PR23199, Invalid SHT_GROUP entry leads to group confusion
[binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright (C) 1993-2018 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22
23 /*
24 SECTION
25 ELF backends
26
27 BFD support for ELF formats is being worked on.
28 Currently, the best supported back ends are for sparc and i386
29 (running svr4 or Solaris 2).
30
31 Documentation of the internals of the support code still needs
32 to be written. The code is changing quickly enough that we
33 haven't bothered yet. */
34
35 /* For sparc64-cross-sparc32. */
36 #define _SYSCALL32
37 #include "sysdep.h"
38 #include "bfd.h"
39 #include "bfdlink.h"
40 #include "libbfd.h"
41 #define ARCH_SIZE 0
42 #include "elf-bfd.h"
43 #include "libiberty.h"
44 #include "safe-ctype.h"
45 #include "elf-linux-core.h"
46
47 #ifdef CORE_HEADER
48 #include CORE_HEADER
49 #endif
50
51 static int elf_sort_sections (const void *, const void *);
52 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
53 static bfd_boolean prep_headers (bfd *);
54 static bfd_boolean swap_out_syms (bfd *, struct elf_strtab_hash **, int) ;
55 static bfd_boolean elf_read_notes (bfd *, file_ptr, bfd_size_type,
56 size_t align) ;
57 static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
58 file_ptr offset, size_t align);
59
60 /* Swap version information in and out. The version information is
61 currently size independent. If that ever changes, this code will
62 need to move into elfcode.h. */
63
64 /* Swap in a Verdef structure. */
65
66 void
67 _bfd_elf_swap_verdef_in (bfd *abfd,
68 const Elf_External_Verdef *src,
69 Elf_Internal_Verdef *dst)
70 {
71 dst->vd_version = H_GET_16 (abfd, src->vd_version);
72 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
73 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
74 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
75 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
76 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
77 dst->vd_next = H_GET_32 (abfd, src->vd_next);
78 }
79
80 /* Swap out a Verdef structure. */
81
82 void
83 _bfd_elf_swap_verdef_out (bfd *abfd,
84 const Elf_Internal_Verdef *src,
85 Elf_External_Verdef *dst)
86 {
87 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
88 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
89 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
90 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
91 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
92 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
93 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
94 }
95
96 /* Swap in a Verdaux structure. */
97
98 void
99 _bfd_elf_swap_verdaux_in (bfd *abfd,
100 const Elf_External_Verdaux *src,
101 Elf_Internal_Verdaux *dst)
102 {
103 dst->vda_name = H_GET_32 (abfd, src->vda_name);
104 dst->vda_next = H_GET_32 (abfd, src->vda_next);
105 }
106
107 /* Swap out a Verdaux structure. */
108
109 void
110 _bfd_elf_swap_verdaux_out (bfd *abfd,
111 const Elf_Internal_Verdaux *src,
112 Elf_External_Verdaux *dst)
113 {
114 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
115 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
116 }
117
118 /* Swap in a Verneed structure. */
119
120 void
121 _bfd_elf_swap_verneed_in (bfd *abfd,
122 const Elf_External_Verneed *src,
123 Elf_Internal_Verneed *dst)
124 {
125 dst->vn_version = H_GET_16 (abfd, src->vn_version);
126 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
127 dst->vn_file = H_GET_32 (abfd, src->vn_file);
128 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
129 dst->vn_next = H_GET_32 (abfd, src->vn_next);
130 }
131
132 /* Swap out a Verneed structure. */
133
134 void
135 _bfd_elf_swap_verneed_out (bfd *abfd,
136 const Elf_Internal_Verneed *src,
137 Elf_External_Verneed *dst)
138 {
139 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
140 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
141 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
142 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
143 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
144 }
145
146 /* Swap in a Vernaux structure. */
147
148 void
149 _bfd_elf_swap_vernaux_in (bfd *abfd,
150 const Elf_External_Vernaux *src,
151 Elf_Internal_Vernaux *dst)
152 {
153 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
154 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
155 dst->vna_other = H_GET_16 (abfd, src->vna_other);
156 dst->vna_name = H_GET_32 (abfd, src->vna_name);
157 dst->vna_next = H_GET_32 (abfd, src->vna_next);
158 }
159
160 /* Swap out a Vernaux structure. */
161
162 void
163 _bfd_elf_swap_vernaux_out (bfd *abfd,
164 const Elf_Internal_Vernaux *src,
165 Elf_External_Vernaux *dst)
166 {
167 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
168 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
169 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
170 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
171 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
172 }
173
174 /* Swap in a Versym structure. */
175
176 void
177 _bfd_elf_swap_versym_in (bfd *abfd,
178 const Elf_External_Versym *src,
179 Elf_Internal_Versym *dst)
180 {
181 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
182 }
183
184 /* Swap out a Versym structure. */
185
186 void
187 _bfd_elf_swap_versym_out (bfd *abfd,
188 const Elf_Internal_Versym *src,
189 Elf_External_Versym *dst)
190 {
191 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
192 }
193
194 /* Standard ELF hash function. Do not change this function; you will
195 cause invalid hash tables to be generated. */
196
197 unsigned long
198 bfd_elf_hash (const char *namearg)
199 {
200 const unsigned char *name = (const unsigned char *) namearg;
201 unsigned long h = 0;
202 unsigned long g;
203 int ch;
204
205 while ((ch = *name++) != '\0')
206 {
207 h = (h << 4) + ch;
208 if ((g = (h & 0xf0000000)) != 0)
209 {
210 h ^= g >> 24;
211 /* The ELF ABI says `h &= ~g', but this is equivalent in
212 this case and on some machines one insn instead of two. */
213 h ^= g;
214 }
215 }
216 return h & 0xffffffff;
217 }
218
219 /* DT_GNU_HASH hash function. Do not change this function; you will
220 cause invalid hash tables to be generated. */
221
222 unsigned long
223 bfd_elf_gnu_hash (const char *namearg)
224 {
225 const unsigned char *name = (const unsigned char *) namearg;
226 unsigned long h = 5381;
227 unsigned char ch;
228
229 while ((ch = *name++) != '\0')
230 h = (h << 5) + h + ch;
231 return h & 0xffffffff;
232 }
233
234 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
235 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
236 bfd_boolean
237 bfd_elf_allocate_object (bfd *abfd,
238 size_t object_size,
239 enum elf_target_id object_id)
240 {
241 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
242 abfd->tdata.any = bfd_zalloc (abfd, object_size);
243 if (abfd->tdata.any == NULL)
244 return FALSE;
245
246 elf_object_id (abfd) = object_id;
247 if (abfd->direction != read_direction)
248 {
249 struct output_elf_obj_tdata *o = bfd_zalloc (abfd, sizeof *o);
250 if (o == NULL)
251 return FALSE;
252 elf_tdata (abfd)->o = o;
253 elf_program_header_size (abfd) = (bfd_size_type) -1;
254 }
255 return TRUE;
256 }
257
258
259 bfd_boolean
260 bfd_elf_make_object (bfd *abfd)
261 {
262 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
263 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
264 bed->target_id);
265 }
266
267 bfd_boolean
268 bfd_elf_mkcorefile (bfd *abfd)
269 {
270 /* I think this can be done just like an object file. */
271 if (!abfd->xvec->_bfd_set_format[(int) bfd_object] (abfd))
272 return FALSE;
273 elf_tdata (abfd)->core = bfd_zalloc (abfd, sizeof (*elf_tdata (abfd)->core));
274 return elf_tdata (abfd)->core != NULL;
275 }
276
277 static char *
278 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
279 {
280 Elf_Internal_Shdr **i_shdrp;
281 bfd_byte *shstrtab = NULL;
282 file_ptr offset;
283 bfd_size_type shstrtabsize;
284
285 i_shdrp = elf_elfsections (abfd);
286 if (i_shdrp == 0
287 || shindex >= elf_numsections (abfd)
288 || i_shdrp[shindex] == 0)
289 return NULL;
290
291 shstrtab = i_shdrp[shindex]->contents;
292 if (shstrtab == NULL)
293 {
294 /* No cached one, attempt to read, and cache what we read. */
295 offset = i_shdrp[shindex]->sh_offset;
296 shstrtabsize = i_shdrp[shindex]->sh_size;
297
298 /* Allocate and clear an extra byte at the end, to prevent crashes
299 in case the string table is not terminated. */
300 if (shstrtabsize + 1 <= 1
301 || shstrtabsize > bfd_get_file_size (abfd)
302 || bfd_seek (abfd, offset, SEEK_SET) != 0
303 || (shstrtab = (bfd_byte *) bfd_alloc (abfd, shstrtabsize + 1)) == NULL)
304 shstrtab = NULL;
305 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
306 {
307 if (bfd_get_error () != bfd_error_system_call)
308 bfd_set_error (bfd_error_file_truncated);
309 bfd_release (abfd, shstrtab);
310 shstrtab = NULL;
311 /* Once we've failed to read it, make sure we don't keep
312 trying. Otherwise, we'll keep allocating space for
313 the string table over and over. */
314 i_shdrp[shindex]->sh_size = 0;
315 }
316 else
317 shstrtab[shstrtabsize] = '\0';
318 i_shdrp[shindex]->contents = shstrtab;
319 }
320 return (char *) shstrtab;
321 }
322
323 char *
324 bfd_elf_string_from_elf_section (bfd *abfd,
325 unsigned int shindex,
326 unsigned int strindex)
327 {
328 Elf_Internal_Shdr *hdr;
329
330 if (strindex == 0)
331 return "";
332
333 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
334 return NULL;
335
336 hdr = elf_elfsections (abfd)[shindex];
337
338 if (hdr->contents == NULL)
339 {
340 if (hdr->sh_type != SHT_STRTAB && hdr->sh_type < SHT_LOOS)
341 {
342 /* PR 17512: file: f057ec89. */
343 /* xgettext:c-format */
344 _bfd_error_handler (_("%pB: attempt to load strings from"
345 " a non-string section (number %d)"),
346 abfd, shindex);
347 return NULL;
348 }
349
350 if (bfd_elf_get_str_section (abfd, shindex) == NULL)
351 return NULL;
352 }
353
354 if (strindex >= hdr->sh_size)
355 {
356 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
357 _bfd_error_handler
358 /* xgettext:c-format */
359 (_("%pB: invalid string offset %u >= %" PRIu64 " for section `%s'"),
360 abfd, strindex, (uint64_t) hdr->sh_size,
361 (shindex == shstrndx && strindex == hdr->sh_name
362 ? ".shstrtab"
363 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
364 return NULL;
365 }
366
367 return ((char *) hdr->contents) + strindex;
368 }
369
370 /* Read and convert symbols to internal format.
371 SYMCOUNT specifies the number of symbols to read, starting from
372 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
373 are non-NULL, they are used to store the internal symbols, external
374 symbols, and symbol section index extensions, respectively.
375 Returns a pointer to the internal symbol buffer (malloced if necessary)
376 or NULL if there were no symbols or some kind of problem. */
377
378 Elf_Internal_Sym *
379 bfd_elf_get_elf_syms (bfd *ibfd,
380 Elf_Internal_Shdr *symtab_hdr,
381 size_t symcount,
382 size_t symoffset,
383 Elf_Internal_Sym *intsym_buf,
384 void *extsym_buf,
385 Elf_External_Sym_Shndx *extshndx_buf)
386 {
387 Elf_Internal_Shdr *shndx_hdr;
388 void *alloc_ext;
389 const bfd_byte *esym;
390 Elf_External_Sym_Shndx *alloc_extshndx;
391 Elf_External_Sym_Shndx *shndx;
392 Elf_Internal_Sym *alloc_intsym;
393 Elf_Internal_Sym *isym;
394 Elf_Internal_Sym *isymend;
395 const struct elf_backend_data *bed;
396 size_t extsym_size;
397 bfd_size_type amt;
398 file_ptr pos;
399
400 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
401 abort ();
402
403 if (symcount == 0)
404 return intsym_buf;
405
406 /* Normal syms might have section extension entries. */
407 shndx_hdr = NULL;
408 if (elf_symtab_shndx_list (ibfd) != NULL)
409 {
410 elf_section_list * entry;
411 Elf_Internal_Shdr **sections = elf_elfsections (ibfd);
412
413 /* Find an index section that is linked to this symtab section. */
414 for (entry = elf_symtab_shndx_list (ibfd); entry != NULL; entry = entry->next)
415 {
416 /* PR 20063. */
417 if (entry->hdr.sh_link >= elf_numsections (ibfd))
418 continue;
419
420 if (sections[entry->hdr.sh_link] == symtab_hdr)
421 {
422 shndx_hdr = & entry->hdr;
423 break;
424 };
425 }
426
427 if (shndx_hdr == NULL)
428 {
429 if (symtab_hdr == & elf_symtab_hdr (ibfd))
430 /* Not really accurate, but this was how the old code used to work. */
431 shndx_hdr = & elf_symtab_shndx_list (ibfd)->hdr;
432 /* Otherwise we do nothing. The assumption is that
433 the index table will not be needed. */
434 }
435 }
436
437 /* Read the symbols. */
438 alloc_ext = NULL;
439 alloc_extshndx = NULL;
440 alloc_intsym = NULL;
441 bed = get_elf_backend_data (ibfd);
442 extsym_size = bed->s->sizeof_sym;
443 amt = (bfd_size_type) symcount * extsym_size;
444 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
445 if (extsym_buf == NULL)
446 {
447 alloc_ext = bfd_malloc2 (symcount, extsym_size);
448 extsym_buf = alloc_ext;
449 }
450 if (extsym_buf == NULL
451 || bfd_seek (ibfd, pos, SEEK_SET) != 0
452 || bfd_bread (extsym_buf, amt, ibfd) != amt)
453 {
454 intsym_buf = NULL;
455 goto out;
456 }
457
458 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
459 extshndx_buf = NULL;
460 else
461 {
462 amt = (bfd_size_type) symcount * sizeof (Elf_External_Sym_Shndx);
463 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
464 if (extshndx_buf == NULL)
465 {
466 alloc_extshndx = (Elf_External_Sym_Shndx *)
467 bfd_malloc2 (symcount, sizeof (Elf_External_Sym_Shndx));
468 extshndx_buf = alloc_extshndx;
469 }
470 if (extshndx_buf == NULL
471 || bfd_seek (ibfd, pos, SEEK_SET) != 0
472 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
473 {
474 intsym_buf = NULL;
475 goto out;
476 }
477 }
478
479 if (intsym_buf == NULL)
480 {
481 alloc_intsym = (Elf_Internal_Sym *)
482 bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
483 intsym_buf = alloc_intsym;
484 if (intsym_buf == NULL)
485 goto out;
486 }
487
488 /* Convert the symbols to internal form. */
489 isymend = intsym_buf + symcount;
490 for (esym = (const bfd_byte *) extsym_buf, isym = intsym_buf,
491 shndx = extshndx_buf;
492 isym < isymend;
493 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
494 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
495 {
496 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
497 /* xgettext:c-format */
498 _bfd_error_handler (_("%pB symbol number %lu references"
499 " nonexistent SHT_SYMTAB_SHNDX section"),
500 ibfd, (unsigned long) symoffset);
501 if (alloc_intsym != NULL)
502 free (alloc_intsym);
503 intsym_buf = NULL;
504 goto out;
505 }
506
507 out:
508 if (alloc_ext != NULL)
509 free (alloc_ext);
510 if (alloc_extshndx != NULL)
511 free (alloc_extshndx);
512
513 return intsym_buf;
514 }
515
516 /* Look up a symbol name. */
517 const char *
518 bfd_elf_sym_name (bfd *abfd,
519 Elf_Internal_Shdr *symtab_hdr,
520 Elf_Internal_Sym *isym,
521 asection *sym_sec)
522 {
523 const char *name;
524 unsigned int iname = isym->st_name;
525 unsigned int shindex = symtab_hdr->sh_link;
526
527 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
528 /* Check for a bogus st_shndx to avoid crashing. */
529 && isym->st_shndx < elf_numsections (abfd))
530 {
531 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
532 shindex = elf_elfheader (abfd)->e_shstrndx;
533 }
534
535 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
536 if (name == NULL)
537 name = "(null)";
538 else if (sym_sec && *name == '\0')
539 name = bfd_section_name (abfd, sym_sec);
540
541 return name;
542 }
543
544 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
545 sections. The first element is the flags, the rest are section
546 pointers. */
547
548 typedef union elf_internal_group {
549 Elf_Internal_Shdr *shdr;
550 unsigned int flags;
551 } Elf_Internal_Group;
552
553 /* Return the name of the group signature symbol. Why isn't the
554 signature just a string? */
555
556 static const char *
557 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
558 {
559 Elf_Internal_Shdr *hdr;
560 unsigned char esym[sizeof (Elf64_External_Sym)];
561 Elf_External_Sym_Shndx eshndx;
562 Elf_Internal_Sym isym;
563
564 /* First we need to ensure the symbol table is available. Make sure
565 that it is a symbol table section. */
566 if (ghdr->sh_link >= elf_numsections (abfd))
567 return NULL;
568 hdr = elf_elfsections (abfd) [ghdr->sh_link];
569 if (hdr->sh_type != SHT_SYMTAB
570 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
571 return NULL;
572
573 /* Go read the symbol. */
574 hdr = &elf_tdata (abfd)->symtab_hdr;
575 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
576 &isym, esym, &eshndx) == NULL)
577 return NULL;
578
579 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
580 }
581
582 /* Set next_in_group list pointer, and group name for NEWSECT. */
583
584 static bfd_boolean
585 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
586 {
587 unsigned int num_group = elf_tdata (abfd)->num_group;
588
589 /* If num_group is zero, read in all SHT_GROUP sections. The count
590 is set to -1 if there are no SHT_GROUP sections. */
591 if (num_group == 0)
592 {
593 unsigned int i, shnum;
594
595 /* First count the number of groups. If we have a SHT_GROUP
596 section with just a flag word (ie. sh_size is 4), ignore it. */
597 shnum = elf_numsections (abfd);
598 num_group = 0;
599
600 #define IS_VALID_GROUP_SECTION_HEADER(shdr, minsize) \
601 ( (shdr)->sh_type == SHT_GROUP \
602 && (shdr)->sh_size >= minsize \
603 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
604 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
605
606 for (i = 0; i < shnum; i++)
607 {
608 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
609
610 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
611 num_group += 1;
612 }
613
614 if (num_group == 0)
615 {
616 num_group = (unsigned) -1;
617 elf_tdata (abfd)->num_group = num_group;
618 elf_tdata (abfd)->group_sect_ptr = NULL;
619 }
620 else
621 {
622 /* We keep a list of elf section headers for group sections,
623 so we can find them quickly. */
624 bfd_size_type amt;
625
626 elf_tdata (abfd)->num_group = num_group;
627 elf_tdata (abfd)->group_sect_ptr = (Elf_Internal_Shdr **)
628 bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
629 if (elf_tdata (abfd)->group_sect_ptr == NULL)
630 return FALSE;
631 memset (elf_tdata (abfd)->group_sect_ptr, 0,
632 num_group * sizeof (Elf_Internal_Shdr *));
633 num_group = 0;
634
635 for (i = 0; i < shnum; i++)
636 {
637 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
638
639 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
640 {
641 unsigned char *src;
642 Elf_Internal_Group *dest;
643
644 /* Make sure the group section has a BFD section
645 attached to it. */
646 if (!bfd_section_from_shdr (abfd, i))
647 return FALSE;
648
649 /* Add to list of sections. */
650 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
651 num_group += 1;
652
653 /* Read the raw contents. */
654 BFD_ASSERT (sizeof (*dest) >= 4);
655 amt = shdr->sh_size * sizeof (*dest) / 4;
656 shdr->contents = (unsigned char *)
657 bfd_alloc2 (abfd, shdr->sh_size, sizeof (*dest) / 4);
658 /* PR binutils/4110: Handle corrupt group headers. */
659 if (shdr->contents == NULL)
660 {
661 _bfd_error_handler
662 /* xgettext:c-format */
663 (_("%pB: corrupt size field in group section"
664 " header: %#" PRIx64),
665 abfd, (uint64_t) shdr->sh_size);
666 bfd_set_error (bfd_error_bad_value);
667 -- num_group;
668 continue;
669 }
670
671 memset (shdr->contents, 0, amt);
672
673 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
674 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
675 != shdr->sh_size))
676 {
677 _bfd_error_handler
678 /* xgettext:c-format */
679 (_("%pB: invalid size field in group section"
680 " header: %#" PRIx64 ""),
681 abfd, (uint64_t) shdr->sh_size);
682 bfd_set_error (bfd_error_bad_value);
683 -- num_group;
684 /* PR 17510: If the group contents are even
685 partially corrupt, do not allow any of the
686 contents to be used. */
687 memset (shdr->contents, 0, amt);
688 continue;
689 }
690
691 /* Translate raw contents, a flag word followed by an
692 array of elf section indices all in target byte order,
693 to the flag word followed by an array of elf section
694 pointers. */
695 src = shdr->contents + shdr->sh_size;
696 dest = (Elf_Internal_Group *) (shdr->contents + amt);
697
698 while (1)
699 {
700 unsigned int idx;
701
702 src -= 4;
703 --dest;
704 idx = H_GET_32 (abfd, src);
705 if (src == shdr->contents)
706 {
707 dest->flags = idx;
708 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
709 shdr->bfd_section->flags
710 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
711 break;
712 }
713 if (idx < shnum)
714 dest->shdr = elf_elfsections (abfd)[idx];
715 if (idx >= shnum
716 || dest->shdr->sh_type == SHT_GROUP)
717 {
718 _bfd_error_handler
719 (_("%pB: invalid entry in SHT_GROUP section [%u]"),
720 abfd, i);
721 dest->shdr = NULL;
722 }
723 }
724 }
725 }
726
727 /* PR 17510: Corrupt binaries might contain invalid groups. */
728 if (num_group != (unsigned) elf_tdata (abfd)->num_group)
729 {
730 elf_tdata (abfd)->num_group = num_group;
731
732 /* If all groups are invalid then fail. */
733 if (num_group == 0)
734 {
735 elf_tdata (abfd)->group_sect_ptr = NULL;
736 elf_tdata (abfd)->num_group = num_group = -1;
737 _bfd_error_handler
738 (_("%pB: no valid group sections found"), abfd);
739 bfd_set_error (bfd_error_bad_value);
740 }
741 }
742 }
743 }
744
745 if (num_group != (unsigned) -1)
746 {
747 unsigned int search_offset = elf_tdata (abfd)->group_search_offset;
748 unsigned int j;
749
750 for (j = 0; j < num_group; j++)
751 {
752 /* Begin search from previous found group. */
753 unsigned i = (j + search_offset) % num_group;
754
755 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
756 Elf_Internal_Group *idx;
757 bfd_size_type n_elt;
758
759 if (shdr == NULL)
760 continue;
761
762 idx = (Elf_Internal_Group *) shdr->contents;
763 if (idx == NULL || shdr->sh_size < 4)
764 {
765 /* See PR 21957 for a reproducer. */
766 /* xgettext:c-format */
767 _bfd_error_handler (_("%pB: group section '%pA' has no contents"),
768 abfd, shdr->bfd_section);
769 elf_tdata (abfd)->group_sect_ptr[i] = NULL;
770 bfd_set_error (bfd_error_bad_value);
771 return FALSE;
772 }
773 n_elt = shdr->sh_size / 4;
774
775 /* Look through this group's sections to see if current
776 section is a member. */
777 while (--n_elt != 0)
778 if ((++idx)->shdr == hdr)
779 {
780 asection *s = NULL;
781
782 /* We are a member of this group. Go looking through
783 other members to see if any others are linked via
784 next_in_group. */
785 idx = (Elf_Internal_Group *) shdr->contents;
786 n_elt = shdr->sh_size / 4;
787 while (--n_elt != 0)
788 if ((++idx)->shdr != NULL
789 && (s = idx->shdr->bfd_section) != NULL
790 && elf_next_in_group (s) != NULL)
791 break;
792 if (n_elt != 0)
793 {
794 /* Snarf the group name from other member, and
795 insert current section in circular list. */
796 elf_group_name (newsect) = elf_group_name (s);
797 elf_next_in_group (newsect) = elf_next_in_group (s);
798 elf_next_in_group (s) = newsect;
799 }
800 else
801 {
802 const char *gname;
803
804 gname = group_signature (abfd, shdr);
805 if (gname == NULL)
806 return FALSE;
807 elf_group_name (newsect) = gname;
808
809 /* Start a circular list with one element. */
810 elf_next_in_group (newsect) = newsect;
811 }
812
813 /* If the group section has been created, point to the
814 new member. */
815 if (shdr->bfd_section != NULL)
816 elf_next_in_group (shdr->bfd_section) = newsect;
817
818 elf_tdata (abfd)->group_search_offset = i;
819 j = num_group - 1;
820 break;
821 }
822 }
823 }
824
825 if (elf_group_name (newsect) == NULL)
826 {
827 /* xgettext:c-format */
828 _bfd_error_handler (_("%pB: no group info for section '%pA'"),
829 abfd, newsect);
830 return FALSE;
831 }
832 return TRUE;
833 }
834
835 bfd_boolean
836 _bfd_elf_setup_sections (bfd *abfd)
837 {
838 unsigned int i;
839 unsigned int num_group = elf_tdata (abfd)->num_group;
840 bfd_boolean result = TRUE;
841 asection *s;
842
843 /* Process SHF_LINK_ORDER. */
844 for (s = abfd->sections; s != NULL; s = s->next)
845 {
846 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
847 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
848 {
849 unsigned int elfsec = this_hdr->sh_link;
850 /* FIXME: The old Intel compiler and old strip/objcopy may
851 not set the sh_link or sh_info fields. Hence we could
852 get the situation where elfsec is 0. */
853 if (elfsec == 0)
854 {
855 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
856 if (bed->link_order_error_handler)
857 bed->link_order_error_handler
858 /* xgettext:c-format */
859 (_("%pB: warning: sh_link not set for section `%pA'"),
860 abfd, s);
861 }
862 else
863 {
864 asection *linksec = NULL;
865
866 if (elfsec < elf_numsections (abfd))
867 {
868 this_hdr = elf_elfsections (abfd)[elfsec];
869 linksec = this_hdr->bfd_section;
870 }
871
872 /* PR 1991, 2008:
873 Some strip/objcopy may leave an incorrect value in
874 sh_link. We don't want to proceed. */
875 if (linksec == NULL)
876 {
877 _bfd_error_handler
878 /* xgettext:c-format */
879 (_("%pB: sh_link [%d] in section `%pA' is incorrect"),
880 s->owner, elfsec, s);
881 result = FALSE;
882 }
883
884 elf_linked_to_section (s) = linksec;
885 }
886 }
887 else if (this_hdr->sh_type == SHT_GROUP
888 && elf_next_in_group (s) == NULL)
889 {
890 _bfd_error_handler
891 /* xgettext:c-format */
892 (_("%pB: SHT_GROUP section [index %d] has no SHF_GROUP sections"),
893 abfd, elf_section_data (s)->this_idx);
894 result = FALSE;
895 }
896 }
897
898 /* Process section groups. */
899 if (num_group == (unsigned) -1)
900 return result;
901
902 for (i = 0; i < num_group; i++)
903 {
904 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
905 Elf_Internal_Group *idx;
906 unsigned int n_elt;
907
908 /* PR binutils/18758: Beware of corrupt binaries with invalid group data. */
909 if (shdr == NULL || shdr->bfd_section == NULL || shdr->contents == NULL)
910 {
911 _bfd_error_handler
912 /* xgettext:c-format */
913 (_("%pB: section group entry number %u is corrupt"),
914 abfd, i);
915 result = FALSE;
916 continue;
917 }
918
919 idx = (Elf_Internal_Group *) shdr->contents;
920 n_elt = shdr->sh_size / 4;
921
922 while (--n_elt != 0)
923 {
924 ++ idx;
925
926 if (idx->shdr == NULL)
927 continue;
928 else if (idx->shdr->bfd_section)
929 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
930 else if (idx->shdr->sh_type != SHT_RELA
931 && idx->shdr->sh_type != SHT_REL)
932 {
933 /* There are some unknown sections in the group. */
934 _bfd_error_handler
935 /* xgettext:c-format */
936 (_("%pB: unknown type [%#x] section `%s' in group [%pA]"),
937 abfd,
938 idx->shdr->sh_type,
939 bfd_elf_string_from_elf_section (abfd,
940 (elf_elfheader (abfd)
941 ->e_shstrndx),
942 idx->shdr->sh_name),
943 shdr->bfd_section);
944 result = FALSE;
945 }
946 }
947 }
948
949 return result;
950 }
951
952 bfd_boolean
953 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
954 {
955 return elf_next_in_group (sec) != NULL;
956 }
957
958 static char *
959 convert_debug_to_zdebug (bfd *abfd, const char *name)
960 {
961 unsigned int len = strlen (name);
962 char *new_name = bfd_alloc (abfd, len + 2);
963 if (new_name == NULL)
964 return NULL;
965 new_name[0] = '.';
966 new_name[1] = 'z';
967 memcpy (new_name + 2, name + 1, len);
968 return new_name;
969 }
970
971 static char *
972 convert_zdebug_to_debug (bfd *abfd, const char *name)
973 {
974 unsigned int len = strlen (name);
975 char *new_name = bfd_alloc (abfd, len);
976 if (new_name == NULL)
977 return NULL;
978 new_name[0] = '.';
979 memcpy (new_name + 1, name + 2, len - 1);
980 return new_name;
981 }
982
983 /* Make a BFD section from an ELF section. We store a pointer to the
984 BFD section in the bfd_section field of the header. */
985
986 bfd_boolean
987 _bfd_elf_make_section_from_shdr (bfd *abfd,
988 Elf_Internal_Shdr *hdr,
989 const char *name,
990 int shindex)
991 {
992 asection *newsect;
993 flagword flags;
994 const struct elf_backend_data *bed;
995
996 if (hdr->bfd_section != NULL)
997 return TRUE;
998
999 newsect = bfd_make_section_anyway (abfd, name);
1000 if (newsect == NULL)
1001 return FALSE;
1002
1003 hdr->bfd_section = newsect;
1004 elf_section_data (newsect)->this_hdr = *hdr;
1005 elf_section_data (newsect)->this_idx = shindex;
1006
1007 /* Always use the real type/flags. */
1008 elf_section_type (newsect) = hdr->sh_type;
1009 elf_section_flags (newsect) = hdr->sh_flags;
1010
1011 newsect->filepos = hdr->sh_offset;
1012
1013 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
1014 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
1015 || ! bfd_set_section_alignment (abfd, newsect,
1016 bfd_log2 (hdr->sh_addralign)))
1017 return FALSE;
1018
1019 flags = SEC_NO_FLAGS;
1020 if (hdr->sh_type != SHT_NOBITS)
1021 flags |= SEC_HAS_CONTENTS;
1022 if (hdr->sh_type == SHT_GROUP)
1023 flags |= SEC_GROUP;
1024 if ((hdr->sh_flags & SHF_ALLOC) != 0)
1025 {
1026 flags |= SEC_ALLOC;
1027 if (hdr->sh_type != SHT_NOBITS)
1028 flags |= SEC_LOAD;
1029 }
1030 if ((hdr->sh_flags & SHF_WRITE) == 0)
1031 flags |= SEC_READONLY;
1032 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
1033 flags |= SEC_CODE;
1034 else if ((flags & SEC_LOAD) != 0)
1035 flags |= SEC_DATA;
1036 if ((hdr->sh_flags & SHF_MERGE) != 0)
1037 {
1038 flags |= SEC_MERGE;
1039 newsect->entsize = hdr->sh_entsize;
1040 }
1041 if ((hdr->sh_flags & SHF_STRINGS) != 0)
1042 flags |= SEC_STRINGS;
1043 if (hdr->sh_flags & SHF_GROUP)
1044 if (!setup_group (abfd, hdr, newsect))
1045 return FALSE;
1046 if ((hdr->sh_flags & SHF_TLS) != 0)
1047 flags |= SEC_THREAD_LOCAL;
1048 if ((hdr->sh_flags & SHF_EXCLUDE) != 0)
1049 flags |= SEC_EXCLUDE;
1050
1051 if ((flags & SEC_ALLOC) == 0)
1052 {
1053 /* The debugging sections appear to be recognized only by name,
1054 not any sort of flag. Their SEC_ALLOC bits are cleared. */
1055 if (name [0] == '.')
1056 {
1057 const char *p;
1058 int n;
1059 if (name[1] == 'd')
1060 p = ".debug", n = 6;
1061 else if (name[1] == 'g' && name[2] == 'n')
1062 p = ".gnu.linkonce.wi.", n = 17;
1063 else if (name[1] == 'g' && name[2] == 'd')
1064 p = ".gdb_index", n = 11; /* yes we really do mean 11. */
1065 else if (name[1] == 'l')
1066 p = ".line", n = 5;
1067 else if (name[1] == 's')
1068 p = ".stab", n = 5;
1069 else if (name[1] == 'z')
1070 p = ".zdebug", n = 7;
1071 else
1072 p = NULL, n = 0;
1073 if (p != NULL && strncmp (name, p, n) == 0)
1074 flags |= SEC_DEBUGGING;
1075 }
1076 }
1077
1078 /* As a GNU extension, if the name begins with .gnu.linkonce, we
1079 only link a single copy of the section. This is used to support
1080 g++. g++ will emit each template expansion in its own section.
1081 The symbols will be defined as weak, so that multiple definitions
1082 are permitted. The GNU linker extension is to actually discard
1083 all but one of the sections. */
1084 if (CONST_STRNEQ (name, ".gnu.linkonce")
1085 && elf_next_in_group (newsect) == NULL)
1086 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1087
1088 bed = get_elf_backend_data (abfd);
1089 if (bed->elf_backend_section_flags)
1090 if (! bed->elf_backend_section_flags (&flags, hdr))
1091 return FALSE;
1092
1093 if (! bfd_set_section_flags (abfd, newsect, flags))
1094 return FALSE;
1095
1096 /* We do not parse the PT_NOTE segments as we are interested even in the
1097 separate debug info files which may have the segments offsets corrupted.
1098 PT_NOTEs from the core files are currently not parsed using BFD. */
1099 if (hdr->sh_type == SHT_NOTE)
1100 {
1101 bfd_byte *contents;
1102
1103 if (!bfd_malloc_and_get_section (abfd, newsect, &contents))
1104 return FALSE;
1105
1106 elf_parse_notes (abfd, (char *) contents, hdr->sh_size,
1107 hdr->sh_offset, hdr->sh_addralign);
1108 free (contents);
1109 }
1110
1111 if ((flags & SEC_ALLOC) != 0)
1112 {
1113 Elf_Internal_Phdr *phdr;
1114 unsigned int i, nload;
1115
1116 /* Some ELF linkers produce binaries with all the program header
1117 p_paddr fields zero. If we have such a binary with more than
1118 one PT_LOAD header, then leave the section lma equal to vma
1119 so that we don't create sections with overlapping lma. */
1120 phdr = elf_tdata (abfd)->phdr;
1121 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1122 if (phdr->p_paddr != 0)
1123 break;
1124 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
1125 ++nload;
1126 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
1127 return TRUE;
1128
1129 phdr = elf_tdata (abfd)->phdr;
1130 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1131 {
1132 if (((phdr->p_type == PT_LOAD
1133 && (hdr->sh_flags & SHF_TLS) == 0)
1134 || phdr->p_type == PT_TLS)
1135 && ELF_SECTION_IN_SEGMENT (hdr, phdr))
1136 {
1137 if ((flags & SEC_LOAD) == 0)
1138 newsect->lma = (phdr->p_paddr
1139 + hdr->sh_addr - phdr->p_vaddr);
1140 else
1141 /* We used to use the same adjustment for SEC_LOAD
1142 sections, but that doesn't work if the segment
1143 is packed with code from multiple VMAs.
1144 Instead we calculate the section LMA based on
1145 the segment LMA. It is assumed that the
1146 segment will contain sections with contiguous
1147 LMAs, even if the VMAs are not. */
1148 newsect->lma = (phdr->p_paddr
1149 + hdr->sh_offset - phdr->p_offset);
1150
1151 /* With contiguous segments, we can't tell from file
1152 offsets whether a section with zero size should
1153 be placed at the end of one segment or the
1154 beginning of the next. Decide based on vaddr. */
1155 if (hdr->sh_addr >= phdr->p_vaddr
1156 && (hdr->sh_addr + hdr->sh_size
1157 <= phdr->p_vaddr + phdr->p_memsz))
1158 break;
1159 }
1160 }
1161 }
1162
1163 /* Compress/decompress DWARF debug sections with names: .debug_* and
1164 .zdebug_*, after the section flags is set. */
1165 if ((flags & SEC_DEBUGGING)
1166 && ((name[1] == 'd' && name[6] == '_')
1167 || (name[1] == 'z' && name[7] == '_')))
1168 {
1169 enum { nothing, compress, decompress } action = nothing;
1170 int compression_header_size;
1171 bfd_size_type uncompressed_size;
1172 bfd_boolean compressed
1173 = bfd_is_section_compressed_with_header (abfd, newsect,
1174 &compression_header_size,
1175 &uncompressed_size);
1176
1177 if (compressed)
1178 {
1179 /* Compressed section. Check if we should decompress. */
1180 if ((abfd->flags & BFD_DECOMPRESS))
1181 action = decompress;
1182 }
1183
1184 /* Compress the uncompressed section or convert from/to .zdebug*
1185 section. Check if we should compress. */
1186 if (action == nothing)
1187 {
1188 if (newsect->size != 0
1189 && (abfd->flags & BFD_COMPRESS)
1190 && compression_header_size >= 0
1191 && uncompressed_size > 0
1192 && (!compressed
1193 || ((compression_header_size > 0)
1194 != ((abfd->flags & BFD_COMPRESS_GABI) != 0))))
1195 action = compress;
1196 else
1197 return TRUE;
1198 }
1199
1200 if (action == compress)
1201 {
1202 if (!bfd_init_section_compress_status (abfd, newsect))
1203 {
1204 _bfd_error_handler
1205 /* xgettext:c-format */
1206 (_("%pB: unable to initialize compress status for section %s"),
1207 abfd, name);
1208 return FALSE;
1209 }
1210 }
1211 else
1212 {
1213 if (!bfd_init_section_decompress_status (abfd, newsect))
1214 {
1215 _bfd_error_handler
1216 /* xgettext:c-format */
1217 (_("%pB: unable to initialize decompress status for section %s"),
1218 abfd, name);
1219 return FALSE;
1220 }
1221 }
1222
1223 if (abfd->is_linker_input)
1224 {
1225 if (name[1] == 'z'
1226 && (action == decompress
1227 || (action == compress
1228 && (abfd->flags & BFD_COMPRESS_GABI) != 0)))
1229 {
1230 /* Convert section name from .zdebug_* to .debug_* so
1231 that linker will consider this section as a debug
1232 section. */
1233 char *new_name = convert_zdebug_to_debug (abfd, name);
1234 if (new_name == NULL)
1235 return FALSE;
1236 bfd_rename_section (abfd, newsect, new_name);
1237 }
1238 }
1239 else
1240 /* For objdump, don't rename the section. For objcopy, delay
1241 section rename to elf_fake_sections. */
1242 newsect->flags |= SEC_ELF_RENAME;
1243 }
1244
1245 return TRUE;
1246 }
1247
1248 const char *const bfd_elf_section_type_names[] =
1249 {
1250 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1251 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1252 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1253 };
1254
1255 /* ELF relocs are against symbols. If we are producing relocatable
1256 output, and the reloc is against an external symbol, and nothing
1257 has given us any additional addend, the resulting reloc will also
1258 be against the same symbol. In such a case, we don't want to
1259 change anything about the way the reloc is handled, since it will
1260 all be done at final link time. Rather than put special case code
1261 into bfd_perform_relocation, all the reloc types use this howto
1262 function. It just short circuits the reloc if producing
1263 relocatable output against an external symbol. */
1264
1265 bfd_reloc_status_type
1266 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1267 arelent *reloc_entry,
1268 asymbol *symbol,
1269 void *data ATTRIBUTE_UNUSED,
1270 asection *input_section,
1271 bfd *output_bfd,
1272 char **error_message ATTRIBUTE_UNUSED)
1273 {
1274 if (output_bfd != NULL
1275 && (symbol->flags & BSF_SECTION_SYM) == 0
1276 && (! reloc_entry->howto->partial_inplace
1277 || reloc_entry->addend == 0))
1278 {
1279 reloc_entry->address += input_section->output_offset;
1280 return bfd_reloc_ok;
1281 }
1282
1283 return bfd_reloc_continue;
1284 }
1285 \f
1286 /* Returns TRUE if section A matches section B.
1287 Names, addresses and links may be different, but everything else
1288 should be the same. */
1289
1290 static bfd_boolean
1291 section_match (const Elf_Internal_Shdr * a,
1292 const Elf_Internal_Shdr * b)
1293 {
1294 return
1295 a->sh_type == b->sh_type
1296 && (a->sh_flags & ~ SHF_INFO_LINK)
1297 == (b->sh_flags & ~ SHF_INFO_LINK)
1298 && a->sh_addralign == b->sh_addralign
1299 && a->sh_size == b->sh_size
1300 && a->sh_entsize == b->sh_entsize
1301 /* FIXME: Check sh_addr ? */
1302 ;
1303 }
1304
1305 /* Find a section in OBFD that has the same characteristics
1306 as IHEADER. Return the index of this section or SHN_UNDEF if
1307 none can be found. Check's section HINT first, as this is likely
1308 to be the correct section. */
1309
1310 static unsigned int
1311 find_link (const bfd *obfd, const Elf_Internal_Shdr *iheader,
1312 const unsigned int hint)
1313 {
1314 Elf_Internal_Shdr ** oheaders = elf_elfsections (obfd);
1315 unsigned int i;
1316
1317 BFD_ASSERT (iheader != NULL);
1318
1319 /* See PR 20922 for a reproducer of the NULL test. */
1320 if (hint < elf_numsections (obfd)
1321 && oheaders[hint] != NULL
1322 && section_match (oheaders[hint], iheader))
1323 return hint;
1324
1325 for (i = 1; i < elf_numsections (obfd); i++)
1326 {
1327 Elf_Internal_Shdr * oheader = oheaders[i];
1328
1329 if (oheader == NULL)
1330 continue;
1331 if (section_match (oheader, iheader))
1332 /* FIXME: Do we care if there is a potential for
1333 multiple matches ? */
1334 return i;
1335 }
1336
1337 return SHN_UNDEF;
1338 }
1339
1340 /* PR 19938: Attempt to set the ELF section header fields of an OS or
1341 Processor specific section, based upon a matching input section.
1342 Returns TRUE upon success, FALSE otherwise. */
1343
1344 static bfd_boolean
1345 copy_special_section_fields (const bfd *ibfd,
1346 bfd *obfd,
1347 const Elf_Internal_Shdr *iheader,
1348 Elf_Internal_Shdr *oheader,
1349 const unsigned int secnum)
1350 {
1351 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
1352 const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd);
1353 bfd_boolean changed = FALSE;
1354 unsigned int sh_link;
1355
1356 if (oheader->sh_type == SHT_NOBITS)
1357 {
1358 /* This is a feature for objcopy --only-keep-debug:
1359 When a section's type is changed to NOBITS, we preserve
1360 the sh_link and sh_info fields so that they can be
1361 matched up with the original.
1362
1363 Note: Strictly speaking these assignments are wrong.
1364 The sh_link and sh_info fields should point to the
1365 relevent sections in the output BFD, which may not be in
1366 the same location as they were in the input BFD. But
1367 the whole point of this action is to preserve the
1368 original values of the sh_link and sh_info fields, so
1369 that they can be matched up with the section headers in
1370 the original file. So strictly speaking we may be
1371 creating an invalid ELF file, but it is only for a file
1372 that just contains debug info and only for sections
1373 without any contents. */
1374 if (oheader->sh_link == 0)
1375 oheader->sh_link = iheader->sh_link;
1376 if (oheader->sh_info == 0)
1377 oheader->sh_info = iheader->sh_info;
1378 return TRUE;
1379 }
1380
1381 /* Allow the target a chance to decide how these fields should be set. */
1382 if (bed->elf_backend_copy_special_section_fields != NULL
1383 && bed->elf_backend_copy_special_section_fields
1384 (ibfd, obfd, iheader, oheader))
1385 return TRUE;
1386
1387 /* We have an iheader which might match oheader, and which has non-zero
1388 sh_info and/or sh_link fields. Attempt to follow those links and find
1389 the section in the output bfd which corresponds to the linked section
1390 in the input bfd. */
1391 if (iheader->sh_link != SHN_UNDEF)
1392 {
1393 /* See PR 20931 for a reproducer. */
1394 if (iheader->sh_link >= elf_numsections (ibfd))
1395 {
1396 _bfd_error_handler
1397 /* xgettext:c-format */
1398 (_("%pB: invalid sh_link field (%d) in section number %d"),
1399 ibfd, iheader->sh_link, secnum);
1400 return FALSE;
1401 }
1402
1403 sh_link = find_link (obfd, iheaders[iheader->sh_link], iheader->sh_link);
1404 if (sh_link != SHN_UNDEF)
1405 {
1406 oheader->sh_link = sh_link;
1407 changed = TRUE;
1408 }
1409 else
1410 /* FIXME: Should we install iheader->sh_link
1411 if we could not find a match ? */
1412 _bfd_error_handler
1413 /* xgettext:c-format */
1414 (_("%pB: failed to find link section for section %d"), obfd, secnum);
1415 }
1416
1417 if (iheader->sh_info)
1418 {
1419 /* The sh_info field can hold arbitrary information, but if the
1420 SHF_LINK_INFO flag is set then it should be interpreted as a
1421 section index. */
1422 if (iheader->sh_flags & SHF_INFO_LINK)
1423 {
1424 sh_link = find_link (obfd, iheaders[iheader->sh_info],
1425 iheader->sh_info);
1426 if (sh_link != SHN_UNDEF)
1427 oheader->sh_flags |= SHF_INFO_LINK;
1428 }
1429 else
1430 /* No idea what it means - just copy it. */
1431 sh_link = iheader->sh_info;
1432
1433 if (sh_link != SHN_UNDEF)
1434 {
1435 oheader->sh_info = sh_link;
1436 changed = TRUE;
1437 }
1438 else
1439 _bfd_error_handler
1440 /* xgettext:c-format */
1441 (_("%pB: failed to find info section for section %d"), obfd, secnum);
1442 }
1443
1444 return changed;
1445 }
1446
1447 /* Copy the program header and other data from one object module to
1448 another. */
1449
1450 bfd_boolean
1451 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1452 {
1453 const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd);
1454 Elf_Internal_Shdr **oheaders = elf_elfsections (obfd);
1455 const struct elf_backend_data *bed;
1456 unsigned int i;
1457
1458 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1459 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1460 return TRUE;
1461
1462 if (!elf_flags_init (obfd))
1463 {
1464 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1465 elf_flags_init (obfd) = TRUE;
1466 }
1467
1468 elf_gp (obfd) = elf_gp (ibfd);
1469
1470 /* Also copy the EI_OSABI field. */
1471 elf_elfheader (obfd)->e_ident[EI_OSABI] =
1472 elf_elfheader (ibfd)->e_ident[EI_OSABI];
1473
1474 /* If set, copy the EI_ABIVERSION field. */
1475 if (elf_elfheader (ibfd)->e_ident[EI_ABIVERSION])
1476 elf_elfheader (obfd)->e_ident[EI_ABIVERSION]
1477 = elf_elfheader (ibfd)->e_ident[EI_ABIVERSION];
1478
1479 /* Copy object attributes. */
1480 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1481
1482 if (iheaders == NULL || oheaders == NULL)
1483 return TRUE;
1484
1485 bed = get_elf_backend_data (obfd);
1486
1487 /* Possibly copy other fields in the section header. */
1488 for (i = 1; i < elf_numsections (obfd); i++)
1489 {
1490 unsigned int j;
1491 Elf_Internal_Shdr * oheader = oheaders[i];
1492
1493 /* Ignore ordinary sections. SHT_NOBITS sections are considered however
1494 because of a special case need for generating separate debug info
1495 files. See below for more details. */
1496 if (oheader == NULL
1497 || (oheader->sh_type != SHT_NOBITS
1498 && oheader->sh_type < SHT_LOOS))
1499 continue;
1500
1501 /* Ignore empty sections, and sections whose
1502 fields have already been initialised. */
1503 if (oheader->sh_size == 0
1504 || (oheader->sh_info != 0 && oheader->sh_link != 0))
1505 continue;
1506
1507 /* Scan for the matching section in the input bfd.
1508 First we try for a direct mapping between the input and output sections. */
1509 for (j = 1; j < elf_numsections (ibfd); j++)
1510 {
1511 const Elf_Internal_Shdr * iheader = iheaders[j];
1512
1513 if (iheader == NULL)
1514 continue;
1515
1516 if (oheader->bfd_section != NULL
1517 && iheader->bfd_section != NULL
1518 && iheader->bfd_section->output_section != NULL
1519 && iheader->bfd_section->output_section == oheader->bfd_section)
1520 {
1521 /* We have found a connection from the input section to the
1522 output section. Attempt to copy the header fields. If
1523 this fails then do not try any further sections - there
1524 should only be a one-to-one mapping between input and output. */
1525 if (! copy_special_section_fields (ibfd, obfd, iheader, oheader, i))
1526 j = elf_numsections (ibfd);
1527 break;
1528 }
1529 }
1530
1531 if (j < elf_numsections (ibfd))
1532 continue;
1533
1534 /* That failed. So try to deduce the corresponding input section.
1535 Unfortunately we cannot compare names as the output string table
1536 is empty, so instead we check size, address and type. */
1537 for (j = 1; j < elf_numsections (ibfd); j++)
1538 {
1539 const Elf_Internal_Shdr * iheader = iheaders[j];
1540
1541 if (iheader == NULL)
1542 continue;
1543
1544 /* Try matching fields in the input section's header.
1545 Since --only-keep-debug turns all non-debug sections into
1546 SHT_NOBITS sections, the output SHT_NOBITS type matches any
1547 input type. */
1548 if ((oheader->sh_type == SHT_NOBITS
1549 || iheader->sh_type == oheader->sh_type)
1550 && (iheader->sh_flags & ~ SHF_INFO_LINK)
1551 == (oheader->sh_flags & ~ SHF_INFO_LINK)
1552 && iheader->sh_addralign == oheader->sh_addralign
1553 && iheader->sh_entsize == oheader->sh_entsize
1554 && iheader->sh_size == oheader->sh_size
1555 && iheader->sh_addr == oheader->sh_addr
1556 && (iheader->sh_info != oheader->sh_info
1557 || iheader->sh_link != oheader->sh_link))
1558 {
1559 if (copy_special_section_fields (ibfd, obfd, iheader, oheader, i))
1560 break;
1561 }
1562 }
1563
1564 if (j == elf_numsections (ibfd) && oheader->sh_type >= SHT_LOOS)
1565 {
1566 /* Final attempt. Call the backend copy function
1567 with a NULL input section. */
1568 if (bed->elf_backend_copy_special_section_fields != NULL)
1569 bed->elf_backend_copy_special_section_fields (ibfd, obfd, NULL, oheader);
1570 }
1571 }
1572
1573 return TRUE;
1574 }
1575
1576 static const char *
1577 get_segment_type (unsigned int p_type)
1578 {
1579 const char *pt;
1580 switch (p_type)
1581 {
1582 case PT_NULL: pt = "NULL"; break;
1583 case PT_LOAD: pt = "LOAD"; break;
1584 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1585 case PT_INTERP: pt = "INTERP"; break;
1586 case PT_NOTE: pt = "NOTE"; break;
1587 case PT_SHLIB: pt = "SHLIB"; break;
1588 case PT_PHDR: pt = "PHDR"; break;
1589 case PT_TLS: pt = "TLS"; break;
1590 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1591 case PT_GNU_STACK: pt = "STACK"; break;
1592 case PT_GNU_RELRO: pt = "RELRO"; break;
1593 default: pt = NULL; break;
1594 }
1595 return pt;
1596 }
1597
1598 /* Print out the program headers. */
1599
1600 bfd_boolean
1601 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1602 {
1603 FILE *f = (FILE *) farg;
1604 Elf_Internal_Phdr *p;
1605 asection *s;
1606 bfd_byte *dynbuf = NULL;
1607
1608 p = elf_tdata (abfd)->phdr;
1609 if (p != NULL)
1610 {
1611 unsigned int i, c;
1612
1613 fprintf (f, _("\nProgram Header:\n"));
1614 c = elf_elfheader (abfd)->e_phnum;
1615 for (i = 0; i < c; i++, p++)
1616 {
1617 const char *pt = get_segment_type (p->p_type);
1618 char buf[20];
1619
1620 if (pt == NULL)
1621 {
1622 sprintf (buf, "0x%lx", p->p_type);
1623 pt = buf;
1624 }
1625 fprintf (f, "%8s off 0x", pt);
1626 bfd_fprintf_vma (abfd, f, p->p_offset);
1627 fprintf (f, " vaddr 0x");
1628 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1629 fprintf (f, " paddr 0x");
1630 bfd_fprintf_vma (abfd, f, p->p_paddr);
1631 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1632 fprintf (f, " filesz 0x");
1633 bfd_fprintf_vma (abfd, f, p->p_filesz);
1634 fprintf (f, " memsz 0x");
1635 bfd_fprintf_vma (abfd, f, p->p_memsz);
1636 fprintf (f, " flags %c%c%c",
1637 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1638 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1639 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1640 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1641 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1642 fprintf (f, "\n");
1643 }
1644 }
1645
1646 s = bfd_get_section_by_name (abfd, ".dynamic");
1647 if (s != NULL)
1648 {
1649 unsigned int elfsec;
1650 unsigned long shlink;
1651 bfd_byte *extdyn, *extdynend;
1652 size_t extdynsize;
1653 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1654
1655 fprintf (f, _("\nDynamic Section:\n"));
1656
1657 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1658 goto error_return;
1659
1660 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1661 if (elfsec == SHN_BAD)
1662 goto error_return;
1663 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1664
1665 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1666 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1667
1668 extdyn = dynbuf;
1669 /* PR 17512: file: 6f427532. */
1670 if (s->size < extdynsize)
1671 goto error_return;
1672 extdynend = extdyn + s->size;
1673 /* PR 17512: file: id:000006,sig:06,src:000000,op:flip4,pos:5664.
1674 Fix range check. */
1675 for (; extdyn <= (extdynend - extdynsize); extdyn += extdynsize)
1676 {
1677 Elf_Internal_Dyn dyn;
1678 const char *name = "";
1679 char ab[20];
1680 bfd_boolean stringp;
1681 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1682
1683 (*swap_dyn_in) (abfd, extdyn, &dyn);
1684
1685 if (dyn.d_tag == DT_NULL)
1686 break;
1687
1688 stringp = FALSE;
1689 switch (dyn.d_tag)
1690 {
1691 default:
1692 if (bed->elf_backend_get_target_dtag)
1693 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
1694
1695 if (!strcmp (name, ""))
1696 {
1697 sprintf (ab, "%#" BFD_VMA_FMT "x", dyn.d_tag);
1698 name = ab;
1699 }
1700 break;
1701
1702 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1703 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1704 case DT_PLTGOT: name = "PLTGOT"; break;
1705 case DT_HASH: name = "HASH"; break;
1706 case DT_STRTAB: name = "STRTAB"; break;
1707 case DT_SYMTAB: name = "SYMTAB"; break;
1708 case DT_RELA: name = "RELA"; break;
1709 case DT_RELASZ: name = "RELASZ"; break;
1710 case DT_RELAENT: name = "RELAENT"; break;
1711 case DT_STRSZ: name = "STRSZ"; break;
1712 case DT_SYMENT: name = "SYMENT"; break;
1713 case DT_INIT: name = "INIT"; break;
1714 case DT_FINI: name = "FINI"; break;
1715 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1716 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1717 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1718 case DT_REL: name = "REL"; break;
1719 case DT_RELSZ: name = "RELSZ"; break;
1720 case DT_RELENT: name = "RELENT"; break;
1721 case DT_PLTREL: name = "PLTREL"; break;
1722 case DT_DEBUG: name = "DEBUG"; break;
1723 case DT_TEXTREL: name = "TEXTREL"; break;
1724 case DT_JMPREL: name = "JMPREL"; break;
1725 case DT_BIND_NOW: name = "BIND_NOW"; break;
1726 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1727 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1728 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1729 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1730 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1731 case DT_FLAGS: name = "FLAGS"; break;
1732 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1733 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1734 case DT_CHECKSUM: name = "CHECKSUM"; break;
1735 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1736 case DT_MOVEENT: name = "MOVEENT"; break;
1737 case DT_MOVESZ: name = "MOVESZ"; break;
1738 case DT_FEATURE: name = "FEATURE"; break;
1739 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1740 case DT_SYMINSZ: name = "SYMINSZ"; break;
1741 case DT_SYMINENT: name = "SYMINENT"; break;
1742 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1743 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1744 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1745 case DT_PLTPAD: name = "PLTPAD"; break;
1746 case DT_MOVETAB: name = "MOVETAB"; break;
1747 case DT_SYMINFO: name = "SYMINFO"; break;
1748 case DT_RELACOUNT: name = "RELACOUNT"; break;
1749 case DT_RELCOUNT: name = "RELCOUNT"; break;
1750 case DT_FLAGS_1: name = "FLAGS_1"; break;
1751 case DT_VERSYM: name = "VERSYM"; break;
1752 case DT_VERDEF: name = "VERDEF"; break;
1753 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1754 case DT_VERNEED: name = "VERNEED"; break;
1755 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1756 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1757 case DT_USED: name = "USED"; break;
1758 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1759 case DT_GNU_HASH: name = "GNU_HASH"; break;
1760 }
1761
1762 fprintf (f, " %-20s ", name);
1763 if (! stringp)
1764 {
1765 fprintf (f, "0x");
1766 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
1767 }
1768 else
1769 {
1770 const char *string;
1771 unsigned int tagv = dyn.d_un.d_val;
1772
1773 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1774 if (string == NULL)
1775 goto error_return;
1776 fprintf (f, "%s", string);
1777 }
1778 fprintf (f, "\n");
1779 }
1780
1781 free (dynbuf);
1782 dynbuf = NULL;
1783 }
1784
1785 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1786 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1787 {
1788 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1789 return FALSE;
1790 }
1791
1792 if (elf_dynverdef (abfd) != 0)
1793 {
1794 Elf_Internal_Verdef *t;
1795
1796 fprintf (f, _("\nVersion definitions:\n"));
1797 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1798 {
1799 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1800 t->vd_flags, t->vd_hash,
1801 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1802 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1803 {
1804 Elf_Internal_Verdaux *a;
1805
1806 fprintf (f, "\t");
1807 for (a = t->vd_auxptr->vda_nextptr;
1808 a != NULL;
1809 a = a->vda_nextptr)
1810 fprintf (f, "%s ",
1811 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1812 fprintf (f, "\n");
1813 }
1814 }
1815 }
1816
1817 if (elf_dynverref (abfd) != 0)
1818 {
1819 Elf_Internal_Verneed *t;
1820
1821 fprintf (f, _("\nVersion References:\n"));
1822 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1823 {
1824 Elf_Internal_Vernaux *a;
1825
1826 fprintf (f, _(" required from %s:\n"),
1827 t->vn_filename ? t->vn_filename : "<corrupt>");
1828 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1829 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1830 a->vna_flags, a->vna_other,
1831 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1832 }
1833 }
1834
1835 return TRUE;
1836
1837 error_return:
1838 if (dynbuf != NULL)
1839 free (dynbuf);
1840 return FALSE;
1841 }
1842
1843 /* Get version string. */
1844
1845 const char *
1846 _bfd_elf_get_symbol_version_string (bfd *abfd, asymbol *symbol,
1847 bfd_boolean *hidden)
1848 {
1849 const char *version_string = NULL;
1850 if (elf_dynversym (abfd) != 0
1851 && (elf_dynverdef (abfd) != 0 || elf_dynverref (abfd) != 0))
1852 {
1853 unsigned int vernum = ((elf_symbol_type *) symbol)->version;
1854
1855 *hidden = (vernum & VERSYM_HIDDEN) != 0;
1856 vernum &= VERSYM_VERSION;
1857
1858 if (vernum == 0)
1859 version_string = "";
1860 else if (vernum == 1)
1861 version_string = "Base";
1862 else if (vernum <= elf_tdata (abfd)->cverdefs)
1863 version_string =
1864 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1865 else
1866 {
1867 Elf_Internal_Verneed *t;
1868
1869 version_string = "";
1870 for (t = elf_tdata (abfd)->verref;
1871 t != NULL;
1872 t = t->vn_nextref)
1873 {
1874 Elf_Internal_Vernaux *a;
1875
1876 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1877 {
1878 if (a->vna_other == vernum)
1879 {
1880 version_string = a->vna_nodename;
1881 break;
1882 }
1883 }
1884 }
1885 }
1886 }
1887 return version_string;
1888 }
1889
1890 /* Display ELF-specific fields of a symbol. */
1891
1892 void
1893 bfd_elf_print_symbol (bfd *abfd,
1894 void *filep,
1895 asymbol *symbol,
1896 bfd_print_symbol_type how)
1897 {
1898 FILE *file = (FILE *) filep;
1899 switch (how)
1900 {
1901 case bfd_print_symbol_name:
1902 fprintf (file, "%s", symbol->name);
1903 break;
1904 case bfd_print_symbol_more:
1905 fprintf (file, "elf ");
1906 bfd_fprintf_vma (abfd, file, symbol->value);
1907 fprintf (file, " %x", symbol->flags);
1908 break;
1909 case bfd_print_symbol_all:
1910 {
1911 const char *section_name;
1912 const char *name = NULL;
1913 const struct elf_backend_data *bed;
1914 unsigned char st_other;
1915 bfd_vma val;
1916 const char *version_string;
1917 bfd_boolean hidden;
1918
1919 section_name = symbol->section ? symbol->section->name : "(*none*)";
1920
1921 bed = get_elf_backend_data (abfd);
1922 if (bed->elf_backend_print_symbol_all)
1923 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1924
1925 if (name == NULL)
1926 {
1927 name = symbol->name;
1928 bfd_print_symbol_vandf (abfd, file, symbol);
1929 }
1930
1931 fprintf (file, " %s\t", section_name);
1932 /* Print the "other" value for a symbol. For common symbols,
1933 we've already printed the size; now print the alignment.
1934 For other symbols, we have no specified alignment, and
1935 we've printed the address; now print the size. */
1936 if (symbol->section && bfd_is_com_section (symbol->section))
1937 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1938 else
1939 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1940 bfd_fprintf_vma (abfd, file, val);
1941
1942 /* If we have version information, print it. */
1943 version_string = _bfd_elf_get_symbol_version_string (abfd,
1944 symbol,
1945 &hidden);
1946 if (version_string)
1947 {
1948 if (!hidden)
1949 fprintf (file, " %-11s", version_string);
1950 else
1951 {
1952 int i;
1953
1954 fprintf (file, " (%s)", version_string);
1955 for (i = 10 - strlen (version_string); i > 0; --i)
1956 putc (' ', file);
1957 }
1958 }
1959
1960 /* If the st_other field is not zero, print it. */
1961 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1962
1963 switch (st_other)
1964 {
1965 case 0: break;
1966 case STV_INTERNAL: fprintf (file, " .internal"); break;
1967 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1968 case STV_PROTECTED: fprintf (file, " .protected"); break;
1969 default:
1970 /* Some other non-defined flags are also present, so print
1971 everything hex. */
1972 fprintf (file, " 0x%02x", (unsigned int) st_other);
1973 }
1974
1975 fprintf (file, " %s", name);
1976 }
1977 break;
1978 }
1979 }
1980 \f
1981 /* ELF .o/exec file reading */
1982
1983 /* Create a new bfd section from an ELF section header. */
1984
1985 bfd_boolean
1986 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1987 {
1988 Elf_Internal_Shdr *hdr;
1989 Elf_Internal_Ehdr *ehdr;
1990 const struct elf_backend_data *bed;
1991 const char *name;
1992 bfd_boolean ret = TRUE;
1993 static bfd_boolean * sections_being_created = NULL;
1994 static bfd * sections_being_created_abfd = NULL;
1995 static unsigned int nesting = 0;
1996
1997 if (shindex >= elf_numsections (abfd))
1998 return FALSE;
1999
2000 if (++ nesting > 3)
2001 {
2002 /* PR17512: A corrupt ELF binary might contain a recursive group of
2003 sections, with each the string indicies pointing to the next in the
2004 loop. Detect this here, by refusing to load a section that we are
2005 already in the process of loading. We only trigger this test if
2006 we have nested at least three sections deep as normal ELF binaries
2007 can expect to recurse at least once.
2008
2009 FIXME: It would be better if this array was attached to the bfd,
2010 rather than being held in a static pointer. */
2011
2012 if (sections_being_created_abfd != abfd)
2013 sections_being_created = NULL;
2014 if (sections_being_created == NULL)
2015 {
2016 /* FIXME: It would be more efficient to attach this array to the bfd somehow. */
2017 sections_being_created = (bfd_boolean *)
2018 bfd_zalloc (abfd, elf_numsections (abfd) * sizeof (bfd_boolean));
2019 sections_being_created_abfd = abfd;
2020 }
2021 if (sections_being_created [shindex])
2022 {
2023 _bfd_error_handler
2024 (_("%pB: warning: loop in section dependencies detected"), abfd);
2025 return FALSE;
2026 }
2027 sections_being_created [shindex] = TRUE;
2028 }
2029
2030 hdr = elf_elfsections (abfd)[shindex];
2031 ehdr = elf_elfheader (abfd);
2032 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
2033 hdr->sh_name);
2034 if (name == NULL)
2035 goto fail;
2036
2037 bed = get_elf_backend_data (abfd);
2038 switch (hdr->sh_type)
2039 {
2040 case SHT_NULL:
2041 /* Inactive section. Throw it away. */
2042 goto success;
2043
2044 case SHT_PROGBITS: /* Normal section with contents. */
2045 case SHT_NOBITS: /* .bss section. */
2046 case SHT_HASH: /* .hash section. */
2047 case SHT_NOTE: /* .note section. */
2048 case SHT_INIT_ARRAY: /* .init_array section. */
2049 case SHT_FINI_ARRAY: /* .fini_array section. */
2050 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
2051 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
2052 case SHT_GNU_HASH: /* .gnu.hash section. */
2053 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2054 goto success;
2055
2056 case SHT_DYNAMIC: /* Dynamic linking information. */
2057 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2058 goto fail;
2059
2060 if (hdr->sh_link > elf_numsections (abfd))
2061 {
2062 /* PR 10478: Accept Solaris binaries with a sh_link
2063 field set to SHN_BEFORE or SHN_AFTER. */
2064 switch (bfd_get_arch (abfd))
2065 {
2066 case bfd_arch_i386:
2067 case bfd_arch_sparc:
2068 if (hdr->sh_link == (SHN_LORESERVE & 0xffff) /* SHN_BEFORE */
2069 || hdr->sh_link == ((SHN_LORESERVE + 1) & 0xffff) /* SHN_AFTER */)
2070 break;
2071 /* Otherwise fall through. */
2072 default:
2073 goto fail;
2074 }
2075 }
2076 else if (elf_elfsections (abfd)[hdr->sh_link] == NULL)
2077 goto fail;
2078 else if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
2079 {
2080 Elf_Internal_Shdr *dynsymhdr;
2081
2082 /* The shared libraries distributed with hpux11 have a bogus
2083 sh_link field for the ".dynamic" section. Find the
2084 string table for the ".dynsym" section instead. */
2085 if (elf_dynsymtab (abfd) != 0)
2086 {
2087 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
2088 hdr->sh_link = dynsymhdr->sh_link;
2089 }
2090 else
2091 {
2092 unsigned int i, num_sec;
2093
2094 num_sec = elf_numsections (abfd);
2095 for (i = 1; i < num_sec; i++)
2096 {
2097 dynsymhdr = elf_elfsections (abfd)[i];
2098 if (dynsymhdr->sh_type == SHT_DYNSYM)
2099 {
2100 hdr->sh_link = dynsymhdr->sh_link;
2101 break;
2102 }
2103 }
2104 }
2105 }
2106 goto success;
2107
2108 case SHT_SYMTAB: /* A symbol table. */
2109 if (elf_onesymtab (abfd) == shindex)
2110 goto success;
2111
2112 if (hdr->sh_entsize != bed->s->sizeof_sym)
2113 goto fail;
2114
2115 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
2116 {
2117 if (hdr->sh_size != 0)
2118 goto fail;
2119 /* Some assemblers erroneously set sh_info to one with a
2120 zero sh_size. ld sees this as a global symbol count
2121 of (unsigned) -1. Fix it here. */
2122 hdr->sh_info = 0;
2123 goto success;
2124 }
2125
2126 /* PR 18854: A binary might contain more than one symbol table.
2127 Unusual, but possible. Warn, but continue. */
2128 if (elf_onesymtab (abfd) != 0)
2129 {
2130 _bfd_error_handler
2131 /* xgettext:c-format */
2132 (_("%pB: warning: multiple symbol tables detected"
2133 " - ignoring the table in section %u"),
2134 abfd, shindex);
2135 goto success;
2136 }
2137 elf_onesymtab (abfd) = shindex;
2138 elf_symtab_hdr (abfd) = *hdr;
2139 elf_elfsections (abfd)[shindex] = hdr = & elf_symtab_hdr (abfd);
2140 abfd->flags |= HAS_SYMS;
2141
2142 /* Sometimes a shared object will map in the symbol table. If
2143 SHF_ALLOC is set, and this is a shared object, then we also
2144 treat this section as a BFD section. We can not base the
2145 decision purely on SHF_ALLOC, because that flag is sometimes
2146 set in a relocatable object file, which would confuse the
2147 linker. */
2148 if ((hdr->sh_flags & SHF_ALLOC) != 0
2149 && (abfd->flags & DYNAMIC) != 0
2150 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2151 shindex))
2152 goto fail;
2153
2154 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
2155 can't read symbols without that section loaded as well. It
2156 is most likely specified by the next section header. */
2157 {
2158 elf_section_list * entry;
2159 unsigned int i, num_sec;
2160
2161 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
2162 if (entry->hdr.sh_link == shindex)
2163 goto success;
2164
2165 num_sec = elf_numsections (abfd);
2166 for (i = shindex + 1; i < num_sec; i++)
2167 {
2168 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2169
2170 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
2171 && hdr2->sh_link == shindex)
2172 break;
2173 }
2174
2175 if (i == num_sec)
2176 for (i = 1; i < shindex; i++)
2177 {
2178 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2179
2180 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
2181 && hdr2->sh_link == shindex)
2182 break;
2183 }
2184
2185 if (i != shindex)
2186 ret = bfd_section_from_shdr (abfd, i);
2187 /* else FIXME: we have failed to find the symbol table - should we issue an error ? */
2188 goto success;
2189 }
2190
2191 case SHT_DYNSYM: /* A dynamic symbol table. */
2192 if (elf_dynsymtab (abfd) == shindex)
2193 goto success;
2194
2195 if (hdr->sh_entsize != bed->s->sizeof_sym)
2196 goto fail;
2197
2198 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
2199 {
2200 if (hdr->sh_size != 0)
2201 goto fail;
2202
2203 /* Some linkers erroneously set sh_info to one with a
2204 zero sh_size. ld sees this as a global symbol count
2205 of (unsigned) -1. Fix it here. */
2206 hdr->sh_info = 0;
2207 goto success;
2208 }
2209
2210 /* PR 18854: A binary might contain more than one dynamic symbol table.
2211 Unusual, but possible. Warn, but continue. */
2212 if (elf_dynsymtab (abfd) != 0)
2213 {
2214 _bfd_error_handler
2215 /* xgettext:c-format */
2216 (_("%pB: warning: multiple dynamic symbol tables detected"
2217 " - ignoring the table in section %u"),
2218 abfd, shindex);
2219 goto success;
2220 }
2221 elf_dynsymtab (abfd) = shindex;
2222 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
2223 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2224 abfd->flags |= HAS_SYMS;
2225
2226 /* Besides being a symbol table, we also treat this as a regular
2227 section, so that objcopy can handle it. */
2228 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2229 goto success;
2230
2231 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections. */
2232 {
2233 elf_section_list * entry;
2234
2235 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
2236 if (entry->ndx == shindex)
2237 goto success;
2238
2239 entry = bfd_alloc (abfd, sizeof * entry);
2240 if (entry == NULL)
2241 goto fail;
2242 entry->ndx = shindex;
2243 entry->hdr = * hdr;
2244 entry->next = elf_symtab_shndx_list (abfd);
2245 elf_symtab_shndx_list (abfd) = entry;
2246 elf_elfsections (abfd)[shindex] = & entry->hdr;
2247 goto success;
2248 }
2249
2250 case SHT_STRTAB: /* A string table. */
2251 if (hdr->bfd_section != NULL)
2252 goto success;
2253
2254 if (ehdr->e_shstrndx == shindex)
2255 {
2256 elf_tdata (abfd)->shstrtab_hdr = *hdr;
2257 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
2258 goto success;
2259 }
2260
2261 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
2262 {
2263 symtab_strtab:
2264 elf_tdata (abfd)->strtab_hdr = *hdr;
2265 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
2266 goto success;
2267 }
2268
2269 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
2270 {
2271 dynsymtab_strtab:
2272 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
2273 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
2274 elf_elfsections (abfd)[shindex] = hdr;
2275 /* We also treat this as a regular section, so that objcopy
2276 can handle it. */
2277 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2278 shindex);
2279 goto success;
2280 }
2281
2282 /* If the string table isn't one of the above, then treat it as a
2283 regular section. We need to scan all the headers to be sure,
2284 just in case this strtab section appeared before the above. */
2285 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
2286 {
2287 unsigned int i, num_sec;
2288
2289 num_sec = elf_numsections (abfd);
2290 for (i = 1; i < num_sec; i++)
2291 {
2292 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2293 if (hdr2->sh_link == shindex)
2294 {
2295 /* Prevent endless recursion on broken objects. */
2296 if (i == shindex)
2297 goto fail;
2298 if (! bfd_section_from_shdr (abfd, i))
2299 goto fail;
2300 if (elf_onesymtab (abfd) == i)
2301 goto symtab_strtab;
2302 if (elf_dynsymtab (abfd) == i)
2303 goto dynsymtab_strtab;
2304 }
2305 }
2306 }
2307 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2308 goto success;
2309
2310 case SHT_REL:
2311 case SHT_RELA:
2312 /* *These* do a lot of work -- but build no sections! */
2313 {
2314 asection *target_sect;
2315 Elf_Internal_Shdr *hdr2, **p_hdr;
2316 unsigned int num_sec = elf_numsections (abfd);
2317 struct bfd_elf_section_data *esdt;
2318
2319 if (hdr->sh_entsize
2320 != (bfd_size_type) (hdr->sh_type == SHT_REL
2321 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
2322 goto fail;
2323
2324 /* Check for a bogus link to avoid crashing. */
2325 if (hdr->sh_link >= num_sec)
2326 {
2327 _bfd_error_handler
2328 /* xgettext:c-format */
2329 (_("%pB: invalid link %u for reloc section %s (index %u)"),
2330 abfd, hdr->sh_link, name, shindex);
2331 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2332 shindex);
2333 goto success;
2334 }
2335
2336 /* For some incomprehensible reason Oracle distributes
2337 libraries for Solaris in which some of the objects have
2338 bogus sh_link fields. It would be nice if we could just
2339 reject them, but, unfortunately, some people need to use
2340 them. We scan through the section headers; if we find only
2341 one suitable symbol table, we clobber the sh_link to point
2342 to it. I hope this doesn't break anything.
2343
2344 Don't do it on executable nor shared library. */
2345 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0
2346 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
2347 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
2348 {
2349 unsigned int scan;
2350 int found;
2351
2352 found = 0;
2353 for (scan = 1; scan < num_sec; scan++)
2354 {
2355 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
2356 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
2357 {
2358 if (found != 0)
2359 {
2360 found = 0;
2361 break;
2362 }
2363 found = scan;
2364 }
2365 }
2366 if (found != 0)
2367 hdr->sh_link = found;
2368 }
2369
2370 /* Get the symbol table. */
2371 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
2372 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
2373 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
2374 goto fail;
2375
2376 /* If this reloc section does not use the main symbol table we
2377 don't treat it as a reloc section. BFD can't adequately
2378 represent such a section, so at least for now, we don't
2379 try. We just present it as a normal section. We also
2380 can't use it as a reloc section if it points to the null
2381 section, an invalid section, another reloc section, or its
2382 sh_link points to the null section. */
2383 if (hdr->sh_link != elf_onesymtab (abfd)
2384 || hdr->sh_link == SHN_UNDEF
2385 || hdr->sh_info == SHN_UNDEF
2386 || hdr->sh_info >= num_sec
2387 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
2388 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
2389 {
2390 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2391 shindex);
2392 goto success;
2393 }
2394
2395 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
2396 goto fail;
2397
2398 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
2399 if (target_sect == NULL)
2400 goto fail;
2401
2402 esdt = elf_section_data (target_sect);
2403 if (hdr->sh_type == SHT_RELA)
2404 p_hdr = &esdt->rela.hdr;
2405 else
2406 p_hdr = &esdt->rel.hdr;
2407
2408 /* PR 17512: file: 0b4f81b7. */
2409 if (*p_hdr != NULL)
2410 goto fail;
2411 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, sizeof (*hdr2));
2412 if (hdr2 == NULL)
2413 goto fail;
2414 *hdr2 = *hdr;
2415 *p_hdr = hdr2;
2416 elf_elfsections (abfd)[shindex] = hdr2;
2417 target_sect->reloc_count += (NUM_SHDR_ENTRIES (hdr)
2418 * bed->s->int_rels_per_ext_rel);
2419 target_sect->flags |= SEC_RELOC;
2420 target_sect->relocation = NULL;
2421 target_sect->rel_filepos = hdr->sh_offset;
2422 /* In the section to which the relocations apply, mark whether
2423 its relocations are of the REL or RELA variety. */
2424 if (hdr->sh_size != 0)
2425 {
2426 if (hdr->sh_type == SHT_RELA)
2427 target_sect->use_rela_p = 1;
2428 }
2429 abfd->flags |= HAS_RELOC;
2430 goto success;
2431 }
2432
2433 case SHT_GNU_verdef:
2434 elf_dynverdef (abfd) = shindex;
2435 elf_tdata (abfd)->dynverdef_hdr = *hdr;
2436 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2437 goto success;
2438
2439 case SHT_GNU_versym:
2440 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
2441 goto fail;
2442
2443 elf_dynversym (abfd) = shindex;
2444 elf_tdata (abfd)->dynversym_hdr = *hdr;
2445 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2446 goto success;
2447
2448 case SHT_GNU_verneed:
2449 elf_dynverref (abfd) = shindex;
2450 elf_tdata (abfd)->dynverref_hdr = *hdr;
2451 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2452 goto success;
2453
2454 case SHT_SHLIB:
2455 goto success;
2456
2457 case SHT_GROUP:
2458 if (! IS_VALID_GROUP_SECTION_HEADER (hdr, GRP_ENTRY_SIZE))
2459 goto fail;
2460
2461 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2462 goto fail;
2463
2464 goto success;
2465
2466 default:
2467 /* Possibly an attributes section. */
2468 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
2469 || hdr->sh_type == bed->obj_attrs_section_type)
2470 {
2471 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2472 goto fail;
2473 _bfd_elf_parse_attributes (abfd, hdr);
2474 goto success;
2475 }
2476
2477 /* Check for any processor-specific section types. */
2478 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
2479 goto success;
2480
2481 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
2482 {
2483 if ((hdr->sh_flags & SHF_ALLOC) != 0)
2484 /* FIXME: How to properly handle allocated section reserved
2485 for applications? */
2486 _bfd_error_handler
2487 /* xgettext:c-format */
2488 (_("%pB: unknown type [%#x] section `%s'"),
2489 abfd, hdr->sh_type, name);
2490 else
2491 {
2492 /* Allow sections reserved for applications. */
2493 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2494 shindex);
2495 goto success;
2496 }
2497 }
2498 else if (hdr->sh_type >= SHT_LOPROC
2499 && hdr->sh_type <= SHT_HIPROC)
2500 /* FIXME: We should handle this section. */
2501 _bfd_error_handler
2502 /* xgettext:c-format */
2503 (_("%pB: unknown type [%#x] section `%s'"),
2504 abfd, hdr->sh_type, name);
2505 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
2506 {
2507 /* Unrecognised OS-specific sections. */
2508 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
2509 /* SHF_OS_NONCONFORMING indicates that special knowledge is
2510 required to correctly process the section and the file should
2511 be rejected with an error message. */
2512 _bfd_error_handler
2513 /* xgettext:c-format */
2514 (_("%pB: unknown type [%#x] section `%s'"),
2515 abfd, hdr->sh_type, name);
2516 else
2517 {
2518 /* Otherwise it should be processed. */
2519 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2520 goto success;
2521 }
2522 }
2523 else
2524 /* FIXME: We should handle this section. */
2525 _bfd_error_handler
2526 /* xgettext:c-format */
2527 (_("%pB: unknown type [%#x] section `%s'"),
2528 abfd, hdr->sh_type, name);
2529
2530 goto fail;
2531 }
2532
2533 fail:
2534 ret = FALSE;
2535 success:
2536 if (sections_being_created && sections_being_created_abfd == abfd)
2537 sections_being_created [shindex] = FALSE;
2538 if (-- nesting == 0)
2539 {
2540 sections_being_created = NULL;
2541 sections_being_created_abfd = abfd;
2542 }
2543 return ret;
2544 }
2545
2546 /* Return the local symbol specified by ABFD, R_SYMNDX. */
2547
2548 Elf_Internal_Sym *
2549 bfd_sym_from_r_symndx (struct sym_cache *cache,
2550 bfd *abfd,
2551 unsigned long r_symndx)
2552 {
2553 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2554
2555 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
2556 {
2557 Elf_Internal_Shdr *symtab_hdr;
2558 unsigned char esym[sizeof (Elf64_External_Sym)];
2559 Elf_External_Sym_Shndx eshndx;
2560
2561 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2562 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2563 &cache->sym[ent], esym, &eshndx) == NULL)
2564 return NULL;
2565
2566 if (cache->abfd != abfd)
2567 {
2568 memset (cache->indx, -1, sizeof (cache->indx));
2569 cache->abfd = abfd;
2570 }
2571 cache->indx[ent] = r_symndx;
2572 }
2573
2574 return &cache->sym[ent];
2575 }
2576
2577 /* Given an ELF section number, retrieve the corresponding BFD
2578 section. */
2579
2580 asection *
2581 bfd_section_from_elf_index (bfd *abfd, unsigned int sec_index)
2582 {
2583 if (sec_index >= elf_numsections (abfd))
2584 return NULL;
2585 return elf_elfsections (abfd)[sec_index]->bfd_section;
2586 }
2587
2588 static const struct bfd_elf_special_section special_sections_b[] =
2589 {
2590 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2591 { NULL, 0, 0, 0, 0 }
2592 };
2593
2594 static const struct bfd_elf_special_section special_sections_c[] =
2595 {
2596 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2597 { NULL, 0, 0, 0, 0 }
2598 };
2599
2600 static const struct bfd_elf_special_section special_sections_d[] =
2601 {
2602 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2603 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2604 /* There are more DWARF sections than these, but they needn't be added here
2605 unless you have to cope with broken compilers that don't emit section
2606 attributes or you want to help the user writing assembler. */
2607 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2608 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2609 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2610 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2611 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2612 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2613 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2614 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2615 { NULL, 0, 0, 0, 0 }
2616 };
2617
2618 static const struct bfd_elf_special_section special_sections_f[] =
2619 {
2620 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2621 { STRING_COMMA_LEN (".fini_array"), -2, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2622 { NULL, 0 , 0, 0, 0 }
2623 };
2624
2625 static const struct bfd_elf_special_section special_sections_g[] =
2626 {
2627 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2628 { STRING_COMMA_LEN (".gnu.lto_"), -1, SHT_PROGBITS, SHF_EXCLUDE },
2629 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2630 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2631 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2632 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2633 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2634 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2635 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2636 { NULL, 0, 0, 0, 0 }
2637 };
2638
2639 static const struct bfd_elf_special_section special_sections_h[] =
2640 {
2641 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2642 { NULL, 0, 0, 0, 0 }
2643 };
2644
2645 static const struct bfd_elf_special_section special_sections_i[] =
2646 {
2647 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2648 { STRING_COMMA_LEN (".init_array"), -2, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2649 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2650 { NULL, 0, 0, 0, 0 }
2651 };
2652
2653 static const struct bfd_elf_special_section special_sections_l[] =
2654 {
2655 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2656 { NULL, 0, 0, 0, 0 }
2657 };
2658
2659 static const struct bfd_elf_special_section special_sections_n[] =
2660 {
2661 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2662 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2663 { NULL, 0, 0, 0, 0 }
2664 };
2665
2666 static const struct bfd_elf_special_section special_sections_p[] =
2667 {
2668 { STRING_COMMA_LEN (".preinit_array"), -2, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2669 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2670 { NULL, 0, 0, 0, 0 }
2671 };
2672
2673 static const struct bfd_elf_special_section special_sections_r[] =
2674 {
2675 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2676 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2677 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2678 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2679 { NULL, 0, 0, 0, 0 }
2680 };
2681
2682 static const struct bfd_elf_special_section special_sections_s[] =
2683 {
2684 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2685 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2686 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2687 /* See struct bfd_elf_special_section declaration for the semantics of
2688 this special case where .prefix_length != strlen (.prefix). */
2689 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2690 { NULL, 0, 0, 0, 0 }
2691 };
2692
2693 static const struct bfd_elf_special_section special_sections_t[] =
2694 {
2695 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2696 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2697 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2698 { NULL, 0, 0, 0, 0 }
2699 };
2700
2701 static const struct bfd_elf_special_section special_sections_z[] =
2702 {
2703 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 },
2704 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 },
2705 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 },
2706 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 },
2707 { NULL, 0, 0, 0, 0 }
2708 };
2709
2710 static const struct bfd_elf_special_section * const special_sections[] =
2711 {
2712 special_sections_b, /* 'b' */
2713 special_sections_c, /* 'c' */
2714 special_sections_d, /* 'd' */
2715 NULL, /* 'e' */
2716 special_sections_f, /* 'f' */
2717 special_sections_g, /* 'g' */
2718 special_sections_h, /* 'h' */
2719 special_sections_i, /* 'i' */
2720 NULL, /* 'j' */
2721 NULL, /* 'k' */
2722 special_sections_l, /* 'l' */
2723 NULL, /* 'm' */
2724 special_sections_n, /* 'n' */
2725 NULL, /* 'o' */
2726 special_sections_p, /* 'p' */
2727 NULL, /* 'q' */
2728 special_sections_r, /* 'r' */
2729 special_sections_s, /* 's' */
2730 special_sections_t, /* 't' */
2731 NULL, /* 'u' */
2732 NULL, /* 'v' */
2733 NULL, /* 'w' */
2734 NULL, /* 'x' */
2735 NULL, /* 'y' */
2736 special_sections_z /* 'z' */
2737 };
2738
2739 const struct bfd_elf_special_section *
2740 _bfd_elf_get_special_section (const char *name,
2741 const struct bfd_elf_special_section *spec,
2742 unsigned int rela)
2743 {
2744 int i;
2745 int len;
2746
2747 len = strlen (name);
2748
2749 for (i = 0; spec[i].prefix != NULL; i++)
2750 {
2751 int suffix_len;
2752 int prefix_len = spec[i].prefix_length;
2753
2754 if (len < prefix_len)
2755 continue;
2756 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2757 continue;
2758
2759 suffix_len = spec[i].suffix_length;
2760 if (suffix_len <= 0)
2761 {
2762 if (name[prefix_len] != 0)
2763 {
2764 if (suffix_len == 0)
2765 continue;
2766 if (name[prefix_len] != '.'
2767 && (suffix_len == -2
2768 || (rela && spec[i].type == SHT_REL)))
2769 continue;
2770 }
2771 }
2772 else
2773 {
2774 if (len < prefix_len + suffix_len)
2775 continue;
2776 if (memcmp (name + len - suffix_len,
2777 spec[i].prefix + prefix_len,
2778 suffix_len) != 0)
2779 continue;
2780 }
2781 return &spec[i];
2782 }
2783
2784 return NULL;
2785 }
2786
2787 const struct bfd_elf_special_section *
2788 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2789 {
2790 int i;
2791 const struct bfd_elf_special_section *spec;
2792 const struct elf_backend_data *bed;
2793
2794 /* See if this is one of the special sections. */
2795 if (sec->name == NULL)
2796 return NULL;
2797
2798 bed = get_elf_backend_data (abfd);
2799 spec = bed->special_sections;
2800 if (spec)
2801 {
2802 spec = _bfd_elf_get_special_section (sec->name,
2803 bed->special_sections,
2804 sec->use_rela_p);
2805 if (spec != NULL)
2806 return spec;
2807 }
2808
2809 if (sec->name[0] != '.')
2810 return NULL;
2811
2812 i = sec->name[1] - 'b';
2813 if (i < 0 || i > 'z' - 'b')
2814 return NULL;
2815
2816 spec = special_sections[i];
2817
2818 if (spec == NULL)
2819 return NULL;
2820
2821 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2822 }
2823
2824 bfd_boolean
2825 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2826 {
2827 struct bfd_elf_section_data *sdata;
2828 const struct elf_backend_data *bed;
2829 const struct bfd_elf_special_section *ssect;
2830
2831 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2832 if (sdata == NULL)
2833 {
2834 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd,
2835 sizeof (*sdata));
2836 if (sdata == NULL)
2837 return FALSE;
2838 sec->used_by_bfd = sdata;
2839 }
2840
2841 /* Indicate whether or not this section should use RELA relocations. */
2842 bed = get_elf_backend_data (abfd);
2843 sec->use_rela_p = bed->default_use_rela_p;
2844
2845 /* When we read a file, we don't need to set ELF section type and
2846 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2847 anyway. We will set ELF section type and flags for all linker
2848 created sections. If user specifies BFD section flags, we will
2849 set ELF section type and flags based on BFD section flags in
2850 elf_fake_sections. Special handling for .init_array/.fini_array
2851 output sections since they may contain .ctors/.dtors input
2852 sections. We don't want _bfd_elf_init_private_section_data to
2853 copy ELF section type from .ctors/.dtors input sections. */
2854 if (abfd->direction != read_direction
2855 || (sec->flags & SEC_LINKER_CREATED) != 0)
2856 {
2857 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2858 if (ssect != NULL
2859 && (!sec->flags
2860 || (sec->flags & SEC_LINKER_CREATED) != 0
2861 || ssect->type == SHT_INIT_ARRAY
2862 || ssect->type == SHT_FINI_ARRAY))
2863 {
2864 elf_section_type (sec) = ssect->type;
2865 elf_section_flags (sec) = ssect->attr;
2866 }
2867 }
2868
2869 return _bfd_generic_new_section_hook (abfd, sec);
2870 }
2871
2872 /* Create a new bfd section from an ELF program header.
2873
2874 Since program segments have no names, we generate a synthetic name
2875 of the form segment<NUM>, where NUM is generally the index in the
2876 program header table. For segments that are split (see below) we
2877 generate the names segment<NUM>a and segment<NUM>b.
2878
2879 Note that some program segments may have a file size that is different than
2880 (less than) the memory size. All this means is that at execution the
2881 system must allocate the amount of memory specified by the memory size,
2882 but only initialize it with the first "file size" bytes read from the
2883 file. This would occur for example, with program segments consisting
2884 of combined data+bss.
2885
2886 To handle the above situation, this routine generates TWO bfd sections
2887 for the single program segment. The first has the length specified by
2888 the file size of the segment, and the second has the length specified
2889 by the difference between the two sizes. In effect, the segment is split
2890 into its initialized and uninitialized parts.
2891
2892 */
2893
2894 bfd_boolean
2895 _bfd_elf_make_section_from_phdr (bfd *abfd,
2896 Elf_Internal_Phdr *hdr,
2897 int hdr_index,
2898 const char *type_name)
2899 {
2900 asection *newsect;
2901 char *name;
2902 char namebuf[64];
2903 size_t len;
2904 int split;
2905
2906 split = ((hdr->p_memsz > 0)
2907 && (hdr->p_filesz > 0)
2908 && (hdr->p_memsz > hdr->p_filesz));
2909
2910 if (hdr->p_filesz > 0)
2911 {
2912 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "a" : "");
2913 len = strlen (namebuf) + 1;
2914 name = (char *) bfd_alloc (abfd, len);
2915 if (!name)
2916 return FALSE;
2917 memcpy (name, namebuf, len);
2918 newsect = bfd_make_section (abfd, name);
2919 if (newsect == NULL)
2920 return FALSE;
2921 newsect->vma = hdr->p_vaddr;
2922 newsect->lma = hdr->p_paddr;
2923 newsect->size = hdr->p_filesz;
2924 newsect->filepos = hdr->p_offset;
2925 newsect->flags |= SEC_HAS_CONTENTS;
2926 newsect->alignment_power = bfd_log2 (hdr->p_align);
2927 if (hdr->p_type == PT_LOAD)
2928 {
2929 newsect->flags |= SEC_ALLOC;
2930 newsect->flags |= SEC_LOAD;
2931 if (hdr->p_flags & PF_X)
2932 {
2933 /* FIXME: all we known is that it has execute PERMISSION,
2934 may be data. */
2935 newsect->flags |= SEC_CODE;
2936 }
2937 }
2938 if (!(hdr->p_flags & PF_W))
2939 {
2940 newsect->flags |= SEC_READONLY;
2941 }
2942 }
2943
2944 if (hdr->p_memsz > hdr->p_filesz)
2945 {
2946 bfd_vma align;
2947
2948 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "b" : "");
2949 len = strlen (namebuf) + 1;
2950 name = (char *) bfd_alloc (abfd, len);
2951 if (!name)
2952 return FALSE;
2953 memcpy (name, namebuf, len);
2954 newsect = bfd_make_section (abfd, name);
2955 if (newsect == NULL)
2956 return FALSE;
2957 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2958 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2959 newsect->size = hdr->p_memsz - hdr->p_filesz;
2960 newsect->filepos = hdr->p_offset + hdr->p_filesz;
2961 align = newsect->vma & -newsect->vma;
2962 if (align == 0 || align > hdr->p_align)
2963 align = hdr->p_align;
2964 newsect->alignment_power = bfd_log2 (align);
2965 if (hdr->p_type == PT_LOAD)
2966 {
2967 /* Hack for gdb. Segments that have not been modified do
2968 not have their contents written to a core file, on the
2969 assumption that a debugger can find the contents in the
2970 executable. We flag this case by setting the fake
2971 section size to zero. Note that "real" bss sections will
2972 always have their contents dumped to the core file. */
2973 if (bfd_get_format (abfd) == bfd_core)
2974 newsect->size = 0;
2975 newsect->flags |= SEC_ALLOC;
2976 if (hdr->p_flags & PF_X)
2977 newsect->flags |= SEC_CODE;
2978 }
2979 if (!(hdr->p_flags & PF_W))
2980 newsect->flags |= SEC_READONLY;
2981 }
2982
2983 return TRUE;
2984 }
2985
2986 bfd_boolean
2987 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int hdr_index)
2988 {
2989 const struct elf_backend_data *bed;
2990
2991 switch (hdr->p_type)
2992 {
2993 case PT_NULL:
2994 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "null");
2995
2996 case PT_LOAD:
2997 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "load");
2998
2999 case PT_DYNAMIC:
3000 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "dynamic");
3001
3002 case PT_INTERP:
3003 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "interp");
3004
3005 case PT_NOTE:
3006 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "note"))
3007 return FALSE;
3008 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz,
3009 hdr->p_align))
3010 return FALSE;
3011 return TRUE;
3012
3013 case PT_SHLIB:
3014 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "shlib");
3015
3016 case PT_PHDR:
3017 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "phdr");
3018
3019 case PT_GNU_EH_FRAME:
3020 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index,
3021 "eh_frame_hdr");
3022
3023 case PT_GNU_STACK:
3024 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "stack");
3025
3026 case PT_GNU_RELRO:
3027 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "relro");
3028
3029 default:
3030 /* Check for any processor-specific program segment types. */
3031 bed = get_elf_backend_data (abfd);
3032 return bed->elf_backend_section_from_phdr (abfd, hdr, hdr_index, "proc");
3033 }
3034 }
3035
3036 /* Return the REL_HDR for SEC, assuming there is only a single one, either
3037 REL or RELA. */
3038
3039 Elf_Internal_Shdr *
3040 _bfd_elf_single_rel_hdr (asection *sec)
3041 {
3042 if (elf_section_data (sec)->rel.hdr)
3043 {
3044 BFD_ASSERT (elf_section_data (sec)->rela.hdr == NULL);
3045 return elf_section_data (sec)->rel.hdr;
3046 }
3047 else
3048 return elf_section_data (sec)->rela.hdr;
3049 }
3050
3051 static bfd_boolean
3052 _bfd_elf_set_reloc_sh_name (bfd *abfd,
3053 Elf_Internal_Shdr *rel_hdr,
3054 const char *sec_name,
3055 bfd_boolean use_rela_p)
3056 {
3057 char *name = (char *) bfd_alloc (abfd,
3058 sizeof ".rela" + strlen (sec_name));
3059 if (name == NULL)
3060 return FALSE;
3061
3062 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", sec_name);
3063 rel_hdr->sh_name =
3064 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
3065 FALSE);
3066 if (rel_hdr->sh_name == (unsigned int) -1)
3067 return FALSE;
3068
3069 return TRUE;
3070 }
3071
3072 /* Allocate and initialize a section-header for a new reloc section,
3073 containing relocations against ASECT. It is stored in RELDATA. If
3074 USE_RELA_P is TRUE, we use RELA relocations; otherwise, we use REL
3075 relocations. */
3076
3077 static bfd_boolean
3078 _bfd_elf_init_reloc_shdr (bfd *abfd,
3079 struct bfd_elf_section_reloc_data *reldata,
3080 const char *sec_name,
3081 bfd_boolean use_rela_p,
3082 bfd_boolean delay_st_name_p)
3083 {
3084 Elf_Internal_Shdr *rel_hdr;
3085 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3086
3087 BFD_ASSERT (reldata->hdr == NULL);
3088 rel_hdr = bfd_zalloc (abfd, sizeof (*rel_hdr));
3089 reldata->hdr = rel_hdr;
3090
3091 if (delay_st_name_p)
3092 rel_hdr->sh_name = (unsigned int) -1;
3093 else if (!_bfd_elf_set_reloc_sh_name (abfd, rel_hdr, sec_name,
3094 use_rela_p))
3095 return FALSE;
3096 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
3097 rel_hdr->sh_entsize = (use_rela_p
3098 ? bed->s->sizeof_rela
3099 : bed->s->sizeof_rel);
3100 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
3101 rel_hdr->sh_flags = 0;
3102 rel_hdr->sh_addr = 0;
3103 rel_hdr->sh_size = 0;
3104 rel_hdr->sh_offset = 0;
3105
3106 return TRUE;
3107 }
3108
3109 /* Return the default section type based on the passed in section flags. */
3110
3111 int
3112 bfd_elf_get_default_section_type (flagword flags)
3113 {
3114 if ((flags & SEC_ALLOC) != 0
3115 && (flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
3116 return SHT_NOBITS;
3117 return SHT_PROGBITS;
3118 }
3119
3120 struct fake_section_arg
3121 {
3122 struct bfd_link_info *link_info;
3123 bfd_boolean failed;
3124 };
3125
3126 /* Set up an ELF internal section header for a section. */
3127
3128 static void
3129 elf_fake_sections (bfd *abfd, asection *asect, void *fsarg)
3130 {
3131 struct fake_section_arg *arg = (struct fake_section_arg *)fsarg;
3132 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3133 struct bfd_elf_section_data *esd = elf_section_data (asect);
3134 Elf_Internal_Shdr *this_hdr;
3135 unsigned int sh_type;
3136 const char *name = asect->name;
3137 bfd_boolean delay_st_name_p = FALSE;
3138
3139 if (arg->failed)
3140 {
3141 /* We already failed; just get out of the bfd_map_over_sections
3142 loop. */
3143 return;
3144 }
3145
3146 this_hdr = &esd->this_hdr;
3147
3148 if (arg->link_info)
3149 {
3150 /* ld: compress DWARF debug sections with names: .debug_*. */
3151 if ((arg->link_info->compress_debug & COMPRESS_DEBUG)
3152 && (asect->flags & SEC_DEBUGGING)
3153 && name[1] == 'd'
3154 && name[6] == '_')
3155 {
3156 /* Set SEC_ELF_COMPRESS to indicate this section should be
3157 compressed. */
3158 asect->flags |= SEC_ELF_COMPRESS;
3159
3160 /* If this section will be compressed, delay adding section
3161 name to section name section after it is compressed in
3162 _bfd_elf_assign_file_positions_for_non_load. */
3163 delay_st_name_p = TRUE;
3164 }
3165 }
3166 else if ((asect->flags & SEC_ELF_RENAME))
3167 {
3168 /* objcopy: rename output DWARF debug section. */
3169 if ((abfd->flags & (BFD_DECOMPRESS | BFD_COMPRESS_GABI)))
3170 {
3171 /* When we decompress or compress with SHF_COMPRESSED,
3172 convert section name from .zdebug_* to .debug_* if
3173 needed. */
3174 if (name[1] == 'z')
3175 {
3176 char *new_name = convert_zdebug_to_debug (abfd, name);
3177 if (new_name == NULL)
3178 {
3179 arg->failed = TRUE;
3180 return;
3181 }
3182 name = new_name;
3183 }
3184 }
3185 else if (asect->compress_status == COMPRESS_SECTION_DONE)
3186 {
3187 /* PR binutils/18087: Compression does not always make a
3188 section smaller. So only rename the section when
3189 compression has actually taken place. If input section
3190 name is .zdebug_*, we should never compress it again. */
3191 char *new_name = convert_debug_to_zdebug (abfd, name);
3192 if (new_name == NULL)
3193 {
3194 arg->failed = TRUE;
3195 return;
3196 }
3197 BFD_ASSERT (name[1] != 'z');
3198 name = new_name;
3199 }
3200 }
3201
3202 if (delay_st_name_p)
3203 this_hdr->sh_name = (unsigned int) -1;
3204 else
3205 {
3206 this_hdr->sh_name
3207 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3208 name, FALSE);
3209 if (this_hdr->sh_name == (unsigned int) -1)
3210 {
3211 arg->failed = TRUE;
3212 return;
3213 }
3214 }
3215
3216 /* Don't clear sh_flags. Assembler may set additional bits. */
3217
3218 if ((asect->flags & SEC_ALLOC) != 0
3219 || asect->user_set_vma)
3220 this_hdr->sh_addr = asect->vma;
3221 else
3222 this_hdr->sh_addr = 0;
3223
3224 this_hdr->sh_offset = 0;
3225 this_hdr->sh_size = asect->size;
3226 this_hdr->sh_link = 0;
3227 /* PR 17512: file: 0eb809fe, 8b0535ee. */
3228 if (asect->alignment_power >= (sizeof (bfd_vma) * 8) - 1)
3229 {
3230 _bfd_error_handler
3231 /* xgettext:c-format */
3232 (_("%pB: error: alignment power %d of section `%pA' is too big"),
3233 abfd, asect->alignment_power, asect);
3234 arg->failed = TRUE;
3235 return;
3236 }
3237 this_hdr->sh_addralign = (bfd_vma) 1 << asect->alignment_power;
3238 /* The sh_entsize and sh_info fields may have been set already by
3239 copy_private_section_data. */
3240
3241 this_hdr->bfd_section = asect;
3242 this_hdr->contents = NULL;
3243
3244 /* If the section type is unspecified, we set it based on
3245 asect->flags. */
3246 if ((asect->flags & SEC_GROUP) != 0)
3247 sh_type = SHT_GROUP;
3248 else
3249 sh_type = bfd_elf_get_default_section_type (asect->flags);
3250
3251 if (this_hdr->sh_type == SHT_NULL)
3252 this_hdr->sh_type = sh_type;
3253 else if (this_hdr->sh_type == SHT_NOBITS
3254 && sh_type == SHT_PROGBITS
3255 && (asect->flags & SEC_ALLOC) != 0)
3256 {
3257 /* Warn if we are changing a NOBITS section to PROGBITS, but
3258 allow the link to proceed. This can happen when users link
3259 non-bss input sections to bss output sections, or emit data
3260 to a bss output section via a linker script. */
3261 _bfd_error_handler
3262 (_("warning: section `%pA' type changed to PROGBITS"), asect);
3263 this_hdr->sh_type = sh_type;
3264 }
3265
3266 switch (this_hdr->sh_type)
3267 {
3268 default:
3269 break;
3270
3271 case SHT_STRTAB:
3272 case SHT_NOTE:
3273 case SHT_NOBITS:
3274 case SHT_PROGBITS:
3275 break;
3276
3277 case SHT_INIT_ARRAY:
3278 case SHT_FINI_ARRAY:
3279 case SHT_PREINIT_ARRAY:
3280 this_hdr->sh_entsize = bed->s->arch_size / 8;
3281 break;
3282
3283 case SHT_HASH:
3284 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
3285 break;
3286
3287 case SHT_DYNSYM:
3288 this_hdr->sh_entsize = bed->s->sizeof_sym;
3289 break;
3290
3291 case SHT_DYNAMIC:
3292 this_hdr->sh_entsize = bed->s->sizeof_dyn;
3293 break;
3294
3295 case SHT_RELA:
3296 if (get_elf_backend_data (abfd)->may_use_rela_p)
3297 this_hdr->sh_entsize = bed->s->sizeof_rela;
3298 break;
3299
3300 case SHT_REL:
3301 if (get_elf_backend_data (abfd)->may_use_rel_p)
3302 this_hdr->sh_entsize = bed->s->sizeof_rel;
3303 break;
3304
3305 case SHT_GNU_versym:
3306 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
3307 break;
3308
3309 case SHT_GNU_verdef:
3310 this_hdr->sh_entsize = 0;
3311 /* objcopy or strip will copy over sh_info, but may not set
3312 cverdefs. The linker will set cverdefs, but sh_info will be
3313 zero. */
3314 if (this_hdr->sh_info == 0)
3315 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
3316 else
3317 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
3318 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
3319 break;
3320
3321 case SHT_GNU_verneed:
3322 this_hdr->sh_entsize = 0;
3323 /* objcopy or strip will copy over sh_info, but may not set
3324 cverrefs. The linker will set cverrefs, but sh_info will be
3325 zero. */
3326 if (this_hdr->sh_info == 0)
3327 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
3328 else
3329 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
3330 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
3331 break;
3332
3333 case SHT_GROUP:
3334 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
3335 break;
3336
3337 case SHT_GNU_HASH:
3338 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
3339 break;
3340 }
3341
3342 if ((asect->flags & SEC_ALLOC) != 0)
3343 this_hdr->sh_flags |= SHF_ALLOC;
3344 if ((asect->flags & SEC_READONLY) == 0)
3345 this_hdr->sh_flags |= SHF_WRITE;
3346 if ((asect->flags & SEC_CODE) != 0)
3347 this_hdr->sh_flags |= SHF_EXECINSTR;
3348 if ((asect->flags & SEC_MERGE) != 0)
3349 {
3350 this_hdr->sh_flags |= SHF_MERGE;
3351 this_hdr->sh_entsize = asect->entsize;
3352 }
3353 if ((asect->flags & SEC_STRINGS) != 0)
3354 this_hdr->sh_flags |= SHF_STRINGS;
3355 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
3356 this_hdr->sh_flags |= SHF_GROUP;
3357 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
3358 {
3359 this_hdr->sh_flags |= SHF_TLS;
3360 if (asect->size == 0
3361 && (asect->flags & SEC_HAS_CONTENTS) == 0)
3362 {
3363 struct bfd_link_order *o = asect->map_tail.link_order;
3364
3365 this_hdr->sh_size = 0;
3366 if (o != NULL)
3367 {
3368 this_hdr->sh_size = o->offset + o->size;
3369 if (this_hdr->sh_size != 0)
3370 this_hdr->sh_type = SHT_NOBITS;
3371 }
3372 }
3373 }
3374 if ((asect->flags & (SEC_GROUP | SEC_EXCLUDE)) == SEC_EXCLUDE)
3375 this_hdr->sh_flags |= SHF_EXCLUDE;
3376
3377 /* If the section has relocs, set up a section header for the
3378 SHT_REL[A] section. If two relocation sections are required for
3379 this section, it is up to the processor-specific back-end to
3380 create the other. */
3381 if ((asect->flags & SEC_RELOC) != 0)
3382 {
3383 /* When doing a relocatable link, create both REL and RELA sections if
3384 needed. */
3385 if (arg->link_info
3386 /* Do the normal setup if we wouldn't create any sections here. */
3387 && esd->rel.count + esd->rela.count > 0
3388 && (bfd_link_relocatable (arg->link_info)
3389 || arg->link_info->emitrelocations))
3390 {
3391 if (esd->rel.count && esd->rel.hdr == NULL
3392 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rel, name,
3393 FALSE, delay_st_name_p))
3394 {
3395 arg->failed = TRUE;
3396 return;
3397 }
3398 if (esd->rela.count && esd->rela.hdr == NULL
3399 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rela, name,
3400 TRUE, delay_st_name_p))
3401 {
3402 arg->failed = TRUE;
3403 return;
3404 }
3405 }
3406 else if (!_bfd_elf_init_reloc_shdr (abfd,
3407 (asect->use_rela_p
3408 ? &esd->rela : &esd->rel),
3409 name,
3410 asect->use_rela_p,
3411 delay_st_name_p))
3412 {
3413 arg->failed = TRUE;
3414 return;
3415 }
3416 }
3417
3418 /* Check for processor-specific section types. */
3419 sh_type = this_hdr->sh_type;
3420 if (bed->elf_backend_fake_sections
3421 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
3422 {
3423 arg->failed = TRUE;
3424 return;
3425 }
3426
3427 if (sh_type == SHT_NOBITS && asect->size != 0)
3428 {
3429 /* Don't change the header type from NOBITS if we are being
3430 called for objcopy --only-keep-debug. */
3431 this_hdr->sh_type = sh_type;
3432 }
3433 }
3434
3435 /* Fill in the contents of a SHT_GROUP section. Called from
3436 _bfd_elf_compute_section_file_positions for gas, objcopy, and
3437 when ELF targets use the generic linker, ld. Called for ld -r
3438 from bfd_elf_final_link. */
3439
3440 void
3441 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
3442 {
3443 bfd_boolean *failedptr = (bfd_boolean *) failedptrarg;
3444 asection *elt, *first;
3445 unsigned char *loc;
3446 bfd_boolean gas;
3447
3448 /* Ignore linker created group section. See elfNN_ia64_object_p in
3449 elfxx-ia64.c. */
3450 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
3451 || *failedptr)
3452 return;
3453
3454 if (elf_section_data (sec)->this_hdr.sh_info == 0)
3455 {
3456 unsigned long symindx = 0;
3457
3458 /* elf_group_id will have been set up by objcopy and the
3459 generic linker. */
3460 if (elf_group_id (sec) != NULL)
3461 symindx = elf_group_id (sec)->udata.i;
3462
3463 if (symindx == 0)
3464 {
3465 /* If called from the assembler, swap_out_syms will have set up
3466 elf_section_syms. */
3467 BFD_ASSERT (elf_section_syms (abfd) != NULL);
3468 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
3469 }
3470 elf_section_data (sec)->this_hdr.sh_info = symindx;
3471 }
3472 else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2)
3473 {
3474 /* The ELF backend linker sets sh_info to -2 when the group
3475 signature symbol is global, and thus the index can't be
3476 set until all local symbols are output. */
3477 asection *igroup;
3478 struct bfd_elf_section_data *sec_data;
3479 unsigned long symndx;
3480 unsigned long extsymoff;
3481 struct elf_link_hash_entry *h;
3482
3483 /* The point of this little dance to the first SHF_GROUP section
3484 then back to the SHT_GROUP section is that this gets us to
3485 the SHT_GROUP in the input object. */
3486 igroup = elf_sec_group (elf_next_in_group (sec));
3487 sec_data = elf_section_data (igroup);
3488 symndx = sec_data->this_hdr.sh_info;
3489 extsymoff = 0;
3490 if (!elf_bad_symtab (igroup->owner))
3491 {
3492 Elf_Internal_Shdr *symtab_hdr;
3493
3494 symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr;
3495 extsymoff = symtab_hdr->sh_info;
3496 }
3497 h = elf_sym_hashes (igroup->owner)[symndx - extsymoff];
3498 while (h->root.type == bfd_link_hash_indirect
3499 || h->root.type == bfd_link_hash_warning)
3500 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3501
3502 elf_section_data (sec)->this_hdr.sh_info = h->indx;
3503 }
3504
3505 /* The contents won't be allocated for "ld -r" or objcopy. */
3506 gas = TRUE;
3507 if (sec->contents == NULL)
3508 {
3509 gas = FALSE;
3510 sec->contents = (unsigned char *) bfd_alloc (abfd, sec->size);
3511
3512 /* Arrange for the section to be written out. */
3513 elf_section_data (sec)->this_hdr.contents = sec->contents;
3514 if (sec->contents == NULL)
3515 {
3516 *failedptr = TRUE;
3517 return;
3518 }
3519 }
3520
3521 loc = sec->contents + sec->size;
3522
3523 /* Get the pointer to the first section in the group that gas
3524 squirreled away here. objcopy arranges for this to be set to the
3525 start of the input section group. */
3526 first = elt = elf_next_in_group (sec);
3527
3528 /* First element is a flag word. Rest of section is elf section
3529 indices for all the sections of the group. Write them backwards
3530 just to keep the group in the same order as given in .section
3531 directives, not that it matters. */
3532 while (elt != NULL)
3533 {
3534 asection *s;
3535
3536 s = elt;
3537 if (!gas)
3538 s = s->output_section;
3539 if (s != NULL
3540 && !bfd_is_abs_section (s))
3541 {
3542 struct bfd_elf_section_data *elf_sec = elf_section_data (s);
3543 struct bfd_elf_section_data *input_elf_sec = elf_section_data (elt);
3544
3545 if (elf_sec->rel.hdr != NULL
3546 && (gas
3547 || (input_elf_sec->rel.hdr != NULL
3548 && input_elf_sec->rel.hdr->sh_flags & SHF_GROUP) != 0))
3549 {
3550 elf_sec->rel.hdr->sh_flags |= SHF_GROUP;
3551 loc -= 4;
3552 H_PUT_32 (abfd, elf_sec->rel.idx, loc);
3553 }
3554 if (elf_sec->rela.hdr != NULL
3555 && (gas
3556 || (input_elf_sec->rela.hdr != NULL
3557 && input_elf_sec->rela.hdr->sh_flags & SHF_GROUP) != 0))
3558 {
3559 elf_sec->rela.hdr->sh_flags |= SHF_GROUP;
3560 loc -= 4;
3561 H_PUT_32 (abfd, elf_sec->rela.idx, loc);
3562 }
3563 loc -= 4;
3564 H_PUT_32 (abfd, elf_sec->this_idx, loc);
3565 }
3566 elt = elf_next_in_group (elt);
3567 if (elt == first)
3568 break;
3569 }
3570
3571 loc -= 4;
3572 BFD_ASSERT (loc == sec->contents);
3573
3574 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
3575 }
3576
3577 /* Given NAME, the name of a relocation section stripped of its
3578 .rel/.rela prefix, return the section in ABFD to which the
3579 relocations apply. */
3580
3581 asection *
3582 _bfd_elf_plt_get_reloc_section (bfd *abfd, const char *name)
3583 {
3584 /* If a target needs .got.plt section, relocations in rela.plt/rel.plt
3585 section likely apply to .got.plt or .got section. */
3586 if (get_elf_backend_data (abfd)->want_got_plt
3587 && strcmp (name, ".plt") == 0)
3588 {
3589 asection *sec;
3590
3591 name = ".got.plt";
3592 sec = bfd_get_section_by_name (abfd, name);
3593 if (sec != NULL)
3594 return sec;
3595 name = ".got";
3596 }
3597
3598 return bfd_get_section_by_name (abfd, name);
3599 }
3600
3601 /* Return the section to which RELOC_SEC applies. */
3602
3603 static asection *
3604 elf_get_reloc_section (asection *reloc_sec)
3605 {
3606 const char *name;
3607 unsigned int type;
3608 bfd *abfd;
3609 const struct elf_backend_data *bed;
3610
3611 type = elf_section_data (reloc_sec)->this_hdr.sh_type;
3612 if (type != SHT_REL && type != SHT_RELA)
3613 return NULL;
3614
3615 /* We look up the section the relocs apply to by name. */
3616 name = reloc_sec->name;
3617 if (strncmp (name, ".rel", 4) != 0)
3618 return NULL;
3619 name += 4;
3620 if (type == SHT_RELA && *name++ != 'a')
3621 return NULL;
3622
3623 abfd = reloc_sec->owner;
3624 bed = get_elf_backend_data (abfd);
3625 return bed->get_reloc_section (abfd, name);
3626 }
3627
3628 /* Assign all ELF section numbers. The dummy first section is handled here
3629 too. The link/info pointers for the standard section types are filled
3630 in here too, while we're at it. */
3631
3632 static bfd_boolean
3633 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
3634 {
3635 struct elf_obj_tdata *t = elf_tdata (abfd);
3636 asection *sec;
3637 unsigned int section_number;
3638 Elf_Internal_Shdr **i_shdrp;
3639 struct bfd_elf_section_data *d;
3640 bfd_boolean need_symtab;
3641
3642 section_number = 1;
3643
3644 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
3645
3646 /* SHT_GROUP sections are in relocatable files only. */
3647 if (link_info == NULL || !link_info->resolve_section_groups)
3648 {
3649 size_t reloc_count = 0;
3650
3651 /* Put SHT_GROUP sections first. */
3652 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3653 {
3654 d = elf_section_data (sec);
3655
3656 if (d->this_hdr.sh_type == SHT_GROUP)
3657 {
3658 if (sec->flags & SEC_LINKER_CREATED)
3659 {
3660 /* Remove the linker created SHT_GROUP sections. */
3661 bfd_section_list_remove (abfd, sec);
3662 abfd->section_count--;
3663 }
3664 else
3665 d->this_idx = section_number++;
3666 }
3667
3668 /* Count relocations. */
3669 reloc_count += sec->reloc_count;
3670 }
3671
3672 /* Clear HAS_RELOC if there are no relocations. */
3673 if (reloc_count == 0)
3674 abfd->flags &= ~HAS_RELOC;
3675 }
3676
3677 for (sec = abfd->sections; sec; sec = sec->next)
3678 {
3679 d = elf_section_data (sec);
3680
3681 if (d->this_hdr.sh_type != SHT_GROUP)
3682 d->this_idx = section_number++;
3683 if (d->this_hdr.sh_name != (unsigned int) -1)
3684 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
3685 if (d->rel.hdr)
3686 {
3687 d->rel.idx = section_number++;
3688 if (d->rel.hdr->sh_name != (unsigned int) -1)
3689 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel.hdr->sh_name);
3690 }
3691 else
3692 d->rel.idx = 0;
3693
3694 if (d->rela.hdr)
3695 {
3696 d->rela.idx = section_number++;
3697 if (d->rela.hdr->sh_name != (unsigned int) -1)
3698 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rela.hdr->sh_name);
3699 }
3700 else
3701 d->rela.idx = 0;
3702 }
3703
3704 need_symtab = (bfd_get_symcount (abfd) > 0
3705 || (link_info == NULL
3706 && ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
3707 == HAS_RELOC)));
3708 if (need_symtab)
3709 {
3710 elf_onesymtab (abfd) = section_number++;
3711 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
3712 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
3713 {
3714 elf_section_list * entry;
3715
3716 BFD_ASSERT (elf_symtab_shndx_list (abfd) == NULL);
3717
3718 entry = bfd_zalloc (abfd, sizeof * entry);
3719 entry->ndx = section_number++;
3720 elf_symtab_shndx_list (abfd) = entry;
3721 entry->hdr.sh_name
3722 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3723 ".symtab_shndx", FALSE);
3724 if (entry->hdr.sh_name == (unsigned int) -1)
3725 return FALSE;
3726 }
3727 elf_strtab_sec (abfd) = section_number++;
3728 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3729 }
3730
3731 elf_shstrtab_sec (abfd) = section_number++;
3732 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
3733 elf_elfheader (abfd)->e_shstrndx = elf_shstrtab_sec (abfd);
3734
3735 if (section_number >= SHN_LORESERVE)
3736 {
3737 /* xgettext:c-format */
3738 _bfd_error_handler (_("%pB: too many sections: %u"),
3739 abfd, section_number);
3740 return FALSE;
3741 }
3742
3743 elf_numsections (abfd) = section_number;
3744 elf_elfheader (abfd)->e_shnum = section_number;
3745
3746 /* Set up the list of section header pointers, in agreement with the
3747 indices. */
3748 i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc2 (abfd, section_number,
3749 sizeof (Elf_Internal_Shdr *));
3750 if (i_shdrp == NULL)
3751 return FALSE;
3752
3753 i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd,
3754 sizeof (Elf_Internal_Shdr));
3755 if (i_shdrp[0] == NULL)
3756 {
3757 bfd_release (abfd, i_shdrp);
3758 return FALSE;
3759 }
3760
3761 elf_elfsections (abfd) = i_shdrp;
3762
3763 i_shdrp[elf_shstrtab_sec (abfd)] = &t->shstrtab_hdr;
3764 if (need_symtab)
3765 {
3766 i_shdrp[elf_onesymtab (abfd)] = &t->symtab_hdr;
3767 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
3768 {
3769 elf_section_list * entry = elf_symtab_shndx_list (abfd);
3770 BFD_ASSERT (entry != NULL);
3771 i_shdrp[entry->ndx] = & entry->hdr;
3772 entry->hdr.sh_link = elf_onesymtab (abfd);
3773 }
3774 i_shdrp[elf_strtab_sec (abfd)] = &t->strtab_hdr;
3775 t->symtab_hdr.sh_link = elf_strtab_sec (abfd);
3776 }
3777
3778 for (sec = abfd->sections; sec; sec = sec->next)
3779 {
3780 asection *s;
3781
3782 d = elf_section_data (sec);
3783
3784 i_shdrp[d->this_idx] = &d->this_hdr;
3785 if (d->rel.idx != 0)
3786 i_shdrp[d->rel.idx] = d->rel.hdr;
3787 if (d->rela.idx != 0)
3788 i_shdrp[d->rela.idx] = d->rela.hdr;
3789
3790 /* Fill in the sh_link and sh_info fields while we're at it. */
3791
3792 /* sh_link of a reloc section is the section index of the symbol
3793 table. sh_info is the section index of the section to which
3794 the relocation entries apply. */
3795 if (d->rel.idx != 0)
3796 {
3797 d->rel.hdr->sh_link = elf_onesymtab (abfd);
3798 d->rel.hdr->sh_info = d->this_idx;
3799 d->rel.hdr->sh_flags |= SHF_INFO_LINK;
3800 }
3801 if (d->rela.idx != 0)
3802 {
3803 d->rela.hdr->sh_link = elf_onesymtab (abfd);
3804 d->rela.hdr->sh_info = d->this_idx;
3805 d->rela.hdr->sh_flags |= SHF_INFO_LINK;
3806 }
3807
3808 /* We need to set up sh_link for SHF_LINK_ORDER. */
3809 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3810 {
3811 s = elf_linked_to_section (sec);
3812 if (s)
3813 {
3814 /* elf_linked_to_section points to the input section. */
3815 if (link_info != NULL)
3816 {
3817 /* Check discarded linkonce section. */
3818 if (discarded_section (s))
3819 {
3820 asection *kept;
3821 _bfd_error_handler
3822 /* xgettext:c-format */
3823 (_("%pB: sh_link of section `%pA' points to"
3824 " discarded section `%pA' of `%pB'"),
3825 abfd, d->this_hdr.bfd_section,
3826 s, s->owner);
3827 /* Point to the kept section if it has the same
3828 size as the discarded one. */
3829 kept = _bfd_elf_check_kept_section (s, link_info);
3830 if (kept == NULL)
3831 {
3832 bfd_set_error (bfd_error_bad_value);
3833 return FALSE;
3834 }
3835 s = kept;
3836 }
3837
3838 s = s->output_section;
3839 BFD_ASSERT (s != NULL);
3840 }
3841 else
3842 {
3843 /* Handle objcopy. */
3844 if (s->output_section == NULL)
3845 {
3846 _bfd_error_handler
3847 /* xgettext:c-format */
3848 (_("%pB: sh_link of section `%pA' points to"
3849 " removed section `%pA' of `%pB'"),
3850 abfd, d->this_hdr.bfd_section, s, s->owner);
3851 bfd_set_error (bfd_error_bad_value);
3852 return FALSE;
3853 }
3854 s = s->output_section;
3855 }
3856 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3857 }
3858 else
3859 {
3860 /* PR 290:
3861 The Intel C compiler generates SHT_IA_64_UNWIND with
3862 SHF_LINK_ORDER. But it doesn't set the sh_link or
3863 sh_info fields. Hence we could get the situation
3864 where s is NULL. */
3865 const struct elf_backend_data *bed
3866 = get_elf_backend_data (abfd);
3867 if (bed->link_order_error_handler)
3868 bed->link_order_error_handler
3869 /* xgettext:c-format */
3870 (_("%pB: warning: sh_link not set for section `%pA'"),
3871 abfd, sec);
3872 }
3873 }
3874
3875 switch (d->this_hdr.sh_type)
3876 {
3877 case SHT_REL:
3878 case SHT_RELA:
3879 /* A reloc section which we are treating as a normal BFD
3880 section. sh_link is the section index of the symbol
3881 table. sh_info is the section index of the section to
3882 which the relocation entries apply. We assume that an
3883 allocated reloc section uses the dynamic symbol table.
3884 FIXME: How can we be sure? */
3885 s = bfd_get_section_by_name (abfd, ".dynsym");
3886 if (s != NULL)
3887 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3888
3889 s = elf_get_reloc_section (sec);
3890 if (s != NULL)
3891 {
3892 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3893 d->this_hdr.sh_flags |= SHF_INFO_LINK;
3894 }
3895 break;
3896
3897 case SHT_STRTAB:
3898 /* We assume that a section named .stab*str is a stabs
3899 string section. We look for a section with the same name
3900 but without the trailing ``str'', and set its sh_link
3901 field to point to this section. */
3902 if (CONST_STRNEQ (sec->name, ".stab")
3903 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3904 {
3905 size_t len;
3906 char *alc;
3907
3908 len = strlen (sec->name);
3909 alc = (char *) bfd_malloc (len - 2);
3910 if (alc == NULL)
3911 return FALSE;
3912 memcpy (alc, sec->name, len - 3);
3913 alc[len - 3] = '\0';
3914 s = bfd_get_section_by_name (abfd, alc);
3915 free (alc);
3916 if (s != NULL)
3917 {
3918 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3919
3920 /* This is a .stab section. */
3921 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3922 elf_section_data (s)->this_hdr.sh_entsize
3923 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3924 }
3925 }
3926 break;
3927
3928 case SHT_DYNAMIC:
3929 case SHT_DYNSYM:
3930 case SHT_GNU_verneed:
3931 case SHT_GNU_verdef:
3932 /* sh_link is the section header index of the string table
3933 used for the dynamic entries, or the symbol table, or the
3934 version strings. */
3935 s = bfd_get_section_by_name (abfd, ".dynstr");
3936 if (s != NULL)
3937 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3938 break;
3939
3940 case SHT_GNU_LIBLIST:
3941 /* sh_link is the section header index of the prelink library
3942 list used for the dynamic entries, or the symbol table, or
3943 the version strings. */
3944 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3945 ? ".dynstr" : ".gnu.libstr");
3946 if (s != NULL)
3947 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3948 break;
3949
3950 case SHT_HASH:
3951 case SHT_GNU_HASH:
3952 case SHT_GNU_versym:
3953 /* sh_link is the section header index of the symbol table
3954 this hash table or version table is for. */
3955 s = bfd_get_section_by_name (abfd, ".dynsym");
3956 if (s != NULL)
3957 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3958 break;
3959
3960 case SHT_GROUP:
3961 d->this_hdr.sh_link = elf_onesymtab (abfd);
3962 }
3963 }
3964
3965 /* Delay setting sh_name to _bfd_elf_write_object_contents so that
3966 _bfd_elf_assign_file_positions_for_non_load can convert DWARF
3967 debug section name from .debug_* to .zdebug_* if needed. */
3968
3969 return TRUE;
3970 }
3971
3972 static bfd_boolean
3973 sym_is_global (bfd *abfd, asymbol *sym)
3974 {
3975 /* If the backend has a special mapping, use it. */
3976 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3977 if (bed->elf_backend_sym_is_global)
3978 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3979
3980 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0
3981 || bfd_is_und_section (bfd_get_section (sym))
3982 || bfd_is_com_section (bfd_get_section (sym)));
3983 }
3984
3985 /* Filter global symbols of ABFD to include in the import library. All
3986 SYMCOUNT symbols of ABFD can be examined from their pointers in
3987 SYMS. Pointers of symbols to keep should be stored contiguously at
3988 the beginning of that array.
3989
3990 Returns the number of symbols to keep. */
3991
3992 unsigned int
3993 _bfd_elf_filter_global_symbols (bfd *abfd, struct bfd_link_info *info,
3994 asymbol **syms, long symcount)
3995 {
3996 long src_count, dst_count = 0;
3997
3998 for (src_count = 0; src_count < symcount; src_count++)
3999 {
4000 asymbol *sym = syms[src_count];
4001 char *name = (char *) bfd_asymbol_name (sym);
4002 struct bfd_link_hash_entry *h;
4003
4004 if (!sym_is_global (abfd, sym))
4005 continue;
4006
4007 h = bfd_link_hash_lookup (info->hash, name, FALSE, FALSE, FALSE);
4008 if (h == NULL)
4009 continue;
4010 if (h->type != bfd_link_hash_defined && h->type != bfd_link_hash_defweak)
4011 continue;
4012 if (h->linker_def || h->ldscript_def)
4013 continue;
4014
4015 syms[dst_count++] = sym;
4016 }
4017
4018 syms[dst_count] = NULL;
4019
4020 return dst_count;
4021 }
4022
4023 /* Don't output section symbols for sections that are not going to be
4024 output, that are duplicates or there is no BFD section. */
4025
4026 static bfd_boolean
4027 ignore_section_sym (bfd *abfd, asymbol *sym)
4028 {
4029 elf_symbol_type *type_ptr;
4030
4031 if (sym == NULL)
4032 return FALSE;
4033
4034 if ((sym->flags & BSF_SECTION_SYM) == 0)
4035 return FALSE;
4036
4037 if (sym->section == NULL)
4038 return TRUE;
4039
4040 type_ptr = elf_symbol_from (abfd, sym);
4041 return ((type_ptr != NULL
4042 && type_ptr->internal_elf_sym.st_shndx != 0
4043 && bfd_is_abs_section (sym->section))
4044 || !(sym->section->owner == abfd
4045 || (sym->section->output_section != NULL
4046 && sym->section->output_section->owner == abfd
4047 && sym->section->output_offset == 0)
4048 || bfd_is_abs_section (sym->section)));
4049 }
4050
4051 /* Map symbol from it's internal number to the external number, moving
4052 all local symbols to be at the head of the list. */
4053
4054 static bfd_boolean
4055 elf_map_symbols (bfd *abfd, unsigned int *pnum_locals)
4056 {
4057 unsigned int symcount = bfd_get_symcount (abfd);
4058 asymbol **syms = bfd_get_outsymbols (abfd);
4059 asymbol **sect_syms;
4060 unsigned int num_locals = 0;
4061 unsigned int num_globals = 0;
4062 unsigned int num_locals2 = 0;
4063 unsigned int num_globals2 = 0;
4064 unsigned int max_index = 0;
4065 unsigned int idx;
4066 asection *asect;
4067 asymbol **new_syms;
4068
4069 #ifdef DEBUG
4070 fprintf (stderr, "elf_map_symbols\n");
4071 fflush (stderr);
4072 #endif
4073
4074 for (asect = abfd->sections; asect; asect = asect->next)
4075 {
4076 if (max_index < asect->index)
4077 max_index = asect->index;
4078 }
4079
4080 max_index++;
4081 sect_syms = (asymbol **) bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
4082 if (sect_syms == NULL)
4083 return FALSE;
4084 elf_section_syms (abfd) = sect_syms;
4085 elf_num_section_syms (abfd) = max_index;
4086
4087 /* Init sect_syms entries for any section symbols we have already
4088 decided to output. */
4089 for (idx = 0; idx < symcount; idx++)
4090 {
4091 asymbol *sym = syms[idx];
4092
4093 if ((sym->flags & BSF_SECTION_SYM) != 0
4094 && sym->value == 0
4095 && !ignore_section_sym (abfd, sym)
4096 && !bfd_is_abs_section (sym->section))
4097 {
4098 asection *sec = sym->section;
4099
4100 if (sec->owner != abfd)
4101 sec = sec->output_section;
4102
4103 sect_syms[sec->index] = syms[idx];
4104 }
4105 }
4106
4107 /* Classify all of the symbols. */
4108 for (idx = 0; idx < symcount; idx++)
4109 {
4110 if (sym_is_global (abfd, syms[idx]))
4111 num_globals++;
4112 else if (!ignore_section_sym (abfd, syms[idx]))
4113 num_locals++;
4114 }
4115
4116 /* We will be adding a section symbol for each normal BFD section. Most
4117 sections will already have a section symbol in outsymbols, but
4118 eg. SHT_GROUP sections will not, and we need the section symbol mapped
4119 at least in that case. */
4120 for (asect = abfd->sections; asect; asect = asect->next)
4121 {
4122 if (sect_syms[asect->index] == NULL)
4123 {
4124 if (!sym_is_global (abfd, asect->symbol))
4125 num_locals++;
4126 else
4127 num_globals++;
4128 }
4129 }
4130
4131 /* Now sort the symbols so the local symbols are first. */
4132 new_syms = (asymbol **) bfd_alloc2 (abfd, num_locals + num_globals,
4133 sizeof (asymbol *));
4134
4135 if (new_syms == NULL)
4136 return FALSE;
4137
4138 for (idx = 0; idx < symcount; idx++)
4139 {
4140 asymbol *sym = syms[idx];
4141 unsigned int i;
4142
4143 if (sym_is_global (abfd, sym))
4144 i = num_locals + num_globals2++;
4145 else if (!ignore_section_sym (abfd, sym))
4146 i = num_locals2++;
4147 else
4148 continue;
4149 new_syms[i] = sym;
4150 sym->udata.i = i + 1;
4151 }
4152 for (asect = abfd->sections; asect; asect = asect->next)
4153 {
4154 if (sect_syms[asect->index] == NULL)
4155 {
4156 asymbol *sym = asect->symbol;
4157 unsigned int i;
4158
4159 sect_syms[asect->index] = sym;
4160 if (!sym_is_global (abfd, sym))
4161 i = num_locals2++;
4162 else
4163 i = num_locals + num_globals2++;
4164 new_syms[i] = sym;
4165 sym->udata.i = i + 1;
4166 }
4167 }
4168
4169 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
4170
4171 *pnum_locals = num_locals;
4172 return TRUE;
4173 }
4174
4175 /* Align to the maximum file alignment that could be required for any
4176 ELF data structure. */
4177
4178 static inline file_ptr
4179 align_file_position (file_ptr off, int align)
4180 {
4181 return (off + align - 1) & ~(align - 1);
4182 }
4183
4184 /* Assign a file position to a section, optionally aligning to the
4185 required section alignment. */
4186
4187 file_ptr
4188 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
4189 file_ptr offset,
4190 bfd_boolean align)
4191 {
4192 if (align && i_shdrp->sh_addralign > 1)
4193 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
4194 i_shdrp->sh_offset = offset;
4195 if (i_shdrp->bfd_section != NULL)
4196 i_shdrp->bfd_section->filepos = offset;
4197 if (i_shdrp->sh_type != SHT_NOBITS)
4198 offset += i_shdrp->sh_size;
4199 return offset;
4200 }
4201
4202 /* Compute the file positions we are going to put the sections at, and
4203 otherwise prepare to begin writing out the ELF file. If LINK_INFO
4204 is not NULL, this is being called by the ELF backend linker. */
4205
4206 bfd_boolean
4207 _bfd_elf_compute_section_file_positions (bfd *abfd,
4208 struct bfd_link_info *link_info)
4209 {
4210 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4211 struct fake_section_arg fsargs;
4212 bfd_boolean failed;
4213 struct elf_strtab_hash *strtab = NULL;
4214 Elf_Internal_Shdr *shstrtab_hdr;
4215 bfd_boolean need_symtab;
4216
4217 if (abfd->output_has_begun)
4218 return TRUE;
4219
4220 /* Do any elf backend specific processing first. */
4221 if (bed->elf_backend_begin_write_processing)
4222 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
4223
4224 if (! prep_headers (abfd))
4225 return FALSE;
4226
4227 /* Post process the headers if necessary. */
4228 (*bed->elf_backend_post_process_headers) (abfd, link_info);
4229
4230 fsargs.failed = FALSE;
4231 fsargs.link_info = link_info;
4232 bfd_map_over_sections (abfd, elf_fake_sections, &fsargs);
4233 if (fsargs.failed)
4234 return FALSE;
4235
4236 if (!assign_section_numbers (abfd, link_info))
4237 return FALSE;
4238
4239 /* The backend linker builds symbol table information itself. */
4240 need_symtab = (link_info == NULL
4241 && (bfd_get_symcount (abfd) > 0
4242 || ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
4243 == HAS_RELOC)));
4244 if (need_symtab)
4245 {
4246 /* Non-zero if doing a relocatable link. */
4247 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
4248
4249 if (! swap_out_syms (abfd, &strtab, relocatable_p))
4250 return FALSE;
4251 }
4252
4253 failed = FALSE;
4254 if (link_info == NULL)
4255 {
4256 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
4257 if (failed)
4258 return FALSE;
4259 }
4260
4261 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
4262 /* sh_name was set in prep_headers. */
4263 shstrtab_hdr->sh_type = SHT_STRTAB;
4264 shstrtab_hdr->sh_flags = bed->elf_strtab_flags;
4265 shstrtab_hdr->sh_addr = 0;
4266 /* sh_size is set in _bfd_elf_assign_file_positions_for_non_load. */
4267 shstrtab_hdr->sh_entsize = 0;
4268 shstrtab_hdr->sh_link = 0;
4269 shstrtab_hdr->sh_info = 0;
4270 /* sh_offset is set in _bfd_elf_assign_file_positions_for_non_load. */
4271 shstrtab_hdr->sh_addralign = 1;
4272
4273 if (!assign_file_positions_except_relocs (abfd, link_info))
4274 return FALSE;
4275
4276 if (need_symtab)
4277 {
4278 file_ptr off;
4279 Elf_Internal_Shdr *hdr;
4280
4281 off = elf_next_file_pos (abfd);
4282
4283 hdr = & elf_symtab_hdr (abfd);
4284 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4285
4286 if (elf_symtab_shndx_list (abfd) != NULL)
4287 {
4288 hdr = & elf_symtab_shndx_list (abfd)->hdr;
4289 if (hdr->sh_size != 0)
4290 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4291 /* FIXME: What about other symtab_shndx sections in the list ? */
4292 }
4293
4294 hdr = &elf_tdata (abfd)->strtab_hdr;
4295 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4296
4297 elf_next_file_pos (abfd) = off;
4298
4299 /* Now that we know where the .strtab section goes, write it
4300 out. */
4301 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
4302 || ! _bfd_elf_strtab_emit (abfd, strtab))
4303 return FALSE;
4304 _bfd_elf_strtab_free (strtab);
4305 }
4306
4307 abfd->output_has_begun = TRUE;
4308
4309 return TRUE;
4310 }
4311
4312 /* Make an initial estimate of the size of the program header. If we
4313 get the number wrong here, we'll redo section placement. */
4314
4315 static bfd_size_type
4316 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
4317 {
4318 size_t segs;
4319 asection *s;
4320 const struct elf_backend_data *bed;
4321
4322 /* Assume we will need exactly two PT_LOAD segments: one for text
4323 and one for data. */
4324 segs = 2;
4325
4326 s = bfd_get_section_by_name (abfd, ".interp");
4327 if (s != NULL && (s->flags & SEC_LOAD) != 0)
4328 {
4329 /* If we have a loadable interpreter section, we need a
4330 PT_INTERP segment. In this case, assume we also need a
4331 PT_PHDR segment, although that may not be true for all
4332 targets. */
4333 segs += 2;
4334 }
4335
4336 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4337 {
4338 /* We need a PT_DYNAMIC segment. */
4339 ++segs;
4340 }
4341
4342 if (info != NULL && info->relro)
4343 {
4344 /* We need a PT_GNU_RELRO segment. */
4345 ++segs;
4346 }
4347
4348 if (elf_eh_frame_hdr (abfd))
4349 {
4350 /* We need a PT_GNU_EH_FRAME segment. */
4351 ++segs;
4352 }
4353
4354 if (elf_stack_flags (abfd))
4355 {
4356 /* We need a PT_GNU_STACK segment. */
4357 ++segs;
4358 }
4359
4360 for (s = abfd->sections; s != NULL; s = s->next)
4361 {
4362 if ((s->flags & SEC_LOAD) != 0
4363 && CONST_STRNEQ (s->name, ".note"))
4364 {
4365 /* We need a PT_NOTE segment. */
4366 ++segs;
4367 /* Try to create just one PT_NOTE segment
4368 for all adjacent loadable .note* sections.
4369 gABI requires that within a PT_NOTE segment
4370 (and also inside of each SHT_NOTE section)
4371 each note is padded to a multiple of 4 size,
4372 so we check whether the sections are correctly
4373 aligned. */
4374 if (s->alignment_power == 2)
4375 while (s->next != NULL
4376 && s->next->alignment_power == 2
4377 && (s->next->flags & SEC_LOAD) != 0
4378 && CONST_STRNEQ (s->next->name, ".note"))
4379 s = s->next;
4380 }
4381 }
4382
4383 for (s = abfd->sections; s != NULL; s = s->next)
4384 {
4385 if (s->flags & SEC_THREAD_LOCAL)
4386 {
4387 /* We need a PT_TLS segment. */
4388 ++segs;
4389 break;
4390 }
4391 }
4392
4393 bed = get_elf_backend_data (abfd);
4394
4395 if ((abfd->flags & D_PAGED) != 0)
4396 {
4397 /* Add a PT_GNU_MBIND segment for each mbind section. */
4398 unsigned int page_align_power = bfd_log2 (bed->commonpagesize);
4399 for (s = abfd->sections; s != NULL; s = s->next)
4400 if (elf_section_flags (s) & SHF_GNU_MBIND)
4401 {
4402 if (elf_section_data (s)->this_hdr.sh_info
4403 > PT_GNU_MBIND_NUM)
4404 {
4405 _bfd_error_handler
4406 /* xgettext:c-format */
4407 (_("%pB: GNU_MBIN section `%pA' has invalid sh_info field: %d"),
4408 abfd, s, elf_section_data (s)->this_hdr.sh_info);
4409 continue;
4410 }
4411 /* Align mbind section to page size. */
4412 if (s->alignment_power < page_align_power)
4413 s->alignment_power = page_align_power;
4414 segs ++;
4415 }
4416 }
4417
4418 /* Let the backend count up any program headers it might need. */
4419 if (bed->elf_backend_additional_program_headers)
4420 {
4421 int a;
4422
4423 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
4424 if (a == -1)
4425 abort ();
4426 segs += a;
4427 }
4428
4429 return segs * bed->s->sizeof_phdr;
4430 }
4431
4432 /* Find the segment that contains the output_section of section. */
4433
4434 Elf_Internal_Phdr *
4435 _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
4436 {
4437 struct elf_segment_map *m;
4438 Elf_Internal_Phdr *p;
4439
4440 for (m = elf_seg_map (abfd), p = elf_tdata (abfd)->phdr;
4441 m != NULL;
4442 m = m->next, p++)
4443 {
4444 int i;
4445
4446 for (i = m->count - 1; i >= 0; i--)
4447 if (m->sections[i] == section)
4448 return p;
4449 }
4450
4451 return NULL;
4452 }
4453
4454 /* Create a mapping from a set of sections to a program segment. */
4455
4456 static struct elf_segment_map *
4457 make_mapping (bfd *abfd,
4458 asection **sections,
4459 unsigned int from,
4460 unsigned int to,
4461 bfd_boolean phdr)
4462 {
4463 struct elf_segment_map *m;
4464 unsigned int i;
4465 asection **hdrpp;
4466 bfd_size_type amt;
4467
4468 amt = sizeof (struct elf_segment_map);
4469 amt += (to - from - 1) * sizeof (asection *);
4470 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4471 if (m == NULL)
4472 return NULL;
4473 m->next = NULL;
4474 m->p_type = PT_LOAD;
4475 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
4476 m->sections[i - from] = *hdrpp;
4477 m->count = to - from;
4478
4479 if (from == 0 && phdr)
4480 {
4481 /* Include the headers in the first PT_LOAD segment. */
4482 m->includes_filehdr = 1;
4483 m->includes_phdrs = 1;
4484 }
4485
4486 return m;
4487 }
4488
4489 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
4490 on failure. */
4491
4492 struct elf_segment_map *
4493 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
4494 {
4495 struct elf_segment_map *m;
4496
4497 m = (struct elf_segment_map *) bfd_zalloc (abfd,
4498 sizeof (struct elf_segment_map));
4499 if (m == NULL)
4500 return NULL;
4501 m->next = NULL;
4502 m->p_type = PT_DYNAMIC;
4503 m->count = 1;
4504 m->sections[0] = dynsec;
4505
4506 return m;
4507 }
4508
4509 /* Possibly add or remove segments from the segment map. */
4510
4511 static bfd_boolean
4512 elf_modify_segment_map (bfd *abfd,
4513 struct bfd_link_info *info,
4514 bfd_boolean remove_empty_load)
4515 {
4516 struct elf_segment_map **m;
4517 const struct elf_backend_data *bed;
4518
4519 /* The placement algorithm assumes that non allocated sections are
4520 not in PT_LOAD segments. We ensure this here by removing such
4521 sections from the segment map. We also remove excluded
4522 sections. Finally, any PT_LOAD segment without sections is
4523 removed. */
4524 m = &elf_seg_map (abfd);
4525 while (*m)
4526 {
4527 unsigned int i, new_count;
4528
4529 for (new_count = 0, i = 0; i < (*m)->count; i++)
4530 {
4531 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
4532 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
4533 || (*m)->p_type != PT_LOAD))
4534 {
4535 (*m)->sections[new_count] = (*m)->sections[i];
4536 new_count++;
4537 }
4538 }
4539 (*m)->count = new_count;
4540
4541 if (remove_empty_load
4542 && (*m)->p_type == PT_LOAD
4543 && (*m)->count == 0
4544 && !(*m)->includes_phdrs)
4545 *m = (*m)->next;
4546 else
4547 m = &(*m)->next;
4548 }
4549
4550 bed = get_elf_backend_data (abfd);
4551 if (bed->elf_backend_modify_segment_map != NULL)
4552 {
4553 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
4554 return FALSE;
4555 }
4556
4557 return TRUE;
4558 }
4559
4560 #define IS_TBSS(s) \
4561 ((s->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) == SEC_THREAD_LOCAL)
4562
4563 /* Set up a mapping from BFD sections to program segments. */
4564
4565 bfd_boolean
4566 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
4567 {
4568 unsigned int count;
4569 struct elf_segment_map *m;
4570 asection **sections = NULL;
4571 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4572 bfd_boolean no_user_phdrs;
4573
4574 no_user_phdrs = elf_seg_map (abfd) == NULL;
4575
4576 if (info != NULL)
4577 info->user_phdrs = !no_user_phdrs;
4578
4579 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
4580 {
4581 asection *s;
4582 unsigned int i;
4583 struct elf_segment_map *mfirst;
4584 struct elf_segment_map **pm;
4585 asection *last_hdr;
4586 bfd_vma last_size;
4587 unsigned int phdr_index;
4588 bfd_vma maxpagesize;
4589 asection **hdrpp;
4590 bfd_boolean phdr_in_segment = TRUE;
4591 bfd_boolean writable;
4592 bfd_boolean executable;
4593 int tls_count = 0;
4594 asection *first_tls = NULL;
4595 asection *first_mbind = NULL;
4596 asection *dynsec, *eh_frame_hdr;
4597 bfd_size_type amt;
4598 bfd_vma addr_mask, wrap_to = 0;
4599 bfd_boolean linker_created_pt_phdr_segment = FALSE;
4600
4601 /* Select the allocated sections, and sort them. */
4602
4603 sections = (asection **) bfd_malloc2 (bfd_count_sections (abfd),
4604 sizeof (asection *));
4605 if (sections == NULL)
4606 goto error_return;
4607
4608 /* Calculate top address, avoiding undefined behaviour of shift
4609 left operator when shift count is equal to size of type
4610 being shifted. */
4611 addr_mask = ((bfd_vma) 1 << (bfd_arch_bits_per_address (abfd) - 1)) - 1;
4612 addr_mask = (addr_mask << 1) + 1;
4613
4614 i = 0;
4615 for (s = abfd->sections; s != NULL; s = s->next)
4616 {
4617 if ((s->flags & SEC_ALLOC) != 0)
4618 {
4619 sections[i] = s;
4620 ++i;
4621 /* A wrapping section potentially clashes with header. */
4622 if (((s->lma + s->size) & addr_mask) < (s->lma & addr_mask))
4623 wrap_to = (s->lma + s->size) & addr_mask;
4624 }
4625 }
4626 BFD_ASSERT (i <= bfd_count_sections (abfd));
4627 count = i;
4628
4629 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
4630
4631 /* Build the mapping. */
4632
4633 mfirst = NULL;
4634 pm = &mfirst;
4635
4636 /* If we have a .interp section, then create a PT_PHDR segment for
4637 the program headers and a PT_INTERP segment for the .interp
4638 section. */
4639 s = bfd_get_section_by_name (abfd, ".interp");
4640 if (s != NULL && (s->flags & SEC_LOAD) != 0)
4641 {
4642 amt = sizeof (struct elf_segment_map);
4643 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4644 if (m == NULL)
4645 goto error_return;
4646 m->next = NULL;
4647 m->p_type = PT_PHDR;
4648 m->p_flags = PF_R;
4649 m->p_flags_valid = 1;
4650 m->includes_phdrs = 1;
4651 linker_created_pt_phdr_segment = TRUE;
4652 *pm = m;
4653 pm = &m->next;
4654
4655 amt = sizeof (struct elf_segment_map);
4656 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4657 if (m == NULL)
4658 goto error_return;
4659 m->next = NULL;
4660 m->p_type = PT_INTERP;
4661 m->count = 1;
4662 m->sections[0] = s;
4663
4664 *pm = m;
4665 pm = &m->next;
4666 }
4667
4668 /* Look through the sections. We put sections in the same program
4669 segment when the start of the second section can be placed within
4670 a few bytes of the end of the first section. */
4671 last_hdr = NULL;
4672 last_size = 0;
4673 phdr_index = 0;
4674 maxpagesize = bed->maxpagesize;
4675 /* PR 17512: file: c8455299.
4676 Avoid divide-by-zero errors later on.
4677 FIXME: Should we abort if the maxpagesize is zero ? */
4678 if (maxpagesize == 0)
4679 maxpagesize = 1;
4680 writable = FALSE;
4681 executable = FALSE;
4682 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
4683 if (dynsec != NULL
4684 && (dynsec->flags & SEC_LOAD) == 0)
4685 dynsec = NULL;
4686
4687 /* Deal with -Ttext or something similar such that the first section
4688 is not adjacent to the program headers. This is an
4689 approximation, since at this point we don't know exactly how many
4690 program headers we will need. */
4691 if (count > 0)
4692 {
4693 bfd_size_type phdr_size = elf_program_header_size (abfd);
4694
4695 if (phdr_size == (bfd_size_type) -1)
4696 phdr_size = get_program_header_size (abfd, info);
4697 phdr_size += bed->s->sizeof_ehdr;
4698 if ((abfd->flags & D_PAGED) == 0
4699 || (sections[0]->lma & addr_mask) < phdr_size
4700 || ((sections[0]->lma & addr_mask) % maxpagesize
4701 < phdr_size % maxpagesize)
4702 || (sections[0]->lma & addr_mask & -maxpagesize) < wrap_to)
4703 {
4704 /* PR 20815: The ELF standard says that a PT_PHDR segment, if
4705 present, must be included as part of the memory image of the
4706 program. Ie it must be part of a PT_LOAD segment as well.
4707 If we have had to create our own PT_PHDR segment, but it is
4708 not going to be covered by the first PT_LOAD segment, then
4709 force the inclusion if we can... */
4710 if ((abfd->flags & D_PAGED) != 0
4711 && linker_created_pt_phdr_segment)
4712 phdr_in_segment = TRUE;
4713 else
4714 phdr_in_segment = FALSE;
4715 }
4716 }
4717
4718 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
4719 {
4720 asection *hdr;
4721 bfd_boolean new_segment;
4722
4723 hdr = *hdrpp;
4724
4725 /* See if this section and the last one will fit in the same
4726 segment. */
4727
4728 if (last_hdr == NULL)
4729 {
4730 /* If we don't have a segment yet, then we don't need a new
4731 one (we build the last one after this loop). */
4732 new_segment = FALSE;
4733 }
4734 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
4735 {
4736 /* If this section has a different relation between the
4737 virtual address and the load address, then we need a new
4738 segment. */
4739 new_segment = TRUE;
4740 }
4741 else if (hdr->lma < last_hdr->lma + last_size
4742 || last_hdr->lma + last_size < last_hdr->lma)
4743 {
4744 /* If this section has a load address that makes it overlap
4745 the previous section, then we need a new segment. */
4746 new_segment = TRUE;
4747 }
4748 else if ((abfd->flags & D_PAGED) != 0
4749 && (((last_hdr->lma + last_size - 1) & -maxpagesize)
4750 == (hdr->lma & -maxpagesize)))
4751 {
4752 /* If we are demand paged then we can't map two disk
4753 pages onto the same memory page. */
4754 new_segment = FALSE;
4755 }
4756 /* In the next test we have to be careful when last_hdr->lma is close
4757 to the end of the address space. If the aligned address wraps
4758 around to the start of the address space, then there are no more
4759 pages left in memory and it is OK to assume that the current
4760 section can be included in the current segment. */
4761 else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
4762 + maxpagesize > last_hdr->lma)
4763 && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
4764 + maxpagesize <= hdr->lma))
4765 {
4766 /* If putting this section in this segment would force us to
4767 skip a page in the segment, then we need a new segment. */
4768 new_segment = TRUE;
4769 }
4770 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
4771 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
4772 {
4773 /* We don't want to put a loaded section after a
4774 nonloaded (ie. bss style) section in the same segment
4775 as that will force the non-loaded section to be loaded.
4776 Consider .tbss sections as loaded for this purpose. */
4777 new_segment = TRUE;
4778 }
4779 else if ((abfd->flags & D_PAGED) == 0)
4780 {
4781 /* If the file is not demand paged, which means that we
4782 don't require the sections to be correctly aligned in the
4783 file, then there is no other reason for a new segment. */
4784 new_segment = FALSE;
4785 }
4786 else if (info != NULL
4787 && info->separate_code
4788 && executable != ((hdr->flags & SEC_CODE) != 0))
4789 {
4790 new_segment = TRUE;
4791 }
4792 else if (! writable
4793 && (hdr->flags & SEC_READONLY) == 0)
4794 {
4795 /* We don't want to put a writable section in a read only
4796 segment. */
4797 new_segment = TRUE;
4798 }
4799 else
4800 {
4801 /* Otherwise, we can use the same segment. */
4802 new_segment = FALSE;
4803 }
4804
4805 /* Allow interested parties a chance to override our decision. */
4806 if (last_hdr != NULL
4807 && info != NULL
4808 && info->callbacks->override_segment_assignment != NULL)
4809 new_segment
4810 = info->callbacks->override_segment_assignment (info, abfd, hdr,
4811 last_hdr,
4812 new_segment);
4813
4814 if (! new_segment)
4815 {
4816 if ((hdr->flags & SEC_READONLY) == 0)
4817 writable = TRUE;
4818 if ((hdr->flags & SEC_CODE) != 0)
4819 executable = TRUE;
4820 last_hdr = hdr;
4821 /* .tbss sections effectively have zero size. */
4822 last_size = !IS_TBSS (hdr) ? hdr->size : 0;
4823 continue;
4824 }
4825
4826 /* We need a new program segment. We must create a new program
4827 header holding all the sections from phdr_index until hdr. */
4828
4829 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
4830 if (m == NULL)
4831 goto error_return;
4832
4833 *pm = m;
4834 pm = &m->next;
4835
4836 if ((hdr->flags & SEC_READONLY) == 0)
4837 writable = TRUE;
4838 else
4839 writable = FALSE;
4840
4841 if ((hdr->flags & SEC_CODE) == 0)
4842 executable = FALSE;
4843 else
4844 executable = TRUE;
4845
4846 last_hdr = hdr;
4847 /* .tbss sections effectively have zero size. */
4848 last_size = !IS_TBSS (hdr) ? hdr->size : 0;
4849 phdr_index = i;
4850 phdr_in_segment = FALSE;
4851 }
4852
4853 /* Create a final PT_LOAD program segment, but not if it's just
4854 for .tbss. */
4855 if (last_hdr != NULL
4856 && (i - phdr_index != 1
4857 || !IS_TBSS (last_hdr)))
4858 {
4859 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
4860 if (m == NULL)
4861 goto error_return;
4862
4863 *pm = m;
4864 pm = &m->next;
4865 }
4866
4867 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4868 if (dynsec != NULL)
4869 {
4870 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
4871 if (m == NULL)
4872 goto error_return;
4873 *pm = m;
4874 pm = &m->next;
4875 }
4876
4877 /* For each batch of consecutive loadable .note sections,
4878 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
4879 because if we link together nonloadable .note sections and
4880 loadable .note sections, we will generate two .note sections
4881 in the output file. FIXME: Using names for section types is
4882 bogus anyhow. */
4883 for (s = abfd->sections; s != NULL; s = s->next)
4884 {
4885 if ((s->flags & SEC_LOAD) != 0
4886 && CONST_STRNEQ (s->name, ".note"))
4887 {
4888 asection *s2;
4889
4890 count = 1;
4891 amt = sizeof (struct elf_segment_map);
4892 if (s->alignment_power == 2)
4893 for (s2 = s; s2->next != NULL; s2 = s2->next)
4894 {
4895 if (s2->next->alignment_power == 2
4896 && (s2->next->flags & SEC_LOAD) != 0
4897 && CONST_STRNEQ (s2->next->name, ".note")
4898 && align_power (s2->lma + s2->size, 2)
4899 == s2->next->lma)
4900 count++;
4901 else
4902 break;
4903 }
4904 amt += (count - 1) * sizeof (asection *);
4905 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4906 if (m == NULL)
4907 goto error_return;
4908 m->next = NULL;
4909 m->p_type = PT_NOTE;
4910 m->count = count;
4911 while (count > 1)
4912 {
4913 m->sections[m->count - count--] = s;
4914 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4915 s = s->next;
4916 }
4917 m->sections[m->count - 1] = s;
4918 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4919 *pm = m;
4920 pm = &m->next;
4921 }
4922 if (s->flags & SEC_THREAD_LOCAL)
4923 {
4924 if (! tls_count)
4925 first_tls = s;
4926 tls_count++;
4927 }
4928 if (first_mbind == NULL
4929 && (elf_section_flags (s) & SHF_GNU_MBIND) != 0)
4930 first_mbind = s;
4931 }
4932
4933 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
4934 if (tls_count > 0)
4935 {
4936 amt = sizeof (struct elf_segment_map);
4937 amt += (tls_count - 1) * sizeof (asection *);
4938 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4939 if (m == NULL)
4940 goto error_return;
4941 m->next = NULL;
4942 m->p_type = PT_TLS;
4943 m->count = tls_count;
4944 /* Mandated PF_R. */
4945 m->p_flags = PF_R;
4946 m->p_flags_valid = 1;
4947 s = first_tls;
4948 for (i = 0; i < (unsigned int) tls_count; ++i)
4949 {
4950 if ((s->flags & SEC_THREAD_LOCAL) == 0)
4951 {
4952 _bfd_error_handler
4953 (_("%pB: TLS sections are not adjacent:"), abfd);
4954 s = first_tls;
4955 i = 0;
4956 while (i < (unsigned int) tls_count)
4957 {
4958 if ((s->flags & SEC_THREAD_LOCAL) != 0)
4959 {
4960 _bfd_error_handler (_(" TLS: %pA"), s);
4961 i++;
4962 }
4963 else
4964 _bfd_error_handler (_(" non-TLS: %pA"), s);
4965 s = s->next;
4966 }
4967 bfd_set_error (bfd_error_bad_value);
4968 goto error_return;
4969 }
4970 m->sections[i] = s;
4971 s = s->next;
4972 }
4973
4974 *pm = m;
4975 pm = &m->next;
4976 }
4977
4978 if (first_mbind && (abfd->flags & D_PAGED) != 0)
4979 for (s = first_mbind; s != NULL; s = s->next)
4980 if ((elf_section_flags (s) & SHF_GNU_MBIND) != 0
4981 && (elf_section_data (s)->this_hdr.sh_info
4982 <= PT_GNU_MBIND_NUM))
4983 {
4984 /* Mandated PF_R. */
4985 unsigned long p_flags = PF_R;
4986 if ((s->flags & SEC_READONLY) == 0)
4987 p_flags |= PF_W;
4988 if ((s->flags & SEC_CODE) != 0)
4989 p_flags |= PF_X;
4990
4991 amt = sizeof (struct elf_segment_map) + sizeof (asection *);
4992 m = bfd_zalloc (abfd, amt);
4993 if (m == NULL)
4994 goto error_return;
4995 m->next = NULL;
4996 m->p_type = (PT_GNU_MBIND_LO
4997 + elf_section_data (s)->this_hdr.sh_info);
4998 m->count = 1;
4999 m->p_flags_valid = 1;
5000 m->sections[0] = s;
5001 m->p_flags = p_flags;
5002
5003 *pm = m;
5004 pm = &m->next;
5005 }
5006
5007 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
5008 segment. */
5009 eh_frame_hdr = elf_eh_frame_hdr (abfd);
5010 if (eh_frame_hdr != NULL
5011 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
5012 {
5013 amt = sizeof (struct elf_segment_map);
5014 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5015 if (m == NULL)
5016 goto error_return;
5017 m->next = NULL;
5018 m->p_type = PT_GNU_EH_FRAME;
5019 m->count = 1;
5020 m->sections[0] = eh_frame_hdr->output_section;
5021
5022 *pm = m;
5023 pm = &m->next;
5024 }
5025
5026 if (elf_stack_flags (abfd))
5027 {
5028 amt = sizeof (struct elf_segment_map);
5029 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5030 if (m == NULL)
5031 goto error_return;
5032 m->next = NULL;
5033 m->p_type = PT_GNU_STACK;
5034 m->p_flags = elf_stack_flags (abfd);
5035 m->p_align = bed->stack_align;
5036 m->p_flags_valid = 1;
5037 m->p_align_valid = m->p_align != 0;
5038 if (info->stacksize > 0)
5039 {
5040 m->p_size = info->stacksize;
5041 m->p_size_valid = 1;
5042 }
5043
5044 *pm = m;
5045 pm = &m->next;
5046 }
5047
5048 if (info != NULL && info->relro)
5049 {
5050 for (m = mfirst; m != NULL; m = m->next)
5051 {
5052 if (m->p_type == PT_LOAD
5053 && m->count != 0
5054 && m->sections[0]->vma >= info->relro_start
5055 && m->sections[0]->vma < info->relro_end)
5056 {
5057 i = m->count;
5058 while (--i != (unsigned) -1)
5059 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS))
5060 == (SEC_LOAD | SEC_HAS_CONTENTS))
5061 break;
5062
5063 if (i != (unsigned) -1)
5064 break;
5065 }
5066 }
5067
5068 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
5069 if (m != NULL)
5070 {
5071 amt = sizeof (struct elf_segment_map);
5072 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5073 if (m == NULL)
5074 goto error_return;
5075 m->next = NULL;
5076 m->p_type = PT_GNU_RELRO;
5077 *pm = m;
5078 pm = &m->next;
5079 }
5080 }
5081
5082 free (sections);
5083 elf_seg_map (abfd) = mfirst;
5084 }
5085
5086 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
5087 return FALSE;
5088
5089 for (count = 0, m = elf_seg_map (abfd); m != NULL; m = m->next)
5090 ++count;
5091 elf_program_header_size (abfd) = count * bed->s->sizeof_phdr;
5092
5093 return TRUE;
5094
5095 error_return:
5096 if (sections != NULL)
5097 free (sections);
5098 return FALSE;
5099 }
5100
5101 /* Sort sections by address. */
5102
5103 static int
5104 elf_sort_sections (const void *arg1, const void *arg2)
5105 {
5106 const asection *sec1 = *(const asection **) arg1;
5107 const asection *sec2 = *(const asection **) arg2;
5108 bfd_size_type size1, size2;
5109
5110 /* Sort by LMA first, since this is the address used to
5111 place the section into a segment. */
5112 if (sec1->lma < sec2->lma)
5113 return -1;
5114 else if (sec1->lma > sec2->lma)
5115 return 1;
5116
5117 /* Then sort by VMA. Normally the LMA and the VMA will be
5118 the same, and this will do nothing. */
5119 if (sec1->vma < sec2->vma)
5120 return -1;
5121 else if (sec1->vma > sec2->vma)
5122 return 1;
5123
5124 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
5125
5126 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
5127
5128 if (TOEND (sec1))
5129 {
5130 if (TOEND (sec2))
5131 {
5132 /* If the indicies are the same, do not return 0
5133 here, but continue to try the next comparison. */
5134 if (sec1->target_index - sec2->target_index != 0)
5135 return sec1->target_index - sec2->target_index;
5136 }
5137 else
5138 return 1;
5139 }
5140 else if (TOEND (sec2))
5141 return -1;
5142
5143 #undef TOEND
5144
5145 /* Sort by size, to put zero sized sections
5146 before others at the same address. */
5147
5148 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
5149 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
5150
5151 if (size1 < size2)
5152 return -1;
5153 if (size1 > size2)
5154 return 1;
5155
5156 return sec1->target_index - sec2->target_index;
5157 }
5158
5159 /* Ian Lance Taylor writes:
5160
5161 We shouldn't be using % with a negative signed number. That's just
5162 not good. We have to make sure either that the number is not
5163 negative, or that the number has an unsigned type. When the types
5164 are all the same size they wind up as unsigned. When file_ptr is a
5165 larger signed type, the arithmetic winds up as signed long long,
5166 which is wrong.
5167
5168 What we're trying to say here is something like ``increase OFF by
5169 the least amount that will cause it to be equal to the VMA modulo
5170 the page size.'' */
5171 /* In other words, something like:
5172
5173 vma_offset = m->sections[0]->vma % bed->maxpagesize;
5174 off_offset = off % bed->maxpagesize;
5175 if (vma_offset < off_offset)
5176 adjustment = vma_offset + bed->maxpagesize - off_offset;
5177 else
5178 adjustment = vma_offset - off_offset;
5179
5180 which can be collapsed into the expression below. */
5181
5182 static file_ptr
5183 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
5184 {
5185 /* PR binutils/16199: Handle an alignment of zero. */
5186 if (maxpagesize == 0)
5187 maxpagesize = 1;
5188 return ((vma - off) % maxpagesize);
5189 }
5190
5191 static void
5192 print_segment_map (const struct elf_segment_map *m)
5193 {
5194 unsigned int j;
5195 const char *pt = get_segment_type (m->p_type);
5196 char buf[32];
5197
5198 if (pt == NULL)
5199 {
5200 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
5201 sprintf (buf, "LOPROC+%7.7x",
5202 (unsigned int) (m->p_type - PT_LOPROC));
5203 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
5204 sprintf (buf, "LOOS+%7.7x",
5205 (unsigned int) (m->p_type - PT_LOOS));
5206 else
5207 snprintf (buf, sizeof (buf), "%8.8x",
5208 (unsigned int) m->p_type);
5209 pt = buf;
5210 }
5211 fflush (stdout);
5212 fprintf (stderr, "%s:", pt);
5213 for (j = 0; j < m->count; j++)
5214 fprintf (stderr, " %s", m->sections [j]->name);
5215 putc ('\n',stderr);
5216 fflush (stderr);
5217 }
5218
5219 static bfd_boolean
5220 write_zeros (bfd *abfd, file_ptr pos, bfd_size_type len)
5221 {
5222 void *buf;
5223 bfd_boolean ret;
5224
5225 if (bfd_seek (abfd, pos, SEEK_SET) != 0)
5226 return FALSE;
5227 buf = bfd_zmalloc (len);
5228 if (buf == NULL)
5229 return FALSE;
5230 ret = bfd_bwrite (buf, len, abfd) == len;
5231 free (buf);
5232 return ret;
5233 }
5234
5235 /* Assign file positions to the sections based on the mapping from
5236 sections to segments. This function also sets up some fields in
5237 the file header. */
5238
5239 static bfd_boolean
5240 assign_file_positions_for_load_sections (bfd *abfd,
5241 struct bfd_link_info *link_info)
5242 {
5243 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5244 struct elf_segment_map *m;
5245 Elf_Internal_Phdr *phdrs;
5246 Elf_Internal_Phdr *p;
5247 file_ptr off;
5248 bfd_size_type maxpagesize;
5249 unsigned int pt_load_count = 0;
5250 unsigned int alloc;
5251 unsigned int i, j;
5252 bfd_vma header_pad = 0;
5253
5254 if (link_info == NULL
5255 && !_bfd_elf_map_sections_to_segments (abfd, link_info))
5256 return FALSE;
5257
5258 alloc = 0;
5259 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
5260 {
5261 ++alloc;
5262 if (m->header_size)
5263 header_pad = m->header_size;
5264 }
5265
5266 if (alloc)
5267 {
5268 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
5269 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
5270 }
5271 else
5272 {
5273 /* PR binutils/12467. */
5274 elf_elfheader (abfd)->e_phoff = 0;
5275 elf_elfheader (abfd)->e_phentsize = 0;
5276 }
5277
5278 elf_elfheader (abfd)->e_phnum = alloc;
5279
5280 if (elf_program_header_size (abfd) == (bfd_size_type) -1)
5281 elf_program_header_size (abfd) = alloc * bed->s->sizeof_phdr;
5282 else
5283 BFD_ASSERT (elf_program_header_size (abfd)
5284 >= alloc * bed->s->sizeof_phdr);
5285
5286 if (alloc == 0)
5287 {
5288 elf_next_file_pos (abfd) = bed->s->sizeof_ehdr;
5289 return TRUE;
5290 }
5291
5292 /* We're writing the size in elf_program_header_size (abfd),
5293 see assign_file_positions_except_relocs, so make sure we have
5294 that amount allocated, with trailing space cleared.
5295 The variable alloc contains the computed need, while
5296 elf_program_header_size (abfd) contains the size used for the
5297 layout.
5298 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
5299 where the layout is forced to according to a larger size in the
5300 last iterations for the testcase ld-elf/header. */
5301 BFD_ASSERT (elf_program_header_size (abfd) % bed->s->sizeof_phdr
5302 == 0);
5303 phdrs = (Elf_Internal_Phdr *)
5304 bfd_zalloc2 (abfd,
5305 (elf_program_header_size (abfd) / bed->s->sizeof_phdr),
5306 sizeof (Elf_Internal_Phdr));
5307 elf_tdata (abfd)->phdr = phdrs;
5308 if (phdrs == NULL)
5309 return FALSE;
5310
5311 maxpagesize = 1;
5312 if ((abfd->flags & D_PAGED) != 0)
5313 maxpagesize = bed->maxpagesize;
5314
5315 off = bed->s->sizeof_ehdr;
5316 off += alloc * bed->s->sizeof_phdr;
5317 if (header_pad < (bfd_vma) off)
5318 header_pad = 0;
5319 else
5320 header_pad -= off;
5321 off += header_pad;
5322
5323 for (m = elf_seg_map (abfd), p = phdrs, j = 0;
5324 m != NULL;
5325 m = m->next, p++, j++)
5326 {
5327 asection **secpp;
5328 bfd_vma off_adjust;
5329 bfd_boolean no_contents;
5330
5331 /* If elf_segment_map is not from map_sections_to_segments, the
5332 sections may not be correctly ordered. NOTE: sorting should
5333 not be done to the PT_NOTE section of a corefile, which may
5334 contain several pseudo-sections artificially created by bfd.
5335 Sorting these pseudo-sections breaks things badly. */
5336 if (m->count > 1
5337 && !(elf_elfheader (abfd)->e_type == ET_CORE
5338 && m->p_type == PT_NOTE))
5339 qsort (m->sections, (size_t) m->count, sizeof (asection *),
5340 elf_sort_sections);
5341
5342 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
5343 number of sections with contents contributing to both p_filesz
5344 and p_memsz, followed by a number of sections with no contents
5345 that just contribute to p_memsz. In this loop, OFF tracks next
5346 available file offset for PT_LOAD and PT_NOTE segments. */
5347 p->p_type = m->p_type;
5348 p->p_flags = m->p_flags;
5349
5350 if (m->count == 0)
5351 p->p_vaddr = 0;
5352 else
5353 p->p_vaddr = m->sections[0]->vma - m->p_vaddr_offset;
5354
5355 if (m->p_paddr_valid)
5356 p->p_paddr = m->p_paddr;
5357 else if (m->count == 0)
5358 p->p_paddr = 0;
5359 else
5360 p->p_paddr = m->sections[0]->lma - m->p_vaddr_offset;
5361
5362 if (p->p_type == PT_LOAD
5363 && (abfd->flags & D_PAGED) != 0)
5364 {
5365 /* p_align in demand paged PT_LOAD segments effectively stores
5366 the maximum page size. When copying an executable with
5367 objcopy, we set m->p_align from the input file. Use this
5368 value for maxpagesize rather than bed->maxpagesize, which
5369 may be different. Note that we use maxpagesize for PT_TLS
5370 segment alignment later in this function, so we are relying
5371 on at least one PT_LOAD segment appearing before a PT_TLS
5372 segment. */
5373 if (m->p_align_valid)
5374 maxpagesize = m->p_align;
5375
5376 p->p_align = maxpagesize;
5377 pt_load_count += 1;
5378 }
5379 else if (m->p_align_valid)
5380 p->p_align = m->p_align;
5381 else if (m->count == 0)
5382 p->p_align = 1 << bed->s->log_file_align;
5383 else
5384 p->p_align = 0;
5385
5386 no_contents = FALSE;
5387 off_adjust = 0;
5388 if (p->p_type == PT_LOAD
5389 && m->count > 0)
5390 {
5391 bfd_size_type align;
5392 unsigned int align_power = 0;
5393
5394 if (m->p_align_valid)
5395 align = p->p_align;
5396 else
5397 {
5398 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
5399 {
5400 unsigned int secalign;
5401
5402 secalign = bfd_get_section_alignment (abfd, *secpp);
5403 if (secalign > align_power)
5404 align_power = secalign;
5405 }
5406 align = (bfd_size_type) 1 << align_power;
5407 if (align < maxpagesize)
5408 align = maxpagesize;
5409 }
5410
5411 for (i = 0; i < m->count; i++)
5412 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
5413 /* If we aren't making room for this section, then
5414 it must be SHT_NOBITS regardless of what we've
5415 set via struct bfd_elf_special_section. */
5416 elf_section_type (m->sections[i]) = SHT_NOBITS;
5417
5418 /* Find out whether this segment contains any loadable
5419 sections. */
5420 no_contents = TRUE;
5421 for (i = 0; i < m->count; i++)
5422 if (elf_section_type (m->sections[i]) != SHT_NOBITS)
5423 {
5424 no_contents = FALSE;
5425 break;
5426 }
5427
5428 off_adjust = vma_page_aligned_bias (p->p_vaddr, off, align);
5429
5430 /* Broken hardware and/or kernel require that files do not
5431 map the same page with different permissions on some hppa
5432 processors. */
5433 if (pt_load_count > 1
5434 && bed->no_page_alias
5435 && (off & (maxpagesize - 1)) != 0
5436 && (off & -maxpagesize) == ((off + off_adjust) & -maxpagesize))
5437 off_adjust += maxpagesize;
5438 off += off_adjust;
5439 if (no_contents)
5440 {
5441 /* We shouldn't need to align the segment on disk since
5442 the segment doesn't need file space, but the gABI
5443 arguably requires the alignment and glibc ld.so
5444 checks it. So to comply with the alignment
5445 requirement but not waste file space, we adjust
5446 p_offset for just this segment. (OFF_ADJUST is
5447 subtracted from OFF later.) This may put p_offset
5448 past the end of file, but that shouldn't matter. */
5449 }
5450 else
5451 off_adjust = 0;
5452 }
5453 /* Make sure the .dynamic section is the first section in the
5454 PT_DYNAMIC segment. */
5455 else if (p->p_type == PT_DYNAMIC
5456 && m->count > 1
5457 && strcmp (m->sections[0]->name, ".dynamic") != 0)
5458 {
5459 _bfd_error_handler
5460 (_("%pB: The first section in the PT_DYNAMIC segment"
5461 " is not the .dynamic section"),
5462 abfd);
5463 bfd_set_error (bfd_error_bad_value);
5464 return FALSE;
5465 }
5466 /* Set the note section type to SHT_NOTE. */
5467 else if (p->p_type == PT_NOTE)
5468 for (i = 0; i < m->count; i++)
5469 elf_section_type (m->sections[i]) = SHT_NOTE;
5470
5471 p->p_offset = 0;
5472 p->p_filesz = 0;
5473 p->p_memsz = 0;
5474
5475 if (m->includes_filehdr)
5476 {
5477 if (!m->p_flags_valid)
5478 p->p_flags |= PF_R;
5479 p->p_filesz = bed->s->sizeof_ehdr;
5480 p->p_memsz = bed->s->sizeof_ehdr;
5481 if (m->count > 0)
5482 {
5483 if (p->p_vaddr < (bfd_vma) off
5484 || (!m->p_paddr_valid
5485 && p->p_paddr < (bfd_vma) off))
5486 {
5487 _bfd_error_handler
5488 (_("%pB: not enough room for program headers,"
5489 " try linking with -N"),
5490 abfd);
5491 bfd_set_error (bfd_error_bad_value);
5492 return FALSE;
5493 }
5494
5495 p->p_vaddr -= off;
5496 if (!m->p_paddr_valid)
5497 p->p_paddr -= off;
5498 }
5499 }
5500
5501 if (m->includes_phdrs)
5502 {
5503 if (!m->p_flags_valid)
5504 p->p_flags |= PF_R;
5505
5506 if (!m->includes_filehdr)
5507 {
5508 p->p_offset = bed->s->sizeof_ehdr;
5509
5510 if (m->count > 0)
5511 {
5512 p->p_vaddr -= off - p->p_offset;
5513 if (!m->p_paddr_valid)
5514 p->p_paddr -= off - p->p_offset;
5515 }
5516 }
5517
5518 p->p_filesz += alloc * bed->s->sizeof_phdr;
5519 p->p_memsz += alloc * bed->s->sizeof_phdr;
5520 if (m->count)
5521 {
5522 p->p_filesz += header_pad;
5523 p->p_memsz += header_pad;
5524 }
5525 }
5526
5527 if (p->p_type == PT_LOAD
5528 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
5529 {
5530 if (!m->includes_filehdr && !m->includes_phdrs)
5531 p->p_offset = off;
5532 else
5533 {
5534 file_ptr adjust;
5535
5536 adjust = off - (p->p_offset + p->p_filesz);
5537 if (!no_contents)
5538 p->p_filesz += adjust;
5539 p->p_memsz += adjust;
5540 }
5541 }
5542
5543 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
5544 maps. Set filepos for sections in PT_LOAD segments, and in
5545 core files, for sections in PT_NOTE segments.
5546 assign_file_positions_for_non_load_sections will set filepos
5547 for other sections and update p_filesz for other segments. */
5548 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
5549 {
5550 asection *sec;
5551 bfd_size_type align;
5552 Elf_Internal_Shdr *this_hdr;
5553
5554 sec = *secpp;
5555 this_hdr = &elf_section_data (sec)->this_hdr;
5556 align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec);
5557
5558 if ((p->p_type == PT_LOAD
5559 || p->p_type == PT_TLS)
5560 && (this_hdr->sh_type != SHT_NOBITS
5561 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
5562 && ((this_hdr->sh_flags & SHF_TLS) == 0
5563 || p->p_type == PT_TLS))))
5564 {
5565 bfd_vma p_start = p->p_paddr;
5566 bfd_vma p_end = p_start + p->p_memsz;
5567 bfd_vma s_start = sec->lma;
5568 bfd_vma adjust = s_start - p_end;
5569
5570 if (adjust != 0
5571 && (s_start < p_end
5572 || p_end < p_start))
5573 {
5574 _bfd_error_handler
5575 /* xgettext:c-format */
5576 (_("%pB: section %pA lma %#" PRIx64 " adjusted to %#" PRIx64),
5577 abfd, sec, (uint64_t) s_start, (uint64_t) p_end);
5578 adjust = 0;
5579 sec->lma = p_end;
5580 }
5581 p->p_memsz += adjust;
5582
5583 if (this_hdr->sh_type != SHT_NOBITS)
5584 {
5585 if (p->p_filesz + adjust < p->p_memsz)
5586 {
5587 /* We have a PROGBITS section following NOBITS ones.
5588 Allocate file space for the NOBITS section(s) and
5589 zero it. */
5590 adjust = p->p_memsz - p->p_filesz;
5591 if (!write_zeros (abfd, off, adjust))
5592 return FALSE;
5593 }
5594 off += adjust;
5595 p->p_filesz += adjust;
5596 }
5597 }
5598
5599 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
5600 {
5601 /* The section at i == 0 is the one that actually contains
5602 everything. */
5603 if (i == 0)
5604 {
5605 this_hdr->sh_offset = sec->filepos = off;
5606 off += this_hdr->sh_size;
5607 p->p_filesz = this_hdr->sh_size;
5608 p->p_memsz = 0;
5609 p->p_align = 1;
5610 }
5611 else
5612 {
5613 /* The rest are fake sections that shouldn't be written. */
5614 sec->filepos = 0;
5615 sec->size = 0;
5616 sec->flags = 0;
5617 continue;
5618 }
5619 }
5620 else
5621 {
5622 if (p->p_type == PT_LOAD)
5623 {
5624 this_hdr->sh_offset = sec->filepos = off;
5625 if (this_hdr->sh_type != SHT_NOBITS)
5626 off += this_hdr->sh_size;
5627 }
5628 else if (this_hdr->sh_type == SHT_NOBITS
5629 && (this_hdr->sh_flags & SHF_TLS) != 0
5630 && this_hdr->sh_offset == 0)
5631 {
5632 /* This is a .tbss section that didn't get a PT_LOAD.
5633 (See _bfd_elf_map_sections_to_segments "Create a
5634 final PT_LOAD".) Set sh_offset to the value it
5635 would have if we had created a zero p_filesz and
5636 p_memsz PT_LOAD header for the section. This
5637 also makes the PT_TLS header have the same
5638 p_offset value. */
5639 bfd_vma adjust = vma_page_aligned_bias (this_hdr->sh_addr,
5640 off, align);
5641 this_hdr->sh_offset = sec->filepos = off + adjust;
5642 }
5643
5644 if (this_hdr->sh_type != SHT_NOBITS)
5645 {
5646 p->p_filesz += this_hdr->sh_size;
5647 /* A load section without SHF_ALLOC is something like
5648 a note section in a PT_NOTE segment. These take
5649 file space but are not loaded into memory. */
5650 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5651 p->p_memsz += this_hdr->sh_size;
5652 }
5653 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5654 {
5655 if (p->p_type == PT_TLS)
5656 p->p_memsz += this_hdr->sh_size;
5657
5658 /* .tbss is special. It doesn't contribute to p_memsz of
5659 normal segments. */
5660 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
5661 p->p_memsz += this_hdr->sh_size;
5662 }
5663
5664 if (align > p->p_align
5665 && !m->p_align_valid
5666 && (p->p_type != PT_LOAD
5667 || (abfd->flags & D_PAGED) == 0))
5668 p->p_align = align;
5669 }
5670
5671 if (!m->p_flags_valid)
5672 {
5673 p->p_flags |= PF_R;
5674 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
5675 p->p_flags |= PF_X;
5676 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
5677 p->p_flags |= PF_W;
5678 }
5679 }
5680
5681 off -= off_adjust;
5682
5683 /* Check that all sections are in a PT_LOAD segment.
5684 Don't check funky gdb generated core files. */
5685 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
5686 {
5687 bfd_boolean check_vma = TRUE;
5688
5689 for (i = 1; i < m->count; i++)
5690 if (m->sections[i]->vma == m->sections[i - 1]->vma
5691 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i])
5692 ->this_hdr), p) != 0
5693 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i - 1])
5694 ->this_hdr), p) != 0)
5695 {
5696 /* Looks like we have overlays packed into the segment. */
5697 check_vma = FALSE;
5698 break;
5699 }
5700
5701 for (i = 0; i < m->count; i++)
5702 {
5703 Elf_Internal_Shdr *this_hdr;
5704 asection *sec;
5705
5706 sec = m->sections[i];
5707 this_hdr = &(elf_section_data(sec)->this_hdr);
5708 if (!ELF_SECTION_IN_SEGMENT_1 (this_hdr, p, check_vma, 0)
5709 && !ELF_TBSS_SPECIAL (this_hdr, p))
5710 {
5711 _bfd_error_handler
5712 /* xgettext:c-format */
5713 (_("%pB: section `%pA' can't be allocated in segment %d"),
5714 abfd, sec, j);
5715 print_segment_map (m);
5716 }
5717 }
5718 }
5719 }
5720
5721 elf_next_file_pos (abfd) = off;
5722 return TRUE;
5723 }
5724
5725 /* Assign file positions for the other sections. */
5726
5727 static bfd_boolean
5728 assign_file_positions_for_non_load_sections (bfd *abfd,
5729 struct bfd_link_info *link_info)
5730 {
5731 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5732 Elf_Internal_Shdr **i_shdrpp;
5733 Elf_Internal_Shdr **hdrpp, **end_hdrpp;
5734 Elf_Internal_Phdr *phdrs;
5735 Elf_Internal_Phdr *p;
5736 struct elf_segment_map *m;
5737 struct elf_segment_map *hdrs_segment;
5738 bfd_vma filehdr_vaddr, filehdr_paddr;
5739 bfd_vma phdrs_vaddr, phdrs_paddr;
5740 file_ptr off;
5741 unsigned int count;
5742
5743 i_shdrpp = elf_elfsections (abfd);
5744 end_hdrpp = i_shdrpp + elf_numsections (abfd);
5745 off = elf_next_file_pos (abfd);
5746 for (hdrpp = i_shdrpp + 1; hdrpp < end_hdrpp; hdrpp++)
5747 {
5748 Elf_Internal_Shdr *hdr;
5749
5750 hdr = *hdrpp;
5751 if (hdr->bfd_section != NULL
5752 && (hdr->bfd_section->filepos != 0
5753 || (hdr->sh_type == SHT_NOBITS
5754 && hdr->contents == NULL)))
5755 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
5756 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
5757 {
5758 if (hdr->sh_size != 0)
5759 _bfd_error_handler
5760 /* xgettext:c-format */
5761 (_("%pB: warning: allocated section `%s' not in segment"),
5762 abfd,
5763 (hdr->bfd_section == NULL
5764 ? "*unknown*"
5765 : hdr->bfd_section->name));
5766 /* We don't need to page align empty sections. */
5767 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
5768 off += vma_page_aligned_bias (hdr->sh_addr, off,
5769 bed->maxpagesize);
5770 else
5771 off += vma_page_aligned_bias (hdr->sh_addr, off,
5772 hdr->sh_addralign);
5773 off = _bfd_elf_assign_file_position_for_section (hdr, off,
5774 FALSE);
5775 }
5776 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
5777 && hdr->bfd_section == NULL)
5778 || (hdr->bfd_section != NULL
5779 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS))
5780 /* Compress DWARF debug sections. */
5781 || hdr == i_shdrpp[elf_onesymtab (abfd)]
5782 || (elf_symtab_shndx_list (abfd) != NULL
5783 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
5784 || hdr == i_shdrpp[elf_strtab_sec (abfd)]
5785 || hdr == i_shdrpp[elf_shstrtab_sec (abfd)])
5786 hdr->sh_offset = -1;
5787 else
5788 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
5789 }
5790
5791 /* Now that we have set the section file positions, we can set up
5792 the file positions for the non PT_LOAD segments. */
5793 count = 0;
5794 filehdr_vaddr = 0;
5795 filehdr_paddr = 0;
5796 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
5797 phdrs_paddr = 0;
5798 hdrs_segment = NULL;
5799 phdrs = elf_tdata (abfd)->phdr;
5800 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
5801 {
5802 ++count;
5803 if (p->p_type != PT_LOAD)
5804 continue;
5805
5806 if (m->includes_filehdr)
5807 {
5808 filehdr_vaddr = p->p_vaddr;
5809 filehdr_paddr = p->p_paddr;
5810 }
5811 if (m->includes_phdrs)
5812 {
5813 phdrs_vaddr = p->p_vaddr;
5814 phdrs_paddr = p->p_paddr;
5815 if (m->includes_filehdr)
5816 {
5817 hdrs_segment = m;
5818 phdrs_vaddr += bed->s->sizeof_ehdr;
5819 phdrs_paddr += bed->s->sizeof_ehdr;
5820 }
5821 }
5822 }
5823
5824 if (hdrs_segment != NULL && link_info != NULL)
5825 {
5826 /* There is a segment that contains both the file headers and the
5827 program headers, so provide a symbol __ehdr_start pointing there.
5828 A program can use this to examine itself robustly. */
5829
5830 struct elf_link_hash_entry *hash
5831 = elf_link_hash_lookup (elf_hash_table (link_info), "__ehdr_start",
5832 FALSE, FALSE, TRUE);
5833 /* If the symbol was referenced and not defined, define it. */
5834 if (hash != NULL
5835 && (hash->root.type == bfd_link_hash_new
5836 || hash->root.type == bfd_link_hash_undefined
5837 || hash->root.type == bfd_link_hash_undefweak
5838 || hash->root.type == bfd_link_hash_common))
5839 {
5840 asection *s = NULL;
5841 if (hdrs_segment->count != 0)
5842 /* The segment contains sections, so use the first one. */
5843 s = hdrs_segment->sections[0];
5844 else
5845 /* Use the first (i.e. lowest-addressed) section in any segment. */
5846 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
5847 if (m->count != 0)
5848 {
5849 s = m->sections[0];
5850 break;
5851 }
5852
5853 if (s != NULL)
5854 {
5855 hash->root.u.def.value = filehdr_vaddr - s->vma;
5856 hash->root.u.def.section = s;
5857 }
5858 else
5859 {
5860 hash->root.u.def.value = filehdr_vaddr;
5861 hash->root.u.def.section = bfd_abs_section_ptr;
5862 }
5863
5864 hash->root.type = bfd_link_hash_defined;
5865 hash->def_regular = 1;
5866 hash->non_elf = 0;
5867 }
5868 }
5869
5870 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
5871 {
5872 if (p->p_type == PT_GNU_RELRO)
5873 {
5874 bfd_vma start, end;
5875 bfd_boolean ok;
5876
5877 if (link_info != NULL)
5878 {
5879 /* During linking the range of the RELRO segment is passed
5880 in link_info. Note that there may be padding between
5881 relro_start and the first RELRO section. */
5882 start = link_info->relro_start;
5883 end = link_info->relro_end;
5884 }
5885 else if (m->count != 0)
5886 {
5887 if (!m->p_size_valid)
5888 abort ();
5889 start = m->sections[0]->vma;
5890 end = start + m->p_size;
5891 }
5892 else
5893 {
5894 start = 0;
5895 end = 0;
5896 }
5897
5898 ok = FALSE;
5899 if (start < end)
5900 {
5901 struct elf_segment_map *lm;
5902 const Elf_Internal_Phdr *lp;
5903 unsigned int i;
5904
5905 /* Find a LOAD segment containing a section in the RELRO
5906 segment. */
5907 for (lm = elf_seg_map (abfd), lp = phdrs;
5908 lm != NULL;
5909 lm = lm->next, lp++)
5910 {
5911 if (lp->p_type == PT_LOAD
5912 && lm->count != 0
5913 && (lm->sections[lm->count - 1]->vma
5914 + (!IS_TBSS (lm->sections[lm->count - 1])
5915 ? lm->sections[lm->count - 1]->size
5916 : 0)) > start
5917 && lm->sections[0]->vma < end)
5918 break;
5919 }
5920
5921 if (lm != NULL)
5922 {
5923 /* Find the section starting the RELRO segment. */
5924 for (i = 0; i < lm->count; i++)
5925 {
5926 asection *s = lm->sections[i];
5927 if (s->vma >= start
5928 && s->vma < end
5929 && s->size != 0)
5930 break;
5931 }
5932
5933 if (i < lm->count)
5934 {
5935 p->p_vaddr = lm->sections[i]->vma;
5936 p->p_paddr = lm->sections[i]->lma;
5937 p->p_offset = lm->sections[i]->filepos;
5938 p->p_memsz = end - p->p_vaddr;
5939 p->p_filesz = p->p_memsz;
5940
5941 /* The RELRO segment typically ends a few bytes
5942 into .got.plt but other layouts are possible.
5943 In cases where the end does not match any
5944 loaded section (for instance is in file
5945 padding), trim p_filesz back to correspond to
5946 the end of loaded section contents. */
5947 if (p->p_filesz > lp->p_vaddr + lp->p_filesz - p->p_vaddr)
5948 p->p_filesz = lp->p_vaddr + lp->p_filesz - p->p_vaddr;
5949
5950 /* Preserve the alignment and flags if they are
5951 valid. The gold linker generates RW/4 for
5952 the PT_GNU_RELRO section. It is better for
5953 objcopy/strip to honor these attributes
5954 otherwise gdb will choke when using separate
5955 debug files. */
5956 if (!m->p_align_valid)
5957 p->p_align = 1;
5958 if (!m->p_flags_valid)
5959 p->p_flags = PF_R;
5960 ok = TRUE;
5961 }
5962 }
5963 }
5964 if (link_info != NULL)
5965 BFD_ASSERT (ok);
5966 if (!ok)
5967 memset (p, 0, sizeof *p);
5968 }
5969 else if (p->p_type == PT_GNU_STACK)
5970 {
5971 if (m->p_size_valid)
5972 p->p_memsz = m->p_size;
5973 }
5974 else if (m->count != 0)
5975 {
5976 unsigned int i;
5977
5978 if (p->p_type != PT_LOAD
5979 && (p->p_type != PT_NOTE
5980 || bfd_get_format (abfd) != bfd_core))
5981 {
5982 /* A user specified segment layout may include a PHDR
5983 segment that overlaps with a LOAD segment... */
5984 if (p->p_type == PT_PHDR)
5985 {
5986 m->count = 0;
5987 continue;
5988 }
5989
5990 if (m->includes_filehdr || m->includes_phdrs)
5991 {
5992 /* PR 17512: file: 2195325e. */
5993 _bfd_error_handler
5994 (_("%pB: error: non-load segment %d includes file header "
5995 "and/or program header"),
5996 abfd, (int) (p - phdrs));
5997 return FALSE;
5998 }
5999
6000 p->p_filesz = 0;
6001 p->p_offset = m->sections[0]->filepos;
6002 for (i = m->count; i-- != 0;)
6003 {
6004 asection *sect = m->sections[i];
6005 Elf_Internal_Shdr *hdr = &elf_section_data (sect)->this_hdr;
6006 if (hdr->sh_type != SHT_NOBITS)
6007 {
6008 p->p_filesz = (sect->filepos - m->sections[0]->filepos
6009 + hdr->sh_size);
6010 break;
6011 }
6012 }
6013 }
6014 }
6015 else if (m->includes_filehdr)
6016 {
6017 p->p_vaddr = filehdr_vaddr;
6018 if (! m->p_paddr_valid)
6019 p->p_paddr = filehdr_paddr;
6020 }
6021 else if (m->includes_phdrs)
6022 {
6023 p->p_vaddr = phdrs_vaddr;
6024 if (! m->p_paddr_valid)
6025 p->p_paddr = phdrs_paddr;
6026 }
6027 }
6028
6029 elf_next_file_pos (abfd) = off;
6030
6031 return TRUE;
6032 }
6033
6034 static elf_section_list *
6035 find_section_in_list (unsigned int i, elf_section_list * list)
6036 {
6037 for (;list != NULL; list = list->next)
6038 if (list->ndx == i)
6039 break;
6040 return list;
6041 }
6042
6043 /* Work out the file positions of all the sections. This is called by
6044 _bfd_elf_compute_section_file_positions. All the section sizes and
6045 VMAs must be known before this is called.
6046
6047 Reloc sections come in two flavours: Those processed specially as
6048 "side-channel" data attached to a section to which they apply, and
6049 those that bfd doesn't process as relocations. The latter sort are
6050 stored in a normal bfd section by bfd_section_from_shdr. We don't
6051 consider the former sort here, unless they form part of the loadable
6052 image. Reloc sections not assigned here will be handled later by
6053 assign_file_positions_for_relocs.
6054
6055 We also don't set the positions of the .symtab and .strtab here. */
6056
6057 static bfd_boolean
6058 assign_file_positions_except_relocs (bfd *abfd,
6059 struct bfd_link_info *link_info)
6060 {
6061 struct elf_obj_tdata *tdata = elf_tdata (abfd);
6062 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
6063 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6064
6065 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
6066 && bfd_get_format (abfd) != bfd_core)
6067 {
6068 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
6069 unsigned int num_sec = elf_numsections (abfd);
6070 Elf_Internal_Shdr **hdrpp;
6071 unsigned int i;
6072 file_ptr off;
6073
6074 /* Start after the ELF header. */
6075 off = i_ehdrp->e_ehsize;
6076
6077 /* We are not creating an executable, which means that we are
6078 not creating a program header, and that the actual order of
6079 the sections in the file is unimportant. */
6080 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
6081 {
6082 Elf_Internal_Shdr *hdr;
6083
6084 hdr = *hdrpp;
6085 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
6086 && hdr->bfd_section == NULL)
6087 || (hdr->bfd_section != NULL
6088 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS))
6089 /* Compress DWARF debug sections. */
6090 || i == elf_onesymtab (abfd)
6091 || (elf_symtab_shndx_list (abfd) != NULL
6092 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
6093 || i == elf_strtab_sec (abfd)
6094 || i == elf_shstrtab_sec (abfd))
6095 {
6096 hdr->sh_offset = -1;
6097 }
6098 else
6099 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
6100 }
6101
6102 elf_next_file_pos (abfd) = off;
6103 }
6104 else
6105 {
6106 unsigned int alloc;
6107
6108 /* Assign file positions for the loaded sections based on the
6109 assignment of sections to segments. */
6110 if (!assign_file_positions_for_load_sections (abfd, link_info))
6111 return FALSE;
6112
6113 /* And for non-load sections. */
6114 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
6115 return FALSE;
6116
6117 if (bed->elf_backend_modify_program_headers != NULL)
6118 {
6119 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
6120 return FALSE;
6121 }
6122
6123 /* Set e_type in ELF header to ET_EXEC for -pie -Ttext-segment=. */
6124 if (link_info != NULL && bfd_link_pie (link_info))
6125 {
6126 unsigned int num_segments = elf_elfheader (abfd)->e_phnum;
6127 Elf_Internal_Phdr *segment = elf_tdata (abfd)->phdr;
6128 Elf_Internal_Phdr *end_segment = &segment[num_segments];
6129
6130 /* Find the lowest p_vaddr in PT_LOAD segments. */
6131 bfd_vma p_vaddr = (bfd_vma) -1;
6132 for (; segment < end_segment; segment++)
6133 if (segment->p_type == PT_LOAD && p_vaddr > segment->p_vaddr)
6134 p_vaddr = segment->p_vaddr;
6135
6136 /* Set e_type to ET_EXEC if the lowest p_vaddr in PT_LOAD
6137 segments is non-zero. */
6138 if (p_vaddr)
6139 i_ehdrp->e_type = ET_EXEC;
6140 }
6141
6142 /* Write out the program headers. */
6143 alloc = elf_elfheader (abfd)->e_phnum;
6144 if (alloc == 0)
6145 return TRUE;
6146
6147 /* PR ld/20815 - Check that the program header segment, if present, will
6148 be loaded into memory. FIXME: The check below is not sufficient as
6149 really all PT_LOAD segments should be checked before issuing an error
6150 message. Plus the PHDR segment does not have to be the first segment
6151 in the program header table. But this version of the check should
6152 catch all real world use cases.
6153
6154 FIXME: We used to have code here to sort the PT_LOAD segments into
6155 ascending order, as per the ELF spec. But this breaks some programs,
6156 including the Linux kernel. But really either the spec should be
6157 changed or the programs updated. */
6158 if (alloc > 1
6159 && tdata->phdr[0].p_type == PT_PHDR
6160 && (bed->elf_backend_allow_non_load_phdr == NULL
6161 || !bed->elf_backend_allow_non_load_phdr (abfd, tdata->phdr,
6162 alloc))
6163 && tdata->phdr[1].p_type == PT_LOAD
6164 && (tdata->phdr[1].p_vaddr > tdata->phdr[0].p_vaddr
6165 || (tdata->phdr[1].p_vaddr + tdata->phdr[1].p_memsz
6166 < tdata->phdr[0].p_vaddr + tdata->phdr[0].p_memsz)))
6167 {
6168 /* The fix for this error is usually to edit the linker script being
6169 used and set up the program headers manually. Either that or
6170 leave room for the headers at the start of the SECTIONS. */
6171 _bfd_error_handler (_("%pB: error: PHDR segment not covered"
6172 " by LOAD segment"),
6173 abfd);
6174 return FALSE;
6175 }
6176
6177 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
6178 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
6179 return FALSE;
6180 }
6181
6182 return TRUE;
6183 }
6184
6185 static bfd_boolean
6186 prep_headers (bfd *abfd)
6187 {
6188 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form. */
6189 struct elf_strtab_hash *shstrtab;
6190 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6191
6192 i_ehdrp = elf_elfheader (abfd);
6193
6194 shstrtab = _bfd_elf_strtab_init ();
6195 if (shstrtab == NULL)
6196 return FALSE;
6197
6198 elf_shstrtab (abfd) = shstrtab;
6199
6200 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
6201 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
6202 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
6203 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
6204
6205 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
6206 i_ehdrp->e_ident[EI_DATA] =
6207 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
6208 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
6209
6210 if ((abfd->flags & DYNAMIC) != 0)
6211 i_ehdrp->e_type = ET_DYN;
6212 else if ((abfd->flags & EXEC_P) != 0)
6213 i_ehdrp->e_type = ET_EXEC;
6214 else if (bfd_get_format (abfd) == bfd_core)
6215 i_ehdrp->e_type = ET_CORE;
6216 else
6217 i_ehdrp->e_type = ET_REL;
6218
6219 switch (bfd_get_arch (abfd))
6220 {
6221 case bfd_arch_unknown:
6222 i_ehdrp->e_machine = EM_NONE;
6223 break;
6224
6225 /* There used to be a long list of cases here, each one setting
6226 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
6227 in the corresponding bfd definition. To avoid duplication,
6228 the switch was removed. Machines that need special handling
6229 can generally do it in elf_backend_final_write_processing(),
6230 unless they need the information earlier than the final write.
6231 Such need can generally be supplied by replacing the tests for
6232 e_machine with the conditions used to determine it. */
6233 default:
6234 i_ehdrp->e_machine = bed->elf_machine_code;
6235 }
6236
6237 i_ehdrp->e_version = bed->s->ev_current;
6238 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
6239
6240 /* No program header, for now. */
6241 i_ehdrp->e_phoff = 0;
6242 i_ehdrp->e_phentsize = 0;
6243 i_ehdrp->e_phnum = 0;
6244
6245 /* Each bfd section is section header entry. */
6246 i_ehdrp->e_entry = bfd_get_start_address (abfd);
6247 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
6248
6249 /* If we're building an executable, we'll need a program header table. */
6250 if (abfd->flags & EXEC_P)
6251 /* It all happens later. */
6252 ;
6253 else
6254 {
6255 i_ehdrp->e_phentsize = 0;
6256 i_ehdrp->e_phoff = 0;
6257 }
6258
6259 elf_tdata (abfd)->symtab_hdr.sh_name =
6260 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
6261 elf_tdata (abfd)->strtab_hdr.sh_name =
6262 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
6263 elf_tdata (abfd)->shstrtab_hdr.sh_name =
6264 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
6265 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
6266 || elf_tdata (abfd)->strtab_hdr.sh_name == (unsigned int) -1
6267 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
6268 return FALSE;
6269
6270 return TRUE;
6271 }
6272
6273 /* Assign file positions for all the reloc sections which are not part
6274 of the loadable file image, and the file position of section headers. */
6275
6276 static bfd_boolean
6277 _bfd_elf_assign_file_positions_for_non_load (bfd *abfd)
6278 {
6279 file_ptr off;
6280 Elf_Internal_Shdr **shdrpp, **end_shdrpp;
6281 Elf_Internal_Shdr *shdrp;
6282 Elf_Internal_Ehdr *i_ehdrp;
6283 const struct elf_backend_data *bed;
6284
6285 off = elf_next_file_pos (abfd);
6286
6287 shdrpp = elf_elfsections (abfd);
6288 end_shdrpp = shdrpp + elf_numsections (abfd);
6289 for (shdrpp++; shdrpp < end_shdrpp; shdrpp++)
6290 {
6291 shdrp = *shdrpp;
6292 if (shdrp->sh_offset == -1)
6293 {
6294 asection *sec = shdrp->bfd_section;
6295 bfd_boolean is_rel = (shdrp->sh_type == SHT_REL
6296 || shdrp->sh_type == SHT_RELA);
6297 if (is_rel
6298 || (sec != NULL && (sec->flags & SEC_ELF_COMPRESS)))
6299 {
6300 if (!is_rel)
6301 {
6302 const char *name = sec->name;
6303 struct bfd_elf_section_data *d;
6304
6305 /* Compress DWARF debug sections. */
6306 if (!bfd_compress_section (abfd, sec,
6307 shdrp->contents))
6308 return FALSE;
6309
6310 if (sec->compress_status == COMPRESS_SECTION_DONE
6311 && (abfd->flags & BFD_COMPRESS_GABI) == 0)
6312 {
6313 /* If section is compressed with zlib-gnu, convert
6314 section name from .debug_* to .zdebug_*. */
6315 char *new_name
6316 = convert_debug_to_zdebug (abfd, name);
6317 if (new_name == NULL)
6318 return FALSE;
6319 name = new_name;
6320 }
6321 /* Add section name to section name section. */
6322 if (shdrp->sh_name != (unsigned int) -1)
6323 abort ();
6324 shdrp->sh_name
6325 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
6326 name, FALSE);
6327 d = elf_section_data (sec);
6328
6329 /* Add reloc section name to section name section. */
6330 if (d->rel.hdr
6331 && !_bfd_elf_set_reloc_sh_name (abfd,
6332 d->rel.hdr,
6333 name, FALSE))
6334 return FALSE;
6335 if (d->rela.hdr
6336 && !_bfd_elf_set_reloc_sh_name (abfd,
6337 d->rela.hdr,
6338 name, TRUE))
6339 return FALSE;
6340
6341 /* Update section size and contents. */
6342 shdrp->sh_size = sec->size;
6343 shdrp->contents = sec->contents;
6344 shdrp->bfd_section->contents = NULL;
6345 }
6346 off = _bfd_elf_assign_file_position_for_section (shdrp,
6347 off,
6348 TRUE);
6349 }
6350 }
6351 }
6352
6353 /* Place section name section after DWARF debug sections have been
6354 compressed. */
6355 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
6356 shdrp = &elf_tdata (abfd)->shstrtab_hdr;
6357 shdrp->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
6358 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
6359
6360 /* Place the section headers. */
6361 i_ehdrp = elf_elfheader (abfd);
6362 bed = get_elf_backend_data (abfd);
6363 off = align_file_position (off, 1 << bed->s->log_file_align);
6364 i_ehdrp->e_shoff = off;
6365 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
6366 elf_next_file_pos (abfd) = off;
6367
6368 return TRUE;
6369 }
6370
6371 bfd_boolean
6372 _bfd_elf_write_object_contents (bfd *abfd)
6373 {
6374 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6375 Elf_Internal_Shdr **i_shdrp;
6376 bfd_boolean failed;
6377 unsigned int count, num_sec;
6378 struct elf_obj_tdata *t;
6379
6380 if (! abfd->output_has_begun
6381 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
6382 return FALSE;
6383
6384 i_shdrp = elf_elfsections (abfd);
6385
6386 failed = FALSE;
6387 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
6388 if (failed)
6389 return FALSE;
6390
6391 if (!_bfd_elf_assign_file_positions_for_non_load (abfd))
6392 return FALSE;
6393
6394 /* After writing the headers, we need to write the sections too... */
6395 num_sec = elf_numsections (abfd);
6396 for (count = 1; count < num_sec; count++)
6397 {
6398 i_shdrp[count]->sh_name
6399 = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
6400 i_shdrp[count]->sh_name);
6401 if (bed->elf_backend_section_processing)
6402 if (!(*bed->elf_backend_section_processing) (abfd, i_shdrp[count]))
6403 return FALSE;
6404 if (i_shdrp[count]->contents)
6405 {
6406 bfd_size_type amt = i_shdrp[count]->sh_size;
6407
6408 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
6409 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
6410 return FALSE;
6411 }
6412 }
6413
6414 /* Write out the section header names. */
6415 t = elf_tdata (abfd);
6416 if (elf_shstrtab (abfd) != NULL
6417 && (bfd_seek (abfd, t->shstrtab_hdr.sh_offset, SEEK_SET) != 0
6418 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
6419 return FALSE;
6420
6421 if (bed->elf_backend_final_write_processing)
6422 (*bed->elf_backend_final_write_processing) (abfd, elf_linker (abfd));
6423
6424 if (!bed->s->write_shdrs_and_ehdr (abfd))
6425 return FALSE;
6426
6427 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
6428 if (t->o->build_id.after_write_object_contents != NULL)
6429 return (*t->o->build_id.after_write_object_contents) (abfd);
6430
6431 return TRUE;
6432 }
6433
6434 bfd_boolean
6435 _bfd_elf_write_corefile_contents (bfd *abfd)
6436 {
6437 /* Hopefully this can be done just like an object file. */
6438 return _bfd_elf_write_object_contents (abfd);
6439 }
6440
6441 /* Given a section, search the header to find them. */
6442
6443 unsigned int
6444 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
6445 {
6446 const struct elf_backend_data *bed;
6447 unsigned int sec_index;
6448
6449 if (elf_section_data (asect) != NULL
6450 && elf_section_data (asect)->this_idx != 0)
6451 return elf_section_data (asect)->this_idx;
6452
6453 if (bfd_is_abs_section (asect))
6454 sec_index = SHN_ABS;
6455 else if (bfd_is_com_section (asect))
6456 sec_index = SHN_COMMON;
6457 else if (bfd_is_und_section (asect))
6458 sec_index = SHN_UNDEF;
6459 else
6460 sec_index = SHN_BAD;
6461
6462 bed = get_elf_backend_data (abfd);
6463 if (bed->elf_backend_section_from_bfd_section)
6464 {
6465 int retval = sec_index;
6466
6467 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
6468 return retval;
6469 }
6470
6471 if (sec_index == SHN_BAD)
6472 bfd_set_error (bfd_error_nonrepresentable_section);
6473
6474 return sec_index;
6475 }
6476
6477 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
6478 on error. */
6479
6480 int
6481 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
6482 {
6483 asymbol *asym_ptr = *asym_ptr_ptr;
6484 int idx;
6485 flagword flags = asym_ptr->flags;
6486
6487 /* When gas creates relocations against local labels, it creates its
6488 own symbol for the section, but does put the symbol into the
6489 symbol chain, so udata is 0. When the linker is generating
6490 relocatable output, this section symbol may be for one of the
6491 input sections rather than the output section. */
6492 if (asym_ptr->udata.i == 0
6493 && (flags & BSF_SECTION_SYM)
6494 && asym_ptr->section)
6495 {
6496 asection *sec;
6497 int indx;
6498
6499 sec = asym_ptr->section;
6500 if (sec->owner != abfd && sec->output_section != NULL)
6501 sec = sec->output_section;
6502 if (sec->owner == abfd
6503 && (indx = sec->index) < elf_num_section_syms (abfd)
6504 && elf_section_syms (abfd)[indx] != NULL)
6505 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
6506 }
6507
6508 idx = asym_ptr->udata.i;
6509
6510 if (idx == 0)
6511 {
6512 /* This case can occur when using --strip-symbol on a symbol
6513 which is used in a relocation entry. */
6514 _bfd_error_handler
6515 /* xgettext:c-format */
6516 (_("%pB: symbol `%s' required but not present"),
6517 abfd, bfd_asymbol_name (asym_ptr));
6518 bfd_set_error (bfd_error_no_symbols);
6519 return -1;
6520 }
6521
6522 #if DEBUG & 4
6523 {
6524 fprintf (stderr,
6525 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8x\n",
6526 (long) asym_ptr, asym_ptr->name, idx, flags);
6527 fflush (stderr);
6528 }
6529 #endif
6530
6531 return idx;
6532 }
6533
6534 /* Rewrite program header information. */
6535
6536 static bfd_boolean
6537 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
6538 {
6539 Elf_Internal_Ehdr *iehdr;
6540 struct elf_segment_map *map;
6541 struct elf_segment_map *map_first;
6542 struct elf_segment_map **pointer_to_map;
6543 Elf_Internal_Phdr *segment;
6544 asection *section;
6545 unsigned int i;
6546 unsigned int num_segments;
6547 bfd_boolean phdr_included = FALSE;
6548 bfd_boolean p_paddr_valid;
6549 bfd_vma maxpagesize;
6550 struct elf_segment_map *phdr_adjust_seg = NULL;
6551 unsigned int phdr_adjust_num = 0;
6552 const struct elf_backend_data *bed;
6553
6554 bed = get_elf_backend_data (ibfd);
6555 iehdr = elf_elfheader (ibfd);
6556
6557 map_first = NULL;
6558 pointer_to_map = &map_first;
6559
6560 num_segments = elf_elfheader (ibfd)->e_phnum;
6561 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
6562
6563 /* Returns the end address of the segment + 1. */
6564 #define SEGMENT_END(segment, start) \
6565 (start + (segment->p_memsz > segment->p_filesz \
6566 ? segment->p_memsz : segment->p_filesz))
6567
6568 #define SECTION_SIZE(section, segment) \
6569 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
6570 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
6571 ? section->size : 0)
6572
6573 /* Returns TRUE if the given section is contained within
6574 the given segment. VMA addresses are compared. */
6575 #define IS_CONTAINED_BY_VMA(section, segment) \
6576 (section->vma >= segment->p_vaddr \
6577 && (section->vma + SECTION_SIZE (section, segment) \
6578 <= (SEGMENT_END (segment, segment->p_vaddr))))
6579
6580 /* Returns TRUE if the given section is contained within
6581 the given segment. LMA addresses are compared. */
6582 #define IS_CONTAINED_BY_LMA(section, segment, base) \
6583 (section->lma >= base \
6584 && (section->lma + SECTION_SIZE (section, segment) \
6585 <= SEGMENT_END (segment, base)))
6586
6587 /* Handle PT_NOTE segment. */
6588 #define IS_NOTE(p, s) \
6589 (p->p_type == PT_NOTE \
6590 && elf_section_type (s) == SHT_NOTE \
6591 && (bfd_vma) s->filepos >= p->p_offset \
6592 && ((bfd_vma) s->filepos + s->size \
6593 <= p->p_offset + p->p_filesz))
6594
6595 /* Special case: corefile "NOTE" section containing regs, prpsinfo
6596 etc. */
6597 #define IS_COREFILE_NOTE(p, s) \
6598 (IS_NOTE (p, s) \
6599 && bfd_get_format (ibfd) == bfd_core \
6600 && s->vma == 0 \
6601 && s->lma == 0)
6602
6603 /* The complicated case when p_vaddr is 0 is to handle the Solaris
6604 linker, which generates a PT_INTERP section with p_vaddr and
6605 p_memsz set to 0. */
6606 #define IS_SOLARIS_PT_INTERP(p, s) \
6607 (p->p_vaddr == 0 \
6608 && p->p_paddr == 0 \
6609 && p->p_memsz == 0 \
6610 && p->p_filesz > 0 \
6611 && (s->flags & SEC_HAS_CONTENTS) != 0 \
6612 && s->size > 0 \
6613 && (bfd_vma) s->filepos >= p->p_offset \
6614 && ((bfd_vma) s->filepos + s->size \
6615 <= p->p_offset + p->p_filesz))
6616
6617 /* Decide if the given section should be included in the given segment.
6618 A section will be included if:
6619 1. It is within the address space of the segment -- we use the LMA
6620 if that is set for the segment and the VMA otherwise,
6621 2. It is an allocated section or a NOTE section in a PT_NOTE
6622 segment.
6623 3. There is an output section associated with it,
6624 4. The section has not already been allocated to a previous segment.
6625 5. PT_GNU_STACK segments do not include any sections.
6626 6. PT_TLS segment includes only SHF_TLS sections.
6627 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
6628 8. PT_DYNAMIC should not contain empty sections at the beginning
6629 (with the possible exception of .dynamic). */
6630 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
6631 ((((segment->p_paddr \
6632 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
6633 : IS_CONTAINED_BY_VMA (section, segment)) \
6634 && (section->flags & SEC_ALLOC) != 0) \
6635 || IS_NOTE (segment, section)) \
6636 && segment->p_type != PT_GNU_STACK \
6637 && (segment->p_type != PT_TLS \
6638 || (section->flags & SEC_THREAD_LOCAL)) \
6639 && (segment->p_type == PT_LOAD \
6640 || segment->p_type == PT_TLS \
6641 || (section->flags & SEC_THREAD_LOCAL) == 0) \
6642 && (segment->p_type != PT_DYNAMIC \
6643 || SECTION_SIZE (section, segment) > 0 \
6644 || (segment->p_paddr \
6645 ? segment->p_paddr != section->lma \
6646 : segment->p_vaddr != section->vma) \
6647 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
6648 == 0)) \
6649 && (segment->p_type != PT_LOAD || !section->segment_mark))
6650
6651 /* If the output section of a section in the input segment is NULL,
6652 it is removed from the corresponding output segment. */
6653 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
6654 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
6655 && section->output_section != NULL)
6656
6657 /* Returns TRUE iff seg1 starts after the end of seg2. */
6658 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
6659 (seg1->field >= SEGMENT_END (seg2, seg2->field))
6660
6661 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
6662 their VMA address ranges and their LMA address ranges overlap.
6663 It is possible to have overlapping VMA ranges without overlapping LMA
6664 ranges. RedBoot images for example can have both .data and .bss mapped
6665 to the same VMA range, but with the .data section mapped to a different
6666 LMA. */
6667 #define SEGMENT_OVERLAPS(seg1, seg2) \
6668 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
6669 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
6670 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
6671 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
6672
6673 /* Initialise the segment mark field. */
6674 for (section = ibfd->sections; section != NULL; section = section->next)
6675 section->segment_mark = FALSE;
6676
6677 /* The Solaris linker creates program headers in which all the
6678 p_paddr fields are zero. When we try to objcopy or strip such a
6679 file, we get confused. Check for this case, and if we find it
6680 don't set the p_paddr_valid fields. */
6681 p_paddr_valid = FALSE;
6682 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6683 i < num_segments;
6684 i++, segment++)
6685 if (segment->p_paddr != 0)
6686 {
6687 p_paddr_valid = TRUE;
6688 break;
6689 }
6690
6691 /* Scan through the segments specified in the program header
6692 of the input BFD. For this first scan we look for overlaps
6693 in the loadable segments. These can be created by weird
6694 parameters to objcopy. Also, fix some solaris weirdness. */
6695 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6696 i < num_segments;
6697 i++, segment++)
6698 {
6699 unsigned int j;
6700 Elf_Internal_Phdr *segment2;
6701
6702 if (segment->p_type == PT_INTERP)
6703 for (section = ibfd->sections; section; section = section->next)
6704 if (IS_SOLARIS_PT_INTERP (segment, section))
6705 {
6706 /* Mininal change so that the normal section to segment
6707 assignment code will work. */
6708 segment->p_vaddr = section->vma;
6709 break;
6710 }
6711
6712 if (segment->p_type != PT_LOAD)
6713 {
6714 /* Remove PT_GNU_RELRO segment. */
6715 if (segment->p_type == PT_GNU_RELRO)
6716 segment->p_type = PT_NULL;
6717 continue;
6718 }
6719
6720 /* Determine if this segment overlaps any previous segments. */
6721 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
6722 {
6723 bfd_signed_vma extra_length;
6724
6725 if (segment2->p_type != PT_LOAD
6726 || !SEGMENT_OVERLAPS (segment, segment2))
6727 continue;
6728
6729 /* Merge the two segments together. */
6730 if (segment2->p_vaddr < segment->p_vaddr)
6731 {
6732 /* Extend SEGMENT2 to include SEGMENT and then delete
6733 SEGMENT. */
6734 extra_length = (SEGMENT_END (segment, segment->p_vaddr)
6735 - SEGMENT_END (segment2, segment2->p_vaddr));
6736
6737 if (extra_length > 0)
6738 {
6739 segment2->p_memsz += extra_length;
6740 segment2->p_filesz += extra_length;
6741 }
6742
6743 segment->p_type = PT_NULL;
6744
6745 /* Since we have deleted P we must restart the outer loop. */
6746 i = 0;
6747 segment = elf_tdata (ibfd)->phdr;
6748 break;
6749 }
6750 else
6751 {
6752 /* Extend SEGMENT to include SEGMENT2 and then delete
6753 SEGMENT2. */
6754 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
6755 - SEGMENT_END (segment, segment->p_vaddr));
6756
6757 if (extra_length > 0)
6758 {
6759 segment->p_memsz += extra_length;
6760 segment->p_filesz += extra_length;
6761 }
6762
6763 segment2->p_type = PT_NULL;
6764 }
6765 }
6766 }
6767
6768 /* The second scan attempts to assign sections to segments. */
6769 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6770 i < num_segments;
6771 i++, segment++)
6772 {
6773 unsigned int section_count;
6774 asection **sections;
6775 asection *output_section;
6776 unsigned int isec;
6777 asection *matching_lma;
6778 asection *suggested_lma;
6779 unsigned int j;
6780 bfd_size_type amt;
6781 asection *first_section;
6782
6783 if (segment->p_type == PT_NULL)
6784 continue;
6785
6786 first_section = NULL;
6787 /* Compute how many sections might be placed into this segment. */
6788 for (section = ibfd->sections, section_count = 0;
6789 section != NULL;
6790 section = section->next)
6791 {
6792 /* Find the first section in the input segment, which may be
6793 removed from the corresponding output segment. */
6794 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
6795 {
6796 if (first_section == NULL)
6797 first_section = section;
6798 if (section->output_section != NULL)
6799 ++section_count;
6800 }
6801 }
6802
6803 /* Allocate a segment map big enough to contain
6804 all of the sections we have selected. */
6805 amt = sizeof (struct elf_segment_map);
6806 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
6807 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
6808 if (map == NULL)
6809 return FALSE;
6810
6811 /* Initialise the fields of the segment map. Default to
6812 using the physical address of the segment in the input BFD. */
6813 map->next = NULL;
6814 map->p_type = segment->p_type;
6815 map->p_flags = segment->p_flags;
6816 map->p_flags_valid = 1;
6817
6818 /* If the first section in the input segment is removed, there is
6819 no need to preserve segment physical address in the corresponding
6820 output segment. */
6821 if (!first_section || first_section->output_section != NULL)
6822 {
6823 map->p_paddr = segment->p_paddr;
6824 map->p_paddr_valid = p_paddr_valid;
6825 }
6826
6827 /* Determine if this segment contains the ELF file header
6828 and if it contains the program headers themselves. */
6829 map->includes_filehdr = (segment->p_offset == 0
6830 && segment->p_filesz >= iehdr->e_ehsize);
6831 map->includes_phdrs = 0;
6832
6833 if (!phdr_included || segment->p_type != PT_LOAD)
6834 {
6835 map->includes_phdrs =
6836 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
6837 && (segment->p_offset + segment->p_filesz
6838 >= ((bfd_vma) iehdr->e_phoff
6839 + iehdr->e_phnum * iehdr->e_phentsize)));
6840
6841 if (segment->p_type == PT_LOAD && map->includes_phdrs)
6842 phdr_included = TRUE;
6843 }
6844
6845 if (section_count == 0)
6846 {
6847 /* Special segments, such as the PT_PHDR segment, may contain
6848 no sections, but ordinary, loadable segments should contain
6849 something. They are allowed by the ELF spec however, so only
6850 a warning is produced.
6851 There is however the valid use case of embedded systems which
6852 have segments with p_filesz of 0 and a p_memsz > 0 to initialize
6853 flash memory with zeros. No warning is shown for that case. */
6854 if (segment->p_type == PT_LOAD
6855 && (segment->p_filesz > 0 || segment->p_memsz == 0))
6856 /* xgettext:c-format */
6857 _bfd_error_handler
6858 (_("%pB: warning: empty loadable segment detected"
6859 " at vaddr=%#" PRIx64 ", is this intentional?"),
6860 ibfd, (uint64_t) segment->p_vaddr);
6861
6862 map->count = 0;
6863 *pointer_to_map = map;
6864 pointer_to_map = &map->next;
6865
6866 continue;
6867 }
6868
6869 /* Now scan the sections in the input BFD again and attempt
6870 to add their corresponding output sections to the segment map.
6871 The problem here is how to handle an output section which has
6872 been moved (ie had its LMA changed). There are four possibilities:
6873
6874 1. None of the sections have been moved.
6875 In this case we can continue to use the segment LMA from the
6876 input BFD.
6877
6878 2. All of the sections have been moved by the same amount.
6879 In this case we can change the segment's LMA to match the LMA
6880 of the first section.
6881
6882 3. Some of the sections have been moved, others have not.
6883 In this case those sections which have not been moved can be
6884 placed in the current segment which will have to have its size,
6885 and possibly its LMA changed, and a new segment or segments will
6886 have to be created to contain the other sections.
6887
6888 4. The sections have been moved, but not by the same amount.
6889 In this case we can change the segment's LMA to match the LMA
6890 of the first section and we will have to create a new segment
6891 or segments to contain the other sections.
6892
6893 In order to save time, we allocate an array to hold the section
6894 pointers that we are interested in. As these sections get assigned
6895 to a segment, they are removed from this array. */
6896
6897 sections = (asection **) bfd_malloc2 (section_count, sizeof (asection *));
6898 if (sections == NULL)
6899 return FALSE;
6900
6901 /* Step One: Scan for segment vs section LMA conflicts.
6902 Also add the sections to the section array allocated above.
6903 Also add the sections to the current segment. In the common
6904 case, where the sections have not been moved, this means that
6905 we have completely filled the segment, and there is nothing
6906 more to do. */
6907 isec = 0;
6908 matching_lma = NULL;
6909 suggested_lma = NULL;
6910
6911 for (section = first_section, j = 0;
6912 section != NULL;
6913 section = section->next)
6914 {
6915 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
6916 {
6917 output_section = section->output_section;
6918
6919 sections[j++] = section;
6920
6921 /* The Solaris native linker always sets p_paddr to 0.
6922 We try to catch that case here, and set it to the
6923 correct value. Note - some backends require that
6924 p_paddr be left as zero. */
6925 if (!p_paddr_valid
6926 && segment->p_vaddr != 0
6927 && !bed->want_p_paddr_set_to_zero
6928 && isec == 0
6929 && output_section->lma != 0
6930 && (align_power (segment->p_vaddr
6931 + (map->includes_filehdr
6932 ? iehdr->e_ehsize : 0)
6933 + (map->includes_phdrs
6934 ? iehdr->e_phnum * iehdr->e_phentsize
6935 : 0),
6936 output_section->alignment_power)
6937 == output_section->vma))
6938 map->p_paddr = segment->p_vaddr;
6939
6940 /* Match up the physical address of the segment with the
6941 LMA address of the output section. */
6942 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
6943 || IS_COREFILE_NOTE (segment, section)
6944 || (bed->want_p_paddr_set_to_zero
6945 && IS_CONTAINED_BY_VMA (output_section, segment)))
6946 {
6947 if (matching_lma == NULL
6948 || output_section->lma < matching_lma->lma)
6949 matching_lma = output_section;
6950
6951 /* We assume that if the section fits within the segment
6952 then it does not overlap any other section within that
6953 segment. */
6954 map->sections[isec++] = output_section;
6955 }
6956 else if (suggested_lma == NULL)
6957 suggested_lma = output_section;
6958
6959 if (j == section_count)
6960 break;
6961 }
6962 }
6963
6964 BFD_ASSERT (j == section_count);
6965
6966 /* Step Two: Adjust the physical address of the current segment,
6967 if necessary. */
6968 if (isec == section_count)
6969 {
6970 /* All of the sections fitted within the segment as currently
6971 specified. This is the default case. Add the segment to
6972 the list of built segments and carry on to process the next
6973 program header in the input BFD. */
6974 map->count = section_count;
6975 *pointer_to_map = map;
6976 pointer_to_map = &map->next;
6977
6978 if (p_paddr_valid
6979 && !bed->want_p_paddr_set_to_zero
6980 && matching_lma->lma != map->p_paddr
6981 && !map->includes_filehdr
6982 && !map->includes_phdrs)
6983 /* There is some padding before the first section in the
6984 segment. So, we must account for that in the output
6985 segment's vma. */
6986 map->p_vaddr_offset = matching_lma->lma - map->p_paddr;
6987
6988 free (sections);
6989 continue;
6990 }
6991 else
6992 {
6993 /* Change the current segment's physical address to match
6994 the LMA of the first section that fitted, or if no
6995 section fitted, the first section. */
6996 if (matching_lma == NULL)
6997 matching_lma = suggested_lma;
6998
6999 map->p_paddr = matching_lma->lma;
7000
7001 /* Offset the segment physical address from the lma
7002 to allow for space taken up by elf headers. */
7003 if (map->includes_phdrs)
7004 {
7005 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
7006
7007 /* iehdr->e_phnum is just an estimate of the number
7008 of program headers that we will need. Make a note
7009 here of the number we used and the segment we chose
7010 to hold these headers, so that we can adjust the
7011 offset when we know the correct value. */
7012 phdr_adjust_num = iehdr->e_phnum;
7013 phdr_adjust_seg = map;
7014 }
7015
7016 if (map->includes_filehdr)
7017 {
7018 bfd_vma align = (bfd_vma) 1 << matching_lma->alignment_power;
7019 map->p_paddr -= iehdr->e_ehsize;
7020 /* We've subtracted off the size of headers from the
7021 first section lma, but there may have been some
7022 alignment padding before that section too. Try to
7023 account for that by adjusting the segment lma down to
7024 the same alignment. */
7025 if (segment->p_align != 0 && segment->p_align < align)
7026 align = segment->p_align;
7027 map->p_paddr &= -align;
7028 }
7029 }
7030
7031 /* Step Three: Loop over the sections again, this time assigning
7032 those that fit to the current segment and removing them from the
7033 sections array; but making sure not to leave large gaps. Once all
7034 possible sections have been assigned to the current segment it is
7035 added to the list of built segments and if sections still remain
7036 to be assigned, a new segment is constructed before repeating
7037 the loop. */
7038 isec = 0;
7039 do
7040 {
7041 map->count = 0;
7042 suggested_lma = NULL;
7043
7044 /* Fill the current segment with sections that fit. */
7045 for (j = 0; j < section_count; j++)
7046 {
7047 section = sections[j];
7048
7049 if (section == NULL)
7050 continue;
7051
7052 output_section = section->output_section;
7053
7054 BFD_ASSERT (output_section != NULL);
7055
7056 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
7057 || IS_COREFILE_NOTE (segment, section))
7058 {
7059 if (map->count == 0)
7060 {
7061 /* If the first section in a segment does not start at
7062 the beginning of the segment, then something is
7063 wrong. */
7064 if (align_power (map->p_paddr
7065 + (map->includes_filehdr
7066 ? iehdr->e_ehsize : 0)
7067 + (map->includes_phdrs
7068 ? iehdr->e_phnum * iehdr->e_phentsize
7069 : 0),
7070 output_section->alignment_power)
7071 != output_section->lma)
7072 abort ();
7073 }
7074 else
7075 {
7076 asection *prev_sec;
7077
7078 prev_sec = map->sections[map->count - 1];
7079
7080 /* If the gap between the end of the previous section
7081 and the start of this section is more than
7082 maxpagesize then we need to start a new segment. */
7083 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
7084 maxpagesize)
7085 < BFD_ALIGN (output_section->lma, maxpagesize))
7086 || (prev_sec->lma + prev_sec->size
7087 > output_section->lma))
7088 {
7089 if (suggested_lma == NULL)
7090 suggested_lma = output_section;
7091
7092 continue;
7093 }
7094 }
7095
7096 map->sections[map->count++] = output_section;
7097 ++isec;
7098 sections[j] = NULL;
7099 if (segment->p_type == PT_LOAD)
7100 section->segment_mark = TRUE;
7101 }
7102 else if (suggested_lma == NULL)
7103 suggested_lma = output_section;
7104 }
7105
7106 BFD_ASSERT (map->count > 0);
7107
7108 /* Add the current segment to the list of built segments. */
7109 *pointer_to_map = map;
7110 pointer_to_map = &map->next;
7111
7112 if (isec < section_count)
7113 {
7114 /* We still have not allocated all of the sections to
7115 segments. Create a new segment here, initialise it
7116 and carry on looping. */
7117 amt = sizeof (struct elf_segment_map);
7118 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
7119 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7120 if (map == NULL)
7121 {
7122 free (sections);
7123 return FALSE;
7124 }
7125
7126 /* Initialise the fields of the segment map. Set the physical
7127 physical address to the LMA of the first section that has
7128 not yet been assigned. */
7129 map->next = NULL;
7130 map->p_type = segment->p_type;
7131 map->p_flags = segment->p_flags;
7132 map->p_flags_valid = 1;
7133 map->p_paddr = suggested_lma->lma;
7134 map->p_paddr_valid = p_paddr_valid;
7135 map->includes_filehdr = 0;
7136 map->includes_phdrs = 0;
7137 }
7138 }
7139 while (isec < section_count);
7140
7141 free (sections);
7142 }
7143
7144 elf_seg_map (obfd) = map_first;
7145
7146 /* If we had to estimate the number of program headers that were
7147 going to be needed, then check our estimate now and adjust
7148 the offset if necessary. */
7149 if (phdr_adjust_seg != NULL)
7150 {
7151 unsigned int count;
7152
7153 for (count = 0, map = map_first; map != NULL; map = map->next)
7154 count++;
7155
7156 if (count > phdr_adjust_num)
7157 phdr_adjust_seg->p_paddr
7158 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
7159
7160 for (map = map_first; map != NULL; map = map->next)
7161 if (map->p_type == PT_PHDR)
7162 {
7163 bfd_vma adjust
7164 = phdr_adjust_seg->includes_filehdr ? iehdr->e_ehsize : 0;
7165 map->p_paddr = phdr_adjust_seg->p_paddr + adjust;
7166 break;
7167 }
7168 }
7169
7170 #undef SEGMENT_END
7171 #undef SECTION_SIZE
7172 #undef IS_CONTAINED_BY_VMA
7173 #undef IS_CONTAINED_BY_LMA
7174 #undef IS_NOTE
7175 #undef IS_COREFILE_NOTE
7176 #undef IS_SOLARIS_PT_INTERP
7177 #undef IS_SECTION_IN_INPUT_SEGMENT
7178 #undef INCLUDE_SECTION_IN_SEGMENT
7179 #undef SEGMENT_AFTER_SEGMENT
7180 #undef SEGMENT_OVERLAPS
7181 return TRUE;
7182 }
7183
7184 /* Copy ELF program header information. */
7185
7186 static bfd_boolean
7187 copy_elf_program_header (bfd *ibfd, bfd *obfd)
7188 {
7189 Elf_Internal_Ehdr *iehdr;
7190 struct elf_segment_map *map;
7191 struct elf_segment_map *map_first;
7192 struct elf_segment_map **pointer_to_map;
7193 Elf_Internal_Phdr *segment;
7194 unsigned int i;
7195 unsigned int num_segments;
7196 bfd_boolean phdr_included = FALSE;
7197 bfd_boolean p_paddr_valid;
7198
7199 iehdr = elf_elfheader (ibfd);
7200
7201 map_first = NULL;
7202 pointer_to_map = &map_first;
7203
7204 /* If all the segment p_paddr fields are zero, don't set
7205 map->p_paddr_valid. */
7206 p_paddr_valid = FALSE;
7207 num_segments = elf_elfheader (ibfd)->e_phnum;
7208 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7209 i < num_segments;
7210 i++, segment++)
7211 if (segment->p_paddr != 0)
7212 {
7213 p_paddr_valid = TRUE;
7214 break;
7215 }
7216
7217 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7218 i < num_segments;
7219 i++, segment++)
7220 {
7221 asection *section;
7222 unsigned int section_count;
7223 bfd_size_type amt;
7224 Elf_Internal_Shdr *this_hdr;
7225 asection *first_section = NULL;
7226 asection *lowest_section;
7227
7228 /* Compute how many sections are in this segment. */
7229 for (section = ibfd->sections, section_count = 0;
7230 section != NULL;
7231 section = section->next)
7232 {
7233 this_hdr = &(elf_section_data(section)->this_hdr);
7234 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7235 {
7236 if (first_section == NULL)
7237 first_section = section;
7238 section_count++;
7239 }
7240 }
7241
7242 /* Allocate a segment map big enough to contain
7243 all of the sections we have selected. */
7244 amt = sizeof (struct elf_segment_map);
7245 if (section_count != 0)
7246 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
7247 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7248 if (map == NULL)
7249 return FALSE;
7250
7251 /* Initialize the fields of the output segment map with the
7252 input segment. */
7253 map->next = NULL;
7254 map->p_type = segment->p_type;
7255 map->p_flags = segment->p_flags;
7256 map->p_flags_valid = 1;
7257 map->p_paddr = segment->p_paddr;
7258 map->p_paddr_valid = p_paddr_valid;
7259 map->p_align = segment->p_align;
7260 map->p_align_valid = 1;
7261 map->p_vaddr_offset = 0;
7262
7263 if (map->p_type == PT_GNU_RELRO
7264 || map->p_type == PT_GNU_STACK)
7265 {
7266 /* The PT_GNU_RELRO segment may contain the first a few
7267 bytes in the .got.plt section even if the whole .got.plt
7268 section isn't in the PT_GNU_RELRO segment. We won't
7269 change the size of the PT_GNU_RELRO segment.
7270 Similarly, PT_GNU_STACK size is significant on uclinux
7271 systems. */
7272 map->p_size = segment->p_memsz;
7273 map->p_size_valid = 1;
7274 }
7275
7276 /* Determine if this segment contains the ELF file header
7277 and if it contains the program headers themselves. */
7278 map->includes_filehdr = (segment->p_offset == 0
7279 && segment->p_filesz >= iehdr->e_ehsize);
7280
7281 map->includes_phdrs = 0;
7282 if (! phdr_included || segment->p_type != PT_LOAD)
7283 {
7284 map->includes_phdrs =
7285 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
7286 && (segment->p_offset + segment->p_filesz
7287 >= ((bfd_vma) iehdr->e_phoff
7288 + iehdr->e_phnum * iehdr->e_phentsize)));
7289
7290 if (segment->p_type == PT_LOAD && map->includes_phdrs)
7291 phdr_included = TRUE;
7292 }
7293
7294 lowest_section = NULL;
7295 if (section_count != 0)
7296 {
7297 unsigned int isec = 0;
7298
7299 for (section = first_section;
7300 section != NULL;
7301 section = section->next)
7302 {
7303 this_hdr = &(elf_section_data(section)->this_hdr);
7304 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7305 {
7306 map->sections[isec++] = section->output_section;
7307 if ((section->flags & SEC_ALLOC) != 0)
7308 {
7309 bfd_vma seg_off;
7310
7311 if (lowest_section == NULL
7312 || section->lma < lowest_section->lma)
7313 lowest_section = section;
7314
7315 /* Section lmas are set up from PT_LOAD header
7316 p_paddr in _bfd_elf_make_section_from_shdr.
7317 If this header has a p_paddr that disagrees
7318 with the section lma, flag the p_paddr as
7319 invalid. */
7320 if ((section->flags & SEC_LOAD) != 0)
7321 seg_off = this_hdr->sh_offset - segment->p_offset;
7322 else
7323 seg_off = this_hdr->sh_addr - segment->p_vaddr;
7324 if (section->lma - segment->p_paddr != seg_off)
7325 map->p_paddr_valid = FALSE;
7326 }
7327 if (isec == section_count)
7328 break;
7329 }
7330 }
7331 }
7332
7333 if (map->includes_filehdr && lowest_section != NULL)
7334 /* We need to keep the space used by the headers fixed. */
7335 map->header_size = lowest_section->vma - segment->p_vaddr;
7336
7337 if (!map->includes_phdrs
7338 && !map->includes_filehdr
7339 && map->p_paddr_valid)
7340 /* There is some other padding before the first section. */
7341 map->p_vaddr_offset = ((lowest_section ? lowest_section->lma : 0)
7342 - segment->p_paddr);
7343
7344 map->count = section_count;
7345 *pointer_to_map = map;
7346 pointer_to_map = &map->next;
7347 }
7348
7349 elf_seg_map (obfd) = map_first;
7350 return TRUE;
7351 }
7352
7353 /* Copy private BFD data. This copies or rewrites ELF program header
7354 information. */
7355
7356 static bfd_boolean
7357 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
7358 {
7359 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7360 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7361 return TRUE;
7362
7363 if (elf_tdata (ibfd)->phdr == NULL)
7364 return TRUE;
7365
7366 if (ibfd->xvec == obfd->xvec)
7367 {
7368 /* Check to see if any sections in the input BFD
7369 covered by ELF program header have changed. */
7370 Elf_Internal_Phdr *segment;
7371 asection *section, *osec;
7372 unsigned int i, num_segments;
7373 Elf_Internal_Shdr *this_hdr;
7374 const struct elf_backend_data *bed;
7375
7376 bed = get_elf_backend_data (ibfd);
7377
7378 /* Regenerate the segment map if p_paddr is set to 0. */
7379 if (bed->want_p_paddr_set_to_zero)
7380 goto rewrite;
7381
7382 /* Initialize the segment mark field. */
7383 for (section = obfd->sections; section != NULL;
7384 section = section->next)
7385 section->segment_mark = FALSE;
7386
7387 num_segments = elf_elfheader (ibfd)->e_phnum;
7388 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7389 i < num_segments;
7390 i++, segment++)
7391 {
7392 /* PR binutils/3535. The Solaris linker always sets the p_paddr
7393 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
7394 which severly confuses things, so always regenerate the segment
7395 map in this case. */
7396 if (segment->p_paddr == 0
7397 && segment->p_memsz == 0
7398 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
7399 goto rewrite;
7400
7401 for (section = ibfd->sections;
7402 section != NULL; section = section->next)
7403 {
7404 /* We mark the output section so that we know it comes
7405 from the input BFD. */
7406 osec = section->output_section;
7407 if (osec)
7408 osec->segment_mark = TRUE;
7409
7410 /* Check if this section is covered by the segment. */
7411 this_hdr = &(elf_section_data(section)->this_hdr);
7412 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7413 {
7414 /* FIXME: Check if its output section is changed or
7415 removed. What else do we need to check? */
7416 if (osec == NULL
7417 || section->flags != osec->flags
7418 || section->lma != osec->lma
7419 || section->vma != osec->vma
7420 || section->size != osec->size
7421 || section->rawsize != osec->rawsize
7422 || section->alignment_power != osec->alignment_power)
7423 goto rewrite;
7424 }
7425 }
7426 }
7427
7428 /* Check to see if any output section do not come from the
7429 input BFD. */
7430 for (section = obfd->sections; section != NULL;
7431 section = section->next)
7432 {
7433 if (!section->segment_mark)
7434 goto rewrite;
7435 else
7436 section->segment_mark = FALSE;
7437 }
7438
7439 return copy_elf_program_header (ibfd, obfd);
7440 }
7441
7442 rewrite:
7443 if (ibfd->xvec == obfd->xvec)
7444 {
7445 /* When rewriting program header, set the output maxpagesize to
7446 the maximum alignment of input PT_LOAD segments. */
7447 Elf_Internal_Phdr *segment;
7448 unsigned int i;
7449 unsigned int num_segments = elf_elfheader (ibfd)->e_phnum;
7450 bfd_vma maxpagesize = 0;
7451
7452 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7453 i < num_segments;
7454 i++, segment++)
7455 if (segment->p_type == PT_LOAD
7456 && maxpagesize < segment->p_align)
7457 {
7458 /* PR 17512: file: f17299af. */
7459 if (segment->p_align > (bfd_vma) 1 << ((sizeof (bfd_vma) * 8) - 2))
7460 /* xgettext:c-format */
7461 _bfd_error_handler (_("%pB: warning: segment alignment of %#"
7462 PRIx64 " is too large"),
7463 ibfd, (uint64_t) segment->p_align);
7464 else
7465 maxpagesize = segment->p_align;
7466 }
7467
7468 if (maxpagesize != get_elf_backend_data (obfd)->maxpagesize)
7469 bfd_emul_set_maxpagesize (bfd_get_target (obfd), maxpagesize);
7470 }
7471
7472 return rewrite_elf_program_header (ibfd, obfd);
7473 }
7474
7475 /* Initialize private output section information from input section. */
7476
7477 bfd_boolean
7478 _bfd_elf_init_private_section_data (bfd *ibfd,
7479 asection *isec,
7480 bfd *obfd,
7481 asection *osec,
7482 struct bfd_link_info *link_info)
7483
7484 {
7485 Elf_Internal_Shdr *ihdr, *ohdr;
7486 bfd_boolean final_link = (link_info != NULL
7487 && !bfd_link_relocatable (link_info));
7488
7489 if (ibfd->xvec->flavour != bfd_target_elf_flavour
7490 || obfd->xvec->flavour != bfd_target_elf_flavour)
7491 return TRUE;
7492
7493 BFD_ASSERT (elf_section_data (osec) != NULL);
7494
7495 /* For objcopy and relocatable link, don't copy the output ELF
7496 section type from input if the output BFD section flags have been
7497 set to something different. For a final link allow some flags
7498 that the linker clears to differ. */
7499 if (elf_section_type (osec) == SHT_NULL
7500 && (osec->flags == isec->flags
7501 || (final_link
7502 && ((osec->flags ^ isec->flags)
7503 & ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC)) == 0)))
7504 elf_section_type (osec) = elf_section_type (isec);
7505
7506 /* FIXME: Is this correct for all OS/PROC specific flags? */
7507 elf_section_flags (osec) |= (elf_section_flags (isec)
7508 & (SHF_MASKOS | SHF_MASKPROC));
7509
7510 /* Copy sh_info from input for mbind section. */
7511 if (elf_section_flags (isec) & SHF_GNU_MBIND)
7512 elf_section_data (osec)->this_hdr.sh_info
7513 = elf_section_data (isec)->this_hdr.sh_info;
7514
7515 /* Set things up for objcopy and relocatable link. The output
7516 SHT_GROUP section will have its elf_next_in_group pointing back
7517 to the input group members. Ignore linker created group section.
7518 See elfNN_ia64_object_p in elfxx-ia64.c. */
7519 if ((link_info == NULL
7520 || !link_info->resolve_section_groups)
7521 && (elf_sec_group (isec) == NULL
7522 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0))
7523 {
7524 if (elf_section_flags (isec) & SHF_GROUP)
7525 elf_section_flags (osec) |= SHF_GROUP;
7526 elf_next_in_group (osec) = elf_next_in_group (isec);
7527 elf_section_data (osec)->group = elf_section_data (isec)->group;
7528 }
7529
7530 /* If not decompress, preserve SHF_COMPRESSED. */
7531 if (!final_link && (ibfd->flags & BFD_DECOMPRESS) == 0)
7532 elf_section_flags (osec) |= (elf_section_flags (isec)
7533 & SHF_COMPRESSED);
7534
7535 ihdr = &elf_section_data (isec)->this_hdr;
7536
7537 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
7538 don't use the output section of the linked-to section since it
7539 may be NULL at this point. */
7540 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
7541 {
7542 ohdr = &elf_section_data (osec)->this_hdr;
7543 ohdr->sh_flags |= SHF_LINK_ORDER;
7544 elf_linked_to_section (osec) = elf_linked_to_section (isec);
7545 }
7546
7547 osec->use_rela_p = isec->use_rela_p;
7548
7549 return TRUE;
7550 }
7551
7552 /* Copy private section information. This copies over the entsize
7553 field, and sometimes the info field. */
7554
7555 bfd_boolean
7556 _bfd_elf_copy_private_section_data (bfd *ibfd,
7557 asection *isec,
7558 bfd *obfd,
7559 asection *osec)
7560 {
7561 Elf_Internal_Shdr *ihdr, *ohdr;
7562
7563 if (ibfd->xvec->flavour != bfd_target_elf_flavour
7564 || obfd->xvec->flavour != bfd_target_elf_flavour)
7565 return TRUE;
7566
7567 ihdr = &elf_section_data (isec)->this_hdr;
7568 ohdr = &elf_section_data (osec)->this_hdr;
7569
7570 ohdr->sh_entsize = ihdr->sh_entsize;
7571
7572 if (ihdr->sh_type == SHT_SYMTAB
7573 || ihdr->sh_type == SHT_DYNSYM
7574 || ihdr->sh_type == SHT_GNU_verneed
7575 || ihdr->sh_type == SHT_GNU_verdef)
7576 ohdr->sh_info = ihdr->sh_info;
7577
7578 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
7579 NULL);
7580 }
7581
7582 /* Look at all the SHT_GROUP sections in IBFD, making any adjustments
7583 necessary if we are removing either the SHT_GROUP section or any of
7584 the group member sections. DISCARDED is the value that a section's
7585 output_section has if the section will be discarded, NULL when this
7586 function is called from objcopy, bfd_abs_section_ptr when called
7587 from the linker. */
7588
7589 bfd_boolean
7590 _bfd_elf_fixup_group_sections (bfd *ibfd, asection *discarded)
7591 {
7592 asection *isec;
7593
7594 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
7595 if (elf_section_type (isec) == SHT_GROUP)
7596 {
7597 asection *first = elf_next_in_group (isec);
7598 asection *s = first;
7599 bfd_size_type removed = 0;
7600
7601 while (s != NULL)
7602 {
7603 /* If this member section is being output but the
7604 SHT_GROUP section is not, then clear the group info
7605 set up by _bfd_elf_copy_private_section_data. */
7606 if (s->output_section != discarded
7607 && isec->output_section == discarded)
7608 {
7609 elf_section_flags (s->output_section) &= ~SHF_GROUP;
7610 elf_group_name (s->output_section) = NULL;
7611 }
7612 /* Conversely, if the member section is not being output
7613 but the SHT_GROUP section is, then adjust its size. */
7614 else if (s->output_section == discarded
7615 && isec->output_section != discarded)
7616 {
7617 struct bfd_elf_section_data *elf_sec = elf_section_data (s);
7618 removed += 4;
7619 if (elf_sec->rel.hdr != NULL
7620 && (elf_sec->rel.hdr->sh_flags & SHF_GROUP) != 0)
7621 removed += 4;
7622 if (elf_sec->rela.hdr != NULL
7623 && (elf_sec->rela.hdr->sh_flags & SHF_GROUP) != 0)
7624 removed += 4;
7625 }
7626 s = elf_next_in_group (s);
7627 if (s == first)
7628 break;
7629 }
7630 if (removed != 0)
7631 {
7632 if (discarded != NULL)
7633 {
7634 /* If we've been called for ld -r, then we need to
7635 adjust the input section size. */
7636 if (isec->rawsize == 0)
7637 isec->rawsize = isec->size;
7638 isec->size = isec->rawsize - removed;
7639 if (isec->size <= 4)
7640 {
7641 isec->size = 0;
7642 isec->flags |= SEC_EXCLUDE;
7643 }
7644 }
7645 else
7646 {
7647 /* Adjust the output section size when called from
7648 objcopy. */
7649 isec->output_section->size -= removed;
7650 if (isec->output_section->size <= 4)
7651 {
7652 isec->output_section->size = 0;
7653 isec->output_section->flags |= SEC_EXCLUDE;
7654 }
7655 }
7656 }
7657 }
7658
7659 return TRUE;
7660 }
7661
7662 /* Copy private header information. */
7663
7664 bfd_boolean
7665 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
7666 {
7667 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7668 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7669 return TRUE;
7670
7671 /* Copy over private BFD data if it has not already been copied.
7672 This must be done here, rather than in the copy_private_bfd_data
7673 entry point, because the latter is called after the section
7674 contents have been set, which means that the program headers have
7675 already been worked out. */
7676 if (elf_seg_map (obfd) == NULL && elf_tdata (ibfd)->phdr != NULL)
7677 {
7678 if (! copy_private_bfd_data (ibfd, obfd))
7679 return FALSE;
7680 }
7681
7682 return _bfd_elf_fixup_group_sections (ibfd, NULL);
7683 }
7684
7685 /* Copy private symbol information. If this symbol is in a section
7686 which we did not map into a BFD section, try to map the section
7687 index correctly. We use special macro definitions for the mapped
7688 section indices; these definitions are interpreted by the
7689 swap_out_syms function. */
7690
7691 #define MAP_ONESYMTAB (SHN_HIOS + 1)
7692 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
7693 #define MAP_STRTAB (SHN_HIOS + 3)
7694 #define MAP_SHSTRTAB (SHN_HIOS + 4)
7695 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
7696
7697 bfd_boolean
7698 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
7699 asymbol *isymarg,
7700 bfd *obfd,
7701 asymbol *osymarg)
7702 {
7703 elf_symbol_type *isym, *osym;
7704
7705 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7706 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7707 return TRUE;
7708
7709 isym = elf_symbol_from (ibfd, isymarg);
7710 osym = elf_symbol_from (obfd, osymarg);
7711
7712 if (isym != NULL
7713 && isym->internal_elf_sym.st_shndx != 0
7714 && osym != NULL
7715 && bfd_is_abs_section (isym->symbol.section))
7716 {
7717 unsigned int shndx;
7718
7719 shndx = isym->internal_elf_sym.st_shndx;
7720 if (shndx == elf_onesymtab (ibfd))
7721 shndx = MAP_ONESYMTAB;
7722 else if (shndx == elf_dynsymtab (ibfd))
7723 shndx = MAP_DYNSYMTAB;
7724 else if (shndx == elf_strtab_sec (ibfd))
7725 shndx = MAP_STRTAB;
7726 else if (shndx == elf_shstrtab_sec (ibfd))
7727 shndx = MAP_SHSTRTAB;
7728 else if (find_section_in_list (shndx, elf_symtab_shndx_list (ibfd)))
7729 shndx = MAP_SYM_SHNDX;
7730 osym->internal_elf_sym.st_shndx = shndx;
7731 }
7732
7733 return TRUE;
7734 }
7735
7736 /* Swap out the symbols. */
7737
7738 static bfd_boolean
7739 swap_out_syms (bfd *abfd,
7740 struct elf_strtab_hash **sttp,
7741 int relocatable_p)
7742 {
7743 const struct elf_backend_data *bed;
7744 int symcount;
7745 asymbol **syms;
7746 struct elf_strtab_hash *stt;
7747 Elf_Internal_Shdr *symtab_hdr;
7748 Elf_Internal_Shdr *symtab_shndx_hdr;
7749 Elf_Internal_Shdr *symstrtab_hdr;
7750 struct elf_sym_strtab *symstrtab;
7751 bfd_byte *outbound_syms;
7752 bfd_byte *outbound_shndx;
7753 unsigned long outbound_syms_index;
7754 unsigned long outbound_shndx_index;
7755 int idx;
7756 unsigned int num_locals;
7757 bfd_size_type amt;
7758 bfd_boolean name_local_sections;
7759
7760 if (!elf_map_symbols (abfd, &num_locals))
7761 return FALSE;
7762
7763 /* Dump out the symtabs. */
7764 stt = _bfd_elf_strtab_init ();
7765 if (stt == NULL)
7766 return FALSE;
7767
7768 bed = get_elf_backend_data (abfd);
7769 symcount = bfd_get_symcount (abfd);
7770 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7771 symtab_hdr->sh_type = SHT_SYMTAB;
7772 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
7773 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
7774 symtab_hdr->sh_info = num_locals + 1;
7775 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
7776
7777 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
7778 symstrtab_hdr->sh_type = SHT_STRTAB;
7779
7780 /* Allocate buffer to swap out the .strtab section. */
7781 symstrtab = (struct elf_sym_strtab *) bfd_malloc ((symcount + 1)
7782 * sizeof (*symstrtab));
7783 if (symstrtab == NULL)
7784 {
7785 _bfd_elf_strtab_free (stt);
7786 return FALSE;
7787 }
7788
7789 outbound_syms = (bfd_byte *) bfd_alloc2 (abfd, 1 + symcount,
7790 bed->s->sizeof_sym);
7791 if (outbound_syms == NULL)
7792 {
7793 error_return:
7794 _bfd_elf_strtab_free (stt);
7795 free (symstrtab);
7796 return FALSE;
7797 }
7798 symtab_hdr->contents = outbound_syms;
7799 outbound_syms_index = 0;
7800
7801 outbound_shndx = NULL;
7802 outbound_shndx_index = 0;
7803
7804 if (elf_symtab_shndx_list (abfd))
7805 {
7806 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
7807 if (symtab_shndx_hdr->sh_name != 0)
7808 {
7809 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
7810 outbound_shndx = (bfd_byte *)
7811 bfd_zalloc2 (abfd, 1 + symcount, sizeof (Elf_External_Sym_Shndx));
7812 if (outbound_shndx == NULL)
7813 goto error_return;
7814
7815 symtab_shndx_hdr->contents = outbound_shndx;
7816 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
7817 symtab_shndx_hdr->sh_size = amt;
7818 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
7819 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
7820 }
7821 /* FIXME: What about any other headers in the list ? */
7822 }
7823
7824 /* Now generate the data (for "contents"). */
7825 {
7826 /* Fill in zeroth symbol and swap it out. */
7827 Elf_Internal_Sym sym;
7828 sym.st_name = 0;
7829 sym.st_value = 0;
7830 sym.st_size = 0;
7831 sym.st_info = 0;
7832 sym.st_other = 0;
7833 sym.st_shndx = SHN_UNDEF;
7834 sym.st_target_internal = 0;
7835 symstrtab[0].sym = sym;
7836 symstrtab[0].dest_index = outbound_syms_index;
7837 symstrtab[0].destshndx_index = outbound_shndx_index;
7838 outbound_syms_index++;
7839 if (outbound_shndx != NULL)
7840 outbound_shndx_index++;
7841 }
7842
7843 name_local_sections
7844 = (bed->elf_backend_name_local_section_symbols
7845 && bed->elf_backend_name_local_section_symbols (abfd));
7846
7847 syms = bfd_get_outsymbols (abfd);
7848 for (idx = 0; idx < symcount;)
7849 {
7850 Elf_Internal_Sym sym;
7851 bfd_vma value = syms[idx]->value;
7852 elf_symbol_type *type_ptr;
7853 flagword flags = syms[idx]->flags;
7854 int type;
7855
7856 if (!name_local_sections
7857 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
7858 {
7859 /* Local section symbols have no name. */
7860 sym.st_name = (unsigned long) -1;
7861 }
7862 else
7863 {
7864 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
7865 to get the final offset for st_name. */
7866 sym.st_name
7867 = (unsigned long) _bfd_elf_strtab_add (stt, syms[idx]->name,
7868 FALSE);
7869 if (sym.st_name == (unsigned long) -1)
7870 goto error_return;
7871 }
7872
7873 type_ptr = elf_symbol_from (abfd, syms[idx]);
7874
7875 if ((flags & BSF_SECTION_SYM) == 0
7876 && bfd_is_com_section (syms[idx]->section))
7877 {
7878 /* ELF common symbols put the alignment into the `value' field,
7879 and the size into the `size' field. This is backwards from
7880 how BFD handles it, so reverse it here. */
7881 sym.st_size = value;
7882 if (type_ptr == NULL
7883 || type_ptr->internal_elf_sym.st_value == 0)
7884 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
7885 else
7886 sym.st_value = type_ptr->internal_elf_sym.st_value;
7887 sym.st_shndx = _bfd_elf_section_from_bfd_section
7888 (abfd, syms[idx]->section);
7889 }
7890 else
7891 {
7892 asection *sec = syms[idx]->section;
7893 unsigned int shndx;
7894
7895 if (sec->output_section)
7896 {
7897 value += sec->output_offset;
7898 sec = sec->output_section;
7899 }
7900
7901 /* Don't add in the section vma for relocatable output. */
7902 if (! relocatable_p)
7903 value += sec->vma;
7904 sym.st_value = value;
7905 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
7906
7907 if (bfd_is_abs_section (sec)
7908 && type_ptr != NULL
7909 && type_ptr->internal_elf_sym.st_shndx != 0)
7910 {
7911 /* This symbol is in a real ELF section which we did
7912 not create as a BFD section. Undo the mapping done
7913 by copy_private_symbol_data. */
7914 shndx = type_ptr->internal_elf_sym.st_shndx;
7915 switch (shndx)
7916 {
7917 case MAP_ONESYMTAB:
7918 shndx = elf_onesymtab (abfd);
7919 break;
7920 case MAP_DYNSYMTAB:
7921 shndx = elf_dynsymtab (abfd);
7922 break;
7923 case MAP_STRTAB:
7924 shndx = elf_strtab_sec (abfd);
7925 break;
7926 case MAP_SHSTRTAB:
7927 shndx = elf_shstrtab_sec (abfd);
7928 break;
7929 case MAP_SYM_SHNDX:
7930 if (elf_symtab_shndx_list (abfd))
7931 shndx = elf_symtab_shndx_list (abfd)->ndx;
7932 break;
7933 default:
7934 shndx = SHN_ABS;
7935 break;
7936 }
7937 }
7938 else
7939 {
7940 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
7941
7942 if (shndx == SHN_BAD)
7943 {
7944 asection *sec2;
7945
7946 /* Writing this would be a hell of a lot easier if
7947 we had some decent documentation on bfd, and
7948 knew what to expect of the library, and what to
7949 demand of applications. For example, it
7950 appears that `objcopy' might not set the
7951 section of a symbol to be a section that is
7952 actually in the output file. */
7953 sec2 = bfd_get_section_by_name (abfd, sec->name);
7954 if (sec2 != NULL)
7955 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
7956 if (shndx == SHN_BAD)
7957 {
7958 /* xgettext:c-format */
7959 _bfd_error_handler
7960 (_("unable to find equivalent output section"
7961 " for symbol '%s' from section '%s'"),
7962 syms[idx]->name ? syms[idx]->name : "<Local sym>",
7963 sec->name);
7964 bfd_set_error (bfd_error_invalid_operation);
7965 goto error_return;
7966 }
7967 }
7968 }
7969
7970 sym.st_shndx = shndx;
7971 }
7972
7973 if ((flags & BSF_THREAD_LOCAL) != 0)
7974 type = STT_TLS;
7975 else if ((flags & BSF_GNU_INDIRECT_FUNCTION) != 0)
7976 type = STT_GNU_IFUNC;
7977 else if ((flags & BSF_FUNCTION) != 0)
7978 type = STT_FUNC;
7979 else if ((flags & BSF_OBJECT) != 0)
7980 type = STT_OBJECT;
7981 else if ((flags & BSF_RELC) != 0)
7982 type = STT_RELC;
7983 else if ((flags & BSF_SRELC) != 0)
7984 type = STT_SRELC;
7985 else
7986 type = STT_NOTYPE;
7987
7988 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
7989 type = STT_TLS;
7990
7991 /* Processor-specific types. */
7992 if (type_ptr != NULL
7993 && bed->elf_backend_get_symbol_type)
7994 type = ((*bed->elf_backend_get_symbol_type)
7995 (&type_ptr->internal_elf_sym, type));
7996
7997 if (flags & BSF_SECTION_SYM)
7998 {
7999 if (flags & BSF_GLOBAL)
8000 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8001 else
8002 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
8003 }
8004 else if (bfd_is_com_section (syms[idx]->section))
8005 {
8006 if (type != STT_TLS)
8007 {
8008 if ((abfd->flags & BFD_CONVERT_ELF_COMMON))
8009 type = ((abfd->flags & BFD_USE_ELF_STT_COMMON)
8010 ? STT_COMMON : STT_OBJECT);
8011 else
8012 type = ((flags & BSF_ELF_COMMON) != 0
8013 ? STT_COMMON : STT_OBJECT);
8014 }
8015 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
8016 }
8017 else if (bfd_is_und_section (syms[idx]->section))
8018 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
8019 ? STB_WEAK
8020 : STB_GLOBAL),
8021 type);
8022 else if (flags & BSF_FILE)
8023 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
8024 else
8025 {
8026 int bind = STB_LOCAL;
8027
8028 if (flags & BSF_LOCAL)
8029 bind = STB_LOCAL;
8030 else if (flags & BSF_GNU_UNIQUE)
8031 bind = STB_GNU_UNIQUE;
8032 else if (flags & BSF_WEAK)
8033 bind = STB_WEAK;
8034 else if (flags & BSF_GLOBAL)
8035 bind = STB_GLOBAL;
8036
8037 sym.st_info = ELF_ST_INFO (bind, type);
8038 }
8039
8040 if (type_ptr != NULL)
8041 {
8042 sym.st_other = type_ptr->internal_elf_sym.st_other;
8043 sym.st_target_internal
8044 = type_ptr->internal_elf_sym.st_target_internal;
8045 }
8046 else
8047 {
8048 sym.st_other = 0;
8049 sym.st_target_internal = 0;
8050 }
8051
8052 idx++;
8053 symstrtab[idx].sym = sym;
8054 symstrtab[idx].dest_index = outbound_syms_index;
8055 symstrtab[idx].destshndx_index = outbound_shndx_index;
8056
8057 outbound_syms_index++;
8058 if (outbound_shndx != NULL)
8059 outbound_shndx_index++;
8060 }
8061
8062 /* Finalize the .strtab section. */
8063 _bfd_elf_strtab_finalize (stt);
8064
8065 /* Swap out the .strtab section. */
8066 for (idx = 0; idx <= symcount; idx++)
8067 {
8068 struct elf_sym_strtab *elfsym = &symstrtab[idx];
8069 if (elfsym->sym.st_name == (unsigned long) -1)
8070 elfsym->sym.st_name = 0;
8071 else
8072 elfsym->sym.st_name = _bfd_elf_strtab_offset (stt,
8073 elfsym->sym.st_name);
8074 bed->s->swap_symbol_out (abfd, &elfsym->sym,
8075 (outbound_syms
8076 + (elfsym->dest_index
8077 * bed->s->sizeof_sym)),
8078 (outbound_shndx
8079 + (elfsym->destshndx_index
8080 * sizeof (Elf_External_Sym_Shndx))));
8081 }
8082 free (symstrtab);
8083
8084 *sttp = stt;
8085 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (stt);
8086 symstrtab_hdr->sh_type = SHT_STRTAB;
8087 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
8088 symstrtab_hdr->sh_addr = 0;
8089 symstrtab_hdr->sh_entsize = 0;
8090 symstrtab_hdr->sh_link = 0;
8091 symstrtab_hdr->sh_info = 0;
8092 symstrtab_hdr->sh_addralign = 1;
8093
8094 return TRUE;
8095 }
8096
8097 /* Return the number of bytes required to hold the symtab vector.
8098
8099 Note that we base it on the count plus 1, since we will null terminate
8100 the vector allocated based on this size. However, the ELF symbol table
8101 always has a dummy entry as symbol #0, so it ends up even. */
8102
8103 long
8104 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
8105 {
8106 long symcount;
8107 long symtab_size;
8108 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
8109
8110 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
8111 symtab_size = (symcount + 1) * (sizeof (asymbol *));
8112 if (symcount > 0)
8113 symtab_size -= sizeof (asymbol *);
8114
8115 return symtab_size;
8116 }
8117
8118 long
8119 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
8120 {
8121 long symcount;
8122 long symtab_size;
8123 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
8124
8125 if (elf_dynsymtab (abfd) == 0)
8126 {
8127 bfd_set_error (bfd_error_invalid_operation);
8128 return -1;
8129 }
8130
8131 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
8132 symtab_size = (symcount + 1) * (sizeof (asymbol *));
8133 if (symcount > 0)
8134 symtab_size -= sizeof (asymbol *);
8135
8136 return symtab_size;
8137 }
8138
8139 long
8140 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
8141 sec_ptr asect)
8142 {
8143 return (asect->reloc_count + 1) * sizeof (arelent *);
8144 }
8145
8146 /* Canonicalize the relocs. */
8147
8148 long
8149 _bfd_elf_canonicalize_reloc (bfd *abfd,
8150 sec_ptr section,
8151 arelent **relptr,
8152 asymbol **symbols)
8153 {
8154 arelent *tblptr;
8155 unsigned int i;
8156 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8157
8158 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
8159 return -1;
8160
8161 tblptr = section->relocation;
8162 for (i = 0; i < section->reloc_count; i++)
8163 *relptr++ = tblptr++;
8164
8165 *relptr = NULL;
8166
8167 return section->reloc_count;
8168 }
8169
8170 long
8171 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
8172 {
8173 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8174 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
8175
8176 if (symcount >= 0)
8177 bfd_get_symcount (abfd) = symcount;
8178 return symcount;
8179 }
8180
8181 long
8182 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
8183 asymbol **allocation)
8184 {
8185 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8186 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
8187
8188 if (symcount >= 0)
8189 bfd_get_dynamic_symcount (abfd) = symcount;
8190 return symcount;
8191 }
8192
8193 /* Return the size required for the dynamic reloc entries. Any loadable
8194 section that was actually installed in the BFD, and has type SHT_REL
8195 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
8196 dynamic reloc section. */
8197
8198 long
8199 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
8200 {
8201 long ret;
8202 asection *s;
8203
8204 if (elf_dynsymtab (abfd) == 0)
8205 {
8206 bfd_set_error (bfd_error_invalid_operation);
8207 return -1;
8208 }
8209
8210 ret = sizeof (arelent *);
8211 for (s = abfd->sections; s != NULL; s = s->next)
8212 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
8213 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
8214 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
8215 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
8216 * sizeof (arelent *));
8217
8218 return ret;
8219 }
8220
8221 /* Canonicalize the dynamic relocation entries. Note that we return the
8222 dynamic relocations as a single block, although they are actually
8223 associated with particular sections; the interface, which was
8224 designed for SunOS style shared libraries, expects that there is only
8225 one set of dynamic relocs. Any loadable section that was actually
8226 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
8227 dynamic symbol table, is considered to be a dynamic reloc section. */
8228
8229 long
8230 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
8231 arelent **storage,
8232 asymbol **syms)
8233 {
8234 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
8235 asection *s;
8236 long ret;
8237
8238 if (elf_dynsymtab (abfd) == 0)
8239 {
8240 bfd_set_error (bfd_error_invalid_operation);
8241 return -1;
8242 }
8243
8244 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
8245 ret = 0;
8246 for (s = abfd->sections; s != NULL; s = s->next)
8247 {
8248 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
8249 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
8250 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
8251 {
8252 arelent *p;
8253 long count, i;
8254
8255 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
8256 return -1;
8257 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
8258 p = s->relocation;
8259 for (i = 0; i < count; i++)
8260 *storage++ = p++;
8261 ret += count;
8262 }
8263 }
8264
8265 *storage = NULL;
8266
8267 return ret;
8268 }
8269 \f
8270 /* Read in the version information. */
8271
8272 bfd_boolean
8273 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
8274 {
8275 bfd_byte *contents = NULL;
8276 unsigned int freeidx = 0;
8277
8278 if (elf_dynverref (abfd) != 0)
8279 {
8280 Elf_Internal_Shdr *hdr;
8281 Elf_External_Verneed *everneed;
8282 Elf_Internal_Verneed *iverneed;
8283 unsigned int i;
8284 bfd_byte *contents_end;
8285
8286 hdr = &elf_tdata (abfd)->dynverref_hdr;
8287
8288 if (hdr->sh_info == 0
8289 || hdr->sh_info > hdr->sh_size / sizeof (Elf_External_Verneed))
8290 {
8291 error_return_bad_verref:
8292 _bfd_error_handler
8293 (_("%pB: .gnu.version_r invalid entry"), abfd);
8294 bfd_set_error (bfd_error_bad_value);
8295 error_return_verref:
8296 elf_tdata (abfd)->verref = NULL;
8297 elf_tdata (abfd)->cverrefs = 0;
8298 goto error_return;
8299 }
8300
8301 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
8302 if (contents == NULL)
8303 goto error_return_verref;
8304
8305 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
8306 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
8307 goto error_return_verref;
8308
8309 elf_tdata (abfd)->verref = (Elf_Internal_Verneed *)
8310 bfd_alloc2 (abfd, hdr->sh_info, sizeof (Elf_Internal_Verneed));
8311
8312 if (elf_tdata (abfd)->verref == NULL)
8313 goto error_return_verref;
8314
8315 BFD_ASSERT (sizeof (Elf_External_Verneed)
8316 == sizeof (Elf_External_Vernaux));
8317 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
8318 everneed = (Elf_External_Verneed *) contents;
8319 iverneed = elf_tdata (abfd)->verref;
8320 for (i = 0; i < hdr->sh_info; i++, iverneed++)
8321 {
8322 Elf_External_Vernaux *evernaux;
8323 Elf_Internal_Vernaux *ivernaux;
8324 unsigned int j;
8325
8326 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
8327
8328 iverneed->vn_bfd = abfd;
8329
8330 iverneed->vn_filename =
8331 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8332 iverneed->vn_file);
8333 if (iverneed->vn_filename == NULL)
8334 goto error_return_bad_verref;
8335
8336 if (iverneed->vn_cnt == 0)
8337 iverneed->vn_auxptr = NULL;
8338 else
8339 {
8340 iverneed->vn_auxptr = (struct elf_internal_vernaux *)
8341 bfd_alloc2 (abfd, iverneed->vn_cnt,
8342 sizeof (Elf_Internal_Vernaux));
8343 if (iverneed->vn_auxptr == NULL)
8344 goto error_return_verref;
8345 }
8346
8347 if (iverneed->vn_aux
8348 > (size_t) (contents_end - (bfd_byte *) everneed))
8349 goto error_return_bad_verref;
8350
8351 evernaux = ((Elf_External_Vernaux *)
8352 ((bfd_byte *) everneed + iverneed->vn_aux));
8353 ivernaux = iverneed->vn_auxptr;
8354 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
8355 {
8356 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
8357
8358 ivernaux->vna_nodename =
8359 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8360 ivernaux->vna_name);
8361 if (ivernaux->vna_nodename == NULL)
8362 goto error_return_bad_verref;
8363
8364 if (ivernaux->vna_other > freeidx)
8365 freeidx = ivernaux->vna_other;
8366
8367 ivernaux->vna_nextptr = NULL;
8368 if (ivernaux->vna_next == 0)
8369 {
8370 iverneed->vn_cnt = j + 1;
8371 break;
8372 }
8373 if (j + 1 < iverneed->vn_cnt)
8374 ivernaux->vna_nextptr = ivernaux + 1;
8375
8376 if (ivernaux->vna_next
8377 > (size_t) (contents_end - (bfd_byte *) evernaux))
8378 goto error_return_bad_verref;
8379
8380 evernaux = ((Elf_External_Vernaux *)
8381 ((bfd_byte *) evernaux + ivernaux->vna_next));
8382 }
8383
8384 iverneed->vn_nextref = NULL;
8385 if (iverneed->vn_next == 0)
8386 break;
8387 if (i + 1 < hdr->sh_info)
8388 iverneed->vn_nextref = iverneed + 1;
8389
8390 if (iverneed->vn_next
8391 > (size_t) (contents_end - (bfd_byte *) everneed))
8392 goto error_return_bad_verref;
8393
8394 everneed = ((Elf_External_Verneed *)
8395 ((bfd_byte *) everneed + iverneed->vn_next));
8396 }
8397 elf_tdata (abfd)->cverrefs = i;
8398
8399 free (contents);
8400 contents = NULL;
8401 }
8402
8403 if (elf_dynverdef (abfd) != 0)
8404 {
8405 Elf_Internal_Shdr *hdr;
8406 Elf_External_Verdef *everdef;
8407 Elf_Internal_Verdef *iverdef;
8408 Elf_Internal_Verdef *iverdefarr;
8409 Elf_Internal_Verdef iverdefmem;
8410 unsigned int i;
8411 unsigned int maxidx;
8412 bfd_byte *contents_end_def, *contents_end_aux;
8413
8414 hdr = &elf_tdata (abfd)->dynverdef_hdr;
8415
8416 if (hdr->sh_info == 0 || hdr->sh_size < sizeof (Elf_External_Verdef))
8417 {
8418 error_return_bad_verdef:
8419 _bfd_error_handler
8420 (_("%pB: .gnu.version_d invalid entry"), abfd);
8421 bfd_set_error (bfd_error_bad_value);
8422 error_return_verdef:
8423 elf_tdata (abfd)->verdef = NULL;
8424 elf_tdata (abfd)->cverdefs = 0;
8425 goto error_return;
8426 }
8427
8428 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
8429 if (contents == NULL)
8430 goto error_return_verdef;
8431 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
8432 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
8433 goto error_return_verdef;
8434
8435 BFD_ASSERT (sizeof (Elf_External_Verdef)
8436 >= sizeof (Elf_External_Verdaux));
8437 contents_end_def = contents + hdr->sh_size
8438 - sizeof (Elf_External_Verdef);
8439 contents_end_aux = contents + hdr->sh_size
8440 - sizeof (Elf_External_Verdaux);
8441
8442 /* We know the number of entries in the section but not the maximum
8443 index. Therefore we have to run through all entries and find
8444 the maximum. */
8445 everdef = (Elf_External_Verdef *) contents;
8446 maxidx = 0;
8447 for (i = 0; i < hdr->sh_info; ++i)
8448 {
8449 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
8450
8451 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) == 0)
8452 goto error_return_bad_verdef;
8453 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
8454 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
8455
8456 if (iverdefmem.vd_next == 0)
8457 break;
8458
8459 if (iverdefmem.vd_next
8460 > (size_t) (contents_end_def - (bfd_byte *) everdef))
8461 goto error_return_bad_verdef;
8462
8463 everdef = ((Elf_External_Verdef *)
8464 ((bfd_byte *) everdef + iverdefmem.vd_next));
8465 }
8466
8467 if (default_imported_symver)
8468 {
8469 if (freeidx > maxidx)
8470 maxidx = ++freeidx;
8471 else
8472 freeidx = ++maxidx;
8473 }
8474
8475 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
8476 bfd_zalloc2 (abfd, maxidx, sizeof (Elf_Internal_Verdef));
8477 if (elf_tdata (abfd)->verdef == NULL)
8478 goto error_return_verdef;
8479
8480 elf_tdata (abfd)->cverdefs = maxidx;
8481
8482 everdef = (Elf_External_Verdef *) contents;
8483 iverdefarr = elf_tdata (abfd)->verdef;
8484 for (i = 0; i < hdr->sh_info; i++)
8485 {
8486 Elf_External_Verdaux *everdaux;
8487 Elf_Internal_Verdaux *iverdaux;
8488 unsigned int j;
8489
8490 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
8491
8492 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
8493 goto error_return_bad_verdef;
8494
8495 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
8496 memcpy (iverdef, &iverdefmem, offsetof (Elf_Internal_Verdef, vd_bfd));
8497
8498 iverdef->vd_bfd = abfd;
8499
8500 if (iverdef->vd_cnt == 0)
8501 iverdef->vd_auxptr = NULL;
8502 else
8503 {
8504 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
8505 bfd_alloc2 (abfd, iverdef->vd_cnt,
8506 sizeof (Elf_Internal_Verdaux));
8507 if (iverdef->vd_auxptr == NULL)
8508 goto error_return_verdef;
8509 }
8510
8511 if (iverdef->vd_aux
8512 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
8513 goto error_return_bad_verdef;
8514
8515 everdaux = ((Elf_External_Verdaux *)
8516 ((bfd_byte *) everdef + iverdef->vd_aux));
8517 iverdaux = iverdef->vd_auxptr;
8518 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
8519 {
8520 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
8521
8522 iverdaux->vda_nodename =
8523 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8524 iverdaux->vda_name);
8525 if (iverdaux->vda_nodename == NULL)
8526 goto error_return_bad_verdef;
8527
8528 iverdaux->vda_nextptr = NULL;
8529 if (iverdaux->vda_next == 0)
8530 {
8531 iverdef->vd_cnt = j + 1;
8532 break;
8533 }
8534 if (j + 1 < iverdef->vd_cnt)
8535 iverdaux->vda_nextptr = iverdaux + 1;
8536
8537 if (iverdaux->vda_next
8538 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
8539 goto error_return_bad_verdef;
8540
8541 everdaux = ((Elf_External_Verdaux *)
8542 ((bfd_byte *) everdaux + iverdaux->vda_next));
8543 }
8544
8545 iverdef->vd_nodename = NULL;
8546 if (iverdef->vd_cnt)
8547 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
8548
8549 iverdef->vd_nextdef = NULL;
8550 if (iverdef->vd_next == 0)
8551 break;
8552 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
8553 iverdef->vd_nextdef = iverdef + 1;
8554
8555 everdef = ((Elf_External_Verdef *)
8556 ((bfd_byte *) everdef + iverdef->vd_next));
8557 }
8558
8559 free (contents);
8560 contents = NULL;
8561 }
8562 else if (default_imported_symver)
8563 {
8564 if (freeidx < 3)
8565 freeidx = 3;
8566 else
8567 freeidx++;
8568
8569 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
8570 bfd_zalloc2 (abfd, freeidx, sizeof (Elf_Internal_Verdef));
8571 if (elf_tdata (abfd)->verdef == NULL)
8572 goto error_return;
8573
8574 elf_tdata (abfd)->cverdefs = freeidx;
8575 }
8576
8577 /* Create a default version based on the soname. */
8578 if (default_imported_symver)
8579 {
8580 Elf_Internal_Verdef *iverdef;
8581 Elf_Internal_Verdaux *iverdaux;
8582
8583 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];
8584
8585 iverdef->vd_version = VER_DEF_CURRENT;
8586 iverdef->vd_flags = 0;
8587 iverdef->vd_ndx = freeidx;
8588 iverdef->vd_cnt = 1;
8589
8590 iverdef->vd_bfd = abfd;
8591
8592 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
8593 if (iverdef->vd_nodename == NULL)
8594 goto error_return_verdef;
8595 iverdef->vd_nextdef = NULL;
8596 iverdef->vd_auxptr = ((struct elf_internal_verdaux *)
8597 bfd_zalloc (abfd, sizeof (Elf_Internal_Verdaux)));
8598 if (iverdef->vd_auxptr == NULL)
8599 goto error_return_verdef;
8600
8601 iverdaux = iverdef->vd_auxptr;
8602 iverdaux->vda_nodename = iverdef->vd_nodename;
8603 }
8604
8605 return TRUE;
8606
8607 error_return:
8608 if (contents != NULL)
8609 free (contents);
8610 return FALSE;
8611 }
8612 \f
8613 asymbol *
8614 _bfd_elf_make_empty_symbol (bfd *abfd)
8615 {
8616 elf_symbol_type *newsym;
8617
8618 newsym = (elf_symbol_type *) bfd_zalloc (abfd, sizeof * newsym);
8619 if (!newsym)
8620 return NULL;
8621 newsym->symbol.the_bfd = abfd;
8622 return &newsym->symbol;
8623 }
8624
8625 void
8626 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
8627 asymbol *symbol,
8628 symbol_info *ret)
8629 {
8630 bfd_symbol_info (symbol, ret);
8631 }
8632
8633 /* Return whether a symbol name implies a local symbol. Most targets
8634 use this function for the is_local_label_name entry point, but some
8635 override it. */
8636
8637 bfd_boolean
8638 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
8639 const char *name)
8640 {
8641 /* Normal local symbols start with ``.L''. */
8642 if (name[0] == '.' && name[1] == 'L')
8643 return TRUE;
8644
8645 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
8646 DWARF debugging symbols starting with ``..''. */
8647 if (name[0] == '.' && name[1] == '.')
8648 return TRUE;
8649
8650 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
8651 emitting DWARF debugging output. I suspect this is actually a
8652 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
8653 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
8654 underscore to be emitted on some ELF targets). For ease of use,
8655 we treat such symbols as local. */
8656 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
8657 return TRUE;
8658
8659 /* Treat assembler generated fake symbols, dollar local labels and
8660 forward-backward labels (aka local labels) as locals.
8661 These labels have the form:
8662
8663 L0^A.* (fake symbols)
8664
8665 [.]?L[0123456789]+{^A|^B}[0123456789]* (local labels)
8666
8667 Versions which start with .L will have already been matched above,
8668 so we only need to match the rest. */
8669 if (name[0] == 'L' && ISDIGIT (name[1]))
8670 {
8671 bfd_boolean ret = FALSE;
8672 const char * p;
8673 char c;
8674
8675 for (p = name + 2; (c = *p); p++)
8676 {
8677 if (c == 1 || c == 2)
8678 {
8679 if (c == 1 && p == name + 2)
8680 /* A fake symbol. */
8681 return TRUE;
8682
8683 /* FIXME: We are being paranoid here and treating symbols like
8684 L0^Bfoo as if there were non-local, on the grounds that the
8685 assembler will never generate them. But can any symbol
8686 containing an ASCII value in the range 1-31 ever be anything
8687 other than some kind of local ? */
8688 ret = TRUE;
8689 }
8690
8691 if (! ISDIGIT (c))
8692 {
8693 ret = FALSE;
8694 break;
8695 }
8696 }
8697 return ret;
8698 }
8699
8700 return FALSE;
8701 }
8702
8703 alent *
8704 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
8705 asymbol *symbol ATTRIBUTE_UNUSED)
8706 {
8707 abort ();
8708 return NULL;
8709 }
8710
8711 bfd_boolean
8712 _bfd_elf_set_arch_mach (bfd *abfd,
8713 enum bfd_architecture arch,
8714 unsigned long machine)
8715 {
8716 /* If this isn't the right architecture for this backend, and this
8717 isn't the generic backend, fail. */
8718 if (arch != get_elf_backend_data (abfd)->arch
8719 && arch != bfd_arch_unknown
8720 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
8721 return FALSE;
8722
8723 return bfd_default_set_arch_mach (abfd, arch, machine);
8724 }
8725
8726 /* Find the nearest line to a particular section and offset,
8727 for error reporting. */
8728
8729 bfd_boolean
8730 _bfd_elf_find_nearest_line (bfd *abfd,
8731 asymbol **symbols,
8732 asection *section,
8733 bfd_vma offset,
8734 const char **filename_ptr,
8735 const char **functionname_ptr,
8736 unsigned int *line_ptr,
8737 unsigned int *discriminator_ptr)
8738 {
8739 bfd_boolean found;
8740
8741 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
8742 filename_ptr, functionname_ptr,
8743 line_ptr, discriminator_ptr,
8744 dwarf_debug_sections, 0,
8745 &elf_tdata (abfd)->dwarf2_find_line_info)
8746 || _bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
8747 filename_ptr, functionname_ptr,
8748 line_ptr))
8749 {
8750 if (!*functionname_ptr)
8751 _bfd_elf_find_function (abfd, symbols, section, offset,
8752 *filename_ptr ? NULL : filename_ptr,
8753 functionname_ptr);
8754 return TRUE;
8755 }
8756
8757 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
8758 &found, filename_ptr,
8759 functionname_ptr, line_ptr,
8760 &elf_tdata (abfd)->line_info))
8761 return FALSE;
8762 if (found && (*functionname_ptr || *line_ptr))
8763 return TRUE;
8764
8765 if (symbols == NULL)
8766 return FALSE;
8767
8768 if (! _bfd_elf_find_function (abfd, symbols, section, offset,
8769 filename_ptr, functionname_ptr))
8770 return FALSE;
8771
8772 *line_ptr = 0;
8773 return TRUE;
8774 }
8775
8776 /* Find the line for a symbol. */
8777
8778 bfd_boolean
8779 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
8780 const char **filename_ptr, unsigned int *line_ptr)
8781 {
8782 return _bfd_dwarf2_find_nearest_line (abfd, symbols, symbol, NULL, 0,
8783 filename_ptr, NULL, line_ptr, NULL,
8784 dwarf_debug_sections, 0,
8785 &elf_tdata (abfd)->dwarf2_find_line_info);
8786 }
8787
8788 /* After a call to bfd_find_nearest_line, successive calls to
8789 bfd_find_inliner_info can be used to get source information about
8790 each level of function inlining that terminated at the address
8791 passed to bfd_find_nearest_line. Currently this is only supported
8792 for DWARF2 with appropriate DWARF3 extensions. */
8793
8794 bfd_boolean
8795 _bfd_elf_find_inliner_info (bfd *abfd,
8796 const char **filename_ptr,
8797 const char **functionname_ptr,
8798 unsigned int *line_ptr)
8799 {
8800 bfd_boolean found;
8801 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
8802 functionname_ptr, line_ptr,
8803 & elf_tdata (abfd)->dwarf2_find_line_info);
8804 return found;
8805 }
8806
8807 int
8808 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
8809 {
8810 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8811 int ret = bed->s->sizeof_ehdr;
8812
8813 if (!bfd_link_relocatable (info))
8814 {
8815 bfd_size_type phdr_size = elf_program_header_size (abfd);
8816
8817 if (phdr_size == (bfd_size_type) -1)
8818 {
8819 struct elf_segment_map *m;
8820
8821 phdr_size = 0;
8822 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
8823 phdr_size += bed->s->sizeof_phdr;
8824
8825 if (phdr_size == 0)
8826 phdr_size = get_program_header_size (abfd, info);
8827 }
8828
8829 elf_program_header_size (abfd) = phdr_size;
8830 ret += phdr_size;
8831 }
8832
8833 return ret;
8834 }
8835
8836 bfd_boolean
8837 _bfd_elf_set_section_contents (bfd *abfd,
8838 sec_ptr section,
8839 const void *location,
8840 file_ptr offset,
8841 bfd_size_type count)
8842 {
8843 Elf_Internal_Shdr *hdr;
8844 file_ptr pos;
8845
8846 if (! abfd->output_has_begun
8847 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
8848 return FALSE;
8849
8850 if (!count)
8851 return TRUE;
8852
8853 hdr = &elf_section_data (section)->this_hdr;
8854 if (hdr->sh_offset == (file_ptr) -1)
8855 {
8856 /* We must compress this section. Write output to the buffer. */
8857 unsigned char *contents = hdr->contents;
8858 if ((offset + count) > hdr->sh_size
8859 || (section->flags & SEC_ELF_COMPRESS) == 0
8860 || contents == NULL)
8861 abort ();
8862 memcpy (contents + offset, location, count);
8863 return TRUE;
8864 }
8865 pos = hdr->sh_offset + offset;
8866 if (bfd_seek (abfd, pos, SEEK_SET) != 0
8867 || bfd_bwrite (location, count, abfd) != count)
8868 return FALSE;
8869
8870 return TRUE;
8871 }
8872
8873 bfd_boolean
8874 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
8875 arelent *cache_ptr ATTRIBUTE_UNUSED,
8876 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
8877 {
8878 abort ();
8879 return FALSE;
8880 }
8881
8882 /* Try to convert a non-ELF reloc into an ELF one. */
8883
8884 bfd_boolean
8885 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
8886 {
8887 /* Check whether we really have an ELF howto. */
8888
8889 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
8890 {
8891 bfd_reloc_code_real_type code;
8892 reloc_howto_type *howto;
8893
8894 /* Alien reloc: Try to determine its type to replace it with an
8895 equivalent ELF reloc. */
8896
8897 if (areloc->howto->pc_relative)
8898 {
8899 switch (areloc->howto->bitsize)
8900 {
8901 case 8:
8902 code = BFD_RELOC_8_PCREL;
8903 break;
8904 case 12:
8905 code = BFD_RELOC_12_PCREL;
8906 break;
8907 case 16:
8908 code = BFD_RELOC_16_PCREL;
8909 break;
8910 case 24:
8911 code = BFD_RELOC_24_PCREL;
8912 break;
8913 case 32:
8914 code = BFD_RELOC_32_PCREL;
8915 break;
8916 case 64:
8917 code = BFD_RELOC_64_PCREL;
8918 break;
8919 default:
8920 goto fail;
8921 }
8922
8923 howto = bfd_reloc_type_lookup (abfd, code);
8924
8925 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
8926 {
8927 if (howto->pcrel_offset)
8928 areloc->addend += areloc->address;
8929 else
8930 areloc->addend -= areloc->address; /* addend is unsigned!! */
8931 }
8932 }
8933 else
8934 {
8935 switch (areloc->howto->bitsize)
8936 {
8937 case 8:
8938 code = BFD_RELOC_8;
8939 break;
8940 case 14:
8941 code = BFD_RELOC_14;
8942 break;
8943 case 16:
8944 code = BFD_RELOC_16;
8945 break;
8946 case 26:
8947 code = BFD_RELOC_26;
8948 break;
8949 case 32:
8950 code = BFD_RELOC_32;
8951 break;
8952 case 64:
8953 code = BFD_RELOC_64;
8954 break;
8955 default:
8956 goto fail;
8957 }
8958
8959 howto = bfd_reloc_type_lookup (abfd, code);
8960 }
8961
8962 if (howto)
8963 areloc->howto = howto;
8964 else
8965 goto fail;
8966 }
8967
8968 return TRUE;
8969
8970 fail:
8971 /* xgettext:c-format */
8972 _bfd_error_handler (_("%pB: %s unsupported"),
8973 abfd, areloc->howto->name);
8974 bfd_set_error (bfd_error_bad_value);
8975 return FALSE;
8976 }
8977
8978 bfd_boolean
8979 _bfd_elf_close_and_cleanup (bfd *abfd)
8980 {
8981 struct elf_obj_tdata *tdata = elf_tdata (abfd);
8982 if (bfd_get_format (abfd) == bfd_object && tdata != NULL)
8983 {
8984 if (elf_tdata (abfd)->o != NULL && elf_shstrtab (abfd) != NULL)
8985 _bfd_elf_strtab_free (elf_shstrtab (abfd));
8986 _bfd_dwarf2_cleanup_debug_info (abfd, &tdata->dwarf2_find_line_info);
8987 }
8988
8989 return _bfd_generic_close_and_cleanup (abfd);
8990 }
8991
8992 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
8993 in the relocation's offset. Thus we cannot allow any sort of sanity
8994 range-checking to interfere. There is nothing else to do in processing
8995 this reloc. */
8996
8997 bfd_reloc_status_type
8998 _bfd_elf_rel_vtable_reloc_fn
8999 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
9000 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
9001 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
9002 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
9003 {
9004 return bfd_reloc_ok;
9005 }
9006 \f
9007 /* Elf core file support. Much of this only works on native
9008 toolchains, since we rely on knowing the
9009 machine-dependent procfs structure in order to pick
9010 out details about the corefile. */
9011
9012 #ifdef HAVE_SYS_PROCFS_H
9013 /* Needed for new procfs interface on sparc-solaris. */
9014 # define _STRUCTURED_PROC 1
9015 # include <sys/procfs.h>
9016 #endif
9017
9018 /* Return a PID that identifies a "thread" for threaded cores, or the
9019 PID of the main process for non-threaded cores. */
9020
9021 static int
9022 elfcore_make_pid (bfd *abfd)
9023 {
9024 int pid;
9025
9026 pid = elf_tdata (abfd)->core->lwpid;
9027 if (pid == 0)
9028 pid = elf_tdata (abfd)->core->pid;
9029
9030 return pid;
9031 }
9032
9033 /* If there isn't a section called NAME, make one, using
9034 data from SECT. Note, this function will generate a
9035 reference to NAME, so you shouldn't deallocate or
9036 overwrite it. */
9037
9038 static bfd_boolean
9039 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
9040 {
9041 asection *sect2;
9042
9043 if (bfd_get_section_by_name (abfd, name) != NULL)
9044 return TRUE;
9045
9046 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
9047 if (sect2 == NULL)
9048 return FALSE;
9049
9050 sect2->size = sect->size;
9051 sect2->filepos = sect->filepos;
9052 sect2->alignment_power = sect->alignment_power;
9053 return TRUE;
9054 }
9055
9056 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
9057 actually creates up to two pseudosections:
9058 - For the single-threaded case, a section named NAME, unless
9059 such a section already exists.
9060 - For the multi-threaded case, a section named "NAME/PID", where
9061 PID is elfcore_make_pid (abfd).
9062 Both pseudosections have identical contents. */
9063 bfd_boolean
9064 _bfd_elfcore_make_pseudosection (bfd *abfd,
9065 char *name,
9066 size_t size,
9067 ufile_ptr filepos)
9068 {
9069 char buf[100];
9070 char *threaded_name;
9071 size_t len;
9072 asection *sect;
9073
9074 /* Build the section name. */
9075
9076 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
9077 len = strlen (buf) + 1;
9078 threaded_name = (char *) bfd_alloc (abfd, len);
9079 if (threaded_name == NULL)
9080 return FALSE;
9081 memcpy (threaded_name, buf, len);
9082
9083 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
9084 SEC_HAS_CONTENTS);
9085 if (sect == NULL)
9086 return FALSE;
9087 sect->size = size;
9088 sect->filepos = filepos;
9089 sect->alignment_power = 2;
9090
9091 return elfcore_maybe_make_sect (abfd, name, sect);
9092 }
9093
9094 /* prstatus_t exists on:
9095 solaris 2.5+
9096 linux 2.[01] + glibc
9097 unixware 4.2
9098 */
9099
9100 #if defined (HAVE_PRSTATUS_T)
9101
9102 static bfd_boolean
9103 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
9104 {
9105 size_t size;
9106 int offset;
9107
9108 if (note->descsz == sizeof (prstatus_t))
9109 {
9110 prstatus_t prstat;
9111
9112 size = sizeof (prstat.pr_reg);
9113 offset = offsetof (prstatus_t, pr_reg);
9114 memcpy (&prstat, note->descdata, sizeof (prstat));
9115
9116 /* Do not overwrite the core signal if it
9117 has already been set by another thread. */
9118 if (elf_tdata (abfd)->core->signal == 0)
9119 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
9120 if (elf_tdata (abfd)->core->pid == 0)
9121 elf_tdata (abfd)->core->pid = prstat.pr_pid;
9122
9123 /* pr_who exists on:
9124 solaris 2.5+
9125 unixware 4.2
9126 pr_who doesn't exist on:
9127 linux 2.[01]
9128 */
9129 #if defined (HAVE_PRSTATUS_T_PR_WHO)
9130 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
9131 #else
9132 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
9133 #endif
9134 }
9135 #if defined (HAVE_PRSTATUS32_T)
9136 else if (note->descsz == sizeof (prstatus32_t))
9137 {
9138 /* 64-bit host, 32-bit corefile */
9139 prstatus32_t prstat;
9140
9141 size = sizeof (prstat.pr_reg);
9142 offset = offsetof (prstatus32_t, pr_reg);
9143 memcpy (&prstat, note->descdata, sizeof (prstat));
9144
9145 /* Do not overwrite the core signal if it
9146 has already been set by another thread. */
9147 if (elf_tdata (abfd)->core->signal == 0)
9148 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
9149 if (elf_tdata (abfd)->core->pid == 0)
9150 elf_tdata (abfd)->core->pid = prstat.pr_pid;
9151
9152 /* pr_who exists on:
9153 solaris 2.5+
9154 unixware 4.2
9155 pr_who doesn't exist on:
9156 linux 2.[01]
9157 */
9158 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
9159 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
9160 #else
9161 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
9162 #endif
9163 }
9164 #endif /* HAVE_PRSTATUS32_T */
9165 else
9166 {
9167 /* Fail - we don't know how to handle any other
9168 note size (ie. data object type). */
9169 return TRUE;
9170 }
9171
9172 /* Make a ".reg/999" section and a ".reg" section. */
9173 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
9174 size, note->descpos + offset);
9175 }
9176 #endif /* defined (HAVE_PRSTATUS_T) */
9177
9178 /* Create a pseudosection containing the exact contents of NOTE. */
9179 static bfd_boolean
9180 elfcore_make_note_pseudosection (bfd *abfd,
9181 char *name,
9182 Elf_Internal_Note *note)
9183 {
9184 return _bfd_elfcore_make_pseudosection (abfd, name,
9185 note->descsz, note->descpos);
9186 }
9187
9188 /* There isn't a consistent prfpregset_t across platforms,
9189 but it doesn't matter, because we don't have to pick this
9190 data structure apart. */
9191
9192 static bfd_boolean
9193 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
9194 {
9195 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
9196 }
9197
9198 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
9199 type of NT_PRXFPREG. Just include the whole note's contents
9200 literally. */
9201
9202 static bfd_boolean
9203 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
9204 {
9205 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
9206 }
9207
9208 /* Linux dumps the Intel XSAVE extended state in a note named "LINUX"
9209 with a note type of NT_X86_XSTATE. Just include the whole note's
9210 contents literally. */
9211
9212 static bfd_boolean
9213 elfcore_grok_xstatereg (bfd *abfd, Elf_Internal_Note *note)
9214 {
9215 return elfcore_make_note_pseudosection (abfd, ".reg-xstate", note);
9216 }
9217
9218 static bfd_boolean
9219 elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
9220 {
9221 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
9222 }
9223
9224 static bfd_boolean
9225 elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note)
9226 {
9227 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note);
9228 }
9229
9230 static bfd_boolean
9231 elfcore_grok_s390_high_gprs (bfd *abfd, Elf_Internal_Note *note)
9232 {
9233 return elfcore_make_note_pseudosection (abfd, ".reg-s390-high-gprs", note);
9234 }
9235
9236 static bfd_boolean
9237 elfcore_grok_s390_timer (bfd *abfd, Elf_Internal_Note *note)
9238 {
9239 return elfcore_make_note_pseudosection (abfd, ".reg-s390-timer", note);
9240 }
9241
9242 static bfd_boolean
9243 elfcore_grok_s390_todcmp (bfd *abfd, Elf_Internal_Note *note)
9244 {
9245 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todcmp", note);
9246 }
9247
9248 static bfd_boolean
9249 elfcore_grok_s390_todpreg (bfd *abfd, Elf_Internal_Note *note)
9250 {
9251 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todpreg", note);
9252 }
9253
9254 static bfd_boolean
9255 elfcore_grok_s390_ctrs (bfd *abfd, Elf_Internal_Note *note)
9256 {
9257 return elfcore_make_note_pseudosection (abfd, ".reg-s390-ctrs", note);
9258 }
9259
9260 static bfd_boolean
9261 elfcore_grok_s390_prefix (bfd *abfd, Elf_Internal_Note *note)
9262 {
9263 return elfcore_make_note_pseudosection (abfd, ".reg-s390-prefix", note);
9264 }
9265
9266 static bfd_boolean
9267 elfcore_grok_s390_last_break (bfd *abfd, Elf_Internal_Note *note)
9268 {
9269 return elfcore_make_note_pseudosection (abfd, ".reg-s390-last-break", note);
9270 }
9271
9272 static bfd_boolean
9273 elfcore_grok_s390_system_call (bfd *abfd, Elf_Internal_Note *note)
9274 {
9275 return elfcore_make_note_pseudosection (abfd, ".reg-s390-system-call", note);
9276 }
9277
9278 static bfd_boolean
9279 elfcore_grok_s390_tdb (bfd *abfd, Elf_Internal_Note *note)
9280 {
9281 return elfcore_make_note_pseudosection (abfd, ".reg-s390-tdb", note);
9282 }
9283
9284 static bfd_boolean
9285 elfcore_grok_s390_vxrs_low (bfd *abfd, Elf_Internal_Note *note)
9286 {
9287 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-low", note);
9288 }
9289
9290 static bfd_boolean
9291 elfcore_grok_s390_vxrs_high (bfd *abfd, Elf_Internal_Note *note)
9292 {
9293 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-high", note);
9294 }
9295
9296 static bfd_boolean
9297 elfcore_grok_s390_gs_cb (bfd *abfd, Elf_Internal_Note *note)
9298 {
9299 return elfcore_make_note_pseudosection (abfd, ".reg-s390-gs-cb", note);
9300 }
9301
9302 static bfd_boolean
9303 elfcore_grok_s390_gs_bc (bfd *abfd, Elf_Internal_Note *note)
9304 {
9305 return elfcore_make_note_pseudosection (abfd, ".reg-s390-gs-bc", note);
9306 }
9307
9308 static bfd_boolean
9309 elfcore_grok_arm_vfp (bfd *abfd, Elf_Internal_Note *note)
9310 {
9311 return elfcore_make_note_pseudosection (abfd, ".reg-arm-vfp", note);
9312 }
9313
9314 static bfd_boolean
9315 elfcore_grok_aarch_tls (bfd *abfd, Elf_Internal_Note *note)
9316 {
9317 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-tls", note);
9318 }
9319
9320 static bfd_boolean
9321 elfcore_grok_aarch_hw_break (bfd *abfd, Elf_Internal_Note *note)
9322 {
9323 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-break", note);
9324 }
9325
9326 static bfd_boolean
9327 elfcore_grok_aarch_hw_watch (bfd *abfd, Elf_Internal_Note *note)
9328 {
9329 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-watch", note);
9330 }
9331
9332 #if defined (HAVE_PRPSINFO_T)
9333 typedef prpsinfo_t elfcore_psinfo_t;
9334 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
9335 typedef prpsinfo32_t elfcore_psinfo32_t;
9336 #endif
9337 #endif
9338
9339 #if defined (HAVE_PSINFO_T)
9340 typedef psinfo_t elfcore_psinfo_t;
9341 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
9342 typedef psinfo32_t elfcore_psinfo32_t;
9343 #endif
9344 #endif
9345
9346 /* return a malloc'ed copy of a string at START which is at
9347 most MAX bytes long, possibly without a terminating '\0'.
9348 the copy will always have a terminating '\0'. */
9349
9350 char *
9351 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
9352 {
9353 char *dups;
9354 char *end = (char *) memchr (start, '\0', max);
9355 size_t len;
9356
9357 if (end == NULL)
9358 len = max;
9359 else
9360 len = end - start;
9361
9362 dups = (char *) bfd_alloc (abfd, len + 1);
9363 if (dups == NULL)
9364 return NULL;
9365
9366 memcpy (dups, start, len);
9367 dups[len] = '\0';
9368
9369 return dups;
9370 }
9371
9372 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
9373 static bfd_boolean
9374 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
9375 {
9376 if (note->descsz == sizeof (elfcore_psinfo_t))
9377 {
9378 elfcore_psinfo_t psinfo;
9379
9380 memcpy (&psinfo, note->descdata, sizeof (psinfo));
9381
9382 #if defined (HAVE_PSINFO_T_PR_PID) || defined (HAVE_PRPSINFO_T_PR_PID)
9383 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
9384 #endif
9385 elf_tdata (abfd)->core->program
9386 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
9387 sizeof (psinfo.pr_fname));
9388
9389 elf_tdata (abfd)->core->command
9390 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
9391 sizeof (psinfo.pr_psargs));
9392 }
9393 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
9394 else if (note->descsz == sizeof (elfcore_psinfo32_t))
9395 {
9396 /* 64-bit host, 32-bit corefile */
9397 elfcore_psinfo32_t psinfo;
9398
9399 memcpy (&psinfo, note->descdata, sizeof (psinfo));
9400
9401 #if defined (HAVE_PSINFO32_T_PR_PID) || defined (HAVE_PRPSINFO32_T_PR_PID)
9402 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
9403 #endif
9404 elf_tdata (abfd)->core->program
9405 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
9406 sizeof (psinfo.pr_fname));
9407
9408 elf_tdata (abfd)->core->command
9409 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
9410 sizeof (psinfo.pr_psargs));
9411 }
9412 #endif
9413
9414 else
9415 {
9416 /* Fail - we don't know how to handle any other
9417 note size (ie. data object type). */
9418 return TRUE;
9419 }
9420
9421 /* Note that for some reason, a spurious space is tacked
9422 onto the end of the args in some (at least one anyway)
9423 implementations, so strip it off if it exists. */
9424
9425 {
9426 char *command = elf_tdata (abfd)->core->command;
9427 int n = strlen (command);
9428
9429 if (0 < n && command[n - 1] == ' ')
9430 command[n - 1] = '\0';
9431 }
9432
9433 return TRUE;
9434 }
9435 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
9436
9437 #if defined (HAVE_PSTATUS_T)
9438 static bfd_boolean
9439 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
9440 {
9441 if (note->descsz == sizeof (pstatus_t)
9442 #if defined (HAVE_PXSTATUS_T)
9443 || note->descsz == sizeof (pxstatus_t)
9444 #endif
9445 )
9446 {
9447 pstatus_t pstat;
9448
9449 memcpy (&pstat, note->descdata, sizeof (pstat));
9450
9451 elf_tdata (abfd)->core->pid = pstat.pr_pid;
9452 }
9453 #if defined (HAVE_PSTATUS32_T)
9454 else if (note->descsz == sizeof (pstatus32_t))
9455 {
9456 /* 64-bit host, 32-bit corefile */
9457 pstatus32_t pstat;
9458
9459 memcpy (&pstat, note->descdata, sizeof (pstat));
9460
9461 elf_tdata (abfd)->core->pid = pstat.pr_pid;
9462 }
9463 #endif
9464 /* Could grab some more details from the "representative"
9465 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
9466 NT_LWPSTATUS note, presumably. */
9467
9468 return TRUE;
9469 }
9470 #endif /* defined (HAVE_PSTATUS_T) */
9471
9472 #if defined (HAVE_LWPSTATUS_T)
9473 static bfd_boolean
9474 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
9475 {
9476 lwpstatus_t lwpstat;
9477 char buf[100];
9478 char *name;
9479 size_t len;
9480 asection *sect;
9481
9482 if (note->descsz != sizeof (lwpstat)
9483 #if defined (HAVE_LWPXSTATUS_T)
9484 && note->descsz != sizeof (lwpxstatus_t)
9485 #endif
9486 )
9487 return TRUE;
9488
9489 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
9490
9491 elf_tdata (abfd)->core->lwpid = lwpstat.pr_lwpid;
9492 /* Do not overwrite the core signal if it has already been set by
9493 another thread. */
9494 if (elf_tdata (abfd)->core->signal == 0)
9495 elf_tdata (abfd)->core->signal = lwpstat.pr_cursig;
9496
9497 /* Make a ".reg/999" section. */
9498
9499 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
9500 len = strlen (buf) + 1;
9501 name = bfd_alloc (abfd, len);
9502 if (name == NULL)
9503 return FALSE;
9504 memcpy (name, buf, len);
9505
9506 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9507 if (sect == NULL)
9508 return FALSE;
9509
9510 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9511 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
9512 sect->filepos = note->descpos
9513 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
9514 #endif
9515
9516 #if defined (HAVE_LWPSTATUS_T_PR_REG)
9517 sect->size = sizeof (lwpstat.pr_reg);
9518 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
9519 #endif
9520
9521 sect->alignment_power = 2;
9522
9523 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
9524 return FALSE;
9525
9526 /* Make a ".reg2/999" section */
9527
9528 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
9529 len = strlen (buf) + 1;
9530 name = bfd_alloc (abfd, len);
9531 if (name == NULL)
9532 return FALSE;
9533 memcpy (name, buf, len);
9534
9535 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9536 if (sect == NULL)
9537 return FALSE;
9538
9539 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9540 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
9541 sect->filepos = note->descpos
9542 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
9543 #endif
9544
9545 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
9546 sect->size = sizeof (lwpstat.pr_fpreg);
9547 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
9548 #endif
9549
9550 sect->alignment_power = 2;
9551
9552 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
9553 }
9554 #endif /* defined (HAVE_LWPSTATUS_T) */
9555
9556 static bfd_boolean
9557 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
9558 {
9559 char buf[30];
9560 char *name;
9561 size_t len;
9562 asection *sect;
9563 int type;
9564 int is_active_thread;
9565 bfd_vma base_addr;
9566
9567 if (note->descsz < 728)
9568 return TRUE;
9569
9570 if (! CONST_STRNEQ (note->namedata, "win32"))
9571 return TRUE;
9572
9573 type = bfd_get_32 (abfd, note->descdata);
9574
9575 switch (type)
9576 {
9577 case 1 /* NOTE_INFO_PROCESS */:
9578 /* FIXME: need to add ->core->command. */
9579 /* process_info.pid */
9580 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, note->descdata + 8);
9581 /* process_info.signal */
9582 elf_tdata (abfd)->core->signal = bfd_get_32 (abfd, note->descdata + 12);
9583 break;
9584
9585 case 2 /* NOTE_INFO_THREAD */:
9586 /* Make a ".reg/999" section. */
9587 /* thread_info.tid */
9588 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 8));
9589
9590 len = strlen (buf) + 1;
9591 name = (char *) bfd_alloc (abfd, len);
9592 if (name == NULL)
9593 return FALSE;
9594
9595 memcpy (name, buf, len);
9596
9597 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9598 if (sect == NULL)
9599 return FALSE;
9600
9601 /* sizeof (thread_info.thread_context) */
9602 sect->size = 716;
9603 /* offsetof (thread_info.thread_context) */
9604 sect->filepos = note->descpos + 12;
9605 sect->alignment_power = 2;
9606
9607 /* thread_info.is_active_thread */
9608 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
9609
9610 if (is_active_thread)
9611 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
9612 return FALSE;
9613 break;
9614
9615 case 3 /* NOTE_INFO_MODULE */:
9616 /* Make a ".module/xxxxxxxx" section. */
9617 /* module_info.base_address */
9618 base_addr = bfd_get_32 (abfd, note->descdata + 4);
9619 sprintf (buf, ".module/%08lx", (unsigned long) base_addr);
9620
9621 len = strlen (buf) + 1;
9622 name = (char *) bfd_alloc (abfd, len);
9623 if (name == NULL)
9624 return FALSE;
9625
9626 memcpy (name, buf, len);
9627
9628 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9629
9630 if (sect == NULL)
9631 return FALSE;
9632
9633 sect->size = note->descsz;
9634 sect->filepos = note->descpos;
9635 sect->alignment_power = 2;
9636 break;
9637
9638 default:
9639 return TRUE;
9640 }
9641
9642 return TRUE;
9643 }
9644
9645 static bfd_boolean
9646 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
9647 {
9648 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9649
9650 switch (note->type)
9651 {
9652 default:
9653 return TRUE;
9654
9655 case NT_PRSTATUS:
9656 if (bed->elf_backend_grok_prstatus)
9657 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
9658 return TRUE;
9659 #if defined (HAVE_PRSTATUS_T)
9660 return elfcore_grok_prstatus (abfd, note);
9661 #else
9662 return TRUE;
9663 #endif
9664
9665 #if defined (HAVE_PSTATUS_T)
9666 case NT_PSTATUS:
9667 return elfcore_grok_pstatus (abfd, note);
9668 #endif
9669
9670 #if defined (HAVE_LWPSTATUS_T)
9671 case NT_LWPSTATUS:
9672 return elfcore_grok_lwpstatus (abfd, note);
9673 #endif
9674
9675 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
9676 return elfcore_grok_prfpreg (abfd, note);
9677
9678 case NT_WIN32PSTATUS:
9679 return elfcore_grok_win32pstatus (abfd, note);
9680
9681 case NT_PRXFPREG: /* Linux SSE extension */
9682 if (note->namesz == 6
9683 && strcmp (note->namedata, "LINUX") == 0)
9684 return elfcore_grok_prxfpreg (abfd, note);
9685 else
9686 return TRUE;
9687
9688 case NT_X86_XSTATE: /* Linux XSAVE extension */
9689 if (note->namesz == 6
9690 && strcmp (note->namedata, "LINUX") == 0)
9691 return elfcore_grok_xstatereg (abfd, note);
9692 else
9693 return TRUE;
9694
9695 case NT_PPC_VMX:
9696 if (note->namesz == 6
9697 && strcmp (note->namedata, "LINUX") == 0)
9698 return elfcore_grok_ppc_vmx (abfd, note);
9699 else
9700 return TRUE;
9701
9702 case NT_PPC_VSX:
9703 if (note->namesz == 6
9704 && strcmp (note->namedata, "LINUX") == 0)
9705 return elfcore_grok_ppc_vsx (abfd, note);
9706 else
9707 return TRUE;
9708
9709 case NT_S390_HIGH_GPRS:
9710 if (note->namesz == 6
9711 && strcmp (note->namedata, "LINUX") == 0)
9712 return elfcore_grok_s390_high_gprs (abfd, note);
9713 else
9714 return TRUE;
9715
9716 case NT_S390_TIMER:
9717 if (note->namesz == 6
9718 && strcmp (note->namedata, "LINUX") == 0)
9719 return elfcore_grok_s390_timer (abfd, note);
9720 else
9721 return TRUE;
9722
9723 case NT_S390_TODCMP:
9724 if (note->namesz == 6
9725 && strcmp (note->namedata, "LINUX") == 0)
9726 return elfcore_grok_s390_todcmp (abfd, note);
9727 else
9728 return TRUE;
9729
9730 case NT_S390_TODPREG:
9731 if (note->namesz == 6
9732 && strcmp (note->namedata, "LINUX") == 0)
9733 return elfcore_grok_s390_todpreg (abfd, note);
9734 else
9735 return TRUE;
9736
9737 case NT_S390_CTRS:
9738 if (note->namesz == 6
9739 && strcmp (note->namedata, "LINUX") == 0)
9740 return elfcore_grok_s390_ctrs (abfd, note);
9741 else
9742 return TRUE;
9743
9744 case NT_S390_PREFIX:
9745 if (note->namesz == 6
9746 && strcmp (note->namedata, "LINUX") == 0)
9747 return elfcore_grok_s390_prefix (abfd, note);
9748 else
9749 return TRUE;
9750
9751 case NT_S390_LAST_BREAK:
9752 if (note->namesz == 6
9753 && strcmp (note->namedata, "LINUX") == 0)
9754 return elfcore_grok_s390_last_break (abfd, note);
9755 else
9756 return TRUE;
9757
9758 case NT_S390_SYSTEM_CALL:
9759 if (note->namesz == 6
9760 && strcmp (note->namedata, "LINUX") == 0)
9761 return elfcore_grok_s390_system_call (abfd, note);
9762 else
9763 return TRUE;
9764
9765 case NT_S390_TDB:
9766 if (note->namesz == 6
9767 && strcmp (note->namedata, "LINUX") == 0)
9768 return elfcore_grok_s390_tdb (abfd, note);
9769 else
9770 return TRUE;
9771
9772 case NT_S390_VXRS_LOW:
9773 if (note->namesz == 6
9774 && strcmp (note->namedata, "LINUX") == 0)
9775 return elfcore_grok_s390_vxrs_low (abfd, note);
9776 else
9777 return TRUE;
9778
9779 case NT_S390_VXRS_HIGH:
9780 if (note->namesz == 6
9781 && strcmp (note->namedata, "LINUX") == 0)
9782 return elfcore_grok_s390_vxrs_high (abfd, note);
9783 else
9784 return TRUE;
9785
9786 case NT_S390_GS_CB:
9787 if (note->namesz == 6
9788 && strcmp (note->namedata, "LINUX") == 0)
9789 return elfcore_grok_s390_gs_cb (abfd, note);
9790 else
9791 return TRUE;
9792
9793 case NT_S390_GS_BC:
9794 if (note->namesz == 6
9795 && strcmp (note->namedata, "LINUX") == 0)
9796 return elfcore_grok_s390_gs_bc (abfd, note);
9797 else
9798 return TRUE;
9799
9800 case NT_ARM_VFP:
9801 if (note->namesz == 6
9802 && strcmp (note->namedata, "LINUX") == 0)
9803 return elfcore_grok_arm_vfp (abfd, note);
9804 else
9805 return TRUE;
9806
9807 case NT_ARM_TLS:
9808 if (note->namesz == 6
9809 && strcmp (note->namedata, "LINUX") == 0)
9810 return elfcore_grok_aarch_tls (abfd, note);
9811 else
9812 return TRUE;
9813
9814 case NT_ARM_HW_BREAK:
9815 if (note->namesz == 6
9816 && strcmp (note->namedata, "LINUX") == 0)
9817 return elfcore_grok_aarch_hw_break (abfd, note);
9818 else
9819 return TRUE;
9820
9821 case NT_ARM_HW_WATCH:
9822 if (note->namesz == 6
9823 && strcmp (note->namedata, "LINUX") == 0)
9824 return elfcore_grok_aarch_hw_watch (abfd, note);
9825 else
9826 return TRUE;
9827
9828 case NT_PRPSINFO:
9829 case NT_PSINFO:
9830 if (bed->elf_backend_grok_psinfo)
9831 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
9832 return TRUE;
9833 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
9834 return elfcore_grok_psinfo (abfd, note);
9835 #else
9836 return TRUE;
9837 #endif
9838
9839 case NT_AUXV:
9840 {
9841 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
9842 SEC_HAS_CONTENTS);
9843
9844 if (sect == NULL)
9845 return FALSE;
9846 sect->size = note->descsz;
9847 sect->filepos = note->descpos;
9848 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
9849
9850 return TRUE;
9851 }
9852
9853 case NT_FILE:
9854 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.file",
9855 note);
9856
9857 case NT_SIGINFO:
9858 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.siginfo",
9859 note);
9860
9861 }
9862 }
9863
9864 static bfd_boolean
9865 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
9866 {
9867 struct bfd_build_id* build_id;
9868
9869 if (note->descsz == 0)
9870 return FALSE;
9871
9872 build_id = bfd_alloc (abfd, sizeof (struct bfd_build_id) - 1 + note->descsz);
9873 if (build_id == NULL)
9874 return FALSE;
9875
9876 build_id->size = note->descsz;
9877 memcpy (build_id->data, note->descdata, note->descsz);
9878 abfd->build_id = build_id;
9879
9880 return TRUE;
9881 }
9882
9883 static bfd_boolean
9884 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
9885 {
9886 switch (note->type)
9887 {
9888 default:
9889 return TRUE;
9890
9891 case NT_GNU_PROPERTY_TYPE_0:
9892 return _bfd_elf_parse_gnu_properties (abfd, note);
9893
9894 case NT_GNU_BUILD_ID:
9895 return elfobj_grok_gnu_build_id (abfd, note);
9896 }
9897 }
9898
9899 static bfd_boolean
9900 elfobj_grok_stapsdt_note_1 (bfd *abfd, Elf_Internal_Note *note)
9901 {
9902 struct sdt_note *cur =
9903 (struct sdt_note *) bfd_alloc (abfd, sizeof (struct sdt_note)
9904 + note->descsz);
9905
9906 cur->next = (struct sdt_note *) (elf_tdata (abfd))->sdt_note_head;
9907 cur->size = (bfd_size_type) note->descsz;
9908 memcpy (cur->data, note->descdata, note->descsz);
9909
9910 elf_tdata (abfd)->sdt_note_head = cur;
9911
9912 return TRUE;
9913 }
9914
9915 static bfd_boolean
9916 elfobj_grok_stapsdt_note (bfd *abfd, Elf_Internal_Note *note)
9917 {
9918 switch (note->type)
9919 {
9920 case NT_STAPSDT:
9921 return elfobj_grok_stapsdt_note_1 (abfd, note);
9922
9923 default:
9924 return TRUE;
9925 }
9926 }
9927
9928 static bfd_boolean
9929 elfcore_grok_freebsd_psinfo (bfd *abfd, Elf_Internal_Note *note)
9930 {
9931 size_t offset;
9932
9933 switch (elf_elfheader (abfd)->e_ident[EI_CLASS])
9934 {
9935 case ELFCLASS32:
9936 if (note->descsz < 108)
9937 return FALSE;
9938 break;
9939
9940 case ELFCLASS64:
9941 if (note->descsz < 120)
9942 return FALSE;
9943 break;
9944
9945 default:
9946 return FALSE;
9947 }
9948
9949 /* Check for version 1 in pr_version. */
9950 if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1)
9951 return FALSE;
9952
9953 offset = 4;
9954
9955 /* Skip over pr_psinfosz. */
9956 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS32)
9957 offset += 4;
9958 else
9959 {
9960 offset += 4; /* Padding before pr_psinfosz. */
9961 offset += 8;
9962 }
9963
9964 /* pr_fname is PRFNAMESZ (16) + 1 bytes in size. */
9965 elf_tdata (abfd)->core->program
9966 = _bfd_elfcore_strndup (abfd, note->descdata + offset, 17);
9967 offset += 17;
9968
9969 /* pr_psargs is PRARGSZ (80) + 1 bytes in size. */
9970 elf_tdata (abfd)->core->command
9971 = _bfd_elfcore_strndup (abfd, note->descdata + offset, 81);
9972 offset += 81;
9973
9974 /* Padding before pr_pid. */
9975 offset += 2;
9976
9977 /* The pr_pid field was added in version "1a". */
9978 if (note->descsz < offset + 4)
9979 return TRUE;
9980
9981 elf_tdata (abfd)->core->pid
9982 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
9983
9984 return TRUE;
9985 }
9986
9987 static bfd_boolean
9988 elfcore_grok_freebsd_prstatus (bfd *abfd, Elf_Internal_Note *note)
9989 {
9990 size_t offset;
9991 size_t size;
9992 size_t min_size;
9993
9994 /* Compute offset of pr_getregsz, skipping over pr_statussz.
9995 Also compute minimum size of this note. */
9996 switch (elf_elfheader (abfd)->e_ident[EI_CLASS])
9997 {
9998 case ELFCLASS32:
9999 offset = 4 + 4;
10000 min_size = offset + (4 * 2) + 4 + 4 + 4;
10001 break;
10002
10003 case ELFCLASS64:
10004 offset = 4 + 4 + 8; /* Includes padding before pr_statussz. */
10005 min_size = offset + (8 * 2) + 4 + 4 + 4 + 4;
10006 break;
10007
10008 default:
10009 return FALSE;
10010 }
10011
10012 if (note->descsz < min_size)
10013 return FALSE;
10014
10015 /* Check for version 1 in pr_version. */
10016 if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1)
10017 return FALSE;
10018
10019 /* Extract size of pr_reg from pr_gregsetsz. */
10020 /* Skip over pr_gregsetsz and pr_fpregsetsz. */
10021 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS32)
10022 {
10023 size = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10024 offset += 4 * 2;
10025 }
10026 else
10027 {
10028 size = bfd_h_get_64 (abfd, (bfd_byte *) note->descdata + offset);
10029 offset += 8 * 2;
10030 }
10031
10032 /* Skip over pr_osreldate. */
10033 offset += 4;
10034
10035 /* Read signal from pr_cursig. */
10036 if (elf_tdata (abfd)->core->signal == 0)
10037 elf_tdata (abfd)->core->signal
10038 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10039 offset += 4;
10040
10041 /* Read TID from pr_pid. */
10042 elf_tdata (abfd)->core->lwpid
10043 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10044 offset += 4;
10045
10046 /* Padding before pr_reg. */
10047 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
10048 offset += 4;
10049
10050 /* Make sure that there is enough data remaining in the note. */
10051 if ((note->descsz - offset) < size)
10052 return FALSE;
10053
10054 /* Make a ".reg/999" section and a ".reg" section. */
10055 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
10056 size, note->descpos + offset);
10057 }
10058
10059 static bfd_boolean
10060 elfcore_grok_freebsd_note (bfd *abfd, Elf_Internal_Note *note)
10061 {
10062 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10063
10064 switch (note->type)
10065 {
10066 case NT_PRSTATUS:
10067 if (bed->elf_backend_grok_freebsd_prstatus)
10068 if ((*bed->elf_backend_grok_freebsd_prstatus) (abfd, note))
10069 return TRUE;
10070 return elfcore_grok_freebsd_prstatus (abfd, note);
10071
10072 case NT_FPREGSET:
10073 return elfcore_grok_prfpreg (abfd, note);
10074
10075 case NT_PRPSINFO:
10076 return elfcore_grok_freebsd_psinfo (abfd, note);
10077
10078 case NT_FREEBSD_THRMISC:
10079 if (note->namesz == 8)
10080 return elfcore_make_note_pseudosection (abfd, ".thrmisc", note);
10081 else
10082 return TRUE;
10083
10084 case NT_FREEBSD_PROCSTAT_PROC:
10085 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.proc",
10086 note);
10087
10088 case NT_FREEBSD_PROCSTAT_FILES:
10089 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.files",
10090 note);
10091
10092 case NT_FREEBSD_PROCSTAT_VMMAP:
10093 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.vmmap",
10094 note);
10095
10096 case NT_FREEBSD_PROCSTAT_AUXV:
10097 {
10098 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
10099 SEC_HAS_CONTENTS);
10100
10101 if (sect == NULL)
10102 return FALSE;
10103 sect->size = note->descsz - 4;
10104 sect->filepos = note->descpos + 4;
10105 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
10106
10107 return TRUE;
10108 }
10109
10110 case NT_X86_XSTATE:
10111 if (note->namesz == 8)
10112 return elfcore_grok_xstatereg (abfd, note);
10113 else
10114 return TRUE;
10115
10116 case NT_FREEBSD_PTLWPINFO:
10117 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.lwpinfo",
10118 note);
10119
10120 case NT_ARM_VFP:
10121 return elfcore_grok_arm_vfp (abfd, note);
10122
10123 default:
10124 return TRUE;
10125 }
10126 }
10127
10128 static bfd_boolean
10129 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
10130 {
10131 char *cp;
10132
10133 cp = strchr (note->namedata, '@');
10134 if (cp != NULL)
10135 {
10136 *lwpidp = atoi(cp + 1);
10137 return TRUE;
10138 }
10139 return FALSE;
10140 }
10141
10142 static bfd_boolean
10143 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
10144 {
10145 if (note->descsz <= 0x7c + 31)
10146 return FALSE;
10147
10148 /* Signal number at offset 0x08. */
10149 elf_tdata (abfd)->core->signal
10150 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
10151
10152 /* Process ID at offset 0x50. */
10153 elf_tdata (abfd)->core->pid
10154 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
10155
10156 /* Command name at 0x7c (max 32 bytes, including nul). */
10157 elf_tdata (abfd)->core->command
10158 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
10159
10160 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
10161 note);
10162 }
10163
10164 static bfd_boolean
10165 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
10166 {
10167 int lwp;
10168
10169 if (elfcore_netbsd_get_lwpid (note, &lwp))
10170 elf_tdata (abfd)->core->lwpid = lwp;
10171
10172 if (note->type == NT_NETBSDCORE_PROCINFO)
10173 {
10174 /* NetBSD-specific core "procinfo". Note that we expect to
10175 find this note before any of the others, which is fine,
10176 since the kernel writes this note out first when it
10177 creates a core file. */
10178
10179 return elfcore_grok_netbsd_procinfo (abfd, note);
10180 }
10181
10182 /* As of Jan 2002 there are no other machine-independent notes
10183 defined for NetBSD core files. If the note type is less
10184 than the start of the machine-dependent note types, we don't
10185 understand it. */
10186
10187 if (note->type < NT_NETBSDCORE_FIRSTMACH)
10188 return TRUE;
10189
10190
10191 switch (bfd_get_arch (abfd))
10192 {
10193 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
10194 PT_GETFPREGS == mach+2. */
10195
10196 case bfd_arch_alpha:
10197 case bfd_arch_sparc:
10198 switch (note->type)
10199 {
10200 case NT_NETBSDCORE_FIRSTMACH+0:
10201 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10202
10203 case NT_NETBSDCORE_FIRSTMACH+2:
10204 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10205
10206 default:
10207 return TRUE;
10208 }
10209
10210 /* On all other arch's, PT_GETREGS == mach+1 and
10211 PT_GETFPREGS == mach+3. */
10212
10213 default:
10214 switch (note->type)
10215 {
10216 case NT_NETBSDCORE_FIRSTMACH+1:
10217 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10218
10219 case NT_NETBSDCORE_FIRSTMACH+3:
10220 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10221
10222 default:
10223 return TRUE;
10224 }
10225 }
10226 /* NOTREACHED */
10227 }
10228
10229 static bfd_boolean
10230 elfcore_grok_openbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
10231 {
10232 if (note->descsz <= 0x48 + 31)
10233 return FALSE;
10234
10235 /* Signal number at offset 0x08. */
10236 elf_tdata (abfd)->core->signal
10237 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
10238
10239 /* Process ID at offset 0x20. */
10240 elf_tdata (abfd)->core->pid
10241 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x20);
10242
10243 /* Command name at 0x48 (max 32 bytes, including nul). */
10244 elf_tdata (abfd)->core->command
10245 = _bfd_elfcore_strndup (abfd, note->descdata + 0x48, 31);
10246
10247 return TRUE;
10248 }
10249
10250 static bfd_boolean
10251 elfcore_grok_openbsd_note (bfd *abfd, Elf_Internal_Note *note)
10252 {
10253 if (note->type == NT_OPENBSD_PROCINFO)
10254 return elfcore_grok_openbsd_procinfo (abfd, note);
10255
10256 if (note->type == NT_OPENBSD_REGS)
10257 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10258
10259 if (note->type == NT_OPENBSD_FPREGS)
10260 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10261
10262 if (note->type == NT_OPENBSD_XFPREGS)
10263 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
10264
10265 if (note->type == NT_OPENBSD_AUXV)
10266 {
10267 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
10268 SEC_HAS_CONTENTS);
10269
10270 if (sect == NULL)
10271 return FALSE;
10272 sect->size = note->descsz;
10273 sect->filepos = note->descpos;
10274 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
10275
10276 return TRUE;
10277 }
10278
10279 if (note->type == NT_OPENBSD_WCOOKIE)
10280 {
10281 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".wcookie",
10282 SEC_HAS_CONTENTS);
10283
10284 if (sect == NULL)
10285 return FALSE;
10286 sect->size = note->descsz;
10287 sect->filepos = note->descpos;
10288 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
10289
10290 return TRUE;
10291 }
10292
10293 return TRUE;
10294 }
10295
10296 static bfd_boolean
10297 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
10298 {
10299 void *ddata = note->descdata;
10300 char buf[100];
10301 char *name;
10302 asection *sect;
10303 short sig;
10304 unsigned flags;
10305
10306 if (note->descsz < 16)
10307 return FALSE;
10308
10309 /* nto_procfs_status 'pid' field is at offset 0. */
10310 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
10311
10312 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
10313 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
10314
10315 /* nto_procfs_status 'flags' field is at offset 8. */
10316 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
10317
10318 /* nto_procfs_status 'what' field is at offset 14. */
10319 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
10320 {
10321 elf_tdata (abfd)->core->signal = sig;
10322 elf_tdata (abfd)->core->lwpid = *tid;
10323 }
10324
10325 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
10326 do not come from signals so we make sure we set the current
10327 thread just in case. */
10328 if (flags & 0x00000080)
10329 elf_tdata (abfd)->core->lwpid = *tid;
10330
10331 /* Make a ".qnx_core_status/%d" section. */
10332 sprintf (buf, ".qnx_core_status/%ld", *tid);
10333
10334 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
10335 if (name == NULL)
10336 return FALSE;
10337 strcpy (name, buf);
10338
10339 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10340 if (sect == NULL)
10341 return FALSE;
10342
10343 sect->size = note->descsz;
10344 sect->filepos = note->descpos;
10345 sect->alignment_power = 2;
10346
10347 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
10348 }
10349
10350 static bfd_boolean
10351 elfcore_grok_nto_regs (bfd *abfd,
10352 Elf_Internal_Note *note,
10353 long tid,
10354 char *base)
10355 {
10356 char buf[100];
10357 char *name;
10358 asection *sect;
10359
10360 /* Make a "(base)/%d" section. */
10361 sprintf (buf, "%s/%ld", base, tid);
10362
10363 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
10364 if (name == NULL)
10365 return FALSE;
10366 strcpy (name, buf);
10367
10368 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10369 if (sect == NULL)
10370 return FALSE;
10371
10372 sect->size = note->descsz;
10373 sect->filepos = note->descpos;
10374 sect->alignment_power = 2;
10375
10376 /* This is the current thread. */
10377 if (elf_tdata (abfd)->core->lwpid == tid)
10378 return elfcore_maybe_make_sect (abfd, base, sect);
10379
10380 return TRUE;
10381 }
10382
10383 #define BFD_QNT_CORE_INFO 7
10384 #define BFD_QNT_CORE_STATUS 8
10385 #define BFD_QNT_CORE_GREG 9
10386 #define BFD_QNT_CORE_FPREG 10
10387
10388 static bfd_boolean
10389 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
10390 {
10391 /* Every GREG section has a STATUS section before it. Store the
10392 tid from the previous call to pass down to the next gregs
10393 function. */
10394 static long tid = 1;
10395
10396 switch (note->type)
10397 {
10398 case BFD_QNT_CORE_INFO:
10399 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
10400 case BFD_QNT_CORE_STATUS:
10401 return elfcore_grok_nto_status (abfd, note, &tid);
10402 case BFD_QNT_CORE_GREG:
10403 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
10404 case BFD_QNT_CORE_FPREG:
10405 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
10406 default:
10407 return TRUE;
10408 }
10409 }
10410
10411 static bfd_boolean
10412 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
10413 {
10414 char *name;
10415 asection *sect;
10416 size_t len;
10417
10418 /* Use note name as section name. */
10419 len = note->namesz;
10420 name = (char *) bfd_alloc (abfd, len);
10421 if (name == NULL)
10422 return FALSE;
10423 memcpy (name, note->namedata, len);
10424 name[len - 1] = '\0';
10425
10426 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10427 if (sect == NULL)
10428 return FALSE;
10429
10430 sect->size = note->descsz;
10431 sect->filepos = note->descpos;
10432 sect->alignment_power = 1;
10433
10434 return TRUE;
10435 }
10436
10437 /* Function: elfcore_write_note
10438
10439 Inputs:
10440 buffer to hold note, and current size of buffer
10441 name of note
10442 type of note
10443 data for note
10444 size of data for note
10445
10446 Writes note to end of buffer. ELF64 notes are written exactly as
10447 for ELF32, despite the current (as of 2006) ELF gabi specifying
10448 that they ought to have 8-byte namesz and descsz field, and have
10449 8-byte alignment. Other writers, eg. Linux kernel, do the same.
10450
10451 Return:
10452 Pointer to realloc'd buffer, *BUFSIZ updated. */
10453
10454 char *
10455 elfcore_write_note (bfd *abfd,
10456 char *buf,
10457 int *bufsiz,
10458 const char *name,
10459 int type,
10460 const void *input,
10461 int size)
10462 {
10463 Elf_External_Note *xnp;
10464 size_t namesz;
10465 size_t newspace;
10466 char *dest;
10467
10468 namesz = 0;
10469 if (name != NULL)
10470 namesz = strlen (name) + 1;
10471
10472 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
10473
10474 buf = (char *) realloc (buf, *bufsiz + newspace);
10475 if (buf == NULL)
10476 return buf;
10477 dest = buf + *bufsiz;
10478 *bufsiz += newspace;
10479 xnp = (Elf_External_Note *) dest;
10480 H_PUT_32 (abfd, namesz, xnp->namesz);
10481 H_PUT_32 (abfd, size, xnp->descsz);
10482 H_PUT_32 (abfd, type, xnp->type);
10483 dest = xnp->name;
10484 if (name != NULL)
10485 {
10486 memcpy (dest, name, namesz);
10487 dest += namesz;
10488 while (namesz & 3)
10489 {
10490 *dest++ = '\0';
10491 ++namesz;
10492 }
10493 }
10494 memcpy (dest, input, size);
10495 dest += size;
10496 while (size & 3)
10497 {
10498 *dest++ = '\0';
10499 ++size;
10500 }
10501 return buf;
10502 }
10503
10504 /* gcc-8 warns (*) on all the strncpy calls in this function about
10505 possible string truncation. The "truncation" is not a bug. We
10506 have an external representation of structs with fields that are not
10507 necessarily NULL terminated and corresponding internal
10508 representation fields that are one larger so that they can always
10509 be NULL terminated.
10510 gcc versions between 4.2 and 4.6 do not allow pragma control of
10511 diagnostics inside functions, giving a hard error if you try to use
10512 the finer control available with later versions.
10513 gcc prior to 4.2 warns about diagnostic push and pop.
10514 gcc-5, gcc-6 and gcc-7 warn that -Wstringop-truncation is unknown,
10515 unless you also add #pragma GCC diagnostic ignored "-Wpragma".
10516 (*) Depending on your system header files! */
10517 #if GCC_VERSION >= 8000
10518 # pragma GCC diagnostic push
10519 # pragma GCC diagnostic ignored "-Wstringop-truncation"
10520 #endif
10521 char *
10522 elfcore_write_prpsinfo (bfd *abfd,
10523 char *buf,
10524 int *bufsiz,
10525 const char *fname,
10526 const char *psargs)
10527 {
10528 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10529
10530 if (bed->elf_backend_write_core_note != NULL)
10531 {
10532 char *ret;
10533 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
10534 NT_PRPSINFO, fname, psargs);
10535 if (ret != NULL)
10536 return ret;
10537 }
10538
10539 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
10540 # if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
10541 if (bed->s->elfclass == ELFCLASS32)
10542 {
10543 # if defined (HAVE_PSINFO32_T)
10544 psinfo32_t data;
10545 int note_type = NT_PSINFO;
10546 # else
10547 prpsinfo32_t data;
10548 int note_type = NT_PRPSINFO;
10549 # endif
10550
10551 memset (&data, 0, sizeof (data));
10552 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
10553 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
10554 return elfcore_write_note (abfd, buf, bufsiz,
10555 "CORE", note_type, &data, sizeof (data));
10556 }
10557 else
10558 # endif
10559 {
10560 # if defined (HAVE_PSINFO_T)
10561 psinfo_t data;
10562 int note_type = NT_PSINFO;
10563 # else
10564 prpsinfo_t data;
10565 int note_type = NT_PRPSINFO;
10566 # endif
10567
10568 memset (&data, 0, sizeof (data));
10569 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
10570 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
10571 return elfcore_write_note (abfd, buf, bufsiz,
10572 "CORE", note_type, &data, sizeof (data));
10573 }
10574 #endif /* PSINFO_T or PRPSINFO_T */
10575
10576 free (buf);
10577 return NULL;
10578 }
10579 #if GCC_VERSION >= 8000
10580 # pragma GCC diagnostic pop
10581 #endif
10582
10583 char *
10584 elfcore_write_linux_prpsinfo32
10585 (bfd *abfd, char *buf, int *bufsiz,
10586 const struct elf_internal_linux_prpsinfo *prpsinfo)
10587 {
10588 if (get_elf_backend_data (abfd)->linux_prpsinfo32_ugid16)
10589 {
10590 struct elf_external_linux_prpsinfo32_ugid16 data;
10591
10592 swap_linux_prpsinfo32_ugid16_out (abfd, prpsinfo, &data);
10593 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
10594 &data, sizeof (data));
10595 }
10596 else
10597 {
10598 struct elf_external_linux_prpsinfo32_ugid32 data;
10599
10600 swap_linux_prpsinfo32_ugid32_out (abfd, prpsinfo, &data);
10601 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
10602 &data, sizeof (data));
10603 }
10604 }
10605
10606 char *
10607 elfcore_write_linux_prpsinfo64
10608 (bfd *abfd, char *buf, int *bufsiz,
10609 const struct elf_internal_linux_prpsinfo *prpsinfo)
10610 {
10611 if (get_elf_backend_data (abfd)->linux_prpsinfo64_ugid16)
10612 {
10613 struct elf_external_linux_prpsinfo64_ugid16 data;
10614
10615 swap_linux_prpsinfo64_ugid16_out (abfd, prpsinfo, &data);
10616 return elfcore_write_note (abfd, buf, bufsiz,
10617 "CORE", NT_PRPSINFO, &data, sizeof (data));
10618 }
10619 else
10620 {
10621 struct elf_external_linux_prpsinfo64_ugid32 data;
10622
10623 swap_linux_prpsinfo64_ugid32_out (abfd, prpsinfo, &data);
10624 return elfcore_write_note (abfd, buf, bufsiz,
10625 "CORE", NT_PRPSINFO, &data, sizeof (data));
10626 }
10627 }
10628
10629 char *
10630 elfcore_write_prstatus (bfd *abfd,
10631 char *buf,
10632 int *bufsiz,
10633 long pid,
10634 int cursig,
10635 const void *gregs)
10636 {
10637 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10638
10639 if (bed->elf_backend_write_core_note != NULL)
10640 {
10641 char *ret;
10642 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
10643 NT_PRSTATUS,
10644 pid, cursig, gregs);
10645 if (ret != NULL)
10646 return ret;
10647 }
10648
10649 #if defined (HAVE_PRSTATUS_T)
10650 #if defined (HAVE_PRSTATUS32_T)
10651 if (bed->s->elfclass == ELFCLASS32)
10652 {
10653 prstatus32_t prstat;
10654
10655 memset (&prstat, 0, sizeof (prstat));
10656 prstat.pr_pid = pid;
10657 prstat.pr_cursig = cursig;
10658 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
10659 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
10660 NT_PRSTATUS, &prstat, sizeof (prstat));
10661 }
10662 else
10663 #endif
10664 {
10665 prstatus_t prstat;
10666
10667 memset (&prstat, 0, sizeof (prstat));
10668 prstat.pr_pid = pid;
10669 prstat.pr_cursig = cursig;
10670 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
10671 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
10672 NT_PRSTATUS, &prstat, sizeof (prstat));
10673 }
10674 #endif /* HAVE_PRSTATUS_T */
10675
10676 free (buf);
10677 return NULL;
10678 }
10679
10680 #if defined (HAVE_LWPSTATUS_T)
10681 char *
10682 elfcore_write_lwpstatus (bfd *abfd,
10683 char *buf,
10684 int *bufsiz,
10685 long pid,
10686 int cursig,
10687 const void *gregs)
10688 {
10689 lwpstatus_t lwpstat;
10690 const char *note_name = "CORE";
10691
10692 memset (&lwpstat, 0, sizeof (lwpstat));
10693 lwpstat.pr_lwpid = pid >> 16;
10694 lwpstat.pr_cursig = cursig;
10695 #if defined (HAVE_LWPSTATUS_T_PR_REG)
10696 memcpy (&lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
10697 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
10698 #if !defined(gregs)
10699 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
10700 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
10701 #else
10702 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
10703 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
10704 #endif
10705 #endif
10706 return elfcore_write_note (abfd, buf, bufsiz, note_name,
10707 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
10708 }
10709 #endif /* HAVE_LWPSTATUS_T */
10710
10711 #if defined (HAVE_PSTATUS_T)
10712 char *
10713 elfcore_write_pstatus (bfd *abfd,
10714 char *buf,
10715 int *bufsiz,
10716 long pid,
10717 int cursig ATTRIBUTE_UNUSED,
10718 const void *gregs ATTRIBUTE_UNUSED)
10719 {
10720 const char *note_name = "CORE";
10721 #if defined (HAVE_PSTATUS32_T)
10722 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10723
10724 if (bed->s->elfclass == ELFCLASS32)
10725 {
10726 pstatus32_t pstat;
10727
10728 memset (&pstat, 0, sizeof (pstat));
10729 pstat.pr_pid = pid & 0xffff;
10730 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
10731 NT_PSTATUS, &pstat, sizeof (pstat));
10732 return buf;
10733 }
10734 else
10735 #endif
10736 {
10737 pstatus_t pstat;
10738
10739 memset (&pstat, 0, sizeof (pstat));
10740 pstat.pr_pid = pid & 0xffff;
10741 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
10742 NT_PSTATUS, &pstat, sizeof (pstat));
10743 return buf;
10744 }
10745 }
10746 #endif /* HAVE_PSTATUS_T */
10747
10748 char *
10749 elfcore_write_prfpreg (bfd *abfd,
10750 char *buf,
10751 int *bufsiz,
10752 const void *fpregs,
10753 int size)
10754 {
10755 const char *note_name = "CORE";
10756 return elfcore_write_note (abfd, buf, bufsiz,
10757 note_name, NT_FPREGSET, fpregs, size);
10758 }
10759
10760 char *
10761 elfcore_write_prxfpreg (bfd *abfd,
10762 char *buf,
10763 int *bufsiz,
10764 const void *xfpregs,
10765 int size)
10766 {
10767 char *note_name = "LINUX";
10768 return elfcore_write_note (abfd, buf, bufsiz,
10769 note_name, NT_PRXFPREG, xfpregs, size);
10770 }
10771
10772 char *
10773 elfcore_write_xstatereg (bfd *abfd, char *buf, int *bufsiz,
10774 const void *xfpregs, int size)
10775 {
10776 char *note_name;
10777 if (get_elf_backend_data (abfd)->elf_osabi == ELFOSABI_FREEBSD)
10778 note_name = "FreeBSD";
10779 else
10780 note_name = "LINUX";
10781 return elfcore_write_note (abfd, buf, bufsiz,
10782 note_name, NT_X86_XSTATE, xfpregs, size);
10783 }
10784
10785 char *
10786 elfcore_write_ppc_vmx (bfd *abfd,
10787 char *buf,
10788 int *bufsiz,
10789 const void *ppc_vmx,
10790 int size)
10791 {
10792 char *note_name = "LINUX";
10793 return elfcore_write_note (abfd, buf, bufsiz,
10794 note_name, NT_PPC_VMX, ppc_vmx, size);
10795 }
10796
10797 char *
10798 elfcore_write_ppc_vsx (bfd *abfd,
10799 char *buf,
10800 int *bufsiz,
10801 const void *ppc_vsx,
10802 int size)
10803 {
10804 char *note_name = "LINUX";
10805 return elfcore_write_note (abfd, buf, bufsiz,
10806 note_name, NT_PPC_VSX, ppc_vsx, size);
10807 }
10808
10809 static char *
10810 elfcore_write_s390_high_gprs (bfd *abfd,
10811 char *buf,
10812 int *bufsiz,
10813 const void *s390_high_gprs,
10814 int size)
10815 {
10816 char *note_name = "LINUX";
10817 return elfcore_write_note (abfd, buf, bufsiz,
10818 note_name, NT_S390_HIGH_GPRS,
10819 s390_high_gprs, size);
10820 }
10821
10822 char *
10823 elfcore_write_s390_timer (bfd *abfd,
10824 char *buf,
10825 int *bufsiz,
10826 const void *s390_timer,
10827 int size)
10828 {
10829 char *note_name = "LINUX";
10830 return elfcore_write_note (abfd, buf, bufsiz,
10831 note_name, NT_S390_TIMER, s390_timer, size);
10832 }
10833
10834 char *
10835 elfcore_write_s390_todcmp (bfd *abfd,
10836 char *buf,
10837 int *bufsiz,
10838 const void *s390_todcmp,
10839 int size)
10840 {
10841 char *note_name = "LINUX";
10842 return elfcore_write_note (abfd, buf, bufsiz,
10843 note_name, NT_S390_TODCMP, s390_todcmp, size);
10844 }
10845
10846 char *
10847 elfcore_write_s390_todpreg (bfd *abfd,
10848 char *buf,
10849 int *bufsiz,
10850 const void *s390_todpreg,
10851 int size)
10852 {
10853 char *note_name = "LINUX";
10854 return elfcore_write_note (abfd, buf, bufsiz,
10855 note_name, NT_S390_TODPREG, s390_todpreg, size);
10856 }
10857
10858 char *
10859 elfcore_write_s390_ctrs (bfd *abfd,
10860 char *buf,
10861 int *bufsiz,
10862 const void *s390_ctrs,
10863 int size)
10864 {
10865 char *note_name = "LINUX";
10866 return elfcore_write_note (abfd, buf, bufsiz,
10867 note_name, NT_S390_CTRS, s390_ctrs, size);
10868 }
10869
10870 char *
10871 elfcore_write_s390_prefix (bfd *abfd,
10872 char *buf,
10873 int *bufsiz,
10874 const void *s390_prefix,
10875 int size)
10876 {
10877 char *note_name = "LINUX";
10878 return elfcore_write_note (abfd, buf, bufsiz,
10879 note_name, NT_S390_PREFIX, s390_prefix, size);
10880 }
10881
10882 char *
10883 elfcore_write_s390_last_break (bfd *abfd,
10884 char *buf,
10885 int *bufsiz,
10886 const void *s390_last_break,
10887 int size)
10888 {
10889 char *note_name = "LINUX";
10890 return elfcore_write_note (abfd, buf, bufsiz,
10891 note_name, NT_S390_LAST_BREAK,
10892 s390_last_break, size);
10893 }
10894
10895 char *
10896 elfcore_write_s390_system_call (bfd *abfd,
10897 char *buf,
10898 int *bufsiz,
10899 const void *s390_system_call,
10900 int size)
10901 {
10902 char *note_name = "LINUX";
10903 return elfcore_write_note (abfd, buf, bufsiz,
10904 note_name, NT_S390_SYSTEM_CALL,
10905 s390_system_call, size);
10906 }
10907
10908 char *
10909 elfcore_write_s390_tdb (bfd *abfd,
10910 char *buf,
10911 int *bufsiz,
10912 const void *s390_tdb,
10913 int size)
10914 {
10915 char *note_name = "LINUX";
10916 return elfcore_write_note (abfd, buf, bufsiz,
10917 note_name, NT_S390_TDB, s390_tdb, size);
10918 }
10919
10920 char *
10921 elfcore_write_s390_vxrs_low (bfd *abfd,
10922 char *buf,
10923 int *bufsiz,
10924 const void *s390_vxrs_low,
10925 int size)
10926 {
10927 char *note_name = "LINUX";
10928 return elfcore_write_note (abfd, buf, bufsiz,
10929 note_name, NT_S390_VXRS_LOW, s390_vxrs_low, size);
10930 }
10931
10932 char *
10933 elfcore_write_s390_vxrs_high (bfd *abfd,
10934 char *buf,
10935 int *bufsiz,
10936 const void *s390_vxrs_high,
10937 int size)
10938 {
10939 char *note_name = "LINUX";
10940 return elfcore_write_note (abfd, buf, bufsiz,
10941 note_name, NT_S390_VXRS_HIGH,
10942 s390_vxrs_high, size);
10943 }
10944
10945 char *
10946 elfcore_write_s390_gs_cb (bfd *abfd,
10947 char *buf,
10948 int *bufsiz,
10949 const void *s390_gs_cb,
10950 int size)
10951 {
10952 char *note_name = "LINUX";
10953 return elfcore_write_note (abfd, buf, bufsiz,
10954 note_name, NT_S390_GS_CB,
10955 s390_gs_cb, size);
10956 }
10957
10958 char *
10959 elfcore_write_s390_gs_bc (bfd *abfd,
10960 char *buf,
10961 int *bufsiz,
10962 const void *s390_gs_bc,
10963 int size)
10964 {
10965 char *note_name = "LINUX";
10966 return elfcore_write_note (abfd, buf, bufsiz,
10967 note_name, NT_S390_GS_BC,
10968 s390_gs_bc, size);
10969 }
10970
10971 char *
10972 elfcore_write_arm_vfp (bfd *abfd,
10973 char *buf,
10974 int *bufsiz,
10975 const void *arm_vfp,
10976 int size)
10977 {
10978 char *note_name = "LINUX";
10979 return elfcore_write_note (abfd, buf, bufsiz,
10980 note_name, NT_ARM_VFP, arm_vfp, size);
10981 }
10982
10983 char *
10984 elfcore_write_aarch_tls (bfd *abfd,
10985 char *buf,
10986 int *bufsiz,
10987 const void *aarch_tls,
10988 int size)
10989 {
10990 char *note_name = "LINUX";
10991 return elfcore_write_note (abfd, buf, bufsiz,
10992 note_name, NT_ARM_TLS, aarch_tls, size);
10993 }
10994
10995 char *
10996 elfcore_write_aarch_hw_break (bfd *abfd,
10997 char *buf,
10998 int *bufsiz,
10999 const void *aarch_hw_break,
11000 int size)
11001 {
11002 char *note_name = "LINUX";
11003 return elfcore_write_note (abfd, buf, bufsiz,
11004 note_name, NT_ARM_HW_BREAK, aarch_hw_break, size);
11005 }
11006
11007 char *
11008 elfcore_write_aarch_hw_watch (bfd *abfd,
11009 char *buf,
11010 int *bufsiz,
11011 const void *aarch_hw_watch,
11012 int size)
11013 {
11014 char *note_name = "LINUX";
11015 return elfcore_write_note (abfd, buf, bufsiz,
11016 note_name, NT_ARM_HW_WATCH, aarch_hw_watch, size);
11017 }
11018
11019 char *
11020 elfcore_write_register_note (bfd *abfd,
11021 char *buf,
11022 int *bufsiz,
11023 const char *section,
11024 const void *data,
11025 int size)
11026 {
11027 if (strcmp (section, ".reg2") == 0)
11028 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
11029 if (strcmp (section, ".reg-xfp") == 0)
11030 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
11031 if (strcmp (section, ".reg-xstate") == 0)
11032 return elfcore_write_xstatereg (abfd, buf, bufsiz, data, size);
11033 if (strcmp (section, ".reg-ppc-vmx") == 0)
11034 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
11035 if (strcmp (section, ".reg-ppc-vsx") == 0)
11036 return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size);
11037 if (strcmp (section, ".reg-s390-high-gprs") == 0)
11038 return elfcore_write_s390_high_gprs (abfd, buf, bufsiz, data, size);
11039 if (strcmp (section, ".reg-s390-timer") == 0)
11040 return elfcore_write_s390_timer (abfd, buf, bufsiz, data, size);
11041 if (strcmp (section, ".reg-s390-todcmp") == 0)
11042 return elfcore_write_s390_todcmp (abfd, buf, bufsiz, data, size);
11043 if (strcmp (section, ".reg-s390-todpreg") == 0)
11044 return elfcore_write_s390_todpreg (abfd, buf, bufsiz, data, size);
11045 if (strcmp (section, ".reg-s390-ctrs") == 0)
11046 return elfcore_write_s390_ctrs (abfd, buf, bufsiz, data, size);
11047 if (strcmp (section, ".reg-s390-prefix") == 0)
11048 return elfcore_write_s390_prefix (abfd, buf, bufsiz, data, size);
11049 if (strcmp (section, ".reg-s390-last-break") == 0)
11050 return elfcore_write_s390_last_break (abfd, buf, bufsiz, data, size);
11051 if (strcmp (section, ".reg-s390-system-call") == 0)
11052 return elfcore_write_s390_system_call (abfd, buf, bufsiz, data, size);
11053 if (strcmp (section, ".reg-s390-tdb") == 0)
11054 return elfcore_write_s390_tdb (abfd, buf, bufsiz, data, size);
11055 if (strcmp (section, ".reg-s390-vxrs-low") == 0)
11056 return elfcore_write_s390_vxrs_low (abfd, buf, bufsiz, data, size);
11057 if (strcmp (section, ".reg-s390-vxrs-high") == 0)
11058 return elfcore_write_s390_vxrs_high (abfd, buf, bufsiz, data, size);
11059 if (strcmp (section, ".reg-s390-gs-cb") == 0)
11060 return elfcore_write_s390_gs_cb (abfd, buf, bufsiz, data, size);
11061 if (strcmp (section, ".reg-s390-gs-bc") == 0)
11062 return elfcore_write_s390_gs_bc (abfd, buf, bufsiz, data, size);
11063 if (strcmp (section, ".reg-arm-vfp") == 0)
11064 return elfcore_write_arm_vfp (abfd, buf, bufsiz, data, size);
11065 if (strcmp (section, ".reg-aarch-tls") == 0)
11066 return elfcore_write_aarch_tls (abfd, buf, bufsiz, data, size);
11067 if (strcmp (section, ".reg-aarch-hw-break") == 0)
11068 return elfcore_write_aarch_hw_break (abfd, buf, bufsiz, data, size);
11069 if (strcmp (section, ".reg-aarch-hw-watch") == 0)
11070 return elfcore_write_aarch_hw_watch (abfd, buf, bufsiz, data, size);
11071 return NULL;
11072 }
11073
11074 static bfd_boolean
11075 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset,
11076 size_t align)
11077 {
11078 char *p;
11079
11080 /* NB: CORE PT_NOTE segments may have p_align values of 0 or 1.
11081 gABI specifies that PT_NOTE alignment should be aligned to 4
11082 bytes for 32-bit objects and to 8 bytes for 64-bit objects. If
11083 align is less than 4, we use 4 byte alignment. */
11084 if (align < 4)
11085 align = 4;
11086 if (align != 4 && align != 8)
11087 return FALSE;
11088
11089 p = buf;
11090 while (p < buf + size)
11091 {
11092 Elf_External_Note *xnp = (Elf_External_Note *) p;
11093 Elf_Internal_Note in;
11094
11095 if (offsetof (Elf_External_Note, name) > buf - p + size)
11096 return FALSE;
11097
11098 in.type = H_GET_32 (abfd, xnp->type);
11099
11100 in.namesz = H_GET_32 (abfd, xnp->namesz);
11101 in.namedata = xnp->name;
11102 if (in.namesz > buf - in.namedata + size)
11103 return FALSE;
11104
11105 in.descsz = H_GET_32 (abfd, xnp->descsz);
11106 in.descdata = p + ELF_NOTE_DESC_OFFSET (in.namesz, align);
11107 in.descpos = offset + (in.descdata - buf);
11108 if (in.descsz != 0
11109 && (in.descdata >= buf + size
11110 || in.descsz > buf - in.descdata + size))
11111 return FALSE;
11112
11113 switch (bfd_get_format (abfd))
11114 {
11115 default:
11116 return TRUE;
11117
11118 case bfd_core:
11119 {
11120 #define GROKER_ELEMENT(S,F) {S, sizeof (S) - 1, F}
11121 struct
11122 {
11123 const char * string;
11124 size_t len;
11125 bfd_boolean (* func)(bfd *, Elf_Internal_Note *);
11126 }
11127 grokers[] =
11128 {
11129 GROKER_ELEMENT ("", elfcore_grok_note),
11130 GROKER_ELEMENT ("FreeBSD", elfcore_grok_freebsd_note),
11131 GROKER_ELEMENT ("NetBSD-CORE", elfcore_grok_netbsd_note),
11132 GROKER_ELEMENT ( "OpenBSD", elfcore_grok_openbsd_note),
11133 GROKER_ELEMENT ("QNX", elfcore_grok_nto_note),
11134 GROKER_ELEMENT ("SPU/", elfcore_grok_spu_note)
11135 };
11136 #undef GROKER_ELEMENT
11137 int i;
11138
11139 for (i = ARRAY_SIZE (grokers); i--;)
11140 {
11141 if (in.namesz >= grokers[i].len
11142 && strncmp (in.namedata, grokers[i].string,
11143 grokers[i].len) == 0)
11144 {
11145 if (! grokers[i].func (abfd, & in))
11146 return FALSE;
11147 break;
11148 }
11149 }
11150 break;
11151 }
11152
11153 case bfd_object:
11154 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
11155 {
11156 if (! elfobj_grok_gnu_note (abfd, &in))
11157 return FALSE;
11158 }
11159 else if (in.namesz == sizeof "stapsdt"
11160 && strcmp (in.namedata, "stapsdt") == 0)
11161 {
11162 if (! elfobj_grok_stapsdt_note (abfd, &in))
11163 return FALSE;
11164 }
11165 break;
11166 }
11167
11168 p += ELF_NOTE_NEXT_OFFSET (in.namesz, in.descsz, align);
11169 }
11170
11171 return TRUE;
11172 }
11173
11174 static bfd_boolean
11175 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size,
11176 size_t align)
11177 {
11178 char *buf;
11179
11180 if (size == 0 || (size + 1) == 0)
11181 return TRUE;
11182
11183 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
11184 return FALSE;
11185
11186 buf = (char *) bfd_malloc (size + 1);
11187 if (buf == NULL)
11188 return FALSE;
11189
11190 /* PR 17512: file: ec08f814
11191 0-termintate the buffer so that string searches will not overflow. */
11192 buf[size] = 0;
11193
11194 if (bfd_bread (buf, size, abfd) != size
11195 || !elf_parse_notes (abfd, buf, size, offset, align))
11196 {
11197 free (buf);
11198 return FALSE;
11199 }
11200
11201 free (buf);
11202 return TRUE;
11203 }
11204 \f
11205 /* Providing external access to the ELF program header table. */
11206
11207 /* Return an upper bound on the number of bytes required to store a
11208 copy of ABFD's program header table entries. Return -1 if an error
11209 occurs; bfd_get_error will return an appropriate code. */
11210
11211 long
11212 bfd_get_elf_phdr_upper_bound (bfd *abfd)
11213 {
11214 if (abfd->xvec->flavour != bfd_target_elf_flavour)
11215 {
11216 bfd_set_error (bfd_error_wrong_format);
11217 return -1;
11218 }
11219
11220 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
11221 }
11222
11223 /* Copy ABFD's program header table entries to *PHDRS. The entries
11224 will be stored as an array of Elf_Internal_Phdr structures, as
11225 defined in include/elf/internal.h. To find out how large the
11226 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
11227
11228 Return the number of program header table entries read, or -1 if an
11229 error occurs; bfd_get_error will return an appropriate code. */
11230
11231 int
11232 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
11233 {
11234 int num_phdrs;
11235
11236 if (abfd->xvec->flavour != bfd_target_elf_flavour)
11237 {
11238 bfd_set_error (bfd_error_wrong_format);
11239 return -1;
11240 }
11241
11242 num_phdrs = elf_elfheader (abfd)->e_phnum;
11243 memcpy (phdrs, elf_tdata (abfd)->phdr,
11244 num_phdrs * sizeof (Elf_Internal_Phdr));
11245
11246 return num_phdrs;
11247 }
11248
11249 enum elf_reloc_type_class
11250 _bfd_elf_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
11251 const asection *rel_sec ATTRIBUTE_UNUSED,
11252 const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
11253 {
11254 return reloc_class_normal;
11255 }
11256
11257 /* For RELA architectures, return the relocation value for a
11258 relocation against a local symbol. */
11259
11260 bfd_vma
11261 _bfd_elf_rela_local_sym (bfd *abfd,
11262 Elf_Internal_Sym *sym,
11263 asection **psec,
11264 Elf_Internal_Rela *rel)
11265 {
11266 asection *sec = *psec;
11267 bfd_vma relocation;
11268
11269 relocation = (sec->output_section->vma
11270 + sec->output_offset
11271 + sym->st_value);
11272 if ((sec->flags & SEC_MERGE)
11273 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
11274 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
11275 {
11276 rel->r_addend =
11277 _bfd_merged_section_offset (abfd, psec,
11278 elf_section_data (sec)->sec_info,
11279 sym->st_value + rel->r_addend);
11280 if (sec != *psec)
11281 {
11282 /* If we have changed the section, and our original section is
11283 marked with SEC_EXCLUDE, it means that the original
11284 SEC_MERGE section has been completely subsumed in some
11285 other SEC_MERGE section. In this case, we need to leave
11286 some info around for --emit-relocs. */
11287 if ((sec->flags & SEC_EXCLUDE) != 0)
11288 sec->kept_section = *psec;
11289 sec = *psec;
11290 }
11291 rel->r_addend -= relocation;
11292 rel->r_addend += sec->output_section->vma + sec->output_offset;
11293 }
11294 return relocation;
11295 }
11296
11297 bfd_vma
11298 _bfd_elf_rel_local_sym (bfd *abfd,
11299 Elf_Internal_Sym *sym,
11300 asection **psec,
11301 bfd_vma addend)
11302 {
11303 asection *sec = *psec;
11304
11305 if (sec->sec_info_type != SEC_INFO_TYPE_MERGE)
11306 return sym->st_value + addend;
11307
11308 return _bfd_merged_section_offset (abfd, psec,
11309 elf_section_data (sec)->sec_info,
11310 sym->st_value + addend);
11311 }
11312
11313 /* Adjust an address within a section. Given OFFSET within SEC, return
11314 the new offset within the section, based upon changes made to the
11315 section. Returns -1 if the offset is now invalid.
11316 The offset (in abnd out) is in target sized bytes, however big a
11317 byte may be. */
11318
11319 bfd_vma
11320 _bfd_elf_section_offset (bfd *abfd,
11321 struct bfd_link_info *info,
11322 asection *sec,
11323 bfd_vma offset)
11324 {
11325 switch (sec->sec_info_type)
11326 {
11327 case SEC_INFO_TYPE_STABS:
11328 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
11329 offset);
11330 case SEC_INFO_TYPE_EH_FRAME:
11331 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
11332
11333 default:
11334 if ((sec->flags & SEC_ELF_REVERSE_COPY) != 0)
11335 {
11336 /* Reverse the offset. */
11337 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11338 bfd_size_type address_size = bed->s->arch_size / 8;
11339
11340 /* address_size and sec->size are in octets. Convert
11341 to bytes before subtracting the original offset. */
11342 offset = (sec->size - address_size) / bfd_octets_per_byte (abfd) - offset;
11343 }
11344 return offset;
11345 }
11346 }
11347 \f
11348 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
11349 reconstruct an ELF file by reading the segments out of remote memory
11350 based on the ELF file header at EHDR_VMA and the ELF program headers it
11351 points to. If not null, *LOADBASEP is filled in with the difference
11352 between the VMAs from which the segments were read, and the VMAs the
11353 file headers (and hence BFD's idea of each section's VMA) put them at.
11354
11355 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
11356 remote memory at target address VMA into the local buffer at MYADDR; it
11357 should return zero on success or an `errno' code on failure. TEMPL must
11358 be a BFD for an ELF target with the word size and byte order found in
11359 the remote memory. */
11360
11361 bfd *
11362 bfd_elf_bfd_from_remote_memory
11363 (bfd *templ,
11364 bfd_vma ehdr_vma,
11365 bfd_size_type size,
11366 bfd_vma *loadbasep,
11367 int (*target_read_memory) (bfd_vma, bfd_byte *, bfd_size_type))
11368 {
11369 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
11370 (templ, ehdr_vma, size, loadbasep, target_read_memory);
11371 }
11372 \f
11373 long
11374 _bfd_elf_get_synthetic_symtab (bfd *abfd,
11375 long symcount ATTRIBUTE_UNUSED,
11376 asymbol **syms ATTRIBUTE_UNUSED,
11377 long dynsymcount,
11378 asymbol **dynsyms,
11379 asymbol **ret)
11380 {
11381 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11382 asection *relplt;
11383 asymbol *s;
11384 const char *relplt_name;
11385 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
11386 arelent *p;
11387 long count, i, n;
11388 size_t size;
11389 Elf_Internal_Shdr *hdr;
11390 char *names;
11391 asection *plt;
11392
11393 *ret = NULL;
11394
11395 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
11396 return 0;
11397
11398 if (dynsymcount <= 0)
11399 return 0;
11400
11401 if (!bed->plt_sym_val)
11402 return 0;
11403
11404 relplt_name = bed->relplt_name;
11405 if (relplt_name == NULL)
11406 relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt";
11407 relplt = bfd_get_section_by_name (abfd, relplt_name);
11408 if (relplt == NULL)
11409 return 0;
11410
11411 hdr = &elf_section_data (relplt)->this_hdr;
11412 if (hdr->sh_link != elf_dynsymtab (abfd)
11413 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
11414 return 0;
11415
11416 plt = bfd_get_section_by_name (abfd, ".plt");
11417 if (plt == NULL)
11418 return 0;
11419
11420 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
11421 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
11422 return -1;
11423
11424 count = relplt->size / hdr->sh_entsize;
11425 size = count * sizeof (asymbol);
11426 p = relplt->relocation;
11427 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
11428 {
11429 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
11430 if (p->addend != 0)
11431 {
11432 #ifdef BFD64
11433 size += sizeof ("+0x") - 1 + 8 + 8 * (bed->s->elfclass == ELFCLASS64);
11434 #else
11435 size += sizeof ("+0x") - 1 + 8;
11436 #endif
11437 }
11438 }
11439
11440 s = *ret = (asymbol *) bfd_malloc (size);
11441 if (s == NULL)
11442 return -1;
11443
11444 names = (char *) (s + count);
11445 p = relplt->relocation;
11446 n = 0;
11447 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
11448 {
11449 size_t len;
11450 bfd_vma addr;
11451
11452 addr = bed->plt_sym_val (i, plt, p);
11453 if (addr == (bfd_vma) -1)
11454 continue;
11455
11456 *s = **p->sym_ptr_ptr;
11457 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
11458 we are defining a symbol, ensure one of them is set. */
11459 if ((s->flags & BSF_LOCAL) == 0)
11460 s->flags |= BSF_GLOBAL;
11461 s->flags |= BSF_SYNTHETIC;
11462 s->section = plt;
11463 s->value = addr - plt->vma;
11464 s->name = names;
11465 s->udata.p = NULL;
11466 len = strlen ((*p->sym_ptr_ptr)->name);
11467 memcpy (names, (*p->sym_ptr_ptr)->name, len);
11468 names += len;
11469 if (p->addend != 0)
11470 {
11471 char buf[30], *a;
11472
11473 memcpy (names, "+0x", sizeof ("+0x") - 1);
11474 names += sizeof ("+0x") - 1;
11475 bfd_sprintf_vma (abfd, buf, p->addend);
11476 for (a = buf; *a == '0'; ++a)
11477 ;
11478 len = strlen (a);
11479 memcpy (names, a, len);
11480 names += len;
11481 }
11482 memcpy (names, "@plt", sizeof ("@plt"));
11483 names += sizeof ("@plt");
11484 ++s, ++n;
11485 }
11486
11487 return n;
11488 }
11489
11490 /* It is only used by x86-64 so far.
11491 ??? This repeats *COM* id of zero. sec->id is supposed to be unique,
11492 but current usage would allow all of _bfd_std_section to be zero. */
11493 static const asymbol lcomm_sym
11494 = GLOBAL_SYM_INIT ("LARGE_COMMON", &_bfd_elf_large_com_section);
11495 asection _bfd_elf_large_com_section
11496 = BFD_FAKE_SECTION (_bfd_elf_large_com_section, &lcomm_sym,
11497 "LARGE_COMMON", 0, SEC_IS_COMMON);
11498
11499 void
11500 _bfd_elf_post_process_headers (bfd * abfd,
11501 struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
11502 {
11503 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
11504
11505 i_ehdrp = elf_elfheader (abfd);
11506
11507 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
11508
11509 /* To make things simpler for the loader on Linux systems we set the
11510 osabi field to ELFOSABI_GNU if the binary contains symbols of
11511 the STT_GNU_IFUNC type or STB_GNU_UNIQUE binding. */
11512 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE
11513 && elf_tdata (abfd)->has_gnu_symbols)
11514 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_GNU;
11515 }
11516
11517
11518 /* Return TRUE for ELF symbol types that represent functions.
11519 This is the default version of this function, which is sufficient for
11520 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */
11521
11522 bfd_boolean
11523 _bfd_elf_is_function_type (unsigned int type)
11524 {
11525 return (type == STT_FUNC
11526 || type == STT_GNU_IFUNC);
11527 }
11528
11529 /* If the ELF symbol SYM might be a function in SEC, return the
11530 function size and set *CODE_OFF to the function's entry point,
11531 otherwise return zero. */
11532
11533 bfd_size_type
11534 _bfd_elf_maybe_function_sym (const asymbol *sym, asection *sec,
11535 bfd_vma *code_off)
11536 {
11537 bfd_size_type size;
11538
11539 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
11540 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0
11541 || sym->section != sec)
11542 return 0;
11543
11544 *code_off = sym->value;
11545 size = 0;
11546 if (!(sym->flags & BSF_SYNTHETIC))
11547 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
11548 if (size == 0)
11549 size = 1;
11550 return size;
11551 }