2012-05-08 Ben Cheng <bccheng@google.com>
[binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
5 Free Software Foundation, Inc.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 MA 02110-1301, USA. */
23
24
25 /*
26 SECTION
27 ELF backends
28
29 BFD support for ELF formats is being worked on.
30 Currently, the best supported back ends are for sparc and i386
31 (running svr4 or Solaris 2).
32
33 Documentation of the internals of the support code still needs
34 to be written. The code is changing quickly enough that we
35 haven't bothered yet. */
36
37 /* For sparc64-cross-sparc32. */
38 #define _SYSCALL32
39 #include "sysdep.h"
40 #include "bfd.h"
41 #include "bfdlink.h"
42 #include "libbfd.h"
43 #define ARCH_SIZE 0
44 #include "elf-bfd.h"
45 #include "libiberty.h"
46 #include "safe-ctype.h"
47
48 #ifdef CORE_HEADER
49 #include CORE_HEADER
50 #endif
51
52 static int elf_sort_sections (const void *, const void *);
53 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
54 static bfd_boolean prep_headers (bfd *);
55 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
56 static bfd_boolean elf_read_notes (bfd *, file_ptr, bfd_size_type) ;
57 static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
58 file_ptr offset);
59
60 /* Swap version information in and out. The version information is
61 currently size independent. If that ever changes, this code will
62 need to move into elfcode.h. */
63
64 /* Swap in a Verdef structure. */
65
66 void
67 _bfd_elf_swap_verdef_in (bfd *abfd,
68 const Elf_External_Verdef *src,
69 Elf_Internal_Verdef *dst)
70 {
71 dst->vd_version = H_GET_16 (abfd, src->vd_version);
72 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
73 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
74 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
75 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
76 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
77 dst->vd_next = H_GET_32 (abfd, src->vd_next);
78 }
79
80 /* Swap out a Verdef structure. */
81
82 void
83 _bfd_elf_swap_verdef_out (bfd *abfd,
84 const Elf_Internal_Verdef *src,
85 Elf_External_Verdef *dst)
86 {
87 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
88 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
89 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
90 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
91 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
92 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
93 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
94 }
95
96 /* Swap in a Verdaux structure. */
97
98 void
99 _bfd_elf_swap_verdaux_in (bfd *abfd,
100 const Elf_External_Verdaux *src,
101 Elf_Internal_Verdaux *dst)
102 {
103 dst->vda_name = H_GET_32 (abfd, src->vda_name);
104 dst->vda_next = H_GET_32 (abfd, src->vda_next);
105 }
106
107 /* Swap out a Verdaux structure. */
108
109 void
110 _bfd_elf_swap_verdaux_out (bfd *abfd,
111 const Elf_Internal_Verdaux *src,
112 Elf_External_Verdaux *dst)
113 {
114 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
115 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
116 }
117
118 /* Swap in a Verneed structure. */
119
120 void
121 _bfd_elf_swap_verneed_in (bfd *abfd,
122 const Elf_External_Verneed *src,
123 Elf_Internal_Verneed *dst)
124 {
125 dst->vn_version = H_GET_16 (abfd, src->vn_version);
126 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
127 dst->vn_file = H_GET_32 (abfd, src->vn_file);
128 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
129 dst->vn_next = H_GET_32 (abfd, src->vn_next);
130 }
131
132 /* Swap out a Verneed structure. */
133
134 void
135 _bfd_elf_swap_verneed_out (bfd *abfd,
136 const Elf_Internal_Verneed *src,
137 Elf_External_Verneed *dst)
138 {
139 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
140 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
141 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
142 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
143 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
144 }
145
146 /* Swap in a Vernaux structure. */
147
148 void
149 _bfd_elf_swap_vernaux_in (bfd *abfd,
150 const Elf_External_Vernaux *src,
151 Elf_Internal_Vernaux *dst)
152 {
153 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
154 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
155 dst->vna_other = H_GET_16 (abfd, src->vna_other);
156 dst->vna_name = H_GET_32 (abfd, src->vna_name);
157 dst->vna_next = H_GET_32 (abfd, src->vna_next);
158 }
159
160 /* Swap out a Vernaux structure. */
161
162 void
163 _bfd_elf_swap_vernaux_out (bfd *abfd,
164 const Elf_Internal_Vernaux *src,
165 Elf_External_Vernaux *dst)
166 {
167 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
168 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
169 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
170 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
171 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
172 }
173
174 /* Swap in a Versym structure. */
175
176 void
177 _bfd_elf_swap_versym_in (bfd *abfd,
178 const Elf_External_Versym *src,
179 Elf_Internal_Versym *dst)
180 {
181 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
182 }
183
184 /* Swap out a Versym structure. */
185
186 void
187 _bfd_elf_swap_versym_out (bfd *abfd,
188 const Elf_Internal_Versym *src,
189 Elf_External_Versym *dst)
190 {
191 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
192 }
193
194 /* Standard ELF hash function. Do not change this function; you will
195 cause invalid hash tables to be generated. */
196
197 unsigned long
198 bfd_elf_hash (const char *namearg)
199 {
200 const unsigned char *name = (const unsigned char *) namearg;
201 unsigned long h = 0;
202 unsigned long g;
203 int ch;
204
205 while ((ch = *name++) != '\0')
206 {
207 h = (h << 4) + ch;
208 if ((g = (h & 0xf0000000)) != 0)
209 {
210 h ^= g >> 24;
211 /* The ELF ABI says `h &= ~g', but this is equivalent in
212 this case and on some machines one insn instead of two. */
213 h ^= g;
214 }
215 }
216 return h & 0xffffffff;
217 }
218
219 /* DT_GNU_HASH hash function. Do not change this function; you will
220 cause invalid hash tables to be generated. */
221
222 unsigned long
223 bfd_elf_gnu_hash (const char *namearg)
224 {
225 const unsigned char *name = (const unsigned char *) namearg;
226 unsigned long h = 5381;
227 unsigned char ch;
228
229 while ((ch = *name++) != '\0')
230 h = (h << 5) + h + ch;
231 return h & 0xffffffff;
232 }
233
234 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
235 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
236 bfd_boolean
237 bfd_elf_allocate_object (bfd *abfd,
238 size_t object_size,
239 enum elf_target_id object_id)
240 {
241 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
242 abfd->tdata.any = bfd_zalloc (abfd, object_size);
243 if (abfd->tdata.any == NULL)
244 return FALSE;
245
246 elf_object_id (abfd) = object_id;
247 elf_program_header_size (abfd) = (bfd_size_type) -1;
248 return TRUE;
249 }
250
251
252 bfd_boolean
253 bfd_elf_make_object (bfd *abfd)
254 {
255 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
256 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
257 bed->target_id);
258 }
259
260 bfd_boolean
261 bfd_elf_mkcorefile (bfd *abfd)
262 {
263 /* I think this can be done just like an object file. */
264 return abfd->xvec->_bfd_set_format[(int) bfd_object] (abfd);
265 }
266
267 static char *
268 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
269 {
270 Elf_Internal_Shdr **i_shdrp;
271 bfd_byte *shstrtab = NULL;
272 file_ptr offset;
273 bfd_size_type shstrtabsize;
274
275 i_shdrp = elf_elfsections (abfd);
276 if (i_shdrp == 0
277 || shindex >= elf_numsections (abfd)
278 || i_shdrp[shindex] == 0)
279 return NULL;
280
281 shstrtab = i_shdrp[shindex]->contents;
282 if (shstrtab == NULL)
283 {
284 /* No cached one, attempt to read, and cache what we read. */
285 offset = i_shdrp[shindex]->sh_offset;
286 shstrtabsize = i_shdrp[shindex]->sh_size;
287
288 /* Allocate and clear an extra byte at the end, to prevent crashes
289 in case the string table is not terminated. */
290 if (shstrtabsize + 1 <= 1
291 || (shstrtab = (bfd_byte *) bfd_alloc (abfd, shstrtabsize + 1)) == NULL
292 || bfd_seek (abfd, offset, SEEK_SET) != 0)
293 shstrtab = NULL;
294 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
295 {
296 if (bfd_get_error () != bfd_error_system_call)
297 bfd_set_error (bfd_error_file_truncated);
298 shstrtab = NULL;
299 /* Once we've failed to read it, make sure we don't keep
300 trying. Otherwise, we'll keep allocating space for
301 the string table over and over. */
302 i_shdrp[shindex]->sh_size = 0;
303 }
304 else
305 shstrtab[shstrtabsize] = '\0';
306 i_shdrp[shindex]->contents = shstrtab;
307 }
308 return (char *) shstrtab;
309 }
310
311 char *
312 bfd_elf_string_from_elf_section (bfd *abfd,
313 unsigned int shindex,
314 unsigned int strindex)
315 {
316 Elf_Internal_Shdr *hdr;
317
318 if (strindex == 0)
319 return "";
320
321 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
322 return NULL;
323
324 hdr = elf_elfsections (abfd)[shindex];
325
326 if (hdr->contents == NULL
327 && bfd_elf_get_str_section (abfd, shindex) == NULL)
328 return NULL;
329
330 if (strindex >= hdr->sh_size)
331 {
332 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
333 (*_bfd_error_handler)
334 (_("%B: invalid string offset %u >= %lu for section `%s'"),
335 abfd, strindex, (unsigned long) hdr->sh_size,
336 (shindex == shstrndx && strindex == hdr->sh_name
337 ? ".shstrtab"
338 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
339 return NULL;
340 }
341
342 return ((char *) hdr->contents) + strindex;
343 }
344
345 /* Read and convert symbols to internal format.
346 SYMCOUNT specifies the number of symbols to read, starting from
347 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
348 are non-NULL, they are used to store the internal symbols, external
349 symbols, and symbol section index extensions, respectively.
350 Returns a pointer to the internal symbol buffer (malloced if necessary)
351 or NULL if there were no symbols or some kind of problem. */
352
353 Elf_Internal_Sym *
354 bfd_elf_get_elf_syms (bfd *ibfd,
355 Elf_Internal_Shdr *symtab_hdr,
356 size_t symcount,
357 size_t symoffset,
358 Elf_Internal_Sym *intsym_buf,
359 void *extsym_buf,
360 Elf_External_Sym_Shndx *extshndx_buf)
361 {
362 Elf_Internal_Shdr *shndx_hdr;
363 void *alloc_ext;
364 const bfd_byte *esym;
365 Elf_External_Sym_Shndx *alloc_extshndx;
366 Elf_External_Sym_Shndx *shndx;
367 Elf_Internal_Sym *alloc_intsym;
368 Elf_Internal_Sym *isym;
369 Elf_Internal_Sym *isymend;
370 const struct elf_backend_data *bed;
371 size_t extsym_size;
372 bfd_size_type amt;
373 file_ptr pos;
374
375 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
376 abort ();
377
378 if (symcount == 0)
379 return intsym_buf;
380
381 /* Normal syms might have section extension entries. */
382 shndx_hdr = NULL;
383 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
384 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
385
386 /* Read the symbols. */
387 alloc_ext = NULL;
388 alloc_extshndx = NULL;
389 alloc_intsym = NULL;
390 bed = get_elf_backend_data (ibfd);
391 extsym_size = bed->s->sizeof_sym;
392 amt = symcount * extsym_size;
393 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
394 if (extsym_buf == NULL)
395 {
396 alloc_ext = bfd_malloc2 (symcount, extsym_size);
397 extsym_buf = alloc_ext;
398 }
399 if (extsym_buf == NULL
400 || bfd_seek (ibfd, pos, SEEK_SET) != 0
401 || bfd_bread (extsym_buf, amt, ibfd) != amt)
402 {
403 intsym_buf = NULL;
404 goto out;
405 }
406
407 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
408 extshndx_buf = NULL;
409 else
410 {
411 amt = symcount * sizeof (Elf_External_Sym_Shndx);
412 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
413 if (extshndx_buf == NULL)
414 {
415 alloc_extshndx = (Elf_External_Sym_Shndx *)
416 bfd_malloc2 (symcount, sizeof (Elf_External_Sym_Shndx));
417 extshndx_buf = alloc_extshndx;
418 }
419 if (extshndx_buf == NULL
420 || bfd_seek (ibfd, pos, SEEK_SET) != 0
421 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
422 {
423 intsym_buf = NULL;
424 goto out;
425 }
426 }
427
428 if (intsym_buf == NULL)
429 {
430 alloc_intsym = (Elf_Internal_Sym *)
431 bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
432 intsym_buf = alloc_intsym;
433 if (intsym_buf == NULL)
434 goto out;
435 }
436
437 /* Convert the symbols to internal form. */
438 isymend = intsym_buf + symcount;
439 for (esym = (const bfd_byte *) extsym_buf, isym = intsym_buf,
440 shndx = extshndx_buf;
441 isym < isymend;
442 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
443 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
444 {
445 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
446 (*_bfd_error_handler) (_("%B symbol number %lu references "
447 "nonexistent SHT_SYMTAB_SHNDX section"),
448 ibfd, (unsigned long) symoffset);
449 if (alloc_intsym != NULL)
450 free (alloc_intsym);
451 intsym_buf = NULL;
452 goto out;
453 }
454
455 out:
456 if (alloc_ext != NULL)
457 free (alloc_ext);
458 if (alloc_extshndx != NULL)
459 free (alloc_extshndx);
460
461 return intsym_buf;
462 }
463
464 /* Look up a symbol name. */
465 const char *
466 bfd_elf_sym_name (bfd *abfd,
467 Elf_Internal_Shdr *symtab_hdr,
468 Elf_Internal_Sym *isym,
469 asection *sym_sec)
470 {
471 const char *name;
472 unsigned int iname = isym->st_name;
473 unsigned int shindex = symtab_hdr->sh_link;
474
475 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
476 /* Check for a bogus st_shndx to avoid crashing. */
477 && isym->st_shndx < elf_numsections (abfd))
478 {
479 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
480 shindex = elf_elfheader (abfd)->e_shstrndx;
481 }
482
483 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
484 if (name == NULL)
485 name = "(null)";
486 else if (sym_sec && *name == '\0')
487 name = bfd_section_name (abfd, sym_sec);
488
489 return name;
490 }
491
492 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
493 sections. The first element is the flags, the rest are section
494 pointers. */
495
496 typedef union elf_internal_group {
497 Elf_Internal_Shdr *shdr;
498 unsigned int flags;
499 } Elf_Internal_Group;
500
501 /* Return the name of the group signature symbol. Why isn't the
502 signature just a string? */
503
504 static const char *
505 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
506 {
507 Elf_Internal_Shdr *hdr;
508 unsigned char esym[sizeof (Elf64_External_Sym)];
509 Elf_External_Sym_Shndx eshndx;
510 Elf_Internal_Sym isym;
511
512 /* First we need to ensure the symbol table is available. Make sure
513 that it is a symbol table section. */
514 if (ghdr->sh_link >= elf_numsections (abfd))
515 return NULL;
516 hdr = elf_elfsections (abfd) [ghdr->sh_link];
517 if (hdr->sh_type != SHT_SYMTAB
518 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
519 return NULL;
520
521 /* Go read the symbol. */
522 hdr = &elf_tdata (abfd)->symtab_hdr;
523 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
524 &isym, esym, &eshndx) == NULL)
525 return NULL;
526
527 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
528 }
529
530 /* Set next_in_group list pointer, and group name for NEWSECT. */
531
532 static bfd_boolean
533 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
534 {
535 unsigned int num_group = elf_tdata (abfd)->num_group;
536
537 /* If num_group is zero, read in all SHT_GROUP sections. The count
538 is set to -1 if there are no SHT_GROUP sections. */
539 if (num_group == 0)
540 {
541 unsigned int i, shnum;
542
543 /* First count the number of groups. If we have a SHT_GROUP
544 section with just a flag word (ie. sh_size is 4), ignore it. */
545 shnum = elf_numsections (abfd);
546 num_group = 0;
547
548 #define IS_VALID_GROUP_SECTION_HEADER(shdr) \
549 ( (shdr)->sh_type == SHT_GROUP \
550 && (shdr)->sh_size >= (2 * GRP_ENTRY_SIZE) \
551 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
552 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
553
554 for (i = 0; i < shnum; i++)
555 {
556 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
557
558 if (IS_VALID_GROUP_SECTION_HEADER (shdr))
559 num_group += 1;
560 }
561
562 if (num_group == 0)
563 {
564 num_group = (unsigned) -1;
565 elf_tdata (abfd)->num_group = num_group;
566 }
567 else
568 {
569 /* We keep a list of elf section headers for group sections,
570 so we can find them quickly. */
571 bfd_size_type amt;
572
573 elf_tdata (abfd)->num_group = num_group;
574 elf_tdata (abfd)->group_sect_ptr = (Elf_Internal_Shdr **)
575 bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
576 if (elf_tdata (abfd)->group_sect_ptr == NULL)
577 return FALSE;
578
579 num_group = 0;
580 for (i = 0; i < shnum; i++)
581 {
582 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
583
584 if (IS_VALID_GROUP_SECTION_HEADER (shdr))
585 {
586 unsigned char *src;
587 Elf_Internal_Group *dest;
588
589 /* Add to list of sections. */
590 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
591 num_group += 1;
592
593 /* Read the raw contents. */
594 BFD_ASSERT (sizeof (*dest) >= 4);
595 amt = shdr->sh_size * sizeof (*dest) / 4;
596 shdr->contents = (unsigned char *)
597 bfd_alloc2 (abfd, shdr->sh_size, sizeof (*dest) / 4);
598 /* PR binutils/4110: Handle corrupt group headers. */
599 if (shdr->contents == NULL)
600 {
601 _bfd_error_handler
602 (_("%B: Corrupt size field in group section header: 0x%lx"), abfd, shdr->sh_size);
603 bfd_set_error (bfd_error_bad_value);
604 return FALSE;
605 }
606
607 memset (shdr->contents, 0, amt);
608
609 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
610 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
611 != shdr->sh_size))
612 return FALSE;
613
614 /* Translate raw contents, a flag word followed by an
615 array of elf section indices all in target byte order,
616 to the flag word followed by an array of elf section
617 pointers. */
618 src = shdr->contents + shdr->sh_size;
619 dest = (Elf_Internal_Group *) (shdr->contents + amt);
620 while (1)
621 {
622 unsigned int idx;
623
624 src -= 4;
625 --dest;
626 idx = H_GET_32 (abfd, src);
627 if (src == shdr->contents)
628 {
629 dest->flags = idx;
630 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
631 shdr->bfd_section->flags
632 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
633 break;
634 }
635 if (idx >= shnum)
636 {
637 ((*_bfd_error_handler)
638 (_("%B: invalid SHT_GROUP entry"), abfd));
639 idx = 0;
640 }
641 dest->shdr = elf_elfsections (abfd)[idx];
642 }
643 }
644 }
645 }
646 }
647
648 if (num_group != (unsigned) -1)
649 {
650 unsigned int i;
651
652 for (i = 0; i < num_group; i++)
653 {
654 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
655 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
656 unsigned int n_elt = shdr->sh_size / 4;
657
658 /* Look through this group's sections to see if current
659 section is a member. */
660 while (--n_elt != 0)
661 if ((++idx)->shdr == hdr)
662 {
663 asection *s = NULL;
664
665 /* We are a member of this group. Go looking through
666 other members to see if any others are linked via
667 next_in_group. */
668 idx = (Elf_Internal_Group *) shdr->contents;
669 n_elt = shdr->sh_size / 4;
670 while (--n_elt != 0)
671 if ((s = (++idx)->shdr->bfd_section) != NULL
672 && elf_next_in_group (s) != NULL)
673 break;
674 if (n_elt != 0)
675 {
676 /* Snarf the group name from other member, and
677 insert current section in circular list. */
678 elf_group_name (newsect) = elf_group_name (s);
679 elf_next_in_group (newsect) = elf_next_in_group (s);
680 elf_next_in_group (s) = newsect;
681 }
682 else
683 {
684 const char *gname;
685
686 gname = group_signature (abfd, shdr);
687 if (gname == NULL)
688 return FALSE;
689 elf_group_name (newsect) = gname;
690
691 /* Start a circular list with one element. */
692 elf_next_in_group (newsect) = newsect;
693 }
694
695 /* If the group section has been created, point to the
696 new member. */
697 if (shdr->bfd_section != NULL)
698 elf_next_in_group (shdr->bfd_section) = newsect;
699
700 i = num_group - 1;
701 break;
702 }
703 }
704 }
705
706 if (elf_group_name (newsect) == NULL)
707 {
708 (*_bfd_error_handler) (_("%B: no group info for section %A"),
709 abfd, newsect);
710 }
711 return TRUE;
712 }
713
714 bfd_boolean
715 _bfd_elf_setup_sections (bfd *abfd)
716 {
717 unsigned int i;
718 unsigned int num_group = elf_tdata (abfd)->num_group;
719 bfd_boolean result = TRUE;
720 asection *s;
721
722 /* Process SHF_LINK_ORDER. */
723 for (s = abfd->sections; s != NULL; s = s->next)
724 {
725 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
726 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
727 {
728 unsigned int elfsec = this_hdr->sh_link;
729 /* FIXME: The old Intel compiler and old strip/objcopy may
730 not set the sh_link or sh_info fields. Hence we could
731 get the situation where elfsec is 0. */
732 if (elfsec == 0)
733 {
734 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
735 if (bed->link_order_error_handler)
736 bed->link_order_error_handler
737 (_("%B: warning: sh_link not set for section `%A'"),
738 abfd, s);
739 }
740 else
741 {
742 asection *linksec = NULL;
743
744 if (elfsec < elf_numsections (abfd))
745 {
746 this_hdr = elf_elfsections (abfd)[elfsec];
747 linksec = this_hdr->bfd_section;
748 }
749
750 /* PR 1991, 2008:
751 Some strip/objcopy may leave an incorrect value in
752 sh_link. We don't want to proceed. */
753 if (linksec == NULL)
754 {
755 (*_bfd_error_handler)
756 (_("%B: sh_link [%d] in section `%A' is incorrect"),
757 s->owner, s, elfsec);
758 result = FALSE;
759 }
760
761 elf_linked_to_section (s) = linksec;
762 }
763 }
764 }
765
766 /* Process section groups. */
767 if (num_group == (unsigned) -1)
768 return result;
769
770 for (i = 0; i < num_group; i++)
771 {
772 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
773 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
774 unsigned int n_elt = shdr->sh_size / 4;
775
776 while (--n_elt != 0)
777 if ((++idx)->shdr->bfd_section)
778 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
779 else if (idx->shdr->sh_type == SHT_RELA
780 || idx->shdr->sh_type == SHT_REL)
781 /* We won't include relocation sections in section groups in
782 output object files. We adjust the group section size here
783 so that relocatable link will work correctly when
784 relocation sections are in section group in input object
785 files. */
786 shdr->bfd_section->size -= 4;
787 else
788 {
789 /* There are some unknown sections in the group. */
790 (*_bfd_error_handler)
791 (_("%B: unknown [%d] section `%s' in group [%s]"),
792 abfd,
793 (unsigned int) idx->shdr->sh_type,
794 bfd_elf_string_from_elf_section (abfd,
795 (elf_elfheader (abfd)
796 ->e_shstrndx),
797 idx->shdr->sh_name),
798 shdr->bfd_section->name);
799 result = FALSE;
800 }
801 }
802 return result;
803 }
804
805 bfd_boolean
806 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
807 {
808 return elf_next_in_group (sec) != NULL;
809 }
810
811 /* Make a BFD section from an ELF section. We store a pointer to the
812 BFD section in the bfd_section field of the header. */
813
814 bfd_boolean
815 _bfd_elf_make_section_from_shdr (bfd *abfd,
816 Elf_Internal_Shdr *hdr,
817 const char *name,
818 int shindex)
819 {
820 asection *newsect;
821 flagword flags;
822 const struct elf_backend_data *bed;
823
824 if (hdr->bfd_section != NULL)
825 return TRUE;
826
827 newsect = bfd_make_section_anyway (abfd, name);
828 if (newsect == NULL)
829 return FALSE;
830
831 hdr->bfd_section = newsect;
832 elf_section_data (newsect)->this_hdr = *hdr;
833 elf_section_data (newsect)->this_idx = shindex;
834
835 /* Always use the real type/flags. */
836 elf_section_type (newsect) = hdr->sh_type;
837 elf_section_flags (newsect) = hdr->sh_flags;
838
839 newsect->filepos = hdr->sh_offset;
840
841 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
842 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
843 || ! bfd_set_section_alignment (abfd, newsect,
844 bfd_log2 (hdr->sh_addralign)))
845 return FALSE;
846
847 flags = SEC_NO_FLAGS;
848 if (hdr->sh_type != SHT_NOBITS)
849 flags |= SEC_HAS_CONTENTS;
850 if (hdr->sh_type == SHT_GROUP)
851 flags |= SEC_GROUP | SEC_EXCLUDE;
852 if ((hdr->sh_flags & SHF_ALLOC) != 0)
853 {
854 flags |= SEC_ALLOC;
855 if (hdr->sh_type != SHT_NOBITS)
856 flags |= SEC_LOAD;
857 }
858 if ((hdr->sh_flags & SHF_WRITE) == 0)
859 flags |= SEC_READONLY;
860 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
861 flags |= SEC_CODE;
862 else if ((flags & SEC_LOAD) != 0)
863 flags |= SEC_DATA;
864 if ((hdr->sh_flags & SHF_MERGE) != 0)
865 {
866 flags |= SEC_MERGE;
867 newsect->entsize = hdr->sh_entsize;
868 if ((hdr->sh_flags & SHF_STRINGS) != 0)
869 flags |= SEC_STRINGS;
870 }
871 if (hdr->sh_flags & SHF_GROUP)
872 if (!setup_group (abfd, hdr, newsect))
873 return FALSE;
874 if ((hdr->sh_flags & SHF_TLS) != 0)
875 flags |= SEC_THREAD_LOCAL;
876 if ((hdr->sh_flags & SHF_EXCLUDE) != 0)
877 flags |= SEC_EXCLUDE;
878
879 if ((flags & SEC_ALLOC) == 0)
880 {
881 /* The debugging sections appear to be recognized only by name,
882 not any sort of flag. Their SEC_ALLOC bits are cleared. */
883 static const struct
884 {
885 const char *name;
886 int len;
887 } debug_sections [] =
888 {
889 { STRING_COMMA_LEN ("debug") }, /* 'd' */
890 { NULL, 0 }, /* 'e' */
891 { NULL, 0 }, /* 'f' */
892 { STRING_COMMA_LEN ("gnu.linkonce.wi.") }, /* 'g' */
893 { NULL, 0 }, /* 'h' */
894 { NULL, 0 }, /* 'i' */
895 { NULL, 0 }, /* 'j' */
896 { NULL, 0 }, /* 'k' */
897 { STRING_COMMA_LEN ("line") }, /* 'l' */
898 { NULL, 0 }, /* 'm' */
899 { NULL, 0 }, /* 'n' */
900 { NULL, 0 }, /* 'o' */
901 { NULL, 0 }, /* 'p' */
902 { NULL, 0 }, /* 'q' */
903 { NULL, 0 }, /* 'r' */
904 { STRING_COMMA_LEN ("stab") }, /* 's' */
905 { NULL, 0 }, /* 't' */
906 { NULL, 0 }, /* 'u' */
907 { NULL, 0 }, /* 'v' */
908 { NULL, 0 }, /* 'w' */
909 { NULL, 0 }, /* 'x' */
910 { NULL, 0 }, /* 'y' */
911 { STRING_COMMA_LEN ("zdebug") } /* 'z' */
912 };
913
914 if (name [0] == '.')
915 {
916 int i = name [1] - 'd';
917 if (i >= 0
918 && i < (int) ARRAY_SIZE (debug_sections)
919 && debug_sections [i].name != NULL
920 && strncmp (&name [1], debug_sections [i].name,
921 debug_sections [i].len) == 0)
922 flags |= SEC_DEBUGGING;
923 }
924 }
925
926 /* As a GNU extension, if the name begins with .gnu.linkonce, we
927 only link a single copy of the section. This is used to support
928 g++. g++ will emit each template expansion in its own section.
929 The symbols will be defined as weak, so that multiple definitions
930 are permitted. The GNU linker extension is to actually discard
931 all but one of the sections. */
932 if (CONST_STRNEQ (name, ".gnu.linkonce")
933 && elf_next_in_group (newsect) == NULL)
934 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
935
936 bed = get_elf_backend_data (abfd);
937 if (bed->elf_backend_section_flags)
938 if (! bed->elf_backend_section_flags (&flags, hdr))
939 return FALSE;
940
941 if (! bfd_set_section_flags (abfd, newsect, flags))
942 return FALSE;
943
944 /* We do not parse the PT_NOTE segments as we are interested even in the
945 separate debug info files which may have the segments offsets corrupted.
946 PT_NOTEs from the core files are currently not parsed using BFD. */
947 if (hdr->sh_type == SHT_NOTE)
948 {
949 bfd_byte *contents;
950
951 if (!bfd_malloc_and_get_section (abfd, newsect, &contents))
952 return FALSE;
953
954 elf_parse_notes (abfd, (char *) contents, hdr->sh_size, -1);
955 free (contents);
956 }
957
958 if ((flags & SEC_ALLOC) != 0)
959 {
960 Elf_Internal_Phdr *phdr;
961 unsigned int i, nload;
962
963 /* Some ELF linkers produce binaries with all the program header
964 p_paddr fields zero. If we have such a binary with more than
965 one PT_LOAD header, then leave the section lma equal to vma
966 so that we don't create sections with overlapping lma. */
967 phdr = elf_tdata (abfd)->phdr;
968 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
969 if (phdr->p_paddr != 0)
970 break;
971 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
972 ++nload;
973 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
974 return TRUE;
975
976 phdr = elf_tdata (abfd)->phdr;
977 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
978 {
979 if (((phdr->p_type == PT_LOAD
980 && (hdr->sh_flags & SHF_TLS) == 0)
981 || phdr->p_type == PT_TLS)
982 && ELF_SECTION_IN_SEGMENT (hdr, phdr))
983 {
984 if ((flags & SEC_LOAD) == 0)
985 newsect->lma = (phdr->p_paddr
986 + hdr->sh_addr - phdr->p_vaddr);
987 else
988 /* We used to use the same adjustment for SEC_LOAD
989 sections, but that doesn't work if the segment
990 is packed with code from multiple VMAs.
991 Instead we calculate the section LMA based on
992 the segment LMA. It is assumed that the
993 segment will contain sections with contiguous
994 LMAs, even if the VMAs are not. */
995 newsect->lma = (phdr->p_paddr
996 + hdr->sh_offset - phdr->p_offset);
997
998 /* With contiguous segments, we can't tell from file
999 offsets whether a section with zero size should
1000 be placed at the end of one segment or the
1001 beginning of the next. Decide based on vaddr. */
1002 if (hdr->sh_addr >= phdr->p_vaddr
1003 && (hdr->sh_addr + hdr->sh_size
1004 <= phdr->p_vaddr + phdr->p_memsz))
1005 break;
1006 }
1007 }
1008 }
1009
1010 /* Compress/decompress DWARF debug sections with names: .debug_* and
1011 .zdebug_*, after the section flags is set. */
1012 if ((flags & SEC_DEBUGGING)
1013 && ((name[1] == 'd' && name[6] == '_')
1014 || (name[1] == 'z' && name[7] == '_')))
1015 {
1016 enum { nothing, compress, decompress } action = nothing;
1017 char *new_name;
1018
1019 if (bfd_is_section_compressed (abfd, newsect))
1020 {
1021 /* Compressed section. Check if we should decompress. */
1022 if ((abfd->flags & BFD_DECOMPRESS))
1023 action = decompress;
1024 }
1025 else
1026 {
1027 /* Normal section. Check if we should compress. */
1028 if ((abfd->flags & BFD_COMPRESS))
1029 action = compress;
1030 }
1031
1032 new_name = NULL;
1033 switch (action)
1034 {
1035 case nothing:
1036 break;
1037 case compress:
1038 if (!bfd_init_section_compress_status (abfd, newsect))
1039 {
1040 (*_bfd_error_handler)
1041 (_("%B: unable to initialize commpress status for section %s"),
1042 abfd, name);
1043 return FALSE;
1044 }
1045 if (name[1] != 'z')
1046 {
1047 unsigned int len = strlen (name);
1048
1049 new_name = bfd_alloc (abfd, len + 2);
1050 if (new_name == NULL)
1051 return FALSE;
1052 new_name[0] = '.';
1053 new_name[1] = 'z';
1054 memcpy (new_name + 2, name + 1, len);
1055 }
1056 break;
1057 case decompress:
1058 if (!bfd_init_section_decompress_status (abfd, newsect))
1059 {
1060 (*_bfd_error_handler)
1061 (_("%B: unable to initialize decommpress status for section %s"),
1062 abfd, name);
1063 return FALSE;
1064 }
1065 if (name[1] == 'z')
1066 {
1067 unsigned int len = strlen (name);
1068
1069 new_name = bfd_alloc (abfd, len);
1070 if (new_name == NULL)
1071 return FALSE;
1072 new_name[0] = '.';
1073 memcpy (new_name + 1, name + 2, len - 1);
1074 }
1075 break;
1076 }
1077 if (new_name != NULL)
1078 bfd_rename_section (abfd, newsect, new_name);
1079 }
1080
1081 return TRUE;
1082 }
1083
1084 const char *const bfd_elf_section_type_names[] = {
1085 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1086 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1087 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1088 };
1089
1090 /* ELF relocs are against symbols. If we are producing relocatable
1091 output, and the reloc is against an external symbol, and nothing
1092 has given us any additional addend, the resulting reloc will also
1093 be against the same symbol. In such a case, we don't want to
1094 change anything about the way the reloc is handled, since it will
1095 all be done at final link time. Rather than put special case code
1096 into bfd_perform_relocation, all the reloc types use this howto
1097 function. It just short circuits the reloc if producing
1098 relocatable output against an external symbol. */
1099
1100 bfd_reloc_status_type
1101 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1102 arelent *reloc_entry,
1103 asymbol *symbol,
1104 void *data ATTRIBUTE_UNUSED,
1105 asection *input_section,
1106 bfd *output_bfd,
1107 char **error_message ATTRIBUTE_UNUSED)
1108 {
1109 if (output_bfd != NULL
1110 && (symbol->flags & BSF_SECTION_SYM) == 0
1111 && (! reloc_entry->howto->partial_inplace
1112 || reloc_entry->addend == 0))
1113 {
1114 reloc_entry->address += input_section->output_offset;
1115 return bfd_reloc_ok;
1116 }
1117
1118 return bfd_reloc_continue;
1119 }
1120 \f
1121 /* Copy the program header and other data from one object module to
1122 another. */
1123
1124 bfd_boolean
1125 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1126 {
1127 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1128 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1129 return TRUE;
1130
1131 BFD_ASSERT (!elf_flags_init (obfd)
1132 || (elf_elfheader (obfd)->e_flags
1133 == elf_elfheader (ibfd)->e_flags));
1134
1135 elf_gp (obfd) = elf_gp (ibfd);
1136 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1137 elf_flags_init (obfd) = TRUE;
1138
1139 /* Copy object attributes. */
1140 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1141 return TRUE;
1142 }
1143
1144 static const char *
1145 get_segment_type (unsigned int p_type)
1146 {
1147 const char *pt;
1148 switch (p_type)
1149 {
1150 case PT_NULL: pt = "NULL"; break;
1151 case PT_LOAD: pt = "LOAD"; break;
1152 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1153 case PT_INTERP: pt = "INTERP"; break;
1154 case PT_NOTE: pt = "NOTE"; break;
1155 case PT_SHLIB: pt = "SHLIB"; break;
1156 case PT_PHDR: pt = "PHDR"; break;
1157 case PT_TLS: pt = "TLS"; break;
1158 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1159 case PT_GNU_STACK: pt = "STACK"; break;
1160 case PT_GNU_RELRO: pt = "RELRO"; break;
1161 default: pt = NULL; break;
1162 }
1163 return pt;
1164 }
1165
1166 /* Print out the program headers. */
1167
1168 bfd_boolean
1169 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1170 {
1171 FILE *f = (FILE *) farg;
1172 Elf_Internal_Phdr *p;
1173 asection *s;
1174 bfd_byte *dynbuf = NULL;
1175
1176 p = elf_tdata (abfd)->phdr;
1177 if (p != NULL)
1178 {
1179 unsigned int i, c;
1180
1181 fprintf (f, _("\nProgram Header:\n"));
1182 c = elf_elfheader (abfd)->e_phnum;
1183 for (i = 0; i < c; i++, p++)
1184 {
1185 const char *pt = get_segment_type (p->p_type);
1186 char buf[20];
1187
1188 if (pt == NULL)
1189 {
1190 sprintf (buf, "0x%lx", p->p_type);
1191 pt = buf;
1192 }
1193 fprintf (f, "%8s off 0x", pt);
1194 bfd_fprintf_vma (abfd, f, p->p_offset);
1195 fprintf (f, " vaddr 0x");
1196 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1197 fprintf (f, " paddr 0x");
1198 bfd_fprintf_vma (abfd, f, p->p_paddr);
1199 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1200 fprintf (f, " filesz 0x");
1201 bfd_fprintf_vma (abfd, f, p->p_filesz);
1202 fprintf (f, " memsz 0x");
1203 bfd_fprintf_vma (abfd, f, p->p_memsz);
1204 fprintf (f, " flags %c%c%c",
1205 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1206 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1207 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1208 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1209 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1210 fprintf (f, "\n");
1211 }
1212 }
1213
1214 s = bfd_get_section_by_name (abfd, ".dynamic");
1215 if (s != NULL)
1216 {
1217 unsigned int elfsec;
1218 unsigned long shlink;
1219 bfd_byte *extdyn, *extdynend;
1220 size_t extdynsize;
1221 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1222
1223 fprintf (f, _("\nDynamic Section:\n"));
1224
1225 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1226 goto error_return;
1227
1228 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1229 if (elfsec == SHN_BAD)
1230 goto error_return;
1231 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1232
1233 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1234 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1235
1236 extdyn = dynbuf;
1237 extdynend = extdyn + s->size;
1238 for (; extdyn < extdynend; extdyn += extdynsize)
1239 {
1240 Elf_Internal_Dyn dyn;
1241 const char *name = "";
1242 char ab[20];
1243 bfd_boolean stringp;
1244 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1245
1246 (*swap_dyn_in) (abfd, extdyn, &dyn);
1247
1248 if (dyn.d_tag == DT_NULL)
1249 break;
1250
1251 stringp = FALSE;
1252 switch (dyn.d_tag)
1253 {
1254 default:
1255 if (bed->elf_backend_get_target_dtag)
1256 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
1257
1258 if (!strcmp (name, ""))
1259 {
1260 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1261 name = ab;
1262 }
1263 break;
1264
1265 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1266 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1267 case DT_PLTGOT: name = "PLTGOT"; break;
1268 case DT_HASH: name = "HASH"; break;
1269 case DT_STRTAB: name = "STRTAB"; break;
1270 case DT_SYMTAB: name = "SYMTAB"; break;
1271 case DT_RELA: name = "RELA"; break;
1272 case DT_RELASZ: name = "RELASZ"; break;
1273 case DT_RELAENT: name = "RELAENT"; break;
1274 case DT_STRSZ: name = "STRSZ"; break;
1275 case DT_SYMENT: name = "SYMENT"; break;
1276 case DT_INIT: name = "INIT"; break;
1277 case DT_FINI: name = "FINI"; break;
1278 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1279 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1280 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1281 case DT_REL: name = "REL"; break;
1282 case DT_RELSZ: name = "RELSZ"; break;
1283 case DT_RELENT: name = "RELENT"; break;
1284 case DT_PLTREL: name = "PLTREL"; break;
1285 case DT_DEBUG: name = "DEBUG"; break;
1286 case DT_TEXTREL: name = "TEXTREL"; break;
1287 case DT_JMPREL: name = "JMPREL"; break;
1288 case DT_BIND_NOW: name = "BIND_NOW"; break;
1289 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1290 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1291 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1292 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1293 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1294 case DT_FLAGS: name = "FLAGS"; break;
1295 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1296 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1297 case DT_CHECKSUM: name = "CHECKSUM"; break;
1298 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1299 case DT_MOVEENT: name = "MOVEENT"; break;
1300 case DT_MOVESZ: name = "MOVESZ"; break;
1301 case DT_FEATURE: name = "FEATURE"; break;
1302 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1303 case DT_SYMINSZ: name = "SYMINSZ"; break;
1304 case DT_SYMINENT: name = "SYMINENT"; break;
1305 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1306 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1307 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1308 case DT_PLTPAD: name = "PLTPAD"; break;
1309 case DT_MOVETAB: name = "MOVETAB"; break;
1310 case DT_SYMINFO: name = "SYMINFO"; break;
1311 case DT_RELACOUNT: name = "RELACOUNT"; break;
1312 case DT_RELCOUNT: name = "RELCOUNT"; break;
1313 case DT_FLAGS_1: name = "FLAGS_1"; break;
1314 case DT_VERSYM: name = "VERSYM"; break;
1315 case DT_VERDEF: name = "VERDEF"; break;
1316 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1317 case DT_VERNEED: name = "VERNEED"; break;
1318 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1319 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1320 case DT_USED: name = "USED"; break;
1321 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1322 case DT_GNU_HASH: name = "GNU_HASH"; break;
1323 }
1324
1325 fprintf (f, " %-20s ", name);
1326 if (! stringp)
1327 {
1328 fprintf (f, "0x");
1329 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
1330 }
1331 else
1332 {
1333 const char *string;
1334 unsigned int tagv = dyn.d_un.d_val;
1335
1336 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1337 if (string == NULL)
1338 goto error_return;
1339 fprintf (f, "%s", string);
1340 }
1341 fprintf (f, "\n");
1342 }
1343
1344 free (dynbuf);
1345 dynbuf = NULL;
1346 }
1347
1348 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1349 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1350 {
1351 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1352 return FALSE;
1353 }
1354
1355 if (elf_dynverdef (abfd) != 0)
1356 {
1357 Elf_Internal_Verdef *t;
1358
1359 fprintf (f, _("\nVersion definitions:\n"));
1360 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1361 {
1362 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1363 t->vd_flags, t->vd_hash,
1364 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1365 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1366 {
1367 Elf_Internal_Verdaux *a;
1368
1369 fprintf (f, "\t");
1370 for (a = t->vd_auxptr->vda_nextptr;
1371 a != NULL;
1372 a = a->vda_nextptr)
1373 fprintf (f, "%s ",
1374 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1375 fprintf (f, "\n");
1376 }
1377 }
1378 }
1379
1380 if (elf_dynverref (abfd) != 0)
1381 {
1382 Elf_Internal_Verneed *t;
1383
1384 fprintf (f, _("\nVersion References:\n"));
1385 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1386 {
1387 Elf_Internal_Vernaux *a;
1388
1389 fprintf (f, _(" required from %s:\n"),
1390 t->vn_filename ? t->vn_filename : "<corrupt>");
1391 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1392 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1393 a->vna_flags, a->vna_other,
1394 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1395 }
1396 }
1397
1398 return TRUE;
1399
1400 error_return:
1401 if (dynbuf != NULL)
1402 free (dynbuf);
1403 return FALSE;
1404 }
1405
1406 /* Display ELF-specific fields of a symbol. */
1407
1408 void
1409 bfd_elf_print_symbol (bfd *abfd,
1410 void *filep,
1411 asymbol *symbol,
1412 bfd_print_symbol_type how)
1413 {
1414 FILE *file = (FILE *) filep;
1415 switch (how)
1416 {
1417 case bfd_print_symbol_name:
1418 fprintf (file, "%s", symbol->name);
1419 break;
1420 case bfd_print_symbol_more:
1421 fprintf (file, "elf ");
1422 bfd_fprintf_vma (abfd, file, symbol->value);
1423 fprintf (file, " %lx", (unsigned long) symbol->flags);
1424 break;
1425 case bfd_print_symbol_all:
1426 {
1427 const char *section_name;
1428 const char *name = NULL;
1429 const struct elf_backend_data *bed;
1430 unsigned char st_other;
1431 bfd_vma val;
1432
1433 section_name = symbol->section ? symbol->section->name : "(*none*)";
1434
1435 bed = get_elf_backend_data (abfd);
1436 if (bed->elf_backend_print_symbol_all)
1437 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1438
1439 if (name == NULL)
1440 {
1441 name = symbol->name;
1442 bfd_print_symbol_vandf (abfd, file, symbol);
1443 }
1444
1445 fprintf (file, " %s\t", section_name);
1446 /* Print the "other" value for a symbol. For common symbols,
1447 we've already printed the size; now print the alignment.
1448 For other symbols, we have no specified alignment, and
1449 we've printed the address; now print the size. */
1450 if (symbol->section && bfd_is_com_section (symbol->section))
1451 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1452 else
1453 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1454 bfd_fprintf_vma (abfd, file, val);
1455
1456 /* If we have version information, print it. */
1457 if (elf_tdata (abfd)->dynversym_section != 0
1458 && (elf_tdata (abfd)->dynverdef_section != 0
1459 || elf_tdata (abfd)->dynverref_section != 0))
1460 {
1461 unsigned int vernum;
1462 const char *version_string;
1463
1464 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1465
1466 if (vernum == 0)
1467 version_string = "";
1468 else if (vernum == 1)
1469 version_string = "Base";
1470 else if (vernum <= elf_tdata (abfd)->cverdefs)
1471 version_string =
1472 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1473 else
1474 {
1475 Elf_Internal_Verneed *t;
1476
1477 version_string = "";
1478 for (t = elf_tdata (abfd)->verref;
1479 t != NULL;
1480 t = t->vn_nextref)
1481 {
1482 Elf_Internal_Vernaux *a;
1483
1484 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1485 {
1486 if (a->vna_other == vernum)
1487 {
1488 version_string = a->vna_nodename;
1489 break;
1490 }
1491 }
1492 }
1493 }
1494
1495 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1496 fprintf (file, " %-11s", version_string);
1497 else
1498 {
1499 int i;
1500
1501 fprintf (file, " (%s)", version_string);
1502 for (i = 10 - strlen (version_string); i > 0; --i)
1503 putc (' ', file);
1504 }
1505 }
1506
1507 /* If the st_other field is not zero, print it. */
1508 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1509
1510 switch (st_other)
1511 {
1512 case 0: break;
1513 case STV_INTERNAL: fprintf (file, " .internal"); break;
1514 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1515 case STV_PROTECTED: fprintf (file, " .protected"); break;
1516 default:
1517 /* Some other non-defined flags are also present, so print
1518 everything hex. */
1519 fprintf (file, " 0x%02x", (unsigned int) st_other);
1520 }
1521
1522 fprintf (file, " %s", name);
1523 }
1524 break;
1525 }
1526 }
1527
1528 /* Allocate an ELF string table--force the first byte to be zero. */
1529
1530 struct bfd_strtab_hash *
1531 _bfd_elf_stringtab_init (void)
1532 {
1533 struct bfd_strtab_hash *ret;
1534
1535 ret = _bfd_stringtab_init ();
1536 if (ret != NULL)
1537 {
1538 bfd_size_type loc;
1539
1540 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1541 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1542 if (loc == (bfd_size_type) -1)
1543 {
1544 _bfd_stringtab_free (ret);
1545 ret = NULL;
1546 }
1547 }
1548 return ret;
1549 }
1550 \f
1551 /* ELF .o/exec file reading */
1552
1553 /* Create a new bfd section from an ELF section header. */
1554
1555 bfd_boolean
1556 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1557 {
1558 Elf_Internal_Shdr *hdr;
1559 Elf_Internal_Ehdr *ehdr;
1560 const struct elf_backend_data *bed;
1561 const char *name;
1562
1563 if (shindex >= elf_numsections (abfd))
1564 return FALSE;
1565
1566 hdr = elf_elfsections (abfd)[shindex];
1567 ehdr = elf_elfheader (abfd);
1568 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
1569 hdr->sh_name);
1570 if (name == NULL)
1571 return FALSE;
1572
1573 bed = get_elf_backend_data (abfd);
1574 switch (hdr->sh_type)
1575 {
1576 case SHT_NULL:
1577 /* Inactive section. Throw it away. */
1578 return TRUE;
1579
1580 case SHT_PROGBITS: /* Normal section with contents. */
1581 case SHT_NOBITS: /* .bss section. */
1582 case SHT_HASH: /* .hash section. */
1583 case SHT_NOTE: /* .note section. */
1584 case SHT_INIT_ARRAY: /* .init_array section. */
1585 case SHT_FINI_ARRAY: /* .fini_array section. */
1586 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1587 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1588 case SHT_GNU_HASH: /* .gnu.hash section. */
1589 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1590
1591 case SHT_DYNAMIC: /* Dynamic linking information. */
1592 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1593 return FALSE;
1594 if (hdr->sh_link > elf_numsections (abfd))
1595 {
1596 /* PR 10478: Accept Solaris binaries with a sh_link
1597 field set to SHN_BEFORE or SHN_AFTER. */
1598 switch (bfd_get_arch (abfd))
1599 {
1600 case bfd_arch_i386:
1601 case bfd_arch_sparc:
1602 if (hdr->sh_link == (SHN_LORESERVE & 0xffff) /* SHN_BEFORE */
1603 || hdr->sh_link == ((SHN_LORESERVE + 1) & 0xffff) /* SHN_AFTER */)
1604 break;
1605 /* Otherwise fall through. */
1606 default:
1607 return FALSE;
1608 }
1609 }
1610 else if (elf_elfsections (abfd)[hdr->sh_link] == NULL)
1611 return FALSE;
1612 else if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1613 {
1614 Elf_Internal_Shdr *dynsymhdr;
1615
1616 /* The shared libraries distributed with hpux11 have a bogus
1617 sh_link field for the ".dynamic" section. Find the
1618 string table for the ".dynsym" section instead. */
1619 if (elf_dynsymtab (abfd) != 0)
1620 {
1621 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1622 hdr->sh_link = dynsymhdr->sh_link;
1623 }
1624 else
1625 {
1626 unsigned int i, num_sec;
1627
1628 num_sec = elf_numsections (abfd);
1629 for (i = 1; i < num_sec; i++)
1630 {
1631 dynsymhdr = elf_elfsections (abfd)[i];
1632 if (dynsymhdr->sh_type == SHT_DYNSYM)
1633 {
1634 hdr->sh_link = dynsymhdr->sh_link;
1635 break;
1636 }
1637 }
1638 }
1639 }
1640 break;
1641
1642 case SHT_SYMTAB: /* A symbol table */
1643 if (elf_onesymtab (abfd) == shindex)
1644 return TRUE;
1645
1646 if (hdr->sh_entsize != bed->s->sizeof_sym)
1647 return FALSE;
1648 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
1649 return FALSE;
1650 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1651 elf_onesymtab (abfd) = shindex;
1652 elf_tdata (abfd)->symtab_hdr = *hdr;
1653 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1654 abfd->flags |= HAS_SYMS;
1655
1656 /* Sometimes a shared object will map in the symbol table. If
1657 SHF_ALLOC is set, and this is a shared object, then we also
1658 treat this section as a BFD section. We can not base the
1659 decision purely on SHF_ALLOC, because that flag is sometimes
1660 set in a relocatable object file, which would confuse the
1661 linker. */
1662 if ((hdr->sh_flags & SHF_ALLOC) != 0
1663 && (abfd->flags & DYNAMIC) != 0
1664 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1665 shindex))
1666 return FALSE;
1667
1668 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1669 can't read symbols without that section loaded as well. It
1670 is most likely specified by the next section header. */
1671 if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
1672 {
1673 unsigned int i, num_sec;
1674
1675 num_sec = elf_numsections (abfd);
1676 for (i = shindex + 1; i < num_sec; i++)
1677 {
1678 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1679 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1680 && hdr2->sh_link == shindex)
1681 break;
1682 }
1683 if (i == num_sec)
1684 for (i = 1; i < shindex; i++)
1685 {
1686 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1687 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1688 && hdr2->sh_link == shindex)
1689 break;
1690 }
1691 if (i != shindex)
1692 return bfd_section_from_shdr (abfd, i);
1693 }
1694 return TRUE;
1695
1696 case SHT_DYNSYM: /* A dynamic symbol table */
1697 if (elf_dynsymtab (abfd) == shindex)
1698 return TRUE;
1699
1700 if (hdr->sh_entsize != bed->s->sizeof_sym)
1701 return FALSE;
1702 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1703 elf_dynsymtab (abfd) = shindex;
1704 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1705 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1706 abfd->flags |= HAS_SYMS;
1707
1708 /* Besides being a symbol table, we also treat this as a regular
1709 section, so that objcopy can handle it. */
1710 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1711
1712 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1713 if (elf_symtab_shndx (abfd) == shindex)
1714 return TRUE;
1715
1716 BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
1717 elf_symtab_shndx (abfd) = shindex;
1718 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1719 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1720 return TRUE;
1721
1722 case SHT_STRTAB: /* A string table */
1723 if (hdr->bfd_section != NULL)
1724 return TRUE;
1725 if (ehdr->e_shstrndx == shindex)
1726 {
1727 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1728 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1729 return TRUE;
1730 }
1731 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
1732 {
1733 symtab_strtab:
1734 elf_tdata (abfd)->strtab_hdr = *hdr;
1735 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
1736 return TRUE;
1737 }
1738 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
1739 {
1740 dynsymtab_strtab:
1741 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1742 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
1743 elf_elfsections (abfd)[shindex] = hdr;
1744 /* We also treat this as a regular section, so that objcopy
1745 can handle it. */
1746 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1747 shindex);
1748 }
1749
1750 /* If the string table isn't one of the above, then treat it as a
1751 regular section. We need to scan all the headers to be sure,
1752 just in case this strtab section appeared before the above. */
1753 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
1754 {
1755 unsigned int i, num_sec;
1756
1757 num_sec = elf_numsections (abfd);
1758 for (i = 1; i < num_sec; i++)
1759 {
1760 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1761 if (hdr2->sh_link == shindex)
1762 {
1763 /* Prevent endless recursion on broken objects. */
1764 if (i == shindex)
1765 return FALSE;
1766 if (! bfd_section_from_shdr (abfd, i))
1767 return FALSE;
1768 if (elf_onesymtab (abfd) == i)
1769 goto symtab_strtab;
1770 if (elf_dynsymtab (abfd) == i)
1771 goto dynsymtab_strtab;
1772 }
1773 }
1774 }
1775 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1776
1777 case SHT_REL:
1778 case SHT_RELA:
1779 /* *These* do a lot of work -- but build no sections! */
1780 {
1781 asection *target_sect;
1782 Elf_Internal_Shdr *hdr2, **p_hdr;
1783 unsigned int num_sec = elf_numsections (abfd);
1784 struct bfd_elf_section_data *esdt;
1785 bfd_size_type amt;
1786
1787 if (hdr->sh_entsize
1788 != (bfd_size_type) (hdr->sh_type == SHT_REL
1789 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
1790 return FALSE;
1791
1792 /* Check for a bogus link to avoid crashing. */
1793 if (hdr->sh_link >= num_sec)
1794 {
1795 ((*_bfd_error_handler)
1796 (_("%B: invalid link %lu for reloc section %s (index %u)"),
1797 abfd, hdr->sh_link, name, shindex));
1798 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1799 shindex);
1800 }
1801
1802 /* For some incomprehensible reason Oracle distributes
1803 libraries for Solaris in which some of the objects have
1804 bogus sh_link fields. It would be nice if we could just
1805 reject them, but, unfortunately, some people need to use
1806 them. We scan through the section headers; if we find only
1807 one suitable symbol table, we clobber the sh_link to point
1808 to it. I hope this doesn't break anything.
1809
1810 Don't do it on executable nor shared library. */
1811 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0
1812 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
1813 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
1814 {
1815 unsigned int scan;
1816 int found;
1817
1818 found = 0;
1819 for (scan = 1; scan < num_sec; scan++)
1820 {
1821 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
1822 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
1823 {
1824 if (found != 0)
1825 {
1826 found = 0;
1827 break;
1828 }
1829 found = scan;
1830 }
1831 }
1832 if (found != 0)
1833 hdr->sh_link = found;
1834 }
1835
1836 /* Get the symbol table. */
1837 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
1838 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
1839 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
1840 return FALSE;
1841
1842 /* If this reloc section does not use the main symbol table we
1843 don't treat it as a reloc section. BFD can't adequately
1844 represent such a section, so at least for now, we don't
1845 try. We just present it as a normal section. We also
1846 can't use it as a reloc section if it points to the null
1847 section, an invalid section, another reloc section, or its
1848 sh_link points to the null section. */
1849 if (hdr->sh_link != elf_onesymtab (abfd)
1850 || hdr->sh_link == SHN_UNDEF
1851 || hdr->sh_info == SHN_UNDEF
1852 || hdr->sh_info >= num_sec
1853 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
1854 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
1855 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1856 shindex);
1857
1858 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
1859 return FALSE;
1860 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
1861 if (target_sect == NULL)
1862 return FALSE;
1863
1864 esdt = elf_section_data (target_sect);
1865 if (hdr->sh_type == SHT_RELA)
1866 p_hdr = &esdt->rela.hdr;
1867 else
1868 p_hdr = &esdt->rel.hdr;
1869
1870 BFD_ASSERT (*p_hdr == NULL);
1871 amt = sizeof (*hdr2);
1872 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, amt);
1873 if (hdr2 == NULL)
1874 return FALSE;
1875 *hdr2 = *hdr;
1876 *p_hdr = hdr2;
1877 elf_elfsections (abfd)[shindex] = hdr2;
1878 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
1879 target_sect->flags |= SEC_RELOC;
1880 target_sect->relocation = NULL;
1881 target_sect->rel_filepos = hdr->sh_offset;
1882 /* In the section to which the relocations apply, mark whether
1883 its relocations are of the REL or RELA variety. */
1884 if (hdr->sh_size != 0)
1885 {
1886 if (hdr->sh_type == SHT_RELA)
1887 target_sect->use_rela_p = 1;
1888 }
1889 abfd->flags |= HAS_RELOC;
1890 return TRUE;
1891 }
1892
1893 case SHT_GNU_verdef:
1894 elf_dynverdef (abfd) = shindex;
1895 elf_tdata (abfd)->dynverdef_hdr = *hdr;
1896 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1897
1898 case SHT_GNU_versym:
1899 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
1900 return FALSE;
1901 elf_dynversym (abfd) = shindex;
1902 elf_tdata (abfd)->dynversym_hdr = *hdr;
1903 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1904
1905 case SHT_GNU_verneed:
1906 elf_dynverref (abfd) = shindex;
1907 elf_tdata (abfd)->dynverref_hdr = *hdr;
1908 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1909
1910 case SHT_SHLIB:
1911 return TRUE;
1912
1913 case SHT_GROUP:
1914 if (! IS_VALID_GROUP_SECTION_HEADER (hdr))
1915 return FALSE;
1916 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1917 return FALSE;
1918 if (hdr->contents != NULL)
1919 {
1920 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
1921 unsigned int n_elt = hdr->sh_size / GRP_ENTRY_SIZE;
1922 asection *s;
1923
1924 if (idx->flags & GRP_COMDAT)
1925 hdr->bfd_section->flags
1926 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1927
1928 /* We try to keep the same section order as it comes in. */
1929 idx += n_elt;
1930 while (--n_elt != 0)
1931 {
1932 --idx;
1933
1934 if (idx->shdr != NULL
1935 && (s = idx->shdr->bfd_section) != NULL
1936 && elf_next_in_group (s) != NULL)
1937 {
1938 elf_next_in_group (hdr->bfd_section) = s;
1939 break;
1940 }
1941 }
1942 }
1943 break;
1944
1945 default:
1946 /* Possibly an attributes section. */
1947 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
1948 || hdr->sh_type == bed->obj_attrs_section_type)
1949 {
1950 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1951 return FALSE;
1952 _bfd_elf_parse_attributes (abfd, hdr);
1953 return TRUE;
1954 }
1955
1956 /* Check for any processor-specific section types. */
1957 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
1958 return TRUE;
1959
1960 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
1961 {
1962 if ((hdr->sh_flags & SHF_ALLOC) != 0)
1963 /* FIXME: How to properly handle allocated section reserved
1964 for applications? */
1965 (*_bfd_error_handler)
1966 (_("%B: don't know how to handle allocated, application "
1967 "specific section `%s' [0x%8x]"),
1968 abfd, name, hdr->sh_type);
1969 else
1970 /* Allow sections reserved for applications. */
1971 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1972 shindex);
1973 }
1974 else if (hdr->sh_type >= SHT_LOPROC
1975 && hdr->sh_type <= SHT_HIPROC)
1976 /* FIXME: We should handle this section. */
1977 (*_bfd_error_handler)
1978 (_("%B: don't know how to handle processor specific section "
1979 "`%s' [0x%8x]"),
1980 abfd, name, hdr->sh_type);
1981 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
1982 {
1983 /* Unrecognised OS-specific sections. */
1984 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
1985 /* SHF_OS_NONCONFORMING indicates that special knowledge is
1986 required to correctly process the section and the file should
1987 be rejected with an error message. */
1988 (*_bfd_error_handler)
1989 (_("%B: don't know how to handle OS specific section "
1990 "`%s' [0x%8x]"),
1991 abfd, name, hdr->sh_type);
1992 else
1993 /* Otherwise it should be processed. */
1994 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1995 }
1996 else
1997 /* FIXME: We should handle this section. */
1998 (*_bfd_error_handler)
1999 (_("%B: don't know how to handle section `%s' [0x%8x]"),
2000 abfd, name, hdr->sh_type);
2001
2002 return FALSE;
2003 }
2004
2005 return TRUE;
2006 }
2007
2008 /* Return the local symbol specified by ABFD, R_SYMNDX. */
2009
2010 Elf_Internal_Sym *
2011 bfd_sym_from_r_symndx (struct sym_cache *cache,
2012 bfd *abfd,
2013 unsigned long r_symndx)
2014 {
2015 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2016
2017 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
2018 {
2019 Elf_Internal_Shdr *symtab_hdr;
2020 unsigned char esym[sizeof (Elf64_External_Sym)];
2021 Elf_External_Sym_Shndx eshndx;
2022
2023 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2024 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2025 &cache->sym[ent], esym, &eshndx) == NULL)
2026 return NULL;
2027
2028 if (cache->abfd != abfd)
2029 {
2030 memset (cache->indx, -1, sizeof (cache->indx));
2031 cache->abfd = abfd;
2032 }
2033 cache->indx[ent] = r_symndx;
2034 }
2035
2036 return &cache->sym[ent];
2037 }
2038
2039 /* Given an ELF section number, retrieve the corresponding BFD
2040 section. */
2041
2042 asection *
2043 bfd_section_from_elf_index (bfd *abfd, unsigned int sec_index)
2044 {
2045 if (sec_index >= elf_numsections (abfd))
2046 return NULL;
2047 return elf_elfsections (abfd)[sec_index]->bfd_section;
2048 }
2049
2050 static const struct bfd_elf_special_section special_sections_b[] =
2051 {
2052 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2053 { NULL, 0, 0, 0, 0 }
2054 };
2055
2056 static const struct bfd_elf_special_section special_sections_c[] =
2057 {
2058 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2059 { NULL, 0, 0, 0, 0 }
2060 };
2061
2062 static const struct bfd_elf_special_section special_sections_d[] =
2063 {
2064 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2065 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2066 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2067 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2068 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2069 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2070 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2071 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2072 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2073 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2074 { NULL, 0, 0, 0, 0 }
2075 };
2076
2077 static const struct bfd_elf_special_section special_sections_f[] =
2078 {
2079 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2080 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2081 { NULL, 0, 0, 0, 0 }
2082 };
2083
2084 static const struct bfd_elf_special_section special_sections_g[] =
2085 {
2086 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2087 { STRING_COMMA_LEN (".gnu.lto_"), -1, SHT_PROGBITS, SHF_EXCLUDE },
2088 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2089 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2090 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2091 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2092 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2093 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2094 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2095 { NULL, 0, 0, 0, 0 }
2096 };
2097
2098 static const struct bfd_elf_special_section special_sections_h[] =
2099 {
2100 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2101 { NULL, 0, 0, 0, 0 }
2102 };
2103
2104 static const struct bfd_elf_special_section special_sections_i[] =
2105 {
2106 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2107 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2108 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2109 { NULL, 0, 0, 0, 0 }
2110 };
2111
2112 static const struct bfd_elf_special_section special_sections_l[] =
2113 {
2114 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2115 { NULL, 0, 0, 0, 0 }
2116 };
2117
2118 static const struct bfd_elf_special_section special_sections_n[] =
2119 {
2120 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2121 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2122 { NULL, 0, 0, 0, 0 }
2123 };
2124
2125 static const struct bfd_elf_special_section special_sections_p[] =
2126 {
2127 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2128 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2129 { NULL, 0, 0, 0, 0 }
2130 };
2131
2132 static const struct bfd_elf_special_section special_sections_r[] =
2133 {
2134 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2135 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2136 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2137 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2138 { NULL, 0, 0, 0, 0 }
2139 };
2140
2141 static const struct bfd_elf_special_section special_sections_s[] =
2142 {
2143 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2144 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2145 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2146 /* See struct bfd_elf_special_section declaration for the semantics of
2147 this special case where .prefix_length != strlen (.prefix). */
2148 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2149 { NULL, 0, 0, 0, 0 }
2150 };
2151
2152 static const struct bfd_elf_special_section special_sections_t[] =
2153 {
2154 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2155 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2156 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2157 { NULL, 0, 0, 0, 0 }
2158 };
2159
2160 static const struct bfd_elf_special_section special_sections_z[] =
2161 {
2162 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 },
2163 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 },
2164 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 },
2165 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 },
2166 { NULL, 0, 0, 0, 0 }
2167 };
2168
2169 static const struct bfd_elf_special_section * const special_sections[] =
2170 {
2171 special_sections_b, /* 'b' */
2172 special_sections_c, /* 'c' */
2173 special_sections_d, /* 'd' */
2174 NULL, /* 'e' */
2175 special_sections_f, /* 'f' */
2176 special_sections_g, /* 'g' */
2177 special_sections_h, /* 'h' */
2178 special_sections_i, /* 'i' */
2179 NULL, /* 'j' */
2180 NULL, /* 'k' */
2181 special_sections_l, /* 'l' */
2182 NULL, /* 'm' */
2183 special_sections_n, /* 'n' */
2184 NULL, /* 'o' */
2185 special_sections_p, /* 'p' */
2186 NULL, /* 'q' */
2187 special_sections_r, /* 'r' */
2188 special_sections_s, /* 's' */
2189 special_sections_t, /* 't' */
2190 NULL, /* 'u' */
2191 NULL, /* 'v' */
2192 NULL, /* 'w' */
2193 NULL, /* 'x' */
2194 NULL, /* 'y' */
2195 special_sections_z /* 'z' */
2196 };
2197
2198 const struct bfd_elf_special_section *
2199 _bfd_elf_get_special_section (const char *name,
2200 const struct bfd_elf_special_section *spec,
2201 unsigned int rela)
2202 {
2203 int i;
2204 int len;
2205
2206 len = strlen (name);
2207
2208 for (i = 0; spec[i].prefix != NULL; i++)
2209 {
2210 int suffix_len;
2211 int prefix_len = spec[i].prefix_length;
2212
2213 if (len < prefix_len)
2214 continue;
2215 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2216 continue;
2217
2218 suffix_len = spec[i].suffix_length;
2219 if (suffix_len <= 0)
2220 {
2221 if (name[prefix_len] != 0)
2222 {
2223 if (suffix_len == 0)
2224 continue;
2225 if (name[prefix_len] != '.'
2226 && (suffix_len == -2
2227 || (rela && spec[i].type == SHT_REL)))
2228 continue;
2229 }
2230 }
2231 else
2232 {
2233 if (len < prefix_len + suffix_len)
2234 continue;
2235 if (memcmp (name + len - suffix_len,
2236 spec[i].prefix + prefix_len,
2237 suffix_len) != 0)
2238 continue;
2239 }
2240 return &spec[i];
2241 }
2242
2243 return NULL;
2244 }
2245
2246 const struct bfd_elf_special_section *
2247 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2248 {
2249 int i;
2250 const struct bfd_elf_special_section *spec;
2251 const struct elf_backend_data *bed;
2252
2253 /* See if this is one of the special sections. */
2254 if (sec->name == NULL)
2255 return NULL;
2256
2257 bed = get_elf_backend_data (abfd);
2258 spec = bed->special_sections;
2259 if (spec)
2260 {
2261 spec = _bfd_elf_get_special_section (sec->name,
2262 bed->special_sections,
2263 sec->use_rela_p);
2264 if (spec != NULL)
2265 return spec;
2266 }
2267
2268 if (sec->name[0] != '.')
2269 return NULL;
2270
2271 i = sec->name[1] - 'b';
2272 if (i < 0 || i > 'z' - 'b')
2273 return NULL;
2274
2275 spec = special_sections[i];
2276
2277 if (spec == NULL)
2278 return NULL;
2279
2280 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2281 }
2282
2283 bfd_boolean
2284 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2285 {
2286 struct bfd_elf_section_data *sdata;
2287 const struct elf_backend_data *bed;
2288 const struct bfd_elf_special_section *ssect;
2289
2290 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2291 if (sdata == NULL)
2292 {
2293 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd,
2294 sizeof (*sdata));
2295 if (sdata == NULL)
2296 return FALSE;
2297 sec->used_by_bfd = sdata;
2298 }
2299
2300 /* Indicate whether or not this section should use RELA relocations. */
2301 bed = get_elf_backend_data (abfd);
2302 sec->use_rela_p = bed->default_use_rela_p;
2303
2304 /* When we read a file, we don't need to set ELF section type and
2305 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2306 anyway. We will set ELF section type and flags for all linker
2307 created sections. If user specifies BFD section flags, we will
2308 set ELF section type and flags based on BFD section flags in
2309 elf_fake_sections. Special handling for .init_array/.fini_array
2310 output sections since they may contain .ctors/.dtors input
2311 sections. We don't want _bfd_elf_init_private_section_data to
2312 copy ELF section type from .ctors/.dtors input sections. */
2313 if (abfd->direction != read_direction
2314 || (sec->flags & SEC_LINKER_CREATED) != 0)
2315 {
2316 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2317 if (ssect != NULL
2318 && (!sec->flags
2319 || (sec->flags & SEC_LINKER_CREATED) != 0
2320 || ssect->type == SHT_INIT_ARRAY
2321 || ssect->type == SHT_FINI_ARRAY))
2322 {
2323 elf_section_type (sec) = ssect->type;
2324 elf_section_flags (sec) = ssect->attr;
2325 }
2326 }
2327
2328 return _bfd_generic_new_section_hook (abfd, sec);
2329 }
2330
2331 /* Create a new bfd section from an ELF program header.
2332
2333 Since program segments have no names, we generate a synthetic name
2334 of the form segment<NUM>, where NUM is generally the index in the
2335 program header table. For segments that are split (see below) we
2336 generate the names segment<NUM>a and segment<NUM>b.
2337
2338 Note that some program segments may have a file size that is different than
2339 (less than) the memory size. All this means is that at execution the
2340 system must allocate the amount of memory specified by the memory size,
2341 but only initialize it with the first "file size" bytes read from the
2342 file. This would occur for example, with program segments consisting
2343 of combined data+bss.
2344
2345 To handle the above situation, this routine generates TWO bfd sections
2346 for the single program segment. The first has the length specified by
2347 the file size of the segment, and the second has the length specified
2348 by the difference between the two sizes. In effect, the segment is split
2349 into its initialized and uninitialized parts.
2350
2351 */
2352
2353 bfd_boolean
2354 _bfd_elf_make_section_from_phdr (bfd *abfd,
2355 Elf_Internal_Phdr *hdr,
2356 int hdr_index,
2357 const char *type_name)
2358 {
2359 asection *newsect;
2360 char *name;
2361 char namebuf[64];
2362 size_t len;
2363 int split;
2364
2365 split = ((hdr->p_memsz > 0)
2366 && (hdr->p_filesz > 0)
2367 && (hdr->p_memsz > hdr->p_filesz));
2368
2369 if (hdr->p_filesz > 0)
2370 {
2371 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "a" : "");
2372 len = strlen (namebuf) + 1;
2373 name = (char *) bfd_alloc (abfd, len);
2374 if (!name)
2375 return FALSE;
2376 memcpy (name, namebuf, len);
2377 newsect = bfd_make_section (abfd, name);
2378 if (newsect == NULL)
2379 return FALSE;
2380 newsect->vma = hdr->p_vaddr;
2381 newsect->lma = hdr->p_paddr;
2382 newsect->size = hdr->p_filesz;
2383 newsect->filepos = hdr->p_offset;
2384 newsect->flags |= SEC_HAS_CONTENTS;
2385 newsect->alignment_power = bfd_log2 (hdr->p_align);
2386 if (hdr->p_type == PT_LOAD)
2387 {
2388 newsect->flags |= SEC_ALLOC;
2389 newsect->flags |= SEC_LOAD;
2390 if (hdr->p_flags & PF_X)
2391 {
2392 /* FIXME: all we known is that it has execute PERMISSION,
2393 may be data. */
2394 newsect->flags |= SEC_CODE;
2395 }
2396 }
2397 if (!(hdr->p_flags & PF_W))
2398 {
2399 newsect->flags |= SEC_READONLY;
2400 }
2401 }
2402
2403 if (hdr->p_memsz > hdr->p_filesz)
2404 {
2405 bfd_vma align;
2406
2407 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "b" : "");
2408 len = strlen (namebuf) + 1;
2409 name = (char *) bfd_alloc (abfd, len);
2410 if (!name)
2411 return FALSE;
2412 memcpy (name, namebuf, len);
2413 newsect = bfd_make_section (abfd, name);
2414 if (newsect == NULL)
2415 return FALSE;
2416 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2417 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2418 newsect->size = hdr->p_memsz - hdr->p_filesz;
2419 newsect->filepos = hdr->p_offset + hdr->p_filesz;
2420 align = newsect->vma & -newsect->vma;
2421 if (align == 0 || align > hdr->p_align)
2422 align = hdr->p_align;
2423 newsect->alignment_power = bfd_log2 (align);
2424 if (hdr->p_type == PT_LOAD)
2425 {
2426 /* Hack for gdb. Segments that have not been modified do
2427 not have their contents written to a core file, on the
2428 assumption that a debugger can find the contents in the
2429 executable. We flag this case by setting the fake
2430 section size to zero. Note that "real" bss sections will
2431 always have their contents dumped to the core file. */
2432 if (bfd_get_format (abfd) == bfd_core)
2433 newsect->size = 0;
2434 newsect->flags |= SEC_ALLOC;
2435 if (hdr->p_flags & PF_X)
2436 newsect->flags |= SEC_CODE;
2437 }
2438 if (!(hdr->p_flags & PF_W))
2439 newsect->flags |= SEC_READONLY;
2440 }
2441
2442 return TRUE;
2443 }
2444
2445 bfd_boolean
2446 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int hdr_index)
2447 {
2448 const struct elf_backend_data *bed;
2449
2450 switch (hdr->p_type)
2451 {
2452 case PT_NULL:
2453 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "null");
2454
2455 case PT_LOAD:
2456 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "load");
2457
2458 case PT_DYNAMIC:
2459 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "dynamic");
2460
2461 case PT_INTERP:
2462 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "interp");
2463
2464 case PT_NOTE:
2465 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "note"))
2466 return FALSE;
2467 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2468 return FALSE;
2469 return TRUE;
2470
2471 case PT_SHLIB:
2472 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "shlib");
2473
2474 case PT_PHDR:
2475 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "phdr");
2476
2477 case PT_GNU_EH_FRAME:
2478 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index,
2479 "eh_frame_hdr");
2480
2481 case PT_GNU_STACK:
2482 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "stack");
2483
2484 case PT_GNU_RELRO:
2485 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "relro");
2486
2487 default:
2488 /* Check for any processor-specific program segment types. */
2489 bed = get_elf_backend_data (abfd);
2490 return bed->elf_backend_section_from_phdr (abfd, hdr, hdr_index, "proc");
2491 }
2492 }
2493
2494 /* Return the REL_HDR for SEC, assuming there is only a single one, either
2495 REL or RELA. */
2496
2497 Elf_Internal_Shdr *
2498 _bfd_elf_single_rel_hdr (asection *sec)
2499 {
2500 if (elf_section_data (sec)->rel.hdr)
2501 {
2502 BFD_ASSERT (elf_section_data (sec)->rela.hdr == NULL);
2503 return elf_section_data (sec)->rel.hdr;
2504 }
2505 else
2506 return elf_section_data (sec)->rela.hdr;
2507 }
2508
2509 /* Allocate and initialize a section-header for a new reloc section,
2510 containing relocations against ASECT. It is stored in RELDATA. If
2511 USE_RELA_P is TRUE, we use RELA relocations; otherwise, we use REL
2512 relocations. */
2513
2514 bfd_boolean
2515 _bfd_elf_init_reloc_shdr (bfd *abfd,
2516 struct bfd_elf_section_reloc_data *reldata,
2517 asection *asect,
2518 bfd_boolean use_rela_p)
2519 {
2520 Elf_Internal_Shdr *rel_hdr;
2521 char *name;
2522 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2523 bfd_size_type amt;
2524
2525 amt = sizeof (Elf_Internal_Shdr);
2526 BFD_ASSERT (reldata->hdr == NULL);
2527 rel_hdr = bfd_zalloc (abfd, amt);
2528 reldata->hdr = rel_hdr;
2529
2530 amt = sizeof ".rela" + strlen (asect->name);
2531 name = (char *) bfd_alloc (abfd, amt);
2532 if (name == NULL)
2533 return FALSE;
2534 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2535 rel_hdr->sh_name =
2536 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2537 FALSE);
2538 if (rel_hdr->sh_name == (unsigned int) -1)
2539 return FALSE;
2540 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2541 rel_hdr->sh_entsize = (use_rela_p
2542 ? bed->s->sizeof_rela
2543 : bed->s->sizeof_rel);
2544 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
2545 rel_hdr->sh_flags = 0;
2546 rel_hdr->sh_addr = 0;
2547 rel_hdr->sh_size = 0;
2548 rel_hdr->sh_offset = 0;
2549
2550 return TRUE;
2551 }
2552
2553 /* Return the default section type based on the passed in section flags. */
2554
2555 int
2556 bfd_elf_get_default_section_type (flagword flags)
2557 {
2558 if ((flags & SEC_ALLOC) != 0
2559 && (flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2560 return SHT_NOBITS;
2561 return SHT_PROGBITS;
2562 }
2563
2564 struct fake_section_arg
2565 {
2566 struct bfd_link_info *link_info;
2567 bfd_boolean failed;
2568 };
2569
2570 /* Set up an ELF internal section header for a section. */
2571
2572 static void
2573 elf_fake_sections (bfd *abfd, asection *asect, void *fsarg)
2574 {
2575 struct fake_section_arg *arg = (struct fake_section_arg *)fsarg;
2576 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2577 struct bfd_elf_section_data *esd = elf_section_data (asect);
2578 Elf_Internal_Shdr *this_hdr;
2579 unsigned int sh_type;
2580
2581 if (arg->failed)
2582 {
2583 /* We already failed; just get out of the bfd_map_over_sections
2584 loop. */
2585 return;
2586 }
2587
2588 this_hdr = &esd->this_hdr;
2589
2590 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2591 asect->name, FALSE);
2592 if (this_hdr->sh_name == (unsigned int) -1)
2593 {
2594 arg->failed = TRUE;
2595 return;
2596 }
2597
2598 /* Don't clear sh_flags. Assembler may set additional bits. */
2599
2600 if ((asect->flags & SEC_ALLOC) != 0
2601 || asect->user_set_vma)
2602 this_hdr->sh_addr = asect->vma;
2603 else
2604 this_hdr->sh_addr = 0;
2605
2606 this_hdr->sh_offset = 0;
2607 this_hdr->sh_size = asect->size;
2608 this_hdr->sh_link = 0;
2609 this_hdr->sh_addralign = (bfd_vma) 1 << asect->alignment_power;
2610 /* The sh_entsize and sh_info fields may have been set already by
2611 copy_private_section_data. */
2612
2613 this_hdr->bfd_section = asect;
2614 this_hdr->contents = NULL;
2615
2616 /* If the section type is unspecified, we set it based on
2617 asect->flags. */
2618 if ((asect->flags & SEC_GROUP) != 0)
2619 sh_type = SHT_GROUP;
2620 else
2621 sh_type = bfd_elf_get_default_section_type (asect->flags);
2622
2623 if (this_hdr->sh_type == SHT_NULL)
2624 this_hdr->sh_type = sh_type;
2625 else if (this_hdr->sh_type == SHT_NOBITS
2626 && sh_type == SHT_PROGBITS
2627 && (asect->flags & SEC_ALLOC) != 0)
2628 {
2629 /* Warn if we are changing a NOBITS section to PROGBITS, but
2630 allow the link to proceed. This can happen when users link
2631 non-bss input sections to bss output sections, or emit data
2632 to a bss output section via a linker script. */
2633 (*_bfd_error_handler)
2634 (_("warning: section `%A' type changed to PROGBITS"), asect);
2635 this_hdr->sh_type = sh_type;
2636 }
2637
2638 switch (this_hdr->sh_type)
2639 {
2640 default:
2641 break;
2642
2643 case SHT_STRTAB:
2644 case SHT_INIT_ARRAY:
2645 case SHT_FINI_ARRAY:
2646 case SHT_PREINIT_ARRAY:
2647 case SHT_NOTE:
2648 case SHT_NOBITS:
2649 case SHT_PROGBITS:
2650 break;
2651
2652 case SHT_HASH:
2653 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2654 break;
2655
2656 case SHT_DYNSYM:
2657 this_hdr->sh_entsize = bed->s->sizeof_sym;
2658 break;
2659
2660 case SHT_DYNAMIC:
2661 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2662 break;
2663
2664 case SHT_RELA:
2665 if (get_elf_backend_data (abfd)->may_use_rela_p)
2666 this_hdr->sh_entsize = bed->s->sizeof_rela;
2667 break;
2668
2669 case SHT_REL:
2670 if (get_elf_backend_data (abfd)->may_use_rel_p)
2671 this_hdr->sh_entsize = bed->s->sizeof_rel;
2672 break;
2673
2674 case SHT_GNU_versym:
2675 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2676 break;
2677
2678 case SHT_GNU_verdef:
2679 this_hdr->sh_entsize = 0;
2680 /* objcopy or strip will copy over sh_info, but may not set
2681 cverdefs. The linker will set cverdefs, but sh_info will be
2682 zero. */
2683 if (this_hdr->sh_info == 0)
2684 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2685 else
2686 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2687 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2688 break;
2689
2690 case SHT_GNU_verneed:
2691 this_hdr->sh_entsize = 0;
2692 /* objcopy or strip will copy over sh_info, but may not set
2693 cverrefs. The linker will set cverrefs, but sh_info will be
2694 zero. */
2695 if (this_hdr->sh_info == 0)
2696 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2697 else
2698 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2699 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2700 break;
2701
2702 case SHT_GROUP:
2703 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
2704 break;
2705
2706 case SHT_GNU_HASH:
2707 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
2708 break;
2709 }
2710
2711 if ((asect->flags & SEC_ALLOC) != 0)
2712 this_hdr->sh_flags |= SHF_ALLOC;
2713 if ((asect->flags & SEC_READONLY) == 0)
2714 this_hdr->sh_flags |= SHF_WRITE;
2715 if ((asect->flags & SEC_CODE) != 0)
2716 this_hdr->sh_flags |= SHF_EXECINSTR;
2717 if ((asect->flags & SEC_MERGE) != 0)
2718 {
2719 this_hdr->sh_flags |= SHF_MERGE;
2720 this_hdr->sh_entsize = asect->entsize;
2721 if ((asect->flags & SEC_STRINGS) != 0)
2722 this_hdr->sh_flags |= SHF_STRINGS;
2723 }
2724 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2725 this_hdr->sh_flags |= SHF_GROUP;
2726 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2727 {
2728 this_hdr->sh_flags |= SHF_TLS;
2729 if (asect->size == 0
2730 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2731 {
2732 struct bfd_link_order *o = asect->map_tail.link_order;
2733
2734 this_hdr->sh_size = 0;
2735 if (o != NULL)
2736 {
2737 this_hdr->sh_size = o->offset + o->size;
2738 if (this_hdr->sh_size != 0)
2739 this_hdr->sh_type = SHT_NOBITS;
2740 }
2741 }
2742 }
2743 if ((asect->flags & (SEC_GROUP | SEC_EXCLUDE)) == SEC_EXCLUDE)
2744 this_hdr->sh_flags |= SHF_EXCLUDE;
2745
2746 /* If the section has relocs, set up a section header for the
2747 SHT_REL[A] section. If two relocation sections are required for
2748 this section, it is up to the processor-specific back-end to
2749 create the other. */
2750 if ((asect->flags & SEC_RELOC) != 0)
2751 {
2752 /* When doing a relocatable link, create both REL and RELA sections if
2753 needed. */
2754 if (arg->link_info
2755 /* Do the normal setup if we wouldn't create any sections here. */
2756 && esd->rel.count + esd->rela.count > 0
2757 && (arg->link_info->relocatable || arg->link_info->emitrelocations))
2758 {
2759 if (esd->rel.count && esd->rel.hdr == NULL
2760 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rel, asect, FALSE))
2761 {
2762 arg->failed = TRUE;
2763 return;
2764 }
2765 if (esd->rela.count && esd->rela.hdr == NULL
2766 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rela, asect, TRUE))
2767 {
2768 arg->failed = TRUE;
2769 return;
2770 }
2771 }
2772 else if (!_bfd_elf_init_reloc_shdr (abfd,
2773 (asect->use_rela_p
2774 ? &esd->rela : &esd->rel),
2775 asect,
2776 asect->use_rela_p))
2777 arg->failed = TRUE;
2778 }
2779
2780 /* Check for processor-specific section types. */
2781 sh_type = this_hdr->sh_type;
2782 if (bed->elf_backend_fake_sections
2783 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2784 arg->failed = TRUE;
2785
2786 if (sh_type == SHT_NOBITS && asect->size != 0)
2787 {
2788 /* Don't change the header type from NOBITS if we are being
2789 called for objcopy --only-keep-debug. */
2790 this_hdr->sh_type = sh_type;
2791 }
2792 }
2793
2794 /* Fill in the contents of a SHT_GROUP section. Called from
2795 _bfd_elf_compute_section_file_positions for gas, objcopy, and
2796 when ELF targets use the generic linker, ld. Called for ld -r
2797 from bfd_elf_final_link. */
2798
2799 void
2800 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2801 {
2802 bfd_boolean *failedptr = (bfd_boolean *) failedptrarg;
2803 asection *elt, *first;
2804 unsigned char *loc;
2805 bfd_boolean gas;
2806
2807 /* Ignore linker created group section. See elfNN_ia64_object_p in
2808 elfxx-ia64.c. */
2809 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
2810 || *failedptr)
2811 return;
2812
2813 if (elf_section_data (sec)->this_hdr.sh_info == 0)
2814 {
2815 unsigned long symindx = 0;
2816
2817 /* elf_group_id will have been set up by objcopy and the
2818 generic linker. */
2819 if (elf_group_id (sec) != NULL)
2820 symindx = elf_group_id (sec)->udata.i;
2821
2822 if (symindx == 0)
2823 {
2824 /* If called from the assembler, swap_out_syms will have set up
2825 elf_section_syms. */
2826 BFD_ASSERT (elf_section_syms (abfd) != NULL);
2827 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2828 }
2829 elf_section_data (sec)->this_hdr.sh_info = symindx;
2830 }
2831 else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2)
2832 {
2833 /* The ELF backend linker sets sh_info to -2 when the group
2834 signature symbol is global, and thus the index can't be
2835 set until all local symbols are output. */
2836 asection *igroup = elf_sec_group (elf_next_in_group (sec));
2837 struct bfd_elf_section_data *sec_data = elf_section_data (igroup);
2838 unsigned long symndx = sec_data->this_hdr.sh_info;
2839 unsigned long extsymoff = 0;
2840 struct elf_link_hash_entry *h;
2841
2842 if (!elf_bad_symtab (igroup->owner))
2843 {
2844 Elf_Internal_Shdr *symtab_hdr;
2845
2846 symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr;
2847 extsymoff = symtab_hdr->sh_info;
2848 }
2849 h = elf_sym_hashes (igroup->owner)[symndx - extsymoff];
2850 while (h->root.type == bfd_link_hash_indirect
2851 || h->root.type == bfd_link_hash_warning)
2852 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2853
2854 elf_section_data (sec)->this_hdr.sh_info = h->indx;
2855 }
2856
2857 /* The contents won't be allocated for "ld -r" or objcopy. */
2858 gas = TRUE;
2859 if (sec->contents == NULL)
2860 {
2861 gas = FALSE;
2862 sec->contents = (unsigned char *) bfd_alloc (abfd, sec->size);
2863
2864 /* Arrange for the section to be written out. */
2865 elf_section_data (sec)->this_hdr.contents = sec->contents;
2866 if (sec->contents == NULL)
2867 {
2868 *failedptr = TRUE;
2869 return;
2870 }
2871 }
2872
2873 loc = sec->contents + sec->size;
2874
2875 /* Get the pointer to the first section in the group that gas
2876 squirreled away here. objcopy arranges for this to be set to the
2877 start of the input section group. */
2878 first = elt = elf_next_in_group (sec);
2879
2880 /* First element is a flag word. Rest of section is elf section
2881 indices for all the sections of the group. Write them backwards
2882 just to keep the group in the same order as given in .section
2883 directives, not that it matters. */
2884 while (elt != NULL)
2885 {
2886 asection *s;
2887
2888 s = elt;
2889 if (!gas)
2890 s = s->output_section;
2891 if (s != NULL
2892 && !bfd_is_abs_section (s))
2893 {
2894 unsigned int idx = elf_section_data (s)->this_idx;
2895
2896 loc -= 4;
2897 H_PUT_32 (abfd, idx, loc);
2898 }
2899 elt = elf_next_in_group (elt);
2900 if (elt == first)
2901 break;
2902 }
2903
2904 if ((loc -= 4) != sec->contents)
2905 abort ();
2906
2907 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2908 }
2909
2910 /* Assign all ELF section numbers. The dummy first section is handled here
2911 too. The link/info pointers for the standard section types are filled
2912 in here too, while we're at it. */
2913
2914 static bfd_boolean
2915 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
2916 {
2917 struct elf_obj_tdata *t = elf_tdata (abfd);
2918 asection *sec;
2919 unsigned int section_number, secn;
2920 Elf_Internal_Shdr **i_shdrp;
2921 struct bfd_elf_section_data *d;
2922 bfd_boolean need_symtab;
2923
2924 section_number = 1;
2925
2926 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2927
2928 /* SHT_GROUP sections are in relocatable files only. */
2929 if (link_info == NULL || link_info->relocatable)
2930 {
2931 /* Put SHT_GROUP sections first. */
2932 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2933 {
2934 d = elf_section_data (sec);
2935
2936 if (d->this_hdr.sh_type == SHT_GROUP)
2937 {
2938 if (sec->flags & SEC_LINKER_CREATED)
2939 {
2940 /* Remove the linker created SHT_GROUP sections. */
2941 bfd_section_list_remove (abfd, sec);
2942 abfd->section_count--;
2943 }
2944 else
2945 d->this_idx = section_number++;
2946 }
2947 }
2948 }
2949
2950 for (sec = abfd->sections; sec; sec = sec->next)
2951 {
2952 d = elf_section_data (sec);
2953
2954 if (d->this_hdr.sh_type != SHT_GROUP)
2955 d->this_idx = section_number++;
2956 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
2957 if (d->rel.hdr)
2958 {
2959 d->rel.idx = section_number++;
2960 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel.hdr->sh_name);
2961 }
2962 else
2963 d->rel.idx = 0;
2964
2965 if (d->rela.hdr)
2966 {
2967 d->rela.idx = section_number++;
2968 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rela.hdr->sh_name);
2969 }
2970 else
2971 d->rela.idx = 0;
2972 }
2973
2974 t->shstrtab_section = section_number++;
2975 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
2976 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
2977
2978 need_symtab = (bfd_get_symcount (abfd) > 0
2979 || (link_info == NULL
2980 && ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
2981 == HAS_RELOC)));
2982 if (need_symtab)
2983 {
2984 t->symtab_section = section_number++;
2985 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
2986 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
2987 {
2988 t->symtab_shndx_section = section_number++;
2989 t->symtab_shndx_hdr.sh_name
2990 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2991 ".symtab_shndx", FALSE);
2992 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
2993 return FALSE;
2994 }
2995 t->strtab_section = section_number++;
2996 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
2997 }
2998
2999 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
3000 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3001
3002 elf_numsections (abfd) = section_number;
3003 elf_elfheader (abfd)->e_shnum = section_number;
3004
3005 /* Set up the list of section header pointers, in agreement with the
3006 indices. */
3007 i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc2 (abfd, section_number,
3008 sizeof (Elf_Internal_Shdr *));
3009 if (i_shdrp == NULL)
3010 return FALSE;
3011
3012 i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd,
3013 sizeof (Elf_Internal_Shdr));
3014 if (i_shdrp[0] == NULL)
3015 {
3016 bfd_release (abfd, i_shdrp);
3017 return FALSE;
3018 }
3019
3020 elf_elfsections (abfd) = i_shdrp;
3021
3022 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
3023 if (need_symtab)
3024 {
3025 i_shdrp[t->symtab_section] = &t->symtab_hdr;
3026 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
3027 {
3028 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
3029 t->symtab_shndx_hdr.sh_link = t->symtab_section;
3030 }
3031 i_shdrp[t->strtab_section] = &t->strtab_hdr;
3032 t->symtab_hdr.sh_link = t->strtab_section;
3033 }
3034
3035 for (sec = abfd->sections; sec; sec = sec->next)
3036 {
3037 asection *s;
3038 const char *name;
3039
3040 d = elf_section_data (sec);
3041
3042 i_shdrp[d->this_idx] = &d->this_hdr;
3043 if (d->rel.idx != 0)
3044 i_shdrp[d->rel.idx] = d->rel.hdr;
3045 if (d->rela.idx != 0)
3046 i_shdrp[d->rela.idx] = d->rela.hdr;
3047
3048 /* Fill in the sh_link and sh_info fields while we're at it. */
3049
3050 /* sh_link of a reloc section is the section index of the symbol
3051 table. sh_info is the section index of the section to which
3052 the relocation entries apply. */
3053 if (d->rel.idx != 0)
3054 {
3055 d->rel.hdr->sh_link = t->symtab_section;
3056 d->rel.hdr->sh_info = d->this_idx;
3057 }
3058 if (d->rela.idx != 0)
3059 {
3060 d->rela.hdr->sh_link = t->symtab_section;
3061 d->rela.hdr->sh_info = d->this_idx;
3062 }
3063
3064 /* We need to set up sh_link for SHF_LINK_ORDER. */
3065 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3066 {
3067 s = elf_linked_to_section (sec);
3068 if (s)
3069 {
3070 /* elf_linked_to_section points to the input section. */
3071 if (link_info != NULL)
3072 {
3073 /* Check discarded linkonce section. */
3074 if (discarded_section (s))
3075 {
3076 asection *kept;
3077 (*_bfd_error_handler)
3078 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
3079 abfd, d->this_hdr.bfd_section,
3080 s, s->owner);
3081 /* Point to the kept section if it has the same
3082 size as the discarded one. */
3083 kept = _bfd_elf_check_kept_section (s, link_info);
3084 if (kept == NULL)
3085 {
3086 bfd_set_error (bfd_error_bad_value);
3087 return FALSE;
3088 }
3089 s = kept;
3090 }
3091
3092 s = s->output_section;
3093 BFD_ASSERT (s != NULL);
3094 }
3095 else
3096 {
3097 /* Handle objcopy. */
3098 if (s->output_section == NULL)
3099 {
3100 (*_bfd_error_handler)
3101 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
3102 abfd, d->this_hdr.bfd_section, s, s->owner);
3103 bfd_set_error (bfd_error_bad_value);
3104 return FALSE;
3105 }
3106 s = s->output_section;
3107 }
3108 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3109 }
3110 else
3111 {
3112 /* PR 290:
3113 The Intel C compiler generates SHT_IA_64_UNWIND with
3114 SHF_LINK_ORDER. But it doesn't set the sh_link or
3115 sh_info fields. Hence we could get the situation
3116 where s is NULL. */
3117 const struct elf_backend_data *bed
3118 = get_elf_backend_data (abfd);
3119 if (bed->link_order_error_handler)
3120 bed->link_order_error_handler
3121 (_("%B: warning: sh_link not set for section `%A'"),
3122 abfd, sec);
3123 }
3124 }
3125
3126 switch (d->this_hdr.sh_type)
3127 {
3128 case SHT_REL:
3129 case SHT_RELA:
3130 /* A reloc section which we are treating as a normal BFD
3131 section. sh_link is the section index of the symbol
3132 table. sh_info is the section index of the section to
3133 which the relocation entries apply. We assume that an
3134 allocated reloc section uses the dynamic symbol table.
3135 FIXME: How can we be sure? */
3136 s = bfd_get_section_by_name (abfd, ".dynsym");
3137 if (s != NULL)
3138 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3139
3140 /* We look up the section the relocs apply to by name. */
3141 name = sec->name;
3142 if (d->this_hdr.sh_type == SHT_REL)
3143 name += 4;
3144 else
3145 name += 5;
3146 s = bfd_get_section_by_name (abfd, name);
3147 if (s != NULL)
3148 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3149 break;
3150
3151 case SHT_STRTAB:
3152 /* We assume that a section named .stab*str is a stabs
3153 string section. We look for a section with the same name
3154 but without the trailing ``str'', and set its sh_link
3155 field to point to this section. */
3156 if (CONST_STRNEQ (sec->name, ".stab")
3157 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3158 {
3159 size_t len;
3160 char *alc;
3161
3162 len = strlen (sec->name);
3163 alc = (char *) bfd_malloc (len - 2);
3164 if (alc == NULL)
3165 return FALSE;
3166 memcpy (alc, sec->name, len - 3);
3167 alc[len - 3] = '\0';
3168 s = bfd_get_section_by_name (abfd, alc);
3169 free (alc);
3170 if (s != NULL)
3171 {
3172 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3173
3174 /* This is a .stab section. */
3175 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3176 elf_section_data (s)->this_hdr.sh_entsize
3177 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3178 }
3179 }
3180 break;
3181
3182 case SHT_DYNAMIC:
3183 case SHT_DYNSYM:
3184 case SHT_GNU_verneed:
3185 case SHT_GNU_verdef:
3186 /* sh_link is the section header index of the string table
3187 used for the dynamic entries, or the symbol table, or the
3188 version strings. */
3189 s = bfd_get_section_by_name (abfd, ".dynstr");
3190 if (s != NULL)
3191 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3192 break;
3193
3194 case SHT_GNU_LIBLIST:
3195 /* sh_link is the section header index of the prelink library
3196 list used for the dynamic entries, or the symbol table, or
3197 the version strings. */
3198 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3199 ? ".dynstr" : ".gnu.libstr");
3200 if (s != NULL)
3201 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3202 break;
3203
3204 case SHT_HASH:
3205 case SHT_GNU_HASH:
3206 case SHT_GNU_versym:
3207 /* sh_link is the section header index of the symbol table
3208 this hash table or version table is for. */
3209 s = bfd_get_section_by_name (abfd, ".dynsym");
3210 if (s != NULL)
3211 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3212 break;
3213
3214 case SHT_GROUP:
3215 d->this_hdr.sh_link = t->symtab_section;
3216 }
3217 }
3218
3219 for (secn = 1; secn < section_number; ++secn)
3220 if (i_shdrp[secn] == NULL)
3221 i_shdrp[secn] = i_shdrp[0];
3222 else
3223 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
3224 i_shdrp[secn]->sh_name);
3225 return TRUE;
3226 }
3227
3228 /* Map symbol from it's internal number to the external number, moving
3229 all local symbols to be at the head of the list. */
3230
3231 static bfd_boolean
3232 sym_is_global (bfd *abfd, asymbol *sym)
3233 {
3234 /* If the backend has a special mapping, use it. */
3235 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3236 if (bed->elf_backend_sym_is_global)
3237 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3238
3239 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0
3240 || bfd_is_und_section (bfd_get_section (sym))
3241 || bfd_is_com_section (bfd_get_section (sym)));
3242 }
3243
3244 /* Don't output section symbols for sections that are not going to be
3245 output. */
3246
3247 static bfd_boolean
3248 ignore_section_sym (bfd *abfd, asymbol *sym)
3249 {
3250 return ((sym->flags & BSF_SECTION_SYM) != 0
3251 && !(sym->section->owner == abfd
3252 || (sym->section->output_section->owner == abfd
3253 && sym->section->output_offset == 0)));
3254 }
3255
3256 static bfd_boolean
3257 elf_map_symbols (bfd *abfd)
3258 {
3259 unsigned int symcount = bfd_get_symcount (abfd);
3260 asymbol **syms = bfd_get_outsymbols (abfd);
3261 asymbol **sect_syms;
3262 unsigned int num_locals = 0;
3263 unsigned int num_globals = 0;
3264 unsigned int num_locals2 = 0;
3265 unsigned int num_globals2 = 0;
3266 int max_index = 0;
3267 unsigned int idx;
3268 asection *asect;
3269 asymbol **new_syms;
3270
3271 #ifdef DEBUG
3272 fprintf (stderr, "elf_map_symbols\n");
3273 fflush (stderr);
3274 #endif
3275
3276 for (asect = abfd->sections; asect; asect = asect->next)
3277 {
3278 if (max_index < asect->index)
3279 max_index = asect->index;
3280 }
3281
3282 max_index++;
3283 sect_syms = (asymbol **) bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
3284 if (sect_syms == NULL)
3285 return FALSE;
3286 elf_section_syms (abfd) = sect_syms;
3287 elf_num_section_syms (abfd) = max_index;
3288
3289 /* Init sect_syms entries for any section symbols we have already
3290 decided to output. */
3291 for (idx = 0; idx < symcount; idx++)
3292 {
3293 asymbol *sym = syms[idx];
3294
3295 if ((sym->flags & BSF_SECTION_SYM) != 0
3296 && sym->value == 0
3297 && !ignore_section_sym (abfd, sym))
3298 {
3299 asection *sec = sym->section;
3300
3301 if (sec->owner != abfd)
3302 sec = sec->output_section;
3303
3304 sect_syms[sec->index] = syms[idx];
3305 }
3306 }
3307
3308 /* Classify all of the symbols. */
3309 for (idx = 0; idx < symcount; idx++)
3310 {
3311 if (ignore_section_sym (abfd, syms[idx]))
3312 continue;
3313 if (!sym_is_global (abfd, syms[idx]))
3314 num_locals++;
3315 else
3316 num_globals++;
3317 }
3318
3319 /* We will be adding a section symbol for each normal BFD section. Most
3320 sections will already have a section symbol in outsymbols, but
3321 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3322 at least in that case. */
3323 for (asect = abfd->sections; asect; asect = asect->next)
3324 {
3325 if (sect_syms[asect->index] == NULL)
3326 {
3327 if (!sym_is_global (abfd, asect->symbol))
3328 num_locals++;
3329 else
3330 num_globals++;
3331 }
3332 }
3333
3334 /* Now sort the symbols so the local symbols are first. */
3335 new_syms = (asymbol **) bfd_alloc2 (abfd, num_locals + num_globals,
3336 sizeof (asymbol *));
3337
3338 if (new_syms == NULL)
3339 return FALSE;
3340
3341 for (idx = 0; idx < symcount; idx++)
3342 {
3343 asymbol *sym = syms[idx];
3344 unsigned int i;
3345
3346 if (ignore_section_sym (abfd, sym))
3347 continue;
3348 if (!sym_is_global (abfd, sym))
3349 i = num_locals2++;
3350 else
3351 i = num_locals + num_globals2++;
3352 new_syms[i] = sym;
3353 sym->udata.i = i + 1;
3354 }
3355 for (asect = abfd->sections; asect; asect = asect->next)
3356 {
3357 if (sect_syms[asect->index] == NULL)
3358 {
3359 asymbol *sym = asect->symbol;
3360 unsigned int i;
3361
3362 sect_syms[asect->index] = sym;
3363 if (!sym_is_global (abfd, sym))
3364 i = num_locals2++;
3365 else
3366 i = num_locals + num_globals2++;
3367 new_syms[i] = sym;
3368 sym->udata.i = i + 1;
3369 }
3370 }
3371
3372 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3373
3374 elf_num_locals (abfd) = num_locals;
3375 elf_num_globals (abfd) = num_globals;
3376 return TRUE;
3377 }
3378
3379 /* Align to the maximum file alignment that could be required for any
3380 ELF data structure. */
3381
3382 static inline file_ptr
3383 align_file_position (file_ptr off, int align)
3384 {
3385 return (off + align - 1) & ~(align - 1);
3386 }
3387
3388 /* Assign a file position to a section, optionally aligning to the
3389 required section alignment. */
3390
3391 file_ptr
3392 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3393 file_ptr offset,
3394 bfd_boolean align)
3395 {
3396 if (align && i_shdrp->sh_addralign > 1)
3397 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
3398 i_shdrp->sh_offset = offset;
3399 if (i_shdrp->bfd_section != NULL)
3400 i_shdrp->bfd_section->filepos = offset;
3401 if (i_shdrp->sh_type != SHT_NOBITS)
3402 offset += i_shdrp->sh_size;
3403 return offset;
3404 }
3405
3406 /* Compute the file positions we are going to put the sections at, and
3407 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3408 is not NULL, this is being called by the ELF backend linker. */
3409
3410 bfd_boolean
3411 _bfd_elf_compute_section_file_positions (bfd *abfd,
3412 struct bfd_link_info *link_info)
3413 {
3414 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3415 struct fake_section_arg fsargs;
3416 bfd_boolean failed;
3417 struct bfd_strtab_hash *strtab = NULL;
3418 Elf_Internal_Shdr *shstrtab_hdr;
3419 bfd_boolean need_symtab;
3420
3421 if (abfd->output_has_begun)
3422 return TRUE;
3423
3424 /* Do any elf backend specific processing first. */
3425 if (bed->elf_backend_begin_write_processing)
3426 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3427
3428 if (! prep_headers (abfd))
3429 return FALSE;
3430
3431 /* Post process the headers if necessary. */
3432 if (bed->elf_backend_post_process_headers)
3433 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3434
3435 fsargs.failed = FALSE;
3436 fsargs.link_info = link_info;
3437 bfd_map_over_sections (abfd, elf_fake_sections, &fsargs);
3438 if (fsargs.failed)
3439 return FALSE;
3440
3441 if (!assign_section_numbers (abfd, link_info))
3442 return FALSE;
3443
3444 /* The backend linker builds symbol table information itself. */
3445 need_symtab = (link_info == NULL
3446 && (bfd_get_symcount (abfd) > 0
3447 || ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
3448 == HAS_RELOC)));
3449 if (need_symtab)
3450 {
3451 /* Non-zero if doing a relocatable link. */
3452 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3453
3454 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3455 return FALSE;
3456 }
3457
3458 failed = FALSE;
3459 if (link_info == NULL)
3460 {
3461 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3462 if (failed)
3463 return FALSE;
3464 }
3465
3466 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3467 /* sh_name was set in prep_headers. */
3468 shstrtab_hdr->sh_type = SHT_STRTAB;
3469 shstrtab_hdr->sh_flags = 0;
3470 shstrtab_hdr->sh_addr = 0;
3471 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3472 shstrtab_hdr->sh_entsize = 0;
3473 shstrtab_hdr->sh_link = 0;
3474 shstrtab_hdr->sh_info = 0;
3475 /* sh_offset is set in assign_file_positions_except_relocs. */
3476 shstrtab_hdr->sh_addralign = 1;
3477
3478 if (!assign_file_positions_except_relocs (abfd, link_info))
3479 return FALSE;
3480
3481 if (need_symtab)
3482 {
3483 file_ptr off;
3484 Elf_Internal_Shdr *hdr;
3485
3486 off = elf_tdata (abfd)->next_file_pos;
3487
3488 hdr = &elf_tdata (abfd)->symtab_hdr;
3489 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3490
3491 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3492 if (hdr->sh_size != 0)
3493 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3494
3495 hdr = &elf_tdata (abfd)->strtab_hdr;
3496 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3497
3498 elf_tdata (abfd)->next_file_pos = off;
3499
3500 /* Now that we know where the .strtab section goes, write it
3501 out. */
3502 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3503 || ! _bfd_stringtab_emit (abfd, strtab))
3504 return FALSE;
3505 _bfd_stringtab_free (strtab);
3506 }
3507
3508 abfd->output_has_begun = TRUE;
3509
3510 return TRUE;
3511 }
3512
3513 /* Make an initial estimate of the size of the program header. If we
3514 get the number wrong here, we'll redo section placement. */
3515
3516 static bfd_size_type
3517 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
3518 {
3519 size_t segs;
3520 asection *s;
3521 const struct elf_backend_data *bed;
3522
3523 /* Assume we will need exactly two PT_LOAD segments: one for text
3524 and one for data. */
3525 segs = 2;
3526
3527 s = bfd_get_section_by_name (abfd, ".interp");
3528 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3529 {
3530 /* If we have a loadable interpreter section, we need a
3531 PT_INTERP segment. In this case, assume we also need a
3532 PT_PHDR segment, although that may not be true for all
3533 targets. */
3534 segs += 2;
3535 }
3536
3537 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
3538 {
3539 /* We need a PT_DYNAMIC segment. */
3540 ++segs;
3541 }
3542
3543 if (info != NULL && info->relro)
3544 {
3545 /* We need a PT_GNU_RELRO segment. */
3546 ++segs;
3547 }
3548
3549 if (elf_tdata (abfd)->eh_frame_hdr)
3550 {
3551 /* We need a PT_GNU_EH_FRAME segment. */
3552 ++segs;
3553 }
3554
3555 if (elf_tdata (abfd)->stack_flags)
3556 {
3557 /* We need a PT_GNU_STACK segment. */
3558 ++segs;
3559 }
3560
3561 for (s = abfd->sections; s != NULL; s = s->next)
3562 {
3563 if ((s->flags & SEC_LOAD) != 0
3564 && CONST_STRNEQ (s->name, ".note"))
3565 {
3566 /* We need a PT_NOTE segment. */
3567 ++segs;
3568 /* Try to create just one PT_NOTE segment
3569 for all adjacent loadable .note* sections.
3570 gABI requires that within a PT_NOTE segment
3571 (and also inside of each SHT_NOTE section)
3572 each note is padded to a multiple of 4 size,
3573 so we check whether the sections are correctly
3574 aligned. */
3575 if (s->alignment_power == 2)
3576 while (s->next != NULL
3577 && s->next->alignment_power == 2
3578 && (s->next->flags & SEC_LOAD) != 0
3579 && CONST_STRNEQ (s->next->name, ".note"))
3580 s = s->next;
3581 }
3582 }
3583
3584 for (s = abfd->sections; s != NULL; s = s->next)
3585 {
3586 if (s->flags & SEC_THREAD_LOCAL)
3587 {
3588 /* We need a PT_TLS segment. */
3589 ++segs;
3590 break;
3591 }
3592 }
3593
3594 /* Let the backend count up any program headers it might need. */
3595 bed = get_elf_backend_data (abfd);
3596 if (bed->elf_backend_additional_program_headers)
3597 {
3598 int a;
3599
3600 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
3601 if (a == -1)
3602 abort ();
3603 segs += a;
3604 }
3605
3606 return segs * bed->s->sizeof_phdr;
3607 }
3608
3609 /* Find the segment that contains the output_section of section. */
3610
3611 Elf_Internal_Phdr *
3612 _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
3613 {
3614 struct elf_segment_map *m;
3615 Elf_Internal_Phdr *p;
3616
3617 for (m = elf_tdata (abfd)->segment_map,
3618 p = elf_tdata (abfd)->phdr;
3619 m != NULL;
3620 m = m->next, p++)
3621 {
3622 int i;
3623
3624 for (i = m->count - 1; i >= 0; i--)
3625 if (m->sections[i] == section)
3626 return p;
3627 }
3628
3629 return NULL;
3630 }
3631
3632 /* Create a mapping from a set of sections to a program segment. */
3633
3634 static struct elf_segment_map *
3635 make_mapping (bfd *abfd,
3636 asection **sections,
3637 unsigned int from,
3638 unsigned int to,
3639 bfd_boolean phdr)
3640 {
3641 struct elf_segment_map *m;
3642 unsigned int i;
3643 asection **hdrpp;
3644 bfd_size_type amt;
3645
3646 amt = sizeof (struct elf_segment_map);
3647 amt += (to - from - 1) * sizeof (asection *);
3648 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3649 if (m == NULL)
3650 return NULL;
3651 m->next = NULL;
3652 m->p_type = PT_LOAD;
3653 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3654 m->sections[i - from] = *hdrpp;
3655 m->count = to - from;
3656
3657 if (from == 0 && phdr)
3658 {
3659 /* Include the headers in the first PT_LOAD segment. */
3660 m->includes_filehdr = 1;
3661 m->includes_phdrs = 1;
3662 }
3663
3664 return m;
3665 }
3666
3667 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3668 on failure. */
3669
3670 struct elf_segment_map *
3671 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3672 {
3673 struct elf_segment_map *m;
3674
3675 m = (struct elf_segment_map *) bfd_zalloc (abfd,
3676 sizeof (struct elf_segment_map));
3677 if (m == NULL)
3678 return NULL;
3679 m->next = NULL;
3680 m->p_type = PT_DYNAMIC;
3681 m->count = 1;
3682 m->sections[0] = dynsec;
3683
3684 return m;
3685 }
3686
3687 /* Possibly add or remove segments from the segment map. */
3688
3689 static bfd_boolean
3690 elf_modify_segment_map (bfd *abfd,
3691 struct bfd_link_info *info,
3692 bfd_boolean remove_empty_load)
3693 {
3694 struct elf_segment_map **m;
3695 const struct elf_backend_data *bed;
3696
3697 /* The placement algorithm assumes that non allocated sections are
3698 not in PT_LOAD segments. We ensure this here by removing such
3699 sections from the segment map. We also remove excluded
3700 sections. Finally, any PT_LOAD segment without sections is
3701 removed. */
3702 m = &elf_tdata (abfd)->segment_map;
3703 while (*m)
3704 {
3705 unsigned int i, new_count;
3706
3707 for (new_count = 0, i = 0; i < (*m)->count; i++)
3708 {
3709 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
3710 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
3711 || (*m)->p_type != PT_LOAD))
3712 {
3713 (*m)->sections[new_count] = (*m)->sections[i];
3714 new_count++;
3715 }
3716 }
3717 (*m)->count = new_count;
3718
3719 if (remove_empty_load && (*m)->p_type == PT_LOAD && (*m)->count == 0)
3720 *m = (*m)->next;
3721 else
3722 m = &(*m)->next;
3723 }
3724
3725 bed = get_elf_backend_data (abfd);
3726 if (bed->elf_backend_modify_segment_map != NULL)
3727 {
3728 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
3729 return FALSE;
3730 }
3731
3732 return TRUE;
3733 }
3734
3735 /* Set up a mapping from BFD sections to program segments. */
3736
3737 bfd_boolean
3738 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
3739 {
3740 unsigned int count;
3741 struct elf_segment_map *m;
3742 asection **sections = NULL;
3743 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3744 bfd_boolean no_user_phdrs;
3745
3746 no_user_phdrs = elf_tdata (abfd)->segment_map == NULL;
3747
3748 if (info != NULL)
3749 info->user_phdrs = !no_user_phdrs;
3750
3751 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
3752 {
3753 asection *s;
3754 unsigned int i;
3755 struct elf_segment_map *mfirst;
3756 struct elf_segment_map **pm;
3757 asection *last_hdr;
3758 bfd_vma last_size;
3759 unsigned int phdr_index;
3760 bfd_vma maxpagesize;
3761 asection **hdrpp;
3762 bfd_boolean phdr_in_segment = TRUE;
3763 bfd_boolean writable;
3764 int tls_count = 0;
3765 asection *first_tls = NULL;
3766 asection *dynsec, *eh_frame_hdr;
3767 bfd_size_type amt;
3768 bfd_vma addr_mask, wrap_to = 0;
3769
3770 /* Select the allocated sections, and sort them. */
3771
3772 sections = (asection **) bfd_malloc2 (bfd_count_sections (abfd),
3773 sizeof (asection *));
3774 if (sections == NULL)
3775 goto error_return;
3776
3777 /* Calculate top address, avoiding undefined behaviour of shift
3778 left operator when shift count is equal to size of type
3779 being shifted. */
3780 addr_mask = ((bfd_vma) 1 << (bfd_arch_bits_per_address (abfd) - 1)) - 1;
3781 addr_mask = (addr_mask << 1) + 1;
3782
3783 i = 0;
3784 for (s = abfd->sections; s != NULL; s = s->next)
3785 {
3786 if ((s->flags & SEC_ALLOC) != 0)
3787 {
3788 sections[i] = s;
3789 ++i;
3790 /* A wrapping section potentially clashes with header. */
3791 if (((s->lma + s->size) & addr_mask) < (s->lma & addr_mask))
3792 wrap_to = (s->lma + s->size) & addr_mask;
3793 }
3794 }
3795 BFD_ASSERT (i <= bfd_count_sections (abfd));
3796 count = i;
3797
3798 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3799
3800 /* Build the mapping. */
3801
3802 mfirst = NULL;
3803 pm = &mfirst;
3804
3805 /* If we have a .interp section, then create a PT_PHDR segment for
3806 the program headers and a PT_INTERP segment for the .interp
3807 section. */
3808 s = bfd_get_section_by_name (abfd, ".interp");
3809 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3810 {
3811 amt = sizeof (struct elf_segment_map);
3812 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3813 if (m == NULL)
3814 goto error_return;
3815 m->next = NULL;
3816 m->p_type = PT_PHDR;
3817 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3818 m->p_flags = PF_R | PF_X;
3819 m->p_flags_valid = 1;
3820 m->includes_phdrs = 1;
3821
3822 *pm = m;
3823 pm = &m->next;
3824
3825 amt = sizeof (struct elf_segment_map);
3826 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3827 if (m == NULL)
3828 goto error_return;
3829 m->next = NULL;
3830 m->p_type = PT_INTERP;
3831 m->count = 1;
3832 m->sections[0] = s;
3833
3834 *pm = m;
3835 pm = &m->next;
3836 }
3837
3838 /* Look through the sections. We put sections in the same program
3839 segment when the start of the second section can be placed within
3840 a few bytes of the end of the first section. */
3841 last_hdr = NULL;
3842 last_size = 0;
3843 phdr_index = 0;
3844 maxpagesize = bed->maxpagesize;
3845 writable = FALSE;
3846 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3847 if (dynsec != NULL
3848 && (dynsec->flags & SEC_LOAD) == 0)
3849 dynsec = NULL;
3850
3851 /* Deal with -Ttext or something similar such that the first section
3852 is not adjacent to the program headers. This is an
3853 approximation, since at this point we don't know exactly how many
3854 program headers we will need. */
3855 if (count > 0)
3856 {
3857 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
3858
3859 if (phdr_size == (bfd_size_type) -1)
3860 phdr_size = get_program_header_size (abfd, info);
3861 if ((abfd->flags & D_PAGED) == 0
3862 || (sections[0]->lma & addr_mask) < phdr_size
3863 || ((sections[0]->lma & addr_mask) % maxpagesize
3864 < phdr_size % maxpagesize)
3865 || (sections[0]->lma & addr_mask & -maxpagesize) < wrap_to)
3866 phdr_in_segment = FALSE;
3867 }
3868
3869 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3870 {
3871 asection *hdr;
3872 bfd_boolean new_segment;
3873
3874 hdr = *hdrpp;
3875
3876 /* See if this section and the last one will fit in the same
3877 segment. */
3878
3879 if (last_hdr == NULL)
3880 {
3881 /* If we don't have a segment yet, then we don't need a new
3882 one (we build the last one after this loop). */
3883 new_segment = FALSE;
3884 }
3885 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3886 {
3887 /* If this section has a different relation between the
3888 virtual address and the load address, then we need a new
3889 segment. */
3890 new_segment = TRUE;
3891 }
3892 else if (hdr->lma < last_hdr->lma + last_size
3893 || last_hdr->lma + last_size < last_hdr->lma)
3894 {
3895 /* If this section has a load address that makes it overlap
3896 the previous section, then we need a new segment. */
3897 new_segment = TRUE;
3898 }
3899 /* In the next test we have to be careful when last_hdr->lma is close
3900 to the end of the address space. If the aligned address wraps
3901 around to the start of the address space, then there are no more
3902 pages left in memory and it is OK to assume that the current
3903 section can be included in the current segment. */
3904 else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
3905 > last_hdr->lma)
3906 && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
3907 <= hdr->lma))
3908 {
3909 /* If putting this section in this segment would force us to
3910 skip a page in the segment, then we need a new segment. */
3911 new_segment = TRUE;
3912 }
3913 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
3914 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
3915 {
3916 /* We don't want to put a loadable section after a
3917 nonloadable section in the same segment.
3918 Consider .tbss sections as loadable for this purpose. */
3919 new_segment = TRUE;
3920 }
3921 else if ((abfd->flags & D_PAGED) == 0)
3922 {
3923 /* If the file is not demand paged, which means that we
3924 don't require the sections to be correctly aligned in the
3925 file, then there is no other reason for a new segment. */
3926 new_segment = FALSE;
3927 }
3928 else if (! writable
3929 && (hdr->flags & SEC_READONLY) == 0
3930 && (((last_hdr->lma + last_size - 1) & -maxpagesize)
3931 != (hdr->lma & -maxpagesize)))
3932 {
3933 /* We don't want to put a writable section in a read only
3934 segment, unless they are on the same page in memory
3935 anyhow. We already know that the last section does not
3936 bring us past the current section on the page, so the
3937 only case in which the new section is not on the same
3938 page as the previous section is when the previous section
3939 ends precisely on a page boundary. */
3940 new_segment = TRUE;
3941 }
3942 else
3943 {
3944 /* Otherwise, we can use the same segment. */
3945 new_segment = FALSE;
3946 }
3947
3948 /* Allow interested parties a chance to override our decision. */
3949 if (last_hdr != NULL
3950 && info != NULL
3951 && info->callbacks->override_segment_assignment != NULL)
3952 new_segment
3953 = info->callbacks->override_segment_assignment (info, abfd, hdr,
3954 last_hdr,
3955 new_segment);
3956
3957 if (! new_segment)
3958 {
3959 if ((hdr->flags & SEC_READONLY) == 0)
3960 writable = TRUE;
3961 last_hdr = hdr;
3962 /* .tbss sections effectively have zero size. */
3963 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
3964 != SEC_THREAD_LOCAL)
3965 last_size = hdr->size;
3966 else
3967 last_size = 0;
3968 continue;
3969 }
3970
3971 /* We need a new program segment. We must create a new program
3972 header holding all the sections from phdr_index until hdr. */
3973
3974 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3975 if (m == NULL)
3976 goto error_return;
3977
3978 *pm = m;
3979 pm = &m->next;
3980
3981 if ((hdr->flags & SEC_READONLY) == 0)
3982 writable = TRUE;
3983 else
3984 writable = FALSE;
3985
3986 last_hdr = hdr;
3987 /* .tbss sections effectively have zero size. */
3988 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3989 last_size = hdr->size;
3990 else
3991 last_size = 0;
3992 phdr_index = i;
3993 phdr_in_segment = FALSE;
3994 }
3995
3996 /* Create a final PT_LOAD program segment, but not if it's just
3997 for .tbss. */
3998 if (last_hdr != NULL
3999 && (i - phdr_index != 1
4000 || ((last_hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
4001 != SEC_THREAD_LOCAL)))
4002 {
4003 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
4004 if (m == NULL)
4005 goto error_return;
4006
4007 *pm = m;
4008 pm = &m->next;
4009 }
4010
4011 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4012 if (dynsec != NULL)
4013 {
4014 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
4015 if (m == NULL)
4016 goto error_return;
4017 *pm = m;
4018 pm = &m->next;
4019 }
4020
4021 /* For each batch of consecutive loadable .note sections,
4022 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
4023 because if we link together nonloadable .note sections and
4024 loadable .note sections, we will generate two .note sections
4025 in the output file. FIXME: Using names for section types is
4026 bogus anyhow. */
4027 for (s = abfd->sections; s != NULL; s = s->next)
4028 {
4029 if ((s->flags & SEC_LOAD) != 0
4030 && CONST_STRNEQ (s->name, ".note"))
4031 {
4032 asection *s2;
4033
4034 count = 1;
4035 amt = sizeof (struct elf_segment_map);
4036 if (s->alignment_power == 2)
4037 for (s2 = s; s2->next != NULL; s2 = s2->next)
4038 {
4039 if (s2->next->alignment_power == 2
4040 && (s2->next->flags & SEC_LOAD) != 0
4041 && CONST_STRNEQ (s2->next->name, ".note")
4042 && align_power (s2->lma + s2->size, 2)
4043 == s2->next->lma)
4044 count++;
4045 else
4046 break;
4047 }
4048 amt += (count - 1) * sizeof (asection *);
4049 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4050 if (m == NULL)
4051 goto error_return;
4052 m->next = NULL;
4053 m->p_type = PT_NOTE;
4054 m->count = count;
4055 while (count > 1)
4056 {
4057 m->sections[m->count - count--] = s;
4058 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4059 s = s->next;
4060 }
4061 m->sections[m->count - 1] = s;
4062 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4063 *pm = m;
4064 pm = &m->next;
4065 }
4066 if (s->flags & SEC_THREAD_LOCAL)
4067 {
4068 if (! tls_count)
4069 first_tls = s;
4070 tls_count++;
4071 }
4072 }
4073
4074 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
4075 if (tls_count > 0)
4076 {
4077 amt = sizeof (struct elf_segment_map);
4078 amt += (tls_count - 1) * sizeof (asection *);
4079 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4080 if (m == NULL)
4081 goto error_return;
4082 m->next = NULL;
4083 m->p_type = PT_TLS;
4084 m->count = tls_count;
4085 /* Mandated PF_R. */
4086 m->p_flags = PF_R;
4087 m->p_flags_valid = 1;
4088 for (i = 0; i < (unsigned int) tls_count; ++i)
4089 {
4090 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
4091 m->sections[i] = first_tls;
4092 first_tls = first_tls->next;
4093 }
4094
4095 *pm = m;
4096 pm = &m->next;
4097 }
4098
4099 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
4100 segment. */
4101 eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
4102 if (eh_frame_hdr != NULL
4103 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
4104 {
4105 amt = sizeof (struct elf_segment_map);
4106 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4107 if (m == NULL)
4108 goto error_return;
4109 m->next = NULL;
4110 m->p_type = PT_GNU_EH_FRAME;
4111 m->count = 1;
4112 m->sections[0] = eh_frame_hdr->output_section;
4113
4114 *pm = m;
4115 pm = &m->next;
4116 }
4117
4118 if (elf_tdata (abfd)->stack_flags)
4119 {
4120 amt = sizeof (struct elf_segment_map);
4121 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4122 if (m == NULL)
4123 goto error_return;
4124 m->next = NULL;
4125 m->p_type = PT_GNU_STACK;
4126 m->p_flags = elf_tdata (abfd)->stack_flags;
4127 m->p_flags_valid = 1;
4128
4129 *pm = m;
4130 pm = &m->next;
4131 }
4132
4133 if (info != NULL && info->relro)
4134 {
4135 for (m = mfirst; m != NULL; m = m->next)
4136 {
4137 if (m->p_type == PT_LOAD)
4138 {
4139 asection *last = m->sections[m->count - 1];
4140 bfd_vma vaddr = m->sections[0]->vma;
4141 bfd_vma filesz = last->vma - vaddr + last->size;
4142
4143 if (vaddr < info->relro_end
4144 && vaddr >= info->relro_start
4145 && (vaddr + filesz) >= info->relro_end)
4146 break;
4147 }
4148 }
4149
4150 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
4151 if (m != NULL)
4152 {
4153 amt = sizeof (struct elf_segment_map);
4154 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4155 if (m == NULL)
4156 goto error_return;
4157 m->next = NULL;
4158 m->p_type = PT_GNU_RELRO;
4159 m->p_flags = PF_R;
4160 m->p_flags_valid = 1;
4161
4162 *pm = m;
4163 pm = &m->next;
4164 }
4165 }
4166
4167 free (sections);
4168 elf_tdata (abfd)->segment_map = mfirst;
4169 }
4170
4171 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
4172 return FALSE;
4173
4174 for (count = 0, m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4175 ++count;
4176 elf_tdata (abfd)->program_header_size = count * bed->s->sizeof_phdr;
4177
4178 return TRUE;
4179
4180 error_return:
4181 if (sections != NULL)
4182 free (sections);
4183 return FALSE;
4184 }
4185
4186 /* Sort sections by address. */
4187
4188 static int
4189 elf_sort_sections (const void *arg1, const void *arg2)
4190 {
4191 const asection *sec1 = *(const asection **) arg1;
4192 const asection *sec2 = *(const asection **) arg2;
4193 bfd_size_type size1, size2;
4194
4195 /* Sort by LMA first, since this is the address used to
4196 place the section into a segment. */
4197 if (sec1->lma < sec2->lma)
4198 return -1;
4199 else if (sec1->lma > sec2->lma)
4200 return 1;
4201
4202 /* Then sort by VMA. Normally the LMA and the VMA will be
4203 the same, and this will do nothing. */
4204 if (sec1->vma < sec2->vma)
4205 return -1;
4206 else if (sec1->vma > sec2->vma)
4207 return 1;
4208
4209 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
4210
4211 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
4212
4213 if (TOEND (sec1))
4214 {
4215 if (TOEND (sec2))
4216 {
4217 /* If the indicies are the same, do not return 0
4218 here, but continue to try the next comparison. */
4219 if (sec1->target_index - sec2->target_index != 0)
4220 return sec1->target_index - sec2->target_index;
4221 }
4222 else
4223 return 1;
4224 }
4225 else if (TOEND (sec2))
4226 return -1;
4227
4228 #undef TOEND
4229
4230 /* Sort by size, to put zero sized sections
4231 before others at the same address. */
4232
4233 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
4234 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
4235
4236 if (size1 < size2)
4237 return -1;
4238 if (size1 > size2)
4239 return 1;
4240
4241 return sec1->target_index - sec2->target_index;
4242 }
4243
4244 /* Ian Lance Taylor writes:
4245
4246 We shouldn't be using % with a negative signed number. That's just
4247 not good. We have to make sure either that the number is not
4248 negative, or that the number has an unsigned type. When the types
4249 are all the same size they wind up as unsigned. When file_ptr is a
4250 larger signed type, the arithmetic winds up as signed long long,
4251 which is wrong.
4252
4253 What we're trying to say here is something like ``increase OFF by
4254 the least amount that will cause it to be equal to the VMA modulo
4255 the page size.'' */
4256 /* In other words, something like:
4257
4258 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4259 off_offset = off % bed->maxpagesize;
4260 if (vma_offset < off_offset)
4261 adjustment = vma_offset + bed->maxpagesize - off_offset;
4262 else
4263 adjustment = vma_offset - off_offset;
4264
4265 which can can be collapsed into the expression below. */
4266
4267 static file_ptr
4268 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
4269 {
4270 return ((vma - off) % maxpagesize);
4271 }
4272
4273 static void
4274 print_segment_map (const struct elf_segment_map *m)
4275 {
4276 unsigned int j;
4277 const char *pt = get_segment_type (m->p_type);
4278 char buf[32];
4279
4280 if (pt == NULL)
4281 {
4282 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
4283 sprintf (buf, "LOPROC+%7.7x",
4284 (unsigned int) (m->p_type - PT_LOPROC));
4285 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
4286 sprintf (buf, "LOOS+%7.7x",
4287 (unsigned int) (m->p_type - PT_LOOS));
4288 else
4289 snprintf (buf, sizeof (buf), "%8.8x",
4290 (unsigned int) m->p_type);
4291 pt = buf;
4292 }
4293 fflush (stdout);
4294 fprintf (stderr, "%s:", pt);
4295 for (j = 0; j < m->count; j++)
4296 fprintf (stderr, " %s", m->sections [j]->name);
4297 putc ('\n',stderr);
4298 fflush (stderr);
4299 }
4300
4301 static bfd_boolean
4302 write_zeros (bfd *abfd, file_ptr pos, bfd_size_type len)
4303 {
4304 void *buf;
4305 bfd_boolean ret;
4306
4307 if (bfd_seek (abfd, pos, SEEK_SET) != 0)
4308 return FALSE;
4309 buf = bfd_zmalloc (len);
4310 if (buf == NULL)
4311 return FALSE;
4312 ret = bfd_bwrite (buf, len, abfd) == len;
4313 free (buf);
4314 return ret;
4315 }
4316
4317 /* Assign file positions to the sections based on the mapping from
4318 sections to segments. This function also sets up some fields in
4319 the file header. */
4320
4321 static bfd_boolean
4322 assign_file_positions_for_load_sections (bfd *abfd,
4323 struct bfd_link_info *link_info)
4324 {
4325 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4326 struct elf_segment_map *m;
4327 Elf_Internal_Phdr *phdrs;
4328 Elf_Internal_Phdr *p;
4329 file_ptr off;
4330 bfd_size_type maxpagesize;
4331 unsigned int alloc;
4332 unsigned int i, j;
4333 bfd_vma header_pad = 0;
4334
4335 if (link_info == NULL
4336 && !_bfd_elf_map_sections_to_segments (abfd, link_info))
4337 return FALSE;
4338
4339 alloc = 0;
4340 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4341 {
4342 ++alloc;
4343 if (m->header_size)
4344 header_pad = m->header_size;
4345 }
4346
4347 if (alloc)
4348 {
4349 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
4350 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
4351 }
4352 else
4353 {
4354 /* PR binutils/12467. */
4355 elf_elfheader (abfd)->e_phoff = 0;
4356 elf_elfheader (abfd)->e_phentsize = 0;
4357 }
4358
4359 elf_elfheader (abfd)->e_phnum = alloc;
4360
4361 if (elf_tdata (abfd)->program_header_size == (bfd_size_type) -1)
4362 elf_tdata (abfd)->program_header_size = alloc * bed->s->sizeof_phdr;
4363 else
4364 BFD_ASSERT (elf_tdata (abfd)->program_header_size
4365 >= alloc * bed->s->sizeof_phdr);
4366
4367 if (alloc == 0)
4368 {
4369 elf_tdata (abfd)->next_file_pos = bed->s->sizeof_ehdr;
4370 return TRUE;
4371 }
4372
4373 /* We're writing the size in elf_tdata (abfd)->program_header_size,
4374 see assign_file_positions_except_relocs, so make sure we have
4375 that amount allocated, with trailing space cleared.
4376 The variable alloc contains the computed need, while elf_tdata
4377 (abfd)->program_header_size contains the size used for the
4378 layout.
4379 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
4380 where the layout is forced to according to a larger size in the
4381 last iterations for the testcase ld-elf/header. */
4382 BFD_ASSERT (elf_tdata (abfd)->program_header_size % bed->s->sizeof_phdr
4383 == 0);
4384 phdrs = (Elf_Internal_Phdr *)
4385 bfd_zalloc2 (abfd,
4386 (elf_tdata (abfd)->program_header_size / bed->s->sizeof_phdr),
4387 sizeof (Elf_Internal_Phdr));
4388 elf_tdata (abfd)->phdr = phdrs;
4389 if (phdrs == NULL)
4390 return FALSE;
4391
4392 maxpagesize = 1;
4393 if ((abfd->flags & D_PAGED) != 0)
4394 maxpagesize = bed->maxpagesize;
4395
4396 off = bed->s->sizeof_ehdr;
4397 off += alloc * bed->s->sizeof_phdr;
4398 if (header_pad < (bfd_vma) off)
4399 header_pad = 0;
4400 else
4401 header_pad -= off;
4402 off += header_pad;
4403
4404 for (m = elf_tdata (abfd)->segment_map, p = phdrs, j = 0;
4405 m != NULL;
4406 m = m->next, p++, j++)
4407 {
4408 asection **secpp;
4409 bfd_vma off_adjust;
4410 bfd_boolean no_contents;
4411
4412 /* If elf_segment_map is not from map_sections_to_segments, the
4413 sections may not be correctly ordered. NOTE: sorting should
4414 not be done to the PT_NOTE section of a corefile, which may
4415 contain several pseudo-sections artificially created by bfd.
4416 Sorting these pseudo-sections breaks things badly. */
4417 if (m->count > 1
4418 && !(elf_elfheader (abfd)->e_type == ET_CORE
4419 && m->p_type == PT_NOTE))
4420 qsort (m->sections, (size_t) m->count, sizeof (asection *),
4421 elf_sort_sections);
4422
4423 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4424 number of sections with contents contributing to both p_filesz
4425 and p_memsz, followed by a number of sections with no contents
4426 that just contribute to p_memsz. In this loop, OFF tracks next
4427 available file offset for PT_LOAD and PT_NOTE segments. */
4428 p->p_type = m->p_type;
4429 p->p_flags = m->p_flags;
4430
4431 if (m->count == 0)
4432 p->p_vaddr = 0;
4433 else
4434 p->p_vaddr = m->sections[0]->vma - m->p_vaddr_offset;
4435
4436 if (m->p_paddr_valid)
4437 p->p_paddr = m->p_paddr;
4438 else if (m->count == 0)
4439 p->p_paddr = 0;
4440 else
4441 p->p_paddr = m->sections[0]->lma - m->p_vaddr_offset;
4442
4443 if (p->p_type == PT_LOAD
4444 && (abfd->flags & D_PAGED) != 0)
4445 {
4446 /* p_align in demand paged PT_LOAD segments effectively stores
4447 the maximum page size. When copying an executable with
4448 objcopy, we set m->p_align from the input file. Use this
4449 value for maxpagesize rather than bed->maxpagesize, which
4450 may be different. Note that we use maxpagesize for PT_TLS
4451 segment alignment later in this function, so we are relying
4452 on at least one PT_LOAD segment appearing before a PT_TLS
4453 segment. */
4454 if (m->p_align_valid)
4455 maxpagesize = m->p_align;
4456
4457 p->p_align = maxpagesize;
4458 }
4459 else if (m->p_align_valid)
4460 p->p_align = m->p_align;
4461 else if (m->count == 0)
4462 p->p_align = 1 << bed->s->log_file_align;
4463 else
4464 p->p_align = 0;
4465
4466 no_contents = FALSE;
4467 off_adjust = 0;
4468 if (p->p_type == PT_LOAD
4469 && m->count > 0)
4470 {
4471 bfd_size_type align;
4472 unsigned int align_power = 0;
4473
4474 if (m->p_align_valid)
4475 align = p->p_align;
4476 else
4477 {
4478 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4479 {
4480 unsigned int secalign;
4481
4482 secalign = bfd_get_section_alignment (abfd, *secpp);
4483 if (secalign > align_power)
4484 align_power = secalign;
4485 }
4486 align = (bfd_size_type) 1 << align_power;
4487 if (align < maxpagesize)
4488 align = maxpagesize;
4489 }
4490
4491 for (i = 0; i < m->count; i++)
4492 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
4493 /* If we aren't making room for this section, then
4494 it must be SHT_NOBITS regardless of what we've
4495 set via struct bfd_elf_special_section. */
4496 elf_section_type (m->sections[i]) = SHT_NOBITS;
4497
4498 /* Find out whether this segment contains any loadable
4499 sections. */
4500 no_contents = TRUE;
4501 for (i = 0; i < m->count; i++)
4502 if (elf_section_type (m->sections[i]) != SHT_NOBITS)
4503 {
4504 no_contents = FALSE;
4505 break;
4506 }
4507
4508 off_adjust = vma_page_aligned_bias (p->p_vaddr, off, align);
4509 off += off_adjust;
4510 if (no_contents)
4511 {
4512 /* We shouldn't need to align the segment on disk since
4513 the segment doesn't need file space, but the gABI
4514 arguably requires the alignment and glibc ld.so
4515 checks it. So to comply with the alignment
4516 requirement but not waste file space, we adjust
4517 p_offset for just this segment. (OFF_ADJUST is
4518 subtracted from OFF later.) This may put p_offset
4519 past the end of file, but that shouldn't matter. */
4520 }
4521 else
4522 off_adjust = 0;
4523 }
4524 /* Make sure the .dynamic section is the first section in the
4525 PT_DYNAMIC segment. */
4526 else if (p->p_type == PT_DYNAMIC
4527 && m->count > 1
4528 && strcmp (m->sections[0]->name, ".dynamic") != 0)
4529 {
4530 _bfd_error_handler
4531 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4532 abfd);
4533 bfd_set_error (bfd_error_bad_value);
4534 return FALSE;
4535 }
4536 /* Set the note section type to SHT_NOTE. */
4537 else if (p->p_type == PT_NOTE)
4538 for (i = 0; i < m->count; i++)
4539 elf_section_type (m->sections[i]) = SHT_NOTE;
4540
4541 p->p_offset = 0;
4542 p->p_filesz = 0;
4543 p->p_memsz = 0;
4544
4545 if (m->includes_filehdr)
4546 {
4547 if (!m->p_flags_valid)
4548 p->p_flags |= PF_R;
4549 p->p_filesz = bed->s->sizeof_ehdr;
4550 p->p_memsz = bed->s->sizeof_ehdr;
4551 if (m->count > 0)
4552 {
4553 BFD_ASSERT (p->p_type == PT_LOAD);
4554
4555 if (p->p_vaddr < (bfd_vma) off)
4556 {
4557 (*_bfd_error_handler)
4558 (_("%B: Not enough room for program headers, try linking with -N"),
4559 abfd);
4560 bfd_set_error (bfd_error_bad_value);
4561 return FALSE;
4562 }
4563
4564 p->p_vaddr -= off;
4565 if (!m->p_paddr_valid)
4566 p->p_paddr -= off;
4567 }
4568 }
4569
4570 if (m->includes_phdrs)
4571 {
4572 if (!m->p_flags_valid)
4573 p->p_flags |= PF_R;
4574
4575 if (!m->includes_filehdr)
4576 {
4577 p->p_offset = bed->s->sizeof_ehdr;
4578
4579 if (m->count > 0)
4580 {
4581 BFD_ASSERT (p->p_type == PT_LOAD);
4582 p->p_vaddr -= off - p->p_offset;
4583 if (!m->p_paddr_valid)
4584 p->p_paddr -= off - p->p_offset;
4585 }
4586 }
4587
4588 p->p_filesz += alloc * bed->s->sizeof_phdr;
4589 p->p_memsz += alloc * bed->s->sizeof_phdr;
4590 if (m->count)
4591 {
4592 p->p_filesz += header_pad;
4593 p->p_memsz += header_pad;
4594 }
4595 }
4596
4597 if (p->p_type == PT_LOAD
4598 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4599 {
4600 if (!m->includes_filehdr && !m->includes_phdrs)
4601 p->p_offset = off;
4602 else
4603 {
4604 file_ptr adjust;
4605
4606 adjust = off - (p->p_offset + p->p_filesz);
4607 if (!no_contents)
4608 p->p_filesz += adjust;
4609 p->p_memsz += adjust;
4610 }
4611 }
4612
4613 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
4614 maps. Set filepos for sections in PT_LOAD segments, and in
4615 core files, for sections in PT_NOTE segments.
4616 assign_file_positions_for_non_load_sections will set filepos
4617 for other sections and update p_filesz for other segments. */
4618 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4619 {
4620 asection *sec;
4621 bfd_size_type align;
4622 Elf_Internal_Shdr *this_hdr;
4623
4624 sec = *secpp;
4625 this_hdr = &elf_section_data (sec)->this_hdr;
4626 align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec);
4627
4628 if ((p->p_type == PT_LOAD
4629 || p->p_type == PT_TLS)
4630 && (this_hdr->sh_type != SHT_NOBITS
4631 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
4632 && ((this_hdr->sh_flags & SHF_TLS) == 0
4633 || p->p_type == PT_TLS))))
4634 {
4635 bfd_vma p_start = p->p_paddr;
4636 bfd_vma p_end = p_start + p->p_memsz;
4637 bfd_vma s_start = sec->lma;
4638 bfd_vma adjust = s_start - p_end;
4639
4640 if (adjust != 0
4641 && (s_start < p_end
4642 || p_end < p_start))
4643 {
4644 (*_bfd_error_handler)
4645 (_("%B: section %A lma %#lx adjusted to %#lx"), abfd, sec,
4646 (unsigned long) s_start, (unsigned long) p_end);
4647 adjust = 0;
4648 sec->lma = p_end;
4649 }
4650 p->p_memsz += adjust;
4651
4652 if (this_hdr->sh_type != SHT_NOBITS)
4653 {
4654 if (p->p_filesz + adjust < p->p_memsz)
4655 {
4656 /* We have a PROGBITS section following NOBITS ones.
4657 Allocate file space for the NOBITS section(s) and
4658 zero it. */
4659 adjust = p->p_memsz - p->p_filesz;
4660 if (!write_zeros (abfd, off, adjust))
4661 return FALSE;
4662 }
4663 off += adjust;
4664 p->p_filesz += adjust;
4665 }
4666 }
4667
4668 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
4669 {
4670 /* The section at i == 0 is the one that actually contains
4671 everything. */
4672 if (i == 0)
4673 {
4674 this_hdr->sh_offset = sec->filepos = off;
4675 off += this_hdr->sh_size;
4676 p->p_filesz = this_hdr->sh_size;
4677 p->p_memsz = 0;
4678 p->p_align = 1;
4679 }
4680 else
4681 {
4682 /* The rest are fake sections that shouldn't be written. */
4683 sec->filepos = 0;
4684 sec->size = 0;
4685 sec->flags = 0;
4686 continue;
4687 }
4688 }
4689 else
4690 {
4691 if (p->p_type == PT_LOAD)
4692 {
4693 this_hdr->sh_offset = sec->filepos = off;
4694 if (this_hdr->sh_type != SHT_NOBITS)
4695 off += this_hdr->sh_size;
4696 }
4697 else if (this_hdr->sh_type == SHT_NOBITS
4698 && (this_hdr->sh_flags & SHF_TLS) != 0
4699 && this_hdr->sh_offset == 0)
4700 {
4701 /* This is a .tbss section that didn't get a PT_LOAD.
4702 (See _bfd_elf_map_sections_to_segments "Create a
4703 final PT_LOAD".) Set sh_offset to the value it
4704 would have if we had created a zero p_filesz and
4705 p_memsz PT_LOAD header for the section. This
4706 also makes the PT_TLS header have the same
4707 p_offset value. */
4708 bfd_vma adjust = vma_page_aligned_bias (this_hdr->sh_addr,
4709 off, align);
4710 this_hdr->sh_offset = sec->filepos = off + adjust;
4711 }
4712
4713 if (this_hdr->sh_type != SHT_NOBITS)
4714 {
4715 p->p_filesz += this_hdr->sh_size;
4716 /* A load section without SHF_ALLOC is something like
4717 a note section in a PT_NOTE segment. These take
4718 file space but are not loaded into memory. */
4719 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4720 p->p_memsz += this_hdr->sh_size;
4721 }
4722 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4723 {
4724 if (p->p_type == PT_TLS)
4725 p->p_memsz += this_hdr->sh_size;
4726
4727 /* .tbss is special. It doesn't contribute to p_memsz of
4728 normal segments. */
4729 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
4730 p->p_memsz += this_hdr->sh_size;
4731 }
4732
4733 if (align > p->p_align
4734 && !m->p_align_valid
4735 && (p->p_type != PT_LOAD
4736 || (abfd->flags & D_PAGED) == 0))
4737 p->p_align = align;
4738 }
4739
4740 if (!m->p_flags_valid)
4741 {
4742 p->p_flags |= PF_R;
4743 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
4744 p->p_flags |= PF_X;
4745 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
4746 p->p_flags |= PF_W;
4747 }
4748 }
4749 off -= off_adjust;
4750
4751 /* Check that all sections are in a PT_LOAD segment.
4752 Don't check funky gdb generated core files. */
4753 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
4754 {
4755 bfd_boolean check_vma = TRUE;
4756
4757 for (i = 1; i < m->count; i++)
4758 if (m->sections[i]->vma == m->sections[i - 1]->vma
4759 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i])
4760 ->this_hdr), p) != 0
4761 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i - 1])
4762 ->this_hdr), p) != 0)
4763 {
4764 /* Looks like we have overlays packed into the segment. */
4765 check_vma = FALSE;
4766 break;
4767 }
4768
4769 for (i = 0; i < m->count; i++)
4770 {
4771 Elf_Internal_Shdr *this_hdr;
4772 asection *sec;
4773
4774 sec = m->sections[i];
4775 this_hdr = &(elf_section_data(sec)->this_hdr);
4776 if (!ELF_SECTION_IN_SEGMENT_1 (this_hdr, p, check_vma, 0)
4777 && !ELF_TBSS_SPECIAL (this_hdr, p))
4778 {
4779 (*_bfd_error_handler)
4780 (_("%B: section `%A' can't be allocated in segment %d"),
4781 abfd, sec, j);
4782 print_segment_map (m);
4783 }
4784 }
4785 }
4786 }
4787
4788 elf_tdata (abfd)->next_file_pos = off;
4789 return TRUE;
4790 }
4791
4792 /* Assign file positions for the other sections. */
4793
4794 static bfd_boolean
4795 assign_file_positions_for_non_load_sections (bfd *abfd,
4796 struct bfd_link_info *link_info)
4797 {
4798 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4799 Elf_Internal_Shdr **i_shdrpp;
4800 Elf_Internal_Shdr **hdrpp;
4801 Elf_Internal_Phdr *phdrs;
4802 Elf_Internal_Phdr *p;
4803 struct elf_segment_map *m;
4804 bfd_vma filehdr_vaddr, filehdr_paddr;
4805 bfd_vma phdrs_vaddr, phdrs_paddr;
4806 file_ptr off;
4807 unsigned int num_sec;
4808 unsigned int i;
4809 unsigned int count;
4810
4811 i_shdrpp = elf_elfsections (abfd);
4812 num_sec = elf_numsections (abfd);
4813 off = elf_tdata (abfd)->next_file_pos;
4814 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4815 {
4816 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4817 Elf_Internal_Shdr *hdr;
4818
4819 hdr = *hdrpp;
4820 if (hdr->bfd_section != NULL
4821 && (hdr->bfd_section->filepos != 0
4822 || (hdr->sh_type == SHT_NOBITS
4823 && hdr->contents == NULL)))
4824 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
4825 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4826 {
4827 if (hdr->sh_size != 0)
4828 (*_bfd_error_handler)
4829 (_("%B: warning: allocated section `%s' not in segment"),
4830 abfd,
4831 (hdr->bfd_section == NULL
4832 ? "*unknown*"
4833 : hdr->bfd_section->name));
4834 /* We don't need to page align empty sections. */
4835 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
4836 off += vma_page_aligned_bias (hdr->sh_addr, off,
4837 bed->maxpagesize);
4838 else
4839 off += vma_page_aligned_bias (hdr->sh_addr, off,
4840 hdr->sh_addralign);
4841 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4842 FALSE);
4843 }
4844 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4845 && hdr->bfd_section == NULL)
4846 || hdr == i_shdrpp[tdata->symtab_section]
4847 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4848 || hdr == i_shdrpp[tdata->strtab_section])
4849 hdr->sh_offset = -1;
4850 else
4851 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4852 }
4853
4854 /* Now that we have set the section file positions, we can set up
4855 the file positions for the non PT_LOAD segments. */
4856 count = 0;
4857 filehdr_vaddr = 0;
4858 filehdr_paddr = 0;
4859 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
4860 phdrs_paddr = 0;
4861 phdrs = elf_tdata (abfd)->phdr;
4862 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4863 m != NULL;
4864 m = m->next, p++)
4865 {
4866 ++count;
4867 if (p->p_type != PT_LOAD)
4868 continue;
4869
4870 if (m->includes_filehdr)
4871 {
4872 filehdr_vaddr = p->p_vaddr;
4873 filehdr_paddr = p->p_paddr;
4874 }
4875 if (m->includes_phdrs)
4876 {
4877 phdrs_vaddr = p->p_vaddr;
4878 phdrs_paddr = p->p_paddr;
4879 if (m->includes_filehdr)
4880 {
4881 phdrs_vaddr += bed->s->sizeof_ehdr;
4882 phdrs_paddr += bed->s->sizeof_ehdr;
4883 }
4884 }
4885 }
4886
4887 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4888 m != NULL;
4889 m = m->next, p++)
4890 {
4891 if (p->p_type == PT_GNU_RELRO)
4892 {
4893 const Elf_Internal_Phdr *lp;
4894
4895 BFD_ASSERT (!m->includes_filehdr && !m->includes_phdrs);
4896
4897 if (link_info != NULL)
4898 {
4899 /* During linking the range of the RELRO segment is passed
4900 in link_info. */
4901 for (lp = phdrs; lp < phdrs + count; ++lp)
4902 {
4903 if (lp->p_type == PT_LOAD
4904 && lp->p_vaddr >= link_info->relro_start
4905 && lp->p_vaddr < link_info->relro_end
4906 && lp->p_vaddr + lp->p_filesz >= link_info->relro_end)
4907 break;
4908 }
4909 }
4910 else
4911 {
4912 /* Otherwise we are copying an executable or shared
4913 library, but we need to use the same linker logic. */
4914 for (lp = phdrs; lp < phdrs + count; ++lp)
4915 {
4916 if (lp->p_type == PT_LOAD
4917 && lp->p_paddr == p->p_paddr)
4918 break;
4919 }
4920 }
4921
4922 if (lp < phdrs + count)
4923 {
4924 p->p_vaddr = lp->p_vaddr;
4925 p->p_paddr = lp->p_paddr;
4926 p->p_offset = lp->p_offset;
4927 if (link_info != NULL)
4928 p->p_filesz = link_info->relro_end - lp->p_vaddr;
4929 else if (m->p_size_valid)
4930 p->p_filesz = m->p_size;
4931 else
4932 abort ();
4933 p->p_memsz = p->p_filesz;
4934 /* Preserve the alignment and flags if they are valid. The gold
4935 linker generates RW/4 for the PT_GNU_RELRO section. It is better
4936 for objcopy/strip to honor these attributes otherwise gdb will
4937 choke when using separate debug files. */
4938 if (!m->p_align_valid)
4939 p->p_align = 1;
4940 if (!m->p_flags_valid)
4941 p->p_flags = (lp->p_flags & ~PF_W);
4942 }
4943 else
4944 {
4945 memset (p, 0, sizeof *p);
4946 p->p_type = PT_NULL;
4947 }
4948 }
4949 else if (m->count != 0)
4950 {
4951 if (p->p_type != PT_LOAD
4952 && (p->p_type != PT_NOTE
4953 || bfd_get_format (abfd) != bfd_core))
4954 {
4955 BFD_ASSERT (!m->includes_filehdr && !m->includes_phdrs);
4956
4957 p->p_filesz = 0;
4958 p->p_offset = m->sections[0]->filepos;
4959 for (i = m->count; i-- != 0;)
4960 {
4961 asection *sect = m->sections[i];
4962 Elf_Internal_Shdr *hdr = &elf_section_data (sect)->this_hdr;
4963 if (hdr->sh_type != SHT_NOBITS)
4964 {
4965 p->p_filesz = (sect->filepos - m->sections[0]->filepos
4966 + hdr->sh_size);
4967 break;
4968 }
4969 }
4970 }
4971 }
4972 else if (m->includes_filehdr)
4973 {
4974 p->p_vaddr = filehdr_vaddr;
4975 if (! m->p_paddr_valid)
4976 p->p_paddr = filehdr_paddr;
4977 }
4978 else if (m->includes_phdrs)
4979 {
4980 p->p_vaddr = phdrs_vaddr;
4981 if (! m->p_paddr_valid)
4982 p->p_paddr = phdrs_paddr;
4983 }
4984 }
4985
4986 elf_tdata (abfd)->next_file_pos = off;
4987
4988 return TRUE;
4989 }
4990
4991 /* Work out the file positions of all the sections. This is called by
4992 _bfd_elf_compute_section_file_positions. All the section sizes and
4993 VMAs must be known before this is called.
4994
4995 Reloc sections come in two flavours: Those processed specially as
4996 "side-channel" data attached to a section to which they apply, and
4997 those that bfd doesn't process as relocations. The latter sort are
4998 stored in a normal bfd section by bfd_section_from_shdr. We don't
4999 consider the former sort here, unless they form part of the loadable
5000 image. Reloc sections not assigned here will be handled later by
5001 assign_file_positions_for_relocs.
5002
5003 We also don't set the positions of the .symtab and .strtab here. */
5004
5005 static bfd_boolean
5006 assign_file_positions_except_relocs (bfd *abfd,
5007 struct bfd_link_info *link_info)
5008 {
5009 struct elf_obj_tdata *tdata = elf_tdata (abfd);
5010 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
5011 file_ptr off;
5012 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5013
5014 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
5015 && bfd_get_format (abfd) != bfd_core)
5016 {
5017 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
5018 unsigned int num_sec = elf_numsections (abfd);
5019 Elf_Internal_Shdr **hdrpp;
5020 unsigned int i;
5021
5022 /* Start after the ELF header. */
5023 off = i_ehdrp->e_ehsize;
5024
5025 /* We are not creating an executable, which means that we are
5026 not creating a program header, and that the actual order of
5027 the sections in the file is unimportant. */
5028 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
5029 {
5030 Elf_Internal_Shdr *hdr;
5031
5032 hdr = *hdrpp;
5033 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
5034 && hdr->bfd_section == NULL)
5035 || i == tdata->symtab_section
5036 || i == tdata->symtab_shndx_section
5037 || i == tdata->strtab_section)
5038 {
5039 hdr->sh_offset = -1;
5040 }
5041 else
5042 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
5043 }
5044 }
5045 else
5046 {
5047 unsigned int alloc;
5048
5049 /* Assign file positions for the loaded sections based on the
5050 assignment of sections to segments. */
5051 if (!assign_file_positions_for_load_sections (abfd, link_info))
5052 return FALSE;
5053
5054 /* And for non-load sections. */
5055 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
5056 return FALSE;
5057
5058 if (bed->elf_backend_modify_program_headers != NULL)
5059 {
5060 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
5061 return FALSE;
5062 }
5063
5064 /* Write out the program headers. */
5065 alloc = tdata->program_header_size / bed->s->sizeof_phdr;
5066 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
5067 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
5068 return FALSE;
5069
5070 off = tdata->next_file_pos;
5071 }
5072
5073 /* Place the section headers. */
5074 off = align_file_position (off, 1 << bed->s->log_file_align);
5075 i_ehdrp->e_shoff = off;
5076 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
5077
5078 tdata->next_file_pos = off;
5079
5080 return TRUE;
5081 }
5082
5083 static bfd_boolean
5084 prep_headers (bfd *abfd)
5085 {
5086 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form. */
5087 struct elf_strtab_hash *shstrtab;
5088 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5089
5090 i_ehdrp = elf_elfheader (abfd);
5091
5092 shstrtab = _bfd_elf_strtab_init ();
5093 if (shstrtab == NULL)
5094 return FALSE;
5095
5096 elf_shstrtab (abfd) = shstrtab;
5097
5098 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
5099 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
5100 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
5101 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
5102
5103 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
5104 i_ehdrp->e_ident[EI_DATA] =
5105 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
5106 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
5107
5108 if ((abfd->flags & DYNAMIC) != 0)
5109 i_ehdrp->e_type = ET_DYN;
5110 else if ((abfd->flags & EXEC_P) != 0)
5111 i_ehdrp->e_type = ET_EXEC;
5112 else if (bfd_get_format (abfd) == bfd_core)
5113 i_ehdrp->e_type = ET_CORE;
5114 else
5115 i_ehdrp->e_type = ET_REL;
5116
5117 switch (bfd_get_arch (abfd))
5118 {
5119 case bfd_arch_unknown:
5120 i_ehdrp->e_machine = EM_NONE;
5121 break;
5122
5123 /* There used to be a long list of cases here, each one setting
5124 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
5125 in the corresponding bfd definition. To avoid duplication,
5126 the switch was removed. Machines that need special handling
5127 can generally do it in elf_backend_final_write_processing(),
5128 unless they need the information earlier than the final write.
5129 Such need can generally be supplied by replacing the tests for
5130 e_machine with the conditions used to determine it. */
5131 default:
5132 i_ehdrp->e_machine = bed->elf_machine_code;
5133 }
5134
5135 i_ehdrp->e_version = bed->s->ev_current;
5136 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
5137
5138 /* No program header, for now. */
5139 i_ehdrp->e_phoff = 0;
5140 i_ehdrp->e_phentsize = 0;
5141 i_ehdrp->e_phnum = 0;
5142
5143 /* Each bfd section is section header entry. */
5144 i_ehdrp->e_entry = bfd_get_start_address (abfd);
5145 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
5146
5147 /* If we're building an executable, we'll need a program header table. */
5148 if (abfd->flags & EXEC_P)
5149 /* It all happens later. */
5150 ;
5151 else
5152 {
5153 i_ehdrp->e_phentsize = 0;
5154 i_ehdrp->e_phoff = 0;
5155 }
5156
5157 elf_tdata (abfd)->symtab_hdr.sh_name =
5158 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
5159 elf_tdata (abfd)->strtab_hdr.sh_name =
5160 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
5161 elf_tdata (abfd)->shstrtab_hdr.sh_name =
5162 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
5163 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
5164 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
5165 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
5166 return FALSE;
5167
5168 return TRUE;
5169 }
5170
5171 /* Assign file positions for all the reloc sections which are not part
5172 of the loadable file image. */
5173
5174 void
5175 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
5176 {
5177 file_ptr off;
5178 unsigned int i, num_sec;
5179 Elf_Internal_Shdr **shdrpp;
5180
5181 off = elf_tdata (abfd)->next_file_pos;
5182
5183 num_sec = elf_numsections (abfd);
5184 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
5185 {
5186 Elf_Internal_Shdr *shdrp;
5187
5188 shdrp = *shdrpp;
5189 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
5190 && shdrp->sh_offset == -1)
5191 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
5192 }
5193
5194 elf_tdata (abfd)->next_file_pos = off;
5195 }
5196
5197 bfd_boolean
5198 _bfd_elf_write_object_contents (bfd *abfd)
5199 {
5200 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5201 Elf_Internal_Shdr **i_shdrp;
5202 bfd_boolean failed;
5203 unsigned int count, num_sec;
5204
5205 if (! abfd->output_has_begun
5206 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
5207 return FALSE;
5208
5209 i_shdrp = elf_elfsections (abfd);
5210
5211 failed = FALSE;
5212 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
5213 if (failed)
5214 return FALSE;
5215
5216 _bfd_elf_assign_file_positions_for_relocs (abfd);
5217
5218 /* After writing the headers, we need to write the sections too... */
5219 num_sec = elf_numsections (abfd);
5220 for (count = 1; count < num_sec; count++)
5221 {
5222 if (bed->elf_backend_section_processing)
5223 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
5224 if (i_shdrp[count]->contents)
5225 {
5226 bfd_size_type amt = i_shdrp[count]->sh_size;
5227
5228 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
5229 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
5230 return FALSE;
5231 }
5232 }
5233
5234 /* Write out the section header names. */
5235 if (elf_shstrtab (abfd) != NULL
5236 && (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
5237 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
5238 return FALSE;
5239
5240 if (bed->elf_backend_final_write_processing)
5241 (*bed->elf_backend_final_write_processing) (abfd,
5242 elf_tdata (abfd)->linker);
5243
5244 if (!bed->s->write_shdrs_and_ehdr (abfd))
5245 return FALSE;
5246
5247 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
5248 if (elf_tdata (abfd)->after_write_object_contents)
5249 return (*elf_tdata (abfd)->after_write_object_contents) (abfd);
5250
5251 return TRUE;
5252 }
5253
5254 bfd_boolean
5255 _bfd_elf_write_corefile_contents (bfd *abfd)
5256 {
5257 /* Hopefully this can be done just like an object file. */
5258 return _bfd_elf_write_object_contents (abfd);
5259 }
5260
5261 /* Given a section, search the header to find them. */
5262
5263 unsigned int
5264 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
5265 {
5266 const struct elf_backend_data *bed;
5267 unsigned int sec_index;
5268
5269 if (elf_section_data (asect) != NULL
5270 && elf_section_data (asect)->this_idx != 0)
5271 return elf_section_data (asect)->this_idx;
5272
5273 if (bfd_is_abs_section (asect))
5274 sec_index = SHN_ABS;
5275 else if (bfd_is_com_section (asect))
5276 sec_index = SHN_COMMON;
5277 else if (bfd_is_und_section (asect))
5278 sec_index = SHN_UNDEF;
5279 else
5280 sec_index = SHN_BAD;
5281
5282 bed = get_elf_backend_data (abfd);
5283 if (bed->elf_backend_section_from_bfd_section)
5284 {
5285 int retval = sec_index;
5286
5287 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
5288 return retval;
5289 }
5290
5291 if (sec_index == SHN_BAD)
5292 bfd_set_error (bfd_error_nonrepresentable_section);
5293
5294 return sec_index;
5295 }
5296
5297 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
5298 on error. */
5299
5300 int
5301 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
5302 {
5303 asymbol *asym_ptr = *asym_ptr_ptr;
5304 int idx;
5305 flagword flags = asym_ptr->flags;
5306
5307 /* When gas creates relocations against local labels, it creates its
5308 own symbol for the section, but does put the symbol into the
5309 symbol chain, so udata is 0. When the linker is generating
5310 relocatable output, this section symbol may be for one of the
5311 input sections rather than the output section. */
5312 if (asym_ptr->udata.i == 0
5313 && (flags & BSF_SECTION_SYM)
5314 && asym_ptr->section)
5315 {
5316 asection *sec;
5317 int indx;
5318
5319 sec = asym_ptr->section;
5320 if (sec->owner != abfd && sec->output_section != NULL)
5321 sec = sec->output_section;
5322 if (sec->owner == abfd
5323 && (indx = sec->index) < elf_num_section_syms (abfd)
5324 && elf_section_syms (abfd)[indx] != NULL)
5325 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
5326 }
5327
5328 idx = asym_ptr->udata.i;
5329
5330 if (idx == 0)
5331 {
5332 /* This case can occur when using --strip-symbol on a symbol
5333 which is used in a relocation entry. */
5334 (*_bfd_error_handler)
5335 (_("%B: symbol `%s' required but not present"),
5336 abfd, bfd_asymbol_name (asym_ptr));
5337 bfd_set_error (bfd_error_no_symbols);
5338 return -1;
5339 }
5340
5341 #if DEBUG & 4
5342 {
5343 fprintf (stderr,
5344 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx\n",
5345 (long) asym_ptr, asym_ptr->name, idx, (long) flags);
5346 fflush (stderr);
5347 }
5348 #endif
5349
5350 return idx;
5351 }
5352
5353 /* Rewrite program header information. */
5354
5355 static bfd_boolean
5356 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
5357 {
5358 Elf_Internal_Ehdr *iehdr;
5359 struct elf_segment_map *map;
5360 struct elf_segment_map *map_first;
5361 struct elf_segment_map **pointer_to_map;
5362 Elf_Internal_Phdr *segment;
5363 asection *section;
5364 unsigned int i;
5365 unsigned int num_segments;
5366 bfd_boolean phdr_included = FALSE;
5367 bfd_boolean p_paddr_valid;
5368 bfd_vma maxpagesize;
5369 struct elf_segment_map *phdr_adjust_seg = NULL;
5370 unsigned int phdr_adjust_num = 0;
5371 const struct elf_backend_data *bed;
5372
5373 bed = get_elf_backend_data (ibfd);
5374 iehdr = elf_elfheader (ibfd);
5375
5376 map_first = NULL;
5377 pointer_to_map = &map_first;
5378
5379 num_segments = elf_elfheader (ibfd)->e_phnum;
5380 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
5381
5382 /* Returns the end address of the segment + 1. */
5383 #define SEGMENT_END(segment, start) \
5384 (start + (segment->p_memsz > segment->p_filesz \
5385 ? segment->p_memsz : segment->p_filesz))
5386
5387 #define SECTION_SIZE(section, segment) \
5388 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5389 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5390 ? section->size : 0)
5391
5392 /* Returns TRUE if the given section is contained within
5393 the given segment. VMA addresses are compared. */
5394 #define IS_CONTAINED_BY_VMA(section, segment) \
5395 (section->vma >= segment->p_vaddr \
5396 && (section->vma + SECTION_SIZE (section, segment) \
5397 <= (SEGMENT_END (segment, segment->p_vaddr))))
5398
5399 /* Returns TRUE if the given section is contained within
5400 the given segment. LMA addresses are compared. */
5401 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5402 (section->lma >= base \
5403 && (section->lma + SECTION_SIZE (section, segment) \
5404 <= SEGMENT_END (segment, base)))
5405
5406 /* Handle PT_NOTE segment. */
5407 #define IS_NOTE(p, s) \
5408 (p->p_type == PT_NOTE \
5409 && elf_section_type (s) == SHT_NOTE \
5410 && (bfd_vma) s->filepos >= p->p_offset \
5411 && ((bfd_vma) s->filepos + s->size \
5412 <= p->p_offset + p->p_filesz))
5413
5414 /* Special case: corefile "NOTE" section containing regs, prpsinfo
5415 etc. */
5416 #define IS_COREFILE_NOTE(p, s) \
5417 (IS_NOTE (p, s) \
5418 && bfd_get_format (ibfd) == bfd_core \
5419 && s->vma == 0 \
5420 && s->lma == 0)
5421
5422 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5423 linker, which generates a PT_INTERP section with p_vaddr and
5424 p_memsz set to 0. */
5425 #define IS_SOLARIS_PT_INTERP(p, s) \
5426 (p->p_vaddr == 0 \
5427 && p->p_paddr == 0 \
5428 && p->p_memsz == 0 \
5429 && p->p_filesz > 0 \
5430 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5431 && s->size > 0 \
5432 && (bfd_vma) s->filepos >= p->p_offset \
5433 && ((bfd_vma) s->filepos + s->size \
5434 <= p->p_offset + p->p_filesz))
5435
5436 /* Decide if the given section should be included in the given segment.
5437 A section will be included if:
5438 1. It is within the address space of the segment -- we use the LMA
5439 if that is set for the segment and the VMA otherwise,
5440 2. It is an allocated section or a NOTE section in a PT_NOTE
5441 segment.
5442 3. There is an output section associated with it,
5443 4. The section has not already been allocated to a previous segment.
5444 5. PT_GNU_STACK segments do not include any sections.
5445 6. PT_TLS segment includes only SHF_TLS sections.
5446 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5447 8. PT_DYNAMIC should not contain empty sections at the beginning
5448 (with the possible exception of .dynamic). */
5449 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
5450 ((((segment->p_paddr \
5451 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5452 : IS_CONTAINED_BY_VMA (section, segment)) \
5453 && (section->flags & SEC_ALLOC) != 0) \
5454 || IS_NOTE (segment, section)) \
5455 && segment->p_type != PT_GNU_STACK \
5456 && (segment->p_type != PT_TLS \
5457 || (section->flags & SEC_THREAD_LOCAL)) \
5458 && (segment->p_type == PT_LOAD \
5459 || segment->p_type == PT_TLS \
5460 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5461 && (segment->p_type != PT_DYNAMIC \
5462 || SECTION_SIZE (section, segment) > 0 \
5463 || (segment->p_paddr \
5464 ? segment->p_paddr != section->lma \
5465 : segment->p_vaddr != section->vma) \
5466 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5467 == 0)) \
5468 && !section->segment_mark)
5469
5470 /* If the output section of a section in the input segment is NULL,
5471 it is removed from the corresponding output segment. */
5472 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5473 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
5474 && section->output_section != NULL)
5475
5476 /* Returns TRUE iff seg1 starts after the end of seg2. */
5477 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5478 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5479
5480 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5481 their VMA address ranges and their LMA address ranges overlap.
5482 It is possible to have overlapping VMA ranges without overlapping LMA
5483 ranges. RedBoot images for example can have both .data and .bss mapped
5484 to the same VMA range, but with the .data section mapped to a different
5485 LMA. */
5486 #define SEGMENT_OVERLAPS(seg1, seg2) \
5487 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5488 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5489 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5490 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5491
5492 /* Initialise the segment mark field. */
5493 for (section = ibfd->sections; section != NULL; section = section->next)
5494 section->segment_mark = FALSE;
5495
5496 /* The Solaris linker creates program headers in which all the
5497 p_paddr fields are zero. When we try to objcopy or strip such a
5498 file, we get confused. Check for this case, and if we find it
5499 don't set the p_paddr_valid fields. */
5500 p_paddr_valid = FALSE;
5501 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5502 i < num_segments;
5503 i++, segment++)
5504 if (segment->p_paddr != 0)
5505 {
5506 p_paddr_valid = TRUE;
5507 break;
5508 }
5509
5510 /* Scan through the segments specified in the program header
5511 of the input BFD. For this first scan we look for overlaps
5512 in the loadable segments. These can be created by weird
5513 parameters to objcopy. Also, fix some solaris weirdness. */
5514 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5515 i < num_segments;
5516 i++, segment++)
5517 {
5518 unsigned int j;
5519 Elf_Internal_Phdr *segment2;
5520
5521 if (segment->p_type == PT_INTERP)
5522 for (section = ibfd->sections; section; section = section->next)
5523 if (IS_SOLARIS_PT_INTERP (segment, section))
5524 {
5525 /* Mininal change so that the normal section to segment
5526 assignment code will work. */
5527 segment->p_vaddr = section->vma;
5528 break;
5529 }
5530
5531 if (segment->p_type != PT_LOAD)
5532 {
5533 /* Remove PT_GNU_RELRO segment. */
5534 if (segment->p_type == PT_GNU_RELRO)
5535 segment->p_type = PT_NULL;
5536 continue;
5537 }
5538
5539 /* Determine if this segment overlaps any previous segments. */
5540 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
5541 {
5542 bfd_signed_vma extra_length;
5543
5544 if (segment2->p_type != PT_LOAD
5545 || !SEGMENT_OVERLAPS (segment, segment2))
5546 continue;
5547
5548 /* Merge the two segments together. */
5549 if (segment2->p_vaddr < segment->p_vaddr)
5550 {
5551 /* Extend SEGMENT2 to include SEGMENT and then delete
5552 SEGMENT. */
5553 extra_length = (SEGMENT_END (segment, segment->p_vaddr)
5554 - SEGMENT_END (segment2, segment2->p_vaddr));
5555
5556 if (extra_length > 0)
5557 {
5558 segment2->p_memsz += extra_length;
5559 segment2->p_filesz += extra_length;
5560 }
5561
5562 segment->p_type = PT_NULL;
5563
5564 /* Since we have deleted P we must restart the outer loop. */
5565 i = 0;
5566 segment = elf_tdata (ibfd)->phdr;
5567 break;
5568 }
5569 else
5570 {
5571 /* Extend SEGMENT to include SEGMENT2 and then delete
5572 SEGMENT2. */
5573 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
5574 - SEGMENT_END (segment, segment->p_vaddr));
5575
5576 if (extra_length > 0)
5577 {
5578 segment->p_memsz += extra_length;
5579 segment->p_filesz += extra_length;
5580 }
5581
5582 segment2->p_type = PT_NULL;
5583 }
5584 }
5585 }
5586
5587 /* The second scan attempts to assign sections to segments. */
5588 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5589 i < num_segments;
5590 i++, segment++)
5591 {
5592 unsigned int section_count;
5593 asection **sections;
5594 asection *output_section;
5595 unsigned int isec;
5596 bfd_vma matching_lma;
5597 bfd_vma suggested_lma;
5598 unsigned int j;
5599 bfd_size_type amt;
5600 asection *first_section;
5601 bfd_boolean first_matching_lma;
5602 bfd_boolean first_suggested_lma;
5603
5604 if (segment->p_type == PT_NULL)
5605 continue;
5606
5607 first_section = NULL;
5608 /* Compute how many sections might be placed into this segment. */
5609 for (section = ibfd->sections, section_count = 0;
5610 section != NULL;
5611 section = section->next)
5612 {
5613 /* Find the first section in the input segment, which may be
5614 removed from the corresponding output segment. */
5615 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
5616 {
5617 if (first_section == NULL)
5618 first_section = section;
5619 if (section->output_section != NULL)
5620 ++section_count;
5621 }
5622 }
5623
5624 /* Allocate a segment map big enough to contain
5625 all of the sections we have selected. */
5626 amt = sizeof (struct elf_segment_map);
5627 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5628 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
5629 if (map == NULL)
5630 return FALSE;
5631
5632 /* Initialise the fields of the segment map. Default to
5633 using the physical address of the segment in the input BFD. */
5634 map->next = NULL;
5635 map->p_type = segment->p_type;
5636 map->p_flags = segment->p_flags;
5637 map->p_flags_valid = 1;
5638
5639 /* If the first section in the input segment is removed, there is
5640 no need to preserve segment physical address in the corresponding
5641 output segment. */
5642 if (!first_section || first_section->output_section != NULL)
5643 {
5644 map->p_paddr = segment->p_paddr;
5645 map->p_paddr_valid = p_paddr_valid;
5646 }
5647
5648 /* Determine if this segment contains the ELF file header
5649 and if it contains the program headers themselves. */
5650 map->includes_filehdr = (segment->p_offset == 0
5651 && segment->p_filesz >= iehdr->e_ehsize);
5652 map->includes_phdrs = 0;
5653
5654 if (!phdr_included || segment->p_type != PT_LOAD)
5655 {
5656 map->includes_phdrs =
5657 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5658 && (segment->p_offset + segment->p_filesz
5659 >= ((bfd_vma) iehdr->e_phoff
5660 + iehdr->e_phnum * iehdr->e_phentsize)));
5661
5662 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5663 phdr_included = TRUE;
5664 }
5665
5666 if (section_count == 0)
5667 {
5668 /* Special segments, such as the PT_PHDR segment, may contain
5669 no sections, but ordinary, loadable segments should contain
5670 something. They are allowed by the ELF spec however, so only
5671 a warning is produced. */
5672 if (segment->p_type == PT_LOAD)
5673 (*_bfd_error_handler) (_("%B: warning: Empty loadable segment"
5674 " detected, is this intentional ?\n"),
5675 ibfd);
5676
5677 map->count = 0;
5678 *pointer_to_map = map;
5679 pointer_to_map = &map->next;
5680
5681 continue;
5682 }
5683
5684 /* Now scan the sections in the input BFD again and attempt
5685 to add their corresponding output sections to the segment map.
5686 The problem here is how to handle an output section which has
5687 been moved (ie had its LMA changed). There are four possibilities:
5688
5689 1. None of the sections have been moved.
5690 In this case we can continue to use the segment LMA from the
5691 input BFD.
5692
5693 2. All of the sections have been moved by the same amount.
5694 In this case we can change the segment's LMA to match the LMA
5695 of the first section.
5696
5697 3. Some of the sections have been moved, others have not.
5698 In this case those sections which have not been moved can be
5699 placed in the current segment which will have to have its size,
5700 and possibly its LMA changed, and a new segment or segments will
5701 have to be created to contain the other sections.
5702
5703 4. The sections have been moved, but not by the same amount.
5704 In this case we can change the segment's LMA to match the LMA
5705 of the first section and we will have to create a new segment
5706 or segments to contain the other sections.
5707
5708 In order to save time, we allocate an array to hold the section
5709 pointers that we are interested in. As these sections get assigned
5710 to a segment, they are removed from this array. */
5711
5712 sections = (asection **) bfd_malloc2 (section_count, sizeof (asection *));
5713 if (sections == NULL)
5714 return FALSE;
5715
5716 /* Step One: Scan for segment vs section LMA conflicts.
5717 Also add the sections to the section array allocated above.
5718 Also add the sections to the current segment. In the common
5719 case, where the sections have not been moved, this means that
5720 we have completely filled the segment, and there is nothing
5721 more to do. */
5722 isec = 0;
5723 matching_lma = 0;
5724 suggested_lma = 0;
5725 first_matching_lma = TRUE;
5726 first_suggested_lma = TRUE;
5727
5728 for (section = ibfd->sections;
5729 section != NULL;
5730 section = section->next)
5731 if (section == first_section)
5732 break;
5733
5734 for (j = 0; section != NULL; section = section->next)
5735 {
5736 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5737 {
5738 output_section = section->output_section;
5739
5740 sections[j++] = section;
5741
5742 /* The Solaris native linker always sets p_paddr to 0.
5743 We try to catch that case here, and set it to the
5744 correct value. Note - some backends require that
5745 p_paddr be left as zero. */
5746 if (!p_paddr_valid
5747 && segment->p_vaddr != 0
5748 && !bed->want_p_paddr_set_to_zero
5749 && isec == 0
5750 && output_section->lma != 0
5751 && output_section->vma == (segment->p_vaddr
5752 + (map->includes_filehdr
5753 ? iehdr->e_ehsize
5754 : 0)
5755 + (map->includes_phdrs
5756 ? (iehdr->e_phnum
5757 * iehdr->e_phentsize)
5758 : 0)))
5759 map->p_paddr = segment->p_vaddr;
5760
5761 /* Match up the physical address of the segment with the
5762 LMA address of the output section. */
5763 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5764 || IS_COREFILE_NOTE (segment, section)
5765 || (bed->want_p_paddr_set_to_zero
5766 && IS_CONTAINED_BY_VMA (output_section, segment)))
5767 {
5768 if (first_matching_lma || output_section->lma < matching_lma)
5769 {
5770 matching_lma = output_section->lma;
5771 first_matching_lma = FALSE;
5772 }
5773
5774 /* We assume that if the section fits within the segment
5775 then it does not overlap any other section within that
5776 segment. */
5777 map->sections[isec++] = output_section;
5778 }
5779 else if (first_suggested_lma)
5780 {
5781 suggested_lma = output_section->lma;
5782 first_suggested_lma = FALSE;
5783 }
5784
5785 if (j == section_count)
5786 break;
5787 }
5788 }
5789
5790 BFD_ASSERT (j == section_count);
5791
5792 /* Step Two: Adjust the physical address of the current segment,
5793 if necessary. */
5794 if (isec == section_count)
5795 {
5796 /* All of the sections fitted within the segment as currently
5797 specified. This is the default case. Add the segment to
5798 the list of built segments and carry on to process the next
5799 program header in the input BFD. */
5800 map->count = section_count;
5801 *pointer_to_map = map;
5802 pointer_to_map = &map->next;
5803
5804 if (p_paddr_valid
5805 && !bed->want_p_paddr_set_to_zero
5806 && matching_lma != map->p_paddr
5807 && !map->includes_filehdr
5808 && !map->includes_phdrs)
5809 /* There is some padding before the first section in the
5810 segment. So, we must account for that in the output
5811 segment's vma. */
5812 map->p_vaddr_offset = matching_lma - map->p_paddr;
5813
5814 free (sections);
5815 continue;
5816 }
5817 else
5818 {
5819 if (!first_matching_lma)
5820 {
5821 /* At least one section fits inside the current segment.
5822 Keep it, but modify its physical address to match the
5823 LMA of the first section that fitted. */
5824 map->p_paddr = matching_lma;
5825 }
5826 else
5827 {
5828 /* None of the sections fitted inside the current segment.
5829 Change the current segment's physical address to match
5830 the LMA of the first section. */
5831 map->p_paddr = suggested_lma;
5832 }
5833
5834 /* Offset the segment physical address from the lma
5835 to allow for space taken up by elf headers. */
5836 if (map->includes_filehdr)
5837 {
5838 if (map->p_paddr >= iehdr->e_ehsize)
5839 map->p_paddr -= iehdr->e_ehsize;
5840 else
5841 {
5842 map->includes_filehdr = FALSE;
5843 map->includes_phdrs = FALSE;
5844 }
5845 }
5846
5847 if (map->includes_phdrs)
5848 {
5849 if (map->p_paddr >= iehdr->e_phnum * iehdr->e_phentsize)
5850 {
5851 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
5852
5853 /* iehdr->e_phnum is just an estimate of the number
5854 of program headers that we will need. Make a note
5855 here of the number we used and the segment we chose
5856 to hold these headers, so that we can adjust the
5857 offset when we know the correct value. */
5858 phdr_adjust_num = iehdr->e_phnum;
5859 phdr_adjust_seg = map;
5860 }
5861 else
5862 map->includes_phdrs = FALSE;
5863 }
5864 }
5865
5866 /* Step Three: Loop over the sections again, this time assigning
5867 those that fit to the current segment and removing them from the
5868 sections array; but making sure not to leave large gaps. Once all
5869 possible sections have been assigned to the current segment it is
5870 added to the list of built segments and if sections still remain
5871 to be assigned, a new segment is constructed before repeating
5872 the loop. */
5873 isec = 0;
5874 do
5875 {
5876 map->count = 0;
5877 suggested_lma = 0;
5878 first_suggested_lma = TRUE;
5879
5880 /* Fill the current segment with sections that fit. */
5881 for (j = 0; j < section_count; j++)
5882 {
5883 section = sections[j];
5884
5885 if (section == NULL)
5886 continue;
5887
5888 output_section = section->output_section;
5889
5890 BFD_ASSERT (output_section != NULL);
5891
5892 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5893 || IS_COREFILE_NOTE (segment, section))
5894 {
5895 if (map->count == 0)
5896 {
5897 /* If the first section in a segment does not start at
5898 the beginning of the segment, then something is
5899 wrong. */
5900 if (output_section->lma
5901 != (map->p_paddr
5902 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
5903 + (map->includes_phdrs
5904 ? iehdr->e_phnum * iehdr->e_phentsize
5905 : 0)))
5906 abort ();
5907 }
5908 else
5909 {
5910 asection *prev_sec;
5911
5912 prev_sec = map->sections[map->count - 1];
5913
5914 /* If the gap between the end of the previous section
5915 and the start of this section is more than
5916 maxpagesize then we need to start a new segment. */
5917 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
5918 maxpagesize)
5919 < BFD_ALIGN (output_section->lma, maxpagesize))
5920 || (prev_sec->lma + prev_sec->size
5921 > output_section->lma))
5922 {
5923 if (first_suggested_lma)
5924 {
5925 suggested_lma = output_section->lma;
5926 first_suggested_lma = FALSE;
5927 }
5928
5929 continue;
5930 }
5931 }
5932
5933 map->sections[map->count++] = output_section;
5934 ++isec;
5935 sections[j] = NULL;
5936 section->segment_mark = TRUE;
5937 }
5938 else if (first_suggested_lma)
5939 {
5940 suggested_lma = output_section->lma;
5941 first_suggested_lma = FALSE;
5942 }
5943 }
5944
5945 BFD_ASSERT (map->count > 0);
5946
5947 /* Add the current segment to the list of built segments. */
5948 *pointer_to_map = map;
5949 pointer_to_map = &map->next;
5950
5951 if (isec < section_count)
5952 {
5953 /* We still have not allocated all of the sections to
5954 segments. Create a new segment here, initialise it
5955 and carry on looping. */
5956 amt = sizeof (struct elf_segment_map);
5957 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5958 map = (struct elf_segment_map *) bfd_alloc (obfd, amt);
5959 if (map == NULL)
5960 {
5961 free (sections);
5962 return FALSE;
5963 }
5964
5965 /* Initialise the fields of the segment map. Set the physical
5966 physical address to the LMA of the first section that has
5967 not yet been assigned. */
5968 map->next = NULL;
5969 map->p_type = segment->p_type;
5970 map->p_flags = segment->p_flags;
5971 map->p_flags_valid = 1;
5972 map->p_paddr = suggested_lma;
5973 map->p_paddr_valid = p_paddr_valid;
5974 map->includes_filehdr = 0;
5975 map->includes_phdrs = 0;
5976 }
5977 }
5978 while (isec < section_count);
5979
5980 free (sections);
5981 }
5982
5983 elf_tdata (obfd)->segment_map = map_first;
5984
5985 /* If we had to estimate the number of program headers that were
5986 going to be needed, then check our estimate now and adjust
5987 the offset if necessary. */
5988 if (phdr_adjust_seg != NULL)
5989 {
5990 unsigned int count;
5991
5992 for (count = 0, map = map_first; map != NULL; map = map->next)
5993 count++;
5994
5995 if (count > phdr_adjust_num)
5996 phdr_adjust_seg->p_paddr
5997 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
5998 }
5999
6000 #undef SEGMENT_END
6001 #undef SECTION_SIZE
6002 #undef IS_CONTAINED_BY_VMA
6003 #undef IS_CONTAINED_BY_LMA
6004 #undef IS_NOTE
6005 #undef IS_COREFILE_NOTE
6006 #undef IS_SOLARIS_PT_INTERP
6007 #undef IS_SECTION_IN_INPUT_SEGMENT
6008 #undef INCLUDE_SECTION_IN_SEGMENT
6009 #undef SEGMENT_AFTER_SEGMENT
6010 #undef SEGMENT_OVERLAPS
6011 return TRUE;
6012 }
6013
6014 /* Copy ELF program header information. */
6015
6016 static bfd_boolean
6017 copy_elf_program_header (bfd *ibfd, bfd *obfd)
6018 {
6019 Elf_Internal_Ehdr *iehdr;
6020 struct elf_segment_map *map;
6021 struct elf_segment_map *map_first;
6022 struct elf_segment_map **pointer_to_map;
6023 Elf_Internal_Phdr *segment;
6024 unsigned int i;
6025 unsigned int num_segments;
6026 bfd_boolean phdr_included = FALSE;
6027 bfd_boolean p_paddr_valid;
6028
6029 iehdr = elf_elfheader (ibfd);
6030
6031 map_first = NULL;
6032 pointer_to_map = &map_first;
6033
6034 /* If all the segment p_paddr fields are zero, don't set
6035 map->p_paddr_valid. */
6036 p_paddr_valid = FALSE;
6037 num_segments = elf_elfheader (ibfd)->e_phnum;
6038 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6039 i < num_segments;
6040 i++, segment++)
6041 if (segment->p_paddr != 0)
6042 {
6043 p_paddr_valid = TRUE;
6044 break;
6045 }
6046
6047 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6048 i < num_segments;
6049 i++, segment++)
6050 {
6051 asection *section;
6052 unsigned int section_count;
6053 bfd_size_type amt;
6054 Elf_Internal_Shdr *this_hdr;
6055 asection *first_section = NULL;
6056 asection *lowest_section;
6057
6058 /* Compute how many sections are in this segment. */
6059 for (section = ibfd->sections, section_count = 0;
6060 section != NULL;
6061 section = section->next)
6062 {
6063 this_hdr = &(elf_section_data(section)->this_hdr);
6064 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6065 {
6066 if (first_section == NULL)
6067 first_section = section;
6068 section_count++;
6069 }
6070 }
6071
6072 /* Allocate a segment map big enough to contain
6073 all of the sections we have selected. */
6074 amt = sizeof (struct elf_segment_map);
6075 if (section_count != 0)
6076 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
6077 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
6078 if (map == NULL)
6079 return FALSE;
6080
6081 /* Initialize the fields of the output segment map with the
6082 input segment. */
6083 map->next = NULL;
6084 map->p_type = segment->p_type;
6085 map->p_flags = segment->p_flags;
6086 map->p_flags_valid = 1;
6087 map->p_paddr = segment->p_paddr;
6088 map->p_paddr_valid = p_paddr_valid;
6089 map->p_align = segment->p_align;
6090 map->p_align_valid = 1;
6091 map->p_vaddr_offset = 0;
6092
6093 if (map->p_type == PT_GNU_RELRO)
6094 {
6095 /* The PT_GNU_RELRO segment may contain the first a few
6096 bytes in the .got.plt section even if the whole .got.plt
6097 section isn't in the PT_GNU_RELRO segment. We won't
6098 change the size of the PT_GNU_RELRO segment. */
6099 map->p_size = segment->p_memsz;
6100 map->p_size_valid = 1;
6101 }
6102
6103 /* Determine if this segment contains the ELF file header
6104 and if it contains the program headers themselves. */
6105 map->includes_filehdr = (segment->p_offset == 0
6106 && segment->p_filesz >= iehdr->e_ehsize);
6107
6108 map->includes_phdrs = 0;
6109 if (! phdr_included || segment->p_type != PT_LOAD)
6110 {
6111 map->includes_phdrs =
6112 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
6113 && (segment->p_offset + segment->p_filesz
6114 >= ((bfd_vma) iehdr->e_phoff
6115 + iehdr->e_phnum * iehdr->e_phentsize)));
6116
6117 if (segment->p_type == PT_LOAD && map->includes_phdrs)
6118 phdr_included = TRUE;
6119 }
6120
6121 lowest_section = first_section;
6122 if (section_count != 0)
6123 {
6124 unsigned int isec = 0;
6125
6126 for (section = first_section;
6127 section != NULL;
6128 section = section->next)
6129 {
6130 this_hdr = &(elf_section_data(section)->this_hdr);
6131 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6132 {
6133 map->sections[isec++] = section->output_section;
6134 if (section->lma < lowest_section->lma)
6135 lowest_section = section;
6136 if ((section->flags & SEC_ALLOC) != 0)
6137 {
6138 bfd_vma seg_off;
6139
6140 /* Section lmas are set up from PT_LOAD header
6141 p_paddr in _bfd_elf_make_section_from_shdr.
6142 If this header has a p_paddr that disagrees
6143 with the section lma, flag the p_paddr as
6144 invalid. */
6145 if ((section->flags & SEC_LOAD) != 0)
6146 seg_off = this_hdr->sh_offset - segment->p_offset;
6147 else
6148 seg_off = this_hdr->sh_addr - segment->p_vaddr;
6149 if (section->lma - segment->p_paddr != seg_off)
6150 map->p_paddr_valid = FALSE;
6151 }
6152 if (isec == section_count)
6153 break;
6154 }
6155 }
6156 }
6157
6158 if (map->includes_filehdr && lowest_section != NULL)
6159 /* We need to keep the space used by the headers fixed. */
6160 map->header_size = lowest_section->vma - segment->p_vaddr;
6161
6162 if (!map->includes_phdrs
6163 && !map->includes_filehdr
6164 && map->p_paddr_valid)
6165 /* There is some other padding before the first section. */
6166 map->p_vaddr_offset = ((lowest_section ? lowest_section->lma : 0)
6167 - segment->p_paddr);
6168
6169 map->count = section_count;
6170 *pointer_to_map = map;
6171 pointer_to_map = &map->next;
6172 }
6173
6174 elf_tdata (obfd)->segment_map = map_first;
6175 return TRUE;
6176 }
6177
6178 /* Copy private BFD data. This copies or rewrites ELF program header
6179 information. */
6180
6181 static bfd_boolean
6182 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
6183 {
6184 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6185 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6186 return TRUE;
6187
6188 if (elf_tdata (ibfd)->phdr == NULL)
6189 return TRUE;
6190
6191 if (ibfd->xvec == obfd->xvec)
6192 {
6193 /* Check to see if any sections in the input BFD
6194 covered by ELF program header have changed. */
6195 Elf_Internal_Phdr *segment;
6196 asection *section, *osec;
6197 unsigned int i, num_segments;
6198 Elf_Internal_Shdr *this_hdr;
6199 const struct elf_backend_data *bed;
6200
6201 bed = get_elf_backend_data (ibfd);
6202
6203 /* Regenerate the segment map if p_paddr is set to 0. */
6204 if (bed->want_p_paddr_set_to_zero)
6205 goto rewrite;
6206
6207 /* Initialize the segment mark field. */
6208 for (section = obfd->sections; section != NULL;
6209 section = section->next)
6210 section->segment_mark = FALSE;
6211
6212 num_segments = elf_elfheader (ibfd)->e_phnum;
6213 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6214 i < num_segments;
6215 i++, segment++)
6216 {
6217 /* PR binutils/3535. The Solaris linker always sets the p_paddr
6218 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
6219 which severly confuses things, so always regenerate the segment
6220 map in this case. */
6221 if (segment->p_paddr == 0
6222 && segment->p_memsz == 0
6223 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
6224 goto rewrite;
6225
6226 for (section = ibfd->sections;
6227 section != NULL; section = section->next)
6228 {
6229 /* We mark the output section so that we know it comes
6230 from the input BFD. */
6231 osec = section->output_section;
6232 if (osec)
6233 osec->segment_mark = TRUE;
6234
6235 /* Check if this section is covered by the segment. */
6236 this_hdr = &(elf_section_data(section)->this_hdr);
6237 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6238 {
6239 /* FIXME: Check if its output section is changed or
6240 removed. What else do we need to check? */
6241 if (osec == NULL
6242 || section->flags != osec->flags
6243 || section->lma != osec->lma
6244 || section->vma != osec->vma
6245 || section->size != osec->size
6246 || section->rawsize != osec->rawsize
6247 || section->alignment_power != osec->alignment_power)
6248 goto rewrite;
6249 }
6250 }
6251 }
6252
6253 /* Check to see if any output section do not come from the
6254 input BFD. */
6255 for (section = obfd->sections; section != NULL;
6256 section = section->next)
6257 {
6258 if (section->segment_mark == FALSE)
6259 goto rewrite;
6260 else
6261 section->segment_mark = FALSE;
6262 }
6263
6264 return copy_elf_program_header (ibfd, obfd);
6265 }
6266
6267 rewrite:
6268 return rewrite_elf_program_header (ibfd, obfd);
6269 }
6270
6271 /* Initialize private output section information from input section. */
6272
6273 bfd_boolean
6274 _bfd_elf_init_private_section_data (bfd *ibfd,
6275 asection *isec,
6276 bfd *obfd,
6277 asection *osec,
6278 struct bfd_link_info *link_info)
6279
6280 {
6281 Elf_Internal_Shdr *ihdr, *ohdr;
6282 bfd_boolean final_link = link_info != NULL && !link_info->relocatable;
6283
6284 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6285 || obfd->xvec->flavour != bfd_target_elf_flavour)
6286 return TRUE;
6287
6288 BFD_ASSERT (elf_section_data (osec) != NULL);
6289
6290 /* For objcopy and relocatable link, don't copy the output ELF
6291 section type from input if the output BFD section flags have been
6292 set to something different. For a final link allow some flags
6293 that the linker clears to differ. */
6294 if (elf_section_type (osec) == SHT_NULL
6295 && (osec->flags == isec->flags
6296 || (final_link
6297 && ((osec->flags ^ isec->flags)
6298 & ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC)) == 0)))
6299 elf_section_type (osec) = elf_section_type (isec);
6300
6301 /* FIXME: Is this correct for all OS/PROC specific flags? */
6302 elf_section_flags (osec) |= (elf_section_flags (isec)
6303 & (SHF_MASKOS | SHF_MASKPROC));
6304
6305 /* Set things up for objcopy and relocatable link. The output
6306 SHT_GROUP section will have its elf_next_in_group pointing back
6307 to the input group members. Ignore linker created group section.
6308 See elfNN_ia64_object_p in elfxx-ia64.c. */
6309 if (!final_link)
6310 {
6311 if (elf_sec_group (isec) == NULL
6312 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
6313 {
6314 if (elf_section_flags (isec) & SHF_GROUP)
6315 elf_section_flags (osec) |= SHF_GROUP;
6316 elf_next_in_group (osec) = elf_next_in_group (isec);
6317 elf_section_data (osec)->group = elf_section_data (isec)->group;
6318 }
6319 }
6320
6321 ihdr = &elf_section_data (isec)->this_hdr;
6322
6323 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
6324 don't use the output section of the linked-to section since it
6325 may be NULL at this point. */
6326 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
6327 {
6328 ohdr = &elf_section_data (osec)->this_hdr;
6329 ohdr->sh_flags |= SHF_LINK_ORDER;
6330 elf_linked_to_section (osec) = elf_linked_to_section (isec);
6331 }
6332
6333 osec->use_rela_p = isec->use_rela_p;
6334
6335 return TRUE;
6336 }
6337
6338 /* Copy private section information. This copies over the entsize
6339 field, and sometimes the info field. */
6340
6341 bfd_boolean
6342 _bfd_elf_copy_private_section_data (bfd *ibfd,
6343 asection *isec,
6344 bfd *obfd,
6345 asection *osec)
6346 {
6347 Elf_Internal_Shdr *ihdr, *ohdr;
6348
6349 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6350 || obfd->xvec->flavour != bfd_target_elf_flavour)
6351 return TRUE;
6352
6353 ihdr = &elf_section_data (isec)->this_hdr;
6354 ohdr = &elf_section_data (osec)->this_hdr;
6355
6356 ohdr->sh_entsize = ihdr->sh_entsize;
6357
6358 if (ihdr->sh_type == SHT_SYMTAB
6359 || ihdr->sh_type == SHT_DYNSYM
6360 || ihdr->sh_type == SHT_GNU_verneed
6361 || ihdr->sh_type == SHT_GNU_verdef)
6362 ohdr->sh_info = ihdr->sh_info;
6363
6364 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
6365 NULL);
6366 }
6367
6368 /* Look at all the SHT_GROUP sections in IBFD, making any adjustments
6369 necessary if we are removing either the SHT_GROUP section or any of
6370 the group member sections. DISCARDED is the value that a section's
6371 output_section has if the section will be discarded, NULL when this
6372 function is called from objcopy, bfd_abs_section_ptr when called
6373 from the linker. */
6374
6375 bfd_boolean
6376 _bfd_elf_fixup_group_sections (bfd *ibfd, asection *discarded)
6377 {
6378 asection *isec;
6379
6380 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
6381 if (elf_section_type (isec) == SHT_GROUP)
6382 {
6383 asection *first = elf_next_in_group (isec);
6384 asection *s = first;
6385 bfd_size_type removed = 0;
6386
6387 while (s != NULL)
6388 {
6389 /* If this member section is being output but the
6390 SHT_GROUP section is not, then clear the group info
6391 set up by _bfd_elf_copy_private_section_data. */
6392 if (s->output_section != discarded
6393 && isec->output_section == discarded)
6394 {
6395 elf_section_flags (s->output_section) &= ~SHF_GROUP;
6396 elf_group_name (s->output_section) = NULL;
6397 }
6398 /* Conversely, if the member section is not being output
6399 but the SHT_GROUP section is, then adjust its size. */
6400 else if (s->output_section == discarded
6401 && isec->output_section != discarded)
6402 removed += 4;
6403 s = elf_next_in_group (s);
6404 if (s == first)
6405 break;
6406 }
6407 if (removed != 0)
6408 {
6409 if (discarded != NULL)
6410 {
6411 /* If we've been called for ld -r, then we need to
6412 adjust the input section size. This function may
6413 be called multiple times, so save the original
6414 size. */
6415 if (isec->rawsize == 0)
6416 isec->rawsize = isec->size;
6417 isec->size = isec->rawsize - removed;
6418 }
6419 else
6420 {
6421 /* Adjust the output section size when called from
6422 objcopy. */
6423 isec->output_section->size -= removed;
6424 }
6425 }
6426 }
6427
6428 return TRUE;
6429 }
6430
6431 /* Copy private header information. */
6432
6433 bfd_boolean
6434 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
6435 {
6436 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6437 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6438 return TRUE;
6439
6440 /* Copy over private BFD data if it has not already been copied.
6441 This must be done here, rather than in the copy_private_bfd_data
6442 entry point, because the latter is called after the section
6443 contents have been set, which means that the program headers have
6444 already been worked out. */
6445 if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
6446 {
6447 if (! copy_private_bfd_data (ibfd, obfd))
6448 return FALSE;
6449 }
6450
6451 return _bfd_elf_fixup_group_sections (ibfd, NULL);
6452 }
6453
6454 /* Copy private symbol information. If this symbol is in a section
6455 which we did not map into a BFD section, try to map the section
6456 index correctly. We use special macro definitions for the mapped
6457 section indices; these definitions are interpreted by the
6458 swap_out_syms function. */
6459
6460 #define MAP_ONESYMTAB (SHN_HIOS + 1)
6461 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
6462 #define MAP_STRTAB (SHN_HIOS + 3)
6463 #define MAP_SHSTRTAB (SHN_HIOS + 4)
6464 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
6465
6466 bfd_boolean
6467 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
6468 asymbol *isymarg,
6469 bfd *obfd,
6470 asymbol *osymarg)
6471 {
6472 elf_symbol_type *isym, *osym;
6473
6474 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6475 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6476 return TRUE;
6477
6478 isym = elf_symbol_from (ibfd, isymarg);
6479 osym = elf_symbol_from (obfd, osymarg);
6480
6481 if (isym != NULL
6482 && isym->internal_elf_sym.st_shndx != 0
6483 && osym != NULL
6484 && bfd_is_abs_section (isym->symbol.section))
6485 {
6486 unsigned int shndx;
6487
6488 shndx = isym->internal_elf_sym.st_shndx;
6489 if (shndx == elf_onesymtab (ibfd))
6490 shndx = MAP_ONESYMTAB;
6491 else if (shndx == elf_dynsymtab (ibfd))
6492 shndx = MAP_DYNSYMTAB;
6493 else if (shndx == elf_tdata (ibfd)->strtab_section)
6494 shndx = MAP_STRTAB;
6495 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
6496 shndx = MAP_SHSTRTAB;
6497 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
6498 shndx = MAP_SYM_SHNDX;
6499 osym->internal_elf_sym.st_shndx = shndx;
6500 }
6501
6502 return TRUE;
6503 }
6504
6505 /* Swap out the symbols. */
6506
6507 static bfd_boolean
6508 swap_out_syms (bfd *abfd,
6509 struct bfd_strtab_hash **sttp,
6510 int relocatable_p)
6511 {
6512 const struct elf_backend_data *bed;
6513 int symcount;
6514 asymbol **syms;
6515 struct bfd_strtab_hash *stt;
6516 Elf_Internal_Shdr *symtab_hdr;
6517 Elf_Internal_Shdr *symtab_shndx_hdr;
6518 Elf_Internal_Shdr *symstrtab_hdr;
6519 bfd_byte *outbound_syms;
6520 bfd_byte *outbound_shndx;
6521 int idx;
6522 bfd_size_type amt;
6523 bfd_boolean name_local_sections;
6524
6525 if (!elf_map_symbols (abfd))
6526 return FALSE;
6527
6528 /* Dump out the symtabs. */
6529 stt = _bfd_elf_stringtab_init ();
6530 if (stt == NULL)
6531 return FALSE;
6532
6533 bed = get_elf_backend_data (abfd);
6534 symcount = bfd_get_symcount (abfd);
6535 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6536 symtab_hdr->sh_type = SHT_SYMTAB;
6537 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
6538 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
6539 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
6540 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
6541
6542 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
6543 symstrtab_hdr->sh_type = SHT_STRTAB;
6544
6545 outbound_syms = (bfd_byte *) bfd_alloc2 (abfd, 1 + symcount,
6546 bed->s->sizeof_sym);
6547 if (outbound_syms == NULL)
6548 {
6549 _bfd_stringtab_free (stt);
6550 return FALSE;
6551 }
6552 symtab_hdr->contents = outbound_syms;
6553
6554 outbound_shndx = NULL;
6555 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
6556 if (symtab_shndx_hdr->sh_name != 0)
6557 {
6558 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
6559 outbound_shndx = (bfd_byte *)
6560 bfd_zalloc2 (abfd, 1 + symcount, sizeof (Elf_External_Sym_Shndx));
6561 if (outbound_shndx == NULL)
6562 {
6563 _bfd_stringtab_free (stt);
6564 return FALSE;
6565 }
6566
6567 symtab_shndx_hdr->contents = outbound_shndx;
6568 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
6569 symtab_shndx_hdr->sh_size = amt;
6570 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
6571 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
6572 }
6573
6574 /* Now generate the data (for "contents"). */
6575 {
6576 /* Fill in zeroth symbol and swap it out. */
6577 Elf_Internal_Sym sym;
6578 sym.st_name = 0;
6579 sym.st_value = 0;
6580 sym.st_size = 0;
6581 sym.st_info = 0;
6582 sym.st_other = 0;
6583 sym.st_shndx = SHN_UNDEF;
6584 sym.st_target_internal = 0;
6585 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6586 outbound_syms += bed->s->sizeof_sym;
6587 if (outbound_shndx != NULL)
6588 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6589 }
6590
6591 name_local_sections
6592 = (bed->elf_backend_name_local_section_symbols
6593 && bed->elf_backend_name_local_section_symbols (abfd));
6594
6595 syms = bfd_get_outsymbols (abfd);
6596 for (idx = 0; idx < symcount; idx++)
6597 {
6598 Elf_Internal_Sym sym;
6599 bfd_vma value = syms[idx]->value;
6600 elf_symbol_type *type_ptr;
6601 flagword flags = syms[idx]->flags;
6602 int type;
6603
6604 if (!name_local_sections
6605 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
6606 {
6607 /* Local section symbols have no name. */
6608 sym.st_name = 0;
6609 }
6610 else
6611 {
6612 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
6613 syms[idx]->name,
6614 TRUE, FALSE);
6615 if (sym.st_name == (unsigned long) -1)
6616 {
6617 _bfd_stringtab_free (stt);
6618 return FALSE;
6619 }
6620 }
6621
6622 type_ptr = elf_symbol_from (abfd, syms[idx]);
6623
6624 if ((flags & BSF_SECTION_SYM) == 0
6625 && bfd_is_com_section (syms[idx]->section))
6626 {
6627 /* ELF common symbols put the alignment into the `value' field,
6628 and the size into the `size' field. This is backwards from
6629 how BFD handles it, so reverse it here. */
6630 sym.st_size = value;
6631 if (type_ptr == NULL
6632 || type_ptr->internal_elf_sym.st_value == 0)
6633 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
6634 else
6635 sym.st_value = type_ptr->internal_elf_sym.st_value;
6636 sym.st_shndx = _bfd_elf_section_from_bfd_section
6637 (abfd, syms[idx]->section);
6638 }
6639 else
6640 {
6641 asection *sec = syms[idx]->section;
6642 unsigned int shndx;
6643
6644 if (sec->output_section)
6645 {
6646 value += sec->output_offset;
6647 sec = sec->output_section;
6648 }
6649
6650 /* Don't add in the section vma for relocatable output. */
6651 if (! relocatable_p)
6652 value += sec->vma;
6653 sym.st_value = value;
6654 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
6655
6656 if (bfd_is_abs_section (sec)
6657 && type_ptr != NULL
6658 && type_ptr->internal_elf_sym.st_shndx != 0)
6659 {
6660 /* This symbol is in a real ELF section which we did
6661 not create as a BFD section. Undo the mapping done
6662 by copy_private_symbol_data. */
6663 shndx = type_ptr->internal_elf_sym.st_shndx;
6664 switch (shndx)
6665 {
6666 case MAP_ONESYMTAB:
6667 shndx = elf_onesymtab (abfd);
6668 break;
6669 case MAP_DYNSYMTAB:
6670 shndx = elf_dynsymtab (abfd);
6671 break;
6672 case MAP_STRTAB:
6673 shndx = elf_tdata (abfd)->strtab_section;
6674 break;
6675 case MAP_SHSTRTAB:
6676 shndx = elf_tdata (abfd)->shstrtab_section;
6677 break;
6678 case MAP_SYM_SHNDX:
6679 shndx = elf_tdata (abfd)->symtab_shndx_section;
6680 break;
6681 default:
6682 break;
6683 }
6684 }
6685 else
6686 {
6687 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
6688
6689 if (shndx == SHN_BAD)
6690 {
6691 asection *sec2;
6692
6693 /* Writing this would be a hell of a lot easier if
6694 we had some decent documentation on bfd, and
6695 knew what to expect of the library, and what to
6696 demand of applications. For example, it
6697 appears that `objcopy' might not set the
6698 section of a symbol to be a section that is
6699 actually in the output file. */
6700 sec2 = bfd_get_section_by_name (abfd, sec->name);
6701 if (sec2 == NULL)
6702 {
6703 _bfd_error_handler (_("\
6704 Unable to find equivalent output section for symbol '%s' from section '%s'"),
6705 syms[idx]->name ? syms[idx]->name : "<Local sym>",
6706 sec->name);
6707 bfd_set_error (bfd_error_invalid_operation);
6708 _bfd_stringtab_free (stt);
6709 return FALSE;
6710 }
6711
6712 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
6713 BFD_ASSERT (shndx != SHN_BAD);
6714 }
6715 }
6716
6717 sym.st_shndx = shndx;
6718 }
6719
6720 if ((flags & BSF_THREAD_LOCAL) != 0)
6721 type = STT_TLS;
6722 else if ((flags & BSF_GNU_INDIRECT_FUNCTION) != 0)
6723 type = STT_GNU_IFUNC;
6724 else if ((flags & BSF_FUNCTION) != 0)
6725 type = STT_FUNC;
6726 else if ((flags & BSF_OBJECT) != 0)
6727 type = STT_OBJECT;
6728 else if ((flags & BSF_RELC) != 0)
6729 type = STT_RELC;
6730 else if ((flags & BSF_SRELC) != 0)
6731 type = STT_SRELC;
6732 else
6733 type = STT_NOTYPE;
6734
6735 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
6736 type = STT_TLS;
6737
6738 /* Processor-specific types. */
6739 if (type_ptr != NULL
6740 && bed->elf_backend_get_symbol_type)
6741 type = ((*bed->elf_backend_get_symbol_type)
6742 (&type_ptr->internal_elf_sym, type));
6743
6744 if (flags & BSF_SECTION_SYM)
6745 {
6746 if (flags & BSF_GLOBAL)
6747 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6748 else
6749 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
6750 }
6751 else if (bfd_is_com_section (syms[idx]->section))
6752 {
6753 #ifdef USE_STT_COMMON
6754 if (type == STT_OBJECT)
6755 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_COMMON);
6756 else
6757 #endif
6758 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
6759 }
6760 else if (bfd_is_und_section (syms[idx]->section))
6761 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
6762 ? STB_WEAK
6763 : STB_GLOBAL),
6764 type);
6765 else if (flags & BSF_FILE)
6766 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
6767 else
6768 {
6769 int bind = STB_LOCAL;
6770
6771 if (flags & BSF_LOCAL)
6772 bind = STB_LOCAL;
6773 else if (flags & BSF_GNU_UNIQUE)
6774 bind = STB_GNU_UNIQUE;
6775 else if (flags & BSF_WEAK)
6776 bind = STB_WEAK;
6777 else if (flags & BSF_GLOBAL)
6778 bind = STB_GLOBAL;
6779
6780 sym.st_info = ELF_ST_INFO (bind, type);
6781 }
6782
6783 if (type_ptr != NULL)
6784 {
6785 sym.st_other = type_ptr->internal_elf_sym.st_other;
6786 sym.st_target_internal
6787 = type_ptr->internal_elf_sym.st_target_internal;
6788 }
6789 else
6790 {
6791 sym.st_other = 0;
6792 sym.st_target_internal = 0;
6793 }
6794
6795 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6796 outbound_syms += bed->s->sizeof_sym;
6797 if (outbound_shndx != NULL)
6798 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6799 }
6800
6801 *sttp = stt;
6802 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
6803 symstrtab_hdr->sh_type = SHT_STRTAB;
6804
6805 symstrtab_hdr->sh_flags = 0;
6806 symstrtab_hdr->sh_addr = 0;
6807 symstrtab_hdr->sh_entsize = 0;
6808 symstrtab_hdr->sh_link = 0;
6809 symstrtab_hdr->sh_info = 0;
6810 symstrtab_hdr->sh_addralign = 1;
6811
6812 return TRUE;
6813 }
6814
6815 /* Return the number of bytes required to hold the symtab vector.
6816
6817 Note that we base it on the count plus 1, since we will null terminate
6818 the vector allocated based on this size. However, the ELF symbol table
6819 always has a dummy entry as symbol #0, so it ends up even. */
6820
6821 long
6822 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
6823 {
6824 long symcount;
6825 long symtab_size;
6826 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
6827
6828 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6829 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6830 if (symcount > 0)
6831 symtab_size -= sizeof (asymbol *);
6832
6833 return symtab_size;
6834 }
6835
6836 long
6837 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
6838 {
6839 long symcount;
6840 long symtab_size;
6841 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
6842
6843 if (elf_dynsymtab (abfd) == 0)
6844 {
6845 bfd_set_error (bfd_error_invalid_operation);
6846 return -1;
6847 }
6848
6849 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6850 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6851 if (symcount > 0)
6852 symtab_size -= sizeof (asymbol *);
6853
6854 return symtab_size;
6855 }
6856
6857 long
6858 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
6859 sec_ptr asect)
6860 {
6861 return (asect->reloc_count + 1) * sizeof (arelent *);
6862 }
6863
6864 /* Canonicalize the relocs. */
6865
6866 long
6867 _bfd_elf_canonicalize_reloc (bfd *abfd,
6868 sec_ptr section,
6869 arelent **relptr,
6870 asymbol **symbols)
6871 {
6872 arelent *tblptr;
6873 unsigned int i;
6874 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6875
6876 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
6877 return -1;
6878
6879 tblptr = section->relocation;
6880 for (i = 0; i < section->reloc_count; i++)
6881 *relptr++ = tblptr++;
6882
6883 *relptr = NULL;
6884
6885 return section->reloc_count;
6886 }
6887
6888 long
6889 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
6890 {
6891 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6892 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
6893
6894 if (symcount >= 0)
6895 bfd_get_symcount (abfd) = symcount;
6896 return symcount;
6897 }
6898
6899 long
6900 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
6901 asymbol **allocation)
6902 {
6903 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6904 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
6905
6906 if (symcount >= 0)
6907 bfd_get_dynamic_symcount (abfd) = symcount;
6908 return symcount;
6909 }
6910
6911 /* Return the size required for the dynamic reloc entries. Any loadable
6912 section that was actually installed in the BFD, and has type SHT_REL
6913 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
6914 dynamic reloc section. */
6915
6916 long
6917 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
6918 {
6919 long ret;
6920 asection *s;
6921
6922 if (elf_dynsymtab (abfd) == 0)
6923 {
6924 bfd_set_error (bfd_error_invalid_operation);
6925 return -1;
6926 }
6927
6928 ret = sizeof (arelent *);
6929 for (s = abfd->sections; s != NULL; s = s->next)
6930 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6931 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6932 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6933 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
6934 * sizeof (arelent *));
6935
6936 return ret;
6937 }
6938
6939 /* Canonicalize the dynamic relocation entries. Note that we return the
6940 dynamic relocations as a single block, although they are actually
6941 associated with particular sections; the interface, which was
6942 designed for SunOS style shared libraries, expects that there is only
6943 one set of dynamic relocs. Any loadable section that was actually
6944 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
6945 dynamic symbol table, is considered to be a dynamic reloc section. */
6946
6947 long
6948 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
6949 arelent **storage,
6950 asymbol **syms)
6951 {
6952 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
6953 asection *s;
6954 long ret;
6955
6956 if (elf_dynsymtab (abfd) == 0)
6957 {
6958 bfd_set_error (bfd_error_invalid_operation);
6959 return -1;
6960 }
6961
6962 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
6963 ret = 0;
6964 for (s = abfd->sections; s != NULL; s = s->next)
6965 {
6966 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6967 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6968 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6969 {
6970 arelent *p;
6971 long count, i;
6972
6973 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
6974 return -1;
6975 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
6976 p = s->relocation;
6977 for (i = 0; i < count; i++)
6978 *storage++ = p++;
6979 ret += count;
6980 }
6981 }
6982
6983 *storage = NULL;
6984
6985 return ret;
6986 }
6987 \f
6988 /* Read in the version information. */
6989
6990 bfd_boolean
6991 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
6992 {
6993 bfd_byte *contents = NULL;
6994 unsigned int freeidx = 0;
6995
6996 if (elf_dynverref (abfd) != 0)
6997 {
6998 Elf_Internal_Shdr *hdr;
6999 Elf_External_Verneed *everneed;
7000 Elf_Internal_Verneed *iverneed;
7001 unsigned int i;
7002 bfd_byte *contents_end;
7003
7004 hdr = &elf_tdata (abfd)->dynverref_hdr;
7005
7006 elf_tdata (abfd)->verref = (Elf_Internal_Verneed *)
7007 bfd_zalloc2 (abfd, hdr->sh_info, sizeof (Elf_Internal_Verneed));
7008 if (elf_tdata (abfd)->verref == NULL)
7009 goto error_return;
7010
7011 elf_tdata (abfd)->cverrefs = hdr->sh_info;
7012
7013 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
7014 if (contents == NULL)
7015 {
7016 error_return_verref:
7017 elf_tdata (abfd)->verref = NULL;
7018 elf_tdata (abfd)->cverrefs = 0;
7019 goto error_return;
7020 }
7021 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
7022 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
7023 goto error_return_verref;
7024
7025 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verneed))
7026 goto error_return_verref;
7027
7028 BFD_ASSERT (sizeof (Elf_External_Verneed)
7029 == sizeof (Elf_External_Vernaux));
7030 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
7031 everneed = (Elf_External_Verneed *) contents;
7032 iverneed = elf_tdata (abfd)->verref;
7033 for (i = 0; i < hdr->sh_info; i++, iverneed++)
7034 {
7035 Elf_External_Vernaux *evernaux;
7036 Elf_Internal_Vernaux *ivernaux;
7037 unsigned int j;
7038
7039 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
7040
7041 iverneed->vn_bfd = abfd;
7042
7043 iverneed->vn_filename =
7044 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7045 iverneed->vn_file);
7046 if (iverneed->vn_filename == NULL)
7047 goto error_return_verref;
7048
7049 if (iverneed->vn_cnt == 0)
7050 iverneed->vn_auxptr = NULL;
7051 else
7052 {
7053 iverneed->vn_auxptr = (struct elf_internal_vernaux *)
7054 bfd_alloc2 (abfd, iverneed->vn_cnt,
7055 sizeof (Elf_Internal_Vernaux));
7056 if (iverneed->vn_auxptr == NULL)
7057 goto error_return_verref;
7058 }
7059
7060 if (iverneed->vn_aux
7061 > (size_t) (contents_end - (bfd_byte *) everneed))
7062 goto error_return_verref;
7063
7064 evernaux = ((Elf_External_Vernaux *)
7065 ((bfd_byte *) everneed + iverneed->vn_aux));
7066 ivernaux = iverneed->vn_auxptr;
7067 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
7068 {
7069 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
7070
7071 ivernaux->vna_nodename =
7072 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7073 ivernaux->vna_name);
7074 if (ivernaux->vna_nodename == NULL)
7075 goto error_return_verref;
7076
7077 if (j + 1 < iverneed->vn_cnt)
7078 ivernaux->vna_nextptr = ivernaux + 1;
7079 else
7080 ivernaux->vna_nextptr = NULL;
7081
7082 if (ivernaux->vna_next
7083 > (size_t) (contents_end - (bfd_byte *) evernaux))
7084 goto error_return_verref;
7085
7086 evernaux = ((Elf_External_Vernaux *)
7087 ((bfd_byte *) evernaux + ivernaux->vna_next));
7088
7089 if (ivernaux->vna_other > freeidx)
7090 freeidx = ivernaux->vna_other;
7091 }
7092
7093 if (i + 1 < hdr->sh_info)
7094 iverneed->vn_nextref = iverneed + 1;
7095 else
7096 iverneed->vn_nextref = NULL;
7097
7098 if (iverneed->vn_next
7099 > (size_t) (contents_end - (bfd_byte *) everneed))
7100 goto error_return_verref;
7101
7102 everneed = ((Elf_External_Verneed *)
7103 ((bfd_byte *) everneed + iverneed->vn_next));
7104 }
7105
7106 free (contents);
7107 contents = NULL;
7108 }
7109
7110 if (elf_dynverdef (abfd) != 0)
7111 {
7112 Elf_Internal_Shdr *hdr;
7113 Elf_External_Verdef *everdef;
7114 Elf_Internal_Verdef *iverdef;
7115 Elf_Internal_Verdef *iverdefarr;
7116 Elf_Internal_Verdef iverdefmem;
7117 unsigned int i;
7118 unsigned int maxidx;
7119 bfd_byte *contents_end_def, *contents_end_aux;
7120
7121 hdr = &elf_tdata (abfd)->dynverdef_hdr;
7122
7123 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
7124 if (contents == NULL)
7125 goto error_return;
7126 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
7127 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
7128 goto error_return;
7129
7130 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verdef))
7131 goto error_return;
7132
7133 BFD_ASSERT (sizeof (Elf_External_Verdef)
7134 >= sizeof (Elf_External_Verdaux));
7135 contents_end_def = contents + hdr->sh_size
7136 - sizeof (Elf_External_Verdef);
7137 contents_end_aux = contents + hdr->sh_size
7138 - sizeof (Elf_External_Verdaux);
7139
7140 /* We know the number of entries in the section but not the maximum
7141 index. Therefore we have to run through all entries and find
7142 the maximum. */
7143 everdef = (Elf_External_Verdef *) contents;
7144 maxidx = 0;
7145 for (i = 0; i < hdr->sh_info; ++i)
7146 {
7147 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
7148
7149 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
7150 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
7151
7152 if (iverdefmem.vd_next
7153 > (size_t) (contents_end_def - (bfd_byte *) everdef))
7154 goto error_return;
7155
7156 everdef = ((Elf_External_Verdef *)
7157 ((bfd_byte *) everdef + iverdefmem.vd_next));
7158 }
7159
7160 if (default_imported_symver)
7161 {
7162 if (freeidx > maxidx)
7163 maxidx = ++freeidx;
7164 else
7165 freeidx = ++maxidx;
7166 }
7167 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
7168 bfd_zalloc2 (abfd, maxidx, sizeof (Elf_Internal_Verdef));
7169 if (elf_tdata (abfd)->verdef == NULL)
7170 goto error_return;
7171
7172 elf_tdata (abfd)->cverdefs = maxidx;
7173
7174 everdef = (Elf_External_Verdef *) contents;
7175 iverdefarr = elf_tdata (abfd)->verdef;
7176 for (i = 0; i < hdr->sh_info; i++)
7177 {
7178 Elf_External_Verdaux *everdaux;
7179 Elf_Internal_Verdaux *iverdaux;
7180 unsigned int j;
7181
7182 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
7183
7184 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
7185 {
7186 error_return_verdef:
7187 elf_tdata (abfd)->verdef = NULL;
7188 elf_tdata (abfd)->cverdefs = 0;
7189 goto error_return;
7190 }
7191
7192 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
7193 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
7194
7195 iverdef->vd_bfd = abfd;
7196
7197 if (iverdef->vd_cnt == 0)
7198 iverdef->vd_auxptr = NULL;
7199 else
7200 {
7201 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
7202 bfd_alloc2 (abfd, iverdef->vd_cnt,
7203 sizeof (Elf_Internal_Verdaux));
7204 if (iverdef->vd_auxptr == NULL)
7205 goto error_return_verdef;
7206 }
7207
7208 if (iverdef->vd_aux
7209 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
7210 goto error_return_verdef;
7211
7212 everdaux = ((Elf_External_Verdaux *)
7213 ((bfd_byte *) everdef + iverdef->vd_aux));
7214 iverdaux = iverdef->vd_auxptr;
7215 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
7216 {
7217 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
7218
7219 iverdaux->vda_nodename =
7220 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7221 iverdaux->vda_name);
7222 if (iverdaux->vda_nodename == NULL)
7223 goto error_return_verdef;
7224
7225 if (j + 1 < iverdef->vd_cnt)
7226 iverdaux->vda_nextptr = iverdaux + 1;
7227 else
7228 iverdaux->vda_nextptr = NULL;
7229
7230 if (iverdaux->vda_next
7231 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
7232 goto error_return_verdef;
7233
7234 everdaux = ((Elf_External_Verdaux *)
7235 ((bfd_byte *) everdaux + iverdaux->vda_next));
7236 }
7237
7238 if (iverdef->vd_cnt)
7239 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
7240
7241 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
7242 iverdef->vd_nextdef = iverdef + 1;
7243 else
7244 iverdef->vd_nextdef = NULL;
7245
7246 everdef = ((Elf_External_Verdef *)
7247 ((bfd_byte *) everdef + iverdef->vd_next));
7248 }
7249
7250 free (contents);
7251 contents = NULL;
7252 }
7253 else if (default_imported_symver)
7254 {
7255 if (freeidx < 3)
7256 freeidx = 3;
7257 else
7258 freeidx++;
7259
7260 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
7261 bfd_zalloc2 (abfd, freeidx, sizeof (Elf_Internal_Verdef));
7262 if (elf_tdata (abfd)->verdef == NULL)
7263 goto error_return;
7264
7265 elf_tdata (abfd)->cverdefs = freeidx;
7266 }
7267
7268 /* Create a default version based on the soname. */
7269 if (default_imported_symver)
7270 {
7271 Elf_Internal_Verdef *iverdef;
7272 Elf_Internal_Verdaux *iverdaux;
7273
7274 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];;
7275
7276 iverdef->vd_version = VER_DEF_CURRENT;
7277 iverdef->vd_flags = 0;
7278 iverdef->vd_ndx = freeidx;
7279 iverdef->vd_cnt = 1;
7280
7281 iverdef->vd_bfd = abfd;
7282
7283 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
7284 if (iverdef->vd_nodename == NULL)
7285 goto error_return_verdef;
7286 iverdef->vd_nextdef = NULL;
7287 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
7288 bfd_alloc (abfd, sizeof (Elf_Internal_Verdaux));
7289 if (iverdef->vd_auxptr == NULL)
7290 goto error_return_verdef;
7291
7292 iverdaux = iverdef->vd_auxptr;
7293 iverdaux->vda_nodename = iverdef->vd_nodename;
7294 iverdaux->vda_nextptr = NULL;
7295 }
7296
7297 return TRUE;
7298
7299 error_return:
7300 if (contents != NULL)
7301 free (contents);
7302 return FALSE;
7303 }
7304 \f
7305 asymbol *
7306 _bfd_elf_make_empty_symbol (bfd *abfd)
7307 {
7308 elf_symbol_type *newsym;
7309 bfd_size_type amt = sizeof (elf_symbol_type);
7310
7311 newsym = (elf_symbol_type *) bfd_zalloc (abfd, amt);
7312 if (!newsym)
7313 return NULL;
7314 else
7315 {
7316 newsym->symbol.the_bfd = abfd;
7317 return &newsym->symbol;
7318 }
7319 }
7320
7321 void
7322 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
7323 asymbol *symbol,
7324 symbol_info *ret)
7325 {
7326 bfd_symbol_info (symbol, ret);
7327 }
7328
7329 /* Return whether a symbol name implies a local symbol. Most targets
7330 use this function for the is_local_label_name entry point, but some
7331 override it. */
7332
7333 bfd_boolean
7334 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
7335 const char *name)
7336 {
7337 /* Normal local symbols start with ``.L''. */
7338 if (name[0] == '.' && name[1] == 'L')
7339 return TRUE;
7340
7341 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
7342 DWARF debugging symbols starting with ``..''. */
7343 if (name[0] == '.' && name[1] == '.')
7344 return TRUE;
7345
7346 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
7347 emitting DWARF debugging output. I suspect this is actually a
7348 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
7349 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
7350 underscore to be emitted on some ELF targets). For ease of use,
7351 we treat such symbols as local. */
7352 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
7353 return TRUE;
7354
7355 return FALSE;
7356 }
7357
7358 alent *
7359 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
7360 asymbol *symbol ATTRIBUTE_UNUSED)
7361 {
7362 abort ();
7363 return NULL;
7364 }
7365
7366 bfd_boolean
7367 _bfd_elf_set_arch_mach (bfd *abfd,
7368 enum bfd_architecture arch,
7369 unsigned long machine)
7370 {
7371 /* If this isn't the right architecture for this backend, and this
7372 isn't the generic backend, fail. */
7373 if (arch != get_elf_backend_data (abfd)->arch
7374 && arch != bfd_arch_unknown
7375 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
7376 return FALSE;
7377
7378 return bfd_default_set_arch_mach (abfd, arch, machine);
7379 }
7380
7381 /* Find the function to a particular section and offset,
7382 for error reporting. */
7383
7384 static bfd_boolean
7385 elf_find_function (bfd *abfd,
7386 asection *section,
7387 asymbol **symbols,
7388 bfd_vma offset,
7389 const char **filename_ptr,
7390 const char **functionname_ptr)
7391 {
7392 const char *filename;
7393 asymbol *func, *file;
7394 bfd_vma low_func;
7395 asymbol **p;
7396 /* ??? Given multiple file symbols, it is impossible to reliably
7397 choose the right file name for global symbols. File symbols are
7398 local symbols, and thus all file symbols must sort before any
7399 global symbols. The ELF spec may be interpreted to say that a
7400 file symbol must sort before other local symbols, but currently
7401 ld -r doesn't do this. So, for ld -r output, it is possible to
7402 make a better choice of file name for local symbols by ignoring
7403 file symbols appearing after a given local symbol. */
7404 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
7405 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7406
7407 if (symbols == NULL)
7408 return FALSE;
7409
7410 filename = NULL;
7411 func = NULL;
7412 file = NULL;
7413 low_func = 0;
7414 state = nothing_seen;
7415
7416 for (p = symbols; *p != NULL; p++)
7417 {
7418 asymbol *sym = *p;
7419 asection *code_sec;
7420 bfd_vma code_off;
7421
7422 if ((sym->flags & BSF_FILE) != 0)
7423 {
7424 file = sym;
7425 if (state == symbol_seen)
7426 state = file_after_symbol_seen;
7427 continue;
7428 }
7429
7430 if (bed->maybe_function_sym (sym, &code_sec, &code_off)
7431 && code_sec == section
7432 && code_off >= low_func
7433 && code_off <= offset)
7434 {
7435 func = sym;
7436 low_func = code_off;
7437 filename = NULL;
7438 if (file != NULL
7439 && ((sym->flags & BSF_LOCAL) != 0
7440 || state != file_after_symbol_seen))
7441 filename = bfd_asymbol_name (file);
7442 }
7443 if (state == nothing_seen)
7444 state = symbol_seen;
7445 }
7446
7447 if (func == NULL)
7448 return FALSE;
7449
7450 if (filename_ptr)
7451 *filename_ptr = filename;
7452 if (functionname_ptr)
7453 *functionname_ptr = bfd_asymbol_name (func);
7454
7455 return TRUE;
7456 }
7457
7458 /* Find the nearest line to a particular section and offset,
7459 for error reporting. */
7460
7461 bfd_boolean
7462 _bfd_elf_find_nearest_line (bfd *abfd,
7463 asection *section,
7464 asymbol **symbols,
7465 bfd_vma offset,
7466 const char **filename_ptr,
7467 const char **functionname_ptr,
7468 unsigned int *line_ptr)
7469 {
7470 bfd_boolean found;
7471
7472 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
7473 filename_ptr, functionname_ptr,
7474 line_ptr))
7475 {
7476 if (!*functionname_ptr)
7477 elf_find_function (abfd, section, symbols, offset,
7478 *filename_ptr ? NULL : filename_ptr,
7479 functionname_ptr);
7480
7481 return TRUE;
7482 }
7483
7484 if (_bfd_dwarf2_find_nearest_line (abfd, dwarf_debug_sections,
7485 section, symbols, offset,
7486 filename_ptr, functionname_ptr,
7487 line_ptr, 0,
7488 &elf_tdata (abfd)->dwarf2_find_line_info))
7489 {
7490 if (!*functionname_ptr)
7491 elf_find_function (abfd, section, symbols, offset,
7492 *filename_ptr ? NULL : filename_ptr,
7493 functionname_ptr);
7494
7495 return TRUE;
7496 }
7497
7498 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
7499 &found, filename_ptr,
7500 functionname_ptr, line_ptr,
7501 &elf_tdata (abfd)->line_info))
7502 return FALSE;
7503 if (found && (*functionname_ptr || *line_ptr))
7504 return TRUE;
7505
7506 if (symbols == NULL)
7507 return FALSE;
7508
7509 if (! elf_find_function (abfd, section, symbols, offset,
7510 filename_ptr, functionname_ptr))
7511 return FALSE;
7512
7513 *line_ptr = 0;
7514 return TRUE;
7515 }
7516
7517 /* Find the line for a symbol. */
7518
7519 bfd_boolean
7520 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
7521 const char **filename_ptr, unsigned int *line_ptr)
7522 {
7523 return _bfd_dwarf2_find_line (abfd, symbols, symbol,
7524 filename_ptr, line_ptr, 0,
7525 &elf_tdata (abfd)->dwarf2_find_line_info);
7526 }
7527
7528 /* After a call to bfd_find_nearest_line, successive calls to
7529 bfd_find_inliner_info can be used to get source information about
7530 each level of function inlining that terminated at the address
7531 passed to bfd_find_nearest_line. Currently this is only supported
7532 for DWARF2 with appropriate DWARF3 extensions. */
7533
7534 bfd_boolean
7535 _bfd_elf_find_inliner_info (bfd *abfd,
7536 const char **filename_ptr,
7537 const char **functionname_ptr,
7538 unsigned int *line_ptr)
7539 {
7540 bfd_boolean found;
7541 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
7542 functionname_ptr, line_ptr,
7543 & elf_tdata (abfd)->dwarf2_find_line_info);
7544 return found;
7545 }
7546
7547 int
7548 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
7549 {
7550 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7551 int ret = bed->s->sizeof_ehdr;
7552
7553 if (!info->relocatable)
7554 {
7555 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
7556
7557 if (phdr_size == (bfd_size_type) -1)
7558 {
7559 struct elf_segment_map *m;
7560
7561 phdr_size = 0;
7562 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7563 phdr_size += bed->s->sizeof_phdr;
7564
7565 if (phdr_size == 0)
7566 phdr_size = get_program_header_size (abfd, info);
7567 }
7568
7569 elf_tdata (abfd)->program_header_size = phdr_size;
7570 ret += phdr_size;
7571 }
7572
7573 return ret;
7574 }
7575
7576 bfd_boolean
7577 _bfd_elf_set_section_contents (bfd *abfd,
7578 sec_ptr section,
7579 const void *location,
7580 file_ptr offset,
7581 bfd_size_type count)
7582 {
7583 Elf_Internal_Shdr *hdr;
7584 bfd_signed_vma pos;
7585
7586 if (! abfd->output_has_begun
7587 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
7588 return FALSE;
7589
7590 hdr = &elf_section_data (section)->this_hdr;
7591 pos = hdr->sh_offset + offset;
7592 if (bfd_seek (abfd, pos, SEEK_SET) != 0
7593 || bfd_bwrite (location, count, abfd) != count)
7594 return FALSE;
7595
7596 return TRUE;
7597 }
7598
7599 void
7600 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
7601 arelent *cache_ptr ATTRIBUTE_UNUSED,
7602 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
7603 {
7604 abort ();
7605 }
7606
7607 /* Try to convert a non-ELF reloc into an ELF one. */
7608
7609 bfd_boolean
7610 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
7611 {
7612 /* Check whether we really have an ELF howto. */
7613
7614 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
7615 {
7616 bfd_reloc_code_real_type code;
7617 reloc_howto_type *howto;
7618
7619 /* Alien reloc: Try to determine its type to replace it with an
7620 equivalent ELF reloc. */
7621
7622 if (areloc->howto->pc_relative)
7623 {
7624 switch (areloc->howto->bitsize)
7625 {
7626 case 8:
7627 code = BFD_RELOC_8_PCREL;
7628 break;
7629 case 12:
7630 code = BFD_RELOC_12_PCREL;
7631 break;
7632 case 16:
7633 code = BFD_RELOC_16_PCREL;
7634 break;
7635 case 24:
7636 code = BFD_RELOC_24_PCREL;
7637 break;
7638 case 32:
7639 code = BFD_RELOC_32_PCREL;
7640 break;
7641 case 64:
7642 code = BFD_RELOC_64_PCREL;
7643 break;
7644 default:
7645 goto fail;
7646 }
7647
7648 howto = bfd_reloc_type_lookup (abfd, code);
7649
7650 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
7651 {
7652 if (howto->pcrel_offset)
7653 areloc->addend += areloc->address;
7654 else
7655 areloc->addend -= areloc->address; /* addend is unsigned!! */
7656 }
7657 }
7658 else
7659 {
7660 switch (areloc->howto->bitsize)
7661 {
7662 case 8:
7663 code = BFD_RELOC_8;
7664 break;
7665 case 14:
7666 code = BFD_RELOC_14;
7667 break;
7668 case 16:
7669 code = BFD_RELOC_16;
7670 break;
7671 case 26:
7672 code = BFD_RELOC_26;
7673 break;
7674 case 32:
7675 code = BFD_RELOC_32;
7676 break;
7677 case 64:
7678 code = BFD_RELOC_64;
7679 break;
7680 default:
7681 goto fail;
7682 }
7683
7684 howto = bfd_reloc_type_lookup (abfd, code);
7685 }
7686
7687 if (howto)
7688 areloc->howto = howto;
7689 else
7690 goto fail;
7691 }
7692
7693 return TRUE;
7694
7695 fail:
7696 (*_bfd_error_handler)
7697 (_("%B: unsupported relocation type %s"),
7698 abfd, areloc->howto->name);
7699 bfd_set_error (bfd_error_bad_value);
7700 return FALSE;
7701 }
7702
7703 bfd_boolean
7704 _bfd_elf_close_and_cleanup (bfd *abfd)
7705 {
7706 struct elf_obj_tdata *tdata = elf_tdata (abfd);
7707 if (bfd_get_format (abfd) == bfd_object && tdata != NULL)
7708 {
7709 if (elf_shstrtab (abfd) != NULL)
7710 _bfd_elf_strtab_free (elf_shstrtab (abfd));
7711 _bfd_dwarf2_cleanup_debug_info (abfd, &tdata->dwarf2_find_line_info);
7712 }
7713
7714 return _bfd_generic_close_and_cleanup (abfd);
7715 }
7716
7717 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
7718 in the relocation's offset. Thus we cannot allow any sort of sanity
7719 range-checking to interfere. There is nothing else to do in processing
7720 this reloc. */
7721
7722 bfd_reloc_status_type
7723 _bfd_elf_rel_vtable_reloc_fn
7724 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
7725 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
7726 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
7727 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
7728 {
7729 return bfd_reloc_ok;
7730 }
7731 \f
7732 /* Elf core file support. Much of this only works on native
7733 toolchains, since we rely on knowing the
7734 machine-dependent procfs structure in order to pick
7735 out details about the corefile. */
7736
7737 #ifdef HAVE_SYS_PROCFS_H
7738 /* Needed for new procfs interface on sparc-solaris. */
7739 # define _STRUCTURED_PROC 1
7740 # include <sys/procfs.h>
7741 #endif
7742
7743 /* Return a PID that identifies a "thread" for threaded cores, or the
7744 PID of the main process for non-threaded cores. */
7745
7746 static int
7747 elfcore_make_pid (bfd *abfd)
7748 {
7749 int pid;
7750
7751 pid = elf_tdata (abfd)->core_lwpid;
7752 if (pid == 0)
7753 pid = elf_tdata (abfd)->core_pid;
7754
7755 return pid;
7756 }
7757
7758 /* If there isn't a section called NAME, make one, using
7759 data from SECT. Note, this function will generate a
7760 reference to NAME, so you shouldn't deallocate or
7761 overwrite it. */
7762
7763 static bfd_boolean
7764 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
7765 {
7766 asection *sect2;
7767
7768 if (bfd_get_section_by_name (abfd, name) != NULL)
7769 return TRUE;
7770
7771 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
7772 if (sect2 == NULL)
7773 return FALSE;
7774
7775 sect2->size = sect->size;
7776 sect2->filepos = sect->filepos;
7777 sect2->alignment_power = sect->alignment_power;
7778 return TRUE;
7779 }
7780
7781 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
7782 actually creates up to two pseudosections:
7783 - For the single-threaded case, a section named NAME, unless
7784 such a section already exists.
7785 - For the multi-threaded case, a section named "NAME/PID", where
7786 PID is elfcore_make_pid (abfd).
7787 Both pseudosections have identical contents. */
7788 bfd_boolean
7789 _bfd_elfcore_make_pseudosection (bfd *abfd,
7790 char *name,
7791 size_t size,
7792 ufile_ptr filepos)
7793 {
7794 char buf[100];
7795 char *threaded_name;
7796 size_t len;
7797 asection *sect;
7798
7799 /* Build the section name. */
7800
7801 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
7802 len = strlen (buf) + 1;
7803 threaded_name = (char *) bfd_alloc (abfd, len);
7804 if (threaded_name == NULL)
7805 return FALSE;
7806 memcpy (threaded_name, buf, len);
7807
7808 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
7809 SEC_HAS_CONTENTS);
7810 if (sect == NULL)
7811 return FALSE;
7812 sect->size = size;
7813 sect->filepos = filepos;
7814 sect->alignment_power = 2;
7815
7816 return elfcore_maybe_make_sect (abfd, name, sect);
7817 }
7818
7819 /* prstatus_t exists on:
7820 solaris 2.5+
7821 linux 2.[01] + glibc
7822 unixware 4.2
7823 */
7824
7825 #if defined (HAVE_PRSTATUS_T)
7826
7827 static bfd_boolean
7828 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
7829 {
7830 size_t size;
7831 int offset;
7832
7833 if (note->descsz == sizeof (prstatus_t))
7834 {
7835 prstatus_t prstat;
7836
7837 size = sizeof (prstat.pr_reg);
7838 offset = offsetof (prstatus_t, pr_reg);
7839 memcpy (&prstat, note->descdata, sizeof (prstat));
7840
7841 /* Do not overwrite the core signal if it
7842 has already been set by another thread. */
7843 if (elf_tdata (abfd)->core_signal == 0)
7844 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7845 if (elf_tdata (abfd)->core_pid == 0)
7846 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7847
7848 /* pr_who exists on:
7849 solaris 2.5+
7850 unixware 4.2
7851 pr_who doesn't exist on:
7852 linux 2.[01]
7853 */
7854 #if defined (HAVE_PRSTATUS_T_PR_WHO)
7855 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7856 #else
7857 elf_tdata (abfd)->core_lwpid = prstat.pr_pid;
7858 #endif
7859 }
7860 #if defined (HAVE_PRSTATUS32_T)
7861 else if (note->descsz == sizeof (prstatus32_t))
7862 {
7863 /* 64-bit host, 32-bit corefile */
7864 prstatus32_t prstat;
7865
7866 size = sizeof (prstat.pr_reg);
7867 offset = offsetof (prstatus32_t, pr_reg);
7868 memcpy (&prstat, note->descdata, sizeof (prstat));
7869
7870 /* Do not overwrite the core signal if it
7871 has already been set by another thread. */
7872 if (elf_tdata (abfd)->core_signal == 0)
7873 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7874 if (elf_tdata (abfd)->core_pid == 0)
7875 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7876
7877 /* pr_who exists on:
7878 solaris 2.5+
7879 unixware 4.2
7880 pr_who doesn't exist on:
7881 linux 2.[01]
7882 */
7883 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
7884 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7885 #else
7886 elf_tdata (abfd)->core_lwpid = prstat.pr_pid;
7887 #endif
7888 }
7889 #endif /* HAVE_PRSTATUS32_T */
7890 else
7891 {
7892 /* Fail - we don't know how to handle any other
7893 note size (ie. data object type). */
7894 return TRUE;
7895 }
7896
7897 /* Make a ".reg/999" section and a ".reg" section. */
7898 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
7899 size, note->descpos + offset);
7900 }
7901 #endif /* defined (HAVE_PRSTATUS_T) */
7902
7903 /* Create a pseudosection containing the exact contents of NOTE. */
7904 static bfd_boolean
7905 elfcore_make_note_pseudosection (bfd *abfd,
7906 char *name,
7907 Elf_Internal_Note *note)
7908 {
7909 return _bfd_elfcore_make_pseudosection (abfd, name,
7910 note->descsz, note->descpos);
7911 }
7912
7913 /* There isn't a consistent prfpregset_t across platforms,
7914 but it doesn't matter, because we don't have to pick this
7915 data structure apart. */
7916
7917 static bfd_boolean
7918 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
7919 {
7920 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7921 }
7922
7923 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
7924 type of NT_PRXFPREG. Just include the whole note's contents
7925 literally. */
7926
7927 static bfd_boolean
7928 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
7929 {
7930 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
7931 }
7932
7933 /* Linux dumps the Intel XSAVE extended state in a note named "LINUX"
7934 with a note type of NT_X86_XSTATE. Just include the whole note's
7935 contents literally. */
7936
7937 static bfd_boolean
7938 elfcore_grok_xstatereg (bfd *abfd, Elf_Internal_Note *note)
7939 {
7940 return elfcore_make_note_pseudosection (abfd, ".reg-xstate", note);
7941 }
7942
7943 static bfd_boolean
7944 elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
7945 {
7946 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
7947 }
7948
7949 static bfd_boolean
7950 elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note)
7951 {
7952 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note);
7953 }
7954
7955 static bfd_boolean
7956 elfcore_grok_s390_high_gprs (bfd *abfd, Elf_Internal_Note *note)
7957 {
7958 return elfcore_make_note_pseudosection (abfd, ".reg-s390-high-gprs", note);
7959 }
7960
7961 static bfd_boolean
7962 elfcore_grok_s390_timer (bfd *abfd, Elf_Internal_Note *note)
7963 {
7964 return elfcore_make_note_pseudosection (abfd, ".reg-s390-timer", note);
7965 }
7966
7967 static bfd_boolean
7968 elfcore_grok_s390_todcmp (bfd *abfd, Elf_Internal_Note *note)
7969 {
7970 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todcmp", note);
7971 }
7972
7973 static bfd_boolean
7974 elfcore_grok_s390_todpreg (bfd *abfd, Elf_Internal_Note *note)
7975 {
7976 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todpreg", note);
7977 }
7978
7979 static bfd_boolean
7980 elfcore_grok_s390_ctrs (bfd *abfd, Elf_Internal_Note *note)
7981 {
7982 return elfcore_make_note_pseudosection (abfd, ".reg-s390-ctrs", note);
7983 }
7984
7985 static bfd_boolean
7986 elfcore_grok_s390_prefix (bfd *abfd, Elf_Internal_Note *note)
7987 {
7988 return elfcore_make_note_pseudosection (abfd, ".reg-s390-prefix", note);
7989 }
7990
7991 static bfd_boolean
7992 elfcore_grok_s390_last_break (bfd *abfd, Elf_Internal_Note *note)
7993 {
7994 return elfcore_make_note_pseudosection (abfd, ".reg-s390-last-break", note);
7995 }
7996
7997 static bfd_boolean
7998 elfcore_grok_s390_system_call (bfd *abfd, Elf_Internal_Note *note)
7999 {
8000 return elfcore_make_note_pseudosection (abfd, ".reg-s390-system-call", note);
8001 }
8002
8003 static bfd_boolean
8004 elfcore_grok_arm_vfp (bfd *abfd, Elf_Internal_Note *note)
8005 {
8006 return elfcore_make_note_pseudosection (abfd, ".reg-arm-vfp", note);
8007 }
8008
8009 #if defined (HAVE_PRPSINFO_T)
8010 typedef prpsinfo_t elfcore_psinfo_t;
8011 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
8012 typedef prpsinfo32_t elfcore_psinfo32_t;
8013 #endif
8014 #endif
8015
8016 #if defined (HAVE_PSINFO_T)
8017 typedef psinfo_t elfcore_psinfo_t;
8018 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
8019 typedef psinfo32_t elfcore_psinfo32_t;
8020 #endif
8021 #endif
8022
8023 /* return a malloc'ed copy of a string at START which is at
8024 most MAX bytes long, possibly without a terminating '\0'.
8025 the copy will always have a terminating '\0'. */
8026
8027 char *
8028 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
8029 {
8030 char *dups;
8031 char *end = (char *) memchr (start, '\0', max);
8032 size_t len;
8033
8034 if (end == NULL)
8035 len = max;
8036 else
8037 len = end - start;
8038
8039 dups = (char *) bfd_alloc (abfd, len + 1);
8040 if (dups == NULL)
8041 return NULL;
8042
8043 memcpy (dups, start, len);
8044 dups[len] = '\0';
8045
8046 return dups;
8047 }
8048
8049 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8050 static bfd_boolean
8051 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
8052 {
8053 if (note->descsz == sizeof (elfcore_psinfo_t))
8054 {
8055 elfcore_psinfo_t psinfo;
8056
8057 memcpy (&psinfo, note->descdata, sizeof (psinfo));
8058
8059 #if defined (HAVE_PSINFO_T_PR_PID) || defined (HAVE_PRPSINFO_T_PR_PID)
8060 elf_tdata (abfd)->core_pid = psinfo.pr_pid;
8061 #endif
8062 elf_tdata (abfd)->core_program
8063 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
8064 sizeof (psinfo.pr_fname));
8065
8066 elf_tdata (abfd)->core_command
8067 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
8068 sizeof (psinfo.pr_psargs));
8069 }
8070 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
8071 else if (note->descsz == sizeof (elfcore_psinfo32_t))
8072 {
8073 /* 64-bit host, 32-bit corefile */
8074 elfcore_psinfo32_t psinfo;
8075
8076 memcpy (&psinfo, note->descdata, sizeof (psinfo));
8077
8078 #if defined (HAVE_PSINFO32_T_PR_PID) || defined (HAVE_PRPSINFO32_T_PR_PID)
8079 elf_tdata (abfd)->core_pid = psinfo.pr_pid;
8080 #endif
8081 elf_tdata (abfd)->core_program
8082 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
8083 sizeof (psinfo.pr_fname));
8084
8085 elf_tdata (abfd)->core_command
8086 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
8087 sizeof (psinfo.pr_psargs));
8088 }
8089 #endif
8090
8091 else
8092 {
8093 /* Fail - we don't know how to handle any other
8094 note size (ie. data object type). */
8095 return TRUE;
8096 }
8097
8098 /* Note that for some reason, a spurious space is tacked
8099 onto the end of the args in some (at least one anyway)
8100 implementations, so strip it off if it exists. */
8101
8102 {
8103 char *command = elf_tdata (abfd)->core_command;
8104 int n = strlen (command);
8105
8106 if (0 < n && command[n - 1] == ' ')
8107 command[n - 1] = '\0';
8108 }
8109
8110 return TRUE;
8111 }
8112 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
8113
8114 #if defined (HAVE_PSTATUS_T)
8115 static bfd_boolean
8116 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
8117 {
8118 if (note->descsz == sizeof (pstatus_t)
8119 #if defined (HAVE_PXSTATUS_T)
8120 || note->descsz == sizeof (pxstatus_t)
8121 #endif
8122 )
8123 {
8124 pstatus_t pstat;
8125
8126 memcpy (&pstat, note->descdata, sizeof (pstat));
8127
8128 elf_tdata (abfd)->core_pid = pstat.pr_pid;
8129 }
8130 #if defined (HAVE_PSTATUS32_T)
8131 else if (note->descsz == sizeof (pstatus32_t))
8132 {
8133 /* 64-bit host, 32-bit corefile */
8134 pstatus32_t pstat;
8135
8136 memcpy (&pstat, note->descdata, sizeof (pstat));
8137
8138 elf_tdata (abfd)->core_pid = pstat.pr_pid;
8139 }
8140 #endif
8141 /* Could grab some more details from the "representative"
8142 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
8143 NT_LWPSTATUS note, presumably. */
8144
8145 return TRUE;
8146 }
8147 #endif /* defined (HAVE_PSTATUS_T) */
8148
8149 #if defined (HAVE_LWPSTATUS_T)
8150 static bfd_boolean
8151 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
8152 {
8153 lwpstatus_t lwpstat;
8154 char buf[100];
8155 char *name;
8156 size_t len;
8157 asection *sect;
8158
8159 if (note->descsz != sizeof (lwpstat)
8160 #if defined (HAVE_LWPXSTATUS_T)
8161 && note->descsz != sizeof (lwpxstatus_t)
8162 #endif
8163 )
8164 return TRUE;
8165
8166 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
8167
8168 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
8169 /* Do not overwrite the core signal if it has already been set by
8170 another thread. */
8171 if (elf_tdata (abfd)->core_signal == 0)
8172 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
8173
8174 /* Make a ".reg/999" section. */
8175
8176 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
8177 len = strlen (buf) + 1;
8178 name = bfd_alloc (abfd, len);
8179 if (name == NULL)
8180 return FALSE;
8181 memcpy (name, buf, len);
8182
8183 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8184 if (sect == NULL)
8185 return FALSE;
8186
8187 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8188 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
8189 sect->filepos = note->descpos
8190 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
8191 #endif
8192
8193 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8194 sect->size = sizeof (lwpstat.pr_reg);
8195 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
8196 #endif
8197
8198 sect->alignment_power = 2;
8199
8200 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
8201 return FALSE;
8202
8203 /* Make a ".reg2/999" section */
8204
8205 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
8206 len = strlen (buf) + 1;
8207 name = bfd_alloc (abfd, len);
8208 if (name == NULL)
8209 return FALSE;
8210 memcpy (name, buf, len);
8211
8212 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8213 if (sect == NULL)
8214 return FALSE;
8215
8216 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8217 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
8218 sect->filepos = note->descpos
8219 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
8220 #endif
8221
8222 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
8223 sect->size = sizeof (lwpstat.pr_fpreg);
8224 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
8225 #endif
8226
8227 sect->alignment_power = 2;
8228
8229 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
8230 }
8231 #endif /* defined (HAVE_LWPSTATUS_T) */
8232
8233 static bfd_boolean
8234 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
8235 {
8236 char buf[30];
8237 char *name;
8238 size_t len;
8239 asection *sect;
8240 int type;
8241 int is_active_thread;
8242 bfd_vma base_addr;
8243
8244 if (note->descsz < 728)
8245 return TRUE;
8246
8247 if (! CONST_STRNEQ (note->namedata, "win32"))
8248 return TRUE;
8249
8250 type = bfd_get_32 (abfd, note->descdata);
8251
8252 switch (type)
8253 {
8254 case 1 /* NOTE_INFO_PROCESS */:
8255 /* FIXME: need to add ->core_command. */
8256 /* process_info.pid */
8257 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 8);
8258 /* process_info.signal */
8259 elf_tdata (abfd)->core_signal = bfd_get_32 (abfd, note->descdata + 12);
8260 break;
8261
8262 case 2 /* NOTE_INFO_THREAD */:
8263 /* Make a ".reg/999" section. */
8264 /* thread_info.tid */
8265 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 8));
8266
8267 len = strlen (buf) + 1;
8268 name = (char *) bfd_alloc (abfd, len);
8269 if (name == NULL)
8270 return FALSE;
8271
8272 memcpy (name, buf, len);
8273
8274 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8275 if (sect == NULL)
8276 return FALSE;
8277
8278 /* sizeof (thread_info.thread_context) */
8279 sect->size = 716;
8280 /* offsetof (thread_info.thread_context) */
8281 sect->filepos = note->descpos + 12;
8282 sect->alignment_power = 2;
8283
8284 /* thread_info.is_active_thread */
8285 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
8286
8287 if (is_active_thread)
8288 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
8289 return FALSE;
8290 break;
8291
8292 case 3 /* NOTE_INFO_MODULE */:
8293 /* Make a ".module/xxxxxxxx" section. */
8294 /* module_info.base_address */
8295 base_addr = bfd_get_32 (abfd, note->descdata + 4);
8296 sprintf (buf, ".module/%08lx", (unsigned long) base_addr);
8297
8298 len = strlen (buf) + 1;
8299 name = (char *) bfd_alloc (abfd, len);
8300 if (name == NULL)
8301 return FALSE;
8302
8303 memcpy (name, buf, len);
8304
8305 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8306
8307 if (sect == NULL)
8308 return FALSE;
8309
8310 sect->size = note->descsz;
8311 sect->filepos = note->descpos;
8312 sect->alignment_power = 2;
8313 break;
8314
8315 default:
8316 return TRUE;
8317 }
8318
8319 return TRUE;
8320 }
8321
8322 static bfd_boolean
8323 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
8324 {
8325 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8326
8327 switch (note->type)
8328 {
8329 default:
8330 return TRUE;
8331
8332 case NT_PRSTATUS:
8333 if (bed->elf_backend_grok_prstatus)
8334 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
8335 return TRUE;
8336 #if defined (HAVE_PRSTATUS_T)
8337 return elfcore_grok_prstatus (abfd, note);
8338 #else
8339 return TRUE;
8340 #endif
8341
8342 #if defined (HAVE_PSTATUS_T)
8343 case NT_PSTATUS:
8344 return elfcore_grok_pstatus (abfd, note);
8345 #endif
8346
8347 #if defined (HAVE_LWPSTATUS_T)
8348 case NT_LWPSTATUS:
8349 return elfcore_grok_lwpstatus (abfd, note);
8350 #endif
8351
8352 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
8353 return elfcore_grok_prfpreg (abfd, note);
8354
8355 case NT_WIN32PSTATUS:
8356 return elfcore_grok_win32pstatus (abfd, note);
8357
8358 case NT_PRXFPREG: /* Linux SSE extension */
8359 if (note->namesz == 6
8360 && strcmp (note->namedata, "LINUX") == 0)
8361 return elfcore_grok_prxfpreg (abfd, note);
8362 else
8363 return TRUE;
8364
8365 case NT_X86_XSTATE: /* Linux XSAVE extension */
8366 if (note->namesz == 6
8367 && strcmp (note->namedata, "LINUX") == 0)
8368 return elfcore_grok_xstatereg (abfd, note);
8369 else
8370 return TRUE;
8371
8372 case NT_PPC_VMX:
8373 if (note->namesz == 6
8374 && strcmp (note->namedata, "LINUX") == 0)
8375 return elfcore_grok_ppc_vmx (abfd, note);
8376 else
8377 return TRUE;
8378
8379 case NT_PPC_VSX:
8380 if (note->namesz == 6
8381 && strcmp (note->namedata, "LINUX") == 0)
8382 return elfcore_grok_ppc_vsx (abfd, note);
8383 else
8384 return TRUE;
8385
8386 case NT_S390_HIGH_GPRS:
8387 if (note->namesz == 6
8388 && strcmp (note->namedata, "LINUX") == 0)
8389 return elfcore_grok_s390_high_gprs (abfd, note);
8390 else
8391 return TRUE;
8392
8393 case NT_S390_TIMER:
8394 if (note->namesz == 6
8395 && strcmp (note->namedata, "LINUX") == 0)
8396 return elfcore_grok_s390_timer (abfd, note);
8397 else
8398 return TRUE;
8399
8400 case NT_S390_TODCMP:
8401 if (note->namesz == 6
8402 && strcmp (note->namedata, "LINUX") == 0)
8403 return elfcore_grok_s390_todcmp (abfd, note);
8404 else
8405 return TRUE;
8406
8407 case NT_S390_TODPREG:
8408 if (note->namesz == 6
8409 && strcmp (note->namedata, "LINUX") == 0)
8410 return elfcore_grok_s390_todpreg (abfd, note);
8411 else
8412 return TRUE;
8413
8414 case NT_S390_CTRS:
8415 if (note->namesz == 6
8416 && strcmp (note->namedata, "LINUX") == 0)
8417 return elfcore_grok_s390_ctrs (abfd, note);
8418 else
8419 return TRUE;
8420
8421 case NT_S390_PREFIX:
8422 if (note->namesz == 6
8423 && strcmp (note->namedata, "LINUX") == 0)
8424 return elfcore_grok_s390_prefix (abfd, note);
8425 else
8426 return TRUE;
8427
8428 case NT_S390_LAST_BREAK:
8429 if (note->namesz == 6
8430 && strcmp (note->namedata, "LINUX") == 0)
8431 return elfcore_grok_s390_last_break (abfd, note);
8432 else
8433 return TRUE;
8434
8435 case NT_S390_SYSTEM_CALL:
8436 if (note->namesz == 6
8437 && strcmp (note->namedata, "LINUX") == 0)
8438 return elfcore_grok_s390_system_call (abfd, note);
8439 else
8440 return TRUE;
8441
8442 case NT_ARM_VFP:
8443 if (note->namesz == 6
8444 && strcmp (note->namedata, "LINUX") == 0)
8445 return elfcore_grok_arm_vfp (abfd, note);
8446 else
8447 return TRUE;
8448
8449 case NT_PRPSINFO:
8450 case NT_PSINFO:
8451 if (bed->elf_backend_grok_psinfo)
8452 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
8453 return TRUE;
8454 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8455 return elfcore_grok_psinfo (abfd, note);
8456 #else
8457 return TRUE;
8458 #endif
8459
8460 case NT_AUXV:
8461 {
8462 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
8463 SEC_HAS_CONTENTS);
8464
8465 if (sect == NULL)
8466 return FALSE;
8467 sect->size = note->descsz;
8468 sect->filepos = note->descpos;
8469 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8470
8471 return TRUE;
8472 }
8473 }
8474 }
8475
8476 static bfd_boolean
8477 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
8478 {
8479 elf_tdata (abfd)->build_id_size = note->descsz;
8480 elf_tdata (abfd)->build_id = (bfd_byte *) bfd_alloc (abfd, note->descsz);
8481 if (elf_tdata (abfd)->build_id == NULL)
8482 return FALSE;
8483
8484 memcpy (elf_tdata (abfd)->build_id, note->descdata, note->descsz);
8485
8486 return TRUE;
8487 }
8488
8489 static bfd_boolean
8490 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
8491 {
8492 switch (note->type)
8493 {
8494 default:
8495 return TRUE;
8496
8497 case NT_GNU_BUILD_ID:
8498 return elfobj_grok_gnu_build_id (abfd, note);
8499 }
8500 }
8501
8502 static bfd_boolean
8503 elfobj_grok_stapsdt_note_1 (bfd *abfd, Elf_Internal_Note *note)
8504 {
8505 struct sdt_note *cur =
8506 (struct sdt_note *) bfd_alloc (abfd, sizeof (struct sdt_note)
8507 + note->descsz);
8508
8509 cur->next = (struct sdt_note *) (elf_tdata (abfd))->sdt_note_head;
8510 cur->size = (bfd_size_type) note->descsz;
8511 memcpy (cur->data, note->descdata, note->descsz);
8512
8513 elf_tdata (abfd)->sdt_note_head = cur;
8514
8515 return TRUE;
8516 }
8517
8518 static bfd_boolean
8519 elfobj_grok_stapsdt_note (bfd *abfd, Elf_Internal_Note *note)
8520 {
8521 switch (note->type)
8522 {
8523 case NT_STAPSDT:
8524 return elfobj_grok_stapsdt_note_1 (abfd, note);
8525
8526 default:
8527 return TRUE;
8528 }
8529 }
8530
8531 static bfd_boolean
8532 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
8533 {
8534 char *cp;
8535
8536 cp = strchr (note->namedata, '@');
8537 if (cp != NULL)
8538 {
8539 *lwpidp = atoi(cp + 1);
8540 return TRUE;
8541 }
8542 return FALSE;
8543 }
8544
8545 static bfd_boolean
8546 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
8547 {
8548 /* Signal number at offset 0x08. */
8549 elf_tdata (abfd)->core_signal
8550 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
8551
8552 /* Process ID at offset 0x50. */
8553 elf_tdata (abfd)->core_pid
8554 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
8555
8556 /* Command name at 0x7c (max 32 bytes, including nul). */
8557 elf_tdata (abfd)->core_command
8558 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
8559
8560 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
8561 note);
8562 }
8563
8564 static bfd_boolean
8565 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
8566 {
8567 int lwp;
8568
8569 if (elfcore_netbsd_get_lwpid (note, &lwp))
8570 elf_tdata (abfd)->core_lwpid = lwp;
8571
8572 if (note->type == NT_NETBSDCORE_PROCINFO)
8573 {
8574 /* NetBSD-specific core "procinfo". Note that we expect to
8575 find this note before any of the others, which is fine,
8576 since the kernel writes this note out first when it
8577 creates a core file. */
8578
8579 return elfcore_grok_netbsd_procinfo (abfd, note);
8580 }
8581
8582 /* As of Jan 2002 there are no other machine-independent notes
8583 defined for NetBSD core files. If the note type is less
8584 than the start of the machine-dependent note types, we don't
8585 understand it. */
8586
8587 if (note->type < NT_NETBSDCORE_FIRSTMACH)
8588 return TRUE;
8589
8590
8591 switch (bfd_get_arch (abfd))
8592 {
8593 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
8594 PT_GETFPREGS == mach+2. */
8595
8596 case bfd_arch_alpha:
8597 case bfd_arch_sparc:
8598 switch (note->type)
8599 {
8600 case NT_NETBSDCORE_FIRSTMACH+0:
8601 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8602
8603 case NT_NETBSDCORE_FIRSTMACH+2:
8604 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8605
8606 default:
8607 return TRUE;
8608 }
8609
8610 /* On all other arch's, PT_GETREGS == mach+1 and
8611 PT_GETFPREGS == mach+3. */
8612
8613 default:
8614 switch (note->type)
8615 {
8616 case NT_NETBSDCORE_FIRSTMACH+1:
8617 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8618
8619 case NT_NETBSDCORE_FIRSTMACH+3:
8620 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8621
8622 default:
8623 return TRUE;
8624 }
8625 }
8626 /* NOTREACHED */
8627 }
8628
8629 static bfd_boolean
8630 elfcore_grok_openbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
8631 {
8632 /* Signal number at offset 0x08. */
8633 elf_tdata (abfd)->core_signal
8634 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
8635
8636 /* Process ID at offset 0x20. */
8637 elf_tdata (abfd)->core_pid
8638 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x20);
8639
8640 /* Command name at 0x48 (max 32 bytes, including nul). */
8641 elf_tdata (abfd)->core_command
8642 = _bfd_elfcore_strndup (abfd, note->descdata + 0x48, 31);
8643
8644 return TRUE;
8645 }
8646
8647 static bfd_boolean
8648 elfcore_grok_openbsd_note (bfd *abfd, Elf_Internal_Note *note)
8649 {
8650 if (note->type == NT_OPENBSD_PROCINFO)
8651 return elfcore_grok_openbsd_procinfo (abfd, note);
8652
8653 if (note->type == NT_OPENBSD_REGS)
8654 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8655
8656 if (note->type == NT_OPENBSD_FPREGS)
8657 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8658
8659 if (note->type == NT_OPENBSD_XFPREGS)
8660 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
8661
8662 if (note->type == NT_OPENBSD_AUXV)
8663 {
8664 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
8665 SEC_HAS_CONTENTS);
8666
8667 if (sect == NULL)
8668 return FALSE;
8669 sect->size = note->descsz;
8670 sect->filepos = note->descpos;
8671 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8672
8673 return TRUE;
8674 }
8675
8676 if (note->type == NT_OPENBSD_WCOOKIE)
8677 {
8678 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".wcookie",
8679 SEC_HAS_CONTENTS);
8680
8681 if (sect == NULL)
8682 return FALSE;
8683 sect->size = note->descsz;
8684 sect->filepos = note->descpos;
8685 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8686
8687 return TRUE;
8688 }
8689
8690 return TRUE;
8691 }
8692
8693 static bfd_boolean
8694 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
8695 {
8696 void *ddata = note->descdata;
8697 char buf[100];
8698 char *name;
8699 asection *sect;
8700 short sig;
8701 unsigned flags;
8702
8703 /* nto_procfs_status 'pid' field is at offset 0. */
8704 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
8705
8706 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
8707 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
8708
8709 /* nto_procfs_status 'flags' field is at offset 8. */
8710 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
8711
8712 /* nto_procfs_status 'what' field is at offset 14. */
8713 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
8714 {
8715 elf_tdata (abfd)->core_signal = sig;
8716 elf_tdata (abfd)->core_lwpid = *tid;
8717 }
8718
8719 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
8720 do not come from signals so we make sure we set the current
8721 thread just in case. */
8722 if (flags & 0x00000080)
8723 elf_tdata (abfd)->core_lwpid = *tid;
8724
8725 /* Make a ".qnx_core_status/%d" section. */
8726 sprintf (buf, ".qnx_core_status/%ld", *tid);
8727
8728 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
8729 if (name == NULL)
8730 return FALSE;
8731 strcpy (name, buf);
8732
8733 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8734 if (sect == NULL)
8735 return FALSE;
8736
8737 sect->size = note->descsz;
8738 sect->filepos = note->descpos;
8739 sect->alignment_power = 2;
8740
8741 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
8742 }
8743
8744 static bfd_boolean
8745 elfcore_grok_nto_regs (bfd *abfd,
8746 Elf_Internal_Note *note,
8747 long tid,
8748 char *base)
8749 {
8750 char buf[100];
8751 char *name;
8752 asection *sect;
8753
8754 /* Make a "(base)/%d" section. */
8755 sprintf (buf, "%s/%ld", base, tid);
8756
8757 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
8758 if (name == NULL)
8759 return FALSE;
8760 strcpy (name, buf);
8761
8762 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8763 if (sect == NULL)
8764 return FALSE;
8765
8766 sect->size = note->descsz;
8767 sect->filepos = note->descpos;
8768 sect->alignment_power = 2;
8769
8770 /* This is the current thread. */
8771 if (elf_tdata (abfd)->core_lwpid == tid)
8772 return elfcore_maybe_make_sect (abfd, base, sect);
8773
8774 return TRUE;
8775 }
8776
8777 #define BFD_QNT_CORE_INFO 7
8778 #define BFD_QNT_CORE_STATUS 8
8779 #define BFD_QNT_CORE_GREG 9
8780 #define BFD_QNT_CORE_FPREG 10
8781
8782 static bfd_boolean
8783 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
8784 {
8785 /* Every GREG section has a STATUS section before it. Store the
8786 tid from the previous call to pass down to the next gregs
8787 function. */
8788 static long tid = 1;
8789
8790 switch (note->type)
8791 {
8792 case BFD_QNT_CORE_INFO:
8793 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
8794 case BFD_QNT_CORE_STATUS:
8795 return elfcore_grok_nto_status (abfd, note, &tid);
8796 case BFD_QNT_CORE_GREG:
8797 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
8798 case BFD_QNT_CORE_FPREG:
8799 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
8800 default:
8801 return TRUE;
8802 }
8803 }
8804
8805 static bfd_boolean
8806 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
8807 {
8808 char *name;
8809 asection *sect;
8810 size_t len;
8811
8812 /* Use note name as section name. */
8813 len = note->namesz;
8814 name = (char *) bfd_alloc (abfd, len);
8815 if (name == NULL)
8816 return FALSE;
8817 memcpy (name, note->namedata, len);
8818 name[len - 1] = '\0';
8819
8820 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8821 if (sect == NULL)
8822 return FALSE;
8823
8824 sect->size = note->descsz;
8825 sect->filepos = note->descpos;
8826 sect->alignment_power = 1;
8827
8828 return TRUE;
8829 }
8830
8831 /* Function: elfcore_write_note
8832
8833 Inputs:
8834 buffer to hold note, and current size of buffer
8835 name of note
8836 type of note
8837 data for note
8838 size of data for note
8839
8840 Writes note to end of buffer. ELF64 notes are written exactly as
8841 for ELF32, despite the current (as of 2006) ELF gabi specifying
8842 that they ought to have 8-byte namesz and descsz field, and have
8843 8-byte alignment. Other writers, eg. Linux kernel, do the same.
8844
8845 Return:
8846 Pointer to realloc'd buffer, *BUFSIZ updated. */
8847
8848 char *
8849 elfcore_write_note (bfd *abfd,
8850 char *buf,
8851 int *bufsiz,
8852 const char *name,
8853 int type,
8854 const void *input,
8855 int size)
8856 {
8857 Elf_External_Note *xnp;
8858 size_t namesz;
8859 size_t newspace;
8860 char *dest;
8861
8862 namesz = 0;
8863 if (name != NULL)
8864 namesz = strlen (name) + 1;
8865
8866 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
8867
8868 buf = (char *) realloc (buf, *bufsiz + newspace);
8869 if (buf == NULL)
8870 return buf;
8871 dest = buf + *bufsiz;
8872 *bufsiz += newspace;
8873 xnp = (Elf_External_Note *) dest;
8874 H_PUT_32 (abfd, namesz, xnp->namesz);
8875 H_PUT_32 (abfd, size, xnp->descsz);
8876 H_PUT_32 (abfd, type, xnp->type);
8877 dest = xnp->name;
8878 if (name != NULL)
8879 {
8880 memcpy (dest, name, namesz);
8881 dest += namesz;
8882 while (namesz & 3)
8883 {
8884 *dest++ = '\0';
8885 ++namesz;
8886 }
8887 }
8888 memcpy (dest, input, size);
8889 dest += size;
8890 while (size & 3)
8891 {
8892 *dest++ = '\0';
8893 ++size;
8894 }
8895 return buf;
8896 }
8897
8898 char *
8899 elfcore_write_prpsinfo (bfd *abfd,
8900 char *buf,
8901 int *bufsiz,
8902 const char *fname,
8903 const char *psargs)
8904 {
8905 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8906
8907 if (bed->elf_backend_write_core_note != NULL)
8908 {
8909 char *ret;
8910 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
8911 NT_PRPSINFO, fname, psargs);
8912 if (ret != NULL)
8913 return ret;
8914 }
8915
8916 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8917 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
8918 if (bed->s->elfclass == ELFCLASS32)
8919 {
8920 #if defined (HAVE_PSINFO32_T)
8921 psinfo32_t data;
8922 int note_type = NT_PSINFO;
8923 #else
8924 prpsinfo32_t data;
8925 int note_type = NT_PRPSINFO;
8926 #endif
8927
8928 memset (&data, 0, sizeof (data));
8929 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
8930 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
8931 return elfcore_write_note (abfd, buf, bufsiz,
8932 "CORE", note_type, &data, sizeof (data));
8933 }
8934 else
8935 #endif
8936 {
8937 #if defined (HAVE_PSINFO_T)
8938 psinfo_t data;
8939 int note_type = NT_PSINFO;
8940 #else
8941 prpsinfo_t data;
8942 int note_type = NT_PRPSINFO;
8943 #endif
8944
8945 memset (&data, 0, sizeof (data));
8946 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
8947 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
8948 return elfcore_write_note (abfd, buf, bufsiz,
8949 "CORE", note_type, &data, sizeof (data));
8950 }
8951 #endif /* PSINFO_T or PRPSINFO_T */
8952
8953 free (buf);
8954 return NULL;
8955 }
8956
8957 char *
8958 elfcore_write_prstatus (bfd *abfd,
8959 char *buf,
8960 int *bufsiz,
8961 long pid,
8962 int cursig,
8963 const void *gregs)
8964 {
8965 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8966
8967 if (bed->elf_backend_write_core_note != NULL)
8968 {
8969 char *ret;
8970 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
8971 NT_PRSTATUS,
8972 pid, cursig, gregs);
8973 if (ret != NULL)
8974 return ret;
8975 }
8976
8977 #if defined (HAVE_PRSTATUS_T)
8978 #if defined (HAVE_PRSTATUS32_T)
8979 if (bed->s->elfclass == ELFCLASS32)
8980 {
8981 prstatus32_t prstat;
8982
8983 memset (&prstat, 0, sizeof (prstat));
8984 prstat.pr_pid = pid;
8985 prstat.pr_cursig = cursig;
8986 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
8987 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
8988 NT_PRSTATUS, &prstat, sizeof (prstat));
8989 }
8990 else
8991 #endif
8992 {
8993 prstatus_t prstat;
8994
8995 memset (&prstat, 0, sizeof (prstat));
8996 prstat.pr_pid = pid;
8997 prstat.pr_cursig = cursig;
8998 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
8999 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
9000 NT_PRSTATUS, &prstat, sizeof (prstat));
9001 }
9002 #endif /* HAVE_PRSTATUS_T */
9003
9004 free (buf);
9005 return NULL;
9006 }
9007
9008 #if defined (HAVE_LWPSTATUS_T)
9009 char *
9010 elfcore_write_lwpstatus (bfd *abfd,
9011 char *buf,
9012 int *bufsiz,
9013 long pid,
9014 int cursig,
9015 const void *gregs)
9016 {
9017 lwpstatus_t lwpstat;
9018 const char *note_name = "CORE";
9019
9020 memset (&lwpstat, 0, sizeof (lwpstat));
9021 lwpstat.pr_lwpid = pid >> 16;
9022 lwpstat.pr_cursig = cursig;
9023 #if defined (HAVE_LWPSTATUS_T_PR_REG)
9024 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
9025 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9026 #if !defined(gregs)
9027 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
9028 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
9029 #else
9030 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
9031 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
9032 #endif
9033 #endif
9034 return elfcore_write_note (abfd, buf, bufsiz, note_name,
9035 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
9036 }
9037 #endif /* HAVE_LWPSTATUS_T */
9038
9039 #if defined (HAVE_PSTATUS_T)
9040 char *
9041 elfcore_write_pstatus (bfd *abfd,
9042 char *buf,
9043 int *bufsiz,
9044 long pid,
9045 int cursig ATTRIBUTE_UNUSED,
9046 const void *gregs ATTRIBUTE_UNUSED)
9047 {
9048 const char *note_name = "CORE";
9049 #if defined (HAVE_PSTATUS32_T)
9050 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9051
9052 if (bed->s->elfclass == ELFCLASS32)
9053 {
9054 pstatus32_t pstat;
9055
9056 memset (&pstat, 0, sizeof (pstat));
9057 pstat.pr_pid = pid & 0xffff;
9058 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
9059 NT_PSTATUS, &pstat, sizeof (pstat));
9060 return buf;
9061 }
9062 else
9063 #endif
9064 {
9065 pstatus_t pstat;
9066
9067 memset (&pstat, 0, sizeof (pstat));
9068 pstat.pr_pid = pid & 0xffff;
9069 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
9070 NT_PSTATUS, &pstat, sizeof (pstat));
9071 return buf;
9072 }
9073 }
9074 #endif /* HAVE_PSTATUS_T */
9075
9076 char *
9077 elfcore_write_prfpreg (bfd *abfd,
9078 char *buf,
9079 int *bufsiz,
9080 const void *fpregs,
9081 int size)
9082 {
9083 const char *note_name = "CORE";
9084 return elfcore_write_note (abfd, buf, bufsiz,
9085 note_name, NT_FPREGSET, fpregs, size);
9086 }
9087
9088 char *
9089 elfcore_write_prxfpreg (bfd *abfd,
9090 char *buf,
9091 int *bufsiz,
9092 const void *xfpregs,
9093 int size)
9094 {
9095 char *note_name = "LINUX";
9096 return elfcore_write_note (abfd, buf, bufsiz,
9097 note_name, NT_PRXFPREG, xfpregs, size);
9098 }
9099
9100 char *
9101 elfcore_write_xstatereg (bfd *abfd, char *buf, int *bufsiz,
9102 const void *xfpregs, int size)
9103 {
9104 char *note_name = "LINUX";
9105 return elfcore_write_note (abfd, buf, bufsiz,
9106 note_name, NT_X86_XSTATE, xfpregs, size);
9107 }
9108
9109 char *
9110 elfcore_write_ppc_vmx (bfd *abfd,
9111 char *buf,
9112 int *bufsiz,
9113 const void *ppc_vmx,
9114 int size)
9115 {
9116 char *note_name = "LINUX";
9117 return elfcore_write_note (abfd, buf, bufsiz,
9118 note_name, NT_PPC_VMX, ppc_vmx, size);
9119 }
9120
9121 char *
9122 elfcore_write_ppc_vsx (bfd *abfd,
9123 char *buf,
9124 int *bufsiz,
9125 const void *ppc_vsx,
9126 int size)
9127 {
9128 char *note_name = "LINUX";
9129 return elfcore_write_note (abfd, buf, bufsiz,
9130 note_name, NT_PPC_VSX, ppc_vsx, size);
9131 }
9132
9133 static char *
9134 elfcore_write_s390_high_gprs (bfd *abfd,
9135 char *buf,
9136 int *bufsiz,
9137 const void *s390_high_gprs,
9138 int size)
9139 {
9140 char *note_name = "LINUX";
9141 return elfcore_write_note (abfd, buf, bufsiz,
9142 note_name, NT_S390_HIGH_GPRS,
9143 s390_high_gprs, size);
9144 }
9145
9146 char *
9147 elfcore_write_s390_timer (bfd *abfd,
9148 char *buf,
9149 int *bufsiz,
9150 const void *s390_timer,
9151 int size)
9152 {
9153 char *note_name = "LINUX";
9154 return elfcore_write_note (abfd, buf, bufsiz,
9155 note_name, NT_S390_TIMER, s390_timer, size);
9156 }
9157
9158 char *
9159 elfcore_write_s390_todcmp (bfd *abfd,
9160 char *buf,
9161 int *bufsiz,
9162 const void *s390_todcmp,
9163 int size)
9164 {
9165 char *note_name = "LINUX";
9166 return elfcore_write_note (abfd, buf, bufsiz,
9167 note_name, NT_S390_TODCMP, s390_todcmp, size);
9168 }
9169
9170 char *
9171 elfcore_write_s390_todpreg (bfd *abfd,
9172 char *buf,
9173 int *bufsiz,
9174 const void *s390_todpreg,
9175 int size)
9176 {
9177 char *note_name = "LINUX";
9178 return elfcore_write_note (abfd, buf, bufsiz,
9179 note_name, NT_S390_TODPREG, s390_todpreg, size);
9180 }
9181
9182 char *
9183 elfcore_write_s390_ctrs (bfd *abfd,
9184 char *buf,
9185 int *bufsiz,
9186 const void *s390_ctrs,
9187 int size)
9188 {
9189 char *note_name = "LINUX";
9190 return elfcore_write_note (abfd, buf, bufsiz,
9191 note_name, NT_S390_CTRS, s390_ctrs, size);
9192 }
9193
9194 char *
9195 elfcore_write_s390_prefix (bfd *abfd,
9196 char *buf,
9197 int *bufsiz,
9198 const void *s390_prefix,
9199 int size)
9200 {
9201 char *note_name = "LINUX";
9202 return elfcore_write_note (abfd, buf, bufsiz,
9203 note_name, NT_S390_PREFIX, s390_prefix, size);
9204 }
9205
9206 char *
9207 elfcore_write_s390_last_break (bfd *abfd,
9208 char *buf,
9209 int *bufsiz,
9210 const void *s390_last_break,
9211 int size)
9212 {
9213 char *note_name = "LINUX";
9214 return elfcore_write_note (abfd, buf, bufsiz,
9215 note_name, NT_S390_LAST_BREAK,
9216 s390_last_break, size);
9217 }
9218
9219 char *
9220 elfcore_write_s390_system_call (bfd *abfd,
9221 char *buf,
9222 int *bufsiz,
9223 const void *s390_system_call,
9224 int size)
9225 {
9226 char *note_name = "LINUX";
9227 return elfcore_write_note (abfd, buf, bufsiz,
9228 note_name, NT_S390_SYSTEM_CALL,
9229 s390_system_call, size);
9230 }
9231
9232 char *
9233 elfcore_write_arm_vfp (bfd *abfd,
9234 char *buf,
9235 int *bufsiz,
9236 const void *arm_vfp,
9237 int size)
9238 {
9239 char *note_name = "LINUX";
9240 return elfcore_write_note (abfd, buf, bufsiz,
9241 note_name, NT_ARM_VFP, arm_vfp, size);
9242 }
9243
9244 char *
9245 elfcore_write_register_note (bfd *abfd,
9246 char *buf,
9247 int *bufsiz,
9248 const char *section,
9249 const void *data,
9250 int size)
9251 {
9252 if (strcmp (section, ".reg2") == 0)
9253 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
9254 if (strcmp (section, ".reg-xfp") == 0)
9255 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
9256 if (strcmp (section, ".reg-xstate") == 0)
9257 return elfcore_write_xstatereg (abfd, buf, bufsiz, data, size);
9258 if (strcmp (section, ".reg-ppc-vmx") == 0)
9259 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
9260 if (strcmp (section, ".reg-ppc-vsx") == 0)
9261 return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size);
9262 if (strcmp (section, ".reg-s390-high-gprs") == 0)
9263 return elfcore_write_s390_high_gprs (abfd, buf, bufsiz, data, size);
9264 if (strcmp (section, ".reg-s390-timer") == 0)
9265 return elfcore_write_s390_timer (abfd, buf, bufsiz, data, size);
9266 if (strcmp (section, ".reg-s390-todcmp") == 0)
9267 return elfcore_write_s390_todcmp (abfd, buf, bufsiz, data, size);
9268 if (strcmp (section, ".reg-s390-todpreg") == 0)
9269 return elfcore_write_s390_todpreg (abfd, buf, bufsiz, data, size);
9270 if (strcmp (section, ".reg-s390-ctrs") == 0)
9271 return elfcore_write_s390_ctrs (abfd, buf, bufsiz, data, size);
9272 if (strcmp (section, ".reg-s390-prefix") == 0)
9273 return elfcore_write_s390_prefix (abfd, buf, bufsiz, data, size);
9274 if (strcmp (section, ".reg-s390-last-break") == 0)
9275 return elfcore_write_s390_last_break (abfd, buf, bufsiz, data, size);
9276 if (strcmp (section, ".reg-s390-system-call") == 0)
9277 return elfcore_write_s390_system_call (abfd, buf, bufsiz, data, size);
9278 if (strcmp (section, ".reg-arm-vfp") == 0)
9279 return elfcore_write_arm_vfp (abfd, buf, bufsiz, data, size);
9280 return NULL;
9281 }
9282
9283 static bfd_boolean
9284 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset)
9285 {
9286 char *p;
9287
9288 p = buf;
9289 while (p < buf + size)
9290 {
9291 /* FIXME: bad alignment assumption. */
9292 Elf_External_Note *xnp = (Elf_External_Note *) p;
9293 Elf_Internal_Note in;
9294
9295 if (offsetof (Elf_External_Note, name) > buf - p + size)
9296 return FALSE;
9297
9298 in.type = H_GET_32 (abfd, xnp->type);
9299
9300 in.namesz = H_GET_32 (abfd, xnp->namesz);
9301 in.namedata = xnp->name;
9302 if (in.namesz > buf - in.namedata + size)
9303 return FALSE;
9304
9305 in.descsz = H_GET_32 (abfd, xnp->descsz);
9306 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
9307 in.descpos = offset + (in.descdata - buf);
9308 if (in.descsz != 0
9309 && (in.descdata >= buf + size
9310 || in.descsz > buf - in.descdata + size))
9311 return FALSE;
9312
9313 switch (bfd_get_format (abfd))
9314 {
9315 default:
9316 return TRUE;
9317
9318 case bfd_core:
9319 if (CONST_STRNEQ (in.namedata, "NetBSD-CORE"))
9320 {
9321 if (! elfcore_grok_netbsd_note (abfd, &in))
9322 return FALSE;
9323 }
9324 else if (CONST_STRNEQ (in.namedata, "OpenBSD"))
9325 {
9326 if (! elfcore_grok_openbsd_note (abfd, &in))
9327 return FALSE;
9328 }
9329 else if (CONST_STRNEQ (in.namedata, "QNX"))
9330 {
9331 if (! elfcore_grok_nto_note (abfd, &in))
9332 return FALSE;
9333 }
9334 else if (CONST_STRNEQ (in.namedata, "SPU/"))
9335 {
9336 if (! elfcore_grok_spu_note (abfd, &in))
9337 return FALSE;
9338 }
9339 else
9340 {
9341 if (! elfcore_grok_note (abfd, &in))
9342 return FALSE;
9343 }
9344 break;
9345
9346 case bfd_object:
9347 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
9348 {
9349 if (! elfobj_grok_gnu_note (abfd, &in))
9350 return FALSE;
9351 }
9352 else if (in.namesz == sizeof "stapsdt"
9353 && strcmp (in.namedata, "stapsdt") == 0)
9354 {
9355 if (! elfobj_grok_stapsdt_note (abfd, &in))
9356 return FALSE;
9357 }
9358 break;
9359 }
9360
9361 p = in.descdata + BFD_ALIGN (in.descsz, 4);
9362 }
9363
9364 return TRUE;
9365 }
9366
9367 static bfd_boolean
9368 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
9369 {
9370 char *buf;
9371
9372 if (size <= 0)
9373 return TRUE;
9374
9375 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
9376 return FALSE;
9377
9378 buf = (char *) bfd_malloc (size);
9379 if (buf == NULL)
9380 return FALSE;
9381
9382 if (bfd_bread (buf, size, abfd) != size
9383 || !elf_parse_notes (abfd, buf, size, offset))
9384 {
9385 free (buf);
9386 return FALSE;
9387 }
9388
9389 free (buf);
9390 return TRUE;
9391 }
9392 \f
9393 /* Providing external access to the ELF program header table. */
9394
9395 /* Return an upper bound on the number of bytes required to store a
9396 copy of ABFD's program header table entries. Return -1 if an error
9397 occurs; bfd_get_error will return an appropriate code. */
9398
9399 long
9400 bfd_get_elf_phdr_upper_bound (bfd *abfd)
9401 {
9402 if (abfd->xvec->flavour != bfd_target_elf_flavour)
9403 {
9404 bfd_set_error (bfd_error_wrong_format);
9405 return -1;
9406 }
9407
9408 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
9409 }
9410
9411 /* Copy ABFD's program header table entries to *PHDRS. The entries
9412 will be stored as an array of Elf_Internal_Phdr structures, as
9413 defined in include/elf/internal.h. To find out how large the
9414 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
9415
9416 Return the number of program header table entries read, or -1 if an
9417 error occurs; bfd_get_error will return an appropriate code. */
9418
9419 int
9420 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
9421 {
9422 int num_phdrs;
9423
9424 if (abfd->xvec->flavour != bfd_target_elf_flavour)
9425 {
9426 bfd_set_error (bfd_error_wrong_format);
9427 return -1;
9428 }
9429
9430 num_phdrs = elf_elfheader (abfd)->e_phnum;
9431 memcpy (phdrs, elf_tdata (abfd)->phdr,
9432 num_phdrs * sizeof (Elf_Internal_Phdr));
9433
9434 return num_phdrs;
9435 }
9436
9437 enum elf_reloc_type_class
9438 _bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
9439 {
9440 return reloc_class_normal;
9441 }
9442
9443 /* For RELA architectures, return the relocation value for a
9444 relocation against a local symbol. */
9445
9446 bfd_vma
9447 _bfd_elf_rela_local_sym (bfd *abfd,
9448 Elf_Internal_Sym *sym,
9449 asection **psec,
9450 Elf_Internal_Rela *rel)
9451 {
9452 asection *sec = *psec;
9453 bfd_vma relocation;
9454
9455 relocation = (sec->output_section->vma
9456 + sec->output_offset
9457 + sym->st_value);
9458 if ((sec->flags & SEC_MERGE)
9459 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
9460 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
9461 {
9462 rel->r_addend =
9463 _bfd_merged_section_offset (abfd, psec,
9464 elf_section_data (sec)->sec_info,
9465 sym->st_value + rel->r_addend);
9466 if (sec != *psec)
9467 {
9468 /* If we have changed the section, and our original section is
9469 marked with SEC_EXCLUDE, it means that the original
9470 SEC_MERGE section has been completely subsumed in some
9471 other SEC_MERGE section. In this case, we need to leave
9472 some info around for --emit-relocs. */
9473 if ((sec->flags & SEC_EXCLUDE) != 0)
9474 sec->kept_section = *psec;
9475 sec = *psec;
9476 }
9477 rel->r_addend -= relocation;
9478 rel->r_addend += sec->output_section->vma + sec->output_offset;
9479 }
9480 return relocation;
9481 }
9482
9483 bfd_vma
9484 _bfd_elf_rel_local_sym (bfd *abfd,
9485 Elf_Internal_Sym *sym,
9486 asection **psec,
9487 bfd_vma addend)
9488 {
9489 asection *sec = *psec;
9490
9491 if (sec->sec_info_type != SEC_INFO_TYPE_MERGE)
9492 return sym->st_value + addend;
9493
9494 return _bfd_merged_section_offset (abfd, psec,
9495 elf_section_data (sec)->sec_info,
9496 sym->st_value + addend);
9497 }
9498
9499 bfd_vma
9500 _bfd_elf_section_offset (bfd *abfd,
9501 struct bfd_link_info *info,
9502 asection *sec,
9503 bfd_vma offset)
9504 {
9505 switch (sec->sec_info_type)
9506 {
9507 case SEC_INFO_TYPE_STABS:
9508 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
9509 offset);
9510 case SEC_INFO_TYPE_EH_FRAME:
9511 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
9512 default:
9513 if ((sec->flags & SEC_ELF_REVERSE_COPY) != 0)
9514 {
9515 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9516 bfd_size_type address_size = bed->s->arch_size / 8;
9517 offset = sec->size - offset - address_size;
9518 }
9519 return offset;
9520 }
9521 }
9522 \f
9523 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
9524 reconstruct an ELF file by reading the segments out of remote memory
9525 based on the ELF file header at EHDR_VMA and the ELF program headers it
9526 points to. If not null, *LOADBASEP is filled in with the difference
9527 between the VMAs from which the segments were read, and the VMAs the
9528 file headers (and hence BFD's idea of each section's VMA) put them at.
9529
9530 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
9531 remote memory at target address VMA into the local buffer at MYADDR; it
9532 should return zero on success or an `errno' code on failure. TEMPL must
9533 be a BFD for an ELF target with the word size and byte order found in
9534 the remote memory. */
9535
9536 bfd *
9537 bfd_elf_bfd_from_remote_memory
9538 (bfd *templ,
9539 bfd_vma ehdr_vma,
9540 bfd_vma *loadbasep,
9541 int (*target_read_memory) (bfd_vma, bfd_byte *, int))
9542 {
9543 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
9544 (templ, ehdr_vma, loadbasep, target_read_memory);
9545 }
9546 \f
9547 long
9548 _bfd_elf_get_synthetic_symtab (bfd *abfd,
9549 long symcount ATTRIBUTE_UNUSED,
9550 asymbol **syms ATTRIBUTE_UNUSED,
9551 long dynsymcount,
9552 asymbol **dynsyms,
9553 asymbol **ret)
9554 {
9555 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9556 asection *relplt;
9557 asymbol *s;
9558 const char *relplt_name;
9559 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
9560 arelent *p;
9561 long count, i, n;
9562 size_t size;
9563 Elf_Internal_Shdr *hdr;
9564 char *names;
9565 asection *plt;
9566
9567 *ret = NULL;
9568
9569 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
9570 return 0;
9571
9572 if (dynsymcount <= 0)
9573 return 0;
9574
9575 if (!bed->plt_sym_val)
9576 return 0;
9577
9578 relplt_name = bed->relplt_name;
9579 if (relplt_name == NULL)
9580 relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt";
9581 relplt = bfd_get_section_by_name (abfd, relplt_name);
9582 if (relplt == NULL)
9583 return 0;
9584
9585 hdr = &elf_section_data (relplt)->this_hdr;
9586 if (hdr->sh_link != elf_dynsymtab (abfd)
9587 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
9588 return 0;
9589
9590 plt = bfd_get_section_by_name (abfd, ".plt");
9591 if (plt == NULL)
9592 return 0;
9593
9594 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
9595 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
9596 return -1;
9597
9598 count = relplt->size / hdr->sh_entsize;
9599 size = count * sizeof (asymbol);
9600 p = relplt->relocation;
9601 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
9602 {
9603 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
9604 if (p->addend != 0)
9605 {
9606 #ifdef BFD64
9607 size += sizeof ("+0x") - 1 + 8 + 8 * (bed->s->elfclass == ELFCLASS64);
9608 #else
9609 size += sizeof ("+0x") - 1 + 8;
9610 #endif
9611 }
9612 }
9613
9614 s = *ret = (asymbol *) bfd_malloc (size);
9615 if (s == NULL)
9616 return -1;
9617
9618 names = (char *) (s + count);
9619 p = relplt->relocation;
9620 n = 0;
9621 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
9622 {
9623 size_t len;
9624 bfd_vma addr;
9625
9626 addr = bed->plt_sym_val (i, plt, p);
9627 if (addr == (bfd_vma) -1)
9628 continue;
9629
9630 *s = **p->sym_ptr_ptr;
9631 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
9632 we are defining a symbol, ensure one of them is set. */
9633 if ((s->flags & BSF_LOCAL) == 0)
9634 s->flags |= BSF_GLOBAL;
9635 s->flags |= BSF_SYNTHETIC;
9636 s->section = plt;
9637 s->value = addr - plt->vma;
9638 s->name = names;
9639 s->udata.p = NULL;
9640 len = strlen ((*p->sym_ptr_ptr)->name);
9641 memcpy (names, (*p->sym_ptr_ptr)->name, len);
9642 names += len;
9643 if (p->addend != 0)
9644 {
9645 char buf[30], *a;
9646
9647 memcpy (names, "+0x", sizeof ("+0x") - 1);
9648 names += sizeof ("+0x") - 1;
9649 bfd_sprintf_vma (abfd, buf, p->addend);
9650 for (a = buf; *a == '0'; ++a)
9651 ;
9652 len = strlen (a);
9653 memcpy (names, a, len);
9654 names += len;
9655 }
9656 memcpy (names, "@plt", sizeof ("@plt"));
9657 names += sizeof ("@plt");
9658 ++s, ++n;
9659 }
9660
9661 return n;
9662 }
9663
9664 /* It is only used by x86-64 so far. */
9665 asection _bfd_elf_large_com_section
9666 = BFD_FAKE_SECTION (_bfd_elf_large_com_section,
9667 SEC_IS_COMMON, NULL, "LARGE_COMMON", 0);
9668
9669 void
9670 _bfd_elf_set_osabi (bfd * abfd,
9671 struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
9672 {
9673 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
9674
9675 i_ehdrp = elf_elfheader (abfd);
9676
9677 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
9678
9679 /* To make things simpler for the loader on Linux systems we set the
9680 osabi field to ELFOSABI_GNU if the binary contains symbols of
9681 the STT_GNU_IFUNC type or STB_GNU_UNIQUE binding. */
9682 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE
9683 && elf_tdata (abfd)->has_gnu_symbols)
9684 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_GNU;
9685 }
9686
9687
9688 /* Return TRUE for ELF symbol types that represent functions.
9689 This is the default version of this function, which is sufficient for
9690 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */
9691
9692 bfd_boolean
9693 _bfd_elf_is_function_type (unsigned int type)
9694 {
9695 return (type == STT_FUNC
9696 || type == STT_GNU_IFUNC);
9697 }
9698
9699 /* Return TRUE iff the ELF symbol SYM might be a function. Set *CODE_SEC
9700 and *CODE_OFF to the function's entry point. */
9701
9702 bfd_boolean
9703 _bfd_elf_maybe_function_sym (const asymbol *sym,
9704 asection **code_sec, bfd_vma *code_off)
9705 {
9706 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
9707 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0)
9708 return FALSE;
9709
9710 *code_sec = sym->section;
9711 *code_off = sym->value;
9712 return TRUE;
9713 }