Mark .gnu.lto_* sections with SHF_EXCLUDE.
[binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
5 Free Software Foundation, Inc.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 MA 02110-1301, USA. */
23
24
25 /*
26 SECTION
27 ELF backends
28
29 BFD support for ELF formats is being worked on.
30 Currently, the best supported back ends are for sparc and i386
31 (running svr4 or Solaris 2).
32
33 Documentation of the internals of the support code still needs
34 to be written. The code is changing quickly enough that we
35 haven't bothered yet. */
36
37 /* For sparc64-cross-sparc32. */
38 #define _SYSCALL32
39 #include "sysdep.h"
40 #include "bfd.h"
41 #include "bfdlink.h"
42 #include "libbfd.h"
43 #define ARCH_SIZE 0
44 #include "elf-bfd.h"
45 #include "libiberty.h"
46 #include "safe-ctype.h"
47
48 #ifdef CORE_HEADER
49 #include CORE_HEADER
50 #endif
51
52 static int elf_sort_sections (const void *, const void *);
53 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
54 static bfd_boolean prep_headers (bfd *);
55 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
56 static bfd_boolean elf_read_notes (bfd *, file_ptr, bfd_size_type) ;
57 static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
58 file_ptr offset);
59
60 /* Swap version information in and out. The version information is
61 currently size independent. If that ever changes, this code will
62 need to move into elfcode.h. */
63
64 /* Swap in a Verdef structure. */
65
66 void
67 _bfd_elf_swap_verdef_in (bfd *abfd,
68 const Elf_External_Verdef *src,
69 Elf_Internal_Verdef *dst)
70 {
71 dst->vd_version = H_GET_16 (abfd, src->vd_version);
72 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
73 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
74 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
75 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
76 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
77 dst->vd_next = H_GET_32 (abfd, src->vd_next);
78 }
79
80 /* Swap out a Verdef structure. */
81
82 void
83 _bfd_elf_swap_verdef_out (bfd *abfd,
84 const Elf_Internal_Verdef *src,
85 Elf_External_Verdef *dst)
86 {
87 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
88 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
89 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
90 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
91 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
92 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
93 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
94 }
95
96 /* Swap in a Verdaux structure. */
97
98 void
99 _bfd_elf_swap_verdaux_in (bfd *abfd,
100 const Elf_External_Verdaux *src,
101 Elf_Internal_Verdaux *dst)
102 {
103 dst->vda_name = H_GET_32 (abfd, src->vda_name);
104 dst->vda_next = H_GET_32 (abfd, src->vda_next);
105 }
106
107 /* Swap out a Verdaux structure. */
108
109 void
110 _bfd_elf_swap_verdaux_out (bfd *abfd,
111 const Elf_Internal_Verdaux *src,
112 Elf_External_Verdaux *dst)
113 {
114 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
115 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
116 }
117
118 /* Swap in a Verneed structure. */
119
120 void
121 _bfd_elf_swap_verneed_in (bfd *abfd,
122 const Elf_External_Verneed *src,
123 Elf_Internal_Verneed *dst)
124 {
125 dst->vn_version = H_GET_16 (abfd, src->vn_version);
126 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
127 dst->vn_file = H_GET_32 (abfd, src->vn_file);
128 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
129 dst->vn_next = H_GET_32 (abfd, src->vn_next);
130 }
131
132 /* Swap out a Verneed structure. */
133
134 void
135 _bfd_elf_swap_verneed_out (bfd *abfd,
136 const Elf_Internal_Verneed *src,
137 Elf_External_Verneed *dst)
138 {
139 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
140 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
141 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
142 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
143 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
144 }
145
146 /* Swap in a Vernaux structure. */
147
148 void
149 _bfd_elf_swap_vernaux_in (bfd *abfd,
150 const Elf_External_Vernaux *src,
151 Elf_Internal_Vernaux *dst)
152 {
153 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
154 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
155 dst->vna_other = H_GET_16 (abfd, src->vna_other);
156 dst->vna_name = H_GET_32 (abfd, src->vna_name);
157 dst->vna_next = H_GET_32 (abfd, src->vna_next);
158 }
159
160 /* Swap out a Vernaux structure. */
161
162 void
163 _bfd_elf_swap_vernaux_out (bfd *abfd,
164 const Elf_Internal_Vernaux *src,
165 Elf_External_Vernaux *dst)
166 {
167 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
168 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
169 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
170 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
171 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
172 }
173
174 /* Swap in a Versym structure. */
175
176 void
177 _bfd_elf_swap_versym_in (bfd *abfd,
178 const Elf_External_Versym *src,
179 Elf_Internal_Versym *dst)
180 {
181 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
182 }
183
184 /* Swap out a Versym structure. */
185
186 void
187 _bfd_elf_swap_versym_out (bfd *abfd,
188 const Elf_Internal_Versym *src,
189 Elf_External_Versym *dst)
190 {
191 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
192 }
193
194 /* Standard ELF hash function. Do not change this function; you will
195 cause invalid hash tables to be generated. */
196
197 unsigned long
198 bfd_elf_hash (const char *namearg)
199 {
200 const unsigned char *name = (const unsigned char *) namearg;
201 unsigned long h = 0;
202 unsigned long g;
203 int ch;
204
205 while ((ch = *name++) != '\0')
206 {
207 h = (h << 4) + ch;
208 if ((g = (h & 0xf0000000)) != 0)
209 {
210 h ^= g >> 24;
211 /* The ELF ABI says `h &= ~g', but this is equivalent in
212 this case and on some machines one insn instead of two. */
213 h ^= g;
214 }
215 }
216 return h & 0xffffffff;
217 }
218
219 /* DT_GNU_HASH hash function. Do not change this function; you will
220 cause invalid hash tables to be generated. */
221
222 unsigned long
223 bfd_elf_gnu_hash (const char *namearg)
224 {
225 const unsigned char *name = (const unsigned char *) namearg;
226 unsigned long h = 5381;
227 unsigned char ch;
228
229 while ((ch = *name++) != '\0')
230 h = (h << 5) + h + ch;
231 return h & 0xffffffff;
232 }
233
234 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
235 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
236 bfd_boolean
237 bfd_elf_allocate_object (bfd *abfd,
238 size_t object_size,
239 enum elf_target_id object_id)
240 {
241 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
242 abfd->tdata.any = bfd_zalloc (abfd, object_size);
243 if (abfd->tdata.any == NULL)
244 return FALSE;
245
246 elf_object_id (abfd) = object_id;
247 elf_program_header_size (abfd) = (bfd_size_type) -1;
248 return TRUE;
249 }
250
251
252 bfd_boolean
253 bfd_elf_make_object (bfd *abfd)
254 {
255 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
256 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
257 bed->target_id);
258 }
259
260 bfd_boolean
261 bfd_elf_mkcorefile (bfd *abfd)
262 {
263 /* I think this can be done just like an object file. */
264 return abfd->xvec->_bfd_set_format[(int) bfd_object] (abfd);
265 }
266
267 static char *
268 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
269 {
270 Elf_Internal_Shdr **i_shdrp;
271 bfd_byte *shstrtab = NULL;
272 file_ptr offset;
273 bfd_size_type shstrtabsize;
274
275 i_shdrp = elf_elfsections (abfd);
276 if (i_shdrp == 0
277 || shindex >= elf_numsections (abfd)
278 || i_shdrp[shindex] == 0)
279 return NULL;
280
281 shstrtab = i_shdrp[shindex]->contents;
282 if (shstrtab == NULL)
283 {
284 /* No cached one, attempt to read, and cache what we read. */
285 offset = i_shdrp[shindex]->sh_offset;
286 shstrtabsize = i_shdrp[shindex]->sh_size;
287
288 /* Allocate and clear an extra byte at the end, to prevent crashes
289 in case the string table is not terminated. */
290 if (shstrtabsize + 1 <= 1
291 || (shstrtab = (bfd_byte *) bfd_alloc (abfd, shstrtabsize + 1)) == NULL
292 || bfd_seek (abfd, offset, SEEK_SET) != 0)
293 shstrtab = NULL;
294 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
295 {
296 if (bfd_get_error () != bfd_error_system_call)
297 bfd_set_error (bfd_error_file_truncated);
298 shstrtab = NULL;
299 /* Once we've failed to read it, make sure we don't keep
300 trying. Otherwise, we'll keep allocating space for
301 the string table over and over. */
302 i_shdrp[shindex]->sh_size = 0;
303 }
304 else
305 shstrtab[shstrtabsize] = '\0';
306 i_shdrp[shindex]->contents = shstrtab;
307 }
308 return (char *) shstrtab;
309 }
310
311 char *
312 bfd_elf_string_from_elf_section (bfd *abfd,
313 unsigned int shindex,
314 unsigned int strindex)
315 {
316 Elf_Internal_Shdr *hdr;
317
318 if (strindex == 0)
319 return "";
320
321 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
322 return NULL;
323
324 hdr = elf_elfsections (abfd)[shindex];
325
326 if (hdr->contents == NULL
327 && bfd_elf_get_str_section (abfd, shindex) == NULL)
328 return NULL;
329
330 if (strindex >= hdr->sh_size)
331 {
332 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
333 (*_bfd_error_handler)
334 (_("%B: invalid string offset %u >= %lu for section `%s'"),
335 abfd, strindex, (unsigned long) hdr->sh_size,
336 (shindex == shstrndx && strindex == hdr->sh_name
337 ? ".shstrtab"
338 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
339 return NULL;
340 }
341
342 return ((char *) hdr->contents) + strindex;
343 }
344
345 /* Read and convert symbols to internal format.
346 SYMCOUNT specifies the number of symbols to read, starting from
347 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
348 are non-NULL, they are used to store the internal symbols, external
349 symbols, and symbol section index extensions, respectively.
350 Returns a pointer to the internal symbol buffer (malloced if necessary)
351 or NULL if there were no symbols or some kind of problem. */
352
353 Elf_Internal_Sym *
354 bfd_elf_get_elf_syms (bfd *ibfd,
355 Elf_Internal_Shdr *symtab_hdr,
356 size_t symcount,
357 size_t symoffset,
358 Elf_Internal_Sym *intsym_buf,
359 void *extsym_buf,
360 Elf_External_Sym_Shndx *extshndx_buf)
361 {
362 Elf_Internal_Shdr *shndx_hdr;
363 void *alloc_ext;
364 const bfd_byte *esym;
365 Elf_External_Sym_Shndx *alloc_extshndx;
366 Elf_External_Sym_Shndx *shndx;
367 Elf_Internal_Sym *alloc_intsym;
368 Elf_Internal_Sym *isym;
369 Elf_Internal_Sym *isymend;
370 const struct elf_backend_data *bed;
371 size_t extsym_size;
372 bfd_size_type amt;
373 file_ptr pos;
374
375 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
376 abort ();
377
378 if (symcount == 0)
379 return intsym_buf;
380
381 /* Normal syms might have section extension entries. */
382 shndx_hdr = NULL;
383 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
384 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
385
386 /* Read the symbols. */
387 alloc_ext = NULL;
388 alloc_extshndx = NULL;
389 alloc_intsym = NULL;
390 bed = get_elf_backend_data (ibfd);
391 extsym_size = bed->s->sizeof_sym;
392 amt = symcount * extsym_size;
393 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
394 if (extsym_buf == NULL)
395 {
396 alloc_ext = bfd_malloc2 (symcount, extsym_size);
397 extsym_buf = alloc_ext;
398 }
399 if (extsym_buf == NULL
400 || bfd_seek (ibfd, pos, SEEK_SET) != 0
401 || bfd_bread (extsym_buf, amt, ibfd) != amt)
402 {
403 intsym_buf = NULL;
404 goto out;
405 }
406
407 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
408 extshndx_buf = NULL;
409 else
410 {
411 amt = symcount * sizeof (Elf_External_Sym_Shndx);
412 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
413 if (extshndx_buf == NULL)
414 {
415 alloc_extshndx = (Elf_External_Sym_Shndx *)
416 bfd_malloc2 (symcount, sizeof (Elf_External_Sym_Shndx));
417 extshndx_buf = alloc_extshndx;
418 }
419 if (extshndx_buf == NULL
420 || bfd_seek (ibfd, pos, SEEK_SET) != 0
421 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
422 {
423 intsym_buf = NULL;
424 goto out;
425 }
426 }
427
428 if (intsym_buf == NULL)
429 {
430 alloc_intsym = (Elf_Internal_Sym *)
431 bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
432 intsym_buf = alloc_intsym;
433 if (intsym_buf == NULL)
434 goto out;
435 }
436
437 /* Convert the symbols to internal form. */
438 isymend = intsym_buf + symcount;
439 for (esym = (const bfd_byte *) extsym_buf, isym = intsym_buf,
440 shndx = extshndx_buf;
441 isym < isymend;
442 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
443 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
444 {
445 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
446 (*_bfd_error_handler) (_("%B symbol number %lu references "
447 "nonexistent SHT_SYMTAB_SHNDX section"),
448 ibfd, (unsigned long) symoffset);
449 if (alloc_intsym != NULL)
450 free (alloc_intsym);
451 intsym_buf = NULL;
452 goto out;
453 }
454
455 out:
456 if (alloc_ext != NULL)
457 free (alloc_ext);
458 if (alloc_extshndx != NULL)
459 free (alloc_extshndx);
460
461 return intsym_buf;
462 }
463
464 /* Look up a symbol name. */
465 const char *
466 bfd_elf_sym_name (bfd *abfd,
467 Elf_Internal_Shdr *symtab_hdr,
468 Elf_Internal_Sym *isym,
469 asection *sym_sec)
470 {
471 const char *name;
472 unsigned int iname = isym->st_name;
473 unsigned int shindex = symtab_hdr->sh_link;
474
475 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
476 /* Check for a bogus st_shndx to avoid crashing. */
477 && isym->st_shndx < elf_numsections (abfd))
478 {
479 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
480 shindex = elf_elfheader (abfd)->e_shstrndx;
481 }
482
483 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
484 if (name == NULL)
485 name = "(null)";
486 else if (sym_sec && *name == '\0')
487 name = bfd_section_name (abfd, sym_sec);
488
489 return name;
490 }
491
492 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
493 sections. The first element is the flags, the rest are section
494 pointers. */
495
496 typedef union elf_internal_group {
497 Elf_Internal_Shdr *shdr;
498 unsigned int flags;
499 } Elf_Internal_Group;
500
501 /* Return the name of the group signature symbol. Why isn't the
502 signature just a string? */
503
504 static const char *
505 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
506 {
507 Elf_Internal_Shdr *hdr;
508 unsigned char esym[sizeof (Elf64_External_Sym)];
509 Elf_External_Sym_Shndx eshndx;
510 Elf_Internal_Sym isym;
511
512 /* First we need to ensure the symbol table is available. Make sure
513 that it is a symbol table section. */
514 if (ghdr->sh_link >= elf_numsections (abfd))
515 return NULL;
516 hdr = elf_elfsections (abfd) [ghdr->sh_link];
517 if (hdr->sh_type != SHT_SYMTAB
518 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
519 return NULL;
520
521 /* Go read the symbol. */
522 hdr = &elf_tdata (abfd)->symtab_hdr;
523 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
524 &isym, esym, &eshndx) == NULL)
525 return NULL;
526
527 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
528 }
529
530 /* Set next_in_group list pointer, and group name for NEWSECT. */
531
532 static bfd_boolean
533 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
534 {
535 unsigned int num_group = elf_tdata (abfd)->num_group;
536
537 /* If num_group is zero, read in all SHT_GROUP sections. The count
538 is set to -1 if there are no SHT_GROUP sections. */
539 if (num_group == 0)
540 {
541 unsigned int i, shnum;
542
543 /* First count the number of groups. If we have a SHT_GROUP
544 section with just a flag word (ie. sh_size is 4), ignore it. */
545 shnum = elf_numsections (abfd);
546 num_group = 0;
547
548 #define IS_VALID_GROUP_SECTION_HEADER(shdr) \
549 ( (shdr)->sh_type == SHT_GROUP \
550 && (shdr)->sh_size >= (2 * GRP_ENTRY_SIZE) \
551 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
552 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
553
554 for (i = 0; i < shnum; i++)
555 {
556 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
557
558 if (IS_VALID_GROUP_SECTION_HEADER (shdr))
559 num_group += 1;
560 }
561
562 if (num_group == 0)
563 {
564 num_group = (unsigned) -1;
565 elf_tdata (abfd)->num_group = num_group;
566 }
567 else
568 {
569 /* We keep a list of elf section headers for group sections,
570 so we can find them quickly. */
571 bfd_size_type amt;
572
573 elf_tdata (abfd)->num_group = num_group;
574 elf_tdata (abfd)->group_sect_ptr = (Elf_Internal_Shdr **)
575 bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
576 if (elf_tdata (abfd)->group_sect_ptr == NULL)
577 return FALSE;
578
579 num_group = 0;
580 for (i = 0; i < shnum; i++)
581 {
582 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
583
584 if (IS_VALID_GROUP_SECTION_HEADER (shdr))
585 {
586 unsigned char *src;
587 Elf_Internal_Group *dest;
588
589 /* Add to list of sections. */
590 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
591 num_group += 1;
592
593 /* Read the raw contents. */
594 BFD_ASSERT (sizeof (*dest) >= 4);
595 amt = shdr->sh_size * sizeof (*dest) / 4;
596 shdr->contents = (unsigned char *)
597 bfd_alloc2 (abfd, shdr->sh_size, sizeof (*dest) / 4);
598 /* PR binutils/4110: Handle corrupt group headers. */
599 if (shdr->contents == NULL)
600 {
601 _bfd_error_handler
602 (_("%B: Corrupt size field in group section header: 0x%lx"), abfd, shdr->sh_size);
603 bfd_set_error (bfd_error_bad_value);
604 return FALSE;
605 }
606
607 memset (shdr->contents, 0, amt);
608
609 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
610 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
611 != shdr->sh_size))
612 return FALSE;
613
614 /* Translate raw contents, a flag word followed by an
615 array of elf section indices all in target byte order,
616 to the flag word followed by an array of elf section
617 pointers. */
618 src = shdr->contents + shdr->sh_size;
619 dest = (Elf_Internal_Group *) (shdr->contents + amt);
620 while (1)
621 {
622 unsigned int idx;
623
624 src -= 4;
625 --dest;
626 idx = H_GET_32 (abfd, src);
627 if (src == shdr->contents)
628 {
629 dest->flags = idx;
630 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
631 shdr->bfd_section->flags
632 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
633 break;
634 }
635 if (idx >= shnum)
636 {
637 ((*_bfd_error_handler)
638 (_("%B: invalid SHT_GROUP entry"), abfd));
639 idx = 0;
640 }
641 dest->shdr = elf_elfsections (abfd)[idx];
642 }
643 }
644 }
645 }
646 }
647
648 if (num_group != (unsigned) -1)
649 {
650 unsigned int i;
651
652 for (i = 0; i < num_group; i++)
653 {
654 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
655 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
656 unsigned int n_elt = shdr->sh_size / 4;
657
658 /* Look through this group's sections to see if current
659 section is a member. */
660 while (--n_elt != 0)
661 if ((++idx)->shdr == hdr)
662 {
663 asection *s = NULL;
664
665 /* We are a member of this group. Go looking through
666 other members to see if any others are linked via
667 next_in_group. */
668 idx = (Elf_Internal_Group *) shdr->contents;
669 n_elt = shdr->sh_size / 4;
670 while (--n_elt != 0)
671 if ((s = (++idx)->shdr->bfd_section) != NULL
672 && elf_next_in_group (s) != NULL)
673 break;
674 if (n_elt != 0)
675 {
676 /* Snarf the group name from other member, and
677 insert current section in circular list. */
678 elf_group_name (newsect) = elf_group_name (s);
679 elf_next_in_group (newsect) = elf_next_in_group (s);
680 elf_next_in_group (s) = newsect;
681 }
682 else
683 {
684 const char *gname;
685
686 gname = group_signature (abfd, shdr);
687 if (gname == NULL)
688 return FALSE;
689 elf_group_name (newsect) = gname;
690
691 /* Start a circular list with one element. */
692 elf_next_in_group (newsect) = newsect;
693 }
694
695 /* If the group section has been created, point to the
696 new member. */
697 if (shdr->bfd_section != NULL)
698 elf_next_in_group (shdr->bfd_section) = newsect;
699
700 i = num_group - 1;
701 break;
702 }
703 }
704 }
705
706 if (elf_group_name (newsect) == NULL)
707 {
708 (*_bfd_error_handler) (_("%B: no group info for section %A"),
709 abfd, newsect);
710 }
711 return TRUE;
712 }
713
714 bfd_boolean
715 _bfd_elf_setup_sections (bfd *abfd)
716 {
717 unsigned int i;
718 unsigned int num_group = elf_tdata (abfd)->num_group;
719 bfd_boolean result = TRUE;
720 asection *s;
721
722 /* Process SHF_LINK_ORDER. */
723 for (s = abfd->sections; s != NULL; s = s->next)
724 {
725 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
726 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
727 {
728 unsigned int elfsec = this_hdr->sh_link;
729 /* FIXME: The old Intel compiler and old strip/objcopy may
730 not set the sh_link or sh_info fields. Hence we could
731 get the situation where elfsec is 0. */
732 if (elfsec == 0)
733 {
734 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
735 if (bed->link_order_error_handler)
736 bed->link_order_error_handler
737 (_("%B: warning: sh_link not set for section `%A'"),
738 abfd, s);
739 }
740 else
741 {
742 asection *linksec = NULL;
743
744 if (elfsec < elf_numsections (abfd))
745 {
746 this_hdr = elf_elfsections (abfd)[elfsec];
747 linksec = this_hdr->bfd_section;
748 }
749
750 /* PR 1991, 2008:
751 Some strip/objcopy may leave an incorrect value in
752 sh_link. We don't want to proceed. */
753 if (linksec == NULL)
754 {
755 (*_bfd_error_handler)
756 (_("%B: sh_link [%d] in section `%A' is incorrect"),
757 s->owner, s, elfsec);
758 result = FALSE;
759 }
760
761 elf_linked_to_section (s) = linksec;
762 }
763 }
764 }
765
766 /* Process section groups. */
767 if (num_group == (unsigned) -1)
768 return result;
769
770 for (i = 0; i < num_group; i++)
771 {
772 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
773 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
774 unsigned int n_elt = shdr->sh_size / 4;
775
776 while (--n_elt != 0)
777 if ((++idx)->shdr->bfd_section)
778 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
779 else if (idx->shdr->sh_type == SHT_RELA
780 || idx->shdr->sh_type == SHT_REL)
781 /* We won't include relocation sections in section groups in
782 output object files. We adjust the group section size here
783 so that relocatable link will work correctly when
784 relocation sections are in section group in input object
785 files. */
786 shdr->bfd_section->size -= 4;
787 else
788 {
789 /* There are some unknown sections in the group. */
790 (*_bfd_error_handler)
791 (_("%B: unknown [%d] section `%s' in group [%s]"),
792 abfd,
793 (unsigned int) idx->shdr->sh_type,
794 bfd_elf_string_from_elf_section (abfd,
795 (elf_elfheader (abfd)
796 ->e_shstrndx),
797 idx->shdr->sh_name),
798 shdr->bfd_section->name);
799 result = FALSE;
800 }
801 }
802 return result;
803 }
804
805 bfd_boolean
806 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
807 {
808 return elf_next_in_group (sec) != NULL;
809 }
810
811 /* Make a BFD section from an ELF section. We store a pointer to the
812 BFD section in the bfd_section field of the header. */
813
814 bfd_boolean
815 _bfd_elf_make_section_from_shdr (bfd *abfd,
816 Elf_Internal_Shdr *hdr,
817 const char *name,
818 int shindex)
819 {
820 asection *newsect;
821 flagword flags;
822 const struct elf_backend_data *bed;
823
824 if (hdr->bfd_section != NULL)
825 return TRUE;
826
827 newsect = bfd_make_section_anyway (abfd, name);
828 if (newsect == NULL)
829 return FALSE;
830
831 hdr->bfd_section = newsect;
832 elf_section_data (newsect)->this_hdr = *hdr;
833 elf_section_data (newsect)->this_idx = shindex;
834
835 /* Always use the real type/flags. */
836 elf_section_type (newsect) = hdr->sh_type;
837 elf_section_flags (newsect) = hdr->sh_flags;
838
839 newsect->filepos = hdr->sh_offset;
840
841 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
842 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
843 || ! bfd_set_section_alignment (abfd, newsect,
844 bfd_log2 (hdr->sh_addralign)))
845 return FALSE;
846
847 flags = SEC_NO_FLAGS;
848 if (hdr->sh_type != SHT_NOBITS)
849 flags |= SEC_HAS_CONTENTS;
850 if (hdr->sh_type == SHT_GROUP)
851 flags |= SEC_GROUP | SEC_EXCLUDE;
852 if ((hdr->sh_flags & SHF_ALLOC) != 0)
853 {
854 flags |= SEC_ALLOC;
855 if (hdr->sh_type != SHT_NOBITS)
856 flags |= SEC_LOAD;
857 }
858 if ((hdr->sh_flags & SHF_WRITE) == 0)
859 flags |= SEC_READONLY;
860 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
861 flags |= SEC_CODE;
862 else if ((flags & SEC_LOAD) != 0)
863 flags |= SEC_DATA;
864 if ((hdr->sh_flags & SHF_MERGE) != 0)
865 {
866 flags |= SEC_MERGE;
867 newsect->entsize = hdr->sh_entsize;
868 if ((hdr->sh_flags & SHF_STRINGS) != 0)
869 flags |= SEC_STRINGS;
870 }
871 if (hdr->sh_flags & SHF_GROUP)
872 if (!setup_group (abfd, hdr, newsect))
873 return FALSE;
874 if ((hdr->sh_flags & SHF_TLS) != 0)
875 flags |= SEC_THREAD_LOCAL;
876 if ((hdr->sh_flags & SHF_EXCLUDE) != 0)
877 flags |= SEC_EXCLUDE;
878
879 if ((flags & SEC_ALLOC) == 0)
880 {
881 /* The debugging sections appear to be recognized only by name,
882 not any sort of flag. Their SEC_ALLOC bits are cleared. */
883 static const struct
884 {
885 const char *name;
886 int len;
887 } debug_sections [] =
888 {
889 { STRING_COMMA_LEN ("debug") }, /* 'd' */
890 { NULL, 0 }, /* 'e' */
891 { NULL, 0 }, /* 'f' */
892 { STRING_COMMA_LEN ("gnu.linkonce.wi.") }, /* 'g' */
893 { NULL, 0 }, /* 'h' */
894 { NULL, 0 }, /* 'i' */
895 { NULL, 0 }, /* 'j' */
896 { NULL, 0 }, /* 'k' */
897 { STRING_COMMA_LEN ("line") }, /* 'l' */
898 { NULL, 0 }, /* 'm' */
899 { NULL, 0 }, /* 'n' */
900 { NULL, 0 }, /* 'o' */
901 { NULL, 0 }, /* 'p' */
902 { NULL, 0 }, /* 'q' */
903 { NULL, 0 }, /* 'r' */
904 { STRING_COMMA_LEN ("stab") }, /* 's' */
905 { NULL, 0 }, /* 't' */
906 { NULL, 0 }, /* 'u' */
907 { NULL, 0 }, /* 'v' */
908 { NULL, 0 }, /* 'w' */
909 { NULL, 0 }, /* 'x' */
910 { NULL, 0 }, /* 'y' */
911 { STRING_COMMA_LEN ("zdebug") } /* 'z' */
912 };
913
914 if (name [0] == '.')
915 {
916 int i = name [1] - 'd';
917 if (i >= 0
918 && i < (int) ARRAY_SIZE (debug_sections)
919 && debug_sections [i].name != NULL
920 && strncmp (&name [1], debug_sections [i].name,
921 debug_sections [i].len) == 0)
922 flags |= SEC_DEBUGGING;
923 }
924 }
925
926 /* As a GNU extension, if the name begins with .gnu.linkonce, we
927 only link a single copy of the section. This is used to support
928 g++. g++ will emit each template expansion in its own section.
929 The symbols will be defined as weak, so that multiple definitions
930 are permitted. The GNU linker extension is to actually discard
931 all but one of the sections. */
932 if (CONST_STRNEQ (name, ".gnu.linkonce")
933 && elf_next_in_group (newsect) == NULL)
934 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
935
936 bed = get_elf_backend_data (abfd);
937 if (bed->elf_backend_section_flags)
938 if (! bed->elf_backend_section_flags (&flags, hdr))
939 return FALSE;
940
941 if (! bfd_set_section_flags (abfd, newsect, flags))
942 return FALSE;
943
944 /* We do not parse the PT_NOTE segments as we are interested even in the
945 separate debug info files which may have the segments offsets corrupted.
946 PT_NOTEs from the core files are currently not parsed using BFD. */
947 if (hdr->sh_type == SHT_NOTE)
948 {
949 bfd_byte *contents;
950
951 if (!bfd_malloc_and_get_section (abfd, newsect, &contents))
952 return FALSE;
953
954 elf_parse_notes (abfd, (char *) contents, hdr->sh_size, -1);
955 free (contents);
956 }
957
958 if ((flags & SEC_ALLOC) != 0)
959 {
960 Elf_Internal_Phdr *phdr;
961 unsigned int i, nload;
962
963 /* Some ELF linkers produce binaries with all the program header
964 p_paddr fields zero. If we have such a binary with more than
965 one PT_LOAD header, then leave the section lma equal to vma
966 so that we don't create sections with overlapping lma. */
967 phdr = elf_tdata (abfd)->phdr;
968 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
969 if (phdr->p_paddr != 0)
970 break;
971 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
972 ++nload;
973 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
974 return TRUE;
975
976 phdr = elf_tdata (abfd)->phdr;
977 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
978 {
979 if (phdr->p_type == PT_LOAD
980 && ELF_SECTION_IN_SEGMENT (hdr, phdr))
981 {
982 if ((flags & SEC_LOAD) == 0)
983 newsect->lma = (phdr->p_paddr
984 + hdr->sh_addr - phdr->p_vaddr);
985 else
986 /* We used to use the same adjustment for SEC_LOAD
987 sections, but that doesn't work if the segment
988 is packed with code from multiple VMAs.
989 Instead we calculate the section LMA based on
990 the segment LMA. It is assumed that the
991 segment will contain sections with contiguous
992 LMAs, even if the VMAs are not. */
993 newsect->lma = (phdr->p_paddr
994 + hdr->sh_offset - phdr->p_offset);
995
996 /* With contiguous segments, we can't tell from file
997 offsets whether a section with zero size should
998 be placed at the end of one segment or the
999 beginning of the next. Decide based on vaddr. */
1000 if (hdr->sh_addr >= phdr->p_vaddr
1001 && (hdr->sh_addr + hdr->sh_size
1002 <= phdr->p_vaddr + phdr->p_memsz))
1003 break;
1004 }
1005 }
1006 }
1007
1008 /* Compress/decompress DWARF debug sections with names: .debug_* and
1009 .zdebug_*, after the section flags is set. */
1010 if ((flags & SEC_DEBUGGING)
1011 && ((name[1] == 'd' && name[6] == '_')
1012 || (name[1] == 'z' && name[7] == '_')))
1013 {
1014 enum { nothing, compress, decompress } action = nothing;
1015 char *new_name;
1016
1017 if (bfd_is_section_compressed (abfd, newsect))
1018 {
1019 /* Compressed section. Check if we should decompress. */
1020 if ((abfd->flags & BFD_DECOMPRESS))
1021 action = decompress;
1022 }
1023 else
1024 {
1025 /* Normal section. Check if we should compress. */
1026 if ((abfd->flags & BFD_COMPRESS))
1027 action = compress;
1028 }
1029
1030 new_name = NULL;
1031 switch (action)
1032 {
1033 case nothing:
1034 break;
1035 case compress:
1036 if (!bfd_init_section_compress_status (abfd, newsect))
1037 {
1038 (*_bfd_error_handler)
1039 (_("%B: unable to initialize commpress status for section %s"),
1040 abfd, name);
1041 return FALSE;
1042 }
1043 if (name[1] != 'z')
1044 {
1045 unsigned int len = strlen (name);
1046
1047 new_name = bfd_alloc (abfd, len + 2);
1048 if (new_name == NULL)
1049 return FALSE;
1050 new_name[0] = '.';
1051 new_name[1] = 'z';
1052 memcpy (new_name + 2, name + 1, len);
1053 }
1054 break;
1055 case decompress:
1056 if (!bfd_init_section_decompress_status (abfd, newsect))
1057 {
1058 (*_bfd_error_handler)
1059 (_("%B: unable to initialize decommpress status for section %s"),
1060 abfd, name);
1061 return FALSE;
1062 }
1063 if (name[1] == 'z')
1064 {
1065 unsigned int len = strlen (name);
1066
1067 new_name = bfd_alloc (abfd, len);
1068 if (new_name == NULL)
1069 return FALSE;
1070 new_name[0] = '.';
1071 memcpy (new_name + 1, name + 2, len - 1);
1072 }
1073 break;
1074 }
1075 if (new_name != NULL)
1076 bfd_rename_section (abfd, newsect, new_name);
1077 }
1078
1079 return TRUE;
1080 }
1081
1082 const char *const bfd_elf_section_type_names[] = {
1083 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1084 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1085 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1086 };
1087
1088 /* ELF relocs are against symbols. If we are producing relocatable
1089 output, and the reloc is against an external symbol, and nothing
1090 has given us any additional addend, the resulting reloc will also
1091 be against the same symbol. In such a case, we don't want to
1092 change anything about the way the reloc is handled, since it will
1093 all be done at final link time. Rather than put special case code
1094 into bfd_perform_relocation, all the reloc types use this howto
1095 function. It just short circuits the reloc if producing
1096 relocatable output against an external symbol. */
1097
1098 bfd_reloc_status_type
1099 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1100 arelent *reloc_entry,
1101 asymbol *symbol,
1102 void *data ATTRIBUTE_UNUSED,
1103 asection *input_section,
1104 bfd *output_bfd,
1105 char **error_message ATTRIBUTE_UNUSED)
1106 {
1107 if (output_bfd != NULL
1108 && (symbol->flags & BSF_SECTION_SYM) == 0
1109 && (! reloc_entry->howto->partial_inplace
1110 || reloc_entry->addend == 0))
1111 {
1112 reloc_entry->address += input_section->output_offset;
1113 return bfd_reloc_ok;
1114 }
1115
1116 return bfd_reloc_continue;
1117 }
1118 \f
1119 /* Copy the program header and other data from one object module to
1120 another. */
1121
1122 bfd_boolean
1123 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1124 {
1125 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1126 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1127 return TRUE;
1128
1129 BFD_ASSERT (!elf_flags_init (obfd)
1130 || (elf_elfheader (obfd)->e_flags
1131 == elf_elfheader (ibfd)->e_flags));
1132
1133 elf_gp (obfd) = elf_gp (ibfd);
1134 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1135 elf_flags_init (obfd) = TRUE;
1136
1137 /* Copy object attributes. */
1138 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1139 return TRUE;
1140 }
1141
1142 static const char *
1143 get_segment_type (unsigned int p_type)
1144 {
1145 const char *pt;
1146 switch (p_type)
1147 {
1148 case PT_NULL: pt = "NULL"; break;
1149 case PT_LOAD: pt = "LOAD"; break;
1150 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1151 case PT_INTERP: pt = "INTERP"; break;
1152 case PT_NOTE: pt = "NOTE"; break;
1153 case PT_SHLIB: pt = "SHLIB"; break;
1154 case PT_PHDR: pt = "PHDR"; break;
1155 case PT_TLS: pt = "TLS"; break;
1156 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1157 case PT_GNU_STACK: pt = "STACK"; break;
1158 case PT_GNU_RELRO: pt = "RELRO"; break;
1159 default: pt = NULL; break;
1160 }
1161 return pt;
1162 }
1163
1164 /* Print out the program headers. */
1165
1166 bfd_boolean
1167 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1168 {
1169 FILE *f = (FILE *) farg;
1170 Elf_Internal_Phdr *p;
1171 asection *s;
1172 bfd_byte *dynbuf = NULL;
1173
1174 p = elf_tdata (abfd)->phdr;
1175 if (p != NULL)
1176 {
1177 unsigned int i, c;
1178
1179 fprintf (f, _("\nProgram Header:\n"));
1180 c = elf_elfheader (abfd)->e_phnum;
1181 for (i = 0; i < c; i++, p++)
1182 {
1183 const char *pt = get_segment_type (p->p_type);
1184 char buf[20];
1185
1186 if (pt == NULL)
1187 {
1188 sprintf (buf, "0x%lx", p->p_type);
1189 pt = buf;
1190 }
1191 fprintf (f, "%8s off 0x", pt);
1192 bfd_fprintf_vma (abfd, f, p->p_offset);
1193 fprintf (f, " vaddr 0x");
1194 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1195 fprintf (f, " paddr 0x");
1196 bfd_fprintf_vma (abfd, f, p->p_paddr);
1197 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1198 fprintf (f, " filesz 0x");
1199 bfd_fprintf_vma (abfd, f, p->p_filesz);
1200 fprintf (f, " memsz 0x");
1201 bfd_fprintf_vma (abfd, f, p->p_memsz);
1202 fprintf (f, " flags %c%c%c",
1203 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1204 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1205 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1206 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1207 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1208 fprintf (f, "\n");
1209 }
1210 }
1211
1212 s = bfd_get_section_by_name (abfd, ".dynamic");
1213 if (s != NULL)
1214 {
1215 unsigned int elfsec;
1216 unsigned long shlink;
1217 bfd_byte *extdyn, *extdynend;
1218 size_t extdynsize;
1219 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1220
1221 fprintf (f, _("\nDynamic Section:\n"));
1222
1223 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1224 goto error_return;
1225
1226 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1227 if (elfsec == SHN_BAD)
1228 goto error_return;
1229 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1230
1231 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1232 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1233
1234 extdyn = dynbuf;
1235 extdynend = extdyn + s->size;
1236 for (; extdyn < extdynend; extdyn += extdynsize)
1237 {
1238 Elf_Internal_Dyn dyn;
1239 const char *name = "";
1240 char ab[20];
1241 bfd_boolean stringp;
1242 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1243
1244 (*swap_dyn_in) (abfd, extdyn, &dyn);
1245
1246 if (dyn.d_tag == DT_NULL)
1247 break;
1248
1249 stringp = FALSE;
1250 switch (dyn.d_tag)
1251 {
1252 default:
1253 if (bed->elf_backend_get_target_dtag)
1254 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
1255
1256 if (!strcmp (name, ""))
1257 {
1258 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1259 name = ab;
1260 }
1261 break;
1262
1263 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1264 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1265 case DT_PLTGOT: name = "PLTGOT"; break;
1266 case DT_HASH: name = "HASH"; break;
1267 case DT_STRTAB: name = "STRTAB"; break;
1268 case DT_SYMTAB: name = "SYMTAB"; break;
1269 case DT_RELA: name = "RELA"; break;
1270 case DT_RELASZ: name = "RELASZ"; break;
1271 case DT_RELAENT: name = "RELAENT"; break;
1272 case DT_STRSZ: name = "STRSZ"; break;
1273 case DT_SYMENT: name = "SYMENT"; break;
1274 case DT_INIT: name = "INIT"; break;
1275 case DT_FINI: name = "FINI"; break;
1276 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1277 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1278 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1279 case DT_REL: name = "REL"; break;
1280 case DT_RELSZ: name = "RELSZ"; break;
1281 case DT_RELENT: name = "RELENT"; break;
1282 case DT_PLTREL: name = "PLTREL"; break;
1283 case DT_DEBUG: name = "DEBUG"; break;
1284 case DT_TEXTREL: name = "TEXTREL"; break;
1285 case DT_JMPREL: name = "JMPREL"; break;
1286 case DT_BIND_NOW: name = "BIND_NOW"; break;
1287 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1288 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1289 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1290 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1291 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1292 case DT_FLAGS: name = "FLAGS"; break;
1293 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1294 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1295 case DT_CHECKSUM: name = "CHECKSUM"; break;
1296 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1297 case DT_MOVEENT: name = "MOVEENT"; break;
1298 case DT_MOVESZ: name = "MOVESZ"; break;
1299 case DT_FEATURE: name = "FEATURE"; break;
1300 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1301 case DT_SYMINSZ: name = "SYMINSZ"; break;
1302 case DT_SYMINENT: name = "SYMINENT"; break;
1303 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1304 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1305 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1306 case DT_PLTPAD: name = "PLTPAD"; break;
1307 case DT_MOVETAB: name = "MOVETAB"; break;
1308 case DT_SYMINFO: name = "SYMINFO"; break;
1309 case DT_RELACOUNT: name = "RELACOUNT"; break;
1310 case DT_RELCOUNT: name = "RELCOUNT"; break;
1311 case DT_FLAGS_1: name = "FLAGS_1"; break;
1312 case DT_VERSYM: name = "VERSYM"; break;
1313 case DT_VERDEF: name = "VERDEF"; break;
1314 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1315 case DT_VERNEED: name = "VERNEED"; break;
1316 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1317 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1318 case DT_USED: name = "USED"; break;
1319 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1320 case DT_GNU_HASH: name = "GNU_HASH"; break;
1321 }
1322
1323 fprintf (f, " %-20s ", name);
1324 if (! stringp)
1325 {
1326 fprintf (f, "0x");
1327 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
1328 }
1329 else
1330 {
1331 const char *string;
1332 unsigned int tagv = dyn.d_un.d_val;
1333
1334 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1335 if (string == NULL)
1336 goto error_return;
1337 fprintf (f, "%s", string);
1338 }
1339 fprintf (f, "\n");
1340 }
1341
1342 free (dynbuf);
1343 dynbuf = NULL;
1344 }
1345
1346 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1347 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1348 {
1349 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1350 return FALSE;
1351 }
1352
1353 if (elf_dynverdef (abfd) != 0)
1354 {
1355 Elf_Internal_Verdef *t;
1356
1357 fprintf (f, _("\nVersion definitions:\n"));
1358 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1359 {
1360 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1361 t->vd_flags, t->vd_hash,
1362 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1363 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1364 {
1365 Elf_Internal_Verdaux *a;
1366
1367 fprintf (f, "\t");
1368 for (a = t->vd_auxptr->vda_nextptr;
1369 a != NULL;
1370 a = a->vda_nextptr)
1371 fprintf (f, "%s ",
1372 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1373 fprintf (f, "\n");
1374 }
1375 }
1376 }
1377
1378 if (elf_dynverref (abfd) != 0)
1379 {
1380 Elf_Internal_Verneed *t;
1381
1382 fprintf (f, _("\nVersion References:\n"));
1383 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1384 {
1385 Elf_Internal_Vernaux *a;
1386
1387 fprintf (f, _(" required from %s:\n"),
1388 t->vn_filename ? t->vn_filename : "<corrupt>");
1389 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1390 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1391 a->vna_flags, a->vna_other,
1392 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1393 }
1394 }
1395
1396 return TRUE;
1397
1398 error_return:
1399 if (dynbuf != NULL)
1400 free (dynbuf);
1401 return FALSE;
1402 }
1403
1404 /* Display ELF-specific fields of a symbol. */
1405
1406 void
1407 bfd_elf_print_symbol (bfd *abfd,
1408 void *filep,
1409 asymbol *symbol,
1410 bfd_print_symbol_type how)
1411 {
1412 FILE *file = (FILE *) filep;
1413 switch (how)
1414 {
1415 case bfd_print_symbol_name:
1416 fprintf (file, "%s", symbol->name);
1417 break;
1418 case bfd_print_symbol_more:
1419 fprintf (file, "elf ");
1420 bfd_fprintf_vma (abfd, file, symbol->value);
1421 fprintf (file, " %lx", (unsigned long) symbol->flags);
1422 break;
1423 case bfd_print_symbol_all:
1424 {
1425 const char *section_name;
1426 const char *name = NULL;
1427 const struct elf_backend_data *bed;
1428 unsigned char st_other;
1429 bfd_vma val;
1430
1431 section_name = symbol->section ? symbol->section->name : "(*none*)";
1432
1433 bed = get_elf_backend_data (abfd);
1434 if (bed->elf_backend_print_symbol_all)
1435 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1436
1437 if (name == NULL)
1438 {
1439 name = symbol->name;
1440 bfd_print_symbol_vandf (abfd, file, symbol);
1441 }
1442
1443 fprintf (file, " %s\t", section_name);
1444 /* Print the "other" value for a symbol. For common symbols,
1445 we've already printed the size; now print the alignment.
1446 For other symbols, we have no specified alignment, and
1447 we've printed the address; now print the size. */
1448 if (symbol->section && bfd_is_com_section (symbol->section))
1449 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1450 else
1451 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1452 bfd_fprintf_vma (abfd, file, val);
1453
1454 /* If we have version information, print it. */
1455 if (elf_tdata (abfd)->dynversym_section != 0
1456 && (elf_tdata (abfd)->dynverdef_section != 0
1457 || elf_tdata (abfd)->dynverref_section != 0))
1458 {
1459 unsigned int vernum;
1460 const char *version_string;
1461
1462 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1463
1464 if (vernum == 0)
1465 version_string = "";
1466 else if (vernum == 1)
1467 version_string = "Base";
1468 else if (vernum <= elf_tdata (abfd)->cverdefs)
1469 version_string =
1470 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1471 else
1472 {
1473 Elf_Internal_Verneed *t;
1474
1475 version_string = "";
1476 for (t = elf_tdata (abfd)->verref;
1477 t != NULL;
1478 t = t->vn_nextref)
1479 {
1480 Elf_Internal_Vernaux *a;
1481
1482 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1483 {
1484 if (a->vna_other == vernum)
1485 {
1486 version_string = a->vna_nodename;
1487 break;
1488 }
1489 }
1490 }
1491 }
1492
1493 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1494 fprintf (file, " %-11s", version_string);
1495 else
1496 {
1497 int i;
1498
1499 fprintf (file, " (%s)", version_string);
1500 for (i = 10 - strlen (version_string); i > 0; --i)
1501 putc (' ', file);
1502 }
1503 }
1504
1505 /* If the st_other field is not zero, print it. */
1506 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1507
1508 switch (st_other)
1509 {
1510 case 0: break;
1511 case STV_INTERNAL: fprintf (file, " .internal"); break;
1512 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1513 case STV_PROTECTED: fprintf (file, " .protected"); break;
1514 default:
1515 /* Some other non-defined flags are also present, so print
1516 everything hex. */
1517 fprintf (file, " 0x%02x", (unsigned int) st_other);
1518 }
1519
1520 fprintf (file, " %s", name);
1521 }
1522 break;
1523 }
1524 }
1525
1526 /* Allocate an ELF string table--force the first byte to be zero. */
1527
1528 struct bfd_strtab_hash *
1529 _bfd_elf_stringtab_init (void)
1530 {
1531 struct bfd_strtab_hash *ret;
1532
1533 ret = _bfd_stringtab_init ();
1534 if (ret != NULL)
1535 {
1536 bfd_size_type loc;
1537
1538 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1539 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1540 if (loc == (bfd_size_type) -1)
1541 {
1542 _bfd_stringtab_free (ret);
1543 ret = NULL;
1544 }
1545 }
1546 return ret;
1547 }
1548 \f
1549 /* ELF .o/exec file reading */
1550
1551 /* Create a new bfd section from an ELF section header. */
1552
1553 bfd_boolean
1554 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1555 {
1556 Elf_Internal_Shdr *hdr;
1557 Elf_Internal_Ehdr *ehdr;
1558 const struct elf_backend_data *bed;
1559 const char *name;
1560
1561 if (shindex >= elf_numsections (abfd))
1562 return FALSE;
1563
1564 hdr = elf_elfsections (abfd)[shindex];
1565 ehdr = elf_elfheader (abfd);
1566 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
1567 hdr->sh_name);
1568 if (name == NULL)
1569 return FALSE;
1570
1571 bed = get_elf_backend_data (abfd);
1572 switch (hdr->sh_type)
1573 {
1574 case SHT_NULL:
1575 /* Inactive section. Throw it away. */
1576 return TRUE;
1577
1578 case SHT_PROGBITS: /* Normal section with contents. */
1579 case SHT_NOBITS: /* .bss section. */
1580 case SHT_HASH: /* .hash section. */
1581 case SHT_NOTE: /* .note section. */
1582 case SHT_INIT_ARRAY: /* .init_array section. */
1583 case SHT_FINI_ARRAY: /* .fini_array section. */
1584 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1585 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1586 case SHT_GNU_HASH: /* .gnu.hash section. */
1587 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1588
1589 case SHT_DYNAMIC: /* Dynamic linking information. */
1590 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1591 return FALSE;
1592 if (hdr->sh_link > elf_numsections (abfd))
1593 {
1594 /* PR 10478: Accept Solaris binaries with a sh_link
1595 field set to SHN_BEFORE or SHN_AFTER. */
1596 switch (bfd_get_arch (abfd))
1597 {
1598 case bfd_arch_i386:
1599 case bfd_arch_sparc:
1600 if (hdr->sh_link == (SHN_LORESERVE & 0xffff) /* SHN_BEFORE */
1601 || hdr->sh_link == ((SHN_LORESERVE + 1) & 0xffff) /* SHN_AFTER */)
1602 break;
1603 /* Otherwise fall through. */
1604 default:
1605 return FALSE;
1606 }
1607 }
1608 else if (elf_elfsections (abfd)[hdr->sh_link] == NULL)
1609 return FALSE;
1610 else if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1611 {
1612 Elf_Internal_Shdr *dynsymhdr;
1613
1614 /* The shared libraries distributed with hpux11 have a bogus
1615 sh_link field for the ".dynamic" section. Find the
1616 string table for the ".dynsym" section instead. */
1617 if (elf_dynsymtab (abfd) != 0)
1618 {
1619 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1620 hdr->sh_link = dynsymhdr->sh_link;
1621 }
1622 else
1623 {
1624 unsigned int i, num_sec;
1625
1626 num_sec = elf_numsections (abfd);
1627 for (i = 1; i < num_sec; i++)
1628 {
1629 dynsymhdr = elf_elfsections (abfd)[i];
1630 if (dynsymhdr->sh_type == SHT_DYNSYM)
1631 {
1632 hdr->sh_link = dynsymhdr->sh_link;
1633 break;
1634 }
1635 }
1636 }
1637 }
1638 break;
1639
1640 case SHT_SYMTAB: /* A symbol table */
1641 if (elf_onesymtab (abfd) == shindex)
1642 return TRUE;
1643
1644 if (hdr->sh_entsize != bed->s->sizeof_sym)
1645 return FALSE;
1646 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
1647 return FALSE;
1648 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1649 elf_onesymtab (abfd) = shindex;
1650 elf_tdata (abfd)->symtab_hdr = *hdr;
1651 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1652 abfd->flags |= HAS_SYMS;
1653
1654 /* Sometimes a shared object will map in the symbol table. If
1655 SHF_ALLOC is set, and this is a shared object, then we also
1656 treat this section as a BFD section. We can not base the
1657 decision purely on SHF_ALLOC, because that flag is sometimes
1658 set in a relocatable object file, which would confuse the
1659 linker. */
1660 if ((hdr->sh_flags & SHF_ALLOC) != 0
1661 && (abfd->flags & DYNAMIC) != 0
1662 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1663 shindex))
1664 return FALSE;
1665
1666 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1667 can't read symbols without that section loaded as well. It
1668 is most likely specified by the next section header. */
1669 if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
1670 {
1671 unsigned int i, num_sec;
1672
1673 num_sec = elf_numsections (abfd);
1674 for (i = shindex + 1; i < num_sec; i++)
1675 {
1676 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1677 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1678 && hdr2->sh_link == shindex)
1679 break;
1680 }
1681 if (i == num_sec)
1682 for (i = 1; i < shindex; i++)
1683 {
1684 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1685 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1686 && hdr2->sh_link == shindex)
1687 break;
1688 }
1689 if (i != shindex)
1690 return bfd_section_from_shdr (abfd, i);
1691 }
1692 return TRUE;
1693
1694 case SHT_DYNSYM: /* A dynamic symbol table */
1695 if (elf_dynsymtab (abfd) == shindex)
1696 return TRUE;
1697
1698 if (hdr->sh_entsize != bed->s->sizeof_sym)
1699 return FALSE;
1700 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1701 elf_dynsymtab (abfd) = shindex;
1702 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1703 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1704 abfd->flags |= HAS_SYMS;
1705
1706 /* Besides being a symbol table, we also treat this as a regular
1707 section, so that objcopy can handle it. */
1708 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1709
1710 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1711 if (elf_symtab_shndx (abfd) == shindex)
1712 return TRUE;
1713
1714 BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
1715 elf_symtab_shndx (abfd) = shindex;
1716 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1717 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1718 return TRUE;
1719
1720 case SHT_STRTAB: /* A string table */
1721 if (hdr->bfd_section != NULL)
1722 return TRUE;
1723 if (ehdr->e_shstrndx == shindex)
1724 {
1725 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1726 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1727 return TRUE;
1728 }
1729 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
1730 {
1731 symtab_strtab:
1732 elf_tdata (abfd)->strtab_hdr = *hdr;
1733 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
1734 return TRUE;
1735 }
1736 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
1737 {
1738 dynsymtab_strtab:
1739 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1740 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
1741 elf_elfsections (abfd)[shindex] = hdr;
1742 /* We also treat this as a regular section, so that objcopy
1743 can handle it. */
1744 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1745 shindex);
1746 }
1747
1748 /* If the string table isn't one of the above, then treat it as a
1749 regular section. We need to scan all the headers to be sure,
1750 just in case this strtab section appeared before the above. */
1751 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
1752 {
1753 unsigned int i, num_sec;
1754
1755 num_sec = elf_numsections (abfd);
1756 for (i = 1; i < num_sec; i++)
1757 {
1758 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1759 if (hdr2->sh_link == shindex)
1760 {
1761 /* Prevent endless recursion on broken objects. */
1762 if (i == shindex)
1763 return FALSE;
1764 if (! bfd_section_from_shdr (abfd, i))
1765 return FALSE;
1766 if (elf_onesymtab (abfd) == i)
1767 goto symtab_strtab;
1768 if (elf_dynsymtab (abfd) == i)
1769 goto dynsymtab_strtab;
1770 }
1771 }
1772 }
1773 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1774
1775 case SHT_REL:
1776 case SHT_RELA:
1777 /* *These* do a lot of work -- but build no sections! */
1778 {
1779 asection *target_sect;
1780 Elf_Internal_Shdr *hdr2, **p_hdr;
1781 unsigned int num_sec = elf_numsections (abfd);
1782 struct bfd_elf_section_data *esdt;
1783 bfd_size_type amt;
1784
1785 if (hdr->sh_entsize
1786 != (bfd_size_type) (hdr->sh_type == SHT_REL
1787 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
1788 return FALSE;
1789
1790 /* Check for a bogus link to avoid crashing. */
1791 if (hdr->sh_link >= num_sec)
1792 {
1793 ((*_bfd_error_handler)
1794 (_("%B: invalid link %lu for reloc section %s (index %u)"),
1795 abfd, hdr->sh_link, name, shindex));
1796 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1797 shindex);
1798 }
1799
1800 /* For some incomprehensible reason Oracle distributes
1801 libraries for Solaris in which some of the objects have
1802 bogus sh_link fields. It would be nice if we could just
1803 reject them, but, unfortunately, some people need to use
1804 them. We scan through the section headers; if we find only
1805 one suitable symbol table, we clobber the sh_link to point
1806 to it. I hope this doesn't break anything.
1807
1808 Don't do it on executable nor shared library. */
1809 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0
1810 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
1811 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
1812 {
1813 unsigned int scan;
1814 int found;
1815
1816 found = 0;
1817 for (scan = 1; scan < num_sec; scan++)
1818 {
1819 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
1820 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
1821 {
1822 if (found != 0)
1823 {
1824 found = 0;
1825 break;
1826 }
1827 found = scan;
1828 }
1829 }
1830 if (found != 0)
1831 hdr->sh_link = found;
1832 }
1833
1834 /* Get the symbol table. */
1835 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
1836 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
1837 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
1838 return FALSE;
1839
1840 /* If this reloc section does not use the main symbol table we
1841 don't treat it as a reloc section. BFD can't adequately
1842 represent such a section, so at least for now, we don't
1843 try. We just present it as a normal section. We also
1844 can't use it as a reloc section if it points to the null
1845 section, an invalid section, another reloc section, or its
1846 sh_link points to the null section. */
1847 if (hdr->sh_link != elf_onesymtab (abfd)
1848 || hdr->sh_link == SHN_UNDEF
1849 || hdr->sh_info == SHN_UNDEF
1850 || hdr->sh_info >= num_sec
1851 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
1852 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
1853 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1854 shindex);
1855
1856 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
1857 return FALSE;
1858 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
1859 if (target_sect == NULL)
1860 return FALSE;
1861
1862 esdt = elf_section_data (target_sect);
1863 if (hdr->sh_type == SHT_RELA)
1864 p_hdr = &esdt->rela.hdr;
1865 else
1866 p_hdr = &esdt->rel.hdr;
1867
1868 BFD_ASSERT (*p_hdr == NULL);
1869 amt = sizeof (*hdr2);
1870 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, amt);
1871 if (hdr2 == NULL)
1872 return FALSE;
1873 *hdr2 = *hdr;
1874 *p_hdr = hdr2;
1875 elf_elfsections (abfd)[shindex] = hdr2;
1876 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
1877 target_sect->flags |= SEC_RELOC;
1878 target_sect->relocation = NULL;
1879 target_sect->rel_filepos = hdr->sh_offset;
1880 /* In the section to which the relocations apply, mark whether
1881 its relocations are of the REL or RELA variety. */
1882 if (hdr->sh_size != 0)
1883 {
1884 if (hdr->sh_type == SHT_RELA)
1885 target_sect->use_rela_p = 1;
1886 }
1887 abfd->flags |= HAS_RELOC;
1888 return TRUE;
1889 }
1890
1891 case SHT_GNU_verdef:
1892 elf_dynverdef (abfd) = shindex;
1893 elf_tdata (abfd)->dynverdef_hdr = *hdr;
1894 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1895
1896 case SHT_GNU_versym:
1897 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
1898 return FALSE;
1899 elf_dynversym (abfd) = shindex;
1900 elf_tdata (abfd)->dynversym_hdr = *hdr;
1901 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1902
1903 case SHT_GNU_verneed:
1904 elf_dynverref (abfd) = shindex;
1905 elf_tdata (abfd)->dynverref_hdr = *hdr;
1906 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1907
1908 case SHT_SHLIB:
1909 return TRUE;
1910
1911 case SHT_GROUP:
1912 if (! IS_VALID_GROUP_SECTION_HEADER (hdr))
1913 return FALSE;
1914 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1915 return FALSE;
1916 if (hdr->contents != NULL)
1917 {
1918 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
1919 unsigned int n_elt = hdr->sh_size / GRP_ENTRY_SIZE;
1920 asection *s;
1921
1922 if (idx->flags & GRP_COMDAT)
1923 hdr->bfd_section->flags
1924 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1925
1926 /* We try to keep the same section order as it comes in. */
1927 idx += n_elt;
1928 while (--n_elt != 0)
1929 {
1930 --idx;
1931
1932 if (idx->shdr != NULL
1933 && (s = idx->shdr->bfd_section) != NULL
1934 && elf_next_in_group (s) != NULL)
1935 {
1936 elf_next_in_group (hdr->bfd_section) = s;
1937 break;
1938 }
1939 }
1940 }
1941 break;
1942
1943 default:
1944 /* Possibly an attributes section. */
1945 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
1946 || hdr->sh_type == bed->obj_attrs_section_type)
1947 {
1948 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1949 return FALSE;
1950 _bfd_elf_parse_attributes (abfd, hdr);
1951 return TRUE;
1952 }
1953
1954 /* Check for any processor-specific section types. */
1955 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
1956 return TRUE;
1957
1958 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
1959 {
1960 if ((hdr->sh_flags & SHF_ALLOC) != 0)
1961 /* FIXME: How to properly handle allocated section reserved
1962 for applications? */
1963 (*_bfd_error_handler)
1964 (_("%B: don't know how to handle allocated, application "
1965 "specific section `%s' [0x%8x]"),
1966 abfd, name, hdr->sh_type);
1967 else
1968 /* Allow sections reserved for applications. */
1969 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1970 shindex);
1971 }
1972 else if (hdr->sh_type >= SHT_LOPROC
1973 && hdr->sh_type <= SHT_HIPROC)
1974 /* FIXME: We should handle this section. */
1975 (*_bfd_error_handler)
1976 (_("%B: don't know how to handle processor specific section "
1977 "`%s' [0x%8x]"),
1978 abfd, name, hdr->sh_type);
1979 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
1980 {
1981 /* Unrecognised OS-specific sections. */
1982 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
1983 /* SHF_OS_NONCONFORMING indicates that special knowledge is
1984 required to correctly process the section and the file should
1985 be rejected with an error message. */
1986 (*_bfd_error_handler)
1987 (_("%B: don't know how to handle OS specific section "
1988 "`%s' [0x%8x]"),
1989 abfd, name, hdr->sh_type);
1990 else
1991 /* Otherwise it should be processed. */
1992 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1993 }
1994 else
1995 /* FIXME: We should handle this section. */
1996 (*_bfd_error_handler)
1997 (_("%B: don't know how to handle section `%s' [0x%8x]"),
1998 abfd, name, hdr->sh_type);
1999
2000 return FALSE;
2001 }
2002
2003 return TRUE;
2004 }
2005
2006 /* Return the local symbol specified by ABFD, R_SYMNDX. */
2007
2008 Elf_Internal_Sym *
2009 bfd_sym_from_r_symndx (struct sym_cache *cache,
2010 bfd *abfd,
2011 unsigned long r_symndx)
2012 {
2013 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2014
2015 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
2016 {
2017 Elf_Internal_Shdr *symtab_hdr;
2018 unsigned char esym[sizeof (Elf64_External_Sym)];
2019 Elf_External_Sym_Shndx eshndx;
2020
2021 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2022 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2023 &cache->sym[ent], esym, &eshndx) == NULL)
2024 return NULL;
2025
2026 if (cache->abfd != abfd)
2027 {
2028 memset (cache->indx, -1, sizeof (cache->indx));
2029 cache->abfd = abfd;
2030 }
2031 cache->indx[ent] = r_symndx;
2032 }
2033
2034 return &cache->sym[ent];
2035 }
2036
2037 /* Given an ELF section number, retrieve the corresponding BFD
2038 section. */
2039
2040 asection *
2041 bfd_section_from_elf_index (bfd *abfd, unsigned int sec_index)
2042 {
2043 if (sec_index >= elf_numsections (abfd))
2044 return NULL;
2045 return elf_elfsections (abfd)[sec_index]->bfd_section;
2046 }
2047
2048 static const struct bfd_elf_special_section special_sections_b[] =
2049 {
2050 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2051 { NULL, 0, 0, 0, 0 }
2052 };
2053
2054 static const struct bfd_elf_special_section special_sections_c[] =
2055 {
2056 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2057 { NULL, 0, 0, 0, 0 }
2058 };
2059
2060 static const struct bfd_elf_special_section special_sections_d[] =
2061 {
2062 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2063 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2064 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2065 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2066 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2067 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2068 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2069 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2070 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2071 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2072 { NULL, 0, 0, 0, 0 }
2073 };
2074
2075 static const struct bfd_elf_special_section special_sections_f[] =
2076 {
2077 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2078 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2079 { NULL, 0, 0, 0, 0 }
2080 };
2081
2082 static const struct bfd_elf_special_section special_sections_g[] =
2083 {
2084 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2085 { STRING_COMMA_LEN (".gnu.lto_"), -1, SHT_PROGBITS, SHF_EXCLUDE },
2086 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2087 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2088 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2089 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2090 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2091 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2092 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2093 { NULL, 0, 0, 0, 0 }
2094 };
2095
2096 static const struct bfd_elf_special_section special_sections_h[] =
2097 {
2098 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2099 { NULL, 0, 0, 0, 0 }
2100 };
2101
2102 static const struct bfd_elf_special_section special_sections_i[] =
2103 {
2104 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2105 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2106 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2107 { NULL, 0, 0, 0, 0 }
2108 };
2109
2110 static const struct bfd_elf_special_section special_sections_l[] =
2111 {
2112 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2113 { NULL, 0, 0, 0, 0 }
2114 };
2115
2116 static const struct bfd_elf_special_section special_sections_n[] =
2117 {
2118 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2119 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2120 { NULL, 0, 0, 0, 0 }
2121 };
2122
2123 static const struct bfd_elf_special_section special_sections_p[] =
2124 {
2125 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2126 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2127 { NULL, 0, 0, 0, 0 }
2128 };
2129
2130 static const struct bfd_elf_special_section special_sections_r[] =
2131 {
2132 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2133 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2134 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2135 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2136 { NULL, 0, 0, 0, 0 }
2137 };
2138
2139 static const struct bfd_elf_special_section special_sections_s[] =
2140 {
2141 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2142 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2143 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2144 /* See struct bfd_elf_special_section declaration for the semantics of
2145 this special case where .prefix_length != strlen (.prefix). */
2146 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2147 { NULL, 0, 0, 0, 0 }
2148 };
2149
2150 static const struct bfd_elf_special_section special_sections_t[] =
2151 {
2152 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2153 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2154 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2155 { NULL, 0, 0, 0, 0 }
2156 };
2157
2158 static const struct bfd_elf_special_section special_sections_z[] =
2159 {
2160 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 },
2161 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 },
2162 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 },
2163 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 },
2164 { NULL, 0, 0, 0, 0 }
2165 };
2166
2167 static const struct bfd_elf_special_section *special_sections[] =
2168 {
2169 special_sections_b, /* 'b' */
2170 special_sections_c, /* 'c' */
2171 special_sections_d, /* 'd' */
2172 NULL, /* 'e' */
2173 special_sections_f, /* 'f' */
2174 special_sections_g, /* 'g' */
2175 special_sections_h, /* 'h' */
2176 special_sections_i, /* 'i' */
2177 NULL, /* 'j' */
2178 NULL, /* 'k' */
2179 special_sections_l, /* 'l' */
2180 NULL, /* 'm' */
2181 special_sections_n, /* 'n' */
2182 NULL, /* 'o' */
2183 special_sections_p, /* 'p' */
2184 NULL, /* 'q' */
2185 special_sections_r, /* 'r' */
2186 special_sections_s, /* 's' */
2187 special_sections_t, /* 't' */
2188 NULL, /* 'u' */
2189 NULL, /* 'v' */
2190 NULL, /* 'w' */
2191 NULL, /* 'x' */
2192 NULL, /* 'y' */
2193 special_sections_z /* 'z' */
2194 };
2195
2196 const struct bfd_elf_special_section *
2197 _bfd_elf_get_special_section (const char *name,
2198 const struct bfd_elf_special_section *spec,
2199 unsigned int rela)
2200 {
2201 int i;
2202 int len;
2203
2204 len = strlen (name);
2205
2206 for (i = 0; spec[i].prefix != NULL; i++)
2207 {
2208 int suffix_len;
2209 int prefix_len = spec[i].prefix_length;
2210
2211 if (len < prefix_len)
2212 continue;
2213 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2214 continue;
2215
2216 suffix_len = spec[i].suffix_length;
2217 if (suffix_len <= 0)
2218 {
2219 if (name[prefix_len] != 0)
2220 {
2221 if (suffix_len == 0)
2222 continue;
2223 if (name[prefix_len] != '.'
2224 && (suffix_len == -2
2225 || (rela && spec[i].type == SHT_REL)))
2226 continue;
2227 }
2228 }
2229 else
2230 {
2231 if (len < prefix_len + suffix_len)
2232 continue;
2233 if (memcmp (name + len - suffix_len,
2234 spec[i].prefix + prefix_len,
2235 suffix_len) != 0)
2236 continue;
2237 }
2238 return &spec[i];
2239 }
2240
2241 return NULL;
2242 }
2243
2244 const struct bfd_elf_special_section *
2245 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2246 {
2247 int i;
2248 const struct bfd_elf_special_section *spec;
2249 const struct elf_backend_data *bed;
2250
2251 /* See if this is one of the special sections. */
2252 if (sec->name == NULL)
2253 return NULL;
2254
2255 bed = get_elf_backend_data (abfd);
2256 spec = bed->special_sections;
2257 if (spec)
2258 {
2259 spec = _bfd_elf_get_special_section (sec->name,
2260 bed->special_sections,
2261 sec->use_rela_p);
2262 if (spec != NULL)
2263 return spec;
2264 }
2265
2266 if (sec->name[0] != '.')
2267 return NULL;
2268
2269 i = sec->name[1] - 'b';
2270 if (i < 0 || i > 'z' - 'b')
2271 return NULL;
2272
2273 spec = special_sections[i];
2274
2275 if (spec == NULL)
2276 return NULL;
2277
2278 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2279 }
2280
2281 bfd_boolean
2282 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2283 {
2284 struct bfd_elf_section_data *sdata;
2285 const struct elf_backend_data *bed;
2286 const struct bfd_elf_special_section *ssect;
2287
2288 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2289 if (sdata == NULL)
2290 {
2291 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd,
2292 sizeof (*sdata));
2293 if (sdata == NULL)
2294 return FALSE;
2295 sec->used_by_bfd = sdata;
2296 }
2297
2298 /* Indicate whether or not this section should use RELA relocations. */
2299 bed = get_elf_backend_data (abfd);
2300 sec->use_rela_p = bed->default_use_rela_p;
2301
2302 /* When we read a file, we don't need to set ELF section type and
2303 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2304 anyway. We will set ELF section type and flags for all linker
2305 created sections. If user specifies BFD section flags, we will
2306 set ELF section type and flags based on BFD section flags in
2307 elf_fake_sections. */
2308 if ((!sec->flags && abfd->direction != read_direction)
2309 || (sec->flags & SEC_LINKER_CREATED) != 0)
2310 {
2311 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2312 if (ssect != NULL)
2313 {
2314 elf_section_type (sec) = ssect->type;
2315 elf_section_flags (sec) = ssect->attr;
2316 }
2317 }
2318
2319 return _bfd_generic_new_section_hook (abfd, sec);
2320 }
2321
2322 /* Create a new bfd section from an ELF program header.
2323
2324 Since program segments have no names, we generate a synthetic name
2325 of the form segment<NUM>, where NUM is generally the index in the
2326 program header table. For segments that are split (see below) we
2327 generate the names segment<NUM>a and segment<NUM>b.
2328
2329 Note that some program segments may have a file size that is different than
2330 (less than) the memory size. All this means is that at execution the
2331 system must allocate the amount of memory specified by the memory size,
2332 but only initialize it with the first "file size" bytes read from the
2333 file. This would occur for example, with program segments consisting
2334 of combined data+bss.
2335
2336 To handle the above situation, this routine generates TWO bfd sections
2337 for the single program segment. The first has the length specified by
2338 the file size of the segment, and the second has the length specified
2339 by the difference between the two sizes. In effect, the segment is split
2340 into its initialized and uninitialized parts.
2341
2342 */
2343
2344 bfd_boolean
2345 _bfd_elf_make_section_from_phdr (bfd *abfd,
2346 Elf_Internal_Phdr *hdr,
2347 int hdr_index,
2348 const char *type_name)
2349 {
2350 asection *newsect;
2351 char *name;
2352 char namebuf[64];
2353 size_t len;
2354 int split;
2355
2356 split = ((hdr->p_memsz > 0)
2357 && (hdr->p_filesz > 0)
2358 && (hdr->p_memsz > hdr->p_filesz));
2359
2360 if (hdr->p_filesz > 0)
2361 {
2362 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "a" : "");
2363 len = strlen (namebuf) + 1;
2364 name = (char *) bfd_alloc (abfd, len);
2365 if (!name)
2366 return FALSE;
2367 memcpy (name, namebuf, len);
2368 newsect = bfd_make_section (abfd, name);
2369 if (newsect == NULL)
2370 return FALSE;
2371 newsect->vma = hdr->p_vaddr;
2372 newsect->lma = hdr->p_paddr;
2373 newsect->size = hdr->p_filesz;
2374 newsect->filepos = hdr->p_offset;
2375 newsect->flags |= SEC_HAS_CONTENTS;
2376 newsect->alignment_power = bfd_log2 (hdr->p_align);
2377 if (hdr->p_type == PT_LOAD)
2378 {
2379 newsect->flags |= SEC_ALLOC;
2380 newsect->flags |= SEC_LOAD;
2381 if (hdr->p_flags & PF_X)
2382 {
2383 /* FIXME: all we known is that it has execute PERMISSION,
2384 may be data. */
2385 newsect->flags |= SEC_CODE;
2386 }
2387 }
2388 if (!(hdr->p_flags & PF_W))
2389 {
2390 newsect->flags |= SEC_READONLY;
2391 }
2392 }
2393
2394 if (hdr->p_memsz > hdr->p_filesz)
2395 {
2396 bfd_vma align;
2397
2398 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "b" : "");
2399 len = strlen (namebuf) + 1;
2400 name = (char *) bfd_alloc (abfd, len);
2401 if (!name)
2402 return FALSE;
2403 memcpy (name, namebuf, len);
2404 newsect = bfd_make_section (abfd, name);
2405 if (newsect == NULL)
2406 return FALSE;
2407 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2408 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2409 newsect->size = hdr->p_memsz - hdr->p_filesz;
2410 newsect->filepos = hdr->p_offset + hdr->p_filesz;
2411 align = newsect->vma & -newsect->vma;
2412 if (align == 0 || align > hdr->p_align)
2413 align = hdr->p_align;
2414 newsect->alignment_power = bfd_log2 (align);
2415 if (hdr->p_type == PT_LOAD)
2416 {
2417 /* Hack for gdb. Segments that have not been modified do
2418 not have their contents written to a core file, on the
2419 assumption that a debugger can find the contents in the
2420 executable. We flag this case by setting the fake
2421 section size to zero. Note that "real" bss sections will
2422 always have their contents dumped to the core file. */
2423 if (bfd_get_format (abfd) == bfd_core)
2424 newsect->size = 0;
2425 newsect->flags |= SEC_ALLOC;
2426 if (hdr->p_flags & PF_X)
2427 newsect->flags |= SEC_CODE;
2428 }
2429 if (!(hdr->p_flags & PF_W))
2430 newsect->flags |= SEC_READONLY;
2431 }
2432
2433 return TRUE;
2434 }
2435
2436 bfd_boolean
2437 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int hdr_index)
2438 {
2439 const struct elf_backend_data *bed;
2440
2441 switch (hdr->p_type)
2442 {
2443 case PT_NULL:
2444 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "null");
2445
2446 case PT_LOAD:
2447 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "load");
2448
2449 case PT_DYNAMIC:
2450 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "dynamic");
2451
2452 case PT_INTERP:
2453 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "interp");
2454
2455 case PT_NOTE:
2456 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "note"))
2457 return FALSE;
2458 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2459 return FALSE;
2460 return TRUE;
2461
2462 case PT_SHLIB:
2463 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "shlib");
2464
2465 case PT_PHDR:
2466 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "phdr");
2467
2468 case PT_GNU_EH_FRAME:
2469 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index,
2470 "eh_frame_hdr");
2471
2472 case PT_GNU_STACK:
2473 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "stack");
2474
2475 case PT_GNU_RELRO:
2476 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "relro");
2477
2478 default:
2479 /* Check for any processor-specific program segment types. */
2480 bed = get_elf_backend_data (abfd);
2481 return bed->elf_backend_section_from_phdr (abfd, hdr, hdr_index, "proc");
2482 }
2483 }
2484
2485 /* Return the REL_HDR for SEC, assuming there is only a single one, either
2486 REL or RELA. */
2487
2488 Elf_Internal_Shdr *
2489 _bfd_elf_single_rel_hdr (asection *sec)
2490 {
2491 if (elf_section_data (sec)->rel.hdr)
2492 {
2493 BFD_ASSERT (elf_section_data (sec)->rela.hdr == NULL);
2494 return elf_section_data (sec)->rel.hdr;
2495 }
2496 else
2497 return elf_section_data (sec)->rela.hdr;
2498 }
2499
2500 /* Allocate and initialize a section-header for a new reloc section,
2501 containing relocations against ASECT. It is stored in RELDATA. If
2502 USE_RELA_P is TRUE, we use RELA relocations; otherwise, we use REL
2503 relocations. */
2504
2505 bfd_boolean
2506 _bfd_elf_init_reloc_shdr (bfd *abfd,
2507 struct bfd_elf_section_reloc_data *reldata,
2508 asection *asect,
2509 bfd_boolean use_rela_p)
2510 {
2511 Elf_Internal_Shdr *rel_hdr;
2512 char *name;
2513 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2514 bfd_size_type amt;
2515
2516 amt = sizeof (Elf_Internal_Shdr);
2517 BFD_ASSERT (reldata->hdr == NULL);
2518 rel_hdr = bfd_zalloc (abfd, amt);
2519 reldata->hdr = rel_hdr;
2520
2521 amt = sizeof ".rela" + strlen (asect->name);
2522 name = (char *) bfd_alloc (abfd, amt);
2523 if (name == NULL)
2524 return FALSE;
2525 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2526 rel_hdr->sh_name =
2527 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2528 FALSE);
2529 if (rel_hdr->sh_name == (unsigned int) -1)
2530 return FALSE;
2531 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2532 rel_hdr->sh_entsize = (use_rela_p
2533 ? bed->s->sizeof_rela
2534 : bed->s->sizeof_rel);
2535 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
2536 rel_hdr->sh_flags = 0;
2537 rel_hdr->sh_addr = 0;
2538 rel_hdr->sh_size = 0;
2539 rel_hdr->sh_offset = 0;
2540
2541 return TRUE;
2542 }
2543
2544 /* Return the default section type based on the passed in section flags. */
2545
2546 int
2547 bfd_elf_get_default_section_type (flagword flags)
2548 {
2549 if ((flags & SEC_ALLOC) != 0
2550 && (flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2551 return SHT_NOBITS;
2552 return SHT_PROGBITS;
2553 }
2554
2555 struct fake_section_arg
2556 {
2557 struct bfd_link_info *link_info;
2558 bfd_boolean failed;
2559 };
2560
2561 /* Set up an ELF internal section header for a section. */
2562
2563 static void
2564 elf_fake_sections (bfd *abfd, asection *asect, void *fsarg)
2565 {
2566 struct fake_section_arg *arg = (struct fake_section_arg *)fsarg;
2567 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2568 struct bfd_elf_section_data *esd = elf_section_data (asect);
2569 Elf_Internal_Shdr *this_hdr;
2570 unsigned int sh_type;
2571
2572 if (arg->failed)
2573 {
2574 /* We already failed; just get out of the bfd_map_over_sections
2575 loop. */
2576 return;
2577 }
2578
2579 this_hdr = &esd->this_hdr;
2580
2581 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2582 asect->name, FALSE);
2583 if (this_hdr->sh_name == (unsigned int) -1)
2584 {
2585 arg->failed = TRUE;
2586 return;
2587 }
2588
2589 /* Don't clear sh_flags. Assembler may set additional bits. */
2590
2591 if ((asect->flags & SEC_ALLOC) != 0
2592 || asect->user_set_vma)
2593 this_hdr->sh_addr = asect->vma;
2594 else
2595 this_hdr->sh_addr = 0;
2596
2597 this_hdr->sh_offset = 0;
2598 this_hdr->sh_size = asect->size;
2599 this_hdr->sh_link = 0;
2600 this_hdr->sh_addralign = (bfd_vma) 1 << asect->alignment_power;
2601 /* The sh_entsize and sh_info fields may have been set already by
2602 copy_private_section_data. */
2603
2604 this_hdr->bfd_section = asect;
2605 this_hdr->contents = NULL;
2606
2607 /* If the section type is unspecified, we set it based on
2608 asect->flags. */
2609 if ((asect->flags & SEC_GROUP) != 0)
2610 sh_type = SHT_GROUP;
2611 else
2612 sh_type = bfd_elf_get_default_section_type (asect->flags);
2613
2614 if (this_hdr->sh_type == SHT_NULL)
2615 this_hdr->sh_type = sh_type;
2616 else if (this_hdr->sh_type == SHT_NOBITS
2617 && sh_type == SHT_PROGBITS
2618 && (asect->flags & SEC_ALLOC) != 0)
2619 {
2620 /* Warn if we are changing a NOBITS section to PROGBITS, but
2621 allow the link to proceed. This can happen when users link
2622 non-bss input sections to bss output sections, or emit data
2623 to a bss output section via a linker script. */
2624 (*_bfd_error_handler)
2625 (_("warning: section `%A' type changed to PROGBITS"), asect);
2626 this_hdr->sh_type = sh_type;
2627 }
2628
2629 switch (this_hdr->sh_type)
2630 {
2631 default:
2632 break;
2633
2634 case SHT_STRTAB:
2635 case SHT_INIT_ARRAY:
2636 case SHT_FINI_ARRAY:
2637 case SHT_PREINIT_ARRAY:
2638 case SHT_NOTE:
2639 case SHT_NOBITS:
2640 case SHT_PROGBITS:
2641 break;
2642
2643 case SHT_HASH:
2644 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2645 break;
2646
2647 case SHT_DYNSYM:
2648 this_hdr->sh_entsize = bed->s->sizeof_sym;
2649 break;
2650
2651 case SHT_DYNAMIC:
2652 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2653 break;
2654
2655 case SHT_RELA:
2656 if (get_elf_backend_data (abfd)->may_use_rela_p)
2657 this_hdr->sh_entsize = bed->s->sizeof_rela;
2658 break;
2659
2660 case SHT_REL:
2661 if (get_elf_backend_data (abfd)->may_use_rel_p)
2662 this_hdr->sh_entsize = bed->s->sizeof_rel;
2663 break;
2664
2665 case SHT_GNU_versym:
2666 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2667 break;
2668
2669 case SHT_GNU_verdef:
2670 this_hdr->sh_entsize = 0;
2671 /* objcopy or strip will copy over sh_info, but may not set
2672 cverdefs. The linker will set cverdefs, but sh_info will be
2673 zero. */
2674 if (this_hdr->sh_info == 0)
2675 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2676 else
2677 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2678 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2679 break;
2680
2681 case SHT_GNU_verneed:
2682 this_hdr->sh_entsize = 0;
2683 /* objcopy or strip will copy over sh_info, but may not set
2684 cverrefs. The linker will set cverrefs, but sh_info will be
2685 zero. */
2686 if (this_hdr->sh_info == 0)
2687 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2688 else
2689 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2690 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2691 break;
2692
2693 case SHT_GROUP:
2694 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
2695 break;
2696
2697 case SHT_GNU_HASH:
2698 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
2699 break;
2700 }
2701
2702 if ((asect->flags & SEC_ALLOC) != 0)
2703 this_hdr->sh_flags |= SHF_ALLOC;
2704 if ((asect->flags & SEC_READONLY) == 0)
2705 this_hdr->sh_flags |= SHF_WRITE;
2706 if ((asect->flags & SEC_CODE) != 0)
2707 this_hdr->sh_flags |= SHF_EXECINSTR;
2708 if ((asect->flags & SEC_MERGE) != 0)
2709 {
2710 this_hdr->sh_flags |= SHF_MERGE;
2711 this_hdr->sh_entsize = asect->entsize;
2712 if ((asect->flags & SEC_STRINGS) != 0)
2713 this_hdr->sh_flags |= SHF_STRINGS;
2714 }
2715 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2716 this_hdr->sh_flags |= SHF_GROUP;
2717 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2718 {
2719 this_hdr->sh_flags |= SHF_TLS;
2720 if (asect->size == 0
2721 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2722 {
2723 struct bfd_link_order *o = asect->map_tail.link_order;
2724
2725 this_hdr->sh_size = 0;
2726 if (o != NULL)
2727 {
2728 this_hdr->sh_size = o->offset + o->size;
2729 if (this_hdr->sh_size != 0)
2730 this_hdr->sh_type = SHT_NOBITS;
2731 }
2732 }
2733 }
2734 if ((asect->flags & (SEC_GROUP | SEC_EXCLUDE)) == SEC_EXCLUDE)
2735 this_hdr->sh_flags |= SHF_EXCLUDE;
2736
2737 /* If the section has relocs, set up a section header for the
2738 SHT_REL[A] section. If two relocation sections are required for
2739 this section, it is up to the processor-specific back-end to
2740 create the other. */
2741 if ((asect->flags & SEC_RELOC) != 0)
2742 {
2743 /* When doing a relocatable link, create both REL and RELA sections if
2744 needed. */
2745 if (arg->link_info
2746 /* Do the normal setup if we wouldn't create any sections here. */
2747 && esd->rel.count + esd->rela.count > 0
2748 && (arg->link_info->relocatable || arg->link_info->emitrelocations))
2749 {
2750 if (esd->rel.count && esd->rel.hdr == NULL
2751 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rel, asect, FALSE))
2752 {
2753 arg->failed = TRUE;
2754 return;
2755 }
2756 if (esd->rela.count && esd->rela.hdr == NULL
2757 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rela, asect, TRUE))
2758 {
2759 arg->failed = TRUE;
2760 return;
2761 }
2762 }
2763 else if (!_bfd_elf_init_reloc_shdr (abfd,
2764 (asect->use_rela_p
2765 ? &esd->rela : &esd->rel),
2766 asect,
2767 asect->use_rela_p))
2768 arg->failed = TRUE;
2769 }
2770
2771 /* Check for processor-specific section types. */
2772 sh_type = this_hdr->sh_type;
2773 if (bed->elf_backend_fake_sections
2774 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2775 arg->failed = TRUE;
2776
2777 if (sh_type == SHT_NOBITS && asect->size != 0)
2778 {
2779 /* Don't change the header type from NOBITS if we are being
2780 called for objcopy --only-keep-debug. */
2781 this_hdr->sh_type = sh_type;
2782 }
2783 }
2784
2785 /* Fill in the contents of a SHT_GROUP section. Called from
2786 _bfd_elf_compute_section_file_positions for gas, objcopy, and
2787 when ELF targets use the generic linker, ld. Called for ld -r
2788 from bfd_elf_final_link. */
2789
2790 void
2791 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2792 {
2793 bfd_boolean *failedptr = (bfd_boolean *) failedptrarg;
2794 asection *elt, *first;
2795 unsigned char *loc;
2796 bfd_boolean gas;
2797
2798 /* Ignore linker created group section. See elfNN_ia64_object_p in
2799 elfxx-ia64.c. */
2800 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
2801 || *failedptr)
2802 return;
2803
2804 if (elf_section_data (sec)->this_hdr.sh_info == 0)
2805 {
2806 unsigned long symindx = 0;
2807
2808 /* elf_group_id will have been set up by objcopy and the
2809 generic linker. */
2810 if (elf_group_id (sec) != NULL)
2811 symindx = elf_group_id (sec)->udata.i;
2812
2813 if (symindx == 0)
2814 {
2815 /* If called from the assembler, swap_out_syms will have set up
2816 elf_section_syms. */
2817 BFD_ASSERT (elf_section_syms (abfd) != NULL);
2818 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2819 }
2820 elf_section_data (sec)->this_hdr.sh_info = symindx;
2821 }
2822 else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2)
2823 {
2824 /* The ELF backend linker sets sh_info to -2 when the group
2825 signature symbol is global, and thus the index can't be
2826 set until all local symbols are output. */
2827 asection *igroup = elf_sec_group (elf_next_in_group (sec));
2828 struct bfd_elf_section_data *sec_data = elf_section_data (igroup);
2829 unsigned long symndx = sec_data->this_hdr.sh_info;
2830 unsigned long extsymoff = 0;
2831 struct elf_link_hash_entry *h;
2832
2833 if (!elf_bad_symtab (igroup->owner))
2834 {
2835 Elf_Internal_Shdr *symtab_hdr;
2836
2837 symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr;
2838 extsymoff = symtab_hdr->sh_info;
2839 }
2840 h = elf_sym_hashes (igroup->owner)[symndx - extsymoff];
2841 while (h->root.type == bfd_link_hash_indirect
2842 || h->root.type == bfd_link_hash_warning)
2843 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2844
2845 elf_section_data (sec)->this_hdr.sh_info = h->indx;
2846 }
2847
2848 /* The contents won't be allocated for "ld -r" or objcopy. */
2849 gas = TRUE;
2850 if (sec->contents == NULL)
2851 {
2852 gas = FALSE;
2853 sec->contents = (unsigned char *) bfd_alloc (abfd, sec->size);
2854
2855 /* Arrange for the section to be written out. */
2856 elf_section_data (sec)->this_hdr.contents = sec->contents;
2857 if (sec->contents == NULL)
2858 {
2859 *failedptr = TRUE;
2860 return;
2861 }
2862 }
2863
2864 loc = sec->contents + sec->size;
2865
2866 /* Get the pointer to the first section in the group that gas
2867 squirreled away here. objcopy arranges for this to be set to the
2868 start of the input section group. */
2869 first = elt = elf_next_in_group (sec);
2870
2871 /* First element is a flag word. Rest of section is elf section
2872 indices for all the sections of the group. Write them backwards
2873 just to keep the group in the same order as given in .section
2874 directives, not that it matters. */
2875 while (elt != NULL)
2876 {
2877 asection *s;
2878
2879 s = elt;
2880 if (!gas)
2881 s = s->output_section;
2882 if (s != NULL
2883 && !bfd_is_abs_section (s))
2884 {
2885 unsigned int idx = elf_section_data (s)->this_idx;
2886
2887 loc -= 4;
2888 H_PUT_32 (abfd, idx, loc);
2889 }
2890 elt = elf_next_in_group (elt);
2891 if (elt == first)
2892 break;
2893 }
2894
2895 if ((loc -= 4) != sec->contents)
2896 abort ();
2897
2898 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2899 }
2900
2901 /* Assign all ELF section numbers. The dummy first section is handled here
2902 too. The link/info pointers for the standard section types are filled
2903 in here too, while we're at it. */
2904
2905 static bfd_boolean
2906 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
2907 {
2908 struct elf_obj_tdata *t = elf_tdata (abfd);
2909 asection *sec;
2910 unsigned int section_number, secn;
2911 Elf_Internal_Shdr **i_shdrp;
2912 struct bfd_elf_section_data *d;
2913 bfd_boolean need_symtab;
2914
2915 section_number = 1;
2916
2917 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2918
2919 /* SHT_GROUP sections are in relocatable files only. */
2920 if (link_info == NULL || link_info->relocatable)
2921 {
2922 /* Put SHT_GROUP sections first. */
2923 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2924 {
2925 d = elf_section_data (sec);
2926
2927 if (d->this_hdr.sh_type == SHT_GROUP)
2928 {
2929 if (sec->flags & SEC_LINKER_CREATED)
2930 {
2931 /* Remove the linker created SHT_GROUP sections. */
2932 bfd_section_list_remove (abfd, sec);
2933 abfd->section_count--;
2934 }
2935 else
2936 d->this_idx = section_number++;
2937 }
2938 }
2939 }
2940
2941 for (sec = abfd->sections; sec; sec = sec->next)
2942 {
2943 d = elf_section_data (sec);
2944
2945 if (d->this_hdr.sh_type != SHT_GROUP)
2946 d->this_idx = section_number++;
2947 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
2948 if (d->rel.hdr)
2949 {
2950 d->rel.idx = section_number++;
2951 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel.hdr->sh_name);
2952 }
2953 else
2954 d->rel.idx = 0;
2955
2956 if (d->rela.hdr)
2957 {
2958 d->rela.idx = section_number++;
2959 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rela.hdr->sh_name);
2960 }
2961 else
2962 d->rela.idx = 0;
2963 }
2964
2965 t->shstrtab_section = section_number++;
2966 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
2967 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
2968
2969 need_symtab = (bfd_get_symcount (abfd) > 0
2970 || (link_info == NULL
2971 && ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
2972 == HAS_RELOC)));
2973 if (need_symtab)
2974 {
2975 t->symtab_section = section_number++;
2976 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
2977 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
2978 {
2979 t->symtab_shndx_section = section_number++;
2980 t->symtab_shndx_hdr.sh_name
2981 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2982 ".symtab_shndx", FALSE);
2983 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
2984 return FALSE;
2985 }
2986 t->strtab_section = section_number++;
2987 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
2988 }
2989
2990 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
2991 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
2992
2993 elf_numsections (abfd) = section_number;
2994 elf_elfheader (abfd)->e_shnum = section_number;
2995
2996 /* Set up the list of section header pointers, in agreement with the
2997 indices. */
2998 i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc2 (abfd, section_number,
2999 sizeof (Elf_Internal_Shdr *));
3000 if (i_shdrp == NULL)
3001 return FALSE;
3002
3003 i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd,
3004 sizeof (Elf_Internal_Shdr));
3005 if (i_shdrp[0] == NULL)
3006 {
3007 bfd_release (abfd, i_shdrp);
3008 return FALSE;
3009 }
3010
3011 elf_elfsections (abfd) = i_shdrp;
3012
3013 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
3014 if (need_symtab)
3015 {
3016 i_shdrp[t->symtab_section] = &t->symtab_hdr;
3017 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
3018 {
3019 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
3020 t->symtab_shndx_hdr.sh_link = t->symtab_section;
3021 }
3022 i_shdrp[t->strtab_section] = &t->strtab_hdr;
3023 t->symtab_hdr.sh_link = t->strtab_section;
3024 }
3025
3026 for (sec = abfd->sections; sec; sec = sec->next)
3027 {
3028 asection *s;
3029 const char *name;
3030
3031 d = elf_section_data (sec);
3032
3033 i_shdrp[d->this_idx] = &d->this_hdr;
3034 if (d->rel.idx != 0)
3035 i_shdrp[d->rel.idx] = d->rel.hdr;
3036 if (d->rela.idx != 0)
3037 i_shdrp[d->rela.idx] = d->rela.hdr;
3038
3039 /* Fill in the sh_link and sh_info fields while we're at it. */
3040
3041 /* sh_link of a reloc section is the section index of the symbol
3042 table. sh_info is the section index of the section to which
3043 the relocation entries apply. */
3044 if (d->rel.idx != 0)
3045 {
3046 d->rel.hdr->sh_link = t->symtab_section;
3047 d->rel.hdr->sh_info = d->this_idx;
3048 }
3049 if (d->rela.idx != 0)
3050 {
3051 d->rela.hdr->sh_link = t->symtab_section;
3052 d->rela.hdr->sh_info = d->this_idx;
3053 }
3054
3055 /* We need to set up sh_link for SHF_LINK_ORDER. */
3056 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3057 {
3058 s = elf_linked_to_section (sec);
3059 if (s)
3060 {
3061 /* elf_linked_to_section points to the input section. */
3062 if (link_info != NULL)
3063 {
3064 /* Check discarded linkonce section. */
3065 if (elf_discarded_section (s))
3066 {
3067 asection *kept;
3068 (*_bfd_error_handler)
3069 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
3070 abfd, d->this_hdr.bfd_section,
3071 s, s->owner);
3072 /* Point to the kept section if it has the same
3073 size as the discarded one. */
3074 kept = _bfd_elf_check_kept_section (s, link_info);
3075 if (kept == NULL)
3076 {
3077 bfd_set_error (bfd_error_bad_value);
3078 return FALSE;
3079 }
3080 s = kept;
3081 }
3082
3083 s = s->output_section;
3084 BFD_ASSERT (s != NULL);
3085 }
3086 else
3087 {
3088 /* Handle objcopy. */
3089 if (s->output_section == NULL)
3090 {
3091 (*_bfd_error_handler)
3092 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
3093 abfd, d->this_hdr.bfd_section, s, s->owner);
3094 bfd_set_error (bfd_error_bad_value);
3095 return FALSE;
3096 }
3097 s = s->output_section;
3098 }
3099 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3100 }
3101 else
3102 {
3103 /* PR 290:
3104 The Intel C compiler generates SHT_IA_64_UNWIND with
3105 SHF_LINK_ORDER. But it doesn't set the sh_link or
3106 sh_info fields. Hence we could get the situation
3107 where s is NULL. */
3108 const struct elf_backend_data *bed
3109 = get_elf_backend_data (abfd);
3110 if (bed->link_order_error_handler)
3111 bed->link_order_error_handler
3112 (_("%B: warning: sh_link not set for section `%A'"),
3113 abfd, sec);
3114 }
3115 }
3116
3117 switch (d->this_hdr.sh_type)
3118 {
3119 case SHT_REL:
3120 case SHT_RELA:
3121 /* A reloc section which we are treating as a normal BFD
3122 section. sh_link is the section index of the symbol
3123 table. sh_info is the section index of the section to
3124 which the relocation entries apply. We assume that an
3125 allocated reloc section uses the dynamic symbol table.
3126 FIXME: How can we be sure? */
3127 s = bfd_get_section_by_name (abfd, ".dynsym");
3128 if (s != NULL)
3129 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3130
3131 /* We look up the section the relocs apply to by name. */
3132 name = sec->name;
3133 if (d->this_hdr.sh_type == SHT_REL)
3134 name += 4;
3135 else
3136 name += 5;
3137 s = bfd_get_section_by_name (abfd, name);
3138 if (s != NULL)
3139 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3140 break;
3141
3142 case SHT_STRTAB:
3143 /* We assume that a section named .stab*str is a stabs
3144 string section. We look for a section with the same name
3145 but without the trailing ``str'', and set its sh_link
3146 field to point to this section. */
3147 if (CONST_STRNEQ (sec->name, ".stab")
3148 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3149 {
3150 size_t len;
3151 char *alc;
3152
3153 len = strlen (sec->name);
3154 alc = (char *) bfd_malloc (len - 2);
3155 if (alc == NULL)
3156 return FALSE;
3157 memcpy (alc, sec->name, len - 3);
3158 alc[len - 3] = '\0';
3159 s = bfd_get_section_by_name (abfd, alc);
3160 free (alc);
3161 if (s != NULL)
3162 {
3163 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3164
3165 /* This is a .stab section. */
3166 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3167 elf_section_data (s)->this_hdr.sh_entsize
3168 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3169 }
3170 }
3171 break;
3172
3173 case SHT_DYNAMIC:
3174 case SHT_DYNSYM:
3175 case SHT_GNU_verneed:
3176 case SHT_GNU_verdef:
3177 /* sh_link is the section header index of the string table
3178 used for the dynamic entries, or the symbol table, or the
3179 version strings. */
3180 s = bfd_get_section_by_name (abfd, ".dynstr");
3181 if (s != NULL)
3182 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3183 break;
3184
3185 case SHT_GNU_LIBLIST:
3186 /* sh_link is the section header index of the prelink library
3187 list used for the dynamic entries, or the symbol table, or
3188 the version strings. */
3189 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3190 ? ".dynstr" : ".gnu.libstr");
3191 if (s != NULL)
3192 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3193 break;
3194
3195 case SHT_HASH:
3196 case SHT_GNU_HASH:
3197 case SHT_GNU_versym:
3198 /* sh_link is the section header index of the symbol table
3199 this hash table or version table is for. */
3200 s = bfd_get_section_by_name (abfd, ".dynsym");
3201 if (s != NULL)
3202 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3203 break;
3204
3205 case SHT_GROUP:
3206 d->this_hdr.sh_link = t->symtab_section;
3207 }
3208 }
3209
3210 for (secn = 1; secn < section_number; ++secn)
3211 if (i_shdrp[secn] == NULL)
3212 i_shdrp[secn] = i_shdrp[0];
3213 else
3214 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
3215 i_shdrp[secn]->sh_name);
3216 return TRUE;
3217 }
3218
3219 /* Map symbol from it's internal number to the external number, moving
3220 all local symbols to be at the head of the list. */
3221
3222 static bfd_boolean
3223 sym_is_global (bfd *abfd, asymbol *sym)
3224 {
3225 /* If the backend has a special mapping, use it. */
3226 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3227 if (bed->elf_backend_sym_is_global)
3228 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3229
3230 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0
3231 || bfd_is_und_section (bfd_get_section (sym))
3232 || bfd_is_com_section (bfd_get_section (sym)));
3233 }
3234
3235 /* Don't output section symbols for sections that are not going to be
3236 output. */
3237
3238 static bfd_boolean
3239 ignore_section_sym (bfd *abfd, asymbol *sym)
3240 {
3241 return ((sym->flags & BSF_SECTION_SYM) != 0
3242 && !(sym->section->owner == abfd
3243 || (sym->section->output_section->owner == abfd
3244 && sym->section->output_offset == 0)));
3245 }
3246
3247 static bfd_boolean
3248 elf_map_symbols (bfd *abfd)
3249 {
3250 unsigned int symcount = bfd_get_symcount (abfd);
3251 asymbol **syms = bfd_get_outsymbols (abfd);
3252 asymbol **sect_syms;
3253 unsigned int num_locals = 0;
3254 unsigned int num_globals = 0;
3255 unsigned int num_locals2 = 0;
3256 unsigned int num_globals2 = 0;
3257 int max_index = 0;
3258 unsigned int idx;
3259 asection *asect;
3260 asymbol **new_syms;
3261
3262 #ifdef DEBUG
3263 fprintf (stderr, "elf_map_symbols\n");
3264 fflush (stderr);
3265 #endif
3266
3267 for (asect = abfd->sections; asect; asect = asect->next)
3268 {
3269 if (max_index < asect->index)
3270 max_index = asect->index;
3271 }
3272
3273 max_index++;
3274 sect_syms = (asymbol **) bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
3275 if (sect_syms == NULL)
3276 return FALSE;
3277 elf_section_syms (abfd) = sect_syms;
3278 elf_num_section_syms (abfd) = max_index;
3279
3280 /* Init sect_syms entries for any section symbols we have already
3281 decided to output. */
3282 for (idx = 0; idx < symcount; idx++)
3283 {
3284 asymbol *sym = syms[idx];
3285
3286 if ((sym->flags & BSF_SECTION_SYM) != 0
3287 && sym->value == 0
3288 && !ignore_section_sym (abfd, sym))
3289 {
3290 asection *sec = sym->section;
3291
3292 if (sec->owner != abfd)
3293 sec = sec->output_section;
3294
3295 sect_syms[sec->index] = syms[idx];
3296 }
3297 }
3298
3299 /* Classify all of the symbols. */
3300 for (idx = 0; idx < symcount; idx++)
3301 {
3302 if (ignore_section_sym (abfd, syms[idx]))
3303 continue;
3304 if (!sym_is_global (abfd, syms[idx]))
3305 num_locals++;
3306 else
3307 num_globals++;
3308 }
3309
3310 /* We will be adding a section symbol for each normal BFD section. Most
3311 sections will already have a section symbol in outsymbols, but
3312 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3313 at least in that case. */
3314 for (asect = abfd->sections; asect; asect = asect->next)
3315 {
3316 if (sect_syms[asect->index] == NULL)
3317 {
3318 if (!sym_is_global (abfd, asect->symbol))
3319 num_locals++;
3320 else
3321 num_globals++;
3322 }
3323 }
3324
3325 /* Now sort the symbols so the local symbols are first. */
3326 new_syms = (asymbol **) bfd_alloc2 (abfd, num_locals + num_globals,
3327 sizeof (asymbol *));
3328
3329 if (new_syms == NULL)
3330 return FALSE;
3331
3332 for (idx = 0; idx < symcount; idx++)
3333 {
3334 asymbol *sym = syms[idx];
3335 unsigned int i;
3336
3337 if (ignore_section_sym (abfd, sym))
3338 continue;
3339 if (!sym_is_global (abfd, sym))
3340 i = num_locals2++;
3341 else
3342 i = num_locals + num_globals2++;
3343 new_syms[i] = sym;
3344 sym->udata.i = i + 1;
3345 }
3346 for (asect = abfd->sections; asect; asect = asect->next)
3347 {
3348 if (sect_syms[asect->index] == NULL)
3349 {
3350 asymbol *sym = asect->symbol;
3351 unsigned int i;
3352
3353 sect_syms[asect->index] = sym;
3354 if (!sym_is_global (abfd, sym))
3355 i = num_locals2++;
3356 else
3357 i = num_locals + num_globals2++;
3358 new_syms[i] = sym;
3359 sym->udata.i = i + 1;
3360 }
3361 }
3362
3363 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3364
3365 elf_num_locals (abfd) = num_locals;
3366 elf_num_globals (abfd) = num_globals;
3367 return TRUE;
3368 }
3369
3370 /* Align to the maximum file alignment that could be required for any
3371 ELF data structure. */
3372
3373 static inline file_ptr
3374 align_file_position (file_ptr off, int align)
3375 {
3376 return (off + align - 1) & ~(align - 1);
3377 }
3378
3379 /* Assign a file position to a section, optionally aligning to the
3380 required section alignment. */
3381
3382 file_ptr
3383 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3384 file_ptr offset,
3385 bfd_boolean align)
3386 {
3387 if (align && i_shdrp->sh_addralign > 1)
3388 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
3389 i_shdrp->sh_offset = offset;
3390 if (i_shdrp->bfd_section != NULL)
3391 i_shdrp->bfd_section->filepos = offset;
3392 if (i_shdrp->sh_type != SHT_NOBITS)
3393 offset += i_shdrp->sh_size;
3394 return offset;
3395 }
3396
3397 /* Compute the file positions we are going to put the sections at, and
3398 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3399 is not NULL, this is being called by the ELF backend linker. */
3400
3401 bfd_boolean
3402 _bfd_elf_compute_section_file_positions (bfd *abfd,
3403 struct bfd_link_info *link_info)
3404 {
3405 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3406 struct fake_section_arg fsargs;
3407 bfd_boolean failed;
3408 struct bfd_strtab_hash *strtab = NULL;
3409 Elf_Internal_Shdr *shstrtab_hdr;
3410 bfd_boolean need_symtab;
3411
3412 if (abfd->output_has_begun)
3413 return TRUE;
3414
3415 /* Do any elf backend specific processing first. */
3416 if (bed->elf_backend_begin_write_processing)
3417 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3418
3419 if (! prep_headers (abfd))
3420 return FALSE;
3421
3422 /* Post process the headers if necessary. */
3423 if (bed->elf_backend_post_process_headers)
3424 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3425
3426 fsargs.failed = FALSE;
3427 fsargs.link_info = link_info;
3428 bfd_map_over_sections (abfd, elf_fake_sections, &fsargs);
3429 if (fsargs.failed)
3430 return FALSE;
3431
3432 if (!assign_section_numbers (abfd, link_info))
3433 return FALSE;
3434
3435 /* The backend linker builds symbol table information itself. */
3436 need_symtab = (link_info == NULL
3437 && (bfd_get_symcount (abfd) > 0
3438 || ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
3439 == HAS_RELOC)));
3440 if (need_symtab)
3441 {
3442 /* Non-zero if doing a relocatable link. */
3443 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3444
3445 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3446 return FALSE;
3447 }
3448
3449 failed = FALSE;
3450 if (link_info == NULL)
3451 {
3452 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3453 if (failed)
3454 return FALSE;
3455 }
3456
3457 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3458 /* sh_name was set in prep_headers. */
3459 shstrtab_hdr->sh_type = SHT_STRTAB;
3460 shstrtab_hdr->sh_flags = 0;
3461 shstrtab_hdr->sh_addr = 0;
3462 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3463 shstrtab_hdr->sh_entsize = 0;
3464 shstrtab_hdr->sh_link = 0;
3465 shstrtab_hdr->sh_info = 0;
3466 /* sh_offset is set in assign_file_positions_except_relocs. */
3467 shstrtab_hdr->sh_addralign = 1;
3468
3469 if (!assign_file_positions_except_relocs (abfd, link_info))
3470 return FALSE;
3471
3472 if (need_symtab)
3473 {
3474 file_ptr off;
3475 Elf_Internal_Shdr *hdr;
3476
3477 off = elf_tdata (abfd)->next_file_pos;
3478
3479 hdr = &elf_tdata (abfd)->symtab_hdr;
3480 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3481
3482 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3483 if (hdr->sh_size != 0)
3484 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3485
3486 hdr = &elf_tdata (abfd)->strtab_hdr;
3487 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3488
3489 elf_tdata (abfd)->next_file_pos = off;
3490
3491 /* Now that we know where the .strtab section goes, write it
3492 out. */
3493 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3494 || ! _bfd_stringtab_emit (abfd, strtab))
3495 return FALSE;
3496 _bfd_stringtab_free (strtab);
3497 }
3498
3499 abfd->output_has_begun = TRUE;
3500
3501 return TRUE;
3502 }
3503
3504 /* Make an initial estimate of the size of the program header. If we
3505 get the number wrong here, we'll redo section placement. */
3506
3507 static bfd_size_type
3508 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
3509 {
3510 size_t segs;
3511 asection *s;
3512 const struct elf_backend_data *bed;
3513
3514 /* Assume we will need exactly two PT_LOAD segments: one for text
3515 and one for data. */
3516 segs = 2;
3517
3518 s = bfd_get_section_by_name (abfd, ".interp");
3519 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3520 {
3521 /* If we have a loadable interpreter section, we need a
3522 PT_INTERP segment. In this case, assume we also need a
3523 PT_PHDR segment, although that may not be true for all
3524 targets. */
3525 segs += 2;
3526 }
3527
3528 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
3529 {
3530 /* We need a PT_DYNAMIC segment. */
3531 ++segs;
3532 }
3533
3534 if (info != NULL && info->relro)
3535 {
3536 /* We need a PT_GNU_RELRO segment. */
3537 ++segs;
3538 }
3539
3540 if (elf_tdata (abfd)->eh_frame_hdr)
3541 {
3542 /* We need a PT_GNU_EH_FRAME segment. */
3543 ++segs;
3544 }
3545
3546 if (elf_tdata (abfd)->stack_flags)
3547 {
3548 /* We need a PT_GNU_STACK segment. */
3549 ++segs;
3550 }
3551
3552 for (s = abfd->sections; s != NULL; s = s->next)
3553 {
3554 if ((s->flags & SEC_LOAD) != 0
3555 && CONST_STRNEQ (s->name, ".note"))
3556 {
3557 /* We need a PT_NOTE segment. */
3558 ++segs;
3559 /* Try to create just one PT_NOTE segment
3560 for all adjacent loadable .note* sections.
3561 gABI requires that within a PT_NOTE segment
3562 (and also inside of each SHT_NOTE section)
3563 each note is padded to a multiple of 4 size,
3564 so we check whether the sections are correctly
3565 aligned. */
3566 if (s->alignment_power == 2)
3567 while (s->next != NULL
3568 && s->next->alignment_power == 2
3569 && (s->next->flags & SEC_LOAD) != 0
3570 && CONST_STRNEQ (s->next->name, ".note"))
3571 s = s->next;
3572 }
3573 }
3574
3575 for (s = abfd->sections; s != NULL; s = s->next)
3576 {
3577 if (s->flags & SEC_THREAD_LOCAL)
3578 {
3579 /* We need a PT_TLS segment. */
3580 ++segs;
3581 break;
3582 }
3583 }
3584
3585 /* Let the backend count up any program headers it might need. */
3586 bed = get_elf_backend_data (abfd);
3587 if (bed->elf_backend_additional_program_headers)
3588 {
3589 int a;
3590
3591 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
3592 if (a == -1)
3593 abort ();
3594 segs += a;
3595 }
3596
3597 return segs * bed->s->sizeof_phdr;
3598 }
3599
3600 /* Find the segment that contains the output_section of section. */
3601
3602 Elf_Internal_Phdr *
3603 _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
3604 {
3605 struct elf_segment_map *m;
3606 Elf_Internal_Phdr *p;
3607
3608 for (m = elf_tdata (abfd)->segment_map,
3609 p = elf_tdata (abfd)->phdr;
3610 m != NULL;
3611 m = m->next, p++)
3612 {
3613 int i;
3614
3615 for (i = m->count - 1; i >= 0; i--)
3616 if (m->sections[i] == section)
3617 return p;
3618 }
3619
3620 return NULL;
3621 }
3622
3623 /* Create a mapping from a set of sections to a program segment. */
3624
3625 static struct elf_segment_map *
3626 make_mapping (bfd *abfd,
3627 asection **sections,
3628 unsigned int from,
3629 unsigned int to,
3630 bfd_boolean phdr)
3631 {
3632 struct elf_segment_map *m;
3633 unsigned int i;
3634 asection **hdrpp;
3635 bfd_size_type amt;
3636
3637 amt = sizeof (struct elf_segment_map);
3638 amt += (to - from - 1) * sizeof (asection *);
3639 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3640 if (m == NULL)
3641 return NULL;
3642 m->next = NULL;
3643 m->p_type = PT_LOAD;
3644 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3645 m->sections[i - from] = *hdrpp;
3646 m->count = to - from;
3647
3648 if (from == 0 && phdr)
3649 {
3650 /* Include the headers in the first PT_LOAD segment. */
3651 m->includes_filehdr = 1;
3652 m->includes_phdrs = 1;
3653 }
3654
3655 return m;
3656 }
3657
3658 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3659 on failure. */
3660
3661 struct elf_segment_map *
3662 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3663 {
3664 struct elf_segment_map *m;
3665
3666 m = (struct elf_segment_map *) bfd_zalloc (abfd,
3667 sizeof (struct elf_segment_map));
3668 if (m == NULL)
3669 return NULL;
3670 m->next = NULL;
3671 m->p_type = PT_DYNAMIC;
3672 m->count = 1;
3673 m->sections[0] = dynsec;
3674
3675 return m;
3676 }
3677
3678 /* Possibly add or remove segments from the segment map. */
3679
3680 static bfd_boolean
3681 elf_modify_segment_map (bfd *abfd,
3682 struct bfd_link_info *info,
3683 bfd_boolean remove_empty_load)
3684 {
3685 struct elf_segment_map **m;
3686 const struct elf_backend_data *bed;
3687
3688 /* The placement algorithm assumes that non allocated sections are
3689 not in PT_LOAD segments. We ensure this here by removing such
3690 sections from the segment map. We also remove excluded
3691 sections. Finally, any PT_LOAD segment without sections is
3692 removed. */
3693 m = &elf_tdata (abfd)->segment_map;
3694 while (*m)
3695 {
3696 unsigned int i, new_count;
3697
3698 for (new_count = 0, i = 0; i < (*m)->count; i++)
3699 {
3700 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
3701 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
3702 || (*m)->p_type != PT_LOAD))
3703 {
3704 (*m)->sections[new_count] = (*m)->sections[i];
3705 new_count++;
3706 }
3707 }
3708 (*m)->count = new_count;
3709
3710 if (remove_empty_load && (*m)->p_type == PT_LOAD && (*m)->count == 0)
3711 *m = (*m)->next;
3712 else
3713 m = &(*m)->next;
3714 }
3715
3716 bed = get_elf_backend_data (abfd);
3717 if (bed->elf_backend_modify_segment_map != NULL)
3718 {
3719 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
3720 return FALSE;
3721 }
3722
3723 return TRUE;
3724 }
3725
3726 /* Set up a mapping from BFD sections to program segments. */
3727
3728 bfd_boolean
3729 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
3730 {
3731 unsigned int count;
3732 struct elf_segment_map *m;
3733 asection **sections = NULL;
3734 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3735 bfd_boolean no_user_phdrs;
3736
3737 no_user_phdrs = elf_tdata (abfd)->segment_map == NULL;
3738 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
3739 {
3740 asection *s;
3741 unsigned int i;
3742 struct elf_segment_map *mfirst;
3743 struct elf_segment_map **pm;
3744 asection *last_hdr;
3745 bfd_vma last_size;
3746 unsigned int phdr_index;
3747 bfd_vma maxpagesize;
3748 asection **hdrpp;
3749 bfd_boolean phdr_in_segment = TRUE;
3750 bfd_boolean writable;
3751 int tls_count = 0;
3752 asection *first_tls = NULL;
3753 asection *dynsec, *eh_frame_hdr;
3754 bfd_size_type amt;
3755 bfd_vma addr_mask, wrap_to = 0;
3756
3757 /* Select the allocated sections, and sort them. */
3758
3759 sections = (asection **) bfd_malloc2 (bfd_count_sections (abfd),
3760 sizeof (asection *));
3761 if (sections == NULL)
3762 goto error_return;
3763
3764 /* Calculate top address, avoiding undefined behaviour of shift
3765 left operator when shift count is equal to size of type
3766 being shifted. */
3767 addr_mask = ((bfd_vma) 1 << (bfd_arch_bits_per_address (abfd) - 1)) - 1;
3768 addr_mask = (addr_mask << 1) + 1;
3769
3770 i = 0;
3771 for (s = abfd->sections; s != NULL; s = s->next)
3772 {
3773 if ((s->flags & SEC_ALLOC) != 0)
3774 {
3775 sections[i] = s;
3776 ++i;
3777 /* A wrapping section potentially clashes with header. */
3778 if (((s->lma + s->size) & addr_mask) < (s->lma & addr_mask))
3779 wrap_to = (s->lma + s->size) & addr_mask;
3780 }
3781 }
3782 BFD_ASSERT (i <= bfd_count_sections (abfd));
3783 count = i;
3784
3785 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3786
3787 /* Build the mapping. */
3788
3789 mfirst = NULL;
3790 pm = &mfirst;
3791
3792 /* If we have a .interp section, then create a PT_PHDR segment for
3793 the program headers and a PT_INTERP segment for the .interp
3794 section. */
3795 s = bfd_get_section_by_name (abfd, ".interp");
3796 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3797 {
3798 amt = sizeof (struct elf_segment_map);
3799 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3800 if (m == NULL)
3801 goto error_return;
3802 m->next = NULL;
3803 m->p_type = PT_PHDR;
3804 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3805 m->p_flags = PF_R | PF_X;
3806 m->p_flags_valid = 1;
3807 m->includes_phdrs = 1;
3808
3809 *pm = m;
3810 pm = &m->next;
3811
3812 amt = sizeof (struct elf_segment_map);
3813 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3814 if (m == NULL)
3815 goto error_return;
3816 m->next = NULL;
3817 m->p_type = PT_INTERP;
3818 m->count = 1;
3819 m->sections[0] = s;
3820
3821 *pm = m;
3822 pm = &m->next;
3823 }
3824
3825 /* Look through the sections. We put sections in the same program
3826 segment when the start of the second section can be placed within
3827 a few bytes of the end of the first section. */
3828 last_hdr = NULL;
3829 last_size = 0;
3830 phdr_index = 0;
3831 maxpagesize = bed->maxpagesize;
3832 writable = FALSE;
3833 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3834 if (dynsec != NULL
3835 && (dynsec->flags & SEC_LOAD) == 0)
3836 dynsec = NULL;
3837
3838 /* Deal with -Ttext or something similar such that the first section
3839 is not adjacent to the program headers. This is an
3840 approximation, since at this point we don't know exactly how many
3841 program headers we will need. */
3842 if (count > 0)
3843 {
3844 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
3845
3846 if (phdr_size == (bfd_size_type) -1)
3847 phdr_size = get_program_header_size (abfd, info);
3848 if ((abfd->flags & D_PAGED) == 0
3849 || (sections[0]->lma & addr_mask) < phdr_size
3850 || ((sections[0]->lma & addr_mask) % maxpagesize
3851 < phdr_size % maxpagesize)
3852 || (sections[0]->lma & addr_mask & -maxpagesize) < wrap_to)
3853 phdr_in_segment = FALSE;
3854 }
3855
3856 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3857 {
3858 asection *hdr;
3859 bfd_boolean new_segment;
3860
3861 hdr = *hdrpp;
3862
3863 /* See if this section and the last one will fit in the same
3864 segment. */
3865
3866 if (last_hdr == NULL)
3867 {
3868 /* If we don't have a segment yet, then we don't need a new
3869 one (we build the last one after this loop). */
3870 new_segment = FALSE;
3871 }
3872 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3873 {
3874 /* If this section has a different relation between the
3875 virtual address and the load address, then we need a new
3876 segment. */
3877 new_segment = TRUE;
3878 }
3879 else if (hdr->lma < last_hdr->lma + last_size
3880 || last_hdr->lma + last_size < last_hdr->lma)
3881 {
3882 /* If this section has a load address that makes it overlap
3883 the previous section, then we need a new segment. */
3884 new_segment = TRUE;
3885 }
3886 /* In the next test we have to be careful when last_hdr->lma is close
3887 to the end of the address space. If the aligned address wraps
3888 around to the start of the address space, then there are no more
3889 pages left in memory and it is OK to assume that the current
3890 section can be included in the current segment. */
3891 else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
3892 > last_hdr->lma)
3893 && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
3894 <= hdr->lma))
3895 {
3896 /* If putting this section in this segment would force us to
3897 skip a page in the segment, then we need a new segment. */
3898 new_segment = TRUE;
3899 }
3900 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
3901 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
3902 {
3903 /* We don't want to put a loadable section after a
3904 nonloadable section in the same segment.
3905 Consider .tbss sections as loadable for this purpose. */
3906 new_segment = TRUE;
3907 }
3908 else if ((abfd->flags & D_PAGED) == 0)
3909 {
3910 /* If the file is not demand paged, which means that we
3911 don't require the sections to be correctly aligned in the
3912 file, then there is no other reason for a new segment. */
3913 new_segment = FALSE;
3914 }
3915 else if (! writable
3916 && (hdr->flags & SEC_READONLY) == 0
3917 && (((last_hdr->lma + last_size - 1) & -maxpagesize)
3918 != (hdr->lma & -maxpagesize)))
3919 {
3920 /* We don't want to put a writable section in a read only
3921 segment, unless they are on the same page in memory
3922 anyhow. We already know that the last section does not
3923 bring us past the current section on the page, so the
3924 only case in which the new section is not on the same
3925 page as the previous section is when the previous section
3926 ends precisely on a page boundary. */
3927 new_segment = TRUE;
3928 }
3929 else
3930 {
3931 /* Otherwise, we can use the same segment. */
3932 new_segment = FALSE;
3933 }
3934
3935 /* Allow interested parties a chance to override our decision. */
3936 if (last_hdr != NULL
3937 && info != NULL
3938 && info->callbacks->override_segment_assignment != NULL)
3939 new_segment
3940 = info->callbacks->override_segment_assignment (info, abfd, hdr,
3941 last_hdr,
3942 new_segment);
3943
3944 if (! new_segment)
3945 {
3946 if ((hdr->flags & SEC_READONLY) == 0)
3947 writable = TRUE;
3948 last_hdr = hdr;
3949 /* .tbss sections effectively have zero size. */
3950 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
3951 != SEC_THREAD_LOCAL)
3952 last_size = hdr->size;
3953 else
3954 last_size = 0;
3955 continue;
3956 }
3957
3958 /* We need a new program segment. We must create a new program
3959 header holding all the sections from phdr_index until hdr. */
3960
3961 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3962 if (m == NULL)
3963 goto error_return;
3964
3965 *pm = m;
3966 pm = &m->next;
3967
3968 if ((hdr->flags & SEC_READONLY) == 0)
3969 writable = TRUE;
3970 else
3971 writable = FALSE;
3972
3973 last_hdr = hdr;
3974 /* .tbss sections effectively have zero size. */
3975 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3976 last_size = hdr->size;
3977 else
3978 last_size = 0;
3979 phdr_index = i;
3980 phdr_in_segment = FALSE;
3981 }
3982
3983 /* Create a final PT_LOAD program segment. */
3984 if (last_hdr != NULL)
3985 {
3986 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3987 if (m == NULL)
3988 goto error_return;
3989
3990 *pm = m;
3991 pm = &m->next;
3992 }
3993
3994 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
3995 if (dynsec != NULL)
3996 {
3997 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
3998 if (m == NULL)
3999 goto error_return;
4000 *pm = m;
4001 pm = &m->next;
4002 }
4003
4004 /* For each batch of consecutive loadable .note sections,
4005 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
4006 because if we link together nonloadable .note sections and
4007 loadable .note sections, we will generate two .note sections
4008 in the output file. FIXME: Using names for section types is
4009 bogus anyhow. */
4010 for (s = abfd->sections; s != NULL; s = s->next)
4011 {
4012 if ((s->flags & SEC_LOAD) != 0
4013 && CONST_STRNEQ (s->name, ".note"))
4014 {
4015 asection *s2;
4016
4017 count = 1;
4018 amt = sizeof (struct elf_segment_map);
4019 if (s->alignment_power == 2)
4020 for (s2 = s; s2->next != NULL; s2 = s2->next)
4021 {
4022 if (s2->next->alignment_power == 2
4023 && (s2->next->flags & SEC_LOAD) != 0
4024 && CONST_STRNEQ (s2->next->name, ".note")
4025 && align_power (s2->lma + s2->size, 2)
4026 == s2->next->lma)
4027 count++;
4028 else
4029 break;
4030 }
4031 amt += (count - 1) * sizeof (asection *);
4032 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4033 if (m == NULL)
4034 goto error_return;
4035 m->next = NULL;
4036 m->p_type = PT_NOTE;
4037 m->count = count;
4038 while (count > 1)
4039 {
4040 m->sections[m->count - count--] = s;
4041 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4042 s = s->next;
4043 }
4044 m->sections[m->count - 1] = s;
4045 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4046 *pm = m;
4047 pm = &m->next;
4048 }
4049 if (s->flags & SEC_THREAD_LOCAL)
4050 {
4051 if (! tls_count)
4052 first_tls = s;
4053 tls_count++;
4054 }
4055 }
4056
4057 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
4058 if (tls_count > 0)
4059 {
4060 amt = sizeof (struct elf_segment_map);
4061 amt += (tls_count - 1) * sizeof (asection *);
4062 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4063 if (m == NULL)
4064 goto error_return;
4065 m->next = NULL;
4066 m->p_type = PT_TLS;
4067 m->count = tls_count;
4068 /* Mandated PF_R. */
4069 m->p_flags = PF_R;
4070 m->p_flags_valid = 1;
4071 for (i = 0; i < (unsigned int) tls_count; ++i)
4072 {
4073 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
4074 m->sections[i] = first_tls;
4075 first_tls = first_tls->next;
4076 }
4077
4078 *pm = m;
4079 pm = &m->next;
4080 }
4081
4082 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
4083 segment. */
4084 eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
4085 if (eh_frame_hdr != NULL
4086 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
4087 {
4088 amt = sizeof (struct elf_segment_map);
4089 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4090 if (m == NULL)
4091 goto error_return;
4092 m->next = NULL;
4093 m->p_type = PT_GNU_EH_FRAME;
4094 m->count = 1;
4095 m->sections[0] = eh_frame_hdr->output_section;
4096
4097 *pm = m;
4098 pm = &m->next;
4099 }
4100
4101 if (elf_tdata (abfd)->stack_flags)
4102 {
4103 amt = sizeof (struct elf_segment_map);
4104 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4105 if (m == NULL)
4106 goto error_return;
4107 m->next = NULL;
4108 m->p_type = PT_GNU_STACK;
4109 m->p_flags = elf_tdata (abfd)->stack_flags;
4110 m->p_flags_valid = 1;
4111
4112 *pm = m;
4113 pm = &m->next;
4114 }
4115
4116 if (info != NULL && info->relro)
4117 {
4118 for (m = mfirst; m != NULL; m = m->next)
4119 {
4120 if (m->p_type == PT_LOAD)
4121 {
4122 asection *last = m->sections[m->count - 1];
4123 bfd_vma vaddr = m->sections[0]->vma;
4124 bfd_vma filesz = last->vma - vaddr + last->size;
4125
4126 if (vaddr < info->relro_end
4127 && vaddr >= info->relro_start
4128 && (vaddr + filesz) >= info->relro_end)
4129 break;
4130 }
4131 }
4132
4133 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
4134 if (m != NULL)
4135 {
4136 amt = sizeof (struct elf_segment_map);
4137 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4138 if (m == NULL)
4139 goto error_return;
4140 m->next = NULL;
4141 m->p_type = PT_GNU_RELRO;
4142 m->p_flags = PF_R;
4143 m->p_flags_valid = 1;
4144
4145 *pm = m;
4146 pm = &m->next;
4147 }
4148 }
4149
4150 free (sections);
4151 elf_tdata (abfd)->segment_map = mfirst;
4152 }
4153
4154 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
4155 return FALSE;
4156
4157 for (count = 0, m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4158 ++count;
4159 elf_tdata (abfd)->program_header_size = count * bed->s->sizeof_phdr;
4160
4161 return TRUE;
4162
4163 error_return:
4164 if (sections != NULL)
4165 free (sections);
4166 return FALSE;
4167 }
4168
4169 /* Sort sections by address. */
4170
4171 static int
4172 elf_sort_sections (const void *arg1, const void *arg2)
4173 {
4174 const asection *sec1 = *(const asection **) arg1;
4175 const asection *sec2 = *(const asection **) arg2;
4176 bfd_size_type size1, size2;
4177
4178 /* Sort by LMA first, since this is the address used to
4179 place the section into a segment. */
4180 if (sec1->lma < sec2->lma)
4181 return -1;
4182 else if (sec1->lma > sec2->lma)
4183 return 1;
4184
4185 /* Then sort by VMA. Normally the LMA and the VMA will be
4186 the same, and this will do nothing. */
4187 if (sec1->vma < sec2->vma)
4188 return -1;
4189 else if (sec1->vma > sec2->vma)
4190 return 1;
4191
4192 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
4193
4194 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
4195
4196 if (TOEND (sec1))
4197 {
4198 if (TOEND (sec2))
4199 {
4200 /* If the indicies are the same, do not return 0
4201 here, but continue to try the next comparison. */
4202 if (sec1->target_index - sec2->target_index != 0)
4203 return sec1->target_index - sec2->target_index;
4204 }
4205 else
4206 return 1;
4207 }
4208 else if (TOEND (sec2))
4209 return -1;
4210
4211 #undef TOEND
4212
4213 /* Sort by size, to put zero sized sections
4214 before others at the same address. */
4215
4216 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
4217 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
4218
4219 if (size1 < size2)
4220 return -1;
4221 if (size1 > size2)
4222 return 1;
4223
4224 return sec1->target_index - sec2->target_index;
4225 }
4226
4227 /* Ian Lance Taylor writes:
4228
4229 We shouldn't be using % with a negative signed number. That's just
4230 not good. We have to make sure either that the number is not
4231 negative, or that the number has an unsigned type. When the types
4232 are all the same size they wind up as unsigned. When file_ptr is a
4233 larger signed type, the arithmetic winds up as signed long long,
4234 which is wrong.
4235
4236 What we're trying to say here is something like ``increase OFF by
4237 the least amount that will cause it to be equal to the VMA modulo
4238 the page size.'' */
4239 /* In other words, something like:
4240
4241 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4242 off_offset = off % bed->maxpagesize;
4243 if (vma_offset < off_offset)
4244 adjustment = vma_offset + bed->maxpagesize - off_offset;
4245 else
4246 adjustment = vma_offset - off_offset;
4247
4248 which can can be collapsed into the expression below. */
4249
4250 static file_ptr
4251 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
4252 {
4253 return ((vma - off) % maxpagesize);
4254 }
4255
4256 static void
4257 print_segment_map (const struct elf_segment_map *m)
4258 {
4259 unsigned int j;
4260 const char *pt = get_segment_type (m->p_type);
4261 char buf[32];
4262
4263 if (pt == NULL)
4264 {
4265 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
4266 sprintf (buf, "LOPROC+%7.7x",
4267 (unsigned int) (m->p_type - PT_LOPROC));
4268 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
4269 sprintf (buf, "LOOS+%7.7x",
4270 (unsigned int) (m->p_type - PT_LOOS));
4271 else
4272 snprintf (buf, sizeof (buf), "%8.8x",
4273 (unsigned int) m->p_type);
4274 pt = buf;
4275 }
4276 fprintf (stderr, "%s:", pt);
4277 for (j = 0; j < m->count; j++)
4278 fprintf (stderr, " %s", m->sections [j]->name);
4279 putc ('\n',stderr);
4280 }
4281
4282 static bfd_boolean
4283 write_zeros (bfd *abfd, file_ptr pos, bfd_size_type len)
4284 {
4285 void *buf;
4286 bfd_boolean ret;
4287
4288 if (bfd_seek (abfd, pos, SEEK_SET) != 0)
4289 return FALSE;
4290 buf = bfd_zmalloc (len);
4291 if (buf == NULL)
4292 return FALSE;
4293 ret = bfd_bwrite (buf, len, abfd) == len;
4294 free (buf);
4295 return ret;
4296 }
4297
4298 /* Assign file positions to the sections based on the mapping from
4299 sections to segments. This function also sets up some fields in
4300 the file header. */
4301
4302 static bfd_boolean
4303 assign_file_positions_for_load_sections (bfd *abfd,
4304 struct bfd_link_info *link_info)
4305 {
4306 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4307 struct elf_segment_map *m;
4308 Elf_Internal_Phdr *phdrs;
4309 Elf_Internal_Phdr *p;
4310 file_ptr off;
4311 bfd_size_type maxpagesize;
4312 unsigned int alloc;
4313 unsigned int i, j;
4314 bfd_vma header_pad = 0;
4315
4316 if (link_info == NULL
4317 && !_bfd_elf_map_sections_to_segments (abfd, link_info))
4318 return FALSE;
4319
4320 alloc = 0;
4321 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4322 {
4323 ++alloc;
4324 if (m->header_size)
4325 header_pad = m->header_size;
4326 }
4327
4328 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
4329 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
4330 elf_elfheader (abfd)->e_phnum = alloc;
4331
4332 if (elf_tdata (abfd)->program_header_size == (bfd_size_type) -1)
4333 elf_tdata (abfd)->program_header_size = alloc * bed->s->sizeof_phdr;
4334 else
4335 BFD_ASSERT (elf_tdata (abfd)->program_header_size
4336 >= alloc * bed->s->sizeof_phdr);
4337
4338 if (alloc == 0)
4339 {
4340 elf_tdata (abfd)->next_file_pos = bed->s->sizeof_ehdr;
4341 return TRUE;
4342 }
4343
4344 /* We're writing the size in elf_tdata (abfd)->program_header_size,
4345 see assign_file_positions_except_relocs, so make sure we have
4346 that amount allocated, with trailing space cleared.
4347 The variable alloc contains the computed need, while elf_tdata
4348 (abfd)->program_header_size contains the size used for the
4349 layout.
4350 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
4351 where the layout is forced to according to a larger size in the
4352 last iterations for the testcase ld-elf/header. */
4353 BFD_ASSERT (elf_tdata (abfd)->program_header_size % bed->s->sizeof_phdr
4354 == 0);
4355 phdrs = (Elf_Internal_Phdr *)
4356 bfd_zalloc2 (abfd,
4357 (elf_tdata (abfd)->program_header_size / bed->s->sizeof_phdr),
4358 sizeof (Elf_Internal_Phdr));
4359 elf_tdata (abfd)->phdr = phdrs;
4360 if (phdrs == NULL)
4361 return FALSE;
4362
4363 maxpagesize = 1;
4364 if ((abfd->flags & D_PAGED) != 0)
4365 maxpagesize = bed->maxpagesize;
4366
4367 off = bed->s->sizeof_ehdr;
4368 off += alloc * bed->s->sizeof_phdr;
4369 if (header_pad < (bfd_vma) off)
4370 header_pad = 0;
4371 else
4372 header_pad -= off;
4373 off += header_pad;
4374
4375 for (m = elf_tdata (abfd)->segment_map, p = phdrs, j = 0;
4376 m != NULL;
4377 m = m->next, p++, j++)
4378 {
4379 asection **secpp;
4380 bfd_vma off_adjust;
4381 bfd_boolean no_contents;
4382
4383 /* If elf_segment_map is not from map_sections_to_segments, the
4384 sections may not be correctly ordered. NOTE: sorting should
4385 not be done to the PT_NOTE section of a corefile, which may
4386 contain several pseudo-sections artificially created by bfd.
4387 Sorting these pseudo-sections breaks things badly. */
4388 if (m->count > 1
4389 && !(elf_elfheader (abfd)->e_type == ET_CORE
4390 && m->p_type == PT_NOTE))
4391 qsort (m->sections, (size_t) m->count, sizeof (asection *),
4392 elf_sort_sections);
4393
4394 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4395 number of sections with contents contributing to both p_filesz
4396 and p_memsz, followed by a number of sections with no contents
4397 that just contribute to p_memsz. In this loop, OFF tracks next
4398 available file offset for PT_LOAD and PT_NOTE segments. */
4399 p->p_type = m->p_type;
4400 p->p_flags = m->p_flags;
4401
4402 if (m->count == 0)
4403 p->p_vaddr = 0;
4404 else
4405 p->p_vaddr = m->sections[0]->vma - m->p_vaddr_offset;
4406
4407 if (m->p_paddr_valid)
4408 p->p_paddr = m->p_paddr;
4409 else if (m->count == 0)
4410 p->p_paddr = 0;
4411 else
4412 p->p_paddr = m->sections[0]->lma - m->p_vaddr_offset;
4413
4414 if (p->p_type == PT_LOAD
4415 && (abfd->flags & D_PAGED) != 0)
4416 {
4417 /* p_align in demand paged PT_LOAD segments effectively stores
4418 the maximum page size. When copying an executable with
4419 objcopy, we set m->p_align from the input file. Use this
4420 value for maxpagesize rather than bed->maxpagesize, which
4421 may be different. Note that we use maxpagesize for PT_TLS
4422 segment alignment later in this function, so we are relying
4423 on at least one PT_LOAD segment appearing before a PT_TLS
4424 segment. */
4425 if (m->p_align_valid)
4426 maxpagesize = m->p_align;
4427
4428 p->p_align = maxpagesize;
4429 }
4430 else if (m->p_align_valid)
4431 p->p_align = m->p_align;
4432 else if (m->count == 0)
4433 p->p_align = 1 << bed->s->log_file_align;
4434 else
4435 p->p_align = 0;
4436
4437 no_contents = FALSE;
4438 off_adjust = 0;
4439 if (p->p_type == PT_LOAD
4440 && m->count > 0)
4441 {
4442 bfd_size_type align;
4443 unsigned int align_power = 0;
4444
4445 if (m->p_align_valid)
4446 align = p->p_align;
4447 else
4448 {
4449 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4450 {
4451 unsigned int secalign;
4452
4453 secalign = bfd_get_section_alignment (abfd, *secpp);
4454 if (secalign > align_power)
4455 align_power = secalign;
4456 }
4457 align = (bfd_size_type) 1 << align_power;
4458 if (align < maxpagesize)
4459 align = maxpagesize;
4460 }
4461
4462 for (i = 0; i < m->count; i++)
4463 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
4464 /* If we aren't making room for this section, then
4465 it must be SHT_NOBITS regardless of what we've
4466 set via struct bfd_elf_special_section. */
4467 elf_section_type (m->sections[i]) = SHT_NOBITS;
4468
4469 /* Find out whether this segment contains any loadable
4470 sections. */
4471 no_contents = TRUE;
4472 for (i = 0; i < m->count; i++)
4473 if (elf_section_type (m->sections[i]) != SHT_NOBITS)
4474 {
4475 no_contents = FALSE;
4476 break;
4477 }
4478
4479 off_adjust = vma_page_aligned_bias (p->p_vaddr, off, align);
4480 off += off_adjust;
4481 if (no_contents)
4482 {
4483 /* We shouldn't need to align the segment on disk since
4484 the segment doesn't need file space, but the gABI
4485 arguably requires the alignment and glibc ld.so
4486 checks it. So to comply with the alignment
4487 requirement but not waste file space, we adjust
4488 p_offset for just this segment. (OFF_ADJUST is
4489 subtracted from OFF later.) This may put p_offset
4490 past the end of file, but that shouldn't matter. */
4491 }
4492 else
4493 off_adjust = 0;
4494 }
4495 /* Make sure the .dynamic section is the first section in the
4496 PT_DYNAMIC segment. */
4497 else if (p->p_type == PT_DYNAMIC
4498 && m->count > 1
4499 && strcmp (m->sections[0]->name, ".dynamic") != 0)
4500 {
4501 _bfd_error_handler
4502 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4503 abfd);
4504 bfd_set_error (bfd_error_bad_value);
4505 return FALSE;
4506 }
4507 /* Set the note section type to SHT_NOTE. */
4508 else if (p->p_type == PT_NOTE)
4509 for (i = 0; i < m->count; i++)
4510 elf_section_type (m->sections[i]) = SHT_NOTE;
4511
4512 p->p_offset = 0;
4513 p->p_filesz = 0;
4514 p->p_memsz = 0;
4515
4516 if (m->includes_filehdr)
4517 {
4518 if (!m->p_flags_valid)
4519 p->p_flags |= PF_R;
4520 p->p_filesz = bed->s->sizeof_ehdr;
4521 p->p_memsz = bed->s->sizeof_ehdr;
4522 if (m->count > 0)
4523 {
4524 BFD_ASSERT (p->p_type == PT_LOAD);
4525
4526 if (p->p_vaddr < (bfd_vma) off)
4527 {
4528 (*_bfd_error_handler)
4529 (_("%B: Not enough room for program headers, try linking with -N"),
4530 abfd);
4531 bfd_set_error (bfd_error_bad_value);
4532 return FALSE;
4533 }
4534
4535 p->p_vaddr -= off;
4536 if (!m->p_paddr_valid)
4537 p->p_paddr -= off;
4538 }
4539 }
4540
4541 if (m->includes_phdrs)
4542 {
4543 if (!m->p_flags_valid)
4544 p->p_flags |= PF_R;
4545
4546 if (!m->includes_filehdr)
4547 {
4548 p->p_offset = bed->s->sizeof_ehdr;
4549
4550 if (m->count > 0)
4551 {
4552 BFD_ASSERT (p->p_type == PT_LOAD);
4553 p->p_vaddr -= off - p->p_offset;
4554 if (!m->p_paddr_valid)
4555 p->p_paddr -= off - p->p_offset;
4556 }
4557 }
4558
4559 p->p_filesz += alloc * bed->s->sizeof_phdr;
4560 p->p_memsz += alloc * bed->s->sizeof_phdr;
4561 if (m->count)
4562 {
4563 p->p_filesz += header_pad;
4564 p->p_memsz += header_pad;
4565 }
4566 }
4567
4568 if (p->p_type == PT_LOAD
4569 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4570 {
4571 if (!m->includes_filehdr && !m->includes_phdrs)
4572 p->p_offset = off;
4573 else
4574 {
4575 file_ptr adjust;
4576
4577 adjust = off - (p->p_offset + p->p_filesz);
4578 if (!no_contents)
4579 p->p_filesz += adjust;
4580 p->p_memsz += adjust;
4581 }
4582 }
4583
4584 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
4585 maps. Set filepos for sections in PT_LOAD segments, and in
4586 core files, for sections in PT_NOTE segments.
4587 assign_file_positions_for_non_load_sections will set filepos
4588 for other sections and update p_filesz for other segments. */
4589 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4590 {
4591 asection *sec;
4592 bfd_size_type align;
4593 Elf_Internal_Shdr *this_hdr;
4594
4595 sec = *secpp;
4596 this_hdr = &elf_section_data (sec)->this_hdr;
4597 align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec);
4598
4599 if ((p->p_type == PT_LOAD
4600 || p->p_type == PT_TLS)
4601 && (this_hdr->sh_type != SHT_NOBITS
4602 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
4603 && ((this_hdr->sh_flags & SHF_TLS) == 0
4604 || p->p_type == PT_TLS))))
4605 {
4606 bfd_vma p_start = p->p_paddr;
4607 bfd_vma p_end = p_start + p->p_memsz;
4608 bfd_vma s_start = sec->lma;
4609 bfd_vma adjust = s_start - p_end;
4610
4611 if (adjust != 0
4612 && (s_start < p_end
4613 || p_end < p_start))
4614 {
4615 (*_bfd_error_handler)
4616 (_("%B: section %A lma %#lx adjusted to %#lx"), abfd, sec,
4617 (unsigned long) s_start, (unsigned long) p_end);
4618 adjust = 0;
4619 sec->lma = p_end;
4620 }
4621 p->p_memsz += adjust;
4622
4623 if (this_hdr->sh_type != SHT_NOBITS)
4624 {
4625 if (p->p_filesz + adjust < p->p_memsz)
4626 {
4627 /* We have a PROGBITS section following NOBITS ones.
4628 Allocate file space for the NOBITS section(s) and
4629 zero it. */
4630 adjust = p->p_memsz - p->p_filesz;
4631 if (!write_zeros (abfd, off, adjust))
4632 return FALSE;
4633 }
4634 off += adjust;
4635 p->p_filesz += adjust;
4636 }
4637 }
4638
4639 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
4640 {
4641 /* The section at i == 0 is the one that actually contains
4642 everything. */
4643 if (i == 0)
4644 {
4645 this_hdr->sh_offset = sec->filepos = off;
4646 off += this_hdr->sh_size;
4647 p->p_filesz = this_hdr->sh_size;
4648 p->p_memsz = 0;
4649 p->p_align = 1;
4650 }
4651 else
4652 {
4653 /* The rest are fake sections that shouldn't be written. */
4654 sec->filepos = 0;
4655 sec->size = 0;
4656 sec->flags = 0;
4657 continue;
4658 }
4659 }
4660 else
4661 {
4662 if (p->p_type == PT_LOAD)
4663 {
4664 this_hdr->sh_offset = sec->filepos = off;
4665 if (this_hdr->sh_type != SHT_NOBITS)
4666 off += this_hdr->sh_size;
4667 }
4668
4669 if (this_hdr->sh_type != SHT_NOBITS)
4670 {
4671 p->p_filesz += this_hdr->sh_size;
4672 /* A load section without SHF_ALLOC is something like
4673 a note section in a PT_NOTE segment. These take
4674 file space but are not loaded into memory. */
4675 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4676 p->p_memsz += this_hdr->sh_size;
4677 }
4678 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4679 {
4680 if (p->p_type == PT_TLS)
4681 p->p_memsz += this_hdr->sh_size;
4682
4683 /* .tbss is special. It doesn't contribute to p_memsz of
4684 normal segments. */
4685 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
4686 p->p_memsz += this_hdr->sh_size;
4687 }
4688
4689 if (align > p->p_align
4690 && !m->p_align_valid
4691 && (p->p_type != PT_LOAD
4692 || (abfd->flags & D_PAGED) == 0))
4693 p->p_align = align;
4694 }
4695
4696 if (!m->p_flags_valid)
4697 {
4698 p->p_flags |= PF_R;
4699 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
4700 p->p_flags |= PF_X;
4701 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
4702 p->p_flags |= PF_W;
4703 }
4704 }
4705 off -= off_adjust;
4706
4707 /* Check that all sections are in a PT_LOAD segment.
4708 Don't check funky gdb generated core files. */
4709 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
4710 {
4711 bfd_boolean check_vma = TRUE;
4712
4713 for (i = 1; i < m->count; i++)
4714 if (m->sections[i]->vma == m->sections[i - 1]->vma
4715 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i])
4716 ->this_hdr), p) != 0
4717 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i - 1])
4718 ->this_hdr), p) != 0)
4719 {
4720 /* Looks like we have overlays packed into the segment. */
4721 check_vma = FALSE;
4722 break;
4723 }
4724
4725 for (i = 0; i < m->count; i++)
4726 {
4727 Elf_Internal_Shdr *this_hdr;
4728 asection *sec;
4729
4730 sec = m->sections[i];
4731 this_hdr = &(elf_section_data(sec)->this_hdr);
4732 if (!ELF_SECTION_IN_SEGMENT_1 (this_hdr, p, check_vma, 0))
4733 {
4734 (*_bfd_error_handler)
4735 (_("%B: section `%A' can't be allocated in segment %d"),
4736 abfd, sec, j);
4737 print_segment_map (m);
4738 }
4739 }
4740 }
4741 }
4742
4743 elf_tdata (abfd)->next_file_pos = off;
4744 return TRUE;
4745 }
4746
4747 /* Assign file positions for the other sections. */
4748
4749 static bfd_boolean
4750 assign_file_positions_for_non_load_sections (bfd *abfd,
4751 struct bfd_link_info *link_info)
4752 {
4753 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4754 Elf_Internal_Shdr **i_shdrpp;
4755 Elf_Internal_Shdr **hdrpp;
4756 Elf_Internal_Phdr *phdrs;
4757 Elf_Internal_Phdr *p;
4758 struct elf_segment_map *m;
4759 bfd_vma filehdr_vaddr, filehdr_paddr;
4760 bfd_vma phdrs_vaddr, phdrs_paddr;
4761 file_ptr off;
4762 unsigned int num_sec;
4763 unsigned int i;
4764 unsigned int count;
4765
4766 i_shdrpp = elf_elfsections (abfd);
4767 num_sec = elf_numsections (abfd);
4768 off = elf_tdata (abfd)->next_file_pos;
4769 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4770 {
4771 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4772 Elf_Internal_Shdr *hdr;
4773
4774 hdr = *hdrpp;
4775 if (hdr->bfd_section != NULL
4776 && (hdr->bfd_section->filepos != 0
4777 || (hdr->sh_type == SHT_NOBITS
4778 && hdr->contents == NULL)))
4779 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
4780 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4781 {
4782 (*_bfd_error_handler)
4783 (_("%B: warning: allocated section `%s' not in segment"),
4784 abfd,
4785 (hdr->bfd_section == NULL
4786 ? "*unknown*"
4787 : hdr->bfd_section->name));
4788 /* We don't need to page align empty sections. */
4789 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
4790 off += vma_page_aligned_bias (hdr->sh_addr, off,
4791 bed->maxpagesize);
4792 else
4793 off += vma_page_aligned_bias (hdr->sh_addr, off,
4794 hdr->sh_addralign);
4795 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4796 FALSE);
4797 }
4798 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4799 && hdr->bfd_section == NULL)
4800 || hdr == i_shdrpp[tdata->symtab_section]
4801 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4802 || hdr == i_shdrpp[tdata->strtab_section])
4803 hdr->sh_offset = -1;
4804 else
4805 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4806 }
4807
4808 /* Now that we have set the section file positions, we can set up
4809 the file positions for the non PT_LOAD segments. */
4810 count = 0;
4811 filehdr_vaddr = 0;
4812 filehdr_paddr = 0;
4813 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
4814 phdrs_paddr = 0;
4815 phdrs = elf_tdata (abfd)->phdr;
4816 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4817 m != NULL;
4818 m = m->next, p++)
4819 {
4820 ++count;
4821 if (p->p_type != PT_LOAD)
4822 continue;
4823
4824 if (m->includes_filehdr)
4825 {
4826 filehdr_vaddr = p->p_vaddr;
4827 filehdr_paddr = p->p_paddr;
4828 }
4829 if (m->includes_phdrs)
4830 {
4831 phdrs_vaddr = p->p_vaddr;
4832 phdrs_paddr = p->p_paddr;
4833 if (m->includes_filehdr)
4834 {
4835 phdrs_vaddr += bed->s->sizeof_ehdr;
4836 phdrs_paddr += bed->s->sizeof_ehdr;
4837 }
4838 }
4839 }
4840
4841 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4842 m != NULL;
4843 m = m->next, p++)
4844 {
4845 if (p->p_type == PT_GNU_RELRO)
4846 {
4847 const Elf_Internal_Phdr *lp;
4848
4849 BFD_ASSERT (!m->includes_filehdr && !m->includes_phdrs);
4850
4851 if (link_info != NULL)
4852 {
4853 /* During linking the range of the RELRO segment is passed
4854 in link_info. */
4855 for (lp = phdrs; lp < phdrs + count; ++lp)
4856 {
4857 if (lp->p_type == PT_LOAD
4858 && lp->p_vaddr >= link_info->relro_start
4859 && lp->p_vaddr < link_info->relro_end
4860 && lp->p_vaddr + lp->p_filesz >= link_info->relro_end)
4861 break;
4862 }
4863 }
4864 else
4865 {
4866 /* Otherwise we are copying an executable or shared
4867 library, but we need to use the same linker logic. */
4868 for (lp = phdrs; lp < phdrs + count; ++lp)
4869 {
4870 if (lp->p_type == PT_LOAD
4871 && lp->p_paddr == p->p_paddr)
4872 break;
4873 }
4874 }
4875
4876 if (lp < phdrs + count)
4877 {
4878 p->p_vaddr = lp->p_vaddr;
4879 p->p_paddr = lp->p_paddr;
4880 p->p_offset = lp->p_offset;
4881 if (link_info != NULL)
4882 p->p_filesz = link_info->relro_end - lp->p_vaddr;
4883 else if (m->p_size_valid)
4884 p->p_filesz = m->p_size;
4885 else
4886 abort ();
4887 p->p_memsz = p->p_filesz;
4888 p->p_align = 1;
4889 p->p_flags = (lp->p_flags & ~PF_W);
4890 }
4891 else
4892 {
4893 memset (p, 0, sizeof *p);
4894 p->p_type = PT_NULL;
4895 }
4896 }
4897 else if (m->count != 0)
4898 {
4899 if (p->p_type != PT_LOAD
4900 && (p->p_type != PT_NOTE
4901 || bfd_get_format (abfd) != bfd_core))
4902 {
4903 Elf_Internal_Shdr *hdr;
4904 asection *sect;
4905
4906 BFD_ASSERT (!m->includes_filehdr && !m->includes_phdrs);
4907
4908 sect = m->sections[m->count - 1];
4909 hdr = &elf_section_data (sect)->this_hdr;
4910 p->p_filesz = sect->filepos - m->sections[0]->filepos;
4911 if (hdr->sh_type != SHT_NOBITS)
4912 p->p_filesz += hdr->sh_size;
4913 p->p_offset = m->sections[0]->filepos;
4914 }
4915 }
4916 else if (m->includes_filehdr)
4917 {
4918 p->p_vaddr = filehdr_vaddr;
4919 if (! m->p_paddr_valid)
4920 p->p_paddr = filehdr_paddr;
4921 }
4922 else if (m->includes_phdrs)
4923 {
4924 p->p_vaddr = phdrs_vaddr;
4925 if (! m->p_paddr_valid)
4926 p->p_paddr = phdrs_paddr;
4927 }
4928 }
4929
4930 elf_tdata (abfd)->next_file_pos = off;
4931
4932 return TRUE;
4933 }
4934
4935 /* Work out the file positions of all the sections. This is called by
4936 _bfd_elf_compute_section_file_positions. All the section sizes and
4937 VMAs must be known before this is called.
4938
4939 Reloc sections come in two flavours: Those processed specially as
4940 "side-channel" data attached to a section to which they apply, and
4941 those that bfd doesn't process as relocations. The latter sort are
4942 stored in a normal bfd section by bfd_section_from_shdr. We don't
4943 consider the former sort here, unless they form part of the loadable
4944 image. Reloc sections not assigned here will be handled later by
4945 assign_file_positions_for_relocs.
4946
4947 We also don't set the positions of the .symtab and .strtab here. */
4948
4949 static bfd_boolean
4950 assign_file_positions_except_relocs (bfd *abfd,
4951 struct bfd_link_info *link_info)
4952 {
4953 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4954 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
4955 file_ptr off;
4956 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4957
4958 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
4959 && bfd_get_format (abfd) != bfd_core)
4960 {
4961 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4962 unsigned int num_sec = elf_numsections (abfd);
4963 Elf_Internal_Shdr **hdrpp;
4964 unsigned int i;
4965
4966 /* Start after the ELF header. */
4967 off = i_ehdrp->e_ehsize;
4968
4969 /* We are not creating an executable, which means that we are
4970 not creating a program header, and that the actual order of
4971 the sections in the file is unimportant. */
4972 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4973 {
4974 Elf_Internal_Shdr *hdr;
4975
4976 hdr = *hdrpp;
4977 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4978 && hdr->bfd_section == NULL)
4979 || i == tdata->symtab_section
4980 || i == tdata->symtab_shndx_section
4981 || i == tdata->strtab_section)
4982 {
4983 hdr->sh_offset = -1;
4984 }
4985 else
4986 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4987 }
4988 }
4989 else
4990 {
4991 unsigned int alloc;
4992
4993 /* Assign file positions for the loaded sections based on the
4994 assignment of sections to segments. */
4995 if (!assign_file_positions_for_load_sections (abfd, link_info))
4996 return FALSE;
4997
4998 /* And for non-load sections. */
4999 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
5000 return FALSE;
5001
5002 if (bed->elf_backend_modify_program_headers != NULL)
5003 {
5004 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
5005 return FALSE;
5006 }
5007
5008 /* Write out the program headers. */
5009 alloc = tdata->program_header_size / bed->s->sizeof_phdr;
5010 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
5011 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
5012 return FALSE;
5013
5014 off = tdata->next_file_pos;
5015 }
5016
5017 /* Place the section headers. */
5018 off = align_file_position (off, 1 << bed->s->log_file_align);
5019 i_ehdrp->e_shoff = off;
5020 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
5021
5022 tdata->next_file_pos = off;
5023
5024 return TRUE;
5025 }
5026
5027 static bfd_boolean
5028 prep_headers (bfd *abfd)
5029 {
5030 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form. */
5031 struct elf_strtab_hash *shstrtab;
5032 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5033
5034 i_ehdrp = elf_elfheader (abfd);
5035
5036 shstrtab = _bfd_elf_strtab_init ();
5037 if (shstrtab == NULL)
5038 return FALSE;
5039
5040 elf_shstrtab (abfd) = shstrtab;
5041
5042 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
5043 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
5044 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
5045 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
5046
5047 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
5048 i_ehdrp->e_ident[EI_DATA] =
5049 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
5050 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
5051
5052 if ((abfd->flags & DYNAMIC) != 0)
5053 i_ehdrp->e_type = ET_DYN;
5054 else if ((abfd->flags & EXEC_P) != 0)
5055 i_ehdrp->e_type = ET_EXEC;
5056 else if (bfd_get_format (abfd) == bfd_core)
5057 i_ehdrp->e_type = ET_CORE;
5058 else
5059 i_ehdrp->e_type = ET_REL;
5060
5061 switch (bfd_get_arch (abfd))
5062 {
5063 case bfd_arch_unknown:
5064 i_ehdrp->e_machine = EM_NONE;
5065 break;
5066
5067 /* There used to be a long list of cases here, each one setting
5068 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
5069 in the corresponding bfd definition. To avoid duplication,
5070 the switch was removed. Machines that need special handling
5071 can generally do it in elf_backend_final_write_processing(),
5072 unless they need the information earlier than the final write.
5073 Such need can generally be supplied by replacing the tests for
5074 e_machine with the conditions used to determine it. */
5075 default:
5076 i_ehdrp->e_machine = bed->elf_machine_code;
5077 }
5078
5079 i_ehdrp->e_version = bed->s->ev_current;
5080 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
5081
5082 /* No program header, for now. */
5083 i_ehdrp->e_phoff = 0;
5084 i_ehdrp->e_phentsize = 0;
5085 i_ehdrp->e_phnum = 0;
5086
5087 /* Each bfd section is section header entry. */
5088 i_ehdrp->e_entry = bfd_get_start_address (abfd);
5089 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
5090
5091 /* If we're building an executable, we'll need a program header table. */
5092 if (abfd->flags & EXEC_P)
5093 /* It all happens later. */
5094 ;
5095 else
5096 {
5097 i_ehdrp->e_phentsize = 0;
5098 i_ehdrp->e_phoff = 0;
5099 }
5100
5101 elf_tdata (abfd)->symtab_hdr.sh_name =
5102 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
5103 elf_tdata (abfd)->strtab_hdr.sh_name =
5104 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
5105 elf_tdata (abfd)->shstrtab_hdr.sh_name =
5106 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
5107 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
5108 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
5109 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
5110 return FALSE;
5111
5112 return TRUE;
5113 }
5114
5115 /* Assign file positions for all the reloc sections which are not part
5116 of the loadable file image. */
5117
5118 void
5119 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
5120 {
5121 file_ptr off;
5122 unsigned int i, num_sec;
5123 Elf_Internal_Shdr **shdrpp;
5124
5125 off = elf_tdata (abfd)->next_file_pos;
5126
5127 num_sec = elf_numsections (abfd);
5128 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
5129 {
5130 Elf_Internal_Shdr *shdrp;
5131
5132 shdrp = *shdrpp;
5133 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
5134 && shdrp->sh_offset == -1)
5135 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
5136 }
5137
5138 elf_tdata (abfd)->next_file_pos = off;
5139 }
5140
5141 bfd_boolean
5142 _bfd_elf_write_object_contents (bfd *abfd)
5143 {
5144 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5145 Elf_Internal_Shdr **i_shdrp;
5146 bfd_boolean failed;
5147 unsigned int count, num_sec;
5148
5149 if (! abfd->output_has_begun
5150 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
5151 return FALSE;
5152
5153 i_shdrp = elf_elfsections (abfd);
5154
5155 failed = FALSE;
5156 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
5157 if (failed)
5158 return FALSE;
5159
5160 _bfd_elf_assign_file_positions_for_relocs (abfd);
5161
5162 /* After writing the headers, we need to write the sections too... */
5163 num_sec = elf_numsections (abfd);
5164 for (count = 1; count < num_sec; count++)
5165 {
5166 if (bed->elf_backend_section_processing)
5167 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
5168 if (i_shdrp[count]->contents)
5169 {
5170 bfd_size_type amt = i_shdrp[count]->sh_size;
5171
5172 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
5173 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
5174 return FALSE;
5175 }
5176 }
5177
5178 /* Write out the section header names. */
5179 if (elf_shstrtab (abfd) != NULL
5180 && (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
5181 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
5182 return FALSE;
5183
5184 if (bed->elf_backend_final_write_processing)
5185 (*bed->elf_backend_final_write_processing) (abfd,
5186 elf_tdata (abfd)->linker);
5187
5188 if (!bed->s->write_shdrs_and_ehdr (abfd))
5189 return FALSE;
5190
5191 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
5192 if (elf_tdata (abfd)->after_write_object_contents)
5193 return (*elf_tdata (abfd)->after_write_object_contents) (abfd);
5194
5195 return TRUE;
5196 }
5197
5198 bfd_boolean
5199 _bfd_elf_write_corefile_contents (bfd *abfd)
5200 {
5201 /* Hopefully this can be done just like an object file. */
5202 return _bfd_elf_write_object_contents (abfd);
5203 }
5204
5205 /* Given a section, search the header to find them. */
5206
5207 unsigned int
5208 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
5209 {
5210 const struct elf_backend_data *bed;
5211 unsigned int sec_index;
5212
5213 if (elf_section_data (asect) != NULL
5214 && elf_section_data (asect)->this_idx != 0)
5215 return elf_section_data (asect)->this_idx;
5216
5217 if (bfd_is_abs_section (asect))
5218 sec_index = SHN_ABS;
5219 else if (bfd_is_com_section (asect))
5220 sec_index = SHN_COMMON;
5221 else if (bfd_is_und_section (asect))
5222 sec_index = SHN_UNDEF;
5223 else
5224 sec_index = SHN_BAD;
5225
5226 bed = get_elf_backend_data (abfd);
5227 if (bed->elf_backend_section_from_bfd_section)
5228 {
5229 int retval = sec_index;
5230
5231 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
5232 return retval;
5233 }
5234
5235 if (sec_index == SHN_BAD)
5236 bfd_set_error (bfd_error_nonrepresentable_section);
5237
5238 return sec_index;
5239 }
5240
5241 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
5242 on error. */
5243
5244 int
5245 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
5246 {
5247 asymbol *asym_ptr = *asym_ptr_ptr;
5248 int idx;
5249 flagword flags = asym_ptr->flags;
5250
5251 /* When gas creates relocations against local labels, it creates its
5252 own symbol for the section, but does put the symbol into the
5253 symbol chain, so udata is 0. When the linker is generating
5254 relocatable output, this section symbol may be for one of the
5255 input sections rather than the output section. */
5256 if (asym_ptr->udata.i == 0
5257 && (flags & BSF_SECTION_SYM)
5258 && asym_ptr->section)
5259 {
5260 asection *sec;
5261 int indx;
5262
5263 sec = asym_ptr->section;
5264 if (sec->owner != abfd && sec->output_section != NULL)
5265 sec = sec->output_section;
5266 if (sec->owner == abfd
5267 && (indx = sec->index) < elf_num_section_syms (abfd)
5268 && elf_section_syms (abfd)[indx] != NULL)
5269 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
5270 }
5271
5272 idx = asym_ptr->udata.i;
5273
5274 if (idx == 0)
5275 {
5276 /* This case can occur when using --strip-symbol on a symbol
5277 which is used in a relocation entry. */
5278 (*_bfd_error_handler)
5279 (_("%B: symbol `%s' required but not present"),
5280 abfd, bfd_asymbol_name (asym_ptr));
5281 bfd_set_error (bfd_error_no_symbols);
5282 return -1;
5283 }
5284
5285 #if DEBUG & 4
5286 {
5287 fprintf (stderr,
5288 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx\n",
5289 (long) asym_ptr, asym_ptr->name, idx, (long) flags);
5290 fflush (stderr);
5291 }
5292 #endif
5293
5294 return idx;
5295 }
5296
5297 /* Rewrite program header information. */
5298
5299 static bfd_boolean
5300 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
5301 {
5302 Elf_Internal_Ehdr *iehdr;
5303 struct elf_segment_map *map;
5304 struct elf_segment_map *map_first;
5305 struct elf_segment_map **pointer_to_map;
5306 Elf_Internal_Phdr *segment;
5307 asection *section;
5308 unsigned int i;
5309 unsigned int num_segments;
5310 bfd_boolean phdr_included = FALSE;
5311 bfd_boolean p_paddr_valid;
5312 bfd_vma maxpagesize;
5313 struct elf_segment_map *phdr_adjust_seg = NULL;
5314 unsigned int phdr_adjust_num = 0;
5315 const struct elf_backend_data *bed;
5316
5317 bed = get_elf_backend_data (ibfd);
5318 iehdr = elf_elfheader (ibfd);
5319
5320 map_first = NULL;
5321 pointer_to_map = &map_first;
5322
5323 num_segments = elf_elfheader (ibfd)->e_phnum;
5324 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
5325
5326 /* Returns the end address of the segment + 1. */
5327 #define SEGMENT_END(segment, start) \
5328 (start + (segment->p_memsz > segment->p_filesz \
5329 ? segment->p_memsz : segment->p_filesz))
5330
5331 #define SECTION_SIZE(section, segment) \
5332 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5333 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5334 ? section->size : 0)
5335
5336 /* Returns TRUE if the given section is contained within
5337 the given segment. VMA addresses are compared. */
5338 #define IS_CONTAINED_BY_VMA(section, segment) \
5339 (section->vma >= segment->p_vaddr \
5340 && (section->vma + SECTION_SIZE (section, segment) \
5341 <= (SEGMENT_END (segment, segment->p_vaddr))))
5342
5343 /* Returns TRUE if the given section is contained within
5344 the given segment. LMA addresses are compared. */
5345 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5346 (section->lma >= base \
5347 && (section->lma + SECTION_SIZE (section, segment) \
5348 <= SEGMENT_END (segment, base)))
5349
5350 /* Handle PT_NOTE segment. */
5351 #define IS_NOTE(p, s) \
5352 (p->p_type == PT_NOTE \
5353 && elf_section_type (s) == SHT_NOTE \
5354 && (bfd_vma) s->filepos >= p->p_offset \
5355 && ((bfd_vma) s->filepos + s->size \
5356 <= p->p_offset + p->p_filesz))
5357
5358 /* Special case: corefile "NOTE" section containing regs, prpsinfo
5359 etc. */
5360 #define IS_COREFILE_NOTE(p, s) \
5361 (IS_NOTE (p, s) \
5362 && bfd_get_format (ibfd) == bfd_core \
5363 && s->vma == 0 \
5364 && s->lma == 0)
5365
5366 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5367 linker, which generates a PT_INTERP section with p_vaddr and
5368 p_memsz set to 0. */
5369 #define IS_SOLARIS_PT_INTERP(p, s) \
5370 (p->p_vaddr == 0 \
5371 && p->p_paddr == 0 \
5372 && p->p_memsz == 0 \
5373 && p->p_filesz > 0 \
5374 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5375 && s->size > 0 \
5376 && (bfd_vma) s->filepos >= p->p_offset \
5377 && ((bfd_vma) s->filepos + s->size \
5378 <= p->p_offset + p->p_filesz))
5379
5380 /* Decide if the given section should be included in the given segment.
5381 A section will be included if:
5382 1. It is within the address space of the segment -- we use the LMA
5383 if that is set for the segment and the VMA otherwise,
5384 2. It is an allocated section or a NOTE section in a PT_NOTE
5385 segment.
5386 3. There is an output section associated with it,
5387 4. The section has not already been allocated to a previous segment.
5388 5. PT_GNU_STACK segments do not include any sections.
5389 6. PT_TLS segment includes only SHF_TLS sections.
5390 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5391 8. PT_DYNAMIC should not contain empty sections at the beginning
5392 (with the possible exception of .dynamic). */
5393 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
5394 ((((segment->p_paddr \
5395 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5396 : IS_CONTAINED_BY_VMA (section, segment)) \
5397 && (section->flags & SEC_ALLOC) != 0) \
5398 || IS_NOTE (segment, section)) \
5399 && segment->p_type != PT_GNU_STACK \
5400 && (segment->p_type != PT_TLS \
5401 || (section->flags & SEC_THREAD_LOCAL)) \
5402 && (segment->p_type == PT_LOAD \
5403 || segment->p_type == PT_TLS \
5404 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5405 && (segment->p_type != PT_DYNAMIC \
5406 || SECTION_SIZE (section, segment) > 0 \
5407 || (segment->p_paddr \
5408 ? segment->p_paddr != section->lma \
5409 : segment->p_vaddr != section->vma) \
5410 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5411 == 0)) \
5412 && !section->segment_mark)
5413
5414 /* If the output section of a section in the input segment is NULL,
5415 it is removed from the corresponding output segment. */
5416 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5417 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
5418 && section->output_section != NULL)
5419
5420 /* Returns TRUE iff seg1 starts after the end of seg2. */
5421 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5422 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5423
5424 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5425 their VMA address ranges and their LMA address ranges overlap.
5426 It is possible to have overlapping VMA ranges without overlapping LMA
5427 ranges. RedBoot images for example can have both .data and .bss mapped
5428 to the same VMA range, but with the .data section mapped to a different
5429 LMA. */
5430 #define SEGMENT_OVERLAPS(seg1, seg2) \
5431 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5432 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5433 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5434 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5435
5436 /* Initialise the segment mark field. */
5437 for (section = ibfd->sections; section != NULL; section = section->next)
5438 section->segment_mark = FALSE;
5439
5440 /* The Solaris linker creates program headers in which all the
5441 p_paddr fields are zero. When we try to objcopy or strip such a
5442 file, we get confused. Check for this case, and if we find it
5443 don't set the p_paddr_valid fields. */
5444 p_paddr_valid = FALSE;
5445 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5446 i < num_segments;
5447 i++, segment++)
5448 if (segment->p_paddr != 0)
5449 {
5450 p_paddr_valid = TRUE;
5451 break;
5452 }
5453
5454 /* Scan through the segments specified in the program header
5455 of the input BFD. For this first scan we look for overlaps
5456 in the loadable segments. These can be created by weird
5457 parameters to objcopy. Also, fix some solaris weirdness. */
5458 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5459 i < num_segments;
5460 i++, segment++)
5461 {
5462 unsigned int j;
5463 Elf_Internal_Phdr *segment2;
5464
5465 if (segment->p_type == PT_INTERP)
5466 for (section = ibfd->sections; section; section = section->next)
5467 if (IS_SOLARIS_PT_INTERP (segment, section))
5468 {
5469 /* Mininal change so that the normal section to segment
5470 assignment code will work. */
5471 segment->p_vaddr = section->vma;
5472 break;
5473 }
5474
5475 if (segment->p_type != PT_LOAD)
5476 {
5477 /* Remove PT_GNU_RELRO segment. */
5478 if (segment->p_type == PT_GNU_RELRO)
5479 segment->p_type = PT_NULL;
5480 continue;
5481 }
5482
5483 /* Determine if this segment overlaps any previous segments. */
5484 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
5485 {
5486 bfd_signed_vma extra_length;
5487
5488 if (segment2->p_type != PT_LOAD
5489 || !SEGMENT_OVERLAPS (segment, segment2))
5490 continue;
5491
5492 /* Merge the two segments together. */
5493 if (segment2->p_vaddr < segment->p_vaddr)
5494 {
5495 /* Extend SEGMENT2 to include SEGMENT and then delete
5496 SEGMENT. */
5497 extra_length = (SEGMENT_END (segment, segment->p_vaddr)
5498 - SEGMENT_END (segment2, segment2->p_vaddr));
5499
5500 if (extra_length > 0)
5501 {
5502 segment2->p_memsz += extra_length;
5503 segment2->p_filesz += extra_length;
5504 }
5505
5506 segment->p_type = PT_NULL;
5507
5508 /* Since we have deleted P we must restart the outer loop. */
5509 i = 0;
5510 segment = elf_tdata (ibfd)->phdr;
5511 break;
5512 }
5513 else
5514 {
5515 /* Extend SEGMENT to include SEGMENT2 and then delete
5516 SEGMENT2. */
5517 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
5518 - SEGMENT_END (segment, segment->p_vaddr));
5519
5520 if (extra_length > 0)
5521 {
5522 segment->p_memsz += extra_length;
5523 segment->p_filesz += extra_length;
5524 }
5525
5526 segment2->p_type = PT_NULL;
5527 }
5528 }
5529 }
5530
5531 /* The second scan attempts to assign sections to segments. */
5532 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5533 i < num_segments;
5534 i++, segment++)
5535 {
5536 unsigned int section_count;
5537 asection **sections;
5538 asection *output_section;
5539 unsigned int isec;
5540 bfd_vma matching_lma;
5541 bfd_vma suggested_lma;
5542 unsigned int j;
5543 bfd_size_type amt;
5544 asection *first_section;
5545 bfd_boolean first_matching_lma;
5546 bfd_boolean first_suggested_lma;
5547
5548 if (segment->p_type == PT_NULL)
5549 continue;
5550
5551 first_section = NULL;
5552 /* Compute how many sections might be placed into this segment. */
5553 for (section = ibfd->sections, section_count = 0;
5554 section != NULL;
5555 section = section->next)
5556 {
5557 /* Find the first section in the input segment, which may be
5558 removed from the corresponding output segment. */
5559 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
5560 {
5561 if (first_section == NULL)
5562 first_section = section;
5563 if (section->output_section != NULL)
5564 ++section_count;
5565 }
5566 }
5567
5568 /* Allocate a segment map big enough to contain
5569 all of the sections we have selected. */
5570 amt = sizeof (struct elf_segment_map);
5571 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5572 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
5573 if (map == NULL)
5574 return FALSE;
5575
5576 /* Initialise the fields of the segment map. Default to
5577 using the physical address of the segment in the input BFD. */
5578 map->next = NULL;
5579 map->p_type = segment->p_type;
5580 map->p_flags = segment->p_flags;
5581 map->p_flags_valid = 1;
5582
5583 /* If the first section in the input segment is removed, there is
5584 no need to preserve segment physical address in the corresponding
5585 output segment. */
5586 if (!first_section || first_section->output_section != NULL)
5587 {
5588 map->p_paddr = segment->p_paddr;
5589 map->p_paddr_valid = p_paddr_valid;
5590 }
5591
5592 /* Determine if this segment contains the ELF file header
5593 and if it contains the program headers themselves. */
5594 map->includes_filehdr = (segment->p_offset == 0
5595 && segment->p_filesz >= iehdr->e_ehsize);
5596 map->includes_phdrs = 0;
5597
5598 if (!phdr_included || segment->p_type != PT_LOAD)
5599 {
5600 map->includes_phdrs =
5601 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5602 && (segment->p_offset + segment->p_filesz
5603 >= ((bfd_vma) iehdr->e_phoff
5604 + iehdr->e_phnum * iehdr->e_phentsize)));
5605
5606 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5607 phdr_included = TRUE;
5608 }
5609
5610 if (section_count == 0)
5611 {
5612 /* Special segments, such as the PT_PHDR segment, may contain
5613 no sections, but ordinary, loadable segments should contain
5614 something. They are allowed by the ELF spec however, so only
5615 a warning is produced. */
5616 if (segment->p_type == PT_LOAD)
5617 (*_bfd_error_handler) (_("%B: warning: Empty loadable segment"
5618 " detected, is this intentional ?\n"),
5619 ibfd);
5620
5621 map->count = 0;
5622 *pointer_to_map = map;
5623 pointer_to_map = &map->next;
5624
5625 continue;
5626 }
5627
5628 /* Now scan the sections in the input BFD again and attempt
5629 to add their corresponding output sections to the segment map.
5630 The problem here is how to handle an output section which has
5631 been moved (ie had its LMA changed). There are four possibilities:
5632
5633 1. None of the sections have been moved.
5634 In this case we can continue to use the segment LMA from the
5635 input BFD.
5636
5637 2. All of the sections have been moved by the same amount.
5638 In this case we can change the segment's LMA to match the LMA
5639 of the first section.
5640
5641 3. Some of the sections have been moved, others have not.
5642 In this case those sections which have not been moved can be
5643 placed in the current segment which will have to have its size,
5644 and possibly its LMA changed, and a new segment or segments will
5645 have to be created to contain the other sections.
5646
5647 4. The sections have been moved, but not by the same amount.
5648 In this case we can change the segment's LMA to match the LMA
5649 of the first section and we will have to create a new segment
5650 or segments to contain the other sections.
5651
5652 In order to save time, we allocate an array to hold the section
5653 pointers that we are interested in. As these sections get assigned
5654 to a segment, they are removed from this array. */
5655
5656 sections = (asection **) bfd_malloc2 (section_count, sizeof (asection *));
5657 if (sections == NULL)
5658 return FALSE;
5659
5660 /* Step One: Scan for segment vs section LMA conflicts.
5661 Also add the sections to the section array allocated above.
5662 Also add the sections to the current segment. In the common
5663 case, where the sections have not been moved, this means that
5664 we have completely filled the segment, and there is nothing
5665 more to do. */
5666 isec = 0;
5667 matching_lma = 0;
5668 suggested_lma = 0;
5669 first_matching_lma = TRUE;
5670 first_suggested_lma = TRUE;
5671
5672 for (section = ibfd->sections;
5673 section != NULL;
5674 section = section->next)
5675 if (section == first_section)
5676 break;
5677
5678 for (j = 0; section != NULL; section = section->next)
5679 {
5680 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5681 {
5682 output_section = section->output_section;
5683
5684 sections[j++] = section;
5685
5686 /* The Solaris native linker always sets p_paddr to 0.
5687 We try to catch that case here, and set it to the
5688 correct value. Note - some backends require that
5689 p_paddr be left as zero. */
5690 if (!p_paddr_valid
5691 && segment->p_vaddr != 0
5692 && !bed->want_p_paddr_set_to_zero
5693 && isec == 0
5694 && output_section->lma != 0
5695 && output_section->vma == (segment->p_vaddr
5696 + (map->includes_filehdr
5697 ? iehdr->e_ehsize
5698 : 0)
5699 + (map->includes_phdrs
5700 ? (iehdr->e_phnum
5701 * iehdr->e_phentsize)
5702 : 0)))
5703 map->p_paddr = segment->p_vaddr;
5704
5705 /* Match up the physical address of the segment with the
5706 LMA address of the output section. */
5707 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5708 || IS_COREFILE_NOTE (segment, section)
5709 || (bed->want_p_paddr_set_to_zero
5710 && IS_CONTAINED_BY_VMA (output_section, segment)))
5711 {
5712 if (first_matching_lma || output_section->lma < matching_lma)
5713 {
5714 matching_lma = output_section->lma;
5715 first_matching_lma = FALSE;
5716 }
5717
5718 /* We assume that if the section fits within the segment
5719 then it does not overlap any other section within that
5720 segment. */
5721 map->sections[isec++] = output_section;
5722 }
5723 else if (first_suggested_lma)
5724 {
5725 suggested_lma = output_section->lma;
5726 first_suggested_lma = FALSE;
5727 }
5728
5729 if (j == section_count)
5730 break;
5731 }
5732 }
5733
5734 BFD_ASSERT (j == section_count);
5735
5736 /* Step Two: Adjust the physical address of the current segment,
5737 if necessary. */
5738 if (isec == section_count)
5739 {
5740 /* All of the sections fitted within the segment as currently
5741 specified. This is the default case. Add the segment to
5742 the list of built segments and carry on to process the next
5743 program header in the input BFD. */
5744 map->count = section_count;
5745 *pointer_to_map = map;
5746 pointer_to_map = &map->next;
5747
5748 if (p_paddr_valid
5749 && !bed->want_p_paddr_set_to_zero
5750 && matching_lma != map->p_paddr
5751 && !map->includes_filehdr
5752 && !map->includes_phdrs)
5753 /* There is some padding before the first section in the
5754 segment. So, we must account for that in the output
5755 segment's vma. */
5756 map->p_vaddr_offset = matching_lma - map->p_paddr;
5757
5758 free (sections);
5759 continue;
5760 }
5761 else
5762 {
5763 if (!first_matching_lma)
5764 {
5765 /* At least one section fits inside the current segment.
5766 Keep it, but modify its physical address to match the
5767 LMA of the first section that fitted. */
5768 map->p_paddr = matching_lma;
5769 }
5770 else
5771 {
5772 /* None of the sections fitted inside the current segment.
5773 Change the current segment's physical address to match
5774 the LMA of the first section. */
5775 map->p_paddr = suggested_lma;
5776 }
5777
5778 /* Offset the segment physical address from the lma
5779 to allow for space taken up by elf headers. */
5780 if (map->includes_filehdr)
5781 {
5782 if (map->p_paddr >= iehdr->e_ehsize)
5783 map->p_paddr -= iehdr->e_ehsize;
5784 else
5785 {
5786 map->includes_filehdr = FALSE;
5787 map->includes_phdrs = FALSE;
5788 }
5789 }
5790
5791 if (map->includes_phdrs)
5792 {
5793 if (map->p_paddr >= iehdr->e_phnum * iehdr->e_phentsize)
5794 {
5795 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
5796
5797 /* iehdr->e_phnum is just an estimate of the number
5798 of program headers that we will need. Make a note
5799 here of the number we used and the segment we chose
5800 to hold these headers, so that we can adjust the
5801 offset when we know the correct value. */
5802 phdr_adjust_num = iehdr->e_phnum;
5803 phdr_adjust_seg = map;
5804 }
5805 else
5806 map->includes_phdrs = FALSE;
5807 }
5808 }
5809
5810 /* Step Three: Loop over the sections again, this time assigning
5811 those that fit to the current segment and removing them from the
5812 sections array; but making sure not to leave large gaps. Once all
5813 possible sections have been assigned to the current segment it is
5814 added to the list of built segments and if sections still remain
5815 to be assigned, a new segment is constructed before repeating
5816 the loop. */
5817 isec = 0;
5818 do
5819 {
5820 map->count = 0;
5821 suggested_lma = 0;
5822 first_suggested_lma = TRUE;
5823
5824 /* Fill the current segment with sections that fit. */
5825 for (j = 0; j < section_count; j++)
5826 {
5827 section = sections[j];
5828
5829 if (section == NULL)
5830 continue;
5831
5832 output_section = section->output_section;
5833
5834 BFD_ASSERT (output_section != NULL);
5835
5836 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5837 || IS_COREFILE_NOTE (segment, section))
5838 {
5839 if (map->count == 0)
5840 {
5841 /* If the first section in a segment does not start at
5842 the beginning of the segment, then something is
5843 wrong. */
5844 if (output_section->lma
5845 != (map->p_paddr
5846 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
5847 + (map->includes_phdrs
5848 ? iehdr->e_phnum * iehdr->e_phentsize
5849 : 0)))
5850 abort ();
5851 }
5852 else
5853 {
5854 asection *prev_sec;
5855
5856 prev_sec = map->sections[map->count - 1];
5857
5858 /* If the gap between the end of the previous section
5859 and the start of this section is more than
5860 maxpagesize then we need to start a new segment. */
5861 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
5862 maxpagesize)
5863 < BFD_ALIGN (output_section->lma, maxpagesize))
5864 || (prev_sec->lma + prev_sec->size
5865 > output_section->lma))
5866 {
5867 if (first_suggested_lma)
5868 {
5869 suggested_lma = output_section->lma;
5870 first_suggested_lma = FALSE;
5871 }
5872
5873 continue;
5874 }
5875 }
5876
5877 map->sections[map->count++] = output_section;
5878 ++isec;
5879 sections[j] = NULL;
5880 section->segment_mark = TRUE;
5881 }
5882 else if (first_suggested_lma)
5883 {
5884 suggested_lma = output_section->lma;
5885 first_suggested_lma = FALSE;
5886 }
5887 }
5888
5889 BFD_ASSERT (map->count > 0);
5890
5891 /* Add the current segment to the list of built segments. */
5892 *pointer_to_map = map;
5893 pointer_to_map = &map->next;
5894
5895 if (isec < section_count)
5896 {
5897 /* We still have not allocated all of the sections to
5898 segments. Create a new segment here, initialise it
5899 and carry on looping. */
5900 amt = sizeof (struct elf_segment_map);
5901 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5902 map = (struct elf_segment_map *) bfd_alloc (obfd, amt);
5903 if (map == NULL)
5904 {
5905 free (sections);
5906 return FALSE;
5907 }
5908
5909 /* Initialise the fields of the segment map. Set the physical
5910 physical address to the LMA of the first section that has
5911 not yet been assigned. */
5912 map->next = NULL;
5913 map->p_type = segment->p_type;
5914 map->p_flags = segment->p_flags;
5915 map->p_flags_valid = 1;
5916 map->p_paddr = suggested_lma;
5917 map->p_paddr_valid = p_paddr_valid;
5918 map->includes_filehdr = 0;
5919 map->includes_phdrs = 0;
5920 }
5921 }
5922 while (isec < section_count);
5923
5924 free (sections);
5925 }
5926
5927 elf_tdata (obfd)->segment_map = map_first;
5928
5929 /* If we had to estimate the number of program headers that were
5930 going to be needed, then check our estimate now and adjust
5931 the offset if necessary. */
5932 if (phdr_adjust_seg != NULL)
5933 {
5934 unsigned int count;
5935
5936 for (count = 0, map = map_first; map != NULL; map = map->next)
5937 count++;
5938
5939 if (count > phdr_adjust_num)
5940 phdr_adjust_seg->p_paddr
5941 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
5942 }
5943
5944 #undef SEGMENT_END
5945 #undef SECTION_SIZE
5946 #undef IS_CONTAINED_BY_VMA
5947 #undef IS_CONTAINED_BY_LMA
5948 #undef IS_NOTE
5949 #undef IS_COREFILE_NOTE
5950 #undef IS_SOLARIS_PT_INTERP
5951 #undef IS_SECTION_IN_INPUT_SEGMENT
5952 #undef INCLUDE_SECTION_IN_SEGMENT
5953 #undef SEGMENT_AFTER_SEGMENT
5954 #undef SEGMENT_OVERLAPS
5955 return TRUE;
5956 }
5957
5958 /* Copy ELF program header information. */
5959
5960 static bfd_boolean
5961 copy_elf_program_header (bfd *ibfd, bfd *obfd)
5962 {
5963 Elf_Internal_Ehdr *iehdr;
5964 struct elf_segment_map *map;
5965 struct elf_segment_map *map_first;
5966 struct elf_segment_map **pointer_to_map;
5967 Elf_Internal_Phdr *segment;
5968 unsigned int i;
5969 unsigned int num_segments;
5970 bfd_boolean phdr_included = FALSE;
5971 bfd_boolean p_paddr_valid;
5972
5973 iehdr = elf_elfheader (ibfd);
5974
5975 map_first = NULL;
5976 pointer_to_map = &map_first;
5977
5978 /* If all the segment p_paddr fields are zero, don't set
5979 map->p_paddr_valid. */
5980 p_paddr_valid = FALSE;
5981 num_segments = elf_elfheader (ibfd)->e_phnum;
5982 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5983 i < num_segments;
5984 i++, segment++)
5985 if (segment->p_paddr != 0)
5986 {
5987 p_paddr_valid = TRUE;
5988 break;
5989 }
5990
5991 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5992 i < num_segments;
5993 i++, segment++)
5994 {
5995 asection *section;
5996 unsigned int section_count;
5997 bfd_size_type amt;
5998 Elf_Internal_Shdr *this_hdr;
5999 asection *first_section = NULL;
6000 asection *lowest_section;
6001
6002 /* Compute how many sections are in this segment. */
6003 for (section = ibfd->sections, section_count = 0;
6004 section != NULL;
6005 section = section->next)
6006 {
6007 this_hdr = &(elf_section_data(section)->this_hdr);
6008 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6009 {
6010 if (first_section == NULL)
6011 first_section = section;
6012 section_count++;
6013 }
6014 }
6015
6016 /* Allocate a segment map big enough to contain
6017 all of the sections we have selected. */
6018 amt = sizeof (struct elf_segment_map);
6019 if (section_count != 0)
6020 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
6021 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
6022 if (map == NULL)
6023 return FALSE;
6024
6025 /* Initialize the fields of the output segment map with the
6026 input segment. */
6027 map->next = NULL;
6028 map->p_type = segment->p_type;
6029 map->p_flags = segment->p_flags;
6030 map->p_flags_valid = 1;
6031 map->p_paddr = segment->p_paddr;
6032 map->p_paddr_valid = p_paddr_valid;
6033 map->p_align = segment->p_align;
6034 map->p_align_valid = 1;
6035 map->p_vaddr_offset = 0;
6036
6037 if (map->p_type == PT_GNU_RELRO)
6038 {
6039 /* The PT_GNU_RELRO segment may contain the first a few
6040 bytes in the .got.plt section even if the whole .got.plt
6041 section isn't in the PT_GNU_RELRO segment. We won't
6042 change the size of the PT_GNU_RELRO segment. */
6043 map->p_size = segment->p_memsz;
6044 map->p_size_valid = 1;
6045 }
6046
6047 /* Determine if this segment contains the ELF file header
6048 and if it contains the program headers themselves. */
6049 map->includes_filehdr = (segment->p_offset == 0
6050 && segment->p_filesz >= iehdr->e_ehsize);
6051
6052 map->includes_phdrs = 0;
6053 if (! phdr_included || segment->p_type != PT_LOAD)
6054 {
6055 map->includes_phdrs =
6056 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
6057 && (segment->p_offset + segment->p_filesz
6058 >= ((bfd_vma) iehdr->e_phoff
6059 + iehdr->e_phnum * iehdr->e_phentsize)));
6060
6061 if (segment->p_type == PT_LOAD && map->includes_phdrs)
6062 phdr_included = TRUE;
6063 }
6064
6065 lowest_section = first_section;
6066 if (section_count != 0)
6067 {
6068 unsigned int isec = 0;
6069
6070 for (section = first_section;
6071 section != NULL;
6072 section = section->next)
6073 {
6074 this_hdr = &(elf_section_data(section)->this_hdr);
6075 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6076 {
6077 map->sections[isec++] = section->output_section;
6078 if (section->lma < lowest_section->lma)
6079 lowest_section = section;
6080 if ((section->flags & SEC_ALLOC) != 0)
6081 {
6082 bfd_vma seg_off;
6083
6084 /* Section lmas are set up from PT_LOAD header
6085 p_paddr in _bfd_elf_make_section_from_shdr.
6086 If this header has a p_paddr that disagrees
6087 with the section lma, flag the p_paddr as
6088 invalid. */
6089 if ((section->flags & SEC_LOAD) != 0)
6090 seg_off = this_hdr->sh_offset - segment->p_offset;
6091 else
6092 seg_off = this_hdr->sh_addr - segment->p_vaddr;
6093 if (section->lma - segment->p_paddr != seg_off)
6094 map->p_paddr_valid = FALSE;
6095 }
6096 if (isec == section_count)
6097 break;
6098 }
6099 }
6100 }
6101
6102 if (map->includes_filehdr && lowest_section != NULL)
6103 /* We need to keep the space used by the headers fixed. */
6104 map->header_size = lowest_section->vma - segment->p_vaddr;
6105
6106 if (!map->includes_phdrs
6107 && !map->includes_filehdr
6108 && map->p_paddr_valid)
6109 /* There is some other padding before the first section. */
6110 map->p_vaddr_offset = ((lowest_section ? lowest_section->lma : 0)
6111 - segment->p_paddr);
6112
6113 map->count = section_count;
6114 *pointer_to_map = map;
6115 pointer_to_map = &map->next;
6116 }
6117
6118 elf_tdata (obfd)->segment_map = map_first;
6119 return TRUE;
6120 }
6121
6122 /* Copy private BFD data. This copies or rewrites ELF program header
6123 information. */
6124
6125 static bfd_boolean
6126 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
6127 {
6128 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6129 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6130 return TRUE;
6131
6132 if (elf_tdata (ibfd)->phdr == NULL)
6133 return TRUE;
6134
6135 if (ibfd->xvec == obfd->xvec)
6136 {
6137 /* Check to see if any sections in the input BFD
6138 covered by ELF program header have changed. */
6139 Elf_Internal_Phdr *segment;
6140 asection *section, *osec;
6141 unsigned int i, num_segments;
6142 Elf_Internal_Shdr *this_hdr;
6143 const struct elf_backend_data *bed;
6144
6145 bed = get_elf_backend_data (ibfd);
6146
6147 /* Regenerate the segment map if p_paddr is set to 0. */
6148 if (bed->want_p_paddr_set_to_zero)
6149 goto rewrite;
6150
6151 /* Initialize the segment mark field. */
6152 for (section = obfd->sections; section != NULL;
6153 section = section->next)
6154 section->segment_mark = FALSE;
6155
6156 num_segments = elf_elfheader (ibfd)->e_phnum;
6157 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6158 i < num_segments;
6159 i++, segment++)
6160 {
6161 /* PR binutils/3535. The Solaris linker always sets the p_paddr
6162 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
6163 which severly confuses things, so always regenerate the segment
6164 map in this case. */
6165 if (segment->p_paddr == 0
6166 && segment->p_memsz == 0
6167 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
6168 goto rewrite;
6169
6170 for (section = ibfd->sections;
6171 section != NULL; section = section->next)
6172 {
6173 /* We mark the output section so that we know it comes
6174 from the input BFD. */
6175 osec = section->output_section;
6176 if (osec)
6177 osec->segment_mark = TRUE;
6178
6179 /* Check if this section is covered by the segment. */
6180 this_hdr = &(elf_section_data(section)->this_hdr);
6181 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6182 {
6183 /* FIXME: Check if its output section is changed or
6184 removed. What else do we need to check? */
6185 if (osec == NULL
6186 || section->flags != osec->flags
6187 || section->lma != osec->lma
6188 || section->vma != osec->vma
6189 || section->size != osec->size
6190 || section->rawsize != osec->rawsize
6191 || section->alignment_power != osec->alignment_power)
6192 goto rewrite;
6193 }
6194 }
6195 }
6196
6197 /* Check to see if any output section do not come from the
6198 input BFD. */
6199 for (section = obfd->sections; section != NULL;
6200 section = section->next)
6201 {
6202 if (section->segment_mark == FALSE)
6203 goto rewrite;
6204 else
6205 section->segment_mark = FALSE;
6206 }
6207
6208 return copy_elf_program_header (ibfd, obfd);
6209 }
6210
6211 rewrite:
6212 return rewrite_elf_program_header (ibfd, obfd);
6213 }
6214
6215 /* Initialize private output section information from input section. */
6216
6217 bfd_boolean
6218 _bfd_elf_init_private_section_data (bfd *ibfd,
6219 asection *isec,
6220 bfd *obfd,
6221 asection *osec,
6222 struct bfd_link_info *link_info)
6223
6224 {
6225 Elf_Internal_Shdr *ihdr, *ohdr;
6226 bfd_boolean final_link = link_info != NULL && !link_info->relocatable;
6227
6228 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6229 || obfd->xvec->flavour != bfd_target_elf_flavour)
6230 return TRUE;
6231
6232 /* For objcopy and relocatable link, don't copy the output ELF
6233 section type from input if the output BFD section flags have been
6234 set to something different. For a final link allow some flags
6235 that the linker clears to differ. */
6236 if (elf_section_type (osec) == SHT_NULL
6237 && (osec->flags == isec->flags
6238 || (final_link
6239 && ((osec->flags ^ isec->flags)
6240 & ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC)) == 0)))
6241 elf_section_type (osec) = elf_section_type (isec);
6242
6243 /* FIXME: Is this correct for all OS/PROC specific flags? */
6244 elf_section_flags (osec) |= (elf_section_flags (isec)
6245 & (SHF_MASKOS | SHF_MASKPROC));
6246
6247 /* Set things up for objcopy and relocatable link. The output
6248 SHT_GROUP section will have its elf_next_in_group pointing back
6249 to the input group members. Ignore linker created group section.
6250 See elfNN_ia64_object_p in elfxx-ia64.c. */
6251 if (!final_link)
6252 {
6253 if (elf_sec_group (isec) == NULL
6254 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
6255 {
6256 if (elf_section_flags (isec) & SHF_GROUP)
6257 elf_section_flags (osec) |= SHF_GROUP;
6258 elf_next_in_group (osec) = elf_next_in_group (isec);
6259 elf_section_data (osec)->group = elf_section_data (isec)->group;
6260 }
6261 }
6262
6263 ihdr = &elf_section_data (isec)->this_hdr;
6264
6265 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
6266 don't use the output section of the linked-to section since it
6267 may be NULL at this point. */
6268 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
6269 {
6270 ohdr = &elf_section_data (osec)->this_hdr;
6271 ohdr->sh_flags |= SHF_LINK_ORDER;
6272 elf_linked_to_section (osec) = elf_linked_to_section (isec);
6273 }
6274
6275 osec->use_rela_p = isec->use_rela_p;
6276
6277 return TRUE;
6278 }
6279
6280 /* Copy private section information. This copies over the entsize
6281 field, and sometimes the info field. */
6282
6283 bfd_boolean
6284 _bfd_elf_copy_private_section_data (bfd *ibfd,
6285 asection *isec,
6286 bfd *obfd,
6287 asection *osec)
6288 {
6289 Elf_Internal_Shdr *ihdr, *ohdr;
6290
6291 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6292 || obfd->xvec->flavour != bfd_target_elf_flavour)
6293 return TRUE;
6294
6295 ihdr = &elf_section_data (isec)->this_hdr;
6296 ohdr = &elf_section_data (osec)->this_hdr;
6297
6298 ohdr->sh_entsize = ihdr->sh_entsize;
6299
6300 if (ihdr->sh_type == SHT_SYMTAB
6301 || ihdr->sh_type == SHT_DYNSYM
6302 || ihdr->sh_type == SHT_GNU_verneed
6303 || ihdr->sh_type == SHT_GNU_verdef)
6304 ohdr->sh_info = ihdr->sh_info;
6305
6306 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
6307 NULL);
6308 }
6309
6310 /* Look at all the SHT_GROUP sections in IBFD, making any adjustments
6311 necessary if we are removing either the SHT_GROUP section or any of
6312 the group member sections. DISCARDED is the value that a section's
6313 output_section has if the section will be discarded, NULL when this
6314 function is called from objcopy, bfd_abs_section_ptr when called
6315 from the linker. */
6316
6317 bfd_boolean
6318 _bfd_elf_fixup_group_sections (bfd *ibfd, asection *discarded)
6319 {
6320 asection *isec;
6321
6322 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
6323 if (elf_section_type (isec) == SHT_GROUP)
6324 {
6325 asection *first = elf_next_in_group (isec);
6326 asection *s = first;
6327 bfd_size_type removed = 0;
6328
6329 while (s != NULL)
6330 {
6331 /* If this member section is being output but the
6332 SHT_GROUP section is not, then clear the group info
6333 set up by _bfd_elf_copy_private_section_data. */
6334 if (s->output_section != discarded
6335 && isec->output_section == discarded)
6336 {
6337 elf_section_flags (s->output_section) &= ~SHF_GROUP;
6338 elf_group_name (s->output_section) = NULL;
6339 }
6340 /* Conversely, if the member section is not being output
6341 but the SHT_GROUP section is, then adjust its size. */
6342 else if (s->output_section == discarded
6343 && isec->output_section != discarded)
6344 removed += 4;
6345 s = elf_next_in_group (s);
6346 if (s == first)
6347 break;
6348 }
6349 if (removed != 0)
6350 {
6351 if (discarded != NULL)
6352 {
6353 /* If we've been called for ld -r, then we need to
6354 adjust the input section size. This function may
6355 be called multiple times, so save the original
6356 size. */
6357 if (isec->rawsize == 0)
6358 isec->rawsize = isec->size;
6359 isec->size = isec->rawsize - removed;
6360 }
6361 else
6362 {
6363 /* Adjust the output section size when called from
6364 objcopy. */
6365 isec->output_section->size -= removed;
6366 }
6367 }
6368 }
6369
6370 return TRUE;
6371 }
6372
6373 /* Copy private header information. */
6374
6375 bfd_boolean
6376 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
6377 {
6378 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6379 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6380 return TRUE;
6381
6382 /* Copy over private BFD data if it has not already been copied.
6383 This must be done here, rather than in the copy_private_bfd_data
6384 entry point, because the latter is called after the section
6385 contents have been set, which means that the program headers have
6386 already been worked out. */
6387 if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
6388 {
6389 if (! copy_private_bfd_data (ibfd, obfd))
6390 return FALSE;
6391 }
6392
6393 return _bfd_elf_fixup_group_sections (ibfd, NULL);
6394 }
6395
6396 /* Copy private symbol information. If this symbol is in a section
6397 which we did not map into a BFD section, try to map the section
6398 index correctly. We use special macro definitions for the mapped
6399 section indices; these definitions are interpreted by the
6400 swap_out_syms function. */
6401
6402 #define MAP_ONESYMTAB (SHN_HIOS + 1)
6403 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
6404 #define MAP_STRTAB (SHN_HIOS + 3)
6405 #define MAP_SHSTRTAB (SHN_HIOS + 4)
6406 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
6407
6408 bfd_boolean
6409 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
6410 asymbol *isymarg,
6411 bfd *obfd,
6412 asymbol *osymarg)
6413 {
6414 elf_symbol_type *isym, *osym;
6415
6416 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6417 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6418 return TRUE;
6419
6420 isym = elf_symbol_from (ibfd, isymarg);
6421 osym = elf_symbol_from (obfd, osymarg);
6422
6423 if (isym != NULL
6424 && isym->internal_elf_sym.st_shndx != 0
6425 && osym != NULL
6426 && bfd_is_abs_section (isym->symbol.section))
6427 {
6428 unsigned int shndx;
6429
6430 shndx = isym->internal_elf_sym.st_shndx;
6431 if (shndx == elf_onesymtab (ibfd))
6432 shndx = MAP_ONESYMTAB;
6433 else if (shndx == elf_dynsymtab (ibfd))
6434 shndx = MAP_DYNSYMTAB;
6435 else if (shndx == elf_tdata (ibfd)->strtab_section)
6436 shndx = MAP_STRTAB;
6437 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
6438 shndx = MAP_SHSTRTAB;
6439 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
6440 shndx = MAP_SYM_SHNDX;
6441 osym->internal_elf_sym.st_shndx = shndx;
6442 }
6443
6444 return TRUE;
6445 }
6446
6447 /* Swap out the symbols. */
6448
6449 static bfd_boolean
6450 swap_out_syms (bfd *abfd,
6451 struct bfd_strtab_hash **sttp,
6452 int relocatable_p)
6453 {
6454 const struct elf_backend_data *bed;
6455 int symcount;
6456 asymbol **syms;
6457 struct bfd_strtab_hash *stt;
6458 Elf_Internal_Shdr *symtab_hdr;
6459 Elf_Internal_Shdr *symtab_shndx_hdr;
6460 Elf_Internal_Shdr *symstrtab_hdr;
6461 bfd_byte *outbound_syms;
6462 bfd_byte *outbound_shndx;
6463 int idx;
6464 bfd_size_type amt;
6465 bfd_boolean name_local_sections;
6466
6467 if (!elf_map_symbols (abfd))
6468 return FALSE;
6469
6470 /* Dump out the symtabs. */
6471 stt = _bfd_elf_stringtab_init ();
6472 if (stt == NULL)
6473 return FALSE;
6474
6475 bed = get_elf_backend_data (abfd);
6476 symcount = bfd_get_symcount (abfd);
6477 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6478 symtab_hdr->sh_type = SHT_SYMTAB;
6479 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
6480 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
6481 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
6482 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
6483
6484 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
6485 symstrtab_hdr->sh_type = SHT_STRTAB;
6486
6487 outbound_syms = (bfd_byte *) bfd_alloc2 (abfd, 1 + symcount,
6488 bed->s->sizeof_sym);
6489 if (outbound_syms == NULL)
6490 {
6491 _bfd_stringtab_free (stt);
6492 return FALSE;
6493 }
6494 symtab_hdr->contents = outbound_syms;
6495
6496 outbound_shndx = NULL;
6497 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
6498 if (symtab_shndx_hdr->sh_name != 0)
6499 {
6500 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
6501 outbound_shndx = (bfd_byte *)
6502 bfd_zalloc2 (abfd, 1 + symcount, sizeof (Elf_External_Sym_Shndx));
6503 if (outbound_shndx == NULL)
6504 {
6505 _bfd_stringtab_free (stt);
6506 return FALSE;
6507 }
6508
6509 symtab_shndx_hdr->contents = outbound_shndx;
6510 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
6511 symtab_shndx_hdr->sh_size = amt;
6512 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
6513 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
6514 }
6515
6516 /* Now generate the data (for "contents"). */
6517 {
6518 /* Fill in zeroth symbol and swap it out. */
6519 Elf_Internal_Sym sym;
6520 sym.st_name = 0;
6521 sym.st_value = 0;
6522 sym.st_size = 0;
6523 sym.st_info = 0;
6524 sym.st_other = 0;
6525 sym.st_shndx = SHN_UNDEF;
6526 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6527 outbound_syms += bed->s->sizeof_sym;
6528 if (outbound_shndx != NULL)
6529 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6530 }
6531
6532 name_local_sections
6533 = (bed->elf_backend_name_local_section_symbols
6534 && bed->elf_backend_name_local_section_symbols (abfd));
6535
6536 syms = bfd_get_outsymbols (abfd);
6537 for (idx = 0; idx < symcount; idx++)
6538 {
6539 Elf_Internal_Sym sym;
6540 bfd_vma value = syms[idx]->value;
6541 elf_symbol_type *type_ptr;
6542 flagword flags = syms[idx]->flags;
6543 int type;
6544
6545 if (!name_local_sections
6546 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
6547 {
6548 /* Local section symbols have no name. */
6549 sym.st_name = 0;
6550 }
6551 else
6552 {
6553 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
6554 syms[idx]->name,
6555 TRUE, FALSE);
6556 if (sym.st_name == (unsigned long) -1)
6557 {
6558 _bfd_stringtab_free (stt);
6559 return FALSE;
6560 }
6561 }
6562
6563 type_ptr = elf_symbol_from (abfd, syms[idx]);
6564
6565 if ((flags & BSF_SECTION_SYM) == 0
6566 && bfd_is_com_section (syms[idx]->section))
6567 {
6568 /* ELF common symbols put the alignment into the `value' field,
6569 and the size into the `size' field. This is backwards from
6570 how BFD handles it, so reverse it here. */
6571 sym.st_size = value;
6572 if (type_ptr == NULL
6573 || type_ptr->internal_elf_sym.st_value == 0)
6574 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
6575 else
6576 sym.st_value = type_ptr->internal_elf_sym.st_value;
6577 sym.st_shndx = _bfd_elf_section_from_bfd_section
6578 (abfd, syms[idx]->section);
6579 }
6580 else
6581 {
6582 asection *sec = syms[idx]->section;
6583 unsigned int shndx;
6584
6585 if (sec->output_section)
6586 {
6587 value += sec->output_offset;
6588 sec = sec->output_section;
6589 }
6590
6591 /* Don't add in the section vma for relocatable output. */
6592 if (! relocatable_p)
6593 value += sec->vma;
6594 sym.st_value = value;
6595 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
6596
6597 if (bfd_is_abs_section (sec)
6598 && type_ptr != NULL
6599 && type_ptr->internal_elf_sym.st_shndx != 0)
6600 {
6601 /* This symbol is in a real ELF section which we did
6602 not create as a BFD section. Undo the mapping done
6603 by copy_private_symbol_data. */
6604 shndx = type_ptr->internal_elf_sym.st_shndx;
6605 switch (shndx)
6606 {
6607 case MAP_ONESYMTAB:
6608 shndx = elf_onesymtab (abfd);
6609 break;
6610 case MAP_DYNSYMTAB:
6611 shndx = elf_dynsymtab (abfd);
6612 break;
6613 case MAP_STRTAB:
6614 shndx = elf_tdata (abfd)->strtab_section;
6615 break;
6616 case MAP_SHSTRTAB:
6617 shndx = elf_tdata (abfd)->shstrtab_section;
6618 break;
6619 case MAP_SYM_SHNDX:
6620 shndx = elf_tdata (abfd)->symtab_shndx_section;
6621 break;
6622 default:
6623 break;
6624 }
6625 }
6626 else
6627 {
6628 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
6629
6630 if (shndx == SHN_BAD)
6631 {
6632 asection *sec2;
6633
6634 /* Writing this would be a hell of a lot easier if
6635 we had some decent documentation on bfd, and
6636 knew what to expect of the library, and what to
6637 demand of applications. For example, it
6638 appears that `objcopy' might not set the
6639 section of a symbol to be a section that is
6640 actually in the output file. */
6641 sec2 = bfd_get_section_by_name (abfd, sec->name);
6642 if (sec2 == NULL)
6643 {
6644 _bfd_error_handler (_("\
6645 Unable to find equivalent output section for symbol '%s' from section '%s'"),
6646 syms[idx]->name ? syms[idx]->name : "<Local sym>",
6647 sec->name);
6648 bfd_set_error (bfd_error_invalid_operation);
6649 _bfd_stringtab_free (stt);
6650 return FALSE;
6651 }
6652
6653 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
6654 BFD_ASSERT (shndx != SHN_BAD);
6655 }
6656 }
6657
6658 sym.st_shndx = shndx;
6659 }
6660
6661 if ((flags & BSF_THREAD_LOCAL) != 0)
6662 type = STT_TLS;
6663 else if ((flags & BSF_GNU_INDIRECT_FUNCTION) != 0)
6664 type = STT_GNU_IFUNC;
6665 else if ((flags & BSF_FUNCTION) != 0)
6666 type = STT_FUNC;
6667 else if ((flags & BSF_OBJECT) != 0)
6668 type = STT_OBJECT;
6669 else if ((flags & BSF_RELC) != 0)
6670 type = STT_RELC;
6671 else if ((flags & BSF_SRELC) != 0)
6672 type = STT_SRELC;
6673 else
6674 type = STT_NOTYPE;
6675
6676 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
6677 type = STT_TLS;
6678
6679 /* Processor-specific types. */
6680 if (type_ptr != NULL
6681 && bed->elf_backend_get_symbol_type)
6682 type = ((*bed->elf_backend_get_symbol_type)
6683 (&type_ptr->internal_elf_sym, type));
6684
6685 if (flags & BSF_SECTION_SYM)
6686 {
6687 if (flags & BSF_GLOBAL)
6688 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6689 else
6690 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
6691 }
6692 else if (bfd_is_com_section (syms[idx]->section))
6693 {
6694 #ifdef USE_STT_COMMON
6695 if (type == STT_OBJECT)
6696 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_COMMON);
6697 else
6698 #endif
6699 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
6700 }
6701 else if (bfd_is_und_section (syms[idx]->section))
6702 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
6703 ? STB_WEAK
6704 : STB_GLOBAL),
6705 type);
6706 else if (flags & BSF_FILE)
6707 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
6708 else
6709 {
6710 int bind = STB_LOCAL;
6711
6712 if (flags & BSF_LOCAL)
6713 bind = STB_LOCAL;
6714 else if (flags & BSF_GNU_UNIQUE)
6715 bind = STB_GNU_UNIQUE;
6716 else if (flags & BSF_WEAK)
6717 bind = STB_WEAK;
6718 else if (flags & BSF_GLOBAL)
6719 bind = STB_GLOBAL;
6720
6721 sym.st_info = ELF_ST_INFO (bind, type);
6722 }
6723
6724 if (type_ptr != NULL)
6725 sym.st_other = type_ptr->internal_elf_sym.st_other;
6726 else
6727 sym.st_other = 0;
6728
6729 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6730 outbound_syms += bed->s->sizeof_sym;
6731 if (outbound_shndx != NULL)
6732 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6733 }
6734
6735 *sttp = stt;
6736 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
6737 symstrtab_hdr->sh_type = SHT_STRTAB;
6738
6739 symstrtab_hdr->sh_flags = 0;
6740 symstrtab_hdr->sh_addr = 0;
6741 symstrtab_hdr->sh_entsize = 0;
6742 symstrtab_hdr->sh_link = 0;
6743 symstrtab_hdr->sh_info = 0;
6744 symstrtab_hdr->sh_addralign = 1;
6745
6746 return TRUE;
6747 }
6748
6749 /* Return the number of bytes required to hold the symtab vector.
6750
6751 Note that we base it on the count plus 1, since we will null terminate
6752 the vector allocated based on this size. However, the ELF symbol table
6753 always has a dummy entry as symbol #0, so it ends up even. */
6754
6755 long
6756 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
6757 {
6758 long symcount;
6759 long symtab_size;
6760 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
6761
6762 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6763 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6764 if (symcount > 0)
6765 symtab_size -= sizeof (asymbol *);
6766
6767 return symtab_size;
6768 }
6769
6770 long
6771 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
6772 {
6773 long symcount;
6774 long symtab_size;
6775 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
6776
6777 if (elf_dynsymtab (abfd) == 0)
6778 {
6779 bfd_set_error (bfd_error_invalid_operation);
6780 return -1;
6781 }
6782
6783 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6784 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6785 if (symcount > 0)
6786 symtab_size -= sizeof (asymbol *);
6787
6788 return symtab_size;
6789 }
6790
6791 long
6792 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
6793 sec_ptr asect)
6794 {
6795 return (asect->reloc_count + 1) * sizeof (arelent *);
6796 }
6797
6798 /* Canonicalize the relocs. */
6799
6800 long
6801 _bfd_elf_canonicalize_reloc (bfd *abfd,
6802 sec_ptr section,
6803 arelent **relptr,
6804 asymbol **symbols)
6805 {
6806 arelent *tblptr;
6807 unsigned int i;
6808 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6809
6810 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
6811 return -1;
6812
6813 tblptr = section->relocation;
6814 for (i = 0; i < section->reloc_count; i++)
6815 *relptr++ = tblptr++;
6816
6817 *relptr = NULL;
6818
6819 return section->reloc_count;
6820 }
6821
6822 long
6823 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
6824 {
6825 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6826 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
6827
6828 if (symcount >= 0)
6829 bfd_get_symcount (abfd) = symcount;
6830 return symcount;
6831 }
6832
6833 long
6834 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
6835 asymbol **allocation)
6836 {
6837 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6838 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
6839
6840 if (symcount >= 0)
6841 bfd_get_dynamic_symcount (abfd) = symcount;
6842 return symcount;
6843 }
6844
6845 /* Return the size required for the dynamic reloc entries. Any loadable
6846 section that was actually installed in the BFD, and has type SHT_REL
6847 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
6848 dynamic reloc section. */
6849
6850 long
6851 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
6852 {
6853 long ret;
6854 asection *s;
6855
6856 if (elf_dynsymtab (abfd) == 0)
6857 {
6858 bfd_set_error (bfd_error_invalid_operation);
6859 return -1;
6860 }
6861
6862 ret = sizeof (arelent *);
6863 for (s = abfd->sections; s != NULL; s = s->next)
6864 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6865 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6866 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6867 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
6868 * sizeof (arelent *));
6869
6870 return ret;
6871 }
6872
6873 /* Canonicalize the dynamic relocation entries. Note that we return the
6874 dynamic relocations as a single block, although they are actually
6875 associated with particular sections; the interface, which was
6876 designed for SunOS style shared libraries, expects that there is only
6877 one set of dynamic relocs. Any loadable section that was actually
6878 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
6879 dynamic symbol table, is considered to be a dynamic reloc section. */
6880
6881 long
6882 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
6883 arelent **storage,
6884 asymbol **syms)
6885 {
6886 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
6887 asection *s;
6888 long ret;
6889
6890 if (elf_dynsymtab (abfd) == 0)
6891 {
6892 bfd_set_error (bfd_error_invalid_operation);
6893 return -1;
6894 }
6895
6896 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
6897 ret = 0;
6898 for (s = abfd->sections; s != NULL; s = s->next)
6899 {
6900 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6901 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6902 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6903 {
6904 arelent *p;
6905 long count, i;
6906
6907 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
6908 return -1;
6909 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
6910 p = s->relocation;
6911 for (i = 0; i < count; i++)
6912 *storage++ = p++;
6913 ret += count;
6914 }
6915 }
6916
6917 *storage = NULL;
6918
6919 return ret;
6920 }
6921 \f
6922 /* Read in the version information. */
6923
6924 bfd_boolean
6925 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
6926 {
6927 bfd_byte *contents = NULL;
6928 unsigned int freeidx = 0;
6929
6930 if (elf_dynverref (abfd) != 0)
6931 {
6932 Elf_Internal_Shdr *hdr;
6933 Elf_External_Verneed *everneed;
6934 Elf_Internal_Verneed *iverneed;
6935 unsigned int i;
6936 bfd_byte *contents_end;
6937
6938 hdr = &elf_tdata (abfd)->dynverref_hdr;
6939
6940 elf_tdata (abfd)->verref = (Elf_Internal_Verneed *)
6941 bfd_zalloc2 (abfd, hdr->sh_info, sizeof (Elf_Internal_Verneed));
6942 if (elf_tdata (abfd)->verref == NULL)
6943 goto error_return;
6944
6945 elf_tdata (abfd)->cverrefs = hdr->sh_info;
6946
6947 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
6948 if (contents == NULL)
6949 {
6950 error_return_verref:
6951 elf_tdata (abfd)->verref = NULL;
6952 elf_tdata (abfd)->cverrefs = 0;
6953 goto error_return;
6954 }
6955 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6956 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6957 goto error_return_verref;
6958
6959 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verneed))
6960 goto error_return_verref;
6961
6962 BFD_ASSERT (sizeof (Elf_External_Verneed)
6963 == sizeof (Elf_External_Vernaux));
6964 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
6965 everneed = (Elf_External_Verneed *) contents;
6966 iverneed = elf_tdata (abfd)->verref;
6967 for (i = 0; i < hdr->sh_info; i++, iverneed++)
6968 {
6969 Elf_External_Vernaux *evernaux;
6970 Elf_Internal_Vernaux *ivernaux;
6971 unsigned int j;
6972
6973 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
6974
6975 iverneed->vn_bfd = abfd;
6976
6977 iverneed->vn_filename =
6978 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6979 iverneed->vn_file);
6980 if (iverneed->vn_filename == NULL)
6981 goto error_return_verref;
6982
6983 if (iverneed->vn_cnt == 0)
6984 iverneed->vn_auxptr = NULL;
6985 else
6986 {
6987 iverneed->vn_auxptr = (struct elf_internal_vernaux *)
6988 bfd_alloc2 (abfd, iverneed->vn_cnt,
6989 sizeof (Elf_Internal_Vernaux));
6990 if (iverneed->vn_auxptr == NULL)
6991 goto error_return_verref;
6992 }
6993
6994 if (iverneed->vn_aux
6995 > (size_t) (contents_end - (bfd_byte *) everneed))
6996 goto error_return_verref;
6997
6998 evernaux = ((Elf_External_Vernaux *)
6999 ((bfd_byte *) everneed + iverneed->vn_aux));
7000 ivernaux = iverneed->vn_auxptr;
7001 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
7002 {
7003 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
7004
7005 ivernaux->vna_nodename =
7006 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7007 ivernaux->vna_name);
7008 if (ivernaux->vna_nodename == NULL)
7009 goto error_return_verref;
7010
7011 if (j + 1 < iverneed->vn_cnt)
7012 ivernaux->vna_nextptr = ivernaux + 1;
7013 else
7014 ivernaux->vna_nextptr = NULL;
7015
7016 if (ivernaux->vna_next
7017 > (size_t) (contents_end - (bfd_byte *) evernaux))
7018 goto error_return_verref;
7019
7020 evernaux = ((Elf_External_Vernaux *)
7021 ((bfd_byte *) evernaux + ivernaux->vna_next));
7022
7023 if (ivernaux->vna_other > freeidx)
7024 freeidx = ivernaux->vna_other;
7025 }
7026
7027 if (i + 1 < hdr->sh_info)
7028 iverneed->vn_nextref = iverneed + 1;
7029 else
7030 iverneed->vn_nextref = NULL;
7031
7032 if (iverneed->vn_next
7033 > (size_t) (contents_end - (bfd_byte *) everneed))
7034 goto error_return_verref;
7035
7036 everneed = ((Elf_External_Verneed *)
7037 ((bfd_byte *) everneed + iverneed->vn_next));
7038 }
7039
7040 free (contents);
7041 contents = NULL;
7042 }
7043
7044 if (elf_dynverdef (abfd) != 0)
7045 {
7046 Elf_Internal_Shdr *hdr;
7047 Elf_External_Verdef *everdef;
7048 Elf_Internal_Verdef *iverdef;
7049 Elf_Internal_Verdef *iverdefarr;
7050 Elf_Internal_Verdef iverdefmem;
7051 unsigned int i;
7052 unsigned int maxidx;
7053 bfd_byte *contents_end_def, *contents_end_aux;
7054
7055 hdr = &elf_tdata (abfd)->dynverdef_hdr;
7056
7057 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
7058 if (contents == NULL)
7059 goto error_return;
7060 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
7061 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
7062 goto error_return;
7063
7064 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verdef))
7065 goto error_return;
7066
7067 BFD_ASSERT (sizeof (Elf_External_Verdef)
7068 >= sizeof (Elf_External_Verdaux));
7069 contents_end_def = contents + hdr->sh_size
7070 - sizeof (Elf_External_Verdef);
7071 contents_end_aux = contents + hdr->sh_size
7072 - sizeof (Elf_External_Verdaux);
7073
7074 /* We know the number of entries in the section but not the maximum
7075 index. Therefore we have to run through all entries and find
7076 the maximum. */
7077 everdef = (Elf_External_Verdef *) contents;
7078 maxidx = 0;
7079 for (i = 0; i < hdr->sh_info; ++i)
7080 {
7081 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
7082
7083 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
7084 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
7085
7086 if (iverdefmem.vd_next
7087 > (size_t) (contents_end_def - (bfd_byte *) everdef))
7088 goto error_return;
7089
7090 everdef = ((Elf_External_Verdef *)
7091 ((bfd_byte *) everdef + iverdefmem.vd_next));
7092 }
7093
7094 if (default_imported_symver)
7095 {
7096 if (freeidx > maxidx)
7097 maxidx = ++freeidx;
7098 else
7099 freeidx = ++maxidx;
7100 }
7101 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
7102 bfd_zalloc2 (abfd, maxidx, sizeof (Elf_Internal_Verdef));
7103 if (elf_tdata (abfd)->verdef == NULL)
7104 goto error_return;
7105
7106 elf_tdata (abfd)->cverdefs = maxidx;
7107
7108 everdef = (Elf_External_Verdef *) contents;
7109 iverdefarr = elf_tdata (abfd)->verdef;
7110 for (i = 0; i < hdr->sh_info; i++)
7111 {
7112 Elf_External_Verdaux *everdaux;
7113 Elf_Internal_Verdaux *iverdaux;
7114 unsigned int j;
7115
7116 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
7117
7118 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
7119 {
7120 error_return_verdef:
7121 elf_tdata (abfd)->verdef = NULL;
7122 elf_tdata (abfd)->cverdefs = 0;
7123 goto error_return;
7124 }
7125
7126 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
7127 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
7128
7129 iverdef->vd_bfd = abfd;
7130
7131 if (iverdef->vd_cnt == 0)
7132 iverdef->vd_auxptr = NULL;
7133 else
7134 {
7135 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
7136 bfd_alloc2 (abfd, iverdef->vd_cnt,
7137 sizeof (Elf_Internal_Verdaux));
7138 if (iverdef->vd_auxptr == NULL)
7139 goto error_return_verdef;
7140 }
7141
7142 if (iverdef->vd_aux
7143 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
7144 goto error_return_verdef;
7145
7146 everdaux = ((Elf_External_Verdaux *)
7147 ((bfd_byte *) everdef + iverdef->vd_aux));
7148 iverdaux = iverdef->vd_auxptr;
7149 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
7150 {
7151 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
7152
7153 iverdaux->vda_nodename =
7154 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7155 iverdaux->vda_name);
7156 if (iverdaux->vda_nodename == NULL)
7157 goto error_return_verdef;
7158
7159 if (j + 1 < iverdef->vd_cnt)
7160 iverdaux->vda_nextptr = iverdaux + 1;
7161 else
7162 iverdaux->vda_nextptr = NULL;
7163
7164 if (iverdaux->vda_next
7165 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
7166 goto error_return_verdef;
7167
7168 everdaux = ((Elf_External_Verdaux *)
7169 ((bfd_byte *) everdaux + iverdaux->vda_next));
7170 }
7171
7172 if (iverdef->vd_cnt)
7173 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
7174
7175 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
7176 iverdef->vd_nextdef = iverdef + 1;
7177 else
7178 iverdef->vd_nextdef = NULL;
7179
7180 everdef = ((Elf_External_Verdef *)
7181 ((bfd_byte *) everdef + iverdef->vd_next));
7182 }
7183
7184 free (contents);
7185 contents = NULL;
7186 }
7187 else if (default_imported_symver)
7188 {
7189 if (freeidx < 3)
7190 freeidx = 3;
7191 else
7192 freeidx++;
7193
7194 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
7195 bfd_zalloc2 (abfd, freeidx, sizeof (Elf_Internal_Verdef));
7196 if (elf_tdata (abfd)->verdef == NULL)
7197 goto error_return;
7198
7199 elf_tdata (abfd)->cverdefs = freeidx;
7200 }
7201
7202 /* Create a default version based on the soname. */
7203 if (default_imported_symver)
7204 {
7205 Elf_Internal_Verdef *iverdef;
7206 Elf_Internal_Verdaux *iverdaux;
7207
7208 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];;
7209
7210 iverdef->vd_version = VER_DEF_CURRENT;
7211 iverdef->vd_flags = 0;
7212 iverdef->vd_ndx = freeidx;
7213 iverdef->vd_cnt = 1;
7214
7215 iverdef->vd_bfd = abfd;
7216
7217 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
7218 if (iverdef->vd_nodename == NULL)
7219 goto error_return_verdef;
7220 iverdef->vd_nextdef = NULL;
7221 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
7222 bfd_alloc (abfd, sizeof (Elf_Internal_Verdaux));
7223 if (iverdef->vd_auxptr == NULL)
7224 goto error_return_verdef;
7225
7226 iverdaux = iverdef->vd_auxptr;
7227 iverdaux->vda_nodename = iverdef->vd_nodename;
7228 iverdaux->vda_nextptr = NULL;
7229 }
7230
7231 return TRUE;
7232
7233 error_return:
7234 if (contents != NULL)
7235 free (contents);
7236 return FALSE;
7237 }
7238 \f
7239 asymbol *
7240 _bfd_elf_make_empty_symbol (bfd *abfd)
7241 {
7242 elf_symbol_type *newsym;
7243 bfd_size_type amt = sizeof (elf_symbol_type);
7244
7245 newsym = (elf_symbol_type *) bfd_zalloc (abfd, amt);
7246 if (!newsym)
7247 return NULL;
7248 else
7249 {
7250 newsym->symbol.the_bfd = abfd;
7251 return &newsym->symbol;
7252 }
7253 }
7254
7255 void
7256 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
7257 asymbol *symbol,
7258 symbol_info *ret)
7259 {
7260 bfd_symbol_info (symbol, ret);
7261 }
7262
7263 /* Return whether a symbol name implies a local symbol. Most targets
7264 use this function for the is_local_label_name entry point, but some
7265 override it. */
7266
7267 bfd_boolean
7268 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
7269 const char *name)
7270 {
7271 /* Normal local symbols start with ``.L''. */
7272 if (name[0] == '.' && name[1] == 'L')
7273 return TRUE;
7274
7275 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
7276 DWARF debugging symbols starting with ``..''. */
7277 if (name[0] == '.' && name[1] == '.')
7278 return TRUE;
7279
7280 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
7281 emitting DWARF debugging output. I suspect this is actually a
7282 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
7283 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
7284 underscore to be emitted on some ELF targets). For ease of use,
7285 we treat such symbols as local. */
7286 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
7287 return TRUE;
7288
7289 return FALSE;
7290 }
7291
7292 alent *
7293 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
7294 asymbol *symbol ATTRIBUTE_UNUSED)
7295 {
7296 abort ();
7297 return NULL;
7298 }
7299
7300 bfd_boolean
7301 _bfd_elf_set_arch_mach (bfd *abfd,
7302 enum bfd_architecture arch,
7303 unsigned long machine)
7304 {
7305 /* If this isn't the right architecture for this backend, and this
7306 isn't the generic backend, fail. */
7307 if (arch != get_elf_backend_data (abfd)->arch
7308 && arch != bfd_arch_unknown
7309 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
7310 return FALSE;
7311
7312 return bfd_default_set_arch_mach (abfd, arch, machine);
7313 }
7314
7315 /* Find the function to a particular section and offset,
7316 for error reporting. */
7317
7318 static bfd_boolean
7319 elf_find_function (bfd *abfd,
7320 asection *section,
7321 asymbol **symbols,
7322 bfd_vma offset,
7323 const char **filename_ptr,
7324 const char **functionname_ptr)
7325 {
7326 const char *filename;
7327 asymbol *func, *file;
7328 bfd_vma low_func;
7329 asymbol **p;
7330 /* ??? Given multiple file symbols, it is impossible to reliably
7331 choose the right file name for global symbols. File symbols are
7332 local symbols, and thus all file symbols must sort before any
7333 global symbols. The ELF spec may be interpreted to say that a
7334 file symbol must sort before other local symbols, but currently
7335 ld -r doesn't do this. So, for ld -r output, it is possible to
7336 make a better choice of file name for local symbols by ignoring
7337 file symbols appearing after a given local symbol. */
7338 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
7339 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7340
7341 filename = NULL;
7342 func = NULL;
7343 file = NULL;
7344 low_func = 0;
7345 state = nothing_seen;
7346
7347 for (p = symbols; *p != NULL; p++)
7348 {
7349 elf_symbol_type *q;
7350 unsigned int type;
7351
7352 q = (elf_symbol_type *) *p;
7353
7354 type = ELF_ST_TYPE (q->internal_elf_sym.st_info);
7355 switch (type)
7356 {
7357 case STT_FILE:
7358 file = &q->symbol;
7359 if (state == symbol_seen)
7360 state = file_after_symbol_seen;
7361 continue;
7362 default:
7363 if (!bed->is_function_type (type))
7364 break;
7365 case STT_NOTYPE:
7366 if (bfd_get_section (&q->symbol) == section
7367 && q->symbol.value >= low_func
7368 && q->symbol.value <= offset)
7369 {
7370 func = (asymbol *) q;
7371 low_func = q->symbol.value;
7372 filename = NULL;
7373 if (file != NULL
7374 && (ELF_ST_BIND (q->internal_elf_sym.st_info) == STB_LOCAL
7375 || state != file_after_symbol_seen))
7376 filename = bfd_asymbol_name (file);
7377 }
7378 break;
7379 }
7380 if (state == nothing_seen)
7381 state = symbol_seen;
7382 }
7383
7384 if (func == NULL)
7385 return FALSE;
7386
7387 if (filename_ptr)
7388 *filename_ptr = filename;
7389 if (functionname_ptr)
7390 *functionname_ptr = bfd_asymbol_name (func);
7391
7392 return TRUE;
7393 }
7394
7395 /* Find the nearest line to a particular section and offset,
7396 for error reporting. */
7397
7398 bfd_boolean
7399 _bfd_elf_find_nearest_line (bfd *abfd,
7400 asection *section,
7401 asymbol **symbols,
7402 bfd_vma offset,
7403 const char **filename_ptr,
7404 const char **functionname_ptr,
7405 unsigned int *line_ptr)
7406 {
7407 bfd_boolean found;
7408
7409 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
7410 filename_ptr, functionname_ptr,
7411 line_ptr))
7412 {
7413 if (!*functionname_ptr)
7414 elf_find_function (abfd, section, symbols, offset,
7415 *filename_ptr ? NULL : filename_ptr,
7416 functionname_ptr);
7417
7418 return TRUE;
7419 }
7420
7421 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
7422 filename_ptr, functionname_ptr,
7423 line_ptr, 0,
7424 &elf_tdata (abfd)->dwarf2_find_line_info))
7425 {
7426 if (!*functionname_ptr)
7427 elf_find_function (abfd, section, symbols, offset,
7428 *filename_ptr ? NULL : filename_ptr,
7429 functionname_ptr);
7430
7431 return TRUE;
7432 }
7433
7434 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
7435 &found, filename_ptr,
7436 functionname_ptr, line_ptr,
7437 &elf_tdata (abfd)->line_info))
7438 return FALSE;
7439 if (found && (*functionname_ptr || *line_ptr))
7440 return TRUE;
7441
7442 if (symbols == NULL)
7443 return FALSE;
7444
7445 if (! elf_find_function (abfd, section, symbols, offset,
7446 filename_ptr, functionname_ptr))
7447 return FALSE;
7448
7449 *line_ptr = 0;
7450 return TRUE;
7451 }
7452
7453 /* Find the line for a symbol. */
7454
7455 bfd_boolean
7456 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
7457 const char **filename_ptr, unsigned int *line_ptr)
7458 {
7459 return _bfd_dwarf2_find_line (abfd, symbols, symbol,
7460 filename_ptr, line_ptr, 0,
7461 &elf_tdata (abfd)->dwarf2_find_line_info);
7462 }
7463
7464 /* After a call to bfd_find_nearest_line, successive calls to
7465 bfd_find_inliner_info can be used to get source information about
7466 each level of function inlining that terminated at the address
7467 passed to bfd_find_nearest_line. Currently this is only supported
7468 for DWARF2 with appropriate DWARF3 extensions. */
7469
7470 bfd_boolean
7471 _bfd_elf_find_inliner_info (bfd *abfd,
7472 const char **filename_ptr,
7473 const char **functionname_ptr,
7474 unsigned int *line_ptr)
7475 {
7476 bfd_boolean found;
7477 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
7478 functionname_ptr, line_ptr,
7479 & elf_tdata (abfd)->dwarf2_find_line_info);
7480 return found;
7481 }
7482
7483 int
7484 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
7485 {
7486 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7487 int ret = bed->s->sizeof_ehdr;
7488
7489 if (!info->relocatable)
7490 {
7491 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
7492
7493 if (phdr_size == (bfd_size_type) -1)
7494 {
7495 struct elf_segment_map *m;
7496
7497 phdr_size = 0;
7498 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7499 phdr_size += bed->s->sizeof_phdr;
7500
7501 if (phdr_size == 0)
7502 phdr_size = get_program_header_size (abfd, info);
7503 }
7504
7505 elf_tdata (abfd)->program_header_size = phdr_size;
7506 ret += phdr_size;
7507 }
7508
7509 return ret;
7510 }
7511
7512 bfd_boolean
7513 _bfd_elf_set_section_contents (bfd *abfd,
7514 sec_ptr section,
7515 const void *location,
7516 file_ptr offset,
7517 bfd_size_type count)
7518 {
7519 Elf_Internal_Shdr *hdr;
7520 bfd_signed_vma pos;
7521
7522 if (! abfd->output_has_begun
7523 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
7524 return FALSE;
7525
7526 hdr = &elf_section_data (section)->this_hdr;
7527 pos = hdr->sh_offset + offset;
7528 if (bfd_seek (abfd, pos, SEEK_SET) != 0
7529 || bfd_bwrite (location, count, abfd) != count)
7530 return FALSE;
7531
7532 return TRUE;
7533 }
7534
7535 void
7536 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
7537 arelent *cache_ptr ATTRIBUTE_UNUSED,
7538 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
7539 {
7540 abort ();
7541 }
7542
7543 /* Try to convert a non-ELF reloc into an ELF one. */
7544
7545 bfd_boolean
7546 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
7547 {
7548 /* Check whether we really have an ELF howto. */
7549
7550 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
7551 {
7552 bfd_reloc_code_real_type code;
7553 reloc_howto_type *howto;
7554
7555 /* Alien reloc: Try to determine its type to replace it with an
7556 equivalent ELF reloc. */
7557
7558 if (areloc->howto->pc_relative)
7559 {
7560 switch (areloc->howto->bitsize)
7561 {
7562 case 8:
7563 code = BFD_RELOC_8_PCREL;
7564 break;
7565 case 12:
7566 code = BFD_RELOC_12_PCREL;
7567 break;
7568 case 16:
7569 code = BFD_RELOC_16_PCREL;
7570 break;
7571 case 24:
7572 code = BFD_RELOC_24_PCREL;
7573 break;
7574 case 32:
7575 code = BFD_RELOC_32_PCREL;
7576 break;
7577 case 64:
7578 code = BFD_RELOC_64_PCREL;
7579 break;
7580 default:
7581 goto fail;
7582 }
7583
7584 howto = bfd_reloc_type_lookup (abfd, code);
7585
7586 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
7587 {
7588 if (howto->pcrel_offset)
7589 areloc->addend += areloc->address;
7590 else
7591 areloc->addend -= areloc->address; /* addend is unsigned!! */
7592 }
7593 }
7594 else
7595 {
7596 switch (areloc->howto->bitsize)
7597 {
7598 case 8:
7599 code = BFD_RELOC_8;
7600 break;
7601 case 14:
7602 code = BFD_RELOC_14;
7603 break;
7604 case 16:
7605 code = BFD_RELOC_16;
7606 break;
7607 case 26:
7608 code = BFD_RELOC_26;
7609 break;
7610 case 32:
7611 code = BFD_RELOC_32;
7612 break;
7613 case 64:
7614 code = BFD_RELOC_64;
7615 break;
7616 default:
7617 goto fail;
7618 }
7619
7620 howto = bfd_reloc_type_lookup (abfd, code);
7621 }
7622
7623 if (howto)
7624 areloc->howto = howto;
7625 else
7626 goto fail;
7627 }
7628
7629 return TRUE;
7630
7631 fail:
7632 (*_bfd_error_handler)
7633 (_("%B: unsupported relocation type %s"),
7634 abfd, areloc->howto->name);
7635 bfd_set_error (bfd_error_bad_value);
7636 return FALSE;
7637 }
7638
7639 bfd_boolean
7640 _bfd_elf_close_and_cleanup (bfd *abfd)
7641 {
7642 if (bfd_get_format (abfd) == bfd_object)
7643 {
7644 if (elf_tdata (abfd) != NULL && elf_shstrtab (abfd) != NULL)
7645 _bfd_elf_strtab_free (elf_shstrtab (abfd));
7646 _bfd_dwarf2_cleanup_debug_info (abfd);
7647 }
7648
7649 return _bfd_generic_close_and_cleanup (abfd);
7650 }
7651
7652 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
7653 in the relocation's offset. Thus we cannot allow any sort of sanity
7654 range-checking to interfere. There is nothing else to do in processing
7655 this reloc. */
7656
7657 bfd_reloc_status_type
7658 _bfd_elf_rel_vtable_reloc_fn
7659 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
7660 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
7661 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
7662 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
7663 {
7664 return bfd_reloc_ok;
7665 }
7666 \f
7667 /* Elf core file support. Much of this only works on native
7668 toolchains, since we rely on knowing the
7669 machine-dependent procfs structure in order to pick
7670 out details about the corefile. */
7671
7672 #ifdef HAVE_SYS_PROCFS_H
7673 /* Needed for new procfs interface on sparc-solaris. */
7674 # define _STRUCTURED_PROC 1
7675 # include <sys/procfs.h>
7676 #endif
7677
7678 /* Return a PID that identifies a "thread" for threaded cores, or the
7679 PID of the main process for non-threaded cores. */
7680
7681 static int
7682 elfcore_make_pid (bfd *abfd)
7683 {
7684 int pid;
7685
7686 pid = elf_tdata (abfd)->core_lwpid;
7687 if (pid == 0)
7688 pid = elf_tdata (abfd)->core_pid;
7689
7690 return pid;
7691 }
7692
7693 /* If there isn't a section called NAME, make one, using
7694 data from SECT. Note, this function will generate a
7695 reference to NAME, so you shouldn't deallocate or
7696 overwrite it. */
7697
7698 static bfd_boolean
7699 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
7700 {
7701 asection *sect2;
7702
7703 if (bfd_get_section_by_name (abfd, name) != NULL)
7704 return TRUE;
7705
7706 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
7707 if (sect2 == NULL)
7708 return FALSE;
7709
7710 sect2->size = sect->size;
7711 sect2->filepos = sect->filepos;
7712 sect2->alignment_power = sect->alignment_power;
7713 return TRUE;
7714 }
7715
7716 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
7717 actually creates up to two pseudosections:
7718 - For the single-threaded case, a section named NAME, unless
7719 such a section already exists.
7720 - For the multi-threaded case, a section named "NAME/PID", where
7721 PID is elfcore_make_pid (abfd).
7722 Both pseudosections have identical contents. */
7723 bfd_boolean
7724 _bfd_elfcore_make_pseudosection (bfd *abfd,
7725 char *name,
7726 size_t size,
7727 ufile_ptr filepos)
7728 {
7729 char buf[100];
7730 char *threaded_name;
7731 size_t len;
7732 asection *sect;
7733
7734 /* Build the section name. */
7735
7736 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
7737 len = strlen (buf) + 1;
7738 threaded_name = (char *) bfd_alloc (abfd, len);
7739 if (threaded_name == NULL)
7740 return FALSE;
7741 memcpy (threaded_name, buf, len);
7742
7743 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
7744 SEC_HAS_CONTENTS);
7745 if (sect == NULL)
7746 return FALSE;
7747 sect->size = size;
7748 sect->filepos = filepos;
7749 sect->alignment_power = 2;
7750
7751 return elfcore_maybe_make_sect (abfd, name, sect);
7752 }
7753
7754 /* prstatus_t exists on:
7755 solaris 2.5+
7756 linux 2.[01] + glibc
7757 unixware 4.2
7758 */
7759
7760 #if defined (HAVE_PRSTATUS_T)
7761
7762 static bfd_boolean
7763 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
7764 {
7765 size_t size;
7766 int offset;
7767
7768 if (note->descsz == sizeof (prstatus_t))
7769 {
7770 prstatus_t prstat;
7771
7772 size = sizeof (prstat.pr_reg);
7773 offset = offsetof (prstatus_t, pr_reg);
7774 memcpy (&prstat, note->descdata, sizeof (prstat));
7775
7776 /* Do not overwrite the core signal if it
7777 has already been set by another thread. */
7778 if (elf_tdata (abfd)->core_signal == 0)
7779 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7780 if (elf_tdata (abfd)->core_pid == 0)
7781 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7782
7783 /* pr_who exists on:
7784 solaris 2.5+
7785 unixware 4.2
7786 pr_who doesn't exist on:
7787 linux 2.[01]
7788 */
7789 #if defined (HAVE_PRSTATUS_T_PR_WHO)
7790 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7791 #else
7792 elf_tdata (abfd)->core_lwpid = prstat.pr_pid;
7793 #endif
7794 }
7795 #if defined (HAVE_PRSTATUS32_T)
7796 else if (note->descsz == sizeof (prstatus32_t))
7797 {
7798 /* 64-bit host, 32-bit corefile */
7799 prstatus32_t prstat;
7800
7801 size = sizeof (prstat.pr_reg);
7802 offset = offsetof (prstatus32_t, pr_reg);
7803 memcpy (&prstat, note->descdata, sizeof (prstat));
7804
7805 /* Do not overwrite the core signal if it
7806 has already been set by another thread. */
7807 if (elf_tdata (abfd)->core_signal == 0)
7808 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7809 if (elf_tdata (abfd)->core_pid == 0)
7810 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7811
7812 /* pr_who exists on:
7813 solaris 2.5+
7814 unixware 4.2
7815 pr_who doesn't exist on:
7816 linux 2.[01]
7817 */
7818 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
7819 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7820 #else
7821 elf_tdata (abfd)->core_lwpid = prstat.pr_pid;
7822 #endif
7823 }
7824 #endif /* HAVE_PRSTATUS32_T */
7825 else
7826 {
7827 /* Fail - we don't know how to handle any other
7828 note size (ie. data object type). */
7829 return TRUE;
7830 }
7831
7832 /* Make a ".reg/999" section and a ".reg" section. */
7833 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
7834 size, note->descpos + offset);
7835 }
7836 #endif /* defined (HAVE_PRSTATUS_T) */
7837
7838 /* Create a pseudosection containing the exact contents of NOTE. */
7839 static bfd_boolean
7840 elfcore_make_note_pseudosection (bfd *abfd,
7841 char *name,
7842 Elf_Internal_Note *note)
7843 {
7844 return _bfd_elfcore_make_pseudosection (abfd, name,
7845 note->descsz, note->descpos);
7846 }
7847
7848 /* There isn't a consistent prfpregset_t across platforms,
7849 but it doesn't matter, because we don't have to pick this
7850 data structure apart. */
7851
7852 static bfd_boolean
7853 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
7854 {
7855 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7856 }
7857
7858 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
7859 type of NT_PRXFPREG. Just include the whole note's contents
7860 literally. */
7861
7862 static bfd_boolean
7863 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
7864 {
7865 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
7866 }
7867
7868 /* Linux dumps the Intel XSAVE extended state in a note named "LINUX"
7869 with a note type of NT_X86_XSTATE. Just include the whole note's
7870 contents literally. */
7871
7872 static bfd_boolean
7873 elfcore_grok_xstatereg (bfd *abfd, Elf_Internal_Note *note)
7874 {
7875 return elfcore_make_note_pseudosection (abfd, ".reg-xstate", note);
7876 }
7877
7878 static bfd_boolean
7879 elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
7880 {
7881 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
7882 }
7883
7884 static bfd_boolean
7885 elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note)
7886 {
7887 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note);
7888 }
7889
7890 static bfd_boolean
7891 elfcore_grok_s390_high_gprs (bfd *abfd, Elf_Internal_Note *note)
7892 {
7893 return elfcore_make_note_pseudosection (abfd, ".reg-s390-high-gprs", note);
7894 }
7895
7896 static bfd_boolean
7897 elfcore_grok_s390_timer (bfd *abfd, Elf_Internal_Note *note)
7898 {
7899 return elfcore_make_note_pseudosection (abfd, ".reg-s390-timer", note);
7900 }
7901
7902 static bfd_boolean
7903 elfcore_grok_s390_todcmp (bfd *abfd, Elf_Internal_Note *note)
7904 {
7905 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todcmp", note);
7906 }
7907
7908 static bfd_boolean
7909 elfcore_grok_s390_todpreg (bfd *abfd, Elf_Internal_Note *note)
7910 {
7911 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todpreg", note);
7912 }
7913
7914 static bfd_boolean
7915 elfcore_grok_s390_ctrs (bfd *abfd, Elf_Internal_Note *note)
7916 {
7917 return elfcore_make_note_pseudosection (abfd, ".reg-s390-ctrs", note);
7918 }
7919
7920 static bfd_boolean
7921 elfcore_grok_s390_prefix (bfd *abfd, Elf_Internal_Note *note)
7922 {
7923 return elfcore_make_note_pseudosection (abfd, ".reg-s390-prefix", note);
7924 }
7925
7926 #if defined (HAVE_PRPSINFO_T)
7927 typedef prpsinfo_t elfcore_psinfo_t;
7928 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
7929 typedef prpsinfo32_t elfcore_psinfo32_t;
7930 #endif
7931 #endif
7932
7933 #if defined (HAVE_PSINFO_T)
7934 typedef psinfo_t elfcore_psinfo_t;
7935 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
7936 typedef psinfo32_t elfcore_psinfo32_t;
7937 #endif
7938 #endif
7939
7940 /* return a malloc'ed copy of a string at START which is at
7941 most MAX bytes long, possibly without a terminating '\0'.
7942 the copy will always have a terminating '\0'. */
7943
7944 char *
7945 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
7946 {
7947 char *dups;
7948 char *end = (char *) memchr (start, '\0', max);
7949 size_t len;
7950
7951 if (end == NULL)
7952 len = max;
7953 else
7954 len = end - start;
7955
7956 dups = (char *) bfd_alloc (abfd, len + 1);
7957 if (dups == NULL)
7958 return NULL;
7959
7960 memcpy (dups, start, len);
7961 dups[len] = '\0';
7962
7963 return dups;
7964 }
7965
7966 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7967 static bfd_boolean
7968 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
7969 {
7970 if (note->descsz == sizeof (elfcore_psinfo_t))
7971 {
7972 elfcore_psinfo_t psinfo;
7973
7974 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7975
7976 elf_tdata (abfd)->core_program
7977 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7978 sizeof (psinfo.pr_fname));
7979
7980 elf_tdata (abfd)->core_command
7981 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7982 sizeof (psinfo.pr_psargs));
7983 }
7984 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
7985 else if (note->descsz == sizeof (elfcore_psinfo32_t))
7986 {
7987 /* 64-bit host, 32-bit corefile */
7988 elfcore_psinfo32_t psinfo;
7989
7990 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7991
7992 elf_tdata (abfd)->core_program
7993 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7994 sizeof (psinfo.pr_fname));
7995
7996 elf_tdata (abfd)->core_command
7997 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7998 sizeof (psinfo.pr_psargs));
7999 }
8000 #endif
8001
8002 else
8003 {
8004 /* Fail - we don't know how to handle any other
8005 note size (ie. data object type). */
8006 return TRUE;
8007 }
8008
8009 /* Note that for some reason, a spurious space is tacked
8010 onto the end of the args in some (at least one anyway)
8011 implementations, so strip it off if it exists. */
8012
8013 {
8014 char *command = elf_tdata (abfd)->core_command;
8015 int n = strlen (command);
8016
8017 if (0 < n && command[n - 1] == ' ')
8018 command[n - 1] = '\0';
8019 }
8020
8021 return TRUE;
8022 }
8023 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
8024
8025 #if defined (HAVE_PSTATUS_T)
8026 static bfd_boolean
8027 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
8028 {
8029 if (note->descsz == sizeof (pstatus_t)
8030 #if defined (HAVE_PXSTATUS_T)
8031 || note->descsz == sizeof (pxstatus_t)
8032 #endif
8033 )
8034 {
8035 pstatus_t pstat;
8036
8037 memcpy (&pstat, note->descdata, sizeof (pstat));
8038
8039 elf_tdata (abfd)->core_pid = pstat.pr_pid;
8040 }
8041 #if defined (HAVE_PSTATUS32_T)
8042 else if (note->descsz == sizeof (pstatus32_t))
8043 {
8044 /* 64-bit host, 32-bit corefile */
8045 pstatus32_t pstat;
8046
8047 memcpy (&pstat, note->descdata, sizeof (pstat));
8048
8049 elf_tdata (abfd)->core_pid = pstat.pr_pid;
8050 }
8051 #endif
8052 /* Could grab some more details from the "representative"
8053 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
8054 NT_LWPSTATUS note, presumably. */
8055
8056 return TRUE;
8057 }
8058 #endif /* defined (HAVE_PSTATUS_T) */
8059
8060 #if defined (HAVE_LWPSTATUS_T)
8061 static bfd_boolean
8062 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
8063 {
8064 lwpstatus_t lwpstat;
8065 char buf[100];
8066 char *name;
8067 size_t len;
8068 asection *sect;
8069
8070 if (note->descsz != sizeof (lwpstat)
8071 #if defined (HAVE_LWPXSTATUS_T)
8072 && note->descsz != sizeof (lwpxstatus_t)
8073 #endif
8074 )
8075 return TRUE;
8076
8077 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
8078
8079 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
8080 /* Do not overwrite the core signal if it has already been set by
8081 another thread. */
8082 if (elf_tdata (abfd)->core_signal == 0)
8083 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
8084
8085 /* Make a ".reg/999" section. */
8086
8087 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
8088 len = strlen (buf) + 1;
8089 name = bfd_alloc (abfd, len);
8090 if (name == NULL)
8091 return FALSE;
8092 memcpy (name, buf, len);
8093
8094 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8095 if (sect == NULL)
8096 return FALSE;
8097
8098 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8099 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
8100 sect->filepos = note->descpos
8101 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
8102 #endif
8103
8104 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8105 sect->size = sizeof (lwpstat.pr_reg);
8106 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
8107 #endif
8108
8109 sect->alignment_power = 2;
8110
8111 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
8112 return FALSE;
8113
8114 /* Make a ".reg2/999" section */
8115
8116 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
8117 len = strlen (buf) + 1;
8118 name = bfd_alloc (abfd, len);
8119 if (name == NULL)
8120 return FALSE;
8121 memcpy (name, buf, len);
8122
8123 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8124 if (sect == NULL)
8125 return FALSE;
8126
8127 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8128 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
8129 sect->filepos = note->descpos
8130 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
8131 #endif
8132
8133 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
8134 sect->size = sizeof (lwpstat.pr_fpreg);
8135 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
8136 #endif
8137
8138 sect->alignment_power = 2;
8139
8140 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
8141 }
8142 #endif /* defined (HAVE_LWPSTATUS_T) */
8143
8144 static bfd_boolean
8145 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
8146 {
8147 char buf[30];
8148 char *name;
8149 size_t len;
8150 asection *sect;
8151 int type;
8152 int is_active_thread;
8153 bfd_vma base_addr;
8154
8155 if (note->descsz < 728)
8156 return TRUE;
8157
8158 if (! CONST_STRNEQ (note->namedata, "win32"))
8159 return TRUE;
8160
8161 type = bfd_get_32 (abfd, note->descdata);
8162
8163 switch (type)
8164 {
8165 case 1 /* NOTE_INFO_PROCESS */:
8166 /* FIXME: need to add ->core_command. */
8167 /* process_info.pid */
8168 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 8);
8169 /* process_info.signal */
8170 elf_tdata (abfd)->core_signal = bfd_get_32 (abfd, note->descdata + 12);
8171 break;
8172
8173 case 2 /* NOTE_INFO_THREAD */:
8174 /* Make a ".reg/999" section. */
8175 /* thread_info.tid */
8176 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 8));
8177
8178 len = strlen (buf) + 1;
8179 name = (char *) bfd_alloc (abfd, len);
8180 if (name == NULL)
8181 return FALSE;
8182
8183 memcpy (name, buf, len);
8184
8185 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8186 if (sect == NULL)
8187 return FALSE;
8188
8189 /* sizeof (thread_info.thread_context) */
8190 sect->size = 716;
8191 /* offsetof (thread_info.thread_context) */
8192 sect->filepos = note->descpos + 12;
8193 sect->alignment_power = 2;
8194
8195 /* thread_info.is_active_thread */
8196 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
8197
8198 if (is_active_thread)
8199 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
8200 return FALSE;
8201 break;
8202
8203 case 3 /* NOTE_INFO_MODULE */:
8204 /* Make a ".module/xxxxxxxx" section. */
8205 /* module_info.base_address */
8206 base_addr = bfd_get_32 (abfd, note->descdata + 4);
8207 sprintf (buf, ".module/%08lx", (unsigned long) base_addr);
8208
8209 len = strlen (buf) + 1;
8210 name = (char *) bfd_alloc (abfd, len);
8211 if (name == NULL)
8212 return FALSE;
8213
8214 memcpy (name, buf, len);
8215
8216 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8217
8218 if (sect == NULL)
8219 return FALSE;
8220
8221 sect->size = note->descsz;
8222 sect->filepos = note->descpos;
8223 sect->alignment_power = 2;
8224 break;
8225
8226 default:
8227 return TRUE;
8228 }
8229
8230 return TRUE;
8231 }
8232
8233 static bfd_boolean
8234 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
8235 {
8236 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8237
8238 switch (note->type)
8239 {
8240 default:
8241 return TRUE;
8242
8243 case NT_PRSTATUS:
8244 if (bed->elf_backend_grok_prstatus)
8245 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
8246 return TRUE;
8247 #if defined (HAVE_PRSTATUS_T)
8248 return elfcore_grok_prstatus (abfd, note);
8249 #else
8250 return TRUE;
8251 #endif
8252
8253 #if defined (HAVE_PSTATUS_T)
8254 case NT_PSTATUS:
8255 return elfcore_grok_pstatus (abfd, note);
8256 #endif
8257
8258 #if defined (HAVE_LWPSTATUS_T)
8259 case NT_LWPSTATUS:
8260 return elfcore_grok_lwpstatus (abfd, note);
8261 #endif
8262
8263 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
8264 return elfcore_grok_prfpreg (abfd, note);
8265
8266 case NT_WIN32PSTATUS:
8267 return elfcore_grok_win32pstatus (abfd, note);
8268
8269 case NT_PRXFPREG: /* Linux SSE extension */
8270 if (note->namesz == 6
8271 && strcmp (note->namedata, "LINUX") == 0)
8272 return elfcore_grok_prxfpreg (abfd, note);
8273 else
8274 return TRUE;
8275
8276 case NT_X86_XSTATE: /* Linux XSAVE extension */
8277 if (note->namesz == 6
8278 && strcmp (note->namedata, "LINUX") == 0)
8279 return elfcore_grok_xstatereg (abfd, note);
8280 else
8281 return TRUE;
8282
8283 case NT_PPC_VMX:
8284 if (note->namesz == 6
8285 && strcmp (note->namedata, "LINUX") == 0)
8286 return elfcore_grok_ppc_vmx (abfd, note);
8287 else
8288 return TRUE;
8289
8290 case NT_PPC_VSX:
8291 if (note->namesz == 6
8292 && strcmp (note->namedata, "LINUX") == 0)
8293 return elfcore_grok_ppc_vsx (abfd, note);
8294 else
8295 return TRUE;
8296
8297 case NT_S390_HIGH_GPRS:
8298 if (note->namesz == 6
8299 && strcmp (note->namedata, "LINUX") == 0)
8300 return elfcore_grok_s390_high_gprs (abfd, note);
8301 else
8302 return TRUE;
8303
8304 case NT_S390_TIMER:
8305 if (note->namesz == 6
8306 && strcmp (note->namedata, "LINUX") == 0)
8307 return elfcore_grok_s390_timer (abfd, note);
8308 else
8309 return TRUE;
8310
8311 case NT_S390_TODCMP:
8312 if (note->namesz == 6
8313 && strcmp (note->namedata, "LINUX") == 0)
8314 return elfcore_grok_s390_todcmp (abfd, note);
8315 else
8316 return TRUE;
8317
8318 case NT_S390_TODPREG:
8319 if (note->namesz == 6
8320 && strcmp (note->namedata, "LINUX") == 0)
8321 return elfcore_grok_s390_todpreg (abfd, note);
8322 else
8323 return TRUE;
8324
8325 case NT_S390_CTRS:
8326 if (note->namesz == 6
8327 && strcmp (note->namedata, "LINUX") == 0)
8328 return elfcore_grok_s390_ctrs (abfd, note);
8329 else
8330 return TRUE;
8331
8332 case NT_S390_PREFIX:
8333 if (note->namesz == 6
8334 && strcmp (note->namedata, "LINUX") == 0)
8335 return elfcore_grok_s390_prefix (abfd, note);
8336 else
8337 return TRUE;
8338
8339 case NT_PRPSINFO:
8340 case NT_PSINFO:
8341 if (bed->elf_backend_grok_psinfo)
8342 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
8343 return TRUE;
8344 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8345 return elfcore_grok_psinfo (abfd, note);
8346 #else
8347 return TRUE;
8348 #endif
8349
8350 case NT_AUXV:
8351 {
8352 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
8353 SEC_HAS_CONTENTS);
8354
8355 if (sect == NULL)
8356 return FALSE;
8357 sect->size = note->descsz;
8358 sect->filepos = note->descpos;
8359 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8360
8361 return TRUE;
8362 }
8363 }
8364 }
8365
8366 static bfd_boolean
8367 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
8368 {
8369 elf_tdata (abfd)->build_id_size = note->descsz;
8370 elf_tdata (abfd)->build_id = (bfd_byte *) bfd_alloc (abfd, note->descsz);
8371 if (elf_tdata (abfd)->build_id == NULL)
8372 return FALSE;
8373
8374 memcpy (elf_tdata (abfd)->build_id, note->descdata, note->descsz);
8375
8376 return TRUE;
8377 }
8378
8379 static bfd_boolean
8380 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
8381 {
8382 switch (note->type)
8383 {
8384 default:
8385 return TRUE;
8386
8387 case NT_GNU_BUILD_ID:
8388 return elfobj_grok_gnu_build_id (abfd, note);
8389 }
8390 }
8391
8392 static bfd_boolean
8393 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
8394 {
8395 char *cp;
8396
8397 cp = strchr (note->namedata, '@');
8398 if (cp != NULL)
8399 {
8400 *lwpidp = atoi(cp + 1);
8401 return TRUE;
8402 }
8403 return FALSE;
8404 }
8405
8406 static bfd_boolean
8407 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
8408 {
8409 /* Signal number at offset 0x08. */
8410 elf_tdata (abfd)->core_signal
8411 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
8412
8413 /* Process ID at offset 0x50. */
8414 elf_tdata (abfd)->core_pid
8415 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
8416
8417 /* Command name at 0x7c (max 32 bytes, including nul). */
8418 elf_tdata (abfd)->core_command
8419 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
8420
8421 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
8422 note);
8423 }
8424
8425 static bfd_boolean
8426 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
8427 {
8428 int lwp;
8429
8430 if (elfcore_netbsd_get_lwpid (note, &lwp))
8431 elf_tdata (abfd)->core_lwpid = lwp;
8432
8433 if (note->type == NT_NETBSDCORE_PROCINFO)
8434 {
8435 /* NetBSD-specific core "procinfo". Note that we expect to
8436 find this note before any of the others, which is fine,
8437 since the kernel writes this note out first when it
8438 creates a core file. */
8439
8440 return elfcore_grok_netbsd_procinfo (abfd, note);
8441 }
8442
8443 /* As of Jan 2002 there are no other machine-independent notes
8444 defined for NetBSD core files. If the note type is less
8445 than the start of the machine-dependent note types, we don't
8446 understand it. */
8447
8448 if (note->type < NT_NETBSDCORE_FIRSTMACH)
8449 return TRUE;
8450
8451
8452 switch (bfd_get_arch (abfd))
8453 {
8454 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
8455 PT_GETFPREGS == mach+2. */
8456
8457 case bfd_arch_alpha:
8458 case bfd_arch_sparc:
8459 switch (note->type)
8460 {
8461 case NT_NETBSDCORE_FIRSTMACH+0:
8462 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8463
8464 case NT_NETBSDCORE_FIRSTMACH+2:
8465 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8466
8467 default:
8468 return TRUE;
8469 }
8470
8471 /* On all other arch's, PT_GETREGS == mach+1 and
8472 PT_GETFPREGS == mach+3. */
8473
8474 default:
8475 switch (note->type)
8476 {
8477 case NT_NETBSDCORE_FIRSTMACH+1:
8478 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8479
8480 case NT_NETBSDCORE_FIRSTMACH+3:
8481 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8482
8483 default:
8484 return TRUE;
8485 }
8486 }
8487 /* NOTREACHED */
8488 }
8489
8490 static bfd_boolean
8491 elfcore_grok_openbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
8492 {
8493 /* Signal number at offset 0x08. */
8494 elf_tdata (abfd)->core_signal
8495 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
8496
8497 /* Process ID at offset 0x20. */
8498 elf_tdata (abfd)->core_pid
8499 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x20);
8500
8501 /* Command name at 0x48 (max 32 bytes, including nul). */
8502 elf_tdata (abfd)->core_command
8503 = _bfd_elfcore_strndup (abfd, note->descdata + 0x48, 31);
8504
8505 return TRUE;
8506 }
8507
8508 static bfd_boolean
8509 elfcore_grok_openbsd_note (bfd *abfd, Elf_Internal_Note *note)
8510 {
8511 if (note->type == NT_OPENBSD_PROCINFO)
8512 return elfcore_grok_openbsd_procinfo (abfd, note);
8513
8514 if (note->type == NT_OPENBSD_REGS)
8515 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8516
8517 if (note->type == NT_OPENBSD_FPREGS)
8518 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8519
8520 if (note->type == NT_OPENBSD_XFPREGS)
8521 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
8522
8523 if (note->type == NT_OPENBSD_AUXV)
8524 {
8525 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
8526 SEC_HAS_CONTENTS);
8527
8528 if (sect == NULL)
8529 return FALSE;
8530 sect->size = note->descsz;
8531 sect->filepos = note->descpos;
8532 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8533
8534 return TRUE;
8535 }
8536
8537 if (note->type == NT_OPENBSD_WCOOKIE)
8538 {
8539 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".wcookie",
8540 SEC_HAS_CONTENTS);
8541
8542 if (sect == NULL)
8543 return FALSE;
8544 sect->size = note->descsz;
8545 sect->filepos = note->descpos;
8546 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8547
8548 return TRUE;
8549 }
8550
8551 return TRUE;
8552 }
8553
8554 static bfd_boolean
8555 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
8556 {
8557 void *ddata = note->descdata;
8558 char buf[100];
8559 char *name;
8560 asection *sect;
8561 short sig;
8562 unsigned flags;
8563
8564 /* nto_procfs_status 'pid' field is at offset 0. */
8565 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
8566
8567 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
8568 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
8569
8570 /* nto_procfs_status 'flags' field is at offset 8. */
8571 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
8572
8573 /* nto_procfs_status 'what' field is at offset 14. */
8574 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
8575 {
8576 elf_tdata (abfd)->core_signal = sig;
8577 elf_tdata (abfd)->core_lwpid = *tid;
8578 }
8579
8580 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
8581 do not come from signals so we make sure we set the current
8582 thread just in case. */
8583 if (flags & 0x00000080)
8584 elf_tdata (abfd)->core_lwpid = *tid;
8585
8586 /* Make a ".qnx_core_status/%d" section. */
8587 sprintf (buf, ".qnx_core_status/%ld", *tid);
8588
8589 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
8590 if (name == NULL)
8591 return FALSE;
8592 strcpy (name, buf);
8593
8594 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8595 if (sect == NULL)
8596 return FALSE;
8597
8598 sect->size = note->descsz;
8599 sect->filepos = note->descpos;
8600 sect->alignment_power = 2;
8601
8602 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
8603 }
8604
8605 static bfd_boolean
8606 elfcore_grok_nto_regs (bfd *abfd,
8607 Elf_Internal_Note *note,
8608 long tid,
8609 char *base)
8610 {
8611 char buf[100];
8612 char *name;
8613 asection *sect;
8614
8615 /* Make a "(base)/%d" section. */
8616 sprintf (buf, "%s/%ld", base, tid);
8617
8618 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
8619 if (name == NULL)
8620 return FALSE;
8621 strcpy (name, buf);
8622
8623 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8624 if (sect == NULL)
8625 return FALSE;
8626
8627 sect->size = note->descsz;
8628 sect->filepos = note->descpos;
8629 sect->alignment_power = 2;
8630
8631 /* This is the current thread. */
8632 if (elf_tdata (abfd)->core_lwpid == tid)
8633 return elfcore_maybe_make_sect (abfd, base, sect);
8634
8635 return TRUE;
8636 }
8637
8638 #define BFD_QNT_CORE_INFO 7
8639 #define BFD_QNT_CORE_STATUS 8
8640 #define BFD_QNT_CORE_GREG 9
8641 #define BFD_QNT_CORE_FPREG 10
8642
8643 static bfd_boolean
8644 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
8645 {
8646 /* Every GREG section has a STATUS section before it. Store the
8647 tid from the previous call to pass down to the next gregs
8648 function. */
8649 static long tid = 1;
8650
8651 switch (note->type)
8652 {
8653 case BFD_QNT_CORE_INFO:
8654 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
8655 case BFD_QNT_CORE_STATUS:
8656 return elfcore_grok_nto_status (abfd, note, &tid);
8657 case BFD_QNT_CORE_GREG:
8658 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
8659 case BFD_QNT_CORE_FPREG:
8660 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
8661 default:
8662 return TRUE;
8663 }
8664 }
8665
8666 static bfd_boolean
8667 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
8668 {
8669 char *name;
8670 asection *sect;
8671 size_t len;
8672
8673 /* Use note name as section name. */
8674 len = note->namesz;
8675 name = (char *) bfd_alloc (abfd, len);
8676 if (name == NULL)
8677 return FALSE;
8678 memcpy (name, note->namedata, len);
8679 name[len - 1] = '\0';
8680
8681 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8682 if (sect == NULL)
8683 return FALSE;
8684
8685 sect->size = note->descsz;
8686 sect->filepos = note->descpos;
8687 sect->alignment_power = 1;
8688
8689 return TRUE;
8690 }
8691
8692 /* Function: elfcore_write_note
8693
8694 Inputs:
8695 buffer to hold note, and current size of buffer
8696 name of note
8697 type of note
8698 data for note
8699 size of data for note
8700
8701 Writes note to end of buffer. ELF64 notes are written exactly as
8702 for ELF32, despite the current (as of 2006) ELF gabi specifying
8703 that they ought to have 8-byte namesz and descsz field, and have
8704 8-byte alignment. Other writers, eg. Linux kernel, do the same.
8705
8706 Return:
8707 Pointer to realloc'd buffer, *BUFSIZ updated. */
8708
8709 char *
8710 elfcore_write_note (bfd *abfd,
8711 char *buf,
8712 int *bufsiz,
8713 const char *name,
8714 int type,
8715 const void *input,
8716 int size)
8717 {
8718 Elf_External_Note *xnp;
8719 size_t namesz;
8720 size_t newspace;
8721 char *dest;
8722
8723 namesz = 0;
8724 if (name != NULL)
8725 namesz = strlen (name) + 1;
8726
8727 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
8728
8729 buf = (char *) realloc (buf, *bufsiz + newspace);
8730 if (buf == NULL)
8731 return buf;
8732 dest = buf + *bufsiz;
8733 *bufsiz += newspace;
8734 xnp = (Elf_External_Note *) dest;
8735 H_PUT_32 (abfd, namesz, xnp->namesz);
8736 H_PUT_32 (abfd, size, xnp->descsz);
8737 H_PUT_32 (abfd, type, xnp->type);
8738 dest = xnp->name;
8739 if (name != NULL)
8740 {
8741 memcpy (dest, name, namesz);
8742 dest += namesz;
8743 while (namesz & 3)
8744 {
8745 *dest++ = '\0';
8746 ++namesz;
8747 }
8748 }
8749 memcpy (dest, input, size);
8750 dest += size;
8751 while (size & 3)
8752 {
8753 *dest++ = '\0';
8754 ++size;
8755 }
8756 return buf;
8757 }
8758
8759 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8760 char *
8761 elfcore_write_prpsinfo (bfd *abfd,
8762 char *buf,
8763 int *bufsiz,
8764 const char *fname,
8765 const char *psargs)
8766 {
8767 const char *note_name = "CORE";
8768 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8769
8770 if (bed->elf_backend_write_core_note != NULL)
8771 {
8772 char *ret;
8773 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
8774 NT_PRPSINFO, fname, psargs);
8775 if (ret != NULL)
8776 return ret;
8777 }
8778
8779 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
8780 if (bed->s->elfclass == ELFCLASS32)
8781 {
8782 #if defined (HAVE_PSINFO32_T)
8783 psinfo32_t data;
8784 int note_type = NT_PSINFO;
8785 #else
8786 prpsinfo32_t data;
8787 int note_type = NT_PRPSINFO;
8788 #endif
8789
8790 memset (&data, 0, sizeof (data));
8791 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
8792 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
8793 return elfcore_write_note (abfd, buf, bufsiz,
8794 note_name, note_type, &data, sizeof (data));
8795 }
8796 else
8797 #endif
8798 {
8799 #if defined (HAVE_PSINFO_T)
8800 psinfo_t data;
8801 int note_type = NT_PSINFO;
8802 #else
8803 prpsinfo_t data;
8804 int note_type = NT_PRPSINFO;
8805 #endif
8806
8807 memset (&data, 0, sizeof (data));
8808 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
8809 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
8810 return elfcore_write_note (abfd, buf, bufsiz,
8811 note_name, note_type, &data, sizeof (data));
8812 }
8813 }
8814 #endif /* PSINFO_T or PRPSINFO_T */
8815
8816 #if defined (HAVE_PRSTATUS_T)
8817 char *
8818 elfcore_write_prstatus (bfd *abfd,
8819 char *buf,
8820 int *bufsiz,
8821 long pid,
8822 int cursig,
8823 const void *gregs)
8824 {
8825 const char *note_name = "CORE";
8826 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8827
8828 if (bed->elf_backend_write_core_note != NULL)
8829 {
8830 char *ret;
8831 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
8832 NT_PRSTATUS,
8833 pid, cursig, gregs);
8834 if (ret != NULL)
8835 return ret;
8836 }
8837
8838 #if defined (HAVE_PRSTATUS32_T)
8839 if (bed->s->elfclass == ELFCLASS32)
8840 {
8841 prstatus32_t prstat;
8842
8843 memset (&prstat, 0, sizeof (prstat));
8844 prstat.pr_pid = pid;
8845 prstat.pr_cursig = cursig;
8846 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
8847 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8848 NT_PRSTATUS, &prstat, sizeof (prstat));
8849 }
8850 else
8851 #endif
8852 {
8853 prstatus_t prstat;
8854
8855 memset (&prstat, 0, sizeof (prstat));
8856 prstat.pr_pid = pid;
8857 prstat.pr_cursig = cursig;
8858 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
8859 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8860 NT_PRSTATUS, &prstat, sizeof (prstat));
8861 }
8862 }
8863 #endif /* HAVE_PRSTATUS_T */
8864
8865 #if defined (HAVE_LWPSTATUS_T)
8866 char *
8867 elfcore_write_lwpstatus (bfd *abfd,
8868 char *buf,
8869 int *bufsiz,
8870 long pid,
8871 int cursig,
8872 const void *gregs)
8873 {
8874 lwpstatus_t lwpstat;
8875 const char *note_name = "CORE";
8876
8877 memset (&lwpstat, 0, sizeof (lwpstat));
8878 lwpstat.pr_lwpid = pid >> 16;
8879 lwpstat.pr_cursig = cursig;
8880 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8881 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
8882 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8883 #if !defined(gregs)
8884 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
8885 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
8886 #else
8887 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
8888 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
8889 #endif
8890 #endif
8891 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8892 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
8893 }
8894 #endif /* HAVE_LWPSTATUS_T */
8895
8896 #if defined (HAVE_PSTATUS_T)
8897 char *
8898 elfcore_write_pstatus (bfd *abfd,
8899 char *buf,
8900 int *bufsiz,
8901 long pid,
8902 int cursig ATTRIBUTE_UNUSED,
8903 const void *gregs ATTRIBUTE_UNUSED)
8904 {
8905 const char *note_name = "CORE";
8906 #if defined (HAVE_PSTATUS32_T)
8907 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8908
8909 if (bed->s->elfclass == ELFCLASS32)
8910 {
8911 pstatus32_t pstat;
8912
8913 memset (&pstat, 0, sizeof (pstat));
8914 pstat.pr_pid = pid & 0xffff;
8915 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
8916 NT_PSTATUS, &pstat, sizeof (pstat));
8917 return buf;
8918 }
8919 else
8920 #endif
8921 {
8922 pstatus_t pstat;
8923
8924 memset (&pstat, 0, sizeof (pstat));
8925 pstat.pr_pid = pid & 0xffff;
8926 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
8927 NT_PSTATUS, &pstat, sizeof (pstat));
8928 return buf;
8929 }
8930 }
8931 #endif /* HAVE_PSTATUS_T */
8932
8933 char *
8934 elfcore_write_prfpreg (bfd *abfd,
8935 char *buf,
8936 int *bufsiz,
8937 const void *fpregs,
8938 int size)
8939 {
8940 const char *note_name = "CORE";
8941 return elfcore_write_note (abfd, buf, bufsiz,
8942 note_name, NT_FPREGSET, fpregs, size);
8943 }
8944
8945 char *
8946 elfcore_write_prxfpreg (bfd *abfd,
8947 char *buf,
8948 int *bufsiz,
8949 const void *xfpregs,
8950 int size)
8951 {
8952 char *note_name = "LINUX";
8953 return elfcore_write_note (abfd, buf, bufsiz,
8954 note_name, NT_PRXFPREG, xfpregs, size);
8955 }
8956
8957 char *
8958 elfcore_write_xstatereg (bfd *abfd, char *buf, int *bufsiz,
8959 const void *xfpregs, int size)
8960 {
8961 char *note_name = "LINUX";
8962 return elfcore_write_note (abfd, buf, bufsiz,
8963 note_name, NT_X86_XSTATE, xfpregs, size);
8964 }
8965
8966 char *
8967 elfcore_write_ppc_vmx (bfd *abfd,
8968 char *buf,
8969 int *bufsiz,
8970 const void *ppc_vmx,
8971 int size)
8972 {
8973 char *note_name = "LINUX";
8974 return elfcore_write_note (abfd, buf, bufsiz,
8975 note_name, NT_PPC_VMX, ppc_vmx, size);
8976 }
8977
8978 char *
8979 elfcore_write_ppc_vsx (bfd *abfd,
8980 char *buf,
8981 int *bufsiz,
8982 const void *ppc_vsx,
8983 int size)
8984 {
8985 char *note_name = "LINUX";
8986 return elfcore_write_note (abfd, buf, bufsiz,
8987 note_name, NT_PPC_VSX, ppc_vsx, size);
8988 }
8989
8990 static char *
8991 elfcore_write_s390_high_gprs (bfd *abfd,
8992 char *buf,
8993 int *bufsiz,
8994 const void *s390_high_gprs,
8995 int size)
8996 {
8997 char *note_name = "LINUX";
8998 return elfcore_write_note (abfd, buf, bufsiz,
8999 note_name, NT_S390_HIGH_GPRS,
9000 s390_high_gprs, size);
9001 }
9002
9003 char *
9004 elfcore_write_s390_timer (bfd *abfd,
9005 char *buf,
9006 int *bufsiz,
9007 const void *s390_timer,
9008 int size)
9009 {
9010 char *note_name = "LINUX";
9011 return elfcore_write_note (abfd, buf, bufsiz,
9012 note_name, NT_S390_TIMER, s390_timer, size);
9013 }
9014
9015 char *
9016 elfcore_write_s390_todcmp (bfd *abfd,
9017 char *buf,
9018 int *bufsiz,
9019 const void *s390_todcmp,
9020 int size)
9021 {
9022 char *note_name = "LINUX";
9023 return elfcore_write_note (abfd, buf, bufsiz,
9024 note_name, NT_S390_TODCMP, s390_todcmp, size);
9025 }
9026
9027 char *
9028 elfcore_write_s390_todpreg (bfd *abfd,
9029 char *buf,
9030 int *bufsiz,
9031 const void *s390_todpreg,
9032 int size)
9033 {
9034 char *note_name = "LINUX";
9035 return elfcore_write_note (abfd, buf, bufsiz,
9036 note_name, NT_S390_TODPREG, s390_todpreg, size);
9037 }
9038
9039 char *
9040 elfcore_write_s390_ctrs (bfd *abfd,
9041 char *buf,
9042 int *bufsiz,
9043 const void *s390_ctrs,
9044 int size)
9045 {
9046 char *note_name = "LINUX";
9047 return elfcore_write_note (abfd, buf, bufsiz,
9048 note_name, NT_S390_CTRS, s390_ctrs, size);
9049 }
9050
9051 char *
9052 elfcore_write_s390_prefix (bfd *abfd,
9053 char *buf,
9054 int *bufsiz,
9055 const void *s390_prefix,
9056 int size)
9057 {
9058 char *note_name = "LINUX";
9059 return elfcore_write_note (abfd, buf, bufsiz,
9060 note_name, NT_S390_PREFIX, s390_prefix, size);
9061 }
9062
9063 char *
9064 elfcore_write_register_note (bfd *abfd,
9065 char *buf,
9066 int *bufsiz,
9067 const char *section,
9068 const void *data,
9069 int size)
9070 {
9071 if (strcmp (section, ".reg2") == 0)
9072 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
9073 if (strcmp (section, ".reg-xfp") == 0)
9074 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
9075 if (strcmp (section, ".reg-xstate") == 0)
9076 return elfcore_write_xstatereg (abfd, buf, bufsiz, data, size);
9077 if (strcmp (section, ".reg-ppc-vmx") == 0)
9078 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
9079 if (strcmp (section, ".reg-ppc-vsx") == 0)
9080 return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size);
9081 if (strcmp (section, ".reg-s390-high-gprs") == 0)
9082 return elfcore_write_s390_high_gprs (abfd, buf, bufsiz, data, size);
9083 if (strcmp (section, ".reg-s390-timer") == 0)
9084 return elfcore_write_s390_timer (abfd, buf, bufsiz, data, size);
9085 if (strcmp (section, ".reg-s390-todcmp") == 0)
9086 return elfcore_write_s390_todcmp (abfd, buf, bufsiz, data, size);
9087 if (strcmp (section, ".reg-s390-todpreg") == 0)
9088 return elfcore_write_s390_todpreg (abfd, buf, bufsiz, data, size);
9089 if (strcmp (section, ".reg-s390-ctrs") == 0)
9090 return elfcore_write_s390_ctrs (abfd, buf, bufsiz, data, size);
9091 if (strcmp (section, ".reg-s390-prefix") == 0)
9092 return elfcore_write_s390_prefix (abfd, buf, bufsiz, data, size);
9093 return NULL;
9094 }
9095
9096 static bfd_boolean
9097 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset)
9098 {
9099 char *p;
9100
9101 p = buf;
9102 while (p < buf + size)
9103 {
9104 /* FIXME: bad alignment assumption. */
9105 Elf_External_Note *xnp = (Elf_External_Note *) p;
9106 Elf_Internal_Note in;
9107
9108 if (offsetof (Elf_External_Note, name) > buf - p + size)
9109 return FALSE;
9110
9111 in.type = H_GET_32 (abfd, xnp->type);
9112
9113 in.namesz = H_GET_32 (abfd, xnp->namesz);
9114 in.namedata = xnp->name;
9115 if (in.namesz > buf - in.namedata + size)
9116 return FALSE;
9117
9118 in.descsz = H_GET_32 (abfd, xnp->descsz);
9119 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
9120 in.descpos = offset + (in.descdata - buf);
9121 if (in.descsz != 0
9122 && (in.descdata >= buf + size
9123 || in.descsz > buf - in.descdata + size))
9124 return FALSE;
9125
9126 switch (bfd_get_format (abfd))
9127 {
9128 default:
9129 return TRUE;
9130
9131 case bfd_core:
9132 if (CONST_STRNEQ (in.namedata, "NetBSD-CORE"))
9133 {
9134 if (! elfcore_grok_netbsd_note (abfd, &in))
9135 return FALSE;
9136 }
9137 else if (CONST_STRNEQ (in.namedata, "OpenBSD"))
9138 {
9139 if (! elfcore_grok_openbsd_note (abfd, &in))
9140 return FALSE;
9141 }
9142 else if (CONST_STRNEQ (in.namedata, "QNX"))
9143 {
9144 if (! elfcore_grok_nto_note (abfd, &in))
9145 return FALSE;
9146 }
9147 else if (CONST_STRNEQ (in.namedata, "SPU/"))
9148 {
9149 if (! elfcore_grok_spu_note (abfd, &in))
9150 return FALSE;
9151 }
9152 else
9153 {
9154 if (! elfcore_grok_note (abfd, &in))
9155 return FALSE;
9156 }
9157 break;
9158
9159 case bfd_object:
9160 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
9161 {
9162 if (! elfobj_grok_gnu_note (abfd, &in))
9163 return FALSE;
9164 }
9165 break;
9166 }
9167
9168 p = in.descdata + BFD_ALIGN (in.descsz, 4);
9169 }
9170
9171 return TRUE;
9172 }
9173
9174 static bfd_boolean
9175 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
9176 {
9177 char *buf;
9178
9179 if (size <= 0)
9180 return TRUE;
9181
9182 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
9183 return FALSE;
9184
9185 buf = (char *) bfd_malloc (size);
9186 if (buf == NULL)
9187 return FALSE;
9188
9189 if (bfd_bread (buf, size, abfd) != size
9190 || !elf_parse_notes (abfd, buf, size, offset))
9191 {
9192 free (buf);
9193 return FALSE;
9194 }
9195
9196 free (buf);
9197 return TRUE;
9198 }
9199 \f
9200 /* Providing external access to the ELF program header table. */
9201
9202 /* Return an upper bound on the number of bytes required to store a
9203 copy of ABFD's program header table entries. Return -1 if an error
9204 occurs; bfd_get_error will return an appropriate code. */
9205
9206 long
9207 bfd_get_elf_phdr_upper_bound (bfd *abfd)
9208 {
9209 if (abfd->xvec->flavour != bfd_target_elf_flavour)
9210 {
9211 bfd_set_error (bfd_error_wrong_format);
9212 return -1;
9213 }
9214
9215 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
9216 }
9217
9218 /* Copy ABFD's program header table entries to *PHDRS. The entries
9219 will be stored as an array of Elf_Internal_Phdr structures, as
9220 defined in include/elf/internal.h. To find out how large the
9221 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
9222
9223 Return the number of program header table entries read, or -1 if an
9224 error occurs; bfd_get_error will return an appropriate code. */
9225
9226 int
9227 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
9228 {
9229 int num_phdrs;
9230
9231 if (abfd->xvec->flavour != bfd_target_elf_flavour)
9232 {
9233 bfd_set_error (bfd_error_wrong_format);
9234 return -1;
9235 }
9236
9237 num_phdrs = elf_elfheader (abfd)->e_phnum;
9238 memcpy (phdrs, elf_tdata (abfd)->phdr,
9239 num_phdrs * sizeof (Elf_Internal_Phdr));
9240
9241 return num_phdrs;
9242 }
9243
9244 enum elf_reloc_type_class
9245 _bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
9246 {
9247 return reloc_class_normal;
9248 }
9249
9250 /* For RELA architectures, return the relocation value for a
9251 relocation against a local symbol. */
9252
9253 bfd_vma
9254 _bfd_elf_rela_local_sym (bfd *abfd,
9255 Elf_Internal_Sym *sym,
9256 asection **psec,
9257 Elf_Internal_Rela *rel)
9258 {
9259 asection *sec = *psec;
9260 bfd_vma relocation;
9261
9262 relocation = (sec->output_section->vma
9263 + sec->output_offset
9264 + sym->st_value);
9265 if ((sec->flags & SEC_MERGE)
9266 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
9267 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
9268 {
9269 rel->r_addend =
9270 _bfd_merged_section_offset (abfd, psec,
9271 elf_section_data (sec)->sec_info,
9272 sym->st_value + rel->r_addend);
9273 if (sec != *psec)
9274 {
9275 /* If we have changed the section, and our original section is
9276 marked with SEC_EXCLUDE, it means that the original
9277 SEC_MERGE section has been completely subsumed in some
9278 other SEC_MERGE section. In this case, we need to leave
9279 some info around for --emit-relocs. */
9280 if ((sec->flags & SEC_EXCLUDE) != 0)
9281 sec->kept_section = *psec;
9282 sec = *psec;
9283 }
9284 rel->r_addend -= relocation;
9285 rel->r_addend += sec->output_section->vma + sec->output_offset;
9286 }
9287 return relocation;
9288 }
9289
9290 bfd_vma
9291 _bfd_elf_rel_local_sym (bfd *abfd,
9292 Elf_Internal_Sym *sym,
9293 asection **psec,
9294 bfd_vma addend)
9295 {
9296 asection *sec = *psec;
9297
9298 if (sec->sec_info_type != ELF_INFO_TYPE_MERGE)
9299 return sym->st_value + addend;
9300
9301 return _bfd_merged_section_offset (abfd, psec,
9302 elf_section_data (sec)->sec_info,
9303 sym->st_value + addend);
9304 }
9305
9306 bfd_vma
9307 _bfd_elf_section_offset (bfd *abfd,
9308 struct bfd_link_info *info,
9309 asection *sec,
9310 bfd_vma offset)
9311 {
9312 switch (sec->sec_info_type)
9313 {
9314 case ELF_INFO_TYPE_STABS:
9315 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
9316 offset);
9317 case ELF_INFO_TYPE_EH_FRAME:
9318 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
9319 default:
9320 return offset;
9321 }
9322 }
9323 \f
9324 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
9325 reconstruct an ELF file by reading the segments out of remote memory
9326 based on the ELF file header at EHDR_VMA and the ELF program headers it
9327 points to. If not null, *LOADBASEP is filled in with the difference
9328 between the VMAs from which the segments were read, and the VMAs the
9329 file headers (and hence BFD's idea of each section's VMA) put them at.
9330
9331 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
9332 remote memory at target address VMA into the local buffer at MYADDR; it
9333 should return zero on success or an `errno' code on failure. TEMPL must
9334 be a BFD for an ELF target with the word size and byte order found in
9335 the remote memory. */
9336
9337 bfd *
9338 bfd_elf_bfd_from_remote_memory
9339 (bfd *templ,
9340 bfd_vma ehdr_vma,
9341 bfd_vma *loadbasep,
9342 int (*target_read_memory) (bfd_vma, bfd_byte *, int))
9343 {
9344 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
9345 (templ, ehdr_vma, loadbasep, target_read_memory);
9346 }
9347 \f
9348 long
9349 _bfd_elf_get_synthetic_symtab (bfd *abfd,
9350 long symcount ATTRIBUTE_UNUSED,
9351 asymbol **syms ATTRIBUTE_UNUSED,
9352 long dynsymcount,
9353 asymbol **dynsyms,
9354 asymbol **ret)
9355 {
9356 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9357 asection *relplt;
9358 asymbol *s;
9359 const char *relplt_name;
9360 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
9361 arelent *p;
9362 long count, i, n;
9363 size_t size;
9364 Elf_Internal_Shdr *hdr;
9365 char *names;
9366 asection *plt;
9367
9368 *ret = NULL;
9369
9370 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
9371 return 0;
9372
9373 if (dynsymcount <= 0)
9374 return 0;
9375
9376 if (!bed->plt_sym_val)
9377 return 0;
9378
9379 relplt_name = bed->relplt_name;
9380 if (relplt_name == NULL)
9381 relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt";
9382 relplt = bfd_get_section_by_name (abfd, relplt_name);
9383 if (relplt == NULL)
9384 return 0;
9385
9386 hdr = &elf_section_data (relplt)->this_hdr;
9387 if (hdr->sh_link != elf_dynsymtab (abfd)
9388 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
9389 return 0;
9390
9391 plt = bfd_get_section_by_name (abfd, ".plt");
9392 if (plt == NULL)
9393 return 0;
9394
9395 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
9396 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
9397 return -1;
9398
9399 count = relplt->size / hdr->sh_entsize;
9400 size = count * sizeof (asymbol);
9401 p = relplt->relocation;
9402 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
9403 {
9404 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
9405 if (p->addend != 0)
9406 {
9407 #ifdef BFD64
9408 size += sizeof ("+0x") - 1 + 8 + 8 * (bed->s->elfclass == ELFCLASS64);
9409 #else
9410 size += sizeof ("+0x") - 1 + 8;
9411 #endif
9412 }
9413 }
9414
9415 s = *ret = (asymbol *) bfd_malloc (size);
9416 if (s == NULL)
9417 return -1;
9418
9419 names = (char *) (s + count);
9420 p = relplt->relocation;
9421 n = 0;
9422 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
9423 {
9424 size_t len;
9425 bfd_vma addr;
9426
9427 addr = bed->plt_sym_val (i, plt, p);
9428 if (addr == (bfd_vma) -1)
9429 continue;
9430
9431 *s = **p->sym_ptr_ptr;
9432 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
9433 we are defining a symbol, ensure one of them is set. */
9434 if ((s->flags & BSF_LOCAL) == 0)
9435 s->flags |= BSF_GLOBAL;
9436 s->flags |= BSF_SYNTHETIC;
9437 s->section = plt;
9438 s->value = addr - plt->vma;
9439 s->name = names;
9440 s->udata.p = NULL;
9441 len = strlen ((*p->sym_ptr_ptr)->name);
9442 memcpy (names, (*p->sym_ptr_ptr)->name, len);
9443 names += len;
9444 if (p->addend != 0)
9445 {
9446 char buf[30], *a;
9447
9448 memcpy (names, "+0x", sizeof ("+0x") - 1);
9449 names += sizeof ("+0x") - 1;
9450 bfd_sprintf_vma (abfd, buf, p->addend);
9451 for (a = buf; *a == '0'; ++a)
9452 ;
9453 len = strlen (a);
9454 memcpy (names, a, len);
9455 names += len;
9456 }
9457 memcpy (names, "@plt", sizeof ("@plt"));
9458 names += sizeof ("@plt");
9459 ++s, ++n;
9460 }
9461
9462 return n;
9463 }
9464
9465 /* It is only used by x86-64 so far. */
9466 asection _bfd_elf_large_com_section
9467 = BFD_FAKE_SECTION (_bfd_elf_large_com_section,
9468 SEC_IS_COMMON, NULL, "LARGE_COMMON", 0);
9469
9470 void
9471 _bfd_elf_set_osabi (bfd * abfd,
9472 struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
9473 {
9474 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
9475
9476 i_ehdrp = elf_elfheader (abfd);
9477
9478 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
9479
9480 /* To make things simpler for the loader on Linux systems we set the
9481 osabi field to ELFOSABI_LINUX if the binary contains symbols of
9482 the STT_GNU_IFUNC type. */
9483 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE
9484 && elf_tdata (abfd)->has_ifunc_symbols)
9485 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_LINUX;
9486 }
9487
9488
9489 /* Return TRUE for ELF symbol types that represent functions.
9490 This is the default version of this function, which is sufficient for
9491 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */
9492
9493 bfd_boolean
9494 _bfd_elf_is_function_type (unsigned int type)
9495 {
9496 return (type == STT_FUNC
9497 || type == STT_GNU_IFUNC);
9498 }