file size check in _bfd_alloc_and_read
[binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright (C) 1993-2020 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22
23 /*
24 SECTION
25 ELF backends
26
27 BFD support for ELF formats is being worked on.
28 Currently, the best supported back ends are for sparc and i386
29 (running svr4 or Solaris 2).
30
31 Documentation of the internals of the support code still needs
32 to be written. The code is changing quickly enough that we
33 haven't bothered yet. */
34
35 /* For sparc64-cross-sparc32. */
36 #define _SYSCALL32
37 #include "sysdep.h"
38 #include <limits.h>
39 #include "bfd.h"
40 #include "bfdlink.h"
41 #include "libbfd.h"
42 #define ARCH_SIZE 0
43 #include "elf-bfd.h"
44 #include "libiberty.h"
45 #include "safe-ctype.h"
46 #include "elf-linux-core.h"
47
48 #ifdef CORE_HEADER
49 #include CORE_HEADER
50 #endif
51
52 static int elf_sort_sections (const void *, const void *);
53 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
54 static bfd_boolean swap_out_syms (bfd *, struct elf_strtab_hash **, int) ;
55 static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
56 file_ptr offset, size_t align);
57
58 /* Swap version information in and out. The version information is
59 currently size independent. If that ever changes, this code will
60 need to move into elfcode.h. */
61
62 /* Swap in a Verdef structure. */
63
64 void
65 _bfd_elf_swap_verdef_in (bfd *abfd,
66 const Elf_External_Verdef *src,
67 Elf_Internal_Verdef *dst)
68 {
69 dst->vd_version = H_GET_16 (abfd, src->vd_version);
70 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
71 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
72 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
73 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
74 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
75 dst->vd_next = H_GET_32 (abfd, src->vd_next);
76 }
77
78 /* Swap out a Verdef structure. */
79
80 void
81 _bfd_elf_swap_verdef_out (bfd *abfd,
82 const Elf_Internal_Verdef *src,
83 Elf_External_Verdef *dst)
84 {
85 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
86 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
87 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
88 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
89 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
90 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
91 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
92 }
93
94 /* Swap in a Verdaux structure. */
95
96 void
97 _bfd_elf_swap_verdaux_in (bfd *abfd,
98 const Elf_External_Verdaux *src,
99 Elf_Internal_Verdaux *dst)
100 {
101 dst->vda_name = H_GET_32 (abfd, src->vda_name);
102 dst->vda_next = H_GET_32 (abfd, src->vda_next);
103 }
104
105 /* Swap out a Verdaux structure. */
106
107 void
108 _bfd_elf_swap_verdaux_out (bfd *abfd,
109 const Elf_Internal_Verdaux *src,
110 Elf_External_Verdaux *dst)
111 {
112 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
113 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
114 }
115
116 /* Swap in a Verneed structure. */
117
118 void
119 _bfd_elf_swap_verneed_in (bfd *abfd,
120 const Elf_External_Verneed *src,
121 Elf_Internal_Verneed *dst)
122 {
123 dst->vn_version = H_GET_16 (abfd, src->vn_version);
124 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
125 dst->vn_file = H_GET_32 (abfd, src->vn_file);
126 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
127 dst->vn_next = H_GET_32 (abfd, src->vn_next);
128 }
129
130 /* Swap out a Verneed structure. */
131
132 void
133 _bfd_elf_swap_verneed_out (bfd *abfd,
134 const Elf_Internal_Verneed *src,
135 Elf_External_Verneed *dst)
136 {
137 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
138 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
139 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
140 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
141 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
142 }
143
144 /* Swap in a Vernaux structure. */
145
146 void
147 _bfd_elf_swap_vernaux_in (bfd *abfd,
148 const Elf_External_Vernaux *src,
149 Elf_Internal_Vernaux *dst)
150 {
151 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
152 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
153 dst->vna_other = H_GET_16 (abfd, src->vna_other);
154 dst->vna_name = H_GET_32 (abfd, src->vna_name);
155 dst->vna_next = H_GET_32 (abfd, src->vna_next);
156 }
157
158 /* Swap out a Vernaux structure. */
159
160 void
161 _bfd_elf_swap_vernaux_out (bfd *abfd,
162 const Elf_Internal_Vernaux *src,
163 Elf_External_Vernaux *dst)
164 {
165 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
166 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
167 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
168 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
169 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
170 }
171
172 /* Swap in a Versym structure. */
173
174 void
175 _bfd_elf_swap_versym_in (bfd *abfd,
176 const Elf_External_Versym *src,
177 Elf_Internal_Versym *dst)
178 {
179 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
180 }
181
182 /* Swap out a Versym structure. */
183
184 void
185 _bfd_elf_swap_versym_out (bfd *abfd,
186 const Elf_Internal_Versym *src,
187 Elf_External_Versym *dst)
188 {
189 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
190 }
191
192 /* Standard ELF hash function. Do not change this function; you will
193 cause invalid hash tables to be generated. */
194
195 unsigned long
196 bfd_elf_hash (const char *namearg)
197 {
198 const unsigned char *name = (const unsigned char *) namearg;
199 unsigned long h = 0;
200 unsigned long g;
201 int ch;
202
203 while ((ch = *name++) != '\0')
204 {
205 h = (h << 4) + ch;
206 if ((g = (h & 0xf0000000)) != 0)
207 {
208 h ^= g >> 24;
209 /* The ELF ABI says `h &= ~g', but this is equivalent in
210 this case and on some machines one insn instead of two. */
211 h ^= g;
212 }
213 }
214 return h & 0xffffffff;
215 }
216
217 /* DT_GNU_HASH hash function. Do not change this function; you will
218 cause invalid hash tables to be generated. */
219
220 unsigned long
221 bfd_elf_gnu_hash (const char *namearg)
222 {
223 const unsigned char *name = (const unsigned char *) namearg;
224 unsigned long h = 5381;
225 unsigned char ch;
226
227 while ((ch = *name++) != '\0')
228 h = (h << 5) + h + ch;
229 return h & 0xffffffff;
230 }
231
232 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
233 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
234 bfd_boolean
235 bfd_elf_allocate_object (bfd *abfd,
236 size_t object_size,
237 enum elf_target_id object_id)
238 {
239 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
240 abfd->tdata.any = bfd_zalloc (abfd, object_size);
241 if (abfd->tdata.any == NULL)
242 return FALSE;
243
244 elf_object_id (abfd) = object_id;
245 if (abfd->direction != read_direction)
246 {
247 struct output_elf_obj_tdata *o = bfd_zalloc (abfd, sizeof *o);
248 if (o == NULL)
249 return FALSE;
250 elf_tdata (abfd)->o = o;
251 elf_program_header_size (abfd) = (bfd_size_type) -1;
252 }
253 return TRUE;
254 }
255
256
257 bfd_boolean
258 bfd_elf_make_object (bfd *abfd)
259 {
260 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
261 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
262 bed->target_id);
263 }
264
265 bfd_boolean
266 bfd_elf_mkcorefile (bfd *abfd)
267 {
268 /* I think this can be done just like an object file. */
269 if (!abfd->xvec->_bfd_set_format[(int) bfd_object] (abfd))
270 return FALSE;
271 elf_tdata (abfd)->core = bfd_zalloc (abfd, sizeof (*elf_tdata (abfd)->core));
272 return elf_tdata (abfd)->core != NULL;
273 }
274
275 char *
276 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
277 {
278 Elf_Internal_Shdr **i_shdrp;
279 bfd_byte *shstrtab = NULL;
280 file_ptr offset;
281 bfd_size_type shstrtabsize;
282
283 i_shdrp = elf_elfsections (abfd);
284 if (i_shdrp == 0
285 || shindex >= elf_numsections (abfd)
286 || i_shdrp[shindex] == 0)
287 return NULL;
288
289 shstrtab = i_shdrp[shindex]->contents;
290 if (shstrtab == NULL)
291 {
292 /* No cached one, attempt to read, and cache what we read. */
293 offset = i_shdrp[shindex]->sh_offset;
294 shstrtabsize = i_shdrp[shindex]->sh_size;
295
296 /* Allocate and clear an extra byte at the end, to prevent crashes
297 in case the string table is not terminated. */
298 if (shstrtabsize + 1 <= 1
299 || bfd_seek (abfd, offset, SEEK_SET) != 0
300 || (shstrtab = _bfd_alloc_and_read (abfd, shstrtabsize + 1,
301 shstrtabsize)) == NULL)
302 {
303 /* Once we've failed to read it, make sure we don't keep
304 trying. Otherwise, we'll keep allocating space for
305 the string table over and over. */
306 i_shdrp[shindex]->sh_size = 0;
307 }
308 else
309 shstrtab[shstrtabsize] = '\0';
310 i_shdrp[shindex]->contents = shstrtab;
311 }
312 return (char *) shstrtab;
313 }
314
315 char *
316 bfd_elf_string_from_elf_section (bfd *abfd,
317 unsigned int shindex,
318 unsigned int strindex)
319 {
320 Elf_Internal_Shdr *hdr;
321
322 if (strindex == 0)
323 return "";
324
325 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
326 return NULL;
327
328 hdr = elf_elfsections (abfd)[shindex];
329
330 if (hdr->contents == NULL)
331 {
332 if (hdr->sh_type != SHT_STRTAB && hdr->sh_type < SHT_LOOS)
333 {
334 /* PR 17512: file: f057ec89. */
335 /* xgettext:c-format */
336 _bfd_error_handler (_("%pB: attempt to load strings from"
337 " a non-string section (number %d)"),
338 abfd, shindex);
339 return NULL;
340 }
341
342 if (bfd_elf_get_str_section (abfd, shindex) == NULL)
343 return NULL;
344 }
345 else
346 {
347 /* PR 24273: The string section's contents may have already
348 been loaded elsewhere, eg because a corrupt file has the
349 string section index in the ELF header pointing at a group
350 section. So be paranoid, and test that the last byte of
351 the section is zero. */
352 if (hdr->sh_size == 0 || hdr->contents[hdr->sh_size - 1] != 0)
353 return NULL;
354 }
355
356 if (strindex >= hdr->sh_size)
357 {
358 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
359 _bfd_error_handler
360 /* xgettext:c-format */
361 (_("%pB: invalid string offset %u >= %" PRIu64 " for section `%s'"),
362 abfd, strindex, (uint64_t) hdr->sh_size,
363 (shindex == shstrndx && strindex == hdr->sh_name
364 ? ".shstrtab"
365 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
366 return NULL;
367 }
368
369 return ((char *) hdr->contents) + strindex;
370 }
371
372 /* Read and convert symbols to internal format.
373 SYMCOUNT specifies the number of symbols to read, starting from
374 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
375 are non-NULL, they are used to store the internal symbols, external
376 symbols, and symbol section index extensions, respectively.
377 Returns a pointer to the internal symbol buffer (malloced if necessary)
378 or NULL if there were no symbols or some kind of problem. */
379
380 Elf_Internal_Sym *
381 bfd_elf_get_elf_syms (bfd *ibfd,
382 Elf_Internal_Shdr *symtab_hdr,
383 size_t symcount,
384 size_t symoffset,
385 Elf_Internal_Sym *intsym_buf,
386 void *extsym_buf,
387 Elf_External_Sym_Shndx *extshndx_buf)
388 {
389 Elf_Internal_Shdr *shndx_hdr;
390 void *alloc_ext;
391 const bfd_byte *esym;
392 Elf_External_Sym_Shndx *alloc_extshndx;
393 Elf_External_Sym_Shndx *shndx;
394 Elf_Internal_Sym *alloc_intsym;
395 Elf_Internal_Sym *isym;
396 Elf_Internal_Sym *isymend;
397 const struct elf_backend_data *bed;
398 size_t extsym_size;
399 size_t amt;
400 file_ptr pos;
401
402 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
403 abort ();
404
405 if (symcount == 0)
406 return intsym_buf;
407
408 /* Normal syms might have section extension entries. */
409 shndx_hdr = NULL;
410 if (elf_symtab_shndx_list (ibfd) != NULL)
411 {
412 elf_section_list * entry;
413 Elf_Internal_Shdr **sections = elf_elfsections (ibfd);
414
415 /* Find an index section that is linked to this symtab section. */
416 for (entry = elf_symtab_shndx_list (ibfd); entry != NULL; entry = entry->next)
417 {
418 /* PR 20063. */
419 if (entry->hdr.sh_link >= elf_numsections (ibfd))
420 continue;
421
422 if (sections[entry->hdr.sh_link] == symtab_hdr)
423 {
424 shndx_hdr = & entry->hdr;
425 break;
426 };
427 }
428
429 if (shndx_hdr == NULL)
430 {
431 if (symtab_hdr == & elf_symtab_hdr (ibfd))
432 /* Not really accurate, but this was how the old code used to work. */
433 shndx_hdr = & elf_symtab_shndx_list (ibfd)->hdr;
434 /* Otherwise we do nothing. The assumption is that
435 the index table will not be needed. */
436 }
437 }
438
439 /* Read the symbols. */
440 alloc_ext = NULL;
441 alloc_extshndx = NULL;
442 alloc_intsym = NULL;
443 bed = get_elf_backend_data (ibfd);
444 extsym_size = bed->s->sizeof_sym;
445 if (_bfd_mul_overflow (symcount, extsym_size, &amt))
446 {
447 bfd_set_error (bfd_error_file_too_big);
448 intsym_buf = NULL;
449 goto out;
450 }
451 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
452 if (extsym_buf == NULL)
453 {
454 alloc_ext = bfd_malloc (amt);
455 extsym_buf = alloc_ext;
456 }
457 if (extsym_buf == NULL
458 || bfd_seek (ibfd, pos, SEEK_SET) != 0
459 || bfd_bread (extsym_buf, amt, ibfd) != amt)
460 {
461 intsym_buf = NULL;
462 goto out;
463 }
464
465 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
466 extshndx_buf = NULL;
467 else
468 {
469 if (_bfd_mul_overflow (symcount, sizeof (Elf_External_Sym_Shndx), &amt))
470 {
471 bfd_set_error (bfd_error_file_too_big);
472 intsym_buf = NULL;
473 goto out;
474 }
475 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
476 if (extshndx_buf == NULL)
477 {
478 alloc_extshndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
479 extshndx_buf = alloc_extshndx;
480 }
481 if (extshndx_buf == NULL
482 || bfd_seek (ibfd, pos, SEEK_SET) != 0
483 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
484 {
485 intsym_buf = NULL;
486 goto out;
487 }
488 }
489
490 if (intsym_buf == NULL)
491 {
492 if (_bfd_mul_overflow (symcount, sizeof (Elf_Internal_Sym), &amt))
493 {
494 bfd_set_error (bfd_error_file_too_big);
495 goto out;
496 }
497 alloc_intsym = (Elf_Internal_Sym *) bfd_malloc (amt);
498 intsym_buf = alloc_intsym;
499 if (intsym_buf == NULL)
500 goto out;
501 }
502
503 /* Convert the symbols to internal form. */
504 isymend = intsym_buf + symcount;
505 for (esym = (const bfd_byte *) extsym_buf, isym = intsym_buf,
506 shndx = extshndx_buf;
507 isym < isymend;
508 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
509 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
510 {
511 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
512 /* xgettext:c-format */
513 _bfd_error_handler (_("%pB symbol number %lu references"
514 " nonexistent SHT_SYMTAB_SHNDX section"),
515 ibfd, (unsigned long) symoffset);
516 if (alloc_intsym != NULL)
517 free (alloc_intsym);
518 intsym_buf = NULL;
519 goto out;
520 }
521
522 out:
523 if (alloc_ext != NULL)
524 free (alloc_ext);
525 if (alloc_extshndx != NULL)
526 free (alloc_extshndx);
527
528 return intsym_buf;
529 }
530
531 /* Look up a symbol name. */
532 const char *
533 bfd_elf_sym_name (bfd *abfd,
534 Elf_Internal_Shdr *symtab_hdr,
535 Elf_Internal_Sym *isym,
536 asection *sym_sec)
537 {
538 const char *name;
539 unsigned int iname = isym->st_name;
540 unsigned int shindex = symtab_hdr->sh_link;
541
542 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
543 /* Check for a bogus st_shndx to avoid crashing. */
544 && isym->st_shndx < elf_numsections (abfd))
545 {
546 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
547 shindex = elf_elfheader (abfd)->e_shstrndx;
548 }
549
550 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
551 if (name == NULL)
552 name = "(null)";
553 else if (sym_sec && *name == '\0')
554 name = bfd_section_name (sym_sec);
555
556 return name;
557 }
558
559 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
560 sections. The first element is the flags, the rest are section
561 pointers. */
562
563 typedef union elf_internal_group {
564 Elf_Internal_Shdr *shdr;
565 unsigned int flags;
566 } Elf_Internal_Group;
567
568 /* Return the name of the group signature symbol. Why isn't the
569 signature just a string? */
570
571 static const char *
572 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
573 {
574 Elf_Internal_Shdr *hdr;
575 unsigned char esym[sizeof (Elf64_External_Sym)];
576 Elf_External_Sym_Shndx eshndx;
577 Elf_Internal_Sym isym;
578
579 /* First we need to ensure the symbol table is available. Make sure
580 that it is a symbol table section. */
581 if (ghdr->sh_link >= elf_numsections (abfd))
582 return NULL;
583 hdr = elf_elfsections (abfd) [ghdr->sh_link];
584 if (hdr->sh_type != SHT_SYMTAB
585 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
586 return NULL;
587
588 /* Go read the symbol. */
589 hdr = &elf_tdata (abfd)->symtab_hdr;
590 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
591 &isym, esym, &eshndx) == NULL)
592 return NULL;
593
594 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
595 }
596
597 /* Set next_in_group list pointer, and group name for NEWSECT. */
598
599 static bfd_boolean
600 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
601 {
602 unsigned int num_group = elf_tdata (abfd)->num_group;
603
604 /* If num_group is zero, read in all SHT_GROUP sections. The count
605 is set to -1 if there are no SHT_GROUP sections. */
606 if (num_group == 0)
607 {
608 unsigned int i, shnum;
609
610 /* First count the number of groups. If we have a SHT_GROUP
611 section with just a flag word (ie. sh_size is 4), ignore it. */
612 shnum = elf_numsections (abfd);
613 num_group = 0;
614
615 #define IS_VALID_GROUP_SECTION_HEADER(shdr, minsize) \
616 ( (shdr)->sh_type == SHT_GROUP \
617 && (shdr)->sh_size >= minsize \
618 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
619 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
620
621 for (i = 0; i < shnum; i++)
622 {
623 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
624
625 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
626 num_group += 1;
627 }
628
629 if (num_group == 0)
630 {
631 num_group = (unsigned) -1;
632 elf_tdata (abfd)->num_group = num_group;
633 elf_tdata (abfd)->group_sect_ptr = NULL;
634 }
635 else
636 {
637 /* We keep a list of elf section headers for group sections,
638 so we can find them quickly. */
639 size_t amt;
640
641 elf_tdata (abfd)->num_group = num_group;
642 amt = num_group * sizeof (Elf_Internal_Shdr *);
643 elf_tdata (abfd)->group_sect_ptr
644 = (Elf_Internal_Shdr **) bfd_zalloc (abfd, amt);
645 if (elf_tdata (abfd)->group_sect_ptr == NULL)
646 return FALSE;
647 num_group = 0;
648
649 for (i = 0; i < shnum; i++)
650 {
651 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
652
653 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
654 {
655 unsigned char *src;
656 Elf_Internal_Group *dest;
657
658 /* Make sure the group section has a BFD section
659 attached to it. */
660 if (!bfd_section_from_shdr (abfd, i))
661 return FALSE;
662
663 /* Add to list of sections. */
664 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
665 num_group += 1;
666
667 /* Read the raw contents. */
668 BFD_ASSERT (sizeof (*dest) >= 4 && sizeof (*dest) % 4 == 0);
669 shdr->contents = NULL;
670 if (_bfd_mul_overflow (shdr->sh_size,
671 sizeof (*dest) / 4, &amt)
672 || bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
673 || !(shdr->contents
674 = _bfd_alloc_and_read (abfd, amt, shdr->sh_size)))
675 {
676 _bfd_error_handler
677 /* xgettext:c-format */
678 (_("%pB: invalid size field in group section"
679 " header: %#" PRIx64 ""),
680 abfd, (uint64_t) shdr->sh_size);
681 bfd_set_error (bfd_error_bad_value);
682 -- num_group;
683 continue;
684 }
685
686 /* Translate raw contents, a flag word followed by an
687 array of elf section indices all in target byte order,
688 to the flag word followed by an array of elf section
689 pointers. */
690 src = shdr->contents + shdr->sh_size;
691 dest = (Elf_Internal_Group *) (shdr->contents + amt);
692
693 while (1)
694 {
695 unsigned int idx;
696
697 src -= 4;
698 --dest;
699 idx = H_GET_32 (abfd, src);
700 if (src == shdr->contents)
701 {
702 dest->shdr = NULL;
703 dest->flags = idx;
704 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
705 shdr->bfd_section->flags
706 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
707 break;
708 }
709 if (idx < shnum)
710 {
711 dest->shdr = elf_elfsections (abfd)[idx];
712 /* PR binutils/23199: All sections in a
713 section group should be marked with
714 SHF_GROUP. But some tools generate
715 broken objects without SHF_GROUP. Fix
716 them up here. */
717 dest->shdr->sh_flags |= SHF_GROUP;
718 }
719 if (idx >= shnum
720 || dest->shdr->sh_type == SHT_GROUP)
721 {
722 _bfd_error_handler
723 (_("%pB: invalid entry in SHT_GROUP section [%u]"),
724 abfd, i);
725 dest->shdr = NULL;
726 }
727 }
728 }
729 }
730
731 /* PR 17510: Corrupt binaries might contain invalid groups. */
732 if (num_group != (unsigned) elf_tdata (abfd)->num_group)
733 {
734 elf_tdata (abfd)->num_group = num_group;
735
736 /* If all groups are invalid then fail. */
737 if (num_group == 0)
738 {
739 elf_tdata (abfd)->group_sect_ptr = NULL;
740 elf_tdata (abfd)->num_group = num_group = -1;
741 _bfd_error_handler
742 (_("%pB: no valid group sections found"), abfd);
743 bfd_set_error (bfd_error_bad_value);
744 }
745 }
746 }
747 }
748
749 if (num_group != (unsigned) -1)
750 {
751 unsigned int search_offset = elf_tdata (abfd)->group_search_offset;
752 unsigned int j;
753
754 for (j = 0; j < num_group; j++)
755 {
756 /* Begin search from previous found group. */
757 unsigned i = (j + search_offset) % num_group;
758
759 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
760 Elf_Internal_Group *idx;
761 bfd_size_type n_elt;
762
763 if (shdr == NULL)
764 continue;
765
766 idx = (Elf_Internal_Group *) shdr->contents;
767 if (idx == NULL || shdr->sh_size < 4)
768 {
769 /* See PR 21957 for a reproducer. */
770 /* xgettext:c-format */
771 _bfd_error_handler (_("%pB: group section '%pA' has no contents"),
772 abfd, shdr->bfd_section);
773 elf_tdata (abfd)->group_sect_ptr[i] = NULL;
774 bfd_set_error (bfd_error_bad_value);
775 return FALSE;
776 }
777 n_elt = shdr->sh_size / 4;
778
779 /* Look through this group's sections to see if current
780 section is a member. */
781 while (--n_elt != 0)
782 if ((++idx)->shdr == hdr)
783 {
784 asection *s = NULL;
785
786 /* We are a member of this group. Go looking through
787 other members to see if any others are linked via
788 next_in_group. */
789 idx = (Elf_Internal_Group *) shdr->contents;
790 n_elt = shdr->sh_size / 4;
791 while (--n_elt != 0)
792 if ((++idx)->shdr != NULL
793 && (s = idx->shdr->bfd_section) != NULL
794 && elf_next_in_group (s) != NULL)
795 break;
796 if (n_elt != 0)
797 {
798 /* Snarf the group name from other member, and
799 insert current section in circular list. */
800 elf_group_name (newsect) = elf_group_name (s);
801 elf_next_in_group (newsect) = elf_next_in_group (s);
802 elf_next_in_group (s) = newsect;
803 }
804 else
805 {
806 const char *gname;
807
808 gname = group_signature (abfd, shdr);
809 if (gname == NULL)
810 return FALSE;
811 elf_group_name (newsect) = gname;
812
813 /* Start a circular list with one element. */
814 elf_next_in_group (newsect) = newsect;
815 }
816
817 /* If the group section has been created, point to the
818 new member. */
819 if (shdr->bfd_section != NULL)
820 elf_next_in_group (shdr->bfd_section) = newsect;
821
822 elf_tdata (abfd)->group_search_offset = i;
823 j = num_group - 1;
824 break;
825 }
826 }
827 }
828
829 if (elf_group_name (newsect) == NULL)
830 {
831 /* xgettext:c-format */
832 _bfd_error_handler (_("%pB: no group info for section '%pA'"),
833 abfd, newsect);
834 return FALSE;
835 }
836 return TRUE;
837 }
838
839 bfd_boolean
840 _bfd_elf_setup_sections (bfd *abfd)
841 {
842 unsigned int i;
843 unsigned int num_group = elf_tdata (abfd)->num_group;
844 bfd_boolean result = TRUE;
845 asection *s;
846
847 /* Process SHF_LINK_ORDER. */
848 for (s = abfd->sections; s != NULL; s = s->next)
849 {
850 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
851 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
852 {
853 unsigned int elfsec = this_hdr->sh_link;
854 /* FIXME: The old Intel compiler and old strip/objcopy may
855 not set the sh_link or sh_info fields. Hence we could
856 get the situation where elfsec is 0. */
857 if (elfsec == 0)
858 {
859 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
860 if (bed->link_order_error_handler)
861 bed->link_order_error_handler
862 /* xgettext:c-format */
863 (_("%pB: warning: sh_link not set for section `%pA'"),
864 abfd, s);
865 }
866 else
867 {
868 asection *linksec = NULL;
869
870 if (elfsec < elf_numsections (abfd))
871 {
872 this_hdr = elf_elfsections (abfd)[elfsec];
873 linksec = this_hdr->bfd_section;
874 }
875
876 /* PR 1991, 2008:
877 Some strip/objcopy may leave an incorrect value in
878 sh_link. We don't want to proceed. */
879 if (linksec == NULL)
880 {
881 _bfd_error_handler
882 /* xgettext:c-format */
883 (_("%pB: sh_link [%d] in section `%pA' is incorrect"),
884 s->owner, elfsec, s);
885 result = FALSE;
886 }
887
888 elf_linked_to_section (s) = linksec;
889 }
890 }
891 else if (this_hdr->sh_type == SHT_GROUP
892 && elf_next_in_group (s) == NULL)
893 {
894 _bfd_error_handler
895 /* xgettext:c-format */
896 (_("%pB: SHT_GROUP section [index %d] has no SHF_GROUP sections"),
897 abfd, elf_section_data (s)->this_idx);
898 result = FALSE;
899 }
900 }
901
902 /* Process section groups. */
903 if (num_group == (unsigned) -1)
904 return result;
905
906 for (i = 0; i < num_group; i++)
907 {
908 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
909 Elf_Internal_Group *idx;
910 unsigned int n_elt;
911
912 /* PR binutils/18758: Beware of corrupt binaries with invalid group data. */
913 if (shdr == NULL || shdr->bfd_section == NULL || shdr->contents == NULL)
914 {
915 _bfd_error_handler
916 /* xgettext:c-format */
917 (_("%pB: section group entry number %u is corrupt"),
918 abfd, i);
919 result = FALSE;
920 continue;
921 }
922
923 idx = (Elf_Internal_Group *) shdr->contents;
924 n_elt = shdr->sh_size / 4;
925
926 while (--n_elt != 0)
927 {
928 ++ idx;
929
930 if (idx->shdr == NULL)
931 continue;
932 else if (idx->shdr->bfd_section)
933 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
934 else if (idx->shdr->sh_type != SHT_RELA
935 && idx->shdr->sh_type != SHT_REL)
936 {
937 /* There are some unknown sections in the group. */
938 _bfd_error_handler
939 /* xgettext:c-format */
940 (_("%pB: unknown type [%#x] section `%s' in group [%pA]"),
941 abfd,
942 idx->shdr->sh_type,
943 bfd_elf_string_from_elf_section (abfd,
944 (elf_elfheader (abfd)
945 ->e_shstrndx),
946 idx->shdr->sh_name),
947 shdr->bfd_section);
948 result = FALSE;
949 }
950 }
951 }
952
953 return result;
954 }
955
956 bfd_boolean
957 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
958 {
959 return elf_next_in_group (sec) != NULL;
960 }
961
962 const char *
963 bfd_elf_group_name (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
964 {
965 if (elf_sec_group (sec) != NULL)
966 return elf_group_name (sec);
967 return NULL;
968 }
969
970 static char *
971 convert_debug_to_zdebug (bfd *abfd, const char *name)
972 {
973 unsigned int len = strlen (name);
974 char *new_name = bfd_alloc (abfd, len + 2);
975 if (new_name == NULL)
976 return NULL;
977 new_name[0] = '.';
978 new_name[1] = 'z';
979 memcpy (new_name + 2, name + 1, len);
980 return new_name;
981 }
982
983 static char *
984 convert_zdebug_to_debug (bfd *abfd, const char *name)
985 {
986 unsigned int len = strlen (name);
987 char *new_name = bfd_alloc (abfd, len);
988 if (new_name == NULL)
989 return NULL;
990 new_name[0] = '.';
991 memcpy (new_name + 1, name + 2, len - 1);
992 return new_name;
993 }
994
995 /* This a copy of lto_section defined in GCC (lto-streamer.h). */
996
997 struct lto_section
998 {
999 int16_t major_version;
1000 int16_t minor_version;
1001 unsigned char slim_object;
1002
1003 /* Flags is a private field that is not defined publicly. */
1004 uint16_t flags;
1005 };
1006
1007 /* Make a BFD section from an ELF section. We store a pointer to the
1008 BFD section in the bfd_section field of the header. */
1009
1010 bfd_boolean
1011 _bfd_elf_make_section_from_shdr (bfd *abfd,
1012 Elf_Internal_Shdr *hdr,
1013 const char *name,
1014 int shindex)
1015 {
1016 asection *newsect;
1017 flagword flags;
1018 const struct elf_backend_data *bed;
1019
1020 if (hdr->bfd_section != NULL)
1021 return TRUE;
1022
1023 newsect = bfd_make_section_anyway (abfd, name);
1024 if (newsect == NULL)
1025 return FALSE;
1026
1027 hdr->bfd_section = newsect;
1028 elf_section_data (newsect)->this_hdr = *hdr;
1029 elf_section_data (newsect)->this_idx = shindex;
1030
1031 /* Always use the real type/flags. */
1032 elf_section_type (newsect) = hdr->sh_type;
1033 elf_section_flags (newsect) = hdr->sh_flags;
1034
1035 newsect->filepos = hdr->sh_offset;
1036
1037 if (!bfd_set_section_vma (newsect, hdr->sh_addr)
1038 || !bfd_set_section_size (newsect, hdr->sh_size)
1039 || !bfd_set_section_alignment (newsect, bfd_log2 (hdr->sh_addralign)))
1040 return FALSE;
1041
1042 flags = SEC_NO_FLAGS;
1043 if (hdr->sh_type != SHT_NOBITS)
1044 flags |= SEC_HAS_CONTENTS;
1045 if (hdr->sh_type == SHT_GROUP)
1046 flags |= SEC_GROUP;
1047 if ((hdr->sh_flags & SHF_ALLOC) != 0)
1048 {
1049 flags |= SEC_ALLOC;
1050 if (hdr->sh_type != SHT_NOBITS)
1051 flags |= SEC_LOAD;
1052 }
1053 if ((hdr->sh_flags & SHF_WRITE) == 0)
1054 flags |= SEC_READONLY;
1055 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
1056 flags |= SEC_CODE;
1057 else if ((flags & SEC_LOAD) != 0)
1058 flags |= SEC_DATA;
1059 if ((hdr->sh_flags & SHF_MERGE) != 0)
1060 {
1061 flags |= SEC_MERGE;
1062 newsect->entsize = hdr->sh_entsize;
1063 }
1064 if ((hdr->sh_flags & SHF_STRINGS) != 0)
1065 flags |= SEC_STRINGS;
1066 if (hdr->sh_flags & SHF_GROUP)
1067 if (!setup_group (abfd, hdr, newsect))
1068 return FALSE;
1069 if ((hdr->sh_flags & SHF_TLS) != 0)
1070 flags |= SEC_THREAD_LOCAL;
1071 if ((hdr->sh_flags & SHF_EXCLUDE) != 0)
1072 flags |= SEC_EXCLUDE;
1073
1074 switch (elf_elfheader (abfd)->e_ident[EI_OSABI])
1075 {
1076 /* FIXME: We should not recognize SHF_GNU_MBIND for ELFOSABI_NONE,
1077 but binutils as of 2019-07-23 did not set the EI_OSABI header
1078 byte. */
1079 case ELFOSABI_NONE:
1080 case ELFOSABI_GNU:
1081 case ELFOSABI_FREEBSD:
1082 if ((hdr->sh_flags & SHF_GNU_MBIND) != 0)
1083 elf_tdata (abfd)->has_gnu_osabi |= elf_gnu_osabi_mbind;
1084 break;
1085 }
1086
1087 if ((flags & SEC_ALLOC) == 0)
1088 {
1089 /* The debugging sections appear to be recognized only by name,
1090 not any sort of flag. Their SEC_ALLOC bits are cleared. */
1091 if (name [0] == '.')
1092 {
1093 if (strncmp (name, ".debug", 6) == 0
1094 || strncmp (name, ".gnu.linkonce.wi.", 17) == 0
1095 || strncmp (name, ".zdebug", 7) == 0)
1096 flags |= SEC_DEBUGGING | SEC_ELF_OCTETS;
1097 else if (strncmp (name, GNU_BUILD_ATTRS_SECTION_NAME, 21) == 0
1098 || strncmp (name, ".note.gnu", 9) == 0)
1099 flags |= SEC_ELF_OCTETS;
1100 else if (strncmp (name, ".line", 5) == 0
1101 || strncmp (name, ".stab", 5) == 0
1102 || strcmp (name, ".gdb_index") == 0)
1103 flags |= SEC_DEBUGGING;
1104 }
1105 }
1106
1107 /* As a GNU extension, if the name begins with .gnu.linkonce, we
1108 only link a single copy of the section. This is used to support
1109 g++. g++ will emit each template expansion in its own section.
1110 The symbols will be defined as weak, so that multiple definitions
1111 are permitted. The GNU linker extension is to actually discard
1112 all but one of the sections. */
1113 if (CONST_STRNEQ (name, ".gnu.linkonce")
1114 && elf_next_in_group (newsect) == NULL)
1115 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1116
1117 bed = get_elf_backend_data (abfd);
1118 if (bed->elf_backend_section_flags)
1119 if (! bed->elf_backend_section_flags (&flags, hdr))
1120 return FALSE;
1121
1122 if (!bfd_set_section_flags (newsect, flags))
1123 return FALSE;
1124
1125 /* We do not parse the PT_NOTE segments as we are interested even in the
1126 separate debug info files which may have the segments offsets corrupted.
1127 PT_NOTEs from the core files are currently not parsed using BFD. */
1128 if (hdr->sh_type == SHT_NOTE)
1129 {
1130 bfd_byte *contents;
1131
1132 if (!bfd_malloc_and_get_section (abfd, newsect, &contents))
1133 return FALSE;
1134
1135 elf_parse_notes (abfd, (char *) contents, hdr->sh_size,
1136 hdr->sh_offset, hdr->sh_addralign);
1137 free (contents);
1138 }
1139
1140 if ((flags & SEC_ALLOC) != 0)
1141 {
1142 Elf_Internal_Phdr *phdr;
1143 unsigned int i, nload;
1144
1145 /* Some ELF linkers produce binaries with all the program header
1146 p_paddr fields zero. If we have such a binary with more than
1147 one PT_LOAD header, then leave the section lma equal to vma
1148 so that we don't create sections with overlapping lma. */
1149 phdr = elf_tdata (abfd)->phdr;
1150 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1151 if (phdr->p_paddr != 0)
1152 break;
1153 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
1154 ++nload;
1155 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
1156 return TRUE;
1157
1158 phdr = elf_tdata (abfd)->phdr;
1159 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1160 {
1161 if (((phdr->p_type == PT_LOAD
1162 && (hdr->sh_flags & SHF_TLS) == 0)
1163 || phdr->p_type == PT_TLS)
1164 && ELF_SECTION_IN_SEGMENT (hdr, phdr))
1165 {
1166 if ((flags & SEC_LOAD) == 0)
1167 newsect->lma = (phdr->p_paddr
1168 + hdr->sh_addr - phdr->p_vaddr);
1169 else
1170 /* We used to use the same adjustment for SEC_LOAD
1171 sections, but that doesn't work if the segment
1172 is packed with code from multiple VMAs.
1173 Instead we calculate the section LMA based on
1174 the segment LMA. It is assumed that the
1175 segment will contain sections with contiguous
1176 LMAs, even if the VMAs are not. */
1177 newsect->lma = (phdr->p_paddr
1178 + hdr->sh_offset - phdr->p_offset);
1179
1180 /* With contiguous segments, we can't tell from file
1181 offsets whether a section with zero size should
1182 be placed at the end of one segment or the
1183 beginning of the next. Decide based on vaddr. */
1184 if (hdr->sh_addr >= phdr->p_vaddr
1185 && (hdr->sh_addr + hdr->sh_size
1186 <= phdr->p_vaddr + phdr->p_memsz))
1187 break;
1188 }
1189 }
1190 }
1191
1192 /* Compress/decompress DWARF debug sections with names: .debug_* and
1193 .zdebug_*, after the section flags is set. */
1194 if ((flags & SEC_DEBUGGING)
1195 && ((name[1] == 'd' && name[6] == '_')
1196 || (name[1] == 'z' && name[7] == '_')))
1197 {
1198 enum { nothing, compress, decompress } action = nothing;
1199 int compression_header_size;
1200 bfd_size_type uncompressed_size;
1201 unsigned int uncompressed_align_power;
1202 bfd_boolean compressed
1203 = bfd_is_section_compressed_with_header (abfd, newsect,
1204 &compression_header_size,
1205 &uncompressed_size,
1206 &uncompressed_align_power);
1207 if (compressed)
1208 {
1209 /* Compressed section. Check if we should decompress. */
1210 if ((abfd->flags & BFD_DECOMPRESS))
1211 action = decompress;
1212 }
1213
1214 /* Compress the uncompressed section or convert from/to .zdebug*
1215 section. Check if we should compress. */
1216 if (action == nothing)
1217 {
1218 if (newsect->size != 0
1219 && (abfd->flags & BFD_COMPRESS)
1220 && compression_header_size >= 0
1221 && uncompressed_size > 0
1222 && (!compressed
1223 || ((compression_header_size > 0)
1224 != ((abfd->flags & BFD_COMPRESS_GABI) != 0))))
1225 action = compress;
1226 else
1227 return TRUE;
1228 }
1229
1230 if (action == compress)
1231 {
1232 if (!bfd_init_section_compress_status (abfd, newsect))
1233 {
1234 _bfd_error_handler
1235 /* xgettext:c-format */
1236 (_("%pB: unable to initialize compress status for section %s"),
1237 abfd, name);
1238 return FALSE;
1239 }
1240 }
1241 else
1242 {
1243 if (!bfd_init_section_decompress_status (abfd, newsect))
1244 {
1245 _bfd_error_handler
1246 /* xgettext:c-format */
1247 (_("%pB: unable to initialize decompress status for section %s"),
1248 abfd, name);
1249 return FALSE;
1250 }
1251 }
1252
1253 if (abfd->is_linker_input)
1254 {
1255 if (name[1] == 'z'
1256 && (action == decompress
1257 || (action == compress
1258 && (abfd->flags & BFD_COMPRESS_GABI) != 0)))
1259 {
1260 /* Convert section name from .zdebug_* to .debug_* so
1261 that linker will consider this section as a debug
1262 section. */
1263 char *new_name = convert_zdebug_to_debug (abfd, name);
1264 if (new_name == NULL)
1265 return FALSE;
1266 bfd_rename_section (newsect, new_name);
1267 }
1268 }
1269 else
1270 /* For objdump, don't rename the section. For objcopy, delay
1271 section rename to elf_fake_sections. */
1272 newsect->flags |= SEC_ELF_RENAME;
1273 }
1274
1275 /* GCC uses .gnu.lto_.lto.<some_hash> as a LTO bytecode information
1276 section. */
1277 const char *lto_section_name = ".gnu.lto_.lto.";
1278 if (strncmp (name, lto_section_name, strlen (lto_section_name)) == 0)
1279 {
1280 struct lto_section lsection;
1281 if (bfd_get_section_contents (abfd, newsect, &lsection, 0,
1282 sizeof (struct lto_section)))
1283 abfd->lto_slim_object = lsection.slim_object;
1284 }
1285
1286 return TRUE;
1287 }
1288
1289 const char *const bfd_elf_section_type_names[] =
1290 {
1291 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1292 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1293 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1294 };
1295
1296 /* ELF relocs are against symbols. If we are producing relocatable
1297 output, and the reloc is against an external symbol, and nothing
1298 has given us any additional addend, the resulting reloc will also
1299 be against the same symbol. In such a case, we don't want to
1300 change anything about the way the reloc is handled, since it will
1301 all be done at final link time. Rather than put special case code
1302 into bfd_perform_relocation, all the reloc types use this howto
1303 function. It just short circuits the reloc if producing
1304 relocatable output against an external symbol. */
1305
1306 bfd_reloc_status_type
1307 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1308 arelent *reloc_entry,
1309 asymbol *symbol,
1310 void *data ATTRIBUTE_UNUSED,
1311 asection *input_section,
1312 bfd *output_bfd,
1313 char **error_message ATTRIBUTE_UNUSED)
1314 {
1315 if (output_bfd != NULL
1316 && (symbol->flags & BSF_SECTION_SYM) == 0
1317 && (! reloc_entry->howto->partial_inplace
1318 || reloc_entry->addend == 0))
1319 {
1320 reloc_entry->address += input_section->output_offset;
1321 return bfd_reloc_ok;
1322 }
1323
1324 return bfd_reloc_continue;
1325 }
1326 \f
1327 /* Returns TRUE if section A matches section B.
1328 Names, addresses and links may be different, but everything else
1329 should be the same. */
1330
1331 static bfd_boolean
1332 section_match (const Elf_Internal_Shdr * a,
1333 const Elf_Internal_Shdr * b)
1334 {
1335 if (a->sh_type != b->sh_type
1336 || ((a->sh_flags ^ b->sh_flags) & ~SHF_INFO_LINK) != 0
1337 || a->sh_addralign != b->sh_addralign
1338 || a->sh_entsize != b->sh_entsize)
1339 return FALSE;
1340 if (a->sh_type == SHT_SYMTAB
1341 || a->sh_type == SHT_STRTAB)
1342 return TRUE;
1343 return a->sh_size == b->sh_size;
1344 }
1345
1346 /* Find a section in OBFD that has the same characteristics
1347 as IHEADER. Return the index of this section or SHN_UNDEF if
1348 none can be found. Check's section HINT first, as this is likely
1349 to be the correct section. */
1350
1351 static unsigned int
1352 find_link (const bfd *obfd, const Elf_Internal_Shdr *iheader,
1353 const unsigned int hint)
1354 {
1355 Elf_Internal_Shdr ** oheaders = elf_elfsections (obfd);
1356 unsigned int i;
1357
1358 BFD_ASSERT (iheader != NULL);
1359
1360 /* See PR 20922 for a reproducer of the NULL test. */
1361 if (hint < elf_numsections (obfd)
1362 && oheaders[hint] != NULL
1363 && section_match (oheaders[hint], iheader))
1364 return hint;
1365
1366 for (i = 1; i < elf_numsections (obfd); i++)
1367 {
1368 Elf_Internal_Shdr * oheader = oheaders[i];
1369
1370 if (oheader == NULL)
1371 continue;
1372 if (section_match (oheader, iheader))
1373 /* FIXME: Do we care if there is a potential for
1374 multiple matches ? */
1375 return i;
1376 }
1377
1378 return SHN_UNDEF;
1379 }
1380
1381 /* PR 19938: Attempt to set the ELF section header fields of an OS or
1382 Processor specific section, based upon a matching input section.
1383 Returns TRUE upon success, FALSE otherwise. */
1384
1385 static bfd_boolean
1386 copy_special_section_fields (const bfd *ibfd,
1387 bfd *obfd,
1388 const Elf_Internal_Shdr *iheader,
1389 Elf_Internal_Shdr *oheader,
1390 const unsigned int secnum)
1391 {
1392 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
1393 const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd);
1394 bfd_boolean changed = FALSE;
1395 unsigned int sh_link;
1396
1397 if (oheader->sh_type == SHT_NOBITS)
1398 {
1399 /* This is a feature for objcopy --only-keep-debug:
1400 When a section's type is changed to NOBITS, we preserve
1401 the sh_link and sh_info fields so that they can be
1402 matched up with the original.
1403
1404 Note: Strictly speaking these assignments are wrong.
1405 The sh_link and sh_info fields should point to the
1406 relevent sections in the output BFD, which may not be in
1407 the same location as they were in the input BFD. But
1408 the whole point of this action is to preserve the
1409 original values of the sh_link and sh_info fields, so
1410 that they can be matched up with the section headers in
1411 the original file. So strictly speaking we may be
1412 creating an invalid ELF file, but it is only for a file
1413 that just contains debug info and only for sections
1414 without any contents. */
1415 if (oheader->sh_link == 0)
1416 oheader->sh_link = iheader->sh_link;
1417 if (oheader->sh_info == 0)
1418 oheader->sh_info = iheader->sh_info;
1419 return TRUE;
1420 }
1421
1422 /* Allow the target a chance to decide how these fields should be set. */
1423 if (bed->elf_backend_copy_special_section_fields != NULL
1424 && bed->elf_backend_copy_special_section_fields
1425 (ibfd, obfd, iheader, oheader))
1426 return TRUE;
1427
1428 /* We have an iheader which might match oheader, and which has non-zero
1429 sh_info and/or sh_link fields. Attempt to follow those links and find
1430 the section in the output bfd which corresponds to the linked section
1431 in the input bfd. */
1432 if (iheader->sh_link != SHN_UNDEF)
1433 {
1434 /* See PR 20931 for a reproducer. */
1435 if (iheader->sh_link >= elf_numsections (ibfd))
1436 {
1437 _bfd_error_handler
1438 /* xgettext:c-format */
1439 (_("%pB: invalid sh_link field (%d) in section number %d"),
1440 ibfd, iheader->sh_link, secnum);
1441 return FALSE;
1442 }
1443
1444 sh_link = find_link (obfd, iheaders[iheader->sh_link], iheader->sh_link);
1445 if (sh_link != SHN_UNDEF)
1446 {
1447 oheader->sh_link = sh_link;
1448 changed = TRUE;
1449 }
1450 else
1451 /* FIXME: Should we install iheader->sh_link
1452 if we could not find a match ? */
1453 _bfd_error_handler
1454 /* xgettext:c-format */
1455 (_("%pB: failed to find link section for section %d"), obfd, secnum);
1456 }
1457
1458 if (iheader->sh_info)
1459 {
1460 /* The sh_info field can hold arbitrary information, but if the
1461 SHF_LINK_INFO flag is set then it should be interpreted as a
1462 section index. */
1463 if (iheader->sh_flags & SHF_INFO_LINK)
1464 {
1465 sh_link = find_link (obfd, iheaders[iheader->sh_info],
1466 iheader->sh_info);
1467 if (sh_link != SHN_UNDEF)
1468 oheader->sh_flags |= SHF_INFO_LINK;
1469 }
1470 else
1471 /* No idea what it means - just copy it. */
1472 sh_link = iheader->sh_info;
1473
1474 if (sh_link != SHN_UNDEF)
1475 {
1476 oheader->sh_info = sh_link;
1477 changed = TRUE;
1478 }
1479 else
1480 _bfd_error_handler
1481 /* xgettext:c-format */
1482 (_("%pB: failed to find info section for section %d"), obfd, secnum);
1483 }
1484
1485 return changed;
1486 }
1487
1488 /* Copy the program header and other data from one object module to
1489 another. */
1490
1491 bfd_boolean
1492 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1493 {
1494 const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd);
1495 Elf_Internal_Shdr **oheaders = elf_elfsections (obfd);
1496 const struct elf_backend_data *bed;
1497 unsigned int i;
1498
1499 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1500 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1501 return TRUE;
1502
1503 if (!elf_flags_init (obfd))
1504 {
1505 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1506 elf_flags_init (obfd) = TRUE;
1507 }
1508
1509 elf_gp (obfd) = elf_gp (ibfd);
1510
1511 /* Also copy the EI_OSABI field. */
1512 elf_elfheader (obfd)->e_ident[EI_OSABI] =
1513 elf_elfheader (ibfd)->e_ident[EI_OSABI];
1514
1515 /* If set, copy the EI_ABIVERSION field. */
1516 if (elf_elfheader (ibfd)->e_ident[EI_ABIVERSION])
1517 elf_elfheader (obfd)->e_ident[EI_ABIVERSION]
1518 = elf_elfheader (ibfd)->e_ident[EI_ABIVERSION];
1519
1520 /* Copy object attributes. */
1521 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1522
1523 if (iheaders == NULL || oheaders == NULL)
1524 return TRUE;
1525
1526 bed = get_elf_backend_data (obfd);
1527
1528 /* Possibly copy other fields in the section header. */
1529 for (i = 1; i < elf_numsections (obfd); i++)
1530 {
1531 unsigned int j;
1532 Elf_Internal_Shdr * oheader = oheaders[i];
1533
1534 /* Ignore ordinary sections. SHT_NOBITS sections are considered however
1535 because of a special case need for generating separate debug info
1536 files. See below for more details. */
1537 if (oheader == NULL
1538 || (oheader->sh_type != SHT_NOBITS
1539 && oheader->sh_type < SHT_LOOS))
1540 continue;
1541
1542 /* Ignore empty sections, and sections whose
1543 fields have already been initialised. */
1544 if (oheader->sh_size == 0
1545 || (oheader->sh_info != 0 && oheader->sh_link != 0))
1546 continue;
1547
1548 /* Scan for the matching section in the input bfd.
1549 First we try for a direct mapping between the input and output sections. */
1550 for (j = 1; j < elf_numsections (ibfd); j++)
1551 {
1552 const Elf_Internal_Shdr * iheader = iheaders[j];
1553
1554 if (iheader == NULL)
1555 continue;
1556
1557 if (oheader->bfd_section != NULL
1558 && iheader->bfd_section != NULL
1559 && iheader->bfd_section->output_section != NULL
1560 && iheader->bfd_section->output_section == oheader->bfd_section)
1561 {
1562 /* We have found a connection from the input section to the
1563 output section. Attempt to copy the header fields. If
1564 this fails then do not try any further sections - there
1565 should only be a one-to-one mapping between input and output. */
1566 if (! copy_special_section_fields (ibfd, obfd, iheader, oheader, i))
1567 j = elf_numsections (ibfd);
1568 break;
1569 }
1570 }
1571
1572 if (j < elf_numsections (ibfd))
1573 continue;
1574
1575 /* That failed. So try to deduce the corresponding input section.
1576 Unfortunately we cannot compare names as the output string table
1577 is empty, so instead we check size, address and type. */
1578 for (j = 1; j < elf_numsections (ibfd); j++)
1579 {
1580 const Elf_Internal_Shdr * iheader = iheaders[j];
1581
1582 if (iheader == NULL)
1583 continue;
1584
1585 /* Try matching fields in the input section's header.
1586 Since --only-keep-debug turns all non-debug sections into
1587 SHT_NOBITS sections, the output SHT_NOBITS type matches any
1588 input type. */
1589 if ((oheader->sh_type == SHT_NOBITS
1590 || iheader->sh_type == oheader->sh_type)
1591 && (iheader->sh_flags & ~ SHF_INFO_LINK)
1592 == (oheader->sh_flags & ~ SHF_INFO_LINK)
1593 && iheader->sh_addralign == oheader->sh_addralign
1594 && iheader->sh_entsize == oheader->sh_entsize
1595 && iheader->sh_size == oheader->sh_size
1596 && iheader->sh_addr == oheader->sh_addr
1597 && (iheader->sh_info != oheader->sh_info
1598 || iheader->sh_link != oheader->sh_link))
1599 {
1600 if (copy_special_section_fields (ibfd, obfd, iheader, oheader, i))
1601 break;
1602 }
1603 }
1604
1605 if (j == elf_numsections (ibfd) && oheader->sh_type >= SHT_LOOS)
1606 {
1607 /* Final attempt. Call the backend copy function
1608 with a NULL input section. */
1609 if (bed->elf_backend_copy_special_section_fields != NULL)
1610 bed->elf_backend_copy_special_section_fields (ibfd, obfd, NULL, oheader);
1611 }
1612 }
1613
1614 return TRUE;
1615 }
1616
1617 static const char *
1618 get_segment_type (unsigned int p_type)
1619 {
1620 const char *pt;
1621 switch (p_type)
1622 {
1623 case PT_NULL: pt = "NULL"; break;
1624 case PT_LOAD: pt = "LOAD"; break;
1625 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1626 case PT_INTERP: pt = "INTERP"; break;
1627 case PT_NOTE: pt = "NOTE"; break;
1628 case PT_SHLIB: pt = "SHLIB"; break;
1629 case PT_PHDR: pt = "PHDR"; break;
1630 case PT_TLS: pt = "TLS"; break;
1631 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1632 case PT_GNU_STACK: pt = "STACK"; break;
1633 case PT_GNU_RELRO: pt = "RELRO"; break;
1634 default: pt = NULL; break;
1635 }
1636 return pt;
1637 }
1638
1639 /* Print out the program headers. */
1640
1641 bfd_boolean
1642 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1643 {
1644 FILE *f = (FILE *) farg;
1645 Elf_Internal_Phdr *p;
1646 asection *s;
1647 bfd_byte *dynbuf = NULL;
1648
1649 p = elf_tdata (abfd)->phdr;
1650 if (p != NULL)
1651 {
1652 unsigned int i, c;
1653
1654 fprintf (f, _("\nProgram Header:\n"));
1655 c = elf_elfheader (abfd)->e_phnum;
1656 for (i = 0; i < c; i++, p++)
1657 {
1658 const char *pt = get_segment_type (p->p_type);
1659 char buf[20];
1660
1661 if (pt == NULL)
1662 {
1663 sprintf (buf, "0x%lx", p->p_type);
1664 pt = buf;
1665 }
1666 fprintf (f, "%8s off 0x", pt);
1667 bfd_fprintf_vma (abfd, f, p->p_offset);
1668 fprintf (f, " vaddr 0x");
1669 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1670 fprintf (f, " paddr 0x");
1671 bfd_fprintf_vma (abfd, f, p->p_paddr);
1672 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1673 fprintf (f, " filesz 0x");
1674 bfd_fprintf_vma (abfd, f, p->p_filesz);
1675 fprintf (f, " memsz 0x");
1676 bfd_fprintf_vma (abfd, f, p->p_memsz);
1677 fprintf (f, " flags %c%c%c",
1678 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1679 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1680 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1681 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1682 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1683 fprintf (f, "\n");
1684 }
1685 }
1686
1687 s = bfd_get_section_by_name (abfd, ".dynamic");
1688 if (s != NULL)
1689 {
1690 unsigned int elfsec;
1691 unsigned long shlink;
1692 bfd_byte *extdyn, *extdynend;
1693 size_t extdynsize;
1694 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1695
1696 fprintf (f, _("\nDynamic Section:\n"));
1697
1698 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1699 goto error_return;
1700
1701 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1702 if (elfsec == SHN_BAD)
1703 goto error_return;
1704 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1705
1706 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1707 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1708
1709 extdyn = dynbuf;
1710 /* PR 17512: file: 6f427532. */
1711 if (s->size < extdynsize)
1712 goto error_return;
1713 extdynend = extdyn + s->size;
1714 /* PR 17512: file: id:000006,sig:06,src:000000,op:flip4,pos:5664.
1715 Fix range check. */
1716 for (; extdyn <= (extdynend - extdynsize); extdyn += extdynsize)
1717 {
1718 Elf_Internal_Dyn dyn;
1719 const char *name = "";
1720 char ab[20];
1721 bfd_boolean stringp;
1722 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1723
1724 (*swap_dyn_in) (abfd, extdyn, &dyn);
1725
1726 if (dyn.d_tag == DT_NULL)
1727 break;
1728
1729 stringp = FALSE;
1730 switch (dyn.d_tag)
1731 {
1732 default:
1733 if (bed->elf_backend_get_target_dtag)
1734 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
1735
1736 if (!strcmp (name, ""))
1737 {
1738 sprintf (ab, "%#" BFD_VMA_FMT "x", dyn.d_tag);
1739 name = ab;
1740 }
1741 break;
1742
1743 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1744 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1745 case DT_PLTGOT: name = "PLTGOT"; break;
1746 case DT_HASH: name = "HASH"; break;
1747 case DT_STRTAB: name = "STRTAB"; break;
1748 case DT_SYMTAB: name = "SYMTAB"; break;
1749 case DT_RELA: name = "RELA"; break;
1750 case DT_RELASZ: name = "RELASZ"; break;
1751 case DT_RELAENT: name = "RELAENT"; break;
1752 case DT_STRSZ: name = "STRSZ"; break;
1753 case DT_SYMENT: name = "SYMENT"; break;
1754 case DT_INIT: name = "INIT"; break;
1755 case DT_FINI: name = "FINI"; break;
1756 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1757 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1758 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1759 case DT_REL: name = "REL"; break;
1760 case DT_RELSZ: name = "RELSZ"; break;
1761 case DT_RELENT: name = "RELENT"; break;
1762 case DT_PLTREL: name = "PLTREL"; break;
1763 case DT_DEBUG: name = "DEBUG"; break;
1764 case DT_TEXTREL: name = "TEXTREL"; break;
1765 case DT_JMPREL: name = "JMPREL"; break;
1766 case DT_BIND_NOW: name = "BIND_NOW"; break;
1767 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1768 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1769 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1770 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1771 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1772 case DT_FLAGS: name = "FLAGS"; break;
1773 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1774 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1775 case DT_CHECKSUM: name = "CHECKSUM"; break;
1776 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1777 case DT_MOVEENT: name = "MOVEENT"; break;
1778 case DT_MOVESZ: name = "MOVESZ"; break;
1779 case DT_FEATURE: name = "FEATURE"; break;
1780 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1781 case DT_SYMINSZ: name = "SYMINSZ"; break;
1782 case DT_SYMINENT: name = "SYMINENT"; break;
1783 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1784 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1785 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1786 case DT_PLTPAD: name = "PLTPAD"; break;
1787 case DT_MOVETAB: name = "MOVETAB"; break;
1788 case DT_SYMINFO: name = "SYMINFO"; break;
1789 case DT_RELACOUNT: name = "RELACOUNT"; break;
1790 case DT_RELCOUNT: name = "RELCOUNT"; break;
1791 case DT_FLAGS_1: name = "FLAGS_1"; break;
1792 case DT_VERSYM: name = "VERSYM"; break;
1793 case DT_VERDEF: name = "VERDEF"; break;
1794 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1795 case DT_VERNEED: name = "VERNEED"; break;
1796 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1797 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1798 case DT_USED: name = "USED"; break;
1799 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1800 case DT_GNU_HASH: name = "GNU_HASH"; break;
1801 }
1802
1803 fprintf (f, " %-20s ", name);
1804 if (! stringp)
1805 {
1806 fprintf (f, "0x");
1807 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
1808 }
1809 else
1810 {
1811 const char *string;
1812 unsigned int tagv = dyn.d_un.d_val;
1813
1814 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1815 if (string == NULL)
1816 goto error_return;
1817 fprintf (f, "%s", string);
1818 }
1819 fprintf (f, "\n");
1820 }
1821
1822 free (dynbuf);
1823 dynbuf = NULL;
1824 }
1825
1826 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1827 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1828 {
1829 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1830 return FALSE;
1831 }
1832
1833 if (elf_dynverdef (abfd) != 0)
1834 {
1835 Elf_Internal_Verdef *t;
1836
1837 fprintf (f, _("\nVersion definitions:\n"));
1838 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1839 {
1840 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1841 t->vd_flags, t->vd_hash,
1842 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1843 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1844 {
1845 Elf_Internal_Verdaux *a;
1846
1847 fprintf (f, "\t");
1848 for (a = t->vd_auxptr->vda_nextptr;
1849 a != NULL;
1850 a = a->vda_nextptr)
1851 fprintf (f, "%s ",
1852 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1853 fprintf (f, "\n");
1854 }
1855 }
1856 }
1857
1858 if (elf_dynverref (abfd) != 0)
1859 {
1860 Elf_Internal_Verneed *t;
1861
1862 fprintf (f, _("\nVersion References:\n"));
1863 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1864 {
1865 Elf_Internal_Vernaux *a;
1866
1867 fprintf (f, _(" required from %s:\n"),
1868 t->vn_filename ? t->vn_filename : "<corrupt>");
1869 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1870 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1871 a->vna_flags, a->vna_other,
1872 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1873 }
1874 }
1875
1876 return TRUE;
1877
1878 error_return:
1879 if (dynbuf != NULL)
1880 free (dynbuf);
1881 return FALSE;
1882 }
1883
1884 /* Get version string. */
1885
1886 const char *
1887 _bfd_elf_get_symbol_version_string (bfd *abfd, asymbol *symbol,
1888 bfd_boolean *hidden)
1889 {
1890 const char *version_string = NULL;
1891 if (elf_dynversym (abfd) != 0
1892 && (elf_dynverdef (abfd) != 0 || elf_dynverref (abfd) != 0))
1893 {
1894 unsigned int vernum = ((elf_symbol_type *) symbol)->version;
1895
1896 *hidden = (vernum & VERSYM_HIDDEN) != 0;
1897 vernum &= VERSYM_VERSION;
1898
1899 if (vernum == 0)
1900 version_string = "";
1901 else if (vernum == 1
1902 && (vernum > elf_tdata (abfd)->cverdefs
1903 || (elf_tdata (abfd)->verdef[0].vd_flags
1904 == VER_FLG_BASE)))
1905 version_string = "Base";
1906 else if (vernum <= elf_tdata (abfd)->cverdefs)
1907 version_string =
1908 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1909 else
1910 {
1911 Elf_Internal_Verneed *t;
1912
1913 version_string = _("<corrupt>");
1914 for (t = elf_tdata (abfd)->verref;
1915 t != NULL;
1916 t = t->vn_nextref)
1917 {
1918 Elf_Internal_Vernaux *a;
1919
1920 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1921 {
1922 if (a->vna_other == vernum)
1923 {
1924 version_string = a->vna_nodename;
1925 break;
1926 }
1927 }
1928 }
1929 }
1930 }
1931 return version_string;
1932 }
1933
1934 /* Display ELF-specific fields of a symbol. */
1935
1936 void
1937 bfd_elf_print_symbol (bfd *abfd,
1938 void *filep,
1939 asymbol *symbol,
1940 bfd_print_symbol_type how)
1941 {
1942 FILE *file = (FILE *) filep;
1943 switch (how)
1944 {
1945 case bfd_print_symbol_name:
1946 fprintf (file, "%s", symbol->name);
1947 break;
1948 case bfd_print_symbol_more:
1949 fprintf (file, "elf ");
1950 bfd_fprintf_vma (abfd, file, symbol->value);
1951 fprintf (file, " %x", symbol->flags);
1952 break;
1953 case bfd_print_symbol_all:
1954 {
1955 const char *section_name;
1956 const char *name = NULL;
1957 const struct elf_backend_data *bed;
1958 unsigned char st_other;
1959 bfd_vma val;
1960 const char *version_string;
1961 bfd_boolean hidden;
1962
1963 section_name = symbol->section ? symbol->section->name : "(*none*)";
1964
1965 bed = get_elf_backend_data (abfd);
1966 if (bed->elf_backend_print_symbol_all)
1967 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1968
1969 if (name == NULL)
1970 {
1971 name = symbol->name;
1972 bfd_print_symbol_vandf (abfd, file, symbol);
1973 }
1974
1975 fprintf (file, " %s\t", section_name);
1976 /* Print the "other" value for a symbol. For common symbols,
1977 we've already printed the size; now print the alignment.
1978 For other symbols, we have no specified alignment, and
1979 we've printed the address; now print the size. */
1980 if (symbol->section && bfd_is_com_section (symbol->section))
1981 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1982 else
1983 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1984 bfd_fprintf_vma (abfd, file, val);
1985
1986 /* If we have version information, print it. */
1987 version_string = _bfd_elf_get_symbol_version_string (abfd,
1988 symbol,
1989 &hidden);
1990 if (version_string)
1991 {
1992 if (!hidden)
1993 fprintf (file, " %-11s", version_string);
1994 else
1995 {
1996 int i;
1997
1998 fprintf (file, " (%s)", version_string);
1999 for (i = 10 - strlen (version_string); i > 0; --i)
2000 putc (' ', file);
2001 }
2002 }
2003
2004 /* If the st_other field is not zero, print it. */
2005 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
2006
2007 switch (st_other)
2008 {
2009 case 0: break;
2010 case STV_INTERNAL: fprintf (file, " .internal"); break;
2011 case STV_HIDDEN: fprintf (file, " .hidden"); break;
2012 case STV_PROTECTED: fprintf (file, " .protected"); break;
2013 default:
2014 /* Some other non-defined flags are also present, so print
2015 everything hex. */
2016 fprintf (file, " 0x%02x", (unsigned int) st_other);
2017 }
2018
2019 fprintf (file, " %s", name);
2020 }
2021 break;
2022 }
2023 }
2024 \f
2025 /* ELF .o/exec file reading */
2026
2027 /* Create a new bfd section from an ELF section header. */
2028
2029 bfd_boolean
2030 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
2031 {
2032 Elf_Internal_Shdr *hdr;
2033 Elf_Internal_Ehdr *ehdr;
2034 const struct elf_backend_data *bed;
2035 const char *name;
2036 bfd_boolean ret = TRUE;
2037 static bfd_boolean * sections_being_created = NULL;
2038 static bfd * sections_being_created_abfd = NULL;
2039 static unsigned int nesting = 0;
2040
2041 if (shindex >= elf_numsections (abfd))
2042 return FALSE;
2043
2044 if (++ nesting > 3)
2045 {
2046 /* PR17512: A corrupt ELF binary might contain a recursive group of
2047 sections, with each the string indices pointing to the next in the
2048 loop. Detect this here, by refusing to load a section that we are
2049 already in the process of loading. We only trigger this test if
2050 we have nested at least three sections deep as normal ELF binaries
2051 can expect to recurse at least once.
2052
2053 FIXME: It would be better if this array was attached to the bfd,
2054 rather than being held in a static pointer. */
2055
2056 if (sections_being_created_abfd != abfd)
2057 sections_being_created = NULL;
2058 if (sections_being_created == NULL)
2059 {
2060 size_t amt = elf_numsections (abfd) * sizeof (bfd_boolean);
2061 sections_being_created = (bfd_boolean *) bfd_zalloc (abfd, amt);
2062 if (sections_being_created == NULL)
2063 return FALSE;
2064 sections_being_created_abfd = abfd;
2065 }
2066 if (sections_being_created [shindex])
2067 {
2068 _bfd_error_handler
2069 (_("%pB: warning: loop in section dependencies detected"), abfd);
2070 return FALSE;
2071 }
2072 sections_being_created [shindex] = TRUE;
2073 }
2074
2075 hdr = elf_elfsections (abfd)[shindex];
2076 ehdr = elf_elfheader (abfd);
2077 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
2078 hdr->sh_name);
2079 if (name == NULL)
2080 goto fail;
2081
2082 bed = get_elf_backend_data (abfd);
2083 switch (hdr->sh_type)
2084 {
2085 case SHT_NULL:
2086 /* Inactive section. Throw it away. */
2087 goto success;
2088
2089 case SHT_PROGBITS: /* Normal section with contents. */
2090 case SHT_NOBITS: /* .bss section. */
2091 case SHT_HASH: /* .hash section. */
2092 case SHT_NOTE: /* .note section. */
2093 case SHT_INIT_ARRAY: /* .init_array section. */
2094 case SHT_FINI_ARRAY: /* .fini_array section. */
2095 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
2096 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
2097 case SHT_GNU_HASH: /* .gnu.hash section. */
2098 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2099 goto success;
2100
2101 case SHT_DYNAMIC: /* Dynamic linking information. */
2102 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2103 goto fail;
2104
2105 if (hdr->sh_link > elf_numsections (abfd))
2106 {
2107 /* PR 10478: Accept Solaris binaries with a sh_link
2108 field set to SHN_BEFORE or SHN_AFTER. */
2109 switch (bfd_get_arch (abfd))
2110 {
2111 case bfd_arch_i386:
2112 case bfd_arch_sparc:
2113 if (hdr->sh_link == (SHN_LORESERVE & 0xffff) /* SHN_BEFORE */
2114 || hdr->sh_link == ((SHN_LORESERVE + 1) & 0xffff) /* SHN_AFTER */)
2115 break;
2116 /* Otherwise fall through. */
2117 default:
2118 goto fail;
2119 }
2120 }
2121 else if (elf_elfsections (abfd)[hdr->sh_link] == NULL)
2122 goto fail;
2123 else if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
2124 {
2125 Elf_Internal_Shdr *dynsymhdr;
2126
2127 /* The shared libraries distributed with hpux11 have a bogus
2128 sh_link field for the ".dynamic" section. Find the
2129 string table for the ".dynsym" section instead. */
2130 if (elf_dynsymtab (abfd) != 0)
2131 {
2132 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
2133 hdr->sh_link = dynsymhdr->sh_link;
2134 }
2135 else
2136 {
2137 unsigned int i, num_sec;
2138
2139 num_sec = elf_numsections (abfd);
2140 for (i = 1; i < num_sec; i++)
2141 {
2142 dynsymhdr = elf_elfsections (abfd)[i];
2143 if (dynsymhdr->sh_type == SHT_DYNSYM)
2144 {
2145 hdr->sh_link = dynsymhdr->sh_link;
2146 break;
2147 }
2148 }
2149 }
2150 }
2151 goto success;
2152
2153 case SHT_SYMTAB: /* A symbol table. */
2154 if (elf_onesymtab (abfd) == shindex)
2155 goto success;
2156
2157 if (hdr->sh_entsize != bed->s->sizeof_sym)
2158 goto fail;
2159
2160 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
2161 {
2162 if (hdr->sh_size != 0)
2163 goto fail;
2164 /* Some assemblers erroneously set sh_info to one with a
2165 zero sh_size. ld sees this as a global symbol count
2166 of (unsigned) -1. Fix it here. */
2167 hdr->sh_info = 0;
2168 goto success;
2169 }
2170
2171 /* PR 18854: A binary might contain more than one symbol table.
2172 Unusual, but possible. Warn, but continue. */
2173 if (elf_onesymtab (abfd) != 0)
2174 {
2175 _bfd_error_handler
2176 /* xgettext:c-format */
2177 (_("%pB: warning: multiple symbol tables detected"
2178 " - ignoring the table in section %u"),
2179 abfd, shindex);
2180 goto success;
2181 }
2182 elf_onesymtab (abfd) = shindex;
2183 elf_symtab_hdr (abfd) = *hdr;
2184 elf_elfsections (abfd)[shindex] = hdr = & elf_symtab_hdr (abfd);
2185 abfd->flags |= HAS_SYMS;
2186
2187 /* Sometimes a shared object will map in the symbol table. If
2188 SHF_ALLOC is set, and this is a shared object, then we also
2189 treat this section as a BFD section. We can not base the
2190 decision purely on SHF_ALLOC, because that flag is sometimes
2191 set in a relocatable object file, which would confuse the
2192 linker. */
2193 if ((hdr->sh_flags & SHF_ALLOC) != 0
2194 && (abfd->flags & DYNAMIC) != 0
2195 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2196 shindex))
2197 goto fail;
2198
2199 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
2200 can't read symbols without that section loaded as well. It
2201 is most likely specified by the next section header. */
2202 {
2203 elf_section_list * entry;
2204 unsigned int i, num_sec;
2205
2206 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
2207 if (entry->hdr.sh_link == shindex)
2208 goto success;
2209
2210 num_sec = elf_numsections (abfd);
2211 for (i = shindex + 1; i < num_sec; i++)
2212 {
2213 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2214
2215 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
2216 && hdr2->sh_link == shindex)
2217 break;
2218 }
2219
2220 if (i == num_sec)
2221 for (i = 1; i < shindex; i++)
2222 {
2223 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2224
2225 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
2226 && hdr2->sh_link == shindex)
2227 break;
2228 }
2229
2230 if (i != shindex)
2231 ret = bfd_section_from_shdr (abfd, i);
2232 /* else FIXME: we have failed to find the symbol table - should we issue an error ? */
2233 goto success;
2234 }
2235
2236 case SHT_DYNSYM: /* A dynamic symbol table. */
2237 if (elf_dynsymtab (abfd) == shindex)
2238 goto success;
2239
2240 if (hdr->sh_entsize != bed->s->sizeof_sym)
2241 goto fail;
2242
2243 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
2244 {
2245 if (hdr->sh_size != 0)
2246 goto fail;
2247
2248 /* Some linkers erroneously set sh_info to one with a
2249 zero sh_size. ld sees this as a global symbol count
2250 of (unsigned) -1. Fix it here. */
2251 hdr->sh_info = 0;
2252 goto success;
2253 }
2254
2255 /* PR 18854: A binary might contain more than one dynamic symbol table.
2256 Unusual, but possible. Warn, but continue. */
2257 if (elf_dynsymtab (abfd) != 0)
2258 {
2259 _bfd_error_handler
2260 /* xgettext:c-format */
2261 (_("%pB: warning: multiple dynamic symbol tables detected"
2262 " - ignoring the table in section %u"),
2263 abfd, shindex);
2264 goto success;
2265 }
2266 elf_dynsymtab (abfd) = shindex;
2267 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
2268 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2269 abfd->flags |= HAS_SYMS;
2270
2271 /* Besides being a symbol table, we also treat this as a regular
2272 section, so that objcopy can handle it. */
2273 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2274 goto success;
2275
2276 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections. */
2277 {
2278 elf_section_list * entry;
2279
2280 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
2281 if (entry->ndx == shindex)
2282 goto success;
2283
2284 entry = bfd_alloc (abfd, sizeof (*entry));
2285 if (entry == NULL)
2286 goto fail;
2287 entry->ndx = shindex;
2288 entry->hdr = * hdr;
2289 entry->next = elf_symtab_shndx_list (abfd);
2290 elf_symtab_shndx_list (abfd) = entry;
2291 elf_elfsections (abfd)[shindex] = & entry->hdr;
2292 goto success;
2293 }
2294
2295 case SHT_STRTAB: /* A string table. */
2296 if (hdr->bfd_section != NULL)
2297 goto success;
2298
2299 if (ehdr->e_shstrndx == shindex)
2300 {
2301 elf_tdata (abfd)->shstrtab_hdr = *hdr;
2302 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
2303 goto success;
2304 }
2305
2306 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
2307 {
2308 symtab_strtab:
2309 elf_tdata (abfd)->strtab_hdr = *hdr;
2310 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
2311 goto success;
2312 }
2313
2314 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
2315 {
2316 dynsymtab_strtab:
2317 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
2318 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
2319 elf_elfsections (abfd)[shindex] = hdr;
2320 /* We also treat this as a regular section, so that objcopy
2321 can handle it. */
2322 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2323 shindex);
2324 goto success;
2325 }
2326
2327 /* If the string table isn't one of the above, then treat it as a
2328 regular section. We need to scan all the headers to be sure,
2329 just in case this strtab section appeared before the above. */
2330 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
2331 {
2332 unsigned int i, num_sec;
2333
2334 num_sec = elf_numsections (abfd);
2335 for (i = 1; i < num_sec; i++)
2336 {
2337 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2338 if (hdr2->sh_link == shindex)
2339 {
2340 /* Prevent endless recursion on broken objects. */
2341 if (i == shindex)
2342 goto fail;
2343 if (! bfd_section_from_shdr (abfd, i))
2344 goto fail;
2345 if (elf_onesymtab (abfd) == i)
2346 goto symtab_strtab;
2347 if (elf_dynsymtab (abfd) == i)
2348 goto dynsymtab_strtab;
2349 }
2350 }
2351 }
2352 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2353 goto success;
2354
2355 case SHT_REL:
2356 case SHT_RELA:
2357 /* *These* do a lot of work -- but build no sections! */
2358 {
2359 asection *target_sect;
2360 Elf_Internal_Shdr *hdr2, **p_hdr;
2361 unsigned int num_sec = elf_numsections (abfd);
2362 struct bfd_elf_section_data *esdt;
2363
2364 if (hdr->sh_entsize
2365 != (bfd_size_type) (hdr->sh_type == SHT_REL
2366 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
2367 goto fail;
2368
2369 /* Check for a bogus link to avoid crashing. */
2370 if (hdr->sh_link >= num_sec)
2371 {
2372 _bfd_error_handler
2373 /* xgettext:c-format */
2374 (_("%pB: invalid link %u for reloc section %s (index %u)"),
2375 abfd, hdr->sh_link, name, shindex);
2376 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2377 shindex);
2378 goto success;
2379 }
2380
2381 /* For some incomprehensible reason Oracle distributes
2382 libraries for Solaris in which some of the objects have
2383 bogus sh_link fields. It would be nice if we could just
2384 reject them, but, unfortunately, some people need to use
2385 them. We scan through the section headers; if we find only
2386 one suitable symbol table, we clobber the sh_link to point
2387 to it. I hope this doesn't break anything.
2388
2389 Don't do it on executable nor shared library. */
2390 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0
2391 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
2392 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
2393 {
2394 unsigned int scan;
2395 int found;
2396
2397 found = 0;
2398 for (scan = 1; scan < num_sec; scan++)
2399 {
2400 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
2401 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
2402 {
2403 if (found != 0)
2404 {
2405 found = 0;
2406 break;
2407 }
2408 found = scan;
2409 }
2410 }
2411 if (found != 0)
2412 hdr->sh_link = found;
2413 }
2414
2415 /* Get the symbol table. */
2416 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
2417 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
2418 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
2419 goto fail;
2420
2421 /* If this is an alloc section in an executable or shared
2422 library, or the reloc section does not use the main symbol
2423 table we don't treat it as a reloc section. BFD can't
2424 adequately represent such a section, so at least for now,
2425 we don't try. We just present it as a normal section. We
2426 also can't use it as a reloc section if it points to the
2427 null section, an invalid section, another reloc section, or
2428 its sh_link points to the null section. */
2429 if (((abfd->flags & (DYNAMIC | EXEC_P)) != 0
2430 && (hdr->sh_flags & SHF_ALLOC) != 0)
2431 || hdr->sh_link == SHN_UNDEF
2432 || hdr->sh_link != elf_onesymtab (abfd)
2433 || hdr->sh_info == SHN_UNDEF
2434 || hdr->sh_info >= num_sec
2435 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
2436 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
2437 {
2438 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2439 shindex);
2440 goto success;
2441 }
2442
2443 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
2444 goto fail;
2445
2446 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
2447 if (target_sect == NULL)
2448 goto fail;
2449
2450 esdt = elf_section_data (target_sect);
2451 if (hdr->sh_type == SHT_RELA)
2452 p_hdr = &esdt->rela.hdr;
2453 else
2454 p_hdr = &esdt->rel.hdr;
2455
2456 /* PR 17512: file: 0b4f81b7.
2457 Also see PR 24456, for a file which deliberately has two reloc
2458 sections. */
2459 if (*p_hdr != NULL)
2460 {
2461 _bfd_error_handler
2462 /* xgettext:c-format */
2463 (_("%pB: warning: multiple relocation sections for section %pA \
2464 found - ignoring all but the first"),
2465 abfd, target_sect);
2466 goto success;
2467 }
2468 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, sizeof (*hdr2));
2469 if (hdr2 == NULL)
2470 goto fail;
2471 *hdr2 = *hdr;
2472 *p_hdr = hdr2;
2473 elf_elfsections (abfd)[shindex] = hdr2;
2474 target_sect->reloc_count += (NUM_SHDR_ENTRIES (hdr)
2475 * bed->s->int_rels_per_ext_rel);
2476 target_sect->flags |= SEC_RELOC;
2477 target_sect->relocation = NULL;
2478 target_sect->rel_filepos = hdr->sh_offset;
2479 /* In the section to which the relocations apply, mark whether
2480 its relocations are of the REL or RELA variety. */
2481 if (hdr->sh_size != 0)
2482 {
2483 if (hdr->sh_type == SHT_RELA)
2484 target_sect->use_rela_p = 1;
2485 }
2486 abfd->flags |= HAS_RELOC;
2487 goto success;
2488 }
2489
2490 case SHT_GNU_verdef:
2491 elf_dynverdef (abfd) = shindex;
2492 elf_tdata (abfd)->dynverdef_hdr = *hdr;
2493 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2494 goto success;
2495
2496 case SHT_GNU_versym:
2497 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
2498 goto fail;
2499
2500 elf_dynversym (abfd) = shindex;
2501 elf_tdata (abfd)->dynversym_hdr = *hdr;
2502 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2503 goto success;
2504
2505 case SHT_GNU_verneed:
2506 elf_dynverref (abfd) = shindex;
2507 elf_tdata (abfd)->dynverref_hdr = *hdr;
2508 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2509 goto success;
2510
2511 case SHT_SHLIB:
2512 goto success;
2513
2514 case SHT_GROUP:
2515 if (! IS_VALID_GROUP_SECTION_HEADER (hdr, GRP_ENTRY_SIZE))
2516 goto fail;
2517
2518 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2519 goto fail;
2520
2521 goto success;
2522
2523 default:
2524 /* Possibly an attributes section. */
2525 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
2526 || hdr->sh_type == bed->obj_attrs_section_type)
2527 {
2528 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2529 goto fail;
2530 _bfd_elf_parse_attributes (abfd, hdr);
2531 goto success;
2532 }
2533
2534 /* Check for any processor-specific section types. */
2535 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
2536 goto success;
2537
2538 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
2539 {
2540 if ((hdr->sh_flags & SHF_ALLOC) != 0)
2541 /* FIXME: How to properly handle allocated section reserved
2542 for applications? */
2543 _bfd_error_handler
2544 /* xgettext:c-format */
2545 (_("%pB: unknown type [%#x] section `%s'"),
2546 abfd, hdr->sh_type, name);
2547 else
2548 {
2549 /* Allow sections reserved for applications. */
2550 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2551 shindex);
2552 goto success;
2553 }
2554 }
2555 else if (hdr->sh_type >= SHT_LOPROC
2556 && hdr->sh_type <= SHT_HIPROC)
2557 /* FIXME: We should handle this section. */
2558 _bfd_error_handler
2559 /* xgettext:c-format */
2560 (_("%pB: unknown type [%#x] section `%s'"),
2561 abfd, hdr->sh_type, name);
2562 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
2563 {
2564 /* Unrecognised OS-specific sections. */
2565 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
2566 /* SHF_OS_NONCONFORMING indicates that special knowledge is
2567 required to correctly process the section and the file should
2568 be rejected with an error message. */
2569 _bfd_error_handler
2570 /* xgettext:c-format */
2571 (_("%pB: unknown type [%#x] section `%s'"),
2572 abfd, hdr->sh_type, name);
2573 else
2574 {
2575 /* Otherwise it should be processed. */
2576 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2577 goto success;
2578 }
2579 }
2580 else
2581 /* FIXME: We should handle this section. */
2582 _bfd_error_handler
2583 /* xgettext:c-format */
2584 (_("%pB: unknown type [%#x] section `%s'"),
2585 abfd, hdr->sh_type, name);
2586
2587 goto fail;
2588 }
2589
2590 fail:
2591 ret = FALSE;
2592 success:
2593 if (sections_being_created && sections_being_created_abfd == abfd)
2594 sections_being_created [shindex] = FALSE;
2595 if (-- nesting == 0)
2596 {
2597 sections_being_created = NULL;
2598 sections_being_created_abfd = abfd;
2599 }
2600 return ret;
2601 }
2602
2603 /* Return the local symbol specified by ABFD, R_SYMNDX. */
2604
2605 Elf_Internal_Sym *
2606 bfd_sym_from_r_symndx (struct sym_cache *cache,
2607 bfd *abfd,
2608 unsigned long r_symndx)
2609 {
2610 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2611
2612 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
2613 {
2614 Elf_Internal_Shdr *symtab_hdr;
2615 unsigned char esym[sizeof (Elf64_External_Sym)];
2616 Elf_External_Sym_Shndx eshndx;
2617
2618 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2619 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2620 &cache->sym[ent], esym, &eshndx) == NULL)
2621 return NULL;
2622
2623 if (cache->abfd != abfd)
2624 {
2625 memset (cache->indx, -1, sizeof (cache->indx));
2626 cache->abfd = abfd;
2627 }
2628 cache->indx[ent] = r_symndx;
2629 }
2630
2631 return &cache->sym[ent];
2632 }
2633
2634 /* Given an ELF section number, retrieve the corresponding BFD
2635 section. */
2636
2637 asection *
2638 bfd_section_from_elf_index (bfd *abfd, unsigned int sec_index)
2639 {
2640 if (sec_index >= elf_numsections (abfd))
2641 return NULL;
2642 return elf_elfsections (abfd)[sec_index]->bfd_section;
2643 }
2644
2645 static const struct bfd_elf_special_section special_sections_b[] =
2646 {
2647 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2648 { NULL, 0, 0, 0, 0 }
2649 };
2650
2651 static const struct bfd_elf_special_section special_sections_c[] =
2652 {
2653 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2654 { STRING_COMMA_LEN (".ctf"), 0, SHT_PROGBITS, 0 },
2655 { NULL, 0, 0, 0, 0 }
2656 };
2657
2658 static const struct bfd_elf_special_section special_sections_d[] =
2659 {
2660 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2661 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2662 /* There are more DWARF sections than these, but they needn't be added here
2663 unless you have to cope with broken compilers that don't emit section
2664 attributes or you want to help the user writing assembler. */
2665 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2666 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2667 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2668 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2669 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2670 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2671 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2672 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2673 { NULL, 0, 0, 0, 0 }
2674 };
2675
2676 static const struct bfd_elf_special_section special_sections_f[] =
2677 {
2678 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2679 { STRING_COMMA_LEN (".fini_array"), -2, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2680 { NULL, 0 , 0, 0, 0 }
2681 };
2682
2683 static const struct bfd_elf_special_section special_sections_g[] =
2684 {
2685 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2686 { STRING_COMMA_LEN (".gnu.lto_"), -1, SHT_PROGBITS, SHF_EXCLUDE },
2687 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2688 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2689 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2690 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2691 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2692 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2693 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2694 { NULL, 0, 0, 0, 0 }
2695 };
2696
2697 static const struct bfd_elf_special_section special_sections_h[] =
2698 {
2699 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2700 { NULL, 0, 0, 0, 0 }
2701 };
2702
2703 static const struct bfd_elf_special_section special_sections_i[] =
2704 {
2705 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2706 { STRING_COMMA_LEN (".init_array"), -2, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2707 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2708 { NULL, 0, 0, 0, 0 }
2709 };
2710
2711 static const struct bfd_elf_special_section special_sections_l[] =
2712 {
2713 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2714 { NULL, 0, 0, 0, 0 }
2715 };
2716
2717 static const struct bfd_elf_special_section special_sections_n[] =
2718 {
2719 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2720 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2721 { NULL, 0, 0, 0, 0 }
2722 };
2723
2724 static const struct bfd_elf_special_section special_sections_p[] =
2725 {
2726 { STRING_COMMA_LEN (".preinit_array"), -2, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2727 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2728 { NULL, 0, 0, 0, 0 }
2729 };
2730
2731 static const struct bfd_elf_special_section special_sections_r[] =
2732 {
2733 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2734 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2735 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2736 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2737 { NULL, 0, 0, 0, 0 }
2738 };
2739
2740 static const struct bfd_elf_special_section special_sections_s[] =
2741 {
2742 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2743 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2744 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2745 /* See struct bfd_elf_special_section declaration for the semantics of
2746 this special case where .prefix_length != strlen (.prefix). */
2747 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2748 { NULL, 0, 0, 0, 0 }
2749 };
2750
2751 static const struct bfd_elf_special_section special_sections_t[] =
2752 {
2753 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2754 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2755 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2756 { NULL, 0, 0, 0, 0 }
2757 };
2758
2759 static const struct bfd_elf_special_section special_sections_z[] =
2760 {
2761 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 },
2762 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 },
2763 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 },
2764 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 },
2765 { NULL, 0, 0, 0, 0 }
2766 };
2767
2768 static const struct bfd_elf_special_section * const special_sections[] =
2769 {
2770 special_sections_b, /* 'b' */
2771 special_sections_c, /* 'c' */
2772 special_sections_d, /* 'd' */
2773 NULL, /* 'e' */
2774 special_sections_f, /* 'f' */
2775 special_sections_g, /* 'g' */
2776 special_sections_h, /* 'h' */
2777 special_sections_i, /* 'i' */
2778 NULL, /* 'j' */
2779 NULL, /* 'k' */
2780 special_sections_l, /* 'l' */
2781 NULL, /* 'm' */
2782 special_sections_n, /* 'n' */
2783 NULL, /* 'o' */
2784 special_sections_p, /* 'p' */
2785 NULL, /* 'q' */
2786 special_sections_r, /* 'r' */
2787 special_sections_s, /* 's' */
2788 special_sections_t, /* 't' */
2789 NULL, /* 'u' */
2790 NULL, /* 'v' */
2791 NULL, /* 'w' */
2792 NULL, /* 'x' */
2793 NULL, /* 'y' */
2794 special_sections_z /* 'z' */
2795 };
2796
2797 const struct bfd_elf_special_section *
2798 _bfd_elf_get_special_section (const char *name,
2799 const struct bfd_elf_special_section *spec,
2800 unsigned int rela)
2801 {
2802 int i;
2803 int len;
2804
2805 len = strlen (name);
2806
2807 for (i = 0; spec[i].prefix != NULL; i++)
2808 {
2809 int suffix_len;
2810 int prefix_len = spec[i].prefix_length;
2811
2812 if (len < prefix_len)
2813 continue;
2814 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2815 continue;
2816
2817 suffix_len = spec[i].suffix_length;
2818 if (suffix_len <= 0)
2819 {
2820 if (name[prefix_len] != 0)
2821 {
2822 if (suffix_len == 0)
2823 continue;
2824 if (name[prefix_len] != '.'
2825 && (suffix_len == -2
2826 || (rela && spec[i].type == SHT_REL)))
2827 continue;
2828 }
2829 }
2830 else
2831 {
2832 if (len < prefix_len + suffix_len)
2833 continue;
2834 if (memcmp (name + len - suffix_len,
2835 spec[i].prefix + prefix_len,
2836 suffix_len) != 0)
2837 continue;
2838 }
2839 return &spec[i];
2840 }
2841
2842 return NULL;
2843 }
2844
2845 const struct bfd_elf_special_section *
2846 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2847 {
2848 int i;
2849 const struct bfd_elf_special_section *spec;
2850 const struct elf_backend_data *bed;
2851
2852 /* See if this is one of the special sections. */
2853 if (sec->name == NULL)
2854 return NULL;
2855
2856 bed = get_elf_backend_data (abfd);
2857 spec = bed->special_sections;
2858 if (spec)
2859 {
2860 spec = _bfd_elf_get_special_section (sec->name,
2861 bed->special_sections,
2862 sec->use_rela_p);
2863 if (spec != NULL)
2864 return spec;
2865 }
2866
2867 if (sec->name[0] != '.')
2868 return NULL;
2869
2870 i = sec->name[1] - 'b';
2871 if (i < 0 || i > 'z' - 'b')
2872 return NULL;
2873
2874 spec = special_sections[i];
2875
2876 if (spec == NULL)
2877 return NULL;
2878
2879 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2880 }
2881
2882 bfd_boolean
2883 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2884 {
2885 struct bfd_elf_section_data *sdata;
2886 const struct elf_backend_data *bed;
2887 const struct bfd_elf_special_section *ssect;
2888
2889 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2890 if (sdata == NULL)
2891 {
2892 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd,
2893 sizeof (*sdata));
2894 if (sdata == NULL)
2895 return FALSE;
2896 sec->used_by_bfd = sdata;
2897 }
2898
2899 /* Indicate whether or not this section should use RELA relocations. */
2900 bed = get_elf_backend_data (abfd);
2901 sec->use_rela_p = bed->default_use_rela_p;
2902
2903 /* When we read a file, we don't need to set ELF section type and
2904 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2905 anyway. We will set ELF section type and flags for all linker
2906 created sections. If user specifies BFD section flags, we will
2907 set ELF section type and flags based on BFD section flags in
2908 elf_fake_sections. Special handling for .init_array/.fini_array
2909 output sections since they may contain .ctors/.dtors input
2910 sections. We don't want _bfd_elf_init_private_section_data to
2911 copy ELF section type from .ctors/.dtors input sections. */
2912 if (abfd->direction != read_direction
2913 || (sec->flags & SEC_LINKER_CREATED) != 0)
2914 {
2915 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2916 if (ssect != NULL
2917 && (!sec->flags
2918 || (sec->flags & SEC_LINKER_CREATED) != 0
2919 || ssect->type == SHT_INIT_ARRAY
2920 || ssect->type == SHT_FINI_ARRAY))
2921 {
2922 elf_section_type (sec) = ssect->type;
2923 elf_section_flags (sec) = ssect->attr;
2924 }
2925 }
2926
2927 return _bfd_generic_new_section_hook (abfd, sec);
2928 }
2929
2930 /* Create a new bfd section from an ELF program header.
2931
2932 Since program segments have no names, we generate a synthetic name
2933 of the form segment<NUM>, where NUM is generally the index in the
2934 program header table. For segments that are split (see below) we
2935 generate the names segment<NUM>a and segment<NUM>b.
2936
2937 Note that some program segments may have a file size that is different than
2938 (less than) the memory size. All this means is that at execution the
2939 system must allocate the amount of memory specified by the memory size,
2940 but only initialize it with the first "file size" bytes read from the
2941 file. This would occur for example, with program segments consisting
2942 of combined data+bss.
2943
2944 To handle the above situation, this routine generates TWO bfd sections
2945 for the single program segment. The first has the length specified by
2946 the file size of the segment, and the second has the length specified
2947 by the difference between the two sizes. In effect, the segment is split
2948 into its initialized and uninitialized parts.
2949
2950 */
2951
2952 bfd_boolean
2953 _bfd_elf_make_section_from_phdr (bfd *abfd,
2954 Elf_Internal_Phdr *hdr,
2955 int hdr_index,
2956 const char *type_name)
2957 {
2958 asection *newsect;
2959 char *name;
2960 char namebuf[64];
2961 size_t len;
2962 int split;
2963
2964 split = ((hdr->p_memsz > 0)
2965 && (hdr->p_filesz > 0)
2966 && (hdr->p_memsz > hdr->p_filesz));
2967
2968 if (hdr->p_filesz > 0)
2969 {
2970 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "a" : "");
2971 len = strlen (namebuf) + 1;
2972 name = (char *) bfd_alloc (abfd, len);
2973 if (!name)
2974 return FALSE;
2975 memcpy (name, namebuf, len);
2976 newsect = bfd_make_section (abfd, name);
2977 if (newsect == NULL)
2978 return FALSE;
2979 newsect->vma = hdr->p_vaddr;
2980 newsect->lma = hdr->p_paddr;
2981 newsect->size = hdr->p_filesz;
2982 newsect->filepos = hdr->p_offset;
2983 newsect->flags |= SEC_HAS_CONTENTS;
2984 newsect->alignment_power = bfd_log2 (hdr->p_align);
2985 if (hdr->p_type == PT_LOAD)
2986 {
2987 newsect->flags |= SEC_ALLOC;
2988 newsect->flags |= SEC_LOAD;
2989 if (hdr->p_flags & PF_X)
2990 {
2991 /* FIXME: all we known is that it has execute PERMISSION,
2992 may be data. */
2993 newsect->flags |= SEC_CODE;
2994 }
2995 }
2996 if (!(hdr->p_flags & PF_W))
2997 {
2998 newsect->flags |= SEC_READONLY;
2999 }
3000 }
3001
3002 if (hdr->p_memsz > hdr->p_filesz)
3003 {
3004 bfd_vma align;
3005
3006 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "b" : "");
3007 len = strlen (namebuf) + 1;
3008 name = (char *) bfd_alloc (abfd, len);
3009 if (!name)
3010 return FALSE;
3011 memcpy (name, namebuf, len);
3012 newsect = bfd_make_section (abfd, name);
3013 if (newsect == NULL)
3014 return FALSE;
3015 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
3016 newsect->lma = hdr->p_paddr + hdr->p_filesz;
3017 newsect->size = hdr->p_memsz - hdr->p_filesz;
3018 newsect->filepos = hdr->p_offset + hdr->p_filesz;
3019 align = newsect->vma & -newsect->vma;
3020 if (align == 0 || align > hdr->p_align)
3021 align = hdr->p_align;
3022 newsect->alignment_power = bfd_log2 (align);
3023 if (hdr->p_type == PT_LOAD)
3024 {
3025 /* Hack for gdb. Segments that have not been modified do
3026 not have their contents written to a core file, on the
3027 assumption that a debugger can find the contents in the
3028 executable. We flag this case by setting the fake
3029 section size to zero. Note that "real" bss sections will
3030 always have their contents dumped to the core file. */
3031 if (bfd_get_format (abfd) == bfd_core)
3032 newsect->size = 0;
3033 newsect->flags |= SEC_ALLOC;
3034 if (hdr->p_flags & PF_X)
3035 newsect->flags |= SEC_CODE;
3036 }
3037 if (!(hdr->p_flags & PF_W))
3038 newsect->flags |= SEC_READONLY;
3039 }
3040
3041 return TRUE;
3042 }
3043
3044 static bfd_boolean
3045 _bfd_elf_core_find_build_id (bfd *templ, bfd_vma offset)
3046 {
3047 /* The return value is ignored. Build-ids are considered optional. */
3048 if (templ->xvec->flavour == bfd_target_elf_flavour)
3049 return (*get_elf_backend_data (templ)->elf_backend_core_find_build_id)
3050 (templ, offset);
3051 return FALSE;
3052 }
3053
3054 bfd_boolean
3055 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int hdr_index)
3056 {
3057 const struct elf_backend_data *bed;
3058
3059 switch (hdr->p_type)
3060 {
3061 case PT_NULL:
3062 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "null");
3063
3064 case PT_LOAD:
3065 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "load"))
3066 return FALSE;
3067 if (bfd_get_format (abfd) == bfd_core && abfd->build_id == NULL)
3068 _bfd_elf_core_find_build_id (abfd, hdr->p_offset);
3069 return TRUE;
3070
3071 case PT_DYNAMIC:
3072 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "dynamic");
3073
3074 case PT_INTERP:
3075 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "interp");
3076
3077 case PT_NOTE:
3078 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "note"))
3079 return FALSE;
3080 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz,
3081 hdr->p_align))
3082 return FALSE;
3083 return TRUE;
3084
3085 case PT_SHLIB:
3086 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "shlib");
3087
3088 case PT_PHDR:
3089 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "phdr");
3090
3091 case PT_GNU_EH_FRAME:
3092 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index,
3093 "eh_frame_hdr");
3094
3095 case PT_GNU_STACK:
3096 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "stack");
3097
3098 case PT_GNU_RELRO:
3099 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "relro");
3100
3101 default:
3102 /* Check for any processor-specific program segment types. */
3103 bed = get_elf_backend_data (abfd);
3104 return bed->elf_backend_section_from_phdr (abfd, hdr, hdr_index, "proc");
3105 }
3106 }
3107
3108 /* Return the REL_HDR for SEC, assuming there is only a single one, either
3109 REL or RELA. */
3110
3111 Elf_Internal_Shdr *
3112 _bfd_elf_single_rel_hdr (asection *sec)
3113 {
3114 if (elf_section_data (sec)->rel.hdr)
3115 {
3116 BFD_ASSERT (elf_section_data (sec)->rela.hdr == NULL);
3117 return elf_section_data (sec)->rel.hdr;
3118 }
3119 else
3120 return elf_section_data (sec)->rela.hdr;
3121 }
3122
3123 static bfd_boolean
3124 _bfd_elf_set_reloc_sh_name (bfd *abfd,
3125 Elf_Internal_Shdr *rel_hdr,
3126 const char *sec_name,
3127 bfd_boolean use_rela_p)
3128 {
3129 char *name = (char *) bfd_alloc (abfd,
3130 sizeof ".rela" + strlen (sec_name));
3131 if (name == NULL)
3132 return FALSE;
3133
3134 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", sec_name);
3135 rel_hdr->sh_name =
3136 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
3137 FALSE);
3138 if (rel_hdr->sh_name == (unsigned int) -1)
3139 return FALSE;
3140
3141 return TRUE;
3142 }
3143
3144 /* Allocate and initialize a section-header for a new reloc section,
3145 containing relocations against ASECT. It is stored in RELDATA. If
3146 USE_RELA_P is TRUE, we use RELA relocations; otherwise, we use REL
3147 relocations. */
3148
3149 static bfd_boolean
3150 _bfd_elf_init_reloc_shdr (bfd *abfd,
3151 struct bfd_elf_section_reloc_data *reldata,
3152 const char *sec_name,
3153 bfd_boolean use_rela_p,
3154 bfd_boolean delay_st_name_p)
3155 {
3156 Elf_Internal_Shdr *rel_hdr;
3157 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3158
3159 BFD_ASSERT (reldata->hdr == NULL);
3160 rel_hdr = bfd_zalloc (abfd, sizeof (*rel_hdr));
3161 reldata->hdr = rel_hdr;
3162
3163 if (delay_st_name_p)
3164 rel_hdr->sh_name = (unsigned int) -1;
3165 else if (!_bfd_elf_set_reloc_sh_name (abfd, rel_hdr, sec_name,
3166 use_rela_p))
3167 return FALSE;
3168 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
3169 rel_hdr->sh_entsize = (use_rela_p
3170 ? bed->s->sizeof_rela
3171 : bed->s->sizeof_rel);
3172 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
3173 rel_hdr->sh_flags = 0;
3174 rel_hdr->sh_addr = 0;
3175 rel_hdr->sh_size = 0;
3176 rel_hdr->sh_offset = 0;
3177
3178 return TRUE;
3179 }
3180
3181 /* Return the default section type based on the passed in section flags. */
3182
3183 int
3184 bfd_elf_get_default_section_type (flagword flags)
3185 {
3186 if ((flags & (SEC_ALLOC | SEC_IS_COMMON)) != 0
3187 && (flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
3188 return SHT_NOBITS;
3189 return SHT_PROGBITS;
3190 }
3191
3192 struct fake_section_arg
3193 {
3194 struct bfd_link_info *link_info;
3195 bfd_boolean failed;
3196 };
3197
3198 /* Set up an ELF internal section header for a section. */
3199
3200 static void
3201 elf_fake_sections (bfd *abfd, asection *asect, void *fsarg)
3202 {
3203 struct fake_section_arg *arg = (struct fake_section_arg *)fsarg;
3204 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3205 struct bfd_elf_section_data *esd = elf_section_data (asect);
3206 Elf_Internal_Shdr *this_hdr;
3207 unsigned int sh_type;
3208 const char *name = asect->name;
3209 bfd_boolean delay_st_name_p = FALSE;
3210
3211 if (arg->failed)
3212 {
3213 /* We already failed; just get out of the bfd_map_over_sections
3214 loop. */
3215 return;
3216 }
3217
3218 this_hdr = &esd->this_hdr;
3219
3220 if (arg->link_info)
3221 {
3222 /* ld: compress DWARF debug sections with names: .debug_*. */
3223 if ((arg->link_info->compress_debug & COMPRESS_DEBUG)
3224 && (asect->flags & SEC_DEBUGGING)
3225 && name[1] == 'd'
3226 && name[6] == '_')
3227 {
3228 /* Set SEC_ELF_COMPRESS to indicate this section should be
3229 compressed. */
3230 asect->flags |= SEC_ELF_COMPRESS;
3231
3232 /* If this section will be compressed, delay adding section
3233 name to section name section after it is compressed in
3234 _bfd_elf_assign_file_positions_for_non_load. */
3235 delay_st_name_p = TRUE;
3236 }
3237 }
3238 else if ((asect->flags & SEC_ELF_RENAME))
3239 {
3240 /* objcopy: rename output DWARF debug section. */
3241 if ((abfd->flags & (BFD_DECOMPRESS | BFD_COMPRESS_GABI)))
3242 {
3243 /* When we decompress or compress with SHF_COMPRESSED,
3244 convert section name from .zdebug_* to .debug_* if
3245 needed. */
3246 if (name[1] == 'z')
3247 {
3248 char *new_name = convert_zdebug_to_debug (abfd, name);
3249 if (new_name == NULL)
3250 {
3251 arg->failed = TRUE;
3252 return;
3253 }
3254 name = new_name;
3255 }
3256 }
3257 else if (asect->compress_status == COMPRESS_SECTION_DONE)
3258 {
3259 /* PR binutils/18087: Compression does not always make a
3260 section smaller. So only rename the section when
3261 compression has actually taken place. If input section
3262 name is .zdebug_*, we should never compress it again. */
3263 char *new_name = convert_debug_to_zdebug (abfd, name);
3264 if (new_name == NULL)
3265 {
3266 arg->failed = TRUE;
3267 return;
3268 }
3269 BFD_ASSERT (name[1] != 'z');
3270 name = new_name;
3271 }
3272 }
3273
3274 if (delay_st_name_p)
3275 this_hdr->sh_name = (unsigned int) -1;
3276 else
3277 {
3278 this_hdr->sh_name
3279 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3280 name, FALSE);
3281 if (this_hdr->sh_name == (unsigned int) -1)
3282 {
3283 arg->failed = TRUE;
3284 return;
3285 }
3286 }
3287
3288 /* Don't clear sh_flags. Assembler may set additional bits. */
3289
3290 if ((asect->flags & SEC_ALLOC) != 0
3291 || asect->user_set_vma)
3292 this_hdr->sh_addr = asect->vma;
3293 else
3294 this_hdr->sh_addr = 0;
3295
3296 this_hdr->sh_offset = 0;
3297 this_hdr->sh_size = asect->size;
3298 this_hdr->sh_link = 0;
3299 /* PR 17512: file: 0eb809fe, 8b0535ee. */
3300 if (asect->alignment_power >= (sizeof (bfd_vma) * 8) - 1)
3301 {
3302 _bfd_error_handler
3303 /* xgettext:c-format */
3304 (_("%pB: error: alignment power %d of section `%pA' is too big"),
3305 abfd, asect->alignment_power, asect);
3306 arg->failed = TRUE;
3307 return;
3308 }
3309 this_hdr->sh_addralign = (bfd_vma) 1 << asect->alignment_power;
3310 /* The sh_entsize and sh_info fields may have been set already by
3311 copy_private_section_data. */
3312
3313 this_hdr->bfd_section = asect;
3314 this_hdr->contents = NULL;
3315
3316 /* If the section type is unspecified, we set it based on
3317 asect->flags. */
3318 if ((asect->flags & SEC_GROUP) != 0)
3319 sh_type = SHT_GROUP;
3320 else
3321 sh_type = bfd_elf_get_default_section_type (asect->flags);
3322
3323 if (this_hdr->sh_type == SHT_NULL)
3324 this_hdr->sh_type = sh_type;
3325 else if (this_hdr->sh_type == SHT_NOBITS
3326 && sh_type == SHT_PROGBITS
3327 && (asect->flags & SEC_ALLOC) != 0)
3328 {
3329 /* Warn if we are changing a NOBITS section to PROGBITS, but
3330 allow the link to proceed. This can happen when users link
3331 non-bss input sections to bss output sections, or emit data
3332 to a bss output section via a linker script. */
3333 _bfd_error_handler
3334 (_("warning: section `%pA' type changed to PROGBITS"), asect);
3335 this_hdr->sh_type = sh_type;
3336 }
3337
3338 switch (this_hdr->sh_type)
3339 {
3340 default:
3341 break;
3342
3343 case SHT_STRTAB:
3344 case SHT_NOTE:
3345 case SHT_NOBITS:
3346 case SHT_PROGBITS:
3347 break;
3348
3349 case SHT_INIT_ARRAY:
3350 case SHT_FINI_ARRAY:
3351 case SHT_PREINIT_ARRAY:
3352 this_hdr->sh_entsize = bed->s->arch_size / 8;
3353 break;
3354
3355 case SHT_HASH:
3356 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
3357 break;
3358
3359 case SHT_DYNSYM:
3360 this_hdr->sh_entsize = bed->s->sizeof_sym;
3361 break;
3362
3363 case SHT_DYNAMIC:
3364 this_hdr->sh_entsize = bed->s->sizeof_dyn;
3365 break;
3366
3367 case SHT_RELA:
3368 if (get_elf_backend_data (abfd)->may_use_rela_p)
3369 this_hdr->sh_entsize = bed->s->sizeof_rela;
3370 break;
3371
3372 case SHT_REL:
3373 if (get_elf_backend_data (abfd)->may_use_rel_p)
3374 this_hdr->sh_entsize = bed->s->sizeof_rel;
3375 break;
3376
3377 case SHT_GNU_versym:
3378 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
3379 break;
3380
3381 case SHT_GNU_verdef:
3382 this_hdr->sh_entsize = 0;
3383 /* objcopy or strip will copy over sh_info, but may not set
3384 cverdefs. The linker will set cverdefs, but sh_info will be
3385 zero. */
3386 if (this_hdr->sh_info == 0)
3387 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
3388 else
3389 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
3390 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
3391 break;
3392
3393 case SHT_GNU_verneed:
3394 this_hdr->sh_entsize = 0;
3395 /* objcopy or strip will copy over sh_info, but may not set
3396 cverrefs. The linker will set cverrefs, but sh_info will be
3397 zero. */
3398 if (this_hdr->sh_info == 0)
3399 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
3400 else
3401 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
3402 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
3403 break;
3404
3405 case SHT_GROUP:
3406 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
3407 break;
3408
3409 case SHT_GNU_HASH:
3410 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
3411 break;
3412 }
3413
3414 if ((asect->flags & SEC_ALLOC) != 0)
3415 this_hdr->sh_flags |= SHF_ALLOC;
3416 if ((asect->flags & SEC_READONLY) == 0)
3417 this_hdr->sh_flags |= SHF_WRITE;
3418 if ((asect->flags & SEC_CODE) != 0)
3419 this_hdr->sh_flags |= SHF_EXECINSTR;
3420 if ((asect->flags & SEC_MERGE) != 0)
3421 {
3422 this_hdr->sh_flags |= SHF_MERGE;
3423 this_hdr->sh_entsize = asect->entsize;
3424 }
3425 if ((asect->flags & SEC_STRINGS) != 0)
3426 this_hdr->sh_flags |= SHF_STRINGS;
3427 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
3428 this_hdr->sh_flags |= SHF_GROUP;
3429 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
3430 {
3431 this_hdr->sh_flags |= SHF_TLS;
3432 if (asect->size == 0
3433 && (asect->flags & SEC_HAS_CONTENTS) == 0)
3434 {
3435 struct bfd_link_order *o = asect->map_tail.link_order;
3436
3437 this_hdr->sh_size = 0;
3438 if (o != NULL)
3439 {
3440 this_hdr->sh_size = o->offset + o->size;
3441 if (this_hdr->sh_size != 0)
3442 this_hdr->sh_type = SHT_NOBITS;
3443 }
3444 }
3445 }
3446 if ((asect->flags & (SEC_GROUP | SEC_EXCLUDE)) == SEC_EXCLUDE)
3447 this_hdr->sh_flags |= SHF_EXCLUDE;
3448
3449 /* If the section has relocs, set up a section header for the
3450 SHT_REL[A] section. If two relocation sections are required for
3451 this section, it is up to the processor-specific back-end to
3452 create the other. */
3453 if ((asect->flags & SEC_RELOC) != 0)
3454 {
3455 /* When doing a relocatable link, create both REL and RELA sections if
3456 needed. */
3457 if (arg->link_info
3458 /* Do the normal setup if we wouldn't create any sections here. */
3459 && esd->rel.count + esd->rela.count > 0
3460 && (bfd_link_relocatable (arg->link_info)
3461 || arg->link_info->emitrelocations))
3462 {
3463 if (esd->rel.count && esd->rel.hdr == NULL
3464 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rel, name,
3465 FALSE, delay_st_name_p))
3466 {
3467 arg->failed = TRUE;
3468 return;
3469 }
3470 if (esd->rela.count && esd->rela.hdr == NULL
3471 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rela, name,
3472 TRUE, delay_st_name_p))
3473 {
3474 arg->failed = TRUE;
3475 return;
3476 }
3477 }
3478 else if (!_bfd_elf_init_reloc_shdr (abfd,
3479 (asect->use_rela_p
3480 ? &esd->rela : &esd->rel),
3481 name,
3482 asect->use_rela_p,
3483 delay_st_name_p))
3484 {
3485 arg->failed = TRUE;
3486 return;
3487 }
3488 }
3489
3490 /* Check for processor-specific section types. */
3491 sh_type = this_hdr->sh_type;
3492 if (bed->elf_backend_fake_sections
3493 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
3494 {
3495 arg->failed = TRUE;
3496 return;
3497 }
3498
3499 if (sh_type == SHT_NOBITS && asect->size != 0)
3500 {
3501 /* Don't change the header type from NOBITS if we are being
3502 called for objcopy --only-keep-debug. */
3503 this_hdr->sh_type = sh_type;
3504 }
3505 }
3506
3507 /* Fill in the contents of a SHT_GROUP section. Called from
3508 _bfd_elf_compute_section_file_positions for gas, objcopy, and
3509 when ELF targets use the generic linker, ld. Called for ld -r
3510 from bfd_elf_final_link. */
3511
3512 void
3513 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
3514 {
3515 bfd_boolean *failedptr = (bfd_boolean *) failedptrarg;
3516 asection *elt, *first;
3517 unsigned char *loc;
3518 bfd_boolean gas;
3519
3520 /* Ignore linker created group section. See elfNN_ia64_object_p in
3521 elfxx-ia64.c. */
3522 if ((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP
3523 || sec->size == 0
3524 || *failedptr)
3525 return;
3526
3527 if (elf_section_data (sec)->this_hdr.sh_info == 0)
3528 {
3529 unsigned long symindx = 0;
3530
3531 /* elf_group_id will have been set up by objcopy and the
3532 generic linker. */
3533 if (elf_group_id (sec) != NULL)
3534 symindx = elf_group_id (sec)->udata.i;
3535
3536 if (symindx == 0)
3537 {
3538 /* If called from the assembler, swap_out_syms will have set up
3539 elf_section_syms. */
3540 BFD_ASSERT (elf_section_syms (abfd) != NULL);
3541 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
3542 }
3543 elf_section_data (sec)->this_hdr.sh_info = symindx;
3544 }
3545 else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2)
3546 {
3547 /* The ELF backend linker sets sh_info to -2 when the group
3548 signature symbol is global, and thus the index can't be
3549 set until all local symbols are output. */
3550 asection *igroup;
3551 struct bfd_elf_section_data *sec_data;
3552 unsigned long symndx;
3553 unsigned long extsymoff;
3554 struct elf_link_hash_entry *h;
3555
3556 /* The point of this little dance to the first SHF_GROUP section
3557 then back to the SHT_GROUP section is that this gets us to
3558 the SHT_GROUP in the input object. */
3559 igroup = elf_sec_group (elf_next_in_group (sec));
3560 sec_data = elf_section_data (igroup);
3561 symndx = sec_data->this_hdr.sh_info;
3562 extsymoff = 0;
3563 if (!elf_bad_symtab (igroup->owner))
3564 {
3565 Elf_Internal_Shdr *symtab_hdr;
3566
3567 symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr;
3568 extsymoff = symtab_hdr->sh_info;
3569 }
3570 h = elf_sym_hashes (igroup->owner)[symndx - extsymoff];
3571 while (h->root.type == bfd_link_hash_indirect
3572 || h->root.type == bfd_link_hash_warning)
3573 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3574
3575 elf_section_data (sec)->this_hdr.sh_info = h->indx;
3576 }
3577
3578 /* The contents won't be allocated for "ld -r" or objcopy. */
3579 gas = TRUE;
3580 if (sec->contents == NULL)
3581 {
3582 gas = FALSE;
3583 sec->contents = (unsigned char *) bfd_alloc (abfd, sec->size);
3584
3585 /* Arrange for the section to be written out. */
3586 elf_section_data (sec)->this_hdr.contents = sec->contents;
3587 if (sec->contents == NULL)
3588 {
3589 *failedptr = TRUE;
3590 return;
3591 }
3592 }
3593
3594 loc = sec->contents + sec->size;
3595
3596 /* Get the pointer to the first section in the group that gas
3597 squirreled away here. objcopy arranges for this to be set to the
3598 start of the input section group. */
3599 first = elt = elf_next_in_group (sec);
3600
3601 /* First element is a flag word. Rest of section is elf section
3602 indices for all the sections of the group. Write them backwards
3603 just to keep the group in the same order as given in .section
3604 directives, not that it matters. */
3605 while (elt != NULL)
3606 {
3607 asection *s;
3608
3609 s = elt;
3610 if (!gas)
3611 s = s->output_section;
3612 if (s != NULL
3613 && !bfd_is_abs_section (s))
3614 {
3615 struct bfd_elf_section_data *elf_sec = elf_section_data (s);
3616 struct bfd_elf_section_data *input_elf_sec = elf_section_data (elt);
3617
3618 if (elf_sec->rel.hdr != NULL
3619 && (gas
3620 || (input_elf_sec->rel.hdr != NULL
3621 && input_elf_sec->rel.hdr->sh_flags & SHF_GROUP) != 0))
3622 {
3623 elf_sec->rel.hdr->sh_flags |= SHF_GROUP;
3624 loc -= 4;
3625 H_PUT_32 (abfd, elf_sec->rel.idx, loc);
3626 }
3627 if (elf_sec->rela.hdr != NULL
3628 && (gas
3629 || (input_elf_sec->rela.hdr != NULL
3630 && input_elf_sec->rela.hdr->sh_flags & SHF_GROUP) != 0))
3631 {
3632 elf_sec->rela.hdr->sh_flags |= SHF_GROUP;
3633 loc -= 4;
3634 H_PUT_32 (abfd, elf_sec->rela.idx, loc);
3635 }
3636 loc -= 4;
3637 H_PUT_32 (abfd, elf_sec->this_idx, loc);
3638 }
3639 elt = elf_next_in_group (elt);
3640 if (elt == first)
3641 break;
3642 }
3643
3644 loc -= 4;
3645 BFD_ASSERT (loc == sec->contents);
3646
3647 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
3648 }
3649
3650 /* Given NAME, the name of a relocation section stripped of its
3651 .rel/.rela prefix, return the section in ABFD to which the
3652 relocations apply. */
3653
3654 asection *
3655 _bfd_elf_plt_get_reloc_section (bfd *abfd, const char *name)
3656 {
3657 /* If a target needs .got.plt section, relocations in rela.plt/rel.plt
3658 section likely apply to .got.plt or .got section. */
3659 if (get_elf_backend_data (abfd)->want_got_plt
3660 && strcmp (name, ".plt") == 0)
3661 {
3662 asection *sec;
3663
3664 name = ".got.plt";
3665 sec = bfd_get_section_by_name (abfd, name);
3666 if (sec != NULL)
3667 return sec;
3668 name = ".got";
3669 }
3670
3671 return bfd_get_section_by_name (abfd, name);
3672 }
3673
3674 /* Return the section to which RELOC_SEC applies. */
3675
3676 static asection *
3677 elf_get_reloc_section (asection *reloc_sec)
3678 {
3679 const char *name;
3680 unsigned int type;
3681 bfd *abfd;
3682 const struct elf_backend_data *bed;
3683
3684 type = elf_section_data (reloc_sec)->this_hdr.sh_type;
3685 if (type != SHT_REL && type != SHT_RELA)
3686 return NULL;
3687
3688 /* We look up the section the relocs apply to by name. */
3689 name = reloc_sec->name;
3690 if (strncmp (name, ".rel", 4) != 0)
3691 return NULL;
3692 name += 4;
3693 if (type == SHT_RELA && *name++ != 'a')
3694 return NULL;
3695
3696 abfd = reloc_sec->owner;
3697 bed = get_elf_backend_data (abfd);
3698 return bed->get_reloc_section (abfd, name);
3699 }
3700
3701 /* Assign all ELF section numbers. The dummy first section is handled here
3702 too. The link/info pointers for the standard section types are filled
3703 in here too, while we're at it. */
3704
3705 static bfd_boolean
3706 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
3707 {
3708 struct elf_obj_tdata *t = elf_tdata (abfd);
3709 asection *sec;
3710 unsigned int section_number;
3711 Elf_Internal_Shdr **i_shdrp;
3712 struct bfd_elf_section_data *d;
3713 bfd_boolean need_symtab;
3714 size_t amt;
3715
3716 section_number = 1;
3717
3718 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
3719
3720 /* SHT_GROUP sections are in relocatable files only. */
3721 if (link_info == NULL || !link_info->resolve_section_groups)
3722 {
3723 size_t reloc_count = 0;
3724
3725 /* Put SHT_GROUP sections first. */
3726 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3727 {
3728 d = elf_section_data (sec);
3729
3730 if (d->this_hdr.sh_type == SHT_GROUP)
3731 {
3732 if (sec->flags & SEC_LINKER_CREATED)
3733 {
3734 /* Remove the linker created SHT_GROUP sections. */
3735 bfd_section_list_remove (abfd, sec);
3736 abfd->section_count--;
3737 }
3738 else
3739 d->this_idx = section_number++;
3740 }
3741
3742 /* Count relocations. */
3743 reloc_count += sec->reloc_count;
3744 }
3745
3746 /* Clear HAS_RELOC if there are no relocations. */
3747 if (reloc_count == 0)
3748 abfd->flags &= ~HAS_RELOC;
3749 }
3750
3751 for (sec = abfd->sections; sec; sec = sec->next)
3752 {
3753 d = elf_section_data (sec);
3754
3755 if (d->this_hdr.sh_type != SHT_GROUP)
3756 d->this_idx = section_number++;
3757 if (d->this_hdr.sh_name != (unsigned int) -1)
3758 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
3759 if (d->rel.hdr)
3760 {
3761 d->rel.idx = section_number++;
3762 if (d->rel.hdr->sh_name != (unsigned int) -1)
3763 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel.hdr->sh_name);
3764 }
3765 else
3766 d->rel.idx = 0;
3767
3768 if (d->rela.hdr)
3769 {
3770 d->rela.idx = section_number++;
3771 if (d->rela.hdr->sh_name != (unsigned int) -1)
3772 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rela.hdr->sh_name);
3773 }
3774 else
3775 d->rela.idx = 0;
3776 }
3777
3778 need_symtab = (bfd_get_symcount (abfd) > 0
3779 || (link_info == NULL
3780 && ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
3781 == HAS_RELOC)));
3782 if (need_symtab)
3783 {
3784 elf_onesymtab (abfd) = section_number++;
3785 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
3786 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
3787 {
3788 elf_section_list *entry;
3789
3790 BFD_ASSERT (elf_symtab_shndx_list (abfd) == NULL);
3791
3792 entry = bfd_zalloc (abfd, sizeof (*entry));
3793 entry->ndx = section_number++;
3794 elf_symtab_shndx_list (abfd) = entry;
3795 entry->hdr.sh_name
3796 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3797 ".symtab_shndx", FALSE);
3798 if (entry->hdr.sh_name == (unsigned int) -1)
3799 return FALSE;
3800 }
3801 elf_strtab_sec (abfd) = section_number++;
3802 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3803 }
3804
3805 elf_shstrtab_sec (abfd) = section_number++;
3806 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
3807 elf_elfheader (abfd)->e_shstrndx = elf_shstrtab_sec (abfd);
3808
3809 if (section_number >= SHN_LORESERVE)
3810 {
3811 /* xgettext:c-format */
3812 _bfd_error_handler (_("%pB: too many sections: %u"),
3813 abfd, section_number);
3814 return FALSE;
3815 }
3816
3817 elf_numsections (abfd) = section_number;
3818 elf_elfheader (abfd)->e_shnum = section_number;
3819
3820 /* Set up the list of section header pointers, in agreement with the
3821 indices. */
3822 amt = section_number * sizeof (Elf_Internal_Shdr *);
3823 i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc (abfd, amt);
3824 if (i_shdrp == NULL)
3825 return FALSE;
3826
3827 i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd,
3828 sizeof (Elf_Internal_Shdr));
3829 if (i_shdrp[0] == NULL)
3830 {
3831 bfd_release (abfd, i_shdrp);
3832 return FALSE;
3833 }
3834
3835 elf_elfsections (abfd) = i_shdrp;
3836
3837 i_shdrp[elf_shstrtab_sec (abfd)] = &t->shstrtab_hdr;
3838 if (need_symtab)
3839 {
3840 i_shdrp[elf_onesymtab (abfd)] = &t->symtab_hdr;
3841 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
3842 {
3843 elf_section_list * entry = elf_symtab_shndx_list (abfd);
3844 BFD_ASSERT (entry != NULL);
3845 i_shdrp[entry->ndx] = & entry->hdr;
3846 entry->hdr.sh_link = elf_onesymtab (abfd);
3847 }
3848 i_shdrp[elf_strtab_sec (abfd)] = &t->strtab_hdr;
3849 t->symtab_hdr.sh_link = elf_strtab_sec (abfd);
3850 }
3851
3852 for (sec = abfd->sections; sec; sec = sec->next)
3853 {
3854 asection *s;
3855
3856 d = elf_section_data (sec);
3857
3858 i_shdrp[d->this_idx] = &d->this_hdr;
3859 if (d->rel.idx != 0)
3860 i_shdrp[d->rel.idx] = d->rel.hdr;
3861 if (d->rela.idx != 0)
3862 i_shdrp[d->rela.idx] = d->rela.hdr;
3863
3864 /* Fill in the sh_link and sh_info fields while we're at it. */
3865
3866 /* sh_link of a reloc section is the section index of the symbol
3867 table. sh_info is the section index of the section to which
3868 the relocation entries apply. */
3869 if (d->rel.idx != 0)
3870 {
3871 d->rel.hdr->sh_link = elf_onesymtab (abfd);
3872 d->rel.hdr->sh_info = d->this_idx;
3873 d->rel.hdr->sh_flags |= SHF_INFO_LINK;
3874 }
3875 if (d->rela.idx != 0)
3876 {
3877 d->rela.hdr->sh_link = elf_onesymtab (abfd);
3878 d->rela.hdr->sh_info = d->this_idx;
3879 d->rela.hdr->sh_flags |= SHF_INFO_LINK;
3880 }
3881
3882 /* We need to set up sh_link for SHF_LINK_ORDER. */
3883 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3884 {
3885 s = elf_linked_to_section (sec);
3886 if (s)
3887 {
3888 /* elf_linked_to_section points to the input section. */
3889 if (link_info != NULL)
3890 {
3891 /* Check discarded linkonce section. */
3892 if (discarded_section (s))
3893 {
3894 asection *kept;
3895 _bfd_error_handler
3896 /* xgettext:c-format */
3897 (_("%pB: sh_link of section `%pA' points to"
3898 " discarded section `%pA' of `%pB'"),
3899 abfd, d->this_hdr.bfd_section,
3900 s, s->owner);
3901 /* Point to the kept section if it has the same
3902 size as the discarded one. */
3903 kept = _bfd_elf_check_kept_section (s, link_info);
3904 if (kept == NULL)
3905 {
3906 bfd_set_error (bfd_error_bad_value);
3907 return FALSE;
3908 }
3909 s = kept;
3910 }
3911
3912 s = s->output_section;
3913 BFD_ASSERT (s != NULL);
3914 }
3915 else
3916 {
3917 /* Handle objcopy. */
3918 if (s->output_section == NULL)
3919 {
3920 _bfd_error_handler
3921 /* xgettext:c-format */
3922 (_("%pB: sh_link of section `%pA' points to"
3923 " removed section `%pA' of `%pB'"),
3924 abfd, d->this_hdr.bfd_section, s, s->owner);
3925 bfd_set_error (bfd_error_bad_value);
3926 return FALSE;
3927 }
3928 s = s->output_section;
3929 }
3930 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3931 }
3932 else
3933 {
3934 /* PR 290:
3935 The Intel C compiler generates SHT_IA_64_UNWIND with
3936 SHF_LINK_ORDER. But it doesn't set the sh_link or
3937 sh_info fields. Hence we could get the situation
3938 where s is NULL. */
3939 const struct elf_backend_data *bed
3940 = get_elf_backend_data (abfd);
3941 if (bed->link_order_error_handler)
3942 bed->link_order_error_handler
3943 /* xgettext:c-format */
3944 (_("%pB: warning: sh_link not set for section `%pA'"),
3945 abfd, sec);
3946 }
3947 }
3948
3949 switch (d->this_hdr.sh_type)
3950 {
3951 case SHT_REL:
3952 case SHT_RELA:
3953 /* A reloc section which we are treating as a normal BFD
3954 section. sh_link is the section index of the symbol
3955 table. sh_info is the section index of the section to
3956 which the relocation entries apply. We assume that an
3957 allocated reloc section uses the dynamic symbol table.
3958 FIXME: How can we be sure? */
3959 s = bfd_get_section_by_name (abfd, ".dynsym");
3960 if (s != NULL)
3961 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3962
3963 s = elf_get_reloc_section (sec);
3964 if (s != NULL)
3965 {
3966 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3967 d->this_hdr.sh_flags |= SHF_INFO_LINK;
3968 }
3969 break;
3970
3971 case SHT_STRTAB:
3972 /* We assume that a section named .stab*str is a stabs
3973 string section. We look for a section with the same name
3974 but without the trailing ``str'', and set its sh_link
3975 field to point to this section. */
3976 if (CONST_STRNEQ (sec->name, ".stab")
3977 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3978 {
3979 size_t len;
3980 char *alc;
3981
3982 len = strlen (sec->name);
3983 alc = (char *) bfd_malloc (len - 2);
3984 if (alc == NULL)
3985 return FALSE;
3986 memcpy (alc, sec->name, len - 3);
3987 alc[len - 3] = '\0';
3988 s = bfd_get_section_by_name (abfd, alc);
3989 free (alc);
3990 if (s != NULL)
3991 {
3992 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3993
3994 /* This is a .stab section. */
3995 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3996 elf_section_data (s)->this_hdr.sh_entsize
3997 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3998 }
3999 }
4000 break;
4001
4002 case SHT_DYNAMIC:
4003 case SHT_DYNSYM:
4004 case SHT_GNU_verneed:
4005 case SHT_GNU_verdef:
4006 /* sh_link is the section header index of the string table
4007 used for the dynamic entries, or the symbol table, or the
4008 version strings. */
4009 s = bfd_get_section_by_name (abfd, ".dynstr");
4010 if (s != NULL)
4011 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
4012 break;
4013
4014 case SHT_GNU_LIBLIST:
4015 /* sh_link is the section header index of the prelink library
4016 list used for the dynamic entries, or the symbol table, or
4017 the version strings. */
4018 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
4019 ? ".dynstr" : ".gnu.libstr");
4020 if (s != NULL)
4021 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
4022 break;
4023
4024 case SHT_HASH:
4025 case SHT_GNU_HASH:
4026 case SHT_GNU_versym:
4027 /* sh_link is the section header index of the symbol table
4028 this hash table or version table is for. */
4029 s = bfd_get_section_by_name (abfd, ".dynsym");
4030 if (s != NULL)
4031 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
4032 break;
4033
4034 case SHT_GROUP:
4035 d->this_hdr.sh_link = elf_onesymtab (abfd);
4036 }
4037 }
4038
4039 /* Delay setting sh_name to _bfd_elf_write_object_contents so that
4040 _bfd_elf_assign_file_positions_for_non_load can convert DWARF
4041 debug section name from .debug_* to .zdebug_* if needed. */
4042
4043 return TRUE;
4044 }
4045
4046 static bfd_boolean
4047 sym_is_global (bfd *abfd, asymbol *sym)
4048 {
4049 /* If the backend has a special mapping, use it. */
4050 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4051 if (bed->elf_backend_sym_is_global)
4052 return (*bed->elf_backend_sym_is_global) (abfd, sym);
4053
4054 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0
4055 || bfd_is_und_section (bfd_asymbol_section (sym))
4056 || bfd_is_com_section (bfd_asymbol_section (sym)));
4057 }
4058
4059 /* Filter global symbols of ABFD to include in the import library. All
4060 SYMCOUNT symbols of ABFD can be examined from their pointers in
4061 SYMS. Pointers of symbols to keep should be stored contiguously at
4062 the beginning of that array.
4063
4064 Returns the number of symbols to keep. */
4065
4066 unsigned int
4067 _bfd_elf_filter_global_symbols (bfd *abfd, struct bfd_link_info *info,
4068 asymbol **syms, long symcount)
4069 {
4070 long src_count, dst_count = 0;
4071
4072 for (src_count = 0; src_count < symcount; src_count++)
4073 {
4074 asymbol *sym = syms[src_count];
4075 char *name = (char *) bfd_asymbol_name (sym);
4076 struct bfd_link_hash_entry *h;
4077
4078 if (!sym_is_global (abfd, sym))
4079 continue;
4080
4081 h = bfd_link_hash_lookup (info->hash, name, FALSE, FALSE, FALSE);
4082 if (h == NULL)
4083 continue;
4084 if (h->type != bfd_link_hash_defined && h->type != bfd_link_hash_defweak)
4085 continue;
4086 if (h->linker_def || h->ldscript_def)
4087 continue;
4088
4089 syms[dst_count++] = sym;
4090 }
4091
4092 syms[dst_count] = NULL;
4093
4094 return dst_count;
4095 }
4096
4097 /* Don't output section symbols for sections that are not going to be
4098 output, that are duplicates or there is no BFD section. */
4099
4100 static bfd_boolean
4101 ignore_section_sym (bfd *abfd, asymbol *sym)
4102 {
4103 elf_symbol_type *type_ptr;
4104
4105 if (sym == NULL)
4106 return FALSE;
4107
4108 if ((sym->flags & BSF_SECTION_SYM) == 0)
4109 return FALSE;
4110
4111 if (sym->section == NULL)
4112 return TRUE;
4113
4114 type_ptr = elf_symbol_from (abfd, sym);
4115 return ((type_ptr != NULL
4116 && type_ptr->internal_elf_sym.st_shndx != 0
4117 && bfd_is_abs_section (sym->section))
4118 || !(sym->section->owner == abfd
4119 || (sym->section->output_section != NULL
4120 && sym->section->output_section->owner == abfd
4121 && sym->section->output_offset == 0)
4122 || bfd_is_abs_section (sym->section)));
4123 }
4124
4125 /* Map symbol from it's internal number to the external number, moving
4126 all local symbols to be at the head of the list. */
4127
4128 static bfd_boolean
4129 elf_map_symbols (bfd *abfd, unsigned int *pnum_locals)
4130 {
4131 unsigned int symcount = bfd_get_symcount (abfd);
4132 asymbol **syms = bfd_get_outsymbols (abfd);
4133 asymbol **sect_syms;
4134 unsigned int num_locals = 0;
4135 unsigned int num_globals = 0;
4136 unsigned int num_locals2 = 0;
4137 unsigned int num_globals2 = 0;
4138 unsigned int max_index = 0;
4139 unsigned int idx;
4140 asection *asect;
4141 asymbol **new_syms;
4142 size_t amt;
4143
4144 #ifdef DEBUG
4145 fprintf (stderr, "elf_map_symbols\n");
4146 fflush (stderr);
4147 #endif
4148
4149 for (asect = abfd->sections; asect; asect = asect->next)
4150 {
4151 if (max_index < asect->index)
4152 max_index = asect->index;
4153 }
4154
4155 max_index++;
4156 amt = max_index * sizeof (asymbol *);
4157 sect_syms = (asymbol **) bfd_zalloc (abfd, amt);
4158 if (sect_syms == NULL)
4159 return FALSE;
4160 elf_section_syms (abfd) = sect_syms;
4161 elf_num_section_syms (abfd) = max_index;
4162
4163 /* Init sect_syms entries for any section symbols we have already
4164 decided to output. */
4165 for (idx = 0; idx < symcount; idx++)
4166 {
4167 asymbol *sym = syms[idx];
4168
4169 if ((sym->flags & BSF_SECTION_SYM) != 0
4170 && sym->value == 0
4171 && !ignore_section_sym (abfd, sym)
4172 && !bfd_is_abs_section (sym->section))
4173 {
4174 asection *sec = sym->section;
4175
4176 if (sec->owner != abfd)
4177 sec = sec->output_section;
4178
4179 sect_syms[sec->index] = syms[idx];
4180 }
4181 }
4182
4183 /* Classify all of the symbols. */
4184 for (idx = 0; idx < symcount; idx++)
4185 {
4186 if (sym_is_global (abfd, syms[idx]))
4187 num_globals++;
4188 else if (!ignore_section_sym (abfd, syms[idx]))
4189 num_locals++;
4190 }
4191
4192 /* We will be adding a section symbol for each normal BFD section. Most
4193 sections will already have a section symbol in outsymbols, but
4194 eg. SHT_GROUP sections will not, and we need the section symbol mapped
4195 at least in that case. */
4196 for (asect = abfd->sections; asect; asect = asect->next)
4197 {
4198 if (sect_syms[asect->index] == NULL)
4199 {
4200 if (!sym_is_global (abfd, asect->symbol))
4201 num_locals++;
4202 else
4203 num_globals++;
4204 }
4205 }
4206
4207 /* Now sort the symbols so the local symbols are first. */
4208 amt = (num_locals + num_globals) * sizeof (asymbol *);
4209 new_syms = (asymbol **) bfd_alloc (abfd, amt);
4210 if (new_syms == NULL)
4211 return FALSE;
4212
4213 for (idx = 0; idx < symcount; idx++)
4214 {
4215 asymbol *sym = syms[idx];
4216 unsigned int i;
4217
4218 if (sym_is_global (abfd, sym))
4219 i = num_locals + num_globals2++;
4220 else if (!ignore_section_sym (abfd, sym))
4221 i = num_locals2++;
4222 else
4223 continue;
4224 new_syms[i] = sym;
4225 sym->udata.i = i + 1;
4226 }
4227 for (asect = abfd->sections; asect; asect = asect->next)
4228 {
4229 if (sect_syms[asect->index] == NULL)
4230 {
4231 asymbol *sym = asect->symbol;
4232 unsigned int i;
4233
4234 sect_syms[asect->index] = sym;
4235 if (!sym_is_global (abfd, sym))
4236 i = num_locals2++;
4237 else
4238 i = num_locals + num_globals2++;
4239 new_syms[i] = sym;
4240 sym->udata.i = i + 1;
4241 }
4242 }
4243
4244 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
4245
4246 *pnum_locals = num_locals;
4247 return TRUE;
4248 }
4249
4250 /* Align to the maximum file alignment that could be required for any
4251 ELF data structure. */
4252
4253 static inline file_ptr
4254 align_file_position (file_ptr off, int align)
4255 {
4256 return (off + align - 1) & ~(align - 1);
4257 }
4258
4259 /* Assign a file position to a section, optionally aligning to the
4260 required section alignment. */
4261
4262 file_ptr
4263 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
4264 file_ptr offset,
4265 bfd_boolean align)
4266 {
4267 if (align && i_shdrp->sh_addralign > 1)
4268 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
4269 i_shdrp->sh_offset = offset;
4270 if (i_shdrp->bfd_section != NULL)
4271 i_shdrp->bfd_section->filepos = offset;
4272 if (i_shdrp->sh_type != SHT_NOBITS)
4273 offset += i_shdrp->sh_size;
4274 return offset;
4275 }
4276
4277 /* Compute the file positions we are going to put the sections at, and
4278 otherwise prepare to begin writing out the ELF file. If LINK_INFO
4279 is not NULL, this is being called by the ELF backend linker. */
4280
4281 bfd_boolean
4282 _bfd_elf_compute_section_file_positions (bfd *abfd,
4283 struct bfd_link_info *link_info)
4284 {
4285 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4286 struct fake_section_arg fsargs;
4287 bfd_boolean failed;
4288 struct elf_strtab_hash *strtab = NULL;
4289 Elf_Internal_Shdr *shstrtab_hdr;
4290 bfd_boolean need_symtab;
4291
4292 if (abfd->output_has_begun)
4293 return TRUE;
4294
4295 /* Do any elf backend specific processing first. */
4296 if (bed->elf_backend_begin_write_processing)
4297 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
4298
4299 if (!(*bed->elf_backend_init_file_header) (abfd, link_info))
4300 return FALSE;
4301
4302 fsargs.failed = FALSE;
4303 fsargs.link_info = link_info;
4304 bfd_map_over_sections (abfd, elf_fake_sections, &fsargs);
4305 if (fsargs.failed)
4306 return FALSE;
4307
4308 if (!assign_section_numbers (abfd, link_info))
4309 return FALSE;
4310
4311 /* The backend linker builds symbol table information itself. */
4312 need_symtab = (link_info == NULL
4313 && (bfd_get_symcount (abfd) > 0
4314 || ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
4315 == HAS_RELOC)));
4316 if (need_symtab)
4317 {
4318 /* Non-zero if doing a relocatable link. */
4319 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
4320
4321 if (! swap_out_syms (abfd, &strtab, relocatable_p))
4322 return FALSE;
4323 }
4324
4325 failed = FALSE;
4326 if (link_info == NULL)
4327 {
4328 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
4329 if (failed)
4330 return FALSE;
4331 }
4332
4333 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
4334 /* sh_name was set in init_file_header. */
4335 shstrtab_hdr->sh_type = SHT_STRTAB;
4336 shstrtab_hdr->sh_flags = bed->elf_strtab_flags;
4337 shstrtab_hdr->sh_addr = 0;
4338 /* sh_size is set in _bfd_elf_assign_file_positions_for_non_load. */
4339 shstrtab_hdr->sh_entsize = 0;
4340 shstrtab_hdr->sh_link = 0;
4341 shstrtab_hdr->sh_info = 0;
4342 /* sh_offset is set in _bfd_elf_assign_file_positions_for_non_load. */
4343 shstrtab_hdr->sh_addralign = 1;
4344
4345 if (!assign_file_positions_except_relocs (abfd, link_info))
4346 return FALSE;
4347
4348 if (need_symtab)
4349 {
4350 file_ptr off;
4351 Elf_Internal_Shdr *hdr;
4352
4353 off = elf_next_file_pos (abfd);
4354
4355 hdr = & elf_symtab_hdr (abfd);
4356 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4357
4358 if (elf_symtab_shndx_list (abfd) != NULL)
4359 {
4360 hdr = & elf_symtab_shndx_list (abfd)->hdr;
4361 if (hdr->sh_size != 0)
4362 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4363 /* FIXME: What about other symtab_shndx sections in the list ? */
4364 }
4365
4366 hdr = &elf_tdata (abfd)->strtab_hdr;
4367 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4368
4369 elf_next_file_pos (abfd) = off;
4370
4371 /* Now that we know where the .strtab section goes, write it
4372 out. */
4373 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
4374 || ! _bfd_elf_strtab_emit (abfd, strtab))
4375 return FALSE;
4376 _bfd_elf_strtab_free (strtab);
4377 }
4378
4379 abfd->output_has_begun = TRUE;
4380
4381 return TRUE;
4382 }
4383
4384 /* Make an initial estimate of the size of the program header. If we
4385 get the number wrong here, we'll redo section placement. */
4386
4387 static bfd_size_type
4388 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
4389 {
4390 size_t segs;
4391 asection *s;
4392 const struct elf_backend_data *bed;
4393
4394 /* Assume we will need exactly two PT_LOAD segments: one for text
4395 and one for data. */
4396 segs = 2;
4397
4398 s = bfd_get_section_by_name (abfd, ".interp");
4399 if (s != NULL && (s->flags & SEC_LOAD) != 0 && s->size != 0)
4400 {
4401 /* If we have a loadable interpreter section, we need a
4402 PT_INTERP segment. In this case, assume we also need a
4403 PT_PHDR segment, although that may not be true for all
4404 targets. */
4405 segs += 2;
4406 }
4407
4408 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4409 {
4410 /* We need a PT_DYNAMIC segment. */
4411 ++segs;
4412 }
4413
4414 if (info != NULL && info->relro)
4415 {
4416 /* We need a PT_GNU_RELRO segment. */
4417 ++segs;
4418 }
4419
4420 if (elf_eh_frame_hdr (abfd))
4421 {
4422 /* We need a PT_GNU_EH_FRAME segment. */
4423 ++segs;
4424 }
4425
4426 if (elf_stack_flags (abfd))
4427 {
4428 /* We need a PT_GNU_STACK segment. */
4429 ++segs;
4430 }
4431
4432 s = bfd_get_section_by_name (abfd,
4433 NOTE_GNU_PROPERTY_SECTION_NAME);
4434 if (s != NULL && s->size != 0)
4435 {
4436 /* We need a PT_GNU_PROPERTY segment. */
4437 ++segs;
4438 }
4439
4440 for (s = abfd->sections; s != NULL; s = s->next)
4441 {
4442 if ((s->flags & SEC_LOAD) != 0
4443 && elf_section_type (s) == SHT_NOTE)
4444 {
4445 unsigned int alignment_power;
4446 /* We need a PT_NOTE segment. */
4447 ++segs;
4448 /* Try to create just one PT_NOTE segment for all adjacent
4449 loadable SHT_NOTE sections. gABI requires that within a
4450 PT_NOTE segment (and also inside of each SHT_NOTE section)
4451 each note should have the same alignment. So we check
4452 whether the sections are correctly aligned. */
4453 alignment_power = s->alignment_power;
4454 while (s->next != NULL
4455 && s->next->alignment_power == alignment_power
4456 && (s->next->flags & SEC_LOAD) != 0
4457 && elf_section_type (s->next) == SHT_NOTE)
4458 s = s->next;
4459 }
4460 }
4461
4462 for (s = abfd->sections; s != NULL; s = s->next)
4463 {
4464 if (s->flags & SEC_THREAD_LOCAL)
4465 {
4466 /* We need a PT_TLS segment. */
4467 ++segs;
4468 break;
4469 }
4470 }
4471
4472 bed = get_elf_backend_data (abfd);
4473
4474 if ((abfd->flags & D_PAGED) != 0
4475 && (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_mbind) != 0)
4476 {
4477 /* Add a PT_GNU_MBIND segment for each mbind section. */
4478 unsigned int page_align_power = bfd_log2 (bed->commonpagesize);
4479 for (s = abfd->sections; s != NULL; s = s->next)
4480 if (elf_section_flags (s) & SHF_GNU_MBIND)
4481 {
4482 if (elf_section_data (s)->this_hdr.sh_info > PT_GNU_MBIND_NUM)
4483 {
4484 _bfd_error_handler
4485 /* xgettext:c-format */
4486 (_("%pB: GNU_MBIND section `%pA' has invalid "
4487 "sh_info field: %d"),
4488 abfd, s, elf_section_data (s)->this_hdr.sh_info);
4489 continue;
4490 }
4491 /* Align mbind section to page size. */
4492 if (s->alignment_power < page_align_power)
4493 s->alignment_power = page_align_power;
4494 segs ++;
4495 }
4496 }
4497
4498 /* Let the backend count up any program headers it might need. */
4499 if (bed->elf_backend_additional_program_headers)
4500 {
4501 int a;
4502
4503 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
4504 if (a == -1)
4505 abort ();
4506 segs += a;
4507 }
4508
4509 return segs * bed->s->sizeof_phdr;
4510 }
4511
4512 /* Find the segment that contains the output_section of section. */
4513
4514 Elf_Internal_Phdr *
4515 _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
4516 {
4517 struct elf_segment_map *m;
4518 Elf_Internal_Phdr *p;
4519
4520 for (m = elf_seg_map (abfd), p = elf_tdata (abfd)->phdr;
4521 m != NULL;
4522 m = m->next, p++)
4523 {
4524 int i;
4525
4526 for (i = m->count - 1; i >= 0; i--)
4527 if (m->sections[i] == section)
4528 return p;
4529 }
4530
4531 return NULL;
4532 }
4533
4534 /* Create a mapping from a set of sections to a program segment. */
4535
4536 static struct elf_segment_map *
4537 make_mapping (bfd *abfd,
4538 asection **sections,
4539 unsigned int from,
4540 unsigned int to,
4541 bfd_boolean phdr)
4542 {
4543 struct elf_segment_map *m;
4544 unsigned int i;
4545 asection **hdrpp;
4546 size_t amt;
4547
4548 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
4549 amt += (to - from) * sizeof (asection *);
4550 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4551 if (m == NULL)
4552 return NULL;
4553 m->next = NULL;
4554 m->p_type = PT_LOAD;
4555 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
4556 m->sections[i - from] = *hdrpp;
4557 m->count = to - from;
4558
4559 if (from == 0 && phdr)
4560 {
4561 /* Include the headers in the first PT_LOAD segment. */
4562 m->includes_filehdr = 1;
4563 m->includes_phdrs = 1;
4564 }
4565
4566 return m;
4567 }
4568
4569 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
4570 on failure. */
4571
4572 struct elf_segment_map *
4573 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
4574 {
4575 struct elf_segment_map *m;
4576
4577 m = (struct elf_segment_map *) bfd_zalloc (abfd,
4578 sizeof (struct elf_segment_map));
4579 if (m == NULL)
4580 return NULL;
4581 m->next = NULL;
4582 m->p_type = PT_DYNAMIC;
4583 m->count = 1;
4584 m->sections[0] = dynsec;
4585
4586 return m;
4587 }
4588
4589 /* Possibly add or remove segments from the segment map. */
4590
4591 static bfd_boolean
4592 elf_modify_segment_map (bfd *abfd,
4593 struct bfd_link_info *info,
4594 bfd_boolean remove_empty_load)
4595 {
4596 struct elf_segment_map **m;
4597 const struct elf_backend_data *bed;
4598
4599 /* The placement algorithm assumes that non allocated sections are
4600 not in PT_LOAD segments. We ensure this here by removing such
4601 sections from the segment map. We also remove excluded
4602 sections. Finally, any PT_LOAD segment without sections is
4603 removed. */
4604 m = &elf_seg_map (abfd);
4605 while (*m)
4606 {
4607 unsigned int i, new_count;
4608
4609 for (new_count = 0, i = 0; i < (*m)->count; i++)
4610 {
4611 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
4612 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
4613 || (*m)->p_type != PT_LOAD))
4614 {
4615 (*m)->sections[new_count] = (*m)->sections[i];
4616 new_count++;
4617 }
4618 }
4619 (*m)->count = new_count;
4620
4621 if (remove_empty_load
4622 && (*m)->p_type == PT_LOAD
4623 && (*m)->count == 0
4624 && !(*m)->includes_phdrs)
4625 *m = (*m)->next;
4626 else
4627 m = &(*m)->next;
4628 }
4629
4630 bed = get_elf_backend_data (abfd);
4631 if (bed->elf_backend_modify_segment_map != NULL)
4632 {
4633 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
4634 return FALSE;
4635 }
4636
4637 return TRUE;
4638 }
4639
4640 #define IS_TBSS(s) \
4641 ((s->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) == SEC_THREAD_LOCAL)
4642
4643 /* Set up a mapping from BFD sections to program segments. */
4644
4645 bfd_boolean
4646 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
4647 {
4648 unsigned int count;
4649 struct elf_segment_map *m;
4650 asection **sections = NULL;
4651 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4652 bfd_boolean no_user_phdrs;
4653
4654 no_user_phdrs = elf_seg_map (abfd) == NULL;
4655
4656 if (info != NULL)
4657 info->user_phdrs = !no_user_phdrs;
4658
4659 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
4660 {
4661 asection *s;
4662 unsigned int i;
4663 struct elf_segment_map *mfirst;
4664 struct elf_segment_map **pm;
4665 asection *last_hdr;
4666 bfd_vma last_size;
4667 unsigned int hdr_index;
4668 bfd_vma maxpagesize;
4669 asection **hdrpp;
4670 bfd_boolean phdr_in_segment;
4671 bfd_boolean writable;
4672 bfd_boolean executable;
4673 unsigned int tls_count = 0;
4674 asection *first_tls = NULL;
4675 asection *first_mbind = NULL;
4676 asection *dynsec, *eh_frame_hdr;
4677 size_t amt;
4678 bfd_vma addr_mask, wrap_to = 0;
4679 bfd_size_type phdr_size;
4680
4681 /* Select the allocated sections, and sort them. */
4682
4683 amt = bfd_count_sections (abfd) * sizeof (asection *);
4684 sections = (asection **) bfd_malloc (amt);
4685 if (sections == NULL)
4686 goto error_return;
4687
4688 /* Calculate top address, avoiding undefined behaviour of shift
4689 left operator when shift count is equal to size of type
4690 being shifted. */
4691 addr_mask = ((bfd_vma) 1 << (bfd_arch_bits_per_address (abfd) - 1)) - 1;
4692 addr_mask = (addr_mask << 1) + 1;
4693
4694 i = 0;
4695 for (s = abfd->sections; s != NULL; s = s->next)
4696 {
4697 if ((s->flags & SEC_ALLOC) != 0)
4698 {
4699 /* target_index is unused until bfd_elf_final_link
4700 starts output of section symbols. Use it to make
4701 qsort stable. */
4702 s->target_index = i;
4703 sections[i] = s;
4704 ++i;
4705 /* A wrapping section potentially clashes with header. */
4706 if (((s->lma + s->size) & addr_mask) < (s->lma & addr_mask))
4707 wrap_to = (s->lma + s->size) & addr_mask;
4708 }
4709 }
4710 BFD_ASSERT (i <= bfd_count_sections (abfd));
4711 count = i;
4712
4713 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
4714
4715 phdr_size = elf_program_header_size (abfd);
4716 if (phdr_size == (bfd_size_type) -1)
4717 phdr_size = get_program_header_size (abfd, info);
4718 phdr_size += bed->s->sizeof_ehdr;
4719 maxpagesize = bed->maxpagesize;
4720 if (maxpagesize == 0)
4721 maxpagesize = 1;
4722 phdr_in_segment = info != NULL && info->load_phdrs;
4723 if (count != 0
4724 && (((sections[0]->lma & addr_mask) & (maxpagesize - 1))
4725 >= (phdr_size & (maxpagesize - 1))))
4726 /* For compatibility with old scripts that may not be using
4727 SIZEOF_HEADERS, add headers when it looks like space has
4728 been left for them. */
4729 phdr_in_segment = TRUE;
4730
4731 /* Build the mapping. */
4732 mfirst = NULL;
4733 pm = &mfirst;
4734
4735 /* If we have a .interp section, then create a PT_PHDR segment for
4736 the program headers and a PT_INTERP segment for the .interp
4737 section. */
4738 s = bfd_get_section_by_name (abfd, ".interp");
4739 if (s != NULL && (s->flags & SEC_LOAD) != 0 && s->size != 0)
4740 {
4741 amt = sizeof (struct elf_segment_map);
4742 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4743 if (m == NULL)
4744 goto error_return;
4745 m->next = NULL;
4746 m->p_type = PT_PHDR;
4747 m->p_flags = PF_R;
4748 m->p_flags_valid = 1;
4749 m->includes_phdrs = 1;
4750 phdr_in_segment = TRUE;
4751 *pm = m;
4752 pm = &m->next;
4753
4754 amt = sizeof (struct elf_segment_map);
4755 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4756 if (m == NULL)
4757 goto error_return;
4758 m->next = NULL;
4759 m->p_type = PT_INTERP;
4760 m->count = 1;
4761 m->sections[0] = s;
4762
4763 *pm = m;
4764 pm = &m->next;
4765 }
4766
4767 /* Look through the sections. We put sections in the same program
4768 segment when the start of the second section can be placed within
4769 a few bytes of the end of the first section. */
4770 last_hdr = NULL;
4771 last_size = 0;
4772 hdr_index = 0;
4773 writable = FALSE;
4774 executable = FALSE;
4775 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
4776 if (dynsec != NULL
4777 && (dynsec->flags & SEC_LOAD) == 0)
4778 dynsec = NULL;
4779
4780 if ((abfd->flags & D_PAGED) == 0)
4781 phdr_in_segment = FALSE;
4782
4783 /* Deal with -Ttext or something similar such that the first section
4784 is not adjacent to the program headers. This is an
4785 approximation, since at this point we don't know exactly how many
4786 program headers we will need. */
4787 if (phdr_in_segment && count > 0)
4788 {
4789 bfd_vma phdr_lma;
4790 bfd_boolean separate_phdr = FALSE;
4791
4792 phdr_lma = (sections[0]->lma - phdr_size) & addr_mask & -maxpagesize;
4793 if (info != NULL
4794 && info->separate_code
4795 && (sections[0]->flags & SEC_CODE) != 0)
4796 {
4797 /* If data sections should be separate from code and
4798 thus not executable, and the first section is
4799 executable then put the file and program headers in
4800 their own PT_LOAD. */
4801 separate_phdr = TRUE;
4802 if ((((phdr_lma + phdr_size - 1) & addr_mask & -maxpagesize)
4803 == (sections[0]->lma & addr_mask & -maxpagesize)))
4804 {
4805 /* The file and program headers are currently on the
4806 same page as the first section. Put them on the
4807 previous page if we can. */
4808 if (phdr_lma >= maxpagesize)
4809 phdr_lma -= maxpagesize;
4810 else
4811 separate_phdr = FALSE;
4812 }
4813 }
4814 if ((sections[0]->lma & addr_mask) < phdr_lma
4815 || (sections[0]->lma & addr_mask) < phdr_size)
4816 /* If file and program headers would be placed at the end
4817 of memory then it's probably better to omit them. */
4818 phdr_in_segment = FALSE;
4819 else if (phdr_lma < wrap_to)
4820 /* If a section wraps around to where we'll be placing
4821 file and program headers, then the headers will be
4822 overwritten. */
4823 phdr_in_segment = FALSE;
4824 else if (separate_phdr)
4825 {
4826 m = make_mapping (abfd, sections, 0, 0, phdr_in_segment);
4827 if (m == NULL)
4828 goto error_return;
4829 m->p_paddr = phdr_lma;
4830 m->p_vaddr_offset
4831 = (sections[0]->vma - phdr_size) & addr_mask & -maxpagesize;
4832 m->p_paddr_valid = 1;
4833 *pm = m;
4834 pm = &m->next;
4835 phdr_in_segment = FALSE;
4836 }
4837 }
4838
4839 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
4840 {
4841 asection *hdr;
4842 bfd_boolean new_segment;
4843
4844 hdr = *hdrpp;
4845
4846 /* See if this section and the last one will fit in the same
4847 segment. */
4848
4849 if (last_hdr == NULL)
4850 {
4851 /* If we don't have a segment yet, then we don't need a new
4852 one (we build the last one after this loop). */
4853 new_segment = FALSE;
4854 }
4855 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
4856 {
4857 /* If this section has a different relation between the
4858 virtual address and the load address, then we need a new
4859 segment. */
4860 new_segment = TRUE;
4861 }
4862 else if (hdr->lma < last_hdr->lma + last_size
4863 || last_hdr->lma + last_size < last_hdr->lma)
4864 {
4865 /* If this section has a load address that makes it overlap
4866 the previous section, then we need a new segment. */
4867 new_segment = TRUE;
4868 }
4869 else if ((abfd->flags & D_PAGED) != 0
4870 && (((last_hdr->lma + last_size - 1) & -maxpagesize)
4871 == (hdr->lma & -maxpagesize)))
4872 {
4873 /* If we are demand paged then we can't map two disk
4874 pages onto the same memory page. */
4875 new_segment = FALSE;
4876 }
4877 /* In the next test we have to be careful when last_hdr->lma is close
4878 to the end of the address space. If the aligned address wraps
4879 around to the start of the address space, then there are no more
4880 pages left in memory and it is OK to assume that the current
4881 section can be included in the current segment. */
4882 else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
4883 + maxpagesize > last_hdr->lma)
4884 && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
4885 + maxpagesize <= hdr->lma))
4886 {
4887 /* If putting this section in this segment would force us to
4888 skip a page in the segment, then we need a new segment. */
4889 new_segment = TRUE;
4890 }
4891 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
4892 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
4893 {
4894 /* We don't want to put a loaded section after a
4895 nonloaded (ie. bss style) section in the same segment
4896 as that will force the non-loaded section to be loaded.
4897 Consider .tbss sections as loaded for this purpose. */
4898 new_segment = TRUE;
4899 }
4900 else if ((abfd->flags & D_PAGED) == 0)
4901 {
4902 /* If the file is not demand paged, which means that we
4903 don't require the sections to be correctly aligned in the
4904 file, then there is no other reason for a new segment. */
4905 new_segment = FALSE;
4906 }
4907 else if (info != NULL
4908 && info->separate_code
4909 && executable != ((hdr->flags & SEC_CODE) != 0))
4910 {
4911 new_segment = TRUE;
4912 }
4913 else if (! writable
4914 && (hdr->flags & SEC_READONLY) == 0)
4915 {
4916 /* We don't want to put a writable section in a read only
4917 segment. */
4918 new_segment = TRUE;
4919 }
4920 else
4921 {
4922 /* Otherwise, we can use the same segment. */
4923 new_segment = FALSE;
4924 }
4925
4926 /* Allow interested parties a chance to override our decision. */
4927 if (last_hdr != NULL
4928 && info != NULL
4929 && info->callbacks->override_segment_assignment != NULL)
4930 new_segment
4931 = info->callbacks->override_segment_assignment (info, abfd, hdr,
4932 last_hdr,
4933 new_segment);
4934
4935 if (! new_segment)
4936 {
4937 if ((hdr->flags & SEC_READONLY) == 0)
4938 writable = TRUE;
4939 if ((hdr->flags & SEC_CODE) != 0)
4940 executable = TRUE;
4941 last_hdr = hdr;
4942 /* .tbss sections effectively have zero size. */
4943 last_size = !IS_TBSS (hdr) ? hdr->size : 0;
4944 continue;
4945 }
4946
4947 /* We need a new program segment. We must create a new program
4948 header holding all the sections from hdr_index until hdr. */
4949
4950 m = make_mapping (abfd, sections, hdr_index, i, phdr_in_segment);
4951 if (m == NULL)
4952 goto error_return;
4953
4954 *pm = m;
4955 pm = &m->next;
4956
4957 if ((hdr->flags & SEC_READONLY) == 0)
4958 writable = TRUE;
4959 else
4960 writable = FALSE;
4961
4962 if ((hdr->flags & SEC_CODE) == 0)
4963 executable = FALSE;
4964 else
4965 executable = TRUE;
4966
4967 last_hdr = hdr;
4968 /* .tbss sections effectively have zero size. */
4969 last_size = !IS_TBSS (hdr) ? hdr->size : 0;
4970 hdr_index = i;
4971 phdr_in_segment = FALSE;
4972 }
4973
4974 /* Create a final PT_LOAD program segment, but not if it's just
4975 for .tbss. */
4976 if (last_hdr != NULL
4977 && (i - hdr_index != 1
4978 || !IS_TBSS (last_hdr)))
4979 {
4980 m = make_mapping (abfd, sections, hdr_index, i, phdr_in_segment);
4981 if (m == NULL)
4982 goto error_return;
4983
4984 *pm = m;
4985 pm = &m->next;
4986 }
4987
4988 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4989 if (dynsec != NULL)
4990 {
4991 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
4992 if (m == NULL)
4993 goto error_return;
4994 *pm = m;
4995 pm = &m->next;
4996 }
4997
4998 /* For each batch of consecutive loadable SHT_NOTE sections,
4999 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
5000 because if we link together nonloadable .note sections and
5001 loadable .note sections, we will generate two .note sections
5002 in the output file. */
5003 for (s = abfd->sections; s != NULL; s = s->next)
5004 {
5005 if ((s->flags & SEC_LOAD) != 0
5006 && elf_section_type (s) == SHT_NOTE)
5007 {
5008 asection *s2;
5009 unsigned int alignment_power = s->alignment_power;
5010
5011 count = 1;
5012 for (s2 = s; s2->next != NULL; s2 = s2->next)
5013 {
5014 if (s2->next->alignment_power == alignment_power
5015 && (s2->next->flags & SEC_LOAD) != 0
5016 && elf_section_type (s2->next) == SHT_NOTE
5017 && align_power (s2->lma + s2->size,
5018 alignment_power)
5019 == s2->next->lma)
5020 count++;
5021 else
5022 break;
5023 }
5024 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
5025 amt += count * sizeof (asection *);
5026 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5027 if (m == NULL)
5028 goto error_return;
5029 m->next = NULL;
5030 m->p_type = PT_NOTE;
5031 m->count = count;
5032 while (count > 1)
5033 {
5034 m->sections[m->count - count--] = s;
5035 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
5036 s = s->next;
5037 }
5038 m->sections[m->count - 1] = s;
5039 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
5040 *pm = m;
5041 pm = &m->next;
5042 }
5043 if (s->flags & SEC_THREAD_LOCAL)
5044 {
5045 if (! tls_count)
5046 first_tls = s;
5047 tls_count++;
5048 }
5049 if (first_mbind == NULL
5050 && (elf_section_flags (s) & SHF_GNU_MBIND) != 0)
5051 first_mbind = s;
5052 }
5053
5054 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
5055 if (tls_count > 0)
5056 {
5057 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
5058 amt += tls_count * sizeof (asection *);
5059 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5060 if (m == NULL)
5061 goto error_return;
5062 m->next = NULL;
5063 m->p_type = PT_TLS;
5064 m->count = tls_count;
5065 /* Mandated PF_R. */
5066 m->p_flags = PF_R;
5067 m->p_flags_valid = 1;
5068 s = first_tls;
5069 for (i = 0; i < tls_count; ++i)
5070 {
5071 if ((s->flags & SEC_THREAD_LOCAL) == 0)
5072 {
5073 _bfd_error_handler
5074 (_("%pB: TLS sections are not adjacent:"), abfd);
5075 s = first_tls;
5076 i = 0;
5077 while (i < tls_count)
5078 {
5079 if ((s->flags & SEC_THREAD_LOCAL) != 0)
5080 {
5081 _bfd_error_handler (_(" TLS: %pA"), s);
5082 i++;
5083 }
5084 else
5085 _bfd_error_handler (_(" non-TLS: %pA"), s);
5086 s = s->next;
5087 }
5088 bfd_set_error (bfd_error_bad_value);
5089 goto error_return;
5090 }
5091 m->sections[i] = s;
5092 s = s->next;
5093 }
5094
5095 *pm = m;
5096 pm = &m->next;
5097 }
5098
5099 if (first_mbind
5100 && (abfd->flags & D_PAGED) != 0
5101 && (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_mbind) != 0)
5102 for (s = first_mbind; s != NULL; s = s->next)
5103 if ((elf_section_flags (s) & SHF_GNU_MBIND) != 0
5104 && elf_section_data (s)->this_hdr.sh_info <= PT_GNU_MBIND_NUM)
5105 {
5106 /* Mandated PF_R. */
5107 unsigned long p_flags = PF_R;
5108 if ((s->flags & SEC_READONLY) == 0)
5109 p_flags |= PF_W;
5110 if ((s->flags & SEC_CODE) != 0)
5111 p_flags |= PF_X;
5112
5113 amt = sizeof (struct elf_segment_map) + sizeof (asection *);
5114 m = bfd_zalloc (abfd, amt);
5115 if (m == NULL)
5116 goto error_return;
5117 m->next = NULL;
5118 m->p_type = (PT_GNU_MBIND_LO
5119 + elf_section_data (s)->this_hdr.sh_info);
5120 m->count = 1;
5121 m->p_flags_valid = 1;
5122 m->sections[0] = s;
5123 m->p_flags = p_flags;
5124
5125 *pm = m;
5126 pm = &m->next;
5127 }
5128
5129 s = bfd_get_section_by_name (abfd,
5130 NOTE_GNU_PROPERTY_SECTION_NAME);
5131 if (s != NULL && s->size != 0)
5132 {
5133 amt = sizeof (struct elf_segment_map) + sizeof (asection *);
5134 m = bfd_zalloc (abfd, amt);
5135 if (m == NULL)
5136 goto error_return;
5137 m->next = NULL;
5138 m->p_type = PT_GNU_PROPERTY;
5139 m->count = 1;
5140 m->p_flags_valid = 1;
5141 m->sections[0] = s;
5142 m->p_flags = PF_R;
5143 *pm = m;
5144 pm = &m->next;
5145 }
5146
5147 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
5148 segment. */
5149 eh_frame_hdr = elf_eh_frame_hdr (abfd);
5150 if (eh_frame_hdr != NULL
5151 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
5152 {
5153 amt = sizeof (struct elf_segment_map);
5154 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5155 if (m == NULL)
5156 goto error_return;
5157 m->next = NULL;
5158 m->p_type = PT_GNU_EH_FRAME;
5159 m->count = 1;
5160 m->sections[0] = eh_frame_hdr->output_section;
5161
5162 *pm = m;
5163 pm = &m->next;
5164 }
5165
5166 if (elf_stack_flags (abfd))
5167 {
5168 amt = sizeof (struct elf_segment_map);
5169 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5170 if (m == NULL)
5171 goto error_return;
5172 m->next = NULL;
5173 m->p_type = PT_GNU_STACK;
5174 m->p_flags = elf_stack_flags (abfd);
5175 m->p_align = bed->stack_align;
5176 m->p_flags_valid = 1;
5177 m->p_align_valid = m->p_align != 0;
5178 if (info->stacksize > 0)
5179 {
5180 m->p_size = info->stacksize;
5181 m->p_size_valid = 1;
5182 }
5183
5184 *pm = m;
5185 pm = &m->next;
5186 }
5187
5188 if (info != NULL && info->relro)
5189 {
5190 for (m = mfirst; m != NULL; m = m->next)
5191 {
5192 if (m->p_type == PT_LOAD
5193 && m->count != 0
5194 && m->sections[0]->vma >= info->relro_start
5195 && m->sections[0]->vma < info->relro_end)
5196 {
5197 i = m->count;
5198 while (--i != (unsigned) -1)
5199 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS))
5200 == (SEC_LOAD | SEC_HAS_CONTENTS))
5201 break;
5202
5203 if (i != (unsigned) -1)
5204 break;
5205 }
5206 }
5207
5208 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
5209 if (m != NULL)
5210 {
5211 amt = sizeof (struct elf_segment_map);
5212 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5213 if (m == NULL)
5214 goto error_return;
5215 m->next = NULL;
5216 m->p_type = PT_GNU_RELRO;
5217 *pm = m;
5218 pm = &m->next;
5219 }
5220 }
5221
5222 free (sections);
5223 elf_seg_map (abfd) = mfirst;
5224 }
5225
5226 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
5227 return FALSE;
5228
5229 for (count = 0, m = elf_seg_map (abfd); m != NULL; m = m->next)
5230 ++count;
5231 elf_program_header_size (abfd) = count * bed->s->sizeof_phdr;
5232
5233 return TRUE;
5234
5235 error_return:
5236 if (sections != NULL)
5237 free (sections);
5238 return FALSE;
5239 }
5240
5241 /* Sort sections by address. */
5242
5243 static int
5244 elf_sort_sections (const void *arg1, const void *arg2)
5245 {
5246 const asection *sec1 = *(const asection **) arg1;
5247 const asection *sec2 = *(const asection **) arg2;
5248 bfd_size_type size1, size2;
5249
5250 /* Sort by LMA first, since this is the address used to
5251 place the section into a segment. */
5252 if (sec1->lma < sec2->lma)
5253 return -1;
5254 else if (sec1->lma > sec2->lma)
5255 return 1;
5256
5257 /* Then sort by VMA. Normally the LMA and the VMA will be
5258 the same, and this will do nothing. */
5259 if (sec1->vma < sec2->vma)
5260 return -1;
5261 else if (sec1->vma > sec2->vma)
5262 return 1;
5263
5264 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
5265
5266 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
5267
5268 if (TOEND (sec1))
5269 {
5270 if (!TOEND (sec2))
5271 return 1;
5272 }
5273 else if (TOEND (sec2))
5274 return -1;
5275
5276 #undef TOEND
5277
5278 /* Sort by size, to put zero sized sections
5279 before others at the same address. */
5280
5281 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
5282 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
5283
5284 if (size1 < size2)
5285 return -1;
5286 if (size1 > size2)
5287 return 1;
5288
5289 return sec1->target_index - sec2->target_index;
5290 }
5291
5292 /* This qsort comparison functions sorts PT_LOAD segments first and
5293 by p_paddr, for assign_file_positions_for_load_sections. */
5294
5295 static int
5296 elf_sort_segments (const void *arg1, const void *arg2)
5297 {
5298 const struct elf_segment_map *m1 = *(const struct elf_segment_map **) arg1;
5299 const struct elf_segment_map *m2 = *(const struct elf_segment_map **) arg2;
5300
5301 if (m1->p_type != m2->p_type)
5302 {
5303 if (m1->p_type == PT_NULL)
5304 return 1;
5305 if (m2->p_type == PT_NULL)
5306 return -1;
5307 return m1->p_type < m2->p_type ? -1 : 1;
5308 }
5309 if (m1->includes_filehdr != m2->includes_filehdr)
5310 return m1->includes_filehdr ? -1 : 1;
5311 if (m1->no_sort_lma != m2->no_sort_lma)
5312 return m1->no_sort_lma ? -1 : 1;
5313 if (m1->p_type == PT_LOAD && !m1->no_sort_lma)
5314 {
5315 bfd_vma lma1, lma2;
5316 lma1 = 0;
5317 if (m1->p_paddr_valid)
5318 lma1 = m1->p_paddr;
5319 else if (m1->count != 0)
5320 lma1 = m1->sections[0]->lma + m1->p_vaddr_offset;
5321 lma2 = 0;
5322 if (m2->p_paddr_valid)
5323 lma2 = m2->p_paddr;
5324 else if (m2->count != 0)
5325 lma2 = m2->sections[0]->lma + m2->p_vaddr_offset;
5326 if (lma1 != lma2)
5327 return lma1 < lma2 ? -1 : 1;
5328 }
5329 if (m1->idx != m2->idx)
5330 return m1->idx < m2->idx ? -1 : 1;
5331 return 0;
5332 }
5333
5334 /* Ian Lance Taylor writes:
5335
5336 We shouldn't be using % with a negative signed number. That's just
5337 not good. We have to make sure either that the number is not
5338 negative, or that the number has an unsigned type. When the types
5339 are all the same size they wind up as unsigned. When file_ptr is a
5340 larger signed type, the arithmetic winds up as signed long long,
5341 which is wrong.
5342
5343 What we're trying to say here is something like ``increase OFF by
5344 the least amount that will cause it to be equal to the VMA modulo
5345 the page size.'' */
5346 /* In other words, something like:
5347
5348 vma_offset = m->sections[0]->vma % bed->maxpagesize;
5349 off_offset = off % bed->maxpagesize;
5350 if (vma_offset < off_offset)
5351 adjustment = vma_offset + bed->maxpagesize - off_offset;
5352 else
5353 adjustment = vma_offset - off_offset;
5354
5355 which can be collapsed into the expression below. */
5356
5357 static file_ptr
5358 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
5359 {
5360 /* PR binutils/16199: Handle an alignment of zero. */
5361 if (maxpagesize == 0)
5362 maxpagesize = 1;
5363 return ((vma - off) % maxpagesize);
5364 }
5365
5366 static void
5367 print_segment_map (const struct elf_segment_map *m)
5368 {
5369 unsigned int j;
5370 const char *pt = get_segment_type (m->p_type);
5371 char buf[32];
5372
5373 if (pt == NULL)
5374 {
5375 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
5376 sprintf (buf, "LOPROC+%7.7x",
5377 (unsigned int) (m->p_type - PT_LOPROC));
5378 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
5379 sprintf (buf, "LOOS+%7.7x",
5380 (unsigned int) (m->p_type - PT_LOOS));
5381 else
5382 snprintf (buf, sizeof (buf), "%8.8x",
5383 (unsigned int) m->p_type);
5384 pt = buf;
5385 }
5386 fflush (stdout);
5387 fprintf (stderr, "%s:", pt);
5388 for (j = 0; j < m->count; j++)
5389 fprintf (stderr, " %s", m->sections [j]->name);
5390 putc ('\n',stderr);
5391 fflush (stderr);
5392 }
5393
5394 static bfd_boolean
5395 write_zeros (bfd *abfd, file_ptr pos, bfd_size_type len)
5396 {
5397 void *buf;
5398 bfd_boolean ret;
5399
5400 if (bfd_seek (abfd, pos, SEEK_SET) != 0)
5401 return FALSE;
5402 buf = bfd_zmalloc (len);
5403 if (buf == NULL)
5404 return FALSE;
5405 ret = bfd_bwrite (buf, len, abfd) == len;
5406 free (buf);
5407 return ret;
5408 }
5409
5410 /* Assign file positions to the sections based on the mapping from
5411 sections to segments. This function also sets up some fields in
5412 the file header. */
5413
5414 static bfd_boolean
5415 assign_file_positions_for_load_sections (bfd *abfd,
5416 struct bfd_link_info *link_info)
5417 {
5418 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5419 struct elf_segment_map *m;
5420 struct elf_segment_map *phdr_load_seg;
5421 Elf_Internal_Phdr *phdrs;
5422 Elf_Internal_Phdr *p;
5423 file_ptr off;
5424 bfd_size_type maxpagesize;
5425 unsigned int alloc, actual;
5426 unsigned int i, j;
5427 struct elf_segment_map **sorted_seg_map;
5428
5429 if (link_info == NULL
5430 && !_bfd_elf_map_sections_to_segments (abfd, link_info))
5431 return FALSE;
5432
5433 alloc = 0;
5434 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
5435 m->idx = alloc++;
5436
5437 if (alloc)
5438 {
5439 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
5440 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
5441 }
5442 else
5443 {
5444 /* PR binutils/12467. */
5445 elf_elfheader (abfd)->e_phoff = 0;
5446 elf_elfheader (abfd)->e_phentsize = 0;
5447 }
5448
5449 elf_elfheader (abfd)->e_phnum = alloc;
5450
5451 if (elf_program_header_size (abfd) == (bfd_size_type) -1)
5452 {
5453 actual = alloc;
5454 elf_program_header_size (abfd) = alloc * bed->s->sizeof_phdr;
5455 }
5456 else
5457 {
5458 actual = elf_program_header_size (abfd) / bed->s->sizeof_phdr;
5459 BFD_ASSERT (elf_program_header_size (abfd)
5460 == actual * bed->s->sizeof_phdr);
5461 BFD_ASSERT (actual >= alloc);
5462 }
5463
5464 if (alloc == 0)
5465 {
5466 elf_next_file_pos (abfd) = bed->s->sizeof_ehdr;
5467 return TRUE;
5468 }
5469
5470 /* We're writing the size in elf_program_header_size (abfd),
5471 see assign_file_positions_except_relocs, so make sure we have
5472 that amount allocated, with trailing space cleared.
5473 The variable alloc contains the computed need, while
5474 elf_program_header_size (abfd) contains the size used for the
5475 layout.
5476 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
5477 where the layout is forced to according to a larger size in the
5478 last iterations for the testcase ld-elf/header. */
5479 phdrs = bfd_zalloc (abfd, (actual * sizeof (*phdrs)
5480 + alloc * sizeof (*sorted_seg_map)));
5481 sorted_seg_map = (struct elf_segment_map **) (phdrs + actual);
5482 elf_tdata (abfd)->phdr = phdrs;
5483 if (phdrs == NULL)
5484 return FALSE;
5485
5486 for (m = elf_seg_map (abfd), j = 0; m != NULL; m = m->next, j++)
5487 {
5488 sorted_seg_map[j] = m;
5489 /* If elf_segment_map is not from map_sections_to_segments, the
5490 sections may not be correctly ordered. NOTE: sorting should
5491 not be done to the PT_NOTE section of a corefile, which may
5492 contain several pseudo-sections artificially created by bfd.
5493 Sorting these pseudo-sections breaks things badly. */
5494 if (m->count > 1
5495 && !(elf_elfheader (abfd)->e_type == ET_CORE
5496 && m->p_type == PT_NOTE))
5497 {
5498 for (i = 0; i < m->count; i++)
5499 m->sections[i]->target_index = i;
5500 qsort (m->sections, (size_t) m->count, sizeof (asection *),
5501 elf_sort_sections);
5502 }
5503 }
5504 if (alloc > 1)
5505 qsort (sorted_seg_map, alloc, sizeof (*sorted_seg_map),
5506 elf_sort_segments);
5507
5508 maxpagesize = 1;
5509 if ((abfd->flags & D_PAGED) != 0)
5510 maxpagesize = bed->maxpagesize;
5511
5512 /* Sections must map to file offsets past the ELF file header. */
5513 off = bed->s->sizeof_ehdr;
5514 /* And if one of the PT_LOAD headers doesn't include the program
5515 headers then we'll be mapping program headers in the usual
5516 position after the ELF file header. */
5517 phdr_load_seg = NULL;
5518 for (j = 0; j < alloc; j++)
5519 {
5520 m = sorted_seg_map[j];
5521 if (m->p_type != PT_LOAD)
5522 break;
5523 if (m->includes_phdrs)
5524 {
5525 phdr_load_seg = m;
5526 break;
5527 }
5528 }
5529 if (phdr_load_seg == NULL)
5530 off += actual * bed->s->sizeof_phdr;
5531
5532 for (j = 0; j < alloc; j++)
5533 {
5534 asection **secpp;
5535 bfd_vma off_adjust;
5536 bfd_boolean no_contents;
5537
5538 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
5539 number of sections with contents contributing to both p_filesz
5540 and p_memsz, followed by a number of sections with no contents
5541 that just contribute to p_memsz. In this loop, OFF tracks next
5542 available file offset for PT_LOAD and PT_NOTE segments. */
5543 m = sorted_seg_map[j];
5544 p = phdrs + m->idx;
5545 p->p_type = m->p_type;
5546 p->p_flags = m->p_flags;
5547
5548 if (m->count == 0)
5549 p->p_vaddr = m->p_vaddr_offset;
5550 else
5551 p->p_vaddr = m->sections[0]->vma + m->p_vaddr_offset;
5552
5553 if (m->p_paddr_valid)
5554 p->p_paddr = m->p_paddr;
5555 else if (m->count == 0)
5556 p->p_paddr = 0;
5557 else
5558 p->p_paddr = m->sections[0]->lma + m->p_vaddr_offset;
5559
5560 if (p->p_type == PT_LOAD
5561 && (abfd->flags & D_PAGED) != 0)
5562 {
5563 /* p_align in demand paged PT_LOAD segments effectively stores
5564 the maximum page size. When copying an executable with
5565 objcopy, we set m->p_align from the input file. Use this
5566 value for maxpagesize rather than bed->maxpagesize, which
5567 may be different. Note that we use maxpagesize for PT_TLS
5568 segment alignment later in this function, so we are relying
5569 on at least one PT_LOAD segment appearing before a PT_TLS
5570 segment. */
5571 if (m->p_align_valid)
5572 maxpagesize = m->p_align;
5573
5574 p->p_align = maxpagesize;
5575 }
5576 else if (m->p_align_valid)
5577 p->p_align = m->p_align;
5578 else if (m->count == 0)
5579 p->p_align = 1 << bed->s->log_file_align;
5580
5581 if (m == phdr_load_seg)
5582 {
5583 if (!m->includes_filehdr)
5584 p->p_offset = off;
5585 off += actual * bed->s->sizeof_phdr;
5586 }
5587
5588 no_contents = FALSE;
5589 off_adjust = 0;
5590 if (p->p_type == PT_LOAD
5591 && m->count > 0)
5592 {
5593 bfd_size_type align;
5594 unsigned int align_power = 0;
5595
5596 if (m->p_align_valid)
5597 align = p->p_align;
5598 else
5599 {
5600 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
5601 {
5602 unsigned int secalign;
5603
5604 secalign = bfd_section_alignment (*secpp);
5605 if (secalign > align_power)
5606 align_power = secalign;
5607 }
5608 align = (bfd_size_type) 1 << align_power;
5609 if (align < maxpagesize)
5610 align = maxpagesize;
5611 }
5612
5613 for (i = 0; i < m->count; i++)
5614 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
5615 /* If we aren't making room for this section, then
5616 it must be SHT_NOBITS regardless of what we've
5617 set via struct bfd_elf_special_section. */
5618 elf_section_type (m->sections[i]) = SHT_NOBITS;
5619
5620 /* Find out whether this segment contains any loadable
5621 sections. */
5622 no_contents = TRUE;
5623 for (i = 0; i < m->count; i++)
5624 if (elf_section_type (m->sections[i]) != SHT_NOBITS)
5625 {
5626 no_contents = FALSE;
5627 break;
5628 }
5629
5630 off_adjust = vma_page_aligned_bias (p->p_vaddr, off, align);
5631
5632 /* Broken hardware and/or kernel require that files do not
5633 map the same page with different permissions on some hppa
5634 processors. */
5635 if (j != 0
5636 && (abfd->flags & D_PAGED) != 0
5637 && bed->no_page_alias
5638 && (off & (maxpagesize - 1)) != 0
5639 && (off & -maxpagesize) == ((off + off_adjust) & -maxpagesize))
5640 off_adjust += maxpagesize;
5641 off += off_adjust;
5642 if (no_contents)
5643 {
5644 /* We shouldn't need to align the segment on disk since
5645 the segment doesn't need file space, but the gABI
5646 arguably requires the alignment and glibc ld.so
5647 checks it. So to comply with the alignment
5648 requirement but not waste file space, we adjust
5649 p_offset for just this segment. (OFF_ADJUST is
5650 subtracted from OFF later.) This may put p_offset
5651 past the end of file, but that shouldn't matter. */
5652 }
5653 else
5654 off_adjust = 0;
5655 }
5656 /* Make sure the .dynamic section is the first section in the
5657 PT_DYNAMIC segment. */
5658 else if (p->p_type == PT_DYNAMIC
5659 && m->count > 1
5660 && strcmp (m->sections[0]->name, ".dynamic") != 0)
5661 {
5662 _bfd_error_handler
5663 (_("%pB: The first section in the PT_DYNAMIC segment"
5664 " is not the .dynamic section"),
5665 abfd);
5666 bfd_set_error (bfd_error_bad_value);
5667 return FALSE;
5668 }
5669 /* Set the note section type to SHT_NOTE. */
5670 else if (p->p_type == PT_NOTE)
5671 for (i = 0; i < m->count; i++)
5672 elf_section_type (m->sections[i]) = SHT_NOTE;
5673
5674 if (m->includes_filehdr)
5675 {
5676 if (!m->p_flags_valid)
5677 p->p_flags |= PF_R;
5678 p->p_filesz = bed->s->sizeof_ehdr;
5679 p->p_memsz = bed->s->sizeof_ehdr;
5680 if (p->p_type == PT_LOAD)
5681 {
5682 if (m->count > 0)
5683 {
5684 if (p->p_vaddr < (bfd_vma) off
5685 || (!m->p_paddr_valid
5686 && p->p_paddr < (bfd_vma) off))
5687 {
5688 _bfd_error_handler
5689 (_("%pB: not enough room for program headers,"
5690 " try linking with -N"),
5691 abfd);
5692 bfd_set_error (bfd_error_bad_value);
5693 return FALSE;
5694 }
5695 p->p_vaddr -= off;
5696 if (!m->p_paddr_valid)
5697 p->p_paddr -= off;
5698 }
5699 }
5700 else if (sorted_seg_map[0]->includes_filehdr)
5701 {
5702 Elf_Internal_Phdr *filehdr = phdrs + sorted_seg_map[0]->idx;
5703 p->p_vaddr = filehdr->p_vaddr;
5704 if (!m->p_paddr_valid)
5705 p->p_paddr = filehdr->p_paddr;
5706 }
5707 }
5708
5709 if (m->includes_phdrs)
5710 {
5711 if (!m->p_flags_valid)
5712 p->p_flags |= PF_R;
5713 p->p_filesz += actual * bed->s->sizeof_phdr;
5714 p->p_memsz += actual * bed->s->sizeof_phdr;
5715 if (!m->includes_filehdr)
5716 {
5717 if (p->p_type == PT_LOAD)
5718 {
5719 elf_elfheader (abfd)->e_phoff = p->p_offset;
5720 if (m->count > 0)
5721 {
5722 p->p_vaddr -= off - p->p_offset;
5723 if (!m->p_paddr_valid)
5724 p->p_paddr -= off - p->p_offset;
5725 }
5726 }
5727 else if (phdr_load_seg != NULL)
5728 {
5729 Elf_Internal_Phdr *phdr = phdrs + phdr_load_seg->idx;
5730 bfd_vma phdr_off = 0;
5731 if (phdr_load_seg->includes_filehdr)
5732 phdr_off = bed->s->sizeof_ehdr;
5733 p->p_vaddr = phdr->p_vaddr + phdr_off;
5734 if (!m->p_paddr_valid)
5735 p->p_paddr = phdr->p_paddr + phdr_off;
5736 p->p_offset = phdr->p_offset + phdr_off;
5737 }
5738 else
5739 p->p_offset = bed->s->sizeof_ehdr;
5740 }
5741 }
5742
5743 if (p->p_type == PT_LOAD
5744 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
5745 {
5746 if (!m->includes_filehdr && !m->includes_phdrs)
5747 {
5748 p->p_offset = off;
5749 if (no_contents)
5750 {
5751 /* Put meaningless p_offset for PT_LOAD segments
5752 without file contents somewhere within the first
5753 page, in an attempt to not point past EOF. */
5754 bfd_size_type align = maxpagesize;
5755 if (align < p->p_align)
5756 align = p->p_align;
5757 if (align < 1)
5758 align = 1;
5759 p->p_offset = off % align;
5760 }
5761 }
5762 else
5763 {
5764 file_ptr adjust;
5765
5766 adjust = off - (p->p_offset + p->p_filesz);
5767 if (!no_contents)
5768 p->p_filesz += adjust;
5769 p->p_memsz += adjust;
5770 }
5771 }
5772
5773 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
5774 maps. Set filepos for sections in PT_LOAD segments, and in
5775 core files, for sections in PT_NOTE segments.
5776 assign_file_positions_for_non_load_sections will set filepos
5777 for other sections and update p_filesz for other segments. */
5778 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
5779 {
5780 asection *sec;
5781 bfd_size_type align;
5782 Elf_Internal_Shdr *this_hdr;
5783
5784 sec = *secpp;
5785 this_hdr = &elf_section_data (sec)->this_hdr;
5786 align = (bfd_size_type) 1 << bfd_section_alignment (sec);
5787
5788 if ((p->p_type == PT_LOAD
5789 || p->p_type == PT_TLS)
5790 && (this_hdr->sh_type != SHT_NOBITS
5791 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
5792 && ((this_hdr->sh_flags & SHF_TLS) == 0
5793 || p->p_type == PT_TLS))))
5794 {
5795 bfd_vma p_start = p->p_paddr;
5796 bfd_vma p_end = p_start + p->p_memsz;
5797 bfd_vma s_start = sec->lma;
5798 bfd_vma adjust = s_start - p_end;
5799
5800 if (adjust != 0
5801 && (s_start < p_end
5802 || p_end < p_start))
5803 {
5804 _bfd_error_handler
5805 /* xgettext:c-format */
5806 (_("%pB: section %pA lma %#" PRIx64 " adjusted to %#" PRIx64),
5807 abfd, sec, (uint64_t) s_start, (uint64_t) p_end);
5808 adjust = 0;
5809 sec->lma = p_end;
5810 }
5811 p->p_memsz += adjust;
5812
5813 if (this_hdr->sh_type != SHT_NOBITS)
5814 {
5815 if (p->p_type == PT_LOAD)
5816 {
5817 if (p->p_filesz + adjust < p->p_memsz)
5818 {
5819 /* We have a PROGBITS section following NOBITS ones.
5820 Allocate file space for the NOBITS section(s) and
5821 zero it. */
5822 adjust = p->p_memsz - p->p_filesz;
5823 if (!write_zeros (abfd, off, adjust))
5824 return FALSE;
5825 }
5826 off += adjust;
5827 }
5828 p->p_filesz += adjust;
5829 }
5830 }
5831
5832 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
5833 {
5834 /* The section at i == 0 is the one that actually contains
5835 everything. */
5836 if (i == 0)
5837 {
5838 this_hdr->sh_offset = sec->filepos = off;
5839 off += this_hdr->sh_size;
5840 p->p_filesz = this_hdr->sh_size;
5841 p->p_memsz = 0;
5842 p->p_align = 1;
5843 }
5844 else
5845 {
5846 /* The rest are fake sections that shouldn't be written. */
5847 sec->filepos = 0;
5848 sec->size = 0;
5849 sec->flags = 0;
5850 continue;
5851 }
5852 }
5853 else
5854 {
5855 if (p->p_type == PT_LOAD)
5856 {
5857 this_hdr->sh_offset = sec->filepos = off;
5858 if (this_hdr->sh_type != SHT_NOBITS)
5859 off += this_hdr->sh_size;
5860 }
5861 else if (this_hdr->sh_type == SHT_NOBITS
5862 && (this_hdr->sh_flags & SHF_TLS) != 0
5863 && this_hdr->sh_offset == 0)
5864 {
5865 /* This is a .tbss section that didn't get a PT_LOAD.
5866 (See _bfd_elf_map_sections_to_segments "Create a
5867 final PT_LOAD".) Set sh_offset to the value it
5868 would have if we had created a zero p_filesz and
5869 p_memsz PT_LOAD header for the section. This
5870 also makes the PT_TLS header have the same
5871 p_offset value. */
5872 bfd_vma adjust = vma_page_aligned_bias (this_hdr->sh_addr,
5873 off, align);
5874 this_hdr->sh_offset = sec->filepos = off + adjust;
5875 }
5876
5877 if (this_hdr->sh_type != SHT_NOBITS)
5878 {
5879 p->p_filesz += this_hdr->sh_size;
5880 /* A load section without SHF_ALLOC is something like
5881 a note section in a PT_NOTE segment. These take
5882 file space but are not loaded into memory. */
5883 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5884 p->p_memsz += this_hdr->sh_size;
5885 }
5886 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5887 {
5888 if (p->p_type == PT_TLS)
5889 p->p_memsz += this_hdr->sh_size;
5890
5891 /* .tbss is special. It doesn't contribute to p_memsz of
5892 normal segments. */
5893 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
5894 p->p_memsz += this_hdr->sh_size;
5895 }
5896
5897 if (align > p->p_align
5898 && !m->p_align_valid
5899 && (p->p_type != PT_LOAD
5900 || (abfd->flags & D_PAGED) == 0))
5901 p->p_align = align;
5902 }
5903
5904 if (!m->p_flags_valid)
5905 {
5906 p->p_flags |= PF_R;
5907 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
5908 p->p_flags |= PF_X;
5909 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
5910 p->p_flags |= PF_W;
5911 }
5912 }
5913
5914 off -= off_adjust;
5915
5916 /* PR ld/20815 - Check that the program header segment, if
5917 present, will be loaded into memory. */
5918 if (p->p_type == PT_PHDR
5919 && phdr_load_seg == NULL
5920 && !(bed->elf_backend_allow_non_load_phdr != NULL
5921 && bed->elf_backend_allow_non_load_phdr (abfd, phdrs, alloc)))
5922 {
5923 /* The fix for this error is usually to edit the linker script being
5924 used and set up the program headers manually. Either that or
5925 leave room for the headers at the start of the SECTIONS. */
5926 _bfd_error_handler (_("%pB: error: PHDR segment not covered"
5927 " by LOAD segment"),
5928 abfd);
5929 return FALSE;
5930 }
5931
5932 /* Check that all sections are in a PT_LOAD segment.
5933 Don't check funky gdb generated core files. */
5934 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
5935 {
5936 bfd_boolean check_vma = TRUE;
5937
5938 for (i = 1; i < m->count; i++)
5939 if (m->sections[i]->vma == m->sections[i - 1]->vma
5940 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i])
5941 ->this_hdr), p) != 0
5942 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i - 1])
5943 ->this_hdr), p) != 0)
5944 {
5945 /* Looks like we have overlays packed into the segment. */
5946 check_vma = FALSE;
5947 break;
5948 }
5949
5950 for (i = 0; i < m->count; i++)
5951 {
5952 Elf_Internal_Shdr *this_hdr;
5953 asection *sec;
5954
5955 sec = m->sections[i];
5956 this_hdr = &(elf_section_data(sec)->this_hdr);
5957 if (!ELF_SECTION_IN_SEGMENT_1 (this_hdr, p, check_vma, 0)
5958 && !ELF_TBSS_SPECIAL (this_hdr, p))
5959 {
5960 _bfd_error_handler
5961 /* xgettext:c-format */
5962 (_("%pB: section `%pA' can't be allocated in segment %d"),
5963 abfd, sec, j);
5964 print_segment_map (m);
5965 }
5966 }
5967 }
5968 }
5969
5970 elf_next_file_pos (abfd) = off;
5971
5972 if (link_info != NULL
5973 && phdr_load_seg != NULL
5974 && phdr_load_seg->includes_filehdr)
5975 {
5976 /* There is a segment that contains both the file headers and the
5977 program headers, so provide a symbol __ehdr_start pointing there.
5978 A program can use this to examine itself robustly. */
5979
5980 struct elf_link_hash_entry *hash
5981 = elf_link_hash_lookup (elf_hash_table (link_info), "__ehdr_start",
5982 FALSE, FALSE, TRUE);
5983 /* If the symbol was referenced and not defined, define it. */
5984 if (hash != NULL
5985 && (hash->root.type == bfd_link_hash_new
5986 || hash->root.type == bfd_link_hash_undefined
5987 || hash->root.type == bfd_link_hash_undefweak
5988 || hash->root.type == bfd_link_hash_common))
5989 {
5990 asection *s = NULL;
5991 bfd_vma filehdr_vaddr = phdrs[phdr_load_seg->idx].p_vaddr;
5992
5993 if (phdr_load_seg->count != 0)
5994 /* The segment contains sections, so use the first one. */
5995 s = phdr_load_seg->sections[0];
5996 else
5997 /* Use the first (i.e. lowest-addressed) section in any segment. */
5998 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
5999 if (m->p_type == PT_LOAD && m->count != 0)
6000 {
6001 s = m->sections[0];
6002 break;
6003 }
6004
6005 if (s != NULL)
6006 {
6007 hash->root.u.def.value = filehdr_vaddr - s->vma;
6008 hash->root.u.def.section = s;
6009 }
6010 else
6011 {
6012 hash->root.u.def.value = filehdr_vaddr;
6013 hash->root.u.def.section = bfd_abs_section_ptr;
6014 }
6015
6016 hash->root.type = bfd_link_hash_defined;
6017 hash->def_regular = 1;
6018 hash->non_elf = 0;
6019 }
6020 }
6021
6022 return TRUE;
6023 }
6024
6025 /* Determine if a bfd is a debuginfo file. Unfortunately there
6026 is no defined method for detecting such files, so we have to
6027 use heuristics instead. */
6028
6029 bfd_boolean
6030 is_debuginfo_file (bfd *abfd)
6031 {
6032 if (abfd == NULL || bfd_get_flavour (abfd) != bfd_target_elf_flavour)
6033 return FALSE;
6034
6035 Elf_Internal_Shdr **start_headers = elf_elfsections (abfd);
6036 Elf_Internal_Shdr **end_headers = start_headers + elf_numsections (abfd);
6037 Elf_Internal_Shdr **headerp;
6038
6039 for (headerp = start_headers; headerp < end_headers; headerp ++)
6040 {
6041 Elf_Internal_Shdr *header = * headerp;
6042
6043 /* Debuginfo files do not have any allocated SHT_PROGBITS sections.
6044 The only allocated sections are SHT_NOBITS or SHT_NOTES. */
6045 if ((header->sh_flags & SHF_ALLOC) == SHF_ALLOC
6046 && header->sh_type != SHT_NOBITS
6047 && header->sh_type != SHT_NOTE)
6048 return FALSE;
6049 }
6050
6051 return TRUE;
6052 }
6053
6054 /* Assign file positions for the other sections, except for compressed debugging
6055 and other sections assigned in _bfd_elf_assign_file_positions_for_non_load(). */
6056
6057 static bfd_boolean
6058 assign_file_positions_for_non_load_sections (bfd *abfd,
6059 struct bfd_link_info *link_info)
6060 {
6061 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6062 Elf_Internal_Shdr **i_shdrpp;
6063 Elf_Internal_Shdr **hdrpp, **end_hdrpp;
6064 Elf_Internal_Phdr *phdrs;
6065 Elf_Internal_Phdr *p;
6066 struct elf_segment_map *m;
6067 file_ptr off;
6068
6069 i_shdrpp = elf_elfsections (abfd);
6070 end_hdrpp = i_shdrpp + elf_numsections (abfd);
6071 off = elf_next_file_pos (abfd);
6072 for (hdrpp = i_shdrpp + 1; hdrpp < end_hdrpp; hdrpp++)
6073 {
6074 Elf_Internal_Shdr *hdr;
6075
6076 hdr = *hdrpp;
6077 if (hdr->bfd_section != NULL
6078 && (hdr->bfd_section->filepos != 0
6079 || (hdr->sh_type == SHT_NOBITS
6080 && hdr->contents == NULL)))
6081 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
6082 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
6083 {
6084 if (hdr->sh_size != 0
6085 /* PR 24717 - debuginfo files are known to be not strictly
6086 compliant with the ELF standard. In particular they often
6087 have .note.gnu.property sections that are outside of any
6088 loadable segment. This is not a problem for such files,
6089 so do not warn about them. */
6090 && ! is_debuginfo_file (abfd))
6091 _bfd_error_handler
6092 /* xgettext:c-format */
6093 (_("%pB: warning: allocated section `%s' not in segment"),
6094 abfd,
6095 (hdr->bfd_section == NULL
6096 ? "*unknown*"
6097 : hdr->bfd_section->name));
6098 /* We don't need to page align empty sections. */
6099 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
6100 off += vma_page_aligned_bias (hdr->sh_addr, off,
6101 bed->maxpagesize);
6102 else
6103 off += vma_page_aligned_bias (hdr->sh_addr, off,
6104 hdr->sh_addralign);
6105 off = _bfd_elf_assign_file_position_for_section (hdr, off,
6106 FALSE);
6107 }
6108 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
6109 && hdr->bfd_section == NULL)
6110 /* We don't know the offset of these sections yet: their size has
6111 not been decided. */
6112 || (hdr->bfd_section != NULL
6113 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS
6114 || (bfd_section_is_ctf (hdr->bfd_section)
6115 && abfd->is_linker_output)))
6116 || hdr == i_shdrpp[elf_onesymtab (abfd)]
6117 || (elf_symtab_shndx_list (abfd) != NULL
6118 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
6119 || hdr == i_shdrpp[elf_strtab_sec (abfd)]
6120 || hdr == i_shdrpp[elf_shstrtab_sec (abfd)])
6121 hdr->sh_offset = -1;
6122 else
6123 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
6124 }
6125 elf_next_file_pos (abfd) = off;
6126
6127 /* Now that we have set the section file positions, we can set up
6128 the file positions for the non PT_LOAD segments. */
6129 phdrs = elf_tdata (abfd)->phdr;
6130 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
6131 {
6132 if (p->p_type == PT_GNU_RELRO)
6133 {
6134 bfd_vma start, end;
6135 bfd_boolean ok;
6136
6137 if (link_info != NULL)
6138 {
6139 /* During linking the range of the RELRO segment is passed
6140 in link_info. Note that there may be padding between
6141 relro_start and the first RELRO section. */
6142 start = link_info->relro_start;
6143 end = link_info->relro_end;
6144 }
6145 else if (m->count != 0)
6146 {
6147 if (!m->p_size_valid)
6148 abort ();
6149 start = m->sections[0]->vma;
6150 end = start + m->p_size;
6151 }
6152 else
6153 {
6154 start = 0;
6155 end = 0;
6156 }
6157
6158 ok = FALSE;
6159 if (start < end)
6160 {
6161 struct elf_segment_map *lm;
6162 const Elf_Internal_Phdr *lp;
6163 unsigned int i;
6164
6165 /* Find a LOAD segment containing a section in the RELRO
6166 segment. */
6167 for (lm = elf_seg_map (abfd), lp = phdrs;
6168 lm != NULL;
6169 lm = lm->next, lp++)
6170 {
6171 if (lp->p_type == PT_LOAD
6172 && lm->count != 0
6173 && (lm->sections[lm->count - 1]->vma
6174 + (!IS_TBSS (lm->sections[lm->count - 1])
6175 ? lm->sections[lm->count - 1]->size
6176 : 0)) > start
6177 && lm->sections[0]->vma < end)
6178 break;
6179 }
6180
6181 if (lm != NULL)
6182 {
6183 /* Find the section starting the RELRO segment. */
6184 for (i = 0; i < lm->count; i++)
6185 {
6186 asection *s = lm->sections[i];
6187 if (s->vma >= start
6188 && s->vma < end
6189 && s->size != 0)
6190 break;
6191 }
6192
6193 if (i < lm->count)
6194 {
6195 p->p_vaddr = lm->sections[i]->vma;
6196 p->p_paddr = lm->sections[i]->lma;
6197 p->p_offset = lm->sections[i]->filepos;
6198 p->p_memsz = end - p->p_vaddr;
6199 p->p_filesz = p->p_memsz;
6200
6201 /* The RELRO segment typically ends a few bytes
6202 into .got.plt but other layouts are possible.
6203 In cases where the end does not match any
6204 loaded section (for instance is in file
6205 padding), trim p_filesz back to correspond to
6206 the end of loaded section contents. */
6207 if (p->p_filesz > lp->p_vaddr + lp->p_filesz - p->p_vaddr)
6208 p->p_filesz = lp->p_vaddr + lp->p_filesz - p->p_vaddr;
6209
6210 /* Preserve the alignment and flags if they are
6211 valid. The gold linker generates RW/4 for
6212 the PT_GNU_RELRO section. It is better for
6213 objcopy/strip to honor these attributes
6214 otherwise gdb will choke when using separate
6215 debug files. */
6216 if (!m->p_align_valid)
6217 p->p_align = 1;
6218 if (!m->p_flags_valid)
6219 p->p_flags = PF_R;
6220 ok = TRUE;
6221 }
6222 }
6223 }
6224 if (link_info != NULL)
6225 BFD_ASSERT (ok);
6226 if (!ok)
6227 memset (p, 0, sizeof *p);
6228 }
6229 else if (p->p_type == PT_GNU_STACK)
6230 {
6231 if (m->p_size_valid)
6232 p->p_memsz = m->p_size;
6233 }
6234 else if (m->count != 0)
6235 {
6236 unsigned int i;
6237
6238 if (p->p_type != PT_LOAD
6239 && (p->p_type != PT_NOTE
6240 || bfd_get_format (abfd) != bfd_core))
6241 {
6242 /* A user specified segment layout may include a PHDR
6243 segment that overlaps with a LOAD segment... */
6244 if (p->p_type == PT_PHDR)
6245 {
6246 m->count = 0;
6247 continue;
6248 }
6249
6250 if (m->includes_filehdr || m->includes_phdrs)
6251 {
6252 /* PR 17512: file: 2195325e. */
6253 _bfd_error_handler
6254 (_("%pB: error: non-load segment %d includes file header "
6255 "and/or program header"),
6256 abfd, (int) (p - phdrs));
6257 return FALSE;
6258 }
6259
6260 p->p_filesz = 0;
6261 p->p_offset = m->sections[0]->filepos;
6262 for (i = m->count; i-- != 0;)
6263 {
6264 asection *sect = m->sections[i];
6265 Elf_Internal_Shdr *hdr = &elf_section_data (sect)->this_hdr;
6266 if (hdr->sh_type != SHT_NOBITS)
6267 {
6268 p->p_filesz = (sect->filepos - m->sections[0]->filepos
6269 + hdr->sh_size);
6270 break;
6271 }
6272 }
6273 }
6274 }
6275 }
6276
6277 return TRUE;
6278 }
6279
6280 static elf_section_list *
6281 find_section_in_list (unsigned int i, elf_section_list * list)
6282 {
6283 for (;list != NULL; list = list->next)
6284 if (list->ndx == i)
6285 break;
6286 return list;
6287 }
6288
6289 /* Work out the file positions of all the sections. This is called by
6290 _bfd_elf_compute_section_file_positions. All the section sizes and
6291 VMAs must be known before this is called.
6292
6293 Reloc sections come in two flavours: Those processed specially as
6294 "side-channel" data attached to a section to which they apply, and those that
6295 bfd doesn't process as relocations. The latter sort are stored in a normal
6296 bfd section by bfd_section_from_shdr. We don't consider the former sort
6297 here, unless they form part of the loadable image. Reloc sections not
6298 assigned here (and compressed debugging sections and CTF sections which
6299 nothing else in the file can rely upon) will be handled later by
6300 assign_file_positions_for_relocs.
6301
6302 We also don't set the positions of the .symtab and .strtab here. */
6303
6304 static bfd_boolean
6305 assign_file_positions_except_relocs (bfd *abfd,
6306 struct bfd_link_info *link_info)
6307 {
6308 struct elf_obj_tdata *tdata = elf_tdata (abfd);
6309 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
6310 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6311 unsigned int alloc;
6312
6313 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
6314 && bfd_get_format (abfd) != bfd_core)
6315 {
6316 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
6317 unsigned int num_sec = elf_numsections (abfd);
6318 Elf_Internal_Shdr **hdrpp;
6319 unsigned int i;
6320 file_ptr off;
6321
6322 /* Start after the ELF header. */
6323 off = i_ehdrp->e_ehsize;
6324
6325 /* We are not creating an executable, which means that we are
6326 not creating a program header, and that the actual order of
6327 the sections in the file is unimportant. */
6328 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
6329 {
6330 Elf_Internal_Shdr *hdr;
6331
6332 hdr = *hdrpp;
6333 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
6334 && hdr->bfd_section == NULL)
6335 /* Do not assign offsets for these sections yet: we don't know
6336 their sizes. */
6337 || (hdr->bfd_section != NULL
6338 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS
6339 || (bfd_section_is_ctf (hdr->bfd_section)
6340 && abfd->is_linker_output)))
6341 || i == elf_onesymtab (abfd)
6342 || (elf_symtab_shndx_list (abfd) != NULL
6343 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
6344 || i == elf_strtab_sec (abfd)
6345 || i == elf_shstrtab_sec (abfd))
6346 {
6347 hdr->sh_offset = -1;
6348 }
6349 else
6350 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
6351 }
6352
6353 elf_next_file_pos (abfd) = off;
6354 elf_program_header_size (abfd) = 0;
6355 }
6356 else
6357 {
6358 /* Assign file positions for the loaded sections based on the
6359 assignment of sections to segments. */
6360 if (!assign_file_positions_for_load_sections (abfd, link_info))
6361 return FALSE;
6362
6363 /* And for non-load sections. */
6364 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
6365 return FALSE;
6366 }
6367
6368 if (!(*bed->elf_backend_modify_headers) (abfd, link_info))
6369 return FALSE;
6370
6371 /* Write out the program headers. */
6372 alloc = i_ehdrp->e_phnum;
6373 if (alloc != 0)
6374 {
6375 if (bfd_seek (abfd, i_ehdrp->e_phoff, SEEK_SET) != 0
6376 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
6377 return FALSE;
6378 }
6379
6380 return TRUE;
6381 }
6382
6383 bfd_boolean
6384 _bfd_elf_init_file_header (bfd *abfd,
6385 struct bfd_link_info *info ATTRIBUTE_UNUSED)
6386 {
6387 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form. */
6388 struct elf_strtab_hash *shstrtab;
6389 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6390
6391 i_ehdrp = elf_elfheader (abfd);
6392
6393 shstrtab = _bfd_elf_strtab_init ();
6394 if (shstrtab == NULL)
6395 return FALSE;
6396
6397 elf_shstrtab (abfd) = shstrtab;
6398
6399 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
6400 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
6401 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
6402 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
6403
6404 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
6405 i_ehdrp->e_ident[EI_DATA] =
6406 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
6407 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
6408
6409 if ((abfd->flags & DYNAMIC) != 0)
6410 i_ehdrp->e_type = ET_DYN;
6411 else if ((abfd->flags & EXEC_P) != 0)
6412 i_ehdrp->e_type = ET_EXEC;
6413 else if (bfd_get_format (abfd) == bfd_core)
6414 i_ehdrp->e_type = ET_CORE;
6415 else
6416 i_ehdrp->e_type = ET_REL;
6417
6418 switch (bfd_get_arch (abfd))
6419 {
6420 case bfd_arch_unknown:
6421 i_ehdrp->e_machine = EM_NONE;
6422 break;
6423
6424 /* There used to be a long list of cases here, each one setting
6425 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
6426 in the corresponding bfd definition. To avoid duplication,
6427 the switch was removed. Machines that need special handling
6428 can generally do it in elf_backend_final_write_processing(),
6429 unless they need the information earlier than the final write.
6430 Such need can generally be supplied by replacing the tests for
6431 e_machine with the conditions used to determine it. */
6432 default:
6433 i_ehdrp->e_machine = bed->elf_machine_code;
6434 }
6435
6436 i_ehdrp->e_version = bed->s->ev_current;
6437 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
6438
6439 /* No program header, for now. */
6440 i_ehdrp->e_phoff = 0;
6441 i_ehdrp->e_phentsize = 0;
6442 i_ehdrp->e_phnum = 0;
6443
6444 /* Each bfd section is section header entry. */
6445 i_ehdrp->e_entry = bfd_get_start_address (abfd);
6446 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
6447
6448 elf_tdata (abfd)->symtab_hdr.sh_name =
6449 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
6450 elf_tdata (abfd)->strtab_hdr.sh_name =
6451 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
6452 elf_tdata (abfd)->shstrtab_hdr.sh_name =
6453 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
6454 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
6455 || elf_tdata (abfd)->strtab_hdr.sh_name == (unsigned int) -1
6456 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
6457 return FALSE;
6458
6459 return TRUE;
6460 }
6461
6462 /* Set e_type in ELF header to ET_EXEC for -pie -Ttext-segment=.
6463
6464 FIXME: We used to have code here to sort the PT_LOAD segments into
6465 ascending order, as per the ELF spec. But this breaks some programs,
6466 including the Linux kernel. But really either the spec should be
6467 changed or the programs updated. */
6468
6469 bfd_boolean
6470 _bfd_elf_modify_headers (bfd *obfd, struct bfd_link_info *link_info)
6471 {
6472 if (link_info != NULL && bfd_link_pie (link_info))
6473 {
6474 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (obfd);
6475 unsigned int num_segments = i_ehdrp->e_phnum;
6476 struct elf_obj_tdata *tdata = elf_tdata (obfd);
6477 Elf_Internal_Phdr *segment = tdata->phdr;
6478 Elf_Internal_Phdr *end_segment = &segment[num_segments];
6479
6480 /* Find the lowest p_vaddr in PT_LOAD segments. */
6481 bfd_vma p_vaddr = (bfd_vma) -1;
6482 for (; segment < end_segment; segment++)
6483 if (segment->p_type == PT_LOAD && p_vaddr > segment->p_vaddr)
6484 p_vaddr = segment->p_vaddr;
6485
6486 /* Set e_type to ET_EXEC if the lowest p_vaddr in PT_LOAD
6487 segments is non-zero. */
6488 if (p_vaddr)
6489 i_ehdrp->e_type = ET_EXEC;
6490 }
6491 return TRUE;
6492 }
6493
6494 /* Assign file positions for all the reloc sections which are not part
6495 of the loadable file image, and the file position of section headers. */
6496
6497 static bfd_boolean
6498 _bfd_elf_assign_file_positions_for_non_load (bfd *abfd)
6499 {
6500 file_ptr off;
6501 Elf_Internal_Shdr **shdrpp, **end_shdrpp;
6502 Elf_Internal_Shdr *shdrp;
6503 Elf_Internal_Ehdr *i_ehdrp;
6504 const struct elf_backend_data *bed;
6505
6506 off = elf_next_file_pos (abfd);
6507
6508 shdrpp = elf_elfsections (abfd);
6509 end_shdrpp = shdrpp + elf_numsections (abfd);
6510 for (shdrpp++; shdrpp < end_shdrpp; shdrpp++)
6511 {
6512 shdrp = *shdrpp;
6513 if (shdrp->sh_offset == -1)
6514 {
6515 asection *sec = shdrp->bfd_section;
6516 bfd_boolean is_rel = (shdrp->sh_type == SHT_REL
6517 || shdrp->sh_type == SHT_RELA);
6518 bfd_boolean is_ctf = sec && bfd_section_is_ctf (sec);
6519 if (is_rel
6520 || is_ctf
6521 || (sec != NULL && (sec->flags & SEC_ELF_COMPRESS)))
6522 {
6523 if (!is_rel && !is_ctf)
6524 {
6525 const char *name = sec->name;
6526 struct bfd_elf_section_data *d;
6527
6528 /* Compress DWARF debug sections. */
6529 if (!bfd_compress_section (abfd, sec,
6530 shdrp->contents))
6531 return FALSE;
6532
6533 if (sec->compress_status == COMPRESS_SECTION_DONE
6534 && (abfd->flags & BFD_COMPRESS_GABI) == 0)
6535 {
6536 /* If section is compressed with zlib-gnu, convert
6537 section name from .debug_* to .zdebug_*. */
6538 char *new_name
6539 = convert_debug_to_zdebug (abfd, name);
6540 if (new_name == NULL)
6541 return FALSE;
6542 name = new_name;
6543 }
6544 /* Add section name to section name section. */
6545 if (shdrp->sh_name != (unsigned int) -1)
6546 abort ();
6547 shdrp->sh_name
6548 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
6549 name, FALSE);
6550 d = elf_section_data (sec);
6551
6552 /* Add reloc section name to section name section. */
6553 if (d->rel.hdr
6554 && !_bfd_elf_set_reloc_sh_name (abfd,
6555 d->rel.hdr,
6556 name, FALSE))
6557 return FALSE;
6558 if (d->rela.hdr
6559 && !_bfd_elf_set_reloc_sh_name (abfd,
6560 d->rela.hdr,
6561 name, TRUE))
6562 return FALSE;
6563
6564 /* Update section size and contents. */
6565 shdrp->sh_size = sec->size;
6566 shdrp->contents = sec->contents;
6567 shdrp->bfd_section->contents = NULL;
6568 }
6569 else if (is_ctf)
6570 {
6571 /* Update section size and contents. */
6572 shdrp->sh_size = sec->size;
6573 shdrp->contents = sec->contents;
6574 }
6575
6576 off = _bfd_elf_assign_file_position_for_section (shdrp,
6577 off,
6578 TRUE);
6579 }
6580 }
6581 }
6582
6583 /* Place section name section after DWARF debug sections have been
6584 compressed. */
6585 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
6586 shdrp = &elf_tdata (abfd)->shstrtab_hdr;
6587 shdrp->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
6588 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
6589
6590 /* Place the section headers. */
6591 i_ehdrp = elf_elfheader (abfd);
6592 bed = get_elf_backend_data (abfd);
6593 off = align_file_position (off, 1 << bed->s->log_file_align);
6594 i_ehdrp->e_shoff = off;
6595 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
6596 elf_next_file_pos (abfd) = off;
6597
6598 return TRUE;
6599 }
6600
6601 bfd_boolean
6602 _bfd_elf_write_object_contents (bfd *abfd)
6603 {
6604 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6605 Elf_Internal_Shdr **i_shdrp;
6606 bfd_boolean failed;
6607 unsigned int count, num_sec;
6608 struct elf_obj_tdata *t;
6609
6610 if (! abfd->output_has_begun
6611 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
6612 return FALSE;
6613 /* Do not rewrite ELF data when the BFD has been opened for update.
6614 abfd->output_has_begun was set to TRUE on opening, so creation of new
6615 sections, and modification of existing section sizes was restricted.
6616 This means the ELF header, program headers and section headers can't have
6617 changed.
6618 If the contents of any sections has been modified, then those changes have
6619 already been written to the BFD. */
6620 else if (abfd->direction == both_direction)
6621 {
6622 BFD_ASSERT (abfd->output_has_begun);
6623 return TRUE;
6624 }
6625
6626 i_shdrp = elf_elfsections (abfd);
6627
6628 failed = FALSE;
6629 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
6630 if (failed)
6631 return FALSE;
6632
6633 if (!_bfd_elf_assign_file_positions_for_non_load (abfd))
6634 return FALSE;
6635
6636 /* After writing the headers, we need to write the sections too... */
6637 num_sec = elf_numsections (abfd);
6638 for (count = 1; count < num_sec; count++)
6639 {
6640 i_shdrp[count]->sh_name
6641 = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
6642 i_shdrp[count]->sh_name);
6643 if (bed->elf_backend_section_processing)
6644 if (!(*bed->elf_backend_section_processing) (abfd, i_shdrp[count]))
6645 return FALSE;
6646 if (i_shdrp[count]->contents)
6647 {
6648 bfd_size_type amt = i_shdrp[count]->sh_size;
6649
6650 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
6651 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
6652 return FALSE;
6653 }
6654 }
6655
6656 /* Write out the section header names. */
6657 t = elf_tdata (abfd);
6658 if (elf_shstrtab (abfd) != NULL
6659 && (bfd_seek (abfd, t->shstrtab_hdr.sh_offset, SEEK_SET) != 0
6660 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
6661 return FALSE;
6662
6663 if (!(*bed->elf_backend_final_write_processing) (abfd))
6664 return FALSE;
6665
6666 if (!bed->s->write_shdrs_and_ehdr (abfd))
6667 return FALSE;
6668
6669 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
6670 if (t->o->build_id.after_write_object_contents != NULL)
6671 return (*t->o->build_id.after_write_object_contents) (abfd);
6672
6673 return TRUE;
6674 }
6675
6676 bfd_boolean
6677 _bfd_elf_write_corefile_contents (bfd *abfd)
6678 {
6679 /* Hopefully this can be done just like an object file. */
6680 return _bfd_elf_write_object_contents (abfd);
6681 }
6682
6683 /* Given a section, search the header to find them. */
6684
6685 unsigned int
6686 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
6687 {
6688 const struct elf_backend_data *bed;
6689 unsigned int sec_index;
6690
6691 if (elf_section_data (asect) != NULL
6692 && elf_section_data (asect)->this_idx != 0)
6693 return elf_section_data (asect)->this_idx;
6694
6695 if (bfd_is_abs_section (asect))
6696 sec_index = SHN_ABS;
6697 else if (bfd_is_com_section (asect))
6698 sec_index = SHN_COMMON;
6699 else if (bfd_is_und_section (asect))
6700 sec_index = SHN_UNDEF;
6701 else
6702 sec_index = SHN_BAD;
6703
6704 bed = get_elf_backend_data (abfd);
6705 if (bed->elf_backend_section_from_bfd_section)
6706 {
6707 int retval = sec_index;
6708
6709 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
6710 return retval;
6711 }
6712
6713 if (sec_index == SHN_BAD)
6714 bfd_set_error (bfd_error_nonrepresentable_section);
6715
6716 return sec_index;
6717 }
6718
6719 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
6720 on error. */
6721
6722 int
6723 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
6724 {
6725 asymbol *asym_ptr = *asym_ptr_ptr;
6726 int idx;
6727 flagword flags = asym_ptr->flags;
6728
6729 /* When gas creates relocations against local labels, it creates its
6730 own symbol for the section, but does put the symbol into the
6731 symbol chain, so udata is 0. When the linker is generating
6732 relocatable output, this section symbol may be for one of the
6733 input sections rather than the output section. */
6734 if (asym_ptr->udata.i == 0
6735 && (flags & BSF_SECTION_SYM)
6736 && asym_ptr->section)
6737 {
6738 asection *sec;
6739 int indx;
6740
6741 sec = asym_ptr->section;
6742 if (sec->owner != abfd && sec->output_section != NULL)
6743 sec = sec->output_section;
6744 if (sec->owner == abfd
6745 && (indx = sec->index) < elf_num_section_syms (abfd)
6746 && elf_section_syms (abfd)[indx] != NULL)
6747 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
6748 }
6749
6750 idx = asym_ptr->udata.i;
6751
6752 if (idx == 0)
6753 {
6754 /* This case can occur when using --strip-symbol on a symbol
6755 which is used in a relocation entry. */
6756 _bfd_error_handler
6757 /* xgettext:c-format */
6758 (_("%pB: symbol `%s' required but not present"),
6759 abfd, bfd_asymbol_name (asym_ptr));
6760 bfd_set_error (bfd_error_no_symbols);
6761 return -1;
6762 }
6763
6764 #if DEBUG & 4
6765 {
6766 fprintf (stderr,
6767 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8x\n",
6768 (long) asym_ptr, asym_ptr->name, idx, flags);
6769 fflush (stderr);
6770 }
6771 #endif
6772
6773 return idx;
6774 }
6775
6776 /* Rewrite program header information. */
6777
6778 static bfd_boolean
6779 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
6780 {
6781 Elf_Internal_Ehdr *iehdr;
6782 struct elf_segment_map *map;
6783 struct elf_segment_map *map_first;
6784 struct elf_segment_map **pointer_to_map;
6785 Elf_Internal_Phdr *segment;
6786 asection *section;
6787 unsigned int i;
6788 unsigned int num_segments;
6789 bfd_boolean phdr_included = FALSE;
6790 bfd_boolean p_paddr_valid;
6791 bfd_vma maxpagesize;
6792 struct elf_segment_map *phdr_adjust_seg = NULL;
6793 unsigned int phdr_adjust_num = 0;
6794 const struct elf_backend_data *bed;
6795
6796 bed = get_elf_backend_data (ibfd);
6797 iehdr = elf_elfheader (ibfd);
6798
6799 map_first = NULL;
6800 pointer_to_map = &map_first;
6801
6802 num_segments = elf_elfheader (ibfd)->e_phnum;
6803 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
6804
6805 /* Returns the end address of the segment + 1. */
6806 #define SEGMENT_END(segment, start) \
6807 (start + (segment->p_memsz > segment->p_filesz \
6808 ? segment->p_memsz : segment->p_filesz))
6809
6810 #define SECTION_SIZE(section, segment) \
6811 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
6812 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
6813 ? section->size : 0)
6814
6815 /* Returns TRUE if the given section is contained within
6816 the given segment. VMA addresses are compared. */
6817 #define IS_CONTAINED_BY_VMA(section, segment) \
6818 (section->vma >= segment->p_vaddr \
6819 && (section->vma + SECTION_SIZE (section, segment) \
6820 <= (SEGMENT_END (segment, segment->p_vaddr))))
6821
6822 /* Returns TRUE if the given section is contained within
6823 the given segment. LMA addresses are compared. */
6824 #define IS_CONTAINED_BY_LMA(section, segment, base) \
6825 (section->lma >= base \
6826 && (section->lma + SECTION_SIZE (section, segment) >= section->lma) \
6827 && (section->lma + SECTION_SIZE (section, segment) \
6828 <= SEGMENT_END (segment, base)))
6829
6830 /* Handle PT_NOTE segment. */
6831 #define IS_NOTE(p, s) \
6832 (p->p_type == PT_NOTE \
6833 && elf_section_type (s) == SHT_NOTE \
6834 && (bfd_vma) s->filepos >= p->p_offset \
6835 && ((bfd_vma) s->filepos + s->size \
6836 <= p->p_offset + p->p_filesz))
6837
6838 /* Special case: corefile "NOTE" section containing regs, prpsinfo
6839 etc. */
6840 #define IS_COREFILE_NOTE(p, s) \
6841 (IS_NOTE (p, s) \
6842 && bfd_get_format (ibfd) == bfd_core \
6843 && s->vma == 0 \
6844 && s->lma == 0)
6845
6846 /* The complicated case when p_vaddr is 0 is to handle the Solaris
6847 linker, which generates a PT_INTERP section with p_vaddr and
6848 p_memsz set to 0. */
6849 #define IS_SOLARIS_PT_INTERP(p, s) \
6850 (p->p_vaddr == 0 \
6851 && p->p_paddr == 0 \
6852 && p->p_memsz == 0 \
6853 && p->p_filesz > 0 \
6854 && (s->flags & SEC_HAS_CONTENTS) != 0 \
6855 && s->size > 0 \
6856 && (bfd_vma) s->filepos >= p->p_offset \
6857 && ((bfd_vma) s->filepos + s->size \
6858 <= p->p_offset + p->p_filesz))
6859
6860 /* Decide if the given section should be included in the given segment.
6861 A section will be included if:
6862 1. It is within the address space of the segment -- we use the LMA
6863 if that is set for the segment and the VMA otherwise,
6864 2. It is an allocated section or a NOTE section in a PT_NOTE
6865 segment.
6866 3. There is an output section associated with it,
6867 4. The section has not already been allocated to a previous segment.
6868 5. PT_GNU_STACK segments do not include any sections.
6869 6. PT_TLS segment includes only SHF_TLS sections.
6870 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
6871 8. PT_DYNAMIC should not contain empty sections at the beginning
6872 (with the possible exception of .dynamic). */
6873 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
6874 ((((segment->p_paddr \
6875 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
6876 : IS_CONTAINED_BY_VMA (section, segment)) \
6877 && (section->flags & SEC_ALLOC) != 0) \
6878 || IS_NOTE (segment, section)) \
6879 && segment->p_type != PT_GNU_STACK \
6880 && (segment->p_type != PT_TLS \
6881 || (section->flags & SEC_THREAD_LOCAL)) \
6882 && (segment->p_type == PT_LOAD \
6883 || segment->p_type == PT_TLS \
6884 || (section->flags & SEC_THREAD_LOCAL) == 0) \
6885 && (segment->p_type != PT_DYNAMIC \
6886 || SECTION_SIZE (section, segment) > 0 \
6887 || (segment->p_paddr \
6888 ? segment->p_paddr != section->lma \
6889 : segment->p_vaddr != section->vma) \
6890 || (strcmp (bfd_section_name (section), ".dynamic") == 0)) \
6891 && (segment->p_type != PT_LOAD || !section->segment_mark))
6892
6893 /* If the output section of a section in the input segment is NULL,
6894 it is removed from the corresponding output segment. */
6895 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
6896 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
6897 && section->output_section != NULL)
6898
6899 /* Returns TRUE iff seg1 starts after the end of seg2. */
6900 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
6901 (seg1->field >= SEGMENT_END (seg2, seg2->field))
6902
6903 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
6904 their VMA address ranges and their LMA address ranges overlap.
6905 It is possible to have overlapping VMA ranges without overlapping LMA
6906 ranges. RedBoot images for example can have both .data and .bss mapped
6907 to the same VMA range, but with the .data section mapped to a different
6908 LMA. */
6909 #define SEGMENT_OVERLAPS(seg1, seg2) \
6910 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
6911 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
6912 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
6913 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
6914
6915 /* Initialise the segment mark field. */
6916 for (section = ibfd->sections; section != NULL; section = section->next)
6917 section->segment_mark = FALSE;
6918
6919 /* The Solaris linker creates program headers in which all the
6920 p_paddr fields are zero. When we try to objcopy or strip such a
6921 file, we get confused. Check for this case, and if we find it
6922 don't set the p_paddr_valid fields. */
6923 p_paddr_valid = FALSE;
6924 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6925 i < num_segments;
6926 i++, segment++)
6927 if (segment->p_paddr != 0)
6928 {
6929 p_paddr_valid = TRUE;
6930 break;
6931 }
6932
6933 /* Scan through the segments specified in the program header
6934 of the input BFD. For this first scan we look for overlaps
6935 in the loadable segments. These can be created by weird
6936 parameters to objcopy. Also, fix some solaris weirdness. */
6937 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6938 i < num_segments;
6939 i++, segment++)
6940 {
6941 unsigned int j;
6942 Elf_Internal_Phdr *segment2;
6943
6944 if (segment->p_type == PT_INTERP)
6945 for (section = ibfd->sections; section; section = section->next)
6946 if (IS_SOLARIS_PT_INTERP (segment, section))
6947 {
6948 /* Mininal change so that the normal section to segment
6949 assignment code will work. */
6950 segment->p_vaddr = section->vma;
6951 break;
6952 }
6953
6954 if (segment->p_type != PT_LOAD)
6955 {
6956 /* Remove PT_GNU_RELRO segment. */
6957 if (segment->p_type == PT_GNU_RELRO)
6958 segment->p_type = PT_NULL;
6959 continue;
6960 }
6961
6962 /* Determine if this segment overlaps any previous segments. */
6963 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
6964 {
6965 bfd_signed_vma extra_length;
6966
6967 if (segment2->p_type != PT_LOAD
6968 || !SEGMENT_OVERLAPS (segment, segment2))
6969 continue;
6970
6971 /* Merge the two segments together. */
6972 if (segment2->p_vaddr < segment->p_vaddr)
6973 {
6974 /* Extend SEGMENT2 to include SEGMENT and then delete
6975 SEGMENT. */
6976 extra_length = (SEGMENT_END (segment, segment->p_vaddr)
6977 - SEGMENT_END (segment2, segment2->p_vaddr));
6978
6979 if (extra_length > 0)
6980 {
6981 segment2->p_memsz += extra_length;
6982 segment2->p_filesz += extra_length;
6983 }
6984
6985 segment->p_type = PT_NULL;
6986
6987 /* Since we have deleted P we must restart the outer loop. */
6988 i = 0;
6989 segment = elf_tdata (ibfd)->phdr;
6990 break;
6991 }
6992 else
6993 {
6994 /* Extend SEGMENT to include SEGMENT2 and then delete
6995 SEGMENT2. */
6996 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
6997 - SEGMENT_END (segment, segment->p_vaddr));
6998
6999 if (extra_length > 0)
7000 {
7001 segment->p_memsz += extra_length;
7002 segment->p_filesz += extra_length;
7003 }
7004
7005 segment2->p_type = PT_NULL;
7006 }
7007 }
7008 }
7009
7010 /* The second scan attempts to assign sections to segments. */
7011 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7012 i < num_segments;
7013 i++, segment++)
7014 {
7015 unsigned int section_count;
7016 asection **sections;
7017 asection *output_section;
7018 unsigned int isec;
7019 asection *matching_lma;
7020 asection *suggested_lma;
7021 unsigned int j;
7022 size_t amt;
7023 asection *first_section;
7024
7025 if (segment->p_type == PT_NULL)
7026 continue;
7027
7028 first_section = NULL;
7029 /* Compute how many sections might be placed into this segment. */
7030 for (section = ibfd->sections, section_count = 0;
7031 section != NULL;
7032 section = section->next)
7033 {
7034 /* Find the first section in the input segment, which may be
7035 removed from the corresponding output segment. */
7036 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
7037 {
7038 if (first_section == NULL)
7039 first_section = section;
7040 if (section->output_section != NULL)
7041 ++section_count;
7042 }
7043 }
7044
7045 /* Allocate a segment map big enough to contain
7046 all of the sections we have selected. */
7047 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
7048 amt += section_count * sizeof (asection *);
7049 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7050 if (map == NULL)
7051 return FALSE;
7052
7053 /* Initialise the fields of the segment map. Default to
7054 using the physical address of the segment in the input BFD. */
7055 map->next = NULL;
7056 map->p_type = segment->p_type;
7057 map->p_flags = segment->p_flags;
7058 map->p_flags_valid = 1;
7059
7060 /* If the first section in the input segment is removed, there is
7061 no need to preserve segment physical address in the corresponding
7062 output segment. */
7063 if (!first_section || first_section->output_section != NULL)
7064 {
7065 map->p_paddr = segment->p_paddr;
7066 map->p_paddr_valid = p_paddr_valid;
7067 }
7068
7069 /* Determine if this segment contains the ELF file header
7070 and if it contains the program headers themselves. */
7071 map->includes_filehdr = (segment->p_offset == 0
7072 && segment->p_filesz >= iehdr->e_ehsize);
7073 map->includes_phdrs = 0;
7074
7075 if (!phdr_included || segment->p_type != PT_LOAD)
7076 {
7077 map->includes_phdrs =
7078 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
7079 && (segment->p_offset + segment->p_filesz
7080 >= ((bfd_vma) iehdr->e_phoff
7081 + iehdr->e_phnum * iehdr->e_phentsize)));
7082
7083 if (segment->p_type == PT_LOAD && map->includes_phdrs)
7084 phdr_included = TRUE;
7085 }
7086
7087 if (section_count == 0)
7088 {
7089 /* Special segments, such as the PT_PHDR segment, may contain
7090 no sections, but ordinary, loadable segments should contain
7091 something. They are allowed by the ELF spec however, so only
7092 a warning is produced.
7093 There is however the valid use case of embedded systems which
7094 have segments with p_filesz of 0 and a p_memsz > 0 to initialize
7095 flash memory with zeros. No warning is shown for that case. */
7096 if (segment->p_type == PT_LOAD
7097 && (segment->p_filesz > 0 || segment->p_memsz == 0))
7098 /* xgettext:c-format */
7099 _bfd_error_handler
7100 (_("%pB: warning: empty loadable segment detected"
7101 " at vaddr=%#" PRIx64 ", is this intentional?"),
7102 ibfd, (uint64_t) segment->p_vaddr);
7103
7104 map->p_vaddr_offset = segment->p_vaddr;
7105 map->count = 0;
7106 *pointer_to_map = map;
7107 pointer_to_map = &map->next;
7108
7109 continue;
7110 }
7111
7112 /* Now scan the sections in the input BFD again and attempt
7113 to add their corresponding output sections to the segment map.
7114 The problem here is how to handle an output section which has
7115 been moved (ie had its LMA changed). There are four possibilities:
7116
7117 1. None of the sections have been moved.
7118 In this case we can continue to use the segment LMA from the
7119 input BFD.
7120
7121 2. All of the sections have been moved by the same amount.
7122 In this case we can change the segment's LMA to match the LMA
7123 of the first section.
7124
7125 3. Some of the sections have been moved, others have not.
7126 In this case those sections which have not been moved can be
7127 placed in the current segment which will have to have its size,
7128 and possibly its LMA changed, and a new segment or segments will
7129 have to be created to contain the other sections.
7130
7131 4. The sections have been moved, but not by the same amount.
7132 In this case we can change the segment's LMA to match the LMA
7133 of the first section and we will have to create a new segment
7134 or segments to contain the other sections.
7135
7136 In order to save time, we allocate an array to hold the section
7137 pointers that we are interested in. As these sections get assigned
7138 to a segment, they are removed from this array. */
7139
7140 amt = section_count * sizeof (asection *);
7141 sections = (asection **) bfd_malloc (amt);
7142 if (sections == NULL)
7143 return FALSE;
7144
7145 /* Step One: Scan for segment vs section LMA conflicts.
7146 Also add the sections to the section array allocated above.
7147 Also add the sections to the current segment. In the common
7148 case, where the sections have not been moved, this means that
7149 we have completely filled the segment, and there is nothing
7150 more to do. */
7151 isec = 0;
7152 matching_lma = NULL;
7153 suggested_lma = NULL;
7154
7155 for (section = first_section, j = 0;
7156 section != NULL;
7157 section = section->next)
7158 {
7159 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
7160 {
7161 output_section = section->output_section;
7162
7163 sections[j++] = section;
7164
7165 /* The Solaris native linker always sets p_paddr to 0.
7166 We try to catch that case here, and set it to the
7167 correct value. Note - some backends require that
7168 p_paddr be left as zero. */
7169 if (!p_paddr_valid
7170 && segment->p_vaddr != 0
7171 && !bed->want_p_paddr_set_to_zero
7172 && isec == 0
7173 && output_section->lma != 0
7174 && (align_power (segment->p_vaddr
7175 + (map->includes_filehdr
7176 ? iehdr->e_ehsize : 0)
7177 + (map->includes_phdrs
7178 ? iehdr->e_phnum * iehdr->e_phentsize
7179 : 0),
7180 output_section->alignment_power)
7181 == output_section->vma))
7182 map->p_paddr = segment->p_vaddr;
7183
7184 /* Match up the physical address of the segment with the
7185 LMA address of the output section. */
7186 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
7187 || IS_COREFILE_NOTE (segment, section)
7188 || (bed->want_p_paddr_set_to_zero
7189 && IS_CONTAINED_BY_VMA (output_section, segment)))
7190 {
7191 if (matching_lma == NULL
7192 || output_section->lma < matching_lma->lma)
7193 matching_lma = output_section;
7194
7195 /* We assume that if the section fits within the segment
7196 then it does not overlap any other section within that
7197 segment. */
7198 map->sections[isec++] = output_section;
7199 }
7200 else if (suggested_lma == NULL)
7201 suggested_lma = output_section;
7202
7203 if (j == section_count)
7204 break;
7205 }
7206 }
7207
7208 BFD_ASSERT (j == section_count);
7209
7210 /* Step Two: Adjust the physical address of the current segment,
7211 if necessary. */
7212 if (isec == section_count)
7213 {
7214 /* All of the sections fitted within the segment as currently
7215 specified. This is the default case. Add the segment to
7216 the list of built segments and carry on to process the next
7217 program header in the input BFD. */
7218 map->count = section_count;
7219 *pointer_to_map = map;
7220 pointer_to_map = &map->next;
7221
7222 if (p_paddr_valid
7223 && !bed->want_p_paddr_set_to_zero)
7224 {
7225 bfd_vma hdr_size = 0;
7226 if (map->includes_filehdr)
7227 hdr_size = iehdr->e_ehsize;
7228 if (map->includes_phdrs)
7229 hdr_size += iehdr->e_phnum * iehdr->e_phentsize;
7230
7231 /* Account for padding before the first section in the
7232 segment. */
7233 map->p_vaddr_offset = map->p_paddr + hdr_size - matching_lma->lma;
7234 }
7235
7236 free (sections);
7237 continue;
7238 }
7239 else
7240 {
7241 /* Change the current segment's physical address to match
7242 the LMA of the first section that fitted, or if no
7243 section fitted, the first section. */
7244 if (matching_lma == NULL)
7245 matching_lma = suggested_lma;
7246
7247 map->p_paddr = matching_lma->lma;
7248
7249 /* Offset the segment physical address from the lma
7250 to allow for space taken up by elf headers. */
7251 if (map->includes_phdrs)
7252 {
7253 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
7254
7255 /* iehdr->e_phnum is just an estimate of the number
7256 of program headers that we will need. Make a note
7257 here of the number we used and the segment we chose
7258 to hold these headers, so that we can adjust the
7259 offset when we know the correct value. */
7260 phdr_adjust_num = iehdr->e_phnum;
7261 phdr_adjust_seg = map;
7262 }
7263
7264 if (map->includes_filehdr)
7265 {
7266 bfd_vma align = (bfd_vma) 1 << matching_lma->alignment_power;
7267 map->p_paddr -= iehdr->e_ehsize;
7268 /* We've subtracted off the size of headers from the
7269 first section lma, but there may have been some
7270 alignment padding before that section too. Try to
7271 account for that by adjusting the segment lma down to
7272 the same alignment. */
7273 if (segment->p_align != 0 && segment->p_align < align)
7274 align = segment->p_align;
7275 map->p_paddr &= -align;
7276 }
7277 }
7278
7279 /* Step Three: Loop over the sections again, this time assigning
7280 those that fit to the current segment and removing them from the
7281 sections array; but making sure not to leave large gaps. Once all
7282 possible sections have been assigned to the current segment it is
7283 added to the list of built segments and if sections still remain
7284 to be assigned, a new segment is constructed before repeating
7285 the loop. */
7286 isec = 0;
7287 do
7288 {
7289 map->count = 0;
7290 suggested_lma = NULL;
7291
7292 /* Fill the current segment with sections that fit. */
7293 for (j = 0; j < section_count; j++)
7294 {
7295 section = sections[j];
7296
7297 if (section == NULL)
7298 continue;
7299
7300 output_section = section->output_section;
7301
7302 BFD_ASSERT (output_section != NULL);
7303
7304 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
7305 || IS_COREFILE_NOTE (segment, section))
7306 {
7307 if (map->count == 0)
7308 {
7309 /* If the first section in a segment does not start at
7310 the beginning of the segment, then something is
7311 wrong. */
7312 if (align_power (map->p_paddr
7313 + (map->includes_filehdr
7314 ? iehdr->e_ehsize : 0)
7315 + (map->includes_phdrs
7316 ? iehdr->e_phnum * iehdr->e_phentsize
7317 : 0),
7318 output_section->alignment_power)
7319 != output_section->lma)
7320 goto sorry;
7321 }
7322 else
7323 {
7324 asection *prev_sec;
7325
7326 prev_sec = map->sections[map->count - 1];
7327
7328 /* If the gap between the end of the previous section
7329 and the start of this section is more than
7330 maxpagesize then we need to start a new segment. */
7331 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
7332 maxpagesize)
7333 < BFD_ALIGN (output_section->lma, maxpagesize))
7334 || (prev_sec->lma + prev_sec->size
7335 > output_section->lma))
7336 {
7337 if (suggested_lma == NULL)
7338 suggested_lma = output_section;
7339
7340 continue;
7341 }
7342 }
7343
7344 map->sections[map->count++] = output_section;
7345 ++isec;
7346 sections[j] = NULL;
7347 if (segment->p_type == PT_LOAD)
7348 section->segment_mark = TRUE;
7349 }
7350 else if (suggested_lma == NULL)
7351 suggested_lma = output_section;
7352 }
7353
7354 /* PR 23932. A corrupt input file may contain sections that cannot
7355 be assigned to any segment - because for example they have a
7356 negative size - or segments that do not contain any sections.
7357 But there are also valid reasons why a segment can be empty.
7358 So allow a count of zero. */
7359
7360 /* Add the current segment to the list of built segments. */
7361 *pointer_to_map = map;
7362 pointer_to_map = &map->next;
7363
7364 if (isec < section_count)
7365 {
7366 /* We still have not allocated all of the sections to
7367 segments. Create a new segment here, initialise it
7368 and carry on looping. */
7369 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
7370 amt += section_count * sizeof (asection *);
7371 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7372 if (map == NULL)
7373 {
7374 free (sections);
7375 return FALSE;
7376 }
7377
7378 /* Initialise the fields of the segment map. Set the physical
7379 physical address to the LMA of the first section that has
7380 not yet been assigned. */
7381 map->next = NULL;
7382 map->p_type = segment->p_type;
7383 map->p_flags = segment->p_flags;
7384 map->p_flags_valid = 1;
7385 map->p_paddr = suggested_lma->lma;
7386 map->p_paddr_valid = p_paddr_valid;
7387 map->includes_filehdr = 0;
7388 map->includes_phdrs = 0;
7389 }
7390
7391 continue;
7392 sorry:
7393 bfd_set_error (bfd_error_sorry);
7394 free (sections);
7395 return FALSE;
7396 }
7397 while (isec < section_count);
7398
7399 free (sections);
7400 }
7401
7402 elf_seg_map (obfd) = map_first;
7403
7404 /* If we had to estimate the number of program headers that were
7405 going to be needed, then check our estimate now and adjust
7406 the offset if necessary. */
7407 if (phdr_adjust_seg != NULL)
7408 {
7409 unsigned int count;
7410
7411 for (count = 0, map = map_first; map != NULL; map = map->next)
7412 count++;
7413
7414 if (count > phdr_adjust_num)
7415 phdr_adjust_seg->p_paddr
7416 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
7417
7418 for (map = map_first; map != NULL; map = map->next)
7419 if (map->p_type == PT_PHDR)
7420 {
7421 bfd_vma adjust
7422 = phdr_adjust_seg->includes_filehdr ? iehdr->e_ehsize : 0;
7423 map->p_paddr = phdr_adjust_seg->p_paddr + adjust;
7424 break;
7425 }
7426 }
7427
7428 #undef SEGMENT_END
7429 #undef SECTION_SIZE
7430 #undef IS_CONTAINED_BY_VMA
7431 #undef IS_CONTAINED_BY_LMA
7432 #undef IS_NOTE
7433 #undef IS_COREFILE_NOTE
7434 #undef IS_SOLARIS_PT_INTERP
7435 #undef IS_SECTION_IN_INPUT_SEGMENT
7436 #undef INCLUDE_SECTION_IN_SEGMENT
7437 #undef SEGMENT_AFTER_SEGMENT
7438 #undef SEGMENT_OVERLAPS
7439 return TRUE;
7440 }
7441
7442 /* Copy ELF program header information. */
7443
7444 static bfd_boolean
7445 copy_elf_program_header (bfd *ibfd, bfd *obfd)
7446 {
7447 Elf_Internal_Ehdr *iehdr;
7448 struct elf_segment_map *map;
7449 struct elf_segment_map *map_first;
7450 struct elf_segment_map **pointer_to_map;
7451 Elf_Internal_Phdr *segment;
7452 unsigned int i;
7453 unsigned int num_segments;
7454 bfd_boolean phdr_included = FALSE;
7455 bfd_boolean p_paddr_valid;
7456
7457 iehdr = elf_elfheader (ibfd);
7458
7459 map_first = NULL;
7460 pointer_to_map = &map_first;
7461
7462 /* If all the segment p_paddr fields are zero, don't set
7463 map->p_paddr_valid. */
7464 p_paddr_valid = FALSE;
7465 num_segments = elf_elfheader (ibfd)->e_phnum;
7466 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7467 i < num_segments;
7468 i++, segment++)
7469 if (segment->p_paddr != 0)
7470 {
7471 p_paddr_valid = TRUE;
7472 break;
7473 }
7474
7475 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7476 i < num_segments;
7477 i++, segment++)
7478 {
7479 asection *section;
7480 unsigned int section_count;
7481 size_t amt;
7482 Elf_Internal_Shdr *this_hdr;
7483 asection *first_section = NULL;
7484 asection *lowest_section;
7485
7486 /* Compute how many sections are in this segment. */
7487 for (section = ibfd->sections, section_count = 0;
7488 section != NULL;
7489 section = section->next)
7490 {
7491 this_hdr = &(elf_section_data(section)->this_hdr);
7492 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7493 {
7494 if (first_section == NULL)
7495 first_section = section;
7496 section_count++;
7497 }
7498 }
7499
7500 /* Allocate a segment map big enough to contain
7501 all of the sections we have selected. */
7502 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
7503 amt += section_count * sizeof (asection *);
7504 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7505 if (map == NULL)
7506 return FALSE;
7507
7508 /* Initialize the fields of the output segment map with the
7509 input segment. */
7510 map->next = NULL;
7511 map->p_type = segment->p_type;
7512 map->p_flags = segment->p_flags;
7513 map->p_flags_valid = 1;
7514 map->p_paddr = segment->p_paddr;
7515 map->p_paddr_valid = p_paddr_valid;
7516 map->p_align = segment->p_align;
7517 map->p_align_valid = 1;
7518 map->p_vaddr_offset = 0;
7519
7520 if (map->p_type == PT_GNU_RELRO
7521 || map->p_type == PT_GNU_STACK)
7522 {
7523 /* The PT_GNU_RELRO segment may contain the first a few
7524 bytes in the .got.plt section even if the whole .got.plt
7525 section isn't in the PT_GNU_RELRO segment. We won't
7526 change the size of the PT_GNU_RELRO segment.
7527 Similarly, PT_GNU_STACK size is significant on uclinux
7528 systems. */
7529 map->p_size = segment->p_memsz;
7530 map->p_size_valid = 1;
7531 }
7532
7533 /* Determine if this segment contains the ELF file header
7534 and if it contains the program headers themselves. */
7535 map->includes_filehdr = (segment->p_offset == 0
7536 && segment->p_filesz >= iehdr->e_ehsize);
7537
7538 map->includes_phdrs = 0;
7539 if (! phdr_included || segment->p_type != PT_LOAD)
7540 {
7541 map->includes_phdrs =
7542 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
7543 && (segment->p_offset + segment->p_filesz
7544 >= ((bfd_vma) iehdr->e_phoff
7545 + iehdr->e_phnum * iehdr->e_phentsize)));
7546
7547 if (segment->p_type == PT_LOAD && map->includes_phdrs)
7548 phdr_included = TRUE;
7549 }
7550
7551 lowest_section = NULL;
7552 if (section_count != 0)
7553 {
7554 unsigned int isec = 0;
7555
7556 for (section = first_section;
7557 section != NULL;
7558 section = section->next)
7559 {
7560 this_hdr = &(elf_section_data(section)->this_hdr);
7561 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7562 {
7563 map->sections[isec++] = section->output_section;
7564 if ((section->flags & SEC_ALLOC) != 0)
7565 {
7566 bfd_vma seg_off;
7567
7568 if (lowest_section == NULL
7569 || section->lma < lowest_section->lma)
7570 lowest_section = section;
7571
7572 /* Section lmas are set up from PT_LOAD header
7573 p_paddr in _bfd_elf_make_section_from_shdr.
7574 If this header has a p_paddr that disagrees
7575 with the section lma, flag the p_paddr as
7576 invalid. */
7577 if ((section->flags & SEC_LOAD) != 0)
7578 seg_off = this_hdr->sh_offset - segment->p_offset;
7579 else
7580 seg_off = this_hdr->sh_addr - segment->p_vaddr;
7581 if (section->lma - segment->p_paddr != seg_off)
7582 map->p_paddr_valid = FALSE;
7583 }
7584 if (isec == section_count)
7585 break;
7586 }
7587 }
7588 }
7589
7590 if (section_count == 0)
7591 map->p_vaddr_offset = segment->p_vaddr;
7592 else if (map->p_paddr_valid)
7593 {
7594 /* Account for padding before the first section in the segment. */
7595 bfd_vma hdr_size = 0;
7596 if (map->includes_filehdr)
7597 hdr_size = iehdr->e_ehsize;
7598 if (map->includes_phdrs)
7599 hdr_size += iehdr->e_phnum * iehdr->e_phentsize;
7600
7601 map->p_vaddr_offset = (map->p_paddr + hdr_size
7602 - (lowest_section ? lowest_section->lma : 0));
7603 }
7604
7605 map->count = section_count;
7606 *pointer_to_map = map;
7607 pointer_to_map = &map->next;
7608 }
7609
7610 elf_seg_map (obfd) = map_first;
7611 return TRUE;
7612 }
7613
7614 /* Copy private BFD data. This copies or rewrites ELF program header
7615 information. */
7616
7617 static bfd_boolean
7618 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
7619 {
7620 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7621 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7622 return TRUE;
7623
7624 if (elf_tdata (ibfd)->phdr == NULL)
7625 return TRUE;
7626
7627 if (ibfd->xvec == obfd->xvec)
7628 {
7629 /* Check to see if any sections in the input BFD
7630 covered by ELF program header have changed. */
7631 Elf_Internal_Phdr *segment;
7632 asection *section, *osec;
7633 unsigned int i, num_segments;
7634 Elf_Internal_Shdr *this_hdr;
7635 const struct elf_backend_data *bed;
7636
7637 bed = get_elf_backend_data (ibfd);
7638
7639 /* Regenerate the segment map if p_paddr is set to 0. */
7640 if (bed->want_p_paddr_set_to_zero)
7641 goto rewrite;
7642
7643 /* Initialize the segment mark field. */
7644 for (section = obfd->sections; section != NULL;
7645 section = section->next)
7646 section->segment_mark = FALSE;
7647
7648 num_segments = elf_elfheader (ibfd)->e_phnum;
7649 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7650 i < num_segments;
7651 i++, segment++)
7652 {
7653 /* PR binutils/3535. The Solaris linker always sets the p_paddr
7654 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
7655 which severly confuses things, so always regenerate the segment
7656 map in this case. */
7657 if (segment->p_paddr == 0
7658 && segment->p_memsz == 0
7659 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
7660 goto rewrite;
7661
7662 for (section = ibfd->sections;
7663 section != NULL; section = section->next)
7664 {
7665 /* We mark the output section so that we know it comes
7666 from the input BFD. */
7667 osec = section->output_section;
7668 if (osec)
7669 osec->segment_mark = TRUE;
7670
7671 /* Check if this section is covered by the segment. */
7672 this_hdr = &(elf_section_data(section)->this_hdr);
7673 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7674 {
7675 /* FIXME: Check if its output section is changed or
7676 removed. What else do we need to check? */
7677 if (osec == NULL
7678 || section->flags != osec->flags
7679 || section->lma != osec->lma
7680 || section->vma != osec->vma
7681 || section->size != osec->size
7682 || section->rawsize != osec->rawsize
7683 || section->alignment_power != osec->alignment_power)
7684 goto rewrite;
7685 }
7686 }
7687 }
7688
7689 /* Check to see if any output section do not come from the
7690 input BFD. */
7691 for (section = obfd->sections; section != NULL;
7692 section = section->next)
7693 {
7694 if (!section->segment_mark)
7695 goto rewrite;
7696 else
7697 section->segment_mark = FALSE;
7698 }
7699
7700 return copy_elf_program_header (ibfd, obfd);
7701 }
7702
7703 rewrite:
7704 if (ibfd->xvec == obfd->xvec)
7705 {
7706 /* When rewriting program header, set the output maxpagesize to
7707 the maximum alignment of input PT_LOAD segments. */
7708 Elf_Internal_Phdr *segment;
7709 unsigned int i;
7710 unsigned int num_segments = elf_elfheader (ibfd)->e_phnum;
7711 bfd_vma maxpagesize = 0;
7712
7713 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7714 i < num_segments;
7715 i++, segment++)
7716 if (segment->p_type == PT_LOAD
7717 && maxpagesize < segment->p_align)
7718 {
7719 /* PR 17512: file: f17299af. */
7720 if (segment->p_align > (bfd_vma) 1 << ((sizeof (bfd_vma) * 8) - 2))
7721 /* xgettext:c-format */
7722 _bfd_error_handler (_("%pB: warning: segment alignment of %#"
7723 PRIx64 " is too large"),
7724 ibfd, (uint64_t) segment->p_align);
7725 else
7726 maxpagesize = segment->p_align;
7727 }
7728
7729 if (maxpagesize != get_elf_backend_data (obfd)->maxpagesize)
7730 bfd_emul_set_maxpagesize (bfd_get_target (obfd), maxpagesize);
7731 }
7732
7733 return rewrite_elf_program_header (ibfd, obfd);
7734 }
7735
7736 /* Initialize private output section information from input section. */
7737
7738 bfd_boolean
7739 _bfd_elf_init_private_section_data (bfd *ibfd,
7740 asection *isec,
7741 bfd *obfd,
7742 asection *osec,
7743 struct bfd_link_info *link_info)
7744
7745 {
7746 Elf_Internal_Shdr *ihdr, *ohdr;
7747 bfd_boolean final_link = (link_info != NULL
7748 && !bfd_link_relocatable (link_info));
7749
7750 if (ibfd->xvec->flavour != bfd_target_elf_flavour
7751 || obfd->xvec->flavour != bfd_target_elf_flavour)
7752 return TRUE;
7753
7754 BFD_ASSERT (elf_section_data (osec) != NULL);
7755
7756 /* For objcopy and relocatable link, don't copy the output ELF
7757 section type from input if the output BFD section flags have been
7758 set to something different. For a final link allow some flags
7759 that the linker clears to differ. */
7760 if (elf_section_type (osec) == SHT_NULL
7761 && (osec->flags == isec->flags
7762 || (final_link
7763 && ((osec->flags ^ isec->flags)
7764 & ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC)) == 0)))
7765 elf_section_type (osec) = elf_section_type (isec);
7766
7767 /* FIXME: Is this correct for all OS/PROC specific flags? */
7768 elf_section_flags (osec) |= (elf_section_flags (isec)
7769 & (SHF_MASKOS | SHF_MASKPROC));
7770
7771 /* Copy sh_info from input for mbind section. */
7772 if ((elf_tdata (ibfd)->has_gnu_osabi & elf_gnu_osabi_mbind) != 0
7773 && elf_section_flags (isec) & SHF_GNU_MBIND)
7774 elf_section_data (osec)->this_hdr.sh_info
7775 = elf_section_data (isec)->this_hdr.sh_info;
7776
7777 /* Set things up for objcopy and relocatable link. The output
7778 SHT_GROUP section will have its elf_next_in_group pointing back
7779 to the input group members. Ignore linker created group section.
7780 See elfNN_ia64_object_p in elfxx-ia64.c. */
7781 if ((link_info == NULL
7782 || !link_info->resolve_section_groups)
7783 && (elf_sec_group (isec) == NULL
7784 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0))
7785 {
7786 if (elf_section_flags (isec) & SHF_GROUP)
7787 elf_section_flags (osec) |= SHF_GROUP;
7788 elf_next_in_group (osec) = elf_next_in_group (isec);
7789 elf_section_data (osec)->group = elf_section_data (isec)->group;
7790 }
7791
7792 /* If not decompress, preserve SHF_COMPRESSED. */
7793 if (!final_link && (ibfd->flags & BFD_DECOMPRESS) == 0)
7794 elf_section_flags (osec) |= (elf_section_flags (isec)
7795 & SHF_COMPRESSED);
7796
7797 ihdr = &elf_section_data (isec)->this_hdr;
7798
7799 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
7800 don't use the output section of the linked-to section since it
7801 may be NULL at this point. */
7802 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
7803 {
7804 ohdr = &elf_section_data (osec)->this_hdr;
7805 ohdr->sh_flags |= SHF_LINK_ORDER;
7806 elf_linked_to_section (osec) = elf_linked_to_section (isec);
7807 }
7808
7809 osec->use_rela_p = isec->use_rela_p;
7810
7811 return TRUE;
7812 }
7813
7814 /* Copy private section information. This copies over the entsize
7815 field, and sometimes the info field. */
7816
7817 bfd_boolean
7818 _bfd_elf_copy_private_section_data (bfd *ibfd,
7819 asection *isec,
7820 bfd *obfd,
7821 asection *osec)
7822 {
7823 Elf_Internal_Shdr *ihdr, *ohdr;
7824
7825 if (ibfd->xvec->flavour != bfd_target_elf_flavour
7826 || obfd->xvec->flavour != bfd_target_elf_flavour)
7827 return TRUE;
7828
7829 ihdr = &elf_section_data (isec)->this_hdr;
7830 ohdr = &elf_section_data (osec)->this_hdr;
7831
7832 ohdr->sh_entsize = ihdr->sh_entsize;
7833
7834 if (ihdr->sh_type == SHT_SYMTAB
7835 || ihdr->sh_type == SHT_DYNSYM
7836 || ihdr->sh_type == SHT_GNU_verneed
7837 || ihdr->sh_type == SHT_GNU_verdef)
7838 ohdr->sh_info = ihdr->sh_info;
7839
7840 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
7841 NULL);
7842 }
7843
7844 /* Look at all the SHT_GROUP sections in IBFD, making any adjustments
7845 necessary if we are removing either the SHT_GROUP section or any of
7846 the group member sections. DISCARDED is the value that a section's
7847 output_section has if the section will be discarded, NULL when this
7848 function is called from objcopy, bfd_abs_section_ptr when called
7849 from the linker. */
7850
7851 bfd_boolean
7852 _bfd_elf_fixup_group_sections (bfd *ibfd, asection *discarded)
7853 {
7854 asection *isec;
7855
7856 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
7857 if (elf_section_type (isec) == SHT_GROUP)
7858 {
7859 asection *first = elf_next_in_group (isec);
7860 asection *s = first;
7861 bfd_size_type removed = 0;
7862
7863 while (s != NULL)
7864 {
7865 /* If this member section is being output but the
7866 SHT_GROUP section is not, then clear the group info
7867 set up by _bfd_elf_copy_private_section_data. */
7868 if (s->output_section != discarded
7869 && isec->output_section == discarded)
7870 {
7871 elf_section_flags (s->output_section) &= ~SHF_GROUP;
7872 elf_group_name (s->output_section) = NULL;
7873 }
7874 /* Conversely, if the member section is not being output
7875 but the SHT_GROUP section is, then adjust its size. */
7876 else if (s->output_section == discarded
7877 && isec->output_section != discarded)
7878 {
7879 struct bfd_elf_section_data *elf_sec = elf_section_data (s);
7880 removed += 4;
7881 if (elf_sec->rel.hdr != NULL
7882 && (elf_sec->rel.hdr->sh_flags & SHF_GROUP) != 0)
7883 removed += 4;
7884 if (elf_sec->rela.hdr != NULL
7885 && (elf_sec->rela.hdr->sh_flags & SHF_GROUP) != 0)
7886 removed += 4;
7887 }
7888 s = elf_next_in_group (s);
7889 if (s == first)
7890 break;
7891 }
7892 if (removed != 0)
7893 {
7894 if (discarded != NULL)
7895 {
7896 /* If we've been called for ld -r, then we need to
7897 adjust the input section size. */
7898 if (isec->rawsize == 0)
7899 isec->rawsize = isec->size;
7900 isec->size = isec->rawsize - removed;
7901 if (isec->size <= 4)
7902 {
7903 isec->size = 0;
7904 isec->flags |= SEC_EXCLUDE;
7905 }
7906 }
7907 else
7908 {
7909 /* Adjust the output section size when called from
7910 objcopy. */
7911 isec->output_section->size -= removed;
7912 if (isec->output_section->size <= 4)
7913 {
7914 isec->output_section->size = 0;
7915 isec->output_section->flags |= SEC_EXCLUDE;
7916 }
7917 }
7918 }
7919 }
7920
7921 return TRUE;
7922 }
7923
7924 /* Copy private header information. */
7925
7926 bfd_boolean
7927 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
7928 {
7929 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7930 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7931 return TRUE;
7932
7933 /* Copy over private BFD data if it has not already been copied.
7934 This must be done here, rather than in the copy_private_bfd_data
7935 entry point, because the latter is called after the section
7936 contents have been set, which means that the program headers have
7937 already been worked out. */
7938 if (elf_seg_map (obfd) == NULL && elf_tdata (ibfd)->phdr != NULL)
7939 {
7940 if (! copy_private_bfd_data (ibfd, obfd))
7941 return FALSE;
7942 }
7943
7944 return _bfd_elf_fixup_group_sections (ibfd, NULL);
7945 }
7946
7947 /* Copy private symbol information. If this symbol is in a section
7948 which we did not map into a BFD section, try to map the section
7949 index correctly. We use special macro definitions for the mapped
7950 section indices; these definitions are interpreted by the
7951 swap_out_syms function. */
7952
7953 #define MAP_ONESYMTAB (SHN_HIOS + 1)
7954 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
7955 #define MAP_STRTAB (SHN_HIOS + 3)
7956 #define MAP_SHSTRTAB (SHN_HIOS + 4)
7957 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
7958
7959 bfd_boolean
7960 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
7961 asymbol *isymarg,
7962 bfd *obfd,
7963 asymbol *osymarg)
7964 {
7965 elf_symbol_type *isym, *osym;
7966
7967 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7968 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7969 return TRUE;
7970
7971 isym = elf_symbol_from (ibfd, isymarg);
7972 osym = elf_symbol_from (obfd, osymarg);
7973
7974 if (isym != NULL
7975 && isym->internal_elf_sym.st_shndx != 0
7976 && osym != NULL
7977 && bfd_is_abs_section (isym->symbol.section))
7978 {
7979 unsigned int shndx;
7980
7981 shndx = isym->internal_elf_sym.st_shndx;
7982 if (shndx == elf_onesymtab (ibfd))
7983 shndx = MAP_ONESYMTAB;
7984 else if (shndx == elf_dynsymtab (ibfd))
7985 shndx = MAP_DYNSYMTAB;
7986 else if (shndx == elf_strtab_sec (ibfd))
7987 shndx = MAP_STRTAB;
7988 else if (shndx == elf_shstrtab_sec (ibfd))
7989 shndx = MAP_SHSTRTAB;
7990 else if (find_section_in_list (shndx, elf_symtab_shndx_list (ibfd)))
7991 shndx = MAP_SYM_SHNDX;
7992 osym->internal_elf_sym.st_shndx = shndx;
7993 }
7994
7995 return TRUE;
7996 }
7997
7998 /* Swap out the symbols. */
7999
8000 static bfd_boolean
8001 swap_out_syms (bfd *abfd,
8002 struct elf_strtab_hash **sttp,
8003 int relocatable_p)
8004 {
8005 const struct elf_backend_data *bed;
8006 unsigned int symcount;
8007 asymbol **syms;
8008 struct elf_strtab_hash *stt;
8009 Elf_Internal_Shdr *symtab_hdr;
8010 Elf_Internal_Shdr *symtab_shndx_hdr;
8011 Elf_Internal_Shdr *symstrtab_hdr;
8012 struct elf_sym_strtab *symstrtab;
8013 bfd_byte *outbound_syms;
8014 bfd_byte *outbound_shndx;
8015 unsigned long outbound_syms_index;
8016 unsigned long outbound_shndx_index;
8017 unsigned int idx;
8018 unsigned int num_locals;
8019 size_t amt;
8020 bfd_boolean name_local_sections;
8021
8022 if (!elf_map_symbols (abfd, &num_locals))
8023 return FALSE;
8024
8025 /* Dump out the symtabs. */
8026 stt = _bfd_elf_strtab_init ();
8027 if (stt == NULL)
8028 return FALSE;
8029
8030 bed = get_elf_backend_data (abfd);
8031 symcount = bfd_get_symcount (abfd);
8032 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8033 symtab_hdr->sh_type = SHT_SYMTAB;
8034 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
8035 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
8036 symtab_hdr->sh_info = num_locals + 1;
8037 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
8038
8039 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
8040 symstrtab_hdr->sh_type = SHT_STRTAB;
8041
8042 /* Allocate buffer to swap out the .strtab section. */
8043 if (_bfd_mul_overflow (symcount + 1, sizeof (*symstrtab), &amt)
8044 || (symstrtab = (struct elf_sym_strtab *) bfd_malloc (amt)) == NULL)
8045 {
8046 bfd_set_error (bfd_error_no_memory);
8047 _bfd_elf_strtab_free (stt);
8048 return FALSE;
8049 }
8050
8051 if (_bfd_mul_overflow (symcount + 1, bed->s->sizeof_sym, &amt)
8052 || (outbound_syms = (bfd_byte *) bfd_alloc (abfd, amt)) == NULL)
8053 {
8054 error_no_mem:
8055 bfd_set_error (bfd_error_no_memory);
8056 error_return:
8057 free (symstrtab);
8058 _bfd_elf_strtab_free (stt);
8059 return FALSE;
8060 }
8061 symtab_hdr->contents = outbound_syms;
8062 outbound_syms_index = 0;
8063
8064 outbound_shndx = NULL;
8065 outbound_shndx_index = 0;
8066
8067 if (elf_symtab_shndx_list (abfd))
8068 {
8069 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
8070 if (symtab_shndx_hdr->sh_name != 0)
8071 {
8072 if (_bfd_mul_overflow (symcount + 1,
8073 sizeof (Elf_External_Sym_Shndx), &amt))
8074 goto error_no_mem;
8075 outbound_shndx = (bfd_byte *) bfd_zalloc (abfd, amt);
8076 if (outbound_shndx == NULL)
8077 goto error_return;
8078
8079 symtab_shndx_hdr->contents = outbound_shndx;
8080 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
8081 symtab_shndx_hdr->sh_size = amt;
8082 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
8083 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
8084 }
8085 /* FIXME: What about any other headers in the list ? */
8086 }
8087
8088 /* Now generate the data (for "contents"). */
8089 {
8090 /* Fill in zeroth symbol and swap it out. */
8091 Elf_Internal_Sym sym;
8092 sym.st_name = 0;
8093 sym.st_value = 0;
8094 sym.st_size = 0;
8095 sym.st_info = 0;
8096 sym.st_other = 0;
8097 sym.st_shndx = SHN_UNDEF;
8098 sym.st_target_internal = 0;
8099 symstrtab[0].sym = sym;
8100 symstrtab[0].dest_index = outbound_syms_index;
8101 symstrtab[0].destshndx_index = outbound_shndx_index;
8102 outbound_syms_index++;
8103 if (outbound_shndx != NULL)
8104 outbound_shndx_index++;
8105 }
8106
8107 name_local_sections
8108 = (bed->elf_backend_name_local_section_symbols
8109 && bed->elf_backend_name_local_section_symbols (abfd));
8110
8111 syms = bfd_get_outsymbols (abfd);
8112 for (idx = 0; idx < symcount;)
8113 {
8114 Elf_Internal_Sym sym;
8115 bfd_vma value = syms[idx]->value;
8116 elf_symbol_type *type_ptr;
8117 flagword flags = syms[idx]->flags;
8118 int type;
8119
8120 if (!name_local_sections
8121 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
8122 {
8123 /* Local section symbols have no name. */
8124 sym.st_name = (unsigned long) -1;
8125 }
8126 else
8127 {
8128 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
8129 to get the final offset for st_name. */
8130 sym.st_name
8131 = (unsigned long) _bfd_elf_strtab_add (stt, syms[idx]->name,
8132 FALSE);
8133 if (sym.st_name == (unsigned long) -1)
8134 goto error_return;
8135 }
8136
8137 type_ptr = elf_symbol_from (abfd, syms[idx]);
8138
8139 if ((flags & BSF_SECTION_SYM) == 0
8140 && bfd_is_com_section (syms[idx]->section))
8141 {
8142 /* ELF common symbols put the alignment into the `value' field,
8143 and the size into the `size' field. This is backwards from
8144 how BFD handles it, so reverse it here. */
8145 sym.st_size = value;
8146 if (type_ptr == NULL
8147 || type_ptr->internal_elf_sym.st_value == 0)
8148 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
8149 else
8150 sym.st_value = type_ptr->internal_elf_sym.st_value;
8151 sym.st_shndx = _bfd_elf_section_from_bfd_section
8152 (abfd, syms[idx]->section);
8153 }
8154 else
8155 {
8156 asection *sec = syms[idx]->section;
8157 unsigned int shndx;
8158
8159 if (sec->output_section)
8160 {
8161 value += sec->output_offset;
8162 sec = sec->output_section;
8163 }
8164
8165 /* Don't add in the section vma for relocatable output. */
8166 if (! relocatable_p)
8167 value += sec->vma;
8168 sym.st_value = value;
8169 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
8170
8171 if (bfd_is_abs_section (sec)
8172 && type_ptr != NULL
8173 && type_ptr->internal_elf_sym.st_shndx != 0)
8174 {
8175 /* This symbol is in a real ELF section which we did
8176 not create as a BFD section. Undo the mapping done
8177 by copy_private_symbol_data. */
8178 shndx = type_ptr->internal_elf_sym.st_shndx;
8179 switch (shndx)
8180 {
8181 case MAP_ONESYMTAB:
8182 shndx = elf_onesymtab (abfd);
8183 break;
8184 case MAP_DYNSYMTAB:
8185 shndx = elf_dynsymtab (abfd);
8186 break;
8187 case MAP_STRTAB:
8188 shndx = elf_strtab_sec (abfd);
8189 break;
8190 case MAP_SHSTRTAB:
8191 shndx = elf_shstrtab_sec (abfd);
8192 break;
8193 case MAP_SYM_SHNDX:
8194 if (elf_symtab_shndx_list (abfd))
8195 shndx = elf_symtab_shndx_list (abfd)->ndx;
8196 break;
8197 default:
8198 shndx = SHN_ABS;
8199 break;
8200 }
8201 }
8202 else
8203 {
8204 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
8205
8206 if (shndx == SHN_BAD)
8207 {
8208 asection *sec2;
8209
8210 /* Writing this would be a hell of a lot easier if
8211 we had some decent documentation on bfd, and
8212 knew what to expect of the library, and what to
8213 demand of applications. For example, it
8214 appears that `objcopy' might not set the
8215 section of a symbol to be a section that is
8216 actually in the output file. */
8217 sec2 = bfd_get_section_by_name (abfd, sec->name);
8218 if (sec2 != NULL)
8219 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
8220 if (shndx == SHN_BAD)
8221 {
8222 /* xgettext:c-format */
8223 _bfd_error_handler
8224 (_("unable to find equivalent output section"
8225 " for symbol '%s' from section '%s'"),
8226 syms[idx]->name ? syms[idx]->name : "<Local sym>",
8227 sec->name);
8228 bfd_set_error (bfd_error_invalid_operation);
8229 goto error_return;
8230 }
8231 }
8232 }
8233
8234 sym.st_shndx = shndx;
8235 }
8236
8237 if ((flags & BSF_THREAD_LOCAL) != 0)
8238 type = STT_TLS;
8239 else if ((flags & BSF_GNU_INDIRECT_FUNCTION) != 0)
8240 type = STT_GNU_IFUNC;
8241 else if ((flags & BSF_FUNCTION) != 0)
8242 type = STT_FUNC;
8243 else if ((flags & BSF_OBJECT) != 0)
8244 type = STT_OBJECT;
8245 else if ((flags & BSF_RELC) != 0)
8246 type = STT_RELC;
8247 else if ((flags & BSF_SRELC) != 0)
8248 type = STT_SRELC;
8249 else
8250 type = STT_NOTYPE;
8251
8252 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
8253 type = STT_TLS;
8254
8255 /* Processor-specific types. */
8256 if (type_ptr != NULL
8257 && bed->elf_backend_get_symbol_type)
8258 type = ((*bed->elf_backend_get_symbol_type)
8259 (&type_ptr->internal_elf_sym, type));
8260
8261 if (flags & BSF_SECTION_SYM)
8262 {
8263 if (flags & BSF_GLOBAL)
8264 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8265 else
8266 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
8267 }
8268 else if (bfd_is_com_section (syms[idx]->section))
8269 {
8270 if (type != STT_TLS)
8271 {
8272 if ((abfd->flags & BFD_CONVERT_ELF_COMMON))
8273 type = ((abfd->flags & BFD_USE_ELF_STT_COMMON)
8274 ? STT_COMMON : STT_OBJECT);
8275 else
8276 type = ((flags & BSF_ELF_COMMON) != 0
8277 ? STT_COMMON : STT_OBJECT);
8278 }
8279 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
8280 }
8281 else if (bfd_is_und_section (syms[idx]->section))
8282 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
8283 ? STB_WEAK
8284 : STB_GLOBAL),
8285 type);
8286 else if (flags & BSF_FILE)
8287 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
8288 else
8289 {
8290 int bind = STB_LOCAL;
8291
8292 if (flags & BSF_LOCAL)
8293 bind = STB_LOCAL;
8294 else if (flags & BSF_GNU_UNIQUE)
8295 bind = STB_GNU_UNIQUE;
8296 else if (flags & BSF_WEAK)
8297 bind = STB_WEAK;
8298 else if (flags & BSF_GLOBAL)
8299 bind = STB_GLOBAL;
8300
8301 sym.st_info = ELF_ST_INFO (bind, type);
8302 }
8303
8304 if (type_ptr != NULL)
8305 {
8306 sym.st_other = type_ptr->internal_elf_sym.st_other;
8307 sym.st_target_internal
8308 = type_ptr->internal_elf_sym.st_target_internal;
8309 }
8310 else
8311 {
8312 sym.st_other = 0;
8313 sym.st_target_internal = 0;
8314 }
8315
8316 idx++;
8317 symstrtab[idx].sym = sym;
8318 symstrtab[idx].dest_index = outbound_syms_index;
8319 symstrtab[idx].destshndx_index = outbound_shndx_index;
8320
8321 outbound_syms_index++;
8322 if (outbound_shndx != NULL)
8323 outbound_shndx_index++;
8324 }
8325
8326 /* Finalize the .strtab section. */
8327 _bfd_elf_strtab_finalize (stt);
8328
8329 /* Swap out the .strtab section. */
8330 for (idx = 0; idx <= symcount; idx++)
8331 {
8332 struct elf_sym_strtab *elfsym = &symstrtab[idx];
8333 if (elfsym->sym.st_name == (unsigned long) -1)
8334 elfsym->sym.st_name = 0;
8335 else
8336 elfsym->sym.st_name = _bfd_elf_strtab_offset (stt,
8337 elfsym->sym.st_name);
8338 bed->s->swap_symbol_out (abfd, &elfsym->sym,
8339 (outbound_syms
8340 + (elfsym->dest_index
8341 * bed->s->sizeof_sym)),
8342 (outbound_shndx
8343 + (elfsym->destshndx_index
8344 * sizeof (Elf_External_Sym_Shndx))));
8345 }
8346 free (symstrtab);
8347
8348 *sttp = stt;
8349 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (stt);
8350 symstrtab_hdr->sh_type = SHT_STRTAB;
8351 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
8352 symstrtab_hdr->sh_addr = 0;
8353 symstrtab_hdr->sh_entsize = 0;
8354 symstrtab_hdr->sh_link = 0;
8355 symstrtab_hdr->sh_info = 0;
8356 symstrtab_hdr->sh_addralign = 1;
8357
8358 return TRUE;
8359 }
8360
8361 /* Return the number of bytes required to hold the symtab vector.
8362
8363 Note that we base it on the count plus 1, since we will null terminate
8364 the vector allocated based on this size. However, the ELF symbol table
8365 always has a dummy entry as symbol #0, so it ends up even. */
8366
8367 long
8368 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
8369 {
8370 bfd_size_type symcount;
8371 long symtab_size;
8372 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
8373
8374 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
8375 if (symcount >= LONG_MAX / sizeof (asymbol *))
8376 {
8377 bfd_set_error (bfd_error_file_too_big);
8378 return -1;
8379 }
8380 symtab_size = (symcount + 1) * (sizeof (asymbol *));
8381 if (symcount > 0)
8382 symtab_size -= sizeof (asymbol *);
8383
8384 return symtab_size;
8385 }
8386
8387 long
8388 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
8389 {
8390 bfd_size_type symcount;
8391 long symtab_size;
8392 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
8393
8394 if (elf_dynsymtab (abfd) == 0)
8395 {
8396 bfd_set_error (bfd_error_invalid_operation);
8397 return -1;
8398 }
8399
8400 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
8401 if (symcount >= LONG_MAX / sizeof (asymbol *))
8402 {
8403 bfd_set_error (bfd_error_file_too_big);
8404 return -1;
8405 }
8406 symtab_size = (symcount + 1) * (sizeof (asymbol *));
8407 if (symcount > 0)
8408 symtab_size -= sizeof (asymbol *);
8409
8410 return symtab_size;
8411 }
8412
8413 long
8414 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
8415 sec_ptr asect)
8416 {
8417 #if SIZEOF_LONG == SIZEOF_INT
8418 if (asect->reloc_count >= LONG_MAX / sizeof (arelent *))
8419 {
8420 bfd_set_error (bfd_error_file_too_big);
8421 return -1;
8422 }
8423 #endif
8424 return (asect->reloc_count + 1) * sizeof (arelent *);
8425 }
8426
8427 /* Canonicalize the relocs. */
8428
8429 long
8430 _bfd_elf_canonicalize_reloc (bfd *abfd,
8431 sec_ptr section,
8432 arelent **relptr,
8433 asymbol **symbols)
8434 {
8435 arelent *tblptr;
8436 unsigned int i;
8437 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8438
8439 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
8440 return -1;
8441
8442 tblptr = section->relocation;
8443 for (i = 0; i < section->reloc_count; i++)
8444 *relptr++ = tblptr++;
8445
8446 *relptr = NULL;
8447
8448 return section->reloc_count;
8449 }
8450
8451 long
8452 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
8453 {
8454 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8455 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
8456
8457 if (symcount >= 0)
8458 abfd->symcount = symcount;
8459 return symcount;
8460 }
8461
8462 long
8463 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
8464 asymbol **allocation)
8465 {
8466 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8467 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
8468
8469 if (symcount >= 0)
8470 abfd->dynsymcount = symcount;
8471 return symcount;
8472 }
8473
8474 /* Return the size required for the dynamic reloc entries. Any loadable
8475 section that was actually installed in the BFD, and has type SHT_REL
8476 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
8477 dynamic reloc section. */
8478
8479 long
8480 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
8481 {
8482 bfd_size_type count;
8483 asection *s;
8484
8485 if (elf_dynsymtab (abfd) == 0)
8486 {
8487 bfd_set_error (bfd_error_invalid_operation);
8488 return -1;
8489 }
8490
8491 count = 1;
8492 for (s = abfd->sections; s != NULL; s = s->next)
8493 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
8494 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
8495 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
8496 {
8497 count += s->size / elf_section_data (s)->this_hdr.sh_entsize;
8498 if (count > LONG_MAX / sizeof (arelent *))
8499 {
8500 bfd_set_error (bfd_error_file_too_big);
8501 return -1;
8502 }
8503 }
8504 return count * sizeof (arelent *);
8505 }
8506
8507 /* Canonicalize the dynamic relocation entries. Note that we return the
8508 dynamic relocations as a single block, although they are actually
8509 associated with particular sections; the interface, which was
8510 designed for SunOS style shared libraries, expects that there is only
8511 one set of dynamic relocs. Any loadable section that was actually
8512 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
8513 dynamic symbol table, is considered to be a dynamic reloc section. */
8514
8515 long
8516 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
8517 arelent **storage,
8518 asymbol **syms)
8519 {
8520 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
8521 asection *s;
8522 long ret;
8523
8524 if (elf_dynsymtab (abfd) == 0)
8525 {
8526 bfd_set_error (bfd_error_invalid_operation);
8527 return -1;
8528 }
8529
8530 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
8531 ret = 0;
8532 for (s = abfd->sections; s != NULL; s = s->next)
8533 {
8534 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
8535 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
8536 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
8537 {
8538 arelent *p;
8539 long count, i;
8540
8541 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
8542 return -1;
8543 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
8544 p = s->relocation;
8545 for (i = 0; i < count; i++)
8546 *storage++ = p++;
8547 ret += count;
8548 }
8549 }
8550
8551 *storage = NULL;
8552
8553 return ret;
8554 }
8555 \f
8556 /* Read in the version information. */
8557
8558 bfd_boolean
8559 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
8560 {
8561 bfd_byte *contents = NULL;
8562 unsigned int freeidx = 0;
8563 size_t amt;
8564
8565 if (elf_dynverref (abfd) != 0)
8566 {
8567 Elf_Internal_Shdr *hdr;
8568 Elf_External_Verneed *everneed;
8569 Elf_Internal_Verneed *iverneed;
8570 unsigned int i;
8571 bfd_byte *contents_end;
8572
8573 hdr = &elf_tdata (abfd)->dynverref_hdr;
8574
8575 if (hdr->sh_info == 0
8576 || hdr->sh_info > hdr->sh_size / sizeof (Elf_External_Verneed))
8577 {
8578 error_return_bad_verref:
8579 _bfd_error_handler
8580 (_("%pB: .gnu.version_r invalid entry"), abfd);
8581 bfd_set_error (bfd_error_bad_value);
8582 error_return_verref:
8583 elf_tdata (abfd)->verref = NULL;
8584 elf_tdata (abfd)->cverrefs = 0;
8585 goto error_return;
8586 }
8587
8588 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0)
8589 goto error_return_verref;
8590 contents = _bfd_malloc_and_read (abfd, hdr->sh_size, hdr->sh_size);
8591 if (contents == NULL)
8592 goto error_return_verref;
8593
8594 if (_bfd_mul_overflow (hdr->sh_info, sizeof (Elf_Internal_Verneed), &amt))
8595 {
8596 bfd_set_error (bfd_error_file_too_big);
8597 goto error_return_verref;
8598 }
8599 elf_tdata (abfd)->verref = (Elf_Internal_Verneed *) bfd_alloc (abfd, amt);
8600 if (elf_tdata (abfd)->verref == NULL)
8601 goto error_return_verref;
8602
8603 BFD_ASSERT (sizeof (Elf_External_Verneed)
8604 == sizeof (Elf_External_Vernaux));
8605 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
8606 everneed = (Elf_External_Verneed *) contents;
8607 iverneed = elf_tdata (abfd)->verref;
8608 for (i = 0; i < hdr->sh_info; i++, iverneed++)
8609 {
8610 Elf_External_Vernaux *evernaux;
8611 Elf_Internal_Vernaux *ivernaux;
8612 unsigned int j;
8613
8614 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
8615
8616 iverneed->vn_bfd = abfd;
8617
8618 iverneed->vn_filename =
8619 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8620 iverneed->vn_file);
8621 if (iverneed->vn_filename == NULL)
8622 goto error_return_bad_verref;
8623
8624 if (iverneed->vn_cnt == 0)
8625 iverneed->vn_auxptr = NULL;
8626 else
8627 {
8628 if (_bfd_mul_overflow (iverneed->vn_cnt,
8629 sizeof (Elf_Internal_Vernaux), &amt))
8630 {
8631 bfd_set_error (bfd_error_file_too_big);
8632 goto error_return_verref;
8633 }
8634 iverneed->vn_auxptr = (struct elf_internal_vernaux *)
8635 bfd_alloc (abfd, amt);
8636 if (iverneed->vn_auxptr == NULL)
8637 goto error_return_verref;
8638 }
8639
8640 if (iverneed->vn_aux
8641 > (size_t) (contents_end - (bfd_byte *) everneed))
8642 goto error_return_bad_verref;
8643
8644 evernaux = ((Elf_External_Vernaux *)
8645 ((bfd_byte *) everneed + iverneed->vn_aux));
8646 ivernaux = iverneed->vn_auxptr;
8647 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
8648 {
8649 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
8650
8651 ivernaux->vna_nodename =
8652 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8653 ivernaux->vna_name);
8654 if (ivernaux->vna_nodename == NULL)
8655 goto error_return_bad_verref;
8656
8657 if (ivernaux->vna_other > freeidx)
8658 freeidx = ivernaux->vna_other;
8659
8660 ivernaux->vna_nextptr = NULL;
8661 if (ivernaux->vna_next == 0)
8662 {
8663 iverneed->vn_cnt = j + 1;
8664 break;
8665 }
8666 if (j + 1 < iverneed->vn_cnt)
8667 ivernaux->vna_nextptr = ivernaux + 1;
8668
8669 if (ivernaux->vna_next
8670 > (size_t) (contents_end - (bfd_byte *) evernaux))
8671 goto error_return_bad_verref;
8672
8673 evernaux = ((Elf_External_Vernaux *)
8674 ((bfd_byte *) evernaux + ivernaux->vna_next));
8675 }
8676
8677 iverneed->vn_nextref = NULL;
8678 if (iverneed->vn_next == 0)
8679 break;
8680 if (i + 1 < hdr->sh_info)
8681 iverneed->vn_nextref = iverneed + 1;
8682
8683 if (iverneed->vn_next
8684 > (size_t) (contents_end - (bfd_byte *) everneed))
8685 goto error_return_bad_verref;
8686
8687 everneed = ((Elf_External_Verneed *)
8688 ((bfd_byte *) everneed + iverneed->vn_next));
8689 }
8690 elf_tdata (abfd)->cverrefs = i;
8691
8692 free (contents);
8693 contents = NULL;
8694 }
8695
8696 if (elf_dynverdef (abfd) != 0)
8697 {
8698 Elf_Internal_Shdr *hdr;
8699 Elf_External_Verdef *everdef;
8700 Elf_Internal_Verdef *iverdef;
8701 Elf_Internal_Verdef *iverdefarr;
8702 Elf_Internal_Verdef iverdefmem;
8703 unsigned int i;
8704 unsigned int maxidx;
8705 bfd_byte *contents_end_def, *contents_end_aux;
8706
8707 hdr = &elf_tdata (abfd)->dynverdef_hdr;
8708
8709 if (hdr->sh_info == 0 || hdr->sh_size < sizeof (Elf_External_Verdef))
8710 {
8711 error_return_bad_verdef:
8712 _bfd_error_handler
8713 (_("%pB: .gnu.version_d invalid entry"), abfd);
8714 bfd_set_error (bfd_error_bad_value);
8715 error_return_verdef:
8716 elf_tdata (abfd)->verdef = NULL;
8717 elf_tdata (abfd)->cverdefs = 0;
8718 goto error_return;
8719 }
8720
8721 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0)
8722 goto error_return_verdef;
8723 contents = _bfd_malloc_and_read (abfd, hdr->sh_size, hdr->sh_size);
8724 if (contents == NULL)
8725 goto error_return_verdef;
8726
8727 BFD_ASSERT (sizeof (Elf_External_Verdef)
8728 >= sizeof (Elf_External_Verdaux));
8729 contents_end_def = contents + hdr->sh_size
8730 - sizeof (Elf_External_Verdef);
8731 contents_end_aux = contents + hdr->sh_size
8732 - sizeof (Elf_External_Verdaux);
8733
8734 /* We know the number of entries in the section but not the maximum
8735 index. Therefore we have to run through all entries and find
8736 the maximum. */
8737 everdef = (Elf_External_Verdef *) contents;
8738 maxidx = 0;
8739 for (i = 0; i < hdr->sh_info; ++i)
8740 {
8741 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
8742
8743 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) == 0)
8744 goto error_return_bad_verdef;
8745 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
8746 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
8747
8748 if (iverdefmem.vd_next == 0)
8749 break;
8750
8751 if (iverdefmem.vd_next
8752 > (size_t) (contents_end_def - (bfd_byte *) everdef))
8753 goto error_return_bad_verdef;
8754
8755 everdef = ((Elf_External_Verdef *)
8756 ((bfd_byte *) everdef + iverdefmem.vd_next));
8757 }
8758
8759 if (default_imported_symver)
8760 {
8761 if (freeidx > maxidx)
8762 maxidx = ++freeidx;
8763 else
8764 freeidx = ++maxidx;
8765 }
8766 if (_bfd_mul_overflow (maxidx, sizeof (Elf_Internal_Verdef), &amt))
8767 {
8768 bfd_set_error (bfd_error_file_too_big);
8769 goto error_return_verdef;
8770 }
8771 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *) bfd_zalloc (abfd, amt);
8772 if (elf_tdata (abfd)->verdef == NULL)
8773 goto error_return_verdef;
8774
8775 elf_tdata (abfd)->cverdefs = maxidx;
8776
8777 everdef = (Elf_External_Verdef *) contents;
8778 iverdefarr = elf_tdata (abfd)->verdef;
8779 for (i = 0; i < hdr->sh_info; i++)
8780 {
8781 Elf_External_Verdaux *everdaux;
8782 Elf_Internal_Verdaux *iverdaux;
8783 unsigned int j;
8784
8785 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
8786
8787 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
8788 goto error_return_bad_verdef;
8789
8790 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
8791 memcpy (iverdef, &iverdefmem, offsetof (Elf_Internal_Verdef, vd_bfd));
8792
8793 iverdef->vd_bfd = abfd;
8794
8795 if (iverdef->vd_cnt == 0)
8796 iverdef->vd_auxptr = NULL;
8797 else
8798 {
8799 if (_bfd_mul_overflow (iverdef->vd_cnt,
8800 sizeof (Elf_Internal_Verdaux), &amt))
8801 {
8802 bfd_set_error (bfd_error_file_too_big);
8803 goto error_return_verdef;
8804 }
8805 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
8806 bfd_alloc (abfd, amt);
8807 if (iverdef->vd_auxptr == NULL)
8808 goto error_return_verdef;
8809 }
8810
8811 if (iverdef->vd_aux
8812 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
8813 goto error_return_bad_verdef;
8814
8815 everdaux = ((Elf_External_Verdaux *)
8816 ((bfd_byte *) everdef + iverdef->vd_aux));
8817 iverdaux = iverdef->vd_auxptr;
8818 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
8819 {
8820 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
8821
8822 iverdaux->vda_nodename =
8823 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8824 iverdaux->vda_name);
8825 if (iverdaux->vda_nodename == NULL)
8826 goto error_return_bad_verdef;
8827
8828 iverdaux->vda_nextptr = NULL;
8829 if (iverdaux->vda_next == 0)
8830 {
8831 iverdef->vd_cnt = j + 1;
8832 break;
8833 }
8834 if (j + 1 < iverdef->vd_cnt)
8835 iverdaux->vda_nextptr = iverdaux + 1;
8836
8837 if (iverdaux->vda_next
8838 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
8839 goto error_return_bad_verdef;
8840
8841 everdaux = ((Elf_External_Verdaux *)
8842 ((bfd_byte *) everdaux + iverdaux->vda_next));
8843 }
8844
8845 iverdef->vd_nodename = NULL;
8846 if (iverdef->vd_cnt)
8847 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
8848
8849 iverdef->vd_nextdef = NULL;
8850 if (iverdef->vd_next == 0)
8851 break;
8852 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
8853 iverdef->vd_nextdef = iverdef + 1;
8854
8855 everdef = ((Elf_External_Verdef *)
8856 ((bfd_byte *) everdef + iverdef->vd_next));
8857 }
8858
8859 free (contents);
8860 contents = NULL;
8861 }
8862 else if (default_imported_symver)
8863 {
8864 if (freeidx < 3)
8865 freeidx = 3;
8866 else
8867 freeidx++;
8868
8869 if (_bfd_mul_overflow (freeidx, sizeof (Elf_Internal_Verdef), &amt))
8870 {
8871 bfd_set_error (bfd_error_file_too_big);
8872 goto error_return;
8873 }
8874 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *) bfd_zalloc (abfd, amt);
8875 if (elf_tdata (abfd)->verdef == NULL)
8876 goto error_return;
8877
8878 elf_tdata (abfd)->cverdefs = freeidx;
8879 }
8880
8881 /* Create a default version based on the soname. */
8882 if (default_imported_symver)
8883 {
8884 Elf_Internal_Verdef *iverdef;
8885 Elf_Internal_Verdaux *iverdaux;
8886
8887 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];
8888
8889 iverdef->vd_version = VER_DEF_CURRENT;
8890 iverdef->vd_flags = 0;
8891 iverdef->vd_ndx = freeidx;
8892 iverdef->vd_cnt = 1;
8893
8894 iverdef->vd_bfd = abfd;
8895
8896 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
8897 if (iverdef->vd_nodename == NULL)
8898 goto error_return_verdef;
8899 iverdef->vd_nextdef = NULL;
8900 iverdef->vd_auxptr = ((struct elf_internal_verdaux *)
8901 bfd_zalloc (abfd, sizeof (Elf_Internal_Verdaux)));
8902 if (iverdef->vd_auxptr == NULL)
8903 goto error_return_verdef;
8904
8905 iverdaux = iverdef->vd_auxptr;
8906 iverdaux->vda_nodename = iverdef->vd_nodename;
8907 }
8908
8909 return TRUE;
8910
8911 error_return:
8912 if (contents != NULL)
8913 free (contents);
8914 return FALSE;
8915 }
8916 \f
8917 asymbol *
8918 _bfd_elf_make_empty_symbol (bfd *abfd)
8919 {
8920 elf_symbol_type *newsym;
8921
8922 newsym = (elf_symbol_type *) bfd_zalloc (abfd, sizeof (*newsym));
8923 if (!newsym)
8924 return NULL;
8925 newsym->symbol.the_bfd = abfd;
8926 return &newsym->symbol;
8927 }
8928
8929 void
8930 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
8931 asymbol *symbol,
8932 symbol_info *ret)
8933 {
8934 bfd_symbol_info (symbol, ret);
8935 }
8936
8937 /* Return whether a symbol name implies a local symbol. Most targets
8938 use this function for the is_local_label_name entry point, but some
8939 override it. */
8940
8941 bfd_boolean
8942 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
8943 const char *name)
8944 {
8945 /* Normal local symbols start with ``.L''. */
8946 if (name[0] == '.' && name[1] == 'L')
8947 return TRUE;
8948
8949 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
8950 DWARF debugging symbols starting with ``..''. */
8951 if (name[0] == '.' && name[1] == '.')
8952 return TRUE;
8953
8954 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
8955 emitting DWARF debugging output. I suspect this is actually a
8956 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
8957 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
8958 underscore to be emitted on some ELF targets). For ease of use,
8959 we treat such symbols as local. */
8960 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
8961 return TRUE;
8962
8963 /* Treat assembler generated fake symbols, dollar local labels and
8964 forward-backward labels (aka local labels) as locals.
8965 These labels have the form:
8966
8967 L0^A.* (fake symbols)
8968
8969 [.]?L[0123456789]+{^A|^B}[0123456789]* (local labels)
8970
8971 Versions which start with .L will have already been matched above,
8972 so we only need to match the rest. */
8973 if (name[0] == 'L' && ISDIGIT (name[1]))
8974 {
8975 bfd_boolean ret = FALSE;
8976 const char * p;
8977 char c;
8978
8979 for (p = name + 2; (c = *p); p++)
8980 {
8981 if (c == 1 || c == 2)
8982 {
8983 if (c == 1 && p == name + 2)
8984 /* A fake symbol. */
8985 return TRUE;
8986
8987 /* FIXME: We are being paranoid here and treating symbols like
8988 L0^Bfoo as if there were non-local, on the grounds that the
8989 assembler will never generate them. But can any symbol
8990 containing an ASCII value in the range 1-31 ever be anything
8991 other than some kind of local ? */
8992 ret = TRUE;
8993 }
8994
8995 if (! ISDIGIT (c))
8996 {
8997 ret = FALSE;
8998 break;
8999 }
9000 }
9001 return ret;
9002 }
9003
9004 return FALSE;
9005 }
9006
9007 alent *
9008 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
9009 asymbol *symbol ATTRIBUTE_UNUSED)
9010 {
9011 abort ();
9012 return NULL;
9013 }
9014
9015 bfd_boolean
9016 _bfd_elf_set_arch_mach (bfd *abfd,
9017 enum bfd_architecture arch,
9018 unsigned long machine)
9019 {
9020 /* If this isn't the right architecture for this backend, and this
9021 isn't the generic backend, fail. */
9022 if (arch != get_elf_backend_data (abfd)->arch
9023 && arch != bfd_arch_unknown
9024 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
9025 return FALSE;
9026
9027 return bfd_default_set_arch_mach (abfd, arch, machine);
9028 }
9029
9030 /* Find the nearest line to a particular section and offset,
9031 for error reporting. */
9032
9033 bfd_boolean
9034 _bfd_elf_find_nearest_line (bfd *abfd,
9035 asymbol **symbols,
9036 asection *section,
9037 bfd_vma offset,
9038 const char **filename_ptr,
9039 const char **functionname_ptr,
9040 unsigned int *line_ptr,
9041 unsigned int *discriminator_ptr)
9042 {
9043 bfd_boolean found;
9044
9045 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
9046 filename_ptr, functionname_ptr,
9047 line_ptr, discriminator_ptr,
9048 dwarf_debug_sections,
9049 &elf_tdata (abfd)->dwarf2_find_line_info))
9050 return TRUE;
9051
9052 if (_bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
9053 filename_ptr, functionname_ptr, line_ptr))
9054 {
9055 if (!*functionname_ptr)
9056 _bfd_elf_find_function (abfd, symbols, section, offset,
9057 *filename_ptr ? NULL : filename_ptr,
9058 functionname_ptr);
9059 return TRUE;
9060 }
9061
9062 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
9063 &found, filename_ptr,
9064 functionname_ptr, line_ptr,
9065 &elf_tdata (abfd)->line_info))
9066 return FALSE;
9067 if (found && (*functionname_ptr || *line_ptr))
9068 return TRUE;
9069
9070 if (symbols == NULL)
9071 return FALSE;
9072
9073 if (! _bfd_elf_find_function (abfd, symbols, section, offset,
9074 filename_ptr, functionname_ptr))
9075 return FALSE;
9076
9077 *line_ptr = 0;
9078 return TRUE;
9079 }
9080
9081 /* Find the line for a symbol. */
9082
9083 bfd_boolean
9084 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
9085 const char **filename_ptr, unsigned int *line_ptr)
9086 {
9087 return _bfd_dwarf2_find_nearest_line (abfd, symbols, symbol, NULL, 0,
9088 filename_ptr, NULL, line_ptr, NULL,
9089 dwarf_debug_sections,
9090 &elf_tdata (abfd)->dwarf2_find_line_info);
9091 }
9092
9093 /* After a call to bfd_find_nearest_line, successive calls to
9094 bfd_find_inliner_info can be used to get source information about
9095 each level of function inlining that terminated at the address
9096 passed to bfd_find_nearest_line. Currently this is only supported
9097 for DWARF2 with appropriate DWARF3 extensions. */
9098
9099 bfd_boolean
9100 _bfd_elf_find_inliner_info (bfd *abfd,
9101 const char **filename_ptr,
9102 const char **functionname_ptr,
9103 unsigned int *line_ptr)
9104 {
9105 bfd_boolean found;
9106 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
9107 functionname_ptr, line_ptr,
9108 & elf_tdata (abfd)->dwarf2_find_line_info);
9109 return found;
9110 }
9111
9112 int
9113 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
9114 {
9115 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9116 int ret = bed->s->sizeof_ehdr;
9117
9118 if (!bfd_link_relocatable (info))
9119 {
9120 bfd_size_type phdr_size = elf_program_header_size (abfd);
9121
9122 if (phdr_size == (bfd_size_type) -1)
9123 {
9124 struct elf_segment_map *m;
9125
9126 phdr_size = 0;
9127 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
9128 phdr_size += bed->s->sizeof_phdr;
9129
9130 if (phdr_size == 0)
9131 phdr_size = get_program_header_size (abfd, info);
9132 }
9133
9134 elf_program_header_size (abfd) = phdr_size;
9135 ret += phdr_size;
9136 }
9137
9138 return ret;
9139 }
9140
9141 bfd_boolean
9142 _bfd_elf_set_section_contents (bfd *abfd,
9143 sec_ptr section,
9144 const void *location,
9145 file_ptr offset,
9146 bfd_size_type count)
9147 {
9148 Elf_Internal_Shdr *hdr;
9149 file_ptr pos;
9150
9151 if (! abfd->output_has_begun
9152 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
9153 return FALSE;
9154
9155 if (!count)
9156 return TRUE;
9157
9158 hdr = &elf_section_data (section)->this_hdr;
9159 if (hdr->sh_offset == (file_ptr) -1)
9160 {
9161 if (bfd_section_is_ctf (section))
9162 /* Nothing to do with this section: the contents are generated
9163 later. */
9164 return TRUE;
9165
9166 /* We must compress this section. Write output to the buffer. */
9167 unsigned char *contents = hdr->contents;
9168 if ((offset + count) > hdr->sh_size
9169 || (section->flags & SEC_ELF_COMPRESS) == 0
9170 || contents == NULL)
9171 abort ();
9172 memcpy (contents + offset, location, count);
9173 return TRUE;
9174 }
9175 pos = hdr->sh_offset + offset;
9176 if (bfd_seek (abfd, pos, SEEK_SET) != 0
9177 || bfd_bwrite (location, count, abfd) != count)
9178 return FALSE;
9179
9180 return TRUE;
9181 }
9182
9183 bfd_boolean
9184 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
9185 arelent *cache_ptr ATTRIBUTE_UNUSED,
9186 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
9187 {
9188 abort ();
9189 return FALSE;
9190 }
9191
9192 /* Try to convert a non-ELF reloc into an ELF one. */
9193
9194 bfd_boolean
9195 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
9196 {
9197 /* Check whether we really have an ELF howto. */
9198
9199 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
9200 {
9201 bfd_reloc_code_real_type code;
9202 reloc_howto_type *howto;
9203
9204 /* Alien reloc: Try to determine its type to replace it with an
9205 equivalent ELF reloc. */
9206
9207 if (areloc->howto->pc_relative)
9208 {
9209 switch (areloc->howto->bitsize)
9210 {
9211 case 8:
9212 code = BFD_RELOC_8_PCREL;
9213 break;
9214 case 12:
9215 code = BFD_RELOC_12_PCREL;
9216 break;
9217 case 16:
9218 code = BFD_RELOC_16_PCREL;
9219 break;
9220 case 24:
9221 code = BFD_RELOC_24_PCREL;
9222 break;
9223 case 32:
9224 code = BFD_RELOC_32_PCREL;
9225 break;
9226 case 64:
9227 code = BFD_RELOC_64_PCREL;
9228 break;
9229 default:
9230 goto fail;
9231 }
9232
9233 howto = bfd_reloc_type_lookup (abfd, code);
9234
9235 if (howto && areloc->howto->pcrel_offset != howto->pcrel_offset)
9236 {
9237 if (howto->pcrel_offset)
9238 areloc->addend += areloc->address;
9239 else
9240 areloc->addend -= areloc->address; /* addend is unsigned!! */
9241 }
9242 }
9243 else
9244 {
9245 switch (areloc->howto->bitsize)
9246 {
9247 case 8:
9248 code = BFD_RELOC_8;
9249 break;
9250 case 14:
9251 code = BFD_RELOC_14;
9252 break;
9253 case 16:
9254 code = BFD_RELOC_16;
9255 break;
9256 case 26:
9257 code = BFD_RELOC_26;
9258 break;
9259 case 32:
9260 code = BFD_RELOC_32;
9261 break;
9262 case 64:
9263 code = BFD_RELOC_64;
9264 break;
9265 default:
9266 goto fail;
9267 }
9268
9269 howto = bfd_reloc_type_lookup (abfd, code);
9270 }
9271
9272 if (howto)
9273 areloc->howto = howto;
9274 else
9275 goto fail;
9276 }
9277
9278 return TRUE;
9279
9280 fail:
9281 /* xgettext:c-format */
9282 _bfd_error_handler (_("%pB: %s unsupported"),
9283 abfd, areloc->howto->name);
9284 bfd_set_error (bfd_error_sorry);
9285 return FALSE;
9286 }
9287
9288 bfd_boolean
9289 _bfd_elf_close_and_cleanup (bfd *abfd)
9290 {
9291 struct elf_obj_tdata *tdata = elf_tdata (abfd);
9292 if (bfd_get_format (abfd) == bfd_object && tdata != NULL)
9293 {
9294 if (elf_tdata (abfd)->o != NULL && elf_shstrtab (abfd) != NULL)
9295 _bfd_elf_strtab_free (elf_shstrtab (abfd));
9296 _bfd_dwarf2_cleanup_debug_info (abfd, &tdata->dwarf2_find_line_info);
9297 }
9298
9299 return _bfd_generic_close_and_cleanup (abfd);
9300 }
9301
9302 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
9303 in the relocation's offset. Thus we cannot allow any sort of sanity
9304 range-checking to interfere. There is nothing else to do in processing
9305 this reloc. */
9306
9307 bfd_reloc_status_type
9308 _bfd_elf_rel_vtable_reloc_fn
9309 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
9310 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
9311 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
9312 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
9313 {
9314 return bfd_reloc_ok;
9315 }
9316 \f
9317 /* Elf core file support. Much of this only works on native
9318 toolchains, since we rely on knowing the
9319 machine-dependent procfs structure in order to pick
9320 out details about the corefile. */
9321
9322 #ifdef HAVE_SYS_PROCFS_H
9323 /* Needed for new procfs interface on sparc-solaris. */
9324 # define _STRUCTURED_PROC 1
9325 # include <sys/procfs.h>
9326 #endif
9327
9328 /* Return a PID that identifies a "thread" for threaded cores, or the
9329 PID of the main process for non-threaded cores. */
9330
9331 static int
9332 elfcore_make_pid (bfd *abfd)
9333 {
9334 int pid;
9335
9336 pid = elf_tdata (abfd)->core->lwpid;
9337 if (pid == 0)
9338 pid = elf_tdata (abfd)->core->pid;
9339
9340 return pid;
9341 }
9342
9343 /* If there isn't a section called NAME, make one, using
9344 data from SECT. Note, this function will generate a
9345 reference to NAME, so you shouldn't deallocate or
9346 overwrite it. */
9347
9348 static bfd_boolean
9349 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
9350 {
9351 asection *sect2;
9352
9353 if (bfd_get_section_by_name (abfd, name) != NULL)
9354 return TRUE;
9355
9356 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
9357 if (sect2 == NULL)
9358 return FALSE;
9359
9360 sect2->size = sect->size;
9361 sect2->filepos = sect->filepos;
9362 sect2->alignment_power = sect->alignment_power;
9363 return TRUE;
9364 }
9365
9366 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
9367 actually creates up to two pseudosections:
9368 - For the single-threaded case, a section named NAME, unless
9369 such a section already exists.
9370 - For the multi-threaded case, a section named "NAME/PID", where
9371 PID is elfcore_make_pid (abfd).
9372 Both pseudosections have identical contents. */
9373 bfd_boolean
9374 _bfd_elfcore_make_pseudosection (bfd *abfd,
9375 char *name,
9376 size_t size,
9377 ufile_ptr filepos)
9378 {
9379 char buf[100];
9380 char *threaded_name;
9381 size_t len;
9382 asection *sect;
9383
9384 /* Build the section name. */
9385
9386 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
9387 len = strlen (buf) + 1;
9388 threaded_name = (char *) bfd_alloc (abfd, len);
9389 if (threaded_name == NULL)
9390 return FALSE;
9391 memcpy (threaded_name, buf, len);
9392
9393 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
9394 SEC_HAS_CONTENTS);
9395 if (sect == NULL)
9396 return FALSE;
9397 sect->size = size;
9398 sect->filepos = filepos;
9399 sect->alignment_power = 2;
9400
9401 return elfcore_maybe_make_sect (abfd, name, sect);
9402 }
9403
9404 static bfd_boolean
9405 elfcore_make_auxv_note_section (bfd *abfd, Elf_Internal_Note *note,
9406 size_t offs)
9407 {
9408 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
9409 SEC_HAS_CONTENTS);
9410
9411 if (sect == NULL)
9412 return FALSE;
9413
9414 sect->size = note->descsz - offs;
9415 sect->filepos = note->descpos + offs;
9416 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
9417
9418 return TRUE;
9419 }
9420
9421 /* prstatus_t exists on:
9422 solaris 2.5+
9423 linux 2.[01] + glibc
9424 unixware 4.2
9425 */
9426
9427 #if defined (HAVE_PRSTATUS_T)
9428
9429 static bfd_boolean
9430 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
9431 {
9432 size_t size;
9433 int offset;
9434
9435 if (note->descsz == sizeof (prstatus_t))
9436 {
9437 prstatus_t prstat;
9438
9439 size = sizeof (prstat.pr_reg);
9440 offset = offsetof (prstatus_t, pr_reg);
9441 memcpy (&prstat, note->descdata, sizeof (prstat));
9442
9443 /* Do not overwrite the core signal if it
9444 has already been set by another thread. */
9445 if (elf_tdata (abfd)->core->signal == 0)
9446 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
9447 if (elf_tdata (abfd)->core->pid == 0)
9448 elf_tdata (abfd)->core->pid = prstat.pr_pid;
9449
9450 /* pr_who exists on:
9451 solaris 2.5+
9452 unixware 4.2
9453 pr_who doesn't exist on:
9454 linux 2.[01]
9455 */
9456 #if defined (HAVE_PRSTATUS_T_PR_WHO)
9457 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
9458 #else
9459 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
9460 #endif
9461 }
9462 #if defined (HAVE_PRSTATUS32_T)
9463 else if (note->descsz == sizeof (prstatus32_t))
9464 {
9465 /* 64-bit host, 32-bit corefile */
9466 prstatus32_t prstat;
9467
9468 size = sizeof (prstat.pr_reg);
9469 offset = offsetof (prstatus32_t, pr_reg);
9470 memcpy (&prstat, note->descdata, sizeof (prstat));
9471
9472 /* Do not overwrite the core signal if it
9473 has already been set by another thread. */
9474 if (elf_tdata (abfd)->core->signal == 0)
9475 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
9476 if (elf_tdata (abfd)->core->pid == 0)
9477 elf_tdata (abfd)->core->pid = prstat.pr_pid;
9478
9479 /* pr_who exists on:
9480 solaris 2.5+
9481 unixware 4.2
9482 pr_who doesn't exist on:
9483 linux 2.[01]
9484 */
9485 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
9486 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
9487 #else
9488 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
9489 #endif
9490 }
9491 #endif /* HAVE_PRSTATUS32_T */
9492 else
9493 {
9494 /* Fail - we don't know how to handle any other
9495 note size (ie. data object type). */
9496 return TRUE;
9497 }
9498
9499 /* Make a ".reg/999" section and a ".reg" section. */
9500 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
9501 size, note->descpos + offset);
9502 }
9503 #endif /* defined (HAVE_PRSTATUS_T) */
9504
9505 /* Create a pseudosection containing the exact contents of NOTE. */
9506 static bfd_boolean
9507 elfcore_make_note_pseudosection (bfd *abfd,
9508 char *name,
9509 Elf_Internal_Note *note)
9510 {
9511 return _bfd_elfcore_make_pseudosection (abfd, name,
9512 note->descsz, note->descpos);
9513 }
9514
9515 /* There isn't a consistent prfpregset_t across platforms,
9516 but it doesn't matter, because we don't have to pick this
9517 data structure apart. */
9518
9519 static bfd_boolean
9520 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
9521 {
9522 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
9523 }
9524
9525 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
9526 type of NT_PRXFPREG. Just include the whole note's contents
9527 literally. */
9528
9529 static bfd_boolean
9530 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
9531 {
9532 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
9533 }
9534
9535 /* Linux dumps the Intel XSAVE extended state in a note named "LINUX"
9536 with a note type of NT_X86_XSTATE. Just include the whole note's
9537 contents literally. */
9538
9539 static bfd_boolean
9540 elfcore_grok_xstatereg (bfd *abfd, Elf_Internal_Note *note)
9541 {
9542 return elfcore_make_note_pseudosection (abfd, ".reg-xstate", note);
9543 }
9544
9545 static bfd_boolean
9546 elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
9547 {
9548 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
9549 }
9550
9551 static bfd_boolean
9552 elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note)
9553 {
9554 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note);
9555 }
9556
9557 static bfd_boolean
9558 elfcore_grok_ppc_tar (bfd *abfd, Elf_Internal_Note *note)
9559 {
9560 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tar", note);
9561 }
9562
9563 static bfd_boolean
9564 elfcore_grok_ppc_ppr (bfd *abfd, Elf_Internal_Note *note)
9565 {
9566 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-ppr", note);
9567 }
9568
9569 static bfd_boolean
9570 elfcore_grok_ppc_dscr (bfd *abfd, Elf_Internal_Note *note)
9571 {
9572 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-dscr", note);
9573 }
9574
9575 static bfd_boolean
9576 elfcore_grok_ppc_ebb (bfd *abfd, Elf_Internal_Note *note)
9577 {
9578 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-ebb", note);
9579 }
9580
9581 static bfd_boolean
9582 elfcore_grok_ppc_pmu (bfd *abfd, Elf_Internal_Note *note)
9583 {
9584 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-pmu", note);
9585 }
9586
9587 static bfd_boolean
9588 elfcore_grok_ppc_tm_cgpr (bfd *abfd, Elf_Internal_Note *note)
9589 {
9590 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cgpr", note);
9591 }
9592
9593 static bfd_boolean
9594 elfcore_grok_ppc_tm_cfpr (bfd *abfd, Elf_Internal_Note *note)
9595 {
9596 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cfpr", note);
9597 }
9598
9599 static bfd_boolean
9600 elfcore_grok_ppc_tm_cvmx (bfd *abfd, Elf_Internal_Note *note)
9601 {
9602 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cvmx", note);
9603 }
9604
9605 static bfd_boolean
9606 elfcore_grok_ppc_tm_cvsx (bfd *abfd, Elf_Internal_Note *note)
9607 {
9608 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cvsx", note);
9609 }
9610
9611 static bfd_boolean
9612 elfcore_grok_ppc_tm_spr (bfd *abfd, Elf_Internal_Note *note)
9613 {
9614 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-spr", note);
9615 }
9616
9617 static bfd_boolean
9618 elfcore_grok_ppc_tm_ctar (bfd *abfd, Elf_Internal_Note *note)
9619 {
9620 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-ctar", note);
9621 }
9622
9623 static bfd_boolean
9624 elfcore_grok_ppc_tm_cppr (bfd *abfd, Elf_Internal_Note *note)
9625 {
9626 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cppr", note);
9627 }
9628
9629 static bfd_boolean
9630 elfcore_grok_ppc_tm_cdscr (bfd *abfd, Elf_Internal_Note *note)
9631 {
9632 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cdscr", note);
9633 }
9634
9635 static bfd_boolean
9636 elfcore_grok_s390_high_gprs (bfd *abfd, Elf_Internal_Note *note)
9637 {
9638 return elfcore_make_note_pseudosection (abfd, ".reg-s390-high-gprs", note);
9639 }
9640
9641 static bfd_boolean
9642 elfcore_grok_s390_timer (bfd *abfd, Elf_Internal_Note *note)
9643 {
9644 return elfcore_make_note_pseudosection (abfd, ".reg-s390-timer", note);
9645 }
9646
9647 static bfd_boolean
9648 elfcore_grok_s390_todcmp (bfd *abfd, Elf_Internal_Note *note)
9649 {
9650 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todcmp", note);
9651 }
9652
9653 static bfd_boolean
9654 elfcore_grok_s390_todpreg (bfd *abfd, Elf_Internal_Note *note)
9655 {
9656 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todpreg", note);
9657 }
9658
9659 static bfd_boolean
9660 elfcore_grok_s390_ctrs (bfd *abfd, Elf_Internal_Note *note)
9661 {
9662 return elfcore_make_note_pseudosection (abfd, ".reg-s390-ctrs", note);
9663 }
9664
9665 static bfd_boolean
9666 elfcore_grok_s390_prefix (bfd *abfd, Elf_Internal_Note *note)
9667 {
9668 return elfcore_make_note_pseudosection (abfd, ".reg-s390-prefix", note);
9669 }
9670
9671 static bfd_boolean
9672 elfcore_grok_s390_last_break (bfd *abfd, Elf_Internal_Note *note)
9673 {
9674 return elfcore_make_note_pseudosection (abfd, ".reg-s390-last-break", note);
9675 }
9676
9677 static bfd_boolean
9678 elfcore_grok_s390_system_call (bfd *abfd, Elf_Internal_Note *note)
9679 {
9680 return elfcore_make_note_pseudosection (abfd, ".reg-s390-system-call", note);
9681 }
9682
9683 static bfd_boolean
9684 elfcore_grok_s390_tdb (bfd *abfd, Elf_Internal_Note *note)
9685 {
9686 return elfcore_make_note_pseudosection (abfd, ".reg-s390-tdb", note);
9687 }
9688
9689 static bfd_boolean
9690 elfcore_grok_s390_vxrs_low (bfd *abfd, Elf_Internal_Note *note)
9691 {
9692 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-low", note);
9693 }
9694
9695 static bfd_boolean
9696 elfcore_grok_s390_vxrs_high (bfd *abfd, Elf_Internal_Note *note)
9697 {
9698 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-high", note);
9699 }
9700
9701 static bfd_boolean
9702 elfcore_grok_s390_gs_cb (bfd *abfd, Elf_Internal_Note *note)
9703 {
9704 return elfcore_make_note_pseudosection (abfd, ".reg-s390-gs-cb", note);
9705 }
9706
9707 static bfd_boolean
9708 elfcore_grok_s390_gs_bc (bfd *abfd, Elf_Internal_Note *note)
9709 {
9710 return elfcore_make_note_pseudosection (abfd, ".reg-s390-gs-bc", note);
9711 }
9712
9713 static bfd_boolean
9714 elfcore_grok_arm_vfp (bfd *abfd, Elf_Internal_Note *note)
9715 {
9716 return elfcore_make_note_pseudosection (abfd, ".reg-arm-vfp", note);
9717 }
9718
9719 static bfd_boolean
9720 elfcore_grok_aarch_tls (bfd *abfd, Elf_Internal_Note *note)
9721 {
9722 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-tls", note);
9723 }
9724
9725 static bfd_boolean
9726 elfcore_grok_aarch_hw_break (bfd *abfd, Elf_Internal_Note *note)
9727 {
9728 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-break", note);
9729 }
9730
9731 static bfd_boolean
9732 elfcore_grok_aarch_hw_watch (bfd *abfd, Elf_Internal_Note *note)
9733 {
9734 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-watch", note);
9735 }
9736
9737 static bfd_boolean
9738 elfcore_grok_aarch_sve (bfd *abfd, Elf_Internal_Note *note)
9739 {
9740 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-sve", note);
9741 }
9742
9743 static bfd_boolean
9744 elfcore_grok_aarch_pauth (bfd *abfd, Elf_Internal_Note *note)
9745 {
9746 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-pauth", note);
9747 }
9748
9749 #if defined (HAVE_PRPSINFO_T)
9750 typedef prpsinfo_t elfcore_psinfo_t;
9751 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
9752 typedef prpsinfo32_t elfcore_psinfo32_t;
9753 #endif
9754 #endif
9755
9756 #if defined (HAVE_PSINFO_T)
9757 typedef psinfo_t elfcore_psinfo_t;
9758 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
9759 typedef psinfo32_t elfcore_psinfo32_t;
9760 #endif
9761 #endif
9762
9763 /* return a malloc'ed copy of a string at START which is at
9764 most MAX bytes long, possibly without a terminating '\0'.
9765 the copy will always have a terminating '\0'. */
9766
9767 char *
9768 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
9769 {
9770 char *dups;
9771 char *end = (char *) memchr (start, '\0', max);
9772 size_t len;
9773
9774 if (end == NULL)
9775 len = max;
9776 else
9777 len = end - start;
9778
9779 dups = (char *) bfd_alloc (abfd, len + 1);
9780 if (dups == NULL)
9781 return NULL;
9782
9783 memcpy (dups, start, len);
9784 dups[len] = '\0';
9785
9786 return dups;
9787 }
9788
9789 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
9790 static bfd_boolean
9791 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
9792 {
9793 if (note->descsz == sizeof (elfcore_psinfo_t))
9794 {
9795 elfcore_psinfo_t psinfo;
9796
9797 memcpy (&psinfo, note->descdata, sizeof (psinfo));
9798
9799 #if defined (HAVE_PSINFO_T_PR_PID) || defined (HAVE_PRPSINFO_T_PR_PID)
9800 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
9801 #endif
9802 elf_tdata (abfd)->core->program
9803 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
9804 sizeof (psinfo.pr_fname));
9805
9806 elf_tdata (abfd)->core->command
9807 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
9808 sizeof (psinfo.pr_psargs));
9809 }
9810 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
9811 else if (note->descsz == sizeof (elfcore_psinfo32_t))
9812 {
9813 /* 64-bit host, 32-bit corefile */
9814 elfcore_psinfo32_t psinfo;
9815
9816 memcpy (&psinfo, note->descdata, sizeof (psinfo));
9817
9818 #if defined (HAVE_PSINFO32_T_PR_PID) || defined (HAVE_PRPSINFO32_T_PR_PID)
9819 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
9820 #endif
9821 elf_tdata (abfd)->core->program
9822 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
9823 sizeof (psinfo.pr_fname));
9824
9825 elf_tdata (abfd)->core->command
9826 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
9827 sizeof (psinfo.pr_psargs));
9828 }
9829 #endif
9830
9831 else
9832 {
9833 /* Fail - we don't know how to handle any other
9834 note size (ie. data object type). */
9835 return TRUE;
9836 }
9837
9838 /* Note that for some reason, a spurious space is tacked
9839 onto the end of the args in some (at least one anyway)
9840 implementations, so strip it off if it exists. */
9841
9842 {
9843 char *command = elf_tdata (abfd)->core->command;
9844 int n = strlen (command);
9845
9846 if (0 < n && command[n - 1] == ' ')
9847 command[n - 1] = '\0';
9848 }
9849
9850 return TRUE;
9851 }
9852 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
9853
9854 #if defined (HAVE_PSTATUS_T)
9855 static bfd_boolean
9856 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
9857 {
9858 if (note->descsz == sizeof (pstatus_t)
9859 #if defined (HAVE_PXSTATUS_T)
9860 || note->descsz == sizeof (pxstatus_t)
9861 #endif
9862 )
9863 {
9864 pstatus_t pstat;
9865
9866 memcpy (&pstat, note->descdata, sizeof (pstat));
9867
9868 elf_tdata (abfd)->core->pid = pstat.pr_pid;
9869 }
9870 #if defined (HAVE_PSTATUS32_T)
9871 else if (note->descsz == sizeof (pstatus32_t))
9872 {
9873 /* 64-bit host, 32-bit corefile */
9874 pstatus32_t pstat;
9875
9876 memcpy (&pstat, note->descdata, sizeof (pstat));
9877
9878 elf_tdata (abfd)->core->pid = pstat.pr_pid;
9879 }
9880 #endif
9881 /* Could grab some more details from the "representative"
9882 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
9883 NT_LWPSTATUS note, presumably. */
9884
9885 return TRUE;
9886 }
9887 #endif /* defined (HAVE_PSTATUS_T) */
9888
9889 #if defined (HAVE_LWPSTATUS_T)
9890 static bfd_boolean
9891 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
9892 {
9893 lwpstatus_t lwpstat;
9894 char buf[100];
9895 char *name;
9896 size_t len;
9897 asection *sect;
9898
9899 if (note->descsz != sizeof (lwpstat)
9900 #if defined (HAVE_LWPXSTATUS_T)
9901 && note->descsz != sizeof (lwpxstatus_t)
9902 #endif
9903 )
9904 return TRUE;
9905
9906 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
9907
9908 elf_tdata (abfd)->core->lwpid = lwpstat.pr_lwpid;
9909 /* Do not overwrite the core signal if it has already been set by
9910 another thread. */
9911 if (elf_tdata (abfd)->core->signal == 0)
9912 elf_tdata (abfd)->core->signal = lwpstat.pr_cursig;
9913
9914 /* Make a ".reg/999" section. */
9915
9916 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
9917 len = strlen (buf) + 1;
9918 name = bfd_alloc (abfd, len);
9919 if (name == NULL)
9920 return FALSE;
9921 memcpy (name, buf, len);
9922
9923 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9924 if (sect == NULL)
9925 return FALSE;
9926
9927 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9928 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
9929 sect->filepos = note->descpos
9930 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
9931 #endif
9932
9933 #if defined (HAVE_LWPSTATUS_T_PR_REG)
9934 sect->size = sizeof (lwpstat.pr_reg);
9935 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
9936 #endif
9937
9938 sect->alignment_power = 2;
9939
9940 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
9941 return FALSE;
9942
9943 /* Make a ".reg2/999" section */
9944
9945 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
9946 len = strlen (buf) + 1;
9947 name = bfd_alloc (abfd, len);
9948 if (name == NULL)
9949 return FALSE;
9950 memcpy (name, buf, len);
9951
9952 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9953 if (sect == NULL)
9954 return FALSE;
9955
9956 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9957 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
9958 sect->filepos = note->descpos
9959 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
9960 #endif
9961
9962 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
9963 sect->size = sizeof (lwpstat.pr_fpreg);
9964 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
9965 #endif
9966
9967 sect->alignment_power = 2;
9968
9969 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
9970 }
9971 #endif /* defined (HAVE_LWPSTATUS_T) */
9972
9973 static bfd_boolean
9974 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
9975 {
9976 char buf[30];
9977 char *name;
9978 size_t len;
9979 asection *sect;
9980 int type;
9981 int is_active_thread;
9982 bfd_vma base_addr;
9983
9984 if (note->descsz < 728)
9985 return TRUE;
9986
9987 if (! CONST_STRNEQ (note->namedata, "win32"))
9988 return TRUE;
9989
9990 type = bfd_get_32 (abfd, note->descdata);
9991
9992 switch (type)
9993 {
9994 case 1 /* NOTE_INFO_PROCESS */:
9995 /* FIXME: need to add ->core->command. */
9996 /* process_info.pid */
9997 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, note->descdata + 8);
9998 /* process_info.signal */
9999 elf_tdata (abfd)->core->signal = bfd_get_32 (abfd, note->descdata + 12);
10000 break;
10001
10002 case 2 /* NOTE_INFO_THREAD */:
10003 /* Make a ".reg/999" section. */
10004 /* thread_info.tid */
10005 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 8));
10006
10007 len = strlen (buf) + 1;
10008 name = (char *) bfd_alloc (abfd, len);
10009 if (name == NULL)
10010 return FALSE;
10011
10012 memcpy (name, buf, len);
10013
10014 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10015 if (sect == NULL)
10016 return FALSE;
10017
10018 /* sizeof (thread_info.thread_context) */
10019 sect->size = 716;
10020 /* offsetof (thread_info.thread_context) */
10021 sect->filepos = note->descpos + 12;
10022 sect->alignment_power = 2;
10023
10024 /* thread_info.is_active_thread */
10025 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
10026
10027 if (is_active_thread)
10028 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
10029 return FALSE;
10030 break;
10031
10032 case 3 /* NOTE_INFO_MODULE */:
10033 /* Make a ".module/xxxxxxxx" section. */
10034 /* module_info.base_address */
10035 base_addr = bfd_get_32 (abfd, note->descdata + 4);
10036 sprintf (buf, ".module/%08lx", (unsigned long) base_addr);
10037
10038 len = strlen (buf) + 1;
10039 name = (char *) bfd_alloc (abfd, len);
10040 if (name == NULL)
10041 return FALSE;
10042
10043 memcpy (name, buf, len);
10044
10045 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10046
10047 if (sect == NULL)
10048 return FALSE;
10049
10050 sect->size = note->descsz;
10051 sect->filepos = note->descpos;
10052 sect->alignment_power = 2;
10053 break;
10054
10055 default:
10056 return TRUE;
10057 }
10058
10059 return TRUE;
10060 }
10061
10062 static bfd_boolean
10063 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
10064 {
10065 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10066
10067 switch (note->type)
10068 {
10069 default:
10070 return TRUE;
10071
10072 case NT_PRSTATUS:
10073 if (bed->elf_backend_grok_prstatus)
10074 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
10075 return TRUE;
10076 #if defined (HAVE_PRSTATUS_T)
10077 return elfcore_grok_prstatus (abfd, note);
10078 #else
10079 return TRUE;
10080 #endif
10081
10082 #if defined (HAVE_PSTATUS_T)
10083 case NT_PSTATUS:
10084 return elfcore_grok_pstatus (abfd, note);
10085 #endif
10086
10087 #if defined (HAVE_LWPSTATUS_T)
10088 case NT_LWPSTATUS:
10089 return elfcore_grok_lwpstatus (abfd, note);
10090 #endif
10091
10092 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
10093 return elfcore_grok_prfpreg (abfd, note);
10094
10095 case NT_WIN32PSTATUS:
10096 return elfcore_grok_win32pstatus (abfd, note);
10097
10098 case NT_PRXFPREG: /* Linux SSE extension */
10099 if (note->namesz == 6
10100 && strcmp (note->namedata, "LINUX") == 0)
10101 return elfcore_grok_prxfpreg (abfd, note);
10102 else
10103 return TRUE;
10104
10105 case NT_X86_XSTATE: /* Linux XSAVE extension */
10106 if (note->namesz == 6
10107 && strcmp (note->namedata, "LINUX") == 0)
10108 return elfcore_grok_xstatereg (abfd, note);
10109 else
10110 return TRUE;
10111
10112 case NT_PPC_VMX:
10113 if (note->namesz == 6
10114 && strcmp (note->namedata, "LINUX") == 0)
10115 return elfcore_grok_ppc_vmx (abfd, note);
10116 else
10117 return TRUE;
10118
10119 case NT_PPC_VSX:
10120 if (note->namesz == 6
10121 && strcmp (note->namedata, "LINUX") == 0)
10122 return elfcore_grok_ppc_vsx (abfd, note);
10123 else
10124 return TRUE;
10125
10126 case NT_PPC_TAR:
10127 if (note->namesz == 6
10128 && strcmp (note->namedata, "LINUX") == 0)
10129 return elfcore_grok_ppc_tar (abfd, note);
10130 else
10131 return TRUE;
10132
10133 case NT_PPC_PPR:
10134 if (note->namesz == 6
10135 && strcmp (note->namedata, "LINUX") == 0)
10136 return elfcore_grok_ppc_ppr (abfd, note);
10137 else
10138 return TRUE;
10139
10140 case NT_PPC_DSCR:
10141 if (note->namesz == 6
10142 && strcmp (note->namedata, "LINUX") == 0)
10143 return elfcore_grok_ppc_dscr (abfd, note);
10144 else
10145 return TRUE;
10146
10147 case NT_PPC_EBB:
10148 if (note->namesz == 6
10149 && strcmp (note->namedata, "LINUX") == 0)
10150 return elfcore_grok_ppc_ebb (abfd, note);
10151 else
10152 return TRUE;
10153
10154 case NT_PPC_PMU:
10155 if (note->namesz == 6
10156 && strcmp (note->namedata, "LINUX") == 0)
10157 return elfcore_grok_ppc_pmu (abfd, note);
10158 else
10159 return TRUE;
10160
10161 case NT_PPC_TM_CGPR:
10162 if (note->namesz == 6
10163 && strcmp (note->namedata, "LINUX") == 0)
10164 return elfcore_grok_ppc_tm_cgpr (abfd, note);
10165 else
10166 return TRUE;
10167
10168 case NT_PPC_TM_CFPR:
10169 if (note->namesz == 6
10170 && strcmp (note->namedata, "LINUX") == 0)
10171 return elfcore_grok_ppc_tm_cfpr (abfd, note);
10172 else
10173 return TRUE;
10174
10175 case NT_PPC_TM_CVMX:
10176 if (note->namesz == 6
10177 && strcmp (note->namedata, "LINUX") == 0)
10178 return elfcore_grok_ppc_tm_cvmx (abfd, note);
10179 else
10180 return TRUE;
10181
10182 case NT_PPC_TM_CVSX:
10183 if (note->namesz == 6
10184 && strcmp (note->namedata, "LINUX") == 0)
10185 return elfcore_grok_ppc_tm_cvsx (abfd, note);
10186 else
10187 return TRUE;
10188
10189 case NT_PPC_TM_SPR:
10190 if (note->namesz == 6
10191 && strcmp (note->namedata, "LINUX") == 0)
10192 return elfcore_grok_ppc_tm_spr (abfd, note);
10193 else
10194 return TRUE;
10195
10196 case NT_PPC_TM_CTAR:
10197 if (note->namesz == 6
10198 && strcmp (note->namedata, "LINUX") == 0)
10199 return elfcore_grok_ppc_tm_ctar (abfd, note);
10200 else
10201 return TRUE;
10202
10203 case NT_PPC_TM_CPPR:
10204 if (note->namesz == 6
10205 && strcmp (note->namedata, "LINUX") == 0)
10206 return elfcore_grok_ppc_tm_cppr (abfd, note);
10207 else
10208 return TRUE;
10209
10210 case NT_PPC_TM_CDSCR:
10211 if (note->namesz == 6
10212 && strcmp (note->namedata, "LINUX") == 0)
10213 return elfcore_grok_ppc_tm_cdscr (abfd, note);
10214 else
10215 return TRUE;
10216
10217 case NT_S390_HIGH_GPRS:
10218 if (note->namesz == 6
10219 && strcmp (note->namedata, "LINUX") == 0)
10220 return elfcore_grok_s390_high_gprs (abfd, note);
10221 else
10222 return TRUE;
10223
10224 case NT_S390_TIMER:
10225 if (note->namesz == 6
10226 && strcmp (note->namedata, "LINUX") == 0)
10227 return elfcore_grok_s390_timer (abfd, note);
10228 else
10229 return TRUE;
10230
10231 case NT_S390_TODCMP:
10232 if (note->namesz == 6
10233 && strcmp (note->namedata, "LINUX") == 0)
10234 return elfcore_grok_s390_todcmp (abfd, note);
10235 else
10236 return TRUE;
10237
10238 case NT_S390_TODPREG:
10239 if (note->namesz == 6
10240 && strcmp (note->namedata, "LINUX") == 0)
10241 return elfcore_grok_s390_todpreg (abfd, note);
10242 else
10243 return TRUE;
10244
10245 case NT_S390_CTRS:
10246 if (note->namesz == 6
10247 && strcmp (note->namedata, "LINUX") == 0)
10248 return elfcore_grok_s390_ctrs (abfd, note);
10249 else
10250 return TRUE;
10251
10252 case NT_S390_PREFIX:
10253 if (note->namesz == 6
10254 && strcmp (note->namedata, "LINUX") == 0)
10255 return elfcore_grok_s390_prefix (abfd, note);
10256 else
10257 return TRUE;
10258
10259 case NT_S390_LAST_BREAK:
10260 if (note->namesz == 6
10261 && strcmp (note->namedata, "LINUX") == 0)
10262 return elfcore_grok_s390_last_break (abfd, note);
10263 else
10264 return TRUE;
10265
10266 case NT_S390_SYSTEM_CALL:
10267 if (note->namesz == 6
10268 && strcmp (note->namedata, "LINUX") == 0)
10269 return elfcore_grok_s390_system_call (abfd, note);
10270 else
10271 return TRUE;
10272
10273 case NT_S390_TDB:
10274 if (note->namesz == 6
10275 && strcmp (note->namedata, "LINUX") == 0)
10276 return elfcore_grok_s390_tdb (abfd, note);
10277 else
10278 return TRUE;
10279
10280 case NT_S390_VXRS_LOW:
10281 if (note->namesz == 6
10282 && strcmp (note->namedata, "LINUX") == 0)
10283 return elfcore_grok_s390_vxrs_low (abfd, note);
10284 else
10285 return TRUE;
10286
10287 case NT_S390_VXRS_HIGH:
10288 if (note->namesz == 6
10289 && strcmp (note->namedata, "LINUX") == 0)
10290 return elfcore_grok_s390_vxrs_high (abfd, note);
10291 else
10292 return TRUE;
10293
10294 case NT_S390_GS_CB:
10295 if (note->namesz == 6
10296 && strcmp (note->namedata, "LINUX") == 0)
10297 return elfcore_grok_s390_gs_cb (abfd, note);
10298 else
10299 return TRUE;
10300
10301 case NT_S390_GS_BC:
10302 if (note->namesz == 6
10303 && strcmp (note->namedata, "LINUX") == 0)
10304 return elfcore_grok_s390_gs_bc (abfd, note);
10305 else
10306 return TRUE;
10307
10308 case NT_ARM_VFP:
10309 if (note->namesz == 6
10310 && strcmp (note->namedata, "LINUX") == 0)
10311 return elfcore_grok_arm_vfp (abfd, note);
10312 else
10313 return TRUE;
10314
10315 case NT_ARM_TLS:
10316 if (note->namesz == 6
10317 && strcmp (note->namedata, "LINUX") == 0)
10318 return elfcore_grok_aarch_tls (abfd, note);
10319 else
10320 return TRUE;
10321
10322 case NT_ARM_HW_BREAK:
10323 if (note->namesz == 6
10324 && strcmp (note->namedata, "LINUX") == 0)
10325 return elfcore_grok_aarch_hw_break (abfd, note);
10326 else
10327 return TRUE;
10328
10329 case NT_ARM_HW_WATCH:
10330 if (note->namesz == 6
10331 && strcmp (note->namedata, "LINUX") == 0)
10332 return elfcore_grok_aarch_hw_watch (abfd, note);
10333 else
10334 return TRUE;
10335
10336 case NT_ARM_SVE:
10337 if (note->namesz == 6
10338 && strcmp (note->namedata, "LINUX") == 0)
10339 return elfcore_grok_aarch_sve (abfd, note);
10340 else
10341 return TRUE;
10342
10343 case NT_ARM_PAC_MASK:
10344 if (note->namesz == 6
10345 && strcmp (note->namedata, "LINUX") == 0)
10346 return elfcore_grok_aarch_pauth (abfd, note);
10347 else
10348 return TRUE;
10349
10350 case NT_PRPSINFO:
10351 case NT_PSINFO:
10352 if (bed->elf_backend_grok_psinfo)
10353 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
10354 return TRUE;
10355 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
10356 return elfcore_grok_psinfo (abfd, note);
10357 #else
10358 return TRUE;
10359 #endif
10360
10361 case NT_AUXV:
10362 return elfcore_make_auxv_note_section (abfd, note, 0);
10363
10364 case NT_FILE:
10365 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.file",
10366 note);
10367
10368 case NT_SIGINFO:
10369 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.siginfo",
10370 note);
10371
10372 }
10373 }
10374
10375 static bfd_boolean
10376 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
10377 {
10378 struct bfd_build_id* build_id;
10379
10380 if (note->descsz == 0)
10381 return FALSE;
10382
10383 build_id = bfd_alloc (abfd, sizeof (struct bfd_build_id) - 1 + note->descsz);
10384 if (build_id == NULL)
10385 return FALSE;
10386
10387 build_id->size = note->descsz;
10388 memcpy (build_id->data, note->descdata, note->descsz);
10389 abfd->build_id = build_id;
10390
10391 return TRUE;
10392 }
10393
10394 static bfd_boolean
10395 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
10396 {
10397 switch (note->type)
10398 {
10399 default:
10400 return TRUE;
10401
10402 case NT_GNU_PROPERTY_TYPE_0:
10403 return _bfd_elf_parse_gnu_properties (abfd, note);
10404
10405 case NT_GNU_BUILD_ID:
10406 return elfobj_grok_gnu_build_id (abfd, note);
10407 }
10408 }
10409
10410 static bfd_boolean
10411 elfobj_grok_stapsdt_note_1 (bfd *abfd, Elf_Internal_Note *note)
10412 {
10413 struct sdt_note *cur =
10414 (struct sdt_note *) bfd_alloc (abfd,
10415 sizeof (struct sdt_note) + note->descsz);
10416
10417 cur->next = (struct sdt_note *) (elf_tdata (abfd))->sdt_note_head;
10418 cur->size = (bfd_size_type) note->descsz;
10419 memcpy (cur->data, note->descdata, note->descsz);
10420
10421 elf_tdata (abfd)->sdt_note_head = cur;
10422
10423 return TRUE;
10424 }
10425
10426 static bfd_boolean
10427 elfobj_grok_stapsdt_note (bfd *abfd, Elf_Internal_Note *note)
10428 {
10429 switch (note->type)
10430 {
10431 case NT_STAPSDT:
10432 return elfobj_grok_stapsdt_note_1 (abfd, note);
10433
10434 default:
10435 return TRUE;
10436 }
10437 }
10438
10439 static bfd_boolean
10440 elfcore_grok_freebsd_psinfo (bfd *abfd, Elf_Internal_Note *note)
10441 {
10442 size_t offset;
10443
10444 switch (elf_elfheader (abfd)->e_ident[EI_CLASS])
10445 {
10446 case ELFCLASS32:
10447 if (note->descsz < 108)
10448 return FALSE;
10449 break;
10450
10451 case ELFCLASS64:
10452 if (note->descsz < 120)
10453 return FALSE;
10454 break;
10455
10456 default:
10457 return FALSE;
10458 }
10459
10460 /* Check for version 1 in pr_version. */
10461 if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1)
10462 return FALSE;
10463
10464 offset = 4;
10465
10466 /* Skip over pr_psinfosz. */
10467 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS32)
10468 offset += 4;
10469 else
10470 {
10471 offset += 4; /* Padding before pr_psinfosz. */
10472 offset += 8;
10473 }
10474
10475 /* pr_fname is PRFNAMESZ (16) + 1 bytes in size. */
10476 elf_tdata (abfd)->core->program
10477 = _bfd_elfcore_strndup (abfd, note->descdata + offset, 17);
10478 offset += 17;
10479
10480 /* pr_psargs is PRARGSZ (80) + 1 bytes in size. */
10481 elf_tdata (abfd)->core->command
10482 = _bfd_elfcore_strndup (abfd, note->descdata + offset, 81);
10483 offset += 81;
10484
10485 /* Padding before pr_pid. */
10486 offset += 2;
10487
10488 /* The pr_pid field was added in version "1a". */
10489 if (note->descsz < offset + 4)
10490 return TRUE;
10491
10492 elf_tdata (abfd)->core->pid
10493 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10494
10495 return TRUE;
10496 }
10497
10498 static bfd_boolean
10499 elfcore_grok_freebsd_prstatus (bfd *abfd, Elf_Internal_Note *note)
10500 {
10501 size_t offset;
10502 size_t size;
10503 size_t min_size;
10504
10505 /* Compute offset of pr_getregsz, skipping over pr_statussz.
10506 Also compute minimum size of this note. */
10507 switch (elf_elfheader (abfd)->e_ident[EI_CLASS])
10508 {
10509 case ELFCLASS32:
10510 offset = 4 + 4;
10511 min_size = offset + (4 * 2) + 4 + 4 + 4;
10512 break;
10513
10514 case ELFCLASS64:
10515 offset = 4 + 4 + 8; /* Includes padding before pr_statussz. */
10516 min_size = offset + (8 * 2) + 4 + 4 + 4 + 4;
10517 break;
10518
10519 default:
10520 return FALSE;
10521 }
10522
10523 if (note->descsz < min_size)
10524 return FALSE;
10525
10526 /* Check for version 1 in pr_version. */
10527 if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1)
10528 return FALSE;
10529
10530 /* Extract size of pr_reg from pr_gregsetsz. */
10531 /* Skip over pr_gregsetsz and pr_fpregsetsz. */
10532 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS32)
10533 {
10534 size = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10535 offset += 4 * 2;
10536 }
10537 else
10538 {
10539 size = bfd_h_get_64 (abfd, (bfd_byte *) note->descdata + offset);
10540 offset += 8 * 2;
10541 }
10542
10543 /* Skip over pr_osreldate. */
10544 offset += 4;
10545
10546 /* Read signal from pr_cursig. */
10547 if (elf_tdata (abfd)->core->signal == 0)
10548 elf_tdata (abfd)->core->signal
10549 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10550 offset += 4;
10551
10552 /* Read TID from pr_pid. */
10553 elf_tdata (abfd)->core->lwpid
10554 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10555 offset += 4;
10556
10557 /* Padding before pr_reg. */
10558 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
10559 offset += 4;
10560
10561 /* Make sure that there is enough data remaining in the note. */
10562 if ((note->descsz - offset) < size)
10563 return FALSE;
10564
10565 /* Make a ".reg/999" section and a ".reg" section. */
10566 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
10567 size, note->descpos + offset);
10568 }
10569
10570 static bfd_boolean
10571 elfcore_grok_freebsd_note (bfd *abfd, Elf_Internal_Note *note)
10572 {
10573 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10574
10575 switch (note->type)
10576 {
10577 case NT_PRSTATUS:
10578 if (bed->elf_backend_grok_freebsd_prstatus)
10579 if ((*bed->elf_backend_grok_freebsd_prstatus) (abfd, note))
10580 return TRUE;
10581 return elfcore_grok_freebsd_prstatus (abfd, note);
10582
10583 case NT_FPREGSET:
10584 return elfcore_grok_prfpreg (abfd, note);
10585
10586 case NT_PRPSINFO:
10587 return elfcore_grok_freebsd_psinfo (abfd, note);
10588
10589 case NT_FREEBSD_THRMISC:
10590 if (note->namesz == 8)
10591 return elfcore_make_note_pseudosection (abfd, ".thrmisc", note);
10592 else
10593 return TRUE;
10594
10595 case NT_FREEBSD_PROCSTAT_PROC:
10596 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.proc",
10597 note);
10598
10599 case NT_FREEBSD_PROCSTAT_FILES:
10600 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.files",
10601 note);
10602
10603 case NT_FREEBSD_PROCSTAT_VMMAP:
10604 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.vmmap",
10605 note);
10606
10607 case NT_FREEBSD_PROCSTAT_AUXV:
10608 return elfcore_make_auxv_note_section (abfd, note, 4);
10609
10610 case NT_X86_XSTATE:
10611 if (note->namesz == 8)
10612 return elfcore_grok_xstatereg (abfd, note);
10613 else
10614 return TRUE;
10615
10616 case NT_FREEBSD_PTLWPINFO:
10617 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.lwpinfo",
10618 note);
10619
10620 case NT_ARM_VFP:
10621 return elfcore_grok_arm_vfp (abfd, note);
10622
10623 default:
10624 return TRUE;
10625 }
10626 }
10627
10628 static bfd_boolean
10629 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
10630 {
10631 char *cp;
10632
10633 cp = strchr (note->namedata, '@');
10634 if (cp != NULL)
10635 {
10636 *lwpidp = atoi(cp + 1);
10637 return TRUE;
10638 }
10639 return FALSE;
10640 }
10641
10642 static bfd_boolean
10643 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
10644 {
10645 if (note->descsz <= 0x7c + 31)
10646 return FALSE;
10647
10648 /* Signal number at offset 0x08. */
10649 elf_tdata (abfd)->core->signal
10650 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
10651
10652 /* Process ID at offset 0x50. */
10653 elf_tdata (abfd)->core->pid
10654 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
10655
10656 /* Command name at 0x7c (max 32 bytes, including nul). */
10657 elf_tdata (abfd)->core->command
10658 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
10659
10660 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
10661 note);
10662 }
10663
10664 static bfd_boolean
10665 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
10666 {
10667 int lwp;
10668
10669 if (elfcore_netbsd_get_lwpid (note, &lwp))
10670 elf_tdata (abfd)->core->lwpid = lwp;
10671
10672 switch (note->type)
10673 {
10674 case NT_NETBSDCORE_PROCINFO:
10675 /* NetBSD-specific core "procinfo". Note that we expect to
10676 find this note before any of the others, which is fine,
10677 since the kernel writes this note out first when it
10678 creates a core file. */
10679 return elfcore_grok_netbsd_procinfo (abfd, note);
10680 #ifdef NT_NETBSDCORE_AUXV
10681 case NT_NETBSDCORE_AUXV:
10682 /* NetBSD-specific Elf Auxiliary Vector data. */
10683 return elfcore_make_auxv_note_section (abfd, note, 4);
10684 #endif
10685 default:
10686 break;
10687 }
10688
10689 /* As of March 2017 there are no other machine-independent notes
10690 defined for NetBSD core files. If the note type is less
10691 than the start of the machine-dependent note types, we don't
10692 understand it. */
10693
10694 if (note->type < NT_NETBSDCORE_FIRSTMACH)
10695 return TRUE;
10696
10697
10698 switch (bfd_get_arch (abfd))
10699 {
10700 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
10701 PT_GETFPREGS == mach+2. */
10702
10703 case bfd_arch_alpha:
10704 case bfd_arch_sparc:
10705 switch (note->type)
10706 {
10707 case NT_NETBSDCORE_FIRSTMACH+0:
10708 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10709
10710 case NT_NETBSDCORE_FIRSTMACH+2:
10711 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10712
10713 default:
10714 return TRUE;
10715 }
10716
10717 /* On SuperH, PT_GETREGS == mach+3 and PT_GETFPREGS == mach+5.
10718 There's also old PT___GETREGS40 == mach + 1 for old reg
10719 structure which lacks GBR. */
10720
10721 case bfd_arch_sh:
10722 switch (note->type)
10723 {
10724 case NT_NETBSDCORE_FIRSTMACH+3:
10725 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10726
10727 case NT_NETBSDCORE_FIRSTMACH+5:
10728 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10729
10730 default:
10731 return TRUE;
10732 }
10733
10734 /* On all other arch's, PT_GETREGS == mach+1 and
10735 PT_GETFPREGS == mach+3. */
10736
10737 default:
10738 switch (note->type)
10739 {
10740 case NT_NETBSDCORE_FIRSTMACH+1:
10741 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10742
10743 case NT_NETBSDCORE_FIRSTMACH+3:
10744 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10745
10746 default:
10747 return TRUE;
10748 }
10749 }
10750 /* NOTREACHED */
10751 }
10752
10753 static bfd_boolean
10754 elfcore_grok_openbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
10755 {
10756 if (note->descsz <= 0x48 + 31)
10757 return FALSE;
10758
10759 /* Signal number at offset 0x08. */
10760 elf_tdata (abfd)->core->signal
10761 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
10762
10763 /* Process ID at offset 0x20. */
10764 elf_tdata (abfd)->core->pid
10765 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x20);
10766
10767 /* Command name at 0x48 (max 32 bytes, including nul). */
10768 elf_tdata (abfd)->core->command
10769 = _bfd_elfcore_strndup (abfd, note->descdata + 0x48, 31);
10770
10771 return TRUE;
10772 }
10773
10774 static bfd_boolean
10775 elfcore_grok_openbsd_note (bfd *abfd, Elf_Internal_Note *note)
10776 {
10777 if (note->type == NT_OPENBSD_PROCINFO)
10778 return elfcore_grok_openbsd_procinfo (abfd, note);
10779
10780 if (note->type == NT_OPENBSD_REGS)
10781 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10782
10783 if (note->type == NT_OPENBSD_FPREGS)
10784 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10785
10786 if (note->type == NT_OPENBSD_XFPREGS)
10787 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
10788
10789 if (note->type == NT_OPENBSD_AUXV)
10790 return elfcore_make_auxv_note_section (abfd, note, 0);
10791
10792 if (note->type == NT_OPENBSD_WCOOKIE)
10793 {
10794 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".wcookie",
10795 SEC_HAS_CONTENTS);
10796
10797 if (sect == NULL)
10798 return FALSE;
10799 sect->size = note->descsz;
10800 sect->filepos = note->descpos;
10801 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
10802
10803 return TRUE;
10804 }
10805
10806 return TRUE;
10807 }
10808
10809 static bfd_boolean
10810 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
10811 {
10812 void *ddata = note->descdata;
10813 char buf[100];
10814 char *name;
10815 asection *sect;
10816 short sig;
10817 unsigned flags;
10818
10819 if (note->descsz < 16)
10820 return FALSE;
10821
10822 /* nto_procfs_status 'pid' field is at offset 0. */
10823 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
10824
10825 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
10826 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
10827
10828 /* nto_procfs_status 'flags' field is at offset 8. */
10829 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
10830
10831 /* nto_procfs_status 'what' field is at offset 14. */
10832 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
10833 {
10834 elf_tdata (abfd)->core->signal = sig;
10835 elf_tdata (abfd)->core->lwpid = *tid;
10836 }
10837
10838 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
10839 do not come from signals so we make sure we set the current
10840 thread just in case. */
10841 if (flags & 0x00000080)
10842 elf_tdata (abfd)->core->lwpid = *tid;
10843
10844 /* Make a ".qnx_core_status/%d" section. */
10845 sprintf (buf, ".qnx_core_status/%ld", *tid);
10846
10847 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
10848 if (name == NULL)
10849 return FALSE;
10850 strcpy (name, buf);
10851
10852 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10853 if (sect == NULL)
10854 return FALSE;
10855
10856 sect->size = note->descsz;
10857 sect->filepos = note->descpos;
10858 sect->alignment_power = 2;
10859
10860 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
10861 }
10862
10863 static bfd_boolean
10864 elfcore_grok_nto_regs (bfd *abfd,
10865 Elf_Internal_Note *note,
10866 long tid,
10867 char *base)
10868 {
10869 char buf[100];
10870 char *name;
10871 asection *sect;
10872
10873 /* Make a "(base)/%d" section. */
10874 sprintf (buf, "%s/%ld", base, tid);
10875
10876 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
10877 if (name == NULL)
10878 return FALSE;
10879 strcpy (name, buf);
10880
10881 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10882 if (sect == NULL)
10883 return FALSE;
10884
10885 sect->size = note->descsz;
10886 sect->filepos = note->descpos;
10887 sect->alignment_power = 2;
10888
10889 /* This is the current thread. */
10890 if (elf_tdata (abfd)->core->lwpid == tid)
10891 return elfcore_maybe_make_sect (abfd, base, sect);
10892
10893 return TRUE;
10894 }
10895
10896 #define BFD_QNT_CORE_INFO 7
10897 #define BFD_QNT_CORE_STATUS 8
10898 #define BFD_QNT_CORE_GREG 9
10899 #define BFD_QNT_CORE_FPREG 10
10900
10901 static bfd_boolean
10902 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
10903 {
10904 /* Every GREG section has a STATUS section before it. Store the
10905 tid from the previous call to pass down to the next gregs
10906 function. */
10907 static long tid = 1;
10908
10909 switch (note->type)
10910 {
10911 case BFD_QNT_CORE_INFO:
10912 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
10913 case BFD_QNT_CORE_STATUS:
10914 return elfcore_grok_nto_status (abfd, note, &tid);
10915 case BFD_QNT_CORE_GREG:
10916 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
10917 case BFD_QNT_CORE_FPREG:
10918 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
10919 default:
10920 return TRUE;
10921 }
10922 }
10923
10924 static bfd_boolean
10925 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
10926 {
10927 char *name;
10928 asection *sect;
10929 size_t len;
10930
10931 /* Use note name as section name. */
10932 len = note->namesz;
10933 name = (char *) bfd_alloc (abfd, len);
10934 if (name == NULL)
10935 return FALSE;
10936 memcpy (name, note->namedata, len);
10937 name[len - 1] = '\0';
10938
10939 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10940 if (sect == NULL)
10941 return FALSE;
10942
10943 sect->size = note->descsz;
10944 sect->filepos = note->descpos;
10945 sect->alignment_power = 1;
10946
10947 return TRUE;
10948 }
10949
10950 /* Function: elfcore_write_note
10951
10952 Inputs:
10953 buffer to hold note, and current size of buffer
10954 name of note
10955 type of note
10956 data for note
10957 size of data for note
10958
10959 Writes note to end of buffer. ELF64 notes are written exactly as
10960 for ELF32, despite the current (as of 2006) ELF gabi specifying
10961 that they ought to have 8-byte namesz and descsz field, and have
10962 8-byte alignment. Other writers, eg. Linux kernel, do the same.
10963
10964 Return:
10965 Pointer to realloc'd buffer, *BUFSIZ updated. */
10966
10967 char *
10968 elfcore_write_note (bfd *abfd,
10969 char *buf,
10970 int *bufsiz,
10971 const char *name,
10972 int type,
10973 const void *input,
10974 int size)
10975 {
10976 Elf_External_Note *xnp;
10977 size_t namesz;
10978 size_t newspace;
10979 char *dest;
10980
10981 namesz = 0;
10982 if (name != NULL)
10983 namesz = strlen (name) + 1;
10984
10985 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
10986
10987 buf = (char *) realloc (buf, *bufsiz + newspace);
10988 if (buf == NULL)
10989 return buf;
10990 dest = buf + *bufsiz;
10991 *bufsiz += newspace;
10992 xnp = (Elf_External_Note *) dest;
10993 H_PUT_32 (abfd, namesz, xnp->namesz);
10994 H_PUT_32 (abfd, size, xnp->descsz);
10995 H_PUT_32 (abfd, type, xnp->type);
10996 dest = xnp->name;
10997 if (name != NULL)
10998 {
10999 memcpy (dest, name, namesz);
11000 dest += namesz;
11001 while (namesz & 3)
11002 {
11003 *dest++ = '\0';
11004 ++namesz;
11005 }
11006 }
11007 memcpy (dest, input, size);
11008 dest += size;
11009 while (size & 3)
11010 {
11011 *dest++ = '\0';
11012 ++size;
11013 }
11014 return buf;
11015 }
11016
11017 /* gcc-8 warns (*) on all the strncpy calls in this function about
11018 possible string truncation. The "truncation" is not a bug. We
11019 have an external representation of structs with fields that are not
11020 necessarily NULL terminated and corresponding internal
11021 representation fields that are one larger so that they can always
11022 be NULL terminated.
11023 gcc versions between 4.2 and 4.6 do not allow pragma control of
11024 diagnostics inside functions, giving a hard error if you try to use
11025 the finer control available with later versions.
11026 gcc prior to 4.2 warns about diagnostic push and pop.
11027 gcc-5, gcc-6 and gcc-7 warn that -Wstringop-truncation is unknown,
11028 unless you also add #pragma GCC diagnostic ignored "-Wpragma".
11029 (*) Depending on your system header files! */
11030 #if GCC_VERSION >= 8000
11031 # pragma GCC diagnostic push
11032 # pragma GCC diagnostic ignored "-Wstringop-truncation"
11033 #endif
11034 char *
11035 elfcore_write_prpsinfo (bfd *abfd,
11036 char *buf,
11037 int *bufsiz,
11038 const char *fname,
11039 const char *psargs)
11040 {
11041 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11042
11043 if (bed->elf_backend_write_core_note != NULL)
11044 {
11045 char *ret;
11046 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
11047 NT_PRPSINFO, fname, psargs);
11048 if (ret != NULL)
11049 return ret;
11050 }
11051
11052 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
11053 # if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
11054 if (bed->s->elfclass == ELFCLASS32)
11055 {
11056 # if defined (HAVE_PSINFO32_T)
11057 psinfo32_t data;
11058 int note_type = NT_PSINFO;
11059 # else
11060 prpsinfo32_t data;
11061 int note_type = NT_PRPSINFO;
11062 # endif
11063
11064 memset (&data, 0, sizeof (data));
11065 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
11066 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
11067 return elfcore_write_note (abfd, buf, bufsiz,
11068 "CORE", note_type, &data, sizeof (data));
11069 }
11070 else
11071 # endif
11072 {
11073 # if defined (HAVE_PSINFO_T)
11074 psinfo_t data;
11075 int note_type = NT_PSINFO;
11076 # else
11077 prpsinfo_t data;
11078 int note_type = NT_PRPSINFO;
11079 # endif
11080
11081 memset (&data, 0, sizeof (data));
11082 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
11083 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
11084 return elfcore_write_note (abfd, buf, bufsiz,
11085 "CORE", note_type, &data, sizeof (data));
11086 }
11087 #endif /* PSINFO_T or PRPSINFO_T */
11088
11089 free (buf);
11090 return NULL;
11091 }
11092 #if GCC_VERSION >= 8000
11093 # pragma GCC diagnostic pop
11094 #endif
11095
11096 char *
11097 elfcore_write_linux_prpsinfo32
11098 (bfd *abfd, char *buf, int *bufsiz,
11099 const struct elf_internal_linux_prpsinfo *prpsinfo)
11100 {
11101 if (get_elf_backend_data (abfd)->linux_prpsinfo32_ugid16)
11102 {
11103 struct elf_external_linux_prpsinfo32_ugid16 data;
11104
11105 swap_linux_prpsinfo32_ugid16_out (abfd, prpsinfo, &data);
11106 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
11107 &data, sizeof (data));
11108 }
11109 else
11110 {
11111 struct elf_external_linux_prpsinfo32_ugid32 data;
11112
11113 swap_linux_prpsinfo32_ugid32_out (abfd, prpsinfo, &data);
11114 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
11115 &data, sizeof (data));
11116 }
11117 }
11118
11119 char *
11120 elfcore_write_linux_prpsinfo64
11121 (bfd *abfd, char *buf, int *bufsiz,
11122 const struct elf_internal_linux_prpsinfo *prpsinfo)
11123 {
11124 if (get_elf_backend_data (abfd)->linux_prpsinfo64_ugid16)
11125 {
11126 struct elf_external_linux_prpsinfo64_ugid16 data;
11127
11128 swap_linux_prpsinfo64_ugid16_out (abfd, prpsinfo, &data);
11129 return elfcore_write_note (abfd, buf, bufsiz,
11130 "CORE", NT_PRPSINFO, &data, sizeof (data));
11131 }
11132 else
11133 {
11134 struct elf_external_linux_prpsinfo64_ugid32 data;
11135
11136 swap_linux_prpsinfo64_ugid32_out (abfd, prpsinfo, &data);
11137 return elfcore_write_note (abfd, buf, bufsiz,
11138 "CORE", NT_PRPSINFO, &data, sizeof (data));
11139 }
11140 }
11141
11142 char *
11143 elfcore_write_prstatus (bfd *abfd,
11144 char *buf,
11145 int *bufsiz,
11146 long pid,
11147 int cursig,
11148 const void *gregs)
11149 {
11150 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11151
11152 if (bed->elf_backend_write_core_note != NULL)
11153 {
11154 char *ret;
11155 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
11156 NT_PRSTATUS,
11157 pid, cursig, gregs);
11158 if (ret != NULL)
11159 return ret;
11160 }
11161
11162 #if defined (HAVE_PRSTATUS_T)
11163 #if defined (HAVE_PRSTATUS32_T)
11164 if (bed->s->elfclass == ELFCLASS32)
11165 {
11166 prstatus32_t prstat;
11167
11168 memset (&prstat, 0, sizeof (prstat));
11169 prstat.pr_pid = pid;
11170 prstat.pr_cursig = cursig;
11171 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
11172 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
11173 NT_PRSTATUS, &prstat, sizeof (prstat));
11174 }
11175 else
11176 #endif
11177 {
11178 prstatus_t prstat;
11179
11180 memset (&prstat, 0, sizeof (prstat));
11181 prstat.pr_pid = pid;
11182 prstat.pr_cursig = cursig;
11183 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
11184 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
11185 NT_PRSTATUS, &prstat, sizeof (prstat));
11186 }
11187 #endif /* HAVE_PRSTATUS_T */
11188
11189 free (buf);
11190 return NULL;
11191 }
11192
11193 #if defined (HAVE_LWPSTATUS_T)
11194 char *
11195 elfcore_write_lwpstatus (bfd *abfd,
11196 char *buf,
11197 int *bufsiz,
11198 long pid,
11199 int cursig,
11200 const void *gregs)
11201 {
11202 lwpstatus_t lwpstat;
11203 const char *note_name = "CORE";
11204
11205 memset (&lwpstat, 0, sizeof (lwpstat));
11206 lwpstat.pr_lwpid = pid >> 16;
11207 lwpstat.pr_cursig = cursig;
11208 #if defined (HAVE_LWPSTATUS_T_PR_REG)
11209 memcpy (&lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
11210 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
11211 #if !defined(gregs)
11212 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
11213 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
11214 #else
11215 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
11216 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
11217 #endif
11218 #endif
11219 return elfcore_write_note (abfd, buf, bufsiz, note_name,
11220 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
11221 }
11222 #endif /* HAVE_LWPSTATUS_T */
11223
11224 #if defined (HAVE_PSTATUS_T)
11225 char *
11226 elfcore_write_pstatus (bfd *abfd,
11227 char *buf,
11228 int *bufsiz,
11229 long pid,
11230 int cursig ATTRIBUTE_UNUSED,
11231 const void *gregs ATTRIBUTE_UNUSED)
11232 {
11233 const char *note_name = "CORE";
11234 #if defined (HAVE_PSTATUS32_T)
11235 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11236
11237 if (bed->s->elfclass == ELFCLASS32)
11238 {
11239 pstatus32_t pstat;
11240
11241 memset (&pstat, 0, sizeof (pstat));
11242 pstat.pr_pid = pid & 0xffff;
11243 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
11244 NT_PSTATUS, &pstat, sizeof (pstat));
11245 return buf;
11246 }
11247 else
11248 #endif
11249 {
11250 pstatus_t pstat;
11251
11252 memset (&pstat, 0, sizeof (pstat));
11253 pstat.pr_pid = pid & 0xffff;
11254 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
11255 NT_PSTATUS, &pstat, sizeof (pstat));
11256 return buf;
11257 }
11258 }
11259 #endif /* HAVE_PSTATUS_T */
11260
11261 char *
11262 elfcore_write_prfpreg (bfd *abfd,
11263 char *buf,
11264 int *bufsiz,
11265 const void *fpregs,
11266 int size)
11267 {
11268 const char *note_name = "CORE";
11269 return elfcore_write_note (abfd, buf, bufsiz,
11270 note_name, NT_FPREGSET, fpregs, size);
11271 }
11272
11273 char *
11274 elfcore_write_prxfpreg (bfd *abfd,
11275 char *buf,
11276 int *bufsiz,
11277 const void *xfpregs,
11278 int size)
11279 {
11280 char *note_name = "LINUX";
11281 return elfcore_write_note (abfd, buf, bufsiz,
11282 note_name, NT_PRXFPREG, xfpregs, size);
11283 }
11284
11285 char *
11286 elfcore_write_xstatereg (bfd *abfd, char *buf, int *bufsiz,
11287 const void *xfpregs, int size)
11288 {
11289 char *note_name;
11290 if (get_elf_backend_data (abfd)->elf_osabi == ELFOSABI_FREEBSD)
11291 note_name = "FreeBSD";
11292 else
11293 note_name = "LINUX";
11294 return elfcore_write_note (abfd, buf, bufsiz,
11295 note_name, NT_X86_XSTATE, xfpregs, size);
11296 }
11297
11298 char *
11299 elfcore_write_ppc_vmx (bfd *abfd,
11300 char *buf,
11301 int *bufsiz,
11302 const void *ppc_vmx,
11303 int size)
11304 {
11305 char *note_name = "LINUX";
11306 return elfcore_write_note (abfd, buf, bufsiz,
11307 note_name, NT_PPC_VMX, ppc_vmx, size);
11308 }
11309
11310 char *
11311 elfcore_write_ppc_vsx (bfd *abfd,
11312 char *buf,
11313 int *bufsiz,
11314 const void *ppc_vsx,
11315 int size)
11316 {
11317 char *note_name = "LINUX";
11318 return elfcore_write_note (abfd, buf, bufsiz,
11319 note_name, NT_PPC_VSX, ppc_vsx, size);
11320 }
11321
11322 char *
11323 elfcore_write_ppc_tar (bfd *abfd,
11324 char *buf,
11325 int *bufsiz,
11326 const void *ppc_tar,
11327 int size)
11328 {
11329 char *note_name = "LINUX";
11330 return elfcore_write_note (abfd, buf, bufsiz,
11331 note_name, NT_PPC_TAR, ppc_tar, size);
11332 }
11333
11334 char *
11335 elfcore_write_ppc_ppr (bfd *abfd,
11336 char *buf,
11337 int *bufsiz,
11338 const void *ppc_ppr,
11339 int size)
11340 {
11341 char *note_name = "LINUX";
11342 return elfcore_write_note (abfd, buf, bufsiz,
11343 note_name, NT_PPC_PPR, ppc_ppr, size);
11344 }
11345
11346 char *
11347 elfcore_write_ppc_dscr (bfd *abfd,
11348 char *buf,
11349 int *bufsiz,
11350 const void *ppc_dscr,
11351 int size)
11352 {
11353 char *note_name = "LINUX";
11354 return elfcore_write_note (abfd, buf, bufsiz,
11355 note_name, NT_PPC_DSCR, ppc_dscr, size);
11356 }
11357
11358 char *
11359 elfcore_write_ppc_ebb (bfd *abfd,
11360 char *buf,
11361 int *bufsiz,
11362 const void *ppc_ebb,
11363 int size)
11364 {
11365 char *note_name = "LINUX";
11366 return elfcore_write_note (abfd, buf, bufsiz,
11367 note_name, NT_PPC_EBB, ppc_ebb, size);
11368 }
11369
11370 char *
11371 elfcore_write_ppc_pmu (bfd *abfd,
11372 char *buf,
11373 int *bufsiz,
11374 const void *ppc_pmu,
11375 int size)
11376 {
11377 char *note_name = "LINUX";
11378 return elfcore_write_note (abfd, buf, bufsiz,
11379 note_name, NT_PPC_PMU, ppc_pmu, size);
11380 }
11381
11382 char *
11383 elfcore_write_ppc_tm_cgpr (bfd *abfd,
11384 char *buf,
11385 int *bufsiz,
11386 const void *ppc_tm_cgpr,
11387 int size)
11388 {
11389 char *note_name = "LINUX";
11390 return elfcore_write_note (abfd, buf, bufsiz,
11391 note_name, NT_PPC_TM_CGPR, ppc_tm_cgpr, size);
11392 }
11393
11394 char *
11395 elfcore_write_ppc_tm_cfpr (bfd *abfd,
11396 char *buf,
11397 int *bufsiz,
11398 const void *ppc_tm_cfpr,
11399 int size)
11400 {
11401 char *note_name = "LINUX";
11402 return elfcore_write_note (abfd, buf, bufsiz,
11403 note_name, NT_PPC_TM_CFPR, ppc_tm_cfpr, size);
11404 }
11405
11406 char *
11407 elfcore_write_ppc_tm_cvmx (bfd *abfd,
11408 char *buf,
11409 int *bufsiz,
11410 const void *ppc_tm_cvmx,
11411 int size)
11412 {
11413 char *note_name = "LINUX";
11414 return elfcore_write_note (abfd, buf, bufsiz,
11415 note_name, NT_PPC_TM_CVMX, ppc_tm_cvmx, size);
11416 }
11417
11418 char *
11419 elfcore_write_ppc_tm_cvsx (bfd *abfd,
11420 char *buf,
11421 int *bufsiz,
11422 const void *ppc_tm_cvsx,
11423 int size)
11424 {
11425 char *note_name = "LINUX";
11426 return elfcore_write_note (abfd, buf, bufsiz,
11427 note_name, NT_PPC_TM_CVSX, ppc_tm_cvsx, size);
11428 }
11429
11430 char *
11431 elfcore_write_ppc_tm_spr (bfd *abfd,
11432 char *buf,
11433 int *bufsiz,
11434 const void *ppc_tm_spr,
11435 int size)
11436 {
11437 char *note_name = "LINUX";
11438 return elfcore_write_note (abfd, buf, bufsiz,
11439 note_name, NT_PPC_TM_SPR, ppc_tm_spr, size);
11440 }
11441
11442 char *
11443 elfcore_write_ppc_tm_ctar (bfd *abfd,
11444 char *buf,
11445 int *bufsiz,
11446 const void *ppc_tm_ctar,
11447 int size)
11448 {
11449 char *note_name = "LINUX";
11450 return elfcore_write_note (abfd, buf, bufsiz,
11451 note_name, NT_PPC_TM_CTAR, ppc_tm_ctar, size);
11452 }
11453
11454 char *
11455 elfcore_write_ppc_tm_cppr (bfd *abfd,
11456 char *buf,
11457 int *bufsiz,
11458 const void *ppc_tm_cppr,
11459 int size)
11460 {
11461 char *note_name = "LINUX";
11462 return elfcore_write_note (abfd, buf, bufsiz,
11463 note_name, NT_PPC_TM_CPPR, ppc_tm_cppr, size);
11464 }
11465
11466 char *
11467 elfcore_write_ppc_tm_cdscr (bfd *abfd,
11468 char *buf,
11469 int *bufsiz,
11470 const void *ppc_tm_cdscr,
11471 int size)
11472 {
11473 char *note_name = "LINUX";
11474 return elfcore_write_note (abfd, buf, bufsiz,
11475 note_name, NT_PPC_TM_CDSCR, ppc_tm_cdscr, size);
11476 }
11477
11478 static char *
11479 elfcore_write_s390_high_gprs (bfd *abfd,
11480 char *buf,
11481 int *bufsiz,
11482 const void *s390_high_gprs,
11483 int size)
11484 {
11485 char *note_name = "LINUX";
11486 return elfcore_write_note (abfd, buf, bufsiz,
11487 note_name, NT_S390_HIGH_GPRS,
11488 s390_high_gprs, size);
11489 }
11490
11491 char *
11492 elfcore_write_s390_timer (bfd *abfd,
11493 char *buf,
11494 int *bufsiz,
11495 const void *s390_timer,
11496 int size)
11497 {
11498 char *note_name = "LINUX";
11499 return elfcore_write_note (abfd, buf, bufsiz,
11500 note_name, NT_S390_TIMER, s390_timer, size);
11501 }
11502
11503 char *
11504 elfcore_write_s390_todcmp (bfd *abfd,
11505 char *buf,
11506 int *bufsiz,
11507 const void *s390_todcmp,
11508 int size)
11509 {
11510 char *note_name = "LINUX";
11511 return elfcore_write_note (abfd, buf, bufsiz,
11512 note_name, NT_S390_TODCMP, s390_todcmp, size);
11513 }
11514
11515 char *
11516 elfcore_write_s390_todpreg (bfd *abfd,
11517 char *buf,
11518 int *bufsiz,
11519 const void *s390_todpreg,
11520 int size)
11521 {
11522 char *note_name = "LINUX";
11523 return elfcore_write_note (abfd, buf, bufsiz,
11524 note_name, NT_S390_TODPREG, s390_todpreg, size);
11525 }
11526
11527 char *
11528 elfcore_write_s390_ctrs (bfd *abfd,
11529 char *buf,
11530 int *bufsiz,
11531 const void *s390_ctrs,
11532 int size)
11533 {
11534 char *note_name = "LINUX";
11535 return elfcore_write_note (abfd, buf, bufsiz,
11536 note_name, NT_S390_CTRS, s390_ctrs, size);
11537 }
11538
11539 char *
11540 elfcore_write_s390_prefix (bfd *abfd,
11541 char *buf,
11542 int *bufsiz,
11543 const void *s390_prefix,
11544 int size)
11545 {
11546 char *note_name = "LINUX";
11547 return elfcore_write_note (abfd, buf, bufsiz,
11548 note_name, NT_S390_PREFIX, s390_prefix, size);
11549 }
11550
11551 char *
11552 elfcore_write_s390_last_break (bfd *abfd,
11553 char *buf,
11554 int *bufsiz,
11555 const void *s390_last_break,
11556 int size)
11557 {
11558 char *note_name = "LINUX";
11559 return elfcore_write_note (abfd, buf, bufsiz,
11560 note_name, NT_S390_LAST_BREAK,
11561 s390_last_break, size);
11562 }
11563
11564 char *
11565 elfcore_write_s390_system_call (bfd *abfd,
11566 char *buf,
11567 int *bufsiz,
11568 const void *s390_system_call,
11569 int size)
11570 {
11571 char *note_name = "LINUX";
11572 return elfcore_write_note (abfd, buf, bufsiz,
11573 note_name, NT_S390_SYSTEM_CALL,
11574 s390_system_call, size);
11575 }
11576
11577 char *
11578 elfcore_write_s390_tdb (bfd *abfd,
11579 char *buf,
11580 int *bufsiz,
11581 const void *s390_tdb,
11582 int size)
11583 {
11584 char *note_name = "LINUX";
11585 return elfcore_write_note (abfd, buf, bufsiz,
11586 note_name, NT_S390_TDB, s390_tdb, size);
11587 }
11588
11589 char *
11590 elfcore_write_s390_vxrs_low (bfd *abfd,
11591 char *buf,
11592 int *bufsiz,
11593 const void *s390_vxrs_low,
11594 int size)
11595 {
11596 char *note_name = "LINUX";
11597 return elfcore_write_note (abfd, buf, bufsiz,
11598 note_name, NT_S390_VXRS_LOW, s390_vxrs_low, size);
11599 }
11600
11601 char *
11602 elfcore_write_s390_vxrs_high (bfd *abfd,
11603 char *buf,
11604 int *bufsiz,
11605 const void *s390_vxrs_high,
11606 int size)
11607 {
11608 char *note_name = "LINUX";
11609 return elfcore_write_note (abfd, buf, bufsiz,
11610 note_name, NT_S390_VXRS_HIGH,
11611 s390_vxrs_high, size);
11612 }
11613
11614 char *
11615 elfcore_write_s390_gs_cb (bfd *abfd,
11616 char *buf,
11617 int *bufsiz,
11618 const void *s390_gs_cb,
11619 int size)
11620 {
11621 char *note_name = "LINUX";
11622 return elfcore_write_note (abfd, buf, bufsiz,
11623 note_name, NT_S390_GS_CB,
11624 s390_gs_cb, size);
11625 }
11626
11627 char *
11628 elfcore_write_s390_gs_bc (bfd *abfd,
11629 char *buf,
11630 int *bufsiz,
11631 const void *s390_gs_bc,
11632 int size)
11633 {
11634 char *note_name = "LINUX";
11635 return elfcore_write_note (abfd, buf, bufsiz,
11636 note_name, NT_S390_GS_BC,
11637 s390_gs_bc, size);
11638 }
11639
11640 char *
11641 elfcore_write_arm_vfp (bfd *abfd,
11642 char *buf,
11643 int *bufsiz,
11644 const void *arm_vfp,
11645 int size)
11646 {
11647 char *note_name = "LINUX";
11648 return elfcore_write_note (abfd, buf, bufsiz,
11649 note_name, NT_ARM_VFP, arm_vfp, size);
11650 }
11651
11652 char *
11653 elfcore_write_aarch_tls (bfd *abfd,
11654 char *buf,
11655 int *bufsiz,
11656 const void *aarch_tls,
11657 int size)
11658 {
11659 char *note_name = "LINUX";
11660 return elfcore_write_note (abfd, buf, bufsiz,
11661 note_name, NT_ARM_TLS, aarch_tls, size);
11662 }
11663
11664 char *
11665 elfcore_write_aarch_hw_break (bfd *abfd,
11666 char *buf,
11667 int *bufsiz,
11668 const void *aarch_hw_break,
11669 int size)
11670 {
11671 char *note_name = "LINUX";
11672 return elfcore_write_note (abfd, buf, bufsiz,
11673 note_name, NT_ARM_HW_BREAK, aarch_hw_break, size);
11674 }
11675
11676 char *
11677 elfcore_write_aarch_hw_watch (bfd *abfd,
11678 char *buf,
11679 int *bufsiz,
11680 const void *aarch_hw_watch,
11681 int size)
11682 {
11683 char *note_name = "LINUX";
11684 return elfcore_write_note (abfd, buf, bufsiz,
11685 note_name, NT_ARM_HW_WATCH, aarch_hw_watch, size);
11686 }
11687
11688 char *
11689 elfcore_write_aarch_sve (bfd *abfd,
11690 char *buf,
11691 int *bufsiz,
11692 const void *aarch_sve,
11693 int size)
11694 {
11695 char *note_name = "LINUX";
11696 return elfcore_write_note (abfd, buf, bufsiz,
11697 note_name, NT_ARM_SVE, aarch_sve, size);
11698 }
11699
11700 char *
11701 elfcore_write_aarch_pauth (bfd *abfd,
11702 char *buf,
11703 int *bufsiz,
11704 const void *aarch_pauth,
11705 int size)
11706 {
11707 char *note_name = "LINUX";
11708 return elfcore_write_note (abfd, buf, bufsiz,
11709 note_name, NT_ARM_PAC_MASK, aarch_pauth, size);
11710 }
11711
11712 char *
11713 elfcore_write_register_note (bfd *abfd,
11714 char *buf,
11715 int *bufsiz,
11716 const char *section,
11717 const void *data,
11718 int size)
11719 {
11720 if (strcmp (section, ".reg2") == 0)
11721 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
11722 if (strcmp (section, ".reg-xfp") == 0)
11723 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
11724 if (strcmp (section, ".reg-xstate") == 0)
11725 return elfcore_write_xstatereg (abfd, buf, bufsiz, data, size);
11726 if (strcmp (section, ".reg-ppc-vmx") == 0)
11727 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
11728 if (strcmp (section, ".reg-ppc-vsx") == 0)
11729 return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size);
11730 if (strcmp (section, ".reg-ppc-tar") == 0)
11731 return elfcore_write_ppc_tar (abfd, buf, bufsiz, data, size);
11732 if (strcmp (section, ".reg-ppc-ppr") == 0)
11733 return elfcore_write_ppc_ppr (abfd, buf, bufsiz, data, size);
11734 if (strcmp (section, ".reg-ppc-dscr") == 0)
11735 return elfcore_write_ppc_dscr (abfd, buf, bufsiz, data, size);
11736 if (strcmp (section, ".reg-ppc-ebb") == 0)
11737 return elfcore_write_ppc_ebb (abfd, buf, bufsiz, data, size);
11738 if (strcmp (section, ".reg-ppc-pmu") == 0)
11739 return elfcore_write_ppc_pmu (abfd, buf, bufsiz, data, size);
11740 if (strcmp (section, ".reg-ppc-tm-cgpr") == 0)
11741 return elfcore_write_ppc_tm_cgpr (abfd, buf, bufsiz, data, size);
11742 if (strcmp (section, ".reg-ppc-tm-cfpr") == 0)
11743 return elfcore_write_ppc_tm_cfpr (abfd, buf, bufsiz, data, size);
11744 if (strcmp (section, ".reg-ppc-tm-cvmx") == 0)
11745 return elfcore_write_ppc_tm_cvmx (abfd, buf, bufsiz, data, size);
11746 if (strcmp (section, ".reg-ppc-tm-cvsx") == 0)
11747 return elfcore_write_ppc_tm_cvsx (abfd, buf, bufsiz, data, size);
11748 if (strcmp (section, ".reg-ppc-tm-spr") == 0)
11749 return elfcore_write_ppc_tm_spr (abfd, buf, bufsiz, data, size);
11750 if (strcmp (section, ".reg-ppc-tm-ctar") == 0)
11751 return elfcore_write_ppc_tm_ctar (abfd, buf, bufsiz, data, size);
11752 if (strcmp (section, ".reg-ppc-tm-cppr") == 0)
11753 return elfcore_write_ppc_tm_cppr (abfd, buf, bufsiz, data, size);
11754 if (strcmp (section, ".reg-ppc-tm-cdscr") == 0)
11755 return elfcore_write_ppc_tm_cdscr (abfd, buf, bufsiz, data, size);
11756 if (strcmp (section, ".reg-s390-high-gprs") == 0)
11757 return elfcore_write_s390_high_gprs (abfd, buf, bufsiz, data, size);
11758 if (strcmp (section, ".reg-s390-timer") == 0)
11759 return elfcore_write_s390_timer (abfd, buf, bufsiz, data, size);
11760 if (strcmp (section, ".reg-s390-todcmp") == 0)
11761 return elfcore_write_s390_todcmp (abfd, buf, bufsiz, data, size);
11762 if (strcmp (section, ".reg-s390-todpreg") == 0)
11763 return elfcore_write_s390_todpreg (abfd, buf, bufsiz, data, size);
11764 if (strcmp (section, ".reg-s390-ctrs") == 0)
11765 return elfcore_write_s390_ctrs (abfd, buf, bufsiz, data, size);
11766 if (strcmp (section, ".reg-s390-prefix") == 0)
11767 return elfcore_write_s390_prefix (abfd, buf, bufsiz, data, size);
11768 if (strcmp (section, ".reg-s390-last-break") == 0)
11769 return elfcore_write_s390_last_break (abfd, buf, bufsiz, data, size);
11770 if (strcmp (section, ".reg-s390-system-call") == 0)
11771 return elfcore_write_s390_system_call (abfd, buf, bufsiz, data, size);
11772 if (strcmp (section, ".reg-s390-tdb") == 0)
11773 return elfcore_write_s390_tdb (abfd, buf, bufsiz, data, size);
11774 if (strcmp (section, ".reg-s390-vxrs-low") == 0)
11775 return elfcore_write_s390_vxrs_low (abfd, buf, bufsiz, data, size);
11776 if (strcmp (section, ".reg-s390-vxrs-high") == 0)
11777 return elfcore_write_s390_vxrs_high (abfd, buf, bufsiz, data, size);
11778 if (strcmp (section, ".reg-s390-gs-cb") == 0)
11779 return elfcore_write_s390_gs_cb (abfd, buf, bufsiz, data, size);
11780 if (strcmp (section, ".reg-s390-gs-bc") == 0)
11781 return elfcore_write_s390_gs_bc (abfd, buf, bufsiz, data, size);
11782 if (strcmp (section, ".reg-arm-vfp") == 0)
11783 return elfcore_write_arm_vfp (abfd, buf, bufsiz, data, size);
11784 if (strcmp (section, ".reg-aarch-tls") == 0)
11785 return elfcore_write_aarch_tls (abfd, buf, bufsiz, data, size);
11786 if (strcmp (section, ".reg-aarch-hw-break") == 0)
11787 return elfcore_write_aarch_hw_break (abfd, buf, bufsiz, data, size);
11788 if (strcmp (section, ".reg-aarch-hw-watch") == 0)
11789 return elfcore_write_aarch_hw_watch (abfd, buf, bufsiz, data, size);
11790 if (strcmp (section, ".reg-aarch-sve") == 0)
11791 return elfcore_write_aarch_sve (abfd, buf, bufsiz, data, size);
11792 if (strcmp (section, ".reg-aarch-pauth") == 0)
11793 return elfcore_write_aarch_pauth (abfd, buf, bufsiz, data, size);
11794 return NULL;
11795 }
11796
11797 static bfd_boolean
11798 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset,
11799 size_t align)
11800 {
11801 char *p;
11802
11803 /* NB: CORE PT_NOTE segments may have p_align values of 0 or 1.
11804 gABI specifies that PT_NOTE alignment should be aligned to 4
11805 bytes for 32-bit objects and to 8 bytes for 64-bit objects. If
11806 align is less than 4, we use 4 byte alignment. */
11807 if (align < 4)
11808 align = 4;
11809 if (align != 4 && align != 8)
11810 return FALSE;
11811
11812 p = buf;
11813 while (p < buf + size)
11814 {
11815 Elf_External_Note *xnp = (Elf_External_Note *) p;
11816 Elf_Internal_Note in;
11817
11818 if (offsetof (Elf_External_Note, name) > buf - p + size)
11819 return FALSE;
11820
11821 in.type = H_GET_32 (abfd, xnp->type);
11822
11823 in.namesz = H_GET_32 (abfd, xnp->namesz);
11824 in.namedata = xnp->name;
11825 if (in.namesz > buf - in.namedata + size)
11826 return FALSE;
11827
11828 in.descsz = H_GET_32 (abfd, xnp->descsz);
11829 in.descdata = p + ELF_NOTE_DESC_OFFSET (in.namesz, align);
11830 in.descpos = offset + (in.descdata - buf);
11831 if (in.descsz != 0
11832 && (in.descdata >= buf + size
11833 || in.descsz > buf - in.descdata + size))
11834 return FALSE;
11835
11836 switch (bfd_get_format (abfd))
11837 {
11838 default:
11839 return TRUE;
11840
11841 case bfd_core:
11842 {
11843 #define GROKER_ELEMENT(S,F) {S, sizeof (S) - 1, F}
11844 struct
11845 {
11846 const char * string;
11847 size_t len;
11848 bfd_boolean (* func)(bfd *, Elf_Internal_Note *);
11849 }
11850 grokers[] =
11851 {
11852 GROKER_ELEMENT ("", elfcore_grok_note),
11853 GROKER_ELEMENT ("FreeBSD", elfcore_grok_freebsd_note),
11854 GROKER_ELEMENT ("NetBSD-CORE", elfcore_grok_netbsd_note),
11855 GROKER_ELEMENT ( "OpenBSD", elfcore_grok_openbsd_note),
11856 GROKER_ELEMENT ("QNX", elfcore_grok_nto_note),
11857 GROKER_ELEMENT ("SPU/", elfcore_grok_spu_note),
11858 GROKER_ELEMENT ("GNU", elfobj_grok_gnu_note)
11859 };
11860 #undef GROKER_ELEMENT
11861 int i;
11862
11863 for (i = ARRAY_SIZE (grokers); i--;)
11864 {
11865 if (in.namesz >= grokers[i].len
11866 && strncmp (in.namedata, grokers[i].string,
11867 grokers[i].len) == 0)
11868 {
11869 if (! grokers[i].func (abfd, & in))
11870 return FALSE;
11871 break;
11872 }
11873 }
11874 break;
11875 }
11876
11877 case bfd_object:
11878 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
11879 {
11880 if (! elfobj_grok_gnu_note (abfd, &in))
11881 return FALSE;
11882 }
11883 else if (in.namesz == sizeof "stapsdt"
11884 && strcmp (in.namedata, "stapsdt") == 0)
11885 {
11886 if (! elfobj_grok_stapsdt_note (abfd, &in))
11887 return FALSE;
11888 }
11889 break;
11890 }
11891
11892 p += ELF_NOTE_NEXT_OFFSET (in.namesz, in.descsz, align);
11893 }
11894
11895 return TRUE;
11896 }
11897
11898 bfd_boolean
11899 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size,
11900 size_t align)
11901 {
11902 char *buf;
11903
11904 if (size == 0 || (size + 1) == 0)
11905 return TRUE;
11906
11907 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
11908 return FALSE;
11909
11910 buf = (char *) _bfd_malloc_and_read (abfd, size + 1, size);
11911 if (buf == NULL)
11912 return FALSE;
11913
11914 /* PR 17512: file: ec08f814
11915 0-termintate the buffer so that string searches will not overflow. */
11916 buf[size] = 0;
11917
11918 if (!elf_parse_notes (abfd, buf, size, offset, align))
11919 {
11920 free (buf);
11921 return FALSE;
11922 }
11923
11924 free (buf);
11925 return TRUE;
11926 }
11927 \f
11928 /* Providing external access to the ELF program header table. */
11929
11930 /* Return an upper bound on the number of bytes required to store a
11931 copy of ABFD's program header table entries. Return -1 if an error
11932 occurs; bfd_get_error will return an appropriate code. */
11933
11934 long
11935 bfd_get_elf_phdr_upper_bound (bfd *abfd)
11936 {
11937 if (abfd->xvec->flavour != bfd_target_elf_flavour)
11938 {
11939 bfd_set_error (bfd_error_wrong_format);
11940 return -1;
11941 }
11942
11943 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
11944 }
11945
11946 /* Copy ABFD's program header table entries to *PHDRS. The entries
11947 will be stored as an array of Elf_Internal_Phdr structures, as
11948 defined in include/elf/internal.h. To find out how large the
11949 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
11950
11951 Return the number of program header table entries read, or -1 if an
11952 error occurs; bfd_get_error will return an appropriate code. */
11953
11954 int
11955 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
11956 {
11957 int num_phdrs;
11958
11959 if (abfd->xvec->flavour != bfd_target_elf_flavour)
11960 {
11961 bfd_set_error (bfd_error_wrong_format);
11962 return -1;
11963 }
11964
11965 num_phdrs = elf_elfheader (abfd)->e_phnum;
11966 if (num_phdrs != 0)
11967 memcpy (phdrs, elf_tdata (abfd)->phdr,
11968 num_phdrs * sizeof (Elf_Internal_Phdr));
11969
11970 return num_phdrs;
11971 }
11972
11973 enum elf_reloc_type_class
11974 _bfd_elf_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
11975 const asection *rel_sec ATTRIBUTE_UNUSED,
11976 const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
11977 {
11978 return reloc_class_normal;
11979 }
11980
11981 /* For RELA architectures, return the relocation value for a
11982 relocation against a local symbol. */
11983
11984 bfd_vma
11985 _bfd_elf_rela_local_sym (bfd *abfd,
11986 Elf_Internal_Sym *sym,
11987 asection **psec,
11988 Elf_Internal_Rela *rel)
11989 {
11990 asection *sec = *psec;
11991 bfd_vma relocation;
11992
11993 relocation = (sec->output_section->vma
11994 + sec->output_offset
11995 + sym->st_value);
11996 if ((sec->flags & SEC_MERGE)
11997 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
11998 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
11999 {
12000 rel->r_addend =
12001 _bfd_merged_section_offset (abfd, psec,
12002 elf_section_data (sec)->sec_info,
12003 sym->st_value + rel->r_addend);
12004 if (sec != *psec)
12005 {
12006 /* If we have changed the section, and our original section is
12007 marked with SEC_EXCLUDE, it means that the original
12008 SEC_MERGE section has been completely subsumed in some
12009 other SEC_MERGE section. In this case, we need to leave
12010 some info around for --emit-relocs. */
12011 if ((sec->flags & SEC_EXCLUDE) != 0)
12012 sec->kept_section = *psec;
12013 sec = *psec;
12014 }
12015 rel->r_addend -= relocation;
12016 rel->r_addend += sec->output_section->vma + sec->output_offset;
12017 }
12018 return relocation;
12019 }
12020
12021 bfd_vma
12022 _bfd_elf_rel_local_sym (bfd *abfd,
12023 Elf_Internal_Sym *sym,
12024 asection **psec,
12025 bfd_vma addend)
12026 {
12027 asection *sec = *psec;
12028
12029 if (sec->sec_info_type != SEC_INFO_TYPE_MERGE)
12030 return sym->st_value + addend;
12031
12032 return _bfd_merged_section_offset (abfd, psec,
12033 elf_section_data (sec)->sec_info,
12034 sym->st_value + addend);
12035 }
12036
12037 /* Adjust an address within a section. Given OFFSET within SEC, return
12038 the new offset within the section, based upon changes made to the
12039 section. Returns -1 if the offset is now invalid.
12040 The offset (in abnd out) is in target sized bytes, however big a
12041 byte may be. */
12042
12043 bfd_vma
12044 _bfd_elf_section_offset (bfd *abfd,
12045 struct bfd_link_info *info,
12046 asection *sec,
12047 bfd_vma offset)
12048 {
12049 switch (sec->sec_info_type)
12050 {
12051 case SEC_INFO_TYPE_STABS:
12052 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
12053 offset);
12054 case SEC_INFO_TYPE_EH_FRAME:
12055 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
12056
12057 default:
12058 if ((sec->flags & SEC_ELF_REVERSE_COPY) != 0)
12059 {
12060 /* Reverse the offset. */
12061 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12062 bfd_size_type address_size = bed->s->arch_size / 8;
12063
12064 /* address_size and sec->size are in octets. Convert
12065 to bytes before subtracting the original offset. */
12066 offset = ((sec->size - address_size)
12067 / bfd_octets_per_byte (abfd, sec) - offset);
12068 }
12069 return offset;
12070 }
12071 }
12072 \f
12073 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
12074 reconstruct an ELF file by reading the segments out of remote memory
12075 based on the ELF file header at EHDR_VMA and the ELF program headers it
12076 points to. If not null, *LOADBASEP is filled in with the difference
12077 between the VMAs from which the segments were read, and the VMAs the
12078 file headers (and hence BFD's idea of each section's VMA) put them at.
12079
12080 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
12081 remote memory at target address VMA into the local buffer at MYADDR; it
12082 should return zero on success or an `errno' code on failure. TEMPL must
12083 be a BFD for an ELF target with the word size and byte order found in
12084 the remote memory. */
12085
12086 bfd *
12087 bfd_elf_bfd_from_remote_memory
12088 (bfd *templ,
12089 bfd_vma ehdr_vma,
12090 bfd_size_type size,
12091 bfd_vma *loadbasep,
12092 int (*target_read_memory) (bfd_vma, bfd_byte *, bfd_size_type))
12093 {
12094 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
12095 (templ, ehdr_vma, size, loadbasep, target_read_memory);
12096 }
12097 \f
12098 long
12099 _bfd_elf_get_synthetic_symtab (bfd *abfd,
12100 long symcount ATTRIBUTE_UNUSED,
12101 asymbol **syms ATTRIBUTE_UNUSED,
12102 long dynsymcount,
12103 asymbol **dynsyms,
12104 asymbol **ret)
12105 {
12106 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12107 asection *relplt;
12108 asymbol *s;
12109 const char *relplt_name;
12110 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
12111 arelent *p;
12112 long count, i, n;
12113 size_t size;
12114 Elf_Internal_Shdr *hdr;
12115 char *names;
12116 asection *plt;
12117
12118 *ret = NULL;
12119
12120 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
12121 return 0;
12122
12123 if (dynsymcount <= 0)
12124 return 0;
12125
12126 if (!bed->plt_sym_val)
12127 return 0;
12128
12129 relplt_name = bed->relplt_name;
12130 if (relplt_name == NULL)
12131 relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt";
12132 relplt = bfd_get_section_by_name (abfd, relplt_name);
12133 if (relplt == NULL)
12134 return 0;
12135
12136 hdr = &elf_section_data (relplt)->this_hdr;
12137 if (hdr->sh_link != elf_dynsymtab (abfd)
12138 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
12139 return 0;
12140
12141 plt = bfd_get_section_by_name (abfd, ".plt");
12142 if (plt == NULL)
12143 return 0;
12144
12145 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
12146 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
12147 return -1;
12148
12149 count = relplt->size / hdr->sh_entsize;
12150 size = count * sizeof (asymbol);
12151 p = relplt->relocation;
12152 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
12153 {
12154 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
12155 if (p->addend != 0)
12156 {
12157 #ifdef BFD64
12158 size += sizeof ("+0x") - 1 + 8 + 8 * (bed->s->elfclass == ELFCLASS64);
12159 #else
12160 size += sizeof ("+0x") - 1 + 8;
12161 #endif
12162 }
12163 }
12164
12165 s = *ret = (asymbol *) bfd_malloc (size);
12166 if (s == NULL)
12167 return -1;
12168
12169 names = (char *) (s + count);
12170 p = relplt->relocation;
12171 n = 0;
12172 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
12173 {
12174 size_t len;
12175 bfd_vma addr;
12176
12177 addr = bed->plt_sym_val (i, plt, p);
12178 if (addr == (bfd_vma) -1)
12179 continue;
12180
12181 *s = **p->sym_ptr_ptr;
12182 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
12183 we are defining a symbol, ensure one of them is set. */
12184 if ((s->flags & BSF_LOCAL) == 0)
12185 s->flags |= BSF_GLOBAL;
12186 s->flags |= BSF_SYNTHETIC;
12187 s->section = plt;
12188 s->value = addr - plt->vma;
12189 s->name = names;
12190 s->udata.p = NULL;
12191 len = strlen ((*p->sym_ptr_ptr)->name);
12192 memcpy (names, (*p->sym_ptr_ptr)->name, len);
12193 names += len;
12194 if (p->addend != 0)
12195 {
12196 char buf[30], *a;
12197
12198 memcpy (names, "+0x", sizeof ("+0x") - 1);
12199 names += sizeof ("+0x") - 1;
12200 bfd_sprintf_vma (abfd, buf, p->addend);
12201 for (a = buf; *a == '0'; ++a)
12202 ;
12203 len = strlen (a);
12204 memcpy (names, a, len);
12205 names += len;
12206 }
12207 memcpy (names, "@plt", sizeof ("@plt"));
12208 names += sizeof ("@plt");
12209 ++s, ++n;
12210 }
12211
12212 return n;
12213 }
12214
12215 /* It is only used by x86-64 so far.
12216 ??? This repeats *COM* id of zero. sec->id is supposed to be unique,
12217 but current usage would allow all of _bfd_std_section to be zero. */
12218 static const asymbol lcomm_sym
12219 = GLOBAL_SYM_INIT ("LARGE_COMMON", &_bfd_elf_large_com_section);
12220 asection _bfd_elf_large_com_section
12221 = BFD_FAKE_SECTION (_bfd_elf_large_com_section, &lcomm_sym,
12222 "LARGE_COMMON", 0, SEC_IS_COMMON);
12223
12224 bfd_boolean
12225 _bfd_elf_final_write_processing (bfd *abfd)
12226 {
12227 Elf_Internal_Ehdr *i_ehdrp; /* ELF file header, internal form. */
12228
12229 i_ehdrp = elf_elfheader (abfd);
12230
12231 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE)
12232 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
12233
12234 /* Set the osabi field to ELFOSABI_GNU if the binary contains
12235 SHF_GNU_MBIND sections or symbols of STT_GNU_IFUNC type or
12236 STB_GNU_UNIQUE binding. */
12237 if (elf_tdata (abfd)->has_gnu_osabi != 0)
12238 {
12239 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE)
12240 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_GNU;
12241 else if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_GNU
12242 && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_FREEBSD)
12243 {
12244 if (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_mbind)
12245 _bfd_error_handler (_("GNU_MBIND section is unsupported"));
12246 if (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_ifunc)
12247 _bfd_error_handler (_("symbol type STT_GNU_IFUNC is unsupported"));
12248 if (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_unique)
12249 _bfd_error_handler (_("symbol binding STB_GNU_UNIQUE is unsupported"));
12250 bfd_set_error (bfd_error_sorry);
12251 return FALSE;
12252 }
12253 }
12254 return TRUE;
12255 }
12256
12257
12258 /* Return TRUE for ELF symbol types that represent functions.
12259 This is the default version of this function, which is sufficient for
12260 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */
12261
12262 bfd_boolean
12263 _bfd_elf_is_function_type (unsigned int type)
12264 {
12265 return (type == STT_FUNC
12266 || type == STT_GNU_IFUNC);
12267 }
12268
12269 /* If the ELF symbol SYM might be a function in SEC, return the
12270 function size and set *CODE_OFF to the function's entry point,
12271 otherwise return zero. */
12272
12273 bfd_size_type
12274 _bfd_elf_maybe_function_sym (const asymbol *sym, asection *sec,
12275 bfd_vma *code_off)
12276 {
12277 bfd_size_type size;
12278
12279 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
12280 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0
12281 || sym->section != sec)
12282 return 0;
12283
12284 *code_off = sym->value;
12285 size = 0;
12286 if (!(sym->flags & BSF_SYNTHETIC))
12287 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
12288 if (size == 0)
12289 size = 1;
12290 return size;
12291 }