* elf.c (special_sections): Add .gnu.linkonce.b modelled on .bss.
[binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21
22 /* SECTION
23
24 ELF backends
25
26 BFD support for ELF formats is being worked on.
27 Currently, the best supported back ends are for sparc and i386
28 (running svr4 or Solaris 2).
29
30 Documentation of the internals of the support code still needs
31 to be written. The code is changing quickly enough that we
32 haven't bothered yet. */
33
34 /* For sparc64-cross-sparc32. */
35 #define _SYSCALL32
36 #include "bfd.h"
37 #include "sysdep.h"
38 #include "bfdlink.h"
39 #include "libbfd.h"
40 #define ARCH_SIZE 0
41 #include "elf-bfd.h"
42 #include "libiberty.h"
43
44 static int elf_sort_sections (const void *, const void *);
45 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
46 static bfd_boolean prep_headers (bfd *);
47 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
48 static bfd_boolean elfcore_read_notes (bfd *, file_ptr, bfd_size_type) ;
49
50 /* Swap version information in and out. The version information is
51 currently size independent. If that ever changes, this code will
52 need to move into elfcode.h. */
53
54 /* Swap in a Verdef structure. */
55
56 void
57 _bfd_elf_swap_verdef_in (bfd *abfd,
58 const Elf_External_Verdef *src,
59 Elf_Internal_Verdef *dst)
60 {
61 dst->vd_version = H_GET_16 (abfd, src->vd_version);
62 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
63 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
64 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
65 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
66 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
67 dst->vd_next = H_GET_32 (abfd, src->vd_next);
68 }
69
70 /* Swap out a Verdef structure. */
71
72 void
73 _bfd_elf_swap_verdef_out (bfd *abfd,
74 const Elf_Internal_Verdef *src,
75 Elf_External_Verdef *dst)
76 {
77 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
78 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
79 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
80 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
81 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
82 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
83 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
84 }
85
86 /* Swap in a Verdaux structure. */
87
88 void
89 _bfd_elf_swap_verdaux_in (bfd *abfd,
90 const Elf_External_Verdaux *src,
91 Elf_Internal_Verdaux *dst)
92 {
93 dst->vda_name = H_GET_32 (abfd, src->vda_name);
94 dst->vda_next = H_GET_32 (abfd, src->vda_next);
95 }
96
97 /* Swap out a Verdaux structure. */
98
99 void
100 _bfd_elf_swap_verdaux_out (bfd *abfd,
101 const Elf_Internal_Verdaux *src,
102 Elf_External_Verdaux *dst)
103 {
104 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
105 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
106 }
107
108 /* Swap in a Verneed structure. */
109
110 void
111 _bfd_elf_swap_verneed_in (bfd *abfd,
112 const Elf_External_Verneed *src,
113 Elf_Internal_Verneed *dst)
114 {
115 dst->vn_version = H_GET_16 (abfd, src->vn_version);
116 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
117 dst->vn_file = H_GET_32 (abfd, src->vn_file);
118 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
119 dst->vn_next = H_GET_32 (abfd, src->vn_next);
120 }
121
122 /* Swap out a Verneed structure. */
123
124 void
125 _bfd_elf_swap_verneed_out (bfd *abfd,
126 const Elf_Internal_Verneed *src,
127 Elf_External_Verneed *dst)
128 {
129 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
130 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
131 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
132 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
133 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
134 }
135
136 /* Swap in a Vernaux structure. */
137
138 void
139 _bfd_elf_swap_vernaux_in (bfd *abfd,
140 const Elf_External_Vernaux *src,
141 Elf_Internal_Vernaux *dst)
142 {
143 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
144 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
145 dst->vna_other = H_GET_16 (abfd, src->vna_other);
146 dst->vna_name = H_GET_32 (abfd, src->vna_name);
147 dst->vna_next = H_GET_32 (abfd, src->vna_next);
148 }
149
150 /* Swap out a Vernaux structure. */
151
152 void
153 _bfd_elf_swap_vernaux_out (bfd *abfd,
154 const Elf_Internal_Vernaux *src,
155 Elf_External_Vernaux *dst)
156 {
157 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
158 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
159 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
160 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
161 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
162 }
163
164 /* Swap in a Versym structure. */
165
166 void
167 _bfd_elf_swap_versym_in (bfd *abfd,
168 const Elf_External_Versym *src,
169 Elf_Internal_Versym *dst)
170 {
171 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
172 }
173
174 /* Swap out a Versym structure. */
175
176 void
177 _bfd_elf_swap_versym_out (bfd *abfd,
178 const Elf_Internal_Versym *src,
179 Elf_External_Versym *dst)
180 {
181 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
182 }
183
184 /* Standard ELF hash function. Do not change this function; you will
185 cause invalid hash tables to be generated. */
186
187 unsigned long
188 bfd_elf_hash (const char *namearg)
189 {
190 const unsigned char *name = (const unsigned char *) namearg;
191 unsigned long h = 0;
192 unsigned long g;
193 int ch;
194
195 while ((ch = *name++) != '\0')
196 {
197 h = (h << 4) + ch;
198 if ((g = (h & 0xf0000000)) != 0)
199 {
200 h ^= g >> 24;
201 /* The ELF ABI says `h &= ~g', but this is equivalent in
202 this case and on some machines one insn instead of two. */
203 h ^= g;
204 }
205 }
206 return h & 0xffffffff;
207 }
208
209 /* Read a specified number of bytes at a specified offset in an ELF
210 file, into a newly allocated buffer, and return a pointer to the
211 buffer. */
212
213 static char *
214 elf_read (bfd *abfd, file_ptr offset, bfd_size_type size)
215 {
216 char *buf;
217
218 if ((buf = bfd_alloc (abfd, size)) == NULL)
219 return NULL;
220 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
221 return NULL;
222 if (bfd_bread (buf, size, abfd) != size)
223 {
224 if (bfd_get_error () != bfd_error_system_call)
225 bfd_set_error (bfd_error_file_truncated);
226 return NULL;
227 }
228 return buf;
229 }
230
231 bfd_boolean
232 bfd_elf_mkobject (bfd *abfd)
233 {
234 /* This just does initialization. */
235 /* coff_mkobject zalloc's space for tdata.coff_obj_data ... */
236 elf_tdata (abfd) = bfd_zalloc (abfd, sizeof (struct elf_obj_tdata));
237 if (elf_tdata (abfd) == 0)
238 return FALSE;
239 /* Since everything is done at close time, do we need any
240 initialization? */
241
242 return TRUE;
243 }
244
245 bfd_boolean
246 bfd_elf_mkcorefile (bfd *abfd)
247 {
248 /* I think this can be done just like an object file. */
249 return bfd_elf_mkobject (abfd);
250 }
251
252 char *
253 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
254 {
255 Elf_Internal_Shdr **i_shdrp;
256 char *shstrtab = NULL;
257 file_ptr offset;
258 bfd_size_type shstrtabsize;
259
260 i_shdrp = elf_elfsections (abfd);
261 if (i_shdrp == 0 || i_shdrp[shindex] == 0)
262 return 0;
263
264 shstrtab = (char *) i_shdrp[shindex]->contents;
265 if (shstrtab == NULL)
266 {
267 /* No cached one, attempt to read, and cache what we read. */
268 offset = i_shdrp[shindex]->sh_offset;
269 shstrtabsize = i_shdrp[shindex]->sh_size;
270 shstrtab = elf_read (abfd, offset, shstrtabsize);
271 i_shdrp[shindex]->contents = shstrtab;
272 }
273 return shstrtab;
274 }
275
276 char *
277 bfd_elf_string_from_elf_section (bfd *abfd,
278 unsigned int shindex,
279 unsigned int strindex)
280 {
281 Elf_Internal_Shdr *hdr;
282
283 if (strindex == 0)
284 return "";
285
286 hdr = elf_elfsections (abfd)[shindex];
287
288 if (hdr->contents == NULL
289 && bfd_elf_get_str_section (abfd, shindex) == NULL)
290 return NULL;
291
292 if (strindex >= hdr->sh_size)
293 {
294 (*_bfd_error_handler)
295 (_("%B: invalid string offset %u >= %lu for section `%s'"),
296 abfd, strindex, (unsigned long) hdr->sh_size,
297 ((shindex == elf_elfheader(abfd)->e_shstrndx
298 && strindex == hdr->sh_name)
299 ? ".shstrtab"
300 : elf_string_from_elf_strtab (abfd, hdr->sh_name)));
301 return "";
302 }
303
304 return ((char *) hdr->contents) + strindex;
305 }
306
307 /* Read and convert symbols to internal format.
308 SYMCOUNT specifies the number of symbols to read, starting from
309 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
310 are non-NULL, they are used to store the internal symbols, external
311 symbols, and symbol section index extensions, respectively. */
312
313 Elf_Internal_Sym *
314 bfd_elf_get_elf_syms (bfd *ibfd,
315 Elf_Internal_Shdr *symtab_hdr,
316 size_t symcount,
317 size_t symoffset,
318 Elf_Internal_Sym *intsym_buf,
319 void *extsym_buf,
320 Elf_External_Sym_Shndx *extshndx_buf)
321 {
322 Elf_Internal_Shdr *shndx_hdr;
323 void *alloc_ext;
324 const bfd_byte *esym;
325 Elf_External_Sym_Shndx *alloc_extshndx;
326 Elf_External_Sym_Shndx *shndx;
327 Elf_Internal_Sym *isym;
328 Elf_Internal_Sym *isymend;
329 const struct elf_backend_data *bed;
330 size_t extsym_size;
331 bfd_size_type amt;
332 file_ptr pos;
333
334 if (symcount == 0)
335 return intsym_buf;
336
337 /* Normal syms might have section extension entries. */
338 shndx_hdr = NULL;
339 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
340 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
341
342 /* Read the symbols. */
343 alloc_ext = NULL;
344 alloc_extshndx = NULL;
345 bed = get_elf_backend_data (ibfd);
346 extsym_size = bed->s->sizeof_sym;
347 amt = symcount * extsym_size;
348 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
349 if (extsym_buf == NULL)
350 {
351 alloc_ext = bfd_malloc (amt);
352 extsym_buf = alloc_ext;
353 }
354 if (extsym_buf == NULL
355 || bfd_seek (ibfd, pos, SEEK_SET) != 0
356 || bfd_bread (extsym_buf, amt, ibfd) != amt)
357 {
358 intsym_buf = NULL;
359 goto out;
360 }
361
362 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
363 extshndx_buf = NULL;
364 else
365 {
366 amt = symcount * sizeof (Elf_External_Sym_Shndx);
367 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
368 if (extshndx_buf == NULL)
369 {
370 alloc_extshndx = bfd_malloc (amt);
371 extshndx_buf = alloc_extshndx;
372 }
373 if (extshndx_buf == NULL
374 || bfd_seek (ibfd, pos, SEEK_SET) != 0
375 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
376 {
377 intsym_buf = NULL;
378 goto out;
379 }
380 }
381
382 if (intsym_buf == NULL)
383 {
384 bfd_size_type amt = symcount * sizeof (Elf_Internal_Sym);
385 intsym_buf = bfd_malloc (amt);
386 if (intsym_buf == NULL)
387 goto out;
388 }
389
390 /* Convert the symbols to internal form. */
391 isymend = intsym_buf + symcount;
392 for (esym = extsym_buf, isym = intsym_buf, shndx = extshndx_buf;
393 isym < isymend;
394 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
395 (*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym);
396
397 out:
398 if (alloc_ext != NULL)
399 free (alloc_ext);
400 if (alloc_extshndx != NULL)
401 free (alloc_extshndx);
402
403 return intsym_buf;
404 }
405
406 /* Look up a symbol name. */
407 const char *
408 bfd_elf_local_sym_name (bfd *abfd, Elf_Internal_Sym *isym)
409 {
410 unsigned int iname = isym->st_name;
411 unsigned int shindex = elf_tdata (abfd)->symtab_hdr.sh_link;
412 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION)
413 {
414 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
415 shindex = elf_elfheader (abfd)->e_shstrndx;
416 }
417
418 return bfd_elf_string_from_elf_section (abfd, shindex, iname);
419 }
420
421 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
422 sections. The first element is the flags, the rest are section
423 pointers. */
424
425 typedef union elf_internal_group {
426 Elf_Internal_Shdr *shdr;
427 unsigned int flags;
428 } Elf_Internal_Group;
429
430 /* Return the name of the group signature symbol. Why isn't the
431 signature just a string? */
432
433 static const char *
434 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
435 {
436 Elf_Internal_Shdr *hdr;
437 unsigned char esym[sizeof (Elf64_External_Sym)];
438 Elf_External_Sym_Shndx eshndx;
439 Elf_Internal_Sym isym;
440
441 /* First we need to ensure the symbol table is available. */
442 if (! bfd_section_from_shdr (abfd, ghdr->sh_link))
443 return NULL;
444
445 /* Go read the symbol. */
446 hdr = &elf_tdata (abfd)->symtab_hdr;
447 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
448 &isym, esym, &eshndx) == NULL)
449 return NULL;
450
451 return bfd_elf_local_sym_name (abfd, &isym);
452 }
453
454 /* Set next_in_group list pointer, and group name for NEWSECT. */
455
456 static bfd_boolean
457 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
458 {
459 unsigned int num_group = elf_tdata (abfd)->num_group;
460
461 /* If num_group is zero, read in all SHT_GROUP sections. The count
462 is set to -1 if there are no SHT_GROUP sections. */
463 if (num_group == 0)
464 {
465 unsigned int i, shnum;
466
467 /* First count the number of groups. If we have a SHT_GROUP
468 section with just a flag word (ie. sh_size is 4), ignore it. */
469 shnum = elf_numsections (abfd);
470 num_group = 0;
471 for (i = 0; i < shnum; i++)
472 {
473 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
474 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
475 num_group += 1;
476 }
477
478 if (num_group == 0)
479 num_group = (unsigned) -1;
480 elf_tdata (abfd)->num_group = num_group;
481
482 if (num_group > 0)
483 {
484 /* We keep a list of elf section headers for group sections,
485 so we can find them quickly. */
486 bfd_size_type amt = num_group * sizeof (Elf_Internal_Shdr *);
487 elf_tdata (abfd)->group_sect_ptr = bfd_alloc (abfd, amt);
488 if (elf_tdata (abfd)->group_sect_ptr == NULL)
489 return FALSE;
490
491 num_group = 0;
492 for (i = 0; i < shnum; i++)
493 {
494 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
495 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
496 {
497 unsigned char *src;
498 Elf_Internal_Group *dest;
499
500 /* Add to list of sections. */
501 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
502 num_group += 1;
503
504 /* Read the raw contents. */
505 BFD_ASSERT (sizeof (*dest) >= 4);
506 amt = shdr->sh_size * sizeof (*dest) / 4;
507 shdr->contents = bfd_alloc (abfd, amt);
508 if (shdr->contents == NULL
509 || bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
510 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
511 != shdr->sh_size))
512 return FALSE;
513
514 /* Translate raw contents, a flag word followed by an
515 array of elf section indices all in target byte order,
516 to the flag word followed by an array of elf section
517 pointers. */
518 src = shdr->contents + shdr->sh_size;
519 dest = (Elf_Internal_Group *) (shdr->contents + amt);
520 while (1)
521 {
522 unsigned int idx;
523
524 src -= 4;
525 --dest;
526 idx = H_GET_32 (abfd, src);
527 if (src == shdr->contents)
528 {
529 dest->flags = idx;
530 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
531 shdr->bfd_section->flags
532 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
533 break;
534 }
535 if (idx >= shnum)
536 {
537 ((*_bfd_error_handler)
538 (_("%B: invalid SHT_GROUP entry"), abfd));
539 idx = 0;
540 }
541 dest->shdr = elf_elfsections (abfd)[idx];
542 }
543 }
544 }
545 }
546 }
547
548 if (num_group != (unsigned) -1)
549 {
550 unsigned int i;
551
552 for (i = 0; i < num_group; i++)
553 {
554 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
555 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
556 unsigned int n_elt = shdr->sh_size / 4;
557
558 /* Look through this group's sections to see if current
559 section is a member. */
560 while (--n_elt != 0)
561 if ((++idx)->shdr == hdr)
562 {
563 asection *s = NULL;
564
565 /* We are a member of this group. Go looking through
566 other members to see if any others are linked via
567 next_in_group. */
568 idx = (Elf_Internal_Group *) shdr->contents;
569 n_elt = shdr->sh_size / 4;
570 while (--n_elt != 0)
571 if ((s = (++idx)->shdr->bfd_section) != NULL
572 && elf_next_in_group (s) != NULL)
573 break;
574 if (n_elt != 0)
575 {
576 /* Snarf the group name from other member, and
577 insert current section in circular list. */
578 elf_group_name (newsect) = elf_group_name (s);
579 elf_next_in_group (newsect) = elf_next_in_group (s);
580 elf_next_in_group (s) = newsect;
581 }
582 else
583 {
584 const char *gname;
585
586 gname = group_signature (abfd, shdr);
587 if (gname == NULL)
588 return FALSE;
589 elf_group_name (newsect) = gname;
590
591 /* Start a circular list with one element. */
592 elf_next_in_group (newsect) = newsect;
593 }
594
595 /* If the group section has been created, point to the
596 new member. */
597 if (shdr->bfd_section != NULL)
598 elf_next_in_group (shdr->bfd_section) = newsect;
599
600 i = num_group - 1;
601 break;
602 }
603 }
604 }
605
606 if (elf_group_name (newsect) == NULL)
607 {
608 (*_bfd_error_handler) (_("%B: no group info for section %A"),
609 abfd, newsect);
610 }
611 return TRUE;
612 }
613
614 bfd_boolean
615 _bfd_elf_setup_group_pointers (bfd *abfd)
616 {
617 unsigned int i;
618 unsigned int num_group = elf_tdata (abfd)->num_group;
619 bfd_boolean result = TRUE;
620
621 if (num_group == (unsigned) -1)
622 return result;
623
624 for (i = 0; i < num_group; i++)
625 {
626 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
627 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
628 unsigned int n_elt = shdr->sh_size / 4;
629
630 while (--n_elt != 0)
631 if ((++idx)->shdr->bfd_section)
632 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
633 else if (idx->shdr->sh_type == SHT_RELA
634 || idx->shdr->sh_type == SHT_REL)
635 /* We won't include relocation sections in section groups in
636 output object files. We adjust the group section size here
637 so that relocatable link will work correctly when
638 relocation sections are in section group in input object
639 files. */
640 shdr->bfd_section->size -= 4;
641 else
642 {
643 /* There are some unknown sections in the group. */
644 (*_bfd_error_handler)
645 (_("%B: unknown [%d] section `%s' in group [%s]"),
646 abfd,
647 (unsigned int) idx->shdr->sh_type,
648 elf_string_from_elf_strtab (abfd, idx->shdr->sh_name),
649 shdr->bfd_section->name);
650 result = FALSE;
651 }
652 }
653 return result;
654 }
655
656 bfd_boolean
657 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
658 {
659 return elf_next_in_group (sec) != NULL;
660 }
661
662 bfd_boolean
663 bfd_elf_discard_group (bfd *abfd ATTRIBUTE_UNUSED,
664 asection *group ATTRIBUTE_UNUSED)
665 {
666 #if 0
667 asection *first = elf_next_in_group (group);
668 asection *s = first;
669
670 while (s != NULL)
671 {
672 s->output_section = bfd_abs_section_ptr;
673 s = elf_next_in_group (s);
674 /* These lists are circular. */
675 if (s == first)
676 break;
677 }
678 #else
679 /* FIXME: Never used. Remove it! */
680 abort ();
681 #endif
682 return TRUE;
683 }
684
685 /* Make a BFD section from an ELF section. We store a pointer to the
686 BFD section in the bfd_section field of the header. */
687
688 bfd_boolean
689 _bfd_elf_make_section_from_shdr (bfd *abfd,
690 Elf_Internal_Shdr *hdr,
691 const char *name)
692 {
693 asection *newsect;
694 flagword flags;
695 const struct elf_backend_data *bed;
696
697 if (hdr->bfd_section != NULL)
698 {
699 BFD_ASSERT (strcmp (name,
700 bfd_get_section_name (abfd, hdr->bfd_section)) == 0);
701 return TRUE;
702 }
703
704 newsect = bfd_make_section_anyway (abfd, name);
705 if (newsect == NULL)
706 return FALSE;
707
708 hdr->bfd_section = newsect;
709 elf_section_data (newsect)->this_hdr = *hdr;
710
711 /* Always use the real type/flags. */
712 elf_section_type (newsect) = hdr->sh_type;
713 elf_section_flags (newsect) = hdr->sh_flags;
714
715 newsect->filepos = hdr->sh_offset;
716
717 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
718 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
719 || ! bfd_set_section_alignment (abfd, newsect,
720 bfd_log2 ((bfd_vma) hdr->sh_addralign)))
721 return FALSE;
722
723 flags = SEC_NO_FLAGS;
724 if (hdr->sh_type != SHT_NOBITS)
725 flags |= SEC_HAS_CONTENTS;
726 if (hdr->sh_type == SHT_GROUP)
727 flags |= SEC_GROUP | SEC_EXCLUDE;
728 if ((hdr->sh_flags & SHF_ALLOC) != 0)
729 {
730 flags |= SEC_ALLOC;
731 if (hdr->sh_type != SHT_NOBITS)
732 flags |= SEC_LOAD;
733 }
734 if ((hdr->sh_flags & SHF_WRITE) == 0)
735 flags |= SEC_READONLY;
736 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
737 flags |= SEC_CODE;
738 else if ((flags & SEC_LOAD) != 0)
739 flags |= SEC_DATA;
740 if ((hdr->sh_flags & SHF_MERGE) != 0)
741 {
742 flags |= SEC_MERGE;
743 newsect->entsize = hdr->sh_entsize;
744 if ((hdr->sh_flags & SHF_STRINGS) != 0)
745 flags |= SEC_STRINGS;
746 }
747 if (hdr->sh_flags & SHF_GROUP)
748 if (!setup_group (abfd, hdr, newsect))
749 return FALSE;
750 if ((hdr->sh_flags & SHF_TLS) != 0)
751 flags |= SEC_THREAD_LOCAL;
752
753 /* The debugging sections appear to be recognized only by name, not
754 any sort of flag. */
755 {
756 static const char *debug_sec_names [] =
757 {
758 ".debug",
759 ".gnu.linkonce.wi.",
760 ".line",
761 ".stab"
762 };
763 int i;
764
765 for (i = ARRAY_SIZE (debug_sec_names); i--;)
766 if (strncmp (name, debug_sec_names[i], strlen (debug_sec_names[i])) == 0)
767 break;
768
769 if (i >= 0)
770 flags |= SEC_DEBUGGING;
771 }
772
773 /* As a GNU extension, if the name begins with .gnu.linkonce, we
774 only link a single copy of the section. This is used to support
775 g++. g++ will emit each template expansion in its own section.
776 The symbols will be defined as weak, so that multiple definitions
777 are permitted. The GNU linker extension is to actually discard
778 all but one of the sections. */
779 if (strncmp (name, ".gnu.linkonce", sizeof ".gnu.linkonce" - 1) == 0
780 && elf_next_in_group (newsect) == NULL)
781 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
782
783 bed = get_elf_backend_data (abfd);
784 if (bed->elf_backend_section_flags)
785 if (! bed->elf_backend_section_flags (&flags, hdr))
786 return FALSE;
787
788 if (! bfd_set_section_flags (abfd, newsect, flags))
789 return FALSE;
790
791 if ((flags & SEC_ALLOC) != 0)
792 {
793 Elf_Internal_Phdr *phdr;
794 unsigned int i;
795
796 /* Look through the phdrs to see if we need to adjust the lma.
797 If all the p_paddr fields are zero, we ignore them, since
798 some ELF linkers produce such output. */
799 phdr = elf_tdata (abfd)->phdr;
800 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
801 {
802 if (phdr->p_paddr != 0)
803 break;
804 }
805 if (i < elf_elfheader (abfd)->e_phnum)
806 {
807 phdr = elf_tdata (abfd)->phdr;
808 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
809 {
810 /* This section is part of this segment if its file
811 offset plus size lies within the segment's memory
812 span and, if the section is loaded, the extent of the
813 loaded data lies within the extent of the segment.
814
815 Note - we used to check the p_paddr field as well, and
816 refuse to set the LMA if it was 0. This is wrong
817 though, as a perfectly valid initialised segment can
818 have a p_paddr of zero. Some architectures, eg ARM,
819 place special significance on the address 0 and
820 executables need to be able to have a segment which
821 covers this address. */
822 if (phdr->p_type == PT_LOAD
823 && (bfd_vma) hdr->sh_offset >= phdr->p_offset
824 && (hdr->sh_offset + hdr->sh_size
825 <= phdr->p_offset + phdr->p_memsz)
826 && ((flags & SEC_LOAD) == 0
827 || (hdr->sh_offset + hdr->sh_size
828 <= phdr->p_offset + phdr->p_filesz)))
829 {
830 if ((flags & SEC_LOAD) == 0)
831 newsect->lma = (phdr->p_paddr
832 + hdr->sh_addr - phdr->p_vaddr);
833 else
834 /* We used to use the same adjustment for SEC_LOAD
835 sections, but that doesn't work if the segment
836 is packed with code from multiple VMAs.
837 Instead we calculate the section LMA based on
838 the segment LMA. It is assumed that the
839 segment will contain sections with contiguous
840 LMAs, even if the VMAs are not. */
841 newsect->lma = (phdr->p_paddr
842 + hdr->sh_offset - phdr->p_offset);
843
844 /* With contiguous segments, we can't tell from file
845 offsets whether a section with zero size should
846 be placed at the end of one segment or the
847 beginning of the next. Decide based on vaddr. */
848 if (hdr->sh_addr >= phdr->p_vaddr
849 && (hdr->sh_addr + hdr->sh_size
850 <= phdr->p_vaddr + phdr->p_memsz))
851 break;
852 }
853 }
854 }
855 }
856
857 return TRUE;
858 }
859
860 /*
861 INTERNAL_FUNCTION
862 bfd_elf_find_section
863
864 SYNOPSIS
865 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
866
867 DESCRIPTION
868 Helper functions for GDB to locate the string tables.
869 Since BFD hides string tables from callers, GDB needs to use an
870 internal hook to find them. Sun's .stabstr, in particular,
871 isn't even pointed to by the .stab section, so ordinary
872 mechanisms wouldn't work to find it, even if we had some.
873 */
874
875 struct elf_internal_shdr *
876 bfd_elf_find_section (bfd *abfd, char *name)
877 {
878 Elf_Internal_Shdr **i_shdrp;
879 char *shstrtab;
880 unsigned int max;
881 unsigned int i;
882
883 i_shdrp = elf_elfsections (abfd);
884 if (i_shdrp != NULL)
885 {
886 shstrtab = bfd_elf_get_str_section (abfd,
887 elf_elfheader (abfd)->e_shstrndx);
888 if (shstrtab != NULL)
889 {
890 max = elf_numsections (abfd);
891 for (i = 1; i < max; i++)
892 if (!strcmp (&shstrtab[i_shdrp[i]->sh_name], name))
893 return i_shdrp[i];
894 }
895 }
896 return 0;
897 }
898
899 const char *const bfd_elf_section_type_names[] = {
900 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
901 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
902 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
903 };
904
905 /* ELF relocs are against symbols. If we are producing relocatable
906 output, and the reloc is against an external symbol, and nothing
907 has given us any additional addend, the resulting reloc will also
908 be against the same symbol. In such a case, we don't want to
909 change anything about the way the reloc is handled, since it will
910 all be done at final link time. Rather than put special case code
911 into bfd_perform_relocation, all the reloc types use this howto
912 function. It just short circuits the reloc if producing
913 relocatable output against an external symbol. */
914
915 bfd_reloc_status_type
916 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
917 arelent *reloc_entry,
918 asymbol *symbol,
919 void *data ATTRIBUTE_UNUSED,
920 asection *input_section,
921 bfd *output_bfd,
922 char **error_message ATTRIBUTE_UNUSED)
923 {
924 if (output_bfd != NULL
925 && (symbol->flags & BSF_SECTION_SYM) == 0
926 && (! reloc_entry->howto->partial_inplace
927 || reloc_entry->addend == 0))
928 {
929 reloc_entry->address += input_section->output_offset;
930 return bfd_reloc_ok;
931 }
932
933 return bfd_reloc_continue;
934 }
935 \f
936 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
937
938 static void
939 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
940 asection *sec)
941 {
942 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
943 sec->sec_info_type = ELF_INFO_TYPE_NONE;
944 }
945
946 /* Finish SHF_MERGE section merging. */
947
948 bfd_boolean
949 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
950 {
951 bfd *ibfd;
952 asection *sec;
953
954 if (!is_elf_hash_table (info->hash))
955 return FALSE;
956
957 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
958 if ((ibfd->flags & DYNAMIC) == 0)
959 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
960 if ((sec->flags & SEC_MERGE) != 0
961 && !bfd_is_abs_section (sec->output_section))
962 {
963 struct bfd_elf_section_data *secdata;
964
965 secdata = elf_section_data (sec);
966 if (! _bfd_add_merge_section (abfd,
967 &elf_hash_table (info)->merge_info,
968 sec, &secdata->sec_info))
969 return FALSE;
970 else if (secdata->sec_info)
971 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
972 }
973
974 if (elf_hash_table (info)->merge_info != NULL)
975 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
976 merge_sections_remove_hook);
977 return TRUE;
978 }
979
980 void
981 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
982 {
983 sec->output_section = bfd_abs_section_ptr;
984 sec->output_offset = sec->vma;
985 if (!is_elf_hash_table (info->hash))
986 return;
987
988 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
989 }
990 \f
991 /* Copy the program header and other data from one object module to
992 another. */
993
994 bfd_boolean
995 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
996 {
997 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
998 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
999 return TRUE;
1000
1001 BFD_ASSERT (!elf_flags_init (obfd)
1002 || (elf_elfheader (obfd)->e_flags
1003 == elf_elfheader (ibfd)->e_flags));
1004
1005 elf_gp (obfd) = elf_gp (ibfd);
1006 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1007 elf_flags_init (obfd) = TRUE;
1008 return TRUE;
1009 }
1010
1011 /* Print out the program headers. */
1012
1013 bfd_boolean
1014 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1015 {
1016 FILE *f = farg;
1017 Elf_Internal_Phdr *p;
1018 asection *s;
1019 bfd_byte *dynbuf = NULL;
1020
1021 p = elf_tdata (abfd)->phdr;
1022 if (p != NULL)
1023 {
1024 unsigned int i, c;
1025
1026 fprintf (f, _("\nProgram Header:\n"));
1027 c = elf_elfheader (abfd)->e_phnum;
1028 for (i = 0; i < c; i++, p++)
1029 {
1030 const char *pt;
1031 char buf[20];
1032
1033 switch (p->p_type)
1034 {
1035 case PT_NULL: pt = "NULL"; break;
1036 case PT_LOAD: pt = "LOAD"; break;
1037 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1038 case PT_INTERP: pt = "INTERP"; break;
1039 case PT_NOTE: pt = "NOTE"; break;
1040 case PT_SHLIB: pt = "SHLIB"; break;
1041 case PT_PHDR: pt = "PHDR"; break;
1042 case PT_TLS: pt = "TLS"; break;
1043 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1044 case PT_GNU_STACK: pt = "STACK"; break;
1045 case PT_GNU_RELRO: pt = "RELRO"; break;
1046 default: sprintf (buf, "0x%lx", p->p_type); pt = buf; break;
1047 }
1048 fprintf (f, "%8s off 0x", pt);
1049 bfd_fprintf_vma (abfd, f, p->p_offset);
1050 fprintf (f, " vaddr 0x");
1051 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1052 fprintf (f, " paddr 0x");
1053 bfd_fprintf_vma (abfd, f, p->p_paddr);
1054 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1055 fprintf (f, " filesz 0x");
1056 bfd_fprintf_vma (abfd, f, p->p_filesz);
1057 fprintf (f, " memsz 0x");
1058 bfd_fprintf_vma (abfd, f, p->p_memsz);
1059 fprintf (f, " flags %c%c%c",
1060 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1061 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1062 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1063 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1064 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1065 fprintf (f, "\n");
1066 }
1067 }
1068
1069 s = bfd_get_section_by_name (abfd, ".dynamic");
1070 if (s != NULL)
1071 {
1072 int elfsec;
1073 unsigned long shlink;
1074 bfd_byte *extdyn, *extdynend;
1075 size_t extdynsize;
1076 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1077
1078 fprintf (f, _("\nDynamic Section:\n"));
1079
1080 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1081 goto error_return;
1082
1083 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1084 if (elfsec == -1)
1085 goto error_return;
1086 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1087
1088 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1089 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1090
1091 extdyn = dynbuf;
1092 extdynend = extdyn + s->size;
1093 for (; extdyn < extdynend; extdyn += extdynsize)
1094 {
1095 Elf_Internal_Dyn dyn;
1096 const char *name;
1097 char ab[20];
1098 bfd_boolean stringp;
1099
1100 (*swap_dyn_in) (abfd, extdyn, &dyn);
1101
1102 if (dyn.d_tag == DT_NULL)
1103 break;
1104
1105 stringp = FALSE;
1106 switch (dyn.d_tag)
1107 {
1108 default:
1109 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1110 name = ab;
1111 break;
1112
1113 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1114 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1115 case DT_PLTGOT: name = "PLTGOT"; break;
1116 case DT_HASH: name = "HASH"; break;
1117 case DT_STRTAB: name = "STRTAB"; break;
1118 case DT_SYMTAB: name = "SYMTAB"; break;
1119 case DT_RELA: name = "RELA"; break;
1120 case DT_RELASZ: name = "RELASZ"; break;
1121 case DT_RELAENT: name = "RELAENT"; break;
1122 case DT_STRSZ: name = "STRSZ"; break;
1123 case DT_SYMENT: name = "SYMENT"; break;
1124 case DT_INIT: name = "INIT"; break;
1125 case DT_FINI: name = "FINI"; break;
1126 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1127 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1128 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1129 case DT_REL: name = "REL"; break;
1130 case DT_RELSZ: name = "RELSZ"; break;
1131 case DT_RELENT: name = "RELENT"; break;
1132 case DT_PLTREL: name = "PLTREL"; break;
1133 case DT_DEBUG: name = "DEBUG"; break;
1134 case DT_TEXTREL: name = "TEXTREL"; break;
1135 case DT_JMPREL: name = "JMPREL"; break;
1136 case DT_BIND_NOW: name = "BIND_NOW"; break;
1137 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1138 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1139 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1140 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1141 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1142 case DT_FLAGS: name = "FLAGS"; break;
1143 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1144 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1145 case DT_CHECKSUM: name = "CHECKSUM"; break;
1146 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1147 case DT_MOVEENT: name = "MOVEENT"; break;
1148 case DT_MOVESZ: name = "MOVESZ"; break;
1149 case DT_FEATURE: name = "FEATURE"; break;
1150 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1151 case DT_SYMINSZ: name = "SYMINSZ"; break;
1152 case DT_SYMINENT: name = "SYMINENT"; break;
1153 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1154 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1155 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1156 case DT_PLTPAD: name = "PLTPAD"; break;
1157 case DT_MOVETAB: name = "MOVETAB"; break;
1158 case DT_SYMINFO: name = "SYMINFO"; break;
1159 case DT_RELACOUNT: name = "RELACOUNT"; break;
1160 case DT_RELCOUNT: name = "RELCOUNT"; break;
1161 case DT_FLAGS_1: name = "FLAGS_1"; break;
1162 case DT_VERSYM: name = "VERSYM"; break;
1163 case DT_VERDEF: name = "VERDEF"; break;
1164 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1165 case DT_VERNEED: name = "VERNEED"; break;
1166 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1167 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1168 case DT_USED: name = "USED"; break;
1169 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1170 }
1171
1172 fprintf (f, " %-11s ", name);
1173 if (! stringp)
1174 fprintf (f, "0x%lx", (unsigned long) dyn.d_un.d_val);
1175 else
1176 {
1177 const char *string;
1178 unsigned int tagv = dyn.d_un.d_val;
1179
1180 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1181 if (string == NULL)
1182 goto error_return;
1183 fprintf (f, "%s", string);
1184 }
1185 fprintf (f, "\n");
1186 }
1187
1188 free (dynbuf);
1189 dynbuf = NULL;
1190 }
1191
1192 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1193 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1194 {
1195 if (! _bfd_elf_slurp_version_tables (abfd))
1196 return FALSE;
1197 }
1198
1199 if (elf_dynverdef (abfd) != 0)
1200 {
1201 Elf_Internal_Verdef *t;
1202
1203 fprintf (f, _("\nVersion definitions:\n"));
1204 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1205 {
1206 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1207 t->vd_flags, t->vd_hash, t->vd_nodename);
1208 if (t->vd_auxptr->vda_nextptr != NULL)
1209 {
1210 Elf_Internal_Verdaux *a;
1211
1212 fprintf (f, "\t");
1213 for (a = t->vd_auxptr->vda_nextptr;
1214 a != NULL;
1215 a = a->vda_nextptr)
1216 fprintf (f, "%s ", a->vda_nodename);
1217 fprintf (f, "\n");
1218 }
1219 }
1220 }
1221
1222 if (elf_dynverref (abfd) != 0)
1223 {
1224 Elf_Internal_Verneed *t;
1225
1226 fprintf (f, _("\nVersion References:\n"));
1227 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1228 {
1229 Elf_Internal_Vernaux *a;
1230
1231 fprintf (f, _(" required from %s:\n"), t->vn_filename);
1232 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1233 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1234 a->vna_flags, a->vna_other, a->vna_nodename);
1235 }
1236 }
1237
1238 return TRUE;
1239
1240 error_return:
1241 if (dynbuf != NULL)
1242 free (dynbuf);
1243 return FALSE;
1244 }
1245
1246 /* Display ELF-specific fields of a symbol. */
1247
1248 void
1249 bfd_elf_print_symbol (bfd *abfd,
1250 void *filep,
1251 asymbol *symbol,
1252 bfd_print_symbol_type how)
1253 {
1254 FILE *file = filep;
1255 switch (how)
1256 {
1257 case bfd_print_symbol_name:
1258 fprintf (file, "%s", symbol->name);
1259 break;
1260 case bfd_print_symbol_more:
1261 fprintf (file, "elf ");
1262 bfd_fprintf_vma (abfd, file, symbol->value);
1263 fprintf (file, " %lx", (long) symbol->flags);
1264 break;
1265 case bfd_print_symbol_all:
1266 {
1267 const char *section_name;
1268 const char *name = NULL;
1269 const struct elf_backend_data *bed;
1270 unsigned char st_other;
1271 bfd_vma val;
1272
1273 section_name = symbol->section ? symbol->section->name : "(*none*)";
1274
1275 bed = get_elf_backend_data (abfd);
1276 if (bed->elf_backend_print_symbol_all)
1277 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1278
1279 if (name == NULL)
1280 {
1281 name = symbol->name;
1282 bfd_print_symbol_vandf (abfd, file, symbol);
1283 }
1284
1285 fprintf (file, " %s\t", section_name);
1286 /* Print the "other" value for a symbol. For common symbols,
1287 we've already printed the size; now print the alignment.
1288 For other symbols, we have no specified alignment, and
1289 we've printed the address; now print the size. */
1290 if (bfd_is_com_section (symbol->section))
1291 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1292 else
1293 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1294 bfd_fprintf_vma (abfd, file, val);
1295
1296 /* If we have version information, print it. */
1297 if (elf_tdata (abfd)->dynversym_section != 0
1298 && (elf_tdata (abfd)->dynverdef_section != 0
1299 || elf_tdata (abfd)->dynverref_section != 0))
1300 {
1301 unsigned int vernum;
1302 const char *version_string;
1303
1304 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1305
1306 if (vernum == 0)
1307 version_string = "";
1308 else if (vernum == 1)
1309 version_string = "Base";
1310 else if (vernum <= elf_tdata (abfd)->cverdefs)
1311 version_string =
1312 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1313 else
1314 {
1315 Elf_Internal_Verneed *t;
1316
1317 version_string = "";
1318 for (t = elf_tdata (abfd)->verref;
1319 t != NULL;
1320 t = t->vn_nextref)
1321 {
1322 Elf_Internal_Vernaux *a;
1323
1324 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1325 {
1326 if (a->vna_other == vernum)
1327 {
1328 version_string = a->vna_nodename;
1329 break;
1330 }
1331 }
1332 }
1333 }
1334
1335 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1336 fprintf (file, " %-11s", version_string);
1337 else
1338 {
1339 int i;
1340
1341 fprintf (file, " (%s)", version_string);
1342 for (i = 10 - strlen (version_string); i > 0; --i)
1343 putc (' ', file);
1344 }
1345 }
1346
1347 /* If the st_other field is not zero, print it. */
1348 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1349
1350 switch (st_other)
1351 {
1352 case 0: break;
1353 case STV_INTERNAL: fprintf (file, " .internal"); break;
1354 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1355 case STV_PROTECTED: fprintf (file, " .protected"); break;
1356 default:
1357 /* Some other non-defined flags are also present, so print
1358 everything hex. */
1359 fprintf (file, " 0x%02x", (unsigned int) st_other);
1360 }
1361
1362 fprintf (file, " %s", name);
1363 }
1364 break;
1365 }
1366 }
1367 \f
1368 /* Create an entry in an ELF linker hash table. */
1369
1370 struct bfd_hash_entry *
1371 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1372 struct bfd_hash_table *table,
1373 const char *string)
1374 {
1375 /* Allocate the structure if it has not already been allocated by a
1376 subclass. */
1377 if (entry == NULL)
1378 {
1379 entry = bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
1380 if (entry == NULL)
1381 return entry;
1382 }
1383
1384 /* Call the allocation method of the superclass. */
1385 entry = _bfd_link_hash_newfunc (entry, table, string);
1386 if (entry != NULL)
1387 {
1388 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
1389 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
1390
1391 /* Set local fields. */
1392 ret->indx = -1;
1393 ret->dynindx = -1;
1394 ret->dynstr_index = 0;
1395 ret->elf_hash_value = 0;
1396 ret->weakdef = NULL;
1397 ret->verinfo.verdef = NULL;
1398 ret->vtable_entries_size = 0;
1399 ret->vtable_entries_used = NULL;
1400 ret->vtable_parent = NULL;
1401 ret->got = htab->init_refcount;
1402 ret->plt = htab->init_refcount;
1403 ret->size = 0;
1404 ret->type = STT_NOTYPE;
1405 ret->other = 0;
1406 /* Assume that we have been called by a non-ELF symbol reader.
1407 This flag is then reset by the code which reads an ELF input
1408 file. This ensures that a symbol created by a non-ELF symbol
1409 reader will have the flag set correctly. */
1410 ret->elf_link_hash_flags = ELF_LINK_NON_ELF;
1411 }
1412
1413 return entry;
1414 }
1415
1416 /* Copy data from an indirect symbol to its direct symbol, hiding the
1417 old indirect symbol. Also used for copying flags to a weakdef. */
1418
1419 void
1420 _bfd_elf_link_hash_copy_indirect (const struct elf_backend_data *bed,
1421 struct elf_link_hash_entry *dir,
1422 struct elf_link_hash_entry *ind)
1423 {
1424 bfd_signed_vma tmp;
1425 bfd_signed_vma lowest_valid = bed->can_refcount;
1426
1427 /* Copy down any references that we may have already seen to the
1428 symbol which just became indirect. */
1429
1430 dir->elf_link_hash_flags
1431 |= ind->elf_link_hash_flags & (ELF_LINK_HASH_REF_DYNAMIC
1432 | ELF_LINK_HASH_REF_REGULAR
1433 | ELF_LINK_HASH_REF_REGULAR_NONWEAK
1434 | ELF_LINK_NON_GOT_REF
1435 | ELF_LINK_HASH_NEEDS_PLT
1436 | ELF_LINK_POINTER_EQUALITY_NEEDED);
1437
1438 if (ind->root.type != bfd_link_hash_indirect)
1439 return;
1440
1441 /* Copy over the global and procedure linkage table refcount entries.
1442 These may have been already set up by a check_relocs routine. */
1443 tmp = dir->got.refcount;
1444 if (tmp < lowest_valid)
1445 {
1446 dir->got.refcount = ind->got.refcount;
1447 ind->got.refcount = tmp;
1448 }
1449 else
1450 BFD_ASSERT (ind->got.refcount < lowest_valid);
1451
1452 tmp = dir->plt.refcount;
1453 if (tmp < lowest_valid)
1454 {
1455 dir->plt.refcount = ind->plt.refcount;
1456 ind->plt.refcount = tmp;
1457 }
1458 else
1459 BFD_ASSERT (ind->plt.refcount < lowest_valid);
1460
1461 if (dir->dynindx == -1)
1462 {
1463 dir->dynindx = ind->dynindx;
1464 dir->dynstr_index = ind->dynstr_index;
1465 ind->dynindx = -1;
1466 ind->dynstr_index = 0;
1467 }
1468 else
1469 BFD_ASSERT (ind->dynindx == -1);
1470 }
1471
1472 void
1473 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
1474 struct elf_link_hash_entry *h,
1475 bfd_boolean force_local)
1476 {
1477 h->plt = elf_hash_table (info)->init_offset;
1478 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1479 if (force_local)
1480 {
1481 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
1482 if (h->dynindx != -1)
1483 {
1484 h->dynindx = -1;
1485 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1486 h->dynstr_index);
1487 }
1488 }
1489 }
1490
1491 /* Initialize an ELF linker hash table. */
1492
1493 bfd_boolean
1494 _bfd_elf_link_hash_table_init
1495 (struct elf_link_hash_table *table,
1496 bfd *abfd,
1497 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
1498 struct bfd_hash_table *,
1499 const char *))
1500 {
1501 bfd_boolean ret;
1502
1503 table->dynamic_sections_created = FALSE;
1504 table->dynobj = NULL;
1505 /* Make sure can_refcount is extended to the width and signedness of
1506 init_refcount before we subtract one from it. */
1507 table->init_refcount.refcount = get_elf_backend_data (abfd)->can_refcount;
1508 table->init_refcount.refcount -= 1;
1509 table->init_offset.offset = -(bfd_vma) 1;
1510 /* The first dynamic symbol is a dummy. */
1511 table->dynsymcount = 1;
1512 table->dynstr = NULL;
1513 table->bucketcount = 0;
1514 table->needed = NULL;
1515 table->hgot = NULL;
1516 table->merge_info = NULL;
1517 memset (&table->stab_info, 0, sizeof (table->stab_info));
1518 memset (&table->eh_info, 0, sizeof (table->eh_info));
1519 table->dynlocal = NULL;
1520 table->runpath = NULL;
1521 table->tls_sec = NULL;
1522 table->tls_size = 0;
1523 table->loaded = NULL;
1524
1525 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc);
1526 table->root.type = bfd_link_elf_hash_table;
1527
1528 return ret;
1529 }
1530
1531 /* Create an ELF linker hash table. */
1532
1533 struct bfd_link_hash_table *
1534 _bfd_elf_link_hash_table_create (bfd *abfd)
1535 {
1536 struct elf_link_hash_table *ret;
1537 bfd_size_type amt = sizeof (struct elf_link_hash_table);
1538
1539 ret = bfd_malloc (amt);
1540 if (ret == NULL)
1541 return NULL;
1542
1543 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc))
1544 {
1545 free (ret);
1546 return NULL;
1547 }
1548
1549 return &ret->root;
1550 }
1551
1552 /* This is a hook for the ELF emulation code in the generic linker to
1553 tell the backend linker what file name to use for the DT_NEEDED
1554 entry for a dynamic object. */
1555
1556 void
1557 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
1558 {
1559 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1560 && bfd_get_format (abfd) == bfd_object)
1561 elf_dt_name (abfd) = name;
1562 }
1563
1564 int
1565 bfd_elf_get_dyn_lib_class (bfd *abfd)
1566 {
1567 int lib_class;
1568 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1569 && bfd_get_format (abfd) == bfd_object)
1570 lib_class = elf_dyn_lib_class (abfd);
1571 else
1572 lib_class = 0;
1573 return lib_class;
1574 }
1575
1576 void
1577 bfd_elf_set_dyn_lib_class (bfd *abfd, int lib_class)
1578 {
1579 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1580 && bfd_get_format (abfd) == bfd_object)
1581 elf_dyn_lib_class (abfd) = lib_class;
1582 }
1583
1584 /* Get the list of DT_NEEDED entries for a link. This is a hook for
1585 the linker ELF emulation code. */
1586
1587 struct bfd_link_needed_list *
1588 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
1589 struct bfd_link_info *info)
1590 {
1591 if (! is_elf_hash_table (info->hash))
1592 return NULL;
1593 return elf_hash_table (info)->needed;
1594 }
1595
1596 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
1597 hook for the linker ELF emulation code. */
1598
1599 struct bfd_link_needed_list *
1600 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
1601 struct bfd_link_info *info)
1602 {
1603 if (! is_elf_hash_table (info->hash))
1604 return NULL;
1605 return elf_hash_table (info)->runpath;
1606 }
1607
1608 /* Get the name actually used for a dynamic object for a link. This
1609 is the SONAME entry if there is one. Otherwise, it is the string
1610 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
1611
1612 const char *
1613 bfd_elf_get_dt_soname (bfd *abfd)
1614 {
1615 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1616 && bfd_get_format (abfd) == bfd_object)
1617 return elf_dt_name (abfd);
1618 return NULL;
1619 }
1620
1621 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
1622 the ELF linker emulation code. */
1623
1624 bfd_boolean
1625 bfd_elf_get_bfd_needed_list (bfd *abfd,
1626 struct bfd_link_needed_list **pneeded)
1627 {
1628 asection *s;
1629 bfd_byte *dynbuf = NULL;
1630 int elfsec;
1631 unsigned long shlink;
1632 bfd_byte *extdyn, *extdynend;
1633 size_t extdynsize;
1634 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1635
1636 *pneeded = NULL;
1637
1638 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
1639 || bfd_get_format (abfd) != bfd_object)
1640 return TRUE;
1641
1642 s = bfd_get_section_by_name (abfd, ".dynamic");
1643 if (s == NULL || s->size == 0)
1644 return TRUE;
1645
1646 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1647 goto error_return;
1648
1649 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1650 if (elfsec == -1)
1651 goto error_return;
1652
1653 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1654
1655 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1656 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1657
1658 extdyn = dynbuf;
1659 extdynend = extdyn + s->size;
1660 for (; extdyn < extdynend; extdyn += extdynsize)
1661 {
1662 Elf_Internal_Dyn dyn;
1663
1664 (*swap_dyn_in) (abfd, extdyn, &dyn);
1665
1666 if (dyn.d_tag == DT_NULL)
1667 break;
1668
1669 if (dyn.d_tag == DT_NEEDED)
1670 {
1671 const char *string;
1672 struct bfd_link_needed_list *l;
1673 unsigned int tagv = dyn.d_un.d_val;
1674 bfd_size_type amt;
1675
1676 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1677 if (string == NULL)
1678 goto error_return;
1679
1680 amt = sizeof *l;
1681 l = bfd_alloc (abfd, amt);
1682 if (l == NULL)
1683 goto error_return;
1684
1685 l->by = abfd;
1686 l->name = string;
1687 l->next = *pneeded;
1688 *pneeded = l;
1689 }
1690 }
1691
1692 free (dynbuf);
1693
1694 return TRUE;
1695
1696 error_return:
1697 if (dynbuf != NULL)
1698 free (dynbuf);
1699 return FALSE;
1700 }
1701 \f
1702 /* Allocate an ELF string table--force the first byte to be zero. */
1703
1704 struct bfd_strtab_hash *
1705 _bfd_elf_stringtab_init (void)
1706 {
1707 struct bfd_strtab_hash *ret;
1708
1709 ret = _bfd_stringtab_init ();
1710 if (ret != NULL)
1711 {
1712 bfd_size_type loc;
1713
1714 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1715 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1716 if (loc == (bfd_size_type) -1)
1717 {
1718 _bfd_stringtab_free (ret);
1719 ret = NULL;
1720 }
1721 }
1722 return ret;
1723 }
1724 \f
1725 /* ELF .o/exec file reading */
1726
1727 /* Create a new bfd section from an ELF section header. */
1728
1729 bfd_boolean
1730 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1731 {
1732 Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[shindex];
1733 Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
1734 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1735 const char *name;
1736
1737 name = elf_string_from_elf_strtab (abfd, hdr->sh_name);
1738
1739 switch (hdr->sh_type)
1740 {
1741 case SHT_NULL:
1742 /* Inactive section. Throw it away. */
1743 return TRUE;
1744
1745 case SHT_PROGBITS: /* Normal section with contents. */
1746 case SHT_NOBITS: /* .bss section. */
1747 case SHT_HASH: /* .hash section. */
1748 case SHT_NOTE: /* .note section. */
1749 case SHT_INIT_ARRAY: /* .init_array section. */
1750 case SHT_FINI_ARRAY: /* .fini_array section. */
1751 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1752 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1753
1754 case SHT_DYNAMIC: /* Dynamic linking information. */
1755 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
1756 return FALSE;
1757 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1758 {
1759 Elf_Internal_Shdr *dynsymhdr;
1760
1761 /* The shared libraries distributed with hpux11 have a bogus
1762 sh_link field for the ".dynamic" section. Find the
1763 string table for the ".dynsym" section instead. */
1764 if (elf_dynsymtab (abfd) != 0)
1765 {
1766 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1767 hdr->sh_link = dynsymhdr->sh_link;
1768 }
1769 else
1770 {
1771 unsigned int i, num_sec;
1772
1773 num_sec = elf_numsections (abfd);
1774 for (i = 1; i < num_sec; i++)
1775 {
1776 dynsymhdr = elf_elfsections (abfd)[i];
1777 if (dynsymhdr->sh_type == SHT_DYNSYM)
1778 {
1779 hdr->sh_link = dynsymhdr->sh_link;
1780 break;
1781 }
1782 }
1783 }
1784 }
1785 break;
1786
1787 case SHT_SYMTAB: /* A symbol table */
1788 if (elf_onesymtab (abfd) == shindex)
1789 return TRUE;
1790
1791 BFD_ASSERT (hdr->sh_entsize == bed->s->sizeof_sym);
1792 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1793 elf_onesymtab (abfd) = shindex;
1794 elf_tdata (abfd)->symtab_hdr = *hdr;
1795 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1796 abfd->flags |= HAS_SYMS;
1797
1798 /* Sometimes a shared object will map in the symbol table. If
1799 SHF_ALLOC is set, and this is a shared object, then we also
1800 treat this section as a BFD section. We can not base the
1801 decision purely on SHF_ALLOC, because that flag is sometimes
1802 set in a relocatable object file, which would confuse the
1803 linker. */
1804 if ((hdr->sh_flags & SHF_ALLOC) != 0
1805 && (abfd->flags & DYNAMIC) != 0
1806 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
1807 return FALSE;
1808
1809 return TRUE;
1810
1811 case SHT_DYNSYM: /* A dynamic symbol table */
1812 if (elf_dynsymtab (abfd) == shindex)
1813 return TRUE;
1814
1815 BFD_ASSERT (hdr->sh_entsize == bed->s->sizeof_sym);
1816 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1817 elf_dynsymtab (abfd) = shindex;
1818 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1819 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1820 abfd->flags |= HAS_SYMS;
1821
1822 /* Besides being a symbol table, we also treat this as a regular
1823 section, so that objcopy can handle it. */
1824 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1825
1826 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1827 if (elf_symtab_shndx (abfd) == shindex)
1828 return TRUE;
1829
1830 /* Get the associated symbol table. */
1831 if (! bfd_section_from_shdr (abfd, hdr->sh_link)
1832 || hdr->sh_link != elf_onesymtab (abfd))
1833 return FALSE;
1834
1835 elf_symtab_shndx (abfd) = shindex;
1836 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1837 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1838 return TRUE;
1839
1840 case SHT_STRTAB: /* A string table */
1841 if (hdr->bfd_section != NULL)
1842 return TRUE;
1843 if (ehdr->e_shstrndx == shindex)
1844 {
1845 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1846 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1847 return TRUE;
1848 }
1849 {
1850 unsigned int i, num_sec;
1851
1852 num_sec = elf_numsections (abfd);
1853 for (i = 1; i < num_sec; i++)
1854 {
1855 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1856 if (hdr2->sh_link == shindex)
1857 {
1858 if (! bfd_section_from_shdr (abfd, i))
1859 return FALSE;
1860 if (elf_onesymtab (abfd) == i)
1861 {
1862 elf_tdata (abfd)->strtab_hdr = *hdr;
1863 elf_elfsections (abfd)[shindex] =
1864 &elf_tdata (abfd)->strtab_hdr;
1865 return TRUE;
1866 }
1867 if (elf_dynsymtab (abfd) == i)
1868 {
1869 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1870 elf_elfsections (abfd)[shindex] = hdr =
1871 &elf_tdata (abfd)->dynstrtab_hdr;
1872 /* We also treat this as a regular section, so
1873 that objcopy can handle it. */
1874 break;
1875 }
1876 #if 0 /* Not handling other string tables specially right now. */
1877 hdr2 = elf_elfsections (abfd)[i]; /* in case it moved */
1878 /* We have a strtab for some random other section. */
1879 newsect = (asection *) hdr2->bfd_section;
1880 if (!newsect)
1881 break;
1882 hdr->bfd_section = newsect;
1883 hdr2 = &elf_section_data (newsect)->str_hdr;
1884 *hdr2 = *hdr;
1885 elf_elfsections (abfd)[shindex] = hdr2;
1886 #endif
1887 }
1888 }
1889 }
1890
1891 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1892
1893 case SHT_REL:
1894 case SHT_RELA:
1895 /* *These* do a lot of work -- but build no sections! */
1896 {
1897 asection *target_sect;
1898 Elf_Internal_Shdr *hdr2;
1899 unsigned int num_sec = elf_numsections (abfd);
1900
1901 /* Check for a bogus link to avoid crashing. */
1902 if ((hdr->sh_link >= SHN_LORESERVE && hdr->sh_link <= SHN_HIRESERVE)
1903 || hdr->sh_link >= num_sec)
1904 {
1905 ((*_bfd_error_handler)
1906 (_("%B: invalid link %lu for reloc section %s (index %u)"),
1907 abfd, hdr->sh_link, name, shindex));
1908 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1909 }
1910
1911 /* For some incomprehensible reason Oracle distributes
1912 libraries for Solaris in which some of the objects have
1913 bogus sh_link fields. It would be nice if we could just
1914 reject them, but, unfortunately, some people need to use
1915 them. We scan through the section headers; if we find only
1916 one suitable symbol table, we clobber the sh_link to point
1917 to it. I hope this doesn't break anything. */
1918 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
1919 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
1920 {
1921 unsigned int scan;
1922 int found;
1923
1924 found = 0;
1925 for (scan = 1; scan < num_sec; scan++)
1926 {
1927 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
1928 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
1929 {
1930 if (found != 0)
1931 {
1932 found = 0;
1933 break;
1934 }
1935 found = scan;
1936 }
1937 }
1938 if (found != 0)
1939 hdr->sh_link = found;
1940 }
1941
1942 /* Get the symbol table. */
1943 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
1944 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
1945 return FALSE;
1946
1947 /* If this reloc section does not use the main symbol table we
1948 don't treat it as a reloc section. BFD can't adequately
1949 represent such a section, so at least for now, we don't
1950 try. We just present it as a normal section. We also
1951 can't use it as a reloc section if it points to the null
1952 section. */
1953 if (hdr->sh_link != elf_onesymtab (abfd) || hdr->sh_info == SHN_UNDEF)
1954 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1955
1956 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
1957 return FALSE;
1958 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
1959 if (target_sect == NULL)
1960 return FALSE;
1961
1962 if ((target_sect->flags & SEC_RELOC) == 0
1963 || target_sect->reloc_count == 0)
1964 hdr2 = &elf_section_data (target_sect)->rel_hdr;
1965 else
1966 {
1967 bfd_size_type amt;
1968 BFD_ASSERT (elf_section_data (target_sect)->rel_hdr2 == NULL);
1969 amt = sizeof (*hdr2);
1970 hdr2 = bfd_alloc (abfd, amt);
1971 elf_section_data (target_sect)->rel_hdr2 = hdr2;
1972 }
1973 *hdr2 = *hdr;
1974 elf_elfsections (abfd)[shindex] = hdr2;
1975 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
1976 target_sect->flags |= SEC_RELOC;
1977 target_sect->relocation = NULL;
1978 target_sect->rel_filepos = hdr->sh_offset;
1979 /* In the section to which the relocations apply, mark whether
1980 its relocations are of the REL or RELA variety. */
1981 if (hdr->sh_size != 0)
1982 target_sect->use_rela_p = hdr->sh_type == SHT_RELA;
1983 abfd->flags |= HAS_RELOC;
1984 return TRUE;
1985 }
1986 break;
1987
1988 case SHT_GNU_verdef:
1989 elf_dynverdef (abfd) = shindex;
1990 elf_tdata (abfd)->dynverdef_hdr = *hdr;
1991 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1992 break;
1993
1994 case SHT_GNU_versym:
1995 elf_dynversym (abfd) = shindex;
1996 elf_tdata (abfd)->dynversym_hdr = *hdr;
1997 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1998 break;
1999
2000 case SHT_GNU_verneed:
2001 elf_dynverref (abfd) = shindex;
2002 elf_tdata (abfd)->dynverref_hdr = *hdr;
2003 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
2004 break;
2005
2006 case SHT_SHLIB:
2007 return TRUE;
2008
2009 case SHT_GROUP:
2010 /* We need a BFD section for objcopy and relocatable linking,
2011 and it's handy to have the signature available as the section
2012 name. */
2013 name = group_signature (abfd, hdr);
2014 if (name == NULL)
2015 return FALSE;
2016 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name))
2017 return FALSE;
2018 if (hdr->contents != NULL)
2019 {
2020 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
2021 unsigned int n_elt = hdr->sh_size / 4;
2022 asection *s;
2023
2024 if (idx->flags & GRP_COMDAT)
2025 hdr->bfd_section->flags
2026 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
2027
2028 /* We try to keep the same section order as it comes in. */
2029 idx += n_elt;
2030 while (--n_elt != 0)
2031 if ((s = (--idx)->shdr->bfd_section) != NULL
2032 && elf_next_in_group (s) != NULL)
2033 {
2034 elf_next_in_group (hdr->bfd_section) = s;
2035 break;
2036 }
2037 }
2038 break;
2039
2040 default:
2041 /* Check for any processor-specific section types. */
2042 {
2043 if (bed->elf_backend_section_from_shdr)
2044 (*bed->elf_backend_section_from_shdr) (abfd, hdr, name);
2045 }
2046 break;
2047 }
2048
2049 return TRUE;
2050 }
2051
2052 /* Return the section for the local symbol specified by ABFD, R_SYMNDX.
2053 Return SEC for sections that have no elf section, and NULL on error. */
2054
2055 asection *
2056 bfd_section_from_r_symndx (bfd *abfd,
2057 struct sym_sec_cache *cache,
2058 asection *sec,
2059 unsigned long r_symndx)
2060 {
2061 Elf_Internal_Shdr *symtab_hdr;
2062 unsigned char esym[sizeof (Elf64_External_Sym)];
2063 Elf_External_Sym_Shndx eshndx;
2064 Elf_Internal_Sym isym;
2065 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2066
2067 if (cache->abfd == abfd && cache->indx[ent] == r_symndx)
2068 return cache->sec[ent];
2069
2070 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2071 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2072 &isym, esym, &eshndx) == NULL)
2073 return NULL;
2074
2075 if (cache->abfd != abfd)
2076 {
2077 memset (cache->indx, -1, sizeof (cache->indx));
2078 cache->abfd = abfd;
2079 }
2080 cache->indx[ent] = r_symndx;
2081 cache->sec[ent] = sec;
2082 if ((isym.st_shndx != SHN_UNDEF && isym.st_shndx < SHN_LORESERVE)
2083 || isym.st_shndx > SHN_HIRESERVE)
2084 {
2085 asection *s;
2086 s = bfd_section_from_elf_index (abfd, isym.st_shndx);
2087 if (s != NULL)
2088 cache->sec[ent] = s;
2089 }
2090 return cache->sec[ent];
2091 }
2092
2093 /* Given an ELF section number, retrieve the corresponding BFD
2094 section. */
2095
2096 asection *
2097 bfd_section_from_elf_index (bfd *abfd, unsigned int index)
2098 {
2099 if (index >= elf_numsections (abfd))
2100 return NULL;
2101 return elf_elfsections (abfd)[index]->bfd_section;
2102 }
2103
2104 static struct bfd_elf_special_section const special_sections[] =
2105 {
2106 { ".bss", 4, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2107 { ".gnu.linkonce.b",15, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2108 { ".comment", 8, 0, SHT_PROGBITS, 0 },
2109 { ".data", 5, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2110 { ".data1", 6, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2111 { ".debug", 6, 0, SHT_PROGBITS, 0 },
2112 { ".fini", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2113 { ".init", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2114 { ".line", 5, 0, SHT_PROGBITS, 0 },
2115 { ".rodata", 7, -2, SHT_PROGBITS, SHF_ALLOC },
2116 { ".rodata1", 8, 0, SHT_PROGBITS, SHF_ALLOC },
2117 { ".tbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2118 { ".tdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2119 { ".text", 5, -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2120 { ".init_array", 11, 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2121 { ".fini_array", 11, 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2122 { ".preinit_array", 14, 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2123 { ".debug_line", 11, 0, SHT_PROGBITS, 0 },
2124 { ".debug_info", 11, 0, SHT_PROGBITS, 0 },
2125 { ".debug_abbrev", 13, 0, SHT_PROGBITS, 0 },
2126 { ".debug_aranges", 14, 0, SHT_PROGBITS, 0 },
2127 { ".dynamic", 8, 0, SHT_DYNAMIC, SHF_ALLOC },
2128 { ".dynstr", 7, 0, SHT_STRTAB, SHF_ALLOC },
2129 { ".dynsym", 7, 0, SHT_DYNSYM, SHF_ALLOC },
2130 { ".got", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2131 { ".hash", 5, 0, SHT_HASH, SHF_ALLOC },
2132 { ".interp", 7, 0, SHT_PROGBITS, 0 },
2133 { ".plt", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2134 { ".shstrtab", 9, 0, SHT_STRTAB, 0 },
2135 { ".strtab", 7, 0, SHT_STRTAB, 0 },
2136 { ".symtab", 7, 0, SHT_SYMTAB, 0 },
2137 { ".gnu.version", 12, 0, SHT_GNU_versym, 0 },
2138 { ".gnu.version_d", 14, 0, SHT_GNU_verdef, 0 },
2139 { ".gnu.version_r", 14, 0, SHT_GNU_verneed, 0 },
2140 { ".note.GNU-stack",15, 0, SHT_PROGBITS, 0 },
2141 { ".note", 5, -1, SHT_NOTE, 0 },
2142 { ".rela", 5, -1, SHT_RELA, 0 },
2143 { ".rel", 4, -1, SHT_REL, 0 },
2144 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2145 { NULL, 0, 0, 0, 0 }
2146 };
2147
2148 static const struct bfd_elf_special_section *
2149 get_special_section (const char *name,
2150 const struct bfd_elf_special_section *special_sections,
2151 unsigned int rela)
2152 {
2153 int i;
2154 int len = strlen (name);
2155
2156 for (i = 0; special_sections[i].prefix != NULL; i++)
2157 {
2158 int suffix_len;
2159 int prefix_len = special_sections[i].prefix_length;
2160
2161 if (len < prefix_len)
2162 continue;
2163 if (memcmp (name, special_sections[i].prefix, prefix_len) != 0)
2164 continue;
2165
2166 suffix_len = special_sections[i].suffix_length;
2167 if (suffix_len <= 0)
2168 {
2169 if (name[prefix_len] != 0)
2170 {
2171 if (suffix_len == 0)
2172 continue;
2173 if (name[prefix_len] != '.'
2174 && (suffix_len == -2
2175 || (rela && special_sections[i].type == SHT_REL)))
2176 continue;
2177 }
2178 }
2179 else
2180 {
2181 if (len < prefix_len + suffix_len)
2182 continue;
2183 if (memcmp (name + len - suffix_len,
2184 special_sections[i].prefix + prefix_len,
2185 suffix_len) != 0)
2186 continue;
2187 }
2188 return &special_sections[i];
2189 }
2190
2191 return NULL;
2192 }
2193
2194 const struct bfd_elf_special_section *
2195 _bfd_elf_get_sec_type_attr (bfd *abfd, const char *name)
2196 {
2197 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2198 const struct bfd_elf_special_section *ssect = NULL;
2199
2200 /* See if this is one of the special sections. */
2201 if (name)
2202 {
2203 unsigned int rela = bed->default_use_rela_p;
2204
2205 if (bed->special_sections)
2206 ssect = get_special_section (name, bed->special_sections, rela);
2207
2208 if (! ssect)
2209 ssect = get_special_section (name, special_sections, rela);
2210 }
2211
2212 return ssect;
2213 }
2214
2215 bfd_boolean
2216 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2217 {
2218 struct bfd_elf_section_data *sdata;
2219 const struct bfd_elf_special_section *ssect;
2220
2221 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2222 if (sdata == NULL)
2223 {
2224 sdata = bfd_zalloc (abfd, sizeof (*sdata));
2225 if (sdata == NULL)
2226 return FALSE;
2227 sec->used_by_bfd = sdata;
2228 }
2229
2230 elf_section_type (sec) = SHT_NULL;
2231 ssect = _bfd_elf_get_sec_type_attr (abfd, sec->name);
2232 if (ssect != NULL)
2233 {
2234 elf_section_type (sec) = ssect->type;
2235 elf_section_flags (sec) = ssect->attr;
2236 }
2237
2238 /* Indicate whether or not this section should use RELA relocations. */
2239 sec->use_rela_p = get_elf_backend_data (abfd)->default_use_rela_p;
2240
2241 return TRUE;
2242 }
2243
2244 /* Create a new bfd section from an ELF program header.
2245
2246 Since program segments have no names, we generate a synthetic name
2247 of the form segment<NUM>, where NUM is generally the index in the
2248 program header table. For segments that are split (see below) we
2249 generate the names segment<NUM>a and segment<NUM>b.
2250
2251 Note that some program segments may have a file size that is different than
2252 (less than) the memory size. All this means is that at execution the
2253 system must allocate the amount of memory specified by the memory size,
2254 but only initialize it with the first "file size" bytes read from the
2255 file. This would occur for example, with program segments consisting
2256 of combined data+bss.
2257
2258 To handle the above situation, this routine generates TWO bfd sections
2259 for the single program segment. The first has the length specified by
2260 the file size of the segment, and the second has the length specified
2261 by the difference between the two sizes. In effect, the segment is split
2262 into it's initialized and uninitialized parts.
2263
2264 */
2265
2266 bfd_boolean
2267 _bfd_elf_make_section_from_phdr (bfd *abfd,
2268 Elf_Internal_Phdr *hdr,
2269 int index,
2270 const char *typename)
2271 {
2272 asection *newsect;
2273 char *name;
2274 char namebuf[64];
2275 size_t len;
2276 int split;
2277
2278 split = ((hdr->p_memsz > 0)
2279 && (hdr->p_filesz > 0)
2280 && (hdr->p_memsz > hdr->p_filesz));
2281 sprintf (namebuf, "%s%d%s", typename, index, split ? "a" : "");
2282 len = strlen (namebuf) + 1;
2283 name = bfd_alloc (abfd, len);
2284 if (!name)
2285 return FALSE;
2286 memcpy (name, namebuf, len);
2287 newsect = bfd_make_section (abfd, name);
2288 if (newsect == NULL)
2289 return FALSE;
2290 newsect->vma = hdr->p_vaddr;
2291 newsect->lma = hdr->p_paddr;
2292 newsect->size = hdr->p_filesz;
2293 newsect->filepos = hdr->p_offset;
2294 newsect->flags |= SEC_HAS_CONTENTS;
2295 newsect->alignment_power = bfd_log2 (hdr->p_align);
2296 if (hdr->p_type == PT_LOAD)
2297 {
2298 newsect->flags |= SEC_ALLOC;
2299 newsect->flags |= SEC_LOAD;
2300 if (hdr->p_flags & PF_X)
2301 {
2302 /* FIXME: all we known is that it has execute PERMISSION,
2303 may be data. */
2304 newsect->flags |= SEC_CODE;
2305 }
2306 }
2307 if (!(hdr->p_flags & PF_W))
2308 {
2309 newsect->flags |= SEC_READONLY;
2310 }
2311
2312 if (split)
2313 {
2314 sprintf (namebuf, "%s%db", typename, index);
2315 len = strlen (namebuf) + 1;
2316 name = bfd_alloc (abfd, len);
2317 if (!name)
2318 return FALSE;
2319 memcpy (name, namebuf, len);
2320 newsect = bfd_make_section (abfd, name);
2321 if (newsect == NULL)
2322 return FALSE;
2323 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2324 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2325 newsect->size = hdr->p_memsz - hdr->p_filesz;
2326 if (hdr->p_type == PT_LOAD)
2327 {
2328 newsect->flags |= SEC_ALLOC;
2329 if (hdr->p_flags & PF_X)
2330 newsect->flags |= SEC_CODE;
2331 }
2332 if (!(hdr->p_flags & PF_W))
2333 newsect->flags |= SEC_READONLY;
2334 }
2335
2336 return TRUE;
2337 }
2338
2339 bfd_boolean
2340 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index)
2341 {
2342 const struct elf_backend_data *bed;
2343
2344 switch (hdr->p_type)
2345 {
2346 case PT_NULL:
2347 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "null");
2348
2349 case PT_LOAD:
2350 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "load");
2351
2352 case PT_DYNAMIC:
2353 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "dynamic");
2354
2355 case PT_INTERP:
2356 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "interp");
2357
2358 case PT_NOTE:
2359 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, index, "note"))
2360 return FALSE;
2361 if (! elfcore_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2362 return FALSE;
2363 return TRUE;
2364
2365 case PT_SHLIB:
2366 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "shlib");
2367
2368 case PT_PHDR:
2369 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "phdr");
2370
2371 case PT_GNU_EH_FRAME:
2372 return _bfd_elf_make_section_from_phdr (abfd, hdr, index,
2373 "eh_frame_hdr");
2374
2375 case PT_GNU_STACK:
2376 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "stack");
2377
2378 case PT_GNU_RELRO:
2379 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "relro");
2380
2381 default:
2382 /* Check for any processor-specific program segment types.
2383 If no handler for them, default to making "segment" sections. */
2384 bed = get_elf_backend_data (abfd);
2385 if (bed->elf_backend_section_from_phdr)
2386 return (*bed->elf_backend_section_from_phdr) (abfd, hdr, index);
2387 else
2388 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "segment");
2389 }
2390 }
2391
2392 /* Initialize REL_HDR, the section-header for new section, containing
2393 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2394 relocations; otherwise, we use REL relocations. */
2395
2396 bfd_boolean
2397 _bfd_elf_init_reloc_shdr (bfd *abfd,
2398 Elf_Internal_Shdr *rel_hdr,
2399 asection *asect,
2400 bfd_boolean use_rela_p)
2401 {
2402 char *name;
2403 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2404 bfd_size_type amt = sizeof ".rela" + strlen (asect->name);
2405
2406 name = bfd_alloc (abfd, amt);
2407 if (name == NULL)
2408 return FALSE;
2409 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2410 rel_hdr->sh_name =
2411 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2412 FALSE);
2413 if (rel_hdr->sh_name == (unsigned int) -1)
2414 return FALSE;
2415 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2416 rel_hdr->sh_entsize = (use_rela_p
2417 ? bed->s->sizeof_rela
2418 : bed->s->sizeof_rel);
2419 rel_hdr->sh_addralign = 1 << bed->s->log_file_align;
2420 rel_hdr->sh_flags = 0;
2421 rel_hdr->sh_addr = 0;
2422 rel_hdr->sh_size = 0;
2423 rel_hdr->sh_offset = 0;
2424
2425 return TRUE;
2426 }
2427
2428 /* Set up an ELF internal section header for a section. */
2429
2430 static void
2431 elf_fake_sections (bfd *abfd, asection *asect, void *failedptrarg)
2432 {
2433 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2434 bfd_boolean *failedptr = failedptrarg;
2435 Elf_Internal_Shdr *this_hdr;
2436
2437 if (*failedptr)
2438 {
2439 /* We already failed; just get out of the bfd_map_over_sections
2440 loop. */
2441 return;
2442 }
2443
2444 this_hdr = &elf_section_data (asect)->this_hdr;
2445
2446 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2447 asect->name, FALSE);
2448 if (this_hdr->sh_name == (unsigned int) -1)
2449 {
2450 *failedptr = TRUE;
2451 return;
2452 }
2453
2454 this_hdr->sh_flags = 0;
2455
2456 if ((asect->flags & SEC_ALLOC) != 0
2457 || asect->user_set_vma)
2458 this_hdr->sh_addr = asect->vma;
2459 else
2460 this_hdr->sh_addr = 0;
2461
2462 this_hdr->sh_offset = 0;
2463 this_hdr->sh_size = asect->size;
2464 this_hdr->sh_link = 0;
2465 this_hdr->sh_addralign = 1 << asect->alignment_power;
2466 /* The sh_entsize and sh_info fields may have been set already by
2467 copy_private_section_data. */
2468
2469 this_hdr->bfd_section = asect;
2470 this_hdr->contents = NULL;
2471
2472 /* If the section type is unspecified, we set it based on
2473 asect->flags. */
2474 if (this_hdr->sh_type == SHT_NULL)
2475 {
2476 if ((asect->flags & SEC_GROUP) != 0)
2477 {
2478 /* We also need to mark SHF_GROUP here for relocatable
2479 link. */
2480 struct bfd_link_order *l;
2481 asection *elt;
2482
2483 for (l = asect->link_order_head; l != NULL; l = l->next)
2484 if (l->type == bfd_indirect_link_order
2485 && (elt = elf_next_in_group (l->u.indirect.section)) != NULL)
2486 do
2487 {
2488 /* The name is not important. Anything will do. */
2489 elf_group_name (elt->output_section) = "G";
2490 elf_section_flags (elt->output_section) |= SHF_GROUP;
2491
2492 elt = elf_next_in_group (elt);
2493 /* During a relocatable link, the lists are
2494 circular. */
2495 }
2496 while (elt != elf_next_in_group (l->u.indirect.section));
2497
2498 this_hdr->sh_type = SHT_GROUP;
2499 }
2500 else if ((asect->flags & SEC_ALLOC) != 0
2501 && (((asect->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2502 || (asect->flags & SEC_NEVER_LOAD) != 0))
2503 this_hdr->sh_type = SHT_NOBITS;
2504 else
2505 this_hdr->sh_type = SHT_PROGBITS;
2506 }
2507
2508 switch (this_hdr->sh_type)
2509 {
2510 default:
2511 break;
2512
2513 case SHT_STRTAB:
2514 case SHT_INIT_ARRAY:
2515 case SHT_FINI_ARRAY:
2516 case SHT_PREINIT_ARRAY:
2517 case SHT_NOTE:
2518 case SHT_NOBITS:
2519 case SHT_PROGBITS:
2520 break;
2521
2522 case SHT_HASH:
2523 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2524 break;
2525
2526 case SHT_DYNSYM:
2527 this_hdr->sh_entsize = bed->s->sizeof_sym;
2528 break;
2529
2530 case SHT_DYNAMIC:
2531 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2532 break;
2533
2534 case SHT_RELA:
2535 if (get_elf_backend_data (abfd)->may_use_rela_p)
2536 this_hdr->sh_entsize = bed->s->sizeof_rela;
2537 break;
2538
2539 case SHT_REL:
2540 if (get_elf_backend_data (abfd)->may_use_rel_p)
2541 this_hdr->sh_entsize = bed->s->sizeof_rel;
2542 break;
2543
2544 case SHT_GNU_versym:
2545 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2546 break;
2547
2548 case SHT_GNU_verdef:
2549 this_hdr->sh_entsize = 0;
2550 /* objcopy or strip will copy over sh_info, but may not set
2551 cverdefs. The linker will set cverdefs, but sh_info will be
2552 zero. */
2553 if (this_hdr->sh_info == 0)
2554 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2555 else
2556 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2557 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2558 break;
2559
2560 case SHT_GNU_verneed:
2561 this_hdr->sh_entsize = 0;
2562 /* objcopy or strip will copy over sh_info, but may not set
2563 cverrefs. The linker will set cverrefs, but sh_info will be
2564 zero. */
2565 if (this_hdr->sh_info == 0)
2566 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2567 else
2568 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2569 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2570 break;
2571
2572 case SHT_GROUP:
2573 this_hdr->sh_entsize = 4;
2574 break;
2575 }
2576
2577 if ((asect->flags & SEC_ALLOC) != 0)
2578 this_hdr->sh_flags |= SHF_ALLOC;
2579 if ((asect->flags & SEC_READONLY) == 0)
2580 this_hdr->sh_flags |= SHF_WRITE;
2581 if ((asect->flags & SEC_CODE) != 0)
2582 this_hdr->sh_flags |= SHF_EXECINSTR;
2583 if ((asect->flags & SEC_MERGE) != 0)
2584 {
2585 this_hdr->sh_flags |= SHF_MERGE;
2586 this_hdr->sh_entsize = asect->entsize;
2587 if ((asect->flags & SEC_STRINGS) != 0)
2588 this_hdr->sh_flags |= SHF_STRINGS;
2589 }
2590 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2591 this_hdr->sh_flags |= SHF_GROUP;
2592 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2593 {
2594 this_hdr->sh_flags |= SHF_TLS;
2595 if (asect->size == 0 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2596 {
2597 struct bfd_link_order *o;
2598
2599 this_hdr->sh_size = 0;
2600 for (o = asect->link_order_head; o != NULL; o = o->next)
2601 if (this_hdr->sh_size < o->offset + o->size)
2602 this_hdr->sh_size = o->offset + o->size;
2603 if (this_hdr->sh_size)
2604 this_hdr->sh_type = SHT_NOBITS;
2605 }
2606 }
2607
2608 /* Check for processor-specific section types. */
2609 if (bed->elf_backend_fake_sections
2610 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2611 *failedptr = TRUE;
2612
2613 /* If the section has relocs, set up a section header for the
2614 SHT_REL[A] section. If two relocation sections are required for
2615 this section, it is up to the processor-specific back-end to
2616 create the other. */
2617 if ((asect->flags & SEC_RELOC) != 0
2618 && !_bfd_elf_init_reloc_shdr (abfd,
2619 &elf_section_data (asect)->rel_hdr,
2620 asect,
2621 asect->use_rela_p))
2622 *failedptr = TRUE;
2623 }
2624
2625 /* Fill in the contents of a SHT_GROUP section. */
2626
2627 void
2628 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2629 {
2630 bfd_boolean *failedptr = failedptrarg;
2631 unsigned long symindx;
2632 asection *elt, *first;
2633 unsigned char *loc;
2634 struct bfd_link_order *l;
2635 bfd_boolean gas;
2636
2637 if (elf_section_data (sec)->this_hdr.sh_type != SHT_GROUP
2638 || *failedptr)
2639 return;
2640
2641 symindx = 0;
2642 if (elf_group_id (sec) != NULL)
2643 symindx = elf_group_id (sec)->udata.i;
2644
2645 if (symindx == 0)
2646 {
2647 /* If called from the assembler, swap_out_syms will have set up
2648 elf_section_syms; If called for "ld -r", use target_index. */
2649 if (elf_section_syms (abfd) != NULL)
2650 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2651 else
2652 symindx = sec->target_index;
2653 }
2654 elf_section_data (sec)->this_hdr.sh_info = symindx;
2655
2656 /* The contents won't be allocated for "ld -r" or objcopy. */
2657 gas = TRUE;
2658 if (sec->contents == NULL)
2659 {
2660 gas = FALSE;
2661 sec->contents = bfd_alloc (abfd, sec->size);
2662
2663 /* Arrange for the section to be written out. */
2664 elf_section_data (sec)->this_hdr.contents = sec->contents;
2665 if (sec->contents == NULL)
2666 {
2667 *failedptr = TRUE;
2668 return;
2669 }
2670 }
2671
2672 loc = sec->contents + sec->size;
2673
2674 /* Get the pointer to the first section in the group that gas
2675 squirreled away here. objcopy arranges for this to be set to the
2676 start of the input section group. */
2677 first = elt = elf_next_in_group (sec);
2678
2679 /* First element is a flag word. Rest of section is elf section
2680 indices for all the sections of the group. Write them backwards
2681 just to keep the group in the same order as given in .section
2682 directives, not that it matters. */
2683 while (elt != NULL)
2684 {
2685 asection *s;
2686 unsigned int idx;
2687
2688 loc -= 4;
2689 s = elt;
2690 if (!gas)
2691 s = s->output_section;
2692 idx = 0;
2693 if (s != NULL)
2694 idx = elf_section_data (s)->this_idx;
2695 H_PUT_32 (abfd, idx, loc);
2696 elt = elf_next_in_group (elt);
2697 if (elt == first)
2698 break;
2699 }
2700
2701 /* If this is a relocatable link, then the above did nothing because
2702 SEC is the output section. Look through the input sections
2703 instead. */
2704 for (l = sec->link_order_head; l != NULL; l = l->next)
2705 if (l->type == bfd_indirect_link_order
2706 && (elt = elf_next_in_group (l->u.indirect.section)) != NULL)
2707 do
2708 {
2709 loc -= 4;
2710 H_PUT_32 (abfd,
2711 elf_section_data (elt->output_section)->this_idx, loc);
2712 elt = elf_next_in_group (elt);
2713 /* During a relocatable link, the lists are circular. */
2714 }
2715 while (elt != elf_next_in_group (l->u.indirect.section));
2716
2717 if ((loc -= 4) != sec->contents)
2718 abort ();
2719
2720 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2721 }
2722
2723 /* Assign all ELF section numbers. The dummy first section is handled here
2724 too. The link/info pointers for the standard section types are filled
2725 in here too, while we're at it. */
2726
2727 static bfd_boolean
2728 assign_section_numbers (bfd *abfd)
2729 {
2730 struct elf_obj_tdata *t = elf_tdata (abfd);
2731 asection *sec;
2732 unsigned int section_number, secn;
2733 Elf_Internal_Shdr **i_shdrp;
2734 bfd_size_type amt;
2735
2736 section_number = 1;
2737
2738 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2739
2740 for (sec = abfd->sections; sec; sec = sec->next)
2741 {
2742 struct bfd_elf_section_data *d = elf_section_data (sec);
2743
2744 if (section_number == SHN_LORESERVE)
2745 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2746 d->this_idx = section_number++;
2747 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
2748 if ((sec->flags & SEC_RELOC) == 0)
2749 d->rel_idx = 0;
2750 else
2751 {
2752 if (section_number == SHN_LORESERVE)
2753 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2754 d->rel_idx = section_number++;
2755 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr.sh_name);
2756 }
2757
2758 if (d->rel_hdr2)
2759 {
2760 if (section_number == SHN_LORESERVE)
2761 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2762 d->rel_idx2 = section_number++;
2763 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr2->sh_name);
2764 }
2765 else
2766 d->rel_idx2 = 0;
2767 }
2768
2769 if (section_number == SHN_LORESERVE)
2770 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2771 t->shstrtab_section = section_number++;
2772 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
2773 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
2774
2775 if (bfd_get_symcount (abfd) > 0)
2776 {
2777 if (section_number == SHN_LORESERVE)
2778 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2779 t->symtab_section = section_number++;
2780 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
2781 if (section_number > SHN_LORESERVE - 2)
2782 {
2783 if (section_number == SHN_LORESERVE)
2784 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2785 t->symtab_shndx_section = section_number++;
2786 t->symtab_shndx_hdr.sh_name
2787 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2788 ".symtab_shndx", FALSE);
2789 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
2790 return FALSE;
2791 }
2792 if (section_number == SHN_LORESERVE)
2793 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2794 t->strtab_section = section_number++;
2795 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
2796 }
2797
2798 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
2799 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
2800
2801 elf_numsections (abfd) = section_number;
2802 elf_elfheader (abfd)->e_shnum = section_number;
2803 if (section_number > SHN_LORESERVE)
2804 elf_elfheader (abfd)->e_shnum -= SHN_HIRESERVE + 1 - SHN_LORESERVE;
2805
2806 /* Set up the list of section header pointers, in agreement with the
2807 indices. */
2808 amt = section_number * sizeof (Elf_Internal_Shdr *);
2809 i_shdrp = bfd_zalloc (abfd, amt);
2810 if (i_shdrp == NULL)
2811 return FALSE;
2812
2813 amt = sizeof (Elf_Internal_Shdr);
2814 i_shdrp[0] = bfd_zalloc (abfd, amt);
2815 if (i_shdrp[0] == NULL)
2816 {
2817 bfd_release (abfd, i_shdrp);
2818 return FALSE;
2819 }
2820
2821 elf_elfsections (abfd) = i_shdrp;
2822
2823 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
2824 if (bfd_get_symcount (abfd) > 0)
2825 {
2826 i_shdrp[t->symtab_section] = &t->symtab_hdr;
2827 if (elf_numsections (abfd) > SHN_LORESERVE)
2828 {
2829 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
2830 t->symtab_shndx_hdr.sh_link = t->symtab_section;
2831 }
2832 i_shdrp[t->strtab_section] = &t->strtab_hdr;
2833 t->symtab_hdr.sh_link = t->strtab_section;
2834 }
2835
2836 for (sec = abfd->sections; sec; sec = sec->next)
2837 {
2838 struct bfd_elf_section_data *d = elf_section_data (sec);
2839 asection *s;
2840 const char *name;
2841
2842 i_shdrp[d->this_idx] = &d->this_hdr;
2843 if (d->rel_idx != 0)
2844 i_shdrp[d->rel_idx] = &d->rel_hdr;
2845 if (d->rel_idx2 != 0)
2846 i_shdrp[d->rel_idx2] = d->rel_hdr2;
2847
2848 /* Fill in the sh_link and sh_info fields while we're at it. */
2849
2850 /* sh_link of a reloc section is the section index of the symbol
2851 table. sh_info is the section index of the section to which
2852 the relocation entries apply. */
2853 if (d->rel_idx != 0)
2854 {
2855 d->rel_hdr.sh_link = t->symtab_section;
2856 d->rel_hdr.sh_info = d->this_idx;
2857 }
2858 if (d->rel_idx2 != 0)
2859 {
2860 d->rel_hdr2->sh_link = t->symtab_section;
2861 d->rel_hdr2->sh_info = d->this_idx;
2862 }
2863
2864 /* We need to set up sh_link for SHF_LINK_ORDER. */
2865 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
2866 {
2867 s = elf_linked_to_section (sec);
2868 if (s)
2869 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2870 else
2871 {
2872 struct bfd_link_order *p;
2873
2874 /* Find out what the corresponding section in output
2875 is. */
2876 for (p = sec->link_order_head; p != NULL; p = p->next)
2877 {
2878 s = p->u.indirect.section;
2879 if (p->type == bfd_indirect_link_order
2880 && (bfd_get_flavour (s->owner)
2881 == bfd_target_elf_flavour))
2882 {
2883 Elf_Internal_Shdr ** const elf_shdrp
2884 = elf_elfsections (s->owner);
2885 int elfsec
2886 = _bfd_elf_section_from_bfd_section (s->owner, s);
2887 elfsec = elf_shdrp[elfsec]->sh_link;
2888 /* PR 290:
2889 The Intel C compiler generates SHT_IA_64_UNWIND with
2890 SHF_LINK_ORDER. But it doesn't set theh sh_link or
2891 sh_info fields. Hence we could get the situation
2892 where elfsec is 0. */
2893 if (elfsec == 0)
2894 {
2895 const struct elf_backend_data *bed
2896 = get_elf_backend_data (abfd);
2897 if (bed->link_order_error_handler)
2898 bed->link_order_error_handler
2899 (_("%B: warning: sh_link not set for section `%S'"),
2900 abfd, s);
2901 }
2902 else
2903 {
2904 s = elf_shdrp[elfsec]->bfd_section->output_section;
2905 BFD_ASSERT (s != NULL);
2906 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2907 }
2908 break;
2909 }
2910 }
2911 }
2912 }
2913
2914 switch (d->this_hdr.sh_type)
2915 {
2916 case SHT_REL:
2917 case SHT_RELA:
2918 /* A reloc section which we are treating as a normal BFD
2919 section. sh_link is the section index of the symbol
2920 table. sh_info is the section index of the section to
2921 which the relocation entries apply. We assume that an
2922 allocated reloc section uses the dynamic symbol table.
2923 FIXME: How can we be sure? */
2924 s = bfd_get_section_by_name (abfd, ".dynsym");
2925 if (s != NULL)
2926 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2927
2928 /* We look up the section the relocs apply to by name. */
2929 name = sec->name;
2930 if (d->this_hdr.sh_type == SHT_REL)
2931 name += 4;
2932 else
2933 name += 5;
2934 s = bfd_get_section_by_name (abfd, name);
2935 if (s != NULL)
2936 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
2937 break;
2938
2939 case SHT_STRTAB:
2940 /* We assume that a section named .stab*str is a stabs
2941 string section. We look for a section with the same name
2942 but without the trailing ``str'', and set its sh_link
2943 field to point to this section. */
2944 if (strncmp (sec->name, ".stab", sizeof ".stab" - 1) == 0
2945 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
2946 {
2947 size_t len;
2948 char *alc;
2949
2950 len = strlen (sec->name);
2951 alc = bfd_malloc (len - 2);
2952 if (alc == NULL)
2953 return FALSE;
2954 memcpy (alc, sec->name, len - 3);
2955 alc[len - 3] = '\0';
2956 s = bfd_get_section_by_name (abfd, alc);
2957 free (alc);
2958 if (s != NULL)
2959 {
2960 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
2961
2962 /* This is a .stab section. */
2963 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
2964 elf_section_data (s)->this_hdr.sh_entsize
2965 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
2966 }
2967 }
2968 break;
2969
2970 case SHT_DYNAMIC:
2971 case SHT_DYNSYM:
2972 case SHT_GNU_verneed:
2973 case SHT_GNU_verdef:
2974 /* sh_link is the section header index of the string table
2975 used for the dynamic entries, or the symbol table, or the
2976 version strings. */
2977 s = bfd_get_section_by_name (abfd, ".dynstr");
2978 if (s != NULL)
2979 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2980 break;
2981
2982 case SHT_HASH:
2983 case SHT_GNU_versym:
2984 /* sh_link is the section header index of the symbol table
2985 this hash table or version table is for. */
2986 s = bfd_get_section_by_name (abfd, ".dynsym");
2987 if (s != NULL)
2988 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2989 break;
2990
2991 case SHT_GROUP:
2992 d->this_hdr.sh_link = t->symtab_section;
2993 }
2994 }
2995
2996 for (secn = 1; secn < section_number; ++secn)
2997 if (i_shdrp[secn] == NULL)
2998 i_shdrp[secn] = i_shdrp[0];
2999 else
3000 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
3001 i_shdrp[secn]->sh_name);
3002 return TRUE;
3003 }
3004
3005 /* Map symbol from it's internal number to the external number, moving
3006 all local symbols to be at the head of the list. */
3007
3008 static int
3009 sym_is_global (bfd *abfd, asymbol *sym)
3010 {
3011 /* If the backend has a special mapping, use it. */
3012 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3013 if (bed->elf_backend_sym_is_global)
3014 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3015
3016 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
3017 || bfd_is_und_section (bfd_get_section (sym))
3018 || bfd_is_com_section (bfd_get_section (sym)));
3019 }
3020
3021 static bfd_boolean
3022 elf_map_symbols (bfd *abfd)
3023 {
3024 unsigned int symcount = bfd_get_symcount (abfd);
3025 asymbol **syms = bfd_get_outsymbols (abfd);
3026 asymbol **sect_syms;
3027 unsigned int num_locals = 0;
3028 unsigned int num_globals = 0;
3029 unsigned int num_locals2 = 0;
3030 unsigned int num_globals2 = 0;
3031 int max_index = 0;
3032 unsigned int idx;
3033 asection *asect;
3034 asymbol **new_syms;
3035 bfd_size_type amt;
3036
3037 #ifdef DEBUG
3038 fprintf (stderr, "elf_map_symbols\n");
3039 fflush (stderr);
3040 #endif
3041
3042 for (asect = abfd->sections; asect; asect = asect->next)
3043 {
3044 if (max_index < asect->index)
3045 max_index = asect->index;
3046 }
3047
3048 max_index++;
3049 amt = max_index * sizeof (asymbol *);
3050 sect_syms = bfd_zalloc (abfd, amt);
3051 if (sect_syms == NULL)
3052 return FALSE;
3053 elf_section_syms (abfd) = sect_syms;
3054 elf_num_section_syms (abfd) = max_index;
3055
3056 /* Init sect_syms entries for any section symbols we have already
3057 decided to output. */
3058 for (idx = 0; idx < symcount; idx++)
3059 {
3060 asymbol *sym = syms[idx];
3061
3062 if ((sym->flags & BSF_SECTION_SYM) != 0
3063 && sym->value == 0)
3064 {
3065 asection *sec;
3066
3067 sec = sym->section;
3068
3069 if (sec->owner != NULL)
3070 {
3071 if (sec->owner != abfd)
3072 {
3073 if (sec->output_offset != 0)
3074 continue;
3075
3076 sec = sec->output_section;
3077
3078 /* Empty sections in the input files may have had a
3079 section symbol created for them. (See the comment
3080 near the end of _bfd_generic_link_output_symbols in
3081 linker.c). If the linker script discards such
3082 sections then we will reach this point. Since we know
3083 that we cannot avoid this case, we detect it and skip
3084 the abort and the assignment to the sect_syms array.
3085 To reproduce this particular case try running the
3086 linker testsuite test ld-scripts/weak.exp for an ELF
3087 port that uses the generic linker. */
3088 if (sec->owner == NULL)
3089 continue;
3090
3091 BFD_ASSERT (sec->owner == abfd);
3092 }
3093 sect_syms[sec->index] = syms[idx];
3094 }
3095 }
3096 }
3097
3098 /* Classify all of the symbols. */
3099 for (idx = 0; idx < symcount; idx++)
3100 {
3101 if (!sym_is_global (abfd, syms[idx]))
3102 num_locals++;
3103 else
3104 num_globals++;
3105 }
3106
3107 /* We will be adding a section symbol for each BFD section. Most normal
3108 sections will already have a section symbol in outsymbols, but
3109 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3110 at least in that case. */
3111 for (asect = abfd->sections; asect; asect = asect->next)
3112 {
3113 if (sect_syms[asect->index] == NULL)
3114 {
3115 if (!sym_is_global (abfd, asect->symbol))
3116 num_locals++;
3117 else
3118 num_globals++;
3119 }
3120 }
3121
3122 /* Now sort the symbols so the local symbols are first. */
3123 amt = (num_locals + num_globals) * sizeof (asymbol *);
3124 new_syms = bfd_alloc (abfd, amt);
3125
3126 if (new_syms == NULL)
3127 return FALSE;
3128
3129 for (idx = 0; idx < symcount; idx++)
3130 {
3131 asymbol *sym = syms[idx];
3132 unsigned int i;
3133
3134 if (!sym_is_global (abfd, sym))
3135 i = num_locals2++;
3136 else
3137 i = num_locals + num_globals2++;
3138 new_syms[i] = sym;
3139 sym->udata.i = i + 1;
3140 }
3141 for (asect = abfd->sections; asect; asect = asect->next)
3142 {
3143 if (sect_syms[asect->index] == NULL)
3144 {
3145 asymbol *sym = asect->symbol;
3146 unsigned int i;
3147
3148 sect_syms[asect->index] = sym;
3149 if (!sym_is_global (abfd, sym))
3150 i = num_locals2++;
3151 else
3152 i = num_locals + num_globals2++;
3153 new_syms[i] = sym;
3154 sym->udata.i = i + 1;
3155 }
3156 }
3157
3158 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3159
3160 elf_num_locals (abfd) = num_locals;
3161 elf_num_globals (abfd) = num_globals;
3162 return TRUE;
3163 }
3164
3165 /* Align to the maximum file alignment that could be required for any
3166 ELF data structure. */
3167
3168 static inline file_ptr
3169 align_file_position (file_ptr off, int align)
3170 {
3171 return (off + align - 1) & ~(align - 1);
3172 }
3173
3174 /* Assign a file position to a section, optionally aligning to the
3175 required section alignment. */
3176
3177 file_ptr
3178 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3179 file_ptr offset,
3180 bfd_boolean align)
3181 {
3182 if (align)
3183 {
3184 unsigned int al;
3185
3186 al = i_shdrp->sh_addralign;
3187 if (al > 1)
3188 offset = BFD_ALIGN (offset, al);
3189 }
3190 i_shdrp->sh_offset = offset;
3191 if (i_shdrp->bfd_section != NULL)
3192 i_shdrp->bfd_section->filepos = offset;
3193 if (i_shdrp->sh_type != SHT_NOBITS)
3194 offset += i_shdrp->sh_size;
3195 return offset;
3196 }
3197
3198 /* Compute the file positions we are going to put the sections at, and
3199 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3200 is not NULL, this is being called by the ELF backend linker. */
3201
3202 bfd_boolean
3203 _bfd_elf_compute_section_file_positions (bfd *abfd,
3204 struct bfd_link_info *link_info)
3205 {
3206 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3207 bfd_boolean failed;
3208 struct bfd_strtab_hash *strtab;
3209 Elf_Internal_Shdr *shstrtab_hdr;
3210
3211 if (abfd->output_has_begun)
3212 return TRUE;
3213
3214 /* Do any elf backend specific processing first. */
3215 if (bed->elf_backend_begin_write_processing)
3216 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3217
3218 if (! prep_headers (abfd))
3219 return FALSE;
3220
3221 /* Post process the headers if necessary. */
3222 if (bed->elf_backend_post_process_headers)
3223 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3224
3225 failed = FALSE;
3226 bfd_map_over_sections (abfd, elf_fake_sections, &failed);
3227 if (failed)
3228 return FALSE;
3229
3230 if (!assign_section_numbers (abfd))
3231 return FALSE;
3232
3233 /* The backend linker builds symbol table information itself. */
3234 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3235 {
3236 /* Non-zero if doing a relocatable link. */
3237 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3238
3239 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3240 return FALSE;
3241 }
3242
3243 if (link_info == NULL)
3244 {
3245 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3246 if (failed)
3247 return FALSE;
3248 }
3249
3250 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3251 /* sh_name was set in prep_headers. */
3252 shstrtab_hdr->sh_type = SHT_STRTAB;
3253 shstrtab_hdr->sh_flags = 0;
3254 shstrtab_hdr->sh_addr = 0;
3255 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3256 shstrtab_hdr->sh_entsize = 0;
3257 shstrtab_hdr->sh_link = 0;
3258 shstrtab_hdr->sh_info = 0;
3259 /* sh_offset is set in assign_file_positions_except_relocs. */
3260 shstrtab_hdr->sh_addralign = 1;
3261
3262 if (!assign_file_positions_except_relocs (abfd, link_info))
3263 return FALSE;
3264
3265 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3266 {
3267 file_ptr off;
3268 Elf_Internal_Shdr *hdr;
3269
3270 off = elf_tdata (abfd)->next_file_pos;
3271
3272 hdr = &elf_tdata (abfd)->symtab_hdr;
3273 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3274
3275 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3276 if (hdr->sh_size != 0)
3277 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3278
3279 hdr = &elf_tdata (abfd)->strtab_hdr;
3280 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3281
3282 elf_tdata (abfd)->next_file_pos = off;
3283
3284 /* Now that we know where the .strtab section goes, write it
3285 out. */
3286 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3287 || ! _bfd_stringtab_emit (abfd, strtab))
3288 return FALSE;
3289 _bfd_stringtab_free (strtab);
3290 }
3291
3292 abfd->output_has_begun = TRUE;
3293
3294 return TRUE;
3295 }
3296
3297 /* Create a mapping from a set of sections to a program segment. */
3298
3299 static struct elf_segment_map *
3300 make_mapping (bfd *abfd,
3301 asection **sections,
3302 unsigned int from,
3303 unsigned int to,
3304 bfd_boolean phdr)
3305 {
3306 struct elf_segment_map *m;
3307 unsigned int i;
3308 asection **hdrpp;
3309 bfd_size_type amt;
3310
3311 amt = sizeof (struct elf_segment_map);
3312 amt += (to - from - 1) * sizeof (asection *);
3313 m = bfd_zalloc (abfd, amt);
3314 if (m == NULL)
3315 return NULL;
3316 m->next = NULL;
3317 m->p_type = PT_LOAD;
3318 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3319 m->sections[i - from] = *hdrpp;
3320 m->count = to - from;
3321
3322 if (from == 0 && phdr)
3323 {
3324 /* Include the headers in the first PT_LOAD segment. */
3325 m->includes_filehdr = 1;
3326 m->includes_phdrs = 1;
3327 }
3328
3329 return m;
3330 }
3331
3332 /* Set up a mapping from BFD sections to program segments. */
3333
3334 static bfd_boolean
3335 map_sections_to_segments (bfd *abfd)
3336 {
3337 asection **sections = NULL;
3338 asection *s;
3339 unsigned int i;
3340 unsigned int count;
3341 struct elf_segment_map *mfirst;
3342 struct elf_segment_map **pm;
3343 struct elf_segment_map *m;
3344 asection *last_hdr;
3345 bfd_vma last_size;
3346 unsigned int phdr_index;
3347 bfd_vma maxpagesize;
3348 asection **hdrpp;
3349 bfd_boolean phdr_in_segment = TRUE;
3350 bfd_boolean writable;
3351 int tls_count = 0;
3352 asection *first_tls = NULL;
3353 asection *dynsec, *eh_frame_hdr;
3354 bfd_size_type amt;
3355
3356 if (elf_tdata (abfd)->segment_map != NULL)
3357 return TRUE;
3358
3359 if (bfd_count_sections (abfd) == 0)
3360 return TRUE;
3361
3362 /* Select the allocated sections, and sort them. */
3363
3364 amt = bfd_count_sections (abfd) * sizeof (asection *);
3365 sections = bfd_malloc (amt);
3366 if (sections == NULL)
3367 goto error_return;
3368
3369 i = 0;
3370 for (s = abfd->sections; s != NULL; s = s->next)
3371 {
3372 if ((s->flags & SEC_ALLOC) != 0)
3373 {
3374 sections[i] = s;
3375 ++i;
3376 }
3377 }
3378 BFD_ASSERT (i <= bfd_count_sections (abfd));
3379 count = i;
3380
3381 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3382
3383 /* Build the mapping. */
3384
3385 mfirst = NULL;
3386 pm = &mfirst;
3387
3388 /* If we have a .interp section, then create a PT_PHDR segment for
3389 the program headers and a PT_INTERP segment for the .interp
3390 section. */
3391 s = bfd_get_section_by_name (abfd, ".interp");
3392 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3393 {
3394 amt = sizeof (struct elf_segment_map);
3395 m = bfd_zalloc (abfd, amt);
3396 if (m == NULL)
3397 goto error_return;
3398 m->next = NULL;
3399 m->p_type = PT_PHDR;
3400 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3401 m->p_flags = PF_R | PF_X;
3402 m->p_flags_valid = 1;
3403 m->includes_phdrs = 1;
3404
3405 *pm = m;
3406 pm = &m->next;
3407
3408 amt = sizeof (struct elf_segment_map);
3409 m = bfd_zalloc (abfd, amt);
3410 if (m == NULL)
3411 goto error_return;
3412 m->next = NULL;
3413 m->p_type = PT_INTERP;
3414 m->count = 1;
3415 m->sections[0] = s;
3416
3417 *pm = m;
3418 pm = &m->next;
3419 }
3420
3421 /* Look through the sections. We put sections in the same program
3422 segment when the start of the second section can be placed within
3423 a few bytes of the end of the first section. */
3424 last_hdr = NULL;
3425 last_size = 0;
3426 phdr_index = 0;
3427 maxpagesize = get_elf_backend_data (abfd)->maxpagesize;
3428 writable = FALSE;
3429 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3430 if (dynsec != NULL
3431 && (dynsec->flags & SEC_LOAD) == 0)
3432 dynsec = NULL;
3433
3434 /* Deal with -Ttext or something similar such that the first section
3435 is not adjacent to the program headers. This is an
3436 approximation, since at this point we don't know exactly how many
3437 program headers we will need. */
3438 if (count > 0)
3439 {
3440 bfd_size_type phdr_size;
3441
3442 phdr_size = elf_tdata (abfd)->program_header_size;
3443 if (phdr_size == 0)
3444 phdr_size = get_elf_backend_data (abfd)->s->sizeof_phdr;
3445 if ((abfd->flags & D_PAGED) == 0
3446 || sections[0]->lma < phdr_size
3447 || sections[0]->lma % maxpagesize < phdr_size % maxpagesize)
3448 phdr_in_segment = FALSE;
3449 }
3450
3451 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3452 {
3453 asection *hdr;
3454 bfd_boolean new_segment;
3455
3456 hdr = *hdrpp;
3457
3458 /* See if this section and the last one will fit in the same
3459 segment. */
3460
3461 if (last_hdr == NULL)
3462 {
3463 /* If we don't have a segment yet, then we don't need a new
3464 one (we build the last one after this loop). */
3465 new_segment = FALSE;
3466 }
3467 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3468 {
3469 /* If this section has a different relation between the
3470 virtual address and the load address, then we need a new
3471 segment. */
3472 new_segment = TRUE;
3473 }
3474 else if (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
3475 < BFD_ALIGN (hdr->lma, maxpagesize))
3476 {
3477 /* If putting this section in this segment would force us to
3478 skip a page in the segment, then we need a new segment. */
3479 new_segment = TRUE;
3480 }
3481 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
3482 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
3483 {
3484 /* We don't want to put a loadable section after a
3485 nonloadable section in the same segment.
3486 Consider .tbss sections as loadable for this purpose. */
3487 new_segment = TRUE;
3488 }
3489 else if ((abfd->flags & D_PAGED) == 0)
3490 {
3491 /* If the file is not demand paged, which means that we
3492 don't require the sections to be correctly aligned in the
3493 file, then there is no other reason for a new segment. */
3494 new_segment = FALSE;
3495 }
3496 else if (! writable
3497 && (hdr->flags & SEC_READONLY) == 0
3498 && (((last_hdr->lma + last_size - 1)
3499 & ~(maxpagesize - 1))
3500 != (hdr->lma & ~(maxpagesize - 1))))
3501 {
3502 /* We don't want to put a writable section in a read only
3503 segment, unless they are on the same page in memory
3504 anyhow. We already know that the last section does not
3505 bring us past the current section on the page, so the
3506 only case in which the new section is not on the same
3507 page as the previous section is when the previous section
3508 ends precisely on a page boundary. */
3509 new_segment = TRUE;
3510 }
3511 else
3512 {
3513 /* Otherwise, we can use the same segment. */
3514 new_segment = FALSE;
3515 }
3516
3517 if (! new_segment)
3518 {
3519 if ((hdr->flags & SEC_READONLY) == 0)
3520 writable = TRUE;
3521 last_hdr = hdr;
3522 /* .tbss sections effectively have zero size. */
3523 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3524 last_size = hdr->size;
3525 else
3526 last_size = 0;
3527 continue;
3528 }
3529
3530 /* We need a new program segment. We must create a new program
3531 header holding all the sections from phdr_index until hdr. */
3532
3533 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3534 if (m == NULL)
3535 goto error_return;
3536
3537 *pm = m;
3538 pm = &m->next;
3539
3540 if ((hdr->flags & SEC_READONLY) == 0)
3541 writable = TRUE;
3542 else
3543 writable = FALSE;
3544
3545 last_hdr = hdr;
3546 /* .tbss sections effectively have zero size. */
3547 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3548 last_size = hdr->size;
3549 else
3550 last_size = 0;
3551 phdr_index = i;
3552 phdr_in_segment = FALSE;
3553 }
3554
3555 /* Create a final PT_LOAD program segment. */
3556 if (last_hdr != NULL)
3557 {
3558 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3559 if (m == NULL)
3560 goto error_return;
3561
3562 *pm = m;
3563 pm = &m->next;
3564 }
3565
3566 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
3567 if (dynsec != NULL)
3568 {
3569 amt = sizeof (struct elf_segment_map);
3570 m = bfd_zalloc (abfd, amt);
3571 if (m == NULL)
3572 goto error_return;
3573 m->next = NULL;
3574 m->p_type = PT_DYNAMIC;
3575 m->count = 1;
3576 m->sections[0] = dynsec;
3577
3578 *pm = m;
3579 pm = &m->next;
3580 }
3581
3582 /* For each loadable .note section, add a PT_NOTE segment. We don't
3583 use bfd_get_section_by_name, because if we link together
3584 nonloadable .note sections and loadable .note sections, we will
3585 generate two .note sections in the output file. FIXME: Using
3586 names for section types is bogus anyhow. */
3587 for (s = abfd->sections; s != NULL; s = s->next)
3588 {
3589 if ((s->flags & SEC_LOAD) != 0
3590 && strncmp (s->name, ".note", 5) == 0)
3591 {
3592 amt = sizeof (struct elf_segment_map);
3593 m = bfd_zalloc (abfd, amt);
3594 if (m == NULL)
3595 goto error_return;
3596 m->next = NULL;
3597 m->p_type = PT_NOTE;
3598 m->count = 1;
3599 m->sections[0] = s;
3600
3601 *pm = m;
3602 pm = &m->next;
3603 }
3604 if (s->flags & SEC_THREAD_LOCAL)
3605 {
3606 if (! tls_count)
3607 first_tls = s;
3608 tls_count++;
3609 }
3610 }
3611
3612 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
3613 if (tls_count > 0)
3614 {
3615 int i;
3616
3617 amt = sizeof (struct elf_segment_map);
3618 amt += (tls_count - 1) * sizeof (asection *);
3619 m = bfd_zalloc (abfd, amt);
3620 if (m == NULL)
3621 goto error_return;
3622 m->next = NULL;
3623 m->p_type = PT_TLS;
3624 m->count = tls_count;
3625 /* Mandated PF_R. */
3626 m->p_flags = PF_R;
3627 m->p_flags_valid = 1;
3628 for (i = 0; i < tls_count; ++i)
3629 {
3630 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
3631 m->sections[i] = first_tls;
3632 first_tls = first_tls->next;
3633 }
3634
3635 *pm = m;
3636 pm = &m->next;
3637 }
3638
3639 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
3640 segment. */
3641 eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
3642 if (eh_frame_hdr != NULL
3643 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
3644 {
3645 amt = sizeof (struct elf_segment_map);
3646 m = bfd_zalloc (abfd, amt);
3647 if (m == NULL)
3648 goto error_return;
3649 m->next = NULL;
3650 m->p_type = PT_GNU_EH_FRAME;
3651 m->count = 1;
3652 m->sections[0] = eh_frame_hdr->output_section;
3653
3654 *pm = m;
3655 pm = &m->next;
3656 }
3657
3658 if (elf_tdata (abfd)->stack_flags)
3659 {
3660 amt = sizeof (struct elf_segment_map);
3661 m = bfd_zalloc (abfd, amt);
3662 if (m == NULL)
3663 goto error_return;
3664 m->next = NULL;
3665 m->p_type = PT_GNU_STACK;
3666 m->p_flags = elf_tdata (abfd)->stack_flags;
3667 m->p_flags_valid = 1;
3668
3669 *pm = m;
3670 pm = &m->next;
3671 }
3672
3673 if (elf_tdata (abfd)->relro)
3674 {
3675 amt = sizeof (struct elf_segment_map);
3676 m = bfd_zalloc (abfd, amt);
3677 if (m == NULL)
3678 goto error_return;
3679 m->next = NULL;
3680 m->p_type = PT_GNU_RELRO;
3681 m->p_flags = PF_R;
3682 m->p_flags_valid = 1;
3683
3684 *pm = m;
3685 pm = &m->next;
3686 }
3687
3688 free (sections);
3689 sections = NULL;
3690
3691 elf_tdata (abfd)->segment_map = mfirst;
3692 return TRUE;
3693
3694 error_return:
3695 if (sections != NULL)
3696 free (sections);
3697 return FALSE;
3698 }
3699
3700 /* Sort sections by address. */
3701
3702 static int
3703 elf_sort_sections (const void *arg1, const void *arg2)
3704 {
3705 const asection *sec1 = *(const asection **) arg1;
3706 const asection *sec2 = *(const asection **) arg2;
3707 bfd_size_type size1, size2;
3708
3709 /* Sort by LMA first, since this is the address used to
3710 place the section into a segment. */
3711 if (sec1->lma < sec2->lma)
3712 return -1;
3713 else if (sec1->lma > sec2->lma)
3714 return 1;
3715
3716 /* Then sort by VMA. Normally the LMA and the VMA will be
3717 the same, and this will do nothing. */
3718 if (sec1->vma < sec2->vma)
3719 return -1;
3720 else if (sec1->vma > sec2->vma)
3721 return 1;
3722
3723 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
3724
3725 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
3726
3727 if (TOEND (sec1))
3728 {
3729 if (TOEND (sec2))
3730 {
3731 /* If the indicies are the same, do not return 0
3732 here, but continue to try the next comparison. */
3733 if (sec1->target_index - sec2->target_index != 0)
3734 return sec1->target_index - sec2->target_index;
3735 }
3736 else
3737 return 1;
3738 }
3739 else if (TOEND (sec2))
3740 return -1;
3741
3742 #undef TOEND
3743
3744 /* Sort by size, to put zero sized sections
3745 before others at the same address. */
3746
3747 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
3748 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
3749
3750 if (size1 < size2)
3751 return -1;
3752 if (size1 > size2)
3753 return 1;
3754
3755 return sec1->target_index - sec2->target_index;
3756 }
3757
3758 /* Ian Lance Taylor writes:
3759
3760 We shouldn't be using % with a negative signed number. That's just
3761 not good. We have to make sure either that the number is not
3762 negative, or that the number has an unsigned type. When the types
3763 are all the same size they wind up as unsigned. When file_ptr is a
3764 larger signed type, the arithmetic winds up as signed long long,
3765 which is wrong.
3766
3767 What we're trying to say here is something like ``increase OFF by
3768 the least amount that will cause it to be equal to the VMA modulo
3769 the page size.'' */
3770 /* In other words, something like:
3771
3772 vma_offset = m->sections[0]->vma % bed->maxpagesize;
3773 off_offset = off % bed->maxpagesize;
3774 if (vma_offset < off_offset)
3775 adjustment = vma_offset + bed->maxpagesize - off_offset;
3776 else
3777 adjustment = vma_offset - off_offset;
3778
3779 which can can be collapsed into the expression below. */
3780
3781 static file_ptr
3782 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
3783 {
3784 return ((vma - off) % maxpagesize);
3785 }
3786
3787 /* Assign file positions to the sections based on the mapping from
3788 sections to segments. This function also sets up some fields in
3789 the file header, and writes out the program headers. */
3790
3791 static bfd_boolean
3792 assign_file_positions_for_segments (bfd *abfd, struct bfd_link_info *link_info)
3793 {
3794 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3795 unsigned int count;
3796 struct elf_segment_map *m;
3797 unsigned int alloc;
3798 Elf_Internal_Phdr *phdrs;
3799 file_ptr off, voff;
3800 bfd_vma filehdr_vaddr, filehdr_paddr;
3801 bfd_vma phdrs_vaddr, phdrs_paddr;
3802 Elf_Internal_Phdr *p;
3803 bfd_size_type amt;
3804
3805 if (elf_tdata (abfd)->segment_map == NULL)
3806 {
3807 if (! map_sections_to_segments (abfd))
3808 return FALSE;
3809 }
3810 else
3811 {
3812 /* The placement algorithm assumes that non allocated sections are
3813 not in PT_LOAD segments. We ensure this here by removing such
3814 sections from the segment map. */
3815 for (m = elf_tdata (abfd)->segment_map;
3816 m != NULL;
3817 m = m->next)
3818 {
3819 unsigned int new_count;
3820 unsigned int i;
3821
3822 if (m->p_type != PT_LOAD)
3823 continue;
3824
3825 new_count = 0;
3826 for (i = 0; i < m->count; i ++)
3827 {
3828 if ((m->sections[i]->flags & SEC_ALLOC) != 0)
3829 {
3830 if (i != new_count)
3831 m->sections[new_count] = m->sections[i];
3832
3833 new_count ++;
3834 }
3835 }
3836
3837 if (new_count != m->count)
3838 m->count = new_count;
3839 }
3840 }
3841
3842 if (bed->elf_backend_modify_segment_map)
3843 {
3844 if (! (*bed->elf_backend_modify_segment_map) (abfd, link_info))
3845 return FALSE;
3846 }
3847
3848 count = 0;
3849 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
3850 ++count;
3851
3852 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
3853 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
3854 elf_elfheader (abfd)->e_phnum = count;
3855
3856 if (count == 0)
3857 return TRUE;
3858
3859 /* If we already counted the number of program segments, make sure
3860 that we allocated enough space. This happens when SIZEOF_HEADERS
3861 is used in a linker script. */
3862 alloc = elf_tdata (abfd)->program_header_size / bed->s->sizeof_phdr;
3863 if (alloc != 0 && count > alloc)
3864 {
3865 ((*_bfd_error_handler)
3866 (_("%s: Not enough room for program headers (allocated %u, need %u)"),
3867 bfd_get_filename (abfd), alloc, count));
3868 bfd_set_error (bfd_error_bad_value);
3869 return FALSE;
3870 }
3871
3872 if (alloc == 0)
3873 alloc = count;
3874
3875 amt = alloc * sizeof (Elf_Internal_Phdr);
3876 phdrs = bfd_alloc (abfd, amt);
3877 if (phdrs == NULL)
3878 return FALSE;
3879
3880 off = bed->s->sizeof_ehdr;
3881 off += alloc * bed->s->sizeof_phdr;
3882
3883 filehdr_vaddr = 0;
3884 filehdr_paddr = 0;
3885 phdrs_vaddr = 0;
3886 phdrs_paddr = 0;
3887
3888 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
3889 m != NULL;
3890 m = m->next, p++)
3891 {
3892 unsigned int i;
3893 asection **secpp;
3894
3895 /* If elf_segment_map is not from map_sections_to_segments, the
3896 sections may not be correctly ordered. NOTE: sorting should
3897 not be done to the PT_NOTE section of a corefile, which may
3898 contain several pseudo-sections artificially created by bfd.
3899 Sorting these pseudo-sections breaks things badly. */
3900 if (m->count > 1
3901 && !(elf_elfheader (abfd)->e_type == ET_CORE
3902 && m->p_type == PT_NOTE))
3903 qsort (m->sections, (size_t) m->count, sizeof (asection *),
3904 elf_sort_sections);
3905
3906 p->p_type = m->p_type;
3907 p->p_flags = m->p_flags;
3908
3909 if (p->p_type == PT_LOAD
3910 && m->count > 0
3911 && (m->sections[0]->flags & SEC_ALLOC) != 0)
3912 {
3913 if ((abfd->flags & D_PAGED) != 0)
3914 off += vma_page_aligned_bias (m->sections[0]->vma, off,
3915 bed->maxpagesize);
3916 else
3917 {
3918 bfd_size_type align;
3919
3920 align = 0;
3921 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
3922 {
3923 bfd_size_type secalign;
3924
3925 secalign = bfd_get_section_alignment (abfd, *secpp);
3926 if (secalign > align)
3927 align = secalign;
3928 }
3929
3930 off += vma_page_aligned_bias (m->sections[0]->vma, off,
3931 1 << align);
3932 }
3933 }
3934 /* Make sure the .dynamic section is the first section in the
3935 PT_DYNAMIC segment. */
3936 else if (p->p_type == PT_DYNAMIC
3937 && m->count > 1
3938 && strcmp (m->sections[0]->name, ".dynamic") != 0)
3939 {
3940 _bfd_error_handler
3941 (_("%s: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
3942 bfd_get_filename (abfd));
3943 bfd_set_error (bfd_error_bad_value);
3944 return FALSE;
3945 }
3946
3947 if (m->count == 0)
3948 p->p_vaddr = 0;
3949 else
3950 p->p_vaddr = m->sections[0]->vma;
3951
3952 if (m->p_paddr_valid)
3953 p->p_paddr = m->p_paddr;
3954 else if (m->count == 0)
3955 p->p_paddr = 0;
3956 else
3957 p->p_paddr = m->sections[0]->lma;
3958
3959 if (p->p_type == PT_LOAD
3960 && (abfd->flags & D_PAGED) != 0)
3961 p->p_align = bed->maxpagesize;
3962 else if (m->count == 0)
3963 p->p_align = 1 << bed->s->log_file_align;
3964 else
3965 p->p_align = 0;
3966
3967 p->p_offset = 0;
3968 p->p_filesz = 0;
3969 p->p_memsz = 0;
3970
3971 if (m->includes_filehdr)
3972 {
3973 if (! m->p_flags_valid)
3974 p->p_flags |= PF_R;
3975 p->p_offset = 0;
3976 p->p_filesz = bed->s->sizeof_ehdr;
3977 p->p_memsz = bed->s->sizeof_ehdr;
3978 if (m->count > 0)
3979 {
3980 BFD_ASSERT (p->p_type == PT_LOAD);
3981
3982 if (p->p_vaddr < (bfd_vma) off)
3983 {
3984 (*_bfd_error_handler)
3985 (_("%s: Not enough room for program headers, try linking with -N"),
3986 bfd_get_filename (abfd));
3987 bfd_set_error (bfd_error_bad_value);
3988 return FALSE;
3989 }
3990
3991 p->p_vaddr -= off;
3992 if (! m->p_paddr_valid)
3993 p->p_paddr -= off;
3994 }
3995 if (p->p_type == PT_LOAD)
3996 {
3997 filehdr_vaddr = p->p_vaddr;
3998 filehdr_paddr = p->p_paddr;
3999 }
4000 }
4001
4002 if (m->includes_phdrs)
4003 {
4004 if (! m->p_flags_valid)
4005 p->p_flags |= PF_R;
4006
4007 if (m->includes_filehdr)
4008 {
4009 if (p->p_type == PT_LOAD)
4010 {
4011 phdrs_vaddr = p->p_vaddr + bed->s->sizeof_ehdr;
4012 phdrs_paddr = p->p_paddr + bed->s->sizeof_ehdr;
4013 }
4014 }
4015 else
4016 {
4017 p->p_offset = bed->s->sizeof_ehdr;
4018
4019 if (m->count > 0)
4020 {
4021 BFD_ASSERT (p->p_type == PT_LOAD);
4022 p->p_vaddr -= off - p->p_offset;
4023 if (! m->p_paddr_valid)
4024 p->p_paddr -= off - p->p_offset;
4025 }
4026
4027 if (p->p_type == PT_LOAD)
4028 {
4029 phdrs_vaddr = p->p_vaddr;
4030 phdrs_paddr = p->p_paddr;
4031 }
4032 else
4033 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
4034 }
4035
4036 p->p_filesz += alloc * bed->s->sizeof_phdr;
4037 p->p_memsz += alloc * bed->s->sizeof_phdr;
4038 }
4039
4040 if (p->p_type == PT_LOAD
4041 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4042 {
4043 if (! m->includes_filehdr && ! m->includes_phdrs)
4044 p->p_offset = off;
4045 else
4046 {
4047 file_ptr adjust;
4048
4049 adjust = off - (p->p_offset + p->p_filesz);
4050 p->p_filesz += adjust;
4051 p->p_memsz += adjust;
4052 }
4053 }
4054
4055 voff = off;
4056
4057 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4058 {
4059 asection *sec;
4060 flagword flags;
4061 bfd_size_type align;
4062
4063 sec = *secpp;
4064 flags = sec->flags;
4065 align = 1 << bfd_get_section_alignment (abfd, sec);
4066
4067 /* The section may have artificial alignment forced by a
4068 link script. Notice this case by the gap between the
4069 cumulative phdr lma and the section's lma. */
4070 if (p->p_paddr + p->p_memsz < sec->lma)
4071 {
4072 bfd_vma adjust = sec->lma - (p->p_paddr + p->p_memsz);
4073
4074 p->p_memsz += adjust;
4075 if (p->p_type == PT_LOAD
4076 || (p->p_type == PT_NOTE
4077 && bfd_get_format (abfd) == bfd_core))
4078 {
4079 off += adjust;
4080 voff += adjust;
4081 }
4082 if ((flags & SEC_LOAD) != 0
4083 || (flags & SEC_THREAD_LOCAL) != 0)
4084 p->p_filesz += adjust;
4085 }
4086
4087 if (p->p_type == PT_LOAD)
4088 {
4089 bfd_signed_vma adjust;
4090
4091 if ((flags & SEC_LOAD) != 0)
4092 {
4093 adjust = sec->lma - (p->p_paddr + p->p_memsz);
4094 if (adjust < 0)
4095 adjust = 0;
4096 }
4097 else if ((flags & SEC_ALLOC) != 0)
4098 {
4099 /* The section VMA must equal the file position
4100 modulo the page size. FIXME: I'm not sure if
4101 this adjustment is really necessary. We used to
4102 not have the SEC_LOAD case just above, and then
4103 this was necessary, but now I'm not sure. */
4104 if ((abfd->flags & D_PAGED) != 0)
4105 adjust = vma_page_aligned_bias (sec->vma, voff,
4106 bed->maxpagesize);
4107 else
4108 adjust = vma_page_aligned_bias (sec->vma, voff,
4109 align);
4110 }
4111 else
4112 adjust = 0;
4113
4114 if (adjust != 0)
4115 {
4116 if (i == 0)
4117 {
4118 (* _bfd_error_handler) (_("\
4119 Error: First section in segment (%s) starts at 0x%x whereas the segment starts at 0x%x"),
4120 bfd_section_name (abfd, sec),
4121 sec->lma,
4122 p->p_paddr);
4123 return FALSE;
4124 }
4125 p->p_memsz += adjust;
4126 off += adjust;
4127 voff += adjust;
4128 if ((flags & SEC_LOAD) != 0)
4129 p->p_filesz += adjust;
4130 }
4131
4132 sec->filepos = off;
4133
4134 /* We check SEC_HAS_CONTENTS here because if NOLOAD is
4135 used in a linker script we may have a section with
4136 SEC_LOAD clear but which is supposed to have
4137 contents. */
4138 if ((flags & SEC_LOAD) != 0
4139 || (flags & SEC_HAS_CONTENTS) != 0)
4140 off += sec->size;
4141
4142 if ((flags & SEC_ALLOC) != 0
4143 && ((flags & SEC_LOAD) != 0
4144 || (flags & SEC_THREAD_LOCAL) == 0))
4145 voff += sec->size;
4146 }
4147
4148 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
4149 {
4150 /* The actual "note" segment has i == 0.
4151 This is the one that actually contains everything. */
4152 if (i == 0)
4153 {
4154 sec->filepos = off;
4155 p->p_filesz = sec->size;
4156 off += sec->size;
4157 voff = off;
4158 }
4159 else
4160 {
4161 /* Fake sections -- don't need to be written. */
4162 sec->filepos = 0;
4163 sec->size = 0;
4164 flags = sec->flags = 0;
4165 }
4166 p->p_memsz = 0;
4167 p->p_align = 1;
4168 }
4169 else
4170 {
4171 if ((sec->flags & SEC_LOAD) != 0
4172 || (sec->flags & SEC_THREAD_LOCAL) == 0
4173 || p->p_type == PT_TLS)
4174 p->p_memsz += sec->size;
4175
4176 if ((flags & SEC_LOAD) != 0)
4177 p->p_filesz += sec->size;
4178
4179 if (p->p_type == PT_TLS
4180 && sec->size == 0
4181 && (sec->flags & SEC_HAS_CONTENTS) == 0)
4182 {
4183 struct bfd_link_order *o;
4184 bfd_vma tbss_size = 0;
4185
4186 for (o = sec->link_order_head; o != NULL; o = o->next)
4187 if (tbss_size < o->offset + o->size)
4188 tbss_size = o->offset + o->size;
4189
4190 p->p_memsz += tbss_size;
4191 }
4192
4193 if (align > p->p_align
4194 && (p->p_type != PT_LOAD || (abfd->flags & D_PAGED) == 0))
4195 p->p_align = align;
4196 }
4197
4198 if (! m->p_flags_valid)
4199 {
4200 p->p_flags |= PF_R;
4201 if ((flags & SEC_CODE) != 0)
4202 p->p_flags |= PF_X;
4203 if ((flags & SEC_READONLY) == 0)
4204 p->p_flags |= PF_W;
4205 }
4206 }
4207 }
4208
4209 /* Now that we have set the section file positions, we can set up
4210 the file positions for the non PT_LOAD segments. */
4211 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4212 m != NULL;
4213 m = m->next, p++)
4214 {
4215 if (p->p_type != PT_LOAD && m->count > 0)
4216 {
4217 BFD_ASSERT (! m->includes_filehdr && ! m->includes_phdrs);
4218 p->p_offset = m->sections[0]->filepos;
4219 }
4220 if (m->count == 0)
4221 {
4222 if (m->includes_filehdr)
4223 {
4224 p->p_vaddr = filehdr_vaddr;
4225 if (! m->p_paddr_valid)
4226 p->p_paddr = filehdr_paddr;
4227 }
4228 else if (m->includes_phdrs)
4229 {
4230 p->p_vaddr = phdrs_vaddr;
4231 if (! m->p_paddr_valid)
4232 p->p_paddr = phdrs_paddr;
4233 }
4234 else if (p->p_type == PT_GNU_RELRO)
4235 {
4236 Elf_Internal_Phdr *lp;
4237
4238 for (lp = phdrs; lp < phdrs + count; ++lp)
4239 {
4240 if (lp->p_type == PT_LOAD
4241 && lp->p_vaddr <= link_info->relro_end
4242 && lp->p_vaddr >= link_info->relro_start
4243 && lp->p_vaddr + lp->p_filesz
4244 >= link_info->relro_end)
4245 break;
4246 }
4247
4248 if (lp < phdrs + count
4249 && link_info->relro_end > lp->p_vaddr)
4250 {
4251 p->p_vaddr = lp->p_vaddr;
4252 p->p_paddr = lp->p_paddr;
4253 p->p_offset = lp->p_offset;
4254 p->p_filesz = link_info->relro_end - lp->p_vaddr;
4255 p->p_memsz = p->p_filesz;
4256 p->p_align = 1;
4257 p->p_flags = (lp->p_flags & ~PF_W);
4258 }
4259 else
4260 {
4261 memset (p, 0, sizeof *p);
4262 p->p_type = PT_NULL;
4263 }
4264 }
4265 }
4266 }
4267
4268 /* Clear out any program headers we allocated but did not use. */
4269 for (; count < alloc; count++, p++)
4270 {
4271 memset (p, 0, sizeof *p);
4272 p->p_type = PT_NULL;
4273 }
4274
4275 elf_tdata (abfd)->phdr = phdrs;
4276
4277 elf_tdata (abfd)->next_file_pos = off;
4278
4279 /* Write out the program headers. */
4280 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
4281 || bed->s->write_out_phdrs (abfd, phdrs, alloc) != 0)
4282 return FALSE;
4283
4284 return TRUE;
4285 }
4286
4287 /* Get the size of the program header.
4288
4289 If this is called by the linker before any of the section VMA's are set, it
4290 can't calculate the correct value for a strange memory layout. This only
4291 happens when SIZEOF_HEADERS is used in a linker script. In this case,
4292 SORTED_HDRS is NULL and we assume the normal scenario of one text and one
4293 data segment (exclusive of .interp and .dynamic).
4294
4295 ??? User written scripts must either not use SIZEOF_HEADERS, or assume there
4296 will be two segments. */
4297
4298 static bfd_size_type
4299 get_program_header_size (bfd *abfd)
4300 {
4301 size_t segs;
4302 asection *s;
4303 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4304
4305 /* We can't return a different result each time we're called. */
4306 if (elf_tdata (abfd)->program_header_size != 0)
4307 return elf_tdata (abfd)->program_header_size;
4308
4309 if (elf_tdata (abfd)->segment_map != NULL)
4310 {
4311 struct elf_segment_map *m;
4312
4313 segs = 0;
4314 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4315 ++segs;
4316 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
4317 return elf_tdata (abfd)->program_header_size;
4318 }
4319
4320 /* Assume we will need exactly two PT_LOAD segments: one for text
4321 and one for data. */
4322 segs = 2;
4323
4324 s = bfd_get_section_by_name (abfd, ".interp");
4325 if (s != NULL && (s->flags & SEC_LOAD) != 0)
4326 {
4327 /* If we have a loadable interpreter section, we need a
4328 PT_INTERP segment. In this case, assume we also need a
4329 PT_PHDR segment, although that may not be true for all
4330 targets. */
4331 segs += 2;
4332 }
4333
4334 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4335 {
4336 /* We need a PT_DYNAMIC segment. */
4337 ++segs;
4338 }
4339
4340 if (elf_tdata (abfd)->eh_frame_hdr)
4341 {
4342 /* We need a PT_GNU_EH_FRAME segment. */
4343 ++segs;
4344 }
4345
4346 if (elf_tdata (abfd)->stack_flags)
4347 {
4348 /* We need a PT_GNU_STACK segment. */
4349 ++segs;
4350 }
4351
4352 if (elf_tdata (abfd)->relro)
4353 {
4354 /* We need a PT_GNU_RELRO segment. */
4355 ++segs;
4356 }
4357
4358 for (s = abfd->sections; s != NULL; s = s->next)
4359 {
4360 if ((s->flags & SEC_LOAD) != 0
4361 && strncmp (s->name, ".note", 5) == 0)
4362 {
4363 /* We need a PT_NOTE segment. */
4364 ++segs;
4365 }
4366 }
4367
4368 for (s = abfd->sections; s != NULL; s = s->next)
4369 {
4370 if (s->flags & SEC_THREAD_LOCAL)
4371 {
4372 /* We need a PT_TLS segment. */
4373 ++segs;
4374 break;
4375 }
4376 }
4377
4378 /* Let the backend count up any program headers it might need. */
4379 if (bed->elf_backend_additional_program_headers)
4380 {
4381 int a;
4382
4383 a = (*bed->elf_backend_additional_program_headers) (abfd);
4384 if (a == -1)
4385 abort ();
4386 segs += a;
4387 }
4388
4389 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
4390 return elf_tdata (abfd)->program_header_size;
4391 }
4392
4393 /* Work out the file positions of all the sections. This is called by
4394 _bfd_elf_compute_section_file_positions. All the section sizes and
4395 VMAs must be known before this is called.
4396
4397 We do not consider reloc sections at this point, unless they form
4398 part of the loadable image. Reloc sections are assigned file
4399 positions in assign_file_positions_for_relocs, which is called by
4400 write_object_contents and final_link.
4401
4402 We also don't set the positions of the .symtab and .strtab here. */
4403
4404 static bfd_boolean
4405 assign_file_positions_except_relocs (bfd *abfd,
4406 struct bfd_link_info *link_info)
4407 {
4408 struct elf_obj_tdata * const tdata = elf_tdata (abfd);
4409 Elf_Internal_Ehdr * const i_ehdrp = elf_elfheader (abfd);
4410 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4411 unsigned int num_sec = elf_numsections (abfd);
4412 file_ptr off;
4413 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4414
4415 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
4416 && bfd_get_format (abfd) != bfd_core)
4417 {
4418 Elf_Internal_Shdr **hdrpp;
4419 unsigned int i;
4420
4421 /* Start after the ELF header. */
4422 off = i_ehdrp->e_ehsize;
4423
4424 /* We are not creating an executable, which means that we are
4425 not creating a program header, and that the actual order of
4426 the sections in the file is unimportant. */
4427 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4428 {
4429 Elf_Internal_Shdr *hdr;
4430
4431 hdr = *hdrpp;
4432 if (hdr->sh_type == SHT_REL
4433 || hdr->sh_type == SHT_RELA
4434 || i == tdata->symtab_section
4435 || i == tdata->symtab_shndx_section
4436 || i == tdata->strtab_section)
4437 {
4438 hdr->sh_offset = -1;
4439 }
4440 else
4441 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4442
4443 if (i == SHN_LORESERVE - 1)
4444 {
4445 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4446 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4447 }
4448 }
4449 }
4450 else
4451 {
4452 unsigned int i;
4453 Elf_Internal_Shdr **hdrpp;
4454
4455 /* Assign file positions for the loaded sections based on the
4456 assignment of sections to segments. */
4457 if (! assign_file_positions_for_segments (abfd, link_info))
4458 return FALSE;
4459
4460 /* Assign file positions for the other sections. */
4461
4462 off = elf_tdata (abfd)->next_file_pos;
4463 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4464 {
4465 Elf_Internal_Shdr *hdr;
4466
4467 hdr = *hdrpp;
4468 if (hdr->bfd_section != NULL
4469 && hdr->bfd_section->filepos != 0)
4470 hdr->sh_offset = hdr->bfd_section->filepos;
4471 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4472 {
4473 ((*_bfd_error_handler)
4474 (_("%s: warning: allocated section `%s' not in segment"),
4475 bfd_get_filename (abfd),
4476 (hdr->bfd_section == NULL
4477 ? "*unknown*"
4478 : hdr->bfd_section->name)));
4479 if ((abfd->flags & D_PAGED) != 0)
4480 off += vma_page_aligned_bias (hdr->sh_addr, off,
4481 bed->maxpagesize);
4482 else
4483 off += vma_page_aligned_bias (hdr->sh_addr, off,
4484 hdr->sh_addralign);
4485 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4486 FALSE);
4487 }
4488 else if (hdr->sh_type == SHT_REL
4489 || hdr->sh_type == SHT_RELA
4490 || hdr == i_shdrpp[tdata->symtab_section]
4491 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4492 || hdr == i_shdrpp[tdata->strtab_section])
4493 hdr->sh_offset = -1;
4494 else
4495 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4496
4497 if (i == SHN_LORESERVE - 1)
4498 {
4499 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4500 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4501 }
4502 }
4503 }
4504
4505 /* Place the section headers. */
4506 off = align_file_position (off, 1 << bed->s->log_file_align);
4507 i_ehdrp->e_shoff = off;
4508 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
4509
4510 elf_tdata (abfd)->next_file_pos = off;
4511
4512 return TRUE;
4513 }
4514
4515 static bfd_boolean
4516 prep_headers (bfd *abfd)
4517 {
4518 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
4519 Elf_Internal_Phdr *i_phdrp = 0; /* Program header table, internal form */
4520 Elf_Internal_Shdr **i_shdrp; /* Section header table, internal form */
4521 struct elf_strtab_hash *shstrtab;
4522 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4523
4524 i_ehdrp = elf_elfheader (abfd);
4525 i_shdrp = elf_elfsections (abfd);
4526
4527 shstrtab = _bfd_elf_strtab_init ();
4528 if (shstrtab == NULL)
4529 return FALSE;
4530
4531 elf_shstrtab (abfd) = shstrtab;
4532
4533 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
4534 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
4535 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
4536 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
4537
4538 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
4539 i_ehdrp->e_ident[EI_DATA] =
4540 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
4541 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
4542
4543 if ((abfd->flags & DYNAMIC) != 0)
4544 i_ehdrp->e_type = ET_DYN;
4545 else if ((abfd->flags & EXEC_P) != 0)
4546 i_ehdrp->e_type = ET_EXEC;
4547 else if (bfd_get_format (abfd) == bfd_core)
4548 i_ehdrp->e_type = ET_CORE;
4549 else
4550 i_ehdrp->e_type = ET_REL;
4551
4552 switch (bfd_get_arch (abfd))
4553 {
4554 case bfd_arch_unknown:
4555 i_ehdrp->e_machine = EM_NONE;
4556 break;
4557
4558 /* There used to be a long list of cases here, each one setting
4559 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4560 in the corresponding bfd definition. To avoid duplication,
4561 the switch was removed. Machines that need special handling
4562 can generally do it in elf_backend_final_write_processing(),
4563 unless they need the information earlier than the final write.
4564 Such need can generally be supplied by replacing the tests for
4565 e_machine with the conditions used to determine it. */
4566 default:
4567 i_ehdrp->e_machine = bed->elf_machine_code;
4568 }
4569
4570 i_ehdrp->e_version = bed->s->ev_current;
4571 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
4572
4573 /* No program header, for now. */
4574 i_ehdrp->e_phoff = 0;
4575 i_ehdrp->e_phentsize = 0;
4576 i_ehdrp->e_phnum = 0;
4577
4578 /* Each bfd section is section header entry. */
4579 i_ehdrp->e_entry = bfd_get_start_address (abfd);
4580 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
4581
4582 /* If we're building an executable, we'll need a program header table. */
4583 if (abfd->flags & EXEC_P)
4584 {
4585 /* It all happens later. */
4586 #if 0
4587 i_ehdrp->e_phentsize = sizeof (Elf_External_Phdr);
4588
4589 /* elf_build_phdrs() returns a (NULL-terminated) array of
4590 Elf_Internal_Phdrs. */
4591 i_phdrp = elf_build_phdrs (abfd, i_ehdrp, i_shdrp, &i_ehdrp->e_phnum);
4592 i_ehdrp->e_phoff = outbase;
4593 outbase += i_ehdrp->e_phentsize * i_ehdrp->e_phnum;
4594 #endif
4595 }
4596 else
4597 {
4598 i_ehdrp->e_phentsize = 0;
4599 i_phdrp = 0;
4600 i_ehdrp->e_phoff = 0;
4601 }
4602
4603 elf_tdata (abfd)->symtab_hdr.sh_name =
4604 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
4605 elf_tdata (abfd)->strtab_hdr.sh_name =
4606 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
4607 elf_tdata (abfd)->shstrtab_hdr.sh_name =
4608 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
4609 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4610 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4611 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
4612 return FALSE;
4613
4614 return TRUE;
4615 }
4616
4617 /* Assign file positions for all the reloc sections which are not part
4618 of the loadable file image. */
4619
4620 void
4621 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
4622 {
4623 file_ptr off;
4624 unsigned int i, num_sec;
4625 Elf_Internal_Shdr **shdrpp;
4626
4627 off = elf_tdata (abfd)->next_file_pos;
4628
4629 num_sec = elf_numsections (abfd);
4630 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
4631 {
4632 Elf_Internal_Shdr *shdrp;
4633
4634 shdrp = *shdrpp;
4635 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
4636 && shdrp->sh_offset == -1)
4637 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
4638 }
4639
4640 elf_tdata (abfd)->next_file_pos = off;
4641 }
4642
4643 bfd_boolean
4644 _bfd_elf_write_object_contents (bfd *abfd)
4645 {
4646 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4647 Elf_Internal_Ehdr *i_ehdrp;
4648 Elf_Internal_Shdr **i_shdrp;
4649 bfd_boolean failed;
4650 unsigned int count, num_sec;
4651
4652 if (! abfd->output_has_begun
4653 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
4654 return FALSE;
4655
4656 i_shdrp = elf_elfsections (abfd);
4657 i_ehdrp = elf_elfheader (abfd);
4658
4659 failed = FALSE;
4660 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
4661 if (failed)
4662 return FALSE;
4663
4664 _bfd_elf_assign_file_positions_for_relocs (abfd);
4665
4666 /* After writing the headers, we need to write the sections too... */
4667 num_sec = elf_numsections (abfd);
4668 for (count = 1; count < num_sec; count++)
4669 {
4670 if (bed->elf_backend_section_processing)
4671 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
4672 if (i_shdrp[count]->contents)
4673 {
4674 bfd_size_type amt = i_shdrp[count]->sh_size;
4675
4676 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
4677 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
4678 return FALSE;
4679 }
4680 if (count == SHN_LORESERVE - 1)
4681 count += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4682 }
4683
4684 /* Write out the section header names. */
4685 if (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
4686 || ! _bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd)))
4687 return FALSE;
4688
4689 if (bed->elf_backend_final_write_processing)
4690 (*bed->elf_backend_final_write_processing) (abfd,
4691 elf_tdata (abfd)->linker);
4692
4693 return bed->s->write_shdrs_and_ehdr (abfd);
4694 }
4695
4696 bfd_boolean
4697 _bfd_elf_write_corefile_contents (bfd *abfd)
4698 {
4699 /* Hopefully this can be done just like an object file. */
4700 return _bfd_elf_write_object_contents (abfd);
4701 }
4702
4703 /* Given a section, search the header to find them. */
4704
4705 int
4706 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
4707 {
4708 const struct elf_backend_data *bed;
4709 int index;
4710
4711 if (elf_section_data (asect) != NULL
4712 && elf_section_data (asect)->this_idx != 0)
4713 return elf_section_data (asect)->this_idx;
4714
4715 if (bfd_is_abs_section (asect))
4716 index = SHN_ABS;
4717 else if (bfd_is_com_section (asect))
4718 index = SHN_COMMON;
4719 else if (bfd_is_und_section (asect))
4720 index = SHN_UNDEF;
4721 else
4722 {
4723 Elf_Internal_Shdr **i_shdrp = elf_elfsections (abfd);
4724 int maxindex = elf_numsections (abfd);
4725
4726 for (index = 1; index < maxindex; index++)
4727 {
4728 Elf_Internal_Shdr *hdr = i_shdrp[index];
4729
4730 if (hdr != NULL && hdr->bfd_section == asect)
4731 return index;
4732 }
4733 index = -1;
4734 }
4735
4736 bed = get_elf_backend_data (abfd);
4737 if (bed->elf_backend_section_from_bfd_section)
4738 {
4739 int retval = index;
4740
4741 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
4742 return retval;
4743 }
4744
4745 if (index == -1)
4746 bfd_set_error (bfd_error_nonrepresentable_section);
4747
4748 return index;
4749 }
4750
4751 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
4752 on error. */
4753
4754 int
4755 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
4756 {
4757 asymbol *asym_ptr = *asym_ptr_ptr;
4758 int idx;
4759 flagword flags = asym_ptr->flags;
4760
4761 /* When gas creates relocations against local labels, it creates its
4762 own symbol for the section, but does put the symbol into the
4763 symbol chain, so udata is 0. When the linker is generating
4764 relocatable output, this section symbol may be for one of the
4765 input sections rather than the output section. */
4766 if (asym_ptr->udata.i == 0
4767 && (flags & BSF_SECTION_SYM)
4768 && asym_ptr->section)
4769 {
4770 int indx;
4771
4772 if (asym_ptr->section->output_section != NULL)
4773 indx = asym_ptr->section->output_section->index;
4774 else
4775 indx = asym_ptr->section->index;
4776 if (indx < elf_num_section_syms (abfd)
4777 && elf_section_syms (abfd)[indx] != NULL)
4778 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
4779 }
4780
4781 idx = asym_ptr->udata.i;
4782
4783 if (idx == 0)
4784 {
4785 /* This case can occur when using --strip-symbol on a symbol
4786 which is used in a relocation entry. */
4787 (*_bfd_error_handler)
4788 (_("%B: symbol `%s' required but not present"),
4789 abfd, bfd_asymbol_name (asym_ptr));
4790 bfd_set_error (bfd_error_no_symbols);
4791 return -1;
4792 }
4793
4794 #if DEBUG & 4
4795 {
4796 fprintf (stderr,
4797 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
4798 (long) asym_ptr, asym_ptr->name, idx, flags,
4799 elf_symbol_flags (flags));
4800 fflush (stderr);
4801 }
4802 #endif
4803
4804 return idx;
4805 }
4806
4807 /* Copy private BFD data. This copies any program header information. */
4808
4809 static bfd_boolean
4810 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
4811 {
4812 Elf_Internal_Ehdr *iehdr;
4813 struct elf_segment_map *map;
4814 struct elf_segment_map *map_first;
4815 struct elf_segment_map **pointer_to_map;
4816 Elf_Internal_Phdr *segment;
4817 asection *section;
4818 unsigned int i;
4819 unsigned int num_segments;
4820 bfd_boolean phdr_included = FALSE;
4821 bfd_vma maxpagesize;
4822 struct elf_segment_map *phdr_adjust_seg = NULL;
4823 unsigned int phdr_adjust_num = 0;
4824 const struct elf_backend_data *bed;
4825
4826 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
4827 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
4828 return TRUE;
4829
4830 if (elf_tdata (ibfd)->phdr == NULL)
4831 return TRUE;
4832
4833 bed = get_elf_backend_data (ibfd);
4834 iehdr = elf_elfheader (ibfd);
4835
4836 map_first = NULL;
4837 pointer_to_map = &map_first;
4838
4839 num_segments = elf_elfheader (ibfd)->e_phnum;
4840 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
4841
4842 /* Returns the end address of the segment + 1. */
4843 #define SEGMENT_END(segment, start) \
4844 (start + (segment->p_memsz > segment->p_filesz \
4845 ? segment->p_memsz : segment->p_filesz))
4846
4847 #define SECTION_SIZE(section, segment) \
4848 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
4849 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
4850 ? section->size : 0)
4851
4852 /* Returns TRUE if the given section is contained within
4853 the given segment. VMA addresses are compared. */
4854 #define IS_CONTAINED_BY_VMA(section, segment) \
4855 (section->vma >= segment->p_vaddr \
4856 && (section->vma + SECTION_SIZE (section, segment) \
4857 <= (SEGMENT_END (segment, segment->p_vaddr))))
4858
4859 /* Returns TRUE if the given section is contained within
4860 the given segment. LMA addresses are compared. */
4861 #define IS_CONTAINED_BY_LMA(section, segment, base) \
4862 (section->lma >= base \
4863 && (section->lma + SECTION_SIZE (section, segment) \
4864 <= SEGMENT_END (segment, base)))
4865
4866 /* Special case: corefile "NOTE" section containing regs, prpsinfo etc. */
4867 #define IS_COREFILE_NOTE(p, s) \
4868 (p->p_type == PT_NOTE \
4869 && bfd_get_format (ibfd) == bfd_core \
4870 && s->vma == 0 && s->lma == 0 \
4871 && (bfd_vma) s->filepos >= p->p_offset \
4872 && ((bfd_vma) s->filepos + s->size \
4873 <= p->p_offset + p->p_filesz))
4874
4875 /* The complicated case when p_vaddr is 0 is to handle the Solaris
4876 linker, which generates a PT_INTERP section with p_vaddr and
4877 p_memsz set to 0. */
4878 #define IS_SOLARIS_PT_INTERP(p, s) \
4879 (p->p_vaddr == 0 \
4880 && p->p_paddr == 0 \
4881 && p->p_memsz == 0 \
4882 && p->p_filesz > 0 \
4883 && (s->flags & SEC_HAS_CONTENTS) != 0 \
4884 && s->size > 0 \
4885 && (bfd_vma) s->filepos >= p->p_offset \
4886 && ((bfd_vma) s->filepos + s->size \
4887 <= p->p_offset + p->p_filesz))
4888
4889 /* Decide if the given section should be included in the given segment.
4890 A section will be included if:
4891 1. It is within the address space of the segment -- we use the LMA
4892 if that is set for the segment and the VMA otherwise,
4893 2. It is an allocated segment,
4894 3. There is an output section associated with it,
4895 4. The section has not already been allocated to a previous segment.
4896 5. PT_GNU_STACK segments do not include any sections.
4897 6. PT_TLS segment includes only SHF_TLS sections.
4898 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments. */
4899 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
4900 ((((segment->p_paddr \
4901 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
4902 : IS_CONTAINED_BY_VMA (section, segment)) \
4903 && (section->flags & SEC_ALLOC) != 0) \
4904 || IS_COREFILE_NOTE (segment, section)) \
4905 && section->output_section != NULL \
4906 && segment->p_type != PT_GNU_STACK \
4907 && (segment->p_type != PT_TLS \
4908 || (section->flags & SEC_THREAD_LOCAL)) \
4909 && (segment->p_type == PT_LOAD \
4910 || segment->p_type == PT_TLS \
4911 || (section->flags & SEC_THREAD_LOCAL) == 0) \
4912 && ! section->segment_mark)
4913
4914 /* Returns TRUE iff seg1 starts after the end of seg2. */
4915 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
4916 (seg1->field >= SEGMENT_END (seg2, seg2->field))
4917
4918 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
4919 their VMA address ranges and their LMA address ranges overlap.
4920 It is possible to have overlapping VMA ranges without overlapping LMA
4921 ranges. RedBoot images for example can have both .data and .bss mapped
4922 to the same VMA range, but with the .data section mapped to a different
4923 LMA. */
4924 #define SEGMENT_OVERLAPS(seg1, seg2) \
4925 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
4926 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
4927 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
4928 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
4929
4930 /* Initialise the segment mark field. */
4931 for (section = ibfd->sections; section != NULL; section = section->next)
4932 section->segment_mark = FALSE;
4933
4934 /* Scan through the segments specified in the program header
4935 of the input BFD. For this first scan we look for overlaps
4936 in the loadable segments. These can be created by weird
4937 parameters to objcopy. Also, fix some solaris weirdness. */
4938 for (i = 0, segment = elf_tdata (ibfd)->phdr;
4939 i < num_segments;
4940 i++, segment++)
4941 {
4942 unsigned int j;
4943 Elf_Internal_Phdr *segment2;
4944
4945 if (segment->p_type == PT_INTERP)
4946 for (section = ibfd->sections; section; section = section->next)
4947 if (IS_SOLARIS_PT_INTERP (segment, section))
4948 {
4949 /* Mininal change so that the normal section to segment
4950 assignment code will work. */
4951 segment->p_vaddr = section->vma;
4952 break;
4953 }
4954
4955 if (segment->p_type != PT_LOAD)
4956 continue;
4957
4958 /* Determine if this segment overlaps any previous segments. */
4959 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2 ++)
4960 {
4961 bfd_signed_vma extra_length;
4962
4963 if (segment2->p_type != PT_LOAD
4964 || ! SEGMENT_OVERLAPS (segment, segment2))
4965 continue;
4966
4967 /* Merge the two segments together. */
4968 if (segment2->p_vaddr < segment->p_vaddr)
4969 {
4970 /* Extend SEGMENT2 to include SEGMENT and then delete
4971 SEGMENT. */
4972 extra_length =
4973 SEGMENT_END (segment, segment->p_vaddr)
4974 - SEGMENT_END (segment2, segment2->p_vaddr);
4975
4976 if (extra_length > 0)
4977 {
4978 segment2->p_memsz += extra_length;
4979 segment2->p_filesz += extra_length;
4980 }
4981
4982 segment->p_type = PT_NULL;
4983
4984 /* Since we have deleted P we must restart the outer loop. */
4985 i = 0;
4986 segment = elf_tdata (ibfd)->phdr;
4987 break;
4988 }
4989 else
4990 {
4991 /* Extend SEGMENT to include SEGMENT2 and then delete
4992 SEGMENT2. */
4993 extra_length =
4994 SEGMENT_END (segment2, segment2->p_vaddr)
4995 - SEGMENT_END (segment, segment->p_vaddr);
4996
4997 if (extra_length > 0)
4998 {
4999 segment->p_memsz += extra_length;
5000 segment->p_filesz += extra_length;
5001 }
5002
5003 segment2->p_type = PT_NULL;
5004 }
5005 }
5006 }
5007
5008 /* The second scan attempts to assign sections to segments. */
5009 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5010 i < num_segments;
5011 i ++, segment ++)
5012 {
5013 unsigned int section_count;
5014 asection ** sections;
5015 asection * output_section;
5016 unsigned int isec;
5017 bfd_vma matching_lma;
5018 bfd_vma suggested_lma;
5019 unsigned int j;
5020 bfd_size_type amt;
5021
5022 if (segment->p_type == PT_NULL)
5023 continue;
5024
5025 /* Compute how many sections might be placed into this segment. */
5026 for (section = ibfd->sections, section_count = 0;
5027 section != NULL;
5028 section = section->next)
5029 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5030 ++section_count;
5031
5032 /* Allocate a segment map big enough to contain
5033 all of the sections we have selected. */
5034 amt = sizeof (struct elf_segment_map);
5035 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5036 map = bfd_alloc (obfd, amt);
5037 if (map == NULL)
5038 return FALSE;
5039
5040 /* Initialise the fields of the segment map. Default to
5041 using the physical address of the segment in the input BFD. */
5042 map->next = NULL;
5043 map->p_type = segment->p_type;
5044 map->p_flags = segment->p_flags;
5045 map->p_flags_valid = 1;
5046 map->p_paddr = segment->p_paddr;
5047 map->p_paddr_valid = 1;
5048
5049 /* Determine if this segment contains the ELF file header
5050 and if it contains the program headers themselves. */
5051 map->includes_filehdr = (segment->p_offset == 0
5052 && segment->p_filesz >= iehdr->e_ehsize);
5053
5054 map->includes_phdrs = 0;
5055
5056 if (! phdr_included || segment->p_type != PT_LOAD)
5057 {
5058 map->includes_phdrs =
5059 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5060 && (segment->p_offset + segment->p_filesz
5061 >= ((bfd_vma) iehdr->e_phoff
5062 + iehdr->e_phnum * iehdr->e_phentsize)));
5063
5064 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5065 phdr_included = TRUE;
5066 }
5067
5068 if (section_count == 0)
5069 {
5070 /* Special segments, such as the PT_PHDR segment, may contain
5071 no sections, but ordinary, loadable segments should contain
5072 something. They are allowed by the ELF spec however, so only
5073 a warning is produced. */
5074 if (segment->p_type == PT_LOAD)
5075 (*_bfd_error_handler)
5076 (_("%B: warning: Empty loadable segment detected, is this intentional ?\n"),
5077 ibfd);
5078
5079 map->count = 0;
5080 *pointer_to_map = map;
5081 pointer_to_map = &map->next;
5082
5083 continue;
5084 }
5085
5086 /* Now scan the sections in the input BFD again and attempt
5087 to add their corresponding output sections to the segment map.
5088 The problem here is how to handle an output section which has
5089 been moved (ie had its LMA changed). There are four possibilities:
5090
5091 1. None of the sections have been moved.
5092 In this case we can continue to use the segment LMA from the
5093 input BFD.
5094
5095 2. All of the sections have been moved by the same amount.
5096 In this case we can change the segment's LMA to match the LMA
5097 of the first section.
5098
5099 3. Some of the sections have been moved, others have not.
5100 In this case those sections which have not been moved can be
5101 placed in the current segment which will have to have its size,
5102 and possibly its LMA changed, and a new segment or segments will
5103 have to be created to contain the other sections.
5104
5105 4. The sections have been moved, but not by the same amount.
5106 In this case we can change the segment's LMA to match the LMA
5107 of the first section and we will have to create a new segment
5108 or segments to contain the other sections.
5109
5110 In order to save time, we allocate an array to hold the section
5111 pointers that we are interested in. As these sections get assigned
5112 to a segment, they are removed from this array. */
5113
5114 /* Gcc 2.96 miscompiles this code on mips. Don't do casting here
5115 to work around this long long bug. */
5116 amt = section_count * sizeof (asection *);
5117 sections = bfd_malloc (amt);
5118 if (sections == NULL)
5119 return FALSE;
5120
5121 /* Step One: Scan for segment vs section LMA conflicts.
5122 Also add the sections to the section array allocated above.
5123 Also add the sections to the current segment. In the common
5124 case, where the sections have not been moved, this means that
5125 we have completely filled the segment, and there is nothing
5126 more to do. */
5127 isec = 0;
5128 matching_lma = 0;
5129 suggested_lma = 0;
5130
5131 for (j = 0, section = ibfd->sections;
5132 section != NULL;
5133 section = section->next)
5134 {
5135 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5136 {
5137 output_section = section->output_section;
5138
5139 sections[j ++] = section;
5140
5141 /* The Solaris native linker always sets p_paddr to 0.
5142 We try to catch that case here, and set it to the
5143 correct value. Note - some backends require that
5144 p_paddr be left as zero. */
5145 if (segment->p_paddr == 0
5146 && segment->p_vaddr != 0
5147 && (! bed->want_p_paddr_set_to_zero)
5148 && isec == 0
5149 && output_section->lma != 0
5150 && (output_section->vma == (segment->p_vaddr
5151 + (map->includes_filehdr
5152 ? iehdr->e_ehsize
5153 : 0)
5154 + (map->includes_phdrs
5155 ? (iehdr->e_phnum
5156 * iehdr->e_phentsize)
5157 : 0))))
5158 map->p_paddr = segment->p_vaddr;
5159
5160 /* Match up the physical address of the segment with the
5161 LMA address of the output section. */
5162 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5163 || IS_COREFILE_NOTE (segment, section)
5164 || (bed->want_p_paddr_set_to_zero &&
5165 IS_CONTAINED_BY_VMA (output_section, segment))
5166 )
5167 {
5168 if (matching_lma == 0)
5169 matching_lma = output_section->lma;
5170
5171 /* We assume that if the section fits within the segment
5172 then it does not overlap any other section within that
5173 segment. */
5174 map->sections[isec ++] = output_section;
5175 }
5176 else if (suggested_lma == 0)
5177 suggested_lma = output_section->lma;
5178 }
5179 }
5180
5181 BFD_ASSERT (j == section_count);
5182
5183 /* Step Two: Adjust the physical address of the current segment,
5184 if necessary. */
5185 if (isec == section_count)
5186 {
5187 /* All of the sections fitted within the segment as currently
5188 specified. This is the default case. Add the segment to
5189 the list of built segments and carry on to process the next
5190 program header in the input BFD. */
5191 map->count = section_count;
5192 *pointer_to_map = map;
5193 pointer_to_map = &map->next;
5194
5195 free (sections);
5196 continue;
5197 }
5198 else
5199 {
5200 if (matching_lma != 0)
5201 {
5202 /* At least one section fits inside the current segment.
5203 Keep it, but modify its physical address to match the
5204 LMA of the first section that fitted. */
5205 map->p_paddr = matching_lma;
5206 }
5207 else
5208 {
5209 /* None of the sections fitted inside the current segment.
5210 Change the current segment's physical address to match
5211 the LMA of the first section. */
5212 map->p_paddr = suggested_lma;
5213 }
5214
5215 /* Offset the segment physical address from the lma
5216 to allow for space taken up by elf headers. */
5217 if (map->includes_filehdr)
5218 map->p_paddr -= iehdr->e_ehsize;
5219
5220 if (map->includes_phdrs)
5221 {
5222 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
5223
5224 /* iehdr->e_phnum is just an estimate of the number
5225 of program headers that we will need. Make a note
5226 here of the number we used and the segment we chose
5227 to hold these headers, so that we can adjust the
5228 offset when we know the correct value. */
5229 phdr_adjust_num = iehdr->e_phnum;
5230 phdr_adjust_seg = map;
5231 }
5232 }
5233
5234 /* Step Three: Loop over the sections again, this time assigning
5235 those that fit to the current segment and removing them from the
5236 sections array; but making sure not to leave large gaps. Once all
5237 possible sections have been assigned to the current segment it is
5238 added to the list of built segments and if sections still remain
5239 to be assigned, a new segment is constructed before repeating
5240 the loop. */
5241 isec = 0;
5242 do
5243 {
5244 map->count = 0;
5245 suggested_lma = 0;
5246
5247 /* Fill the current segment with sections that fit. */
5248 for (j = 0; j < section_count; j++)
5249 {
5250 section = sections[j];
5251
5252 if (section == NULL)
5253 continue;
5254
5255 output_section = section->output_section;
5256
5257 BFD_ASSERT (output_section != NULL);
5258
5259 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5260 || IS_COREFILE_NOTE (segment, section))
5261 {
5262 if (map->count == 0)
5263 {
5264 /* If the first section in a segment does not start at
5265 the beginning of the segment, then something is
5266 wrong. */
5267 if (output_section->lma !=
5268 (map->p_paddr
5269 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
5270 + (map->includes_phdrs
5271 ? iehdr->e_phnum * iehdr->e_phentsize
5272 : 0)))
5273 abort ();
5274 }
5275 else
5276 {
5277 asection * prev_sec;
5278
5279 prev_sec = map->sections[map->count - 1];
5280
5281 /* If the gap between the end of the previous section
5282 and the start of this section is more than
5283 maxpagesize then we need to start a new segment. */
5284 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
5285 maxpagesize)
5286 < BFD_ALIGN (output_section->lma, maxpagesize))
5287 || ((prev_sec->lma + prev_sec->size)
5288 > output_section->lma))
5289 {
5290 if (suggested_lma == 0)
5291 suggested_lma = output_section->lma;
5292
5293 continue;
5294 }
5295 }
5296
5297 map->sections[map->count++] = output_section;
5298 ++isec;
5299 sections[j] = NULL;
5300 section->segment_mark = TRUE;
5301 }
5302 else if (suggested_lma == 0)
5303 suggested_lma = output_section->lma;
5304 }
5305
5306 BFD_ASSERT (map->count > 0);
5307
5308 /* Add the current segment to the list of built segments. */
5309 *pointer_to_map = map;
5310 pointer_to_map = &map->next;
5311
5312 if (isec < section_count)
5313 {
5314 /* We still have not allocated all of the sections to
5315 segments. Create a new segment here, initialise it
5316 and carry on looping. */
5317 amt = sizeof (struct elf_segment_map);
5318 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5319 map = bfd_alloc (obfd, amt);
5320 if (map == NULL)
5321 {
5322 free (sections);
5323 return FALSE;
5324 }
5325
5326 /* Initialise the fields of the segment map. Set the physical
5327 physical address to the LMA of the first section that has
5328 not yet been assigned. */
5329 map->next = NULL;
5330 map->p_type = segment->p_type;
5331 map->p_flags = segment->p_flags;
5332 map->p_flags_valid = 1;
5333 map->p_paddr = suggested_lma;
5334 map->p_paddr_valid = 1;
5335 map->includes_filehdr = 0;
5336 map->includes_phdrs = 0;
5337 }
5338 }
5339 while (isec < section_count);
5340
5341 free (sections);
5342 }
5343
5344 /* The Solaris linker creates program headers in which all the
5345 p_paddr fields are zero. When we try to objcopy or strip such a
5346 file, we get confused. Check for this case, and if we find it
5347 reset the p_paddr_valid fields. */
5348 for (map = map_first; map != NULL; map = map->next)
5349 if (map->p_paddr != 0)
5350 break;
5351 if (map == NULL)
5352 for (map = map_first; map != NULL; map = map->next)
5353 map->p_paddr_valid = 0;
5354
5355 elf_tdata (obfd)->segment_map = map_first;
5356
5357 /* If we had to estimate the number of program headers that were
5358 going to be needed, then check our estimate now and adjust
5359 the offset if necessary. */
5360 if (phdr_adjust_seg != NULL)
5361 {
5362 unsigned int count;
5363
5364 for (count = 0, map = map_first; map != NULL; map = map->next)
5365 count++;
5366
5367 if (count > phdr_adjust_num)
5368 phdr_adjust_seg->p_paddr
5369 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
5370 }
5371
5372 #if 0
5373 /* Final Step: Sort the segments into ascending order of physical
5374 address. */
5375 if (map_first != NULL)
5376 {
5377 struct elf_segment_map *prev;
5378
5379 prev = map_first;
5380 for (map = map_first->next; map != NULL; prev = map, map = map->next)
5381 {
5382 /* Yes I know - its a bubble sort.... */
5383 if (map->next != NULL && (map->next->p_paddr < map->p_paddr))
5384 {
5385 /* Swap map and map->next. */
5386 prev->next = map->next;
5387 map->next = map->next->next;
5388 prev->next->next = map;
5389
5390 /* Restart loop. */
5391 map = map_first;
5392 }
5393 }
5394 }
5395 #endif
5396
5397 #undef SEGMENT_END
5398 #undef SECTION_SIZE
5399 #undef IS_CONTAINED_BY_VMA
5400 #undef IS_CONTAINED_BY_LMA
5401 #undef IS_COREFILE_NOTE
5402 #undef IS_SOLARIS_PT_INTERP
5403 #undef INCLUDE_SECTION_IN_SEGMENT
5404 #undef SEGMENT_AFTER_SEGMENT
5405 #undef SEGMENT_OVERLAPS
5406 return TRUE;
5407 }
5408
5409 /* Copy private section information. This copies over the entsize
5410 field, and sometimes the info field. */
5411
5412 bfd_boolean
5413 _bfd_elf_copy_private_section_data (bfd *ibfd,
5414 asection *isec,
5415 bfd *obfd,
5416 asection *osec)
5417 {
5418 Elf_Internal_Shdr *ihdr, *ohdr;
5419
5420 if (ibfd->xvec->flavour != bfd_target_elf_flavour
5421 || obfd->xvec->flavour != bfd_target_elf_flavour)
5422 return TRUE;
5423
5424 ihdr = &elf_section_data (isec)->this_hdr;
5425 ohdr = &elf_section_data (osec)->this_hdr;
5426
5427 ohdr->sh_entsize = ihdr->sh_entsize;
5428
5429 if (ihdr->sh_type == SHT_SYMTAB
5430 || ihdr->sh_type == SHT_DYNSYM
5431 || ihdr->sh_type == SHT_GNU_verneed
5432 || ihdr->sh_type == SHT_GNU_verdef)
5433 ohdr->sh_info = ihdr->sh_info;
5434
5435 /* Set things up for objcopy. The output SHT_GROUP section will
5436 have its elf_next_in_group pointing back to the input group
5437 members. */
5438 elf_next_in_group (osec) = elf_next_in_group (isec);
5439 elf_group_name (osec) = elf_group_name (isec);
5440
5441 osec->use_rela_p = isec->use_rela_p;
5442
5443 return TRUE;
5444 }
5445
5446 /* Copy private header information. */
5447
5448 bfd_boolean
5449 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
5450 {
5451 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5452 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5453 return TRUE;
5454
5455 /* Copy over private BFD data if it has not already been copied.
5456 This must be done here, rather than in the copy_private_bfd_data
5457 entry point, because the latter is called after the section
5458 contents have been set, which means that the program headers have
5459 already been worked out. */
5460 if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
5461 {
5462 if (! copy_private_bfd_data (ibfd, obfd))
5463 return FALSE;
5464 }
5465
5466 return TRUE;
5467 }
5468
5469 /* Copy private symbol information. If this symbol is in a section
5470 which we did not map into a BFD section, try to map the section
5471 index correctly. We use special macro definitions for the mapped
5472 section indices; these definitions are interpreted by the
5473 swap_out_syms function. */
5474
5475 #define MAP_ONESYMTAB (SHN_HIOS + 1)
5476 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
5477 #define MAP_STRTAB (SHN_HIOS + 3)
5478 #define MAP_SHSTRTAB (SHN_HIOS + 4)
5479 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
5480
5481 bfd_boolean
5482 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
5483 asymbol *isymarg,
5484 bfd *obfd,
5485 asymbol *osymarg)
5486 {
5487 elf_symbol_type *isym, *osym;
5488
5489 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5490 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5491 return TRUE;
5492
5493 isym = elf_symbol_from (ibfd, isymarg);
5494 osym = elf_symbol_from (obfd, osymarg);
5495
5496 if (isym != NULL
5497 && osym != NULL
5498 && bfd_is_abs_section (isym->symbol.section))
5499 {
5500 unsigned int shndx;
5501
5502 shndx = isym->internal_elf_sym.st_shndx;
5503 if (shndx == elf_onesymtab (ibfd))
5504 shndx = MAP_ONESYMTAB;
5505 else if (shndx == elf_dynsymtab (ibfd))
5506 shndx = MAP_DYNSYMTAB;
5507 else if (shndx == elf_tdata (ibfd)->strtab_section)
5508 shndx = MAP_STRTAB;
5509 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
5510 shndx = MAP_SHSTRTAB;
5511 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
5512 shndx = MAP_SYM_SHNDX;
5513 osym->internal_elf_sym.st_shndx = shndx;
5514 }
5515
5516 return TRUE;
5517 }
5518
5519 /* Swap out the symbols. */
5520
5521 static bfd_boolean
5522 swap_out_syms (bfd *abfd,
5523 struct bfd_strtab_hash **sttp,
5524 int relocatable_p)
5525 {
5526 const struct elf_backend_data *bed;
5527 int symcount;
5528 asymbol **syms;
5529 struct bfd_strtab_hash *stt;
5530 Elf_Internal_Shdr *symtab_hdr;
5531 Elf_Internal_Shdr *symtab_shndx_hdr;
5532 Elf_Internal_Shdr *symstrtab_hdr;
5533 char *outbound_syms;
5534 char *outbound_shndx;
5535 int idx;
5536 bfd_size_type amt;
5537 bfd_boolean name_local_sections;
5538
5539 if (!elf_map_symbols (abfd))
5540 return FALSE;
5541
5542 /* Dump out the symtabs. */
5543 stt = _bfd_elf_stringtab_init ();
5544 if (stt == NULL)
5545 return FALSE;
5546
5547 bed = get_elf_backend_data (abfd);
5548 symcount = bfd_get_symcount (abfd);
5549 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5550 symtab_hdr->sh_type = SHT_SYMTAB;
5551 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
5552 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
5553 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
5554 symtab_hdr->sh_addralign = 1 << bed->s->log_file_align;
5555
5556 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
5557 symstrtab_hdr->sh_type = SHT_STRTAB;
5558
5559 amt = (bfd_size_type) (1 + symcount) * bed->s->sizeof_sym;
5560 outbound_syms = bfd_alloc (abfd, amt);
5561 if (outbound_syms == NULL)
5562 {
5563 _bfd_stringtab_free (stt);
5564 return FALSE;
5565 }
5566 symtab_hdr->contents = outbound_syms;
5567
5568 outbound_shndx = NULL;
5569 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
5570 if (symtab_shndx_hdr->sh_name != 0)
5571 {
5572 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
5573 outbound_shndx = bfd_zalloc (abfd, amt);
5574 if (outbound_shndx == NULL)
5575 {
5576 _bfd_stringtab_free (stt);
5577 return FALSE;
5578 }
5579
5580 symtab_shndx_hdr->contents = outbound_shndx;
5581 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
5582 symtab_shndx_hdr->sh_size = amt;
5583 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
5584 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
5585 }
5586
5587 /* Now generate the data (for "contents"). */
5588 {
5589 /* Fill in zeroth symbol and swap it out. */
5590 Elf_Internal_Sym sym;
5591 sym.st_name = 0;
5592 sym.st_value = 0;
5593 sym.st_size = 0;
5594 sym.st_info = 0;
5595 sym.st_other = 0;
5596 sym.st_shndx = SHN_UNDEF;
5597 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
5598 outbound_syms += bed->s->sizeof_sym;
5599 if (outbound_shndx != NULL)
5600 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
5601 }
5602
5603 name_local_sections
5604 = (bed->elf_backend_name_local_section_symbols
5605 && bed->elf_backend_name_local_section_symbols (abfd));
5606
5607 syms = bfd_get_outsymbols (abfd);
5608 for (idx = 0; idx < symcount; idx++)
5609 {
5610 Elf_Internal_Sym sym;
5611 bfd_vma value = syms[idx]->value;
5612 elf_symbol_type *type_ptr;
5613 flagword flags = syms[idx]->flags;
5614 int type;
5615
5616 if (!name_local_sections
5617 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
5618 {
5619 /* Local section symbols have no name. */
5620 sym.st_name = 0;
5621 }
5622 else
5623 {
5624 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
5625 syms[idx]->name,
5626 TRUE, FALSE);
5627 if (sym.st_name == (unsigned long) -1)
5628 {
5629 _bfd_stringtab_free (stt);
5630 return FALSE;
5631 }
5632 }
5633
5634 type_ptr = elf_symbol_from (abfd, syms[idx]);
5635
5636 if ((flags & BSF_SECTION_SYM) == 0
5637 && bfd_is_com_section (syms[idx]->section))
5638 {
5639 /* ELF common symbols put the alignment into the `value' field,
5640 and the size into the `size' field. This is backwards from
5641 how BFD handles it, so reverse it here. */
5642 sym.st_size = value;
5643 if (type_ptr == NULL
5644 || type_ptr->internal_elf_sym.st_value == 0)
5645 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
5646 else
5647 sym.st_value = type_ptr->internal_elf_sym.st_value;
5648 sym.st_shndx = _bfd_elf_section_from_bfd_section
5649 (abfd, syms[idx]->section);
5650 }
5651 else
5652 {
5653 asection *sec = syms[idx]->section;
5654 int shndx;
5655
5656 if (sec->output_section)
5657 {
5658 value += sec->output_offset;
5659 sec = sec->output_section;
5660 }
5661
5662 /* Don't add in the section vma for relocatable output. */
5663 if (! relocatable_p)
5664 value += sec->vma;
5665 sym.st_value = value;
5666 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
5667
5668 if (bfd_is_abs_section (sec)
5669 && type_ptr != NULL
5670 && type_ptr->internal_elf_sym.st_shndx != 0)
5671 {
5672 /* This symbol is in a real ELF section which we did
5673 not create as a BFD section. Undo the mapping done
5674 by copy_private_symbol_data. */
5675 shndx = type_ptr->internal_elf_sym.st_shndx;
5676 switch (shndx)
5677 {
5678 case MAP_ONESYMTAB:
5679 shndx = elf_onesymtab (abfd);
5680 break;
5681 case MAP_DYNSYMTAB:
5682 shndx = elf_dynsymtab (abfd);
5683 break;
5684 case MAP_STRTAB:
5685 shndx = elf_tdata (abfd)->strtab_section;
5686 break;
5687 case MAP_SHSTRTAB:
5688 shndx = elf_tdata (abfd)->shstrtab_section;
5689 break;
5690 case MAP_SYM_SHNDX:
5691 shndx = elf_tdata (abfd)->symtab_shndx_section;
5692 break;
5693 default:
5694 break;
5695 }
5696 }
5697 else
5698 {
5699 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
5700
5701 if (shndx == -1)
5702 {
5703 asection *sec2;
5704
5705 /* Writing this would be a hell of a lot easier if
5706 we had some decent documentation on bfd, and
5707 knew what to expect of the library, and what to
5708 demand of applications. For example, it
5709 appears that `objcopy' might not set the
5710 section of a symbol to be a section that is
5711 actually in the output file. */
5712 sec2 = bfd_get_section_by_name (abfd, sec->name);
5713 if (sec2 == NULL)
5714 {
5715 _bfd_error_handler (_("\
5716 Unable to find equivalent output section for symbol '%s' from section '%s'"),
5717 syms[idx]->name ? syms[idx]->name : "<Local sym>",
5718 sec->name);
5719 bfd_set_error (bfd_error_invalid_operation);
5720 _bfd_stringtab_free (stt);
5721 return FALSE;
5722 }
5723
5724 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
5725 BFD_ASSERT (shndx != -1);
5726 }
5727 }
5728
5729 sym.st_shndx = shndx;
5730 }
5731
5732 if ((flags & BSF_THREAD_LOCAL) != 0)
5733 type = STT_TLS;
5734 else if ((flags & BSF_FUNCTION) != 0)
5735 type = STT_FUNC;
5736 else if ((flags & BSF_OBJECT) != 0)
5737 type = STT_OBJECT;
5738 else
5739 type = STT_NOTYPE;
5740
5741 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
5742 type = STT_TLS;
5743
5744 /* Processor-specific types. */
5745 if (type_ptr != NULL
5746 && bed->elf_backend_get_symbol_type)
5747 type = ((*bed->elf_backend_get_symbol_type)
5748 (&type_ptr->internal_elf_sym, type));
5749
5750 if (flags & BSF_SECTION_SYM)
5751 {
5752 if (flags & BSF_GLOBAL)
5753 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
5754 else
5755 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
5756 }
5757 else if (bfd_is_com_section (syms[idx]->section))
5758 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
5759 else if (bfd_is_und_section (syms[idx]->section))
5760 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
5761 ? STB_WEAK
5762 : STB_GLOBAL),
5763 type);
5764 else if (flags & BSF_FILE)
5765 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
5766 else
5767 {
5768 int bind = STB_LOCAL;
5769
5770 if (flags & BSF_LOCAL)
5771 bind = STB_LOCAL;
5772 else if (flags & BSF_WEAK)
5773 bind = STB_WEAK;
5774 else if (flags & BSF_GLOBAL)
5775 bind = STB_GLOBAL;
5776
5777 sym.st_info = ELF_ST_INFO (bind, type);
5778 }
5779
5780 if (type_ptr != NULL)
5781 sym.st_other = type_ptr->internal_elf_sym.st_other;
5782 else
5783 sym.st_other = 0;
5784
5785 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
5786 outbound_syms += bed->s->sizeof_sym;
5787 if (outbound_shndx != NULL)
5788 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
5789 }
5790
5791 *sttp = stt;
5792 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
5793 symstrtab_hdr->sh_type = SHT_STRTAB;
5794
5795 symstrtab_hdr->sh_flags = 0;
5796 symstrtab_hdr->sh_addr = 0;
5797 symstrtab_hdr->sh_entsize = 0;
5798 symstrtab_hdr->sh_link = 0;
5799 symstrtab_hdr->sh_info = 0;
5800 symstrtab_hdr->sh_addralign = 1;
5801
5802 return TRUE;
5803 }
5804
5805 /* Return the number of bytes required to hold the symtab vector.
5806
5807 Note that we base it on the count plus 1, since we will null terminate
5808 the vector allocated based on this size. However, the ELF symbol table
5809 always has a dummy entry as symbol #0, so it ends up even. */
5810
5811 long
5812 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
5813 {
5814 long symcount;
5815 long symtab_size;
5816 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
5817
5818 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
5819 symtab_size = (symcount + 1) * (sizeof (asymbol *));
5820 if (symcount > 0)
5821 symtab_size -= sizeof (asymbol *);
5822
5823 return symtab_size;
5824 }
5825
5826 long
5827 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
5828 {
5829 long symcount;
5830 long symtab_size;
5831 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
5832
5833 if (elf_dynsymtab (abfd) == 0)
5834 {
5835 bfd_set_error (bfd_error_invalid_operation);
5836 return -1;
5837 }
5838
5839 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
5840 symtab_size = (symcount + 1) * (sizeof (asymbol *));
5841 if (symcount > 0)
5842 symtab_size -= sizeof (asymbol *);
5843
5844 return symtab_size;
5845 }
5846
5847 long
5848 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
5849 sec_ptr asect)
5850 {
5851 return (asect->reloc_count + 1) * sizeof (arelent *);
5852 }
5853
5854 /* Canonicalize the relocs. */
5855
5856 long
5857 _bfd_elf_canonicalize_reloc (bfd *abfd,
5858 sec_ptr section,
5859 arelent **relptr,
5860 asymbol **symbols)
5861 {
5862 arelent *tblptr;
5863 unsigned int i;
5864 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5865
5866 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
5867 return -1;
5868
5869 tblptr = section->relocation;
5870 for (i = 0; i < section->reloc_count; i++)
5871 *relptr++ = tblptr++;
5872
5873 *relptr = NULL;
5874
5875 return section->reloc_count;
5876 }
5877
5878 long
5879 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
5880 {
5881 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5882 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
5883
5884 if (symcount >= 0)
5885 bfd_get_symcount (abfd) = symcount;
5886 return symcount;
5887 }
5888
5889 long
5890 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
5891 asymbol **allocation)
5892 {
5893 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5894 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
5895
5896 if (symcount >= 0)
5897 bfd_get_dynamic_symcount (abfd) = symcount;
5898 return symcount;
5899 }
5900
5901 /* Return the size required for the dynamic reloc entries. Any
5902 section that was actually installed in the BFD, and has type
5903 SHT_REL or SHT_RELA, and uses the dynamic symbol table, is
5904 considered to be a dynamic reloc section. */
5905
5906 long
5907 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
5908 {
5909 long ret;
5910 asection *s;
5911
5912 if (elf_dynsymtab (abfd) == 0)
5913 {
5914 bfd_set_error (bfd_error_invalid_operation);
5915 return -1;
5916 }
5917
5918 ret = sizeof (arelent *);
5919 for (s = abfd->sections; s != NULL; s = s->next)
5920 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
5921 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
5922 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
5923 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
5924 * sizeof (arelent *));
5925
5926 return ret;
5927 }
5928
5929 /* Canonicalize the dynamic relocation entries. Note that we return
5930 the dynamic relocations as a single block, although they are
5931 actually associated with particular sections; the interface, which
5932 was designed for SunOS style shared libraries, expects that there
5933 is only one set of dynamic relocs. Any section that was actually
5934 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
5935 the dynamic symbol table, is considered to be a dynamic reloc
5936 section. */
5937
5938 long
5939 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
5940 arelent **storage,
5941 asymbol **syms)
5942 {
5943 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
5944 asection *s;
5945 long ret;
5946
5947 if (elf_dynsymtab (abfd) == 0)
5948 {
5949 bfd_set_error (bfd_error_invalid_operation);
5950 return -1;
5951 }
5952
5953 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
5954 ret = 0;
5955 for (s = abfd->sections; s != NULL; s = s->next)
5956 {
5957 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
5958 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
5959 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
5960 {
5961 arelent *p;
5962 long count, i;
5963
5964 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
5965 return -1;
5966 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
5967 p = s->relocation;
5968 for (i = 0; i < count; i++)
5969 *storage++ = p++;
5970 ret += count;
5971 }
5972 }
5973
5974 *storage = NULL;
5975
5976 return ret;
5977 }
5978 \f
5979 /* Read in the version information. */
5980
5981 bfd_boolean
5982 _bfd_elf_slurp_version_tables (bfd *abfd)
5983 {
5984 bfd_byte *contents = NULL;
5985 bfd_size_type amt;
5986
5987 if (elf_dynverdef (abfd) != 0)
5988 {
5989 Elf_Internal_Shdr *hdr;
5990 Elf_External_Verdef *everdef;
5991 Elf_Internal_Verdef *iverdef;
5992 Elf_Internal_Verdef *iverdefarr;
5993 Elf_Internal_Verdef iverdefmem;
5994 unsigned int i;
5995 unsigned int maxidx;
5996
5997 hdr = &elf_tdata (abfd)->dynverdef_hdr;
5998
5999 contents = bfd_malloc (hdr->sh_size);
6000 if (contents == NULL)
6001 goto error_return;
6002 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6003 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6004 goto error_return;
6005
6006 /* We know the number of entries in the section but not the maximum
6007 index. Therefore we have to run through all entries and find
6008 the maximum. */
6009 everdef = (Elf_External_Verdef *) contents;
6010 maxidx = 0;
6011 for (i = 0; i < hdr->sh_info; ++i)
6012 {
6013 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6014
6015 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
6016 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
6017
6018 everdef = ((Elf_External_Verdef *)
6019 ((bfd_byte *) everdef + iverdefmem.vd_next));
6020 }
6021
6022 amt = (bfd_size_type) maxidx * sizeof (Elf_Internal_Verdef);
6023 elf_tdata (abfd)->verdef = bfd_zalloc (abfd, amt);
6024 if (elf_tdata (abfd)->verdef == NULL)
6025 goto error_return;
6026
6027 elf_tdata (abfd)->cverdefs = maxidx;
6028
6029 everdef = (Elf_External_Verdef *) contents;
6030 iverdefarr = elf_tdata (abfd)->verdef;
6031 for (i = 0; i < hdr->sh_info; i++)
6032 {
6033 Elf_External_Verdaux *everdaux;
6034 Elf_Internal_Verdaux *iverdaux;
6035 unsigned int j;
6036
6037 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6038
6039 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
6040 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
6041
6042 iverdef->vd_bfd = abfd;
6043
6044 amt = (bfd_size_type) iverdef->vd_cnt * sizeof (Elf_Internal_Verdaux);
6045 iverdef->vd_auxptr = bfd_alloc (abfd, amt);
6046 if (iverdef->vd_auxptr == NULL)
6047 goto error_return;
6048
6049 everdaux = ((Elf_External_Verdaux *)
6050 ((bfd_byte *) everdef + iverdef->vd_aux));
6051 iverdaux = iverdef->vd_auxptr;
6052 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
6053 {
6054 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
6055
6056 iverdaux->vda_nodename =
6057 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6058 iverdaux->vda_name);
6059 if (iverdaux->vda_nodename == NULL)
6060 goto error_return;
6061
6062 if (j + 1 < iverdef->vd_cnt)
6063 iverdaux->vda_nextptr = iverdaux + 1;
6064 else
6065 iverdaux->vda_nextptr = NULL;
6066
6067 everdaux = ((Elf_External_Verdaux *)
6068 ((bfd_byte *) everdaux + iverdaux->vda_next));
6069 }
6070
6071 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
6072
6073 if (i + 1 < hdr->sh_info)
6074 iverdef->vd_nextdef = iverdef + 1;
6075 else
6076 iverdef->vd_nextdef = NULL;
6077
6078 everdef = ((Elf_External_Verdef *)
6079 ((bfd_byte *) everdef + iverdef->vd_next));
6080 }
6081
6082 free (contents);
6083 contents = NULL;
6084 }
6085
6086 if (elf_dynverref (abfd) != 0)
6087 {
6088 Elf_Internal_Shdr *hdr;
6089 Elf_External_Verneed *everneed;
6090 Elf_Internal_Verneed *iverneed;
6091 unsigned int i;
6092
6093 hdr = &elf_tdata (abfd)->dynverref_hdr;
6094
6095 amt = (bfd_size_type) hdr->sh_info * sizeof (Elf_Internal_Verneed);
6096 elf_tdata (abfd)->verref = bfd_zalloc (abfd, amt);
6097 if (elf_tdata (abfd)->verref == NULL)
6098 goto error_return;
6099
6100 elf_tdata (abfd)->cverrefs = hdr->sh_info;
6101
6102 contents = bfd_malloc (hdr->sh_size);
6103 if (contents == NULL)
6104 goto error_return;
6105 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6106 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6107 goto error_return;
6108
6109 everneed = (Elf_External_Verneed *) contents;
6110 iverneed = elf_tdata (abfd)->verref;
6111 for (i = 0; i < hdr->sh_info; i++, iverneed++)
6112 {
6113 Elf_External_Vernaux *evernaux;
6114 Elf_Internal_Vernaux *ivernaux;
6115 unsigned int j;
6116
6117 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
6118
6119 iverneed->vn_bfd = abfd;
6120
6121 iverneed->vn_filename =
6122 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6123 iverneed->vn_file);
6124 if (iverneed->vn_filename == NULL)
6125 goto error_return;
6126
6127 amt = iverneed->vn_cnt;
6128 amt *= sizeof (Elf_Internal_Vernaux);
6129 iverneed->vn_auxptr = bfd_alloc (abfd, amt);
6130
6131 evernaux = ((Elf_External_Vernaux *)
6132 ((bfd_byte *) everneed + iverneed->vn_aux));
6133 ivernaux = iverneed->vn_auxptr;
6134 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
6135 {
6136 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
6137
6138 ivernaux->vna_nodename =
6139 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6140 ivernaux->vna_name);
6141 if (ivernaux->vna_nodename == NULL)
6142 goto error_return;
6143
6144 if (j + 1 < iverneed->vn_cnt)
6145 ivernaux->vna_nextptr = ivernaux + 1;
6146 else
6147 ivernaux->vna_nextptr = NULL;
6148
6149 evernaux = ((Elf_External_Vernaux *)
6150 ((bfd_byte *) evernaux + ivernaux->vna_next));
6151 }
6152
6153 if (i + 1 < hdr->sh_info)
6154 iverneed->vn_nextref = iverneed + 1;
6155 else
6156 iverneed->vn_nextref = NULL;
6157
6158 everneed = ((Elf_External_Verneed *)
6159 ((bfd_byte *) everneed + iverneed->vn_next));
6160 }
6161
6162 free (contents);
6163 contents = NULL;
6164 }
6165
6166 return TRUE;
6167
6168 error_return:
6169 if (contents != NULL)
6170 free (contents);
6171 return FALSE;
6172 }
6173 \f
6174 asymbol *
6175 _bfd_elf_make_empty_symbol (bfd *abfd)
6176 {
6177 elf_symbol_type *newsym;
6178 bfd_size_type amt = sizeof (elf_symbol_type);
6179
6180 newsym = bfd_zalloc (abfd, amt);
6181 if (!newsym)
6182 return NULL;
6183 else
6184 {
6185 newsym->symbol.the_bfd = abfd;
6186 return &newsym->symbol;
6187 }
6188 }
6189
6190 void
6191 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
6192 asymbol *symbol,
6193 symbol_info *ret)
6194 {
6195 bfd_symbol_info (symbol, ret);
6196 }
6197
6198 /* Return whether a symbol name implies a local symbol. Most targets
6199 use this function for the is_local_label_name entry point, but some
6200 override it. */
6201
6202 bfd_boolean
6203 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
6204 const char *name)
6205 {
6206 /* Normal local symbols start with ``.L''. */
6207 if (name[0] == '.' && name[1] == 'L')
6208 return TRUE;
6209
6210 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
6211 DWARF debugging symbols starting with ``..''. */
6212 if (name[0] == '.' && name[1] == '.')
6213 return TRUE;
6214
6215 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
6216 emitting DWARF debugging output. I suspect this is actually a
6217 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
6218 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
6219 underscore to be emitted on some ELF targets). For ease of use,
6220 we treat such symbols as local. */
6221 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
6222 return TRUE;
6223
6224 return FALSE;
6225 }
6226
6227 alent *
6228 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
6229 asymbol *symbol ATTRIBUTE_UNUSED)
6230 {
6231 abort ();
6232 return NULL;
6233 }
6234
6235 bfd_boolean
6236 _bfd_elf_set_arch_mach (bfd *abfd,
6237 enum bfd_architecture arch,
6238 unsigned long machine)
6239 {
6240 /* If this isn't the right architecture for this backend, and this
6241 isn't the generic backend, fail. */
6242 if (arch != get_elf_backend_data (abfd)->arch
6243 && arch != bfd_arch_unknown
6244 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
6245 return FALSE;
6246
6247 return bfd_default_set_arch_mach (abfd, arch, machine);
6248 }
6249
6250 /* Find the function to a particular section and offset,
6251 for error reporting. */
6252
6253 static bfd_boolean
6254 elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
6255 asection *section,
6256 asymbol **symbols,
6257 bfd_vma offset,
6258 const char **filename_ptr,
6259 const char **functionname_ptr)
6260 {
6261 const char *filename;
6262 asymbol *func;
6263 bfd_vma low_func;
6264 asymbol **p;
6265
6266 filename = NULL;
6267 func = NULL;
6268 low_func = 0;
6269
6270 for (p = symbols; *p != NULL; p++)
6271 {
6272 elf_symbol_type *q;
6273
6274 q = (elf_symbol_type *) *p;
6275
6276 if (bfd_get_section (&q->symbol) != section)
6277 continue;
6278
6279 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
6280 {
6281 default:
6282 break;
6283 case STT_FILE:
6284 filename = bfd_asymbol_name (&q->symbol);
6285 break;
6286 case STT_NOTYPE:
6287 case STT_FUNC:
6288 if (q->symbol.section == section
6289 && q->symbol.value >= low_func
6290 && q->symbol.value <= offset)
6291 {
6292 func = (asymbol *) q;
6293 low_func = q->symbol.value;
6294 }
6295 break;
6296 }
6297 }
6298
6299 if (func == NULL)
6300 return FALSE;
6301
6302 if (filename_ptr)
6303 *filename_ptr = filename;
6304 if (functionname_ptr)
6305 *functionname_ptr = bfd_asymbol_name (func);
6306
6307 return TRUE;
6308 }
6309
6310 /* Find the nearest line to a particular section and offset,
6311 for error reporting. */
6312
6313 bfd_boolean
6314 _bfd_elf_find_nearest_line (bfd *abfd,
6315 asection *section,
6316 asymbol **symbols,
6317 bfd_vma offset,
6318 const char **filename_ptr,
6319 const char **functionname_ptr,
6320 unsigned int *line_ptr)
6321 {
6322 bfd_boolean found;
6323
6324 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
6325 filename_ptr, functionname_ptr,
6326 line_ptr))
6327 {
6328 if (!*functionname_ptr)
6329 elf_find_function (abfd, section, symbols, offset,
6330 *filename_ptr ? NULL : filename_ptr,
6331 functionname_ptr);
6332
6333 return TRUE;
6334 }
6335
6336 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
6337 filename_ptr, functionname_ptr,
6338 line_ptr, 0,
6339 &elf_tdata (abfd)->dwarf2_find_line_info))
6340 {
6341 if (!*functionname_ptr)
6342 elf_find_function (abfd, section, symbols, offset,
6343 *filename_ptr ? NULL : filename_ptr,
6344 functionname_ptr);
6345
6346 return TRUE;
6347 }
6348
6349 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
6350 &found, filename_ptr,
6351 functionname_ptr, line_ptr,
6352 &elf_tdata (abfd)->line_info))
6353 return FALSE;
6354 if (found && (*functionname_ptr || *line_ptr))
6355 return TRUE;
6356
6357 if (symbols == NULL)
6358 return FALSE;
6359
6360 if (! elf_find_function (abfd, section, symbols, offset,
6361 filename_ptr, functionname_ptr))
6362 return FALSE;
6363
6364 *line_ptr = 0;
6365 return TRUE;
6366 }
6367
6368 int
6369 _bfd_elf_sizeof_headers (bfd *abfd, bfd_boolean reloc)
6370 {
6371 int ret;
6372
6373 ret = get_elf_backend_data (abfd)->s->sizeof_ehdr;
6374 if (! reloc)
6375 ret += get_program_header_size (abfd);
6376 return ret;
6377 }
6378
6379 bfd_boolean
6380 _bfd_elf_set_section_contents (bfd *abfd,
6381 sec_ptr section,
6382 const void *location,
6383 file_ptr offset,
6384 bfd_size_type count)
6385 {
6386 Elf_Internal_Shdr *hdr;
6387 bfd_signed_vma pos;
6388
6389 if (! abfd->output_has_begun
6390 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
6391 return FALSE;
6392
6393 hdr = &elf_section_data (section)->this_hdr;
6394 pos = hdr->sh_offset + offset;
6395 if (bfd_seek (abfd, pos, SEEK_SET) != 0
6396 || bfd_bwrite (location, count, abfd) != count)
6397 return FALSE;
6398
6399 return TRUE;
6400 }
6401
6402 void
6403 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
6404 arelent *cache_ptr ATTRIBUTE_UNUSED,
6405 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
6406 {
6407 abort ();
6408 }
6409
6410 /* Try to convert a non-ELF reloc into an ELF one. */
6411
6412 bfd_boolean
6413 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
6414 {
6415 /* Check whether we really have an ELF howto. */
6416
6417 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
6418 {
6419 bfd_reloc_code_real_type code;
6420 reloc_howto_type *howto;
6421
6422 /* Alien reloc: Try to determine its type to replace it with an
6423 equivalent ELF reloc. */
6424
6425 if (areloc->howto->pc_relative)
6426 {
6427 switch (areloc->howto->bitsize)
6428 {
6429 case 8:
6430 code = BFD_RELOC_8_PCREL;
6431 break;
6432 case 12:
6433 code = BFD_RELOC_12_PCREL;
6434 break;
6435 case 16:
6436 code = BFD_RELOC_16_PCREL;
6437 break;
6438 case 24:
6439 code = BFD_RELOC_24_PCREL;
6440 break;
6441 case 32:
6442 code = BFD_RELOC_32_PCREL;
6443 break;
6444 case 64:
6445 code = BFD_RELOC_64_PCREL;
6446 break;
6447 default:
6448 goto fail;
6449 }
6450
6451 howto = bfd_reloc_type_lookup (abfd, code);
6452
6453 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
6454 {
6455 if (howto->pcrel_offset)
6456 areloc->addend += areloc->address;
6457 else
6458 areloc->addend -= areloc->address; /* addend is unsigned!! */
6459 }
6460 }
6461 else
6462 {
6463 switch (areloc->howto->bitsize)
6464 {
6465 case 8:
6466 code = BFD_RELOC_8;
6467 break;
6468 case 14:
6469 code = BFD_RELOC_14;
6470 break;
6471 case 16:
6472 code = BFD_RELOC_16;
6473 break;
6474 case 26:
6475 code = BFD_RELOC_26;
6476 break;
6477 case 32:
6478 code = BFD_RELOC_32;
6479 break;
6480 case 64:
6481 code = BFD_RELOC_64;
6482 break;
6483 default:
6484 goto fail;
6485 }
6486
6487 howto = bfd_reloc_type_lookup (abfd, code);
6488 }
6489
6490 if (howto)
6491 areloc->howto = howto;
6492 else
6493 goto fail;
6494 }
6495
6496 return TRUE;
6497
6498 fail:
6499 (*_bfd_error_handler)
6500 (_("%B: unsupported relocation type %s"),
6501 abfd, areloc->howto->name);
6502 bfd_set_error (bfd_error_bad_value);
6503 return FALSE;
6504 }
6505
6506 bfd_boolean
6507 _bfd_elf_close_and_cleanup (bfd *abfd)
6508 {
6509 if (bfd_get_format (abfd) == bfd_object)
6510 {
6511 if (elf_shstrtab (abfd) != NULL)
6512 _bfd_elf_strtab_free (elf_shstrtab (abfd));
6513 }
6514
6515 return _bfd_generic_close_and_cleanup (abfd);
6516 }
6517
6518 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
6519 in the relocation's offset. Thus we cannot allow any sort of sanity
6520 range-checking to interfere. There is nothing else to do in processing
6521 this reloc. */
6522
6523 bfd_reloc_status_type
6524 _bfd_elf_rel_vtable_reloc_fn
6525 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
6526 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
6527 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
6528 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
6529 {
6530 return bfd_reloc_ok;
6531 }
6532 \f
6533 /* Elf core file support. Much of this only works on native
6534 toolchains, since we rely on knowing the
6535 machine-dependent procfs structure in order to pick
6536 out details about the corefile. */
6537
6538 #ifdef HAVE_SYS_PROCFS_H
6539 # include <sys/procfs.h>
6540 #endif
6541
6542 /* FIXME: this is kinda wrong, but it's what gdb wants. */
6543
6544 static int
6545 elfcore_make_pid (bfd *abfd)
6546 {
6547 return ((elf_tdata (abfd)->core_lwpid << 16)
6548 + (elf_tdata (abfd)->core_pid));
6549 }
6550
6551 /* If there isn't a section called NAME, make one, using
6552 data from SECT. Note, this function will generate a
6553 reference to NAME, so you shouldn't deallocate or
6554 overwrite it. */
6555
6556 static bfd_boolean
6557 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
6558 {
6559 asection *sect2;
6560
6561 if (bfd_get_section_by_name (abfd, name) != NULL)
6562 return TRUE;
6563
6564 sect2 = bfd_make_section (abfd, name);
6565 if (sect2 == NULL)
6566 return FALSE;
6567
6568 sect2->size = sect->size;
6569 sect2->filepos = sect->filepos;
6570 sect2->flags = sect->flags;
6571 sect2->alignment_power = sect->alignment_power;
6572 return TRUE;
6573 }
6574
6575 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
6576 actually creates up to two pseudosections:
6577 - For the single-threaded case, a section named NAME, unless
6578 such a section already exists.
6579 - For the multi-threaded case, a section named "NAME/PID", where
6580 PID is elfcore_make_pid (abfd).
6581 Both pseudosections have identical contents. */
6582 bfd_boolean
6583 _bfd_elfcore_make_pseudosection (bfd *abfd,
6584 char *name,
6585 size_t size,
6586 ufile_ptr filepos)
6587 {
6588 char buf[100];
6589 char *threaded_name;
6590 size_t len;
6591 asection *sect;
6592
6593 /* Build the section name. */
6594
6595 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
6596 len = strlen (buf) + 1;
6597 threaded_name = bfd_alloc (abfd, len);
6598 if (threaded_name == NULL)
6599 return FALSE;
6600 memcpy (threaded_name, buf, len);
6601
6602 sect = bfd_make_section_anyway (abfd, threaded_name);
6603 if (sect == NULL)
6604 return FALSE;
6605 sect->size = size;
6606 sect->filepos = filepos;
6607 sect->flags = SEC_HAS_CONTENTS;
6608 sect->alignment_power = 2;
6609
6610 return elfcore_maybe_make_sect (abfd, name, sect);
6611 }
6612
6613 /* prstatus_t exists on:
6614 solaris 2.5+
6615 linux 2.[01] + glibc
6616 unixware 4.2
6617 */
6618
6619 #if defined (HAVE_PRSTATUS_T)
6620
6621 static bfd_boolean
6622 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
6623 {
6624 size_t size;
6625 int offset;
6626
6627 if (note->descsz == sizeof (prstatus_t))
6628 {
6629 prstatus_t prstat;
6630
6631 size = sizeof (prstat.pr_reg);
6632 offset = offsetof (prstatus_t, pr_reg);
6633 memcpy (&prstat, note->descdata, sizeof (prstat));
6634
6635 /* Do not overwrite the core signal if it
6636 has already been set by another thread. */
6637 if (elf_tdata (abfd)->core_signal == 0)
6638 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
6639 elf_tdata (abfd)->core_pid = prstat.pr_pid;
6640
6641 /* pr_who exists on:
6642 solaris 2.5+
6643 unixware 4.2
6644 pr_who doesn't exist on:
6645 linux 2.[01]
6646 */
6647 #if defined (HAVE_PRSTATUS_T_PR_WHO)
6648 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
6649 #endif
6650 }
6651 #if defined (HAVE_PRSTATUS32_T)
6652 else if (note->descsz == sizeof (prstatus32_t))
6653 {
6654 /* 64-bit host, 32-bit corefile */
6655 prstatus32_t prstat;
6656
6657 size = sizeof (prstat.pr_reg);
6658 offset = offsetof (prstatus32_t, pr_reg);
6659 memcpy (&prstat, note->descdata, sizeof (prstat));
6660
6661 /* Do not overwrite the core signal if it
6662 has already been set by another thread. */
6663 if (elf_tdata (abfd)->core_signal == 0)
6664 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
6665 elf_tdata (abfd)->core_pid = prstat.pr_pid;
6666
6667 /* pr_who exists on:
6668 solaris 2.5+
6669 unixware 4.2
6670 pr_who doesn't exist on:
6671 linux 2.[01]
6672 */
6673 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
6674 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
6675 #endif
6676 }
6677 #endif /* HAVE_PRSTATUS32_T */
6678 else
6679 {
6680 /* Fail - we don't know how to handle any other
6681 note size (ie. data object type). */
6682 return TRUE;
6683 }
6684
6685 /* Make a ".reg/999" section and a ".reg" section. */
6686 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
6687 size, note->descpos + offset);
6688 }
6689 #endif /* defined (HAVE_PRSTATUS_T) */
6690
6691 /* Create a pseudosection containing the exact contents of NOTE. */
6692 static bfd_boolean
6693 elfcore_make_note_pseudosection (bfd *abfd,
6694 char *name,
6695 Elf_Internal_Note *note)
6696 {
6697 return _bfd_elfcore_make_pseudosection (abfd, name,
6698 note->descsz, note->descpos);
6699 }
6700
6701 /* There isn't a consistent prfpregset_t across platforms,
6702 but it doesn't matter, because we don't have to pick this
6703 data structure apart. */
6704
6705 static bfd_boolean
6706 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
6707 {
6708 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
6709 }
6710
6711 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
6712 type of 5 (NT_PRXFPREG). Just include the whole note's contents
6713 literally. */
6714
6715 static bfd_boolean
6716 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
6717 {
6718 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
6719 }
6720
6721 #if defined (HAVE_PRPSINFO_T)
6722 typedef prpsinfo_t elfcore_psinfo_t;
6723 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
6724 typedef prpsinfo32_t elfcore_psinfo32_t;
6725 #endif
6726 #endif
6727
6728 #if defined (HAVE_PSINFO_T)
6729 typedef psinfo_t elfcore_psinfo_t;
6730 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
6731 typedef psinfo32_t elfcore_psinfo32_t;
6732 #endif
6733 #endif
6734
6735 /* return a malloc'ed copy of a string at START which is at
6736 most MAX bytes long, possibly without a terminating '\0'.
6737 the copy will always have a terminating '\0'. */
6738
6739 char *
6740 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
6741 {
6742 char *dups;
6743 char *end = memchr (start, '\0', max);
6744 size_t len;
6745
6746 if (end == NULL)
6747 len = max;
6748 else
6749 len = end - start;
6750
6751 dups = bfd_alloc (abfd, len + 1);
6752 if (dups == NULL)
6753 return NULL;
6754
6755 memcpy (dups, start, len);
6756 dups[len] = '\0';
6757
6758 return dups;
6759 }
6760
6761 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
6762 static bfd_boolean
6763 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
6764 {
6765 if (note->descsz == sizeof (elfcore_psinfo_t))
6766 {
6767 elfcore_psinfo_t psinfo;
6768
6769 memcpy (&psinfo, note->descdata, sizeof (psinfo));
6770
6771 elf_tdata (abfd)->core_program
6772 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
6773 sizeof (psinfo.pr_fname));
6774
6775 elf_tdata (abfd)->core_command
6776 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
6777 sizeof (psinfo.pr_psargs));
6778 }
6779 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
6780 else if (note->descsz == sizeof (elfcore_psinfo32_t))
6781 {
6782 /* 64-bit host, 32-bit corefile */
6783 elfcore_psinfo32_t psinfo;
6784
6785 memcpy (&psinfo, note->descdata, sizeof (psinfo));
6786
6787 elf_tdata (abfd)->core_program
6788 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
6789 sizeof (psinfo.pr_fname));
6790
6791 elf_tdata (abfd)->core_command
6792 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
6793 sizeof (psinfo.pr_psargs));
6794 }
6795 #endif
6796
6797 else
6798 {
6799 /* Fail - we don't know how to handle any other
6800 note size (ie. data object type). */
6801 return TRUE;
6802 }
6803
6804 /* Note that for some reason, a spurious space is tacked
6805 onto the end of the args in some (at least one anyway)
6806 implementations, so strip it off if it exists. */
6807
6808 {
6809 char *command = elf_tdata (abfd)->core_command;
6810 int n = strlen (command);
6811
6812 if (0 < n && command[n - 1] == ' ')
6813 command[n - 1] = '\0';
6814 }
6815
6816 return TRUE;
6817 }
6818 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
6819
6820 #if defined (HAVE_PSTATUS_T)
6821 static bfd_boolean
6822 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
6823 {
6824 if (note->descsz == sizeof (pstatus_t)
6825 #if defined (HAVE_PXSTATUS_T)
6826 || note->descsz == sizeof (pxstatus_t)
6827 #endif
6828 )
6829 {
6830 pstatus_t pstat;
6831
6832 memcpy (&pstat, note->descdata, sizeof (pstat));
6833
6834 elf_tdata (abfd)->core_pid = pstat.pr_pid;
6835 }
6836 #if defined (HAVE_PSTATUS32_T)
6837 else if (note->descsz == sizeof (pstatus32_t))
6838 {
6839 /* 64-bit host, 32-bit corefile */
6840 pstatus32_t pstat;
6841
6842 memcpy (&pstat, note->descdata, sizeof (pstat));
6843
6844 elf_tdata (abfd)->core_pid = pstat.pr_pid;
6845 }
6846 #endif
6847 /* Could grab some more details from the "representative"
6848 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
6849 NT_LWPSTATUS note, presumably. */
6850
6851 return TRUE;
6852 }
6853 #endif /* defined (HAVE_PSTATUS_T) */
6854
6855 #if defined (HAVE_LWPSTATUS_T)
6856 static bfd_boolean
6857 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
6858 {
6859 lwpstatus_t lwpstat;
6860 char buf[100];
6861 char *name;
6862 size_t len;
6863 asection *sect;
6864
6865 if (note->descsz != sizeof (lwpstat)
6866 #if defined (HAVE_LWPXSTATUS_T)
6867 && note->descsz != sizeof (lwpxstatus_t)
6868 #endif
6869 )
6870 return TRUE;
6871
6872 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
6873
6874 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
6875 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
6876
6877 /* Make a ".reg/999" section. */
6878
6879 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
6880 len = strlen (buf) + 1;
6881 name = bfd_alloc (abfd, len);
6882 if (name == NULL)
6883 return FALSE;
6884 memcpy (name, buf, len);
6885
6886 sect = bfd_make_section_anyway (abfd, name);
6887 if (sect == NULL)
6888 return FALSE;
6889
6890 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
6891 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
6892 sect->filepos = note->descpos
6893 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
6894 #endif
6895
6896 #if defined (HAVE_LWPSTATUS_T_PR_REG)
6897 sect->size = sizeof (lwpstat.pr_reg);
6898 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
6899 #endif
6900
6901 sect->flags = SEC_HAS_CONTENTS;
6902 sect->alignment_power = 2;
6903
6904 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
6905 return FALSE;
6906
6907 /* Make a ".reg2/999" section */
6908
6909 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
6910 len = strlen (buf) + 1;
6911 name = bfd_alloc (abfd, len);
6912 if (name == NULL)
6913 return FALSE;
6914 memcpy (name, buf, len);
6915
6916 sect = bfd_make_section_anyway (abfd, name);
6917 if (sect == NULL)
6918 return FALSE;
6919
6920 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
6921 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
6922 sect->filepos = note->descpos
6923 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
6924 #endif
6925
6926 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
6927 sect->size = sizeof (lwpstat.pr_fpreg);
6928 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
6929 #endif
6930
6931 sect->flags = SEC_HAS_CONTENTS;
6932 sect->alignment_power = 2;
6933
6934 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
6935 }
6936 #endif /* defined (HAVE_LWPSTATUS_T) */
6937
6938 #if defined (HAVE_WIN32_PSTATUS_T)
6939 static bfd_boolean
6940 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
6941 {
6942 char buf[30];
6943 char *name;
6944 size_t len;
6945 asection *sect;
6946 win32_pstatus_t pstatus;
6947
6948 if (note->descsz < sizeof (pstatus))
6949 return TRUE;
6950
6951 memcpy (&pstatus, note->descdata, sizeof (pstatus));
6952
6953 switch (pstatus.data_type)
6954 {
6955 case NOTE_INFO_PROCESS:
6956 /* FIXME: need to add ->core_command. */
6957 elf_tdata (abfd)->core_signal = pstatus.data.process_info.signal;
6958 elf_tdata (abfd)->core_pid = pstatus.data.process_info.pid;
6959 break;
6960
6961 case NOTE_INFO_THREAD:
6962 /* Make a ".reg/999" section. */
6963 sprintf (buf, ".reg/%d", pstatus.data.thread_info.tid);
6964
6965 len = strlen (buf) + 1;
6966 name = bfd_alloc (abfd, len);
6967 if (name == NULL)
6968 return FALSE;
6969
6970 memcpy (name, buf, len);
6971
6972 sect = bfd_make_section_anyway (abfd, name);
6973 if (sect == NULL)
6974 return FALSE;
6975
6976 sect->size = sizeof (pstatus.data.thread_info.thread_context);
6977 sect->filepos = (note->descpos
6978 + offsetof (struct win32_pstatus,
6979 data.thread_info.thread_context));
6980 sect->flags = SEC_HAS_CONTENTS;
6981 sect->alignment_power = 2;
6982
6983 if (pstatus.data.thread_info.is_active_thread)
6984 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
6985 return FALSE;
6986 break;
6987
6988 case NOTE_INFO_MODULE:
6989 /* Make a ".module/xxxxxxxx" section. */
6990 sprintf (buf, ".module/%08x", pstatus.data.module_info.base_address);
6991
6992 len = strlen (buf) + 1;
6993 name = bfd_alloc (abfd, len);
6994 if (name == NULL)
6995 return FALSE;
6996
6997 memcpy (name, buf, len);
6998
6999 sect = bfd_make_section_anyway (abfd, name);
7000
7001 if (sect == NULL)
7002 return FALSE;
7003
7004 sect->size = note->descsz;
7005 sect->filepos = note->descpos;
7006 sect->flags = SEC_HAS_CONTENTS;
7007 sect->alignment_power = 2;
7008 break;
7009
7010 default:
7011 return TRUE;
7012 }
7013
7014 return TRUE;
7015 }
7016 #endif /* HAVE_WIN32_PSTATUS_T */
7017
7018 static bfd_boolean
7019 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
7020 {
7021 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7022
7023 switch (note->type)
7024 {
7025 default:
7026 return TRUE;
7027
7028 case NT_PRSTATUS:
7029 if (bed->elf_backend_grok_prstatus)
7030 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
7031 return TRUE;
7032 #if defined (HAVE_PRSTATUS_T)
7033 return elfcore_grok_prstatus (abfd, note);
7034 #else
7035 return TRUE;
7036 #endif
7037
7038 #if defined (HAVE_PSTATUS_T)
7039 case NT_PSTATUS:
7040 return elfcore_grok_pstatus (abfd, note);
7041 #endif
7042
7043 #if defined (HAVE_LWPSTATUS_T)
7044 case NT_LWPSTATUS:
7045 return elfcore_grok_lwpstatus (abfd, note);
7046 #endif
7047
7048 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
7049 return elfcore_grok_prfpreg (abfd, note);
7050
7051 #if defined (HAVE_WIN32_PSTATUS_T)
7052 case NT_WIN32PSTATUS:
7053 return elfcore_grok_win32pstatus (abfd, note);
7054 #endif
7055
7056 case NT_PRXFPREG: /* Linux SSE extension */
7057 if (note->namesz == 6
7058 && strcmp (note->namedata, "LINUX") == 0)
7059 return elfcore_grok_prxfpreg (abfd, note);
7060 else
7061 return TRUE;
7062
7063 case NT_PRPSINFO:
7064 case NT_PSINFO:
7065 if (bed->elf_backend_grok_psinfo)
7066 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
7067 return TRUE;
7068 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7069 return elfcore_grok_psinfo (abfd, note);
7070 #else
7071 return TRUE;
7072 #endif
7073
7074 case NT_AUXV:
7075 {
7076 asection *sect = bfd_make_section_anyway (abfd, ".auxv");
7077
7078 if (sect == NULL)
7079 return FALSE;
7080 sect->size = note->descsz;
7081 sect->filepos = note->descpos;
7082 sect->flags = SEC_HAS_CONTENTS;
7083 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
7084
7085 return TRUE;
7086 }
7087 }
7088 }
7089
7090 static bfd_boolean
7091 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
7092 {
7093 char *cp;
7094
7095 cp = strchr (note->namedata, '@');
7096 if (cp != NULL)
7097 {
7098 *lwpidp = atoi(cp + 1);
7099 return TRUE;
7100 }
7101 return FALSE;
7102 }
7103
7104 static bfd_boolean
7105 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
7106 {
7107
7108 /* Signal number at offset 0x08. */
7109 elf_tdata (abfd)->core_signal
7110 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
7111
7112 /* Process ID at offset 0x50. */
7113 elf_tdata (abfd)->core_pid
7114 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
7115
7116 /* Command name at 0x7c (max 32 bytes, including nul). */
7117 elf_tdata (abfd)->core_command
7118 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
7119
7120 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
7121 note);
7122 }
7123
7124 static bfd_boolean
7125 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
7126 {
7127 int lwp;
7128
7129 if (elfcore_netbsd_get_lwpid (note, &lwp))
7130 elf_tdata (abfd)->core_lwpid = lwp;
7131
7132 if (note->type == NT_NETBSDCORE_PROCINFO)
7133 {
7134 /* NetBSD-specific core "procinfo". Note that we expect to
7135 find this note before any of the others, which is fine,
7136 since the kernel writes this note out first when it
7137 creates a core file. */
7138
7139 return elfcore_grok_netbsd_procinfo (abfd, note);
7140 }
7141
7142 /* As of Jan 2002 there are no other machine-independent notes
7143 defined for NetBSD core files. If the note type is less
7144 than the start of the machine-dependent note types, we don't
7145 understand it. */
7146
7147 if (note->type < NT_NETBSDCORE_FIRSTMACH)
7148 return TRUE;
7149
7150
7151 switch (bfd_get_arch (abfd))
7152 {
7153 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
7154 PT_GETFPREGS == mach+2. */
7155
7156 case bfd_arch_alpha:
7157 case bfd_arch_sparc:
7158 switch (note->type)
7159 {
7160 case NT_NETBSDCORE_FIRSTMACH+0:
7161 return elfcore_make_note_pseudosection (abfd, ".reg", note);
7162
7163 case NT_NETBSDCORE_FIRSTMACH+2:
7164 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7165
7166 default:
7167 return TRUE;
7168 }
7169
7170 /* On all other arch's, PT_GETREGS == mach+1 and
7171 PT_GETFPREGS == mach+3. */
7172
7173 default:
7174 switch (note->type)
7175 {
7176 case NT_NETBSDCORE_FIRSTMACH+1:
7177 return elfcore_make_note_pseudosection (abfd, ".reg", note);
7178
7179 case NT_NETBSDCORE_FIRSTMACH+3:
7180 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7181
7182 default:
7183 return TRUE;
7184 }
7185 }
7186 /* NOTREACHED */
7187 }
7188
7189 static bfd_boolean
7190 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, pid_t *tid)
7191 {
7192 void *ddata = note->descdata;
7193 char buf[100];
7194 char *name;
7195 asection *sect;
7196 short sig;
7197 unsigned flags;
7198
7199 /* nto_procfs_status 'pid' field is at offset 0. */
7200 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
7201
7202 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
7203 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
7204
7205 /* nto_procfs_status 'flags' field is at offset 8. */
7206 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
7207
7208 /* nto_procfs_status 'what' field is at offset 14. */
7209 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
7210 {
7211 elf_tdata (abfd)->core_signal = sig;
7212 elf_tdata (abfd)->core_lwpid = *tid;
7213 }
7214
7215 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
7216 do not come from signals so we make sure we set the current
7217 thread just in case. */
7218 if (flags & 0x00000080)
7219 elf_tdata (abfd)->core_lwpid = *tid;
7220
7221 /* Make a ".qnx_core_status/%d" section. */
7222 sprintf (buf, ".qnx_core_status/%d", *tid);
7223
7224 name = bfd_alloc (abfd, strlen (buf) + 1);
7225 if (name == NULL)
7226 return FALSE;
7227 strcpy (name, buf);
7228
7229 sect = bfd_make_section_anyway (abfd, name);
7230 if (sect == NULL)
7231 return FALSE;
7232
7233 sect->size = note->descsz;
7234 sect->filepos = note->descpos;
7235 sect->flags = SEC_HAS_CONTENTS;
7236 sect->alignment_power = 2;
7237
7238 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
7239 }
7240
7241 static bfd_boolean
7242 elfcore_grok_nto_gregs (bfd *abfd, Elf_Internal_Note *note, pid_t tid)
7243 {
7244 char buf[100];
7245 char *name;
7246 asection *sect;
7247
7248 /* Make a ".reg/%d" section. */
7249 sprintf (buf, ".reg/%d", tid);
7250
7251 name = bfd_alloc (abfd, strlen (buf) + 1);
7252 if (name == NULL)
7253 return FALSE;
7254 strcpy (name, buf);
7255
7256 sect = bfd_make_section_anyway (abfd, name);
7257 if (sect == NULL)
7258 return FALSE;
7259
7260 sect->size = note->descsz;
7261 sect->filepos = note->descpos;
7262 sect->flags = SEC_HAS_CONTENTS;
7263 sect->alignment_power = 2;
7264
7265 /* This is the current thread. */
7266 if (elf_tdata (abfd)->core_lwpid == tid)
7267 return elfcore_maybe_make_sect (abfd, ".reg", sect);
7268
7269 return TRUE;
7270 }
7271
7272 #define BFD_QNT_CORE_INFO 7
7273 #define BFD_QNT_CORE_STATUS 8
7274 #define BFD_QNT_CORE_GREG 9
7275 #define BFD_QNT_CORE_FPREG 10
7276
7277 static bfd_boolean
7278 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
7279 {
7280 /* Every GREG section has a STATUS section before it. Store the
7281 tid from the previous call to pass down to the next gregs
7282 function. */
7283 static pid_t tid = 1;
7284
7285 switch (note->type)
7286 {
7287 case BFD_QNT_CORE_INFO: return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
7288 case BFD_QNT_CORE_STATUS: return elfcore_grok_nto_status (abfd, note, &tid);
7289 case BFD_QNT_CORE_GREG: return elfcore_grok_nto_gregs (abfd, note, tid);
7290 case BFD_QNT_CORE_FPREG: return elfcore_grok_prfpreg (abfd, note);
7291 default: return TRUE;
7292 }
7293 }
7294
7295 /* Function: elfcore_write_note
7296
7297 Inputs:
7298 buffer to hold note
7299 name of note
7300 type of note
7301 data for note
7302 size of data for note
7303
7304 Return:
7305 End of buffer containing note. */
7306
7307 char *
7308 elfcore_write_note (bfd *abfd,
7309 char *buf,
7310 int *bufsiz,
7311 const char *name,
7312 int type,
7313 const void *input,
7314 int size)
7315 {
7316 Elf_External_Note *xnp;
7317 size_t namesz;
7318 size_t pad;
7319 size_t newspace;
7320 char *p, *dest;
7321
7322 namesz = 0;
7323 pad = 0;
7324 if (name != NULL)
7325 {
7326 const struct elf_backend_data *bed;
7327
7328 namesz = strlen (name) + 1;
7329 bed = get_elf_backend_data (abfd);
7330 pad = -namesz & ((1 << bed->s->log_file_align) - 1);
7331 }
7332
7333 newspace = 12 + namesz + pad + size;
7334
7335 p = realloc (buf, *bufsiz + newspace);
7336 dest = p + *bufsiz;
7337 *bufsiz += newspace;
7338 xnp = (Elf_External_Note *) dest;
7339 H_PUT_32 (abfd, namesz, xnp->namesz);
7340 H_PUT_32 (abfd, size, xnp->descsz);
7341 H_PUT_32 (abfd, type, xnp->type);
7342 dest = xnp->name;
7343 if (name != NULL)
7344 {
7345 memcpy (dest, name, namesz);
7346 dest += namesz;
7347 while (pad != 0)
7348 {
7349 *dest++ = '\0';
7350 --pad;
7351 }
7352 }
7353 memcpy (dest, input, size);
7354 return p;
7355 }
7356
7357 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7358 char *
7359 elfcore_write_prpsinfo (bfd *abfd,
7360 char *buf,
7361 int *bufsiz,
7362 const char *fname,
7363 const char *psargs)
7364 {
7365 int note_type;
7366 char *note_name = "CORE";
7367
7368 #if defined (HAVE_PSINFO_T)
7369 psinfo_t data;
7370 note_type = NT_PSINFO;
7371 #else
7372 prpsinfo_t data;
7373 note_type = NT_PRPSINFO;
7374 #endif
7375
7376 memset (&data, 0, sizeof (data));
7377 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
7378 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
7379 return elfcore_write_note (abfd, buf, bufsiz,
7380 note_name, note_type, &data, sizeof (data));
7381 }
7382 #endif /* PSINFO_T or PRPSINFO_T */
7383
7384 #if defined (HAVE_PRSTATUS_T)
7385 char *
7386 elfcore_write_prstatus (bfd *abfd,
7387 char *buf,
7388 int *bufsiz,
7389 long pid,
7390 int cursig,
7391 const void *gregs)
7392 {
7393 prstatus_t prstat;
7394 char *note_name = "CORE";
7395
7396 memset (&prstat, 0, sizeof (prstat));
7397 prstat.pr_pid = pid;
7398 prstat.pr_cursig = cursig;
7399 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
7400 return elfcore_write_note (abfd, buf, bufsiz,
7401 note_name, NT_PRSTATUS, &prstat, sizeof (prstat));
7402 }
7403 #endif /* HAVE_PRSTATUS_T */
7404
7405 #if defined (HAVE_LWPSTATUS_T)
7406 char *
7407 elfcore_write_lwpstatus (bfd *abfd,
7408 char *buf,
7409 int *bufsiz,
7410 long pid,
7411 int cursig,
7412 const void *gregs)
7413 {
7414 lwpstatus_t lwpstat;
7415 char *note_name = "CORE";
7416
7417 memset (&lwpstat, 0, sizeof (lwpstat));
7418 lwpstat.pr_lwpid = pid >> 16;
7419 lwpstat.pr_cursig = cursig;
7420 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7421 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
7422 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7423 #if !defined(gregs)
7424 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
7425 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
7426 #else
7427 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
7428 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
7429 #endif
7430 #endif
7431 return elfcore_write_note (abfd, buf, bufsiz, note_name,
7432 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
7433 }
7434 #endif /* HAVE_LWPSTATUS_T */
7435
7436 #if defined (HAVE_PSTATUS_T)
7437 char *
7438 elfcore_write_pstatus (bfd *abfd,
7439 char *buf,
7440 int *bufsiz,
7441 long pid,
7442 int cursig,
7443 const void *gregs)
7444 {
7445 pstatus_t pstat;
7446 char *note_name = "CORE";
7447
7448 memset (&pstat, 0, sizeof (pstat));
7449 pstat.pr_pid = pid & 0xffff;
7450 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
7451 NT_PSTATUS, &pstat, sizeof (pstat));
7452 return buf;
7453 }
7454 #endif /* HAVE_PSTATUS_T */
7455
7456 char *
7457 elfcore_write_prfpreg (bfd *abfd,
7458 char *buf,
7459 int *bufsiz,
7460 const void *fpregs,
7461 int size)
7462 {
7463 char *note_name = "CORE";
7464 return elfcore_write_note (abfd, buf, bufsiz,
7465 note_name, NT_FPREGSET, fpregs, size);
7466 }
7467
7468 char *
7469 elfcore_write_prxfpreg (bfd *abfd,
7470 char *buf,
7471 int *bufsiz,
7472 const void *xfpregs,
7473 int size)
7474 {
7475 char *note_name = "LINUX";
7476 return elfcore_write_note (abfd, buf, bufsiz,
7477 note_name, NT_PRXFPREG, xfpregs, size);
7478 }
7479
7480 static bfd_boolean
7481 elfcore_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
7482 {
7483 char *buf;
7484 char *p;
7485
7486 if (size <= 0)
7487 return TRUE;
7488
7489 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
7490 return FALSE;
7491
7492 buf = bfd_malloc (size);
7493 if (buf == NULL)
7494 return FALSE;
7495
7496 if (bfd_bread (buf, size, abfd) != size)
7497 {
7498 error:
7499 free (buf);
7500 return FALSE;
7501 }
7502
7503 p = buf;
7504 while (p < buf + size)
7505 {
7506 /* FIXME: bad alignment assumption. */
7507 Elf_External_Note *xnp = (Elf_External_Note *) p;
7508 Elf_Internal_Note in;
7509
7510 in.type = H_GET_32 (abfd, xnp->type);
7511
7512 in.namesz = H_GET_32 (abfd, xnp->namesz);
7513 in.namedata = xnp->name;
7514
7515 in.descsz = H_GET_32 (abfd, xnp->descsz);
7516 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
7517 in.descpos = offset + (in.descdata - buf);
7518
7519 if (strncmp (in.namedata, "NetBSD-CORE", 11) == 0)
7520 {
7521 if (! elfcore_grok_netbsd_note (abfd, &in))
7522 goto error;
7523 }
7524 else if (strncmp (in.namedata, "QNX", 3) == 0)
7525 {
7526 if (! elfcore_grok_nto_note (abfd, &in))
7527 goto error;
7528 }
7529 else
7530 {
7531 if (! elfcore_grok_note (abfd, &in))
7532 goto error;
7533 }
7534
7535 p = in.descdata + BFD_ALIGN (in.descsz, 4);
7536 }
7537
7538 free (buf);
7539 return TRUE;
7540 }
7541 \f
7542 /* Providing external access to the ELF program header table. */
7543
7544 /* Return an upper bound on the number of bytes required to store a
7545 copy of ABFD's program header table entries. Return -1 if an error
7546 occurs; bfd_get_error will return an appropriate code. */
7547
7548 long
7549 bfd_get_elf_phdr_upper_bound (bfd *abfd)
7550 {
7551 if (abfd->xvec->flavour != bfd_target_elf_flavour)
7552 {
7553 bfd_set_error (bfd_error_wrong_format);
7554 return -1;
7555 }
7556
7557 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
7558 }
7559
7560 /* Copy ABFD's program header table entries to *PHDRS. The entries
7561 will be stored as an array of Elf_Internal_Phdr structures, as
7562 defined in include/elf/internal.h. To find out how large the
7563 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
7564
7565 Return the number of program header table entries read, or -1 if an
7566 error occurs; bfd_get_error will return an appropriate code. */
7567
7568 int
7569 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
7570 {
7571 int num_phdrs;
7572
7573 if (abfd->xvec->flavour != bfd_target_elf_flavour)
7574 {
7575 bfd_set_error (bfd_error_wrong_format);
7576 return -1;
7577 }
7578
7579 num_phdrs = elf_elfheader (abfd)->e_phnum;
7580 memcpy (phdrs, elf_tdata (abfd)->phdr,
7581 num_phdrs * sizeof (Elf_Internal_Phdr));
7582
7583 return num_phdrs;
7584 }
7585
7586 void
7587 _bfd_elf_sprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, char *buf, bfd_vma value)
7588 {
7589 #ifdef BFD64
7590 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
7591
7592 i_ehdrp = elf_elfheader (abfd);
7593 if (i_ehdrp == NULL)
7594 sprintf_vma (buf, value);
7595 else
7596 {
7597 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
7598 {
7599 #if BFD_HOST_64BIT_LONG
7600 sprintf (buf, "%016lx", value);
7601 #else
7602 sprintf (buf, "%08lx%08lx", _bfd_int64_high (value),
7603 _bfd_int64_low (value));
7604 #endif
7605 }
7606 else
7607 sprintf (buf, "%08lx", (unsigned long) (value & 0xffffffff));
7608 }
7609 #else
7610 sprintf_vma (buf, value);
7611 #endif
7612 }
7613
7614 void
7615 _bfd_elf_fprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, void *stream, bfd_vma value)
7616 {
7617 #ifdef BFD64
7618 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
7619
7620 i_ehdrp = elf_elfheader (abfd);
7621 if (i_ehdrp == NULL)
7622 fprintf_vma ((FILE *) stream, value);
7623 else
7624 {
7625 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
7626 {
7627 #if BFD_HOST_64BIT_LONG
7628 fprintf ((FILE *) stream, "%016lx", value);
7629 #else
7630 fprintf ((FILE *) stream, "%08lx%08lx",
7631 _bfd_int64_high (value), _bfd_int64_low (value));
7632 #endif
7633 }
7634 else
7635 fprintf ((FILE *) stream, "%08lx",
7636 (unsigned long) (value & 0xffffffff));
7637 }
7638 #else
7639 fprintf_vma ((FILE *) stream, value);
7640 #endif
7641 }
7642
7643 enum elf_reloc_type_class
7644 _bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
7645 {
7646 return reloc_class_normal;
7647 }
7648
7649 /* For RELA architectures, return the relocation value for a
7650 relocation against a local symbol. */
7651
7652 bfd_vma
7653 _bfd_elf_rela_local_sym (bfd *abfd,
7654 Elf_Internal_Sym *sym,
7655 asection **psec,
7656 Elf_Internal_Rela *rel)
7657 {
7658 asection *sec = *psec;
7659 bfd_vma relocation;
7660
7661 relocation = (sec->output_section->vma
7662 + sec->output_offset
7663 + sym->st_value);
7664 if ((sec->flags & SEC_MERGE)
7665 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
7666 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
7667 {
7668 rel->r_addend =
7669 _bfd_merged_section_offset (abfd, psec,
7670 elf_section_data (sec)->sec_info,
7671 sym->st_value + rel->r_addend);
7672 if (sec != *psec)
7673 {
7674 /* If we have changed the section, and our original section is
7675 marked with SEC_EXCLUDE, it means that the original
7676 SEC_MERGE section has been completely subsumed in some
7677 other SEC_MERGE section. In this case, we need to leave
7678 some info around for --emit-relocs. */
7679 if ((sec->flags & SEC_EXCLUDE) != 0)
7680 sec->kept_section = *psec;
7681 sec = *psec;
7682 }
7683 rel->r_addend -= relocation;
7684 rel->r_addend += sec->output_section->vma + sec->output_offset;
7685 }
7686 return relocation;
7687 }
7688
7689 bfd_vma
7690 _bfd_elf_rel_local_sym (bfd *abfd,
7691 Elf_Internal_Sym *sym,
7692 asection **psec,
7693 bfd_vma addend)
7694 {
7695 asection *sec = *psec;
7696
7697 if (sec->sec_info_type != ELF_INFO_TYPE_MERGE)
7698 return sym->st_value + addend;
7699
7700 return _bfd_merged_section_offset (abfd, psec,
7701 elf_section_data (sec)->sec_info,
7702 sym->st_value + addend);
7703 }
7704
7705 bfd_vma
7706 _bfd_elf_section_offset (bfd *abfd,
7707 struct bfd_link_info *info ATTRIBUTE_UNUSED,
7708 asection *sec,
7709 bfd_vma offset)
7710 {
7711 switch (sec->sec_info_type)
7712 {
7713 case ELF_INFO_TYPE_STABS:
7714 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
7715 offset);
7716 case ELF_INFO_TYPE_EH_FRAME:
7717 return _bfd_elf_eh_frame_section_offset (abfd, sec, offset);
7718 default:
7719 return offset;
7720 }
7721 }
7722 \f
7723 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
7724 reconstruct an ELF file by reading the segments out of remote memory
7725 based on the ELF file header at EHDR_VMA and the ELF program headers it
7726 points to. If not null, *LOADBASEP is filled in with the difference
7727 between the VMAs from which the segments were read, and the VMAs the
7728 file headers (and hence BFD's idea of each section's VMA) put them at.
7729
7730 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
7731 remote memory at target address VMA into the local buffer at MYADDR; it
7732 should return zero on success or an `errno' code on failure. TEMPL must
7733 be a BFD for an ELF target with the word size and byte order found in
7734 the remote memory. */
7735
7736 bfd *
7737 bfd_elf_bfd_from_remote_memory
7738 (bfd *templ,
7739 bfd_vma ehdr_vma,
7740 bfd_vma *loadbasep,
7741 int (*target_read_memory) (bfd_vma, char *, int))
7742 {
7743 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
7744 (templ, ehdr_vma, loadbasep, target_read_memory);
7745 }
7746 \f
7747 long
7748 _bfd_elf_get_synthetic_symtab (bfd *abfd,
7749 long symcount ATTRIBUTE_UNUSED,
7750 asymbol **syms ATTRIBUTE_UNUSED,
7751 long dynsymcount ATTRIBUTE_UNUSED,
7752 asymbol **dynsyms,
7753 asymbol **ret)
7754 {
7755 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7756 asection *relplt;
7757 asymbol *s;
7758 const char *relplt_name;
7759 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
7760 arelent *p;
7761 long count, i, n;
7762 size_t size;
7763 Elf_Internal_Shdr *hdr;
7764 char *names;
7765 asection *plt;
7766
7767 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
7768 return 0;
7769
7770 *ret = NULL;
7771 if (!bed->plt_sym_val)
7772 return 0;
7773
7774 relplt_name = bed->relplt_name;
7775 if (relplt_name == NULL)
7776 relplt_name = bed->default_use_rela_p ? ".rela.plt" : ".rel.plt";
7777 relplt = bfd_get_section_by_name (abfd, relplt_name);
7778 if (relplt == NULL)
7779 return 0;
7780
7781 hdr = &elf_section_data (relplt)->this_hdr;
7782 if (hdr->sh_link != elf_dynsymtab (abfd)
7783 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
7784 return 0;
7785
7786 plt = bfd_get_section_by_name (abfd, ".plt");
7787 if (plt == NULL)
7788 return 0;
7789
7790 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
7791 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
7792 return -1;
7793
7794 count = relplt->size / hdr->sh_entsize;
7795 size = count * sizeof (asymbol);
7796 p = relplt->relocation;
7797 for (i = 0; i < count; i++, s++, p++)
7798 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
7799
7800 s = *ret = bfd_malloc (size);
7801 if (s == NULL)
7802 return -1;
7803
7804 names = (char *) (s + count);
7805 p = relplt->relocation;
7806 n = 0;
7807 for (i = 0; i < count; i++, s++, p++)
7808 {
7809 size_t len;
7810 bfd_vma addr;
7811
7812 addr = bed->plt_sym_val (i, plt, p);
7813 if (addr == (bfd_vma) -1)
7814 continue;
7815
7816 *s = **p->sym_ptr_ptr;
7817 s->section = plt;
7818 s->value = addr - plt->vma;
7819 s->name = names;
7820 len = strlen ((*p->sym_ptr_ptr)->name);
7821 memcpy (names, (*p->sym_ptr_ptr)->name, len);
7822 names += len;
7823 memcpy (names, "@plt", sizeof ("@plt"));
7824 names += sizeof ("@plt");
7825 ++n;
7826 }
7827
7828 return n;
7829 }
7830
7831 /* Sort symbol by binding and section. We want to put definitions
7832 sorted by section at the beginning. */
7833
7834 static int
7835 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7836 {
7837 const Elf_Internal_Sym *s1;
7838 const Elf_Internal_Sym *s2;
7839 int shndx;
7840
7841 /* Make sure that undefined symbols are at the end. */
7842 s1 = (const Elf_Internal_Sym *) arg1;
7843 if (s1->st_shndx == SHN_UNDEF)
7844 return 1;
7845 s2 = (const Elf_Internal_Sym *) arg2;
7846 if (s2->st_shndx == SHN_UNDEF)
7847 return -1;
7848
7849 /* Sorted by section index. */
7850 shndx = s1->st_shndx - s2->st_shndx;
7851 if (shndx != 0)
7852 return shndx;
7853
7854 /* Sorted by binding. */
7855 return ELF_ST_BIND (s1->st_info) - ELF_ST_BIND (s2->st_info);
7856 }
7857
7858 struct elf_symbol
7859 {
7860 Elf_Internal_Sym *sym;
7861 const char *name;
7862 };
7863
7864 static int
7865 elf_sym_name_compare (const void *arg1, const void *arg2)
7866 {
7867 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7868 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7869 return strcmp (s1->name, s2->name);
7870 }
7871
7872 /* Check if 2 sections define the same set of local and global
7873 symbols. */
7874
7875 bfd_boolean
7876 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2)
7877 {
7878 bfd *bfd1, *bfd2;
7879 const struct elf_backend_data *bed1, *bed2;
7880 Elf_Internal_Shdr *hdr1, *hdr2;
7881 bfd_size_type symcount1, symcount2;
7882 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7883 Elf_Internal_Sym *isymstart1 = NULL, *isymstart2 = NULL, *isym;
7884 Elf_Internal_Sym *isymend;
7885 struct elf_symbol *symp, *symtable1 = NULL, *symtable2 = NULL;
7886 bfd_size_type count1, count2, i;
7887 int shndx1, shndx2;
7888 bfd_boolean result;
7889
7890 bfd1 = sec1->owner;
7891 bfd2 = sec2->owner;
7892
7893 /* If both are .gnu.linkonce sections, they have to have the same
7894 section name. */
7895 if (strncmp (sec1->name, ".gnu.linkonce",
7896 sizeof ".gnu.linkonce" - 1) == 0
7897 && strncmp (sec2->name, ".gnu.linkonce",
7898 sizeof ".gnu.linkonce" - 1) == 0)
7899 return strcmp (sec1->name + sizeof ".gnu.linkonce",
7900 sec2->name + sizeof ".gnu.linkonce") == 0;
7901
7902 /* Both sections have to be in ELF. */
7903 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7904 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7905 return FALSE;
7906
7907 if (elf_section_type (sec1) != elf_section_type (sec2))
7908 return FALSE;
7909
7910 if ((elf_section_flags (sec1) & SHF_GROUP) != 0
7911 && (elf_section_flags (sec2) & SHF_GROUP) != 0)
7912 {
7913 /* If both are members of section groups, they have to have the
7914 same group name. */
7915 if (strcmp (elf_group_name (sec1), elf_group_name (sec2)) != 0)
7916 return FALSE;
7917 }
7918
7919 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7920 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7921 if (shndx1 == -1 || shndx2 == -1)
7922 return FALSE;
7923
7924 bed1 = get_elf_backend_data (bfd1);
7925 bed2 = get_elf_backend_data (bfd2);
7926 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7927 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7928 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7929 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7930
7931 if (symcount1 == 0 || symcount2 == 0)
7932 return FALSE;
7933
7934 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7935 NULL, NULL, NULL);
7936 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7937 NULL, NULL, NULL);
7938
7939 result = FALSE;
7940 if (isymbuf1 == NULL || isymbuf2 == NULL)
7941 goto done;
7942
7943 /* Sort symbols by binding and section. Global definitions are at
7944 the beginning. */
7945 qsort (isymbuf1, symcount1, sizeof (Elf_Internal_Sym),
7946 elf_sort_elf_symbol);
7947 qsort (isymbuf2, symcount2, sizeof (Elf_Internal_Sym),
7948 elf_sort_elf_symbol);
7949
7950 /* Count definitions in the section. */
7951 count1 = 0;
7952 for (isym = isymbuf1, isymend = isym + symcount1;
7953 isym < isymend; isym++)
7954 {
7955 if (isym->st_shndx == (unsigned int) shndx1)
7956 {
7957 if (count1 == 0)
7958 isymstart1 = isym;
7959 count1++;
7960 }
7961
7962 if (count1 && isym->st_shndx != (unsigned int) shndx1)
7963 break;
7964 }
7965
7966 count2 = 0;
7967 for (isym = isymbuf2, isymend = isym + symcount2;
7968 isym < isymend; isym++)
7969 {
7970 if (isym->st_shndx == (unsigned int) shndx2)
7971 {
7972 if (count2 == 0)
7973 isymstart2 = isym;
7974 count2++;
7975 }
7976
7977 if (count2 && isym->st_shndx != (unsigned int) shndx2)
7978 break;
7979 }
7980
7981 if (count1 == 0 || count2 == 0 || count1 != count2)
7982 goto done;
7983
7984 symtable1 = bfd_malloc (count1 * sizeof (struct elf_symbol));
7985 symtable2 = bfd_malloc (count1 * sizeof (struct elf_symbol));
7986
7987 if (symtable1 == NULL || symtable2 == NULL)
7988 goto done;
7989
7990 symp = symtable1;
7991 for (isym = isymstart1, isymend = isym + count1;
7992 isym < isymend; isym++)
7993 {
7994 symp->sym = isym;
7995 symp->name = bfd_elf_string_from_elf_section (bfd1,
7996 hdr1->sh_link,
7997 isym->st_name);
7998 symp++;
7999 }
8000
8001 symp = symtable2;
8002 for (isym = isymstart2, isymend = isym + count1;
8003 isym < isymend; isym++)
8004 {
8005 symp->sym = isym;
8006 symp->name = bfd_elf_string_from_elf_section (bfd2,
8007 hdr2->sh_link,
8008 isym->st_name);
8009 symp++;
8010 }
8011
8012 /* Sort symbol by name. */
8013 qsort (symtable1, count1, sizeof (struct elf_symbol),
8014 elf_sym_name_compare);
8015 qsort (symtable2, count1, sizeof (struct elf_symbol),
8016 elf_sym_name_compare);
8017
8018 for (i = 0; i < count1; i++)
8019 /* Two symbols must have the same binding, type and name. */
8020 if (symtable1 [i].sym->st_info != symtable2 [i].sym->st_info
8021 || symtable1 [i].sym->st_other != symtable2 [i].sym->st_other
8022 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
8023 goto done;
8024
8025 result = TRUE;
8026
8027 done:
8028 if (symtable1)
8029 free (symtable1);
8030 if (symtable2)
8031 free (symtable2);
8032 if (isymbuf1)
8033 free (isymbuf1);
8034 if (isymbuf2)
8035 free (isymbuf2);
8036
8037 return result;
8038 }