PR ld/14207
[binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
5 Free Software Foundation, Inc.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 MA 02110-1301, USA. */
23
24
25 /*
26 SECTION
27 ELF backends
28
29 BFD support for ELF formats is being worked on.
30 Currently, the best supported back ends are for sparc and i386
31 (running svr4 or Solaris 2).
32
33 Documentation of the internals of the support code still needs
34 to be written. The code is changing quickly enough that we
35 haven't bothered yet. */
36
37 /* For sparc64-cross-sparc32. */
38 #define _SYSCALL32
39 #include "sysdep.h"
40 #include "bfd.h"
41 #include "bfdlink.h"
42 #include "libbfd.h"
43 #define ARCH_SIZE 0
44 #include "elf-bfd.h"
45 #include "libiberty.h"
46 #include "safe-ctype.h"
47
48 #ifdef CORE_HEADER
49 #include CORE_HEADER
50 #endif
51
52 static int elf_sort_sections (const void *, const void *);
53 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
54 static bfd_boolean prep_headers (bfd *);
55 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
56 static bfd_boolean elf_read_notes (bfd *, file_ptr, bfd_size_type) ;
57 static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
58 file_ptr offset);
59
60 /* Swap version information in and out. The version information is
61 currently size independent. If that ever changes, this code will
62 need to move into elfcode.h. */
63
64 /* Swap in a Verdef structure. */
65
66 void
67 _bfd_elf_swap_verdef_in (bfd *abfd,
68 const Elf_External_Verdef *src,
69 Elf_Internal_Verdef *dst)
70 {
71 dst->vd_version = H_GET_16 (abfd, src->vd_version);
72 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
73 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
74 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
75 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
76 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
77 dst->vd_next = H_GET_32 (abfd, src->vd_next);
78 }
79
80 /* Swap out a Verdef structure. */
81
82 void
83 _bfd_elf_swap_verdef_out (bfd *abfd,
84 const Elf_Internal_Verdef *src,
85 Elf_External_Verdef *dst)
86 {
87 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
88 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
89 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
90 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
91 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
92 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
93 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
94 }
95
96 /* Swap in a Verdaux structure. */
97
98 void
99 _bfd_elf_swap_verdaux_in (bfd *abfd,
100 const Elf_External_Verdaux *src,
101 Elf_Internal_Verdaux *dst)
102 {
103 dst->vda_name = H_GET_32 (abfd, src->vda_name);
104 dst->vda_next = H_GET_32 (abfd, src->vda_next);
105 }
106
107 /* Swap out a Verdaux structure. */
108
109 void
110 _bfd_elf_swap_verdaux_out (bfd *abfd,
111 const Elf_Internal_Verdaux *src,
112 Elf_External_Verdaux *dst)
113 {
114 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
115 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
116 }
117
118 /* Swap in a Verneed structure. */
119
120 void
121 _bfd_elf_swap_verneed_in (bfd *abfd,
122 const Elf_External_Verneed *src,
123 Elf_Internal_Verneed *dst)
124 {
125 dst->vn_version = H_GET_16 (abfd, src->vn_version);
126 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
127 dst->vn_file = H_GET_32 (abfd, src->vn_file);
128 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
129 dst->vn_next = H_GET_32 (abfd, src->vn_next);
130 }
131
132 /* Swap out a Verneed structure. */
133
134 void
135 _bfd_elf_swap_verneed_out (bfd *abfd,
136 const Elf_Internal_Verneed *src,
137 Elf_External_Verneed *dst)
138 {
139 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
140 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
141 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
142 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
143 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
144 }
145
146 /* Swap in a Vernaux structure. */
147
148 void
149 _bfd_elf_swap_vernaux_in (bfd *abfd,
150 const Elf_External_Vernaux *src,
151 Elf_Internal_Vernaux *dst)
152 {
153 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
154 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
155 dst->vna_other = H_GET_16 (abfd, src->vna_other);
156 dst->vna_name = H_GET_32 (abfd, src->vna_name);
157 dst->vna_next = H_GET_32 (abfd, src->vna_next);
158 }
159
160 /* Swap out a Vernaux structure. */
161
162 void
163 _bfd_elf_swap_vernaux_out (bfd *abfd,
164 const Elf_Internal_Vernaux *src,
165 Elf_External_Vernaux *dst)
166 {
167 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
168 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
169 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
170 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
171 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
172 }
173
174 /* Swap in a Versym structure. */
175
176 void
177 _bfd_elf_swap_versym_in (bfd *abfd,
178 const Elf_External_Versym *src,
179 Elf_Internal_Versym *dst)
180 {
181 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
182 }
183
184 /* Swap out a Versym structure. */
185
186 void
187 _bfd_elf_swap_versym_out (bfd *abfd,
188 const Elf_Internal_Versym *src,
189 Elf_External_Versym *dst)
190 {
191 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
192 }
193
194 /* Standard ELF hash function. Do not change this function; you will
195 cause invalid hash tables to be generated. */
196
197 unsigned long
198 bfd_elf_hash (const char *namearg)
199 {
200 const unsigned char *name = (const unsigned char *) namearg;
201 unsigned long h = 0;
202 unsigned long g;
203 int ch;
204
205 while ((ch = *name++) != '\0')
206 {
207 h = (h << 4) + ch;
208 if ((g = (h & 0xf0000000)) != 0)
209 {
210 h ^= g >> 24;
211 /* The ELF ABI says `h &= ~g', but this is equivalent in
212 this case and on some machines one insn instead of two. */
213 h ^= g;
214 }
215 }
216 return h & 0xffffffff;
217 }
218
219 /* DT_GNU_HASH hash function. Do not change this function; you will
220 cause invalid hash tables to be generated. */
221
222 unsigned long
223 bfd_elf_gnu_hash (const char *namearg)
224 {
225 const unsigned char *name = (const unsigned char *) namearg;
226 unsigned long h = 5381;
227 unsigned char ch;
228
229 while ((ch = *name++) != '\0')
230 h = (h << 5) + h + ch;
231 return h & 0xffffffff;
232 }
233
234 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
235 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
236 bfd_boolean
237 bfd_elf_allocate_object (bfd *abfd,
238 size_t object_size,
239 enum elf_target_id object_id)
240 {
241 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
242 abfd->tdata.any = bfd_zalloc (abfd, object_size);
243 if (abfd->tdata.any == NULL)
244 return FALSE;
245
246 elf_object_id (abfd) = object_id;
247 elf_program_header_size (abfd) = (bfd_size_type) -1;
248 return TRUE;
249 }
250
251
252 bfd_boolean
253 bfd_elf_make_object (bfd *abfd)
254 {
255 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
256 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
257 bed->target_id);
258 }
259
260 bfd_boolean
261 bfd_elf_mkcorefile (bfd *abfd)
262 {
263 /* I think this can be done just like an object file. */
264 return abfd->xvec->_bfd_set_format[(int) bfd_object] (abfd);
265 }
266
267 static char *
268 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
269 {
270 Elf_Internal_Shdr **i_shdrp;
271 bfd_byte *shstrtab = NULL;
272 file_ptr offset;
273 bfd_size_type shstrtabsize;
274
275 i_shdrp = elf_elfsections (abfd);
276 if (i_shdrp == 0
277 || shindex >= elf_numsections (abfd)
278 || i_shdrp[shindex] == 0)
279 return NULL;
280
281 shstrtab = i_shdrp[shindex]->contents;
282 if (shstrtab == NULL)
283 {
284 /* No cached one, attempt to read, and cache what we read. */
285 offset = i_shdrp[shindex]->sh_offset;
286 shstrtabsize = i_shdrp[shindex]->sh_size;
287
288 /* Allocate and clear an extra byte at the end, to prevent crashes
289 in case the string table is not terminated. */
290 if (shstrtabsize + 1 <= 1
291 || (shstrtab = (bfd_byte *) bfd_alloc (abfd, shstrtabsize + 1)) == NULL
292 || bfd_seek (abfd, offset, SEEK_SET) != 0)
293 shstrtab = NULL;
294 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
295 {
296 if (bfd_get_error () != bfd_error_system_call)
297 bfd_set_error (bfd_error_file_truncated);
298 shstrtab = NULL;
299 /* Once we've failed to read it, make sure we don't keep
300 trying. Otherwise, we'll keep allocating space for
301 the string table over and over. */
302 i_shdrp[shindex]->sh_size = 0;
303 }
304 else
305 shstrtab[shstrtabsize] = '\0';
306 i_shdrp[shindex]->contents = shstrtab;
307 }
308 return (char *) shstrtab;
309 }
310
311 char *
312 bfd_elf_string_from_elf_section (bfd *abfd,
313 unsigned int shindex,
314 unsigned int strindex)
315 {
316 Elf_Internal_Shdr *hdr;
317
318 if (strindex == 0)
319 return "";
320
321 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
322 return NULL;
323
324 hdr = elf_elfsections (abfd)[shindex];
325
326 if (hdr->contents == NULL
327 && bfd_elf_get_str_section (abfd, shindex) == NULL)
328 return NULL;
329
330 if (strindex >= hdr->sh_size)
331 {
332 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
333 (*_bfd_error_handler)
334 (_("%B: invalid string offset %u >= %lu for section `%s'"),
335 abfd, strindex, (unsigned long) hdr->sh_size,
336 (shindex == shstrndx && strindex == hdr->sh_name
337 ? ".shstrtab"
338 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
339 return NULL;
340 }
341
342 return ((char *) hdr->contents) + strindex;
343 }
344
345 /* Read and convert symbols to internal format.
346 SYMCOUNT specifies the number of symbols to read, starting from
347 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
348 are non-NULL, they are used to store the internal symbols, external
349 symbols, and symbol section index extensions, respectively.
350 Returns a pointer to the internal symbol buffer (malloced if necessary)
351 or NULL if there were no symbols or some kind of problem. */
352
353 Elf_Internal_Sym *
354 bfd_elf_get_elf_syms (bfd *ibfd,
355 Elf_Internal_Shdr *symtab_hdr,
356 size_t symcount,
357 size_t symoffset,
358 Elf_Internal_Sym *intsym_buf,
359 void *extsym_buf,
360 Elf_External_Sym_Shndx *extshndx_buf)
361 {
362 Elf_Internal_Shdr *shndx_hdr;
363 void *alloc_ext;
364 const bfd_byte *esym;
365 Elf_External_Sym_Shndx *alloc_extshndx;
366 Elf_External_Sym_Shndx *shndx;
367 Elf_Internal_Sym *alloc_intsym;
368 Elf_Internal_Sym *isym;
369 Elf_Internal_Sym *isymend;
370 const struct elf_backend_data *bed;
371 size_t extsym_size;
372 bfd_size_type amt;
373 file_ptr pos;
374
375 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
376 abort ();
377
378 if (symcount == 0)
379 return intsym_buf;
380
381 /* Normal syms might have section extension entries. */
382 shndx_hdr = NULL;
383 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
384 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
385
386 /* Read the symbols. */
387 alloc_ext = NULL;
388 alloc_extshndx = NULL;
389 alloc_intsym = NULL;
390 bed = get_elf_backend_data (ibfd);
391 extsym_size = bed->s->sizeof_sym;
392 amt = symcount * extsym_size;
393 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
394 if (extsym_buf == NULL)
395 {
396 alloc_ext = bfd_malloc2 (symcount, extsym_size);
397 extsym_buf = alloc_ext;
398 }
399 if (extsym_buf == NULL
400 || bfd_seek (ibfd, pos, SEEK_SET) != 0
401 || bfd_bread (extsym_buf, amt, ibfd) != amt)
402 {
403 intsym_buf = NULL;
404 goto out;
405 }
406
407 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
408 extshndx_buf = NULL;
409 else
410 {
411 amt = symcount * sizeof (Elf_External_Sym_Shndx);
412 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
413 if (extshndx_buf == NULL)
414 {
415 alloc_extshndx = (Elf_External_Sym_Shndx *)
416 bfd_malloc2 (symcount, sizeof (Elf_External_Sym_Shndx));
417 extshndx_buf = alloc_extshndx;
418 }
419 if (extshndx_buf == NULL
420 || bfd_seek (ibfd, pos, SEEK_SET) != 0
421 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
422 {
423 intsym_buf = NULL;
424 goto out;
425 }
426 }
427
428 if (intsym_buf == NULL)
429 {
430 alloc_intsym = (Elf_Internal_Sym *)
431 bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
432 intsym_buf = alloc_intsym;
433 if (intsym_buf == NULL)
434 goto out;
435 }
436
437 /* Convert the symbols to internal form. */
438 isymend = intsym_buf + symcount;
439 for (esym = (const bfd_byte *) extsym_buf, isym = intsym_buf,
440 shndx = extshndx_buf;
441 isym < isymend;
442 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
443 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
444 {
445 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
446 (*_bfd_error_handler) (_("%B symbol number %lu references "
447 "nonexistent SHT_SYMTAB_SHNDX section"),
448 ibfd, (unsigned long) symoffset);
449 if (alloc_intsym != NULL)
450 free (alloc_intsym);
451 intsym_buf = NULL;
452 goto out;
453 }
454
455 out:
456 if (alloc_ext != NULL)
457 free (alloc_ext);
458 if (alloc_extshndx != NULL)
459 free (alloc_extshndx);
460
461 return intsym_buf;
462 }
463
464 /* Look up a symbol name. */
465 const char *
466 bfd_elf_sym_name (bfd *abfd,
467 Elf_Internal_Shdr *symtab_hdr,
468 Elf_Internal_Sym *isym,
469 asection *sym_sec)
470 {
471 const char *name;
472 unsigned int iname = isym->st_name;
473 unsigned int shindex = symtab_hdr->sh_link;
474
475 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
476 /* Check for a bogus st_shndx to avoid crashing. */
477 && isym->st_shndx < elf_numsections (abfd))
478 {
479 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
480 shindex = elf_elfheader (abfd)->e_shstrndx;
481 }
482
483 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
484 if (name == NULL)
485 name = "(null)";
486 else if (sym_sec && *name == '\0')
487 name = bfd_section_name (abfd, sym_sec);
488
489 return name;
490 }
491
492 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
493 sections. The first element is the flags, the rest are section
494 pointers. */
495
496 typedef union elf_internal_group {
497 Elf_Internal_Shdr *shdr;
498 unsigned int flags;
499 } Elf_Internal_Group;
500
501 /* Return the name of the group signature symbol. Why isn't the
502 signature just a string? */
503
504 static const char *
505 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
506 {
507 Elf_Internal_Shdr *hdr;
508 unsigned char esym[sizeof (Elf64_External_Sym)];
509 Elf_External_Sym_Shndx eshndx;
510 Elf_Internal_Sym isym;
511
512 /* First we need to ensure the symbol table is available. Make sure
513 that it is a symbol table section. */
514 if (ghdr->sh_link >= elf_numsections (abfd))
515 return NULL;
516 hdr = elf_elfsections (abfd) [ghdr->sh_link];
517 if (hdr->sh_type != SHT_SYMTAB
518 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
519 return NULL;
520
521 /* Go read the symbol. */
522 hdr = &elf_tdata (abfd)->symtab_hdr;
523 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
524 &isym, esym, &eshndx) == NULL)
525 return NULL;
526
527 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
528 }
529
530 /* Set next_in_group list pointer, and group name for NEWSECT. */
531
532 static bfd_boolean
533 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
534 {
535 unsigned int num_group = elf_tdata (abfd)->num_group;
536
537 /* If num_group is zero, read in all SHT_GROUP sections. The count
538 is set to -1 if there are no SHT_GROUP sections. */
539 if (num_group == 0)
540 {
541 unsigned int i, shnum;
542
543 /* First count the number of groups. If we have a SHT_GROUP
544 section with just a flag word (ie. sh_size is 4), ignore it. */
545 shnum = elf_numsections (abfd);
546 num_group = 0;
547
548 #define IS_VALID_GROUP_SECTION_HEADER(shdr) \
549 ( (shdr)->sh_type == SHT_GROUP \
550 && (shdr)->sh_size >= (2 * GRP_ENTRY_SIZE) \
551 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
552 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
553
554 for (i = 0; i < shnum; i++)
555 {
556 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
557
558 if (IS_VALID_GROUP_SECTION_HEADER (shdr))
559 num_group += 1;
560 }
561
562 if (num_group == 0)
563 {
564 num_group = (unsigned) -1;
565 elf_tdata (abfd)->num_group = num_group;
566 }
567 else
568 {
569 /* We keep a list of elf section headers for group sections,
570 so we can find them quickly. */
571 bfd_size_type amt;
572
573 elf_tdata (abfd)->num_group = num_group;
574 elf_tdata (abfd)->group_sect_ptr = (Elf_Internal_Shdr **)
575 bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
576 if (elf_tdata (abfd)->group_sect_ptr == NULL)
577 return FALSE;
578
579 num_group = 0;
580 for (i = 0; i < shnum; i++)
581 {
582 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
583
584 if (IS_VALID_GROUP_SECTION_HEADER (shdr))
585 {
586 unsigned char *src;
587 Elf_Internal_Group *dest;
588
589 /* Add to list of sections. */
590 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
591 num_group += 1;
592
593 /* Read the raw contents. */
594 BFD_ASSERT (sizeof (*dest) >= 4);
595 amt = shdr->sh_size * sizeof (*dest) / 4;
596 shdr->contents = (unsigned char *)
597 bfd_alloc2 (abfd, shdr->sh_size, sizeof (*dest) / 4);
598 /* PR binutils/4110: Handle corrupt group headers. */
599 if (shdr->contents == NULL)
600 {
601 _bfd_error_handler
602 (_("%B: Corrupt size field in group section header: 0x%lx"), abfd, shdr->sh_size);
603 bfd_set_error (bfd_error_bad_value);
604 return FALSE;
605 }
606
607 memset (shdr->contents, 0, amt);
608
609 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
610 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
611 != shdr->sh_size))
612 return FALSE;
613
614 /* Translate raw contents, a flag word followed by an
615 array of elf section indices all in target byte order,
616 to the flag word followed by an array of elf section
617 pointers. */
618 src = shdr->contents + shdr->sh_size;
619 dest = (Elf_Internal_Group *) (shdr->contents + amt);
620 while (1)
621 {
622 unsigned int idx;
623
624 src -= 4;
625 --dest;
626 idx = H_GET_32 (abfd, src);
627 if (src == shdr->contents)
628 {
629 dest->flags = idx;
630 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
631 shdr->bfd_section->flags
632 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
633 break;
634 }
635 if (idx >= shnum)
636 {
637 ((*_bfd_error_handler)
638 (_("%B: invalid SHT_GROUP entry"), abfd));
639 idx = 0;
640 }
641 dest->shdr = elf_elfsections (abfd)[idx];
642 }
643 }
644 }
645 }
646 }
647
648 if (num_group != (unsigned) -1)
649 {
650 unsigned int i;
651
652 for (i = 0; i < num_group; i++)
653 {
654 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
655 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
656 unsigned int n_elt = shdr->sh_size / 4;
657
658 /* Look through this group's sections to see if current
659 section is a member. */
660 while (--n_elt != 0)
661 if ((++idx)->shdr == hdr)
662 {
663 asection *s = NULL;
664
665 /* We are a member of this group. Go looking through
666 other members to see if any others are linked via
667 next_in_group. */
668 idx = (Elf_Internal_Group *) shdr->contents;
669 n_elt = shdr->sh_size / 4;
670 while (--n_elt != 0)
671 if ((s = (++idx)->shdr->bfd_section) != NULL
672 && elf_next_in_group (s) != NULL)
673 break;
674 if (n_elt != 0)
675 {
676 /* Snarf the group name from other member, and
677 insert current section in circular list. */
678 elf_group_name (newsect) = elf_group_name (s);
679 elf_next_in_group (newsect) = elf_next_in_group (s);
680 elf_next_in_group (s) = newsect;
681 }
682 else
683 {
684 const char *gname;
685
686 gname = group_signature (abfd, shdr);
687 if (gname == NULL)
688 return FALSE;
689 elf_group_name (newsect) = gname;
690
691 /* Start a circular list with one element. */
692 elf_next_in_group (newsect) = newsect;
693 }
694
695 /* If the group section has been created, point to the
696 new member. */
697 if (shdr->bfd_section != NULL)
698 elf_next_in_group (shdr->bfd_section) = newsect;
699
700 i = num_group - 1;
701 break;
702 }
703 }
704 }
705
706 if (elf_group_name (newsect) == NULL)
707 {
708 (*_bfd_error_handler) (_("%B: no group info for section %A"),
709 abfd, newsect);
710 }
711 return TRUE;
712 }
713
714 bfd_boolean
715 _bfd_elf_setup_sections (bfd *abfd)
716 {
717 unsigned int i;
718 unsigned int num_group = elf_tdata (abfd)->num_group;
719 bfd_boolean result = TRUE;
720 asection *s;
721
722 /* Process SHF_LINK_ORDER. */
723 for (s = abfd->sections; s != NULL; s = s->next)
724 {
725 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
726 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
727 {
728 unsigned int elfsec = this_hdr->sh_link;
729 /* FIXME: The old Intel compiler and old strip/objcopy may
730 not set the sh_link or sh_info fields. Hence we could
731 get the situation where elfsec is 0. */
732 if (elfsec == 0)
733 {
734 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
735 if (bed->link_order_error_handler)
736 bed->link_order_error_handler
737 (_("%B: warning: sh_link not set for section `%A'"),
738 abfd, s);
739 }
740 else
741 {
742 asection *linksec = NULL;
743
744 if (elfsec < elf_numsections (abfd))
745 {
746 this_hdr = elf_elfsections (abfd)[elfsec];
747 linksec = this_hdr->bfd_section;
748 }
749
750 /* PR 1991, 2008:
751 Some strip/objcopy may leave an incorrect value in
752 sh_link. We don't want to proceed. */
753 if (linksec == NULL)
754 {
755 (*_bfd_error_handler)
756 (_("%B: sh_link [%d] in section `%A' is incorrect"),
757 s->owner, s, elfsec);
758 result = FALSE;
759 }
760
761 elf_linked_to_section (s) = linksec;
762 }
763 }
764 }
765
766 /* Process section groups. */
767 if (num_group == (unsigned) -1)
768 return result;
769
770 for (i = 0; i < num_group; i++)
771 {
772 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
773 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
774 unsigned int n_elt = shdr->sh_size / 4;
775
776 while (--n_elt != 0)
777 if ((++idx)->shdr->bfd_section)
778 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
779 else if (idx->shdr->sh_type == SHT_RELA
780 || idx->shdr->sh_type == SHT_REL)
781 /* We won't include relocation sections in section groups in
782 output object files. We adjust the group section size here
783 so that relocatable link will work correctly when
784 relocation sections are in section group in input object
785 files. */
786 shdr->bfd_section->size -= 4;
787 else
788 {
789 /* There are some unknown sections in the group. */
790 (*_bfd_error_handler)
791 (_("%B: unknown [%d] section `%s' in group [%s]"),
792 abfd,
793 (unsigned int) idx->shdr->sh_type,
794 bfd_elf_string_from_elf_section (abfd,
795 (elf_elfheader (abfd)
796 ->e_shstrndx),
797 idx->shdr->sh_name),
798 shdr->bfd_section->name);
799 result = FALSE;
800 }
801 }
802 return result;
803 }
804
805 bfd_boolean
806 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
807 {
808 return elf_next_in_group (sec) != NULL;
809 }
810
811 /* Make a BFD section from an ELF section. We store a pointer to the
812 BFD section in the bfd_section field of the header. */
813
814 bfd_boolean
815 _bfd_elf_make_section_from_shdr (bfd *abfd,
816 Elf_Internal_Shdr *hdr,
817 const char *name,
818 int shindex)
819 {
820 asection *newsect;
821 flagword flags;
822 const struct elf_backend_data *bed;
823
824 if (hdr->bfd_section != NULL)
825 return TRUE;
826
827 newsect = bfd_make_section_anyway (abfd, name);
828 if (newsect == NULL)
829 return FALSE;
830
831 hdr->bfd_section = newsect;
832 elf_section_data (newsect)->this_hdr = *hdr;
833 elf_section_data (newsect)->this_idx = shindex;
834
835 /* Always use the real type/flags. */
836 elf_section_type (newsect) = hdr->sh_type;
837 elf_section_flags (newsect) = hdr->sh_flags;
838
839 newsect->filepos = hdr->sh_offset;
840
841 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
842 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
843 || ! bfd_set_section_alignment (abfd, newsect,
844 bfd_log2 (hdr->sh_addralign)))
845 return FALSE;
846
847 flags = SEC_NO_FLAGS;
848 if (hdr->sh_type != SHT_NOBITS)
849 flags |= SEC_HAS_CONTENTS;
850 if (hdr->sh_type == SHT_GROUP)
851 flags |= SEC_GROUP | SEC_EXCLUDE;
852 if ((hdr->sh_flags & SHF_ALLOC) != 0)
853 {
854 flags |= SEC_ALLOC;
855 if (hdr->sh_type != SHT_NOBITS)
856 flags |= SEC_LOAD;
857 }
858 if ((hdr->sh_flags & SHF_WRITE) == 0)
859 flags |= SEC_READONLY;
860 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
861 flags |= SEC_CODE;
862 else if ((flags & SEC_LOAD) != 0)
863 flags |= SEC_DATA;
864 if ((hdr->sh_flags & SHF_MERGE) != 0)
865 {
866 flags |= SEC_MERGE;
867 newsect->entsize = hdr->sh_entsize;
868 if ((hdr->sh_flags & SHF_STRINGS) != 0)
869 flags |= SEC_STRINGS;
870 }
871 if (hdr->sh_flags & SHF_GROUP)
872 if (!setup_group (abfd, hdr, newsect))
873 return FALSE;
874 if ((hdr->sh_flags & SHF_TLS) != 0)
875 flags |= SEC_THREAD_LOCAL;
876 if ((hdr->sh_flags & SHF_EXCLUDE) != 0)
877 flags |= SEC_EXCLUDE;
878
879 if ((flags & SEC_ALLOC) == 0)
880 {
881 /* The debugging sections appear to be recognized only by name,
882 not any sort of flag. Their SEC_ALLOC bits are cleared. */
883 static const struct
884 {
885 const char *name;
886 int len;
887 } debug_sections [] =
888 {
889 { STRING_COMMA_LEN ("debug") }, /* 'd' */
890 { NULL, 0 }, /* 'e' */
891 { NULL, 0 }, /* 'f' */
892 { STRING_COMMA_LEN ("gnu.linkonce.wi.") }, /* 'g' */
893 { NULL, 0 }, /* 'h' */
894 { NULL, 0 }, /* 'i' */
895 { NULL, 0 }, /* 'j' */
896 { NULL, 0 }, /* 'k' */
897 { STRING_COMMA_LEN ("line") }, /* 'l' */
898 { NULL, 0 }, /* 'm' */
899 { NULL, 0 }, /* 'n' */
900 { NULL, 0 }, /* 'o' */
901 { NULL, 0 }, /* 'p' */
902 { NULL, 0 }, /* 'q' */
903 { NULL, 0 }, /* 'r' */
904 { STRING_COMMA_LEN ("stab") }, /* 's' */
905 { NULL, 0 }, /* 't' */
906 { NULL, 0 }, /* 'u' */
907 { NULL, 0 }, /* 'v' */
908 { NULL, 0 }, /* 'w' */
909 { NULL, 0 }, /* 'x' */
910 { NULL, 0 }, /* 'y' */
911 { STRING_COMMA_LEN ("zdebug") } /* 'z' */
912 };
913
914 if (name [0] == '.')
915 {
916 int i = name [1] - 'd';
917 if (i >= 0
918 && i < (int) ARRAY_SIZE (debug_sections)
919 && debug_sections [i].name != NULL
920 && strncmp (&name [1], debug_sections [i].name,
921 debug_sections [i].len) == 0)
922 flags |= SEC_DEBUGGING;
923 }
924 }
925
926 /* As a GNU extension, if the name begins with .gnu.linkonce, we
927 only link a single copy of the section. This is used to support
928 g++. g++ will emit each template expansion in its own section.
929 The symbols will be defined as weak, so that multiple definitions
930 are permitted. The GNU linker extension is to actually discard
931 all but one of the sections. */
932 if (CONST_STRNEQ (name, ".gnu.linkonce")
933 && elf_next_in_group (newsect) == NULL)
934 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
935
936 bed = get_elf_backend_data (abfd);
937 if (bed->elf_backend_section_flags)
938 if (! bed->elf_backend_section_flags (&flags, hdr))
939 return FALSE;
940
941 if (! bfd_set_section_flags (abfd, newsect, flags))
942 return FALSE;
943
944 /* We do not parse the PT_NOTE segments as we are interested even in the
945 separate debug info files which may have the segments offsets corrupted.
946 PT_NOTEs from the core files are currently not parsed using BFD. */
947 if (hdr->sh_type == SHT_NOTE)
948 {
949 bfd_byte *contents;
950
951 if (!bfd_malloc_and_get_section (abfd, newsect, &contents))
952 return FALSE;
953
954 elf_parse_notes (abfd, (char *) contents, hdr->sh_size, -1);
955 free (contents);
956 }
957
958 if ((flags & SEC_ALLOC) != 0)
959 {
960 Elf_Internal_Phdr *phdr;
961 unsigned int i, nload;
962
963 /* Some ELF linkers produce binaries with all the program header
964 p_paddr fields zero. If we have such a binary with more than
965 one PT_LOAD header, then leave the section lma equal to vma
966 so that we don't create sections with overlapping lma. */
967 phdr = elf_tdata (abfd)->phdr;
968 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
969 if (phdr->p_paddr != 0)
970 break;
971 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
972 ++nload;
973 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
974 return TRUE;
975
976 phdr = elf_tdata (abfd)->phdr;
977 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
978 {
979 if (((phdr->p_type == PT_LOAD
980 && (hdr->sh_flags & SHF_TLS) == 0)
981 || phdr->p_type == PT_TLS)
982 && ELF_SECTION_IN_SEGMENT (hdr, phdr))
983 {
984 if ((flags & SEC_LOAD) == 0)
985 newsect->lma = (phdr->p_paddr
986 + hdr->sh_addr - phdr->p_vaddr);
987 else
988 /* We used to use the same adjustment for SEC_LOAD
989 sections, but that doesn't work if the segment
990 is packed with code from multiple VMAs.
991 Instead we calculate the section LMA based on
992 the segment LMA. It is assumed that the
993 segment will contain sections with contiguous
994 LMAs, even if the VMAs are not. */
995 newsect->lma = (phdr->p_paddr
996 + hdr->sh_offset - phdr->p_offset);
997
998 /* With contiguous segments, we can't tell from file
999 offsets whether a section with zero size should
1000 be placed at the end of one segment or the
1001 beginning of the next. Decide based on vaddr. */
1002 if (hdr->sh_addr >= phdr->p_vaddr
1003 && (hdr->sh_addr + hdr->sh_size
1004 <= phdr->p_vaddr + phdr->p_memsz))
1005 break;
1006 }
1007 }
1008 }
1009
1010 /* Compress/decompress DWARF debug sections with names: .debug_* and
1011 .zdebug_*, after the section flags is set. */
1012 if ((flags & SEC_DEBUGGING)
1013 && ((name[1] == 'd' && name[6] == '_')
1014 || (name[1] == 'z' && name[7] == '_')))
1015 {
1016 enum { nothing, compress, decompress } action = nothing;
1017 char *new_name;
1018
1019 if (bfd_is_section_compressed (abfd, newsect))
1020 {
1021 /* Compressed section. Check if we should decompress. */
1022 if ((abfd->flags & BFD_DECOMPRESS))
1023 action = decompress;
1024 }
1025 else
1026 {
1027 /* Normal section. Check if we should compress. */
1028 if ((abfd->flags & BFD_COMPRESS))
1029 action = compress;
1030 }
1031
1032 new_name = NULL;
1033 switch (action)
1034 {
1035 case nothing:
1036 break;
1037 case compress:
1038 if (!bfd_init_section_compress_status (abfd, newsect))
1039 {
1040 (*_bfd_error_handler)
1041 (_("%B: unable to initialize commpress status for section %s"),
1042 abfd, name);
1043 return FALSE;
1044 }
1045 if (name[1] != 'z')
1046 {
1047 unsigned int len = strlen (name);
1048
1049 new_name = bfd_alloc (abfd, len + 2);
1050 if (new_name == NULL)
1051 return FALSE;
1052 new_name[0] = '.';
1053 new_name[1] = 'z';
1054 memcpy (new_name + 2, name + 1, len);
1055 }
1056 break;
1057 case decompress:
1058 if (!bfd_init_section_decompress_status (abfd, newsect))
1059 {
1060 (*_bfd_error_handler)
1061 (_("%B: unable to initialize decommpress status for section %s"),
1062 abfd, name);
1063 return FALSE;
1064 }
1065 if (name[1] == 'z')
1066 {
1067 unsigned int len = strlen (name);
1068
1069 new_name = bfd_alloc (abfd, len);
1070 if (new_name == NULL)
1071 return FALSE;
1072 new_name[0] = '.';
1073 memcpy (new_name + 1, name + 2, len - 1);
1074 }
1075 break;
1076 }
1077 if (new_name != NULL)
1078 bfd_rename_section (abfd, newsect, new_name);
1079 }
1080
1081 return TRUE;
1082 }
1083
1084 const char *const bfd_elf_section_type_names[] = {
1085 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1086 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1087 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1088 };
1089
1090 /* ELF relocs are against symbols. If we are producing relocatable
1091 output, and the reloc is against an external symbol, and nothing
1092 has given us any additional addend, the resulting reloc will also
1093 be against the same symbol. In such a case, we don't want to
1094 change anything about the way the reloc is handled, since it will
1095 all be done at final link time. Rather than put special case code
1096 into bfd_perform_relocation, all the reloc types use this howto
1097 function. It just short circuits the reloc if producing
1098 relocatable output against an external symbol. */
1099
1100 bfd_reloc_status_type
1101 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1102 arelent *reloc_entry,
1103 asymbol *symbol,
1104 void *data ATTRIBUTE_UNUSED,
1105 asection *input_section,
1106 bfd *output_bfd,
1107 char **error_message ATTRIBUTE_UNUSED)
1108 {
1109 if (output_bfd != NULL
1110 && (symbol->flags & BSF_SECTION_SYM) == 0
1111 && (! reloc_entry->howto->partial_inplace
1112 || reloc_entry->addend == 0))
1113 {
1114 reloc_entry->address += input_section->output_offset;
1115 return bfd_reloc_ok;
1116 }
1117
1118 return bfd_reloc_continue;
1119 }
1120 \f
1121 /* Copy the program header and other data from one object module to
1122 another. */
1123
1124 bfd_boolean
1125 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1126 {
1127 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1128 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1129 return TRUE;
1130
1131 BFD_ASSERT (!elf_flags_init (obfd)
1132 || (elf_elfheader (obfd)->e_flags
1133 == elf_elfheader (ibfd)->e_flags));
1134
1135 elf_gp (obfd) = elf_gp (ibfd);
1136 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1137 elf_flags_init (obfd) = TRUE;
1138
1139 /* Copy object attributes. */
1140 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1141 return TRUE;
1142 }
1143
1144 static const char *
1145 get_segment_type (unsigned int p_type)
1146 {
1147 const char *pt;
1148 switch (p_type)
1149 {
1150 case PT_NULL: pt = "NULL"; break;
1151 case PT_LOAD: pt = "LOAD"; break;
1152 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1153 case PT_INTERP: pt = "INTERP"; break;
1154 case PT_NOTE: pt = "NOTE"; break;
1155 case PT_SHLIB: pt = "SHLIB"; break;
1156 case PT_PHDR: pt = "PHDR"; break;
1157 case PT_TLS: pt = "TLS"; break;
1158 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1159 case PT_GNU_STACK: pt = "STACK"; break;
1160 case PT_GNU_RELRO: pt = "RELRO"; break;
1161 default: pt = NULL; break;
1162 }
1163 return pt;
1164 }
1165
1166 /* Print out the program headers. */
1167
1168 bfd_boolean
1169 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1170 {
1171 FILE *f = (FILE *) farg;
1172 Elf_Internal_Phdr *p;
1173 asection *s;
1174 bfd_byte *dynbuf = NULL;
1175
1176 p = elf_tdata (abfd)->phdr;
1177 if (p != NULL)
1178 {
1179 unsigned int i, c;
1180
1181 fprintf (f, _("\nProgram Header:\n"));
1182 c = elf_elfheader (abfd)->e_phnum;
1183 for (i = 0; i < c; i++, p++)
1184 {
1185 const char *pt = get_segment_type (p->p_type);
1186 char buf[20];
1187
1188 if (pt == NULL)
1189 {
1190 sprintf (buf, "0x%lx", p->p_type);
1191 pt = buf;
1192 }
1193 fprintf (f, "%8s off 0x", pt);
1194 bfd_fprintf_vma (abfd, f, p->p_offset);
1195 fprintf (f, " vaddr 0x");
1196 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1197 fprintf (f, " paddr 0x");
1198 bfd_fprintf_vma (abfd, f, p->p_paddr);
1199 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1200 fprintf (f, " filesz 0x");
1201 bfd_fprintf_vma (abfd, f, p->p_filesz);
1202 fprintf (f, " memsz 0x");
1203 bfd_fprintf_vma (abfd, f, p->p_memsz);
1204 fprintf (f, " flags %c%c%c",
1205 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1206 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1207 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1208 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1209 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1210 fprintf (f, "\n");
1211 }
1212 }
1213
1214 s = bfd_get_section_by_name (abfd, ".dynamic");
1215 if (s != NULL)
1216 {
1217 unsigned int elfsec;
1218 unsigned long shlink;
1219 bfd_byte *extdyn, *extdynend;
1220 size_t extdynsize;
1221 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1222
1223 fprintf (f, _("\nDynamic Section:\n"));
1224
1225 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1226 goto error_return;
1227
1228 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1229 if (elfsec == SHN_BAD)
1230 goto error_return;
1231 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1232
1233 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1234 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1235
1236 extdyn = dynbuf;
1237 extdynend = extdyn + s->size;
1238 for (; extdyn < extdynend; extdyn += extdynsize)
1239 {
1240 Elf_Internal_Dyn dyn;
1241 const char *name = "";
1242 char ab[20];
1243 bfd_boolean stringp;
1244 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1245
1246 (*swap_dyn_in) (abfd, extdyn, &dyn);
1247
1248 if (dyn.d_tag == DT_NULL)
1249 break;
1250
1251 stringp = FALSE;
1252 switch (dyn.d_tag)
1253 {
1254 default:
1255 if (bed->elf_backend_get_target_dtag)
1256 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
1257
1258 if (!strcmp (name, ""))
1259 {
1260 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1261 name = ab;
1262 }
1263 break;
1264
1265 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1266 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1267 case DT_PLTGOT: name = "PLTGOT"; break;
1268 case DT_HASH: name = "HASH"; break;
1269 case DT_STRTAB: name = "STRTAB"; break;
1270 case DT_SYMTAB: name = "SYMTAB"; break;
1271 case DT_RELA: name = "RELA"; break;
1272 case DT_RELASZ: name = "RELASZ"; break;
1273 case DT_RELAENT: name = "RELAENT"; break;
1274 case DT_STRSZ: name = "STRSZ"; break;
1275 case DT_SYMENT: name = "SYMENT"; break;
1276 case DT_INIT: name = "INIT"; break;
1277 case DT_FINI: name = "FINI"; break;
1278 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1279 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1280 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1281 case DT_REL: name = "REL"; break;
1282 case DT_RELSZ: name = "RELSZ"; break;
1283 case DT_RELENT: name = "RELENT"; break;
1284 case DT_PLTREL: name = "PLTREL"; break;
1285 case DT_DEBUG: name = "DEBUG"; break;
1286 case DT_TEXTREL: name = "TEXTREL"; break;
1287 case DT_JMPREL: name = "JMPREL"; break;
1288 case DT_BIND_NOW: name = "BIND_NOW"; break;
1289 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1290 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1291 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1292 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1293 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1294 case DT_FLAGS: name = "FLAGS"; break;
1295 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1296 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1297 case DT_CHECKSUM: name = "CHECKSUM"; break;
1298 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1299 case DT_MOVEENT: name = "MOVEENT"; break;
1300 case DT_MOVESZ: name = "MOVESZ"; break;
1301 case DT_FEATURE: name = "FEATURE"; break;
1302 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1303 case DT_SYMINSZ: name = "SYMINSZ"; break;
1304 case DT_SYMINENT: name = "SYMINENT"; break;
1305 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1306 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1307 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1308 case DT_PLTPAD: name = "PLTPAD"; break;
1309 case DT_MOVETAB: name = "MOVETAB"; break;
1310 case DT_SYMINFO: name = "SYMINFO"; break;
1311 case DT_RELACOUNT: name = "RELACOUNT"; break;
1312 case DT_RELCOUNT: name = "RELCOUNT"; break;
1313 case DT_FLAGS_1: name = "FLAGS_1"; break;
1314 case DT_VERSYM: name = "VERSYM"; break;
1315 case DT_VERDEF: name = "VERDEF"; break;
1316 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1317 case DT_VERNEED: name = "VERNEED"; break;
1318 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1319 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1320 case DT_USED: name = "USED"; break;
1321 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1322 case DT_GNU_HASH: name = "GNU_HASH"; break;
1323 }
1324
1325 fprintf (f, " %-20s ", name);
1326 if (! stringp)
1327 {
1328 fprintf (f, "0x");
1329 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
1330 }
1331 else
1332 {
1333 const char *string;
1334 unsigned int tagv = dyn.d_un.d_val;
1335
1336 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1337 if (string == NULL)
1338 goto error_return;
1339 fprintf (f, "%s", string);
1340 }
1341 fprintf (f, "\n");
1342 }
1343
1344 free (dynbuf);
1345 dynbuf = NULL;
1346 }
1347
1348 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1349 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1350 {
1351 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1352 return FALSE;
1353 }
1354
1355 if (elf_dynverdef (abfd) != 0)
1356 {
1357 Elf_Internal_Verdef *t;
1358
1359 fprintf (f, _("\nVersion definitions:\n"));
1360 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1361 {
1362 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1363 t->vd_flags, t->vd_hash,
1364 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1365 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1366 {
1367 Elf_Internal_Verdaux *a;
1368
1369 fprintf (f, "\t");
1370 for (a = t->vd_auxptr->vda_nextptr;
1371 a != NULL;
1372 a = a->vda_nextptr)
1373 fprintf (f, "%s ",
1374 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1375 fprintf (f, "\n");
1376 }
1377 }
1378 }
1379
1380 if (elf_dynverref (abfd) != 0)
1381 {
1382 Elf_Internal_Verneed *t;
1383
1384 fprintf (f, _("\nVersion References:\n"));
1385 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1386 {
1387 Elf_Internal_Vernaux *a;
1388
1389 fprintf (f, _(" required from %s:\n"),
1390 t->vn_filename ? t->vn_filename : "<corrupt>");
1391 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1392 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1393 a->vna_flags, a->vna_other,
1394 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1395 }
1396 }
1397
1398 return TRUE;
1399
1400 error_return:
1401 if (dynbuf != NULL)
1402 free (dynbuf);
1403 return FALSE;
1404 }
1405
1406 /* Display ELF-specific fields of a symbol. */
1407
1408 void
1409 bfd_elf_print_symbol (bfd *abfd,
1410 void *filep,
1411 asymbol *symbol,
1412 bfd_print_symbol_type how)
1413 {
1414 FILE *file = (FILE *) filep;
1415 switch (how)
1416 {
1417 case bfd_print_symbol_name:
1418 fprintf (file, "%s", symbol->name);
1419 break;
1420 case bfd_print_symbol_more:
1421 fprintf (file, "elf ");
1422 bfd_fprintf_vma (abfd, file, symbol->value);
1423 fprintf (file, " %lx", (unsigned long) symbol->flags);
1424 break;
1425 case bfd_print_symbol_all:
1426 {
1427 const char *section_name;
1428 const char *name = NULL;
1429 const struct elf_backend_data *bed;
1430 unsigned char st_other;
1431 bfd_vma val;
1432
1433 section_name = symbol->section ? symbol->section->name : "(*none*)";
1434
1435 bed = get_elf_backend_data (abfd);
1436 if (bed->elf_backend_print_symbol_all)
1437 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1438
1439 if (name == NULL)
1440 {
1441 name = symbol->name;
1442 bfd_print_symbol_vandf (abfd, file, symbol);
1443 }
1444
1445 fprintf (file, " %s\t", section_name);
1446 /* Print the "other" value for a symbol. For common symbols,
1447 we've already printed the size; now print the alignment.
1448 For other symbols, we have no specified alignment, and
1449 we've printed the address; now print the size. */
1450 if (symbol->section && bfd_is_com_section (symbol->section))
1451 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1452 else
1453 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1454 bfd_fprintf_vma (abfd, file, val);
1455
1456 /* If we have version information, print it. */
1457 if (elf_tdata (abfd)->dynversym_section != 0
1458 && (elf_tdata (abfd)->dynverdef_section != 0
1459 || elf_tdata (abfd)->dynverref_section != 0))
1460 {
1461 unsigned int vernum;
1462 const char *version_string;
1463
1464 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1465
1466 if (vernum == 0)
1467 version_string = "";
1468 else if (vernum == 1)
1469 version_string = "Base";
1470 else if (vernum <= elf_tdata (abfd)->cverdefs)
1471 version_string =
1472 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1473 else
1474 {
1475 Elf_Internal_Verneed *t;
1476
1477 version_string = "";
1478 for (t = elf_tdata (abfd)->verref;
1479 t != NULL;
1480 t = t->vn_nextref)
1481 {
1482 Elf_Internal_Vernaux *a;
1483
1484 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1485 {
1486 if (a->vna_other == vernum)
1487 {
1488 version_string = a->vna_nodename;
1489 break;
1490 }
1491 }
1492 }
1493 }
1494
1495 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1496 fprintf (file, " %-11s", version_string);
1497 else
1498 {
1499 int i;
1500
1501 fprintf (file, " (%s)", version_string);
1502 for (i = 10 - strlen (version_string); i > 0; --i)
1503 putc (' ', file);
1504 }
1505 }
1506
1507 /* If the st_other field is not zero, print it. */
1508 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1509
1510 switch (st_other)
1511 {
1512 case 0: break;
1513 case STV_INTERNAL: fprintf (file, " .internal"); break;
1514 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1515 case STV_PROTECTED: fprintf (file, " .protected"); break;
1516 default:
1517 /* Some other non-defined flags are also present, so print
1518 everything hex. */
1519 fprintf (file, " 0x%02x", (unsigned int) st_other);
1520 }
1521
1522 fprintf (file, " %s", name);
1523 }
1524 break;
1525 }
1526 }
1527
1528 /* Allocate an ELF string table--force the first byte to be zero. */
1529
1530 struct bfd_strtab_hash *
1531 _bfd_elf_stringtab_init (void)
1532 {
1533 struct bfd_strtab_hash *ret;
1534
1535 ret = _bfd_stringtab_init ();
1536 if (ret != NULL)
1537 {
1538 bfd_size_type loc;
1539
1540 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1541 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1542 if (loc == (bfd_size_type) -1)
1543 {
1544 _bfd_stringtab_free (ret);
1545 ret = NULL;
1546 }
1547 }
1548 return ret;
1549 }
1550 \f
1551 /* ELF .o/exec file reading */
1552
1553 /* Create a new bfd section from an ELF section header. */
1554
1555 bfd_boolean
1556 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1557 {
1558 Elf_Internal_Shdr *hdr;
1559 Elf_Internal_Ehdr *ehdr;
1560 const struct elf_backend_data *bed;
1561 const char *name;
1562
1563 if (shindex >= elf_numsections (abfd))
1564 return FALSE;
1565
1566 hdr = elf_elfsections (abfd)[shindex];
1567 ehdr = elf_elfheader (abfd);
1568 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
1569 hdr->sh_name);
1570 if (name == NULL)
1571 return FALSE;
1572
1573 bed = get_elf_backend_data (abfd);
1574 switch (hdr->sh_type)
1575 {
1576 case SHT_NULL:
1577 /* Inactive section. Throw it away. */
1578 return TRUE;
1579
1580 case SHT_PROGBITS: /* Normal section with contents. */
1581 case SHT_NOBITS: /* .bss section. */
1582 case SHT_HASH: /* .hash section. */
1583 case SHT_NOTE: /* .note section. */
1584 case SHT_INIT_ARRAY: /* .init_array section. */
1585 case SHT_FINI_ARRAY: /* .fini_array section. */
1586 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1587 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1588 case SHT_GNU_HASH: /* .gnu.hash section. */
1589 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1590
1591 case SHT_DYNAMIC: /* Dynamic linking information. */
1592 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1593 return FALSE;
1594 if (hdr->sh_link > elf_numsections (abfd))
1595 {
1596 /* PR 10478: Accept Solaris binaries with a sh_link
1597 field set to SHN_BEFORE or SHN_AFTER. */
1598 switch (bfd_get_arch (abfd))
1599 {
1600 case bfd_arch_i386:
1601 case bfd_arch_sparc:
1602 if (hdr->sh_link == (SHN_LORESERVE & 0xffff) /* SHN_BEFORE */
1603 || hdr->sh_link == ((SHN_LORESERVE + 1) & 0xffff) /* SHN_AFTER */)
1604 break;
1605 /* Otherwise fall through. */
1606 default:
1607 return FALSE;
1608 }
1609 }
1610 else if (elf_elfsections (abfd)[hdr->sh_link] == NULL)
1611 return FALSE;
1612 else if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1613 {
1614 Elf_Internal_Shdr *dynsymhdr;
1615
1616 /* The shared libraries distributed with hpux11 have a bogus
1617 sh_link field for the ".dynamic" section. Find the
1618 string table for the ".dynsym" section instead. */
1619 if (elf_dynsymtab (abfd) != 0)
1620 {
1621 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1622 hdr->sh_link = dynsymhdr->sh_link;
1623 }
1624 else
1625 {
1626 unsigned int i, num_sec;
1627
1628 num_sec = elf_numsections (abfd);
1629 for (i = 1; i < num_sec; i++)
1630 {
1631 dynsymhdr = elf_elfsections (abfd)[i];
1632 if (dynsymhdr->sh_type == SHT_DYNSYM)
1633 {
1634 hdr->sh_link = dynsymhdr->sh_link;
1635 break;
1636 }
1637 }
1638 }
1639 }
1640 break;
1641
1642 case SHT_SYMTAB: /* A symbol table */
1643 if (elf_onesymtab (abfd) == shindex)
1644 return TRUE;
1645
1646 if (hdr->sh_entsize != bed->s->sizeof_sym)
1647 return FALSE;
1648 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
1649 {
1650 if (hdr->sh_size != 0)
1651 return FALSE;
1652 /* Some assemblers erroneously set sh_info to one with a
1653 zero sh_size. ld sees this as a global symbol count
1654 of (unsigned) -1. Fix it here. */
1655 hdr->sh_info = 0;
1656 return TRUE;
1657 }
1658 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1659 elf_onesymtab (abfd) = shindex;
1660 elf_tdata (abfd)->symtab_hdr = *hdr;
1661 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1662 abfd->flags |= HAS_SYMS;
1663
1664 /* Sometimes a shared object will map in the symbol table. If
1665 SHF_ALLOC is set, and this is a shared object, then we also
1666 treat this section as a BFD section. We can not base the
1667 decision purely on SHF_ALLOC, because that flag is sometimes
1668 set in a relocatable object file, which would confuse the
1669 linker. */
1670 if ((hdr->sh_flags & SHF_ALLOC) != 0
1671 && (abfd->flags & DYNAMIC) != 0
1672 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1673 shindex))
1674 return FALSE;
1675
1676 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1677 can't read symbols without that section loaded as well. It
1678 is most likely specified by the next section header. */
1679 if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
1680 {
1681 unsigned int i, num_sec;
1682
1683 num_sec = elf_numsections (abfd);
1684 for (i = shindex + 1; i < num_sec; i++)
1685 {
1686 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1687 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1688 && hdr2->sh_link == shindex)
1689 break;
1690 }
1691 if (i == num_sec)
1692 for (i = 1; i < shindex; i++)
1693 {
1694 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1695 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1696 && hdr2->sh_link == shindex)
1697 break;
1698 }
1699 if (i != shindex)
1700 return bfd_section_from_shdr (abfd, i);
1701 }
1702 return TRUE;
1703
1704 case SHT_DYNSYM: /* A dynamic symbol table */
1705 if (elf_dynsymtab (abfd) == shindex)
1706 return TRUE;
1707
1708 if (hdr->sh_entsize != bed->s->sizeof_sym)
1709 return FALSE;
1710 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
1711 {
1712 if (hdr->sh_size != 0)
1713 return FALSE;
1714 /* Some linkers erroneously set sh_info to one with a
1715 zero sh_size. ld sees this as a global symbol count
1716 of (unsigned) -1. Fix it here. */
1717 hdr->sh_info = 0;
1718 return TRUE;
1719 }
1720 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1721 elf_dynsymtab (abfd) = shindex;
1722 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1723 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1724 abfd->flags |= HAS_SYMS;
1725
1726 /* Besides being a symbol table, we also treat this as a regular
1727 section, so that objcopy can handle it. */
1728 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1729
1730 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1731 if (elf_symtab_shndx (abfd) == shindex)
1732 return TRUE;
1733
1734 BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
1735 elf_symtab_shndx (abfd) = shindex;
1736 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1737 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1738 return TRUE;
1739
1740 case SHT_STRTAB: /* A string table */
1741 if (hdr->bfd_section != NULL)
1742 return TRUE;
1743 if (ehdr->e_shstrndx == shindex)
1744 {
1745 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1746 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1747 return TRUE;
1748 }
1749 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
1750 {
1751 symtab_strtab:
1752 elf_tdata (abfd)->strtab_hdr = *hdr;
1753 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
1754 return TRUE;
1755 }
1756 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
1757 {
1758 dynsymtab_strtab:
1759 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1760 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
1761 elf_elfsections (abfd)[shindex] = hdr;
1762 /* We also treat this as a regular section, so that objcopy
1763 can handle it. */
1764 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1765 shindex);
1766 }
1767
1768 /* If the string table isn't one of the above, then treat it as a
1769 regular section. We need to scan all the headers to be sure,
1770 just in case this strtab section appeared before the above. */
1771 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
1772 {
1773 unsigned int i, num_sec;
1774
1775 num_sec = elf_numsections (abfd);
1776 for (i = 1; i < num_sec; i++)
1777 {
1778 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1779 if (hdr2->sh_link == shindex)
1780 {
1781 /* Prevent endless recursion on broken objects. */
1782 if (i == shindex)
1783 return FALSE;
1784 if (! bfd_section_from_shdr (abfd, i))
1785 return FALSE;
1786 if (elf_onesymtab (abfd) == i)
1787 goto symtab_strtab;
1788 if (elf_dynsymtab (abfd) == i)
1789 goto dynsymtab_strtab;
1790 }
1791 }
1792 }
1793 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1794
1795 case SHT_REL:
1796 case SHT_RELA:
1797 /* *These* do a lot of work -- but build no sections! */
1798 {
1799 asection *target_sect;
1800 Elf_Internal_Shdr *hdr2, **p_hdr;
1801 unsigned int num_sec = elf_numsections (abfd);
1802 struct bfd_elf_section_data *esdt;
1803 bfd_size_type amt;
1804
1805 if (hdr->sh_entsize
1806 != (bfd_size_type) (hdr->sh_type == SHT_REL
1807 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
1808 return FALSE;
1809
1810 /* Check for a bogus link to avoid crashing. */
1811 if (hdr->sh_link >= num_sec)
1812 {
1813 ((*_bfd_error_handler)
1814 (_("%B: invalid link %lu for reloc section %s (index %u)"),
1815 abfd, hdr->sh_link, name, shindex));
1816 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1817 shindex);
1818 }
1819
1820 /* For some incomprehensible reason Oracle distributes
1821 libraries for Solaris in which some of the objects have
1822 bogus sh_link fields. It would be nice if we could just
1823 reject them, but, unfortunately, some people need to use
1824 them. We scan through the section headers; if we find only
1825 one suitable symbol table, we clobber the sh_link to point
1826 to it. I hope this doesn't break anything.
1827
1828 Don't do it on executable nor shared library. */
1829 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0
1830 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
1831 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
1832 {
1833 unsigned int scan;
1834 int found;
1835
1836 found = 0;
1837 for (scan = 1; scan < num_sec; scan++)
1838 {
1839 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
1840 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
1841 {
1842 if (found != 0)
1843 {
1844 found = 0;
1845 break;
1846 }
1847 found = scan;
1848 }
1849 }
1850 if (found != 0)
1851 hdr->sh_link = found;
1852 }
1853
1854 /* Get the symbol table. */
1855 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
1856 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
1857 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
1858 return FALSE;
1859
1860 /* If this reloc section does not use the main symbol table we
1861 don't treat it as a reloc section. BFD can't adequately
1862 represent such a section, so at least for now, we don't
1863 try. We just present it as a normal section. We also
1864 can't use it as a reloc section if it points to the null
1865 section, an invalid section, another reloc section, or its
1866 sh_link points to the null section. */
1867 if (hdr->sh_link != elf_onesymtab (abfd)
1868 || hdr->sh_link == SHN_UNDEF
1869 || hdr->sh_info == SHN_UNDEF
1870 || hdr->sh_info >= num_sec
1871 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
1872 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
1873 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1874 shindex);
1875
1876 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
1877 return FALSE;
1878 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
1879 if (target_sect == NULL)
1880 return FALSE;
1881
1882 esdt = elf_section_data (target_sect);
1883 if (hdr->sh_type == SHT_RELA)
1884 p_hdr = &esdt->rela.hdr;
1885 else
1886 p_hdr = &esdt->rel.hdr;
1887
1888 BFD_ASSERT (*p_hdr == NULL);
1889 amt = sizeof (*hdr2);
1890 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, amt);
1891 if (hdr2 == NULL)
1892 return FALSE;
1893 *hdr2 = *hdr;
1894 *p_hdr = hdr2;
1895 elf_elfsections (abfd)[shindex] = hdr2;
1896 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
1897 target_sect->flags |= SEC_RELOC;
1898 target_sect->relocation = NULL;
1899 target_sect->rel_filepos = hdr->sh_offset;
1900 /* In the section to which the relocations apply, mark whether
1901 its relocations are of the REL or RELA variety. */
1902 if (hdr->sh_size != 0)
1903 {
1904 if (hdr->sh_type == SHT_RELA)
1905 target_sect->use_rela_p = 1;
1906 }
1907 abfd->flags |= HAS_RELOC;
1908 return TRUE;
1909 }
1910
1911 case SHT_GNU_verdef:
1912 elf_dynverdef (abfd) = shindex;
1913 elf_tdata (abfd)->dynverdef_hdr = *hdr;
1914 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1915
1916 case SHT_GNU_versym:
1917 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
1918 return FALSE;
1919 elf_dynversym (abfd) = shindex;
1920 elf_tdata (abfd)->dynversym_hdr = *hdr;
1921 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1922
1923 case SHT_GNU_verneed:
1924 elf_dynverref (abfd) = shindex;
1925 elf_tdata (abfd)->dynverref_hdr = *hdr;
1926 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1927
1928 case SHT_SHLIB:
1929 return TRUE;
1930
1931 case SHT_GROUP:
1932 if (! IS_VALID_GROUP_SECTION_HEADER (hdr))
1933 return FALSE;
1934 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1935 return FALSE;
1936 if (hdr->contents != NULL)
1937 {
1938 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
1939 unsigned int n_elt = hdr->sh_size / GRP_ENTRY_SIZE;
1940 asection *s;
1941
1942 if (idx->flags & GRP_COMDAT)
1943 hdr->bfd_section->flags
1944 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1945
1946 /* We try to keep the same section order as it comes in. */
1947 idx += n_elt;
1948 while (--n_elt != 0)
1949 {
1950 --idx;
1951
1952 if (idx->shdr != NULL
1953 && (s = idx->shdr->bfd_section) != NULL
1954 && elf_next_in_group (s) != NULL)
1955 {
1956 elf_next_in_group (hdr->bfd_section) = s;
1957 break;
1958 }
1959 }
1960 }
1961 break;
1962
1963 default:
1964 /* Possibly an attributes section. */
1965 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
1966 || hdr->sh_type == bed->obj_attrs_section_type)
1967 {
1968 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1969 return FALSE;
1970 _bfd_elf_parse_attributes (abfd, hdr);
1971 return TRUE;
1972 }
1973
1974 /* Check for any processor-specific section types. */
1975 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
1976 return TRUE;
1977
1978 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
1979 {
1980 if ((hdr->sh_flags & SHF_ALLOC) != 0)
1981 /* FIXME: How to properly handle allocated section reserved
1982 for applications? */
1983 (*_bfd_error_handler)
1984 (_("%B: don't know how to handle allocated, application "
1985 "specific section `%s' [0x%8x]"),
1986 abfd, name, hdr->sh_type);
1987 else
1988 /* Allow sections reserved for applications. */
1989 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1990 shindex);
1991 }
1992 else if (hdr->sh_type >= SHT_LOPROC
1993 && hdr->sh_type <= SHT_HIPROC)
1994 /* FIXME: We should handle this section. */
1995 (*_bfd_error_handler)
1996 (_("%B: don't know how to handle processor specific section "
1997 "`%s' [0x%8x]"),
1998 abfd, name, hdr->sh_type);
1999 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
2000 {
2001 /* Unrecognised OS-specific sections. */
2002 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
2003 /* SHF_OS_NONCONFORMING indicates that special knowledge is
2004 required to correctly process the section and the file should
2005 be rejected with an error message. */
2006 (*_bfd_error_handler)
2007 (_("%B: don't know how to handle OS specific section "
2008 "`%s' [0x%8x]"),
2009 abfd, name, hdr->sh_type);
2010 else
2011 /* Otherwise it should be processed. */
2012 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2013 }
2014 else
2015 /* FIXME: We should handle this section. */
2016 (*_bfd_error_handler)
2017 (_("%B: don't know how to handle section `%s' [0x%8x]"),
2018 abfd, name, hdr->sh_type);
2019
2020 return FALSE;
2021 }
2022
2023 return TRUE;
2024 }
2025
2026 /* Return the local symbol specified by ABFD, R_SYMNDX. */
2027
2028 Elf_Internal_Sym *
2029 bfd_sym_from_r_symndx (struct sym_cache *cache,
2030 bfd *abfd,
2031 unsigned long r_symndx)
2032 {
2033 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2034
2035 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
2036 {
2037 Elf_Internal_Shdr *symtab_hdr;
2038 unsigned char esym[sizeof (Elf64_External_Sym)];
2039 Elf_External_Sym_Shndx eshndx;
2040
2041 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2042 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2043 &cache->sym[ent], esym, &eshndx) == NULL)
2044 return NULL;
2045
2046 if (cache->abfd != abfd)
2047 {
2048 memset (cache->indx, -1, sizeof (cache->indx));
2049 cache->abfd = abfd;
2050 }
2051 cache->indx[ent] = r_symndx;
2052 }
2053
2054 return &cache->sym[ent];
2055 }
2056
2057 /* Given an ELF section number, retrieve the corresponding BFD
2058 section. */
2059
2060 asection *
2061 bfd_section_from_elf_index (bfd *abfd, unsigned int sec_index)
2062 {
2063 if (sec_index >= elf_numsections (abfd))
2064 return NULL;
2065 return elf_elfsections (abfd)[sec_index]->bfd_section;
2066 }
2067
2068 static const struct bfd_elf_special_section special_sections_b[] =
2069 {
2070 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2071 { NULL, 0, 0, 0, 0 }
2072 };
2073
2074 static const struct bfd_elf_special_section special_sections_c[] =
2075 {
2076 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2077 { NULL, 0, 0, 0, 0 }
2078 };
2079
2080 static const struct bfd_elf_special_section special_sections_d[] =
2081 {
2082 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2083 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2084 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2085 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2086 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2087 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2088 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2089 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2090 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2091 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2092 { NULL, 0, 0, 0, 0 }
2093 };
2094
2095 static const struct bfd_elf_special_section special_sections_f[] =
2096 {
2097 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2098 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2099 { NULL, 0, 0, 0, 0 }
2100 };
2101
2102 static const struct bfd_elf_special_section special_sections_g[] =
2103 {
2104 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2105 { STRING_COMMA_LEN (".gnu.lto_"), -1, SHT_PROGBITS, SHF_EXCLUDE },
2106 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2107 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2108 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2109 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2110 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2111 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2112 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2113 { NULL, 0, 0, 0, 0 }
2114 };
2115
2116 static const struct bfd_elf_special_section special_sections_h[] =
2117 {
2118 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2119 { NULL, 0, 0, 0, 0 }
2120 };
2121
2122 static const struct bfd_elf_special_section special_sections_i[] =
2123 {
2124 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2125 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2126 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2127 { NULL, 0, 0, 0, 0 }
2128 };
2129
2130 static const struct bfd_elf_special_section special_sections_l[] =
2131 {
2132 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2133 { NULL, 0, 0, 0, 0 }
2134 };
2135
2136 static const struct bfd_elf_special_section special_sections_n[] =
2137 {
2138 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2139 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2140 { NULL, 0, 0, 0, 0 }
2141 };
2142
2143 static const struct bfd_elf_special_section special_sections_p[] =
2144 {
2145 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2146 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2147 { NULL, 0, 0, 0, 0 }
2148 };
2149
2150 static const struct bfd_elf_special_section special_sections_r[] =
2151 {
2152 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2153 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2154 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2155 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2156 { NULL, 0, 0, 0, 0 }
2157 };
2158
2159 static const struct bfd_elf_special_section special_sections_s[] =
2160 {
2161 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2162 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2163 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2164 /* See struct bfd_elf_special_section declaration for the semantics of
2165 this special case where .prefix_length != strlen (.prefix). */
2166 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2167 { NULL, 0, 0, 0, 0 }
2168 };
2169
2170 static const struct bfd_elf_special_section special_sections_t[] =
2171 {
2172 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2173 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2174 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2175 { NULL, 0, 0, 0, 0 }
2176 };
2177
2178 static const struct bfd_elf_special_section special_sections_z[] =
2179 {
2180 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 },
2181 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 },
2182 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 },
2183 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 },
2184 { NULL, 0, 0, 0, 0 }
2185 };
2186
2187 static const struct bfd_elf_special_section * const special_sections[] =
2188 {
2189 special_sections_b, /* 'b' */
2190 special_sections_c, /* 'c' */
2191 special_sections_d, /* 'd' */
2192 NULL, /* 'e' */
2193 special_sections_f, /* 'f' */
2194 special_sections_g, /* 'g' */
2195 special_sections_h, /* 'h' */
2196 special_sections_i, /* 'i' */
2197 NULL, /* 'j' */
2198 NULL, /* 'k' */
2199 special_sections_l, /* 'l' */
2200 NULL, /* 'm' */
2201 special_sections_n, /* 'n' */
2202 NULL, /* 'o' */
2203 special_sections_p, /* 'p' */
2204 NULL, /* 'q' */
2205 special_sections_r, /* 'r' */
2206 special_sections_s, /* 's' */
2207 special_sections_t, /* 't' */
2208 NULL, /* 'u' */
2209 NULL, /* 'v' */
2210 NULL, /* 'w' */
2211 NULL, /* 'x' */
2212 NULL, /* 'y' */
2213 special_sections_z /* 'z' */
2214 };
2215
2216 const struct bfd_elf_special_section *
2217 _bfd_elf_get_special_section (const char *name,
2218 const struct bfd_elf_special_section *spec,
2219 unsigned int rela)
2220 {
2221 int i;
2222 int len;
2223
2224 len = strlen (name);
2225
2226 for (i = 0; spec[i].prefix != NULL; i++)
2227 {
2228 int suffix_len;
2229 int prefix_len = spec[i].prefix_length;
2230
2231 if (len < prefix_len)
2232 continue;
2233 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2234 continue;
2235
2236 suffix_len = spec[i].suffix_length;
2237 if (suffix_len <= 0)
2238 {
2239 if (name[prefix_len] != 0)
2240 {
2241 if (suffix_len == 0)
2242 continue;
2243 if (name[prefix_len] != '.'
2244 && (suffix_len == -2
2245 || (rela && spec[i].type == SHT_REL)))
2246 continue;
2247 }
2248 }
2249 else
2250 {
2251 if (len < prefix_len + suffix_len)
2252 continue;
2253 if (memcmp (name + len - suffix_len,
2254 spec[i].prefix + prefix_len,
2255 suffix_len) != 0)
2256 continue;
2257 }
2258 return &spec[i];
2259 }
2260
2261 return NULL;
2262 }
2263
2264 const struct bfd_elf_special_section *
2265 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2266 {
2267 int i;
2268 const struct bfd_elf_special_section *spec;
2269 const struct elf_backend_data *bed;
2270
2271 /* See if this is one of the special sections. */
2272 if (sec->name == NULL)
2273 return NULL;
2274
2275 bed = get_elf_backend_data (abfd);
2276 spec = bed->special_sections;
2277 if (spec)
2278 {
2279 spec = _bfd_elf_get_special_section (sec->name,
2280 bed->special_sections,
2281 sec->use_rela_p);
2282 if (spec != NULL)
2283 return spec;
2284 }
2285
2286 if (sec->name[0] != '.')
2287 return NULL;
2288
2289 i = sec->name[1] - 'b';
2290 if (i < 0 || i > 'z' - 'b')
2291 return NULL;
2292
2293 spec = special_sections[i];
2294
2295 if (spec == NULL)
2296 return NULL;
2297
2298 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2299 }
2300
2301 bfd_boolean
2302 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2303 {
2304 struct bfd_elf_section_data *sdata;
2305 const struct elf_backend_data *bed;
2306 const struct bfd_elf_special_section *ssect;
2307
2308 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2309 if (sdata == NULL)
2310 {
2311 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd,
2312 sizeof (*sdata));
2313 if (sdata == NULL)
2314 return FALSE;
2315 sec->used_by_bfd = sdata;
2316 }
2317
2318 /* Indicate whether or not this section should use RELA relocations. */
2319 bed = get_elf_backend_data (abfd);
2320 sec->use_rela_p = bed->default_use_rela_p;
2321
2322 /* When we read a file, we don't need to set ELF section type and
2323 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2324 anyway. We will set ELF section type and flags for all linker
2325 created sections. If user specifies BFD section flags, we will
2326 set ELF section type and flags based on BFD section flags in
2327 elf_fake_sections. Special handling for .init_array/.fini_array
2328 output sections since they may contain .ctors/.dtors input
2329 sections. We don't want _bfd_elf_init_private_section_data to
2330 copy ELF section type from .ctors/.dtors input sections. */
2331 if (abfd->direction != read_direction
2332 || (sec->flags & SEC_LINKER_CREATED) != 0)
2333 {
2334 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2335 if (ssect != NULL
2336 && (!sec->flags
2337 || (sec->flags & SEC_LINKER_CREATED) != 0
2338 || ssect->type == SHT_INIT_ARRAY
2339 || ssect->type == SHT_FINI_ARRAY))
2340 {
2341 elf_section_type (sec) = ssect->type;
2342 elf_section_flags (sec) = ssect->attr;
2343 }
2344 }
2345
2346 return _bfd_generic_new_section_hook (abfd, sec);
2347 }
2348
2349 /* Create a new bfd section from an ELF program header.
2350
2351 Since program segments have no names, we generate a synthetic name
2352 of the form segment<NUM>, where NUM is generally the index in the
2353 program header table. For segments that are split (see below) we
2354 generate the names segment<NUM>a and segment<NUM>b.
2355
2356 Note that some program segments may have a file size that is different than
2357 (less than) the memory size. All this means is that at execution the
2358 system must allocate the amount of memory specified by the memory size,
2359 but only initialize it with the first "file size" bytes read from the
2360 file. This would occur for example, with program segments consisting
2361 of combined data+bss.
2362
2363 To handle the above situation, this routine generates TWO bfd sections
2364 for the single program segment. The first has the length specified by
2365 the file size of the segment, and the second has the length specified
2366 by the difference between the two sizes. In effect, the segment is split
2367 into its initialized and uninitialized parts.
2368
2369 */
2370
2371 bfd_boolean
2372 _bfd_elf_make_section_from_phdr (bfd *abfd,
2373 Elf_Internal_Phdr *hdr,
2374 int hdr_index,
2375 const char *type_name)
2376 {
2377 asection *newsect;
2378 char *name;
2379 char namebuf[64];
2380 size_t len;
2381 int split;
2382
2383 split = ((hdr->p_memsz > 0)
2384 && (hdr->p_filesz > 0)
2385 && (hdr->p_memsz > hdr->p_filesz));
2386
2387 if (hdr->p_filesz > 0)
2388 {
2389 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "a" : "");
2390 len = strlen (namebuf) + 1;
2391 name = (char *) bfd_alloc (abfd, len);
2392 if (!name)
2393 return FALSE;
2394 memcpy (name, namebuf, len);
2395 newsect = bfd_make_section (abfd, name);
2396 if (newsect == NULL)
2397 return FALSE;
2398 newsect->vma = hdr->p_vaddr;
2399 newsect->lma = hdr->p_paddr;
2400 newsect->size = hdr->p_filesz;
2401 newsect->filepos = hdr->p_offset;
2402 newsect->flags |= SEC_HAS_CONTENTS;
2403 newsect->alignment_power = bfd_log2 (hdr->p_align);
2404 if (hdr->p_type == PT_LOAD)
2405 {
2406 newsect->flags |= SEC_ALLOC;
2407 newsect->flags |= SEC_LOAD;
2408 if (hdr->p_flags & PF_X)
2409 {
2410 /* FIXME: all we known is that it has execute PERMISSION,
2411 may be data. */
2412 newsect->flags |= SEC_CODE;
2413 }
2414 }
2415 if (!(hdr->p_flags & PF_W))
2416 {
2417 newsect->flags |= SEC_READONLY;
2418 }
2419 }
2420
2421 if (hdr->p_memsz > hdr->p_filesz)
2422 {
2423 bfd_vma align;
2424
2425 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "b" : "");
2426 len = strlen (namebuf) + 1;
2427 name = (char *) bfd_alloc (abfd, len);
2428 if (!name)
2429 return FALSE;
2430 memcpy (name, namebuf, len);
2431 newsect = bfd_make_section (abfd, name);
2432 if (newsect == NULL)
2433 return FALSE;
2434 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2435 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2436 newsect->size = hdr->p_memsz - hdr->p_filesz;
2437 newsect->filepos = hdr->p_offset + hdr->p_filesz;
2438 align = newsect->vma & -newsect->vma;
2439 if (align == 0 || align > hdr->p_align)
2440 align = hdr->p_align;
2441 newsect->alignment_power = bfd_log2 (align);
2442 if (hdr->p_type == PT_LOAD)
2443 {
2444 /* Hack for gdb. Segments that have not been modified do
2445 not have their contents written to a core file, on the
2446 assumption that a debugger can find the contents in the
2447 executable. We flag this case by setting the fake
2448 section size to zero. Note that "real" bss sections will
2449 always have their contents dumped to the core file. */
2450 if (bfd_get_format (abfd) == bfd_core)
2451 newsect->size = 0;
2452 newsect->flags |= SEC_ALLOC;
2453 if (hdr->p_flags & PF_X)
2454 newsect->flags |= SEC_CODE;
2455 }
2456 if (!(hdr->p_flags & PF_W))
2457 newsect->flags |= SEC_READONLY;
2458 }
2459
2460 return TRUE;
2461 }
2462
2463 bfd_boolean
2464 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int hdr_index)
2465 {
2466 const struct elf_backend_data *bed;
2467
2468 switch (hdr->p_type)
2469 {
2470 case PT_NULL:
2471 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "null");
2472
2473 case PT_LOAD:
2474 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "load");
2475
2476 case PT_DYNAMIC:
2477 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "dynamic");
2478
2479 case PT_INTERP:
2480 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "interp");
2481
2482 case PT_NOTE:
2483 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "note"))
2484 return FALSE;
2485 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2486 return FALSE;
2487 return TRUE;
2488
2489 case PT_SHLIB:
2490 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "shlib");
2491
2492 case PT_PHDR:
2493 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "phdr");
2494
2495 case PT_GNU_EH_FRAME:
2496 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index,
2497 "eh_frame_hdr");
2498
2499 case PT_GNU_STACK:
2500 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "stack");
2501
2502 case PT_GNU_RELRO:
2503 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "relro");
2504
2505 default:
2506 /* Check for any processor-specific program segment types. */
2507 bed = get_elf_backend_data (abfd);
2508 return bed->elf_backend_section_from_phdr (abfd, hdr, hdr_index, "proc");
2509 }
2510 }
2511
2512 /* Return the REL_HDR for SEC, assuming there is only a single one, either
2513 REL or RELA. */
2514
2515 Elf_Internal_Shdr *
2516 _bfd_elf_single_rel_hdr (asection *sec)
2517 {
2518 if (elf_section_data (sec)->rel.hdr)
2519 {
2520 BFD_ASSERT (elf_section_data (sec)->rela.hdr == NULL);
2521 return elf_section_data (sec)->rel.hdr;
2522 }
2523 else
2524 return elf_section_data (sec)->rela.hdr;
2525 }
2526
2527 /* Allocate and initialize a section-header for a new reloc section,
2528 containing relocations against ASECT. It is stored in RELDATA. If
2529 USE_RELA_P is TRUE, we use RELA relocations; otherwise, we use REL
2530 relocations. */
2531
2532 bfd_boolean
2533 _bfd_elf_init_reloc_shdr (bfd *abfd,
2534 struct bfd_elf_section_reloc_data *reldata,
2535 asection *asect,
2536 bfd_boolean use_rela_p)
2537 {
2538 Elf_Internal_Shdr *rel_hdr;
2539 char *name;
2540 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2541 bfd_size_type amt;
2542
2543 amt = sizeof (Elf_Internal_Shdr);
2544 BFD_ASSERT (reldata->hdr == NULL);
2545 rel_hdr = bfd_zalloc (abfd, amt);
2546 reldata->hdr = rel_hdr;
2547
2548 amt = sizeof ".rela" + strlen (asect->name);
2549 name = (char *) bfd_alloc (abfd, amt);
2550 if (name == NULL)
2551 return FALSE;
2552 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2553 rel_hdr->sh_name =
2554 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2555 FALSE);
2556 if (rel_hdr->sh_name == (unsigned int) -1)
2557 return FALSE;
2558 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2559 rel_hdr->sh_entsize = (use_rela_p
2560 ? bed->s->sizeof_rela
2561 : bed->s->sizeof_rel);
2562 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
2563 rel_hdr->sh_flags = 0;
2564 rel_hdr->sh_addr = 0;
2565 rel_hdr->sh_size = 0;
2566 rel_hdr->sh_offset = 0;
2567
2568 return TRUE;
2569 }
2570
2571 /* Return the default section type based on the passed in section flags. */
2572
2573 int
2574 bfd_elf_get_default_section_type (flagword flags)
2575 {
2576 if ((flags & SEC_ALLOC) != 0
2577 && (flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2578 return SHT_NOBITS;
2579 return SHT_PROGBITS;
2580 }
2581
2582 struct fake_section_arg
2583 {
2584 struct bfd_link_info *link_info;
2585 bfd_boolean failed;
2586 };
2587
2588 /* Set up an ELF internal section header for a section. */
2589
2590 static void
2591 elf_fake_sections (bfd *abfd, asection *asect, void *fsarg)
2592 {
2593 struct fake_section_arg *arg = (struct fake_section_arg *)fsarg;
2594 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2595 struct bfd_elf_section_data *esd = elf_section_data (asect);
2596 Elf_Internal_Shdr *this_hdr;
2597 unsigned int sh_type;
2598
2599 if (arg->failed)
2600 {
2601 /* We already failed; just get out of the bfd_map_over_sections
2602 loop. */
2603 return;
2604 }
2605
2606 this_hdr = &esd->this_hdr;
2607
2608 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2609 asect->name, FALSE);
2610 if (this_hdr->sh_name == (unsigned int) -1)
2611 {
2612 arg->failed = TRUE;
2613 return;
2614 }
2615
2616 /* Don't clear sh_flags. Assembler may set additional bits. */
2617
2618 if ((asect->flags & SEC_ALLOC) != 0
2619 || asect->user_set_vma)
2620 this_hdr->sh_addr = asect->vma;
2621 else
2622 this_hdr->sh_addr = 0;
2623
2624 this_hdr->sh_offset = 0;
2625 this_hdr->sh_size = asect->size;
2626 this_hdr->sh_link = 0;
2627 this_hdr->sh_addralign = (bfd_vma) 1 << asect->alignment_power;
2628 /* The sh_entsize and sh_info fields may have been set already by
2629 copy_private_section_data. */
2630
2631 this_hdr->bfd_section = asect;
2632 this_hdr->contents = NULL;
2633
2634 /* If the section type is unspecified, we set it based on
2635 asect->flags. */
2636 if ((asect->flags & SEC_GROUP) != 0)
2637 sh_type = SHT_GROUP;
2638 else
2639 sh_type = bfd_elf_get_default_section_type (asect->flags);
2640
2641 if (this_hdr->sh_type == SHT_NULL)
2642 this_hdr->sh_type = sh_type;
2643 else if (this_hdr->sh_type == SHT_NOBITS
2644 && sh_type == SHT_PROGBITS
2645 && (asect->flags & SEC_ALLOC) != 0)
2646 {
2647 /* Warn if we are changing a NOBITS section to PROGBITS, but
2648 allow the link to proceed. This can happen when users link
2649 non-bss input sections to bss output sections, or emit data
2650 to a bss output section via a linker script. */
2651 (*_bfd_error_handler)
2652 (_("warning: section `%A' type changed to PROGBITS"), asect);
2653 this_hdr->sh_type = sh_type;
2654 }
2655
2656 switch (this_hdr->sh_type)
2657 {
2658 default:
2659 break;
2660
2661 case SHT_STRTAB:
2662 case SHT_INIT_ARRAY:
2663 case SHT_FINI_ARRAY:
2664 case SHT_PREINIT_ARRAY:
2665 case SHT_NOTE:
2666 case SHT_NOBITS:
2667 case SHT_PROGBITS:
2668 break;
2669
2670 case SHT_HASH:
2671 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2672 break;
2673
2674 case SHT_DYNSYM:
2675 this_hdr->sh_entsize = bed->s->sizeof_sym;
2676 break;
2677
2678 case SHT_DYNAMIC:
2679 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2680 break;
2681
2682 case SHT_RELA:
2683 if (get_elf_backend_data (abfd)->may_use_rela_p)
2684 this_hdr->sh_entsize = bed->s->sizeof_rela;
2685 break;
2686
2687 case SHT_REL:
2688 if (get_elf_backend_data (abfd)->may_use_rel_p)
2689 this_hdr->sh_entsize = bed->s->sizeof_rel;
2690 break;
2691
2692 case SHT_GNU_versym:
2693 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2694 break;
2695
2696 case SHT_GNU_verdef:
2697 this_hdr->sh_entsize = 0;
2698 /* objcopy or strip will copy over sh_info, but may not set
2699 cverdefs. The linker will set cverdefs, but sh_info will be
2700 zero. */
2701 if (this_hdr->sh_info == 0)
2702 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2703 else
2704 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2705 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2706 break;
2707
2708 case SHT_GNU_verneed:
2709 this_hdr->sh_entsize = 0;
2710 /* objcopy or strip will copy over sh_info, but may not set
2711 cverrefs. The linker will set cverrefs, but sh_info will be
2712 zero. */
2713 if (this_hdr->sh_info == 0)
2714 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2715 else
2716 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2717 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2718 break;
2719
2720 case SHT_GROUP:
2721 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
2722 break;
2723
2724 case SHT_GNU_HASH:
2725 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
2726 break;
2727 }
2728
2729 if ((asect->flags & SEC_ALLOC) != 0)
2730 this_hdr->sh_flags |= SHF_ALLOC;
2731 if ((asect->flags & SEC_READONLY) == 0)
2732 this_hdr->sh_flags |= SHF_WRITE;
2733 if ((asect->flags & SEC_CODE) != 0)
2734 this_hdr->sh_flags |= SHF_EXECINSTR;
2735 if ((asect->flags & SEC_MERGE) != 0)
2736 {
2737 this_hdr->sh_flags |= SHF_MERGE;
2738 this_hdr->sh_entsize = asect->entsize;
2739 if ((asect->flags & SEC_STRINGS) != 0)
2740 this_hdr->sh_flags |= SHF_STRINGS;
2741 }
2742 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2743 this_hdr->sh_flags |= SHF_GROUP;
2744 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2745 {
2746 this_hdr->sh_flags |= SHF_TLS;
2747 if (asect->size == 0
2748 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2749 {
2750 struct bfd_link_order *o = asect->map_tail.link_order;
2751
2752 this_hdr->sh_size = 0;
2753 if (o != NULL)
2754 {
2755 this_hdr->sh_size = o->offset + o->size;
2756 if (this_hdr->sh_size != 0)
2757 this_hdr->sh_type = SHT_NOBITS;
2758 }
2759 }
2760 }
2761 if ((asect->flags & (SEC_GROUP | SEC_EXCLUDE)) == SEC_EXCLUDE)
2762 this_hdr->sh_flags |= SHF_EXCLUDE;
2763
2764 /* If the section has relocs, set up a section header for the
2765 SHT_REL[A] section. If two relocation sections are required for
2766 this section, it is up to the processor-specific back-end to
2767 create the other. */
2768 if ((asect->flags & SEC_RELOC) != 0)
2769 {
2770 /* When doing a relocatable link, create both REL and RELA sections if
2771 needed. */
2772 if (arg->link_info
2773 /* Do the normal setup if we wouldn't create any sections here. */
2774 && esd->rel.count + esd->rela.count > 0
2775 && (arg->link_info->relocatable || arg->link_info->emitrelocations))
2776 {
2777 if (esd->rel.count && esd->rel.hdr == NULL
2778 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rel, asect, FALSE))
2779 {
2780 arg->failed = TRUE;
2781 return;
2782 }
2783 if (esd->rela.count && esd->rela.hdr == NULL
2784 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rela, asect, TRUE))
2785 {
2786 arg->failed = TRUE;
2787 return;
2788 }
2789 }
2790 else if (!_bfd_elf_init_reloc_shdr (abfd,
2791 (asect->use_rela_p
2792 ? &esd->rela : &esd->rel),
2793 asect,
2794 asect->use_rela_p))
2795 arg->failed = TRUE;
2796 }
2797
2798 /* Check for processor-specific section types. */
2799 sh_type = this_hdr->sh_type;
2800 if (bed->elf_backend_fake_sections
2801 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2802 arg->failed = TRUE;
2803
2804 if (sh_type == SHT_NOBITS && asect->size != 0)
2805 {
2806 /* Don't change the header type from NOBITS if we are being
2807 called for objcopy --only-keep-debug. */
2808 this_hdr->sh_type = sh_type;
2809 }
2810 }
2811
2812 /* Fill in the contents of a SHT_GROUP section. Called from
2813 _bfd_elf_compute_section_file_positions for gas, objcopy, and
2814 when ELF targets use the generic linker, ld. Called for ld -r
2815 from bfd_elf_final_link. */
2816
2817 void
2818 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2819 {
2820 bfd_boolean *failedptr = (bfd_boolean *) failedptrarg;
2821 asection *elt, *first;
2822 unsigned char *loc;
2823 bfd_boolean gas;
2824
2825 /* Ignore linker created group section. See elfNN_ia64_object_p in
2826 elfxx-ia64.c. */
2827 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
2828 || *failedptr)
2829 return;
2830
2831 if (elf_section_data (sec)->this_hdr.sh_info == 0)
2832 {
2833 unsigned long symindx = 0;
2834
2835 /* elf_group_id will have been set up by objcopy and the
2836 generic linker. */
2837 if (elf_group_id (sec) != NULL)
2838 symindx = elf_group_id (sec)->udata.i;
2839
2840 if (symindx == 0)
2841 {
2842 /* If called from the assembler, swap_out_syms will have set up
2843 elf_section_syms. */
2844 BFD_ASSERT (elf_section_syms (abfd) != NULL);
2845 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2846 }
2847 elf_section_data (sec)->this_hdr.sh_info = symindx;
2848 }
2849 else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2)
2850 {
2851 /* The ELF backend linker sets sh_info to -2 when the group
2852 signature symbol is global, and thus the index can't be
2853 set until all local symbols are output. */
2854 asection *igroup = elf_sec_group (elf_next_in_group (sec));
2855 struct bfd_elf_section_data *sec_data = elf_section_data (igroup);
2856 unsigned long symndx = sec_data->this_hdr.sh_info;
2857 unsigned long extsymoff = 0;
2858 struct elf_link_hash_entry *h;
2859
2860 if (!elf_bad_symtab (igroup->owner))
2861 {
2862 Elf_Internal_Shdr *symtab_hdr;
2863
2864 symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr;
2865 extsymoff = symtab_hdr->sh_info;
2866 }
2867 h = elf_sym_hashes (igroup->owner)[symndx - extsymoff];
2868 while (h->root.type == bfd_link_hash_indirect
2869 || h->root.type == bfd_link_hash_warning)
2870 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2871
2872 elf_section_data (sec)->this_hdr.sh_info = h->indx;
2873 }
2874
2875 /* The contents won't be allocated for "ld -r" or objcopy. */
2876 gas = TRUE;
2877 if (sec->contents == NULL)
2878 {
2879 gas = FALSE;
2880 sec->contents = (unsigned char *) bfd_alloc (abfd, sec->size);
2881
2882 /* Arrange for the section to be written out. */
2883 elf_section_data (sec)->this_hdr.contents = sec->contents;
2884 if (sec->contents == NULL)
2885 {
2886 *failedptr = TRUE;
2887 return;
2888 }
2889 }
2890
2891 loc = sec->contents + sec->size;
2892
2893 /* Get the pointer to the first section in the group that gas
2894 squirreled away here. objcopy arranges for this to be set to the
2895 start of the input section group. */
2896 first = elt = elf_next_in_group (sec);
2897
2898 /* First element is a flag word. Rest of section is elf section
2899 indices for all the sections of the group. Write them backwards
2900 just to keep the group in the same order as given in .section
2901 directives, not that it matters. */
2902 while (elt != NULL)
2903 {
2904 asection *s;
2905
2906 s = elt;
2907 if (!gas)
2908 s = s->output_section;
2909 if (s != NULL
2910 && !bfd_is_abs_section (s))
2911 {
2912 unsigned int idx = elf_section_data (s)->this_idx;
2913
2914 loc -= 4;
2915 H_PUT_32 (abfd, idx, loc);
2916 }
2917 elt = elf_next_in_group (elt);
2918 if (elt == first)
2919 break;
2920 }
2921
2922 if ((loc -= 4) != sec->contents)
2923 abort ();
2924
2925 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2926 }
2927
2928 /* Assign all ELF section numbers. The dummy first section is handled here
2929 too. The link/info pointers for the standard section types are filled
2930 in here too, while we're at it. */
2931
2932 static bfd_boolean
2933 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
2934 {
2935 struct elf_obj_tdata *t = elf_tdata (abfd);
2936 asection *sec;
2937 unsigned int section_number, secn;
2938 Elf_Internal_Shdr **i_shdrp;
2939 struct bfd_elf_section_data *d;
2940 bfd_boolean need_symtab;
2941
2942 section_number = 1;
2943
2944 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2945
2946 /* SHT_GROUP sections are in relocatable files only. */
2947 if (link_info == NULL || link_info->relocatable)
2948 {
2949 /* Put SHT_GROUP sections first. */
2950 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2951 {
2952 d = elf_section_data (sec);
2953
2954 if (d->this_hdr.sh_type == SHT_GROUP)
2955 {
2956 if (sec->flags & SEC_LINKER_CREATED)
2957 {
2958 /* Remove the linker created SHT_GROUP sections. */
2959 bfd_section_list_remove (abfd, sec);
2960 abfd->section_count--;
2961 }
2962 else
2963 d->this_idx = section_number++;
2964 }
2965 }
2966 }
2967
2968 for (sec = abfd->sections; sec; sec = sec->next)
2969 {
2970 d = elf_section_data (sec);
2971
2972 if (d->this_hdr.sh_type != SHT_GROUP)
2973 d->this_idx = section_number++;
2974 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
2975 if (d->rel.hdr)
2976 {
2977 d->rel.idx = section_number++;
2978 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel.hdr->sh_name);
2979 }
2980 else
2981 d->rel.idx = 0;
2982
2983 if (d->rela.hdr)
2984 {
2985 d->rela.idx = section_number++;
2986 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rela.hdr->sh_name);
2987 }
2988 else
2989 d->rela.idx = 0;
2990 }
2991
2992 t->shstrtab_section = section_number++;
2993 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
2994 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
2995
2996 need_symtab = (bfd_get_symcount (abfd) > 0
2997 || (link_info == NULL
2998 && ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
2999 == HAS_RELOC)));
3000 if (need_symtab)
3001 {
3002 t->symtab_section = section_number++;
3003 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
3004 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
3005 {
3006 t->symtab_shndx_section = section_number++;
3007 t->symtab_shndx_hdr.sh_name
3008 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3009 ".symtab_shndx", FALSE);
3010 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
3011 return FALSE;
3012 }
3013 t->strtab_section = section_number++;
3014 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3015 }
3016
3017 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
3018 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3019
3020 elf_numsections (abfd) = section_number;
3021 elf_elfheader (abfd)->e_shnum = section_number;
3022
3023 /* Set up the list of section header pointers, in agreement with the
3024 indices. */
3025 i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc2 (abfd, section_number,
3026 sizeof (Elf_Internal_Shdr *));
3027 if (i_shdrp == NULL)
3028 return FALSE;
3029
3030 i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd,
3031 sizeof (Elf_Internal_Shdr));
3032 if (i_shdrp[0] == NULL)
3033 {
3034 bfd_release (abfd, i_shdrp);
3035 return FALSE;
3036 }
3037
3038 elf_elfsections (abfd) = i_shdrp;
3039
3040 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
3041 if (need_symtab)
3042 {
3043 i_shdrp[t->symtab_section] = &t->symtab_hdr;
3044 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
3045 {
3046 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
3047 t->symtab_shndx_hdr.sh_link = t->symtab_section;
3048 }
3049 i_shdrp[t->strtab_section] = &t->strtab_hdr;
3050 t->symtab_hdr.sh_link = t->strtab_section;
3051 }
3052
3053 for (sec = abfd->sections; sec; sec = sec->next)
3054 {
3055 asection *s;
3056 const char *name;
3057
3058 d = elf_section_data (sec);
3059
3060 i_shdrp[d->this_idx] = &d->this_hdr;
3061 if (d->rel.idx != 0)
3062 i_shdrp[d->rel.idx] = d->rel.hdr;
3063 if (d->rela.idx != 0)
3064 i_shdrp[d->rela.idx] = d->rela.hdr;
3065
3066 /* Fill in the sh_link and sh_info fields while we're at it. */
3067
3068 /* sh_link of a reloc section is the section index of the symbol
3069 table. sh_info is the section index of the section to which
3070 the relocation entries apply. */
3071 if (d->rel.idx != 0)
3072 {
3073 d->rel.hdr->sh_link = t->symtab_section;
3074 d->rel.hdr->sh_info = d->this_idx;
3075 }
3076 if (d->rela.idx != 0)
3077 {
3078 d->rela.hdr->sh_link = t->symtab_section;
3079 d->rela.hdr->sh_info = d->this_idx;
3080 }
3081
3082 /* We need to set up sh_link for SHF_LINK_ORDER. */
3083 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3084 {
3085 s = elf_linked_to_section (sec);
3086 if (s)
3087 {
3088 /* elf_linked_to_section points to the input section. */
3089 if (link_info != NULL)
3090 {
3091 /* Check discarded linkonce section. */
3092 if (discarded_section (s))
3093 {
3094 asection *kept;
3095 (*_bfd_error_handler)
3096 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
3097 abfd, d->this_hdr.bfd_section,
3098 s, s->owner);
3099 /* Point to the kept section if it has the same
3100 size as the discarded one. */
3101 kept = _bfd_elf_check_kept_section (s, link_info);
3102 if (kept == NULL)
3103 {
3104 bfd_set_error (bfd_error_bad_value);
3105 return FALSE;
3106 }
3107 s = kept;
3108 }
3109
3110 s = s->output_section;
3111 BFD_ASSERT (s != NULL);
3112 }
3113 else
3114 {
3115 /* Handle objcopy. */
3116 if (s->output_section == NULL)
3117 {
3118 (*_bfd_error_handler)
3119 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
3120 abfd, d->this_hdr.bfd_section, s, s->owner);
3121 bfd_set_error (bfd_error_bad_value);
3122 return FALSE;
3123 }
3124 s = s->output_section;
3125 }
3126 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3127 }
3128 else
3129 {
3130 /* PR 290:
3131 The Intel C compiler generates SHT_IA_64_UNWIND with
3132 SHF_LINK_ORDER. But it doesn't set the sh_link or
3133 sh_info fields. Hence we could get the situation
3134 where s is NULL. */
3135 const struct elf_backend_data *bed
3136 = get_elf_backend_data (abfd);
3137 if (bed->link_order_error_handler)
3138 bed->link_order_error_handler
3139 (_("%B: warning: sh_link not set for section `%A'"),
3140 abfd, sec);
3141 }
3142 }
3143
3144 switch (d->this_hdr.sh_type)
3145 {
3146 case SHT_REL:
3147 case SHT_RELA:
3148 /* A reloc section which we are treating as a normal BFD
3149 section. sh_link is the section index of the symbol
3150 table. sh_info is the section index of the section to
3151 which the relocation entries apply. We assume that an
3152 allocated reloc section uses the dynamic symbol table.
3153 FIXME: How can we be sure? */
3154 s = bfd_get_section_by_name (abfd, ".dynsym");
3155 if (s != NULL)
3156 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3157
3158 /* We look up the section the relocs apply to by name. */
3159 name = sec->name;
3160 if (d->this_hdr.sh_type == SHT_REL)
3161 name += 4;
3162 else
3163 name += 5;
3164 s = bfd_get_section_by_name (abfd, name);
3165 if (s != NULL)
3166 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3167 break;
3168
3169 case SHT_STRTAB:
3170 /* We assume that a section named .stab*str is a stabs
3171 string section. We look for a section with the same name
3172 but without the trailing ``str'', and set its sh_link
3173 field to point to this section. */
3174 if (CONST_STRNEQ (sec->name, ".stab")
3175 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3176 {
3177 size_t len;
3178 char *alc;
3179
3180 len = strlen (sec->name);
3181 alc = (char *) bfd_malloc (len - 2);
3182 if (alc == NULL)
3183 return FALSE;
3184 memcpy (alc, sec->name, len - 3);
3185 alc[len - 3] = '\0';
3186 s = bfd_get_section_by_name (abfd, alc);
3187 free (alc);
3188 if (s != NULL)
3189 {
3190 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3191
3192 /* This is a .stab section. */
3193 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3194 elf_section_data (s)->this_hdr.sh_entsize
3195 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3196 }
3197 }
3198 break;
3199
3200 case SHT_DYNAMIC:
3201 case SHT_DYNSYM:
3202 case SHT_GNU_verneed:
3203 case SHT_GNU_verdef:
3204 /* sh_link is the section header index of the string table
3205 used for the dynamic entries, or the symbol table, or the
3206 version strings. */
3207 s = bfd_get_section_by_name (abfd, ".dynstr");
3208 if (s != NULL)
3209 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3210 break;
3211
3212 case SHT_GNU_LIBLIST:
3213 /* sh_link is the section header index of the prelink library
3214 list used for the dynamic entries, or the symbol table, or
3215 the version strings. */
3216 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3217 ? ".dynstr" : ".gnu.libstr");
3218 if (s != NULL)
3219 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3220 break;
3221
3222 case SHT_HASH:
3223 case SHT_GNU_HASH:
3224 case SHT_GNU_versym:
3225 /* sh_link is the section header index of the symbol table
3226 this hash table or version table is for. */
3227 s = bfd_get_section_by_name (abfd, ".dynsym");
3228 if (s != NULL)
3229 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3230 break;
3231
3232 case SHT_GROUP:
3233 d->this_hdr.sh_link = t->symtab_section;
3234 }
3235 }
3236
3237 for (secn = 1; secn < section_number; ++secn)
3238 if (i_shdrp[secn] == NULL)
3239 i_shdrp[secn] = i_shdrp[0];
3240 else
3241 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
3242 i_shdrp[secn]->sh_name);
3243 return TRUE;
3244 }
3245
3246 static bfd_boolean
3247 sym_is_global (bfd *abfd, asymbol *sym)
3248 {
3249 /* If the backend has a special mapping, use it. */
3250 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3251 if (bed->elf_backend_sym_is_global)
3252 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3253
3254 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0
3255 || bfd_is_und_section (bfd_get_section (sym))
3256 || bfd_is_com_section (bfd_get_section (sym)));
3257 }
3258
3259 /* Don't output section symbols for sections that are not going to be
3260 output, or that are duplicates. */
3261
3262 static bfd_boolean
3263 ignore_section_sym (bfd *abfd, asymbol *sym)
3264 {
3265 return ((sym->flags & BSF_SECTION_SYM) != 0
3266 && !(sym->section->owner == abfd
3267 || (sym->section->output_section->owner == abfd
3268 && sym->section->output_offset == 0)
3269 || bfd_is_abs_section (sym->section)));
3270 }
3271
3272 /* Map symbol from it's internal number to the external number, moving
3273 all local symbols to be at the head of the list. */
3274
3275 static bfd_boolean
3276 elf_map_symbols (bfd *abfd)
3277 {
3278 unsigned int symcount = bfd_get_symcount (abfd);
3279 asymbol **syms = bfd_get_outsymbols (abfd);
3280 asymbol **sect_syms;
3281 unsigned int num_locals = 0;
3282 unsigned int num_globals = 0;
3283 unsigned int num_locals2 = 0;
3284 unsigned int num_globals2 = 0;
3285 int max_index = 0;
3286 unsigned int idx;
3287 asection *asect;
3288 asymbol **new_syms;
3289
3290 #ifdef DEBUG
3291 fprintf (stderr, "elf_map_symbols\n");
3292 fflush (stderr);
3293 #endif
3294
3295 for (asect = abfd->sections; asect; asect = asect->next)
3296 {
3297 if (max_index < asect->index)
3298 max_index = asect->index;
3299 }
3300
3301 max_index++;
3302 sect_syms = (asymbol **) bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
3303 if (sect_syms == NULL)
3304 return FALSE;
3305 elf_section_syms (abfd) = sect_syms;
3306 elf_num_section_syms (abfd) = max_index;
3307
3308 /* Init sect_syms entries for any section symbols we have already
3309 decided to output. */
3310 for (idx = 0; idx < symcount; idx++)
3311 {
3312 asymbol *sym = syms[idx];
3313
3314 if ((sym->flags & BSF_SECTION_SYM) != 0
3315 && sym->value == 0
3316 && !ignore_section_sym (abfd, sym)
3317 && !bfd_is_abs_section (sym->section))
3318 {
3319 asection *sec = sym->section;
3320
3321 if (sec->owner != abfd)
3322 sec = sec->output_section;
3323
3324 sect_syms[sec->index] = syms[idx];
3325 }
3326 }
3327
3328 /* Classify all of the symbols. */
3329 for (idx = 0; idx < symcount; idx++)
3330 {
3331 if (sym_is_global (abfd, syms[idx]))
3332 num_globals++;
3333 else if (!ignore_section_sym (abfd, syms[idx]))
3334 num_locals++;
3335 }
3336
3337 /* We will be adding a section symbol for each normal BFD section. Most
3338 sections will already have a section symbol in outsymbols, but
3339 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3340 at least in that case. */
3341 for (asect = abfd->sections; asect; asect = asect->next)
3342 {
3343 if (sect_syms[asect->index] == NULL)
3344 {
3345 if (!sym_is_global (abfd, asect->symbol))
3346 num_locals++;
3347 else
3348 num_globals++;
3349 }
3350 }
3351
3352 /* Now sort the symbols so the local symbols are first. */
3353 new_syms = (asymbol **) bfd_alloc2 (abfd, num_locals + num_globals,
3354 sizeof (asymbol *));
3355
3356 if (new_syms == NULL)
3357 return FALSE;
3358
3359 for (idx = 0; idx < symcount; idx++)
3360 {
3361 asymbol *sym = syms[idx];
3362 unsigned int i;
3363
3364 if (sym_is_global (abfd, sym))
3365 i = num_locals + num_globals2++;
3366 else if (!ignore_section_sym (abfd, sym))
3367 i = num_locals2++;
3368 else
3369 continue;
3370 new_syms[i] = sym;
3371 sym->udata.i = i + 1;
3372 }
3373 for (asect = abfd->sections; asect; asect = asect->next)
3374 {
3375 if (sect_syms[asect->index] == NULL)
3376 {
3377 asymbol *sym = asect->symbol;
3378 unsigned int i;
3379
3380 sect_syms[asect->index] = sym;
3381 if (!sym_is_global (abfd, sym))
3382 i = num_locals2++;
3383 else
3384 i = num_locals + num_globals2++;
3385 new_syms[i] = sym;
3386 sym->udata.i = i + 1;
3387 }
3388 }
3389
3390 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3391
3392 elf_num_locals (abfd) = num_locals;
3393 elf_num_globals (abfd) = num_globals;
3394 return TRUE;
3395 }
3396
3397 /* Align to the maximum file alignment that could be required for any
3398 ELF data structure. */
3399
3400 static inline file_ptr
3401 align_file_position (file_ptr off, int align)
3402 {
3403 return (off + align - 1) & ~(align - 1);
3404 }
3405
3406 /* Assign a file position to a section, optionally aligning to the
3407 required section alignment. */
3408
3409 file_ptr
3410 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3411 file_ptr offset,
3412 bfd_boolean align)
3413 {
3414 if (align && i_shdrp->sh_addralign > 1)
3415 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
3416 i_shdrp->sh_offset = offset;
3417 if (i_shdrp->bfd_section != NULL)
3418 i_shdrp->bfd_section->filepos = offset;
3419 if (i_shdrp->sh_type != SHT_NOBITS)
3420 offset += i_shdrp->sh_size;
3421 return offset;
3422 }
3423
3424 /* Compute the file positions we are going to put the sections at, and
3425 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3426 is not NULL, this is being called by the ELF backend linker. */
3427
3428 bfd_boolean
3429 _bfd_elf_compute_section_file_positions (bfd *abfd,
3430 struct bfd_link_info *link_info)
3431 {
3432 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3433 struct fake_section_arg fsargs;
3434 bfd_boolean failed;
3435 struct bfd_strtab_hash *strtab = NULL;
3436 Elf_Internal_Shdr *shstrtab_hdr;
3437 bfd_boolean need_symtab;
3438
3439 if (abfd->output_has_begun)
3440 return TRUE;
3441
3442 /* Do any elf backend specific processing first. */
3443 if (bed->elf_backend_begin_write_processing)
3444 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3445
3446 if (! prep_headers (abfd))
3447 return FALSE;
3448
3449 /* Post process the headers if necessary. */
3450 if (bed->elf_backend_post_process_headers)
3451 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3452
3453 fsargs.failed = FALSE;
3454 fsargs.link_info = link_info;
3455 bfd_map_over_sections (abfd, elf_fake_sections, &fsargs);
3456 if (fsargs.failed)
3457 return FALSE;
3458
3459 if (!assign_section_numbers (abfd, link_info))
3460 return FALSE;
3461
3462 /* The backend linker builds symbol table information itself. */
3463 need_symtab = (link_info == NULL
3464 && (bfd_get_symcount (abfd) > 0
3465 || ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
3466 == HAS_RELOC)));
3467 if (need_symtab)
3468 {
3469 /* Non-zero if doing a relocatable link. */
3470 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3471
3472 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3473 return FALSE;
3474 }
3475
3476 failed = FALSE;
3477 if (link_info == NULL)
3478 {
3479 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3480 if (failed)
3481 return FALSE;
3482 }
3483
3484 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3485 /* sh_name was set in prep_headers. */
3486 shstrtab_hdr->sh_type = SHT_STRTAB;
3487 shstrtab_hdr->sh_flags = 0;
3488 shstrtab_hdr->sh_addr = 0;
3489 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3490 shstrtab_hdr->sh_entsize = 0;
3491 shstrtab_hdr->sh_link = 0;
3492 shstrtab_hdr->sh_info = 0;
3493 /* sh_offset is set in assign_file_positions_except_relocs. */
3494 shstrtab_hdr->sh_addralign = 1;
3495
3496 if (!assign_file_positions_except_relocs (abfd, link_info))
3497 return FALSE;
3498
3499 if (need_symtab)
3500 {
3501 file_ptr off;
3502 Elf_Internal_Shdr *hdr;
3503
3504 off = elf_tdata (abfd)->next_file_pos;
3505
3506 hdr = &elf_tdata (abfd)->symtab_hdr;
3507 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3508
3509 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3510 if (hdr->sh_size != 0)
3511 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3512
3513 hdr = &elf_tdata (abfd)->strtab_hdr;
3514 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3515
3516 elf_tdata (abfd)->next_file_pos = off;
3517
3518 /* Now that we know where the .strtab section goes, write it
3519 out. */
3520 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3521 || ! _bfd_stringtab_emit (abfd, strtab))
3522 return FALSE;
3523 _bfd_stringtab_free (strtab);
3524 }
3525
3526 abfd->output_has_begun = TRUE;
3527
3528 return TRUE;
3529 }
3530
3531 /* Make an initial estimate of the size of the program header. If we
3532 get the number wrong here, we'll redo section placement. */
3533
3534 static bfd_size_type
3535 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
3536 {
3537 size_t segs;
3538 asection *s;
3539 const struct elf_backend_data *bed;
3540
3541 /* Assume we will need exactly two PT_LOAD segments: one for text
3542 and one for data. */
3543 segs = 2;
3544
3545 s = bfd_get_section_by_name (abfd, ".interp");
3546 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3547 {
3548 /* If we have a loadable interpreter section, we need a
3549 PT_INTERP segment. In this case, assume we also need a
3550 PT_PHDR segment, although that may not be true for all
3551 targets. */
3552 segs += 2;
3553 }
3554
3555 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
3556 {
3557 /* We need a PT_DYNAMIC segment. */
3558 ++segs;
3559 }
3560
3561 if (info != NULL && info->relro)
3562 {
3563 /* We need a PT_GNU_RELRO segment. */
3564 ++segs;
3565 }
3566
3567 if (elf_tdata (abfd)->eh_frame_hdr)
3568 {
3569 /* We need a PT_GNU_EH_FRAME segment. */
3570 ++segs;
3571 }
3572
3573 if (elf_tdata (abfd)->stack_flags)
3574 {
3575 /* We need a PT_GNU_STACK segment. */
3576 ++segs;
3577 }
3578
3579 for (s = abfd->sections; s != NULL; s = s->next)
3580 {
3581 if ((s->flags & SEC_LOAD) != 0
3582 && CONST_STRNEQ (s->name, ".note"))
3583 {
3584 /* We need a PT_NOTE segment. */
3585 ++segs;
3586 /* Try to create just one PT_NOTE segment
3587 for all adjacent loadable .note* sections.
3588 gABI requires that within a PT_NOTE segment
3589 (and also inside of each SHT_NOTE section)
3590 each note is padded to a multiple of 4 size,
3591 so we check whether the sections are correctly
3592 aligned. */
3593 if (s->alignment_power == 2)
3594 while (s->next != NULL
3595 && s->next->alignment_power == 2
3596 && (s->next->flags & SEC_LOAD) != 0
3597 && CONST_STRNEQ (s->next->name, ".note"))
3598 s = s->next;
3599 }
3600 }
3601
3602 for (s = abfd->sections; s != NULL; s = s->next)
3603 {
3604 if (s->flags & SEC_THREAD_LOCAL)
3605 {
3606 /* We need a PT_TLS segment. */
3607 ++segs;
3608 break;
3609 }
3610 }
3611
3612 /* Let the backend count up any program headers it might need. */
3613 bed = get_elf_backend_data (abfd);
3614 if (bed->elf_backend_additional_program_headers)
3615 {
3616 int a;
3617
3618 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
3619 if (a == -1)
3620 abort ();
3621 segs += a;
3622 }
3623
3624 return segs * bed->s->sizeof_phdr;
3625 }
3626
3627 /* Find the segment that contains the output_section of section. */
3628
3629 Elf_Internal_Phdr *
3630 _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
3631 {
3632 struct elf_segment_map *m;
3633 Elf_Internal_Phdr *p;
3634
3635 for (m = elf_tdata (abfd)->segment_map,
3636 p = elf_tdata (abfd)->phdr;
3637 m != NULL;
3638 m = m->next, p++)
3639 {
3640 int i;
3641
3642 for (i = m->count - 1; i >= 0; i--)
3643 if (m->sections[i] == section)
3644 return p;
3645 }
3646
3647 return NULL;
3648 }
3649
3650 /* Create a mapping from a set of sections to a program segment. */
3651
3652 static struct elf_segment_map *
3653 make_mapping (bfd *abfd,
3654 asection **sections,
3655 unsigned int from,
3656 unsigned int to,
3657 bfd_boolean phdr)
3658 {
3659 struct elf_segment_map *m;
3660 unsigned int i;
3661 asection **hdrpp;
3662 bfd_size_type amt;
3663
3664 amt = sizeof (struct elf_segment_map);
3665 amt += (to - from - 1) * sizeof (asection *);
3666 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3667 if (m == NULL)
3668 return NULL;
3669 m->next = NULL;
3670 m->p_type = PT_LOAD;
3671 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3672 m->sections[i - from] = *hdrpp;
3673 m->count = to - from;
3674
3675 if (from == 0 && phdr)
3676 {
3677 /* Include the headers in the first PT_LOAD segment. */
3678 m->includes_filehdr = 1;
3679 m->includes_phdrs = 1;
3680 }
3681
3682 return m;
3683 }
3684
3685 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3686 on failure. */
3687
3688 struct elf_segment_map *
3689 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3690 {
3691 struct elf_segment_map *m;
3692
3693 m = (struct elf_segment_map *) bfd_zalloc (abfd,
3694 sizeof (struct elf_segment_map));
3695 if (m == NULL)
3696 return NULL;
3697 m->next = NULL;
3698 m->p_type = PT_DYNAMIC;
3699 m->count = 1;
3700 m->sections[0] = dynsec;
3701
3702 return m;
3703 }
3704
3705 /* Possibly add or remove segments from the segment map. */
3706
3707 static bfd_boolean
3708 elf_modify_segment_map (bfd *abfd,
3709 struct bfd_link_info *info,
3710 bfd_boolean remove_empty_load)
3711 {
3712 struct elf_segment_map **m;
3713 const struct elf_backend_data *bed;
3714
3715 /* The placement algorithm assumes that non allocated sections are
3716 not in PT_LOAD segments. We ensure this here by removing such
3717 sections from the segment map. We also remove excluded
3718 sections. Finally, any PT_LOAD segment without sections is
3719 removed. */
3720 m = &elf_tdata (abfd)->segment_map;
3721 while (*m)
3722 {
3723 unsigned int i, new_count;
3724
3725 for (new_count = 0, i = 0; i < (*m)->count; i++)
3726 {
3727 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
3728 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
3729 || (*m)->p_type != PT_LOAD))
3730 {
3731 (*m)->sections[new_count] = (*m)->sections[i];
3732 new_count++;
3733 }
3734 }
3735 (*m)->count = new_count;
3736
3737 if (remove_empty_load && (*m)->p_type == PT_LOAD && (*m)->count == 0)
3738 *m = (*m)->next;
3739 else
3740 m = &(*m)->next;
3741 }
3742
3743 bed = get_elf_backend_data (abfd);
3744 if (bed->elf_backend_modify_segment_map != NULL)
3745 {
3746 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
3747 return FALSE;
3748 }
3749
3750 return TRUE;
3751 }
3752
3753 /* Set up a mapping from BFD sections to program segments. */
3754
3755 bfd_boolean
3756 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
3757 {
3758 unsigned int count;
3759 struct elf_segment_map *m;
3760 asection **sections = NULL;
3761 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3762 bfd_boolean no_user_phdrs;
3763
3764 no_user_phdrs = elf_tdata (abfd)->segment_map == NULL;
3765
3766 if (info != NULL)
3767 info->user_phdrs = !no_user_phdrs;
3768
3769 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
3770 {
3771 asection *s;
3772 unsigned int i;
3773 struct elf_segment_map *mfirst;
3774 struct elf_segment_map **pm;
3775 asection *last_hdr;
3776 bfd_vma last_size;
3777 unsigned int phdr_index;
3778 bfd_vma maxpagesize;
3779 asection **hdrpp;
3780 bfd_boolean phdr_in_segment = TRUE;
3781 bfd_boolean writable;
3782 int tls_count = 0;
3783 asection *first_tls = NULL;
3784 asection *dynsec, *eh_frame_hdr;
3785 bfd_size_type amt;
3786 bfd_vma addr_mask, wrap_to = 0;
3787
3788 /* Select the allocated sections, and sort them. */
3789
3790 sections = (asection **) bfd_malloc2 (bfd_count_sections (abfd),
3791 sizeof (asection *));
3792 if (sections == NULL)
3793 goto error_return;
3794
3795 /* Calculate top address, avoiding undefined behaviour of shift
3796 left operator when shift count is equal to size of type
3797 being shifted. */
3798 addr_mask = ((bfd_vma) 1 << (bfd_arch_bits_per_address (abfd) - 1)) - 1;
3799 addr_mask = (addr_mask << 1) + 1;
3800
3801 i = 0;
3802 for (s = abfd->sections; s != NULL; s = s->next)
3803 {
3804 if ((s->flags & SEC_ALLOC) != 0)
3805 {
3806 sections[i] = s;
3807 ++i;
3808 /* A wrapping section potentially clashes with header. */
3809 if (((s->lma + s->size) & addr_mask) < (s->lma & addr_mask))
3810 wrap_to = (s->lma + s->size) & addr_mask;
3811 }
3812 }
3813 BFD_ASSERT (i <= bfd_count_sections (abfd));
3814 count = i;
3815
3816 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3817
3818 /* Build the mapping. */
3819
3820 mfirst = NULL;
3821 pm = &mfirst;
3822
3823 /* If we have a .interp section, then create a PT_PHDR segment for
3824 the program headers and a PT_INTERP segment for the .interp
3825 section. */
3826 s = bfd_get_section_by_name (abfd, ".interp");
3827 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3828 {
3829 amt = sizeof (struct elf_segment_map);
3830 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3831 if (m == NULL)
3832 goto error_return;
3833 m->next = NULL;
3834 m->p_type = PT_PHDR;
3835 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3836 m->p_flags = PF_R | PF_X;
3837 m->p_flags_valid = 1;
3838 m->includes_phdrs = 1;
3839
3840 *pm = m;
3841 pm = &m->next;
3842
3843 amt = sizeof (struct elf_segment_map);
3844 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3845 if (m == NULL)
3846 goto error_return;
3847 m->next = NULL;
3848 m->p_type = PT_INTERP;
3849 m->count = 1;
3850 m->sections[0] = s;
3851
3852 *pm = m;
3853 pm = &m->next;
3854 }
3855
3856 /* Look through the sections. We put sections in the same program
3857 segment when the start of the second section can be placed within
3858 a few bytes of the end of the first section. */
3859 last_hdr = NULL;
3860 last_size = 0;
3861 phdr_index = 0;
3862 maxpagesize = bed->maxpagesize;
3863 writable = FALSE;
3864 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3865 if (dynsec != NULL
3866 && (dynsec->flags & SEC_LOAD) == 0)
3867 dynsec = NULL;
3868
3869 /* Deal with -Ttext or something similar such that the first section
3870 is not adjacent to the program headers. This is an
3871 approximation, since at this point we don't know exactly how many
3872 program headers we will need. */
3873 if (count > 0)
3874 {
3875 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
3876
3877 if (phdr_size == (bfd_size_type) -1)
3878 phdr_size = get_program_header_size (abfd, info);
3879 if ((abfd->flags & D_PAGED) == 0
3880 || (sections[0]->lma & addr_mask) < phdr_size
3881 || ((sections[0]->lma & addr_mask) % maxpagesize
3882 < phdr_size % maxpagesize)
3883 || (sections[0]->lma & addr_mask & -maxpagesize) < wrap_to)
3884 phdr_in_segment = FALSE;
3885 }
3886
3887 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3888 {
3889 asection *hdr;
3890 bfd_boolean new_segment;
3891
3892 hdr = *hdrpp;
3893
3894 /* See if this section and the last one will fit in the same
3895 segment. */
3896
3897 if (last_hdr == NULL)
3898 {
3899 /* If we don't have a segment yet, then we don't need a new
3900 one (we build the last one after this loop). */
3901 new_segment = FALSE;
3902 }
3903 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3904 {
3905 /* If this section has a different relation between the
3906 virtual address and the load address, then we need a new
3907 segment. */
3908 new_segment = TRUE;
3909 }
3910 else if (hdr->lma < last_hdr->lma + last_size
3911 || last_hdr->lma + last_size < last_hdr->lma)
3912 {
3913 /* If this section has a load address that makes it overlap
3914 the previous section, then we need a new segment. */
3915 new_segment = TRUE;
3916 }
3917 /* In the next test we have to be careful when last_hdr->lma is close
3918 to the end of the address space. If the aligned address wraps
3919 around to the start of the address space, then there are no more
3920 pages left in memory and it is OK to assume that the current
3921 section can be included in the current segment. */
3922 else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
3923 > last_hdr->lma)
3924 && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
3925 <= hdr->lma))
3926 {
3927 /* If putting this section in this segment would force us to
3928 skip a page in the segment, then we need a new segment. */
3929 new_segment = TRUE;
3930 }
3931 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
3932 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
3933 {
3934 /* We don't want to put a loadable section after a
3935 nonloadable section in the same segment.
3936 Consider .tbss sections as loadable for this purpose. */
3937 new_segment = TRUE;
3938 }
3939 else if ((abfd->flags & D_PAGED) == 0)
3940 {
3941 /* If the file is not demand paged, which means that we
3942 don't require the sections to be correctly aligned in the
3943 file, then there is no other reason for a new segment. */
3944 new_segment = FALSE;
3945 }
3946 else if (! writable
3947 && (hdr->flags & SEC_READONLY) == 0
3948 && (((last_hdr->lma + last_size - 1) & -maxpagesize)
3949 != (hdr->lma & -maxpagesize)))
3950 {
3951 /* We don't want to put a writable section in a read only
3952 segment, unless they are on the same page in memory
3953 anyhow. We already know that the last section does not
3954 bring us past the current section on the page, so the
3955 only case in which the new section is not on the same
3956 page as the previous section is when the previous section
3957 ends precisely on a page boundary. */
3958 new_segment = TRUE;
3959 }
3960 else
3961 {
3962 /* Otherwise, we can use the same segment. */
3963 new_segment = FALSE;
3964 }
3965
3966 /* Allow interested parties a chance to override our decision. */
3967 if (last_hdr != NULL
3968 && info != NULL
3969 && info->callbacks->override_segment_assignment != NULL)
3970 new_segment
3971 = info->callbacks->override_segment_assignment (info, abfd, hdr,
3972 last_hdr,
3973 new_segment);
3974
3975 if (! new_segment)
3976 {
3977 if ((hdr->flags & SEC_READONLY) == 0)
3978 writable = TRUE;
3979 last_hdr = hdr;
3980 /* .tbss sections effectively have zero size. */
3981 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
3982 != SEC_THREAD_LOCAL)
3983 last_size = hdr->size;
3984 else
3985 last_size = 0;
3986 continue;
3987 }
3988
3989 /* We need a new program segment. We must create a new program
3990 header holding all the sections from phdr_index until hdr. */
3991
3992 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3993 if (m == NULL)
3994 goto error_return;
3995
3996 *pm = m;
3997 pm = &m->next;
3998
3999 if ((hdr->flags & SEC_READONLY) == 0)
4000 writable = TRUE;
4001 else
4002 writable = FALSE;
4003
4004 last_hdr = hdr;
4005 /* .tbss sections effectively have zero size. */
4006 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
4007 last_size = hdr->size;
4008 else
4009 last_size = 0;
4010 phdr_index = i;
4011 phdr_in_segment = FALSE;
4012 }
4013
4014 /* Create a final PT_LOAD program segment, but not if it's just
4015 for .tbss. */
4016 if (last_hdr != NULL
4017 && (i - phdr_index != 1
4018 || ((last_hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
4019 != SEC_THREAD_LOCAL)))
4020 {
4021 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
4022 if (m == NULL)
4023 goto error_return;
4024
4025 *pm = m;
4026 pm = &m->next;
4027 }
4028
4029 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4030 if (dynsec != NULL)
4031 {
4032 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
4033 if (m == NULL)
4034 goto error_return;
4035 *pm = m;
4036 pm = &m->next;
4037 }
4038
4039 /* For each batch of consecutive loadable .note sections,
4040 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
4041 because if we link together nonloadable .note sections and
4042 loadable .note sections, we will generate two .note sections
4043 in the output file. FIXME: Using names for section types is
4044 bogus anyhow. */
4045 for (s = abfd->sections; s != NULL; s = s->next)
4046 {
4047 if ((s->flags & SEC_LOAD) != 0
4048 && CONST_STRNEQ (s->name, ".note"))
4049 {
4050 asection *s2;
4051
4052 count = 1;
4053 amt = sizeof (struct elf_segment_map);
4054 if (s->alignment_power == 2)
4055 for (s2 = s; s2->next != NULL; s2 = s2->next)
4056 {
4057 if (s2->next->alignment_power == 2
4058 && (s2->next->flags & SEC_LOAD) != 0
4059 && CONST_STRNEQ (s2->next->name, ".note")
4060 && align_power (s2->lma + s2->size, 2)
4061 == s2->next->lma)
4062 count++;
4063 else
4064 break;
4065 }
4066 amt += (count - 1) * sizeof (asection *);
4067 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4068 if (m == NULL)
4069 goto error_return;
4070 m->next = NULL;
4071 m->p_type = PT_NOTE;
4072 m->count = count;
4073 while (count > 1)
4074 {
4075 m->sections[m->count - count--] = s;
4076 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4077 s = s->next;
4078 }
4079 m->sections[m->count - 1] = s;
4080 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4081 *pm = m;
4082 pm = &m->next;
4083 }
4084 if (s->flags & SEC_THREAD_LOCAL)
4085 {
4086 if (! tls_count)
4087 first_tls = s;
4088 tls_count++;
4089 }
4090 }
4091
4092 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
4093 if (tls_count > 0)
4094 {
4095 amt = sizeof (struct elf_segment_map);
4096 amt += (tls_count - 1) * sizeof (asection *);
4097 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4098 if (m == NULL)
4099 goto error_return;
4100 m->next = NULL;
4101 m->p_type = PT_TLS;
4102 m->count = tls_count;
4103 /* Mandated PF_R. */
4104 m->p_flags = PF_R;
4105 m->p_flags_valid = 1;
4106 for (i = 0; i < (unsigned int) tls_count; ++i)
4107 {
4108 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
4109 m->sections[i] = first_tls;
4110 first_tls = first_tls->next;
4111 }
4112
4113 *pm = m;
4114 pm = &m->next;
4115 }
4116
4117 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
4118 segment. */
4119 eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
4120 if (eh_frame_hdr != NULL
4121 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
4122 {
4123 amt = sizeof (struct elf_segment_map);
4124 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4125 if (m == NULL)
4126 goto error_return;
4127 m->next = NULL;
4128 m->p_type = PT_GNU_EH_FRAME;
4129 m->count = 1;
4130 m->sections[0] = eh_frame_hdr->output_section;
4131
4132 *pm = m;
4133 pm = &m->next;
4134 }
4135
4136 if (elf_tdata (abfd)->stack_flags)
4137 {
4138 amt = sizeof (struct elf_segment_map);
4139 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4140 if (m == NULL)
4141 goto error_return;
4142 m->next = NULL;
4143 m->p_type = PT_GNU_STACK;
4144 m->p_flags = elf_tdata (abfd)->stack_flags;
4145 m->p_flags_valid = 1;
4146
4147 *pm = m;
4148 pm = &m->next;
4149 }
4150
4151 if (info != NULL && info->relro)
4152 {
4153 for (m = mfirst; m != NULL; m = m->next)
4154 {
4155 if (m->p_type == PT_LOAD
4156 && m->count != 0
4157 && m->sections[0]->vma >= info->relro_start
4158 && m->sections[0]->vma < info->relro_end)
4159 {
4160 i = m->count;
4161 while (--i != (unsigned) -1)
4162 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS))
4163 == (SEC_LOAD | SEC_HAS_CONTENTS))
4164 break;
4165
4166 if (i == (unsigned) -1)
4167 continue;
4168
4169 if (m->sections[i]->vma + m->sections[i]->size
4170 >= info->relro_end)
4171 break;
4172 }
4173 }
4174
4175 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
4176 if (m != NULL)
4177 {
4178 amt = sizeof (struct elf_segment_map);
4179 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4180 if (m == NULL)
4181 goto error_return;
4182 m->next = NULL;
4183 m->p_type = PT_GNU_RELRO;
4184 m->p_flags = PF_R;
4185 m->p_flags_valid = 1;
4186
4187 *pm = m;
4188 pm = &m->next;
4189 }
4190 }
4191
4192 free (sections);
4193 elf_tdata (abfd)->segment_map = mfirst;
4194 }
4195
4196 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
4197 return FALSE;
4198
4199 for (count = 0, m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4200 ++count;
4201 elf_tdata (abfd)->program_header_size = count * bed->s->sizeof_phdr;
4202
4203 return TRUE;
4204
4205 error_return:
4206 if (sections != NULL)
4207 free (sections);
4208 return FALSE;
4209 }
4210
4211 /* Sort sections by address. */
4212
4213 static int
4214 elf_sort_sections (const void *arg1, const void *arg2)
4215 {
4216 const asection *sec1 = *(const asection **) arg1;
4217 const asection *sec2 = *(const asection **) arg2;
4218 bfd_size_type size1, size2;
4219
4220 /* Sort by LMA first, since this is the address used to
4221 place the section into a segment. */
4222 if (sec1->lma < sec2->lma)
4223 return -1;
4224 else if (sec1->lma > sec2->lma)
4225 return 1;
4226
4227 /* Then sort by VMA. Normally the LMA and the VMA will be
4228 the same, and this will do nothing. */
4229 if (sec1->vma < sec2->vma)
4230 return -1;
4231 else if (sec1->vma > sec2->vma)
4232 return 1;
4233
4234 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
4235
4236 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
4237
4238 if (TOEND (sec1))
4239 {
4240 if (TOEND (sec2))
4241 {
4242 /* If the indicies are the same, do not return 0
4243 here, but continue to try the next comparison. */
4244 if (sec1->target_index - sec2->target_index != 0)
4245 return sec1->target_index - sec2->target_index;
4246 }
4247 else
4248 return 1;
4249 }
4250 else if (TOEND (sec2))
4251 return -1;
4252
4253 #undef TOEND
4254
4255 /* Sort by size, to put zero sized sections
4256 before others at the same address. */
4257
4258 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
4259 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
4260
4261 if (size1 < size2)
4262 return -1;
4263 if (size1 > size2)
4264 return 1;
4265
4266 return sec1->target_index - sec2->target_index;
4267 }
4268
4269 /* Ian Lance Taylor writes:
4270
4271 We shouldn't be using % with a negative signed number. That's just
4272 not good. We have to make sure either that the number is not
4273 negative, or that the number has an unsigned type. When the types
4274 are all the same size they wind up as unsigned. When file_ptr is a
4275 larger signed type, the arithmetic winds up as signed long long,
4276 which is wrong.
4277
4278 What we're trying to say here is something like ``increase OFF by
4279 the least amount that will cause it to be equal to the VMA modulo
4280 the page size.'' */
4281 /* In other words, something like:
4282
4283 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4284 off_offset = off % bed->maxpagesize;
4285 if (vma_offset < off_offset)
4286 adjustment = vma_offset + bed->maxpagesize - off_offset;
4287 else
4288 adjustment = vma_offset - off_offset;
4289
4290 which can can be collapsed into the expression below. */
4291
4292 static file_ptr
4293 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
4294 {
4295 return ((vma - off) % maxpagesize);
4296 }
4297
4298 static void
4299 print_segment_map (const struct elf_segment_map *m)
4300 {
4301 unsigned int j;
4302 const char *pt = get_segment_type (m->p_type);
4303 char buf[32];
4304
4305 if (pt == NULL)
4306 {
4307 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
4308 sprintf (buf, "LOPROC+%7.7x",
4309 (unsigned int) (m->p_type - PT_LOPROC));
4310 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
4311 sprintf (buf, "LOOS+%7.7x",
4312 (unsigned int) (m->p_type - PT_LOOS));
4313 else
4314 snprintf (buf, sizeof (buf), "%8.8x",
4315 (unsigned int) m->p_type);
4316 pt = buf;
4317 }
4318 fflush (stdout);
4319 fprintf (stderr, "%s:", pt);
4320 for (j = 0; j < m->count; j++)
4321 fprintf (stderr, " %s", m->sections [j]->name);
4322 putc ('\n',stderr);
4323 fflush (stderr);
4324 }
4325
4326 static bfd_boolean
4327 write_zeros (bfd *abfd, file_ptr pos, bfd_size_type len)
4328 {
4329 void *buf;
4330 bfd_boolean ret;
4331
4332 if (bfd_seek (abfd, pos, SEEK_SET) != 0)
4333 return FALSE;
4334 buf = bfd_zmalloc (len);
4335 if (buf == NULL)
4336 return FALSE;
4337 ret = bfd_bwrite (buf, len, abfd) == len;
4338 free (buf);
4339 return ret;
4340 }
4341
4342 /* Assign file positions to the sections based on the mapping from
4343 sections to segments. This function also sets up some fields in
4344 the file header. */
4345
4346 static bfd_boolean
4347 assign_file_positions_for_load_sections (bfd *abfd,
4348 struct bfd_link_info *link_info)
4349 {
4350 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4351 struct elf_segment_map *m;
4352 Elf_Internal_Phdr *phdrs;
4353 Elf_Internal_Phdr *p;
4354 file_ptr off;
4355 bfd_size_type maxpagesize;
4356 unsigned int alloc;
4357 unsigned int i, j;
4358 bfd_vma header_pad = 0;
4359
4360 if (link_info == NULL
4361 && !_bfd_elf_map_sections_to_segments (abfd, link_info))
4362 return FALSE;
4363
4364 alloc = 0;
4365 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4366 {
4367 ++alloc;
4368 if (m->header_size)
4369 header_pad = m->header_size;
4370 }
4371
4372 if (alloc)
4373 {
4374 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
4375 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
4376 }
4377 else
4378 {
4379 /* PR binutils/12467. */
4380 elf_elfheader (abfd)->e_phoff = 0;
4381 elf_elfheader (abfd)->e_phentsize = 0;
4382 }
4383
4384 elf_elfheader (abfd)->e_phnum = alloc;
4385
4386 if (elf_tdata (abfd)->program_header_size == (bfd_size_type) -1)
4387 elf_tdata (abfd)->program_header_size = alloc * bed->s->sizeof_phdr;
4388 else
4389 BFD_ASSERT (elf_tdata (abfd)->program_header_size
4390 >= alloc * bed->s->sizeof_phdr);
4391
4392 if (alloc == 0)
4393 {
4394 elf_tdata (abfd)->next_file_pos = bed->s->sizeof_ehdr;
4395 return TRUE;
4396 }
4397
4398 /* We're writing the size in elf_tdata (abfd)->program_header_size,
4399 see assign_file_positions_except_relocs, so make sure we have
4400 that amount allocated, with trailing space cleared.
4401 The variable alloc contains the computed need, while elf_tdata
4402 (abfd)->program_header_size contains the size used for the
4403 layout.
4404 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
4405 where the layout is forced to according to a larger size in the
4406 last iterations for the testcase ld-elf/header. */
4407 BFD_ASSERT (elf_tdata (abfd)->program_header_size % bed->s->sizeof_phdr
4408 == 0);
4409 phdrs = (Elf_Internal_Phdr *)
4410 bfd_zalloc2 (abfd,
4411 (elf_tdata (abfd)->program_header_size / bed->s->sizeof_phdr),
4412 sizeof (Elf_Internal_Phdr));
4413 elf_tdata (abfd)->phdr = phdrs;
4414 if (phdrs == NULL)
4415 return FALSE;
4416
4417 maxpagesize = 1;
4418 if ((abfd->flags & D_PAGED) != 0)
4419 maxpagesize = bed->maxpagesize;
4420
4421 off = bed->s->sizeof_ehdr;
4422 off += alloc * bed->s->sizeof_phdr;
4423 if (header_pad < (bfd_vma) off)
4424 header_pad = 0;
4425 else
4426 header_pad -= off;
4427 off += header_pad;
4428
4429 for (m = elf_tdata (abfd)->segment_map, p = phdrs, j = 0;
4430 m != NULL;
4431 m = m->next, p++, j++)
4432 {
4433 asection **secpp;
4434 bfd_vma off_adjust;
4435 bfd_boolean no_contents;
4436
4437 /* If elf_segment_map is not from map_sections_to_segments, the
4438 sections may not be correctly ordered. NOTE: sorting should
4439 not be done to the PT_NOTE section of a corefile, which may
4440 contain several pseudo-sections artificially created by bfd.
4441 Sorting these pseudo-sections breaks things badly. */
4442 if (m->count > 1
4443 && !(elf_elfheader (abfd)->e_type == ET_CORE
4444 && m->p_type == PT_NOTE))
4445 qsort (m->sections, (size_t) m->count, sizeof (asection *),
4446 elf_sort_sections);
4447
4448 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4449 number of sections with contents contributing to both p_filesz
4450 and p_memsz, followed by a number of sections with no contents
4451 that just contribute to p_memsz. In this loop, OFF tracks next
4452 available file offset for PT_LOAD and PT_NOTE segments. */
4453 p->p_type = m->p_type;
4454 p->p_flags = m->p_flags;
4455
4456 if (m->count == 0)
4457 p->p_vaddr = 0;
4458 else
4459 p->p_vaddr = m->sections[0]->vma - m->p_vaddr_offset;
4460
4461 if (m->p_paddr_valid)
4462 p->p_paddr = m->p_paddr;
4463 else if (m->count == 0)
4464 p->p_paddr = 0;
4465 else
4466 p->p_paddr = m->sections[0]->lma - m->p_vaddr_offset;
4467
4468 if (p->p_type == PT_LOAD
4469 && (abfd->flags & D_PAGED) != 0)
4470 {
4471 /* p_align in demand paged PT_LOAD segments effectively stores
4472 the maximum page size. When copying an executable with
4473 objcopy, we set m->p_align from the input file. Use this
4474 value for maxpagesize rather than bed->maxpagesize, which
4475 may be different. Note that we use maxpagesize for PT_TLS
4476 segment alignment later in this function, so we are relying
4477 on at least one PT_LOAD segment appearing before a PT_TLS
4478 segment. */
4479 if (m->p_align_valid)
4480 maxpagesize = m->p_align;
4481
4482 p->p_align = maxpagesize;
4483 }
4484 else if (m->p_align_valid)
4485 p->p_align = m->p_align;
4486 else if (m->count == 0)
4487 p->p_align = 1 << bed->s->log_file_align;
4488 else
4489 p->p_align = 0;
4490
4491 no_contents = FALSE;
4492 off_adjust = 0;
4493 if (p->p_type == PT_LOAD
4494 && m->count > 0)
4495 {
4496 bfd_size_type align;
4497 unsigned int align_power = 0;
4498
4499 if (m->p_align_valid)
4500 align = p->p_align;
4501 else
4502 {
4503 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4504 {
4505 unsigned int secalign;
4506
4507 secalign = bfd_get_section_alignment (abfd, *secpp);
4508 if (secalign > align_power)
4509 align_power = secalign;
4510 }
4511 align = (bfd_size_type) 1 << align_power;
4512 if (align < maxpagesize)
4513 align = maxpagesize;
4514 }
4515
4516 for (i = 0; i < m->count; i++)
4517 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
4518 /* If we aren't making room for this section, then
4519 it must be SHT_NOBITS regardless of what we've
4520 set via struct bfd_elf_special_section. */
4521 elf_section_type (m->sections[i]) = SHT_NOBITS;
4522
4523 /* Find out whether this segment contains any loadable
4524 sections. */
4525 no_contents = TRUE;
4526 for (i = 0; i < m->count; i++)
4527 if (elf_section_type (m->sections[i]) != SHT_NOBITS)
4528 {
4529 no_contents = FALSE;
4530 break;
4531 }
4532
4533 off_adjust = vma_page_aligned_bias (p->p_vaddr, off, align);
4534 off += off_adjust;
4535 if (no_contents)
4536 {
4537 /* We shouldn't need to align the segment on disk since
4538 the segment doesn't need file space, but the gABI
4539 arguably requires the alignment and glibc ld.so
4540 checks it. So to comply with the alignment
4541 requirement but not waste file space, we adjust
4542 p_offset for just this segment. (OFF_ADJUST is
4543 subtracted from OFF later.) This may put p_offset
4544 past the end of file, but that shouldn't matter. */
4545 }
4546 else
4547 off_adjust = 0;
4548 }
4549 /* Make sure the .dynamic section is the first section in the
4550 PT_DYNAMIC segment. */
4551 else if (p->p_type == PT_DYNAMIC
4552 && m->count > 1
4553 && strcmp (m->sections[0]->name, ".dynamic") != 0)
4554 {
4555 _bfd_error_handler
4556 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4557 abfd);
4558 bfd_set_error (bfd_error_bad_value);
4559 return FALSE;
4560 }
4561 /* Set the note section type to SHT_NOTE. */
4562 else if (p->p_type == PT_NOTE)
4563 for (i = 0; i < m->count; i++)
4564 elf_section_type (m->sections[i]) = SHT_NOTE;
4565
4566 p->p_offset = 0;
4567 p->p_filesz = 0;
4568 p->p_memsz = 0;
4569
4570 if (m->includes_filehdr)
4571 {
4572 if (!m->p_flags_valid)
4573 p->p_flags |= PF_R;
4574 p->p_filesz = bed->s->sizeof_ehdr;
4575 p->p_memsz = bed->s->sizeof_ehdr;
4576 if (m->count > 0)
4577 {
4578 BFD_ASSERT (p->p_type == PT_LOAD);
4579
4580 if (p->p_vaddr < (bfd_vma) off)
4581 {
4582 (*_bfd_error_handler)
4583 (_("%B: Not enough room for program headers, try linking with -N"),
4584 abfd);
4585 bfd_set_error (bfd_error_bad_value);
4586 return FALSE;
4587 }
4588
4589 p->p_vaddr -= off;
4590 if (!m->p_paddr_valid)
4591 p->p_paddr -= off;
4592 }
4593 }
4594
4595 if (m->includes_phdrs)
4596 {
4597 if (!m->p_flags_valid)
4598 p->p_flags |= PF_R;
4599
4600 if (!m->includes_filehdr)
4601 {
4602 p->p_offset = bed->s->sizeof_ehdr;
4603
4604 if (m->count > 0)
4605 {
4606 BFD_ASSERT (p->p_type == PT_LOAD);
4607 p->p_vaddr -= off - p->p_offset;
4608 if (!m->p_paddr_valid)
4609 p->p_paddr -= off - p->p_offset;
4610 }
4611 }
4612
4613 p->p_filesz += alloc * bed->s->sizeof_phdr;
4614 p->p_memsz += alloc * bed->s->sizeof_phdr;
4615 if (m->count)
4616 {
4617 p->p_filesz += header_pad;
4618 p->p_memsz += header_pad;
4619 }
4620 }
4621
4622 if (p->p_type == PT_LOAD
4623 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4624 {
4625 if (!m->includes_filehdr && !m->includes_phdrs)
4626 p->p_offset = off;
4627 else
4628 {
4629 file_ptr adjust;
4630
4631 adjust = off - (p->p_offset + p->p_filesz);
4632 if (!no_contents)
4633 p->p_filesz += adjust;
4634 p->p_memsz += adjust;
4635 }
4636 }
4637
4638 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
4639 maps. Set filepos for sections in PT_LOAD segments, and in
4640 core files, for sections in PT_NOTE segments.
4641 assign_file_positions_for_non_load_sections will set filepos
4642 for other sections and update p_filesz for other segments. */
4643 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4644 {
4645 asection *sec;
4646 bfd_size_type align;
4647 Elf_Internal_Shdr *this_hdr;
4648
4649 sec = *secpp;
4650 this_hdr = &elf_section_data (sec)->this_hdr;
4651 align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec);
4652
4653 if ((p->p_type == PT_LOAD
4654 || p->p_type == PT_TLS)
4655 && (this_hdr->sh_type != SHT_NOBITS
4656 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
4657 && ((this_hdr->sh_flags & SHF_TLS) == 0
4658 || p->p_type == PT_TLS))))
4659 {
4660 bfd_vma p_start = p->p_paddr;
4661 bfd_vma p_end = p_start + p->p_memsz;
4662 bfd_vma s_start = sec->lma;
4663 bfd_vma adjust = s_start - p_end;
4664
4665 if (adjust != 0
4666 && (s_start < p_end
4667 || p_end < p_start))
4668 {
4669 (*_bfd_error_handler)
4670 (_("%B: section %A lma %#lx adjusted to %#lx"), abfd, sec,
4671 (unsigned long) s_start, (unsigned long) p_end);
4672 adjust = 0;
4673 sec->lma = p_end;
4674 }
4675 p->p_memsz += adjust;
4676
4677 if (this_hdr->sh_type != SHT_NOBITS)
4678 {
4679 if (p->p_filesz + adjust < p->p_memsz)
4680 {
4681 /* We have a PROGBITS section following NOBITS ones.
4682 Allocate file space for the NOBITS section(s) and
4683 zero it. */
4684 adjust = p->p_memsz - p->p_filesz;
4685 if (!write_zeros (abfd, off, adjust))
4686 return FALSE;
4687 }
4688 off += adjust;
4689 p->p_filesz += adjust;
4690 }
4691 }
4692
4693 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
4694 {
4695 /* The section at i == 0 is the one that actually contains
4696 everything. */
4697 if (i == 0)
4698 {
4699 this_hdr->sh_offset = sec->filepos = off;
4700 off += this_hdr->sh_size;
4701 p->p_filesz = this_hdr->sh_size;
4702 p->p_memsz = 0;
4703 p->p_align = 1;
4704 }
4705 else
4706 {
4707 /* The rest are fake sections that shouldn't be written. */
4708 sec->filepos = 0;
4709 sec->size = 0;
4710 sec->flags = 0;
4711 continue;
4712 }
4713 }
4714 else
4715 {
4716 if (p->p_type == PT_LOAD)
4717 {
4718 this_hdr->sh_offset = sec->filepos = off;
4719 if (this_hdr->sh_type != SHT_NOBITS)
4720 off += this_hdr->sh_size;
4721 }
4722 else if (this_hdr->sh_type == SHT_NOBITS
4723 && (this_hdr->sh_flags & SHF_TLS) != 0
4724 && this_hdr->sh_offset == 0)
4725 {
4726 /* This is a .tbss section that didn't get a PT_LOAD.
4727 (See _bfd_elf_map_sections_to_segments "Create a
4728 final PT_LOAD".) Set sh_offset to the value it
4729 would have if we had created a zero p_filesz and
4730 p_memsz PT_LOAD header for the section. This
4731 also makes the PT_TLS header have the same
4732 p_offset value. */
4733 bfd_vma adjust = vma_page_aligned_bias (this_hdr->sh_addr,
4734 off, align);
4735 this_hdr->sh_offset = sec->filepos = off + adjust;
4736 }
4737
4738 if (this_hdr->sh_type != SHT_NOBITS)
4739 {
4740 p->p_filesz += this_hdr->sh_size;
4741 /* A load section without SHF_ALLOC is something like
4742 a note section in a PT_NOTE segment. These take
4743 file space but are not loaded into memory. */
4744 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4745 p->p_memsz += this_hdr->sh_size;
4746 }
4747 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4748 {
4749 if (p->p_type == PT_TLS)
4750 p->p_memsz += this_hdr->sh_size;
4751
4752 /* .tbss is special. It doesn't contribute to p_memsz of
4753 normal segments. */
4754 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
4755 p->p_memsz += this_hdr->sh_size;
4756 }
4757
4758 if (align > p->p_align
4759 && !m->p_align_valid
4760 && (p->p_type != PT_LOAD
4761 || (abfd->flags & D_PAGED) == 0))
4762 p->p_align = align;
4763 }
4764
4765 if (!m->p_flags_valid)
4766 {
4767 p->p_flags |= PF_R;
4768 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
4769 p->p_flags |= PF_X;
4770 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
4771 p->p_flags |= PF_W;
4772 }
4773 }
4774 off -= off_adjust;
4775
4776 /* Check that all sections are in a PT_LOAD segment.
4777 Don't check funky gdb generated core files. */
4778 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
4779 {
4780 bfd_boolean check_vma = TRUE;
4781
4782 for (i = 1; i < m->count; i++)
4783 if (m->sections[i]->vma == m->sections[i - 1]->vma
4784 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i])
4785 ->this_hdr), p) != 0
4786 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i - 1])
4787 ->this_hdr), p) != 0)
4788 {
4789 /* Looks like we have overlays packed into the segment. */
4790 check_vma = FALSE;
4791 break;
4792 }
4793
4794 for (i = 0; i < m->count; i++)
4795 {
4796 Elf_Internal_Shdr *this_hdr;
4797 asection *sec;
4798
4799 sec = m->sections[i];
4800 this_hdr = &(elf_section_data(sec)->this_hdr);
4801 if (!ELF_SECTION_IN_SEGMENT_1 (this_hdr, p, check_vma, 0)
4802 && !ELF_TBSS_SPECIAL (this_hdr, p))
4803 {
4804 (*_bfd_error_handler)
4805 (_("%B: section `%A' can't be allocated in segment %d"),
4806 abfd, sec, j);
4807 print_segment_map (m);
4808 }
4809 }
4810 }
4811 }
4812
4813 elf_tdata (abfd)->next_file_pos = off;
4814 return TRUE;
4815 }
4816
4817 /* Assign file positions for the other sections. */
4818
4819 static bfd_boolean
4820 assign_file_positions_for_non_load_sections (bfd *abfd,
4821 struct bfd_link_info *link_info)
4822 {
4823 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4824 Elf_Internal_Shdr **i_shdrpp;
4825 Elf_Internal_Shdr **hdrpp;
4826 Elf_Internal_Phdr *phdrs;
4827 Elf_Internal_Phdr *p;
4828 struct elf_segment_map *m;
4829 bfd_vma filehdr_vaddr, filehdr_paddr;
4830 bfd_vma phdrs_vaddr, phdrs_paddr;
4831 file_ptr off;
4832 unsigned int num_sec;
4833 unsigned int i;
4834 unsigned int count;
4835
4836 i_shdrpp = elf_elfsections (abfd);
4837 num_sec = elf_numsections (abfd);
4838 off = elf_tdata (abfd)->next_file_pos;
4839 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4840 {
4841 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4842 Elf_Internal_Shdr *hdr;
4843
4844 hdr = *hdrpp;
4845 if (hdr->bfd_section != NULL
4846 && (hdr->bfd_section->filepos != 0
4847 || (hdr->sh_type == SHT_NOBITS
4848 && hdr->contents == NULL)))
4849 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
4850 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4851 {
4852 if (hdr->sh_size != 0)
4853 (*_bfd_error_handler)
4854 (_("%B: warning: allocated section `%s' not in segment"),
4855 abfd,
4856 (hdr->bfd_section == NULL
4857 ? "*unknown*"
4858 : hdr->bfd_section->name));
4859 /* We don't need to page align empty sections. */
4860 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
4861 off += vma_page_aligned_bias (hdr->sh_addr, off,
4862 bed->maxpagesize);
4863 else
4864 off += vma_page_aligned_bias (hdr->sh_addr, off,
4865 hdr->sh_addralign);
4866 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4867 FALSE);
4868 }
4869 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4870 && hdr->bfd_section == NULL)
4871 || hdr == i_shdrpp[tdata->symtab_section]
4872 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4873 || hdr == i_shdrpp[tdata->strtab_section])
4874 hdr->sh_offset = -1;
4875 else
4876 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4877 }
4878
4879 /* Now that we have set the section file positions, we can set up
4880 the file positions for the non PT_LOAD segments. */
4881 count = 0;
4882 filehdr_vaddr = 0;
4883 filehdr_paddr = 0;
4884 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
4885 phdrs_paddr = 0;
4886 phdrs = elf_tdata (abfd)->phdr;
4887 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4888 m != NULL;
4889 m = m->next, p++)
4890 {
4891 ++count;
4892 if (p->p_type != PT_LOAD)
4893 continue;
4894
4895 if (m->includes_filehdr)
4896 {
4897 filehdr_vaddr = p->p_vaddr;
4898 filehdr_paddr = p->p_paddr;
4899 }
4900 if (m->includes_phdrs)
4901 {
4902 phdrs_vaddr = p->p_vaddr;
4903 phdrs_paddr = p->p_paddr;
4904 if (m->includes_filehdr)
4905 {
4906 phdrs_vaddr += bed->s->sizeof_ehdr;
4907 phdrs_paddr += bed->s->sizeof_ehdr;
4908 }
4909 }
4910 }
4911
4912 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4913 m != NULL;
4914 m = m->next, p++)
4915 {
4916 if (p->p_type == PT_GNU_RELRO)
4917 {
4918 const Elf_Internal_Phdr *lp;
4919
4920 BFD_ASSERT (!m->includes_filehdr && !m->includes_phdrs);
4921
4922 if (link_info != NULL)
4923 {
4924 /* During linking the range of the RELRO segment is passed
4925 in link_info. */
4926 for (lp = phdrs; lp < phdrs + count; ++lp)
4927 {
4928 if (lp->p_type == PT_LOAD
4929 && lp->p_vaddr >= link_info->relro_start
4930 && lp->p_vaddr < link_info->relro_end
4931 && lp->p_vaddr + lp->p_filesz >= link_info->relro_end)
4932 break;
4933 }
4934 }
4935 else
4936 {
4937 /* Otherwise we are copying an executable or shared
4938 library, but we need to use the same linker logic. */
4939 for (lp = phdrs; lp < phdrs + count; ++lp)
4940 {
4941 if (lp->p_type == PT_LOAD
4942 && lp->p_paddr == p->p_paddr)
4943 break;
4944 }
4945 }
4946
4947 if (lp < phdrs + count)
4948 {
4949 p->p_vaddr = lp->p_vaddr;
4950 p->p_paddr = lp->p_paddr;
4951 p->p_offset = lp->p_offset;
4952 if (link_info != NULL)
4953 p->p_filesz = link_info->relro_end - lp->p_vaddr;
4954 else if (m->p_size_valid)
4955 p->p_filesz = m->p_size;
4956 else
4957 abort ();
4958 p->p_memsz = p->p_filesz;
4959 /* Preserve the alignment and flags if they are valid. The
4960 gold linker generates RW/4 for the PT_GNU_RELRO section.
4961 It is better for objcopy/strip to honor these attributes
4962 otherwise gdb will choke when using separate debug files.
4963 */
4964 if (!m->p_align_valid)
4965 p->p_align = 1;
4966 if (!m->p_flags_valid)
4967 p->p_flags = (lp->p_flags & ~PF_W);
4968 }
4969 else
4970 {
4971 memset (p, 0, sizeof *p);
4972 p->p_type = PT_NULL;
4973 }
4974 }
4975 else if (m->count != 0)
4976 {
4977 if (p->p_type != PT_LOAD
4978 && (p->p_type != PT_NOTE
4979 || bfd_get_format (abfd) != bfd_core))
4980 {
4981 BFD_ASSERT (!m->includes_filehdr && !m->includes_phdrs);
4982
4983 p->p_filesz = 0;
4984 p->p_offset = m->sections[0]->filepos;
4985 for (i = m->count; i-- != 0;)
4986 {
4987 asection *sect = m->sections[i];
4988 Elf_Internal_Shdr *hdr = &elf_section_data (sect)->this_hdr;
4989 if (hdr->sh_type != SHT_NOBITS)
4990 {
4991 p->p_filesz = (sect->filepos - m->sections[0]->filepos
4992 + hdr->sh_size);
4993 break;
4994 }
4995 }
4996 }
4997 }
4998 else if (m->includes_filehdr)
4999 {
5000 p->p_vaddr = filehdr_vaddr;
5001 if (! m->p_paddr_valid)
5002 p->p_paddr = filehdr_paddr;
5003 }
5004 else if (m->includes_phdrs)
5005 {
5006 p->p_vaddr = phdrs_vaddr;
5007 if (! m->p_paddr_valid)
5008 p->p_paddr = phdrs_paddr;
5009 }
5010 }
5011
5012 elf_tdata (abfd)->next_file_pos = off;
5013
5014 return TRUE;
5015 }
5016
5017 /* Work out the file positions of all the sections. This is called by
5018 _bfd_elf_compute_section_file_positions. All the section sizes and
5019 VMAs must be known before this is called.
5020
5021 Reloc sections come in two flavours: Those processed specially as
5022 "side-channel" data attached to a section to which they apply, and
5023 those that bfd doesn't process as relocations. The latter sort are
5024 stored in a normal bfd section by bfd_section_from_shdr. We don't
5025 consider the former sort here, unless they form part of the loadable
5026 image. Reloc sections not assigned here will be handled later by
5027 assign_file_positions_for_relocs.
5028
5029 We also don't set the positions of the .symtab and .strtab here. */
5030
5031 static bfd_boolean
5032 assign_file_positions_except_relocs (bfd *abfd,
5033 struct bfd_link_info *link_info)
5034 {
5035 struct elf_obj_tdata *tdata = elf_tdata (abfd);
5036 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
5037 file_ptr off;
5038 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5039
5040 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
5041 && bfd_get_format (abfd) != bfd_core)
5042 {
5043 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
5044 unsigned int num_sec = elf_numsections (abfd);
5045 Elf_Internal_Shdr **hdrpp;
5046 unsigned int i;
5047
5048 /* Start after the ELF header. */
5049 off = i_ehdrp->e_ehsize;
5050
5051 /* We are not creating an executable, which means that we are
5052 not creating a program header, and that the actual order of
5053 the sections in the file is unimportant. */
5054 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
5055 {
5056 Elf_Internal_Shdr *hdr;
5057
5058 hdr = *hdrpp;
5059 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
5060 && hdr->bfd_section == NULL)
5061 || i == tdata->symtab_section
5062 || i == tdata->symtab_shndx_section
5063 || i == tdata->strtab_section)
5064 {
5065 hdr->sh_offset = -1;
5066 }
5067 else
5068 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
5069 }
5070 }
5071 else
5072 {
5073 unsigned int alloc;
5074
5075 /* Assign file positions for the loaded sections based on the
5076 assignment of sections to segments. */
5077 if (!assign_file_positions_for_load_sections (abfd, link_info))
5078 return FALSE;
5079
5080 /* And for non-load sections. */
5081 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
5082 return FALSE;
5083
5084 if (bed->elf_backend_modify_program_headers != NULL)
5085 {
5086 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
5087 return FALSE;
5088 }
5089
5090 /* Write out the program headers. */
5091 alloc = tdata->program_header_size / bed->s->sizeof_phdr;
5092 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
5093 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
5094 return FALSE;
5095
5096 off = tdata->next_file_pos;
5097 }
5098
5099 /* Place the section headers. */
5100 off = align_file_position (off, 1 << bed->s->log_file_align);
5101 i_ehdrp->e_shoff = off;
5102 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
5103
5104 tdata->next_file_pos = off;
5105
5106 return TRUE;
5107 }
5108
5109 static bfd_boolean
5110 prep_headers (bfd *abfd)
5111 {
5112 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form. */
5113 struct elf_strtab_hash *shstrtab;
5114 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5115
5116 i_ehdrp = elf_elfheader (abfd);
5117
5118 shstrtab = _bfd_elf_strtab_init ();
5119 if (shstrtab == NULL)
5120 return FALSE;
5121
5122 elf_shstrtab (abfd) = shstrtab;
5123
5124 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
5125 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
5126 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
5127 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
5128
5129 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
5130 i_ehdrp->e_ident[EI_DATA] =
5131 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
5132 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
5133
5134 if ((abfd->flags & DYNAMIC) != 0)
5135 i_ehdrp->e_type = ET_DYN;
5136 else if ((abfd->flags & EXEC_P) != 0)
5137 i_ehdrp->e_type = ET_EXEC;
5138 else if (bfd_get_format (abfd) == bfd_core)
5139 i_ehdrp->e_type = ET_CORE;
5140 else
5141 i_ehdrp->e_type = ET_REL;
5142
5143 switch (bfd_get_arch (abfd))
5144 {
5145 case bfd_arch_unknown:
5146 i_ehdrp->e_machine = EM_NONE;
5147 break;
5148
5149 /* There used to be a long list of cases here, each one setting
5150 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
5151 in the corresponding bfd definition. To avoid duplication,
5152 the switch was removed. Machines that need special handling
5153 can generally do it in elf_backend_final_write_processing(),
5154 unless they need the information earlier than the final write.
5155 Such need can generally be supplied by replacing the tests for
5156 e_machine with the conditions used to determine it. */
5157 default:
5158 i_ehdrp->e_machine = bed->elf_machine_code;
5159 }
5160
5161 i_ehdrp->e_version = bed->s->ev_current;
5162 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
5163
5164 /* No program header, for now. */
5165 i_ehdrp->e_phoff = 0;
5166 i_ehdrp->e_phentsize = 0;
5167 i_ehdrp->e_phnum = 0;
5168
5169 /* Each bfd section is section header entry. */
5170 i_ehdrp->e_entry = bfd_get_start_address (abfd);
5171 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
5172
5173 /* If we're building an executable, we'll need a program header table. */
5174 if (abfd->flags & EXEC_P)
5175 /* It all happens later. */
5176 ;
5177 else
5178 {
5179 i_ehdrp->e_phentsize = 0;
5180 i_ehdrp->e_phoff = 0;
5181 }
5182
5183 elf_tdata (abfd)->symtab_hdr.sh_name =
5184 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
5185 elf_tdata (abfd)->strtab_hdr.sh_name =
5186 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
5187 elf_tdata (abfd)->shstrtab_hdr.sh_name =
5188 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
5189 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
5190 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
5191 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
5192 return FALSE;
5193
5194 return TRUE;
5195 }
5196
5197 /* Assign file positions for all the reloc sections which are not part
5198 of the loadable file image. */
5199
5200 void
5201 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
5202 {
5203 file_ptr off;
5204 unsigned int i, num_sec;
5205 Elf_Internal_Shdr **shdrpp;
5206
5207 off = elf_tdata (abfd)->next_file_pos;
5208
5209 num_sec = elf_numsections (abfd);
5210 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
5211 {
5212 Elf_Internal_Shdr *shdrp;
5213
5214 shdrp = *shdrpp;
5215 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
5216 && shdrp->sh_offset == -1)
5217 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
5218 }
5219
5220 elf_tdata (abfd)->next_file_pos = off;
5221 }
5222
5223 bfd_boolean
5224 _bfd_elf_write_object_contents (bfd *abfd)
5225 {
5226 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5227 Elf_Internal_Shdr **i_shdrp;
5228 bfd_boolean failed;
5229 unsigned int count, num_sec;
5230
5231 if (! abfd->output_has_begun
5232 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
5233 return FALSE;
5234
5235 i_shdrp = elf_elfsections (abfd);
5236
5237 failed = FALSE;
5238 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
5239 if (failed)
5240 return FALSE;
5241
5242 _bfd_elf_assign_file_positions_for_relocs (abfd);
5243
5244 /* After writing the headers, we need to write the sections too... */
5245 num_sec = elf_numsections (abfd);
5246 for (count = 1; count < num_sec; count++)
5247 {
5248 if (bed->elf_backend_section_processing)
5249 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
5250 if (i_shdrp[count]->contents)
5251 {
5252 bfd_size_type amt = i_shdrp[count]->sh_size;
5253
5254 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
5255 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
5256 return FALSE;
5257 }
5258 }
5259
5260 /* Write out the section header names. */
5261 if (elf_shstrtab (abfd) != NULL
5262 && (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
5263 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
5264 return FALSE;
5265
5266 if (bed->elf_backend_final_write_processing)
5267 (*bed->elf_backend_final_write_processing) (abfd,
5268 elf_tdata (abfd)->linker);
5269
5270 if (!bed->s->write_shdrs_and_ehdr (abfd))
5271 return FALSE;
5272
5273 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
5274 if (elf_tdata (abfd)->after_write_object_contents)
5275 return (*elf_tdata (abfd)->after_write_object_contents) (abfd);
5276
5277 return TRUE;
5278 }
5279
5280 bfd_boolean
5281 _bfd_elf_write_corefile_contents (bfd *abfd)
5282 {
5283 /* Hopefully this can be done just like an object file. */
5284 return _bfd_elf_write_object_contents (abfd);
5285 }
5286
5287 /* Given a section, search the header to find them. */
5288
5289 unsigned int
5290 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
5291 {
5292 const struct elf_backend_data *bed;
5293 unsigned int sec_index;
5294
5295 if (elf_section_data (asect) != NULL
5296 && elf_section_data (asect)->this_idx != 0)
5297 return elf_section_data (asect)->this_idx;
5298
5299 if (bfd_is_abs_section (asect))
5300 sec_index = SHN_ABS;
5301 else if (bfd_is_com_section (asect))
5302 sec_index = SHN_COMMON;
5303 else if (bfd_is_und_section (asect))
5304 sec_index = SHN_UNDEF;
5305 else
5306 sec_index = SHN_BAD;
5307
5308 bed = get_elf_backend_data (abfd);
5309 if (bed->elf_backend_section_from_bfd_section)
5310 {
5311 int retval = sec_index;
5312
5313 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
5314 return retval;
5315 }
5316
5317 if (sec_index == SHN_BAD)
5318 bfd_set_error (bfd_error_nonrepresentable_section);
5319
5320 return sec_index;
5321 }
5322
5323 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
5324 on error. */
5325
5326 int
5327 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
5328 {
5329 asymbol *asym_ptr = *asym_ptr_ptr;
5330 int idx;
5331 flagword flags = asym_ptr->flags;
5332
5333 /* When gas creates relocations against local labels, it creates its
5334 own symbol for the section, but does put the symbol into the
5335 symbol chain, so udata is 0. When the linker is generating
5336 relocatable output, this section symbol may be for one of the
5337 input sections rather than the output section. */
5338 if (asym_ptr->udata.i == 0
5339 && (flags & BSF_SECTION_SYM)
5340 && asym_ptr->section)
5341 {
5342 asection *sec;
5343 int indx;
5344
5345 sec = asym_ptr->section;
5346 if (sec->owner != abfd && sec->output_section != NULL)
5347 sec = sec->output_section;
5348 if (sec->owner == abfd
5349 && (indx = sec->index) < elf_num_section_syms (abfd)
5350 && elf_section_syms (abfd)[indx] != NULL)
5351 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
5352 }
5353
5354 idx = asym_ptr->udata.i;
5355
5356 if (idx == 0)
5357 {
5358 /* This case can occur when using --strip-symbol on a symbol
5359 which is used in a relocation entry. */
5360 (*_bfd_error_handler)
5361 (_("%B: symbol `%s' required but not present"),
5362 abfd, bfd_asymbol_name (asym_ptr));
5363 bfd_set_error (bfd_error_no_symbols);
5364 return -1;
5365 }
5366
5367 #if DEBUG & 4
5368 {
5369 fprintf (stderr,
5370 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx\n",
5371 (long) asym_ptr, asym_ptr->name, idx, (long) flags);
5372 fflush (stderr);
5373 }
5374 #endif
5375
5376 return idx;
5377 }
5378
5379 /* Rewrite program header information. */
5380
5381 static bfd_boolean
5382 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
5383 {
5384 Elf_Internal_Ehdr *iehdr;
5385 struct elf_segment_map *map;
5386 struct elf_segment_map *map_first;
5387 struct elf_segment_map **pointer_to_map;
5388 Elf_Internal_Phdr *segment;
5389 asection *section;
5390 unsigned int i;
5391 unsigned int num_segments;
5392 bfd_boolean phdr_included = FALSE;
5393 bfd_boolean p_paddr_valid;
5394 bfd_vma maxpagesize;
5395 struct elf_segment_map *phdr_adjust_seg = NULL;
5396 unsigned int phdr_adjust_num = 0;
5397 const struct elf_backend_data *bed;
5398
5399 bed = get_elf_backend_data (ibfd);
5400 iehdr = elf_elfheader (ibfd);
5401
5402 map_first = NULL;
5403 pointer_to_map = &map_first;
5404
5405 num_segments = elf_elfheader (ibfd)->e_phnum;
5406 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
5407
5408 /* Returns the end address of the segment + 1. */
5409 #define SEGMENT_END(segment, start) \
5410 (start + (segment->p_memsz > segment->p_filesz \
5411 ? segment->p_memsz : segment->p_filesz))
5412
5413 #define SECTION_SIZE(section, segment) \
5414 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5415 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5416 ? section->size : 0)
5417
5418 /* Returns TRUE if the given section is contained within
5419 the given segment. VMA addresses are compared. */
5420 #define IS_CONTAINED_BY_VMA(section, segment) \
5421 (section->vma >= segment->p_vaddr \
5422 && (section->vma + SECTION_SIZE (section, segment) \
5423 <= (SEGMENT_END (segment, segment->p_vaddr))))
5424
5425 /* Returns TRUE if the given section is contained within
5426 the given segment. LMA addresses are compared. */
5427 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5428 (section->lma >= base \
5429 && (section->lma + SECTION_SIZE (section, segment) \
5430 <= SEGMENT_END (segment, base)))
5431
5432 /* Handle PT_NOTE segment. */
5433 #define IS_NOTE(p, s) \
5434 (p->p_type == PT_NOTE \
5435 && elf_section_type (s) == SHT_NOTE \
5436 && (bfd_vma) s->filepos >= p->p_offset \
5437 && ((bfd_vma) s->filepos + s->size \
5438 <= p->p_offset + p->p_filesz))
5439
5440 /* Special case: corefile "NOTE" section containing regs, prpsinfo
5441 etc. */
5442 #define IS_COREFILE_NOTE(p, s) \
5443 (IS_NOTE (p, s) \
5444 && bfd_get_format (ibfd) == bfd_core \
5445 && s->vma == 0 \
5446 && s->lma == 0)
5447
5448 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5449 linker, which generates a PT_INTERP section with p_vaddr and
5450 p_memsz set to 0. */
5451 #define IS_SOLARIS_PT_INTERP(p, s) \
5452 (p->p_vaddr == 0 \
5453 && p->p_paddr == 0 \
5454 && p->p_memsz == 0 \
5455 && p->p_filesz > 0 \
5456 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5457 && s->size > 0 \
5458 && (bfd_vma) s->filepos >= p->p_offset \
5459 && ((bfd_vma) s->filepos + s->size \
5460 <= p->p_offset + p->p_filesz))
5461
5462 /* Decide if the given section should be included in the given segment.
5463 A section will be included if:
5464 1. It is within the address space of the segment -- we use the LMA
5465 if that is set for the segment and the VMA otherwise,
5466 2. It is an allocated section or a NOTE section in a PT_NOTE
5467 segment.
5468 3. There is an output section associated with it,
5469 4. The section has not already been allocated to a previous segment.
5470 5. PT_GNU_STACK segments do not include any sections.
5471 6. PT_TLS segment includes only SHF_TLS sections.
5472 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5473 8. PT_DYNAMIC should not contain empty sections at the beginning
5474 (with the possible exception of .dynamic). */
5475 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
5476 ((((segment->p_paddr \
5477 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5478 : IS_CONTAINED_BY_VMA (section, segment)) \
5479 && (section->flags & SEC_ALLOC) != 0) \
5480 || IS_NOTE (segment, section)) \
5481 && segment->p_type != PT_GNU_STACK \
5482 && (segment->p_type != PT_TLS \
5483 || (section->flags & SEC_THREAD_LOCAL)) \
5484 && (segment->p_type == PT_LOAD \
5485 || segment->p_type == PT_TLS \
5486 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5487 && (segment->p_type != PT_DYNAMIC \
5488 || SECTION_SIZE (section, segment) > 0 \
5489 || (segment->p_paddr \
5490 ? segment->p_paddr != section->lma \
5491 : segment->p_vaddr != section->vma) \
5492 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5493 == 0)) \
5494 && !section->segment_mark)
5495
5496 /* If the output section of a section in the input segment is NULL,
5497 it is removed from the corresponding output segment. */
5498 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5499 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
5500 && section->output_section != NULL)
5501
5502 /* Returns TRUE iff seg1 starts after the end of seg2. */
5503 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5504 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5505
5506 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5507 their VMA address ranges and their LMA address ranges overlap.
5508 It is possible to have overlapping VMA ranges without overlapping LMA
5509 ranges. RedBoot images for example can have both .data and .bss mapped
5510 to the same VMA range, but with the .data section mapped to a different
5511 LMA. */
5512 #define SEGMENT_OVERLAPS(seg1, seg2) \
5513 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5514 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5515 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5516 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5517
5518 /* Initialise the segment mark field. */
5519 for (section = ibfd->sections; section != NULL; section = section->next)
5520 section->segment_mark = FALSE;
5521
5522 /* The Solaris linker creates program headers in which all the
5523 p_paddr fields are zero. When we try to objcopy or strip such a
5524 file, we get confused. Check for this case, and if we find it
5525 don't set the p_paddr_valid fields. */
5526 p_paddr_valid = FALSE;
5527 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5528 i < num_segments;
5529 i++, segment++)
5530 if (segment->p_paddr != 0)
5531 {
5532 p_paddr_valid = TRUE;
5533 break;
5534 }
5535
5536 /* Scan through the segments specified in the program header
5537 of the input BFD. For this first scan we look for overlaps
5538 in the loadable segments. These can be created by weird
5539 parameters to objcopy. Also, fix some solaris weirdness. */
5540 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5541 i < num_segments;
5542 i++, segment++)
5543 {
5544 unsigned int j;
5545 Elf_Internal_Phdr *segment2;
5546
5547 if (segment->p_type == PT_INTERP)
5548 for (section = ibfd->sections; section; section = section->next)
5549 if (IS_SOLARIS_PT_INTERP (segment, section))
5550 {
5551 /* Mininal change so that the normal section to segment
5552 assignment code will work. */
5553 segment->p_vaddr = section->vma;
5554 break;
5555 }
5556
5557 if (segment->p_type != PT_LOAD)
5558 {
5559 /* Remove PT_GNU_RELRO segment. */
5560 if (segment->p_type == PT_GNU_RELRO)
5561 segment->p_type = PT_NULL;
5562 continue;
5563 }
5564
5565 /* Determine if this segment overlaps any previous segments. */
5566 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
5567 {
5568 bfd_signed_vma extra_length;
5569
5570 if (segment2->p_type != PT_LOAD
5571 || !SEGMENT_OVERLAPS (segment, segment2))
5572 continue;
5573
5574 /* Merge the two segments together. */
5575 if (segment2->p_vaddr < segment->p_vaddr)
5576 {
5577 /* Extend SEGMENT2 to include SEGMENT and then delete
5578 SEGMENT. */
5579 extra_length = (SEGMENT_END (segment, segment->p_vaddr)
5580 - SEGMENT_END (segment2, segment2->p_vaddr));
5581
5582 if (extra_length > 0)
5583 {
5584 segment2->p_memsz += extra_length;
5585 segment2->p_filesz += extra_length;
5586 }
5587
5588 segment->p_type = PT_NULL;
5589
5590 /* Since we have deleted P we must restart the outer loop. */
5591 i = 0;
5592 segment = elf_tdata (ibfd)->phdr;
5593 break;
5594 }
5595 else
5596 {
5597 /* Extend SEGMENT to include SEGMENT2 and then delete
5598 SEGMENT2. */
5599 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
5600 - SEGMENT_END (segment, segment->p_vaddr));
5601
5602 if (extra_length > 0)
5603 {
5604 segment->p_memsz += extra_length;
5605 segment->p_filesz += extra_length;
5606 }
5607
5608 segment2->p_type = PT_NULL;
5609 }
5610 }
5611 }
5612
5613 /* The second scan attempts to assign sections to segments. */
5614 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5615 i < num_segments;
5616 i++, segment++)
5617 {
5618 unsigned int section_count;
5619 asection **sections;
5620 asection *output_section;
5621 unsigned int isec;
5622 bfd_vma matching_lma;
5623 bfd_vma suggested_lma;
5624 unsigned int j;
5625 bfd_size_type amt;
5626 asection *first_section;
5627 bfd_boolean first_matching_lma;
5628 bfd_boolean first_suggested_lma;
5629
5630 if (segment->p_type == PT_NULL)
5631 continue;
5632
5633 first_section = NULL;
5634 /* Compute how many sections might be placed into this segment. */
5635 for (section = ibfd->sections, section_count = 0;
5636 section != NULL;
5637 section = section->next)
5638 {
5639 /* Find the first section in the input segment, which may be
5640 removed from the corresponding output segment. */
5641 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
5642 {
5643 if (first_section == NULL)
5644 first_section = section;
5645 if (section->output_section != NULL)
5646 ++section_count;
5647 }
5648 }
5649
5650 /* Allocate a segment map big enough to contain
5651 all of the sections we have selected. */
5652 amt = sizeof (struct elf_segment_map);
5653 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5654 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
5655 if (map == NULL)
5656 return FALSE;
5657
5658 /* Initialise the fields of the segment map. Default to
5659 using the physical address of the segment in the input BFD. */
5660 map->next = NULL;
5661 map->p_type = segment->p_type;
5662 map->p_flags = segment->p_flags;
5663 map->p_flags_valid = 1;
5664
5665 /* If the first section in the input segment is removed, there is
5666 no need to preserve segment physical address in the corresponding
5667 output segment. */
5668 if (!first_section || first_section->output_section != NULL)
5669 {
5670 map->p_paddr = segment->p_paddr;
5671 map->p_paddr_valid = p_paddr_valid;
5672 }
5673
5674 /* Determine if this segment contains the ELF file header
5675 and if it contains the program headers themselves. */
5676 map->includes_filehdr = (segment->p_offset == 0
5677 && segment->p_filesz >= iehdr->e_ehsize);
5678 map->includes_phdrs = 0;
5679
5680 if (!phdr_included || segment->p_type != PT_LOAD)
5681 {
5682 map->includes_phdrs =
5683 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5684 && (segment->p_offset + segment->p_filesz
5685 >= ((bfd_vma) iehdr->e_phoff
5686 + iehdr->e_phnum * iehdr->e_phentsize)));
5687
5688 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5689 phdr_included = TRUE;
5690 }
5691
5692 if (section_count == 0)
5693 {
5694 /* Special segments, such as the PT_PHDR segment, may contain
5695 no sections, but ordinary, loadable segments should contain
5696 something. They are allowed by the ELF spec however, so only
5697 a warning is produced. */
5698 if (segment->p_type == PT_LOAD)
5699 (*_bfd_error_handler) (_("%B: warning: Empty loadable segment"
5700 " detected, is this intentional ?\n"),
5701 ibfd);
5702
5703 map->count = 0;
5704 *pointer_to_map = map;
5705 pointer_to_map = &map->next;
5706
5707 continue;
5708 }
5709
5710 /* Now scan the sections in the input BFD again and attempt
5711 to add their corresponding output sections to the segment map.
5712 The problem here is how to handle an output section which has
5713 been moved (ie had its LMA changed). There are four possibilities:
5714
5715 1. None of the sections have been moved.
5716 In this case we can continue to use the segment LMA from the
5717 input BFD.
5718
5719 2. All of the sections have been moved by the same amount.
5720 In this case we can change the segment's LMA to match the LMA
5721 of the first section.
5722
5723 3. Some of the sections have been moved, others have not.
5724 In this case those sections which have not been moved can be
5725 placed in the current segment which will have to have its size,
5726 and possibly its LMA changed, and a new segment or segments will
5727 have to be created to contain the other sections.
5728
5729 4. The sections have been moved, but not by the same amount.
5730 In this case we can change the segment's LMA to match the LMA
5731 of the first section and we will have to create a new segment
5732 or segments to contain the other sections.
5733
5734 In order to save time, we allocate an array to hold the section
5735 pointers that we are interested in. As these sections get assigned
5736 to a segment, they are removed from this array. */
5737
5738 sections = (asection **) bfd_malloc2 (section_count, sizeof (asection *));
5739 if (sections == NULL)
5740 return FALSE;
5741
5742 /* Step One: Scan for segment vs section LMA conflicts.
5743 Also add the sections to the section array allocated above.
5744 Also add the sections to the current segment. In the common
5745 case, where the sections have not been moved, this means that
5746 we have completely filled the segment, and there is nothing
5747 more to do. */
5748 isec = 0;
5749 matching_lma = 0;
5750 suggested_lma = 0;
5751 first_matching_lma = TRUE;
5752 first_suggested_lma = TRUE;
5753
5754 for (section = ibfd->sections;
5755 section != NULL;
5756 section = section->next)
5757 if (section == first_section)
5758 break;
5759
5760 for (j = 0; section != NULL; section = section->next)
5761 {
5762 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5763 {
5764 output_section = section->output_section;
5765
5766 sections[j++] = section;
5767
5768 /* The Solaris native linker always sets p_paddr to 0.
5769 We try to catch that case here, and set it to the
5770 correct value. Note - some backends require that
5771 p_paddr be left as zero. */
5772 if (!p_paddr_valid
5773 && segment->p_vaddr != 0
5774 && !bed->want_p_paddr_set_to_zero
5775 && isec == 0
5776 && output_section->lma != 0
5777 && output_section->vma == (segment->p_vaddr
5778 + (map->includes_filehdr
5779 ? iehdr->e_ehsize
5780 : 0)
5781 + (map->includes_phdrs
5782 ? (iehdr->e_phnum
5783 * iehdr->e_phentsize)
5784 : 0)))
5785 map->p_paddr = segment->p_vaddr;
5786
5787 /* Match up the physical address of the segment with the
5788 LMA address of the output section. */
5789 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5790 || IS_COREFILE_NOTE (segment, section)
5791 || (bed->want_p_paddr_set_to_zero
5792 && IS_CONTAINED_BY_VMA (output_section, segment)))
5793 {
5794 if (first_matching_lma || output_section->lma < matching_lma)
5795 {
5796 matching_lma = output_section->lma;
5797 first_matching_lma = FALSE;
5798 }
5799
5800 /* We assume that if the section fits within the segment
5801 then it does not overlap any other section within that
5802 segment. */
5803 map->sections[isec++] = output_section;
5804 }
5805 else if (first_suggested_lma)
5806 {
5807 suggested_lma = output_section->lma;
5808 first_suggested_lma = FALSE;
5809 }
5810
5811 if (j == section_count)
5812 break;
5813 }
5814 }
5815
5816 BFD_ASSERT (j == section_count);
5817
5818 /* Step Two: Adjust the physical address of the current segment,
5819 if necessary. */
5820 if (isec == section_count)
5821 {
5822 /* All of the sections fitted within the segment as currently
5823 specified. This is the default case. Add the segment to
5824 the list of built segments and carry on to process the next
5825 program header in the input BFD. */
5826 map->count = section_count;
5827 *pointer_to_map = map;
5828 pointer_to_map = &map->next;
5829
5830 if (p_paddr_valid
5831 && !bed->want_p_paddr_set_to_zero
5832 && matching_lma != map->p_paddr
5833 && !map->includes_filehdr
5834 && !map->includes_phdrs)
5835 /* There is some padding before the first section in the
5836 segment. So, we must account for that in the output
5837 segment's vma. */
5838 map->p_vaddr_offset = matching_lma - map->p_paddr;
5839
5840 free (sections);
5841 continue;
5842 }
5843 else
5844 {
5845 if (!first_matching_lma)
5846 {
5847 /* At least one section fits inside the current segment.
5848 Keep it, but modify its physical address to match the
5849 LMA of the first section that fitted. */
5850 map->p_paddr = matching_lma;
5851 }
5852 else
5853 {
5854 /* None of the sections fitted inside the current segment.
5855 Change the current segment's physical address to match
5856 the LMA of the first section. */
5857 map->p_paddr = suggested_lma;
5858 }
5859
5860 /* Offset the segment physical address from the lma
5861 to allow for space taken up by elf headers. */
5862 if (map->includes_filehdr)
5863 {
5864 if (map->p_paddr >= iehdr->e_ehsize)
5865 map->p_paddr -= iehdr->e_ehsize;
5866 else
5867 {
5868 map->includes_filehdr = FALSE;
5869 map->includes_phdrs = FALSE;
5870 }
5871 }
5872
5873 if (map->includes_phdrs)
5874 {
5875 if (map->p_paddr >= iehdr->e_phnum * iehdr->e_phentsize)
5876 {
5877 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
5878
5879 /* iehdr->e_phnum is just an estimate of the number
5880 of program headers that we will need. Make a note
5881 here of the number we used and the segment we chose
5882 to hold these headers, so that we can adjust the
5883 offset when we know the correct value. */
5884 phdr_adjust_num = iehdr->e_phnum;
5885 phdr_adjust_seg = map;
5886 }
5887 else
5888 map->includes_phdrs = FALSE;
5889 }
5890 }
5891
5892 /* Step Three: Loop over the sections again, this time assigning
5893 those that fit to the current segment and removing them from the
5894 sections array; but making sure not to leave large gaps. Once all
5895 possible sections have been assigned to the current segment it is
5896 added to the list of built segments and if sections still remain
5897 to be assigned, a new segment is constructed before repeating
5898 the loop. */
5899 isec = 0;
5900 do
5901 {
5902 map->count = 0;
5903 suggested_lma = 0;
5904 first_suggested_lma = TRUE;
5905
5906 /* Fill the current segment with sections that fit. */
5907 for (j = 0; j < section_count; j++)
5908 {
5909 section = sections[j];
5910
5911 if (section == NULL)
5912 continue;
5913
5914 output_section = section->output_section;
5915
5916 BFD_ASSERT (output_section != NULL);
5917
5918 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5919 || IS_COREFILE_NOTE (segment, section))
5920 {
5921 if (map->count == 0)
5922 {
5923 /* If the first section in a segment does not start at
5924 the beginning of the segment, then something is
5925 wrong. */
5926 if (output_section->lma
5927 != (map->p_paddr
5928 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
5929 + (map->includes_phdrs
5930 ? iehdr->e_phnum * iehdr->e_phentsize
5931 : 0)))
5932 abort ();
5933 }
5934 else
5935 {
5936 asection *prev_sec;
5937
5938 prev_sec = map->sections[map->count - 1];
5939
5940 /* If the gap between the end of the previous section
5941 and the start of this section is more than
5942 maxpagesize then we need to start a new segment. */
5943 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
5944 maxpagesize)
5945 < BFD_ALIGN (output_section->lma, maxpagesize))
5946 || (prev_sec->lma + prev_sec->size
5947 > output_section->lma))
5948 {
5949 if (first_suggested_lma)
5950 {
5951 suggested_lma = output_section->lma;
5952 first_suggested_lma = FALSE;
5953 }
5954
5955 continue;
5956 }
5957 }
5958
5959 map->sections[map->count++] = output_section;
5960 ++isec;
5961 sections[j] = NULL;
5962 section->segment_mark = TRUE;
5963 }
5964 else if (first_suggested_lma)
5965 {
5966 suggested_lma = output_section->lma;
5967 first_suggested_lma = FALSE;
5968 }
5969 }
5970
5971 BFD_ASSERT (map->count > 0);
5972
5973 /* Add the current segment to the list of built segments. */
5974 *pointer_to_map = map;
5975 pointer_to_map = &map->next;
5976
5977 if (isec < section_count)
5978 {
5979 /* We still have not allocated all of the sections to
5980 segments. Create a new segment here, initialise it
5981 and carry on looping. */
5982 amt = sizeof (struct elf_segment_map);
5983 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5984 map = (struct elf_segment_map *) bfd_alloc (obfd, amt);
5985 if (map == NULL)
5986 {
5987 free (sections);
5988 return FALSE;
5989 }
5990
5991 /* Initialise the fields of the segment map. Set the physical
5992 physical address to the LMA of the first section that has
5993 not yet been assigned. */
5994 map->next = NULL;
5995 map->p_type = segment->p_type;
5996 map->p_flags = segment->p_flags;
5997 map->p_flags_valid = 1;
5998 map->p_paddr = suggested_lma;
5999 map->p_paddr_valid = p_paddr_valid;
6000 map->includes_filehdr = 0;
6001 map->includes_phdrs = 0;
6002 }
6003 }
6004 while (isec < section_count);
6005
6006 free (sections);
6007 }
6008
6009 elf_tdata (obfd)->segment_map = map_first;
6010
6011 /* If we had to estimate the number of program headers that were
6012 going to be needed, then check our estimate now and adjust
6013 the offset if necessary. */
6014 if (phdr_adjust_seg != NULL)
6015 {
6016 unsigned int count;
6017
6018 for (count = 0, map = map_first; map != NULL; map = map->next)
6019 count++;
6020
6021 if (count > phdr_adjust_num)
6022 phdr_adjust_seg->p_paddr
6023 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
6024 }
6025
6026 #undef SEGMENT_END
6027 #undef SECTION_SIZE
6028 #undef IS_CONTAINED_BY_VMA
6029 #undef IS_CONTAINED_BY_LMA
6030 #undef IS_NOTE
6031 #undef IS_COREFILE_NOTE
6032 #undef IS_SOLARIS_PT_INTERP
6033 #undef IS_SECTION_IN_INPUT_SEGMENT
6034 #undef INCLUDE_SECTION_IN_SEGMENT
6035 #undef SEGMENT_AFTER_SEGMENT
6036 #undef SEGMENT_OVERLAPS
6037 return TRUE;
6038 }
6039
6040 /* Copy ELF program header information. */
6041
6042 static bfd_boolean
6043 copy_elf_program_header (bfd *ibfd, bfd *obfd)
6044 {
6045 Elf_Internal_Ehdr *iehdr;
6046 struct elf_segment_map *map;
6047 struct elf_segment_map *map_first;
6048 struct elf_segment_map **pointer_to_map;
6049 Elf_Internal_Phdr *segment;
6050 unsigned int i;
6051 unsigned int num_segments;
6052 bfd_boolean phdr_included = FALSE;
6053 bfd_boolean p_paddr_valid;
6054
6055 iehdr = elf_elfheader (ibfd);
6056
6057 map_first = NULL;
6058 pointer_to_map = &map_first;
6059
6060 /* If all the segment p_paddr fields are zero, don't set
6061 map->p_paddr_valid. */
6062 p_paddr_valid = FALSE;
6063 num_segments = elf_elfheader (ibfd)->e_phnum;
6064 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6065 i < num_segments;
6066 i++, segment++)
6067 if (segment->p_paddr != 0)
6068 {
6069 p_paddr_valid = TRUE;
6070 break;
6071 }
6072
6073 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6074 i < num_segments;
6075 i++, segment++)
6076 {
6077 asection *section;
6078 unsigned int section_count;
6079 bfd_size_type amt;
6080 Elf_Internal_Shdr *this_hdr;
6081 asection *first_section = NULL;
6082 asection *lowest_section;
6083
6084 /* Compute how many sections are in this segment. */
6085 for (section = ibfd->sections, section_count = 0;
6086 section != NULL;
6087 section = section->next)
6088 {
6089 this_hdr = &(elf_section_data(section)->this_hdr);
6090 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6091 {
6092 if (first_section == NULL)
6093 first_section = section;
6094 section_count++;
6095 }
6096 }
6097
6098 /* Allocate a segment map big enough to contain
6099 all of the sections we have selected. */
6100 amt = sizeof (struct elf_segment_map);
6101 if (section_count != 0)
6102 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
6103 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
6104 if (map == NULL)
6105 return FALSE;
6106
6107 /* Initialize the fields of the output segment map with the
6108 input segment. */
6109 map->next = NULL;
6110 map->p_type = segment->p_type;
6111 map->p_flags = segment->p_flags;
6112 map->p_flags_valid = 1;
6113 map->p_paddr = segment->p_paddr;
6114 map->p_paddr_valid = p_paddr_valid;
6115 map->p_align = segment->p_align;
6116 map->p_align_valid = 1;
6117 map->p_vaddr_offset = 0;
6118
6119 if (map->p_type == PT_GNU_RELRO)
6120 {
6121 /* The PT_GNU_RELRO segment may contain the first a few
6122 bytes in the .got.plt section even if the whole .got.plt
6123 section isn't in the PT_GNU_RELRO segment. We won't
6124 change the size of the PT_GNU_RELRO segment. */
6125 map->p_size = segment->p_memsz;
6126 map->p_size_valid = 1;
6127 }
6128
6129 /* Determine if this segment contains the ELF file header
6130 and if it contains the program headers themselves. */
6131 map->includes_filehdr = (segment->p_offset == 0
6132 && segment->p_filesz >= iehdr->e_ehsize);
6133
6134 map->includes_phdrs = 0;
6135 if (! phdr_included || segment->p_type != PT_LOAD)
6136 {
6137 map->includes_phdrs =
6138 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
6139 && (segment->p_offset + segment->p_filesz
6140 >= ((bfd_vma) iehdr->e_phoff
6141 + iehdr->e_phnum * iehdr->e_phentsize)));
6142
6143 if (segment->p_type == PT_LOAD && map->includes_phdrs)
6144 phdr_included = TRUE;
6145 }
6146
6147 lowest_section = first_section;
6148 if (section_count != 0)
6149 {
6150 unsigned int isec = 0;
6151
6152 for (section = first_section;
6153 section != NULL;
6154 section = section->next)
6155 {
6156 this_hdr = &(elf_section_data(section)->this_hdr);
6157 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6158 {
6159 map->sections[isec++] = section->output_section;
6160 if (section->lma < lowest_section->lma)
6161 lowest_section = section;
6162 if ((section->flags & SEC_ALLOC) != 0)
6163 {
6164 bfd_vma seg_off;
6165
6166 /* Section lmas are set up from PT_LOAD header
6167 p_paddr in _bfd_elf_make_section_from_shdr.
6168 If this header has a p_paddr that disagrees
6169 with the section lma, flag the p_paddr as
6170 invalid. */
6171 if ((section->flags & SEC_LOAD) != 0)
6172 seg_off = this_hdr->sh_offset - segment->p_offset;
6173 else
6174 seg_off = this_hdr->sh_addr - segment->p_vaddr;
6175 if (section->lma - segment->p_paddr != seg_off)
6176 map->p_paddr_valid = FALSE;
6177 }
6178 if (isec == section_count)
6179 break;
6180 }
6181 }
6182 }
6183
6184 if (map->includes_filehdr && lowest_section != NULL)
6185 /* We need to keep the space used by the headers fixed. */
6186 map->header_size = lowest_section->vma - segment->p_vaddr;
6187
6188 if (!map->includes_phdrs
6189 && !map->includes_filehdr
6190 && map->p_paddr_valid)
6191 /* There is some other padding before the first section. */
6192 map->p_vaddr_offset = ((lowest_section ? lowest_section->lma : 0)
6193 - segment->p_paddr);
6194
6195 map->count = section_count;
6196 *pointer_to_map = map;
6197 pointer_to_map = &map->next;
6198 }
6199
6200 elf_tdata (obfd)->segment_map = map_first;
6201 return TRUE;
6202 }
6203
6204 /* Copy private BFD data. This copies or rewrites ELF program header
6205 information. */
6206
6207 static bfd_boolean
6208 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
6209 {
6210 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6211 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6212 return TRUE;
6213
6214 if (elf_tdata (ibfd)->phdr == NULL)
6215 return TRUE;
6216
6217 if (ibfd->xvec == obfd->xvec)
6218 {
6219 /* Check to see if any sections in the input BFD
6220 covered by ELF program header have changed. */
6221 Elf_Internal_Phdr *segment;
6222 asection *section, *osec;
6223 unsigned int i, num_segments;
6224 Elf_Internal_Shdr *this_hdr;
6225 const struct elf_backend_data *bed;
6226
6227 bed = get_elf_backend_data (ibfd);
6228
6229 /* Regenerate the segment map if p_paddr is set to 0. */
6230 if (bed->want_p_paddr_set_to_zero)
6231 goto rewrite;
6232
6233 /* Initialize the segment mark field. */
6234 for (section = obfd->sections; section != NULL;
6235 section = section->next)
6236 section->segment_mark = FALSE;
6237
6238 num_segments = elf_elfheader (ibfd)->e_phnum;
6239 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6240 i < num_segments;
6241 i++, segment++)
6242 {
6243 /* PR binutils/3535. The Solaris linker always sets the p_paddr
6244 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
6245 which severly confuses things, so always regenerate the segment
6246 map in this case. */
6247 if (segment->p_paddr == 0
6248 && segment->p_memsz == 0
6249 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
6250 goto rewrite;
6251
6252 for (section = ibfd->sections;
6253 section != NULL; section = section->next)
6254 {
6255 /* We mark the output section so that we know it comes
6256 from the input BFD. */
6257 osec = section->output_section;
6258 if (osec)
6259 osec->segment_mark = TRUE;
6260
6261 /* Check if this section is covered by the segment. */
6262 this_hdr = &(elf_section_data(section)->this_hdr);
6263 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6264 {
6265 /* FIXME: Check if its output section is changed or
6266 removed. What else do we need to check? */
6267 if (osec == NULL
6268 || section->flags != osec->flags
6269 || section->lma != osec->lma
6270 || section->vma != osec->vma
6271 || section->size != osec->size
6272 || section->rawsize != osec->rawsize
6273 || section->alignment_power != osec->alignment_power)
6274 goto rewrite;
6275 }
6276 }
6277 }
6278
6279 /* Check to see if any output section do not come from the
6280 input BFD. */
6281 for (section = obfd->sections; section != NULL;
6282 section = section->next)
6283 {
6284 if (section->segment_mark == FALSE)
6285 goto rewrite;
6286 else
6287 section->segment_mark = FALSE;
6288 }
6289
6290 return copy_elf_program_header (ibfd, obfd);
6291 }
6292
6293 rewrite:
6294 return rewrite_elf_program_header (ibfd, obfd);
6295 }
6296
6297 /* Initialize private output section information from input section. */
6298
6299 bfd_boolean
6300 _bfd_elf_init_private_section_data (bfd *ibfd,
6301 asection *isec,
6302 bfd *obfd,
6303 asection *osec,
6304 struct bfd_link_info *link_info)
6305
6306 {
6307 Elf_Internal_Shdr *ihdr, *ohdr;
6308 bfd_boolean final_link = link_info != NULL && !link_info->relocatable;
6309
6310 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6311 || obfd->xvec->flavour != bfd_target_elf_flavour)
6312 return TRUE;
6313
6314 BFD_ASSERT (elf_section_data (osec) != NULL);
6315
6316 /* For objcopy and relocatable link, don't copy the output ELF
6317 section type from input if the output BFD section flags have been
6318 set to something different. For a final link allow some flags
6319 that the linker clears to differ. */
6320 if (elf_section_type (osec) == SHT_NULL
6321 && (osec->flags == isec->flags
6322 || (final_link
6323 && ((osec->flags ^ isec->flags)
6324 & ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC)) == 0)))
6325 elf_section_type (osec) = elf_section_type (isec);
6326
6327 /* FIXME: Is this correct for all OS/PROC specific flags? */
6328 elf_section_flags (osec) |= (elf_section_flags (isec)
6329 & (SHF_MASKOS | SHF_MASKPROC));
6330
6331 /* Set things up for objcopy and relocatable link. The output
6332 SHT_GROUP section will have its elf_next_in_group pointing back
6333 to the input group members. Ignore linker created group section.
6334 See elfNN_ia64_object_p in elfxx-ia64.c. */
6335 if (!final_link)
6336 {
6337 if (elf_sec_group (isec) == NULL
6338 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
6339 {
6340 if (elf_section_flags (isec) & SHF_GROUP)
6341 elf_section_flags (osec) |= SHF_GROUP;
6342 elf_next_in_group (osec) = elf_next_in_group (isec);
6343 elf_section_data (osec)->group = elf_section_data (isec)->group;
6344 }
6345 }
6346
6347 ihdr = &elf_section_data (isec)->this_hdr;
6348
6349 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
6350 don't use the output section of the linked-to section since it
6351 may be NULL at this point. */
6352 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
6353 {
6354 ohdr = &elf_section_data (osec)->this_hdr;
6355 ohdr->sh_flags |= SHF_LINK_ORDER;
6356 elf_linked_to_section (osec) = elf_linked_to_section (isec);
6357 }
6358
6359 osec->use_rela_p = isec->use_rela_p;
6360
6361 return TRUE;
6362 }
6363
6364 /* Copy private section information. This copies over the entsize
6365 field, and sometimes the info field. */
6366
6367 bfd_boolean
6368 _bfd_elf_copy_private_section_data (bfd *ibfd,
6369 asection *isec,
6370 bfd *obfd,
6371 asection *osec)
6372 {
6373 Elf_Internal_Shdr *ihdr, *ohdr;
6374
6375 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6376 || obfd->xvec->flavour != bfd_target_elf_flavour)
6377 return TRUE;
6378
6379 ihdr = &elf_section_data (isec)->this_hdr;
6380 ohdr = &elf_section_data (osec)->this_hdr;
6381
6382 ohdr->sh_entsize = ihdr->sh_entsize;
6383
6384 if (ihdr->sh_type == SHT_SYMTAB
6385 || ihdr->sh_type == SHT_DYNSYM
6386 || ihdr->sh_type == SHT_GNU_verneed
6387 || ihdr->sh_type == SHT_GNU_verdef)
6388 ohdr->sh_info = ihdr->sh_info;
6389
6390 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
6391 NULL);
6392 }
6393
6394 /* Look at all the SHT_GROUP sections in IBFD, making any adjustments
6395 necessary if we are removing either the SHT_GROUP section or any of
6396 the group member sections. DISCARDED is the value that a section's
6397 output_section has if the section will be discarded, NULL when this
6398 function is called from objcopy, bfd_abs_section_ptr when called
6399 from the linker. */
6400
6401 bfd_boolean
6402 _bfd_elf_fixup_group_sections (bfd *ibfd, asection *discarded)
6403 {
6404 asection *isec;
6405
6406 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
6407 if (elf_section_type (isec) == SHT_GROUP)
6408 {
6409 asection *first = elf_next_in_group (isec);
6410 asection *s = first;
6411 bfd_size_type removed = 0;
6412
6413 while (s != NULL)
6414 {
6415 /* If this member section is being output but the
6416 SHT_GROUP section is not, then clear the group info
6417 set up by _bfd_elf_copy_private_section_data. */
6418 if (s->output_section != discarded
6419 && isec->output_section == discarded)
6420 {
6421 elf_section_flags (s->output_section) &= ~SHF_GROUP;
6422 elf_group_name (s->output_section) = NULL;
6423 }
6424 /* Conversely, if the member section is not being output
6425 but the SHT_GROUP section is, then adjust its size. */
6426 else if (s->output_section == discarded
6427 && isec->output_section != discarded)
6428 removed += 4;
6429 s = elf_next_in_group (s);
6430 if (s == first)
6431 break;
6432 }
6433 if (removed != 0)
6434 {
6435 if (discarded != NULL)
6436 {
6437 /* If we've been called for ld -r, then we need to
6438 adjust the input section size. This function may
6439 be called multiple times, so save the original
6440 size. */
6441 if (isec->rawsize == 0)
6442 isec->rawsize = isec->size;
6443 isec->size = isec->rawsize - removed;
6444 }
6445 else
6446 {
6447 /* Adjust the output section size when called from
6448 objcopy. */
6449 isec->output_section->size -= removed;
6450 }
6451 }
6452 }
6453
6454 return TRUE;
6455 }
6456
6457 /* Copy private header information. */
6458
6459 bfd_boolean
6460 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
6461 {
6462 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6463 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6464 return TRUE;
6465
6466 /* Copy over private BFD data if it has not already been copied.
6467 This must be done here, rather than in the copy_private_bfd_data
6468 entry point, because the latter is called after the section
6469 contents have been set, which means that the program headers have
6470 already been worked out. */
6471 if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
6472 {
6473 if (! copy_private_bfd_data (ibfd, obfd))
6474 return FALSE;
6475 }
6476
6477 return _bfd_elf_fixup_group_sections (ibfd, NULL);
6478 }
6479
6480 /* Copy private symbol information. If this symbol is in a section
6481 which we did not map into a BFD section, try to map the section
6482 index correctly. We use special macro definitions for the mapped
6483 section indices; these definitions are interpreted by the
6484 swap_out_syms function. */
6485
6486 #define MAP_ONESYMTAB (SHN_HIOS + 1)
6487 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
6488 #define MAP_STRTAB (SHN_HIOS + 3)
6489 #define MAP_SHSTRTAB (SHN_HIOS + 4)
6490 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
6491
6492 bfd_boolean
6493 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
6494 asymbol *isymarg,
6495 bfd *obfd,
6496 asymbol *osymarg)
6497 {
6498 elf_symbol_type *isym, *osym;
6499
6500 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6501 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6502 return TRUE;
6503
6504 isym = elf_symbol_from (ibfd, isymarg);
6505 osym = elf_symbol_from (obfd, osymarg);
6506
6507 if (isym != NULL
6508 && isym->internal_elf_sym.st_shndx != 0
6509 && osym != NULL
6510 && bfd_is_abs_section (isym->symbol.section))
6511 {
6512 unsigned int shndx;
6513
6514 shndx = isym->internal_elf_sym.st_shndx;
6515 if (shndx == elf_onesymtab (ibfd))
6516 shndx = MAP_ONESYMTAB;
6517 else if (shndx == elf_dynsymtab (ibfd))
6518 shndx = MAP_DYNSYMTAB;
6519 else if (shndx == elf_tdata (ibfd)->strtab_section)
6520 shndx = MAP_STRTAB;
6521 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
6522 shndx = MAP_SHSTRTAB;
6523 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
6524 shndx = MAP_SYM_SHNDX;
6525 osym->internal_elf_sym.st_shndx = shndx;
6526 }
6527
6528 return TRUE;
6529 }
6530
6531 /* Swap out the symbols. */
6532
6533 static bfd_boolean
6534 swap_out_syms (bfd *abfd,
6535 struct bfd_strtab_hash **sttp,
6536 int relocatable_p)
6537 {
6538 const struct elf_backend_data *bed;
6539 int symcount;
6540 asymbol **syms;
6541 struct bfd_strtab_hash *stt;
6542 Elf_Internal_Shdr *symtab_hdr;
6543 Elf_Internal_Shdr *symtab_shndx_hdr;
6544 Elf_Internal_Shdr *symstrtab_hdr;
6545 bfd_byte *outbound_syms;
6546 bfd_byte *outbound_shndx;
6547 int idx;
6548 bfd_size_type amt;
6549 bfd_boolean name_local_sections;
6550
6551 if (!elf_map_symbols (abfd))
6552 return FALSE;
6553
6554 /* Dump out the symtabs. */
6555 stt = _bfd_elf_stringtab_init ();
6556 if (stt == NULL)
6557 return FALSE;
6558
6559 bed = get_elf_backend_data (abfd);
6560 symcount = bfd_get_symcount (abfd);
6561 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6562 symtab_hdr->sh_type = SHT_SYMTAB;
6563 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
6564 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
6565 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
6566 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
6567
6568 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
6569 symstrtab_hdr->sh_type = SHT_STRTAB;
6570
6571 outbound_syms = (bfd_byte *) bfd_alloc2 (abfd, 1 + symcount,
6572 bed->s->sizeof_sym);
6573 if (outbound_syms == NULL)
6574 {
6575 _bfd_stringtab_free (stt);
6576 return FALSE;
6577 }
6578 symtab_hdr->contents = outbound_syms;
6579
6580 outbound_shndx = NULL;
6581 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
6582 if (symtab_shndx_hdr->sh_name != 0)
6583 {
6584 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
6585 outbound_shndx = (bfd_byte *)
6586 bfd_zalloc2 (abfd, 1 + symcount, sizeof (Elf_External_Sym_Shndx));
6587 if (outbound_shndx == NULL)
6588 {
6589 _bfd_stringtab_free (stt);
6590 return FALSE;
6591 }
6592
6593 symtab_shndx_hdr->contents = outbound_shndx;
6594 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
6595 symtab_shndx_hdr->sh_size = amt;
6596 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
6597 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
6598 }
6599
6600 /* Now generate the data (for "contents"). */
6601 {
6602 /* Fill in zeroth symbol and swap it out. */
6603 Elf_Internal_Sym sym;
6604 sym.st_name = 0;
6605 sym.st_value = 0;
6606 sym.st_size = 0;
6607 sym.st_info = 0;
6608 sym.st_other = 0;
6609 sym.st_shndx = SHN_UNDEF;
6610 sym.st_target_internal = 0;
6611 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6612 outbound_syms += bed->s->sizeof_sym;
6613 if (outbound_shndx != NULL)
6614 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6615 }
6616
6617 name_local_sections
6618 = (bed->elf_backend_name_local_section_symbols
6619 && bed->elf_backend_name_local_section_symbols (abfd));
6620
6621 syms = bfd_get_outsymbols (abfd);
6622 for (idx = 0; idx < symcount; idx++)
6623 {
6624 Elf_Internal_Sym sym;
6625 bfd_vma value = syms[idx]->value;
6626 elf_symbol_type *type_ptr;
6627 flagword flags = syms[idx]->flags;
6628 int type;
6629
6630 if (!name_local_sections
6631 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
6632 {
6633 /* Local section symbols have no name. */
6634 sym.st_name = 0;
6635 }
6636 else
6637 {
6638 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
6639 syms[idx]->name,
6640 TRUE, FALSE);
6641 if (sym.st_name == (unsigned long) -1)
6642 {
6643 _bfd_stringtab_free (stt);
6644 return FALSE;
6645 }
6646 }
6647
6648 type_ptr = elf_symbol_from (abfd, syms[idx]);
6649
6650 if ((flags & BSF_SECTION_SYM) == 0
6651 && bfd_is_com_section (syms[idx]->section))
6652 {
6653 /* ELF common symbols put the alignment into the `value' field,
6654 and the size into the `size' field. This is backwards from
6655 how BFD handles it, so reverse it here. */
6656 sym.st_size = value;
6657 if (type_ptr == NULL
6658 || type_ptr->internal_elf_sym.st_value == 0)
6659 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
6660 else
6661 sym.st_value = type_ptr->internal_elf_sym.st_value;
6662 sym.st_shndx = _bfd_elf_section_from_bfd_section
6663 (abfd, syms[idx]->section);
6664 }
6665 else
6666 {
6667 asection *sec = syms[idx]->section;
6668 unsigned int shndx;
6669
6670 if (sec->output_section)
6671 {
6672 value += sec->output_offset;
6673 sec = sec->output_section;
6674 }
6675
6676 /* Don't add in the section vma for relocatable output. */
6677 if (! relocatable_p)
6678 value += sec->vma;
6679 sym.st_value = value;
6680 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
6681
6682 if (bfd_is_abs_section (sec)
6683 && type_ptr != NULL
6684 && type_ptr->internal_elf_sym.st_shndx != 0)
6685 {
6686 /* This symbol is in a real ELF section which we did
6687 not create as a BFD section. Undo the mapping done
6688 by copy_private_symbol_data. */
6689 shndx = type_ptr->internal_elf_sym.st_shndx;
6690 switch (shndx)
6691 {
6692 case MAP_ONESYMTAB:
6693 shndx = elf_onesymtab (abfd);
6694 break;
6695 case MAP_DYNSYMTAB:
6696 shndx = elf_dynsymtab (abfd);
6697 break;
6698 case MAP_STRTAB:
6699 shndx = elf_tdata (abfd)->strtab_section;
6700 break;
6701 case MAP_SHSTRTAB:
6702 shndx = elf_tdata (abfd)->shstrtab_section;
6703 break;
6704 case MAP_SYM_SHNDX:
6705 shndx = elf_tdata (abfd)->symtab_shndx_section;
6706 break;
6707 default:
6708 break;
6709 }
6710 }
6711 else
6712 {
6713 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
6714
6715 if (shndx == SHN_BAD)
6716 {
6717 asection *sec2;
6718
6719 /* Writing this would be a hell of a lot easier if
6720 we had some decent documentation on bfd, and
6721 knew what to expect of the library, and what to
6722 demand of applications. For example, it
6723 appears that `objcopy' might not set the
6724 section of a symbol to be a section that is
6725 actually in the output file. */
6726 sec2 = bfd_get_section_by_name (abfd, sec->name);
6727 if (sec2 == NULL)
6728 {
6729 _bfd_error_handler (_("\
6730 Unable to find equivalent output section for symbol '%s' from section '%s'"),
6731 syms[idx]->name ? syms[idx]->name : "<Local sym>",
6732 sec->name);
6733 bfd_set_error (bfd_error_invalid_operation);
6734 _bfd_stringtab_free (stt);
6735 return FALSE;
6736 }
6737
6738 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
6739 BFD_ASSERT (shndx != SHN_BAD);
6740 }
6741 }
6742
6743 sym.st_shndx = shndx;
6744 }
6745
6746 if ((flags & BSF_THREAD_LOCAL) != 0)
6747 type = STT_TLS;
6748 else if ((flags & BSF_GNU_INDIRECT_FUNCTION) != 0)
6749 type = STT_GNU_IFUNC;
6750 else if ((flags & BSF_FUNCTION) != 0)
6751 type = STT_FUNC;
6752 else if ((flags & BSF_OBJECT) != 0)
6753 type = STT_OBJECT;
6754 else if ((flags & BSF_RELC) != 0)
6755 type = STT_RELC;
6756 else if ((flags & BSF_SRELC) != 0)
6757 type = STT_SRELC;
6758 else
6759 type = STT_NOTYPE;
6760
6761 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
6762 type = STT_TLS;
6763
6764 /* Processor-specific types. */
6765 if (type_ptr != NULL
6766 && bed->elf_backend_get_symbol_type)
6767 type = ((*bed->elf_backend_get_symbol_type)
6768 (&type_ptr->internal_elf_sym, type));
6769
6770 if (flags & BSF_SECTION_SYM)
6771 {
6772 if (flags & BSF_GLOBAL)
6773 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6774 else
6775 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
6776 }
6777 else if (bfd_is_com_section (syms[idx]->section))
6778 {
6779 #ifdef USE_STT_COMMON
6780 if (type == STT_OBJECT)
6781 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_COMMON);
6782 else
6783 #endif
6784 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
6785 }
6786 else if (bfd_is_und_section (syms[idx]->section))
6787 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
6788 ? STB_WEAK
6789 : STB_GLOBAL),
6790 type);
6791 else if (flags & BSF_FILE)
6792 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
6793 else
6794 {
6795 int bind = STB_LOCAL;
6796
6797 if (flags & BSF_LOCAL)
6798 bind = STB_LOCAL;
6799 else if (flags & BSF_GNU_UNIQUE)
6800 bind = STB_GNU_UNIQUE;
6801 else if (flags & BSF_WEAK)
6802 bind = STB_WEAK;
6803 else if (flags & BSF_GLOBAL)
6804 bind = STB_GLOBAL;
6805
6806 sym.st_info = ELF_ST_INFO (bind, type);
6807 }
6808
6809 if (type_ptr != NULL)
6810 {
6811 sym.st_other = type_ptr->internal_elf_sym.st_other;
6812 sym.st_target_internal
6813 = type_ptr->internal_elf_sym.st_target_internal;
6814 }
6815 else
6816 {
6817 sym.st_other = 0;
6818 sym.st_target_internal = 0;
6819 }
6820
6821 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6822 outbound_syms += bed->s->sizeof_sym;
6823 if (outbound_shndx != NULL)
6824 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6825 }
6826
6827 *sttp = stt;
6828 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
6829 symstrtab_hdr->sh_type = SHT_STRTAB;
6830
6831 symstrtab_hdr->sh_flags = 0;
6832 symstrtab_hdr->sh_addr = 0;
6833 symstrtab_hdr->sh_entsize = 0;
6834 symstrtab_hdr->sh_link = 0;
6835 symstrtab_hdr->sh_info = 0;
6836 symstrtab_hdr->sh_addralign = 1;
6837
6838 return TRUE;
6839 }
6840
6841 /* Return the number of bytes required to hold the symtab vector.
6842
6843 Note that we base it on the count plus 1, since we will null terminate
6844 the vector allocated based on this size. However, the ELF symbol table
6845 always has a dummy entry as symbol #0, so it ends up even. */
6846
6847 long
6848 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
6849 {
6850 long symcount;
6851 long symtab_size;
6852 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
6853
6854 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6855 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6856 if (symcount > 0)
6857 symtab_size -= sizeof (asymbol *);
6858
6859 return symtab_size;
6860 }
6861
6862 long
6863 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
6864 {
6865 long symcount;
6866 long symtab_size;
6867 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
6868
6869 if (elf_dynsymtab (abfd) == 0)
6870 {
6871 bfd_set_error (bfd_error_invalid_operation);
6872 return -1;
6873 }
6874
6875 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6876 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6877 if (symcount > 0)
6878 symtab_size -= sizeof (asymbol *);
6879
6880 return symtab_size;
6881 }
6882
6883 long
6884 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
6885 sec_ptr asect)
6886 {
6887 return (asect->reloc_count + 1) * sizeof (arelent *);
6888 }
6889
6890 /* Canonicalize the relocs. */
6891
6892 long
6893 _bfd_elf_canonicalize_reloc (bfd *abfd,
6894 sec_ptr section,
6895 arelent **relptr,
6896 asymbol **symbols)
6897 {
6898 arelent *tblptr;
6899 unsigned int i;
6900 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6901
6902 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
6903 return -1;
6904
6905 tblptr = section->relocation;
6906 for (i = 0; i < section->reloc_count; i++)
6907 *relptr++ = tblptr++;
6908
6909 *relptr = NULL;
6910
6911 return section->reloc_count;
6912 }
6913
6914 long
6915 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
6916 {
6917 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6918 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
6919
6920 if (symcount >= 0)
6921 bfd_get_symcount (abfd) = symcount;
6922 return symcount;
6923 }
6924
6925 long
6926 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
6927 asymbol **allocation)
6928 {
6929 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6930 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
6931
6932 if (symcount >= 0)
6933 bfd_get_dynamic_symcount (abfd) = symcount;
6934 return symcount;
6935 }
6936
6937 /* Return the size required for the dynamic reloc entries. Any loadable
6938 section that was actually installed in the BFD, and has type SHT_REL
6939 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
6940 dynamic reloc section. */
6941
6942 long
6943 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
6944 {
6945 long ret;
6946 asection *s;
6947
6948 if (elf_dynsymtab (abfd) == 0)
6949 {
6950 bfd_set_error (bfd_error_invalid_operation);
6951 return -1;
6952 }
6953
6954 ret = sizeof (arelent *);
6955 for (s = abfd->sections; s != NULL; s = s->next)
6956 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6957 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6958 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6959 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
6960 * sizeof (arelent *));
6961
6962 return ret;
6963 }
6964
6965 /* Canonicalize the dynamic relocation entries. Note that we return the
6966 dynamic relocations as a single block, although they are actually
6967 associated with particular sections; the interface, which was
6968 designed for SunOS style shared libraries, expects that there is only
6969 one set of dynamic relocs. Any loadable section that was actually
6970 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
6971 dynamic symbol table, is considered to be a dynamic reloc section. */
6972
6973 long
6974 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
6975 arelent **storage,
6976 asymbol **syms)
6977 {
6978 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
6979 asection *s;
6980 long ret;
6981
6982 if (elf_dynsymtab (abfd) == 0)
6983 {
6984 bfd_set_error (bfd_error_invalid_operation);
6985 return -1;
6986 }
6987
6988 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
6989 ret = 0;
6990 for (s = abfd->sections; s != NULL; s = s->next)
6991 {
6992 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6993 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6994 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6995 {
6996 arelent *p;
6997 long count, i;
6998
6999 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
7000 return -1;
7001 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
7002 p = s->relocation;
7003 for (i = 0; i < count; i++)
7004 *storage++ = p++;
7005 ret += count;
7006 }
7007 }
7008
7009 *storage = NULL;
7010
7011 return ret;
7012 }
7013 \f
7014 /* Read in the version information. */
7015
7016 bfd_boolean
7017 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
7018 {
7019 bfd_byte *contents = NULL;
7020 unsigned int freeidx = 0;
7021
7022 if (elf_dynverref (abfd) != 0)
7023 {
7024 Elf_Internal_Shdr *hdr;
7025 Elf_External_Verneed *everneed;
7026 Elf_Internal_Verneed *iverneed;
7027 unsigned int i;
7028 bfd_byte *contents_end;
7029
7030 hdr = &elf_tdata (abfd)->dynverref_hdr;
7031
7032 elf_tdata (abfd)->verref = (Elf_Internal_Verneed *)
7033 bfd_zalloc2 (abfd, hdr->sh_info, sizeof (Elf_Internal_Verneed));
7034 if (elf_tdata (abfd)->verref == NULL)
7035 goto error_return;
7036
7037 elf_tdata (abfd)->cverrefs = hdr->sh_info;
7038
7039 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
7040 if (contents == NULL)
7041 {
7042 error_return_verref:
7043 elf_tdata (abfd)->verref = NULL;
7044 elf_tdata (abfd)->cverrefs = 0;
7045 goto error_return;
7046 }
7047 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
7048 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
7049 goto error_return_verref;
7050
7051 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verneed))
7052 goto error_return_verref;
7053
7054 BFD_ASSERT (sizeof (Elf_External_Verneed)
7055 == sizeof (Elf_External_Vernaux));
7056 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
7057 everneed = (Elf_External_Verneed *) contents;
7058 iverneed = elf_tdata (abfd)->verref;
7059 for (i = 0; i < hdr->sh_info; i++, iverneed++)
7060 {
7061 Elf_External_Vernaux *evernaux;
7062 Elf_Internal_Vernaux *ivernaux;
7063 unsigned int j;
7064
7065 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
7066
7067 iverneed->vn_bfd = abfd;
7068
7069 iverneed->vn_filename =
7070 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7071 iverneed->vn_file);
7072 if (iverneed->vn_filename == NULL)
7073 goto error_return_verref;
7074
7075 if (iverneed->vn_cnt == 0)
7076 iverneed->vn_auxptr = NULL;
7077 else
7078 {
7079 iverneed->vn_auxptr = (struct elf_internal_vernaux *)
7080 bfd_alloc2 (abfd, iverneed->vn_cnt,
7081 sizeof (Elf_Internal_Vernaux));
7082 if (iverneed->vn_auxptr == NULL)
7083 goto error_return_verref;
7084 }
7085
7086 if (iverneed->vn_aux
7087 > (size_t) (contents_end - (bfd_byte *) everneed))
7088 goto error_return_verref;
7089
7090 evernaux = ((Elf_External_Vernaux *)
7091 ((bfd_byte *) everneed + iverneed->vn_aux));
7092 ivernaux = iverneed->vn_auxptr;
7093 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
7094 {
7095 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
7096
7097 ivernaux->vna_nodename =
7098 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7099 ivernaux->vna_name);
7100 if (ivernaux->vna_nodename == NULL)
7101 goto error_return_verref;
7102
7103 if (j + 1 < iverneed->vn_cnt)
7104 ivernaux->vna_nextptr = ivernaux + 1;
7105 else
7106 ivernaux->vna_nextptr = NULL;
7107
7108 if (ivernaux->vna_next
7109 > (size_t) (contents_end - (bfd_byte *) evernaux))
7110 goto error_return_verref;
7111
7112 evernaux = ((Elf_External_Vernaux *)
7113 ((bfd_byte *) evernaux + ivernaux->vna_next));
7114
7115 if (ivernaux->vna_other > freeidx)
7116 freeidx = ivernaux->vna_other;
7117 }
7118
7119 if (i + 1 < hdr->sh_info)
7120 iverneed->vn_nextref = iverneed + 1;
7121 else
7122 iverneed->vn_nextref = NULL;
7123
7124 if (iverneed->vn_next
7125 > (size_t) (contents_end - (bfd_byte *) everneed))
7126 goto error_return_verref;
7127
7128 everneed = ((Elf_External_Verneed *)
7129 ((bfd_byte *) everneed + iverneed->vn_next));
7130 }
7131
7132 free (contents);
7133 contents = NULL;
7134 }
7135
7136 if (elf_dynverdef (abfd) != 0)
7137 {
7138 Elf_Internal_Shdr *hdr;
7139 Elf_External_Verdef *everdef;
7140 Elf_Internal_Verdef *iverdef;
7141 Elf_Internal_Verdef *iverdefarr;
7142 Elf_Internal_Verdef iverdefmem;
7143 unsigned int i;
7144 unsigned int maxidx;
7145 bfd_byte *contents_end_def, *contents_end_aux;
7146
7147 hdr = &elf_tdata (abfd)->dynverdef_hdr;
7148
7149 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
7150 if (contents == NULL)
7151 goto error_return;
7152 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
7153 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
7154 goto error_return;
7155
7156 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verdef))
7157 goto error_return;
7158
7159 BFD_ASSERT (sizeof (Elf_External_Verdef)
7160 >= sizeof (Elf_External_Verdaux));
7161 contents_end_def = contents + hdr->sh_size
7162 - sizeof (Elf_External_Verdef);
7163 contents_end_aux = contents + hdr->sh_size
7164 - sizeof (Elf_External_Verdaux);
7165
7166 /* We know the number of entries in the section but not the maximum
7167 index. Therefore we have to run through all entries and find
7168 the maximum. */
7169 everdef = (Elf_External_Verdef *) contents;
7170 maxidx = 0;
7171 for (i = 0; i < hdr->sh_info; ++i)
7172 {
7173 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
7174
7175 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
7176 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
7177
7178 if (iverdefmem.vd_next
7179 > (size_t) (contents_end_def - (bfd_byte *) everdef))
7180 goto error_return;
7181
7182 everdef = ((Elf_External_Verdef *)
7183 ((bfd_byte *) everdef + iverdefmem.vd_next));
7184 }
7185
7186 if (default_imported_symver)
7187 {
7188 if (freeidx > maxidx)
7189 maxidx = ++freeidx;
7190 else
7191 freeidx = ++maxidx;
7192 }
7193 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
7194 bfd_zalloc2 (abfd, maxidx, sizeof (Elf_Internal_Verdef));
7195 if (elf_tdata (abfd)->verdef == NULL)
7196 goto error_return;
7197
7198 elf_tdata (abfd)->cverdefs = maxidx;
7199
7200 everdef = (Elf_External_Verdef *) contents;
7201 iverdefarr = elf_tdata (abfd)->verdef;
7202 for (i = 0; i < hdr->sh_info; i++)
7203 {
7204 Elf_External_Verdaux *everdaux;
7205 Elf_Internal_Verdaux *iverdaux;
7206 unsigned int j;
7207
7208 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
7209
7210 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
7211 {
7212 error_return_verdef:
7213 elf_tdata (abfd)->verdef = NULL;
7214 elf_tdata (abfd)->cverdefs = 0;
7215 goto error_return;
7216 }
7217
7218 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
7219 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
7220
7221 iverdef->vd_bfd = abfd;
7222
7223 if (iverdef->vd_cnt == 0)
7224 iverdef->vd_auxptr = NULL;
7225 else
7226 {
7227 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
7228 bfd_alloc2 (abfd, iverdef->vd_cnt,
7229 sizeof (Elf_Internal_Verdaux));
7230 if (iverdef->vd_auxptr == NULL)
7231 goto error_return_verdef;
7232 }
7233
7234 if (iverdef->vd_aux
7235 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
7236 goto error_return_verdef;
7237
7238 everdaux = ((Elf_External_Verdaux *)
7239 ((bfd_byte *) everdef + iverdef->vd_aux));
7240 iverdaux = iverdef->vd_auxptr;
7241 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
7242 {
7243 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
7244
7245 iverdaux->vda_nodename =
7246 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7247 iverdaux->vda_name);
7248 if (iverdaux->vda_nodename == NULL)
7249 goto error_return_verdef;
7250
7251 if (j + 1 < iverdef->vd_cnt)
7252 iverdaux->vda_nextptr = iverdaux + 1;
7253 else
7254 iverdaux->vda_nextptr = NULL;
7255
7256 if (iverdaux->vda_next
7257 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
7258 goto error_return_verdef;
7259
7260 everdaux = ((Elf_External_Verdaux *)
7261 ((bfd_byte *) everdaux + iverdaux->vda_next));
7262 }
7263
7264 if (iverdef->vd_cnt)
7265 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
7266
7267 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
7268 iverdef->vd_nextdef = iverdef + 1;
7269 else
7270 iverdef->vd_nextdef = NULL;
7271
7272 everdef = ((Elf_External_Verdef *)
7273 ((bfd_byte *) everdef + iverdef->vd_next));
7274 }
7275
7276 free (contents);
7277 contents = NULL;
7278 }
7279 else if (default_imported_symver)
7280 {
7281 if (freeidx < 3)
7282 freeidx = 3;
7283 else
7284 freeidx++;
7285
7286 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
7287 bfd_zalloc2 (abfd, freeidx, sizeof (Elf_Internal_Verdef));
7288 if (elf_tdata (abfd)->verdef == NULL)
7289 goto error_return;
7290
7291 elf_tdata (abfd)->cverdefs = freeidx;
7292 }
7293
7294 /* Create a default version based on the soname. */
7295 if (default_imported_symver)
7296 {
7297 Elf_Internal_Verdef *iverdef;
7298 Elf_Internal_Verdaux *iverdaux;
7299
7300 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];;
7301
7302 iverdef->vd_version = VER_DEF_CURRENT;
7303 iverdef->vd_flags = 0;
7304 iverdef->vd_ndx = freeidx;
7305 iverdef->vd_cnt = 1;
7306
7307 iverdef->vd_bfd = abfd;
7308
7309 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
7310 if (iverdef->vd_nodename == NULL)
7311 goto error_return_verdef;
7312 iverdef->vd_nextdef = NULL;
7313 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
7314 bfd_alloc (abfd, sizeof (Elf_Internal_Verdaux));
7315 if (iverdef->vd_auxptr == NULL)
7316 goto error_return_verdef;
7317
7318 iverdaux = iverdef->vd_auxptr;
7319 iverdaux->vda_nodename = iverdef->vd_nodename;
7320 iverdaux->vda_nextptr = NULL;
7321 }
7322
7323 return TRUE;
7324
7325 error_return:
7326 if (contents != NULL)
7327 free (contents);
7328 return FALSE;
7329 }
7330 \f
7331 asymbol *
7332 _bfd_elf_make_empty_symbol (bfd *abfd)
7333 {
7334 elf_symbol_type *newsym;
7335 bfd_size_type amt = sizeof (elf_symbol_type);
7336
7337 newsym = (elf_symbol_type *) bfd_zalloc (abfd, amt);
7338 if (!newsym)
7339 return NULL;
7340 else
7341 {
7342 newsym->symbol.the_bfd = abfd;
7343 return &newsym->symbol;
7344 }
7345 }
7346
7347 void
7348 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
7349 asymbol *symbol,
7350 symbol_info *ret)
7351 {
7352 bfd_symbol_info (symbol, ret);
7353 }
7354
7355 /* Return whether a symbol name implies a local symbol. Most targets
7356 use this function for the is_local_label_name entry point, but some
7357 override it. */
7358
7359 bfd_boolean
7360 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
7361 const char *name)
7362 {
7363 /* Normal local symbols start with ``.L''. */
7364 if (name[0] == '.' && name[1] == 'L')
7365 return TRUE;
7366
7367 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
7368 DWARF debugging symbols starting with ``..''. */
7369 if (name[0] == '.' && name[1] == '.')
7370 return TRUE;
7371
7372 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
7373 emitting DWARF debugging output. I suspect this is actually a
7374 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
7375 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
7376 underscore to be emitted on some ELF targets). For ease of use,
7377 we treat such symbols as local. */
7378 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
7379 return TRUE;
7380
7381 return FALSE;
7382 }
7383
7384 alent *
7385 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
7386 asymbol *symbol ATTRIBUTE_UNUSED)
7387 {
7388 abort ();
7389 return NULL;
7390 }
7391
7392 bfd_boolean
7393 _bfd_elf_set_arch_mach (bfd *abfd,
7394 enum bfd_architecture arch,
7395 unsigned long machine)
7396 {
7397 /* If this isn't the right architecture for this backend, and this
7398 isn't the generic backend, fail. */
7399 if (arch != get_elf_backend_data (abfd)->arch
7400 && arch != bfd_arch_unknown
7401 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
7402 return FALSE;
7403
7404 return bfd_default_set_arch_mach (abfd, arch, machine);
7405 }
7406
7407 /* Find the function to a particular section and offset,
7408 for error reporting. */
7409
7410 static bfd_boolean
7411 elf_find_function (bfd *abfd,
7412 asection *section,
7413 asymbol **symbols,
7414 bfd_vma offset,
7415 const char **filename_ptr,
7416 const char **functionname_ptr)
7417 {
7418 static asection *last_section;
7419 static asymbol *func;
7420 static const char *filename;
7421 static bfd_size_type func_size;
7422
7423 if (symbols == NULL)
7424 return FALSE;
7425
7426 if (last_section != section
7427 || func == NULL
7428 || offset < func->value
7429 || offset >= func->value + func_size)
7430 {
7431 asymbol *file;
7432 bfd_vma low_func;
7433 asymbol **p;
7434 /* ??? Given multiple file symbols, it is impossible to reliably
7435 choose the right file name for global symbols. File symbols are
7436 local symbols, and thus all file symbols must sort before any
7437 global symbols. The ELF spec may be interpreted to say that a
7438 file symbol must sort before other local symbols, but currently
7439 ld -r doesn't do this. So, for ld -r output, it is possible to
7440 make a better choice of file name for local symbols by ignoring
7441 file symbols appearing after a given local symbol. */
7442 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
7443 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7444
7445 filename = NULL;
7446 func = NULL;
7447 file = NULL;
7448 low_func = 0;
7449 state = nothing_seen;
7450 func_size = 0;
7451 last_section = section;
7452
7453 for (p = symbols; *p != NULL; p++)
7454 {
7455 asymbol *sym = *p;
7456 bfd_vma code_off;
7457 bfd_size_type size;
7458
7459 if ((sym->flags & BSF_FILE) != 0)
7460 {
7461 file = sym;
7462 if (state == symbol_seen)
7463 state = file_after_symbol_seen;
7464 continue;
7465 }
7466
7467 size = bed->maybe_function_sym (sym, section, &code_off);
7468 if (size != 0
7469 && code_off <= offset
7470 && (code_off > low_func
7471 || (code_off == low_func
7472 && size > func_size)))
7473 {
7474 func = sym;
7475 func_size = size;
7476 low_func = code_off;
7477 filename = NULL;
7478 if (file != NULL
7479 && ((sym->flags & BSF_LOCAL) != 0
7480 || state != file_after_symbol_seen))
7481 filename = bfd_asymbol_name (file);
7482 }
7483 if (state == nothing_seen)
7484 state = symbol_seen;
7485 }
7486 }
7487
7488 if (func == NULL)
7489 return FALSE;
7490
7491 if (filename_ptr)
7492 *filename_ptr = filename;
7493 if (functionname_ptr)
7494 *functionname_ptr = bfd_asymbol_name (func);
7495
7496 return TRUE;
7497 }
7498
7499 /* Find the nearest line to a particular section and offset,
7500 for error reporting. */
7501
7502 bfd_boolean
7503 _bfd_elf_find_nearest_line (bfd *abfd,
7504 asection *section,
7505 asymbol **symbols,
7506 bfd_vma offset,
7507 const char **filename_ptr,
7508 const char **functionname_ptr,
7509 unsigned int *line_ptr)
7510 {
7511 bfd_boolean found;
7512
7513 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
7514 filename_ptr, functionname_ptr,
7515 line_ptr))
7516 {
7517 if (!*functionname_ptr)
7518 elf_find_function (abfd, section, symbols, offset,
7519 *filename_ptr ? NULL : filename_ptr,
7520 functionname_ptr);
7521
7522 return TRUE;
7523 }
7524
7525 if (_bfd_dwarf2_find_nearest_line (abfd, dwarf_debug_sections,
7526 section, symbols, offset,
7527 filename_ptr, functionname_ptr,
7528 line_ptr, 0,
7529 &elf_tdata (abfd)->dwarf2_find_line_info))
7530 {
7531 if (!*functionname_ptr)
7532 elf_find_function (abfd, section, symbols, offset,
7533 *filename_ptr ? NULL : filename_ptr,
7534 functionname_ptr);
7535
7536 return TRUE;
7537 }
7538
7539 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
7540 &found, filename_ptr,
7541 functionname_ptr, line_ptr,
7542 &elf_tdata (abfd)->line_info))
7543 return FALSE;
7544 if (found && (*functionname_ptr || *line_ptr))
7545 return TRUE;
7546
7547 if (symbols == NULL)
7548 return FALSE;
7549
7550 if (! elf_find_function (abfd, section, symbols, offset,
7551 filename_ptr, functionname_ptr))
7552 return FALSE;
7553
7554 *line_ptr = 0;
7555 return TRUE;
7556 }
7557
7558 /* Find the line for a symbol. */
7559
7560 bfd_boolean
7561 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
7562 const char **filename_ptr, unsigned int *line_ptr)
7563 {
7564 return _bfd_dwarf2_find_line (abfd, symbols, symbol,
7565 filename_ptr, line_ptr, 0,
7566 &elf_tdata (abfd)->dwarf2_find_line_info);
7567 }
7568
7569 /* After a call to bfd_find_nearest_line, successive calls to
7570 bfd_find_inliner_info can be used to get source information about
7571 each level of function inlining that terminated at the address
7572 passed to bfd_find_nearest_line. Currently this is only supported
7573 for DWARF2 with appropriate DWARF3 extensions. */
7574
7575 bfd_boolean
7576 _bfd_elf_find_inliner_info (bfd *abfd,
7577 const char **filename_ptr,
7578 const char **functionname_ptr,
7579 unsigned int *line_ptr)
7580 {
7581 bfd_boolean found;
7582 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
7583 functionname_ptr, line_ptr,
7584 & elf_tdata (abfd)->dwarf2_find_line_info);
7585 return found;
7586 }
7587
7588 int
7589 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
7590 {
7591 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7592 int ret = bed->s->sizeof_ehdr;
7593
7594 if (!info->relocatable)
7595 {
7596 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
7597
7598 if (phdr_size == (bfd_size_type) -1)
7599 {
7600 struct elf_segment_map *m;
7601
7602 phdr_size = 0;
7603 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7604 phdr_size += bed->s->sizeof_phdr;
7605
7606 if (phdr_size == 0)
7607 phdr_size = get_program_header_size (abfd, info);
7608 }
7609
7610 elf_tdata (abfd)->program_header_size = phdr_size;
7611 ret += phdr_size;
7612 }
7613
7614 return ret;
7615 }
7616
7617 bfd_boolean
7618 _bfd_elf_set_section_contents (bfd *abfd,
7619 sec_ptr section,
7620 const void *location,
7621 file_ptr offset,
7622 bfd_size_type count)
7623 {
7624 Elf_Internal_Shdr *hdr;
7625 bfd_signed_vma pos;
7626
7627 if (! abfd->output_has_begun
7628 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
7629 return FALSE;
7630
7631 hdr = &elf_section_data (section)->this_hdr;
7632 pos = hdr->sh_offset + offset;
7633 if (bfd_seek (abfd, pos, SEEK_SET) != 0
7634 || bfd_bwrite (location, count, abfd) != count)
7635 return FALSE;
7636
7637 return TRUE;
7638 }
7639
7640 void
7641 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
7642 arelent *cache_ptr ATTRIBUTE_UNUSED,
7643 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
7644 {
7645 abort ();
7646 }
7647
7648 /* Try to convert a non-ELF reloc into an ELF one. */
7649
7650 bfd_boolean
7651 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
7652 {
7653 /* Check whether we really have an ELF howto. */
7654
7655 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
7656 {
7657 bfd_reloc_code_real_type code;
7658 reloc_howto_type *howto;
7659
7660 /* Alien reloc: Try to determine its type to replace it with an
7661 equivalent ELF reloc. */
7662
7663 if (areloc->howto->pc_relative)
7664 {
7665 switch (areloc->howto->bitsize)
7666 {
7667 case 8:
7668 code = BFD_RELOC_8_PCREL;
7669 break;
7670 case 12:
7671 code = BFD_RELOC_12_PCREL;
7672 break;
7673 case 16:
7674 code = BFD_RELOC_16_PCREL;
7675 break;
7676 case 24:
7677 code = BFD_RELOC_24_PCREL;
7678 break;
7679 case 32:
7680 code = BFD_RELOC_32_PCREL;
7681 break;
7682 case 64:
7683 code = BFD_RELOC_64_PCREL;
7684 break;
7685 default:
7686 goto fail;
7687 }
7688
7689 howto = bfd_reloc_type_lookup (abfd, code);
7690
7691 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
7692 {
7693 if (howto->pcrel_offset)
7694 areloc->addend += areloc->address;
7695 else
7696 areloc->addend -= areloc->address; /* addend is unsigned!! */
7697 }
7698 }
7699 else
7700 {
7701 switch (areloc->howto->bitsize)
7702 {
7703 case 8:
7704 code = BFD_RELOC_8;
7705 break;
7706 case 14:
7707 code = BFD_RELOC_14;
7708 break;
7709 case 16:
7710 code = BFD_RELOC_16;
7711 break;
7712 case 26:
7713 code = BFD_RELOC_26;
7714 break;
7715 case 32:
7716 code = BFD_RELOC_32;
7717 break;
7718 case 64:
7719 code = BFD_RELOC_64;
7720 break;
7721 default:
7722 goto fail;
7723 }
7724
7725 howto = bfd_reloc_type_lookup (abfd, code);
7726 }
7727
7728 if (howto)
7729 areloc->howto = howto;
7730 else
7731 goto fail;
7732 }
7733
7734 return TRUE;
7735
7736 fail:
7737 (*_bfd_error_handler)
7738 (_("%B: unsupported relocation type %s"),
7739 abfd, areloc->howto->name);
7740 bfd_set_error (bfd_error_bad_value);
7741 return FALSE;
7742 }
7743
7744 bfd_boolean
7745 _bfd_elf_close_and_cleanup (bfd *abfd)
7746 {
7747 struct elf_obj_tdata *tdata = elf_tdata (abfd);
7748 if (bfd_get_format (abfd) == bfd_object && tdata != NULL)
7749 {
7750 if (elf_shstrtab (abfd) != NULL)
7751 _bfd_elf_strtab_free (elf_shstrtab (abfd));
7752 _bfd_dwarf2_cleanup_debug_info (abfd, &tdata->dwarf2_find_line_info);
7753 }
7754
7755 return _bfd_generic_close_and_cleanup (abfd);
7756 }
7757
7758 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
7759 in the relocation's offset. Thus we cannot allow any sort of sanity
7760 range-checking to interfere. There is nothing else to do in processing
7761 this reloc. */
7762
7763 bfd_reloc_status_type
7764 _bfd_elf_rel_vtable_reloc_fn
7765 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
7766 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
7767 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
7768 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
7769 {
7770 return bfd_reloc_ok;
7771 }
7772 \f
7773 /* Elf core file support. Much of this only works on native
7774 toolchains, since we rely on knowing the
7775 machine-dependent procfs structure in order to pick
7776 out details about the corefile. */
7777
7778 #ifdef HAVE_SYS_PROCFS_H
7779 /* Needed for new procfs interface on sparc-solaris. */
7780 # define _STRUCTURED_PROC 1
7781 # include <sys/procfs.h>
7782 #endif
7783
7784 /* Return a PID that identifies a "thread" for threaded cores, or the
7785 PID of the main process for non-threaded cores. */
7786
7787 static int
7788 elfcore_make_pid (bfd *abfd)
7789 {
7790 int pid;
7791
7792 pid = elf_tdata (abfd)->core_lwpid;
7793 if (pid == 0)
7794 pid = elf_tdata (abfd)->core_pid;
7795
7796 return pid;
7797 }
7798
7799 /* If there isn't a section called NAME, make one, using
7800 data from SECT. Note, this function will generate a
7801 reference to NAME, so you shouldn't deallocate or
7802 overwrite it. */
7803
7804 static bfd_boolean
7805 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
7806 {
7807 asection *sect2;
7808
7809 if (bfd_get_section_by_name (abfd, name) != NULL)
7810 return TRUE;
7811
7812 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
7813 if (sect2 == NULL)
7814 return FALSE;
7815
7816 sect2->size = sect->size;
7817 sect2->filepos = sect->filepos;
7818 sect2->alignment_power = sect->alignment_power;
7819 return TRUE;
7820 }
7821
7822 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
7823 actually creates up to two pseudosections:
7824 - For the single-threaded case, a section named NAME, unless
7825 such a section already exists.
7826 - For the multi-threaded case, a section named "NAME/PID", where
7827 PID is elfcore_make_pid (abfd).
7828 Both pseudosections have identical contents. */
7829 bfd_boolean
7830 _bfd_elfcore_make_pseudosection (bfd *abfd,
7831 char *name,
7832 size_t size,
7833 ufile_ptr filepos)
7834 {
7835 char buf[100];
7836 char *threaded_name;
7837 size_t len;
7838 asection *sect;
7839
7840 /* Build the section name. */
7841
7842 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
7843 len = strlen (buf) + 1;
7844 threaded_name = (char *) bfd_alloc (abfd, len);
7845 if (threaded_name == NULL)
7846 return FALSE;
7847 memcpy (threaded_name, buf, len);
7848
7849 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
7850 SEC_HAS_CONTENTS);
7851 if (sect == NULL)
7852 return FALSE;
7853 sect->size = size;
7854 sect->filepos = filepos;
7855 sect->alignment_power = 2;
7856
7857 return elfcore_maybe_make_sect (abfd, name, sect);
7858 }
7859
7860 /* prstatus_t exists on:
7861 solaris 2.5+
7862 linux 2.[01] + glibc
7863 unixware 4.2
7864 */
7865
7866 #if defined (HAVE_PRSTATUS_T)
7867
7868 static bfd_boolean
7869 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
7870 {
7871 size_t size;
7872 int offset;
7873
7874 if (note->descsz == sizeof (prstatus_t))
7875 {
7876 prstatus_t prstat;
7877
7878 size = sizeof (prstat.pr_reg);
7879 offset = offsetof (prstatus_t, pr_reg);
7880 memcpy (&prstat, note->descdata, sizeof (prstat));
7881
7882 /* Do not overwrite the core signal if it
7883 has already been set by another thread. */
7884 if (elf_tdata (abfd)->core_signal == 0)
7885 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7886 if (elf_tdata (abfd)->core_pid == 0)
7887 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7888
7889 /* pr_who exists on:
7890 solaris 2.5+
7891 unixware 4.2
7892 pr_who doesn't exist on:
7893 linux 2.[01]
7894 */
7895 #if defined (HAVE_PRSTATUS_T_PR_WHO)
7896 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7897 #else
7898 elf_tdata (abfd)->core_lwpid = prstat.pr_pid;
7899 #endif
7900 }
7901 #if defined (HAVE_PRSTATUS32_T)
7902 else if (note->descsz == sizeof (prstatus32_t))
7903 {
7904 /* 64-bit host, 32-bit corefile */
7905 prstatus32_t prstat;
7906
7907 size = sizeof (prstat.pr_reg);
7908 offset = offsetof (prstatus32_t, pr_reg);
7909 memcpy (&prstat, note->descdata, sizeof (prstat));
7910
7911 /* Do not overwrite the core signal if it
7912 has already been set by another thread. */
7913 if (elf_tdata (abfd)->core_signal == 0)
7914 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7915 if (elf_tdata (abfd)->core_pid == 0)
7916 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7917
7918 /* pr_who exists on:
7919 solaris 2.5+
7920 unixware 4.2
7921 pr_who doesn't exist on:
7922 linux 2.[01]
7923 */
7924 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
7925 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7926 #else
7927 elf_tdata (abfd)->core_lwpid = prstat.pr_pid;
7928 #endif
7929 }
7930 #endif /* HAVE_PRSTATUS32_T */
7931 else
7932 {
7933 /* Fail - we don't know how to handle any other
7934 note size (ie. data object type). */
7935 return TRUE;
7936 }
7937
7938 /* Make a ".reg/999" section and a ".reg" section. */
7939 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
7940 size, note->descpos + offset);
7941 }
7942 #endif /* defined (HAVE_PRSTATUS_T) */
7943
7944 /* Create a pseudosection containing the exact contents of NOTE. */
7945 static bfd_boolean
7946 elfcore_make_note_pseudosection (bfd *abfd,
7947 char *name,
7948 Elf_Internal_Note *note)
7949 {
7950 return _bfd_elfcore_make_pseudosection (abfd, name,
7951 note->descsz, note->descpos);
7952 }
7953
7954 /* There isn't a consistent prfpregset_t across platforms,
7955 but it doesn't matter, because we don't have to pick this
7956 data structure apart. */
7957
7958 static bfd_boolean
7959 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
7960 {
7961 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7962 }
7963
7964 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
7965 type of NT_PRXFPREG. Just include the whole note's contents
7966 literally. */
7967
7968 static bfd_boolean
7969 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
7970 {
7971 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
7972 }
7973
7974 /* Linux dumps the Intel XSAVE extended state in a note named "LINUX"
7975 with a note type of NT_X86_XSTATE. Just include the whole note's
7976 contents literally. */
7977
7978 static bfd_boolean
7979 elfcore_grok_xstatereg (bfd *abfd, Elf_Internal_Note *note)
7980 {
7981 return elfcore_make_note_pseudosection (abfd, ".reg-xstate", note);
7982 }
7983
7984 static bfd_boolean
7985 elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
7986 {
7987 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
7988 }
7989
7990 static bfd_boolean
7991 elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note)
7992 {
7993 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note);
7994 }
7995
7996 static bfd_boolean
7997 elfcore_grok_s390_high_gprs (bfd *abfd, Elf_Internal_Note *note)
7998 {
7999 return elfcore_make_note_pseudosection (abfd, ".reg-s390-high-gprs", note);
8000 }
8001
8002 static bfd_boolean
8003 elfcore_grok_s390_timer (bfd *abfd, Elf_Internal_Note *note)
8004 {
8005 return elfcore_make_note_pseudosection (abfd, ".reg-s390-timer", note);
8006 }
8007
8008 static bfd_boolean
8009 elfcore_grok_s390_todcmp (bfd *abfd, Elf_Internal_Note *note)
8010 {
8011 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todcmp", note);
8012 }
8013
8014 static bfd_boolean
8015 elfcore_grok_s390_todpreg (bfd *abfd, Elf_Internal_Note *note)
8016 {
8017 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todpreg", note);
8018 }
8019
8020 static bfd_boolean
8021 elfcore_grok_s390_ctrs (bfd *abfd, Elf_Internal_Note *note)
8022 {
8023 return elfcore_make_note_pseudosection (abfd, ".reg-s390-ctrs", note);
8024 }
8025
8026 static bfd_boolean
8027 elfcore_grok_s390_prefix (bfd *abfd, Elf_Internal_Note *note)
8028 {
8029 return elfcore_make_note_pseudosection (abfd, ".reg-s390-prefix", note);
8030 }
8031
8032 static bfd_boolean
8033 elfcore_grok_s390_last_break (bfd *abfd, Elf_Internal_Note *note)
8034 {
8035 return elfcore_make_note_pseudosection (abfd, ".reg-s390-last-break", note);
8036 }
8037
8038 static bfd_boolean
8039 elfcore_grok_s390_system_call (bfd *abfd, Elf_Internal_Note *note)
8040 {
8041 return elfcore_make_note_pseudosection (abfd, ".reg-s390-system-call", note);
8042 }
8043
8044 static bfd_boolean
8045 elfcore_grok_arm_vfp (bfd *abfd, Elf_Internal_Note *note)
8046 {
8047 return elfcore_make_note_pseudosection (abfd, ".reg-arm-vfp", note);
8048 }
8049
8050 #if defined (HAVE_PRPSINFO_T)
8051 typedef prpsinfo_t elfcore_psinfo_t;
8052 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
8053 typedef prpsinfo32_t elfcore_psinfo32_t;
8054 #endif
8055 #endif
8056
8057 #if defined (HAVE_PSINFO_T)
8058 typedef psinfo_t elfcore_psinfo_t;
8059 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
8060 typedef psinfo32_t elfcore_psinfo32_t;
8061 #endif
8062 #endif
8063
8064 /* return a malloc'ed copy of a string at START which is at
8065 most MAX bytes long, possibly without a terminating '\0'.
8066 the copy will always have a terminating '\0'. */
8067
8068 char *
8069 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
8070 {
8071 char *dups;
8072 char *end = (char *) memchr (start, '\0', max);
8073 size_t len;
8074
8075 if (end == NULL)
8076 len = max;
8077 else
8078 len = end - start;
8079
8080 dups = (char *) bfd_alloc (abfd, len + 1);
8081 if (dups == NULL)
8082 return NULL;
8083
8084 memcpy (dups, start, len);
8085 dups[len] = '\0';
8086
8087 return dups;
8088 }
8089
8090 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8091 static bfd_boolean
8092 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
8093 {
8094 if (note->descsz == sizeof (elfcore_psinfo_t))
8095 {
8096 elfcore_psinfo_t psinfo;
8097
8098 memcpy (&psinfo, note->descdata, sizeof (psinfo));
8099
8100 #if defined (HAVE_PSINFO_T_PR_PID) || defined (HAVE_PRPSINFO_T_PR_PID)
8101 elf_tdata (abfd)->core_pid = psinfo.pr_pid;
8102 #endif
8103 elf_tdata (abfd)->core_program
8104 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
8105 sizeof (psinfo.pr_fname));
8106
8107 elf_tdata (abfd)->core_command
8108 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
8109 sizeof (psinfo.pr_psargs));
8110 }
8111 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
8112 else if (note->descsz == sizeof (elfcore_psinfo32_t))
8113 {
8114 /* 64-bit host, 32-bit corefile */
8115 elfcore_psinfo32_t psinfo;
8116
8117 memcpy (&psinfo, note->descdata, sizeof (psinfo));
8118
8119 #if defined (HAVE_PSINFO32_T_PR_PID) || defined (HAVE_PRPSINFO32_T_PR_PID)
8120 elf_tdata (abfd)->core_pid = psinfo.pr_pid;
8121 #endif
8122 elf_tdata (abfd)->core_program
8123 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
8124 sizeof (psinfo.pr_fname));
8125
8126 elf_tdata (abfd)->core_command
8127 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
8128 sizeof (psinfo.pr_psargs));
8129 }
8130 #endif
8131
8132 else
8133 {
8134 /* Fail - we don't know how to handle any other
8135 note size (ie. data object type). */
8136 return TRUE;
8137 }
8138
8139 /* Note that for some reason, a spurious space is tacked
8140 onto the end of the args in some (at least one anyway)
8141 implementations, so strip it off if it exists. */
8142
8143 {
8144 char *command = elf_tdata (abfd)->core_command;
8145 int n = strlen (command);
8146
8147 if (0 < n && command[n - 1] == ' ')
8148 command[n - 1] = '\0';
8149 }
8150
8151 return TRUE;
8152 }
8153 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
8154
8155 #if defined (HAVE_PSTATUS_T)
8156 static bfd_boolean
8157 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
8158 {
8159 if (note->descsz == sizeof (pstatus_t)
8160 #if defined (HAVE_PXSTATUS_T)
8161 || note->descsz == sizeof (pxstatus_t)
8162 #endif
8163 )
8164 {
8165 pstatus_t pstat;
8166
8167 memcpy (&pstat, note->descdata, sizeof (pstat));
8168
8169 elf_tdata (abfd)->core_pid = pstat.pr_pid;
8170 }
8171 #if defined (HAVE_PSTATUS32_T)
8172 else if (note->descsz == sizeof (pstatus32_t))
8173 {
8174 /* 64-bit host, 32-bit corefile */
8175 pstatus32_t pstat;
8176
8177 memcpy (&pstat, note->descdata, sizeof (pstat));
8178
8179 elf_tdata (abfd)->core_pid = pstat.pr_pid;
8180 }
8181 #endif
8182 /* Could grab some more details from the "representative"
8183 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
8184 NT_LWPSTATUS note, presumably. */
8185
8186 return TRUE;
8187 }
8188 #endif /* defined (HAVE_PSTATUS_T) */
8189
8190 #if defined (HAVE_LWPSTATUS_T)
8191 static bfd_boolean
8192 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
8193 {
8194 lwpstatus_t lwpstat;
8195 char buf[100];
8196 char *name;
8197 size_t len;
8198 asection *sect;
8199
8200 if (note->descsz != sizeof (lwpstat)
8201 #if defined (HAVE_LWPXSTATUS_T)
8202 && note->descsz != sizeof (lwpxstatus_t)
8203 #endif
8204 )
8205 return TRUE;
8206
8207 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
8208
8209 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
8210 /* Do not overwrite the core signal if it has already been set by
8211 another thread. */
8212 if (elf_tdata (abfd)->core_signal == 0)
8213 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
8214
8215 /* Make a ".reg/999" section. */
8216
8217 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
8218 len = strlen (buf) + 1;
8219 name = bfd_alloc (abfd, len);
8220 if (name == NULL)
8221 return FALSE;
8222 memcpy (name, buf, len);
8223
8224 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8225 if (sect == NULL)
8226 return FALSE;
8227
8228 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8229 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
8230 sect->filepos = note->descpos
8231 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
8232 #endif
8233
8234 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8235 sect->size = sizeof (lwpstat.pr_reg);
8236 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
8237 #endif
8238
8239 sect->alignment_power = 2;
8240
8241 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
8242 return FALSE;
8243
8244 /* Make a ".reg2/999" section */
8245
8246 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
8247 len = strlen (buf) + 1;
8248 name = bfd_alloc (abfd, len);
8249 if (name == NULL)
8250 return FALSE;
8251 memcpy (name, buf, len);
8252
8253 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8254 if (sect == NULL)
8255 return FALSE;
8256
8257 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8258 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
8259 sect->filepos = note->descpos
8260 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
8261 #endif
8262
8263 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
8264 sect->size = sizeof (lwpstat.pr_fpreg);
8265 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
8266 #endif
8267
8268 sect->alignment_power = 2;
8269
8270 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
8271 }
8272 #endif /* defined (HAVE_LWPSTATUS_T) */
8273
8274 static bfd_boolean
8275 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
8276 {
8277 char buf[30];
8278 char *name;
8279 size_t len;
8280 asection *sect;
8281 int type;
8282 int is_active_thread;
8283 bfd_vma base_addr;
8284
8285 if (note->descsz < 728)
8286 return TRUE;
8287
8288 if (! CONST_STRNEQ (note->namedata, "win32"))
8289 return TRUE;
8290
8291 type = bfd_get_32 (abfd, note->descdata);
8292
8293 switch (type)
8294 {
8295 case 1 /* NOTE_INFO_PROCESS */:
8296 /* FIXME: need to add ->core_command. */
8297 /* process_info.pid */
8298 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 8);
8299 /* process_info.signal */
8300 elf_tdata (abfd)->core_signal = bfd_get_32 (abfd, note->descdata + 12);
8301 break;
8302
8303 case 2 /* NOTE_INFO_THREAD */:
8304 /* Make a ".reg/999" section. */
8305 /* thread_info.tid */
8306 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 8));
8307
8308 len = strlen (buf) + 1;
8309 name = (char *) bfd_alloc (abfd, len);
8310 if (name == NULL)
8311 return FALSE;
8312
8313 memcpy (name, buf, len);
8314
8315 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8316 if (sect == NULL)
8317 return FALSE;
8318
8319 /* sizeof (thread_info.thread_context) */
8320 sect->size = 716;
8321 /* offsetof (thread_info.thread_context) */
8322 sect->filepos = note->descpos + 12;
8323 sect->alignment_power = 2;
8324
8325 /* thread_info.is_active_thread */
8326 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
8327
8328 if (is_active_thread)
8329 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
8330 return FALSE;
8331 break;
8332
8333 case 3 /* NOTE_INFO_MODULE */:
8334 /* Make a ".module/xxxxxxxx" section. */
8335 /* module_info.base_address */
8336 base_addr = bfd_get_32 (abfd, note->descdata + 4);
8337 sprintf (buf, ".module/%08lx", (unsigned long) base_addr);
8338
8339 len = strlen (buf) + 1;
8340 name = (char *) bfd_alloc (abfd, len);
8341 if (name == NULL)
8342 return FALSE;
8343
8344 memcpy (name, buf, len);
8345
8346 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8347
8348 if (sect == NULL)
8349 return FALSE;
8350
8351 sect->size = note->descsz;
8352 sect->filepos = note->descpos;
8353 sect->alignment_power = 2;
8354 break;
8355
8356 default:
8357 return TRUE;
8358 }
8359
8360 return TRUE;
8361 }
8362
8363 static bfd_boolean
8364 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
8365 {
8366 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8367
8368 switch (note->type)
8369 {
8370 default:
8371 return TRUE;
8372
8373 case NT_PRSTATUS:
8374 if (bed->elf_backend_grok_prstatus)
8375 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
8376 return TRUE;
8377 #if defined (HAVE_PRSTATUS_T)
8378 return elfcore_grok_prstatus (abfd, note);
8379 #else
8380 return TRUE;
8381 #endif
8382
8383 #if defined (HAVE_PSTATUS_T)
8384 case NT_PSTATUS:
8385 return elfcore_grok_pstatus (abfd, note);
8386 #endif
8387
8388 #if defined (HAVE_LWPSTATUS_T)
8389 case NT_LWPSTATUS:
8390 return elfcore_grok_lwpstatus (abfd, note);
8391 #endif
8392
8393 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
8394 return elfcore_grok_prfpreg (abfd, note);
8395
8396 case NT_WIN32PSTATUS:
8397 return elfcore_grok_win32pstatus (abfd, note);
8398
8399 case NT_PRXFPREG: /* Linux SSE extension */
8400 if (note->namesz == 6
8401 && strcmp (note->namedata, "LINUX") == 0)
8402 return elfcore_grok_prxfpreg (abfd, note);
8403 else
8404 return TRUE;
8405
8406 case NT_X86_XSTATE: /* Linux XSAVE extension */
8407 if (note->namesz == 6
8408 && strcmp (note->namedata, "LINUX") == 0)
8409 return elfcore_grok_xstatereg (abfd, note);
8410 else
8411 return TRUE;
8412
8413 case NT_PPC_VMX:
8414 if (note->namesz == 6
8415 && strcmp (note->namedata, "LINUX") == 0)
8416 return elfcore_grok_ppc_vmx (abfd, note);
8417 else
8418 return TRUE;
8419
8420 case NT_PPC_VSX:
8421 if (note->namesz == 6
8422 && strcmp (note->namedata, "LINUX") == 0)
8423 return elfcore_grok_ppc_vsx (abfd, note);
8424 else
8425 return TRUE;
8426
8427 case NT_S390_HIGH_GPRS:
8428 if (note->namesz == 6
8429 && strcmp (note->namedata, "LINUX") == 0)
8430 return elfcore_grok_s390_high_gprs (abfd, note);
8431 else
8432 return TRUE;
8433
8434 case NT_S390_TIMER:
8435 if (note->namesz == 6
8436 && strcmp (note->namedata, "LINUX") == 0)
8437 return elfcore_grok_s390_timer (abfd, note);
8438 else
8439 return TRUE;
8440
8441 case NT_S390_TODCMP:
8442 if (note->namesz == 6
8443 && strcmp (note->namedata, "LINUX") == 0)
8444 return elfcore_grok_s390_todcmp (abfd, note);
8445 else
8446 return TRUE;
8447
8448 case NT_S390_TODPREG:
8449 if (note->namesz == 6
8450 && strcmp (note->namedata, "LINUX") == 0)
8451 return elfcore_grok_s390_todpreg (abfd, note);
8452 else
8453 return TRUE;
8454
8455 case NT_S390_CTRS:
8456 if (note->namesz == 6
8457 && strcmp (note->namedata, "LINUX") == 0)
8458 return elfcore_grok_s390_ctrs (abfd, note);
8459 else
8460 return TRUE;
8461
8462 case NT_S390_PREFIX:
8463 if (note->namesz == 6
8464 && strcmp (note->namedata, "LINUX") == 0)
8465 return elfcore_grok_s390_prefix (abfd, note);
8466 else
8467 return TRUE;
8468
8469 case NT_S390_LAST_BREAK:
8470 if (note->namesz == 6
8471 && strcmp (note->namedata, "LINUX") == 0)
8472 return elfcore_grok_s390_last_break (abfd, note);
8473 else
8474 return TRUE;
8475
8476 case NT_S390_SYSTEM_CALL:
8477 if (note->namesz == 6
8478 && strcmp (note->namedata, "LINUX") == 0)
8479 return elfcore_grok_s390_system_call (abfd, note);
8480 else
8481 return TRUE;
8482
8483 case NT_ARM_VFP:
8484 if (note->namesz == 6
8485 && strcmp (note->namedata, "LINUX") == 0)
8486 return elfcore_grok_arm_vfp (abfd, note);
8487 else
8488 return TRUE;
8489
8490 case NT_PRPSINFO:
8491 case NT_PSINFO:
8492 if (bed->elf_backend_grok_psinfo)
8493 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
8494 return TRUE;
8495 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8496 return elfcore_grok_psinfo (abfd, note);
8497 #else
8498 return TRUE;
8499 #endif
8500
8501 case NT_AUXV:
8502 {
8503 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
8504 SEC_HAS_CONTENTS);
8505
8506 if (sect == NULL)
8507 return FALSE;
8508 sect->size = note->descsz;
8509 sect->filepos = note->descpos;
8510 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8511
8512 return TRUE;
8513 }
8514 }
8515 }
8516
8517 static bfd_boolean
8518 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
8519 {
8520 elf_tdata (abfd)->build_id_size = note->descsz;
8521 elf_tdata (abfd)->build_id = (bfd_byte *) bfd_alloc (abfd, note->descsz);
8522 if (elf_tdata (abfd)->build_id == NULL)
8523 return FALSE;
8524
8525 memcpy (elf_tdata (abfd)->build_id, note->descdata, note->descsz);
8526
8527 return TRUE;
8528 }
8529
8530 static bfd_boolean
8531 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
8532 {
8533 switch (note->type)
8534 {
8535 default:
8536 return TRUE;
8537
8538 case NT_GNU_BUILD_ID:
8539 return elfobj_grok_gnu_build_id (abfd, note);
8540 }
8541 }
8542
8543 static bfd_boolean
8544 elfobj_grok_stapsdt_note_1 (bfd *abfd, Elf_Internal_Note *note)
8545 {
8546 struct sdt_note *cur =
8547 (struct sdt_note *) bfd_alloc (abfd, sizeof (struct sdt_note)
8548 + note->descsz);
8549
8550 cur->next = (struct sdt_note *) (elf_tdata (abfd))->sdt_note_head;
8551 cur->size = (bfd_size_type) note->descsz;
8552 memcpy (cur->data, note->descdata, note->descsz);
8553
8554 elf_tdata (abfd)->sdt_note_head = cur;
8555
8556 return TRUE;
8557 }
8558
8559 static bfd_boolean
8560 elfobj_grok_stapsdt_note (bfd *abfd, Elf_Internal_Note *note)
8561 {
8562 switch (note->type)
8563 {
8564 case NT_STAPSDT:
8565 return elfobj_grok_stapsdt_note_1 (abfd, note);
8566
8567 default:
8568 return TRUE;
8569 }
8570 }
8571
8572 static bfd_boolean
8573 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
8574 {
8575 char *cp;
8576
8577 cp = strchr (note->namedata, '@');
8578 if (cp != NULL)
8579 {
8580 *lwpidp = atoi(cp + 1);
8581 return TRUE;
8582 }
8583 return FALSE;
8584 }
8585
8586 static bfd_boolean
8587 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
8588 {
8589 /* Signal number at offset 0x08. */
8590 elf_tdata (abfd)->core_signal
8591 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
8592
8593 /* Process ID at offset 0x50. */
8594 elf_tdata (abfd)->core_pid
8595 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
8596
8597 /* Command name at 0x7c (max 32 bytes, including nul). */
8598 elf_tdata (abfd)->core_command
8599 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
8600
8601 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
8602 note);
8603 }
8604
8605 static bfd_boolean
8606 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
8607 {
8608 int lwp;
8609
8610 if (elfcore_netbsd_get_lwpid (note, &lwp))
8611 elf_tdata (abfd)->core_lwpid = lwp;
8612
8613 if (note->type == NT_NETBSDCORE_PROCINFO)
8614 {
8615 /* NetBSD-specific core "procinfo". Note that we expect to
8616 find this note before any of the others, which is fine,
8617 since the kernel writes this note out first when it
8618 creates a core file. */
8619
8620 return elfcore_grok_netbsd_procinfo (abfd, note);
8621 }
8622
8623 /* As of Jan 2002 there are no other machine-independent notes
8624 defined for NetBSD core files. If the note type is less
8625 than the start of the machine-dependent note types, we don't
8626 understand it. */
8627
8628 if (note->type < NT_NETBSDCORE_FIRSTMACH)
8629 return TRUE;
8630
8631
8632 switch (bfd_get_arch (abfd))
8633 {
8634 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
8635 PT_GETFPREGS == mach+2. */
8636
8637 case bfd_arch_alpha:
8638 case bfd_arch_sparc:
8639 switch (note->type)
8640 {
8641 case NT_NETBSDCORE_FIRSTMACH+0:
8642 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8643
8644 case NT_NETBSDCORE_FIRSTMACH+2:
8645 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8646
8647 default:
8648 return TRUE;
8649 }
8650
8651 /* On all other arch's, PT_GETREGS == mach+1 and
8652 PT_GETFPREGS == mach+3. */
8653
8654 default:
8655 switch (note->type)
8656 {
8657 case NT_NETBSDCORE_FIRSTMACH+1:
8658 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8659
8660 case NT_NETBSDCORE_FIRSTMACH+3:
8661 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8662
8663 default:
8664 return TRUE;
8665 }
8666 }
8667 /* NOTREACHED */
8668 }
8669
8670 static bfd_boolean
8671 elfcore_grok_openbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
8672 {
8673 /* Signal number at offset 0x08. */
8674 elf_tdata (abfd)->core_signal
8675 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
8676
8677 /* Process ID at offset 0x20. */
8678 elf_tdata (abfd)->core_pid
8679 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x20);
8680
8681 /* Command name at 0x48 (max 32 bytes, including nul). */
8682 elf_tdata (abfd)->core_command
8683 = _bfd_elfcore_strndup (abfd, note->descdata + 0x48, 31);
8684
8685 return TRUE;
8686 }
8687
8688 static bfd_boolean
8689 elfcore_grok_openbsd_note (bfd *abfd, Elf_Internal_Note *note)
8690 {
8691 if (note->type == NT_OPENBSD_PROCINFO)
8692 return elfcore_grok_openbsd_procinfo (abfd, note);
8693
8694 if (note->type == NT_OPENBSD_REGS)
8695 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8696
8697 if (note->type == NT_OPENBSD_FPREGS)
8698 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8699
8700 if (note->type == NT_OPENBSD_XFPREGS)
8701 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
8702
8703 if (note->type == NT_OPENBSD_AUXV)
8704 {
8705 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
8706 SEC_HAS_CONTENTS);
8707
8708 if (sect == NULL)
8709 return FALSE;
8710 sect->size = note->descsz;
8711 sect->filepos = note->descpos;
8712 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8713
8714 return TRUE;
8715 }
8716
8717 if (note->type == NT_OPENBSD_WCOOKIE)
8718 {
8719 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".wcookie",
8720 SEC_HAS_CONTENTS);
8721
8722 if (sect == NULL)
8723 return FALSE;
8724 sect->size = note->descsz;
8725 sect->filepos = note->descpos;
8726 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8727
8728 return TRUE;
8729 }
8730
8731 return TRUE;
8732 }
8733
8734 static bfd_boolean
8735 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
8736 {
8737 void *ddata = note->descdata;
8738 char buf[100];
8739 char *name;
8740 asection *sect;
8741 short sig;
8742 unsigned flags;
8743
8744 /* nto_procfs_status 'pid' field is at offset 0. */
8745 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
8746
8747 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
8748 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
8749
8750 /* nto_procfs_status 'flags' field is at offset 8. */
8751 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
8752
8753 /* nto_procfs_status 'what' field is at offset 14. */
8754 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
8755 {
8756 elf_tdata (abfd)->core_signal = sig;
8757 elf_tdata (abfd)->core_lwpid = *tid;
8758 }
8759
8760 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
8761 do not come from signals so we make sure we set the current
8762 thread just in case. */
8763 if (flags & 0x00000080)
8764 elf_tdata (abfd)->core_lwpid = *tid;
8765
8766 /* Make a ".qnx_core_status/%d" section. */
8767 sprintf (buf, ".qnx_core_status/%ld", *tid);
8768
8769 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
8770 if (name == NULL)
8771 return FALSE;
8772 strcpy (name, buf);
8773
8774 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8775 if (sect == NULL)
8776 return FALSE;
8777
8778 sect->size = note->descsz;
8779 sect->filepos = note->descpos;
8780 sect->alignment_power = 2;
8781
8782 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
8783 }
8784
8785 static bfd_boolean
8786 elfcore_grok_nto_regs (bfd *abfd,
8787 Elf_Internal_Note *note,
8788 long tid,
8789 char *base)
8790 {
8791 char buf[100];
8792 char *name;
8793 asection *sect;
8794
8795 /* Make a "(base)/%d" section. */
8796 sprintf (buf, "%s/%ld", base, tid);
8797
8798 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
8799 if (name == NULL)
8800 return FALSE;
8801 strcpy (name, buf);
8802
8803 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8804 if (sect == NULL)
8805 return FALSE;
8806
8807 sect->size = note->descsz;
8808 sect->filepos = note->descpos;
8809 sect->alignment_power = 2;
8810
8811 /* This is the current thread. */
8812 if (elf_tdata (abfd)->core_lwpid == tid)
8813 return elfcore_maybe_make_sect (abfd, base, sect);
8814
8815 return TRUE;
8816 }
8817
8818 #define BFD_QNT_CORE_INFO 7
8819 #define BFD_QNT_CORE_STATUS 8
8820 #define BFD_QNT_CORE_GREG 9
8821 #define BFD_QNT_CORE_FPREG 10
8822
8823 static bfd_boolean
8824 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
8825 {
8826 /* Every GREG section has a STATUS section before it. Store the
8827 tid from the previous call to pass down to the next gregs
8828 function. */
8829 static long tid = 1;
8830
8831 switch (note->type)
8832 {
8833 case BFD_QNT_CORE_INFO:
8834 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
8835 case BFD_QNT_CORE_STATUS:
8836 return elfcore_grok_nto_status (abfd, note, &tid);
8837 case BFD_QNT_CORE_GREG:
8838 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
8839 case BFD_QNT_CORE_FPREG:
8840 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
8841 default:
8842 return TRUE;
8843 }
8844 }
8845
8846 static bfd_boolean
8847 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
8848 {
8849 char *name;
8850 asection *sect;
8851 size_t len;
8852
8853 /* Use note name as section name. */
8854 len = note->namesz;
8855 name = (char *) bfd_alloc (abfd, len);
8856 if (name == NULL)
8857 return FALSE;
8858 memcpy (name, note->namedata, len);
8859 name[len - 1] = '\0';
8860
8861 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8862 if (sect == NULL)
8863 return FALSE;
8864
8865 sect->size = note->descsz;
8866 sect->filepos = note->descpos;
8867 sect->alignment_power = 1;
8868
8869 return TRUE;
8870 }
8871
8872 /* Function: elfcore_write_note
8873
8874 Inputs:
8875 buffer to hold note, and current size of buffer
8876 name of note
8877 type of note
8878 data for note
8879 size of data for note
8880
8881 Writes note to end of buffer. ELF64 notes are written exactly as
8882 for ELF32, despite the current (as of 2006) ELF gabi specifying
8883 that they ought to have 8-byte namesz and descsz field, and have
8884 8-byte alignment. Other writers, eg. Linux kernel, do the same.
8885
8886 Return:
8887 Pointer to realloc'd buffer, *BUFSIZ updated. */
8888
8889 char *
8890 elfcore_write_note (bfd *abfd,
8891 char *buf,
8892 int *bufsiz,
8893 const char *name,
8894 int type,
8895 const void *input,
8896 int size)
8897 {
8898 Elf_External_Note *xnp;
8899 size_t namesz;
8900 size_t newspace;
8901 char *dest;
8902
8903 namesz = 0;
8904 if (name != NULL)
8905 namesz = strlen (name) + 1;
8906
8907 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
8908
8909 buf = (char *) realloc (buf, *bufsiz + newspace);
8910 if (buf == NULL)
8911 return buf;
8912 dest = buf + *bufsiz;
8913 *bufsiz += newspace;
8914 xnp = (Elf_External_Note *) dest;
8915 H_PUT_32 (abfd, namesz, xnp->namesz);
8916 H_PUT_32 (abfd, size, xnp->descsz);
8917 H_PUT_32 (abfd, type, xnp->type);
8918 dest = xnp->name;
8919 if (name != NULL)
8920 {
8921 memcpy (dest, name, namesz);
8922 dest += namesz;
8923 while (namesz & 3)
8924 {
8925 *dest++ = '\0';
8926 ++namesz;
8927 }
8928 }
8929 memcpy (dest, input, size);
8930 dest += size;
8931 while (size & 3)
8932 {
8933 *dest++ = '\0';
8934 ++size;
8935 }
8936 return buf;
8937 }
8938
8939 char *
8940 elfcore_write_prpsinfo (bfd *abfd,
8941 char *buf,
8942 int *bufsiz,
8943 const char *fname,
8944 const char *psargs)
8945 {
8946 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8947
8948 if (bed->elf_backend_write_core_note != NULL)
8949 {
8950 char *ret;
8951 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
8952 NT_PRPSINFO, fname, psargs);
8953 if (ret != NULL)
8954 return ret;
8955 }
8956
8957 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8958 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
8959 if (bed->s->elfclass == ELFCLASS32)
8960 {
8961 #if defined (HAVE_PSINFO32_T)
8962 psinfo32_t data;
8963 int note_type = NT_PSINFO;
8964 #else
8965 prpsinfo32_t data;
8966 int note_type = NT_PRPSINFO;
8967 #endif
8968
8969 memset (&data, 0, sizeof (data));
8970 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
8971 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
8972 return elfcore_write_note (abfd, buf, bufsiz,
8973 "CORE", note_type, &data, sizeof (data));
8974 }
8975 else
8976 #endif
8977 {
8978 #if defined (HAVE_PSINFO_T)
8979 psinfo_t data;
8980 int note_type = NT_PSINFO;
8981 #else
8982 prpsinfo_t data;
8983 int note_type = NT_PRPSINFO;
8984 #endif
8985
8986 memset (&data, 0, sizeof (data));
8987 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
8988 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
8989 return elfcore_write_note (abfd, buf, bufsiz,
8990 "CORE", note_type, &data, sizeof (data));
8991 }
8992 #endif /* PSINFO_T or PRPSINFO_T */
8993
8994 free (buf);
8995 return NULL;
8996 }
8997
8998 char *
8999 elfcore_write_prstatus (bfd *abfd,
9000 char *buf,
9001 int *bufsiz,
9002 long pid,
9003 int cursig,
9004 const void *gregs)
9005 {
9006 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9007
9008 if (bed->elf_backend_write_core_note != NULL)
9009 {
9010 char *ret;
9011 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
9012 NT_PRSTATUS,
9013 pid, cursig, gregs);
9014 if (ret != NULL)
9015 return ret;
9016 }
9017
9018 #if defined (HAVE_PRSTATUS_T)
9019 #if defined (HAVE_PRSTATUS32_T)
9020 if (bed->s->elfclass == ELFCLASS32)
9021 {
9022 prstatus32_t prstat;
9023
9024 memset (&prstat, 0, sizeof (prstat));
9025 prstat.pr_pid = pid;
9026 prstat.pr_cursig = cursig;
9027 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
9028 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
9029 NT_PRSTATUS, &prstat, sizeof (prstat));
9030 }
9031 else
9032 #endif
9033 {
9034 prstatus_t prstat;
9035
9036 memset (&prstat, 0, sizeof (prstat));
9037 prstat.pr_pid = pid;
9038 prstat.pr_cursig = cursig;
9039 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
9040 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
9041 NT_PRSTATUS, &prstat, sizeof (prstat));
9042 }
9043 #endif /* HAVE_PRSTATUS_T */
9044
9045 free (buf);
9046 return NULL;
9047 }
9048
9049 #if defined (HAVE_LWPSTATUS_T)
9050 char *
9051 elfcore_write_lwpstatus (bfd *abfd,
9052 char *buf,
9053 int *bufsiz,
9054 long pid,
9055 int cursig,
9056 const void *gregs)
9057 {
9058 lwpstatus_t lwpstat;
9059 const char *note_name = "CORE";
9060
9061 memset (&lwpstat, 0, sizeof (lwpstat));
9062 lwpstat.pr_lwpid = pid >> 16;
9063 lwpstat.pr_cursig = cursig;
9064 #if defined (HAVE_LWPSTATUS_T_PR_REG)
9065 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
9066 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9067 #if !defined(gregs)
9068 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
9069 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
9070 #else
9071 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
9072 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
9073 #endif
9074 #endif
9075 return elfcore_write_note (abfd, buf, bufsiz, note_name,
9076 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
9077 }
9078 #endif /* HAVE_LWPSTATUS_T */
9079
9080 #if defined (HAVE_PSTATUS_T)
9081 char *
9082 elfcore_write_pstatus (bfd *abfd,
9083 char *buf,
9084 int *bufsiz,
9085 long pid,
9086 int cursig ATTRIBUTE_UNUSED,
9087 const void *gregs ATTRIBUTE_UNUSED)
9088 {
9089 const char *note_name = "CORE";
9090 #if defined (HAVE_PSTATUS32_T)
9091 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9092
9093 if (bed->s->elfclass == ELFCLASS32)
9094 {
9095 pstatus32_t pstat;
9096
9097 memset (&pstat, 0, sizeof (pstat));
9098 pstat.pr_pid = pid & 0xffff;
9099 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
9100 NT_PSTATUS, &pstat, sizeof (pstat));
9101 return buf;
9102 }
9103 else
9104 #endif
9105 {
9106 pstatus_t pstat;
9107
9108 memset (&pstat, 0, sizeof (pstat));
9109 pstat.pr_pid = pid & 0xffff;
9110 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
9111 NT_PSTATUS, &pstat, sizeof (pstat));
9112 return buf;
9113 }
9114 }
9115 #endif /* HAVE_PSTATUS_T */
9116
9117 char *
9118 elfcore_write_prfpreg (bfd *abfd,
9119 char *buf,
9120 int *bufsiz,
9121 const void *fpregs,
9122 int size)
9123 {
9124 const char *note_name = "CORE";
9125 return elfcore_write_note (abfd, buf, bufsiz,
9126 note_name, NT_FPREGSET, fpregs, size);
9127 }
9128
9129 char *
9130 elfcore_write_prxfpreg (bfd *abfd,
9131 char *buf,
9132 int *bufsiz,
9133 const void *xfpregs,
9134 int size)
9135 {
9136 char *note_name = "LINUX";
9137 return elfcore_write_note (abfd, buf, bufsiz,
9138 note_name, NT_PRXFPREG, xfpregs, size);
9139 }
9140
9141 char *
9142 elfcore_write_xstatereg (bfd *abfd, char *buf, int *bufsiz,
9143 const void *xfpregs, int size)
9144 {
9145 char *note_name = "LINUX";
9146 return elfcore_write_note (abfd, buf, bufsiz,
9147 note_name, NT_X86_XSTATE, xfpregs, size);
9148 }
9149
9150 char *
9151 elfcore_write_ppc_vmx (bfd *abfd,
9152 char *buf,
9153 int *bufsiz,
9154 const void *ppc_vmx,
9155 int size)
9156 {
9157 char *note_name = "LINUX";
9158 return elfcore_write_note (abfd, buf, bufsiz,
9159 note_name, NT_PPC_VMX, ppc_vmx, size);
9160 }
9161
9162 char *
9163 elfcore_write_ppc_vsx (bfd *abfd,
9164 char *buf,
9165 int *bufsiz,
9166 const void *ppc_vsx,
9167 int size)
9168 {
9169 char *note_name = "LINUX";
9170 return elfcore_write_note (abfd, buf, bufsiz,
9171 note_name, NT_PPC_VSX, ppc_vsx, size);
9172 }
9173
9174 static char *
9175 elfcore_write_s390_high_gprs (bfd *abfd,
9176 char *buf,
9177 int *bufsiz,
9178 const void *s390_high_gprs,
9179 int size)
9180 {
9181 char *note_name = "LINUX";
9182 return elfcore_write_note (abfd, buf, bufsiz,
9183 note_name, NT_S390_HIGH_GPRS,
9184 s390_high_gprs, size);
9185 }
9186
9187 char *
9188 elfcore_write_s390_timer (bfd *abfd,
9189 char *buf,
9190 int *bufsiz,
9191 const void *s390_timer,
9192 int size)
9193 {
9194 char *note_name = "LINUX";
9195 return elfcore_write_note (abfd, buf, bufsiz,
9196 note_name, NT_S390_TIMER, s390_timer, size);
9197 }
9198
9199 char *
9200 elfcore_write_s390_todcmp (bfd *abfd,
9201 char *buf,
9202 int *bufsiz,
9203 const void *s390_todcmp,
9204 int size)
9205 {
9206 char *note_name = "LINUX";
9207 return elfcore_write_note (abfd, buf, bufsiz,
9208 note_name, NT_S390_TODCMP, s390_todcmp, size);
9209 }
9210
9211 char *
9212 elfcore_write_s390_todpreg (bfd *abfd,
9213 char *buf,
9214 int *bufsiz,
9215 const void *s390_todpreg,
9216 int size)
9217 {
9218 char *note_name = "LINUX";
9219 return elfcore_write_note (abfd, buf, bufsiz,
9220 note_name, NT_S390_TODPREG, s390_todpreg, size);
9221 }
9222
9223 char *
9224 elfcore_write_s390_ctrs (bfd *abfd,
9225 char *buf,
9226 int *bufsiz,
9227 const void *s390_ctrs,
9228 int size)
9229 {
9230 char *note_name = "LINUX";
9231 return elfcore_write_note (abfd, buf, bufsiz,
9232 note_name, NT_S390_CTRS, s390_ctrs, size);
9233 }
9234
9235 char *
9236 elfcore_write_s390_prefix (bfd *abfd,
9237 char *buf,
9238 int *bufsiz,
9239 const void *s390_prefix,
9240 int size)
9241 {
9242 char *note_name = "LINUX";
9243 return elfcore_write_note (abfd, buf, bufsiz,
9244 note_name, NT_S390_PREFIX, s390_prefix, size);
9245 }
9246
9247 char *
9248 elfcore_write_s390_last_break (bfd *abfd,
9249 char *buf,
9250 int *bufsiz,
9251 const void *s390_last_break,
9252 int size)
9253 {
9254 char *note_name = "LINUX";
9255 return elfcore_write_note (abfd, buf, bufsiz,
9256 note_name, NT_S390_LAST_BREAK,
9257 s390_last_break, size);
9258 }
9259
9260 char *
9261 elfcore_write_s390_system_call (bfd *abfd,
9262 char *buf,
9263 int *bufsiz,
9264 const void *s390_system_call,
9265 int size)
9266 {
9267 char *note_name = "LINUX";
9268 return elfcore_write_note (abfd, buf, bufsiz,
9269 note_name, NT_S390_SYSTEM_CALL,
9270 s390_system_call, size);
9271 }
9272
9273 char *
9274 elfcore_write_arm_vfp (bfd *abfd,
9275 char *buf,
9276 int *bufsiz,
9277 const void *arm_vfp,
9278 int size)
9279 {
9280 char *note_name = "LINUX";
9281 return elfcore_write_note (abfd, buf, bufsiz,
9282 note_name, NT_ARM_VFP, arm_vfp, size);
9283 }
9284
9285 char *
9286 elfcore_write_register_note (bfd *abfd,
9287 char *buf,
9288 int *bufsiz,
9289 const char *section,
9290 const void *data,
9291 int size)
9292 {
9293 if (strcmp (section, ".reg2") == 0)
9294 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
9295 if (strcmp (section, ".reg-xfp") == 0)
9296 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
9297 if (strcmp (section, ".reg-xstate") == 0)
9298 return elfcore_write_xstatereg (abfd, buf, bufsiz, data, size);
9299 if (strcmp (section, ".reg-ppc-vmx") == 0)
9300 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
9301 if (strcmp (section, ".reg-ppc-vsx") == 0)
9302 return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size);
9303 if (strcmp (section, ".reg-s390-high-gprs") == 0)
9304 return elfcore_write_s390_high_gprs (abfd, buf, bufsiz, data, size);
9305 if (strcmp (section, ".reg-s390-timer") == 0)
9306 return elfcore_write_s390_timer (abfd, buf, bufsiz, data, size);
9307 if (strcmp (section, ".reg-s390-todcmp") == 0)
9308 return elfcore_write_s390_todcmp (abfd, buf, bufsiz, data, size);
9309 if (strcmp (section, ".reg-s390-todpreg") == 0)
9310 return elfcore_write_s390_todpreg (abfd, buf, bufsiz, data, size);
9311 if (strcmp (section, ".reg-s390-ctrs") == 0)
9312 return elfcore_write_s390_ctrs (abfd, buf, bufsiz, data, size);
9313 if (strcmp (section, ".reg-s390-prefix") == 0)
9314 return elfcore_write_s390_prefix (abfd, buf, bufsiz, data, size);
9315 if (strcmp (section, ".reg-s390-last-break") == 0)
9316 return elfcore_write_s390_last_break (abfd, buf, bufsiz, data, size);
9317 if (strcmp (section, ".reg-s390-system-call") == 0)
9318 return elfcore_write_s390_system_call (abfd, buf, bufsiz, data, size);
9319 if (strcmp (section, ".reg-arm-vfp") == 0)
9320 return elfcore_write_arm_vfp (abfd, buf, bufsiz, data, size);
9321 return NULL;
9322 }
9323
9324 static bfd_boolean
9325 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset)
9326 {
9327 char *p;
9328
9329 p = buf;
9330 while (p < buf + size)
9331 {
9332 /* FIXME: bad alignment assumption. */
9333 Elf_External_Note *xnp = (Elf_External_Note *) p;
9334 Elf_Internal_Note in;
9335
9336 if (offsetof (Elf_External_Note, name) > buf - p + size)
9337 return FALSE;
9338
9339 in.type = H_GET_32 (abfd, xnp->type);
9340
9341 in.namesz = H_GET_32 (abfd, xnp->namesz);
9342 in.namedata = xnp->name;
9343 if (in.namesz > buf - in.namedata + size)
9344 return FALSE;
9345
9346 in.descsz = H_GET_32 (abfd, xnp->descsz);
9347 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
9348 in.descpos = offset + (in.descdata - buf);
9349 if (in.descsz != 0
9350 && (in.descdata >= buf + size
9351 || in.descsz > buf - in.descdata + size))
9352 return FALSE;
9353
9354 switch (bfd_get_format (abfd))
9355 {
9356 default:
9357 return TRUE;
9358
9359 case bfd_core:
9360 if (CONST_STRNEQ (in.namedata, "NetBSD-CORE"))
9361 {
9362 if (! elfcore_grok_netbsd_note (abfd, &in))
9363 return FALSE;
9364 }
9365 else if (CONST_STRNEQ (in.namedata, "OpenBSD"))
9366 {
9367 if (! elfcore_grok_openbsd_note (abfd, &in))
9368 return FALSE;
9369 }
9370 else if (CONST_STRNEQ (in.namedata, "QNX"))
9371 {
9372 if (! elfcore_grok_nto_note (abfd, &in))
9373 return FALSE;
9374 }
9375 else if (CONST_STRNEQ (in.namedata, "SPU/"))
9376 {
9377 if (! elfcore_grok_spu_note (abfd, &in))
9378 return FALSE;
9379 }
9380 else
9381 {
9382 if (! elfcore_grok_note (abfd, &in))
9383 return FALSE;
9384 }
9385 break;
9386
9387 case bfd_object:
9388 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
9389 {
9390 if (! elfobj_grok_gnu_note (abfd, &in))
9391 return FALSE;
9392 }
9393 else if (in.namesz == sizeof "stapsdt"
9394 && strcmp (in.namedata, "stapsdt") == 0)
9395 {
9396 if (! elfobj_grok_stapsdt_note (abfd, &in))
9397 return FALSE;
9398 }
9399 break;
9400 }
9401
9402 p = in.descdata + BFD_ALIGN (in.descsz, 4);
9403 }
9404
9405 return TRUE;
9406 }
9407
9408 static bfd_boolean
9409 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
9410 {
9411 char *buf;
9412
9413 if (size <= 0)
9414 return TRUE;
9415
9416 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
9417 return FALSE;
9418
9419 buf = (char *) bfd_malloc (size);
9420 if (buf == NULL)
9421 return FALSE;
9422
9423 if (bfd_bread (buf, size, abfd) != size
9424 || !elf_parse_notes (abfd, buf, size, offset))
9425 {
9426 free (buf);
9427 return FALSE;
9428 }
9429
9430 free (buf);
9431 return TRUE;
9432 }
9433 \f
9434 /* Providing external access to the ELF program header table. */
9435
9436 /* Return an upper bound on the number of bytes required to store a
9437 copy of ABFD's program header table entries. Return -1 if an error
9438 occurs; bfd_get_error will return an appropriate code. */
9439
9440 long
9441 bfd_get_elf_phdr_upper_bound (bfd *abfd)
9442 {
9443 if (abfd->xvec->flavour != bfd_target_elf_flavour)
9444 {
9445 bfd_set_error (bfd_error_wrong_format);
9446 return -1;
9447 }
9448
9449 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
9450 }
9451
9452 /* Copy ABFD's program header table entries to *PHDRS. The entries
9453 will be stored as an array of Elf_Internal_Phdr structures, as
9454 defined in include/elf/internal.h. To find out how large the
9455 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
9456
9457 Return the number of program header table entries read, or -1 if an
9458 error occurs; bfd_get_error will return an appropriate code. */
9459
9460 int
9461 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
9462 {
9463 int num_phdrs;
9464
9465 if (abfd->xvec->flavour != bfd_target_elf_flavour)
9466 {
9467 bfd_set_error (bfd_error_wrong_format);
9468 return -1;
9469 }
9470
9471 num_phdrs = elf_elfheader (abfd)->e_phnum;
9472 memcpy (phdrs, elf_tdata (abfd)->phdr,
9473 num_phdrs * sizeof (Elf_Internal_Phdr));
9474
9475 return num_phdrs;
9476 }
9477
9478 enum elf_reloc_type_class
9479 _bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
9480 {
9481 return reloc_class_normal;
9482 }
9483
9484 /* For RELA architectures, return the relocation value for a
9485 relocation against a local symbol. */
9486
9487 bfd_vma
9488 _bfd_elf_rela_local_sym (bfd *abfd,
9489 Elf_Internal_Sym *sym,
9490 asection **psec,
9491 Elf_Internal_Rela *rel)
9492 {
9493 asection *sec = *psec;
9494 bfd_vma relocation;
9495
9496 relocation = (sec->output_section->vma
9497 + sec->output_offset
9498 + sym->st_value);
9499 if ((sec->flags & SEC_MERGE)
9500 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
9501 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
9502 {
9503 rel->r_addend =
9504 _bfd_merged_section_offset (abfd, psec,
9505 elf_section_data (sec)->sec_info,
9506 sym->st_value + rel->r_addend);
9507 if (sec != *psec)
9508 {
9509 /* If we have changed the section, and our original section is
9510 marked with SEC_EXCLUDE, it means that the original
9511 SEC_MERGE section has been completely subsumed in some
9512 other SEC_MERGE section. In this case, we need to leave
9513 some info around for --emit-relocs. */
9514 if ((sec->flags & SEC_EXCLUDE) != 0)
9515 sec->kept_section = *psec;
9516 sec = *psec;
9517 }
9518 rel->r_addend -= relocation;
9519 rel->r_addend += sec->output_section->vma + sec->output_offset;
9520 }
9521 return relocation;
9522 }
9523
9524 bfd_vma
9525 _bfd_elf_rel_local_sym (bfd *abfd,
9526 Elf_Internal_Sym *sym,
9527 asection **psec,
9528 bfd_vma addend)
9529 {
9530 asection *sec = *psec;
9531
9532 if (sec->sec_info_type != SEC_INFO_TYPE_MERGE)
9533 return sym->st_value + addend;
9534
9535 return _bfd_merged_section_offset (abfd, psec,
9536 elf_section_data (sec)->sec_info,
9537 sym->st_value + addend);
9538 }
9539
9540 bfd_vma
9541 _bfd_elf_section_offset (bfd *abfd,
9542 struct bfd_link_info *info,
9543 asection *sec,
9544 bfd_vma offset)
9545 {
9546 switch (sec->sec_info_type)
9547 {
9548 case SEC_INFO_TYPE_STABS:
9549 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
9550 offset);
9551 case SEC_INFO_TYPE_EH_FRAME:
9552 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
9553 default:
9554 if ((sec->flags & SEC_ELF_REVERSE_COPY) != 0)
9555 {
9556 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9557 bfd_size_type address_size = bed->s->arch_size / 8;
9558 offset = sec->size - offset - address_size;
9559 }
9560 return offset;
9561 }
9562 }
9563 \f
9564 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
9565 reconstruct an ELF file by reading the segments out of remote memory
9566 based on the ELF file header at EHDR_VMA and the ELF program headers it
9567 points to. If not null, *LOADBASEP is filled in with the difference
9568 between the VMAs from which the segments were read, and the VMAs the
9569 file headers (and hence BFD's idea of each section's VMA) put them at.
9570
9571 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
9572 remote memory at target address VMA into the local buffer at MYADDR; it
9573 should return zero on success or an `errno' code on failure. TEMPL must
9574 be a BFD for an ELF target with the word size and byte order found in
9575 the remote memory. */
9576
9577 bfd *
9578 bfd_elf_bfd_from_remote_memory
9579 (bfd *templ,
9580 bfd_vma ehdr_vma,
9581 bfd_vma *loadbasep,
9582 int (*target_read_memory) (bfd_vma, bfd_byte *, bfd_size_type))
9583 {
9584 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
9585 (templ, ehdr_vma, loadbasep, target_read_memory);
9586 }
9587 \f
9588 long
9589 _bfd_elf_get_synthetic_symtab (bfd *abfd,
9590 long symcount ATTRIBUTE_UNUSED,
9591 asymbol **syms ATTRIBUTE_UNUSED,
9592 long dynsymcount,
9593 asymbol **dynsyms,
9594 asymbol **ret)
9595 {
9596 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9597 asection *relplt;
9598 asymbol *s;
9599 const char *relplt_name;
9600 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
9601 arelent *p;
9602 long count, i, n;
9603 size_t size;
9604 Elf_Internal_Shdr *hdr;
9605 char *names;
9606 asection *plt;
9607
9608 *ret = NULL;
9609
9610 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
9611 return 0;
9612
9613 if (dynsymcount <= 0)
9614 return 0;
9615
9616 if (!bed->plt_sym_val)
9617 return 0;
9618
9619 relplt_name = bed->relplt_name;
9620 if (relplt_name == NULL)
9621 relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt";
9622 relplt = bfd_get_section_by_name (abfd, relplt_name);
9623 if (relplt == NULL)
9624 return 0;
9625
9626 hdr = &elf_section_data (relplt)->this_hdr;
9627 if (hdr->sh_link != elf_dynsymtab (abfd)
9628 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
9629 return 0;
9630
9631 plt = bfd_get_section_by_name (abfd, ".plt");
9632 if (plt == NULL)
9633 return 0;
9634
9635 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
9636 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
9637 return -1;
9638
9639 count = relplt->size / hdr->sh_entsize;
9640 size = count * sizeof (asymbol);
9641 p = relplt->relocation;
9642 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
9643 {
9644 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
9645 if (p->addend != 0)
9646 {
9647 #ifdef BFD64
9648 size += sizeof ("+0x") - 1 + 8 + 8 * (bed->s->elfclass == ELFCLASS64);
9649 #else
9650 size += sizeof ("+0x") - 1 + 8;
9651 #endif
9652 }
9653 }
9654
9655 s = *ret = (asymbol *) bfd_malloc (size);
9656 if (s == NULL)
9657 return -1;
9658
9659 names = (char *) (s + count);
9660 p = relplt->relocation;
9661 n = 0;
9662 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
9663 {
9664 size_t len;
9665 bfd_vma addr;
9666
9667 addr = bed->plt_sym_val (i, plt, p);
9668 if (addr == (bfd_vma) -1)
9669 continue;
9670
9671 *s = **p->sym_ptr_ptr;
9672 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
9673 we are defining a symbol, ensure one of them is set. */
9674 if ((s->flags & BSF_LOCAL) == 0)
9675 s->flags |= BSF_GLOBAL;
9676 s->flags |= BSF_SYNTHETIC;
9677 s->section = plt;
9678 s->value = addr - plt->vma;
9679 s->name = names;
9680 s->udata.p = NULL;
9681 len = strlen ((*p->sym_ptr_ptr)->name);
9682 memcpy (names, (*p->sym_ptr_ptr)->name, len);
9683 names += len;
9684 if (p->addend != 0)
9685 {
9686 char buf[30], *a;
9687
9688 memcpy (names, "+0x", sizeof ("+0x") - 1);
9689 names += sizeof ("+0x") - 1;
9690 bfd_sprintf_vma (abfd, buf, p->addend);
9691 for (a = buf; *a == '0'; ++a)
9692 ;
9693 len = strlen (a);
9694 memcpy (names, a, len);
9695 names += len;
9696 }
9697 memcpy (names, "@plt", sizeof ("@plt"));
9698 names += sizeof ("@plt");
9699 ++s, ++n;
9700 }
9701
9702 return n;
9703 }
9704
9705 /* It is only used by x86-64 so far. */
9706 asection _bfd_elf_large_com_section
9707 = BFD_FAKE_SECTION (_bfd_elf_large_com_section,
9708 SEC_IS_COMMON, NULL, "LARGE_COMMON", 0);
9709
9710 void
9711 _bfd_elf_set_osabi (bfd * abfd,
9712 struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
9713 {
9714 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
9715
9716 i_ehdrp = elf_elfheader (abfd);
9717
9718 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
9719
9720 /* To make things simpler for the loader on Linux systems we set the
9721 osabi field to ELFOSABI_GNU if the binary contains symbols of
9722 the STT_GNU_IFUNC type or STB_GNU_UNIQUE binding. */
9723 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE
9724 && elf_tdata (abfd)->has_gnu_symbols)
9725 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_GNU;
9726 }
9727
9728
9729 /* Return TRUE for ELF symbol types that represent functions.
9730 This is the default version of this function, which is sufficient for
9731 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */
9732
9733 bfd_boolean
9734 _bfd_elf_is_function_type (unsigned int type)
9735 {
9736 return (type == STT_FUNC
9737 || type == STT_GNU_IFUNC);
9738 }
9739
9740 /* If the ELF symbol SYM might be a function in SEC, return the
9741 function size and set *CODE_OFF to the function's entry point,
9742 otherwise return zero. */
9743
9744 bfd_size_type
9745 _bfd_elf_maybe_function_sym (const asymbol *sym, asection *sec,
9746 bfd_vma *code_off)
9747 {
9748 bfd_size_type size;
9749
9750 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
9751 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0
9752 || sym->section != sec)
9753 return 0;
9754
9755 *code_off = sym->value;
9756 size = 0;
9757 if (!(sym->flags & BSF_SYNTHETIC))
9758 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
9759 if (size == 0)
9760 size = 1;
9761 return size;
9762 }