elf_backend_modify_headers
[binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright (C) 1993-2019 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22
23 /*
24 SECTION
25 ELF backends
26
27 BFD support for ELF formats is being worked on.
28 Currently, the best supported back ends are for sparc and i386
29 (running svr4 or Solaris 2).
30
31 Documentation of the internals of the support code still needs
32 to be written. The code is changing quickly enough that we
33 haven't bothered yet. */
34
35 /* For sparc64-cross-sparc32. */
36 #define _SYSCALL32
37 #include "sysdep.h"
38 #include <limits.h>
39 #include "bfd.h"
40 #include "bfdlink.h"
41 #include "libbfd.h"
42 #define ARCH_SIZE 0
43 #include "elf-bfd.h"
44 #include "libiberty.h"
45 #include "safe-ctype.h"
46 #include "elf-linux-core.h"
47
48 #ifdef CORE_HEADER
49 #include CORE_HEADER
50 #endif
51
52 static int elf_sort_sections (const void *, const void *);
53 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
54 static bfd_boolean prep_headers (bfd *);
55 static bfd_boolean swap_out_syms (bfd *, struct elf_strtab_hash **, int) ;
56 static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
57 file_ptr offset, size_t align);
58
59 /* Swap version information in and out. The version information is
60 currently size independent. If that ever changes, this code will
61 need to move into elfcode.h. */
62
63 /* Swap in a Verdef structure. */
64
65 void
66 _bfd_elf_swap_verdef_in (bfd *abfd,
67 const Elf_External_Verdef *src,
68 Elf_Internal_Verdef *dst)
69 {
70 dst->vd_version = H_GET_16 (abfd, src->vd_version);
71 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
72 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
73 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
74 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
75 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
76 dst->vd_next = H_GET_32 (abfd, src->vd_next);
77 }
78
79 /* Swap out a Verdef structure. */
80
81 void
82 _bfd_elf_swap_verdef_out (bfd *abfd,
83 const Elf_Internal_Verdef *src,
84 Elf_External_Verdef *dst)
85 {
86 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
87 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
88 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
89 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
90 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
91 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
92 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
93 }
94
95 /* Swap in a Verdaux structure. */
96
97 void
98 _bfd_elf_swap_verdaux_in (bfd *abfd,
99 const Elf_External_Verdaux *src,
100 Elf_Internal_Verdaux *dst)
101 {
102 dst->vda_name = H_GET_32 (abfd, src->vda_name);
103 dst->vda_next = H_GET_32 (abfd, src->vda_next);
104 }
105
106 /* Swap out a Verdaux structure. */
107
108 void
109 _bfd_elf_swap_verdaux_out (bfd *abfd,
110 const Elf_Internal_Verdaux *src,
111 Elf_External_Verdaux *dst)
112 {
113 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
114 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
115 }
116
117 /* Swap in a Verneed structure. */
118
119 void
120 _bfd_elf_swap_verneed_in (bfd *abfd,
121 const Elf_External_Verneed *src,
122 Elf_Internal_Verneed *dst)
123 {
124 dst->vn_version = H_GET_16 (abfd, src->vn_version);
125 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
126 dst->vn_file = H_GET_32 (abfd, src->vn_file);
127 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
128 dst->vn_next = H_GET_32 (abfd, src->vn_next);
129 }
130
131 /* Swap out a Verneed structure. */
132
133 void
134 _bfd_elf_swap_verneed_out (bfd *abfd,
135 const Elf_Internal_Verneed *src,
136 Elf_External_Verneed *dst)
137 {
138 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
139 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
140 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
141 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
142 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
143 }
144
145 /* Swap in a Vernaux structure. */
146
147 void
148 _bfd_elf_swap_vernaux_in (bfd *abfd,
149 const Elf_External_Vernaux *src,
150 Elf_Internal_Vernaux *dst)
151 {
152 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
153 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
154 dst->vna_other = H_GET_16 (abfd, src->vna_other);
155 dst->vna_name = H_GET_32 (abfd, src->vna_name);
156 dst->vna_next = H_GET_32 (abfd, src->vna_next);
157 }
158
159 /* Swap out a Vernaux structure. */
160
161 void
162 _bfd_elf_swap_vernaux_out (bfd *abfd,
163 const Elf_Internal_Vernaux *src,
164 Elf_External_Vernaux *dst)
165 {
166 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
167 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
168 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
169 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
170 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
171 }
172
173 /* Swap in a Versym structure. */
174
175 void
176 _bfd_elf_swap_versym_in (bfd *abfd,
177 const Elf_External_Versym *src,
178 Elf_Internal_Versym *dst)
179 {
180 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
181 }
182
183 /* Swap out a Versym structure. */
184
185 void
186 _bfd_elf_swap_versym_out (bfd *abfd,
187 const Elf_Internal_Versym *src,
188 Elf_External_Versym *dst)
189 {
190 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
191 }
192
193 /* Standard ELF hash function. Do not change this function; you will
194 cause invalid hash tables to be generated. */
195
196 unsigned long
197 bfd_elf_hash (const char *namearg)
198 {
199 const unsigned char *name = (const unsigned char *) namearg;
200 unsigned long h = 0;
201 unsigned long g;
202 int ch;
203
204 while ((ch = *name++) != '\0')
205 {
206 h = (h << 4) + ch;
207 if ((g = (h & 0xf0000000)) != 0)
208 {
209 h ^= g >> 24;
210 /* The ELF ABI says `h &= ~g', but this is equivalent in
211 this case and on some machines one insn instead of two. */
212 h ^= g;
213 }
214 }
215 return h & 0xffffffff;
216 }
217
218 /* DT_GNU_HASH hash function. Do not change this function; you will
219 cause invalid hash tables to be generated. */
220
221 unsigned long
222 bfd_elf_gnu_hash (const char *namearg)
223 {
224 const unsigned char *name = (const unsigned char *) namearg;
225 unsigned long h = 5381;
226 unsigned char ch;
227
228 while ((ch = *name++) != '\0')
229 h = (h << 5) + h + ch;
230 return h & 0xffffffff;
231 }
232
233 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
234 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
235 bfd_boolean
236 bfd_elf_allocate_object (bfd *abfd,
237 size_t object_size,
238 enum elf_target_id object_id)
239 {
240 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
241 abfd->tdata.any = bfd_zalloc (abfd, object_size);
242 if (abfd->tdata.any == NULL)
243 return FALSE;
244
245 elf_object_id (abfd) = object_id;
246 if (abfd->direction != read_direction)
247 {
248 struct output_elf_obj_tdata *o = bfd_zalloc (abfd, sizeof *o);
249 if (o == NULL)
250 return FALSE;
251 elf_tdata (abfd)->o = o;
252 elf_program_header_size (abfd) = (bfd_size_type) -1;
253 }
254 return TRUE;
255 }
256
257
258 bfd_boolean
259 bfd_elf_make_object (bfd *abfd)
260 {
261 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
262 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
263 bed->target_id);
264 }
265
266 bfd_boolean
267 bfd_elf_mkcorefile (bfd *abfd)
268 {
269 /* I think this can be done just like an object file. */
270 if (!abfd->xvec->_bfd_set_format[(int) bfd_object] (abfd))
271 return FALSE;
272 elf_tdata (abfd)->core = bfd_zalloc (abfd, sizeof (*elf_tdata (abfd)->core));
273 return elf_tdata (abfd)->core != NULL;
274 }
275
276 char *
277 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
278 {
279 Elf_Internal_Shdr **i_shdrp;
280 bfd_byte *shstrtab = NULL;
281 file_ptr offset;
282 bfd_size_type shstrtabsize;
283
284 i_shdrp = elf_elfsections (abfd);
285 if (i_shdrp == 0
286 || shindex >= elf_numsections (abfd)
287 || i_shdrp[shindex] == 0)
288 return NULL;
289
290 shstrtab = i_shdrp[shindex]->contents;
291 if (shstrtab == NULL)
292 {
293 /* No cached one, attempt to read, and cache what we read. */
294 offset = i_shdrp[shindex]->sh_offset;
295 shstrtabsize = i_shdrp[shindex]->sh_size;
296
297 /* Allocate and clear an extra byte at the end, to prevent crashes
298 in case the string table is not terminated. */
299 if (shstrtabsize + 1 <= 1
300 || shstrtabsize > bfd_get_file_size (abfd)
301 || bfd_seek (abfd, offset, SEEK_SET) != 0
302 || (shstrtab = (bfd_byte *) bfd_alloc (abfd, shstrtabsize + 1)) == NULL)
303 shstrtab = NULL;
304 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
305 {
306 if (bfd_get_error () != bfd_error_system_call)
307 bfd_set_error (bfd_error_file_truncated);
308 bfd_release (abfd, shstrtab);
309 shstrtab = NULL;
310 /* Once we've failed to read it, make sure we don't keep
311 trying. Otherwise, we'll keep allocating space for
312 the string table over and over. */
313 i_shdrp[shindex]->sh_size = 0;
314 }
315 else
316 shstrtab[shstrtabsize] = '\0';
317 i_shdrp[shindex]->contents = shstrtab;
318 }
319 return (char *) shstrtab;
320 }
321
322 char *
323 bfd_elf_string_from_elf_section (bfd *abfd,
324 unsigned int shindex,
325 unsigned int strindex)
326 {
327 Elf_Internal_Shdr *hdr;
328
329 if (strindex == 0)
330 return "";
331
332 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
333 return NULL;
334
335 hdr = elf_elfsections (abfd)[shindex];
336
337 if (hdr->contents == NULL)
338 {
339 if (hdr->sh_type != SHT_STRTAB && hdr->sh_type < SHT_LOOS)
340 {
341 /* PR 17512: file: f057ec89. */
342 /* xgettext:c-format */
343 _bfd_error_handler (_("%pB: attempt to load strings from"
344 " a non-string section (number %d)"),
345 abfd, shindex);
346 return NULL;
347 }
348
349 if (bfd_elf_get_str_section (abfd, shindex) == NULL)
350 return NULL;
351 }
352 else
353 {
354 /* PR 24273: The string section's contents may have already
355 been loaded elsewhere, eg because a corrupt file has the
356 string section index in the ELF header pointing at a group
357 section. So be paranoid, and test that the last byte of
358 the section is zero. */
359 if (hdr->sh_size == 0 || hdr->contents[hdr->sh_size - 1] != 0)
360 return NULL;
361 }
362
363 if (strindex >= hdr->sh_size)
364 {
365 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
366 _bfd_error_handler
367 /* xgettext:c-format */
368 (_("%pB: invalid string offset %u >= %" PRIu64 " for section `%s'"),
369 abfd, strindex, (uint64_t) hdr->sh_size,
370 (shindex == shstrndx && strindex == hdr->sh_name
371 ? ".shstrtab"
372 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
373 return NULL;
374 }
375
376 return ((char *) hdr->contents) + strindex;
377 }
378
379 /* Read and convert symbols to internal format.
380 SYMCOUNT specifies the number of symbols to read, starting from
381 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
382 are non-NULL, they are used to store the internal symbols, external
383 symbols, and symbol section index extensions, respectively.
384 Returns a pointer to the internal symbol buffer (malloced if necessary)
385 or NULL if there were no symbols or some kind of problem. */
386
387 Elf_Internal_Sym *
388 bfd_elf_get_elf_syms (bfd *ibfd,
389 Elf_Internal_Shdr *symtab_hdr,
390 size_t symcount,
391 size_t symoffset,
392 Elf_Internal_Sym *intsym_buf,
393 void *extsym_buf,
394 Elf_External_Sym_Shndx *extshndx_buf)
395 {
396 Elf_Internal_Shdr *shndx_hdr;
397 void *alloc_ext;
398 const bfd_byte *esym;
399 Elf_External_Sym_Shndx *alloc_extshndx;
400 Elf_External_Sym_Shndx *shndx;
401 Elf_Internal_Sym *alloc_intsym;
402 Elf_Internal_Sym *isym;
403 Elf_Internal_Sym *isymend;
404 const struct elf_backend_data *bed;
405 size_t extsym_size;
406 bfd_size_type amt;
407 file_ptr pos;
408
409 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
410 abort ();
411
412 if (symcount == 0)
413 return intsym_buf;
414
415 /* Normal syms might have section extension entries. */
416 shndx_hdr = NULL;
417 if (elf_symtab_shndx_list (ibfd) != NULL)
418 {
419 elf_section_list * entry;
420 Elf_Internal_Shdr **sections = elf_elfsections (ibfd);
421
422 /* Find an index section that is linked to this symtab section. */
423 for (entry = elf_symtab_shndx_list (ibfd); entry != NULL; entry = entry->next)
424 {
425 /* PR 20063. */
426 if (entry->hdr.sh_link >= elf_numsections (ibfd))
427 continue;
428
429 if (sections[entry->hdr.sh_link] == symtab_hdr)
430 {
431 shndx_hdr = & entry->hdr;
432 break;
433 };
434 }
435
436 if (shndx_hdr == NULL)
437 {
438 if (symtab_hdr == & elf_symtab_hdr (ibfd))
439 /* Not really accurate, but this was how the old code used to work. */
440 shndx_hdr = & elf_symtab_shndx_list (ibfd)->hdr;
441 /* Otherwise we do nothing. The assumption is that
442 the index table will not be needed. */
443 }
444 }
445
446 /* Read the symbols. */
447 alloc_ext = NULL;
448 alloc_extshndx = NULL;
449 alloc_intsym = NULL;
450 bed = get_elf_backend_data (ibfd);
451 extsym_size = bed->s->sizeof_sym;
452 amt = (bfd_size_type) symcount * extsym_size;
453 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
454 if (extsym_buf == NULL)
455 {
456 alloc_ext = bfd_malloc2 (symcount, extsym_size);
457 extsym_buf = alloc_ext;
458 }
459 if (extsym_buf == NULL
460 || bfd_seek (ibfd, pos, SEEK_SET) != 0
461 || bfd_bread (extsym_buf, amt, ibfd) != amt)
462 {
463 intsym_buf = NULL;
464 goto out;
465 }
466
467 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
468 extshndx_buf = NULL;
469 else
470 {
471 amt = (bfd_size_type) symcount * sizeof (Elf_External_Sym_Shndx);
472 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
473 if (extshndx_buf == NULL)
474 {
475 alloc_extshndx = (Elf_External_Sym_Shndx *)
476 bfd_malloc2 (symcount, sizeof (Elf_External_Sym_Shndx));
477 extshndx_buf = alloc_extshndx;
478 }
479 if (extshndx_buf == NULL
480 || bfd_seek (ibfd, pos, SEEK_SET) != 0
481 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
482 {
483 intsym_buf = NULL;
484 goto out;
485 }
486 }
487
488 if (intsym_buf == NULL)
489 {
490 alloc_intsym = (Elf_Internal_Sym *)
491 bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
492 intsym_buf = alloc_intsym;
493 if (intsym_buf == NULL)
494 goto out;
495 }
496
497 /* Convert the symbols to internal form. */
498 isymend = intsym_buf + symcount;
499 for (esym = (const bfd_byte *) extsym_buf, isym = intsym_buf,
500 shndx = extshndx_buf;
501 isym < isymend;
502 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
503 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
504 {
505 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
506 /* xgettext:c-format */
507 _bfd_error_handler (_("%pB symbol number %lu references"
508 " nonexistent SHT_SYMTAB_SHNDX section"),
509 ibfd, (unsigned long) symoffset);
510 if (alloc_intsym != NULL)
511 free (alloc_intsym);
512 intsym_buf = NULL;
513 goto out;
514 }
515
516 out:
517 if (alloc_ext != NULL)
518 free (alloc_ext);
519 if (alloc_extshndx != NULL)
520 free (alloc_extshndx);
521
522 return intsym_buf;
523 }
524
525 /* Look up a symbol name. */
526 const char *
527 bfd_elf_sym_name (bfd *abfd,
528 Elf_Internal_Shdr *symtab_hdr,
529 Elf_Internal_Sym *isym,
530 asection *sym_sec)
531 {
532 const char *name;
533 unsigned int iname = isym->st_name;
534 unsigned int shindex = symtab_hdr->sh_link;
535
536 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
537 /* Check for a bogus st_shndx to avoid crashing. */
538 && isym->st_shndx < elf_numsections (abfd))
539 {
540 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
541 shindex = elf_elfheader (abfd)->e_shstrndx;
542 }
543
544 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
545 if (name == NULL)
546 name = "(null)";
547 else if (sym_sec && *name == '\0')
548 name = bfd_section_name (sym_sec);
549
550 return name;
551 }
552
553 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
554 sections. The first element is the flags, the rest are section
555 pointers. */
556
557 typedef union elf_internal_group {
558 Elf_Internal_Shdr *shdr;
559 unsigned int flags;
560 } Elf_Internal_Group;
561
562 /* Return the name of the group signature symbol. Why isn't the
563 signature just a string? */
564
565 static const char *
566 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
567 {
568 Elf_Internal_Shdr *hdr;
569 unsigned char esym[sizeof (Elf64_External_Sym)];
570 Elf_External_Sym_Shndx eshndx;
571 Elf_Internal_Sym isym;
572
573 /* First we need to ensure the symbol table is available. Make sure
574 that it is a symbol table section. */
575 if (ghdr->sh_link >= elf_numsections (abfd))
576 return NULL;
577 hdr = elf_elfsections (abfd) [ghdr->sh_link];
578 if (hdr->sh_type != SHT_SYMTAB
579 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
580 return NULL;
581
582 /* Go read the symbol. */
583 hdr = &elf_tdata (abfd)->symtab_hdr;
584 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
585 &isym, esym, &eshndx) == NULL)
586 return NULL;
587
588 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
589 }
590
591 /* Set next_in_group list pointer, and group name for NEWSECT. */
592
593 static bfd_boolean
594 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
595 {
596 unsigned int num_group = elf_tdata (abfd)->num_group;
597
598 /* If num_group is zero, read in all SHT_GROUP sections. The count
599 is set to -1 if there are no SHT_GROUP sections. */
600 if (num_group == 0)
601 {
602 unsigned int i, shnum;
603
604 /* First count the number of groups. If we have a SHT_GROUP
605 section with just a flag word (ie. sh_size is 4), ignore it. */
606 shnum = elf_numsections (abfd);
607 num_group = 0;
608
609 #define IS_VALID_GROUP_SECTION_HEADER(shdr, minsize) \
610 ( (shdr)->sh_type == SHT_GROUP \
611 && (shdr)->sh_size >= minsize \
612 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
613 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
614
615 for (i = 0; i < shnum; i++)
616 {
617 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
618
619 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
620 num_group += 1;
621 }
622
623 if (num_group == 0)
624 {
625 num_group = (unsigned) -1;
626 elf_tdata (abfd)->num_group = num_group;
627 elf_tdata (abfd)->group_sect_ptr = NULL;
628 }
629 else
630 {
631 /* We keep a list of elf section headers for group sections,
632 so we can find them quickly. */
633 bfd_size_type amt;
634
635 elf_tdata (abfd)->num_group = num_group;
636 elf_tdata (abfd)->group_sect_ptr = (Elf_Internal_Shdr **)
637 bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
638 if (elf_tdata (abfd)->group_sect_ptr == NULL)
639 return FALSE;
640 memset (elf_tdata (abfd)->group_sect_ptr, 0,
641 num_group * sizeof (Elf_Internal_Shdr *));
642 num_group = 0;
643
644 for (i = 0; i < shnum; i++)
645 {
646 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
647
648 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
649 {
650 unsigned char *src;
651 Elf_Internal_Group *dest;
652
653 /* Make sure the group section has a BFD section
654 attached to it. */
655 if (!bfd_section_from_shdr (abfd, i))
656 return FALSE;
657
658 /* Add to list of sections. */
659 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
660 num_group += 1;
661
662 /* Read the raw contents. */
663 BFD_ASSERT (sizeof (*dest) >= 4);
664 amt = shdr->sh_size * sizeof (*dest) / 4;
665 shdr->contents = (unsigned char *)
666 bfd_alloc2 (abfd, shdr->sh_size, sizeof (*dest) / 4);
667 /* PR binutils/4110: Handle corrupt group headers. */
668 if (shdr->contents == NULL)
669 {
670 _bfd_error_handler
671 /* xgettext:c-format */
672 (_("%pB: corrupt size field in group section"
673 " header: %#" PRIx64),
674 abfd, (uint64_t) shdr->sh_size);
675 bfd_set_error (bfd_error_bad_value);
676 -- num_group;
677 continue;
678 }
679
680 memset (shdr->contents, 0, amt);
681
682 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
683 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
684 != shdr->sh_size))
685 {
686 _bfd_error_handler
687 /* xgettext:c-format */
688 (_("%pB: invalid size field in group section"
689 " header: %#" PRIx64 ""),
690 abfd, (uint64_t) shdr->sh_size);
691 bfd_set_error (bfd_error_bad_value);
692 -- num_group;
693 /* PR 17510: If the group contents are even
694 partially corrupt, do not allow any of the
695 contents to be used. */
696 memset (shdr->contents, 0, amt);
697 continue;
698 }
699
700 /* Translate raw contents, a flag word followed by an
701 array of elf section indices all in target byte order,
702 to the flag word followed by an array of elf section
703 pointers. */
704 src = shdr->contents + shdr->sh_size;
705 dest = (Elf_Internal_Group *) (shdr->contents + amt);
706
707 while (1)
708 {
709 unsigned int idx;
710
711 src -= 4;
712 --dest;
713 idx = H_GET_32 (abfd, src);
714 if (src == shdr->contents)
715 {
716 dest->flags = idx;
717 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
718 shdr->bfd_section->flags
719 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
720 break;
721 }
722 if (idx < shnum)
723 {
724 dest->shdr = elf_elfsections (abfd)[idx];
725 /* PR binutils/23199: All sections in a
726 section group should be marked with
727 SHF_GROUP. But some tools generate
728 broken objects without SHF_GROUP. Fix
729 them up here. */
730 dest->shdr->sh_flags |= SHF_GROUP;
731 }
732 if (idx >= shnum
733 || dest->shdr->sh_type == SHT_GROUP)
734 {
735 _bfd_error_handler
736 (_("%pB: invalid entry in SHT_GROUP section [%u]"),
737 abfd, i);
738 dest->shdr = NULL;
739 }
740 }
741 }
742 }
743
744 /* PR 17510: Corrupt binaries might contain invalid groups. */
745 if (num_group != (unsigned) elf_tdata (abfd)->num_group)
746 {
747 elf_tdata (abfd)->num_group = num_group;
748
749 /* If all groups are invalid then fail. */
750 if (num_group == 0)
751 {
752 elf_tdata (abfd)->group_sect_ptr = NULL;
753 elf_tdata (abfd)->num_group = num_group = -1;
754 _bfd_error_handler
755 (_("%pB: no valid group sections found"), abfd);
756 bfd_set_error (bfd_error_bad_value);
757 }
758 }
759 }
760 }
761
762 if (num_group != (unsigned) -1)
763 {
764 unsigned int search_offset = elf_tdata (abfd)->group_search_offset;
765 unsigned int j;
766
767 for (j = 0; j < num_group; j++)
768 {
769 /* Begin search from previous found group. */
770 unsigned i = (j + search_offset) % num_group;
771
772 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
773 Elf_Internal_Group *idx;
774 bfd_size_type n_elt;
775
776 if (shdr == NULL)
777 continue;
778
779 idx = (Elf_Internal_Group *) shdr->contents;
780 if (idx == NULL || shdr->sh_size < 4)
781 {
782 /* See PR 21957 for a reproducer. */
783 /* xgettext:c-format */
784 _bfd_error_handler (_("%pB: group section '%pA' has no contents"),
785 abfd, shdr->bfd_section);
786 elf_tdata (abfd)->group_sect_ptr[i] = NULL;
787 bfd_set_error (bfd_error_bad_value);
788 return FALSE;
789 }
790 n_elt = shdr->sh_size / 4;
791
792 /* Look through this group's sections to see if current
793 section is a member. */
794 while (--n_elt != 0)
795 if ((++idx)->shdr == hdr)
796 {
797 asection *s = NULL;
798
799 /* We are a member of this group. Go looking through
800 other members to see if any others are linked via
801 next_in_group. */
802 idx = (Elf_Internal_Group *) shdr->contents;
803 n_elt = shdr->sh_size / 4;
804 while (--n_elt != 0)
805 if ((++idx)->shdr != NULL
806 && (s = idx->shdr->bfd_section) != NULL
807 && elf_next_in_group (s) != NULL)
808 break;
809 if (n_elt != 0)
810 {
811 /* Snarf the group name from other member, and
812 insert current section in circular list. */
813 elf_group_name (newsect) = elf_group_name (s);
814 elf_next_in_group (newsect) = elf_next_in_group (s);
815 elf_next_in_group (s) = newsect;
816 }
817 else
818 {
819 const char *gname;
820
821 gname = group_signature (abfd, shdr);
822 if (gname == NULL)
823 return FALSE;
824 elf_group_name (newsect) = gname;
825
826 /* Start a circular list with one element. */
827 elf_next_in_group (newsect) = newsect;
828 }
829
830 /* If the group section has been created, point to the
831 new member. */
832 if (shdr->bfd_section != NULL)
833 elf_next_in_group (shdr->bfd_section) = newsect;
834
835 elf_tdata (abfd)->group_search_offset = i;
836 j = num_group - 1;
837 break;
838 }
839 }
840 }
841
842 if (elf_group_name (newsect) == NULL)
843 {
844 /* xgettext:c-format */
845 _bfd_error_handler (_("%pB: no group info for section '%pA'"),
846 abfd, newsect);
847 return FALSE;
848 }
849 return TRUE;
850 }
851
852 bfd_boolean
853 _bfd_elf_setup_sections (bfd *abfd)
854 {
855 unsigned int i;
856 unsigned int num_group = elf_tdata (abfd)->num_group;
857 bfd_boolean result = TRUE;
858 asection *s;
859
860 /* Process SHF_LINK_ORDER. */
861 for (s = abfd->sections; s != NULL; s = s->next)
862 {
863 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
864 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
865 {
866 unsigned int elfsec = this_hdr->sh_link;
867 /* FIXME: The old Intel compiler and old strip/objcopy may
868 not set the sh_link or sh_info fields. Hence we could
869 get the situation where elfsec is 0. */
870 if (elfsec == 0)
871 {
872 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
873 if (bed->link_order_error_handler)
874 bed->link_order_error_handler
875 /* xgettext:c-format */
876 (_("%pB: warning: sh_link not set for section `%pA'"),
877 abfd, s);
878 }
879 else
880 {
881 asection *linksec = NULL;
882
883 if (elfsec < elf_numsections (abfd))
884 {
885 this_hdr = elf_elfsections (abfd)[elfsec];
886 linksec = this_hdr->bfd_section;
887 }
888
889 /* PR 1991, 2008:
890 Some strip/objcopy may leave an incorrect value in
891 sh_link. We don't want to proceed. */
892 if (linksec == NULL)
893 {
894 _bfd_error_handler
895 /* xgettext:c-format */
896 (_("%pB: sh_link [%d] in section `%pA' is incorrect"),
897 s->owner, elfsec, s);
898 result = FALSE;
899 }
900
901 elf_linked_to_section (s) = linksec;
902 }
903 }
904 else if (this_hdr->sh_type == SHT_GROUP
905 && elf_next_in_group (s) == NULL)
906 {
907 _bfd_error_handler
908 /* xgettext:c-format */
909 (_("%pB: SHT_GROUP section [index %d] has no SHF_GROUP sections"),
910 abfd, elf_section_data (s)->this_idx);
911 result = FALSE;
912 }
913 }
914
915 /* Process section groups. */
916 if (num_group == (unsigned) -1)
917 return result;
918
919 for (i = 0; i < num_group; i++)
920 {
921 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
922 Elf_Internal_Group *idx;
923 unsigned int n_elt;
924
925 /* PR binutils/18758: Beware of corrupt binaries with invalid group data. */
926 if (shdr == NULL || shdr->bfd_section == NULL || shdr->contents == NULL)
927 {
928 _bfd_error_handler
929 /* xgettext:c-format */
930 (_("%pB: section group entry number %u is corrupt"),
931 abfd, i);
932 result = FALSE;
933 continue;
934 }
935
936 idx = (Elf_Internal_Group *) shdr->contents;
937 n_elt = shdr->sh_size / 4;
938
939 while (--n_elt != 0)
940 {
941 ++ idx;
942
943 if (idx->shdr == NULL)
944 continue;
945 else if (idx->shdr->bfd_section)
946 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
947 else if (idx->shdr->sh_type != SHT_RELA
948 && idx->shdr->sh_type != SHT_REL)
949 {
950 /* There are some unknown sections in the group. */
951 _bfd_error_handler
952 /* xgettext:c-format */
953 (_("%pB: unknown type [%#x] section `%s' in group [%pA]"),
954 abfd,
955 idx->shdr->sh_type,
956 bfd_elf_string_from_elf_section (abfd,
957 (elf_elfheader (abfd)
958 ->e_shstrndx),
959 idx->shdr->sh_name),
960 shdr->bfd_section);
961 result = FALSE;
962 }
963 }
964 }
965
966 return result;
967 }
968
969 bfd_boolean
970 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
971 {
972 return elf_next_in_group (sec) != NULL;
973 }
974
975 const char *
976 bfd_elf_group_name (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
977 {
978 if (elf_sec_group (sec) != NULL)
979 return elf_group_name (sec);
980 return NULL;
981 }
982
983 static char *
984 convert_debug_to_zdebug (bfd *abfd, const char *name)
985 {
986 unsigned int len = strlen (name);
987 char *new_name = bfd_alloc (abfd, len + 2);
988 if (new_name == NULL)
989 return NULL;
990 new_name[0] = '.';
991 new_name[1] = 'z';
992 memcpy (new_name + 2, name + 1, len);
993 return new_name;
994 }
995
996 static char *
997 convert_zdebug_to_debug (bfd *abfd, const char *name)
998 {
999 unsigned int len = strlen (name);
1000 char *new_name = bfd_alloc (abfd, len);
1001 if (new_name == NULL)
1002 return NULL;
1003 new_name[0] = '.';
1004 memcpy (new_name + 1, name + 2, len - 1);
1005 return new_name;
1006 }
1007
1008 /* This a copy of lto_section defined in GCC (lto-streamer.h). */
1009
1010 struct lto_section
1011 {
1012 int16_t major_version;
1013 int16_t minor_version;
1014 unsigned char slim_object;
1015
1016 /* Flags is a private field that is not defined publicly. */
1017 uint16_t flags;
1018 };
1019
1020 /* Make a BFD section from an ELF section. We store a pointer to the
1021 BFD section in the bfd_section field of the header. */
1022
1023 bfd_boolean
1024 _bfd_elf_make_section_from_shdr (bfd *abfd,
1025 Elf_Internal_Shdr *hdr,
1026 const char *name,
1027 int shindex)
1028 {
1029 asection *newsect;
1030 flagword flags;
1031 const struct elf_backend_data *bed;
1032
1033 if (hdr->bfd_section != NULL)
1034 return TRUE;
1035
1036 newsect = bfd_make_section_anyway (abfd, name);
1037 if (newsect == NULL)
1038 return FALSE;
1039
1040 hdr->bfd_section = newsect;
1041 elf_section_data (newsect)->this_hdr = *hdr;
1042 elf_section_data (newsect)->this_idx = shindex;
1043
1044 /* Always use the real type/flags. */
1045 elf_section_type (newsect) = hdr->sh_type;
1046 elf_section_flags (newsect) = hdr->sh_flags;
1047
1048 newsect->filepos = hdr->sh_offset;
1049
1050 if (!bfd_set_section_vma (newsect, hdr->sh_addr)
1051 || !bfd_set_section_size (newsect, hdr->sh_size)
1052 || !bfd_set_section_alignment (newsect, bfd_log2 (hdr->sh_addralign)))
1053 return FALSE;
1054
1055 flags = SEC_NO_FLAGS;
1056 if (hdr->sh_type != SHT_NOBITS)
1057 flags |= SEC_HAS_CONTENTS;
1058 if (hdr->sh_type == SHT_GROUP)
1059 flags |= SEC_GROUP;
1060 if ((hdr->sh_flags & SHF_ALLOC) != 0)
1061 {
1062 flags |= SEC_ALLOC;
1063 if (hdr->sh_type != SHT_NOBITS)
1064 flags |= SEC_LOAD;
1065 }
1066 if ((hdr->sh_flags & SHF_WRITE) == 0)
1067 flags |= SEC_READONLY;
1068 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
1069 flags |= SEC_CODE;
1070 else if ((flags & SEC_LOAD) != 0)
1071 flags |= SEC_DATA;
1072 if ((hdr->sh_flags & SHF_MERGE) != 0)
1073 {
1074 flags |= SEC_MERGE;
1075 newsect->entsize = hdr->sh_entsize;
1076 }
1077 if ((hdr->sh_flags & SHF_STRINGS) != 0)
1078 flags |= SEC_STRINGS;
1079 if (hdr->sh_flags & SHF_GROUP)
1080 if (!setup_group (abfd, hdr, newsect))
1081 return FALSE;
1082 if ((hdr->sh_flags & SHF_TLS) != 0)
1083 flags |= SEC_THREAD_LOCAL;
1084 if ((hdr->sh_flags & SHF_EXCLUDE) != 0)
1085 flags |= SEC_EXCLUDE;
1086
1087 switch (elf_elfheader (abfd)->e_ident[EI_OSABI])
1088 {
1089 /* FIXME: We should not recognize SHF_GNU_MBIND for ELFOSABI_NONE,
1090 but binutils as of 2019-07-23 did not set the EI_OSABI header
1091 byte. */
1092 case ELFOSABI_NONE:
1093 case ELFOSABI_GNU:
1094 case ELFOSABI_FREEBSD:
1095 if ((hdr->sh_flags & SHF_GNU_MBIND) != 0)
1096 elf_tdata (abfd)->has_gnu_osabi |= elf_gnu_osabi_mbind;
1097 break;
1098 }
1099
1100 if ((flags & SEC_ALLOC) == 0)
1101 {
1102 /* The debugging sections appear to be recognized only by name,
1103 not any sort of flag. Their SEC_ALLOC bits are cleared. */
1104 if (name [0] == '.')
1105 {
1106 const char *p;
1107 int n;
1108 if (name[1] == 'd')
1109 p = ".debug", n = 6;
1110 else if (name[1] == 'g' && name[2] == 'n')
1111 p = ".gnu.linkonce.wi.", n = 17;
1112 else if (name[1] == 'g' && name[2] == 'd')
1113 p = ".gdb_index", n = 11; /* yes we really do mean 11. */
1114 else if (name[1] == 'l')
1115 p = ".line", n = 5;
1116 else if (name[1] == 's')
1117 p = ".stab", n = 5;
1118 else if (name[1] == 'z')
1119 p = ".zdebug", n = 7;
1120 else
1121 p = NULL, n = 0;
1122 if (p != NULL && strncmp (name, p, n) == 0)
1123 flags |= SEC_DEBUGGING;
1124 }
1125 }
1126
1127 /* As a GNU extension, if the name begins with .gnu.linkonce, we
1128 only link a single copy of the section. This is used to support
1129 g++. g++ will emit each template expansion in its own section.
1130 The symbols will be defined as weak, so that multiple definitions
1131 are permitted. The GNU linker extension is to actually discard
1132 all but one of the sections. */
1133 if (CONST_STRNEQ (name, ".gnu.linkonce")
1134 && elf_next_in_group (newsect) == NULL)
1135 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1136
1137 bed = get_elf_backend_data (abfd);
1138 if (bed->elf_backend_section_flags)
1139 if (! bed->elf_backend_section_flags (&flags, hdr))
1140 return FALSE;
1141
1142 if (!bfd_set_section_flags (newsect, flags))
1143 return FALSE;
1144
1145 /* We do not parse the PT_NOTE segments as we are interested even in the
1146 separate debug info files which may have the segments offsets corrupted.
1147 PT_NOTEs from the core files are currently not parsed using BFD. */
1148 if (hdr->sh_type == SHT_NOTE)
1149 {
1150 bfd_byte *contents;
1151
1152 if (!bfd_malloc_and_get_section (abfd, newsect, &contents))
1153 return FALSE;
1154
1155 elf_parse_notes (abfd, (char *) contents, hdr->sh_size,
1156 hdr->sh_offset, hdr->sh_addralign);
1157 free (contents);
1158 }
1159
1160 if ((flags & SEC_ALLOC) != 0)
1161 {
1162 Elf_Internal_Phdr *phdr;
1163 unsigned int i, nload;
1164
1165 /* Some ELF linkers produce binaries with all the program header
1166 p_paddr fields zero. If we have such a binary with more than
1167 one PT_LOAD header, then leave the section lma equal to vma
1168 so that we don't create sections with overlapping lma. */
1169 phdr = elf_tdata (abfd)->phdr;
1170 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1171 if (phdr->p_paddr != 0)
1172 break;
1173 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
1174 ++nload;
1175 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
1176 return TRUE;
1177
1178 phdr = elf_tdata (abfd)->phdr;
1179 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1180 {
1181 if (((phdr->p_type == PT_LOAD
1182 && (hdr->sh_flags & SHF_TLS) == 0)
1183 || phdr->p_type == PT_TLS)
1184 && ELF_SECTION_IN_SEGMENT (hdr, phdr))
1185 {
1186 if ((flags & SEC_LOAD) == 0)
1187 newsect->lma = (phdr->p_paddr
1188 + hdr->sh_addr - phdr->p_vaddr);
1189 else
1190 /* We used to use the same adjustment for SEC_LOAD
1191 sections, but that doesn't work if the segment
1192 is packed with code from multiple VMAs.
1193 Instead we calculate the section LMA based on
1194 the segment LMA. It is assumed that the
1195 segment will contain sections with contiguous
1196 LMAs, even if the VMAs are not. */
1197 newsect->lma = (phdr->p_paddr
1198 + hdr->sh_offset - phdr->p_offset);
1199
1200 /* With contiguous segments, we can't tell from file
1201 offsets whether a section with zero size should
1202 be placed at the end of one segment or the
1203 beginning of the next. Decide based on vaddr. */
1204 if (hdr->sh_addr >= phdr->p_vaddr
1205 && (hdr->sh_addr + hdr->sh_size
1206 <= phdr->p_vaddr + phdr->p_memsz))
1207 break;
1208 }
1209 }
1210 }
1211
1212 /* Compress/decompress DWARF debug sections with names: .debug_* and
1213 .zdebug_*, after the section flags is set. */
1214 if ((flags & SEC_DEBUGGING)
1215 && ((name[1] == 'd' && name[6] == '_')
1216 || (name[1] == 'z' && name[7] == '_')))
1217 {
1218 enum { nothing, compress, decompress } action = nothing;
1219 int compression_header_size;
1220 bfd_size_type uncompressed_size;
1221 unsigned int uncompressed_align_power;
1222 bfd_boolean compressed
1223 = bfd_is_section_compressed_with_header (abfd, newsect,
1224 &compression_header_size,
1225 &uncompressed_size,
1226 &uncompressed_align_power);
1227 if (compressed)
1228 {
1229 /* Compressed section. Check if we should decompress. */
1230 if ((abfd->flags & BFD_DECOMPRESS))
1231 action = decompress;
1232 }
1233
1234 /* Compress the uncompressed section or convert from/to .zdebug*
1235 section. Check if we should compress. */
1236 if (action == nothing)
1237 {
1238 if (newsect->size != 0
1239 && (abfd->flags & BFD_COMPRESS)
1240 && compression_header_size >= 0
1241 && uncompressed_size > 0
1242 && (!compressed
1243 || ((compression_header_size > 0)
1244 != ((abfd->flags & BFD_COMPRESS_GABI) != 0))))
1245 action = compress;
1246 else
1247 return TRUE;
1248 }
1249
1250 if (action == compress)
1251 {
1252 if (!bfd_init_section_compress_status (abfd, newsect))
1253 {
1254 _bfd_error_handler
1255 /* xgettext:c-format */
1256 (_("%pB: unable to initialize compress status for section %s"),
1257 abfd, name);
1258 return FALSE;
1259 }
1260 }
1261 else
1262 {
1263 if (!bfd_init_section_decompress_status (abfd, newsect))
1264 {
1265 _bfd_error_handler
1266 /* xgettext:c-format */
1267 (_("%pB: unable to initialize decompress status for section %s"),
1268 abfd, name);
1269 return FALSE;
1270 }
1271 }
1272
1273 if (abfd->is_linker_input)
1274 {
1275 if (name[1] == 'z'
1276 && (action == decompress
1277 || (action == compress
1278 && (abfd->flags & BFD_COMPRESS_GABI) != 0)))
1279 {
1280 /* Convert section name from .zdebug_* to .debug_* so
1281 that linker will consider this section as a debug
1282 section. */
1283 char *new_name = convert_zdebug_to_debug (abfd, name);
1284 if (new_name == NULL)
1285 return FALSE;
1286 bfd_rename_section (newsect, new_name);
1287 }
1288 }
1289 else
1290 /* For objdump, don't rename the section. For objcopy, delay
1291 section rename to elf_fake_sections. */
1292 newsect->flags |= SEC_ELF_RENAME;
1293 }
1294
1295 /* GCC uses .gnu.lto_.lto.<some_hash> as a LTO bytecode information
1296 section. */
1297 const char *lto_section_name = ".gnu.lto_.lto.";
1298 if (strncmp (name, lto_section_name, strlen (lto_section_name)) == 0)
1299 {
1300 struct lto_section lsection;
1301 if (bfd_get_section_contents (abfd, newsect, &lsection, 0,
1302 sizeof (struct lto_section)))
1303 abfd->lto_slim_object = lsection.slim_object;
1304 }
1305
1306 return TRUE;
1307 }
1308
1309 const char *const bfd_elf_section_type_names[] =
1310 {
1311 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1312 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1313 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1314 };
1315
1316 /* ELF relocs are against symbols. If we are producing relocatable
1317 output, and the reloc is against an external symbol, and nothing
1318 has given us any additional addend, the resulting reloc will also
1319 be against the same symbol. In such a case, we don't want to
1320 change anything about the way the reloc is handled, since it will
1321 all be done at final link time. Rather than put special case code
1322 into bfd_perform_relocation, all the reloc types use this howto
1323 function. It just short circuits the reloc if producing
1324 relocatable output against an external symbol. */
1325
1326 bfd_reloc_status_type
1327 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1328 arelent *reloc_entry,
1329 asymbol *symbol,
1330 void *data ATTRIBUTE_UNUSED,
1331 asection *input_section,
1332 bfd *output_bfd,
1333 char **error_message ATTRIBUTE_UNUSED)
1334 {
1335 if (output_bfd != NULL
1336 && (symbol->flags & BSF_SECTION_SYM) == 0
1337 && (! reloc_entry->howto->partial_inplace
1338 || reloc_entry->addend == 0))
1339 {
1340 reloc_entry->address += input_section->output_offset;
1341 return bfd_reloc_ok;
1342 }
1343
1344 return bfd_reloc_continue;
1345 }
1346 \f
1347 /* Returns TRUE if section A matches section B.
1348 Names, addresses and links may be different, but everything else
1349 should be the same. */
1350
1351 static bfd_boolean
1352 section_match (const Elf_Internal_Shdr * a,
1353 const Elf_Internal_Shdr * b)
1354 {
1355 if (a->sh_type != b->sh_type
1356 || ((a->sh_flags ^ b->sh_flags) & ~SHF_INFO_LINK) != 0
1357 || a->sh_addralign != b->sh_addralign
1358 || a->sh_entsize != b->sh_entsize)
1359 return FALSE;
1360 if (a->sh_type == SHT_SYMTAB
1361 || a->sh_type == SHT_STRTAB)
1362 return TRUE;
1363 return a->sh_size == b->sh_size;
1364 }
1365
1366 /* Find a section in OBFD that has the same characteristics
1367 as IHEADER. Return the index of this section or SHN_UNDEF if
1368 none can be found. Check's section HINT first, as this is likely
1369 to be the correct section. */
1370
1371 static unsigned int
1372 find_link (const bfd *obfd, const Elf_Internal_Shdr *iheader,
1373 const unsigned int hint)
1374 {
1375 Elf_Internal_Shdr ** oheaders = elf_elfsections (obfd);
1376 unsigned int i;
1377
1378 BFD_ASSERT (iheader != NULL);
1379
1380 /* See PR 20922 for a reproducer of the NULL test. */
1381 if (hint < elf_numsections (obfd)
1382 && oheaders[hint] != NULL
1383 && section_match (oheaders[hint], iheader))
1384 return hint;
1385
1386 for (i = 1; i < elf_numsections (obfd); i++)
1387 {
1388 Elf_Internal_Shdr * oheader = oheaders[i];
1389
1390 if (oheader == NULL)
1391 continue;
1392 if (section_match (oheader, iheader))
1393 /* FIXME: Do we care if there is a potential for
1394 multiple matches ? */
1395 return i;
1396 }
1397
1398 return SHN_UNDEF;
1399 }
1400
1401 /* PR 19938: Attempt to set the ELF section header fields of an OS or
1402 Processor specific section, based upon a matching input section.
1403 Returns TRUE upon success, FALSE otherwise. */
1404
1405 static bfd_boolean
1406 copy_special_section_fields (const bfd *ibfd,
1407 bfd *obfd,
1408 const Elf_Internal_Shdr *iheader,
1409 Elf_Internal_Shdr *oheader,
1410 const unsigned int secnum)
1411 {
1412 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
1413 const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd);
1414 bfd_boolean changed = FALSE;
1415 unsigned int sh_link;
1416
1417 if (oheader->sh_type == SHT_NOBITS)
1418 {
1419 /* This is a feature for objcopy --only-keep-debug:
1420 When a section's type is changed to NOBITS, we preserve
1421 the sh_link and sh_info fields so that they can be
1422 matched up with the original.
1423
1424 Note: Strictly speaking these assignments are wrong.
1425 The sh_link and sh_info fields should point to the
1426 relevent sections in the output BFD, which may not be in
1427 the same location as they were in the input BFD. But
1428 the whole point of this action is to preserve the
1429 original values of the sh_link and sh_info fields, so
1430 that they can be matched up with the section headers in
1431 the original file. So strictly speaking we may be
1432 creating an invalid ELF file, but it is only for a file
1433 that just contains debug info and only for sections
1434 without any contents. */
1435 if (oheader->sh_link == 0)
1436 oheader->sh_link = iheader->sh_link;
1437 if (oheader->sh_info == 0)
1438 oheader->sh_info = iheader->sh_info;
1439 return TRUE;
1440 }
1441
1442 /* Allow the target a chance to decide how these fields should be set. */
1443 if (bed->elf_backend_copy_special_section_fields != NULL
1444 && bed->elf_backend_copy_special_section_fields
1445 (ibfd, obfd, iheader, oheader))
1446 return TRUE;
1447
1448 /* We have an iheader which might match oheader, and which has non-zero
1449 sh_info and/or sh_link fields. Attempt to follow those links and find
1450 the section in the output bfd which corresponds to the linked section
1451 in the input bfd. */
1452 if (iheader->sh_link != SHN_UNDEF)
1453 {
1454 /* See PR 20931 for a reproducer. */
1455 if (iheader->sh_link >= elf_numsections (ibfd))
1456 {
1457 _bfd_error_handler
1458 /* xgettext:c-format */
1459 (_("%pB: invalid sh_link field (%d) in section number %d"),
1460 ibfd, iheader->sh_link, secnum);
1461 return FALSE;
1462 }
1463
1464 sh_link = find_link (obfd, iheaders[iheader->sh_link], iheader->sh_link);
1465 if (sh_link != SHN_UNDEF)
1466 {
1467 oheader->sh_link = sh_link;
1468 changed = TRUE;
1469 }
1470 else
1471 /* FIXME: Should we install iheader->sh_link
1472 if we could not find a match ? */
1473 _bfd_error_handler
1474 /* xgettext:c-format */
1475 (_("%pB: failed to find link section for section %d"), obfd, secnum);
1476 }
1477
1478 if (iheader->sh_info)
1479 {
1480 /* The sh_info field can hold arbitrary information, but if the
1481 SHF_LINK_INFO flag is set then it should be interpreted as a
1482 section index. */
1483 if (iheader->sh_flags & SHF_INFO_LINK)
1484 {
1485 sh_link = find_link (obfd, iheaders[iheader->sh_info],
1486 iheader->sh_info);
1487 if (sh_link != SHN_UNDEF)
1488 oheader->sh_flags |= SHF_INFO_LINK;
1489 }
1490 else
1491 /* No idea what it means - just copy it. */
1492 sh_link = iheader->sh_info;
1493
1494 if (sh_link != SHN_UNDEF)
1495 {
1496 oheader->sh_info = sh_link;
1497 changed = TRUE;
1498 }
1499 else
1500 _bfd_error_handler
1501 /* xgettext:c-format */
1502 (_("%pB: failed to find info section for section %d"), obfd, secnum);
1503 }
1504
1505 return changed;
1506 }
1507
1508 /* Copy the program header and other data from one object module to
1509 another. */
1510
1511 bfd_boolean
1512 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1513 {
1514 const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd);
1515 Elf_Internal_Shdr **oheaders = elf_elfsections (obfd);
1516 const struct elf_backend_data *bed;
1517 unsigned int i;
1518
1519 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1520 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1521 return TRUE;
1522
1523 if (!elf_flags_init (obfd))
1524 {
1525 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1526 elf_flags_init (obfd) = TRUE;
1527 }
1528
1529 elf_gp (obfd) = elf_gp (ibfd);
1530
1531 /* Also copy the EI_OSABI field. */
1532 elf_elfheader (obfd)->e_ident[EI_OSABI] =
1533 elf_elfheader (ibfd)->e_ident[EI_OSABI];
1534
1535 /* If set, copy the EI_ABIVERSION field. */
1536 if (elf_elfheader (ibfd)->e_ident[EI_ABIVERSION])
1537 elf_elfheader (obfd)->e_ident[EI_ABIVERSION]
1538 = elf_elfheader (ibfd)->e_ident[EI_ABIVERSION];
1539
1540 /* Copy object attributes. */
1541 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1542
1543 if (iheaders == NULL || oheaders == NULL)
1544 return TRUE;
1545
1546 bed = get_elf_backend_data (obfd);
1547
1548 /* Possibly copy other fields in the section header. */
1549 for (i = 1; i < elf_numsections (obfd); i++)
1550 {
1551 unsigned int j;
1552 Elf_Internal_Shdr * oheader = oheaders[i];
1553
1554 /* Ignore ordinary sections. SHT_NOBITS sections are considered however
1555 because of a special case need for generating separate debug info
1556 files. See below for more details. */
1557 if (oheader == NULL
1558 || (oheader->sh_type != SHT_NOBITS
1559 && oheader->sh_type < SHT_LOOS))
1560 continue;
1561
1562 /* Ignore empty sections, and sections whose
1563 fields have already been initialised. */
1564 if (oheader->sh_size == 0
1565 || (oheader->sh_info != 0 && oheader->sh_link != 0))
1566 continue;
1567
1568 /* Scan for the matching section in the input bfd.
1569 First we try for a direct mapping between the input and output sections. */
1570 for (j = 1; j < elf_numsections (ibfd); j++)
1571 {
1572 const Elf_Internal_Shdr * iheader = iheaders[j];
1573
1574 if (iheader == NULL)
1575 continue;
1576
1577 if (oheader->bfd_section != NULL
1578 && iheader->bfd_section != NULL
1579 && iheader->bfd_section->output_section != NULL
1580 && iheader->bfd_section->output_section == oheader->bfd_section)
1581 {
1582 /* We have found a connection from the input section to the
1583 output section. Attempt to copy the header fields. If
1584 this fails then do not try any further sections - there
1585 should only be a one-to-one mapping between input and output. */
1586 if (! copy_special_section_fields (ibfd, obfd, iheader, oheader, i))
1587 j = elf_numsections (ibfd);
1588 break;
1589 }
1590 }
1591
1592 if (j < elf_numsections (ibfd))
1593 continue;
1594
1595 /* That failed. So try to deduce the corresponding input section.
1596 Unfortunately we cannot compare names as the output string table
1597 is empty, so instead we check size, address and type. */
1598 for (j = 1; j < elf_numsections (ibfd); j++)
1599 {
1600 const Elf_Internal_Shdr * iheader = iheaders[j];
1601
1602 if (iheader == NULL)
1603 continue;
1604
1605 /* Try matching fields in the input section's header.
1606 Since --only-keep-debug turns all non-debug sections into
1607 SHT_NOBITS sections, the output SHT_NOBITS type matches any
1608 input type. */
1609 if ((oheader->sh_type == SHT_NOBITS
1610 || iheader->sh_type == oheader->sh_type)
1611 && (iheader->sh_flags & ~ SHF_INFO_LINK)
1612 == (oheader->sh_flags & ~ SHF_INFO_LINK)
1613 && iheader->sh_addralign == oheader->sh_addralign
1614 && iheader->sh_entsize == oheader->sh_entsize
1615 && iheader->sh_size == oheader->sh_size
1616 && iheader->sh_addr == oheader->sh_addr
1617 && (iheader->sh_info != oheader->sh_info
1618 || iheader->sh_link != oheader->sh_link))
1619 {
1620 if (copy_special_section_fields (ibfd, obfd, iheader, oheader, i))
1621 break;
1622 }
1623 }
1624
1625 if (j == elf_numsections (ibfd) && oheader->sh_type >= SHT_LOOS)
1626 {
1627 /* Final attempt. Call the backend copy function
1628 with a NULL input section. */
1629 if (bed->elf_backend_copy_special_section_fields != NULL)
1630 bed->elf_backend_copy_special_section_fields (ibfd, obfd, NULL, oheader);
1631 }
1632 }
1633
1634 return TRUE;
1635 }
1636
1637 static const char *
1638 get_segment_type (unsigned int p_type)
1639 {
1640 const char *pt;
1641 switch (p_type)
1642 {
1643 case PT_NULL: pt = "NULL"; break;
1644 case PT_LOAD: pt = "LOAD"; break;
1645 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1646 case PT_INTERP: pt = "INTERP"; break;
1647 case PT_NOTE: pt = "NOTE"; break;
1648 case PT_SHLIB: pt = "SHLIB"; break;
1649 case PT_PHDR: pt = "PHDR"; break;
1650 case PT_TLS: pt = "TLS"; break;
1651 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1652 case PT_GNU_STACK: pt = "STACK"; break;
1653 case PT_GNU_RELRO: pt = "RELRO"; break;
1654 default: pt = NULL; break;
1655 }
1656 return pt;
1657 }
1658
1659 /* Print out the program headers. */
1660
1661 bfd_boolean
1662 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1663 {
1664 FILE *f = (FILE *) farg;
1665 Elf_Internal_Phdr *p;
1666 asection *s;
1667 bfd_byte *dynbuf = NULL;
1668
1669 p = elf_tdata (abfd)->phdr;
1670 if (p != NULL)
1671 {
1672 unsigned int i, c;
1673
1674 fprintf (f, _("\nProgram Header:\n"));
1675 c = elf_elfheader (abfd)->e_phnum;
1676 for (i = 0; i < c; i++, p++)
1677 {
1678 const char *pt = get_segment_type (p->p_type);
1679 char buf[20];
1680
1681 if (pt == NULL)
1682 {
1683 sprintf (buf, "0x%lx", p->p_type);
1684 pt = buf;
1685 }
1686 fprintf (f, "%8s off 0x", pt);
1687 bfd_fprintf_vma (abfd, f, p->p_offset);
1688 fprintf (f, " vaddr 0x");
1689 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1690 fprintf (f, " paddr 0x");
1691 bfd_fprintf_vma (abfd, f, p->p_paddr);
1692 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1693 fprintf (f, " filesz 0x");
1694 bfd_fprintf_vma (abfd, f, p->p_filesz);
1695 fprintf (f, " memsz 0x");
1696 bfd_fprintf_vma (abfd, f, p->p_memsz);
1697 fprintf (f, " flags %c%c%c",
1698 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1699 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1700 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1701 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1702 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1703 fprintf (f, "\n");
1704 }
1705 }
1706
1707 s = bfd_get_section_by_name (abfd, ".dynamic");
1708 if (s != NULL)
1709 {
1710 unsigned int elfsec;
1711 unsigned long shlink;
1712 bfd_byte *extdyn, *extdynend;
1713 size_t extdynsize;
1714 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1715
1716 fprintf (f, _("\nDynamic Section:\n"));
1717
1718 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1719 goto error_return;
1720
1721 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1722 if (elfsec == SHN_BAD)
1723 goto error_return;
1724 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1725
1726 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1727 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1728
1729 extdyn = dynbuf;
1730 /* PR 17512: file: 6f427532. */
1731 if (s->size < extdynsize)
1732 goto error_return;
1733 extdynend = extdyn + s->size;
1734 /* PR 17512: file: id:000006,sig:06,src:000000,op:flip4,pos:5664.
1735 Fix range check. */
1736 for (; extdyn <= (extdynend - extdynsize); extdyn += extdynsize)
1737 {
1738 Elf_Internal_Dyn dyn;
1739 const char *name = "";
1740 char ab[20];
1741 bfd_boolean stringp;
1742 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1743
1744 (*swap_dyn_in) (abfd, extdyn, &dyn);
1745
1746 if (dyn.d_tag == DT_NULL)
1747 break;
1748
1749 stringp = FALSE;
1750 switch (dyn.d_tag)
1751 {
1752 default:
1753 if (bed->elf_backend_get_target_dtag)
1754 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
1755
1756 if (!strcmp (name, ""))
1757 {
1758 sprintf (ab, "%#" BFD_VMA_FMT "x", dyn.d_tag);
1759 name = ab;
1760 }
1761 break;
1762
1763 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1764 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1765 case DT_PLTGOT: name = "PLTGOT"; break;
1766 case DT_HASH: name = "HASH"; break;
1767 case DT_STRTAB: name = "STRTAB"; break;
1768 case DT_SYMTAB: name = "SYMTAB"; break;
1769 case DT_RELA: name = "RELA"; break;
1770 case DT_RELASZ: name = "RELASZ"; break;
1771 case DT_RELAENT: name = "RELAENT"; break;
1772 case DT_STRSZ: name = "STRSZ"; break;
1773 case DT_SYMENT: name = "SYMENT"; break;
1774 case DT_INIT: name = "INIT"; break;
1775 case DT_FINI: name = "FINI"; break;
1776 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1777 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1778 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1779 case DT_REL: name = "REL"; break;
1780 case DT_RELSZ: name = "RELSZ"; break;
1781 case DT_RELENT: name = "RELENT"; break;
1782 case DT_PLTREL: name = "PLTREL"; break;
1783 case DT_DEBUG: name = "DEBUG"; break;
1784 case DT_TEXTREL: name = "TEXTREL"; break;
1785 case DT_JMPREL: name = "JMPREL"; break;
1786 case DT_BIND_NOW: name = "BIND_NOW"; break;
1787 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1788 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1789 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1790 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1791 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1792 case DT_FLAGS: name = "FLAGS"; break;
1793 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1794 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1795 case DT_CHECKSUM: name = "CHECKSUM"; break;
1796 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1797 case DT_MOVEENT: name = "MOVEENT"; break;
1798 case DT_MOVESZ: name = "MOVESZ"; break;
1799 case DT_FEATURE: name = "FEATURE"; break;
1800 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1801 case DT_SYMINSZ: name = "SYMINSZ"; break;
1802 case DT_SYMINENT: name = "SYMINENT"; break;
1803 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1804 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1805 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1806 case DT_PLTPAD: name = "PLTPAD"; break;
1807 case DT_MOVETAB: name = "MOVETAB"; break;
1808 case DT_SYMINFO: name = "SYMINFO"; break;
1809 case DT_RELACOUNT: name = "RELACOUNT"; break;
1810 case DT_RELCOUNT: name = "RELCOUNT"; break;
1811 case DT_FLAGS_1: name = "FLAGS_1"; break;
1812 case DT_VERSYM: name = "VERSYM"; break;
1813 case DT_VERDEF: name = "VERDEF"; break;
1814 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1815 case DT_VERNEED: name = "VERNEED"; break;
1816 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1817 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1818 case DT_USED: name = "USED"; break;
1819 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1820 case DT_GNU_HASH: name = "GNU_HASH"; break;
1821 }
1822
1823 fprintf (f, " %-20s ", name);
1824 if (! stringp)
1825 {
1826 fprintf (f, "0x");
1827 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
1828 }
1829 else
1830 {
1831 const char *string;
1832 unsigned int tagv = dyn.d_un.d_val;
1833
1834 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1835 if (string == NULL)
1836 goto error_return;
1837 fprintf (f, "%s", string);
1838 }
1839 fprintf (f, "\n");
1840 }
1841
1842 free (dynbuf);
1843 dynbuf = NULL;
1844 }
1845
1846 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1847 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1848 {
1849 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1850 return FALSE;
1851 }
1852
1853 if (elf_dynverdef (abfd) != 0)
1854 {
1855 Elf_Internal_Verdef *t;
1856
1857 fprintf (f, _("\nVersion definitions:\n"));
1858 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1859 {
1860 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1861 t->vd_flags, t->vd_hash,
1862 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1863 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1864 {
1865 Elf_Internal_Verdaux *a;
1866
1867 fprintf (f, "\t");
1868 for (a = t->vd_auxptr->vda_nextptr;
1869 a != NULL;
1870 a = a->vda_nextptr)
1871 fprintf (f, "%s ",
1872 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1873 fprintf (f, "\n");
1874 }
1875 }
1876 }
1877
1878 if (elf_dynverref (abfd) != 0)
1879 {
1880 Elf_Internal_Verneed *t;
1881
1882 fprintf (f, _("\nVersion References:\n"));
1883 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1884 {
1885 Elf_Internal_Vernaux *a;
1886
1887 fprintf (f, _(" required from %s:\n"),
1888 t->vn_filename ? t->vn_filename : "<corrupt>");
1889 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1890 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1891 a->vna_flags, a->vna_other,
1892 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1893 }
1894 }
1895
1896 return TRUE;
1897
1898 error_return:
1899 if (dynbuf != NULL)
1900 free (dynbuf);
1901 return FALSE;
1902 }
1903
1904 /* Get version string. */
1905
1906 const char *
1907 _bfd_elf_get_symbol_version_string (bfd *abfd, asymbol *symbol,
1908 bfd_boolean *hidden)
1909 {
1910 const char *version_string = NULL;
1911 if (elf_dynversym (abfd) != 0
1912 && (elf_dynverdef (abfd) != 0 || elf_dynverref (abfd) != 0))
1913 {
1914 unsigned int vernum = ((elf_symbol_type *) symbol)->version;
1915
1916 *hidden = (vernum & VERSYM_HIDDEN) != 0;
1917 vernum &= VERSYM_VERSION;
1918
1919 if (vernum == 0)
1920 version_string = "";
1921 else if (vernum == 1
1922 && (vernum > elf_tdata (abfd)->cverdefs
1923 || (elf_tdata (abfd)->verdef[0].vd_flags
1924 == VER_FLG_BASE)))
1925 version_string = "Base";
1926 else if (vernum <= elf_tdata (abfd)->cverdefs)
1927 version_string =
1928 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1929 else
1930 {
1931 Elf_Internal_Verneed *t;
1932
1933 version_string = _("<corrupt>");
1934 for (t = elf_tdata (abfd)->verref;
1935 t != NULL;
1936 t = t->vn_nextref)
1937 {
1938 Elf_Internal_Vernaux *a;
1939
1940 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1941 {
1942 if (a->vna_other == vernum)
1943 {
1944 version_string = a->vna_nodename;
1945 break;
1946 }
1947 }
1948 }
1949 }
1950 }
1951 return version_string;
1952 }
1953
1954 /* Display ELF-specific fields of a symbol. */
1955
1956 void
1957 bfd_elf_print_symbol (bfd *abfd,
1958 void *filep,
1959 asymbol *symbol,
1960 bfd_print_symbol_type how)
1961 {
1962 FILE *file = (FILE *) filep;
1963 switch (how)
1964 {
1965 case bfd_print_symbol_name:
1966 fprintf (file, "%s", symbol->name);
1967 break;
1968 case bfd_print_symbol_more:
1969 fprintf (file, "elf ");
1970 bfd_fprintf_vma (abfd, file, symbol->value);
1971 fprintf (file, " %x", symbol->flags);
1972 break;
1973 case bfd_print_symbol_all:
1974 {
1975 const char *section_name;
1976 const char *name = NULL;
1977 const struct elf_backend_data *bed;
1978 unsigned char st_other;
1979 bfd_vma val;
1980 const char *version_string;
1981 bfd_boolean hidden;
1982
1983 section_name = symbol->section ? symbol->section->name : "(*none*)";
1984
1985 bed = get_elf_backend_data (abfd);
1986 if (bed->elf_backend_print_symbol_all)
1987 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1988
1989 if (name == NULL)
1990 {
1991 name = symbol->name;
1992 bfd_print_symbol_vandf (abfd, file, symbol);
1993 }
1994
1995 fprintf (file, " %s\t", section_name);
1996 /* Print the "other" value for a symbol. For common symbols,
1997 we've already printed the size; now print the alignment.
1998 For other symbols, we have no specified alignment, and
1999 we've printed the address; now print the size. */
2000 if (symbol->section && bfd_is_com_section (symbol->section))
2001 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
2002 else
2003 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
2004 bfd_fprintf_vma (abfd, file, val);
2005
2006 /* If we have version information, print it. */
2007 version_string = _bfd_elf_get_symbol_version_string (abfd,
2008 symbol,
2009 &hidden);
2010 if (version_string)
2011 {
2012 if (!hidden)
2013 fprintf (file, " %-11s", version_string);
2014 else
2015 {
2016 int i;
2017
2018 fprintf (file, " (%s)", version_string);
2019 for (i = 10 - strlen (version_string); i > 0; --i)
2020 putc (' ', file);
2021 }
2022 }
2023
2024 /* If the st_other field is not zero, print it. */
2025 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
2026
2027 switch (st_other)
2028 {
2029 case 0: break;
2030 case STV_INTERNAL: fprintf (file, " .internal"); break;
2031 case STV_HIDDEN: fprintf (file, " .hidden"); break;
2032 case STV_PROTECTED: fprintf (file, " .protected"); break;
2033 default:
2034 /* Some other non-defined flags are also present, so print
2035 everything hex. */
2036 fprintf (file, " 0x%02x", (unsigned int) st_other);
2037 }
2038
2039 fprintf (file, " %s", name);
2040 }
2041 break;
2042 }
2043 }
2044 \f
2045 /* ELF .o/exec file reading */
2046
2047 /* Create a new bfd section from an ELF section header. */
2048
2049 bfd_boolean
2050 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
2051 {
2052 Elf_Internal_Shdr *hdr;
2053 Elf_Internal_Ehdr *ehdr;
2054 const struct elf_backend_data *bed;
2055 const char *name;
2056 bfd_boolean ret = TRUE;
2057 static bfd_boolean * sections_being_created = NULL;
2058 static bfd * sections_being_created_abfd = NULL;
2059 static unsigned int nesting = 0;
2060
2061 if (shindex >= elf_numsections (abfd))
2062 return FALSE;
2063
2064 if (++ nesting > 3)
2065 {
2066 /* PR17512: A corrupt ELF binary might contain a recursive group of
2067 sections, with each the string indices pointing to the next in the
2068 loop. Detect this here, by refusing to load a section that we are
2069 already in the process of loading. We only trigger this test if
2070 we have nested at least three sections deep as normal ELF binaries
2071 can expect to recurse at least once.
2072
2073 FIXME: It would be better if this array was attached to the bfd,
2074 rather than being held in a static pointer. */
2075
2076 if (sections_being_created_abfd != abfd)
2077 sections_being_created = NULL;
2078 if (sections_being_created == NULL)
2079 {
2080 sections_being_created = (bfd_boolean *)
2081 bfd_zalloc2 (abfd, elf_numsections (abfd), sizeof (bfd_boolean));
2082 sections_being_created_abfd = abfd;
2083 }
2084 if (sections_being_created [shindex])
2085 {
2086 _bfd_error_handler
2087 (_("%pB: warning: loop in section dependencies detected"), abfd);
2088 return FALSE;
2089 }
2090 sections_being_created [shindex] = TRUE;
2091 }
2092
2093 hdr = elf_elfsections (abfd)[shindex];
2094 ehdr = elf_elfheader (abfd);
2095 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
2096 hdr->sh_name);
2097 if (name == NULL)
2098 goto fail;
2099
2100 bed = get_elf_backend_data (abfd);
2101 switch (hdr->sh_type)
2102 {
2103 case SHT_NULL:
2104 /* Inactive section. Throw it away. */
2105 goto success;
2106
2107 case SHT_PROGBITS: /* Normal section with contents. */
2108 case SHT_NOBITS: /* .bss section. */
2109 case SHT_HASH: /* .hash section. */
2110 case SHT_NOTE: /* .note section. */
2111 case SHT_INIT_ARRAY: /* .init_array section. */
2112 case SHT_FINI_ARRAY: /* .fini_array section. */
2113 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
2114 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
2115 case SHT_GNU_HASH: /* .gnu.hash section. */
2116 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2117 goto success;
2118
2119 case SHT_DYNAMIC: /* Dynamic linking information. */
2120 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2121 goto fail;
2122
2123 if (hdr->sh_link > elf_numsections (abfd))
2124 {
2125 /* PR 10478: Accept Solaris binaries with a sh_link
2126 field set to SHN_BEFORE or SHN_AFTER. */
2127 switch (bfd_get_arch (abfd))
2128 {
2129 case bfd_arch_i386:
2130 case bfd_arch_sparc:
2131 if (hdr->sh_link == (SHN_LORESERVE & 0xffff) /* SHN_BEFORE */
2132 || hdr->sh_link == ((SHN_LORESERVE + 1) & 0xffff) /* SHN_AFTER */)
2133 break;
2134 /* Otherwise fall through. */
2135 default:
2136 goto fail;
2137 }
2138 }
2139 else if (elf_elfsections (abfd)[hdr->sh_link] == NULL)
2140 goto fail;
2141 else if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
2142 {
2143 Elf_Internal_Shdr *dynsymhdr;
2144
2145 /* The shared libraries distributed with hpux11 have a bogus
2146 sh_link field for the ".dynamic" section. Find the
2147 string table for the ".dynsym" section instead. */
2148 if (elf_dynsymtab (abfd) != 0)
2149 {
2150 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
2151 hdr->sh_link = dynsymhdr->sh_link;
2152 }
2153 else
2154 {
2155 unsigned int i, num_sec;
2156
2157 num_sec = elf_numsections (abfd);
2158 for (i = 1; i < num_sec; i++)
2159 {
2160 dynsymhdr = elf_elfsections (abfd)[i];
2161 if (dynsymhdr->sh_type == SHT_DYNSYM)
2162 {
2163 hdr->sh_link = dynsymhdr->sh_link;
2164 break;
2165 }
2166 }
2167 }
2168 }
2169 goto success;
2170
2171 case SHT_SYMTAB: /* A symbol table. */
2172 if (elf_onesymtab (abfd) == shindex)
2173 goto success;
2174
2175 if (hdr->sh_entsize != bed->s->sizeof_sym)
2176 goto fail;
2177
2178 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
2179 {
2180 if (hdr->sh_size != 0)
2181 goto fail;
2182 /* Some assemblers erroneously set sh_info to one with a
2183 zero sh_size. ld sees this as a global symbol count
2184 of (unsigned) -1. Fix it here. */
2185 hdr->sh_info = 0;
2186 goto success;
2187 }
2188
2189 /* PR 18854: A binary might contain more than one symbol table.
2190 Unusual, but possible. Warn, but continue. */
2191 if (elf_onesymtab (abfd) != 0)
2192 {
2193 _bfd_error_handler
2194 /* xgettext:c-format */
2195 (_("%pB: warning: multiple symbol tables detected"
2196 " - ignoring the table in section %u"),
2197 abfd, shindex);
2198 goto success;
2199 }
2200 elf_onesymtab (abfd) = shindex;
2201 elf_symtab_hdr (abfd) = *hdr;
2202 elf_elfsections (abfd)[shindex] = hdr = & elf_symtab_hdr (abfd);
2203 abfd->flags |= HAS_SYMS;
2204
2205 /* Sometimes a shared object will map in the symbol table. If
2206 SHF_ALLOC is set, and this is a shared object, then we also
2207 treat this section as a BFD section. We can not base the
2208 decision purely on SHF_ALLOC, because that flag is sometimes
2209 set in a relocatable object file, which would confuse the
2210 linker. */
2211 if ((hdr->sh_flags & SHF_ALLOC) != 0
2212 && (abfd->flags & DYNAMIC) != 0
2213 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2214 shindex))
2215 goto fail;
2216
2217 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
2218 can't read symbols without that section loaded as well. It
2219 is most likely specified by the next section header. */
2220 {
2221 elf_section_list * entry;
2222 unsigned int i, num_sec;
2223
2224 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
2225 if (entry->hdr.sh_link == shindex)
2226 goto success;
2227
2228 num_sec = elf_numsections (abfd);
2229 for (i = shindex + 1; i < num_sec; i++)
2230 {
2231 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2232
2233 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
2234 && hdr2->sh_link == shindex)
2235 break;
2236 }
2237
2238 if (i == num_sec)
2239 for (i = 1; i < shindex; i++)
2240 {
2241 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2242
2243 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
2244 && hdr2->sh_link == shindex)
2245 break;
2246 }
2247
2248 if (i != shindex)
2249 ret = bfd_section_from_shdr (abfd, i);
2250 /* else FIXME: we have failed to find the symbol table - should we issue an error ? */
2251 goto success;
2252 }
2253
2254 case SHT_DYNSYM: /* A dynamic symbol table. */
2255 if (elf_dynsymtab (abfd) == shindex)
2256 goto success;
2257
2258 if (hdr->sh_entsize != bed->s->sizeof_sym)
2259 goto fail;
2260
2261 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
2262 {
2263 if (hdr->sh_size != 0)
2264 goto fail;
2265
2266 /* Some linkers erroneously set sh_info to one with a
2267 zero sh_size. ld sees this as a global symbol count
2268 of (unsigned) -1. Fix it here. */
2269 hdr->sh_info = 0;
2270 goto success;
2271 }
2272
2273 /* PR 18854: A binary might contain more than one dynamic symbol table.
2274 Unusual, but possible. Warn, but continue. */
2275 if (elf_dynsymtab (abfd) != 0)
2276 {
2277 _bfd_error_handler
2278 /* xgettext:c-format */
2279 (_("%pB: warning: multiple dynamic symbol tables detected"
2280 " - ignoring the table in section %u"),
2281 abfd, shindex);
2282 goto success;
2283 }
2284 elf_dynsymtab (abfd) = shindex;
2285 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
2286 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2287 abfd->flags |= HAS_SYMS;
2288
2289 /* Besides being a symbol table, we also treat this as a regular
2290 section, so that objcopy can handle it. */
2291 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2292 goto success;
2293
2294 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections. */
2295 {
2296 elf_section_list * entry;
2297
2298 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
2299 if (entry->ndx == shindex)
2300 goto success;
2301
2302 entry = bfd_alloc (abfd, sizeof (*entry));
2303 if (entry == NULL)
2304 goto fail;
2305 entry->ndx = shindex;
2306 entry->hdr = * hdr;
2307 entry->next = elf_symtab_shndx_list (abfd);
2308 elf_symtab_shndx_list (abfd) = entry;
2309 elf_elfsections (abfd)[shindex] = & entry->hdr;
2310 goto success;
2311 }
2312
2313 case SHT_STRTAB: /* A string table. */
2314 if (hdr->bfd_section != NULL)
2315 goto success;
2316
2317 if (ehdr->e_shstrndx == shindex)
2318 {
2319 elf_tdata (abfd)->shstrtab_hdr = *hdr;
2320 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
2321 goto success;
2322 }
2323
2324 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
2325 {
2326 symtab_strtab:
2327 elf_tdata (abfd)->strtab_hdr = *hdr;
2328 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
2329 goto success;
2330 }
2331
2332 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
2333 {
2334 dynsymtab_strtab:
2335 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
2336 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
2337 elf_elfsections (abfd)[shindex] = hdr;
2338 /* We also treat this as a regular section, so that objcopy
2339 can handle it. */
2340 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2341 shindex);
2342 goto success;
2343 }
2344
2345 /* If the string table isn't one of the above, then treat it as a
2346 regular section. We need to scan all the headers to be sure,
2347 just in case this strtab section appeared before the above. */
2348 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
2349 {
2350 unsigned int i, num_sec;
2351
2352 num_sec = elf_numsections (abfd);
2353 for (i = 1; i < num_sec; i++)
2354 {
2355 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2356 if (hdr2->sh_link == shindex)
2357 {
2358 /* Prevent endless recursion on broken objects. */
2359 if (i == shindex)
2360 goto fail;
2361 if (! bfd_section_from_shdr (abfd, i))
2362 goto fail;
2363 if (elf_onesymtab (abfd) == i)
2364 goto symtab_strtab;
2365 if (elf_dynsymtab (abfd) == i)
2366 goto dynsymtab_strtab;
2367 }
2368 }
2369 }
2370 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2371 goto success;
2372
2373 case SHT_REL:
2374 case SHT_RELA:
2375 /* *These* do a lot of work -- but build no sections! */
2376 {
2377 asection *target_sect;
2378 Elf_Internal_Shdr *hdr2, **p_hdr;
2379 unsigned int num_sec = elf_numsections (abfd);
2380 struct bfd_elf_section_data *esdt;
2381
2382 if (hdr->sh_entsize
2383 != (bfd_size_type) (hdr->sh_type == SHT_REL
2384 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
2385 goto fail;
2386
2387 /* Check for a bogus link to avoid crashing. */
2388 if (hdr->sh_link >= num_sec)
2389 {
2390 _bfd_error_handler
2391 /* xgettext:c-format */
2392 (_("%pB: invalid link %u for reloc section %s (index %u)"),
2393 abfd, hdr->sh_link, name, shindex);
2394 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2395 shindex);
2396 goto success;
2397 }
2398
2399 /* For some incomprehensible reason Oracle distributes
2400 libraries for Solaris in which some of the objects have
2401 bogus sh_link fields. It would be nice if we could just
2402 reject them, but, unfortunately, some people need to use
2403 them. We scan through the section headers; if we find only
2404 one suitable symbol table, we clobber the sh_link to point
2405 to it. I hope this doesn't break anything.
2406
2407 Don't do it on executable nor shared library. */
2408 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0
2409 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
2410 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
2411 {
2412 unsigned int scan;
2413 int found;
2414
2415 found = 0;
2416 for (scan = 1; scan < num_sec; scan++)
2417 {
2418 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
2419 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
2420 {
2421 if (found != 0)
2422 {
2423 found = 0;
2424 break;
2425 }
2426 found = scan;
2427 }
2428 }
2429 if (found != 0)
2430 hdr->sh_link = found;
2431 }
2432
2433 /* Get the symbol table. */
2434 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
2435 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
2436 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
2437 goto fail;
2438
2439 /* If this is an alloc section in an executable or shared
2440 library, or the reloc section does not use the main symbol
2441 table we don't treat it as a reloc section. BFD can't
2442 adequately represent such a section, so at least for now,
2443 we don't try. We just present it as a normal section. We
2444 also can't use it as a reloc section if it points to the
2445 null section, an invalid section, another reloc section, or
2446 its sh_link points to the null section. */
2447 if (((abfd->flags & (DYNAMIC | EXEC_P)) != 0
2448 && (hdr->sh_flags & SHF_ALLOC) != 0)
2449 || hdr->sh_link == SHN_UNDEF
2450 || hdr->sh_link != elf_onesymtab (abfd)
2451 || hdr->sh_info == SHN_UNDEF
2452 || hdr->sh_info >= num_sec
2453 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
2454 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
2455 {
2456 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2457 shindex);
2458 goto success;
2459 }
2460
2461 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
2462 goto fail;
2463
2464 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
2465 if (target_sect == NULL)
2466 goto fail;
2467
2468 esdt = elf_section_data (target_sect);
2469 if (hdr->sh_type == SHT_RELA)
2470 p_hdr = &esdt->rela.hdr;
2471 else
2472 p_hdr = &esdt->rel.hdr;
2473
2474 /* PR 17512: file: 0b4f81b7.
2475 Also see PR 24456, for a file which deliberately has two reloc
2476 sections. */
2477 if (*p_hdr != NULL)
2478 {
2479 _bfd_error_handler
2480 /* xgettext:c-format */
2481 (_("%pB: warning: multiple relocation sections for section %pA \
2482 found - ignoring all but the first"),
2483 abfd, target_sect);
2484 goto success;
2485 }
2486 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, sizeof (*hdr2));
2487 if (hdr2 == NULL)
2488 goto fail;
2489 *hdr2 = *hdr;
2490 *p_hdr = hdr2;
2491 elf_elfsections (abfd)[shindex] = hdr2;
2492 target_sect->reloc_count += (NUM_SHDR_ENTRIES (hdr)
2493 * bed->s->int_rels_per_ext_rel);
2494 target_sect->flags |= SEC_RELOC;
2495 target_sect->relocation = NULL;
2496 target_sect->rel_filepos = hdr->sh_offset;
2497 /* In the section to which the relocations apply, mark whether
2498 its relocations are of the REL or RELA variety. */
2499 if (hdr->sh_size != 0)
2500 {
2501 if (hdr->sh_type == SHT_RELA)
2502 target_sect->use_rela_p = 1;
2503 }
2504 abfd->flags |= HAS_RELOC;
2505 goto success;
2506 }
2507
2508 case SHT_GNU_verdef:
2509 elf_dynverdef (abfd) = shindex;
2510 elf_tdata (abfd)->dynverdef_hdr = *hdr;
2511 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2512 goto success;
2513
2514 case SHT_GNU_versym:
2515 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
2516 goto fail;
2517
2518 elf_dynversym (abfd) = shindex;
2519 elf_tdata (abfd)->dynversym_hdr = *hdr;
2520 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2521 goto success;
2522
2523 case SHT_GNU_verneed:
2524 elf_dynverref (abfd) = shindex;
2525 elf_tdata (abfd)->dynverref_hdr = *hdr;
2526 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2527 goto success;
2528
2529 case SHT_SHLIB:
2530 goto success;
2531
2532 case SHT_GROUP:
2533 if (! IS_VALID_GROUP_SECTION_HEADER (hdr, GRP_ENTRY_SIZE))
2534 goto fail;
2535
2536 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2537 goto fail;
2538
2539 goto success;
2540
2541 default:
2542 /* Possibly an attributes section. */
2543 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
2544 || hdr->sh_type == bed->obj_attrs_section_type)
2545 {
2546 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2547 goto fail;
2548 _bfd_elf_parse_attributes (abfd, hdr);
2549 goto success;
2550 }
2551
2552 /* Check for any processor-specific section types. */
2553 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
2554 goto success;
2555
2556 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
2557 {
2558 if ((hdr->sh_flags & SHF_ALLOC) != 0)
2559 /* FIXME: How to properly handle allocated section reserved
2560 for applications? */
2561 _bfd_error_handler
2562 /* xgettext:c-format */
2563 (_("%pB: unknown type [%#x] section `%s'"),
2564 abfd, hdr->sh_type, name);
2565 else
2566 {
2567 /* Allow sections reserved for applications. */
2568 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2569 shindex);
2570 goto success;
2571 }
2572 }
2573 else if (hdr->sh_type >= SHT_LOPROC
2574 && hdr->sh_type <= SHT_HIPROC)
2575 /* FIXME: We should handle this section. */
2576 _bfd_error_handler
2577 /* xgettext:c-format */
2578 (_("%pB: unknown type [%#x] section `%s'"),
2579 abfd, hdr->sh_type, name);
2580 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
2581 {
2582 /* Unrecognised OS-specific sections. */
2583 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
2584 /* SHF_OS_NONCONFORMING indicates that special knowledge is
2585 required to correctly process the section and the file should
2586 be rejected with an error message. */
2587 _bfd_error_handler
2588 /* xgettext:c-format */
2589 (_("%pB: unknown type [%#x] section `%s'"),
2590 abfd, hdr->sh_type, name);
2591 else
2592 {
2593 /* Otherwise it should be processed. */
2594 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2595 goto success;
2596 }
2597 }
2598 else
2599 /* FIXME: We should handle this section. */
2600 _bfd_error_handler
2601 /* xgettext:c-format */
2602 (_("%pB: unknown type [%#x] section `%s'"),
2603 abfd, hdr->sh_type, name);
2604
2605 goto fail;
2606 }
2607
2608 fail:
2609 ret = FALSE;
2610 success:
2611 if (sections_being_created && sections_being_created_abfd == abfd)
2612 sections_being_created [shindex] = FALSE;
2613 if (-- nesting == 0)
2614 {
2615 sections_being_created = NULL;
2616 sections_being_created_abfd = abfd;
2617 }
2618 return ret;
2619 }
2620
2621 /* Return the local symbol specified by ABFD, R_SYMNDX. */
2622
2623 Elf_Internal_Sym *
2624 bfd_sym_from_r_symndx (struct sym_cache *cache,
2625 bfd *abfd,
2626 unsigned long r_symndx)
2627 {
2628 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2629
2630 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
2631 {
2632 Elf_Internal_Shdr *symtab_hdr;
2633 unsigned char esym[sizeof (Elf64_External_Sym)];
2634 Elf_External_Sym_Shndx eshndx;
2635
2636 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2637 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2638 &cache->sym[ent], esym, &eshndx) == NULL)
2639 return NULL;
2640
2641 if (cache->abfd != abfd)
2642 {
2643 memset (cache->indx, -1, sizeof (cache->indx));
2644 cache->abfd = abfd;
2645 }
2646 cache->indx[ent] = r_symndx;
2647 }
2648
2649 return &cache->sym[ent];
2650 }
2651
2652 /* Given an ELF section number, retrieve the corresponding BFD
2653 section. */
2654
2655 asection *
2656 bfd_section_from_elf_index (bfd *abfd, unsigned int sec_index)
2657 {
2658 if (sec_index >= elf_numsections (abfd))
2659 return NULL;
2660 return elf_elfsections (abfd)[sec_index]->bfd_section;
2661 }
2662
2663 static const struct bfd_elf_special_section special_sections_b[] =
2664 {
2665 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2666 { NULL, 0, 0, 0, 0 }
2667 };
2668
2669 static const struct bfd_elf_special_section special_sections_c[] =
2670 {
2671 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2672 { STRING_COMMA_LEN (".ctf"), 0, SHT_PROGBITS, 0 },
2673 { NULL, 0, 0, 0, 0 }
2674 };
2675
2676 static const struct bfd_elf_special_section special_sections_d[] =
2677 {
2678 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2679 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2680 /* There are more DWARF sections than these, but they needn't be added here
2681 unless you have to cope with broken compilers that don't emit section
2682 attributes or you want to help the user writing assembler. */
2683 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2684 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2685 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2686 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2687 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2688 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2689 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2690 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2691 { NULL, 0, 0, 0, 0 }
2692 };
2693
2694 static const struct bfd_elf_special_section special_sections_f[] =
2695 {
2696 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2697 { STRING_COMMA_LEN (".fini_array"), -2, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2698 { NULL, 0 , 0, 0, 0 }
2699 };
2700
2701 static const struct bfd_elf_special_section special_sections_g[] =
2702 {
2703 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2704 { STRING_COMMA_LEN (".gnu.lto_"), -1, SHT_PROGBITS, SHF_EXCLUDE },
2705 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2706 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2707 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2708 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2709 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2710 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2711 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2712 { NULL, 0, 0, 0, 0 }
2713 };
2714
2715 static const struct bfd_elf_special_section special_sections_h[] =
2716 {
2717 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2718 { NULL, 0, 0, 0, 0 }
2719 };
2720
2721 static const struct bfd_elf_special_section special_sections_i[] =
2722 {
2723 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2724 { STRING_COMMA_LEN (".init_array"), -2, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2725 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2726 { NULL, 0, 0, 0, 0 }
2727 };
2728
2729 static const struct bfd_elf_special_section special_sections_l[] =
2730 {
2731 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2732 { NULL, 0, 0, 0, 0 }
2733 };
2734
2735 static const struct bfd_elf_special_section special_sections_n[] =
2736 {
2737 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2738 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2739 { NULL, 0, 0, 0, 0 }
2740 };
2741
2742 static const struct bfd_elf_special_section special_sections_p[] =
2743 {
2744 { STRING_COMMA_LEN (".preinit_array"), -2, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2745 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2746 { NULL, 0, 0, 0, 0 }
2747 };
2748
2749 static const struct bfd_elf_special_section special_sections_r[] =
2750 {
2751 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2752 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2753 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2754 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2755 { NULL, 0, 0, 0, 0 }
2756 };
2757
2758 static const struct bfd_elf_special_section special_sections_s[] =
2759 {
2760 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2761 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2762 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2763 /* See struct bfd_elf_special_section declaration for the semantics of
2764 this special case where .prefix_length != strlen (.prefix). */
2765 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2766 { NULL, 0, 0, 0, 0 }
2767 };
2768
2769 static const struct bfd_elf_special_section special_sections_t[] =
2770 {
2771 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2772 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2773 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2774 { NULL, 0, 0, 0, 0 }
2775 };
2776
2777 static const struct bfd_elf_special_section special_sections_z[] =
2778 {
2779 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 },
2780 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 },
2781 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 },
2782 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 },
2783 { NULL, 0, 0, 0, 0 }
2784 };
2785
2786 static const struct bfd_elf_special_section * const special_sections[] =
2787 {
2788 special_sections_b, /* 'b' */
2789 special_sections_c, /* 'c' */
2790 special_sections_d, /* 'd' */
2791 NULL, /* 'e' */
2792 special_sections_f, /* 'f' */
2793 special_sections_g, /* 'g' */
2794 special_sections_h, /* 'h' */
2795 special_sections_i, /* 'i' */
2796 NULL, /* 'j' */
2797 NULL, /* 'k' */
2798 special_sections_l, /* 'l' */
2799 NULL, /* 'm' */
2800 special_sections_n, /* 'n' */
2801 NULL, /* 'o' */
2802 special_sections_p, /* 'p' */
2803 NULL, /* 'q' */
2804 special_sections_r, /* 'r' */
2805 special_sections_s, /* 's' */
2806 special_sections_t, /* 't' */
2807 NULL, /* 'u' */
2808 NULL, /* 'v' */
2809 NULL, /* 'w' */
2810 NULL, /* 'x' */
2811 NULL, /* 'y' */
2812 special_sections_z /* 'z' */
2813 };
2814
2815 const struct bfd_elf_special_section *
2816 _bfd_elf_get_special_section (const char *name,
2817 const struct bfd_elf_special_section *spec,
2818 unsigned int rela)
2819 {
2820 int i;
2821 int len;
2822
2823 len = strlen (name);
2824
2825 for (i = 0; spec[i].prefix != NULL; i++)
2826 {
2827 int suffix_len;
2828 int prefix_len = spec[i].prefix_length;
2829
2830 if (len < prefix_len)
2831 continue;
2832 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2833 continue;
2834
2835 suffix_len = spec[i].suffix_length;
2836 if (suffix_len <= 0)
2837 {
2838 if (name[prefix_len] != 0)
2839 {
2840 if (suffix_len == 0)
2841 continue;
2842 if (name[prefix_len] != '.'
2843 && (suffix_len == -2
2844 || (rela && spec[i].type == SHT_REL)))
2845 continue;
2846 }
2847 }
2848 else
2849 {
2850 if (len < prefix_len + suffix_len)
2851 continue;
2852 if (memcmp (name + len - suffix_len,
2853 spec[i].prefix + prefix_len,
2854 suffix_len) != 0)
2855 continue;
2856 }
2857 return &spec[i];
2858 }
2859
2860 return NULL;
2861 }
2862
2863 const struct bfd_elf_special_section *
2864 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2865 {
2866 int i;
2867 const struct bfd_elf_special_section *spec;
2868 const struct elf_backend_data *bed;
2869
2870 /* See if this is one of the special sections. */
2871 if (sec->name == NULL)
2872 return NULL;
2873
2874 bed = get_elf_backend_data (abfd);
2875 spec = bed->special_sections;
2876 if (spec)
2877 {
2878 spec = _bfd_elf_get_special_section (sec->name,
2879 bed->special_sections,
2880 sec->use_rela_p);
2881 if (spec != NULL)
2882 return spec;
2883 }
2884
2885 if (sec->name[0] != '.')
2886 return NULL;
2887
2888 i = sec->name[1] - 'b';
2889 if (i < 0 || i > 'z' - 'b')
2890 return NULL;
2891
2892 spec = special_sections[i];
2893
2894 if (spec == NULL)
2895 return NULL;
2896
2897 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2898 }
2899
2900 bfd_boolean
2901 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2902 {
2903 struct bfd_elf_section_data *sdata;
2904 const struct elf_backend_data *bed;
2905 const struct bfd_elf_special_section *ssect;
2906
2907 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2908 if (sdata == NULL)
2909 {
2910 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd,
2911 sizeof (*sdata));
2912 if (sdata == NULL)
2913 return FALSE;
2914 sec->used_by_bfd = sdata;
2915 }
2916
2917 /* Indicate whether or not this section should use RELA relocations. */
2918 bed = get_elf_backend_data (abfd);
2919 sec->use_rela_p = bed->default_use_rela_p;
2920
2921 /* When we read a file, we don't need to set ELF section type and
2922 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2923 anyway. We will set ELF section type and flags for all linker
2924 created sections. If user specifies BFD section flags, we will
2925 set ELF section type and flags based on BFD section flags in
2926 elf_fake_sections. Special handling for .init_array/.fini_array
2927 output sections since they may contain .ctors/.dtors input
2928 sections. We don't want _bfd_elf_init_private_section_data to
2929 copy ELF section type from .ctors/.dtors input sections. */
2930 if (abfd->direction != read_direction
2931 || (sec->flags & SEC_LINKER_CREATED) != 0)
2932 {
2933 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2934 if (ssect != NULL
2935 && (!sec->flags
2936 || (sec->flags & SEC_LINKER_CREATED) != 0
2937 || ssect->type == SHT_INIT_ARRAY
2938 || ssect->type == SHT_FINI_ARRAY))
2939 {
2940 elf_section_type (sec) = ssect->type;
2941 elf_section_flags (sec) = ssect->attr;
2942 }
2943 }
2944
2945 return _bfd_generic_new_section_hook (abfd, sec);
2946 }
2947
2948 /* Create a new bfd section from an ELF program header.
2949
2950 Since program segments have no names, we generate a synthetic name
2951 of the form segment<NUM>, where NUM is generally the index in the
2952 program header table. For segments that are split (see below) we
2953 generate the names segment<NUM>a and segment<NUM>b.
2954
2955 Note that some program segments may have a file size that is different than
2956 (less than) the memory size. All this means is that at execution the
2957 system must allocate the amount of memory specified by the memory size,
2958 but only initialize it with the first "file size" bytes read from the
2959 file. This would occur for example, with program segments consisting
2960 of combined data+bss.
2961
2962 To handle the above situation, this routine generates TWO bfd sections
2963 for the single program segment. The first has the length specified by
2964 the file size of the segment, and the second has the length specified
2965 by the difference between the two sizes. In effect, the segment is split
2966 into its initialized and uninitialized parts.
2967
2968 */
2969
2970 bfd_boolean
2971 _bfd_elf_make_section_from_phdr (bfd *abfd,
2972 Elf_Internal_Phdr *hdr,
2973 int hdr_index,
2974 const char *type_name)
2975 {
2976 asection *newsect;
2977 char *name;
2978 char namebuf[64];
2979 size_t len;
2980 int split;
2981
2982 split = ((hdr->p_memsz > 0)
2983 && (hdr->p_filesz > 0)
2984 && (hdr->p_memsz > hdr->p_filesz));
2985
2986 if (hdr->p_filesz > 0)
2987 {
2988 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "a" : "");
2989 len = strlen (namebuf) + 1;
2990 name = (char *) bfd_alloc (abfd, len);
2991 if (!name)
2992 return FALSE;
2993 memcpy (name, namebuf, len);
2994 newsect = bfd_make_section (abfd, name);
2995 if (newsect == NULL)
2996 return FALSE;
2997 newsect->vma = hdr->p_vaddr;
2998 newsect->lma = hdr->p_paddr;
2999 newsect->size = hdr->p_filesz;
3000 newsect->filepos = hdr->p_offset;
3001 newsect->flags |= SEC_HAS_CONTENTS;
3002 newsect->alignment_power = bfd_log2 (hdr->p_align);
3003 if (hdr->p_type == PT_LOAD)
3004 {
3005 newsect->flags |= SEC_ALLOC;
3006 newsect->flags |= SEC_LOAD;
3007 if (hdr->p_flags & PF_X)
3008 {
3009 /* FIXME: all we known is that it has execute PERMISSION,
3010 may be data. */
3011 newsect->flags |= SEC_CODE;
3012 }
3013 }
3014 if (!(hdr->p_flags & PF_W))
3015 {
3016 newsect->flags |= SEC_READONLY;
3017 }
3018 }
3019
3020 if (hdr->p_memsz > hdr->p_filesz)
3021 {
3022 bfd_vma align;
3023
3024 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "b" : "");
3025 len = strlen (namebuf) + 1;
3026 name = (char *) bfd_alloc (abfd, len);
3027 if (!name)
3028 return FALSE;
3029 memcpy (name, namebuf, len);
3030 newsect = bfd_make_section (abfd, name);
3031 if (newsect == NULL)
3032 return FALSE;
3033 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
3034 newsect->lma = hdr->p_paddr + hdr->p_filesz;
3035 newsect->size = hdr->p_memsz - hdr->p_filesz;
3036 newsect->filepos = hdr->p_offset + hdr->p_filesz;
3037 align = newsect->vma & -newsect->vma;
3038 if (align == 0 || align > hdr->p_align)
3039 align = hdr->p_align;
3040 newsect->alignment_power = bfd_log2 (align);
3041 if (hdr->p_type == PT_LOAD)
3042 {
3043 /* Hack for gdb. Segments that have not been modified do
3044 not have their contents written to a core file, on the
3045 assumption that a debugger can find the contents in the
3046 executable. We flag this case by setting the fake
3047 section size to zero. Note that "real" bss sections will
3048 always have their contents dumped to the core file. */
3049 if (bfd_get_format (abfd) == bfd_core)
3050 newsect->size = 0;
3051 newsect->flags |= SEC_ALLOC;
3052 if (hdr->p_flags & PF_X)
3053 newsect->flags |= SEC_CODE;
3054 }
3055 if (!(hdr->p_flags & PF_W))
3056 newsect->flags |= SEC_READONLY;
3057 }
3058
3059 return TRUE;
3060 }
3061
3062 static bfd_boolean
3063 _bfd_elf_core_find_build_id (bfd *templ, bfd_vma offset)
3064 {
3065 /* The return value is ignored. Build-ids are considered optional. */
3066 if (templ->xvec->flavour == bfd_target_elf_flavour)
3067 return (*get_elf_backend_data (templ)->elf_backend_core_find_build_id)
3068 (templ, offset);
3069 return FALSE;
3070 }
3071
3072 bfd_boolean
3073 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int hdr_index)
3074 {
3075 const struct elf_backend_data *bed;
3076
3077 switch (hdr->p_type)
3078 {
3079 case PT_NULL:
3080 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "null");
3081
3082 case PT_LOAD:
3083 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "load"))
3084 return FALSE;
3085 if (bfd_get_format (abfd) == bfd_core && abfd->build_id == NULL)
3086 _bfd_elf_core_find_build_id (abfd, hdr->p_offset);
3087 return TRUE;
3088
3089 case PT_DYNAMIC:
3090 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "dynamic");
3091
3092 case PT_INTERP:
3093 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "interp");
3094
3095 case PT_NOTE:
3096 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "note"))
3097 return FALSE;
3098 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz,
3099 hdr->p_align))
3100 return FALSE;
3101 return TRUE;
3102
3103 case PT_SHLIB:
3104 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "shlib");
3105
3106 case PT_PHDR:
3107 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "phdr");
3108
3109 case PT_GNU_EH_FRAME:
3110 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index,
3111 "eh_frame_hdr");
3112
3113 case PT_GNU_STACK:
3114 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "stack");
3115
3116 case PT_GNU_RELRO:
3117 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "relro");
3118
3119 default:
3120 /* Check for any processor-specific program segment types. */
3121 bed = get_elf_backend_data (abfd);
3122 return bed->elf_backend_section_from_phdr (abfd, hdr, hdr_index, "proc");
3123 }
3124 }
3125
3126 /* Return the REL_HDR for SEC, assuming there is only a single one, either
3127 REL or RELA. */
3128
3129 Elf_Internal_Shdr *
3130 _bfd_elf_single_rel_hdr (asection *sec)
3131 {
3132 if (elf_section_data (sec)->rel.hdr)
3133 {
3134 BFD_ASSERT (elf_section_data (sec)->rela.hdr == NULL);
3135 return elf_section_data (sec)->rel.hdr;
3136 }
3137 else
3138 return elf_section_data (sec)->rela.hdr;
3139 }
3140
3141 static bfd_boolean
3142 _bfd_elf_set_reloc_sh_name (bfd *abfd,
3143 Elf_Internal_Shdr *rel_hdr,
3144 const char *sec_name,
3145 bfd_boolean use_rela_p)
3146 {
3147 char *name = (char *) bfd_alloc (abfd,
3148 sizeof ".rela" + strlen (sec_name));
3149 if (name == NULL)
3150 return FALSE;
3151
3152 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", sec_name);
3153 rel_hdr->sh_name =
3154 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
3155 FALSE);
3156 if (rel_hdr->sh_name == (unsigned int) -1)
3157 return FALSE;
3158
3159 return TRUE;
3160 }
3161
3162 /* Allocate and initialize a section-header for a new reloc section,
3163 containing relocations against ASECT. It is stored in RELDATA. If
3164 USE_RELA_P is TRUE, we use RELA relocations; otherwise, we use REL
3165 relocations. */
3166
3167 static bfd_boolean
3168 _bfd_elf_init_reloc_shdr (bfd *abfd,
3169 struct bfd_elf_section_reloc_data *reldata,
3170 const char *sec_name,
3171 bfd_boolean use_rela_p,
3172 bfd_boolean delay_st_name_p)
3173 {
3174 Elf_Internal_Shdr *rel_hdr;
3175 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3176
3177 BFD_ASSERT (reldata->hdr == NULL);
3178 rel_hdr = bfd_zalloc (abfd, sizeof (*rel_hdr));
3179 reldata->hdr = rel_hdr;
3180
3181 if (delay_st_name_p)
3182 rel_hdr->sh_name = (unsigned int) -1;
3183 else if (!_bfd_elf_set_reloc_sh_name (abfd, rel_hdr, sec_name,
3184 use_rela_p))
3185 return FALSE;
3186 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
3187 rel_hdr->sh_entsize = (use_rela_p
3188 ? bed->s->sizeof_rela
3189 : bed->s->sizeof_rel);
3190 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
3191 rel_hdr->sh_flags = 0;
3192 rel_hdr->sh_addr = 0;
3193 rel_hdr->sh_size = 0;
3194 rel_hdr->sh_offset = 0;
3195
3196 return TRUE;
3197 }
3198
3199 /* Return the default section type based on the passed in section flags. */
3200
3201 int
3202 bfd_elf_get_default_section_type (flagword flags)
3203 {
3204 if ((flags & (SEC_ALLOC | SEC_IS_COMMON)) != 0
3205 && (flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
3206 return SHT_NOBITS;
3207 return SHT_PROGBITS;
3208 }
3209
3210 struct fake_section_arg
3211 {
3212 struct bfd_link_info *link_info;
3213 bfd_boolean failed;
3214 };
3215
3216 /* Set up an ELF internal section header for a section. */
3217
3218 static void
3219 elf_fake_sections (bfd *abfd, asection *asect, void *fsarg)
3220 {
3221 struct fake_section_arg *arg = (struct fake_section_arg *)fsarg;
3222 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3223 struct bfd_elf_section_data *esd = elf_section_data (asect);
3224 Elf_Internal_Shdr *this_hdr;
3225 unsigned int sh_type;
3226 const char *name = asect->name;
3227 bfd_boolean delay_st_name_p = FALSE;
3228
3229 if (arg->failed)
3230 {
3231 /* We already failed; just get out of the bfd_map_over_sections
3232 loop. */
3233 return;
3234 }
3235
3236 this_hdr = &esd->this_hdr;
3237
3238 if (arg->link_info)
3239 {
3240 /* ld: compress DWARF debug sections with names: .debug_*. */
3241 if ((arg->link_info->compress_debug & COMPRESS_DEBUG)
3242 && (asect->flags & SEC_DEBUGGING)
3243 && name[1] == 'd'
3244 && name[6] == '_')
3245 {
3246 /* Set SEC_ELF_COMPRESS to indicate this section should be
3247 compressed. */
3248 asect->flags |= SEC_ELF_COMPRESS;
3249
3250 /* If this section will be compressed, delay adding section
3251 name to section name section after it is compressed in
3252 _bfd_elf_assign_file_positions_for_non_load. */
3253 delay_st_name_p = TRUE;
3254 }
3255 }
3256 else if ((asect->flags & SEC_ELF_RENAME))
3257 {
3258 /* objcopy: rename output DWARF debug section. */
3259 if ((abfd->flags & (BFD_DECOMPRESS | BFD_COMPRESS_GABI)))
3260 {
3261 /* When we decompress or compress with SHF_COMPRESSED,
3262 convert section name from .zdebug_* to .debug_* if
3263 needed. */
3264 if (name[1] == 'z')
3265 {
3266 char *new_name = convert_zdebug_to_debug (abfd, name);
3267 if (new_name == NULL)
3268 {
3269 arg->failed = TRUE;
3270 return;
3271 }
3272 name = new_name;
3273 }
3274 }
3275 else if (asect->compress_status == COMPRESS_SECTION_DONE)
3276 {
3277 /* PR binutils/18087: Compression does not always make a
3278 section smaller. So only rename the section when
3279 compression has actually taken place. If input section
3280 name is .zdebug_*, we should never compress it again. */
3281 char *new_name = convert_debug_to_zdebug (abfd, name);
3282 if (new_name == NULL)
3283 {
3284 arg->failed = TRUE;
3285 return;
3286 }
3287 BFD_ASSERT (name[1] != 'z');
3288 name = new_name;
3289 }
3290 }
3291
3292 if (delay_st_name_p)
3293 this_hdr->sh_name = (unsigned int) -1;
3294 else
3295 {
3296 this_hdr->sh_name
3297 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3298 name, FALSE);
3299 if (this_hdr->sh_name == (unsigned int) -1)
3300 {
3301 arg->failed = TRUE;
3302 return;
3303 }
3304 }
3305
3306 /* Don't clear sh_flags. Assembler may set additional bits. */
3307
3308 if ((asect->flags & SEC_ALLOC) != 0
3309 || asect->user_set_vma)
3310 this_hdr->sh_addr = asect->vma;
3311 else
3312 this_hdr->sh_addr = 0;
3313
3314 this_hdr->sh_offset = 0;
3315 this_hdr->sh_size = asect->size;
3316 this_hdr->sh_link = 0;
3317 /* PR 17512: file: 0eb809fe, 8b0535ee. */
3318 if (asect->alignment_power >= (sizeof (bfd_vma) * 8) - 1)
3319 {
3320 _bfd_error_handler
3321 /* xgettext:c-format */
3322 (_("%pB: error: alignment power %d of section `%pA' is too big"),
3323 abfd, asect->alignment_power, asect);
3324 arg->failed = TRUE;
3325 return;
3326 }
3327 this_hdr->sh_addralign = (bfd_vma) 1 << asect->alignment_power;
3328 /* The sh_entsize and sh_info fields may have been set already by
3329 copy_private_section_data. */
3330
3331 this_hdr->bfd_section = asect;
3332 this_hdr->contents = NULL;
3333
3334 /* If the section type is unspecified, we set it based on
3335 asect->flags. */
3336 if ((asect->flags & SEC_GROUP) != 0)
3337 sh_type = SHT_GROUP;
3338 else
3339 sh_type = bfd_elf_get_default_section_type (asect->flags);
3340
3341 if (this_hdr->sh_type == SHT_NULL)
3342 this_hdr->sh_type = sh_type;
3343 else if (this_hdr->sh_type == SHT_NOBITS
3344 && sh_type == SHT_PROGBITS
3345 && (asect->flags & SEC_ALLOC) != 0)
3346 {
3347 /* Warn if we are changing a NOBITS section to PROGBITS, but
3348 allow the link to proceed. This can happen when users link
3349 non-bss input sections to bss output sections, or emit data
3350 to a bss output section via a linker script. */
3351 _bfd_error_handler
3352 (_("warning: section `%pA' type changed to PROGBITS"), asect);
3353 this_hdr->sh_type = sh_type;
3354 }
3355
3356 switch (this_hdr->sh_type)
3357 {
3358 default:
3359 break;
3360
3361 case SHT_STRTAB:
3362 case SHT_NOTE:
3363 case SHT_NOBITS:
3364 case SHT_PROGBITS:
3365 break;
3366
3367 case SHT_INIT_ARRAY:
3368 case SHT_FINI_ARRAY:
3369 case SHT_PREINIT_ARRAY:
3370 this_hdr->sh_entsize = bed->s->arch_size / 8;
3371 break;
3372
3373 case SHT_HASH:
3374 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
3375 break;
3376
3377 case SHT_DYNSYM:
3378 this_hdr->sh_entsize = bed->s->sizeof_sym;
3379 break;
3380
3381 case SHT_DYNAMIC:
3382 this_hdr->sh_entsize = bed->s->sizeof_dyn;
3383 break;
3384
3385 case SHT_RELA:
3386 if (get_elf_backend_data (abfd)->may_use_rela_p)
3387 this_hdr->sh_entsize = bed->s->sizeof_rela;
3388 break;
3389
3390 case SHT_REL:
3391 if (get_elf_backend_data (abfd)->may_use_rel_p)
3392 this_hdr->sh_entsize = bed->s->sizeof_rel;
3393 break;
3394
3395 case SHT_GNU_versym:
3396 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
3397 break;
3398
3399 case SHT_GNU_verdef:
3400 this_hdr->sh_entsize = 0;
3401 /* objcopy or strip will copy over sh_info, but may not set
3402 cverdefs. The linker will set cverdefs, but sh_info will be
3403 zero. */
3404 if (this_hdr->sh_info == 0)
3405 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
3406 else
3407 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
3408 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
3409 break;
3410
3411 case SHT_GNU_verneed:
3412 this_hdr->sh_entsize = 0;
3413 /* objcopy or strip will copy over sh_info, but may not set
3414 cverrefs. The linker will set cverrefs, but sh_info will be
3415 zero. */
3416 if (this_hdr->sh_info == 0)
3417 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
3418 else
3419 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
3420 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
3421 break;
3422
3423 case SHT_GROUP:
3424 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
3425 break;
3426
3427 case SHT_GNU_HASH:
3428 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
3429 break;
3430 }
3431
3432 if ((asect->flags & SEC_ALLOC) != 0)
3433 this_hdr->sh_flags |= SHF_ALLOC;
3434 if ((asect->flags & SEC_READONLY) == 0)
3435 this_hdr->sh_flags |= SHF_WRITE;
3436 if ((asect->flags & SEC_CODE) != 0)
3437 this_hdr->sh_flags |= SHF_EXECINSTR;
3438 if ((asect->flags & SEC_MERGE) != 0)
3439 {
3440 this_hdr->sh_flags |= SHF_MERGE;
3441 this_hdr->sh_entsize = asect->entsize;
3442 }
3443 if ((asect->flags & SEC_STRINGS) != 0)
3444 this_hdr->sh_flags |= SHF_STRINGS;
3445 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
3446 this_hdr->sh_flags |= SHF_GROUP;
3447 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
3448 {
3449 this_hdr->sh_flags |= SHF_TLS;
3450 if (asect->size == 0
3451 && (asect->flags & SEC_HAS_CONTENTS) == 0)
3452 {
3453 struct bfd_link_order *o = asect->map_tail.link_order;
3454
3455 this_hdr->sh_size = 0;
3456 if (o != NULL)
3457 {
3458 this_hdr->sh_size = o->offset + o->size;
3459 if (this_hdr->sh_size != 0)
3460 this_hdr->sh_type = SHT_NOBITS;
3461 }
3462 }
3463 }
3464 if ((asect->flags & (SEC_GROUP | SEC_EXCLUDE)) == SEC_EXCLUDE)
3465 this_hdr->sh_flags |= SHF_EXCLUDE;
3466
3467 /* If the section has relocs, set up a section header for the
3468 SHT_REL[A] section. If two relocation sections are required for
3469 this section, it is up to the processor-specific back-end to
3470 create the other. */
3471 if ((asect->flags & SEC_RELOC) != 0)
3472 {
3473 /* When doing a relocatable link, create both REL and RELA sections if
3474 needed. */
3475 if (arg->link_info
3476 /* Do the normal setup if we wouldn't create any sections here. */
3477 && esd->rel.count + esd->rela.count > 0
3478 && (bfd_link_relocatable (arg->link_info)
3479 || arg->link_info->emitrelocations))
3480 {
3481 if (esd->rel.count && esd->rel.hdr == NULL
3482 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rel, name,
3483 FALSE, delay_st_name_p))
3484 {
3485 arg->failed = TRUE;
3486 return;
3487 }
3488 if (esd->rela.count && esd->rela.hdr == NULL
3489 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rela, name,
3490 TRUE, delay_st_name_p))
3491 {
3492 arg->failed = TRUE;
3493 return;
3494 }
3495 }
3496 else if (!_bfd_elf_init_reloc_shdr (abfd,
3497 (asect->use_rela_p
3498 ? &esd->rela : &esd->rel),
3499 name,
3500 asect->use_rela_p,
3501 delay_st_name_p))
3502 {
3503 arg->failed = TRUE;
3504 return;
3505 }
3506 }
3507
3508 /* Check for processor-specific section types. */
3509 sh_type = this_hdr->sh_type;
3510 if (bed->elf_backend_fake_sections
3511 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
3512 {
3513 arg->failed = TRUE;
3514 return;
3515 }
3516
3517 if (sh_type == SHT_NOBITS && asect->size != 0)
3518 {
3519 /* Don't change the header type from NOBITS if we are being
3520 called for objcopy --only-keep-debug. */
3521 this_hdr->sh_type = sh_type;
3522 }
3523 }
3524
3525 /* Fill in the contents of a SHT_GROUP section. Called from
3526 _bfd_elf_compute_section_file_positions for gas, objcopy, and
3527 when ELF targets use the generic linker, ld. Called for ld -r
3528 from bfd_elf_final_link. */
3529
3530 void
3531 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
3532 {
3533 bfd_boolean *failedptr = (bfd_boolean *) failedptrarg;
3534 asection *elt, *first;
3535 unsigned char *loc;
3536 bfd_boolean gas;
3537
3538 /* Ignore linker created group section. See elfNN_ia64_object_p in
3539 elfxx-ia64.c. */
3540 if ((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP
3541 || sec->size == 0
3542 || *failedptr)
3543 return;
3544
3545 if (elf_section_data (sec)->this_hdr.sh_info == 0)
3546 {
3547 unsigned long symindx = 0;
3548
3549 /* elf_group_id will have been set up by objcopy and the
3550 generic linker. */
3551 if (elf_group_id (sec) != NULL)
3552 symindx = elf_group_id (sec)->udata.i;
3553
3554 if (symindx == 0)
3555 {
3556 /* If called from the assembler, swap_out_syms will have set up
3557 elf_section_syms. */
3558 BFD_ASSERT (elf_section_syms (abfd) != NULL);
3559 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
3560 }
3561 elf_section_data (sec)->this_hdr.sh_info = symindx;
3562 }
3563 else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2)
3564 {
3565 /* The ELF backend linker sets sh_info to -2 when the group
3566 signature symbol is global, and thus the index can't be
3567 set until all local symbols are output. */
3568 asection *igroup;
3569 struct bfd_elf_section_data *sec_data;
3570 unsigned long symndx;
3571 unsigned long extsymoff;
3572 struct elf_link_hash_entry *h;
3573
3574 /* The point of this little dance to the first SHF_GROUP section
3575 then back to the SHT_GROUP section is that this gets us to
3576 the SHT_GROUP in the input object. */
3577 igroup = elf_sec_group (elf_next_in_group (sec));
3578 sec_data = elf_section_data (igroup);
3579 symndx = sec_data->this_hdr.sh_info;
3580 extsymoff = 0;
3581 if (!elf_bad_symtab (igroup->owner))
3582 {
3583 Elf_Internal_Shdr *symtab_hdr;
3584
3585 symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr;
3586 extsymoff = symtab_hdr->sh_info;
3587 }
3588 h = elf_sym_hashes (igroup->owner)[symndx - extsymoff];
3589 while (h->root.type == bfd_link_hash_indirect
3590 || h->root.type == bfd_link_hash_warning)
3591 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3592
3593 elf_section_data (sec)->this_hdr.sh_info = h->indx;
3594 }
3595
3596 /* The contents won't be allocated for "ld -r" or objcopy. */
3597 gas = TRUE;
3598 if (sec->contents == NULL)
3599 {
3600 gas = FALSE;
3601 sec->contents = (unsigned char *) bfd_alloc (abfd, sec->size);
3602
3603 /* Arrange for the section to be written out. */
3604 elf_section_data (sec)->this_hdr.contents = sec->contents;
3605 if (sec->contents == NULL)
3606 {
3607 *failedptr = TRUE;
3608 return;
3609 }
3610 }
3611
3612 loc = sec->contents + sec->size;
3613
3614 /* Get the pointer to the first section in the group that gas
3615 squirreled away here. objcopy arranges for this to be set to the
3616 start of the input section group. */
3617 first = elt = elf_next_in_group (sec);
3618
3619 /* First element is a flag word. Rest of section is elf section
3620 indices for all the sections of the group. Write them backwards
3621 just to keep the group in the same order as given in .section
3622 directives, not that it matters. */
3623 while (elt != NULL)
3624 {
3625 asection *s;
3626
3627 s = elt;
3628 if (!gas)
3629 s = s->output_section;
3630 if (s != NULL
3631 && !bfd_is_abs_section (s))
3632 {
3633 struct bfd_elf_section_data *elf_sec = elf_section_data (s);
3634 struct bfd_elf_section_data *input_elf_sec = elf_section_data (elt);
3635
3636 if (elf_sec->rel.hdr != NULL
3637 && (gas
3638 || (input_elf_sec->rel.hdr != NULL
3639 && input_elf_sec->rel.hdr->sh_flags & SHF_GROUP) != 0))
3640 {
3641 elf_sec->rel.hdr->sh_flags |= SHF_GROUP;
3642 loc -= 4;
3643 H_PUT_32 (abfd, elf_sec->rel.idx, loc);
3644 }
3645 if (elf_sec->rela.hdr != NULL
3646 && (gas
3647 || (input_elf_sec->rela.hdr != NULL
3648 && input_elf_sec->rela.hdr->sh_flags & SHF_GROUP) != 0))
3649 {
3650 elf_sec->rela.hdr->sh_flags |= SHF_GROUP;
3651 loc -= 4;
3652 H_PUT_32 (abfd, elf_sec->rela.idx, loc);
3653 }
3654 loc -= 4;
3655 H_PUT_32 (abfd, elf_sec->this_idx, loc);
3656 }
3657 elt = elf_next_in_group (elt);
3658 if (elt == first)
3659 break;
3660 }
3661
3662 loc -= 4;
3663 BFD_ASSERT (loc == sec->contents);
3664
3665 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
3666 }
3667
3668 /* Given NAME, the name of a relocation section stripped of its
3669 .rel/.rela prefix, return the section in ABFD to which the
3670 relocations apply. */
3671
3672 asection *
3673 _bfd_elf_plt_get_reloc_section (bfd *abfd, const char *name)
3674 {
3675 /* If a target needs .got.plt section, relocations in rela.plt/rel.plt
3676 section likely apply to .got.plt or .got section. */
3677 if (get_elf_backend_data (abfd)->want_got_plt
3678 && strcmp (name, ".plt") == 0)
3679 {
3680 asection *sec;
3681
3682 name = ".got.plt";
3683 sec = bfd_get_section_by_name (abfd, name);
3684 if (sec != NULL)
3685 return sec;
3686 name = ".got";
3687 }
3688
3689 return bfd_get_section_by_name (abfd, name);
3690 }
3691
3692 /* Return the section to which RELOC_SEC applies. */
3693
3694 static asection *
3695 elf_get_reloc_section (asection *reloc_sec)
3696 {
3697 const char *name;
3698 unsigned int type;
3699 bfd *abfd;
3700 const struct elf_backend_data *bed;
3701
3702 type = elf_section_data (reloc_sec)->this_hdr.sh_type;
3703 if (type != SHT_REL && type != SHT_RELA)
3704 return NULL;
3705
3706 /* We look up the section the relocs apply to by name. */
3707 name = reloc_sec->name;
3708 if (strncmp (name, ".rel", 4) != 0)
3709 return NULL;
3710 name += 4;
3711 if (type == SHT_RELA && *name++ != 'a')
3712 return NULL;
3713
3714 abfd = reloc_sec->owner;
3715 bed = get_elf_backend_data (abfd);
3716 return bed->get_reloc_section (abfd, name);
3717 }
3718
3719 /* Assign all ELF section numbers. The dummy first section is handled here
3720 too. The link/info pointers for the standard section types are filled
3721 in here too, while we're at it. */
3722
3723 static bfd_boolean
3724 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
3725 {
3726 struct elf_obj_tdata *t = elf_tdata (abfd);
3727 asection *sec;
3728 unsigned int section_number;
3729 Elf_Internal_Shdr **i_shdrp;
3730 struct bfd_elf_section_data *d;
3731 bfd_boolean need_symtab;
3732
3733 section_number = 1;
3734
3735 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
3736
3737 /* SHT_GROUP sections are in relocatable files only. */
3738 if (link_info == NULL || !link_info->resolve_section_groups)
3739 {
3740 size_t reloc_count = 0;
3741
3742 /* Put SHT_GROUP sections first. */
3743 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3744 {
3745 d = elf_section_data (sec);
3746
3747 if (d->this_hdr.sh_type == SHT_GROUP)
3748 {
3749 if (sec->flags & SEC_LINKER_CREATED)
3750 {
3751 /* Remove the linker created SHT_GROUP sections. */
3752 bfd_section_list_remove (abfd, sec);
3753 abfd->section_count--;
3754 }
3755 else
3756 d->this_idx = section_number++;
3757 }
3758
3759 /* Count relocations. */
3760 reloc_count += sec->reloc_count;
3761 }
3762
3763 /* Clear HAS_RELOC if there are no relocations. */
3764 if (reloc_count == 0)
3765 abfd->flags &= ~HAS_RELOC;
3766 }
3767
3768 for (sec = abfd->sections; sec; sec = sec->next)
3769 {
3770 d = elf_section_data (sec);
3771
3772 if (d->this_hdr.sh_type != SHT_GROUP)
3773 d->this_idx = section_number++;
3774 if (d->this_hdr.sh_name != (unsigned int) -1)
3775 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
3776 if (d->rel.hdr)
3777 {
3778 d->rel.idx = section_number++;
3779 if (d->rel.hdr->sh_name != (unsigned int) -1)
3780 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel.hdr->sh_name);
3781 }
3782 else
3783 d->rel.idx = 0;
3784
3785 if (d->rela.hdr)
3786 {
3787 d->rela.idx = section_number++;
3788 if (d->rela.hdr->sh_name != (unsigned int) -1)
3789 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rela.hdr->sh_name);
3790 }
3791 else
3792 d->rela.idx = 0;
3793 }
3794
3795 need_symtab = (bfd_get_symcount (abfd) > 0
3796 || (link_info == NULL
3797 && ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
3798 == HAS_RELOC)));
3799 if (need_symtab)
3800 {
3801 elf_onesymtab (abfd) = section_number++;
3802 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
3803 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
3804 {
3805 elf_section_list *entry;
3806
3807 BFD_ASSERT (elf_symtab_shndx_list (abfd) == NULL);
3808
3809 entry = bfd_zalloc (abfd, sizeof (*entry));
3810 entry->ndx = section_number++;
3811 elf_symtab_shndx_list (abfd) = entry;
3812 entry->hdr.sh_name
3813 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3814 ".symtab_shndx", FALSE);
3815 if (entry->hdr.sh_name == (unsigned int) -1)
3816 return FALSE;
3817 }
3818 elf_strtab_sec (abfd) = section_number++;
3819 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3820 }
3821
3822 elf_shstrtab_sec (abfd) = section_number++;
3823 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
3824 elf_elfheader (abfd)->e_shstrndx = elf_shstrtab_sec (abfd);
3825
3826 if (section_number >= SHN_LORESERVE)
3827 {
3828 /* xgettext:c-format */
3829 _bfd_error_handler (_("%pB: too many sections: %u"),
3830 abfd, section_number);
3831 return FALSE;
3832 }
3833
3834 elf_numsections (abfd) = section_number;
3835 elf_elfheader (abfd)->e_shnum = section_number;
3836
3837 /* Set up the list of section header pointers, in agreement with the
3838 indices. */
3839 i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc2 (abfd, section_number,
3840 sizeof (Elf_Internal_Shdr *));
3841 if (i_shdrp == NULL)
3842 return FALSE;
3843
3844 i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd,
3845 sizeof (Elf_Internal_Shdr));
3846 if (i_shdrp[0] == NULL)
3847 {
3848 bfd_release (abfd, i_shdrp);
3849 return FALSE;
3850 }
3851
3852 elf_elfsections (abfd) = i_shdrp;
3853
3854 i_shdrp[elf_shstrtab_sec (abfd)] = &t->shstrtab_hdr;
3855 if (need_symtab)
3856 {
3857 i_shdrp[elf_onesymtab (abfd)] = &t->symtab_hdr;
3858 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
3859 {
3860 elf_section_list * entry = elf_symtab_shndx_list (abfd);
3861 BFD_ASSERT (entry != NULL);
3862 i_shdrp[entry->ndx] = & entry->hdr;
3863 entry->hdr.sh_link = elf_onesymtab (abfd);
3864 }
3865 i_shdrp[elf_strtab_sec (abfd)] = &t->strtab_hdr;
3866 t->symtab_hdr.sh_link = elf_strtab_sec (abfd);
3867 }
3868
3869 for (sec = abfd->sections; sec; sec = sec->next)
3870 {
3871 asection *s;
3872
3873 d = elf_section_data (sec);
3874
3875 i_shdrp[d->this_idx] = &d->this_hdr;
3876 if (d->rel.idx != 0)
3877 i_shdrp[d->rel.idx] = d->rel.hdr;
3878 if (d->rela.idx != 0)
3879 i_shdrp[d->rela.idx] = d->rela.hdr;
3880
3881 /* Fill in the sh_link and sh_info fields while we're at it. */
3882
3883 /* sh_link of a reloc section is the section index of the symbol
3884 table. sh_info is the section index of the section to which
3885 the relocation entries apply. */
3886 if (d->rel.idx != 0)
3887 {
3888 d->rel.hdr->sh_link = elf_onesymtab (abfd);
3889 d->rel.hdr->sh_info = d->this_idx;
3890 d->rel.hdr->sh_flags |= SHF_INFO_LINK;
3891 }
3892 if (d->rela.idx != 0)
3893 {
3894 d->rela.hdr->sh_link = elf_onesymtab (abfd);
3895 d->rela.hdr->sh_info = d->this_idx;
3896 d->rela.hdr->sh_flags |= SHF_INFO_LINK;
3897 }
3898
3899 /* We need to set up sh_link for SHF_LINK_ORDER. */
3900 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3901 {
3902 s = elf_linked_to_section (sec);
3903 if (s)
3904 {
3905 /* elf_linked_to_section points to the input section. */
3906 if (link_info != NULL)
3907 {
3908 /* Check discarded linkonce section. */
3909 if (discarded_section (s))
3910 {
3911 asection *kept;
3912 _bfd_error_handler
3913 /* xgettext:c-format */
3914 (_("%pB: sh_link of section `%pA' points to"
3915 " discarded section `%pA' of `%pB'"),
3916 abfd, d->this_hdr.bfd_section,
3917 s, s->owner);
3918 /* Point to the kept section if it has the same
3919 size as the discarded one. */
3920 kept = _bfd_elf_check_kept_section (s, link_info);
3921 if (kept == NULL)
3922 {
3923 bfd_set_error (bfd_error_bad_value);
3924 return FALSE;
3925 }
3926 s = kept;
3927 }
3928
3929 s = s->output_section;
3930 BFD_ASSERT (s != NULL);
3931 }
3932 else
3933 {
3934 /* Handle objcopy. */
3935 if (s->output_section == NULL)
3936 {
3937 _bfd_error_handler
3938 /* xgettext:c-format */
3939 (_("%pB: sh_link of section `%pA' points to"
3940 " removed section `%pA' of `%pB'"),
3941 abfd, d->this_hdr.bfd_section, s, s->owner);
3942 bfd_set_error (bfd_error_bad_value);
3943 return FALSE;
3944 }
3945 s = s->output_section;
3946 }
3947 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3948 }
3949 else
3950 {
3951 /* PR 290:
3952 The Intel C compiler generates SHT_IA_64_UNWIND with
3953 SHF_LINK_ORDER. But it doesn't set the sh_link or
3954 sh_info fields. Hence we could get the situation
3955 where s is NULL. */
3956 const struct elf_backend_data *bed
3957 = get_elf_backend_data (abfd);
3958 if (bed->link_order_error_handler)
3959 bed->link_order_error_handler
3960 /* xgettext:c-format */
3961 (_("%pB: warning: sh_link not set for section `%pA'"),
3962 abfd, sec);
3963 }
3964 }
3965
3966 switch (d->this_hdr.sh_type)
3967 {
3968 case SHT_REL:
3969 case SHT_RELA:
3970 /* A reloc section which we are treating as a normal BFD
3971 section. sh_link is the section index of the symbol
3972 table. sh_info is the section index of the section to
3973 which the relocation entries apply. We assume that an
3974 allocated reloc section uses the dynamic symbol table.
3975 FIXME: How can we be sure? */
3976 s = bfd_get_section_by_name (abfd, ".dynsym");
3977 if (s != NULL)
3978 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3979
3980 s = elf_get_reloc_section (sec);
3981 if (s != NULL)
3982 {
3983 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3984 d->this_hdr.sh_flags |= SHF_INFO_LINK;
3985 }
3986 break;
3987
3988 case SHT_STRTAB:
3989 /* We assume that a section named .stab*str is a stabs
3990 string section. We look for a section with the same name
3991 but without the trailing ``str'', and set its sh_link
3992 field to point to this section. */
3993 if (CONST_STRNEQ (sec->name, ".stab")
3994 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3995 {
3996 size_t len;
3997 char *alc;
3998
3999 len = strlen (sec->name);
4000 alc = (char *) bfd_malloc (len - 2);
4001 if (alc == NULL)
4002 return FALSE;
4003 memcpy (alc, sec->name, len - 3);
4004 alc[len - 3] = '\0';
4005 s = bfd_get_section_by_name (abfd, alc);
4006 free (alc);
4007 if (s != NULL)
4008 {
4009 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
4010
4011 /* This is a .stab section. */
4012 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
4013 elf_section_data (s)->this_hdr.sh_entsize
4014 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
4015 }
4016 }
4017 break;
4018
4019 case SHT_DYNAMIC:
4020 case SHT_DYNSYM:
4021 case SHT_GNU_verneed:
4022 case SHT_GNU_verdef:
4023 /* sh_link is the section header index of the string table
4024 used for the dynamic entries, or the symbol table, or the
4025 version strings. */
4026 s = bfd_get_section_by_name (abfd, ".dynstr");
4027 if (s != NULL)
4028 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
4029 break;
4030
4031 case SHT_GNU_LIBLIST:
4032 /* sh_link is the section header index of the prelink library
4033 list used for the dynamic entries, or the symbol table, or
4034 the version strings. */
4035 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
4036 ? ".dynstr" : ".gnu.libstr");
4037 if (s != NULL)
4038 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
4039 break;
4040
4041 case SHT_HASH:
4042 case SHT_GNU_HASH:
4043 case SHT_GNU_versym:
4044 /* sh_link is the section header index of the symbol table
4045 this hash table or version table is for. */
4046 s = bfd_get_section_by_name (abfd, ".dynsym");
4047 if (s != NULL)
4048 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
4049 break;
4050
4051 case SHT_GROUP:
4052 d->this_hdr.sh_link = elf_onesymtab (abfd);
4053 }
4054 }
4055
4056 /* Delay setting sh_name to _bfd_elf_write_object_contents so that
4057 _bfd_elf_assign_file_positions_for_non_load can convert DWARF
4058 debug section name from .debug_* to .zdebug_* if needed. */
4059
4060 return TRUE;
4061 }
4062
4063 static bfd_boolean
4064 sym_is_global (bfd *abfd, asymbol *sym)
4065 {
4066 /* If the backend has a special mapping, use it. */
4067 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4068 if (bed->elf_backend_sym_is_global)
4069 return (*bed->elf_backend_sym_is_global) (abfd, sym);
4070
4071 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0
4072 || bfd_is_und_section (bfd_asymbol_section (sym))
4073 || bfd_is_com_section (bfd_asymbol_section (sym)));
4074 }
4075
4076 /* Filter global symbols of ABFD to include in the import library. All
4077 SYMCOUNT symbols of ABFD can be examined from their pointers in
4078 SYMS. Pointers of symbols to keep should be stored contiguously at
4079 the beginning of that array.
4080
4081 Returns the number of symbols to keep. */
4082
4083 unsigned int
4084 _bfd_elf_filter_global_symbols (bfd *abfd, struct bfd_link_info *info,
4085 asymbol **syms, long symcount)
4086 {
4087 long src_count, dst_count = 0;
4088
4089 for (src_count = 0; src_count < symcount; src_count++)
4090 {
4091 asymbol *sym = syms[src_count];
4092 char *name = (char *) bfd_asymbol_name (sym);
4093 struct bfd_link_hash_entry *h;
4094
4095 if (!sym_is_global (abfd, sym))
4096 continue;
4097
4098 h = bfd_link_hash_lookup (info->hash, name, FALSE, FALSE, FALSE);
4099 if (h == NULL)
4100 continue;
4101 if (h->type != bfd_link_hash_defined && h->type != bfd_link_hash_defweak)
4102 continue;
4103 if (h->linker_def || h->ldscript_def)
4104 continue;
4105
4106 syms[dst_count++] = sym;
4107 }
4108
4109 syms[dst_count] = NULL;
4110
4111 return dst_count;
4112 }
4113
4114 /* Don't output section symbols for sections that are not going to be
4115 output, that are duplicates or there is no BFD section. */
4116
4117 static bfd_boolean
4118 ignore_section_sym (bfd *abfd, asymbol *sym)
4119 {
4120 elf_symbol_type *type_ptr;
4121
4122 if (sym == NULL)
4123 return FALSE;
4124
4125 if ((sym->flags & BSF_SECTION_SYM) == 0)
4126 return FALSE;
4127
4128 if (sym->section == NULL)
4129 return TRUE;
4130
4131 type_ptr = elf_symbol_from (abfd, sym);
4132 return ((type_ptr != NULL
4133 && type_ptr->internal_elf_sym.st_shndx != 0
4134 && bfd_is_abs_section (sym->section))
4135 || !(sym->section->owner == abfd
4136 || (sym->section->output_section != NULL
4137 && sym->section->output_section->owner == abfd
4138 && sym->section->output_offset == 0)
4139 || bfd_is_abs_section (sym->section)));
4140 }
4141
4142 /* Map symbol from it's internal number to the external number, moving
4143 all local symbols to be at the head of the list. */
4144
4145 static bfd_boolean
4146 elf_map_symbols (bfd *abfd, unsigned int *pnum_locals)
4147 {
4148 unsigned int symcount = bfd_get_symcount (abfd);
4149 asymbol **syms = bfd_get_outsymbols (abfd);
4150 asymbol **sect_syms;
4151 unsigned int num_locals = 0;
4152 unsigned int num_globals = 0;
4153 unsigned int num_locals2 = 0;
4154 unsigned int num_globals2 = 0;
4155 unsigned int max_index = 0;
4156 unsigned int idx;
4157 asection *asect;
4158 asymbol **new_syms;
4159
4160 #ifdef DEBUG
4161 fprintf (stderr, "elf_map_symbols\n");
4162 fflush (stderr);
4163 #endif
4164
4165 for (asect = abfd->sections; asect; asect = asect->next)
4166 {
4167 if (max_index < asect->index)
4168 max_index = asect->index;
4169 }
4170
4171 max_index++;
4172 sect_syms = (asymbol **) bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
4173 if (sect_syms == NULL)
4174 return FALSE;
4175 elf_section_syms (abfd) = sect_syms;
4176 elf_num_section_syms (abfd) = max_index;
4177
4178 /* Init sect_syms entries for any section symbols we have already
4179 decided to output. */
4180 for (idx = 0; idx < symcount; idx++)
4181 {
4182 asymbol *sym = syms[idx];
4183
4184 if ((sym->flags & BSF_SECTION_SYM) != 0
4185 && sym->value == 0
4186 && !ignore_section_sym (abfd, sym)
4187 && !bfd_is_abs_section (sym->section))
4188 {
4189 asection *sec = sym->section;
4190
4191 if (sec->owner != abfd)
4192 sec = sec->output_section;
4193
4194 sect_syms[sec->index] = syms[idx];
4195 }
4196 }
4197
4198 /* Classify all of the symbols. */
4199 for (idx = 0; idx < symcount; idx++)
4200 {
4201 if (sym_is_global (abfd, syms[idx]))
4202 num_globals++;
4203 else if (!ignore_section_sym (abfd, syms[idx]))
4204 num_locals++;
4205 }
4206
4207 /* We will be adding a section symbol for each normal BFD section. Most
4208 sections will already have a section symbol in outsymbols, but
4209 eg. SHT_GROUP sections will not, and we need the section symbol mapped
4210 at least in that case. */
4211 for (asect = abfd->sections; asect; asect = asect->next)
4212 {
4213 if (sect_syms[asect->index] == NULL)
4214 {
4215 if (!sym_is_global (abfd, asect->symbol))
4216 num_locals++;
4217 else
4218 num_globals++;
4219 }
4220 }
4221
4222 /* Now sort the symbols so the local symbols are first. */
4223 new_syms = (asymbol **) bfd_alloc2 (abfd, num_locals + num_globals,
4224 sizeof (asymbol *));
4225
4226 if (new_syms == NULL)
4227 return FALSE;
4228
4229 for (idx = 0; idx < symcount; idx++)
4230 {
4231 asymbol *sym = syms[idx];
4232 unsigned int i;
4233
4234 if (sym_is_global (abfd, sym))
4235 i = num_locals + num_globals2++;
4236 else if (!ignore_section_sym (abfd, sym))
4237 i = num_locals2++;
4238 else
4239 continue;
4240 new_syms[i] = sym;
4241 sym->udata.i = i + 1;
4242 }
4243 for (asect = abfd->sections; asect; asect = asect->next)
4244 {
4245 if (sect_syms[asect->index] == NULL)
4246 {
4247 asymbol *sym = asect->symbol;
4248 unsigned int i;
4249
4250 sect_syms[asect->index] = sym;
4251 if (!sym_is_global (abfd, sym))
4252 i = num_locals2++;
4253 else
4254 i = num_locals + num_globals2++;
4255 new_syms[i] = sym;
4256 sym->udata.i = i + 1;
4257 }
4258 }
4259
4260 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
4261
4262 *pnum_locals = num_locals;
4263 return TRUE;
4264 }
4265
4266 /* Align to the maximum file alignment that could be required for any
4267 ELF data structure. */
4268
4269 static inline file_ptr
4270 align_file_position (file_ptr off, int align)
4271 {
4272 return (off + align - 1) & ~(align - 1);
4273 }
4274
4275 /* Assign a file position to a section, optionally aligning to the
4276 required section alignment. */
4277
4278 file_ptr
4279 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
4280 file_ptr offset,
4281 bfd_boolean align)
4282 {
4283 if (align && i_shdrp->sh_addralign > 1)
4284 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
4285 i_shdrp->sh_offset = offset;
4286 if (i_shdrp->bfd_section != NULL)
4287 i_shdrp->bfd_section->filepos = offset;
4288 if (i_shdrp->sh_type != SHT_NOBITS)
4289 offset += i_shdrp->sh_size;
4290 return offset;
4291 }
4292
4293 /* Compute the file positions we are going to put the sections at, and
4294 otherwise prepare to begin writing out the ELF file. If LINK_INFO
4295 is not NULL, this is being called by the ELF backend linker. */
4296
4297 bfd_boolean
4298 _bfd_elf_compute_section_file_positions (bfd *abfd,
4299 struct bfd_link_info *link_info)
4300 {
4301 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4302 struct fake_section_arg fsargs;
4303 bfd_boolean failed;
4304 struct elf_strtab_hash *strtab = NULL;
4305 Elf_Internal_Shdr *shstrtab_hdr;
4306 bfd_boolean need_symtab;
4307
4308 if (abfd->output_has_begun)
4309 return TRUE;
4310
4311 /* Do any elf backend specific processing first. */
4312 if (bed->elf_backend_begin_write_processing)
4313 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
4314
4315 if (! prep_headers (abfd))
4316 return FALSE;
4317
4318 /* Post process the headers if necessary. */
4319 (*bed->elf_backend_post_process_headers) (abfd, link_info);
4320
4321 fsargs.failed = FALSE;
4322 fsargs.link_info = link_info;
4323 bfd_map_over_sections (abfd, elf_fake_sections, &fsargs);
4324 if (fsargs.failed)
4325 return FALSE;
4326
4327 if (!assign_section_numbers (abfd, link_info))
4328 return FALSE;
4329
4330 /* The backend linker builds symbol table information itself. */
4331 need_symtab = (link_info == NULL
4332 && (bfd_get_symcount (abfd) > 0
4333 || ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
4334 == HAS_RELOC)));
4335 if (need_symtab)
4336 {
4337 /* Non-zero if doing a relocatable link. */
4338 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
4339
4340 if (! swap_out_syms (abfd, &strtab, relocatable_p))
4341 return FALSE;
4342 }
4343
4344 failed = FALSE;
4345 if (link_info == NULL)
4346 {
4347 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
4348 if (failed)
4349 return FALSE;
4350 }
4351
4352 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
4353 /* sh_name was set in prep_headers. */
4354 shstrtab_hdr->sh_type = SHT_STRTAB;
4355 shstrtab_hdr->sh_flags = bed->elf_strtab_flags;
4356 shstrtab_hdr->sh_addr = 0;
4357 /* sh_size is set in _bfd_elf_assign_file_positions_for_non_load. */
4358 shstrtab_hdr->sh_entsize = 0;
4359 shstrtab_hdr->sh_link = 0;
4360 shstrtab_hdr->sh_info = 0;
4361 /* sh_offset is set in _bfd_elf_assign_file_positions_for_non_load. */
4362 shstrtab_hdr->sh_addralign = 1;
4363
4364 if (!assign_file_positions_except_relocs (abfd, link_info))
4365 return FALSE;
4366
4367 if (need_symtab)
4368 {
4369 file_ptr off;
4370 Elf_Internal_Shdr *hdr;
4371
4372 off = elf_next_file_pos (abfd);
4373
4374 hdr = & elf_symtab_hdr (abfd);
4375 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4376
4377 if (elf_symtab_shndx_list (abfd) != NULL)
4378 {
4379 hdr = & elf_symtab_shndx_list (abfd)->hdr;
4380 if (hdr->sh_size != 0)
4381 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4382 /* FIXME: What about other symtab_shndx sections in the list ? */
4383 }
4384
4385 hdr = &elf_tdata (abfd)->strtab_hdr;
4386 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4387
4388 elf_next_file_pos (abfd) = off;
4389
4390 /* Now that we know where the .strtab section goes, write it
4391 out. */
4392 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
4393 || ! _bfd_elf_strtab_emit (abfd, strtab))
4394 return FALSE;
4395 _bfd_elf_strtab_free (strtab);
4396 }
4397
4398 abfd->output_has_begun = TRUE;
4399
4400 return TRUE;
4401 }
4402
4403 /* Make an initial estimate of the size of the program header. If we
4404 get the number wrong here, we'll redo section placement. */
4405
4406 static bfd_size_type
4407 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
4408 {
4409 size_t segs;
4410 asection *s;
4411 const struct elf_backend_data *bed;
4412
4413 /* Assume we will need exactly two PT_LOAD segments: one for text
4414 and one for data. */
4415 segs = 2;
4416
4417 s = bfd_get_section_by_name (abfd, ".interp");
4418 if (s != NULL && (s->flags & SEC_LOAD) != 0 && s->size != 0)
4419 {
4420 /* If we have a loadable interpreter section, we need a
4421 PT_INTERP segment. In this case, assume we also need a
4422 PT_PHDR segment, although that may not be true for all
4423 targets. */
4424 segs += 2;
4425 }
4426
4427 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4428 {
4429 /* We need a PT_DYNAMIC segment. */
4430 ++segs;
4431 }
4432
4433 if (info != NULL && info->relro)
4434 {
4435 /* We need a PT_GNU_RELRO segment. */
4436 ++segs;
4437 }
4438
4439 if (elf_eh_frame_hdr (abfd))
4440 {
4441 /* We need a PT_GNU_EH_FRAME segment. */
4442 ++segs;
4443 }
4444
4445 if (elf_stack_flags (abfd))
4446 {
4447 /* We need a PT_GNU_STACK segment. */
4448 ++segs;
4449 }
4450
4451 s = bfd_get_section_by_name (abfd,
4452 NOTE_GNU_PROPERTY_SECTION_NAME);
4453 if (s != NULL && s->size != 0)
4454 {
4455 /* We need a PT_GNU_PROPERTY segment. */
4456 ++segs;
4457 }
4458
4459 for (s = abfd->sections; s != NULL; s = s->next)
4460 {
4461 if ((s->flags & SEC_LOAD) != 0
4462 && elf_section_type (s) == SHT_NOTE)
4463 {
4464 unsigned int alignment_power;
4465 /* We need a PT_NOTE segment. */
4466 ++segs;
4467 /* Try to create just one PT_NOTE segment for all adjacent
4468 loadable SHT_NOTE sections. gABI requires that within a
4469 PT_NOTE segment (and also inside of each SHT_NOTE section)
4470 each note should have the same alignment. So we check
4471 whether the sections are correctly aligned. */
4472 alignment_power = s->alignment_power;
4473 while (s->next != NULL
4474 && s->next->alignment_power == alignment_power
4475 && (s->next->flags & SEC_LOAD) != 0
4476 && elf_section_type (s->next) == SHT_NOTE)
4477 s = s->next;
4478 }
4479 }
4480
4481 for (s = abfd->sections; s != NULL; s = s->next)
4482 {
4483 if (s->flags & SEC_THREAD_LOCAL)
4484 {
4485 /* We need a PT_TLS segment. */
4486 ++segs;
4487 break;
4488 }
4489 }
4490
4491 bed = get_elf_backend_data (abfd);
4492
4493 if ((abfd->flags & D_PAGED) != 0
4494 && (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_mbind) != 0)
4495 {
4496 /* Add a PT_GNU_MBIND segment for each mbind section. */
4497 unsigned int page_align_power = bfd_log2 (bed->commonpagesize);
4498 for (s = abfd->sections; s != NULL; s = s->next)
4499 if (elf_section_flags (s) & SHF_GNU_MBIND)
4500 {
4501 if (elf_section_data (s)->this_hdr.sh_info > PT_GNU_MBIND_NUM)
4502 {
4503 _bfd_error_handler
4504 /* xgettext:c-format */
4505 (_("%pB: GNU_MBIND section `%pA' has invalid "
4506 "sh_info field: %d"),
4507 abfd, s, elf_section_data (s)->this_hdr.sh_info);
4508 continue;
4509 }
4510 /* Align mbind section to page size. */
4511 if (s->alignment_power < page_align_power)
4512 s->alignment_power = page_align_power;
4513 segs ++;
4514 }
4515 }
4516
4517 /* Let the backend count up any program headers it might need. */
4518 if (bed->elf_backend_additional_program_headers)
4519 {
4520 int a;
4521
4522 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
4523 if (a == -1)
4524 abort ();
4525 segs += a;
4526 }
4527
4528 return segs * bed->s->sizeof_phdr;
4529 }
4530
4531 /* Find the segment that contains the output_section of section. */
4532
4533 Elf_Internal_Phdr *
4534 _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
4535 {
4536 struct elf_segment_map *m;
4537 Elf_Internal_Phdr *p;
4538
4539 for (m = elf_seg_map (abfd), p = elf_tdata (abfd)->phdr;
4540 m != NULL;
4541 m = m->next, p++)
4542 {
4543 int i;
4544
4545 for (i = m->count - 1; i >= 0; i--)
4546 if (m->sections[i] == section)
4547 return p;
4548 }
4549
4550 return NULL;
4551 }
4552
4553 /* Create a mapping from a set of sections to a program segment. */
4554
4555 static struct elf_segment_map *
4556 make_mapping (bfd *abfd,
4557 asection **sections,
4558 unsigned int from,
4559 unsigned int to,
4560 bfd_boolean phdr)
4561 {
4562 struct elf_segment_map *m;
4563 unsigned int i;
4564 asection **hdrpp;
4565 bfd_size_type amt;
4566
4567 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
4568 amt += (to - from) * sizeof (asection *);
4569 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4570 if (m == NULL)
4571 return NULL;
4572 m->next = NULL;
4573 m->p_type = PT_LOAD;
4574 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
4575 m->sections[i - from] = *hdrpp;
4576 m->count = to - from;
4577
4578 if (from == 0 && phdr)
4579 {
4580 /* Include the headers in the first PT_LOAD segment. */
4581 m->includes_filehdr = 1;
4582 m->includes_phdrs = 1;
4583 }
4584
4585 return m;
4586 }
4587
4588 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
4589 on failure. */
4590
4591 struct elf_segment_map *
4592 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
4593 {
4594 struct elf_segment_map *m;
4595
4596 m = (struct elf_segment_map *) bfd_zalloc (abfd,
4597 sizeof (struct elf_segment_map));
4598 if (m == NULL)
4599 return NULL;
4600 m->next = NULL;
4601 m->p_type = PT_DYNAMIC;
4602 m->count = 1;
4603 m->sections[0] = dynsec;
4604
4605 return m;
4606 }
4607
4608 /* Possibly add or remove segments from the segment map. */
4609
4610 static bfd_boolean
4611 elf_modify_segment_map (bfd *abfd,
4612 struct bfd_link_info *info,
4613 bfd_boolean remove_empty_load)
4614 {
4615 struct elf_segment_map **m;
4616 const struct elf_backend_data *bed;
4617
4618 /* The placement algorithm assumes that non allocated sections are
4619 not in PT_LOAD segments. We ensure this here by removing such
4620 sections from the segment map. We also remove excluded
4621 sections. Finally, any PT_LOAD segment without sections is
4622 removed. */
4623 m = &elf_seg_map (abfd);
4624 while (*m)
4625 {
4626 unsigned int i, new_count;
4627
4628 for (new_count = 0, i = 0; i < (*m)->count; i++)
4629 {
4630 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
4631 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
4632 || (*m)->p_type != PT_LOAD))
4633 {
4634 (*m)->sections[new_count] = (*m)->sections[i];
4635 new_count++;
4636 }
4637 }
4638 (*m)->count = new_count;
4639
4640 if (remove_empty_load
4641 && (*m)->p_type == PT_LOAD
4642 && (*m)->count == 0
4643 && !(*m)->includes_phdrs)
4644 *m = (*m)->next;
4645 else
4646 m = &(*m)->next;
4647 }
4648
4649 bed = get_elf_backend_data (abfd);
4650 if (bed->elf_backend_modify_segment_map != NULL)
4651 {
4652 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
4653 return FALSE;
4654 }
4655
4656 return TRUE;
4657 }
4658
4659 #define IS_TBSS(s) \
4660 ((s->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) == SEC_THREAD_LOCAL)
4661
4662 /* Set up a mapping from BFD sections to program segments. */
4663
4664 bfd_boolean
4665 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
4666 {
4667 unsigned int count;
4668 struct elf_segment_map *m;
4669 asection **sections = NULL;
4670 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4671 bfd_boolean no_user_phdrs;
4672
4673 no_user_phdrs = elf_seg_map (abfd) == NULL;
4674
4675 if (info != NULL)
4676 info->user_phdrs = !no_user_phdrs;
4677
4678 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
4679 {
4680 asection *s;
4681 unsigned int i;
4682 struct elf_segment_map *mfirst;
4683 struct elf_segment_map **pm;
4684 asection *last_hdr;
4685 bfd_vma last_size;
4686 unsigned int hdr_index;
4687 bfd_vma maxpagesize;
4688 asection **hdrpp;
4689 bfd_boolean phdr_in_segment;
4690 bfd_boolean writable;
4691 bfd_boolean executable;
4692 int tls_count = 0;
4693 asection *first_tls = NULL;
4694 asection *first_mbind = NULL;
4695 asection *dynsec, *eh_frame_hdr;
4696 bfd_size_type amt;
4697 bfd_vma addr_mask, wrap_to = 0;
4698 bfd_size_type phdr_size;
4699
4700 /* Select the allocated sections, and sort them. */
4701
4702 sections = (asection **) bfd_malloc2 (bfd_count_sections (abfd),
4703 sizeof (asection *));
4704 if (sections == NULL)
4705 goto error_return;
4706
4707 /* Calculate top address, avoiding undefined behaviour of shift
4708 left operator when shift count is equal to size of type
4709 being shifted. */
4710 addr_mask = ((bfd_vma) 1 << (bfd_arch_bits_per_address (abfd) - 1)) - 1;
4711 addr_mask = (addr_mask << 1) + 1;
4712
4713 i = 0;
4714 for (s = abfd->sections; s != NULL; s = s->next)
4715 {
4716 if ((s->flags & SEC_ALLOC) != 0)
4717 {
4718 /* target_index is unused until bfd_elf_final_link
4719 starts output of section symbols. Use it to make
4720 qsort stable. */
4721 s->target_index = i;
4722 sections[i] = s;
4723 ++i;
4724 /* A wrapping section potentially clashes with header. */
4725 if (((s->lma + s->size) & addr_mask) < (s->lma & addr_mask))
4726 wrap_to = (s->lma + s->size) & addr_mask;
4727 }
4728 }
4729 BFD_ASSERT (i <= bfd_count_sections (abfd));
4730 count = i;
4731
4732 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
4733
4734 phdr_size = elf_program_header_size (abfd);
4735 if (phdr_size == (bfd_size_type) -1)
4736 phdr_size = get_program_header_size (abfd, info);
4737 phdr_size += bed->s->sizeof_ehdr;
4738 maxpagesize = bed->maxpagesize;
4739 if (maxpagesize == 0)
4740 maxpagesize = 1;
4741 phdr_in_segment = info != NULL && info->load_phdrs;
4742 if (count != 0
4743 && (((sections[0]->lma & addr_mask) & (maxpagesize - 1))
4744 >= (phdr_size & (maxpagesize - 1))))
4745 /* For compatibility with old scripts that may not be using
4746 SIZEOF_HEADERS, add headers when it looks like space has
4747 been left for them. */
4748 phdr_in_segment = TRUE;
4749
4750 /* Build the mapping. */
4751 mfirst = NULL;
4752 pm = &mfirst;
4753
4754 /* If we have a .interp section, then create a PT_PHDR segment for
4755 the program headers and a PT_INTERP segment for the .interp
4756 section. */
4757 s = bfd_get_section_by_name (abfd, ".interp");
4758 if (s != NULL && (s->flags & SEC_LOAD) != 0 && s->size != 0)
4759 {
4760 amt = sizeof (struct elf_segment_map);
4761 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4762 if (m == NULL)
4763 goto error_return;
4764 m->next = NULL;
4765 m->p_type = PT_PHDR;
4766 m->p_flags = PF_R;
4767 m->p_flags_valid = 1;
4768 m->includes_phdrs = 1;
4769 phdr_in_segment = TRUE;
4770 *pm = m;
4771 pm = &m->next;
4772
4773 amt = sizeof (struct elf_segment_map);
4774 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4775 if (m == NULL)
4776 goto error_return;
4777 m->next = NULL;
4778 m->p_type = PT_INTERP;
4779 m->count = 1;
4780 m->sections[0] = s;
4781
4782 *pm = m;
4783 pm = &m->next;
4784 }
4785
4786 /* Look through the sections. We put sections in the same program
4787 segment when the start of the second section can be placed within
4788 a few bytes of the end of the first section. */
4789 last_hdr = NULL;
4790 last_size = 0;
4791 hdr_index = 0;
4792 writable = FALSE;
4793 executable = FALSE;
4794 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
4795 if (dynsec != NULL
4796 && (dynsec->flags & SEC_LOAD) == 0)
4797 dynsec = NULL;
4798
4799 if ((abfd->flags & D_PAGED) == 0)
4800 phdr_in_segment = FALSE;
4801
4802 /* Deal with -Ttext or something similar such that the first section
4803 is not adjacent to the program headers. This is an
4804 approximation, since at this point we don't know exactly how many
4805 program headers we will need. */
4806 if (phdr_in_segment && count > 0)
4807 {
4808 bfd_vma phdr_lma;
4809 bfd_boolean separate_phdr = FALSE;
4810
4811 phdr_lma = (sections[0]->lma - phdr_size) & addr_mask & -maxpagesize;
4812 if (info != NULL
4813 && info->separate_code
4814 && (sections[0]->flags & SEC_CODE) != 0)
4815 {
4816 /* If data sections should be separate from code and
4817 thus not executable, and the first section is
4818 executable then put the file and program headers in
4819 their own PT_LOAD. */
4820 separate_phdr = TRUE;
4821 if ((((phdr_lma + phdr_size - 1) & addr_mask & -maxpagesize)
4822 == (sections[0]->lma & addr_mask & -maxpagesize)))
4823 {
4824 /* The file and program headers are currently on the
4825 same page as the first section. Put them on the
4826 previous page if we can. */
4827 if (phdr_lma >= maxpagesize)
4828 phdr_lma -= maxpagesize;
4829 else
4830 separate_phdr = FALSE;
4831 }
4832 }
4833 if ((sections[0]->lma & addr_mask) < phdr_lma
4834 || (sections[0]->lma & addr_mask) < phdr_size)
4835 /* If file and program headers would be placed at the end
4836 of memory then it's probably better to omit them. */
4837 phdr_in_segment = FALSE;
4838 else if (phdr_lma < wrap_to)
4839 /* If a section wraps around to where we'll be placing
4840 file and program headers, then the headers will be
4841 overwritten. */
4842 phdr_in_segment = FALSE;
4843 else if (separate_phdr)
4844 {
4845 m = make_mapping (abfd, sections, 0, 0, phdr_in_segment);
4846 if (m == NULL)
4847 goto error_return;
4848 m->p_paddr = phdr_lma;
4849 m->p_vaddr_offset
4850 = (sections[0]->vma - phdr_size) & addr_mask & -maxpagesize;
4851 m->p_paddr_valid = 1;
4852 *pm = m;
4853 pm = &m->next;
4854 phdr_in_segment = FALSE;
4855 }
4856 }
4857
4858 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
4859 {
4860 asection *hdr;
4861 bfd_boolean new_segment;
4862
4863 hdr = *hdrpp;
4864
4865 /* See if this section and the last one will fit in the same
4866 segment. */
4867
4868 if (last_hdr == NULL)
4869 {
4870 /* If we don't have a segment yet, then we don't need a new
4871 one (we build the last one after this loop). */
4872 new_segment = FALSE;
4873 }
4874 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
4875 {
4876 /* If this section has a different relation between the
4877 virtual address and the load address, then we need a new
4878 segment. */
4879 new_segment = TRUE;
4880 }
4881 else if (hdr->lma < last_hdr->lma + last_size
4882 || last_hdr->lma + last_size < last_hdr->lma)
4883 {
4884 /* If this section has a load address that makes it overlap
4885 the previous section, then we need a new segment. */
4886 new_segment = TRUE;
4887 }
4888 else if ((abfd->flags & D_PAGED) != 0
4889 && (((last_hdr->lma + last_size - 1) & -maxpagesize)
4890 == (hdr->lma & -maxpagesize)))
4891 {
4892 /* If we are demand paged then we can't map two disk
4893 pages onto the same memory page. */
4894 new_segment = FALSE;
4895 }
4896 /* In the next test we have to be careful when last_hdr->lma is close
4897 to the end of the address space. If the aligned address wraps
4898 around to the start of the address space, then there are no more
4899 pages left in memory and it is OK to assume that the current
4900 section can be included in the current segment. */
4901 else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
4902 + maxpagesize > last_hdr->lma)
4903 && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
4904 + maxpagesize <= hdr->lma))
4905 {
4906 /* If putting this section in this segment would force us to
4907 skip a page in the segment, then we need a new segment. */
4908 new_segment = TRUE;
4909 }
4910 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
4911 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
4912 {
4913 /* We don't want to put a loaded section after a
4914 nonloaded (ie. bss style) section in the same segment
4915 as that will force the non-loaded section to be loaded.
4916 Consider .tbss sections as loaded for this purpose. */
4917 new_segment = TRUE;
4918 }
4919 else if ((abfd->flags & D_PAGED) == 0)
4920 {
4921 /* If the file is not demand paged, which means that we
4922 don't require the sections to be correctly aligned in the
4923 file, then there is no other reason for a new segment. */
4924 new_segment = FALSE;
4925 }
4926 else if (info != NULL
4927 && info->separate_code
4928 && executable != ((hdr->flags & SEC_CODE) != 0))
4929 {
4930 new_segment = TRUE;
4931 }
4932 else if (! writable
4933 && (hdr->flags & SEC_READONLY) == 0)
4934 {
4935 /* We don't want to put a writable section in a read only
4936 segment. */
4937 new_segment = TRUE;
4938 }
4939 else
4940 {
4941 /* Otherwise, we can use the same segment. */
4942 new_segment = FALSE;
4943 }
4944
4945 /* Allow interested parties a chance to override our decision. */
4946 if (last_hdr != NULL
4947 && info != NULL
4948 && info->callbacks->override_segment_assignment != NULL)
4949 new_segment
4950 = info->callbacks->override_segment_assignment (info, abfd, hdr,
4951 last_hdr,
4952 new_segment);
4953
4954 if (! new_segment)
4955 {
4956 if ((hdr->flags & SEC_READONLY) == 0)
4957 writable = TRUE;
4958 if ((hdr->flags & SEC_CODE) != 0)
4959 executable = TRUE;
4960 last_hdr = hdr;
4961 /* .tbss sections effectively have zero size. */
4962 last_size = !IS_TBSS (hdr) ? hdr->size : 0;
4963 continue;
4964 }
4965
4966 /* We need a new program segment. We must create a new program
4967 header holding all the sections from hdr_index until hdr. */
4968
4969 m = make_mapping (abfd, sections, hdr_index, i, phdr_in_segment);
4970 if (m == NULL)
4971 goto error_return;
4972
4973 *pm = m;
4974 pm = &m->next;
4975
4976 if ((hdr->flags & SEC_READONLY) == 0)
4977 writable = TRUE;
4978 else
4979 writable = FALSE;
4980
4981 if ((hdr->flags & SEC_CODE) == 0)
4982 executable = FALSE;
4983 else
4984 executable = TRUE;
4985
4986 last_hdr = hdr;
4987 /* .tbss sections effectively have zero size. */
4988 last_size = !IS_TBSS (hdr) ? hdr->size : 0;
4989 hdr_index = i;
4990 phdr_in_segment = FALSE;
4991 }
4992
4993 /* Create a final PT_LOAD program segment, but not if it's just
4994 for .tbss. */
4995 if (last_hdr != NULL
4996 && (i - hdr_index != 1
4997 || !IS_TBSS (last_hdr)))
4998 {
4999 m = make_mapping (abfd, sections, hdr_index, i, phdr_in_segment);
5000 if (m == NULL)
5001 goto error_return;
5002
5003 *pm = m;
5004 pm = &m->next;
5005 }
5006
5007 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
5008 if (dynsec != NULL)
5009 {
5010 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
5011 if (m == NULL)
5012 goto error_return;
5013 *pm = m;
5014 pm = &m->next;
5015 }
5016
5017 /* For each batch of consecutive loadable SHT_NOTE sections,
5018 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
5019 because if we link together nonloadable .note sections and
5020 loadable .note sections, we will generate two .note sections
5021 in the output file. */
5022 for (s = abfd->sections; s != NULL; s = s->next)
5023 {
5024 if ((s->flags & SEC_LOAD) != 0
5025 && elf_section_type (s) == SHT_NOTE)
5026 {
5027 asection *s2;
5028 unsigned int alignment_power = s->alignment_power;
5029
5030 count = 1;
5031 for (s2 = s; s2->next != NULL; s2 = s2->next)
5032 {
5033 if (s2->next->alignment_power == alignment_power
5034 && (s2->next->flags & SEC_LOAD) != 0
5035 && elf_section_type (s2->next) == SHT_NOTE
5036 && align_power (s2->lma + s2->size,
5037 alignment_power)
5038 == s2->next->lma)
5039 count++;
5040 else
5041 break;
5042 }
5043 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
5044 amt += count * sizeof (asection *);
5045 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5046 if (m == NULL)
5047 goto error_return;
5048 m->next = NULL;
5049 m->p_type = PT_NOTE;
5050 m->count = count;
5051 while (count > 1)
5052 {
5053 m->sections[m->count - count--] = s;
5054 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
5055 s = s->next;
5056 }
5057 m->sections[m->count - 1] = s;
5058 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
5059 *pm = m;
5060 pm = &m->next;
5061 }
5062 if (s->flags & SEC_THREAD_LOCAL)
5063 {
5064 if (! tls_count)
5065 first_tls = s;
5066 tls_count++;
5067 }
5068 if (first_mbind == NULL
5069 && (elf_section_flags (s) & SHF_GNU_MBIND) != 0)
5070 first_mbind = s;
5071 }
5072
5073 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
5074 if (tls_count > 0)
5075 {
5076 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
5077 amt += tls_count * sizeof (asection *);
5078 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5079 if (m == NULL)
5080 goto error_return;
5081 m->next = NULL;
5082 m->p_type = PT_TLS;
5083 m->count = tls_count;
5084 /* Mandated PF_R. */
5085 m->p_flags = PF_R;
5086 m->p_flags_valid = 1;
5087 s = first_tls;
5088 for (i = 0; i < (unsigned int) tls_count; ++i)
5089 {
5090 if ((s->flags & SEC_THREAD_LOCAL) == 0)
5091 {
5092 _bfd_error_handler
5093 (_("%pB: TLS sections are not adjacent:"), abfd);
5094 s = first_tls;
5095 i = 0;
5096 while (i < (unsigned int) tls_count)
5097 {
5098 if ((s->flags & SEC_THREAD_LOCAL) != 0)
5099 {
5100 _bfd_error_handler (_(" TLS: %pA"), s);
5101 i++;
5102 }
5103 else
5104 _bfd_error_handler (_(" non-TLS: %pA"), s);
5105 s = s->next;
5106 }
5107 bfd_set_error (bfd_error_bad_value);
5108 goto error_return;
5109 }
5110 m->sections[i] = s;
5111 s = s->next;
5112 }
5113
5114 *pm = m;
5115 pm = &m->next;
5116 }
5117
5118 if (first_mbind
5119 && (abfd->flags & D_PAGED) != 0
5120 && (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_mbind) != 0)
5121 for (s = first_mbind; s != NULL; s = s->next)
5122 if ((elf_section_flags (s) & SHF_GNU_MBIND) != 0
5123 && elf_section_data (s)->this_hdr.sh_info <= PT_GNU_MBIND_NUM)
5124 {
5125 /* Mandated PF_R. */
5126 unsigned long p_flags = PF_R;
5127 if ((s->flags & SEC_READONLY) == 0)
5128 p_flags |= PF_W;
5129 if ((s->flags & SEC_CODE) != 0)
5130 p_flags |= PF_X;
5131
5132 amt = sizeof (struct elf_segment_map) + sizeof (asection *);
5133 m = bfd_zalloc (abfd, amt);
5134 if (m == NULL)
5135 goto error_return;
5136 m->next = NULL;
5137 m->p_type = (PT_GNU_MBIND_LO
5138 + elf_section_data (s)->this_hdr.sh_info);
5139 m->count = 1;
5140 m->p_flags_valid = 1;
5141 m->sections[0] = s;
5142 m->p_flags = p_flags;
5143
5144 *pm = m;
5145 pm = &m->next;
5146 }
5147
5148 s = bfd_get_section_by_name (abfd,
5149 NOTE_GNU_PROPERTY_SECTION_NAME);
5150 if (s != NULL && s->size != 0)
5151 {
5152 amt = sizeof (struct elf_segment_map) + sizeof (asection *);
5153 m = bfd_zalloc (abfd, amt);
5154 if (m == NULL)
5155 goto error_return;
5156 m->next = NULL;
5157 m->p_type = PT_GNU_PROPERTY;
5158 m->count = 1;
5159 m->p_flags_valid = 1;
5160 m->sections[0] = s;
5161 m->p_flags = PF_R;
5162 *pm = m;
5163 pm = &m->next;
5164 }
5165
5166 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
5167 segment. */
5168 eh_frame_hdr = elf_eh_frame_hdr (abfd);
5169 if (eh_frame_hdr != NULL
5170 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
5171 {
5172 amt = sizeof (struct elf_segment_map);
5173 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5174 if (m == NULL)
5175 goto error_return;
5176 m->next = NULL;
5177 m->p_type = PT_GNU_EH_FRAME;
5178 m->count = 1;
5179 m->sections[0] = eh_frame_hdr->output_section;
5180
5181 *pm = m;
5182 pm = &m->next;
5183 }
5184
5185 if (elf_stack_flags (abfd))
5186 {
5187 amt = sizeof (struct elf_segment_map);
5188 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5189 if (m == NULL)
5190 goto error_return;
5191 m->next = NULL;
5192 m->p_type = PT_GNU_STACK;
5193 m->p_flags = elf_stack_flags (abfd);
5194 m->p_align = bed->stack_align;
5195 m->p_flags_valid = 1;
5196 m->p_align_valid = m->p_align != 0;
5197 if (info->stacksize > 0)
5198 {
5199 m->p_size = info->stacksize;
5200 m->p_size_valid = 1;
5201 }
5202
5203 *pm = m;
5204 pm = &m->next;
5205 }
5206
5207 if (info != NULL && info->relro)
5208 {
5209 for (m = mfirst; m != NULL; m = m->next)
5210 {
5211 if (m->p_type == PT_LOAD
5212 && m->count != 0
5213 && m->sections[0]->vma >= info->relro_start
5214 && m->sections[0]->vma < info->relro_end)
5215 {
5216 i = m->count;
5217 while (--i != (unsigned) -1)
5218 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS))
5219 == (SEC_LOAD | SEC_HAS_CONTENTS))
5220 break;
5221
5222 if (i != (unsigned) -1)
5223 break;
5224 }
5225 }
5226
5227 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
5228 if (m != NULL)
5229 {
5230 amt = sizeof (struct elf_segment_map);
5231 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5232 if (m == NULL)
5233 goto error_return;
5234 m->next = NULL;
5235 m->p_type = PT_GNU_RELRO;
5236 *pm = m;
5237 pm = &m->next;
5238 }
5239 }
5240
5241 free (sections);
5242 elf_seg_map (abfd) = mfirst;
5243 }
5244
5245 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
5246 return FALSE;
5247
5248 for (count = 0, m = elf_seg_map (abfd); m != NULL; m = m->next)
5249 ++count;
5250 elf_program_header_size (abfd) = count * bed->s->sizeof_phdr;
5251
5252 return TRUE;
5253
5254 error_return:
5255 if (sections != NULL)
5256 free (sections);
5257 return FALSE;
5258 }
5259
5260 /* Sort sections by address. */
5261
5262 static int
5263 elf_sort_sections (const void *arg1, const void *arg2)
5264 {
5265 const asection *sec1 = *(const asection **) arg1;
5266 const asection *sec2 = *(const asection **) arg2;
5267 bfd_size_type size1, size2;
5268
5269 /* Sort by LMA first, since this is the address used to
5270 place the section into a segment. */
5271 if (sec1->lma < sec2->lma)
5272 return -1;
5273 else if (sec1->lma > sec2->lma)
5274 return 1;
5275
5276 /* Then sort by VMA. Normally the LMA and the VMA will be
5277 the same, and this will do nothing. */
5278 if (sec1->vma < sec2->vma)
5279 return -1;
5280 else if (sec1->vma > sec2->vma)
5281 return 1;
5282
5283 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
5284
5285 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
5286
5287 if (TOEND (sec1))
5288 {
5289 if (!TOEND (sec2))
5290 return 1;
5291 }
5292 else if (TOEND (sec2))
5293 return -1;
5294
5295 #undef TOEND
5296
5297 /* Sort by size, to put zero sized sections
5298 before others at the same address. */
5299
5300 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
5301 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
5302
5303 if (size1 < size2)
5304 return -1;
5305 if (size1 > size2)
5306 return 1;
5307
5308 return sec1->target_index - sec2->target_index;
5309 }
5310
5311 /* This qsort comparison functions sorts PT_LOAD segments first and
5312 by p_paddr, for assign_file_positions_for_load_sections. */
5313
5314 static int
5315 elf_sort_segments (const void *arg1, const void *arg2)
5316 {
5317 const struct elf_segment_map *m1 = *(const struct elf_segment_map **) arg1;
5318 const struct elf_segment_map *m2 = *(const struct elf_segment_map **) arg2;
5319
5320 if (m1->p_type != m2->p_type)
5321 {
5322 if (m1->p_type == PT_NULL)
5323 return 1;
5324 if (m2->p_type == PT_NULL)
5325 return -1;
5326 return m1->p_type < m2->p_type ? -1 : 1;
5327 }
5328 if (m1->includes_filehdr != m2->includes_filehdr)
5329 return m1->includes_filehdr ? -1 : 1;
5330 if (m1->no_sort_lma != m2->no_sort_lma)
5331 return m1->no_sort_lma ? -1 : 1;
5332 if (m1->p_type == PT_LOAD && !m1->no_sort_lma)
5333 {
5334 bfd_vma lma1, lma2;
5335 lma1 = 0;
5336 if (m1->p_paddr_valid)
5337 lma1 = m1->p_paddr;
5338 else if (m1->count != 0)
5339 lma1 = m1->sections[0]->lma + m1->p_vaddr_offset;
5340 lma2 = 0;
5341 if (m2->p_paddr_valid)
5342 lma2 = m2->p_paddr;
5343 else if (m2->count != 0)
5344 lma2 = m2->sections[0]->lma + m2->p_vaddr_offset;
5345 if (lma1 != lma2)
5346 return lma1 < lma2 ? -1 : 1;
5347 }
5348 if (m1->idx != m2->idx)
5349 return m1->idx < m2->idx ? -1 : 1;
5350 return 0;
5351 }
5352
5353 /* Ian Lance Taylor writes:
5354
5355 We shouldn't be using % with a negative signed number. That's just
5356 not good. We have to make sure either that the number is not
5357 negative, or that the number has an unsigned type. When the types
5358 are all the same size they wind up as unsigned. When file_ptr is a
5359 larger signed type, the arithmetic winds up as signed long long,
5360 which is wrong.
5361
5362 What we're trying to say here is something like ``increase OFF by
5363 the least amount that will cause it to be equal to the VMA modulo
5364 the page size.'' */
5365 /* In other words, something like:
5366
5367 vma_offset = m->sections[0]->vma % bed->maxpagesize;
5368 off_offset = off % bed->maxpagesize;
5369 if (vma_offset < off_offset)
5370 adjustment = vma_offset + bed->maxpagesize - off_offset;
5371 else
5372 adjustment = vma_offset - off_offset;
5373
5374 which can be collapsed into the expression below. */
5375
5376 static file_ptr
5377 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
5378 {
5379 /* PR binutils/16199: Handle an alignment of zero. */
5380 if (maxpagesize == 0)
5381 maxpagesize = 1;
5382 return ((vma - off) % maxpagesize);
5383 }
5384
5385 static void
5386 print_segment_map (const struct elf_segment_map *m)
5387 {
5388 unsigned int j;
5389 const char *pt = get_segment_type (m->p_type);
5390 char buf[32];
5391
5392 if (pt == NULL)
5393 {
5394 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
5395 sprintf (buf, "LOPROC+%7.7x",
5396 (unsigned int) (m->p_type - PT_LOPROC));
5397 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
5398 sprintf (buf, "LOOS+%7.7x",
5399 (unsigned int) (m->p_type - PT_LOOS));
5400 else
5401 snprintf (buf, sizeof (buf), "%8.8x",
5402 (unsigned int) m->p_type);
5403 pt = buf;
5404 }
5405 fflush (stdout);
5406 fprintf (stderr, "%s:", pt);
5407 for (j = 0; j < m->count; j++)
5408 fprintf (stderr, " %s", m->sections [j]->name);
5409 putc ('\n',stderr);
5410 fflush (stderr);
5411 }
5412
5413 static bfd_boolean
5414 write_zeros (bfd *abfd, file_ptr pos, bfd_size_type len)
5415 {
5416 void *buf;
5417 bfd_boolean ret;
5418
5419 if (bfd_seek (abfd, pos, SEEK_SET) != 0)
5420 return FALSE;
5421 buf = bfd_zmalloc (len);
5422 if (buf == NULL)
5423 return FALSE;
5424 ret = bfd_bwrite (buf, len, abfd) == len;
5425 free (buf);
5426 return ret;
5427 }
5428
5429 /* Assign file positions to the sections based on the mapping from
5430 sections to segments. This function also sets up some fields in
5431 the file header. */
5432
5433 static bfd_boolean
5434 assign_file_positions_for_load_sections (bfd *abfd,
5435 struct bfd_link_info *link_info)
5436 {
5437 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5438 struct elf_segment_map *m;
5439 struct elf_segment_map *phdr_load_seg;
5440 Elf_Internal_Phdr *phdrs;
5441 Elf_Internal_Phdr *p;
5442 file_ptr off;
5443 bfd_size_type maxpagesize;
5444 unsigned int alloc, actual;
5445 unsigned int i, j;
5446 struct elf_segment_map **sorted_seg_map;
5447
5448 if (link_info == NULL
5449 && !_bfd_elf_map_sections_to_segments (abfd, link_info))
5450 return FALSE;
5451
5452 alloc = 0;
5453 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
5454 m->idx = alloc++;
5455
5456 if (alloc)
5457 {
5458 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
5459 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
5460 }
5461 else
5462 {
5463 /* PR binutils/12467. */
5464 elf_elfheader (abfd)->e_phoff = 0;
5465 elf_elfheader (abfd)->e_phentsize = 0;
5466 }
5467
5468 elf_elfheader (abfd)->e_phnum = alloc;
5469
5470 if (elf_program_header_size (abfd) == (bfd_size_type) -1)
5471 {
5472 actual = alloc;
5473 elf_program_header_size (abfd) = alloc * bed->s->sizeof_phdr;
5474 }
5475 else
5476 {
5477 actual = elf_program_header_size (abfd) / bed->s->sizeof_phdr;
5478 BFD_ASSERT (elf_program_header_size (abfd)
5479 == actual * bed->s->sizeof_phdr);
5480 BFD_ASSERT (actual >= alloc);
5481 }
5482
5483 if (alloc == 0)
5484 {
5485 elf_next_file_pos (abfd) = bed->s->sizeof_ehdr;
5486 return TRUE;
5487 }
5488
5489 /* We're writing the size in elf_program_header_size (abfd),
5490 see assign_file_positions_except_relocs, so make sure we have
5491 that amount allocated, with trailing space cleared.
5492 The variable alloc contains the computed need, while
5493 elf_program_header_size (abfd) contains the size used for the
5494 layout.
5495 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
5496 where the layout is forced to according to a larger size in the
5497 last iterations for the testcase ld-elf/header. */
5498 phdrs = bfd_zalloc (abfd, (actual * sizeof (*phdrs)
5499 + alloc * sizeof (*sorted_seg_map)));
5500 sorted_seg_map = (struct elf_segment_map **) (phdrs + actual);
5501 elf_tdata (abfd)->phdr = phdrs;
5502 if (phdrs == NULL)
5503 return FALSE;
5504
5505 for (m = elf_seg_map (abfd), j = 0; m != NULL; m = m->next, j++)
5506 {
5507 sorted_seg_map[j] = m;
5508 /* If elf_segment_map is not from map_sections_to_segments, the
5509 sections may not be correctly ordered. NOTE: sorting should
5510 not be done to the PT_NOTE section of a corefile, which may
5511 contain several pseudo-sections artificially created by bfd.
5512 Sorting these pseudo-sections breaks things badly. */
5513 if (m->count > 1
5514 && !(elf_elfheader (abfd)->e_type == ET_CORE
5515 && m->p_type == PT_NOTE))
5516 {
5517 for (i = 0; i < m->count; i++)
5518 m->sections[i]->target_index = i;
5519 qsort (m->sections, (size_t) m->count, sizeof (asection *),
5520 elf_sort_sections);
5521 }
5522 }
5523 if (alloc > 1)
5524 qsort (sorted_seg_map, alloc, sizeof (*sorted_seg_map),
5525 elf_sort_segments);
5526
5527 maxpagesize = 1;
5528 if ((abfd->flags & D_PAGED) != 0)
5529 maxpagesize = bed->maxpagesize;
5530
5531 /* Sections must map to file offsets past the ELF file header. */
5532 off = bed->s->sizeof_ehdr;
5533 /* And if one of the PT_LOAD headers doesn't include the program
5534 headers then we'll be mapping program headers in the usual
5535 position after the ELF file header. */
5536 phdr_load_seg = NULL;
5537 for (j = 0; j < alloc; j++)
5538 {
5539 m = sorted_seg_map[j];
5540 if (m->p_type != PT_LOAD)
5541 break;
5542 if (m->includes_phdrs)
5543 {
5544 phdr_load_seg = m;
5545 break;
5546 }
5547 }
5548 if (phdr_load_seg == NULL)
5549 off += actual * bed->s->sizeof_phdr;
5550
5551 for (j = 0; j < alloc; j++)
5552 {
5553 asection **secpp;
5554 bfd_vma off_adjust;
5555 bfd_boolean no_contents;
5556
5557 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
5558 number of sections with contents contributing to both p_filesz
5559 and p_memsz, followed by a number of sections with no contents
5560 that just contribute to p_memsz. In this loop, OFF tracks next
5561 available file offset for PT_LOAD and PT_NOTE segments. */
5562 m = sorted_seg_map[j];
5563 p = phdrs + m->idx;
5564 p->p_type = m->p_type;
5565 p->p_flags = m->p_flags;
5566
5567 if (m->count == 0)
5568 p->p_vaddr = m->p_vaddr_offset;
5569 else
5570 p->p_vaddr = m->sections[0]->vma + m->p_vaddr_offset;
5571
5572 if (m->p_paddr_valid)
5573 p->p_paddr = m->p_paddr;
5574 else if (m->count == 0)
5575 p->p_paddr = 0;
5576 else
5577 p->p_paddr = m->sections[0]->lma + m->p_vaddr_offset;
5578
5579 if (p->p_type == PT_LOAD
5580 && (abfd->flags & D_PAGED) != 0)
5581 {
5582 /* p_align in demand paged PT_LOAD segments effectively stores
5583 the maximum page size. When copying an executable with
5584 objcopy, we set m->p_align from the input file. Use this
5585 value for maxpagesize rather than bed->maxpagesize, which
5586 may be different. Note that we use maxpagesize for PT_TLS
5587 segment alignment later in this function, so we are relying
5588 on at least one PT_LOAD segment appearing before a PT_TLS
5589 segment. */
5590 if (m->p_align_valid)
5591 maxpagesize = m->p_align;
5592
5593 p->p_align = maxpagesize;
5594 }
5595 else if (m->p_align_valid)
5596 p->p_align = m->p_align;
5597 else if (m->count == 0)
5598 p->p_align = 1 << bed->s->log_file_align;
5599
5600 if (m == phdr_load_seg)
5601 {
5602 if (!m->includes_filehdr)
5603 p->p_offset = off;
5604 off += actual * bed->s->sizeof_phdr;
5605 }
5606
5607 no_contents = FALSE;
5608 off_adjust = 0;
5609 if (p->p_type == PT_LOAD
5610 && m->count > 0)
5611 {
5612 bfd_size_type align;
5613 unsigned int align_power = 0;
5614
5615 if (m->p_align_valid)
5616 align = p->p_align;
5617 else
5618 {
5619 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
5620 {
5621 unsigned int secalign;
5622
5623 secalign = bfd_section_alignment (*secpp);
5624 if (secalign > align_power)
5625 align_power = secalign;
5626 }
5627 align = (bfd_size_type) 1 << align_power;
5628 if (align < maxpagesize)
5629 align = maxpagesize;
5630 }
5631
5632 for (i = 0; i < m->count; i++)
5633 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
5634 /* If we aren't making room for this section, then
5635 it must be SHT_NOBITS regardless of what we've
5636 set via struct bfd_elf_special_section. */
5637 elf_section_type (m->sections[i]) = SHT_NOBITS;
5638
5639 /* Find out whether this segment contains any loadable
5640 sections. */
5641 no_contents = TRUE;
5642 for (i = 0; i < m->count; i++)
5643 if (elf_section_type (m->sections[i]) != SHT_NOBITS)
5644 {
5645 no_contents = FALSE;
5646 break;
5647 }
5648
5649 off_adjust = vma_page_aligned_bias (p->p_vaddr, off, align);
5650
5651 /* Broken hardware and/or kernel require that files do not
5652 map the same page with different permissions on some hppa
5653 processors. */
5654 if (j != 0
5655 && (abfd->flags & D_PAGED) != 0
5656 && bed->no_page_alias
5657 && (off & (maxpagesize - 1)) != 0
5658 && (off & -maxpagesize) == ((off + off_adjust) & -maxpagesize))
5659 off_adjust += maxpagesize;
5660 off += off_adjust;
5661 if (no_contents)
5662 {
5663 /* We shouldn't need to align the segment on disk since
5664 the segment doesn't need file space, but the gABI
5665 arguably requires the alignment and glibc ld.so
5666 checks it. So to comply with the alignment
5667 requirement but not waste file space, we adjust
5668 p_offset for just this segment. (OFF_ADJUST is
5669 subtracted from OFF later.) This may put p_offset
5670 past the end of file, but that shouldn't matter. */
5671 }
5672 else
5673 off_adjust = 0;
5674 }
5675 /* Make sure the .dynamic section is the first section in the
5676 PT_DYNAMIC segment. */
5677 else if (p->p_type == PT_DYNAMIC
5678 && m->count > 1
5679 && strcmp (m->sections[0]->name, ".dynamic") != 0)
5680 {
5681 _bfd_error_handler
5682 (_("%pB: The first section in the PT_DYNAMIC segment"
5683 " is not the .dynamic section"),
5684 abfd);
5685 bfd_set_error (bfd_error_bad_value);
5686 return FALSE;
5687 }
5688 /* Set the note section type to SHT_NOTE. */
5689 else if (p->p_type == PT_NOTE)
5690 for (i = 0; i < m->count; i++)
5691 elf_section_type (m->sections[i]) = SHT_NOTE;
5692
5693 if (m->includes_filehdr)
5694 {
5695 if (!m->p_flags_valid)
5696 p->p_flags |= PF_R;
5697 p->p_filesz = bed->s->sizeof_ehdr;
5698 p->p_memsz = bed->s->sizeof_ehdr;
5699 if (p->p_type == PT_LOAD)
5700 {
5701 if (m->count > 0)
5702 {
5703 if (p->p_vaddr < (bfd_vma) off
5704 || (!m->p_paddr_valid
5705 && p->p_paddr < (bfd_vma) off))
5706 {
5707 _bfd_error_handler
5708 (_("%pB: not enough room for program headers,"
5709 " try linking with -N"),
5710 abfd);
5711 bfd_set_error (bfd_error_bad_value);
5712 return FALSE;
5713 }
5714 p->p_vaddr -= off;
5715 if (!m->p_paddr_valid)
5716 p->p_paddr -= off;
5717 }
5718 }
5719 else if (sorted_seg_map[0]->includes_filehdr)
5720 {
5721 Elf_Internal_Phdr *filehdr = phdrs + sorted_seg_map[0]->idx;
5722 p->p_vaddr = filehdr->p_vaddr;
5723 if (!m->p_paddr_valid)
5724 p->p_paddr = filehdr->p_paddr;
5725 }
5726 }
5727
5728 if (m->includes_phdrs)
5729 {
5730 if (!m->p_flags_valid)
5731 p->p_flags |= PF_R;
5732 p->p_filesz += actual * bed->s->sizeof_phdr;
5733 p->p_memsz += actual * bed->s->sizeof_phdr;
5734 if (!m->includes_filehdr)
5735 {
5736 if (p->p_type == PT_LOAD)
5737 {
5738 elf_elfheader (abfd)->e_phoff = p->p_offset;
5739 if (m->count > 0)
5740 {
5741 p->p_vaddr -= off - p->p_offset;
5742 if (!m->p_paddr_valid)
5743 p->p_paddr -= off - p->p_offset;
5744 }
5745 }
5746 else if (phdr_load_seg != NULL)
5747 {
5748 Elf_Internal_Phdr *phdr = phdrs + phdr_load_seg->idx;
5749 bfd_vma phdr_off = 0;
5750 if (phdr_load_seg->includes_filehdr)
5751 phdr_off = bed->s->sizeof_ehdr;
5752 p->p_vaddr = phdr->p_vaddr + phdr_off;
5753 if (!m->p_paddr_valid)
5754 p->p_paddr = phdr->p_paddr + phdr_off;
5755 p->p_offset = phdr->p_offset + phdr_off;
5756 }
5757 else
5758 p->p_offset = bed->s->sizeof_ehdr;
5759 }
5760 }
5761
5762 if (p->p_type == PT_LOAD
5763 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
5764 {
5765 if (!m->includes_filehdr && !m->includes_phdrs)
5766 p->p_offset = off;
5767 else
5768 {
5769 file_ptr adjust;
5770
5771 adjust = off - (p->p_offset + p->p_filesz);
5772 if (!no_contents)
5773 p->p_filesz += adjust;
5774 p->p_memsz += adjust;
5775 }
5776 }
5777
5778 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
5779 maps. Set filepos for sections in PT_LOAD segments, and in
5780 core files, for sections in PT_NOTE segments.
5781 assign_file_positions_for_non_load_sections will set filepos
5782 for other sections and update p_filesz for other segments. */
5783 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
5784 {
5785 asection *sec;
5786 bfd_size_type align;
5787 Elf_Internal_Shdr *this_hdr;
5788
5789 sec = *secpp;
5790 this_hdr = &elf_section_data (sec)->this_hdr;
5791 align = (bfd_size_type) 1 << bfd_section_alignment (sec);
5792
5793 if ((p->p_type == PT_LOAD
5794 || p->p_type == PT_TLS)
5795 && (this_hdr->sh_type != SHT_NOBITS
5796 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
5797 && ((this_hdr->sh_flags & SHF_TLS) == 0
5798 || p->p_type == PT_TLS))))
5799 {
5800 bfd_vma p_start = p->p_paddr;
5801 bfd_vma p_end = p_start + p->p_memsz;
5802 bfd_vma s_start = sec->lma;
5803 bfd_vma adjust = s_start - p_end;
5804
5805 if (adjust != 0
5806 && (s_start < p_end
5807 || p_end < p_start))
5808 {
5809 _bfd_error_handler
5810 /* xgettext:c-format */
5811 (_("%pB: section %pA lma %#" PRIx64 " adjusted to %#" PRIx64),
5812 abfd, sec, (uint64_t) s_start, (uint64_t) p_end);
5813 adjust = 0;
5814 sec->lma = p_end;
5815 }
5816 p->p_memsz += adjust;
5817
5818 if (this_hdr->sh_type != SHT_NOBITS)
5819 {
5820 if (p->p_type == PT_LOAD)
5821 {
5822 if (p->p_filesz + adjust < p->p_memsz)
5823 {
5824 /* We have a PROGBITS section following NOBITS ones.
5825 Allocate file space for the NOBITS section(s) and
5826 zero it. */
5827 adjust = p->p_memsz - p->p_filesz;
5828 if (!write_zeros (abfd, off, adjust))
5829 return FALSE;
5830 }
5831 off += adjust;
5832 }
5833 p->p_filesz += adjust;
5834 }
5835 }
5836
5837 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
5838 {
5839 /* The section at i == 0 is the one that actually contains
5840 everything. */
5841 if (i == 0)
5842 {
5843 this_hdr->sh_offset = sec->filepos = off;
5844 off += this_hdr->sh_size;
5845 p->p_filesz = this_hdr->sh_size;
5846 p->p_memsz = 0;
5847 p->p_align = 1;
5848 }
5849 else
5850 {
5851 /* The rest are fake sections that shouldn't be written. */
5852 sec->filepos = 0;
5853 sec->size = 0;
5854 sec->flags = 0;
5855 continue;
5856 }
5857 }
5858 else
5859 {
5860 if (p->p_type == PT_LOAD)
5861 {
5862 this_hdr->sh_offset = sec->filepos = off;
5863 if (this_hdr->sh_type != SHT_NOBITS)
5864 off += this_hdr->sh_size;
5865 }
5866 else if (this_hdr->sh_type == SHT_NOBITS
5867 && (this_hdr->sh_flags & SHF_TLS) != 0
5868 && this_hdr->sh_offset == 0)
5869 {
5870 /* This is a .tbss section that didn't get a PT_LOAD.
5871 (See _bfd_elf_map_sections_to_segments "Create a
5872 final PT_LOAD".) Set sh_offset to the value it
5873 would have if we had created a zero p_filesz and
5874 p_memsz PT_LOAD header for the section. This
5875 also makes the PT_TLS header have the same
5876 p_offset value. */
5877 bfd_vma adjust = vma_page_aligned_bias (this_hdr->sh_addr,
5878 off, align);
5879 this_hdr->sh_offset = sec->filepos = off + adjust;
5880 }
5881
5882 if (this_hdr->sh_type != SHT_NOBITS)
5883 {
5884 p->p_filesz += this_hdr->sh_size;
5885 /* A load section without SHF_ALLOC is something like
5886 a note section in a PT_NOTE segment. These take
5887 file space but are not loaded into memory. */
5888 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5889 p->p_memsz += this_hdr->sh_size;
5890 }
5891 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5892 {
5893 if (p->p_type == PT_TLS)
5894 p->p_memsz += this_hdr->sh_size;
5895
5896 /* .tbss is special. It doesn't contribute to p_memsz of
5897 normal segments. */
5898 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
5899 p->p_memsz += this_hdr->sh_size;
5900 }
5901
5902 if (align > p->p_align
5903 && !m->p_align_valid
5904 && (p->p_type != PT_LOAD
5905 || (abfd->flags & D_PAGED) == 0))
5906 p->p_align = align;
5907 }
5908
5909 if (!m->p_flags_valid)
5910 {
5911 p->p_flags |= PF_R;
5912 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
5913 p->p_flags |= PF_X;
5914 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
5915 p->p_flags |= PF_W;
5916 }
5917 }
5918
5919 off -= off_adjust;
5920
5921 /* PR ld/20815 - Check that the program header segment, if
5922 present, will be loaded into memory. */
5923 if (p->p_type == PT_PHDR
5924 && phdr_load_seg == NULL
5925 && !(bed->elf_backend_allow_non_load_phdr != NULL
5926 && bed->elf_backend_allow_non_load_phdr (abfd, phdrs, alloc)))
5927 {
5928 /* The fix for this error is usually to edit the linker script being
5929 used and set up the program headers manually. Either that or
5930 leave room for the headers at the start of the SECTIONS. */
5931 _bfd_error_handler (_("%pB: error: PHDR segment not covered"
5932 " by LOAD segment"),
5933 abfd);
5934 return FALSE;
5935 }
5936
5937 /* Check that all sections are in a PT_LOAD segment.
5938 Don't check funky gdb generated core files. */
5939 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
5940 {
5941 bfd_boolean check_vma = TRUE;
5942
5943 for (i = 1; i < m->count; i++)
5944 if (m->sections[i]->vma == m->sections[i - 1]->vma
5945 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i])
5946 ->this_hdr), p) != 0
5947 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i - 1])
5948 ->this_hdr), p) != 0)
5949 {
5950 /* Looks like we have overlays packed into the segment. */
5951 check_vma = FALSE;
5952 break;
5953 }
5954
5955 for (i = 0; i < m->count; i++)
5956 {
5957 Elf_Internal_Shdr *this_hdr;
5958 asection *sec;
5959
5960 sec = m->sections[i];
5961 this_hdr = &(elf_section_data(sec)->this_hdr);
5962 if (!ELF_SECTION_IN_SEGMENT_1 (this_hdr, p, check_vma, 0)
5963 && !ELF_TBSS_SPECIAL (this_hdr, p))
5964 {
5965 _bfd_error_handler
5966 /* xgettext:c-format */
5967 (_("%pB: section `%pA' can't be allocated in segment %d"),
5968 abfd, sec, j);
5969 print_segment_map (m);
5970 }
5971 }
5972 }
5973 }
5974
5975 elf_next_file_pos (abfd) = off;
5976
5977 if (link_info != NULL
5978 && phdr_load_seg != NULL
5979 && phdr_load_seg->includes_filehdr)
5980 {
5981 /* There is a segment that contains both the file headers and the
5982 program headers, so provide a symbol __ehdr_start pointing there.
5983 A program can use this to examine itself robustly. */
5984
5985 struct elf_link_hash_entry *hash
5986 = elf_link_hash_lookup (elf_hash_table (link_info), "__ehdr_start",
5987 FALSE, FALSE, TRUE);
5988 /* If the symbol was referenced and not defined, define it. */
5989 if (hash != NULL
5990 && (hash->root.type == bfd_link_hash_new
5991 || hash->root.type == bfd_link_hash_undefined
5992 || hash->root.type == bfd_link_hash_undefweak
5993 || hash->root.type == bfd_link_hash_common))
5994 {
5995 asection *s = NULL;
5996 bfd_vma filehdr_vaddr = phdrs[phdr_load_seg->idx].p_vaddr;
5997
5998 if (phdr_load_seg->count != 0)
5999 /* The segment contains sections, so use the first one. */
6000 s = phdr_load_seg->sections[0];
6001 else
6002 /* Use the first (i.e. lowest-addressed) section in any segment. */
6003 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
6004 if (m->p_type == PT_LOAD && m->count != 0)
6005 {
6006 s = m->sections[0];
6007 break;
6008 }
6009
6010 if (s != NULL)
6011 {
6012 hash->root.u.def.value = filehdr_vaddr - s->vma;
6013 hash->root.u.def.section = s;
6014 }
6015 else
6016 {
6017 hash->root.u.def.value = filehdr_vaddr;
6018 hash->root.u.def.section = bfd_abs_section_ptr;
6019 }
6020
6021 hash->root.type = bfd_link_hash_defined;
6022 hash->def_regular = 1;
6023 hash->non_elf = 0;
6024 }
6025 }
6026
6027 return TRUE;
6028 }
6029
6030 /* Determine if a bfd is a debuginfo file. Unfortunately there
6031 is no defined method for detecting such files, so we have to
6032 use heuristics instead. */
6033
6034 bfd_boolean
6035 is_debuginfo_file (bfd *abfd)
6036 {
6037 if (abfd == NULL || bfd_get_flavour (abfd) != bfd_target_elf_flavour)
6038 return FALSE;
6039
6040 Elf_Internal_Shdr **start_headers = elf_elfsections (abfd);
6041 Elf_Internal_Shdr **end_headers = start_headers + elf_numsections (abfd);
6042 Elf_Internal_Shdr **headerp;
6043
6044 for (headerp = start_headers; headerp < end_headers; headerp ++)
6045 {
6046 Elf_Internal_Shdr *header = * headerp;
6047
6048 /* Debuginfo files do not have any allocated SHT_PROGBITS sections.
6049 The only allocated sections are SHT_NOBITS or SHT_NOTES. */
6050 if ((header->sh_flags & SHF_ALLOC) == SHF_ALLOC
6051 && header->sh_type != SHT_NOBITS
6052 && header->sh_type != SHT_NOTE)
6053 return FALSE;
6054 }
6055
6056 return TRUE;
6057 }
6058
6059 /* Assign file positions for the other sections, except for compressed debugging
6060 and other sections assigned in _bfd_elf_assign_file_positions_for_non_load(). */
6061
6062 static bfd_boolean
6063 assign_file_positions_for_non_load_sections (bfd *abfd,
6064 struct bfd_link_info *link_info)
6065 {
6066 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6067 Elf_Internal_Shdr **i_shdrpp;
6068 Elf_Internal_Shdr **hdrpp, **end_hdrpp;
6069 Elf_Internal_Phdr *phdrs;
6070 Elf_Internal_Phdr *p;
6071 struct elf_segment_map *m;
6072 file_ptr off;
6073
6074 i_shdrpp = elf_elfsections (abfd);
6075 end_hdrpp = i_shdrpp + elf_numsections (abfd);
6076 off = elf_next_file_pos (abfd);
6077 for (hdrpp = i_shdrpp + 1; hdrpp < end_hdrpp; hdrpp++)
6078 {
6079 Elf_Internal_Shdr *hdr;
6080
6081 hdr = *hdrpp;
6082 if (hdr->bfd_section != NULL
6083 && (hdr->bfd_section->filepos != 0
6084 || (hdr->sh_type == SHT_NOBITS
6085 && hdr->contents == NULL)))
6086 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
6087 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
6088 {
6089 if (hdr->sh_size != 0
6090 /* PR 24717 - debuginfo files are known to be not strictly
6091 compliant with the ELF standard. In particular they often
6092 have .note.gnu.property sections that are outside of any
6093 loadable segment. This is not a problem for such files,
6094 so do not warn about them. */
6095 && ! is_debuginfo_file (abfd))
6096 _bfd_error_handler
6097 /* xgettext:c-format */
6098 (_("%pB: warning: allocated section `%s' not in segment"),
6099 abfd,
6100 (hdr->bfd_section == NULL
6101 ? "*unknown*"
6102 : hdr->bfd_section->name));
6103 /* We don't need to page align empty sections. */
6104 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
6105 off += vma_page_aligned_bias (hdr->sh_addr, off,
6106 bed->maxpagesize);
6107 else
6108 off += vma_page_aligned_bias (hdr->sh_addr, off,
6109 hdr->sh_addralign);
6110 off = _bfd_elf_assign_file_position_for_section (hdr, off,
6111 FALSE);
6112 }
6113 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
6114 && hdr->bfd_section == NULL)
6115 /* We don't know the offset of these sections yet: their size has
6116 not been decided. */
6117 || (hdr->bfd_section != NULL
6118 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS
6119 || (bfd_section_is_ctf (hdr->bfd_section)
6120 && abfd->is_linker_output)))
6121 || hdr == i_shdrpp[elf_onesymtab (abfd)]
6122 || (elf_symtab_shndx_list (abfd) != NULL
6123 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
6124 || hdr == i_shdrpp[elf_strtab_sec (abfd)]
6125 || hdr == i_shdrpp[elf_shstrtab_sec (abfd)])
6126 hdr->sh_offset = -1;
6127 else
6128 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
6129 }
6130 elf_next_file_pos (abfd) = off;
6131
6132 /* Now that we have set the section file positions, we can set up
6133 the file positions for the non PT_LOAD segments. */
6134 phdrs = elf_tdata (abfd)->phdr;
6135 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
6136 {
6137 if (p->p_type == PT_GNU_RELRO)
6138 {
6139 bfd_vma start, end;
6140 bfd_boolean ok;
6141
6142 if (link_info != NULL)
6143 {
6144 /* During linking the range of the RELRO segment is passed
6145 in link_info. Note that there may be padding between
6146 relro_start and the first RELRO section. */
6147 start = link_info->relro_start;
6148 end = link_info->relro_end;
6149 }
6150 else if (m->count != 0)
6151 {
6152 if (!m->p_size_valid)
6153 abort ();
6154 start = m->sections[0]->vma;
6155 end = start + m->p_size;
6156 }
6157 else
6158 {
6159 start = 0;
6160 end = 0;
6161 }
6162
6163 ok = FALSE;
6164 if (start < end)
6165 {
6166 struct elf_segment_map *lm;
6167 const Elf_Internal_Phdr *lp;
6168 unsigned int i;
6169
6170 /* Find a LOAD segment containing a section in the RELRO
6171 segment. */
6172 for (lm = elf_seg_map (abfd), lp = phdrs;
6173 lm != NULL;
6174 lm = lm->next, lp++)
6175 {
6176 if (lp->p_type == PT_LOAD
6177 && lm->count != 0
6178 && (lm->sections[lm->count - 1]->vma
6179 + (!IS_TBSS (lm->sections[lm->count - 1])
6180 ? lm->sections[lm->count - 1]->size
6181 : 0)) > start
6182 && lm->sections[0]->vma < end)
6183 break;
6184 }
6185
6186 if (lm != NULL)
6187 {
6188 /* Find the section starting the RELRO segment. */
6189 for (i = 0; i < lm->count; i++)
6190 {
6191 asection *s = lm->sections[i];
6192 if (s->vma >= start
6193 && s->vma < end
6194 && s->size != 0)
6195 break;
6196 }
6197
6198 if (i < lm->count)
6199 {
6200 p->p_vaddr = lm->sections[i]->vma;
6201 p->p_paddr = lm->sections[i]->lma;
6202 p->p_offset = lm->sections[i]->filepos;
6203 p->p_memsz = end - p->p_vaddr;
6204 p->p_filesz = p->p_memsz;
6205
6206 /* The RELRO segment typically ends a few bytes
6207 into .got.plt but other layouts are possible.
6208 In cases where the end does not match any
6209 loaded section (for instance is in file
6210 padding), trim p_filesz back to correspond to
6211 the end of loaded section contents. */
6212 if (p->p_filesz > lp->p_vaddr + lp->p_filesz - p->p_vaddr)
6213 p->p_filesz = lp->p_vaddr + lp->p_filesz - p->p_vaddr;
6214
6215 /* Preserve the alignment and flags if they are
6216 valid. The gold linker generates RW/4 for
6217 the PT_GNU_RELRO section. It is better for
6218 objcopy/strip to honor these attributes
6219 otherwise gdb will choke when using separate
6220 debug files. */
6221 if (!m->p_align_valid)
6222 p->p_align = 1;
6223 if (!m->p_flags_valid)
6224 p->p_flags = PF_R;
6225 ok = TRUE;
6226 }
6227 }
6228 }
6229 if (link_info != NULL)
6230 BFD_ASSERT (ok);
6231 if (!ok)
6232 memset (p, 0, sizeof *p);
6233 }
6234 else if (p->p_type == PT_GNU_STACK)
6235 {
6236 if (m->p_size_valid)
6237 p->p_memsz = m->p_size;
6238 }
6239 else if (m->count != 0)
6240 {
6241 unsigned int i;
6242
6243 if (p->p_type != PT_LOAD
6244 && (p->p_type != PT_NOTE
6245 || bfd_get_format (abfd) != bfd_core))
6246 {
6247 /* A user specified segment layout may include a PHDR
6248 segment that overlaps with a LOAD segment... */
6249 if (p->p_type == PT_PHDR)
6250 {
6251 m->count = 0;
6252 continue;
6253 }
6254
6255 if (m->includes_filehdr || m->includes_phdrs)
6256 {
6257 /* PR 17512: file: 2195325e. */
6258 _bfd_error_handler
6259 (_("%pB: error: non-load segment %d includes file header "
6260 "and/or program header"),
6261 abfd, (int) (p - phdrs));
6262 return FALSE;
6263 }
6264
6265 p->p_filesz = 0;
6266 p->p_offset = m->sections[0]->filepos;
6267 for (i = m->count; i-- != 0;)
6268 {
6269 asection *sect = m->sections[i];
6270 Elf_Internal_Shdr *hdr = &elf_section_data (sect)->this_hdr;
6271 if (hdr->sh_type != SHT_NOBITS)
6272 {
6273 p->p_filesz = (sect->filepos - m->sections[0]->filepos
6274 + hdr->sh_size);
6275 break;
6276 }
6277 }
6278 }
6279 }
6280 }
6281
6282 return TRUE;
6283 }
6284
6285 static elf_section_list *
6286 find_section_in_list (unsigned int i, elf_section_list * list)
6287 {
6288 for (;list != NULL; list = list->next)
6289 if (list->ndx == i)
6290 break;
6291 return list;
6292 }
6293
6294 /* Work out the file positions of all the sections. This is called by
6295 _bfd_elf_compute_section_file_positions. All the section sizes and
6296 VMAs must be known before this is called.
6297
6298 Reloc sections come in two flavours: Those processed specially as
6299 "side-channel" data attached to a section to which they apply, and those that
6300 bfd doesn't process as relocations. The latter sort are stored in a normal
6301 bfd section by bfd_section_from_shdr. We don't consider the former sort
6302 here, unless they form part of the loadable image. Reloc sections not
6303 assigned here (and compressed debugging sections and CTF sections which
6304 nothing else in the file can rely upon) will be handled later by
6305 assign_file_positions_for_relocs.
6306
6307 We also don't set the positions of the .symtab and .strtab here. */
6308
6309 static bfd_boolean
6310 assign_file_positions_except_relocs (bfd *abfd,
6311 struct bfd_link_info *link_info)
6312 {
6313 struct elf_obj_tdata *tdata = elf_tdata (abfd);
6314 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
6315 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6316 unsigned int alloc;
6317
6318 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
6319 && bfd_get_format (abfd) != bfd_core)
6320 {
6321 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
6322 unsigned int num_sec = elf_numsections (abfd);
6323 Elf_Internal_Shdr **hdrpp;
6324 unsigned int i;
6325 file_ptr off;
6326
6327 /* Start after the ELF header. */
6328 off = i_ehdrp->e_ehsize;
6329
6330 /* We are not creating an executable, which means that we are
6331 not creating a program header, and that the actual order of
6332 the sections in the file is unimportant. */
6333 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
6334 {
6335 Elf_Internal_Shdr *hdr;
6336
6337 hdr = *hdrpp;
6338 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
6339 && hdr->bfd_section == NULL)
6340 /* Do not assign offsets for these sections yet: we don't know
6341 their sizes. */
6342 || (hdr->bfd_section != NULL
6343 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS
6344 || (bfd_section_is_ctf (hdr->bfd_section)
6345 && abfd->is_linker_output)))
6346 || i == elf_onesymtab (abfd)
6347 || (elf_symtab_shndx_list (abfd) != NULL
6348 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
6349 || i == elf_strtab_sec (abfd)
6350 || i == elf_shstrtab_sec (abfd))
6351 {
6352 hdr->sh_offset = -1;
6353 }
6354 else
6355 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
6356 }
6357
6358 elf_next_file_pos (abfd) = off;
6359 elf_program_header_size (abfd) = 0;
6360 }
6361 else
6362 {
6363 /* Assign file positions for the loaded sections based on the
6364 assignment of sections to segments. */
6365 if (!assign_file_positions_for_load_sections (abfd, link_info))
6366 return FALSE;
6367
6368 /* And for non-load sections. */
6369 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
6370 return FALSE;
6371 }
6372
6373 if (!(*bed->elf_backend_modify_headers) (abfd, link_info))
6374 return FALSE;
6375
6376 /* Write out the program headers. */
6377 alloc = i_ehdrp->e_phnum;
6378 if (alloc != 0)
6379 {
6380 if (bfd_seek (abfd, i_ehdrp->e_phoff, SEEK_SET) != 0
6381 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
6382 return FALSE;
6383 }
6384
6385 return TRUE;
6386 }
6387
6388 static bfd_boolean
6389 prep_headers (bfd *abfd)
6390 {
6391 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form. */
6392 struct elf_strtab_hash *shstrtab;
6393 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6394
6395 i_ehdrp = elf_elfheader (abfd);
6396
6397 shstrtab = _bfd_elf_strtab_init ();
6398 if (shstrtab == NULL)
6399 return FALSE;
6400
6401 elf_shstrtab (abfd) = shstrtab;
6402
6403 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
6404 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
6405 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
6406 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
6407
6408 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
6409 i_ehdrp->e_ident[EI_DATA] =
6410 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
6411 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
6412
6413 if ((abfd->flags & DYNAMIC) != 0)
6414 i_ehdrp->e_type = ET_DYN;
6415 else if ((abfd->flags & EXEC_P) != 0)
6416 i_ehdrp->e_type = ET_EXEC;
6417 else if (bfd_get_format (abfd) == bfd_core)
6418 i_ehdrp->e_type = ET_CORE;
6419 else
6420 i_ehdrp->e_type = ET_REL;
6421
6422 switch (bfd_get_arch (abfd))
6423 {
6424 case bfd_arch_unknown:
6425 i_ehdrp->e_machine = EM_NONE;
6426 break;
6427
6428 /* There used to be a long list of cases here, each one setting
6429 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
6430 in the corresponding bfd definition. To avoid duplication,
6431 the switch was removed. Machines that need special handling
6432 can generally do it in elf_backend_final_write_processing(),
6433 unless they need the information earlier than the final write.
6434 Such need can generally be supplied by replacing the tests for
6435 e_machine with the conditions used to determine it. */
6436 default:
6437 i_ehdrp->e_machine = bed->elf_machine_code;
6438 }
6439
6440 i_ehdrp->e_version = bed->s->ev_current;
6441 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
6442
6443 /* No program header, for now. */
6444 i_ehdrp->e_phoff = 0;
6445 i_ehdrp->e_phentsize = 0;
6446 i_ehdrp->e_phnum = 0;
6447
6448 /* Each bfd section is section header entry. */
6449 i_ehdrp->e_entry = bfd_get_start_address (abfd);
6450 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
6451
6452 /* If we're building an executable, we'll need a program header table. */
6453 if (abfd->flags & EXEC_P)
6454 /* It all happens later. */
6455 ;
6456 else
6457 {
6458 i_ehdrp->e_phentsize = 0;
6459 i_ehdrp->e_phoff = 0;
6460 }
6461
6462 elf_tdata (abfd)->symtab_hdr.sh_name =
6463 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
6464 elf_tdata (abfd)->strtab_hdr.sh_name =
6465 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
6466 elf_tdata (abfd)->shstrtab_hdr.sh_name =
6467 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
6468 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
6469 || elf_tdata (abfd)->strtab_hdr.sh_name == (unsigned int) -1
6470 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
6471 return FALSE;
6472
6473 return TRUE;
6474 }
6475
6476 /* Set e_type in ELF header to ET_EXEC for -pie -Ttext-segment=.
6477
6478 FIXME: We used to have code here to sort the PT_LOAD segments into
6479 ascending order, as per the ELF spec. But this breaks some programs,
6480 including the Linux kernel. But really either the spec should be
6481 changed or the programs updated. */
6482
6483 bfd_boolean
6484 _bfd_elf_modify_headers (bfd *obfd, struct bfd_link_info *link_info)
6485 {
6486 if (link_info != NULL && bfd_link_pie (link_info))
6487 {
6488 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (obfd);
6489 unsigned int num_segments = i_ehdrp->e_phnum;
6490 struct elf_obj_tdata *tdata = elf_tdata (obfd);
6491 Elf_Internal_Phdr *segment = tdata->phdr;
6492 Elf_Internal_Phdr *end_segment = &segment[num_segments];
6493
6494 /* Find the lowest p_vaddr in PT_LOAD segments. */
6495 bfd_vma p_vaddr = (bfd_vma) -1;
6496 for (; segment < end_segment; segment++)
6497 if (segment->p_type == PT_LOAD && p_vaddr > segment->p_vaddr)
6498 p_vaddr = segment->p_vaddr;
6499
6500 /* Set e_type to ET_EXEC if the lowest p_vaddr in PT_LOAD
6501 segments is non-zero. */
6502 if (p_vaddr)
6503 i_ehdrp->e_type = ET_EXEC;
6504 }
6505 return TRUE;
6506 }
6507
6508 /* Assign file positions for all the reloc sections which are not part
6509 of the loadable file image, and the file position of section headers. */
6510
6511 static bfd_boolean
6512 _bfd_elf_assign_file_positions_for_non_load (bfd *abfd)
6513 {
6514 file_ptr off;
6515 Elf_Internal_Shdr **shdrpp, **end_shdrpp;
6516 Elf_Internal_Shdr *shdrp;
6517 Elf_Internal_Ehdr *i_ehdrp;
6518 const struct elf_backend_data *bed;
6519
6520 off = elf_next_file_pos (abfd);
6521
6522 shdrpp = elf_elfsections (abfd);
6523 end_shdrpp = shdrpp + elf_numsections (abfd);
6524 for (shdrpp++; shdrpp < end_shdrpp; shdrpp++)
6525 {
6526 shdrp = *shdrpp;
6527 if (shdrp->sh_offset == -1)
6528 {
6529 asection *sec = shdrp->bfd_section;
6530 bfd_boolean is_rel = (shdrp->sh_type == SHT_REL
6531 || shdrp->sh_type == SHT_RELA);
6532 bfd_boolean is_ctf = sec && bfd_section_is_ctf (sec);
6533 if (is_rel
6534 || is_ctf
6535 || (sec != NULL && (sec->flags & SEC_ELF_COMPRESS)))
6536 {
6537 if (!is_rel && !is_ctf)
6538 {
6539 const char *name = sec->name;
6540 struct bfd_elf_section_data *d;
6541
6542 /* Compress DWARF debug sections. */
6543 if (!bfd_compress_section (abfd, sec,
6544 shdrp->contents))
6545 return FALSE;
6546
6547 if (sec->compress_status == COMPRESS_SECTION_DONE
6548 && (abfd->flags & BFD_COMPRESS_GABI) == 0)
6549 {
6550 /* If section is compressed with zlib-gnu, convert
6551 section name from .debug_* to .zdebug_*. */
6552 char *new_name
6553 = convert_debug_to_zdebug (abfd, name);
6554 if (new_name == NULL)
6555 return FALSE;
6556 name = new_name;
6557 }
6558 /* Add section name to section name section. */
6559 if (shdrp->sh_name != (unsigned int) -1)
6560 abort ();
6561 shdrp->sh_name
6562 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
6563 name, FALSE);
6564 d = elf_section_data (sec);
6565
6566 /* Add reloc section name to section name section. */
6567 if (d->rel.hdr
6568 && !_bfd_elf_set_reloc_sh_name (abfd,
6569 d->rel.hdr,
6570 name, FALSE))
6571 return FALSE;
6572 if (d->rela.hdr
6573 && !_bfd_elf_set_reloc_sh_name (abfd,
6574 d->rela.hdr,
6575 name, TRUE))
6576 return FALSE;
6577
6578 /* Update section size and contents. */
6579 shdrp->sh_size = sec->size;
6580 shdrp->contents = sec->contents;
6581 shdrp->bfd_section->contents = NULL;
6582 }
6583 else if (is_ctf)
6584 {
6585 /* Update section size and contents. */
6586 shdrp->sh_size = sec->size;
6587 shdrp->contents = sec->contents;
6588 }
6589
6590 off = _bfd_elf_assign_file_position_for_section (shdrp,
6591 off,
6592 TRUE);
6593 }
6594 }
6595 }
6596
6597 /* Place section name section after DWARF debug sections have been
6598 compressed. */
6599 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
6600 shdrp = &elf_tdata (abfd)->shstrtab_hdr;
6601 shdrp->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
6602 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
6603
6604 /* Place the section headers. */
6605 i_ehdrp = elf_elfheader (abfd);
6606 bed = get_elf_backend_data (abfd);
6607 off = align_file_position (off, 1 << bed->s->log_file_align);
6608 i_ehdrp->e_shoff = off;
6609 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
6610 elf_next_file_pos (abfd) = off;
6611
6612 return TRUE;
6613 }
6614
6615 bfd_boolean
6616 _bfd_elf_write_object_contents (bfd *abfd)
6617 {
6618 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6619 Elf_Internal_Shdr **i_shdrp;
6620 bfd_boolean failed;
6621 unsigned int count, num_sec;
6622 struct elf_obj_tdata *t;
6623
6624 if (! abfd->output_has_begun
6625 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
6626 return FALSE;
6627 /* Do not rewrite ELF data when the BFD has been opened for update.
6628 abfd->output_has_begun was set to TRUE on opening, so creation of new
6629 sections, and modification of existing section sizes was restricted.
6630 This means the ELF header, program headers and section headers can't have
6631 changed.
6632 If the contents of any sections has been modified, then those changes have
6633 already been written to the BFD. */
6634 else if (abfd->direction == both_direction)
6635 {
6636 BFD_ASSERT (abfd->output_has_begun);
6637 return TRUE;
6638 }
6639
6640 i_shdrp = elf_elfsections (abfd);
6641
6642 failed = FALSE;
6643 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
6644 if (failed)
6645 return FALSE;
6646
6647 if (!_bfd_elf_assign_file_positions_for_non_load (abfd))
6648 return FALSE;
6649
6650 /* After writing the headers, we need to write the sections too... */
6651 num_sec = elf_numsections (abfd);
6652 for (count = 1; count < num_sec; count++)
6653 {
6654 i_shdrp[count]->sh_name
6655 = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
6656 i_shdrp[count]->sh_name);
6657 if (bed->elf_backend_section_processing)
6658 if (!(*bed->elf_backend_section_processing) (abfd, i_shdrp[count]))
6659 return FALSE;
6660 if (i_shdrp[count]->contents)
6661 {
6662 bfd_size_type amt = i_shdrp[count]->sh_size;
6663
6664 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
6665 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
6666 return FALSE;
6667 }
6668 }
6669
6670 /* Write out the section header names. */
6671 t = elf_tdata (abfd);
6672 if (elf_shstrtab (abfd) != NULL
6673 && (bfd_seek (abfd, t->shstrtab_hdr.sh_offset, SEEK_SET) != 0
6674 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
6675 return FALSE;
6676
6677 if (!(*bed->elf_backend_final_write_processing) (abfd))
6678 return FALSE;
6679
6680 if (!bed->s->write_shdrs_and_ehdr (abfd))
6681 return FALSE;
6682
6683 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
6684 if (t->o->build_id.after_write_object_contents != NULL)
6685 return (*t->o->build_id.after_write_object_contents) (abfd);
6686
6687 return TRUE;
6688 }
6689
6690 bfd_boolean
6691 _bfd_elf_write_corefile_contents (bfd *abfd)
6692 {
6693 /* Hopefully this can be done just like an object file. */
6694 return _bfd_elf_write_object_contents (abfd);
6695 }
6696
6697 /* Given a section, search the header to find them. */
6698
6699 unsigned int
6700 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
6701 {
6702 const struct elf_backend_data *bed;
6703 unsigned int sec_index;
6704
6705 if (elf_section_data (asect) != NULL
6706 && elf_section_data (asect)->this_idx != 0)
6707 return elf_section_data (asect)->this_idx;
6708
6709 if (bfd_is_abs_section (asect))
6710 sec_index = SHN_ABS;
6711 else if (bfd_is_com_section (asect))
6712 sec_index = SHN_COMMON;
6713 else if (bfd_is_und_section (asect))
6714 sec_index = SHN_UNDEF;
6715 else
6716 sec_index = SHN_BAD;
6717
6718 bed = get_elf_backend_data (abfd);
6719 if (bed->elf_backend_section_from_bfd_section)
6720 {
6721 int retval = sec_index;
6722
6723 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
6724 return retval;
6725 }
6726
6727 if (sec_index == SHN_BAD)
6728 bfd_set_error (bfd_error_nonrepresentable_section);
6729
6730 return sec_index;
6731 }
6732
6733 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
6734 on error. */
6735
6736 int
6737 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
6738 {
6739 asymbol *asym_ptr = *asym_ptr_ptr;
6740 int idx;
6741 flagword flags = asym_ptr->flags;
6742
6743 /* When gas creates relocations against local labels, it creates its
6744 own symbol for the section, but does put the symbol into the
6745 symbol chain, so udata is 0. When the linker is generating
6746 relocatable output, this section symbol may be for one of the
6747 input sections rather than the output section. */
6748 if (asym_ptr->udata.i == 0
6749 && (flags & BSF_SECTION_SYM)
6750 && asym_ptr->section)
6751 {
6752 asection *sec;
6753 int indx;
6754
6755 sec = asym_ptr->section;
6756 if (sec->owner != abfd && sec->output_section != NULL)
6757 sec = sec->output_section;
6758 if (sec->owner == abfd
6759 && (indx = sec->index) < elf_num_section_syms (abfd)
6760 && elf_section_syms (abfd)[indx] != NULL)
6761 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
6762 }
6763
6764 idx = asym_ptr->udata.i;
6765
6766 if (idx == 0)
6767 {
6768 /* This case can occur when using --strip-symbol on a symbol
6769 which is used in a relocation entry. */
6770 _bfd_error_handler
6771 /* xgettext:c-format */
6772 (_("%pB: symbol `%s' required but not present"),
6773 abfd, bfd_asymbol_name (asym_ptr));
6774 bfd_set_error (bfd_error_no_symbols);
6775 return -1;
6776 }
6777
6778 #if DEBUG & 4
6779 {
6780 fprintf (stderr,
6781 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8x\n",
6782 (long) asym_ptr, asym_ptr->name, idx, flags);
6783 fflush (stderr);
6784 }
6785 #endif
6786
6787 return idx;
6788 }
6789
6790 /* Rewrite program header information. */
6791
6792 static bfd_boolean
6793 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
6794 {
6795 Elf_Internal_Ehdr *iehdr;
6796 struct elf_segment_map *map;
6797 struct elf_segment_map *map_first;
6798 struct elf_segment_map **pointer_to_map;
6799 Elf_Internal_Phdr *segment;
6800 asection *section;
6801 unsigned int i;
6802 unsigned int num_segments;
6803 bfd_boolean phdr_included = FALSE;
6804 bfd_boolean p_paddr_valid;
6805 bfd_vma maxpagesize;
6806 struct elf_segment_map *phdr_adjust_seg = NULL;
6807 unsigned int phdr_adjust_num = 0;
6808 const struct elf_backend_data *bed;
6809
6810 bed = get_elf_backend_data (ibfd);
6811 iehdr = elf_elfheader (ibfd);
6812
6813 map_first = NULL;
6814 pointer_to_map = &map_first;
6815
6816 num_segments = elf_elfheader (ibfd)->e_phnum;
6817 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
6818
6819 /* Returns the end address of the segment + 1. */
6820 #define SEGMENT_END(segment, start) \
6821 (start + (segment->p_memsz > segment->p_filesz \
6822 ? segment->p_memsz : segment->p_filesz))
6823
6824 #define SECTION_SIZE(section, segment) \
6825 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
6826 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
6827 ? section->size : 0)
6828
6829 /* Returns TRUE if the given section is contained within
6830 the given segment. VMA addresses are compared. */
6831 #define IS_CONTAINED_BY_VMA(section, segment) \
6832 (section->vma >= segment->p_vaddr \
6833 && (section->vma + SECTION_SIZE (section, segment) \
6834 <= (SEGMENT_END (segment, segment->p_vaddr))))
6835
6836 /* Returns TRUE if the given section is contained within
6837 the given segment. LMA addresses are compared. */
6838 #define IS_CONTAINED_BY_LMA(section, segment, base) \
6839 (section->lma >= base \
6840 && (section->lma + SECTION_SIZE (section, segment) >= section->lma) \
6841 && (section->lma + SECTION_SIZE (section, segment) \
6842 <= SEGMENT_END (segment, base)))
6843
6844 /* Handle PT_NOTE segment. */
6845 #define IS_NOTE(p, s) \
6846 (p->p_type == PT_NOTE \
6847 && elf_section_type (s) == SHT_NOTE \
6848 && (bfd_vma) s->filepos >= p->p_offset \
6849 && ((bfd_vma) s->filepos + s->size \
6850 <= p->p_offset + p->p_filesz))
6851
6852 /* Special case: corefile "NOTE" section containing regs, prpsinfo
6853 etc. */
6854 #define IS_COREFILE_NOTE(p, s) \
6855 (IS_NOTE (p, s) \
6856 && bfd_get_format (ibfd) == bfd_core \
6857 && s->vma == 0 \
6858 && s->lma == 0)
6859
6860 /* The complicated case when p_vaddr is 0 is to handle the Solaris
6861 linker, which generates a PT_INTERP section with p_vaddr and
6862 p_memsz set to 0. */
6863 #define IS_SOLARIS_PT_INTERP(p, s) \
6864 (p->p_vaddr == 0 \
6865 && p->p_paddr == 0 \
6866 && p->p_memsz == 0 \
6867 && p->p_filesz > 0 \
6868 && (s->flags & SEC_HAS_CONTENTS) != 0 \
6869 && s->size > 0 \
6870 && (bfd_vma) s->filepos >= p->p_offset \
6871 && ((bfd_vma) s->filepos + s->size \
6872 <= p->p_offset + p->p_filesz))
6873
6874 /* Decide if the given section should be included in the given segment.
6875 A section will be included if:
6876 1. It is within the address space of the segment -- we use the LMA
6877 if that is set for the segment and the VMA otherwise,
6878 2. It is an allocated section or a NOTE section in a PT_NOTE
6879 segment.
6880 3. There is an output section associated with it,
6881 4. The section has not already been allocated to a previous segment.
6882 5. PT_GNU_STACK segments do not include any sections.
6883 6. PT_TLS segment includes only SHF_TLS sections.
6884 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
6885 8. PT_DYNAMIC should not contain empty sections at the beginning
6886 (with the possible exception of .dynamic). */
6887 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
6888 ((((segment->p_paddr \
6889 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
6890 : IS_CONTAINED_BY_VMA (section, segment)) \
6891 && (section->flags & SEC_ALLOC) != 0) \
6892 || IS_NOTE (segment, section)) \
6893 && segment->p_type != PT_GNU_STACK \
6894 && (segment->p_type != PT_TLS \
6895 || (section->flags & SEC_THREAD_LOCAL)) \
6896 && (segment->p_type == PT_LOAD \
6897 || segment->p_type == PT_TLS \
6898 || (section->flags & SEC_THREAD_LOCAL) == 0) \
6899 && (segment->p_type != PT_DYNAMIC \
6900 || SECTION_SIZE (section, segment) > 0 \
6901 || (segment->p_paddr \
6902 ? segment->p_paddr != section->lma \
6903 : segment->p_vaddr != section->vma) \
6904 || (strcmp (bfd_section_name (section), ".dynamic") == 0)) \
6905 && (segment->p_type != PT_LOAD || !section->segment_mark))
6906
6907 /* If the output section of a section in the input segment is NULL,
6908 it is removed from the corresponding output segment. */
6909 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
6910 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
6911 && section->output_section != NULL)
6912
6913 /* Returns TRUE iff seg1 starts after the end of seg2. */
6914 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
6915 (seg1->field >= SEGMENT_END (seg2, seg2->field))
6916
6917 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
6918 their VMA address ranges and their LMA address ranges overlap.
6919 It is possible to have overlapping VMA ranges without overlapping LMA
6920 ranges. RedBoot images for example can have both .data and .bss mapped
6921 to the same VMA range, but with the .data section mapped to a different
6922 LMA. */
6923 #define SEGMENT_OVERLAPS(seg1, seg2) \
6924 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
6925 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
6926 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
6927 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
6928
6929 /* Initialise the segment mark field. */
6930 for (section = ibfd->sections; section != NULL; section = section->next)
6931 section->segment_mark = FALSE;
6932
6933 /* The Solaris linker creates program headers in which all the
6934 p_paddr fields are zero. When we try to objcopy or strip such a
6935 file, we get confused. Check for this case, and if we find it
6936 don't set the p_paddr_valid fields. */
6937 p_paddr_valid = FALSE;
6938 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6939 i < num_segments;
6940 i++, segment++)
6941 if (segment->p_paddr != 0)
6942 {
6943 p_paddr_valid = TRUE;
6944 break;
6945 }
6946
6947 /* Scan through the segments specified in the program header
6948 of the input BFD. For this first scan we look for overlaps
6949 in the loadable segments. These can be created by weird
6950 parameters to objcopy. Also, fix some solaris weirdness. */
6951 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6952 i < num_segments;
6953 i++, segment++)
6954 {
6955 unsigned int j;
6956 Elf_Internal_Phdr *segment2;
6957
6958 if (segment->p_type == PT_INTERP)
6959 for (section = ibfd->sections; section; section = section->next)
6960 if (IS_SOLARIS_PT_INTERP (segment, section))
6961 {
6962 /* Mininal change so that the normal section to segment
6963 assignment code will work. */
6964 segment->p_vaddr = section->vma;
6965 break;
6966 }
6967
6968 if (segment->p_type != PT_LOAD)
6969 {
6970 /* Remove PT_GNU_RELRO segment. */
6971 if (segment->p_type == PT_GNU_RELRO)
6972 segment->p_type = PT_NULL;
6973 continue;
6974 }
6975
6976 /* Determine if this segment overlaps any previous segments. */
6977 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
6978 {
6979 bfd_signed_vma extra_length;
6980
6981 if (segment2->p_type != PT_LOAD
6982 || !SEGMENT_OVERLAPS (segment, segment2))
6983 continue;
6984
6985 /* Merge the two segments together. */
6986 if (segment2->p_vaddr < segment->p_vaddr)
6987 {
6988 /* Extend SEGMENT2 to include SEGMENT and then delete
6989 SEGMENT. */
6990 extra_length = (SEGMENT_END (segment, segment->p_vaddr)
6991 - SEGMENT_END (segment2, segment2->p_vaddr));
6992
6993 if (extra_length > 0)
6994 {
6995 segment2->p_memsz += extra_length;
6996 segment2->p_filesz += extra_length;
6997 }
6998
6999 segment->p_type = PT_NULL;
7000
7001 /* Since we have deleted P we must restart the outer loop. */
7002 i = 0;
7003 segment = elf_tdata (ibfd)->phdr;
7004 break;
7005 }
7006 else
7007 {
7008 /* Extend SEGMENT to include SEGMENT2 and then delete
7009 SEGMENT2. */
7010 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
7011 - SEGMENT_END (segment, segment->p_vaddr));
7012
7013 if (extra_length > 0)
7014 {
7015 segment->p_memsz += extra_length;
7016 segment->p_filesz += extra_length;
7017 }
7018
7019 segment2->p_type = PT_NULL;
7020 }
7021 }
7022 }
7023
7024 /* The second scan attempts to assign sections to segments. */
7025 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7026 i < num_segments;
7027 i++, segment++)
7028 {
7029 unsigned int section_count;
7030 asection **sections;
7031 asection *output_section;
7032 unsigned int isec;
7033 asection *matching_lma;
7034 asection *suggested_lma;
7035 unsigned int j;
7036 bfd_size_type amt;
7037 asection *first_section;
7038
7039 if (segment->p_type == PT_NULL)
7040 continue;
7041
7042 first_section = NULL;
7043 /* Compute how many sections might be placed into this segment. */
7044 for (section = ibfd->sections, section_count = 0;
7045 section != NULL;
7046 section = section->next)
7047 {
7048 /* Find the first section in the input segment, which may be
7049 removed from the corresponding output segment. */
7050 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
7051 {
7052 if (first_section == NULL)
7053 first_section = section;
7054 if (section->output_section != NULL)
7055 ++section_count;
7056 }
7057 }
7058
7059 /* Allocate a segment map big enough to contain
7060 all of the sections we have selected. */
7061 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
7062 amt += (bfd_size_type) section_count * sizeof (asection *);
7063 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7064 if (map == NULL)
7065 return FALSE;
7066
7067 /* Initialise the fields of the segment map. Default to
7068 using the physical address of the segment in the input BFD. */
7069 map->next = NULL;
7070 map->p_type = segment->p_type;
7071 map->p_flags = segment->p_flags;
7072 map->p_flags_valid = 1;
7073
7074 /* If the first section in the input segment is removed, there is
7075 no need to preserve segment physical address in the corresponding
7076 output segment. */
7077 if (!first_section || first_section->output_section != NULL)
7078 {
7079 map->p_paddr = segment->p_paddr;
7080 map->p_paddr_valid = p_paddr_valid;
7081 }
7082
7083 /* Determine if this segment contains the ELF file header
7084 and if it contains the program headers themselves. */
7085 map->includes_filehdr = (segment->p_offset == 0
7086 && segment->p_filesz >= iehdr->e_ehsize);
7087 map->includes_phdrs = 0;
7088
7089 if (!phdr_included || segment->p_type != PT_LOAD)
7090 {
7091 map->includes_phdrs =
7092 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
7093 && (segment->p_offset + segment->p_filesz
7094 >= ((bfd_vma) iehdr->e_phoff
7095 + iehdr->e_phnum * iehdr->e_phentsize)));
7096
7097 if (segment->p_type == PT_LOAD && map->includes_phdrs)
7098 phdr_included = TRUE;
7099 }
7100
7101 if (section_count == 0)
7102 {
7103 /* Special segments, such as the PT_PHDR segment, may contain
7104 no sections, but ordinary, loadable segments should contain
7105 something. They are allowed by the ELF spec however, so only
7106 a warning is produced.
7107 There is however the valid use case of embedded systems which
7108 have segments with p_filesz of 0 and a p_memsz > 0 to initialize
7109 flash memory with zeros. No warning is shown for that case. */
7110 if (segment->p_type == PT_LOAD
7111 && (segment->p_filesz > 0 || segment->p_memsz == 0))
7112 /* xgettext:c-format */
7113 _bfd_error_handler
7114 (_("%pB: warning: empty loadable segment detected"
7115 " at vaddr=%#" PRIx64 ", is this intentional?"),
7116 ibfd, (uint64_t) segment->p_vaddr);
7117
7118 map->p_vaddr_offset = segment->p_vaddr;
7119 map->count = 0;
7120 *pointer_to_map = map;
7121 pointer_to_map = &map->next;
7122
7123 continue;
7124 }
7125
7126 /* Now scan the sections in the input BFD again and attempt
7127 to add their corresponding output sections to the segment map.
7128 The problem here is how to handle an output section which has
7129 been moved (ie had its LMA changed). There are four possibilities:
7130
7131 1. None of the sections have been moved.
7132 In this case we can continue to use the segment LMA from the
7133 input BFD.
7134
7135 2. All of the sections have been moved by the same amount.
7136 In this case we can change the segment's LMA to match the LMA
7137 of the first section.
7138
7139 3. Some of the sections have been moved, others have not.
7140 In this case those sections which have not been moved can be
7141 placed in the current segment which will have to have its size,
7142 and possibly its LMA changed, and a new segment or segments will
7143 have to be created to contain the other sections.
7144
7145 4. The sections have been moved, but not by the same amount.
7146 In this case we can change the segment's LMA to match the LMA
7147 of the first section and we will have to create a new segment
7148 or segments to contain the other sections.
7149
7150 In order to save time, we allocate an array to hold the section
7151 pointers that we are interested in. As these sections get assigned
7152 to a segment, they are removed from this array. */
7153
7154 sections = (asection **) bfd_malloc2 (section_count, sizeof (asection *));
7155 if (sections == NULL)
7156 return FALSE;
7157
7158 /* Step One: Scan for segment vs section LMA conflicts.
7159 Also add the sections to the section array allocated above.
7160 Also add the sections to the current segment. In the common
7161 case, where the sections have not been moved, this means that
7162 we have completely filled the segment, and there is nothing
7163 more to do. */
7164 isec = 0;
7165 matching_lma = NULL;
7166 suggested_lma = NULL;
7167
7168 for (section = first_section, j = 0;
7169 section != NULL;
7170 section = section->next)
7171 {
7172 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
7173 {
7174 output_section = section->output_section;
7175
7176 sections[j++] = section;
7177
7178 /* The Solaris native linker always sets p_paddr to 0.
7179 We try to catch that case here, and set it to the
7180 correct value. Note - some backends require that
7181 p_paddr be left as zero. */
7182 if (!p_paddr_valid
7183 && segment->p_vaddr != 0
7184 && !bed->want_p_paddr_set_to_zero
7185 && isec == 0
7186 && output_section->lma != 0
7187 && (align_power (segment->p_vaddr
7188 + (map->includes_filehdr
7189 ? iehdr->e_ehsize : 0)
7190 + (map->includes_phdrs
7191 ? iehdr->e_phnum * iehdr->e_phentsize
7192 : 0),
7193 output_section->alignment_power)
7194 == output_section->vma))
7195 map->p_paddr = segment->p_vaddr;
7196
7197 /* Match up the physical address of the segment with the
7198 LMA address of the output section. */
7199 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
7200 || IS_COREFILE_NOTE (segment, section)
7201 || (bed->want_p_paddr_set_to_zero
7202 && IS_CONTAINED_BY_VMA (output_section, segment)))
7203 {
7204 if (matching_lma == NULL
7205 || output_section->lma < matching_lma->lma)
7206 matching_lma = output_section;
7207
7208 /* We assume that if the section fits within the segment
7209 then it does not overlap any other section within that
7210 segment. */
7211 map->sections[isec++] = output_section;
7212 }
7213 else if (suggested_lma == NULL)
7214 suggested_lma = output_section;
7215
7216 if (j == section_count)
7217 break;
7218 }
7219 }
7220
7221 BFD_ASSERT (j == section_count);
7222
7223 /* Step Two: Adjust the physical address of the current segment,
7224 if necessary. */
7225 if (isec == section_count)
7226 {
7227 /* All of the sections fitted within the segment as currently
7228 specified. This is the default case. Add the segment to
7229 the list of built segments and carry on to process the next
7230 program header in the input BFD. */
7231 map->count = section_count;
7232 *pointer_to_map = map;
7233 pointer_to_map = &map->next;
7234
7235 if (p_paddr_valid
7236 && !bed->want_p_paddr_set_to_zero)
7237 {
7238 bfd_vma hdr_size = 0;
7239 if (map->includes_filehdr)
7240 hdr_size = iehdr->e_ehsize;
7241 if (map->includes_phdrs)
7242 hdr_size += iehdr->e_phnum * iehdr->e_phentsize;
7243
7244 /* Account for padding before the first section in the
7245 segment. */
7246 map->p_vaddr_offset = map->p_paddr + hdr_size - matching_lma->lma;
7247 }
7248
7249 free (sections);
7250 continue;
7251 }
7252 else
7253 {
7254 /* Change the current segment's physical address to match
7255 the LMA of the first section that fitted, or if no
7256 section fitted, the first section. */
7257 if (matching_lma == NULL)
7258 matching_lma = suggested_lma;
7259
7260 map->p_paddr = matching_lma->lma;
7261
7262 /* Offset the segment physical address from the lma
7263 to allow for space taken up by elf headers. */
7264 if (map->includes_phdrs)
7265 {
7266 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
7267
7268 /* iehdr->e_phnum is just an estimate of the number
7269 of program headers that we will need. Make a note
7270 here of the number we used and the segment we chose
7271 to hold these headers, so that we can adjust the
7272 offset when we know the correct value. */
7273 phdr_adjust_num = iehdr->e_phnum;
7274 phdr_adjust_seg = map;
7275 }
7276
7277 if (map->includes_filehdr)
7278 {
7279 bfd_vma align = (bfd_vma) 1 << matching_lma->alignment_power;
7280 map->p_paddr -= iehdr->e_ehsize;
7281 /* We've subtracted off the size of headers from the
7282 first section lma, but there may have been some
7283 alignment padding before that section too. Try to
7284 account for that by adjusting the segment lma down to
7285 the same alignment. */
7286 if (segment->p_align != 0 && segment->p_align < align)
7287 align = segment->p_align;
7288 map->p_paddr &= -align;
7289 }
7290 }
7291
7292 /* Step Three: Loop over the sections again, this time assigning
7293 those that fit to the current segment and removing them from the
7294 sections array; but making sure not to leave large gaps. Once all
7295 possible sections have been assigned to the current segment it is
7296 added to the list of built segments and if sections still remain
7297 to be assigned, a new segment is constructed before repeating
7298 the loop. */
7299 isec = 0;
7300 do
7301 {
7302 map->count = 0;
7303 suggested_lma = NULL;
7304
7305 /* Fill the current segment with sections that fit. */
7306 for (j = 0; j < section_count; j++)
7307 {
7308 section = sections[j];
7309
7310 if (section == NULL)
7311 continue;
7312
7313 output_section = section->output_section;
7314
7315 BFD_ASSERT (output_section != NULL);
7316
7317 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
7318 || IS_COREFILE_NOTE (segment, section))
7319 {
7320 if (map->count == 0)
7321 {
7322 /* If the first section in a segment does not start at
7323 the beginning of the segment, then something is
7324 wrong. */
7325 if (align_power (map->p_paddr
7326 + (map->includes_filehdr
7327 ? iehdr->e_ehsize : 0)
7328 + (map->includes_phdrs
7329 ? iehdr->e_phnum * iehdr->e_phentsize
7330 : 0),
7331 output_section->alignment_power)
7332 != output_section->lma)
7333 goto sorry;
7334 }
7335 else
7336 {
7337 asection *prev_sec;
7338
7339 prev_sec = map->sections[map->count - 1];
7340
7341 /* If the gap between the end of the previous section
7342 and the start of this section is more than
7343 maxpagesize then we need to start a new segment. */
7344 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
7345 maxpagesize)
7346 < BFD_ALIGN (output_section->lma, maxpagesize))
7347 || (prev_sec->lma + prev_sec->size
7348 > output_section->lma))
7349 {
7350 if (suggested_lma == NULL)
7351 suggested_lma = output_section;
7352
7353 continue;
7354 }
7355 }
7356
7357 map->sections[map->count++] = output_section;
7358 ++isec;
7359 sections[j] = NULL;
7360 if (segment->p_type == PT_LOAD)
7361 section->segment_mark = TRUE;
7362 }
7363 else if (suggested_lma == NULL)
7364 suggested_lma = output_section;
7365 }
7366
7367 /* PR 23932. A corrupt input file may contain sections that cannot
7368 be assigned to any segment - because for example they have a
7369 negative size - or segments that do not contain any sections. */
7370 if (map->count == 0)
7371 {
7372 sorry:
7373 bfd_set_error (bfd_error_sorry);
7374 free (sections);
7375 return FALSE;
7376 }
7377
7378 /* Add the current segment to the list of built segments. */
7379 *pointer_to_map = map;
7380 pointer_to_map = &map->next;
7381
7382 if (isec < section_count)
7383 {
7384 /* We still have not allocated all of the sections to
7385 segments. Create a new segment here, initialise it
7386 and carry on looping. */
7387 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
7388 amt += (bfd_size_type) section_count * sizeof (asection *);
7389 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7390 if (map == NULL)
7391 {
7392 free (sections);
7393 return FALSE;
7394 }
7395
7396 /* Initialise the fields of the segment map. Set the physical
7397 physical address to the LMA of the first section that has
7398 not yet been assigned. */
7399 map->next = NULL;
7400 map->p_type = segment->p_type;
7401 map->p_flags = segment->p_flags;
7402 map->p_flags_valid = 1;
7403 map->p_paddr = suggested_lma->lma;
7404 map->p_paddr_valid = p_paddr_valid;
7405 map->includes_filehdr = 0;
7406 map->includes_phdrs = 0;
7407 }
7408 }
7409 while (isec < section_count);
7410
7411 free (sections);
7412 }
7413
7414 elf_seg_map (obfd) = map_first;
7415
7416 /* If we had to estimate the number of program headers that were
7417 going to be needed, then check our estimate now and adjust
7418 the offset if necessary. */
7419 if (phdr_adjust_seg != NULL)
7420 {
7421 unsigned int count;
7422
7423 for (count = 0, map = map_first; map != NULL; map = map->next)
7424 count++;
7425
7426 if (count > phdr_adjust_num)
7427 phdr_adjust_seg->p_paddr
7428 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
7429
7430 for (map = map_first; map != NULL; map = map->next)
7431 if (map->p_type == PT_PHDR)
7432 {
7433 bfd_vma adjust
7434 = phdr_adjust_seg->includes_filehdr ? iehdr->e_ehsize : 0;
7435 map->p_paddr = phdr_adjust_seg->p_paddr + adjust;
7436 break;
7437 }
7438 }
7439
7440 #undef SEGMENT_END
7441 #undef SECTION_SIZE
7442 #undef IS_CONTAINED_BY_VMA
7443 #undef IS_CONTAINED_BY_LMA
7444 #undef IS_NOTE
7445 #undef IS_COREFILE_NOTE
7446 #undef IS_SOLARIS_PT_INTERP
7447 #undef IS_SECTION_IN_INPUT_SEGMENT
7448 #undef INCLUDE_SECTION_IN_SEGMENT
7449 #undef SEGMENT_AFTER_SEGMENT
7450 #undef SEGMENT_OVERLAPS
7451 return TRUE;
7452 }
7453
7454 /* Copy ELF program header information. */
7455
7456 static bfd_boolean
7457 copy_elf_program_header (bfd *ibfd, bfd *obfd)
7458 {
7459 Elf_Internal_Ehdr *iehdr;
7460 struct elf_segment_map *map;
7461 struct elf_segment_map *map_first;
7462 struct elf_segment_map **pointer_to_map;
7463 Elf_Internal_Phdr *segment;
7464 unsigned int i;
7465 unsigned int num_segments;
7466 bfd_boolean phdr_included = FALSE;
7467 bfd_boolean p_paddr_valid;
7468
7469 iehdr = elf_elfheader (ibfd);
7470
7471 map_first = NULL;
7472 pointer_to_map = &map_first;
7473
7474 /* If all the segment p_paddr fields are zero, don't set
7475 map->p_paddr_valid. */
7476 p_paddr_valid = FALSE;
7477 num_segments = elf_elfheader (ibfd)->e_phnum;
7478 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7479 i < num_segments;
7480 i++, segment++)
7481 if (segment->p_paddr != 0)
7482 {
7483 p_paddr_valid = TRUE;
7484 break;
7485 }
7486
7487 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7488 i < num_segments;
7489 i++, segment++)
7490 {
7491 asection *section;
7492 unsigned int section_count;
7493 bfd_size_type amt;
7494 Elf_Internal_Shdr *this_hdr;
7495 asection *first_section = NULL;
7496 asection *lowest_section;
7497
7498 /* Compute how many sections are in this segment. */
7499 for (section = ibfd->sections, section_count = 0;
7500 section != NULL;
7501 section = section->next)
7502 {
7503 this_hdr = &(elf_section_data(section)->this_hdr);
7504 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7505 {
7506 if (first_section == NULL)
7507 first_section = section;
7508 section_count++;
7509 }
7510 }
7511
7512 /* Allocate a segment map big enough to contain
7513 all of the sections we have selected. */
7514 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
7515 amt += (bfd_size_type) section_count * sizeof (asection *);
7516 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7517 if (map == NULL)
7518 return FALSE;
7519
7520 /* Initialize the fields of the output segment map with the
7521 input segment. */
7522 map->next = NULL;
7523 map->p_type = segment->p_type;
7524 map->p_flags = segment->p_flags;
7525 map->p_flags_valid = 1;
7526 map->p_paddr = segment->p_paddr;
7527 map->p_paddr_valid = p_paddr_valid;
7528 map->p_align = segment->p_align;
7529 map->p_align_valid = 1;
7530 map->p_vaddr_offset = 0;
7531
7532 if (map->p_type == PT_GNU_RELRO
7533 || map->p_type == PT_GNU_STACK)
7534 {
7535 /* The PT_GNU_RELRO segment may contain the first a few
7536 bytes in the .got.plt section even if the whole .got.plt
7537 section isn't in the PT_GNU_RELRO segment. We won't
7538 change the size of the PT_GNU_RELRO segment.
7539 Similarly, PT_GNU_STACK size is significant on uclinux
7540 systems. */
7541 map->p_size = segment->p_memsz;
7542 map->p_size_valid = 1;
7543 }
7544
7545 /* Determine if this segment contains the ELF file header
7546 and if it contains the program headers themselves. */
7547 map->includes_filehdr = (segment->p_offset == 0
7548 && segment->p_filesz >= iehdr->e_ehsize);
7549
7550 map->includes_phdrs = 0;
7551 if (! phdr_included || segment->p_type != PT_LOAD)
7552 {
7553 map->includes_phdrs =
7554 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
7555 && (segment->p_offset + segment->p_filesz
7556 >= ((bfd_vma) iehdr->e_phoff
7557 + iehdr->e_phnum * iehdr->e_phentsize)));
7558
7559 if (segment->p_type == PT_LOAD && map->includes_phdrs)
7560 phdr_included = TRUE;
7561 }
7562
7563 lowest_section = NULL;
7564 if (section_count != 0)
7565 {
7566 unsigned int isec = 0;
7567
7568 for (section = first_section;
7569 section != NULL;
7570 section = section->next)
7571 {
7572 this_hdr = &(elf_section_data(section)->this_hdr);
7573 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7574 {
7575 map->sections[isec++] = section->output_section;
7576 if ((section->flags & SEC_ALLOC) != 0)
7577 {
7578 bfd_vma seg_off;
7579
7580 if (lowest_section == NULL
7581 || section->lma < lowest_section->lma)
7582 lowest_section = section;
7583
7584 /* Section lmas are set up from PT_LOAD header
7585 p_paddr in _bfd_elf_make_section_from_shdr.
7586 If this header has a p_paddr that disagrees
7587 with the section lma, flag the p_paddr as
7588 invalid. */
7589 if ((section->flags & SEC_LOAD) != 0)
7590 seg_off = this_hdr->sh_offset - segment->p_offset;
7591 else
7592 seg_off = this_hdr->sh_addr - segment->p_vaddr;
7593 if (section->lma - segment->p_paddr != seg_off)
7594 map->p_paddr_valid = FALSE;
7595 }
7596 if (isec == section_count)
7597 break;
7598 }
7599 }
7600 }
7601
7602 if (section_count == 0)
7603 map->p_vaddr_offset = segment->p_vaddr;
7604 else if (map->p_paddr_valid)
7605 {
7606 /* Account for padding before the first section in the segment. */
7607 bfd_vma hdr_size = 0;
7608 if (map->includes_filehdr)
7609 hdr_size = iehdr->e_ehsize;
7610 if (map->includes_phdrs)
7611 hdr_size += iehdr->e_phnum * iehdr->e_phentsize;
7612
7613 map->p_vaddr_offset = (map->p_paddr + hdr_size
7614 - (lowest_section ? lowest_section->lma : 0));
7615 }
7616
7617 map->count = section_count;
7618 *pointer_to_map = map;
7619 pointer_to_map = &map->next;
7620 }
7621
7622 elf_seg_map (obfd) = map_first;
7623 return TRUE;
7624 }
7625
7626 /* Copy private BFD data. This copies or rewrites ELF program header
7627 information. */
7628
7629 static bfd_boolean
7630 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
7631 {
7632 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7633 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7634 return TRUE;
7635
7636 if (elf_tdata (ibfd)->phdr == NULL)
7637 return TRUE;
7638
7639 if (ibfd->xvec == obfd->xvec)
7640 {
7641 /* Check to see if any sections in the input BFD
7642 covered by ELF program header have changed. */
7643 Elf_Internal_Phdr *segment;
7644 asection *section, *osec;
7645 unsigned int i, num_segments;
7646 Elf_Internal_Shdr *this_hdr;
7647 const struct elf_backend_data *bed;
7648
7649 bed = get_elf_backend_data (ibfd);
7650
7651 /* Regenerate the segment map if p_paddr is set to 0. */
7652 if (bed->want_p_paddr_set_to_zero)
7653 goto rewrite;
7654
7655 /* Initialize the segment mark field. */
7656 for (section = obfd->sections; section != NULL;
7657 section = section->next)
7658 section->segment_mark = FALSE;
7659
7660 num_segments = elf_elfheader (ibfd)->e_phnum;
7661 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7662 i < num_segments;
7663 i++, segment++)
7664 {
7665 /* PR binutils/3535. The Solaris linker always sets the p_paddr
7666 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
7667 which severly confuses things, so always regenerate the segment
7668 map in this case. */
7669 if (segment->p_paddr == 0
7670 && segment->p_memsz == 0
7671 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
7672 goto rewrite;
7673
7674 for (section = ibfd->sections;
7675 section != NULL; section = section->next)
7676 {
7677 /* We mark the output section so that we know it comes
7678 from the input BFD. */
7679 osec = section->output_section;
7680 if (osec)
7681 osec->segment_mark = TRUE;
7682
7683 /* Check if this section is covered by the segment. */
7684 this_hdr = &(elf_section_data(section)->this_hdr);
7685 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7686 {
7687 /* FIXME: Check if its output section is changed or
7688 removed. What else do we need to check? */
7689 if (osec == NULL
7690 || section->flags != osec->flags
7691 || section->lma != osec->lma
7692 || section->vma != osec->vma
7693 || section->size != osec->size
7694 || section->rawsize != osec->rawsize
7695 || section->alignment_power != osec->alignment_power)
7696 goto rewrite;
7697 }
7698 }
7699 }
7700
7701 /* Check to see if any output section do not come from the
7702 input BFD. */
7703 for (section = obfd->sections; section != NULL;
7704 section = section->next)
7705 {
7706 if (!section->segment_mark)
7707 goto rewrite;
7708 else
7709 section->segment_mark = FALSE;
7710 }
7711
7712 return copy_elf_program_header (ibfd, obfd);
7713 }
7714
7715 rewrite:
7716 if (ibfd->xvec == obfd->xvec)
7717 {
7718 /* When rewriting program header, set the output maxpagesize to
7719 the maximum alignment of input PT_LOAD segments. */
7720 Elf_Internal_Phdr *segment;
7721 unsigned int i;
7722 unsigned int num_segments = elf_elfheader (ibfd)->e_phnum;
7723 bfd_vma maxpagesize = 0;
7724
7725 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7726 i < num_segments;
7727 i++, segment++)
7728 if (segment->p_type == PT_LOAD
7729 && maxpagesize < segment->p_align)
7730 {
7731 /* PR 17512: file: f17299af. */
7732 if (segment->p_align > (bfd_vma) 1 << ((sizeof (bfd_vma) * 8) - 2))
7733 /* xgettext:c-format */
7734 _bfd_error_handler (_("%pB: warning: segment alignment of %#"
7735 PRIx64 " is too large"),
7736 ibfd, (uint64_t) segment->p_align);
7737 else
7738 maxpagesize = segment->p_align;
7739 }
7740
7741 if (maxpagesize != get_elf_backend_data (obfd)->maxpagesize)
7742 bfd_emul_set_maxpagesize (bfd_get_target (obfd), maxpagesize);
7743 }
7744
7745 return rewrite_elf_program_header (ibfd, obfd);
7746 }
7747
7748 /* Initialize private output section information from input section. */
7749
7750 bfd_boolean
7751 _bfd_elf_init_private_section_data (bfd *ibfd,
7752 asection *isec,
7753 bfd *obfd,
7754 asection *osec,
7755 struct bfd_link_info *link_info)
7756
7757 {
7758 Elf_Internal_Shdr *ihdr, *ohdr;
7759 bfd_boolean final_link = (link_info != NULL
7760 && !bfd_link_relocatable (link_info));
7761
7762 if (ibfd->xvec->flavour != bfd_target_elf_flavour
7763 || obfd->xvec->flavour != bfd_target_elf_flavour)
7764 return TRUE;
7765
7766 BFD_ASSERT (elf_section_data (osec) != NULL);
7767
7768 /* For objcopy and relocatable link, don't copy the output ELF
7769 section type from input if the output BFD section flags have been
7770 set to something different. For a final link allow some flags
7771 that the linker clears to differ. */
7772 if (elf_section_type (osec) == SHT_NULL
7773 && (osec->flags == isec->flags
7774 || (final_link
7775 && ((osec->flags ^ isec->flags)
7776 & ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC)) == 0)))
7777 elf_section_type (osec) = elf_section_type (isec);
7778
7779 /* FIXME: Is this correct for all OS/PROC specific flags? */
7780 elf_section_flags (osec) |= (elf_section_flags (isec)
7781 & (SHF_MASKOS | SHF_MASKPROC));
7782
7783 /* Copy sh_info from input for mbind section. */
7784 if ((elf_tdata (ibfd)->has_gnu_osabi & elf_gnu_osabi_mbind) != 0
7785 && elf_section_flags (isec) & SHF_GNU_MBIND)
7786 elf_section_data (osec)->this_hdr.sh_info
7787 = elf_section_data (isec)->this_hdr.sh_info;
7788
7789 /* Set things up for objcopy and relocatable link. The output
7790 SHT_GROUP section will have its elf_next_in_group pointing back
7791 to the input group members. Ignore linker created group section.
7792 See elfNN_ia64_object_p in elfxx-ia64.c. */
7793 if ((link_info == NULL
7794 || !link_info->resolve_section_groups)
7795 && (elf_sec_group (isec) == NULL
7796 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0))
7797 {
7798 if (elf_section_flags (isec) & SHF_GROUP)
7799 elf_section_flags (osec) |= SHF_GROUP;
7800 elf_next_in_group (osec) = elf_next_in_group (isec);
7801 elf_section_data (osec)->group = elf_section_data (isec)->group;
7802 }
7803
7804 /* If not decompress, preserve SHF_COMPRESSED. */
7805 if (!final_link && (ibfd->flags & BFD_DECOMPRESS) == 0)
7806 elf_section_flags (osec) |= (elf_section_flags (isec)
7807 & SHF_COMPRESSED);
7808
7809 ihdr = &elf_section_data (isec)->this_hdr;
7810
7811 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
7812 don't use the output section of the linked-to section since it
7813 may be NULL at this point. */
7814 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
7815 {
7816 ohdr = &elf_section_data (osec)->this_hdr;
7817 ohdr->sh_flags |= SHF_LINK_ORDER;
7818 elf_linked_to_section (osec) = elf_linked_to_section (isec);
7819 }
7820
7821 osec->use_rela_p = isec->use_rela_p;
7822
7823 return TRUE;
7824 }
7825
7826 /* Copy private section information. This copies over the entsize
7827 field, and sometimes the info field. */
7828
7829 bfd_boolean
7830 _bfd_elf_copy_private_section_data (bfd *ibfd,
7831 asection *isec,
7832 bfd *obfd,
7833 asection *osec)
7834 {
7835 Elf_Internal_Shdr *ihdr, *ohdr;
7836
7837 if (ibfd->xvec->flavour != bfd_target_elf_flavour
7838 || obfd->xvec->flavour != bfd_target_elf_flavour)
7839 return TRUE;
7840
7841 ihdr = &elf_section_data (isec)->this_hdr;
7842 ohdr = &elf_section_data (osec)->this_hdr;
7843
7844 ohdr->sh_entsize = ihdr->sh_entsize;
7845
7846 if (ihdr->sh_type == SHT_SYMTAB
7847 || ihdr->sh_type == SHT_DYNSYM
7848 || ihdr->sh_type == SHT_GNU_verneed
7849 || ihdr->sh_type == SHT_GNU_verdef)
7850 ohdr->sh_info = ihdr->sh_info;
7851
7852 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
7853 NULL);
7854 }
7855
7856 /* Look at all the SHT_GROUP sections in IBFD, making any adjustments
7857 necessary if we are removing either the SHT_GROUP section or any of
7858 the group member sections. DISCARDED is the value that a section's
7859 output_section has if the section will be discarded, NULL when this
7860 function is called from objcopy, bfd_abs_section_ptr when called
7861 from the linker. */
7862
7863 bfd_boolean
7864 _bfd_elf_fixup_group_sections (bfd *ibfd, asection *discarded)
7865 {
7866 asection *isec;
7867
7868 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
7869 if (elf_section_type (isec) == SHT_GROUP)
7870 {
7871 asection *first = elf_next_in_group (isec);
7872 asection *s = first;
7873 bfd_size_type removed = 0;
7874
7875 while (s != NULL)
7876 {
7877 /* If this member section is being output but the
7878 SHT_GROUP section is not, then clear the group info
7879 set up by _bfd_elf_copy_private_section_data. */
7880 if (s->output_section != discarded
7881 && isec->output_section == discarded)
7882 {
7883 elf_section_flags (s->output_section) &= ~SHF_GROUP;
7884 elf_group_name (s->output_section) = NULL;
7885 }
7886 /* Conversely, if the member section is not being output
7887 but the SHT_GROUP section is, then adjust its size. */
7888 else if (s->output_section == discarded
7889 && isec->output_section != discarded)
7890 {
7891 struct bfd_elf_section_data *elf_sec = elf_section_data (s);
7892 removed += 4;
7893 if (elf_sec->rel.hdr != NULL
7894 && (elf_sec->rel.hdr->sh_flags & SHF_GROUP) != 0)
7895 removed += 4;
7896 if (elf_sec->rela.hdr != NULL
7897 && (elf_sec->rela.hdr->sh_flags & SHF_GROUP) != 0)
7898 removed += 4;
7899 }
7900 s = elf_next_in_group (s);
7901 if (s == first)
7902 break;
7903 }
7904 if (removed != 0)
7905 {
7906 if (discarded != NULL)
7907 {
7908 /* If we've been called for ld -r, then we need to
7909 adjust the input section size. */
7910 if (isec->rawsize == 0)
7911 isec->rawsize = isec->size;
7912 isec->size = isec->rawsize - removed;
7913 if (isec->size <= 4)
7914 {
7915 isec->size = 0;
7916 isec->flags |= SEC_EXCLUDE;
7917 }
7918 }
7919 else
7920 {
7921 /* Adjust the output section size when called from
7922 objcopy. */
7923 isec->output_section->size -= removed;
7924 if (isec->output_section->size <= 4)
7925 {
7926 isec->output_section->size = 0;
7927 isec->output_section->flags |= SEC_EXCLUDE;
7928 }
7929 }
7930 }
7931 }
7932
7933 return TRUE;
7934 }
7935
7936 /* Copy private header information. */
7937
7938 bfd_boolean
7939 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
7940 {
7941 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7942 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7943 return TRUE;
7944
7945 /* Copy over private BFD data if it has not already been copied.
7946 This must be done here, rather than in the copy_private_bfd_data
7947 entry point, because the latter is called after the section
7948 contents have been set, which means that the program headers have
7949 already been worked out. */
7950 if (elf_seg_map (obfd) == NULL && elf_tdata (ibfd)->phdr != NULL)
7951 {
7952 if (! copy_private_bfd_data (ibfd, obfd))
7953 return FALSE;
7954 }
7955
7956 return _bfd_elf_fixup_group_sections (ibfd, NULL);
7957 }
7958
7959 /* Copy private symbol information. If this symbol is in a section
7960 which we did not map into a BFD section, try to map the section
7961 index correctly. We use special macro definitions for the mapped
7962 section indices; these definitions are interpreted by the
7963 swap_out_syms function. */
7964
7965 #define MAP_ONESYMTAB (SHN_HIOS + 1)
7966 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
7967 #define MAP_STRTAB (SHN_HIOS + 3)
7968 #define MAP_SHSTRTAB (SHN_HIOS + 4)
7969 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
7970
7971 bfd_boolean
7972 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
7973 asymbol *isymarg,
7974 bfd *obfd,
7975 asymbol *osymarg)
7976 {
7977 elf_symbol_type *isym, *osym;
7978
7979 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7980 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7981 return TRUE;
7982
7983 isym = elf_symbol_from (ibfd, isymarg);
7984 osym = elf_symbol_from (obfd, osymarg);
7985
7986 if (isym != NULL
7987 && isym->internal_elf_sym.st_shndx != 0
7988 && osym != NULL
7989 && bfd_is_abs_section (isym->symbol.section))
7990 {
7991 unsigned int shndx;
7992
7993 shndx = isym->internal_elf_sym.st_shndx;
7994 if (shndx == elf_onesymtab (ibfd))
7995 shndx = MAP_ONESYMTAB;
7996 else if (shndx == elf_dynsymtab (ibfd))
7997 shndx = MAP_DYNSYMTAB;
7998 else if (shndx == elf_strtab_sec (ibfd))
7999 shndx = MAP_STRTAB;
8000 else if (shndx == elf_shstrtab_sec (ibfd))
8001 shndx = MAP_SHSTRTAB;
8002 else if (find_section_in_list (shndx, elf_symtab_shndx_list (ibfd)))
8003 shndx = MAP_SYM_SHNDX;
8004 osym->internal_elf_sym.st_shndx = shndx;
8005 }
8006
8007 return TRUE;
8008 }
8009
8010 /* Swap out the symbols. */
8011
8012 static bfd_boolean
8013 swap_out_syms (bfd *abfd,
8014 struct elf_strtab_hash **sttp,
8015 int relocatable_p)
8016 {
8017 const struct elf_backend_data *bed;
8018 int symcount;
8019 asymbol **syms;
8020 struct elf_strtab_hash *stt;
8021 Elf_Internal_Shdr *symtab_hdr;
8022 Elf_Internal_Shdr *symtab_shndx_hdr;
8023 Elf_Internal_Shdr *symstrtab_hdr;
8024 struct elf_sym_strtab *symstrtab;
8025 bfd_byte *outbound_syms;
8026 bfd_byte *outbound_shndx;
8027 unsigned long outbound_syms_index;
8028 unsigned long outbound_shndx_index;
8029 int idx;
8030 unsigned int num_locals;
8031 bfd_size_type amt;
8032 bfd_boolean name_local_sections;
8033
8034 if (!elf_map_symbols (abfd, &num_locals))
8035 return FALSE;
8036
8037 /* Dump out the symtabs. */
8038 stt = _bfd_elf_strtab_init ();
8039 if (stt == NULL)
8040 return FALSE;
8041
8042 bed = get_elf_backend_data (abfd);
8043 symcount = bfd_get_symcount (abfd);
8044 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8045 symtab_hdr->sh_type = SHT_SYMTAB;
8046 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
8047 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
8048 symtab_hdr->sh_info = num_locals + 1;
8049 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
8050
8051 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
8052 symstrtab_hdr->sh_type = SHT_STRTAB;
8053
8054 /* Allocate buffer to swap out the .strtab section. */
8055 symstrtab = (struct elf_sym_strtab *) bfd_malloc2 (symcount + 1,
8056 sizeof (*symstrtab));
8057 if (symstrtab == NULL)
8058 {
8059 _bfd_elf_strtab_free (stt);
8060 return FALSE;
8061 }
8062
8063 outbound_syms = (bfd_byte *) bfd_alloc2 (abfd, 1 + symcount,
8064 bed->s->sizeof_sym);
8065 if (outbound_syms == NULL)
8066 {
8067 error_return:
8068 _bfd_elf_strtab_free (stt);
8069 free (symstrtab);
8070 return FALSE;
8071 }
8072 symtab_hdr->contents = outbound_syms;
8073 outbound_syms_index = 0;
8074
8075 outbound_shndx = NULL;
8076 outbound_shndx_index = 0;
8077
8078 if (elf_symtab_shndx_list (abfd))
8079 {
8080 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
8081 if (symtab_shndx_hdr->sh_name != 0)
8082 {
8083 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
8084 outbound_shndx = (bfd_byte *)
8085 bfd_zalloc2 (abfd, 1 + symcount, sizeof (Elf_External_Sym_Shndx));
8086 if (outbound_shndx == NULL)
8087 goto error_return;
8088
8089 symtab_shndx_hdr->contents = outbound_shndx;
8090 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
8091 symtab_shndx_hdr->sh_size = amt;
8092 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
8093 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
8094 }
8095 /* FIXME: What about any other headers in the list ? */
8096 }
8097
8098 /* Now generate the data (for "contents"). */
8099 {
8100 /* Fill in zeroth symbol and swap it out. */
8101 Elf_Internal_Sym sym;
8102 sym.st_name = 0;
8103 sym.st_value = 0;
8104 sym.st_size = 0;
8105 sym.st_info = 0;
8106 sym.st_other = 0;
8107 sym.st_shndx = SHN_UNDEF;
8108 sym.st_target_internal = 0;
8109 symstrtab[0].sym = sym;
8110 symstrtab[0].dest_index = outbound_syms_index;
8111 symstrtab[0].destshndx_index = outbound_shndx_index;
8112 outbound_syms_index++;
8113 if (outbound_shndx != NULL)
8114 outbound_shndx_index++;
8115 }
8116
8117 name_local_sections
8118 = (bed->elf_backend_name_local_section_symbols
8119 && bed->elf_backend_name_local_section_symbols (abfd));
8120
8121 syms = bfd_get_outsymbols (abfd);
8122 for (idx = 0; idx < symcount;)
8123 {
8124 Elf_Internal_Sym sym;
8125 bfd_vma value = syms[idx]->value;
8126 elf_symbol_type *type_ptr;
8127 flagword flags = syms[idx]->flags;
8128 int type;
8129
8130 if (!name_local_sections
8131 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
8132 {
8133 /* Local section symbols have no name. */
8134 sym.st_name = (unsigned long) -1;
8135 }
8136 else
8137 {
8138 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
8139 to get the final offset for st_name. */
8140 sym.st_name
8141 = (unsigned long) _bfd_elf_strtab_add (stt, syms[idx]->name,
8142 FALSE);
8143 if (sym.st_name == (unsigned long) -1)
8144 goto error_return;
8145 }
8146
8147 type_ptr = elf_symbol_from (abfd, syms[idx]);
8148
8149 if ((flags & BSF_SECTION_SYM) == 0
8150 && bfd_is_com_section (syms[idx]->section))
8151 {
8152 /* ELF common symbols put the alignment into the `value' field,
8153 and the size into the `size' field. This is backwards from
8154 how BFD handles it, so reverse it here. */
8155 sym.st_size = value;
8156 if (type_ptr == NULL
8157 || type_ptr->internal_elf_sym.st_value == 0)
8158 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
8159 else
8160 sym.st_value = type_ptr->internal_elf_sym.st_value;
8161 sym.st_shndx = _bfd_elf_section_from_bfd_section
8162 (abfd, syms[idx]->section);
8163 }
8164 else
8165 {
8166 asection *sec = syms[idx]->section;
8167 unsigned int shndx;
8168
8169 if (sec->output_section)
8170 {
8171 value += sec->output_offset;
8172 sec = sec->output_section;
8173 }
8174
8175 /* Don't add in the section vma for relocatable output. */
8176 if (! relocatable_p)
8177 value += sec->vma;
8178 sym.st_value = value;
8179 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
8180
8181 if (bfd_is_abs_section (sec)
8182 && type_ptr != NULL
8183 && type_ptr->internal_elf_sym.st_shndx != 0)
8184 {
8185 /* This symbol is in a real ELF section which we did
8186 not create as a BFD section. Undo the mapping done
8187 by copy_private_symbol_data. */
8188 shndx = type_ptr->internal_elf_sym.st_shndx;
8189 switch (shndx)
8190 {
8191 case MAP_ONESYMTAB:
8192 shndx = elf_onesymtab (abfd);
8193 break;
8194 case MAP_DYNSYMTAB:
8195 shndx = elf_dynsymtab (abfd);
8196 break;
8197 case MAP_STRTAB:
8198 shndx = elf_strtab_sec (abfd);
8199 break;
8200 case MAP_SHSTRTAB:
8201 shndx = elf_shstrtab_sec (abfd);
8202 break;
8203 case MAP_SYM_SHNDX:
8204 if (elf_symtab_shndx_list (abfd))
8205 shndx = elf_symtab_shndx_list (abfd)->ndx;
8206 break;
8207 default:
8208 shndx = SHN_ABS;
8209 break;
8210 }
8211 }
8212 else
8213 {
8214 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
8215
8216 if (shndx == SHN_BAD)
8217 {
8218 asection *sec2;
8219
8220 /* Writing this would be a hell of a lot easier if
8221 we had some decent documentation on bfd, and
8222 knew what to expect of the library, and what to
8223 demand of applications. For example, it
8224 appears that `objcopy' might not set the
8225 section of a symbol to be a section that is
8226 actually in the output file. */
8227 sec2 = bfd_get_section_by_name (abfd, sec->name);
8228 if (sec2 != NULL)
8229 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
8230 if (shndx == SHN_BAD)
8231 {
8232 /* xgettext:c-format */
8233 _bfd_error_handler
8234 (_("unable to find equivalent output section"
8235 " for symbol '%s' from section '%s'"),
8236 syms[idx]->name ? syms[idx]->name : "<Local sym>",
8237 sec->name);
8238 bfd_set_error (bfd_error_invalid_operation);
8239 goto error_return;
8240 }
8241 }
8242 }
8243
8244 sym.st_shndx = shndx;
8245 }
8246
8247 if ((flags & BSF_THREAD_LOCAL) != 0)
8248 type = STT_TLS;
8249 else if ((flags & BSF_GNU_INDIRECT_FUNCTION) != 0)
8250 type = STT_GNU_IFUNC;
8251 else if ((flags & BSF_FUNCTION) != 0)
8252 type = STT_FUNC;
8253 else if ((flags & BSF_OBJECT) != 0)
8254 type = STT_OBJECT;
8255 else if ((flags & BSF_RELC) != 0)
8256 type = STT_RELC;
8257 else if ((flags & BSF_SRELC) != 0)
8258 type = STT_SRELC;
8259 else
8260 type = STT_NOTYPE;
8261
8262 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
8263 type = STT_TLS;
8264
8265 /* Processor-specific types. */
8266 if (type_ptr != NULL
8267 && bed->elf_backend_get_symbol_type)
8268 type = ((*bed->elf_backend_get_symbol_type)
8269 (&type_ptr->internal_elf_sym, type));
8270
8271 if (flags & BSF_SECTION_SYM)
8272 {
8273 if (flags & BSF_GLOBAL)
8274 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8275 else
8276 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
8277 }
8278 else if (bfd_is_com_section (syms[idx]->section))
8279 {
8280 if (type != STT_TLS)
8281 {
8282 if ((abfd->flags & BFD_CONVERT_ELF_COMMON))
8283 type = ((abfd->flags & BFD_USE_ELF_STT_COMMON)
8284 ? STT_COMMON : STT_OBJECT);
8285 else
8286 type = ((flags & BSF_ELF_COMMON) != 0
8287 ? STT_COMMON : STT_OBJECT);
8288 }
8289 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
8290 }
8291 else if (bfd_is_und_section (syms[idx]->section))
8292 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
8293 ? STB_WEAK
8294 : STB_GLOBAL),
8295 type);
8296 else if (flags & BSF_FILE)
8297 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
8298 else
8299 {
8300 int bind = STB_LOCAL;
8301
8302 if (flags & BSF_LOCAL)
8303 bind = STB_LOCAL;
8304 else if (flags & BSF_GNU_UNIQUE)
8305 bind = STB_GNU_UNIQUE;
8306 else if (flags & BSF_WEAK)
8307 bind = STB_WEAK;
8308 else if (flags & BSF_GLOBAL)
8309 bind = STB_GLOBAL;
8310
8311 sym.st_info = ELF_ST_INFO (bind, type);
8312 }
8313
8314 if (type_ptr != NULL)
8315 {
8316 sym.st_other = type_ptr->internal_elf_sym.st_other;
8317 sym.st_target_internal
8318 = type_ptr->internal_elf_sym.st_target_internal;
8319 }
8320 else
8321 {
8322 sym.st_other = 0;
8323 sym.st_target_internal = 0;
8324 }
8325
8326 idx++;
8327 symstrtab[idx].sym = sym;
8328 symstrtab[idx].dest_index = outbound_syms_index;
8329 symstrtab[idx].destshndx_index = outbound_shndx_index;
8330
8331 outbound_syms_index++;
8332 if (outbound_shndx != NULL)
8333 outbound_shndx_index++;
8334 }
8335
8336 /* Finalize the .strtab section. */
8337 _bfd_elf_strtab_finalize (stt);
8338
8339 /* Swap out the .strtab section. */
8340 for (idx = 0; idx <= symcount; idx++)
8341 {
8342 struct elf_sym_strtab *elfsym = &symstrtab[idx];
8343 if (elfsym->sym.st_name == (unsigned long) -1)
8344 elfsym->sym.st_name = 0;
8345 else
8346 elfsym->sym.st_name = _bfd_elf_strtab_offset (stt,
8347 elfsym->sym.st_name);
8348 bed->s->swap_symbol_out (abfd, &elfsym->sym,
8349 (outbound_syms
8350 + (elfsym->dest_index
8351 * bed->s->sizeof_sym)),
8352 (outbound_shndx
8353 + (elfsym->destshndx_index
8354 * sizeof (Elf_External_Sym_Shndx))));
8355 }
8356 free (symstrtab);
8357
8358 *sttp = stt;
8359 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (stt);
8360 symstrtab_hdr->sh_type = SHT_STRTAB;
8361 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
8362 symstrtab_hdr->sh_addr = 0;
8363 symstrtab_hdr->sh_entsize = 0;
8364 symstrtab_hdr->sh_link = 0;
8365 symstrtab_hdr->sh_info = 0;
8366 symstrtab_hdr->sh_addralign = 1;
8367
8368 return TRUE;
8369 }
8370
8371 /* Return the number of bytes required to hold the symtab vector.
8372
8373 Note that we base it on the count plus 1, since we will null terminate
8374 the vector allocated based on this size. However, the ELF symbol table
8375 always has a dummy entry as symbol #0, so it ends up even. */
8376
8377 long
8378 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
8379 {
8380 bfd_size_type symcount;
8381 long symtab_size;
8382 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
8383
8384 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
8385 if (symcount >= LONG_MAX / sizeof (asymbol *))
8386 {
8387 bfd_set_error (bfd_error_file_too_big);
8388 return -1;
8389 }
8390 symtab_size = (symcount + 1) * (sizeof (asymbol *));
8391 if (symcount > 0)
8392 symtab_size -= sizeof (asymbol *);
8393
8394 return symtab_size;
8395 }
8396
8397 long
8398 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
8399 {
8400 bfd_size_type symcount;
8401 long symtab_size;
8402 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
8403
8404 if (elf_dynsymtab (abfd) == 0)
8405 {
8406 bfd_set_error (bfd_error_invalid_operation);
8407 return -1;
8408 }
8409
8410 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
8411 if (symcount >= LONG_MAX / sizeof (asymbol *))
8412 {
8413 bfd_set_error (bfd_error_file_too_big);
8414 return -1;
8415 }
8416 symtab_size = (symcount + 1) * (sizeof (asymbol *));
8417 if (symcount > 0)
8418 symtab_size -= sizeof (asymbol *);
8419
8420 return symtab_size;
8421 }
8422
8423 long
8424 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
8425 sec_ptr asect)
8426 {
8427 #if SIZEOF_LONG == SIZEOF_INT
8428 if (asect->reloc_count >= LONG_MAX / sizeof (arelent *))
8429 {
8430 bfd_set_error (bfd_error_file_too_big);
8431 return -1;
8432 }
8433 #endif
8434 return (asect->reloc_count + 1) * sizeof (arelent *);
8435 }
8436
8437 /* Canonicalize the relocs. */
8438
8439 long
8440 _bfd_elf_canonicalize_reloc (bfd *abfd,
8441 sec_ptr section,
8442 arelent **relptr,
8443 asymbol **symbols)
8444 {
8445 arelent *tblptr;
8446 unsigned int i;
8447 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8448
8449 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
8450 return -1;
8451
8452 tblptr = section->relocation;
8453 for (i = 0; i < section->reloc_count; i++)
8454 *relptr++ = tblptr++;
8455
8456 *relptr = NULL;
8457
8458 return section->reloc_count;
8459 }
8460
8461 long
8462 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
8463 {
8464 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8465 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
8466
8467 if (symcount >= 0)
8468 abfd->symcount = symcount;
8469 return symcount;
8470 }
8471
8472 long
8473 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
8474 asymbol **allocation)
8475 {
8476 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8477 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
8478
8479 if (symcount >= 0)
8480 abfd->dynsymcount = symcount;
8481 return symcount;
8482 }
8483
8484 /* Return the size required for the dynamic reloc entries. Any loadable
8485 section that was actually installed in the BFD, and has type SHT_REL
8486 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
8487 dynamic reloc section. */
8488
8489 long
8490 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
8491 {
8492 bfd_size_type count;
8493 asection *s;
8494
8495 if (elf_dynsymtab (abfd) == 0)
8496 {
8497 bfd_set_error (bfd_error_invalid_operation);
8498 return -1;
8499 }
8500
8501 count = 1;
8502 for (s = abfd->sections; s != NULL; s = s->next)
8503 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
8504 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
8505 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
8506 {
8507 count += s->size / elf_section_data (s)->this_hdr.sh_entsize;
8508 if (count > LONG_MAX / sizeof (arelent *))
8509 {
8510 bfd_set_error (bfd_error_file_too_big);
8511 return -1;
8512 }
8513 }
8514 return count * sizeof (arelent *);
8515 }
8516
8517 /* Canonicalize the dynamic relocation entries. Note that we return the
8518 dynamic relocations as a single block, although they are actually
8519 associated with particular sections; the interface, which was
8520 designed for SunOS style shared libraries, expects that there is only
8521 one set of dynamic relocs. Any loadable section that was actually
8522 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
8523 dynamic symbol table, is considered to be a dynamic reloc section. */
8524
8525 long
8526 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
8527 arelent **storage,
8528 asymbol **syms)
8529 {
8530 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
8531 asection *s;
8532 long ret;
8533
8534 if (elf_dynsymtab (abfd) == 0)
8535 {
8536 bfd_set_error (bfd_error_invalid_operation);
8537 return -1;
8538 }
8539
8540 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
8541 ret = 0;
8542 for (s = abfd->sections; s != NULL; s = s->next)
8543 {
8544 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
8545 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
8546 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
8547 {
8548 arelent *p;
8549 long count, i;
8550
8551 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
8552 return -1;
8553 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
8554 p = s->relocation;
8555 for (i = 0; i < count; i++)
8556 *storage++ = p++;
8557 ret += count;
8558 }
8559 }
8560
8561 *storage = NULL;
8562
8563 return ret;
8564 }
8565 \f
8566 /* Read in the version information. */
8567
8568 bfd_boolean
8569 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
8570 {
8571 bfd_byte *contents = NULL;
8572 unsigned int freeidx = 0;
8573
8574 if (elf_dynverref (abfd) != 0)
8575 {
8576 Elf_Internal_Shdr *hdr;
8577 Elf_External_Verneed *everneed;
8578 Elf_Internal_Verneed *iverneed;
8579 unsigned int i;
8580 bfd_byte *contents_end;
8581
8582 hdr = &elf_tdata (abfd)->dynverref_hdr;
8583
8584 if (hdr->sh_info == 0
8585 || hdr->sh_info > hdr->sh_size / sizeof (Elf_External_Verneed))
8586 {
8587 error_return_bad_verref:
8588 _bfd_error_handler
8589 (_("%pB: .gnu.version_r invalid entry"), abfd);
8590 bfd_set_error (bfd_error_bad_value);
8591 error_return_verref:
8592 elf_tdata (abfd)->verref = NULL;
8593 elf_tdata (abfd)->cverrefs = 0;
8594 goto error_return;
8595 }
8596
8597 ufile_ptr filesize = bfd_get_file_size (abfd);
8598 if (filesize > 0 && filesize < hdr->sh_size)
8599 {
8600 /* PR 24708: Avoid attempts to allocate a ridiculous amount
8601 of memory. */
8602 bfd_set_error (bfd_error_no_memory);
8603 _bfd_error_handler
8604 /* xgettext:c-format */
8605 (_("error: %pB version reference section is too large (%#" PRIx64 " bytes)"),
8606 abfd, (uint64_t) hdr->sh_size);
8607 goto error_return_verref;
8608 }
8609 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
8610 if (contents == NULL)
8611 goto error_return_verref;
8612
8613 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
8614 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
8615 goto error_return_verref;
8616
8617 elf_tdata (abfd)->verref = (Elf_Internal_Verneed *)
8618 bfd_alloc2 (abfd, hdr->sh_info, sizeof (Elf_Internal_Verneed));
8619
8620 if (elf_tdata (abfd)->verref == NULL)
8621 goto error_return_verref;
8622
8623 BFD_ASSERT (sizeof (Elf_External_Verneed)
8624 == sizeof (Elf_External_Vernaux));
8625 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
8626 everneed = (Elf_External_Verneed *) contents;
8627 iverneed = elf_tdata (abfd)->verref;
8628 for (i = 0; i < hdr->sh_info; i++, iverneed++)
8629 {
8630 Elf_External_Vernaux *evernaux;
8631 Elf_Internal_Vernaux *ivernaux;
8632 unsigned int j;
8633
8634 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
8635
8636 iverneed->vn_bfd = abfd;
8637
8638 iverneed->vn_filename =
8639 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8640 iverneed->vn_file);
8641 if (iverneed->vn_filename == NULL)
8642 goto error_return_bad_verref;
8643
8644 if (iverneed->vn_cnt == 0)
8645 iverneed->vn_auxptr = NULL;
8646 else
8647 {
8648 iverneed->vn_auxptr = (struct elf_internal_vernaux *)
8649 bfd_alloc2 (abfd, iverneed->vn_cnt,
8650 sizeof (Elf_Internal_Vernaux));
8651 if (iverneed->vn_auxptr == NULL)
8652 goto error_return_verref;
8653 }
8654
8655 if (iverneed->vn_aux
8656 > (size_t) (contents_end - (bfd_byte *) everneed))
8657 goto error_return_bad_verref;
8658
8659 evernaux = ((Elf_External_Vernaux *)
8660 ((bfd_byte *) everneed + iverneed->vn_aux));
8661 ivernaux = iverneed->vn_auxptr;
8662 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
8663 {
8664 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
8665
8666 ivernaux->vna_nodename =
8667 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8668 ivernaux->vna_name);
8669 if (ivernaux->vna_nodename == NULL)
8670 goto error_return_bad_verref;
8671
8672 if (ivernaux->vna_other > freeidx)
8673 freeidx = ivernaux->vna_other;
8674
8675 ivernaux->vna_nextptr = NULL;
8676 if (ivernaux->vna_next == 0)
8677 {
8678 iverneed->vn_cnt = j + 1;
8679 break;
8680 }
8681 if (j + 1 < iverneed->vn_cnt)
8682 ivernaux->vna_nextptr = ivernaux + 1;
8683
8684 if (ivernaux->vna_next
8685 > (size_t) (contents_end - (bfd_byte *) evernaux))
8686 goto error_return_bad_verref;
8687
8688 evernaux = ((Elf_External_Vernaux *)
8689 ((bfd_byte *) evernaux + ivernaux->vna_next));
8690 }
8691
8692 iverneed->vn_nextref = NULL;
8693 if (iverneed->vn_next == 0)
8694 break;
8695 if (i + 1 < hdr->sh_info)
8696 iverneed->vn_nextref = iverneed + 1;
8697
8698 if (iverneed->vn_next
8699 > (size_t) (contents_end - (bfd_byte *) everneed))
8700 goto error_return_bad_verref;
8701
8702 everneed = ((Elf_External_Verneed *)
8703 ((bfd_byte *) everneed + iverneed->vn_next));
8704 }
8705 elf_tdata (abfd)->cverrefs = i;
8706
8707 free (contents);
8708 contents = NULL;
8709 }
8710
8711 if (elf_dynverdef (abfd) != 0)
8712 {
8713 Elf_Internal_Shdr *hdr;
8714 Elf_External_Verdef *everdef;
8715 Elf_Internal_Verdef *iverdef;
8716 Elf_Internal_Verdef *iverdefarr;
8717 Elf_Internal_Verdef iverdefmem;
8718 unsigned int i;
8719 unsigned int maxidx;
8720 bfd_byte *contents_end_def, *contents_end_aux;
8721
8722 hdr = &elf_tdata (abfd)->dynverdef_hdr;
8723
8724 if (hdr->sh_info == 0 || hdr->sh_size < sizeof (Elf_External_Verdef))
8725 {
8726 error_return_bad_verdef:
8727 _bfd_error_handler
8728 (_("%pB: .gnu.version_d invalid entry"), abfd);
8729 bfd_set_error (bfd_error_bad_value);
8730 error_return_verdef:
8731 elf_tdata (abfd)->verdef = NULL;
8732 elf_tdata (abfd)->cverdefs = 0;
8733 goto error_return;
8734 }
8735
8736 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
8737 if (contents == NULL)
8738 goto error_return_verdef;
8739 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
8740 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
8741 goto error_return_verdef;
8742
8743 BFD_ASSERT (sizeof (Elf_External_Verdef)
8744 >= sizeof (Elf_External_Verdaux));
8745 contents_end_def = contents + hdr->sh_size
8746 - sizeof (Elf_External_Verdef);
8747 contents_end_aux = contents + hdr->sh_size
8748 - sizeof (Elf_External_Verdaux);
8749
8750 /* We know the number of entries in the section but not the maximum
8751 index. Therefore we have to run through all entries and find
8752 the maximum. */
8753 everdef = (Elf_External_Verdef *) contents;
8754 maxidx = 0;
8755 for (i = 0; i < hdr->sh_info; ++i)
8756 {
8757 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
8758
8759 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) == 0)
8760 goto error_return_bad_verdef;
8761 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
8762 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
8763
8764 if (iverdefmem.vd_next == 0)
8765 break;
8766
8767 if (iverdefmem.vd_next
8768 > (size_t) (contents_end_def - (bfd_byte *) everdef))
8769 goto error_return_bad_verdef;
8770
8771 everdef = ((Elf_External_Verdef *)
8772 ((bfd_byte *) everdef + iverdefmem.vd_next));
8773 }
8774
8775 if (default_imported_symver)
8776 {
8777 if (freeidx > maxidx)
8778 maxidx = ++freeidx;
8779 else
8780 freeidx = ++maxidx;
8781 }
8782
8783 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
8784 bfd_zalloc2 (abfd, maxidx, sizeof (Elf_Internal_Verdef));
8785 if (elf_tdata (abfd)->verdef == NULL)
8786 goto error_return_verdef;
8787
8788 elf_tdata (abfd)->cverdefs = maxidx;
8789
8790 everdef = (Elf_External_Verdef *) contents;
8791 iverdefarr = elf_tdata (abfd)->verdef;
8792 for (i = 0; i < hdr->sh_info; i++)
8793 {
8794 Elf_External_Verdaux *everdaux;
8795 Elf_Internal_Verdaux *iverdaux;
8796 unsigned int j;
8797
8798 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
8799
8800 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
8801 goto error_return_bad_verdef;
8802
8803 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
8804 memcpy (iverdef, &iverdefmem, offsetof (Elf_Internal_Verdef, vd_bfd));
8805
8806 iverdef->vd_bfd = abfd;
8807
8808 if (iverdef->vd_cnt == 0)
8809 iverdef->vd_auxptr = NULL;
8810 else
8811 {
8812 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
8813 bfd_alloc2 (abfd, iverdef->vd_cnt,
8814 sizeof (Elf_Internal_Verdaux));
8815 if (iverdef->vd_auxptr == NULL)
8816 goto error_return_verdef;
8817 }
8818
8819 if (iverdef->vd_aux
8820 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
8821 goto error_return_bad_verdef;
8822
8823 everdaux = ((Elf_External_Verdaux *)
8824 ((bfd_byte *) everdef + iverdef->vd_aux));
8825 iverdaux = iverdef->vd_auxptr;
8826 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
8827 {
8828 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
8829
8830 iverdaux->vda_nodename =
8831 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8832 iverdaux->vda_name);
8833 if (iverdaux->vda_nodename == NULL)
8834 goto error_return_bad_verdef;
8835
8836 iverdaux->vda_nextptr = NULL;
8837 if (iverdaux->vda_next == 0)
8838 {
8839 iverdef->vd_cnt = j + 1;
8840 break;
8841 }
8842 if (j + 1 < iverdef->vd_cnt)
8843 iverdaux->vda_nextptr = iverdaux + 1;
8844
8845 if (iverdaux->vda_next
8846 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
8847 goto error_return_bad_verdef;
8848
8849 everdaux = ((Elf_External_Verdaux *)
8850 ((bfd_byte *) everdaux + iverdaux->vda_next));
8851 }
8852
8853 iverdef->vd_nodename = NULL;
8854 if (iverdef->vd_cnt)
8855 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
8856
8857 iverdef->vd_nextdef = NULL;
8858 if (iverdef->vd_next == 0)
8859 break;
8860 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
8861 iverdef->vd_nextdef = iverdef + 1;
8862
8863 everdef = ((Elf_External_Verdef *)
8864 ((bfd_byte *) everdef + iverdef->vd_next));
8865 }
8866
8867 free (contents);
8868 contents = NULL;
8869 }
8870 else if (default_imported_symver)
8871 {
8872 if (freeidx < 3)
8873 freeidx = 3;
8874 else
8875 freeidx++;
8876
8877 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
8878 bfd_zalloc2 (abfd, freeidx, sizeof (Elf_Internal_Verdef));
8879 if (elf_tdata (abfd)->verdef == NULL)
8880 goto error_return;
8881
8882 elf_tdata (abfd)->cverdefs = freeidx;
8883 }
8884
8885 /* Create a default version based on the soname. */
8886 if (default_imported_symver)
8887 {
8888 Elf_Internal_Verdef *iverdef;
8889 Elf_Internal_Verdaux *iverdaux;
8890
8891 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];
8892
8893 iverdef->vd_version = VER_DEF_CURRENT;
8894 iverdef->vd_flags = 0;
8895 iverdef->vd_ndx = freeidx;
8896 iverdef->vd_cnt = 1;
8897
8898 iverdef->vd_bfd = abfd;
8899
8900 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
8901 if (iverdef->vd_nodename == NULL)
8902 goto error_return_verdef;
8903 iverdef->vd_nextdef = NULL;
8904 iverdef->vd_auxptr = ((struct elf_internal_verdaux *)
8905 bfd_zalloc (abfd, sizeof (Elf_Internal_Verdaux)));
8906 if (iverdef->vd_auxptr == NULL)
8907 goto error_return_verdef;
8908
8909 iverdaux = iverdef->vd_auxptr;
8910 iverdaux->vda_nodename = iverdef->vd_nodename;
8911 }
8912
8913 return TRUE;
8914
8915 error_return:
8916 if (contents != NULL)
8917 free (contents);
8918 return FALSE;
8919 }
8920 \f
8921 asymbol *
8922 _bfd_elf_make_empty_symbol (bfd *abfd)
8923 {
8924 elf_symbol_type *newsym;
8925
8926 newsym = (elf_symbol_type *) bfd_zalloc (abfd, sizeof (*newsym));
8927 if (!newsym)
8928 return NULL;
8929 newsym->symbol.the_bfd = abfd;
8930 return &newsym->symbol;
8931 }
8932
8933 void
8934 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
8935 asymbol *symbol,
8936 symbol_info *ret)
8937 {
8938 bfd_symbol_info (symbol, ret);
8939 }
8940
8941 /* Return whether a symbol name implies a local symbol. Most targets
8942 use this function for the is_local_label_name entry point, but some
8943 override it. */
8944
8945 bfd_boolean
8946 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
8947 const char *name)
8948 {
8949 /* Normal local symbols start with ``.L''. */
8950 if (name[0] == '.' && name[1] == 'L')
8951 return TRUE;
8952
8953 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
8954 DWARF debugging symbols starting with ``..''. */
8955 if (name[0] == '.' && name[1] == '.')
8956 return TRUE;
8957
8958 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
8959 emitting DWARF debugging output. I suspect this is actually a
8960 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
8961 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
8962 underscore to be emitted on some ELF targets). For ease of use,
8963 we treat such symbols as local. */
8964 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
8965 return TRUE;
8966
8967 /* Treat assembler generated fake symbols, dollar local labels and
8968 forward-backward labels (aka local labels) as locals.
8969 These labels have the form:
8970
8971 L0^A.* (fake symbols)
8972
8973 [.]?L[0123456789]+{^A|^B}[0123456789]* (local labels)
8974
8975 Versions which start with .L will have already been matched above,
8976 so we only need to match the rest. */
8977 if (name[0] == 'L' && ISDIGIT (name[1]))
8978 {
8979 bfd_boolean ret = FALSE;
8980 const char * p;
8981 char c;
8982
8983 for (p = name + 2; (c = *p); p++)
8984 {
8985 if (c == 1 || c == 2)
8986 {
8987 if (c == 1 && p == name + 2)
8988 /* A fake symbol. */
8989 return TRUE;
8990
8991 /* FIXME: We are being paranoid here and treating symbols like
8992 L0^Bfoo as if there were non-local, on the grounds that the
8993 assembler will never generate them. But can any symbol
8994 containing an ASCII value in the range 1-31 ever be anything
8995 other than some kind of local ? */
8996 ret = TRUE;
8997 }
8998
8999 if (! ISDIGIT (c))
9000 {
9001 ret = FALSE;
9002 break;
9003 }
9004 }
9005 return ret;
9006 }
9007
9008 return FALSE;
9009 }
9010
9011 alent *
9012 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
9013 asymbol *symbol ATTRIBUTE_UNUSED)
9014 {
9015 abort ();
9016 return NULL;
9017 }
9018
9019 bfd_boolean
9020 _bfd_elf_set_arch_mach (bfd *abfd,
9021 enum bfd_architecture arch,
9022 unsigned long machine)
9023 {
9024 /* If this isn't the right architecture for this backend, and this
9025 isn't the generic backend, fail. */
9026 if (arch != get_elf_backend_data (abfd)->arch
9027 && arch != bfd_arch_unknown
9028 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
9029 return FALSE;
9030
9031 return bfd_default_set_arch_mach (abfd, arch, machine);
9032 }
9033
9034 /* Find the nearest line to a particular section and offset,
9035 for error reporting. */
9036
9037 bfd_boolean
9038 _bfd_elf_find_nearest_line (bfd *abfd,
9039 asymbol **symbols,
9040 asection *section,
9041 bfd_vma offset,
9042 const char **filename_ptr,
9043 const char **functionname_ptr,
9044 unsigned int *line_ptr,
9045 unsigned int *discriminator_ptr)
9046 {
9047 bfd_boolean found;
9048
9049 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
9050 filename_ptr, functionname_ptr,
9051 line_ptr, discriminator_ptr,
9052 dwarf_debug_sections,
9053 &elf_tdata (abfd)->dwarf2_find_line_info)
9054 || _bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
9055 filename_ptr, functionname_ptr,
9056 line_ptr))
9057 {
9058 if (!*functionname_ptr)
9059 _bfd_elf_find_function (abfd, symbols, section, offset,
9060 *filename_ptr ? NULL : filename_ptr,
9061 functionname_ptr);
9062 return TRUE;
9063 }
9064
9065 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
9066 &found, filename_ptr,
9067 functionname_ptr, line_ptr,
9068 &elf_tdata (abfd)->line_info))
9069 return FALSE;
9070 if (found && (*functionname_ptr || *line_ptr))
9071 return TRUE;
9072
9073 if (symbols == NULL)
9074 return FALSE;
9075
9076 if (! _bfd_elf_find_function (abfd, symbols, section, offset,
9077 filename_ptr, functionname_ptr))
9078 return FALSE;
9079
9080 *line_ptr = 0;
9081 return TRUE;
9082 }
9083
9084 /* Find the line for a symbol. */
9085
9086 bfd_boolean
9087 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
9088 const char **filename_ptr, unsigned int *line_ptr)
9089 {
9090 return _bfd_dwarf2_find_nearest_line (abfd, symbols, symbol, NULL, 0,
9091 filename_ptr, NULL, line_ptr, NULL,
9092 dwarf_debug_sections,
9093 &elf_tdata (abfd)->dwarf2_find_line_info);
9094 }
9095
9096 /* After a call to bfd_find_nearest_line, successive calls to
9097 bfd_find_inliner_info can be used to get source information about
9098 each level of function inlining that terminated at the address
9099 passed to bfd_find_nearest_line. Currently this is only supported
9100 for DWARF2 with appropriate DWARF3 extensions. */
9101
9102 bfd_boolean
9103 _bfd_elf_find_inliner_info (bfd *abfd,
9104 const char **filename_ptr,
9105 const char **functionname_ptr,
9106 unsigned int *line_ptr)
9107 {
9108 bfd_boolean found;
9109 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
9110 functionname_ptr, line_ptr,
9111 & elf_tdata (abfd)->dwarf2_find_line_info);
9112 return found;
9113 }
9114
9115 int
9116 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
9117 {
9118 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9119 int ret = bed->s->sizeof_ehdr;
9120
9121 if (!bfd_link_relocatable (info))
9122 {
9123 bfd_size_type phdr_size = elf_program_header_size (abfd);
9124
9125 if (phdr_size == (bfd_size_type) -1)
9126 {
9127 struct elf_segment_map *m;
9128
9129 phdr_size = 0;
9130 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
9131 phdr_size += bed->s->sizeof_phdr;
9132
9133 if (phdr_size == 0)
9134 phdr_size = get_program_header_size (abfd, info);
9135 }
9136
9137 elf_program_header_size (abfd) = phdr_size;
9138 ret += phdr_size;
9139 }
9140
9141 return ret;
9142 }
9143
9144 bfd_boolean
9145 _bfd_elf_set_section_contents (bfd *abfd,
9146 sec_ptr section,
9147 const void *location,
9148 file_ptr offset,
9149 bfd_size_type count)
9150 {
9151 Elf_Internal_Shdr *hdr;
9152 file_ptr pos;
9153
9154 if (! abfd->output_has_begun
9155 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
9156 return FALSE;
9157
9158 if (!count)
9159 return TRUE;
9160
9161 hdr = &elf_section_data (section)->this_hdr;
9162 if (hdr->sh_offset == (file_ptr) -1)
9163 {
9164 if (bfd_section_is_ctf (section))
9165 /* Nothing to do with this section: the contents are generated
9166 later. */
9167 return TRUE;
9168
9169 /* We must compress this section. Write output to the buffer. */
9170 unsigned char *contents = hdr->contents;
9171 if ((offset + count) > hdr->sh_size
9172 || (section->flags & SEC_ELF_COMPRESS) == 0
9173 || contents == NULL)
9174 abort ();
9175 memcpy (contents + offset, location, count);
9176 return TRUE;
9177 }
9178 pos = hdr->sh_offset + offset;
9179 if (bfd_seek (abfd, pos, SEEK_SET) != 0
9180 || bfd_bwrite (location, count, abfd) != count)
9181 return FALSE;
9182
9183 return TRUE;
9184 }
9185
9186 bfd_boolean
9187 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
9188 arelent *cache_ptr ATTRIBUTE_UNUSED,
9189 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
9190 {
9191 abort ();
9192 return FALSE;
9193 }
9194
9195 /* Try to convert a non-ELF reloc into an ELF one. */
9196
9197 bfd_boolean
9198 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
9199 {
9200 /* Check whether we really have an ELF howto. */
9201
9202 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
9203 {
9204 bfd_reloc_code_real_type code;
9205 reloc_howto_type *howto;
9206
9207 /* Alien reloc: Try to determine its type to replace it with an
9208 equivalent ELF reloc. */
9209
9210 if (areloc->howto->pc_relative)
9211 {
9212 switch (areloc->howto->bitsize)
9213 {
9214 case 8:
9215 code = BFD_RELOC_8_PCREL;
9216 break;
9217 case 12:
9218 code = BFD_RELOC_12_PCREL;
9219 break;
9220 case 16:
9221 code = BFD_RELOC_16_PCREL;
9222 break;
9223 case 24:
9224 code = BFD_RELOC_24_PCREL;
9225 break;
9226 case 32:
9227 code = BFD_RELOC_32_PCREL;
9228 break;
9229 case 64:
9230 code = BFD_RELOC_64_PCREL;
9231 break;
9232 default:
9233 goto fail;
9234 }
9235
9236 howto = bfd_reloc_type_lookup (abfd, code);
9237
9238 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
9239 {
9240 if (howto->pcrel_offset)
9241 areloc->addend += areloc->address;
9242 else
9243 areloc->addend -= areloc->address; /* addend is unsigned!! */
9244 }
9245 }
9246 else
9247 {
9248 switch (areloc->howto->bitsize)
9249 {
9250 case 8:
9251 code = BFD_RELOC_8;
9252 break;
9253 case 14:
9254 code = BFD_RELOC_14;
9255 break;
9256 case 16:
9257 code = BFD_RELOC_16;
9258 break;
9259 case 26:
9260 code = BFD_RELOC_26;
9261 break;
9262 case 32:
9263 code = BFD_RELOC_32;
9264 break;
9265 case 64:
9266 code = BFD_RELOC_64;
9267 break;
9268 default:
9269 goto fail;
9270 }
9271
9272 howto = bfd_reloc_type_lookup (abfd, code);
9273 }
9274
9275 if (howto)
9276 areloc->howto = howto;
9277 else
9278 goto fail;
9279 }
9280
9281 return TRUE;
9282
9283 fail:
9284 /* xgettext:c-format */
9285 _bfd_error_handler (_("%pB: %s unsupported"),
9286 abfd, areloc->howto->name);
9287 bfd_set_error (bfd_error_sorry);
9288 return FALSE;
9289 }
9290
9291 bfd_boolean
9292 _bfd_elf_close_and_cleanup (bfd *abfd)
9293 {
9294 struct elf_obj_tdata *tdata = elf_tdata (abfd);
9295 if (bfd_get_format (abfd) == bfd_object && tdata != NULL)
9296 {
9297 if (elf_tdata (abfd)->o != NULL && elf_shstrtab (abfd) != NULL)
9298 _bfd_elf_strtab_free (elf_shstrtab (abfd));
9299 _bfd_dwarf2_cleanup_debug_info (abfd, &tdata->dwarf2_find_line_info);
9300 }
9301
9302 return _bfd_generic_close_and_cleanup (abfd);
9303 }
9304
9305 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
9306 in the relocation's offset. Thus we cannot allow any sort of sanity
9307 range-checking to interfere. There is nothing else to do in processing
9308 this reloc. */
9309
9310 bfd_reloc_status_type
9311 _bfd_elf_rel_vtable_reloc_fn
9312 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
9313 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
9314 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
9315 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
9316 {
9317 return bfd_reloc_ok;
9318 }
9319 \f
9320 /* Elf core file support. Much of this only works on native
9321 toolchains, since we rely on knowing the
9322 machine-dependent procfs structure in order to pick
9323 out details about the corefile. */
9324
9325 #ifdef HAVE_SYS_PROCFS_H
9326 /* Needed for new procfs interface on sparc-solaris. */
9327 # define _STRUCTURED_PROC 1
9328 # include <sys/procfs.h>
9329 #endif
9330
9331 /* Return a PID that identifies a "thread" for threaded cores, or the
9332 PID of the main process for non-threaded cores. */
9333
9334 static int
9335 elfcore_make_pid (bfd *abfd)
9336 {
9337 int pid;
9338
9339 pid = elf_tdata (abfd)->core->lwpid;
9340 if (pid == 0)
9341 pid = elf_tdata (abfd)->core->pid;
9342
9343 return pid;
9344 }
9345
9346 /* If there isn't a section called NAME, make one, using
9347 data from SECT. Note, this function will generate a
9348 reference to NAME, so you shouldn't deallocate or
9349 overwrite it. */
9350
9351 static bfd_boolean
9352 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
9353 {
9354 asection *sect2;
9355
9356 if (bfd_get_section_by_name (abfd, name) != NULL)
9357 return TRUE;
9358
9359 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
9360 if (sect2 == NULL)
9361 return FALSE;
9362
9363 sect2->size = sect->size;
9364 sect2->filepos = sect->filepos;
9365 sect2->alignment_power = sect->alignment_power;
9366 return TRUE;
9367 }
9368
9369 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
9370 actually creates up to two pseudosections:
9371 - For the single-threaded case, a section named NAME, unless
9372 such a section already exists.
9373 - For the multi-threaded case, a section named "NAME/PID", where
9374 PID is elfcore_make_pid (abfd).
9375 Both pseudosections have identical contents. */
9376 bfd_boolean
9377 _bfd_elfcore_make_pseudosection (bfd *abfd,
9378 char *name,
9379 size_t size,
9380 ufile_ptr filepos)
9381 {
9382 char buf[100];
9383 char *threaded_name;
9384 size_t len;
9385 asection *sect;
9386
9387 /* Build the section name. */
9388
9389 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
9390 len = strlen (buf) + 1;
9391 threaded_name = (char *) bfd_alloc (abfd, len);
9392 if (threaded_name == NULL)
9393 return FALSE;
9394 memcpy (threaded_name, buf, len);
9395
9396 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
9397 SEC_HAS_CONTENTS);
9398 if (sect == NULL)
9399 return FALSE;
9400 sect->size = size;
9401 sect->filepos = filepos;
9402 sect->alignment_power = 2;
9403
9404 return elfcore_maybe_make_sect (abfd, name, sect);
9405 }
9406
9407 static bfd_boolean
9408 elfcore_make_auxv_note_section (bfd *abfd, Elf_Internal_Note *note,
9409 size_t offs)
9410 {
9411 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
9412 SEC_HAS_CONTENTS);
9413
9414 if (sect == NULL)
9415 return FALSE;
9416
9417 sect->size = note->descsz - offs;
9418 sect->filepos = note->descpos + offs;
9419 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
9420
9421 return TRUE;
9422 }
9423
9424 /* prstatus_t exists on:
9425 solaris 2.5+
9426 linux 2.[01] + glibc
9427 unixware 4.2
9428 */
9429
9430 #if defined (HAVE_PRSTATUS_T)
9431
9432 static bfd_boolean
9433 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
9434 {
9435 size_t size;
9436 int offset;
9437
9438 if (note->descsz == sizeof (prstatus_t))
9439 {
9440 prstatus_t prstat;
9441
9442 size = sizeof (prstat.pr_reg);
9443 offset = offsetof (prstatus_t, pr_reg);
9444 memcpy (&prstat, note->descdata, sizeof (prstat));
9445
9446 /* Do not overwrite the core signal if it
9447 has already been set by another thread. */
9448 if (elf_tdata (abfd)->core->signal == 0)
9449 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
9450 if (elf_tdata (abfd)->core->pid == 0)
9451 elf_tdata (abfd)->core->pid = prstat.pr_pid;
9452
9453 /* pr_who exists on:
9454 solaris 2.5+
9455 unixware 4.2
9456 pr_who doesn't exist on:
9457 linux 2.[01]
9458 */
9459 #if defined (HAVE_PRSTATUS_T_PR_WHO)
9460 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
9461 #else
9462 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
9463 #endif
9464 }
9465 #if defined (HAVE_PRSTATUS32_T)
9466 else if (note->descsz == sizeof (prstatus32_t))
9467 {
9468 /* 64-bit host, 32-bit corefile */
9469 prstatus32_t prstat;
9470
9471 size = sizeof (prstat.pr_reg);
9472 offset = offsetof (prstatus32_t, pr_reg);
9473 memcpy (&prstat, note->descdata, sizeof (prstat));
9474
9475 /* Do not overwrite the core signal if it
9476 has already been set by another thread. */
9477 if (elf_tdata (abfd)->core->signal == 0)
9478 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
9479 if (elf_tdata (abfd)->core->pid == 0)
9480 elf_tdata (abfd)->core->pid = prstat.pr_pid;
9481
9482 /* pr_who exists on:
9483 solaris 2.5+
9484 unixware 4.2
9485 pr_who doesn't exist on:
9486 linux 2.[01]
9487 */
9488 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
9489 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
9490 #else
9491 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
9492 #endif
9493 }
9494 #endif /* HAVE_PRSTATUS32_T */
9495 else
9496 {
9497 /* Fail - we don't know how to handle any other
9498 note size (ie. data object type). */
9499 return TRUE;
9500 }
9501
9502 /* Make a ".reg/999" section and a ".reg" section. */
9503 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
9504 size, note->descpos + offset);
9505 }
9506 #endif /* defined (HAVE_PRSTATUS_T) */
9507
9508 /* Create a pseudosection containing the exact contents of NOTE. */
9509 static bfd_boolean
9510 elfcore_make_note_pseudosection (bfd *abfd,
9511 char *name,
9512 Elf_Internal_Note *note)
9513 {
9514 return _bfd_elfcore_make_pseudosection (abfd, name,
9515 note->descsz, note->descpos);
9516 }
9517
9518 /* There isn't a consistent prfpregset_t across platforms,
9519 but it doesn't matter, because we don't have to pick this
9520 data structure apart. */
9521
9522 static bfd_boolean
9523 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
9524 {
9525 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
9526 }
9527
9528 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
9529 type of NT_PRXFPREG. Just include the whole note's contents
9530 literally. */
9531
9532 static bfd_boolean
9533 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
9534 {
9535 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
9536 }
9537
9538 /* Linux dumps the Intel XSAVE extended state in a note named "LINUX"
9539 with a note type of NT_X86_XSTATE. Just include the whole note's
9540 contents literally. */
9541
9542 static bfd_boolean
9543 elfcore_grok_xstatereg (bfd *abfd, Elf_Internal_Note *note)
9544 {
9545 return elfcore_make_note_pseudosection (abfd, ".reg-xstate", note);
9546 }
9547
9548 static bfd_boolean
9549 elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
9550 {
9551 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
9552 }
9553
9554 static bfd_boolean
9555 elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note)
9556 {
9557 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note);
9558 }
9559
9560 static bfd_boolean
9561 elfcore_grok_ppc_tar (bfd *abfd, Elf_Internal_Note *note)
9562 {
9563 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tar", note);
9564 }
9565
9566 static bfd_boolean
9567 elfcore_grok_ppc_ppr (bfd *abfd, Elf_Internal_Note *note)
9568 {
9569 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-ppr", note);
9570 }
9571
9572 static bfd_boolean
9573 elfcore_grok_ppc_dscr (bfd *abfd, Elf_Internal_Note *note)
9574 {
9575 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-dscr", note);
9576 }
9577
9578 static bfd_boolean
9579 elfcore_grok_ppc_ebb (bfd *abfd, Elf_Internal_Note *note)
9580 {
9581 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-ebb", note);
9582 }
9583
9584 static bfd_boolean
9585 elfcore_grok_ppc_pmu (bfd *abfd, Elf_Internal_Note *note)
9586 {
9587 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-pmu", note);
9588 }
9589
9590 static bfd_boolean
9591 elfcore_grok_ppc_tm_cgpr (bfd *abfd, Elf_Internal_Note *note)
9592 {
9593 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cgpr", note);
9594 }
9595
9596 static bfd_boolean
9597 elfcore_grok_ppc_tm_cfpr (bfd *abfd, Elf_Internal_Note *note)
9598 {
9599 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cfpr", note);
9600 }
9601
9602 static bfd_boolean
9603 elfcore_grok_ppc_tm_cvmx (bfd *abfd, Elf_Internal_Note *note)
9604 {
9605 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cvmx", note);
9606 }
9607
9608 static bfd_boolean
9609 elfcore_grok_ppc_tm_cvsx (bfd *abfd, Elf_Internal_Note *note)
9610 {
9611 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cvsx", note);
9612 }
9613
9614 static bfd_boolean
9615 elfcore_grok_ppc_tm_spr (bfd *abfd, Elf_Internal_Note *note)
9616 {
9617 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-spr", note);
9618 }
9619
9620 static bfd_boolean
9621 elfcore_grok_ppc_tm_ctar (bfd *abfd, Elf_Internal_Note *note)
9622 {
9623 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-ctar", note);
9624 }
9625
9626 static bfd_boolean
9627 elfcore_grok_ppc_tm_cppr (bfd *abfd, Elf_Internal_Note *note)
9628 {
9629 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cppr", note);
9630 }
9631
9632 static bfd_boolean
9633 elfcore_grok_ppc_tm_cdscr (bfd *abfd, Elf_Internal_Note *note)
9634 {
9635 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cdscr", note);
9636 }
9637
9638 static bfd_boolean
9639 elfcore_grok_s390_high_gprs (bfd *abfd, Elf_Internal_Note *note)
9640 {
9641 return elfcore_make_note_pseudosection (abfd, ".reg-s390-high-gprs", note);
9642 }
9643
9644 static bfd_boolean
9645 elfcore_grok_s390_timer (bfd *abfd, Elf_Internal_Note *note)
9646 {
9647 return elfcore_make_note_pseudosection (abfd, ".reg-s390-timer", note);
9648 }
9649
9650 static bfd_boolean
9651 elfcore_grok_s390_todcmp (bfd *abfd, Elf_Internal_Note *note)
9652 {
9653 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todcmp", note);
9654 }
9655
9656 static bfd_boolean
9657 elfcore_grok_s390_todpreg (bfd *abfd, Elf_Internal_Note *note)
9658 {
9659 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todpreg", note);
9660 }
9661
9662 static bfd_boolean
9663 elfcore_grok_s390_ctrs (bfd *abfd, Elf_Internal_Note *note)
9664 {
9665 return elfcore_make_note_pseudosection (abfd, ".reg-s390-ctrs", note);
9666 }
9667
9668 static bfd_boolean
9669 elfcore_grok_s390_prefix (bfd *abfd, Elf_Internal_Note *note)
9670 {
9671 return elfcore_make_note_pseudosection (abfd, ".reg-s390-prefix", note);
9672 }
9673
9674 static bfd_boolean
9675 elfcore_grok_s390_last_break (bfd *abfd, Elf_Internal_Note *note)
9676 {
9677 return elfcore_make_note_pseudosection (abfd, ".reg-s390-last-break", note);
9678 }
9679
9680 static bfd_boolean
9681 elfcore_grok_s390_system_call (bfd *abfd, Elf_Internal_Note *note)
9682 {
9683 return elfcore_make_note_pseudosection (abfd, ".reg-s390-system-call", note);
9684 }
9685
9686 static bfd_boolean
9687 elfcore_grok_s390_tdb (bfd *abfd, Elf_Internal_Note *note)
9688 {
9689 return elfcore_make_note_pseudosection (abfd, ".reg-s390-tdb", note);
9690 }
9691
9692 static bfd_boolean
9693 elfcore_grok_s390_vxrs_low (bfd *abfd, Elf_Internal_Note *note)
9694 {
9695 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-low", note);
9696 }
9697
9698 static bfd_boolean
9699 elfcore_grok_s390_vxrs_high (bfd *abfd, Elf_Internal_Note *note)
9700 {
9701 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-high", note);
9702 }
9703
9704 static bfd_boolean
9705 elfcore_grok_s390_gs_cb (bfd *abfd, Elf_Internal_Note *note)
9706 {
9707 return elfcore_make_note_pseudosection (abfd, ".reg-s390-gs-cb", note);
9708 }
9709
9710 static bfd_boolean
9711 elfcore_grok_s390_gs_bc (bfd *abfd, Elf_Internal_Note *note)
9712 {
9713 return elfcore_make_note_pseudosection (abfd, ".reg-s390-gs-bc", note);
9714 }
9715
9716 static bfd_boolean
9717 elfcore_grok_arm_vfp (bfd *abfd, Elf_Internal_Note *note)
9718 {
9719 return elfcore_make_note_pseudosection (abfd, ".reg-arm-vfp", note);
9720 }
9721
9722 static bfd_boolean
9723 elfcore_grok_aarch_tls (bfd *abfd, Elf_Internal_Note *note)
9724 {
9725 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-tls", note);
9726 }
9727
9728 static bfd_boolean
9729 elfcore_grok_aarch_hw_break (bfd *abfd, Elf_Internal_Note *note)
9730 {
9731 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-break", note);
9732 }
9733
9734 static bfd_boolean
9735 elfcore_grok_aarch_hw_watch (bfd *abfd, Elf_Internal_Note *note)
9736 {
9737 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-watch", note);
9738 }
9739
9740 static bfd_boolean
9741 elfcore_grok_aarch_sve (bfd *abfd, Elf_Internal_Note *note)
9742 {
9743 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-sve", note);
9744 }
9745
9746 static bfd_boolean
9747 elfcore_grok_aarch_pauth (bfd *abfd, Elf_Internal_Note *note)
9748 {
9749 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-pauth", note);
9750 }
9751
9752 #if defined (HAVE_PRPSINFO_T)
9753 typedef prpsinfo_t elfcore_psinfo_t;
9754 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
9755 typedef prpsinfo32_t elfcore_psinfo32_t;
9756 #endif
9757 #endif
9758
9759 #if defined (HAVE_PSINFO_T)
9760 typedef psinfo_t elfcore_psinfo_t;
9761 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
9762 typedef psinfo32_t elfcore_psinfo32_t;
9763 #endif
9764 #endif
9765
9766 /* return a malloc'ed copy of a string at START which is at
9767 most MAX bytes long, possibly without a terminating '\0'.
9768 the copy will always have a terminating '\0'. */
9769
9770 char *
9771 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
9772 {
9773 char *dups;
9774 char *end = (char *) memchr (start, '\0', max);
9775 size_t len;
9776
9777 if (end == NULL)
9778 len = max;
9779 else
9780 len = end - start;
9781
9782 dups = (char *) bfd_alloc (abfd, len + 1);
9783 if (dups == NULL)
9784 return NULL;
9785
9786 memcpy (dups, start, len);
9787 dups[len] = '\0';
9788
9789 return dups;
9790 }
9791
9792 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
9793 static bfd_boolean
9794 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
9795 {
9796 if (note->descsz == sizeof (elfcore_psinfo_t))
9797 {
9798 elfcore_psinfo_t psinfo;
9799
9800 memcpy (&psinfo, note->descdata, sizeof (psinfo));
9801
9802 #if defined (HAVE_PSINFO_T_PR_PID) || defined (HAVE_PRPSINFO_T_PR_PID)
9803 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
9804 #endif
9805 elf_tdata (abfd)->core->program
9806 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
9807 sizeof (psinfo.pr_fname));
9808
9809 elf_tdata (abfd)->core->command
9810 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
9811 sizeof (psinfo.pr_psargs));
9812 }
9813 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
9814 else if (note->descsz == sizeof (elfcore_psinfo32_t))
9815 {
9816 /* 64-bit host, 32-bit corefile */
9817 elfcore_psinfo32_t psinfo;
9818
9819 memcpy (&psinfo, note->descdata, sizeof (psinfo));
9820
9821 #if defined (HAVE_PSINFO32_T_PR_PID) || defined (HAVE_PRPSINFO32_T_PR_PID)
9822 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
9823 #endif
9824 elf_tdata (abfd)->core->program
9825 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
9826 sizeof (psinfo.pr_fname));
9827
9828 elf_tdata (abfd)->core->command
9829 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
9830 sizeof (psinfo.pr_psargs));
9831 }
9832 #endif
9833
9834 else
9835 {
9836 /* Fail - we don't know how to handle any other
9837 note size (ie. data object type). */
9838 return TRUE;
9839 }
9840
9841 /* Note that for some reason, a spurious space is tacked
9842 onto the end of the args in some (at least one anyway)
9843 implementations, so strip it off if it exists. */
9844
9845 {
9846 char *command = elf_tdata (abfd)->core->command;
9847 int n = strlen (command);
9848
9849 if (0 < n && command[n - 1] == ' ')
9850 command[n - 1] = '\0';
9851 }
9852
9853 return TRUE;
9854 }
9855 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
9856
9857 #if defined (HAVE_PSTATUS_T)
9858 static bfd_boolean
9859 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
9860 {
9861 if (note->descsz == sizeof (pstatus_t)
9862 #if defined (HAVE_PXSTATUS_T)
9863 || note->descsz == sizeof (pxstatus_t)
9864 #endif
9865 )
9866 {
9867 pstatus_t pstat;
9868
9869 memcpy (&pstat, note->descdata, sizeof (pstat));
9870
9871 elf_tdata (abfd)->core->pid = pstat.pr_pid;
9872 }
9873 #if defined (HAVE_PSTATUS32_T)
9874 else if (note->descsz == sizeof (pstatus32_t))
9875 {
9876 /* 64-bit host, 32-bit corefile */
9877 pstatus32_t pstat;
9878
9879 memcpy (&pstat, note->descdata, sizeof (pstat));
9880
9881 elf_tdata (abfd)->core->pid = pstat.pr_pid;
9882 }
9883 #endif
9884 /* Could grab some more details from the "representative"
9885 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
9886 NT_LWPSTATUS note, presumably. */
9887
9888 return TRUE;
9889 }
9890 #endif /* defined (HAVE_PSTATUS_T) */
9891
9892 #if defined (HAVE_LWPSTATUS_T)
9893 static bfd_boolean
9894 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
9895 {
9896 lwpstatus_t lwpstat;
9897 char buf[100];
9898 char *name;
9899 size_t len;
9900 asection *sect;
9901
9902 if (note->descsz != sizeof (lwpstat)
9903 #if defined (HAVE_LWPXSTATUS_T)
9904 && note->descsz != sizeof (lwpxstatus_t)
9905 #endif
9906 )
9907 return TRUE;
9908
9909 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
9910
9911 elf_tdata (abfd)->core->lwpid = lwpstat.pr_lwpid;
9912 /* Do not overwrite the core signal if it has already been set by
9913 another thread. */
9914 if (elf_tdata (abfd)->core->signal == 0)
9915 elf_tdata (abfd)->core->signal = lwpstat.pr_cursig;
9916
9917 /* Make a ".reg/999" section. */
9918
9919 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
9920 len = strlen (buf) + 1;
9921 name = bfd_alloc (abfd, len);
9922 if (name == NULL)
9923 return FALSE;
9924 memcpy (name, buf, len);
9925
9926 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9927 if (sect == NULL)
9928 return FALSE;
9929
9930 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9931 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
9932 sect->filepos = note->descpos
9933 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
9934 #endif
9935
9936 #if defined (HAVE_LWPSTATUS_T_PR_REG)
9937 sect->size = sizeof (lwpstat.pr_reg);
9938 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
9939 #endif
9940
9941 sect->alignment_power = 2;
9942
9943 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
9944 return FALSE;
9945
9946 /* Make a ".reg2/999" section */
9947
9948 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
9949 len = strlen (buf) + 1;
9950 name = bfd_alloc (abfd, len);
9951 if (name == NULL)
9952 return FALSE;
9953 memcpy (name, buf, len);
9954
9955 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9956 if (sect == NULL)
9957 return FALSE;
9958
9959 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9960 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
9961 sect->filepos = note->descpos
9962 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
9963 #endif
9964
9965 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
9966 sect->size = sizeof (lwpstat.pr_fpreg);
9967 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
9968 #endif
9969
9970 sect->alignment_power = 2;
9971
9972 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
9973 }
9974 #endif /* defined (HAVE_LWPSTATUS_T) */
9975
9976 static bfd_boolean
9977 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
9978 {
9979 char buf[30];
9980 char *name;
9981 size_t len;
9982 asection *sect;
9983 int type;
9984 int is_active_thread;
9985 bfd_vma base_addr;
9986
9987 if (note->descsz < 728)
9988 return TRUE;
9989
9990 if (! CONST_STRNEQ (note->namedata, "win32"))
9991 return TRUE;
9992
9993 type = bfd_get_32 (abfd, note->descdata);
9994
9995 switch (type)
9996 {
9997 case 1 /* NOTE_INFO_PROCESS */:
9998 /* FIXME: need to add ->core->command. */
9999 /* process_info.pid */
10000 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, note->descdata + 8);
10001 /* process_info.signal */
10002 elf_tdata (abfd)->core->signal = bfd_get_32 (abfd, note->descdata + 12);
10003 break;
10004
10005 case 2 /* NOTE_INFO_THREAD */:
10006 /* Make a ".reg/999" section. */
10007 /* thread_info.tid */
10008 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 8));
10009
10010 len = strlen (buf) + 1;
10011 name = (char *) bfd_alloc (abfd, len);
10012 if (name == NULL)
10013 return FALSE;
10014
10015 memcpy (name, buf, len);
10016
10017 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10018 if (sect == NULL)
10019 return FALSE;
10020
10021 /* sizeof (thread_info.thread_context) */
10022 sect->size = 716;
10023 /* offsetof (thread_info.thread_context) */
10024 sect->filepos = note->descpos + 12;
10025 sect->alignment_power = 2;
10026
10027 /* thread_info.is_active_thread */
10028 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
10029
10030 if (is_active_thread)
10031 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
10032 return FALSE;
10033 break;
10034
10035 case 3 /* NOTE_INFO_MODULE */:
10036 /* Make a ".module/xxxxxxxx" section. */
10037 /* module_info.base_address */
10038 base_addr = bfd_get_32 (abfd, note->descdata + 4);
10039 sprintf (buf, ".module/%08lx", (unsigned long) base_addr);
10040
10041 len = strlen (buf) + 1;
10042 name = (char *) bfd_alloc (abfd, len);
10043 if (name == NULL)
10044 return FALSE;
10045
10046 memcpy (name, buf, len);
10047
10048 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10049
10050 if (sect == NULL)
10051 return FALSE;
10052
10053 sect->size = note->descsz;
10054 sect->filepos = note->descpos;
10055 sect->alignment_power = 2;
10056 break;
10057
10058 default:
10059 return TRUE;
10060 }
10061
10062 return TRUE;
10063 }
10064
10065 static bfd_boolean
10066 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
10067 {
10068 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10069
10070 switch (note->type)
10071 {
10072 default:
10073 return TRUE;
10074
10075 case NT_PRSTATUS:
10076 if (bed->elf_backend_grok_prstatus)
10077 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
10078 return TRUE;
10079 #if defined (HAVE_PRSTATUS_T)
10080 return elfcore_grok_prstatus (abfd, note);
10081 #else
10082 return TRUE;
10083 #endif
10084
10085 #if defined (HAVE_PSTATUS_T)
10086 case NT_PSTATUS:
10087 return elfcore_grok_pstatus (abfd, note);
10088 #endif
10089
10090 #if defined (HAVE_LWPSTATUS_T)
10091 case NT_LWPSTATUS:
10092 return elfcore_grok_lwpstatus (abfd, note);
10093 #endif
10094
10095 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
10096 return elfcore_grok_prfpreg (abfd, note);
10097
10098 case NT_WIN32PSTATUS:
10099 return elfcore_grok_win32pstatus (abfd, note);
10100
10101 case NT_PRXFPREG: /* Linux SSE extension */
10102 if (note->namesz == 6
10103 && strcmp (note->namedata, "LINUX") == 0)
10104 return elfcore_grok_prxfpreg (abfd, note);
10105 else
10106 return TRUE;
10107
10108 case NT_X86_XSTATE: /* Linux XSAVE extension */
10109 if (note->namesz == 6
10110 && strcmp (note->namedata, "LINUX") == 0)
10111 return elfcore_grok_xstatereg (abfd, note);
10112 else
10113 return TRUE;
10114
10115 case NT_PPC_VMX:
10116 if (note->namesz == 6
10117 && strcmp (note->namedata, "LINUX") == 0)
10118 return elfcore_grok_ppc_vmx (abfd, note);
10119 else
10120 return TRUE;
10121
10122 case NT_PPC_VSX:
10123 if (note->namesz == 6
10124 && strcmp (note->namedata, "LINUX") == 0)
10125 return elfcore_grok_ppc_vsx (abfd, note);
10126 else
10127 return TRUE;
10128
10129 case NT_PPC_TAR:
10130 if (note->namesz == 6
10131 && strcmp (note->namedata, "LINUX") == 0)
10132 return elfcore_grok_ppc_tar (abfd, note);
10133 else
10134 return TRUE;
10135
10136 case NT_PPC_PPR:
10137 if (note->namesz == 6
10138 && strcmp (note->namedata, "LINUX") == 0)
10139 return elfcore_grok_ppc_ppr (abfd, note);
10140 else
10141 return TRUE;
10142
10143 case NT_PPC_DSCR:
10144 if (note->namesz == 6
10145 && strcmp (note->namedata, "LINUX") == 0)
10146 return elfcore_grok_ppc_dscr (abfd, note);
10147 else
10148 return TRUE;
10149
10150 case NT_PPC_EBB:
10151 if (note->namesz == 6
10152 && strcmp (note->namedata, "LINUX") == 0)
10153 return elfcore_grok_ppc_ebb (abfd, note);
10154 else
10155 return TRUE;
10156
10157 case NT_PPC_PMU:
10158 if (note->namesz == 6
10159 && strcmp (note->namedata, "LINUX") == 0)
10160 return elfcore_grok_ppc_pmu (abfd, note);
10161 else
10162 return TRUE;
10163
10164 case NT_PPC_TM_CGPR:
10165 if (note->namesz == 6
10166 && strcmp (note->namedata, "LINUX") == 0)
10167 return elfcore_grok_ppc_tm_cgpr (abfd, note);
10168 else
10169 return TRUE;
10170
10171 case NT_PPC_TM_CFPR:
10172 if (note->namesz == 6
10173 && strcmp (note->namedata, "LINUX") == 0)
10174 return elfcore_grok_ppc_tm_cfpr (abfd, note);
10175 else
10176 return TRUE;
10177
10178 case NT_PPC_TM_CVMX:
10179 if (note->namesz == 6
10180 && strcmp (note->namedata, "LINUX") == 0)
10181 return elfcore_grok_ppc_tm_cvmx (abfd, note);
10182 else
10183 return TRUE;
10184
10185 case NT_PPC_TM_CVSX:
10186 if (note->namesz == 6
10187 && strcmp (note->namedata, "LINUX") == 0)
10188 return elfcore_grok_ppc_tm_cvsx (abfd, note);
10189 else
10190 return TRUE;
10191
10192 case NT_PPC_TM_SPR:
10193 if (note->namesz == 6
10194 && strcmp (note->namedata, "LINUX") == 0)
10195 return elfcore_grok_ppc_tm_spr (abfd, note);
10196 else
10197 return TRUE;
10198
10199 case NT_PPC_TM_CTAR:
10200 if (note->namesz == 6
10201 && strcmp (note->namedata, "LINUX") == 0)
10202 return elfcore_grok_ppc_tm_ctar (abfd, note);
10203 else
10204 return TRUE;
10205
10206 case NT_PPC_TM_CPPR:
10207 if (note->namesz == 6
10208 && strcmp (note->namedata, "LINUX") == 0)
10209 return elfcore_grok_ppc_tm_cppr (abfd, note);
10210 else
10211 return TRUE;
10212
10213 case NT_PPC_TM_CDSCR:
10214 if (note->namesz == 6
10215 && strcmp (note->namedata, "LINUX") == 0)
10216 return elfcore_grok_ppc_tm_cdscr (abfd, note);
10217 else
10218 return TRUE;
10219
10220 case NT_S390_HIGH_GPRS:
10221 if (note->namesz == 6
10222 && strcmp (note->namedata, "LINUX") == 0)
10223 return elfcore_grok_s390_high_gprs (abfd, note);
10224 else
10225 return TRUE;
10226
10227 case NT_S390_TIMER:
10228 if (note->namesz == 6
10229 && strcmp (note->namedata, "LINUX") == 0)
10230 return elfcore_grok_s390_timer (abfd, note);
10231 else
10232 return TRUE;
10233
10234 case NT_S390_TODCMP:
10235 if (note->namesz == 6
10236 && strcmp (note->namedata, "LINUX") == 0)
10237 return elfcore_grok_s390_todcmp (abfd, note);
10238 else
10239 return TRUE;
10240
10241 case NT_S390_TODPREG:
10242 if (note->namesz == 6
10243 && strcmp (note->namedata, "LINUX") == 0)
10244 return elfcore_grok_s390_todpreg (abfd, note);
10245 else
10246 return TRUE;
10247
10248 case NT_S390_CTRS:
10249 if (note->namesz == 6
10250 && strcmp (note->namedata, "LINUX") == 0)
10251 return elfcore_grok_s390_ctrs (abfd, note);
10252 else
10253 return TRUE;
10254
10255 case NT_S390_PREFIX:
10256 if (note->namesz == 6
10257 && strcmp (note->namedata, "LINUX") == 0)
10258 return elfcore_grok_s390_prefix (abfd, note);
10259 else
10260 return TRUE;
10261
10262 case NT_S390_LAST_BREAK:
10263 if (note->namesz == 6
10264 && strcmp (note->namedata, "LINUX") == 0)
10265 return elfcore_grok_s390_last_break (abfd, note);
10266 else
10267 return TRUE;
10268
10269 case NT_S390_SYSTEM_CALL:
10270 if (note->namesz == 6
10271 && strcmp (note->namedata, "LINUX") == 0)
10272 return elfcore_grok_s390_system_call (abfd, note);
10273 else
10274 return TRUE;
10275
10276 case NT_S390_TDB:
10277 if (note->namesz == 6
10278 && strcmp (note->namedata, "LINUX") == 0)
10279 return elfcore_grok_s390_tdb (abfd, note);
10280 else
10281 return TRUE;
10282
10283 case NT_S390_VXRS_LOW:
10284 if (note->namesz == 6
10285 && strcmp (note->namedata, "LINUX") == 0)
10286 return elfcore_grok_s390_vxrs_low (abfd, note);
10287 else
10288 return TRUE;
10289
10290 case NT_S390_VXRS_HIGH:
10291 if (note->namesz == 6
10292 && strcmp (note->namedata, "LINUX") == 0)
10293 return elfcore_grok_s390_vxrs_high (abfd, note);
10294 else
10295 return TRUE;
10296
10297 case NT_S390_GS_CB:
10298 if (note->namesz == 6
10299 && strcmp (note->namedata, "LINUX") == 0)
10300 return elfcore_grok_s390_gs_cb (abfd, note);
10301 else
10302 return TRUE;
10303
10304 case NT_S390_GS_BC:
10305 if (note->namesz == 6
10306 && strcmp (note->namedata, "LINUX") == 0)
10307 return elfcore_grok_s390_gs_bc (abfd, note);
10308 else
10309 return TRUE;
10310
10311 case NT_ARM_VFP:
10312 if (note->namesz == 6
10313 && strcmp (note->namedata, "LINUX") == 0)
10314 return elfcore_grok_arm_vfp (abfd, note);
10315 else
10316 return TRUE;
10317
10318 case NT_ARM_TLS:
10319 if (note->namesz == 6
10320 && strcmp (note->namedata, "LINUX") == 0)
10321 return elfcore_grok_aarch_tls (abfd, note);
10322 else
10323 return TRUE;
10324
10325 case NT_ARM_HW_BREAK:
10326 if (note->namesz == 6
10327 && strcmp (note->namedata, "LINUX") == 0)
10328 return elfcore_grok_aarch_hw_break (abfd, note);
10329 else
10330 return TRUE;
10331
10332 case NT_ARM_HW_WATCH:
10333 if (note->namesz == 6
10334 && strcmp (note->namedata, "LINUX") == 0)
10335 return elfcore_grok_aarch_hw_watch (abfd, note);
10336 else
10337 return TRUE;
10338
10339 case NT_ARM_SVE:
10340 if (note->namesz == 6
10341 && strcmp (note->namedata, "LINUX") == 0)
10342 return elfcore_grok_aarch_sve (abfd, note);
10343 else
10344 return TRUE;
10345
10346 case NT_ARM_PAC_MASK:
10347 if (note->namesz == 6
10348 && strcmp (note->namedata, "LINUX") == 0)
10349 return elfcore_grok_aarch_pauth (abfd, note);
10350 else
10351 return TRUE;
10352
10353 case NT_PRPSINFO:
10354 case NT_PSINFO:
10355 if (bed->elf_backend_grok_psinfo)
10356 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
10357 return TRUE;
10358 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
10359 return elfcore_grok_psinfo (abfd, note);
10360 #else
10361 return TRUE;
10362 #endif
10363
10364 case NT_AUXV:
10365 return elfcore_make_auxv_note_section (abfd, note, 0);
10366
10367 case NT_FILE:
10368 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.file",
10369 note);
10370
10371 case NT_SIGINFO:
10372 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.siginfo",
10373 note);
10374
10375 }
10376 }
10377
10378 static bfd_boolean
10379 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
10380 {
10381 struct bfd_build_id* build_id;
10382
10383 if (note->descsz == 0)
10384 return FALSE;
10385
10386 build_id = bfd_alloc (abfd, sizeof (struct bfd_build_id) - 1 + note->descsz);
10387 if (build_id == NULL)
10388 return FALSE;
10389
10390 build_id->size = note->descsz;
10391 memcpy (build_id->data, note->descdata, note->descsz);
10392 abfd->build_id = build_id;
10393
10394 return TRUE;
10395 }
10396
10397 static bfd_boolean
10398 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
10399 {
10400 switch (note->type)
10401 {
10402 default:
10403 return TRUE;
10404
10405 case NT_GNU_PROPERTY_TYPE_0:
10406 return _bfd_elf_parse_gnu_properties (abfd, note);
10407
10408 case NT_GNU_BUILD_ID:
10409 return elfobj_grok_gnu_build_id (abfd, note);
10410 }
10411 }
10412
10413 static bfd_boolean
10414 elfobj_grok_stapsdt_note_1 (bfd *abfd, Elf_Internal_Note *note)
10415 {
10416 struct sdt_note *cur =
10417 (struct sdt_note *) bfd_alloc (abfd,
10418 sizeof (struct sdt_note) + note->descsz);
10419
10420 cur->next = (struct sdt_note *) (elf_tdata (abfd))->sdt_note_head;
10421 cur->size = (bfd_size_type) note->descsz;
10422 memcpy (cur->data, note->descdata, note->descsz);
10423
10424 elf_tdata (abfd)->sdt_note_head = cur;
10425
10426 return TRUE;
10427 }
10428
10429 static bfd_boolean
10430 elfobj_grok_stapsdt_note (bfd *abfd, Elf_Internal_Note *note)
10431 {
10432 switch (note->type)
10433 {
10434 case NT_STAPSDT:
10435 return elfobj_grok_stapsdt_note_1 (abfd, note);
10436
10437 default:
10438 return TRUE;
10439 }
10440 }
10441
10442 static bfd_boolean
10443 elfcore_grok_freebsd_psinfo (bfd *abfd, Elf_Internal_Note *note)
10444 {
10445 size_t offset;
10446
10447 switch (elf_elfheader (abfd)->e_ident[EI_CLASS])
10448 {
10449 case ELFCLASS32:
10450 if (note->descsz < 108)
10451 return FALSE;
10452 break;
10453
10454 case ELFCLASS64:
10455 if (note->descsz < 120)
10456 return FALSE;
10457 break;
10458
10459 default:
10460 return FALSE;
10461 }
10462
10463 /* Check for version 1 in pr_version. */
10464 if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1)
10465 return FALSE;
10466
10467 offset = 4;
10468
10469 /* Skip over pr_psinfosz. */
10470 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS32)
10471 offset += 4;
10472 else
10473 {
10474 offset += 4; /* Padding before pr_psinfosz. */
10475 offset += 8;
10476 }
10477
10478 /* pr_fname is PRFNAMESZ (16) + 1 bytes in size. */
10479 elf_tdata (abfd)->core->program
10480 = _bfd_elfcore_strndup (abfd, note->descdata + offset, 17);
10481 offset += 17;
10482
10483 /* pr_psargs is PRARGSZ (80) + 1 bytes in size. */
10484 elf_tdata (abfd)->core->command
10485 = _bfd_elfcore_strndup (abfd, note->descdata + offset, 81);
10486 offset += 81;
10487
10488 /* Padding before pr_pid. */
10489 offset += 2;
10490
10491 /* The pr_pid field was added in version "1a". */
10492 if (note->descsz < offset + 4)
10493 return TRUE;
10494
10495 elf_tdata (abfd)->core->pid
10496 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10497
10498 return TRUE;
10499 }
10500
10501 static bfd_boolean
10502 elfcore_grok_freebsd_prstatus (bfd *abfd, Elf_Internal_Note *note)
10503 {
10504 size_t offset;
10505 size_t size;
10506 size_t min_size;
10507
10508 /* Compute offset of pr_getregsz, skipping over pr_statussz.
10509 Also compute minimum size of this note. */
10510 switch (elf_elfheader (abfd)->e_ident[EI_CLASS])
10511 {
10512 case ELFCLASS32:
10513 offset = 4 + 4;
10514 min_size = offset + (4 * 2) + 4 + 4 + 4;
10515 break;
10516
10517 case ELFCLASS64:
10518 offset = 4 + 4 + 8; /* Includes padding before pr_statussz. */
10519 min_size = offset + (8 * 2) + 4 + 4 + 4 + 4;
10520 break;
10521
10522 default:
10523 return FALSE;
10524 }
10525
10526 if (note->descsz < min_size)
10527 return FALSE;
10528
10529 /* Check for version 1 in pr_version. */
10530 if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1)
10531 return FALSE;
10532
10533 /* Extract size of pr_reg from pr_gregsetsz. */
10534 /* Skip over pr_gregsetsz and pr_fpregsetsz. */
10535 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS32)
10536 {
10537 size = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10538 offset += 4 * 2;
10539 }
10540 else
10541 {
10542 size = bfd_h_get_64 (abfd, (bfd_byte *) note->descdata + offset);
10543 offset += 8 * 2;
10544 }
10545
10546 /* Skip over pr_osreldate. */
10547 offset += 4;
10548
10549 /* Read signal from pr_cursig. */
10550 if (elf_tdata (abfd)->core->signal == 0)
10551 elf_tdata (abfd)->core->signal
10552 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10553 offset += 4;
10554
10555 /* Read TID from pr_pid. */
10556 elf_tdata (abfd)->core->lwpid
10557 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10558 offset += 4;
10559
10560 /* Padding before pr_reg. */
10561 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
10562 offset += 4;
10563
10564 /* Make sure that there is enough data remaining in the note. */
10565 if ((note->descsz - offset) < size)
10566 return FALSE;
10567
10568 /* Make a ".reg/999" section and a ".reg" section. */
10569 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
10570 size, note->descpos + offset);
10571 }
10572
10573 static bfd_boolean
10574 elfcore_grok_freebsd_note (bfd *abfd, Elf_Internal_Note *note)
10575 {
10576 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10577
10578 switch (note->type)
10579 {
10580 case NT_PRSTATUS:
10581 if (bed->elf_backend_grok_freebsd_prstatus)
10582 if ((*bed->elf_backend_grok_freebsd_prstatus) (abfd, note))
10583 return TRUE;
10584 return elfcore_grok_freebsd_prstatus (abfd, note);
10585
10586 case NT_FPREGSET:
10587 return elfcore_grok_prfpreg (abfd, note);
10588
10589 case NT_PRPSINFO:
10590 return elfcore_grok_freebsd_psinfo (abfd, note);
10591
10592 case NT_FREEBSD_THRMISC:
10593 if (note->namesz == 8)
10594 return elfcore_make_note_pseudosection (abfd, ".thrmisc", note);
10595 else
10596 return TRUE;
10597
10598 case NT_FREEBSD_PROCSTAT_PROC:
10599 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.proc",
10600 note);
10601
10602 case NT_FREEBSD_PROCSTAT_FILES:
10603 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.files",
10604 note);
10605
10606 case NT_FREEBSD_PROCSTAT_VMMAP:
10607 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.vmmap",
10608 note);
10609
10610 case NT_FREEBSD_PROCSTAT_AUXV:
10611 return elfcore_make_auxv_note_section (abfd, note, 4);
10612
10613 case NT_X86_XSTATE:
10614 if (note->namesz == 8)
10615 return elfcore_grok_xstatereg (abfd, note);
10616 else
10617 return TRUE;
10618
10619 case NT_FREEBSD_PTLWPINFO:
10620 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.lwpinfo",
10621 note);
10622
10623 case NT_ARM_VFP:
10624 return elfcore_grok_arm_vfp (abfd, note);
10625
10626 default:
10627 return TRUE;
10628 }
10629 }
10630
10631 static bfd_boolean
10632 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
10633 {
10634 char *cp;
10635
10636 cp = strchr (note->namedata, '@');
10637 if (cp != NULL)
10638 {
10639 *lwpidp = atoi(cp + 1);
10640 return TRUE;
10641 }
10642 return FALSE;
10643 }
10644
10645 static bfd_boolean
10646 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
10647 {
10648 if (note->descsz <= 0x7c + 31)
10649 return FALSE;
10650
10651 /* Signal number at offset 0x08. */
10652 elf_tdata (abfd)->core->signal
10653 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
10654
10655 /* Process ID at offset 0x50. */
10656 elf_tdata (abfd)->core->pid
10657 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
10658
10659 /* Command name at 0x7c (max 32 bytes, including nul). */
10660 elf_tdata (abfd)->core->command
10661 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
10662
10663 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
10664 note);
10665 }
10666
10667 static bfd_boolean
10668 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
10669 {
10670 int lwp;
10671
10672 if (elfcore_netbsd_get_lwpid (note, &lwp))
10673 elf_tdata (abfd)->core->lwpid = lwp;
10674
10675 switch (note->type)
10676 {
10677 case NT_NETBSDCORE_PROCINFO:
10678 /* NetBSD-specific core "procinfo". Note that we expect to
10679 find this note before any of the others, which is fine,
10680 since the kernel writes this note out first when it
10681 creates a core file. */
10682 return elfcore_grok_netbsd_procinfo (abfd, note);
10683 #ifdef NT_NETBSDCORE_AUXV
10684 case NT_NETBSDCORE_AUXV:
10685 /* NetBSD-specific Elf Auxiliary Vector data. */
10686 return elfcore_make_auxv_note_section (abfd, note, 4);
10687 #endif
10688 default:
10689 break;
10690 }
10691
10692 /* As of March 2017 there are no other machine-independent notes
10693 defined for NetBSD core files. If the note type is less
10694 than the start of the machine-dependent note types, we don't
10695 understand it. */
10696
10697 if (note->type < NT_NETBSDCORE_FIRSTMACH)
10698 return TRUE;
10699
10700
10701 switch (bfd_get_arch (abfd))
10702 {
10703 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
10704 PT_GETFPREGS == mach+2. */
10705
10706 case bfd_arch_alpha:
10707 case bfd_arch_sparc:
10708 switch (note->type)
10709 {
10710 case NT_NETBSDCORE_FIRSTMACH+0:
10711 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10712
10713 case NT_NETBSDCORE_FIRSTMACH+2:
10714 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10715
10716 default:
10717 return TRUE;
10718 }
10719
10720 /* On SuperH, PT_GETREGS == mach+3 and PT_GETFPREGS == mach+5.
10721 There's also old PT___GETREGS40 == mach + 1 for old reg
10722 structure which lacks GBR. */
10723
10724 case bfd_arch_sh:
10725 switch (note->type)
10726 {
10727 case NT_NETBSDCORE_FIRSTMACH+3:
10728 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10729
10730 case NT_NETBSDCORE_FIRSTMACH+5:
10731 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10732
10733 default:
10734 return TRUE;
10735 }
10736
10737 /* On all other arch's, PT_GETREGS == mach+1 and
10738 PT_GETFPREGS == mach+3. */
10739
10740 default:
10741 switch (note->type)
10742 {
10743 case NT_NETBSDCORE_FIRSTMACH+1:
10744 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10745
10746 case NT_NETBSDCORE_FIRSTMACH+3:
10747 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10748
10749 default:
10750 return TRUE;
10751 }
10752 }
10753 /* NOTREACHED */
10754 }
10755
10756 static bfd_boolean
10757 elfcore_grok_openbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
10758 {
10759 if (note->descsz <= 0x48 + 31)
10760 return FALSE;
10761
10762 /* Signal number at offset 0x08. */
10763 elf_tdata (abfd)->core->signal
10764 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
10765
10766 /* Process ID at offset 0x20. */
10767 elf_tdata (abfd)->core->pid
10768 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x20);
10769
10770 /* Command name at 0x48 (max 32 bytes, including nul). */
10771 elf_tdata (abfd)->core->command
10772 = _bfd_elfcore_strndup (abfd, note->descdata + 0x48, 31);
10773
10774 return TRUE;
10775 }
10776
10777 static bfd_boolean
10778 elfcore_grok_openbsd_note (bfd *abfd, Elf_Internal_Note *note)
10779 {
10780 if (note->type == NT_OPENBSD_PROCINFO)
10781 return elfcore_grok_openbsd_procinfo (abfd, note);
10782
10783 if (note->type == NT_OPENBSD_REGS)
10784 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10785
10786 if (note->type == NT_OPENBSD_FPREGS)
10787 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10788
10789 if (note->type == NT_OPENBSD_XFPREGS)
10790 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
10791
10792 if (note->type == NT_OPENBSD_AUXV)
10793 return elfcore_make_auxv_note_section (abfd, note, 0);
10794
10795 if (note->type == NT_OPENBSD_WCOOKIE)
10796 {
10797 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".wcookie",
10798 SEC_HAS_CONTENTS);
10799
10800 if (sect == NULL)
10801 return FALSE;
10802 sect->size = note->descsz;
10803 sect->filepos = note->descpos;
10804 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
10805
10806 return TRUE;
10807 }
10808
10809 return TRUE;
10810 }
10811
10812 static bfd_boolean
10813 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
10814 {
10815 void *ddata = note->descdata;
10816 char buf[100];
10817 char *name;
10818 asection *sect;
10819 short sig;
10820 unsigned flags;
10821
10822 if (note->descsz < 16)
10823 return FALSE;
10824
10825 /* nto_procfs_status 'pid' field is at offset 0. */
10826 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
10827
10828 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
10829 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
10830
10831 /* nto_procfs_status 'flags' field is at offset 8. */
10832 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
10833
10834 /* nto_procfs_status 'what' field is at offset 14. */
10835 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
10836 {
10837 elf_tdata (abfd)->core->signal = sig;
10838 elf_tdata (abfd)->core->lwpid = *tid;
10839 }
10840
10841 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
10842 do not come from signals so we make sure we set the current
10843 thread just in case. */
10844 if (flags & 0x00000080)
10845 elf_tdata (abfd)->core->lwpid = *tid;
10846
10847 /* Make a ".qnx_core_status/%d" section. */
10848 sprintf (buf, ".qnx_core_status/%ld", *tid);
10849
10850 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
10851 if (name == NULL)
10852 return FALSE;
10853 strcpy (name, buf);
10854
10855 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10856 if (sect == NULL)
10857 return FALSE;
10858
10859 sect->size = note->descsz;
10860 sect->filepos = note->descpos;
10861 sect->alignment_power = 2;
10862
10863 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
10864 }
10865
10866 static bfd_boolean
10867 elfcore_grok_nto_regs (bfd *abfd,
10868 Elf_Internal_Note *note,
10869 long tid,
10870 char *base)
10871 {
10872 char buf[100];
10873 char *name;
10874 asection *sect;
10875
10876 /* Make a "(base)/%d" section. */
10877 sprintf (buf, "%s/%ld", base, tid);
10878
10879 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
10880 if (name == NULL)
10881 return FALSE;
10882 strcpy (name, buf);
10883
10884 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10885 if (sect == NULL)
10886 return FALSE;
10887
10888 sect->size = note->descsz;
10889 sect->filepos = note->descpos;
10890 sect->alignment_power = 2;
10891
10892 /* This is the current thread. */
10893 if (elf_tdata (abfd)->core->lwpid == tid)
10894 return elfcore_maybe_make_sect (abfd, base, sect);
10895
10896 return TRUE;
10897 }
10898
10899 #define BFD_QNT_CORE_INFO 7
10900 #define BFD_QNT_CORE_STATUS 8
10901 #define BFD_QNT_CORE_GREG 9
10902 #define BFD_QNT_CORE_FPREG 10
10903
10904 static bfd_boolean
10905 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
10906 {
10907 /* Every GREG section has a STATUS section before it. Store the
10908 tid from the previous call to pass down to the next gregs
10909 function. */
10910 static long tid = 1;
10911
10912 switch (note->type)
10913 {
10914 case BFD_QNT_CORE_INFO:
10915 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
10916 case BFD_QNT_CORE_STATUS:
10917 return elfcore_grok_nto_status (abfd, note, &tid);
10918 case BFD_QNT_CORE_GREG:
10919 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
10920 case BFD_QNT_CORE_FPREG:
10921 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
10922 default:
10923 return TRUE;
10924 }
10925 }
10926
10927 static bfd_boolean
10928 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
10929 {
10930 char *name;
10931 asection *sect;
10932 size_t len;
10933
10934 /* Use note name as section name. */
10935 len = note->namesz;
10936 name = (char *) bfd_alloc (abfd, len);
10937 if (name == NULL)
10938 return FALSE;
10939 memcpy (name, note->namedata, len);
10940 name[len - 1] = '\0';
10941
10942 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10943 if (sect == NULL)
10944 return FALSE;
10945
10946 sect->size = note->descsz;
10947 sect->filepos = note->descpos;
10948 sect->alignment_power = 1;
10949
10950 return TRUE;
10951 }
10952
10953 /* Function: elfcore_write_note
10954
10955 Inputs:
10956 buffer to hold note, and current size of buffer
10957 name of note
10958 type of note
10959 data for note
10960 size of data for note
10961
10962 Writes note to end of buffer. ELF64 notes are written exactly as
10963 for ELF32, despite the current (as of 2006) ELF gabi specifying
10964 that they ought to have 8-byte namesz and descsz field, and have
10965 8-byte alignment. Other writers, eg. Linux kernel, do the same.
10966
10967 Return:
10968 Pointer to realloc'd buffer, *BUFSIZ updated. */
10969
10970 char *
10971 elfcore_write_note (bfd *abfd,
10972 char *buf,
10973 int *bufsiz,
10974 const char *name,
10975 int type,
10976 const void *input,
10977 int size)
10978 {
10979 Elf_External_Note *xnp;
10980 size_t namesz;
10981 size_t newspace;
10982 char *dest;
10983
10984 namesz = 0;
10985 if (name != NULL)
10986 namesz = strlen (name) + 1;
10987
10988 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
10989
10990 buf = (char *) realloc (buf, *bufsiz + newspace);
10991 if (buf == NULL)
10992 return buf;
10993 dest = buf + *bufsiz;
10994 *bufsiz += newspace;
10995 xnp = (Elf_External_Note *) dest;
10996 H_PUT_32 (abfd, namesz, xnp->namesz);
10997 H_PUT_32 (abfd, size, xnp->descsz);
10998 H_PUT_32 (abfd, type, xnp->type);
10999 dest = xnp->name;
11000 if (name != NULL)
11001 {
11002 memcpy (dest, name, namesz);
11003 dest += namesz;
11004 while (namesz & 3)
11005 {
11006 *dest++ = '\0';
11007 ++namesz;
11008 }
11009 }
11010 memcpy (dest, input, size);
11011 dest += size;
11012 while (size & 3)
11013 {
11014 *dest++ = '\0';
11015 ++size;
11016 }
11017 return buf;
11018 }
11019
11020 /* gcc-8 warns (*) on all the strncpy calls in this function about
11021 possible string truncation. The "truncation" is not a bug. We
11022 have an external representation of structs with fields that are not
11023 necessarily NULL terminated and corresponding internal
11024 representation fields that are one larger so that they can always
11025 be NULL terminated.
11026 gcc versions between 4.2 and 4.6 do not allow pragma control of
11027 diagnostics inside functions, giving a hard error if you try to use
11028 the finer control available with later versions.
11029 gcc prior to 4.2 warns about diagnostic push and pop.
11030 gcc-5, gcc-6 and gcc-7 warn that -Wstringop-truncation is unknown,
11031 unless you also add #pragma GCC diagnostic ignored "-Wpragma".
11032 (*) Depending on your system header files! */
11033 #if GCC_VERSION >= 8000
11034 # pragma GCC diagnostic push
11035 # pragma GCC diagnostic ignored "-Wstringop-truncation"
11036 #endif
11037 char *
11038 elfcore_write_prpsinfo (bfd *abfd,
11039 char *buf,
11040 int *bufsiz,
11041 const char *fname,
11042 const char *psargs)
11043 {
11044 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11045
11046 if (bed->elf_backend_write_core_note != NULL)
11047 {
11048 char *ret;
11049 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
11050 NT_PRPSINFO, fname, psargs);
11051 if (ret != NULL)
11052 return ret;
11053 }
11054
11055 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
11056 # if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
11057 if (bed->s->elfclass == ELFCLASS32)
11058 {
11059 # if defined (HAVE_PSINFO32_T)
11060 psinfo32_t data;
11061 int note_type = NT_PSINFO;
11062 # else
11063 prpsinfo32_t data;
11064 int note_type = NT_PRPSINFO;
11065 # endif
11066
11067 memset (&data, 0, sizeof (data));
11068 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
11069 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
11070 return elfcore_write_note (abfd, buf, bufsiz,
11071 "CORE", note_type, &data, sizeof (data));
11072 }
11073 else
11074 # endif
11075 {
11076 # if defined (HAVE_PSINFO_T)
11077 psinfo_t data;
11078 int note_type = NT_PSINFO;
11079 # else
11080 prpsinfo_t data;
11081 int note_type = NT_PRPSINFO;
11082 # endif
11083
11084 memset (&data, 0, sizeof (data));
11085 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
11086 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
11087 return elfcore_write_note (abfd, buf, bufsiz,
11088 "CORE", note_type, &data, sizeof (data));
11089 }
11090 #endif /* PSINFO_T or PRPSINFO_T */
11091
11092 free (buf);
11093 return NULL;
11094 }
11095 #if GCC_VERSION >= 8000
11096 # pragma GCC diagnostic pop
11097 #endif
11098
11099 char *
11100 elfcore_write_linux_prpsinfo32
11101 (bfd *abfd, char *buf, int *bufsiz,
11102 const struct elf_internal_linux_prpsinfo *prpsinfo)
11103 {
11104 if (get_elf_backend_data (abfd)->linux_prpsinfo32_ugid16)
11105 {
11106 struct elf_external_linux_prpsinfo32_ugid16 data;
11107
11108 swap_linux_prpsinfo32_ugid16_out (abfd, prpsinfo, &data);
11109 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
11110 &data, sizeof (data));
11111 }
11112 else
11113 {
11114 struct elf_external_linux_prpsinfo32_ugid32 data;
11115
11116 swap_linux_prpsinfo32_ugid32_out (abfd, prpsinfo, &data);
11117 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
11118 &data, sizeof (data));
11119 }
11120 }
11121
11122 char *
11123 elfcore_write_linux_prpsinfo64
11124 (bfd *abfd, char *buf, int *bufsiz,
11125 const struct elf_internal_linux_prpsinfo *prpsinfo)
11126 {
11127 if (get_elf_backend_data (abfd)->linux_prpsinfo64_ugid16)
11128 {
11129 struct elf_external_linux_prpsinfo64_ugid16 data;
11130
11131 swap_linux_prpsinfo64_ugid16_out (abfd, prpsinfo, &data);
11132 return elfcore_write_note (abfd, buf, bufsiz,
11133 "CORE", NT_PRPSINFO, &data, sizeof (data));
11134 }
11135 else
11136 {
11137 struct elf_external_linux_prpsinfo64_ugid32 data;
11138
11139 swap_linux_prpsinfo64_ugid32_out (abfd, prpsinfo, &data);
11140 return elfcore_write_note (abfd, buf, bufsiz,
11141 "CORE", NT_PRPSINFO, &data, sizeof (data));
11142 }
11143 }
11144
11145 char *
11146 elfcore_write_prstatus (bfd *abfd,
11147 char *buf,
11148 int *bufsiz,
11149 long pid,
11150 int cursig,
11151 const void *gregs)
11152 {
11153 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11154
11155 if (bed->elf_backend_write_core_note != NULL)
11156 {
11157 char *ret;
11158 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
11159 NT_PRSTATUS,
11160 pid, cursig, gregs);
11161 if (ret != NULL)
11162 return ret;
11163 }
11164
11165 #if defined (HAVE_PRSTATUS_T)
11166 #if defined (HAVE_PRSTATUS32_T)
11167 if (bed->s->elfclass == ELFCLASS32)
11168 {
11169 prstatus32_t prstat;
11170
11171 memset (&prstat, 0, sizeof (prstat));
11172 prstat.pr_pid = pid;
11173 prstat.pr_cursig = cursig;
11174 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
11175 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
11176 NT_PRSTATUS, &prstat, sizeof (prstat));
11177 }
11178 else
11179 #endif
11180 {
11181 prstatus_t prstat;
11182
11183 memset (&prstat, 0, sizeof (prstat));
11184 prstat.pr_pid = pid;
11185 prstat.pr_cursig = cursig;
11186 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
11187 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
11188 NT_PRSTATUS, &prstat, sizeof (prstat));
11189 }
11190 #endif /* HAVE_PRSTATUS_T */
11191
11192 free (buf);
11193 return NULL;
11194 }
11195
11196 #if defined (HAVE_LWPSTATUS_T)
11197 char *
11198 elfcore_write_lwpstatus (bfd *abfd,
11199 char *buf,
11200 int *bufsiz,
11201 long pid,
11202 int cursig,
11203 const void *gregs)
11204 {
11205 lwpstatus_t lwpstat;
11206 const char *note_name = "CORE";
11207
11208 memset (&lwpstat, 0, sizeof (lwpstat));
11209 lwpstat.pr_lwpid = pid >> 16;
11210 lwpstat.pr_cursig = cursig;
11211 #if defined (HAVE_LWPSTATUS_T_PR_REG)
11212 memcpy (&lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
11213 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
11214 #if !defined(gregs)
11215 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
11216 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
11217 #else
11218 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
11219 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
11220 #endif
11221 #endif
11222 return elfcore_write_note (abfd, buf, bufsiz, note_name,
11223 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
11224 }
11225 #endif /* HAVE_LWPSTATUS_T */
11226
11227 #if defined (HAVE_PSTATUS_T)
11228 char *
11229 elfcore_write_pstatus (bfd *abfd,
11230 char *buf,
11231 int *bufsiz,
11232 long pid,
11233 int cursig ATTRIBUTE_UNUSED,
11234 const void *gregs ATTRIBUTE_UNUSED)
11235 {
11236 const char *note_name = "CORE";
11237 #if defined (HAVE_PSTATUS32_T)
11238 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11239
11240 if (bed->s->elfclass == ELFCLASS32)
11241 {
11242 pstatus32_t pstat;
11243
11244 memset (&pstat, 0, sizeof (pstat));
11245 pstat.pr_pid = pid & 0xffff;
11246 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
11247 NT_PSTATUS, &pstat, sizeof (pstat));
11248 return buf;
11249 }
11250 else
11251 #endif
11252 {
11253 pstatus_t pstat;
11254
11255 memset (&pstat, 0, sizeof (pstat));
11256 pstat.pr_pid = pid & 0xffff;
11257 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
11258 NT_PSTATUS, &pstat, sizeof (pstat));
11259 return buf;
11260 }
11261 }
11262 #endif /* HAVE_PSTATUS_T */
11263
11264 char *
11265 elfcore_write_prfpreg (bfd *abfd,
11266 char *buf,
11267 int *bufsiz,
11268 const void *fpregs,
11269 int size)
11270 {
11271 const char *note_name = "CORE";
11272 return elfcore_write_note (abfd, buf, bufsiz,
11273 note_name, NT_FPREGSET, fpregs, size);
11274 }
11275
11276 char *
11277 elfcore_write_prxfpreg (bfd *abfd,
11278 char *buf,
11279 int *bufsiz,
11280 const void *xfpregs,
11281 int size)
11282 {
11283 char *note_name = "LINUX";
11284 return elfcore_write_note (abfd, buf, bufsiz,
11285 note_name, NT_PRXFPREG, xfpregs, size);
11286 }
11287
11288 char *
11289 elfcore_write_xstatereg (bfd *abfd, char *buf, int *bufsiz,
11290 const void *xfpregs, int size)
11291 {
11292 char *note_name;
11293 if (get_elf_backend_data (abfd)->elf_osabi == ELFOSABI_FREEBSD)
11294 note_name = "FreeBSD";
11295 else
11296 note_name = "LINUX";
11297 return elfcore_write_note (abfd, buf, bufsiz,
11298 note_name, NT_X86_XSTATE, xfpregs, size);
11299 }
11300
11301 char *
11302 elfcore_write_ppc_vmx (bfd *abfd,
11303 char *buf,
11304 int *bufsiz,
11305 const void *ppc_vmx,
11306 int size)
11307 {
11308 char *note_name = "LINUX";
11309 return elfcore_write_note (abfd, buf, bufsiz,
11310 note_name, NT_PPC_VMX, ppc_vmx, size);
11311 }
11312
11313 char *
11314 elfcore_write_ppc_vsx (bfd *abfd,
11315 char *buf,
11316 int *bufsiz,
11317 const void *ppc_vsx,
11318 int size)
11319 {
11320 char *note_name = "LINUX";
11321 return elfcore_write_note (abfd, buf, bufsiz,
11322 note_name, NT_PPC_VSX, ppc_vsx, size);
11323 }
11324
11325 char *
11326 elfcore_write_ppc_tar (bfd *abfd,
11327 char *buf,
11328 int *bufsiz,
11329 const void *ppc_tar,
11330 int size)
11331 {
11332 char *note_name = "LINUX";
11333 return elfcore_write_note (abfd, buf, bufsiz,
11334 note_name, NT_PPC_TAR, ppc_tar, size);
11335 }
11336
11337 char *
11338 elfcore_write_ppc_ppr (bfd *abfd,
11339 char *buf,
11340 int *bufsiz,
11341 const void *ppc_ppr,
11342 int size)
11343 {
11344 char *note_name = "LINUX";
11345 return elfcore_write_note (abfd, buf, bufsiz,
11346 note_name, NT_PPC_PPR, ppc_ppr, size);
11347 }
11348
11349 char *
11350 elfcore_write_ppc_dscr (bfd *abfd,
11351 char *buf,
11352 int *bufsiz,
11353 const void *ppc_dscr,
11354 int size)
11355 {
11356 char *note_name = "LINUX";
11357 return elfcore_write_note (abfd, buf, bufsiz,
11358 note_name, NT_PPC_DSCR, ppc_dscr, size);
11359 }
11360
11361 char *
11362 elfcore_write_ppc_ebb (bfd *abfd,
11363 char *buf,
11364 int *bufsiz,
11365 const void *ppc_ebb,
11366 int size)
11367 {
11368 char *note_name = "LINUX";
11369 return elfcore_write_note (abfd, buf, bufsiz,
11370 note_name, NT_PPC_EBB, ppc_ebb, size);
11371 }
11372
11373 char *
11374 elfcore_write_ppc_pmu (bfd *abfd,
11375 char *buf,
11376 int *bufsiz,
11377 const void *ppc_pmu,
11378 int size)
11379 {
11380 char *note_name = "LINUX";
11381 return elfcore_write_note (abfd, buf, bufsiz,
11382 note_name, NT_PPC_PMU, ppc_pmu, size);
11383 }
11384
11385 char *
11386 elfcore_write_ppc_tm_cgpr (bfd *abfd,
11387 char *buf,
11388 int *bufsiz,
11389 const void *ppc_tm_cgpr,
11390 int size)
11391 {
11392 char *note_name = "LINUX";
11393 return elfcore_write_note (abfd, buf, bufsiz,
11394 note_name, NT_PPC_TM_CGPR, ppc_tm_cgpr, size);
11395 }
11396
11397 char *
11398 elfcore_write_ppc_tm_cfpr (bfd *abfd,
11399 char *buf,
11400 int *bufsiz,
11401 const void *ppc_tm_cfpr,
11402 int size)
11403 {
11404 char *note_name = "LINUX";
11405 return elfcore_write_note (abfd, buf, bufsiz,
11406 note_name, NT_PPC_TM_CFPR, ppc_tm_cfpr, size);
11407 }
11408
11409 char *
11410 elfcore_write_ppc_tm_cvmx (bfd *abfd,
11411 char *buf,
11412 int *bufsiz,
11413 const void *ppc_tm_cvmx,
11414 int size)
11415 {
11416 char *note_name = "LINUX";
11417 return elfcore_write_note (abfd, buf, bufsiz,
11418 note_name, NT_PPC_TM_CVMX, ppc_tm_cvmx, size);
11419 }
11420
11421 char *
11422 elfcore_write_ppc_tm_cvsx (bfd *abfd,
11423 char *buf,
11424 int *bufsiz,
11425 const void *ppc_tm_cvsx,
11426 int size)
11427 {
11428 char *note_name = "LINUX";
11429 return elfcore_write_note (abfd, buf, bufsiz,
11430 note_name, NT_PPC_TM_CVSX, ppc_tm_cvsx, size);
11431 }
11432
11433 char *
11434 elfcore_write_ppc_tm_spr (bfd *abfd,
11435 char *buf,
11436 int *bufsiz,
11437 const void *ppc_tm_spr,
11438 int size)
11439 {
11440 char *note_name = "LINUX";
11441 return elfcore_write_note (abfd, buf, bufsiz,
11442 note_name, NT_PPC_TM_SPR, ppc_tm_spr, size);
11443 }
11444
11445 char *
11446 elfcore_write_ppc_tm_ctar (bfd *abfd,
11447 char *buf,
11448 int *bufsiz,
11449 const void *ppc_tm_ctar,
11450 int size)
11451 {
11452 char *note_name = "LINUX";
11453 return elfcore_write_note (abfd, buf, bufsiz,
11454 note_name, NT_PPC_TM_CTAR, ppc_tm_ctar, size);
11455 }
11456
11457 char *
11458 elfcore_write_ppc_tm_cppr (bfd *abfd,
11459 char *buf,
11460 int *bufsiz,
11461 const void *ppc_tm_cppr,
11462 int size)
11463 {
11464 char *note_name = "LINUX";
11465 return elfcore_write_note (abfd, buf, bufsiz,
11466 note_name, NT_PPC_TM_CPPR, ppc_tm_cppr, size);
11467 }
11468
11469 char *
11470 elfcore_write_ppc_tm_cdscr (bfd *abfd,
11471 char *buf,
11472 int *bufsiz,
11473 const void *ppc_tm_cdscr,
11474 int size)
11475 {
11476 char *note_name = "LINUX";
11477 return elfcore_write_note (abfd, buf, bufsiz,
11478 note_name, NT_PPC_TM_CDSCR, ppc_tm_cdscr, size);
11479 }
11480
11481 static char *
11482 elfcore_write_s390_high_gprs (bfd *abfd,
11483 char *buf,
11484 int *bufsiz,
11485 const void *s390_high_gprs,
11486 int size)
11487 {
11488 char *note_name = "LINUX";
11489 return elfcore_write_note (abfd, buf, bufsiz,
11490 note_name, NT_S390_HIGH_GPRS,
11491 s390_high_gprs, size);
11492 }
11493
11494 char *
11495 elfcore_write_s390_timer (bfd *abfd,
11496 char *buf,
11497 int *bufsiz,
11498 const void *s390_timer,
11499 int size)
11500 {
11501 char *note_name = "LINUX";
11502 return elfcore_write_note (abfd, buf, bufsiz,
11503 note_name, NT_S390_TIMER, s390_timer, size);
11504 }
11505
11506 char *
11507 elfcore_write_s390_todcmp (bfd *abfd,
11508 char *buf,
11509 int *bufsiz,
11510 const void *s390_todcmp,
11511 int size)
11512 {
11513 char *note_name = "LINUX";
11514 return elfcore_write_note (abfd, buf, bufsiz,
11515 note_name, NT_S390_TODCMP, s390_todcmp, size);
11516 }
11517
11518 char *
11519 elfcore_write_s390_todpreg (bfd *abfd,
11520 char *buf,
11521 int *bufsiz,
11522 const void *s390_todpreg,
11523 int size)
11524 {
11525 char *note_name = "LINUX";
11526 return elfcore_write_note (abfd, buf, bufsiz,
11527 note_name, NT_S390_TODPREG, s390_todpreg, size);
11528 }
11529
11530 char *
11531 elfcore_write_s390_ctrs (bfd *abfd,
11532 char *buf,
11533 int *bufsiz,
11534 const void *s390_ctrs,
11535 int size)
11536 {
11537 char *note_name = "LINUX";
11538 return elfcore_write_note (abfd, buf, bufsiz,
11539 note_name, NT_S390_CTRS, s390_ctrs, size);
11540 }
11541
11542 char *
11543 elfcore_write_s390_prefix (bfd *abfd,
11544 char *buf,
11545 int *bufsiz,
11546 const void *s390_prefix,
11547 int size)
11548 {
11549 char *note_name = "LINUX";
11550 return elfcore_write_note (abfd, buf, bufsiz,
11551 note_name, NT_S390_PREFIX, s390_prefix, size);
11552 }
11553
11554 char *
11555 elfcore_write_s390_last_break (bfd *abfd,
11556 char *buf,
11557 int *bufsiz,
11558 const void *s390_last_break,
11559 int size)
11560 {
11561 char *note_name = "LINUX";
11562 return elfcore_write_note (abfd, buf, bufsiz,
11563 note_name, NT_S390_LAST_BREAK,
11564 s390_last_break, size);
11565 }
11566
11567 char *
11568 elfcore_write_s390_system_call (bfd *abfd,
11569 char *buf,
11570 int *bufsiz,
11571 const void *s390_system_call,
11572 int size)
11573 {
11574 char *note_name = "LINUX";
11575 return elfcore_write_note (abfd, buf, bufsiz,
11576 note_name, NT_S390_SYSTEM_CALL,
11577 s390_system_call, size);
11578 }
11579
11580 char *
11581 elfcore_write_s390_tdb (bfd *abfd,
11582 char *buf,
11583 int *bufsiz,
11584 const void *s390_tdb,
11585 int size)
11586 {
11587 char *note_name = "LINUX";
11588 return elfcore_write_note (abfd, buf, bufsiz,
11589 note_name, NT_S390_TDB, s390_tdb, size);
11590 }
11591
11592 char *
11593 elfcore_write_s390_vxrs_low (bfd *abfd,
11594 char *buf,
11595 int *bufsiz,
11596 const void *s390_vxrs_low,
11597 int size)
11598 {
11599 char *note_name = "LINUX";
11600 return elfcore_write_note (abfd, buf, bufsiz,
11601 note_name, NT_S390_VXRS_LOW, s390_vxrs_low, size);
11602 }
11603
11604 char *
11605 elfcore_write_s390_vxrs_high (bfd *abfd,
11606 char *buf,
11607 int *bufsiz,
11608 const void *s390_vxrs_high,
11609 int size)
11610 {
11611 char *note_name = "LINUX";
11612 return elfcore_write_note (abfd, buf, bufsiz,
11613 note_name, NT_S390_VXRS_HIGH,
11614 s390_vxrs_high, size);
11615 }
11616
11617 char *
11618 elfcore_write_s390_gs_cb (bfd *abfd,
11619 char *buf,
11620 int *bufsiz,
11621 const void *s390_gs_cb,
11622 int size)
11623 {
11624 char *note_name = "LINUX";
11625 return elfcore_write_note (abfd, buf, bufsiz,
11626 note_name, NT_S390_GS_CB,
11627 s390_gs_cb, size);
11628 }
11629
11630 char *
11631 elfcore_write_s390_gs_bc (bfd *abfd,
11632 char *buf,
11633 int *bufsiz,
11634 const void *s390_gs_bc,
11635 int size)
11636 {
11637 char *note_name = "LINUX";
11638 return elfcore_write_note (abfd, buf, bufsiz,
11639 note_name, NT_S390_GS_BC,
11640 s390_gs_bc, size);
11641 }
11642
11643 char *
11644 elfcore_write_arm_vfp (bfd *abfd,
11645 char *buf,
11646 int *bufsiz,
11647 const void *arm_vfp,
11648 int size)
11649 {
11650 char *note_name = "LINUX";
11651 return elfcore_write_note (abfd, buf, bufsiz,
11652 note_name, NT_ARM_VFP, arm_vfp, size);
11653 }
11654
11655 char *
11656 elfcore_write_aarch_tls (bfd *abfd,
11657 char *buf,
11658 int *bufsiz,
11659 const void *aarch_tls,
11660 int size)
11661 {
11662 char *note_name = "LINUX";
11663 return elfcore_write_note (abfd, buf, bufsiz,
11664 note_name, NT_ARM_TLS, aarch_tls, size);
11665 }
11666
11667 char *
11668 elfcore_write_aarch_hw_break (bfd *abfd,
11669 char *buf,
11670 int *bufsiz,
11671 const void *aarch_hw_break,
11672 int size)
11673 {
11674 char *note_name = "LINUX";
11675 return elfcore_write_note (abfd, buf, bufsiz,
11676 note_name, NT_ARM_HW_BREAK, aarch_hw_break, size);
11677 }
11678
11679 char *
11680 elfcore_write_aarch_hw_watch (bfd *abfd,
11681 char *buf,
11682 int *bufsiz,
11683 const void *aarch_hw_watch,
11684 int size)
11685 {
11686 char *note_name = "LINUX";
11687 return elfcore_write_note (abfd, buf, bufsiz,
11688 note_name, NT_ARM_HW_WATCH, aarch_hw_watch, size);
11689 }
11690
11691 char *
11692 elfcore_write_aarch_sve (bfd *abfd,
11693 char *buf,
11694 int *bufsiz,
11695 const void *aarch_sve,
11696 int size)
11697 {
11698 char *note_name = "LINUX";
11699 return elfcore_write_note (abfd, buf, bufsiz,
11700 note_name, NT_ARM_SVE, aarch_sve, size);
11701 }
11702
11703 char *
11704 elfcore_write_aarch_pauth (bfd *abfd,
11705 char *buf,
11706 int *bufsiz,
11707 const void *aarch_pauth,
11708 int size)
11709 {
11710 char *note_name = "LINUX";
11711 return elfcore_write_note (abfd, buf, bufsiz,
11712 note_name, NT_ARM_PAC_MASK, aarch_pauth, size);
11713 }
11714
11715 char *
11716 elfcore_write_register_note (bfd *abfd,
11717 char *buf,
11718 int *bufsiz,
11719 const char *section,
11720 const void *data,
11721 int size)
11722 {
11723 if (strcmp (section, ".reg2") == 0)
11724 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
11725 if (strcmp (section, ".reg-xfp") == 0)
11726 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
11727 if (strcmp (section, ".reg-xstate") == 0)
11728 return elfcore_write_xstatereg (abfd, buf, bufsiz, data, size);
11729 if (strcmp (section, ".reg-ppc-vmx") == 0)
11730 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
11731 if (strcmp (section, ".reg-ppc-vsx") == 0)
11732 return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size);
11733 if (strcmp (section, ".reg-ppc-tar") == 0)
11734 return elfcore_write_ppc_tar (abfd, buf, bufsiz, data, size);
11735 if (strcmp (section, ".reg-ppc-ppr") == 0)
11736 return elfcore_write_ppc_ppr (abfd, buf, bufsiz, data, size);
11737 if (strcmp (section, ".reg-ppc-dscr") == 0)
11738 return elfcore_write_ppc_dscr (abfd, buf, bufsiz, data, size);
11739 if (strcmp (section, ".reg-ppc-ebb") == 0)
11740 return elfcore_write_ppc_ebb (abfd, buf, bufsiz, data, size);
11741 if (strcmp (section, ".reg-ppc-pmu") == 0)
11742 return elfcore_write_ppc_pmu (abfd, buf, bufsiz, data, size);
11743 if (strcmp (section, ".reg-ppc-tm-cgpr") == 0)
11744 return elfcore_write_ppc_tm_cgpr (abfd, buf, bufsiz, data, size);
11745 if (strcmp (section, ".reg-ppc-tm-cfpr") == 0)
11746 return elfcore_write_ppc_tm_cfpr (abfd, buf, bufsiz, data, size);
11747 if (strcmp (section, ".reg-ppc-tm-cvmx") == 0)
11748 return elfcore_write_ppc_tm_cvmx (abfd, buf, bufsiz, data, size);
11749 if (strcmp (section, ".reg-ppc-tm-cvsx") == 0)
11750 return elfcore_write_ppc_tm_cvsx (abfd, buf, bufsiz, data, size);
11751 if (strcmp (section, ".reg-ppc-tm-spr") == 0)
11752 return elfcore_write_ppc_tm_spr (abfd, buf, bufsiz, data, size);
11753 if (strcmp (section, ".reg-ppc-tm-ctar") == 0)
11754 return elfcore_write_ppc_tm_ctar (abfd, buf, bufsiz, data, size);
11755 if (strcmp (section, ".reg-ppc-tm-cppr") == 0)
11756 return elfcore_write_ppc_tm_cppr (abfd, buf, bufsiz, data, size);
11757 if (strcmp (section, ".reg-ppc-tm-cdscr") == 0)
11758 return elfcore_write_ppc_tm_cdscr (abfd, buf, bufsiz, data, size);
11759 if (strcmp (section, ".reg-s390-high-gprs") == 0)
11760 return elfcore_write_s390_high_gprs (abfd, buf, bufsiz, data, size);
11761 if (strcmp (section, ".reg-s390-timer") == 0)
11762 return elfcore_write_s390_timer (abfd, buf, bufsiz, data, size);
11763 if (strcmp (section, ".reg-s390-todcmp") == 0)
11764 return elfcore_write_s390_todcmp (abfd, buf, bufsiz, data, size);
11765 if (strcmp (section, ".reg-s390-todpreg") == 0)
11766 return elfcore_write_s390_todpreg (abfd, buf, bufsiz, data, size);
11767 if (strcmp (section, ".reg-s390-ctrs") == 0)
11768 return elfcore_write_s390_ctrs (abfd, buf, bufsiz, data, size);
11769 if (strcmp (section, ".reg-s390-prefix") == 0)
11770 return elfcore_write_s390_prefix (abfd, buf, bufsiz, data, size);
11771 if (strcmp (section, ".reg-s390-last-break") == 0)
11772 return elfcore_write_s390_last_break (abfd, buf, bufsiz, data, size);
11773 if (strcmp (section, ".reg-s390-system-call") == 0)
11774 return elfcore_write_s390_system_call (abfd, buf, bufsiz, data, size);
11775 if (strcmp (section, ".reg-s390-tdb") == 0)
11776 return elfcore_write_s390_tdb (abfd, buf, bufsiz, data, size);
11777 if (strcmp (section, ".reg-s390-vxrs-low") == 0)
11778 return elfcore_write_s390_vxrs_low (abfd, buf, bufsiz, data, size);
11779 if (strcmp (section, ".reg-s390-vxrs-high") == 0)
11780 return elfcore_write_s390_vxrs_high (abfd, buf, bufsiz, data, size);
11781 if (strcmp (section, ".reg-s390-gs-cb") == 0)
11782 return elfcore_write_s390_gs_cb (abfd, buf, bufsiz, data, size);
11783 if (strcmp (section, ".reg-s390-gs-bc") == 0)
11784 return elfcore_write_s390_gs_bc (abfd, buf, bufsiz, data, size);
11785 if (strcmp (section, ".reg-arm-vfp") == 0)
11786 return elfcore_write_arm_vfp (abfd, buf, bufsiz, data, size);
11787 if (strcmp (section, ".reg-aarch-tls") == 0)
11788 return elfcore_write_aarch_tls (abfd, buf, bufsiz, data, size);
11789 if (strcmp (section, ".reg-aarch-hw-break") == 0)
11790 return elfcore_write_aarch_hw_break (abfd, buf, bufsiz, data, size);
11791 if (strcmp (section, ".reg-aarch-hw-watch") == 0)
11792 return elfcore_write_aarch_hw_watch (abfd, buf, bufsiz, data, size);
11793 if (strcmp (section, ".reg-aarch-sve") == 0)
11794 return elfcore_write_aarch_sve (abfd, buf, bufsiz, data, size);
11795 if (strcmp (section, ".reg-aarch-pauth") == 0)
11796 return elfcore_write_aarch_pauth (abfd, buf, bufsiz, data, size);
11797 return NULL;
11798 }
11799
11800 static bfd_boolean
11801 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset,
11802 size_t align)
11803 {
11804 char *p;
11805
11806 /* NB: CORE PT_NOTE segments may have p_align values of 0 or 1.
11807 gABI specifies that PT_NOTE alignment should be aligned to 4
11808 bytes for 32-bit objects and to 8 bytes for 64-bit objects. If
11809 align is less than 4, we use 4 byte alignment. */
11810 if (align < 4)
11811 align = 4;
11812 if (align != 4 && align != 8)
11813 return FALSE;
11814
11815 p = buf;
11816 while (p < buf + size)
11817 {
11818 Elf_External_Note *xnp = (Elf_External_Note *) p;
11819 Elf_Internal_Note in;
11820
11821 if (offsetof (Elf_External_Note, name) > buf - p + size)
11822 return FALSE;
11823
11824 in.type = H_GET_32 (abfd, xnp->type);
11825
11826 in.namesz = H_GET_32 (abfd, xnp->namesz);
11827 in.namedata = xnp->name;
11828 if (in.namesz > buf - in.namedata + size)
11829 return FALSE;
11830
11831 in.descsz = H_GET_32 (abfd, xnp->descsz);
11832 in.descdata = p + ELF_NOTE_DESC_OFFSET (in.namesz, align);
11833 in.descpos = offset + (in.descdata - buf);
11834 if (in.descsz != 0
11835 && (in.descdata >= buf + size
11836 || in.descsz > buf - in.descdata + size))
11837 return FALSE;
11838
11839 switch (bfd_get_format (abfd))
11840 {
11841 default:
11842 return TRUE;
11843
11844 case bfd_core:
11845 {
11846 #define GROKER_ELEMENT(S,F) {S, sizeof (S) - 1, F}
11847 struct
11848 {
11849 const char * string;
11850 size_t len;
11851 bfd_boolean (* func)(bfd *, Elf_Internal_Note *);
11852 }
11853 grokers[] =
11854 {
11855 GROKER_ELEMENT ("", elfcore_grok_note),
11856 GROKER_ELEMENT ("FreeBSD", elfcore_grok_freebsd_note),
11857 GROKER_ELEMENT ("NetBSD-CORE", elfcore_grok_netbsd_note),
11858 GROKER_ELEMENT ( "OpenBSD", elfcore_grok_openbsd_note),
11859 GROKER_ELEMENT ("QNX", elfcore_grok_nto_note),
11860 GROKER_ELEMENT ("SPU/", elfcore_grok_spu_note),
11861 GROKER_ELEMENT ("GNU", elfobj_grok_gnu_note)
11862 };
11863 #undef GROKER_ELEMENT
11864 int i;
11865
11866 for (i = ARRAY_SIZE (grokers); i--;)
11867 {
11868 if (in.namesz >= grokers[i].len
11869 && strncmp (in.namedata, grokers[i].string,
11870 grokers[i].len) == 0)
11871 {
11872 if (! grokers[i].func (abfd, & in))
11873 return FALSE;
11874 break;
11875 }
11876 }
11877 break;
11878 }
11879
11880 case bfd_object:
11881 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
11882 {
11883 if (! elfobj_grok_gnu_note (abfd, &in))
11884 return FALSE;
11885 }
11886 else if (in.namesz == sizeof "stapsdt"
11887 && strcmp (in.namedata, "stapsdt") == 0)
11888 {
11889 if (! elfobj_grok_stapsdt_note (abfd, &in))
11890 return FALSE;
11891 }
11892 break;
11893 }
11894
11895 p += ELF_NOTE_NEXT_OFFSET (in.namesz, in.descsz, align);
11896 }
11897
11898 return TRUE;
11899 }
11900
11901 bfd_boolean
11902 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size,
11903 size_t align)
11904 {
11905 char *buf;
11906
11907 if (size == 0 || (size + 1) == 0)
11908 return TRUE;
11909
11910 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
11911 return FALSE;
11912
11913 buf = (char *) bfd_malloc (size + 1);
11914 if (buf == NULL)
11915 return FALSE;
11916
11917 /* PR 17512: file: ec08f814
11918 0-termintate the buffer so that string searches will not overflow. */
11919 buf[size] = 0;
11920
11921 if (bfd_bread (buf, size, abfd) != size
11922 || !elf_parse_notes (abfd, buf, size, offset, align))
11923 {
11924 free (buf);
11925 return FALSE;
11926 }
11927
11928 free (buf);
11929 return TRUE;
11930 }
11931 \f
11932 /* Providing external access to the ELF program header table. */
11933
11934 /* Return an upper bound on the number of bytes required to store a
11935 copy of ABFD's program header table entries. Return -1 if an error
11936 occurs; bfd_get_error will return an appropriate code. */
11937
11938 long
11939 bfd_get_elf_phdr_upper_bound (bfd *abfd)
11940 {
11941 if (abfd->xvec->flavour != bfd_target_elf_flavour)
11942 {
11943 bfd_set_error (bfd_error_wrong_format);
11944 return -1;
11945 }
11946
11947 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
11948 }
11949
11950 /* Copy ABFD's program header table entries to *PHDRS. The entries
11951 will be stored as an array of Elf_Internal_Phdr structures, as
11952 defined in include/elf/internal.h. To find out how large the
11953 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
11954
11955 Return the number of program header table entries read, or -1 if an
11956 error occurs; bfd_get_error will return an appropriate code. */
11957
11958 int
11959 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
11960 {
11961 int num_phdrs;
11962
11963 if (abfd->xvec->flavour != bfd_target_elf_flavour)
11964 {
11965 bfd_set_error (bfd_error_wrong_format);
11966 return -1;
11967 }
11968
11969 num_phdrs = elf_elfheader (abfd)->e_phnum;
11970 if (num_phdrs != 0)
11971 memcpy (phdrs, elf_tdata (abfd)->phdr,
11972 num_phdrs * sizeof (Elf_Internal_Phdr));
11973
11974 return num_phdrs;
11975 }
11976
11977 enum elf_reloc_type_class
11978 _bfd_elf_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
11979 const asection *rel_sec ATTRIBUTE_UNUSED,
11980 const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
11981 {
11982 return reloc_class_normal;
11983 }
11984
11985 /* For RELA architectures, return the relocation value for a
11986 relocation against a local symbol. */
11987
11988 bfd_vma
11989 _bfd_elf_rela_local_sym (bfd *abfd,
11990 Elf_Internal_Sym *sym,
11991 asection **psec,
11992 Elf_Internal_Rela *rel)
11993 {
11994 asection *sec = *psec;
11995 bfd_vma relocation;
11996
11997 relocation = (sec->output_section->vma
11998 + sec->output_offset
11999 + sym->st_value);
12000 if ((sec->flags & SEC_MERGE)
12001 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
12002 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
12003 {
12004 rel->r_addend =
12005 _bfd_merged_section_offset (abfd, psec,
12006 elf_section_data (sec)->sec_info,
12007 sym->st_value + rel->r_addend);
12008 if (sec != *psec)
12009 {
12010 /* If we have changed the section, and our original section is
12011 marked with SEC_EXCLUDE, it means that the original
12012 SEC_MERGE section has been completely subsumed in some
12013 other SEC_MERGE section. In this case, we need to leave
12014 some info around for --emit-relocs. */
12015 if ((sec->flags & SEC_EXCLUDE) != 0)
12016 sec->kept_section = *psec;
12017 sec = *psec;
12018 }
12019 rel->r_addend -= relocation;
12020 rel->r_addend += sec->output_section->vma + sec->output_offset;
12021 }
12022 return relocation;
12023 }
12024
12025 bfd_vma
12026 _bfd_elf_rel_local_sym (bfd *abfd,
12027 Elf_Internal_Sym *sym,
12028 asection **psec,
12029 bfd_vma addend)
12030 {
12031 asection *sec = *psec;
12032
12033 if (sec->sec_info_type != SEC_INFO_TYPE_MERGE)
12034 return sym->st_value + addend;
12035
12036 return _bfd_merged_section_offset (abfd, psec,
12037 elf_section_data (sec)->sec_info,
12038 sym->st_value + addend);
12039 }
12040
12041 /* Adjust an address within a section. Given OFFSET within SEC, return
12042 the new offset within the section, based upon changes made to the
12043 section. Returns -1 if the offset is now invalid.
12044 The offset (in abnd out) is in target sized bytes, however big a
12045 byte may be. */
12046
12047 bfd_vma
12048 _bfd_elf_section_offset (bfd *abfd,
12049 struct bfd_link_info *info,
12050 asection *sec,
12051 bfd_vma offset)
12052 {
12053 switch (sec->sec_info_type)
12054 {
12055 case SEC_INFO_TYPE_STABS:
12056 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
12057 offset);
12058 case SEC_INFO_TYPE_EH_FRAME:
12059 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
12060
12061 default:
12062 if ((sec->flags & SEC_ELF_REVERSE_COPY) != 0)
12063 {
12064 /* Reverse the offset. */
12065 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12066 bfd_size_type address_size = bed->s->arch_size / 8;
12067
12068 /* address_size and sec->size are in octets. Convert
12069 to bytes before subtracting the original offset. */
12070 offset = (sec->size - address_size) / bfd_octets_per_byte (abfd) - offset;
12071 }
12072 return offset;
12073 }
12074 }
12075 \f
12076 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
12077 reconstruct an ELF file by reading the segments out of remote memory
12078 based on the ELF file header at EHDR_VMA and the ELF program headers it
12079 points to. If not null, *LOADBASEP is filled in with the difference
12080 between the VMAs from which the segments were read, and the VMAs the
12081 file headers (and hence BFD's idea of each section's VMA) put them at.
12082
12083 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
12084 remote memory at target address VMA into the local buffer at MYADDR; it
12085 should return zero on success or an `errno' code on failure. TEMPL must
12086 be a BFD for an ELF target with the word size and byte order found in
12087 the remote memory. */
12088
12089 bfd *
12090 bfd_elf_bfd_from_remote_memory
12091 (bfd *templ,
12092 bfd_vma ehdr_vma,
12093 bfd_size_type size,
12094 bfd_vma *loadbasep,
12095 int (*target_read_memory) (bfd_vma, bfd_byte *, bfd_size_type))
12096 {
12097 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
12098 (templ, ehdr_vma, size, loadbasep, target_read_memory);
12099 }
12100 \f
12101 long
12102 _bfd_elf_get_synthetic_symtab (bfd *abfd,
12103 long symcount ATTRIBUTE_UNUSED,
12104 asymbol **syms ATTRIBUTE_UNUSED,
12105 long dynsymcount,
12106 asymbol **dynsyms,
12107 asymbol **ret)
12108 {
12109 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12110 asection *relplt;
12111 asymbol *s;
12112 const char *relplt_name;
12113 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
12114 arelent *p;
12115 long count, i, n;
12116 size_t size;
12117 Elf_Internal_Shdr *hdr;
12118 char *names;
12119 asection *plt;
12120
12121 *ret = NULL;
12122
12123 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
12124 return 0;
12125
12126 if (dynsymcount <= 0)
12127 return 0;
12128
12129 if (!bed->plt_sym_val)
12130 return 0;
12131
12132 relplt_name = bed->relplt_name;
12133 if (relplt_name == NULL)
12134 relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt";
12135 relplt = bfd_get_section_by_name (abfd, relplt_name);
12136 if (relplt == NULL)
12137 return 0;
12138
12139 hdr = &elf_section_data (relplt)->this_hdr;
12140 if (hdr->sh_link != elf_dynsymtab (abfd)
12141 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
12142 return 0;
12143
12144 plt = bfd_get_section_by_name (abfd, ".plt");
12145 if (plt == NULL)
12146 return 0;
12147
12148 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
12149 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
12150 return -1;
12151
12152 count = relplt->size / hdr->sh_entsize;
12153 size = count * sizeof (asymbol);
12154 p = relplt->relocation;
12155 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
12156 {
12157 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
12158 if (p->addend != 0)
12159 {
12160 #ifdef BFD64
12161 size += sizeof ("+0x") - 1 + 8 + 8 * (bed->s->elfclass == ELFCLASS64);
12162 #else
12163 size += sizeof ("+0x") - 1 + 8;
12164 #endif
12165 }
12166 }
12167
12168 s = *ret = (asymbol *) bfd_malloc (size);
12169 if (s == NULL)
12170 return -1;
12171
12172 names = (char *) (s + count);
12173 p = relplt->relocation;
12174 n = 0;
12175 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
12176 {
12177 size_t len;
12178 bfd_vma addr;
12179
12180 addr = bed->plt_sym_val (i, plt, p);
12181 if (addr == (bfd_vma) -1)
12182 continue;
12183
12184 *s = **p->sym_ptr_ptr;
12185 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
12186 we are defining a symbol, ensure one of them is set. */
12187 if ((s->flags & BSF_LOCAL) == 0)
12188 s->flags |= BSF_GLOBAL;
12189 s->flags |= BSF_SYNTHETIC;
12190 s->section = plt;
12191 s->value = addr - plt->vma;
12192 s->name = names;
12193 s->udata.p = NULL;
12194 len = strlen ((*p->sym_ptr_ptr)->name);
12195 memcpy (names, (*p->sym_ptr_ptr)->name, len);
12196 names += len;
12197 if (p->addend != 0)
12198 {
12199 char buf[30], *a;
12200
12201 memcpy (names, "+0x", sizeof ("+0x") - 1);
12202 names += sizeof ("+0x") - 1;
12203 bfd_sprintf_vma (abfd, buf, p->addend);
12204 for (a = buf; *a == '0'; ++a)
12205 ;
12206 len = strlen (a);
12207 memcpy (names, a, len);
12208 names += len;
12209 }
12210 memcpy (names, "@plt", sizeof ("@plt"));
12211 names += sizeof ("@plt");
12212 ++s, ++n;
12213 }
12214
12215 return n;
12216 }
12217
12218 /* It is only used by x86-64 so far.
12219 ??? This repeats *COM* id of zero. sec->id is supposed to be unique,
12220 but current usage would allow all of _bfd_std_section to be zero. */
12221 static const asymbol lcomm_sym
12222 = GLOBAL_SYM_INIT ("LARGE_COMMON", &_bfd_elf_large_com_section);
12223 asection _bfd_elf_large_com_section
12224 = BFD_FAKE_SECTION (_bfd_elf_large_com_section, &lcomm_sym,
12225 "LARGE_COMMON", 0, SEC_IS_COMMON);
12226
12227 void
12228 _bfd_elf_post_process_headers (bfd *abfd ATTRIBUTE_UNUSED,
12229 struct bfd_link_info *info ATTRIBUTE_UNUSED)
12230 {
12231 }
12232
12233 bfd_boolean
12234 _bfd_elf_final_write_processing (bfd *abfd)
12235 {
12236 Elf_Internal_Ehdr *i_ehdrp; /* ELF file header, internal form. */
12237
12238 i_ehdrp = elf_elfheader (abfd);
12239
12240 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE)
12241 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
12242
12243 /* Set the osabi field to ELFOSABI_GNU if the binary contains
12244 SHF_GNU_MBIND sections or symbols of STT_GNU_IFUNC type or
12245 STB_GNU_UNIQUE binding. */
12246 if (elf_tdata (abfd)->has_gnu_osabi != 0)
12247 {
12248 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE)
12249 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_GNU;
12250 else if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_GNU
12251 && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_FREEBSD)
12252 {
12253 if (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_mbind)
12254 _bfd_error_handler (_("GNU_MBIND section is unsupported"));
12255 if (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_ifunc)
12256 _bfd_error_handler (_("symbol type STT_GNU_IFUNC is unsupported"));
12257 if (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_unique)
12258 _bfd_error_handler (_("symbol binding STB_GNU_UNIQUE is unsupported"));
12259 bfd_set_error (bfd_error_sorry);
12260 return FALSE;
12261 }
12262 }
12263 return TRUE;
12264 }
12265
12266
12267 /* Return TRUE for ELF symbol types that represent functions.
12268 This is the default version of this function, which is sufficient for
12269 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */
12270
12271 bfd_boolean
12272 _bfd_elf_is_function_type (unsigned int type)
12273 {
12274 return (type == STT_FUNC
12275 || type == STT_GNU_IFUNC);
12276 }
12277
12278 /* If the ELF symbol SYM might be a function in SEC, return the
12279 function size and set *CODE_OFF to the function's entry point,
12280 otherwise return zero. */
12281
12282 bfd_size_type
12283 _bfd_elf_maybe_function_sym (const asymbol *sym, asection *sec,
12284 bfd_vma *code_off)
12285 {
12286 bfd_size_type size;
12287
12288 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
12289 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0
12290 || sym->section != sec)
12291 return 0;
12292
12293 *code_off = sym->value;
12294 size = 0;
12295 if (!(sym->flags & BSF_SYNTHETIC))
12296 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
12297 if (size == 0)
12298 size = 1;
12299 return size;
12300 }