* elf.c (elf_fake_sections): When calculating tbss size, just use
[binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
21
22 /*
23 SECTION
24 ELF backends
25
26 BFD support for ELF formats is being worked on.
27 Currently, the best supported back ends are for sparc and i386
28 (running svr4 or Solaris 2).
29
30 Documentation of the internals of the support code still needs
31 to be written. The code is changing quickly enough that we
32 haven't bothered yet. */
33
34 /* For sparc64-cross-sparc32. */
35 #define _SYSCALL32
36 #include "bfd.h"
37 #include "sysdep.h"
38 #include "bfdlink.h"
39 #include "libbfd.h"
40 #define ARCH_SIZE 0
41 #include "elf-bfd.h"
42 #include "libiberty.h"
43
44 static int elf_sort_sections (const void *, const void *);
45 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
46 static bfd_boolean prep_headers (bfd *);
47 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
48 static bfd_boolean elfcore_read_notes (bfd *, file_ptr, bfd_size_type) ;
49
50 /* Swap version information in and out. The version information is
51 currently size independent. If that ever changes, this code will
52 need to move into elfcode.h. */
53
54 /* Swap in a Verdef structure. */
55
56 void
57 _bfd_elf_swap_verdef_in (bfd *abfd,
58 const Elf_External_Verdef *src,
59 Elf_Internal_Verdef *dst)
60 {
61 dst->vd_version = H_GET_16 (abfd, src->vd_version);
62 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
63 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
64 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
65 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
66 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
67 dst->vd_next = H_GET_32 (abfd, src->vd_next);
68 }
69
70 /* Swap out a Verdef structure. */
71
72 void
73 _bfd_elf_swap_verdef_out (bfd *abfd,
74 const Elf_Internal_Verdef *src,
75 Elf_External_Verdef *dst)
76 {
77 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
78 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
79 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
80 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
81 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
82 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
83 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
84 }
85
86 /* Swap in a Verdaux structure. */
87
88 void
89 _bfd_elf_swap_verdaux_in (bfd *abfd,
90 const Elf_External_Verdaux *src,
91 Elf_Internal_Verdaux *dst)
92 {
93 dst->vda_name = H_GET_32 (abfd, src->vda_name);
94 dst->vda_next = H_GET_32 (abfd, src->vda_next);
95 }
96
97 /* Swap out a Verdaux structure. */
98
99 void
100 _bfd_elf_swap_verdaux_out (bfd *abfd,
101 const Elf_Internal_Verdaux *src,
102 Elf_External_Verdaux *dst)
103 {
104 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
105 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
106 }
107
108 /* Swap in a Verneed structure. */
109
110 void
111 _bfd_elf_swap_verneed_in (bfd *abfd,
112 const Elf_External_Verneed *src,
113 Elf_Internal_Verneed *dst)
114 {
115 dst->vn_version = H_GET_16 (abfd, src->vn_version);
116 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
117 dst->vn_file = H_GET_32 (abfd, src->vn_file);
118 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
119 dst->vn_next = H_GET_32 (abfd, src->vn_next);
120 }
121
122 /* Swap out a Verneed structure. */
123
124 void
125 _bfd_elf_swap_verneed_out (bfd *abfd,
126 const Elf_Internal_Verneed *src,
127 Elf_External_Verneed *dst)
128 {
129 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
130 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
131 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
132 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
133 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
134 }
135
136 /* Swap in a Vernaux structure. */
137
138 void
139 _bfd_elf_swap_vernaux_in (bfd *abfd,
140 const Elf_External_Vernaux *src,
141 Elf_Internal_Vernaux *dst)
142 {
143 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
144 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
145 dst->vna_other = H_GET_16 (abfd, src->vna_other);
146 dst->vna_name = H_GET_32 (abfd, src->vna_name);
147 dst->vna_next = H_GET_32 (abfd, src->vna_next);
148 }
149
150 /* Swap out a Vernaux structure. */
151
152 void
153 _bfd_elf_swap_vernaux_out (bfd *abfd,
154 const Elf_Internal_Vernaux *src,
155 Elf_External_Vernaux *dst)
156 {
157 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
158 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
159 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
160 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
161 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
162 }
163
164 /* Swap in a Versym structure. */
165
166 void
167 _bfd_elf_swap_versym_in (bfd *abfd,
168 const Elf_External_Versym *src,
169 Elf_Internal_Versym *dst)
170 {
171 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
172 }
173
174 /* Swap out a Versym structure. */
175
176 void
177 _bfd_elf_swap_versym_out (bfd *abfd,
178 const Elf_Internal_Versym *src,
179 Elf_External_Versym *dst)
180 {
181 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
182 }
183
184 /* Standard ELF hash function. Do not change this function; you will
185 cause invalid hash tables to be generated. */
186
187 unsigned long
188 bfd_elf_hash (const char *namearg)
189 {
190 const unsigned char *name = (const unsigned char *) namearg;
191 unsigned long h = 0;
192 unsigned long g;
193 int ch;
194
195 while ((ch = *name++) != '\0')
196 {
197 h = (h << 4) + ch;
198 if ((g = (h & 0xf0000000)) != 0)
199 {
200 h ^= g >> 24;
201 /* The ELF ABI says `h &= ~g', but this is equivalent in
202 this case and on some machines one insn instead of two. */
203 h ^= g;
204 }
205 }
206 return h & 0xffffffff;
207 }
208
209 bfd_boolean
210 bfd_elf_mkobject (bfd *abfd)
211 {
212 /* This just does initialization. */
213 /* coff_mkobject zalloc's space for tdata.coff_obj_data ... */
214 elf_tdata (abfd) = bfd_zalloc (abfd, sizeof (struct elf_obj_tdata));
215 if (elf_tdata (abfd) == 0)
216 return FALSE;
217 /* Since everything is done at close time, do we need any
218 initialization? */
219
220 return TRUE;
221 }
222
223 bfd_boolean
224 bfd_elf_mkcorefile (bfd *abfd)
225 {
226 /* I think this can be done just like an object file. */
227 return bfd_elf_mkobject (abfd);
228 }
229
230 char *
231 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
232 {
233 Elf_Internal_Shdr **i_shdrp;
234 bfd_byte *shstrtab = NULL;
235 file_ptr offset;
236 bfd_size_type shstrtabsize;
237
238 i_shdrp = elf_elfsections (abfd);
239 if (i_shdrp == 0 || i_shdrp[shindex] == 0)
240 return NULL;
241
242 shstrtab = i_shdrp[shindex]->contents;
243 if (shstrtab == NULL)
244 {
245 /* No cached one, attempt to read, and cache what we read. */
246 offset = i_shdrp[shindex]->sh_offset;
247 shstrtabsize = i_shdrp[shindex]->sh_size;
248
249 /* Allocate and clear an extra byte at the end, to prevent crashes
250 in case the string table is not terminated. */
251 if (shstrtabsize + 1 == 0
252 || (shstrtab = bfd_alloc (abfd, shstrtabsize + 1)) == NULL
253 || bfd_seek (abfd, offset, SEEK_SET) != 0)
254 shstrtab = NULL;
255 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
256 {
257 if (bfd_get_error () != bfd_error_system_call)
258 bfd_set_error (bfd_error_file_truncated);
259 shstrtab = NULL;
260 }
261 else
262 shstrtab[shstrtabsize] = '\0';
263 i_shdrp[shindex]->contents = shstrtab;
264 }
265 return (char *) shstrtab;
266 }
267
268 char *
269 bfd_elf_string_from_elf_section (bfd *abfd,
270 unsigned int shindex,
271 unsigned int strindex)
272 {
273 Elf_Internal_Shdr *hdr;
274
275 if (strindex == 0)
276 return "";
277
278 hdr = elf_elfsections (abfd)[shindex];
279
280 if (hdr->contents == NULL
281 && bfd_elf_get_str_section (abfd, shindex) == NULL)
282 return NULL;
283
284 if (strindex >= hdr->sh_size)
285 {
286 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
287 (*_bfd_error_handler)
288 (_("%B: invalid string offset %u >= %lu for section `%s'"),
289 abfd, strindex, (unsigned long) hdr->sh_size,
290 (shindex == shstrndx && strindex == hdr->sh_name
291 ? ".shstrtab"
292 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
293 return "";
294 }
295
296 return ((char *) hdr->contents) + strindex;
297 }
298
299 /* Read and convert symbols to internal format.
300 SYMCOUNT specifies the number of symbols to read, starting from
301 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
302 are non-NULL, they are used to store the internal symbols, external
303 symbols, and symbol section index extensions, respectively. */
304
305 Elf_Internal_Sym *
306 bfd_elf_get_elf_syms (bfd *ibfd,
307 Elf_Internal_Shdr *symtab_hdr,
308 size_t symcount,
309 size_t symoffset,
310 Elf_Internal_Sym *intsym_buf,
311 void *extsym_buf,
312 Elf_External_Sym_Shndx *extshndx_buf)
313 {
314 Elf_Internal_Shdr *shndx_hdr;
315 void *alloc_ext;
316 const bfd_byte *esym;
317 Elf_External_Sym_Shndx *alloc_extshndx;
318 Elf_External_Sym_Shndx *shndx;
319 Elf_Internal_Sym *isym;
320 Elf_Internal_Sym *isymend;
321 const struct elf_backend_data *bed;
322 size_t extsym_size;
323 bfd_size_type amt;
324 file_ptr pos;
325
326 if (symcount == 0)
327 return intsym_buf;
328
329 /* Normal syms might have section extension entries. */
330 shndx_hdr = NULL;
331 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
332 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
333
334 /* Read the symbols. */
335 alloc_ext = NULL;
336 alloc_extshndx = NULL;
337 bed = get_elf_backend_data (ibfd);
338 extsym_size = bed->s->sizeof_sym;
339 amt = symcount * extsym_size;
340 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
341 if (extsym_buf == NULL)
342 {
343 alloc_ext = bfd_malloc2 (symcount, extsym_size);
344 extsym_buf = alloc_ext;
345 }
346 if (extsym_buf == NULL
347 || bfd_seek (ibfd, pos, SEEK_SET) != 0
348 || bfd_bread (extsym_buf, amt, ibfd) != amt)
349 {
350 intsym_buf = NULL;
351 goto out;
352 }
353
354 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
355 extshndx_buf = NULL;
356 else
357 {
358 amt = symcount * sizeof (Elf_External_Sym_Shndx);
359 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
360 if (extshndx_buf == NULL)
361 {
362 alloc_extshndx = bfd_malloc2 (symcount,
363 sizeof (Elf_External_Sym_Shndx));
364 extshndx_buf = alloc_extshndx;
365 }
366 if (extshndx_buf == NULL
367 || bfd_seek (ibfd, pos, SEEK_SET) != 0
368 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
369 {
370 intsym_buf = NULL;
371 goto out;
372 }
373 }
374
375 if (intsym_buf == NULL)
376 {
377 intsym_buf = bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
378 if (intsym_buf == NULL)
379 goto out;
380 }
381
382 /* Convert the symbols to internal form. */
383 isymend = intsym_buf + symcount;
384 for (esym = extsym_buf, isym = intsym_buf, shndx = extshndx_buf;
385 isym < isymend;
386 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
387 (*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym);
388
389 out:
390 if (alloc_ext != NULL)
391 free (alloc_ext);
392 if (alloc_extshndx != NULL)
393 free (alloc_extshndx);
394
395 return intsym_buf;
396 }
397
398 /* Look up a symbol name. */
399 const char *
400 bfd_elf_sym_name (bfd *abfd,
401 Elf_Internal_Shdr *symtab_hdr,
402 Elf_Internal_Sym *isym,
403 asection *sym_sec)
404 {
405 const char *name;
406 unsigned int iname = isym->st_name;
407 unsigned int shindex = symtab_hdr->sh_link;
408
409 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
410 /* Check for a bogus st_shndx to avoid crashing. */
411 && isym->st_shndx < elf_numsections (abfd)
412 && !(isym->st_shndx >= SHN_LORESERVE && isym->st_shndx <= SHN_HIRESERVE))
413 {
414 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
415 shindex = elf_elfheader (abfd)->e_shstrndx;
416 }
417
418 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
419 if (name == NULL)
420 name = "(null)";
421 else if (sym_sec && *name == '\0')
422 name = bfd_section_name (abfd, sym_sec);
423
424 return name;
425 }
426
427 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
428 sections. The first element is the flags, the rest are section
429 pointers. */
430
431 typedef union elf_internal_group {
432 Elf_Internal_Shdr *shdr;
433 unsigned int flags;
434 } Elf_Internal_Group;
435
436 /* Return the name of the group signature symbol. Why isn't the
437 signature just a string? */
438
439 static const char *
440 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
441 {
442 Elf_Internal_Shdr *hdr;
443 unsigned char esym[sizeof (Elf64_External_Sym)];
444 Elf_External_Sym_Shndx eshndx;
445 Elf_Internal_Sym isym;
446
447 /* First we need to ensure the symbol table is available. Make sure
448 that it is a symbol table section. */
449 hdr = elf_elfsections (abfd) [ghdr->sh_link];
450 if (hdr->sh_type != SHT_SYMTAB
451 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
452 return NULL;
453
454 /* Go read the symbol. */
455 hdr = &elf_tdata (abfd)->symtab_hdr;
456 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
457 &isym, esym, &eshndx) == NULL)
458 return NULL;
459
460 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
461 }
462
463 /* Set next_in_group list pointer, and group name for NEWSECT. */
464
465 static bfd_boolean
466 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
467 {
468 unsigned int num_group = elf_tdata (abfd)->num_group;
469
470 /* If num_group is zero, read in all SHT_GROUP sections. The count
471 is set to -1 if there are no SHT_GROUP sections. */
472 if (num_group == 0)
473 {
474 unsigned int i, shnum;
475
476 /* First count the number of groups. If we have a SHT_GROUP
477 section with just a flag word (ie. sh_size is 4), ignore it. */
478 shnum = elf_numsections (abfd);
479 num_group = 0;
480 for (i = 0; i < shnum; i++)
481 {
482 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
483 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
484 num_group += 1;
485 }
486
487 if (num_group == 0)
488 {
489 num_group = (unsigned) -1;
490 elf_tdata (abfd)->num_group = num_group;
491 }
492 else
493 {
494 /* We keep a list of elf section headers for group sections,
495 so we can find them quickly. */
496 bfd_size_type amt;
497
498 elf_tdata (abfd)->num_group = num_group;
499 elf_tdata (abfd)->group_sect_ptr
500 = bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
501 if (elf_tdata (abfd)->group_sect_ptr == NULL)
502 return FALSE;
503
504 num_group = 0;
505 for (i = 0; i < shnum; i++)
506 {
507 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
508 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
509 {
510 unsigned char *src;
511 Elf_Internal_Group *dest;
512
513 /* Add to list of sections. */
514 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
515 num_group += 1;
516
517 /* Read the raw contents. */
518 BFD_ASSERT (sizeof (*dest) >= 4);
519 amt = shdr->sh_size * sizeof (*dest) / 4;
520 shdr->contents = bfd_alloc2 (abfd, shdr->sh_size,
521 sizeof (*dest) / 4);
522 if (shdr->contents == NULL
523 || bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
524 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
525 != shdr->sh_size))
526 return FALSE;
527
528 /* Translate raw contents, a flag word followed by an
529 array of elf section indices all in target byte order,
530 to the flag word followed by an array of elf section
531 pointers. */
532 src = shdr->contents + shdr->sh_size;
533 dest = (Elf_Internal_Group *) (shdr->contents + amt);
534 while (1)
535 {
536 unsigned int idx;
537
538 src -= 4;
539 --dest;
540 idx = H_GET_32 (abfd, src);
541 if (src == shdr->contents)
542 {
543 dest->flags = idx;
544 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
545 shdr->bfd_section->flags
546 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
547 break;
548 }
549 if (idx >= shnum)
550 {
551 ((*_bfd_error_handler)
552 (_("%B: invalid SHT_GROUP entry"), abfd));
553 idx = 0;
554 }
555 dest->shdr = elf_elfsections (abfd)[idx];
556 }
557 }
558 }
559 }
560 }
561
562 if (num_group != (unsigned) -1)
563 {
564 unsigned int i;
565
566 for (i = 0; i < num_group; i++)
567 {
568 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
569 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
570 unsigned int n_elt = shdr->sh_size / 4;
571
572 /* Look through this group's sections to see if current
573 section is a member. */
574 while (--n_elt != 0)
575 if ((++idx)->shdr == hdr)
576 {
577 asection *s = NULL;
578
579 /* We are a member of this group. Go looking through
580 other members to see if any others are linked via
581 next_in_group. */
582 idx = (Elf_Internal_Group *) shdr->contents;
583 n_elt = shdr->sh_size / 4;
584 while (--n_elt != 0)
585 if ((s = (++idx)->shdr->bfd_section) != NULL
586 && elf_next_in_group (s) != NULL)
587 break;
588 if (n_elt != 0)
589 {
590 /* Snarf the group name from other member, and
591 insert current section in circular list. */
592 elf_group_name (newsect) = elf_group_name (s);
593 elf_next_in_group (newsect) = elf_next_in_group (s);
594 elf_next_in_group (s) = newsect;
595 }
596 else
597 {
598 const char *gname;
599
600 gname = group_signature (abfd, shdr);
601 if (gname == NULL)
602 return FALSE;
603 elf_group_name (newsect) = gname;
604
605 /* Start a circular list with one element. */
606 elf_next_in_group (newsect) = newsect;
607 }
608
609 /* If the group section has been created, point to the
610 new member. */
611 if (shdr->bfd_section != NULL)
612 elf_next_in_group (shdr->bfd_section) = newsect;
613
614 i = num_group - 1;
615 break;
616 }
617 }
618 }
619
620 if (elf_group_name (newsect) == NULL)
621 {
622 (*_bfd_error_handler) (_("%B: no group info for section %A"),
623 abfd, newsect);
624 }
625 return TRUE;
626 }
627
628 bfd_boolean
629 _bfd_elf_setup_sections (bfd *abfd)
630 {
631 unsigned int i;
632 unsigned int num_group = elf_tdata (abfd)->num_group;
633 bfd_boolean result = TRUE;
634 asection *s;
635
636 /* Process SHF_LINK_ORDER. */
637 for (s = abfd->sections; s != NULL; s = s->next)
638 {
639 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
640 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
641 {
642 unsigned int elfsec = this_hdr->sh_link;
643 /* FIXME: The old Intel compiler and old strip/objcopy may
644 not set the sh_link or sh_info fields. Hence we could
645 get the situation where elfsec is 0. */
646 if (elfsec == 0)
647 {
648 const struct elf_backend_data *bed
649 = get_elf_backend_data (abfd);
650 if (bed->link_order_error_handler)
651 bed->link_order_error_handler
652 (_("%B: warning: sh_link not set for section `%A'"),
653 abfd, s);
654 }
655 else
656 {
657 this_hdr = elf_elfsections (abfd)[elfsec];
658 elf_linked_to_section (s) = this_hdr->bfd_section;
659 }
660 }
661 }
662
663 /* Process section groups. */
664 if (num_group == (unsigned) -1)
665 return result;
666
667 for (i = 0; i < num_group; i++)
668 {
669 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
670 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
671 unsigned int n_elt = shdr->sh_size / 4;
672
673 while (--n_elt != 0)
674 if ((++idx)->shdr->bfd_section)
675 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
676 else if (idx->shdr->sh_type == SHT_RELA
677 || idx->shdr->sh_type == SHT_REL)
678 /* We won't include relocation sections in section groups in
679 output object files. We adjust the group section size here
680 so that relocatable link will work correctly when
681 relocation sections are in section group in input object
682 files. */
683 shdr->bfd_section->size -= 4;
684 else
685 {
686 /* There are some unknown sections in the group. */
687 (*_bfd_error_handler)
688 (_("%B: unknown [%d] section `%s' in group [%s]"),
689 abfd,
690 (unsigned int) idx->shdr->sh_type,
691 bfd_elf_string_from_elf_section (abfd,
692 (elf_elfheader (abfd)
693 ->e_shstrndx),
694 idx->shdr->sh_name),
695 shdr->bfd_section->name);
696 result = FALSE;
697 }
698 }
699 return result;
700 }
701
702 bfd_boolean
703 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
704 {
705 return elf_next_in_group (sec) != NULL;
706 }
707
708 /* Make a BFD section from an ELF section. We store a pointer to the
709 BFD section in the bfd_section field of the header. */
710
711 bfd_boolean
712 _bfd_elf_make_section_from_shdr (bfd *abfd,
713 Elf_Internal_Shdr *hdr,
714 const char *name,
715 int shindex)
716 {
717 asection *newsect;
718 flagword flags;
719 const struct elf_backend_data *bed;
720
721 if (hdr->bfd_section != NULL)
722 {
723 BFD_ASSERT (strcmp (name,
724 bfd_get_section_name (abfd, hdr->bfd_section)) == 0);
725 return TRUE;
726 }
727
728 newsect = bfd_make_section_anyway (abfd, name);
729 if (newsect == NULL)
730 return FALSE;
731
732 hdr->bfd_section = newsect;
733 elf_section_data (newsect)->this_hdr = *hdr;
734 elf_section_data (newsect)->this_idx = shindex;
735
736 /* Always use the real type/flags. */
737 elf_section_type (newsect) = hdr->sh_type;
738 elf_section_flags (newsect) = hdr->sh_flags;
739
740 newsect->filepos = hdr->sh_offset;
741
742 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
743 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
744 || ! bfd_set_section_alignment (abfd, newsect,
745 bfd_log2 ((bfd_vma) hdr->sh_addralign)))
746 return FALSE;
747
748 flags = SEC_NO_FLAGS;
749 if (hdr->sh_type != SHT_NOBITS)
750 flags |= SEC_HAS_CONTENTS;
751 if (hdr->sh_type == SHT_GROUP)
752 flags |= SEC_GROUP | SEC_EXCLUDE;
753 if ((hdr->sh_flags & SHF_ALLOC) != 0)
754 {
755 flags |= SEC_ALLOC;
756 if (hdr->sh_type != SHT_NOBITS)
757 flags |= SEC_LOAD;
758 }
759 if ((hdr->sh_flags & SHF_WRITE) == 0)
760 flags |= SEC_READONLY;
761 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
762 flags |= SEC_CODE;
763 else if ((flags & SEC_LOAD) != 0)
764 flags |= SEC_DATA;
765 if ((hdr->sh_flags & SHF_MERGE) != 0)
766 {
767 flags |= SEC_MERGE;
768 newsect->entsize = hdr->sh_entsize;
769 if ((hdr->sh_flags & SHF_STRINGS) != 0)
770 flags |= SEC_STRINGS;
771 }
772 if (hdr->sh_flags & SHF_GROUP)
773 if (!setup_group (abfd, hdr, newsect))
774 return FALSE;
775 if ((hdr->sh_flags & SHF_TLS) != 0)
776 flags |= SEC_THREAD_LOCAL;
777
778 if ((flags & SEC_ALLOC) == 0)
779 {
780 /* The debugging sections appear to be recognized only by name,
781 not any sort of flag. Their SEC_ALLOC bits are cleared. */
782 static const struct
783 {
784 const char *name;
785 int len;
786 } debug_sections [] =
787 {
788 { "debug", 5 }, /* 'd' */
789 { NULL, 0 }, /* 'e' */
790 { NULL, 0 }, /* 'f' */
791 { "gnu.linkonce.wi.", 17 }, /* 'g' */
792 { NULL, 0 }, /* 'h' */
793 { NULL, 0 }, /* 'i' */
794 { NULL, 0 }, /* 'j' */
795 { NULL, 0 }, /* 'k' */
796 { "line", 4 }, /* 'l' */
797 { NULL, 0 }, /* 'm' */
798 { NULL, 0 }, /* 'n' */
799 { NULL, 0 }, /* 'o' */
800 { NULL, 0 }, /* 'p' */
801 { NULL, 0 }, /* 'q' */
802 { NULL, 0 }, /* 'r' */
803 { "stab", 4 } /* 's' */
804 };
805
806 if (name [0] == '.')
807 {
808 int i = name [1] - 'd';
809 if (i >= 0
810 && i < (int) ARRAY_SIZE (debug_sections)
811 && debug_sections [i].name != NULL
812 && strncmp (&name [1], debug_sections [i].name,
813 debug_sections [i].len) == 0)
814 flags |= SEC_DEBUGGING;
815 }
816 }
817
818 /* As a GNU extension, if the name begins with .gnu.linkonce, we
819 only link a single copy of the section. This is used to support
820 g++. g++ will emit each template expansion in its own section.
821 The symbols will be defined as weak, so that multiple definitions
822 are permitted. The GNU linker extension is to actually discard
823 all but one of the sections. */
824 if (strncmp (name, ".gnu.linkonce", sizeof ".gnu.linkonce" - 1) == 0
825 && elf_next_in_group (newsect) == NULL)
826 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
827
828 bed = get_elf_backend_data (abfd);
829 if (bed->elf_backend_section_flags)
830 if (! bed->elf_backend_section_flags (&flags, hdr))
831 return FALSE;
832
833 if (! bfd_set_section_flags (abfd, newsect, flags))
834 return FALSE;
835
836 if ((flags & SEC_ALLOC) != 0)
837 {
838 Elf_Internal_Phdr *phdr;
839 unsigned int i;
840
841 /* Look through the phdrs to see if we need to adjust the lma.
842 If all the p_paddr fields are zero, we ignore them, since
843 some ELF linkers produce such output. */
844 phdr = elf_tdata (abfd)->phdr;
845 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
846 {
847 if (phdr->p_paddr != 0)
848 break;
849 }
850 if (i < elf_elfheader (abfd)->e_phnum)
851 {
852 phdr = elf_tdata (abfd)->phdr;
853 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
854 {
855 /* This section is part of this segment if its file
856 offset plus size lies within the segment's memory
857 span and, if the section is loaded, the extent of the
858 loaded data lies within the extent of the segment.
859
860 Note - we used to check the p_paddr field as well, and
861 refuse to set the LMA if it was 0. This is wrong
862 though, as a perfectly valid initialised segment can
863 have a p_paddr of zero. Some architectures, eg ARM,
864 place special significance on the address 0 and
865 executables need to be able to have a segment which
866 covers this address. */
867 if (phdr->p_type == PT_LOAD
868 && (bfd_vma) hdr->sh_offset >= phdr->p_offset
869 && (hdr->sh_offset + hdr->sh_size
870 <= phdr->p_offset + phdr->p_memsz)
871 && ((flags & SEC_LOAD) == 0
872 || (hdr->sh_offset + hdr->sh_size
873 <= phdr->p_offset + phdr->p_filesz)))
874 {
875 if ((flags & SEC_LOAD) == 0)
876 newsect->lma = (phdr->p_paddr
877 + hdr->sh_addr - phdr->p_vaddr);
878 else
879 /* We used to use the same adjustment for SEC_LOAD
880 sections, but that doesn't work if the segment
881 is packed with code from multiple VMAs.
882 Instead we calculate the section LMA based on
883 the segment LMA. It is assumed that the
884 segment will contain sections with contiguous
885 LMAs, even if the VMAs are not. */
886 newsect->lma = (phdr->p_paddr
887 + hdr->sh_offset - phdr->p_offset);
888
889 /* With contiguous segments, we can't tell from file
890 offsets whether a section with zero size should
891 be placed at the end of one segment or the
892 beginning of the next. Decide based on vaddr. */
893 if (hdr->sh_addr >= phdr->p_vaddr
894 && (hdr->sh_addr + hdr->sh_size
895 <= phdr->p_vaddr + phdr->p_memsz))
896 break;
897 }
898 }
899 }
900 }
901
902 return TRUE;
903 }
904
905 /*
906 INTERNAL_FUNCTION
907 bfd_elf_find_section
908
909 SYNOPSIS
910 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
911
912 DESCRIPTION
913 Helper functions for GDB to locate the string tables.
914 Since BFD hides string tables from callers, GDB needs to use an
915 internal hook to find them. Sun's .stabstr, in particular,
916 isn't even pointed to by the .stab section, so ordinary
917 mechanisms wouldn't work to find it, even if we had some.
918 */
919
920 struct elf_internal_shdr *
921 bfd_elf_find_section (bfd *abfd, char *name)
922 {
923 Elf_Internal_Shdr **i_shdrp;
924 char *shstrtab;
925 unsigned int max;
926 unsigned int i;
927
928 i_shdrp = elf_elfsections (abfd);
929 if (i_shdrp != NULL)
930 {
931 shstrtab = bfd_elf_get_str_section (abfd,
932 elf_elfheader (abfd)->e_shstrndx);
933 if (shstrtab != NULL)
934 {
935 max = elf_numsections (abfd);
936 for (i = 1; i < max; i++)
937 if (!strcmp (&shstrtab[i_shdrp[i]->sh_name], name))
938 return i_shdrp[i];
939 }
940 }
941 return 0;
942 }
943
944 const char *const bfd_elf_section_type_names[] = {
945 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
946 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
947 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
948 };
949
950 /* ELF relocs are against symbols. If we are producing relocatable
951 output, and the reloc is against an external symbol, and nothing
952 has given us any additional addend, the resulting reloc will also
953 be against the same symbol. In such a case, we don't want to
954 change anything about the way the reloc is handled, since it will
955 all be done at final link time. Rather than put special case code
956 into bfd_perform_relocation, all the reloc types use this howto
957 function. It just short circuits the reloc if producing
958 relocatable output against an external symbol. */
959
960 bfd_reloc_status_type
961 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
962 arelent *reloc_entry,
963 asymbol *symbol,
964 void *data ATTRIBUTE_UNUSED,
965 asection *input_section,
966 bfd *output_bfd,
967 char **error_message ATTRIBUTE_UNUSED)
968 {
969 if (output_bfd != NULL
970 && (symbol->flags & BSF_SECTION_SYM) == 0
971 && (! reloc_entry->howto->partial_inplace
972 || reloc_entry->addend == 0))
973 {
974 reloc_entry->address += input_section->output_offset;
975 return bfd_reloc_ok;
976 }
977
978 return bfd_reloc_continue;
979 }
980 \f
981 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
982
983 static void
984 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
985 asection *sec)
986 {
987 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
988 sec->sec_info_type = ELF_INFO_TYPE_NONE;
989 }
990
991 /* Finish SHF_MERGE section merging. */
992
993 bfd_boolean
994 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
995 {
996 bfd *ibfd;
997 asection *sec;
998
999 if (!is_elf_hash_table (info->hash))
1000 return FALSE;
1001
1002 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
1003 if ((ibfd->flags & DYNAMIC) == 0)
1004 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
1005 if ((sec->flags & SEC_MERGE) != 0
1006 && !bfd_is_abs_section (sec->output_section))
1007 {
1008 struct bfd_elf_section_data *secdata;
1009
1010 secdata = elf_section_data (sec);
1011 if (! _bfd_add_merge_section (abfd,
1012 &elf_hash_table (info)->merge_info,
1013 sec, &secdata->sec_info))
1014 return FALSE;
1015 else if (secdata->sec_info)
1016 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
1017 }
1018
1019 if (elf_hash_table (info)->merge_info != NULL)
1020 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
1021 merge_sections_remove_hook);
1022 return TRUE;
1023 }
1024
1025 void
1026 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
1027 {
1028 sec->output_section = bfd_abs_section_ptr;
1029 sec->output_offset = sec->vma;
1030 if (!is_elf_hash_table (info->hash))
1031 return;
1032
1033 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
1034 }
1035 \f
1036 /* Copy the program header and other data from one object module to
1037 another. */
1038
1039 bfd_boolean
1040 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1041 {
1042 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1043 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1044 return TRUE;
1045
1046 BFD_ASSERT (!elf_flags_init (obfd)
1047 || (elf_elfheader (obfd)->e_flags
1048 == elf_elfheader (ibfd)->e_flags));
1049
1050 elf_gp (obfd) = elf_gp (ibfd);
1051 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1052 elf_flags_init (obfd) = TRUE;
1053 return TRUE;
1054 }
1055
1056 /* Print out the program headers. */
1057
1058 bfd_boolean
1059 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1060 {
1061 FILE *f = farg;
1062 Elf_Internal_Phdr *p;
1063 asection *s;
1064 bfd_byte *dynbuf = NULL;
1065
1066 p = elf_tdata (abfd)->phdr;
1067 if (p != NULL)
1068 {
1069 unsigned int i, c;
1070
1071 fprintf (f, _("\nProgram Header:\n"));
1072 c = elf_elfheader (abfd)->e_phnum;
1073 for (i = 0; i < c; i++, p++)
1074 {
1075 const char *pt;
1076 char buf[20];
1077
1078 switch (p->p_type)
1079 {
1080 case PT_NULL: pt = "NULL"; break;
1081 case PT_LOAD: pt = "LOAD"; break;
1082 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1083 case PT_INTERP: pt = "INTERP"; break;
1084 case PT_NOTE: pt = "NOTE"; break;
1085 case PT_SHLIB: pt = "SHLIB"; break;
1086 case PT_PHDR: pt = "PHDR"; break;
1087 case PT_TLS: pt = "TLS"; break;
1088 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1089 case PT_GNU_STACK: pt = "STACK"; break;
1090 case PT_GNU_RELRO: pt = "RELRO"; break;
1091 default: sprintf (buf, "0x%lx", p->p_type); pt = buf; break;
1092 }
1093 fprintf (f, "%8s off 0x", pt);
1094 bfd_fprintf_vma (abfd, f, p->p_offset);
1095 fprintf (f, " vaddr 0x");
1096 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1097 fprintf (f, " paddr 0x");
1098 bfd_fprintf_vma (abfd, f, p->p_paddr);
1099 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1100 fprintf (f, " filesz 0x");
1101 bfd_fprintf_vma (abfd, f, p->p_filesz);
1102 fprintf (f, " memsz 0x");
1103 bfd_fprintf_vma (abfd, f, p->p_memsz);
1104 fprintf (f, " flags %c%c%c",
1105 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1106 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1107 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1108 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1109 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1110 fprintf (f, "\n");
1111 }
1112 }
1113
1114 s = bfd_get_section_by_name (abfd, ".dynamic");
1115 if (s != NULL)
1116 {
1117 int elfsec;
1118 unsigned long shlink;
1119 bfd_byte *extdyn, *extdynend;
1120 size_t extdynsize;
1121 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1122
1123 fprintf (f, _("\nDynamic Section:\n"));
1124
1125 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1126 goto error_return;
1127
1128 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1129 if (elfsec == -1)
1130 goto error_return;
1131 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1132
1133 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1134 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1135
1136 extdyn = dynbuf;
1137 extdynend = extdyn + s->size;
1138 for (; extdyn < extdynend; extdyn += extdynsize)
1139 {
1140 Elf_Internal_Dyn dyn;
1141 const char *name;
1142 char ab[20];
1143 bfd_boolean stringp;
1144
1145 (*swap_dyn_in) (abfd, extdyn, &dyn);
1146
1147 if (dyn.d_tag == DT_NULL)
1148 break;
1149
1150 stringp = FALSE;
1151 switch (dyn.d_tag)
1152 {
1153 default:
1154 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1155 name = ab;
1156 break;
1157
1158 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1159 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1160 case DT_PLTGOT: name = "PLTGOT"; break;
1161 case DT_HASH: name = "HASH"; break;
1162 case DT_STRTAB: name = "STRTAB"; break;
1163 case DT_SYMTAB: name = "SYMTAB"; break;
1164 case DT_RELA: name = "RELA"; break;
1165 case DT_RELASZ: name = "RELASZ"; break;
1166 case DT_RELAENT: name = "RELAENT"; break;
1167 case DT_STRSZ: name = "STRSZ"; break;
1168 case DT_SYMENT: name = "SYMENT"; break;
1169 case DT_INIT: name = "INIT"; break;
1170 case DT_FINI: name = "FINI"; break;
1171 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1172 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1173 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1174 case DT_REL: name = "REL"; break;
1175 case DT_RELSZ: name = "RELSZ"; break;
1176 case DT_RELENT: name = "RELENT"; break;
1177 case DT_PLTREL: name = "PLTREL"; break;
1178 case DT_DEBUG: name = "DEBUG"; break;
1179 case DT_TEXTREL: name = "TEXTREL"; break;
1180 case DT_JMPREL: name = "JMPREL"; break;
1181 case DT_BIND_NOW: name = "BIND_NOW"; break;
1182 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1183 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1184 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1185 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1186 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1187 case DT_FLAGS: name = "FLAGS"; break;
1188 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1189 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1190 case DT_CHECKSUM: name = "CHECKSUM"; break;
1191 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1192 case DT_MOVEENT: name = "MOVEENT"; break;
1193 case DT_MOVESZ: name = "MOVESZ"; break;
1194 case DT_FEATURE: name = "FEATURE"; break;
1195 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1196 case DT_SYMINSZ: name = "SYMINSZ"; break;
1197 case DT_SYMINENT: name = "SYMINENT"; break;
1198 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1199 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1200 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1201 case DT_PLTPAD: name = "PLTPAD"; break;
1202 case DT_MOVETAB: name = "MOVETAB"; break;
1203 case DT_SYMINFO: name = "SYMINFO"; break;
1204 case DT_RELACOUNT: name = "RELACOUNT"; break;
1205 case DT_RELCOUNT: name = "RELCOUNT"; break;
1206 case DT_FLAGS_1: name = "FLAGS_1"; break;
1207 case DT_VERSYM: name = "VERSYM"; break;
1208 case DT_VERDEF: name = "VERDEF"; break;
1209 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1210 case DT_VERNEED: name = "VERNEED"; break;
1211 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1212 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1213 case DT_USED: name = "USED"; break;
1214 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1215 }
1216
1217 fprintf (f, " %-11s ", name);
1218 if (! stringp)
1219 fprintf (f, "0x%lx", (unsigned long) dyn.d_un.d_val);
1220 else
1221 {
1222 const char *string;
1223 unsigned int tagv = dyn.d_un.d_val;
1224
1225 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1226 if (string == NULL)
1227 goto error_return;
1228 fprintf (f, "%s", string);
1229 }
1230 fprintf (f, "\n");
1231 }
1232
1233 free (dynbuf);
1234 dynbuf = NULL;
1235 }
1236
1237 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1238 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1239 {
1240 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1241 return FALSE;
1242 }
1243
1244 if (elf_dynverdef (abfd) != 0)
1245 {
1246 Elf_Internal_Verdef *t;
1247
1248 fprintf (f, _("\nVersion definitions:\n"));
1249 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1250 {
1251 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1252 t->vd_flags, t->vd_hash,
1253 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1254 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1255 {
1256 Elf_Internal_Verdaux *a;
1257
1258 fprintf (f, "\t");
1259 for (a = t->vd_auxptr->vda_nextptr;
1260 a != NULL;
1261 a = a->vda_nextptr)
1262 fprintf (f, "%s ",
1263 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1264 fprintf (f, "\n");
1265 }
1266 }
1267 }
1268
1269 if (elf_dynverref (abfd) != 0)
1270 {
1271 Elf_Internal_Verneed *t;
1272
1273 fprintf (f, _("\nVersion References:\n"));
1274 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1275 {
1276 Elf_Internal_Vernaux *a;
1277
1278 fprintf (f, _(" required from %s:\n"),
1279 t->vn_filename ? t->vn_filename : "<corrupt>");
1280 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1281 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1282 a->vna_flags, a->vna_other,
1283 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1284 }
1285 }
1286
1287 return TRUE;
1288
1289 error_return:
1290 if (dynbuf != NULL)
1291 free (dynbuf);
1292 return FALSE;
1293 }
1294
1295 /* Display ELF-specific fields of a symbol. */
1296
1297 void
1298 bfd_elf_print_symbol (bfd *abfd,
1299 void *filep,
1300 asymbol *symbol,
1301 bfd_print_symbol_type how)
1302 {
1303 FILE *file = filep;
1304 switch (how)
1305 {
1306 case bfd_print_symbol_name:
1307 fprintf (file, "%s", symbol->name);
1308 break;
1309 case bfd_print_symbol_more:
1310 fprintf (file, "elf ");
1311 bfd_fprintf_vma (abfd, file, symbol->value);
1312 fprintf (file, " %lx", (long) symbol->flags);
1313 break;
1314 case bfd_print_symbol_all:
1315 {
1316 const char *section_name;
1317 const char *name = NULL;
1318 const struct elf_backend_data *bed;
1319 unsigned char st_other;
1320 bfd_vma val;
1321
1322 section_name = symbol->section ? symbol->section->name : "(*none*)";
1323
1324 bed = get_elf_backend_data (abfd);
1325 if (bed->elf_backend_print_symbol_all)
1326 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1327
1328 if (name == NULL)
1329 {
1330 name = symbol->name;
1331 bfd_print_symbol_vandf (abfd, file, symbol);
1332 }
1333
1334 fprintf (file, " %s\t", section_name);
1335 /* Print the "other" value for a symbol. For common symbols,
1336 we've already printed the size; now print the alignment.
1337 For other symbols, we have no specified alignment, and
1338 we've printed the address; now print the size. */
1339 if (bfd_is_com_section (symbol->section))
1340 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1341 else
1342 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1343 bfd_fprintf_vma (abfd, file, val);
1344
1345 /* If we have version information, print it. */
1346 if (elf_tdata (abfd)->dynversym_section != 0
1347 && (elf_tdata (abfd)->dynverdef_section != 0
1348 || elf_tdata (abfd)->dynverref_section != 0))
1349 {
1350 unsigned int vernum;
1351 const char *version_string;
1352
1353 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1354
1355 if (vernum == 0)
1356 version_string = "";
1357 else if (vernum == 1)
1358 version_string = "Base";
1359 else if (vernum <= elf_tdata (abfd)->cverdefs)
1360 version_string =
1361 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1362 else
1363 {
1364 Elf_Internal_Verneed *t;
1365
1366 version_string = "";
1367 for (t = elf_tdata (abfd)->verref;
1368 t != NULL;
1369 t = t->vn_nextref)
1370 {
1371 Elf_Internal_Vernaux *a;
1372
1373 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1374 {
1375 if (a->vna_other == vernum)
1376 {
1377 version_string = a->vna_nodename;
1378 break;
1379 }
1380 }
1381 }
1382 }
1383
1384 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1385 fprintf (file, " %-11s", version_string);
1386 else
1387 {
1388 int i;
1389
1390 fprintf (file, " (%s)", version_string);
1391 for (i = 10 - strlen (version_string); i > 0; --i)
1392 putc (' ', file);
1393 }
1394 }
1395
1396 /* If the st_other field is not zero, print it. */
1397 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1398
1399 switch (st_other)
1400 {
1401 case 0: break;
1402 case STV_INTERNAL: fprintf (file, " .internal"); break;
1403 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1404 case STV_PROTECTED: fprintf (file, " .protected"); break;
1405 default:
1406 /* Some other non-defined flags are also present, so print
1407 everything hex. */
1408 fprintf (file, " 0x%02x", (unsigned int) st_other);
1409 }
1410
1411 fprintf (file, " %s", name);
1412 }
1413 break;
1414 }
1415 }
1416 \f
1417 /* Create an entry in an ELF linker hash table. */
1418
1419 struct bfd_hash_entry *
1420 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1421 struct bfd_hash_table *table,
1422 const char *string)
1423 {
1424 /* Allocate the structure if it has not already been allocated by a
1425 subclass. */
1426 if (entry == NULL)
1427 {
1428 entry = bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
1429 if (entry == NULL)
1430 return entry;
1431 }
1432
1433 /* Call the allocation method of the superclass. */
1434 entry = _bfd_link_hash_newfunc (entry, table, string);
1435 if (entry != NULL)
1436 {
1437 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
1438 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
1439
1440 /* Set local fields. */
1441 ret->indx = -1;
1442 ret->dynindx = -1;
1443 ret->got = htab->init_got_refcount;
1444 ret->plt = htab->init_plt_refcount;
1445 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
1446 - offsetof (struct elf_link_hash_entry, size)));
1447 /* Assume that we have been called by a non-ELF symbol reader.
1448 This flag is then reset by the code which reads an ELF input
1449 file. This ensures that a symbol created by a non-ELF symbol
1450 reader will have the flag set correctly. */
1451 ret->non_elf = 1;
1452 }
1453
1454 return entry;
1455 }
1456
1457 /* Copy data from an indirect symbol to its direct symbol, hiding the
1458 old indirect symbol. Also used for copying flags to a weakdef. */
1459
1460 void
1461 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
1462 struct elf_link_hash_entry *dir,
1463 struct elf_link_hash_entry *ind)
1464 {
1465 struct elf_link_hash_table *htab;
1466
1467 /* Copy down any references that we may have already seen to the
1468 symbol which just became indirect. */
1469
1470 dir->ref_dynamic |= ind->ref_dynamic;
1471 dir->ref_regular |= ind->ref_regular;
1472 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
1473 dir->non_got_ref |= ind->non_got_ref;
1474 dir->needs_plt |= ind->needs_plt;
1475 dir->pointer_equality_needed |= ind->pointer_equality_needed;
1476
1477 if (ind->root.type != bfd_link_hash_indirect)
1478 return;
1479
1480 /* Copy over the global and procedure linkage table refcount entries.
1481 These may have been already set up by a check_relocs routine. */
1482 htab = elf_hash_table (info);
1483 if (ind->got.refcount > htab->init_got_refcount.refcount)
1484 {
1485 if (dir->got.refcount < 0)
1486 dir->got.refcount = 0;
1487 dir->got.refcount += ind->got.refcount;
1488 ind->got.refcount = htab->init_got_refcount.refcount;
1489 }
1490
1491 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
1492 {
1493 if (dir->plt.refcount < 0)
1494 dir->plt.refcount = 0;
1495 dir->plt.refcount += ind->plt.refcount;
1496 ind->plt.refcount = htab->init_plt_refcount.refcount;
1497 }
1498
1499 if (ind->dynindx != -1)
1500 {
1501 if (dir->dynindx != -1)
1502 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
1503 dir->dynindx = ind->dynindx;
1504 dir->dynstr_index = ind->dynstr_index;
1505 ind->dynindx = -1;
1506 ind->dynstr_index = 0;
1507 }
1508 }
1509
1510 void
1511 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
1512 struct elf_link_hash_entry *h,
1513 bfd_boolean force_local)
1514 {
1515 h->plt = elf_hash_table (info)->init_plt_offset;
1516 h->needs_plt = 0;
1517 if (force_local)
1518 {
1519 h->forced_local = 1;
1520 if (h->dynindx != -1)
1521 {
1522 h->dynindx = -1;
1523 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1524 h->dynstr_index);
1525 }
1526 }
1527 }
1528
1529 /* Initialize an ELF linker hash table. */
1530
1531 bfd_boolean
1532 _bfd_elf_link_hash_table_init
1533 (struct elf_link_hash_table *table,
1534 bfd *abfd,
1535 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
1536 struct bfd_hash_table *,
1537 const char *))
1538 {
1539 bfd_boolean ret;
1540 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
1541
1542 table->dynamic_sections_created = FALSE;
1543 table->dynobj = NULL;
1544 table->init_got_refcount.refcount = can_refcount - 1;
1545 table->init_plt_refcount.refcount = can_refcount - 1;
1546 table->init_got_offset.offset = -(bfd_vma) 1;
1547 table->init_plt_offset.offset = -(bfd_vma) 1;
1548 /* The first dynamic symbol is a dummy. */
1549 table->dynsymcount = 1;
1550 table->dynstr = NULL;
1551 table->bucketcount = 0;
1552 table->needed = NULL;
1553 table->hgot = NULL;
1554 table->merge_info = NULL;
1555 memset (&table->stab_info, 0, sizeof (table->stab_info));
1556 memset (&table->eh_info, 0, sizeof (table->eh_info));
1557 table->dynlocal = NULL;
1558 table->runpath = NULL;
1559 table->tls_sec = NULL;
1560 table->tls_size = 0;
1561 table->loaded = NULL;
1562 table->is_relocatable_executable = FALSE;
1563
1564 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc);
1565 table->root.type = bfd_link_elf_hash_table;
1566
1567 return ret;
1568 }
1569
1570 /* Create an ELF linker hash table. */
1571
1572 struct bfd_link_hash_table *
1573 _bfd_elf_link_hash_table_create (bfd *abfd)
1574 {
1575 struct elf_link_hash_table *ret;
1576 bfd_size_type amt = sizeof (struct elf_link_hash_table);
1577
1578 ret = bfd_malloc (amt);
1579 if (ret == NULL)
1580 return NULL;
1581
1582 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc))
1583 {
1584 free (ret);
1585 return NULL;
1586 }
1587
1588 return &ret->root;
1589 }
1590
1591 /* This is a hook for the ELF emulation code in the generic linker to
1592 tell the backend linker what file name to use for the DT_NEEDED
1593 entry for a dynamic object. */
1594
1595 void
1596 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
1597 {
1598 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1599 && bfd_get_format (abfd) == bfd_object)
1600 elf_dt_name (abfd) = name;
1601 }
1602
1603 int
1604 bfd_elf_get_dyn_lib_class (bfd *abfd)
1605 {
1606 int lib_class;
1607 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1608 && bfd_get_format (abfd) == bfd_object)
1609 lib_class = elf_dyn_lib_class (abfd);
1610 else
1611 lib_class = 0;
1612 return lib_class;
1613 }
1614
1615 void
1616 bfd_elf_set_dyn_lib_class (bfd *abfd, int lib_class)
1617 {
1618 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1619 && bfd_get_format (abfd) == bfd_object)
1620 elf_dyn_lib_class (abfd) = lib_class;
1621 }
1622
1623 /* Get the list of DT_NEEDED entries for a link. This is a hook for
1624 the linker ELF emulation code. */
1625
1626 struct bfd_link_needed_list *
1627 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
1628 struct bfd_link_info *info)
1629 {
1630 if (! is_elf_hash_table (info->hash))
1631 return NULL;
1632 return elf_hash_table (info)->needed;
1633 }
1634
1635 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
1636 hook for the linker ELF emulation code. */
1637
1638 struct bfd_link_needed_list *
1639 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
1640 struct bfd_link_info *info)
1641 {
1642 if (! is_elf_hash_table (info->hash))
1643 return NULL;
1644 return elf_hash_table (info)->runpath;
1645 }
1646
1647 /* Get the name actually used for a dynamic object for a link. This
1648 is the SONAME entry if there is one. Otherwise, it is the string
1649 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
1650
1651 const char *
1652 bfd_elf_get_dt_soname (bfd *abfd)
1653 {
1654 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1655 && bfd_get_format (abfd) == bfd_object)
1656 return elf_dt_name (abfd);
1657 return NULL;
1658 }
1659
1660 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
1661 the ELF linker emulation code. */
1662
1663 bfd_boolean
1664 bfd_elf_get_bfd_needed_list (bfd *abfd,
1665 struct bfd_link_needed_list **pneeded)
1666 {
1667 asection *s;
1668 bfd_byte *dynbuf = NULL;
1669 int elfsec;
1670 unsigned long shlink;
1671 bfd_byte *extdyn, *extdynend;
1672 size_t extdynsize;
1673 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1674
1675 *pneeded = NULL;
1676
1677 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
1678 || bfd_get_format (abfd) != bfd_object)
1679 return TRUE;
1680
1681 s = bfd_get_section_by_name (abfd, ".dynamic");
1682 if (s == NULL || s->size == 0)
1683 return TRUE;
1684
1685 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1686 goto error_return;
1687
1688 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1689 if (elfsec == -1)
1690 goto error_return;
1691
1692 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1693
1694 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1695 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1696
1697 extdyn = dynbuf;
1698 extdynend = extdyn + s->size;
1699 for (; extdyn < extdynend; extdyn += extdynsize)
1700 {
1701 Elf_Internal_Dyn dyn;
1702
1703 (*swap_dyn_in) (abfd, extdyn, &dyn);
1704
1705 if (dyn.d_tag == DT_NULL)
1706 break;
1707
1708 if (dyn.d_tag == DT_NEEDED)
1709 {
1710 const char *string;
1711 struct bfd_link_needed_list *l;
1712 unsigned int tagv = dyn.d_un.d_val;
1713 bfd_size_type amt;
1714
1715 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1716 if (string == NULL)
1717 goto error_return;
1718
1719 amt = sizeof *l;
1720 l = bfd_alloc (abfd, amt);
1721 if (l == NULL)
1722 goto error_return;
1723
1724 l->by = abfd;
1725 l->name = string;
1726 l->next = *pneeded;
1727 *pneeded = l;
1728 }
1729 }
1730
1731 free (dynbuf);
1732
1733 return TRUE;
1734
1735 error_return:
1736 if (dynbuf != NULL)
1737 free (dynbuf);
1738 return FALSE;
1739 }
1740 \f
1741 /* Allocate an ELF string table--force the first byte to be zero. */
1742
1743 struct bfd_strtab_hash *
1744 _bfd_elf_stringtab_init (void)
1745 {
1746 struct bfd_strtab_hash *ret;
1747
1748 ret = _bfd_stringtab_init ();
1749 if (ret != NULL)
1750 {
1751 bfd_size_type loc;
1752
1753 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1754 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1755 if (loc == (bfd_size_type) -1)
1756 {
1757 _bfd_stringtab_free (ret);
1758 ret = NULL;
1759 }
1760 }
1761 return ret;
1762 }
1763 \f
1764 /* ELF .o/exec file reading */
1765
1766 /* Create a new bfd section from an ELF section header. */
1767
1768 bfd_boolean
1769 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1770 {
1771 Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[shindex];
1772 Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
1773 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1774 const char *name;
1775
1776 name = bfd_elf_string_from_elf_section (abfd,
1777 elf_elfheader (abfd)->e_shstrndx,
1778 hdr->sh_name);
1779 if (name == NULL)
1780 return FALSE;
1781
1782 switch (hdr->sh_type)
1783 {
1784 case SHT_NULL:
1785 /* Inactive section. Throw it away. */
1786 return TRUE;
1787
1788 case SHT_PROGBITS: /* Normal section with contents. */
1789 case SHT_NOBITS: /* .bss section. */
1790 case SHT_HASH: /* .hash section. */
1791 case SHT_NOTE: /* .note section. */
1792 case SHT_INIT_ARRAY: /* .init_array section. */
1793 case SHT_FINI_ARRAY: /* .fini_array section. */
1794 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1795 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1796 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1797
1798 case SHT_DYNAMIC: /* Dynamic linking information. */
1799 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1800 return FALSE;
1801 if (hdr->sh_link > elf_numsections (abfd)
1802 || elf_elfsections (abfd)[hdr->sh_link] == NULL)
1803 return FALSE;
1804 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1805 {
1806 Elf_Internal_Shdr *dynsymhdr;
1807
1808 /* The shared libraries distributed with hpux11 have a bogus
1809 sh_link field for the ".dynamic" section. Find the
1810 string table for the ".dynsym" section instead. */
1811 if (elf_dynsymtab (abfd) != 0)
1812 {
1813 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1814 hdr->sh_link = dynsymhdr->sh_link;
1815 }
1816 else
1817 {
1818 unsigned int i, num_sec;
1819
1820 num_sec = elf_numsections (abfd);
1821 for (i = 1; i < num_sec; i++)
1822 {
1823 dynsymhdr = elf_elfsections (abfd)[i];
1824 if (dynsymhdr->sh_type == SHT_DYNSYM)
1825 {
1826 hdr->sh_link = dynsymhdr->sh_link;
1827 break;
1828 }
1829 }
1830 }
1831 }
1832 break;
1833
1834 case SHT_SYMTAB: /* A symbol table */
1835 if (elf_onesymtab (abfd) == shindex)
1836 return TRUE;
1837
1838 if (hdr->sh_entsize != bed->s->sizeof_sym)
1839 return FALSE;
1840 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1841 elf_onesymtab (abfd) = shindex;
1842 elf_tdata (abfd)->symtab_hdr = *hdr;
1843 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1844 abfd->flags |= HAS_SYMS;
1845
1846 /* Sometimes a shared object will map in the symbol table. If
1847 SHF_ALLOC is set, and this is a shared object, then we also
1848 treat this section as a BFD section. We can not base the
1849 decision purely on SHF_ALLOC, because that flag is sometimes
1850 set in a relocatable object file, which would confuse the
1851 linker. */
1852 if ((hdr->sh_flags & SHF_ALLOC) != 0
1853 && (abfd->flags & DYNAMIC) != 0
1854 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1855 shindex))
1856 return FALSE;
1857
1858 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1859 can't read symbols without that section loaded as well. It
1860 is most likely specified by the next section header. */
1861 if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
1862 {
1863 unsigned int i, num_sec;
1864
1865 num_sec = elf_numsections (abfd);
1866 for (i = shindex + 1; i < num_sec; i++)
1867 {
1868 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1869 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1870 && hdr2->sh_link == shindex)
1871 break;
1872 }
1873 if (i == num_sec)
1874 for (i = 1; i < shindex; i++)
1875 {
1876 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1877 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1878 && hdr2->sh_link == shindex)
1879 break;
1880 }
1881 if (i != shindex)
1882 return bfd_section_from_shdr (abfd, i);
1883 }
1884 return TRUE;
1885
1886 case SHT_DYNSYM: /* A dynamic symbol table */
1887 if (elf_dynsymtab (abfd) == shindex)
1888 return TRUE;
1889
1890 if (hdr->sh_entsize != bed->s->sizeof_sym)
1891 return FALSE;
1892 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1893 elf_dynsymtab (abfd) = shindex;
1894 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1895 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1896 abfd->flags |= HAS_SYMS;
1897
1898 /* Besides being a symbol table, we also treat this as a regular
1899 section, so that objcopy can handle it. */
1900 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1901
1902 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1903 if (elf_symtab_shndx (abfd) == shindex)
1904 return TRUE;
1905
1906 BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
1907 elf_symtab_shndx (abfd) = shindex;
1908 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1909 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1910 return TRUE;
1911
1912 case SHT_STRTAB: /* A string table */
1913 if (hdr->bfd_section != NULL)
1914 return TRUE;
1915 if (ehdr->e_shstrndx == shindex)
1916 {
1917 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1918 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1919 return TRUE;
1920 }
1921 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
1922 {
1923 symtab_strtab:
1924 elf_tdata (abfd)->strtab_hdr = *hdr;
1925 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
1926 return TRUE;
1927 }
1928 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
1929 {
1930 dynsymtab_strtab:
1931 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1932 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
1933 elf_elfsections (abfd)[shindex] = hdr;
1934 /* We also treat this as a regular section, so that objcopy
1935 can handle it. */
1936 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1937 shindex);
1938 }
1939
1940 /* If the string table isn't one of the above, then treat it as a
1941 regular section. We need to scan all the headers to be sure,
1942 just in case this strtab section appeared before the above. */
1943 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
1944 {
1945 unsigned int i, num_sec;
1946
1947 num_sec = elf_numsections (abfd);
1948 for (i = 1; i < num_sec; i++)
1949 {
1950 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1951 if (hdr2->sh_link == shindex)
1952 {
1953 /* Prevent endless recursion on broken objects. */
1954 if (i == shindex)
1955 return FALSE;
1956 if (! bfd_section_from_shdr (abfd, i))
1957 return FALSE;
1958 if (elf_onesymtab (abfd) == i)
1959 goto symtab_strtab;
1960 if (elf_dynsymtab (abfd) == i)
1961 goto dynsymtab_strtab;
1962 }
1963 }
1964 }
1965 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1966
1967 case SHT_REL:
1968 case SHT_RELA:
1969 /* *These* do a lot of work -- but build no sections! */
1970 {
1971 asection *target_sect;
1972 Elf_Internal_Shdr *hdr2;
1973 unsigned int num_sec = elf_numsections (abfd);
1974
1975 if (hdr->sh_entsize
1976 != (bfd_size_type) (hdr->sh_type == SHT_REL
1977 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
1978 return FALSE;
1979
1980 /* Check for a bogus link to avoid crashing. */
1981 if ((hdr->sh_link >= SHN_LORESERVE && hdr->sh_link <= SHN_HIRESERVE)
1982 || hdr->sh_link >= num_sec)
1983 {
1984 ((*_bfd_error_handler)
1985 (_("%B: invalid link %lu for reloc section %s (index %u)"),
1986 abfd, hdr->sh_link, name, shindex));
1987 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1988 shindex);
1989 }
1990
1991 /* For some incomprehensible reason Oracle distributes
1992 libraries for Solaris in which some of the objects have
1993 bogus sh_link fields. It would be nice if we could just
1994 reject them, but, unfortunately, some people need to use
1995 them. We scan through the section headers; if we find only
1996 one suitable symbol table, we clobber the sh_link to point
1997 to it. I hope this doesn't break anything. */
1998 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
1999 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
2000 {
2001 unsigned int scan;
2002 int found;
2003
2004 found = 0;
2005 for (scan = 1; scan < num_sec; scan++)
2006 {
2007 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
2008 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
2009 {
2010 if (found != 0)
2011 {
2012 found = 0;
2013 break;
2014 }
2015 found = scan;
2016 }
2017 }
2018 if (found != 0)
2019 hdr->sh_link = found;
2020 }
2021
2022 /* Get the symbol table. */
2023 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
2024 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
2025 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
2026 return FALSE;
2027
2028 /* If this reloc section does not use the main symbol table we
2029 don't treat it as a reloc section. BFD can't adequately
2030 represent such a section, so at least for now, we don't
2031 try. We just present it as a normal section. We also
2032 can't use it as a reloc section if it points to the null
2033 section. */
2034 if (hdr->sh_link != elf_onesymtab (abfd) || hdr->sh_info == SHN_UNDEF)
2035 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2036 shindex);
2037
2038 /* Prevent endless recursion on broken objects. */
2039 if (elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
2040 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
2041 return FALSE;
2042 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
2043 return FALSE;
2044 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
2045 if (target_sect == NULL)
2046 return FALSE;
2047
2048 if ((target_sect->flags & SEC_RELOC) == 0
2049 || target_sect->reloc_count == 0)
2050 hdr2 = &elf_section_data (target_sect)->rel_hdr;
2051 else
2052 {
2053 bfd_size_type amt;
2054 BFD_ASSERT (elf_section_data (target_sect)->rel_hdr2 == NULL);
2055 amt = sizeof (*hdr2);
2056 hdr2 = bfd_alloc (abfd, amt);
2057 elf_section_data (target_sect)->rel_hdr2 = hdr2;
2058 }
2059 *hdr2 = *hdr;
2060 elf_elfsections (abfd)[shindex] = hdr2;
2061 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
2062 target_sect->flags |= SEC_RELOC;
2063 target_sect->relocation = NULL;
2064 target_sect->rel_filepos = hdr->sh_offset;
2065 /* In the section to which the relocations apply, mark whether
2066 its relocations are of the REL or RELA variety. */
2067 if (hdr->sh_size != 0)
2068 target_sect->use_rela_p = hdr->sh_type == SHT_RELA;
2069 abfd->flags |= HAS_RELOC;
2070 return TRUE;
2071 }
2072 break;
2073
2074 case SHT_GNU_verdef:
2075 elf_dynverdef (abfd) = shindex;
2076 elf_tdata (abfd)->dynverdef_hdr = *hdr;
2077 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2078 break;
2079
2080 case SHT_GNU_versym:
2081 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
2082 return FALSE;
2083 elf_dynversym (abfd) = shindex;
2084 elf_tdata (abfd)->dynversym_hdr = *hdr;
2085 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2086 break;
2087
2088 case SHT_GNU_verneed:
2089 elf_dynverref (abfd) = shindex;
2090 elf_tdata (abfd)->dynverref_hdr = *hdr;
2091 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2092 break;
2093
2094 case SHT_SHLIB:
2095 return TRUE;
2096
2097 case SHT_GROUP:
2098 /* We need a BFD section for objcopy and relocatable linking,
2099 and it's handy to have the signature available as the section
2100 name. */
2101 if (hdr->sh_entsize != GRP_ENTRY_SIZE)
2102 return FALSE;
2103 name = group_signature (abfd, hdr);
2104 if (name == NULL)
2105 return FALSE;
2106 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2107 return FALSE;
2108 if (hdr->contents != NULL)
2109 {
2110 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
2111 unsigned int n_elt = hdr->sh_size / 4;
2112 asection *s;
2113
2114 if (idx->flags & GRP_COMDAT)
2115 hdr->bfd_section->flags
2116 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
2117
2118 /* We try to keep the same section order as it comes in. */
2119 idx += n_elt;
2120 while (--n_elt != 0)
2121 if ((s = (--idx)->shdr->bfd_section) != NULL
2122 && elf_next_in_group (s) != NULL)
2123 {
2124 elf_next_in_group (hdr->bfd_section) = s;
2125 break;
2126 }
2127 }
2128 break;
2129
2130 default:
2131 /* Check for any processor-specific section types. */
2132 return bed->elf_backend_section_from_shdr (abfd, hdr, name,
2133 shindex);
2134 }
2135
2136 return TRUE;
2137 }
2138
2139 /* Return the section for the local symbol specified by ABFD, R_SYMNDX.
2140 Return SEC for sections that have no elf section, and NULL on error. */
2141
2142 asection *
2143 bfd_section_from_r_symndx (bfd *abfd,
2144 struct sym_sec_cache *cache,
2145 asection *sec,
2146 unsigned long r_symndx)
2147 {
2148 Elf_Internal_Shdr *symtab_hdr;
2149 unsigned char esym[sizeof (Elf64_External_Sym)];
2150 Elf_External_Sym_Shndx eshndx;
2151 Elf_Internal_Sym isym;
2152 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2153
2154 if (cache->abfd == abfd && cache->indx[ent] == r_symndx)
2155 return cache->sec[ent];
2156
2157 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2158 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2159 &isym, esym, &eshndx) == NULL)
2160 return NULL;
2161
2162 if (cache->abfd != abfd)
2163 {
2164 memset (cache->indx, -1, sizeof (cache->indx));
2165 cache->abfd = abfd;
2166 }
2167 cache->indx[ent] = r_symndx;
2168 cache->sec[ent] = sec;
2169 if ((isym.st_shndx != SHN_UNDEF && isym.st_shndx < SHN_LORESERVE)
2170 || isym.st_shndx > SHN_HIRESERVE)
2171 {
2172 asection *s;
2173 s = bfd_section_from_elf_index (abfd, isym.st_shndx);
2174 if (s != NULL)
2175 cache->sec[ent] = s;
2176 }
2177 return cache->sec[ent];
2178 }
2179
2180 /* Given an ELF section number, retrieve the corresponding BFD
2181 section. */
2182
2183 asection *
2184 bfd_section_from_elf_index (bfd *abfd, unsigned int index)
2185 {
2186 if (index >= elf_numsections (abfd))
2187 return NULL;
2188 return elf_elfsections (abfd)[index]->bfd_section;
2189 }
2190
2191 static const struct bfd_elf_special_section special_sections_b[] =
2192 {
2193 { ".bss", 4, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2194 { NULL, 0, 0, 0, 0 }
2195 };
2196
2197 static const struct bfd_elf_special_section special_sections_c[] =
2198 {
2199 { ".comment", 8, 0, SHT_PROGBITS, 0 },
2200 { NULL, 0, 0, 0, 0 }
2201 };
2202
2203 static const struct bfd_elf_special_section special_sections_d[] =
2204 {
2205 { ".data", 5, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2206 { ".data1", 6, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2207 { ".debug", 6, 0, SHT_PROGBITS, 0 },
2208 { ".debug_line", 11, 0, SHT_PROGBITS, 0 },
2209 { ".debug_info", 11, 0, SHT_PROGBITS, 0 },
2210 { ".debug_abbrev", 13, 0, SHT_PROGBITS, 0 },
2211 { ".debug_aranges", 14, 0, SHT_PROGBITS, 0 },
2212 { ".dynamic", 8, 0, SHT_DYNAMIC, SHF_ALLOC },
2213 { ".dynstr", 7, 0, SHT_STRTAB, SHF_ALLOC },
2214 { ".dynsym", 7, 0, SHT_DYNSYM, SHF_ALLOC },
2215 { NULL, 0, 0, 0, 0 }
2216 };
2217
2218 static const struct bfd_elf_special_section special_sections_f[] =
2219 {
2220 { ".fini", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2221 { ".fini_array", 11, 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2222 { NULL, 0, 0, 0, 0 }
2223 };
2224
2225 static const struct bfd_elf_special_section special_sections_g[] =
2226 {
2227 { ".gnu.linkonce.b",15, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2228 { ".got", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2229 { ".gnu.version", 12, 0, SHT_GNU_versym, 0 },
2230 { ".gnu.version_d", 14, 0, SHT_GNU_verdef, 0 },
2231 { ".gnu.version_r", 14, 0, SHT_GNU_verneed, 0 },
2232 { ".gnu.liblist", 12, 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2233 { ".gnu.conflict", 13, 0, SHT_RELA, SHF_ALLOC },
2234 { NULL, 0, 0, 0, 0 }
2235 };
2236
2237 static const struct bfd_elf_special_section special_sections_h[] =
2238 {
2239 { ".hash", 5, 0, SHT_HASH, SHF_ALLOC },
2240 { NULL, 0, 0, 0, 0 }
2241 };
2242
2243 static const struct bfd_elf_special_section special_sections_i[] =
2244 {
2245 { ".init", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2246 { ".init_array", 11, 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2247 { ".interp", 7, 0, SHT_PROGBITS, 0 },
2248 { NULL, 0, 0, 0, 0 }
2249 };
2250
2251 static const struct bfd_elf_special_section special_sections_l[] =
2252 {
2253 { ".line", 5, 0, SHT_PROGBITS, 0 },
2254 { NULL, 0, 0, 0, 0 }
2255 };
2256
2257 static const struct bfd_elf_special_section special_sections_n[] =
2258 {
2259 { ".note.GNU-stack",15, 0, SHT_PROGBITS, 0 },
2260 { ".note", 5, -1, SHT_NOTE, 0 },
2261 { NULL, 0, 0, 0, 0 }
2262 };
2263
2264 static const struct bfd_elf_special_section special_sections_p[] =
2265 {
2266 { ".preinit_array", 14, 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2267 { ".plt", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2268 { NULL, 0, 0, 0, 0 }
2269 };
2270
2271 static const struct bfd_elf_special_section special_sections_r[] =
2272 {
2273 { ".rodata", 7, -2, SHT_PROGBITS, SHF_ALLOC },
2274 { ".rodata1", 8, 0, SHT_PROGBITS, SHF_ALLOC },
2275 { ".rela", 5, -1, SHT_RELA, 0 },
2276 { ".rel", 4, -1, SHT_REL, 0 },
2277 { NULL, 0, 0, 0, 0 }
2278 };
2279
2280 static const struct bfd_elf_special_section special_sections_s[] =
2281 {
2282 { ".shstrtab", 9, 0, SHT_STRTAB, 0 },
2283 { ".strtab", 7, 0, SHT_STRTAB, 0 },
2284 { ".symtab", 7, 0, SHT_SYMTAB, 0 },
2285 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2286 { NULL, 0, 0, 0, 0 }
2287 };
2288
2289 static const struct bfd_elf_special_section special_sections_t[] =
2290 {
2291 { ".text", 5, -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2292 { ".tbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2293 { ".tdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2294 { NULL, 0, 0, 0, 0 }
2295 };
2296
2297 static const struct bfd_elf_special_section *special_sections[] =
2298 {
2299 special_sections_b, /* 'b' */
2300 special_sections_c, /* 'b' */
2301 special_sections_d, /* 'd' */
2302 NULL, /* 'e' */
2303 special_sections_f, /* 'f' */
2304 special_sections_g, /* 'g' */
2305 special_sections_h, /* 'h' */
2306 special_sections_i, /* 'i' */
2307 NULL, /* 'j' */
2308 NULL, /* 'k' */
2309 special_sections_l, /* 'l' */
2310 NULL, /* 'm' */
2311 special_sections_n, /* 'n' */
2312 NULL, /* 'o' */
2313 special_sections_p, /* 'p' */
2314 NULL, /* 'q' */
2315 special_sections_r, /* 'r' */
2316 special_sections_s, /* 's' */
2317 special_sections_t, /* 't' */
2318 };
2319
2320 const struct bfd_elf_special_section *
2321 _bfd_elf_get_special_section (const char *name,
2322 const struct bfd_elf_special_section *spec,
2323 unsigned int rela)
2324 {
2325 int i;
2326 int len;
2327
2328 len = strlen (name);
2329
2330 for (i = 0; spec[i].prefix != NULL; i++)
2331 {
2332 int suffix_len;
2333 int prefix_len = spec[i].prefix_length;
2334
2335 if (len < prefix_len)
2336 continue;
2337 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2338 continue;
2339
2340 suffix_len = spec[i].suffix_length;
2341 if (suffix_len <= 0)
2342 {
2343 if (name[prefix_len] != 0)
2344 {
2345 if (suffix_len == 0)
2346 continue;
2347 if (name[prefix_len] != '.'
2348 && (suffix_len == -2
2349 || (rela && spec[i].type == SHT_REL)))
2350 continue;
2351 }
2352 }
2353 else
2354 {
2355 if (len < prefix_len + suffix_len)
2356 continue;
2357 if (memcmp (name + len - suffix_len,
2358 spec[i].prefix + prefix_len,
2359 suffix_len) != 0)
2360 continue;
2361 }
2362 return &spec[i];
2363 }
2364
2365 return NULL;
2366 }
2367
2368 const struct bfd_elf_special_section *
2369 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2370 {
2371 int i;
2372 const struct bfd_elf_special_section *spec;
2373 const struct elf_backend_data *bed;
2374
2375 /* See if this is one of the special sections. */
2376 if (sec->name == NULL)
2377 return NULL;
2378
2379 bed = get_elf_backend_data (abfd);
2380 spec = bed->special_sections;
2381 if (spec)
2382 {
2383 spec = _bfd_elf_get_special_section (sec->name,
2384 bed->special_sections,
2385 sec->use_rela_p);
2386 if (spec != NULL)
2387 return spec;
2388 }
2389
2390 if (sec->name[0] != '.')
2391 return NULL;
2392
2393 i = sec->name[1] - 'b';
2394 if (i < 0 || i > 't' - 'b')
2395 return NULL;
2396
2397 spec = special_sections[i];
2398
2399 if (spec == NULL)
2400 return NULL;
2401
2402 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2403 }
2404
2405 bfd_boolean
2406 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2407 {
2408 struct bfd_elf_section_data *sdata;
2409 const struct elf_backend_data *bed;
2410 const struct bfd_elf_special_section *ssect;
2411
2412 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2413 if (sdata == NULL)
2414 {
2415 sdata = bfd_zalloc (abfd, sizeof (*sdata));
2416 if (sdata == NULL)
2417 return FALSE;
2418 sec->used_by_bfd = sdata;
2419 }
2420
2421 /* Indicate whether or not this section should use RELA relocations. */
2422 bed = get_elf_backend_data (abfd);
2423 sec->use_rela_p = bed->default_use_rela_p;
2424
2425 /* When we read a file, we don't need section type and flags unless
2426 it is a linker created section. They will be overridden in
2427 _bfd_elf_make_section_from_shdr anyway. */
2428 if (abfd->direction != read_direction
2429 || (sec->flags & SEC_LINKER_CREATED) != 0)
2430 {
2431 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2432 if (ssect != NULL)
2433 {
2434 elf_section_type (sec) = ssect->type;
2435 elf_section_flags (sec) = ssect->attr;
2436 }
2437 }
2438
2439 return TRUE;
2440 }
2441
2442 /* Create a new bfd section from an ELF program header.
2443
2444 Since program segments have no names, we generate a synthetic name
2445 of the form segment<NUM>, where NUM is generally the index in the
2446 program header table. For segments that are split (see below) we
2447 generate the names segment<NUM>a and segment<NUM>b.
2448
2449 Note that some program segments may have a file size that is different than
2450 (less than) the memory size. All this means is that at execution the
2451 system must allocate the amount of memory specified by the memory size,
2452 but only initialize it with the first "file size" bytes read from the
2453 file. This would occur for example, with program segments consisting
2454 of combined data+bss.
2455
2456 To handle the above situation, this routine generates TWO bfd sections
2457 for the single program segment. The first has the length specified by
2458 the file size of the segment, and the second has the length specified
2459 by the difference between the two sizes. In effect, the segment is split
2460 into it's initialized and uninitialized parts.
2461
2462 */
2463
2464 bfd_boolean
2465 _bfd_elf_make_section_from_phdr (bfd *abfd,
2466 Elf_Internal_Phdr *hdr,
2467 int index,
2468 const char *typename)
2469 {
2470 asection *newsect;
2471 char *name;
2472 char namebuf[64];
2473 size_t len;
2474 int split;
2475
2476 split = ((hdr->p_memsz > 0)
2477 && (hdr->p_filesz > 0)
2478 && (hdr->p_memsz > hdr->p_filesz));
2479 sprintf (namebuf, "%s%d%s", typename, index, split ? "a" : "");
2480 len = strlen (namebuf) + 1;
2481 name = bfd_alloc (abfd, len);
2482 if (!name)
2483 return FALSE;
2484 memcpy (name, namebuf, len);
2485 newsect = bfd_make_section (abfd, name);
2486 if (newsect == NULL)
2487 return FALSE;
2488 newsect->vma = hdr->p_vaddr;
2489 newsect->lma = hdr->p_paddr;
2490 newsect->size = hdr->p_filesz;
2491 newsect->filepos = hdr->p_offset;
2492 newsect->flags |= SEC_HAS_CONTENTS;
2493 newsect->alignment_power = bfd_log2 (hdr->p_align);
2494 if (hdr->p_type == PT_LOAD)
2495 {
2496 newsect->flags |= SEC_ALLOC;
2497 newsect->flags |= SEC_LOAD;
2498 if (hdr->p_flags & PF_X)
2499 {
2500 /* FIXME: all we known is that it has execute PERMISSION,
2501 may be data. */
2502 newsect->flags |= SEC_CODE;
2503 }
2504 }
2505 if (!(hdr->p_flags & PF_W))
2506 {
2507 newsect->flags |= SEC_READONLY;
2508 }
2509
2510 if (split)
2511 {
2512 sprintf (namebuf, "%s%db", typename, index);
2513 len = strlen (namebuf) + 1;
2514 name = bfd_alloc (abfd, len);
2515 if (!name)
2516 return FALSE;
2517 memcpy (name, namebuf, len);
2518 newsect = bfd_make_section (abfd, name);
2519 if (newsect == NULL)
2520 return FALSE;
2521 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2522 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2523 newsect->size = hdr->p_memsz - hdr->p_filesz;
2524 if (hdr->p_type == PT_LOAD)
2525 {
2526 newsect->flags |= SEC_ALLOC;
2527 if (hdr->p_flags & PF_X)
2528 newsect->flags |= SEC_CODE;
2529 }
2530 if (!(hdr->p_flags & PF_W))
2531 newsect->flags |= SEC_READONLY;
2532 }
2533
2534 return TRUE;
2535 }
2536
2537 bfd_boolean
2538 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index)
2539 {
2540 const struct elf_backend_data *bed;
2541
2542 switch (hdr->p_type)
2543 {
2544 case PT_NULL:
2545 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "null");
2546
2547 case PT_LOAD:
2548 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "load");
2549
2550 case PT_DYNAMIC:
2551 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "dynamic");
2552
2553 case PT_INTERP:
2554 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "interp");
2555
2556 case PT_NOTE:
2557 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, index, "note"))
2558 return FALSE;
2559 if (! elfcore_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2560 return FALSE;
2561 return TRUE;
2562
2563 case PT_SHLIB:
2564 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "shlib");
2565
2566 case PT_PHDR:
2567 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "phdr");
2568
2569 case PT_GNU_EH_FRAME:
2570 return _bfd_elf_make_section_from_phdr (abfd, hdr, index,
2571 "eh_frame_hdr");
2572
2573 case PT_GNU_STACK:
2574 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "stack");
2575
2576 case PT_GNU_RELRO:
2577 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "relro");
2578
2579 default:
2580 /* Check for any processor-specific program segment types. */
2581 bed = get_elf_backend_data (abfd);
2582 return bed->elf_backend_section_from_phdr (abfd, hdr, index, "proc");
2583 }
2584 }
2585
2586 /* Initialize REL_HDR, the section-header for new section, containing
2587 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2588 relocations; otherwise, we use REL relocations. */
2589
2590 bfd_boolean
2591 _bfd_elf_init_reloc_shdr (bfd *abfd,
2592 Elf_Internal_Shdr *rel_hdr,
2593 asection *asect,
2594 bfd_boolean use_rela_p)
2595 {
2596 char *name;
2597 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2598 bfd_size_type amt = sizeof ".rela" + strlen (asect->name);
2599
2600 name = bfd_alloc (abfd, amt);
2601 if (name == NULL)
2602 return FALSE;
2603 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2604 rel_hdr->sh_name =
2605 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2606 FALSE);
2607 if (rel_hdr->sh_name == (unsigned int) -1)
2608 return FALSE;
2609 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2610 rel_hdr->sh_entsize = (use_rela_p
2611 ? bed->s->sizeof_rela
2612 : bed->s->sizeof_rel);
2613 rel_hdr->sh_addralign = 1 << bed->s->log_file_align;
2614 rel_hdr->sh_flags = 0;
2615 rel_hdr->sh_addr = 0;
2616 rel_hdr->sh_size = 0;
2617 rel_hdr->sh_offset = 0;
2618
2619 return TRUE;
2620 }
2621
2622 /* Set up an ELF internal section header for a section. */
2623
2624 static void
2625 elf_fake_sections (bfd *abfd, asection *asect, void *failedptrarg)
2626 {
2627 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2628 bfd_boolean *failedptr = failedptrarg;
2629 Elf_Internal_Shdr *this_hdr;
2630
2631 if (*failedptr)
2632 {
2633 /* We already failed; just get out of the bfd_map_over_sections
2634 loop. */
2635 return;
2636 }
2637
2638 this_hdr = &elf_section_data (asect)->this_hdr;
2639
2640 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2641 asect->name, FALSE);
2642 if (this_hdr->sh_name == (unsigned int) -1)
2643 {
2644 *failedptr = TRUE;
2645 return;
2646 }
2647
2648 /* Don't clear sh_flags. Assembler may set additional bits. */
2649
2650 if ((asect->flags & SEC_ALLOC) != 0
2651 || asect->user_set_vma)
2652 this_hdr->sh_addr = asect->vma;
2653 else
2654 this_hdr->sh_addr = 0;
2655
2656 this_hdr->sh_offset = 0;
2657 this_hdr->sh_size = asect->size;
2658 this_hdr->sh_link = 0;
2659 this_hdr->sh_addralign = 1 << asect->alignment_power;
2660 /* The sh_entsize and sh_info fields may have been set already by
2661 copy_private_section_data. */
2662
2663 this_hdr->bfd_section = asect;
2664 this_hdr->contents = NULL;
2665
2666 /* If the section type is unspecified, we set it based on
2667 asect->flags. */
2668 if (this_hdr->sh_type == SHT_NULL)
2669 {
2670 if ((asect->flags & SEC_GROUP) != 0)
2671 this_hdr->sh_type = SHT_GROUP;
2672 else if ((asect->flags & SEC_ALLOC) != 0
2673 && (((asect->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2674 || (asect->flags & SEC_NEVER_LOAD) != 0))
2675 this_hdr->sh_type = SHT_NOBITS;
2676 else
2677 this_hdr->sh_type = SHT_PROGBITS;
2678 }
2679
2680 switch (this_hdr->sh_type)
2681 {
2682 default:
2683 break;
2684
2685 case SHT_STRTAB:
2686 case SHT_INIT_ARRAY:
2687 case SHT_FINI_ARRAY:
2688 case SHT_PREINIT_ARRAY:
2689 case SHT_NOTE:
2690 case SHT_NOBITS:
2691 case SHT_PROGBITS:
2692 break;
2693
2694 case SHT_HASH:
2695 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2696 break;
2697
2698 case SHT_DYNSYM:
2699 this_hdr->sh_entsize = bed->s->sizeof_sym;
2700 break;
2701
2702 case SHT_DYNAMIC:
2703 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2704 break;
2705
2706 case SHT_RELA:
2707 if (get_elf_backend_data (abfd)->may_use_rela_p)
2708 this_hdr->sh_entsize = bed->s->sizeof_rela;
2709 break;
2710
2711 case SHT_REL:
2712 if (get_elf_backend_data (abfd)->may_use_rel_p)
2713 this_hdr->sh_entsize = bed->s->sizeof_rel;
2714 break;
2715
2716 case SHT_GNU_versym:
2717 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2718 break;
2719
2720 case SHT_GNU_verdef:
2721 this_hdr->sh_entsize = 0;
2722 /* objcopy or strip will copy over sh_info, but may not set
2723 cverdefs. The linker will set cverdefs, but sh_info will be
2724 zero. */
2725 if (this_hdr->sh_info == 0)
2726 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2727 else
2728 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2729 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2730 break;
2731
2732 case SHT_GNU_verneed:
2733 this_hdr->sh_entsize = 0;
2734 /* objcopy or strip will copy over sh_info, but may not set
2735 cverrefs. The linker will set cverrefs, but sh_info will be
2736 zero. */
2737 if (this_hdr->sh_info == 0)
2738 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2739 else
2740 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2741 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2742 break;
2743
2744 case SHT_GROUP:
2745 this_hdr->sh_entsize = 4;
2746 break;
2747 }
2748
2749 if ((asect->flags & SEC_ALLOC) != 0)
2750 this_hdr->sh_flags |= SHF_ALLOC;
2751 if ((asect->flags & SEC_READONLY) == 0)
2752 this_hdr->sh_flags |= SHF_WRITE;
2753 if ((asect->flags & SEC_CODE) != 0)
2754 this_hdr->sh_flags |= SHF_EXECINSTR;
2755 if ((asect->flags & SEC_MERGE) != 0)
2756 {
2757 this_hdr->sh_flags |= SHF_MERGE;
2758 this_hdr->sh_entsize = asect->entsize;
2759 if ((asect->flags & SEC_STRINGS) != 0)
2760 this_hdr->sh_flags |= SHF_STRINGS;
2761 }
2762 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2763 this_hdr->sh_flags |= SHF_GROUP;
2764 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2765 {
2766 this_hdr->sh_flags |= SHF_TLS;
2767 if (asect->size == 0
2768 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2769 {
2770 struct bfd_link_order *o = asect->map_tail.link_order;
2771
2772 this_hdr->sh_size = 0;
2773 if (o != NULL)
2774 {
2775 this_hdr->sh_size = o->offset + o->size;
2776 if (this_hdr->sh_size != 0)
2777 this_hdr->sh_type = SHT_NOBITS;
2778 }
2779 }
2780 }
2781
2782 /* Check for processor-specific section types. */
2783 if (bed->elf_backend_fake_sections
2784 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2785 *failedptr = TRUE;
2786
2787 /* If the section has relocs, set up a section header for the
2788 SHT_REL[A] section. If two relocation sections are required for
2789 this section, it is up to the processor-specific back-end to
2790 create the other. */
2791 if ((asect->flags & SEC_RELOC) != 0
2792 && !_bfd_elf_init_reloc_shdr (abfd,
2793 &elf_section_data (asect)->rel_hdr,
2794 asect,
2795 asect->use_rela_p))
2796 *failedptr = TRUE;
2797 }
2798
2799 /* Fill in the contents of a SHT_GROUP section. */
2800
2801 void
2802 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2803 {
2804 bfd_boolean *failedptr = failedptrarg;
2805 unsigned long symindx;
2806 asection *elt, *first;
2807 unsigned char *loc;
2808 bfd_boolean gas;
2809
2810 /* Ignore linker created group section. See elfNN_ia64_object_p in
2811 elfxx-ia64.c. */
2812 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
2813 || *failedptr)
2814 return;
2815
2816 symindx = 0;
2817 if (elf_group_id (sec) != NULL)
2818 symindx = elf_group_id (sec)->udata.i;
2819
2820 if (symindx == 0)
2821 {
2822 /* If called from the assembler, swap_out_syms will have set up
2823 elf_section_syms; If called for "ld -r", use target_index. */
2824 if (elf_section_syms (abfd) != NULL)
2825 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2826 else
2827 symindx = sec->target_index;
2828 }
2829 elf_section_data (sec)->this_hdr.sh_info = symindx;
2830
2831 /* The contents won't be allocated for "ld -r" or objcopy. */
2832 gas = TRUE;
2833 if (sec->contents == NULL)
2834 {
2835 gas = FALSE;
2836 sec->contents = bfd_alloc (abfd, sec->size);
2837
2838 /* Arrange for the section to be written out. */
2839 elf_section_data (sec)->this_hdr.contents = sec->contents;
2840 if (sec->contents == NULL)
2841 {
2842 *failedptr = TRUE;
2843 return;
2844 }
2845 }
2846
2847 loc = sec->contents + sec->size;
2848
2849 /* Get the pointer to the first section in the group that gas
2850 squirreled away here. objcopy arranges for this to be set to the
2851 start of the input section group. */
2852 first = elt = elf_next_in_group (sec);
2853
2854 /* First element is a flag word. Rest of section is elf section
2855 indices for all the sections of the group. Write them backwards
2856 just to keep the group in the same order as given in .section
2857 directives, not that it matters. */
2858 while (elt != NULL)
2859 {
2860 asection *s;
2861 unsigned int idx;
2862
2863 loc -= 4;
2864 s = elt;
2865 if (!gas)
2866 s = s->output_section;
2867 idx = 0;
2868 if (s != NULL)
2869 idx = elf_section_data (s)->this_idx;
2870 H_PUT_32 (abfd, idx, loc);
2871 elt = elf_next_in_group (elt);
2872 if (elt == first)
2873 break;
2874 }
2875
2876 if ((loc -= 4) != sec->contents)
2877 abort ();
2878
2879 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2880 }
2881
2882 /* Assign all ELF section numbers. The dummy first section is handled here
2883 too. The link/info pointers for the standard section types are filled
2884 in here too, while we're at it. */
2885
2886 static bfd_boolean
2887 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
2888 {
2889 struct elf_obj_tdata *t = elf_tdata (abfd);
2890 asection *sec;
2891 unsigned int section_number, secn;
2892 Elf_Internal_Shdr **i_shdrp;
2893 struct bfd_elf_section_data *d;
2894
2895 section_number = 1;
2896
2897 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2898
2899 /* SHT_GROUP sections are in relocatable files only. */
2900 if (link_info == NULL || link_info->relocatable)
2901 {
2902 /* Put SHT_GROUP sections first. */
2903 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2904 {
2905 d = elf_section_data (sec);
2906
2907 if (d->this_hdr.sh_type == SHT_GROUP)
2908 {
2909 if (sec->flags & SEC_LINKER_CREATED)
2910 {
2911 /* Remove the linker created SHT_GROUP sections. */
2912 bfd_section_list_remove (abfd, sec);
2913 abfd->section_count--;
2914 }
2915 else
2916 {
2917 if (section_number == SHN_LORESERVE)
2918 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2919 d->this_idx = section_number++;
2920 }
2921 }
2922 }
2923 }
2924
2925 for (sec = abfd->sections; sec; sec = sec->next)
2926 {
2927 d = elf_section_data (sec);
2928
2929 if (d->this_hdr.sh_type != SHT_GROUP)
2930 {
2931 if (section_number == SHN_LORESERVE)
2932 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2933 d->this_idx = section_number++;
2934 }
2935 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
2936 if ((sec->flags & SEC_RELOC) == 0)
2937 d->rel_idx = 0;
2938 else
2939 {
2940 if (section_number == SHN_LORESERVE)
2941 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2942 d->rel_idx = section_number++;
2943 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr.sh_name);
2944 }
2945
2946 if (d->rel_hdr2)
2947 {
2948 if (section_number == SHN_LORESERVE)
2949 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2950 d->rel_idx2 = section_number++;
2951 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr2->sh_name);
2952 }
2953 else
2954 d->rel_idx2 = 0;
2955 }
2956
2957 if (section_number == SHN_LORESERVE)
2958 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2959 t->shstrtab_section = section_number++;
2960 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
2961 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
2962
2963 if (bfd_get_symcount (abfd) > 0)
2964 {
2965 if (section_number == SHN_LORESERVE)
2966 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2967 t->symtab_section = section_number++;
2968 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
2969 if (section_number > SHN_LORESERVE - 2)
2970 {
2971 if (section_number == SHN_LORESERVE)
2972 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2973 t->symtab_shndx_section = section_number++;
2974 t->symtab_shndx_hdr.sh_name
2975 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2976 ".symtab_shndx", FALSE);
2977 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
2978 return FALSE;
2979 }
2980 if (section_number == SHN_LORESERVE)
2981 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2982 t->strtab_section = section_number++;
2983 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
2984 }
2985
2986 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
2987 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
2988
2989 elf_numsections (abfd) = section_number;
2990 elf_elfheader (abfd)->e_shnum = section_number;
2991 if (section_number > SHN_LORESERVE)
2992 elf_elfheader (abfd)->e_shnum -= SHN_HIRESERVE + 1 - SHN_LORESERVE;
2993
2994 /* Set up the list of section header pointers, in agreement with the
2995 indices. */
2996 i_shdrp = bfd_zalloc2 (abfd, section_number, sizeof (Elf_Internal_Shdr *));
2997 if (i_shdrp == NULL)
2998 return FALSE;
2999
3000 i_shdrp[0] = bfd_zalloc (abfd, sizeof (Elf_Internal_Shdr));
3001 if (i_shdrp[0] == NULL)
3002 {
3003 bfd_release (abfd, i_shdrp);
3004 return FALSE;
3005 }
3006
3007 elf_elfsections (abfd) = i_shdrp;
3008
3009 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
3010 if (bfd_get_symcount (abfd) > 0)
3011 {
3012 i_shdrp[t->symtab_section] = &t->symtab_hdr;
3013 if (elf_numsections (abfd) > SHN_LORESERVE)
3014 {
3015 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
3016 t->symtab_shndx_hdr.sh_link = t->symtab_section;
3017 }
3018 i_shdrp[t->strtab_section] = &t->strtab_hdr;
3019 t->symtab_hdr.sh_link = t->strtab_section;
3020 }
3021
3022 for (sec = abfd->sections; sec; sec = sec->next)
3023 {
3024 struct bfd_elf_section_data *d = elf_section_data (sec);
3025 asection *s;
3026 const char *name;
3027
3028 i_shdrp[d->this_idx] = &d->this_hdr;
3029 if (d->rel_idx != 0)
3030 i_shdrp[d->rel_idx] = &d->rel_hdr;
3031 if (d->rel_idx2 != 0)
3032 i_shdrp[d->rel_idx2] = d->rel_hdr2;
3033
3034 /* Fill in the sh_link and sh_info fields while we're at it. */
3035
3036 /* sh_link of a reloc section is the section index of the symbol
3037 table. sh_info is the section index of the section to which
3038 the relocation entries apply. */
3039 if (d->rel_idx != 0)
3040 {
3041 d->rel_hdr.sh_link = t->symtab_section;
3042 d->rel_hdr.sh_info = d->this_idx;
3043 }
3044 if (d->rel_idx2 != 0)
3045 {
3046 d->rel_hdr2->sh_link = t->symtab_section;
3047 d->rel_hdr2->sh_info = d->this_idx;
3048 }
3049
3050 /* We need to set up sh_link for SHF_LINK_ORDER. */
3051 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3052 {
3053 s = elf_linked_to_section (sec);
3054 if (s)
3055 {
3056 if (link_info != NULL)
3057 {
3058 /* For linker, elf_linked_to_section points to the
3059 input section. */
3060 if (elf_discarded_section (s))
3061 {
3062 asection *kept;
3063 (*_bfd_error_handler)
3064 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
3065 abfd, d->this_hdr.bfd_section,
3066 s, s->owner);
3067 /* Point to the kept section if it has the same
3068 size as the discarded one. */
3069 kept = _bfd_elf_check_kept_section (s);
3070 if (kept == NULL)
3071 {
3072 bfd_set_error (bfd_error_bad_value);
3073 return FALSE;
3074 }
3075 s = kept;
3076 }
3077 s = s->output_section;
3078 BFD_ASSERT (s != NULL);
3079 }
3080 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3081 }
3082 else
3083 {
3084 /* PR 290:
3085 The Intel C compiler generates SHT_IA_64_UNWIND with
3086 SHF_LINK_ORDER. But it doesn't set the sh_link or
3087 sh_info fields. Hence we could get the situation
3088 where s is NULL. */
3089 const struct elf_backend_data *bed
3090 = get_elf_backend_data (abfd);
3091 if (bed->link_order_error_handler)
3092 bed->link_order_error_handler
3093 (_("%B: warning: sh_link not set for section `%A'"),
3094 abfd, sec);
3095 }
3096 }
3097
3098 switch (d->this_hdr.sh_type)
3099 {
3100 case SHT_REL:
3101 case SHT_RELA:
3102 /* A reloc section which we are treating as a normal BFD
3103 section. sh_link is the section index of the symbol
3104 table. sh_info is the section index of the section to
3105 which the relocation entries apply. We assume that an
3106 allocated reloc section uses the dynamic symbol table.
3107 FIXME: How can we be sure? */
3108 s = bfd_get_section_by_name (abfd, ".dynsym");
3109 if (s != NULL)
3110 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3111
3112 /* We look up the section the relocs apply to by name. */
3113 name = sec->name;
3114 if (d->this_hdr.sh_type == SHT_REL)
3115 name += 4;
3116 else
3117 name += 5;
3118 s = bfd_get_section_by_name (abfd, name);
3119 if (s != NULL)
3120 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3121 break;
3122
3123 case SHT_STRTAB:
3124 /* We assume that a section named .stab*str is a stabs
3125 string section. We look for a section with the same name
3126 but without the trailing ``str'', and set its sh_link
3127 field to point to this section. */
3128 if (strncmp (sec->name, ".stab", sizeof ".stab" - 1) == 0
3129 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3130 {
3131 size_t len;
3132 char *alc;
3133
3134 len = strlen (sec->name);
3135 alc = bfd_malloc (len - 2);
3136 if (alc == NULL)
3137 return FALSE;
3138 memcpy (alc, sec->name, len - 3);
3139 alc[len - 3] = '\0';
3140 s = bfd_get_section_by_name (abfd, alc);
3141 free (alc);
3142 if (s != NULL)
3143 {
3144 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3145
3146 /* This is a .stab section. */
3147 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3148 elf_section_data (s)->this_hdr.sh_entsize
3149 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3150 }
3151 }
3152 break;
3153
3154 case SHT_DYNAMIC:
3155 case SHT_DYNSYM:
3156 case SHT_GNU_verneed:
3157 case SHT_GNU_verdef:
3158 /* sh_link is the section header index of the string table
3159 used for the dynamic entries, or the symbol table, or the
3160 version strings. */
3161 s = bfd_get_section_by_name (abfd, ".dynstr");
3162 if (s != NULL)
3163 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3164 break;
3165
3166 case SHT_GNU_LIBLIST:
3167 /* sh_link is the section header index of the prelink library
3168 list
3169 used for the dynamic entries, or the symbol table, or the
3170 version strings. */
3171 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3172 ? ".dynstr" : ".gnu.libstr");
3173 if (s != NULL)
3174 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3175 break;
3176
3177 case SHT_HASH:
3178 case SHT_GNU_versym:
3179 /* sh_link is the section header index of the symbol table
3180 this hash table or version table is for. */
3181 s = bfd_get_section_by_name (abfd, ".dynsym");
3182 if (s != NULL)
3183 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3184 break;
3185
3186 case SHT_GROUP:
3187 d->this_hdr.sh_link = t->symtab_section;
3188 }
3189 }
3190
3191 for (secn = 1; secn < section_number; ++secn)
3192 if (i_shdrp[secn] == NULL)
3193 i_shdrp[secn] = i_shdrp[0];
3194 else
3195 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
3196 i_shdrp[secn]->sh_name);
3197 return TRUE;
3198 }
3199
3200 /* Map symbol from it's internal number to the external number, moving
3201 all local symbols to be at the head of the list. */
3202
3203 static int
3204 sym_is_global (bfd *abfd, asymbol *sym)
3205 {
3206 /* If the backend has a special mapping, use it. */
3207 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3208 if (bed->elf_backend_sym_is_global)
3209 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3210
3211 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
3212 || bfd_is_und_section (bfd_get_section (sym))
3213 || bfd_is_com_section (bfd_get_section (sym)));
3214 }
3215
3216 static bfd_boolean
3217 elf_map_symbols (bfd *abfd)
3218 {
3219 unsigned int symcount = bfd_get_symcount (abfd);
3220 asymbol **syms = bfd_get_outsymbols (abfd);
3221 asymbol **sect_syms;
3222 unsigned int num_locals = 0;
3223 unsigned int num_globals = 0;
3224 unsigned int num_locals2 = 0;
3225 unsigned int num_globals2 = 0;
3226 int max_index = 0;
3227 unsigned int idx;
3228 asection *asect;
3229 asymbol **new_syms;
3230
3231 #ifdef DEBUG
3232 fprintf (stderr, "elf_map_symbols\n");
3233 fflush (stderr);
3234 #endif
3235
3236 for (asect = abfd->sections; asect; asect = asect->next)
3237 {
3238 if (max_index < asect->index)
3239 max_index = asect->index;
3240 }
3241
3242 max_index++;
3243 sect_syms = bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
3244 if (sect_syms == NULL)
3245 return FALSE;
3246 elf_section_syms (abfd) = sect_syms;
3247 elf_num_section_syms (abfd) = max_index;
3248
3249 /* Init sect_syms entries for any section symbols we have already
3250 decided to output. */
3251 for (idx = 0; idx < symcount; idx++)
3252 {
3253 asymbol *sym = syms[idx];
3254
3255 if ((sym->flags & BSF_SECTION_SYM) != 0
3256 && sym->value == 0)
3257 {
3258 asection *sec;
3259
3260 sec = sym->section;
3261
3262 if (sec->owner != NULL)
3263 {
3264 if (sec->owner != abfd)
3265 {
3266 if (sec->output_offset != 0)
3267 continue;
3268
3269 sec = sec->output_section;
3270
3271 /* Empty sections in the input files may have had a
3272 section symbol created for them. (See the comment
3273 near the end of _bfd_generic_link_output_symbols in
3274 linker.c). If the linker script discards such
3275 sections then we will reach this point. Since we know
3276 that we cannot avoid this case, we detect it and skip
3277 the abort and the assignment to the sect_syms array.
3278 To reproduce this particular case try running the
3279 linker testsuite test ld-scripts/weak.exp for an ELF
3280 port that uses the generic linker. */
3281 if (sec->owner == NULL)
3282 continue;
3283
3284 BFD_ASSERT (sec->owner == abfd);
3285 }
3286 sect_syms[sec->index] = syms[idx];
3287 }
3288 }
3289 }
3290
3291 /* Classify all of the symbols. */
3292 for (idx = 0; idx < symcount; idx++)
3293 {
3294 if (!sym_is_global (abfd, syms[idx]))
3295 num_locals++;
3296 else
3297 num_globals++;
3298 }
3299
3300 /* We will be adding a section symbol for each BFD section. Most normal
3301 sections will already have a section symbol in outsymbols, but
3302 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3303 at least in that case. */
3304 for (asect = abfd->sections; asect; asect = asect->next)
3305 {
3306 if (sect_syms[asect->index] == NULL)
3307 {
3308 if (!sym_is_global (abfd, asect->symbol))
3309 num_locals++;
3310 else
3311 num_globals++;
3312 }
3313 }
3314
3315 /* Now sort the symbols so the local symbols are first. */
3316 new_syms = bfd_alloc2 (abfd, num_locals + num_globals, sizeof (asymbol *));
3317
3318 if (new_syms == NULL)
3319 return FALSE;
3320
3321 for (idx = 0; idx < symcount; idx++)
3322 {
3323 asymbol *sym = syms[idx];
3324 unsigned int i;
3325
3326 if (!sym_is_global (abfd, sym))
3327 i = num_locals2++;
3328 else
3329 i = num_locals + num_globals2++;
3330 new_syms[i] = sym;
3331 sym->udata.i = i + 1;
3332 }
3333 for (asect = abfd->sections; asect; asect = asect->next)
3334 {
3335 if (sect_syms[asect->index] == NULL)
3336 {
3337 asymbol *sym = asect->symbol;
3338 unsigned int i;
3339
3340 sect_syms[asect->index] = sym;
3341 if (!sym_is_global (abfd, sym))
3342 i = num_locals2++;
3343 else
3344 i = num_locals + num_globals2++;
3345 new_syms[i] = sym;
3346 sym->udata.i = i + 1;
3347 }
3348 }
3349
3350 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3351
3352 elf_num_locals (abfd) = num_locals;
3353 elf_num_globals (abfd) = num_globals;
3354 return TRUE;
3355 }
3356
3357 /* Align to the maximum file alignment that could be required for any
3358 ELF data structure. */
3359
3360 static inline file_ptr
3361 align_file_position (file_ptr off, int align)
3362 {
3363 return (off + align - 1) & ~(align - 1);
3364 }
3365
3366 /* Assign a file position to a section, optionally aligning to the
3367 required section alignment. */
3368
3369 file_ptr
3370 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3371 file_ptr offset,
3372 bfd_boolean align)
3373 {
3374 if (align)
3375 {
3376 unsigned int al;
3377
3378 al = i_shdrp->sh_addralign;
3379 if (al > 1)
3380 offset = BFD_ALIGN (offset, al);
3381 }
3382 i_shdrp->sh_offset = offset;
3383 if (i_shdrp->bfd_section != NULL)
3384 i_shdrp->bfd_section->filepos = offset;
3385 if (i_shdrp->sh_type != SHT_NOBITS)
3386 offset += i_shdrp->sh_size;
3387 return offset;
3388 }
3389
3390 /* Compute the file positions we are going to put the sections at, and
3391 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3392 is not NULL, this is being called by the ELF backend linker. */
3393
3394 bfd_boolean
3395 _bfd_elf_compute_section_file_positions (bfd *abfd,
3396 struct bfd_link_info *link_info)
3397 {
3398 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3399 bfd_boolean failed;
3400 struct bfd_strtab_hash *strtab = NULL;
3401 Elf_Internal_Shdr *shstrtab_hdr;
3402
3403 if (abfd->output_has_begun)
3404 return TRUE;
3405
3406 /* Do any elf backend specific processing first. */
3407 if (bed->elf_backend_begin_write_processing)
3408 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3409
3410 if (! prep_headers (abfd))
3411 return FALSE;
3412
3413 /* Post process the headers if necessary. */
3414 if (bed->elf_backend_post_process_headers)
3415 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3416
3417 failed = FALSE;
3418 bfd_map_over_sections (abfd, elf_fake_sections, &failed);
3419 if (failed)
3420 return FALSE;
3421
3422 if (!assign_section_numbers (abfd, link_info))
3423 return FALSE;
3424
3425 /* The backend linker builds symbol table information itself. */
3426 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3427 {
3428 /* Non-zero if doing a relocatable link. */
3429 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3430
3431 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3432 return FALSE;
3433 }
3434
3435 if (link_info == NULL)
3436 {
3437 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3438 if (failed)
3439 return FALSE;
3440 }
3441
3442 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3443 /* sh_name was set in prep_headers. */
3444 shstrtab_hdr->sh_type = SHT_STRTAB;
3445 shstrtab_hdr->sh_flags = 0;
3446 shstrtab_hdr->sh_addr = 0;
3447 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3448 shstrtab_hdr->sh_entsize = 0;
3449 shstrtab_hdr->sh_link = 0;
3450 shstrtab_hdr->sh_info = 0;
3451 /* sh_offset is set in assign_file_positions_except_relocs. */
3452 shstrtab_hdr->sh_addralign = 1;
3453
3454 if (!assign_file_positions_except_relocs (abfd, link_info))
3455 return FALSE;
3456
3457 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3458 {
3459 file_ptr off;
3460 Elf_Internal_Shdr *hdr;
3461
3462 off = elf_tdata (abfd)->next_file_pos;
3463
3464 hdr = &elf_tdata (abfd)->symtab_hdr;
3465 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3466
3467 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3468 if (hdr->sh_size != 0)
3469 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3470
3471 hdr = &elf_tdata (abfd)->strtab_hdr;
3472 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3473
3474 elf_tdata (abfd)->next_file_pos = off;
3475
3476 /* Now that we know where the .strtab section goes, write it
3477 out. */
3478 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3479 || ! _bfd_stringtab_emit (abfd, strtab))
3480 return FALSE;
3481 _bfd_stringtab_free (strtab);
3482 }
3483
3484 abfd->output_has_begun = TRUE;
3485
3486 return TRUE;
3487 }
3488
3489 /* Create a mapping from a set of sections to a program segment. */
3490
3491 static struct elf_segment_map *
3492 make_mapping (bfd *abfd,
3493 asection **sections,
3494 unsigned int from,
3495 unsigned int to,
3496 bfd_boolean phdr)
3497 {
3498 struct elf_segment_map *m;
3499 unsigned int i;
3500 asection **hdrpp;
3501 bfd_size_type amt;
3502
3503 amt = sizeof (struct elf_segment_map);
3504 amt += (to - from - 1) * sizeof (asection *);
3505 m = bfd_zalloc (abfd, amt);
3506 if (m == NULL)
3507 return NULL;
3508 m->next = NULL;
3509 m->p_type = PT_LOAD;
3510 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3511 m->sections[i - from] = *hdrpp;
3512 m->count = to - from;
3513
3514 if (from == 0 && phdr)
3515 {
3516 /* Include the headers in the first PT_LOAD segment. */
3517 m->includes_filehdr = 1;
3518 m->includes_phdrs = 1;
3519 }
3520
3521 return m;
3522 }
3523
3524 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3525 on failure. */
3526
3527 struct elf_segment_map *
3528 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3529 {
3530 struct elf_segment_map *m;
3531
3532 m = bfd_zalloc (abfd, sizeof (struct elf_segment_map));
3533 if (m == NULL)
3534 return NULL;
3535 m->next = NULL;
3536 m->p_type = PT_DYNAMIC;
3537 m->count = 1;
3538 m->sections[0] = dynsec;
3539
3540 return m;
3541 }
3542
3543 /* Set up a mapping from BFD sections to program segments. */
3544
3545 static bfd_boolean
3546 map_sections_to_segments (bfd *abfd)
3547 {
3548 asection **sections = NULL;
3549 asection *s;
3550 unsigned int i;
3551 unsigned int count;
3552 struct elf_segment_map *mfirst;
3553 struct elf_segment_map **pm;
3554 struct elf_segment_map *m;
3555 asection *last_hdr;
3556 bfd_vma last_size;
3557 unsigned int phdr_index;
3558 bfd_vma maxpagesize;
3559 asection **hdrpp;
3560 bfd_boolean phdr_in_segment = TRUE;
3561 bfd_boolean writable;
3562 int tls_count = 0;
3563 asection *first_tls = NULL;
3564 asection *dynsec, *eh_frame_hdr;
3565 bfd_size_type amt;
3566
3567 if (elf_tdata (abfd)->segment_map != NULL)
3568 return TRUE;
3569
3570 if (bfd_count_sections (abfd) == 0)
3571 return TRUE;
3572
3573 /* Select the allocated sections, and sort them. */
3574
3575 sections = bfd_malloc2 (bfd_count_sections (abfd), sizeof (asection *));
3576 if (sections == NULL)
3577 goto error_return;
3578
3579 i = 0;
3580 for (s = abfd->sections; s != NULL; s = s->next)
3581 {
3582 if ((s->flags & SEC_ALLOC) != 0)
3583 {
3584 sections[i] = s;
3585 ++i;
3586 }
3587 }
3588 BFD_ASSERT (i <= bfd_count_sections (abfd));
3589 count = i;
3590
3591 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3592
3593 /* Build the mapping. */
3594
3595 mfirst = NULL;
3596 pm = &mfirst;
3597
3598 /* If we have a .interp section, then create a PT_PHDR segment for
3599 the program headers and a PT_INTERP segment for the .interp
3600 section. */
3601 s = bfd_get_section_by_name (abfd, ".interp");
3602 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3603 {
3604 amt = sizeof (struct elf_segment_map);
3605 m = bfd_zalloc (abfd, amt);
3606 if (m == NULL)
3607 goto error_return;
3608 m->next = NULL;
3609 m->p_type = PT_PHDR;
3610 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3611 m->p_flags = PF_R | PF_X;
3612 m->p_flags_valid = 1;
3613 m->includes_phdrs = 1;
3614
3615 *pm = m;
3616 pm = &m->next;
3617
3618 amt = sizeof (struct elf_segment_map);
3619 m = bfd_zalloc (abfd, amt);
3620 if (m == NULL)
3621 goto error_return;
3622 m->next = NULL;
3623 m->p_type = PT_INTERP;
3624 m->count = 1;
3625 m->sections[0] = s;
3626
3627 *pm = m;
3628 pm = &m->next;
3629 }
3630
3631 /* Look through the sections. We put sections in the same program
3632 segment when the start of the second section can be placed within
3633 a few bytes of the end of the first section. */
3634 last_hdr = NULL;
3635 last_size = 0;
3636 phdr_index = 0;
3637 maxpagesize = get_elf_backend_data (abfd)->maxpagesize;
3638 writable = FALSE;
3639 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3640 if (dynsec != NULL
3641 && (dynsec->flags & SEC_LOAD) == 0)
3642 dynsec = NULL;
3643
3644 /* Deal with -Ttext or something similar such that the first section
3645 is not adjacent to the program headers. This is an
3646 approximation, since at this point we don't know exactly how many
3647 program headers we will need. */
3648 if (count > 0)
3649 {
3650 bfd_size_type phdr_size;
3651
3652 phdr_size = elf_tdata (abfd)->program_header_size;
3653 if (phdr_size == 0)
3654 phdr_size = get_elf_backend_data (abfd)->s->sizeof_phdr;
3655 if ((abfd->flags & D_PAGED) == 0
3656 || sections[0]->lma < phdr_size
3657 || sections[0]->lma % maxpagesize < phdr_size % maxpagesize)
3658 phdr_in_segment = FALSE;
3659 }
3660
3661 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3662 {
3663 asection *hdr;
3664 bfd_boolean new_segment;
3665
3666 hdr = *hdrpp;
3667
3668 /* See if this section and the last one will fit in the same
3669 segment. */
3670
3671 if (last_hdr == NULL)
3672 {
3673 /* If we don't have a segment yet, then we don't need a new
3674 one (we build the last one after this loop). */
3675 new_segment = FALSE;
3676 }
3677 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3678 {
3679 /* If this section has a different relation between the
3680 virtual address and the load address, then we need a new
3681 segment. */
3682 new_segment = TRUE;
3683 }
3684 else if (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
3685 < BFD_ALIGN (hdr->lma, maxpagesize))
3686 {
3687 /* If putting this section in this segment would force us to
3688 skip a page in the segment, then we need a new segment. */
3689 new_segment = TRUE;
3690 }
3691 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
3692 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
3693 {
3694 /* We don't want to put a loadable section after a
3695 nonloadable section in the same segment.
3696 Consider .tbss sections as loadable for this purpose. */
3697 new_segment = TRUE;
3698 }
3699 else if ((abfd->flags & D_PAGED) == 0)
3700 {
3701 /* If the file is not demand paged, which means that we
3702 don't require the sections to be correctly aligned in the
3703 file, then there is no other reason for a new segment. */
3704 new_segment = FALSE;
3705 }
3706 else if (! writable
3707 && (hdr->flags & SEC_READONLY) == 0
3708 && (((last_hdr->lma + last_size - 1)
3709 & ~(maxpagesize - 1))
3710 != (hdr->lma & ~(maxpagesize - 1))))
3711 {
3712 /* We don't want to put a writable section in a read only
3713 segment, unless they are on the same page in memory
3714 anyhow. We already know that the last section does not
3715 bring us past the current section on the page, so the
3716 only case in which the new section is not on the same
3717 page as the previous section is when the previous section
3718 ends precisely on a page boundary. */
3719 new_segment = TRUE;
3720 }
3721 else
3722 {
3723 /* Otherwise, we can use the same segment. */
3724 new_segment = FALSE;
3725 }
3726
3727 if (! new_segment)
3728 {
3729 if ((hdr->flags & SEC_READONLY) == 0)
3730 writable = TRUE;
3731 last_hdr = hdr;
3732 /* .tbss sections effectively have zero size. */
3733 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3734 last_size = hdr->size;
3735 else
3736 last_size = 0;
3737 continue;
3738 }
3739
3740 /* We need a new program segment. We must create a new program
3741 header holding all the sections from phdr_index until hdr. */
3742
3743 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3744 if (m == NULL)
3745 goto error_return;
3746
3747 *pm = m;
3748 pm = &m->next;
3749
3750 if ((hdr->flags & SEC_READONLY) == 0)
3751 writable = TRUE;
3752 else
3753 writable = FALSE;
3754
3755 last_hdr = hdr;
3756 /* .tbss sections effectively have zero size. */
3757 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3758 last_size = hdr->size;
3759 else
3760 last_size = 0;
3761 phdr_index = i;
3762 phdr_in_segment = FALSE;
3763 }
3764
3765 /* Create a final PT_LOAD program segment. */
3766 if (last_hdr != NULL)
3767 {
3768 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3769 if (m == NULL)
3770 goto error_return;
3771
3772 *pm = m;
3773 pm = &m->next;
3774 }
3775
3776 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
3777 if (dynsec != NULL)
3778 {
3779 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
3780 if (m == NULL)
3781 goto error_return;
3782 *pm = m;
3783 pm = &m->next;
3784 }
3785
3786 /* For each loadable .note section, add a PT_NOTE segment. We don't
3787 use bfd_get_section_by_name, because if we link together
3788 nonloadable .note sections and loadable .note sections, we will
3789 generate two .note sections in the output file. FIXME: Using
3790 names for section types is bogus anyhow. */
3791 for (s = abfd->sections; s != NULL; s = s->next)
3792 {
3793 if ((s->flags & SEC_LOAD) != 0
3794 && strncmp (s->name, ".note", 5) == 0)
3795 {
3796 amt = sizeof (struct elf_segment_map);
3797 m = bfd_zalloc (abfd, amt);
3798 if (m == NULL)
3799 goto error_return;
3800 m->next = NULL;
3801 m->p_type = PT_NOTE;
3802 m->count = 1;
3803 m->sections[0] = s;
3804
3805 *pm = m;
3806 pm = &m->next;
3807 }
3808 if (s->flags & SEC_THREAD_LOCAL)
3809 {
3810 if (! tls_count)
3811 first_tls = s;
3812 tls_count++;
3813 }
3814 }
3815
3816 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
3817 if (tls_count > 0)
3818 {
3819 int i;
3820
3821 amt = sizeof (struct elf_segment_map);
3822 amt += (tls_count - 1) * sizeof (asection *);
3823 m = bfd_zalloc (abfd, amt);
3824 if (m == NULL)
3825 goto error_return;
3826 m->next = NULL;
3827 m->p_type = PT_TLS;
3828 m->count = tls_count;
3829 /* Mandated PF_R. */
3830 m->p_flags = PF_R;
3831 m->p_flags_valid = 1;
3832 for (i = 0; i < tls_count; ++i)
3833 {
3834 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
3835 m->sections[i] = first_tls;
3836 first_tls = first_tls->next;
3837 }
3838
3839 *pm = m;
3840 pm = &m->next;
3841 }
3842
3843 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
3844 segment. */
3845 eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
3846 if (eh_frame_hdr != NULL
3847 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
3848 {
3849 amt = sizeof (struct elf_segment_map);
3850 m = bfd_zalloc (abfd, amt);
3851 if (m == NULL)
3852 goto error_return;
3853 m->next = NULL;
3854 m->p_type = PT_GNU_EH_FRAME;
3855 m->count = 1;
3856 m->sections[0] = eh_frame_hdr->output_section;
3857
3858 *pm = m;
3859 pm = &m->next;
3860 }
3861
3862 if (elf_tdata (abfd)->stack_flags)
3863 {
3864 amt = sizeof (struct elf_segment_map);
3865 m = bfd_zalloc (abfd, amt);
3866 if (m == NULL)
3867 goto error_return;
3868 m->next = NULL;
3869 m->p_type = PT_GNU_STACK;
3870 m->p_flags = elf_tdata (abfd)->stack_flags;
3871 m->p_flags_valid = 1;
3872
3873 *pm = m;
3874 pm = &m->next;
3875 }
3876
3877 if (elf_tdata (abfd)->relro)
3878 {
3879 amt = sizeof (struct elf_segment_map);
3880 m = bfd_zalloc (abfd, amt);
3881 if (m == NULL)
3882 goto error_return;
3883 m->next = NULL;
3884 m->p_type = PT_GNU_RELRO;
3885 m->p_flags = PF_R;
3886 m->p_flags_valid = 1;
3887
3888 *pm = m;
3889 pm = &m->next;
3890 }
3891
3892 free (sections);
3893 sections = NULL;
3894
3895 elf_tdata (abfd)->segment_map = mfirst;
3896 return TRUE;
3897
3898 error_return:
3899 if (sections != NULL)
3900 free (sections);
3901 return FALSE;
3902 }
3903
3904 /* Sort sections by address. */
3905
3906 static int
3907 elf_sort_sections (const void *arg1, const void *arg2)
3908 {
3909 const asection *sec1 = *(const asection **) arg1;
3910 const asection *sec2 = *(const asection **) arg2;
3911 bfd_size_type size1, size2;
3912
3913 /* Sort by LMA first, since this is the address used to
3914 place the section into a segment. */
3915 if (sec1->lma < sec2->lma)
3916 return -1;
3917 else if (sec1->lma > sec2->lma)
3918 return 1;
3919
3920 /* Then sort by VMA. Normally the LMA and the VMA will be
3921 the same, and this will do nothing. */
3922 if (sec1->vma < sec2->vma)
3923 return -1;
3924 else if (sec1->vma > sec2->vma)
3925 return 1;
3926
3927 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
3928
3929 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
3930
3931 if (TOEND (sec1))
3932 {
3933 if (TOEND (sec2))
3934 {
3935 /* If the indicies are the same, do not return 0
3936 here, but continue to try the next comparison. */
3937 if (sec1->target_index - sec2->target_index != 0)
3938 return sec1->target_index - sec2->target_index;
3939 }
3940 else
3941 return 1;
3942 }
3943 else if (TOEND (sec2))
3944 return -1;
3945
3946 #undef TOEND
3947
3948 /* Sort by size, to put zero sized sections
3949 before others at the same address. */
3950
3951 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
3952 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
3953
3954 if (size1 < size2)
3955 return -1;
3956 if (size1 > size2)
3957 return 1;
3958
3959 return sec1->target_index - sec2->target_index;
3960 }
3961
3962 /* Ian Lance Taylor writes:
3963
3964 We shouldn't be using % with a negative signed number. That's just
3965 not good. We have to make sure either that the number is not
3966 negative, or that the number has an unsigned type. When the types
3967 are all the same size they wind up as unsigned. When file_ptr is a
3968 larger signed type, the arithmetic winds up as signed long long,
3969 which is wrong.
3970
3971 What we're trying to say here is something like ``increase OFF by
3972 the least amount that will cause it to be equal to the VMA modulo
3973 the page size.'' */
3974 /* In other words, something like:
3975
3976 vma_offset = m->sections[0]->vma % bed->maxpagesize;
3977 off_offset = off % bed->maxpagesize;
3978 if (vma_offset < off_offset)
3979 adjustment = vma_offset + bed->maxpagesize - off_offset;
3980 else
3981 adjustment = vma_offset - off_offset;
3982
3983 which can can be collapsed into the expression below. */
3984
3985 static file_ptr
3986 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
3987 {
3988 return ((vma - off) % maxpagesize);
3989 }
3990
3991 /* Assign file positions to the sections based on the mapping from
3992 sections to segments. This function also sets up some fields in
3993 the file header, and writes out the program headers. */
3994
3995 static bfd_boolean
3996 assign_file_positions_for_segments (bfd *abfd, struct bfd_link_info *link_info)
3997 {
3998 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3999 unsigned int count;
4000 struct elf_segment_map *m;
4001 unsigned int alloc;
4002 Elf_Internal_Phdr *phdrs;
4003 file_ptr off, voff;
4004 bfd_vma filehdr_vaddr, filehdr_paddr;
4005 bfd_vma phdrs_vaddr, phdrs_paddr;
4006 Elf_Internal_Phdr *p;
4007
4008 if (elf_tdata (abfd)->segment_map == NULL)
4009 {
4010 if (! map_sections_to_segments (abfd))
4011 return FALSE;
4012 }
4013 else
4014 {
4015 /* The placement algorithm assumes that non allocated sections are
4016 not in PT_LOAD segments. We ensure this here by removing such
4017 sections from the segment map. We also remove excluded
4018 sections. */
4019 for (m = elf_tdata (abfd)->segment_map;
4020 m != NULL;
4021 m = m->next)
4022 {
4023 unsigned int new_count;
4024 unsigned int i;
4025
4026 new_count = 0;
4027 for (i = 0; i < m->count; i ++)
4028 {
4029 if ((m->sections[i]->flags & SEC_EXCLUDE) == 0
4030 && ((m->sections[i]->flags & SEC_ALLOC) != 0
4031 || m->p_type != PT_LOAD))
4032 {
4033 if (i != new_count)
4034 m->sections[new_count] = m->sections[i];
4035
4036 new_count ++;
4037 }
4038 }
4039
4040 if (new_count != m->count)
4041 m->count = new_count;
4042 }
4043 }
4044
4045 if (bed->elf_backend_modify_segment_map)
4046 {
4047 if (! (*bed->elf_backend_modify_segment_map) (abfd, link_info))
4048 return FALSE;
4049 }
4050
4051 count = 0;
4052 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4053 ++count;
4054
4055 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
4056 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
4057 elf_elfheader (abfd)->e_phnum = count;
4058
4059 if (count == 0)
4060 {
4061 elf_tdata (abfd)->next_file_pos = bed->s->sizeof_ehdr;
4062 return TRUE;
4063 }
4064
4065 /* If we already counted the number of program segments, make sure
4066 that we allocated enough space. This happens when SIZEOF_HEADERS
4067 is used in a linker script. */
4068 alloc = elf_tdata (abfd)->program_header_size / bed->s->sizeof_phdr;
4069 if (alloc != 0 && count > alloc)
4070 {
4071 ((*_bfd_error_handler)
4072 (_("%B: Not enough room for program headers (allocated %u, need %u)"),
4073 abfd, alloc, count));
4074 bfd_set_error (bfd_error_bad_value);
4075 return FALSE;
4076 }
4077
4078 if (alloc == 0)
4079 alloc = count;
4080
4081 phdrs = bfd_alloc2 (abfd, alloc, sizeof (Elf_Internal_Phdr));
4082 if (phdrs == NULL)
4083 return FALSE;
4084
4085 off = bed->s->sizeof_ehdr;
4086 off += alloc * bed->s->sizeof_phdr;
4087
4088 filehdr_vaddr = 0;
4089 filehdr_paddr = 0;
4090 phdrs_vaddr = 0;
4091 phdrs_paddr = 0;
4092
4093 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4094 m != NULL;
4095 m = m->next, p++)
4096 {
4097 unsigned int i;
4098 asection **secpp;
4099
4100 /* If elf_segment_map is not from map_sections_to_segments, the
4101 sections may not be correctly ordered. NOTE: sorting should
4102 not be done to the PT_NOTE section of a corefile, which may
4103 contain several pseudo-sections artificially created by bfd.
4104 Sorting these pseudo-sections breaks things badly. */
4105 if (m->count > 1
4106 && !(elf_elfheader (abfd)->e_type == ET_CORE
4107 && m->p_type == PT_NOTE))
4108 qsort (m->sections, (size_t) m->count, sizeof (asection *),
4109 elf_sort_sections);
4110
4111 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4112 number of sections with contents contributing to both p_filesz
4113 and p_memsz, followed by a number of sections with no contents
4114 that just contribute to p_memsz. In this loop, OFF tracks next
4115 available file offset for PT_LOAD and PT_NOTE segments. VOFF is
4116 an adjustment we use for segments that have no file contents
4117 but need zero filled memory allocation. */
4118 voff = 0;
4119 p->p_type = m->p_type;
4120 p->p_flags = m->p_flags;
4121
4122 if (p->p_type == PT_LOAD
4123 && m->count > 0)
4124 {
4125 bfd_size_type align;
4126 bfd_vma adjust;
4127 unsigned int align_power = 0;
4128
4129 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4130 {
4131 unsigned int secalign;
4132
4133 secalign = bfd_get_section_alignment (abfd, *secpp);
4134 if (secalign > align_power)
4135 align_power = secalign;
4136 }
4137 align = (bfd_size_type) 1 << align_power;
4138
4139 if ((abfd->flags & D_PAGED) != 0 && bed->maxpagesize > align)
4140 align = bed->maxpagesize;
4141
4142 adjust = vma_page_aligned_bias (m->sections[0]->vma, off, align);
4143 off += adjust;
4144 if (adjust != 0
4145 && !m->includes_filehdr
4146 && !m->includes_phdrs
4147 && (ufile_ptr) off >= align)
4148 {
4149 /* If the first section isn't loadable, the same holds for
4150 any other sections. Since the segment won't need file
4151 space, we can make p_offset overlap some prior segment.
4152 However, .tbss is special. If a segment starts with
4153 .tbss, we need to look at the next section to decide
4154 whether the segment has any loadable sections. */
4155 i = 0;
4156 while ((m->sections[i]->flags & SEC_LOAD) == 0)
4157 {
4158 if ((m->sections[i]->flags & SEC_THREAD_LOCAL) == 0
4159 || ++i >= m->count)
4160 {
4161 off -= adjust;
4162 voff = adjust - align;
4163 break;
4164 }
4165 }
4166 }
4167 }
4168 /* Make sure the .dynamic section is the first section in the
4169 PT_DYNAMIC segment. */
4170 else if (p->p_type == PT_DYNAMIC
4171 && m->count > 1
4172 && strcmp (m->sections[0]->name, ".dynamic") != 0)
4173 {
4174 _bfd_error_handler
4175 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4176 abfd);
4177 bfd_set_error (bfd_error_bad_value);
4178 return FALSE;
4179 }
4180
4181 if (m->count == 0)
4182 p->p_vaddr = 0;
4183 else
4184 p->p_vaddr = m->sections[0]->vma;
4185
4186 if (m->p_paddr_valid)
4187 p->p_paddr = m->p_paddr;
4188 else if (m->count == 0)
4189 p->p_paddr = 0;
4190 else
4191 p->p_paddr = m->sections[0]->lma;
4192
4193 if (p->p_type == PT_LOAD
4194 && (abfd->flags & D_PAGED) != 0)
4195 p->p_align = bed->maxpagesize;
4196 else if (m->count == 0)
4197 p->p_align = 1 << bed->s->log_file_align;
4198 else
4199 p->p_align = 0;
4200
4201 p->p_offset = 0;
4202 p->p_filesz = 0;
4203 p->p_memsz = 0;
4204
4205 if (m->includes_filehdr)
4206 {
4207 if (! m->p_flags_valid)
4208 p->p_flags |= PF_R;
4209 p->p_offset = 0;
4210 p->p_filesz = bed->s->sizeof_ehdr;
4211 p->p_memsz = bed->s->sizeof_ehdr;
4212 if (m->count > 0)
4213 {
4214 BFD_ASSERT (p->p_type == PT_LOAD);
4215
4216 if (p->p_vaddr < (bfd_vma) off)
4217 {
4218 (*_bfd_error_handler)
4219 (_("%B: Not enough room for program headers, try linking with -N"),
4220 abfd);
4221 bfd_set_error (bfd_error_bad_value);
4222 return FALSE;
4223 }
4224
4225 p->p_vaddr -= off;
4226 if (! m->p_paddr_valid)
4227 p->p_paddr -= off;
4228 }
4229 if (p->p_type == PT_LOAD)
4230 {
4231 filehdr_vaddr = p->p_vaddr;
4232 filehdr_paddr = p->p_paddr;
4233 }
4234 }
4235
4236 if (m->includes_phdrs)
4237 {
4238 if (! m->p_flags_valid)
4239 p->p_flags |= PF_R;
4240
4241 if (m->includes_filehdr)
4242 {
4243 if (p->p_type == PT_LOAD)
4244 {
4245 phdrs_vaddr = p->p_vaddr + bed->s->sizeof_ehdr;
4246 phdrs_paddr = p->p_paddr + bed->s->sizeof_ehdr;
4247 }
4248 }
4249 else
4250 {
4251 p->p_offset = bed->s->sizeof_ehdr;
4252
4253 if (m->count > 0)
4254 {
4255 BFD_ASSERT (p->p_type == PT_LOAD);
4256 p->p_vaddr -= off - p->p_offset;
4257 if (! m->p_paddr_valid)
4258 p->p_paddr -= off - p->p_offset;
4259 }
4260
4261 if (p->p_type == PT_LOAD)
4262 {
4263 phdrs_vaddr = p->p_vaddr;
4264 phdrs_paddr = p->p_paddr;
4265 }
4266 else
4267 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
4268 }
4269
4270 p->p_filesz += alloc * bed->s->sizeof_phdr;
4271 p->p_memsz += alloc * bed->s->sizeof_phdr;
4272 }
4273
4274 if (p->p_type == PT_LOAD
4275 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4276 {
4277 if (! m->includes_filehdr && ! m->includes_phdrs)
4278 p->p_offset = off + voff;
4279 else
4280 {
4281 file_ptr adjust;
4282
4283 adjust = off - (p->p_offset + p->p_filesz);
4284 p->p_filesz += adjust;
4285 p->p_memsz += adjust;
4286 }
4287 }
4288
4289 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4290 {
4291 asection *sec;
4292 flagword flags;
4293 bfd_size_type align;
4294
4295 sec = *secpp;
4296 flags = sec->flags;
4297 align = 1 << bfd_get_section_alignment (abfd, sec);
4298
4299 if (p->p_type == PT_LOAD
4300 || p->p_type == PT_TLS)
4301 {
4302 bfd_signed_vma adjust;
4303
4304 if ((flags & SEC_LOAD) != 0)
4305 {
4306 adjust = sec->lma - (p->p_paddr + p->p_filesz);
4307 if (adjust < 0)
4308 {
4309 (*_bfd_error_handler)
4310 (_("%B: section %A lma 0x%lx overlaps previous sections"),
4311 abfd, sec, (unsigned long) sec->lma);
4312 adjust = 0;
4313 }
4314 off += adjust;
4315 p->p_filesz += adjust;
4316 p->p_memsz += adjust;
4317 }
4318 /* .tbss is special. It doesn't contribute to p_memsz of
4319 normal segments. */
4320 else if ((flags & SEC_THREAD_LOCAL) == 0
4321 || p->p_type == PT_TLS)
4322 {
4323 /* The section VMA must equal the file position
4324 modulo the page size. */
4325 bfd_size_type page = align;
4326 if ((abfd->flags & D_PAGED) != 0 && bed->maxpagesize > page)
4327 page = bed->maxpagesize;
4328 adjust = vma_page_aligned_bias (sec->vma,
4329 p->p_vaddr + p->p_memsz,
4330 page);
4331 p->p_memsz += adjust;
4332 }
4333 }
4334
4335 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
4336 {
4337 /* The section at i == 0 is the one that actually contains
4338 everything. */
4339 if (i == 0)
4340 {
4341 sec->filepos = off;
4342 off += sec->size;
4343 p->p_filesz = sec->size;
4344 p->p_memsz = 0;
4345 p->p_align = 1;
4346 }
4347 else
4348 {
4349 /* The rest are fake sections that shouldn't be written. */
4350 sec->filepos = 0;
4351 sec->size = 0;
4352 sec->flags = 0;
4353 continue;
4354 }
4355 }
4356 else
4357 {
4358 if (p->p_type == PT_LOAD)
4359 {
4360 sec->filepos = off;
4361 /* FIXME: The SEC_HAS_CONTENTS test here dates back to
4362 1997, and the exact reason for it isn't clear. One
4363 plausible explanation is that it is to work around
4364 a problem we have with linker scripts using data
4365 statements in NOLOAD sections. I don't think it
4366 makes a great deal of sense to have such a section
4367 assigned to a PT_LOAD segment, but apparently
4368 people do this. The data statement results in a
4369 bfd_data_link_order being built, and these need
4370 section contents to write into. Eventually, we get
4371 to _bfd_elf_write_object_contents which writes any
4372 section with contents to the output. Make room
4373 here for the write, so that following segments are
4374 not trashed. */
4375 if ((flags & SEC_LOAD) != 0
4376 || (flags & SEC_HAS_CONTENTS) != 0)
4377 off += sec->size;
4378 }
4379
4380 if ((flags & SEC_LOAD) != 0)
4381 {
4382 p->p_filesz += sec->size;
4383 p->p_memsz += sec->size;
4384 }
4385 /* PR ld/594: Sections in note segments which are not loaded
4386 contribute to the file size but not the in-memory size. */
4387 else if (p->p_type == PT_NOTE
4388 && (flags & SEC_HAS_CONTENTS) != 0)
4389 p->p_filesz += sec->size;
4390
4391 /* .tbss is special. It doesn't contribute to p_memsz of
4392 normal segments. */
4393 else if ((flags & SEC_THREAD_LOCAL) == 0
4394 || p->p_type == PT_TLS)
4395 p->p_memsz += sec->size;
4396
4397 if (p->p_type == PT_TLS
4398 && sec->size == 0
4399 && (sec->flags & SEC_HAS_CONTENTS) == 0)
4400 {
4401 struct bfd_link_order *o = sec->map_tail.link_order;
4402 if (o != NULL)
4403 p->p_memsz += o->offset + o->size;
4404 }
4405
4406 if (align > p->p_align
4407 && (p->p_type != PT_LOAD || (abfd->flags & D_PAGED) == 0))
4408 p->p_align = align;
4409 }
4410
4411 if (! m->p_flags_valid)
4412 {
4413 p->p_flags |= PF_R;
4414 if ((flags & SEC_CODE) != 0)
4415 p->p_flags |= PF_X;
4416 if ((flags & SEC_READONLY) == 0)
4417 p->p_flags |= PF_W;
4418 }
4419 }
4420 }
4421
4422 /* Now that we have set the section file positions, we can set up
4423 the file positions for the non PT_LOAD segments. */
4424 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4425 m != NULL;
4426 m = m->next, p++)
4427 {
4428 if (p->p_type != PT_LOAD && m->count > 0)
4429 {
4430 BFD_ASSERT (! m->includes_filehdr && ! m->includes_phdrs);
4431 /* If the section has not yet been assigned a file position,
4432 do so now. The ARM BPABI requires that .dynamic section
4433 not be marked SEC_ALLOC because it is not part of any
4434 PT_LOAD segment, so it will not be processed above. */
4435 if (p->p_type == PT_DYNAMIC && m->sections[0]->filepos == 0)
4436 {
4437 unsigned int i;
4438 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4439
4440 i = 1;
4441 while (i_shdrpp[i]->bfd_section != m->sections[0])
4442 ++i;
4443 off = (_bfd_elf_assign_file_position_for_section
4444 (i_shdrpp[i], off, TRUE));
4445 p->p_filesz = m->sections[0]->size;
4446 }
4447 p->p_offset = m->sections[0]->filepos;
4448 }
4449 if (m->count == 0)
4450 {
4451 if (m->includes_filehdr)
4452 {
4453 p->p_vaddr = filehdr_vaddr;
4454 if (! m->p_paddr_valid)
4455 p->p_paddr = filehdr_paddr;
4456 }
4457 else if (m->includes_phdrs)
4458 {
4459 p->p_vaddr = phdrs_vaddr;
4460 if (! m->p_paddr_valid)
4461 p->p_paddr = phdrs_paddr;
4462 }
4463 else if (p->p_type == PT_GNU_RELRO)
4464 {
4465 Elf_Internal_Phdr *lp;
4466
4467 for (lp = phdrs; lp < phdrs + count; ++lp)
4468 {
4469 if (lp->p_type == PT_LOAD
4470 && lp->p_vaddr <= link_info->relro_end
4471 && lp->p_vaddr >= link_info->relro_start
4472 && lp->p_vaddr + lp->p_filesz
4473 >= link_info->relro_end)
4474 break;
4475 }
4476
4477 if (lp < phdrs + count
4478 && link_info->relro_end > lp->p_vaddr)
4479 {
4480 p->p_vaddr = lp->p_vaddr;
4481 p->p_paddr = lp->p_paddr;
4482 p->p_offset = lp->p_offset;
4483 p->p_filesz = link_info->relro_end - lp->p_vaddr;
4484 p->p_memsz = p->p_filesz;
4485 p->p_align = 1;
4486 p->p_flags = (lp->p_flags & ~PF_W);
4487 }
4488 else
4489 {
4490 memset (p, 0, sizeof *p);
4491 p->p_type = PT_NULL;
4492 }
4493 }
4494 }
4495 }
4496
4497 /* Clear out any program headers we allocated but did not use. */
4498 for (; count < alloc; count++, p++)
4499 {
4500 memset (p, 0, sizeof *p);
4501 p->p_type = PT_NULL;
4502 }
4503
4504 elf_tdata (abfd)->phdr = phdrs;
4505
4506 elf_tdata (abfd)->next_file_pos = off;
4507
4508 /* Write out the program headers. */
4509 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
4510 || bed->s->write_out_phdrs (abfd, phdrs, alloc) != 0)
4511 return FALSE;
4512
4513 return TRUE;
4514 }
4515
4516 /* Get the size of the program header.
4517
4518 If this is called by the linker before any of the section VMA's are set, it
4519 can't calculate the correct value for a strange memory layout. This only
4520 happens when SIZEOF_HEADERS is used in a linker script. In this case,
4521 SORTED_HDRS is NULL and we assume the normal scenario of one text and one
4522 data segment (exclusive of .interp and .dynamic).
4523
4524 ??? User written scripts must either not use SIZEOF_HEADERS, or assume there
4525 will be two segments. */
4526
4527 static bfd_size_type
4528 get_program_header_size (bfd *abfd)
4529 {
4530 size_t segs;
4531 asection *s;
4532 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4533
4534 /* We can't return a different result each time we're called. */
4535 if (elf_tdata (abfd)->program_header_size != 0)
4536 return elf_tdata (abfd)->program_header_size;
4537
4538 if (elf_tdata (abfd)->segment_map != NULL)
4539 {
4540 struct elf_segment_map *m;
4541
4542 segs = 0;
4543 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4544 ++segs;
4545 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
4546 return elf_tdata (abfd)->program_header_size;
4547 }
4548
4549 /* Assume we will need exactly two PT_LOAD segments: one for text
4550 and one for data. */
4551 segs = 2;
4552
4553 s = bfd_get_section_by_name (abfd, ".interp");
4554 if (s != NULL && (s->flags & SEC_LOAD) != 0)
4555 {
4556 /* If we have a loadable interpreter section, we need a
4557 PT_INTERP segment. In this case, assume we also need a
4558 PT_PHDR segment, although that may not be true for all
4559 targets. */
4560 segs += 2;
4561 }
4562
4563 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4564 {
4565 /* We need a PT_DYNAMIC segment. */
4566 ++segs;
4567 }
4568
4569 if (elf_tdata (abfd)->eh_frame_hdr)
4570 {
4571 /* We need a PT_GNU_EH_FRAME segment. */
4572 ++segs;
4573 }
4574
4575 if (elf_tdata (abfd)->stack_flags)
4576 {
4577 /* We need a PT_GNU_STACK segment. */
4578 ++segs;
4579 }
4580
4581 if (elf_tdata (abfd)->relro)
4582 {
4583 /* We need a PT_GNU_RELRO segment. */
4584 ++segs;
4585 }
4586
4587 for (s = abfd->sections; s != NULL; s = s->next)
4588 {
4589 if ((s->flags & SEC_LOAD) != 0
4590 && strncmp (s->name, ".note", 5) == 0)
4591 {
4592 /* We need a PT_NOTE segment. */
4593 ++segs;
4594 }
4595 }
4596
4597 for (s = abfd->sections; s != NULL; s = s->next)
4598 {
4599 if (s->flags & SEC_THREAD_LOCAL)
4600 {
4601 /* We need a PT_TLS segment. */
4602 ++segs;
4603 break;
4604 }
4605 }
4606
4607 /* Let the backend count up any program headers it might need. */
4608 if (bed->elf_backend_additional_program_headers)
4609 {
4610 int a;
4611
4612 a = (*bed->elf_backend_additional_program_headers) (abfd);
4613 if (a == -1)
4614 abort ();
4615 segs += a;
4616 }
4617
4618 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
4619 return elf_tdata (abfd)->program_header_size;
4620 }
4621
4622 /* Work out the file positions of all the sections. This is called by
4623 _bfd_elf_compute_section_file_positions. All the section sizes and
4624 VMAs must be known before this is called.
4625
4626 Reloc sections come in two flavours: Those processed specially as
4627 "side-channel" data attached to a section to which they apply, and
4628 those that bfd doesn't process as relocations. The latter sort are
4629 stored in a normal bfd section by bfd_section_from_shdr. We don't
4630 consider the former sort here, unless they form part of the loadable
4631 image. Reloc sections not assigned here will be handled later by
4632 assign_file_positions_for_relocs.
4633
4634 We also don't set the positions of the .symtab and .strtab here. */
4635
4636 static bfd_boolean
4637 assign_file_positions_except_relocs (bfd *abfd,
4638 struct bfd_link_info *link_info)
4639 {
4640 struct elf_obj_tdata * const tdata = elf_tdata (abfd);
4641 Elf_Internal_Ehdr * const i_ehdrp = elf_elfheader (abfd);
4642 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4643 unsigned int num_sec = elf_numsections (abfd);
4644 file_ptr off;
4645 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4646
4647 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
4648 && bfd_get_format (abfd) != bfd_core)
4649 {
4650 Elf_Internal_Shdr **hdrpp;
4651 unsigned int i;
4652
4653 /* Start after the ELF header. */
4654 off = i_ehdrp->e_ehsize;
4655
4656 /* We are not creating an executable, which means that we are
4657 not creating a program header, and that the actual order of
4658 the sections in the file is unimportant. */
4659 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4660 {
4661 Elf_Internal_Shdr *hdr;
4662
4663 hdr = *hdrpp;
4664 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4665 && hdr->bfd_section == NULL)
4666 || i == tdata->symtab_section
4667 || i == tdata->symtab_shndx_section
4668 || i == tdata->strtab_section)
4669 {
4670 hdr->sh_offset = -1;
4671 }
4672 else
4673 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4674
4675 if (i == SHN_LORESERVE - 1)
4676 {
4677 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4678 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4679 }
4680 }
4681 }
4682 else
4683 {
4684 unsigned int i;
4685 Elf_Internal_Shdr **hdrpp;
4686
4687 /* Assign file positions for the loaded sections based on the
4688 assignment of sections to segments. */
4689 if (! assign_file_positions_for_segments (abfd, link_info))
4690 return FALSE;
4691
4692 /* Assign file positions for the other sections. */
4693
4694 off = elf_tdata (abfd)->next_file_pos;
4695 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4696 {
4697 Elf_Internal_Shdr *hdr;
4698
4699 hdr = *hdrpp;
4700 if (hdr->bfd_section != NULL
4701 && hdr->bfd_section->filepos != 0)
4702 hdr->sh_offset = hdr->bfd_section->filepos;
4703 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4704 {
4705 ((*_bfd_error_handler)
4706 (_("%B: warning: allocated section `%s' not in segment"),
4707 abfd,
4708 (hdr->bfd_section == NULL
4709 ? "*unknown*"
4710 : hdr->bfd_section->name)));
4711 if ((abfd->flags & D_PAGED) != 0)
4712 off += vma_page_aligned_bias (hdr->sh_addr, off,
4713 bed->maxpagesize);
4714 else
4715 off += vma_page_aligned_bias (hdr->sh_addr, off,
4716 hdr->sh_addralign);
4717 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4718 FALSE);
4719 }
4720 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4721 && hdr->bfd_section == NULL)
4722 || hdr == i_shdrpp[tdata->symtab_section]
4723 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4724 || hdr == i_shdrpp[tdata->strtab_section])
4725 hdr->sh_offset = -1;
4726 else
4727 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4728
4729 if (i == SHN_LORESERVE - 1)
4730 {
4731 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4732 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4733 }
4734 }
4735 }
4736
4737 /* Place the section headers. */
4738 off = align_file_position (off, 1 << bed->s->log_file_align);
4739 i_ehdrp->e_shoff = off;
4740 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
4741
4742 elf_tdata (abfd)->next_file_pos = off;
4743
4744 return TRUE;
4745 }
4746
4747 static bfd_boolean
4748 prep_headers (bfd *abfd)
4749 {
4750 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
4751 Elf_Internal_Phdr *i_phdrp = 0; /* Program header table, internal form */
4752 Elf_Internal_Shdr **i_shdrp; /* Section header table, internal form */
4753 struct elf_strtab_hash *shstrtab;
4754 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4755
4756 i_ehdrp = elf_elfheader (abfd);
4757 i_shdrp = elf_elfsections (abfd);
4758
4759 shstrtab = _bfd_elf_strtab_init ();
4760 if (shstrtab == NULL)
4761 return FALSE;
4762
4763 elf_shstrtab (abfd) = shstrtab;
4764
4765 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
4766 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
4767 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
4768 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
4769
4770 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
4771 i_ehdrp->e_ident[EI_DATA] =
4772 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
4773 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
4774
4775 if ((abfd->flags & DYNAMIC) != 0)
4776 i_ehdrp->e_type = ET_DYN;
4777 else if ((abfd->flags & EXEC_P) != 0)
4778 i_ehdrp->e_type = ET_EXEC;
4779 else if (bfd_get_format (abfd) == bfd_core)
4780 i_ehdrp->e_type = ET_CORE;
4781 else
4782 i_ehdrp->e_type = ET_REL;
4783
4784 switch (bfd_get_arch (abfd))
4785 {
4786 case bfd_arch_unknown:
4787 i_ehdrp->e_machine = EM_NONE;
4788 break;
4789
4790 /* There used to be a long list of cases here, each one setting
4791 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4792 in the corresponding bfd definition. To avoid duplication,
4793 the switch was removed. Machines that need special handling
4794 can generally do it in elf_backend_final_write_processing(),
4795 unless they need the information earlier than the final write.
4796 Such need can generally be supplied by replacing the tests for
4797 e_machine with the conditions used to determine it. */
4798 default:
4799 i_ehdrp->e_machine = bed->elf_machine_code;
4800 }
4801
4802 i_ehdrp->e_version = bed->s->ev_current;
4803 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
4804
4805 /* No program header, for now. */
4806 i_ehdrp->e_phoff = 0;
4807 i_ehdrp->e_phentsize = 0;
4808 i_ehdrp->e_phnum = 0;
4809
4810 /* Each bfd section is section header entry. */
4811 i_ehdrp->e_entry = bfd_get_start_address (abfd);
4812 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
4813
4814 /* If we're building an executable, we'll need a program header table. */
4815 if (abfd->flags & EXEC_P)
4816 /* It all happens later. */
4817 ;
4818 else
4819 {
4820 i_ehdrp->e_phentsize = 0;
4821 i_phdrp = 0;
4822 i_ehdrp->e_phoff = 0;
4823 }
4824
4825 elf_tdata (abfd)->symtab_hdr.sh_name =
4826 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
4827 elf_tdata (abfd)->strtab_hdr.sh_name =
4828 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
4829 elf_tdata (abfd)->shstrtab_hdr.sh_name =
4830 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
4831 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4832 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4833 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
4834 return FALSE;
4835
4836 return TRUE;
4837 }
4838
4839 /* Assign file positions for all the reloc sections which are not part
4840 of the loadable file image. */
4841
4842 void
4843 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
4844 {
4845 file_ptr off;
4846 unsigned int i, num_sec;
4847 Elf_Internal_Shdr **shdrpp;
4848
4849 off = elf_tdata (abfd)->next_file_pos;
4850
4851 num_sec = elf_numsections (abfd);
4852 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
4853 {
4854 Elf_Internal_Shdr *shdrp;
4855
4856 shdrp = *shdrpp;
4857 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
4858 && shdrp->sh_offset == -1)
4859 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
4860 }
4861
4862 elf_tdata (abfd)->next_file_pos = off;
4863 }
4864
4865 bfd_boolean
4866 _bfd_elf_write_object_contents (bfd *abfd)
4867 {
4868 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4869 Elf_Internal_Ehdr *i_ehdrp;
4870 Elf_Internal_Shdr **i_shdrp;
4871 bfd_boolean failed;
4872 unsigned int count, num_sec;
4873
4874 if (! abfd->output_has_begun
4875 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
4876 return FALSE;
4877
4878 i_shdrp = elf_elfsections (abfd);
4879 i_ehdrp = elf_elfheader (abfd);
4880
4881 failed = FALSE;
4882 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
4883 if (failed)
4884 return FALSE;
4885
4886 _bfd_elf_assign_file_positions_for_relocs (abfd);
4887
4888 /* After writing the headers, we need to write the sections too... */
4889 num_sec = elf_numsections (abfd);
4890 for (count = 1; count < num_sec; count++)
4891 {
4892 if (bed->elf_backend_section_processing)
4893 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
4894 if (i_shdrp[count]->contents)
4895 {
4896 bfd_size_type amt = i_shdrp[count]->sh_size;
4897
4898 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
4899 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
4900 return FALSE;
4901 }
4902 if (count == SHN_LORESERVE - 1)
4903 count += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4904 }
4905
4906 /* Write out the section header names. */
4907 if (elf_shstrtab (abfd) != NULL
4908 && (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
4909 || ! _bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
4910 return FALSE;
4911
4912 if (bed->elf_backend_final_write_processing)
4913 (*bed->elf_backend_final_write_processing) (abfd,
4914 elf_tdata (abfd)->linker);
4915
4916 return bed->s->write_shdrs_and_ehdr (abfd);
4917 }
4918
4919 bfd_boolean
4920 _bfd_elf_write_corefile_contents (bfd *abfd)
4921 {
4922 /* Hopefully this can be done just like an object file. */
4923 return _bfd_elf_write_object_contents (abfd);
4924 }
4925
4926 /* Given a section, search the header to find them. */
4927
4928 int
4929 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
4930 {
4931 const struct elf_backend_data *bed;
4932 int index;
4933
4934 if (elf_section_data (asect) != NULL
4935 && elf_section_data (asect)->this_idx != 0)
4936 return elf_section_data (asect)->this_idx;
4937
4938 if (bfd_is_abs_section (asect))
4939 index = SHN_ABS;
4940 else if (bfd_is_com_section (asect))
4941 index = SHN_COMMON;
4942 else if (bfd_is_und_section (asect))
4943 index = SHN_UNDEF;
4944 else
4945 index = -1;
4946
4947 bed = get_elf_backend_data (abfd);
4948 if (bed->elf_backend_section_from_bfd_section)
4949 {
4950 int retval = index;
4951
4952 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
4953 return retval;
4954 }
4955
4956 if (index == -1)
4957 bfd_set_error (bfd_error_nonrepresentable_section);
4958
4959 return index;
4960 }
4961
4962 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
4963 on error. */
4964
4965 int
4966 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
4967 {
4968 asymbol *asym_ptr = *asym_ptr_ptr;
4969 int idx;
4970 flagword flags = asym_ptr->flags;
4971
4972 /* When gas creates relocations against local labels, it creates its
4973 own symbol for the section, but does put the symbol into the
4974 symbol chain, so udata is 0. When the linker is generating
4975 relocatable output, this section symbol may be for one of the
4976 input sections rather than the output section. */
4977 if (asym_ptr->udata.i == 0
4978 && (flags & BSF_SECTION_SYM)
4979 && asym_ptr->section)
4980 {
4981 int indx;
4982
4983 if (asym_ptr->section->output_section != NULL)
4984 indx = asym_ptr->section->output_section->index;
4985 else
4986 indx = asym_ptr->section->index;
4987 if (indx < elf_num_section_syms (abfd)
4988 && elf_section_syms (abfd)[indx] != NULL)
4989 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
4990 }
4991
4992 idx = asym_ptr->udata.i;
4993
4994 if (idx == 0)
4995 {
4996 /* This case can occur when using --strip-symbol on a symbol
4997 which is used in a relocation entry. */
4998 (*_bfd_error_handler)
4999 (_("%B: symbol `%s' required but not present"),
5000 abfd, bfd_asymbol_name (asym_ptr));
5001 bfd_set_error (bfd_error_no_symbols);
5002 return -1;
5003 }
5004
5005 #if DEBUG & 4
5006 {
5007 fprintf (stderr,
5008 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
5009 (long) asym_ptr, asym_ptr->name, idx, flags,
5010 elf_symbol_flags (flags));
5011 fflush (stderr);
5012 }
5013 #endif
5014
5015 return idx;
5016 }
5017
5018 /* Copy private BFD data. This copies any program header information. */
5019
5020 static bfd_boolean
5021 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
5022 {
5023 Elf_Internal_Ehdr *iehdr;
5024 struct elf_segment_map *map;
5025 struct elf_segment_map *map_first;
5026 struct elf_segment_map **pointer_to_map;
5027 Elf_Internal_Phdr *segment;
5028 asection *section;
5029 unsigned int i;
5030 unsigned int num_segments;
5031 bfd_boolean phdr_included = FALSE;
5032 bfd_vma maxpagesize;
5033 struct elf_segment_map *phdr_adjust_seg = NULL;
5034 unsigned int phdr_adjust_num = 0;
5035 const struct elf_backend_data *bed;
5036
5037 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5038 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5039 return TRUE;
5040
5041 if (elf_tdata (ibfd)->phdr == NULL)
5042 return TRUE;
5043
5044 bed = get_elf_backend_data (ibfd);
5045 iehdr = elf_elfheader (ibfd);
5046
5047 map_first = NULL;
5048 pointer_to_map = &map_first;
5049
5050 num_segments = elf_elfheader (ibfd)->e_phnum;
5051 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
5052
5053 /* Returns the end address of the segment + 1. */
5054 #define SEGMENT_END(segment, start) \
5055 (start + (segment->p_memsz > segment->p_filesz \
5056 ? segment->p_memsz : segment->p_filesz))
5057
5058 #define SECTION_SIZE(section, segment) \
5059 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5060 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5061 ? section->size : 0)
5062
5063 /* Returns TRUE if the given section is contained within
5064 the given segment. VMA addresses are compared. */
5065 #define IS_CONTAINED_BY_VMA(section, segment) \
5066 (section->vma >= segment->p_vaddr \
5067 && (section->vma + SECTION_SIZE (section, segment) \
5068 <= (SEGMENT_END (segment, segment->p_vaddr))))
5069
5070 /* Returns TRUE if the given section is contained within
5071 the given segment. LMA addresses are compared. */
5072 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5073 (section->lma >= base \
5074 && (section->lma + SECTION_SIZE (section, segment) \
5075 <= SEGMENT_END (segment, base)))
5076
5077 /* Special case: corefile "NOTE" section containing regs, prpsinfo etc. */
5078 #define IS_COREFILE_NOTE(p, s) \
5079 (p->p_type == PT_NOTE \
5080 && bfd_get_format (ibfd) == bfd_core \
5081 && s->vma == 0 && s->lma == 0 \
5082 && (bfd_vma) s->filepos >= p->p_offset \
5083 && ((bfd_vma) s->filepos + s->size \
5084 <= p->p_offset + p->p_filesz))
5085
5086 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5087 linker, which generates a PT_INTERP section with p_vaddr and
5088 p_memsz set to 0. */
5089 #define IS_SOLARIS_PT_INTERP(p, s) \
5090 (p->p_vaddr == 0 \
5091 && p->p_paddr == 0 \
5092 && p->p_memsz == 0 \
5093 && p->p_filesz > 0 \
5094 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5095 && s->size > 0 \
5096 && (bfd_vma) s->filepos >= p->p_offset \
5097 && ((bfd_vma) s->filepos + s->size \
5098 <= p->p_offset + p->p_filesz))
5099
5100 /* Decide if the given section should be included in the given segment.
5101 A section will be included if:
5102 1. It is within the address space of the segment -- we use the LMA
5103 if that is set for the segment and the VMA otherwise,
5104 2. It is an allocated segment,
5105 3. There is an output section associated with it,
5106 4. The section has not already been allocated to a previous segment.
5107 5. PT_GNU_STACK segments do not include any sections.
5108 6. PT_TLS segment includes only SHF_TLS sections.
5109 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5110 8. PT_DYNAMIC should not contain empty sections at the beginning
5111 (with the possible exception of .dynamic). */
5112 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5113 ((((segment->p_paddr \
5114 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5115 : IS_CONTAINED_BY_VMA (section, segment)) \
5116 && (section->flags & SEC_ALLOC) != 0) \
5117 || IS_COREFILE_NOTE (segment, section)) \
5118 && section->output_section != NULL \
5119 && segment->p_type != PT_GNU_STACK \
5120 && (segment->p_type != PT_TLS \
5121 || (section->flags & SEC_THREAD_LOCAL)) \
5122 && (segment->p_type == PT_LOAD \
5123 || segment->p_type == PT_TLS \
5124 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5125 && (segment->p_type != PT_DYNAMIC \
5126 || SECTION_SIZE (section, segment) > 0 \
5127 || (segment->p_paddr \
5128 ? segment->p_paddr != section->lma \
5129 : segment->p_vaddr != section->vma) \
5130 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5131 == 0)) \
5132 && ! section->segment_mark)
5133
5134 /* Returns TRUE iff seg1 starts after the end of seg2. */
5135 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5136 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5137
5138 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5139 their VMA address ranges and their LMA address ranges overlap.
5140 It is possible to have overlapping VMA ranges without overlapping LMA
5141 ranges. RedBoot images for example can have both .data and .bss mapped
5142 to the same VMA range, but with the .data section mapped to a different
5143 LMA. */
5144 #define SEGMENT_OVERLAPS(seg1, seg2) \
5145 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5146 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5147 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5148 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5149
5150 /* Initialise the segment mark field. */
5151 for (section = ibfd->sections; section != NULL; section = section->next)
5152 section->segment_mark = FALSE;
5153
5154 /* Scan through the segments specified in the program header
5155 of the input BFD. For this first scan we look for overlaps
5156 in the loadable segments. These can be created by weird
5157 parameters to objcopy. Also, fix some solaris weirdness. */
5158 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5159 i < num_segments;
5160 i++, segment++)
5161 {
5162 unsigned int j;
5163 Elf_Internal_Phdr *segment2;
5164
5165 if (segment->p_type == PT_INTERP)
5166 for (section = ibfd->sections; section; section = section->next)
5167 if (IS_SOLARIS_PT_INTERP (segment, section))
5168 {
5169 /* Mininal change so that the normal section to segment
5170 assignment code will work. */
5171 segment->p_vaddr = section->vma;
5172 break;
5173 }
5174
5175 if (segment->p_type != PT_LOAD)
5176 continue;
5177
5178 /* Determine if this segment overlaps any previous segments. */
5179 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2 ++)
5180 {
5181 bfd_signed_vma extra_length;
5182
5183 if (segment2->p_type != PT_LOAD
5184 || ! SEGMENT_OVERLAPS (segment, segment2))
5185 continue;
5186
5187 /* Merge the two segments together. */
5188 if (segment2->p_vaddr < segment->p_vaddr)
5189 {
5190 /* Extend SEGMENT2 to include SEGMENT and then delete
5191 SEGMENT. */
5192 extra_length =
5193 SEGMENT_END (segment, segment->p_vaddr)
5194 - SEGMENT_END (segment2, segment2->p_vaddr);
5195
5196 if (extra_length > 0)
5197 {
5198 segment2->p_memsz += extra_length;
5199 segment2->p_filesz += extra_length;
5200 }
5201
5202 segment->p_type = PT_NULL;
5203
5204 /* Since we have deleted P we must restart the outer loop. */
5205 i = 0;
5206 segment = elf_tdata (ibfd)->phdr;
5207 break;
5208 }
5209 else
5210 {
5211 /* Extend SEGMENT to include SEGMENT2 and then delete
5212 SEGMENT2. */
5213 extra_length =
5214 SEGMENT_END (segment2, segment2->p_vaddr)
5215 - SEGMENT_END (segment, segment->p_vaddr);
5216
5217 if (extra_length > 0)
5218 {
5219 segment->p_memsz += extra_length;
5220 segment->p_filesz += extra_length;
5221 }
5222
5223 segment2->p_type = PT_NULL;
5224 }
5225 }
5226 }
5227
5228 /* The second scan attempts to assign sections to segments. */
5229 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5230 i < num_segments;
5231 i ++, segment ++)
5232 {
5233 unsigned int section_count;
5234 asection ** sections;
5235 asection * output_section;
5236 unsigned int isec;
5237 bfd_vma matching_lma;
5238 bfd_vma suggested_lma;
5239 unsigned int j;
5240 bfd_size_type amt;
5241
5242 if (segment->p_type == PT_NULL)
5243 continue;
5244
5245 /* Compute how many sections might be placed into this segment. */
5246 for (section = ibfd->sections, section_count = 0;
5247 section != NULL;
5248 section = section->next)
5249 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5250 ++section_count;
5251
5252 /* Allocate a segment map big enough to contain
5253 all of the sections we have selected. */
5254 amt = sizeof (struct elf_segment_map);
5255 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5256 map = bfd_alloc (obfd, amt);
5257 if (map == NULL)
5258 return FALSE;
5259
5260 /* Initialise the fields of the segment map. Default to
5261 using the physical address of the segment in the input BFD. */
5262 map->next = NULL;
5263 map->p_type = segment->p_type;
5264 map->p_flags = segment->p_flags;
5265 map->p_flags_valid = 1;
5266 map->p_paddr = segment->p_paddr;
5267 map->p_paddr_valid = 1;
5268
5269 /* Determine if this segment contains the ELF file header
5270 and if it contains the program headers themselves. */
5271 map->includes_filehdr = (segment->p_offset == 0
5272 && segment->p_filesz >= iehdr->e_ehsize);
5273
5274 map->includes_phdrs = 0;
5275
5276 if (! phdr_included || segment->p_type != PT_LOAD)
5277 {
5278 map->includes_phdrs =
5279 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5280 && (segment->p_offset + segment->p_filesz
5281 >= ((bfd_vma) iehdr->e_phoff
5282 + iehdr->e_phnum * iehdr->e_phentsize)));
5283
5284 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5285 phdr_included = TRUE;
5286 }
5287
5288 if (section_count == 0)
5289 {
5290 /* Special segments, such as the PT_PHDR segment, may contain
5291 no sections, but ordinary, loadable segments should contain
5292 something. They are allowed by the ELF spec however, so only
5293 a warning is produced. */
5294 if (segment->p_type == PT_LOAD)
5295 (*_bfd_error_handler)
5296 (_("%B: warning: Empty loadable segment detected, is this intentional ?\n"),
5297 ibfd);
5298
5299 map->count = 0;
5300 *pointer_to_map = map;
5301 pointer_to_map = &map->next;
5302
5303 continue;
5304 }
5305
5306 /* Now scan the sections in the input BFD again and attempt
5307 to add their corresponding output sections to the segment map.
5308 The problem here is how to handle an output section which has
5309 been moved (ie had its LMA changed). There are four possibilities:
5310
5311 1. None of the sections have been moved.
5312 In this case we can continue to use the segment LMA from the
5313 input BFD.
5314
5315 2. All of the sections have been moved by the same amount.
5316 In this case we can change the segment's LMA to match the LMA
5317 of the first section.
5318
5319 3. Some of the sections have been moved, others have not.
5320 In this case those sections which have not been moved can be
5321 placed in the current segment which will have to have its size,
5322 and possibly its LMA changed, and a new segment or segments will
5323 have to be created to contain the other sections.
5324
5325 4. The sections have been moved, but not by the same amount.
5326 In this case we can change the segment's LMA to match the LMA
5327 of the first section and we will have to create a new segment
5328 or segments to contain the other sections.
5329
5330 In order to save time, we allocate an array to hold the section
5331 pointers that we are interested in. As these sections get assigned
5332 to a segment, they are removed from this array. */
5333
5334 /* Gcc 2.96 miscompiles this code on mips. Don't do casting here
5335 to work around this long long bug. */
5336 sections = bfd_malloc2 (section_count, sizeof (asection *));
5337 if (sections == NULL)
5338 return FALSE;
5339
5340 /* Step One: Scan for segment vs section LMA conflicts.
5341 Also add the sections to the section array allocated above.
5342 Also add the sections to the current segment. In the common
5343 case, where the sections have not been moved, this means that
5344 we have completely filled the segment, and there is nothing
5345 more to do. */
5346 isec = 0;
5347 matching_lma = 0;
5348 suggested_lma = 0;
5349
5350 for (j = 0, section = ibfd->sections;
5351 section != NULL;
5352 section = section->next)
5353 {
5354 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5355 {
5356 output_section = section->output_section;
5357
5358 sections[j ++] = section;
5359
5360 /* The Solaris native linker always sets p_paddr to 0.
5361 We try to catch that case here, and set it to the
5362 correct value. Note - some backends require that
5363 p_paddr be left as zero. */
5364 if (segment->p_paddr == 0
5365 && segment->p_vaddr != 0
5366 && (! bed->want_p_paddr_set_to_zero)
5367 && isec == 0
5368 && output_section->lma != 0
5369 && (output_section->vma == (segment->p_vaddr
5370 + (map->includes_filehdr
5371 ? iehdr->e_ehsize
5372 : 0)
5373 + (map->includes_phdrs
5374 ? (iehdr->e_phnum
5375 * iehdr->e_phentsize)
5376 : 0))))
5377 map->p_paddr = segment->p_vaddr;
5378
5379 /* Match up the physical address of the segment with the
5380 LMA address of the output section. */
5381 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5382 || IS_COREFILE_NOTE (segment, section)
5383 || (bed->want_p_paddr_set_to_zero &&
5384 IS_CONTAINED_BY_VMA (output_section, segment))
5385 )
5386 {
5387 if (matching_lma == 0)
5388 matching_lma = output_section->lma;
5389
5390 /* We assume that if the section fits within the segment
5391 then it does not overlap any other section within that
5392 segment. */
5393 map->sections[isec ++] = output_section;
5394 }
5395 else if (suggested_lma == 0)
5396 suggested_lma = output_section->lma;
5397 }
5398 }
5399
5400 BFD_ASSERT (j == section_count);
5401
5402 /* Step Two: Adjust the physical address of the current segment,
5403 if necessary. */
5404 if (isec == section_count)
5405 {
5406 /* All of the sections fitted within the segment as currently
5407 specified. This is the default case. Add the segment to
5408 the list of built segments and carry on to process the next
5409 program header in the input BFD. */
5410 map->count = section_count;
5411 *pointer_to_map = map;
5412 pointer_to_map = &map->next;
5413
5414 free (sections);
5415 continue;
5416 }
5417 else
5418 {
5419 if (matching_lma != 0)
5420 {
5421 /* At least one section fits inside the current segment.
5422 Keep it, but modify its physical address to match the
5423 LMA of the first section that fitted. */
5424 map->p_paddr = matching_lma;
5425 }
5426 else
5427 {
5428 /* None of the sections fitted inside the current segment.
5429 Change the current segment's physical address to match
5430 the LMA of the first section. */
5431 map->p_paddr = suggested_lma;
5432 }
5433
5434 /* Offset the segment physical address from the lma
5435 to allow for space taken up by elf headers. */
5436 if (map->includes_filehdr)
5437 map->p_paddr -= iehdr->e_ehsize;
5438
5439 if (map->includes_phdrs)
5440 {
5441 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
5442
5443 /* iehdr->e_phnum is just an estimate of the number
5444 of program headers that we will need. Make a note
5445 here of the number we used and the segment we chose
5446 to hold these headers, so that we can adjust the
5447 offset when we know the correct value. */
5448 phdr_adjust_num = iehdr->e_phnum;
5449 phdr_adjust_seg = map;
5450 }
5451 }
5452
5453 /* Step Three: Loop over the sections again, this time assigning
5454 those that fit to the current segment and removing them from the
5455 sections array; but making sure not to leave large gaps. Once all
5456 possible sections have been assigned to the current segment it is
5457 added to the list of built segments and if sections still remain
5458 to be assigned, a new segment is constructed before repeating
5459 the loop. */
5460 isec = 0;
5461 do
5462 {
5463 map->count = 0;
5464 suggested_lma = 0;
5465
5466 /* Fill the current segment with sections that fit. */
5467 for (j = 0; j < section_count; j++)
5468 {
5469 section = sections[j];
5470
5471 if (section == NULL)
5472 continue;
5473
5474 output_section = section->output_section;
5475
5476 BFD_ASSERT (output_section != NULL);
5477
5478 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5479 || IS_COREFILE_NOTE (segment, section))
5480 {
5481 if (map->count == 0)
5482 {
5483 /* If the first section in a segment does not start at
5484 the beginning of the segment, then something is
5485 wrong. */
5486 if (output_section->lma !=
5487 (map->p_paddr
5488 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
5489 + (map->includes_phdrs
5490 ? iehdr->e_phnum * iehdr->e_phentsize
5491 : 0)))
5492 abort ();
5493 }
5494 else
5495 {
5496 asection * prev_sec;
5497
5498 prev_sec = map->sections[map->count - 1];
5499
5500 /* If the gap between the end of the previous section
5501 and the start of this section is more than
5502 maxpagesize then we need to start a new segment. */
5503 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
5504 maxpagesize)
5505 < BFD_ALIGN (output_section->lma, maxpagesize))
5506 || ((prev_sec->lma + prev_sec->size)
5507 > output_section->lma))
5508 {
5509 if (suggested_lma == 0)
5510 suggested_lma = output_section->lma;
5511
5512 continue;
5513 }
5514 }
5515
5516 map->sections[map->count++] = output_section;
5517 ++isec;
5518 sections[j] = NULL;
5519 section->segment_mark = TRUE;
5520 }
5521 else if (suggested_lma == 0)
5522 suggested_lma = output_section->lma;
5523 }
5524
5525 BFD_ASSERT (map->count > 0);
5526
5527 /* Add the current segment to the list of built segments. */
5528 *pointer_to_map = map;
5529 pointer_to_map = &map->next;
5530
5531 if (isec < section_count)
5532 {
5533 /* We still have not allocated all of the sections to
5534 segments. Create a new segment here, initialise it
5535 and carry on looping. */
5536 amt = sizeof (struct elf_segment_map);
5537 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5538 map = bfd_alloc (obfd, amt);
5539 if (map == NULL)
5540 {
5541 free (sections);
5542 return FALSE;
5543 }
5544
5545 /* Initialise the fields of the segment map. Set the physical
5546 physical address to the LMA of the first section that has
5547 not yet been assigned. */
5548 map->next = NULL;
5549 map->p_type = segment->p_type;
5550 map->p_flags = segment->p_flags;
5551 map->p_flags_valid = 1;
5552 map->p_paddr = suggested_lma;
5553 map->p_paddr_valid = 1;
5554 map->includes_filehdr = 0;
5555 map->includes_phdrs = 0;
5556 }
5557 }
5558 while (isec < section_count);
5559
5560 free (sections);
5561 }
5562
5563 /* The Solaris linker creates program headers in which all the
5564 p_paddr fields are zero. When we try to objcopy or strip such a
5565 file, we get confused. Check for this case, and if we find it
5566 reset the p_paddr_valid fields. */
5567 for (map = map_first; map != NULL; map = map->next)
5568 if (map->p_paddr != 0)
5569 break;
5570 if (map == NULL)
5571 for (map = map_first; map != NULL; map = map->next)
5572 map->p_paddr_valid = 0;
5573
5574 elf_tdata (obfd)->segment_map = map_first;
5575
5576 /* If we had to estimate the number of program headers that were
5577 going to be needed, then check our estimate now and adjust
5578 the offset if necessary. */
5579 if (phdr_adjust_seg != NULL)
5580 {
5581 unsigned int count;
5582
5583 for (count = 0, map = map_first; map != NULL; map = map->next)
5584 count++;
5585
5586 if (count > phdr_adjust_num)
5587 phdr_adjust_seg->p_paddr
5588 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
5589 }
5590
5591 #undef SEGMENT_END
5592 #undef SECTION_SIZE
5593 #undef IS_CONTAINED_BY_VMA
5594 #undef IS_CONTAINED_BY_LMA
5595 #undef IS_COREFILE_NOTE
5596 #undef IS_SOLARIS_PT_INTERP
5597 #undef INCLUDE_SECTION_IN_SEGMENT
5598 #undef SEGMENT_AFTER_SEGMENT
5599 #undef SEGMENT_OVERLAPS
5600 return TRUE;
5601 }
5602
5603 /* Initialize private output section information from input section. */
5604
5605 bfd_boolean
5606 _bfd_elf_init_private_section_data (bfd *ibfd,
5607 asection *isec,
5608 bfd *obfd,
5609 asection *osec,
5610 struct bfd_link_info *link_info)
5611
5612 {
5613 Elf_Internal_Shdr *ihdr, *ohdr;
5614 bfd_boolean need_group = link_info == NULL || link_info->relocatable;
5615
5616 if (ibfd->xvec->flavour != bfd_target_elf_flavour
5617 || obfd->xvec->flavour != bfd_target_elf_flavour)
5618 return TRUE;
5619
5620 /* FIXME: What if the output ELF section type has been set to
5621 something different? */
5622 if (elf_section_type (osec) == SHT_NULL)
5623 elf_section_type (osec) = elf_section_type (isec);
5624
5625 /* Set things up for objcopy and relocatable link. The output
5626 SHT_GROUP section will have its elf_next_in_group pointing back
5627 to the input group members. Ignore linker created group section.
5628 See elfNN_ia64_object_p in elfxx-ia64.c. */
5629
5630 if (need_group)
5631 {
5632 if (elf_sec_group (isec) == NULL
5633 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
5634 {
5635 if (elf_section_flags (isec) & SHF_GROUP)
5636 elf_section_flags (osec) |= SHF_GROUP;
5637 elf_next_in_group (osec) = elf_next_in_group (isec);
5638 elf_group_name (osec) = elf_group_name (isec);
5639 }
5640 }
5641
5642 ihdr = &elf_section_data (isec)->this_hdr;
5643
5644 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
5645 don't use the output section of the linked-to section since it
5646 may be NULL at this point. */
5647 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
5648 {
5649 ohdr = &elf_section_data (osec)->this_hdr;
5650 ohdr->sh_flags |= SHF_LINK_ORDER;
5651 elf_linked_to_section (osec) = elf_linked_to_section (isec);
5652 }
5653
5654 osec->use_rela_p = isec->use_rela_p;
5655
5656 return TRUE;
5657 }
5658
5659 /* Copy private section information. This copies over the entsize
5660 field, and sometimes the info field. */
5661
5662 bfd_boolean
5663 _bfd_elf_copy_private_section_data (bfd *ibfd,
5664 asection *isec,
5665 bfd *obfd,
5666 asection *osec)
5667 {
5668 Elf_Internal_Shdr *ihdr, *ohdr;
5669
5670 if (ibfd->xvec->flavour != bfd_target_elf_flavour
5671 || obfd->xvec->flavour != bfd_target_elf_flavour)
5672 return TRUE;
5673
5674 ihdr = &elf_section_data (isec)->this_hdr;
5675 ohdr = &elf_section_data (osec)->this_hdr;
5676
5677 ohdr->sh_entsize = ihdr->sh_entsize;
5678
5679 if (ihdr->sh_type == SHT_SYMTAB
5680 || ihdr->sh_type == SHT_DYNSYM
5681 || ihdr->sh_type == SHT_GNU_verneed
5682 || ihdr->sh_type == SHT_GNU_verdef)
5683 ohdr->sh_info = ihdr->sh_info;
5684
5685 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
5686 NULL);
5687 }
5688
5689 /* Copy private header information. */
5690
5691 bfd_boolean
5692 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
5693 {
5694 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5695 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5696 return TRUE;
5697
5698 /* Copy over private BFD data if it has not already been copied.
5699 This must be done here, rather than in the copy_private_bfd_data
5700 entry point, because the latter is called after the section
5701 contents have been set, which means that the program headers have
5702 already been worked out. */
5703 if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
5704 {
5705 if (! copy_private_bfd_data (ibfd, obfd))
5706 return FALSE;
5707 }
5708
5709 return TRUE;
5710 }
5711
5712 /* Copy private symbol information. If this symbol is in a section
5713 which we did not map into a BFD section, try to map the section
5714 index correctly. We use special macro definitions for the mapped
5715 section indices; these definitions are interpreted by the
5716 swap_out_syms function. */
5717
5718 #define MAP_ONESYMTAB (SHN_HIOS + 1)
5719 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
5720 #define MAP_STRTAB (SHN_HIOS + 3)
5721 #define MAP_SHSTRTAB (SHN_HIOS + 4)
5722 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
5723
5724 bfd_boolean
5725 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
5726 asymbol *isymarg,
5727 bfd *obfd,
5728 asymbol *osymarg)
5729 {
5730 elf_symbol_type *isym, *osym;
5731
5732 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5733 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5734 return TRUE;
5735
5736 isym = elf_symbol_from (ibfd, isymarg);
5737 osym = elf_symbol_from (obfd, osymarg);
5738
5739 if (isym != NULL
5740 && osym != NULL
5741 && bfd_is_abs_section (isym->symbol.section))
5742 {
5743 unsigned int shndx;
5744
5745 shndx = isym->internal_elf_sym.st_shndx;
5746 if (shndx == elf_onesymtab (ibfd))
5747 shndx = MAP_ONESYMTAB;
5748 else if (shndx == elf_dynsymtab (ibfd))
5749 shndx = MAP_DYNSYMTAB;
5750 else if (shndx == elf_tdata (ibfd)->strtab_section)
5751 shndx = MAP_STRTAB;
5752 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
5753 shndx = MAP_SHSTRTAB;
5754 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
5755 shndx = MAP_SYM_SHNDX;
5756 osym->internal_elf_sym.st_shndx = shndx;
5757 }
5758
5759 return TRUE;
5760 }
5761
5762 /* Swap out the symbols. */
5763
5764 static bfd_boolean
5765 swap_out_syms (bfd *abfd,
5766 struct bfd_strtab_hash **sttp,
5767 int relocatable_p)
5768 {
5769 const struct elf_backend_data *bed;
5770 int symcount;
5771 asymbol **syms;
5772 struct bfd_strtab_hash *stt;
5773 Elf_Internal_Shdr *symtab_hdr;
5774 Elf_Internal_Shdr *symtab_shndx_hdr;
5775 Elf_Internal_Shdr *symstrtab_hdr;
5776 bfd_byte *outbound_syms;
5777 bfd_byte *outbound_shndx;
5778 int idx;
5779 bfd_size_type amt;
5780 bfd_boolean name_local_sections;
5781
5782 if (!elf_map_symbols (abfd))
5783 return FALSE;
5784
5785 /* Dump out the symtabs. */
5786 stt = _bfd_elf_stringtab_init ();
5787 if (stt == NULL)
5788 return FALSE;
5789
5790 bed = get_elf_backend_data (abfd);
5791 symcount = bfd_get_symcount (abfd);
5792 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5793 symtab_hdr->sh_type = SHT_SYMTAB;
5794 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
5795 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
5796 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
5797 symtab_hdr->sh_addralign = 1 << bed->s->log_file_align;
5798
5799 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
5800 symstrtab_hdr->sh_type = SHT_STRTAB;
5801
5802 outbound_syms = bfd_alloc2 (abfd, 1 + symcount, bed->s->sizeof_sym);
5803 if (outbound_syms == NULL)
5804 {
5805 _bfd_stringtab_free (stt);
5806 return FALSE;
5807 }
5808 symtab_hdr->contents = outbound_syms;
5809
5810 outbound_shndx = NULL;
5811 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
5812 if (symtab_shndx_hdr->sh_name != 0)
5813 {
5814 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
5815 outbound_shndx = bfd_zalloc2 (abfd, 1 + symcount,
5816 sizeof (Elf_External_Sym_Shndx));
5817 if (outbound_shndx == NULL)
5818 {
5819 _bfd_stringtab_free (stt);
5820 return FALSE;
5821 }
5822
5823 symtab_shndx_hdr->contents = outbound_shndx;
5824 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
5825 symtab_shndx_hdr->sh_size = amt;
5826 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
5827 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
5828 }
5829
5830 /* Now generate the data (for "contents"). */
5831 {
5832 /* Fill in zeroth symbol and swap it out. */
5833 Elf_Internal_Sym sym;
5834 sym.st_name = 0;
5835 sym.st_value = 0;
5836 sym.st_size = 0;
5837 sym.st_info = 0;
5838 sym.st_other = 0;
5839 sym.st_shndx = SHN_UNDEF;
5840 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
5841 outbound_syms += bed->s->sizeof_sym;
5842 if (outbound_shndx != NULL)
5843 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
5844 }
5845
5846 name_local_sections
5847 = (bed->elf_backend_name_local_section_symbols
5848 && bed->elf_backend_name_local_section_symbols (abfd));
5849
5850 syms = bfd_get_outsymbols (abfd);
5851 for (idx = 0; idx < symcount; idx++)
5852 {
5853 Elf_Internal_Sym sym;
5854 bfd_vma value = syms[idx]->value;
5855 elf_symbol_type *type_ptr;
5856 flagword flags = syms[idx]->flags;
5857 int type;
5858
5859 if (!name_local_sections
5860 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
5861 {
5862 /* Local section symbols have no name. */
5863 sym.st_name = 0;
5864 }
5865 else
5866 {
5867 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
5868 syms[idx]->name,
5869 TRUE, FALSE);
5870 if (sym.st_name == (unsigned long) -1)
5871 {
5872 _bfd_stringtab_free (stt);
5873 return FALSE;
5874 }
5875 }
5876
5877 type_ptr = elf_symbol_from (abfd, syms[idx]);
5878
5879 if ((flags & BSF_SECTION_SYM) == 0
5880 && bfd_is_com_section (syms[idx]->section))
5881 {
5882 /* ELF common symbols put the alignment into the `value' field,
5883 and the size into the `size' field. This is backwards from
5884 how BFD handles it, so reverse it here. */
5885 sym.st_size = value;
5886 if (type_ptr == NULL
5887 || type_ptr->internal_elf_sym.st_value == 0)
5888 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
5889 else
5890 sym.st_value = type_ptr->internal_elf_sym.st_value;
5891 sym.st_shndx = _bfd_elf_section_from_bfd_section
5892 (abfd, syms[idx]->section);
5893 }
5894 else
5895 {
5896 asection *sec = syms[idx]->section;
5897 int shndx;
5898
5899 if (sec->output_section)
5900 {
5901 value += sec->output_offset;
5902 sec = sec->output_section;
5903 }
5904
5905 /* Don't add in the section vma for relocatable output. */
5906 if (! relocatable_p)
5907 value += sec->vma;
5908 sym.st_value = value;
5909 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
5910
5911 if (bfd_is_abs_section (sec)
5912 && type_ptr != NULL
5913 && type_ptr->internal_elf_sym.st_shndx != 0)
5914 {
5915 /* This symbol is in a real ELF section which we did
5916 not create as a BFD section. Undo the mapping done
5917 by copy_private_symbol_data. */
5918 shndx = type_ptr->internal_elf_sym.st_shndx;
5919 switch (shndx)
5920 {
5921 case MAP_ONESYMTAB:
5922 shndx = elf_onesymtab (abfd);
5923 break;
5924 case MAP_DYNSYMTAB:
5925 shndx = elf_dynsymtab (abfd);
5926 break;
5927 case MAP_STRTAB:
5928 shndx = elf_tdata (abfd)->strtab_section;
5929 break;
5930 case MAP_SHSTRTAB:
5931 shndx = elf_tdata (abfd)->shstrtab_section;
5932 break;
5933 case MAP_SYM_SHNDX:
5934 shndx = elf_tdata (abfd)->symtab_shndx_section;
5935 break;
5936 default:
5937 break;
5938 }
5939 }
5940 else
5941 {
5942 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
5943
5944 if (shndx == -1)
5945 {
5946 asection *sec2;
5947
5948 /* Writing this would be a hell of a lot easier if
5949 we had some decent documentation on bfd, and
5950 knew what to expect of the library, and what to
5951 demand of applications. For example, it
5952 appears that `objcopy' might not set the
5953 section of a symbol to be a section that is
5954 actually in the output file. */
5955 sec2 = bfd_get_section_by_name (abfd, sec->name);
5956 if (sec2 == NULL)
5957 {
5958 _bfd_error_handler (_("\
5959 Unable to find equivalent output section for symbol '%s' from section '%s'"),
5960 syms[idx]->name ? syms[idx]->name : "<Local sym>",
5961 sec->name);
5962 bfd_set_error (bfd_error_invalid_operation);
5963 _bfd_stringtab_free (stt);
5964 return FALSE;
5965 }
5966
5967 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
5968 BFD_ASSERT (shndx != -1);
5969 }
5970 }
5971
5972 sym.st_shndx = shndx;
5973 }
5974
5975 if ((flags & BSF_THREAD_LOCAL) != 0)
5976 type = STT_TLS;
5977 else if ((flags & BSF_FUNCTION) != 0)
5978 type = STT_FUNC;
5979 else if ((flags & BSF_OBJECT) != 0)
5980 type = STT_OBJECT;
5981 else
5982 type = STT_NOTYPE;
5983
5984 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
5985 type = STT_TLS;
5986
5987 /* Processor-specific types. */
5988 if (type_ptr != NULL
5989 && bed->elf_backend_get_symbol_type)
5990 type = ((*bed->elf_backend_get_symbol_type)
5991 (&type_ptr->internal_elf_sym, type));
5992
5993 if (flags & BSF_SECTION_SYM)
5994 {
5995 if (flags & BSF_GLOBAL)
5996 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
5997 else
5998 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
5999 }
6000 else if (bfd_is_com_section (syms[idx]->section))
6001 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
6002 else if (bfd_is_und_section (syms[idx]->section))
6003 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
6004 ? STB_WEAK
6005 : STB_GLOBAL),
6006 type);
6007 else if (flags & BSF_FILE)
6008 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
6009 else
6010 {
6011 int bind = STB_LOCAL;
6012
6013 if (flags & BSF_LOCAL)
6014 bind = STB_LOCAL;
6015 else if (flags & BSF_WEAK)
6016 bind = STB_WEAK;
6017 else if (flags & BSF_GLOBAL)
6018 bind = STB_GLOBAL;
6019
6020 sym.st_info = ELF_ST_INFO (bind, type);
6021 }
6022
6023 if (type_ptr != NULL)
6024 sym.st_other = type_ptr->internal_elf_sym.st_other;
6025 else
6026 sym.st_other = 0;
6027
6028 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6029 outbound_syms += bed->s->sizeof_sym;
6030 if (outbound_shndx != NULL)
6031 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6032 }
6033
6034 *sttp = stt;
6035 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
6036 symstrtab_hdr->sh_type = SHT_STRTAB;
6037
6038 symstrtab_hdr->sh_flags = 0;
6039 symstrtab_hdr->sh_addr = 0;
6040 symstrtab_hdr->sh_entsize = 0;
6041 symstrtab_hdr->sh_link = 0;
6042 symstrtab_hdr->sh_info = 0;
6043 symstrtab_hdr->sh_addralign = 1;
6044
6045 return TRUE;
6046 }
6047
6048 /* Return the number of bytes required to hold the symtab vector.
6049
6050 Note that we base it on the count plus 1, since we will null terminate
6051 the vector allocated based on this size. However, the ELF symbol table
6052 always has a dummy entry as symbol #0, so it ends up even. */
6053
6054 long
6055 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
6056 {
6057 long symcount;
6058 long symtab_size;
6059 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
6060
6061 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6062 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6063 if (symcount > 0)
6064 symtab_size -= sizeof (asymbol *);
6065
6066 return symtab_size;
6067 }
6068
6069 long
6070 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
6071 {
6072 long symcount;
6073 long symtab_size;
6074 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
6075
6076 if (elf_dynsymtab (abfd) == 0)
6077 {
6078 bfd_set_error (bfd_error_invalid_operation);
6079 return -1;
6080 }
6081
6082 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6083 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6084 if (symcount > 0)
6085 symtab_size -= sizeof (asymbol *);
6086
6087 return symtab_size;
6088 }
6089
6090 long
6091 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
6092 sec_ptr asect)
6093 {
6094 return (asect->reloc_count + 1) * sizeof (arelent *);
6095 }
6096
6097 /* Canonicalize the relocs. */
6098
6099 long
6100 _bfd_elf_canonicalize_reloc (bfd *abfd,
6101 sec_ptr section,
6102 arelent **relptr,
6103 asymbol **symbols)
6104 {
6105 arelent *tblptr;
6106 unsigned int i;
6107 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6108
6109 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
6110 return -1;
6111
6112 tblptr = section->relocation;
6113 for (i = 0; i < section->reloc_count; i++)
6114 *relptr++ = tblptr++;
6115
6116 *relptr = NULL;
6117
6118 return section->reloc_count;
6119 }
6120
6121 long
6122 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
6123 {
6124 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6125 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
6126
6127 if (symcount >= 0)
6128 bfd_get_symcount (abfd) = symcount;
6129 return symcount;
6130 }
6131
6132 long
6133 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
6134 asymbol **allocation)
6135 {
6136 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6137 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
6138
6139 if (symcount >= 0)
6140 bfd_get_dynamic_symcount (abfd) = symcount;
6141 return symcount;
6142 }
6143
6144 /* Return the size required for the dynamic reloc entries. Any loadable
6145 section that was actually installed in the BFD, and has type SHT_REL
6146 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
6147 dynamic reloc section. */
6148
6149 long
6150 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
6151 {
6152 long ret;
6153 asection *s;
6154
6155 if (elf_dynsymtab (abfd) == 0)
6156 {
6157 bfd_set_error (bfd_error_invalid_operation);
6158 return -1;
6159 }
6160
6161 ret = sizeof (arelent *);
6162 for (s = abfd->sections; s != NULL; s = s->next)
6163 if ((s->flags & SEC_LOAD) != 0
6164 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6165 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6166 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6167 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
6168 * sizeof (arelent *));
6169
6170 return ret;
6171 }
6172
6173 /* Canonicalize the dynamic relocation entries. Note that we return the
6174 dynamic relocations as a single block, although they are actually
6175 associated with particular sections; the interface, which was
6176 designed for SunOS style shared libraries, expects that there is only
6177 one set of dynamic relocs. Any loadable section that was actually
6178 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
6179 dynamic symbol table, is considered to be a dynamic reloc section. */
6180
6181 long
6182 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
6183 arelent **storage,
6184 asymbol **syms)
6185 {
6186 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
6187 asection *s;
6188 long ret;
6189
6190 if (elf_dynsymtab (abfd) == 0)
6191 {
6192 bfd_set_error (bfd_error_invalid_operation);
6193 return -1;
6194 }
6195
6196 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
6197 ret = 0;
6198 for (s = abfd->sections; s != NULL; s = s->next)
6199 {
6200 if ((s->flags & SEC_LOAD) != 0
6201 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6202 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6203 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6204 {
6205 arelent *p;
6206 long count, i;
6207
6208 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
6209 return -1;
6210 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
6211 p = s->relocation;
6212 for (i = 0; i < count; i++)
6213 *storage++ = p++;
6214 ret += count;
6215 }
6216 }
6217
6218 *storage = NULL;
6219
6220 return ret;
6221 }
6222 \f
6223 /* Read in the version information. */
6224
6225 bfd_boolean
6226 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
6227 {
6228 bfd_byte *contents = NULL;
6229 unsigned int freeidx = 0;
6230
6231 if (elf_dynverref (abfd) != 0)
6232 {
6233 Elf_Internal_Shdr *hdr;
6234 Elf_External_Verneed *everneed;
6235 Elf_Internal_Verneed *iverneed;
6236 unsigned int i;
6237 bfd_byte *contents_end;
6238
6239 hdr = &elf_tdata (abfd)->dynverref_hdr;
6240
6241 elf_tdata (abfd)->verref = bfd_zalloc2 (abfd, hdr->sh_info,
6242 sizeof (Elf_Internal_Verneed));
6243 if (elf_tdata (abfd)->verref == NULL)
6244 goto error_return;
6245
6246 elf_tdata (abfd)->cverrefs = hdr->sh_info;
6247
6248 contents = bfd_malloc (hdr->sh_size);
6249 if (contents == NULL)
6250 {
6251 error_return_verref:
6252 elf_tdata (abfd)->verref = NULL;
6253 elf_tdata (abfd)->cverrefs = 0;
6254 goto error_return;
6255 }
6256 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6257 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6258 goto error_return_verref;
6259
6260 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verneed))
6261 goto error_return_verref;
6262
6263 BFD_ASSERT (sizeof (Elf_External_Verneed)
6264 == sizeof (Elf_External_Vernaux));
6265 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
6266 everneed = (Elf_External_Verneed *) contents;
6267 iverneed = elf_tdata (abfd)->verref;
6268 for (i = 0; i < hdr->sh_info; i++, iverneed++)
6269 {
6270 Elf_External_Vernaux *evernaux;
6271 Elf_Internal_Vernaux *ivernaux;
6272 unsigned int j;
6273
6274 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
6275
6276 iverneed->vn_bfd = abfd;
6277
6278 iverneed->vn_filename =
6279 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6280 iverneed->vn_file);
6281 if (iverneed->vn_filename == NULL)
6282 goto error_return_verref;
6283
6284 if (iverneed->vn_cnt == 0)
6285 iverneed->vn_auxptr = NULL;
6286 else
6287 {
6288 iverneed->vn_auxptr = bfd_alloc2 (abfd, iverneed->vn_cnt,
6289 sizeof (Elf_Internal_Vernaux));
6290 if (iverneed->vn_auxptr == NULL)
6291 goto error_return_verref;
6292 }
6293
6294 if (iverneed->vn_aux
6295 > (size_t) (contents_end - (bfd_byte *) everneed))
6296 goto error_return_verref;
6297
6298 evernaux = ((Elf_External_Vernaux *)
6299 ((bfd_byte *) everneed + iverneed->vn_aux));
6300 ivernaux = iverneed->vn_auxptr;
6301 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
6302 {
6303 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
6304
6305 ivernaux->vna_nodename =
6306 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6307 ivernaux->vna_name);
6308 if (ivernaux->vna_nodename == NULL)
6309 goto error_return_verref;
6310
6311 if (j + 1 < iverneed->vn_cnt)
6312 ivernaux->vna_nextptr = ivernaux + 1;
6313 else
6314 ivernaux->vna_nextptr = NULL;
6315
6316 if (ivernaux->vna_next
6317 > (size_t) (contents_end - (bfd_byte *) evernaux))
6318 goto error_return_verref;
6319
6320 evernaux = ((Elf_External_Vernaux *)
6321 ((bfd_byte *) evernaux + ivernaux->vna_next));
6322
6323 if (ivernaux->vna_other > freeidx)
6324 freeidx = ivernaux->vna_other;
6325 }
6326
6327 if (i + 1 < hdr->sh_info)
6328 iverneed->vn_nextref = iverneed + 1;
6329 else
6330 iverneed->vn_nextref = NULL;
6331
6332 if (iverneed->vn_next
6333 > (size_t) (contents_end - (bfd_byte *) everneed))
6334 goto error_return_verref;
6335
6336 everneed = ((Elf_External_Verneed *)
6337 ((bfd_byte *) everneed + iverneed->vn_next));
6338 }
6339
6340 free (contents);
6341 contents = NULL;
6342 }
6343
6344 if (elf_dynverdef (abfd) != 0)
6345 {
6346 Elf_Internal_Shdr *hdr;
6347 Elf_External_Verdef *everdef;
6348 Elf_Internal_Verdef *iverdef;
6349 Elf_Internal_Verdef *iverdefarr;
6350 Elf_Internal_Verdef iverdefmem;
6351 unsigned int i;
6352 unsigned int maxidx;
6353 bfd_byte *contents_end_def, *contents_end_aux;
6354
6355 hdr = &elf_tdata (abfd)->dynverdef_hdr;
6356
6357 contents = bfd_malloc (hdr->sh_size);
6358 if (contents == NULL)
6359 goto error_return;
6360 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6361 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6362 goto error_return;
6363
6364 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verdef))
6365 goto error_return;
6366
6367 BFD_ASSERT (sizeof (Elf_External_Verdef)
6368 >= sizeof (Elf_External_Verdaux));
6369 contents_end_def = contents + hdr->sh_size
6370 - sizeof (Elf_External_Verdef);
6371 contents_end_aux = contents + hdr->sh_size
6372 - sizeof (Elf_External_Verdaux);
6373
6374 /* We know the number of entries in the section but not the maximum
6375 index. Therefore we have to run through all entries and find
6376 the maximum. */
6377 everdef = (Elf_External_Verdef *) contents;
6378 maxidx = 0;
6379 for (i = 0; i < hdr->sh_info; ++i)
6380 {
6381 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6382
6383 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
6384 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
6385
6386 if (iverdefmem.vd_next
6387 > (size_t) (contents_end_def - (bfd_byte *) everdef))
6388 goto error_return;
6389
6390 everdef = ((Elf_External_Verdef *)
6391 ((bfd_byte *) everdef + iverdefmem.vd_next));
6392 }
6393
6394 if (default_imported_symver)
6395 {
6396 if (freeidx > maxidx)
6397 maxidx = ++freeidx;
6398 else
6399 freeidx = ++maxidx;
6400 }
6401 elf_tdata (abfd)->verdef = bfd_zalloc2 (abfd, maxidx,
6402 sizeof (Elf_Internal_Verdef));
6403 if (elf_tdata (abfd)->verdef == NULL)
6404 goto error_return;
6405
6406 elf_tdata (abfd)->cverdefs = maxidx;
6407
6408 everdef = (Elf_External_Verdef *) contents;
6409 iverdefarr = elf_tdata (abfd)->verdef;
6410 for (i = 0; i < hdr->sh_info; i++)
6411 {
6412 Elf_External_Verdaux *everdaux;
6413 Elf_Internal_Verdaux *iverdaux;
6414 unsigned int j;
6415
6416 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6417
6418 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
6419 {
6420 error_return_verdef:
6421 elf_tdata (abfd)->verdef = NULL;
6422 elf_tdata (abfd)->cverdefs = 0;
6423 goto error_return;
6424 }
6425
6426 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
6427 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
6428
6429 iverdef->vd_bfd = abfd;
6430
6431 if (iverdef->vd_cnt == 0)
6432 iverdef->vd_auxptr = NULL;
6433 else
6434 {
6435 iverdef->vd_auxptr = bfd_alloc2 (abfd, iverdef->vd_cnt,
6436 sizeof (Elf_Internal_Verdaux));
6437 if (iverdef->vd_auxptr == NULL)
6438 goto error_return_verdef;
6439 }
6440
6441 if (iverdef->vd_aux
6442 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
6443 goto error_return_verdef;
6444
6445 everdaux = ((Elf_External_Verdaux *)
6446 ((bfd_byte *) everdef + iverdef->vd_aux));
6447 iverdaux = iverdef->vd_auxptr;
6448 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
6449 {
6450 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
6451
6452 iverdaux->vda_nodename =
6453 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6454 iverdaux->vda_name);
6455 if (iverdaux->vda_nodename == NULL)
6456 goto error_return_verdef;
6457
6458 if (j + 1 < iverdef->vd_cnt)
6459 iverdaux->vda_nextptr = iverdaux + 1;
6460 else
6461 iverdaux->vda_nextptr = NULL;
6462
6463 if (iverdaux->vda_next
6464 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
6465 goto error_return_verdef;
6466
6467 everdaux = ((Elf_External_Verdaux *)
6468 ((bfd_byte *) everdaux + iverdaux->vda_next));
6469 }
6470
6471 if (iverdef->vd_cnt)
6472 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
6473
6474 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
6475 iverdef->vd_nextdef = iverdef + 1;
6476 else
6477 iverdef->vd_nextdef = NULL;
6478
6479 everdef = ((Elf_External_Verdef *)
6480 ((bfd_byte *) everdef + iverdef->vd_next));
6481 }
6482
6483 free (contents);
6484 contents = NULL;
6485 }
6486 else if (default_imported_symver)
6487 {
6488 if (freeidx < 3)
6489 freeidx = 3;
6490 else
6491 freeidx++;
6492
6493 elf_tdata (abfd)->verdef = bfd_zalloc2 (abfd, freeidx,
6494 sizeof (Elf_Internal_Verdef));
6495 if (elf_tdata (abfd)->verdef == NULL)
6496 goto error_return;
6497
6498 elf_tdata (abfd)->cverdefs = freeidx;
6499 }
6500
6501 /* Create a default version based on the soname. */
6502 if (default_imported_symver)
6503 {
6504 Elf_Internal_Verdef *iverdef;
6505 Elf_Internal_Verdaux *iverdaux;
6506
6507 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];;
6508
6509 iverdef->vd_version = VER_DEF_CURRENT;
6510 iverdef->vd_flags = 0;
6511 iverdef->vd_ndx = freeidx;
6512 iverdef->vd_cnt = 1;
6513
6514 iverdef->vd_bfd = abfd;
6515
6516 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
6517 if (iverdef->vd_nodename == NULL)
6518 goto error_return_verdef;
6519 iverdef->vd_nextdef = NULL;
6520 iverdef->vd_auxptr = bfd_alloc (abfd, sizeof (Elf_Internal_Verdaux));
6521 if (iverdef->vd_auxptr == NULL)
6522 goto error_return_verdef;
6523
6524 iverdaux = iverdef->vd_auxptr;
6525 iverdaux->vda_nodename = iverdef->vd_nodename;
6526 iverdaux->vda_nextptr = NULL;
6527 }
6528
6529 return TRUE;
6530
6531 error_return:
6532 if (contents != NULL)
6533 free (contents);
6534 return FALSE;
6535 }
6536 \f
6537 asymbol *
6538 _bfd_elf_make_empty_symbol (bfd *abfd)
6539 {
6540 elf_symbol_type *newsym;
6541 bfd_size_type amt = sizeof (elf_symbol_type);
6542
6543 newsym = bfd_zalloc (abfd, amt);
6544 if (!newsym)
6545 return NULL;
6546 else
6547 {
6548 newsym->symbol.the_bfd = abfd;
6549 return &newsym->symbol;
6550 }
6551 }
6552
6553 void
6554 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
6555 asymbol *symbol,
6556 symbol_info *ret)
6557 {
6558 bfd_symbol_info (symbol, ret);
6559 }
6560
6561 /* Return whether a symbol name implies a local symbol. Most targets
6562 use this function for the is_local_label_name entry point, but some
6563 override it. */
6564
6565 bfd_boolean
6566 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
6567 const char *name)
6568 {
6569 /* Normal local symbols start with ``.L''. */
6570 if (name[0] == '.' && name[1] == 'L')
6571 return TRUE;
6572
6573 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
6574 DWARF debugging symbols starting with ``..''. */
6575 if (name[0] == '.' && name[1] == '.')
6576 return TRUE;
6577
6578 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
6579 emitting DWARF debugging output. I suspect this is actually a
6580 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
6581 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
6582 underscore to be emitted on some ELF targets). For ease of use,
6583 we treat such symbols as local. */
6584 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
6585 return TRUE;
6586
6587 return FALSE;
6588 }
6589
6590 alent *
6591 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
6592 asymbol *symbol ATTRIBUTE_UNUSED)
6593 {
6594 abort ();
6595 return NULL;
6596 }
6597
6598 bfd_boolean
6599 _bfd_elf_set_arch_mach (bfd *abfd,
6600 enum bfd_architecture arch,
6601 unsigned long machine)
6602 {
6603 /* If this isn't the right architecture for this backend, and this
6604 isn't the generic backend, fail. */
6605 if (arch != get_elf_backend_data (abfd)->arch
6606 && arch != bfd_arch_unknown
6607 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
6608 return FALSE;
6609
6610 return bfd_default_set_arch_mach (abfd, arch, machine);
6611 }
6612
6613 /* Find the function to a particular section and offset,
6614 for error reporting. */
6615
6616 static bfd_boolean
6617 elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
6618 asection *section,
6619 asymbol **symbols,
6620 bfd_vma offset,
6621 const char **filename_ptr,
6622 const char **functionname_ptr)
6623 {
6624 const char *filename;
6625 asymbol *func, *file;
6626 bfd_vma low_func;
6627 asymbol **p;
6628 /* ??? Given multiple file symbols, it is impossible to reliably
6629 choose the right file name for global symbols. File symbols are
6630 local symbols, and thus all file symbols must sort before any
6631 global symbols. The ELF spec may be interpreted to say that a
6632 file symbol must sort before other local symbols, but currently
6633 ld -r doesn't do this. So, for ld -r output, it is possible to
6634 make a better choice of file name for local symbols by ignoring
6635 file symbols appearing after a given local symbol. */
6636 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
6637
6638 filename = NULL;
6639 func = NULL;
6640 file = NULL;
6641 low_func = 0;
6642 state = nothing_seen;
6643
6644 for (p = symbols; *p != NULL; p++)
6645 {
6646 elf_symbol_type *q;
6647
6648 q = (elf_symbol_type *) *p;
6649
6650 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
6651 {
6652 default:
6653 break;
6654 case STT_FILE:
6655 file = &q->symbol;
6656 if (state == symbol_seen)
6657 state = file_after_symbol_seen;
6658 continue;
6659 case STT_SECTION:
6660 continue;
6661 case STT_NOTYPE:
6662 case STT_FUNC:
6663 if (bfd_get_section (&q->symbol) == section
6664 && q->symbol.value >= low_func
6665 && q->symbol.value <= offset)
6666 {
6667 func = (asymbol *) q;
6668 low_func = q->symbol.value;
6669 if (file == NULL)
6670 filename = NULL;
6671 else if (ELF_ST_BIND (q->internal_elf_sym.st_info) != STB_LOCAL
6672 && state == file_after_symbol_seen)
6673 filename = NULL;
6674 else
6675 filename = bfd_asymbol_name (file);
6676 }
6677 break;
6678 }
6679 if (state == nothing_seen)
6680 state = symbol_seen;
6681 }
6682
6683 if (func == NULL)
6684 return FALSE;
6685
6686 if (filename_ptr)
6687 *filename_ptr = filename;
6688 if (functionname_ptr)
6689 *functionname_ptr = bfd_asymbol_name (func);
6690
6691 return TRUE;
6692 }
6693
6694 /* Find the nearest line to a particular section and offset,
6695 for error reporting. */
6696
6697 bfd_boolean
6698 _bfd_elf_find_nearest_line (bfd *abfd,
6699 asection *section,
6700 asymbol **symbols,
6701 bfd_vma offset,
6702 const char **filename_ptr,
6703 const char **functionname_ptr,
6704 unsigned int *line_ptr)
6705 {
6706 bfd_boolean found;
6707
6708 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
6709 filename_ptr, functionname_ptr,
6710 line_ptr))
6711 {
6712 if (!*functionname_ptr)
6713 elf_find_function (abfd, section, symbols, offset,
6714 *filename_ptr ? NULL : filename_ptr,
6715 functionname_ptr);
6716
6717 return TRUE;
6718 }
6719
6720 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
6721 filename_ptr, functionname_ptr,
6722 line_ptr, 0,
6723 &elf_tdata (abfd)->dwarf2_find_line_info))
6724 {
6725 if (!*functionname_ptr)
6726 elf_find_function (abfd, section, symbols, offset,
6727 *filename_ptr ? NULL : filename_ptr,
6728 functionname_ptr);
6729
6730 return TRUE;
6731 }
6732
6733 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
6734 &found, filename_ptr,
6735 functionname_ptr, line_ptr,
6736 &elf_tdata (abfd)->line_info))
6737 return FALSE;
6738 if (found && (*functionname_ptr || *line_ptr))
6739 return TRUE;
6740
6741 if (symbols == NULL)
6742 return FALSE;
6743
6744 if (! elf_find_function (abfd, section, symbols, offset,
6745 filename_ptr, functionname_ptr))
6746 return FALSE;
6747
6748 *line_ptr = 0;
6749 return TRUE;
6750 }
6751
6752 /* Find the line for a symbol. */
6753
6754 bfd_boolean
6755 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
6756 const char **filename_ptr, unsigned int *line_ptr)
6757 {
6758 return _bfd_dwarf2_find_line (abfd, symbols, symbol,
6759 filename_ptr, line_ptr, 0,
6760 &elf_tdata (abfd)->dwarf2_find_line_info);
6761 }
6762
6763 /* After a call to bfd_find_nearest_line, successive calls to
6764 bfd_find_inliner_info can be used to get source information about
6765 each level of function inlining that terminated at the address
6766 passed to bfd_find_nearest_line. Currently this is only supported
6767 for DWARF2 with appropriate DWARF3 extensions. */
6768
6769 bfd_boolean
6770 _bfd_elf_find_inliner_info (bfd *abfd,
6771 const char **filename_ptr,
6772 const char **functionname_ptr,
6773 unsigned int *line_ptr)
6774 {
6775 bfd_boolean found;
6776 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
6777 functionname_ptr, line_ptr,
6778 & elf_tdata (abfd)->dwarf2_find_line_info);
6779 return found;
6780 }
6781
6782 int
6783 _bfd_elf_sizeof_headers (bfd *abfd, bfd_boolean reloc)
6784 {
6785 int ret;
6786
6787 ret = get_elf_backend_data (abfd)->s->sizeof_ehdr;
6788 if (! reloc)
6789 ret += get_program_header_size (abfd);
6790 return ret;
6791 }
6792
6793 bfd_boolean
6794 _bfd_elf_set_section_contents (bfd *abfd,
6795 sec_ptr section,
6796 const void *location,
6797 file_ptr offset,
6798 bfd_size_type count)
6799 {
6800 Elf_Internal_Shdr *hdr;
6801 bfd_signed_vma pos;
6802
6803 if (! abfd->output_has_begun
6804 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
6805 return FALSE;
6806
6807 hdr = &elf_section_data (section)->this_hdr;
6808 pos = hdr->sh_offset + offset;
6809 if (bfd_seek (abfd, pos, SEEK_SET) != 0
6810 || bfd_bwrite (location, count, abfd) != count)
6811 return FALSE;
6812
6813 return TRUE;
6814 }
6815
6816 void
6817 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
6818 arelent *cache_ptr ATTRIBUTE_UNUSED,
6819 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
6820 {
6821 abort ();
6822 }
6823
6824 /* Try to convert a non-ELF reloc into an ELF one. */
6825
6826 bfd_boolean
6827 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
6828 {
6829 /* Check whether we really have an ELF howto. */
6830
6831 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
6832 {
6833 bfd_reloc_code_real_type code;
6834 reloc_howto_type *howto;
6835
6836 /* Alien reloc: Try to determine its type to replace it with an
6837 equivalent ELF reloc. */
6838
6839 if (areloc->howto->pc_relative)
6840 {
6841 switch (areloc->howto->bitsize)
6842 {
6843 case 8:
6844 code = BFD_RELOC_8_PCREL;
6845 break;
6846 case 12:
6847 code = BFD_RELOC_12_PCREL;
6848 break;
6849 case 16:
6850 code = BFD_RELOC_16_PCREL;
6851 break;
6852 case 24:
6853 code = BFD_RELOC_24_PCREL;
6854 break;
6855 case 32:
6856 code = BFD_RELOC_32_PCREL;
6857 break;
6858 case 64:
6859 code = BFD_RELOC_64_PCREL;
6860 break;
6861 default:
6862 goto fail;
6863 }
6864
6865 howto = bfd_reloc_type_lookup (abfd, code);
6866
6867 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
6868 {
6869 if (howto->pcrel_offset)
6870 areloc->addend += areloc->address;
6871 else
6872 areloc->addend -= areloc->address; /* addend is unsigned!! */
6873 }
6874 }
6875 else
6876 {
6877 switch (areloc->howto->bitsize)
6878 {
6879 case 8:
6880 code = BFD_RELOC_8;
6881 break;
6882 case 14:
6883 code = BFD_RELOC_14;
6884 break;
6885 case 16:
6886 code = BFD_RELOC_16;
6887 break;
6888 case 26:
6889 code = BFD_RELOC_26;
6890 break;
6891 case 32:
6892 code = BFD_RELOC_32;
6893 break;
6894 case 64:
6895 code = BFD_RELOC_64;
6896 break;
6897 default:
6898 goto fail;
6899 }
6900
6901 howto = bfd_reloc_type_lookup (abfd, code);
6902 }
6903
6904 if (howto)
6905 areloc->howto = howto;
6906 else
6907 goto fail;
6908 }
6909
6910 return TRUE;
6911
6912 fail:
6913 (*_bfd_error_handler)
6914 (_("%B: unsupported relocation type %s"),
6915 abfd, areloc->howto->name);
6916 bfd_set_error (bfd_error_bad_value);
6917 return FALSE;
6918 }
6919
6920 bfd_boolean
6921 _bfd_elf_close_and_cleanup (bfd *abfd)
6922 {
6923 if (bfd_get_format (abfd) == bfd_object)
6924 {
6925 if (elf_shstrtab (abfd) != NULL)
6926 _bfd_elf_strtab_free (elf_shstrtab (abfd));
6927 _bfd_dwarf2_cleanup_debug_info (abfd);
6928 }
6929
6930 return _bfd_generic_close_and_cleanup (abfd);
6931 }
6932
6933 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
6934 in the relocation's offset. Thus we cannot allow any sort of sanity
6935 range-checking to interfere. There is nothing else to do in processing
6936 this reloc. */
6937
6938 bfd_reloc_status_type
6939 _bfd_elf_rel_vtable_reloc_fn
6940 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
6941 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
6942 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
6943 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
6944 {
6945 return bfd_reloc_ok;
6946 }
6947 \f
6948 /* Elf core file support. Much of this only works on native
6949 toolchains, since we rely on knowing the
6950 machine-dependent procfs structure in order to pick
6951 out details about the corefile. */
6952
6953 #ifdef HAVE_SYS_PROCFS_H
6954 # include <sys/procfs.h>
6955 #endif
6956
6957 /* FIXME: this is kinda wrong, but it's what gdb wants. */
6958
6959 static int
6960 elfcore_make_pid (bfd *abfd)
6961 {
6962 return ((elf_tdata (abfd)->core_lwpid << 16)
6963 + (elf_tdata (abfd)->core_pid));
6964 }
6965
6966 /* If there isn't a section called NAME, make one, using
6967 data from SECT. Note, this function will generate a
6968 reference to NAME, so you shouldn't deallocate or
6969 overwrite it. */
6970
6971 static bfd_boolean
6972 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
6973 {
6974 asection *sect2;
6975
6976 if (bfd_get_section_by_name (abfd, name) != NULL)
6977 return TRUE;
6978
6979 sect2 = bfd_make_section (abfd, name);
6980 if (sect2 == NULL)
6981 return FALSE;
6982
6983 sect2->size = sect->size;
6984 sect2->filepos = sect->filepos;
6985 sect2->flags = sect->flags;
6986 sect2->alignment_power = sect->alignment_power;
6987 return TRUE;
6988 }
6989
6990 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
6991 actually creates up to two pseudosections:
6992 - For the single-threaded case, a section named NAME, unless
6993 such a section already exists.
6994 - For the multi-threaded case, a section named "NAME/PID", where
6995 PID is elfcore_make_pid (abfd).
6996 Both pseudosections have identical contents. */
6997 bfd_boolean
6998 _bfd_elfcore_make_pseudosection (bfd *abfd,
6999 char *name,
7000 size_t size,
7001 ufile_ptr filepos)
7002 {
7003 char buf[100];
7004 char *threaded_name;
7005 size_t len;
7006 asection *sect;
7007
7008 /* Build the section name. */
7009
7010 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
7011 len = strlen (buf) + 1;
7012 threaded_name = bfd_alloc (abfd, len);
7013 if (threaded_name == NULL)
7014 return FALSE;
7015 memcpy (threaded_name, buf, len);
7016
7017 sect = bfd_make_section_anyway (abfd, threaded_name);
7018 if (sect == NULL)
7019 return FALSE;
7020 sect->size = size;
7021 sect->filepos = filepos;
7022 sect->flags = SEC_HAS_CONTENTS;
7023 sect->alignment_power = 2;
7024
7025 return elfcore_maybe_make_sect (abfd, name, sect);
7026 }
7027
7028 /* prstatus_t exists on:
7029 solaris 2.5+
7030 linux 2.[01] + glibc
7031 unixware 4.2
7032 */
7033
7034 #if defined (HAVE_PRSTATUS_T)
7035
7036 static bfd_boolean
7037 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
7038 {
7039 size_t size;
7040 int offset;
7041
7042 if (note->descsz == sizeof (prstatus_t))
7043 {
7044 prstatus_t prstat;
7045
7046 size = sizeof (prstat.pr_reg);
7047 offset = offsetof (prstatus_t, pr_reg);
7048 memcpy (&prstat, note->descdata, sizeof (prstat));
7049
7050 /* Do not overwrite the core signal if it
7051 has already been set by another thread. */
7052 if (elf_tdata (abfd)->core_signal == 0)
7053 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7054 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7055
7056 /* pr_who exists on:
7057 solaris 2.5+
7058 unixware 4.2
7059 pr_who doesn't exist on:
7060 linux 2.[01]
7061 */
7062 #if defined (HAVE_PRSTATUS_T_PR_WHO)
7063 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7064 #endif
7065 }
7066 #if defined (HAVE_PRSTATUS32_T)
7067 else if (note->descsz == sizeof (prstatus32_t))
7068 {
7069 /* 64-bit host, 32-bit corefile */
7070 prstatus32_t prstat;
7071
7072 size = sizeof (prstat.pr_reg);
7073 offset = offsetof (prstatus32_t, pr_reg);
7074 memcpy (&prstat, note->descdata, sizeof (prstat));
7075
7076 /* Do not overwrite the core signal if it
7077 has already been set by another thread. */
7078 if (elf_tdata (abfd)->core_signal == 0)
7079 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7080 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7081
7082 /* pr_who exists on:
7083 solaris 2.5+
7084 unixware 4.2
7085 pr_who doesn't exist on:
7086 linux 2.[01]
7087 */
7088 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
7089 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7090 #endif
7091 }
7092 #endif /* HAVE_PRSTATUS32_T */
7093 else
7094 {
7095 /* Fail - we don't know how to handle any other
7096 note size (ie. data object type). */
7097 return TRUE;
7098 }
7099
7100 /* Make a ".reg/999" section and a ".reg" section. */
7101 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
7102 size, note->descpos + offset);
7103 }
7104 #endif /* defined (HAVE_PRSTATUS_T) */
7105
7106 /* Create a pseudosection containing the exact contents of NOTE. */
7107 static bfd_boolean
7108 elfcore_make_note_pseudosection (bfd *abfd,
7109 char *name,
7110 Elf_Internal_Note *note)
7111 {
7112 return _bfd_elfcore_make_pseudosection (abfd, name,
7113 note->descsz, note->descpos);
7114 }
7115
7116 /* There isn't a consistent prfpregset_t across platforms,
7117 but it doesn't matter, because we don't have to pick this
7118 data structure apart. */
7119
7120 static bfd_boolean
7121 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
7122 {
7123 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7124 }
7125
7126 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
7127 type of 5 (NT_PRXFPREG). Just include the whole note's contents
7128 literally. */
7129
7130 static bfd_boolean
7131 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
7132 {
7133 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
7134 }
7135
7136 #if defined (HAVE_PRPSINFO_T)
7137 typedef prpsinfo_t elfcore_psinfo_t;
7138 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
7139 typedef prpsinfo32_t elfcore_psinfo32_t;
7140 #endif
7141 #endif
7142
7143 #if defined (HAVE_PSINFO_T)
7144 typedef psinfo_t elfcore_psinfo_t;
7145 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
7146 typedef psinfo32_t elfcore_psinfo32_t;
7147 #endif
7148 #endif
7149
7150 /* return a malloc'ed copy of a string at START which is at
7151 most MAX bytes long, possibly without a terminating '\0'.
7152 the copy will always have a terminating '\0'. */
7153
7154 char *
7155 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
7156 {
7157 char *dups;
7158 char *end = memchr (start, '\0', max);
7159 size_t len;
7160
7161 if (end == NULL)
7162 len = max;
7163 else
7164 len = end - start;
7165
7166 dups = bfd_alloc (abfd, len + 1);
7167 if (dups == NULL)
7168 return NULL;
7169
7170 memcpy (dups, start, len);
7171 dups[len] = '\0';
7172
7173 return dups;
7174 }
7175
7176 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7177 static bfd_boolean
7178 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
7179 {
7180 if (note->descsz == sizeof (elfcore_psinfo_t))
7181 {
7182 elfcore_psinfo_t psinfo;
7183
7184 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7185
7186 elf_tdata (abfd)->core_program
7187 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7188 sizeof (psinfo.pr_fname));
7189
7190 elf_tdata (abfd)->core_command
7191 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7192 sizeof (psinfo.pr_psargs));
7193 }
7194 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
7195 else if (note->descsz == sizeof (elfcore_psinfo32_t))
7196 {
7197 /* 64-bit host, 32-bit corefile */
7198 elfcore_psinfo32_t psinfo;
7199
7200 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7201
7202 elf_tdata (abfd)->core_program
7203 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7204 sizeof (psinfo.pr_fname));
7205
7206 elf_tdata (abfd)->core_command
7207 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7208 sizeof (psinfo.pr_psargs));
7209 }
7210 #endif
7211
7212 else
7213 {
7214 /* Fail - we don't know how to handle any other
7215 note size (ie. data object type). */
7216 return TRUE;
7217 }
7218
7219 /* Note that for some reason, a spurious space is tacked
7220 onto the end of the args in some (at least one anyway)
7221 implementations, so strip it off if it exists. */
7222
7223 {
7224 char *command = elf_tdata (abfd)->core_command;
7225 int n = strlen (command);
7226
7227 if (0 < n && command[n - 1] == ' ')
7228 command[n - 1] = '\0';
7229 }
7230
7231 return TRUE;
7232 }
7233 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
7234
7235 #if defined (HAVE_PSTATUS_T)
7236 static bfd_boolean
7237 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
7238 {
7239 if (note->descsz == sizeof (pstatus_t)
7240 #if defined (HAVE_PXSTATUS_T)
7241 || note->descsz == sizeof (pxstatus_t)
7242 #endif
7243 )
7244 {
7245 pstatus_t pstat;
7246
7247 memcpy (&pstat, note->descdata, sizeof (pstat));
7248
7249 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7250 }
7251 #if defined (HAVE_PSTATUS32_T)
7252 else if (note->descsz == sizeof (pstatus32_t))
7253 {
7254 /* 64-bit host, 32-bit corefile */
7255 pstatus32_t pstat;
7256
7257 memcpy (&pstat, note->descdata, sizeof (pstat));
7258
7259 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7260 }
7261 #endif
7262 /* Could grab some more details from the "representative"
7263 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
7264 NT_LWPSTATUS note, presumably. */
7265
7266 return TRUE;
7267 }
7268 #endif /* defined (HAVE_PSTATUS_T) */
7269
7270 #if defined (HAVE_LWPSTATUS_T)
7271 static bfd_boolean
7272 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
7273 {
7274 lwpstatus_t lwpstat;
7275 char buf[100];
7276 char *name;
7277 size_t len;
7278 asection *sect;
7279
7280 if (note->descsz != sizeof (lwpstat)
7281 #if defined (HAVE_LWPXSTATUS_T)
7282 && note->descsz != sizeof (lwpxstatus_t)
7283 #endif
7284 )
7285 return TRUE;
7286
7287 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
7288
7289 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
7290 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
7291
7292 /* Make a ".reg/999" section. */
7293
7294 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
7295 len = strlen (buf) + 1;
7296 name = bfd_alloc (abfd, len);
7297 if (name == NULL)
7298 return FALSE;
7299 memcpy (name, buf, len);
7300
7301 sect = bfd_make_section_anyway (abfd, name);
7302 if (sect == NULL)
7303 return FALSE;
7304
7305 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7306 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
7307 sect->filepos = note->descpos
7308 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
7309 #endif
7310
7311 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7312 sect->size = sizeof (lwpstat.pr_reg);
7313 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
7314 #endif
7315
7316 sect->flags = SEC_HAS_CONTENTS;
7317 sect->alignment_power = 2;
7318
7319 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
7320 return FALSE;
7321
7322 /* Make a ".reg2/999" section */
7323
7324 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
7325 len = strlen (buf) + 1;
7326 name = bfd_alloc (abfd, len);
7327 if (name == NULL)
7328 return FALSE;
7329 memcpy (name, buf, len);
7330
7331 sect = bfd_make_section_anyway (abfd, name);
7332 if (sect == NULL)
7333 return FALSE;
7334
7335 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7336 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
7337 sect->filepos = note->descpos
7338 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
7339 #endif
7340
7341 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
7342 sect->size = sizeof (lwpstat.pr_fpreg);
7343 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
7344 #endif
7345
7346 sect->flags = SEC_HAS_CONTENTS;
7347 sect->alignment_power = 2;
7348
7349 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
7350 }
7351 #endif /* defined (HAVE_LWPSTATUS_T) */
7352
7353 #if defined (HAVE_WIN32_PSTATUS_T)
7354 static bfd_boolean
7355 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
7356 {
7357 char buf[30];
7358 char *name;
7359 size_t len;
7360 asection *sect;
7361 win32_pstatus_t pstatus;
7362
7363 if (note->descsz < sizeof (pstatus))
7364 return TRUE;
7365
7366 memcpy (&pstatus, note->descdata, sizeof (pstatus));
7367
7368 switch (pstatus.data_type)
7369 {
7370 case NOTE_INFO_PROCESS:
7371 /* FIXME: need to add ->core_command. */
7372 elf_tdata (abfd)->core_signal = pstatus.data.process_info.signal;
7373 elf_tdata (abfd)->core_pid = pstatus.data.process_info.pid;
7374 break;
7375
7376 case NOTE_INFO_THREAD:
7377 /* Make a ".reg/999" section. */
7378 sprintf (buf, ".reg/%ld", (long) pstatus.data.thread_info.tid);
7379
7380 len = strlen (buf) + 1;
7381 name = bfd_alloc (abfd, len);
7382 if (name == NULL)
7383 return FALSE;
7384
7385 memcpy (name, buf, len);
7386
7387 sect = bfd_make_section_anyway (abfd, name);
7388 if (sect == NULL)
7389 return FALSE;
7390
7391 sect->size = sizeof (pstatus.data.thread_info.thread_context);
7392 sect->filepos = (note->descpos
7393 + offsetof (struct win32_pstatus,
7394 data.thread_info.thread_context));
7395 sect->flags = SEC_HAS_CONTENTS;
7396 sect->alignment_power = 2;
7397
7398 if (pstatus.data.thread_info.is_active_thread)
7399 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
7400 return FALSE;
7401 break;
7402
7403 case NOTE_INFO_MODULE:
7404 /* Make a ".module/xxxxxxxx" section. */
7405 sprintf (buf, ".module/%08lx",
7406 (long) pstatus.data.module_info.base_address);
7407
7408 len = strlen (buf) + 1;
7409 name = bfd_alloc (abfd, len);
7410 if (name == NULL)
7411 return FALSE;
7412
7413 memcpy (name, buf, len);
7414
7415 sect = bfd_make_section_anyway (abfd, name);
7416
7417 if (sect == NULL)
7418 return FALSE;
7419
7420 sect->size = note->descsz;
7421 sect->filepos = note->descpos;
7422 sect->flags = SEC_HAS_CONTENTS;
7423 sect->alignment_power = 2;
7424 break;
7425
7426 default:
7427 return TRUE;
7428 }
7429
7430 return TRUE;
7431 }
7432 #endif /* HAVE_WIN32_PSTATUS_T */
7433
7434 static bfd_boolean
7435 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
7436 {
7437 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7438
7439 switch (note->type)
7440 {
7441 default:
7442 return TRUE;
7443
7444 case NT_PRSTATUS:
7445 if (bed->elf_backend_grok_prstatus)
7446 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
7447 return TRUE;
7448 #if defined (HAVE_PRSTATUS_T)
7449 return elfcore_grok_prstatus (abfd, note);
7450 #else
7451 return TRUE;
7452 #endif
7453
7454 #if defined (HAVE_PSTATUS_T)
7455 case NT_PSTATUS:
7456 return elfcore_grok_pstatus (abfd, note);
7457 #endif
7458
7459 #if defined (HAVE_LWPSTATUS_T)
7460 case NT_LWPSTATUS:
7461 return elfcore_grok_lwpstatus (abfd, note);
7462 #endif
7463
7464 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
7465 return elfcore_grok_prfpreg (abfd, note);
7466
7467 #if defined (HAVE_WIN32_PSTATUS_T)
7468 case NT_WIN32PSTATUS:
7469 return elfcore_grok_win32pstatus (abfd, note);
7470 #endif
7471
7472 case NT_PRXFPREG: /* Linux SSE extension */
7473 if (note->namesz == 6
7474 && strcmp (note->namedata, "LINUX") == 0)
7475 return elfcore_grok_prxfpreg (abfd, note);
7476 else
7477 return TRUE;
7478
7479 case NT_PRPSINFO:
7480 case NT_PSINFO:
7481 if (bed->elf_backend_grok_psinfo)
7482 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
7483 return TRUE;
7484 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7485 return elfcore_grok_psinfo (abfd, note);
7486 #else
7487 return TRUE;
7488 #endif
7489
7490 case NT_AUXV:
7491 {
7492 asection *sect = bfd_make_section_anyway (abfd, ".auxv");
7493
7494 if (sect == NULL)
7495 return FALSE;
7496 sect->size = note->descsz;
7497 sect->filepos = note->descpos;
7498 sect->flags = SEC_HAS_CONTENTS;
7499 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
7500
7501 return TRUE;
7502 }
7503 }
7504 }
7505
7506 static bfd_boolean
7507 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
7508 {
7509 char *cp;
7510
7511 cp = strchr (note->namedata, '@');
7512 if (cp != NULL)
7513 {
7514 *lwpidp = atoi(cp + 1);
7515 return TRUE;
7516 }
7517 return FALSE;
7518 }
7519
7520 static bfd_boolean
7521 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
7522 {
7523
7524 /* Signal number at offset 0x08. */
7525 elf_tdata (abfd)->core_signal
7526 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
7527
7528 /* Process ID at offset 0x50. */
7529 elf_tdata (abfd)->core_pid
7530 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
7531
7532 /* Command name at 0x7c (max 32 bytes, including nul). */
7533 elf_tdata (abfd)->core_command
7534 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
7535
7536 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
7537 note);
7538 }
7539
7540 static bfd_boolean
7541 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
7542 {
7543 int lwp;
7544
7545 if (elfcore_netbsd_get_lwpid (note, &lwp))
7546 elf_tdata (abfd)->core_lwpid = lwp;
7547
7548 if (note->type == NT_NETBSDCORE_PROCINFO)
7549 {
7550 /* NetBSD-specific core "procinfo". Note that we expect to
7551 find this note before any of the others, which is fine,
7552 since the kernel writes this note out first when it
7553 creates a core file. */
7554
7555 return elfcore_grok_netbsd_procinfo (abfd, note);
7556 }
7557
7558 /* As of Jan 2002 there are no other machine-independent notes
7559 defined for NetBSD core files. If the note type is less
7560 than the start of the machine-dependent note types, we don't
7561 understand it. */
7562
7563 if (note->type < NT_NETBSDCORE_FIRSTMACH)
7564 return TRUE;
7565
7566
7567 switch (bfd_get_arch (abfd))
7568 {
7569 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
7570 PT_GETFPREGS == mach+2. */
7571
7572 case bfd_arch_alpha:
7573 case bfd_arch_sparc:
7574 switch (note->type)
7575 {
7576 case NT_NETBSDCORE_FIRSTMACH+0:
7577 return elfcore_make_note_pseudosection (abfd, ".reg", note);
7578
7579 case NT_NETBSDCORE_FIRSTMACH+2:
7580 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7581
7582 default:
7583 return TRUE;
7584 }
7585
7586 /* On all other arch's, PT_GETREGS == mach+1 and
7587 PT_GETFPREGS == mach+3. */
7588
7589 default:
7590 switch (note->type)
7591 {
7592 case NT_NETBSDCORE_FIRSTMACH+1:
7593 return elfcore_make_note_pseudosection (abfd, ".reg", note);
7594
7595 case NT_NETBSDCORE_FIRSTMACH+3:
7596 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7597
7598 default:
7599 return TRUE;
7600 }
7601 }
7602 /* NOTREACHED */
7603 }
7604
7605 static bfd_boolean
7606 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, pid_t *tid)
7607 {
7608 void *ddata = note->descdata;
7609 char buf[100];
7610 char *name;
7611 asection *sect;
7612 short sig;
7613 unsigned flags;
7614
7615 /* nto_procfs_status 'pid' field is at offset 0. */
7616 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
7617
7618 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
7619 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
7620
7621 /* nto_procfs_status 'flags' field is at offset 8. */
7622 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
7623
7624 /* nto_procfs_status 'what' field is at offset 14. */
7625 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
7626 {
7627 elf_tdata (abfd)->core_signal = sig;
7628 elf_tdata (abfd)->core_lwpid = *tid;
7629 }
7630
7631 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
7632 do not come from signals so we make sure we set the current
7633 thread just in case. */
7634 if (flags & 0x00000080)
7635 elf_tdata (abfd)->core_lwpid = *tid;
7636
7637 /* Make a ".qnx_core_status/%d" section. */
7638 sprintf (buf, ".qnx_core_status/%ld", (long) *tid);
7639
7640 name = bfd_alloc (abfd, strlen (buf) + 1);
7641 if (name == NULL)
7642 return FALSE;
7643 strcpy (name, buf);
7644
7645 sect = bfd_make_section_anyway (abfd, name);
7646 if (sect == NULL)
7647 return FALSE;
7648
7649 sect->size = note->descsz;
7650 sect->filepos = note->descpos;
7651 sect->flags = SEC_HAS_CONTENTS;
7652 sect->alignment_power = 2;
7653
7654 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
7655 }
7656
7657 static bfd_boolean
7658 elfcore_grok_nto_regs (bfd *abfd,
7659 Elf_Internal_Note *note,
7660 pid_t tid,
7661 char *base)
7662 {
7663 char buf[100];
7664 char *name;
7665 asection *sect;
7666
7667 /* Make a "(base)/%d" section. */
7668 sprintf (buf, "%s/%ld", base, (long) tid);
7669
7670 name = bfd_alloc (abfd, strlen (buf) + 1);
7671 if (name == NULL)
7672 return FALSE;
7673 strcpy (name, buf);
7674
7675 sect = bfd_make_section_anyway (abfd, name);
7676 if (sect == NULL)
7677 return FALSE;
7678
7679 sect->size = note->descsz;
7680 sect->filepos = note->descpos;
7681 sect->flags = SEC_HAS_CONTENTS;
7682 sect->alignment_power = 2;
7683
7684 /* This is the current thread. */
7685 if (elf_tdata (abfd)->core_lwpid == tid)
7686 return elfcore_maybe_make_sect (abfd, base, sect);
7687
7688 return TRUE;
7689 }
7690
7691 #define BFD_QNT_CORE_INFO 7
7692 #define BFD_QNT_CORE_STATUS 8
7693 #define BFD_QNT_CORE_GREG 9
7694 #define BFD_QNT_CORE_FPREG 10
7695
7696 static bfd_boolean
7697 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
7698 {
7699 /* Every GREG section has a STATUS section before it. Store the
7700 tid from the previous call to pass down to the next gregs
7701 function. */
7702 static pid_t tid = 1;
7703
7704 switch (note->type)
7705 {
7706 case BFD_QNT_CORE_INFO:
7707 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
7708 case BFD_QNT_CORE_STATUS:
7709 return elfcore_grok_nto_status (abfd, note, &tid);
7710 case BFD_QNT_CORE_GREG:
7711 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
7712 case BFD_QNT_CORE_FPREG:
7713 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
7714 default:
7715 return TRUE;
7716 }
7717 }
7718
7719 /* Function: elfcore_write_note
7720
7721 Inputs:
7722 buffer to hold note
7723 name of note
7724 type of note
7725 data for note
7726 size of data for note
7727
7728 Return:
7729 End of buffer containing note. */
7730
7731 char *
7732 elfcore_write_note (bfd *abfd,
7733 char *buf,
7734 int *bufsiz,
7735 const char *name,
7736 int type,
7737 const void *input,
7738 int size)
7739 {
7740 Elf_External_Note *xnp;
7741 size_t namesz;
7742 size_t pad;
7743 size_t newspace;
7744 char *p, *dest;
7745
7746 namesz = 0;
7747 pad = 0;
7748 if (name != NULL)
7749 {
7750 const struct elf_backend_data *bed;
7751
7752 namesz = strlen (name) + 1;
7753 bed = get_elf_backend_data (abfd);
7754 pad = -namesz & ((1 << bed->s->log_file_align) - 1);
7755 }
7756
7757 newspace = 12 + namesz + pad + size;
7758
7759 p = realloc (buf, *bufsiz + newspace);
7760 dest = p + *bufsiz;
7761 *bufsiz += newspace;
7762 xnp = (Elf_External_Note *) dest;
7763 H_PUT_32 (abfd, namesz, xnp->namesz);
7764 H_PUT_32 (abfd, size, xnp->descsz);
7765 H_PUT_32 (abfd, type, xnp->type);
7766 dest = xnp->name;
7767 if (name != NULL)
7768 {
7769 memcpy (dest, name, namesz);
7770 dest += namesz;
7771 while (pad != 0)
7772 {
7773 *dest++ = '\0';
7774 --pad;
7775 }
7776 }
7777 memcpy (dest, input, size);
7778 return p;
7779 }
7780
7781 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7782 char *
7783 elfcore_write_prpsinfo (bfd *abfd,
7784 char *buf,
7785 int *bufsiz,
7786 const char *fname,
7787 const char *psargs)
7788 {
7789 int note_type;
7790 char *note_name = "CORE";
7791
7792 #if defined (HAVE_PSINFO_T)
7793 psinfo_t data;
7794 note_type = NT_PSINFO;
7795 #else
7796 prpsinfo_t data;
7797 note_type = NT_PRPSINFO;
7798 #endif
7799
7800 memset (&data, 0, sizeof (data));
7801 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
7802 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
7803 return elfcore_write_note (abfd, buf, bufsiz,
7804 note_name, note_type, &data, sizeof (data));
7805 }
7806 #endif /* PSINFO_T or PRPSINFO_T */
7807
7808 #if defined (HAVE_PRSTATUS_T)
7809 char *
7810 elfcore_write_prstatus (bfd *abfd,
7811 char *buf,
7812 int *bufsiz,
7813 long pid,
7814 int cursig,
7815 const void *gregs)
7816 {
7817 prstatus_t prstat;
7818 char *note_name = "CORE";
7819
7820 memset (&prstat, 0, sizeof (prstat));
7821 prstat.pr_pid = pid;
7822 prstat.pr_cursig = cursig;
7823 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
7824 return elfcore_write_note (abfd, buf, bufsiz,
7825 note_name, NT_PRSTATUS, &prstat, sizeof (prstat));
7826 }
7827 #endif /* HAVE_PRSTATUS_T */
7828
7829 #if defined (HAVE_LWPSTATUS_T)
7830 char *
7831 elfcore_write_lwpstatus (bfd *abfd,
7832 char *buf,
7833 int *bufsiz,
7834 long pid,
7835 int cursig,
7836 const void *gregs)
7837 {
7838 lwpstatus_t lwpstat;
7839 char *note_name = "CORE";
7840
7841 memset (&lwpstat, 0, sizeof (lwpstat));
7842 lwpstat.pr_lwpid = pid >> 16;
7843 lwpstat.pr_cursig = cursig;
7844 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7845 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
7846 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7847 #if !defined(gregs)
7848 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
7849 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
7850 #else
7851 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
7852 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
7853 #endif
7854 #endif
7855 return elfcore_write_note (abfd, buf, bufsiz, note_name,
7856 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
7857 }
7858 #endif /* HAVE_LWPSTATUS_T */
7859
7860 #if defined (HAVE_PSTATUS_T)
7861 char *
7862 elfcore_write_pstatus (bfd *abfd,
7863 char *buf,
7864 int *bufsiz,
7865 long pid,
7866 int cursig,
7867 const void *gregs)
7868 {
7869 pstatus_t pstat;
7870 char *note_name = "CORE";
7871
7872 memset (&pstat, 0, sizeof (pstat));
7873 pstat.pr_pid = pid & 0xffff;
7874 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
7875 NT_PSTATUS, &pstat, sizeof (pstat));
7876 return buf;
7877 }
7878 #endif /* HAVE_PSTATUS_T */
7879
7880 char *
7881 elfcore_write_prfpreg (bfd *abfd,
7882 char *buf,
7883 int *bufsiz,
7884 const void *fpregs,
7885 int size)
7886 {
7887 char *note_name = "CORE";
7888 return elfcore_write_note (abfd, buf, bufsiz,
7889 note_name, NT_FPREGSET, fpregs, size);
7890 }
7891
7892 char *
7893 elfcore_write_prxfpreg (bfd *abfd,
7894 char *buf,
7895 int *bufsiz,
7896 const void *xfpregs,
7897 int size)
7898 {
7899 char *note_name = "LINUX";
7900 return elfcore_write_note (abfd, buf, bufsiz,
7901 note_name, NT_PRXFPREG, xfpregs, size);
7902 }
7903
7904 static bfd_boolean
7905 elfcore_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
7906 {
7907 char *buf;
7908 char *p;
7909
7910 if (size <= 0)
7911 return TRUE;
7912
7913 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
7914 return FALSE;
7915
7916 buf = bfd_malloc (size);
7917 if (buf == NULL)
7918 return FALSE;
7919
7920 if (bfd_bread (buf, size, abfd) != size)
7921 {
7922 error:
7923 free (buf);
7924 return FALSE;
7925 }
7926
7927 p = buf;
7928 while (p < buf + size)
7929 {
7930 /* FIXME: bad alignment assumption. */
7931 Elf_External_Note *xnp = (Elf_External_Note *) p;
7932 Elf_Internal_Note in;
7933
7934 in.type = H_GET_32 (abfd, xnp->type);
7935
7936 in.namesz = H_GET_32 (abfd, xnp->namesz);
7937 in.namedata = xnp->name;
7938
7939 in.descsz = H_GET_32 (abfd, xnp->descsz);
7940 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
7941 in.descpos = offset + (in.descdata - buf);
7942
7943 if (strncmp (in.namedata, "NetBSD-CORE", 11) == 0)
7944 {
7945 if (! elfcore_grok_netbsd_note (abfd, &in))
7946 goto error;
7947 }
7948 else if (strncmp (in.namedata, "QNX", 3) == 0)
7949 {
7950 if (! elfcore_grok_nto_note (abfd, &in))
7951 goto error;
7952 }
7953 else
7954 {
7955 if (! elfcore_grok_note (abfd, &in))
7956 goto error;
7957 }
7958
7959 p = in.descdata + BFD_ALIGN (in.descsz, 4);
7960 }
7961
7962 free (buf);
7963 return TRUE;
7964 }
7965 \f
7966 /* Providing external access to the ELF program header table. */
7967
7968 /* Return an upper bound on the number of bytes required to store a
7969 copy of ABFD's program header table entries. Return -1 if an error
7970 occurs; bfd_get_error will return an appropriate code. */
7971
7972 long
7973 bfd_get_elf_phdr_upper_bound (bfd *abfd)
7974 {
7975 if (abfd->xvec->flavour != bfd_target_elf_flavour)
7976 {
7977 bfd_set_error (bfd_error_wrong_format);
7978 return -1;
7979 }
7980
7981 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
7982 }
7983
7984 /* Copy ABFD's program header table entries to *PHDRS. The entries
7985 will be stored as an array of Elf_Internal_Phdr structures, as
7986 defined in include/elf/internal.h. To find out how large the
7987 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
7988
7989 Return the number of program header table entries read, or -1 if an
7990 error occurs; bfd_get_error will return an appropriate code. */
7991
7992 int
7993 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
7994 {
7995 int num_phdrs;
7996
7997 if (abfd->xvec->flavour != bfd_target_elf_flavour)
7998 {
7999 bfd_set_error (bfd_error_wrong_format);
8000 return -1;
8001 }
8002
8003 num_phdrs = elf_elfheader (abfd)->e_phnum;
8004 memcpy (phdrs, elf_tdata (abfd)->phdr,
8005 num_phdrs * sizeof (Elf_Internal_Phdr));
8006
8007 return num_phdrs;
8008 }
8009
8010 void
8011 _bfd_elf_sprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, char *buf, bfd_vma value)
8012 {
8013 #ifdef BFD64
8014 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
8015
8016 i_ehdrp = elf_elfheader (abfd);
8017 if (i_ehdrp == NULL)
8018 sprintf_vma (buf, value);
8019 else
8020 {
8021 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
8022 {
8023 #if BFD_HOST_64BIT_LONG
8024 sprintf (buf, "%016lx", value);
8025 #else
8026 sprintf (buf, "%08lx%08lx", _bfd_int64_high (value),
8027 _bfd_int64_low (value));
8028 #endif
8029 }
8030 else
8031 sprintf (buf, "%08lx", (unsigned long) (value & 0xffffffff));
8032 }
8033 #else
8034 sprintf_vma (buf, value);
8035 #endif
8036 }
8037
8038 void
8039 _bfd_elf_fprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, void *stream, bfd_vma value)
8040 {
8041 #ifdef BFD64
8042 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
8043
8044 i_ehdrp = elf_elfheader (abfd);
8045 if (i_ehdrp == NULL)
8046 fprintf_vma ((FILE *) stream, value);
8047 else
8048 {
8049 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
8050 {
8051 #if BFD_HOST_64BIT_LONG
8052 fprintf ((FILE *) stream, "%016lx", value);
8053 #else
8054 fprintf ((FILE *) stream, "%08lx%08lx",
8055 _bfd_int64_high (value), _bfd_int64_low (value));
8056 #endif
8057 }
8058 else
8059 fprintf ((FILE *) stream, "%08lx",
8060 (unsigned long) (value & 0xffffffff));
8061 }
8062 #else
8063 fprintf_vma ((FILE *) stream, value);
8064 #endif
8065 }
8066
8067 enum elf_reloc_type_class
8068 _bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
8069 {
8070 return reloc_class_normal;
8071 }
8072
8073 /* For RELA architectures, return the relocation value for a
8074 relocation against a local symbol. */
8075
8076 bfd_vma
8077 _bfd_elf_rela_local_sym (bfd *abfd,
8078 Elf_Internal_Sym *sym,
8079 asection **psec,
8080 Elf_Internal_Rela *rel)
8081 {
8082 asection *sec = *psec;
8083 bfd_vma relocation;
8084
8085 relocation = (sec->output_section->vma
8086 + sec->output_offset
8087 + sym->st_value);
8088 if ((sec->flags & SEC_MERGE)
8089 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
8090 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
8091 {
8092 rel->r_addend =
8093 _bfd_merged_section_offset (abfd, psec,
8094 elf_section_data (sec)->sec_info,
8095 sym->st_value + rel->r_addend);
8096 if (sec != *psec)
8097 {
8098 /* If we have changed the section, and our original section is
8099 marked with SEC_EXCLUDE, it means that the original
8100 SEC_MERGE section has been completely subsumed in some
8101 other SEC_MERGE section. In this case, we need to leave
8102 some info around for --emit-relocs. */
8103 if ((sec->flags & SEC_EXCLUDE) != 0)
8104 sec->kept_section = *psec;
8105 sec = *psec;
8106 }
8107 rel->r_addend -= relocation;
8108 rel->r_addend += sec->output_section->vma + sec->output_offset;
8109 }
8110 return relocation;
8111 }
8112
8113 bfd_vma
8114 _bfd_elf_rel_local_sym (bfd *abfd,
8115 Elf_Internal_Sym *sym,
8116 asection **psec,
8117 bfd_vma addend)
8118 {
8119 asection *sec = *psec;
8120
8121 if (sec->sec_info_type != ELF_INFO_TYPE_MERGE)
8122 return sym->st_value + addend;
8123
8124 return _bfd_merged_section_offset (abfd, psec,
8125 elf_section_data (sec)->sec_info,
8126 sym->st_value + addend);
8127 }
8128
8129 bfd_vma
8130 _bfd_elf_section_offset (bfd *abfd,
8131 struct bfd_link_info *info,
8132 asection *sec,
8133 bfd_vma offset)
8134 {
8135 switch (sec->sec_info_type)
8136 {
8137 case ELF_INFO_TYPE_STABS:
8138 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
8139 offset);
8140 case ELF_INFO_TYPE_EH_FRAME:
8141 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
8142 default:
8143 return offset;
8144 }
8145 }
8146 \f
8147 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
8148 reconstruct an ELF file by reading the segments out of remote memory
8149 based on the ELF file header at EHDR_VMA and the ELF program headers it
8150 points to. If not null, *LOADBASEP is filled in with the difference
8151 between the VMAs from which the segments were read, and the VMAs the
8152 file headers (and hence BFD's idea of each section's VMA) put them at.
8153
8154 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
8155 remote memory at target address VMA into the local buffer at MYADDR; it
8156 should return zero on success or an `errno' code on failure. TEMPL must
8157 be a BFD for an ELF target with the word size and byte order found in
8158 the remote memory. */
8159
8160 bfd *
8161 bfd_elf_bfd_from_remote_memory
8162 (bfd *templ,
8163 bfd_vma ehdr_vma,
8164 bfd_vma *loadbasep,
8165 int (*target_read_memory) (bfd_vma, bfd_byte *, int))
8166 {
8167 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
8168 (templ, ehdr_vma, loadbasep, target_read_memory);
8169 }
8170 \f
8171 long
8172 _bfd_elf_get_synthetic_symtab (bfd *abfd,
8173 long symcount ATTRIBUTE_UNUSED,
8174 asymbol **syms ATTRIBUTE_UNUSED,
8175 long dynsymcount,
8176 asymbol **dynsyms,
8177 asymbol **ret)
8178 {
8179 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8180 asection *relplt;
8181 asymbol *s;
8182 const char *relplt_name;
8183 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
8184 arelent *p;
8185 long count, i, n;
8186 size_t size;
8187 Elf_Internal_Shdr *hdr;
8188 char *names;
8189 asection *plt;
8190
8191 *ret = NULL;
8192
8193 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
8194 return 0;
8195
8196 if (dynsymcount <= 0)
8197 return 0;
8198
8199 if (!bed->plt_sym_val)
8200 return 0;
8201
8202 relplt_name = bed->relplt_name;
8203 if (relplt_name == NULL)
8204 relplt_name = bed->default_use_rela_p ? ".rela.plt" : ".rel.plt";
8205 relplt = bfd_get_section_by_name (abfd, relplt_name);
8206 if (relplt == NULL)
8207 return 0;
8208
8209 hdr = &elf_section_data (relplt)->this_hdr;
8210 if (hdr->sh_link != elf_dynsymtab (abfd)
8211 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
8212 return 0;
8213
8214 plt = bfd_get_section_by_name (abfd, ".plt");
8215 if (plt == NULL)
8216 return 0;
8217
8218 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
8219 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
8220 return -1;
8221
8222 count = relplt->size / hdr->sh_entsize;
8223 size = count * sizeof (asymbol);
8224 p = relplt->relocation;
8225 for (i = 0; i < count; i++, s++, p++)
8226 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
8227
8228 s = *ret = bfd_malloc (size);
8229 if (s == NULL)
8230 return -1;
8231
8232 names = (char *) (s + count);
8233 p = relplt->relocation;
8234 n = 0;
8235 for (i = 0; i < count; i++, s++, p++)
8236 {
8237 size_t len;
8238 bfd_vma addr;
8239
8240 addr = bed->plt_sym_val (i, plt, p);
8241 if (addr == (bfd_vma) -1)
8242 continue;
8243
8244 *s = **p->sym_ptr_ptr;
8245 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
8246 we are defining a symbol, ensure one of them is set. */
8247 if ((s->flags & BSF_LOCAL) == 0)
8248 s->flags |= BSF_GLOBAL;
8249 s->section = plt;
8250 s->value = addr - plt->vma;
8251 s->name = names;
8252 len = strlen ((*p->sym_ptr_ptr)->name);
8253 memcpy (names, (*p->sym_ptr_ptr)->name, len);
8254 names += len;
8255 memcpy (names, "@plt", sizeof ("@plt"));
8256 names += sizeof ("@plt");
8257 ++n;
8258 }
8259
8260 return n;
8261 }
8262
8263 /* Sort symbol by binding and section. We want to put definitions
8264 sorted by section at the beginning. */
8265
8266 static int
8267 elf_sort_elf_symbol (const void *arg1, const void *arg2)
8268 {
8269 const Elf_Internal_Sym *s1;
8270 const Elf_Internal_Sym *s2;
8271 int shndx;
8272
8273 /* Make sure that undefined symbols are at the end. */
8274 s1 = (const Elf_Internal_Sym *) arg1;
8275 if (s1->st_shndx == SHN_UNDEF)
8276 return 1;
8277 s2 = (const Elf_Internal_Sym *) arg2;
8278 if (s2->st_shndx == SHN_UNDEF)
8279 return -1;
8280
8281 /* Sorted by section index. */
8282 shndx = s1->st_shndx - s2->st_shndx;
8283 if (shndx != 0)
8284 return shndx;
8285
8286 /* Sorted by binding. */
8287 return ELF_ST_BIND (s1->st_info) - ELF_ST_BIND (s2->st_info);
8288 }
8289
8290 struct elf_symbol
8291 {
8292 Elf_Internal_Sym *sym;
8293 const char *name;
8294 };
8295
8296 static int
8297 elf_sym_name_compare (const void *arg1, const void *arg2)
8298 {
8299 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
8300 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
8301 return strcmp (s1->name, s2->name);
8302 }
8303
8304 /* Check if 2 sections define the same set of local and global
8305 symbols. */
8306
8307 bfd_boolean
8308 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2)
8309 {
8310 bfd *bfd1, *bfd2;
8311 const struct elf_backend_data *bed1, *bed2;
8312 Elf_Internal_Shdr *hdr1, *hdr2;
8313 bfd_size_type symcount1, symcount2;
8314 Elf_Internal_Sym *isymbuf1, *isymbuf2;
8315 Elf_Internal_Sym *isymstart1 = NULL, *isymstart2 = NULL, *isym;
8316 Elf_Internal_Sym *isymend;
8317 struct elf_symbol *symp, *symtable1 = NULL, *symtable2 = NULL;
8318 bfd_size_type count1, count2, i;
8319 int shndx1, shndx2;
8320 bfd_boolean result;
8321
8322 bfd1 = sec1->owner;
8323 bfd2 = sec2->owner;
8324
8325 /* If both are .gnu.linkonce sections, they have to have the same
8326 section name. */
8327 if (strncmp (sec1->name, ".gnu.linkonce",
8328 sizeof ".gnu.linkonce" - 1) == 0
8329 && strncmp (sec2->name, ".gnu.linkonce",
8330 sizeof ".gnu.linkonce" - 1) == 0)
8331 return strcmp (sec1->name + sizeof ".gnu.linkonce",
8332 sec2->name + sizeof ".gnu.linkonce") == 0;
8333
8334 /* Both sections have to be in ELF. */
8335 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
8336 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
8337 return FALSE;
8338
8339 if (elf_section_type (sec1) != elf_section_type (sec2))
8340 return FALSE;
8341
8342 if ((elf_section_flags (sec1) & SHF_GROUP) != 0
8343 && (elf_section_flags (sec2) & SHF_GROUP) != 0)
8344 {
8345 /* If both are members of section groups, they have to have the
8346 same group name. */
8347 if (strcmp (elf_group_name (sec1), elf_group_name (sec2)) != 0)
8348 return FALSE;
8349 }
8350
8351 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
8352 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
8353 if (shndx1 == -1 || shndx2 == -1)
8354 return FALSE;
8355
8356 bed1 = get_elf_backend_data (bfd1);
8357 bed2 = get_elf_backend_data (bfd2);
8358 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
8359 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
8360 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
8361 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
8362
8363 if (symcount1 == 0 || symcount2 == 0)
8364 return FALSE;
8365
8366 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
8367 NULL, NULL, NULL);
8368 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
8369 NULL, NULL, NULL);
8370
8371 result = FALSE;
8372 if (isymbuf1 == NULL || isymbuf2 == NULL)
8373 goto done;
8374
8375 /* Sort symbols by binding and section. Global definitions are at
8376 the beginning. */
8377 qsort (isymbuf1, symcount1, sizeof (Elf_Internal_Sym),
8378 elf_sort_elf_symbol);
8379 qsort (isymbuf2, symcount2, sizeof (Elf_Internal_Sym),
8380 elf_sort_elf_symbol);
8381
8382 /* Count definitions in the section. */
8383 count1 = 0;
8384 for (isym = isymbuf1, isymend = isym + symcount1;
8385 isym < isymend; isym++)
8386 {
8387 if (isym->st_shndx == (unsigned int) shndx1)
8388 {
8389 if (count1 == 0)
8390 isymstart1 = isym;
8391 count1++;
8392 }
8393
8394 if (count1 && isym->st_shndx != (unsigned int) shndx1)
8395 break;
8396 }
8397
8398 count2 = 0;
8399 for (isym = isymbuf2, isymend = isym + symcount2;
8400 isym < isymend; isym++)
8401 {
8402 if (isym->st_shndx == (unsigned int) shndx2)
8403 {
8404 if (count2 == 0)
8405 isymstart2 = isym;
8406 count2++;
8407 }
8408
8409 if (count2 && isym->st_shndx != (unsigned int) shndx2)
8410 break;
8411 }
8412
8413 if (count1 == 0 || count2 == 0 || count1 != count2)
8414 goto done;
8415
8416 symtable1 = bfd_malloc (count1 * sizeof (struct elf_symbol));
8417 symtable2 = bfd_malloc (count1 * sizeof (struct elf_symbol));
8418
8419 if (symtable1 == NULL || symtable2 == NULL)
8420 goto done;
8421
8422 symp = symtable1;
8423 for (isym = isymstart1, isymend = isym + count1;
8424 isym < isymend; isym++)
8425 {
8426 symp->sym = isym;
8427 symp->name = bfd_elf_string_from_elf_section (bfd1,
8428 hdr1->sh_link,
8429 isym->st_name);
8430 symp++;
8431 }
8432
8433 symp = symtable2;
8434 for (isym = isymstart2, isymend = isym + count1;
8435 isym < isymend; isym++)
8436 {
8437 symp->sym = isym;
8438 symp->name = bfd_elf_string_from_elf_section (bfd2,
8439 hdr2->sh_link,
8440 isym->st_name);
8441 symp++;
8442 }
8443
8444 /* Sort symbol by name. */
8445 qsort (symtable1, count1, sizeof (struct elf_symbol),
8446 elf_sym_name_compare);
8447 qsort (symtable2, count1, sizeof (struct elf_symbol),
8448 elf_sym_name_compare);
8449
8450 for (i = 0; i < count1; i++)
8451 /* Two symbols must have the same binding, type and name. */
8452 if (symtable1 [i].sym->st_info != symtable2 [i].sym->st_info
8453 || symtable1 [i].sym->st_other != symtable2 [i].sym->st_other
8454 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
8455 goto done;
8456
8457 result = TRUE;
8458
8459 done:
8460 if (symtable1)
8461 free (symtable1);
8462 if (symtable2)
8463 free (symtable2);
8464 if (isymbuf1)
8465 free (isymbuf1);
8466 if (isymbuf2)
8467 free (isymbuf2);
8468
8469 return result;
8470 }
8471
8472 /* It is only used by x86-64 so far. */
8473 asection _bfd_elf_large_com_section
8474 = BFD_FAKE_SECTION (_bfd_elf_large_com_section,
8475 SEC_IS_COMMON, NULL, NULL, "LARGE_COMMON",
8476 0);
8477
8478 /* Return TRUE if 2 section types are compatible. */
8479
8480 bfd_boolean
8481 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
8482 bfd *bbfd, const asection *bsec)
8483 {
8484 if (asec == NULL
8485 || bsec == NULL
8486 || abfd->xvec->flavour != bfd_target_elf_flavour
8487 || bbfd->xvec->flavour != bfd_target_elf_flavour)
8488 return TRUE;
8489
8490 return elf_section_type (asec) == elf_section_type (bsec);
8491 }