ELF: Support .noinit and .persistent sections
[binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright (C) 1993-2020 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22
23 /*
24 SECTION
25 ELF backends
26
27 BFD support for ELF formats is being worked on.
28 Currently, the best supported back ends are for sparc and i386
29 (running svr4 or Solaris 2).
30
31 Documentation of the internals of the support code still needs
32 to be written. The code is changing quickly enough that we
33 haven't bothered yet. */
34
35 /* For sparc64-cross-sparc32. */
36 #define _SYSCALL32
37 #include "sysdep.h"
38 #include <limits.h>
39 #include "bfd.h"
40 #include "bfdlink.h"
41 #include "libbfd.h"
42 #define ARCH_SIZE 0
43 #include "elf-bfd.h"
44 #include "libiberty.h"
45 #include "safe-ctype.h"
46 #include "elf-linux-core.h"
47
48 #ifdef CORE_HEADER
49 #include CORE_HEADER
50 #endif
51
52 static int elf_sort_sections (const void *, const void *);
53 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
54 static bfd_boolean swap_out_syms (bfd *, struct elf_strtab_hash **, int,
55 struct bfd_link_info *);
56 static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
57 file_ptr offset, size_t align);
58
59 /* Swap version information in and out. The version information is
60 currently size independent. If that ever changes, this code will
61 need to move into elfcode.h. */
62
63 /* Swap in a Verdef structure. */
64
65 void
66 _bfd_elf_swap_verdef_in (bfd *abfd,
67 const Elf_External_Verdef *src,
68 Elf_Internal_Verdef *dst)
69 {
70 dst->vd_version = H_GET_16 (abfd, src->vd_version);
71 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
72 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
73 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
74 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
75 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
76 dst->vd_next = H_GET_32 (abfd, src->vd_next);
77 }
78
79 /* Swap out a Verdef structure. */
80
81 void
82 _bfd_elf_swap_verdef_out (bfd *abfd,
83 const Elf_Internal_Verdef *src,
84 Elf_External_Verdef *dst)
85 {
86 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
87 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
88 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
89 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
90 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
91 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
92 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
93 }
94
95 /* Swap in a Verdaux structure. */
96
97 void
98 _bfd_elf_swap_verdaux_in (bfd *abfd,
99 const Elf_External_Verdaux *src,
100 Elf_Internal_Verdaux *dst)
101 {
102 dst->vda_name = H_GET_32 (abfd, src->vda_name);
103 dst->vda_next = H_GET_32 (abfd, src->vda_next);
104 }
105
106 /* Swap out a Verdaux structure. */
107
108 void
109 _bfd_elf_swap_verdaux_out (bfd *abfd,
110 const Elf_Internal_Verdaux *src,
111 Elf_External_Verdaux *dst)
112 {
113 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
114 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
115 }
116
117 /* Swap in a Verneed structure. */
118
119 void
120 _bfd_elf_swap_verneed_in (bfd *abfd,
121 const Elf_External_Verneed *src,
122 Elf_Internal_Verneed *dst)
123 {
124 dst->vn_version = H_GET_16 (abfd, src->vn_version);
125 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
126 dst->vn_file = H_GET_32 (abfd, src->vn_file);
127 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
128 dst->vn_next = H_GET_32 (abfd, src->vn_next);
129 }
130
131 /* Swap out a Verneed structure. */
132
133 void
134 _bfd_elf_swap_verneed_out (bfd *abfd,
135 const Elf_Internal_Verneed *src,
136 Elf_External_Verneed *dst)
137 {
138 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
139 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
140 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
141 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
142 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
143 }
144
145 /* Swap in a Vernaux structure. */
146
147 void
148 _bfd_elf_swap_vernaux_in (bfd *abfd,
149 const Elf_External_Vernaux *src,
150 Elf_Internal_Vernaux *dst)
151 {
152 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
153 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
154 dst->vna_other = H_GET_16 (abfd, src->vna_other);
155 dst->vna_name = H_GET_32 (abfd, src->vna_name);
156 dst->vna_next = H_GET_32 (abfd, src->vna_next);
157 }
158
159 /* Swap out a Vernaux structure. */
160
161 void
162 _bfd_elf_swap_vernaux_out (bfd *abfd,
163 const Elf_Internal_Vernaux *src,
164 Elf_External_Vernaux *dst)
165 {
166 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
167 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
168 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
169 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
170 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
171 }
172
173 /* Swap in a Versym structure. */
174
175 void
176 _bfd_elf_swap_versym_in (bfd *abfd,
177 const Elf_External_Versym *src,
178 Elf_Internal_Versym *dst)
179 {
180 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
181 }
182
183 /* Swap out a Versym structure. */
184
185 void
186 _bfd_elf_swap_versym_out (bfd *abfd,
187 const Elf_Internal_Versym *src,
188 Elf_External_Versym *dst)
189 {
190 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
191 }
192
193 /* Standard ELF hash function. Do not change this function; you will
194 cause invalid hash tables to be generated. */
195
196 unsigned long
197 bfd_elf_hash (const char *namearg)
198 {
199 const unsigned char *name = (const unsigned char *) namearg;
200 unsigned long h = 0;
201 unsigned long g;
202 int ch;
203
204 while ((ch = *name++) != '\0')
205 {
206 h = (h << 4) + ch;
207 if ((g = (h & 0xf0000000)) != 0)
208 {
209 h ^= g >> 24;
210 /* The ELF ABI says `h &= ~g', but this is equivalent in
211 this case and on some machines one insn instead of two. */
212 h ^= g;
213 }
214 }
215 return h & 0xffffffff;
216 }
217
218 /* DT_GNU_HASH hash function. Do not change this function; you will
219 cause invalid hash tables to be generated. */
220
221 unsigned long
222 bfd_elf_gnu_hash (const char *namearg)
223 {
224 const unsigned char *name = (const unsigned char *) namearg;
225 unsigned long h = 5381;
226 unsigned char ch;
227
228 while ((ch = *name++) != '\0')
229 h = (h << 5) + h + ch;
230 return h & 0xffffffff;
231 }
232
233 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
234 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
235 bfd_boolean
236 bfd_elf_allocate_object (bfd *abfd,
237 size_t object_size,
238 enum elf_target_id object_id)
239 {
240 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
241 abfd->tdata.any = bfd_zalloc (abfd, object_size);
242 if (abfd->tdata.any == NULL)
243 return FALSE;
244
245 elf_object_id (abfd) = object_id;
246 if (abfd->direction != read_direction)
247 {
248 struct output_elf_obj_tdata *o = bfd_zalloc (abfd, sizeof *o);
249 if (o == NULL)
250 return FALSE;
251 elf_tdata (abfd)->o = o;
252 elf_program_header_size (abfd) = (bfd_size_type) -1;
253 }
254 return TRUE;
255 }
256
257
258 bfd_boolean
259 bfd_elf_make_object (bfd *abfd)
260 {
261 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
262 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
263 bed->target_id);
264 }
265
266 bfd_boolean
267 bfd_elf_mkcorefile (bfd *abfd)
268 {
269 /* I think this can be done just like an object file. */
270 if (!abfd->xvec->_bfd_set_format[(int) bfd_object] (abfd))
271 return FALSE;
272 elf_tdata (abfd)->core = bfd_zalloc (abfd, sizeof (*elf_tdata (abfd)->core));
273 return elf_tdata (abfd)->core != NULL;
274 }
275
276 char *
277 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
278 {
279 Elf_Internal_Shdr **i_shdrp;
280 bfd_byte *shstrtab = NULL;
281 file_ptr offset;
282 bfd_size_type shstrtabsize;
283
284 i_shdrp = elf_elfsections (abfd);
285 if (i_shdrp == 0
286 || shindex >= elf_numsections (abfd)
287 || i_shdrp[shindex] == 0)
288 return NULL;
289
290 shstrtab = i_shdrp[shindex]->contents;
291 if (shstrtab == NULL)
292 {
293 /* No cached one, attempt to read, and cache what we read. */
294 offset = i_shdrp[shindex]->sh_offset;
295 shstrtabsize = i_shdrp[shindex]->sh_size;
296
297 /* Allocate and clear an extra byte at the end, to prevent crashes
298 in case the string table is not terminated. */
299 if (shstrtabsize + 1 <= 1
300 || bfd_seek (abfd, offset, SEEK_SET) != 0
301 || (shstrtab = _bfd_alloc_and_read (abfd, shstrtabsize + 1,
302 shstrtabsize)) == NULL)
303 {
304 /* Once we've failed to read it, make sure we don't keep
305 trying. Otherwise, we'll keep allocating space for
306 the string table over and over. */
307 i_shdrp[shindex]->sh_size = 0;
308 }
309 else
310 shstrtab[shstrtabsize] = '\0';
311 i_shdrp[shindex]->contents = shstrtab;
312 }
313 return (char *) shstrtab;
314 }
315
316 char *
317 bfd_elf_string_from_elf_section (bfd *abfd,
318 unsigned int shindex,
319 unsigned int strindex)
320 {
321 Elf_Internal_Shdr *hdr;
322
323 if (strindex == 0)
324 return "";
325
326 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
327 return NULL;
328
329 hdr = elf_elfsections (abfd)[shindex];
330
331 if (hdr->contents == NULL)
332 {
333 if (hdr->sh_type != SHT_STRTAB && hdr->sh_type < SHT_LOOS)
334 {
335 /* PR 17512: file: f057ec89. */
336 /* xgettext:c-format */
337 _bfd_error_handler (_("%pB: attempt to load strings from"
338 " a non-string section (number %d)"),
339 abfd, shindex);
340 return NULL;
341 }
342
343 if (bfd_elf_get_str_section (abfd, shindex) == NULL)
344 return NULL;
345 }
346 else
347 {
348 /* PR 24273: The string section's contents may have already
349 been loaded elsewhere, eg because a corrupt file has the
350 string section index in the ELF header pointing at a group
351 section. So be paranoid, and test that the last byte of
352 the section is zero. */
353 if (hdr->sh_size == 0 || hdr->contents[hdr->sh_size - 1] != 0)
354 return NULL;
355 }
356
357 if (strindex >= hdr->sh_size)
358 {
359 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
360 _bfd_error_handler
361 /* xgettext:c-format */
362 (_("%pB: invalid string offset %u >= %" PRIu64 " for section `%s'"),
363 abfd, strindex, (uint64_t) hdr->sh_size,
364 (shindex == shstrndx && strindex == hdr->sh_name
365 ? ".shstrtab"
366 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
367 return NULL;
368 }
369
370 return ((char *) hdr->contents) + strindex;
371 }
372
373 /* Read and convert symbols to internal format.
374 SYMCOUNT specifies the number of symbols to read, starting from
375 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
376 are non-NULL, they are used to store the internal symbols, external
377 symbols, and symbol section index extensions, respectively.
378 Returns a pointer to the internal symbol buffer (malloced if necessary)
379 or NULL if there were no symbols or some kind of problem. */
380
381 Elf_Internal_Sym *
382 bfd_elf_get_elf_syms (bfd *ibfd,
383 Elf_Internal_Shdr *symtab_hdr,
384 size_t symcount,
385 size_t symoffset,
386 Elf_Internal_Sym *intsym_buf,
387 void *extsym_buf,
388 Elf_External_Sym_Shndx *extshndx_buf)
389 {
390 Elf_Internal_Shdr *shndx_hdr;
391 void *alloc_ext;
392 const bfd_byte *esym;
393 Elf_External_Sym_Shndx *alloc_extshndx;
394 Elf_External_Sym_Shndx *shndx;
395 Elf_Internal_Sym *alloc_intsym;
396 Elf_Internal_Sym *isym;
397 Elf_Internal_Sym *isymend;
398 const struct elf_backend_data *bed;
399 size_t extsym_size;
400 size_t amt;
401 file_ptr pos;
402
403 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
404 abort ();
405
406 if (symcount == 0)
407 return intsym_buf;
408
409 /* Normal syms might have section extension entries. */
410 shndx_hdr = NULL;
411 if (elf_symtab_shndx_list (ibfd) != NULL)
412 {
413 elf_section_list * entry;
414 Elf_Internal_Shdr **sections = elf_elfsections (ibfd);
415
416 /* Find an index section that is linked to this symtab section. */
417 for (entry = elf_symtab_shndx_list (ibfd); entry != NULL; entry = entry->next)
418 {
419 /* PR 20063. */
420 if (entry->hdr.sh_link >= elf_numsections (ibfd))
421 continue;
422
423 if (sections[entry->hdr.sh_link] == symtab_hdr)
424 {
425 shndx_hdr = & entry->hdr;
426 break;
427 };
428 }
429
430 if (shndx_hdr == NULL)
431 {
432 if (symtab_hdr == & elf_symtab_hdr (ibfd))
433 /* Not really accurate, but this was how the old code used to work. */
434 shndx_hdr = & elf_symtab_shndx_list (ibfd)->hdr;
435 /* Otherwise we do nothing. The assumption is that
436 the index table will not be needed. */
437 }
438 }
439
440 /* Read the symbols. */
441 alloc_ext = NULL;
442 alloc_extshndx = NULL;
443 alloc_intsym = NULL;
444 bed = get_elf_backend_data (ibfd);
445 extsym_size = bed->s->sizeof_sym;
446 if (_bfd_mul_overflow (symcount, extsym_size, &amt))
447 {
448 bfd_set_error (bfd_error_file_too_big);
449 intsym_buf = NULL;
450 goto out;
451 }
452 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
453 if (extsym_buf == NULL)
454 {
455 alloc_ext = bfd_malloc (amt);
456 extsym_buf = alloc_ext;
457 }
458 if (extsym_buf == NULL
459 || bfd_seek (ibfd, pos, SEEK_SET) != 0
460 || bfd_bread (extsym_buf, amt, ibfd) != amt)
461 {
462 intsym_buf = NULL;
463 goto out;
464 }
465
466 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
467 extshndx_buf = NULL;
468 else
469 {
470 if (_bfd_mul_overflow (symcount, sizeof (Elf_External_Sym_Shndx), &amt))
471 {
472 bfd_set_error (bfd_error_file_too_big);
473 intsym_buf = NULL;
474 goto out;
475 }
476 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
477 if (extshndx_buf == NULL)
478 {
479 alloc_extshndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
480 extshndx_buf = alloc_extshndx;
481 }
482 if (extshndx_buf == NULL
483 || bfd_seek (ibfd, pos, SEEK_SET) != 0
484 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
485 {
486 intsym_buf = NULL;
487 goto out;
488 }
489 }
490
491 if (intsym_buf == NULL)
492 {
493 if (_bfd_mul_overflow (symcount, sizeof (Elf_Internal_Sym), &amt))
494 {
495 bfd_set_error (bfd_error_file_too_big);
496 goto out;
497 }
498 alloc_intsym = (Elf_Internal_Sym *) bfd_malloc (amt);
499 intsym_buf = alloc_intsym;
500 if (intsym_buf == NULL)
501 goto out;
502 }
503
504 /* Convert the symbols to internal form. */
505 isymend = intsym_buf + symcount;
506 for (esym = (const bfd_byte *) extsym_buf, isym = intsym_buf,
507 shndx = extshndx_buf;
508 isym < isymend;
509 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
510 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
511 {
512 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
513 /* xgettext:c-format */
514 _bfd_error_handler (_("%pB symbol number %lu references"
515 " nonexistent SHT_SYMTAB_SHNDX section"),
516 ibfd, (unsigned long) symoffset);
517 free (alloc_intsym);
518 intsym_buf = NULL;
519 goto out;
520 }
521
522 out:
523 free (alloc_ext);
524 free (alloc_extshndx);
525
526 return intsym_buf;
527 }
528
529 /* Look up a symbol name. */
530 const char *
531 bfd_elf_sym_name (bfd *abfd,
532 Elf_Internal_Shdr *symtab_hdr,
533 Elf_Internal_Sym *isym,
534 asection *sym_sec)
535 {
536 const char *name;
537 unsigned int iname = isym->st_name;
538 unsigned int shindex = symtab_hdr->sh_link;
539
540 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
541 /* Check for a bogus st_shndx to avoid crashing. */
542 && isym->st_shndx < elf_numsections (abfd))
543 {
544 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
545 shindex = elf_elfheader (abfd)->e_shstrndx;
546 }
547
548 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
549 if (name == NULL)
550 name = "(null)";
551 else if (sym_sec && *name == '\0')
552 name = bfd_section_name (sym_sec);
553
554 return name;
555 }
556
557 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
558 sections. The first element is the flags, the rest are section
559 pointers. */
560
561 typedef union elf_internal_group {
562 Elf_Internal_Shdr *shdr;
563 unsigned int flags;
564 } Elf_Internal_Group;
565
566 /* Return the name of the group signature symbol. Why isn't the
567 signature just a string? */
568
569 static const char *
570 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
571 {
572 Elf_Internal_Shdr *hdr;
573 unsigned char esym[sizeof (Elf64_External_Sym)];
574 Elf_External_Sym_Shndx eshndx;
575 Elf_Internal_Sym isym;
576
577 /* First we need to ensure the symbol table is available. Make sure
578 that it is a symbol table section. */
579 if (ghdr->sh_link >= elf_numsections (abfd))
580 return NULL;
581 hdr = elf_elfsections (abfd) [ghdr->sh_link];
582 if (hdr->sh_type != SHT_SYMTAB
583 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
584 return NULL;
585
586 /* Go read the symbol. */
587 hdr = &elf_tdata (abfd)->symtab_hdr;
588 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
589 &isym, esym, &eshndx) == NULL)
590 return NULL;
591
592 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
593 }
594
595 /* Set next_in_group list pointer, and group name for NEWSECT. */
596
597 static bfd_boolean
598 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
599 {
600 unsigned int num_group = elf_tdata (abfd)->num_group;
601
602 /* If num_group is zero, read in all SHT_GROUP sections. The count
603 is set to -1 if there are no SHT_GROUP sections. */
604 if (num_group == 0)
605 {
606 unsigned int i, shnum;
607
608 /* First count the number of groups. If we have a SHT_GROUP
609 section with just a flag word (ie. sh_size is 4), ignore it. */
610 shnum = elf_numsections (abfd);
611 num_group = 0;
612
613 #define IS_VALID_GROUP_SECTION_HEADER(shdr, minsize) \
614 ( (shdr)->sh_type == SHT_GROUP \
615 && (shdr)->sh_size >= minsize \
616 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
617 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
618
619 for (i = 0; i < shnum; i++)
620 {
621 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
622
623 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
624 num_group += 1;
625 }
626
627 if (num_group == 0)
628 {
629 num_group = (unsigned) -1;
630 elf_tdata (abfd)->num_group = num_group;
631 elf_tdata (abfd)->group_sect_ptr = NULL;
632 }
633 else
634 {
635 /* We keep a list of elf section headers for group sections,
636 so we can find them quickly. */
637 size_t amt;
638
639 elf_tdata (abfd)->num_group = num_group;
640 amt = num_group * sizeof (Elf_Internal_Shdr *);
641 elf_tdata (abfd)->group_sect_ptr
642 = (Elf_Internal_Shdr **) bfd_zalloc (abfd, amt);
643 if (elf_tdata (abfd)->group_sect_ptr == NULL)
644 return FALSE;
645 num_group = 0;
646
647 for (i = 0; i < shnum; i++)
648 {
649 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
650
651 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
652 {
653 unsigned char *src;
654 Elf_Internal_Group *dest;
655
656 /* Make sure the group section has a BFD section
657 attached to it. */
658 if (!bfd_section_from_shdr (abfd, i))
659 return FALSE;
660
661 /* Add to list of sections. */
662 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
663 num_group += 1;
664
665 /* Read the raw contents. */
666 BFD_ASSERT (sizeof (*dest) >= 4 && sizeof (*dest) % 4 == 0);
667 shdr->contents = NULL;
668 if (_bfd_mul_overflow (shdr->sh_size,
669 sizeof (*dest) / 4, &amt)
670 || bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
671 || !(shdr->contents
672 = _bfd_alloc_and_read (abfd, amt, shdr->sh_size)))
673 {
674 _bfd_error_handler
675 /* xgettext:c-format */
676 (_("%pB: invalid size field in group section"
677 " header: %#" PRIx64 ""),
678 abfd, (uint64_t) shdr->sh_size);
679 bfd_set_error (bfd_error_bad_value);
680 -- num_group;
681 continue;
682 }
683
684 /* Translate raw contents, a flag word followed by an
685 array of elf section indices all in target byte order,
686 to the flag word followed by an array of elf section
687 pointers. */
688 src = shdr->contents + shdr->sh_size;
689 dest = (Elf_Internal_Group *) (shdr->contents + amt);
690
691 while (1)
692 {
693 unsigned int idx;
694
695 src -= 4;
696 --dest;
697 idx = H_GET_32 (abfd, src);
698 if (src == shdr->contents)
699 {
700 dest->shdr = NULL;
701 dest->flags = idx;
702 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
703 shdr->bfd_section->flags
704 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
705 break;
706 }
707 if (idx < shnum)
708 {
709 dest->shdr = elf_elfsections (abfd)[idx];
710 /* PR binutils/23199: All sections in a
711 section group should be marked with
712 SHF_GROUP. But some tools generate
713 broken objects without SHF_GROUP. Fix
714 them up here. */
715 dest->shdr->sh_flags |= SHF_GROUP;
716 }
717 if (idx >= shnum
718 || dest->shdr->sh_type == SHT_GROUP)
719 {
720 _bfd_error_handler
721 (_("%pB: invalid entry in SHT_GROUP section [%u]"),
722 abfd, i);
723 dest->shdr = NULL;
724 }
725 }
726 }
727 }
728
729 /* PR 17510: Corrupt binaries might contain invalid groups. */
730 if (num_group != (unsigned) elf_tdata (abfd)->num_group)
731 {
732 elf_tdata (abfd)->num_group = num_group;
733
734 /* If all groups are invalid then fail. */
735 if (num_group == 0)
736 {
737 elf_tdata (abfd)->group_sect_ptr = NULL;
738 elf_tdata (abfd)->num_group = num_group = -1;
739 _bfd_error_handler
740 (_("%pB: no valid group sections found"), abfd);
741 bfd_set_error (bfd_error_bad_value);
742 }
743 }
744 }
745 }
746
747 if (num_group != (unsigned) -1)
748 {
749 unsigned int search_offset = elf_tdata (abfd)->group_search_offset;
750 unsigned int j;
751
752 for (j = 0; j < num_group; j++)
753 {
754 /* Begin search from previous found group. */
755 unsigned i = (j + search_offset) % num_group;
756
757 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
758 Elf_Internal_Group *idx;
759 bfd_size_type n_elt;
760
761 if (shdr == NULL)
762 continue;
763
764 idx = (Elf_Internal_Group *) shdr->contents;
765 if (idx == NULL || shdr->sh_size < 4)
766 {
767 /* See PR 21957 for a reproducer. */
768 /* xgettext:c-format */
769 _bfd_error_handler (_("%pB: group section '%pA' has no contents"),
770 abfd, shdr->bfd_section);
771 elf_tdata (abfd)->group_sect_ptr[i] = NULL;
772 bfd_set_error (bfd_error_bad_value);
773 return FALSE;
774 }
775 n_elt = shdr->sh_size / 4;
776
777 /* Look through this group's sections to see if current
778 section is a member. */
779 while (--n_elt != 0)
780 if ((++idx)->shdr == hdr)
781 {
782 asection *s = NULL;
783
784 /* We are a member of this group. Go looking through
785 other members to see if any others are linked via
786 next_in_group. */
787 idx = (Elf_Internal_Group *) shdr->contents;
788 n_elt = shdr->sh_size / 4;
789 while (--n_elt != 0)
790 if ((++idx)->shdr != NULL
791 && (s = idx->shdr->bfd_section) != NULL
792 && elf_next_in_group (s) != NULL)
793 break;
794 if (n_elt != 0)
795 {
796 /* Snarf the group name from other member, and
797 insert current section in circular list. */
798 elf_group_name (newsect) = elf_group_name (s);
799 elf_next_in_group (newsect) = elf_next_in_group (s);
800 elf_next_in_group (s) = newsect;
801 }
802 else
803 {
804 const char *gname;
805
806 gname = group_signature (abfd, shdr);
807 if (gname == NULL)
808 return FALSE;
809 elf_group_name (newsect) = gname;
810
811 /* Start a circular list with one element. */
812 elf_next_in_group (newsect) = newsect;
813 }
814
815 /* If the group section has been created, point to the
816 new member. */
817 if (shdr->bfd_section != NULL)
818 elf_next_in_group (shdr->bfd_section) = newsect;
819
820 elf_tdata (abfd)->group_search_offset = i;
821 j = num_group - 1;
822 break;
823 }
824 }
825 }
826
827 if (elf_group_name (newsect) == NULL)
828 {
829 /* xgettext:c-format */
830 _bfd_error_handler (_("%pB: no group info for section '%pA'"),
831 abfd, newsect);
832 return FALSE;
833 }
834 return TRUE;
835 }
836
837 bfd_boolean
838 _bfd_elf_setup_sections (bfd *abfd)
839 {
840 unsigned int i;
841 unsigned int num_group = elf_tdata (abfd)->num_group;
842 bfd_boolean result = TRUE;
843 asection *s;
844
845 /* Process SHF_LINK_ORDER. */
846 for (s = abfd->sections; s != NULL; s = s->next)
847 {
848 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
849 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
850 {
851 unsigned int elfsec = this_hdr->sh_link;
852 /* An sh_link value of 0 is now allowed. It indicates that linked
853 to section has already been discarded, but that the current
854 section has been retained for some other reason. This linking
855 section is still a candidate for later garbage collection
856 however. */
857 if (elfsec == 0)
858 {
859 elf_linked_to_section (s) = NULL;
860 }
861 else
862 {
863 asection *linksec = NULL;
864
865 if (elfsec < elf_numsections (abfd))
866 {
867 this_hdr = elf_elfsections (abfd)[elfsec];
868 linksec = this_hdr->bfd_section;
869 }
870
871 /* PR 1991, 2008:
872 Some strip/objcopy may leave an incorrect value in
873 sh_link. We don't want to proceed. */
874 if (linksec == NULL)
875 {
876 _bfd_error_handler
877 /* xgettext:c-format */
878 (_("%pB: sh_link [%d] in section `%pA' is incorrect"),
879 s->owner, elfsec, s);
880 result = FALSE;
881 }
882
883 elf_linked_to_section (s) = linksec;
884 }
885 }
886 else if (this_hdr->sh_type == SHT_GROUP
887 && elf_next_in_group (s) == NULL)
888 {
889 _bfd_error_handler
890 /* xgettext:c-format */
891 (_("%pB: SHT_GROUP section [index %d] has no SHF_GROUP sections"),
892 abfd, elf_section_data (s)->this_idx);
893 result = FALSE;
894 }
895 }
896
897 /* Process section groups. */
898 if (num_group == (unsigned) -1)
899 return result;
900
901 for (i = 0; i < num_group; i++)
902 {
903 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
904 Elf_Internal_Group *idx;
905 unsigned int n_elt;
906
907 /* PR binutils/18758: Beware of corrupt binaries with invalid group data. */
908 if (shdr == NULL || shdr->bfd_section == NULL || shdr->contents == NULL)
909 {
910 _bfd_error_handler
911 /* xgettext:c-format */
912 (_("%pB: section group entry number %u is corrupt"),
913 abfd, i);
914 result = FALSE;
915 continue;
916 }
917
918 idx = (Elf_Internal_Group *) shdr->contents;
919 n_elt = shdr->sh_size / 4;
920
921 while (--n_elt != 0)
922 {
923 ++ idx;
924
925 if (idx->shdr == NULL)
926 continue;
927 else if (idx->shdr->bfd_section)
928 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
929 else if (idx->shdr->sh_type != SHT_RELA
930 && idx->shdr->sh_type != SHT_REL)
931 {
932 /* There are some unknown sections in the group. */
933 _bfd_error_handler
934 /* xgettext:c-format */
935 (_("%pB: unknown type [%#x] section `%s' in group [%pA]"),
936 abfd,
937 idx->shdr->sh_type,
938 bfd_elf_string_from_elf_section (abfd,
939 (elf_elfheader (abfd)
940 ->e_shstrndx),
941 idx->shdr->sh_name),
942 shdr->bfd_section);
943 result = FALSE;
944 }
945 }
946 }
947
948 return result;
949 }
950
951 bfd_boolean
952 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
953 {
954 return elf_next_in_group (sec) != NULL;
955 }
956
957 const char *
958 bfd_elf_group_name (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
959 {
960 if (elf_sec_group (sec) != NULL)
961 return elf_group_name (sec);
962 return NULL;
963 }
964
965 static char *
966 convert_debug_to_zdebug (bfd *abfd, const char *name)
967 {
968 unsigned int len = strlen (name);
969 char *new_name = bfd_alloc (abfd, len + 2);
970 if (new_name == NULL)
971 return NULL;
972 new_name[0] = '.';
973 new_name[1] = 'z';
974 memcpy (new_name + 2, name + 1, len);
975 return new_name;
976 }
977
978 static char *
979 convert_zdebug_to_debug (bfd *abfd, const char *name)
980 {
981 unsigned int len = strlen (name);
982 char *new_name = bfd_alloc (abfd, len);
983 if (new_name == NULL)
984 return NULL;
985 new_name[0] = '.';
986 memcpy (new_name + 1, name + 2, len - 1);
987 return new_name;
988 }
989
990 /* This a copy of lto_section defined in GCC (lto-streamer.h). */
991
992 struct lto_section
993 {
994 int16_t major_version;
995 int16_t minor_version;
996 unsigned char slim_object;
997
998 /* Flags is a private field that is not defined publicly. */
999 uint16_t flags;
1000 };
1001
1002 /* Make a BFD section from an ELF section. We store a pointer to the
1003 BFD section in the bfd_section field of the header. */
1004
1005 bfd_boolean
1006 _bfd_elf_make_section_from_shdr (bfd *abfd,
1007 Elf_Internal_Shdr *hdr,
1008 const char *name,
1009 int shindex)
1010 {
1011 asection *newsect;
1012 flagword flags;
1013 const struct elf_backend_data *bed;
1014 unsigned int opb = bfd_octets_per_byte (abfd, NULL);
1015
1016 if (hdr->bfd_section != NULL)
1017 return TRUE;
1018
1019 newsect = bfd_make_section_anyway (abfd, name);
1020 if (newsect == NULL)
1021 return FALSE;
1022
1023 hdr->bfd_section = newsect;
1024 elf_section_data (newsect)->this_hdr = *hdr;
1025 elf_section_data (newsect)->this_idx = shindex;
1026
1027 /* Always use the real type/flags. */
1028 elf_section_type (newsect) = hdr->sh_type;
1029 elf_section_flags (newsect) = hdr->sh_flags;
1030
1031 newsect->filepos = hdr->sh_offset;
1032
1033 flags = SEC_NO_FLAGS;
1034 if (hdr->sh_type != SHT_NOBITS)
1035 flags |= SEC_HAS_CONTENTS;
1036 if (hdr->sh_type == SHT_GROUP)
1037 flags |= SEC_GROUP;
1038 if ((hdr->sh_flags & SHF_ALLOC) != 0)
1039 {
1040 flags |= SEC_ALLOC;
1041 if (hdr->sh_type != SHT_NOBITS)
1042 flags |= SEC_LOAD;
1043 }
1044 if ((hdr->sh_flags & SHF_WRITE) == 0)
1045 flags |= SEC_READONLY;
1046 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
1047 flags |= SEC_CODE;
1048 else if ((flags & SEC_LOAD) != 0)
1049 flags |= SEC_DATA;
1050 if ((hdr->sh_flags & SHF_MERGE) != 0)
1051 {
1052 flags |= SEC_MERGE;
1053 newsect->entsize = hdr->sh_entsize;
1054 }
1055 if ((hdr->sh_flags & SHF_STRINGS) != 0)
1056 flags |= SEC_STRINGS;
1057 if (hdr->sh_flags & SHF_GROUP)
1058 if (!setup_group (abfd, hdr, newsect))
1059 return FALSE;
1060 if ((hdr->sh_flags & SHF_TLS) != 0)
1061 flags |= SEC_THREAD_LOCAL;
1062 if ((hdr->sh_flags & SHF_EXCLUDE) != 0)
1063 flags |= SEC_EXCLUDE;
1064
1065 switch (elf_elfheader (abfd)->e_ident[EI_OSABI])
1066 {
1067 /* FIXME: We should not recognize SHF_GNU_MBIND for ELFOSABI_NONE,
1068 but binutils as of 2019-07-23 did not set the EI_OSABI header
1069 byte. */
1070 case ELFOSABI_GNU:
1071 case ELFOSABI_FREEBSD:
1072 if ((hdr->sh_flags & SHF_GNU_RETAIN) != 0)
1073 elf_tdata (abfd)->has_gnu_osabi |= elf_gnu_osabi_retain;
1074 /* Fall through */
1075 case ELFOSABI_NONE:
1076 if ((hdr->sh_flags & SHF_GNU_MBIND) != 0)
1077 elf_tdata (abfd)->has_gnu_osabi |= elf_gnu_osabi_mbind;
1078 break;
1079 }
1080
1081 if ((flags & SEC_ALLOC) == 0)
1082 {
1083 /* The debugging sections appear to be recognized only by name,
1084 not any sort of flag. Their SEC_ALLOC bits are cleared. */
1085 if (name [0] == '.')
1086 {
1087 if (strncmp (name, ".debug", 6) == 0
1088 || strncmp (name, ".gnu.linkonce.wi.", 17) == 0
1089 || strncmp (name, ".zdebug", 7) == 0)
1090 flags |= SEC_DEBUGGING | SEC_ELF_OCTETS;
1091 else if (strncmp (name, GNU_BUILD_ATTRS_SECTION_NAME, 21) == 0
1092 || strncmp (name, ".note.gnu", 9) == 0)
1093 {
1094 flags |= SEC_ELF_OCTETS;
1095 opb = 1;
1096 }
1097 else if (strncmp (name, ".line", 5) == 0
1098 || strncmp (name, ".stab", 5) == 0
1099 || strcmp (name, ".gdb_index") == 0)
1100 flags |= SEC_DEBUGGING;
1101 }
1102 }
1103
1104 if (!bfd_set_section_vma (newsect, hdr->sh_addr / opb)
1105 || !bfd_set_section_size (newsect, hdr->sh_size)
1106 || !bfd_set_section_alignment (newsect, bfd_log2 (hdr->sh_addralign)))
1107 return FALSE;
1108
1109 /* As a GNU extension, if the name begins with .gnu.linkonce, we
1110 only link a single copy of the section. This is used to support
1111 g++. g++ will emit each template expansion in its own section.
1112 The symbols will be defined as weak, so that multiple definitions
1113 are permitted. The GNU linker extension is to actually discard
1114 all but one of the sections. */
1115 if (CONST_STRNEQ (name, ".gnu.linkonce")
1116 && elf_next_in_group (newsect) == NULL)
1117 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1118
1119 if (!bfd_set_section_flags (newsect, flags))
1120 return FALSE;
1121
1122 bed = get_elf_backend_data (abfd);
1123 if (bed->elf_backend_section_flags)
1124 if (!bed->elf_backend_section_flags (hdr))
1125 return FALSE;
1126
1127 /* We do not parse the PT_NOTE segments as we are interested even in the
1128 separate debug info files which may have the segments offsets corrupted.
1129 PT_NOTEs from the core files are currently not parsed using BFD. */
1130 if (hdr->sh_type == SHT_NOTE)
1131 {
1132 bfd_byte *contents;
1133
1134 if (!bfd_malloc_and_get_section (abfd, newsect, &contents))
1135 return FALSE;
1136
1137 elf_parse_notes (abfd, (char *) contents, hdr->sh_size,
1138 hdr->sh_offset, hdr->sh_addralign);
1139 free (contents);
1140 }
1141
1142 if ((newsect->flags & SEC_ALLOC) != 0)
1143 {
1144 Elf_Internal_Phdr *phdr;
1145 unsigned int i, nload;
1146
1147 /* Some ELF linkers produce binaries with all the program header
1148 p_paddr fields zero. If we have such a binary with more than
1149 one PT_LOAD header, then leave the section lma equal to vma
1150 so that we don't create sections with overlapping lma. */
1151 phdr = elf_tdata (abfd)->phdr;
1152 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1153 if (phdr->p_paddr != 0)
1154 break;
1155 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
1156 ++nload;
1157 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
1158 return TRUE;
1159
1160 phdr = elf_tdata (abfd)->phdr;
1161 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1162 {
1163 if (((phdr->p_type == PT_LOAD
1164 && (hdr->sh_flags & SHF_TLS) == 0)
1165 || phdr->p_type == PT_TLS)
1166 && ELF_SECTION_IN_SEGMENT (hdr, phdr))
1167 {
1168 if ((newsect->flags & SEC_LOAD) == 0)
1169 newsect->lma = (phdr->p_paddr
1170 + hdr->sh_addr - phdr->p_vaddr) / opb;
1171 else
1172 /* We used to use the same adjustment for SEC_LOAD
1173 sections, but that doesn't work if the segment
1174 is packed with code from multiple VMAs.
1175 Instead we calculate the section LMA based on
1176 the segment LMA. It is assumed that the
1177 segment will contain sections with contiguous
1178 LMAs, even if the VMAs are not. */
1179 newsect->lma = (phdr->p_paddr
1180 + hdr->sh_offset - phdr->p_offset) / opb;
1181
1182 /* With contiguous segments, we can't tell from file
1183 offsets whether a section with zero size should
1184 be placed at the end of one segment or the
1185 beginning of the next. Decide based on vaddr. */
1186 if (hdr->sh_addr >= phdr->p_vaddr
1187 && (hdr->sh_addr + hdr->sh_size
1188 <= phdr->p_vaddr + phdr->p_memsz))
1189 break;
1190 }
1191 }
1192 }
1193
1194 /* Compress/decompress DWARF debug sections with names: .debug_* and
1195 .zdebug_*, after the section flags is set. */
1196 if ((newsect->flags & SEC_DEBUGGING)
1197 && ((name[1] == 'd' && name[6] == '_')
1198 || (name[1] == 'z' && name[7] == '_')))
1199 {
1200 enum { nothing, compress, decompress } action = nothing;
1201 int compression_header_size;
1202 bfd_size_type uncompressed_size;
1203 unsigned int uncompressed_align_power;
1204 bfd_boolean compressed
1205 = bfd_is_section_compressed_with_header (abfd, newsect,
1206 &compression_header_size,
1207 &uncompressed_size,
1208 &uncompressed_align_power);
1209 if (compressed)
1210 {
1211 /* Compressed section. Check if we should decompress. */
1212 if ((abfd->flags & BFD_DECOMPRESS))
1213 action = decompress;
1214 }
1215
1216 /* Compress the uncompressed section or convert from/to .zdebug*
1217 section. Check if we should compress. */
1218 if (action == nothing)
1219 {
1220 if (newsect->size != 0
1221 && (abfd->flags & BFD_COMPRESS)
1222 && compression_header_size >= 0
1223 && uncompressed_size > 0
1224 && (!compressed
1225 || ((compression_header_size > 0)
1226 != ((abfd->flags & BFD_COMPRESS_GABI) != 0))))
1227 action = compress;
1228 else
1229 return TRUE;
1230 }
1231
1232 if (action == compress)
1233 {
1234 if (!bfd_init_section_compress_status (abfd, newsect))
1235 {
1236 _bfd_error_handler
1237 /* xgettext:c-format */
1238 (_("%pB: unable to initialize compress status for section %s"),
1239 abfd, name);
1240 return FALSE;
1241 }
1242 }
1243 else
1244 {
1245 if (!bfd_init_section_decompress_status (abfd, newsect))
1246 {
1247 _bfd_error_handler
1248 /* xgettext:c-format */
1249 (_("%pB: unable to initialize decompress status for section %s"),
1250 abfd, name);
1251 return FALSE;
1252 }
1253 }
1254
1255 if (abfd->is_linker_input)
1256 {
1257 if (name[1] == 'z'
1258 && (action == decompress
1259 || (action == compress
1260 && (abfd->flags & BFD_COMPRESS_GABI) != 0)))
1261 {
1262 /* Convert section name from .zdebug_* to .debug_* so
1263 that linker will consider this section as a debug
1264 section. */
1265 char *new_name = convert_zdebug_to_debug (abfd, name);
1266 if (new_name == NULL)
1267 return FALSE;
1268 bfd_rename_section (newsect, new_name);
1269 }
1270 }
1271 else
1272 /* For objdump, don't rename the section. For objcopy, delay
1273 section rename to elf_fake_sections. */
1274 newsect->flags |= SEC_ELF_RENAME;
1275 }
1276
1277 /* GCC uses .gnu.lto_.lto.<some_hash> as a LTO bytecode information
1278 section. */
1279 const char *lto_section_name = ".gnu.lto_.lto.";
1280 if (strncmp (name, lto_section_name, strlen (lto_section_name)) == 0)
1281 {
1282 struct lto_section lsection;
1283 if (bfd_get_section_contents (abfd, newsect, &lsection, 0,
1284 sizeof (struct lto_section)))
1285 abfd->lto_slim_object = lsection.slim_object;
1286 }
1287
1288 return TRUE;
1289 }
1290
1291 const char *const bfd_elf_section_type_names[] =
1292 {
1293 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1294 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1295 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1296 };
1297
1298 /* ELF relocs are against symbols. If we are producing relocatable
1299 output, and the reloc is against an external symbol, and nothing
1300 has given us any additional addend, the resulting reloc will also
1301 be against the same symbol. In such a case, we don't want to
1302 change anything about the way the reloc is handled, since it will
1303 all be done at final link time. Rather than put special case code
1304 into bfd_perform_relocation, all the reloc types use this howto
1305 function. It just short circuits the reloc if producing
1306 relocatable output against an external symbol. */
1307
1308 bfd_reloc_status_type
1309 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1310 arelent *reloc_entry,
1311 asymbol *symbol,
1312 void *data ATTRIBUTE_UNUSED,
1313 asection *input_section,
1314 bfd *output_bfd,
1315 char **error_message ATTRIBUTE_UNUSED)
1316 {
1317 if (output_bfd != NULL
1318 && (symbol->flags & BSF_SECTION_SYM) == 0
1319 && (! reloc_entry->howto->partial_inplace
1320 || reloc_entry->addend == 0))
1321 {
1322 reloc_entry->address += input_section->output_offset;
1323 return bfd_reloc_ok;
1324 }
1325
1326 return bfd_reloc_continue;
1327 }
1328 \f
1329 /* Returns TRUE if section A matches section B.
1330 Names, addresses and links may be different, but everything else
1331 should be the same. */
1332
1333 static bfd_boolean
1334 section_match (const Elf_Internal_Shdr * a,
1335 const Elf_Internal_Shdr * b)
1336 {
1337 if (a->sh_type != b->sh_type
1338 || ((a->sh_flags ^ b->sh_flags) & ~SHF_INFO_LINK) != 0
1339 || a->sh_addralign != b->sh_addralign
1340 || a->sh_entsize != b->sh_entsize)
1341 return FALSE;
1342 if (a->sh_type == SHT_SYMTAB
1343 || a->sh_type == SHT_STRTAB)
1344 return TRUE;
1345 return a->sh_size == b->sh_size;
1346 }
1347
1348 /* Find a section in OBFD that has the same characteristics
1349 as IHEADER. Return the index of this section or SHN_UNDEF if
1350 none can be found. Check's section HINT first, as this is likely
1351 to be the correct section. */
1352
1353 static unsigned int
1354 find_link (const bfd *obfd, const Elf_Internal_Shdr *iheader,
1355 const unsigned int hint)
1356 {
1357 Elf_Internal_Shdr ** oheaders = elf_elfsections (obfd);
1358 unsigned int i;
1359
1360 BFD_ASSERT (iheader != NULL);
1361
1362 /* See PR 20922 for a reproducer of the NULL test. */
1363 if (hint < elf_numsections (obfd)
1364 && oheaders[hint] != NULL
1365 && section_match (oheaders[hint], iheader))
1366 return hint;
1367
1368 for (i = 1; i < elf_numsections (obfd); i++)
1369 {
1370 Elf_Internal_Shdr * oheader = oheaders[i];
1371
1372 if (oheader == NULL)
1373 continue;
1374 if (section_match (oheader, iheader))
1375 /* FIXME: Do we care if there is a potential for
1376 multiple matches ? */
1377 return i;
1378 }
1379
1380 return SHN_UNDEF;
1381 }
1382
1383 /* PR 19938: Attempt to set the ELF section header fields of an OS or
1384 Processor specific section, based upon a matching input section.
1385 Returns TRUE upon success, FALSE otherwise. */
1386
1387 static bfd_boolean
1388 copy_special_section_fields (const bfd *ibfd,
1389 bfd *obfd,
1390 const Elf_Internal_Shdr *iheader,
1391 Elf_Internal_Shdr *oheader,
1392 const unsigned int secnum)
1393 {
1394 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
1395 const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd);
1396 bfd_boolean changed = FALSE;
1397 unsigned int sh_link;
1398
1399 if (oheader->sh_type == SHT_NOBITS)
1400 {
1401 /* This is a feature for objcopy --only-keep-debug:
1402 When a section's type is changed to NOBITS, we preserve
1403 the sh_link and sh_info fields so that they can be
1404 matched up with the original.
1405
1406 Note: Strictly speaking these assignments are wrong.
1407 The sh_link and sh_info fields should point to the
1408 relevent sections in the output BFD, which may not be in
1409 the same location as they were in the input BFD. But
1410 the whole point of this action is to preserve the
1411 original values of the sh_link and sh_info fields, so
1412 that they can be matched up with the section headers in
1413 the original file. So strictly speaking we may be
1414 creating an invalid ELF file, but it is only for a file
1415 that just contains debug info and only for sections
1416 without any contents. */
1417 if (oheader->sh_link == 0)
1418 oheader->sh_link = iheader->sh_link;
1419 if (oheader->sh_info == 0)
1420 oheader->sh_info = iheader->sh_info;
1421 return TRUE;
1422 }
1423
1424 /* Allow the target a chance to decide how these fields should be set. */
1425 if (bed->elf_backend_copy_special_section_fields (ibfd, obfd,
1426 iheader, oheader))
1427 return TRUE;
1428
1429 /* We have an iheader which might match oheader, and which has non-zero
1430 sh_info and/or sh_link fields. Attempt to follow those links and find
1431 the section in the output bfd which corresponds to the linked section
1432 in the input bfd. */
1433 if (iheader->sh_link != SHN_UNDEF)
1434 {
1435 /* See PR 20931 for a reproducer. */
1436 if (iheader->sh_link >= elf_numsections (ibfd))
1437 {
1438 _bfd_error_handler
1439 /* xgettext:c-format */
1440 (_("%pB: invalid sh_link field (%d) in section number %d"),
1441 ibfd, iheader->sh_link, secnum);
1442 return FALSE;
1443 }
1444
1445 sh_link = find_link (obfd, iheaders[iheader->sh_link], iheader->sh_link);
1446 if (sh_link != SHN_UNDEF)
1447 {
1448 oheader->sh_link = sh_link;
1449 changed = TRUE;
1450 }
1451 else
1452 /* FIXME: Should we install iheader->sh_link
1453 if we could not find a match ? */
1454 _bfd_error_handler
1455 /* xgettext:c-format */
1456 (_("%pB: failed to find link section for section %d"), obfd, secnum);
1457 }
1458
1459 if (iheader->sh_info)
1460 {
1461 /* The sh_info field can hold arbitrary information, but if the
1462 SHF_LINK_INFO flag is set then it should be interpreted as a
1463 section index. */
1464 if (iheader->sh_flags & SHF_INFO_LINK)
1465 {
1466 sh_link = find_link (obfd, iheaders[iheader->sh_info],
1467 iheader->sh_info);
1468 if (sh_link != SHN_UNDEF)
1469 oheader->sh_flags |= SHF_INFO_LINK;
1470 }
1471 else
1472 /* No idea what it means - just copy it. */
1473 sh_link = iheader->sh_info;
1474
1475 if (sh_link != SHN_UNDEF)
1476 {
1477 oheader->sh_info = sh_link;
1478 changed = TRUE;
1479 }
1480 else
1481 _bfd_error_handler
1482 /* xgettext:c-format */
1483 (_("%pB: failed to find info section for section %d"), obfd, secnum);
1484 }
1485
1486 return changed;
1487 }
1488
1489 /* Copy the program header and other data from one object module to
1490 another. */
1491
1492 bfd_boolean
1493 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1494 {
1495 const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd);
1496 Elf_Internal_Shdr **oheaders = elf_elfsections (obfd);
1497 const struct elf_backend_data *bed;
1498 unsigned int i;
1499
1500 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1501 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1502 return TRUE;
1503
1504 if (!elf_flags_init (obfd))
1505 {
1506 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1507 elf_flags_init (obfd) = TRUE;
1508 }
1509
1510 elf_gp (obfd) = elf_gp (ibfd);
1511
1512 /* Also copy the EI_OSABI field. */
1513 elf_elfheader (obfd)->e_ident[EI_OSABI] =
1514 elf_elfheader (ibfd)->e_ident[EI_OSABI];
1515
1516 /* If set, copy the EI_ABIVERSION field. */
1517 if (elf_elfheader (ibfd)->e_ident[EI_ABIVERSION])
1518 elf_elfheader (obfd)->e_ident[EI_ABIVERSION]
1519 = elf_elfheader (ibfd)->e_ident[EI_ABIVERSION];
1520
1521 /* Copy object attributes. */
1522 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1523
1524 if (iheaders == NULL || oheaders == NULL)
1525 return TRUE;
1526
1527 bed = get_elf_backend_data (obfd);
1528
1529 /* Possibly copy other fields in the section header. */
1530 for (i = 1; i < elf_numsections (obfd); i++)
1531 {
1532 unsigned int j;
1533 Elf_Internal_Shdr * oheader = oheaders[i];
1534
1535 /* Ignore ordinary sections. SHT_NOBITS sections are considered however
1536 because of a special case need for generating separate debug info
1537 files. See below for more details. */
1538 if (oheader == NULL
1539 || (oheader->sh_type != SHT_NOBITS
1540 && oheader->sh_type < SHT_LOOS))
1541 continue;
1542
1543 /* Ignore empty sections, and sections whose
1544 fields have already been initialised. */
1545 if (oheader->sh_size == 0
1546 || (oheader->sh_info != 0 && oheader->sh_link != 0))
1547 continue;
1548
1549 /* Scan for the matching section in the input bfd.
1550 First we try for a direct mapping between the input and output sections. */
1551 for (j = 1; j < elf_numsections (ibfd); j++)
1552 {
1553 const Elf_Internal_Shdr * iheader = iheaders[j];
1554
1555 if (iheader == NULL)
1556 continue;
1557
1558 if (oheader->bfd_section != NULL
1559 && iheader->bfd_section != NULL
1560 && iheader->bfd_section->output_section != NULL
1561 && iheader->bfd_section->output_section == oheader->bfd_section)
1562 {
1563 /* We have found a connection from the input section to the
1564 output section. Attempt to copy the header fields. If
1565 this fails then do not try any further sections - there
1566 should only be a one-to-one mapping between input and output. */
1567 if (! copy_special_section_fields (ibfd, obfd, iheader, oheader, i))
1568 j = elf_numsections (ibfd);
1569 break;
1570 }
1571 }
1572
1573 if (j < elf_numsections (ibfd))
1574 continue;
1575
1576 /* That failed. So try to deduce the corresponding input section.
1577 Unfortunately we cannot compare names as the output string table
1578 is empty, so instead we check size, address and type. */
1579 for (j = 1; j < elf_numsections (ibfd); j++)
1580 {
1581 const Elf_Internal_Shdr * iheader = iheaders[j];
1582
1583 if (iheader == NULL)
1584 continue;
1585
1586 /* Try matching fields in the input section's header.
1587 Since --only-keep-debug turns all non-debug sections into
1588 SHT_NOBITS sections, the output SHT_NOBITS type matches any
1589 input type. */
1590 if ((oheader->sh_type == SHT_NOBITS
1591 || iheader->sh_type == oheader->sh_type)
1592 && (iheader->sh_flags & ~ SHF_INFO_LINK)
1593 == (oheader->sh_flags & ~ SHF_INFO_LINK)
1594 && iheader->sh_addralign == oheader->sh_addralign
1595 && iheader->sh_entsize == oheader->sh_entsize
1596 && iheader->sh_size == oheader->sh_size
1597 && iheader->sh_addr == oheader->sh_addr
1598 && (iheader->sh_info != oheader->sh_info
1599 || iheader->sh_link != oheader->sh_link))
1600 {
1601 if (copy_special_section_fields (ibfd, obfd, iheader, oheader, i))
1602 break;
1603 }
1604 }
1605
1606 if (j == elf_numsections (ibfd) && oheader->sh_type >= SHT_LOOS)
1607 {
1608 /* Final attempt. Call the backend copy function
1609 with a NULL input section. */
1610 (void) bed->elf_backend_copy_special_section_fields (ibfd, obfd,
1611 NULL, oheader);
1612 }
1613 }
1614
1615 return TRUE;
1616 }
1617
1618 static const char *
1619 get_segment_type (unsigned int p_type)
1620 {
1621 const char *pt;
1622 switch (p_type)
1623 {
1624 case PT_NULL: pt = "NULL"; break;
1625 case PT_LOAD: pt = "LOAD"; break;
1626 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1627 case PT_INTERP: pt = "INTERP"; break;
1628 case PT_NOTE: pt = "NOTE"; break;
1629 case PT_SHLIB: pt = "SHLIB"; break;
1630 case PT_PHDR: pt = "PHDR"; break;
1631 case PT_TLS: pt = "TLS"; break;
1632 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1633 case PT_GNU_STACK: pt = "STACK"; break;
1634 case PT_GNU_RELRO: pt = "RELRO"; break;
1635 default: pt = NULL; break;
1636 }
1637 return pt;
1638 }
1639
1640 /* Print out the program headers. */
1641
1642 bfd_boolean
1643 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1644 {
1645 FILE *f = (FILE *) farg;
1646 Elf_Internal_Phdr *p;
1647 asection *s;
1648 bfd_byte *dynbuf = NULL;
1649
1650 p = elf_tdata (abfd)->phdr;
1651 if (p != NULL)
1652 {
1653 unsigned int i, c;
1654
1655 fprintf (f, _("\nProgram Header:\n"));
1656 c = elf_elfheader (abfd)->e_phnum;
1657 for (i = 0; i < c; i++, p++)
1658 {
1659 const char *pt = get_segment_type (p->p_type);
1660 char buf[20];
1661
1662 if (pt == NULL)
1663 {
1664 sprintf (buf, "0x%lx", p->p_type);
1665 pt = buf;
1666 }
1667 fprintf (f, "%8s off 0x", pt);
1668 bfd_fprintf_vma (abfd, f, p->p_offset);
1669 fprintf (f, " vaddr 0x");
1670 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1671 fprintf (f, " paddr 0x");
1672 bfd_fprintf_vma (abfd, f, p->p_paddr);
1673 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1674 fprintf (f, " filesz 0x");
1675 bfd_fprintf_vma (abfd, f, p->p_filesz);
1676 fprintf (f, " memsz 0x");
1677 bfd_fprintf_vma (abfd, f, p->p_memsz);
1678 fprintf (f, " flags %c%c%c",
1679 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1680 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1681 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1682 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1683 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1684 fprintf (f, "\n");
1685 }
1686 }
1687
1688 s = bfd_get_section_by_name (abfd, ".dynamic");
1689 if (s != NULL)
1690 {
1691 unsigned int elfsec;
1692 unsigned long shlink;
1693 bfd_byte *extdyn, *extdynend;
1694 size_t extdynsize;
1695 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1696
1697 fprintf (f, _("\nDynamic Section:\n"));
1698
1699 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1700 goto error_return;
1701
1702 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1703 if (elfsec == SHN_BAD)
1704 goto error_return;
1705 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1706
1707 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1708 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1709
1710 extdyn = dynbuf;
1711 /* PR 17512: file: 6f427532. */
1712 if (s->size < extdynsize)
1713 goto error_return;
1714 extdynend = extdyn + s->size;
1715 /* PR 17512: file: id:000006,sig:06,src:000000,op:flip4,pos:5664.
1716 Fix range check. */
1717 for (; extdyn <= (extdynend - extdynsize); extdyn += extdynsize)
1718 {
1719 Elf_Internal_Dyn dyn;
1720 const char *name = "";
1721 char ab[20];
1722 bfd_boolean stringp;
1723 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1724
1725 (*swap_dyn_in) (abfd, extdyn, &dyn);
1726
1727 if (dyn.d_tag == DT_NULL)
1728 break;
1729
1730 stringp = FALSE;
1731 switch (dyn.d_tag)
1732 {
1733 default:
1734 if (bed->elf_backend_get_target_dtag)
1735 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
1736
1737 if (!strcmp (name, ""))
1738 {
1739 sprintf (ab, "%#" BFD_VMA_FMT "x", dyn.d_tag);
1740 name = ab;
1741 }
1742 break;
1743
1744 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1745 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1746 case DT_PLTGOT: name = "PLTGOT"; break;
1747 case DT_HASH: name = "HASH"; break;
1748 case DT_STRTAB: name = "STRTAB"; break;
1749 case DT_SYMTAB: name = "SYMTAB"; break;
1750 case DT_RELA: name = "RELA"; break;
1751 case DT_RELASZ: name = "RELASZ"; break;
1752 case DT_RELAENT: name = "RELAENT"; break;
1753 case DT_STRSZ: name = "STRSZ"; break;
1754 case DT_SYMENT: name = "SYMENT"; break;
1755 case DT_INIT: name = "INIT"; break;
1756 case DT_FINI: name = "FINI"; break;
1757 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1758 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1759 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1760 case DT_REL: name = "REL"; break;
1761 case DT_RELSZ: name = "RELSZ"; break;
1762 case DT_RELENT: name = "RELENT"; break;
1763 case DT_PLTREL: name = "PLTREL"; break;
1764 case DT_DEBUG: name = "DEBUG"; break;
1765 case DT_TEXTREL: name = "TEXTREL"; break;
1766 case DT_JMPREL: name = "JMPREL"; break;
1767 case DT_BIND_NOW: name = "BIND_NOW"; break;
1768 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1769 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1770 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1771 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1772 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1773 case DT_FLAGS: name = "FLAGS"; break;
1774 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1775 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1776 case DT_CHECKSUM: name = "CHECKSUM"; break;
1777 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1778 case DT_MOVEENT: name = "MOVEENT"; break;
1779 case DT_MOVESZ: name = "MOVESZ"; break;
1780 case DT_FEATURE: name = "FEATURE"; break;
1781 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1782 case DT_SYMINSZ: name = "SYMINSZ"; break;
1783 case DT_SYMINENT: name = "SYMINENT"; break;
1784 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1785 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1786 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1787 case DT_PLTPAD: name = "PLTPAD"; break;
1788 case DT_MOVETAB: name = "MOVETAB"; break;
1789 case DT_SYMINFO: name = "SYMINFO"; break;
1790 case DT_RELACOUNT: name = "RELACOUNT"; break;
1791 case DT_RELCOUNT: name = "RELCOUNT"; break;
1792 case DT_FLAGS_1: name = "FLAGS_1"; break;
1793 case DT_VERSYM: name = "VERSYM"; break;
1794 case DT_VERDEF: name = "VERDEF"; break;
1795 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1796 case DT_VERNEED: name = "VERNEED"; break;
1797 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1798 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1799 case DT_USED: name = "USED"; break;
1800 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1801 case DT_GNU_HASH: name = "GNU_HASH"; break;
1802 }
1803
1804 fprintf (f, " %-20s ", name);
1805 if (! stringp)
1806 {
1807 fprintf (f, "0x");
1808 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
1809 }
1810 else
1811 {
1812 const char *string;
1813 unsigned int tagv = dyn.d_un.d_val;
1814
1815 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1816 if (string == NULL)
1817 goto error_return;
1818 fprintf (f, "%s", string);
1819 }
1820 fprintf (f, "\n");
1821 }
1822
1823 free (dynbuf);
1824 dynbuf = NULL;
1825 }
1826
1827 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1828 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1829 {
1830 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1831 return FALSE;
1832 }
1833
1834 if (elf_dynverdef (abfd) != 0)
1835 {
1836 Elf_Internal_Verdef *t;
1837
1838 fprintf (f, _("\nVersion definitions:\n"));
1839 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1840 {
1841 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1842 t->vd_flags, t->vd_hash,
1843 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1844 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1845 {
1846 Elf_Internal_Verdaux *a;
1847
1848 fprintf (f, "\t");
1849 for (a = t->vd_auxptr->vda_nextptr;
1850 a != NULL;
1851 a = a->vda_nextptr)
1852 fprintf (f, "%s ",
1853 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1854 fprintf (f, "\n");
1855 }
1856 }
1857 }
1858
1859 if (elf_dynverref (abfd) != 0)
1860 {
1861 Elf_Internal_Verneed *t;
1862
1863 fprintf (f, _("\nVersion References:\n"));
1864 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1865 {
1866 Elf_Internal_Vernaux *a;
1867
1868 fprintf (f, _(" required from %s:\n"),
1869 t->vn_filename ? t->vn_filename : "<corrupt>");
1870 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1871 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1872 a->vna_flags, a->vna_other,
1873 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1874 }
1875 }
1876
1877 return TRUE;
1878
1879 error_return:
1880 free (dynbuf);
1881 return FALSE;
1882 }
1883
1884 /* Get version name. If BASE_P is TRUE, return "Base" for VER_FLG_BASE
1885 and return symbol version for symbol version itself. */
1886
1887 const char *
1888 _bfd_elf_get_symbol_version_string (bfd *abfd, asymbol *symbol,
1889 bfd_boolean base_p,
1890 bfd_boolean *hidden)
1891 {
1892 const char *version_string = NULL;
1893 if (elf_dynversym (abfd) != 0
1894 && (elf_dynverdef (abfd) != 0 || elf_dynverref (abfd) != 0))
1895 {
1896 unsigned int vernum = ((elf_symbol_type *) symbol)->version;
1897
1898 *hidden = (vernum & VERSYM_HIDDEN) != 0;
1899 vernum &= VERSYM_VERSION;
1900
1901 if (vernum == 0)
1902 version_string = "";
1903 else if (vernum == 1
1904 && (vernum > elf_tdata (abfd)->cverdefs
1905 || (elf_tdata (abfd)->verdef[0].vd_flags
1906 == VER_FLG_BASE)))
1907 version_string = base_p ? "Base" : "";
1908 else if (vernum <= elf_tdata (abfd)->cverdefs)
1909 {
1910 const char *nodename
1911 = elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1912 version_string = "";
1913 if (base_p
1914 || nodename == NULL
1915 || symbol->name == NULL
1916 || strcmp (symbol->name, nodename) != 0)
1917 version_string = nodename;
1918 }
1919 else
1920 {
1921 Elf_Internal_Verneed *t;
1922
1923 version_string = _("<corrupt>");
1924 for (t = elf_tdata (abfd)->verref;
1925 t != NULL;
1926 t = t->vn_nextref)
1927 {
1928 Elf_Internal_Vernaux *a;
1929
1930 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1931 {
1932 if (a->vna_other == vernum)
1933 {
1934 version_string = a->vna_nodename;
1935 break;
1936 }
1937 }
1938 }
1939 }
1940 }
1941 return version_string;
1942 }
1943
1944 /* Display ELF-specific fields of a symbol. */
1945
1946 void
1947 bfd_elf_print_symbol (bfd *abfd,
1948 void *filep,
1949 asymbol *symbol,
1950 bfd_print_symbol_type how)
1951 {
1952 FILE *file = (FILE *) filep;
1953 switch (how)
1954 {
1955 case bfd_print_symbol_name:
1956 fprintf (file, "%s", symbol->name);
1957 break;
1958 case bfd_print_symbol_more:
1959 fprintf (file, "elf ");
1960 bfd_fprintf_vma (abfd, file, symbol->value);
1961 fprintf (file, " %x", symbol->flags);
1962 break;
1963 case bfd_print_symbol_all:
1964 {
1965 const char *section_name;
1966 const char *name = NULL;
1967 const struct elf_backend_data *bed;
1968 unsigned char st_other;
1969 bfd_vma val;
1970 const char *version_string;
1971 bfd_boolean hidden;
1972
1973 section_name = symbol->section ? symbol->section->name : "(*none*)";
1974
1975 bed = get_elf_backend_data (abfd);
1976 if (bed->elf_backend_print_symbol_all)
1977 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1978
1979 if (name == NULL)
1980 {
1981 name = symbol->name;
1982 bfd_print_symbol_vandf (abfd, file, symbol);
1983 }
1984
1985 fprintf (file, " %s\t", section_name);
1986 /* Print the "other" value for a symbol. For common symbols,
1987 we've already printed the size; now print the alignment.
1988 For other symbols, we have no specified alignment, and
1989 we've printed the address; now print the size. */
1990 if (symbol->section && bfd_is_com_section (symbol->section))
1991 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1992 else
1993 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1994 bfd_fprintf_vma (abfd, file, val);
1995
1996 /* If we have version information, print it. */
1997 version_string = _bfd_elf_get_symbol_version_string (abfd,
1998 symbol,
1999 TRUE,
2000 &hidden);
2001 if (version_string)
2002 {
2003 if (!hidden)
2004 fprintf (file, " %-11s", version_string);
2005 else
2006 {
2007 int i;
2008
2009 fprintf (file, " (%s)", version_string);
2010 for (i = 10 - strlen (version_string); i > 0; --i)
2011 putc (' ', file);
2012 }
2013 }
2014
2015 /* If the st_other field is not zero, print it. */
2016 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
2017
2018 switch (st_other)
2019 {
2020 case 0: break;
2021 case STV_INTERNAL: fprintf (file, " .internal"); break;
2022 case STV_HIDDEN: fprintf (file, " .hidden"); break;
2023 case STV_PROTECTED: fprintf (file, " .protected"); break;
2024 default:
2025 /* Some other non-defined flags are also present, so print
2026 everything hex. */
2027 fprintf (file, " 0x%02x", (unsigned int) st_other);
2028 }
2029
2030 fprintf (file, " %s", name);
2031 }
2032 break;
2033 }
2034 }
2035 \f
2036 /* ELF .o/exec file reading */
2037
2038 /* Create a new bfd section from an ELF section header. */
2039
2040 bfd_boolean
2041 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
2042 {
2043 Elf_Internal_Shdr *hdr;
2044 Elf_Internal_Ehdr *ehdr;
2045 const struct elf_backend_data *bed;
2046 const char *name;
2047 bfd_boolean ret = TRUE;
2048 static bfd_boolean * sections_being_created = NULL;
2049 static bfd * sections_being_created_abfd = NULL;
2050 static unsigned int nesting = 0;
2051
2052 if (shindex >= elf_numsections (abfd))
2053 return FALSE;
2054
2055 if (++ nesting > 3)
2056 {
2057 /* PR17512: A corrupt ELF binary might contain a recursive group of
2058 sections, with each the string indices pointing to the next in the
2059 loop. Detect this here, by refusing to load a section that we are
2060 already in the process of loading. We only trigger this test if
2061 we have nested at least three sections deep as normal ELF binaries
2062 can expect to recurse at least once.
2063
2064 FIXME: It would be better if this array was attached to the bfd,
2065 rather than being held in a static pointer. */
2066
2067 if (sections_being_created_abfd != abfd)
2068 {
2069 free (sections_being_created);
2070 sections_being_created = NULL;
2071 }
2072 if (sections_being_created == NULL)
2073 {
2074 size_t amt = elf_numsections (abfd) * sizeof (bfd_boolean);
2075
2076 /* PR 26005: Do not use bfd_zalloc here as the memory might
2077 be released before the bfd has been fully scanned. */
2078 sections_being_created = (bfd_boolean *) bfd_zmalloc (amt);
2079 if (sections_being_created == NULL)
2080 return FALSE;
2081 sections_being_created_abfd = abfd;
2082 }
2083 if (sections_being_created [shindex])
2084 {
2085 _bfd_error_handler
2086 (_("%pB: warning: loop in section dependencies detected"), abfd);
2087 return FALSE;
2088 }
2089 sections_being_created [shindex] = TRUE;
2090 }
2091
2092 hdr = elf_elfsections (abfd)[shindex];
2093 ehdr = elf_elfheader (abfd);
2094 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
2095 hdr->sh_name);
2096 if (name == NULL)
2097 goto fail;
2098
2099 bed = get_elf_backend_data (abfd);
2100 switch (hdr->sh_type)
2101 {
2102 case SHT_NULL:
2103 /* Inactive section. Throw it away. */
2104 goto success;
2105
2106 case SHT_PROGBITS: /* Normal section with contents. */
2107 case SHT_NOBITS: /* .bss section. */
2108 case SHT_HASH: /* .hash section. */
2109 case SHT_NOTE: /* .note section. */
2110 case SHT_INIT_ARRAY: /* .init_array section. */
2111 case SHT_FINI_ARRAY: /* .fini_array section. */
2112 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
2113 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
2114 case SHT_GNU_HASH: /* .gnu.hash section. */
2115 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2116 goto success;
2117
2118 case SHT_DYNAMIC: /* Dynamic linking information. */
2119 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2120 goto fail;
2121
2122 if (hdr->sh_link > elf_numsections (abfd))
2123 {
2124 /* PR 10478: Accept Solaris binaries with a sh_link
2125 field set to SHN_BEFORE or SHN_AFTER. */
2126 switch (bfd_get_arch (abfd))
2127 {
2128 case bfd_arch_i386:
2129 case bfd_arch_sparc:
2130 if (hdr->sh_link == (SHN_LORESERVE & 0xffff) /* SHN_BEFORE */
2131 || hdr->sh_link == ((SHN_LORESERVE + 1) & 0xffff) /* SHN_AFTER */)
2132 break;
2133 /* Otherwise fall through. */
2134 default:
2135 goto fail;
2136 }
2137 }
2138 else if (elf_elfsections (abfd)[hdr->sh_link] == NULL)
2139 goto fail;
2140 else if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
2141 {
2142 Elf_Internal_Shdr *dynsymhdr;
2143
2144 /* The shared libraries distributed with hpux11 have a bogus
2145 sh_link field for the ".dynamic" section. Find the
2146 string table for the ".dynsym" section instead. */
2147 if (elf_dynsymtab (abfd) != 0)
2148 {
2149 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
2150 hdr->sh_link = dynsymhdr->sh_link;
2151 }
2152 else
2153 {
2154 unsigned int i, num_sec;
2155
2156 num_sec = elf_numsections (abfd);
2157 for (i = 1; i < num_sec; i++)
2158 {
2159 dynsymhdr = elf_elfsections (abfd)[i];
2160 if (dynsymhdr->sh_type == SHT_DYNSYM)
2161 {
2162 hdr->sh_link = dynsymhdr->sh_link;
2163 break;
2164 }
2165 }
2166 }
2167 }
2168 goto success;
2169
2170 case SHT_SYMTAB: /* A symbol table. */
2171 if (elf_onesymtab (abfd) == shindex)
2172 goto success;
2173
2174 if (hdr->sh_entsize != bed->s->sizeof_sym)
2175 goto fail;
2176
2177 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
2178 {
2179 if (hdr->sh_size != 0)
2180 goto fail;
2181 /* Some assemblers erroneously set sh_info to one with a
2182 zero sh_size. ld sees this as a global symbol count
2183 of (unsigned) -1. Fix it here. */
2184 hdr->sh_info = 0;
2185 goto success;
2186 }
2187
2188 /* PR 18854: A binary might contain more than one symbol table.
2189 Unusual, but possible. Warn, but continue. */
2190 if (elf_onesymtab (abfd) != 0)
2191 {
2192 _bfd_error_handler
2193 /* xgettext:c-format */
2194 (_("%pB: warning: multiple symbol tables detected"
2195 " - ignoring the table in section %u"),
2196 abfd, shindex);
2197 goto success;
2198 }
2199 elf_onesymtab (abfd) = shindex;
2200 elf_symtab_hdr (abfd) = *hdr;
2201 elf_elfsections (abfd)[shindex] = hdr = & elf_symtab_hdr (abfd);
2202 abfd->flags |= HAS_SYMS;
2203
2204 /* Sometimes a shared object will map in the symbol table. If
2205 SHF_ALLOC is set, and this is a shared object, then we also
2206 treat this section as a BFD section. We can not base the
2207 decision purely on SHF_ALLOC, because that flag is sometimes
2208 set in a relocatable object file, which would confuse the
2209 linker. */
2210 if ((hdr->sh_flags & SHF_ALLOC) != 0
2211 && (abfd->flags & DYNAMIC) != 0
2212 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2213 shindex))
2214 goto fail;
2215
2216 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
2217 can't read symbols without that section loaded as well. It
2218 is most likely specified by the next section header. */
2219 {
2220 elf_section_list * entry;
2221 unsigned int i, num_sec;
2222
2223 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
2224 if (entry->hdr.sh_link == shindex)
2225 goto success;
2226
2227 num_sec = elf_numsections (abfd);
2228 for (i = shindex + 1; i < num_sec; i++)
2229 {
2230 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2231
2232 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
2233 && hdr2->sh_link == shindex)
2234 break;
2235 }
2236
2237 if (i == num_sec)
2238 for (i = 1; i < shindex; i++)
2239 {
2240 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2241
2242 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
2243 && hdr2->sh_link == shindex)
2244 break;
2245 }
2246
2247 if (i != shindex)
2248 ret = bfd_section_from_shdr (abfd, i);
2249 /* else FIXME: we have failed to find the symbol table - should we issue an error ? */
2250 goto success;
2251 }
2252
2253 case SHT_DYNSYM: /* A dynamic symbol table. */
2254 if (elf_dynsymtab (abfd) == shindex)
2255 goto success;
2256
2257 if (hdr->sh_entsize != bed->s->sizeof_sym)
2258 goto fail;
2259
2260 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
2261 {
2262 if (hdr->sh_size != 0)
2263 goto fail;
2264
2265 /* Some linkers erroneously set sh_info to one with a
2266 zero sh_size. ld sees this as a global symbol count
2267 of (unsigned) -1. Fix it here. */
2268 hdr->sh_info = 0;
2269 goto success;
2270 }
2271
2272 /* PR 18854: A binary might contain more than one dynamic symbol table.
2273 Unusual, but possible. Warn, but continue. */
2274 if (elf_dynsymtab (abfd) != 0)
2275 {
2276 _bfd_error_handler
2277 /* xgettext:c-format */
2278 (_("%pB: warning: multiple dynamic symbol tables detected"
2279 " - ignoring the table in section %u"),
2280 abfd, shindex);
2281 goto success;
2282 }
2283 elf_dynsymtab (abfd) = shindex;
2284 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
2285 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2286 abfd->flags |= HAS_SYMS;
2287
2288 /* Besides being a symbol table, we also treat this as a regular
2289 section, so that objcopy can handle it. */
2290 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2291 goto success;
2292
2293 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections. */
2294 {
2295 elf_section_list * entry;
2296
2297 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
2298 if (entry->ndx == shindex)
2299 goto success;
2300
2301 entry = bfd_alloc (abfd, sizeof (*entry));
2302 if (entry == NULL)
2303 goto fail;
2304 entry->ndx = shindex;
2305 entry->hdr = * hdr;
2306 entry->next = elf_symtab_shndx_list (abfd);
2307 elf_symtab_shndx_list (abfd) = entry;
2308 elf_elfsections (abfd)[shindex] = & entry->hdr;
2309 goto success;
2310 }
2311
2312 case SHT_STRTAB: /* A string table. */
2313 if (hdr->bfd_section != NULL)
2314 goto success;
2315
2316 if (ehdr->e_shstrndx == shindex)
2317 {
2318 elf_tdata (abfd)->shstrtab_hdr = *hdr;
2319 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
2320 goto success;
2321 }
2322
2323 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
2324 {
2325 symtab_strtab:
2326 elf_tdata (abfd)->strtab_hdr = *hdr;
2327 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
2328 goto success;
2329 }
2330
2331 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
2332 {
2333 dynsymtab_strtab:
2334 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
2335 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
2336 elf_elfsections (abfd)[shindex] = hdr;
2337 /* We also treat this as a regular section, so that objcopy
2338 can handle it. */
2339 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2340 shindex);
2341 goto success;
2342 }
2343
2344 /* If the string table isn't one of the above, then treat it as a
2345 regular section. We need to scan all the headers to be sure,
2346 just in case this strtab section appeared before the above. */
2347 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
2348 {
2349 unsigned int i, num_sec;
2350
2351 num_sec = elf_numsections (abfd);
2352 for (i = 1; i < num_sec; i++)
2353 {
2354 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2355 if (hdr2->sh_link == shindex)
2356 {
2357 /* Prevent endless recursion on broken objects. */
2358 if (i == shindex)
2359 goto fail;
2360 if (! bfd_section_from_shdr (abfd, i))
2361 goto fail;
2362 if (elf_onesymtab (abfd) == i)
2363 goto symtab_strtab;
2364 if (elf_dynsymtab (abfd) == i)
2365 goto dynsymtab_strtab;
2366 }
2367 }
2368 }
2369 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2370 goto success;
2371
2372 case SHT_REL:
2373 case SHT_RELA:
2374 /* *These* do a lot of work -- but build no sections! */
2375 {
2376 asection *target_sect;
2377 Elf_Internal_Shdr *hdr2, **p_hdr;
2378 unsigned int num_sec = elf_numsections (abfd);
2379 struct bfd_elf_section_data *esdt;
2380
2381 if (hdr->sh_entsize
2382 != (bfd_size_type) (hdr->sh_type == SHT_REL
2383 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
2384 goto fail;
2385
2386 /* Check for a bogus link to avoid crashing. */
2387 if (hdr->sh_link >= num_sec)
2388 {
2389 _bfd_error_handler
2390 /* xgettext:c-format */
2391 (_("%pB: invalid link %u for reloc section %s (index %u)"),
2392 abfd, hdr->sh_link, name, shindex);
2393 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2394 shindex);
2395 goto success;
2396 }
2397
2398 /* For some incomprehensible reason Oracle distributes
2399 libraries for Solaris in which some of the objects have
2400 bogus sh_link fields. It would be nice if we could just
2401 reject them, but, unfortunately, some people need to use
2402 them. We scan through the section headers; if we find only
2403 one suitable symbol table, we clobber the sh_link to point
2404 to it. I hope this doesn't break anything.
2405
2406 Don't do it on executable nor shared library. */
2407 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0
2408 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
2409 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
2410 {
2411 unsigned int scan;
2412 int found;
2413
2414 found = 0;
2415 for (scan = 1; scan < num_sec; scan++)
2416 {
2417 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
2418 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
2419 {
2420 if (found != 0)
2421 {
2422 found = 0;
2423 break;
2424 }
2425 found = scan;
2426 }
2427 }
2428 if (found != 0)
2429 hdr->sh_link = found;
2430 }
2431
2432 /* Get the symbol table. */
2433 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
2434 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
2435 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
2436 goto fail;
2437
2438 /* If this is an alloc section in an executable or shared
2439 library, or the reloc section does not use the main symbol
2440 table we don't treat it as a reloc section. BFD can't
2441 adequately represent such a section, so at least for now,
2442 we don't try. We just present it as a normal section. We
2443 also can't use it as a reloc section if it points to the
2444 null section, an invalid section, another reloc section, or
2445 its sh_link points to the null section. */
2446 if (((abfd->flags & (DYNAMIC | EXEC_P)) != 0
2447 && (hdr->sh_flags & SHF_ALLOC) != 0)
2448 || hdr->sh_link == SHN_UNDEF
2449 || hdr->sh_link != elf_onesymtab (abfd)
2450 || hdr->sh_info == SHN_UNDEF
2451 || hdr->sh_info >= num_sec
2452 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
2453 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
2454 {
2455 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2456 shindex);
2457 goto success;
2458 }
2459
2460 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
2461 goto fail;
2462
2463 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
2464 if (target_sect == NULL)
2465 goto fail;
2466
2467 esdt = elf_section_data (target_sect);
2468 if (hdr->sh_type == SHT_RELA)
2469 p_hdr = &esdt->rela.hdr;
2470 else
2471 p_hdr = &esdt->rel.hdr;
2472
2473 /* PR 17512: file: 0b4f81b7.
2474 Also see PR 24456, for a file which deliberately has two reloc
2475 sections. */
2476 if (*p_hdr != NULL)
2477 {
2478 if (!bed->init_secondary_reloc_section (abfd, hdr, name, shindex))
2479 {
2480 _bfd_error_handler
2481 /* xgettext:c-format */
2482 (_("%pB: warning: secondary relocation section '%s' "
2483 "for section %pA found - ignoring"),
2484 abfd, name, target_sect);
2485 }
2486 goto success;
2487 }
2488
2489 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, sizeof (*hdr2));
2490 if (hdr2 == NULL)
2491 goto fail;
2492 *hdr2 = *hdr;
2493 *p_hdr = hdr2;
2494 elf_elfsections (abfd)[shindex] = hdr2;
2495 target_sect->reloc_count += (NUM_SHDR_ENTRIES (hdr)
2496 * bed->s->int_rels_per_ext_rel);
2497 target_sect->flags |= SEC_RELOC;
2498 target_sect->relocation = NULL;
2499 target_sect->rel_filepos = hdr->sh_offset;
2500 /* In the section to which the relocations apply, mark whether
2501 its relocations are of the REL or RELA variety. */
2502 if (hdr->sh_size != 0)
2503 {
2504 if (hdr->sh_type == SHT_RELA)
2505 target_sect->use_rela_p = 1;
2506 }
2507 abfd->flags |= HAS_RELOC;
2508 goto success;
2509 }
2510
2511 case SHT_GNU_verdef:
2512 elf_dynverdef (abfd) = shindex;
2513 elf_tdata (abfd)->dynverdef_hdr = *hdr;
2514 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2515 goto success;
2516
2517 case SHT_GNU_versym:
2518 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
2519 goto fail;
2520
2521 elf_dynversym (abfd) = shindex;
2522 elf_tdata (abfd)->dynversym_hdr = *hdr;
2523 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2524 goto success;
2525
2526 case SHT_GNU_verneed:
2527 elf_dynverref (abfd) = shindex;
2528 elf_tdata (abfd)->dynverref_hdr = *hdr;
2529 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2530 goto success;
2531
2532 case SHT_SHLIB:
2533 goto success;
2534
2535 case SHT_GROUP:
2536 if (! IS_VALID_GROUP_SECTION_HEADER (hdr, GRP_ENTRY_SIZE))
2537 goto fail;
2538
2539 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2540 goto fail;
2541
2542 goto success;
2543
2544 default:
2545 /* Possibly an attributes section. */
2546 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
2547 || hdr->sh_type == bed->obj_attrs_section_type)
2548 {
2549 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2550 goto fail;
2551 _bfd_elf_parse_attributes (abfd, hdr);
2552 goto success;
2553 }
2554
2555 /* Check for any processor-specific section types. */
2556 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
2557 goto success;
2558
2559 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
2560 {
2561 if ((hdr->sh_flags & SHF_ALLOC) != 0)
2562 /* FIXME: How to properly handle allocated section reserved
2563 for applications? */
2564 _bfd_error_handler
2565 /* xgettext:c-format */
2566 (_("%pB: unknown type [%#x] section `%s'"),
2567 abfd, hdr->sh_type, name);
2568 else
2569 {
2570 /* Allow sections reserved for applications. */
2571 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2572 shindex);
2573 goto success;
2574 }
2575 }
2576 else if (hdr->sh_type >= SHT_LOPROC
2577 && hdr->sh_type <= SHT_HIPROC)
2578 /* FIXME: We should handle this section. */
2579 _bfd_error_handler
2580 /* xgettext:c-format */
2581 (_("%pB: unknown type [%#x] section `%s'"),
2582 abfd, hdr->sh_type, name);
2583 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
2584 {
2585 /* Unrecognised OS-specific sections. */
2586 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
2587 /* SHF_OS_NONCONFORMING indicates that special knowledge is
2588 required to correctly process the section and the file should
2589 be rejected with an error message. */
2590 _bfd_error_handler
2591 /* xgettext:c-format */
2592 (_("%pB: unknown type [%#x] section `%s'"),
2593 abfd, hdr->sh_type, name);
2594 else
2595 {
2596 /* Otherwise it should be processed. */
2597 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2598 goto success;
2599 }
2600 }
2601 else
2602 /* FIXME: We should handle this section. */
2603 _bfd_error_handler
2604 /* xgettext:c-format */
2605 (_("%pB: unknown type [%#x] section `%s'"),
2606 abfd, hdr->sh_type, name);
2607
2608 goto fail;
2609 }
2610
2611 fail:
2612 ret = FALSE;
2613 success:
2614 if (sections_being_created && sections_being_created_abfd == abfd)
2615 sections_being_created [shindex] = FALSE;
2616 if (-- nesting == 0)
2617 {
2618 free (sections_being_created);
2619 sections_being_created = NULL;
2620 sections_being_created_abfd = NULL;
2621 }
2622 return ret;
2623 }
2624
2625 /* Return the local symbol specified by ABFD, R_SYMNDX. */
2626
2627 Elf_Internal_Sym *
2628 bfd_sym_from_r_symndx (struct sym_cache *cache,
2629 bfd *abfd,
2630 unsigned long r_symndx)
2631 {
2632 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2633
2634 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
2635 {
2636 Elf_Internal_Shdr *symtab_hdr;
2637 unsigned char esym[sizeof (Elf64_External_Sym)];
2638 Elf_External_Sym_Shndx eshndx;
2639
2640 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2641 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2642 &cache->sym[ent], esym, &eshndx) == NULL)
2643 return NULL;
2644
2645 if (cache->abfd != abfd)
2646 {
2647 memset (cache->indx, -1, sizeof (cache->indx));
2648 cache->abfd = abfd;
2649 }
2650 cache->indx[ent] = r_symndx;
2651 }
2652
2653 return &cache->sym[ent];
2654 }
2655
2656 /* Given an ELF section number, retrieve the corresponding BFD
2657 section. */
2658
2659 asection *
2660 bfd_section_from_elf_index (bfd *abfd, unsigned int sec_index)
2661 {
2662 if (sec_index >= elf_numsections (abfd))
2663 return NULL;
2664 return elf_elfsections (abfd)[sec_index]->bfd_section;
2665 }
2666
2667 static const struct bfd_elf_special_section special_sections_b[] =
2668 {
2669 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2670 { NULL, 0, 0, 0, 0 }
2671 };
2672
2673 static const struct bfd_elf_special_section special_sections_c[] =
2674 {
2675 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2676 { STRING_COMMA_LEN (".ctf"), 0, SHT_PROGBITS, 0 },
2677 { NULL, 0, 0, 0, 0 }
2678 };
2679
2680 static const struct bfd_elf_special_section special_sections_d[] =
2681 {
2682 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2683 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2684 /* There are more DWARF sections than these, but they needn't be added here
2685 unless you have to cope with broken compilers that don't emit section
2686 attributes or you want to help the user writing assembler. */
2687 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2688 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2689 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2690 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2691 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2692 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2693 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2694 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2695 { NULL, 0, 0, 0, 0 }
2696 };
2697
2698 static const struct bfd_elf_special_section special_sections_f[] =
2699 {
2700 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2701 { STRING_COMMA_LEN (".fini_array"), -2, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2702 { NULL, 0 , 0, 0, 0 }
2703 };
2704
2705 static const struct bfd_elf_special_section special_sections_g[] =
2706 {
2707 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2708 { STRING_COMMA_LEN (".gnu.linkonce.n"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2709 { STRING_COMMA_LEN (".gnu.linkonce.p"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2710 { STRING_COMMA_LEN (".gnu.lto_"), -1, SHT_PROGBITS, SHF_EXCLUDE },
2711 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2712 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2713 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2714 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2715 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2716 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2717 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2718 { NULL, 0, 0, 0, 0 }
2719 };
2720
2721 static const struct bfd_elf_special_section special_sections_h[] =
2722 {
2723 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2724 { NULL, 0, 0, 0, 0 }
2725 };
2726
2727 static const struct bfd_elf_special_section special_sections_i[] =
2728 {
2729 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2730 { STRING_COMMA_LEN (".init_array"), -2, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2731 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2732 { NULL, 0, 0, 0, 0 }
2733 };
2734
2735 static const struct bfd_elf_special_section special_sections_l[] =
2736 {
2737 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2738 { NULL, 0, 0, 0, 0 }
2739 };
2740
2741 static const struct bfd_elf_special_section special_sections_n[] =
2742 {
2743 { STRING_COMMA_LEN (".noinit"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2744 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2745 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2746 { NULL, 0, 0, 0, 0 }
2747 };
2748
2749 static const struct bfd_elf_special_section special_sections_p[] =
2750 {
2751 { STRING_COMMA_LEN (".persistent"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2752 { STRING_COMMA_LEN (".preinit_array"), -2, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2753 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2754 { NULL, 0, 0, 0, 0 }
2755 };
2756
2757 static const struct bfd_elf_special_section special_sections_r[] =
2758 {
2759 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2760 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2761 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2762 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2763 { NULL, 0, 0, 0, 0 }
2764 };
2765
2766 static const struct bfd_elf_special_section special_sections_s[] =
2767 {
2768 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2769 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2770 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2771 /* See struct bfd_elf_special_section declaration for the semantics of
2772 this special case where .prefix_length != strlen (.prefix). */
2773 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2774 { NULL, 0, 0, 0, 0 }
2775 };
2776
2777 static const struct bfd_elf_special_section special_sections_t[] =
2778 {
2779 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2780 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2781 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2782 { NULL, 0, 0, 0, 0 }
2783 };
2784
2785 static const struct bfd_elf_special_section special_sections_z[] =
2786 {
2787 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 },
2788 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 },
2789 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 },
2790 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 },
2791 { NULL, 0, 0, 0, 0 }
2792 };
2793
2794 static const struct bfd_elf_special_section * const special_sections[] =
2795 {
2796 special_sections_b, /* 'b' */
2797 special_sections_c, /* 'c' */
2798 special_sections_d, /* 'd' */
2799 NULL, /* 'e' */
2800 special_sections_f, /* 'f' */
2801 special_sections_g, /* 'g' */
2802 special_sections_h, /* 'h' */
2803 special_sections_i, /* 'i' */
2804 NULL, /* 'j' */
2805 NULL, /* 'k' */
2806 special_sections_l, /* 'l' */
2807 NULL, /* 'm' */
2808 special_sections_n, /* 'n' */
2809 NULL, /* 'o' */
2810 special_sections_p, /* 'p' */
2811 NULL, /* 'q' */
2812 special_sections_r, /* 'r' */
2813 special_sections_s, /* 's' */
2814 special_sections_t, /* 't' */
2815 NULL, /* 'u' */
2816 NULL, /* 'v' */
2817 NULL, /* 'w' */
2818 NULL, /* 'x' */
2819 NULL, /* 'y' */
2820 special_sections_z /* 'z' */
2821 };
2822
2823 const struct bfd_elf_special_section *
2824 _bfd_elf_get_special_section (const char *name,
2825 const struct bfd_elf_special_section *spec,
2826 unsigned int rela)
2827 {
2828 int i;
2829 int len;
2830
2831 len = strlen (name);
2832
2833 for (i = 0; spec[i].prefix != NULL; i++)
2834 {
2835 int suffix_len;
2836 int prefix_len = spec[i].prefix_length;
2837
2838 if (len < prefix_len)
2839 continue;
2840 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2841 continue;
2842
2843 suffix_len = spec[i].suffix_length;
2844 if (suffix_len <= 0)
2845 {
2846 if (name[prefix_len] != 0)
2847 {
2848 if (suffix_len == 0)
2849 continue;
2850 if (name[prefix_len] != '.'
2851 && (suffix_len == -2
2852 || (rela && spec[i].type == SHT_REL)))
2853 continue;
2854 }
2855 }
2856 else
2857 {
2858 if (len < prefix_len + suffix_len)
2859 continue;
2860 if (memcmp (name + len - suffix_len,
2861 spec[i].prefix + prefix_len,
2862 suffix_len) != 0)
2863 continue;
2864 }
2865 return &spec[i];
2866 }
2867
2868 return NULL;
2869 }
2870
2871 const struct bfd_elf_special_section *
2872 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2873 {
2874 int i;
2875 const struct bfd_elf_special_section *spec;
2876 const struct elf_backend_data *bed;
2877
2878 /* See if this is one of the special sections. */
2879 if (sec->name == NULL)
2880 return NULL;
2881
2882 bed = get_elf_backend_data (abfd);
2883 spec = bed->special_sections;
2884 if (spec)
2885 {
2886 spec = _bfd_elf_get_special_section (sec->name,
2887 bed->special_sections,
2888 sec->use_rela_p);
2889 if (spec != NULL)
2890 return spec;
2891 }
2892
2893 if (sec->name[0] != '.')
2894 return NULL;
2895
2896 i = sec->name[1] - 'b';
2897 if (i < 0 || i > 'z' - 'b')
2898 return NULL;
2899
2900 spec = special_sections[i];
2901
2902 if (spec == NULL)
2903 return NULL;
2904
2905 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2906 }
2907
2908 bfd_boolean
2909 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2910 {
2911 struct bfd_elf_section_data *sdata;
2912 const struct elf_backend_data *bed;
2913 const struct bfd_elf_special_section *ssect;
2914
2915 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2916 if (sdata == NULL)
2917 {
2918 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd,
2919 sizeof (*sdata));
2920 if (sdata == NULL)
2921 return FALSE;
2922 sec->used_by_bfd = sdata;
2923 }
2924
2925 /* Indicate whether or not this section should use RELA relocations. */
2926 bed = get_elf_backend_data (abfd);
2927 sec->use_rela_p = bed->default_use_rela_p;
2928
2929 /* Set up ELF section type and flags for newly created sections, if
2930 there is an ABI mandated section. */
2931 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2932 if (ssect != NULL)
2933 {
2934 elf_section_type (sec) = ssect->type;
2935 elf_section_flags (sec) = ssect->attr;
2936 }
2937
2938 return _bfd_generic_new_section_hook (abfd, sec);
2939 }
2940
2941 /* Create a new bfd section from an ELF program header.
2942
2943 Since program segments have no names, we generate a synthetic name
2944 of the form segment<NUM>, where NUM is generally the index in the
2945 program header table. For segments that are split (see below) we
2946 generate the names segment<NUM>a and segment<NUM>b.
2947
2948 Note that some program segments may have a file size that is different than
2949 (less than) the memory size. All this means is that at execution the
2950 system must allocate the amount of memory specified by the memory size,
2951 but only initialize it with the first "file size" bytes read from the
2952 file. This would occur for example, with program segments consisting
2953 of combined data+bss.
2954
2955 To handle the above situation, this routine generates TWO bfd sections
2956 for the single program segment. The first has the length specified by
2957 the file size of the segment, and the second has the length specified
2958 by the difference between the two sizes. In effect, the segment is split
2959 into its initialized and uninitialized parts.
2960
2961 */
2962
2963 bfd_boolean
2964 _bfd_elf_make_section_from_phdr (bfd *abfd,
2965 Elf_Internal_Phdr *hdr,
2966 int hdr_index,
2967 const char *type_name)
2968 {
2969 asection *newsect;
2970 char *name;
2971 char namebuf[64];
2972 size_t len;
2973 int split;
2974 unsigned int opb = bfd_octets_per_byte (abfd, NULL);
2975
2976 split = ((hdr->p_memsz > 0)
2977 && (hdr->p_filesz > 0)
2978 && (hdr->p_memsz > hdr->p_filesz));
2979
2980 if (hdr->p_filesz > 0)
2981 {
2982 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "a" : "");
2983 len = strlen (namebuf) + 1;
2984 name = (char *) bfd_alloc (abfd, len);
2985 if (!name)
2986 return FALSE;
2987 memcpy (name, namebuf, len);
2988 newsect = bfd_make_section (abfd, name);
2989 if (newsect == NULL)
2990 return FALSE;
2991 newsect->vma = hdr->p_vaddr / opb;
2992 newsect->lma = hdr->p_paddr / opb;
2993 newsect->size = hdr->p_filesz;
2994 newsect->filepos = hdr->p_offset;
2995 newsect->flags |= SEC_HAS_CONTENTS;
2996 newsect->alignment_power = bfd_log2 (hdr->p_align);
2997 if (hdr->p_type == PT_LOAD)
2998 {
2999 newsect->flags |= SEC_ALLOC;
3000 newsect->flags |= SEC_LOAD;
3001 if (hdr->p_flags & PF_X)
3002 {
3003 /* FIXME: all we known is that it has execute PERMISSION,
3004 may be data. */
3005 newsect->flags |= SEC_CODE;
3006 }
3007 }
3008 if (!(hdr->p_flags & PF_W))
3009 {
3010 newsect->flags |= SEC_READONLY;
3011 }
3012 }
3013
3014 if (hdr->p_memsz > hdr->p_filesz)
3015 {
3016 bfd_vma align;
3017
3018 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "b" : "");
3019 len = strlen (namebuf) + 1;
3020 name = (char *) bfd_alloc (abfd, len);
3021 if (!name)
3022 return FALSE;
3023 memcpy (name, namebuf, len);
3024 newsect = bfd_make_section (abfd, name);
3025 if (newsect == NULL)
3026 return FALSE;
3027 newsect->vma = (hdr->p_vaddr + hdr->p_filesz) / opb;
3028 newsect->lma = (hdr->p_paddr + hdr->p_filesz) / opb;
3029 newsect->size = hdr->p_memsz - hdr->p_filesz;
3030 newsect->filepos = hdr->p_offset + hdr->p_filesz;
3031 align = newsect->vma & -newsect->vma;
3032 if (align == 0 || align > hdr->p_align)
3033 align = hdr->p_align;
3034 newsect->alignment_power = bfd_log2 (align);
3035 if (hdr->p_type == PT_LOAD)
3036 {
3037 newsect->flags |= SEC_ALLOC;
3038 if (hdr->p_flags & PF_X)
3039 newsect->flags |= SEC_CODE;
3040 }
3041 if (!(hdr->p_flags & PF_W))
3042 newsect->flags |= SEC_READONLY;
3043 }
3044
3045 return TRUE;
3046 }
3047
3048 static bfd_boolean
3049 _bfd_elf_core_find_build_id (bfd *templ, bfd_vma offset)
3050 {
3051 /* The return value is ignored. Build-ids are considered optional. */
3052 if (templ->xvec->flavour == bfd_target_elf_flavour)
3053 return (*get_elf_backend_data (templ)->elf_backend_core_find_build_id)
3054 (templ, offset);
3055 return FALSE;
3056 }
3057
3058 bfd_boolean
3059 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int hdr_index)
3060 {
3061 const struct elf_backend_data *bed;
3062
3063 switch (hdr->p_type)
3064 {
3065 case PT_NULL:
3066 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "null");
3067
3068 case PT_LOAD:
3069 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "load"))
3070 return FALSE;
3071 if (bfd_get_format (abfd) == bfd_core && abfd->build_id == NULL)
3072 _bfd_elf_core_find_build_id (abfd, hdr->p_offset);
3073 return TRUE;
3074
3075 case PT_DYNAMIC:
3076 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "dynamic");
3077
3078 case PT_INTERP:
3079 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "interp");
3080
3081 case PT_NOTE:
3082 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "note"))
3083 return FALSE;
3084 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz,
3085 hdr->p_align))
3086 return FALSE;
3087 return TRUE;
3088
3089 case PT_SHLIB:
3090 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "shlib");
3091
3092 case PT_PHDR:
3093 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "phdr");
3094
3095 case PT_GNU_EH_FRAME:
3096 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index,
3097 "eh_frame_hdr");
3098
3099 case PT_GNU_STACK:
3100 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "stack");
3101
3102 case PT_GNU_RELRO:
3103 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "relro");
3104
3105 default:
3106 /* Check for any processor-specific program segment types. */
3107 bed = get_elf_backend_data (abfd);
3108 return bed->elf_backend_section_from_phdr (abfd, hdr, hdr_index, "proc");
3109 }
3110 }
3111
3112 /* Return the REL_HDR for SEC, assuming there is only a single one, either
3113 REL or RELA. */
3114
3115 Elf_Internal_Shdr *
3116 _bfd_elf_single_rel_hdr (asection *sec)
3117 {
3118 if (elf_section_data (sec)->rel.hdr)
3119 {
3120 BFD_ASSERT (elf_section_data (sec)->rela.hdr == NULL);
3121 return elf_section_data (sec)->rel.hdr;
3122 }
3123 else
3124 return elf_section_data (sec)->rela.hdr;
3125 }
3126
3127 static bfd_boolean
3128 _bfd_elf_set_reloc_sh_name (bfd *abfd,
3129 Elf_Internal_Shdr *rel_hdr,
3130 const char *sec_name,
3131 bfd_boolean use_rela_p)
3132 {
3133 char *name = (char *) bfd_alloc (abfd,
3134 sizeof ".rela" + strlen (sec_name));
3135 if (name == NULL)
3136 return FALSE;
3137
3138 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", sec_name);
3139 rel_hdr->sh_name =
3140 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
3141 FALSE);
3142 if (rel_hdr->sh_name == (unsigned int) -1)
3143 return FALSE;
3144
3145 return TRUE;
3146 }
3147
3148 /* Allocate and initialize a section-header for a new reloc section,
3149 containing relocations against ASECT. It is stored in RELDATA. If
3150 USE_RELA_P is TRUE, we use RELA relocations; otherwise, we use REL
3151 relocations. */
3152
3153 static bfd_boolean
3154 _bfd_elf_init_reloc_shdr (bfd *abfd,
3155 struct bfd_elf_section_reloc_data *reldata,
3156 const char *sec_name,
3157 bfd_boolean use_rela_p,
3158 bfd_boolean delay_st_name_p)
3159 {
3160 Elf_Internal_Shdr *rel_hdr;
3161 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3162
3163 BFD_ASSERT (reldata->hdr == NULL);
3164 rel_hdr = bfd_zalloc (abfd, sizeof (*rel_hdr));
3165 reldata->hdr = rel_hdr;
3166
3167 if (delay_st_name_p)
3168 rel_hdr->sh_name = (unsigned int) -1;
3169 else if (!_bfd_elf_set_reloc_sh_name (abfd, rel_hdr, sec_name,
3170 use_rela_p))
3171 return FALSE;
3172 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
3173 rel_hdr->sh_entsize = (use_rela_p
3174 ? bed->s->sizeof_rela
3175 : bed->s->sizeof_rel);
3176 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
3177 rel_hdr->sh_flags = 0;
3178 rel_hdr->sh_addr = 0;
3179 rel_hdr->sh_size = 0;
3180 rel_hdr->sh_offset = 0;
3181
3182 return TRUE;
3183 }
3184
3185 /* Return the default section type based on the passed in section flags. */
3186
3187 int
3188 bfd_elf_get_default_section_type (flagword flags)
3189 {
3190 if ((flags & (SEC_ALLOC | SEC_IS_COMMON)) != 0
3191 && (flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
3192 return SHT_NOBITS;
3193 return SHT_PROGBITS;
3194 }
3195
3196 struct fake_section_arg
3197 {
3198 struct bfd_link_info *link_info;
3199 bfd_boolean failed;
3200 };
3201
3202 /* Set up an ELF internal section header for a section. */
3203
3204 static void
3205 elf_fake_sections (bfd *abfd, asection *asect, void *fsarg)
3206 {
3207 struct fake_section_arg *arg = (struct fake_section_arg *)fsarg;
3208 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3209 struct bfd_elf_section_data *esd = elf_section_data (asect);
3210 Elf_Internal_Shdr *this_hdr;
3211 unsigned int sh_type;
3212 const char *name = asect->name;
3213 bfd_boolean delay_st_name_p = FALSE;
3214 bfd_vma mask;
3215
3216 if (arg->failed)
3217 {
3218 /* We already failed; just get out of the bfd_map_over_sections
3219 loop. */
3220 return;
3221 }
3222
3223 this_hdr = &esd->this_hdr;
3224
3225 if (arg->link_info)
3226 {
3227 /* ld: compress DWARF debug sections with names: .debug_*. */
3228 if ((arg->link_info->compress_debug & COMPRESS_DEBUG)
3229 && (asect->flags & SEC_DEBUGGING)
3230 && name[1] == 'd'
3231 && name[6] == '_')
3232 {
3233 /* Set SEC_ELF_COMPRESS to indicate this section should be
3234 compressed. */
3235 asect->flags |= SEC_ELF_COMPRESS;
3236 /* If this section will be compressed, delay adding section
3237 name to section name section after it is compressed in
3238 _bfd_elf_assign_file_positions_for_non_load. */
3239 delay_st_name_p = TRUE;
3240 }
3241 }
3242 else if ((asect->flags & SEC_ELF_RENAME))
3243 {
3244 /* objcopy: rename output DWARF debug section. */
3245 if ((abfd->flags & (BFD_DECOMPRESS | BFD_COMPRESS_GABI)))
3246 {
3247 /* When we decompress or compress with SHF_COMPRESSED,
3248 convert section name from .zdebug_* to .debug_* if
3249 needed. */
3250 if (name[1] == 'z')
3251 {
3252 char *new_name = convert_zdebug_to_debug (abfd, name);
3253 if (new_name == NULL)
3254 {
3255 arg->failed = TRUE;
3256 return;
3257 }
3258 name = new_name;
3259 }
3260 }
3261 else if (asect->compress_status == COMPRESS_SECTION_DONE)
3262 {
3263 /* PR binutils/18087: Compression does not always make a
3264 section smaller. So only rename the section when
3265 compression has actually taken place. If input section
3266 name is .zdebug_*, we should never compress it again. */
3267 char *new_name = convert_debug_to_zdebug (abfd, name);
3268 if (new_name == NULL)
3269 {
3270 arg->failed = TRUE;
3271 return;
3272 }
3273 BFD_ASSERT (name[1] != 'z');
3274 name = new_name;
3275 }
3276 }
3277
3278 if (delay_st_name_p)
3279 this_hdr->sh_name = (unsigned int) -1;
3280 else
3281 {
3282 this_hdr->sh_name
3283 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3284 name, FALSE);
3285 if (this_hdr->sh_name == (unsigned int) -1)
3286 {
3287 arg->failed = TRUE;
3288 return;
3289 }
3290 }
3291
3292 /* Don't clear sh_flags. Assembler may set additional bits. */
3293
3294 if ((asect->flags & SEC_ALLOC) != 0
3295 || asect->user_set_vma)
3296 this_hdr->sh_addr = asect->vma * bfd_octets_per_byte (abfd, asect);
3297 else
3298 this_hdr->sh_addr = 0;
3299
3300 this_hdr->sh_offset = 0;
3301 this_hdr->sh_size = asect->size;
3302 this_hdr->sh_link = 0;
3303 /* PR 17512: file: 0eb809fe, 8b0535ee. */
3304 if (asect->alignment_power >= (sizeof (bfd_vma) * 8) - 1)
3305 {
3306 _bfd_error_handler
3307 /* xgettext:c-format */
3308 (_("%pB: error: alignment power %d of section `%pA' is too big"),
3309 abfd, asect->alignment_power, asect);
3310 arg->failed = TRUE;
3311 return;
3312 }
3313 /* Set sh_addralign to the highest power of two given by alignment
3314 consistent with the section VMA. Linker scripts can force VMA. */
3315 mask = ((bfd_vma) 1 << asect->alignment_power) | this_hdr->sh_addr;
3316 this_hdr->sh_addralign = mask & -mask;
3317 /* The sh_entsize and sh_info fields may have been set already by
3318 copy_private_section_data. */
3319
3320 this_hdr->bfd_section = asect;
3321 this_hdr->contents = NULL;
3322
3323 /* If the section type is unspecified, we set it based on
3324 asect->flags. */
3325 if ((asect->flags & SEC_GROUP) != 0)
3326 sh_type = SHT_GROUP;
3327 else
3328 sh_type = bfd_elf_get_default_section_type (asect->flags);
3329
3330 if (this_hdr->sh_type == SHT_NULL)
3331 this_hdr->sh_type = sh_type;
3332 else if (this_hdr->sh_type == SHT_NOBITS
3333 && sh_type == SHT_PROGBITS
3334 && (asect->flags & SEC_ALLOC) != 0)
3335 {
3336 /* Warn if we are changing a NOBITS section to PROGBITS, but
3337 allow the link to proceed. This can happen when users link
3338 non-bss input sections to bss output sections, or emit data
3339 to a bss output section via a linker script. */
3340 _bfd_error_handler
3341 (_("warning: section `%pA' type changed to PROGBITS"), asect);
3342 this_hdr->sh_type = sh_type;
3343 }
3344
3345 switch (this_hdr->sh_type)
3346 {
3347 default:
3348 break;
3349
3350 case SHT_STRTAB:
3351 case SHT_NOTE:
3352 case SHT_NOBITS:
3353 case SHT_PROGBITS:
3354 break;
3355
3356 case SHT_INIT_ARRAY:
3357 case SHT_FINI_ARRAY:
3358 case SHT_PREINIT_ARRAY:
3359 this_hdr->sh_entsize = bed->s->arch_size / 8;
3360 break;
3361
3362 case SHT_HASH:
3363 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
3364 break;
3365
3366 case SHT_DYNSYM:
3367 this_hdr->sh_entsize = bed->s->sizeof_sym;
3368 break;
3369
3370 case SHT_DYNAMIC:
3371 this_hdr->sh_entsize = bed->s->sizeof_dyn;
3372 break;
3373
3374 case SHT_RELA:
3375 if (get_elf_backend_data (abfd)->may_use_rela_p)
3376 this_hdr->sh_entsize = bed->s->sizeof_rela;
3377 break;
3378
3379 case SHT_REL:
3380 if (get_elf_backend_data (abfd)->may_use_rel_p)
3381 this_hdr->sh_entsize = bed->s->sizeof_rel;
3382 break;
3383
3384 case SHT_GNU_versym:
3385 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
3386 break;
3387
3388 case SHT_GNU_verdef:
3389 this_hdr->sh_entsize = 0;
3390 /* objcopy or strip will copy over sh_info, but may not set
3391 cverdefs. The linker will set cverdefs, but sh_info will be
3392 zero. */
3393 if (this_hdr->sh_info == 0)
3394 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
3395 else
3396 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
3397 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
3398 break;
3399
3400 case SHT_GNU_verneed:
3401 this_hdr->sh_entsize = 0;
3402 /* objcopy or strip will copy over sh_info, but may not set
3403 cverrefs. The linker will set cverrefs, but sh_info will be
3404 zero. */
3405 if (this_hdr->sh_info == 0)
3406 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
3407 else
3408 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
3409 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
3410 break;
3411
3412 case SHT_GROUP:
3413 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
3414 break;
3415
3416 case SHT_GNU_HASH:
3417 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
3418 break;
3419 }
3420
3421 if ((asect->flags & SEC_ALLOC) != 0)
3422 this_hdr->sh_flags |= SHF_ALLOC;
3423 if ((asect->flags & SEC_READONLY) == 0)
3424 this_hdr->sh_flags |= SHF_WRITE;
3425 if ((asect->flags & SEC_CODE) != 0)
3426 this_hdr->sh_flags |= SHF_EXECINSTR;
3427 if ((asect->flags & SEC_MERGE) != 0)
3428 {
3429 this_hdr->sh_flags |= SHF_MERGE;
3430 this_hdr->sh_entsize = asect->entsize;
3431 }
3432 if ((asect->flags & SEC_STRINGS) != 0)
3433 this_hdr->sh_flags |= SHF_STRINGS;
3434 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
3435 this_hdr->sh_flags |= SHF_GROUP;
3436 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
3437 {
3438 this_hdr->sh_flags |= SHF_TLS;
3439 if (asect->size == 0
3440 && (asect->flags & SEC_HAS_CONTENTS) == 0)
3441 {
3442 struct bfd_link_order *o = asect->map_tail.link_order;
3443
3444 this_hdr->sh_size = 0;
3445 if (o != NULL)
3446 {
3447 this_hdr->sh_size = o->offset + o->size;
3448 if (this_hdr->sh_size != 0)
3449 this_hdr->sh_type = SHT_NOBITS;
3450 }
3451 }
3452 }
3453 if ((asect->flags & (SEC_GROUP | SEC_EXCLUDE)) == SEC_EXCLUDE)
3454 this_hdr->sh_flags |= SHF_EXCLUDE;
3455
3456 /* If the section has relocs, set up a section header for the
3457 SHT_REL[A] section. If two relocation sections are required for
3458 this section, it is up to the processor-specific back-end to
3459 create the other. */
3460 if ((asect->flags & SEC_RELOC) != 0)
3461 {
3462 /* When doing a relocatable link, create both REL and RELA sections if
3463 needed. */
3464 if (arg->link_info
3465 /* Do the normal setup if we wouldn't create any sections here. */
3466 && esd->rel.count + esd->rela.count > 0
3467 && (bfd_link_relocatable (arg->link_info)
3468 || arg->link_info->emitrelocations))
3469 {
3470 if (esd->rel.count && esd->rel.hdr == NULL
3471 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rel, name,
3472 FALSE, delay_st_name_p))
3473 {
3474 arg->failed = TRUE;
3475 return;
3476 }
3477 if (esd->rela.count && esd->rela.hdr == NULL
3478 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rela, name,
3479 TRUE, delay_st_name_p))
3480 {
3481 arg->failed = TRUE;
3482 return;
3483 }
3484 }
3485 else if (!_bfd_elf_init_reloc_shdr (abfd,
3486 (asect->use_rela_p
3487 ? &esd->rela : &esd->rel),
3488 name,
3489 asect->use_rela_p,
3490 delay_st_name_p))
3491 {
3492 arg->failed = TRUE;
3493 return;
3494 }
3495 }
3496
3497 /* Check for processor-specific section types. */
3498 sh_type = this_hdr->sh_type;
3499 if (bed->elf_backend_fake_sections
3500 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
3501 {
3502 arg->failed = TRUE;
3503 return;
3504 }
3505
3506 if (sh_type == SHT_NOBITS && asect->size != 0)
3507 {
3508 /* Don't change the header type from NOBITS if we are being
3509 called for objcopy --only-keep-debug. */
3510 this_hdr->sh_type = sh_type;
3511 }
3512 }
3513
3514 /* Fill in the contents of a SHT_GROUP section. Called from
3515 _bfd_elf_compute_section_file_positions for gas, objcopy, and
3516 when ELF targets use the generic linker, ld. Called for ld -r
3517 from bfd_elf_final_link. */
3518
3519 void
3520 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
3521 {
3522 bfd_boolean *failedptr = (bfd_boolean *) failedptrarg;
3523 asection *elt, *first;
3524 unsigned char *loc;
3525 bfd_boolean gas;
3526
3527 /* Ignore linker created group section. See elfNN_ia64_object_p in
3528 elfxx-ia64.c. */
3529 if ((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP
3530 || sec->size == 0
3531 || *failedptr)
3532 return;
3533
3534 if (elf_section_data (sec)->this_hdr.sh_info == 0)
3535 {
3536 unsigned long symindx = 0;
3537
3538 /* elf_group_id will have been set up by objcopy and the
3539 generic linker. */
3540 if (elf_group_id (sec) != NULL)
3541 symindx = elf_group_id (sec)->udata.i;
3542
3543 if (symindx == 0)
3544 {
3545 /* If called from the assembler, swap_out_syms will have set up
3546 elf_section_syms.
3547 PR 25699: A corrupt input file could contain bogus group info. */
3548 if (elf_section_syms (abfd) == NULL)
3549 {
3550 *failedptr = TRUE;
3551 return;
3552 }
3553 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
3554 }
3555 elf_section_data (sec)->this_hdr.sh_info = symindx;
3556 }
3557 else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2)
3558 {
3559 /* The ELF backend linker sets sh_info to -2 when the group
3560 signature symbol is global, and thus the index can't be
3561 set until all local symbols are output. */
3562 asection *igroup;
3563 struct bfd_elf_section_data *sec_data;
3564 unsigned long symndx;
3565 unsigned long extsymoff;
3566 struct elf_link_hash_entry *h;
3567
3568 /* The point of this little dance to the first SHF_GROUP section
3569 then back to the SHT_GROUP section is that this gets us to
3570 the SHT_GROUP in the input object. */
3571 igroup = elf_sec_group (elf_next_in_group (sec));
3572 sec_data = elf_section_data (igroup);
3573 symndx = sec_data->this_hdr.sh_info;
3574 extsymoff = 0;
3575 if (!elf_bad_symtab (igroup->owner))
3576 {
3577 Elf_Internal_Shdr *symtab_hdr;
3578
3579 symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr;
3580 extsymoff = symtab_hdr->sh_info;
3581 }
3582 h = elf_sym_hashes (igroup->owner)[symndx - extsymoff];
3583 while (h->root.type == bfd_link_hash_indirect
3584 || h->root.type == bfd_link_hash_warning)
3585 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3586
3587 elf_section_data (sec)->this_hdr.sh_info = h->indx;
3588 }
3589
3590 /* The contents won't be allocated for "ld -r" or objcopy. */
3591 gas = TRUE;
3592 if (sec->contents == NULL)
3593 {
3594 gas = FALSE;
3595 sec->contents = (unsigned char *) bfd_alloc (abfd, sec->size);
3596
3597 /* Arrange for the section to be written out. */
3598 elf_section_data (sec)->this_hdr.contents = sec->contents;
3599 if (sec->contents == NULL)
3600 {
3601 *failedptr = TRUE;
3602 return;
3603 }
3604 }
3605
3606 loc = sec->contents + sec->size;
3607
3608 /* Get the pointer to the first section in the group that gas
3609 squirreled away here. objcopy arranges for this to be set to the
3610 start of the input section group. */
3611 first = elt = elf_next_in_group (sec);
3612
3613 /* First element is a flag word. Rest of section is elf section
3614 indices for all the sections of the group. Write them backwards
3615 just to keep the group in the same order as given in .section
3616 directives, not that it matters. */
3617 while (elt != NULL)
3618 {
3619 asection *s;
3620
3621 s = elt;
3622 if (!gas)
3623 s = s->output_section;
3624 if (s != NULL
3625 && !bfd_is_abs_section (s))
3626 {
3627 struct bfd_elf_section_data *elf_sec = elf_section_data (s);
3628 struct bfd_elf_section_data *input_elf_sec = elf_section_data (elt);
3629
3630 if (elf_sec->rel.hdr != NULL
3631 && (gas
3632 || (input_elf_sec->rel.hdr != NULL
3633 && input_elf_sec->rel.hdr->sh_flags & SHF_GROUP) != 0))
3634 {
3635 elf_sec->rel.hdr->sh_flags |= SHF_GROUP;
3636 loc -= 4;
3637 H_PUT_32 (abfd, elf_sec->rel.idx, loc);
3638 }
3639 if (elf_sec->rela.hdr != NULL
3640 && (gas
3641 || (input_elf_sec->rela.hdr != NULL
3642 && input_elf_sec->rela.hdr->sh_flags & SHF_GROUP) != 0))
3643 {
3644 elf_sec->rela.hdr->sh_flags |= SHF_GROUP;
3645 loc -= 4;
3646 H_PUT_32 (abfd, elf_sec->rela.idx, loc);
3647 }
3648 loc -= 4;
3649 H_PUT_32 (abfd, elf_sec->this_idx, loc);
3650 }
3651 elt = elf_next_in_group (elt);
3652 if (elt == first)
3653 break;
3654 }
3655
3656 loc -= 4;
3657 BFD_ASSERT (loc == sec->contents);
3658
3659 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
3660 }
3661
3662 /* Given NAME, the name of a relocation section stripped of its
3663 .rel/.rela prefix, return the section in ABFD to which the
3664 relocations apply. */
3665
3666 asection *
3667 _bfd_elf_plt_get_reloc_section (bfd *abfd, const char *name)
3668 {
3669 /* If a target needs .got.plt section, relocations in rela.plt/rel.plt
3670 section likely apply to .got.plt or .got section. */
3671 if (get_elf_backend_data (abfd)->want_got_plt
3672 && strcmp (name, ".plt") == 0)
3673 {
3674 asection *sec;
3675
3676 name = ".got.plt";
3677 sec = bfd_get_section_by_name (abfd, name);
3678 if (sec != NULL)
3679 return sec;
3680 name = ".got";
3681 }
3682
3683 return bfd_get_section_by_name (abfd, name);
3684 }
3685
3686 /* Return the section to which RELOC_SEC applies. */
3687
3688 static asection *
3689 elf_get_reloc_section (asection *reloc_sec)
3690 {
3691 const char *name;
3692 unsigned int type;
3693 bfd *abfd;
3694 const struct elf_backend_data *bed;
3695
3696 type = elf_section_data (reloc_sec)->this_hdr.sh_type;
3697 if (type != SHT_REL && type != SHT_RELA)
3698 return NULL;
3699
3700 /* We look up the section the relocs apply to by name. */
3701 name = reloc_sec->name;
3702 if (strncmp (name, ".rel", 4) != 0)
3703 return NULL;
3704 name += 4;
3705 if (type == SHT_RELA && *name++ != 'a')
3706 return NULL;
3707
3708 abfd = reloc_sec->owner;
3709 bed = get_elf_backend_data (abfd);
3710 return bed->get_reloc_section (abfd, name);
3711 }
3712
3713 /* Assign all ELF section numbers. The dummy first section is handled here
3714 too. The link/info pointers for the standard section types are filled
3715 in here too, while we're at it. LINK_INFO will be 0 when arriving
3716 here for objcopy, and when using the generic ELF linker. */
3717
3718 static bfd_boolean
3719 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
3720 {
3721 struct elf_obj_tdata *t = elf_tdata (abfd);
3722 asection *sec;
3723 unsigned int section_number;
3724 Elf_Internal_Shdr **i_shdrp;
3725 struct bfd_elf_section_data *d;
3726 bfd_boolean need_symtab;
3727 size_t amt;
3728
3729 section_number = 1;
3730
3731 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
3732
3733 /* SHT_GROUP sections are in relocatable files only. */
3734 if (link_info == NULL || !link_info->resolve_section_groups)
3735 {
3736 size_t reloc_count = 0;
3737
3738 /* Put SHT_GROUP sections first. */
3739 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3740 {
3741 d = elf_section_data (sec);
3742
3743 if (d->this_hdr.sh_type == SHT_GROUP)
3744 {
3745 if (sec->flags & SEC_LINKER_CREATED)
3746 {
3747 /* Remove the linker created SHT_GROUP sections. */
3748 bfd_section_list_remove (abfd, sec);
3749 abfd->section_count--;
3750 }
3751 else
3752 d->this_idx = section_number++;
3753 }
3754
3755 /* Count relocations. */
3756 reloc_count += sec->reloc_count;
3757 }
3758
3759 /* Clear HAS_RELOC if there are no relocations. */
3760 if (reloc_count == 0)
3761 abfd->flags &= ~HAS_RELOC;
3762 }
3763
3764 for (sec = abfd->sections; sec; sec = sec->next)
3765 {
3766 d = elf_section_data (sec);
3767
3768 if (d->this_hdr.sh_type != SHT_GROUP)
3769 d->this_idx = section_number++;
3770 if (d->this_hdr.sh_name != (unsigned int) -1)
3771 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
3772 if (d->rel.hdr)
3773 {
3774 d->rel.idx = section_number++;
3775 if (d->rel.hdr->sh_name != (unsigned int) -1)
3776 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel.hdr->sh_name);
3777 }
3778 else
3779 d->rel.idx = 0;
3780
3781 if (d->rela.hdr)
3782 {
3783 d->rela.idx = section_number++;
3784 if (d->rela.hdr->sh_name != (unsigned int) -1)
3785 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rela.hdr->sh_name);
3786 }
3787 else
3788 d->rela.idx = 0;
3789 }
3790
3791 need_symtab = (bfd_get_symcount (abfd) > 0
3792 || (link_info == NULL
3793 && ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
3794 == HAS_RELOC)));
3795 if (need_symtab)
3796 {
3797 elf_onesymtab (abfd) = section_number++;
3798 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
3799 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
3800 {
3801 elf_section_list *entry;
3802
3803 BFD_ASSERT (elf_symtab_shndx_list (abfd) == NULL);
3804
3805 entry = bfd_zalloc (abfd, sizeof (*entry));
3806 entry->ndx = section_number++;
3807 elf_symtab_shndx_list (abfd) = entry;
3808 entry->hdr.sh_name
3809 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3810 ".symtab_shndx", FALSE);
3811 if (entry->hdr.sh_name == (unsigned int) -1)
3812 return FALSE;
3813 }
3814 elf_strtab_sec (abfd) = section_number++;
3815 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3816 }
3817
3818 elf_shstrtab_sec (abfd) = section_number++;
3819 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
3820 elf_elfheader (abfd)->e_shstrndx = elf_shstrtab_sec (abfd);
3821
3822 if (section_number >= SHN_LORESERVE)
3823 {
3824 /* xgettext:c-format */
3825 _bfd_error_handler (_("%pB: too many sections: %u"),
3826 abfd, section_number);
3827 return FALSE;
3828 }
3829
3830 elf_numsections (abfd) = section_number;
3831 elf_elfheader (abfd)->e_shnum = section_number;
3832
3833 /* Set up the list of section header pointers, in agreement with the
3834 indices. */
3835 amt = section_number * sizeof (Elf_Internal_Shdr *);
3836 i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc (abfd, amt);
3837 if (i_shdrp == NULL)
3838 return FALSE;
3839
3840 i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd,
3841 sizeof (Elf_Internal_Shdr));
3842 if (i_shdrp[0] == NULL)
3843 {
3844 bfd_release (abfd, i_shdrp);
3845 return FALSE;
3846 }
3847
3848 elf_elfsections (abfd) = i_shdrp;
3849
3850 i_shdrp[elf_shstrtab_sec (abfd)] = &t->shstrtab_hdr;
3851 if (need_symtab)
3852 {
3853 i_shdrp[elf_onesymtab (abfd)] = &t->symtab_hdr;
3854 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
3855 {
3856 elf_section_list * entry = elf_symtab_shndx_list (abfd);
3857 BFD_ASSERT (entry != NULL);
3858 i_shdrp[entry->ndx] = & entry->hdr;
3859 entry->hdr.sh_link = elf_onesymtab (abfd);
3860 }
3861 i_shdrp[elf_strtab_sec (abfd)] = &t->strtab_hdr;
3862 t->symtab_hdr.sh_link = elf_strtab_sec (abfd);
3863 }
3864
3865 for (sec = abfd->sections; sec; sec = sec->next)
3866 {
3867 asection *s;
3868
3869 d = elf_section_data (sec);
3870
3871 i_shdrp[d->this_idx] = &d->this_hdr;
3872 if (d->rel.idx != 0)
3873 i_shdrp[d->rel.idx] = d->rel.hdr;
3874 if (d->rela.idx != 0)
3875 i_shdrp[d->rela.idx] = d->rela.hdr;
3876
3877 /* Fill in the sh_link and sh_info fields while we're at it. */
3878
3879 /* sh_link of a reloc section is the section index of the symbol
3880 table. sh_info is the section index of the section to which
3881 the relocation entries apply. */
3882 if (d->rel.idx != 0)
3883 {
3884 d->rel.hdr->sh_link = elf_onesymtab (abfd);
3885 d->rel.hdr->sh_info = d->this_idx;
3886 d->rel.hdr->sh_flags |= SHF_INFO_LINK;
3887 }
3888 if (d->rela.idx != 0)
3889 {
3890 d->rela.hdr->sh_link = elf_onesymtab (abfd);
3891 d->rela.hdr->sh_info = d->this_idx;
3892 d->rela.hdr->sh_flags |= SHF_INFO_LINK;
3893 }
3894
3895 /* We need to set up sh_link for SHF_LINK_ORDER. */
3896 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3897 {
3898 s = elf_linked_to_section (sec);
3899 /* We can now have a NULL linked section pointer.
3900 This happens when the sh_link field is 0, which is done
3901 when a linked to section is discarded but the linking
3902 section has been retained for some reason. */
3903 if (s)
3904 {
3905 /* Check discarded linkonce section. */
3906 if (discarded_section (s))
3907 {
3908 asection *kept;
3909 _bfd_error_handler
3910 /* xgettext:c-format */
3911 (_("%pB: sh_link of section `%pA' points to"
3912 " discarded section `%pA' of `%pB'"),
3913 abfd, d->this_hdr.bfd_section, s, s->owner);
3914 /* Point to the kept section if it has the same
3915 size as the discarded one. */
3916 kept = _bfd_elf_check_kept_section (s, link_info);
3917 if (kept == NULL)
3918 {
3919 bfd_set_error (bfd_error_bad_value);
3920 return FALSE;
3921 }
3922 s = kept;
3923 }
3924 /* Handle objcopy. */
3925 else if (s->output_section == NULL)
3926 {
3927 _bfd_error_handler
3928 /* xgettext:c-format */
3929 (_("%pB: sh_link of section `%pA' points to"
3930 " removed section `%pA' of `%pB'"),
3931 abfd, d->this_hdr.bfd_section, s, s->owner);
3932 bfd_set_error (bfd_error_bad_value);
3933 return FALSE;
3934 }
3935 s = s->output_section;
3936 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3937 }
3938 }
3939
3940 switch (d->this_hdr.sh_type)
3941 {
3942 case SHT_REL:
3943 case SHT_RELA:
3944 /* A reloc section which we are treating as a normal BFD
3945 section. sh_link is the section index of the symbol
3946 table. sh_info is the section index of the section to
3947 which the relocation entries apply. We assume that an
3948 allocated reloc section uses the dynamic symbol table.
3949 FIXME: How can we be sure? */
3950 s = bfd_get_section_by_name (abfd, ".dynsym");
3951 if (s != NULL)
3952 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3953
3954 s = elf_get_reloc_section (sec);
3955 if (s != NULL)
3956 {
3957 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3958 d->this_hdr.sh_flags |= SHF_INFO_LINK;
3959 }
3960 break;
3961
3962 case SHT_STRTAB:
3963 /* We assume that a section named .stab*str is a stabs
3964 string section. We look for a section with the same name
3965 but without the trailing ``str'', and set its sh_link
3966 field to point to this section. */
3967 if (CONST_STRNEQ (sec->name, ".stab")
3968 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3969 {
3970 size_t len;
3971 char *alc;
3972
3973 len = strlen (sec->name);
3974 alc = (char *) bfd_malloc (len - 2);
3975 if (alc == NULL)
3976 return FALSE;
3977 memcpy (alc, sec->name, len - 3);
3978 alc[len - 3] = '\0';
3979 s = bfd_get_section_by_name (abfd, alc);
3980 free (alc);
3981 if (s != NULL)
3982 {
3983 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3984
3985 /* This is a .stab section. */
3986 elf_section_data (s)->this_hdr.sh_entsize = 12;
3987 }
3988 }
3989 break;
3990
3991 case SHT_DYNAMIC:
3992 case SHT_DYNSYM:
3993 case SHT_GNU_verneed:
3994 case SHT_GNU_verdef:
3995 /* sh_link is the section header index of the string table
3996 used for the dynamic entries, or the symbol table, or the
3997 version strings. */
3998 s = bfd_get_section_by_name (abfd, ".dynstr");
3999 if (s != NULL)
4000 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
4001 break;
4002
4003 case SHT_GNU_LIBLIST:
4004 /* sh_link is the section header index of the prelink library
4005 list used for the dynamic entries, or the symbol table, or
4006 the version strings. */
4007 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
4008 ? ".dynstr" : ".gnu.libstr");
4009 if (s != NULL)
4010 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
4011 break;
4012
4013 case SHT_HASH:
4014 case SHT_GNU_HASH:
4015 case SHT_GNU_versym:
4016 /* sh_link is the section header index of the symbol table
4017 this hash table or version table is for. */
4018 s = bfd_get_section_by_name (abfd, ".dynsym");
4019 if (s != NULL)
4020 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
4021 break;
4022
4023 case SHT_GROUP:
4024 d->this_hdr.sh_link = elf_onesymtab (abfd);
4025 }
4026 }
4027
4028 /* Delay setting sh_name to _bfd_elf_write_object_contents so that
4029 _bfd_elf_assign_file_positions_for_non_load can convert DWARF
4030 debug section name from .debug_* to .zdebug_* if needed. */
4031
4032 return TRUE;
4033 }
4034
4035 static bfd_boolean
4036 sym_is_global (bfd *abfd, asymbol *sym)
4037 {
4038 /* If the backend has a special mapping, use it. */
4039 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4040 if (bed->elf_backend_sym_is_global)
4041 return (*bed->elf_backend_sym_is_global) (abfd, sym);
4042
4043 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0
4044 || bfd_is_und_section (bfd_asymbol_section (sym))
4045 || bfd_is_com_section (bfd_asymbol_section (sym)));
4046 }
4047
4048 /* Filter global symbols of ABFD to include in the import library. All
4049 SYMCOUNT symbols of ABFD can be examined from their pointers in
4050 SYMS. Pointers of symbols to keep should be stored contiguously at
4051 the beginning of that array.
4052
4053 Returns the number of symbols to keep. */
4054
4055 unsigned int
4056 _bfd_elf_filter_global_symbols (bfd *abfd, struct bfd_link_info *info,
4057 asymbol **syms, long symcount)
4058 {
4059 long src_count, dst_count = 0;
4060
4061 for (src_count = 0; src_count < symcount; src_count++)
4062 {
4063 asymbol *sym = syms[src_count];
4064 char *name = (char *) bfd_asymbol_name (sym);
4065 struct bfd_link_hash_entry *h;
4066
4067 if (!sym_is_global (abfd, sym))
4068 continue;
4069
4070 h = bfd_link_hash_lookup (info->hash, name, FALSE, FALSE, FALSE);
4071 if (h == NULL)
4072 continue;
4073 if (h->type != bfd_link_hash_defined && h->type != bfd_link_hash_defweak)
4074 continue;
4075 if (h->linker_def || h->ldscript_def)
4076 continue;
4077
4078 syms[dst_count++] = sym;
4079 }
4080
4081 syms[dst_count] = NULL;
4082
4083 return dst_count;
4084 }
4085
4086 /* Don't output section symbols for sections that are not going to be
4087 output, that are duplicates or there is no BFD section. */
4088
4089 static bfd_boolean
4090 ignore_section_sym (bfd *abfd, asymbol *sym)
4091 {
4092 elf_symbol_type *type_ptr;
4093
4094 if (sym == NULL)
4095 return FALSE;
4096
4097 if ((sym->flags & BSF_SECTION_SYM) == 0)
4098 return FALSE;
4099
4100 if (sym->section == NULL)
4101 return TRUE;
4102
4103 type_ptr = elf_symbol_from (sym);
4104 return ((type_ptr != NULL
4105 && type_ptr->internal_elf_sym.st_shndx != 0
4106 && bfd_is_abs_section (sym->section))
4107 || !(sym->section->owner == abfd
4108 || (sym->section->output_section != NULL
4109 && sym->section->output_section->owner == abfd
4110 && sym->section->output_offset == 0)
4111 || bfd_is_abs_section (sym->section)));
4112 }
4113
4114 /* Map symbol from it's internal number to the external number, moving
4115 all local symbols to be at the head of the list. */
4116
4117 static bfd_boolean
4118 elf_map_symbols (bfd *abfd, unsigned int *pnum_locals)
4119 {
4120 unsigned int symcount = bfd_get_symcount (abfd);
4121 asymbol **syms = bfd_get_outsymbols (abfd);
4122 asymbol **sect_syms;
4123 unsigned int num_locals = 0;
4124 unsigned int num_globals = 0;
4125 unsigned int num_locals2 = 0;
4126 unsigned int num_globals2 = 0;
4127 unsigned int max_index = 0;
4128 unsigned int idx;
4129 asection *asect;
4130 asymbol **new_syms;
4131 size_t amt;
4132
4133 #ifdef DEBUG
4134 fprintf (stderr, "elf_map_symbols\n");
4135 fflush (stderr);
4136 #endif
4137
4138 for (asect = abfd->sections; asect; asect = asect->next)
4139 {
4140 if (max_index < asect->index)
4141 max_index = asect->index;
4142 }
4143
4144 max_index++;
4145 amt = max_index * sizeof (asymbol *);
4146 sect_syms = (asymbol **) bfd_zalloc (abfd, amt);
4147 if (sect_syms == NULL)
4148 return FALSE;
4149 elf_section_syms (abfd) = sect_syms;
4150 elf_num_section_syms (abfd) = max_index;
4151
4152 /* Init sect_syms entries for any section symbols we have already
4153 decided to output. */
4154 for (idx = 0; idx < symcount; idx++)
4155 {
4156 asymbol *sym = syms[idx];
4157
4158 if ((sym->flags & BSF_SECTION_SYM) != 0
4159 && sym->value == 0
4160 && !ignore_section_sym (abfd, sym)
4161 && !bfd_is_abs_section (sym->section))
4162 {
4163 asection *sec = sym->section;
4164
4165 if (sec->owner != abfd)
4166 sec = sec->output_section;
4167
4168 sect_syms[sec->index] = syms[idx];
4169 }
4170 }
4171
4172 /* Classify all of the symbols. */
4173 for (idx = 0; idx < symcount; idx++)
4174 {
4175 if (sym_is_global (abfd, syms[idx]))
4176 num_globals++;
4177 else if (!ignore_section_sym (abfd, syms[idx]))
4178 num_locals++;
4179 }
4180
4181 /* We will be adding a section symbol for each normal BFD section. Most
4182 sections will already have a section symbol in outsymbols, but
4183 eg. SHT_GROUP sections will not, and we need the section symbol mapped
4184 at least in that case. */
4185 for (asect = abfd->sections; asect; asect = asect->next)
4186 {
4187 if (sect_syms[asect->index] == NULL)
4188 {
4189 if (!sym_is_global (abfd, asect->symbol))
4190 num_locals++;
4191 else
4192 num_globals++;
4193 }
4194 }
4195
4196 /* Now sort the symbols so the local symbols are first. */
4197 amt = (num_locals + num_globals) * sizeof (asymbol *);
4198 new_syms = (asymbol **) bfd_alloc (abfd, amt);
4199 if (new_syms == NULL)
4200 return FALSE;
4201
4202 for (idx = 0; idx < symcount; idx++)
4203 {
4204 asymbol *sym = syms[idx];
4205 unsigned int i;
4206
4207 if (sym_is_global (abfd, sym))
4208 i = num_locals + num_globals2++;
4209 else if (!ignore_section_sym (abfd, sym))
4210 i = num_locals2++;
4211 else
4212 continue;
4213 new_syms[i] = sym;
4214 sym->udata.i = i + 1;
4215 }
4216 for (asect = abfd->sections; asect; asect = asect->next)
4217 {
4218 if (sect_syms[asect->index] == NULL)
4219 {
4220 asymbol *sym = asect->symbol;
4221 unsigned int i;
4222
4223 sect_syms[asect->index] = sym;
4224 if (!sym_is_global (abfd, sym))
4225 i = num_locals2++;
4226 else
4227 i = num_locals + num_globals2++;
4228 new_syms[i] = sym;
4229 sym->udata.i = i + 1;
4230 }
4231 }
4232
4233 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
4234
4235 *pnum_locals = num_locals;
4236 return TRUE;
4237 }
4238
4239 /* Align to the maximum file alignment that could be required for any
4240 ELF data structure. */
4241
4242 static inline file_ptr
4243 align_file_position (file_ptr off, int align)
4244 {
4245 return (off + align - 1) & ~(align - 1);
4246 }
4247
4248 /* Assign a file position to a section, optionally aligning to the
4249 required section alignment. */
4250
4251 file_ptr
4252 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
4253 file_ptr offset,
4254 bfd_boolean align)
4255 {
4256 if (align && i_shdrp->sh_addralign > 1)
4257 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
4258 i_shdrp->sh_offset = offset;
4259 if (i_shdrp->bfd_section != NULL)
4260 i_shdrp->bfd_section->filepos = offset;
4261 if (i_shdrp->sh_type != SHT_NOBITS)
4262 offset += i_shdrp->sh_size;
4263 return offset;
4264 }
4265
4266 /* Compute the file positions we are going to put the sections at, and
4267 otherwise prepare to begin writing out the ELF file. If LINK_INFO
4268 is not NULL, this is being called by the ELF backend linker. */
4269
4270 bfd_boolean
4271 _bfd_elf_compute_section_file_positions (bfd *abfd,
4272 struct bfd_link_info *link_info)
4273 {
4274 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4275 struct fake_section_arg fsargs;
4276 bfd_boolean failed;
4277 struct elf_strtab_hash *strtab = NULL;
4278 Elf_Internal_Shdr *shstrtab_hdr;
4279 bfd_boolean need_symtab;
4280
4281 if (abfd->output_has_begun)
4282 return TRUE;
4283
4284 /* Do any elf backend specific processing first. */
4285 if (bed->elf_backend_begin_write_processing)
4286 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
4287
4288 if (!(*bed->elf_backend_init_file_header) (abfd, link_info))
4289 return FALSE;
4290
4291 fsargs.failed = FALSE;
4292 fsargs.link_info = link_info;
4293 bfd_map_over_sections (abfd, elf_fake_sections, &fsargs);
4294 if (fsargs.failed)
4295 return FALSE;
4296
4297 if (!assign_section_numbers (abfd, link_info))
4298 return FALSE;
4299
4300 /* The backend linker builds symbol table information itself. */
4301 need_symtab = (link_info == NULL
4302 && (bfd_get_symcount (abfd) > 0
4303 || ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
4304 == HAS_RELOC)));
4305 if (need_symtab)
4306 {
4307 /* Non-zero if doing a relocatable link. */
4308 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
4309
4310 if (! swap_out_syms (abfd, &strtab, relocatable_p, link_info))
4311 return FALSE;
4312 }
4313
4314 failed = FALSE;
4315 if (link_info == NULL)
4316 {
4317 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
4318 if (failed)
4319 return FALSE;
4320 }
4321
4322 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
4323 /* sh_name was set in init_file_header. */
4324 shstrtab_hdr->sh_type = SHT_STRTAB;
4325 shstrtab_hdr->sh_flags = bed->elf_strtab_flags;
4326 shstrtab_hdr->sh_addr = 0;
4327 /* sh_size is set in _bfd_elf_assign_file_positions_for_non_load. */
4328 shstrtab_hdr->sh_entsize = 0;
4329 shstrtab_hdr->sh_link = 0;
4330 shstrtab_hdr->sh_info = 0;
4331 /* sh_offset is set in _bfd_elf_assign_file_positions_for_non_load. */
4332 shstrtab_hdr->sh_addralign = 1;
4333
4334 if (!assign_file_positions_except_relocs (abfd, link_info))
4335 return FALSE;
4336
4337 if (need_symtab)
4338 {
4339 file_ptr off;
4340 Elf_Internal_Shdr *hdr;
4341
4342 off = elf_next_file_pos (abfd);
4343
4344 hdr = & elf_symtab_hdr (abfd);
4345 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4346
4347 if (elf_symtab_shndx_list (abfd) != NULL)
4348 {
4349 hdr = & elf_symtab_shndx_list (abfd)->hdr;
4350 if (hdr->sh_size != 0)
4351 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4352 /* FIXME: What about other symtab_shndx sections in the list ? */
4353 }
4354
4355 hdr = &elf_tdata (abfd)->strtab_hdr;
4356 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4357
4358 elf_next_file_pos (abfd) = off;
4359
4360 /* Now that we know where the .strtab section goes, write it
4361 out. */
4362 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
4363 || ! _bfd_elf_strtab_emit (abfd, strtab))
4364 return FALSE;
4365 _bfd_elf_strtab_free (strtab);
4366 }
4367
4368 abfd->output_has_begun = TRUE;
4369
4370 return TRUE;
4371 }
4372
4373 /* Make an initial estimate of the size of the program header. If we
4374 get the number wrong here, we'll redo section placement. */
4375
4376 static bfd_size_type
4377 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
4378 {
4379 size_t segs;
4380 asection *s;
4381 const struct elf_backend_data *bed;
4382
4383 /* Assume we will need exactly two PT_LOAD segments: one for text
4384 and one for data. */
4385 segs = 2;
4386
4387 s = bfd_get_section_by_name (abfd, ".interp");
4388 if (s != NULL && (s->flags & SEC_LOAD) != 0 && s->size != 0)
4389 {
4390 /* If we have a loadable interpreter section, we need a
4391 PT_INTERP segment. In this case, assume we also need a
4392 PT_PHDR segment, although that may not be true for all
4393 targets. */
4394 segs += 2;
4395 }
4396
4397 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4398 {
4399 /* We need a PT_DYNAMIC segment. */
4400 ++segs;
4401 }
4402
4403 if (info != NULL && info->relro)
4404 {
4405 /* We need a PT_GNU_RELRO segment. */
4406 ++segs;
4407 }
4408
4409 if (elf_eh_frame_hdr (abfd))
4410 {
4411 /* We need a PT_GNU_EH_FRAME segment. */
4412 ++segs;
4413 }
4414
4415 if (elf_stack_flags (abfd))
4416 {
4417 /* We need a PT_GNU_STACK segment. */
4418 ++segs;
4419 }
4420
4421 s = bfd_get_section_by_name (abfd,
4422 NOTE_GNU_PROPERTY_SECTION_NAME);
4423 if (s != NULL && s->size != 0)
4424 {
4425 /* We need a PT_GNU_PROPERTY segment. */
4426 ++segs;
4427 }
4428
4429 for (s = abfd->sections; s != NULL; s = s->next)
4430 {
4431 if ((s->flags & SEC_LOAD) != 0
4432 && elf_section_type (s) == SHT_NOTE)
4433 {
4434 unsigned int alignment_power;
4435 /* We need a PT_NOTE segment. */
4436 ++segs;
4437 /* Try to create just one PT_NOTE segment for all adjacent
4438 loadable SHT_NOTE sections. gABI requires that within a
4439 PT_NOTE segment (and also inside of each SHT_NOTE section)
4440 each note should have the same alignment. So we check
4441 whether the sections are correctly aligned. */
4442 alignment_power = s->alignment_power;
4443 while (s->next != NULL
4444 && s->next->alignment_power == alignment_power
4445 && (s->next->flags & SEC_LOAD) != 0
4446 && elf_section_type (s->next) == SHT_NOTE)
4447 s = s->next;
4448 }
4449 }
4450
4451 for (s = abfd->sections; s != NULL; s = s->next)
4452 {
4453 if (s->flags & SEC_THREAD_LOCAL)
4454 {
4455 /* We need a PT_TLS segment. */
4456 ++segs;
4457 break;
4458 }
4459 }
4460
4461 bed = get_elf_backend_data (abfd);
4462
4463 if ((abfd->flags & D_PAGED) != 0
4464 && (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_mbind) != 0)
4465 {
4466 /* Add a PT_GNU_MBIND segment for each mbind section. */
4467 unsigned int page_align_power = bfd_log2 (bed->commonpagesize);
4468 for (s = abfd->sections; s != NULL; s = s->next)
4469 if (elf_section_flags (s) & SHF_GNU_MBIND)
4470 {
4471 if (elf_section_data (s)->this_hdr.sh_info > PT_GNU_MBIND_NUM)
4472 {
4473 _bfd_error_handler
4474 /* xgettext:c-format */
4475 (_("%pB: GNU_MBIND section `%pA' has invalid "
4476 "sh_info field: %d"),
4477 abfd, s, elf_section_data (s)->this_hdr.sh_info);
4478 continue;
4479 }
4480 /* Align mbind section to page size. */
4481 if (s->alignment_power < page_align_power)
4482 s->alignment_power = page_align_power;
4483 segs ++;
4484 }
4485 }
4486
4487 /* Let the backend count up any program headers it might need. */
4488 if (bed->elf_backend_additional_program_headers)
4489 {
4490 int a;
4491
4492 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
4493 if (a == -1)
4494 abort ();
4495 segs += a;
4496 }
4497
4498 return segs * bed->s->sizeof_phdr;
4499 }
4500
4501 /* Find the segment that contains the output_section of section. */
4502
4503 Elf_Internal_Phdr *
4504 _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
4505 {
4506 struct elf_segment_map *m;
4507 Elf_Internal_Phdr *p;
4508
4509 for (m = elf_seg_map (abfd), p = elf_tdata (abfd)->phdr;
4510 m != NULL;
4511 m = m->next, p++)
4512 {
4513 int i;
4514
4515 for (i = m->count - 1; i >= 0; i--)
4516 if (m->sections[i] == section)
4517 return p;
4518 }
4519
4520 return NULL;
4521 }
4522
4523 /* Create a mapping from a set of sections to a program segment. */
4524
4525 static struct elf_segment_map *
4526 make_mapping (bfd *abfd,
4527 asection **sections,
4528 unsigned int from,
4529 unsigned int to,
4530 bfd_boolean phdr)
4531 {
4532 struct elf_segment_map *m;
4533 unsigned int i;
4534 asection **hdrpp;
4535 size_t amt;
4536
4537 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
4538 amt += (to - from) * sizeof (asection *);
4539 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4540 if (m == NULL)
4541 return NULL;
4542 m->next = NULL;
4543 m->p_type = PT_LOAD;
4544 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
4545 m->sections[i - from] = *hdrpp;
4546 m->count = to - from;
4547
4548 if (from == 0 && phdr)
4549 {
4550 /* Include the headers in the first PT_LOAD segment. */
4551 m->includes_filehdr = 1;
4552 m->includes_phdrs = 1;
4553 }
4554
4555 return m;
4556 }
4557
4558 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
4559 on failure. */
4560
4561 struct elf_segment_map *
4562 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
4563 {
4564 struct elf_segment_map *m;
4565
4566 m = (struct elf_segment_map *) bfd_zalloc (abfd,
4567 sizeof (struct elf_segment_map));
4568 if (m == NULL)
4569 return NULL;
4570 m->next = NULL;
4571 m->p_type = PT_DYNAMIC;
4572 m->count = 1;
4573 m->sections[0] = dynsec;
4574
4575 return m;
4576 }
4577
4578 /* Possibly add or remove segments from the segment map. */
4579
4580 static bfd_boolean
4581 elf_modify_segment_map (bfd *abfd,
4582 struct bfd_link_info *info,
4583 bfd_boolean remove_empty_load)
4584 {
4585 struct elf_segment_map **m;
4586 const struct elf_backend_data *bed;
4587
4588 /* The placement algorithm assumes that non allocated sections are
4589 not in PT_LOAD segments. We ensure this here by removing such
4590 sections from the segment map. We also remove excluded
4591 sections. Finally, any PT_LOAD segment without sections is
4592 removed. */
4593 m = &elf_seg_map (abfd);
4594 while (*m)
4595 {
4596 unsigned int i, new_count;
4597
4598 for (new_count = 0, i = 0; i < (*m)->count; i++)
4599 {
4600 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
4601 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
4602 || (*m)->p_type != PT_LOAD))
4603 {
4604 (*m)->sections[new_count] = (*m)->sections[i];
4605 new_count++;
4606 }
4607 }
4608 (*m)->count = new_count;
4609
4610 if (remove_empty_load
4611 && (*m)->p_type == PT_LOAD
4612 && (*m)->count == 0
4613 && !(*m)->includes_phdrs)
4614 *m = (*m)->next;
4615 else
4616 m = &(*m)->next;
4617 }
4618
4619 bed = get_elf_backend_data (abfd);
4620 if (bed->elf_backend_modify_segment_map != NULL)
4621 {
4622 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
4623 return FALSE;
4624 }
4625
4626 return TRUE;
4627 }
4628
4629 #define IS_TBSS(s) \
4630 ((s->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) == SEC_THREAD_LOCAL)
4631
4632 /* Set up a mapping from BFD sections to program segments. */
4633
4634 bfd_boolean
4635 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
4636 {
4637 unsigned int count;
4638 struct elf_segment_map *m;
4639 asection **sections = NULL;
4640 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4641 bfd_boolean no_user_phdrs;
4642
4643 no_user_phdrs = elf_seg_map (abfd) == NULL;
4644
4645 if (info != NULL)
4646 info->user_phdrs = !no_user_phdrs;
4647
4648 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
4649 {
4650 asection *s;
4651 unsigned int i;
4652 struct elf_segment_map *mfirst;
4653 struct elf_segment_map **pm;
4654 asection *last_hdr;
4655 bfd_vma last_size;
4656 unsigned int hdr_index;
4657 bfd_vma maxpagesize;
4658 asection **hdrpp;
4659 bfd_boolean phdr_in_segment;
4660 bfd_boolean writable;
4661 bfd_boolean executable;
4662 unsigned int tls_count = 0;
4663 asection *first_tls = NULL;
4664 asection *first_mbind = NULL;
4665 asection *dynsec, *eh_frame_hdr;
4666 size_t amt;
4667 bfd_vma addr_mask, wrap_to = 0; /* Bytes. */
4668 bfd_size_type phdr_size; /* Octets/bytes. */
4669 unsigned int opb = bfd_octets_per_byte (abfd, NULL);
4670
4671 /* Select the allocated sections, and sort them. */
4672
4673 amt = bfd_count_sections (abfd) * sizeof (asection *);
4674 sections = (asection **) bfd_malloc (amt);
4675 if (sections == NULL)
4676 goto error_return;
4677
4678 /* Calculate top address, avoiding undefined behaviour of shift
4679 left operator when shift count is equal to size of type
4680 being shifted. */
4681 addr_mask = ((bfd_vma) 1 << (bfd_arch_bits_per_address (abfd) - 1)) - 1;
4682 addr_mask = (addr_mask << 1) + 1;
4683
4684 i = 0;
4685 for (s = abfd->sections; s != NULL; s = s->next)
4686 {
4687 if ((s->flags & SEC_ALLOC) != 0)
4688 {
4689 /* target_index is unused until bfd_elf_final_link
4690 starts output of section symbols. Use it to make
4691 qsort stable. */
4692 s->target_index = i;
4693 sections[i] = s;
4694 ++i;
4695 /* A wrapping section potentially clashes with header. */
4696 if (((s->lma + s->size / opb) & addr_mask) < (s->lma & addr_mask))
4697 wrap_to = (s->lma + s->size / opb) & addr_mask;
4698 }
4699 }
4700 BFD_ASSERT (i <= bfd_count_sections (abfd));
4701 count = i;
4702
4703 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
4704
4705 phdr_size = elf_program_header_size (abfd);
4706 if (phdr_size == (bfd_size_type) -1)
4707 phdr_size = get_program_header_size (abfd, info);
4708 phdr_size += bed->s->sizeof_ehdr;
4709 /* phdr_size is compared to LMA values which are in bytes. */
4710 phdr_size /= opb;
4711 maxpagesize = bed->maxpagesize;
4712 if (maxpagesize == 0)
4713 maxpagesize = 1;
4714 phdr_in_segment = info != NULL && info->load_phdrs;
4715 if (count != 0
4716 && (((sections[0]->lma & addr_mask) & (maxpagesize - 1))
4717 >= (phdr_size & (maxpagesize - 1))))
4718 /* For compatibility with old scripts that may not be using
4719 SIZEOF_HEADERS, add headers when it looks like space has
4720 been left for them. */
4721 phdr_in_segment = TRUE;
4722
4723 /* Build the mapping. */
4724 mfirst = NULL;
4725 pm = &mfirst;
4726
4727 /* If we have a .interp section, then create a PT_PHDR segment for
4728 the program headers and a PT_INTERP segment for the .interp
4729 section. */
4730 s = bfd_get_section_by_name (abfd, ".interp");
4731 if (s != NULL && (s->flags & SEC_LOAD) != 0 && s->size != 0)
4732 {
4733 amt = sizeof (struct elf_segment_map);
4734 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4735 if (m == NULL)
4736 goto error_return;
4737 m->next = NULL;
4738 m->p_type = PT_PHDR;
4739 m->p_flags = PF_R;
4740 m->p_flags_valid = 1;
4741 m->includes_phdrs = 1;
4742 phdr_in_segment = TRUE;
4743 *pm = m;
4744 pm = &m->next;
4745
4746 amt = sizeof (struct elf_segment_map);
4747 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4748 if (m == NULL)
4749 goto error_return;
4750 m->next = NULL;
4751 m->p_type = PT_INTERP;
4752 m->count = 1;
4753 m->sections[0] = s;
4754
4755 *pm = m;
4756 pm = &m->next;
4757 }
4758
4759 /* Look through the sections. We put sections in the same program
4760 segment when the start of the second section can be placed within
4761 a few bytes of the end of the first section. */
4762 last_hdr = NULL;
4763 last_size = 0;
4764 hdr_index = 0;
4765 writable = FALSE;
4766 executable = FALSE;
4767 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
4768 if (dynsec != NULL
4769 && (dynsec->flags & SEC_LOAD) == 0)
4770 dynsec = NULL;
4771
4772 if ((abfd->flags & D_PAGED) == 0)
4773 phdr_in_segment = FALSE;
4774
4775 /* Deal with -Ttext or something similar such that the first section
4776 is not adjacent to the program headers. This is an
4777 approximation, since at this point we don't know exactly how many
4778 program headers we will need. */
4779 if (phdr_in_segment && count > 0)
4780 {
4781 bfd_vma phdr_lma; /* Bytes. */
4782 bfd_boolean separate_phdr = FALSE;
4783
4784 phdr_lma = (sections[0]->lma - phdr_size) & addr_mask & -maxpagesize;
4785 if (info != NULL
4786 && info->separate_code
4787 && (sections[0]->flags & SEC_CODE) != 0)
4788 {
4789 /* If data sections should be separate from code and
4790 thus not executable, and the first section is
4791 executable then put the file and program headers in
4792 their own PT_LOAD. */
4793 separate_phdr = TRUE;
4794 if ((((phdr_lma + phdr_size - 1) & addr_mask & -maxpagesize)
4795 == (sections[0]->lma & addr_mask & -maxpagesize)))
4796 {
4797 /* The file and program headers are currently on the
4798 same page as the first section. Put them on the
4799 previous page if we can. */
4800 if (phdr_lma >= maxpagesize)
4801 phdr_lma -= maxpagesize;
4802 else
4803 separate_phdr = FALSE;
4804 }
4805 }
4806 if ((sections[0]->lma & addr_mask) < phdr_lma
4807 || (sections[0]->lma & addr_mask) < phdr_size)
4808 /* If file and program headers would be placed at the end
4809 of memory then it's probably better to omit them. */
4810 phdr_in_segment = FALSE;
4811 else if (phdr_lma < wrap_to)
4812 /* If a section wraps around to where we'll be placing
4813 file and program headers, then the headers will be
4814 overwritten. */
4815 phdr_in_segment = FALSE;
4816 else if (separate_phdr)
4817 {
4818 m = make_mapping (abfd, sections, 0, 0, phdr_in_segment);
4819 if (m == NULL)
4820 goto error_return;
4821 m->p_paddr = phdr_lma * opb;
4822 m->p_vaddr_offset
4823 = (sections[0]->vma - phdr_size) & addr_mask & -maxpagesize;
4824 m->p_paddr_valid = 1;
4825 *pm = m;
4826 pm = &m->next;
4827 phdr_in_segment = FALSE;
4828 }
4829 }
4830
4831 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
4832 {
4833 asection *hdr;
4834 bfd_boolean new_segment;
4835
4836 hdr = *hdrpp;
4837
4838 /* See if this section and the last one will fit in the same
4839 segment. */
4840
4841 if (last_hdr == NULL)
4842 {
4843 /* If we don't have a segment yet, then we don't need a new
4844 one (we build the last one after this loop). */
4845 new_segment = FALSE;
4846 }
4847 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
4848 {
4849 /* If this section has a different relation between the
4850 virtual address and the load address, then we need a new
4851 segment. */
4852 new_segment = TRUE;
4853 }
4854 else if (hdr->lma < last_hdr->lma + last_size
4855 || last_hdr->lma + last_size < last_hdr->lma)
4856 {
4857 /* If this section has a load address that makes it overlap
4858 the previous section, then we need a new segment. */
4859 new_segment = TRUE;
4860 }
4861 else if ((abfd->flags & D_PAGED) != 0
4862 && (((last_hdr->lma + last_size - 1) & -maxpagesize)
4863 == (hdr->lma & -maxpagesize)))
4864 {
4865 /* If we are demand paged then we can't map two disk
4866 pages onto the same memory page. */
4867 new_segment = FALSE;
4868 }
4869 /* In the next test we have to be careful when last_hdr->lma is close
4870 to the end of the address space. If the aligned address wraps
4871 around to the start of the address space, then there are no more
4872 pages left in memory and it is OK to assume that the current
4873 section can be included in the current segment. */
4874 else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
4875 + maxpagesize > last_hdr->lma)
4876 && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
4877 + maxpagesize <= hdr->lma))
4878 {
4879 /* If putting this section in this segment would force us to
4880 skip a page in the segment, then we need a new segment. */
4881 new_segment = TRUE;
4882 }
4883 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
4884 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
4885 {
4886 /* We don't want to put a loaded section after a
4887 nonloaded (ie. bss style) section in the same segment
4888 as that will force the non-loaded section to be loaded.
4889 Consider .tbss sections as loaded for this purpose. */
4890 new_segment = TRUE;
4891 }
4892 else if ((abfd->flags & D_PAGED) == 0)
4893 {
4894 /* If the file is not demand paged, which means that we
4895 don't require the sections to be correctly aligned in the
4896 file, then there is no other reason for a new segment. */
4897 new_segment = FALSE;
4898 }
4899 else if (info != NULL
4900 && info->separate_code
4901 && executable != ((hdr->flags & SEC_CODE) != 0))
4902 {
4903 new_segment = TRUE;
4904 }
4905 else if (! writable
4906 && (hdr->flags & SEC_READONLY) == 0)
4907 {
4908 /* We don't want to put a writable section in a read only
4909 segment. */
4910 new_segment = TRUE;
4911 }
4912 else
4913 {
4914 /* Otherwise, we can use the same segment. */
4915 new_segment = FALSE;
4916 }
4917
4918 /* Allow interested parties a chance to override our decision. */
4919 if (last_hdr != NULL
4920 && info != NULL
4921 && info->callbacks->override_segment_assignment != NULL)
4922 new_segment
4923 = info->callbacks->override_segment_assignment (info, abfd, hdr,
4924 last_hdr,
4925 new_segment);
4926
4927 if (! new_segment)
4928 {
4929 if ((hdr->flags & SEC_READONLY) == 0)
4930 writable = TRUE;
4931 if ((hdr->flags & SEC_CODE) != 0)
4932 executable = TRUE;
4933 last_hdr = hdr;
4934 /* .tbss sections effectively have zero size. */
4935 last_size = (!IS_TBSS (hdr) ? hdr->size : 0) / opb;
4936 continue;
4937 }
4938
4939 /* We need a new program segment. We must create a new program
4940 header holding all the sections from hdr_index until hdr. */
4941
4942 m = make_mapping (abfd, sections, hdr_index, i, phdr_in_segment);
4943 if (m == NULL)
4944 goto error_return;
4945
4946 *pm = m;
4947 pm = &m->next;
4948
4949 if ((hdr->flags & SEC_READONLY) == 0)
4950 writable = TRUE;
4951 else
4952 writable = FALSE;
4953
4954 if ((hdr->flags & SEC_CODE) == 0)
4955 executable = FALSE;
4956 else
4957 executable = TRUE;
4958
4959 last_hdr = hdr;
4960 /* .tbss sections effectively have zero size. */
4961 last_size = (!IS_TBSS (hdr) ? hdr->size : 0) / opb;
4962 hdr_index = i;
4963 phdr_in_segment = FALSE;
4964 }
4965
4966 /* Create a final PT_LOAD program segment, but not if it's just
4967 for .tbss. */
4968 if (last_hdr != NULL
4969 && (i - hdr_index != 1
4970 || !IS_TBSS (last_hdr)))
4971 {
4972 m = make_mapping (abfd, sections, hdr_index, i, phdr_in_segment);
4973 if (m == NULL)
4974 goto error_return;
4975
4976 *pm = m;
4977 pm = &m->next;
4978 }
4979
4980 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4981 if (dynsec != NULL)
4982 {
4983 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
4984 if (m == NULL)
4985 goto error_return;
4986 *pm = m;
4987 pm = &m->next;
4988 }
4989
4990 /* For each batch of consecutive loadable SHT_NOTE sections,
4991 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
4992 because if we link together nonloadable .note sections and
4993 loadable .note sections, we will generate two .note sections
4994 in the output file. */
4995 for (s = abfd->sections; s != NULL; s = s->next)
4996 {
4997 if ((s->flags & SEC_LOAD) != 0
4998 && elf_section_type (s) == SHT_NOTE)
4999 {
5000 asection *s2;
5001 unsigned int alignment_power = s->alignment_power;
5002
5003 count = 1;
5004 for (s2 = s; s2->next != NULL; s2 = s2->next)
5005 {
5006 if (s2->next->alignment_power == alignment_power
5007 && (s2->next->flags & SEC_LOAD) != 0
5008 && elf_section_type (s2->next) == SHT_NOTE
5009 && align_power (s2->lma + s2->size / opb,
5010 alignment_power)
5011 == s2->next->lma)
5012 count++;
5013 else
5014 break;
5015 }
5016 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
5017 amt += count * sizeof (asection *);
5018 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5019 if (m == NULL)
5020 goto error_return;
5021 m->next = NULL;
5022 m->p_type = PT_NOTE;
5023 m->count = count;
5024 while (count > 1)
5025 {
5026 m->sections[m->count - count--] = s;
5027 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
5028 s = s->next;
5029 }
5030 m->sections[m->count - 1] = s;
5031 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
5032 *pm = m;
5033 pm = &m->next;
5034 }
5035 if (s->flags & SEC_THREAD_LOCAL)
5036 {
5037 if (! tls_count)
5038 first_tls = s;
5039 tls_count++;
5040 }
5041 if (first_mbind == NULL
5042 && (elf_section_flags (s) & SHF_GNU_MBIND) != 0)
5043 first_mbind = s;
5044 }
5045
5046 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
5047 if (tls_count > 0)
5048 {
5049 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
5050 amt += tls_count * sizeof (asection *);
5051 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5052 if (m == NULL)
5053 goto error_return;
5054 m->next = NULL;
5055 m->p_type = PT_TLS;
5056 m->count = tls_count;
5057 /* Mandated PF_R. */
5058 m->p_flags = PF_R;
5059 m->p_flags_valid = 1;
5060 s = first_tls;
5061 for (i = 0; i < tls_count; ++i)
5062 {
5063 if ((s->flags & SEC_THREAD_LOCAL) == 0)
5064 {
5065 _bfd_error_handler
5066 (_("%pB: TLS sections are not adjacent:"), abfd);
5067 s = first_tls;
5068 i = 0;
5069 while (i < tls_count)
5070 {
5071 if ((s->flags & SEC_THREAD_LOCAL) != 0)
5072 {
5073 _bfd_error_handler (_(" TLS: %pA"), s);
5074 i++;
5075 }
5076 else
5077 _bfd_error_handler (_(" non-TLS: %pA"), s);
5078 s = s->next;
5079 }
5080 bfd_set_error (bfd_error_bad_value);
5081 goto error_return;
5082 }
5083 m->sections[i] = s;
5084 s = s->next;
5085 }
5086
5087 *pm = m;
5088 pm = &m->next;
5089 }
5090
5091 if (first_mbind
5092 && (abfd->flags & D_PAGED) != 0
5093 && (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_mbind) != 0)
5094 for (s = first_mbind; s != NULL; s = s->next)
5095 if ((elf_section_flags (s) & SHF_GNU_MBIND) != 0
5096 && elf_section_data (s)->this_hdr.sh_info <= PT_GNU_MBIND_NUM)
5097 {
5098 /* Mandated PF_R. */
5099 unsigned long p_flags = PF_R;
5100 if ((s->flags & SEC_READONLY) == 0)
5101 p_flags |= PF_W;
5102 if ((s->flags & SEC_CODE) != 0)
5103 p_flags |= PF_X;
5104
5105 amt = sizeof (struct elf_segment_map) + sizeof (asection *);
5106 m = bfd_zalloc (abfd, amt);
5107 if (m == NULL)
5108 goto error_return;
5109 m->next = NULL;
5110 m->p_type = (PT_GNU_MBIND_LO
5111 + elf_section_data (s)->this_hdr.sh_info);
5112 m->count = 1;
5113 m->p_flags_valid = 1;
5114 m->sections[0] = s;
5115 m->p_flags = p_flags;
5116
5117 *pm = m;
5118 pm = &m->next;
5119 }
5120
5121 s = bfd_get_section_by_name (abfd,
5122 NOTE_GNU_PROPERTY_SECTION_NAME);
5123 if (s != NULL && s->size != 0)
5124 {
5125 amt = sizeof (struct elf_segment_map) + sizeof (asection *);
5126 m = bfd_zalloc (abfd, amt);
5127 if (m == NULL)
5128 goto error_return;
5129 m->next = NULL;
5130 m->p_type = PT_GNU_PROPERTY;
5131 m->count = 1;
5132 m->p_flags_valid = 1;
5133 m->sections[0] = s;
5134 m->p_flags = PF_R;
5135 *pm = m;
5136 pm = &m->next;
5137 }
5138
5139 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
5140 segment. */
5141 eh_frame_hdr = elf_eh_frame_hdr (abfd);
5142 if (eh_frame_hdr != NULL
5143 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
5144 {
5145 amt = sizeof (struct elf_segment_map);
5146 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5147 if (m == NULL)
5148 goto error_return;
5149 m->next = NULL;
5150 m->p_type = PT_GNU_EH_FRAME;
5151 m->count = 1;
5152 m->sections[0] = eh_frame_hdr->output_section;
5153
5154 *pm = m;
5155 pm = &m->next;
5156 }
5157
5158 if (elf_stack_flags (abfd))
5159 {
5160 amt = sizeof (struct elf_segment_map);
5161 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5162 if (m == NULL)
5163 goto error_return;
5164 m->next = NULL;
5165 m->p_type = PT_GNU_STACK;
5166 m->p_flags = elf_stack_flags (abfd);
5167 m->p_align = bed->stack_align;
5168 m->p_flags_valid = 1;
5169 m->p_align_valid = m->p_align != 0;
5170 if (info->stacksize > 0)
5171 {
5172 m->p_size = info->stacksize;
5173 m->p_size_valid = 1;
5174 }
5175
5176 *pm = m;
5177 pm = &m->next;
5178 }
5179
5180 if (info != NULL && info->relro)
5181 {
5182 for (m = mfirst; m != NULL; m = m->next)
5183 {
5184 if (m->p_type == PT_LOAD
5185 && m->count != 0
5186 && m->sections[0]->vma >= info->relro_start
5187 && m->sections[0]->vma < info->relro_end)
5188 {
5189 i = m->count;
5190 while (--i != (unsigned) -1)
5191 {
5192 if (m->sections[i]->size > 0
5193 && (m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS))
5194 == (SEC_LOAD | SEC_HAS_CONTENTS))
5195 break;
5196 }
5197
5198 if (i != (unsigned) -1)
5199 break;
5200 }
5201 }
5202
5203 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
5204 if (m != NULL)
5205 {
5206 amt = sizeof (struct elf_segment_map);
5207 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5208 if (m == NULL)
5209 goto error_return;
5210 m->next = NULL;
5211 m->p_type = PT_GNU_RELRO;
5212 *pm = m;
5213 pm = &m->next;
5214 }
5215 }
5216
5217 free (sections);
5218 elf_seg_map (abfd) = mfirst;
5219 }
5220
5221 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
5222 return FALSE;
5223
5224 for (count = 0, m = elf_seg_map (abfd); m != NULL; m = m->next)
5225 ++count;
5226 elf_program_header_size (abfd) = count * bed->s->sizeof_phdr;
5227
5228 return TRUE;
5229
5230 error_return:
5231 free (sections);
5232 return FALSE;
5233 }
5234
5235 /* Sort sections by address. */
5236
5237 static int
5238 elf_sort_sections (const void *arg1, const void *arg2)
5239 {
5240 const asection *sec1 = *(const asection **) arg1;
5241 const asection *sec2 = *(const asection **) arg2;
5242 bfd_size_type size1, size2;
5243
5244 /* Sort by LMA first, since this is the address used to
5245 place the section into a segment. */
5246 if (sec1->lma < sec2->lma)
5247 return -1;
5248 else if (sec1->lma > sec2->lma)
5249 return 1;
5250
5251 /* Then sort by VMA. Normally the LMA and the VMA will be
5252 the same, and this will do nothing. */
5253 if (sec1->vma < sec2->vma)
5254 return -1;
5255 else if (sec1->vma > sec2->vma)
5256 return 1;
5257
5258 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
5259
5260 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
5261
5262 if (TOEND (sec1))
5263 {
5264 if (!TOEND (sec2))
5265 return 1;
5266 }
5267 else if (TOEND (sec2))
5268 return -1;
5269
5270 #undef TOEND
5271
5272 /* Sort by size, to put zero sized sections
5273 before others at the same address. */
5274
5275 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
5276 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
5277
5278 if (size1 < size2)
5279 return -1;
5280 if (size1 > size2)
5281 return 1;
5282
5283 return sec1->target_index - sec2->target_index;
5284 }
5285
5286 /* This qsort comparison functions sorts PT_LOAD segments first and
5287 by p_paddr, for assign_file_positions_for_load_sections. */
5288
5289 static int
5290 elf_sort_segments (const void *arg1, const void *arg2)
5291 {
5292 const struct elf_segment_map *m1 = *(const struct elf_segment_map **) arg1;
5293 const struct elf_segment_map *m2 = *(const struct elf_segment_map **) arg2;
5294
5295 if (m1->p_type != m2->p_type)
5296 {
5297 if (m1->p_type == PT_NULL)
5298 return 1;
5299 if (m2->p_type == PT_NULL)
5300 return -1;
5301 return m1->p_type < m2->p_type ? -1 : 1;
5302 }
5303 if (m1->includes_filehdr != m2->includes_filehdr)
5304 return m1->includes_filehdr ? -1 : 1;
5305 if (m1->no_sort_lma != m2->no_sort_lma)
5306 return m1->no_sort_lma ? -1 : 1;
5307 if (m1->p_type == PT_LOAD && !m1->no_sort_lma)
5308 {
5309 bfd_vma lma1, lma2; /* Octets. */
5310 lma1 = 0;
5311 if (m1->p_paddr_valid)
5312 lma1 = m1->p_paddr;
5313 else if (m1->count != 0)
5314 {
5315 unsigned int opb = bfd_octets_per_byte (m1->sections[0]->owner,
5316 m1->sections[0]);
5317 lma1 = (m1->sections[0]->lma + m1->p_vaddr_offset) * opb;
5318 }
5319 lma2 = 0;
5320 if (m2->p_paddr_valid)
5321 lma2 = m2->p_paddr;
5322 else if (m2->count != 0)
5323 {
5324 unsigned int opb = bfd_octets_per_byte (m2->sections[0]->owner,
5325 m2->sections[0]);
5326 lma2 = (m2->sections[0]->lma + m2->p_vaddr_offset) * opb;
5327 }
5328 if (lma1 != lma2)
5329 return lma1 < lma2 ? -1 : 1;
5330 }
5331 if (m1->idx != m2->idx)
5332 return m1->idx < m2->idx ? -1 : 1;
5333 return 0;
5334 }
5335
5336 /* Ian Lance Taylor writes:
5337
5338 We shouldn't be using % with a negative signed number. That's just
5339 not good. We have to make sure either that the number is not
5340 negative, or that the number has an unsigned type. When the types
5341 are all the same size they wind up as unsigned. When file_ptr is a
5342 larger signed type, the arithmetic winds up as signed long long,
5343 which is wrong.
5344
5345 What we're trying to say here is something like ``increase OFF by
5346 the least amount that will cause it to be equal to the VMA modulo
5347 the page size.'' */
5348 /* In other words, something like:
5349
5350 vma_offset = m->sections[0]->vma % bed->maxpagesize;
5351 off_offset = off % bed->maxpagesize;
5352 if (vma_offset < off_offset)
5353 adjustment = vma_offset + bed->maxpagesize - off_offset;
5354 else
5355 adjustment = vma_offset - off_offset;
5356
5357 which can be collapsed into the expression below. */
5358
5359 static file_ptr
5360 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
5361 {
5362 /* PR binutils/16199: Handle an alignment of zero. */
5363 if (maxpagesize == 0)
5364 maxpagesize = 1;
5365 return ((vma - off) % maxpagesize);
5366 }
5367
5368 static void
5369 print_segment_map (const struct elf_segment_map *m)
5370 {
5371 unsigned int j;
5372 const char *pt = get_segment_type (m->p_type);
5373 char buf[32];
5374
5375 if (pt == NULL)
5376 {
5377 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
5378 sprintf (buf, "LOPROC+%7.7x",
5379 (unsigned int) (m->p_type - PT_LOPROC));
5380 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
5381 sprintf (buf, "LOOS+%7.7x",
5382 (unsigned int) (m->p_type - PT_LOOS));
5383 else
5384 snprintf (buf, sizeof (buf), "%8.8x",
5385 (unsigned int) m->p_type);
5386 pt = buf;
5387 }
5388 fflush (stdout);
5389 fprintf (stderr, "%s:", pt);
5390 for (j = 0; j < m->count; j++)
5391 fprintf (stderr, " %s", m->sections [j]->name);
5392 putc ('\n',stderr);
5393 fflush (stderr);
5394 }
5395
5396 static bfd_boolean
5397 write_zeros (bfd *abfd, file_ptr pos, bfd_size_type len)
5398 {
5399 void *buf;
5400 bfd_boolean ret;
5401
5402 if (bfd_seek (abfd, pos, SEEK_SET) != 0)
5403 return FALSE;
5404 buf = bfd_zmalloc (len);
5405 if (buf == NULL)
5406 return FALSE;
5407 ret = bfd_bwrite (buf, len, abfd) == len;
5408 free (buf);
5409 return ret;
5410 }
5411
5412 /* Assign file positions to the sections based on the mapping from
5413 sections to segments. This function also sets up some fields in
5414 the file header. */
5415
5416 static bfd_boolean
5417 assign_file_positions_for_load_sections (bfd *abfd,
5418 struct bfd_link_info *link_info)
5419 {
5420 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5421 struct elf_segment_map *m;
5422 struct elf_segment_map *phdr_load_seg;
5423 Elf_Internal_Phdr *phdrs;
5424 Elf_Internal_Phdr *p;
5425 file_ptr off; /* Octets. */
5426 bfd_size_type maxpagesize;
5427 unsigned int alloc, actual;
5428 unsigned int i, j;
5429 struct elf_segment_map **sorted_seg_map;
5430 unsigned int opb = bfd_octets_per_byte (abfd, NULL);
5431
5432 if (link_info == NULL
5433 && !_bfd_elf_map_sections_to_segments (abfd, link_info))
5434 return FALSE;
5435
5436 alloc = 0;
5437 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
5438 m->idx = alloc++;
5439
5440 if (alloc)
5441 {
5442 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
5443 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
5444 }
5445 else
5446 {
5447 /* PR binutils/12467. */
5448 elf_elfheader (abfd)->e_phoff = 0;
5449 elf_elfheader (abfd)->e_phentsize = 0;
5450 }
5451
5452 elf_elfheader (abfd)->e_phnum = alloc;
5453
5454 if (elf_program_header_size (abfd) == (bfd_size_type) -1)
5455 {
5456 actual = alloc;
5457 elf_program_header_size (abfd) = alloc * bed->s->sizeof_phdr;
5458 }
5459 else
5460 {
5461 actual = elf_program_header_size (abfd) / bed->s->sizeof_phdr;
5462 BFD_ASSERT (elf_program_header_size (abfd)
5463 == actual * bed->s->sizeof_phdr);
5464 BFD_ASSERT (actual >= alloc);
5465 }
5466
5467 if (alloc == 0)
5468 {
5469 elf_next_file_pos (abfd) = bed->s->sizeof_ehdr;
5470 return TRUE;
5471 }
5472
5473 /* We're writing the size in elf_program_header_size (abfd),
5474 see assign_file_positions_except_relocs, so make sure we have
5475 that amount allocated, with trailing space cleared.
5476 The variable alloc contains the computed need, while
5477 elf_program_header_size (abfd) contains the size used for the
5478 layout.
5479 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
5480 where the layout is forced to according to a larger size in the
5481 last iterations for the testcase ld-elf/header. */
5482 phdrs = bfd_zalloc (abfd, (actual * sizeof (*phdrs)
5483 + alloc * sizeof (*sorted_seg_map)));
5484 sorted_seg_map = (struct elf_segment_map **) (phdrs + actual);
5485 elf_tdata (abfd)->phdr = phdrs;
5486 if (phdrs == NULL)
5487 return FALSE;
5488
5489 for (m = elf_seg_map (abfd), j = 0; m != NULL; m = m->next, j++)
5490 {
5491 sorted_seg_map[j] = m;
5492 /* If elf_segment_map is not from map_sections_to_segments, the
5493 sections may not be correctly ordered. NOTE: sorting should
5494 not be done to the PT_NOTE section of a corefile, which may
5495 contain several pseudo-sections artificially created by bfd.
5496 Sorting these pseudo-sections breaks things badly. */
5497 if (m->count > 1
5498 && !(elf_elfheader (abfd)->e_type == ET_CORE
5499 && m->p_type == PT_NOTE))
5500 {
5501 for (i = 0; i < m->count; i++)
5502 m->sections[i]->target_index = i;
5503 qsort (m->sections, (size_t) m->count, sizeof (asection *),
5504 elf_sort_sections);
5505 }
5506 }
5507 if (alloc > 1)
5508 qsort (sorted_seg_map, alloc, sizeof (*sorted_seg_map),
5509 elf_sort_segments);
5510
5511 maxpagesize = 1;
5512 if ((abfd->flags & D_PAGED) != 0)
5513 maxpagesize = bed->maxpagesize;
5514
5515 /* Sections must map to file offsets past the ELF file header. */
5516 off = bed->s->sizeof_ehdr;
5517 /* And if one of the PT_LOAD headers doesn't include the program
5518 headers then we'll be mapping program headers in the usual
5519 position after the ELF file header. */
5520 phdr_load_seg = NULL;
5521 for (j = 0; j < alloc; j++)
5522 {
5523 m = sorted_seg_map[j];
5524 if (m->p_type != PT_LOAD)
5525 break;
5526 if (m->includes_phdrs)
5527 {
5528 phdr_load_seg = m;
5529 break;
5530 }
5531 }
5532 if (phdr_load_seg == NULL)
5533 off += actual * bed->s->sizeof_phdr;
5534
5535 for (j = 0; j < alloc; j++)
5536 {
5537 asection **secpp;
5538 bfd_vma off_adjust; /* Octets. */
5539 bfd_boolean no_contents;
5540
5541 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
5542 number of sections with contents contributing to both p_filesz
5543 and p_memsz, followed by a number of sections with no contents
5544 that just contribute to p_memsz. In this loop, OFF tracks next
5545 available file offset for PT_LOAD and PT_NOTE segments. */
5546 m = sorted_seg_map[j];
5547 p = phdrs + m->idx;
5548 p->p_type = m->p_type;
5549 p->p_flags = m->p_flags;
5550
5551 if (m->count == 0)
5552 p->p_vaddr = m->p_vaddr_offset * opb;
5553 else
5554 p->p_vaddr = (m->sections[0]->vma + m->p_vaddr_offset) * opb;
5555
5556 if (m->p_paddr_valid)
5557 p->p_paddr = m->p_paddr;
5558 else if (m->count == 0)
5559 p->p_paddr = 0;
5560 else
5561 p->p_paddr = (m->sections[0]->lma + m->p_vaddr_offset) * opb;
5562
5563 if (p->p_type == PT_LOAD
5564 && (abfd->flags & D_PAGED) != 0)
5565 {
5566 /* p_align in demand paged PT_LOAD segments effectively stores
5567 the maximum page size. When copying an executable with
5568 objcopy, we set m->p_align from the input file. Use this
5569 value for maxpagesize rather than bed->maxpagesize, which
5570 may be different. Note that we use maxpagesize for PT_TLS
5571 segment alignment later in this function, so we are relying
5572 on at least one PT_LOAD segment appearing before a PT_TLS
5573 segment. */
5574 if (m->p_align_valid)
5575 maxpagesize = m->p_align;
5576
5577 p->p_align = maxpagesize;
5578 }
5579 else if (m->p_align_valid)
5580 p->p_align = m->p_align;
5581 else if (m->count == 0)
5582 p->p_align = 1 << bed->s->log_file_align;
5583
5584 if (m == phdr_load_seg)
5585 {
5586 if (!m->includes_filehdr)
5587 p->p_offset = off;
5588 off += actual * bed->s->sizeof_phdr;
5589 }
5590
5591 no_contents = FALSE;
5592 off_adjust = 0;
5593 if (p->p_type == PT_LOAD
5594 && m->count > 0)
5595 {
5596 bfd_size_type align; /* Bytes. */
5597 unsigned int align_power = 0;
5598
5599 if (m->p_align_valid)
5600 align = p->p_align;
5601 else
5602 {
5603 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
5604 {
5605 unsigned int secalign;
5606
5607 secalign = bfd_section_alignment (*secpp);
5608 if (secalign > align_power)
5609 align_power = secalign;
5610 }
5611 align = (bfd_size_type) 1 << align_power;
5612 if (align < maxpagesize)
5613 align = maxpagesize;
5614 }
5615
5616 for (i = 0; i < m->count; i++)
5617 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
5618 /* If we aren't making room for this section, then
5619 it must be SHT_NOBITS regardless of what we've
5620 set via struct bfd_elf_special_section. */
5621 elf_section_type (m->sections[i]) = SHT_NOBITS;
5622
5623 /* Find out whether this segment contains any loadable
5624 sections. */
5625 no_contents = TRUE;
5626 for (i = 0; i < m->count; i++)
5627 if (elf_section_type (m->sections[i]) != SHT_NOBITS)
5628 {
5629 no_contents = FALSE;
5630 break;
5631 }
5632
5633 off_adjust = vma_page_aligned_bias (p->p_vaddr, off, align * opb);
5634
5635 /* Broken hardware and/or kernel require that files do not
5636 map the same page with different permissions on some hppa
5637 processors. */
5638 if (j != 0
5639 && (abfd->flags & D_PAGED) != 0
5640 && bed->no_page_alias
5641 && (off & (maxpagesize - 1)) != 0
5642 && ((off & -maxpagesize)
5643 == ((off + off_adjust) & -maxpagesize)))
5644 off_adjust += maxpagesize;
5645 off += off_adjust;
5646 if (no_contents)
5647 {
5648 /* We shouldn't need to align the segment on disk since
5649 the segment doesn't need file space, but the gABI
5650 arguably requires the alignment and glibc ld.so
5651 checks it. So to comply with the alignment
5652 requirement but not waste file space, we adjust
5653 p_offset for just this segment. (OFF_ADJUST is
5654 subtracted from OFF later.) This may put p_offset
5655 past the end of file, but that shouldn't matter. */
5656 }
5657 else
5658 off_adjust = 0;
5659 }
5660 /* Make sure the .dynamic section is the first section in the
5661 PT_DYNAMIC segment. */
5662 else if (p->p_type == PT_DYNAMIC
5663 && m->count > 1
5664 && strcmp (m->sections[0]->name, ".dynamic") != 0)
5665 {
5666 _bfd_error_handler
5667 (_("%pB: The first section in the PT_DYNAMIC segment"
5668 " is not the .dynamic section"),
5669 abfd);
5670 bfd_set_error (bfd_error_bad_value);
5671 return FALSE;
5672 }
5673 /* Set the note section type to SHT_NOTE. */
5674 else if (p->p_type == PT_NOTE)
5675 for (i = 0; i < m->count; i++)
5676 elf_section_type (m->sections[i]) = SHT_NOTE;
5677
5678 if (m->includes_filehdr)
5679 {
5680 if (!m->p_flags_valid)
5681 p->p_flags |= PF_R;
5682 p->p_filesz = bed->s->sizeof_ehdr;
5683 p->p_memsz = bed->s->sizeof_ehdr;
5684 if (p->p_type == PT_LOAD)
5685 {
5686 if (m->count > 0)
5687 {
5688 if (p->p_vaddr < (bfd_vma) off
5689 || (!m->p_paddr_valid
5690 && p->p_paddr < (bfd_vma) off))
5691 {
5692 _bfd_error_handler
5693 (_("%pB: not enough room for program headers,"
5694 " try linking with -N"),
5695 abfd);
5696 bfd_set_error (bfd_error_bad_value);
5697 return FALSE;
5698 }
5699 p->p_vaddr -= off;
5700 if (!m->p_paddr_valid)
5701 p->p_paddr -= off;
5702 }
5703 }
5704 else if (sorted_seg_map[0]->includes_filehdr)
5705 {
5706 Elf_Internal_Phdr *filehdr = phdrs + sorted_seg_map[0]->idx;
5707 p->p_vaddr = filehdr->p_vaddr;
5708 if (!m->p_paddr_valid)
5709 p->p_paddr = filehdr->p_paddr;
5710 }
5711 }
5712
5713 if (m->includes_phdrs)
5714 {
5715 if (!m->p_flags_valid)
5716 p->p_flags |= PF_R;
5717 p->p_filesz += actual * bed->s->sizeof_phdr;
5718 p->p_memsz += actual * bed->s->sizeof_phdr;
5719 if (!m->includes_filehdr)
5720 {
5721 if (p->p_type == PT_LOAD)
5722 {
5723 elf_elfheader (abfd)->e_phoff = p->p_offset;
5724 if (m->count > 0)
5725 {
5726 p->p_vaddr -= off - p->p_offset;
5727 if (!m->p_paddr_valid)
5728 p->p_paddr -= off - p->p_offset;
5729 }
5730 }
5731 else if (phdr_load_seg != NULL)
5732 {
5733 Elf_Internal_Phdr *phdr = phdrs + phdr_load_seg->idx;
5734 bfd_vma phdr_off = 0; /* Octets. */
5735 if (phdr_load_seg->includes_filehdr)
5736 phdr_off = bed->s->sizeof_ehdr;
5737 p->p_vaddr = phdr->p_vaddr + phdr_off;
5738 if (!m->p_paddr_valid)
5739 p->p_paddr = phdr->p_paddr + phdr_off;
5740 p->p_offset = phdr->p_offset + phdr_off;
5741 }
5742 else
5743 p->p_offset = bed->s->sizeof_ehdr;
5744 }
5745 }
5746
5747 if (p->p_type == PT_LOAD
5748 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
5749 {
5750 if (!m->includes_filehdr && !m->includes_phdrs)
5751 {
5752 p->p_offset = off;
5753 if (no_contents)
5754 {
5755 /* Put meaningless p_offset for PT_LOAD segments
5756 without file contents somewhere within the first
5757 page, in an attempt to not point past EOF. */
5758 bfd_size_type align = maxpagesize;
5759 if (align < p->p_align)
5760 align = p->p_align;
5761 if (align < 1)
5762 align = 1;
5763 p->p_offset = off % align;
5764 }
5765 }
5766 else
5767 {
5768 file_ptr adjust; /* Octets. */
5769
5770 adjust = off - (p->p_offset + p->p_filesz);
5771 if (!no_contents)
5772 p->p_filesz += adjust;
5773 p->p_memsz += adjust;
5774 }
5775 }
5776
5777 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
5778 maps. Set filepos for sections in PT_LOAD segments, and in
5779 core files, for sections in PT_NOTE segments.
5780 assign_file_positions_for_non_load_sections will set filepos
5781 for other sections and update p_filesz for other segments. */
5782 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
5783 {
5784 asection *sec;
5785 bfd_size_type align;
5786 Elf_Internal_Shdr *this_hdr;
5787
5788 sec = *secpp;
5789 this_hdr = &elf_section_data (sec)->this_hdr;
5790 align = (bfd_size_type) 1 << bfd_section_alignment (sec);
5791
5792 if ((p->p_type == PT_LOAD
5793 || p->p_type == PT_TLS)
5794 && (this_hdr->sh_type != SHT_NOBITS
5795 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
5796 && ((this_hdr->sh_flags & SHF_TLS) == 0
5797 || p->p_type == PT_TLS))))
5798 {
5799 bfd_vma p_start = p->p_paddr; /* Octets. */
5800 bfd_vma p_end = p_start + p->p_memsz; /* Octets. */
5801 bfd_vma s_start = sec->lma * opb; /* Octets. */
5802 bfd_vma adjust = s_start - p_end; /* Octets. */
5803
5804 if (adjust != 0
5805 && (s_start < p_end
5806 || p_end < p_start))
5807 {
5808 _bfd_error_handler
5809 /* xgettext:c-format */
5810 (_("%pB: section %pA lma %#" PRIx64 " adjusted to %#" PRIx64),
5811 abfd, sec, (uint64_t) s_start / opb,
5812 (uint64_t) p_end / opb);
5813 adjust = 0;
5814 sec->lma = p_end / opb;
5815 }
5816 p->p_memsz += adjust;
5817
5818 if (p->p_type == PT_LOAD)
5819 {
5820 if (this_hdr->sh_type != SHT_NOBITS)
5821 {
5822 off_adjust = 0;
5823 if (p->p_filesz + adjust < p->p_memsz)
5824 {
5825 /* We have a PROGBITS section following NOBITS ones.
5826 Allocate file space for the NOBITS section(s) and
5827 zero it. */
5828 adjust = p->p_memsz - p->p_filesz;
5829 if (!write_zeros (abfd, off, adjust))
5830 return FALSE;
5831 }
5832 }
5833 /* We only adjust sh_offset in SHT_NOBITS sections
5834 as would seem proper for their address when the
5835 section is first in the segment. sh_offset
5836 doesn't really have any significance for
5837 SHT_NOBITS anyway, apart from a notional position
5838 relative to other sections. Historically we
5839 didn't bother with adjusting sh_offset and some
5840 programs depend on it not being adjusted. See
5841 pr12921 and pr25662. */
5842 if (this_hdr->sh_type != SHT_NOBITS || i == 0)
5843 {
5844 off += adjust;
5845 if (this_hdr->sh_type == SHT_NOBITS)
5846 off_adjust += adjust;
5847 }
5848 }
5849 if (this_hdr->sh_type != SHT_NOBITS)
5850 p->p_filesz += adjust;
5851 }
5852
5853 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
5854 {
5855 /* The section at i == 0 is the one that actually contains
5856 everything. */
5857 if (i == 0)
5858 {
5859 this_hdr->sh_offset = sec->filepos = off;
5860 off += this_hdr->sh_size;
5861 p->p_filesz = this_hdr->sh_size;
5862 p->p_memsz = 0;
5863 p->p_align = 1;
5864 }
5865 else
5866 {
5867 /* The rest are fake sections that shouldn't be written. */
5868 sec->filepos = 0;
5869 sec->size = 0;
5870 sec->flags = 0;
5871 continue;
5872 }
5873 }
5874 else
5875 {
5876 if (p->p_type == PT_LOAD)
5877 {
5878 this_hdr->sh_offset = sec->filepos = off;
5879 if (this_hdr->sh_type != SHT_NOBITS)
5880 off += this_hdr->sh_size;
5881 }
5882 else if (this_hdr->sh_type == SHT_NOBITS
5883 && (this_hdr->sh_flags & SHF_TLS) != 0
5884 && this_hdr->sh_offset == 0)
5885 {
5886 /* This is a .tbss section that didn't get a PT_LOAD.
5887 (See _bfd_elf_map_sections_to_segments "Create a
5888 final PT_LOAD".) Set sh_offset to the value it
5889 would have if we had created a zero p_filesz and
5890 p_memsz PT_LOAD header for the section. This
5891 also makes the PT_TLS header have the same
5892 p_offset value. */
5893 bfd_vma adjust = vma_page_aligned_bias (this_hdr->sh_addr,
5894 off, align);
5895 this_hdr->sh_offset = sec->filepos = off + adjust;
5896 }
5897
5898 if (this_hdr->sh_type != SHT_NOBITS)
5899 {
5900 p->p_filesz += this_hdr->sh_size;
5901 /* A load section without SHF_ALLOC is something like
5902 a note section in a PT_NOTE segment. These take
5903 file space but are not loaded into memory. */
5904 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5905 p->p_memsz += this_hdr->sh_size;
5906 }
5907 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5908 {
5909 if (p->p_type == PT_TLS)
5910 p->p_memsz += this_hdr->sh_size;
5911
5912 /* .tbss is special. It doesn't contribute to p_memsz of
5913 normal segments. */
5914 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
5915 p->p_memsz += this_hdr->sh_size;
5916 }
5917
5918 if (align > p->p_align
5919 && !m->p_align_valid
5920 && (p->p_type != PT_LOAD
5921 || (abfd->flags & D_PAGED) == 0))
5922 p->p_align = align;
5923 }
5924
5925 if (!m->p_flags_valid)
5926 {
5927 p->p_flags |= PF_R;
5928 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
5929 p->p_flags |= PF_X;
5930 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
5931 p->p_flags |= PF_W;
5932 }
5933 }
5934
5935 off -= off_adjust;
5936
5937 /* PR ld/20815 - Check that the program header segment, if
5938 present, will be loaded into memory. */
5939 if (p->p_type == PT_PHDR
5940 && phdr_load_seg == NULL
5941 && !(bed->elf_backend_allow_non_load_phdr != NULL
5942 && bed->elf_backend_allow_non_load_phdr (abfd, phdrs, alloc)))
5943 {
5944 /* The fix for this error is usually to edit the linker script being
5945 used and set up the program headers manually. Either that or
5946 leave room for the headers at the start of the SECTIONS. */
5947 _bfd_error_handler (_("%pB: error: PHDR segment not covered"
5948 " by LOAD segment"),
5949 abfd);
5950 if (link_info == NULL)
5951 return FALSE;
5952 /* Arrange for the linker to exit with an error, deleting
5953 the output file unless --noinhibit-exec is given. */
5954 link_info->callbacks->info ("%X");
5955 }
5956
5957 /* Check that all sections are in a PT_LOAD segment.
5958 Don't check funky gdb generated core files. */
5959 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
5960 {
5961 bfd_boolean check_vma = TRUE;
5962
5963 for (i = 1; i < m->count; i++)
5964 if (m->sections[i]->vma == m->sections[i - 1]->vma
5965 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i])
5966 ->this_hdr), p) != 0
5967 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i - 1])
5968 ->this_hdr), p) != 0)
5969 {
5970 /* Looks like we have overlays packed into the segment. */
5971 check_vma = FALSE;
5972 break;
5973 }
5974
5975 for (i = 0; i < m->count; i++)
5976 {
5977 Elf_Internal_Shdr *this_hdr;
5978 asection *sec;
5979
5980 sec = m->sections[i];
5981 this_hdr = &(elf_section_data(sec)->this_hdr);
5982 if (!ELF_SECTION_IN_SEGMENT_1 (this_hdr, p, check_vma, 0)
5983 && !ELF_TBSS_SPECIAL (this_hdr, p))
5984 {
5985 _bfd_error_handler
5986 /* xgettext:c-format */
5987 (_("%pB: section `%pA' can't be allocated in segment %d"),
5988 abfd, sec, j);
5989 print_segment_map (m);
5990 }
5991 }
5992 }
5993 }
5994
5995 elf_next_file_pos (abfd) = off;
5996
5997 if (link_info != NULL
5998 && phdr_load_seg != NULL
5999 && phdr_load_seg->includes_filehdr)
6000 {
6001 /* There is a segment that contains both the file headers and the
6002 program headers, so provide a symbol __ehdr_start pointing there.
6003 A program can use this to examine itself robustly. */
6004
6005 struct elf_link_hash_entry *hash
6006 = elf_link_hash_lookup (elf_hash_table (link_info), "__ehdr_start",
6007 FALSE, FALSE, TRUE);
6008 /* If the symbol was referenced and not defined, define it. */
6009 if (hash != NULL
6010 && (hash->root.type == bfd_link_hash_new
6011 || hash->root.type == bfd_link_hash_undefined
6012 || hash->root.type == bfd_link_hash_undefweak
6013 || hash->root.type == bfd_link_hash_common))
6014 {
6015 asection *s = NULL;
6016 bfd_vma filehdr_vaddr = phdrs[phdr_load_seg->idx].p_vaddr / opb;
6017
6018 if (phdr_load_seg->count != 0)
6019 /* The segment contains sections, so use the first one. */
6020 s = phdr_load_seg->sections[0];
6021 else
6022 /* Use the first (i.e. lowest-addressed) section in any segment. */
6023 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
6024 if (m->p_type == PT_LOAD && m->count != 0)
6025 {
6026 s = m->sections[0];
6027 break;
6028 }
6029
6030 if (s != NULL)
6031 {
6032 hash->root.u.def.value = filehdr_vaddr - s->vma;
6033 hash->root.u.def.section = s;
6034 }
6035 else
6036 {
6037 hash->root.u.def.value = filehdr_vaddr;
6038 hash->root.u.def.section = bfd_abs_section_ptr;
6039 }
6040
6041 hash->root.type = bfd_link_hash_defined;
6042 hash->def_regular = 1;
6043 hash->non_elf = 0;
6044 }
6045 }
6046
6047 return TRUE;
6048 }
6049
6050 /* Determine if a bfd is a debuginfo file. Unfortunately there
6051 is no defined method for detecting such files, so we have to
6052 use heuristics instead. */
6053
6054 bfd_boolean
6055 is_debuginfo_file (bfd *abfd)
6056 {
6057 if (abfd == NULL || bfd_get_flavour (abfd) != bfd_target_elf_flavour)
6058 return FALSE;
6059
6060 Elf_Internal_Shdr **start_headers = elf_elfsections (abfd);
6061 Elf_Internal_Shdr **end_headers = start_headers + elf_numsections (abfd);
6062 Elf_Internal_Shdr **headerp;
6063
6064 for (headerp = start_headers; headerp < end_headers; headerp ++)
6065 {
6066 Elf_Internal_Shdr *header = * headerp;
6067
6068 /* Debuginfo files do not have any allocated SHT_PROGBITS sections.
6069 The only allocated sections are SHT_NOBITS or SHT_NOTES. */
6070 if ((header->sh_flags & SHF_ALLOC) == SHF_ALLOC
6071 && header->sh_type != SHT_NOBITS
6072 && header->sh_type != SHT_NOTE)
6073 return FALSE;
6074 }
6075
6076 return TRUE;
6077 }
6078
6079 /* Assign file positions for the other sections, except for compressed debugging
6080 and other sections assigned in _bfd_elf_assign_file_positions_for_non_load(). */
6081
6082 static bfd_boolean
6083 assign_file_positions_for_non_load_sections (bfd *abfd,
6084 struct bfd_link_info *link_info)
6085 {
6086 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6087 Elf_Internal_Shdr **i_shdrpp;
6088 Elf_Internal_Shdr **hdrpp, **end_hdrpp;
6089 Elf_Internal_Phdr *phdrs;
6090 Elf_Internal_Phdr *p;
6091 struct elf_segment_map *m;
6092 file_ptr off;
6093 unsigned int opb = bfd_octets_per_byte (abfd, NULL);
6094
6095 i_shdrpp = elf_elfsections (abfd);
6096 end_hdrpp = i_shdrpp + elf_numsections (abfd);
6097 off = elf_next_file_pos (abfd);
6098 for (hdrpp = i_shdrpp + 1; hdrpp < end_hdrpp; hdrpp++)
6099 {
6100 Elf_Internal_Shdr *hdr;
6101
6102 hdr = *hdrpp;
6103 if (hdr->bfd_section != NULL
6104 && (hdr->bfd_section->filepos != 0
6105 || (hdr->sh_type == SHT_NOBITS
6106 && hdr->contents == NULL)))
6107 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
6108 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
6109 {
6110 if (hdr->sh_size != 0
6111 /* PR 24717 - debuginfo files are known to be not strictly
6112 compliant with the ELF standard. In particular they often
6113 have .note.gnu.property sections that are outside of any
6114 loadable segment. This is not a problem for such files,
6115 so do not warn about them. */
6116 && ! is_debuginfo_file (abfd))
6117 _bfd_error_handler
6118 /* xgettext:c-format */
6119 (_("%pB: warning: allocated section `%s' not in segment"),
6120 abfd,
6121 (hdr->bfd_section == NULL
6122 ? "*unknown*"
6123 : hdr->bfd_section->name));
6124 /* We don't need to page align empty sections. */
6125 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
6126 off += vma_page_aligned_bias (hdr->sh_addr, off,
6127 bed->maxpagesize);
6128 else
6129 off += vma_page_aligned_bias (hdr->sh_addr, off,
6130 hdr->sh_addralign);
6131 off = _bfd_elf_assign_file_position_for_section (hdr, off,
6132 FALSE);
6133 }
6134 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
6135 && hdr->bfd_section == NULL)
6136 /* We don't know the offset of these sections yet: their size has
6137 not been decided. */
6138 || (hdr->bfd_section != NULL
6139 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS
6140 || (bfd_section_is_ctf (hdr->bfd_section)
6141 && abfd->is_linker_output)))
6142 || hdr == i_shdrpp[elf_onesymtab (abfd)]
6143 || (elf_symtab_shndx_list (abfd) != NULL
6144 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
6145 || hdr == i_shdrpp[elf_strtab_sec (abfd)]
6146 || hdr == i_shdrpp[elf_shstrtab_sec (abfd)])
6147 hdr->sh_offset = -1;
6148 else
6149 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
6150 }
6151 elf_next_file_pos (abfd) = off;
6152
6153 /* Now that we have set the section file positions, we can set up
6154 the file positions for the non PT_LOAD segments. */
6155 phdrs = elf_tdata (abfd)->phdr;
6156 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
6157 {
6158 if (p->p_type == PT_GNU_RELRO)
6159 {
6160 bfd_vma start, end; /* Bytes. */
6161 bfd_boolean ok;
6162
6163 if (link_info != NULL)
6164 {
6165 /* During linking the range of the RELRO segment is passed
6166 in link_info. Note that there may be padding between
6167 relro_start and the first RELRO section. */
6168 start = link_info->relro_start;
6169 end = link_info->relro_end;
6170 }
6171 else if (m->count != 0)
6172 {
6173 if (!m->p_size_valid)
6174 abort ();
6175 start = m->sections[0]->vma;
6176 end = start + m->p_size / opb;
6177 }
6178 else
6179 {
6180 start = 0;
6181 end = 0;
6182 }
6183
6184 ok = FALSE;
6185 if (start < end)
6186 {
6187 struct elf_segment_map *lm;
6188 const Elf_Internal_Phdr *lp;
6189 unsigned int i;
6190
6191 /* Find a LOAD segment containing a section in the RELRO
6192 segment. */
6193 for (lm = elf_seg_map (abfd), lp = phdrs;
6194 lm != NULL;
6195 lm = lm->next, lp++)
6196 {
6197 if (lp->p_type == PT_LOAD
6198 && lm->count != 0
6199 && (lm->sections[lm->count - 1]->vma
6200 + (!IS_TBSS (lm->sections[lm->count - 1])
6201 ? lm->sections[lm->count - 1]->size / opb
6202 : 0)) > start
6203 && lm->sections[0]->vma < end)
6204 break;
6205 }
6206
6207 if (lm != NULL)
6208 {
6209 /* Find the section starting the RELRO segment. */
6210 for (i = 0; i < lm->count; i++)
6211 {
6212 asection *s = lm->sections[i];
6213 if (s->vma >= start
6214 && s->vma < end
6215 && s->size != 0)
6216 break;
6217 }
6218
6219 if (i < lm->count)
6220 {
6221 p->p_vaddr = lm->sections[i]->vma * opb;
6222 p->p_paddr = lm->sections[i]->lma * opb;
6223 p->p_offset = lm->sections[i]->filepos;
6224 p->p_memsz = end * opb - p->p_vaddr;
6225 p->p_filesz = p->p_memsz;
6226
6227 /* The RELRO segment typically ends a few bytes
6228 into .got.plt but other layouts are possible.
6229 In cases where the end does not match any
6230 loaded section (for instance is in file
6231 padding), trim p_filesz back to correspond to
6232 the end of loaded section contents. */
6233 if (p->p_filesz > lp->p_vaddr + lp->p_filesz - p->p_vaddr)
6234 p->p_filesz = lp->p_vaddr + lp->p_filesz - p->p_vaddr;
6235
6236 /* Preserve the alignment and flags if they are
6237 valid. The gold linker generates RW/4 for
6238 the PT_GNU_RELRO section. It is better for
6239 objcopy/strip to honor these attributes
6240 otherwise gdb will choke when using separate
6241 debug files. */
6242 if (!m->p_align_valid)
6243 p->p_align = 1;
6244 if (!m->p_flags_valid)
6245 p->p_flags = PF_R;
6246 ok = TRUE;
6247 }
6248 }
6249 }
6250 if (link_info != NULL)
6251 BFD_ASSERT (ok);
6252 if (!ok)
6253 memset (p, 0, sizeof *p);
6254 }
6255 else if (p->p_type == PT_GNU_STACK)
6256 {
6257 if (m->p_size_valid)
6258 p->p_memsz = m->p_size;
6259 }
6260 else if (m->count != 0)
6261 {
6262 unsigned int i;
6263
6264 if (p->p_type != PT_LOAD
6265 && (p->p_type != PT_NOTE
6266 || bfd_get_format (abfd) != bfd_core))
6267 {
6268 /* A user specified segment layout may include a PHDR
6269 segment that overlaps with a LOAD segment... */
6270 if (p->p_type == PT_PHDR)
6271 {
6272 m->count = 0;
6273 continue;
6274 }
6275
6276 if (m->includes_filehdr || m->includes_phdrs)
6277 {
6278 /* PR 17512: file: 2195325e. */
6279 _bfd_error_handler
6280 (_("%pB: error: non-load segment %d includes file header "
6281 "and/or program header"),
6282 abfd, (int) (p - phdrs));
6283 return FALSE;
6284 }
6285
6286 p->p_filesz = 0;
6287 p->p_offset = m->sections[0]->filepos;
6288 for (i = m->count; i-- != 0;)
6289 {
6290 asection *sect = m->sections[i];
6291 Elf_Internal_Shdr *hdr = &elf_section_data (sect)->this_hdr;
6292 if (hdr->sh_type != SHT_NOBITS)
6293 {
6294 p->p_filesz = (sect->filepos - m->sections[0]->filepos
6295 + hdr->sh_size);
6296 break;
6297 }
6298 }
6299 }
6300 }
6301 }
6302
6303 return TRUE;
6304 }
6305
6306 static elf_section_list *
6307 find_section_in_list (unsigned int i, elf_section_list * list)
6308 {
6309 for (;list != NULL; list = list->next)
6310 if (list->ndx == i)
6311 break;
6312 return list;
6313 }
6314
6315 /* Work out the file positions of all the sections. This is called by
6316 _bfd_elf_compute_section_file_positions. All the section sizes and
6317 VMAs must be known before this is called.
6318
6319 Reloc sections come in two flavours: Those processed specially as
6320 "side-channel" data attached to a section to which they apply, and those that
6321 bfd doesn't process as relocations. The latter sort are stored in a normal
6322 bfd section by bfd_section_from_shdr. We don't consider the former sort
6323 here, unless they form part of the loadable image. Reloc sections not
6324 assigned here (and compressed debugging sections and CTF sections which
6325 nothing else in the file can rely upon) will be handled later by
6326 assign_file_positions_for_relocs.
6327
6328 We also don't set the positions of the .symtab and .strtab here. */
6329
6330 static bfd_boolean
6331 assign_file_positions_except_relocs (bfd *abfd,
6332 struct bfd_link_info *link_info)
6333 {
6334 struct elf_obj_tdata *tdata = elf_tdata (abfd);
6335 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
6336 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6337 unsigned int alloc;
6338
6339 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
6340 && bfd_get_format (abfd) != bfd_core)
6341 {
6342 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
6343 unsigned int num_sec = elf_numsections (abfd);
6344 Elf_Internal_Shdr **hdrpp;
6345 unsigned int i;
6346 file_ptr off;
6347
6348 /* Start after the ELF header. */
6349 off = i_ehdrp->e_ehsize;
6350
6351 /* We are not creating an executable, which means that we are
6352 not creating a program header, and that the actual order of
6353 the sections in the file is unimportant. */
6354 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
6355 {
6356 Elf_Internal_Shdr *hdr;
6357
6358 hdr = *hdrpp;
6359 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
6360 && hdr->bfd_section == NULL)
6361 /* Do not assign offsets for these sections yet: we don't know
6362 their sizes. */
6363 || (hdr->bfd_section != NULL
6364 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS
6365 || (bfd_section_is_ctf (hdr->bfd_section)
6366 && abfd->is_linker_output)))
6367 || i == elf_onesymtab (abfd)
6368 || (elf_symtab_shndx_list (abfd) != NULL
6369 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
6370 || i == elf_strtab_sec (abfd)
6371 || i == elf_shstrtab_sec (abfd))
6372 {
6373 hdr->sh_offset = -1;
6374 }
6375 else
6376 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
6377 }
6378
6379 elf_next_file_pos (abfd) = off;
6380 elf_program_header_size (abfd) = 0;
6381 }
6382 else
6383 {
6384 /* Assign file positions for the loaded sections based on the
6385 assignment of sections to segments. */
6386 if (!assign_file_positions_for_load_sections (abfd, link_info))
6387 return FALSE;
6388
6389 /* And for non-load sections. */
6390 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
6391 return FALSE;
6392 }
6393
6394 if (!(*bed->elf_backend_modify_headers) (abfd, link_info))
6395 return FALSE;
6396
6397 /* Write out the program headers. */
6398 alloc = i_ehdrp->e_phnum;
6399 if (alloc != 0)
6400 {
6401 if (bfd_seek (abfd, i_ehdrp->e_phoff, SEEK_SET) != 0
6402 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
6403 return FALSE;
6404 }
6405
6406 return TRUE;
6407 }
6408
6409 bfd_boolean
6410 _bfd_elf_init_file_header (bfd *abfd,
6411 struct bfd_link_info *info ATTRIBUTE_UNUSED)
6412 {
6413 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form. */
6414 struct elf_strtab_hash *shstrtab;
6415 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6416
6417 i_ehdrp = elf_elfheader (abfd);
6418
6419 shstrtab = _bfd_elf_strtab_init ();
6420 if (shstrtab == NULL)
6421 return FALSE;
6422
6423 elf_shstrtab (abfd) = shstrtab;
6424
6425 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
6426 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
6427 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
6428 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
6429
6430 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
6431 i_ehdrp->e_ident[EI_DATA] =
6432 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
6433 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
6434
6435 if ((abfd->flags & DYNAMIC) != 0)
6436 i_ehdrp->e_type = ET_DYN;
6437 else if ((abfd->flags & EXEC_P) != 0)
6438 i_ehdrp->e_type = ET_EXEC;
6439 else if (bfd_get_format (abfd) == bfd_core)
6440 i_ehdrp->e_type = ET_CORE;
6441 else
6442 i_ehdrp->e_type = ET_REL;
6443
6444 switch (bfd_get_arch (abfd))
6445 {
6446 case bfd_arch_unknown:
6447 i_ehdrp->e_machine = EM_NONE;
6448 break;
6449
6450 /* There used to be a long list of cases here, each one setting
6451 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
6452 in the corresponding bfd definition. To avoid duplication,
6453 the switch was removed. Machines that need special handling
6454 can generally do it in elf_backend_final_write_processing(),
6455 unless they need the information earlier than the final write.
6456 Such need can generally be supplied by replacing the tests for
6457 e_machine with the conditions used to determine it. */
6458 default:
6459 i_ehdrp->e_machine = bed->elf_machine_code;
6460 }
6461
6462 i_ehdrp->e_version = bed->s->ev_current;
6463 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
6464
6465 /* No program header, for now. */
6466 i_ehdrp->e_phoff = 0;
6467 i_ehdrp->e_phentsize = 0;
6468 i_ehdrp->e_phnum = 0;
6469
6470 /* Each bfd section is section header entry. */
6471 i_ehdrp->e_entry = bfd_get_start_address (abfd);
6472 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
6473
6474 elf_tdata (abfd)->symtab_hdr.sh_name =
6475 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
6476 elf_tdata (abfd)->strtab_hdr.sh_name =
6477 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
6478 elf_tdata (abfd)->shstrtab_hdr.sh_name =
6479 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
6480 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
6481 || elf_tdata (abfd)->strtab_hdr.sh_name == (unsigned int) -1
6482 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
6483 return FALSE;
6484
6485 return TRUE;
6486 }
6487
6488 /* Set e_type in ELF header to ET_EXEC for -pie -Ttext-segment=.
6489
6490 FIXME: We used to have code here to sort the PT_LOAD segments into
6491 ascending order, as per the ELF spec. But this breaks some programs,
6492 including the Linux kernel. But really either the spec should be
6493 changed or the programs updated. */
6494
6495 bfd_boolean
6496 _bfd_elf_modify_headers (bfd *obfd, struct bfd_link_info *link_info)
6497 {
6498 if (link_info != NULL && bfd_link_pie (link_info))
6499 {
6500 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (obfd);
6501 unsigned int num_segments = i_ehdrp->e_phnum;
6502 struct elf_obj_tdata *tdata = elf_tdata (obfd);
6503 Elf_Internal_Phdr *segment = tdata->phdr;
6504 Elf_Internal_Phdr *end_segment = &segment[num_segments];
6505
6506 /* Find the lowest p_vaddr in PT_LOAD segments. */
6507 bfd_vma p_vaddr = (bfd_vma) -1;
6508 for (; segment < end_segment; segment++)
6509 if (segment->p_type == PT_LOAD && p_vaddr > segment->p_vaddr)
6510 p_vaddr = segment->p_vaddr;
6511
6512 /* Set e_type to ET_EXEC if the lowest p_vaddr in PT_LOAD
6513 segments is non-zero. */
6514 if (p_vaddr)
6515 i_ehdrp->e_type = ET_EXEC;
6516 }
6517 return TRUE;
6518 }
6519
6520 /* Assign file positions for all the reloc sections which are not part
6521 of the loadable file image, and the file position of section headers. */
6522
6523 static bfd_boolean
6524 _bfd_elf_assign_file_positions_for_non_load (bfd *abfd)
6525 {
6526 file_ptr off;
6527 Elf_Internal_Shdr **shdrpp, **end_shdrpp;
6528 Elf_Internal_Shdr *shdrp;
6529 Elf_Internal_Ehdr *i_ehdrp;
6530 const struct elf_backend_data *bed;
6531
6532 off = elf_next_file_pos (abfd);
6533
6534 shdrpp = elf_elfsections (abfd);
6535 end_shdrpp = shdrpp + elf_numsections (abfd);
6536 for (shdrpp++; shdrpp < end_shdrpp; shdrpp++)
6537 {
6538 shdrp = *shdrpp;
6539 if (shdrp->sh_offset == -1)
6540 {
6541 asection *sec = shdrp->bfd_section;
6542 bfd_boolean is_rel = (shdrp->sh_type == SHT_REL
6543 || shdrp->sh_type == SHT_RELA);
6544 bfd_boolean is_ctf = sec && bfd_section_is_ctf (sec);
6545 if (is_rel
6546 || is_ctf
6547 || (sec != NULL && (sec->flags & SEC_ELF_COMPRESS)))
6548 {
6549 if (!is_rel && !is_ctf)
6550 {
6551 const char *name = sec->name;
6552 struct bfd_elf_section_data *d;
6553
6554 /* Compress DWARF debug sections. */
6555 if (!bfd_compress_section (abfd, sec,
6556 shdrp->contents))
6557 return FALSE;
6558
6559 if (sec->compress_status == COMPRESS_SECTION_DONE
6560 && (abfd->flags & BFD_COMPRESS_GABI) == 0)
6561 {
6562 /* If section is compressed with zlib-gnu, convert
6563 section name from .debug_* to .zdebug_*. */
6564 char *new_name
6565 = convert_debug_to_zdebug (abfd, name);
6566 if (new_name == NULL)
6567 return FALSE;
6568 name = new_name;
6569 }
6570 /* Add section name to section name section. */
6571 if (shdrp->sh_name != (unsigned int) -1)
6572 abort ();
6573 shdrp->sh_name
6574 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
6575 name, FALSE);
6576 d = elf_section_data (sec);
6577
6578 /* Add reloc section name to section name section. */
6579 if (d->rel.hdr
6580 && !_bfd_elf_set_reloc_sh_name (abfd,
6581 d->rel.hdr,
6582 name, FALSE))
6583 return FALSE;
6584 if (d->rela.hdr
6585 && !_bfd_elf_set_reloc_sh_name (abfd,
6586 d->rela.hdr,
6587 name, TRUE))
6588 return FALSE;
6589
6590 /* Update section size and contents. */
6591 shdrp->sh_size = sec->size;
6592 shdrp->contents = sec->contents;
6593 shdrp->bfd_section->contents = NULL;
6594 }
6595 else if (is_ctf)
6596 {
6597 /* Update section size and contents. */
6598 shdrp->sh_size = sec->size;
6599 shdrp->contents = sec->contents;
6600 }
6601
6602 off = _bfd_elf_assign_file_position_for_section (shdrp,
6603 off,
6604 TRUE);
6605 }
6606 }
6607 }
6608
6609 /* Place section name section after DWARF debug sections have been
6610 compressed. */
6611 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
6612 shdrp = &elf_tdata (abfd)->shstrtab_hdr;
6613 shdrp->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
6614 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
6615
6616 /* Place the section headers. */
6617 i_ehdrp = elf_elfheader (abfd);
6618 bed = get_elf_backend_data (abfd);
6619 off = align_file_position (off, 1 << bed->s->log_file_align);
6620 i_ehdrp->e_shoff = off;
6621 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
6622 elf_next_file_pos (abfd) = off;
6623
6624 return TRUE;
6625 }
6626
6627 bfd_boolean
6628 _bfd_elf_write_object_contents (bfd *abfd)
6629 {
6630 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6631 Elf_Internal_Shdr **i_shdrp;
6632 bfd_boolean failed;
6633 unsigned int count, num_sec;
6634 struct elf_obj_tdata *t;
6635
6636 if (! abfd->output_has_begun
6637 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
6638 return FALSE;
6639 /* Do not rewrite ELF data when the BFD has been opened for update.
6640 abfd->output_has_begun was set to TRUE on opening, so creation of new
6641 sections, and modification of existing section sizes was restricted.
6642 This means the ELF header, program headers and section headers can't have
6643 changed.
6644 If the contents of any sections has been modified, then those changes have
6645 already been written to the BFD. */
6646 else if (abfd->direction == both_direction)
6647 {
6648 BFD_ASSERT (abfd->output_has_begun);
6649 return TRUE;
6650 }
6651
6652 i_shdrp = elf_elfsections (abfd);
6653
6654 failed = FALSE;
6655 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
6656 if (failed)
6657 return FALSE;
6658
6659 if (!_bfd_elf_assign_file_positions_for_non_load (abfd))
6660 return FALSE;
6661
6662 /* After writing the headers, we need to write the sections too... */
6663 num_sec = elf_numsections (abfd);
6664 for (count = 1; count < num_sec; count++)
6665 {
6666 i_shdrp[count]->sh_name
6667 = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
6668 i_shdrp[count]->sh_name);
6669 if (bed->elf_backend_section_processing)
6670 if (!(*bed->elf_backend_section_processing) (abfd, i_shdrp[count]))
6671 return FALSE;
6672 if (i_shdrp[count]->contents)
6673 {
6674 bfd_size_type amt = i_shdrp[count]->sh_size;
6675
6676 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
6677 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
6678 return FALSE;
6679 }
6680 }
6681
6682 /* Write out the section header names. */
6683 t = elf_tdata (abfd);
6684 if (elf_shstrtab (abfd) != NULL
6685 && (bfd_seek (abfd, t->shstrtab_hdr.sh_offset, SEEK_SET) != 0
6686 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
6687 return FALSE;
6688
6689 if (!(*bed->elf_backend_final_write_processing) (abfd))
6690 return FALSE;
6691
6692 if (!bed->s->write_shdrs_and_ehdr (abfd))
6693 return FALSE;
6694
6695 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
6696 if (t->o->build_id.after_write_object_contents != NULL)
6697 return (*t->o->build_id.after_write_object_contents) (abfd);
6698
6699 return TRUE;
6700 }
6701
6702 bfd_boolean
6703 _bfd_elf_write_corefile_contents (bfd *abfd)
6704 {
6705 /* Hopefully this can be done just like an object file. */
6706 return _bfd_elf_write_object_contents (abfd);
6707 }
6708
6709 /* Given a section, search the header to find them. */
6710
6711 unsigned int
6712 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
6713 {
6714 const struct elf_backend_data *bed;
6715 unsigned int sec_index;
6716
6717 if (elf_section_data (asect) != NULL
6718 && elf_section_data (asect)->this_idx != 0)
6719 return elf_section_data (asect)->this_idx;
6720
6721 if (bfd_is_abs_section (asect))
6722 sec_index = SHN_ABS;
6723 else if (bfd_is_com_section (asect))
6724 sec_index = SHN_COMMON;
6725 else if (bfd_is_und_section (asect))
6726 sec_index = SHN_UNDEF;
6727 else
6728 sec_index = SHN_BAD;
6729
6730 bed = get_elf_backend_data (abfd);
6731 if (bed->elf_backend_section_from_bfd_section)
6732 {
6733 int retval = sec_index;
6734
6735 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
6736 return retval;
6737 }
6738
6739 if (sec_index == SHN_BAD)
6740 bfd_set_error (bfd_error_nonrepresentable_section);
6741
6742 return sec_index;
6743 }
6744
6745 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
6746 on error. */
6747
6748 int
6749 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
6750 {
6751 asymbol *asym_ptr = *asym_ptr_ptr;
6752 int idx;
6753 flagword flags = asym_ptr->flags;
6754
6755 /* When gas creates relocations against local labels, it creates its
6756 own symbol for the section, but does put the symbol into the
6757 symbol chain, so udata is 0. When the linker is generating
6758 relocatable output, this section symbol may be for one of the
6759 input sections rather than the output section. */
6760 if (asym_ptr->udata.i == 0
6761 && (flags & BSF_SECTION_SYM)
6762 && asym_ptr->section)
6763 {
6764 asection *sec;
6765 int indx;
6766
6767 sec = asym_ptr->section;
6768 if (sec->owner != abfd && sec->output_section != NULL)
6769 sec = sec->output_section;
6770 if (sec->owner == abfd
6771 && (indx = sec->index) < elf_num_section_syms (abfd)
6772 && elf_section_syms (abfd)[indx] != NULL)
6773 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
6774 }
6775
6776 idx = asym_ptr->udata.i;
6777
6778 if (idx == 0)
6779 {
6780 /* This case can occur when using --strip-symbol on a symbol
6781 which is used in a relocation entry. */
6782 _bfd_error_handler
6783 /* xgettext:c-format */
6784 (_("%pB: symbol `%s' required but not present"),
6785 abfd, bfd_asymbol_name (asym_ptr));
6786 bfd_set_error (bfd_error_no_symbols);
6787 return -1;
6788 }
6789
6790 #if DEBUG & 4
6791 {
6792 fprintf (stderr,
6793 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8x\n",
6794 (long) asym_ptr, asym_ptr->name, idx, flags);
6795 fflush (stderr);
6796 }
6797 #endif
6798
6799 return idx;
6800 }
6801
6802 /* Rewrite program header information. */
6803
6804 static bfd_boolean
6805 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
6806 {
6807 Elf_Internal_Ehdr *iehdr;
6808 struct elf_segment_map *map;
6809 struct elf_segment_map *map_first;
6810 struct elf_segment_map **pointer_to_map;
6811 Elf_Internal_Phdr *segment;
6812 asection *section;
6813 unsigned int i;
6814 unsigned int num_segments;
6815 bfd_boolean phdr_included = FALSE;
6816 bfd_boolean p_paddr_valid;
6817 bfd_vma maxpagesize;
6818 struct elf_segment_map *phdr_adjust_seg = NULL;
6819 unsigned int phdr_adjust_num = 0;
6820 const struct elf_backend_data *bed;
6821 unsigned int opb = bfd_octets_per_byte (ibfd, NULL);
6822
6823 bed = get_elf_backend_data (ibfd);
6824 iehdr = elf_elfheader (ibfd);
6825
6826 map_first = NULL;
6827 pointer_to_map = &map_first;
6828
6829 num_segments = elf_elfheader (ibfd)->e_phnum;
6830 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
6831
6832 /* Returns the end address of the segment + 1. */
6833 #define SEGMENT_END(segment, start) \
6834 (start + (segment->p_memsz > segment->p_filesz \
6835 ? segment->p_memsz : segment->p_filesz))
6836
6837 #define SECTION_SIZE(section, segment) \
6838 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
6839 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
6840 ? section->size : 0)
6841
6842 /* Returns TRUE if the given section is contained within
6843 the given segment. VMA addresses are compared. */
6844 #define IS_CONTAINED_BY_VMA(section, segment, opb) \
6845 (section->vma * (opb) >= segment->p_vaddr \
6846 && (section->vma * (opb) + SECTION_SIZE (section, segment) \
6847 <= (SEGMENT_END (segment, segment->p_vaddr))))
6848
6849 /* Returns TRUE if the given section is contained within
6850 the given segment. LMA addresses are compared. */
6851 #define IS_CONTAINED_BY_LMA(section, segment, base, opb) \
6852 (section->lma * (opb) >= base \
6853 && (section->lma + SECTION_SIZE (section, segment) / (opb) >= section->lma) \
6854 && (section->lma * (opb) + SECTION_SIZE (section, segment) \
6855 <= SEGMENT_END (segment, base)))
6856
6857 /* Handle PT_NOTE segment. */
6858 #define IS_NOTE(p, s) \
6859 (p->p_type == PT_NOTE \
6860 && elf_section_type (s) == SHT_NOTE \
6861 && (bfd_vma) s->filepos >= p->p_offset \
6862 && ((bfd_vma) s->filepos + s->size \
6863 <= p->p_offset + p->p_filesz))
6864
6865 /* Special case: corefile "NOTE" section containing regs, prpsinfo
6866 etc. */
6867 #define IS_COREFILE_NOTE(p, s) \
6868 (IS_NOTE (p, s) \
6869 && bfd_get_format (ibfd) == bfd_core \
6870 && s->vma == 0 \
6871 && s->lma == 0)
6872
6873 /* The complicated case when p_vaddr is 0 is to handle the Solaris
6874 linker, which generates a PT_INTERP section with p_vaddr and
6875 p_memsz set to 0. */
6876 #define IS_SOLARIS_PT_INTERP(p, s) \
6877 (p->p_vaddr == 0 \
6878 && p->p_paddr == 0 \
6879 && p->p_memsz == 0 \
6880 && p->p_filesz > 0 \
6881 && (s->flags & SEC_HAS_CONTENTS) != 0 \
6882 && s->size > 0 \
6883 && (bfd_vma) s->filepos >= p->p_offset \
6884 && ((bfd_vma) s->filepos + s->size \
6885 <= p->p_offset + p->p_filesz))
6886
6887 /* Decide if the given section should be included in the given segment.
6888 A section will be included if:
6889 1. It is within the address space of the segment -- we use the LMA
6890 if that is set for the segment and the VMA otherwise,
6891 2. It is an allocated section or a NOTE section in a PT_NOTE
6892 segment.
6893 3. There is an output section associated with it,
6894 4. The section has not already been allocated to a previous segment.
6895 5. PT_GNU_STACK segments do not include any sections.
6896 6. PT_TLS segment includes only SHF_TLS sections.
6897 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
6898 8. PT_DYNAMIC should not contain empty sections at the beginning
6899 (with the possible exception of .dynamic). */
6900 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed, opb) \
6901 ((((segment->p_paddr \
6902 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr, opb) \
6903 : IS_CONTAINED_BY_VMA (section, segment, opb)) \
6904 && (section->flags & SEC_ALLOC) != 0) \
6905 || IS_NOTE (segment, section)) \
6906 && segment->p_type != PT_GNU_STACK \
6907 && (segment->p_type != PT_TLS \
6908 || (section->flags & SEC_THREAD_LOCAL)) \
6909 && (segment->p_type == PT_LOAD \
6910 || segment->p_type == PT_TLS \
6911 || (section->flags & SEC_THREAD_LOCAL) == 0) \
6912 && (segment->p_type != PT_DYNAMIC \
6913 || SECTION_SIZE (section, segment) > 0 \
6914 || (segment->p_paddr \
6915 ? segment->p_paddr != section->lma * (opb) \
6916 : segment->p_vaddr != section->vma * (opb)) \
6917 || (strcmp (bfd_section_name (section), ".dynamic") == 0)) \
6918 && (segment->p_type != PT_LOAD || !section->segment_mark))
6919
6920 /* If the output section of a section in the input segment is NULL,
6921 it is removed from the corresponding output segment. */
6922 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed, opb) \
6923 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed, opb) \
6924 && section->output_section != NULL)
6925
6926 /* Returns TRUE iff seg1 starts after the end of seg2. */
6927 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
6928 (seg1->field >= SEGMENT_END (seg2, seg2->field))
6929
6930 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
6931 their VMA address ranges and their LMA address ranges overlap.
6932 It is possible to have overlapping VMA ranges without overlapping LMA
6933 ranges. RedBoot images for example can have both .data and .bss mapped
6934 to the same VMA range, but with the .data section mapped to a different
6935 LMA. */
6936 #define SEGMENT_OVERLAPS(seg1, seg2) \
6937 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
6938 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
6939 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
6940 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
6941
6942 /* Initialise the segment mark field. */
6943 for (section = ibfd->sections; section != NULL; section = section->next)
6944 section->segment_mark = FALSE;
6945
6946 /* The Solaris linker creates program headers in which all the
6947 p_paddr fields are zero. When we try to objcopy or strip such a
6948 file, we get confused. Check for this case, and if we find it
6949 don't set the p_paddr_valid fields. */
6950 p_paddr_valid = FALSE;
6951 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6952 i < num_segments;
6953 i++, segment++)
6954 if (segment->p_paddr != 0)
6955 {
6956 p_paddr_valid = TRUE;
6957 break;
6958 }
6959
6960 /* Scan through the segments specified in the program header
6961 of the input BFD. For this first scan we look for overlaps
6962 in the loadable segments. These can be created by weird
6963 parameters to objcopy. Also, fix some solaris weirdness. */
6964 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6965 i < num_segments;
6966 i++, segment++)
6967 {
6968 unsigned int j;
6969 Elf_Internal_Phdr *segment2;
6970
6971 if (segment->p_type == PT_INTERP)
6972 for (section = ibfd->sections; section; section = section->next)
6973 if (IS_SOLARIS_PT_INTERP (segment, section))
6974 {
6975 /* Mininal change so that the normal section to segment
6976 assignment code will work. */
6977 segment->p_vaddr = section->vma * opb;
6978 break;
6979 }
6980
6981 if (segment->p_type != PT_LOAD)
6982 {
6983 /* Remove PT_GNU_RELRO segment. */
6984 if (segment->p_type == PT_GNU_RELRO)
6985 segment->p_type = PT_NULL;
6986 continue;
6987 }
6988
6989 /* Determine if this segment overlaps any previous segments. */
6990 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
6991 {
6992 bfd_signed_vma extra_length;
6993
6994 if (segment2->p_type != PT_LOAD
6995 || !SEGMENT_OVERLAPS (segment, segment2))
6996 continue;
6997
6998 /* Merge the two segments together. */
6999 if (segment2->p_vaddr < segment->p_vaddr)
7000 {
7001 /* Extend SEGMENT2 to include SEGMENT and then delete
7002 SEGMENT. */
7003 extra_length = (SEGMENT_END (segment, segment->p_vaddr)
7004 - SEGMENT_END (segment2, segment2->p_vaddr));
7005
7006 if (extra_length > 0)
7007 {
7008 segment2->p_memsz += extra_length;
7009 segment2->p_filesz += extra_length;
7010 }
7011
7012 segment->p_type = PT_NULL;
7013
7014 /* Since we have deleted P we must restart the outer loop. */
7015 i = 0;
7016 segment = elf_tdata (ibfd)->phdr;
7017 break;
7018 }
7019 else
7020 {
7021 /* Extend SEGMENT to include SEGMENT2 and then delete
7022 SEGMENT2. */
7023 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
7024 - SEGMENT_END (segment, segment->p_vaddr));
7025
7026 if (extra_length > 0)
7027 {
7028 segment->p_memsz += extra_length;
7029 segment->p_filesz += extra_length;
7030 }
7031
7032 segment2->p_type = PT_NULL;
7033 }
7034 }
7035 }
7036
7037 /* The second scan attempts to assign sections to segments. */
7038 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7039 i < num_segments;
7040 i++, segment++)
7041 {
7042 unsigned int section_count;
7043 asection **sections;
7044 asection *output_section;
7045 unsigned int isec;
7046 asection *matching_lma;
7047 asection *suggested_lma;
7048 unsigned int j;
7049 size_t amt;
7050 asection *first_section;
7051
7052 if (segment->p_type == PT_NULL)
7053 continue;
7054
7055 first_section = NULL;
7056 /* Compute how many sections might be placed into this segment. */
7057 for (section = ibfd->sections, section_count = 0;
7058 section != NULL;
7059 section = section->next)
7060 {
7061 /* Find the first section in the input segment, which may be
7062 removed from the corresponding output segment. */
7063 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed, opb))
7064 {
7065 if (first_section == NULL)
7066 first_section = section;
7067 if (section->output_section != NULL)
7068 ++section_count;
7069 }
7070 }
7071
7072 /* Allocate a segment map big enough to contain
7073 all of the sections we have selected. */
7074 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
7075 amt += section_count * sizeof (asection *);
7076 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7077 if (map == NULL)
7078 return FALSE;
7079
7080 /* Initialise the fields of the segment map. Default to
7081 using the physical address of the segment in the input BFD. */
7082 map->next = NULL;
7083 map->p_type = segment->p_type;
7084 map->p_flags = segment->p_flags;
7085 map->p_flags_valid = 1;
7086
7087 /* If the first section in the input segment is removed, there is
7088 no need to preserve segment physical address in the corresponding
7089 output segment. */
7090 if (!first_section || first_section->output_section != NULL)
7091 {
7092 map->p_paddr = segment->p_paddr;
7093 map->p_paddr_valid = p_paddr_valid;
7094 }
7095
7096 /* Determine if this segment contains the ELF file header
7097 and if it contains the program headers themselves. */
7098 map->includes_filehdr = (segment->p_offset == 0
7099 && segment->p_filesz >= iehdr->e_ehsize);
7100 map->includes_phdrs = 0;
7101
7102 if (!phdr_included || segment->p_type != PT_LOAD)
7103 {
7104 map->includes_phdrs =
7105 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
7106 && (segment->p_offset + segment->p_filesz
7107 >= ((bfd_vma) iehdr->e_phoff
7108 + iehdr->e_phnum * iehdr->e_phentsize)));
7109
7110 if (segment->p_type == PT_LOAD && map->includes_phdrs)
7111 phdr_included = TRUE;
7112 }
7113
7114 if (section_count == 0)
7115 {
7116 /* Special segments, such as the PT_PHDR segment, may contain
7117 no sections, but ordinary, loadable segments should contain
7118 something. They are allowed by the ELF spec however, so only
7119 a warning is produced.
7120 There is however the valid use case of embedded systems which
7121 have segments with p_filesz of 0 and a p_memsz > 0 to initialize
7122 flash memory with zeros. No warning is shown for that case. */
7123 if (segment->p_type == PT_LOAD
7124 && (segment->p_filesz > 0 || segment->p_memsz == 0))
7125 /* xgettext:c-format */
7126 _bfd_error_handler
7127 (_("%pB: warning: empty loadable segment detected"
7128 " at vaddr=%#" PRIx64 ", is this intentional?"),
7129 ibfd, (uint64_t) segment->p_vaddr);
7130
7131 map->p_vaddr_offset = segment->p_vaddr / opb;
7132 map->count = 0;
7133 *pointer_to_map = map;
7134 pointer_to_map = &map->next;
7135
7136 continue;
7137 }
7138
7139 /* Now scan the sections in the input BFD again and attempt
7140 to add their corresponding output sections to the segment map.
7141 The problem here is how to handle an output section which has
7142 been moved (ie had its LMA changed). There are four possibilities:
7143
7144 1. None of the sections have been moved.
7145 In this case we can continue to use the segment LMA from the
7146 input BFD.
7147
7148 2. All of the sections have been moved by the same amount.
7149 In this case we can change the segment's LMA to match the LMA
7150 of the first section.
7151
7152 3. Some of the sections have been moved, others have not.
7153 In this case those sections which have not been moved can be
7154 placed in the current segment which will have to have its size,
7155 and possibly its LMA changed, and a new segment or segments will
7156 have to be created to contain the other sections.
7157
7158 4. The sections have been moved, but not by the same amount.
7159 In this case we can change the segment's LMA to match the LMA
7160 of the first section and we will have to create a new segment
7161 or segments to contain the other sections.
7162
7163 In order to save time, we allocate an array to hold the section
7164 pointers that we are interested in. As these sections get assigned
7165 to a segment, they are removed from this array. */
7166
7167 amt = section_count * sizeof (asection *);
7168 sections = (asection **) bfd_malloc (amt);
7169 if (sections == NULL)
7170 return FALSE;
7171
7172 /* Step One: Scan for segment vs section LMA conflicts.
7173 Also add the sections to the section array allocated above.
7174 Also add the sections to the current segment. In the common
7175 case, where the sections have not been moved, this means that
7176 we have completely filled the segment, and there is nothing
7177 more to do. */
7178 isec = 0;
7179 matching_lma = NULL;
7180 suggested_lma = NULL;
7181
7182 for (section = first_section, j = 0;
7183 section != NULL;
7184 section = section->next)
7185 {
7186 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed, opb))
7187 {
7188 output_section = section->output_section;
7189
7190 sections[j++] = section;
7191
7192 /* The Solaris native linker always sets p_paddr to 0.
7193 We try to catch that case here, and set it to the
7194 correct value. Note - some backends require that
7195 p_paddr be left as zero. */
7196 if (!p_paddr_valid
7197 && segment->p_vaddr != 0
7198 && !bed->want_p_paddr_set_to_zero
7199 && isec == 0
7200 && output_section->lma != 0
7201 && (align_power (segment->p_vaddr
7202 + (map->includes_filehdr
7203 ? iehdr->e_ehsize : 0)
7204 + (map->includes_phdrs
7205 ? iehdr->e_phnum * iehdr->e_phentsize
7206 : 0),
7207 output_section->alignment_power * opb)
7208 == (output_section->vma * opb)))
7209 map->p_paddr = segment->p_vaddr;
7210
7211 /* Match up the physical address of the segment with the
7212 LMA address of the output section. */
7213 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr,
7214 opb)
7215 || IS_COREFILE_NOTE (segment, section)
7216 || (bed->want_p_paddr_set_to_zero
7217 && IS_CONTAINED_BY_VMA (output_section, segment, opb)))
7218 {
7219 if (matching_lma == NULL
7220 || output_section->lma < matching_lma->lma)
7221 matching_lma = output_section;
7222
7223 /* We assume that if the section fits within the segment
7224 then it does not overlap any other section within that
7225 segment. */
7226 map->sections[isec++] = output_section;
7227 }
7228 else if (suggested_lma == NULL)
7229 suggested_lma = output_section;
7230
7231 if (j == section_count)
7232 break;
7233 }
7234 }
7235
7236 BFD_ASSERT (j == section_count);
7237
7238 /* Step Two: Adjust the physical address of the current segment,
7239 if necessary. */
7240 if (isec == section_count)
7241 {
7242 /* All of the sections fitted within the segment as currently
7243 specified. This is the default case. Add the segment to
7244 the list of built segments and carry on to process the next
7245 program header in the input BFD. */
7246 map->count = section_count;
7247 *pointer_to_map = map;
7248 pointer_to_map = &map->next;
7249
7250 if (p_paddr_valid
7251 && !bed->want_p_paddr_set_to_zero)
7252 {
7253 bfd_vma hdr_size = 0;
7254 if (map->includes_filehdr)
7255 hdr_size = iehdr->e_ehsize;
7256 if (map->includes_phdrs)
7257 hdr_size += iehdr->e_phnum * iehdr->e_phentsize;
7258
7259 /* Account for padding before the first section in the
7260 segment. */
7261 map->p_vaddr_offset = ((map->p_paddr + hdr_size) / opb
7262 - matching_lma->lma);
7263 }
7264
7265 free (sections);
7266 continue;
7267 }
7268 else
7269 {
7270 /* Change the current segment's physical address to match
7271 the LMA of the first section that fitted, or if no
7272 section fitted, the first section. */
7273 if (matching_lma == NULL)
7274 matching_lma = suggested_lma;
7275
7276 map->p_paddr = matching_lma->lma * opb;
7277
7278 /* Offset the segment physical address from the lma
7279 to allow for space taken up by elf headers. */
7280 if (map->includes_phdrs)
7281 {
7282 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
7283
7284 /* iehdr->e_phnum is just an estimate of the number
7285 of program headers that we will need. Make a note
7286 here of the number we used and the segment we chose
7287 to hold these headers, so that we can adjust the
7288 offset when we know the correct value. */
7289 phdr_adjust_num = iehdr->e_phnum;
7290 phdr_adjust_seg = map;
7291 }
7292
7293 if (map->includes_filehdr)
7294 {
7295 bfd_vma align = (bfd_vma) 1 << matching_lma->alignment_power;
7296 map->p_paddr -= iehdr->e_ehsize;
7297 /* We've subtracted off the size of headers from the
7298 first section lma, but there may have been some
7299 alignment padding before that section too. Try to
7300 account for that by adjusting the segment lma down to
7301 the same alignment. */
7302 if (segment->p_align != 0 && segment->p_align < align)
7303 align = segment->p_align;
7304 map->p_paddr &= -(align * opb);
7305 }
7306 }
7307
7308 /* Step Three: Loop over the sections again, this time assigning
7309 those that fit to the current segment and removing them from the
7310 sections array; but making sure not to leave large gaps. Once all
7311 possible sections have been assigned to the current segment it is
7312 added to the list of built segments and if sections still remain
7313 to be assigned, a new segment is constructed before repeating
7314 the loop. */
7315 isec = 0;
7316 do
7317 {
7318 map->count = 0;
7319 suggested_lma = NULL;
7320
7321 /* Fill the current segment with sections that fit. */
7322 for (j = 0; j < section_count; j++)
7323 {
7324 section = sections[j];
7325
7326 if (section == NULL)
7327 continue;
7328
7329 output_section = section->output_section;
7330
7331 BFD_ASSERT (output_section != NULL);
7332
7333 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr,
7334 opb)
7335 || IS_COREFILE_NOTE (segment, section))
7336 {
7337 if (map->count == 0)
7338 {
7339 /* If the first section in a segment does not start at
7340 the beginning of the segment, then something is
7341 wrong. */
7342 if (align_power (map->p_paddr
7343 + (map->includes_filehdr
7344 ? iehdr->e_ehsize : 0)
7345 + (map->includes_phdrs
7346 ? iehdr->e_phnum * iehdr->e_phentsize
7347 : 0),
7348 output_section->alignment_power * opb)
7349 != output_section->lma * opb)
7350 goto sorry;
7351 }
7352 else
7353 {
7354 asection *prev_sec;
7355
7356 prev_sec = map->sections[map->count - 1];
7357
7358 /* If the gap between the end of the previous section
7359 and the start of this section is more than
7360 maxpagesize then we need to start a new segment. */
7361 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
7362 maxpagesize)
7363 < BFD_ALIGN (output_section->lma, maxpagesize))
7364 || (prev_sec->lma + prev_sec->size
7365 > output_section->lma))
7366 {
7367 if (suggested_lma == NULL)
7368 suggested_lma = output_section;
7369
7370 continue;
7371 }
7372 }
7373
7374 map->sections[map->count++] = output_section;
7375 ++isec;
7376 sections[j] = NULL;
7377 if (segment->p_type == PT_LOAD)
7378 section->segment_mark = TRUE;
7379 }
7380 else if (suggested_lma == NULL)
7381 suggested_lma = output_section;
7382 }
7383
7384 /* PR 23932. A corrupt input file may contain sections that cannot
7385 be assigned to any segment - because for example they have a
7386 negative size - or segments that do not contain any sections.
7387 But there are also valid reasons why a segment can be empty.
7388 So allow a count of zero. */
7389
7390 /* Add the current segment to the list of built segments. */
7391 *pointer_to_map = map;
7392 pointer_to_map = &map->next;
7393
7394 if (isec < section_count)
7395 {
7396 /* We still have not allocated all of the sections to
7397 segments. Create a new segment here, initialise it
7398 and carry on looping. */
7399 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
7400 amt += section_count * sizeof (asection *);
7401 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7402 if (map == NULL)
7403 {
7404 free (sections);
7405 return FALSE;
7406 }
7407
7408 /* Initialise the fields of the segment map. Set the physical
7409 physical address to the LMA of the first section that has
7410 not yet been assigned. */
7411 map->next = NULL;
7412 map->p_type = segment->p_type;
7413 map->p_flags = segment->p_flags;
7414 map->p_flags_valid = 1;
7415 map->p_paddr = suggested_lma->lma * opb;
7416 map->p_paddr_valid = p_paddr_valid;
7417 map->includes_filehdr = 0;
7418 map->includes_phdrs = 0;
7419 }
7420
7421 continue;
7422 sorry:
7423 bfd_set_error (bfd_error_sorry);
7424 free (sections);
7425 return FALSE;
7426 }
7427 while (isec < section_count);
7428
7429 free (sections);
7430 }
7431
7432 elf_seg_map (obfd) = map_first;
7433
7434 /* If we had to estimate the number of program headers that were
7435 going to be needed, then check our estimate now and adjust
7436 the offset if necessary. */
7437 if (phdr_adjust_seg != NULL)
7438 {
7439 unsigned int count;
7440
7441 for (count = 0, map = map_first; map != NULL; map = map->next)
7442 count++;
7443
7444 if (count > phdr_adjust_num)
7445 phdr_adjust_seg->p_paddr
7446 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
7447
7448 for (map = map_first; map != NULL; map = map->next)
7449 if (map->p_type == PT_PHDR)
7450 {
7451 bfd_vma adjust
7452 = phdr_adjust_seg->includes_filehdr ? iehdr->e_ehsize : 0;
7453 map->p_paddr = phdr_adjust_seg->p_paddr + adjust;
7454 break;
7455 }
7456 }
7457
7458 #undef SEGMENT_END
7459 #undef SECTION_SIZE
7460 #undef IS_CONTAINED_BY_VMA
7461 #undef IS_CONTAINED_BY_LMA
7462 #undef IS_NOTE
7463 #undef IS_COREFILE_NOTE
7464 #undef IS_SOLARIS_PT_INTERP
7465 #undef IS_SECTION_IN_INPUT_SEGMENT
7466 #undef INCLUDE_SECTION_IN_SEGMENT
7467 #undef SEGMENT_AFTER_SEGMENT
7468 #undef SEGMENT_OVERLAPS
7469 return TRUE;
7470 }
7471
7472 /* Copy ELF program header information. */
7473
7474 static bfd_boolean
7475 copy_elf_program_header (bfd *ibfd, bfd *obfd)
7476 {
7477 Elf_Internal_Ehdr *iehdr;
7478 struct elf_segment_map *map;
7479 struct elf_segment_map *map_first;
7480 struct elf_segment_map **pointer_to_map;
7481 Elf_Internal_Phdr *segment;
7482 unsigned int i;
7483 unsigned int num_segments;
7484 bfd_boolean phdr_included = FALSE;
7485 bfd_boolean p_paddr_valid;
7486 unsigned int opb = bfd_octets_per_byte (ibfd, NULL);
7487
7488 iehdr = elf_elfheader (ibfd);
7489
7490 map_first = NULL;
7491 pointer_to_map = &map_first;
7492
7493 /* If all the segment p_paddr fields are zero, don't set
7494 map->p_paddr_valid. */
7495 p_paddr_valid = FALSE;
7496 num_segments = elf_elfheader (ibfd)->e_phnum;
7497 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7498 i < num_segments;
7499 i++, segment++)
7500 if (segment->p_paddr != 0)
7501 {
7502 p_paddr_valid = TRUE;
7503 break;
7504 }
7505
7506 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7507 i < num_segments;
7508 i++, segment++)
7509 {
7510 asection *section;
7511 unsigned int section_count;
7512 size_t amt;
7513 Elf_Internal_Shdr *this_hdr;
7514 asection *first_section = NULL;
7515 asection *lowest_section;
7516
7517 /* Compute how many sections are in this segment. */
7518 for (section = ibfd->sections, section_count = 0;
7519 section != NULL;
7520 section = section->next)
7521 {
7522 this_hdr = &(elf_section_data(section)->this_hdr);
7523 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7524 {
7525 if (first_section == NULL)
7526 first_section = section;
7527 section_count++;
7528 }
7529 }
7530
7531 /* Allocate a segment map big enough to contain
7532 all of the sections we have selected. */
7533 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
7534 amt += section_count * sizeof (asection *);
7535 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7536 if (map == NULL)
7537 return FALSE;
7538
7539 /* Initialize the fields of the output segment map with the
7540 input segment. */
7541 map->next = NULL;
7542 map->p_type = segment->p_type;
7543 map->p_flags = segment->p_flags;
7544 map->p_flags_valid = 1;
7545 map->p_paddr = segment->p_paddr;
7546 map->p_paddr_valid = p_paddr_valid;
7547 map->p_align = segment->p_align;
7548 map->p_align_valid = 1;
7549 map->p_vaddr_offset = 0;
7550
7551 if (map->p_type == PT_GNU_RELRO
7552 || map->p_type == PT_GNU_STACK)
7553 {
7554 /* The PT_GNU_RELRO segment may contain the first a few
7555 bytes in the .got.plt section even if the whole .got.plt
7556 section isn't in the PT_GNU_RELRO segment. We won't
7557 change the size of the PT_GNU_RELRO segment.
7558 Similarly, PT_GNU_STACK size is significant on uclinux
7559 systems. */
7560 map->p_size = segment->p_memsz;
7561 map->p_size_valid = 1;
7562 }
7563
7564 /* Determine if this segment contains the ELF file header
7565 and if it contains the program headers themselves. */
7566 map->includes_filehdr = (segment->p_offset == 0
7567 && segment->p_filesz >= iehdr->e_ehsize);
7568
7569 map->includes_phdrs = 0;
7570 if (! phdr_included || segment->p_type != PT_LOAD)
7571 {
7572 map->includes_phdrs =
7573 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
7574 && (segment->p_offset + segment->p_filesz
7575 >= ((bfd_vma) iehdr->e_phoff
7576 + iehdr->e_phnum * iehdr->e_phentsize)));
7577
7578 if (segment->p_type == PT_LOAD && map->includes_phdrs)
7579 phdr_included = TRUE;
7580 }
7581
7582 lowest_section = NULL;
7583 if (section_count != 0)
7584 {
7585 unsigned int isec = 0;
7586
7587 for (section = first_section;
7588 section != NULL;
7589 section = section->next)
7590 {
7591 this_hdr = &(elf_section_data(section)->this_hdr);
7592 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7593 {
7594 map->sections[isec++] = section->output_section;
7595 if ((section->flags & SEC_ALLOC) != 0)
7596 {
7597 bfd_vma seg_off;
7598
7599 if (lowest_section == NULL
7600 || section->lma < lowest_section->lma)
7601 lowest_section = section;
7602
7603 /* Section lmas are set up from PT_LOAD header
7604 p_paddr in _bfd_elf_make_section_from_shdr.
7605 If this header has a p_paddr that disagrees
7606 with the section lma, flag the p_paddr as
7607 invalid. */
7608 if ((section->flags & SEC_LOAD) != 0)
7609 seg_off = this_hdr->sh_offset - segment->p_offset;
7610 else
7611 seg_off = this_hdr->sh_addr - segment->p_vaddr;
7612 if (section->lma * opb - segment->p_paddr != seg_off)
7613 map->p_paddr_valid = FALSE;
7614 }
7615 if (isec == section_count)
7616 break;
7617 }
7618 }
7619 }
7620
7621 if (section_count == 0)
7622 map->p_vaddr_offset = segment->p_vaddr / opb;
7623 else if (map->p_paddr_valid)
7624 {
7625 /* Account for padding before the first section in the segment. */
7626 bfd_vma hdr_size = 0;
7627 if (map->includes_filehdr)
7628 hdr_size = iehdr->e_ehsize;
7629 if (map->includes_phdrs)
7630 hdr_size += iehdr->e_phnum * iehdr->e_phentsize;
7631
7632 map->p_vaddr_offset = ((map->p_paddr + hdr_size) / opb
7633 - (lowest_section ? lowest_section->lma : 0));
7634 }
7635
7636 map->count = section_count;
7637 *pointer_to_map = map;
7638 pointer_to_map = &map->next;
7639 }
7640
7641 elf_seg_map (obfd) = map_first;
7642 return TRUE;
7643 }
7644
7645 /* Copy private BFD data. This copies or rewrites ELF program header
7646 information. */
7647
7648 static bfd_boolean
7649 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
7650 {
7651 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7652 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7653 return TRUE;
7654
7655 if (elf_tdata (ibfd)->phdr == NULL)
7656 return TRUE;
7657
7658 if (ibfd->xvec == obfd->xvec)
7659 {
7660 /* Check to see if any sections in the input BFD
7661 covered by ELF program header have changed. */
7662 Elf_Internal_Phdr *segment;
7663 asection *section, *osec;
7664 unsigned int i, num_segments;
7665 Elf_Internal_Shdr *this_hdr;
7666 const struct elf_backend_data *bed;
7667
7668 bed = get_elf_backend_data (ibfd);
7669
7670 /* Regenerate the segment map if p_paddr is set to 0. */
7671 if (bed->want_p_paddr_set_to_zero)
7672 goto rewrite;
7673
7674 /* Initialize the segment mark field. */
7675 for (section = obfd->sections; section != NULL;
7676 section = section->next)
7677 section->segment_mark = FALSE;
7678
7679 num_segments = elf_elfheader (ibfd)->e_phnum;
7680 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7681 i < num_segments;
7682 i++, segment++)
7683 {
7684 /* PR binutils/3535. The Solaris linker always sets the p_paddr
7685 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
7686 which severly confuses things, so always regenerate the segment
7687 map in this case. */
7688 if (segment->p_paddr == 0
7689 && segment->p_memsz == 0
7690 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
7691 goto rewrite;
7692
7693 for (section = ibfd->sections;
7694 section != NULL; section = section->next)
7695 {
7696 /* We mark the output section so that we know it comes
7697 from the input BFD. */
7698 osec = section->output_section;
7699 if (osec)
7700 osec->segment_mark = TRUE;
7701
7702 /* Check if this section is covered by the segment. */
7703 this_hdr = &(elf_section_data(section)->this_hdr);
7704 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7705 {
7706 /* FIXME: Check if its output section is changed or
7707 removed. What else do we need to check? */
7708 if (osec == NULL
7709 || section->flags != osec->flags
7710 || section->lma != osec->lma
7711 || section->vma != osec->vma
7712 || section->size != osec->size
7713 || section->rawsize != osec->rawsize
7714 || section->alignment_power != osec->alignment_power)
7715 goto rewrite;
7716 }
7717 }
7718 }
7719
7720 /* Check to see if any output section do not come from the
7721 input BFD. */
7722 for (section = obfd->sections; section != NULL;
7723 section = section->next)
7724 {
7725 if (!section->segment_mark)
7726 goto rewrite;
7727 else
7728 section->segment_mark = FALSE;
7729 }
7730
7731 return copy_elf_program_header (ibfd, obfd);
7732 }
7733
7734 rewrite:
7735 if (ibfd->xvec == obfd->xvec)
7736 {
7737 /* When rewriting program header, set the output maxpagesize to
7738 the maximum alignment of input PT_LOAD segments. */
7739 Elf_Internal_Phdr *segment;
7740 unsigned int i;
7741 unsigned int num_segments = elf_elfheader (ibfd)->e_phnum;
7742 bfd_vma maxpagesize = 0;
7743
7744 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7745 i < num_segments;
7746 i++, segment++)
7747 if (segment->p_type == PT_LOAD
7748 && maxpagesize < segment->p_align)
7749 {
7750 /* PR 17512: file: f17299af. */
7751 if (segment->p_align > (bfd_vma) 1 << ((sizeof (bfd_vma) * 8) - 2))
7752 /* xgettext:c-format */
7753 _bfd_error_handler (_("%pB: warning: segment alignment of %#"
7754 PRIx64 " is too large"),
7755 ibfd, (uint64_t) segment->p_align);
7756 else
7757 maxpagesize = segment->p_align;
7758 }
7759
7760 if (maxpagesize != get_elf_backend_data (obfd)->maxpagesize)
7761 bfd_emul_set_maxpagesize (bfd_get_target (obfd), maxpagesize);
7762 }
7763
7764 return rewrite_elf_program_header (ibfd, obfd);
7765 }
7766
7767 /* Initialize private output section information from input section. */
7768
7769 bfd_boolean
7770 _bfd_elf_init_private_section_data (bfd *ibfd,
7771 asection *isec,
7772 bfd *obfd,
7773 asection *osec,
7774 struct bfd_link_info *link_info)
7775
7776 {
7777 Elf_Internal_Shdr *ihdr, *ohdr;
7778 bfd_boolean final_link = (link_info != NULL
7779 && !bfd_link_relocatable (link_info));
7780
7781 if (ibfd->xvec->flavour != bfd_target_elf_flavour
7782 || obfd->xvec->flavour != bfd_target_elf_flavour)
7783 return TRUE;
7784
7785 BFD_ASSERT (elf_section_data (osec) != NULL);
7786
7787 /* If this is a known ABI section, ELF section type and flags may
7788 have been set up when OSEC was created. For normal sections we
7789 allow the user to override the type and flags other than
7790 SHF_MASKOS and SHF_MASKPROC. */
7791 if (elf_section_type (osec) == SHT_PROGBITS
7792 || elf_section_type (osec) == SHT_NOTE
7793 || elf_section_type (osec) == SHT_NOBITS)
7794 elf_section_type (osec) = SHT_NULL;
7795 /* For objcopy and relocatable link, copy the ELF section type from
7796 the input file if the BFD section flags are the same. (If they
7797 are different the user may be doing something like
7798 "objcopy --set-section-flags .text=alloc,data".) For a final
7799 link allow some flags that the linker clears to differ. */
7800 if (elf_section_type (osec) == SHT_NULL
7801 && (osec->flags == isec->flags
7802 || (final_link
7803 && ((osec->flags ^ isec->flags)
7804 & ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC)) == 0)))
7805 elf_section_type (osec) = elf_section_type (isec);
7806
7807 /* FIXME: Is this correct for all OS/PROC specific flags? */
7808 elf_section_flags (osec) = (elf_section_flags (isec)
7809 & (SHF_MASKOS | SHF_MASKPROC));
7810
7811 /* Copy sh_info from input for mbind section. */
7812 if ((elf_tdata (ibfd)->has_gnu_osabi & elf_gnu_osabi_mbind) != 0
7813 && elf_section_flags (isec) & SHF_GNU_MBIND)
7814 elf_section_data (osec)->this_hdr.sh_info
7815 = elf_section_data (isec)->this_hdr.sh_info;
7816
7817 /* Set things up for objcopy and relocatable link. The output
7818 SHT_GROUP section will have its elf_next_in_group pointing back
7819 to the input group members. Ignore linker created group section.
7820 See elfNN_ia64_object_p in elfxx-ia64.c. */
7821 if ((link_info == NULL
7822 || !link_info->resolve_section_groups)
7823 && (elf_sec_group (isec) == NULL
7824 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0))
7825 {
7826 if (elf_section_flags (isec) & SHF_GROUP)
7827 elf_section_flags (osec) |= SHF_GROUP;
7828 elf_next_in_group (osec) = elf_next_in_group (isec);
7829 elf_section_data (osec)->group = elf_section_data (isec)->group;
7830 }
7831
7832 /* If not decompress, preserve SHF_COMPRESSED. */
7833 if (!final_link && (ibfd->flags & BFD_DECOMPRESS) == 0)
7834 elf_section_flags (osec) |= (elf_section_flags (isec)
7835 & SHF_COMPRESSED);
7836
7837 ihdr = &elf_section_data (isec)->this_hdr;
7838
7839 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
7840 don't use the output section of the linked-to section since it
7841 may be NULL at this point. */
7842 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
7843 {
7844 ohdr = &elf_section_data (osec)->this_hdr;
7845 ohdr->sh_flags |= SHF_LINK_ORDER;
7846 elf_linked_to_section (osec) = elf_linked_to_section (isec);
7847 }
7848
7849 osec->use_rela_p = isec->use_rela_p;
7850
7851 return TRUE;
7852 }
7853
7854 /* Copy private section information. This copies over the entsize
7855 field, and sometimes the info field. */
7856
7857 bfd_boolean
7858 _bfd_elf_copy_private_section_data (bfd *ibfd,
7859 asection *isec,
7860 bfd *obfd,
7861 asection *osec)
7862 {
7863 Elf_Internal_Shdr *ihdr, *ohdr;
7864
7865 if (ibfd->xvec->flavour != bfd_target_elf_flavour
7866 || obfd->xvec->flavour != bfd_target_elf_flavour)
7867 return TRUE;
7868
7869 ihdr = &elf_section_data (isec)->this_hdr;
7870 ohdr = &elf_section_data (osec)->this_hdr;
7871
7872 ohdr->sh_entsize = ihdr->sh_entsize;
7873
7874 if (ihdr->sh_type == SHT_SYMTAB
7875 || ihdr->sh_type == SHT_DYNSYM
7876 || ihdr->sh_type == SHT_GNU_verneed
7877 || ihdr->sh_type == SHT_GNU_verdef)
7878 ohdr->sh_info = ihdr->sh_info;
7879
7880 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
7881 NULL);
7882 }
7883
7884 /* Look at all the SHT_GROUP sections in IBFD, making any adjustments
7885 necessary if we are removing either the SHT_GROUP section or any of
7886 the group member sections. DISCARDED is the value that a section's
7887 output_section has if the section will be discarded, NULL when this
7888 function is called from objcopy, bfd_abs_section_ptr when called
7889 from the linker. */
7890
7891 bfd_boolean
7892 _bfd_elf_fixup_group_sections (bfd *ibfd, asection *discarded)
7893 {
7894 asection *isec;
7895
7896 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
7897 if (elf_section_type (isec) == SHT_GROUP)
7898 {
7899 asection *first = elf_next_in_group (isec);
7900 asection *s = first;
7901 bfd_size_type removed = 0;
7902
7903 while (s != NULL)
7904 {
7905 /* If this member section is being output but the
7906 SHT_GROUP section is not, then clear the group info
7907 set up by _bfd_elf_copy_private_section_data. */
7908 if (s->output_section != discarded
7909 && isec->output_section == discarded)
7910 {
7911 elf_section_flags (s->output_section) &= ~SHF_GROUP;
7912 elf_group_name (s->output_section) = NULL;
7913 }
7914 else
7915 {
7916 struct bfd_elf_section_data *elf_sec = elf_section_data (s);
7917 if (s->output_section == discarded
7918 && isec->output_section != discarded)
7919 {
7920 /* Conversely, if the member section is not being
7921 output but the SHT_GROUP section is, then adjust
7922 its size. */
7923 removed += 4;
7924 if (elf_sec->rel.hdr != NULL
7925 && (elf_sec->rel.hdr->sh_flags & SHF_GROUP) != 0)
7926 removed += 4;
7927 if (elf_sec->rela.hdr != NULL
7928 && (elf_sec->rela.hdr->sh_flags & SHF_GROUP) != 0)
7929 removed += 4;
7930 }
7931 else
7932 {
7933 /* Also adjust for zero-sized relocation member
7934 section. */
7935 if (elf_sec->rel.hdr != NULL
7936 && elf_sec->rel.hdr->sh_size == 0)
7937 removed += 4;
7938 if (elf_sec->rela.hdr != NULL
7939 && elf_sec->rela.hdr->sh_size == 0)
7940 removed += 4;
7941 }
7942 }
7943 s = elf_next_in_group (s);
7944 if (s == first)
7945 break;
7946 }
7947 if (removed != 0)
7948 {
7949 if (discarded != NULL)
7950 {
7951 /* If we've been called for ld -r, then we need to
7952 adjust the input section size. */
7953 if (isec->rawsize == 0)
7954 isec->rawsize = isec->size;
7955 isec->size = isec->rawsize - removed;
7956 if (isec->size <= 4)
7957 {
7958 isec->size = 0;
7959 isec->flags |= SEC_EXCLUDE;
7960 }
7961 }
7962 else
7963 {
7964 /* Adjust the output section size when called from
7965 objcopy. */
7966 isec->output_section->size -= removed;
7967 if (isec->output_section->size <= 4)
7968 {
7969 isec->output_section->size = 0;
7970 isec->output_section->flags |= SEC_EXCLUDE;
7971 }
7972 }
7973 }
7974 }
7975
7976 return TRUE;
7977 }
7978
7979 /* Copy private header information. */
7980
7981 bfd_boolean
7982 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
7983 {
7984 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7985 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7986 return TRUE;
7987
7988 /* Copy over private BFD data if it has not already been copied.
7989 This must be done here, rather than in the copy_private_bfd_data
7990 entry point, because the latter is called after the section
7991 contents have been set, which means that the program headers have
7992 already been worked out. */
7993 if (elf_seg_map (obfd) == NULL && elf_tdata (ibfd)->phdr != NULL)
7994 {
7995 if (! copy_private_bfd_data (ibfd, obfd))
7996 return FALSE;
7997 }
7998
7999 return _bfd_elf_fixup_group_sections (ibfd, NULL);
8000 }
8001
8002 /* Copy private symbol information. If this symbol is in a section
8003 which we did not map into a BFD section, try to map the section
8004 index correctly. We use special macro definitions for the mapped
8005 section indices; these definitions are interpreted by the
8006 swap_out_syms function. */
8007
8008 #define MAP_ONESYMTAB (SHN_HIOS + 1)
8009 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
8010 #define MAP_STRTAB (SHN_HIOS + 3)
8011 #define MAP_SHSTRTAB (SHN_HIOS + 4)
8012 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
8013
8014 bfd_boolean
8015 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
8016 asymbol *isymarg,
8017 bfd *obfd,
8018 asymbol *osymarg)
8019 {
8020 elf_symbol_type *isym, *osym;
8021
8022 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
8023 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
8024 return TRUE;
8025
8026 isym = elf_symbol_from (isymarg);
8027 osym = elf_symbol_from (osymarg);
8028
8029 if (isym != NULL
8030 && isym->internal_elf_sym.st_shndx != 0
8031 && osym != NULL
8032 && bfd_is_abs_section (isym->symbol.section))
8033 {
8034 unsigned int shndx;
8035
8036 shndx = isym->internal_elf_sym.st_shndx;
8037 if (shndx == elf_onesymtab (ibfd))
8038 shndx = MAP_ONESYMTAB;
8039 else if (shndx == elf_dynsymtab (ibfd))
8040 shndx = MAP_DYNSYMTAB;
8041 else if (shndx == elf_strtab_sec (ibfd))
8042 shndx = MAP_STRTAB;
8043 else if (shndx == elf_shstrtab_sec (ibfd))
8044 shndx = MAP_SHSTRTAB;
8045 else if (find_section_in_list (shndx, elf_symtab_shndx_list (ibfd)))
8046 shndx = MAP_SYM_SHNDX;
8047 osym->internal_elf_sym.st_shndx = shndx;
8048 }
8049
8050 return TRUE;
8051 }
8052
8053 /* Swap out the symbols. */
8054
8055 static bfd_boolean
8056 swap_out_syms (bfd *abfd,
8057 struct elf_strtab_hash **sttp,
8058 int relocatable_p,
8059 struct bfd_link_info *info)
8060 {
8061 const struct elf_backend_data *bed;
8062 unsigned int symcount;
8063 asymbol **syms;
8064 struct elf_strtab_hash *stt;
8065 Elf_Internal_Shdr *symtab_hdr;
8066 Elf_Internal_Shdr *symtab_shndx_hdr;
8067 Elf_Internal_Shdr *symstrtab_hdr;
8068 struct elf_sym_strtab *symstrtab;
8069 bfd_byte *outbound_syms;
8070 bfd_byte *outbound_shndx;
8071 unsigned long outbound_syms_index;
8072 unsigned long outbound_shndx_index;
8073 unsigned int idx;
8074 unsigned int num_locals;
8075 size_t amt;
8076 bfd_boolean name_local_sections;
8077
8078 if (!elf_map_symbols (abfd, &num_locals))
8079 return FALSE;
8080
8081 /* Dump out the symtabs. */
8082 stt = _bfd_elf_strtab_init ();
8083 if (stt == NULL)
8084 return FALSE;
8085
8086 bed = get_elf_backend_data (abfd);
8087 symcount = bfd_get_symcount (abfd);
8088 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8089 symtab_hdr->sh_type = SHT_SYMTAB;
8090 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
8091 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
8092 symtab_hdr->sh_info = num_locals + 1;
8093 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
8094
8095 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
8096 symstrtab_hdr->sh_type = SHT_STRTAB;
8097
8098 /* Allocate buffer to swap out the .strtab section. */
8099 if (_bfd_mul_overflow (symcount + 1, sizeof (*symstrtab), &amt)
8100 || (symstrtab = (struct elf_sym_strtab *) bfd_malloc (amt)) == NULL)
8101 {
8102 bfd_set_error (bfd_error_no_memory);
8103 _bfd_elf_strtab_free (stt);
8104 return FALSE;
8105 }
8106
8107 if (_bfd_mul_overflow (symcount + 1, bed->s->sizeof_sym, &amt)
8108 || (outbound_syms = (bfd_byte *) bfd_alloc (abfd, amt)) == NULL)
8109 {
8110 error_no_mem:
8111 bfd_set_error (bfd_error_no_memory);
8112 error_return:
8113 free (symstrtab);
8114 _bfd_elf_strtab_free (stt);
8115 return FALSE;
8116 }
8117 symtab_hdr->contents = outbound_syms;
8118 outbound_syms_index = 0;
8119
8120 outbound_shndx = NULL;
8121 outbound_shndx_index = 0;
8122
8123 if (elf_symtab_shndx_list (abfd))
8124 {
8125 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
8126 if (symtab_shndx_hdr->sh_name != 0)
8127 {
8128 if (_bfd_mul_overflow (symcount + 1,
8129 sizeof (Elf_External_Sym_Shndx), &amt))
8130 goto error_no_mem;
8131 outbound_shndx = (bfd_byte *) bfd_zalloc (abfd, amt);
8132 if (outbound_shndx == NULL)
8133 goto error_return;
8134
8135 symtab_shndx_hdr->contents = outbound_shndx;
8136 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
8137 symtab_shndx_hdr->sh_size = amt;
8138 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
8139 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
8140 }
8141 /* FIXME: What about any other headers in the list ? */
8142 }
8143
8144 /* Now generate the data (for "contents"). */
8145 {
8146 /* Fill in zeroth symbol and swap it out. */
8147 Elf_Internal_Sym sym;
8148 sym.st_name = 0;
8149 sym.st_value = 0;
8150 sym.st_size = 0;
8151 sym.st_info = 0;
8152 sym.st_other = 0;
8153 sym.st_shndx = SHN_UNDEF;
8154 sym.st_target_internal = 0;
8155 symstrtab[0].sym = sym;
8156 symstrtab[0].dest_index = outbound_syms_index;
8157 symstrtab[0].destshndx_index = outbound_shndx_index;
8158 outbound_syms_index++;
8159 if (outbound_shndx != NULL)
8160 outbound_shndx_index++;
8161 }
8162
8163 name_local_sections
8164 = (bed->elf_backend_name_local_section_symbols
8165 && bed->elf_backend_name_local_section_symbols (abfd));
8166
8167 syms = bfd_get_outsymbols (abfd);
8168 for (idx = 0; idx < symcount;)
8169 {
8170 Elf_Internal_Sym sym;
8171 bfd_vma value = syms[idx]->value;
8172 elf_symbol_type *type_ptr;
8173 flagword flags = syms[idx]->flags;
8174 int type;
8175
8176 if (!name_local_sections
8177 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
8178 {
8179 /* Local section symbols have no name. */
8180 sym.st_name = (unsigned long) -1;
8181 }
8182 else
8183 {
8184 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
8185 to get the final offset for st_name. */
8186 sym.st_name
8187 = (unsigned long) _bfd_elf_strtab_add (stt, syms[idx]->name,
8188 FALSE);
8189 if (sym.st_name == (unsigned long) -1)
8190 goto error_return;
8191 }
8192
8193 type_ptr = elf_symbol_from (syms[idx]);
8194
8195 if ((flags & BSF_SECTION_SYM) == 0
8196 && bfd_is_com_section (syms[idx]->section))
8197 {
8198 /* ELF common symbols put the alignment into the `value' field,
8199 and the size into the `size' field. This is backwards from
8200 how BFD handles it, so reverse it here. */
8201 sym.st_size = value;
8202 if (type_ptr == NULL
8203 || type_ptr->internal_elf_sym.st_value == 0)
8204 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
8205 else
8206 sym.st_value = type_ptr->internal_elf_sym.st_value;
8207 sym.st_shndx = _bfd_elf_section_from_bfd_section
8208 (abfd, syms[idx]->section);
8209 }
8210 else
8211 {
8212 asection *sec = syms[idx]->section;
8213 unsigned int shndx;
8214
8215 if (sec->output_section)
8216 {
8217 value += sec->output_offset;
8218 sec = sec->output_section;
8219 }
8220
8221 /* Don't add in the section vma for relocatable output. */
8222 if (! relocatable_p)
8223 value += sec->vma;
8224 sym.st_value = value;
8225 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
8226
8227 if (bfd_is_abs_section (sec)
8228 && type_ptr != NULL
8229 && type_ptr->internal_elf_sym.st_shndx != 0)
8230 {
8231 /* This symbol is in a real ELF section which we did
8232 not create as a BFD section. Undo the mapping done
8233 by copy_private_symbol_data. */
8234 shndx = type_ptr->internal_elf_sym.st_shndx;
8235 switch (shndx)
8236 {
8237 case MAP_ONESYMTAB:
8238 shndx = elf_onesymtab (abfd);
8239 break;
8240 case MAP_DYNSYMTAB:
8241 shndx = elf_dynsymtab (abfd);
8242 break;
8243 case MAP_STRTAB:
8244 shndx = elf_strtab_sec (abfd);
8245 break;
8246 case MAP_SHSTRTAB:
8247 shndx = elf_shstrtab_sec (abfd);
8248 break;
8249 case MAP_SYM_SHNDX:
8250 if (elf_symtab_shndx_list (abfd))
8251 shndx = elf_symtab_shndx_list (abfd)->ndx;
8252 break;
8253 case SHN_COMMON:
8254 case SHN_ABS:
8255 shndx = SHN_ABS;
8256 break;
8257 default:
8258 if (shndx >= SHN_LOPROC && shndx <= SHN_HIOS)
8259 {
8260 if (bed->symbol_section_index)
8261 shndx = bed->symbol_section_index (abfd, type_ptr);
8262 /* Otherwise just leave the index alone. */
8263 }
8264 else
8265 {
8266 if (shndx > SHN_HIOS && shndx < SHN_HIRESERVE)
8267 _bfd_error_handler (_("%pB: \
8268 Unable to handle section index %x in ELF symbol. Using ABS instead."),
8269 abfd, shndx);
8270 shndx = SHN_ABS;
8271 }
8272 break;
8273 }
8274 }
8275 else
8276 {
8277 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
8278
8279 if (shndx == SHN_BAD)
8280 {
8281 asection *sec2;
8282
8283 /* Writing this would be a hell of a lot easier if
8284 we had some decent documentation on bfd, and
8285 knew what to expect of the library, and what to
8286 demand of applications. For example, it
8287 appears that `objcopy' might not set the
8288 section of a symbol to be a section that is
8289 actually in the output file. */
8290 sec2 = bfd_get_section_by_name (abfd, sec->name);
8291 if (sec2 != NULL)
8292 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
8293 if (shndx == SHN_BAD)
8294 {
8295 /* xgettext:c-format */
8296 _bfd_error_handler
8297 (_("unable to find equivalent output section"
8298 " for symbol '%s' from section '%s'"),
8299 syms[idx]->name ? syms[idx]->name : "<Local sym>",
8300 sec->name);
8301 bfd_set_error (bfd_error_invalid_operation);
8302 goto error_return;
8303 }
8304 }
8305 }
8306
8307 sym.st_shndx = shndx;
8308 }
8309
8310 if ((flags & BSF_THREAD_LOCAL) != 0)
8311 type = STT_TLS;
8312 else if ((flags & BSF_GNU_INDIRECT_FUNCTION) != 0)
8313 type = STT_GNU_IFUNC;
8314 else if ((flags & BSF_FUNCTION) != 0)
8315 type = STT_FUNC;
8316 else if ((flags & BSF_OBJECT) != 0)
8317 type = STT_OBJECT;
8318 else if ((flags & BSF_RELC) != 0)
8319 type = STT_RELC;
8320 else if ((flags & BSF_SRELC) != 0)
8321 type = STT_SRELC;
8322 else
8323 type = STT_NOTYPE;
8324
8325 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
8326 type = STT_TLS;
8327
8328 /* Processor-specific types. */
8329 if (type_ptr != NULL
8330 && bed->elf_backend_get_symbol_type)
8331 type = ((*bed->elf_backend_get_symbol_type)
8332 (&type_ptr->internal_elf_sym, type));
8333
8334 if (flags & BSF_SECTION_SYM)
8335 {
8336 if (flags & BSF_GLOBAL)
8337 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8338 else
8339 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
8340 }
8341 else if (bfd_is_com_section (syms[idx]->section))
8342 {
8343 if (type != STT_TLS)
8344 {
8345 if ((abfd->flags & BFD_CONVERT_ELF_COMMON))
8346 type = ((abfd->flags & BFD_USE_ELF_STT_COMMON)
8347 ? STT_COMMON : STT_OBJECT);
8348 else
8349 type = ((flags & BSF_ELF_COMMON) != 0
8350 ? STT_COMMON : STT_OBJECT);
8351 }
8352 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
8353 }
8354 else if (bfd_is_und_section (syms[idx]->section))
8355 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
8356 ? STB_WEAK
8357 : STB_GLOBAL),
8358 type);
8359 else if (flags & BSF_FILE)
8360 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
8361 else
8362 {
8363 int bind = STB_LOCAL;
8364
8365 if (flags & BSF_LOCAL)
8366 bind = STB_LOCAL;
8367 else if (flags & BSF_GNU_UNIQUE)
8368 bind = STB_GNU_UNIQUE;
8369 else if (flags & BSF_WEAK)
8370 bind = STB_WEAK;
8371 else if (flags & BSF_GLOBAL)
8372 bind = STB_GLOBAL;
8373
8374 sym.st_info = ELF_ST_INFO (bind, type);
8375 }
8376
8377 if (type_ptr != NULL)
8378 {
8379 sym.st_other = type_ptr->internal_elf_sym.st_other;
8380 sym.st_target_internal
8381 = type_ptr->internal_elf_sym.st_target_internal;
8382 }
8383 else
8384 {
8385 sym.st_other = 0;
8386 sym.st_target_internal = 0;
8387 }
8388
8389 idx++;
8390 symstrtab[idx].sym = sym;
8391 symstrtab[idx].dest_index = outbound_syms_index;
8392 symstrtab[idx].destshndx_index = outbound_shndx_index;
8393
8394 outbound_syms_index++;
8395 if (outbound_shndx != NULL)
8396 outbound_shndx_index++;
8397 }
8398
8399 /* Finalize the .strtab section. */
8400 _bfd_elf_strtab_finalize (stt);
8401
8402 /* Swap out the .strtab section. */
8403 for (idx = 0; idx <= symcount; idx++)
8404 {
8405 struct elf_sym_strtab *elfsym = &symstrtab[idx];
8406 if (elfsym->sym.st_name == (unsigned long) -1)
8407 elfsym->sym.st_name = 0;
8408 else
8409 elfsym->sym.st_name = _bfd_elf_strtab_offset (stt,
8410 elfsym->sym.st_name);
8411 if (info && info->callbacks->ctf_new_symbol)
8412 info->callbacks->ctf_new_symbol (elfsym->dest_index,
8413 &elfsym->sym);
8414
8415 /* Inform the linker of the addition of this symbol. */
8416
8417 bed->s->swap_symbol_out (abfd, &elfsym->sym,
8418 (outbound_syms
8419 + (elfsym->dest_index
8420 * bed->s->sizeof_sym)),
8421 (outbound_shndx
8422 + (elfsym->destshndx_index
8423 * sizeof (Elf_External_Sym_Shndx))));
8424 }
8425 free (symstrtab);
8426
8427 *sttp = stt;
8428 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (stt);
8429 symstrtab_hdr->sh_type = SHT_STRTAB;
8430 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
8431 symstrtab_hdr->sh_addr = 0;
8432 symstrtab_hdr->sh_entsize = 0;
8433 symstrtab_hdr->sh_link = 0;
8434 symstrtab_hdr->sh_info = 0;
8435 symstrtab_hdr->sh_addralign = 1;
8436
8437 return TRUE;
8438 }
8439
8440 /* Return the number of bytes required to hold the symtab vector.
8441
8442 Note that we base it on the count plus 1, since we will null terminate
8443 the vector allocated based on this size. However, the ELF symbol table
8444 always has a dummy entry as symbol #0, so it ends up even. */
8445
8446 long
8447 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
8448 {
8449 bfd_size_type symcount;
8450 long symtab_size;
8451 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
8452
8453 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
8454 if (symcount > LONG_MAX / sizeof (asymbol *))
8455 {
8456 bfd_set_error (bfd_error_file_too_big);
8457 return -1;
8458 }
8459 symtab_size = symcount * (sizeof (asymbol *));
8460 if (symcount == 0)
8461 symtab_size = sizeof (asymbol *);
8462 else if (!bfd_write_p (abfd))
8463 {
8464 ufile_ptr filesize = bfd_get_file_size (abfd);
8465
8466 if (filesize != 0 && (unsigned long) symtab_size > filesize)
8467 {
8468 bfd_set_error (bfd_error_file_truncated);
8469 return -1;
8470 }
8471 }
8472
8473 return symtab_size;
8474 }
8475
8476 long
8477 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
8478 {
8479 bfd_size_type symcount;
8480 long symtab_size;
8481 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
8482
8483 if (elf_dynsymtab (abfd) == 0)
8484 {
8485 bfd_set_error (bfd_error_invalid_operation);
8486 return -1;
8487 }
8488
8489 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
8490 if (symcount > LONG_MAX / sizeof (asymbol *))
8491 {
8492 bfd_set_error (bfd_error_file_too_big);
8493 return -1;
8494 }
8495 symtab_size = symcount * (sizeof (asymbol *));
8496 if (symcount == 0)
8497 symtab_size = sizeof (asymbol *);
8498 else if (!bfd_write_p (abfd))
8499 {
8500 ufile_ptr filesize = bfd_get_file_size (abfd);
8501
8502 if (filesize != 0 && (unsigned long) symtab_size > filesize)
8503 {
8504 bfd_set_error (bfd_error_file_truncated);
8505 return -1;
8506 }
8507 }
8508
8509 return symtab_size;
8510 }
8511
8512 long
8513 _bfd_elf_get_reloc_upper_bound (bfd *abfd, sec_ptr asect)
8514 {
8515 if (asect->reloc_count != 0 && !bfd_write_p (abfd))
8516 {
8517 /* Sanity check reloc section size. */
8518 struct bfd_elf_section_data *d = elf_section_data (asect);
8519 Elf_Internal_Shdr *rel_hdr = &d->this_hdr;
8520 bfd_size_type ext_rel_size = rel_hdr->sh_size;
8521 ufile_ptr filesize = bfd_get_file_size (abfd);
8522
8523 if (filesize != 0 && ext_rel_size > filesize)
8524 {
8525 bfd_set_error (bfd_error_file_truncated);
8526 return -1;
8527 }
8528 }
8529
8530 #if SIZEOF_LONG == SIZEOF_INT
8531 if (asect->reloc_count >= LONG_MAX / sizeof (arelent *))
8532 {
8533 bfd_set_error (bfd_error_file_too_big);
8534 return -1;
8535 }
8536 #endif
8537 return (asect->reloc_count + 1) * sizeof (arelent *);
8538 }
8539
8540 /* Canonicalize the relocs. */
8541
8542 long
8543 _bfd_elf_canonicalize_reloc (bfd *abfd,
8544 sec_ptr section,
8545 arelent **relptr,
8546 asymbol **symbols)
8547 {
8548 arelent *tblptr;
8549 unsigned int i;
8550 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8551
8552 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
8553 return -1;
8554
8555 tblptr = section->relocation;
8556 for (i = 0; i < section->reloc_count; i++)
8557 *relptr++ = tblptr++;
8558
8559 *relptr = NULL;
8560
8561 return section->reloc_count;
8562 }
8563
8564 long
8565 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
8566 {
8567 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8568 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
8569
8570 if (symcount >= 0)
8571 abfd->symcount = symcount;
8572 return symcount;
8573 }
8574
8575 long
8576 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
8577 asymbol **allocation)
8578 {
8579 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8580 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
8581
8582 if (symcount >= 0)
8583 abfd->dynsymcount = symcount;
8584 return symcount;
8585 }
8586
8587 /* Return the size required for the dynamic reloc entries. Any loadable
8588 section that was actually installed in the BFD, and has type SHT_REL
8589 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
8590 dynamic reloc section. */
8591
8592 long
8593 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
8594 {
8595 bfd_size_type count, ext_rel_size;
8596 asection *s;
8597
8598 if (elf_dynsymtab (abfd) == 0)
8599 {
8600 bfd_set_error (bfd_error_invalid_operation);
8601 return -1;
8602 }
8603
8604 count = 1;
8605 ext_rel_size = 0;
8606 for (s = abfd->sections; s != NULL; s = s->next)
8607 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
8608 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
8609 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
8610 {
8611 ext_rel_size += s->size;
8612 if (ext_rel_size < s->size)
8613 {
8614 bfd_set_error (bfd_error_file_truncated);
8615 return -1;
8616 }
8617 count += s->size / elf_section_data (s)->this_hdr.sh_entsize;
8618 if (count > LONG_MAX / sizeof (arelent *))
8619 {
8620 bfd_set_error (bfd_error_file_too_big);
8621 return -1;
8622 }
8623 }
8624 if (count > 1 && !bfd_write_p (abfd))
8625 {
8626 /* Sanity check reloc section sizes. */
8627 ufile_ptr filesize = bfd_get_file_size (abfd);
8628 if (filesize != 0 && ext_rel_size > filesize)
8629 {
8630 bfd_set_error (bfd_error_file_truncated);
8631 return -1;
8632 }
8633 }
8634 return count * sizeof (arelent *);
8635 }
8636
8637 /* Canonicalize the dynamic relocation entries. Note that we return the
8638 dynamic relocations as a single block, although they are actually
8639 associated with particular sections; the interface, which was
8640 designed for SunOS style shared libraries, expects that there is only
8641 one set of dynamic relocs. Any loadable section that was actually
8642 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
8643 dynamic symbol table, is considered to be a dynamic reloc section. */
8644
8645 long
8646 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
8647 arelent **storage,
8648 asymbol **syms)
8649 {
8650 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
8651 asection *s;
8652 long ret;
8653
8654 if (elf_dynsymtab (abfd) == 0)
8655 {
8656 bfd_set_error (bfd_error_invalid_operation);
8657 return -1;
8658 }
8659
8660 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
8661 ret = 0;
8662 for (s = abfd->sections; s != NULL; s = s->next)
8663 {
8664 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
8665 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
8666 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
8667 {
8668 arelent *p;
8669 long count, i;
8670
8671 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
8672 return -1;
8673 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
8674 p = s->relocation;
8675 for (i = 0; i < count; i++)
8676 *storage++ = p++;
8677 ret += count;
8678 }
8679 }
8680
8681 *storage = NULL;
8682
8683 return ret;
8684 }
8685 \f
8686 /* Read in the version information. */
8687
8688 bfd_boolean
8689 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
8690 {
8691 bfd_byte *contents = NULL;
8692 unsigned int freeidx = 0;
8693 size_t amt;
8694
8695 if (elf_dynverref (abfd) != 0)
8696 {
8697 Elf_Internal_Shdr *hdr;
8698 Elf_External_Verneed *everneed;
8699 Elf_Internal_Verneed *iverneed;
8700 unsigned int i;
8701 bfd_byte *contents_end;
8702
8703 hdr = &elf_tdata (abfd)->dynverref_hdr;
8704
8705 if (hdr->sh_info == 0
8706 || hdr->sh_info > hdr->sh_size / sizeof (Elf_External_Verneed))
8707 {
8708 error_return_bad_verref:
8709 _bfd_error_handler
8710 (_("%pB: .gnu.version_r invalid entry"), abfd);
8711 bfd_set_error (bfd_error_bad_value);
8712 error_return_verref:
8713 elf_tdata (abfd)->verref = NULL;
8714 elf_tdata (abfd)->cverrefs = 0;
8715 goto error_return;
8716 }
8717
8718 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0)
8719 goto error_return_verref;
8720 contents = _bfd_malloc_and_read (abfd, hdr->sh_size, hdr->sh_size);
8721 if (contents == NULL)
8722 goto error_return_verref;
8723
8724 if (_bfd_mul_overflow (hdr->sh_info, sizeof (Elf_Internal_Verneed), &amt))
8725 {
8726 bfd_set_error (bfd_error_file_too_big);
8727 goto error_return_verref;
8728 }
8729 elf_tdata (abfd)->verref = (Elf_Internal_Verneed *) bfd_alloc (abfd, amt);
8730 if (elf_tdata (abfd)->verref == NULL)
8731 goto error_return_verref;
8732
8733 BFD_ASSERT (sizeof (Elf_External_Verneed)
8734 == sizeof (Elf_External_Vernaux));
8735 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
8736 everneed = (Elf_External_Verneed *) contents;
8737 iverneed = elf_tdata (abfd)->verref;
8738 for (i = 0; i < hdr->sh_info; i++, iverneed++)
8739 {
8740 Elf_External_Vernaux *evernaux;
8741 Elf_Internal_Vernaux *ivernaux;
8742 unsigned int j;
8743
8744 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
8745
8746 iverneed->vn_bfd = abfd;
8747
8748 iverneed->vn_filename =
8749 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8750 iverneed->vn_file);
8751 if (iverneed->vn_filename == NULL)
8752 goto error_return_bad_verref;
8753
8754 if (iverneed->vn_cnt == 0)
8755 iverneed->vn_auxptr = NULL;
8756 else
8757 {
8758 if (_bfd_mul_overflow (iverneed->vn_cnt,
8759 sizeof (Elf_Internal_Vernaux), &amt))
8760 {
8761 bfd_set_error (bfd_error_file_too_big);
8762 goto error_return_verref;
8763 }
8764 iverneed->vn_auxptr = (struct elf_internal_vernaux *)
8765 bfd_alloc (abfd, amt);
8766 if (iverneed->vn_auxptr == NULL)
8767 goto error_return_verref;
8768 }
8769
8770 if (iverneed->vn_aux
8771 > (size_t) (contents_end - (bfd_byte *) everneed))
8772 goto error_return_bad_verref;
8773
8774 evernaux = ((Elf_External_Vernaux *)
8775 ((bfd_byte *) everneed + iverneed->vn_aux));
8776 ivernaux = iverneed->vn_auxptr;
8777 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
8778 {
8779 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
8780
8781 ivernaux->vna_nodename =
8782 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8783 ivernaux->vna_name);
8784 if (ivernaux->vna_nodename == NULL)
8785 goto error_return_bad_verref;
8786
8787 if (ivernaux->vna_other > freeidx)
8788 freeidx = ivernaux->vna_other;
8789
8790 ivernaux->vna_nextptr = NULL;
8791 if (ivernaux->vna_next == 0)
8792 {
8793 iverneed->vn_cnt = j + 1;
8794 break;
8795 }
8796 if (j + 1 < iverneed->vn_cnt)
8797 ivernaux->vna_nextptr = ivernaux + 1;
8798
8799 if (ivernaux->vna_next
8800 > (size_t) (contents_end - (bfd_byte *) evernaux))
8801 goto error_return_bad_verref;
8802
8803 evernaux = ((Elf_External_Vernaux *)
8804 ((bfd_byte *) evernaux + ivernaux->vna_next));
8805 }
8806
8807 iverneed->vn_nextref = NULL;
8808 if (iverneed->vn_next == 0)
8809 break;
8810 if (i + 1 < hdr->sh_info)
8811 iverneed->vn_nextref = iverneed + 1;
8812
8813 if (iverneed->vn_next
8814 > (size_t) (contents_end - (bfd_byte *) everneed))
8815 goto error_return_bad_verref;
8816
8817 everneed = ((Elf_External_Verneed *)
8818 ((bfd_byte *) everneed + iverneed->vn_next));
8819 }
8820 elf_tdata (abfd)->cverrefs = i;
8821
8822 free (contents);
8823 contents = NULL;
8824 }
8825
8826 if (elf_dynverdef (abfd) != 0)
8827 {
8828 Elf_Internal_Shdr *hdr;
8829 Elf_External_Verdef *everdef;
8830 Elf_Internal_Verdef *iverdef;
8831 Elf_Internal_Verdef *iverdefarr;
8832 Elf_Internal_Verdef iverdefmem;
8833 unsigned int i;
8834 unsigned int maxidx;
8835 bfd_byte *contents_end_def, *contents_end_aux;
8836
8837 hdr = &elf_tdata (abfd)->dynverdef_hdr;
8838
8839 if (hdr->sh_info == 0 || hdr->sh_size < sizeof (Elf_External_Verdef))
8840 {
8841 error_return_bad_verdef:
8842 _bfd_error_handler
8843 (_("%pB: .gnu.version_d invalid entry"), abfd);
8844 bfd_set_error (bfd_error_bad_value);
8845 error_return_verdef:
8846 elf_tdata (abfd)->verdef = NULL;
8847 elf_tdata (abfd)->cverdefs = 0;
8848 goto error_return;
8849 }
8850
8851 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0)
8852 goto error_return_verdef;
8853 contents = _bfd_malloc_and_read (abfd, hdr->sh_size, hdr->sh_size);
8854 if (contents == NULL)
8855 goto error_return_verdef;
8856
8857 BFD_ASSERT (sizeof (Elf_External_Verdef)
8858 >= sizeof (Elf_External_Verdaux));
8859 contents_end_def = contents + hdr->sh_size
8860 - sizeof (Elf_External_Verdef);
8861 contents_end_aux = contents + hdr->sh_size
8862 - sizeof (Elf_External_Verdaux);
8863
8864 /* We know the number of entries in the section but not the maximum
8865 index. Therefore we have to run through all entries and find
8866 the maximum. */
8867 everdef = (Elf_External_Verdef *) contents;
8868 maxidx = 0;
8869 for (i = 0; i < hdr->sh_info; ++i)
8870 {
8871 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
8872
8873 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) == 0)
8874 goto error_return_bad_verdef;
8875 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
8876 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
8877
8878 if (iverdefmem.vd_next == 0)
8879 break;
8880
8881 if (iverdefmem.vd_next
8882 > (size_t) (contents_end_def - (bfd_byte *) everdef))
8883 goto error_return_bad_verdef;
8884
8885 everdef = ((Elf_External_Verdef *)
8886 ((bfd_byte *) everdef + iverdefmem.vd_next));
8887 }
8888
8889 if (default_imported_symver)
8890 {
8891 if (freeidx > maxidx)
8892 maxidx = ++freeidx;
8893 else
8894 freeidx = ++maxidx;
8895 }
8896 if (_bfd_mul_overflow (maxidx, sizeof (Elf_Internal_Verdef), &amt))
8897 {
8898 bfd_set_error (bfd_error_file_too_big);
8899 goto error_return_verdef;
8900 }
8901 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *) bfd_zalloc (abfd, amt);
8902 if (elf_tdata (abfd)->verdef == NULL)
8903 goto error_return_verdef;
8904
8905 elf_tdata (abfd)->cverdefs = maxidx;
8906
8907 everdef = (Elf_External_Verdef *) contents;
8908 iverdefarr = elf_tdata (abfd)->verdef;
8909 for (i = 0; i < hdr->sh_info; i++)
8910 {
8911 Elf_External_Verdaux *everdaux;
8912 Elf_Internal_Verdaux *iverdaux;
8913 unsigned int j;
8914
8915 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
8916
8917 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
8918 goto error_return_bad_verdef;
8919
8920 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
8921 memcpy (iverdef, &iverdefmem, offsetof (Elf_Internal_Verdef, vd_bfd));
8922
8923 iverdef->vd_bfd = abfd;
8924
8925 if (iverdef->vd_cnt == 0)
8926 iverdef->vd_auxptr = NULL;
8927 else
8928 {
8929 if (_bfd_mul_overflow (iverdef->vd_cnt,
8930 sizeof (Elf_Internal_Verdaux), &amt))
8931 {
8932 bfd_set_error (bfd_error_file_too_big);
8933 goto error_return_verdef;
8934 }
8935 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
8936 bfd_alloc (abfd, amt);
8937 if (iverdef->vd_auxptr == NULL)
8938 goto error_return_verdef;
8939 }
8940
8941 if (iverdef->vd_aux
8942 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
8943 goto error_return_bad_verdef;
8944
8945 everdaux = ((Elf_External_Verdaux *)
8946 ((bfd_byte *) everdef + iverdef->vd_aux));
8947 iverdaux = iverdef->vd_auxptr;
8948 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
8949 {
8950 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
8951
8952 iverdaux->vda_nodename =
8953 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8954 iverdaux->vda_name);
8955 if (iverdaux->vda_nodename == NULL)
8956 goto error_return_bad_verdef;
8957
8958 iverdaux->vda_nextptr = NULL;
8959 if (iverdaux->vda_next == 0)
8960 {
8961 iverdef->vd_cnt = j + 1;
8962 break;
8963 }
8964 if (j + 1 < iverdef->vd_cnt)
8965 iverdaux->vda_nextptr = iverdaux + 1;
8966
8967 if (iverdaux->vda_next
8968 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
8969 goto error_return_bad_verdef;
8970
8971 everdaux = ((Elf_External_Verdaux *)
8972 ((bfd_byte *) everdaux + iverdaux->vda_next));
8973 }
8974
8975 iverdef->vd_nodename = NULL;
8976 if (iverdef->vd_cnt)
8977 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
8978
8979 iverdef->vd_nextdef = NULL;
8980 if (iverdef->vd_next == 0)
8981 break;
8982 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
8983 iverdef->vd_nextdef = iverdef + 1;
8984
8985 everdef = ((Elf_External_Verdef *)
8986 ((bfd_byte *) everdef + iverdef->vd_next));
8987 }
8988
8989 free (contents);
8990 contents = NULL;
8991 }
8992 else if (default_imported_symver)
8993 {
8994 if (freeidx < 3)
8995 freeidx = 3;
8996 else
8997 freeidx++;
8998
8999 if (_bfd_mul_overflow (freeidx, sizeof (Elf_Internal_Verdef), &amt))
9000 {
9001 bfd_set_error (bfd_error_file_too_big);
9002 goto error_return;
9003 }
9004 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *) bfd_zalloc (abfd, amt);
9005 if (elf_tdata (abfd)->verdef == NULL)
9006 goto error_return;
9007
9008 elf_tdata (abfd)->cverdefs = freeidx;
9009 }
9010
9011 /* Create a default version based on the soname. */
9012 if (default_imported_symver)
9013 {
9014 Elf_Internal_Verdef *iverdef;
9015 Elf_Internal_Verdaux *iverdaux;
9016
9017 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];
9018
9019 iverdef->vd_version = VER_DEF_CURRENT;
9020 iverdef->vd_flags = 0;
9021 iverdef->vd_ndx = freeidx;
9022 iverdef->vd_cnt = 1;
9023
9024 iverdef->vd_bfd = abfd;
9025
9026 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
9027 if (iverdef->vd_nodename == NULL)
9028 goto error_return_verdef;
9029 iverdef->vd_nextdef = NULL;
9030 iverdef->vd_auxptr = ((struct elf_internal_verdaux *)
9031 bfd_zalloc (abfd, sizeof (Elf_Internal_Verdaux)));
9032 if (iverdef->vd_auxptr == NULL)
9033 goto error_return_verdef;
9034
9035 iverdaux = iverdef->vd_auxptr;
9036 iverdaux->vda_nodename = iverdef->vd_nodename;
9037 }
9038
9039 return TRUE;
9040
9041 error_return:
9042 free (contents);
9043 return FALSE;
9044 }
9045 \f
9046 asymbol *
9047 _bfd_elf_make_empty_symbol (bfd *abfd)
9048 {
9049 elf_symbol_type *newsym;
9050
9051 newsym = (elf_symbol_type *) bfd_zalloc (abfd, sizeof (*newsym));
9052 if (!newsym)
9053 return NULL;
9054 newsym->symbol.the_bfd = abfd;
9055 return &newsym->symbol;
9056 }
9057
9058 void
9059 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
9060 asymbol *symbol,
9061 symbol_info *ret)
9062 {
9063 bfd_symbol_info (symbol, ret);
9064 }
9065
9066 /* Return whether a symbol name implies a local symbol. Most targets
9067 use this function for the is_local_label_name entry point, but some
9068 override it. */
9069
9070 bfd_boolean
9071 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
9072 const char *name)
9073 {
9074 /* Normal local symbols start with ``.L''. */
9075 if (name[0] == '.' && name[1] == 'L')
9076 return TRUE;
9077
9078 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
9079 DWARF debugging symbols starting with ``..''. */
9080 if (name[0] == '.' && name[1] == '.')
9081 return TRUE;
9082
9083 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
9084 emitting DWARF debugging output. I suspect this is actually a
9085 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
9086 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
9087 underscore to be emitted on some ELF targets). For ease of use,
9088 we treat such symbols as local. */
9089 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
9090 return TRUE;
9091
9092 /* Treat assembler generated fake symbols, dollar local labels and
9093 forward-backward labels (aka local labels) as locals.
9094 These labels have the form:
9095
9096 L0^A.* (fake symbols)
9097
9098 [.]?L[0123456789]+{^A|^B}[0123456789]* (local labels)
9099
9100 Versions which start with .L will have already been matched above,
9101 so we only need to match the rest. */
9102 if (name[0] == 'L' && ISDIGIT (name[1]))
9103 {
9104 bfd_boolean ret = FALSE;
9105 const char * p;
9106 char c;
9107
9108 for (p = name + 2; (c = *p); p++)
9109 {
9110 if (c == 1 || c == 2)
9111 {
9112 if (c == 1 && p == name + 2)
9113 /* A fake symbol. */
9114 return TRUE;
9115
9116 /* FIXME: We are being paranoid here and treating symbols like
9117 L0^Bfoo as if there were non-local, on the grounds that the
9118 assembler will never generate them. But can any symbol
9119 containing an ASCII value in the range 1-31 ever be anything
9120 other than some kind of local ? */
9121 ret = TRUE;
9122 }
9123
9124 if (! ISDIGIT (c))
9125 {
9126 ret = FALSE;
9127 break;
9128 }
9129 }
9130 return ret;
9131 }
9132
9133 return FALSE;
9134 }
9135
9136 alent *
9137 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
9138 asymbol *symbol ATTRIBUTE_UNUSED)
9139 {
9140 abort ();
9141 return NULL;
9142 }
9143
9144 bfd_boolean
9145 _bfd_elf_set_arch_mach (bfd *abfd,
9146 enum bfd_architecture arch,
9147 unsigned long machine)
9148 {
9149 /* If this isn't the right architecture for this backend, and this
9150 isn't the generic backend, fail. */
9151 if (arch != get_elf_backend_data (abfd)->arch
9152 && arch != bfd_arch_unknown
9153 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
9154 return FALSE;
9155
9156 return bfd_default_set_arch_mach (abfd, arch, machine);
9157 }
9158
9159 /* Find the nearest line to a particular section and offset,
9160 for error reporting. */
9161
9162 bfd_boolean
9163 _bfd_elf_find_nearest_line (bfd *abfd,
9164 asymbol **symbols,
9165 asection *section,
9166 bfd_vma offset,
9167 const char **filename_ptr,
9168 const char **functionname_ptr,
9169 unsigned int *line_ptr,
9170 unsigned int *discriminator_ptr)
9171 {
9172 bfd_boolean found;
9173
9174 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
9175 filename_ptr, functionname_ptr,
9176 line_ptr, discriminator_ptr,
9177 dwarf_debug_sections,
9178 &elf_tdata (abfd)->dwarf2_find_line_info))
9179 return TRUE;
9180
9181 if (_bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
9182 filename_ptr, functionname_ptr, line_ptr))
9183 {
9184 if (!*functionname_ptr)
9185 _bfd_elf_find_function (abfd, symbols, section, offset,
9186 *filename_ptr ? NULL : filename_ptr,
9187 functionname_ptr);
9188 return TRUE;
9189 }
9190
9191 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
9192 &found, filename_ptr,
9193 functionname_ptr, line_ptr,
9194 &elf_tdata (abfd)->line_info))
9195 return FALSE;
9196 if (found && (*functionname_ptr || *line_ptr))
9197 return TRUE;
9198
9199 if (symbols == NULL)
9200 return FALSE;
9201
9202 if (! _bfd_elf_find_function (abfd, symbols, section, offset,
9203 filename_ptr, functionname_ptr))
9204 return FALSE;
9205
9206 *line_ptr = 0;
9207 return TRUE;
9208 }
9209
9210 /* Find the line for a symbol. */
9211
9212 bfd_boolean
9213 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
9214 const char **filename_ptr, unsigned int *line_ptr)
9215 {
9216 return _bfd_dwarf2_find_nearest_line (abfd, symbols, symbol, NULL, 0,
9217 filename_ptr, NULL, line_ptr, NULL,
9218 dwarf_debug_sections,
9219 &elf_tdata (abfd)->dwarf2_find_line_info);
9220 }
9221
9222 /* After a call to bfd_find_nearest_line, successive calls to
9223 bfd_find_inliner_info can be used to get source information about
9224 each level of function inlining that terminated at the address
9225 passed to bfd_find_nearest_line. Currently this is only supported
9226 for DWARF2 with appropriate DWARF3 extensions. */
9227
9228 bfd_boolean
9229 _bfd_elf_find_inliner_info (bfd *abfd,
9230 const char **filename_ptr,
9231 const char **functionname_ptr,
9232 unsigned int *line_ptr)
9233 {
9234 bfd_boolean found;
9235 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
9236 functionname_ptr, line_ptr,
9237 & elf_tdata (abfd)->dwarf2_find_line_info);
9238 return found;
9239 }
9240
9241 int
9242 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
9243 {
9244 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9245 int ret = bed->s->sizeof_ehdr;
9246
9247 if (!bfd_link_relocatable (info))
9248 {
9249 bfd_size_type phdr_size = elf_program_header_size (abfd);
9250
9251 if (phdr_size == (bfd_size_type) -1)
9252 {
9253 struct elf_segment_map *m;
9254
9255 phdr_size = 0;
9256 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
9257 phdr_size += bed->s->sizeof_phdr;
9258
9259 if (phdr_size == 0)
9260 phdr_size = get_program_header_size (abfd, info);
9261 }
9262
9263 elf_program_header_size (abfd) = phdr_size;
9264 ret += phdr_size;
9265 }
9266
9267 return ret;
9268 }
9269
9270 bfd_boolean
9271 _bfd_elf_set_section_contents (bfd *abfd,
9272 sec_ptr section,
9273 const void *location,
9274 file_ptr offset,
9275 bfd_size_type count)
9276 {
9277 Elf_Internal_Shdr *hdr;
9278 file_ptr pos;
9279
9280 if (! abfd->output_has_begun
9281 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
9282 return FALSE;
9283
9284 if (!count)
9285 return TRUE;
9286
9287 hdr = &elf_section_data (section)->this_hdr;
9288 if (hdr->sh_offset == (file_ptr) -1)
9289 {
9290 unsigned char *contents;
9291
9292 if (bfd_section_is_ctf (section))
9293 /* Nothing to do with this section: the contents are generated
9294 later. */
9295 return TRUE;
9296
9297 if ((section->flags & SEC_ELF_COMPRESS) == 0)
9298 {
9299 _bfd_error_handler
9300 (_("%pB:%pA: error: attempting to write into an unallocated compressed section"),
9301 abfd, section);
9302 bfd_set_error (bfd_error_invalid_operation);
9303 return FALSE;
9304 }
9305
9306 if ((offset + count) > hdr->sh_size)
9307 {
9308 _bfd_error_handler
9309 (_("%pB:%pA: error: attempting to write over the end of the section"),
9310 abfd, section);
9311
9312 bfd_set_error (bfd_error_invalid_operation);
9313 return FALSE;
9314 }
9315
9316 contents = hdr->contents;
9317 if (contents == NULL)
9318 {
9319 _bfd_error_handler
9320 (_("%pB:%pA: error: attempting to write section into an empty buffer"),
9321 abfd, section);
9322
9323 bfd_set_error (bfd_error_invalid_operation);
9324 return FALSE;
9325 }
9326
9327 memcpy (contents + offset, location, count);
9328 return TRUE;
9329 }
9330
9331 pos = hdr->sh_offset + offset;
9332 if (bfd_seek (abfd, pos, SEEK_SET) != 0
9333 || bfd_bwrite (location, count, abfd) != count)
9334 return FALSE;
9335
9336 return TRUE;
9337 }
9338
9339 bfd_boolean
9340 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
9341 arelent *cache_ptr ATTRIBUTE_UNUSED,
9342 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
9343 {
9344 abort ();
9345 return FALSE;
9346 }
9347
9348 /* Try to convert a non-ELF reloc into an ELF one. */
9349
9350 bfd_boolean
9351 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
9352 {
9353 /* Check whether we really have an ELF howto. */
9354
9355 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
9356 {
9357 bfd_reloc_code_real_type code;
9358 reloc_howto_type *howto;
9359
9360 /* Alien reloc: Try to determine its type to replace it with an
9361 equivalent ELF reloc. */
9362
9363 if (areloc->howto->pc_relative)
9364 {
9365 switch (areloc->howto->bitsize)
9366 {
9367 case 8:
9368 code = BFD_RELOC_8_PCREL;
9369 break;
9370 case 12:
9371 code = BFD_RELOC_12_PCREL;
9372 break;
9373 case 16:
9374 code = BFD_RELOC_16_PCREL;
9375 break;
9376 case 24:
9377 code = BFD_RELOC_24_PCREL;
9378 break;
9379 case 32:
9380 code = BFD_RELOC_32_PCREL;
9381 break;
9382 case 64:
9383 code = BFD_RELOC_64_PCREL;
9384 break;
9385 default:
9386 goto fail;
9387 }
9388
9389 howto = bfd_reloc_type_lookup (abfd, code);
9390
9391 if (howto && areloc->howto->pcrel_offset != howto->pcrel_offset)
9392 {
9393 if (howto->pcrel_offset)
9394 areloc->addend += areloc->address;
9395 else
9396 areloc->addend -= areloc->address; /* addend is unsigned!! */
9397 }
9398 }
9399 else
9400 {
9401 switch (areloc->howto->bitsize)
9402 {
9403 case 8:
9404 code = BFD_RELOC_8;
9405 break;
9406 case 14:
9407 code = BFD_RELOC_14;
9408 break;
9409 case 16:
9410 code = BFD_RELOC_16;
9411 break;
9412 case 26:
9413 code = BFD_RELOC_26;
9414 break;
9415 case 32:
9416 code = BFD_RELOC_32;
9417 break;
9418 case 64:
9419 code = BFD_RELOC_64;
9420 break;
9421 default:
9422 goto fail;
9423 }
9424
9425 howto = bfd_reloc_type_lookup (abfd, code);
9426 }
9427
9428 if (howto)
9429 areloc->howto = howto;
9430 else
9431 goto fail;
9432 }
9433
9434 return TRUE;
9435
9436 fail:
9437 /* xgettext:c-format */
9438 _bfd_error_handler (_("%pB: %s unsupported"),
9439 abfd, areloc->howto->name);
9440 bfd_set_error (bfd_error_sorry);
9441 return FALSE;
9442 }
9443
9444 bfd_boolean
9445 _bfd_elf_close_and_cleanup (bfd *abfd)
9446 {
9447 struct elf_obj_tdata *tdata = elf_tdata (abfd);
9448 if (tdata != NULL
9449 && (bfd_get_format (abfd) == bfd_object
9450 || bfd_get_format (abfd) == bfd_core))
9451 {
9452 if (elf_tdata (abfd)->o != NULL && elf_shstrtab (abfd) != NULL)
9453 _bfd_elf_strtab_free (elf_shstrtab (abfd));
9454 _bfd_dwarf2_cleanup_debug_info (abfd, &tdata->dwarf2_find_line_info);
9455 }
9456
9457 return _bfd_generic_close_and_cleanup (abfd);
9458 }
9459
9460 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
9461 in the relocation's offset. Thus we cannot allow any sort of sanity
9462 range-checking to interfere. There is nothing else to do in processing
9463 this reloc. */
9464
9465 bfd_reloc_status_type
9466 _bfd_elf_rel_vtable_reloc_fn
9467 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
9468 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
9469 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
9470 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
9471 {
9472 return bfd_reloc_ok;
9473 }
9474 \f
9475 /* Elf core file support. Much of this only works on native
9476 toolchains, since we rely on knowing the
9477 machine-dependent procfs structure in order to pick
9478 out details about the corefile. */
9479
9480 #ifdef HAVE_SYS_PROCFS_H
9481 # include <sys/procfs.h>
9482 #endif
9483
9484 /* Return a PID that identifies a "thread" for threaded cores, or the
9485 PID of the main process for non-threaded cores. */
9486
9487 static int
9488 elfcore_make_pid (bfd *abfd)
9489 {
9490 int pid;
9491
9492 pid = elf_tdata (abfd)->core->lwpid;
9493 if (pid == 0)
9494 pid = elf_tdata (abfd)->core->pid;
9495
9496 return pid;
9497 }
9498
9499 /* If there isn't a section called NAME, make one, using
9500 data from SECT. Note, this function will generate a
9501 reference to NAME, so you shouldn't deallocate or
9502 overwrite it. */
9503
9504 static bfd_boolean
9505 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
9506 {
9507 asection *sect2;
9508
9509 if (bfd_get_section_by_name (abfd, name) != NULL)
9510 return TRUE;
9511
9512 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
9513 if (sect2 == NULL)
9514 return FALSE;
9515
9516 sect2->size = sect->size;
9517 sect2->filepos = sect->filepos;
9518 sect2->alignment_power = sect->alignment_power;
9519 return TRUE;
9520 }
9521
9522 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
9523 actually creates up to two pseudosections:
9524 - For the single-threaded case, a section named NAME, unless
9525 such a section already exists.
9526 - For the multi-threaded case, a section named "NAME/PID", where
9527 PID is elfcore_make_pid (abfd).
9528 Both pseudosections have identical contents. */
9529 bfd_boolean
9530 _bfd_elfcore_make_pseudosection (bfd *abfd,
9531 char *name,
9532 size_t size,
9533 ufile_ptr filepos)
9534 {
9535 char buf[100];
9536 char *threaded_name;
9537 size_t len;
9538 asection *sect;
9539
9540 /* Build the section name. */
9541
9542 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
9543 len = strlen (buf) + 1;
9544 threaded_name = (char *) bfd_alloc (abfd, len);
9545 if (threaded_name == NULL)
9546 return FALSE;
9547 memcpy (threaded_name, buf, len);
9548
9549 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
9550 SEC_HAS_CONTENTS);
9551 if (sect == NULL)
9552 return FALSE;
9553 sect->size = size;
9554 sect->filepos = filepos;
9555 sect->alignment_power = 2;
9556
9557 return elfcore_maybe_make_sect (abfd, name, sect);
9558 }
9559
9560 static bfd_boolean
9561 elfcore_make_auxv_note_section (bfd *abfd, Elf_Internal_Note *note,
9562 size_t offs)
9563 {
9564 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
9565 SEC_HAS_CONTENTS);
9566
9567 if (sect == NULL)
9568 return FALSE;
9569
9570 sect->size = note->descsz - offs;
9571 sect->filepos = note->descpos + offs;
9572 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
9573
9574 return TRUE;
9575 }
9576
9577 /* prstatus_t exists on:
9578 solaris 2.5+
9579 linux 2.[01] + glibc
9580 unixware 4.2
9581 */
9582
9583 #if defined (HAVE_PRSTATUS_T)
9584
9585 static bfd_boolean
9586 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
9587 {
9588 size_t size;
9589 int offset;
9590
9591 if (note->descsz == sizeof (prstatus_t))
9592 {
9593 prstatus_t prstat;
9594
9595 size = sizeof (prstat.pr_reg);
9596 offset = offsetof (prstatus_t, pr_reg);
9597 memcpy (&prstat, note->descdata, sizeof (prstat));
9598
9599 /* Do not overwrite the core signal if it
9600 has already been set by another thread. */
9601 if (elf_tdata (abfd)->core->signal == 0)
9602 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
9603 if (elf_tdata (abfd)->core->pid == 0)
9604 elf_tdata (abfd)->core->pid = prstat.pr_pid;
9605
9606 /* pr_who exists on:
9607 solaris 2.5+
9608 unixware 4.2
9609 pr_who doesn't exist on:
9610 linux 2.[01]
9611 */
9612 #if defined (HAVE_PRSTATUS_T_PR_WHO)
9613 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
9614 #else
9615 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
9616 #endif
9617 }
9618 #if defined (HAVE_PRSTATUS32_T)
9619 else if (note->descsz == sizeof (prstatus32_t))
9620 {
9621 /* 64-bit host, 32-bit corefile */
9622 prstatus32_t prstat;
9623
9624 size = sizeof (prstat.pr_reg);
9625 offset = offsetof (prstatus32_t, pr_reg);
9626 memcpy (&prstat, note->descdata, sizeof (prstat));
9627
9628 /* Do not overwrite the core signal if it
9629 has already been set by another thread. */
9630 if (elf_tdata (abfd)->core->signal == 0)
9631 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
9632 if (elf_tdata (abfd)->core->pid == 0)
9633 elf_tdata (abfd)->core->pid = prstat.pr_pid;
9634
9635 /* pr_who exists on:
9636 solaris 2.5+
9637 unixware 4.2
9638 pr_who doesn't exist on:
9639 linux 2.[01]
9640 */
9641 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
9642 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
9643 #else
9644 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
9645 #endif
9646 }
9647 #endif /* HAVE_PRSTATUS32_T */
9648 else
9649 {
9650 /* Fail - we don't know how to handle any other
9651 note size (ie. data object type). */
9652 return TRUE;
9653 }
9654
9655 /* Make a ".reg/999" section and a ".reg" section. */
9656 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
9657 size, note->descpos + offset);
9658 }
9659 #endif /* defined (HAVE_PRSTATUS_T) */
9660
9661 /* Create a pseudosection containing the exact contents of NOTE. */
9662 static bfd_boolean
9663 elfcore_make_note_pseudosection (bfd *abfd,
9664 char *name,
9665 Elf_Internal_Note *note)
9666 {
9667 return _bfd_elfcore_make_pseudosection (abfd, name,
9668 note->descsz, note->descpos);
9669 }
9670
9671 /* There isn't a consistent prfpregset_t across platforms,
9672 but it doesn't matter, because we don't have to pick this
9673 data structure apart. */
9674
9675 static bfd_boolean
9676 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
9677 {
9678 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
9679 }
9680
9681 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
9682 type of NT_PRXFPREG. Just include the whole note's contents
9683 literally. */
9684
9685 static bfd_boolean
9686 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
9687 {
9688 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
9689 }
9690
9691 /* Linux dumps the Intel XSAVE extended state in a note named "LINUX"
9692 with a note type of NT_X86_XSTATE. Just include the whole note's
9693 contents literally. */
9694
9695 static bfd_boolean
9696 elfcore_grok_xstatereg (bfd *abfd, Elf_Internal_Note *note)
9697 {
9698 return elfcore_make_note_pseudosection (abfd, ".reg-xstate", note);
9699 }
9700
9701 static bfd_boolean
9702 elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
9703 {
9704 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
9705 }
9706
9707 static bfd_boolean
9708 elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note)
9709 {
9710 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note);
9711 }
9712
9713 static bfd_boolean
9714 elfcore_grok_ppc_tar (bfd *abfd, Elf_Internal_Note *note)
9715 {
9716 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tar", note);
9717 }
9718
9719 static bfd_boolean
9720 elfcore_grok_ppc_ppr (bfd *abfd, Elf_Internal_Note *note)
9721 {
9722 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-ppr", note);
9723 }
9724
9725 static bfd_boolean
9726 elfcore_grok_ppc_dscr (bfd *abfd, Elf_Internal_Note *note)
9727 {
9728 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-dscr", note);
9729 }
9730
9731 static bfd_boolean
9732 elfcore_grok_ppc_ebb (bfd *abfd, Elf_Internal_Note *note)
9733 {
9734 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-ebb", note);
9735 }
9736
9737 static bfd_boolean
9738 elfcore_grok_ppc_pmu (bfd *abfd, Elf_Internal_Note *note)
9739 {
9740 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-pmu", note);
9741 }
9742
9743 static bfd_boolean
9744 elfcore_grok_ppc_tm_cgpr (bfd *abfd, Elf_Internal_Note *note)
9745 {
9746 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cgpr", note);
9747 }
9748
9749 static bfd_boolean
9750 elfcore_grok_ppc_tm_cfpr (bfd *abfd, Elf_Internal_Note *note)
9751 {
9752 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cfpr", note);
9753 }
9754
9755 static bfd_boolean
9756 elfcore_grok_ppc_tm_cvmx (bfd *abfd, Elf_Internal_Note *note)
9757 {
9758 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cvmx", note);
9759 }
9760
9761 static bfd_boolean
9762 elfcore_grok_ppc_tm_cvsx (bfd *abfd, Elf_Internal_Note *note)
9763 {
9764 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cvsx", note);
9765 }
9766
9767 static bfd_boolean
9768 elfcore_grok_ppc_tm_spr (bfd *abfd, Elf_Internal_Note *note)
9769 {
9770 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-spr", note);
9771 }
9772
9773 static bfd_boolean
9774 elfcore_grok_ppc_tm_ctar (bfd *abfd, Elf_Internal_Note *note)
9775 {
9776 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-ctar", note);
9777 }
9778
9779 static bfd_boolean
9780 elfcore_grok_ppc_tm_cppr (bfd *abfd, Elf_Internal_Note *note)
9781 {
9782 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cppr", note);
9783 }
9784
9785 static bfd_boolean
9786 elfcore_grok_ppc_tm_cdscr (bfd *abfd, Elf_Internal_Note *note)
9787 {
9788 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cdscr", note);
9789 }
9790
9791 static bfd_boolean
9792 elfcore_grok_s390_high_gprs (bfd *abfd, Elf_Internal_Note *note)
9793 {
9794 return elfcore_make_note_pseudosection (abfd, ".reg-s390-high-gprs", note);
9795 }
9796
9797 static bfd_boolean
9798 elfcore_grok_s390_timer (bfd *abfd, Elf_Internal_Note *note)
9799 {
9800 return elfcore_make_note_pseudosection (abfd, ".reg-s390-timer", note);
9801 }
9802
9803 static bfd_boolean
9804 elfcore_grok_s390_todcmp (bfd *abfd, Elf_Internal_Note *note)
9805 {
9806 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todcmp", note);
9807 }
9808
9809 static bfd_boolean
9810 elfcore_grok_s390_todpreg (bfd *abfd, Elf_Internal_Note *note)
9811 {
9812 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todpreg", note);
9813 }
9814
9815 static bfd_boolean
9816 elfcore_grok_s390_ctrs (bfd *abfd, Elf_Internal_Note *note)
9817 {
9818 return elfcore_make_note_pseudosection (abfd, ".reg-s390-ctrs", note);
9819 }
9820
9821 static bfd_boolean
9822 elfcore_grok_s390_prefix (bfd *abfd, Elf_Internal_Note *note)
9823 {
9824 return elfcore_make_note_pseudosection (abfd, ".reg-s390-prefix", note);
9825 }
9826
9827 static bfd_boolean
9828 elfcore_grok_s390_last_break (bfd *abfd, Elf_Internal_Note *note)
9829 {
9830 return elfcore_make_note_pseudosection (abfd, ".reg-s390-last-break", note);
9831 }
9832
9833 static bfd_boolean
9834 elfcore_grok_s390_system_call (bfd *abfd, Elf_Internal_Note *note)
9835 {
9836 return elfcore_make_note_pseudosection (abfd, ".reg-s390-system-call", note);
9837 }
9838
9839 static bfd_boolean
9840 elfcore_grok_s390_tdb (bfd *abfd, Elf_Internal_Note *note)
9841 {
9842 return elfcore_make_note_pseudosection (abfd, ".reg-s390-tdb", note);
9843 }
9844
9845 static bfd_boolean
9846 elfcore_grok_s390_vxrs_low (bfd *abfd, Elf_Internal_Note *note)
9847 {
9848 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-low", note);
9849 }
9850
9851 static bfd_boolean
9852 elfcore_grok_s390_vxrs_high (bfd *abfd, Elf_Internal_Note *note)
9853 {
9854 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-high", note);
9855 }
9856
9857 static bfd_boolean
9858 elfcore_grok_s390_gs_cb (bfd *abfd, Elf_Internal_Note *note)
9859 {
9860 return elfcore_make_note_pseudosection (abfd, ".reg-s390-gs-cb", note);
9861 }
9862
9863 static bfd_boolean
9864 elfcore_grok_s390_gs_bc (bfd *abfd, Elf_Internal_Note *note)
9865 {
9866 return elfcore_make_note_pseudosection (abfd, ".reg-s390-gs-bc", note);
9867 }
9868
9869 static bfd_boolean
9870 elfcore_grok_arm_vfp (bfd *abfd, Elf_Internal_Note *note)
9871 {
9872 return elfcore_make_note_pseudosection (abfd, ".reg-arm-vfp", note);
9873 }
9874
9875 static bfd_boolean
9876 elfcore_grok_aarch_tls (bfd *abfd, Elf_Internal_Note *note)
9877 {
9878 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-tls", note);
9879 }
9880
9881 static bfd_boolean
9882 elfcore_grok_aarch_hw_break (bfd *abfd, Elf_Internal_Note *note)
9883 {
9884 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-break", note);
9885 }
9886
9887 static bfd_boolean
9888 elfcore_grok_aarch_hw_watch (bfd *abfd, Elf_Internal_Note *note)
9889 {
9890 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-watch", note);
9891 }
9892
9893 static bfd_boolean
9894 elfcore_grok_aarch_sve (bfd *abfd, Elf_Internal_Note *note)
9895 {
9896 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-sve", note);
9897 }
9898
9899 static bfd_boolean
9900 elfcore_grok_aarch_pauth (bfd *abfd, Elf_Internal_Note *note)
9901 {
9902 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-pauth", note);
9903 }
9904
9905 static bfd_boolean
9906 elfcore_grok_arc_v2 (bfd *abfd, Elf_Internal_Note *note)
9907 {
9908 return elfcore_make_note_pseudosection (abfd, ".reg-arc-v2", note);
9909 }
9910
9911 #if defined (HAVE_PRPSINFO_T)
9912 typedef prpsinfo_t elfcore_psinfo_t;
9913 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
9914 typedef prpsinfo32_t elfcore_psinfo32_t;
9915 #endif
9916 #endif
9917
9918 #if defined (HAVE_PSINFO_T)
9919 typedef psinfo_t elfcore_psinfo_t;
9920 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
9921 typedef psinfo32_t elfcore_psinfo32_t;
9922 #endif
9923 #endif
9924
9925 /* return a malloc'ed copy of a string at START which is at
9926 most MAX bytes long, possibly without a terminating '\0'.
9927 the copy will always have a terminating '\0'. */
9928
9929 char *
9930 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
9931 {
9932 char *dups;
9933 char *end = (char *) memchr (start, '\0', max);
9934 size_t len;
9935
9936 if (end == NULL)
9937 len = max;
9938 else
9939 len = end - start;
9940
9941 dups = (char *) bfd_alloc (abfd, len + 1);
9942 if (dups == NULL)
9943 return NULL;
9944
9945 memcpy (dups, start, len);
9946 dups[len] = '\0';
9947
9948 return dups;
9949 }
9950
9951 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
9952 static bfd_boolean
9953 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
9954 {
9955 if (note->descsz == sizeof (elfcore_psinfo_t))
9956 {
9957 elfcore_psinfo_t psinfo;
9958
9959 memcpy (&psinfo, note->descdata, sizeof (psinfo));
9960
9961 #if defined (HAVE_PSINFO_T_PR_PID) || defined (HAVE_PRPSINFO_T_PR_PID)
9962 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
9963 #endif
9964 elf_tdata (abfd)->core->program
9965 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
9966 sizeof (psinfo.pr_fname));
9967
9968 elf_tdata (abfd)->core->command
9969 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
9970 sizeof (psinfo.pr_psargs));
9971 }
9972 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
9973 else if (note->descsz == sizeof (elfcore_psinfo32_t))
9974 {
9975 /* 64-bit host, 32-bit corefile */
9976 elfcore_psinfo32_t psinfo;
9977
9978 memcpy (&psinfo, note->descdata, sizeof (psinfo));
9979
9980 #if defined (HAVE_PSINFO32_T_PR_PID) || defined (HAVE_PRPSINFO32_T_PR_PID)
9981 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
9982 #endif
9983 elf_tdata (abfd)->core->program
9984 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
9985 sizeof (psinfo.pr_fname));
9986
9987 elf_tdata (abfd)->core->command
9988 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
9989 sizeof (psinfo.pr_psargs));
9990 }
9991 #endif
9992
9993 else
9994 {
9995 /* Fail - we don't know how to handle any other
9996 note size (ie. data object type). */
9997 return TRUE;
9998 }
9999
10000 /* Note that for some reason, a spurious space is tacked
10001 onto the end of the args in some (at least one anyway)
10002 implementations, so strip it off if it exists. */
10003
10004 {
10005 char *command = elf_tdata (abfd)->core->command;
10006 int n = strlen (command);
10007
10008 if (0 < n && command[n - 1] == ' ')
10009 command[n - 1] = '\0';
10010 }
10011
10012 return TRUE;
10013 }
10014 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
10015
10016 #if defined (HAVE_PSTATUS_T)
10017 static bfd_boolean
10018 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
10019 {
10020 if (note->descsz == sizeof (pstatus_t)
10021 #if defined (HAVE_PXSTATUS_T)
10022 || note->descsz == sizeof (pxstatus_t)
10023 #endif
10024 )
10025 {
10026 pstatus_t pstat;
10027
10028 memcpy (&pstat, note->descdata, sizeof (pstat));
10029
10030 elf_tdata (abfd)->core->pid = pstat.pr_pid;
10031 }
10032 #if defined (HAVE_PSTATUS32_T)
10033 else if (note->descsz == sizeof (pstatus32_t))
10034 {
10035 /* 64-bit host, 32-bit corefile */
10036 pstatus32_t pstat;
10037
10038 memcpy (&pstat, note->descdata, sizeof (pstat));
10039
10040 elf_tdata (abfd)->core->pid = pstat.pr_pid;
10041 }
10042 #endif
10043 /* Could grab some more details from the "representative"
10044 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
10045 NT_LWPSTATUS note, presumably. */
10046
10047 return TRUE;
10048 }
10049 #endif /* defined (HAVE_PSTATUS_T) */
10050
10051 #if defined (HAVE_LWPSTATUS_T)
10052 static bfd_boolean
10053 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
10054 {
10055 lwpstatus_t lwpstat;
10056 char buf[100];
10057 char *name;
10058 size_t len;
10059 asection *sect;
10060
10061 if (note->descsz != sizeof (lwpstat)
10062 #if defined (HAVE_LWPXSTATUS_T)
10063 && note->descsz != sizeof (lwpxstatus_t)
10064 #endif
10065 )
10066 return TRUE;
10067
10068 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
10069
10070 elf_tdata (abfd)->core->lwpid = lwpstat.pr_lwpid;
10071 /* Do not overwrite the core signal if it has already been set by
10072 another thread. */
10073 if (elf_tdata (abfd)->core->signal == 0)
10074 elf_tdata (abfd)->core->signal = lwpstat.pr_cursig;
10075
10076 /* Make a ".reg/999" section. */
10077
10078 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
10079 len = strlen (buf) + 1;
10080 name = bfd_alloc (abfd, len);
10081 if (name == NULL)
10082 return FALSE;
10083 memcpy (name, buf, len);
10084
10085 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10086 if (sect == NULL)
10087 return FALSE;
10088
10089 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
10090 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
10091 sect->filepos = note->descpos
10092 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
10093 #endif
10094
10095 #if defined (HAVE_LWPSTATUS_T_PR_REG)
10096 sect->size = sizeof (lwpstat.pr_reg);
10097 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
10098 #endif
10099
10100 sect->alignment_power = 2;
10101
10102 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
10103 return FALSE;
10104
10105 /* Make a ".reg2/999" section */
10106
10107 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
10108 len = strlen (buf) + 1;
10109 name = bfd_alloc (abfd, len);
10110 if (name == NULL)
10111 return FALSE;
10112 memcpy (name, buf, len);
10113
10114 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10115 if (sect == NULL)
10116 return FALSE;
10117
10118 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
10119 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
10120 sect->filepos = note->descpos
10121 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
10122 #endif
10123
10124 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
10125 sect->size = sizeof (lwpstat.pr_fpreg);
10126 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
10127 #endif
10128
10129 sect->alignment_power = 2;
10130
10131 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
10132 }
10133 #endif /* defined (HAVE_LWPSTATUS_T) */
10134
10135 /* These constants, and the structure offsets used below, are defined by
10136 Cygwin's core_dump.h */
10137 #define NOTE_INFO_PROCESS 1
10138 #define NOTE_INFO_THREAD 2
10139 #define NOTE_INFO_MODULE 3
10140 #define NOTE_INFO_MODULE64 4
10141
10142 static bfd_boolean
10143 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
10144 {
10145 char buf[30];
10146 char *name;
10147 size_t len;
10148 unsigned int name_size;
10149 asection *sect;
10150 unsigned int type;
10151 int is_active_thread;
10152 bfd_vma base_addr;
10153
10154 if (note->descsz < 4)
10155 return TRUE;
10156
10157 if (! CONST_STRNEQ (note->namedata, "win32"))
10158 return TRUE;
10159
10160 type = bfd_get_32 (abfd, note->descdata);
10161
10162 struct {
10163 const char *type_name;
10164 unsigned long min_size;
10165 } size_check[] =
10166 {
10167 { "NOTE_INFO_PROCESS", 12 },
10168 { "NOTE_INFO_THREAD", 12 },
10169 { "NOTE_INFO_MODULE", 12 },
10170 { "NOTE_INFO_MODULE64", 16 },
10171 };
10172
10173 if (type > (sizeof(size_check)/sizeof(size_check[0])))
10174 return TRUE;
10175
10176 if (note->descsz < size_check[type - 1].min_size)
10177 {
10178 _bfd_error_handler (_("%pB: warning: win32pstatus %s of size %lu bytes is too small"),
10179 abfd, size_check[type - 1].type_name, note->descsz);
10180 return TRUE;
10181 }
10182
10183 switch (type)
10184 {
10185 case NOTE_INFO_PROCESS:
10186 /* FIXME: need to add ->core->command. */
10187 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, note->descdata + 4);
10188 elf_tdata (abfd)->core->signal = bfd_get_32 (abfd, note->descdata + 8);
10189 break;
10190
10191 case NOTE_INFO_THREAD:
10192 /* Make a ".reg/<tid>" section containing the Win32 API thread CONTEXT
10193 structure. */
10194 /* thread_info.tid */
10195 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 4));
10196
10197 len = strlen (buf) + 1;
10198 name = (char *) bfd_alloc (abfd, len);
10199 if (name == NULL)
10200 return FALSE;
10201
10202 memcpy (name, buf, len);
10203
10204 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10205 if (sect == NULL)
10206 return FALSE;
10207
10208 /* sizeof (thread_info.thread_context) */
10209 sect->size = note->descsz - 12;
10210 /* offsetof (thread_info.thread_context) */
10211 sect->filepos = note->descpos + 12;
10212 sect->alignment_power = 2;
10213
10214 /* thread_info.is_active_thread */
10215 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
10216
10217 if (is_active_thread)
10218 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
10219 return FALSE;
10220 break;
10221
10222 case NOTE_INFO_MODULE:
10223 case NOTE_INFO_MODULE64:
10224 /* Make a ".module/xxxxxxxx" section. */
10225 if (type == NOTE_INFO_MODULE)
10226 {
10227 /* module_info.base_address */
10228 base_addr = bfd_get_32 (abfd, note->descdata + 4);
10229 sprintf (buf, ".module/%08lx", (unsigned long) base_addr);
10230 /* module_info.module_name_size */
10231 name_size = bfd_get_32 (abfd, note->descdata + 8);
10232 }
10233 else /* NOTE_INFO_MODULE64 */
10234 {
10235 /* module_info.base_address */
10236 base_addr = bfd_get_64 (abfd, note->descdata + 4);
10237 sprintf (buf, ".module/%016lx", (unsigned long) base_addr);
10238 /* module_info.module_name_size */
10239 name_size = bfd_get_32 (abfd, note->descdata + 12);
10240 }
10241
10242 len = strlen (buf) + 1;
10243 name = (char *) bfd_alloc (abfd, len);
10244 if (name == NULL)
10245 return FALSE;
10246
10247 memcpy (name, buf, len);
10248
10249 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10250
10251 if (sect == NULL)
10252 return FALSE;
10253
10254 if (note->descsz < 12 + name_size)
10255 {
10256 _bfd_error_handler (_("%pB: win32pstatus NOTE_INFO_MODULE of size %lu is too small to contain a name of size %u"),
10257 abfd, note->descsz, name_size);
10258 return TRUE;
10259 }
10260
10261 sect->size = note->descsz;
10262 sect->filepos = note->descpos;
10263 sect->alignment_power = 2;
10264 break;
10265
10266 default:
10267 return TRUE;
10268 }
10269
10270 return TRUE;
10271 }
10272
10273 static bfd_boolean
10274 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
10275 {
10276 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10277
10278 switch (note->type)
10279 {
10280 default:
10281 return TRUE;
10282
10283 case NT_PRSTATUS:
10284 if (bed->elf_backend_grok_prstatus)
10285 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
10286 return TRUE;
10287 #if defined (HAVE_PRSTATUS_T)
10288 return elfcore_grok_prstatus (abfd, note);
10289 #else
10290 return TRUE;
10291 #endif
10292
10293 #if defined (HAVE_PSTATUS_T)
10294 case NT_PSTATUS:
10295 return elfcore_grok_pstatus (abfd, note);
10296 #endif
10297
10298 #if defined (HAVE_LWPSTATUS_T)
10299 case NT_LWPSTATUS:
10300 return elfcore_grok_lwpstatus (abfd, note);
10301 #endif
10302
10303 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
10304 return elfcore_grok_prfpreg (abfd, note);
10305
10306 case NT_WIN32PSTATUS:
10307 return elfcore_grok_win32pstatus (abfd, note);
10308
10309 case NT_PRXFPREG: /* Linux SSE extension */
10310 if (note->namesz == 6
10311 && strcmp (note->namedata, "LINUX") == 0)
10312 return elfcore_grok_prxfpreg (abfd, note);
10313 else
10314 return TRUE;
10315
10316 case NT_X86_XSTATE: /* Linux XSAVE extension */
10317 if (note->namesz == 6
10318 && strcmp (note->namedata, "LINUX") == 0)
10319 return elfcore_grok_xstatereg (abfd, note);
10320 else
10321 return TRUE;
10322
10323 case NT_PPC_VMX:
10324 if (note->namesz == 6
10325 && strcmp (note->namedata, "LINUX") == 0)
10326 return elfcore_grok_ppc_vmx (abfd, note);
10327 else
10328 return TRUE;
10329
10330 case NT_PPC_VSX:
10331 if (note->namesz == 6
10332 && strcmp (note->namedata, "LINUX") == 0)
10333 return elfcore_grok_ppc_vsx (abfd, note);
10334 else
10335 return TRUE;
10336
10337 case NT_PPC_TAR:
10338 if (note->namesz == 6
10339 && strcmp (note->namedata, "LINUX") == 0)
10340 return elfcore_grok_ppc_tar (abfd, note);
10341 else
10342 return TRUE;
10343
10344 case NT_PPC_PPR:
10345 if (note->namesz == 6
10346 && strcmp (note->namedata, "LINUX") == 0)
10347 return elfcore_grok_ppc_ppr (abfd, note);
10348 else
10349 return TRUE;
10350
10351 case NT_PPC_DSCR:
10352 if (note->namesz == 6
10353 && strcmp (note->namedata, "LINUX") == 0)
10354 return elfcore_grok_ppc_dscr (abfd, note);
10355 else
10356 return TRUE;
10357
10358 case NT_PPC_EBB:
10359 if (note->namesz == 6
10360 && strcmp (note->namedata, "LINUX") == 0)
10361 return elfcore_grok_ppc_ebb (abfd, note);
10362 else
10363 return TRUE;
10364
10365 case NT_PPC_PMU:
10366 if (note->namesz == 6
10367 && strcmp (note->namedata, "LINUX") == 0)
10368 return elfcore_grok_ppc_pmu (abfd, note);
10369 else
10370 return TRUE;
10371
10372 case NT_PPC_TM_CGPR:
10373 if (note->namesz == 6
10374 && strcmp (note->namedata, "LINUX") == 0)
10375 return elfcore_grok_ppc_tm_cgpr (abfd, note);
10376 else
10377 return TRUE;
10378
10379 case NT_PPC_TM_CFPR:
10380 if (note->namesz == 6
10381 && strcmp (note->namedata, "LINUX") == 0)
10382 return elfcore_grok_ppc_tm_cfpr (abfd, note);
10383 else
10384 return TRUE;
10385
10386 case NT_PPC_TM_CVMX:
10387 if (note->namesz == 6
10388 && strcmp (note->namedata, "LINUX") == 0)
10389 return elfcore_grok_ppc_tm_cvmx (abfd, note);
10390 else
10391 return TRUE;
10392
10393 case NT_PPC_TM_CVSX:
10394 if (note->namesz == 6
10395 && strcmp (note->namedata, "LINUX") == 0)
10396 return elfcore_grok_ppc_tm_cvsx (abfd, note);
10397 else
10398 return TRUE;
10399
10400 case NT_PPC_TM_SPR:
10401 if (note->namesz == 6
10402 && strcmp (note->namedata, "LINUX") == 0)
10403 return elfcore_grok_ppc_tm_spr (abfd, note);
10404 else
10405 return TRUE;
10406
10407 case NT_PPC_TM_CTAR:
10408 if (note->namesz == 6
10409 && strcmp (note->namedata, "LINUX") == 0)
10410 return elfcore_grok_ppc_tm_ctar (abfd, note);
10411 else
10412 return TRUE;
10413
10414 case NT_PPC_TM_CPPR:
10415 if (note->namesz == 6
10416 && strcmp (note->namedata, "LINUX") == 0)
10417 return elfcore_grok_ppc_tm_cppr (abfd, note);
10418 else
10419 return TRUE;
10420
10421 case NT_PPC_TM_CDSCR:
10422 if (note->namesz == 6
10423 && strcmp (note->namedata, "LINUX") == 0)
10424 return elfcore_grok_ppc_tm_cdscr (abfd, note);
10425 else
10426 return TRUE;
10427
10428 case NT_S390_HIGH_GPRS:
10429 if (note->namesz == 6
10430 && strcmp (note->namedata, "LINUX") == 0)
10431 return elfcore_grok_s390_high_gprs (abfd, note);
10432 else
10433 return TRUE;
10434
10435 case NT_S390_TIMER:
10436 if (note->namesz == 6
10437 && strcmp (note->namedata, "LINUX") == 0)
10438 return elfcore_grok_s390_timer (abfd, note);
10439 else
10440 return TRUE;
10441
10442 case NT_S390_TODCMP:
10443 if (note->namesz == 6
10444 && strcmp (note->namedata, "LINUX") == 0)
10445 return elfcore_grok_s390_todcmp (abfd, note);
10446 else
10447 return TRUE;
10448
10449 case NT_S390_TODPREG:
10450 if (note->namesz == 6
10451 && strcmp (note->namedata, "LINUX") == 0)
10452 return elfcore_grok_s390_todpreg (abfd, note);
10453 else
10454 return TRUE;
10455
10456 case NT_S390_CTRS:
10457 if (note->namesz == 6
10458 && strcmp (note->namedata, "LINUX") == 0)
10459 return elfcore_grok_s390_ctrs (abfd, note);
10460 else
10461 return TRUE;
10462
10463 case NT_S390_PREFIX:
10464 if (note->namesz == 6
10465 && strcmp (note->namedata, "LINUX") == 0)
10466 return elfcore_grok_s390_prefix (abfd, note);
10467 else
10468 return TRUE;
10469
10470 case NT_S390_LAST_BREAK:
10471 if (note->namesz == 6
10472 && strcmp (note->namedata, "LINUX") == 0)
10473 return elfcore_grok_s390_last_break (abfd, note);
10474 else
10475 return TRUE;
10476
10477 case NT_S390_SYSTEM_CALL:
10478 if (note->namesz == 6
10479 && strcmp (note->namedata, "LINUX") == 0)
10480 return elfcore_grok_s390_system_call (abfd, note);
10481 else
10482 return TRUE;
10483
10484 case NT_S390_TDB:
10485 if (note->namesz == 6
10486 && strcmp (note->namedata, "LINUX") == 0)
10487 return elfcore_grok_s390_tdb (abfd, note);
10488 else
10489 return TRUE;
10490
10491 case NT_S390_VXRS_LOW:
10492 if (note->namesz == 6
10493 && strcmp (note->namedata, "LINUX") == 0)
10494 return elfcore_grok_s390_vxrs_low (abfd, note);
10495 else
10496 return TRUE;
10497
10498 case NT_S390_VXRS_HIGH:
10499 if (note->namesz == 6
10500 && strcmp (note->namedata, "LINUX") == 0)
10501 return elfcore_grok_s390_vxrs_high (abfd, note);
10502 else
10503 return TRUE;
10504
10505 case NT_S390_GS_CB:
10506 if (note->namesz == 6
10507 && strcmp (note->namedata, "LINUX") == 0)
10508 return elfcore_grok_s390_gs_cb (abfd, note);
10509 else
10510 return TRUE;
10511
10512 case NT_S390_GS_BC:
10513 if (note->namesz == 6
10514 && strcmp (note->namedata, "LINUX") == 0)
10515 return elfcore_grok_s390_gs_bc (abfd, note);
10516 else
10517 return TRUE;
10518
10519 case NT_ARC_V2:
10520 if (note->namesz == 6
10521 && strcmp (note->namedata, "LINUX") == 0)
10522 return elfcore_grok_arc_v2 (abfd, note);
10523 else
10524 return TRUE;
10525
10526 case NT_ARM_VFP:
10527 if (note->namesz == 6
10528 && strcmp (note->namedata, "LINUX") == 0)
10529 return elfcore_grok_arm_vfp (abfd, note);
10530 else
10531 return TRUE;
10532
10533 case NT_ARM_TLS:
10534 if (note->namesz == 6
10535 && strcmp (note->namedata, "LINUX") == 0)
10536 return elfcore_grok_aarch_tls (abfd, note);
10537 else
10538 return TRUE;
10539
10540 case NT_ARM_HW_BREAK:
10541 if (note->namesz == 6
10542 && strcmp (note->namedata, "LINUX") == 0)
10543 return elfcore_grok_aarch_hw_break (abfd, note);
10544 else
10545 return TRUE;
10546
10547 case NT_ARM_HW_WATCH:
10548 if (note->namesz == 6
10549 && strcmp (note->namedata, "LINUX") == 0)
10550 return elfcore_grok_aarch_hw_watch (abfd, note);
10551 else
10552 return TRUE;
10553
10554 case NT_ARM_SVE:
10555 if (note->namesz == 6
10556 && strcmp (note->namedata, "LINUX") == 0)
10557 return elfcore_grok_aarch_sve (abfd, note);
10558 else
10559 return TRUE;
10560
10561 case NT_ARM_PAC_MASK:
10562 if (note->namesz == 6
10563 && strcmp (note->namedata, "LINUX") == 0)
10564 return elfcore_grok_aarch_pauth (abfd, note);
10565 else
10566 return TRUE;
10567
10568 case NT_PRPSINFO:
10569 case NT_PSINFO:
10570 if (bed->elf_backend_grok_psinfo)
10571 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
10572 return TRUE;
10573 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
10574 return elfcore_grok_psinfo (abfd, note);
10575 #else
10576 return TRUE;
10577 #endif
10578
10579 case NT_AUXV:
10580 return elfcore_make_auxv_note_section (abfd, note, 0);
10581
10582 case NT_FILE:
10583 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.file",
10584 note);
10585
10586 case NT_SIGINFO:
10587 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.siginfo",
10588 note);
10589
10590 }
10591 }
10592
10593 static bfd_boolean
10594 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
10595 {
10596 struct bfd_build_id* build_id;
10597
10598 if (note->descsz == 0)
10599 return FALSE;
10600
10601 build_id = bfd_alloc (abfd, sizeof (struct bfd_build_id) - 1 + note->descsz);
10602 if (build_id == NULL)
10603 return FALSE;
10604
10605 build_id->size = note->descsz;
10606 memcpy (build_id->data, note->descdata, note->descsz);
10607 abfd->build_id = build_id;
10608
10609 return TRUE;
10610 }
10611
10612 static bfd_boolean
10613 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
10614 {
10615 switch (note->type)
10616 {
10617 default:
10618 return TRUE;
10619
10620 case NT_GNU_PROPERTY_TYPE_0:
10621 return _bfd_elf_parse_gnu_properties (abfd, note);
10622
10623 case NT_GNU_BUILD_ID:
10624 return elfobj_grok_gnu_build_id (abfd, note);
10625 }
10626 }
10627
10628 static bfd_boolean
10629 elfobj_grok_stapsdt_note_1 (bfd *abfd, Elf_Internal_Note *note)
10630 {
10631 struct sdt_note *cur =
10632 (struct sdt_note *) bfd_alloc (abfd,
10633 sizeof (struct sdt_note) + note->descsz);
10634
10635 cur->next = (struct sdt_note *) (elf_tdata (abfd))->sdt_note_head;
10636 cur->size = (bfd_size_type) note->descsz;
10637 memcpy (cur->data, note->descdata, note->descsz);
10638
10639 elf_tdata (abfd)->sdt_note_head = cur;
10640
10641 return TRUE;
10642 }
10643
10644 static bfd_boolean
10645 elfobj_grok_stapsdt_note (bfd *abfd, Elf_Internal_Note *note)
10646 {
10647 switch (note->type)
10648 {
10649 case NT_STAPSDT:
10650 return elfobj_grok_stapsdt_note_1 (abfd, note);
10651
10652 default:
10653 return TRUE;
10654 }
10655 }
10656
10657 static bfd_boolean
10658 elfcore_grok_freebsd_psinfo (bfd *abfd, Elf_Internal_Note *note)
10659 {
10660 size_t offset;
10661
10662 switch (elf_elfheader (abfd)->e_ident[EI_CLASS])
10663 {
10664 case ELFCLASS32:
10665 if (note->descsz < 108)
10666 return FALSE;
10667 break;
10668
10669 case ELFCLASS64:
10670 if (note->descsz < 120)
10671 return FALSE;
10672 break;
10673
10674 default:
10675 return FALSE;
10676 }
10677
10678 /* Check for version 1 in pr_version. */
10679 if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1)
10680 return FALSE;
10681
10682 offset = 4;
10683
10684 /* Skip over pr_psinfosz. */
10685 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS32)
10686 offset += 4;
10687 else
10688 {
10689 offset += 4; /* Padding before pr_psinfosz. */
10690 offset += 8;
10691 }
10692
10693 /* pr_fname is PRFNAMESZ (16) + 1 bytes in size. */
10694 elf_tdata (abfd)->core->program
10695 = _bfd_elfcore_strndup (abfd, note->descdata + offset, 17);
10696 offset += 17;
10697
10698 /* pr_psargs is PRARGSZ (80) + 1 bytes in size. */
10699 elf_tdata (abfd)->core->command
10700 = _bfd_elfcore_strndup (abfd, note->descdata + offset, 81);
10701 offset += 81;
10702
10703 /* Padding before pr_pid. */
10704 offset += 2;
10705
10706 /* The pr_pid field was added in version "1a". */
10707 if (note->descsz < offset + 4)
10708 return TRUE;
10709
10710 elf_tdata (abfd)->core->pid
10711 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10712
10713 return TRUE;
10714 }
10715
10716 static bfd_boolean
10717 elfcore_grok_freebsd_prstatus (bfd *abfd, Elf_Internal_Note *note)
10718 {
10719 size_t offset;
10720 size_t size;
10721 size_t min_size;
10722
10723 /* Compute offset of pr_getregsz, skipping over pr_statussz.
10724 Also compute minimum size of this note. */
10725 switch (elf_elfheader (abfd)->e_ident[EI_CLASS])
10726 {
10727 case ELFCLASS32:
10728 offset = 4 + 4;
10729 min_size = offset + (4 * 2) + 4 + 4 + 4;
10730 break;
10731
10732 case ELFCLASS64:
10733 offset = 4 + 4 + 8; /* Includes padding before pr_statussz. */
10734 min_size = offset + (8 * 2) + 4 + 4 + 4 + 4;
10735 break;
10736
10737 default:
10738 return FALSE;
10739 }
10740
10741 if (note->descsz < min_size)
10742 return FALSE;
10743
10744 /* Check for version 1 in pr_version. */
10745 if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1)
10746 return FALSE;
10747
10748 /* Extract size of pr_reg from pr_gregsetsz. */
10749 /* Skip over pr_gregsetsz and pr_fpregsetsz. */
10750 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS32)
10751 {
10752 size = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10753 offset += 4 * 2;
10754 }
10755 else
10756 {
10757 size = bfd_h_get_64 (abfd, (bfd_byte *) note->descdata + offset);
10758 offset += 8 * 2;
10759 }
10760
10761 /* Skip over pr_osreldate. */
10762 offset += 4;
10763
10764 /* Read signal from pr_cursig. */
10765 if (elf_tdata (abfd)->core->signal == 0)
10766 elf_tdata (abfd)->core->signal
10767 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10768 offset += 4;
10769
10770 /* Read TID from pr_pid. */
10771 elf_tdata (abfd)->core->lwpid
10772 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10773 offset += 4;
10774
10775 /* Padding before pr_reg. */
10776 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
10777 offset += 4;
10778
10779 /* Make sure that there is enough data remaining in the note. */
10780 if ((note->descsz - offset) < size)
10781 return FALSE;
10782
10783 /* Make a ".reg/999" section and a ".reg" section. */
10784 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
10785 size, note->descpos + offset);
10786 }
10787
10788 static bfd_boolean
10789 elfcore_grok_freebsd_note (bfd *abfd, Elf_Internal_Note *note)
10790 {
10791 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10792
10793 switch (note->type)
10794 {
10795 case NT_PRSTATUS:
10796 if (bed->elf_backend_grok_freebsd_prstatus)
10797 if ((*bed->elf_backend_grok_freebsd_prstatus) (abfd, note))
10798 return TRUE;
10799 return elfcore_grok_freebsd_prstatus (abfd, note);
10800
10801 case NT_FPREGSET:
10802 return elfcore_grok_prfpreg (abfd, note);
10803
10804 case NT_PRPSINFO:
10805 return elfcore_grok_freebsd_psinfo (abfd, note);
10806
10807 case NT_FREEBSD_THRMISC:
10808 if (note->namesz == 8)
10809 return elfcore_make_note_pseudosection (abfd, ".thrmisc", note);
10810 else
10811 return TRUE;
10812
10813 case NT_FREEBSD_PROCSTAT_PROC:
10814 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.proc",
10815 note);
10816
10817 case NT_FREEBSD_PROCSTAT_FILES:
10818 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.files",
10819 note);
10820
10821 case NT_FREEBSD_PROCSTAT_VMMAP:
10822 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.vmmap",
10823 note);
10824
10825 case NT_FREEBSD_PROCSTAT_AUXV:
10826 return elfcore_make_auxv_note_section (abfd, note, 4);
10827
10828 case NT_X86_XSTATE:
10829 if (note->namesz == 8)
10830 return elfcore_grok_xstatereg (abfd, note);
10831 else
10832 return TRUE;
10833
10834 case NT_FREEBSD_PTLWPINFO:
10835 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.lwpinfo",
10836 note);
10837
10838 case NT_ARM_VFP:
10839 return elfcore_grok_arm_vfp (abfd, note);
10840
10841 default:
10842 return TRUE;
10843 }
10844 }
10845
10846 static bfd_boolean
10847 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
10848 {
10849 char *cp;
10850
10851 cp = strchr (note->namedata, '@');
10852 if (cp != NULL)
10853 {
10854 *lwpidp = atoi(cp + 1);
10855 return TRUE;
10856 }
10857 return FALSE;
10858 }
10859
10860 static bfd_boolean
10861 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
10862 {
10863 if (note->descsz <= 0x7c + 31)
10864 return FALSE;
10865
10866 /* Signal number at offset 0x08. */
10867 elf_tdata (abfd)->core->signal
10868 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
10869
10870 /* Process ID at offset 0x50. */
10871 elf_tdata (abfd)->core->pid
10872 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
10873
10874 /* Command name at 0x7c (max 32 bytes, including nul). */
10875 elf_tdata (abfd)->core->command
10876 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
10877
10878 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
10879 note);
10880 }
10881
10882 static bfd_boolean
10883 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
10884 {
10885 int lwp;
10886
10887 if (elfcore_netbsd_get_lwpid (note, &lwp))
10888 elf_tdata (abfd)->core->lwpid = lwp;
10889
10890 switch (note->type)
10891 {
10892 case NT_NETBSDCORE_PROCINFO:
10893 /* NetBSD-specific core "procinfo". Note that we expect to
10894 find this note before any of the others, which is fine,
10895 since the kernel writes this note out first when it
10896 creates a core file. */
10897 return elfcore_grok_netbsd_procinfo (abfd, note);
10898 #ifdef NT_NETBSDCORE_AUXV
10899 case NT_NETBSDCORE_AUXV:
10900 /* NetBSD-specific Elf Auxiliary Vector data. */
10901 return elfcore_make_auxv_note_section (abfd, note, 4);
10902 #endif
10903 #ifdef NT_NETBSDCORE_LWPSTATUS
10904 case NT_NETBSDCORE_LWPSTATUS:
10905 return elfcore_make_note_pseudosection (abfd,
10906 ".note.netbsdcore.lwpstatus",
10907 note);
10908 #endif
10909 default:
10910 break;
10911 }
10912
10913 /* As of March 2020 there are no other machine-independent notes
10914 defined for NetBSD core files. If the note type is less
10915 than the start of the machine-dependent note types, we don't
10916 understand it. */
10917
10918 if (note->type < NT_NETBSDCORE_FIRSTMACH)
10919 return TRUE;
10920
10921
10922 switch (bfd_get_arch (abfd))
10923 {
10924 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
10925 PT_GETFPREGS == mach+2. */
10926
10927 case bfd_arch_aarch64:
10928 case bfd_arch_alpha:
10929 case bfd_arch_sparc:
10930 switch (note->type)
10931 {
10932 case NT_NETBSDCORE_FIRSTMACH+0:
10933 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10934
10935 case NT_NETBSDCORE_FIRSTMACH+2:
10936 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10937
10938 default:
10939 return TRUE;
10940 }
10941
10942 /* On SuperH, PT_GETREGS == mach+3 and PT_GETFPREGS == mach+5.
10943 There's also old PT___GETREGS40 == mach + 1 for old reg
10944 structure which lacks GBR. */
10945
10946 case bfd_arch_sh:
10947 switch (note->type)
10948 {
10949 case NT_NETBSDCORE_FIRSTMACH+3:
10950 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10951
10952 case NT_NETBSDCORE_FIRSTMACH+5:
10953 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10954
10955 default:
10956 return TRUE;
10957 }
10958
10959 /* On all other arch's, PT_GETREGS == mach+1 and
10960 PT_GETFPREGS == mach+3. */
10961
10962 default:
10963 switch (note->type)
10964 {
10965 case NT_NETBSDCORE_FIRSTMACH+1:
10966 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10967
10968 case NT_NETBSDCORE_FIRSTMACH+3:
10969 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10970
10971 default:
10972 return TRUE;
10973 }
10974 }
10975 /* NOTREACHED */
10976 }
10977
10978 static bfd_boolean
10979 elfcore_grok_openbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
10980 {
10981 if (note->descsz <= 0x48 + 31)
10982 return FALSE;
10983
10984 /* Signal number at offset 0x08. */
10985 elf_tdata (abfd)->core->signal
10986 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
10987
10988 /* Process ID at offset 0x20. */
10989 elf_tdata (abfd)->core->pid
10990 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x20);
10991
10992 /* Command name at 0x48 (max 32 bytes, including nul). */
10993 elf_tdata (abfd)->core->command
10994 = _bfd_elfcore_strndup (abfd, note->descdata + 0x48, 31);
10995
10996 return TRUE;
10997 }
10998
10999 static bfd_boolean
11000 elfcore_grok_openbsd_note (bfd *abfd, Elf_Internal_Note *note)
11001 {
11002 if (note->type == NT_OPENBSD_PROCINFO)
11003 return elfcore_grok_openbsd_procinfo (abfd, note);
11004
11005 if (note->type == NT_OPENBSD_REGS)
11006 return elfcore_make_note_pseudosection (abfd, ".reg", note);
11007
11008 if (note->type == NT_OPENBSD_FPREGS)
11009 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
11010
11011 if (note->type == NT_OPENBSD_XFPREGS)
11012 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
11013
11014 if (note->type == NT_OPENBSD_AUXV)
11015 return elfcore_make_auxv_note_section (abfd, note, 0);
11016
11017 if (note->type == NT_OPENBSD_WCOOKIE)
11018 {
11019 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".wcookie",
11020 SEC_HAS_CONTENTS);
11021
11022 if (sect == NULL)
11023 return FALSE;
11024 sect->size = note->descsz;
11025 sect->filepos = note->descpos;
11026 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
11027
11028 return TRUE;
11029 }
11030
11031 return TRUE;
11032 }
11033
11034 static bfd_boolean
11035 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
11036 {
11037 void *ddata = note->descdata;
11038 char buf[100];
11039 char *name;
11040 asection *sect;
11041 short sig;
11042 unsigned flags;
11043
11044 if (note->descsz < 16)
11045 return FALSE;
11046
11047 /* nto_procfs_status 'pid' field is at offset 0. */
11048 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
11049
11050 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
11051 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
11052
11053 /* nto_procfs_status 'flags' field is at offset 8. */
11054 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
11055
11056 /* nto_procfs_status 'what' field is at offset 14. */
11057 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
11058 {
11059 elf_tdata (abfd)->core->signal = sig;
11060 elf_tdata (abfd)->core->lwpid = *tid;
11061 }
11062
11063 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
11064 do not come from signals so we make sure we set the current
11065 thread just in case. */
11066 if (flags & 0x00000080)
11067 elf_tdata (abfd)->core->lwpid = *tid;
11068
11069 /* Make a ".qnx_core_status/%d" section. */
11070 sprintf (buf, ".qnx_core_status/%ld", *tid);
11071
11072 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
11073 if (name == NULL)
11074 return FALSE;
11075 strcpy (name, buf);
11076
11077 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
11078 if (sect == NULL)
11079 return FALSE;
11080
11081 sect->size = note->descsz;
11082 sect->filepos = note->descpos;
11083 sect->alignment_power = 2;
11084
11085 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
11086 }
11087
11088 static bfd_boolean
11089 elfcore_grok_nto_regs (bfd *abfd,
11090 Elf_Internal_Note *note,
11091 long tid,
11092 char *base)
11093 {
11094 char buf[100];
11095 char *name;
11096 asection *sect;
11097
11098 /* Make a "(base)/%d" section. */
11099 sprintf (buf, "%s/%ld", base, tid);
11100
11101 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
11102 if (name == NULL)
11103 return FALSE;
11104 strcpy (name, buf);
11105
11106 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
11107 if (sect == NULL)
11108 return FALSE;
11109
11110 sect->size = note->descsz;
11111 sect->filepos = note->descpos;
11112 sect->alignment_power = 2;
11113
11114 /* This is the current thread. */
11115 if (elf_tdata (abfd)->core->lwpid == tid)
11116 return elfcore_maybe_make_sect (abfd, base, sect);
11117
11118 return TRUE;
11119 }
11120
11121 #define BFD_QNT_CORE_INFO 7
11122 #define BFD_QNT_CORE_STATUS 8
11123 #define BFD_QNT_CORE_GREG 9
11124 #define BFD_QNT_CORE_FPREG 10
11125
11126 static bfd_boolean
11127 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
11128 {
11129 /* Every GREG section has a STATUS section before it. Store the
11130 tid from the previous call to pass down to the next gregs
11131 function. */
11132 static long tid = 1;
11133
11134 switch (note->type)
11135 {
11136 case BFD_QNT_CORE_INFO:
11137 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
11138 case BFD_QNT_CORE_STATUS:
11139 return elfcore_grok_nto_status (abfd, note, &tid);
11140 case BFD_QNT_CORE_GREG:
11141 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
11142 case BFD_QNT_CORE_FPREG:
11143 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
11144 default:
11145 return TRUE;
11146 }
11147 }
11148
11149 static bfd_boolean
11150 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
11151 {
11152 char *name;
11153 asection *sect;
11154 size_t len;
11155
11156 /* Use note name as section name. */
11157 len = note->namesz;
11158 name = (char *) bfd_alloc (abfd, len);
11159 if (name == NULL)
11160 return FALSE;
11161 memcpy (name, note->namedata, len);
11162 name[len - 1] = '\0';
11163
11164 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
11165 if (sect == NULL)
11166 return FALSE;
11167
11168 sect->size = note->descsz;
11169 sect->filepos = note->descpos;
11170 sect->alignment_power = 1;
11171
11172 return TRUE;
11173 }
11174
11175 /* Function: elfcore_write_note
11176
11177 Inputs:
11178 buffer to hold note, and current size of buffer
11179 name of note
11180 type of note
11181 data for note
11182 size of data for note
11183
11184 Writes note to end of buffer. ELF64 notes are written exactly as
11185 for ELF32, despite the current (as of 2006) ELF gabi specifying
11186 that they ought to have 8-byte namesz and descsz field, and have
11187 8-byte alignment. Other writers, eg. Linux kernel, do the same.
11188
11189 Return:
11190 Pointer to realloc'd buffer, *BUFSIZ updated. */
11191
11192 char *
11193 elfcore_write_note (bfd *abfd,
11194 char *buf,
11195 int *bufsiz,
11196 const char *name,
11197 int type,
11198 const void *input,
11199 int size)
11200 {
11201 Elf_External_Note *xnp;
11202 size_t namesz;
11203 size_t newspace;
11204 char *dest;
11205
11206 namesz = 0;
11207 if (name != NULL)
11208 namesz = strlen (name) + 1;
11209
11210 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
11211
11212 buf = (char *) realloc (buf, *bufsiz + newspace);
11213 if (buf == NULL)
11214 return buf;
11215 dest = buf + *bufsiz;
11216 *bufsiz += newspace;
11217 xnp = (Elf_External_Note *) dest;
11218 H_PUT_32 (abfd, namesz, xnp->namesz);
11219 H_PUT_32 (abfd, size, xnp->descsz);
11220 H_PUT_32 (abfd, type, xnp->type);
11221 dest = xnp->name;
11222 if (name != NULL)
11223 {
11224 memcpy (dest, name, namesz);
11225 dest += namesz;
11226 while (namesz & 3)
11227 {
11228 *dest++ = '\0';
11229 ++namesz;
11230 }
11231 }
11232 memcpy (dest, input, size);
11233 dest += size;
11234 while (size & 3)
11235 {
11236 *dest++ = '\0';
11237 ++size;
11238 }
11239 return buf;
11240 }
11241
11242 /* gcc-8 warns (*) on all the strncpy calls in this function about
11243 possible string truncation. The "truncation" is not a bug. We
11244 have an external representation of structs with fields that are not
11245 necessarily NULL terminated and corresponding internal
11246 representation fields that are one larger so that they can always
11247 be NULL terminated.
11248 gcc versions between 4.2 and 4.6 do not allow pragma control of
11249 diagnostics inside functions, giving a hard error if you try to use
11250 the finer control available with later versions.
11251 gcc prior to 4.2 warns about diagnostic push and pop.
11252 gcc-5, gcc-6 and gcc-7 warn that -Wstringop-truncation is unknown,
11253 unless you also add #pragma GCC diagnostic ignored "-Wpragma".
11254 (*) Depending on your system header files! */
11255 #if GCC_VERSION >= 8000
11256 # pragma GCC diagnostic push
11257 # pragma GCC diagnostic ignored "-Wstringop-truncation"
11258 #endif
11259 char *
11260 elfcore_write_prpsinfo (bfd *abfd,
11261 char *buf,
11262 int *bufsiz,
11263 const char *fname,
11264 const char *psargs)
11265 {
11266 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11267
11268 if (bed->elf_backend_write_core_note != NULL)
11269 {
11270 char *ret;
11271 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
11272 NT_PRPSINFO, fname, psargs);
11273 if (ret != NULL)
11274 return ret;
11275 }
11276
11277 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
11278 # if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
11279 if (bed->s->elfclass == ELFCLASS32)
11280 {
11281 # if defined (HAVE_PSINFO32_T)
11282 psinfo32_t data;
11283 int note_type = NT_PSINFO;
11284 # else
11285 prpsinfo32_t data;
11286 int note_type = NT_PRPSINFO;
11287 # endif
11288
11289 memset (&data, 0, sizeof (data));
11290 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
11291 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
11292 return elfcore_write_note (abfd, buf, bufsiz,
11293 "CORE", note_type, &data, sizeof (data));
11294 }
11295 else
11296 # endif
11297 {
11298 # if defined (HAVE_PSINFO_T)
11299 psinfo_t data;
11300 int note_type = NT_PSINFO;
11301 # else
11302 prpsinfo_t data;
11303 int note_type = NT_PRPSINFO;
11304 # endif
11305
11306 memset (&data, 0, sizeof (data));
11307 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
11308 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
11309 return elfcore_write_note (abfd, buf, bufsiz,
11310 "CORE", note_type, &data, sizeof (data));
11311 }
11312 #endif /* PSINFO_T or PRPSINFO_T */
11313
11314 free (buf);
11315 return NULL;
11316 }
11317 #if GCC_VERSION >= 8000
11318 # pragma GCC diagnostic pop
11319 #endif
11320
11321 char *
11322 elfcore_write_linux_prpsinfo32
11323 (bfd *abfd, char *buf, int *bufsiz,
11324 const struct elf_internal_linux_prpsinfo *prpsinfo)
11325 {
11326 if (get_elf_backend_data (abfd)->linux_prpsinfo32_ugid16)
11327 {
11328 struct elf_external_linux_prpsinfo32_ugid16 data;
11329
11330 swap_linux_prpsinfo32_ugid16_out (abfd, prpsinfo, &data);
11331 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
11332 &data, sizeof (data));
11333 }
11334 else
11335 {
11336 struct elf_external_linux_prpsinfo32_ugid32 data;
11337
11338 swap_linux_prpsinfo32_ugid32_out (abfd, prpsinfo, &data);
11339 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
11340 &data, sizeof (data));
11341 }
11342 }
11343
11344 char *
11345 elfcore_write_linux_prpsinfo64
11346 (bfd *abfd, char *buf, int *bufsiz,
11347 const struct elf_internal_linux_prpsinfo *prpsinfo)
11348 {
11349 if (get_elf_backend_data (abfd)->linux_prpsinfo64_ugid16)
11350 {
11351 struct elf_external_linux_prpsinfo64_ugid16 data;
11352
11353 swap_linux_prpsinfo64_ugid16_out (abfd, prpsinfo, &data);
11354 return elfcore_write_note (abfd, buf, bufsiz,
11355 "CORE", NT_PRPSINFO, &data, sizeof (data));
11356 }
11357 else
11358 {
11359 struct elf_external_linux_prpsinfo64_ugid32 data;
11360
11361 swap_linux_prpsinfo64_ugid32_out (abfd, prpsinfo, &data);
11362 return elfcore_write_note (abfd, buf, bufsiz,
11363 "CORE", NT_PRPSINFO, &data, sizeof (data));
11364 }
11365 }
11366
11367 char *
11368 elfcore_write_prstatus (bfd *abfd,
11369 char *buf,
11370 int *bufsiz,
11371 long pid,
11372 int cursig,
11373 const void *gregs)
11374 {
11375 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11376
11377 if (bed->elf_backend_write_core_note != NULL)
11378 {
11379 char *ret;
11380 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
11381 NT_PRSTATUS,
11382 pid, cursig, gregs);
11383 if (ret != NULL)
11384 return ret;
11385 }
11386
11387 #if defined (HAVE_PRSTATUS_T)
11388 #if defined (HAVE_PRSTATUS32_T)
11389 if (bed->s->elfclass == ELFCLASS32)
11390 {
11391 prstatus32_t prstat;
11392
11393 memset (&prstat, 0, sizeof (prstat));
11394 prstat.pr_pid = pid;
11395 prstat.pr_cursig = cursig;
11396 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
11397 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
11398 NT_PRSTATUS, &prstat, sizeof (prstat));
11399 }
11400 else
11401 #endif
11402 {
11403 prstatus_t prstat;
11404
11405 memset (&prstat, 0, sizeof (prstat));
11406 prstat.pr_pid = pid;
11407 prstat.pr_cursig = cursig;
11408 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
11409 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
11410 NT_PRSTATUS, &prstat, sizeof (prstat));
11411 }
11412 #endif /* HAVE_PRSTATUS_T */
11413
11414 free (buf);
11415 return NULL;
11416 }
11417
11418 #if defined (HAVE_LWPSTATUS_T)
11419 char *
11420 elfcore_write_lwpstatus (bfd *abfd,
11421 char *buf,
11422 int *bufsiz,
11423 long pid,
11424 int cursig,
11425 const void *gregs)
11426 {
11427 lwpstatus_t lwpstat;
11428 const char *note_name = "CORE";
11429
11430 memset (&lwpstat, 0, sizeof (lwpstat));
11431 lwpstat.pr_lwpid = pid >> 16;
11432 lwpstat.pr_cursig = cursig;
11433 #if defined (HAVE_LWPSTATUS_T_PR_REG)
11434 memcpy (&lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
11435 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
11436 #if !defined(gregs)
11437 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
11438 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
11439 #else
11440 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
11441 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
11442 #endif
11443 #endif
11444 return elfcore_write_note (abfd, buf, bufsiz, note_name,
11445 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
11446 }
11447 #endif /* HAVE_LWPSTATUS_T */
11448
11449 #if defined (HAVE_PSTATUS_T)
11450 char *
11451 elfcore_write_pstatus (bfd *abfd,
11452 char *buf,
11453 int *bufsiz,
11454 long pid,
11455 int cursig ATTRIBUTE_UNUSED,
11456 const void *gregs ATTRIBUTE_UNUSED)
11457 {
11458 const char *note_name = "CORE";
11459 #if defined (HAVE_PSTATUS32_T)
11460 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11461
11462 if (bed->s->elfclass == ELFCLASS32)
11463 {
11464 pstatus32_t pstat;
11465
11466 memset (&pstat, 0, sizeof (pstat));
11467 pstat.pr_pid = pid & 0xffff;
11468 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
11469 NT_PSTATUS, &pstat, sizeof (pstat));
11470 return buf;
11471 }
11472 else
11473 #endif
11474 {
11475 pstatus_t pstat;
11476
11477 memset (&pstat, 0, sizeof (pstat));
11478 pstat.pr_pid = pid & 0xffff;
11479 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
11480 NT_PSTATUS, &pstat, sizeof (pstat));
11481 return buf;
11482 }
11483 }
11484 #endif /* HAVE_PSTATUS_T */
11485
11486 char *
11487 elfcore_write_prfpreg (bfd *abfd,
11488 char *buf,
11489 int *bufsiz,
11490 const void *fpregs,
11491 int size)
11492 {
11493 const char *note_name = "CORE";
11494 return elfcore_write_note (abfd, buf, bufsiz,
11495 note_name, NT_FPREGSET, fpregs, size);
11496 }
11497
11498 char *
11499 elfcore_write_prxfpreg (bfd *abfd,
11500 char *buf,
11501 int *bufsiz,
11502 const void *xfpregs,
11503 int size)
11504 {
11505 char *note_name = "LINUX";
11506 return elfcore_write_note (abfd, buf, bufsiz,
11507 note_name, NT_PRXFPREG, xfpregs, size);
11508 }
11509
11510 char *
11511 elfcore_write_xstatereg (bfd *abfd, char *buf, int *bufsiz,
11512 const void *xfpregs, int size)
11513 {
11514 char *note_name;
11515 if (get_elf_backend_data (abfd)->elf_osabi == ELFOSABI_FREEBSD)
11516 note_name = "FreeBSD";
11517 else
11518 note_name = "LINUX";
11519 return elfcore_write_note (abfd, buf, bufsiz,
11520 note_name, NT_X86_XSTATE, xfpregs, size);
11521 }
11522
11523 char *
11524 elfcore_write_ppc_vmx (bfd *abfd,
11525 char *buf,
11526 int *bufsiz,
11527 const void *ppc_vmx,
11528 int size)
11529 {
11530 char *note_name = "LINUX";
11531 return elfcore_write_note (abfd, buf, bufsiz,
11532 note_name, NT_PPC_VMX, ppc_vmx, size);
11533 }
11534
11535 char *
11536 elfcore_write_ppc_vsx (bfd *abfd,
11537 char *buf,
11538 int *bufsiz,
11539 const void *ppc_vsx,
11540 int size)
11541 {
11542 char *note_name = "LINUX";
11543 return elfcore_write_note (abfd, buf, bufsiz,
11544 note_name, NT_PPC_VSX, ppc_vsx, size);
11545 }
11546
11547 char *
11548 elfcore_write_ppc_tar (bfd *abfd,
11549 char *buf,
11550 int *bufsiz,
11551 const void *ppc_tar,
11552 int size)
11553 {
11554 char *note_name = "LINUX";
11555 return elfcore_write_note (abfd, buf, bufsiz,
11556 note_name, NT_PPC_TAR, ppc_tar, size);
11557 }
11558
11559 char *
11560 elfcore_write_ppc_ppr (bfd *abfd,
11561 char *buf,
11562 int *bufsiz,
11563 const void *ppc_ppr,
11564 int size)
11565 {
11566 char *note_name = "LINUX";
11567 return elfcore_write_note (abfd, buf, bufsiz,
11568 note_name, NT_PPC_PPR, ppc_ppr, size);
11569 }
11570
11571 char *
11572 elfcore_write_ppc_dscr (bfd *abfd,
11573 char *buf,
11574 int *bufsiz,
11575 const void *ppc_dscr,
11576 int size)
11577 {
11578 char *note_name = "LINUX";
11579 return elfcore_write_note (abfd, buf, bufsiz,
11580 note_name, NT_PPC_DSCR, ppc_dscr, size);
11581 }
11582
11583 char *
11584 elfcore_write_ppc_ebb (bfd *abfd,
11585 char *buf,
11586 int *bufsiz,
11587 const void *ppc_ebb,
11588 int size)
11589 {
11590 char *note_name = "LINUX";
11591 return elfcore_write_note (abfd, buf, bufsiz,
11592 note_name, NT_PPC_EBB, ppc_ebb, size);
11593 }
11594
11595 char *
11596 elfcore_write_ppc_pmu (bfd *abfd,
11597 char *buf,
11598 int *bufsiz,
11599 const void *ppc_pmu,
11600 int size)
11601 {
11602 char *note_name = "LINUX";
11603 return elfcore_write_note (abfd, buf, bufsiz,
11604 note_name, NT_PPC_PMU, ppc_pmu, size);
11605 }
11606
11607 char *
11608 elfcore_write_ppc_tm_cgpr (bfd *abfd,
11609 char *buf,
11610 int *bufsiz,
11611 const void *ppc_tm_cgpr,
11612 int size)
11613 {
11614 char *note_name = "LINUX";
11615 return elfcore_write_note (abfd, buf, bufsiz,
11616 note_name, NT_PPC_TM_CGPR, ppc_tm_cgpr, size);
11617 }
11618
11619 char *
11620 elfcore_write_ppc_tm_cfpr (bfd *abfd,
11621 char *buf,
11622 int *bufsiz,
11623 const void *ppc_tm_cfpr,
11624 int size)
11625 {
11626 char *note_name = "LINUX";
11627 return elfcore_write_note (abfd, buf, bufsiz,
11628 note_name, NT_PPC_TM_CFPR, ppc_tm_cfpr, size);
11629 }
11630
11631 char *
11632 elfcore_write_ppc_tm_cvmx (bfd *abfd,
11633 char *buf,
11634 int *bufsiz,
11635 const void *ppc_tm_cvmx,
11636 int size)
11637 {
11638 char *note_name = "LINUX";
11639 return elfcore_write_note (abfd, buf, bufsiz,
11640 note_name, NT_PPC_TM_CVMX, ppc_tm_cvmx, size);
11641 }
11642
11643 char *
11644 elfcore_write_ppc_tm_cvsx (bfd *abfd,
11645 char *buf,
11646 int *bufsiz,
11647 const void *ppc_tm_cvsx,
11648 int size)
11649 {
11650 char *note_name = "LINUX";
11651 return elfcore_write_note (abfd, buf, bufsiz,
11652 note_name, NT_PPC_TM_CVSX, ppc_tm_cvsx, size);
11653 }
11654
11655 char *
11656 elfcore_write_ppc_tm_spr (bfd *abfd,
11657 char *buf,
11658 int *bufsiz,
11659 const void *ppc_tm_spr,
11660 int size)
11661 {
11662 char *note_name = "LINUX";
11663 return elfcore_write_note (abfd, buf, bufsiz,
11664 note_name, NT_PPC_TM_SPR, ppc_tm_spr, size);
11665 }
11666
11667 char *
11668 elfcore_write_ppc_tm_ctar (bfd *abfd,
11669 char *buf,
11670 int *bufsiz,
11671 const void *ppc_tm_ctar,
11672 int size)
11673 {
11674 char *note_name = "LINUX";
11675 return elfcore_write_note (abfd, buf, bufsiz,
11676 note_name, NT_PPC_TM_CTAR, ppc_tm_ctar, size);
11677 }
11678
11679 char *
11680 elfcore_write_ppc_tm_cppr (bfd *abfd,
11681 char *buf,
11682 int *bufsiz,
11683 const void *ppc_tm_cppr,
11684 int size)
11685 {
11686 char *note_name = "LINUX";
11687 return elfcore_write_note (abfd, buf, bufsiz,
11688 note_name, NT_PPC_TM_CPPR, ppc_tm_cppr, size);
11689 }
11690
11691 char *
11692 elfcore_write_ppc_tm_cdscr (bfd *abfd,
11693 char *buf,
11694 int *bufsiz,
11695 const void *ppc_tm_cdscr,
11696 int size)
11697 {
11698 char *note_name = "LINUX";
11699 return elfcore_write_note (abfd, buf, bufsiz,
11700 note_name, NT_PPC_TM_CDSCR, ppc_tm_cdscr, size);
11701 }
11702
11703 static char *
11704 elfcore_write_s390_high_gprs (bfd *abfd,
11705 char *buf,
11706 int *bufsiz,
11707 const void *s390_high_gprs,
11708 int size)
11709 {
11710 char *note_name = "LINUX";
11711 return elfcore_write_note (abfd, buf, bufsiz,
11712 note_name, NT_S390_HIGH_GPRS,
11713 s390_high_gprs, size);
11714 }
11715
11716 char *
11717 elfcore_write_s390_timer (bfd *abfd,
11718 char *buf,
11719 int *bufsiz,
11720 const void *s390_timer,
11721 int size)
11722 {
11723 char *note_name = "LINUX";
11724 return elfcore_write_note (abfd, buf, bufsiz,
11725 note_name, NT_S390_TIMER, s390_timer, size);
11726 }
11727
11728 char *
11729 elfcore_write_s390_todcmp (bfd *abfd,
11730 char *buf,
11731 int *bufsiz,
11732 const void *s390_todcmp,
11733 int size)
11734 {
11735 char *note_name = "LINUX";
11736 return elfcore_write_note (abfd, buf, bufsiz,
11737 note_name, NT_S390_TODCMP, s390_todcmp, size);
11738 }
11739
11740 char *
11741 elfcore_write_s390_todpreg (bfd *abfd,
11742 char *buf,
11743 int *bufsiz,
11744 const void *s390_todpreg,
11745 int size)
11746 {
11747 char *note_name = "LINUX";
11748 return elfcore_write_note (abfd, buf, bufsiz,
11749 note_name, NT_S390_TODPREG, s390_todpreg, size);
11750 }
11751
11752 char *
11753 elfcore_write_s390_ctrs (bfd *abfd,
11754 char *buf,
11755 int *bufsiz,
11756 const void *s390_ctrs,
11757 int size)
11758 {
11759 char *note_name = "LINUX";
11760 return elfcore_write_note (abfd, buf, bufsiz,
11761 note_name, NT_S390_CTRS, s390_ctrs, size);
11762 }
11763
11764 char *
11765 elfcore_write_s390_prefix (bfd *abfd,
11766 char *buf,
11767 int *bufsiz,
11768 const void *s390_prefix,
11769 int size)
11770 {
11771 char *note_name = "LINUX";
11772 return elfcore_write_note (abfd, buf, bufsiz,
11773 note_name, NT_S390_PREFIX, s390_prefix, size);
11774 }
11775
11776 char *
11777 elfcore_write_s390_last_break (bfd *abfd,
11778 char *buf,
11779 int *bufsiz,
11780 const void *s390_last_break,
11781 int size)
11782 {
11783 char *note_name = "LINUX";
11784 return elfcore_write_note (abfd, buf, bufsiz,
11785 note_name, NT_S390_LAST_BREAK,
11786 s390_last_break, size);
11787 }
11788
11789 char *
11790 elfcore_write_s390_system_call (bfd *abfd,
11791 char *buf,
11792 int *bufsiz,
11793 const void *s390_system_call,
11794 int size)
11795 {
11796 char *note_name = "LINUX";
11797 return elfcore_write_note (abfd, buf, bufsiz,
11798 note_name, NT_S390_SYSTEM_CALL,
11799 s390_system_call, size);
11800 }
11801
11802 char *
11803 elfcore_write_s390_tdb (bfd *abfd,
11804 char *buf,
11805 int *bufsiz,
11806 const void *s390_tdb,
11807 int size)
11808 {
11809 char *note_name = "LINUX";
11810 return elfcore_write_note (abfd, buf, bufsiz,
11811 note_name, NT_S390_TDB, s390_tdb, size);
11812 }
11813
11814 char *
11815 elfcore_write_s390_vxrs_low (bfd *abfd,
11816 char *buf,
11817 int *bufsiz,
11818 const void *s390_vxrs_low,
11819 int size)
11820 {
11821 char *note_name = "LINUX";
11822 return elfcore_write_note (abfd, buf, bufsiz,
11823 note_name, NT_S390_VXRS_LOW, s390_vxrs_low, size);
11824 }
11825
11826 char *
11827 elfcore_write_s390_vxrs_high (bfd *abfd,
11828 char *buf,
11829 int *bufsiz,
11830 const void *s390_vxrs_high,
11831 int size)
11832 {
11833 char *note_name = "LINUX";
11834 return elfcore_write_note (abfd, buf, bufsiz,
11835 note_name, NT_S390_VXRS_HIGH,
11836 s390_vxrs_high, size);
11837 }
11838
11839 char *
11840 elfcore_write_s390_gs_cb (bfd *abfd,
11841 char *buf,
11842 int *bufsiz,
11843 const void *s390_gs_cb,
11844 int size)
11845 {
11846 char *note_name = "LINUX";
11847 return elfcore_write_note (abfd, buf, bufsiz,
11848 note_name, NT_S390_GS_CB,
11849 s390_gs_cb, size);
11850 }
11851
11852 char *
11853 elfcore_write_s390_gs_bc (bfd *abfd,
11854 char *buf,
11855 int *bufsiz,
11856 const void *s390_gs_bc,
11857 int size)
11858 {
11859 char *note_name = "LINUX";
11860 return elfcore_write_note (abfd, buf, bufsiz,
11861 note_name, NT_S390_GS_BC,
11862 s390_gs_bc, size);
11863 }
11864
11865 char *
11866 elfcore_write_arm_vfp (bfd *abfd,
11867 char *buf,
11868 int *bufsiz,
11869 const void *arm_vfp,
11870 int size)
11871 {
11872 char *note_name = "LINUX";
11873 return elfcore_write_note (abfd, buf, bufsiz,
11874 note_name, NT_ARM_VFP, arm_vfp, size);
11875 }
11876
11877 char *
11878 elfcore_write_aarch_tls (bfd *abfd,
11879 char *buf,
11880 int *bufsiz,
11881 const void *aarch_tls,
11882 int size)
11883 {
11884 char *note_name = "LINUX";
11885 return elfcore_write_note (abfd, buf, bufsiz,
11886 note_name, NT_ARM_TLS, aarch_tls, size);
11887 }
11888
11889 char *
11890 elfcore_write_aarch_hw_break (bfd *abfd,
11891 char *buf,
11892 int *bufsiz,
11893 const void *aarch_hw_break,
11894 int size)
11895 {
11896 char *note_name = "LINUX";
11897 return elfcore_write_note (abfd, buf, bufsiz,
11898 note_name, NT_ARM_HW_BREAK, aarch_hw_break, size);
11899 }
11900
11901 char *
11902 elfcore_write_aarch_hw_watch (bfd *abfd,
11903 char *buf,
11904 int *bufsiz,
11905 const void *aarch_hw_watch,
11906 int size)
11907 {
11908 char *note_name = "LINUX";
11909 return elfcore_write_note (abfd, buf, bufsiz,
11910 note_name, NT_ARM_HW_WATCH, aarch_hw_watch, size);
11911 }
11912
11913 char *
11914 elfcore_write_aarch_sve (bfd *abfd,
11915 char *buf,
11916 int *bufsiz,
11917 const void *aarch_sve,
11918 int size)
11919 {
11920 char *note_name = "LINUX";
11921 return elfcore_write_note (abfd, buf, bufsiz,
11922 note_name, NT_ARM_SVE, aarch_sve, size);
11923 }
11924
11925 char *
11926 elfcore_write_aarch_pauth (bfd *abfd,
11927 char *buf,
11928 int *bufsiz,
11929 const void *aarch_pauth,
11930 int size)
11931 {
11932 char *note_name = "LINUX";
11933 return elfcore_write_note (abfd, buf, bufsiz,
11934 note_name, NT_ARM_PAC_MASK, aarch_pauth, size);
11935 }
11936
11937 char *
11938 elfcore_write_arc_v2 (bfd *abfd,
11939 char *buf,
11940 int *bufsiz,
11941 const void *arc_v2,
11942 int size)
11943 {
11944 char *note_name = "LINUX";
11945 return elfcore_write_note (abfd, buf, bufsiz,
11946 note_name, NT_ARC_V2, arc_v2, size);
11947 }
11948
11949 char *
11950 elfcore_write_register_note (bfd *abfd,
11951 char *buf,
11952 int *bufsiz,
11953 const char *section,
11954 const void *data,
11955 int size)
11956 {
11957 if (strcmp (section, ".reg2") == 0)
11958 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
11959 if (strcmp (section, ".reg-xfp") == 0)
11960 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
11961 if (strcmp (section, ".reg-xstate") == 0)
11962 return elfcore_write_xstatereg (abfd, buf, bufsiz, data, size);
11963 if (strcmp (section, ".reg-ppc-vmx") == 0)
11964 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
11965 if (strcmp (section, ".reg-ppc-vsx") == 0)
11966 return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size);
11967 if (strcmp (section, ".reg-ppc-tar") == 0)
11968 return elfcore_write_ppc_tar (abfd, buf, bufsiz, data, size);
11969 if (strcmp (section, ".reg-ppc-ppr") == 0)
11970 return elfcore_write_ppc_ppr (abfd, buf, bufsiz, data, size);
11971 if (strcmp (section, ".reg-ppc-dscr") == 0)
11972 return elfcore_write_ppc_dscr (abfd, buf, bufsiz, data, size);
11973 if (strcmp (section, ".reg-ppc-ebb") == 0)
11974 return elfcore_write_ppc_ebb (abfd, buf, bufsiz, data, size);
11975 if (strcmp (section, ".reg-ppc-pmu") == 0)
11976 return elfcore_write_ppc_pmu (abfd, buf, bufsiz, data, size);
11977 if (strcmp (section, ".reg-ppc-tm-cgpr") == 0)
11978 return elfcore_write_ppc_tm_cgpr (abfd, buf, bufsiz, data, size);
11979 if (strcmp (section, ".reg-ppc-tm-cfpr") == 0)
11980 return elfcore_write_ppc_tm_cfpr (abfd, buf, bufsiz, data, size);
11981 if (strcmp (section, ".reg-ppc-tm-cvmx") == 0)
11982 return elfcore_write_ppc_tm_cvmx (abfd, buf, bufsiz, data, size);
11983 if (strcmp (section, ".reg-ppc-tm-cvsx") == 0)
11984 return elfcore_write_ppc_tm_cvsx (abfd, buf, bufsiz, data, size);
11985 if (strcmp (section, ".reg-ppc-tm-spr") == 0)
11986 return elfcore_write_ppc_tm_spr (abfd, buf, bufsiz, data, size);
11987 if (strcmp (section, ".reg-ppc-tm-ctar") == 0)
11988 return elfcore_write_ppc_tm_ctar (abfd, buf, bufsiz, data, size);
11989 if (strcmp (section, ".reg-ppc-tm-cppr") == 0)
11990 return elfcore_write_ppc_tm_cppr (abfd, buf, bufsiz, data, size);
11991 if (strcmp (section, ".reg-ppc-tm-cdscr") == 0)
11992 return elfcore_write_ppc_tm_cdscr (abfd, buf, bufsiz, data, size);
11993 if (strcmp (section, ".reg-s390-high-gprs") == 0)
11994 return elfcore_write_s390_high_gprs (abfd, buf, bufsiz, data, size);
11995 if (strcmp (section, ".reg-s390-timer") == 0)
11996 return elfcore_write_s390_timer (abfd, buf, bufsiz, data, size);
11997 if (strcmp (section, ".reg-s390-todcmp") == 0)
11998 return elfcore_write_s390_todcmp (abfd, buf, bufsiz, data, size);
11999 if (strcmp (section, ".reg-s390-todpreg") == 0)
12000 return elfcore_write_s390_todpreg (abfd, buf, bufsiz, data, size);
12001 if (strcmp (section, ".reg-s390-ctrs") == 0)
12002 return elfcore_write_s390_ctrs (abfd, buf, bufsiz, data, size);
12003 if (strcmp (section, ".reg-s390-prefix") == 0)
12004 return elfcore_write_s390_prefix (abfd, buf, bufsiz, data, size);
12005 if (strcmp (section, ".reg-s390-last-break") == 0)
12006 return elfcore_write_s390_last_break (abfd, buf, bufsiz, data, size);
12007 if (strcmp (section, ".reg-s390-system-call") == 0)
12008 return elfcore_write_s390_system_call (abfd, buf, bufsiz, data, size);
12009 if (strcmp (section, ".reg-s390-tdb") == 0)
12010 return elfcore_write_s390_tdb (abfd, buf, bufsiz, data, size);
12011 if (strcmp (section, ".reg-s390-vxrs-low") == 0)
12012 return elfcore_write_s390_vxrs_low (abfd, buf, bufsiz, data, size);
12013 if (strcmp (section, ".reg-s390-vxrs-high") == 0)
12014 return elfcore_write_s390_vxrs_high (abfd, buf, bufsiz, data, size);
12015 if (strcmp (section, ".reg-s390-gs-cb") == 0)
12016 return elfcore_write_s390_gs_cb (abfd, buf, bufsiz, data, size);
12017 if (strcmp (section, ".reg-s390-gs-bc") == 0)
12018 return elfcore_write_s390_gs_bc (abfd, buf, bufsiz, data, size);
12019 if (strcmp (section, ".reg-arm-vfp") == 0)
12020 return elfcore_write_arm_vfp (abfd, buf, bufsiz, data, size);
12021 if (strcmp (section, ".reg-aarch-tls") == 0)
12022 return elfcore_write_aarch_tls (abfd, buf, bufsiz, data, size);
12023 if (strcmp (section, ".reg-aarch-hw-break") == 0)
12024 return elfcore_write_aarch_hw_break (abfd, buf, bufsiz, data, size);
12025 if (strcmp (section, ".reg-aarch-hw-watch") == 0)
12026 return elfcore_write_aarch_hw_watch (abfd, buf, bufsiz, data, size);
12027 if (strcmp (section, ".reg-aarch-sve") == 0)
12028 return elfcore_write_aarch_sve (abfd, buf, bufsiz, data, size);
12029 if (strcmp (section, ".reg-aarch-pauth") == 0)
12030 return elfcore_write_aarch_pauth (abfd, buf, bufsiz, data, size);
12031 if (strcmp (section, ".reg-arc-v2") == 0)
12032 return elfcore_write_arc_v2 (abfd, buf, bufsiz, data, size);
12033 return NULL;
12034 }
12035
12036 static bfd_boolean
12037 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset,
12038 size_t align)
12039 {
12040 char *p;
12041
12042 /* NB: CORE PT_NOTE segments may have p_align values of 0 or 1.
12043 gABI specifies that PT_NOTE alignment should be aligned to 4
12044 bytes for 32-bit objects and to 8 bytes for 64-bit objects. If
12045 align is less than 4, we use 4 byte alignment. */
12046 if (align < 4)
12047 align = 4;
12048 if (align != 4 && align != 8)
12049 return FALSE;
12050
12051 p = buf;
12052 while (p < buf + size)
12053 {
12054 Elf_External_Note *xnp = (Elf_External_Note *) p;
12055 Elf_Internal_Note in;
12056
12057 if (offsetof (Elf_External_Note, name) > buf - p + size)
12058 return FALSE;
12059
12060 in.type = H_GET_32 (abfd, xnp->type);
12061
12062 in.namesz = H_GET_32 (abfd, xnp->namesz);
12063 in.namedata = xnp->name;
12064 if (in.namesz > buf - in.namedata + size)
12065 return FALSE;
12066
12067 in.descsz = H_GET_32 (abfd, xnp->descsz);
12068 in.descdata = p + ELF_NOTE_DESC_OFFSET (in.namesz, align);
12069 in.descpos = offset + (in.descdata - buf);
12070 if (in.descsz != 0
12071 && (in.descdata >= buf + size
12072 || in.descsz > buf - in.descdata + size))
12073 return FALSE;
12074
12075 switch (bfd_get_format (abfd))
12076 {
12077 default:
12078 return TRUE;
12079
12080 case bfd_core:
12081 {
12082 #define GROKER_ELEMENT(S,F) {S, sizeof (S) - 1, F}
12083 struct
12084 {
12085 const char * string;
12086 size_t len;
12087 bfd_boolean (* func)(bfd *, Elf_Internal_Note *);
12088 }
12089 grokers[] =
12090 {
12091 GROKER_ELEMENT ("", elfcore_grok_note),
12092 GROKER_ELEMENT ("FreeBSD", elfcore_grok_freebsd_note),
12093 GROKER_ELEMENT ("NetBSD-CORE", elfcore_grok_netbsd_note),
12094 GROKER_ELEMENT ( "OpenBSD", elfcore_grok_openbsd_note),
12095 GROKER_ELEMENT ("QNX", elfcore_grok_nto_note),
12096 GROKER_ELEMENT ("SPU/", elfcore_grok_spu_note),
12097 GROKER_ELEMENT ("GNU", elfobj_grok_gnu_note)
12098 };
12099 #undef GROKER_ELEMENT
12100 int i;
12101
12102 for (i = ARRAY_SIZE (grokers); i--;)
12103 {
12104 if (in.namesz >= grokers[i].len
12105 && strncmp (in.namedata, grokers[i].string,
12106 grokers[i].len) == 0)
12107 {
12108 if (! grokers[i].func (abfd, & in))
12109 return FALSE;
12110 break;
12111 }
12112 }
12113 break;
12114 }
12115
12116 case bfd_object:
12117 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
12118 {
12119 if (! elfobj_grok_gnu_note (abfd, &in))
12120 return FALSE;
12121 }
12122 else if (in.namesz == sizeof "stapsdt"
12123 && strcmp (in.namedata, "stapsdt") == 0)
12124 {
12125 if (! elfobj_grok_stapsdt_note (abfd, &in))
12126 return FALSE;
12127 }
12128 break;
12129 }
12130
12131 p += ELF_NOTE_NEXT_OFFSET (in.namesz, in.descsz, align);
12132 }
12133
12134 return TRUE;
12135 }
12136
12137 bfd_boolean
12138 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size,
12139 size_t align)
12140 {
12141 char *buf;
12142
12143 if (size == 0 || (size + 1) == 0)
12144 return TRUE;
12145
12146 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
12147 return FALSE;
12148
12149 buf = (char *) _bfd_malloc_and_read (abfd, size + 1, size);
12150 if (buf == NULL)
12151 return FALSE;
12152
12153 /* PR 17512: file: ec08f814
12154 0-termintate the buffer so that string searches will not overflow. */
12155 buf[size] = 0;
12156
12157 if (!elf_parse_notes (abfd, buf, size, offset, align))
12158 {
12159 free (buf);
12160 return FALSE;
12161 }
12162
12163 free (buf);
12164 return TRUE;
12165 }
12166 \f
12167 /* Providing external access to the ELF program header table. */
12168
12169 /* Return an upper bound on the number of bytes required to store a
12170 copy of ABFD's program header table entries. Return -1 if an error
12171 occurs; bfd_get_error will return an appropriate code. */
12172
12173 long
12174 bfd_get_elf_phdr_upper_bound (bfd *abfd)
12175 {
12176 if (abfd->xvec->flavour != bfd_target_elf_flavour)
12177 {
12178 bfd_set_error (bfd_error_wrong_format);
12179 return -1;
12180 }
12181
12182 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
12183 }
12184
12185 /* Copy ABFD's program header table entries to *PHDRS. The entries
12186 will be stored as an array of Elf_Internal_Phdr structures, as
12187 defined in include/elf/internal.h. To find out how large the
12188 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
12189
12190 Return the number of program header table entries read, or -1 if an
12191 error occurs; bfd_get_error will return an appropriate code. */
12192
12193 int
12194 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
12195 {
12196 int num_phdrs;
12197
12198 if (abfd->xvec->flavour != bfd_target_elf_flavour)
12199 {
12200 bfd_set_error (bfd_error_wrong_format);
12201 return -1;
12202 }
12203
12204 num_phdrs = elf_elfheader (abfd)->e_phnum;
12205 if (num_phdrs != 0)
12206 memcpy (phdrs, elf_tdata (abfd)->phdr,
12207 num_phdrs * sizeof (Elf_Internal_Phdr));
12208
12209 return num_phdrs;
12210 }
12211
12212 enum elf_reloc_type_class
12213 _bfd_elf_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
12214 const asection *rel_sec ATTRIBUTE_UNUSED,
12215 const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
12216 {
12217 return reloc_class_normal;
12218 }
12219
12220 /* For RELA architectures, return the relocation value for a
12221 relocation against a local symbol. */
12222
12223 bfd_vma
12224 _bfd_elf_rela_local_sym (bfd *abfd,
12225 Elf_Internal_Sym *sym,
12226 asection **psec,
12227 Elf_Internal_Rela *rel)
12228 {
12229 asection *sec = *psec;
12230 bfd_vma relocation;
12231
12232 relocation = (sec->output_section->vma
12233 + sec->output_offset
12234 + sym->st_value);
12235 if ((sec->flags & SEC_MERGE)
12236 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
12237 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
12238 {
12239 rel->r_addend =
12240 _bfd_merged_section_offset (abfd, psec,
12241 elf_section_data (sec)->sec_info,
12242 sym->st_value + rel->r_addend);
12243 if (sec != *psec)
12244 {
12245 /* If we have changed the section, and our original section is
12246 marked with SEC_EXCLUDE, it means that the original
12247 SEC_MERGE section has been completely subsumed in some
12248 other SEC_MERGE section. In this case, we need to leave
12249 some info around for --emit-relocs. */
12250 if ((sec->flags & SEC_EXCLUDE) != 0)
12251 sec->kept_section = *psec;
12252 sec = *psec;
12253 }
12254 rel->r_addend -= relocation;
12255 rel->r_addend += sec->output_section->vma + sec->output_offset;
12256 }
12257 return relocation;
12258 }
12259
12260 bfd_vma
12261 _bfd_elf_rel_local_sym (bfd *abfd,
12262 Elf_Internal_Sym *sym,
12263 asection **psec,
12264 bfd_vma addend)
12265 {
12266 asection *sec = *psec;
12267
12268 if (sec->sec_info_type != SEC_INFO_TYPE_MERGE)
12269 return sym->st_value + addend;
12270
12271 return _bfd_merged_section_offset (abfd, psec,
12272 elf_section_data (sec)->sec_info,
12273 sym->st_value + addend);
12274 }
12275
12276 /* Adjust an address within a section. Given OFFSET within SEC, return
12277 the new offset within the section, based upon changes made to the
12278 section. Returns -1 if the offset is now invalid.
12279 The offset (in abnd out) is in target sized bytes, however big a
12280 byte may be. */
12281
12282 bfd_vma
12283 _bfd_elf_section_offset (bfd *abfd,
12284 struct bfd_link_info *info,
12285 asection *sec,
12286 bfd_vma offset)
12287 {
12288 switch (sec->sec_info_type)
12289 {
12290 case SEC_INFO_TYPE_STABS:
12291 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
12292 offset);
12293 case SEC_INFO_TYPE_EH_FRAME:
12294 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
12295
12296 default:
12297 if ((sec->flags & SEC_ELF_REVERSE_COPY) != 0)
12298 {
12299 /* Reverse the offset. */
12300 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12301 bfd_size_type address_size = bed->s->arch_size / 8;
12302
12303 /* address_size and sec->size are in octets. Convert
12304 to bytes before subtracting the original offset. */
12305 offset = ((sec->size - address_size)
12306 / bfd_octets_per_byte (abfd, sec) - offset);
12307 }
12308 return offset;
12309 }
12310 }
12311 \f
12312 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
12313 reconstruct an ELF file by reading the segments out of remote memory
12314 based on the ELF file header at EHDR_VMA and the ELF program headers it
12315 points to. If not null, *LOADBASEP is filled in with the difference
12316 between the VMAs from which the segments were read, and the VMAs the
12317 file headers (and hence BFD's idea of each section's VMA) put them at.
12318
12319 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
12320 remote memory at target address VMA into the local buffer at MYADDR; it
12321 should return zero on success or an `errno' code on failure. TEMPL must
12322 be a BFD for an ELF target with the word size and byte order found in
12323 the remote memory. */
12324
12325 bfd *
12326 bfd_elf_bfd_from_remote_memory
12327 (bfd *templ,
12328 bfd_vma ehdr_vma,
12329 bfd_size_type size,
12330 bfd_vma *loadbasep,
12331 int (*target_read_memory) (bfd_vma, bfd_byte *, bfd_size_type))
12332 {
12333 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
12334 (templ, ehdr_vma, size, loadbasep, target_read_memory);
12335 }
12336 \f
12337 long
12338 _bfd_elf_get_synthetic_symtab (bfd *abfd,
12339 long symcount ATTRIBUTE_UNUSED,
12340 asymbol **syms ATTRIBUTE_UNUSED,
12341 long dynsymcount,
12342 asymbol **dynsyms,
12343 asymbol **ret)
12344 {
12345 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12346 asection *relplt;
12347 asymbol *s;
12348 const char *relplt_name;
12349 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
12350 arelent *p;
12351 long count, i, n;
12352 size_t size;
12353 Elf_Internal_Shdr *hdr;
12354 char *names;
12355 asection *plt;
12356
12357 *ret = NULL;
12358
12359 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
12360 return 0;
12361
12362 if (dynsymcount <= 0)
12363 return 0;
12364
12365 if (!bed->plt_sym_val)
12366 return 0;
12367
12368 relplt_name = bed->relplt_name;
12369 if (relplt_name == NULL)
12370 relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt";
12371 relplt = bfd_get_section_by_name (abfd, relplt_name);
12372 if (relplt == NULL)
12373 return 0;
12374
12375 hdr = &elf_section_data (relplt)->this_hdr;
12376 if (hdr->sh_link != elf_dynsymtab (abfd)
12377 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
12378 return 0;
12379
12380 plt = bfd_get_section_by_name (abfd, ".plt");
12381 if (plt == NULL)
12382 return 0;
12383
12384 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
12385 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
12386 return -1;
12387
12388 count = relplt->size / hdr->sh_entsize;
12389 size = count * sizeof (asymbol);
12390 p = relplt->relocation;
12391 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
12392 {
12393 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
12394 if (p->addend != 0)
12395 {
12396 #ifdef BFD64
12397 size += sizeof ("+0x") - 1 + 8 + 8 * (bed->s->elfclass == ELFCLASS64);
12398 #else
12399 size += sizeof ("+0x") - 1 + 8;
12400 #endif
12401 }
12402 }
12403
12404 s = *ret = (asymbol *) bfd_malloc (size);
12405 if (s == NULL)
12406 return -1;
12407
12408 names = (char *) (s + count);
12409 p = relplt->relocation;
12410 n = 0;
12411 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
12412 {
12413 size_t len;
12414 bfd_vma addr;
12415
12416 addr = bed->plt_sym_val (i, plt, p);
12417 if (addr == (bfd_vma) -1)
12418 continue;
12419
12420 *s = **p->sym_ptr_ptr;
12421 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
12422 we are defining a symbol, ensure one of them is set. */
12423 if ((s->flags & BSF_LOCAL) == 0)
12424 s->flags |= BSF_GLOBAL;
12425 s->flags |= BSF_SYNTHETIC;
12426 s->section = plt;
12427 s->value = addr - plt->vma;
12428 s->name = names;
12429 s->udata.p = NULL;
12430 len = strlen ((*p->sym_ptr_ptr)->name);
12431 memcpy (names, (*p->sym_ptr_ptr)->name, len);
12432 names += len;
12433 if (p->addend != 0)
12434 {
12435 char buf[30], *a;
12436
12437 memcpy (names, "+0x", sizeof ("+0x") - 1);
12438 names += sizeof ("+0x") - 1;
12439 bfd_sprintf_vma (abfd, buf, p->addend);
12440 for (a = buf; *a == '0'; ++a)
12441 ;
12442 len = strlen (a);
12443 memcpy (names, a, len);
12444 names += len;
12445 }
12446 memcpy (names, "@plt", sizeof ("@plt"));
12447 names += sizeof ("@plt");
12448 ++s, ++n;
12449 }
12450
12451 return n;
12452 }
12453
12454 /* It is only used by x86-64 so far.
12455 ??? This repeats *COM* id of zero. sec->id is supposed to be unique,
12456 but current usage would allow all of _bfd_std_section to be zero. */
12457 static const asymbol lcomm_sym
12458 = GLOBAL_SYM_INIT ("LARGE_COMMON", &_bfd_elf_large_com_section);
12459 asection _bfd_elf_large_com_section
12460 = BFD_FAKE_SECTION (_bfd_elf_large_com_section, &lcomm_sym,
12461 "LARGE_COMMON", 0, SEC_IS_COMMON);
12462
12463 bfd_boolean
12464 _bfd_elf_final_write_processing (bfd *abfd)
12465 {
12466 Elf_Internal_Ehdr *i_ehdrp; /* ELF file header, internal form. */
12467
12468 i_ehdrp = elf_elfheader (abfd);
12469
12470 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE)
12471 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
12472
12473 /* Set the osabi field to ELFOSABI_GNU if the binary contains
12474 SHF_GNU_MBIND or SHF_GNU_RETAIN sections or symbols of STT_GNU_IFUNC type
12475 or STB_GNU_UNIQUE binding. */
12476 if (elf_tdata (abfd)->has_gnu_osabi != 0)
12477 {
12478 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE)
12479 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_GNU;
12480 else if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_GNU
12481 && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_FREEBSD)
12482 {
12483 if (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_mbind)
12484 _bfd_error_handler (_("GNU_MBIND section is supported only by GNU "
12485 "and FreeBSD targets"));
12486 if (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_ifunc)
12487 _bfd_error_handler (_("symbol type STT_GNU_IFUNC is supported "
12488 "only by GNU and FreeBSD targets"));
12489 if (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_unique)
12490 _bfd_error_handler (_("symbol binding STB_GNU_UNIQUE is supported "
12491 "only by GNU and FreeBSD targets"));
12492 if (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_retain)
12493 _bfd_error_handler (_("GNU_RETAIN section is supported "
12494 "only by GNU and FreeBSD targets"));
12495 bfd_set_error (bfd_error_sorry);
12496 return FALSE;
12497 }
12498 }
12499 return TRUE;
12500 }
12501
12502
12503 /* Return TRUE for ELF symbol types that represent functions.
12504 This is the default version of this function, which is sufficient for
12505 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */
12506
12507 bfd_boolean
12508 _bfd_elf_is_function_type (unsigned int type)
12509 {
12510 return (type == STT_FUNC
12511 || type == STT_GNU_IFUNC);
12512 }
12513
12514 /* If the ELF symbol SYM might be a function in SEC, return the
12515 function size and set *CODE_OFF to the function's entry point,
12516 otherwise return zero. */
12517
12518 bfd_size_type
12519 _bfd_elf_maybe_function_sym (const asymbol *sym, asection *sec,
12520 bfd_vma *code_off)
12521 {
12522 bfd_size_type size;
12523
12524 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
12525 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0
12526 || sym->section != sec)
12527 return 0;
12528
12529 *code_off = sym->value;
12530 size = 0;
12531 if (!(sym->flags & BSF_SYNTHETIC))
12532 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
12533 if (size == 0)
12534 size = 1;
12535 return size;
12536 }
12537
12538 /* Set to non-zero to enable some debug messages. */
12539 #define DEBUG_SECONDARY_RELOCS 0
12540
12541 /* An internal-to-the-bfd-library only section type
12542 used to indicate a cached secondary reloc section. */
12543 #define SHT_SECONDARY_RELOC (SHT_LOOS + SHT_RELA)
12544
12545 /* Create a BFD section to hold a secondary reloc section. */
12546
12547 bfd_boolean
12548 _bfd_elf_init_secondary_reloc_section (bfd * abfd,
12549 Elf_Internal_Shdr *hdr,
12550 const char * name,
12551 unsigned int shindex)
12552 {
12553 /* We only support RELA secondary relocs. */
12554 if (hdr->sh_type != SHT_RELA)
12555 return FALSE;
12556
12557 #if DEBUG_SECONDARY_RELOCS
12558 fprintf (stderr, "secondary reloc section %s encountered\n", name);
12559 #endif
12560 hdr->sh_type = SHT_SECONDARY_RELOC;
12561 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
12562 }
12563
12564 /* Read in any secondary relocs associated with SEC. */
12565
12566 bfd_boolean
12567 _bfd_elf_slurp_secondary_reloc_section (bfd * abfd,
12568 asection * sec,
12569 asymbol ** symbols,
12570 bfd_boolean dynamic)
12571 {
12572 const struct elf_backend_data * const ebd = get_elf_backend_data (abfd);
12573 asection * relsec;
12574 bfd_boolean result = TRUE;
12575 bfd_vma (*r_sym) (bfd_vma);
12576
12577 #if BFD_DEFAULT_TARGET_SIZE > 32
12578 if (bfd_arch_bits_per_address (abfd) != 32)
12579 r_sym = elf64_r_sym;
12580 else
12581 #endif
12582 r_sym = elf32_r_sym;
12583
12584 /* Discover if there are any secondary reloc sections
12585 associated with SEC. */
12586 for (relsec = abfd->sections; relsec != NULL; relsec = relsec->next)
12587 {
12588 Elf_Internal_Shdr * hdr = & elf_section_data (relsec)->this_hdr;
12589
12590 if (hdr->sh_type == SHT_SECONDARY_RELOC
12591 && hdr->sh_info == (unsigned) elf_section_data (sec)->this_idx
12592 && (hdr->sh_entsize == ebd->s->sizeof_rel
12593 || hdr->sh_entsize == ebd->s->sizeof_rela))
12594 {
12595 bfd_byte * native_relocs;
12596 bfd_byte * native_reloc;
12597 arelent * internal_relocs;
12598 arelent * internal_reloc;
12599 unsigned int i;
12600 unsigned int entsize;
12601 unsigned int symcount;
12602 unsigned int reloc_count;
12603 size_t amt;
12604
12605 if (ebd->elf_info_to_howto == NULL)
12606 return FALSE;
12607
12608 #if DEBUG_SECONDARY_RELOCS
12609 fprintf (stderr, "read secondary relocs for %s from %s\n",
12610 sec->name, relsec->name);
12611 #endif
12612 entsize = hdr->sh_entsize;
12613
12614 native_relocs = bfd_malloc (hdr->sh_size);
12615 if (native_relocs == NULL)
12616 {
12617 result = FALSE;
12618 continue;
12619 }
12620
12621 reloc_count = NUM_SHDR_ENTRIES (hdr);
12622 if (_bfd_mul_overflow (reloc_count, sizeof (arelent), & amt))
12623 {
12624 free (native_relocs);
12625 bfd_set_error (bfd_error_file_too_big);
12626 result = FALSE;
12627 continue;
12628 }
12629
12630 internal_relocs = (arelent *) bfd_alloc (abfd, amt);
12631 if (internal_relocs == NULL)
12632 {
12633 free (native_relocs);
12634 result = FALSE;
12635 continue;
12636 }
12637
12638 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
12639 || (bfd_bread (native_relocs, hdr->sh_size, abfd)
12640 != hdr->sh_size))
12641 {
12642 free (native_relocs);
12643 /* The internal_relocs will be freed when
12644 the memory for the bfd is released. */
12645 result = FALSE;
12646 continue;
12647 }
12648
12649 if (dynamic)
12650 symcount = bfd_get_dynamic_symcount (abfd);
12651 else
12652 symcount = bfd_get_symcount (abfd);
12653
12654 for (i = 0, internal_reloc = internal_relocs,
12655 native_reloc = native_relocs;
12656 i < reloc_count;
12657 i++, internal_reloc++, native_reloc += entsize)
12658 {
12659 bfd_boolean res;
12660 Elf_Internal_Rela rela;
12661
12662 if (entsize == ebd->s->sizeof_rel)
12663 ebd->s->swap_reloc_in (abfd, native_reloc, & rela);
12664 else /* entsize == ebd->s->sizeof_rela */
12665 ebd->s->swap_reloca_in (abfd, native_reloc, & rela);
12666
12667 /* The address of an ELF reloc is section relative for an object
12668 file, and absolute for an executable file or shared library.
12669 The address of a normal BFD reloc is always section relative,
12670 and the address of a dynamic reloc is absolute.. */
12671 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
12672 internal_reloc->address = rela.r_offset;
12673 else
12674 internal_reloc->address = rela.r_offset - sec->vma;
12675
12676 if (r_sym (rela.r_info) == STN_UNDEF)
12677 {
12678 /* FIXME: This and the error case below mean that we
12679 have a symbol on relocs that is not elf_symbol_type. */
12680 internal_reloc->sym_ptr_ptr =
12681 bfd_abs_section_ptr->symbol_ptr_ptr;
12682 }
12683 else if (r_sym (rela.r_info) > symcount)
12684 {
12685 _bfd_error_handler
12686 /* xgettext:c-format */
12687 (_("%pB(%pA): relocation %d has invalid symbol index %ld"),
12688 abfd, sec, i, (long) r_sym (rela.r_info));
12689 bfd_set_error (bfd_error_bad_value);
12690 internal_reloc->sym_ptr_ptr =
12691 bfd_abs_section_ptr->symbol_ptr_ptr;
12692 result = FALSE;
12693 }
12694 else
12695 {
12696 asymbol **ps;
12697
12698 ps = symbols + r_sym (rela.r_info) - 1;
12699 internal_reloc->sym_ptr_ptr = ps;
12700 /* Make sure that this symbol is not removed by strip. */
12701 (*ps)->flags |= BSF_KEEP;
12702 }
12703
12704 internal_reloc->addend = rela.r_addend;
12705
12706 res = ebd->elf_info_to_howto (abfd, internal_reloc, & rela);
12707 if (! res || internal_reloc->howto == NULL)
12708 {
12709 #if DEBUG_SECONDARY_RELOCS
12710 fprintf (stderr, "there is no howto associated with reloc %lx\n",
12711 rela.r_info);
12712 #endif
12713 result = FALSE;
12714 }
12715 }
12716
12717 free (native_relocs);
12718 /* Store the internal relocs. */
12719 elf_section_data (relsec)->sec_info = internal_relocs;
12720 }
12721 }
12722
12723 return result;
12724 }
12725
12726 /* Set the ELF section header fields of an output secondary reloc section. */
12727
12728 bfd_boolean
12729 _bfd_elf_copy_special_section_fields (const bfd * ibfd ATTRIBUTE_UNUSED,
12730 bfd * obfd ATTRIBUTE_UNUSED,
12731 const Elf_Internal_Shdr * isection,
12732 Elf_Internal_Shdr * osection)
12733 {
12734 asection * isec;
12735 asection * osec;
12736 struct bfd_elf_section_data * esd;
12737
12738 if (isection == NULL)
12739 return FALSE;
12740
12741 if (isection->sh_type != SHT_SECONDARY_RELOC)
12742 return TRUE;
12743
12744 isec = isection->bfd_section;
12745 if (isec == NULL)
12746 return FALSE;
12747
12748 osec = osection->bfd_section;
12749 if (osec == NULL)
12750 return FALSE;
12751
12752 esd = elf_section_data (osec);
12753 BFD_ASSERT (esd->sec_info == NULL);
12754 esd->sec_info = elf_section_data (isec)->sec_info;
12755 osection->sh_type = SHT_RELA;
12756 osection->sh_link = elf_onesymtab (obfd);
12757 if (osection->sh_link == 0)
12758 {
12759 /* There is no symbol table - we are hosed... */
12760 _bfd_error_handler
12761 /* xgettext:c-format */
12762 (_("%pB(%pA): link section cannot be set because the output file does not have a symbol table"),
12763 obfd, osec);
12764 bfd_set_error (bfd_error_bad_value);
12765 return FALSE;
12766 }
12767
12768 /* Find the output section that corresponds to the isection's sh_info link. */
12769 if (isection->sh_info == 0
12770 || isection->sh_info >= elf_numsections (ibfd))
12771 {
12772 _bfd_error_handler
12773 /* xgettext:c-format */
12774 (_("%pB(%pA): info section index is invalid"),
12775 obfd, osec);
12776 bfd_set_error (bfd_error_bad_value);
12777 return FALSE;
12778 }
12779
12780 isection = elf_elfsections (ibfd)[isection->sh_info];
12781
12782 if (isection == NULL
12783 || isection->bfd_section == NULL
12784 || isection->bfd_section->output_section == NULL)
12785 {
12786 _bfd_error_handler
12787 /* xgettext:c-format */
12788 (_("%pB(%pA): info section index cannot be set because the section is not in the output"),
12789 obfd, osec);
12790 bfd_set_error (bfd_error_bad_value);
12791 return FALSE;
12792 }
12793
12794 esd = elf_section_data (isection->bfd_section->output_section);
12795 BFD_ASSERT (esd != NULL);
12796 osection->sh_info = esd->this_idx;
12797 esd->has_secondary_relocs = TRUE;
12798 #if DEBUG_SECONDARY_RELOCS
12799 fprintf (stderr, "update header of %s, sh_link = %u, sh_info = %u\n",
12800 osec->name, osection->sh_link, osection->sh_info);
12801 fprintf (stderr, "mark section %s as having secondary relocs\n",
12802 bfd_section_name (isection->bfd_section->output_section));
12803 #endif
12804
12805 return TRUE;
12806 }
12807
12808 /* Write out a secondary reloc section.
12809
12810 FIXME: Currently this function can result in a serious performance penalty
12811 for files with secondary relocs and lots of sections. The proper way to
12812 fix this is for _bfd_elf_copy_special_section_fields() to chain secondary
12813 relocs together and then to have this function just walk that chain. */
12814
12815 bfd_boolean
12816 _bfd_elf_write_secondary_reloc_section (bfd *abfd, asection *sec)
12817 {
12818 const struct elf_backend_data * const ebd = get_elf_backend_data (abfd);
12819 bfd_vma addr_offset;
12820 asection * relsec;
12821 bfd_vma (*r_info) (bfd_vma, bfd_vma);
12822 bfd_boolean result = TRUE;
12823
12824 if (sec == NULL)
12825 return FALSE;
12826
12827 #if BFD_DEFAULT_TARGET_SIZE > 32
12828 if (bfd_arch_bits_per_address (abfd) != 32)
12829 r_info = elf64_r_info;
12830 else
12831 #endif
12832 r_info = elf32_r_info;
12833
12834 /* The address of an ELF reloc is section relative for an object
12835 file, and absolute for an executable file or shared library.
12836 The address of a BFD reloc is always section relative. */
12837 addr_offset = 0;
12838 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
12839 addr_offset = sec->vma;
12840
12841 /* Discover if there are any secondary reloc sections
12842 associated with SEC. */
12843 for (relsec = abfd->sections; relsec != NULL; relsec = relsec->next)
12844 {
12845 const struct bfd_elf_section_data * const esd = elf_section_data (relsec);
12846 Elf_Internal_Shdr * const hdr = (Elf_Internal_Shdr *) & esd->this_hdr;
12847
12848 if (hdr->sh_type == SHT_RELA
12849 && hdr->sh_info == (unsigned) elf_section_data (sec)->this_idx)
12850 {
12851 asymbol * last_sym;
12852 int last_sym_idx;
12853 unsigned int reloc_count;
12854 unsigned int idx;
12855 unsigned int entsize;
12856 arelent * src_irel;
12857 bfd_byte * dst_rela;
12858
12859 if (hdr->contents != NULL)
12860 {
12861 _bfd_error_handler
12862 /* xgettext:c-format */
12863 (_("%pB(%pA): error: secondary reloc section processed twice"),
12864 abfd, relsec);
12865 bfd_set_error (bfd_error_bad_value);
12866 result = FALSE;
12867 continue;
12868 }
12869
12870 entsize = hdr->sh_entsize;
12871 if (entsize == 0)
12872 {
12873 _bfd_error_handler
12874 /* xgettext:c-format */
12875 (_("%pB(%pA): error: secondary reloc section has zero sized entries"),
12876 abfd, relsec);
12877 bfd_set_error (bfd_error_bad_value);
12878 result = FALSE;
12879 continue;
12880 }
12881 else if (entsize != ebd->s->sizeof_rel
12882 && entsize != ebd->s->sizeof_rela)
12883 {
12884 _bfd_error_handler
12885 /* xgettext:c-format */
12886 (_("%pB(%pA): error: secondary reloc section has non-standard sized entries"),
12887 abfd, relsec);
12888 bfd_set_error (bfd_error_bad_value);
12889 result = FALSE;
12890 continue;
12891 }
12892
12893 reloc_count = hdr->sh_size / entsize;
12894 if (reloc_count <= 0)
12895 {
12896 _bfd_error_handler
12897 /* xgettext:c-format */
12898 (_("%pB(%pA): error: secondary reloc section is empty!"),
12899 abfd, relsec);
12900 bfd_set_error (bfd_error_bad_value);
12901 result = FALSE;
12902 continue;
12903 }
12904
12905 hdr->contents = bfd_alloc (abfd, hdr->sh_size);
12906 if (hdr->contents == NULL)
12907 continue;
12908
12909 #if DEBUG_SECONDARY_RELOCS
12910 fprintf (stderr, "write %u secondary relocs for %s from %s\n",
12911 reloc_count, sec->name, relsec->name);
12912 #endif
12913 last_sym = NULL;
12914 last_sym_idx = 0;
12915 dst_rela = hdr->contents;
12916 src_irel = (arelent *) esd->sec_info;
12917 if (src_irel == NULL)
12918 {
12919 _bfd_error_handler
12920 /* xgettext:c-format */
12921 (_("%pB(%pA): error: internal relocs missing for secondary reloc section"),
12922 abfd, relsec);
12923 bfd_set_error (bfd_error_bad_value);
12924 result = FALSE;
12925 continue;
12926 }
12927
12928 for (idx = 0; idx < reloc_count; idx++, dst_rela += entsize)
12929 {
12930 Elf_Internal_Rela src_rela;
12931 arelent *ptr;
12932 asymbol *sym;
12933 int n;
12934
12935 ptr = src_irel + idx;
12936 if (ptr == NULL)
12937 {
12938 _bfd_error_handler
12939 /* xgettext:c-format */
12940 (_("%pB(%pA): error: reloc table entry %u is empty"),
12941 abfd, relsec, idx);
12942 bfd_set_error (bfd_error_bad_value);
12943 result = FALSE;
12944 break;
12945 }
12946
12947 if (ptr->sym_ptr_ptr == NULL)
12948 {
12949 /* FIXME: Is this an error ? */
12950 n = 0;
12951 }
12952 else
12953 {
12954 sym = *ptr->sym_ptr_ptr;
12955
12956 if (sym == last_sym)
12957 n = last_sym_idx;
12958 else
12959 {
12960 n = _bfd_elf_symbol_from_bfd_symbol (abfd, & sym);
12961 if (n < 0)
12962 {
12963 _bfd_error_handler
12964 /* xgettext:c-format */
12965 (_("%pB(%pA): error: secondary reloc %u references a missing symbol"),
12966 abfd, relsec, idx);
12967 bfd_set_error (bfd_error_bad_value);
12968 result = FALSE;
12969 n = 0;
12970 }
12971
12972 last_sym = sym;
12973 last_sym_idx = n;
12974 }
12975
12976 if (sym->the_bfd != NULL
12977 && sym->the_bfd->xvec != abfd->xvec
12978 && ! _bfd_elf_validate_reloc (abfd, ptr))
12979 {
12980 _bfd_error_handler
12981 /* xgettext:c-format */
12982 (_("%pB(%pA): error: secondary reloc %u references a deleted symbol"),
12983 abfd, relsec, idx);
12984 bfd_set_error (bfd_error_bad_value);
12985 result = FALSE;
12986 n = 0;
12987 }
12988 }
12989
12990 src_rela.r_offset = ptr->address + addr_offset;
12991 if (ptr->howto == NULL)
12992 {
12993 _bfd_error_handler
12994 /* xgettext:c-format */
12995 (_("%pB(%pA): error: secondary reloc %u is of an unknown type"),
12996 abfd, relsec, idx);
12997 bfd_set_error (bfd_error_bad_value);
12998 result = FALSE;
12999 src_rela.r_info = r_info (0, 0);
13000 }
13001 else
13002 src_rela.r_info = r_info (n, ptr->howto->type);
13003 src_rela.r_addend = ptr->addend;
13004
13005 if (entsize == ebd->s->sizeof_rel)
13006 ebd->s->swap_reloc_out (abfd, &src_rela, dst_rela);
13007 else /* entsize == ebd->s->sizeof_rela */
13008 ebd->s->swap_reloca_out (abfd, &src_rela, dst_rela);
13009 }
13010 }
13011 }
13012
13013 return result;
13014 }