (m == NULL)
5105 goto error_return;
5106 m->next = NULL;
5107 m->p_type = (PT_GNU_MBIND_LO
5108 + elf_section_data (s)->this_hdr.sh_info);
5109 m->count = 1;
5110 m->p_flags_valid = 1;
5111 m->sections[0] = s;
5112 m->p_flags = p_flags;
5113
5114 *pm = m;
5115 pm = &m->next;
5116 }
5117
5118 s = bfd_get_section_by_name (abfd,
5119 NOTE_GNU_PROPERTY_SECTION_NAME);
5120 if (s != NULL && s->size != 0)
5121 {
5122 amt = sizeof (struct elf_segment_map) + sizeof (asection *);
5123 m = bfd_zalloc (abfd, amt);
5124 if (m == NULL)
5125 goto error_return;
5126 m->next = NULL;
5127 m->p_type = PT_GNU_PROPERTY;
5128 m->count = 1;
5129 m->p_flags_valid = 1;
5130 m->sections[0] = s;
5131 m->p_flags = PF_R;
5132 *pm = m;
5133 pm = &m->next;
5134 }
5135
5136 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
5137 segment. */
5138 eh_frame_hdr = elf_eh_frame_hdr (abfd);
5139 if (eh_frame_hdr != NULL
5140 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
5141 {
5142 amt = sizeof (struct elf_segment_map);
5143 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5144 if (m == NULL)
5145 goto error_return;
5146 m->next = NULL;
5147 m->p_type = PT_GNU_EH_FRAME;
5148 m->count = 1;
5149 m->sections[0] = eh_frame_hdr->output_section;
5150
5151 *pm = m;
5152 pm = &m->next;
5153 }
5154
5155 if (elf_stack_flags (abfd))
5156 {
5157 amt = sizeof (struct elf_segment_map);
5158 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5159 if (m == NULL)
5160 goto error_return;
5161 m->next = NULL;
5162 m->p_type = PT_GNU_STACK;
5163 m->p_flags = elf_stack_flags (abfd);
5164 m->p_align = bed->stack_align;
5165 m->p_flags_valid = 1;
5166 m->p_align_valid = m->p_align != 0;
5167 if (info->stacksize > 0)
5168 {
5169 m->p_size = info->stacksize;
5170 m->p_size_valid = 1;
5171 }
5172
5173 *pm = m;
5174 pm = &m->next;
5175 }
5176
5177 if (info != NULL && info->relro)
5178 {
5179 for (m = mfirst; m != NULL; m = m->next)
5180 {
5181 if (m->p_type == PT_LOAD
5182 && m->count != 0
5183 && m->sections[0]->vma >= info->relro_start
5184 && m->sections[0]->vma < info->relro_end)
5185 {
5186 i = m->count;
5187 while (--i != (unsigned) -1)
5188 {
5189 if (m->sections[i]->size > 0
5190 && (m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS))
5191 == (SEC_LOAD | SEC_HAS_CONTENTS))
5192 break;
5193 }
5194
5195 if (i != (unsigned) -1)
5196 break;
5197 }
5198 }
5199
5200 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
5201 if (m != NULL)
5202 {
5203 amt = sizeof (struct elf_segment_map);
5204 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5205 if (m == NULL)
5206 goto error_return;
5207 m->next = NULL;
5208 m->p_type = PT_GNU_RELRO;
5209 *pm = m;
5210 pm = &m->next;
5211 }
5212 }
5213
5214 free (sections);
5215 elf_seg_map (abfd) = mfirst;
5216 }
5217
5218 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
5219 return FALSE;
5220
5221 for (count = 0, m = elf_seg_map (abfd); m != NULL; m = m->next)
5222 ++count;
5223 elf_program_header_size (abfd) = count * bed->s->sizeof_phdr;
5224
5225 return TRUE;
5226
5227 error_return:
5228 free (sections);
5229 return FALSE;
5230 }
5231
5232 /* Sort sections by address. */
5233
5234 static int
5235 elf_sort_sections (const void *arg1, const void *arg2)
5236 {
5237 const asection *sec1 = *(const asection **) arg1;
5238 const asection *sec2 = *(const asection **) arg2;
5239 bfd_size_type size1, size2;
5240
5241 /* Sort by LMA first, since this is the address used to
5242 place the section into a segment. */
5243 if (sec1->lma < sec2->lma)
5244 return -1;
5245 else if (sec1->lma > sec2->lma)
5246 return 1;
5247
5248 /* Then sort by VMA. Normally the LMA and the VMA will be
5249 the same, and this will do nothing. */
5250 if (sec1->vma < sec2->vma)
5251 return -1;
5252 else if (sec1->vma > sec2->vma)
5253 return 1;
5254
5255 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
5256
5257 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0 \
5258 && (x)->size != 0)
5259
5260 if (TOEND (sec1))
5261 {
5262 if (!TOEND (sec2))
5263 return 1;
5264 }
5265 else if (TOEND (sec2))
5266 return -1;
5267
5268 #undef TOEND
5269
5270 /* Sort by size, to put zero sized sections
5271 before others at the same address. */
5272
5273 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
5274 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
5275
5276 if (size1 < size2)
5277 return -1;
5278 if (size1 > size2)
5279 return 1;
5280
5281 return sec1->target_index - sec2->target_index;
5282 }
5283
5284 /* This qsort comparison functions sorts PT_LOAD segments first and
5285 by p_paddr, for assign_file_positions_for_load_sections. */
5286
5287 static int
5288 elf_sort_segments (const void *arg1, const void *arg2)
5289 {
5290 const struct elf_segment_map *m1 = *(const struct elf_segment_map **) arg1;
5291 const struct elf_segment_map *m2 = *(const struct elf_segment_map **) arg2;
5292
5293 if (m1->p_type != m2->p_type)
5294 {
5295 if (m1->p_type == PT_NULL)
5296 return 1;
5297 if (m2->p_type == PT_NULL)
5298 return -1;
5299 return m1->p_type < m2->p_type ? -1 : 1;
5300 }
5301 if (m1->includes_filehdr != m2->includes_filehdr)
5302 return m1->includes_filehdr ? -1 : 1;
5303 if (m1->no_sort_lma != m2->no_sort_lma)
5304 return m1->no_sort_lma ? -1 : 1;
5305 if (m1->p_type == PT_LOAD && !m1->no_sort_lma)
5306 {
5307 bfd_vma lma1, lma2; /* Octets. */
5308 lma1 = 0;
5309 if (m1->p_paddr_valid)
5310 lma1 = m1->p_paddr;
5311 else if (m1->count != 0)
5312 {
5313 unsigned int opb = bfd_octets_per_byte (m1->sections[0]->owner,
5314 m1->sections[0]);
5315 lma1 = (m1->sections[0]->lma + m1->p_vaddr_offset) * opb;
5316 }
5317 lma2 = 0;
5318 if (m2->p_paddr_valid)
5319 lma2 = m2->p_paddr;
5320 else if (m2->count != 0)
5321 {
5322 unsigned int opb = bfd_octets_per_byte (m2->sections[0]->owner,
5323 m2->sections[0]);
5324 lma2 = (m2->sections[0]->lma + m2->p_vaddr_offset) * opb;
5325 }
5326 if (lma1 != lma2)
5327 return lma1 < lma2 ? -1 : 1;
5328 }
5329 if (m1->idx != m2->idx)
5330 return m1->idx < m2->idx ? -1 : 1;
5331 return 0;
5332 }
5333
5334 /* Ian Lance Taylor writes:
5335
5336 We shouldn't be using % with a negative signed number. That's just
5337 not good. We have to make sure either that the number is not
5338 negative, or that the number has an unsigned type. When the types
5339 are all the same size they wind up as unsigned. When file_ptr is a
5340 larger signed type, the arithmetic winds up as signed long long,
5341 which is wrong.
5342
5343 What we're trying to say here is something like ``increase OFF by
5344 the least amount that will cause it to be equal to the VMA modulo
5345 the page size.'' */
5346 /* In other words, something like:
5347
5348 vma_offset = m->sections[0]->vma % bed->maxpagesize;
5349 off_offset = off % bed->maxpagesize;
5350 if (vma_offset < off_offset)
5351 adjustment = vma_offset + bed->maxpagesize - off_offset;
5352 else
5353 adjustment = vma_offset - off_offset;
5354
5355 which can be collapsed into the expression below. */
5356
5357 static file_ptr
5358 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
5359 {
5360 /* PR binutils/16199: Handle an alignment of zero. */
5361 if (maxpagesize == 0)
5362 maxpagesize = 1;
5363 return ((vma - off) % maxpagesize);
5364 }
5365
5366 static void
5367 print_segment_map (const struct elf_segment_map *m)
5368 {
5369 unsigned int j;
5370 const char *pt = get_segment_type (m->p_type);
5371 char buf[32];
5372
5373 if (pt == NULL)
5374 {
5375 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
5376 sprintf (buf, "LOPROC+%7.7x",
5377 (unsigned int) (m->p_type - PT_LOPROC));
5378 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
5379 sprintf (buf, "LOOS+%7.7x",
5380 (unsigned int) (m->p_type - PT_LOOS));
5381 else
5382 snprintf (buf, sizeof (buf), "%8.8x",
5383 (unsigned int) m->p_type);
5384 pt = buf;
5385 }
5386 fflush (stdout);
5387 fprintf (stderr, "%s:", pt);
5388 for (j = 0; j < m->count; j++)
5389 fprintf (stderr, " %s", m->sections [j]->name);
5390 putc ('\n',stderr);
5391 fflush (stderr);
5392 }
5393
5394 static bfd_boolean
5395 write_zeros (bfd *abfd, file_ptr pos, bfd_size_type len)
5396 {
5397 void *buf;
5398 bfd_boolean ret;
5399
5400 if (bfd_seek (abfd, pos, SEEK_SET) != 0)
5401 return FALSE;
5402 buf = bfd_zmalloc (len);
5403 if (buf == NULL)
5404 return FALSE;
5405 ret = bfd_bwrite (buf, len, abfd) == len;
5406 free (buf);
5407 return ret;
5408 }
5409
5410 /* Assign file positions to the sections based on the mapping from
5411 sections to segments. This function also sets up some fields in
5412 the file header. */
5413
5414 static bfd_boolean
5415 assign_file_positions_for_load_sections (bfd *abfd,
5416 struct bfd_link_info *link_info)
5417 {
5418 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5419 struct elf_segment_map *m;
5420 struct elf_segment_map *phdr_load_seg;
5421 Elf_Internal_Phdr *phdrs;
5422 Elf_Internal_Phdr *p;
5423 file_ptr off; /* Octets. */
5424 bfd_size_type maxpagesize;
5425 unsigned int alloc, actual;
5426 unsigned int i, j;
5427 struct elf_segment_map **sorted_seg_map;
5428 unsigned int opb = bfd_octets_per_byte (abfd, NULL);
5429
5430 if (link_info == NULL
5431 && !_bfd_elf_map_sections_to_segments (abfd, link_info))
5432 return FALSE;
5433
5434 alloc = 0;
5435 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
5436 m->idx = alloc++;
5437
5438 if (alloc)
5439 {
5440 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
5441 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
5442 }
5443 else
5444 {
5445 /* PR binutils/12467. */
5446 elf_elfheader (abfd)->e_phoff = 0;
5447 elf_elfheader (abfd)->e_phentsize = 0;
5448 }
5449
5450 elf_elfheader (abfd)->e_phnum = alloc;
5451
5452 if (elf_program_header_size (abfd) == (bfd_size_type) -1)
5453 {
5454 actual = alloc;
5455 elf_program_header_size (abfd) = alloc * bed->s->sizeof_phdr;
5456 }
5457 else
5458 {
5459 actual = elf_program_header_size (abfd) / bed->s->sizeof_phdr;
5460 BFD_ASSERT (elf_program_header_size (abfd)
5461 == actual * bed->s->sizeof_phdr);
5462 BFD_ASSERT (actual >= alloc);
5463 }
5464
5465 if (alloc == 0)
5466 {
5467 elf_next_file_pos (abfd) = bed->s->sizeof_ehdr;
5468 return TRUE;
5469 }
5470
5471 /* We're writing the size in elf_program_header_size (abfd),
5472 see assign_file_positions_except_relocs, so make sure we have
5473 that amount allocated, with trailing space cleared.
5474 The variable alloc contains the computed need, while
5475 elf_program_header_size (abfd) contains the size used for the
5476 layout.
5477 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
5478 where the layout is forced to according to a larger size in the
5479 last iterations for the testcase ld-elf/header. */
5480 phdrs = bfd_zalloc (abfd, (actual * sizeof (*phdrs)
5481 + alloc * sizeof (*sorted_seg_map)));
5482 sorted_seg_map = (struct elf_segment_map **) (phdrs + actual);
5483 elf_tdata (abfd)->phdr = phdrs;
5484 if (phdrs == NULL)
5485 return FALSE;
5486
5487 for (m = elf_seg_map (abfd), j = 0; m != NULL; m = m->next, j++)
5488 {
5489 sorted_seg_map[j] = m;
5490 /* If elf_segment_map is not from map_sections_to_segments, the
5491 sections may not be correctly ordered. NOTE: sorting should
5492 not be done to the PT_NOTE section of a corefile, which may
5493 contain several pseudo-sections artificially created by bfd.
5494 Sorting these pseudo-sections breaks things badly. */
5495 if (m->count > 1
5496 && !(elf_elfheader (abfd)->e_type == ET_CORE
5497 && m->p_type == PT_NOTE))
5498 {
5499 for (i = 0; i < m->count; i++)
5500 m->sections[i]->target_index = i;
5501 qsort (m->sections, (size_t) m->count, sizeof (asection *),
5502 elf_sort_sections);
5503 }
5504 }
5505 if (alloc > 1)
5506 qsort (sorted_seg_map, alloc, sizeof (*sorted_seg_map),
5507 elf_sort_segments);
5508
5509 maxpagesize = 1;
5510 if ((abfd->flags & D_PAGED) != 0)
5511 {
5512 if (link_info != NULL)
5513 maxpagesize = link_info->maxpagesize;
5514 else
5515 maxpagesize = bed->maxpagesize;
5516 }
5517
5518 /* Sections must map to file offsets past the ELF file header. */
5519 off = bed->s->sizeof_ehdr;
5520 /* And if one of the PT_LOAD headers doesn't include the program
5521 headers then we'll be mapping program headers in the usual
5522 position after the ELF file header. */
5523 phdr_load_seg = NULL;
5524 for (j = 0; j < alloc; j++)
5525 {
5526 m = sorted_seg_map[j];
5527 if (m->p_type != PT_LOAD)
5528 break;
5529 if (m->includes_phdrs)
5530 {
5531 phdr_load_seg = m;
5532 break;
5533 }
5534 }
5535 if (phdr_load_seg == NULL)
5536 off += actual * bed->s->sizeof_phdr;
5537
5538 for (j = 0; j < alloc; j++)
5539 {
5540 asection **secpp;
5541 bfd_vma off_adjust; /* Octets. */
5542 bfd_boolean no_contents;
5543
5544 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
5545 number of sections with contents contributing to both p_filesz
5546 and p_memsz, followed by a number of sections with no contents
5547 that just contribute to p_memsz. In this loop, OFF tracks next
5548 available file offset for PT_LOAD and PT_NOTE segments. */
5549 m = sorted_seg_map[j];
5550 p = phdrs + m->idx;
5551 p->p_type = m->p_type;
5552 p->p_flags = m->p_flags;
5553
5554 if (m->count == 0)
5555 p->p_vaddr = m->p_vaddr_offset * opb;
5556 else
5557 p->p_vaddr = (m->sections[0]->vma + m->p_vaddr_offset) * opb;
5558
5559 if (m->p_paddr_valid)
5560 p->p_paddr = m->p_paddr;
5561 else if (m->count == 0)
5562 p->p_paddr = 0;
5563 else
5564 p->p_paddr = (m->sections[0]->lma + m->p_vaddr_offset) * opb;
5565
5566 if (p->p_type == PT_LOAD
5567 && (abfd->flags & D_PAGED) != 0)
5568 {
5569 /* p_align in demand paged PT_LOAD segments effectively stores
5570 the maximum page size. When copying an executable with
5571 objcopy, we set m->p_align from the input file. Use this
5572 value for maxpagesize rather than bed->maxpagesize, which
5573 may be different. Note that we use maxpagesize for PT_TLS
5574 segment alignment later in this function, so we are relying
5575 on at least one PT_LOAD segment appearing before a PT_TLS
5576 segment. */
5577 if (m->p_align_valid)
5578 maxpagesize = m->p_align;
5579
5580 p->p_align = maxpagesize;
5581 }
5582 else if (m->p_align_valid)
5583 p->p_align = m->p_align;
5584 else if (m->count == 0)
5585 p->p_align = 1 << bed->s->log_file_align;
5586
5587 if (m == phdr_load_seg)
5588 {
5589 if (!m->includes_filehdr)
5590 p->p_offset = off;
5591 off += actual * bed->s->sizeof_phdr;
5592 }
5593
5594 no_contents = FALSE;
5595 off_adjust = 0;
5596 if (p->p_type == PT_LOAD
5597 && m->count > 0)
5598 {
5599 bfd_size_type align; /* Bytes. */
5600 unsigned int align_power = 0;
5601
5602 if (m->p_align_valid)
5603 align = p->p_align;
5604 else
5605 {
5606 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
5607 {
5608 unsigned int secalign;
5609
5610 secalign = bfd_section_alignment (*secpp);
5611 if (secalign > align_power)
5612 align_power = secalign;
5613 }
5614 align = (bfd_size_type) 1 << align_power;
5615 if (align < maxpagesize)
5616 align = maxpagesize;
5617 }
5618
5619 for (i = 0; i < m->count; i++)
5620 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
5621 /* If we aren't making room for this section, then
5622 it must be SHT_NOBITS regardless of what we've
5623 set via struct bfd_elf_special_section. */
5624 elf_section_type (m->sections[i]) = SHT_NOBITS;
5625
5626 /* Find out whether this segment contains any loadable
5627 sections. */
5628 no_contents = TRUE;
5629 for (i = 0; i < m->count; i++)
5630 if (elf_section_type (m->sections[i]) != SHT_NOBITS)
5631 {
5632 no_contents = FALSE;
5633 break;
5634 }
5635
5636 off_adjust = vma_page_aligned_bias (p->p_vaddr, off, align * opb);
5637
5638 /* Broken hardware and/or kernel require that files do not
5639 map the same page with different permissions on some hppa
5640 processors. */
5641 if (j != 0
5642 && (abfd->flags & D_PAGED) != 0
5643 && bed->no_page_alias
5644 && (off & (maxpagesize - 1)) != 0
5645 && ((off & -maxpagesize)
5646 == ((off + off_adjust) & -maxpagesize)))
5647 off_adjust += maxpagesize;
5648 off += off_adjust;
5649 if (no_contents)
5650 {
5651 /* We shouldn't need to align the segment on disk since
5652 the segment doesn't need file space, but the gABI
5653 arguably requires the alignment and glibc ld.so
5654 checks it. So to comply with the alignment
5655 requirement but not waste file space, we adjust
5656 p_offset for just this segment. (OFF_ADJUST is
5657 subtracted from OFF later.) This may put p_offset
5658 past the end of file, but that shouldn't matter. */
5659 }
5660 else
5661 off_adjust = 0;
5662 }
5663 /* Make sure the .dynamic section is the first section in the
5664 PT_DYNAMIC segment. */
5665 else if (p->p_type == PT_DYNAMIC
5666 && m->count > 1
5667 && strcmp (m->sections[0]->name, ".dynamic") != 0)
5668 {
5669 _bfd_error_handler
5670 (_("%pB: The first section in the PT_DYNAMIC segment"
5671 " is not the .dynamic section"),
5672 abfd);
5673 bfd_set_error (bfd_error_bad_value);
5674 return FALSE;
5675 }
5676 /* Set the note section type to SHT_NOTE. */
5677 else if (p->p_type == PT_NOTE)
5678 for (i = 0; i < m->count; i++)
5679 elf_section_type (m->sections[i]) = SHT_NOTE;
5680
5681 if (m->includes_filehdr)
5682 {
5683 if (!m->p_flags_valid)
5684 p->p_flags |= PF_R;
5685 p->p_filesz = bed->s->sizeof_ehdr;
5686 p->p_memsz = bed->s->sizeof_ehdr;
5687 if (p->p_type == PT_LOAD)
5688 {
5689 if (m->count > 0)
5690 {
5691 if (p->p_vaddr < (bfd_vma) off
5692 || (!m->p_paddr_valid
5693 && p->p_paddr < (bfd_vma) off))
5694 {
5695 _bfd_error_handler
5696 (_("%pB: not enough room for program headers,"
5697 " try linking with -N"),
5698 abfd);
5699 bfd_set_error (bfd_error_bad_value);
5700 return FALSE;
5701 }
5702 p->p_vaddr -= off;
5703 if (!m->p_paddr_valid)
5704 p->p_paddr -= off;
5705 }
5706 }
5707 else if (sorted_seg_map[0]->includes_filehdr)
5708 {
5709 Elf_Internal_Phdr *filehdr = phdrs + sorted_seg_map[0]->idx;
5710 p->p_vaddr = filehdr->p_vaddr;
5711 if (!m->p_paddr_valid)
5712 p->p_paddr = filehdr->p_paddr;
5713 }
5714 }
5715
5716 if (m->includes_phdrs)
5717 {
5718 if (!m->p_flags_valid)
5719 p->p_flags |= PF_R;
5720 p->p_filesz += actual * bed->s->sizeof_phdr;
5721 p->p_memsz += actual * bed->s->sizeof_phdr;
5722 if (!m->includes_filehdr)
5723 {
5724 if (p->p_type == PT_LOAD)
5725 {
5726 elf_elfheader (abfd)->e_phoff = p->p_offset;
5727 if (m->count > 0)
5728 {
5729 p->p_vaddr -= off - p->p_offset;
5730 if (!m->p_paddr_valid)
5731 p->p_paddr -= off - p->p_offset;
5732 }
5733 }
5734 else if (phdr_load_seg != NULL)
5735 {
5736 Elf_Internal_Phdr *phdr = phdrs + phdr_load_seg->idx;
5737 bfd_vma phdr_off = 0; /* Octets. */
5738 if (phdr_load_seg->includes_filehdr)
5739 phdr_off = bed->s->sizeof_ehdr;
5740 p->p_vaddr = phdr->p_vaddr + phdr_off;
5741 if (!m->p_paddr_valid)
5742 p->p_paddr = phdr->p_paddr + phdr_off;
5743 p->p_offset = phdr->p_offset + phdr_off;
5744 }
5745 else
5746 p->p_offset = bed->s->sizeof_ehdr;
5747 }
5748 }
5749
5750 if (p->p_type == PT_LOAD
5751 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
5752 {
5753 if (!m->includes_filehdr && !m->includes_phdrs)
5754 {
5755 p->p_offset = off;
5756 if (no_contents)
5757 {
5758 /* Put meaningless p_offset for PT_LOAD segments
5759 without file contents somewhere within the first
5760 page, in an attempt to not point past EOF. */
5761 bfd_size_type align = maxpagesize;
5762 if (align < p->p_align)
5763 align = p->p_align;
5764 if (align < 1)
5765 align = 1;
5766 p->p_offset = off % align;
5767 }
5768 }
5769 else
5770 {
5771 file_ptr adjust; /* Octets. */
5772
5773 adjust = off - (p->p_offset + p->p_filesz);
5774 if (!no_contents)
5775 p->p_filesz += adjust;
5776 p->p_memsz += adjust;
5777 }
5778 }
5779
5780 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
5781 maps. Set filepos for sections in PT_LOAD segments, and in
5782 core files, for sections in PT_NOTE segments.
5783 assign_file_positions_for_non_load_sections will set filepos
5784 for other sections and update p_filesz for other segments. */
5785 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
5786 {
5787 asection *sec;
5788 bfd_size_type align;
5789 Elf_Internal_Shdr *this_hdr;
5790
5791 sec = *secpp;
5792 this_hdr = &elf_section_data (sec)->this_hdr;
5793 align = (bfd_size_type) 1 << bfd_section_alignment (sec);
5794
5795 if ((p->p_type == PT_LOAD
5796 || p->p_type == PT_TLS)
5797 && (this_hdr->sh_type != SHT_NOBITS
5798 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
5799 && ((this_hdr->sh_flags & SHF_TLS) == 0
5800 || p->p_type == PT_TLS))))
5801 {
5802 bfd_vma p_start = p->p_paddr; /* Octets. */
5803 bfd_vma p_end = p_start + p->p_memsz; /* Octets. */
5804 bfd_vma s_start = sec->lma * opb; /* Octets. */
5805 bfd_vma adjust = s_start - p_end; /* Octets. */
5806
5807 if (adjust != 0
5808 && (s_start < p_end
5809 || p_end < p_start))
5810 {
5811 _bfd_error_handler
5812 /* xgettext:c-format */
5813 (_("%pB: section %pA lma %#" PRIx64 " adjusted to %#" PRIx64),
5814 abfd, sec, (uint64_t) s_start / opb,
5815 (uint64_t) p_end / opb);
5816 adjust = 0;
5817 sec->lma = p_end / opb;
5818 }
5819 p->p_memsz += adjust;
5820
5821 if (p->p_type == PT_LOAD)
5822 {
5823 if (this_hdr->sh_type != SHT_NOBITS)
5824 {
5825 off_adjust = 0;
5826 if (p->p_filesz + adjust < p->p_memsz)
5827 {
5828 /* We have a PROGBITS section following NOBITS ones.
5829 Allocate file space for the NOBITS section(s) and
5830 zero it. */
5831 adjust = p->p_memsz - p->p_filesz;
5832 if (!write_zeros (abfd, off, adjust))
5833 return FALSE;
5834 }
5835 }
5836 /* We only adjust sh_offset in SHT_NOBITS sections
5837 as would seem proper for their address when the
5838 section is first in the segment. sh_offset
5839 doesn't really have any significance for
5840 SHT_NOBITS anyway, apart from a notional position
5841 relative to other sections. Historically we
5842 didn't bother with adjusting sh_offset and some
5843 programs depend on it not being adjusted. See
5844 pr12921 and pr25662. */
5845 if (this_hdr->sh_type != SHT_NOBITS || i == 0)
5846 {
5847 off += adjust;
5848 if (this_hdr->sh_type == SHT_NOBITS)
5849 off_adjust += adjust;
5850 }
5851 }
5852 if (this_hdr->sh_type != SHT_NOBITS)
5853 p->p_filesz += adjust;
5854 }
5855
5856 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
5857 {
5858 /* The section at i == 0 is the one that actually contains
5859 everything. */
5860 if (i == 0)
5861 {
5862 this_hdr->sh_offset = sec->filepos = off;
5863 off += this_hdr->sh_size;
5864 p->p_filesz = this_hdr->sh_size;
5865 p->p_memsz = 0;
5866 p->p_align = 1;
5867 }
5868 else
5869 {
5870 /* The rest are fake sections that shouldn't be written. */
5871 sec->filepos = 0;
5872 sec->size = 0;
5873 sec->flags = 0;
5874 continue;
5875 }
5876 }
5877 else
5878 {
5879 if (p->p_type == PT_LOAD)
5880 {
5881 this_hdr->sh_offset = sec->filepos = off;
5882 if (this_hdr->sh_type != SHT_NOBITS)
5883 off += this_hdr->sh_size;
5884 }
5885 else if (this_hdr->sh_type == SHT_NOBITS
5886 && (this_hdr->sh_flags & SHF_TLS) != 0
5887 && this_hdr->sh_offset == 0)
5888 {
5889 /* This is a .tbss section that didn't get a PT_LOAD.
5890 (See _bfd_elf_map_sections_to_segments "Create a
5891 final PT_LOAD".) Set sh_offset to the value it
5892 would have if we had created a zero p_filesz and
5893 p_memsz PT_LOAD header for the section. This
5894 also makes the PT_TLS header have the same
5895 p_offset value. */
5896 bfd_vma adjust = vma_page_aligned_bias (this_hdr->sh_addr,
5897 off, align);
5898 this_hdr->sh_offset = sec->filepos = off + adjust;
5899 }
5900
5901 if (this_hdr->sh_type != SHT_NOBITS)
5902 {
5903 p->p_filesz += this_hdr->sh_size;
5904 /* A load section without SHF_ALLOC is something like
5905 a note section in a PT_NOTE segment. These take
5906 file space but are not loaded into memory. */
5907 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5908 p->p_memsz += this_hdr->sh_size;
5909 }
5910 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5911 {
5912 if (p->p_type == PT_TLS)
5913 p->p_memsz += this_hdr->sh_size;
5914
5915 /* .tbss is special. It doesn't contribute to p_memsz of
5916 normal segments. */
5917 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
5918 p->p_memsz += this_hdr->sh_size;
5919 }
5920
5921 if (align > p->p_align
5922 && !m->p_align_valid
5923 && (p->p_type != PT_LOAD
5924 || (abfd->flags & D_PAGED) == 0))
5925 p->p_align = align;
5926 }
5927
5928 if (!m->p_flags_valid)
5929 {
5930 p->p_flags |= PF_R;
5931 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
5932 p->p_flags |= PF_X;
5933 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
5934 p->p_flags |= PF_W;
5935 }
5936 }
5937
5938 off -= off_adjust;
5939
5940 /* PR ld/20815 - Check that the program header segment, if
5941 present, will be loaded into memory. */
5942 if (p->p_type == PT_PHDR
5943 && phdr_load_seg == NULL
5944 && !(bed->elf_backend_allow_non_load_phdr != NULL
5945 && bed->elf_backend_allow_non_load_phdr (abfd, phdrs, alloc)))
5946 {
5947 /* The fix for this error is usually to edit the linker script being
5948 used and set up the program headers manually. Either that or
5949 leave room for the headers at the start of the SECTIONS. */
5950 _bfd_error_handler (_("%pB: error: PHDR segment not covered"
5951 " by LOAD segment"),
5952 abfd);
5953 if (link_info == NULL)
5954 return FALSE;
5955 /* Arrange for the linker to exit with an error, deleting
5956 the output file unless --noinhibit-exec is given. */
5957 link_info->callbacks->info ("%X");
5958 }
5959
5960 /* Check that all sections are in a PT_LOAD segment.
5961 Don't check funky gdb generated core files. */
5962 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
5963 {
5964 bfd_boolean check_vma = TRUE;
5965
5966 for (i = 1; i < m->count; i++)
5967 if (m->sections[i]->vma == m->sections[i - 1]->vma
5968 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i])
5969 ->this_hdr), p) != 0
5970 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i - 1])
5971 ->this_hdr), p) != 0)
5972 {
5973 /* Looks like we have overlays packed into the segment. */
5974 check_vma = FALSE;
5975 break;
5976 }
5977
5978 for (i = 0; i < m->count; i++)
5979 {
5980 Elf_Internal_Shdr *this_hdr;
5981 asection *sec;
5982
5983 sec = m->sections[i];
5984 this_hdr = &(elf_section_data(sec)->this_hdr);
5985 if (!ELF_SECTION_IN_SEGMENT_1 (this_hdr, p, check_vma, 0)
5986 && !ELF_TBSS_SPECIAL (this_hdr, p))
5987 {
5988 _bfd_error_handler
5989 /* xgettext:c-format */
5990 (_("%pB: section `%pA' can't be allocated in segment %d"),
5991 abfd, sec, j);
5992 print_segment_map (m);
5993 }
5994 }
5995 }
5996 }
5997
5998 elf_next_file_pos (abfd) = off;
5999
6000 if (link_info != NULL
6001 && phdr_load_seg != NULL
6002 && phdr_load_seg->includes_filehdr)
6003 {
6004 /* There is a segment that contains both the file headers and the
6005 program headers, so provide a symbol __ehdr_start pointing there.
6006 A program can use this to examine itself robustly. */
6007
6008 struct elf_link_hash_entry *hash
6009 = elf_link_hash_lookup (elf_hash_table (link_info), "__ehdr_start",
6010 FALSE, FALSE, TRUE);
6011 /* If the symbol was referenced and not defined, define it. */
6012 if (hash != NULL
6013 && (hash->root.type == bfd_link_hash_new
6014 || hash->root.type == bfd_link_hash_undefined
6015 || hash->root.type == bfd_link_hash_undefweak
6016 || hash->root.type == bfd_link_hash_common))
6017 {
6018 asection *s = NULL;
6019 bfd_vma filehdr_vaddr = phdrs[phdr_load_seg->idx].p_vaddr / opb;
6020
6021 if (phdr_load_seg->count != 0)
6022 /* The segment contains sections, so use the first one. */
6023 s = phdr_load_seg->sections[0];
6024 else
6025 /* Use the first (i.e. lowest-addressed) section in any segment. */
6026 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
6027 if (m->p_type == PT_LOAD && m->count != 0)
6028 {
6029 s = m->sections[0];
6030 break;
6031 }
6032
6033 if (s != NULL)
6034 {
6035 hash->root.u.def.value = filehdr_vaddr - s->vma;
6036 hash->root.u.def.section = s;
6037 }
6038 else
6039 {
6040 hash->root.u.def.value = filehdr_vaddr;
6041 hash->root.u.def.section = bfd_abs_section_ptr;
6042 }
6043
6044 hash->root.type = bfd_link_hash_defined;
6045 hash->def_regular = 1;
6046 hash->non_elf = 0;
6047 }
6048 }
6049
6050 return TRUE;
6051 }
6052
6053 /* Determine if a bfd is a debuginfo file. Unfortunately there
6054 is no defined method for detecting such files, so we have to
6055 use heuristics instead. */
6056
6057 bfd_boolean
6058 is_debuginfo_file (bfd *abfd)
6059 {
6060 if (abfd == NULL || bfd_get_flavour (abfd) != bfd_target_elf_flavour)
6061 return FALSE;
6062
6063 Elf_Internal_Shdr **start_headers = elf_elfsections (abfd);
6064 Elf_Internal_Shdr **end_headers = start_headers + elf_numsections (abfd);
6065 Elf_Internal_Shdr **headerp;
6066
6067 for (headerp = start_headers; headerp < end_headers; headerp ++)
6068 {
6069 Elf_Internal_Shdr *header = * headerp;
6070
6071 /* Debuginfo files do not have any allocated SHT_PROGBITS sections.
6072 The only allocated sections are SHT_NOBITS or SHT_NOTES. */
6073 if ((header->sh_flags & SHF_ALLOC) == SHF_ALLOC
6074 && header->sh_type != SHT_NOBITS
6075 && header->sh_type != SHT_NOTE)
6076 return FALSE;
6077 }
6078
6079 return TRUE;
6080 }
6081
6082 /* Assign file positions for the other sections, except for compressed debugging
6083 and other sections assigned in _bfd_elf_assign_file_positions_for_non_load(). */
6084
6085 static bfd_boolean
6086 assign_file_positions_for_non_load_sections (bfd *abfd,
6087 struct bfd_link_info *link_info)
6088 {
6089 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6090 Elf_Internal_Shdr **i_shdrpp;
6091 Elf_Internal_Shdr **hdrpp, **end_hdrpp;
6092 Elf_Internal_Phdr *phdrs;
6093 Elf_Internal_Phdr *p;
6094 struct elf_segment_map *m;
6095 file_ptr off;
6096 unsigned int opb = bfd_octets_per_byte (abfd, NULL);
6097 bfd_vma maxpagesize;
6098
6099 if (link_info != NULL)
6100 maxpagesize = link_info->maxpagesize;
6101 else
6102 maxpagesize = bed->maxpagesize;
6103 i_shdrpp = elf_elfsections (abfd);
6104 end_hdrpp = i_shdrpp + elf_numsections (abfd);
6105 off = elf_next_file_pos (abfd);
6106 for (hdrpp = i_shdrpp + 1; hdrpp < end_hdrpp; hdrpp++)
6107 {
6108 Elf_Internal_Shdr *hdr;
6109
6110 hdr = *hdrpp;
6111 if (hdr->bfd_section != NULL
6112 && (hdr->bfd_section->filepos != 0
6113 || (hdr->sh_type == SHT_NOBITS
6114 && hdr->contents == NULL)))
6115 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
6116 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
6117 {
6118 if (hdr->sh_size != 0
6119 /* PR 24717 - debuginfo files are known to be not strictly
6120 compliant with the ELF standard. In particular they often
6121 have .note.gnu.property sections that are outside of any
6122 loadable segment. This is not a problem for such files,
6123 so do not warn about them. */
6124 && ! is_debuginfo_file (abfd))
6125 _bfd_error_handler
6126 /* xgettext:c-format */
6127 (_("%pB: warning: allocated section `%s' not in segment"),
6128 abfd,
6129 (hdr->bfd_section == NULL
6130 ? "*unknown*"
6131 : hdr->bfd_section->name));
6132 /* We don't need to page align empty sections. */
6133 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
6134 off += vma_page_aligned_bias (hdr->sh_addr, off,
6135 maxpagesize);
6136 else
6137 off += vma_page_aligned_bias (hdr->sh_addr, off,
6138 hdr->sh_addralign);
6139 off = _bfd_elf_assign_file_position_for_section (hdr, off,
6140 FALSE);
6141 }
6142 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
6143 && hdr->bfd_section == NULL)
6144 /* We don't know the offset of these sections yet: their size has
6145 not been decided. */
6146 || (hdr->bfd_section != NULL
6147 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS
6148 || (bfd_section_is_ctf (hdr->bfd_section)
6149 && abfd->is_linker_output)))
6150 || hdr == i_shdrpp[elf_onesymtab (abfd)]
6151 || (elf_symtab_shndx_list (abfd) != NULL
6152 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
6153 || hdr == i_shdrpp[elf_strtab_sec (abfd)]
6154 || hdr == i_shdrpp[elf_shstrtab_sec (abfd)])
6155 hdr->sh_offset = -1;
6156 else
6157 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
6158 }
6159 elf_next_file_pos (abfd) = off;
6160
6161 /* Now that we have set the section file positions, we can set up
6162 the file positions for the non PT_LOAD segments. */
6163 phdrs = elf_tdata (abfd)->phdr;
6164 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
6165 {
6166 if (p->p_type == PT_GNU_RELRO)
6167 {
6168 bfd_vma start, end; /* Bytes. */
6169 bfd_boolean ok;
6170
6171 if (link_info != NULL)
6172 {
6173 /* During linking the range of the RELRO segment is passed
6174 in link_info. Note that there may be padding between
6175 relro_start and the first RELRO section. */
6176 start = link_info->relro_start;
6177 end = link_info->relro_end;
6178 }
6179 else if (m->count != 0)
6180 {
6181 if (!m->p_size_valid)
6182 abort ();
6183 start = m->sections[0]->vma;
6184 end = start + m->p_size / opb;
6185 }
6186 else
6187 {
6188 start = 0;
6189 end = 0;
6190 }
6191
6192 ok = FALSE;
6193 if (start < end)
6194 {
6195 struct elf_segment_map *lm;
6196 const Elf_Internal_Phdr *lp;
6197 unsigned int i;
6198
6199 /* Find a LOAD segment containing a section in the RELRO
6200 segment. */
6201 for (lm = elf_seg_map (abfd), lp = phdrs;
6202 lm != NULL;
6203 lm = lm->next, lp++)
6204 {
6205 if (lp->p_type == PT_LOAD
6206 && lm->count != 0
6207 && (lm->sections[lm->count - 1]->vma
6208 + (!IS_TBSS (lm->sections[lm->count - 1])
6209 ? lm->sections[lm->count - 1]->size / opb
6210 : 0)) > start
6211 && lm->sections[0]->vma < end)
6212 break;
6213 }
6214
6215 if (lm != NULL)
6216 {
6217 /* Find the section starting the RELRO segment. */
6218 for (i = 0; i < lm->count; i++)
6219 {
6220 asection *s = lm->sections[i];
6221 if (s->vma >= start
6222 && s->vma < end
6223 && s->size != 0)
6224 break;
6225 }
6226
6227 if (i < lm->count)
6228 {
6229 p->p_vaddr = lm->sections[i]->vma * opb;
6230 p->p_paddr = lm->sections[i]->lma * opb;
6231 p->p_offset = lm->sections[i]->filepos;
6232 p->p_memsz = end * opb - p->p_vaddr;
6233 p->p_filesz = p->p_memsz;
6234
6235 /* The RELRO segment typically ends a few bytes
6236 into .got.plt but other layouts are possible.
6237 In cases where the end does not match any
6238 loaded section (for instance is in file
6239 padding), trim p_filesz back to correspond to
6240 the end of loaded section contents. */
6241 if (p->p_filesz > lp->p_vaddr + lp->p_filesz - p->p_vaddr)
6242 p->p_filesz = lp->p_vaddr + lp->p_filesz - p->p_vaddr;
6243
6244 /* Preserve the alignment and flags if they are
6245 valid. The gold linker generates RW/4 for
6246 the PT_GNU_RELRO section. It is better for
6247 objcopy/strip to honor these attributes
6248 otherwise gdb will choke when using separate
6249 debug files. */
6250 if (!m->p_align_valid)
6251 p->p_align = 1;
6252 if (!m->p_flags_valid)
6253 p->p_flags = PF_R;
6254 ok = TRUE;
6255 }
6256 }
6257 }
6258 if (link_info != NULL)
6259 BFD_ASSERT (ok);
6260 if (!ok)
6261 memset (p, 0, sizeof *p);
6262 }
6263 else if (p->p_type == PT_GNU_STACK)
6264 {
6265 if (m->p_size_valid)
6266 p->p_memsz = m->p_size;
6267 }
6268 else if (m->count != 0)
6269 {
6270 unsigned int i;
6271
6272 if (p->p_type != PT_LOAD
6273 && (p->p_type != PT_NOTE
6274 || bfd_get_format (abfd) != bfd_core))
6275 {
6276 /* A user specified segment layout may include a PHDR
6277 segment that overlaps with a LOAD segment... */
6278 if (p->p_type == PT_PHDR)
6279 {
6280 m->count = 0;
6281 continue;
6282 }
6283
6284 if (m->includes_filehdr || m->includes_phdrs)
6285 {
6286 /* PR 17512: file: 2195325e. */
6287 _bfd_error_handler
6288 (_("%pB: error: non-load segment %d includes file header "
6289 "and/or program header"),
6290 abfd, (int) (p - phdrs));
6291 return FALSE;
6292 }
6293
6294 p->p_filesz = 0;
6295 p->p_offset = m->sections[0]->filepos;
6296 for (i = m->count; i-- != 0;)
6297 {
6298 asection *sect = m->sections[i];
6299 Elf_Internal_Shdr *hdr = &elf_section_data (sect)->this_hdr;
6300 if (hdr->sh_type != SHT_NOBITS)
6301 {
6302 p->p_filesz = (sect->filepos - m->sections[0]->filepos
6303 + hdr->sh_size);
6304 break;
6305 }
6306 }
6307 }
6308 }
6309 }
6310
6311 return TRUE;
6312 }
6313
6314 static elf_section_list *
6315 find_section_in_list (unsigned int i, elf_section_list * list)
6316 {
6317 for (;list != NULL; list = list->next)
6318 if (list->ndx == i)
6319 break;
6320 return list;
6321 }
6322
6323 /* Work out the file positions of all the sections. This is called by
6324 _bfd_elf_compute_section_file_positions. All the section sizes and
6325 VMAs must be known before this is called.
6326
6327 Reloc sections come in two flavours: Those processed specially as
6328 "side-channel" data attached to a section to which they apply, and those that
6329 bfd doesn't process as relocations. The latter sort are stored in a normal
6330 bfd section by bfd_section_from_shdr. We don't consider the former sort
6331 here, unless they form part of the loadable image. Reloc sections not
6332 assigned here (and compressed debugging sections and CTF sections which
6333 nothing else in the file can rely upon) will be handled later by
6334 assign_file_positions_for_relocs.
6335
6336 We also don't set the positions of the .symtab and .strtab here. */
6337
6338 static bfd_boolean
6339 assign_file_positions_except_relocs (bfd *abfd,
6340 struct bfd_link_info *link_info)
6341 {
6342 struct elf_obj_tdata *tdata = elf_tdata (abfd);
6343 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
6344 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6345 unsigned int alloc;
6346
6347 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
6348 && bfd_get_format (abfd) != bfd_core)
6349 {
6350 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
6351 unsigned int num_sec = elf_numsections (abfd);
6352 Elf_Internal_Shdr **hdrpp;
6353 unsigned int i;
6354 file_ptr off;
6355
6356 /* Start after the ELF header. */
6357 off = i_ehdrp->e_ehsize;
6358
6359 /* We are not creating an executable, which means that we are
6360 not creating a program header, and that the actual order of
6361 the sections in the file is unimportant. */
6362 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
6363 {
6364 Elf_Internal_Shdr *hdr;
6365
6366 hdr = *hdrpp;
6367 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
6368 && hdr->bfd_section == NULL)
6369 /* Do not assign offsets for these sections yet: we don't know
6370 their sizes. */
6371 || (hdr->bfd_section != NULL
6372 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS
6373 || (bfd_section_is_ctf (hdr->bfd_section)
6374 && abfd->is_linker_output)))
6375 || i == elf_onesymtab (abfd)
6376 || (elf_symtab_shndx_list (abfd) != NULL
6377 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
6378 || i == elf_strtab_sec (abfd)
6379 || i == elf_shstrtab_sec (abfd))
6380 {
6381 hdr->sh_offset = -1;
6382 }
6383 else
6384 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
6385 }
6386
6387 elf_next_file_pos (abfd) = off;
6388 elf_program_header_size (abfd) = 0;
6389 }
6390 else
6391 {
6392 /* Assign file positions for the loaded sections based on the
6393 assignment of sections to segments. */
6394 if (!assign_file_positions_for_load_sections (abfd, link_info))
6395 return FALSE;
6396
6397 /* And for non-load sections. */
6398 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
6399 return FALSE;
6400 }
6401
6402 if (!(*bed->elf_backend_modify_headers) (abfd, link_info))
6403 return FALSE;
6404
6405 /* Write out the program headers. */
6406 alloc = i_ehdrp->e_phnum;
6407 if (alloc != 0)
6408 {
6409 if (bfd_seek (abfd, i_ehdrp->e_phoff, SEEK_SET) != 0
6410 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
6411 return FALSE;
6412 }
6413
6414 return TRUE;
6415 }
6416
6417 bfd_boolean
6418 _bfd_elf_init_file_header (bfd *abfd,
6419 struct bfd_link_info *info ATTRIBUTE_UNUSED)
6420 {
6421 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form. */
6422 struct elf_strtab_hash *shstrtab;
6423 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6424
6425 i_ehdrp = elf_elfheader (abfd);
6426
6427 shstrtab = _bfd_elf_strtab_init ();
6428 if (shstrtab == NULL)
6429 return FALSE;
6430
6431 elf_shstrtab (abfd) = shstrtab;
6432
6433 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
6434 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
6435 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
6436 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
6437
6438 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
6439 i_ehdrp->e_ident[EI_DATA] =
6440 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
6441 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
6442
6443 if ((abfd->flags & DYNAMIC) != 0)
6444 i_ehdrp->e_type = ET_DYN;
6445 else if ((abfd->flags & EXEC_P) != 0)
6446 i_ehdrp->e_type = ET_EXEC;
6447 else if (bfd_get_format (abfd) == bfd_core)
6448 i_ehdrp->e_type = ET_CORE;
6449 else
6450 i_ehdrp->e_type = ET_REL;
6451
6452 switch (bfd_get_arch (abfd))
6453 {
6454 case bfd_arch_unknown:
6455 i_ehdrp->e_machine = EM_NONE;
6456 break;
6457
6458 /* There used to be a long list of cases here, each one setting
6459 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
6460 in the corresponding bfd definition. To avoid duplication,
6461 the switch was removed. Machines that need special handling
6462 can generally do it in elf_backend_final_write_processing(),
6463 unless they need the information earlier than the final write.
6464 Such need can generally be supplied by replacing the tests for
6465 e_machine with the conditions used to determine it. */
6466 default:
6467 i_ehdrp->e_machine = bed->elf_machine_code;
6468 }
6469
6470 i_ehdrp->e_version = bed->s->ev_current;
6471 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
6472
6473 /* No program header, for now. */
6474 i_ehdrp->e_phoff = 0;
6475 i_ehdrp->e_phentsize = 0;
6476 i_ehdrp->e_phnum = 0;
6477
6478 /* Each bfd section is section header entry. */
6479 i_ehdrp->e_entry = bfd_get_start_address (abfd);
6480 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
6481
6482 elf_tdata (abfd)->symtab_hdr.sh_name =
6483 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
6484 elf_tdata (abfd)->strtab_hdr.sh_name =
6485 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
6486 elf_tdata (abfd)->shstrtab_hdr.sh_name =
6487 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
6488 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
6489 || elf_tdata (abfd)->strtab_hdr.sh_name == (unsigned int) -1
6490 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
6491 return FALSE;
6492
6493 return TRUE;
6494 }
6495
6496 /* Set e_type in ELF header to ET_EXEC for -pie -Ttext-segment=.
6497
6498 FIXME: We used to have code here to sort the PT_LOAD segments into
6499 ascending order, as per the ELF spec. But this breaks some programs,
6500 including the Linux kernel. But really either the spec should be
6501 changed or the programs updated. */
6502
6503 bfd_boolean
6504 _bfd_elf_modify_headers (bfd *obfd, struct bfd_link_info *link_info)
6505 {
6506 if (link_info != NULL && bfd_link_pie (link_info))
6507 {
6508 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (obfd);
6509 unsigned int num_segments = i_ehdrp->e_phnum;
6510 struct elf_obj_tdata *tdata = elf_tdata (obfd);
6511 Elf_Internal_Phdr *segment = tdata->phdr;
6512 Elf_Internal_Phdr *end_segment = &segment[num_segments];
6513
6514 /* Find the lowest p_vaddr in PT_LOAD segments. */
6515 bfd_vma p_vaddr = (bfd_vma) -1;
6516 for (; segment < end_segment; segment++)
6517 if (segment->p_type == PT_LOAD && p_vaddr > segment->p_vaddr)
6518 p_vaddr = segment->p_vaddr;
6519
6520 /* Set e_type to ET_EXEC if the lowest p_vaddr in PT_LOAD
6521 segments is non-zero. */
6522 if (p_vaddr)
6523 i_ehdrp->e_type = ET_EXEC;
6524 }
6525 return TRUE;
6526 }
6527
6528 /* Assign file positions for all the reloc sections which are not part
6529 of the loadable file image, and the file position of section headers. */
6530
6531 static bfd_boolean
6532 _bfd_elf_assign_file_positions_for_non_load (bfd *abfd)
6533 {
6534 file_ptr off;
6535 Elf_Internal_Shdr **shdrpp, **end_shdrpp;
6536 Elf_Internal_Shdr *shdrp;
6537 Elf_Internal_Ehdr *i_ehdrp;
6538 const struct elf_backend_data *bed;
6539
6540 off = elf_next_file_pos (abfd);
6541
6542 shdrpp = elf_elfsections (abfd);
6543 end_shdrpp = shdrpp + elf_numsections (abfd);
6544 for (shdrpp++; shdrpp < end_shdrpp; shdrpp++)
6545 {
6546 shdrp = *shdrpp;
6547 if (shdrp->sh_offset == -1)
6548 {
6549 asection *sec = shdrp->bfd_section;
6550 bfd_boolean is_rel = (shdrp->sh_type == SHT_REL
6551 || shdrp->sh_type == SHT_RELA);
6552 bfd_boolean is_ctf = sec && bfd_section_is_ctf (sec);
6553 if (is_rel
6554 || is_ctf
6555 || (sec != NULL && (sec->flags & SEC_ELF_COMPRESS)))
6556 {
6557 if (!is_rel && !is_ctf)
6558 {
6559 const char *name = sec->name;
6560 struct bfd_elf_section_data *d;
6561
6562 /* Compress DWARF debug sections. */
6563 if (!bfd_compress_section (abfd, sec,
6564 shdrp->contents))
6565 return FALSE;
6566
6567 if (sec->compress_status == COMPRESS_SECTION_DONE
6568 && (abfd->flags & BFD_COMPRESS_GABI) == 0)
6569 {
6570 /* If section is compressed with zlib-gnu, convert
6571 section name from .debug_* to .zdebug_*. */
6572 char *new_name
6573 = convert_debug_to_zdebug (abfd, name);
6574 if (new_name == NULL)
6575 return FALSE;
6576 name = new_name;
6577 }
6578 /* Add section name to section name section. */
6579 if (shdrp->sh_name != (unsigned int) -1)
6580 abort ();
6581 shdrp->sh_name
6582 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
6583 name, FALSE);
6584 d = elf_section_data (sec);
6585
6586 /* Add reloc section name to section name section. */
6587 if (d->rel.hdr
6588 && !_bfd_elf_set_reloc_sh_name (abfd,
6589 d->rel.hdr,
6590 name, FALSE))
6591 return FALSE;
6592 if (d->rela.hdr
6593 && !_bfd_elf_set_reloc_sh_name (abfd,
6594 d->rela.hdr,
6595 name, TRUE))
6596 return FALSE;
6597
6598 /* Update section size and contents. */
6599 shdrp->sh_size = sec->size;
6600 shdrp->contents = sec->contents;
6601 shdrp->bfd_section->contents = NULL;
6602 }
6603 else if (is_ctf)
6604 {
6605 /* Update section size and contents. */
6606 shdrp->sh_size = sec->size;
6607 shdrp->contents = sec->contents;
6608 }
6609
6610 off = _bfd_elf_assign_file_position_for_section (shdrp,
6611 off,
6612 TRUE);
6613 }
6614 }
6615 }
6616
6617 /* Place section name section after DWARF debug sections have been
6618 compressed. */
6619 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
6620 shdrp = &elf_tdata (abfd)->shstrtab_hdr;
6621 shdrp->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
6622 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
6623
6624 /* Place the section headers. */
6625 i_ehdrp = elf_elfheader (abfd);
6626 bed = get_elf_backend_data (abfd);
6627 off = align_file_position (off, 1 << bed->s->log_file_align);
6628 i_ehdrp->e_shoff = off;
6629 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
6630 elf_next_file_pos (abfd) = off;
6631
6632 return TRUE;
6633 }
6634
6635 bfd_boolean
6636 _bfd_elf_write_object_contents (bfd *abfd)
6637 {
6638 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6639 Elf_Internal_Shdr **i_shdrp;
6640 bfd_boolean failed;
6641 unsigned int count, num_sec;
6642 struct elf_obj_tdata *t;
6643
6644 if (! abfd->output_has_begun
6645 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
6646 return FALSE;
6647 /* Do not rewrite ELF data when the BFD has been opened for update.
6648 abfd->output_has_begun was set to TRUE on opening, so creation of new
6649 sections, and modification of existing section sizes was restricted.
6650 This means the ELF header, program headers and section headers can't have
6651 changed.
6652 If the contents of any sections has been modified, then those changes have
6653 already been written to the BFD. */
6654 else if (abfd->direction == both_direction)
6655 {
6656 BFD_ASSERT (abfd->output_has_begun);
6657 return TRUE;
6658 }
6659
6660 i_shdrp = elf_elfsections (abfd);
6661
6662 failed = FALSE;
6663 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
6664 if (failed)
6665 return FALSE;
6666
6667 if (!_bfd_elf_assign_file_positions_for_non_load (abfd))
6668 return FALSE;
6669
6670 /* After writing the headers, we need to write the sections too... */
6671 num_sec = elf_numsections (abfd);
6672 for (count = 1; count < num_sec; count++)
6673 {
6674 i_shdrp[count]->sh_name
6675 = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
6676 i_shdrp[count]->sh_name);
6677 if (bed->elf_backend_section_processing)
6678 if (!(*bed->elf_backend_section_processing) (abfd, i_shdrp[count]))
6679 return FALSE;
6680 if (i_shdrp[count]->contents)
6681 {
6682 bfd_size_type amt = i_shdrp[count]->sh_size;
6683
6684 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
6685 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
6686 return FALSE;
6687 }
6688 }
6689
6690 /* Write out the section header names. */
6691 t = elf_tdata (abfd);
6692 if (elf_shstrtab (abfd) != NULL
6693 && (bfd_seek (abfd, t->shstrtab_hdr.sh_offset, SEEK_SET) != 0
6694 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
6695 return FALSE;
6696
6697 if (!(*bed->elf_backend_final_write_processing) (abfd))
6698 return FALSE;
6699
6700 if (!bed->s->write_shdrs_and_ehdr (abfd))
6701 return FALSE;
6702
6703 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
6704 if (t->o->build_id.after_write_object_contents != NULL)
6705 return (*t->o->build_id.after_write_object_contents) (abfd);
6706
6707 return TRUE;
6708 }
6709
6710 bfd_boolean
6711 _bfd_elf_write_corefile_contents (bfd *abfd)
6712 {
6713 /* Hopefully this can be done just like an object file. */
6714 return _bfd_elf_write_object_contents (abfd);
6715 }
6716
6717 /* Given a section, search the header to find them. */
6718
6719 unsigned int
6720 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
6721 {
6722 const struct elf_backend_data *bed;
6723 unsigned int sec_index;
6724
6725 if (elf_section_data (asect) != NULL
6726 && elf_section_data (asect)->this_idx != 0)
6727 return elf_section_data (asect)->this_idx;
6728
6729 if (bfd_is_abs_section (asect))
6730 sec_index = SHN_ABS;
6731 else if (bfd_is_com_section (asect))
6732 sec_index = SHN_COMMON;
6733 else if (bfd_is_und_section (asect))
6734 sec_index = SHN_UNDEF;
6735 else
6736 sec_index = SHN_BAD;
6737
6738 bed = get_elf_backend_data (abfd);
6739 if (bed->elf_backend_section_from_bfd_section)
6740 {
6741 int retval = sec_index;
6742
6743 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
6744 return retval;
6745 }
6746
6747 if (sec_index == SHN_BAD)
6748 bfd_set_error (bfd_error_nonrepresentable_section);
6749
6750 return sec_index;
6751 }
6752
6753 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
6754 on error. */
6755
6756 int
6757 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
6758 {
6759 asymbol *asym_ptr = *asym_ptr_ptr;
6760 int idx;
6761 flagword flags = asym_ptr->flags;
6762
6763 /* When gas creates relocations against local labels, it creates its
6764 own symbol for the section, but does put the symbol into the
6765 symbol chain, so udata is 0. When the linker is generating
6766 relocatable output, this section symbol may be for one of the
6767 input sections rather than the output section. */
6768 if (asym_ptr->udata.i == 0
6769 && (flags & BSF_SECTION_SYM)
6770 && asym_ptr->section)
6771 {
6772 asection *sec;
6773 int indx;
6774
6775 sec = asym_ptr->section;
6776 if (sec->owner != abfd && sec->output_section != NULL)
6777 sec = sec->output_section;
6778 if (sec->owner == abfd
6779 && (indx = sec->index) < elf_num_section_syms (abfd)
6780 && elf_section_syms (abfd)[indx] != NULL)
6781 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
6782 }
6783
6784 idx = asym_ptr->udata.i;
6785
6786 if (idx == 0)
6787 {
6788 /* This case can occur when using --strip-symbol on a symbol
6789 which is used in a relocation entry. */
6790 _bfd_error_handler
6791 /* xgettext:c-format */
6792 (_("%pB: symbol `%s' required but not present"),
6793 abfd, bfd_asymbol_name (asym_ptr));
6794 bfd_set_error (bfd_error_no_symbols);
6795 return -1;
6796 }
6797
6798 #if DEBUG & 4
6799 {
6800 fprintf (stderr,
6801 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8x\n",
6802 (long) asym_ptr, asym_ptr->name, idx, flags);
6803 fflush (stderr);
6804 }
6805 #endif
6806
6807 return idx;
6808 }
6809
6810 /* Rewrite program header information. */
6811
6812 static bfd_boolean
6813 rewrite_elf_program_header (bfd *ibfd, bfd *obfd, bfd_vma maxpagesize)
6814 {
6815 Elf_Internal_Ehdr *iehdr;
6816 struct elf_segment_map *map;
6817 struct elf_segment_map *map_first;
6818 struct elf_segment_map **pointer_to_map;
6819 Elf_Internal_Phdr *segment;
6820 asection *section;
6821 unsigned int i;
6822 unsigned int num_segments;
6823 bfd_boolean phdr_included = FALSE;
6824 bfd_boolean p_paddr_valid;
6825 struct elf_segment_map *phdr_adjust_seg = NULL;
6826 unsigned int phdr_adjust_num = 0;
6827 const struct elf_backend_data *bed;
6828 unsigned int opb = bfd_octets_per_byte (ibfd, NULL);
6829
6830 bed = get_elf_backend_data (ibfd);
6831 iehdr = elf_elfheader (ibfd);
6832
6833 map_first = NULL;
6834 pointer_to_map = &map_first;
6835
6836 num_segments = elf_elfheader (ibfd)->e_phnum;
6837
6838 /* Returns the end address of the segment + 1. */
6839 #define SEGMENT_END(segment, start) \
6840 (start + (segment->p_memsz > segment->p_filesz \
6841 ? segment->p_memsz : segment->p_filesz))
6842
6843 #define SECTION_SIZE(section, segment) \
6844 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
6845 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
6846 ? section->size : 0)
6847
6848 /* Returns TRUE if the given section is contained within
6849 the given segment. VMA addresses are compared. */
6850 #define IS_CONTAINED_BY_VMA(section, segment, opb) \
6851 (section->vma * (opb) >= segment->p_vaddr \
6852 && (section->vma * (opb) + SECTION_SIZE (section, segment) \
6853 <= (SEGMENT_END (segment, segment->p_vaddr))))
6854
6855 /* Returns TRUE if the given section is contained within
6856 the given segment. LMA addresses are compared. */
6857 #define IS_CONTAINED_BY_LMA(section, segment, base, opb) \
6858 (section->lma * (opb) >= base \
6859 && (section->lma + SECTION_SIZE (section, segment) / (opb) >= section->lma) \
6860 && (section->lma * (opb) + SECTION_SIZE (section, segment) \
6861 <= SEGMENT_END (segment, base)))
6862
6863 /* Handle PT_NOTE segment. */
6864 #define IS_NOTE(p, s) \
6865 (p->p_type == PT_NOTE \
6866 && elf_section_type (s) == SHT_NOTE \
6867 && (bfd_vma) s->filepos >= p->p_offset \
6868 && ((bfd_vma) s->filepos + s->size \
6869 <= p->p_offset + p->p_filesz))
6870
6871 /* Special case: corefile "NOTE" section containing regs, prpsinfo
6872 etc. */
6873 #define IS_COREFILE_NOTE(p, s) \
6874 (IS_NOTE (p, s) \
6875 && bfd_get_format (ibfd) == bfd_core \
6876 && s->vma == 0 \
6877 && s->lma == 0)
6878
6879 /* The complicated case when p_vaddr is 0 is to handle the Solaris
6880 linker, which generates a PT_INTERP section with p_vaddr and
6881 p_memsz set to 0. */
6882 #define IS_SOLARIS_PT_INTERP(p, s) \
6883 (p->p_vaddr == 0 \
6884 && p->p_paddr == 0 \
6885 && p->p_memsz == 0 \
6886 && p->p_filesz > 0 \
6887 && (s->flags & SEC_HAS_CONTENTS) != 0 \
6888 && s->size > 0 \
6889 && (bfd_vma) s->filepos >= p->p_offset \
6890 && ((bfd_vma) s->filepos + s->size \
6891 <= p->p_offset + p->p_filesz))
6892
6893 /* Decide if the given section should be included in the given segment.
6894 A section will be included if:
6895 1. It is within the address space of the segment -- we use the LMA
6896 if that is set for the segment and the VMA otherwise,
6897 2. It is an allocated section or a NOTE section in a PT_NOTE
6898 segment.
6899 3. There is an output section associated with it,
6900 4. The section has not already been allocated to a previous segment.
6901 5. PT_GNU_STACK segments do not include any sections.
6902 6. PT_TLS segment includes only SHF_TLS sections.
6903 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
6904 8. PT_DYNAMIC should not contain empty sections at the beginning
6905 (with the possible exception of .dynamic). */
6906 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed, opb) \
6907 ((((segment->p_paddr \
6908 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr, opb) \
6909 : IS_CONTAINED_BY_VMA (section, segment, opb)) \
6910 && (section->flags & SEC_ALLOC) != 0) \
6911 || IS_NOTE (segment, section)) \
6912 && segment->p_type != PT_GNU_STACK \
6913 && (segment->p_type != PT_TLS \
6914 || (section->flags & SEC_THREAD_LOCAL)) \
6915 && (segment->p_type == PT_LOAD \
6916 || segment->p_type == PT_TLS \
6917 || (section->flags & SEC_THREAD_LOCAL) == 0) \
6918 && (segment->p_type != PT_DYNAMIC \
6919 || SECTION_SIZE (section, segment) > 0 \
6920 || (segment->p_paddr \
6921 ? segment->p_paddr != section->lma * (opb) \
6922 : segment->p_vaddr != section->vma * (opb)) \
6923 || (strcmp (bfd_section_name (section), ".dynamic") == 0)) \
6924 && (segment->p_type != PT_LOAD || !section->segment_mark))
6925
6926 /* If the output section of a section in the input segment is NULL,
6927 it is removed from the corresponding output segment. */
6928 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed, opb) \
6929 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed, opb) \
6930 && section->output_section != NULL)
6931
6932 /* Returns TRUE iff seg1 starts after the end of seg2. */
6933 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
6934 (seg1->field >= SEGMENT_END (seg2, seg2->field))
6935
6936 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
6937 their VMA address ranges and their LMA address ranges overlap.
6938 It is possible to have overlapping VMA ranges without overlapping LMA
6939 ranges. RedBoot images for example can have both .data and .bss mapped
6940 to the same VMA range, but with the .data section mapped to a different
6941 LMA. */
6942 #define SEGMENT_OVERLAPS(seg1, seg2) \
6943 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
6944 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
6945 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
6946 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
6947
6948 /* Initialise the segment mark field. */
6949 for (section = ibfd->sections; section != NULL; section = section->next)
6950 section->segment_mark = FALSE;
6951
6952 /* The Solaris linker creates program headers in which all the
6953 p_paddr fields are zero. When we try to objcopy or strip such a
6954 file, we get confused. Check for this case, and if we find it
6955 don't set the p_paddr_valid fields. */
6956 p_paddr_valid = FALSE;
6957 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6958 i < num_segments;
6959 i++, segment++)
6960 if (segment->p_paddr != 0)
6961 {
6962 p_paddr_valid = TRUE;
6963 break;
6964 }
6965
6966 /* Scan through the segments specified in the program header
6967 of the input BFD. For this first scan we look for overlaps
6968 in the loadable segments. These can be created by weird
6969 parameters to objcopy. Also, fix some solaris weirdness. */
6970 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6971 i < num_segments;
6972 i++, segment++)
6973 {
6974 unsigned int j;
6975 Elf_Internal_Phdr *segment2;
6976
6977 if (segment->p_type == PT_INTERP)
6978 for (section = ibfd->sections; section; section = section->next)
6979 if (IS_SOLARIS_PT_INTERP (segment, section))
6980 {
6981 /* Mininal change so that the normal section to segment
6982 assignment code will work. */
6983 segment->p_vaddr = section->vma * opb;
6984 break;
6985 }
6986
6987 if (segment->p_type != PT_LOAD)
6988 {
6989 /* Remove PT_GNU_RELRO segment. */
6990 if (segment->p_type == PT_GNU_RELRO)
6991 segment->p_type = PT_NULL;
6992 continue;
6993 }
6994
6995 /* Determine if this segment overlaps any previous segments. */
6996 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
6997 {
6998 bfd_signed_vma extra_length;
6999
7000 if (segment2->p_type != PT_LOAD
7001 || !SEGMENT_OVERLAPS (segment, segment2))
7002 continue;
7003
7004 /* Merge the two segments together. */
7005 if (segment2->p_vaddr < segment->p_vaddr)
7006 {
7007 /* Extend SEGMENT2 to include SEGMENT and then delete
7008 SEGMENT. */
7009 extra_length = (SEGMENT_END (segment, segment->p_vaddr)
7010 - SEGMENT_END (segment2, segment2->p_vaddr));
7011
7012 if (extra_length > 0)
7013 {
7014 segment2->p_memsz += extra_length;
7015 segment2->p_filesz += extra_length;
7016 }
7017
7018 segment->p_type = PT_NULL;
7019
7020 /* Since we have deleted P we must restart the outer loop. */
7021 i = 0;
7022 segment = elf_tdata (ibfd)->phdr;
7023 break;
7024 }
7025 else
7026 {
7027 /* Extend SEGMENT to include SEGMENT2 and then delete
7028 SEGMENT2. */
7029 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
7030 - SEGMENT_END (segment, segment->p_vaddr));
7031
7032 if (extra_length > 0)
7033 {
7034 segment->p_memsz += extra_length;
7035 segment->p_filesz += extra_length;
7036 }
7037
7038 segment2->p_type = PT_NULL;
7039 }
7040 }
7041 }
7042
7043 /* The second scan attempts to assign sections to segments. */
7044 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7045 i < num_segments;
7046 i++, segment++)
7047 {
7048 unsigned int section_count;
7049 asection **sections;
7050 asection *output_section;
7051 unsigned int isec;
7052 asection *matching_lma;
7053 asection *suggested_lma;
7054 unsigned int j;
7055 size_t amt;
7056 asection *first_section;
7057
7058 if (segment->p_type == PT_NULL)
7059 continue;
7060
7061 first_section = NULL;
7062 /* Compute how many sections might be placed into this segment. */
7063 for (section = ibfd->sections, section_count = 0;
7064 section != NULL;
7065 section = section->next)
7066 {
7067 /* Find the first section in the input segment, which may be
7068 removed from the corresponding output segment. */
7069 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed, opb))
7070 {
7071 if (first_section == NULL)
7072 first_section = section;
7073 if (section->output_section != NULL)
7074 ++section_count;
7075 }
7076 }
7077
7078 /* Allocate a segment map big enough to contain
7079 all of the sections we have selected. */
7080 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
7081 amt += section_count * sizeof (asection *);
7082 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7083 if (map == NULL)
7084 return FALSE;
7085
7086 /* Initialise the fields of the segment map. Default to
7087 using the physical address of the segment in the input BFD. */
7088 map->next = NULL;
7089 map->p_type = segment->p_type;
7090 map->p_flags = segment->p_flags;
7091 map->p_flags_valid = 1;
7092
7093 if (map->p_type == PT_LOAD
7094 && (ibfd->flags & D_PAGED) != 0
7095 && maxpagesize > 1
7096 && segment->p_align > 1)
7097 {
7098 map->p_align = segment->p_align;
7099 if (segment->p_align > maxpagesize)
7100 map->p_align = maxpagesize;
7101 map->p_align_valid = 1;
7102 }
7103
7104 /* If the first section in the input segment is removed, there is
7105 no need to preserve segment physical address in the corresponding
7106 output segment. */
7107 if (!first_section || first_section->output_section != NULL)
7108 {
7109 map->p_paddr = segment->p_paddr;
7110 map->p_paddr_valid = p_paddr_valid;
7111 }
7112
7113 /* Determine if this segment contains the ELF file header
7114 and if it contains the program headers themselves. */
7115 map->includes_filehdr = (segment->p_offset == 0
7116 && segment->p_filesz >= iehdr->e_ehsize);
7117 map->includes_phdrs = 0;
7118
7119 if (!phdr_included || segment->p_type != PT_LOAD)
7120 {
7121 map->includes_phdrs =
7122 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
7123 && (segment->p_offset + segment->p_filesz
7124 >= ((bfd_vma) iehdr->e_phoff
7125 + iehdr->e_phnum * iehdr->e_phentsize)));
7126
7127 if (segment->p_type == PT_LOAD && map->includes_phdrs)
7128 phdr_included = TRUE;
7129 }
7130
7131 if (section_count == 0)
7132 {
7133 /* Special segments, such as the PT_PHDR segment, may contain
7134 no sections, but ordinary, loadable segments should contain
7135 something. They are allowed by the ELF spec however, so only
7136 a warning is produced.
7137 There is however the valid use case of embedded systems which
7138 have segments with p_filesz of 0 and a p_memsz > 0 to initialize
7139 flash memory with zeros. No warning is shown for that case. */
7140 if (segment->p_type == PT_LOAD
7141 && (segment->p_filesz > 0 || segment->p_memsz == 0))
7142 /* xgettext:c-format */
7143 _bfd_error_handler
7144 (_("%pB: warning: empty loadable segment detected"
7145 " at vaddr=%#" PRIx64 ", is this intentional?"),
7146 ibfd, (uint64_t) segment->p_vaddr);
7147
7148 map->p_vaddr_offset = segment->p_vaddr / opb;
7149 map->count = 0;
7150 *pointer_to_map = map;
7151 pointer_to_map = &map->next;
7152
7153 continue;
7154 }
7155
7156 /* Now scan the sections in the input BFD again and attempt
7157 to add their corresponding output sections to the segment map.
7158 The problem here is how to handle an output section which has
7159 been moved (ie had its LMA changed). There are four possibilities:
7160
7161 1. None of the sections have been moved.
7162 In this case we can continue to use the segment LMA from the
7163 input BFD.
7164
7165 2. All of the sections have been moved by the same amount.
7166 In this case we can change the segment's LMA to match the LMA
7167 of the first section.
7168
7169 3. Some of the sections have been moved, others have not.
7170 In this case those sections which have not been moved can be
7171 placed in the current segment which will have to have its size,
7172 and possibly its LMA changed, and a new segment or segments will
7173 have to be created to contain the other sections.
7174
7175 4. The sections have been moved, but not by the same amount.
7176 In this case we can change the segment's LMA to match the LMA
7177 of the first section and we will have to create a new segment
7178 or segments to contain the other sections.
7179
7180 In order to save time, we allocate an array to hold the section
7181 pointers that we are interested in. As these sections get assigned
7182 to a segment, they are removed from this array. */
7183
7184 amt = section_count * sizeof (asection *);
7185 sections = (asection **) bfd_malloc (amt);
7186 if (sections == NULL)
7187 return FALSE;
7188
7189 /* Step One: Scan for segment vs section LMA conflicts.
7190 Also add the sections to the section array allocated above.
7191 Also add the sections to the current segment. In the common
7192 case, where the sections have not been moved, this means that
7193 we have completely filled the segment, and there is nothing
7194 more to do. */
7195 isec = 0;
7196 matching_lma = NULL;
7197 suggested_lma = NULL;
7198
7199 for (section = first_section, j = 0;
7200 section != NULL;
7201 section = section->next)
7202 {
7203 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed, opb))
7204 {
7205 output_section = section->output_section;
7206
7207 sections[j++] = section;
7208
7209 /* The Solaris native linker always sets p_paddr to 0.
7210 We try to catch that case here, and set it to the
7211 correct value. Note - some backends require that
7212 p_paddr be left as zero. */
7213 if (!p_paddr_valid
7214 && segment->p_vaddr != 0
7215 && !bed->want_p_paddr_set_to_zero
7216 && isec == 0
7217 && output_section->lma != 0
7218 && (align_power (segment->p_vaddr
7219 + (map->includes_filehdr
7220 ? iehdr->e_ehsize : 0)
7221 + (map->includes_phdrs
7222 ? iehdr->e_phnum * iehdr->e_phentsize
7223 : 0),
7224 output_section->alignment_power * opb)
7225 == (output_section->vma * opb)))
7226 map->p_paddr = segment->p_vaddr;
7227
7228 /* Match up the physical address of the segment with the
7229 LMA address of the output section. */
7230 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr,
7231 opb)
7232 || IS_COREFILE_NOTE (segment, section)
7233 || (bed->want_p_paddr_set_to_zero
7234 && IS_CONTAINED_BY_VMA (output_section, segment, opb)))
7235 {
7236 if (matching_lma == NULL
7237 || output_section->lma < matching_lma->lma)
7238 matching_lma = output_section;
7239
7240 /* We assume that if the section fits within the segment
7241 then it does not overlap any other section within that
7242 segment. */
7243 map->sections[isec++] = output_section;
7244 }
7245 else if (suggested_lma == NULL)
7246 suggested_lma = output_section;
7247
7248 if (j == section_count)
7249 break;
7250 }
7251 }
7252
7253 BFD_ASSERT (j == section_count);
7254
7255 /* Step Two: Adjust the physical address of the current segment,
7256 if necessary. */
7257 if (isec == section_count)
7258 {
7259 /* All of the sections fitted within the segment as currently
7260 specified. This is the default case. Add the segment to
7261 the list of built segments and carry on to process the next
7262 program header in the input BFD. */
7263 map->count = section_count;
7264 *pointer_to_map = map;
7265 pointer_to_map = &map->next;
7266
7267 if (p_paddr_valid
7268 && !bed->want_p_paddr_set_to_zero)
7269 {
7270 bfd_vma hdr_size = 0;
7271 if (map->includes_filehdr)
7272 hdr_size = iehdr->e_ehsize;
7273 if (map->includes_phdrs)
7274 hdr_size += iehdr->e_phnum * iehdr->e_phentsize;
7275
7276 /* Account for padding before the first section in the
7277 segment. */
7278 map->p_vaddr_offset = ((map->p_paddr + hdr_size) / opb
7279 - matching_lma->lma);
7280 }
7281
7282 free (sections);
7283 continue;
7284 }
7285 else
7286 {
7287 /* Change the current segment's physical address to match
7288 the LMA of the first section that fitted, or if no
7289 section fitted, the first section. */
7290 if (matching_lma == NULL)
7291 matching_lma = suggested_lma;
7292
7293 map->p_paddr = matching_lma->lma * opb;
7294
7295 /* Offset the segment physical address from the lma
7296 to allow for space taken up by elf headers. */
7297 if (map->includes_phdrs)
7298 {
7299 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
7300
7301 /* iehdr->e_phnum is just an estimate of the number
7302 of program headers that we will need. Make a note
7303 here of the number we used and the segment we chose
7304 to hold these headers, so that we can adjust the
7305 offset when we know the correct value. */
7306 phdr_adjust_num = iehdr->e_phnum;
7307 phdr_adjust_seg = map;
7308 }
7309
7310 if (map->includes_filehdr)
7311 {
7312 bfd_vma align = (bfd_vma) 1 << matching_lma->alignment_power;
7313 map->p_paddr -= iehdr->e_ehsize;
7314 /* We've subtracted off the size of headers from the
7315 first section lma, but there may have been some
7316 alignment padding before that section too. Try to
7317 account for that by adjusting the segment lma down to
7318 the same alignment. */
7319 if (segment->p_align != 0 && segment->p_align < align)
7320 align = segment->p_align;
7321 map->p_paddr &= -(align * opb);
7322 }
7323 }
7324
7325 /* Step Three: Loop over the sections again, this time assigning
7326 those that fit to the current segment and removing them from the
7327 sections array; but making sure not to leave large gaps. Once all
7328 possible sections have been assigned to the current segment it is
7329 added to the list of built segments and if sections still remain
7330 to be assigned, a new segment is constructed before repeating
7331 the loop. */
7332 isec = 0;
7333 do
7334 {
7335 map->count = 0;
7336 suggested_lma = NULL;
7337
7338 /* Fill the current segment with sections that fit. */
7339 for (j = 0; j < section_count; j++)
7340 {
7341 section = sections[j];
7342
7343 if (section == NULL)
7344 continue;
7345
7346 output_section = section->output_section;
7347
7348 BFD_ASSERT (output_section != NULL);
7349
7350 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr,
7351 opb)
7352 || IS_COREFILE_NOTE (segment, section))
7353 {
7354 if (map->count == 0)
7355 {
7356 /* If the first section in a segment does not start at
7357 the beginning of the segment, then something is
7358 wrong. */
7359 if (align_power (map->p_paddr
7360 + (map->includes_filehdr
7361 ? iehdr->e_ehsize : 0)
7362 + (map->includes_phdrs
7363 ? iehdr->e_phnum * iehdr->e_phentsize
7364 : 0),
7365 output_section->alignment_power * opb)
7366 != output_section->lma * opb)
7367 goto sorry;
7368 }
7369 else
7370 {
7371 asection *prev_sec;
7372
7373 prev_sec = map->sections[map->count - 1];
7374
7375 /* If the gap between the end of the previous section
7376 and the start of this section is more than
7377 maxpagesize then we need to start a new segment. */
7378 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
7379 maxpagesize)
7380 < BFD_ALIGN (output_section->lma, maxpagesize))
7381 || (prev_sec->lma + prev_sec->size
7382 > output_section->lma))
7383 {
7384 if (suggested_lma == NULL)
7385 suggested_lma = output_section;
7386
7387 continue;
7388 }
7389 }
7390
7391 map->sections[map->count++] = output_section;
7392 ++isec;
7393 sections[j] = NULL;
7394 if (segment->p_type == PT_LOAD)
7395 section->segment_mark = TRUE;
7396 }
7397 else if (suggested_lma == NULL)
7398 suggested_lma = output_section;
7399 }
7400
7401 /* PR 23932. A corrupt input file may contain sections that cannot
7402 be assigned to any segment - because for example they have a
7403 negative size - or segments that do not contain any sections.
7404 But there are also valid reasons why a segment can be empty.
7405 So allow a count of zero. */
7406
7407 /* Add the current segment to the list of built segments. */
7408 *pointer_to_map = map;
7409 pointer_to_map = &map->next;
7410
7411 if (isec < section_count)
7412 {
7413 /* We still have not allocated all of the sections to
7414 segments. Create a new segment here, initialise it
7415 and carry on looping. */
7416 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
7417 amt += section_count * sizeof (asection *);
7418 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7419 if (map == NULL)
7420 {
7421 free (sections);
7422 return FALSE;
7423 }
7424
7425 /* Initialise the fields of the segment map. Set the physical
7426 physical address to the LMA of the first section that has
7427 not yet been assigned. */
7428 map->next = NULL;
7429 map->p_type = segment->p_type;
7430 map->p_flags = segment->p_flags;
7431 map->p_flags_valid = 1;
7432 map->p_paddr = suggested_lma->lma * opb;
7433 map->p_paddr_valid = p_paddr_valid;
7434 map->includes_filehdr = 0;
7435 map->includes_phdrs = 0;
7436 }
7437
7438 continue;
7439 sorry:
7440 bfd_set_error (bfd_error_sorry);
7441 free (sections);
7442 return FALSE;
7443 }
7444 while (isec < section_count);
7445
7446 free (sections);
7447 }
7448
7449 elf_seg_map (obfd) = map_first;
7450
7451 /* If we had to estimate the number of program headers that were
7452 going to be needed, then check our estimate now and adjust
7453 the offset if necessary. */
7454 if (phdr_adjust_seg != NULL)
7455 {
7456 unsigned int count;
7457
7458 for (count = 0, map = map_first; map != NULL; map = map->next)
7459 count++;
7460
7461 if (count > phdr_adjust_num)
7462 phdr_adjust_seg->p_paddr
7463 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
7464
7465 for (map = map_first; map != NULL; map = map->next)
7466 if (map->p_type == PT_PHDR)
7467 {
7468 bfd_vma adjust
7469 = phdr_adjust_seg->includes_filehdr ? iehdr->e_ehsize : 0;
7470 map->p_paddr = phdr_adjust_seg->p_paddr + adjust;
7471 break;
7472 }
7473 }
7474
7475 #undef SEGMENT_END
7476 #undef SECTION_SIZE
7477 #undef IS_CONTAINED_BY_VMA
7478 #undef IS_CONTAINED_BY_LMA
7479 #undef IS_NOTE
7480 #undef IS_COREFILE_NOTE
7481 #undef IS_SOLARIS_PT_INTERP
7482 #undef IS_SECTION_IN_INPUT_SEGMENT
7483 #undef INCLUDE_SECTION_IN_SEGMENT
7484 #undef SEGMENT_AFTER_SEGMENT
7485 #undef SEGMENT_OVERLAPS
7486 return TRUE;
7487 }
7488
7489 /* Copy ELF program header information. */
7490
7491 static bfd_boolean
7492 copy_elf_program_header (bfd *ibfd, bfd *obfd)
7493 {
7494 Elf_Internal_Ehdr *iehdr;
7495 struct elf_segment_map *map;
7496 struct elf_segment_map *map_first;
7497 struct elf_segment_map **pointer_to_map;
7498 Elf_Internal_Phdr *segment;
7499 unsigned int i;
7500 unsigned int num_segments;
7501 bfd_boolean phdr_included = FALSE;
7502 bfd_boolean p_paddr_valid;
7503 unsigned int opb = bfd_octets_per_byte (ibfd, NULL);
7504
7505 iehdr = elf_elfheader (ibfd);
7506
7507 map_first = NULL;
7508 pointer_to_map = &map_first;
7509
7510 /* If all the segment p_paddr fields are zero, don't set
7511 map->p_paddr_valid. */
7512 p_paddr_valid = FALSE;
7513 num_segments = elf_elfheader (ibfd)->e_phnum;
7514 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7515 i < num_segments;
7516 i++, segment++)
7517 if (segment->p_paddr != 0)
7518 {
7519 p_paddr_valid = TRUE;
7520 break;
7521 }
7522
7523 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7524 i < num_segments;
7525 i++, segment++)
7526 {
7527 asection *section;
7528 unsigned int section_count;
7529 size_t amt;
7530 Elf_Internal_Shdr *this_hdr;
7531 asection *first_section = NULL;
7532 asection *lowest_section;
7533
7534 /* Compute how many sections are in this segment. */
7535 for (section = ibfd->sections, section_count = 0;
7536 section != NULL;
7537 section = section->next)
7538 {
7539 this_hdr = &(elf_section_data(section)->this_hdr);
7540 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7541 {
7542 if (first_section == NULL)
7543 first_section = section;
7544 section_count++;
7545 }
7546 }
7547
7548 /* Allocate a segment map big enough to contain
7549 all of the sections we have selected. */
7550 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
7551 amt += section_count * sizeof (asection *);
7552 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7553 if (map == NULL)
7554 return FALSE;
7555
7556 /* Initialize the fields of the output segment map with the
7557 input segment. */
7558 map->next = NULL;
7559 map->p_type = segment->p_type;
7560 map->p_flags = segment->p_flags;
7561 map->p_flags_valid = 1;
7562 map->p_paddr = segment->p_paddr;
7563 map->p_paddr_valid = p_paddr_valid;
7564 map->p_align = segment->p_align;
7565 map->p_align_valid = 1;
7566 map->p_vaddr_offset = 0;
7567
7568 if (map->p_type == PT_GNU_RELRO
7569 || map->p_type == PT_GNU_STACK)
7570 {
7571 /* The PT_GNU_RELRO segment may contain the first a few
7572 bytes in the .got.plt section even if the whole .got.plt
7573 section isn't in the PT_GNU_RELRO segment. We won't
7574 change the size of the PT_GNU_RELRO segment.
7575 Similarly, PT_GNU_STACK size is significant on uclinux
7576 systems. */
7577 map->p_size = segment->p_memsz;
7578 map->p_size_valid = 1;
7579 }
7580
7581 /* Determine if this segment contains the ELF file header
7582 and if it contains the program headers themselves. */
7583 map->includes_filehdr = (segment->p_offset == 0
7584 && segment->p_filesz >= iehdr->e_ehsize);
7585
7586 map->includes_phdrs = 0;
7587 if (! phdr_included || segment->p_type != PT_LOAD)
7588 {
7589 map->includes_phdrs =
7590 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
7591 && (segment->p_offset + segment->p_filesz
7592 >= ((bfd_vma) iehdr->e_phoff
7593 + iehdr->e_phnum * iehdr->e_phentsize)));
7594
7595 if (segment->p_type == PT_LOAD && map->includes_phdrs)
7596 phdr_included = TRUE;
7597 }
7598
7599 lowest_section = NULL;
7600 if (section_count != 0)
7601 {
7602 unsigned int isec = 0;
7603
7604 for (section = first_section;
7605 section != NULL;
7606 section = section->next)
7607 {
7608 this_hdr = &(elf_section_data(section)->this_hdr);
7609 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7610 {
7611 map->sections[isec++] = section->output_section;
7612 if ((section->flags & SEC_ALLOC) != 0)
7613 {
7614 bfd_vma seg_off;
7615
7616 if (lowest_section == NULL
7617 || section->lma < lowest_section->lma)
7618 lowest_section = section;
7619
7620 /* Section lmas are set up from PT_LOAD header
7621 p_paddr in _bfd_elf_make_section_from_shdr.
7622 If this header has a p_paddr that disagrees
7623 with the section lma, flag the p_paddr as
7624 invalid. */
7625 if ((section->flags & SEC_LOAD) != 0)
7626 seg_off = this_hdr->sh_offset - segment->p_offset;
7627 else
7628 seg_off = this_hdr->sh_addr - segment->p_vaddr;
7629 if (section->lma * opb - segment->p_paddr != seg_off)
7630 map->p_paddr_valid = FALSE;
7631 }
7632 if (isec == section_count)
7633 break;
7634 }
7635 }
7636 }
7637
7638 if (section_count == 0)
7639 map->p_vaddr_offset = segment->p_vaddr / opb;
7640 else if (map->p_paddr_valid)
7641 {
7642 /* Account for padding before the first section in the segment. */
7643 bfd_vma hdr_size = 0;
7644 if (map->includes_filehdr)
7645 hdr_size = iehdr->e_ehsize;
7646 if (map->includes_phdrs)
7647 hdr_size += iehdr->e_phnum * iehdr->e_phentsize;
7648
7649 map->p_vaddr_offset = ((map->p_paddr + hdr_size) / opb
7650 - (lowest_section ? lowest_section->lma : 0));
7651 }
7652
7653 map->count = section_count;
7654 *pointer_to_map = map;
7655 pointer_to_map = &map->next;
7656 }
7657
7658 elf_seg_map (obfd) = map_first;
7659 return TRUE;
7660 }
7661
7662 /* Copy private BFD data. This copies or rewrites ELF program header
7663 information. */
7664
7665 static bfd_boolean
7666 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
7667 {
7668 bfd_vma maxpagesize;
7669
7670 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7671 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7672 return TRUE;
7673
7674 if (elf_tdata (ibfd)->phdr == NULL)
7675 return TRUE;
7676
7677 if (ibfd->xvec == obfd->xvec)
7678 {
7679 /* Check to see if any sections in the input BFD
7680 covered by ELF program header have changed. */
7681 Elf_Internal_Phdr *segment;
7682 asection *section, *osec;
7683 unsigned int i, num_segments;
7684 Elf_Internal_Shdr *this_hdr;
7685 const struct elf_backend_data *bed;
7686
7687 bed = get_elf_backend_data (ibfd);
7688
7689 /* Regenerate the segment map if p_paddr is set to 0. */
7690 if (bed->want_p_paddr_set_to_zero)
7691 goto rewrite;
7692
7693 /* Initialize the segment mark field. */
7694 for (section = obfd->sections; section != NULL;
7695 section = section->next)
7696 section->segment_mark = FALSE;
7697
7698 num_segments = elf_elfheader (ibfd)->e_phnum;
7699 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7700 i < num_segments;
7701 i++, segment++)
7702 {
7703 /* PR binutils/3535. The Solaris linker always sets the p_paddr
7704 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
7705 which severly confuses things, so always regenerate the segment
7706 map in this case. */
7707 if (segment->p_paddr == 0
7708 && segment->p_memsz == 0
7709 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
7710 goto rewrite;
7711
7712 for (section = ibfd->sections;
7713 section != NULL; section = section->next)
7714 {
7715 /* We mark the output section so that we know it comes
7716 from the input BFD. */
7717 osec = section->output_section;
7718 if (osec)
7719 osec->segment_mark = TRUE;
7720
7721 /* Check if this section is covered by the segment. */
7722 this_hdr = &(elf_section_data(section)->this_hdr);
7723 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7724 {
7725 /* FIXME: Check if its output section is changed or
7726 removed. What else do we need to check? */
7727 if (osec == NULL
7728 || section->flags != osec->flags
7729 || section->lma != osec->lma
7730 || section->vma != osec->vma
7731 || section->size != osec->size
7732 || section->rawsize != osec->rawsize
7733 || section->alignment_power != osec->alignment_power)
7734 goto rewrite;
7735 }
7736 }
7737 }
7738
7739 /* Check to see if any output section do not come from the
7740 input BFD. */
7741 for (section = obfd->sections; section != NULL;
7742 section = section->next)
7743 {
7744 if (!section->segment_mark)
7745 goto rewrite;
7746 else
7747 section->segment_mark = FALSE;
7748 }
7749
7750 return copy_elf_program_header (ibfd, obfd);
7751 }
7752
7753 rewrite:
7754 maxpagesize = 0;
7755 if (ibfd->xvec == obfd->xvec)
7756 {
7757 /* When rewriting program header, set the output maxpagesize to
7758 the maximum alignment of input PT_LOAD segments. */
7759 Elf_Internal_Phdr *segment;
7760 unsigned int i;
7761 unsigned int num_segments = elf_elfheader (ibfd)->e_phnum;
7762
7763 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7764 i < num_segments;
7765 i++, segment++)
7766 if (segment->p_type == PT_LOAD
7767 && maxpagesize < segment->p_align)
7768 {
7769 /* PR 17512: file: f17299af. */
7770 if (segment->p_align > (bfd_vma) 1 << ((sizeof (bfd_vma) * 8) - 2))
7771 /* xgettext:c-format */
7772 _bfd_error_handler (_("%pB: warning: segment alignment of %#"
7773 PRIx64 " is too large"),
7774 ibfd, (uint64_t) segment->p_align);
7775 else
7776 maxpagesize = segment->p_align;
7777 }
7778 }
7779 if (maxpagesize == 0)
7780 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
7781
7782 return rewrite_elf_program_header (ibfd, obfd, maxpagesize);
7783 }
7784
7785 /* Initialize private output section information from input section. */
7786
7787 bfd_boolean
7788 _bfd_elf_init_private_section_data (bfd *ibfd,
7789 asection *isec,
7790 bfd *obfd,
7791 asection *osec,
7792 struct bfd_link_info *link_info)
7793
7794 {
7795 Elf_Internal_Shdr *ihdr, *ohdr;
7796 bfd_boolean final_link = (link_info != NULL
7797 && !bfd_link_relocatable (link_info));
7798
7799 if (ibfd->xvec->flavour != bfd_target_elf_flavour
7800 || obfd->xvec->flavour != bfd_target_elf_flavour)
7801 return TRUE;
7802
7803 BFD_ASSERT (elf_section_data (osec) != NULL);
7804
7805 /* If this is a known ABI section, ELF section type and flags may
7806 have been set up when OSEC was created. For normal sections we
7807 allow the user to override the type and flags other than
7808 SHF_MASKOS and SHF_MASKPROC. */
7809 if (elf_section_type (osec) == SHT_PROGBITS
7810 || elf_section_type (osec) == SHT_NOTE
7811 || elf_section_type (osec) == SHT_NOBITS)
7812 elf_section_type (osec) = SHT_NULL;
7813 /* For objcopy and relocatable link, copy the ELF section type from
7814 the input file if the BFD section flags are the same. (If they
7815 are different the user may be doing something like
7816 "objcopy --set-section-flags .text=alloc,data".) For a final
7817 link allow some flags that the linker clears to differ. */
7818 if (elf_section_type (osec) == SHT_NULL
7819 && (osec->flags == isec->flags
7820 || (final_link
7821 && ((osec->flags ^ isec->flags)
7822 & ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC)) == 0)))
7823 elf_section_type (osec) = elf_section_type (isec);
7824
7825 /* FIXME: Is this correct for all OS/PROC specific flags? */
7826 elf_section_flags (osec) = (elf_section_flags (isec)
7827 & (SHF_MASKOS | SHF_MASKPROC));
7828
7829 /* Copy sh_info from input for mbind section. */
7830 if ((elf_tdata (ibfd)->has_gnu_osabi & elf_gnu_osabi_mbind) != 0
7831 && elf_section_flags (isec) & SHF_GNU_MBIND)
7832 elf_section_data (osec)->this_hdr.sh_info
7833 = elf_section_data (isec)->this_hdr.sh_info;
7834
7835 /* Set things up for objcopy and relocatable link. The output
7836 SHT_GROUP section will have its elf_next_in_group pointing back
7837 to the input group members. Ignore linker created group section.
7838 See elfNN_ia64_object_p in elfxx-ia64.c. */
7839 if ((link_info == NULL
7840 || !link_info->resolve_section_groups)
7841 && (elf_sec_group (isec) == NULL
7842 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0))
7843 {
7844 if (elf_section_flags (isec) & SHF_GROUP)
7845 elf_section_flags (osec) |= SHF_GROUP;
7846 elf_next_in_group (osec) = elf_next_in_group (isec);
7847 elf_section_data (osec)->group = elf_section_data (isec)->group;
7848 }
7849
7850 /* If not decompress, preserve SHF_COMPRESSED. */
7851 if (!final_link && (ibfd->flags & BFD_DECOMPRESS) == 0)
7852 elf_section_flags (osec) |= (elf_section_flags (isec)
7853 & SHF_COMPRESSED);
7854
7855 ihdr = &elf_section_data (isec)->this_hdr;
7856
7857 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
7858 don't use the output section of the linked-to section since it
7859 may be NULL at this point. */
7860 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
7861 {
7862 ohdr = &elf_section_data (osec)->this_hdr;
7863 ohdr->sh_flags |= SHF_LINK_ORDER;
7864 elf_linked_to_section (osec) = elf_linked_to_section (isec);
7865 }
7866
7867 osec->use_rela_p = isec->use_rela_p;
7868
7869 return TRUE;
7870 }
7871
7872 /* Copy private section information. This copies over the entsize
7873 field, and sometimes the info field. */
7874
7875 bfd_boolean
7876 _bfd_elf_copy_private_section_data (bfd *ibfd,
7877 asection *isec,
7878 bfd *obfd,
7879 asection *osec)
7880 {
7881 Elf_Internal_Shdr *ihdr, *ohdr;
7882
7883 if (ibfd->xvec->flavour != bfd_target_elf_flavour
7884 || obfd->xvec->flavour != bfd_target_elf_flavour)
7885 return TRUE;
7886
7887 ihdr = &elf_section_data (isec)->this_hdr;
7888 ohdr = &elf_section_data (osec)->this_hdr;
7889
7890 ohdr->sh_entsize = ihdr->sh_entsize;
7891
7892 if (ihdr->sh_type == SHT_SYMTAB
7893 || ihdr->sh_type == SHT_DYNSYM
7894 || ihdr->sh_type == SHT_GNU_verneed
7895 || ihdr->sh_type == SHT_GNU_verdef)
7896 ohdr->sh_info = ihdr->sh_info;
7897
7898 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
7899 NULL);
7900 }
7901
7902 /* Look at all the SHT_GROUP sections in IBFD, making any adjustments
7903 necessary if we are removing either the SHT_GROUP section or any of
7904 the group member sections. DISCARDED is the value that a section's
7905 output_section has if the section will be discarded, NULL when this
7906 function is called from objcopy, bfd_abs_section_ptr when called
7907 from the linker. */
7908
7909 bfd_boolean
7910 _bfd_elf_fixup_group_sections (bfd *ibfd, asection *discarded)
7911 {
7912 asection *isec;
7913
7914 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
7915 if (elf_section_type (isec) == SHT_GROUP)
7916 {
7917 asection *first = elf_next_in_group (isec);
7918 asection *s = first;
7919 bfd_size_type removed = 0;
7920
7921 while (s != NULL)
7922 {
7923 /* If this member section is being output but the
7924 SHT_GROUP section is not, then clear the group info
7925 set up by _bfd_elf_copy_private_section_data. */
7926 if (s->output_section != discarded
7927 && isec->output_section == discarded)
7928 {
7929 elf_section_flags (s->output_section) &= ~SHF_GROUP;
7930 elf_group_name (s->output_section) = NULL;
7931 }
7932 else
7933 {
7934 struct bfd_elf_section_data *elf_sec = elf_section_data (s);
7935 if (s->output_section == discarded
7936 && isec->output_section != discarded)
7937 {
7938 /* Conversely, if the member section is not being
7939 output but the SHT_GROUP section is, then adjust
7940 its size. */
7941 removed += 4;
7942 if (elf_sec->rel.hdr != NULL
7943 && (elf_sec->rel.hdr->sh_flags & SHF_GROUP) != 0)
7944 removed += 4;
7945 if (elf_sec->rela.hdr != NULL
7946 && (elf_sec->rela.hdr->sh_flags & SHF_GROUP) != 0)
7947 removed += 4;
7948 }
7949 else
7950 {
7951 /* Also adjust for zero-sized relocation member
7952 section. */
7953 if (elf_sec->rel.hdr != NULL
7954 && elf_sec->rel.hdr->sh_size == 0)
7955 removed += 4;
7956 if (elf_sec->rela.hdr != NULL
7957 && elf_sec->rela.hdr->sh_size == 0)
7958 removed += 4;
7959 }
7960 }
7961 s = elf_next_in_group (s);
7962 if (s == first)
7963 break;
7964 }
7965 if (removed != 0)
7966 {
7967 if (discarded != NULL)
7968 {
7969 /* If we've been called for ld -r, then we need to
7970 adjust the input section size. */
7971 if (isec->rawsize == 0)
7972 isec->rawsize = isec->size;
7973 isec->size = isec->rawsize - removed;
7974 if (isec->size <= 4)
7975 {
7976 isec->size = 0;
7977 isec->flags |= SEC_EXCLUDE;
7978 }
7979 }
7980 else
7981 {
7982 /* Adjust the output section size when called from
7983 objcopy. */
7984 isec->output_section->size -= removed;
7985 if (isec->output_section->size <= 4)
7986 {
7987 isec->output_section->size = 0;
7988 isec->output_section->flags |= SEC_EXCLUDE;
7989 }
7990 }
7991 }
7992 }
7993
7994 return TRUE;
7995 }
7996
7997 /* Copy private header information. */
7998
7999 bfd_boolean
8000 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
8001 {
8002 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
8003 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
8004 return TRUE;
8005
8006 /* Copy over private BFD data if it has not already been copied.
8007 This must be done here, rather than in the copy_private_bfd_data
8008 entry point, because the latter is called after the section
8009 contents have been set, which means that the program headers have
8010 already been worked out. */
8011 if (elf_seg_map (obfd) == NULL && elf_tdata (ibfd)->phdr != NULL)
8012 {
8013 if (! copy_private_bfd_data (ibfd, obfd))
8014 return FALSE;
8015 }
8016
8017 return _bfd_elf_fixup_group_sections (ibfd, NULL);
8018 }
8019
8020 /* Copy private symbol information. If this symbol is in a section
8021 which we did not map into a BFD section, try to map the section
8022 index correctly. We use special macro definitions for the mapped
8023 section indices; these definitions are interpreted by the
8024 swap_out_syms function. */
8025
8026 #define MAP_ONESYMTAB (SHN_HIOS + 1)
8027 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
8028 #define MAP_STRTAB (SHN_HIOS + 3)
8029 #define MAP_SHSTRTAB (SHN_HIOS + 4)
8030 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
8031
8032 bfd_boolean
8033 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
8034 asymbol *isymarg,
8035 bfd *obfd,
8036 asymbol *osymarg)
8037 {
8038 elf_symbol_type *isym, *osym;
8039
8040 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
8041 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
8042 return TRUE;
8043
8044 isym = elf_symbol_from (isymarg);
8045 osym = elf_symbol_from (osymarg);
8046
8047 if (isym != NULL
8048 && isym->internal_elf_sym.st_shndx != 0
8049 && osym != NULL
8050 && bfd_is_abs_section (isym->symbol.section))
8051 {
8052 unsigned int shndx;
8053
8054 shndx = isym->internal_elf_sym.st_shndx;
8055 if (shndx == elf_onesymtab (ibfd))
8056 shndx = MAP_ONESYMTAB;
8057 else if (shndx == elf_dynsymtab (ibfd))
8058 shndx = MAP_DYNSYMTAB;
8059 else if (shndx == elf_strtab_sec (ibfd))
8060 shndx = MAP_STRTAB;
8061 else if (shndx == elf_shstrtab_sec (ibfd))
8062 shndx = MAP_SHSTRTAB;
8063 else if (find_section_in_list (shndx, elf_symtab_shndx_list (ibfd)))
8064 shndx = MAP_SYM_SHNDX;
8065 osym->internal_elf_sym.st_shndx = shndx;
8066 }
8067
8068 return TRUE;
8069 }
8070
8071 /* Swap out the symbols. */
8072
8073 static bfd_boolean
8074 swap_out_syms (bfd *abfd,
8075 struct elf_strtab_hash **sttp,
8076 int relocatable_p,
8077 struct bfd_link_info *info)
8078 {
8079 const struct elf_backend_data *bed;
8080 unsigned int symcount;
8081 asymbol **syms;
8082 struct elf_strtab_hash *stt;
8083 Elf_Internal_Shdr *symtab_hdr;
8084 Elf_Internal_Shdr *symtab_shndx_hdr;
8085 Elf_Internal_Shdr *symstrtab_hdr;
8086 struct elf_sym_strtab *symstrtab;
8087 bfd_byte *outbound_syms;
8088 bfd_byte *outbound_shndx;
8089 unsigned long outbound_syms_index;
8090 unsigned long outbound_shndx_index;
8091 unsigned int idx;
8092 unsigned int num_locals;
8093 size_t amt;
8094 bfd_boolean name_local_sections;
8095
8096 if (!elf_map_symbols (abfd, &num_locals))
8097 return FALSE;
8098
8099 /* Dump out the symtabs. */
8100 stt = _bfd_elf_strtab_init ();
8101 if (stt == NULL)
8102 return FALSE;
8103
8104 bed = get_elf_backend_data (abfd);
8105 symcount = bfd_get_symcount (abfd);
8106 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8107 symtab_hdr->sh_type = SHT_SYMTAB;
8108 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
8109 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
8110 symtab_hdr->sh_info = num_locals + 1;
8111 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
8112
8113 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
8114 symstrtab_hdr->sh_type = SHT_STRTAB;
8115
8116 /* Allocate buffer to swap out the .strtab section. */
8117 if (_bfd_mul_overflow (symcount + 1, sizeof (*symstrtab), &amt)
8118 || (symstrtab = (struct elf_sym_strtab *) bfd_malloc (amt)) == NULL)
8119 {
8120 bfd_set_error (bfd_error_no_memory);
8121 _bfd_elf_strtab_free (stt);
8122 return FALSE;
8123 }
8124
8125 if (_bfd_mul_overflow (symcount + 1, bed->s->sizeof_sym, &amt)
8126 || (outbound_syms = (bfd_byte *) bfd_alloc (abfd, amt)) == NULL)
8127 {
8128 error_no_mem:
8129 bfd_set_error (bfd_error_no_memory);
8130 error_return:
8131 free (symstrtab);
8132 _bfd_elf_strtab_free (stt);
8133 return FALSE;
8134 }
8135 symtab_hdr->contents = outbound_syms;
8136 outbound_syms_index = 0;
8137
8138 outbound_shndx = NULL;
8139 outbound_shndx_index = 0;
8140
8141 if (elf_symtab_shndx_list (abfd))
8142 {
8143 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
8144 if (symtab_shndx_hdr->sh_name != 0)
8145 {
8146 if (_bfd_mul_overflow (symcount + 1,
8147 sizeof (Elf_External_Sym_Shndx), &amt))
8148 goto error_no_mem;
8149 outbound_shndx = (bfd_byte *) bfd_zalloc (abfd, amt);
8150 if (outbound_shndx == NULL)
8151 goto error_return;
8152
8153 symtab_shndx_hdr->contents = outbound_shndx;
8154 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
8155 symtab_shndx_hdr->sh_size = amt;
8156 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
8157 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
8158 }
8159 /* FIXME: What about any other headers in the list ? */
8160 }
8161
8162 /* Now generate the data (for "contents"). */
8163 {
8164 /* Fill in zeroth symbol and swap it out. */
8165 Elf_Internal_Sym sym;
8166 sym.st_name = 0;
8167 sym.st_value = 0;
8168 sym.st_size = 0;
8169 sym.st_info = 0;
8170 sym.st_other = 0;
8171 sym.st_shndx = SHN_UNDEF;
8172 sym.st_target_internal = 0;
8173 symstrtab[0].sym = sym;
8174 symstrtab[0].dest_index = outbound_syms_index;
8175 symstrtab[0].destshndx_index = outbound_shndx_index;
8176 outbound_syms_index++;
8177 if (outbound_shndx != NULL)
8178 outbound_shndx_index++;
8179 }
8180
8181 name_local_sections
8182 = (bed->elf_backend_name_local_section_symbols
8183 && bed->elf_backend_name_local_section_symbols (abfd));
8184
8185 syms = bfd_get_outsymbols (abfd);
8186 for (idx = 0; idx < symcount;)
8187 {
8188 Elf_Internal_Sym sym;
8189 bfd_vma value = syms[idx]->value;
8190 elf_symbol_type *type_ptr;
8191 flagword flags = syms[idx]->flags;
8192 int type;
8193
8194 if (!name_local_sections
8195 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
8196 {
8197 /* Local section symbols have no name. */
8198 sym.st_name = (unsigned long) -1;
8199 }
8200 else
8201 {
8202 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
8203 to get the final offset for st_name. */
8204 sym.st_name
8205 = (unsigned long) _bfd_elf_strtab_add (stt, syms[idx]->name,
8206 FALSE);
8207 if (sym.st_name == (unsigned long) -1)
8208 goto error_return;
8209 }
8210
8211 type_ptr = elf_symbol_from (syms[idx]);
8212
8213 if ((flags & BSF_SECTION_SYM) == 0
8214 && bfd_is_com_section (syms[idx]->section))
8215 {
8216 /* ELF common symbols put the alignment into the `value' field,
8217 and the size into the `size' field. This is backwards from
8218 how BFD handles it, so reverse it here. */
8219 sym.st_size = value;
8220 if (type_ptr == NULL
8221 || type_ptr->internal_elf_sym.st_value == 0)
8222 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
8223 else
8224 sym.st_value = type_ptr->internal_elf_sym.st_value;
8225 sym.st_shndx = _bfd_elf_section_from_bfd_section
8226 (abfd, syms[idx]->section);
8227 }
8228 else
8229 {
8230 asection *sec = syms[idx]->section;
8231 unsigned int shndx;
8232
8233 if (sec->output_section)
8234 {
8235 value += sec->output_offset;
8236 sec = sec->output_section;
8237 }
8238
8239 /* Don't add in the section vma for relocatable output. */
8240 if (! relocatable_p)
8241 value += sec->vma;
8242 sym.st_value = value;
8243 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
8244
8245 if (bfd_is_abs_section (sec)
8246 && type_ptr != NULL
8247 && type_ptr->internal_elf_sym.st_shndx != 0)
8248 {
8249 /* This symbol is in a real ELF section which we did
8250 not create as a BFD section. Undo the mapping done
8251 by copy_private_symbol_data. */
8252 shndx = type_ptr->internal_elf_sym.st_shndx;
8253 switch (shndx)
8254 {
8255 case MAP_ONESYMTAB:
8256 shndx = elf_onesymtab (abfd);
8257 break;
8258 case MAP_DYNSYMTAB:
8259 shndx = elf_dynsymtab (abfd);
8260 break;
8261 case MAP_STRTAB:
8262 shndx = elf_strtab_sec (abfd);
8263 break;
8264 case MAP_SHSTRTAB:
8265 shndx = elf_shstrtab_sec (abfd);
8266 break;
8267 case MAP_SYM_SHNDX:
8268 if (elf_symtab_shndx_list (abfd))
8269 shndx = elf_symtab_shndx_list (abfd)->ndx;
8270 break;
8271 case SHN_COMMON:
8272 case SHN_ABS:
8273 shndx = SHN_ABS;
8274 break;
8275 default:
8276 if (shndx >= SHN_LOPROC && shndx <= SHN_HIOS)
8277 {
8278 if (bed->symbol_section_index)
8279 shndx = bed->symbol_section_index (abfd, type_ptr);
8280 /* Otherwise just leave the index alone. */
8281 }
8282 else
8283 {
8284 if (shndx > SHN_HIOS && shndx < SHN_HIRESERVE)
8285 _bfd_error_handler (_("%pB: \
8286 Unable to handle section index %x in ELF symbol. Using ABS instead."),
8287 abfd, shndx);
8288 shndx = SHN_ABS;
8289 }
8290 break;
8291 }
8292 }
8293 else
8294 {
8295 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
8296
8297 if (shndx == SHN_BAD)
8298 {
8299 asection *sec2;
8300
8301 /* Writing this would be a hell of a lot easier if
8302 we had some decent documentation on bfd, and
8303 knew what to expect of the library, and what to
8304 demand of applications. For example, it
8305 appears that `objcopy' might not set the
8306 section of a symbol to be a section that is
8307 actually in the output file. */
8308 sec2 = bfd_get_section_by_name (abfd, sec->name);
8309 if (sec2 != NULL)
8310 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
8311 if (shndx == SHN_BAD)
8312 {
8313 /* xgettext:c-format */
8314 _bfd_error_handler
8315 (_("unable to find equivalent output section"
8316 " for symbol '%s' from section '%s'"),
8317 syms[idx]->name ? syms[idx]->name : "<Local sym>",
8318 sec->name);
8319 bfd_set_error (bfd_error_invalid_operation);
8320 goto error_return;
8321 }
8322 }
8323 }
8324
8325 sym.st_shndx = shndx;
8326 }
8327
8328 if ((flags & BSF_THREAD_LOCAL) != 0)
8329 type = STT_TLS;
8330 else if ((flags & BSF_GNU_INDIRECT_FUNCTION) != 0)
8331 type = STT_GNU_IFUNC;
8332 else if ((flags & BSF_FUNCTION) != 0)
8333 type = STT_FUNC;
8334 else if ((flags & BSF_OBJECT) != 0)
8335 type = STT_OBJECT;
8336 else if ((flags & BSF_RELC) != 0)
8337 type = STT_RELC;
8338 else if ((flags & BSF_SRELC) != 0)
8339 type = STT_SRELC;
8340 else
8341 type = STT_NOTYPE;
8342
8343 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
8344 type = STT_TLS;
8345
8346 /* Processor-specific types. */
8347 if (type_ptr != NULL
8348 && bed->elf_backend_get_symbol_type)
8349 type = ((*bed->elf_backend_get_symbol_type)
8350 (&type_ptr->internal_elf_sym, type));
8351
8352 if (flags & BSF_SECTION_SYM)
8353 {
8354 if (flags & BSF_GLOBAL)
8355 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8356 else
8357 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
8358 }
8359 else if (bfd_is_com_section (syms[idx]->section))
8360 {
8361 if (type != STT_TLS)
8362 {
8363 if ((abfd->flags & BFD_CONVERT_ELF_COMMON))
8364 type = ((abfd->flags & BFD_USE_ELF_STT_COMMON)
8365 ? STT_COMMON : STT_OBJECT);
8366 else
8367 type = ((flags & BSF_ELF_COMMON) != 0
8368 ? STT_COMMON : STT_OBJECT);
8369 }
8370 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
8371 }
8372 else if (bfd_is_und_section (syms[idx]->section))
8373 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
8374 ? STB_WEAK
8375 : STB_GLOBAL),
8376 type);
8377 else if (flags & BSF_FILE)
8378 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
8379 else
8380 {
8381 int bind = STB_LOCAL;
8382
8383 if (flags & BSF_LOCAL)
8384 bind = STB_LOCAL;
8385 else if (flags & BSF_GNU_UNIQUE)
8386 bind = STB_GNU_UNIQUE;
8387 else if (flags & BSF_WEAK)
8388 bind = STB_WEAK;
8389 else if (flags & BSF_GLOBAL)
8390 bind = STB_GLOBAL;
8391
8392 sym.st_info = ELF_ST_INFO (bind, type);
8393 }
8394
8395 if (type_ptr != NULL)
8396 {
8397 sym.st_other = type_ptr->internal_elf_sym.st_other;
8398 sym.st_target_internal
8399 = type_ptr->internal_elf_sym.st_target_internal;
8400 }
8401 else
8402 {
8403 sym.st_other = 0;
8404 sym.st_target_internal = 0;
8405 }
8406
8407 idx++;
8408 symstrtab[idx].sym = sym;
8409 symstrtab[idx].dest_index = outbound_syms_index;
8410 symstrtab[idx].destshndx_index = outbound_shndx_index;
8411
8412 outbound_syms_index++;
8413 if (outbound_shndx != NULL)
8414 outbound_shndx_index++;
8415 }
8416
8417 /* Finalize the .strtab section. */
8418 _bfd_elf_strtab_finalize (stt);
8419
8420 /* Swap out the .strtab section. */
8421 for (idx = 0; idx <= symcount; idx++)
8422 {
8423 struct elf_sym_strtab *elfsym = &symstrtab[idx];
8424 if (elfsym->sym.st_name == (unsigned long) -1)
8425 elfsym->sym.st_name = 0;
8426 else
8427 elfsym->sym.st_name = _bfd_elf_strtab_offset (stt,
8428 elfsym->sym.st_name);
8429 if (info && info->callbacks->ctf_new_symbol)
8430 info->callbacks->ctf_new_symbol (elfsym->dest_index,
8431 &elfsym->sym);
8432
8433 /* Inform the linker of the addition of this symbol. */
8434
8435 bed->s->swap_symbol_out (abfd, &elfsym->sym,
8436 (outbound_syms
8437 + (elfsym->dest_index
8438 * bed->s->sizeof_sym)),
8439 (outbound_shndx
8440 + (elfsym->destshndx_index
8441 * sizeof (Elf_External_Sym_Shndx))));
8442 }
8443 free (symstrtab);
8444
8445 *sttp = stt;
8446 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (stt);
8447 symstrtab_hdr->sh_type = SHT_STRTAB;
8448 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
8449 symstrtab_hdr->sh_addr = 0;
8450 symstrtab_hdr->sh_entsize = 0;
8451 symstrtab_hdr->sh_link = 0;
8452 symstrtab_hdr->sh_info = 0;
8453 symstrtab_hdr->sh_addralign = 1;
8454
8455 return TRUE;
8456 }
8457
8458 /* Return the number of bytes required to hold the symtab vector.
8459
8460 Note that we base it on the count plus 1, since we will null terminate
8461 the vector allocated based on this size. However, the ELF symbol table
8462 always has a dummy entry as symbol #0, so it ends up even. */
8463
8464 long
8465 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
8466 {
8467 bfd_size_type symcount;
8468 long symtab_size;
8469 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
8470
8471 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
8472 if (symcount > LONG_MAX / sizeof (asymbol *))
8473 {
8474 bfd_set_error (bfd_error_file_too_big);
8475 return -1;
8476 }
8477 symtab_size = symcount * (sizeof (asymbol *));
8478 if (symcount == 0)
8479 symtab_size = sizeof (asymbol *);
8480 else if (!bfd_write_p (abfd))
8481 {
8482 ufile_ptr filesize = bfd_get_file_size (abfd);
8483
8484 if (filesize != 0 && (unsigned long) symtab_size > filesize)
8485 {
8486 bfd_set_error (bfd_error_file_truncated);
8487 return -1;
8488 }
8489 }
8490
8491 return symtab_size;
8492 }
8493
8494 long
8495 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
8496 {
8497 bfd_size_type symcount;
8498 long symtab_size;
8499 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
8500
8501 if (elf_dynsymtab (abfd) == 0)
8502 {
8503 bfd_set_error (bfd_error_invalid_operation);
8504 return -1;
8505 }
8506
8507 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
8508 if (symcount > LONG_MAX / sizeof (asymbol *))
8509 {
8510 bfd_set_error (bfd_error_file_too_big);
8511 return -1;
8512 }
8513 symtab_size = symcount * (sizeof (asymbol *));
8514 if (symcount == 0)
8515 symtab_size = sizeof (asymbol *);
8516 else if (!bfd_write_p (abfd))
8517 {
8518 ufile_ptr filesize = bfd_get_file_size (abfd);
8519
8520 if (filesize != 0 && (unsigned long) symtab_size > filesize)
8521 {
8522 bfd_set_error (bfd_error_file_truncated);
8523 return -1;
8524 }
8525 }
8526
8527 return symtab_size;
8528 }
8529
8530 long
8531 _bfd_elf_get_reloc_upper_bound (bfd *abfd, sec_ptr asect)
8532 {
8533 if (asect->reloc_count != 0 && !bfd_write_p (abfd))
8534 {
8535 /* Sanity check reloc section size. */
8536 struct bfd_elf_section_data *d = elf_section_data (asect);
8537 Elf_Internal_Shdr *rel_hdr = &d->this_hdr;
8538 bfd_size_type ext_rel_size = rel_hdr->sh_size;
8539 ufile_ptr filesize = bfd_get_file_size (abfd);
8540
8541 if (filesize != 0 && ext_rel_size > filesize)
8542 {
8543 bfd_set_error (bfd_error_file_truncated);
8544 return -1;
8545 }
8546 }
8547
8548 #if SIZEOF_LONG == SIZEOF_INT
8549 if (asect->reloc_count >= LONG_MAX / sizeof (arelent *))
8550 {
8551 bfd_set_error (bfd_error_file_too_big);
8552 return -1;
8553 }
8554 #endif
8555 return (asect->reloc_count + 1) * sizeof (arelent *);
8556 }
8557
8558 /* Canonicalize the relocs. */
8559
8560 long
8561 _bfd_elf_canonicalize_reloc (bfd *abfd,
8562 sec_ptr section,
8563 arelent **relptr,
8564 asymbol **symbols)
8565 {
8566 arelent *tblptr;
8567 unsigned int i;
8568 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8569
8570 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
8571 return -1;
8572
8573 tblptr = section->relocation;
8574 for (i = 0; i < section->reloc_count; i++)
8575 *relptr++ = tblptr++;
8576
8577 *relptr = NULL;
8578
8579 return section->reloc_count;
8580 }
8581
8582 long
8583 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
8584 {
8585 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8586 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
8587
8588 if (symcount >= 0)
8589 abfd->symcount = symcount;
8590 return symcount;
8591 }
8592
8593 long
8594 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
8595 asymbol **allocation)
8596 {
8597 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8598 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
8599
8600 if (symcount >= 0)
8601 abfd->dynsymcount = symcount;
8602 return symcount;
8603 }
8604
8605 /* Return the size required for the dynamic reloc entries. Any loadable
8606 section that was actually installed in the BFD, and has type SHT_REL
8607 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
8608 dynamic reloc section. */
8609
8610 long
8611 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
8612 {
8613 bfd_size_type count, ext_rel_size;
8614 asection *s;
8615
8616 if (elf_dynsymtab (abfd) == 0)
8617 {
8618 bfd_set_error (bfd_error_invalid_operation);
8619 return -1;
8620 }
8621
8622 count = 1;
8623 ext_rel_size = 0;
8624 for (s = abfd->sections; s != NULL; s = s->next)
8625 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
8626 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
8627 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
8628 {
8629 ext_rel_size += s->size;
8630 if (ext_rel_size < s->size)
8631 {
8632 bfd_set_error (bfd_error_file_truncated);
8633 return -1;
8634 }
8635 count += s->size / elf_section_data (s)->this_hdr.sh_entsize;
8636 if (count > LONG_MAX / sizeof (arelent *))
8637 {
8638 bfd_set_error (bfd_error_file_too_big);
8639 return -1;
8640 }
8641 }
8642 if (count > 1 && !bfd_write_p (abfd))
8643 {
8644 /* Sanity check reloc section sizes. */
8645 ufile_ptr filesize = bfd_get_file_size (abfd);
8646 if (filesize != 0 && ext_rel_size > filesize)
8647 {
8648 bfd_set_error (bfd_error_file_truncated);
8649 return -1;
8650 }
8651 }
8652 return count * sizeof (arelent *);
8653 }
8654
8655 /* Canonicalize the dynamic relocation entries. Note that we return the
8656 dynamic relocations as a single block, although they are actually
8657 associated with particular sections; the interface, which was
8658 designed for SunOS style shared libraries, expects that there is only
8659 one set of dynamic relocs. Any loadable section that was actually
8660 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
8661 dynamic symbol table, is considered to be a dynamic reloc section. */
8662
8663 long
8664 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
8665 arelent **storage,
8666 asymbol **syms)
8667 {
8668 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
8669 asection *s;
8670 long ret;
8671
8672 if (elf_dynsymtab (abfd) == 0)
8673 {
8674 bfd_set_error (bfd_error_invalid_operation);
8675 return -1;
8676 }
8677
8678 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
8679 ret = 0;
8680 for (s = abfd->sections; s != NULL; s = s->next)
8681 {
8682 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
8683 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
8684 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
8685 {
8686 arelent *p;
8687 long count, i;
8688
8689 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
8690 return -1;
8691 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
8692 p = s->relocation;
8693 for (i = 0; i < count; i++)
8694 *storage++ = p++;
8695 ret += count;
8696 }
8697 }
8698
8699 *storage = NULL;
8700
8701 return ret;
8702 }
8703 \f
8704 /* Read in the version information. */
8705
8706 bfd_boolean
8707 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
8708 {
8709 bfd_byte *contents = NULL;
8710 unsigned int freeidx = 0;
8711 size_t amt;
8712
8713 if (elf_dynverref (abfd) != 0)
8714 {
8715 Elf_Internal_Shdr *hdr;
8716 Elf_External_Verneed *everneed;
8717 Elf_Internal_Verneed *iverneed;
8718 unsigned int i;
8719 bfd_byte *contents_end;
8720
8721 hdr = &elf_tdata (abfd)->dynverref_hdr;
8722
8723 if (hdr->sh_info == 0
8724 || hdr->sh_info > hdr->sh_size / sizeof (Elf_External_Verneed))
8725 {
8726 error_return_bad_verref:
8727 _bfd_error_handler
8728 (_("%pB: .gnu.version_r invalid entry"), abfd);
8729 bfd_set_error (bfd_error_bad_value);
8730 error_return_verref:
8731 elf_tdata (abfd)->verref = NULL;
8732 elf_tdata (abfd)->cverrefs = 0;
8733 goto error_return;
8734 }
8735
8736 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0)
8737 goto error_return_verref;
8738 contents = _bfd_malloc_and_read (abfd, hdr->sh_size, hdr->sh_size);
8739 if (contents == NULL)
8740 goto error_return_verref;
8741
8742 if (_bfd_mul_overflow (hdr->sh_info, sizeof (Elf_Internal_Verneed), &amt))
8743 {
8744 bfd_set_error (bfd_error_file_too_big);
8745 goto error_return_verref;
8746 }
8747 elf_tdata (abfd)->verref = (Elf_Internal_Verneed *) bfd_alloc (abfd, amt);
8748 if (elf_tdata (abfd)->verref == NULL)
8749 goto error_return_verref;
8750
8751 BFD_ASSERT (sizeof (Elf_External_Verneed)
8752 == sizeof (Elf_External_Vernaux));
8753 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
8754 everneed = (Elf_External_Verneed *) contents;
8755 iverneed = elf_tdata (abfd)->verref;
8756 for (i = 0; i < hdr->sh_info; i++, iverneed++)
8757 {
8758 Elf_External_Vernaux *evernaux;
8759 Elf_Internal_Vernaux *ivernaux;
8760 unsigned int j;
8761
8762 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
8763
8764 iverneed->vn_bfd = abfd;
8765
8766 iverneed->vn_filename =
8767 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8768 iverneed->vn_file);
8769 if (iverneed->vn_filename == NULL)
8770 goto error_return_bad_verref;
8771
8772 if (iverneed->vn_cnt == 0)
8773 iverneed->vn_auxptr = NULL;
8774 else
8775 {
8776 if (_bfd_mul_overflow (iverneed->vn_cnt,
8777 sizeof (Elf_Internal_Vernaux), &amt))
8778 {
8779 bfd_set_error (bfd_error_file_too_big);
8780 goto error_return_verref;
8781 }
8782 iverneed->vn_auxptr = (struct elf_internal_vernaux *)
8783 bfd_alloc (abfd, amt);
8784 if (iverneed->vn_auxptr == NULL)
8785 goto error_return_verref;
8786 }
8787
8788 if (iverneed->vn_aux
8789 > (size_t) (contents_end - (bfd_byte *) everneed))
8790 goto error_return_bad_verref;
8791
8792 evernaux = ((Elf_External_Vernaux *)
8793 ((bfd_byte *) everneed + iverneed->vn_aux));
8794 ivernaux = iverneed->vn_auxptr;
8795 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
8796 {
8797 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
8798
8799 ivernaux->vna_nodename =
8800 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8801 ivernaux->vna_name);
8802 if (ivernaux->vna_nodename == NULL)
8803 goto error_return_bad_verref;
8804
8805 if (ivernaux->vna_other > freeidx)
8806 freeidx = ivernaux->vna_other;
8807
8808 ivernaux->vna_nextptr = NULL;
8809 if (ivernaux->vna_next == 0)
8810 {
8811 iverneed->vn_cnt = j + 1;
8812 break;
8813 }
8814 if (j + 1 < iverneed->vn_cnt)
8815 ivernaux->vna_nextptr = ivernaux + 1;
8816
8817 if (ivernaux->vna_next
8818 > (size_t) (contents_end - (bfd_byte *) evernaux))
8819 goto error_return_bad_verref;
8820
8821 evernaux = ((Elf_External_Vernaux *)
8822 ((bfd_byte *) evernaux + ivernaux->vna_next));
8823 }
8824
8825 iverneed->vn_nextref = NULL;
8826 if (iverneed->vn_next == 0)
8827 break;
8828 if (i + 1 < hdr->sh_info)
8829 iverneed->vn_nextref = iverneed + 1;
8830
8831 if (iverneed->vn_next
8832 > (size_t) (contents_end - (bfd_byte *) everneed))
8833 goto error_return_bad_verref;
8834
8835 everneed = ((Elf_External_Verneed *)
8836 ((bfd_byte *) everneed + iverneed->vn_next));
8837 }
8838 elf_tdata (abfd)->cverrefs = i;
8839
8840 free (contents);
8841 contents = NULL;
8842 }
8843
8844 if (elf_dynverdef (abfd) != 0)
8845 {
8846 Elf_Internal_Shdr *hdr;
8847 Elf_External_Verdef *everdef;
8848 Elf_Internal_Verdef *iverdef;
8849 Elf_Internal_Verdef *iverdefarr;
8850 Elf_Internal_Verdef iverdefmem;
8851 unsigned int i;
8852 unsigned int maxidx;
8853 bfd_byte *contents_end_def, *contents_end_aux;
8854
8855 hdr = &elf_tdata (abfd)->dynverdef_hdr;
8856
8857 if (hdr->sh_info == 0 || hdr->sh_size < sizeof (Elf_External_Verdef))
8858 {
8859 error_return_bad_verdef:
8860 _bfd_error_handler
8861 (_("%pB: .gnu.version_d invalid entry"), abfd);
8862 bfd_set_error (bfd_error_bad_value);
8863 error_return_verdef:
8864 elf_tdata (abfd)->verdef = NULL;
8865 elf_tdata (abfd)->cverdefs = 0;
8866 goto error_return;
8867 }
8868
8869 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0)
8870 goto error_return_verdef;
8871 contents = _bfd_malloc_and_read (abfd, hdr->sh_size, hdr->sh_size);
8872 if (contents == NULL)
8873 goto error_return_verdef;
8874
8875 BFD_ASSERT (sizeof (Elf_External_Verdef)
8876 >= sizeof (Elf_External_Verdaux));
8877 contents_end_def = contents + hdr->sh_size
8878 - sizeof (Elf_External_Verdef);
8879 contents_end_aux = contents + hdr->sh_size
8880 - sizeof (Elf_External_Verdaux);
8881
8882 /* We know the number of entries in the section but not the maximum
8883 index. Therefore we have to run through all entries and find
8884 the maximum. */
8885 everdef = (Elf_External_Verdef *) contents;
8886 maxidx = 0;
8887 for (i = 0; i < hdr->sh_info; ++i)
8888 {
8889 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
8890
8891 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) == 0)
8892 goto error_return_bad_verdef;
8893 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
8894 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
8895
8896 if (iverdefmem.vd_next == 0)
8897 break;
8898
8899 if (iverdefmem.vd_next
8900 > (size_t) (contents_end_def - (bfd_byte *) everdef))
8901 goto error_return_bad_verdef;
8902
8903 everdef = ((Elf_External_Verdef *)
8904 ((bfd_byte *) everdef + iverdefmem.vd_next));
8905 }
8906
8907 if (default_imported_symver)
8908 {
8909 if (freeidx > maxidx)
8910 maxidx = ++freeidx;
8911 else
8912 freeidx = ++maxidx;
8913 }
8914 if (_bfd_mul_overflow (maxidx, sizeof (Elf_Internal_Verdef), &amt))
8915 {
8916 bfd_set_error (bfd_error_file_too_big);
8917 goto error_return_verdef;
8918 }
8919 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *) bfd_zalloc (abfd, amt);
8920 if (elf_tdata (abfd)->verdef == NULL)
8921 goto error_return_verdef;
8922
8923 elf_tdata (abfd)->cverdefs = maxidx;
8924
8925 everdef = (Elf_External_Verdef *) contents;
8926 iverdefarr = elf_tdata (abfd)->verdef;
8927 for (i = 0; i < hdr->sh_info; i++)
8928 {
8929 Elf_External_Verdaux *everdaux;
8930 Elf_Internal_Verdaux *iverdaux;
8931 unsigned int j;
8932
8933 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
8934
8935 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
8936 goto error_return_bad_verdef;
8937
8938 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
8939 memcpy (iverdef, &iverdefmem, offsetof (Elf_Internal_Verdef, vd_bfd));
8940
8941 iverdef->vd_bfd = abfd;
8942
8943 if (iverdef->vd_cnt == 0)
8944 iverdef->vd_auxptr = NULL;
8945 else
8946 {
8947 if (_bfd_mul_overflow (iverdef->vd_cnt,
8948 sizeof (Elf_Internal_Verdaux), &amt))
8949 {
8950 bfd_set_error (bfd_error_file_too_big);
8951 goto error_return_verdef;
8952 }
8953 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
8954 bfd_alloc (abfd, amt);
8955 if (iverdef->vd_auxptr == NULL)
8956 goto error_return_verdef;
8957 }
8958
8959 if (iverdef->vd_aux
8960 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
8961 goto error_return_bad_verdef;
8962
8963 everdaux = ((Elf_External_Verdaux *)
8964 ((bfd_byte *) everdef + iverdef->vd_aux));
8965 iverdaux = iverdef->vd_auxptr;
8966 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
8967 {
8968 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
8969
8970 iverdaux->vda_nodename =
8971 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8972 iverdaux->vda_name);
8973 if (iverdaux->vda_nodename == NULL)
8974 goto error_return_bad_verdef;
8975
8976 iverdaux->vda_nextptr = NULL;
8977 if (iverdaux->vda_next == 0)
8978 {
8979 iverdef->vd_cnt = j + 1;
8980 break;
8981 }
8982 if (j + 1 < iverdef->vd_cnt)
8983 iverdaux->vda_nextptr = iverdaux + 1;
8984
8985 if (iverdaux->vda_next
8986 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
8987 goto error_return_bad_verdef;
8988
8989 everdaux = ((Elf_External_Verdaux *)
8990 ((bfd_byte *) everdaux + iverdaux->vda_next));
8991 }
8992
8993 iverdef->vd_nodename = NULL;
8994 if (iverdef->vd_cnt)
8995 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
8996
8997 iverdef->vd_nextdef = NULL;
8998 if (iverdef->vd_next == 0)
8999 break;
9000 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
9001 iverdef->vd_nextdef = iverdef + 1;
9002
9003 everdef = ((Elf_External_Verdef *)
9004 ((bfd_byte *) everdef + iverdef->vd_next));
9005 }
9006
9007 free (contents);
9008 contents = NULL;
9009 }
9010 else if (default_imported_symver)
9011 {
9012 if (freeidx < 3)
9013 freeidx = 3;
9014 else
9015 freeidx++;
9016
9017 if (_bfd_mul_overflow (freeidx, sizeof (Elf_Internal_Verdef), &amt))
9018 {
9019 bfd_set_error (bfd_error_file_too_big);
9020 goto error_return;
9021 }
9022 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *) bfd_zalloc (abfd, amt);
9023 if (elf_tdata (abfd)->verdef == NULL)
9024 goto error_return;
9025
9026 elf_tdata (abfd)->cverdefs = freeidx;
9027 }
9028
9029 /* Create a default version based on the soname. */
9030 if (default_imported_symver)
9031 {
9032 Elf_Internal_Verdef *iverdef;
9033 Elf_Internal_Verdaux *iverdaux;
9034
9035 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];
9036
9037 iverdef->vd_version = VER_DEF_CURRENT;
9038 iverdef->vd_flags = 0;
9039 iverdef->vd_ndx = freeidx;
9040 iverdef->vd_cnt = 1;
9041
9042 iverdef->vd_bfd = abfd;
9043
9044 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
9045 if (iverdef->vd_nodename == NULL)
9046 goto error_return_verdef;
9047 iverdef->vd_nextdef = NULL;
9048 iverdef->vd_auxptr = ((struct elf_internal_verdaux *)
9049 bfd_zalloc (abfd, sizeof (Elf_Internal_Verdaux)));
9050 if (iverdef->vd_auxptr == NULL)
9051 goto error_return_verdef;
9052
9053 iverdaux = iverdef->vd_auxptr;
9054 iverdaux->vda_nodename = iverdef->vd_nodename;
9055 }
9056
9057 return TRUE;
9058
9059 error_return:
9060 free (contents);
9061 return FALSE;
9062 }
9063 \f
9064 asymbol *
9065 _bfd_elf_make_empty_symbol (bfd *abfd)
9066 {
9067 elf_symbol_type *newsym;
9068
9069 newsym = (elf_symbol_type *) bfd_zalloc (abfd, sizeof (*newsym));
9070 if (!newsym)
9071 return NULL;
9072 newsym->symbol.the_bfd = abfd;
9073 return &newsym->symbol;
9074 }
9075
9076 void
9077 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
9078 asymbol *symbol,
9079 symbol_info *ret)
9080 {
9081 bfd_symbol_info (symbol, ret);
9082 }
9083
9084 /* Return whether a symbol name implies a local symbol. Most targets
9085 use this function for the is_local_label_name entry point, but some
9086 override it. */
9087
9088 bfd_boolean
9089 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
9090 const char *name)
9091 {
9092 /* Normal local symbols start with ``.L''. */
9093 if (name[0] == '.' && name[1] == 'L')
9094 return TRUE;
9095
9096 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
9097 DWARF debugging symbols starting with ``..''. */
9098 if (name[0] == '.' && name[1] == '.')
9099 return TRUE;
9100
9101 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
9102 emitting DWARF debugging output. I suspect this is actually a
9103 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
9104 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
9105 underscore to be emitted on some ELF targets). For ease of use,
9106 we treat such symbols as local. */
9107 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
9108 return TRUE;
9109
9110 /* Treat assembler generated fake symbols, dollar local labels and
9111 forward-backward labels (aka local labels) as locals.
9112 These labels have the form:
9113
9114 L0^A.* (fake symbols)
9115
9116 [.]?L[0123456789]+{^A|^B}[0123456789]* (local labels)
9117
9118 Versions which start with .L will have already been matched above,
9119 so we only need to match the rest. */
9120 if (name[0] == 'L' && ISDIGIT (name[1]))
9121 {
9122 bfd_boolean ret = FALSE;
9123 const char * p;
9124 char c;
9125
9126 for (p = name + 2; (c = *p); p++)
9127 {
9128 if (c == 1 || c == 2)
9129 {
9130 if (c == 1 && p == name + 2)
9131 /* A fake symbol. */
9132 return TRUE;
9133
9134 /* FIXME: We are being paranoid here and treating symbols like
9135 L0^Bfoo as if there were non-local, on the grounds that the
9136 assembler will never generate them. But can any symbol
9137 containing an ASCII value in the range 1-31 ever be anything
9138 other than some kind of local ? */
9139 ret = TRUE;
9140 }
9141
9142 if (! ISDIGIT (c))
9143 {
9144 ret = FALSE;
9145 break;
9146 }
9147 }
9148 return ret;
9149 }
9150
9151 return FALSE;
9152 }
9153
9154 alent *
9155 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
9156 asymbol *symbol ATTRIBUTE_UNUSED)
9157 {
9158 abort ();
9159 return NULL;
9160 }
9161
9162 bfd_boolean
9163 _bfd_elf_set_arch_mach (bfd *abfd,
9164 enum bfd_architecture arch,
9165 unsigned long machine)
9166 {
9167 /* If this isn't the right architecture for this backend, and this
9168 isn't the generic backend, fail. */
9169 if (arch != get_elf_backend_data (abfd)->arch
9170 && arch != bfd_arch_unknown
9171 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
9172 return FALSE;
9173
9174 return bfd_default_set_arch_mach (abfd, arch, machine);
9175 }
9176
9177 /* Find the nearest line to a particular section and offset,
9178 for error reporting. */
9179
9180 bfd_boolean
9181 _bfd_elf_find_nearest_line (bfd *abfd,
9182 asymbol **symbols,
9183 asection *section,
9184 bfd_vma offset,
9185 const char **filename_ptr,
9186 const char **functionname_ptr,
9187 unsigned int *line_ptr,
9188 unsigned int *discriminator_ptr)
9189 {
9190 bfd_boolean found;
9191
9192 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
9193 filename_ptr, functionname_ptr,
9194 line_ptr, discriminator_ptr,
9195 dwarf_debug_sections,
9196 &elf_tdata (abfd)->dwarf2_find_line_info))
9197 return TRUE;
9198
9199 if (_bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
9200 filename_ptr, functionname_ptr, line_ptr))
9201 {
9202 if (!*functionname_ptr)
9203 _bfd_elf_find_function (abfd, symbols, section, offset,
9204 *filename_ptr ? NULL : filename_ptr,
9205 functionname_ptr);
9206 return TRUE;
9207 }
9208
9209 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
9210 &found, filename_ptr,
9211 functionname_ptr, line_ptr,
9212 &elf_tdata (abfd)->line_info))
9213 return FALSE;
9214 if (found && (*functionname_ptr || *line_ptr))
9215 return TRUE;
9216
9217 if (symbols == NULL)
9218 return FALSE;
9219
9220 if (! _bfd_elf_find_function (abfd, symbols, section, offset,
9221 filename_ptr, functionname_ptr))
9222 return FALSE;
9223
9224 *line_ptr = 0;
9225 return TRUE;
9226 }
9227
9228 /* Find the line for a symbol. */
9229
9230 bfd_boolean
9231 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
9232 const char **filename_ptr, unsigned int *line_ptr)
9233 {
9234 return _bfd_dwarf2_find_nearest_line (abfd, symbols, symbol, NULL, 0,
9235 filename_ptr, NULL, line_ptr, NULL,
9236 dwarf_debug_sections,
9237 &elf_tdata (abfd)->dwarf2_find_line_info);
9238 }
9239
9240 /* After a call to bfd_find_nearest_line, successive calls to
9241 bfd_find_inliner_info can be used to get source information about
9242 each level of function inlining that terminated at the address
9243 passed to bfd_find_nearest_line. Currently this is only supported
9244 for DWARF2 with appropriate DWARF3 extensions. */
9245
9246 bfd_boolean
9247 _bfd_elf_find_inliner_info (bfd *abfd,
9248 const char **filename_ptr,
9249 const char **functionname_ptr,
9250 unsigned int *line_ptr)
9251 {
9252 bfd_boolean found;
9253 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
9254 functionname_ptr, line_ptr,
9255 & elf_tdata (abfd)->dwarf2_find_line_info);
9256 return found;
9257 }
9258
9259 int
9260 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
9261 {
9262 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9263 int ret = bed->s->sizeof_ehdr;
9264
9265 if (!bfd_link_relocatable (info))
9266 {
9267 bfd_size_type phdr_size = elf_program_header_size (abfd);
9268
9269 if (phdr_size == (bfd_size_type) -1)
9270 {
9271 struct elf_segment_map *m;
9272
9273 phdr_size = 0;
9274 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
9275 phdr_size += bed->s->sizeof_phdr;
9276
9277 if (phdr_size == 0)
9278 phdr_size = get_program_header_size (abfd, info);
9279 }
9280
9281 elf_program_header_size (abfd) = phdr_size;
9282 ret += phdr_size;
9283 }
9284
9285 return ret;
9286 }
9287
9288 bfd_boolean
9289 _bfd_elf_set_section_contents (bfd *abfd,
9290 sec_ptr section,
9291 const void *location,
9292 file_ptr offset,
9293 bfd_size_type count)
9294 {
9295 Elf_Internal_Shdr *hdr;
9296 file_ptr pos;
9297
9298 if (! abfd->output_has_begun
9299 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
9300 return FALSE;
9301
9302 if (!count)
9303 return TRUE;
9304
9305 hdr = &elf_section_data (section)->this_hdr;
9306 if (hdr->sh_offset == (file_ptr) -1)
9307 {
9308 unsigned char *contents;
9309
9310 if (bfd_section_is_ctf (section))
9311 /* Nothing to do with this section: the contents are generated
9312 later. */
9313 return TRUE;
9314
9315 if ((section->flags & SEC_ELF_COMPRESS) == 0)
9316 {
9317 _bfd_error_handler
9318 (_("%pB:%pA: error: attempting to write into an unallocated compressed section"),
9319 abfd, section);
9320 bfd_set_error (bfd_error_invalid_operation);
9321 return FALSE;
9322 }
9323
9324 if ((offset + count) > hdr->sh_size)
9325 {
9326 _bfd_error_handler
9327 (_("%pB:%pA: error: attempting to write over the end of the section"),
9328 abfd, section);
9329
9330 bfd_set_error (bfd_error_invalid_operation);
9331 return FALSE;
9332 }
9333
9334 contents = hdr->contents;
9335 if (contents == NULL)
9336 {
9337 _bfd_error_handler
9338 (_("%pB:%pA: error: attempting to write section into an empty buffer"),
9339 abfd, section);
9340
9341 bfd_set_error (bfd_error_invalid_operation);
9342 return FALSE;
9343 }
9344
9345 memcpy (contents + offset, location, count);
9346 return TRUE;
9347 }
9348
9349 pos = hdr->sh_offset + offset;
9350 if (bfd_seek (abfd, pos, SEEK_SET) != 0
9351 || bfd_bwrite (location, count, abfd) != count)
9352 return FALSE;
9353
9354 return TRUE;
9355 }
9356
9357 bfd_boolean
9358 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
9359 arelent *cache_ptr ATTRIBUTE_UNUSED,
9360 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
9361 {
9362 abort ();
9363 return FALSE;
9364 }
9365
9366 /* Try to convert a non-ELF reloc into an ELF one. */
9367
9368 bfd_boolean
9369 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
9370 {
9371 /* Check whether we really have an ELF howto. */
9372
9373 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
9374 {
9375 bfd_reloc_code_real_type code;
9376 reloc_howto_type *howto;
9377
9378 /* Alien reloc: Try to determine its type to replace it with an
9379 equivalent ELF reloc. */
9380
9381 if (areloc->howto->pc_relative)
9382 {
9383 switch (areloc->howto->bitsize)
9384 {
9385 case 8:
9386 code = BFD_RELOC_8_PCREL;
9387 break;
9388 case 12:
9389 code = BFD_RELOC_12_PCREL;
9390 break;
9391 case 16:
9392 code = BFD_RELOC_16_PCREL;
9393 break;
9394 case 24:
9395 code = BFD_RELOC_24_PCREL;
9396 break;
9397 case 32:
9398 code = BFD_RELOC_32_PCREL;
9399 break;
9400 case 64:
9401 code = BFD_RELOC_64_PCREL;
9402 break;
9403 default:
9404 goto fail;
9405 }
9406
9407 howto = bfd_reloc_type_lookup (abfd, code);
9408
9409 if (howto && areloc->howto->pcrel_offset != howto->pcrel_offset)
9410 {
9411 if (howto->pcrel_offset)
9412 areloc->addend += areloc->address;
9413 else
9414 areloc->addend -= areloc->address; /* addend is unsigned!! */
9415 }
9416 }
9417 else
9418 {
9419 switch (areloc->howto->bitsize)
9420 {
9421 case 8:
9422 code = BFD_RELOC_8;
9423 break;
9424 case 14:
9425 code = BFD_RELOC_14;
9426 break;
9427 case 16:
9428 code = BFD_RELOC_16;
9429 break;
9430 case 26:
9431 code = BFD_RELOC_26;
9432 break;
9433 case 32:
9434 code = BFD_RELOC_32;
9435 break;
9436 case 64:
9437 code = BFD_RELOC_64;
9438 break;
9439 default:
9440 goto fail;
9441 }
9442
9443 howto = bfd_reloc_type_lookup (abfd, code);
9444 }
9445
9446 if (howto)
9447 areloc->howto = howto;
9448 else
9449 goto fail;
9450 }
9451
9452 return TRUE;
9453
9454 fail:
9455 /* xgettext:c-format */
9456 _bfd_error_handler (_("%pB: %s unsupported"),
9457 abfd, areloc->howto->name);
9458 bfd_set_error (bfd_error_sorry);
9459 return FALSE;
9460 }
9461
9462 bfd_boolean
9463 _bfd_elf_close_and_cleanup (bfd *abfd)
9464 {
9465 struct elf_obj_tdata *tdata = elf_tdata (abfd);
9466 if (tdata != NULL
9467 && (bfd_get_format (abfd) == bfd_object
9468 || bfd_get_format (abfd) == bfd_core))
9469 {
9470 if (elf_tdata (abfd)->o != NULL && elf_shstrtab (abfd) != NULL)
9471 _bfd_elf_strtab_free (elf_shstrtab (abfd));
9472 _bfd_dwarf2_cleanup_debug_info (abfd, &tdata->dwarf2_find_line_info);
9473 }
9474
9475 return _bfd_generic_close_and_cleanup (abfd);
9476 }
9477
9478 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
9479 in the relocation's offset. Thus we cannot allow any sort of sanity
9480 range-checking to interfere. There is nothing else to do in processing
9481 this reloc. */
9482
9483 bfd_reloc_status_type
9484 _bfd_elf_rel_vtable_reloc_fn
9485 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
9486 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
9487 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
9488 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
9489 {
9490 return bfd_reloc_ok;
9491 }
9492 \f
9493 /* Elf core file support. Much of this only works on native
9494 toolchains, since we rely on knowing the
9495 machine-dependent procfs structure in order to pick
9496 out details about the corefile. */
9497
9498 #ifdef HAVE_SYS_PROCFS_H
9499 # include <sys/procfs.h>
9500 #endif
9501
9502 /* Return a PID that identifies a "thread" for threaded cores, or the
9503 PID of the main process for non-threaded cores. */
9504
9505 static int
9506 elfcore_make_pid (bfd *abfd)
9507 {
9508 int pid;
9509
9510 pid = elf_tdata (abfd)->core->lwpid;
9511 if (pid == 0)
9512 pid = elf_tdata (abfd)->core->pid;
9513
9514 return pid;
9515 }
9516
9517 /* If there isn't a section called NAME, make one, using
9518 data from SECT. Note, this function will generate a
9519 reference to NAME, so you shouldn't deallocate or
9520 overwrite it. */
9521
9522 static bfd_boolean
9523 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
9524 {
9525 asection *sect2;
9526
9527 if (bfd_get_section_by_name (abfd, name) != NULL)
9528 return TRUE;
9529
9530 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
9531 if (sect2 == NULL)
9532 return FALSE;
9533
9534 sect2->size = sect->size;
9535 sect2->filepos = sect->filepos;
9536 sect2->alignment_power = sect->alignment_power;
9537 return TRUE;
9538 }
9539
9540 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
9541 actually creates up to two pseudosections:
9542 - For the single-threaded case, a section named NAME, unless
9543 such a section already exists.
9544 - For the multi-threaded case, a section named "NAME/PID", where
9545 PID is elfcore_make_pid (abfd).
9546 Both pseudosections have identical contents. */
9547 bfd_boolean
9548 _bfd_elfcore_make_pseudosection (bfd *abfd,
9549 char *name,
9550 size_t size,
9551 ufile_ptr filepos)
9552 {
9553 char buf[100];
9554 char *threaded_name;
9555 size_t len;
9556 asection *sect;
9557
9558 /* Build the section name. */
9559
9560 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
9561 len = strlen (buf) + 1;
9562 threaded_name = (char *) bfd_alloc (abfd, len);
9563 if (threaded_name == NULL)
9564 return FALSE;
9565 memcpy (threaded_name, buf, len);
9566
9567 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
9568 SEC_HAS_CONTENTS);
9569 if (sect == NULL)
9570 return FALSE;
9571 sect->size = size;
9572 sect->filepos = filepos;
9573 sect->alignment_power = 2;
9574
9575 return elfcore_maybe_make_sect (abfd, name, sect);
9576 }
9577
9578 static bfd_boolean
9579 elfcore_make_auxv_note_section (bfd *abfd, Elf_Internal_Note *note,
9580 size_t offs)
9581 {
9582 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
9583 SEC_HAS_CONTENTS);
9584
9585 if (sect == NULL)
9586 return FALSE;
9587
9588 sect->size = note->descsz - offs;
9589 sect->filepos = note->descpos + offs;
9590 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
9591
9592 return TRUE;
9593 }
9594
9595 /* prstatus_t exists on:
9596 solaris 2.5+
9597 linux 2.[01] + glibc
9598 unixware 4.2
9599 */
9600
9601 #if defined (HAVE_PRSTATUS_T)
9602
9603 static bfd_boolean
9604 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
9605 {
9606 size_t size;
9607 int offset;
9608
9609 if (note->descsz == sizeof (prstatus_t))
9610 {
9611 prstatus_t prstat;
9612
9613 size = sizeof (prstat.pr_reg);
9614 offset = offsetof (prstatus_t, pr_reg);
9615 memcpy (&prstat, note->descdata, sizeof (prstat));
9616
9617 /* Do not overwrite the core signal if it
9618 has already been set by another thread. */
9619 if (elf_tdata (abfd)->core->signal == 0)
9620 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
9621 if (elf_tdata (abfd)->core->pid == 0)
9622 elf_tdata (abfd)->core->pid = prstat.pr_pid;
9623
9624 /* pr_who exists on:
9625 solaris 2.5+
9626 unixware 4.2
9627 pr_who doesn't exist on:
9628 linux 2.[01]
9629 */
9630 #if defined (HAVE_PRSTATUS_T_PR_WHO)
9631 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
9632 #else
9633 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
9634 #endif
9635 }
9636 #if defined (HAVE_PRSTATUS32_T)
9637 else if (note->descsz == sizeof (prstatus32_t))
9638 {
9639 /* 64-bit host, 32-bit corefile */
9640 prstatus32_t prstat;
9641
9642 size = sizeof (prstat.pr_reg);
9643 offset = offsetof (prstatus32_t, pr_reg);
9644 memcpy (&prstat, note->descdata, sizeof (prstat));
9645
9646 /* Do not overwrite the core signal if it
9647 has already been set by another thread. */
9648 if (elf_tdata (abfd)->core->signal == 0)
9649 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
9650 if (elf_tdata (abfd)->core->pid == 0)
9651 elf_tdata (abfd)->core->pid = prstat.pr_pid;
9652
9653 /* pr_who exists on:
9654 solaris 2.5+
9655 unixware 4.2
9656 pr_who doesn't exist on:
9657 linux 2.[01]
9658 */
9659 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
9660 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
9661 #else
9662 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
9663 #endif
9664 }
9665 #endif /* HAVE_PRSTATUS32_T */
9666 else
9667 {
9668 /* Fail - we don't know how to handle any other
9669 note size (ie. data object type). */
9670 return TRUE;
9671 }
9672
9673 /* Make a ".reg/999" section and a ".reg" section. */
9674 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
9675 size, note->descpos + offset);
9676 }
9677 #endif /* defined (HAVE_PRSTATUS_T) */
9678
9679 /* Create a pseudosection containing the exact contents of NOTE. */
9680 static bfd_boolean
9681 elfcore_make_note_pseudosection (bfd *abfd,
9682 char *name,
9683 Elf_Internal_Note *note)
9684 {
9685 return _bfd_elfcore_make_pseudosection (abfd, name,
9686 note->descsz, note->descpos);
9687 }
9688
9689 /* There isn't a consistent prfpregset_t across platforms,
9690 but it doesn't matter, because we don't have to pick this
9691 data structure apart. */
9692
9693 static bfd_boolean
9694 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
9695 {
9696 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
9697 }
9698
9699 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
9700 type of NT_PRXFPREG. Just include the whole note's contents
9701 literally. */
9702
9703 static bfd_boolean
9704 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
9705 {
9706 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
9707 }
9708
9709 /* Linux dumps the Intel XSAVE extended state in a note named "LINUX"
9710 with a note type of NT_X86_XSTATE. Just include the whole note's
9711 contents literally. */
9712
9713 static bfd_boolean
9714 elfcore_grok_xstatereg (bfd *abfd, Elf_Internal_Note *note)
9715 {
9716 return elfcore_make_note_pseudosection (abfd, ".reg-xstate", note);
9717 }
9718
9719 static bfd_boolean
9720 elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
9721 {
9722 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
9723 }
9724
9725 static bfd_boolean
9726 elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note)
9727 {
9728 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note);
9729 }
9730
9731 static bfd_boolean
9732 elfcore_grok_ppc_tar (bfd *abfd, Elf_Internal_Note *note)
9733 {
9734 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tar", note);
9735 }
9736
9737 static bfd_boolean
9738 elfcore_grok_ppc_ppr (bfd *abfd, Elf_Internal_Note *note)
9739 {
9740 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-ppr", note);
9741 }
9742
9743 static bfd_boolean
9744 elfcore_grok_ppc_dscr (bfd *abfd, Elf_Internal_Note *note)
9745 {
9746 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-dscr", note);
9747 }
9748
9749 static bfd_boolean
9750 elfcore_grok_ppc_ebb (bfd *abfd, Elf_Internal_Note *note)
9751 {
9752 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-ebb", note);
9753 }
9754
9755 static bfd_boolean
9756 elfcore_grok_ppc_pmu (bfd *abfd, Elf_Internal_Note *note)
9757 {
9758 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-pmu", note);
9759 }
9760
9761 static bfd_boolean
9762 elfcore_grok_ppc_tm_cgpr (bfd *abfd, Elf_Internal_Note *note)
9763 {
9764 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cgpr", note);
9765 }
9766
9767 static bfd_boolean
9768 elfcore_grok_ppc_tm_cfpr (bfd *abfd, Elf_Internal_Note *note)
9769 {
9770 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cfpr", note);
9771 }
9772
9773 static bfd_boolean
9774 elfcore_grok_ppc_tm_cvmx (bfd *abfd, Elf_Internal_Note *note)
9775 {
9776 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cvmx", note);
9777 }
9778
9779 static bfd_boolean
9780 elfcore_grok_ppc_tm_cvsx (bfd *abfd, Elf_Internal_Note *note)
9781 {
9782 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cvsx", note);
9783 }
9784
9785 static bfd_boolean
9786 elfcore_grok_ppc_tm_spr (bfd *abfd, Elf_Internal_Note *note)
9787 {
9788 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-spr", note);
9789 }
9790
9791 static bfd_boolean
9792 elfcore_grok_ppc_tm_ctar (bfd *abfd, Elf_Internal_Note *note)
9793 {
9794 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-ctar", note);
9795 }
9796
9797 static bfd_boolean
9798 elfcore_grok_ppc_tm_cppr (bfd *abfd, Elf_Internal_Note *note)
9799 {
9800 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cppr", note);
9801 }
9802
9803 static bfd_boolean
9804 elfcore_grok_ppc_tm_cdscr (bfd *abfd, Elf_Internal_Note *note)
9805 {
9806 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cdscr", note);
9807 }
9808
9809 static bfd_boolean
9810 elfcore_grok_s390_high_gprs (bfd *abfd, Elf_Internal_Note *note)
9811 {
9812 return elfcore_make_note_pseudosection (abfd, ".reg-s390-high-gprs", note);
9813 }
9814
9815 static bfd_boolean
9816 elfcore_grok_s390_timer (bfd *abfd, Elf_Internal_Note *note)
9817 {
9818 return elfcore_make_note_pseudosection (abfd, ".reg-s390-timer", note);
9819 }
9820
9821 static bfd_boolean
9822 elfcore_grok_s390_todcmp (bfd *abfd, Elf_Internal_Note *note)
9823 {
9824 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todcmp", note);
9825 }
9826
9827 static bfd_boolean
9828 elfcore_grok_s390_todpreg (bfd *abfd, Elf_Internal_Note *note)
9829 {
9830 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todpreg", note);
9831 }
9832
9833 static bfd_boolean
9834 elfcore_grok_s390_ctrs (bfd *abfd, Elf_Internal_Note *note)
9835 {
9836 return elfcore_make_note_pseudosection (abfd, ".reg-s390-ctrs", note);
9837 }
9838
9839 static bfd_boolean
9840 elfcore_grok_s390_prefix (bfd *abfd, Elf_Internal_Note *note)
9841 {
9842 return elfcore_make_note_pseudosection (abfd, ".reg-s390-prefix", note);
9843 }
9844
9845 static bfd_boolean
9846 elfcore_grok_s390_last_break (bfd *abfd, Elf_Internal_Note *note)
9847 {
9848 return elfcore_make_note_pseudosection (abfd, ".reg-s390-last-break", note);
9849 }
9850
9851 static bfd_boolean
9852 elfcore_grok_s390_system_call (bfd *abfd, Elf_Internal_Note *note)
9853 {
9854 return elfcore_make_note_pseudosection (abfd, ".reg-s390-system-call", note);
9855 }
9856
9857 static bfd_boolean
9858 elfcore_grok_s390_tdb (bfd *abfd, Elf_Internal_Note *note)
9859 {
9860 return elfcore_make_note_pseudosection (abfd, ".reg-s390-tdb", note);
9861 }
9862
9863 static bfd_boolean
9864 elfcore_grok_s390_vxrs_low (bfd *abfd, Elf_Internal_Note *note)
9865 {
9866 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-low", note);
9867 }
9868
9869 static bfd_boolean
9870 elfcore_grok_s390_vxrs_high (bfd *abfd, Elf_Internal_Note *note)
9871 {
9872 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-high", note);
9873 }
9874
9875 static bfd_boolean
9876 elfcore_grok_s390_gs_cb (bfd *abfd, Elf_Internal_Note *note)
9877 {
9878 return elfcore_make_note_pseudosection (abfd, ".reg-s390-gs-cb", note);
9879 }
9880
9881 static bfd_boolean
9882 elfcore_grok_s390_gs_bc (bfd *abfd, Elf_Internal_Note *note)
9883 {
9884 return elfcore_make_note_pseudosection (abfd, ".reg-s390-gs-bc", note);
9885 }
9886
9887 static bfd_boolean
9888 elfcore_grok_arm_vfp (bfd *abfd, Elf_Internal_Note *note)
9889 {
9890 return elfcore_make_note_pseudosection (abfd, ".reg-arm-vfp", note);
9891 }
9892
9893 static bfd_boolean
9894 elfcore_grok_aarch_tls (bfd *abfd, Elf_Internal_Note *note)
9895 {
9896 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-tls", note);
9897 }
9898
9899 static bfd_boolean
9900 elfcore_grok_aarch_hw_break (bfd *abfd, Elf_Internal_Note *note)
9901 {
9902 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-break", note);
9903 }
9904
9905 static bfd_boolean
9906 elfcore_grok_aarch_hw_watch (bfd *abfd, Elf_Internal_Note *note)
9907 {
9908 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-watch", note);
9909 }
9910
9911 static bfd_boolean
9912 elfcore_grok_aarch_sve (bfd *abfd, Elf_Internal_Note *note)
9913 {
9914 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-sve", note);
9915 }
9916
9917 static bfd_boolean
9918 elfcore_grok_aarch_pauth (bfd *abfd, Elf_Internal_Note *note)
9919 {
9920 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-pauth", note);
9921 }
9922
9923 static bfd_boolean
9924 elfcore_grok_arc_v2 (bfd *abfd, Elf_Internal_Note *note)
9925 {
9926 return elfcore_make_note_pseudosection (abfd, ".reg-arc-v2", note);
9927 }
9928
9929 /* Convert NOTE into a bfd_section called ".reg-riscv-csr". Return TRUE if
9930 successful otherwise, return FALSE. */
9931
9932 static bfd_boolean
9933 elfcore_grok_riscv_csr (bfd *abfd, Elf_Internal_Note *note)
9934 {
9935 return elfcore_make_note_pseudosection (abfd, ".reg-riscv-csr", note);
9936 }
9937
9938 /* Convert NOTE into a bfd_section called ".gdb-tdesc". Return TRUE if
9939 successful otherwise, return FALSE. */
9940
9941 static bfd_boolean
9942 elfcore_grok_gdb_tdesc (bfd *abfd, Elf_Internal_Note *note)
9943 {
9944 return elfcore_make_note_pseudosection (abfd, ".gdb-tdesc", note);
9945 }
9946
9947 #if defined (HAVE_PRPSINFO_T)
9948 typedef prpsinfo_t elfcore_psinfo_t;
9949 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
9950 typedef prpsinfo32_t elfcore_psinfo32_t;
9951 #endif
9952 #endif
9953
9954 #if defined (HAVE_PSINFO_T)
9955 typedef psinfo_t elfcore_psinfo_t;
9956 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
9957 typedef psinfo32_t elfcore_psinfo32_t;
9958 #endif
9959 #endif
9960
9961 /* return a malloc'ed copy of a string at START which is at
9962 most MAX bytes long, possibly without a terminating '\0'.
9963 the copy will always have a terminating '\0'. */
9964
9965 char *
9966 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
9967 {
9968 char *dups;
9969 char *end = (char *) memchr (start, '\0', max);
9970 size_t len;
9971
9972 if (end == NULL)
9973 len = max;
9974 else
9975 len = end - start;
9976
9977 dups = (char *) bfd_alloc (abfd, len + 1);
9978 if (dups == NULL)
9979 return NULL;
9980
9981 memcpy (dups, start, len);
9982 dups[len] = '\0';
9983
9984 return dups;
9985 }
9986
9987 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
9988 static bfd_boolean
9989 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
9990 {
9991 if (note->descsz == sizeof (elfcore_psinfo_t))
9992 {
9993 elfcore_psinfo_t psinfo;
9994
9995 memcpy (&psinfo, note->descdata, sizeof (psinfo));
9996
9997 #if defined (HAVE_PSINFO_T_PR_PID) || defined (HAVE_PRPSINFO_T_PR_PID)
9998 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
9999 #endif
10000 elf_tdata (abfd)->core->program
10001 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
10002 sizeof (psinfo.pr_fname));
10003
10004 elf_tdata (abfd)->core->command
10005 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
10006 sizeof (psinfo.pr_psargs));
10007 }
10008 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
10009 else if (note->descsz == sizeof (elfcore_psinfo32_t))
10010 {
10011 /* 64-bit host, 32-bit corefile */
10012 elfcore_psinfo32_t psinfo;
10013
10014 memcpy (&psinfo, note->descdata, sizeof (psinfo));
10015
10016 #if defined (HAVE_PSINFO32_T_PR_PID) || defined (HAVE_PRPSINFO32_T_PR_PID)
10017 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
10018 #endif
10019 elf_tdata (abfd)->core->program
10020 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
10021 sizeof (psinfo.pr_fname));
10022
10023 elf_tdata (abfd)->core->command
10024 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
10025 sizeof (psinfo.pr_psargs));
10026 }
10027 #endif
10028
10029 else
10030 {
10031 /* Fail - we don't know how to handle any other
10032 note size (ie. data object type). */
10033 return TRUE;
10034 }
10035
10036 /* Note that for some reason, a spurious space is tacked
10037 onto the end of the args in some (at least one anyway)
10038 implementations, so strip it off if it exists. */
10039
10040 {
10041 char *command = elf_tdata (abfd)->core->command;
10042 int n = strlen (command);
10043
10044 if (0 < n && command[n - 1] == ' ')
10045 command[n - 1] = '\0';
10046 }
10047
10048 return TRUE;
10049 }
10050 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
10051
10052 #if defined (HAVE_PSTATUS_T)
10053 static bfd_boolean
10054 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
10055 {
10056 if (note->descsz == sizeof (pstatus_t)
10057 #if defined (HAVE_PXSTATUS_T)
10058 || note->descsz == sizeof (pxstatus_t)
10059 #endif
10060 )
10061 {
10062 pstatus_t pstat;
10063
10064 memcpy (&pstat, note->descdata, sizeof (pstat));
10065
10066 elf_tdata (abfd)->core->pid = pstat.pr_pid;
10067 }
10068 #if defined (HAVE_PSTATUS32_T)
10069 else if (note->descsz == sizeof (pstatus32_t))
10070 {
10071 /* 64-bit host, 32-bit corefile */
10072 pstatus32_t pstat;
10073
10074 memcpy (&pstat, note->descdata, sizeof (pstat));
10075
10076 elf_tdata (abfd)->core->pid = pstat.pr_pid;
10077 }
10078 #endif
10079 /* Could grab some more details from the "representative"
10080 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
10081 NT_LWPSTATUS note, presumably. */
10082
10083 return TRUE;
10084 }
10085 #endif /* defined (HAVE_PSTATUS_T) */
10086
10087 #if defined (HAVE_LWPSTATUS_T)
10088 static bfd_boolean
10089 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
10090 {
10091 lwpstatus_t lwpstat;
10092 char buf[100];
10093 char *name;
10094 size_t len;
10095 asection *sect;
10096
10097 if (note->descsz != sizeof (lwpstat)
10098 #if defined (HAVE_LWPXSTATUS_T)
10099 && note->descsz != sizeof (lwpxstatus_t)
10100 #endif
10101 )
10102 return TRUE;
10103
10104 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
10105
10106 elf_tdata (abfd)->core->lwpid = lwpstat.pr_lwpid;
10107 /* Do not overwrite the core signal if it has already been set by
10108 another thread. */
10109 if (elf_tdata (abfd)->core->signal == 0)
10110 elf_tdata (abfd)->core->signal = lwpstat.pr_cursig;
10111
10112 /* Make a ".reg/999" section. */
10113
10114 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
10115 len = strlen (buf) + 1;
10116 name = bfd_alloc (abfd, len);
10117 if (name == NULL)
10118 return FALSE;
10119 memcpy (name, buf, len);
10120
10121 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10122 if (sect == NULL)
10123 return FALSE;
10124
10125 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
10126 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
10127 sect->filepos = note->descpos
10128 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
10129 #endif
10130
10131 #if defined (HAVE_LWPSTATUS_T_PR_REG)
10132 sect->size = sizeof (lwpstat.pr_reg);
10133 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
10134 #endif
10135
10136 sect->alignment_power = 2;
10137
10138 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
10139 return FALSE;
10140
10141 /* Make a ".reg2/999" section */
10142
10143 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
10144 len = strlen (buf) + 1;
10145 name = bfd_alloc (abfd, len);
10146 if (name == NULL)
10147 return FALSE;
10148 memcpy (name, buf, len);
10149
10150 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10151 if (sect == NULL)
10152 return FALSE;
10153
10154 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
10155 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
10156 sect->filepos = note->descpos
10157 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
10158 #endif
10159
10160 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
10161 sect->size = sizeof (lwpstat.pr_fpreg);
10162 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
10163 #endif
10164
10165 sect->alignment_power = 2;
10166
10167 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
10168 }
10169 #endif /* defined (HAVE_LWPSTATUS_T) */
10170
10171 /* These constants, and the structure offsets used below, are defined by
10172 Cygwin's core_dump.h */
10173 #define NOTE_INFO_PROCESS 1
10174 #define NOTE_INFO_THREAD 2
10175 #define NOTE_INFO_MODULE 3
10176 #define NOTE_INFO_MODULE64 4
10177
10178 static bfd_boolean
10179 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
10180 {
10181 char buf[30];
10182 char *name;
10183 size_t len;
10184 unsigned int name_size;
10185 asection *sect;
10186 unsigned int type;
10187 int is_active_thread;
10188 bfd_vma base_addr;
10189
10190 if (note->descsz < 4)
10191 return TRUE;
10192
10193 if (! startswith (note->namedata, "win32"))
10194 return TRUE;
10195
10196 type = bfd_get_32 (abfd, note->descdata);
10197
10198 struct
10199 {
10200 const char *type_name;
10201 unsigned long min_size;
10202 } size_check[] =
10203 {
10204 { "NOTE_INFO_PROCESS", 12 },
10205 { "NOTE_INFO_THREAD", 12 },
10206 { "NOTE_INFO_MODULE", 12 },
10207 { "NOTE_INFO_MODULE64", 16 },
10208 };
10209
10210 if (type == 0 || type > (sizeof(size_check)/sizeof(size_check[0])))
10211 return TRUE;
10212
10213 if (note->descsz < size_check[type - 1].min_size)
10214 {
10215 _bfd_error_handler (_("%pB: warning: win32pstatus %s of size %lu bytes is too small"),
10216 abfd, size_check[type - 1].type_name, note->descsz);
10217 return TRUE;
10218 }
10219
10220 switch (type)
10221 {
10222 case NOTE_INFO_PROCESS:
10223 /* FIXME: need to add ->core->command. */
10224 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, note->descdata + 4);
10225 elf_tdata (abfd)->core->signal = bfd_get_32 (abfd, note->descdata + 8);
10226 break;
10227
10228 case NOTE_INFO_THREAD:
10229 /* Make a ".reg/<tid>" section containing the Win32 API thread CONTEXT
10230 structure. */
10231 /* thread_info.tid */
10232 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 4));
10233
10234 len = strlen (buf) + 1;
10235 name = (char *) bfd_alloc (abfd, len);
10236 if (name == NULL)
10237 return FALSE;
10238
10239 memcpy (name, buf, len);
10240
10241 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10242 if (sect == NULL)
10243 return FALSE;
10244
10245 /* sizeof (thread_info.thread_context) */
10246 sect->size = note->descsz - 12;
10247 /* offsetof (thread_info.thread_context) */
10248 sect->filepos = note->descpos + 12;
10249 sect->alignment_power = 2;
10250
10251 /* thread_info.is_active_thread */
10252 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
10253
10254 if (is_active_thread)
10255 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
10256 return FALSE;
10257 break;
10258
10259 case NOTE_INFO_MODULE:
10260 case NOTE_INFO_MODULE64:
10261 /* Make a ".module/xxxxxxxx" section. */
10262 if (type == NOTE_INFO_MODULE)
10263 {
10264 /* module_info.base_address */
10265 base_addr = bfd_get_32 (abfd, note->descdata + 4);
10266 sprintf (buf, ".module/%08lx", (unsigned long) base_addr);
10267 /* module_info.module_name_size */
10268 name_size = bfd_get_32 (abfd, note->descdata + 8);
10269 }
10270 else /* NOTE_INFO_MODULE64 */
10271 {
10272 /* module_info.base_address */
10273 base_addr = bfd_get_64 (abfd, note->descdata + 4);
10274 sprintf (buf, ".module/%016lx", (unsigned long) base_addr);
10275 /* module_info.module_name_size */
10276 name_size = bfd_get_32 (abfd, note->descdata + 12);
10277 }
10278
10279 len = strlen (buf) + 1;
10280 name = (char *) bfd_alloc (abfd, len);
10281 if (name == NULL)
10282 return FALSE;
10283
10284 memcpy (name, buf, len);
10285
10286 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10287
10288 if (sect == NULL)
10289 return FALSE;
10290
10291 if (note->descsz < 12 + name_size)
10292 {
10293 _bfd_error_handler (_("%pB: win32pstatus NOTE_INFO_MODULE of size %lu is too small to contain a name of size %u"),
10294 abfd, note->descsz, name_size);
10295 return TRUE;
10296 }
10297
10298 sect->size = note->descsz;
10299 sect->filepos = note->descpos;
10300 sect->alignment_power = 2;
10301 break;
10302
10303 default:
10304 return TRUE;
10305 }
10306
10307 return TRUE;
10308 }
10309
10310 static bfd_boolean
10311 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
10312 {
10313 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10314
10315 switch (note->type)
10316 {
10317 default:
10318 return TRUE;
10319
10320 case NT_PRSTATUS:
10321 if (bed->elf_backend_grok_prstatus)
10322 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
10323 return TRUE;
10324 #if defined (HAVE_PRSTATUS_T)
10325 return elfcore_grok_prstatus (abfd, note);
10326 #else
10327 return TRUE;
10328 #endif
10329
10330 #if defined (HAVE_PSTATUS_T)
10331 case NT_PSTATUS:
10332 return elfcore_grok_pstatus (abfd, note);
10333 #endif
10334
10335 #if defined (HAVE_LWPSTATUS_T)
10336 case NT_LWPSTATUS:
10337 return elfcore_grok_lwpstatus (abfd, note);
10338 #endif
10339
10340 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
10341 return elfcore_grok_prfpreg (abfd, note);
10342
10343 case NT_WIN32PSTATUS:
10344 return elfcore_grok_win32pstatus (abfd, note);
10345
10346 case NT_PRXFPREG: /* Linux SSE extension */
10347 if (note->namesz == 6
10348 && strcmp (note->namedata, "LINUX") == 0)
10349 return elfcore_grok_prxfpreg (abfd, note);
10350 else
10351 return TRUE;
10352
10353 case NT_X86_XSTATE: /* Linux XSAVE extension */
10354 if (note->namesz == 6
10355 && strcmp (note->namedata, "LINUX") == 0)
10356 return elfcore_grok_xstatereg (abfd, note);
10357 else
10358 return TRUE;
10359
10360 case NT_PPC_VMX:
10361 if (note->namesz == 6
10362 && strcmp (note->namedata, "LINUX") == 0)
10363 return elfcore_grok_ppc_vmx (abfd, note);
10364 else
10365 return TRUE;
10366
10367 case NT_PPC_VSX:
10368 if (note->namesz == 6
10369 && strcmp (note->namedata, "LINUX") == 0)
10370 return elfcore_grok_ppc_vsx (abfd, note);
10371 else
10372 return TRUE;
10373
10374 case NT_PPC_TAR:
10375 if (note->namesz == 6
10376 && strcmp (note->namedata, "LINUX") == 0)
10377 return elfcore_grok_ppc_tar (abfd, note);
10378 else
10379 return TRUE;
10380
10381 case NT_PPC_PPR:
10382 if (note->namesz == 6
10383 && strcmp (note->namedata, "LINUX") == 0)
10384 return elfcore_grok_ppc_ppr (abfd, note);
10385 else
10386 return TRUE;
10387
10388 case NT_PPC_DSCR:
10389 if (note->namesz == 6
10390 && strcmp (note->namedata, "LINUX") == 0)
10391 return elfcore_grok_ppc_dscr (abfd, note);
10392 else
10393 return TRUE;
10394
10395 case NT_PPC_EBB:
10396 if (note->namesz == 6
10397 && strcmp (note->namedata, "LINUX") == 0)
10398 return elfcore_grok_ppc_ebb (abfd, note);
10399 else
10400 return TRUE;
10401
10402 case NT_PPC_PMU:
10403 if (note->namesz == 6
10404 && strcmp (note->namedata, "LINUX") == 0)
10405 return elfcore_grok_ppc_pmu (abfd, note);
10406 else
10407 return TRUE;
10408
10409 case NT_PPC_TM_CGPR:
10410 if (note->namesz == 6
10411 && strcmp (note->namedata, "LINUX") == 0)
10412 return elfcore_grok_ppc_tm_cgpr (abfd, note);
10413 else
10414 return TRUE;
10415
10416 case NT_PPC_TM_CFPR:
10417 if (note->namesz == 6
10418 && strcmp (note->namedata, "LINUX") == 0)
10419 return elfcore_grok_ppc_tm_cfpr (abfd, note);
10420 else
10421 return TRUE;
10422
10423 case NT_PPC_TM_CVMX:
10424 if (note->namesz == 6
10425 && strcmp (note->namedata, "LINUX") == 0)
10426 return elfcore_grok_ppc_tm_cvmx (abfd, note);
10427 else
10428 return TRUE;
10429
10430 case NT_PPC_TM_CVSX:
10431 if (note->namesz == 6
10432 && strcmp (note->namedata, "LINUX") == 0)
10433 return elfcore_grok_ppc_tm_cvsx (abfd, note);
10434 else
10435 return TRUE;
10436
10437 case NT_PPC_TM_SPR:
10438 if (note->namesz == 6
10439 && strcmp (note->namedata, "LINUX") == 0)
10440 return elfcore_grok_ppc_tm_spr (abfd, note);
10441 else
10442 return TRUE;
10443
10444 case NT_PPC_TM_CTAR:
10445 if (note->namesz == 6
10446 && strcmp (note->namedata, "LINUX") == 0)
10447 return elfcore_grok_ppc_tm_ctar (abfd, note);
10448 else
10449 return TRUE;
10450
10451 case NT_PPC_TM_CPPR:
10452 if (note->namesz == 6
10453 && strcmp (note->namedata, "LINUX") == 0)
10454 return elfcore_grok_ppc_tm_cppr (abfd, note);
10455 else
10456 return TRUE;
10457
10458 case NT_PPC_TM_CDSCR:
10459 if (note->namesz == 6
10460 && strcmp (note->namedata, "LINUX") == 0)
10461 return elfcore_grok_ppc_tm_cdscr (abfd, note);
10462 else
10463 return TRUE;
10464
10465 case NT_S390_HIGH_GPRS:
10466 if (note->namesz == 6
10467 && strcmp (note->namedata, "LINUX") == 0)
10468 return elfcore_grok_s390_high_gprs (abfd, note);
10469 else
10470 return TRUE;
10471
10472 case NT_S390_TIMER:
10473 if (note->namesz == 6
10474 && strcmp (note->namedata, "LINUX") == 0)
10475 return elfcore_grok_s390_timer (abfd, note);
10476 else
10477 return TRUE;
10478
10479 case NT_S390_TODCMP:
10480 if (note->namesz == 6
10481 && strcmp (note->namedata, "LINUX") == 0)
10482 return elfcore_grok_s390_todcmp (abfd, note);
10483 else
10484 return TRUE;
10485
10486 case NT_S390_TODPREG:
10487 if (note->namesz == 6
10488 && strcmp (note->namedata, "LINUX") == 0)
10489 return elfcore_grok_s390_todpreg (abfd, note);
10490 else
10491 return TRUE;
10492
10493 case NT_S390_CTRS:
10494 if (note->namesz == 6
10495 && strcmp (note->namedata, "LINUX") == 0)
10496 return elfcore_grok_s390_ctrs (abfd, note);
10497 else
10498 return TRUE;
10499
10500 case NT_S390_PREFIX:
10501 if (note->namesz == 6
10502 && strcmp (note->namedata, "LINUX") == 0)
10503 return elfcore_grok_s390_prefix (abfd, note);
10504 else
10505 return TRUE;
10506
10507 case NT_S390_LAST_BREAK:
10508 if (note->namesz == 6
10509 && strcmp (note->namedata, "LINUX") == 0)
10510 return elfcore_grok_s390_last_break (abfd, note);
10511 else
10512 return TRUE;
10513
10514 case NT_S390_SYSTEM_CALL:
10515 if (note->namesz == 6
10516 && strcmp (note->namedata, "LINUX") == 0)
10517 return elfcore_grok_s390_system_call (abfd, note);
10518 else
10519 return TRUE;
10520
10521 case NT_S390_TDB:
10522 if (note->namesz == 6
10523 && strcmp (note->namedata, "LINUX") == 0)
10524 return elfcore_grok_s390_tdb (abfd, note);
10525 else
10526 return TRUE;
10527
10528 case NT_S390_VXRS_LOW:
10529 if (note->namesz == 6
10530 && strcmp (note->namedata, "LINUX") == 0)
10531 return elfcore_grok_s390_vxrs_low (abfd, note);
10532 else
10533 return TRUE;
10534
10535 case NT_S390_VXRS_HIGH:
10536 if (note->namesz == 6
10537 && strcmp (note->namedata, "LINUX") == 0)
10538 return elfcore_grok_s390_vxrs_high (abfd, note);
10539 else
10540 return TRUE;
10541
10542 case NT_S390_GS_CB:
10543 if (note->namesz == 6
10544 && strcmp (note->namedata, "LINUX") == 0)
10545 return elfcore_grok_s390_gs_cb (abfd, note);
10546 else
10547 return TRUE;
10548
10549 case NT_S390_GS_BC:
10550 if (note->namesz == 6
10551 && strcmp (note->namedata, "LINUX") == 0)
10552 return elfcore_grok_s390_gs_bc (abfd, note);
10553 else
10554 return TRUE;
10555
10556 case NT_ARC_V2:
10557 if (note->namesz == 6
10558 && strcmp (note->namedata, "LINUX") == 0)
10559 return elfcore_grok_arc_v2 (abfd, note);
10560 else
10561 return TRUE;
10562
10563 case NT_ARM_VFP:
10564 if (note->namesz == 6
10565 && strcmp (note->namedata, "LINUX") == 0)
10566 return elfcore_grok_arm_vfp (abfd, note);
10567 else
10568 return TRUE;
10569
10570 case NT_ARM_TLS:
10571 if (note->namesz == 6
10572 && strcmp (note->namedata, "LINUX") == 0)
10573 return elfcore_grok_aarch_tls (abfd, note);
10574 else
10575 return TRUE;
10576
10577 case NT_ARM_HW_BREAK:
10578 if (note->namesz == 6
10579 && strcmp (note->namedata, "LINUX") == 0)
10580 return elfcore_grok_aarch_hw_break (abfd, note);
10581 else
10582 return TRUE;
10583
10584 case NT_ARM_HW_WATCH:
10585 if (note->namesz == 6
10586 && strcmp (note->namedata, "LINUX") == 0)
10587 return elfcore_grok_aarch_hw_watch (abfd, note);
10588 else
10589 return TRUE;
10590
10591 case NT_ARM_SVE:
10592 if (note->namesz == 6
10593 && strcmp (note->namedata, "LINUX") == 0)
10594 return elfcore_grok_aarch_sve (abfd, note);
10595 else
10596 return TRUE;
10597
10598 case NT_ARM_PAC_MASK:
10599 if (note->namesz == 6
10600 && strcmp (note->namedata, "LINUX") == 0)
10601 return elfcore_grok_aarch_pauth (abfd, note);
10602 else
10603 return TRUE;
10604
10605 case NT_GDB_TDESC:
10606 if (note->namesz == 4
10607 && strcmp (note->namedata, "GDB") == 0)
10608 return elfcore_grok_gdb_tdesc (abfd, note);
10609 else
10610 return TRUE;
10611
10612 case NT_RISCV_CSR:
10613 if (note->namesz == 4
10614 && strcmp (note->namedata, "GDB") == 0)
10615 return elfcore_grok_riscv_csr (abfd, note);
10616 else
10617 return TRUE;
10618
10619 case NT_PRPSINFO:
10620 case NT_PSINFO:
10621 if (bed->elf_backend_grok_psinfo)
10622 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
10623 return TRUE;
10624 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
10625 return elfcore_grok_psinfo (abfd, note);
10626 #else
10627 return TRUE;
10628 #endif
10629
10630 case NT_AUXV:
10631 return elfcore_make_auxv_note_section (abfd, note, 0);
10632
10633 case NT_FILE:
10634 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.file",
10635 note);
10636
10637 case NT_SIGINFO:
10638 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.siginfo",
10639 note);
10640
10641 }
10642 }
10643
10644 static bfd_boolean
10645 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
10646 {
10647 struct bfd_build_id* build_id;
10648
10649 if (note->descsz == 0)
10650 return FALSE;
10651
10652 build_id = bfd_alloc (abfd, sizeof (struct bfd_build_id) - 1 + note->descsz);
10653 if (build_id == NULL)
10654 return FALSE;
10655
10656 build_id->size = note->descsz;
10657 memcpy (build_id->data, note->descdata, note->descsz);
10658 abfd->build_id = build_id;
10659
10660 return TRUE;
10661 }
10662
10663 static bfd_boolean
10664 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
10665 {
10666 switch (note->type)
10667 {
10668 default:
10669 return TRUE;
10670
10671 case NT_GNU_PROPERTY_TYPE_0:
10672 return _bfd_elf_parse_gnu_properties (abfd, note);
10673
10674 case NT_GNU_BUILD_ID:
10675 return elfobj_grok_gnu_build_id (abfd, note);
10676 }
10677 }
10678
10679 static bfd_boolean
10680 elfobj_grok_stapsdt_note_1 (bfd *abfd, Elf_Internal_Note *note)
10681 {
10682 struct sdt_note *cur =
10683 (struct sdt_note *) bfd_alloc (abfd,
10684 sizeof (struct sdt_note) + note->descsz);
10685
10686 cur->next = (struct sdt_note *) (elf_tdata (abfd))->sdt_note_head;
10687 cur->size = (bfd_size_type) note->descsz;
10688 memcpy (cur->data, note->descdata, note->descsz);
10689
10690 elf_tdata (abfd)->sdt_note_head = cur;
10691
10692 return TRUE;
10693 }
10694
10695 static bfd_boolean
10696 elfobj_grok_stapsdt_note (bfd *abfd, Elf_Internal_Note *note)
10697 {
10698 switch (note->type)
10699 {
10700 case NT_STAPSDT:
10701 return elfobj_grok_stapsdt_note_1 (abfd, note);
10702
10703 default:
10704 return TRUE;
10705 }
10706 }
10707
10708 static bfd_boolean
10709 elfcore_grok_freebsd_psinfo (bfd *abfd, Elf_Internal_Note *note)
10710 {
10711 size_t offset;
10712
10713 switch (elf_elfheader (abfd)->e_ident[EI_CLASS])
10714 {
10715 case ELFCLASS32:
10716 if (note->descsz < 108)
10717 return FALSE;
10718 break;
10719
10720 case ELFCLASS64:
10721 if (note->descsz < 120)
10722 return FALSE;
10723 break;
10724
10725 default:
10726 return FALSE;
10727 }
10728
10729 /* Check for version 1 in pr_version. */
10730 if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1)
10731 return FALSE;
10732
10733 offset = 4;
10734
10735 /* Skip over pr_psinfosz. */
10736 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS32)
10737 offset += 4;
10738 else
10739 {
10740 offset += 4; /* Padding before pr_psinfosz. */
10741 offset += 8;
10742 }
10743
10744 /* pr_fname is PRFNAMESZ (16) + 1 bytes in size. */
10745 elf_tdata (abfd)->core->program
10746 = _bfd_elfcore_strndup (abfd, note->descdata + offset, 17);
10747 offset += 17;
10748
10749 /* pr_psargs is PRARGSZ (80) + 1 bytes in size. */
10750 elf_tdata (abfd)->core->command
10751 = _bfd_elfcore_strndup (abfd, note->descdata + offset, 81);
10752 offset += 81;
10753
10754 /* Padding before pr_pid. */
10755 offset += 2;
10756
10757 /* The pr_pid field was added in version "1a". */
10758 if (note->descsz < offset + 4)
10759 return TRUE;
10760
10761 elf_tdata (abfd)->core->pid
10762 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10763
10764 return TRUE;
10765 }
10766
10767 static bfd_boolean
10768 elfcore_grok_freebsd_prstatus (bfd *abfd, Elf_Internal_Note *note)
10769 {
10770 size_t offset;
10771 size_t size;
10772 size_t min_size;
10773
10774 /* Compute offset of pr_getregsz, skipping over pr_statussz.
10775 Also compute minimum size of this note. */
10776 switch (elf_elfheader (abfd)->e_ident[EI_CLASS])
10777 {
10778 case ELFCLASS32:
10779 offset = 4 + 4;
10780 min_size = offset + (4 * 2) + 4 + 4 + 4;
10781 break;
10782
10783 case ELFCLASS64:
10784 offset = 4 + 4 + 8; /* Includes padding before pr_statussz. */
10785 min_size = offset + (8 * 2) + 4 + 4 + 4 + 4;
10786 break;
10787
10788 default:
10789 return FALSE;
10790 }
10791
10792 if (note->descsz < min_size)
10793 return FALSE;
10794
10795 /* Check for version 1 in pr_version. */
10796 if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1)
10797 return FALSE;
10798
10799 /* Extract size of pr_reg from pr_gregsetsz. */
10800 /* Skip over pr_gregsetsz and pr_fpregsetsz. */
10801 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS32)
10802 {
10803 size = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10804 offset += 4 * 2;
10805 }
10806 else
10807 {
10808 size = bfd_h_get_64 (abfd, (bfd_byte *) note->descdata + offset);
10809 offset += 8 * 2;
10810 }
10811
10812 /* Skip over pr_osreldate. */
10813 offset += 4;
10814
10815 /* Read signal from pr_cursig. */
10816 if (elf_tdata (abfd)->core->signal == 0)
10817 elf_tdata (abfd)->core->signal
10818 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10819 offset += 4;
10820
10821 /* Read TID from pr_pid. */
10822 elf_tdata (abfd)->core->lwpid
10823 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10824 offset += 4;
10825
10826 /* Padding before pr_reg. */
10827 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
10828 offset += 4;
10829
10830 /* Make sure that there is enough data remaining in the note. */
10831 if ((note->descsz - offset) < size)
10832 return FALSE;
10833
10834 /* Make a ".reg/999" section and a ".reg" section. */
10835 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
10836 size, note->descpos + offset);
10837 }
10838
10839 static bfd_boolean
10840 elfcore_grok_freebsd_note (bfd *abfd, Elf_Internal_Note *note)
10841 {
10842 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10843
10844 switch (note->type)
10845 {
10846 case NT_PRSTATUS:
10847 if (bed->elf_backend_grok_freebsd_prstatus)
10848 if ((*bed->elf_backend_grok_freebsd_prstatus) (abfd, note))
10849 return TRUE;
10850 return elfcore_grok_freebsd_prstatus (abfd, note);
10851
10852 case NT_FPREGSET:
10853 return elfcore_grok_prfpreg (abfd, note);
10854
10855 case NT_PRPSINFO:
10856 return elfcore_grok_freebsd_psinfo (abfd, note);
10857
10858 case NT_FREEBSD_THRMISC:
10859 if (note->namesz == 8)
10860 return elfcore_make_note_pseudosection (abfd, ".thrmisc", note);
10861 else
10862 return TRUE;
10863
10864 case NT_FREEBSD_PROCSTAT_PROC:
10865 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.proc",
10866 note);
10867
10868 case NT_FREEBSD_PROCSTAT_FILES:
10869 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.files",
10870 note);
10871
10872 case NT_FREEBSD_PROCSTAT_VMMAP:
10873 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.vmmap",
10874 note);
10875
10876 case NT_FREEBSD_PROCSTAT_AUXV:
10877 return elfcore_make_auxv_note_section (abfd, note, 4);
10878
10879 case NT_X86_XSTATE:
10880 if (note->namesz == 8)
10881 return elfcore_grok_xstatereg (abfd, note);
10882 else
10883 return TRUE;
10884
10885 case NT_FREEBSD_PTLWPINFO:
10886 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.lwpinfo",
10887 note);
10888
10889 case NT_ARM_VFP:
10890 return elfcore_grok_arm_vfp (abfd, note);
10891
10892 default:
10893 return TRUE;
10894 }
10895 }
10896
10897 static bfd_boolean
10898 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
10899 {
10900 char *cp;
10901
10902 cp = strchr (note->namedata, '@');
10903 if (cp != NULL)
10904 {
10905 *lwpidp = atoi(cp + 1);
10906 return TRUE;
10907 }
10908 return FALSE;
10909 }
10910
10911 static bfd_boolean
10912 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
10913 {
10914 if (note->descsz <= 0x7c + 31)
10915 return FALSE;
10916
10917 /* Signal number at offset 0x08. */
10918 elf_tdata (abfd)->core->signal
10919 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
10920
10921 /* Process ID at offset 0x50. */
10922 elf_tdata (abfd)->core->pid
10923 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
10924
10925 /* Command name at 0x7c (max 32 bytes, including nul). */
10926 elf_tdata (abfd)->core->command
10927 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
10928
10929 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
10930 note);
10931 }
10932
10933 static bfd_boolean
10934 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
10935 {
10936 int lwp;
10937
10938 if (elfcore_netbsd_get_lwpid (note, &lwp))
10939 elf_tdata (abfd)->core->lwpid = lwp;
10940
10941 switch (note->type)
10942 {
10943 case NT_NETBSDCORE_PROCINFO:
10944 /* NetBSD-specific core "procinfo". Note that we expect to
10945 find this note before any of the others, which is fine,
10946 since the kernel writes this note out first when it
10947 creates a core file. */
10948 return elfcore_grok_netbsd_procinfo (abfd, note);
10949 #ifdef NT_NETBSDCORE_AUXV
10950 case NT_NETBSDCORE_AUXV:
10951 /* NetBSD-specific Elf Auxiliary Vector data. */
10952 return elfcore_make_auxv_note_section (abfd, note, 4);
10953 #endif
10954 #ifdef NT_NETBSDCORE_LWPSTATUS
10955 case NT_NETBSDCORE_LWPSTATUS:
10956 return elfcore_make_note_pseudosection (abfd,
10957 ".note.netbsdcore.lwpstatus",
10958 note);
10959 #endif
10960 default:
10961 break;
10962 }
10963
10964 /* As of March 2020 there are no other machine-independent notes
10965 defined for NetBSD core files. If the note type is less
10966 than the start of the machine-dependent note types, we don't
10967 understand it. */
10968
10969 if (note->type < NT_NETBSDCORE_FIRSTMACH)
10970 return TRUE;
10971
10972
10973 switch (bfd_get_arch (abfd))
10974 {
10975 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
10976 PT_GETFPREGS == mach+2. */
10977
10978 case bfd_arch_aarch64:
10979 case bfd_arch_alpha:
10980 case bfd_arch_sparc:
10981 switch (note->type)
10982 {
10983 case NT_NETBSDCORE_FIRSTMACH+0:
10984 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10985
10986 case NT_NETBSDCORE_FIRSTMACH+2:
10987 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10988
10989 default:
10990 return TRUE;
10991 }
10992
10993 /* On SuperH, PT_GETREGS == mach+3 and PT_GETFPREGS == mach+5.
10994 There's also old PT___GETREGS40 == mach + 1 for old reg
10995 structure which lacks GBR. */
10996
10997 case bfd_arch_sh:
10998 switch (note->type)
10999 {
11000 case NT_NETBSDCORE_FIRSTMACH+3:
11001 return elfcore_make_note_pseudosection (abfd, ".reg", note);
11002
11003 case NT_NETBSDCORE_FIRSTMACH+5:
11004 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
11005
11006 default:
11007 return TRUE;
11008 }
11009
11010 /* On all other arch's, PT_GETREGS == mach+1 and
11011 PT_GETFPREGS == mach+3. */
11012
11013 default:
11014 switch (note->type)
11015 {
11016 case NT_NETBSDCORE_FIRSTMACH+1:
11017 return elfcore_make_note_pseudosection (abfd, ".reg", note);
11018
11019 case NT_NETBSDCORE_FIRSTMACH+3:
11020 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
11021
11022 default:
11023 return TRUE;
11024 }
11025 }
11026 /* NOTREACHED */
11027 }
11028
11029 static bfd_boolean
11030 elfcore_grok_openbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
11031 {
11032 if (note->descsz <= 0x48 + 31)
11033 return FALSE;
11034
11035 /* Signal number at offset 0x08. */
11036 elf_tdata (abfd)->core->signal
11037 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
11038
11039 /* Process ID at offset 0x20. */
11040 elf_tdata (abfd)->core->pid
11041 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x20);
11042
11043 /* Command name at 0x48 (max 32 bytes, including nul). */
11044 elf_tdata (abfd)->core->command
11045 = _bfd_elfcore_strndup (abfd, note->descdata + 0x48, 31);
11046
11047 return TRUE;
11048 }
11049
11050 static bfd_boolean
11051 elfcore_grok_openbsd_note (bfd *abfd, Elf_Internal_Note *note)
11052 {
11053 if (note->type == NT_OPENBSD_PROCINFO)
11054 return elfcore_grok_openbsd_procinfo (abfd, note);
11055
11056 if (note->type == NT_OPENBSD_REGS)
11057 return elfcore_make_note_pseudosection (abfd, ".reg", note);
11058
11059 if (note->type == NT_OPENBSD_FPREGS)
11060 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
11061
11062 if (note->type == NT_OPENBSD_XFPREGS)
11063 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
11064
11065 if (note->type == NT_OPENBSD_AUXV)
11066 return elfcore_make_auxv_note_section (abfd, note, 0);
11067
11068 if (note->type == NT_OPENBSD_WCOOKIE)
11069 {
11070 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".wcookie",
11071 SEC_HAS_CONTENTS);
11072
11073 if (sect == NULL)
11074 return FALSE;
11075 sect->size = note->descsz;
11076 sect->filepos = note->descpos;
11077 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
11078
11079 return TRUE;
11080 }
11081
11082 return TRUE;
11083 }
11084
11085 static bfd_boolean
11086 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
11087 {
11088 void *ddata = note->descdata;
11089 char buf[100];
11090 char *name;
11091 asection *sect;
11092 short sig;
11093 unsigned flags;
11094
11095 if (note->descsz < 16)
11096 return FALSE;
11097
11098 /* nto_procfs_status 'pid' field is at offset 0. */
11099 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
11100
11101 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
11102 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
11103
11104 /* nto_procfs_status 'flags' field is at offset 8. */
11105 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
11106
11107 /* nto_procfs_status 'what' field is at offset 14. */
11108 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
11109 {
11110 elf_tdata (abfd)->core->signal = sig;
11111 elf_tdata (abfd)->core->lwpid = *tid;
11112 }
11113
11114 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
11115 do not come from signals so we make sure we set the current
11116 thread just in case. */
11117 if (flags & 0x00000080)
11118 elf_tdata (abfd)->core->lwpid = *tid;
11119
11120 /* Make a ".qnx_core_status/%d" section. */
11121 sprintf (buf, ".qnx_core_status/%ld", *tid);
11122
11123 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
11124 if (name == NULL)
11125 return FALSE;
11126 strcpy (name, buf);
11127
11128 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
11129 if (sect == NULL)
11130 return FALSE;
11131
11132 sect->size = note->descsz;
11133 sect->filepos = note->descpos;
11134 sect->alignment_power = 2;
11135
11136 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
11137 }
11138
11139 static bfd_boolean
11140 elfcore_grok_nto_regs (bfd *abfd,
11141 Elf_Internal_Note *note,
11142 long tid,
11143 char *base)
11144 {
11145 char buf[100];
11146 char *name;
11147 asection *sect;
11148
11149 /* Make a "(base)/%d" section. */
11150 sprintf (buf, "%s/%ld", base, tid);
11151
11152 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
11153 if (name == NULL)
11154 return FALSE;
11155 strcpy (name, buf);
11156
11157 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
11158 if (sect == NULL)
11159 return FALSE;
11160
11161 sect->size = note->descsz;
11162 sect->filepos = note->descpos;
11163 sect->alignment_power = 2;
11164
11165 /* This is the current thread. */
11166 if (elf_tdata (abfd)->core->lwpid == tid)
11167 return elfcore_maybe_make_sect (abfd, base, sect);
11168
11169 return TRUE;
11170 }
11171
11172 #define BFD_QNT_CORE_INFO 7
11173 #define BFD_QNT_CORE_STATUS 8
11174 #define BFD_QNT_CORE_GREG 9
11175 #define BFD_QNT_CORE_FPREG 10
11176
11177 static bfd_boolean
11178 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
11179 {
11180 /* Every GREG section has a STATUS section before it. Store the
11181 tid from the previous call to pass down to the next gregs
11182 function. */
11183 static long tid = 1;
11184
11185 switch (note->type)
11186 {
11187 case BFD_QNT_CORE_INFO:
11188 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
11189 case BFD_QNT_CORE_STATUS:
11190 return elfcore_grok_nto_status (abfd, note, &tid);
11191 case BFD_QNT_CORE_GREG:
11192 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
11193 case BFD_QNT_CORE_FPREG:
11194 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
11195 default:
11196 return TRUE;
11197 }
11198 }
11199
11200 static bfd_boolean
11201 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
11202 {
11203 char *name;
11204 asection *sect;
11205 size_t len;
11206
11207 /* Use note name as section name. */
11208 len = note->namesz;
11209 name = (char *) bfd_alloc (abfd, len);
11210 if (name == NULL)
11211 return FALSE;
11212 memcpy (name, note->namedata, len);
11213 name[len - 1] = '\0';
11214
11215 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
11216 if (sect == NULL)
11217 return FALSE;
11218
11219 sect->size = note->descsz;
11220 sect->filepos = note->descpos;
11221 sect->alignment_power = 1;
11222
11223 return TRUE;
11224 }
11225
11226 /* Function: elfcore_write_note
11227
11228 Inputs:
11229 buffer to hold note, and current size of buffer
11230 name of note
11231 type of note
11232 data for note
11233 size of data for note
11234
11235 Writes note to end of buffer. ELF64 notes are written exactly as
11236 for ELF32, despite the current (as of 2006) ELF gabi specifying
11237 that they ought to have 8-byte namesz and descsz field, and have
11238 8-byte alignment. Other writers, eg. Linux kernel, do the same.
11239
11240 Return:
11241 Pointer to realloc'd buffer, *BUFSIZ updated. */
11242
11243 char *
11244 elfcore_write_note (bfd *abfd,
11245 char *buf,
11246 int *bufsiz,
11247 const char *name,
11248 int type,
11249 const void *input,
11250 int size)
11251 {
11252 Elf_External_Note *xnp;
11253 size_t namesz;
11254 size_t newspace;
11255 char *dest;
11256
11257 namesz = 0;
11258 if (name != NULL)
11259 namesz = strlen (name) + 1;
11260
11261 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
11262
11263 buf = (char *) realloc (buf, *bufsiz + newspace);
11264 if (buf == NULL)
11265 return buf;
11266 dest = buf + *bufsiz;
11267 *bufsiz += newspace;
11268 xnp = (Elf_External_Note *) dest;
11269 H_PUT_32 (abfd, namesz, xnp->namesz);
11270 H_PUT_32 (abfd, size, xnp->descsz);
11271 H_PUT_32 (abfd, type, xnp->type);
11272 dest = xnp->name;
11273 if (name != NULL)
11274 {
11275 memcpy (dest, name, namesz);
11276 dest += namesz;
11277 while (namesz & 3)
11278 {
11279 *dest++ = '\0';
11280 ++namesz;
11281 }
11282 }
11283 memcpy (dest, input, size);
11284 dest += size;
11285 while (size & 3)
11286 {
11287 *dest++ = '\0';
11288 ++size;
11289 }
11290 return buf;
11291 }
11292
11293 /* gcc-8 warns (*) on all the strncpy calls in this function about
11294 possible string truncation. The "truncation" is not a bug. We
11295 have an external representation of structs with fields that are not
11296 necessarily NULL terminated and corresponding internal
11297 representation fields that are one larger so that they can always
11298 be NULL terminated.
11299 gcc versions between 4.2 and 4.6 do not allow pragma control of
11300 diagnostics inside functions, giving a hard error if you try to use
11301 the finer control available with later versions.
11302 gcc prior to 4.2 warns about diagnostic push and pop.
11303 gcc-5, gcc-6 and gcc-7 warn that -Wstringop-truncation is unknown,
11304 unless you also add #pragma GCC diagnostic ignored "-Wpragma".
11305 (*) Depending on your system header files! */
11306 #if GCC_VERSION >= 8000
11307 # pragma GCC diagnostic push
11308 # pragma GCC diagnostic ignored "-Wstringop-truncation"
11309 #endif
11310 char *
11311 elfcore_write_prpsinfo (bfd *abfd,
11312 char *buf,
11313 int *bufsiz,
11314 const char *fname,
11315 const char *psargs)
11316 {
11317 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11318
11319 if (bed->elf_backend_write_core_note != NULL)
11320 {
11321 char *ret;
11322 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
11323 NT_PRPSINFO, fname, psargs);
11324 if (ret != NULL)
11325 return ret;
11326 }
11327
11328 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
11329 # if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
11330 if (bed->s->elfclass == ELFCLASS32)
11331 {
11332 # if defined (HAVE_PSINFO32_T)
11333 psinfo32_t data;
11334 int note_type = NT_PSINFO;
11335 # else
11336 prpsinfo32_t data;
11337 int note_type = NT_PRPSINFO;
11338 # endif
11339
11340 memset (&data, 0, sizeof (data));
11341 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
11342 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
11343 return elfcore_write_note (abfd, buf, bufsiz,
11344 "CORE", note_type, &data, sizeof (data));
11345 }
11346 else
11347 # endif
11348 {
11349 # if defined (HAVE_PSINFO_T)
11350 psinfo_t data;
11351 int note_type = NT_PSINFO;
11352 # else
11353 prpsinfo_t data;
11354 int note_type = NT_PRPSINFO;
11355 # endif
11356
11357 memset (&data, 0, sizeof (data));
11358 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
11359 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
11360 return elfcore_write_note (abfd, buf, bufsiz,
11361 "CORE", note_type, &data, sizeof (data));
11362 }
11363 #endif /* PSINFO_T or PRPSINFO_T */
11364
11365 free (buf);
11366 return NULL;
11367 }
11368 #if GCC_VERSION >= 8000
11369 # pragma GCC diagnostic pop
11370 #endif
11371
11372 char *
11373 elfcore_write_linux_prpsinfo32
11374 (bfd *abfd, char *buf, int *bufsiz,
11375 const struct elf_internal_linux_prpsinfo *prpsinfo)
11376 {
11377 if (get_elf_backend_data (abfd)->linux_prpsinfo32_ugid16)
11378 {
11379 struct elf_external_linux_prpsinfo32_ugid16 data;
11380
11381 swap_linux_prpsinfo32_ugid16_out (abfd, prpsinfo, &data);
11382 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
11383 &data, sizeof (data));
11384 }
11385 else
11386 {
11387 struct elf_external_linux_prpsinfo32_ugid32 data;
11388
11389 swap_linux_prpsinfo32_ugid32_out (abfd, prpsinfo, &data);
11390 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
11391 &data, sizeof (data));
11392 }
11393 }
11394
11395 char *
11396 elfcore_write_linux_prpsinfo64
11397 (bfd *abfd, char *buf, int *bufsiz,
11398 const struct elf_internal_linux_prpsinfo *prpsinfo)
11399 {
11400 if (get_elf_backend_data (abfd)->linux_prpsinfo64_ugid16)
11401 {
11402 struct elf_external_linux_prpsinfo64_ugid16 data;
11403
11404 swap_linux_prpsinfo64_ugid16_out (abfd, prpsinfo, &data);
11405 return elfcore_write_note (abfd, buf, bufsiz,
11406 "CORE", NT_PRPSINFO, &data, sizeof (data));
11407 }
11408 else
11409 {
11410 struct elf_external_linux_prpsinfo64_ugid32 data;
11411
11412 swap_linux_prpsinfo64_ugid32_out (abfd, prpsinfo, &data);
11413 return elfcore_write_note (abfd, buf, bufsiz,
11414 "CORE", NT_PRPSINFO, &data, sizeof (data));
11415 }
11416 }
11417
11418 char *
11419 elfcore_write_prstatus (bfd *abfd,
11420 char *buf,
11421 int *bufsiz,
11422 long pid,
11423 int cursig,
11424 const void *gregs)
11425 {
11426 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11427
11428 if (bed->elf_backend_write_core_note != NULL)
11429 {
11430 char *ret;
11431 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
11432 NT_PRSTATUS,
11433 pid, cursig, gregs);
11434 if (ret != NULL)
11435 return ret;
11436 }
11437
11438 #if defined (HAVE_PRSTATUS_T)
11439 #if defined (HAVE_PRSTATUS32_T)
11440 if (bed->s->elfclass == ELFCLASS32)
11441 {
11442 prstatus32_t prstat;
11443
11444 memset (&prstat, 0, sizeof (prstat));
11445 prstat.pr_pid = pid;
11446 prstat.pr_cursig = cursig;
11447 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
11448 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
11449 NT_PRSTATUS, &prstat, sizeof (prstat));
11450 }
11451 else
11452 #endif
11453 {
11454 prstatus_t prstat;
11455
11456 memset (&prstat, 0, sizeof (prstat));
11457 prstat.pr_pid = pid;
11458 prstat.pr_cursig = cursig;
11459 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
11460 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
11461 NT_PRSTATUS, &prstat, sizeof (prstat));
11462 }
11463 #endif /* HAVE_PRSTATUS_T */
11464
11465 free (buf);
11466 return NULL;
11467 }
11468
11469 #if defined (HAVE_LWPSTATUS_T)
11470 char *
11471 elfcore_write_lwpstatus (bfd *abfd,
11472 char *buf,
11473 int *bufsiz,
11474 long pid,
11475 int cursig,
11476 const void *gregs)
11477 {
11478 lwpstatus_t lwpstat;
11479 const char *note_name = "CORE";
11480
11481 memset (&lwpstat, 0, sizeof (lwpstat));
11482 lwpstat.pr_lwpid = pid >> 16;
11483 lwpstat.pr_cursig = cursig;
11484 #if defined (HAVE_LWPSTATUS_T_PR_REG)
11485 memcpy (&lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
11486 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
11487 #if !defined(gregs)
11488 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
11489 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
11490 #else
11491 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
11492 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
11493 #endif
11494 #endif
11495 return elfcore_write_note (abfd, buf, bufsiz, note_name,
11496 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
11497 }
11498 #endif /* HAVE_LWPSTATUS_T */
11499
11500 #if defined (HAVE_PSTATUS_T)
11501 char *
11502 elfcore_write_pstatus (bfd *abfd,
11503 char *buf,
11504 int *bufsiz,
11505 long pid,
11506 int cursig ATTRIBUTE_UNUSED,
11507 const void *gregs ATTRIBUTE_UNUSED)
11508 {
11509 const char *note_name = "CORE";
11510 #if defined (HAVE_PSTATUS32_T)
11511 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11512
11513 if (bed->s->elfclass == ELFCLASS32)
11514 {
11515 pstatus32_t pstat;
11516
11517 memset (&pstat, 0, sizeof (pstat));
11518 pstat.pr_pid = pid & 0xffff;
11519 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
11520 NT_PSTATUS, &pstat, sizeof (pstat));
11521 return buf;
11522 }
11523 else
11524 #endif
11525 {
11526 pstatus_t pstat;
11527
11528 memset (&pstat, 0, sizeof (pstat));
11529 pstat.pr_pid = pid & 0xffff;
11530 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
11531 NT_PSTATUS, &pstat, sizeof (pstat));
11532 return buf;
11533 }
11534 }
11535 #endif /* HAVE_PSTATUS_T */
11536
11537 char *
11538 elfcore_write_prfpreg (bfd *abfd,
11539 char *buf,
11540 int *bufsiz,
11541 const void *fpregs,
11542 int size)
11543 {
11544 const char *note_name = "CORE";
11545 return elfcore_write_note (abfd, buf, bufsiz,
11546 note_name, NT_FPREGSET, fpregs, size);
11547 }
11548
11549 char *
11550 elfcore_write_prxfpreg (bfd *abfd,
11551 char *buf,
11552 int *bufsiz,
11553 const void *xfpregs,
11554 int size)
11555 {
11556 char *note_name = "LINUX";
11557 return elfcore_write_note (abfd, buf, bufsiz,
11558 note_name, NT_PRXFPREG, xfpregs, size);
11559 }
11560
11561 char *
11562 elfcore_write_xstatereg (bfd *abfd, char *buf, int *bufsiz,
11563 const void *xfpregs, int size)
11564 {
11565 char *note_name;
11566 if (get_elf_backend_data (abfd)->elf_osabi == ELFOSABI_FREEBSD)
11567 note_name = "FreeBSD";
11568 else
11569 note_name = "LINUX";
11570 return elfcore_write_note (abfd, buf, bufsiz,
11571 note_name, NT_X86_XSTATE, xfpregs, size);
11572 }
11573
11574 char *
11575 elfcore_write_ppc_vmx (bfd *abfd,
11576 char *buf,
11577 int *bufsiz,
11578 const void *ppc_vmx,
11579 int size)
11580 {
11581 char *note_name = "LINUX";
11582 return elfcore_write_note (abfd, buf, bufsiz,
11583 note_name, NT_PPC_VMX, ppc_vmx, size);
11584 }
11585
11586 char *
11587 elfcore_write_ppc_vsx (bfd *abfd,
11588 char *buf,
11589 int *bufsiz,
11590 const void *ppc_vsx,
11591 int size)
11592 {
11593 char *note_name = "LINUX";
11594 return elfcore_write_note (abfd, buf, bufsiz,
11595 note_name, NT_PPC_VSX, ppc_vsx, size);
11596 }
11597
11598 char *
11599 elfcore_write_ppc_tar (bfd *abfd,
11600 char *buf,
11601 int *bufsiz,
11602 const void *ppc_tar,
11603 int size)
11604 {
11605 char *note_name = "LINUX";
11606 return elfcore_write_note (abfd, buf, bufsiz,
11607 note_name, NT_PPC_TAR, ppc_tar, size);
11608 }
11609
11610 char *
11611 elfcore_write_ppc_ppr (bfd *abfd,
11612 char *buf,
11613 int *bufsiz,
11614 const void *ppc_ppr,
11615 int size)
11616 {
11617 char *note_name = "LINUX";
11618 return elfcore_write_note (abfd, buf, bufsiz,
11619 note_name, NT_PPC_PPR, ppc_ppr, size);
11620 }
11621
11622 char *
11623 elfcore_write_ppc_dscr (bfd *abfd,
11624 char *buf,
11625 int *bufsiz,
11626 const void *ppc_dscr,
11627 int size)
11628 {
11629 char *note_name = "LINUX";
11630 return elfcore_write_note (abfd, buf, bufsiz,
11631 note_name, NT_PPC_DSCR, ppc_dscr, size);
11632 }
11633
11634 char *
11635 elfcore_write_ppc_ebb (bfd *abfd,
11636 char *buf,
11637 int *bufsiz,
11638 const void *ppc_ebb,
11639 int size)
11640 {
11641 char *note_name = "LINUX";
11642 return elfcore_write_note (abfd, buf, bufsiz,
11643 note_name, NT_PPC_EBB, ppc_ebb, size);
11644 }
11645
11646 char *
11647 elfcore_write_ppc_pmu (bfd *abfd,
11648 char *buf,
11649 int *bufsiz,
11650 const void *ppc_pmu,
11651 int size)
11652 {
11653 char *note_name = "LINUX";
11654 return elfcore_write_note (abfd, buf, bufsiz,
11655 note_name, NT_PPC_PMU, ppc_pmu, size);
11656 }
11657
11658 char *
11659 elfcore_write_ppc_tm_cgpr (bfd *abfd,
11660 char *buf,
11661 int *bufsiz,
11662 const void *ppc_tm_cgpr,
11663 int size)
11664 {
11665 char *note_name = "LINUX";
11666 return elfcore_write_note (abfd, buf, bufsiz,
11667 note_name, NT_PPC_TM_CGPR, ppc_tm_cgpr, size);
11668 }
11669
11670 char *
11671 elfcore_write_ppc_tm_cfpr (bfd *abfd,
11672 char *buf,
11673 int *bufsiz,
11674 const void *ppc_tm_cfpr,
11675 int size)
11676 {
11677 char *note_name = "LINUX";
11678 return elfcore_write_note (abfd, buf, bufsiz,
11679 note_name, NT_PPC_TM_CFPR, ppc_tm_cfpr, size);
11680 }
11681
11682 char *
11683 elfcore_write_ppc_tm_cvmx (bfd *abfd,
11684 char *buf,
11685 int *bufsiz,
11686 const void *ppc_tm_cvmx,
11687 int size)
11688 {
11689 char *note_name = "LINUX";
11690 return elfcore_write_note (abfd, buf, bufsiz,
11691 note_name, NT_PPC_TM_CVMX, ppc_tm_cvmx, size);
11692 }
11693
11694 char *
11695 elfcore_write_ppc_tm_cvsx (bfd *abfd,
11696 char *buf,
11697 int *bufsiz,
11698 const void *ppc_tm_cvsx,
11699 int size)
11700 {
11701 char *note_name = "LINUX";
11702 return elfcore_write_note (abfd, buf, bufsiz,
11703 note_name, NT_PPC_TM_CVSX, ppc_tm_cvsx, size);
11704 }
11705
11706 char *
11707 elfcore_write_ppc_tm_spr (bfd *abfd,
11708 char *buf,
11709 int *bufsiz,
11710 const void *ppc_tm_spr,
11711 int size)
11712 {
11713 char *note_name = "LINUX";
11714 return elfcore_write_note (abfd, buf, bufsiz,
11715 note_name, NT_PPC_TM_SPR, ppc_tm_spr, size);
11716 }
11717
11718 char *
11719 elfcore_write_ppc_tm_ctar (bfd *abfd,
11720 char *buf,
11721 int *bufsiz,
11722 const void *ppc_tm_ctar,
11723 int size)
11724 {
11725 char *note_name = "LINUX";
11726 return elfcore_write_note (abfd, buf, bufsiz,
11727 note_name, NT_PPC_TM_CTAR, ppc_tm_ctar, size);
11728 }
11729
11730 char *
11731 elfcore_write_ppc_tm_cppr (bfd *abfd,
11732 char *buf,
11733 int *bufsiz,
11734 const void *ppc_tm_cppr,
11735 int size)
11736 {
11737 char *note_name = "LINUX";
11738 return elfcore_write_note (abfd, buf, bufsiz,
11739 note_name, NT_PPC_TM_CPPR, ppc_tm_cppr, size);
11740 }
11741
11742 char *
11743 elfcore_write_ppc_tm_cdscr (bfd *abfd,
11744 char *buf,
11745 int *bufsiz,
11746 const void *ppc_tm_cdscr,
11747 int size)
11748 {
11749 char *note_name = "LINUX";
11750 return elfcore_write_note (abfd, buf, bufsiz,
11751 note_name, NT_PPC_TM_CDSCR, ppc_tm_cdscr, size);
11752 }
11753
11754 static char *
11755 elfcore_write_s390_high_gprs (bfd *abfd,
11756 char *buf,
11757 int *bufsiz,
11758 const void *s390_high_gprs,
11759 int size)
11760 {
11761 char *note_name = "LINUX";
11762 return elfcore_write_note (abfd, buf, bufsiz,
11763 note_name, NT_S390_HIGH_GPRS,
11764 s390_high_gprs, size);
11765 }
11766
11767 char *
11768 elfcore_write_s390_timer (bfd *abfd,
11769 char *buf,
11770 int *bufsiz,
11771 const void *s390_timer,
11772 int size)
11773 {
11774 char *note_name = "LINUX";
11775 return elfcore_write_note (abfd, buf, bufsiz,
11776 note_name, NT_S390_TIMER, s390_timer, size);
11777 }
11778
11779 char *
11780 elfcore_write_s390_todcmp (bfd *abfd,
11781 char *buf,
11782 int *bufsiz,
11783 const void *s390_todcmp,
11784 int size)
11785 {
11786 char *note_name = "LINUX";
11787 return elfcore_write_note (abfd, buf, bufsiz,
11788 note_name, NT_S390_TODCMP, s390_todcmp, size);
11789 }
11790
11791 char *
11792 elfcore_write_s390_todpreg (bfd *abfd,
11793 char *buf,
11794 int *bufsiz,
11795 const void *s390_todpreg,
11796 int size)
11797 {
11798 char *note_name = "LINUX";
11799 return elfcore_write_note (abfd, buf, bufsiz,
11800 note_name, NT_S390_TODPREG, s390_todpreg, size);
11801 }
11802
11803 char *
11804 elfcore_write_s390_ctrs (bfd *abfd,
11805 char *buf,
11806 int *bufsiz,
11807 const void *s390_ctrs,
11808 int size)
11809 {
11810 char *note_name = "LINUX";
11811 return elfcore_write_note (abfd, buf, bufsiz,
11812 note_name, NT_S390_CTRS, s390_ctrs, size);
11813 }
11814
11815 char *
11816 elfcore_write_s390_prefix (bfd *abfd,
11817 char *buf,
11818 int *bufsiz,
11819 const void *s390_prefix,
11820 int size)
11821 {
11822 char *note_name = "LINUX";
11823 return elfcore_write_note (abfd, buf, bufsiz,
11824 note_name, NT_S390_PREFIX, s390_prefix, size);
11825 }
11826
11827 char *
11828 elfcore_write_s390_last_break (bfd *abfd,
11829 char *buf,
11830 int *bufsiz,
11831 const void *s390_last_break,
11832 int size)
11833 {
11834 char *note_name = "LINUX";
11835 return elfcore_write_note (abfd, buf, bufsiz,
11836 note_name, NT_S390_LAST_BREAK,
11837 s390_last_break, size);
11838 }
11839
11840 char *
11841 elfcore_write_s390_system_call (bfd *abfd,
11842 char *buf,
11843 int *bufsiz,
11844 const void *s390_system_call,
11845 int size)
11846 {
11847 char *note_name = "LINUX";
11848 return elfcore_write_note (abfd, buf, bufsiz,
11849 note_name, NT_S390_SYSTEM_CALL,
11850 s390_system_call, size);
11851 }
11852
11853 char *
11854 elfcore_write_s390_tdb (bfd *abfd,
11855 char *buf,
11856 int *bufsiz,
11857 const void *s390_tdb,
11858 int size)
11859 {
11860 char *note_name = "LINUX";
11861 return elfcore_write_note (abfd, buf, bufsiz,
11862 note_name, NT_S390_TDB, s390_tdb, size);
11863 }
11864
11865 char *
11866 elfcore_write_s390_vxrs_low (bfd *abfd,
11867 char *buf,
11868 int *bufsiz,
11869 const void *s390_vxrs_low,
11870 int size)
11871 {
11872 char *note_name = "LINUX";
11873 return elfcore_write_note (abfd, buf, bufsiz,
11874 note_name, NT_S390_VXRS_LOW, s390_vxrs_low, size);
11875 }
11876
11877 char *
11878 elfcore_write_s390_vxrs_high (bfd *abfd,
11879 char *buf,
11880 int *bufsiz,
11881 const void *s390_vxrs_high,
11882 int size)
11883 {
11884 char *note_name = "LINUX";
11885 return elfcore_write_note (abfd, buf, bufsiz,
11886 note_name, NT_S390_VXRS_HIGH,
11887 s390_vxrs_high, size);
11888 }
11889
11890 char *
11891 elfcore_write_s390_gs_cb (bfd *abfd,
11892 char *buf,
11893 int *bufsiz,
11894 const void *s390_gs_cb,
11895 int size)
11896 {
11897 char *note_name = "LINUX";
11898 return elfcore_write_note (abfd, buf, bufsiz,
11899 note_name, NT_S390_GS_CB,
11900 s390_gs_cb, size);
11901 }
11902
11903 char *
11904 elfcore_write_s390_gs_bc (bfd *abfd,
11905 char *buf,
11906 int *bufsiz,
11907 const void *s390_gs_bc,
11908 int size)
11909 {
11910 char *note_name = "LINUX";
11911 return elfcore_write_note (abfd, buf, bufsiz,
11912 note_name, NT_S390_GS_BC,
11913 s390_gs_bc, size);
11914 }
11915
11916 char *
11917 elfcore_write_arm_vfp (bfd *abfd,
11918 char *buf,
11919 int *bufsiz,
11920 const void *arm_vfp,
11921 int size)
11922 {
11923 char *note_name = "LINUX";
11924 return elfcore_write_note (abfd, buf, bufsiz,
11925 note_name, NT_ARM_VFP, arm_vfp, size);
11926 }
11927
11928 char *
11929 elfcore_write_aarch_tls (bfd *abfd,
11930 char *buf,
11931 int *bufsiz,
11932 const void *aarch_tls,
11933 int size)
11934 {
11935 char *note_name = "LINUX";
11936 return elfcore_write_note (abfd, buf, bufsiz,
11937 note_name, NT_ARM_TLS, aarch_tls, size);
11938 }
11939
11940 char *
11941 elfcore_write_aarch_hw_break (bfd *abfd,
11942 char *buf,
11943 int *bufsiz,
11944 const void *aarch_hw_break,
11945 int size)
11946 {
11947 char *note_name = "LINUX";
11948 return elfcore_write_note (abfd, buf, bufsiz,
11949 note_name, NT_ARM_HW_BREAK, aarch_hw_break, size);
11950 }
11951
11952 char *
11953 elfcore_write_aarch_hw_watch (bfd *abfd,
11954 char *buf,
11955 int *bufsiz,
11956 const void *aarch_hw_watch,
11957 int size)
11958 {
11959 char *note_name = "LINUX";
11960 return elfcore_write_note (abfd, buf, bufsiz,
11961 note_name, NT_ARM_HW_WATCH, aarch_hw_watch, size);
11962 }
11963
11964 char *
11965 elfcore_write_aarch_sve (bfd *abfd,
11966 char *buf,
11967 int *bufsiz,
11968 const void *aarch_sve,
11969 int size)
11970 {
11971 char *note_name = "LINUX";
11972 return elfcore_write_note (abfd, buf, bufsiz,
11973 note_name, NT_ARM_SVE, aarch_sve, size);
11974 }
11975
11976 char *
11977 elfcore_write_aarch_pauth (bfd *abfd,
11978 char *buf,
11979 int *bufsiz,
11980 const void *aarch_pauth,
11981 int size)
11982 {
11983 char *note_name = "LINUX";
11984 return elfcore_write_note (abfd, buf, bufsiz,
11985 note_name, NT_ARM_PAC_MASK, aarch_pauth, size);
11986 }
11987
11988 char *
11989 elfcore_write_arc_v2 (bfd *abfd,
11990 char *buf,
11991 int *bufsiz,
11992 const void *arc_v2,
11993 int size)
11994 {
11995 char *note_name = "LINUX";
11996 return elfcore_write_note (abfd, buf, bufsiz,
11997 note_name, NT_ARC_V2, arc_v2, size);
11998 }
11999
12000 /* Write the buffer of csr values in CSRS (length SIZE) into the note
12001 buffer BUF and update *BUFSIZ. ABFD is the bfd the note is being
12002 written into. Return a pointer to the new start of the note buffer, to
12003 replace BUF which may no longer be valid. */
12004
12005 char *
12006 elfcore_write_riscv_csr (bfd *abfd,
12007 char *buf,
12008 int *bufsiz,
12009 const void *csrs,
12010 int size)
12011 {
12012 const char *note_name = "GDB";
12013 return elfcore_write_note (abfd, buf, bufsiz,
12014 note_name, NT_RISCV_CSR, csrs, size);
12015 }
12016
12017 /* Write the target description (a string) pointed to by TDESC, length
12018 SIZE, into the note buffer BUF, and update *BUFSIZ. ABFD is the bfd the
12019 note is being written into. Return a pointer to the new start of the
12020 note buffer, to replace BUF which may no longer be valid. */
12021
12022 char *
12023 elfcore_write_gdb_tdesc (bfd *abfd,
12024 char *buf,
12025 int *bufsiz,
12026 const void *tdesc,
12027 int size)
12028 {
12029 const char *note_name = "GDB";
12030 return elfcore_write_note (abfd, buf, bufsiz,
12031 note_name, NT_GDB_TDESC, tdesc, size);
12032 }
12033
12034 char *
12035 elfcore_write_register_note (bfd *abfd,
12036 char *buf,
12037 int *bufsiz,
12038 const char *section,
12039 const void *data,
12040 int size)
12041 {
12042 if (strcmp (section, ".reg2") == 0)
12043 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
12044 if (strcmp (section, ".reg-xfp") == 0)
12045 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
12046 if (strcmp (section, ".reg-xstate") == 0)
12047 return elfcore_write_xstatereg (abfd, buf, bufsiz, data, size);
12048 if (strcmp (section, ".reg-ppc-vmx") == 0)
12049 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
12050 if (strcmp (section, ".reg-ppc-vsx") == 0)
12051 return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size);
12052 if (strcmp (section, ".reg-ppc-tar") == 0)
12053 return elfcore_write_ppc_tar (abfd, buf, bufsiz, data, size);
12054 if (strcmp (section, ".reg-ppc-ppr") == 0)
12055 return elfcore_write_ppc_ppr (abfd, buf, bufsiz, data, size);
12056 if (strcmp (section, ".reg-ppc-dscr") == 0)
12057 return elfcore_write_ppc_dscr (abfd, buf, bufsiz, data, size);
12058 if (strcmp (section, ".reg-ppc-ebb") == 0)
12059 return elfcore_write_ppc_ebb (abfd, buf, bufsiz, data, size);
12060 if (strcmp (section, ".reg-ppc-pmu") == 0)
12061 return elfcore_write_ppc_pmu (abfd, buf, bufsiz, data, size);
12062 if (strcmp (section, ".reg-ppc-tm-cgpr") == 0)
12063 return elfcore_write_ppc_tm_cgpr (abfd, buf, bufsiz, data, size);
12064 if (strcmp (section, ".reg-ppc-tm-cfpr") == 0)
12065 return elfcore_write_ppc_tm_cfpr (abfd, buf, bufsiz, data, size);
12066 if (strcmp (section, ".reg-ppc-tm-cvmx") == 0)
12067 return elfcore_write_ppc_tm_cvmx (abfd, buf, bufsiz, data, size);
12068 if (strcmp (section, ".reg-ppc-tm-cvsx") == 0)
12069 return elfcore_write_ppc_tm_cvsx (abfd, buf, bufsiz, data, size);
12070 if (strcmp (section, ".reg-ppc-tm-spr") == 0)
12071 return elfcore_write_ppc_tm_spr (abfd, buf, bufsiz, data, size);
12072 if (strcmp (section, ".reg-ppc-tm-ctar") == 0)
12073 return elfcore_write_ppc_tm_ctar (abfd, buf, bufsiz, data, size);
12074 if (strcmp (section, ".reg-ppc-tm-cppr") == 0)
12075 return elfcore_write_ppc_tm_cppr (abfd, buf, bufsiz, data, size);
12076 if (strcmp (section, ".reg-ppc-tm-cdscr") == 0)
12077 return elfcore_write_ppc_tm_cdscr (abfd, buf, bufsiz, data, size);
12078 if (strcmp (section, ".reg-s390-high-gprs") == 0)
12079 return elfcore_write_s390_high_gprs (abfd, buf, bufsiz, data, size);
12080 if (strcmp (section, ".reg-s390-timer") == 0)
12081 return elfcore_write_s390_timer (abfd, buf, bufsiz, data, size);
12082 if (strcmp (section, ".reg-s390-todcmp") == 0)
12083 return elfcore_write_s390_todcmp (abfd, buf, bufsiz, data, size);
12084 if (strcmp (section, ".reg-s390-todpreg") == 0)
12085 return elfcore_write_s390_todpreg (abfd, buf, bufsiz, data, size);
12086 if (strcmp (section, ".reg-s390-ctrs") == 0)
12087 return elfcore_write_s390_ctrs (abfd, buf, bufsiz, data, size);
12088 if (strcmp (section, ".reg-s390-prefix") == 0)
12089 return elfcore_write_s390_prefix (abfd, buf, bufsiz, data, size);
12090 if (strcmp (section, ".reg-s390-last-break") == 0)
12091 return elfcore_write_s390_last_break (abfd, buf, bufsiz, data, size);
12092 if (strcmp (section, ".reg-s390-system-call") == 0)
12093 return elfcore_write_s390_system_call (abfd, buf, bufsiz, data, size);
12094 if (strcmp (section, ".reg-s390-tdb") == 0)
12095 return elfcore_write_s390_tdb (abfd, buf, bufsiz, data, size);
12096 if (strcmp (section, ".reg-s390-vxrs-low") == 0)
12097 return elfcore_write_s390_vxrs_low (abfd, buf, bufsiz, data, size);
12098 if (strcmp (section, ".reg-s390-vxrs-high") == 0)
12099 return elfcore_write_s390_vxrs_high (abfd, buf, bufsiz, data, size);
12100 if (strcmp (section, ".reg-s390-gs-cb") == 0)
12101 return elfcore_write_s390_gs_cb (abfd, buf, bufsiz, data, size);
12102 if (strcmp (section, ".reg-s390-gs-bc") == 0)
12103 return elfcore_write_s390_gs_bc (abfd, buf, bufsiz, data, size);
12104 if (strcmp (section, ".reg-arm-vfp") == 0)
12105 return elfcore_write_arm_vfp (abfd, buf, bufsiz, data, size);
12106 if (strcmp (section, ".reg-aarch-tls") == 0)
12107 return elfcore_write_aarch_tls (abfd, buf, bufsiz, data, size);
12108 if (strcmp (section, ".reg-aarch-hw-break") == 0)
12109 return elfcore_write_aarch_hw_break (abfd, buf, bufsiz, data, size);
12110 if (strcmp (section, ".reg-aarch-hw-watch") == 0)
12111 return elfcore_write_aarch_hw_watch (abfd, buf, bufsiz, data, size);
12112 if (strcmp (section, ".reg-aarch-sve") == 0)
12113 return elfcore_write_aarch_sve (abfd, buf, bufsiz, data, size);
12114 if (strcmp (section, ".reg-aarch-pauth") == 0)
12115 return elfcore_write_aarch_pauth (abfd, buf, bufsiz, data, size);
12116 if (strcmp (section, ".reg-arc-v2") == 0)
12117 return elfcore_write_arc_v2 (abfd, buf, bufsiz, data, size);
12118 if (strcmp (section, ".gdb-tdesc") == 0)
12119 return elfcore_write_gdb_tdesc (abfd, buf, bufsiz, data, size);
12120 if (strcmp (section, ".reg-riscv-csr") == 0)
12121 return elfcore_write_riscv_csr (abfd, buf, bufsiz, data, size);
12122 return NULL;
12123 }
12124
12125 char *
12126 elfcore_write_file_note (bfd *obfd, char *note_data, int *note_size,
12127 const void *buf, int bufsiz)
12128 {
12129 return elfcore_write_note (obfd, note_data, note_size,
12130 "CORE", NT_FILE, buf, bufsiz);
12131 }
12132
12133 static bfd_boolean
12134 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset,
12135 size_t align)
12136 {
12137 char *p;
12138
12139 /* NB: CORE PT_NOTE segments may have p_align values of 0 or 1.
12140 gABI specifies that PT_NOTE alignment should be aligned to 4
12141 bytes for 32-bit objects and to 8 bytes for 64-bit objects. If
12142 align is less than 4, we use 4 byte alignment. */
12143 if (align < 4)
12144 align = 4;
12145 if (align != 4 && align != 8)
12146 return FALSE;
12147
12148 p = buf;
12149 while (p < buf + size)
12150 {
12151 Elf_External_Note *xnp = (Elf_External_Note *) p;
12152 Elf_Internal_Note in;
12153
12154 if (offsetof (Elf_External_Note, name) > buf - p + size)
12155 return FALSE;
12156
12157 in.type = H_GET_32 (abfd, xnp->type);
12158
12159 in.namesz = H_GET_32 (abfd, xnp->namesz);
12160 in.namedata = xnp->name;
12161 if (in.namesz > buf - in.namedata + size)
12162 return FALSE;
12163
12164 in.descsz = H_GET_32 (abfd, xnp->descsz);
12165 in.descdata = p + ELF_NOTE_DESC_OFFSET (in.namesz, align);
12166 in.descpos = offset + (in.descdata - buf);
12167 if (in.descsz != 0
12168 && (in.descdata >= buf + size
12169 || in.descsz > buf - in.descdata + size))
12170 return FALSE;
12171
12172 switch (bfd_get_format (abfd))
12173 {
12174 default:
12175 return TRUE;
12176
12177 case bfd_core:
12178 {
12179 #define GROKER_ELEMENT(S,F) {S, sizeof (S) - 1, F}
12180 struct
12181 {
12182 const char * string;
12183 size_t len;
12184 bfd_boolean (* func)(bfd *, Elf_Internal_Note *);
12185 }
12186 grokers[] =
12187 {
12188 GROKER_ELEMENT ("", elfcore_grok_note),
12189 GROKER_ELEMENT ("FreeBSD", elfcore_grok_freebsd_note),
12190 GROKER_ELEMENT ("NetBSD-CORE", elfcore_grok_netbsd_note),
12191 GROKER_ELEMENT ( "OpenBSD", elfcore_grok_openbsd_note),
12192 GROKER_ELEMENT ("QNX", elfcore_grok_nto_note),
12193 GROKER_ELEMENT ("SPU/", elfcore_grok_spu_note),
12194 GROKER_ELEMENT ("GNU", elfobj_grok_gnu_note)
12195 };
12196 #undef GROKER_ELEMENT
12197 int i;
12198
12199 for (i = ARRAY_SIZE (grokers); i--;)
12200 {
12201 if (in.namesz >= grokers[i].len
12202 && strncmp (in.namedata, grokers[i].string,
12203 grokers[i].len) == 0)
12204 {
12205 if (! grokers[i].func (abfd, & in))
12206 return FALSE;
12207 break;
12208 }
12209 }
12210 break;
12211 }
12212
12213 case bfd_object:
12214 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
12215 {
12216 if (! elfobj_grok_gnu_note (abfd, &in))
12217 return FALSE;
12218 }
12219 else if (in.namesz == sizeof "stapsdt"
12220 && strcmp (in.namedata, "stapsdt") == 0)
12221 {
12222 if (! elfobj_grok_stapsdt_note (abfd, &in))
12223 return FALSE;
12224 }
12225 break;
12226 }
12227
12228 p += ELF_NOTE_NEXT_OFFSET (in.namesz, in.descsz, align);
12229 }
12230
12231 return TRUE;
12232 }
12233
12234 bfd_boolean
12235 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size,
12236 size_t align)
12237 {
12238 char *buf;
12239
12240 if (size == 0 || (size + 1) == 0)
12241 return TRUE;
12242
12243 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
12244 return FALSE;
12245
12246 buf = (char *) _bfd_malloc_and_read (abfd, size + 1, size);
12247 if (buf == NULL)
12248 return FALSE;
12249
12250 /* PR 17512: file: ec08f814
12251 0-termintate the buffer so that string searches will not overflow. */
12252 buf[size] = 0;
12253
12254 if (!elf_parse_notes (abfd, buf, size, offset, align))
12255 {
12256 free (buf);
12257 return FALSE;
12258 }
12259
12260 free (buf);
12261 return TRUE;
12262 }
12263 \f
12264 /* Providing external access to the ELF program header table. */
12265
12266 /* Return an upper bound on the number of bytes required to store a
12267 copy of ABFD's program header table entries. Return -1 if an error
12268 occurs; bfd_get_error will return an appropriate code. */
12269
12270 long
12271 bfd_get_elf_phdr_upper_bound (bfd *abfd)
12272 {
12273 if (abfd->xvec->flavour != bfd_target_elf_flavour)
12274 {
12275 bfd_set_error (bfd_error_wrong_format);
12276 return -1;
12277 }
12278
12279 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
12280 }
12281
12282 /* Copy ABFD's program header table entries to *PHDRS. The entries
12283 will be stored as an array of Elf_Internal_Phdr structures, as
12284 defined in include/elf/internal.h. To find out how large the
12285 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
12286
12287 Return the number of program header table entries read, or -1 if an
12288 error occurs; bfd_get_error will return an appropriate code. */
12289
12290 int
12291 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
12292 {
12293 int num_phdrs;
12294
12295 if (abfd->xvec->flavour != bfd_target_elf_flavour)
12296 {
12297 bfd_set_error (bfd_error_wrong_format);
12298 return -1;
12299 }
12300
12301 num_phdrs = elf_elfheader (abfd)->e_phnum;
12302 if (num_phdrs != 0)
12303 memcpy (phdrs, elf_tdata (abfd)->phdr,
12304 num_phdrs * sizeof (Elf_Internal_Phdr));
12305
12306 return num_phdrs;
12307 }
12308
12309 enum elf_reloc_type_class
12310 _bfd_elf_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
12311 const asection *rel_sec ATTRIBUTE_UNUSED,
12312 const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
12313 {
12314 return reloc_class_normal;
12315 }
12316
12317 /* For RELA architectures, return the relocation value for a
12318 relocation against a local symbol. */
12319
12320 bfd_vma
12321 _bfd_elf_rela_local_sym (bfd *abfd,
12322 Elf_Internal_Sym *sym,
12323 asection **psec,
12324 Elf_Internal_Rela *rel)
12325 {
12326 asection *sec = *psec;
12327 bfd_vma relocation;
12328
12329 relocation = (sec->output_section->vma
12330 + sec->output_offset
12331 + sym->st_value);
12332 if ((sec->flags & SEC_MERGE)
12333 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
12334 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
12335 {
12336 rel->r_addend =
12337 _bfd_merged_section_offset (abfd, psec,
12338 elf_section_data (sec)->sec_info,
12339 sym->st_value + rel->r_addend);
12340 if (sec != *psec)
12341 {
12342 /* If we have changed the section, and our original section is
12343 marked with SEC_EXCLUDE, it means that the original
12344 SEC_MERGE section has been completely subsumed in some
12345 other SEC_MERGE section. In this case, we need to leave
12346 some info around for --emit-relocs. */
12347 if ((sec->flags & SEC_EXCLUDE) != 0)
12348 sec->kept_section = *psec;
12349 sec = *psec;
12350 }
12351 rel->r_addend -= relocation;
12352 rel->r_addend += sec->output_section->vma + sec->output_offset;
12353 }
12354 return relocation;
12355 }
12356
12357 bfd_vma
12358 _bfd_elf_rel_local_sym (bfd *abfd,
12359 Elf_Internal_Sym *sym,
12360 asection **psec,
12361 bfd_vma addend)
12362 {
12363 asection *sec = *psec;
12364
12365 if (sec->sec_info_type != SEC_INFO_TYPE_MERGE)
12366 return sym->st_value + addend;
12367
12368 return _bfd_merged_section_offset (abfd, psec,
12369 elf_section_data (sec)->sec_info,
12370 sym->st_value + addend);
12371 }
12372
12373 /* Adjust an address within a section. Given OFFSET within SEC, return
12374 the new offset within the section, based upon changes made to the
12375 section. Returns -1 if the offset is now invalid.
12376 The offset (in abnd out) is in target sized bytes, however big a
12377 byte may be. */
12378
12379 bfd_vma
12380 _bfd_elf_section_offset (bfd *abfd,
12381 struct bfd_link_info *info,
12382 asection *sec,
12383 bfd_vma offset)
12384 {
12385 switch (sec->sec_info_type)
12386 {
12387 case SEC_INFO_TYPE_STABS:
12388 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
12389 offset);
12390 case SEC_INFO_TYPE_EH_FRAME:
12391 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
12392
12393 default:
12394 if ((sec->flags & SEC_ELF_REVERSE_COPY) != 0)
12395 {
12396 /* Reverse the offset. */
12397 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12398 bfd_size_type address_size = bed->s->arch_size / 8;
12399
12400 /* address_size and sec->size are in octets. Convert
12401 to bytes before subtracting the original offset. */
12402 offset = ((sec->size - address_size)
12403 / bfd_octets_per_byte (abfd, sec) - offset);
12404 }
12405 return offset;
12406 }
12407 }
12408 \f
12409 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
12410 reconstruct an ELF file by reading the segments out of remote memory
12411 based on the ELF file header at EHDR_VMA and the ELF program headers it
12412 points to. If not null, *LOADBASEP is filled in with the difference
12413 between the VMAs from which the segments were read, and the VMAs the
12414 file headers (and hence BFD's idea of each section's VMA) put them at.
12415
12416 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
12417 remote memory at target address VMA into the local buffer at MYADDR; it
12418 should return zero on success or an `errno' code on failure. TEMPL must
12419 be a BFD for an ELF target with the word size and byte order found in
12420 the remote memory. */
12421
12422 bfd *
12423 bfd_elf_bfd_from_remote_memory
12424 (bfd *templ,
12425 bfd_vma ehdr_vma,
12426 bfd_size_type size,
12427 bfd_vma *loadbasep,
12428 int (*target_read_memory) (bfd_vma, bfd_byte *, bfd_size_type))
12429 {
12430 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
12431 (templ, ehdr_vma, size, loadbasep, target_read_memory);
12432 }
12433 \f
12434 long
12435 _bfd_elf_get_synthetic_symtab (bfd *abfd,
12436 long symcount ATTRIBUTE_UNUSED,
12437 asymbol **syms ATTRIBUTE_UNUSED,
12438 long dynsymcount,
12439 asymbol **dynsyms,
12440 asymbol **ret)
12441 {
12442 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12443 asection *relplt;
12444 asymbol *s;
12445 const char *relplt_name;
12446 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
12447 arelent *p;
12448 long count, i, n;
12449 size_t size;
12450 Elf_Internal_Shdr *hdr;
12451 char *names;
12452 asection *plt;
12453
12454 *ret = NULL;
12455
12456 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
12457 return 0;
12458
12459 if (dynsymcount <= 0)
12460 return 0;
12461
12462 if (!bed->plt_sym_val)
12463 return 0;
12464
12465 relplt_name = bed->relplt_name;
12466 if (relplt_name == NULL)
12467 relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt";
12468 relplt = bfd_get_section_by_name (abfd, relplt_name);
12469 if (relplt == NULL)
12470 return 0;
12471
12472 hdr = &elf_section_data (relplt)->this_hdr;
12473 if (hdr->sh_link != elf_dynsymtab (abfd)
12474 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
12475 return 0;
12476
12477 plt = bfd_get_section_by_name (abfd, ".plt");
12478 if (plt == NULL)
12479 return 0;
12480
12481 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
12482 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
12483 return -1;
12484
12485 count = relplt->size / hdr->sh_entsize;
12486 size = count * sizeof (asymbol);
12487 p = relplt->relocation;
12488 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
12489 {
12490 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
12491 if (p->addend != 0)
12492 {
12493 #ifdef BFD64
12494 size += sizeof ("+0x") - 1 + 8 + 8 * (bed->s->elfclass == ELFCLASS64);
12495 #else
12496 size += sizeof ("+0x") - 1 + 8;
12497 #endif
12498 }
12499 }
12500
12501 s = *ret = (asymbol *) bfd_malloc (size);
12502 if (s == NULL)
12503 return -1;
12504
12505 names = (char *) (s + count);
12506 p = relplt->relocation;
12507 n = 0;
12508 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
12509 {
12510 size_t len;
12511 bfd_vma addr;
12512
12513 addr = bed->plt_sym_val (i, plt, p);
12514 if (addr == (bfd_vma) -1)
12515 continue;
12516
12517 *s = **p->sym_ptr_ptr;
12518 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
12519 we are defining a symbol, ensure one of them is set. */
12520 if ((s->flags & BSF_LOCAL) == 0)
12521 s->flags |= BSF_GLOBAL;
12522 s->flags |= BSF_SYNTHETIC;
12523 s->section = plt;
12524 s->value = addr - plt->vma;
12525 s->name = names;
12526 s->udata.p = NULL;
12527 len = strlen ((*p->sym_ptr_ptr)->name);
12528 memcpy (names, (*p->sym_ptr_ptr)->name, len);
12529 names += len;
12530 if (p->addend != 0)
12531 {
12532 char buf[30], *a;
12533
12534 memcpy (names, "+0x", sizeof ("+0x") - 1);
12535 names += sizeof ("+0x") - 1;
12536 bfd_sprintf_vma (abfd, buf, p->addend);
12537 for (a = buf; *a == '0'; ++a)
12538 ;
12539 len = strlen (a);
12540 memcpy (names, a, len);
12541 names += len;
12542 }
12543 memcpy (names, "@plt", sizeof ("@plt"));
12544 names += sizeof ("@plt");
12545 ++s, ++n;
12546 }
12547
12548 return n;
12549 }
12550
12551 /* It is only used by x86-64 so far.
12552 ??? This repeats *COM* id of zero. sec->id is supposed to be unique,
12553 but current usage would allow all of _bfd_std_section to be zero. */
12554 static const asymbol lcomm_sym
12555 = GLOBAL_SYM_INIT ("LARGE_COMMON", &_bfd_elf_large_com_section);
12556 asection _bfd_elf_large_com_section
12557 = BFD_FAKE_SECTION (_bfd_elf_large_com_section, &lcomm_sym,
12558 "LARGE_COMMON", 0, SEC_IS_COMMON);
12559
12560 bfd_boolean
12561 _bfd_elf_final_write_processing (bfd *abfd)
12562 {
12563 Elf_Internal_Ehdr *i_ehdrp; /* ELF file header, internal form. */
12564
12565 i_ehdrp = elf_elfheader (abfd);
12566
12567 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE)
12568 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
12569
12570 /* Set the osabi field to ELFOSABI_GNU if the binary contains
12571 SHF_GNU_MBIND or SHF_GNU_RETAIN sections or symbols of STT_GNU_IFUNC type
12572 or STB_GNU_UNIQUE binding. */
12573 if (elf_tdata (abfd)->has_gnu_osabi != 0)
12574 {
12575 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE)
12576 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_GNU;
12577 else if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_GNU
12578 && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_FREEBSD)
12579 {
12580 if (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_mbind)
12581 _bfd_error_handler (_("GNU_MBIND section is supported only by GNU "
12582 "and FreeBSD targets"));
12583 if (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_ifunc)
12584 _bfd_error_handler (_("symbol type STT_GNU_IFUNC is supported "
12585 "only by GNU and FreeBSD targets"));
12586 if (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_unique)
12587 _bfd_error_handler (_("symbol binding STB_GNU_UNIQUE is supported "
12588 "only by GNU and FreeBSD targets"));
12589 if (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_retain)
12590 _bfd_error_handler (_("GNU_RETAIN section is supported "
12591 "only by GNU and FreeBSD targets"));
12592 bfd_set_error (bfd_error_sorry);
12593 return FALSE;
12594 }
12595 }
12596 return TRUE;
12597 }
12598
12599
12600 /* Return TRUE for ELF symbol types that represent functions.
12601 This is the default version of this function, which is sufficient for
12602 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */
12603
12604 bfd_boolean
12605 _bfd_elf_is_function_type (unsigned int type)
12606 {
12607 return (type == STT_FUNC
12608 || type == STT_GNU_IFUNC);
12609 }
12610
12611 /* If the ELF symbol SYM might be a function in SEC, return the
12612 function size and set *CODE_OFF to the function's entry point,
12613 otherwise return zero. */
12614
12615 bfd_size_type
12616 _bfd_elf_maybe_function_sym (const asymbol *sym, asection *sec,
12617 bfd_vma *code_off)
12618 {
12619 bfd_size_type size;
12620
12621 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
12622 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0
12623 || sym->section != sec)
12624 return 0;
12625
12626 *code_off = sym->value;
12627 size = 0;
12628 if (!(sym->flags & BSF_SYNTHETIC))
12629 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
12630 if (size == 0)
12631 size = 1;
12632 return size;
12633 }
12634
12635 /* Set to non-zero to enable some debug messages. */
12636 #define DEBUG_SECONDARY_RELOCS 0
12637
12638 /* An internal-to-the-bfd-library only section type
12639 used to indicate a cached secondary reloc section. */
12640 #define SHT_SECONDARY_RELOC (SHT_LOOS + SHT_RELA)
12641
12642 /* Create a BFD section to hold a secondary reloc section. */
12643
12644 bfd_boolean
12645 _bfd_elf_init_secondary_reloc_section (bfd * abfd,
12646 Elf_Internal_Shdr *hdr,
12647 const char * name,
12648 unsigned int shindex)
12649 {
12650 /* We only support RELA secondary relocs. */
12651 if (hdr->sh_type != SHT_RELA)
12652 return FALSE;
12653
12654 #if DEBUG_SECONDARY_RELOCS
12655 fprintf (stderr, "secondary reloc section %s encountered\n", name);
12656 #endif
12657 hdr->sh_type = SHT_SECONDARY_RELOC;
12658 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
12659 }
12660
12661 /* Read in any secondary relocs associated with SEC. */
12662
12663 bfd_boolean
12664 _bfd_elf_slurp_secondary_reloc_section (bfd * abfd,
12665 asection * sec,
12666 asymbol ** symbols,
12667 bfd_boolean dynamic)
12668 {
12669 const struct elf_backend_data * const ebd = get_elf_backend_data (abfd);
12670 asection * relsec;
12671 bfd_boolean result = TRUE;
12672 bfd_vma (*r_sym) (bfd_vma);
12673
12674 #if BFD_DEFAULT_TARGET_SIZE > 32
12675 if (bfd_arch_bits_per_address (abfd) != 32)
12676 r_sym = elf64_r_sym;
12677 else
12678 #endif
12679 r_sym = elf32_r_sym;
12680
12681 /* Discover if there are any secondary reloc sections
12682 associated with SEC. */
12683 for (relsec = abfd->sections; relsec != NULL; relsec = relsec->next)
12684 {
12685 Elf_Internal_Shdr * hdr = & elf_section_data (relsec)->this_hdr;
12686
12687 if (hdr->sh_type == SHT_SECONDARY_RELOC
12688 && hdr->sh_info == (unsigned) elf_section_data (sec)->this_idx
12689 && (hdr->sh_entsize == ebd->s->sizeof_rel
12690 || hdr->sh_entsize == ebd->s->sizeof_rela))
12691 {
12692 bfd_byte * native_relocs;
12693 bfd_byte * native_reloc;
12694 arelent * internal_relocs;
12695 arelent * internal_reloc;
12696 unsigned int i;
12697 unsigned int entsize;
12698 unsigned int symcount;
12699 unsigned int reloc_count;
12700 size_t amt;
12701
12702 if (ebd->elf_info_to_howto == NULL)
12703 return FALSE;
12704
12705 #if DEBUG_SECONDARY_RELOCS
12706 fprintf (stderr, "read secondary relocs for %s from %s\n",
12707 sec->name, relsec->name);
12708 #endif
12709 entsize = hdr->sh_entsize;
12710
12711 native_relocs = bfd_malloc (hdr->sh_size);
12712 if (native_relocs == NULL)
12713 {
12714 result = FALSE;
12715 continue;
12716 }
12717
12718 reloc_count = NUM_SHDR_ENTRIES (hdr);
12719 if (_bfd_mul_overflow (reloc_count, sizeof (arelent), & amt))
12720 {
12721 free (native_relocs);
12722 bfd_set_error (bfd_error_file_too_big);
12723 result = FALSE;
12724 continue;
12725 }
12726
12727 internal_relocs = (arelent *) bfd_alloc (abfd, amt);
12728 if (internal_relocs == NULL)
12729 {
12730 free (native_relocs);
12731 result = FALSE;
12732 continue;
12733 }
12734
12735 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
12736 || (bfd_bread (native_relocs, hdr->sh_size, abfd)
12737 != hdr->sh_size))
12738 {
12739 free (native_relocs);
12740 /* The internal_relocs will be freed when
12741 the memory for the bfd is released. */
12742 result = FALSE;
12743 continue;
12744 }
12745
12746 if (dynamic)
12747 symcount = bfd_get_dynamic_symcount (abfd);
12748 else
12749 symcount = bfd_get_symcount (abfd);
12750
12751 for (i = 0, internal_reloc = internal_relocs,
12752 native_reloc = native_relocs;
12753 i < reloc_count;
12754 i++, internal_reloc++, native_reloc += entsize)
12755 {
12756 bfd_boolean res;
12757 Elf_Internal_Rela rela;
12758
12759 if (entsize == ebd->s->sizeof_rel)
12760 ebd->s->swap_reloc_in (abfd, native_reloc, & rela);
12761 else /* entsize == ebd->s->sizeof_rela */
12762 ebd->s->swap_reloca_in (abfd, native_reloc, & rela);
12763
12764 /* The address of an ELF reloc is section relative for an object
12765 file, and absolute for an executable file or shared library.
12766 The address of a normal BFD reloc is always section relative,
12767 and the address of a dynamic reloc is absolute.. */
12768 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
12769 internal_reloc->address = rela.r_offset;
12770 else
12771 internal_reloc->address = rela.r_offset - sec->vma;
12772
12773 if (r_sym (rela.r_info) == STN_UNDEF)
12774 {
12775 /* FIXME: This and the error case below mean that we
12776 have a symbol on relocs that is not elf_symbol_type. */
12777 internal_reloc->sym_ptr_ptr =
12778 bfd_abs_section_ptr->symbol_ptr_ptr;
12779 }
12780 else if (r_sym (rela.r_info) > symcount)
12781 {
12782 _bfd_error_handler
12783 /* xgettext:c-format */
12784 (_("%pB(%pA): relocation %d has invalid symbol index %ld"),
12785 abfd, sec, i, (long) r_sym (rela.r_info));
12786 bfd_set_error (bfd_error_bad_value);
12787 internal_reloc->sym_ptr_ptr =
12788 bfd_abs_section_ptr->symbol_ptr_ptr;
12789 result = FALSE;
12790 }
12791 else
12792 {
12793 asymbol **ps;
12794
12795 ps = symbols + r_sym (rela.r_info) - 1;
12796 internal_reloc->sym_ptr_ptr = ps;
12797 /* Make sure that this symbol is not removed by strip. */
12798 (*ps)->flags |= BSF_KEEP;
12799 }
12800
12801 internal_reloc->addend = rela.r_addend;
12802
12803 res = ebd->elf_info_to_howto (abfd, internal_reloc, & rela);
12804 if (! res || internal_reloc->howto == NULL)
12805 {
12806 #if DEBUG_SECONDARY_RELOCS
12807 fprintf (stderr, "there is no howto associated with reloc %lx\n",
12808 rela.r_info);
12809 #endif
12810 result = FALSE;
12811 }
12812 }
12813
12814 free (native_relocs);
12815 /* Store the internal relocs. */
12816 elf_section_data (relsec)->sec_info = internal_relocs;
12817 }
12818 }
12819
12820 return result;
12821 }
12822
12823 /* Set the ELF section header fields of an output secondary reloc section. */
12824
12825 bfd_boolean
12826 _bfd_elf_copy_special_section_fields (const bfd * ibfd ATTRIBUTE_UNUSED,
12827 bfd * obfd ATTRIBUTE_UNUSED,
12828 const Elf_Internal_Shdr * isection,
12829 Elf_Internal_Shdr * osection)
12830 {
12831 asection * isec;
12832 asection * osec;
12833 struct bfd_elf_section_data * esd;
12834
12835 if (isection == NULL)
12836 return FALSE;
12837
12838 if (isection->sh_type != SHT_SECONDARY_RELOC)
12839 return TRUE;
12840
12841 isec = isection->bfd_section;
12842 if (isec == NULL)
12843 return FALSE;
12844
12845 osec = osection->bfd_section;
12846 if (osec == NULL)
12847 return FALSE;
12848
12849 esd = elf_section_data (osec);
12850 BFD_ASSERT (esd->sec_info == NULL);
12851 esd->sec_info = elf_section_data (isec)->sec_info;
12852 osection->sh_type = SHT_RELA;
12853 osection->sh_link = elf_onesymtab (obfd);
12854 if (osection->sh_link == 0)
12855 {
12856 /* There is no symbol table - we are hosed... */
12857 _bfd_error_handler
12858 /* xgettext:c-format */
12859 (_("%pB(%pA): link section cannot be set because the output file does not have a symbol table"),
12860 obfd, osec);
12861 bfd_set_error (bfd_error_bad_value);
12862 return FALSE;
12863 }
12864
12865 /* Find the output section that corresponds to the isection's sh_info link. */
12866 if (isection->sh_info == 0
12867 || isection->sh_info >= elf_numsections (ibfd))
12868 {
12869 _bfd_error_handler
12870 /* xgettext:c-format */
12871 (_("%pB(%pA): info section index is invalid"),
12872 obfd, osec);
12873 bfd_set_error (bfd_error_bad_value);
12874 return FALSE;
12875 }
12876
12877 isection = elf_elfsections (ibfd)[isection->sh_info];
12878
12879 if (isection == NULL
12880 || isection->bfd_section == NULL
12881 || isection->bfd_section->output_section == NULL)
12882 {
12883 _bfd_error_handler
12884 /* xgettext:c-format */
12885 (_("%pB(%pA): info section index cannot be set because the section is not in the output"),
12886 obfd, osec);
12887 bfd_set_error (bfd_error_bad_value);
12888 return FALSE;
12889 }
12890
12891 esd = elf_section_data (isection->bfd_section->output_section);
12892 BFD_ASSERT (esd != NULL);
12893 osection->sh_info = esd->this_idx;
12894 esd->has_secondary_relocs = TRUE;
12895 #if DEBUG_SECONDARY_RELOCS
12896 fprintf (stderr, "update header of %s, sh_link = %u, sh_info = %u\n",
12897 osec->name, osection->sh_link, osection->sh_info);
12898 fprintf (stderr, "mark section %s as having secondary relocs\n",
12899 bfd_section_name (isection->bfd_section->output_section));
12900 #endif
12901
12902 return TRUE;
12903 }
12904
12905 /* Write out a secondary reloc section.
12906
12907 FIXME: Currently this function can result in a serious performance penalty
12908 for files with secondary relocs and lots of sections. The proper way to
12909 fix this is for _bfd_elf_copy_special_section_fields() to chain secondary
12910 relocs together and then to have this function just walk that chain. */
12911
12912 bfd_boolean
12913 _bfd_elf_write_secondary_reloc_section (bfd *abfd, asection *sec)
12914 {
12915 const struct elf_backend_data * const ebd = get_elf_backend_data (abfd);
12916 bfd_vma addr_offset;
12917 asection * relsec;
12918 bfd_vma (*r_info) (bfd_vma, bfd_vma);
12919 bfd_boolean result = TRUE;
12920
12921 if (sec == NULL)
12922 return FALSE;
12923
12924 #if BFD_DEFAULT_TARGET_SIZE > 32
12925 if (bfd_arch_bits_per_address (abfd) != 32)
12926 r_info = elf64_r_info;
12927 else
12928 #endif
12929 r_info = elf32_r_info;
12930
12931 /* The address of an ELF reloc is section relative for an object
12932 file, and absolute for an executable file or shared library.
12933 The address of a BFD reloc is always section relative. */
12934 addr_offset = 0;
12935 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
12936 addr_offset = sec->vma;
12937
12938 /* Discover if there are any secondary reloc sections
12939 associated with SEC. */
12940 for (relsec = abfd->sections; relsec != NULL; relsec = relsec->next)
12941 {
12942 const struct bfd_elf_section_data * const esd = elf_section_data (relsec);
12943 Elf_Internal_Shdr * const hdr = (Elf_Internal_Shdr *) & esd->this_hdr;
12944
12945 if (hdr->sh_type == SHT_RELA
12946 && hdr->sh_info == (unsigned) elf_section_data (sec)->this_idx)
12947 {
12948 asymbol * last_sym;
12949 int last_sym_idx;
12950 unsigned int reloc_count;
12951 unsigned int idx;
12952 unsigned int entsize;
12953 arelent * src_irel;
12954 bfd_byte * dst_rela;
12955
12956 if (hdr->contents != NULL)
12957 {
12958 _bfd_error_handler
12959 /* xgettext:c-format */
12960 (_("%pB(%pA): error: secondary reloc section processed twice"),
12961 abfd, relsec);
12962 bfd_set_error (bfd_error_bad_value);
12963 result = FALSE;
12964 continue;
12965 }
12966
12967 entsize = hdr->sh_entsize;
12968 if (entsize == 0)
12969 {
12970 _bfd_error_handler
12971 /* xgettext:c-format */
12972 (_("%pB(%pA): error: secondary reloc section has zero sized entries"),
12973 abfd, relsec);
12974 bfd_set_error (bfd_error_bad_value);
12975 result = FALSE;
12976 continue;
12977 }
12978 else if (entsize != ebd->s->sizeof_rel
12979 && entsize != ebd->s->sizeof_rela)
12980 {
12981 _bfd_error_handler
12982 /* xgettext:c-format */
12983 (_("%pB(%pA): error: secondary reloc section has non-standard sized entries"),
12984 abfd, relsec);
12985 bfd_set_error (bfd_error_bad_value);
12986 result = FALSE;
12987 continue;
12988 }
12989
12990 reloc_count = hdr->sh_size / entsize;
12991 if (reloc_count <= 0)
12992 {
12993 _bfd_error_handler
12994 /* xgettext:c-format */
12995 (_("%pB(%pA): error: secondary reloc section is empty!"),
12996 abfd, relsec);
12997 bfd_set_error (bfd_error_bad_value);
12998 result = FALSE;
12999 continue;
13000 }
13001
13002 hdr->contents = bfd_alloc (abfd, hdr->sh_size);
13003 if (hdr->contents == NULL)
13004 continue;
13005
13006 #if DEBUG_SECONDARY_RELOCS
13007 fprintf (stderr, "write %u secondary relocs for %s from %s\n",
13008 reloc_count, sec->name, relsec->name);
13009 #endif
13010 last_sym = NULL;
13011 last_sym_idx = 0;
13012 dst_rela = hdr->contents;
13013 src_irel = (arelent *) esd->sec_info;
13014 if (src_irel == NULL)
13015 {
13016 _bfd_error_handler
13017 /* xgettext:c-format */
13018 (_("%pB(%pA): error: internal relocs missing for secondary reloc section"),
13019 abfd, relsec);
13020 bfd_set_error (bfd_error_bad_value);
13021 result = FALSE;
13022 continue;
13023 }
13024
13025 for (idx = 0; idx < reloc_count; idx++, dst_rela += entsize)
13026 {
13027 Elf_Internal_Rela src_rela;
13028 arelent *ptr;
13029 asymbol *sym;
13030 int n;
13031
13032 ptr = src_irel + idx;
13033 if (ptr == NULL)
13034 {
13035 _bfd_error_handler
13036 /* xgettext:c-format */
13037 (_("%pB(%pA): error: reloc table entry %u is empty"),
13038 abfd, relsec, idx);
13039 bfd_set_error (bfd_error_bad_value);
13040 result = FALSE;
13041 break;
13042 }
13043
13044 if (ptr->sym_ptr_ptr == NULL)
13045 {
13046 /* FIXME: Is this an error ? */
13047 n = 0;
13048 }
13049 else
13050 {
13051 sym = *ptr->sym_ptr_ptr;
13052
13053 if (sym == last_sym)
13054 n = last_sym_idx;
13055 else
13056 {
13057 n = _bfd_elf_symbol_from_bfd_symbol (abfd, & sym);
13058 if (n < 0)
13059 {
13060 _bfd_error_handler
13061 /* xgettext:c-format */
13062 (_("%pB(%pA): error: secondary reloc %u references a missing symbol"),
13063 abfd, relsec, idx);
13064 bfd_set_error (bfd_error_bad_value);
13065 result = FALSE;
13066 n = 0;
13067 }
13068
13069 last_sym = sym;
13070 last_sym_idx = n;
13071 }
13072
13073 if (sym->the_bfd != NULL
13074 && sym->the_bfd->xvec != abfd->xvec
13075 && ! _bfd_elf_validate_reloc (abfd, ptr))
13076 {
13077 _bfd_error_handler
13078 /* xgettext:c-format */
13079 (_("%pB(%pA): error: secondary reloc %u references a deleted symbol"),
13080 abfd, relsec, idx);
13081 bfd_set_error (bfd_error_bad_value);
13082 result = FALSE;
13083 n = 0;
13084 }
13085 }
13086
13087 src_rela.r_offset = ptr->address + addr_offset;
13088 if (ptr->howto == NULL)
13089 {
13090 _bfd_error_handler
13091 /* xgettext:c-format */
13092 (_("%pB(%pA): error: secondary reloc %u is of an unknown type"),
13093 abfd, relsec, idx);
13094 bfd_set_error (bfd_error_bad_value);
13095 result = FALSE;
13096 src_rela.r_info = r_info (0, 0);
13097 }
13098 else
13099 src_rela.r_info = r_info (n, ptr->howto->type);
13100 src_rela.r_addend = ptr->addend;
13101
13102 if (entsize == ebd->s->sizeof_rel)
13103 ebd->s->swap_reloc_out (abfd, &src_rela, dst_rela);
13104 else /* entsize == ebd->s->sizeof_rela */
13105 ebd->s->swap_reloca_out (abfd, &src_rela, dst_rela);
13106 }
13107 }
13108 }
13109
13110 return result;
13111 }